OPTIMISING COLLECTOR PLATE GEOMETRY FOR A SPECIFIC SOLAR SYPHON SYSTEM DESIGN

By

ALI MOHAMED ELHABISHI

Thesis submitted in fulfilment of the requirements for the degree

Master of Technology: Mechanical Engineering

in the Faculty of Engineering at the

Cape Peninsula University of Technology

Supervisor: Prof. J. Gryzagoridis
Bellville campus
April 2016

CPUT copyright information
The dissertation/thesis may not be published either in part (in scholarly, scientific or technical journals), or as a whole (as a monograph), unless permission has been obtained from the University.
DECLARATION

I, Ali Mohamed Elhabishi declare that the contents of this thesis represent my own unaided work, and that the thesis has not previously been submitted for academic examination towards any qualification. Furthermore, it represents my own opinions and not necessarily those of the Cape Peninsula University of Technology.

Signed

Date
ACKNOWLEDGEMENTS

I wish to thank and express my gratitude to Prof Jasson Gryzagoridis for his supervision of this thesis. I wish to thank him for all his advice, counselling, support, guidance and constructive criticism which helped to accomplish this work.

I also wish to thank the staff of the Mechanical Engineering Workshop for their assistance.

Special thanks to my colleagues (postgraduate students) whom I have had the pleasure of knowing, have had discussions with and shared knowledge.

Great thanks for all my family members
DEDICATION

This thesis is dedicated to my loved ones, with a special feeling of gratitude to my loving mother and sisters, who have been a constant source of support and encouragement during the challenges of graduate school and life. To my wife who has always loved me unconditionally and whom I am truly thankful. Finally, to my wonderful daughters and sons for being there for me throughout the entire master's program. You have all been my best cheerleaders.

Thank you!!
ABSTRACT

Solar energy is still not being used effectively in countries in the developing world, though it's a partial solution to the problem of shortage and expensive energy. Normally harvested through flat plate collectors, converting solar radiation into heat is the most direct application that can be effected in water heating systems. Many researchers have attempted to develop means of improving the efficiency of the flat plate solar energy collector; however there appears to be no evidence of any work regarding the effect of geometric configuration on the performance of flat plate solar collector.

This study presents results obtained when comparing the performance of a solar water heating system equipped with three manufactured flat plate solar collector panels of numerically identical surface area but of different geometric configuration as they were individually attached to a typical geyser. Data was obtained inside a laboratory. The amount of heat acquired from flat plate collectors of solar energy depends primarily on their surface area that is exposed to the solar irradiance, however, the geometry of the collectors was thought that it might affect to some extent the amount of heat harvested. The circulation of the water from the panel to the geyser was due to the self-induced thermo-syphon effect. The results obtained during the test period (7 hours per day for two consecutive days) indicated that the system's thermal efficiency was best when the square geometrical configuration collector was used. A dimensional analysis using the Π Buckingham method that was performed on the parameters affecting a flat plate solar collector yielded three dimensionless numbers that lead to a power law relationship which might be useful in enhancing solar water heating systems’ design.
TABLE OF CONTENTS

DECLARATION ... i

ACKNOWLEDGEMENTS ... ii

DEDICATION .. iii

ABSTRACT ... iv

TABLE OF CONTENTS .. v

LIST OF FIGURES .. viii

LIST OF TABLES ... x

Nomenclature .. xi

CHAPTER ONE: INTRODUCTION ... 1

1.1 General background ... 1

1.1.1 The energy crisis ... 1

1.1.2 Historical overview of solar energy .. 1

1.1.3 The sun .. 5

1.2 Problem statement ... 5

1.3 Parameters that affect solar flat plate collector ... 6

1.3.1 Climatic parameters ... 6

 The intensity of solar radiation .. 6

 Dust .. 6

 Shading .. 6

 Wind .. 6

1.3.2 Design parameters .. 6

 Plate ... 6

 Glazing ... 7

 Tube spacing ... 7

 Tilt angle .. 7

1.4 Project objectives .. 7

1.5 Significance of the thesis ... 8

1.6 Limitations of the thesis ... 8

1.7 Organization of the thesis ... 8

CHAPTER TWO: THEORETICAL BACKGROUND .. 10

2.1 Solar energy .. 10

2.2 Heat Transfer .. 12
2.2.1 Conduction .. 12
2.2.2 Convection .. 12
2.2.3 Radiation .. 13
2.3 Important equations to calculate the solar water heating system’s efficiency and acquired energy .. 13
2.3.1 Energy input to the collector .. 14
2.3.2 Energy acquired by the geyser .. 14
2.3.3 Solar water heating system’s efficiency ... 14
2.4 Dimensional analysis ... 15
2.4.1 Finding a functional relationship between variables by the Buckingham Π Method ... 15
2.4.2 Finding or calculating the difference in pressure between the inlet and outlet of the flat plate solar energy collector ... 17

CHAPTER THREE: THE METHOLOGY OF THE EXPERIMENTS ... 20
3.1 Description of the thermo-syphon system .. 20
3.1.1 Geyser .. 24
3.1.2 Flat plate collectors ... 25
3.1.3 The sun simulator ... 26
3.1.4 Equipment holder or stand .. 28
3.1.5 Pipe connections ... 28
3.2 Instrumentation and experimental protocol .. 29
3.2.1 Laboratory’s condition .. 29
3.2.2 Sun Simulator’s radiation intensity measurement .. 29
3.2.3 Temperature measurements .. 30
3.2.4 Experimental Protocol ... 30

CHAPTER FOUR: RESULTS AND DISCUSSION .. 32
4.1 Introduction ... 32
4.2 The test results for the water temperature inside the geyser during the: 32
 First day ... 32
 Second day .. 34
4.3 Energy acquired by the water in the geyser .. 36
 First day ... 36
 Second day .. 38
4.4 Thermo-syphon solar water heating system’s efficiency ... 40
 First day ... 40
 Second day .. 41
4.5 Results from the dimensional analysis ... 41

CHAPTER FIVE: Conclusions and Recommendations .. 45
5.1 Conclusions ... 45
5.1.1 Results from the first day of the tests .. 45
5.1.2 Results from the second day of the tests .. 45
5.3 Recommendations for future work .. 46

REFERENCES ... 47
APPENDICES ... 50
LIST OF FIGURES

Figure 1.1: A solar bonfire by F. Marion, Hachette, Paris, 1876.. 2
Figure 1.2: The first solar furnace with glass concentrating lenses, built by F. Lavoisier.......... 3
Figure 1.3: The solar engine water pump in California and the Shuman Bays solar power
 erected in Egypt.. 3
Figure 1.4: Shuman’s flat plate collector sun power system... 4
Figure 2.1: Schematic representation of solar radiation on Earth... 10
Figure 2.2: Schematic of the heat balance on a flat plate solar radiation collector...................... 11
Figure 2.3: Schematic diagram of the calculation of the static pressure difference across
 inlet and outlet of the flat plate solar energy collector... 18
Figure 3.1: Schematic diagram of the thermos-syphon system.. 21
Figure 3.2a: The sun simulator positioned above the solar collector.. 22
Figure 3.2b: The geyser’s various connections... 23
Figure 3.3: Xstream Solar Hot Water geyser... 24
Figure 3.4: The three flat plate collectors... 26
Figure 3.5: The sun simulator... 27
Figure 3.6: Equipment holder or stand... 28
Figure 3.7: Solar Power meter (TES-1333)... 29
Figure 3.8: Testo 926 device and T-type thermocouples... 30
Figure 4.1: Temperature variation of the water inside the geyser in the first day of the test
 for flat plate collector A... 33
Figure 4.2: Comparison between average temperatures of the water in the geyser when
 using the flat plate collectors, A, B, and C (first day)... 34
Figure 4.3: The temperature variation of the water inside the geyser during the second day
 of the test when using collector A... 35
Figure 4.4: Comparison between average temperature of the water in the geyser when
 using collectors A, B, and C in the second day.. 36
Figure 4.5: Comparison between the rates of energy acquired by the geyser’s water using
 collectors A, B, and C relative to available irradiance during the first day of
 testing.. 37
Figure 4.6: Comparison of cumulative energy delivered to the geyser from the flat plate
 solar collectors A, B, and C during the first day... 38
Figure 4.7: Comparison between energy acquired by the geyser's water using collectors A, B, and C relative to available irradiance during the second day of testing 39

Figure 4.8: Comparison of cumulative energy delivered to the geyser from the flat plate solar collectors A, B, and C during the second day .. 39

Figure 4.9: Hourly efficiency of the flat plate solar collectors A, B and C during the first day of the tests ... 40

Figure 4.10: Hourly efficiency of the flat plate solar collectors A, B and C during the second day of the tests ... 41

Figure 4.11: The relationship between Π_3 and Π_2 ... 42

Figure 4.12: The relationship between Π_2 and Π_3 ... 43

Figure 4.13: The difference in pressure between the inlet and outlet of the inclined solar collector panel vs. the vertical height between them ... 44

Figure A-1: Variable voltage transformer-Variac model: SB-10 and specifications 49
LIST OF TABLES

Table 3.1: The specifications of the geyser ... 24

Table 3.2: The specifications of the flat plate solar collectors 25

Table 4.1: Shows the values of Π_1, Π_2 and Π_3; and the average pressure difference on the collectors A, B and C based on their vertical height ... 42

Table A-1: Specification of Variable voltage transformer-Variac model: SB-10 and specifications ... 51

Table A-2: Solar power meter (TES-1333) specifications ... 52

Table B-1: Temperatures inside the geyser (in different locations) during the test period of the first day using collectors A, B, and C ... 56

Table B-2: Temperatures inside the geyser (in different locations) during the test period of the second day using collectors A, B, and C and C ... 57

Table D-1: T_{avg}, ΔT, energy rate acquired by the geyser’s water (W), energy accumulated by the geyser’s water (MJ) and hourly efficiency (%) were calculated during the test period of the first day using the collectors A, B, and C ... 62

Table D-2: T_{avg}, ΔT, Energy rate acquired by the geyser’s water (W), Energy accumulated by the geyser’s water (MJ) and Hourly efficiency (%) were calculated during the test period of the second day using the collectors A, B, and C ... 63

Table E: Temperature data, density values, enthalpy, pressure difference between the inlet and outlet of the flat plate collectors A, B and C and (Π_1, Π_2 and Π_3) ... 64
Nomenclature

<table>
<thead>
<tr>
<th>Symbols</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Area</td>
<td>m2</td>
</tr>
<tr>
<td>C_p</td>
<td>Specific heat</td>
<td>$kJ/kg.K$</td>
</tr>
<tr>
<td>g</td>
<td>Earth’s gravity</td>
<td>m/s2</td>
</tr>
<tr>
<td>H</td>
<td>water’s specific enthalpy</td>
<td>Joules/kg</td>
</tr>
<tr>
<td>I</td>
<td>Solar radiation intensity</td>
<td>W/m2</td>
</tr>
<tr>
<td>K</td>
<td>Thermal conductivity</td>
<td>W/mK</td>
</tr>
<tr>
<td>L</td>
<td>vertical height difference between input and output of the collector</td>
<td>m</td>
</tr>
<tr>
<td>M</td>
<td>Mass</td>
<td>Kg</td>
</tr>
<tr>
<td>P_0</td>
<td>Atmospheric pressure</td>
<td>Pa</td>
</tr>
<tr>
<td>P_A</td>
<td>Inlet Pressure of the collector</td>
<td>Pa</td>
</tr>
<tr>
<td>P_B</td>
<td>Outlet Pressure of the collector</td>
<td>Pa</td>
</tr>
<tr>
<td>Δp</td>
<td>pressure difference between inlet and outlet of the flat plate solar energy collector</td>
<td>Pa</td>
</tr>
<tr>
<td>Q</td>
<td>Heat energy</td>
<td>kJ</td>
</tr>
<tr>
<td>T</td>
<td>Temperature</td>
<td>°C</td>
</tr>
<tr>
<td>t</td>
<td>Time</td>
<td>hours</td>
</tr>
<tr>
<td>ΔT</td>
<td>Temperature difference based on hourly data acquisition interval</td>
<td>°C</td>
</tr>
<tr>
<td>X</td>
<td>vertical dimensions in figure 2.3</td>
<td>m</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Greek symbols</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>Absorptance</td>
<td>-</td>
</tr>
<tr>
<td>τ</td>
<td>Transmittance</td>
<td>-</td>
</tr>
<tr>
<td>ε</td>
<td>Emissivity</td>
<td>-</td>
</tr>
<tr>
<td>σ</td>
<td>Stefan-Boltzmann constant</td>
<td>W/m2K4</td>
</tr>
<tr>
<td>η</td>
<td>Solar thermo-syphon system efficiency</td>
<td>%</td>
</tr>
<tr>
<td>ρ</td>
<td>Water density</td>
<td>kg/m3</td>
</tr>
<tr>
<td>Π</td>
<td>Symbol for Dimensionless number</td>
<td>-</td>
</tr>
</tbody>
</table>
Chapter One
Introduction

1.1 General background

1.1.1 The energy crisis

Mankind in recent decades is experiencing continuous development in all fields, whether urban or industrial, and this development depends on the sources of energy. In most cases energy is derived from fuels such as coal, oil and gas, which are costly pollute the environment and will eventually be depleted. Solar energy is one of the solutions to help solve the energy problems in the world. Moreover, it is available over large areas on the earth and it is easy to be used. Most developed countries have been seeking to reduce the pressure on traditional energy sources and replace them with renewable energy [1].

