Elemental Cu-doped Co₃O₄ thin film for highly sensitive non-enzymatic glucose detection

by

Micaela Lisa Harry

Thesis submitted in the fulfilment of the requirements for the degree

Master of Engineering: Chemical Engineering

In the Faculty of Engineering

at Cape Peninsula University of Technology

Supervisor: Dr. M. R. Chowdhury

Bellville Campus

Date Submitted: 1st July 2019

CPUT copyright information

The dissertation/thesis may not be published either in part (in scholarly, scientific or technical journals, or as a whole (as a monograph), unless permission has been obtained from the University.
Preamble

Declaration

I, Micaela Harry, hereby declare that this research dissertation is my own unaided work. It is being submitted for the MEng Degree at the Cape Peninsula University of Technology. It has not been submitted before for any degree or examination in any other University. Furthermore, it represents my own opinions and not necessarily those of the Cape Peninsula University of Technology.

Signed

Date

13/10/2019

Elemental Cu-doped Co$_3$O$_4$ thin film for highly sensitive non-enzymatic glucose detection
Elemental Cu-doped Co$_3$O$_4$ thin film for highly sensitive non-enzymatic glucose detection

M.L.Harry

Abstract

This thesis is a study and analysis of the non-enzymatic glucose sensing ability of elemental Cu-doped Co$_3$O$_4$ thin film deposited on FTO. A facile chemical solution method was utilized to substitute elemental Cu into the Co$_3$O$_4$ host lattice structure. The morphology of the electrode was characterized by XRD, SEM, HRTEM, SAED and EELS. The introduction of Cu resulted in increased electrical conductivity, charge density and decreased charge transfer resistance in Co$_3$O$_4$. This ultimately resulted in enhanced electrochemical activity when compared to pristine Co$_3$O$_4$. The as prepared thin film exhibited very high sensitivity, 1850 μAcm$^{-2}$mM$^{-1}$, and linear range up to 7.6 mM. The sensor showed a limit of detection of 153 nM at a signal to noise ratio of 3. The developed sensor was used successfully to measure glucose level in human serum and spiked saliva sample.
Acknowledgements

I am thankful to:

~Dr. Chowdhury, for the supervision and guidance on completion of my thesis. And for allowing me to pursue the research under his direction

~The staff at the *Flow Process and Rheology Centre* for creating an inclusive culture

~My family, for their continuous support and guidance throughout my journey always

The financial assistance of the National Research Foundation, CPUT & Mauerberger Foundation towards this research is acknowledged. Opinions expressed in this thesis and the conclusions arrived at are those of the author, and are not necessarily to be attributed to the National Research Foundation, CPUT & Mauerberger Foundation.

Elemental Cu-doped Co₃O₄ thin film for highly sensitive non-enzymatic glucose detection
Dedication

This thesis is dedicated to my beautiful mother, Indira Harry, for her love, continuous support and guidance. My father, Terry Chris Harry, for his patience, love and support continually. And my sister, Isobel Harry, for her kindness, love, motivation and always being prepared to help me when required.

To all those struggling to find inspiration, this is what I tend to live by:

“We can’t choose where we come from, but we can choose where we go from there.”

- Stephen Chbosky

Elemental Cu-doped Co₃O₄ thin film for highly sensitive non-enzymatic glucose detection
Table of Contents

Abstract ..ii

List of figures ...viii

List of tables ..x

List of equations ..xi

Glossary- Terms and Concepts ..xii

List of abbreviations ..xiii

List of Symbols ..xv

Chapter 1: Introduction ...2
 1.1. Background of research ...2
 1.2. Problem statement ...3
 1.3. Aim and objectives ..3
 1.4. Research question ..3
 1.5. Delineation of study ..3
 1.6. Thesis structure ...3

Chapter 2: Literature Review ..6
 2.1. Introduction ...6
 2.2. Glucose sensors ..6
 2.2.1. Timeline of glucose sensors ...6
 2.2.2. Enzymatic glucose sensing and its challenges ..7
 2.2.3. Overview of the advances in non-enzymatic glucose sensing8
 2.3. Material fabrication ..10
 2.3.1. Previous studies on cobalt oxide (Co$_3$O$_4$) based non-enzymatic glucose sensors ... 10
 2.3.2. Dopant materials ..11
 2.4. Method of fabrication ...12
 2.4.1. Spin-coating ..12
 2.4.2. Calcination ...14
 2.5. Electrochemical cell ...14
 2.5.1. Counter electrode ...15
 2.5.2. Reference electrode ..15
 2.5.3. Working electrode ...15
 2.6. Techniques for electrochemical measurements ...16
 2.6.1. Cyclic voltammetry ..16
 2.6.2. Electrochemical impedance spectroscopy (EIS) ...17
 2.6.3. Chronoamperometry ..19

* * *

Elemental Cu-doped Co$_3$O$_4$ thin film for highly sensitive non-enzymatic glucose detection
Chapter 3: Research Methodology ... 32
 3.1. Introduction ... 32
 3.2. Materials and consumables ... 32
 3.3. Substrate preparation ... 32
 3.4. Fabrication of the thin film Co$_3$O$_4$;Cu layers on the FTO glass electrodes .. 33
 3.4.1. Synthesis of Co$_3$O$_4$... 34
 3.4.2. Spin coating and calcination ... 34
 3.5. Surface characterisation ... 36
 3.6. Electrochemical measurements ... 36
 3.6.1. Electrochemical detection of glucose ... 38
 3.6.2. Chronoamperometric detection of glucose 38
 3.6.3. Interference study .. 38
 3.6.4. Reproducibility study ... 39
 3.6.5. Stability study .. 39
 3.6.6. Repeatability study .. 39
 3.6.7. Electrochemical impedance spectroscopy (EIS) and Hall Effect Measurements .. 39
 3.6.8. Shelf life study ... 40
 3.7. Detection of glucose in human serum .. 40
 3.8. Detection of glucose in saliva .. 40
 3.8.1. Saliva sampling protocol for test subject 40
 3.8.2. Saliva sample preparation and analysis 41
 3.9. Reliability and validity of results ... 41
 3.10. Data analysis and presentation of results .. 41
 3.11. Health and safety precautions ... 42
 3.12. Conclusion ... 42

Chapter 4: Results and discussion ... 45

Elemental Cu-doped Co$_3$O$_4$ thin film for highly sensitive non-enzymatic glucose detection
4.1. Introduction .. 45
4.2. Surface characterisation .. 45
4.3. Electrocatalytic oxidation of glucose .. 49
4.4. Electrochemical impedance spectroscopy (EIS) and the Hall Effect Measurement 54
4.5. Chronoamperometric detection of glucose .. 58
4.6. Human serum and salivary glucose analysis ... 62
4.7. Selectivity study for the CoO₂:Cu biosensor ... 64
4.8. Reproducibility analysis of the CoO₂:Cu biosensor .. 65
4.9. Repeatability and stability analysis of the CoO₂:Cu biosensor ... 66
4.10. Conclusion ... 67

Chapter 5: Findings, contributions, conclusion and recommendations ... 69
 5.1. Introduction ... 69
 5.2. Findings: Summary of results .. 69
 5.3. Research significance ... 69
 5.4. Research contributions ... 69
 5.5. Conclusion ... 70
 5.6. Recommendations/future research .. 70

References .. 72

Appendix: Relevant Publication ... 77

Elemental Cu-doped Co₃O₄ thin film for highly sensitive non-enzymatic glucose detection
List of figures

Figure 1.1: SEM top and side views of (a) Cu sample (d-f) CoO2: Cu sample ...45
Figure 2.3: Average film thickness of the Co3O4: Cu and pristine Co3O4 electrode46
Figure 4.3: (a) HAADF image of the Co3O4: Cu with the area selected for EDS mapping indicated by the square, (b) resultant STEM spectral image from the highlighted area in (a), (c) (–e) extracted Co, O and Cu maps, respectively ...46
Figure 4.4: TEM micrographs and SAED pattern of (a-c) Pristine Co3O4 (d-f) Co3O4: Cu samples47
Figure 4.5: XRD pattern of the Co3O4: Cu and pristine Co3O4 film ..48
Figure 4.6: Electron energy loss spectroscopy results comparing the Co L3,2 ionization edge of the pristine49
Figure 4.7: Comparison of the varying ratios of the Co3O4: Cu electrodes in the (a) absence of glucose and presence of (b) 1 mM (c) 2 mM (d) 3 mM (e) 4 mM and (f) 5 mM glucose in a 0.1 M NaOH solution at 25 mV/s ..50
Figure 4.8: A comparison the various layers of the Co3O4: Cu biosensor in the presence of (a) 1 mM (b) 2 mM (c) 3 mM (d) 4 mM (e) 5 mM glucose in 0.1 M NaOH solution at 25 mV/s ..51
Figure 4.9: Cyclic voltammetry comparison of the optimum Co3O4: Cu electrode with the pristine electrode in the (a) absence of glucose and presence of (b) 1 mM (c) 2 mM (d) 3 mM (e) 4 mM (f) 5 mM glucose at 25 mV/s in 0.1M NaOH solution ..52
Figure 4.10: Effect of scan rate on the electrochemical behaviour of the (a) Cu-doped Co3O4 thin film electrode (inset: relationship between scan rate and peak current) and the (b) pristine Co3O4 electrode (inset: relationship between scan rate and peak current) ..53
Figure 4.11: Co3O4: Cu electrode in the presence and absence of 1 mM glucose in 0.1 M NaOH solution53
Figure 4.12: (a) Nyquist plot (inset: Resultant Randall’s circuit for (i) Co3O4: Cu and (ii) Pristine Co3O4)55
Figure 4.13: Comparison of the (a) Nyquist plots (b) Bode impedance plots (c) Bode phase plots of the various layers of Co3O4: Cu film electrodes ...56
Figure 4.14: (a) Amperometric response of the Co3O4: Cu electrode with successive addition of glucose from 59
Figure 4.15: Comparison of the amperometric response to glucose of the (a) Co3O4: Cu biosensor and (b)60
Figure 4.16: Comparison of sensor data with conventional glucose detection technique63
Figure 4.17: Selectivity performance of the Co3O4: Cu thin film ..65

Elemental Cu-doped Co3O4 thin film for highly sensitive non-enzymatic glucose detection
Elemental Cu-doped Co$_3$O$_4$ thin film for highly sensitive non-enzymatic glucose detection
List of tables

Table 2. 1: Contrast of non-enzymatic glucose sensors presented with respect to type, sensitivity, response time, LOD and linear range ...9
Table 3. 1: FTO glass properties ..32
Table 3. 2: Volume ratios required to make the precursor solution for the fabrication of the biosensor35
Table 4. 1: Hall Effect Measurement results ...58
Table 4. 2: Sensitivity, linear range, LOD and response time results for the Co₃O₄:Cu and pristine Co₃O₄ at various potentials ...60
Table 4. 3: Contrast of non-enzymatic glucose sensors presented with respect to type, sensitivity, response time, LOD and linear range ..61
Table 4. 4: Human serum results ..63
Table 4. 5: Detection of glucose in saliva sample (n=3) ..64
List of equations

Equation 2.1 ...18
Equation 2.2 ...20
Equation 2.3 ...20
Equation 2.4 ...24
Equation 2.5 ...30

Equation 3.1 ..34

Equation 4.1 ..54
Equation 4.2 ..54
Equation 4.3 ..54
Equation 4.4 ..59
Glossary - Terms and Concepts

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biosensor</td>
<td>A device which uses a living organism or biological molecules, especially enzymes or antibodies, to detect the presence of chemicals.</td>
</tr>
<tr>
<td>Electrochemical cell</td>
<td>A device capable of either generating electrical energy from chemical reactions or using electrical energy to cause chemical reactions.</td>
</tr>
<tr>
<td>Fermi Level</td>
<td>(Of a solid-state body) is the thermodynamic device capable of either generating electrical energy from chemical reactions or using electrical energy to cause chemical reactions.</td>
</tr>
</tbody>
</table>
List of abbreviations

AA Acetic Acid
AC Acetaminophen
CE Counter Electrode
CV Cyclic Voltammetry
DNS Dinitro Salicylic Acid
EC Electrochemical cell
EDS Energy Dispersive Spectroscopy
EELS Electron Energy Loss Spectroscopy
EIS Electrochemical Impedance Spectroscopy
ELNEFS Energy Loss Near Edge Fine Structure
FTO Fluorine Doped Tin Oxide
HAADf High-Angle Annular Dark-Field Imaging
LOD Limit of Detection
RE Reference electrode
RSD Relative Standard Deviation

Elemental Cu-doped Co₃O₄ thin film for highly sensitive non-enzymatic glucose detection
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEM</td>
<td>Scanning Electron Microscopy</td>
</tr>
<tr>
<td>TEM</td>
<td>Transmission Electron Microscopy</td>
</tr>
<tr>
<td>UA</td>
<td>Uric Acid</td>
</tr>
<tr>
<td>WE</td>
<td>Working Electrode</td>
</tr>
<tr>
<td>XRD</td>
<td>X-ray Diffraction</td>
</tr>
</tbody>
</table>

Elemental Cu-doped Co$_3$O$_4$ thin film for highly sensitive non-enzymatic glucose detection
List of Symbols

<table>
<thead>
<tr>
<th>Notation</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>Emission Line Energy</td>
<td>-</td>
</tr>
<tr>
<td>Z</td>
<td>Atomic number</td>
<td>-</td>
</tr>
<tr>
<td>A</td>
<td>Ammeter</td>
<td>A</td>
</tr>
<tr>
<td>V</td>
<td>Potential difference</td>
<td>V</td>
</tr>
<tr>
<td>Z</td>
<td>Faraday Impedance</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>Current</td>
<td>A</td>
</tr>
<tr>
<td>Rs</td>
<td>Electrolyte Resistance</td>
<td>Ω</td>
</tr>
<tr>
<td>Cdl</td>
<td>Double layered capacitance</td>
<td>F</td>
</tr>
<tr>
<td>Ret</td>
<td>Charge transfer resistance</td>
<td>Ω</td>
</tr>
<tr>
<td>n</td>
<td>No. of electrons for oxidation/reduction</td>
<td>-</td>
</tr>
<tr>
<td>F</td>
<td>Faradays constant</td>
<td>C/mol</td>
</tr>
<tr>
<td>A</td>
<td>Area of electrode</td>
<td>m²</td>
</tr>
<tr>
<td>C_j⁰</td>
<td>Initial concentration of reducible analyte</td>
<td>mM</td>
</tr>
<tr>
<td>D_j</td>
<td>Diffusion co-efficient</td>
<td>-</td>
</tr>
<tr>
<td>s</td>
<td>Time</td>
<td>s</td>
</tr>
<tr>
<td>η</td>
<td>Integer</td>
<td>-</td>
</tr>
<tr>
<td>d</td>
<td>Interplanar spacing</td>
<td>m</td>
</tr>
<tr>
<td>L</td>
<td>Length</td>
<td>m</td>
</tr>
<tr>
<td>B</td>
<td>Breadth</td>
<td>m</td>
</tr>
<tr>
<td>D</td>
<td>Depth</td>
<td>m</td>
</tr>
<tr>
<td>σ</td>
<td>Standard deviation</td>
<td>-</td>
</tr>
<tr>
<td>C_{1/2}</td>
<td>Constant</td>
<td>-</td>
</tr>
<tr>
<td>W</td>
<td>Warburg element</td>
<td>mMho·s^{1/2}</td>
</tr>
<tr>
<td>N</td>
<td>Number of layers</td>
<td>-</td>
</tr>
</tbody>
</table>

Greek symbols

Ω theta
λ lambda
σ sigma
μ micro
This research comprises the study of a copper doped cobalt oxide thin film non-enzymatic glucose sensor, which is economically feasible for the purpose of depicting an enhanced detection of glucose.

This chapter comprises:

Section 1.1: Background of research

Section 1.2: Problem statement

Section 1.3: Aim and objectives

Section 1.4: Research question

Section 1.5: Delineation of study

Section 1.6: Thesis structure
Chapter 1: Introduction

1.1. Background of research

Currently, one of the major causes of death and disability in the world is diabetes mellitus. The frequent testing of physiological blood glucose levels to avoid grave emergencies is vital for the confirmation of effective diabetic treatment. According to Luo et al. (2012), glucose monitoring is also vital in the food industry, clinical diagnostics and medicine. According to the WHO (2016), the number of individuals diagnosed with diabetes has escalated from 108 million in 1980 to 422 million in 2014. As a result, effective and efficient glucose monitoring is a critical requirement.

The current glucose sensors used by diabetic patients are glucose oxidase sensors (enzymatic) (Si et al., 2012). The difference between enzymatic and non-enzymatic glucose sensors is that an enzyme is utilized as the electrocatalyst on the former, while for the latter; a metal or metal oxide deposited on a substrate functions as the electrocatalyst (Zhu et al., 2016). However, due to problems associated with high costs, chemical instability, constrained pH ranges, temperature and humidity levels for enzymatic sensors, non-enzymatic glucose sensors that provide excellent electrochemical detection to glucose have been the main focus in recent research (Si et al., 2012).

Previous studies have shown that non-enzymatic glucose sensors have been constructed utilizing precious metals and/or precious metal alloys (Doria et al., 2012; Xiang et al., 2011; Bansal et al., 2016; Lee et al., 2010). However, since it is costly to purchase these metals, cost-effective materials, such as metal oxides have been proposed as an alternative (Chowdhury et al., 2016).

Nanostructured metal oxide materials are more suitable for non-enzymatic glucose sensors as they have good electrocatalytic properties, large surface areas and fast electron transfer (Zhu et al., 2014). In addition, nanostructured materials are advantageous as they counteract drawbacks such as surface poisoning of the electrode and the reduction in potential of glucose oxidation due to the use of noble metal-based non-enzymatic glucose sensors (Si et al., 2012). Previous studies have shown that nanostructured materials can be used to produce highly selective and sensitive non-enzymatic glucose sensors (Si et al., 2012).

With respect to nanostructured metal oxides, Cu₂O, NiO₂, MnO₂ and Co₃O₄ have been tested and reported in previous studies in terms of glucose selectivity and sensitivity performance (Chowdhury et al., 2016). However, among the different oxides, Co₃O₄ demonstrated the optimum glucose sensing performance with a lower detection limit due to the material having a large surface area to allow for additional reactive sites. In the case of this research, Co₃O₄ will be utilized in the construction of the

Elemental Cu-doped Co₃O₄ thin film for highly sensitive non-enzymatic glucose detection
glucose sensor, together with a dopant material (to improve the performance of the biosensor), i.e. Cu, to further escalate the electrochemical performance. Doping was proven to escalate the electronic conductivity by means of amending the electronic structure of the nanoparticle. This is evidenced in a number of studies including Zn-doped Co₃O₄, Mn and Fe doped Co₃O₄ and Sn doped Co₃O₄ (Kang et al., 2007; Espro et al., 2014; Zhuang et al., 2011). Cu will be added to Co₃O₄ as it was found in previous studies to increase the charge transferability to allow for enhanced glucose detection in the non-enzymatic glucose sensor. This was proven in studies involving Cu nano particles, Cu and CuO (Kang et al., 2007; Espro et al., 2014; Zhuang et al., 2011).