The oil crisis started in the seventies of the last century when the war between Arabs and Israel threatened the oil supply lines. Many countries reviewed their plans of energy consumption and diversified their sources. Some countries opted for nuclear energy such as France and Sweden, and some turned their attention to alternative energy sources such as solar and wind energy [2].

In the last decade, South Africa has faced problems in the production of energy and it will also suffer a shortage of coal by this decade; a fuel the country needs for most of its power plants to produce electricity [3].

1.1.2 Historical overview of solar energy

Solar energy is the oldest type of natural energy used by humans. It provides the most basic needs for human beings such as light and warmth. It also plays a role in the climate and environmental cycle. In the present era, solar energy is considered to be the best solution to solve energy problems that are affecting the world [4]. Since ancient times humans benefited from solar radiation energy directly in many applications such as drying agricultural crops, drying meat and fish, and heating of homes etc. The Greek historian Plutarch (AD 46 – 120) pointed that Archimedes had used solar radiation to burn Roman ships in 212 BC by focusing solar radiation on them using hundreds of metal armour. Kircher (1601 – 1680) tried to prove whether this incident of Archimedes is true or not, so he conducted a scientific experiment by igniting wood using solar radiation from a distance.
Surprisingly, among the first applications of solar energy was using a concentrating collector (that requires accuracy in the construction and in tracking the sun) to start a solar bonfire. Figure (1) shows one of the first concentrating solar collectors.

![Figure 1.1: A solar bonfire by F. Marion, Hachette, Paris, 1876](image)

(Adopted from [4])

The French scientist Antoine Lavoisier in the 18th century managed to design solar furnaces to melt metals reaching temperatures up to 1750 C by using lenses, as shown in figure (2). A collector (cone-shaped) was designed by Mouchot in 1895 in Algeria, which consisted of silver-plated metal plates, had a diameter of 5.4 m and a collecting area of 18.6 m². In the same period Abel Pifre designed a solar collector in a parabolic shape made of very small reflective mirrors. In 1901 a station was built to pump water in California using solar energy, as shown in figure (1.3a). The largest water pumping station operated by solar energy was built in Egypt in 1912, shown in figure (1.3b) [4],[5].
Figure 1.2: The first solar furnace with glass concentrating lenses, built by F. Lavoisier

(Adopted from [4])

Figure 1.3: (a) The solar engine water pump in California, (b) the Shuman Bays solar power erected in Egypt

(Adopted from [5])
One of the first designs of solar collectors used to heat water was by the Swiss scientist Horace de Saussure in 1760s. It was an isolated rectangular box shape, covered by glass [2]. In 1885 C.L.A. Tellier used the first flat-plate collector with a 20 m² surface area [4]. American engineers H. E. Wilsie and J. Boyle, Jr., installed several solar engines, flat collectors, and tubular heaters within the borders of the United States. They used a mix of water with ammonia, carbon dioxide, sulphur dioxide, etc., as working fluids and the efficiency of the devices ranged between 50 to 85%. Figure (1.4) shows the image of Shuman’s flat-plate collector, published in the Engineering News Journal in May 1909, which is a shallow basin covered with glass to convert solar energy into heat energy by working fluids in a storage tank, used to run the engine to pump water to farms in California [5].

![Figure 1.4: Shuman's flat plate collector sun power system](Adopted from [5])
Hottel and Willis in 1950 developed the first accurate model of flat plate solar collector for water heaters. Thereafter very quickly in many countries of the world, blossomed designs of what is considered a thermo syphon system, flat-plate solar collectors with surface area of 3-4 square meters and a 150-180 litter storage tank [4],[5].

1.1.3 The sun

The Sun is the main source of radiant energy available to the Earth. Our Sun the nearest star to Earth, provides the energy in the form of radiation that travels through space by electromagnetic waves or photon bunches (depending which theory one espouses). The value of the solar irradiance on a surface normal to the sun's rays, also known as the solar constant is estimated to be 1.367 kW/m^2 at the outer limits of earth's atmosphere. Water vapour, carbon dioxide, and to a lesser extent oxygen, selectively absorb and change the spectrum of the radiation that reaches the ground (and make the sky look blue). For a typical cloudless atmosphere in summer and for zero zenith angle, the 1367 W/m^2 reaching the outer atmosphere is reduced to 1050 W/m^2 direct beam radiation, on a horizontal surface at ground level. The sun produces energy more than humanity’s current needs (10,000 times) [6].

Basically, solar energy can be converted and used by the following techniques: Helio-chemical, Helio-electrical and Helio-thermal. The last one (Helio-thermal), is when Solar Energy is converted by solar collectors to heat energy and can be used in several applications, mainly water heating and building heating needs, whether industrial or household [7].

1.2 Problem statement

Due to rising energy prices and growing environmental problems electric heating has become less attractive. By implementing solar water heating for domestic and/or industrial use, a reduction of 70-90% of heating costs and energy consumption can be expected [8]. This research seeks to contribute at improving the efficiency of the solar flat collector, thus possibly reducing the financial burden and the environmental issues.
1.3. **Parameters that affect solar flat plate collector**

The efficiency of the Collector is affected by several factors, such as location, intensity of solar radiation, wind speed, dust, shade and manufacturer’s material properties of the Collector. These parameters can be classified into two parts, climatic and design parameters.

1.3.1 **Climatic parameters**

- **The intensity of solar radiation**

 Solar radiation is the most important of all the natural factors that affect the efficiency of the collector. The intensity of solar radiation is affected by many factors such as location i.e. longitude and latitude, atmospheric condition such as clouds, dust, and the time of the day and season in the year [7],[9], [10].

- **Dust**

 Effects of dust and dirt on the cover reduce absorptivity. It is estimated that the percentage loss in solar energy absorptivity in the moderate climates is 1%, and in dry climates it is 2%. The effect of dust depends on the cover type for example, plastic attracts dust or picks up more dust than glass [7],[10].

- **Shading**

 Shade also reduces the efficiency of the collector. Particularly it has an effect on large systems for units neighbouring in a row, where shadow depends on the distance between the collectors, the length of the row, the angle of inclination, the time of the day season in the year and latitude [10], [11].

- **Wind**

 Wind speed increases result to increasing the amount of heat loss to the ambient and definitely minimizes the efficiency of the collector [12].

1.3.2 **Design parameters**

- **Plate**

 Plate surfaces that have high absorptivity of solar radiation and low emissivity are required. Shukatme [13] claims that the selective absorber plate surfaces were first
suggested by (Tabor, 1956) and (Dunkle, 1958). The plate collector should have the ability to absorb the largest amount of solar radiation, and transfer the heat to a liquid at minimum temperature difference and minimize the heat loss to the surroundings [14],[15].

- **Glazing**
 The most important properties of the cover over the solar absorbers plate are reflection (ρ), absorption (α), and transmission (τ). The reflection and absorption of the covering should be as low as possible and the transmission (τ) as high as possible for maximum efficiency. Glass and plastic are the materials used to cover flat plate solar collectors, but the latter does not tolerate sunlight for long. It is recommended to put a cover of glass and plastic and evacuate the air between them to minimize convection loss. Plastic is usually placed under the glass cover to protect it from sunlight and heat; and extend its lifetime of service [14],[15].

- **Tube spacing**
 According to Duffie and Beckman [10], it is clear that a small distance between the tubes increases efficiency. In the case of touching the tubes together leads to the dispensing of the plate; however it leads to an increase in the price of the collector. The space between tubes depends on several factors; the most important is the cost of the metal, the plate thickness and the tube diameter. As a result the space between the tubes is different from one region’s manufacturer to another [16].

- **Tilt angle**
 The orientation of the collector, the azimuth angle and incidence angle has a significant effect on the amount of solar radiation falling on the collector. Generally, the collectors are fixed and do not trace the sun’s travel. The best tilt angle of the collector is facing the sun’s travel at an angle approximately equal to the site’s latitude [17].

1.4. **Project objectives**

The main objective of this research is to investigate or determine the efficiency of the collector on the basis of geometry per unit area productivity. The work will be directed to a particular manufacturer’s design on the proportionality of their units. The geometry of the panels (such as rectangular short or long sides and square) is expected to affect-the
amount of heat acquired because of the number and length of the tubes attached to the absorbent plate, as well as the geometry affecting heat losses due to prevailing atmospheric conditions. It is intended to test specially manufactured flat plate collectors (provided by a local manufacturer) with the proviso that all three geometries will have identical total surface area.

1.5. **Significance of the thesis**

The importance of this research is in optimising the design geometry of flat plate collectors as a guide to commercial manufacturers. More efficient solar water heating systems would lead to encourage consumers to replace conventional (electrical) water heaters, which will contribute toward energy savings.

1.6. **Limitations of the thesis**

This research will focus on a comparison of the efficiency between three flat plate collectors that have identical solar energy receiving area and will be conducted in a laboratory where their orientation and tilt angle will be kept constant. Solar irradiation will be provided by an array of controllable flood lights.

1.7. **Organization of the thesis**

This study is organised as follows:

Chapter One provides the motivation for the current study and general background information on the energy crisis, historical overview on solar energy and general related information about the sun, as well as some parameters that affect solar flat plate collector.

Chapter Two presents the theoretical background of solar energy, heat transfer, and related equations to calculate the solar water heating system’s efficiency and acquired energy and dimensional analysis of the variables that affect flat plate solar collectors.

Chapter Three describes the construction of the solar thermo-syphon water heating system, the instrumentation used and the experimental protocol for testing the system.

Chapter Four reports and discusses the results of the experiments and the dimensional analysis performed.
Finally, the main conclusions of the study are summarised in Chapter 5 where a brief attention is also given to recommendations for further investigations.
2.1 Solar energy

Clean energy generated from the sun could be much more than what is needed by humans. Sun sends an amount of solar radiation in one day to generate enough energy for a year. For example: 10% of sunlight is equivalent to 20 TW that is double the global consumption of fossil energy [18].

However there are several reasons that stand as obstacles when humans attempt to benefit from the sunshine available on the earth's surface. The most important reasons: The Earth's rotation around its axis makes solar radiation available at a given location for a shorter period during the day. The atmosphere/cloud covers etc. absorb about 19% and reflect about 26% of the solar radiation. Of the 55% remaining solar radiation that reaches the ground, another 4% is reflected leaving 51% to be absorbed by the earth, or used in photosynthesis, in heating the surface and the lower atmosphere, melt ice and evaporate water see figure (2.1) [19].

![Figure 2.1: Schematic representation of solar radiation on Earth](image)

(Adopted from [20])
Figure (2.2) shows the heat balance on a flat plate solar radiation collector, where the amount of heat absorbed by the plate is about 80% of the incoming radiation of which an amount of 35% is attributed to losses with a remainder of only 45% of the incoming radiation as useful heat [18].

![Figure 2.2: Schematic of the heat balance on a flat plate solar radiation collector (Adopted from [21])](image)

The sun's energy is available on the surface of the earth in the form of radiation energy and its absorption and transmission through the various materials (utilized in thermal heating systems) are based on the principles of heat transfer [22].

A solar energy flat plate collector generates useful heat, when part of the sunlight is absorbed by the absorber plate. In steady state conditions, the useful heat generated by
the flat plate solar energy collector must be equal to the total energy arriving at the collector (input) minus the loss to the surroundings. An efficient collector enhances the heat transfer to the absorber plate or fluid flowing through it and reduces the heat loss to the surroundings [10], [13].

2.2 Heat Transfer

Heat transfer is defined as the transmission of thermal energy from one point to another as a result of a temperature difference between them. Understanding the heat transfer mechanisms is very important in various applications of modern technology. Heat is transferred by the fundamental modes/mechanisms of conduction, convection and radiation individually or in any combination of them [7].

2.2.1 Conduction

Conduction is defined as the automatic transfer of thermal energy through direct contact with the particles of an area at high temperature to another area that has a lower temperature [7]. Conduction heat transfer depends on the property of the material known as thermal conductivity \(k \), the area and thickness or distance \(dx \) separating the two areas, as well as the difference in temperature \(dt \) between them. The rate of heat transfer by the conduction mode \(\dot{Q}_{\text{cond}} \) is expressed via the known "Fourier law of heat conduction" [23], [24].

\[
\dot{Q}_{\text{cond}} = -kA \frac{dt}{dx}
\]

(2.1)

Where \(k \) is the thermal conductivity of the material (W/mK),

\(A \) is the heat transfer area (m²),

\(\frac{dt}{dx} \) is the temperature gradient (°K/m).

2.2.2 Convection

Convection is the mode of heat transfer that takes place by the mass motion of a fluid in contact with a solid surface either at a relative higher or lower temperature. Moving thermal energy by fluid density changes creating a flow between different layers or regions is called Free or natural Convection. Forced Convection is when the energy is transferred when the motion of the fluid is established by an external force, such as a fan
or pump. In general, the rate of heat transfer by convection between a solid surface and a fluid \(\dot{Q}_{\text{conv}} \) is given by Newton's law [7], [23].

\[
\dot{Q}_{\text{conv}} = hA_s(T_s - T_f)
\]

Where \(h \) is the convection heat transfer coefficient in (W/m\(^2\)°C),

\(A_s \) is the solid's surface area through which convection heat transfer takes place (m\(^2\)),

\(T_s \) is the surface temperature and \(T_f \) is the temperature of the fluid (°C).

2.2.3 Radiation

Thermal radiation heat transfer mode is known as the energy emitted by a body at a given temperature by electromagnetic waves (0.1 µm - 100 µm). Radiation heat transfer does not need a medium to propagate [7], [25].

For real surfaces, the radiation emitted \(\dot{Q}_{\text{emit}} \) is expressed by:

\[
\dot{Q}_{\text{emit}} = \varepsilon \sigma A_s T_s^4
\]

Where \(\varepsilon \) is the emissivity of the surface, \(0 \leq \varepsilon \leq 1 \)

\(\sigma \) is the Stefan-Blotzmann constant, \(\sigma = 5.67 \times 10^{-8} \) (kg s\(^{-3}\) K\(^{-4}\)),

\(A_s \) is the surface area of the emitter (m\(^2\)),

\(T_s \) is the absolute temperature of the surface (°K).

2.3 Important equations to calculate the solar water heating system’s efficiency and acquired energy.

To simplify the thermal analysis performed on the flat plate solar energy collector the following assumptions were applied:

- The flat plate solar energy collector was thermally in steady state.
- The solar radiation on the flat plate collector plate was uniform.
- Dust and dirt on the collector’s surface were negligible.
- Shading on the absorber plate was negligible.
- There was no variation in the ambient temperature during the tests.
Note that, this being a comparative study of the hot water system’s efficiency based on a simple geometric solar energy collector’s configuration, calculations of heat losses by radiation and convection, for each solar collector were not necessary.

2.3.1 Energy input to the collector

The amount of the input heat on the collector can be calculated if the intensity of solar radiation falling on the surface area of the collector is known [7]:

\[Q_i = I \cdot A \]

(2.4)

Where: \(Q_i \) is the heat input to the collector (W),

I is intensity of solar radiation W/m\(^2\),

A is the collector’s surface area exposed to the sun’s irradiance .m\(^2\).

2.3.2 Energy acquired by the geyser

Through the heat exchange between the plate of the collector and the fluid passing through its pipes, the energy/heat was transferred to the water of the geyser (i.e. the heat was stored in the water of the geyser). The amount of the absorbed or gained heat energy on the geyser’s water can be calculated (say hourly) by taking an average of the temperatures of the water at the various positions inside the geyser, during such time intervals [7], [10].

\[Q_o = \frac{mC_p T_{avg}}{\Delta t} \]

(2.5)

Where \(Q_o \) is the heat acquired by the water in the geyser (W), m is the mass inside the geyser (kg), \(T_{avg} \) is the average temperature inside the geyser recorded (i.e. average of six temperatures inside the geyser) (°C), \(\Delta t \) is the time interval i.e. an hour = 3600 seconds. \(C_p \) is the average specific heat of the water (4186) Joules/kg °C.

2.3.3 Solar water heating system’s efficiency

The solar thermo-syphon system’s efficiency depends on its ability to absorb the sun’s irradiance by the collector and turn it into a useful heat energy stored in the geyser. This is expressed by the following equation [7].
Where η is the solar thermo-syphon system efficiency, and all other quantities as described in the equations (2.4), (2.5), respectively.

2.4 Dimensional analysis

Dimensional analysis is a relatively simple mathematical method used to predict the relationship of physical parameters that influence the behaviours of phenomena in the fields of fluid mechanics, thermodynamics, heat transfer, solid mechanics etc. The simplest analysis involves the basic fundamental units of dimensions MLT: mass, length, and time, and all the variables (expressed in these fundamental dimensions) assumed to influence a given phenomenon [26], [27].

2.4.1 Finding a functional relationship between variables by the Buckingham Π Method

The derivation of three dimensionless numbers using the Π Buckingham theorem/method that was performed on the parameters affecting a flat plate solar collector yielded a functional relationship which may be used in enhancing solar water heating systems’ design [28]. The parameters affecting the phenomenon of a solar energy collector were assumed to be:

- Δp is the pressure difference between inlet and outlet of the flat plate solar energy collector (kg/m.s2),
- ρ is the density of the water flowing through the collector (kg/m3),
- g is earth’s gravity (m/s2),
- I is the amount of solar radiation incident on the collector’s surface. (W/m2 = kg.m2/s3),
- h is the water’s specific enthalpy (flowing through the collector) (Joules/kg = m2/s2),
- L is the vertical height difference between input cold water and output hot water of the collector as inclined facing the sun (m).

$$\eta = \frac{Q_o}{Q_i} = \frac{mC_p T_{avg}/\Delta t}{I \cdot A}$$

(2.6)
Using the Buckingham Π Theorem with the parameters:

$$\Delta p, \rho, g, L, I, h$$ and the basic fundamental dimensions of mass, length and time.

The Buckingham theorem predicts the number of Π numbers from [26], [29]:

Where m (fundamental dimensions) = 3, n (the physical variables involved) = 6, thus there will be $n - m = 3$ Π groups as shown:

For the Π_1 group involving the variables $L \, g \, \rho \, \Delta p$

\[
\langle M^0 \, L^0 \, T^0 \rangle = L^a \, (L \, T^{-2})^b \, (M \, L^{-3})^c \, (M \, L^{-1} \, T^{-2})
\]

Expanding and collecting like units, the exponents can be solved as:

For M: $0 = c + 1 \Rightarrow c = -1$

For L: $0 = a + b - 3c - 1 \Rightarrow a + b = -2$

For T: $0 = -2b - 2 \Rightarrow b = -1$ so $a = -1$

This means that, Π_1, is

$$\Pi_1 = L^{-1} \, \rho^{-1} \, g^{-1} \, \Delta p = \Delta p / (L \, \rho \, g) = \frac{\Delta p}{L \, \rho \, g} \quad (2.7)$$

For the Π_2 group involving the variables $L \, g \, \rho \, I$,

\[
\langle M^0 \, L^0 \, T^0 \rangle = (M \, L^{-3})^a \, (L \, T^{-3})^b \, L^c \, (M \, L^{-1} \, T^{-3})
\]

Solving for the exponents,

For M: $0 = a + 1 \Rightarrow a = -1$

For L: $0 = -3 \, a + b + c - 1 \Rightarrow a + b = -2$

For T: $0 = -2b - 3 \Rightarrow b = -1.5$ so $a = -0.5$

Thus the second dimensionless Π_2 is

$$\Pi_2 = \rho \, L^{-1/2} \, g^{-3/2} \, I = I / (\rho \, L^{1/2} \, g^{3/2}) = \frac{1}{\rho L^{1/2} \, g^{3/2}} \quad (2.8)$$

For the Π_3 group,
\[
(M^0 L^0 T^0) = (M L^3)^a (LT^{-2})^b L^c (L^2 T^{-2})
\]

Solving for the exponents,

For M: \(0 = a \cdot 0 \Rightarrow a = 0\)

For L: \(0 = -3a + b + c + 2 \Rightarrow b + c = -2\)

For T: \(0 = -2b - 2 \Rightarrow b = -1\) so \(c = -1\)

Thus the third dimensionless \(\Pi_3\) is

\[
\Pi_3 = L^{-1} g^{-1} h = h / (L g) = \frac{h}{L g}
\]

(2.9)

Thus, the three \(\Pi\) groups can be written together as

\[
f(\Pi_1, \Pi_2, \Pi_3) = \left(\frac{\Delta p}{L \rho g}, \frac{1}{\rho L^{1/2} g^{3/2}}, \frac{h}{L g} \right) = 0
\]

Finally rearranging one can indicate a possible relationship between them.

\[
\frac{\Delta p}{L \rho g} = f(\frac{1}{\rho L^{1/2} g^{3/2}}, \frac{h}{L g})
\]

(2.10)

2.4.2 Finding or calculating the difference in pressure between the inlet and outlet of the flat plate solar energy collector

The pressure difference between the inlet (point A) and outlet (point B) of the collector as shown in the figure (2.3) was calculated based on the vertical height of water and the density depended on the temperature of the water (i.e. cold or hot) through the system.

\[
P_A = P_0 + [\rho_{avg} x_1 + \rho_{cold} x_2]g
\]

\[
P_B = P_0 + [\rho_{hot} x_1 + \rho_{hot} x_3]g
\]
Figure 2.3: Schematic diagram of the calculation of the static pressure difference across inlet and outlet of the flat plate solar energy collector.
The pressure value at point A and B is influenced by the atmospheric pressure because the system is open to the ambient; hence the difference in pressure between inlet and outlet of the collector (point A and B) is as follows:

\[P_A - P_B = \left[\rho_{\text{avg}} x_1 + \rho_{\text{cold}} x_2 \right] g - \left[\rho_{\text{hot}} x_1 + \rho_{\text{hot}} x_3 \right] g \]

(2.11)

Where \(P_A \) is the Pressure at the point A,

\(P_B \) is the Pressure at the point B,

\(\rho_{\text{avg}} \) is the density at the average temperature in the geyser,

\(\rho_{\text{cold}} \) is the density at the temperature in point A,

\(\rho_{\text{hot}} \) is the density at the temperature in point B,

\(g \) is earth’s gravity (m/s\(^2\)),

\(x_1, x_2, x_3 \) are vertical dimensions in figure 2.3 (m).

Equation (2.11) can be rewritten as:

\[\frac{(P_A - P_B)}{g} = \rho_{\text{avg}} x_1 + \rho_{\text{cold}} x_2 - \rho_{\text{hot}} x_1 - \rho_{\text{hot}} x_3 \]

(2.12)

Further simplification by assuming all the densities are the same or close to the same value, (because the changes of water density are negligible or small), the equation above can be rewritten as:

\[\frac{(P_A - P_B)}{\rho g} = x_1 + x_2 - x_1 - x_3 = x_2 - x_3 = L \]

(2.13)

It is noted that equation (2.7) \(\Pi_1 = \frac{\Delta p}{L \rho g} \) is identical to the result above.
CHAPTER THREE
THE METHOLOGY OF THE EXPERIMENTS

This chapter describes the construction of the solar thermo-syphon water heating system, using three flat plate solar collectors with identical 1.5 m2 surface area with different collectors’ geometrical configurations. This chapter also covers the experimental protocol that was followed in order to compare the effect of the geometrical configuration of the flat plate collector on the efficiency of the thermo-syphon system.