1.2. Problem statement

Commercially available glucose sensors have shown several drawbacks. The problems are associated with high costs, chemical instability, constrained pH ranges, temperature and humidity levels. Pristine Co₃O₄ suffers from a low electronic conductivity which results in a higher LOD, low sensitivity and low linear ranges.

1.3. Aim and objectives

The aim of this research project is to evaluate the electrochemical performance of Cu-doped Co₃O₄ thin film for glucose detection.

In accordance to the aim above, the following objectives that will be reached.

- A solution deposition of Cu-doped Co₃O₄ thin film on FTO substrate
- Sensing performance of the as-developed sensor

1.4. Research question

What effect does the doping of Cu into Co₃O₄ have on the electrochemical performance of the biosensor?

1.5. Delineation of study

This study will not use fresh blood sample for the testing of the biosensor.

1.6. Thesis structure

Chapter 1: Introduction

Chapter 1 provides a brief background to the research and contextualizes the problem statement. The chapter is a framework for the aim and objectives including the research questions and a delineation of this research study. The chapter inaugurates the quantitative analysis for biosensor performance.
Chapter 2: Literature review
Chapter 2 comprises a detailed literature review for the research problem. It details the progression of glucose sensors and the origin of non-enzymatic glucose sensors. Inclusive descriptions of the electrochemical cell, including the counter, reference and working electrode, are discussed. Thorough details of the different techniques used for electrochemical measurements and surface characterisation are discussed. A section on sensor fundamentals is provided for.

Chapter 3: Research methodology
Chapter 3 comprises the detailed research and experimental methodology for the development of the novel non-enzymatic glucose sensor utilizing a Cu-doped Co₃O₄ solution material as the electrocatalyst.

Chapter 4: Results and data analysis
Chapter 4 provides significant interpretations of the data retrieved from experimental work. A summary and evaluation of the electrochemical and surface characterisation results of the biosensor is conducted in order to achieve the objectives for this study.

Chapter 5: Conclusion
Chapter 5 includes a summary of the significant results obtained, conclusion, and recommendations for future research.

Elemental Cu-doped Co₃O₄ thin film for highly sensitive non-enzymatic glucose detection
This chapter comprises:

Section 2.1: Introduction

Section 2.2: Glucose sensors

Section 2.3: Material fabrication

Section 2.4: Method of fabrication

Section 2.5: Electrochemical cell

Section 2.6: Techniques for electrochemical measurements

Section 2.7: Surface characterisation

Section 2.8: Sensor characteristics

Section 2.9: Conclusion
Chapter 2: Literature Review

2.1. Introduction

This chapter is a detailed review associated with glucose sensors. Literature on the fabrication materials and methods is discussed, including theory on the electrochemical cell, electrochemical measurements, surface characterisation, and sensor characterisation.

2.2. Glucose sensors

According to Zhu (2016) and Wang (2013), glucose sensors have broad applications and have been developed to a great extent for diabetes diagnosis. Currently, electrochemical enzymatic glucose sensors are frequently utilized for the detection of glucose and are a success as glucose meters commercially. This is due to their demonstrating high reliability and good selectivity. However, due to general shortcomings of the enzyme i.e. poor stability and a high fabrication cost, amplification to the research of non-enzymatic glucose sensors came about. This is owing to their extraordinary stability, minimal cost, low detection limit and rapid response. Additionally, Zhu and Park (2016) highlight that nanostructured electrodes offer improved performance for glucose sensing applications. With this in mind, the following subsections will provide insight on the timeline of glucose sensors. A perception and appraisal of the distinct types of glucose sensors i.e. enzymatic and non-enzymatic will be discussed.

2.2.1. Timeline of glucose sensors

According to Tian and co-authors (2014), the chronology of the development of glucose sensors can be isolated into four generations. The initial generation of glucose sensors was dependent on the immobilization of the glucose oxidase (GOx) catalytic enzyme. It is further explained that the GOx acted as a catalytic reagent for the oxidation reaction between glucose and oxygen at the surface of the electrode to generate gluconolactone and hydrogen peroxide (Tian et al., 2014). From this, the concentration of glucose was regulated by perceiving the quantity of hydrogen peroxide formed at the electrode. Conversely, free oxygen is mandatory for the reaction, else the reaction mediator (natural mediator) will result in its being problematic. This is due to the sensor not functioning effectually for deficient oxygen blood samples (Wang et al., 2013). Another disadvantage is that these glucose sensors suffer from the interference of electroactive species in the blood, specifically ascorbic acid, uric acid, etc. (Tian et al., 2014).

In contrast, the second generation of glucose sensors utilizes an artificial mediator instead of the natural mediator for the augmentation of the electron transfer procedure. This sensor uses ferrocene derivatives or ferricyanide which is the GOx catalytic enzyme on an artificial mediator (Tian et al.,...

Elemental Cu-doped Co₃O₄ thin film for highly sensitive non-enzymatic glucose detection
2014). However, the performance and sensitivity of the sensor was highly reliant on fluctuations of pH for the intermediate, as well as fluctuations in humidity and temperature on the surface of the electrode.

According to Tian and co-authors, the third generation glucose sensors also utilize the GOx enzymatic catalyst; however, porous materials (nano and micro) were selected as the substrate for the immobilization of the GOx. This ensures a heightened surface area of the electrode, hence an escalation of the electron transfer rate. However, the enzyme activity is highly dependent on the temperature, humidity and interference. Due to these drawbacks, non-enzymatic glucose sensors (NEG), which allow glucose to be oxidized on the electrode surface, have come about as the fourth generation glucose sensors.

2.2.2. Enzymatic glucose sensing and its challenges

The variance between enzymatic and non-enzymatic glucose sensors is that the enzyme is utilized as the electrocatalyst on the electrode for the former, and for the latter, metal and/or metal oxide deposited upon the surface of the electrode functions as the electrocatalyst (Zhu et al., 2016). There are several advantages pertaining to detecting glucose without utilizing an enzyme i.e. stability, simplicity, reproducibility and freedom from oxygen limitation (Park et al., 2005). The following highlights the disadvantages of enzymatic glucose sensing.

i. Stability

One of the generic problems associated with enzymatic sensors is the insufficient stability of GOx (Park et al., 2005). GOx is stable in comparison to the other enzymes; however during fabrication, storage or use, the glucose oxidase sensors are subjected to thermal and chemical deformation. According to Wilson and Turner (1992), the GOx enzyme misplaces its catalytic activity below the pH of 2 and beyond the pH of 8, and a temperature exceeding 40 °C could cause terminal damage as well. Park and co-authors (2005) further mentioned that due to the thermal and chemical instability, the GOx sensors are prevented from being used in human bodies, because they require sterilization and incessant observation of fermentation processes. In addition to temperature, pH and chemical instability, GOx sensors are also affected by humidity, as high and low humidity levels could affect the use and storage of these sensors (Park et al., 2005).

ii. Simplicity and reproducibility

In order to develop an enzymatic electrode, one or more layers should be located on the raw substrate for complete optimization (Park et al., 2005). Mohamed and co-authors (2015) reported that there are a variety of methods by which the enzyme can be immobilized, namely direct adsorption, sol-gel entrapment and cross linking, etc. However, since the aim is to develop the sensor for mass production

Elemental Cu-doped Co3O4 thin film for highly sensitive non-enzymatic glucose detection
and commercialization, straightforward and supplementary reproducible methods have been sought (Park et al., 2005). Since the sensitivity of the sensor highly hinges upon the catalytic activity of the enzyme immobilized, another vital aspect to be considered in terms of quality control is reproducibility. This is why electro-polymerization, where the enzyme is entrapped in the solution comprising enzymes or monomers, is expended due to electrical governing of the enzyme deposit depth. However, Park and co-authors (2005) further argue that regardless of the immobilization method, enzyme electrodes are not free of the uncertainty of biological constituents found in artificial surroundings. This justifies why non-enzymatic glucose sensors remain in consideration.

iii. **Absence of oxygen limitation**

A low concentration of oxygen is associated with the responses of the majority of enzyme electrodes (Park et al., 2005). Generally, all glucose sensors generate an electric current by the oxidation of glucose on the electrode surface; hence the reductive oxygen current functions as interference. This reductive oxygen current interferes due to the thermodynamic reduction potential of oxygen being more positive than where glucose is oxidized. However, fortunately, this interference can be minimized by finding appropriate potential whereby the reduction kinetics of oxygen molecules is sluggish. This is another reason why non-enzymatic glucose sensors have replaced GOx sensors in research, as the former are less subject to oxygen limitation.

2.2.3. Overview of the advances in non-enzymatic glucose sensing

As previously mentioned, nanotechnology is causing an escalation in more innovative non-enzymatic glucose sensors (Park et al., 2005).

A variety of nanostructured materials have been studied and reported for non-enzymatic glucose detection, such as Cu₂O, NiO₂ etc., providing substantiation that non-enzymatic glucose-sensing electrodes’ are rapidly developing (Toghill and Compton, 2010). This is due to the enlarged surface area, improved glucose oxidation kinetics and improved selectivity. Particularly, nanoporous and microporous materials have raised interest in non-enzymatic glucose sensors alone. This is due to porous materials offering surfaces with a high surface-to-volume ratio (Toghill and Compton, 2010).

With their noticeable advances, nanostructured metal oxides have acquired widespread use in the growth of economically feasible sensors that have attained an extraordinary stability, sensitivity and response time in relation to glucose detection via electrochemical oxidation (Zhu et al., 2016). Hence, the following table summarizes a couple of innovations in non-enzymatic glucose sensors centred on diverse metal oxides.

Elemental Cu-doped Co₃O₄ thin film for highly sensitive non-enzymatic glucose detection
Table 2.1: Contrast of non-enzymatic glucose sensors presented with respect to type, sensitivity, response time, LOD and linear range.

<table>
<thead>
<tr>
<th>Biosensor</th>
<th>Sensitivity (µA/cm² mM)</th>
<th>Response time (s)</th>
<th>LOD</th>
<th>Linear range</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co₃O₄ nanofibers</td>
<td>36.25</td>
<td>≤ 7</td>
<td>0.97 µM</td>
<td>---</td>
<td>(Ding et al., 2010)</td>
</tr>
<tr>
<td>Co₃O₄/PbO₂</td>
<td>460</td>
<td>≤ 2</td>
<td>0.31 µM</td>
<td>5 µM-1.2 mM</td>
<td>(Chen et al., 2013)</td>
</tr>
<tr>
<td>Co₃O₄-Ni(OH)₂</td>
<td>1.089</td>
<td>≤ 5</td>
<td>1.08 µM</td>
<td>5 µM-40 µM</td>
<td>(Rahman et al., 2010b)</td>
</tr>
<tr>
<td>Sn: Co₃O₄</td>
<td>921/265</td>
<td>≤ 4</td>
<td>100 nM</td>
<td>2 µM-0.5 mM & 6 µM-5.5 mM</td>
<td>(Chowdhury et al., 2017)</td>
</tr>
<tr>
<td>Zn: Co₃O₄</td>
<td>193</td>
<td>≤ 7</td>
<td>2 µM</td>
<td>5.5 mM-0.62 mM</td>
<td>(Chowdhury et al., 2016)</td>
</tr>
<tr>
<td>Co₃O₄: TiO₂</td>
<td>2008.82</td>
<td>≤ 5</td>
<td>0.34 µM</td>
<td>3 mM</td>
<td>(Gao et al., 2016)</td>
</tr>
<tr>
<td>Cu₂O-Cu</td>
<td>1620</td>
<td>---</td>
<td>49 µM</td>
<td>0-6 mM</td>
<td>(Wang et al., 2013)</td>
</tr>
<tr>
<td>Cu-Cu₂O nanoporous</td>
<td>123.8</td>
<td>---</td>
<td>0.05 µM</td>
<td>0.01-5.5 mM</td>
<td>(Zhao et al., 2013)</td>
</tr>
<tr>
<td>Graphene wrapped Cu₂O nanotubes</td>
<td>285</td>
<td>≤ 9</td>
<td>3.3 nM</td>
<td>0.3-3.3 mM</td>
<td>(Luo et al., 2012)</td>
</tr>
<tr>
<td>CuO nanofibers</td>
<td>431.3</td>
<td>≤ 1</td>
<td>0.018 µM</td>
<td>0.006-2.5 mM</td>
<td>(Ding et al., 2010)</td>
</tr>
<tr>
<td>Co₃O₄-Ni(OH)₂</td>
<td>1.089</td>
<td>≤ 5</td>
<td>1.08 µM</td>
<td>5-40 µM</td>
<td>(Mahmoudian et al., 2016)</td>
</tr>
</tbody>
</table>

Elemental Cu-doped Co₃O₄ thin film for highly sensitive non-enzymatic glucose detection.
2.3. Material fabrication

Tian and co-authors (2014) highlighted that the behaviour of a non-enzymatic glucose sensor is related to the electrode material by which glucose is oxidized. Studies have shown that a variety of materials and processes utilizing metals, namely gold (Au), platinum (Pt), nickel (Ni) and copper (Cu), and metal oxides such as nickel oxide (NiO), iron (II) oxide (Fe$_2$O$_3$), cobalt oxide (Co$_3$O$_4$) etc. have been used in non-enzymatic glucose detection (Doria et al., 2012; Xiang et al., 2011; Bansal et al., 2016; Lee et al., 2010). The metals and metal oxides have been studied due to their synergistic effect and good electrocatalytic activities. This is due to the metal/metal oxides affecting the activity

Nanostructured metal-oxides have high sensitivity, rapid response times, and excellent stability with respect to glucose detection (Rahman et al., 2010a). As mentioned above, although a variety of nanostructured metal oxides have been tested, Co$_3$O$_4$ shows promising results.

According to Zhu and co-authors (2016), Co$_3$O$_4$ is a widely used metal oxide with respect to non-enzymatic glucose sensors. The polymorphs of cobalt oxide include cobaltous oxide (CoO), cobaltic oxide (Co$_3$O$_4$) and cobaltosic oxide (Co$_3$O$_4$), with the latter depicting promising results with regard to glucose detection in several studies (Ding et al., 2010). Co$_3$O$_4$ is advantageous to utilize in non-enzymatic glucose sensors as it is relatively inexpensive, depicts good conductivity and electrocatalytic properties, and it is environmentally friendly. This polymorph represents excellent electron conductivity, catalytic and electrocatalytic properties which results in the acceleration of the electron transfer between electrode surface and redox species.

2.3.1. Previous studies on cobalt oxide (Co$_3$O$_4$) based non-enzymatic glucose sensors

Developing an efficient and effective device for the frequent monitoring of glucose levels is vital analytically to manage diabetes and reduce the risk of serious problems.

Ding and co-authors (2010) reported that Co$_3$O$_4$ nano-fibers are fabricated by electrospinning and calcination, and show enhanced electrochemical glucose detection. The as-developed biosensor resulted in a fast response time, high selectivity and reproducibility, and a small lower detection limit (LOD) as can be seen in table 2.1. The selectivity of the as-developed sensor was also investigated against interference species that co-exist in the blood with glucose, namely ascorbic acid (C$_6$H$_8$O$_6$) and uric acid (C$_5$H$_4$N$_4$O$_3$). The blood glucose levels of the average human is between 4 mM and 7 mM (Park et al., 2005), whereas, the concentration of endogenous ascorbic acid and uric acid is around 0.125 mM and 0.33 mM respectively in blood samples (Hrapovic and Luong, 2003). With the addition of uric and ascorbic acid, a negligible escalation in current response was observed i.e. 17 % and 14 % in...
comparison to that of the addition of glucose. The sensor also demonstrated excellent inter- and intra-electrode reproducibility with standard deviations of 9.73 % and 3.99 %.

Further research was conducted whereby a biosensor was constructed using Co₃O₄/PbOₓ core-shell nanorod arrays as electrocatalysts (Chen et al., 2013). The as-prepared electrode exhibited excellent electrochemical behaviour towards glucose as the resultant sensitivity was high with a small LOD. The characteristics of the sensor can be noted in table 2.1. The biosensor showed negligible interference with respect to current response for the detection of uric acid and merely a slight increase by 16.7% and 6.7 % in current density for ascorbic acid and fructose (C₆H₁₂O₆) respectively. In fact, these minor changes can be ignored when comparing to the current response value arising from glucose addition. In terms of the further classification of the sensor, the inter-electrode reproducibility of biosensor resulted in a relative standard deviation of 9.4 % and an excellent inter-electrode reproducibility with a relative standard deviation of 2.7 %.

Mahmoudian et al. (2016) reported the synthesis and characterisation of Co₃O₄ ultra-nanosheets with Ni (OH)₂ as a non-enzymatic electrochemical sensor for glucose discovery. The sensor confirmed the feasibility for the quantitative detection of glucose with a fast response time. Negligible interference of uric acid, ascorbic acid and dopamine (C₈H₁₁NO₂) were as compared to detection of glucose. The biosensor was found to be stable and viable.

Even though the previous studies as reported (see table 2.1) provide feasible strategies for fabrication and show promising electrode materials for the construction of practical non-enzymatic glucose sensors, the sensitivity and linear range of glucose detection can be improved for the purpose of further bulk manufacturing and commercialization. This is why Co₃O₄ will be used further in the fabrication of the biosensor for this research, as it is proven to provide enhanced electrochemical glucose detection.

2.3.2. Dopant materials
A variety of dopant materials have been added to Co₃O₄ electrodes for the purpose of enhancing electrochemical performance. Chowdhury et al. (2016) recently reported that zinc (Zn) as a dopant for Co₃O₄ showed enhanced electrochemical performance due to improved charge transferability. Further, Gao et al. (2016) tested titanium dioxide (TiO₂) as a dopant and the resultant effect showed a great sensitivity and minimal detection limit. This was due to the addition of TiO₂ which allowed for an increase in the specific surface area and additional reactive sites. Several studies based on Cu materials have been reported with respect to non-enzymatic glucose sensors; however none used Cu as a dopant material for Co₃O₄.

Elemental Cu-doped Co₃O₄ thin film for highly sensitive non-enzymatic glucose detection
According to Kang et al. (2007), Cu nano-materials were used on electrodes that were made with Naflon carbon nanotubes. The results exhibited excellent selectivity, reproducibility, a high sensitivity and a high current response. Espro et al. (2014) also tested Cu, which resulted in a large oxidation peak after glucose was added in the electrolyte solution. Zhuang et al. (2007) reported that copper oxide (CuO) nano-materials were used on a Cu substrate for non-enzymatic glucose detection, which also proved that the CuO provided enhanced sensitivity, good stability, high current response and a truncated detection limit once again.