3.1 Description of the thermo-syphon system

A thermo-syphon solar water heating system was installed inside a laboratory in the department of Mechanical Engineering at the Cape Peninsula University of Technology, Bellville Campus, Cape Town, South Africa. The aim was to compare the individual efficiency of the system with each one of three flat plate collectors that have the same surface area but different geometric configuration. The system as illustrated in the schematic diagram figure (3.1) consisted of a geyser and flat plate collector connected through pipes and installed on a frame. A sun simulator was constructed and placed above the flat plate collector as depicted in figure (3.2).
Figure 3.1: Schematic diagram of the thermos-syphon system

1. Flat plate collector
3. Thermocouples
5. Computer
7. Outlet from the collector
9. Drain valve
11. Safety valve

2. Geyser/Tank
4. Testo 926 digital thermometer
6. Inlet to the collector
8. Water supply valve
10. Water supply
12. Position of thermocouples in the geyser
Figure 3.2a: The sun simulator positioned above the solar collector
Figure 3.2b: The geyser's various connections
3.1.1 Geyser

The geyser with a capacity of 100 litres was made of (Epoxy Vinyl Ester and Glass) materials. These materials besides minimizing heat loss to the ambient, are also anti-corrosive, lightweight and stronger than metal on a weight to weight basis. Table (3.1) shows the specifications and dimensions of the geyser. The geyser was installed in a horizontal position [30]. Figure (3.3) shows some details of the geyser’s construction.

<table>
<thead>
<tr>
<th>Capacity</th>
<th>Height</th>
<th>Width</th>
<th>Length</th>
<th>Weight</th>
<th>Working pressure</th>
</tr>
</thead>
</table>
| 100 L | 480 mm | 460 mm | 1147 mm | 19 Kg | 400Kp

Table 3.1: The specifications of the geyser
(Adopted from [30])

Figure 3.3: Xstream Solar Hot Water geyser
(Adopted from [30])
3.1.2 Flat plate collectors

Three flat plate solar collectors were used (each one individually) with the geyser, in the indoor experiments. All three solar collectors had identical surface area (1.5 m2) and materials’ specifications, however different geometrical configurations. The three flat plate solar collectors were manufactured by SolarMax Company in Kleinmond, Western Cape. Table (3.2) contains the technical specifications and dimensions of the three solar collectors, while figure (3.4) illustrates the differences in their linear dimensions for their particular configuration.

Table 3.2: The specifications of the flat plate solar collectors
(Adopted from [31])

<table>
<thead>
<tr>
<th>Specifications</th>
<th>Panel A (Vertical)</th>
<th>Panel B (Square)</th>
<th>Panel C (Horizontal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area</td>
<td>1.5 m2</td>
<td>1.5 m2</td>
<td>1.5 m2</td>
</tr>
<tr>
<td>Dimensions</td>
<td>1500 x 1000 x 75 mm</td>
<td>1230 x 1230 x 75 mm</td>
<td>1000x1500x 75 mm</td>
</tr>
<tr>
<td>Risers</td>
<td>8</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>Tub spacing</td>
<td>120mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glazing</td>
<td>4mm Toughened One-Way Prismatic Glass</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Absorber Fins</td>
<td>130mm x0.5mm Roll formed Aluminium</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Piping Grid</td>
<td>22mm Copper Header T-drilled to 15mm copper Risers, Brazed with silver/copper</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insulation</td>
<td>15 mm Polystyrene and 25 mm rock wool</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Casing</td>
<td>1.5mm Extruded Anodized aluminium</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Backing plate</td>
<td>0.5mm Natural aluminium sheeting</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3.1.3 The sun simulator

The Sunlight simulator which was designed to cover an area of 1.5 square meters, consisted of a square frame 1.5 meters made from (30mm×30mm×3mm) angle iron. A wire mesh covered the surface of the frame and acted as support for the twelve halogen floodlights of 1000 W each nominal output power. The spot lights could be appropriately distributed and secured on the wire mesh of the angle iron frame in order to accommodate the shape or geometry of the particular solar collector under test as shown in figure (3.5). They were divided into three groups, and connected to the power supply through variable voltage transformers (Variacs model: SB-10) which enabled control or adjustment of the floodlights' power output. (See Appendix (A-1) for specifications of Variacs).
Figure 3.5: The sun simulator
3.1.4 Equipment holder or stand

A steel table was modified to hold the geyser on the top and the solar collector inclined beneath it as shown in figure (3.6). The inclined (35 degrees to the horizontal) part of the stand was long enough to accommodate all three solar collectors. The geyser was secured horizontal at the top of the table and the collectors placed on the inclined part of the stand so that their hot water outlet was in the same place relative to the geyser. For each solar collector the position of their cold water inlet relative to the geyser depended on their length.

![Figure 3.6: Equipment holder or stand](image)

3.1.5 Pipe connections

A composite flexible pipe (outer diameter 22mm with thickness 2.5mm) was used in the connections between the solar collectors and the geyser. The composite pipe consists of an aluminium core with inner and outer plastic layers, tightly bonded with a special
adhesive to the aluminium core. The thermal conductivity is 0.45W/m. K, so it saved on insulation material costs [32].

3.2 Instrumentation and experimental protocol

3.2.1 Laboratory’s condition

The following steps describe the location and the conditions in the laboratory where the experiment was conducted:

- The experiments were done inside the laboratory in the department of Mechanical Engineering at Cape Peninsula University of Technology Bellville campus, located on Latitude and Longitude: 33.93°S and 18.42°E, respectively.
- Average ambient temperature inside the lab was 20 °C ± 1 °C during the tests.
- There were no effects of dust and dirt on the surface of the flat plate solar collectors.
- Shadow effects on the surface of the collectors were negligible.

3.2.2 Sun Simulator’s radiation intensity measurement

During the experiments, the sun simulator was set to provide an average irradiance of 850 watts per square meter. This value was determined by measuring the intensity of the simulator’s radiation on the surface of each flat plate collector (at the beginning of each test) by taking the average of 35 readings using a solar power meter (TES-1333) which is shown in figure (3.7). (See Appendix (A 2) for specifications of the solar power meter).

Figure 3.7: Solar Power meter (TES-1333)
3.2.3 Temperature measurements

The temperatures in the geyser were measured at different levels by inserted T-type (Copper/Constantan) thermocouples which were connected individually via their electrical plugs to the Testo 926 digital thermometer as shown in the figure (3.8). (See appendix (A 3 and A 4) for technical specifications of T-type thermocouple and the Testo 926 digital thermometer, respectively) [34], [35].

![Testo 926 device and T-type thermocouples](image)

Figure 3.8: Testo 926 device and T-type thermocouples

(Adopted from [34], [35])

3.2.4 Experimental Protocol

The closed loop solar thermo-syphon water heating system as is shown in the schematic figure (3.1) was used during experiments that were conducted indoors in order to facilitate collecting the necessary data.
The main reason of conducting the experiments indoors (that is, inside the laboratory) was to avoid environmental variability and thus facilitate further the comparison of the flat plate solar collectors’ performance. In this manner the experiments were conducted under the same conditions and with constant power of “solar irradiance” and period of exposure.

Following some preliminary testing which ensured that the instrumentation was performing adequately and that there were no leaks in the system, two day tests were performed for each flat plate solar collector.

The experiments began at 9:00 o’clock and lasted for seven hours with the collector exposed to the sun simulator’s irradiance. After a period of “nightly” inactivity of 17 hours where partial cooling of the water in the geyser had occurred, the water was heated again to reach a base line temperature of 53.6 °C (for all three collectors) prior to resuming in the second day the experiment for another seven hours.

The following are detailed steps taken during each experiment.

- Filling the geyser or water storage tank with cold water in the beginning of every test.
- There was no withdrawal of water from the geyser during the experiment.
- Measuring the temperature of water in the geyser with the six type (T) thermocouples every hour ± 3 minutes.
- Measuring the intensity of solar radiation falling on the plate at the beginning and end of daily irradiation.
- Calculate the average solar radiation.
- Calculate the average temperature of the water in the geyser every hour.
- Calculate the amount of input heat on the plate and the amount of heat acquired in the geyser every hour.
- Calculate the efficiency of the system hourly and the overall (daily) efficiency.
CHAPTER FOUR
RESULTS AND DISCUSSION

4.1 Introduction

This chapter reports on the results of the experimental work that was performed in order to compare the performance of the solar water heating system when using three different (individually of course) of equal surface/collector area flat plate collectors, but of different geometrical configuration. It also presents the results of the dimension analysis that was performed by the author, in order to get a better understanding of the influence of the various parameters that may affect the performance of a flat plate solar collector, while operating with the water being circulated by the conditions of a self-induced thermo-syphon. The experiments were conducted on the water heating system separately with each of the three flat plate solar energy collectors labelled as: vertically long side (A), square (B) and horizontally long side (C). See figure (3.4).

4.2. The test results for the water temperature inside the geyser

The data were processed and calculations were made during the first day and the second day of the experiments, as follows:

- First day

The variation of the temperature of the water at different locations inside the geyser during the first day of the test period for collector A is shown in figure (4.1) as a typical example, and in table (B-1) in appendix (B). The water temperature in the geyser starts to increase as expected from 16.4°C to a maximum of 85°C at the surface of the water inside the geyser \(T_1 \) after seven hours, while the minimum temperature of the water (at the lowest position within the geyser) after the same time is increased to 35°C \(T_6 \), obviously due to stratification. See the table in appendix (B-1).
Figure 4.1: Temperature variation of the water inside the geyser in the first day of the test for flat plate collector A

There was a slight difference between the average temperatures of the water in the geyser, toward the end of the first day’s testing period, for the three flat plate collectors (A, B, and C) as shown in figure (4.2) and the table (B-1) in appendix (B).
The temperatures of the water in the geyser, for the first two hours, are almost equal when using any of the three collectors, the geyser’s water temperature when using collector B begins to show a slight increase (relative to when using collectors, A and C) at the fourth, fifth, and sixth hours. Through to the seventh hour the water in the geyser reached an average temperature of 66.5°C when using collector B, while for collectors A and C it reached 64.5°C and 65.3°C, respectively.

- **Second day**

As a result of cooling i.e. heat lost from the geyser during the night and stratification of the water layers within the geyser, the temperatures recorded at the beginning of the second day of the test using collector A were in the range of 61.1°C and 41.8°C as shown in figure (4.3) and table (B-2) in appendix (B).
The average temperature of the water in the geyser when using collectors, A, B, and C for the second day is shown in figure (4.4) and the table (B-2) in appendix (B). The average temperatures of the water in the geyser exhibit similar trend to that observed in figure (4.2), that is they are close together in the first four hours, however the highest average temperature of the water in the geyser at the end of the test, was achieved using collector B reaching 86.5°C compared to those obtained using collectors A and C reaching 80°C and 83.2°C, respectively.
Figure 4.4: Comparison between average temperature of the water in the geyser when using collectors A, B, and C in the second day

4.3 Energy acquired by the water in the geyser

The flow of energy was calculated during the first day and the second day, as follows:

- **First day**

 The temperature of the water in the geyser rises continuously through the mixing of the hot water arriving from the collector with the geyser’s main mass of water. When the hot water arrives at the top of the geyser it replaces the relatively colder water that leaves the bottom of the geyser to enter the collector. Driven by the naturally induced thermosyphon this is a continuous process which for all practical purposes can only be dealt with averages within a specified period of time. The average temperature of the water in the geyser was calculated based on the recorded water’s temperature, at six different levels in the geyser, on an hourly basis. The energy acquired by the total mass of water (equivalent to 88 litres) in the geyser is simply the product of specific heat of the water and the change of its average temperature during a specific time period (in this case one hour). Figure (4.5) shows that the performance of the collectors in absorbing energy from
what is available in terms of the irradiance from the solar simulator, is better at the early stages of the test because there is a larger temperature difference between the water and the temperature of the absorbers’ plates. Total heat delivered by the collectors A, B and C to the geyser was calculated for the first day to be 17.49 MJ, 18.24 MJ and 17.79 MJ, respectively as shown in figure (4.6) where is noted again that collector B performed best. See appendix (D-1) for the calculation of energy rate acquired by the geyser’s water (W) and energy accumulated by the geyser’s water (MJ) using the collectors A, B, and C.

Figure 4.5: Comparison between the rates of energy acquired by the geyser’s water using collectors A, B and C during the first day of testing compared to available irradiance

The rate of energy acquired by the geyser’s water using collectors A, B and C during the first day of testing compared to available irradiance

- Available irradiance (W)
- The average hourly rate of energy acquired by the geyser’s water using collector A (W)
- The average hourly rate of energy acquired by the geyser’s water using collector B (W)
- The average hourly rate of energy acquired by the geyser’s water using collector C (W)
Figure 4.6: Comparison of cumulative energy delivered to the geyser from the flat plate solar collectors A, B, and C during the first day

Second day

As a result of smaller temperature differences between the temperature achieved by the collectors’ plates and the water supplied to them by the geyser, their performance decreased on the second day. Figure (4.7) shows the performance of the collectors in absorbing energy from what is available in terms of the irradiance from the solar simulator. However, collector B still performed better as seen from the calculated amounts of energy delivered to the geyser (collectors A, B and C: 23.15 MJ, 25.49 MJ and 24.3 MJ), respectively, as shown in Figure (4.8). See appendix (D-2) for the calculation of energy rate acquired by the geyser’s water (W) and energy accumulated by the geyser’s water (MJ) using the collectors A, B, and C.
Figure 4.7: Comparison between energy acquired by the geyser’s water using collectors A, B, and C during the second day of testing compared to available irradiance during the second day of testing.

Figure 4.8: Comparison of cumulative energy delivered to the geyser from the flat plate solar collectors A, B, and C during the second day.
4.4 Thermo-syphon solar water heating system’s efficiency

The system’s efficiency was calculated during the first day and the second day, as follows:

- **First day**

Following the results that appear in figure (4.5), it is easy to obtain hourly efficiencies for the water heating system as dependent on the performance of the three flat plate solar collectors A, B and C. The system’s thermal efficiency is a simple ratio of the energy the panels were able to transfer to the water in the geyser compared to the irradiance available as shown figure (4.9). See appendix (D-1) for the calculation of hourly efficiency (%) using the collectors A, B, and C.

![Hourly efficiency of collectors A, B and C during the first day](image)

Figure 4.9: Hourly efficiency of the flat plate solar collectors A, B and C during the first day of the tests
• **Second day**

Similarly the thermal efficiency of the system for the second day of testing was obtained following the same procedure and the results are depicted in figure (4.10). See appendix (D-2) for the calculation of hourly efficiency (%) using the collectors A, B, and C.

![Hourly efficiency of collectors A, B and C during the second day](image_url)

Figure 4.10: Hourly efficiency of the flat plate solar collectors A, B and C during the second day of the tests

4.5 Results from the dimensional analysis

The results obtained in chapter two and the experimental data from the collectors A, B and C for the period of the first day were used to obtain the functional relationship of the Π numbers. Π₂ and Π₃ were calculated for the collectors by using equations no (2.8) and (2.9), respectively. The pressure difference between the inlet and the outlet of the collectors A, B and C was calculated using equation (2.11), Π₁ was calculated using equation (2.7), as shown in Appendix (E). The average differences in pressure between the inlet and the outlet of the collectors A, B and C were 7908.9 (Pa), 6338.1 (Pa) and 5162.6 (Pa) respectively. The average temperature of the water flowing inside the collectors was taken as the average of the outlet and inlet temperatures from the geyser and all properties (i.e. enthalpy and density) involved in the Π numbers were evaluated at this average temperature value (41.4°C) as shown in table (4.1).
Table (4.1): The values of Π_1, Π_2 and Π_3; and the average pressure difference on the collectors A, B and C based on their vertical height

<table>
<thead>
<tr>
<th>Collector</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertical height L (m)</td>
<td>0.805</td>
<td>0.645</td>
<td>0.525</td>
</tr>
<tr>
<td>ΔP_{avg} (Pa)</td>
<td>71912.1</td>
<td>6337.2</td>
<td>5170.4</td>
</tr>
<tr>
<td>Π_1</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Π_2</td>
<td>0.031091</td>
<td>0.034734</td>
<td>0.038499</td>
</tr>
<tr>
<td>Π_3</td>
<td>21955.29</td>
<td>27401.56</td>
<td>33664.77</td>
</tr>
</tbody>
</table>

It is to be noted that Π_1 is a constant having the value of unity therefore any functional relationship with Π_2 and Π_3 has to conform to either of the two possibilities from the results of the procedure shown below in figure (4.11) and (4.12), respectively:

Firstly, the relationships of Π_2 and Π_3 are obtained from the following graphs (figures 4.11 and 4.12), respectively.

![Graph showing the relationship between Π_3 and Π_2](image)

Figure 4.11: The relationship between Π_3 and Π_2
Therefore Π_1 can be formulated with either one of the expressions below:

$$\Pi_1 = \frac{\Pi_2}{(2.1 \times 10^{-4} \cdot \Pi_3^{0.5})} = 1.0 \quad (4.1)$$

$$\Pi_1 = \frac{\Pi_3}{(2.27 \times 10^{-4} \cdot \Pi_2^2)} = 1.0 \quad (4.2)$$

Expressions (4.1) or (4.2) may be useful to flat plate solar collector designers investigating the effect of changing one parameter to the remaining parameters in the dimensionless groups. For example the difference in pressure between the inlet and outlet of the flat plate solar collector can be calculated for any vertical height created by the inclined installation of the panel of the flat plate collector simply from Π_1 since it is a constant with the known value of unity as shown in figure (4.13)
Figure 4.13: The difference in pressure between the inlet and outlet of the inclined solar collector panel vs. the vertical height between them

\[\Delta P = 9704.6L + 35.35 \]

\[R^2 = 1 \]
CHAPTER FIVE
Conclusions and Recommendations

5.1 Conclusions

The results were obtained from this study using three flat plate collectors A, B and C in a solar water heating system were considered or thought to be similar during the first day of the test, however there was a slight difference in the performance of these three collectors during the second day of the test. Hence the following conclusions were drawn:

5.1.1 Results from the first day of the tests

The results are summarised as follows:

- The water temperature increased gradually inside the geyser from the beginning of the test, ranging from 16.4 to 64.5°C using collector A, 16.4 to 66.5°C using collector B and 16.4 to 65.3°C using collector C. While the average temperature for the water inside the geyser using collectors A, B and C were 41.7°C, 42.7°C and 42.1°C, respectively.
- The rate of energy acquired or absorbed by the collectors A, B and C from what was available in terms of the irradiance from the solar spanned the range of 773.5 to 561.1 W, 812.2 to 626.9 W and 803.8 to 598.2 W, respectively.
- The total amount of heat delivered to the water inside the geyser by the collectors A, B and C during the first day of the testing period was 17.49 MJ, 18.24 MJ and 17.79 MJ respectively.
- Finally the calculation for the system’s thermal efficiency when using collectors A, B and C during the first day spanned ranges from 60.6% to 44% , from 63.7% to 49.1% and from 63% to 46.9%, respectively.

5.1.2 Results from the second day of the tests

The results are summarised as follows:

- The average water temperature in the geyser was lowered during the overnight cooling period but of course increased gradually inside the geyser from the beginning of the second day of the test ranging from 53.6°C to 80°C using collector A, 53.6°C to 86.5°C using collector B and 53.6°C to 83.2°C using collector C. hence the average temperature
for the water inside the geyser using collectors A, B and C reached the levels of 67.7°C, 70.9°C and 69.8°C, respectively.

- The rate of energy acquired or absorbed by the collectors A, B and C from what was available in terms of the irradiance from the solar simulator spanned the range of 441.5 to 296.6 W, 542.6 to 407.8 W and 532.5 to 308.4 W respectively.
- The total amount of heat delivered to the water inside the geyser by the collectors A, B and C were 23.15 MJ, 25.49 MJ and 24.3 MJ, respectively.
- The system’s thermal efficiency using the three collectors varied from 34.6% to 23.3 %, for collector A, from 42.5% to 32 % for collector B and, 41.7% to 24.2 % for collector C.

Therefore, the results obtained when experimenting with the flat plate solar collectors strongly rank solar collector B (of the ‘square sides’ geometrical configuration) as the best, followed by collector C (of the ‘rectangle horizontal side long’ configuration), and collector A (of the ‘rectangle vertical side long’ configuration) as the last one.

5.2 Results from the Dimensional Analysis

The experimental data applied to the dimensionless groups that were obtained from the dimensional analysis, yielded a functional equation which can be used as a tool in designing flat plate solar collectors.

\[
P_1 = \frac{P_2}{(2.1 \times 10^{-4} * P_3^{0.5})} = \frac{P_3}{(2.27 \times 10^{-4} * P_2^2)}
\]

5.3 Recommendations for future work

- An investigation on the effect of the wind blowing on the surface of the flat plate collectors from all relevant directions could influenced their performance and hence affect the current arrived at ranking.
- A future work may attempt to redo the experiments using a pump driving a ‘working fluid’ through the solar collector in a closed loop with a heat exchanger inside the geyser.
REFERENCES

[34] "Unitempm”. Internet: http://www.unitemp.com/search/node/testo%20926 [April, 2015].

APPENDICES
Appendix A: Technical specification of experimental instrumentation

Appendix A-1: Variable voltage transformer-Variac model: SB-10 and specifications

Figure A-1: Variable voltage transformer-Variac model: SB-10
(Adopted from [36])

Table A-1: specification of Variable voltage transformer-Variac model: SB-10 and specifications
(Adopted from [36])

<table>
<thead>
<tr>
<th>Max. Current</th>
<th>Capacity</th>
<th>Mount</th>
<th>Dimension H x Ø</th>
<th>Net (Weight)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 A</td>
<td>2 KVA</td>
<td>5</td>
<td>156 X 235 mm</td>
<td>11 Kg.</td>
</tr>
</tbody>
</table>
Appendix A-2: Solar power meter (TES-1333) specifications
(adopted from [37])

<table>
<thead>
<tr>
<th></th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display</td>
<td>3-1/2 digits. Max. indication 1999</td>
</tr>
<tr>
<td>Range</td>
<td>2000 W/m², 634 Btu/(ft² * h)</td>
</tr>
<tr>
<td>Resolution</td>
<td>1 W/m², 1 Btu/(ft² * h)</td>
</tr>
<tr>
<td>Spectral response</td>
<td>400-1100 nm</td>
</tr>
<tr>
<td>Accuracy</td>
<td>Typically within ± 10 W/m² [±3 Btu/(ft² * h)] or ±5%, whichever is</td>
</tr>
<tr>
<td></td>
<td>greater in sunlight; Additional temperature induced error ±0.38 W/m²/</td>
</tr>
<tr>
<td></td>
<td>°C[±0.12 Btu/(ft² * h)/°C] from 25°C</td>
</tr>
<tr>
<td>Angular accuracy</td>
<td>Cosine corrected <5% for angles <60°</td>
</tr>
<tr>
<td>Drift</td>
<td><±2% / per year</td>
</tr>
<tr>
<td>Calibration</td>
<td>User recalibration available</td>
</tr>
<tr>
<td>Over-input</td>
<td>Display shows</td>
</tr>
<tr>
<td>Sampling Time</td>
<td>Approx. 0.4 second</td>
</tr>
<tr>
<td>Manu data memory and read</td>
<td>99 sets</td>
</tr>
<tr>
<td>Auto data memory</td>
<td>32000 sets (TES-1333R)</td>
</tr>
<tr>
<td>Battery</td>
<td>4 pcs size AAA</td>
</tr>
<tr>
<td>Battery Life</td>
<td>Approx. 100 hours</td>
</tr>
<tr>
<td>Operating temp and humidity</td>
<td>0 °C to 50 °C below 80% RH</td>
</tr>
<tr>
<td>Storage temp and Humidity</td>
<td>-10 °C to 60 °C below 70% RH</td>
</tr>
<tr>
<td>Weight</td>
<td>Approx. 165 g</td>
</tr>
<tr>
<td>Dimension</td>
<td>111(L)*64(W)*34(H) mm</td>
</tr>
<tr>
<td>Accessories</td>
<td>Carrying Case, Operation Manual, 4 pcs size AAA, RS232 cable(for</td>
</tr>
<tr>
<td></td>
<td>TES-1333R), CD software (For TES-1333R)</td>
</tr>
</tbody>
</table>
Appendix A-3: T-type thermocouple quality inspection certificate

Temperature Sensor Quality Inspection Certificate

<table>
<thead>
<tr>
<th>Customer</th>
<th>Job Number</th>
<th>Drawing/Part No.</th>
<th>Date of Inspection</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C317863 A</td>
<td>514 024441</td>
<td>24/15</td>
</tr>
</tbody>
</table>

Sampling Table

<table>
<thead>
<tr>
<th>Order Quantity</th>
<th>From</th>
<th>To</th>
<th>Quantity to Inspect</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>All (100%)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>3 off</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>60</td>
<td>6 off</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>100</td>
<td>10 off</td>
<td></td>
</tr>
<tr>
<td>100+</td>
<td>100</td>
<td>16 off</td>
<td></td>
</tr>
</tbody>
</table>

Nominal vs Actual

<table>
<thead>
<tr>
<th>Sensor Length L1, L2 (mm):</th>
<th>L1:</th>
<th>L2:</th>
<th>D1:</th>
<th>D2:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stem Diameter D1, D2 (mm):</td>
<td>D1:</td>
<td>D2:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Termination Type:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grounded or Ungrounded:</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sensor Accuracy Inspection