Since the utilization of Cu results in enhanced electrochemical performance, Cu will be added to Co$_3$O$_4$ for the purpose of increasing the charge transferability to allow for enhanced glucose detection in the non-enzymatic glucose sensor.

2.4. Method of fabrication

There are a variety of deposition techniques utilized to fabricate Co$_3$O$_4$ films such as pulsed layer deposition (PLD), plasma sputtering, atomic layer deposition (ALD). However, capital investment is demanding and it requires continuous maintenance (Donders et al., 2011). There are other conventional procedures that are utilized to fabricate the films directly onto the substrate such as hydrothermal growth and electrode deposition; however these methods generally result in reduced electrocatalytic activity of Co$_3$O$_4$. Additionally, these techniques are not appropriate for the efficient, effective and economic production of glucose biosensors due to the lengthy processing time, cost and complexity of the methods (Jeon et al., 2015). The method of fabrication for the biosensor to be utilized in this study is spin coating and calcination (Wang et al., 2016). Hence, the purpose of this section is to detail the theory behind spin coating by touching on aspects of deposition, spin-up, stable fluid outflow and the evaporation steps, and thereafter elucidate calcination.

2.4.1. Spin-coating

According to Smith et al. (2013), spin coating is a quick and efficient process that exploits centrifugal forces by a rotating substrate in order to evenly disperse a coating solution across an area.

Typically, if a liquid solution is located on the substrate in the spin coater, and the sample spins at a particular speed and period, the centrifugal forces will cause the liquid to spread consistently and transversely across the sample. The spin coating technique can be fragmented into four key phases: stage 1 - fluid dispensing, stage 2 - spin-up, stage 3 - stable fluid outflow and stage 4 - evaporation (Sahu et al., 2009).

Elemental Cu-doped Co$_3$O$_4$ thin film for highly sensitive non-enzymatic glucose detection
Generally, stage 3 and 4 are crucial as they will affect the final coating thickness of the electrode, and both stages underlie the two processes that must occur simultaneously (viscous flow and evaporation). Notably, the fluid flow on the flat spinning substrate i.e. in this case the FTO, is a vital physical process involved in spin coating (Sahu et al., 2009). The following is a depiction of the steps taken in spin coating.

![Spin Coating Process](image)

Figure 2.1: Spin coating process (Kandjani et al., 2015)

i. Deposition
Deposition is the initial stage of spin coating whereby a micro-syringe is utilized to displace a solution onto the raw substrate which is rotated at a predetermined speed. The desired solution is then dispersed due to the centrifugal force (Sahu et al., 2009).

ii. Spin-up
The subsequent stage of spin coating is when the substrate is accelerated to its ultimate rotation speed. Generally, this stage is distinguished by the fluid expulsion from the water surface by the rotational motion (Sahu et al., 2009). Owing to the complexity of fluid on the water surface, spiral vortices are existent at this stage, and are moulded due to the twisting motion that is caused by the fluid layer inertia of the surface that is exerted whilst the water below rotates. Ultimately, the fluid will be thin enough and co-rotated with the water, by which differences in fluid depth withdraw. Eventually, the water achieves its anticipated speed and the fluid is adequately thin, which results in viscous shear drag balancing the rotational acceleration (Sahu et al., 2009).

iii. Stable fluid outflow
The third stage of spin coating is when the substrate spins at a constant rate and the viscous forces of the fluid govern the fluid-thinning behaviour. Generally, this stage is characterized by a gradual fluid-thinning process. This process is uniform, though it slows down progressively as the coating thickness is

Elemental Cu-doped Co₃O₄ thin film for highly sensitive non-enzymatic glucose detection
reduced. Typically, edge effects are observed as the fluid flows uniformly outward because droplets form at the edge and are flung off (Sahu et al., 2009).

iv. Evaporation

The fourth stage of spin coating occurs as the film drying period initiates. Throughout this period, the centrifugal flow halts, and due to solvent forfeiture, further shrinkage of the film occurs. This stage results in the formation of a thin film on the substrate. During this phase the substrate spins at a persistent rate and solvent evaporation controls the coat thinning behaviour. The suspended or dissolved solids become concentrated at the liquid surface and develop an elevated viscosity and a minimally diffused solid coat (Sahu et al., 2009).

2.4.2. Calcination

Calcination is the second step for the fabrication of the electrocatalyst onto the substrate. Calcination is defined as a thermal treatment process that is applied to substrates/solid materials, in the presence of air or oxygen to bring about thermal decomposition, phase transition or the removal of a volatile fraction (Vesuvius, 2019). It is vital that after each layer of material is coated onto the substrate, it is calcined to a temperature higher than the reaction temperature, for the purpose of removing impurities after synthesis. In the case of this research, calcination occurred at 350 °C, as reported in Chowdhury et al. (2017) and Ding et al. (2010). This was done to ensure that impurities were removed, the catalyst structure was not altered, and the surface area of the catalyst was not reduced.

2.5. Electrochemical cell

Generally, an electrochemical cell is utilized to generate current and voltage from a chemical reaction or input of electrochemical signals by induced chemical reactions. The most frequent utilized electrochemistry system is the three-electrode system which consists of a working, counter and reference electrode (Li and Miao, 2013). The following is an illustration of the three electrode system, depicting current (A) and voltage (V) flow between the relevant electrodes.

![Three-electrode cell diagram](image)

Figure 2.2: Three-electrode cell depicting the counter (CE), reference (RE) and working electrode (WE)

Elemental Cu-doped Co₃O₄ thin film for highly sensitive non-enzymatic glucose detection
In this setup, current flows between the counter and working electrode. Potential difference is controlled between the working and counter electrode and is measured between the reference and working electrode. The working electrode makes contact with the analyte. The surface of the working electrode is the location in which the reaction occurs (Li and Miao, 2013). Subsequently, when a specific potential is applied to the working electrode, the transfer of electrons amid the electrode and analyte transpires. The current at the electrode will transmit through the counter electrode for equilibrium. Generally, inert conducting materials such as platinum and graphite with large surface areas are utilized to make the counter electrode; hence in the case of this research, a graphite rod was chosen. The reference electrode has an acknowledged reduction potential and no current transmits through it. Thus, it only acts as a reference when quantifying the potential of the working electrode. Generally, silver-silver chloride (Ag-AgCl) and saturated calomel reference electrodes are utilized as the reference electrode (Li and Miao, 2013).

2.5.1. Counter electrode
The counter electrode is also acknowledged as the auxiliary electrode and is exploited to seal off the current circuit in the electrochemical cell (Metrohm, 2017). Generally, the electrode is constructed of an inert material e.g. graphite, platinum, gold, etc., and typically does not participate in the electrochemical reaction. Due to the current flowing between the working and the counter electrode, the overall surface area (i.e. source of electrons) of the counter electrode is obliged to be higher than the area of the working electrode. This is to ensure a termination of a restraining factor in the kinetics of the electrochemical process (Li and Miao, 2013).

2.5.2. Reference electrode
Notably, the reference electrode is one which has a steady and known electrode potential. It is used as a point of orientation in the electrochemical cell for the governing and quantifying of potential (Metrohm, 2017). The elevated stability of the reference electrode is typically reached by commissioning a redox system with perpetual concentrations of all participants of the redox reaction. In addition, the current movement through the reference electrode is reserved close to nil by permitting the counter electrode to seal off the current circuit in the electrochemical cell (Li and Miao, 2013).

2.5.3. Working electrode
The working electrode in the case of this research project consists of Co$_3$O$_4$: Cu and Co$_3$O$_4$ biosensors.

Conducting, high hydrophilic, porous substrates are beneficial in the applications of electrochemical biosensors as host electrodes. This is due to the fact that they offer fast charge transferability, large sensing surface area and wettability in aqueous analytes (Li and Miao, 2013). In this research project

* * *

Elemental Cu-doped Co$_3$O$_4$ thin film for highly sensitive non-enzymatic glucose detection

* * *
commercial fluorine-doped tin oxide (FTO) glass is used as the substrate for the fabrication of the biosensors by means of a two-step process which was explained in the previous section.

FTO glass is a transparent conductive metal oxide which has a variety of applications including touch screen displays, heat glass, electromagnetic radio frequency interference shielding and biosensors. There are a variety of properties of the FTO glass that makes it suitable to be used as the substrate for the fabrication of the biosensor such as low surface resistivity, high optical transmittance, scratch and abrasion resistance, thermal stability, and it is inert to a range of chemicals. Below are a few vital properties and benefits of FTO glass (Sigma-Aldrich, 2018):

- Electrically conductive for heat and thermal control, electrostatic dissipation and reduced transmittance of electromagnetic radiation.
- Colour-neutral glass which impedes reflector colour and results in an escalation of light transmittance. Due to this property, it also minimizes haze for an optimum visibility.
- Simple fabrication as the pyrolytic surface can be managed, insulated, cut, heat-strengthened and annealed by normal techniques.
- Durable pyrolytic surface of the glass provides an unlimited shelf life and does not oxidize nor change colour over time.
- Availability in numerous depths and surface resistivities which range from 7-13 Ω/sq.

2.6. Techniques for electrochemical measurements

For the electrochemical analysis of materials/substances, a range of electrochemical signals must be generated. These signals are current, potential, charge and impedance, which are further related to the concentrations of the analyte to be used (glucose) (Li and Miao, 2013). Hence, the most frequently used electrochemical measuring techniques, i.e. cyclic voltammetry, chronoamperometry and electrochemical impedance spectroscopy, are briefly discussed below.

2.6.1. Cyclic voltammetry

Cyclic voltammetry stipulates the thermodynamic information of redox and adsorption processes and the kinetics of electron transfer reactions. Generally, voltage is swept between two values at a fixed scanning rate; however, when voltage reaches V₂, the scan is inverted and the voltages are swept back to V₁ (Andrienko, 2008). This can be seen in figure 2.3. During cyclic voltammetry scanning, the analytes will undergo certain electron communication with the electrode (in this case, the biosensor) under various potentials and the currents obtained will be proportional to the concentration of the analytes. For reversible electrochemical reactions, the cyclic voltammetry that is documented has distinct traits, i.e.:

Elemental Cu-doped Co₃O₄ thin film for highly sensitive non-enzymatic glucose detection
• The ratio of peak currents is equivalent to one.
• The peak currents are proportionate to the square root of the scan rate.
• The position of the peak voltage does not change as a function of voltage scan rate (Andrienko, 2008)

The voltage scan rate has a great influence on the current for a reversible electron transmission process as visualized in figure 2.3. This proves that cyclic voltammetry is an acceptable qualitative analytical method for this research project dissertation.

Figure 2.3: Scan rate and rate constant dependence of the I-V curves

2.6.2. Electrochemical impedance spectroscopy (EIS)

Electrochemical impedance spectroscopy is utilized to detect the dielectric properties of a particular medium over a range of frequencies. Generally, the data is represented by a Bode impedance plot, Bode phase plot and a Nyquist plot. The electrochemical process of the electrode (in this case, biosensor) is then simulated to an equivalent circuit that consists of resistors and capacitors.

Electrochemical impedance spectroscopy is utilized in this research to conform to the electrochemical results of the electrode. The EIS measurement is a simple method that is conducted utilizing a Frequency Response Analyzer (FRA) which is coupled to a potentiostat (Fasmin & Srinivasan, 2017) Generally, an applied alternating voltage can generate alternating current from an electrochemical reaction on the electrode, and that same alternating current can be produced if the voltage is applied on an equivalent circuit. Hence, the electrochemical behaviour of the electrode is equivalent to resistance

Elemental Cu-doped Co₃O₄ thin film for highly sensitive non-enzymatic glucose detection
i.e. Faraday impedance \((Z)\), which is equivalent to the ratio of voltage \((V)\) and current \((I)\) in an alternative current circuit (MacDonald, 2006);

\[
Z = \frac{V}{I}
\]

Equation 2.1

Generally, when conducting an EIS experiment, a fixed sinusoidal voltage is applied by means of a potentiostat across a three-electrode system comprising an electrolytic solution with the molecule to be investigated. The EIS experiment entails constructing a composite upon the electrode surface that attracts target analytes which in turn affect the conductivity of the system. In such cases, it is expected that the impedance measurements be conducted in a blank buffer solution such as potassium ferricyanide (II) \((K_4Fe(CN)_6)\) (Brownson et al., 2012).

Figure 2.4.a is an illustration of a Nyquist plot and a basic equivalent circuit of the electrochemical impedance spectroscopy of an electrolytic cell also known as Randall’s circuit. This plot measures charge transfer resistances, solution resistances, time constants and Warburg impedances. Randall’s circuit is one of the most basic cell models describing electrochemical interface processes and comprises an active electrolyte resistance \((R_s)\) in series with the parallel combination of a double layered capacitance \((C_{dl})\), the impedance of a faradaic reaction consisting of an active charge transfer resistance \((R_{ct})\), and an electrochemical element of diffusion \((W)\), Warburg element.

![Nyquist plot and basic equivalent circuit](image)

Figure 2. 4: (a) Nyquist plot and its basic equivalent circuit and (b) Bode phase plot (AMS, 2018)

Elemental Cu-doped Co3O4 thin film for highly sensitive non-enzymatic glucose detection
On the other hand, figure 2.4.b, depicts Bode plots which provide information regarding capacitance, phase angles and charge transfer resistance.

Electrochemical impedance spectroscopy is utilized to provide information regarding the reaction mechanism of an electrochemical process. Generally, the application of different layers of coatings on the electrode allows for valuable electron transfer enhancements and sensitivity (Li et al., 2009). A variety of authors, including Gao and Yang (2016), all establish that EIS can be utilized to identify the effects of the different layers including polar, ionic and dielectric relaxation processes within the electrolyte, electrode, electrode surface and double layered region. This method enables the ability to investigate key constraints of an electrochemical system such as charge transfer resistances, double layered capacitance and exchange current densities.

2.6.3. Chronoamperometry

Generally, chronoamperometry is an electrochemical analysis by which the potential of the working electrode (biosensor) is stepped and the subsequent current due to faradaic processes transpiring at electrode is measured against time (Bard and Faulkner, 2000).

![Example of a chronoamperometric graph (Current vs. time)](image)

Figure 2.5: Example of a chronoamperometric graph (Current vs. time)

The faradaic current is due to the occurrence of electron transfer, and decays as defined by the Cottrell equation. The Cottrell equation given below outlines the variation in current against time with a controlled potential (Zoski, 2007), while the current measured is dependent on the rate at which the analyte (glucose) diffuses to the electrode (biosensor) film (Zoski, 2007).
Whereby, I represents the current, n, the number of electrons for reduction or oxidation, F is Faraday (96485 C/mol), A is the area of the electrode, c_j^o is the initial concentration of the reducible analyte, D_j is the diffusion coefficient and t, is the time (Bard and Faulkner, 2000).

The chronoamperometry is vital for effective biosensor characterisation. It assists in obtaining the sensitivity, glucose linear concentration range, limit of detection (LOD) and response time of the biosensor.

2.7. Surface characterisation

2.7.1. X-ray diffraction (XRD)

According to Cullity (1978), X-ray diffraction (XRD) is a technique utilized for the exploration of the fine structure of matter. It is also utilized in the study of crystal structures and atomic spacing (Bunaciu et al., 2015). The technique of X-ray diffraction is centred on constructive interference of monochromatic X-rays and a crystalline sample. Generally, the X-rays are produced by a cathode ray tube, filtered to generate monochromatic radiation, and focussed in the direction of the sample.

Typically, the contact of the incident rays with the sample will produce constructive interference i.e. a diffractive ray, only when the circumstances satisfy the Braggs Law:

$$n\lambda = 2dsin\theta$$

Equation 2. 3

Whereby, n is an integer, λ is wavelength of the X-rays, d is the interplanar spacing that generates the diffraction and Θ is the angle of diffraction.
Braggs Law depicts a relationship between the wavelength of electromagnetic radiation to the diffraction viewpoint and the lattice arrangement in a crystalline sample. When the diffracted X-rays are perceived, they are administered and then counted. Notably, by scanning the tester through an array of 2θ angles, all diffraction directions of the lattice can be obtained due to the random alignment of the material. A transition of the diffraction peaks to d-spacings permits the identification of the compound as each has a unique set of d-spacings. This is normally obtained by comparing the d-spacings obtained to standard reference patterns (Bunaciu et al., 2015).

A distinctive X-ray diffractometer comprises three basic elements which are an X-ray tube, sample holder and an X-ray detector. The X-rays are then generated in a cathode ray tube by heating a filament for the production of electrons, and fast-tracking the electrons toward a target by the application of a voltage. This bombards the target material with electrons. Hence, when the electrons have adequate energy to extricate the inner shell electrons of the objective material, X-ray spectra are generated (Bunaciu et al., 2015).

2.7.2. Electron microscopy

According to Voutou and Stefanaki (2008), electron microscopes are a valuable tool in material sciences and the development of scientific theory. Electron microscopes are scientific instruments that utilize a ray of active electrons for the purpose of examining materials on a fine scale. This inspection provides evidence regarding the topography (surface features), morphology (shape and size), composition and crystallographic structure of the material examined.

The frequent utilization of electron microscopes is centred around the fact that they permit observations and characterisation of materials on a nanometre and micrometre scale (Voutou and Stefanaki, 2008). The following subsections contain basic theory on two basic types of electron microscopes that are utilized for material characterisation for this research project i.e. TEM and SEM.
i. Transmission electron microscopy (TEM)

Transmission electron microscopy (TEM) is utilized for the purpose of providing information regarding the morphology (size, shape, particle arrangement) and crystallographic information (arrangement and order of atoms from diffracted electrons) of a material (Egerton, 2005).

Egerton (2005) further explains that transmission electron microscopy is a microscopy technique where a ray of electrons is transmitted through an ultra-thin specimen that causes an interaction with the specimen as it passes through. An image is produced, enlarged and focused onto an imaging device such as fluorescent screen, photographic film or registered on a CCD camera sensor. Typically, only the transmitted beams are utilized to form the diffraction contrast image.

![TEM Diagram](image)

Figure 2. 7: Graphic of the fundamental electron components of a TEM (Almeida, 2010)

ii. Scanning electron microscopy (SEM)

Scanning electron microscopy (SEM) utilizes a focused beam of high-energy electrons to generate an assortment of signals at the surface of solid specimens. These signals provide evidence about the external morphology (texture), chemical configuration and crystalline structure of the sample (signals that derive from the electron-sample interactions). Notably, SEM images have a three-dimensional exterior which is highly useful for the examination of the surface structure of a sample (De Gree, 2015).

Elemental Cu-doped Co₃O₄ thin film for highly sensitive non-enzymatic glucose detection
According to Khursheed (2011), the focal apparatuses of a scanning electron microscope are an electron column, scanning system, detector, display, vacuum system and electronic control. Generally, the electron column of the microscope comprises an electron gun with two or more electromagnetic lenses functioning in vacuum. This electron gun then produces free electrons and causes an acceleration of these electrons to energies in the range of 1-40 keV. The objective of the electron lenses is to generate a minor, fixated electron probe on the specimen.