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-20.18 to 15.15</td>
<td>98.51</td>
<td>99.09</td>
<td>0.58</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>98.69</td>
<td>98.63</td>
<td>0.14</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>98.50</td>
<td>97.8</td>
<td>0.7</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>97.47</td>
<td>97.9</td>
<td>0.6</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>98.51</td>
<td>99.15</td>
<td>0.64</td>
<td>7</td>
</tr>
</tbody>
</table>

1. Are all weld seams in a good condition? **YES** **NO**
2. Are there any mechanical defects on the sensor? **YES** **NO**
3. Is the colour coding & polarity according to Sensor Ref. chart (U-IMS-MFR-DF-007)? **YES** **NO**
4. Have the label details been checked and are they acceptable? **YES** **NO**
5. Do the sensor response times correspond with the Tolerance Reference Chart? **YES** **NO**
6. Is the insulation of ungrounded sensors higher than 1500mΩ at 500V? **YES** **NO**
7. Is the jobcard and drawing (if applicable) updated and correct? **YES** **NO**

*Refers to Tolerance Reference Chart- Sensors U-IMS-MFR-DF-003 Rev 03

Remarks

The above sensors where found: () Acceptable () Rejected

QA Inspector: [Signature] Signed: [Signature] Date: 2/4/15
Appendix A-4: Testo 926 digital thermometer certificate of conformity and digital technical data

Meßbereich / Measuring range / Etendue de mesure / Rango de medición:	-50...+400°C
Serien-Nr. / Serial no. / No. de série / Número de serie:	33835720
Segmenttest / Display test / Test d'affichage / Test del visualizador:	☑ OK

<table>
<thead>
<tr>
<th>Meßwerte / Measured values / Valeurs mesurées / Valores medidos:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sollwert / Reference / Référence / Referencia:</td>
</tr>
<tr>
<td>Istwert / Actual Value / Valeur réelle / Valor medido:</td>
</tr>
<tr>
<td>+80.0 °C</td>
</tr>
<tr>
<td>+79.9 °C</td>
</tr>
</tbody>
</table>

J. Yeung
Prüfer / Inspector / Responsible / Verificador
9. Technical data

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameters</td>
<td>Temperature [°C/°F/°F]</td>
</tr>
<tr>
<td>Measuring range</td>
<td>-50.0...+400 °C / -58.0...+752.0 °F / -40.0...+320 °R</td>
</tr>
<tr>
<td>Resolution</td>
<td>0.1 °C / 0.1 °F / 0.1 °R (-50.0...+199.9 °C / -58.0...+391.8 °F / -40.0...+159.9 °R) / 1 °C / 1 °F / 1 °R (rest of range)</td>
</tr>
<tr>
<td>Accuracy (+1 Digit)</td>
<td>±0.3 °C / ±0.6 °F / ±0.2 °R (-20.0...+70.0 °C / -4.0...+158.0 °F / -16.0...+56.0 °R) / ±0.7 °C /0.5% o.f. / ±1.3 °F /0.5% o.f. / ±0.6 °R /0.5% o.r. (rest of range)</td>
</tr>
<tr>
<td>Probe connections</td>
<td>1x Omega TC socket for temperature probe type T (Cu-CuNi), radio module (accessory part)</td>
</tr>
<tr>
<td>Measuring rate</td>
<td>2/s</td>
</tr>
<tr>
<td>Operating temperature range</td>
<td>-20 ... +50 °C / -4 ... +122 °F / -16 ... +40 °R</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>-40 ... +70 °C / -40 ... +158 °F / -32 ... +56 °R</td>
</tr>
<tr>
<td>Voltage supply</td>
<td>1x 9 V monobloc battery/rech. battery</td>
</tr>
<tr>
<td>Running time (display lighting off / on)</td>
<td>with probe connected: approx. 200 h / approx. 68 h, with radio probe: approx. 45 h / 33 h</td>
</tr>
<tr>
<td>Protection class</td>
<td>with TopSafe (accessory part) and probe connected: IP65</td>
</tr>
<tr>
<td>EC Directive</td>
<td>2004/108/EC</td>
</tr>
<tr>
<td>Warranty</td>
<td>2 years, warranty conditions: see www.testo.com/warranty</td>
</tr>
</tbody>
</table>

With TopSafe and the following probes, this product complies with guidelines in accordance with the EN 13485 standard:

- Part no. | Measuring range |
- 0613 1001 | -50...+275 °C / -58.0...+527 °F |
- 0603 1293 | -50...+350 °C / -58.0...+662 °F |
- 0603 1793 | -50...+350 °C / -58.0...+662 °F |
- 0603 2192 | -50...+350 °C / -58.0...+662 °F |
- 0603 2492 | -50...+350 °C / -58.0...+662 °F |
- 0603 3292 | -50...+350 °C / -58.0...+662 °F |

Suitability: S, T (storage, transport)
Environment: E (transportable thermometer)
Accuracy class: 0.5
Measurement range: see table above

According to EN 13485, the measuring instruments should be checked and calibrated regularly under the terms of EN 13486 (Recommended: Yearly).
Contact us for more information: www.testo.com
Appendix B: Temperatures during the test period

Table B-1: Temperatures inside the geyser (in different locations) during the test period of the first day using collectors A, B, and C

<table>
<thead>
<tr>
<th>Time (hour)</th>
<th>T_1 (°C)</th>
<th>T_2 (°C)</th>
<th>T_3 (°C)</th>
<th>T_4 (°C)</th>
<th>T_5 (°C)</th>
<th>T_6 (°C)</th>
<th>T_{avg} (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flat Plate Solar Collector A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>16.7</td>
<td>16.5</td>
<td>16.5</td>
<td>16.2</td>
<td>16.4</td>
<td>16.1</td>
<td>16.4</td>
</tr>
<tr>
<td>1</td>
<td>31.5</td>
<td>29.4</td>
<td>26.2</td>
<td>21.8</td>
<td>18.2</td>
<td>17.2</td>
<td>24.1</td>
</tr>
<tr>
<td>2</td>
<td>44.1</td>
<td>41.4</td>
<td>35.4</td>
<td>28.4</td>
<td>22.6</td>
<td>19.0</td>
<td>31.8</td>
</tr>
<tr>
<td>3</td>
<td>55.0</td>
<td>51.0</td>
<td>44.4</td>
<td>35.4</td>
<td>27.4</td>
<td>21.3</td>
<td>39.1</td>
</tr>
<tr>
<td>4</td>
<td>65.1</td>
<td>60.0</td>
<td>52.5</td>
<td>42.6</td>
<td>32.1</td>
<td>23.8</td>
<td>46.0</td>
</tr>
<tr>
<td>5</td>
<td>74.0</td>
<td>67.9</td>
<td>60.6</td>
<td>49.6</td>
<td>37.0</td>
<td>26.9</td>
<td>52.7</td>
</tr>
<tr>
<td>6</td>
<td>81.0</td>
<td>74.5</td>
<td>68.3</td>
<td>56.4</td>
<td>42.3</td>
<td>31.0</td>
<td>58.9</td>
</tr>
<tr>
<td>7</td>
<td>85.0</td>
<td>81.0</td>
<td>74.5</td>
<td>62.9</td>
<td>47.4</td>
<td>36.0</td>
<td>64.5</td>
</tr>
<tr>
<td>Flat Plate Solar Collector B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>16.7</td>
<td>16.5</td>
<td>16.4</td>
<td>16.4</td>
<td>16.3</td>
<td>16.1</td>
<td>16.4</td>
</tr>
<tr>
<td>1</td>
<td>33.4</td>
<td>28.9</td>
<td>26.3</td>
<td>22.0</td>
<td>19.0</td>
<td>17.0</td>
<td>24.4</td>
</tr>
<tr>
<td>2</td>
<td>48.0</td>
<td>40.0</td>
<td>35.5</td>
<td>29.7</td>
<td>22.9</td>
<td>19.3</td>
<td>32.6</td>
</tr>
<tr>
<td>3</td>
<td>58.5</td>
<td>50.0</td>
<td>44.4</td>
<td>37.0</td>
<td>27.8</td>
<td>22.8</td>
<td>40.1</td>
</tr>
<tr>
<td>4</td>
<td>67.5</td>
<td>58.0</td>
<td>52.6</td>
<td>44.5</td>
<td>33.0</td>
<td>26.9</td>
<td>47.1</td>
</tr>
<tr>
<td>5</td>
<td>74.0</td>
<td>65.7</td>
<td>60.7</td>
<td>51.6</td>
<td>39.0</td>
<td>32.0</td>
<td>53.8</td>
</tr>
<tr>
<td>6</td>
<td>78.8</td>
<td>72.7</td>
<td>68.0</td>
<td>59.7</td>
<td>45.0</td>
<td>37.8</td>
<td>60.3</td>
</tr>
<tr>
<td>7</td>
<td>83.0</td>
<td>78.4</td>
<td>74.5</td>
<td>68.3</td>
<td>51.0</td>
<td>44.0</td>
<td>66.5</td>
</tr>
<tr>
<td>Flat Plate Solar Collector C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>16.7</td>
<td>16.6</td>
<td>16.4</td>
<td>15.9</td>
<td>16.5</td>
<td>16.4</td>
<td>16.4</td>
</tr>
<tr>
<td>1</td>
<td>32.7</td>
<td>28.6</td>
<td>25.1</td>
<td>23.1</td>
<td>18.5</td>
<td>18.2</td>
<td>24.4</td>
</tr>
<tr>
<td>2</td>
<td>47.0</td>
<td>39.7</td>
<td>34.0</td>
<td>30.5</td>
<td>21.1</td>
<td>20.7</td>
<td>32.2</td>
</tr>
<tr>
<td>3</td>
<td>58.0</td>
<td>49.8</td>
<td>43.1</td>
<td>37.9</td>
<td>24.6</td>
<td>23.5</td>
<td>39.5</td>
</tr>
<tr>
<td>4</td>
<td>67.6</td>
<td>57.8</td>
<td>51.7</td>
<td>45.5</td>
<td>30.0</td>
<td>26.0</td>
<td>46.4</td>
</tr>
<tr>
<td>5</td>
<td>75.1</td>
<td>65.4</td>
<td>60.0</td>
<td>52.8</td>
<td>35.8</td>
<td>29.6</td>
<td>53.1</td>
</tr>
<tr>
<td>6</td>
<td>80.8</td>
<td>71.7</td>
<td>67.1</td>
<td>60.6</td>
<td>42.3</td>
<td>33.9</td>
<td>59.4</td>
</tr>
<tr>
<td>7</td>
<td>84.7</td>
<td>77.0</td>
<td>73.0</td>
<td>68.3</td>
<td>49.9</td>
<td>38.5</td>
<td>65.3</td>
</tr>
</tbody>
</table>
Table B-2: Temperatures inside the geyser (in different locations) during the test period of the second day using collectors A, B, and C and C

<table>
<thead>
<tr>
<th>Time (hour)</th>
<th>T_1 ($^\circ$C)</th>
<th>T_2 ($^\circ$C)</th>
<th>T_3 ($^\circ$C)</th>
<th>T_4 ($^\circ$C)</th>
<th>T_5 ($^\circ$C)</th>
<th>T_6 ($^\circ$C)</th>
<th>T_{avg} ($^\circ$C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flat Plate Solar Collector A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>61.1</td>
<td>60.2</td>
<td>59</td>
<td>54.2</td>
<td>45.2</td>
<td>41.8</td>
<td>53.6</td>
</tr>
<tr>
<td>1</td>
<td>67</td>
<td>65.3</td>
<td>64</td>
<td>59.6</td>
<td>49.1</td>
<td>42.7</td>
<td>58.0</td>
</tr>
<tr>
<td>2</td>
<td>74</td>
<td>70.4</td>
<td>68.5</td>
<td>63.9</td>
<td>53.4</td>
<td>44</td>
<td>62.4</td>
</tr>
<tr>
<td>3</td>
<td>79.3</td>
<td>75.3</td>
<td>72.6</td>
<td>68.3</td>
<td>56.8</td>
<td>46.3</td>
<td>66.4</td>
</tr>
<tr>
<td>4</td>
<td>83.5</td>
<td>78.9</td>
<td>76.7</td>
<td>72.5</td>
<td>60.4</td>
<td>49.4</td>
<td>70.2</td>
</tr>
<tr>
<td>5</td>
<td>87</td>
<td>82.4</td>
<td>80.1</td>
<td>76.3</td>
<td>63.9</td>
<td>53.1</td>
<td>73.8</td>
</tr>
<tr>
<td>6</td>
<td>90.5</td>
<td>85.2</td>
<td>82.5</td>
<td>78.9</td>
<td>67.5</td>
<td>57.7</td>
<td>77.1</td>
</tr>
<tr>
<td>7</td>
<td>92.5</td>
<td>87.8</td>
<td>85.2</td>
<td>81.8</td>
<td>70.7</td>
<td>61.9</td>
<td>80.0</td>
</tr>
<tr>
<td>Flat Plate Solar Collector B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>63.1</td>
<td>57.7</td>
<td>56.8</td>
<td>52.2</td>
<td>46.7</td>
<td>45.3</td>
<td>53.6</td>
</tr>
<tr>
<td>1</td>
<td>70.7</td>
<td>65.4</td>
<td>63</td>
<td>58.2</td>
<td>49.6</td>
<td>47.1</td>
<td>59.0</td>
</tr>
<tr>
<td>2</td>
<td>76.9</td>
<td>71.5</td>
<td>69</td>
<td>64</td>
<td>53.2</td>
<td>50.3</td>
<td>64.2</td>
</tr>
<tr>
<td>3</td>
<td>82.5</td>
<td>76.2</td>
<td>74.2</td>
<td>69.8</td>
<td>57.8</td>
<td>54</td>
<td>69.1</td>
</tr>
<tr>
<td>4</td>
<td>87.5</td>
<td>81</td>
<td>78.8</td>
<td>74.8</td>
<td>62.5</td>
<td>58.2</td>
<td>73.8</td>
</tr>
<tr>
<td>5</td>
<td>91.5</td>
<td>85.4</td>
<td>83.4</td>
<td>79.6</td>
<td>67</td>
<td>62.7</td>
<td>78.3</td>
</tr>
<tr>
<td>6</td>
<td>94.1</td>
<td>90.1</td>
<td>87.8</td>
<td>83.7</td>
<td>71.8</td>
<td>67.2</td>
<td>82.5</td>
</tr>
<tr>
<td>7</td>
<td>96.4</td>
<td>93.6</td>
<td>91.6</td>
<td>87.6</td>
<td>77.8</td>
<td>71.9</td>
<td>86.5</td>
</tr>
<tr>
<td>Flat Plate Solar Collector C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>68.8</td>
<td>58.7</td>
<td>57.7</td>
<td>54.4</td>
<td>43.8</td>
<td>38.5</td>
<td>53.7</td>
</tr>
<tr>
<td>1</td>
<td>73.1</td>
<td>66.7</td>
<td>63.9</td>
<td>60</td>
<td>48.4</td>
<td>41.4</td>
<td>58.9</td>
</tr>
<tr>
<td>2</td>
<td>77.7</td>
<td>72.5</td>
<td>70.3</td>
<td>66.2</td>
<td>52.5</td>
<td>44.9</td>
<td>64.0</td>
</tr>
<tr>
<td>3</td>
<td>81.9</td>
<td>77.8</td>
<td>75</td>
<td>71.9</td>
<td>56.6</td>
<td>48.7</td>
<td>68.7</td>
</tr>
<tr>
<td>4</td>
<td>85.1</td>
<td>82.6</td>
<td>80.2</td>
<td>76.6</td>
<td>60.5</td>
<td>52.5</td>
<td>72.9</td>
</tr>
<tr>
<td>5</td>
<td>89.7</td>
<td>85.9</td>
<td>83.9</td>
<td>80</td>
<td>65</td>
<td>56.1</td>
<td>76.8</td>
</tr>
<tr>
<td>6</td>
<td>92</td>
<td>89</td>
<td>87.2</td>
<td>84.3</td>
<td>68.6</td>
<td>60</td>
<td>80.2</td>
</tr>
<tr>
<td>7</td>
<td>95.7</td>
<td>91.2</td>
<td>90</td>
<td>87</td>
<td>71.9</td>
<td>63.6</td>
<td>83.2</td>
</tr>
</tbody>
</table>
Appendix C: Sample calculations

Appendix C-1: Sample of the experiment calculations

• Input

The amount of the input heat was calculated using equation (2.4):

\[Q_i = I \cdot A \] \hspace{1cm} (2.4)

\[= 850 \times 1.5 = 1275 \text{ W} \]

Where: \(Q_i \) is the heat input to the collector (W), \(I \) is intensity of solar radiation W/m\(^2\), \(A \) is the collector's surface area exposed to the sun's irradiance m\(^2\).

• Sample calculation of the energy rate acquired by the geyser's water

The energy rate acquired by the geyser's water was calculated using equation (2.5):

\[Q_o = \frac{m_g \cdot C_p \cdot \Delta T_{\text{avg}}}{\Delta t} \] \hspace{1cm} (2.5)

Where \(Q_o \) is the energy rate acquired by the water in the geyser (W), \(m_g \) is the mass inside the geyser (kg) equivalent to the 88 litres, at an average density 988.1 kg/m\(^3\), \(\Delta T_{\text{avg}} \) is the average temperature inside the geyser recorded (i.e. average of six temperatures inside the geyser) (°C) during \(\Delta t \) which is the time interval of data collection, i.e. an hour = 3600 seconds. \(C_p \) is the average specific heat of the water (4186) Joules/kg °C.

The calculation for the heat acquired by the water in the geyser shown here is for the first day of the test using collector A at the third hour when the average water temperature increased from 31.8°C to 39.1°C.

\[Q_o = 86.95 \times 4186 \times (39.1 - 31.8) / 3600 = 735 \text{ W} \]

• Sample calculation of the energy accumulated by the geyser's water (MJ)

The energy accumulated by the geyser's water for the first day of the test using collector A at the third hour when the average water temperature in the beginning of the test 16.4°C increased to 39.1°C was calculated using the following equation:

\[Q_{ac} = m_g \cdot C_p \cdot \Delta T_{\text{avg}} = 86.95 \times 4186 \times (39.1 - 16.4) = 8.256 \text{ MJ} \]
• Sample calculation of the hourly efficiency (%)

The system’s hourly efficiency was calculated using equation (2.6):

\[
\text{Efficiency} = \frac{\text{Energy rate acquired}}{\text{Energy Input}} \times 100 \quad (2.6)
\]

\[
= \frac{735 \text{ W}}{1275 \text{ W}} \times 100 = 57.64 \%
\]
Appendix C-2: The difference in pressure between the inlet and outlet of the flat plate collector

The pressure difference between the inlet and outlet of the collector was calculated for the first day of the test using collector A at the third hour when the average water temperature was 38.2°C, the inlet water temperature was 21.3°C and the outlet water temperature was 55°C, using equation (2.11):

\[
P_i - P_o = \left[\rho_{avg} x_1 + \rho_{cold} x_2 \right] g - \left[x_1 + x_3 \right] g \rho_{hot} \quad (2.11)
\]

\[\Delta p = (992.926 \times 0.37 + 998.014 \times 0.84) \times 9.81 - (0.405) \times 9.81 \times 985.65 = 7912 \text{ Pa}\]

Where \(P_i\) is the pressure at the inlet, \(P_o\) is the pressure at the outlet, \(\rho_{avg}\) (kg/m\(^3\)) is the density at the average temperature between the inlet and the outlet of the collector, \(\rho_{cold}\) (kg/m\(^3\)) is the density at the inlet \(\rho_{hot}\) (kg/m\(^3\)) is the density at the outlet temperature, \(x_1, x_2, x_3\) are the relative vertical heights (m), \(g\) is earth’s gravity (m/s\(^2\)).
Appendix C-3: Sample calculation of the Π (dimensionless) numbers

The three dimensionless numbers for example are calculated using data from the first day of the test of the flat plate solar collector A (at the third hour) when the average water temperature was 38.2°C:

- \(\Pi_1 = \frac{\Delta p}{L \rho g} \)

\[
\Pi_1 = \frac{7912 \text{ (Kg/ms²))}}{0.805 \text{(m)} \times 992.926 \text{(Kg/m³)} \times 9.81 \text{(m/s²)}} = 1
\]

- \(\Pi_2 = \frac{l}{\rho L^{1/2} g^{3/2}} \)

\[
\Pi_2 = \frac{850 \text{ (W/m²)}}{992.926 \text{ (Kg/m³)} \times 9.81 \times 1.5 \text{ (m/s²)} \times 0.805 \times 0.5 \text{(m)}} = 0.03105
\]

- \(\Pi_3 = \frac{h}{L g} \)

\[
\Pi_3 = \frac{160.016 \text{ (KJ/Kg)}}{9.81 \text{ (m/s²)} \times 0.805 \text{ m}} = 20262.76
\]

Where: \(\Delta p \) is the pressure difference between inlet and outlet of the solar collector (Pa), \(\rho \) is the density of the water (kg/m³), \(g \) is earth’s gravity (m/s²), \(L \) is the vertical height difference between input (cold water) and output (hot water) of the collector (m), \(l \) is the amount of solar radiation incident on the collector’s surface (W/m²) and \(h \) is the water’s specific enthalpy flowing in the collector (Joule/kg).
Appendix D: The calculation of energy rate acquired, energy accumulated by the geyser's water and hourly efficiency

Table D-1: T_{avg} (°C), ΔT (°C), energy rate acquired by the geyser's water (W), energy accumulated by the geyser's water (MJ) and hourly efficiency (%) were calculated during the test period of the first day using the collectors A, B, and C.

<table>
<thead>
<tr>
<th>Time (hour)</th>
<th>T_{avg} (°C)</th>
<th>ΔT (°C)</th>
<th>Energy acquired by the geyser's water (W)</th>
<th>Energy accumulated by the geyser's water (MJ)</th>
<th>Hourly efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Energy acquired by the geyser's water (W)</td>
<td>Energy accumulated by the geyser's water (MJ)</td>
<td>Hourly efficiency (%)</td>
</tr>
<tr>
<td>Using Flat Plate Solar Collector A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>16.4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>1</td>
<td>24.1</td>
<td>7.65</td>
<td>773.47</td>
<td>2.784480819</td>
<td>60.66</td>
</tr>
<tr>
<td>2</td>
<td>31.8</td>
<td>7.77</td>
<td>785.26</td>
<td>5.611426487</td>
<td>61.59</td>
</tr>
<tr>
<td>3</td>
<td>39.1</td>
<td>7.27</td>
<td>734.71</td>
<td>8.256379945</td>
<td>57.62</td>
</tr>
<tr>
<td>4</td>
<td>46.0</td>
<td>6.93</td>
<td>701.01</td>
<td>10.78000526</td>
<td>54.98</td>
</tr>
<tr>
<td>5</td>
<td>52.7</td>
<td>6.65</td>
<td>672.36</td>
<td>13.20050166</td>
<td>52.73</td>
</tr>
<tr>
<td>6</td>
<td>58.9</td>
<td>6.25</td>
<td>631.92</td>
<td>15.47540429</td>
<td>49.56</td>
</tr>
<tr>
<td>7</td>
<td>64.5</td>
<td>5.55</td>
<td>561.14</td>
<td>17.49551783</td>
<td>44.01</td>
</tr>
<tr>
<td>Using Flat Plate Solar Collector B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>16.4</td>
<td>0</td>
<td>0.00</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>1</td>
<td>24.4</td>
<td>8.03</td>
<td>812.22</td>
<td>2.92400818</td>
<td>63.70</td>
</tr>
<tr>
<td>2</td>
<td>32.6</td>
<td>8.13</td>
<td>822.34</td>
<td>5.884414803</td>
<td>64.50</td>
</tr>
<tr>
<td>3</td>
<td>40.1</td>
<td>7.52</td>
<td>759.99</td>
<td>8.620364366</td>
<td>59.61</td>
</tr>
<tr>
<td>4</td>
<td>47.1</td>
<td>7.00</td>
<td>707.75</td>
<td>11.16825531</td>
<td>55.51</td>
</tr>
<tr>
<td>5</td>
<td>53.8</td>
<td>6.75</td>
<td>682.47</td>
<td>13.62515015</td>
<td>53.53</td>
</tr>
<tr>
<td>6</td>
<td>60.3</td>
<td>6.50</td>
<td>657.19</td>
<td>15.99104889</td>
<td>51.54</td>
</tr>
<tr>
<td>7</td>
<td>66.5</td>
<td>6.20</td>
<td>626.86</td>
<td>18.2477523</td>
<td>49.17</td>
</tr>
<tr>
<td>Using Flat Plate Solar Collector C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>16.4</td>
<td>0</td>
<td>0.00</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>1</td>
<td>24.4</td>
<td>7.95</td>
<td>803.80</td>
<td>2.893676145</td>
<td>63.04</td>
</tr>
<tr>
<td>2</td>
<td>32.2</td>
<td>7.80</td>
<td>788.63</td>
<td>5.732754628</td>
<td>61.85</td>
</tr>
<tr>
<td>3</td>
<td>39.5</td>
<td>7.32</td>
<td>739.76</td>
<td>8.395907306</td>
<td>58.02</td>
</tr>
<tr>
<td>4</td>
<td>46.4</td>
<td>6.95</td>
<td>702.69</td>
<td>10.9259903</td>
<td>55.11</td>
</tr>
<tr>
<td>5</td>
<td>53.1</td>
<td>6.68</td>
<td>675.73</td>
<td>13.35822824</td>
<td>53.00</td>
</tr>
<tr>
<td>6</td>
<td>59.4</td>
<td>6.28</td>
<td>635.29</td>
<td>15.64526369</td>
<td>49.83</td>
</tr>
<tr>
<td>7</td>
<td>65.3</td>
<td>5.92</td>
<td>598.22</td>
<td>17.79883818</td>
<td>46.92</td>
</tr>
</tbody>
</table>
Table D-2: \(T_{\text{avg}} \) (°C), \(\Delta T \), Energy rate acquired by the geyser’s water (W), Energy accumulated by the geyser’s water (MJ) and Hourly efficiency (%) were calculated during the test period of the second day using the flat plate solar collectors A, B, and C.