For an image to be produced, the electron ray is fixated into a fine probe which is scanned through the surface of the specimen by the aid of scanning coils. Every point of the specimen will emit a signal in the configuration of electromagnetic radiation if it is struck by the accelerated electrons. Thereafter, designated portions of this radiation are composed by a detector and the resultant signal is amplified and exhibited on a screen i.e. SEM image.

Figure 2. 8: Graphic of the basic electron optical components of a SEM (Khursheed, 2011)

2.7.3. Energy dispersive spectroscopy (EDS)

A custom method for identifying elements within a sample in a SEM or TEM is by means of energy dispersive spectroscopy (EDS) analysis. According to Almeida (2010) & Ellmer et al., (2001), the emission of a photoelectron is caused by the interaction with the innermost electron shell of an

Elemental Cu-doped Co$_3$O$_4$ thin film for highly sensitive non-enzymatic glucose detection
atom by the high energy electron beam. Subsequently, an electron from the outer orbiting shell moves into the core level vacancy and emits energy in the form of an X-ray photon.

Ellmer et al., (2001) further mentions that the energy of the X-rays rising from the differential energy amid the shells is representative of the atomic number, hence can be utilized to determine the elemental composition of a specific sample. Notably, the relationship between the atomic number and energy for a given X-ray is provided by Moseley’s Law:

$$\sqrt{E} = C_1(Z - C_2)$$

Equation 2.4

Whereby E is the emission line energy for a given X-ray series i.e. Kα, Kβ, Lα, Mα, and Z represent the atomic number and C1 and C2 are constants.

2.7.4. Electron energy loss spectroscopy (EELS)

Electron energy loss spectroscopy is the examination of the vibrational motion of atoms and molecules on and adjacent to the surface by means of analysing the energy spectrum of low-energy electrons scattered from it (Ibach and Mills, 1982).

Electron energy loss spectroscopy (EELS) is a practice that analyses the energy lost by the rapid incoming electrons when they move through a sample. Notably, diffraction effects in TEM are due to the interaction of the fast electrons with the nucleus; however, EELS diffraction effects are due to the electro-electron interaction. The latter interaction occurs due to the electron beam and the electrons in the sample (Hofer et al., 2016). Hence, the EELS study provides information about the electronic structure of the desired sample. Subsequently, the imaging provides an image of the specimen with electrons that have lost energy characteristics for a certain atom. This provides a cartographic image of the partition of this atom in the sample i.e. chemical mapping (Riviere, 1990).

Generally, an electron beam in a TEM is inelastically scattered whenever there are interactions with atomic electrons in the specimen. The electron beam then loses energy and is bent through a minor angle, usually 5-100 milli-radians. The energy dissemination of all the inelastically disseminated electrons specifies evidence regarding the native area of the atomic electrons, which narrates the physical and chemical properties of the specimen (Hofer et al., 2016). This highlights the basis of EELS.

A distinctive electron energy-loss spectrum can be observed in figure 2.9. The initial peak generally transpires at 0 eV and is known as the zero-loss peak. This peak illustrates the electrons which have not been scattered in the specimen i.e. transmitted electrons, and the electrons which have been elastically scattered by means of the interaction with the atomic nuclei.
Figure 2.9: Typical electron energy-loss spectrum (Hofer et al., 2016)

The low-loss/valence region of the spectrum i.e. < 50 eV, specifies evidence about the band structure and the dielectric properties of the material e.g. band gap, surface plasmon. Notably, the signal intensities in the low-loss area are superior to the high-loss area of the spectrum.

In the high energy loss region i.e. > 50 eV, the quantity of inelastically scattered electrons is minor and the spectrum depicts ionisation edges owing to the shape i.e. a prompt upsurge trailed by a gradual decline. Notably, the edges are formed when the inner-shell electron absorbs sufficient energy from an electron beam to be excited to a state above the Fermi level. Generally, not all ionisation edges are saw-tooth in shape as can be noted in figure 2.9, but rather display complex edge shapes such as the L_{2,3}-edge.

The L_{2,3}-edge comprises piercing excitations at the beginning of the ionisation edge known as white-lines which represent elements in the initial row of transition and rare earth elements. Generally, the ionization edges are utilized in analysing chemical elements as the edge onset provides ionisation energy and allows for a qualitative investigation as for thin samples; the edge intensities are proportional to the concentration of the conforming elements.

2.7.5. Hall Effect measurement

The Hall Effect measurement is one which depicts the behaviour of the free carriers in a semi-conductor when applying an electric and magnetic field. It is a vital tool for material characterisation and can be perceived when the arrangement of a magnetic field through a sample and current along the extent of the sample generates an electrical current that is perpendicular to the magnetic field and current (Green, 2017). This then produces an oblique voltage that is perpendicular to the magnetic field and current as can be noted in figure 2.10. The fundamental principle is Lorentz force which is the force on a point charge owing to electromagnetic fields.

* * *

(Elemental Cu-doped Co_3O_4 thin film for highly sensitive non-enzymatic glucose detection)
Green (2017) further notes that the Hall Effect measurement can be utilized to regulate some material parameters such as Hall voltage, carrier mobility, bulk carrier concentration, Hall co-efficient, resistivity, magneto resistance and the conductivity type (n or p). However, for this research, the conductivity, bulk carrier concentration and conductivity type will be reported on.

i. **N-type and p-type semi-conductors**

Generally, the conductivity of a material can be increased by adding certain impurities to the specific material. Once this is completed, the semi-conductor is known as a doped semiconductor. According to Armen (2007), there are two classifications of impurities that are utilized which are donor and acceptor impurities. A semiconductor that is doped with a donor impurity is known as an n-type semiconductor and one that is doped with an acceptor impurity is termed a p-type semiconductor (Bobrow, 1996).

- **N-type semiconductor**

The n-type semiconductor is formed by the addition of a donor impurity, such as arsenic or antimony, etc., to an inherent semiconductor. Generally, all donor atoms have five valence electrons, and when a donor atom substitutes an atom in the crystal lattice, four valence electrons are communed with the adjacent atoms. The fifth valence electron converts to a free electron (Bobrow, 1996).

Notably, the quantity of free electrons contributed by the donor atoms is greater than the quantity of free electrons and holes in the inherent semiconductor. Due to this, the conductivity of the n-type semiconductor is greater than the conductivity of the inherent semiconductor. Hence, due to the quantity of free electrons being greater than the quantity of holes, the free electrons are the mainstream carriers. The semiconductor is classified as n-type because the bulk of carriers have a negative charge (Bobrow, 1996).
It is vital to note that the donor atom will remain electrical neutral if the fifth valence electron does not convert to a free electron in the lattice. As, if the fifth valence electron becomes a free electron, the quantity of protons in the atom will be larger than the quantity of electrons and the donor atoms converts to a bound positively charged ion (Bobrow, 1996).

- P-type semiconductor

The p-type semiconductor is created by the addition of an acceptor impurity such as boron or gallium to an intrinsic semiconductor. Generally, each acceptor atom has three valence electrons, so when the acceptor atom substitutes an atom in the crystal lattice, there will only be three valence electrons bordering the adjacent atoms. This then causes a hole in the lattice. Hence, the quantity of holes produced by the acceptor atoms is greater than the quantity of free electrons and holes in the intrinsic semiconductors (Bobrow, 1996).

Due to the quantity of holes being larger than the number of electrons, the holes are the majority carriers. The semiconductor is classified as n-type because the majority of the carriers have a positive charge (Bobrow, 1996).

It is vital to note that the acceptor atom will remain electrical neutral if the hole produced by the absence of its fourth valence electron is not filled by an electron from an adjacent atom in the lattice. Hence, once an electron fills the hole, the quantity of electrons is greater than the number of protons, and the acceptor atom becomes a bound negatively charged ion (Bobrow, 1996).

2.8. Sensor characteristics

In this section, various static and dynamic characteristics of sensors are introduced. Their significance is highlighted, followed by their influence on the operation of the sensor.

2.8.1. Calibration curve

Notably, a sensing system has to be standardised in relation to a known measurand for the purpose of assuring that the sensing outcomes in accurate results. The relationship amid the measured variables and the signal variables as a resultant of the system is known as the calibration curve (Kalantar-Zadeh, 2013). An example of a calibration curve can be noted in figure below.
2.8.2. Sensitivity

The sensitivity of a sensor is the incremental alteration in the sensor’s output to the incremental alteration of the measured input (Kalantar-Zadeh, 2013). Notably, the sensitivity represents the slope of the transfer function i.e. slope of the calibration curve. In this case, the sensitivity of the biosensor for this research dissertation is the slope of the graph of current density (uA cm$^{-2}$) against glucose concentration (mM).

From figure 2.11, it can be noted that the sensitivity can be changed subject to the calibration curve. The sensitivity of the lower values is larger than the sensitivity of the higher values. Generally, an ideal sensor has a great and continual sensitivity in the particular operating (linear) range. Also, the ideal sensor ultimately reaches saturation i.e. a state by which the sensor no longer responds to any changes.

2.8.3. Linearity

Linearity can be described as the proximity of the calibration curve to a specific straight line for the sensor (Kalantar-Zadeh, 2013). Its degree of similarity to a straight line depicts how undeviating the system is. Linearity can be used for indication of the measurement range (section 2.7.4).

2.8.4. Measurement range

The maximum and minimum quantities of the analyte (glucose) that can be measured with a sensor is called the linear concentration range in the case of this research dissertation. Linear/measurement range is also known as the dynamic range or span. Generally, all sensors are designed to execute the desired function over a specific range. Signals outside the specific range are incoherent results and could cause inaccuracies and damage to the sensor (Kalantar-Zadeh, 2013).

Figure 2.11: Case of a y-x calibration curve
2.8.5. Limit of detection (LOD)

With respect to sensors, the minimum signal growth that can be obtained from the system, when all interfering influences are taken into consideration, is known as the limit of detection (LOD) (Kalantar-Zadeh, 2013).

2.8.6. Response time

In general, when a sensor is subjected to a measurand i.e. analyte, the duration it takes to reach a stable value is known as the response time. This is articulated as the time by which the output reaches a convinced percentage (95%) of its ultimate value, in response of a step alteration of the input (Kalantar-Zadeh, 2013).

2.8.7. Selectivity

Generally, selectivity is defined as the sensor’s aptitude to quantify an objective measurand. i.e. analyte, in the presence of other interference species (Kalantar-Zadeh, 2013). In the case of this research, glucose is the target measurand and the interference species it will be tested against are sucrose, fructose, uric acid, ascorbic acid, acetaminophen, sodium chloride and potassium chloride. If the glucose biosensor does not depict any response to the interference species, it is considered a highly selective biosensor.

2.8.8. Repeatability and shelf life

A repeatability analysis for a sensor is required to determine the intra-electrode reproducibility of the sensor. Generally, when all the operating and environmental circumstances are continual, repeatability is defined as the sensor’s aptitude to bring about the same response for succeeding measurements. Precision is vital when conducting a repeatability analysis. Both long (shelf life) and short term repeatability approximates are vital for a sensing system (Kalantar-Zadeh, 2013).

2.8.9. Reproducibility

A reproducibility analysis is utilized for the inter-electrode characterisation. Reproducibility is the sensor’s capacity to exhibit similar responses after measurement conditions have been altered.

2.8.10. Stability

The chemical stability of a sensor is vital for biosensor characterisation. Stability is a sensor’s ability to produce a similar output value when measuring the same measurand over a number of cycles.
2.8.11. Noise

Noise is defined as unsolicited fluctuation in the output signal of the biosensor when the measurand is not changing. The mean value of the signal per the standard deviation of the noise strength is generally used in sensing applications as a good benchmark (Kalantar-Zadeh, 2013).

See below, for signal to noise ratio (S/N) (Kalantar-Zadeh, 2013):

\[
\frac{S}{N} = \frac{\text{Mean value of signal}}{\text{Standard deviation of noise}}
\]

Equation 2.5

Generally, noise is caused by external or internal sources. External noises include electromagnetic signals such as those brought about from mechanical vibrations, transmission circuits and ambient temperature changes which could result in a systematic error. Internal noises are those originating from electronic noises, i.e. thermal energy causes resulting in variations in current and voltage, and shot noises, i.e. random fluctuations instigated by the carriers’ (electrons, photons etc.) random arrival time. Generation-recombination noises (g-r noises) produced from the generation of electrons in semiconductors is an example of internal noises as well (Kalantar-Zadeh, 2013).

2.9. Conclusion

This chapter presented a review of the literature associated with glucose sensors and nanotechnology i.e. glucose oxidase and non-enzymatic glucose sensors.

It was found that nanostructured metal oxide materials are more suitable for non-enzymatic glucose sensors as they have good electrocatalytic properties, large surface areas and fast electron transfer. With respect to nanostructured metal oxides, among the different oxides reported, the Co$_3$O$_4$ biosensor portrayed the optimum glucose sensing performance with a lower detection limit due to the material having a large surface area to allow for additional reactive sites. As previously mentioned, in the case of this research Co$_3$O$_4$ will be utilized in the construction of the glucose sensor, together with a dopant material i.e. Cu to further escalate the electrochemical performance. This was reported to result in an increase in the charge transferability to allow for enhanced glucose detection in the non-enzymatic glucose sensor.

The method of fabrication for the biosensor was also discussed. This included spin coating and calcination. The technical aspects of the electrochemical cell to be used in this research were also discussed followed by detailed explanations of the techniques utilized for characterizing the biosensor.

Elemental Cu-doped Co$_3$O$_4$ thin film for highly sensitive non-enzymatic glucose detection
This chapter comprises:

Section 3.1: Introduction

Section 3.2: Materials and consumables

Section 3.3: Substrate preparation

Section 3.4: Fabrication of the biosensor

Section 3.5: Surface characterisation

Section 3.6: Electrochemical measurements

Section 3.7: Detection of glucose in human serum

Section 3.8: Detection of glucose in human saliva

Section 3.9: Reliability and validity of results

Section 3.10: Data analysis and presentation of results

Section 3.11: Health and safety precautions

Section 3.12: Conclusion
Chapter 3: Research Methodology

3.1. Introduction

This chapter includes detailed research methodology for the development of a novel non-enzymatic glucose sensor utilizing a Cu-doped Co₃O₄ solution material as the electrocatalyst. It comprises descriptions of the test procedures as well as sensor characterisation for the biosensor analysis.

3.2. Materials and consumables

The experiments conducted for the development of the non-enzymatic glucose biosensor comprised the usage of a variety of chemicals and consumables for the objectives to be achieved without any further purification.

Cobalt (II) chloride hexahydrate (CoCl₂.6H₂O), sodium oleate (C₁₈H₃₄NaO₂), de-ionized water (H₂O), hexane (C₆H₁₄), ethanol (C₂H₅OH), toluene (C₇H₈), cupric chloride (CuCl₂.2H₂O), ethanol (C₂H₅OH), sodium hydroxide pellets (NaOH), D (+) glucose (C₆H₁₂O₆), D (+)- sucrose, D (-) fructose (C₆H₁₂O₆), sodium chloride (NaCl), potassium chloride (KCl), acetaminophen (C₇H₆NO₂), uric acid (C₄H₈N₄O₃), ascorbic acid (C₆H₈O₆), human serum albumin and fluorine doped tin oxide (FTO) glass (properties noted in table 3.1) were obtained from Sigma Aldrich, South Africa. Human saliva samples were collected from an anonymous individual following a specific ethical protocol.

Table 3.1: FTO glass properties

<table>
<thead>
<tr>
<th>Description</th>
<th>Haze: 5 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Composition</td>
<td>SnO₂/F</td>
</tr>
<tr>
<td>Surface resistivity</td>
<td>Ω·7 Ω/sq</td>
</tr>
<tr>
<td>L×B×D</td>
<td>300 mm×300 mm×2 mm</td>
</tr>
<tr>
<td>Transmittance</td>
<td>80-82 % (Visible)</td>
</tr>
</tbody>
</table>

3.3. Substrate preparation

Fluorine-doped tin oxide (FTO) glass was the substrate used in making the non-enzymatic glucose sensor. Rectangular pieces of FTO glass were cut, using a diamond glass cutter, in accordance to the measurement of ±4 cm length and ≥1.2 cm breadth.

The pre-cut FTO glass was then cleaned for the removal of adsorbed particles by being positioned in a 100 ml beaker with the addition of Mucosal universal detergent. This was placed in the ultrasonic bath for 10 min. The FTO glass was then taken out of the beaker and rinsed with deionized water.

* * *

Elemental Cu-doped Co₃O₄ thin film for highly sensitive non-enzymatic glucose detection
For further cleansing, the procedure above was repeated using ethanol (10 min) and thereafter Mucasol universal detergent (10 min) once again. For drying, the clean FTO glass slides were blown with air and then placed in a petri dish and covered with aluminium foil, to prevent contaminants from being in contact with it. The FTO glass in the petri-dish was left in the oven at 60 °C for overnight drying. The conductive sides of the FTO glass were obtained by utilizing a multimeter. A schematic for the substrate preparation for developing the biosensor can be observed in figure 3.1.

![Figure 3.1: Schematic diagram of the cleaning process of FTO glass](image)

3.4. Fabrication of the thin film Co₃O₄:Cu layers on the FTO glass electrodes

The following is a schematic illustration of the deposition of the Co₃O₄: Cu thin film on the FTO glass to develop the biosensor. Theoretical details are explained in section 3.4.1 and 3.4.2.

![Figure 3.2: Schematic diagram of the electrode fabrication of Co₃O₄: Cu thin film on the FTO glass](image)

Elemental Cu-doped Co₃O₄ thin film for highly sensitive non-enzymatic glucose detection
3.4.1. Synthesis of Co$_3$O$_4$

The synthesis of Co$_3$O$_4$ was conducted in adaption to the work published by Wang et al., (2016).

In order to synthesize the olate complex, 40 mmol cobalt (II) chloride hexahydrate (CoCl$_2$·6H$_2$O) and 120 mmol sodium olate (C$_{18}$H$_{34}$NaO$_2$) were prepared. This was dispersed in a mixture of 80 ml ethanol (C$_2$H$_5$OH), 60 ml deionized water (H$_2$O) and 140 ml hexane (C$_6$H$_{14}$). The solution was then placed into a round bottom flask and heated under reflux at 70 °C for 4 hours. This ensured that the reaction between sodium olate (C$_{18}$H$_{34}$NaO$_2$) and cobalt (II) chloride hexahydrate (CoCl$_2$·6H$_2$O) produced the olate complex.

\[
\text{Metal chloride} + \text{Na – olate} \rightarrow \text{Metal – olate complex} + \text{NaCl}
\]

Equation 3.1

After the refluxing period was complete, the upper organic layer containing cobalt olate complex was washed 3 times in 30 ml distilled water in a separatory funnel. The cobalt olate complex was then poured in a petri dish and left to dry in an oven at 60 °C overnight. The residue, the bottom layer from refluxing, was discarded appropriately.

The olate complex solution was prepared in a vial, together with the addition of toluene (C$_7$H$_8$) in accordance with the ratio of 0.09 g: 0.5 ml. The resultant solution was then placed in an ultrasonic bath for 40 minutes. The copper dopant solution was prepared by dispersing cupric chloride (CuCl$_2$·2H$_2$O) with ethanol (C$_2$H$_5$OH) in the ratio of 0.53 g: 1 ml. This mixture was then stirred using a spatula continuously until properly dispersed.

3.4.2. Spin coating and calcination

A surface area of 1cm2 was prepared and made noticeable with tape on the cleaned FTO glass. The cleaned FTO glass was then placed towards the centre of the spin coater. The furnace was preheated to 350 °C.

The spin coating technique was utilized for the purpose of obtaining a thin film of the desired material on the substrate. Generally, the substrate together with the material is positioned inside the spin coater on the air hole. When the vacuum pump is switched for the purpose of holding the substrate at the centre, the substrate rotates at a high speed causing the centripetal force and the surface tension of the solution to pull the liquid coating into an even covering. During this time, the solvent evaporates for the purpose of leaving the desired material on the substrate in an even covering. The spin coater utilized for experiments can be seen in figure 3.3.

Elemental Cu-doped Co$_3$O$_4$ thin film for highly sensitive non-enzymatic glucose detection
In order for the objective of the study to be achieved, three categories of tests regarding spin coating and calcination had to be achieved. Firstly, for preparation of the pristine Co$_3$O$_4$ electrode, 50 µL of the Co$_3$O$_4$ solution was spin coated on clean FTO glass. This was conducted within the surface area of 1cm2. Four layers of the solution were coated on the clean FTO glass. The electrodes were spin coated for 60 s at 4000 rpm. During the spin coating of each of the four layers, the electrode was placed in the furnace for 10 min at 350 °C before the next layer was coated. After the fourth layer, the electrodes were dried in the furnace at 350 °C for 4 hours.

Table 3. 2: Volume ratios required to make the precursor solution for the fabrication of the biosensor

<table>
<thead>
<tr>
<th>Electrode composition</th>
<th>Co$_3$O$_4$ (µL)</th>
<th>Cu (µL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>98: 2</td>
<td>49</td>
<td>1</td>
</tr>
<tr>
<td>90: 10</td>
<td>45</td>
<td>5</td>
</tr>
<tr>
<td>85: 15</td>
<td>42.5</td>
<td>7.5</td>
</tr>
<tr>
<td>80: 20</td>
<td>40</td>
<td>10</td>
</tr>
</tbody>
</table>

Elemental Cu-doped Co$_3$O$_4$ thin film for highly sensitive non-enzymatic glucose detection
Secondly, for the Co₃O₄:Cu electrode, 50 uL of a Co₃O₄:Cu at different ratios (see table 3.2) were spin coated on cleaned FTO glass to determine the optimal biosensor based on concentration of the material of fabrication. Thereafter, once the optimum concentration of the precursor solution was established (results from the second analysis), a layer study was conducted for the purpose of determining the optimum number of layers required to construct the sensor to achieve the optimal electrochemical activity. Once the optimum concentration Co₃O₄: Cu solution was prepared, 50 uL was spin coated on a cleaned FTO glass. All categories of analysis were spin coated within the same duration, speed and surface area of 1 cm², and calcined in the same manner as the first analysis.

3.5. Surface characterisation

X-ray diffraction (XRD) was utilized for the purpose of identifying the cobalt oleate and copper phase present in the as prepared electrode. The XRD patterns were recorded utilizing a PANalytical X’Pert PRO PW3040/60 diffractometer with Fe filtered Cu-Kα (λ=0.154 nm) monochromated radiation source. Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) was conducted utilizing a Zeiss Auriga field-emissions SEM, operated at 5 kV for imaging and 20 kV for EDS analysis. High resolution transmission electron microscopy (HR-TEM), selected area electron diffraction (SAED) and electron energy loss spectroscopy (EELS) data of the samples were collected using an FEI Tecnai F20 field emission gun TEM operated at 200 kV, equipped with a Gatan GIF-2001 energy filter. EELS was utilized to study the electron energy loss near edge fine structure (ELNEFS) signals of cobalt and oxygen ionisation edges. Each spectrum was collected in normal parallel beam, bright-field TEM mode for 5 seconds. Atomic force microscopy was also used to analyse the surface roughness of the Co₃O₄ thin film electrode. The SEM top and side views and profilometry measurements were obtained for the Co₃O₄:Cu and pristine electrode for comparison. TEM micrographs and SAED patterns were used for analysis. HAADF images of the electrode were obtained with an area selected for EDS mapping. EELS analysis was conducted by a plot of normalized intensity against energy loss.

3.6. Electrochemical measurements

All the electrochemical measurements were measured utilizing an Autolab PGSTAT302N Potentiostat. Autolab software Nova 1.1 and 2 were utilized for the electrochemical tests.

A three electrode cell system was set up for the purpose of measuring both current and potential. The reference electrode utilized was Ag/AgCl (3 M), the counter electrode was a graphite rod and the working electrode was the sensor fabricated. The electrolyte utilized was 0.1 M NaOH solution for the cell set-up to be complete. The electrolytic cell was placed on top of a magnetic stirrer. Figures 3.4 and 3.5 depict the apparatus utilized for the electrochemical measurements.

Elemental Cu-doped Co₃O₄ thin film for highly sensitive non-enzymatic glucose detection
Figure 3.4: The three-electrode cell (a) Electrolytic cell (EC), the reference (RE), counter (CE) and working (WE) electrode (b) zoomed view of the three-electrode cell (insets: (i) RE (ii) the as prepared film on FTO setup (iii) CE electrode)

Reference Electrode
Ag/AgCl (3 M) electrode

Counter Electrode
Graphite rod

Working Electrode
Biosensor

Figure 3.5: Reference, counter and working electrode utilized for the 3-electrode cell

Elemental Cu-doped Co₃O₄ thin film for highly sensitive non-enzymatic glucose detection
3.6.1. Electrochemical detection of glucose

Cyclic voltammetry (CV) was utilized for determining the electrochemical detection of glucose. Cyclic voltammetry was used to determine the peak oxidation current of the pristine CoO electrode, the optimum concentration Co$_3$O$_2$:Cu electrode and the optimum number of layers of the Co$_3$O$_2$:Cu electrode (CV was conducted for each electrode fabricated).

50 ml of 0.1 M NaOH was correctly measured and added into the electrolytic cell. The number of cycles was set to 2 to ensure an oxidation and reduction curve was obtained. A set potential between 0.2 V and +0.8 V vs. Ag/AgCl was used for the cyclic voltammetry set up-up in order to obtain oxidation and reduction. The scan rate for the electrochemical measurements was adjusted accordingly. In a blank solution of 0.1 M NaOH the scan rates tested were 25 mV/s, 30 mV/s, 50 mV/s, 100 mV/s and 200 mV/s.

Once the above data were captured, the addition of 1 ml to 5 ml of a prepared 51 mM glucose solution was added into the electrolytic cell. After every successive addition of glucose, the magnetic stirrer was switched on for the purpose of ensuring that the glucose was properly dispersed into the electrolytic solution. The magnetic stirrer was then switched off to prevent interferences when the CV was performed. The scan rate of the electrochemical detection of glucose was 25 mV/s and did not vary unless stated otherwise.

3.6.2. Chronoamperometric detection of glucose

45 ml of 0.1 M NaOH was correctly measured and added into the electrolytic cell. The chronoamperometry tests were conducted at applied potentials of +0.6 V, +0.65 V, +0.7 V, +0.75 V and +0.8 V vs. Ag/AgCl. (These potentials were taken from the CV data where the optimum electrode displayed a peak oxidation current of 0.65 V.)

In order to evaluate the chronoamperometric response of the Co$_3$O$_2$:Cu electrode, a successive addition of 1 ml of 1.67 µM glucose solution at intervals of 30 s were added into the electrolytic cell. Before the addition of glucose, the system needed to be stabilized. Hence, the glucose addition was added at 200 s. The electrolytic solution together with the successive addition of glucose was stirred continuously for the duration of the chronoamperometry measurements.

3.6.3. Interference study

45 ml of 0.1 M NaOH was correctly measured and added into the electrolytic cell. The interference study was conducted at the optimum potential (+0.65 V) obtained from the chronoamperometric tests i.e. the potential as a result of which the chronoamperometry results exhibited a high sensitivity, low LOD and broad linear range.

Elemental Cu-doped Co$_3$O$_2$ thin film for highly sensitive non-enzymatic glucose detection
In order to conduct the interference study, a successive addition of a variety of chemicals were added into the electrolytic cell at intervals of 30 s as follows: 0.51 mM glucose, 0.05 mM sucrose, 0.05 mM fructose, 0.05 mM acetic acid, 0.05 mM acetaminophen, 54 mM sodium chloride, 64 mM potassium chloride, 0.05 mM uric acid and then 0.51 mM glucose, once again, was added accordingly.

Before the addition of the first solution, the system needed to be stabilized i.e. constant. Hence, the addition occurred at 200 s. The electrolytic solution together with the successive addition of solutions was stirred continuously for the duration of the interference study.

3.6.4. Reproducibility study

The reproducibility of the glucose sensor is vital for the accurate measurement of analyte concentrations. Four individual electrodes were prepared accordingly and tested with 1 mM – 5 mM glucose at 25 mV/s. Cyclic voltammetry tests were conducted for each electrode following the procedure in sub section 3.6.1.

3.6.5. Stability study

A stability test was conducted to determine the number of times the glucose sensor could be used without losing its catalytic activity. Cyclic voltammetry was performed for 100 cycles at a scan rate of 25 mV/s.

3.6.6. Repeatability study

Repeatability tests were conducted to ensure that the same sensor could be utilized multiple times without large deviations in glucose detection. Before each measurement, the sensor was washed with distilled water and dried under air flow to be tested in a fresh 1 mM glucose solution immediately. Cyclic voltammetry tests were conducted for each electrode following the procedure in section 3.6.1.

3.6.7. Electrochemical impedance spectroscopy (EIS) and Hall Effect Measurements

A 5 mM K₄Fe(CN)₆·3H₂O solution was prepared. 50 ml was added into the electrolytic cell. The Autolab PGSTAT302N potentiostat and cell were switched on. The bias potential was set at 0.25 V by applying an AC voltage with 5 mV amplitude in the frequency range from 0.1 Hz to 100 kHz. This was plotted in the form of plane diagrams i.e. Nyquist plots and Bode plots. A Randalls circuit was used to fit the data accordingly.

The Hall Effect Measurement for conductivity and bulk concentration was imported from the ECOPIA Hall Effect Measurement System software.

Elemental Cu-doped Co₃O₄ thin film for highly sensitive non-enzymatic glucose detection
3.6.8. Shelf life study

A shelf life test was conducted to determine the length of time for which the glucose sensor remains usable without losing its catalytic activity. Cyclic voltammetry tests were conducted with the addition of 1 mM glucose every week for a month.

3.7. Detection of glucose in human serum

Glucose in human serum was measured utilizing the chronoamperometric method of analysis as discussed in section 3.6.2; however, two successive additions of 1 ml human serum sample were added to the electrolytic cell. The human serum was then further prepared for analysis on the UV Spectrophotometer in order to determine the initial concentration of glucose.

1 ml of the sample was placed in individual plastic vials. 3 ml of dinitro salicylic acid (DNS) solution was then dispersed in the sample. The sample was then placed in a water bath for 15 min at 100 °C. From there, the sample was removed and left to cool for ≤ 5 min. A laboratory glucose test kit was utilized as a standard for determining the concentration of glucose in the human serum sample. The glucose content of prepared human serum sample was determined by the absorbance of 540 nm utilizing a Cintra 2020 UV Spectrophotometer.

A minor quantity of human serum was also tested utilizing the sensor from a commercial Glucose Meter for comparison purposes.

3.8. Detection of glucose in saliva

The following section explains the methodology followed for the detection of glucose in human saliva.

3.8.1. Saliva sampling protocol for test subject

One healthy volunteer in the age group of 20-30 years was utilized in this study following the ethical procedures of Cape Peninsula University of Technology, with his or her identity withheld. In order to obtain the sample of saliva required for testing, the following protocol was adopted:

The volunteer:

- Waited for 2 min after rinsing the mouth with water.
- Minimized swallowing and held saliva in mouth for 30 s.
- Placed dental sterilized cotton sponge in mouth and chewed it until soaked with saliva (≤ 1 min).
- Deposited the sponge into a syringe directly from the mouth without touching it to avoid contamination.

Elemental Cu-doped Co$_3$O$_4$ thin film for highly sensitive non-enzymatic glucose detection
• Inserted the plunger in the syringe and squeezed the saliva through the bottom of the syringe into clean vials.
• Preserved the sample tube at 4 °C in a refrigerator.

Three sample vials were collected from the same person \(\approx 10 \) ml.

3.8.2. Saliva sample preparation and analysis

Two types of saliva samples were tested i.e. a raw and a spiked saliva sample. Both samples were collected via the above procedure (sub section 3.8.1); however, 1 ml of a 51 mM glucose solution was added to the other i.e. the adjusted sample. Each sample was placed in the centrifuge at 10 000 g for 5 min for the purpose of removing particulate materials. The resultant supernatant was then transferred to new vials for further tests. Glucose in human saliva was measured utilizing the chronoamperometric method of analysis as explained in section 3.6; however instead of the addition of glucose, a successive addition of 1 ml of the saliva sample was added to the electrolytic cell.

The saliva samples were then analysed on the UV Spectrophotometer whereby 1 ml of each sample i.e. raw and adjusted, was placed in individual plastic vials, and 3 ml of dinitro salicylic acid (DNS) solution was dispersed in each saliva sample. The samples were then placed in a water bath for 15 min at 100 °C. From there, the samples were removed from the water bath and left to cool down for \(\leq 5 \) min. A laboratory glucose test kit was utilized as a standard for determining the concentration of glucose in the saliva samples. The glucose content of prepared saliva sample was determined by the absorbance of 540 nm utilizing a Cintra 2020 UV Spectrophotometer.

3.9. Reliability and validity of results

Since the outcome of this study highly depends on the quantitative data collected, to ensure reliability and validity of the results, it is assumed that the instruments utilized provided accurate results. Also, since no one glucose sensor will produce the same results, repeatability, reproducibility and stability studies will be completed; a standard deviation of less than 15 %, according to the ISO 15197: 2013 will be accepted where the results are close to the mean and are clinically accurate (Kim et al., 2019). A larger standard deviation than 15 % will mean that there is a large variance in the results and that it is a clinically irrelevant deviation.

3.10. Data analysis and presentation of results

A range of literature was utilized for the qualitative analysis of the fabrication material for the non-enzymatic glucose sensor construction. With respect to the quantitative analysis, the data for the electrochemical and chronoamperometric measurements were imported from the Autolab Nova 1.1 and 2 software.

Elemental Cu-doped Co₃O₄ thin film for highly sensitive non-enzymatic glucose detection

41
Cyclic voltammetry graphs of current density against potential were plotted in order to obtain the current peak and optimum biosensor. The amperometric responses of the biosensor to glucose were plots of current density against time, whereby the corresponding calibration curves were obtained by the current density against glucose concentration. This data provides characterisation of the sensor i.e. sensitivity, linear concentration range, potential, limit of detection and response time. For the selectivity study analysis, a chronoamperometric plot of current density against time was utilized to examine the current response escalation for inference species that can be found in the blood.

The intra- and inter-electrode reproducibility was displayed on a histogram and the standard deviation between the peak currents was calculated. The shelf life of the biosensor was analysed by utilizing the peak current obtained from the cyclic voltammetry plots over a period of four weeks. This data is represented by a histogram and percentage difference between initial and final current peak over the four week period.

3.11. Health and safety precautions

The Nanotechnology and Engineering laboratories, Cape Peninsula University of Technology (CPUT) facilities, were utilized for completion of this research project. The individual housekeeping rules of each of the laboratories were abided by accordingly. In order to be permitted to work in the laboratories, the Flow Process and Rheology Centre (FPRC) induction and safety test needed to be completed.

In order to promote health and safety during the course of this research project, the correct personal protective equipment (PPE) was worn at all times in the laboratory. Gloves, safety glasses, lab coats and safety footwear were worn when conducting experiments. This was done in order to protect the user against health and safety risks.

With respect to the chemicals and consumables utilized in this research project, material safety data sheets (MSDS) were read. Generally, working safely with chemicals requires the proper use of laboratory equipment, hence training and reading the work instructions and user manuals of equipment and apparatus were conducted.

3.12. Conclusion

This chapter has described the research and experimental methodology undertaken for completion of the study. The research design techniques, materials and consumables were outlined accurately. Experimental methodology for the preparation of the substrate and synthesis of the Co₃O₄ were explained. Preparation of the Co₃O₄ solution and Cu-doped material were clarified. The procedure followed for spin coating and calcination were explained thoroughly. The electrochemical measurement test procedures i.e. electrochemical and amperometric detection of glucose, interference, reproducibility,

* * *

Elemental Cu-doped Co₃O₄ thin film for highly sensitive non-enzymatic glucose detection
stability, repeatability, electrochemical impedance spectroscopy and shelf life study were explained in detail. Surface characterisation methodology was clarified. The techniques utilized for the detection of glucose in human serum and saliva was described. The reliability, validation of data, data analysis and presentation of data was explicated. Thereafter, ethical compliance measures and health and safety precautions were briefly touched upon with respect to this study. The analysis of these tests is depicted and discussed in Chapter 4.
This chapter comprises:

Section 4.1: Introduction

Section 4.2: Surface characterisation

Section 4.3: Electrocatalytic oxidation of glucose

Section 4.4: Electrochemical Impedance Spectroscopy

Section 4.5: Chronoamperometric detection of glucose

Section 4.6: Human serum and salivary glucose analysis

Section 4.7: Selectivity study of the Cu-doped Co$_3$O$_4$ biosensor

Section 4.8: Reproducibility analysis

Section 4.9: Repeatability and stability analysis

Section 4.10: Conclusion

Elemental Cu-doped Co$_3$O$_4$ thin film for highly sensitive non-enzymatic glucose detection
Chapter 4: Results and discussion

4.1. Introduction

The aim of this study was to develop a non-enzymatic glucose sensor that achieves an enhanced detection of glucose utilizing a Cu-doped Co$_3$O$_4$ electrode. In this chapter, the results obtained from Chapter 3 were analysed and placed into context.