<table>
<thead>
<tr>
<th>Time (hour)</th>
<th>(T_{\text{avg}}) (°C)</th>
<th>(\Delta T) (°C)</th>
<th>Energy acquired by the geyser’s water (W)</th>
<th>Energy accumulated by the geyser’s water (MJ)</th>
<th>Hourly efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Using Flat Plate Solar Collector A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>53.6</td>
<td>0.0</td>
<td>0.00</td>
<td>13.54</td>
<td>0.00</td>
</tr>
<tr>
<td>1</td>
<td>58.0</td>
<td>4.4</td>
<td>441.50</td>
<td>15.13083192</td>
<td>34.63</td>
</tr>
<tr>
<td>2</td>
<td>62.4</td>
<td>4.4</td>
<td>446.55</td>
<td>16.73842978</td>
<td>35.02</td>
</tr>
<tr>
<td>3</td>
<td>66.4</td>
<td>4.1</td>
<td>411.17</td>
<td>18.21863309</td>
<td>32.25</td>
</tr>
<tr>
<td>4</td>
<td>70.2</td>
<td>3.8</td>
<td>384.21</td>
<td>19.60177389</td>
<td>30.13</td>
</tr>
<tr>
<td>5</td>
<td>73.8</td>
<td>3.6</td>
<td>360.61</td>
<td>20.89998499</td>
<td>28.28</td>
</tr>
<tr>
<td>6</td>
<td>77.1</td>
<td>3.3</td>
<td>328.60</td>
<td>22.08293436</td>
<td>25.77</td>
</tr>
<tr>
<td>7</td>
<td>80.0</td>
<td>2.9</td>
<td>296.58</td>
<td>23.15062199</td>
<td>23.26</td>
</tr>
<tr>
<td>Using Flat Plate Solar Collector B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>53.6</td>
<td>0.0</td>
<td>0.00</td>
<td>13.54</td>
<td>0.00</td>
</tr>
<tr>
<td>1</td>
<td>59.0</td>
<td>5.4</td>
<td>542.61</td>
<td>15.49481634</td>
<td>42.56</td>
</tr>
<tr>
<td>2</td>
<td>64.2</td>
<td>5.2</td>
<td>520.70</td>
<td>17.36933611</td>
<td>40.84</td>
</tr>
<tr>
<td>3</td>
<td>69.1</td>
<td>4.9</td>
<td>498.79</td>
<td>19.16499258</td>
<td>39.12</td>
</tr>
<tr>
<td>4</td>
<td>73.8</td>
<td>4.7</td>
<td>476.89</td>
<td>20.88178577</td>
<td>37.40</td>
</tr>
<tr>
<td>5</td>
<td>78.3</td>
<td>4.5</td>
<td>451.61</td>
<td>22.50758285</td>
<td>35.42</td>
</tr>
<tr>
<td>6</td>
<td>82.5</td>
<td>4.2</td>
<td>422.96</td>
<td>24.03025101</td>
<td>33.17</td>
</tr>
<tr>
<td>7</td>
<td>86.5</td>
<td>4.0</td>
<td>407.80</td>
<td>25.4983215</td>
<td>31.98</td>
</tr>
<tr>
<td>Using Flat Plate Solar Collector C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>53.7</td>
<td>0.0</td>
<td>0.00</td>
<td>13.54</td>
<td>0.00</td>
</tr>
<tr>
<td>1</td>
<td>58.9</td>
<td>5.3</td>
<td>532.50</td>
<td>15.45720462</td>
<td>41.76</td>
</tr>
<tr>
<td>2</td>
<td>64.0</td>
<td>5.1</td>
<td>515.64</td>
<td>17.31352516</td>
<td>40.44</td>
</tr>
<tr>
<td>3</td>
<td>68.7</td>
<td>4.6</td>
<td>468.46</td>
<td>18.99998631</td>
<td>36.74</td>
</tr>
<tr>
<td>4</td>
<td>72.9</td>
<td>4.3</td>
<td>431.39</td>
<td>20.55298651</td>
<td>33.83</td>
</tr>
<tr>
<td>5</td>
<td>76.8</td>
<td>3.8</td>
<td>389.26</td>
<td>21.95432653</td>
<td>30.53</td>
</tr>
<tr>
<td>6</td>
<td>80.2</td>
<td>3.4</td>
<td>345.45</td>
<td>23.19793997</td>
<td>27.09</td>
</tr>
<tr>
<td>7</td>
<td>83.2</td>
<td>3.1</td>
<td>308.38</td>
<td>24.30809245</td>
<td>24.19</td>
</tr>
</tbody>
</table>
Appendix E: Temperature data, density values, enthalpy, pressure difference between the inlet and outlet of the flat plate collectors A, B and C and (Π_1, Π_2 and Π_3)

<table>
<thead>
<tr>
<th>Time (hr)</th>
<th>T_{avg} ($^\circ$C)</th>
<th>ρ_{avg} (kg/m3)</th>
<th>ρ_{hot} (kg/m3)</th>
<th>ρ_{cold} (kg/m3)</th>
<th>h (KJ/kg)</th>
<th>ΔP (pa)</th>
<th>Π_1</th>
<th>Π_2</th>
<th>Π_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Using collector A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>16.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>24.4</td>
<td>997.28</td>
<td>995.25</td>
<td>998.824</td>
<td>102.352</td>
<td>7896.358</td>
<td>1.0</td>
<td>0.03092</td>
<td>12960.79</td>
</tr>
<tr>
<td>2</td>
<td>31.6</td>
<td>995.218</td>
<td>990.598</td>
<td>998.49</td>
<td>128.258</td>
<td>7904.604</td>
<td>1.0</td>
<td>0.03098</td>
<td>16241.25</td>
</tr>
<tr>
<td>3</td>
<td>38.2</td>
<td>992.926</td>
<td>985.65</td>
<td>998.014</td>
<td>160.016</td>
<td>7912.021</td>
<td>1.0</td>
<td>0.03105</td>
<td>20262.76</td>
</tr>
<tr>
<td>4</td>
<td>44.5</td>
<td>990.43</td>
<td>980.395</td>
<td>997.428</td>
<td>186.34</td>
<td>7919.011</td>
<td>1.0</td>
<td>0.03113</td>
<td>23596.15</td>
</tr>
<tr>
<td>5</td>
<td>50.5</td>
<td>987.79</td>
<td>975.28</td>
<td>996.644</td>
<td>211.42</td>
<td>7923.290</td>
<td>1.0</td>
<td>0.03121</td>
<td>26772.02</td>
</tr>
<tr>
<td>6</td>
<td>56.0</td>
<td>985.16</td>
<td>970.97</td>
<td>995.41</td>
<td>234.42</td>
<td>7920.699</td>
<td>1.0</td>
<td>0.03130</td>
<td>29684.50</td>
</tr>
<tr>
<td>7</td>
<td>60.5</td>
<td>982.865</td>
<td>968.39</td>
<td>993.73</td>
<td>253.25</td>
<td>7908.776</td>
<td>1.0</td>
<td>0.03137</td>
<td>32068.94</td>
</tr>
<tr>
<td>Using collector B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>16.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>25.2</td>
<td>997.076</td>
<td>994.747</td>
<td>998.86</td>
<td>105.696</td>
<td>6330.103</td>
<td>1.0</td>
<td>0.03455</td>
<td>16704.36</td>
</tr>
<tr>
<td>2</td>
<td>33.7</td>
<td>994.529</td>
<td>988.920</td>
<td>998.43</td>
<td>141.216</td>
<td>6341.140</td>
<td>1.0</td>
<td>0.03464</td>
<td>22317.99</td>
</tr>
<tr>
<td>3</td>
<td>40.7</td>
<td>991.58</td>
<td>983.900</td>
<td>997.668</td>
<td>170.459</td>
<td>6345.298</td>
<td>1.0</td>
<td>0.03474</td>
<td>26939.60</td>
</tr>
<tr>
<td>4</td>
<td>47.2</td>
<td>989.272</td>
<td>979.060</td>
<td>996.617</td>
<td>197.626</td>
<td>6349.139</td>
<td>1.0</td>
<td>0.03482</td>
<td>31233.19</td>
</tr>
<tr>
<td>5</td>
<td>53.0</td>
<td>986.62</td>
<td>975.280</td>
<td>995.09</td>
<td>221.88</td>
<td>6344.345</td>
<td>1.0</td>
<td>0.03491</td>
<td>35066.25</td>
</tr>
<tr>
<td>6</td>
<td>58.3</td>
<td>984.004</td>
<td>972.354</td>
<td>993.074</td>
<td>244.044</td>
<td>6333.026</td>
<td>1.0</td>
<td>0.03501</td>
<td>38569.09</td>
</tr>
<tr>
<td>7</td>
<td>63.5</td>
<td>981.27</td>
<td>969.690</td>
<td>990.64</td>
<td>265.81</td>
<td>6317.450</td>
<td>1.0</td>
<td>0.03510</td>
<td>42009.02</td>
</tr>
<tr>
<td>Using collector C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>16.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>25.6</td>
<td>996.968</td>
<td>994.859</td>
<td>998.585</td>
<td>107.368</td>
<td>5151.897</td>
<td>1.0</td>
<td>0.03830</td>
<td>20847.14</td>
</tr>
<tr>
<td>2</td>
<td>33.9</td>
<td>994.463</td>
<td>989.36</td>
<td>998.143</td>
<td>142.052</td>
<td>5162.224</td>
<td>1.0</td>
<td>0.03839</td>
<td>27581.57</td>
</tr>
<tr>
<td>3</td>
<td>40.8</td>
<td>991.938</td>
<td>984.16</td>
<td>997.5</td>
<td>170.876</td>
<td>5170.186</td>
<td>1.0</td>
<td>0.03849</td>
<td>33178.19</td>
</tr>
<tr>
<td>4</td>
<td>46.8</td>
<td>989.448</td>
<td>979.004</td>
<td>996.86</td>
<td>195.954</td>
<td>5178.118</td>
<td>1.0</td>
<td>0.03859</td>
<td>38047.47</td>
</tr>
<tr>
<td>5</td>
<td>52.4</td>
<td>986.902</td>
<td>974.62</td>
<td>995.834</td>
<td>219.366</td>
<td>5180.658</td>
<td>1.0</td>
<td>0.03869</td>
<td>42593.27</td>
</tr>
<tr>
<td>6</td>
<td>57.4</td>
<td>984.46</td>
<td>971.096</td>
<td>994.463</td>
<td>240.282</td>
<td>5178.263</td>
<td>1.0</td>
<td>0.03878</td>
<td>46654.43</td>
</tr>
<tr>
<td>7</td>
<td>61.6</td>
<td>982.282</td>
<td>968.585</td>
<td>992.815</td>
<td>257.854</td>
<td>5171.281</td>
<td>1.0</td>
<td>0.03887</td>
<td>50066.30</td>
</tr>
</tbody>
</table>

64