4.2. Surface characterisation

The morphology and structure of the solution deposited film was evaluated utilizing high resolution SEM and TEM. Figure 4.1 a–c represents the SEM micrograph of the pristine electrode and figure 4.1 d–f represents the SEM micrograph of the deposited film. It can be perceived from figure 4.1 a–c that the deposited film on the pristine electrode is uniformly dispersed on the FTO, with no cracks or holes are observed on the film. In figure 4.1 d–f, it is observed that the deposited film of the Cu-doped electrode has a rough surface. The roughness of the surface can provide increased surface area for electrochemical catalytic oxidation of glucose (Chowdhury et al., 2016). The average film thickness on the Cu-doped electrode is 1697 nm and for the pristine electrode, the average film thickness is 357 nm, as seen in figure 4.2. This suggests successful incorporation of Cu into the Co$_3$O$_4$ host lattice.

Figure 4. 1: SEM top and side views of (a-c) Pristine Co$_3$O$_4$ sample (d-f) Co$_3$O$_4$: Cu sample

Elemental Cu-doped Co$_3$O$_4$ thin film for highly sensitive non-enzymatic glucose detection
Figure 4. 2: Average film thickness of the Co$_3$O$_4$: Cu and pristine Co$_3$O$_4$ electrode

Figure 4.3 d & e depicts the TEM images of the Cu doped Co$_3$O$_4$ biosensor film. A uniform distribution of Cu was found in *figure 4.3* from the elemental X-ray mapping.

Figure 4. 3: (a) HAADF image of the Co$_3$O$_4$: Cu with the area selected for EDS mapping indicated by the square, (b) resultant STEM spectral image from the highlighted area in (a), (c)–(e) extracted Co, O and Cu maps, respectively

Elemental Cu-doped Co$_3$O$_4$ thin film for highly sensitive non-enzymatic glucose detection
Figure 4.4 a–c represents the TEM micrographs and SAED patterns of the pristine electrode. The first four diffraction rings (figure 4.3 c) is identified as that from the face centred cubic (fcc) Co$_3$O$_4$ crystal structure yielding d(111)=0.474 nm, d(220)=0.291 nm, d(311)=0.249 nm and d(400)=0.205 nm respectively. From these values an average lattice constant of a=0.822 ± 0.003 nm was determined. Correspondingly, the Cu-doped electrode sample exhibited the fcc crystal structure of Co$_3$O$_4$ but with a slight increase in the respective d-spacing to d(111)=0.475 nm, d(220)=0.293 nm, d(311)=0.250 nm and d(400)=0.206 nm (figure 4.4 f). Due to this, there is a small expansion of the average lattice constant compared to the pristine Co$_3$O$_4$ sample, a=0.826 ± 0.003 nm.

Figure 4.4: TEM micrographs and SAED pattern of (a-c) Pristine Co$_3$O$_4$ (d-f) Co$_3$O$_4$: Cu samples

It can be observed from the XRD pattern that the film contains the Co$_3$O$_4$ structure regardless of the Cu doping. The slight increase in the lattice constant can further be explained by the XRD patterns in figure 4.5. It can be observed that the Co$_3$O$_4$ crystalline matrix experiences a slight shift to higher Bragg angles upon doping with Cu. This phenomenon causes a strain in the Co$_3$O$_4$ matrix due to the successful addition of elemental Cu ions into the Co$_3$O$_4$ lattice. Hence, the addition of the Cu$^{2+}$ ions into the Co$_3$O$_4$ causes a slight expansion in the unit cell of Co$_3$O$_4$ as observed in the XRD. Also, the presence of (111), (220), (311) and (400) peaks complements the observation from the TEM and SAED analysis.
Figure 4.5: XRD pattern of the Co$_3$O$_4$: Cu and pristine Co$_3$O$_4$ film

*FTO

Figure 4.6 compares the energy loss near edge fine structure (ELNEFS) data of the Co L$_{3,2}$ ionization edge of the pristine (black curve) and Co$_3$O$_4$: Cu (red curve) samples. Both materials show two sharp peaks at 783 (L$_3$) and 798 eV (L$_2$), which correspond to the Co 2p$_{3/2}$ and Co 2p$_{1/2}$ spin–orbit peaks of the Co$_3$O$_4$ spinel (Wang et al., 2000), respectively. In addition, it can be seen that the characteristic Cu L$_{3,2}$ edge at 931 eV is absent in the Co$_3$O$_4$:Cu specimen, indicating that the Cu as identified in the X-ray maps of figure 4.3, do not exist in either oxide or metallic form in the hybrid material. Rather, at closer inspection of the L$_3$/L$_2$ of the Co L$_{3,2}$, widely considered a fingerprint method for determining the Co valence state (Wang et al., 2000; Hagelin-Weaver et al., 2004; Abu Zied et al., 2015 & Barrec et al., 2010), a clearer understanding of the effect of the incorporation of the Cu in the Co$_3$O$_4$ matrix is developed. From figure 4.6 an L$_3$/L$_2$ ratio of 2.49 and 3.89 is determined for the pristine Co$_3$O$_4$ and Co$_3$O$_4$:Cu, respectively. The ratio of 2.49 is typical for cobalt oxides exhibiting cobalt ions, and exists in two oxidation states: one-third of the Co atoms being Co$^{2+}$ in a tetrahedral coordination to oxygen, and two thirds Co$^{3+}$ in an octahedral oxygen environment (Wang et al., 2000; Hagelin-Weaver et al., 2004). The increase in the L$_3$/L$_2$ ratio for the Cu modified Co$_3$O$_4$ proves that a change in the 1/3Co$^{2+}$ + 2/3Co$^{3+}$ coordination occurred upon incorporation of the Cu ions in the Co$_3$O$_4$ matrix. The value of 3.89 is typical of pure Co$^{2+}$ and in some instances Co$^{3+}$ valence states (Abu-Zied et al., 2015; Barrec et al., 2010). However, considering the expansion in lattice parameter measured from the SAED results of figure 4.4 and the distribution of the Cu elements in the X-ray maps of figure 4.3, the

Elemental Cu-doped Co$_3$O$_4$ thin film for highly sensitive non-enzymatic glucose detection
increase in L₂/L₃ ratio, and subsequent change in valence state of the Co oxide, is attributed to doping by the Cu atoms.

![Graph showing energy loss spectroscopy results comparing Co L₃ edge to Cu L₃ edge.]

Figure 4.6: Electron energy loss spectroscopy results comparing the Co L₃ ionization edge of the pristine Co₃O₄ sample to that of the Cu incorporated Co₃O₄ material

4.3. Electrocatalytic oxidation of glucose

Cyclic voltammetry (CV) was utilized to evaluate the performance of the Co₃O₄:Cu electrode for electrocatalytic oxidation of glucose in a low concentration alkaline solution of 0.1 M NaOH. The electrodes were evaluated in the potential range between -0.2 V to 0.8 V vs. Ag/AgCl.

Various amounts of Cu concentrations into the Co₃O₄ host lattice were introduced for electrochemical characterisations. This was conducted to find the optimum level of Cu doping for enhanced electrochemical activity. The figure below depicts the CV outcomes for the Co₃O₄:Cu composition ratios tests, i.e. 98: 2 wt %, 90: 10 wt %, 85: 15 wt % and 80: 20 wt % in the absence and presence of 1-5mM glucose at 25 mV/s.

Elemental Cu-doped Co₃O₄ thin film for highly sensitive non-enzymatic glucose detection
Figure 4.7: Comparison of the varying ratios of the Co$_3$O$_4$:Cu electrodes in the (a) absence of glucose and presence of (b) 1 mM (c) 2 mM (d) 3 mM (e) 4 mM and (f) 5 mM glucose in a 0.1 M NaOH solution at 25 mV/s

On comparison of the various CVs, as portrayed above, the results substantiate that the 90:10 wt % Co$_3$O$_4$:Cu provides the highest electrochemical activity (current density response) with respect to glucose detection. This is due to the significant anodic current increase/anodic peak for the 90:10 wt % Co$_3$O$_4$:Cu biosensor with the reduction peaks diminished. This highlights that a biosensor fabricated with 90:10 wt % Co$_3$O$_4$:Cu would be more effective in terms of detecting glucose than the other Co$_3$O$_4$:Cu compositions analysed. In order to further optimize the biosensor, an analysis of the electrode film thickness was conducted.

* * *

Elemental Cu-doped Co$_3$O$_4$ thin film for highly sensitive non-enzymatic glucose detection
The electrode film thickness (N=1 to 6) also has a substantial effect on the electrochemical performance as can be seen in figure 4.8.a-f. Displayed below are the CV comparisons for the Co$_3$O$_4$;Cu layer study i.e. 1-6 layers of 90:10 wt % Co$_3$O$_4$; Cu in the absence and presence of 1-5 mM glucose at 25 mV/s.

![figure 4.8: A comparison the various layers of the Co$_3$O$_4$; Cu biosensor in the presence of (a) 1 mM (b) 2 mM (c) 3 mM (d) 4 mM (e) 5 mM glucose in 0.1 M NaOH solution at 25 mV/s](image)

It can be noted that the four-layered electrode exhibited the highest electrochemical performance as the anodic current was significantly higher in contrast to the other layers studied with the successive addition of glucose. The Co$_3$O$_4$;Cu electrode (N=4) also showed enhanced electrochemical activity when compared to the pristine Co$_3$O$_4$ electrode respectively. This can be observed in figure 4.9.

Elemental Cu-doped Co$_3$O$_4$ thin film for highly sensitive non-enzymatic glucose detection
Figure 4.9: Cyclic voltammetry comparison of the optimum Co$_3$O$_4$:Cu electrode with the pristine electrode in the (a) absence of glucose and presence of (b) 1 mM (c) 2 mM (d) 3 mM (e) 4 mM (f) 5 mM glucose at 25 mV/s in 0.1M NaOH solution.

It is clear that the Co$_3$O$_4$:Cu electrode exhibits enhanced electrochemical activity compared to its pristine counterpart in the absence and presence of 1-5 mM glucose. This proves that the electrochemical activity of the Co$_3$O$_4$ electrode is influenced by the presence of Cu doping in the Co$_3$O$_4$ lattice host. The FTO alone does not show any glucose oxidation behaviour, hence it can be postulated that a synergistic effect is present between the Cu and Co$_3$O$_4$. Also, the Co$_3$O$_4$ electrode exhibited a current density around 2.85 mA/cm2 with 5 mM glucose, whereby the Cu doped electrode exhibited a higher current density around 3.78 mA/cm2 with 5 mM glucose, at a 25 mV/s scan rate at a potential of 0.65 V vs. Ag/AgCl. The process showed a percentage enhancement of the catalytic oxidation current around 0.65 V of the Cu-doped electrode was 33% higher than the Co$_3$O$_4$ electrode.
Figure 4.10 depicts the CVs of the pristine and Cu-doped Co$_3$O$_4$ ($N=4$) electrode at various scan rates (25 - 200 mV/s). It can be observed from the figures that there is an increase in both the anodic and cathodic oxidation current peaks, as the scan rate increases from 25 - 200 mV/s. A linear correlation exists between the peaks and the scan rate as can be seen from figure insets. This provides indication of a fast electrochemical process and that the process is a diffusion-based, surface-controlled electrochemical reaction (Kung et al., 2011).

![Graph](image1)

![Graph](image2)

Figure 4.10: Effect of scan rate on the electrochemical behaviour of the (a) Cu-doped Co$_3$O$_4$ thin film electrode (inset: relationship between scan rate and peak current) and the (b) pristine Co$_3$O$_4$ electrode (inset: relationship between scan rate and peak current)

![Graph](image3)

Figure 4.11: Co$_3$O$_4$-Cu electrode in the presence and absence of 1 mM glucose in 0.1 M NaOH solution

Elemental Cu-doped Co$_3$O$_4$ thin film for highly sensitive non-enzymatic glucose detection
Two pairs of clear redox peaks were found in alkaline solution due to the electrochemical redox reaction between Co$_3$O$_4$ and OH$^-$ ions. The first pair of redox peaks appeared in the relative low potential zone between +0.1 V to +0.3 V vs. Ag/AgCl, and can be ascribed to the reversible transition between Co$_3$O$_4$ and CoOOH and the other redox peak can be assigned to the conversion of CoOOH to Co$_3$O$_4$ (equation 4.1).

\[
Co_3O_4 + OH^- + H_2O \leftrightarrow 3CoOOH + e^-
\]

Equation 4. 1

\[
CoOOH + OH^- \leftrightarrow 3CoO_2 + +H_2O + e^-
\]

Equation 4. 2

\[
2CoO_2 + glucose \rightarrow CoOOH + C_6H_{10}O_6
\]

Equation 4. 3

After the injection of 1 mM glucose in *figure 4.11*, the anodic peak shifted in a positive direction between +0.55 V to +0.65 V vs. Ag/AgCl and the current density underwent an apparent increase. This indicates that the Co$_3$O$_4$:Cu modified thin film electrode can be used for the electrochemical detection of glucose. This mechanism can be explained using equation 4.3, such that the electrochemical oxidation reaction from glucose to gluconolactone is catalysed by the Co$_3$O$_4$:Cu coating. Notably, with the CoO$_2$ consumption and the CoOOH production, the extent of reaction (equation 4.2) favours the forward reaction, thus resulting in an enhanced oxidation peak upon the addition of glucose.

With the addition of Cu to the Co$_3$O$_4$, there is an escalation of the number of reactive sites for redox reaction and biological electrical signal transmission. As Cu is doped onto Co$_3$O$_4$, the specific electroactive surface area is increased. Hence, more reactive sites are provided where the redox reaction occurs. Thus the Cu doped electrode has more reactive sites than the pristine Co$_3$O$_4$ electrode, proving that the synergistic effect results in an improved electrochemical performance when detecting glucose.

4.4. Electrochemical impedance spectroscopy (EIS) and the Hall Effect Measurement

The interfacial properties of the pristine Co$_3$O$_4$ and the modified Co$_3$O$_4$:Cu electrodes were studied by electron impedance spectroscopy (EIS). *Figure 4.12* depicts the Nyquist plots of the pristine Co$_3$O$_4$ and the Co$_3$O$_4$:Cu electrode and their equivalent circuits (inset i and ii) in 5 mM K$_4$Fe(CN)$_6$.3H$_2$O solution.

Elemental Cu-doped Co$_3$O$_4$ thin film for highly sensitive non-enzymatic glucose detection
Figure 4. 12: (a) Nyquist plot (inset: Resultant Randall’s circuit for (i) Co$_3$O$_4$: Cu and (ii) Pristine Co$_3$O$_4$ electrode) (b) Bode impedance plots (c) Bode phase plots of the pristine and Cu-doped electrode film

The Nyquist diagrams show that the pristine Co$_3$O$_4$ electrode has a roughly semicircle/curve-shaped Nyquist plot with a large diameter which in turn suggests the hindrance to the electron transfer kinetics at the electrode (Chen et al., 1996). However, for the Cu-doped electrode, a smaller semi-circle/curve was observed, which indicates higher electron transfer kinetics. These semi-circles are a result of the charge transfer resistance (R$_{ct}$) at the electrode interface, which provides an indication of the electron transfer kinetics. It can be noted that the R$_{ct}$ value decreased substantially for the Cu-doped electrode as to the pristine electrode. For the Co$_3$O$_4$: Cu electrode the R$_{ct}$ = 1.09 uΩ and for the pristine Co$_3$O$_4$ R$_{ct}$ = 292 Ω, as can be seen in figure 4.12. This is attributed to the catalytically active Cu-doped material on the electrode surface. Notably, the double layered capacitance is directly related to surface area, and the surface area in turn increases with the surface roughness. The Cu-doped electrode exhibited a double layer capacitance of 56.5 µF whereby the pristine Co$_3$O$_4$ electrode exhibited 1.5 mF.

The conducting nature of the pristine Co$_3$O$_4$ and Co$_3$O$_4$: Cu electrode facilitates the peak shifting in the Bode plots (Chowdhury et al., 2016). The Bode impedance plot, shown in figure 4.12 b, of the Co$_3$O$_4$: Cu electrode compared to the pristine Co$_3$O$_4$ showed a lower log (z) value in the frequency range of 0.1 Hz to 10 000 Hz. The comparison for the log (z) of the pristine and Cu-doped electrode distinctively shows that the charge transfer resistance decreases significantly with the presence of Cu, highlighting good electrochemical activity. In figure 4.12 c, the Bode-phase plot of the electrodes were

Elemental Cu-doped Co$_3$O$_4$ thin film for highly sensitive non-enzymatic glucose detection
collected in the frequency range of 0.1 Hz to 10 000 Hz. The Bode-phase plot of the Co$_3$O$_4$: Cu electrode compared to the pristine Co$_3$O$_4$ showed a lower log (-Θ) in the frequency range of 100 Hz to 10 000 Hz. It can be seen that around 2.5-3.5 Hz, the phase angle for the Cu-doped electrode is lower than that of the pristine electrode. It is also evident that the doping of the Cu particles in the Co$_3$O$_4$ allows for greater electrochemical and catalytic reactions, and improves the efficiency of the composite electrode. This result confirms that the Co$_3$O$_4$: Cu electrode has a higher charge transfer rate and electroactive surface area, leading to a high conductance as compared to the pristine electrode. This proves that the introduction of Cu as a dopant material in the Co$_3$O$_4$ lattices has increased the material’s charge transfer ability, thus resulting in an enhanced electrochemical activity.

The interfacial properties of the different layers of the Co$_3$O$_4$: Cu electrodes were also studied by electrochemical impedance spectroscopy (EIS). This was conducted in order to confirm the electrochemical CV results for the electrode that depicted an enhanced electrochemical performance in the detection of glucose. The EIS data for each of the varied film thickness electrodes ($N=1$ to 6) has a substantial effect on the interfacial properties of the electrode.

![Graphs](image)

Figure 4. 13: Comparison of the (a) Nyquist plots (b) Bode impedance plots (c) Bode phase plots of the various layers of Co$_3$O$_4$: Cu film electrodes

Elemental Cu-doped Co$_3$O$_4$ thin film for highly sensitive non-enzymatic glucose detection
Figure 4.13a depicts the Nyquist plots of the Co$_3$O$_4$: Cu electrode (N=1 to 6) in 5 mM K$_4$Fe(CN)$_6$·3H$_2$O solution. It can be noted from figure 4.13a that a depressed semi-circular curve and linear pattern exists at high and low frequencies respectively. The semi-circular curve and linear part at high and low frequency can be attributed to the charge transfer resistance (R_{ct}) at the electrode interface which provides an indication of the electron transfer kinetics. It can be noted that the R_{ct} value obtained is 1.09 μΩ (N=4) respectively. The Bode impedance plot, shown in figure 4.13b, of the various layered Co$_3$O$_4$: Cu electrodes showed that the four layered Co$_3$O$_4$: Cu electrode resulted in a lower log (z) value in the frequency range of 0.1 Hz to 10 000 Hz. The comparison for the log (z) of the various layers of Cu-doped electrodes distinctively depicts that the charge transfer resistance decreases significantly with the presence of four layers of the Cu dopant material, highlighting better electrochemical activity than the rest of the other layered electrodes. This result also proves that the four layered Cu-doped electrode is the optimum biosensor.

The Bode-phase plot of the electrodes was collected in the frequency range of 0.1 Hz to 10 000 Hz. The Bode-phase plot of the five layered Co$_3$O$_4$: Cu electrode proved to be the lowest log (-Θ) in the frequency range of 100 Hz to 10 000 Hz. The four layered Co$_3$O$_4$: Cu electrode evidenced a slightly higher log (-Θ) in the frequency range of 100 Hz to 10 000 Hz, which can be considered negligible. Hence, the four layered Co$_3$O$_4$: Cu electrode produced a more enhanced electrochemical performance (CV), a lower log (z) value in the frequency range of 0.1 Hz to 10 000 Hz, small R_{ct}=1.09 μΩ value and low log (-Θ) in the frequency range of 100 Hz to 10 000 Hz. Its useability as the optimal Co$_3$O$_4$: Cu biosensor is therefore justified.

Hall Effect measurements were also conducted for the pristine and Cu-doped electrodes for the purpose of measuring the conductivity and bulk concentration of the sample electrodes. The pristine Co$_3$O$_4$ sample was not very conductive, hence the input current was very low i.e. 0.2 uA. The Cu-doped sample on the other hand displayed a greater conductivity thus the input current could be given as 25-150 uA. The conductivity and bulk concentration increased significantly with the addition of the Cu to the material. This translates to the fact that the addition of a dopant improves the electrochemical performance of the sensor. And since the bulk concentrations are both negative, it can be noted that both the materials are n-type semiconductors i.e. electrons are the majority carriers. The Hall Effect measurements can be seen in table 4.1.

Elemental Cu-doped Co$_3$O$_4$ thin film for highly sensitive non-enzymatic glucose detection
Table 4.1: Hall Effect Measurement results

<table>
<thead>
<tr>
<th>Current [μA]</th>
<th>Electrode Co₃O₄: Cu</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>Bulk concentration: -2.44×10^{19}/cm³</td>
<td>Conductivity: 7.99×10^5/Ω cm</td>
</tr>
<tr>
<td>50</td>
<td>Bulk concentration: -2.67×10^{19}/cm³</td>
<td>Conductivity: 8.00×10^5/Ω cm</td>
</tr>
<tr>
<td>70</td>
<td>Bulk concentration: -3.43×10^{19}/cm³</td>
<td>Conductivity: 7.99×10^5/Ω cm</td>
</tr>
<tr>
<td>100</td>
<td>Bulk concentration: -2.94×10^{19}/cm³</td>
<td>Conductivity: 7.99×10^5/Ω cm</td>
</tr>
<tr>
<td>150</td>
<td>Bulk concentration: -3.25×10^{19}/cm³</td>
<td>Conductivity: 8.03×10^5/Ω cm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Current [μA]</th>
<th>Electrode Co₃O₄</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>Bulk concentration: -1.69×10^{18}/cm³</td>
<td>Conductivity: 3.72×10^{-2}/Ω cm</td>
</tr>
</tbody>
</table>

4.5. Chronoamperometric detection of glucose

It is depicted in figure 4.11 that the oxidation peak current increases with an increase in the glucose concentration. The oxidation peak current was observed at a potential around + 0.65 V vs. Ag/AgCl. Hence, the chronoamperometry method, at a potential range of +0.6 V to +0.8 V vs. Ag/AgCl, was utilized to evaluate the response of the Co₃O₄: Cu electrode to the successive addition of glucose at intervals of 30 s in 0.1 M NaOH solution. The potential range was selected to confirm the results from the CV analysis. The electrolytic solution was stirred continuously for the duration of the chronoamperometry measurements. The +0.65 V vs. Ag/AgCl potential exhibited the optimum performance in terms of sensitivity (figure 4.14) as compared to the other potentials tested (table 4.2).
The sensor displayed a good glucose sensing performance as a classical step style increase in current density with a response time of \(\leq 10 \) s, the time taken for the system to react to the addition of glucose and to reach steady state current.

The optimum response curve at 0.65 V of the Co$_3$O$_4$:Cu electrode is shown in figure 4.14. Two distinctive linear ranges were observed from the response curve. The initial linear range is from 18.3 µM up to 1.44 mM (\(R^2=0.99 \)) and the second is from 2.1 mM up to 7.6 mM (\(R^2=0.94 \)). The sensor exhibited a sensitivity of 1333 µA/cm2·mM and 141 µA/cm2·mM for the linear ranges of 18.3 µM up to 1.44 mM and 2.1 mM up to 7.6 mM respectively. The limit of detection (LOD) was calculated utilizing the following equation:

\[
LOD = \frac{3\sigma}{m}
\]

Equation 4.4

\(\sigma \) is the standard deviation of the sample linear range obtained after the addition of the glucose; \(m \) is the slope of the calibration curve. The extrapolated LOD was calculated to be 0.153 µM (S/N=3).

Elemental Cu-doped Co$_3$O$_4$ thin film for highly sensitive non-enzymatic glucose detection
A comparison (figure 4.15) of the chronoamperometric responses of the pristine \(\text{Co}_3\text{O}_4\) and the optimum \(\text{Co}_3\text{O}_4\):Cu biosensor was completed (table 4.2).

![Graph](image)

Figure 4.15: Comparison of the amperometric response to glucose of the (a) \(\text{Co}_3\text{O}_4\):Cu biosensor and (b) pristine \(\text{Co}_3\text{O}_4\) electrode in 0.1 M NaOH solution

Table 4.2: Sensitivity, linear range, LOD and response time results for the \(\text{Co}_3\text{O}_4\):Cu and pristine \(\text{Co}_3\text{O}_4\) at various potentials

<table>
<thead>
<tr>
<th>Potential (V vs Ag/AgCl)</th>
<th>Sensitivity (µA/mm cm²)</th>
<th>Concentration range (µM)</th>
<th>LOD (µM)</th>
<th>Response time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.60</td>
<td>1850.4</td>
<td>18.3 µM – 1.44 mM</td>
<td>0.210</td>
<td>≤ 20</td>
</tr>
<tr>
<td></td>
<td>76.1</td>
<td>2.1 mM – 7.56 mM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.65</td>
<td>1333</td>
<td>18.3 µM – 1.44 mM</td>
<td>0.153</td>
<td>≤ 10</td>
</tr>
<tr>
<td></td>
<td>141</td>
<td>2.1 mM – 7.56 mM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.70</td>
<td>1215.3</td>
<td>18.3 µM – 1.44 mM</td>
<td>0.134</td>
<td>≤ 20</td>
</tr>
<tr>
<td></td>
<td>181.6</td>
<td>2.1 mM – 7.56 mM</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Elemental Cu-doped \(\text{Co}_3\text{O}_4\) thin film for highly sensitive non-enzymatic glucose detection
The amperometric responses were conducted at a potential range of +0.6 V to +0.8 V, and were utilized to evaluate the response of the pristine \(\text{Co}_3\text{O}_4 \) electrode to the successive addition of glucose at intervals of 30 s in 0.1 M NaOH solution. These results compared to the \(\text{Co}_3\text{O}_4 \): Cu biosensor resulted in two linear ranges with a lower sensitivity and a negligible higher LOD for all potential range of +0.6 V to +0.8 V vs. Ag/AgCl tests. The pristine \(\text{Co}_3\text{O}_4 \) electrode at +0.65 V exhibited a sensitivity of 488 \(\mu \text{A/cm}^2 \text{mM} \) and 105 \(\mu \text{A/cm}^2 \text{mM} \) for the linear ranges of 18.3 \(\mu \text{M} \) up to 1.44 mM and 2.1 mM up to 7.6 mM, with a LOD of 0.155 \(\mu \text{M} \) (S/N=3) respectively. Hence, it can be resolved that the \(\text{Co}_3\text{O}_4 \):Cu biosensor exhibits improved chronoamperometric response to glucose than the pristine \(\text{Co}_3\text{O}_4 \) electrode.

Even though the response time of the as-developed biosensor is not the lowest as compared to previously reported cobalt based non-enzymatic electrodes, the ease of fabrication and scalability of production ensures the sensor will be a potential candidate for commercial application. A comparison of the non-enzymatic glucose sensors utilizing \(\text{Co}_3\text{O}_4 \) is summarized in table 4.3.

Table 4. 3: Contrast of non-enzymatic glucose sensors presented with respect to type, sensitivity, response time, LOD and linear range

<table>
<thead>
<tr>
<th>Biosensor</th>
<th>Sensitivity ((\mu \text{A/cm}^2 \text{mM}))</th>
<th>Response time (s)</th>
<th>LOD ((\mu \text{M}))</th>
<th>Linear range</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{Co}_3\text{O}_4) nano-fibers</td>
<td>36.25</td>
<td>(\leq 7)</td>
<td>0.97 (\mu \text{M})</td>
<td>---</td>
<td>(Ding et al., 2010)</td>
</tr>
<tr>
<td>(\text{Co}_3\text{O}_4 / \text{PbO}_2)</td>
<td>460</td>
<td>(\leq 2)</td>
<td>0.31 (\mu \text{M})</td>
<td>5 (\mu \text{M}-1.2 \text{ mM})</td>
<td>(Chen et al., 2013)</td>
</tr>
<tr>
<td>(\text{Co}_3\text{O}_4\text{Ni(OH)}_2)</td>
<td>1.089</td>
<td>(\leq 5)</td>
<td>1.08 (\mu \text{M})</td>
<td>5 (\mu \text{M}-40 \mu \text{M})</td>
<td>(Rahman et al., 2013)</td>
</tr>
<tr>
<td></td>
<td>Co₃O₄</td>
<td>2008.82</td>
<td>1620</td>
<td>1.089</td>
<td>1333/141</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
<td>---------</td>
<td>------</td>
<td>-------</td>
<td>----------</td>
</tr>
<tr>
<td>Sn:</td>
<td>Co₃O₄</td>
<td>921/265</td>
<td>≤ 4</td>
<td>193</td>
<td>≤ 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zn: Co₃O₄</td>
<td>1603</td>
<td>≤ 7</td>
<td>2 µM</td>
<td>0.34 µM</td>
</tr>
<tr>
<td></td>
<td>Co₃O₄: TiO₂</td>
<td>193</td>
<td>≤ 5</td>
<td>5.5 mM</td>
<td>3 mM</td>
</tr>
<tr>
<td></td>
<td>Cu₂O-Cu</td>
<td>1620</td>
<td>---</td>
<td>49 µM</td>
<td>0-6 mM</td>
</tr>
<tr>
<td></td>
<td>Co₃O₄-Ni(OH)₂</td>
<td>1.089</td>
<td>≤ 5</td>
<td>1.08 µM</td>
<td>5-40 µM</td>
</tr>
<tr>
<td></td>
<td>Cu: Co₃O₄</td>
<td>1333/141</td>
<td>≤ 10</td>
<td>0.153 µM</td>
<td>18.3 µM-1.44 mM & 2.1 mM-7.6 mM</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The Co₃O₄:Cu biosensor has a greater improved sensitivity than Chowdhury et al. (2017), Ding et al. (2010) and Zhenfei et al. (2015) reported, and wider linear range than previous studied reported. The sensor also has a lower LOD as compared to the findings of Chowdhury et al. (2017), Zhenfei et al. (2015) and Ding et al. (2010).

4.6. Human serum and salivary glucose analysis

The developed sensor was also applied to detect glucose in human serum samples. Figure 4.16 exhibits the chrono amperometric response of the proposed sensor after successive addition of 1mL serum (6.26 mM glucose concentration) in 46 mL of electrolyte solution.
Clear increase in current response was observed after addition of human serum. The concentration of glucose in serum was measured by UV-vis spectrophotometry. The good agreement (*table 4.4*) between our proposed sensor and UV-vis spectrophotometry technique highlights the potential application of the non-enzymatic glucose sensor.

Table 4.4: Human serum results

<table>
<thead>
<tr>
<th>UV-Vis Spectrophotometry (mM)</th>
<th>As-developed sensor Test 1 (mM)</th>
<th>As-developed sensor Test 2 (mM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Result</td>
<td>6.26</td>
<td>6.60</td>
</tr>
</tbody>
</table>

In order to develop a non-invasive route for glucose detection, the sensor was used to detect glucose in spiked human saliva as a proof of concept. The saliva samples were spiked with different amounts of known glucose concentration for electrochemical analysis. *Table 4.5* shows that the obtained recovery was in the range of 92 – 97%. This highlights the sensor’s potential application in glucose detection of real samples.
the Co ions and phenolic groups, hence the electrocatalytic oxidation of the uric acid and ascorbic acid also have a negative charge due to the loss of protons in the presence of hydroxyl ions and phenolic groups, hence the electrocatalytic oxidation of the uric acid and ascorbic acid at the Co₃O₄: Cu electrode surface is decreased by the charge repelling effect.

Table 4. 5: Detection of glucose in saliva sample (n=3)

<table>
<thead>
<tr>
<th>Spiked (mM)</th>
<th>Measured by as-developed sensor (mM)</th>
<th>% Recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.311</td>
<td>0.32</td>
<td>102</td>
</tr>
<tr>
<td>0.615</td>
<td>0.58</td>
<td>94.3</td>
</tr>
<tr>
<td>1.678</td>
<td>1.55</td>
<td>92.39</td>
</tr>
</tbody>
</table>

4.7. Selectivity study for the Co₃O₄: Cu biosensor

An interference study was conducted to evaluate the selectivity of the sensor in glucose detection as the human blood contains other key species i.e. ascorbic acid, acetaminophen, uric acid, fructose, sucrose, sodium chloride and potassium chloride.

The interference study was conducted using a 0.51 mM glucose, 0.05 mM fructose, 0.05 mM sucrose, 0.05 mM ascorbic acid, 0.05 mM acetaminophen, 0.05 mM uric acid, 54 mM sodium chloride and 64 mM potassium chloride solutions respectively, at an applied potential of +0.65 V. It can be seen from figure 4.17 that the sensors’ response to that of glucose if significantly higher than the addition of the other interference species. The slight current responses from the addition of fructose, sucrose, acetic acid, acetaminophen, uric acid, sodium chloride and potassium chloride can be neglected if compared to the current response obtained from the addition of glucose.

The sensor also maintained an excellent response when glucose was added successively after the addition of the interference species. This proves that the developed sensor can be used for reliable measurement of glucose in physiological samples. The good selectivity of the Co₃O₄: Cu towards glucose and against fructose, sucrose, acetic acid, acetaminophen, uric acid, sodium chloride and potassium chloride at +0.65 V vs. Ag/AgCl can be attributed to the repelling effect at the Co₃O₄: Cu surface (Ying et al., 2010).

Co₃O₄ has an isoelectric point ~8 and when in 0.1 M NaOH, it is negatively charged. The uric acid and ascorbic acid also have a negative charge due to the loss of protons in the presence of hydroxyl ions and phenolic groups, hence the electrocatalytic oxidation of the uric acid and ascorbic acid at the Co₃O₄: Cu electrode surface is decreased by the charge repelling effect.

The results obtained from the interference study confirm that the developed method for electrode fabrication is suitable for making biosensors for the detection of glucose.

Elemental Cu-doped Co₃O₄ thin film for highly sensitive non-enzymatic glucose detection
4.8. Reproducibility analysis of the Co$_3$O$_4$: Cu biosensor

The reproducibility of glucose sensors is vital for the accurate measurement of analyte concentrations. Four individual electrodes were prepared accordingly and tested with 1 mM glucose at 25 mV/s. The results are depicted in figure 4.18.

The anodic oxidation current peak was then compared for inter electrode reproducibility. The percentage relative standard deviation (% R.S.D) was calculated to be 9 % for four sensors (1 mM glucose concentration). These results indicate good inter-electrode reproducibility for the method utilized to fabricate the electrodes for the application of glucose sensing as the % R.S.D reported by Chowdhury et al. (2016) is slightly higher.

Figure 4.18: Inter electrode reproducibility of the Co$_3$O$_4$: Cu electrode with the addition of 1 mM glucose solution

Elemental Cu-doped Co$_3$O$_4$ thin film for highly sensitive non-enzymatic glucose detection
4.9. Repeatability and stability analysis of the Co$_3$O$_4$: Cu biosensor

Repeatability tests are vital to ensure that the same biosensor can be utilized multiple times without large deviations in glucose detection. Before each measurement for analysis, the sensor was washed with distilled water and dried under air flow to be tested in a freshly new 1 mM glucose solution immediately. The results are depicted in figure 4.19.

The anodic oxidation current peak was then compared for intra electrode repeatability. The percentage relative standard deviation (% R.S.D) was calculated to be 10 % between five repeats of the same electrode with 1 mM glucose. These results indicate good intra-electrode repeatability for the method utilized to fabricate the electrodes for the application of glucose sensing in comparison to literature.

The chemical stability and repeatability of the Cu-doped sensor was also determined by cyclic voltammetry for 100 cycles in a 1 mM glucose solution at a scan rate of 25 mV/s as seen in figure 4.20. It can be noted that no new redox pairs were found even though the anodic current decreases slightly hence it can be concluded that the chemical stability and repeatability of the sensor is good.

![Graph showing intra electrode repeatability](image1)

Figure 4. 19: Intra electrode repeatability of the Co$_3$O$_4$: Cu electrode at 25 mV/s in 0.1 M NaOH with the addition of 1 mM glucose

![Graph showing cyclic voltammetry](image2)

Figure 4. 20: Chemical stability of the Co$_3$O$_4$: Cu electrode

Elemental Cu-doped Co$_3$O$_4$ thin film for highly sensitive non-enzymatic glucose detection
4.10. Conclusion

The Co$_2$O$_4$: Cu showed excellent electrocatalytic activity towards the oxidation of glucose in an alkaline medium. The electrode can be utilized to detect glucose in specific concentration ranges utilizing cyclic voltammetry and chronoamperometric techniques. The biosensor displayed an excellent sensing ability with a minimal LOD, appropriate response time, high sensitivity and acceptable shelf life and stability. The sensor also proved to be applicable to other species with minimal interference in the analytical sample. The ease of fabrication and economic feasibility for the fabrication of the biosensor substantiates the development of the next generation of non-enzymatic glucose sensors. It also withstands detection of glucose in human serum and saliva applications.

All data in this chapter was thoroughly interpreted to impart a precise conclusion which is provided in the next chapter.
This chapter comprises:

Section 5.1: Introduction

Section 5.2: Findings - Summary of results

Section 5.3: Research significance

Section 5.4: Research contributions

Section 5.5: Conclusion

Section 5.6: Recommendations/future research
Chapter 5: Findings, contributions, conclusion and recommendations

5.1. Introduction

This final chapter comprises a summary of the results obtained for the Cu-doped Co$_3$O$_4$ non-enzymatic glucose biosensor which was fabricated. The potential contributions of this study are discussed, and a final conclusion and recommendations for future research are formulated.

5.2. Findings: Summary of results

A facile solution-based process comprising spin coating and calcination was utilized for the fabrication of electrodes for bio-sensing applications. Cu-doped Co$_3$O$_4$ was utilized as a catalytic material to directly oxidise glucose without the presence of an enzyme. The presence of Cu in the Co$_3$O$_4$ host lattice enhanced the electrocatalytic activity of the electrode material as compared to its pristine counterpart.

Evaluation of the research proved that the film thickness and presence of Cu in the Co$_3$O$_4$ host enhanced the charge transferability of the Co$_3$O$_4$: Cu material compared to the pristine Co$_3$O$_4$ as confirmed by the EIS measurements. The modified glucose sensor exhibited two distinctive linear ranges (18.3 uM-1.44 mM and 2.1 mM-7.6 mM) at an applied potential of $+0.65$ V vs. Ag/AgCl in 0.1 M NaOH solution. The sensor demonstrated good repeatability (R.S.D of <10%), stability and reproducibility (R.S.D of <10%). The as-prepared sensor showed a sensitivity of 1333 uA/cm2 mM (lower concentration range) and 141 uA/cm2 mM (upper concentration range), with a lower detection limit of 0.153 uM (S/N=3). The response time was concluded to be <10 s and the sensor was very selective towards glucose in the presence of various interference species i.e. acetic acid, acetaminophen, uric acid, fructose, sucrose, sodium chloride and potassium chloride.

The study also confirmed that the biosensor can be utilized to detect glucose in both saliva and human serum. This study thus demonstrated that the non-enzymatic glucose sensor is a promising candidate for non-enzymatic glucose detection.

5.3. Research significance

The Cu-doped Co$_3$O$_4$ biosensor exhibited a high electrochemical performance in its use as a non-enzymatic glucose sensor which is applicable to the medical industry in detection of glucose levels with respect to diabetes.

5.4. Research contributions

This research was published in journal Sensing and Bio-Sensing Research, and is made available to the academic industry. The design, development and optimization of a Cu-doped Co$_3$O$_4$ biosensor

Elemental Cu-doped Co$_3$O$_4$ thin film for highly sensitive non-enzymatic glucose detection
that can be utilized for glucose detection in synthetic samples, human serum and saliva was accomplished. This research can be utilized in academic dissertations, conferences and further discussions.

This research project has contributed to the comprehensive reports in literature regarding the several drawbacks experienced in current glucose sensors. This involves specifically the pristine Co$_3$O$_4$ biosensors which suffer from a low electronic conductivity, which in turn results in a higher LOD, low sensitivity and low linear ranges, as detailed in the research project proposal. Therefore, this research proves that the application of a dopant material in Co$_3$O$_4$ enhanced its electronic and electrochemical properties. This work can be used for evaluation and further optimization with respect to nanotechnology and biosensor due to the potential of the biosensor.

5.5. Conclusion

The current study provides a feasible approach for the synthesis and development of the Cu-doped Co$_3$O$_4$ non-enzymatic glucose sensor.

The development and optimization of a non-enzymatic glucose sensor that can detect glucose in human saliva, human serum and synthetic samples has been provided to the academic industry. This sensor has excellent intra- and inter-electrode reproducibility and a long shelf life. It also provides a high sensitivity, low limit of detection and a broad linear range for glucose for detection, with an acceptable response time.

This study has extended and initiated a novel possibility for developing solution deposited nanostructured electrodes, utilizing copper and cobalt oxide, for sensing applications.

5.6. Recommendations/future research

The following are recommendations for future research:

- The commercialization of non-enzymatic glucose sensors for glucose detection in human blood requires further ethical analysis with actual clinical diabetic patients.
- Since the as-prepared sensor was tested for glucose in human saliva, further knowledge and research needs to be conducted on a large scale to determine the correlation of diabetic patient’s blood glucose concentrations and human saliva glucose concentrations. This will then result in the use of this biosensor to determine the glucose levels in diabetic patients.
- In order to conclude whether the as-prepared biosensor can be manufactured on a larger scale for commercial use, the material of construction and techniques should be conducted on SPE electrodes. These electrodes can be inserted directly into the current commercial glucose meters for glucose detection.

Elemental Cu-doped Co$_3$O$_4$ thin film for highly sensitive non-enzymatic glucose detection
A quantitative analysis can be conducted comparing Cu as a dopant, to other materials in Co$_3$O$_4$, as only a qualitative analysis was completed for this research. This could result in optimization of the sensor.
~ References ~

References

Elemental Cu-doped Co₃O₄ thin film for highly sensitive non-enzymatic glucose detection

Elemental Cu-doped Co3O4 thin film for highly sensitive non-enzymatic glucose detection

Elemental Cu-doped Co₃O₄ thin film for highly sensitive non-enzymatic glucose detection

Elemental Cu-doped Co3O4 thin film for highly sensitive non-enzymatic glucose detection

Appendix: Relevant Publication

Relevant publication: *Elemental Cu-doped Co$_3$O$_4$ thin film for highly sensitive non-enzymatic glucose detection*
Elemental Cu doped Co₃O₄ thin film for highly sensitive non-enzymatic glucose detection

Micaela Harry, Mahabubur Chowdhury, Franscious Cummings, Christopher J. Arendse

Keywords: Co₃O₄, Non-enzymatic sensor, Glucose sensor, Thin film

Abstract

We report on the non-enzymatic glucose sensing ability of elemental Cu doped Co₃O₄ thin film deposited on FTO in this study. A facile chemical solution method was used to substitute elemental Cu into the Co₃O₄ host lattice. The morphology of the electrode was characterized by XRD, SEM, HRTEM, SAED and EELS. The as-prepared thin film exhibited very high sensitivity of 1850 μAcm⁻²mM⁻¹ and linear range up to 7.6 mM. The sensor showed a limit of detection of 1.53 mM at a signal to noise ratio of 3. The developed sensor was used successfully to measure glucose level in human serum and spiked saliva samples.

1. Introduction

One of the major causes of death and disability in the world is diabetes mellitus. Currently there is no cure for diabetes mellitus and it is effectively controlled by regular monitoring of physiological blood glucose levels [1]. Traditional glucose sensors are enzymatic sensors; which utilizes glucose oxidase (GOx) on the electrode surface to oxidise glucose [2]. However challenges such as enzyme purification, intricate immobilization of enzyme and denaturing of enzyme limit the application of enzymatic sensors. Moreover, the need of redox shuttle to be present is the biggest barrier that hinders the sensitivity of this method [3–5]. Direct oxidation of glucose on the electrode surface in the absence of any enzyme (non-enzymatic sensor) is a current topic of interest, as it eliminates all the challenges associated with enzymatic sensors. Nanostructured metal oxides are more suitable for non-enzymatic glucose sensors as they possess good electrocatalytic properties, large surface areas and fast electron transfer [6]. In addition, nanostructured metal oxide materials can also counteract the drawbacks such as surface poisoning and reduction of the electrode [2]. High conductivity and catalytic activity are required for successful non-enzymatic glucose sensors. Various metal oxides such as NiO/H₂ [7], Co₃O₄ [8], CuO, ZnO, SnO [9] etc. have been the subject of various studies for non-enzymatic glucose sensing applications. Among these, Co₃O₄ is of particular consideration due to its electro-catalytic properties, chemical stability and availability [10]. However, Co₃O₄ has low conductivity which results in a glucose sensor with low sensitivity as reported previously in literature [8,11,12]. Recently we have shown that elemental doping is a rational and effective approach to increase the electronic conductivity of Co₃O₄ [13,14]. Recently, Cu loading on Co₃O₄ support has been shown to increase hydrogen evolution due to the cooperative synergistic effect between Cu and Co₃O₄ [15]. Mehrabadi and co-authors have shown that CuO/Co₃O₄ material showed enhanced gas sensing performance compared to pristine Co₃O₄ [16]. Thus, it is expected that the synergism from the combination of intrinsic and extrinsic Cu doping would be extremely interesting in glucose sensing applications and it is expected to achieve significantly improved performance when compared to pristine Co₃O₄.

Conventional electrode fabrication process for glucose sensing requires two step processing. Firstly, the catalysts are prepared in the form of nanoparticles and secondly it is immobilised on the electrode surface with a binder. The presence of additive material can produce contact resistance and obstruct reaction site as they are insulating and chemically inactive, which decreases the sensors performance [17–20]. Various advanced deposition techniques such as pulsed laser deposition (PLD), plasma sputtering, atomic layer deposition (ALD) have been used to fabricate metal oxide films. However, these techniques are capital investment intensive and requires frequent maintenance [21,22]. For the above-mentioned reasons, solution based process is a rational solution to the problem in the conventional systems.

In this study, we report on the facile solution processed deposition of Cu doped Co₃O₄ and its electrochemical glucose sensing ability. The as-prepared Cu doped Co₃O₄ electrode showed high sensitivity,
selectivity and stability.

2. Experimental procedure

2.1. Chemicals

MicrAssay detergent, ethanol (C₂H₅OH), fluorine doped tin oxide glass (FTO, 300 mm × 300 mm × 2 mm, surface resistivity ~7 Ω/sq), Cobalt (II) chloride hexahydrate (CoCl₂·6H₂O), sodium oleate (C₁₂H₂₂NaO₂), hexane (C₆H₁₄), Toluene (C₆H₅), cupric chloride (CuCl₂·2H₂O), glucose, fructose, sucrose, sodium chloride (NaCl), potassium chloride (KCl), acetaminophen (C₇H₈NO₂), uric acid (C₄H₂N₄O₃), ascorbic acid (C₆H₇O₆) and human serum were obtained from Sigma Aldrich South Africa and were used as it is without further purification.

2.2. Fabrication of the Cu doped Co₃O₄ electrode

2.2.1. Synthesis of copper doped Co₃O₄

The electrodes were fabricated in two steps. First, a cobalt oleate complex was synthesised by an ion exchange reaction between CoCl₂·6H₂O and sodium oleate. For a typical synthesis, 40 mmol cobalt chloride and 120 mmol sodium oleate were placed in a solution of 80 ml ethanol, 60 ml de-ionized water and 140 ml hexane. The solution was heated under reflux at 70°C for 1 h. After refluxing, the upper organic layer containing cobalt oleate complex was washed 3 times in 30 mL distilled water in a separatory funnel. The cobaltate complex was then placed in a petri dish and left to dry in the oven at 60°C overnight. The residue was discarded appropriately. To prepare the Cu doped Co₃O₄ electrode, 0.09 g of cobalt oleate was dispersed in 0.5 mL toluene via sonication. Solution of CuCl₂·2H₂O (in ethanol) was added to the cobalt oleate solution. The copper solution was added to the cobalt oleate solution at various volume percentages (98:2 V/V, 90:10 V/V, 85:15 V/V, and 80:20 V/V). This was done to vary the Cu concentration in the Co₃O₄ to find the optimum ratio of Cu: Co₃O₄ for enhanced electrochemical performance.

2.2.2. Electrode preparation

Rectangular pieces of FTO glasses were cut using a diamond glass cutter in accordance to the measurement of 4 cm length and 1.2 cm breadth. The cut FTO glasses were cleaned via sonication by detergent for 10 min and rinsed with distilled water and dried under air. 50 μL of the precursor solution was deposited on the FTO glass by spin coating at 4000 rpm for 60 s. The film was then calcined at 350°C for 10 min. The spin coating and calcination was repeated for N = 1 to 6 times as per the number of layers coated to evaluate the role of film thickness. The electrodes were calcined at 350°C for 4 h at the final layer required. The pristine Co₃O₄ electrode was made the same as above except the fabrication solution was only cobalt oleate solution (N = 1 to N = 5).

2.2.3. Electrochemical measurements

All the electrochemical measurements were conducted using an Autolab PGSTAT302N potentiostat with Nova 2.0 software. A three electrode cell, consisted of: Ag/AgCl (3 M) reference electrode, graphite rod as counter electrode and Cu/Co₃O₄ deposited FTO as working electrode was used for all electrochemical measurements. A quiescent 0.1 M NaOH solution was used as electrolyte for cyclic voltammetry and chronoamperometry measurements. Chronoamperometry was conducted under stirring and at an applied bias potential of +0.65 V vs Ag/AgCl (3 M).

2.3. Surface characterisation

X-ray diffraction (XRD) was used to identify the cobalt phase present in the as prepared electrode. The XRD patterns were recorded utilizing a PANalytical X'Pert PRO PW3040/60 diffractometer with Fe filtered Cu-Kα (λ = 0.154 nm) monochromatic radiation source.

Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) was conducted utilizing a Zeiss Auriga field-emission SEM, operated at 5 kV for imaging and 20 kV for EDS analysis. The EDS data was collected using an Oxford X-Max solid-state silicon drift detector, with an objective aperture of 60 μm and count rates between 60 and 120 s employed for high quality spectra. High resolution transmission electron microscopy (HR-TEM), selected area electron diffraction (SAED) and electron energy loss spectroscopy (EELS) data of the samples were collected using a FEI Tecnai F20 field emission gun TEM operated at 200 kV, equipped with a Gatan GIF-2001 energy filter. EELS was utilized to study the electron energy loss near edge fine structure (ELNES) signals of cobalt and oxygen ionization edges. Each spectrum was collected in normal parallel beam, bright-field TEM mode for 5 s. During TEM sample preparation, the sensing material was physically removed from the FTO substrates by scraping using a sharp edged razor blade in the presence of ethanol, thereby forming a concentrated solution; this was followed by ultra-sonication for 5 min. One drop of solution (~30 μl) was then drop casted onto a lacey carbon coated Ni grid (3 mm in diameter, 400 mesh) and completed by drying under a Xenon lamp for a further 5 min. Room temperature Hall effect measurements were conducted using an Ecopia Hall Effect Measurement System (HMS-3000 version 3.5) with 0.55 T magnetic field strength.

3. Results and discussion

3.1. Surface characterisation of the modified Co₃O₄ electrode

The morphology and structure of the solution deposited film was evaluated by high resolution SEM and TEM. Fig. 1a & b represent the SEM image of the pristine and Cu doped electrodes, respectively. It can be seen from Fig. 1a that the deposited film of pristine Co₃O₄ is uniformly dispersed on the FTO. No hole or crack is observed from the SEM image, highlighting the consistency of the film thickness through the entire geometrical area. However, Cu doped Co₃O₄ film shows bigger nucleation sites through the entire film (Fig. 1b). The increased surface roughness is beneficial for electrochemical activities due to increased surface area [8]. The average film thickness on the Cu doped electrode is 1697 nm (Fig. 1c) and for the pristine electrode, the average film thickness is 357 nm (data not shown). This suggests successful incorporation of Cu into Co₃O₄ host lattice. TEM images of the Cu doped Co₃O₄ are presented in Fig. 1 (d & e). A uniform distribution of Cu was found (Fig. 1f-h) from elemental X-ray mapping. Quantified EDS data (See supplementary data, Fig. S1) show that the Cu and C X-ray signals are more or less one-to-one; this explains the relative uniform density of the colour maps for the respective elements.

Fig. 2a & b represents the SAED patterns of the pristine and Cu doped Co₃O₄ electrode. The first four diffraction rings (Fig. 2a) are identified as that from the face centred cubic (fcc) Co₃O₄ crystal structure yielding d₁₁₁ = 0.474 nm, d₂₀₀ = 0.291 nm, d₃₁₁ = 0.249 nm and d₄₀₀ = 0.205 nm, respectively. From these values an average lattice constant of a = 0.822 ± 0.003 nm was determined. Correspondingly, the Cu doped Co₃O₄ (Fig. 2b) electrode sample also exhibited the fcc crystal structure of Co₃O₄ but with a slight increase in the respective d-spacing to d₁₁₁ = 0.475 nm, d₂₀₀ = 0.293 nm, d₃₁₁ = 0.250 nm and d₄₀₀ = 0.206 nm. Due to this, there is a small expansion of the average lattice constant compared to the pristine Co₃O₄ sample, a = 0.826 ± 0.003 nm. It can be observed from the XRD pattern (Fig. 2c) that the film contains the Co₃O₄ structure; regardless to the Cu doping. However, a slight increase in full-width-half-maxima can be observed for the Cu doped Co₃O₄ material. This phenomenon indicates strain in the Co₃O₄ matrix due to the successful addition of elemental Cu ions into the Co₃O₄ lattice. Also, the presence of (220), (311) and (400) peaks complements the observation from the TEM and SAED analysis. Fig. 3 compares the ELNES data of the Co₁.5₂ ionization edge of the pristine (black curve) and Cu:Co₃O₄ (red curve) samples. Both
materials show two sharp peaks at 783 (L₃) and 798 eV (L₂), which correspond to the Co 2p₁/₂ and Co 2p₃/₂ spin-orbit peaks of the Co₂O₄ spinel [23], respectively. In addition, it can be seen that the characteristic Cu L₃,₂ edge at 931 eV is absent in the Cu:Co₂O₄ specimen, indicating that the Cu as identified in the X-ray elemental maps of Fig. 1, do not exist in either oxide or metallic form in the hybrid material. Rather, at closer inspection of the L₃/L₂ of the Co L₃,₂ widely considered a fingerprint method for determining the Co valence state [23–26], a clearer understanding of the effect of the incorporation of the Cu in the Co₂O₄ matrix is developed. From Fig. 3 an L₃/L₂ ratio of 2.49 and 3.89 is determined for the pristine Co₂O₄ and Cu:Co₂O₄, respectively. The EELS spectra were normalised to the most intense ionization edge in order to compare the changes in the L₃/L₂ ratios in Fig. 3. To show this more clearly, two spectra have been added in the supplementary section (Fig. S2 and Fig. S3). In Fig. S2 it can be seen that the most intense (i.e. L₂) of the pure Co₂O₄ sample peaks at 783.4 eV with an electron count rate of 8051.48, whereas the L₂ edge peaks at 798 eV with a count of 3227.87. As such, an L₃/L₂ ratio for the pure Co₂O₄ sample of 8051.48/3227.87 = 2.49 is obtained. Similarly when doing the background subtraction of the raw Cu:Co₂O₄ spectrum (Fig. S3), an L₃/L₂ = 8617.400/2245.67 = 3.837 is obtained. The ratio of 2.49 is typical for cobalt oxides exhibiting cobalt ions in two oxidation states: one-third of the Co atoms being Co⁷⁺ in a tetrahedral coordination to oxygen and two thirds Co⁶⁺ in an octahedral oxygen environment [23,24]. The increase in the L₃/L₂ ratio for the Cu modified Co₂O₄ proves that a change in the 1/3Co⁷⁺ + 2/3Co⁶⁺ coordination occurred upon incorporation of the Cu ions in the Co₂O₄ matrix. The value of 3.89 is typical of pure Co²⁺ and in some instances Co⁴⁺ valence states [25,26]. However, considering the expansion in lattice parameter measured from the SAED results of Fig. 2 and the distribution of the Cu elements in the X-ray maps of Fig. 1, the increase in L₃/L₂ ratio, and subsequent change in valence state of the Co oxide, is attributed to doping by the Cu atoms.

3.2. Electrochemical behaviour of the Cu doped Co₂O₄ electrodes

Cyclic voltammetry (CV) was utilized to evaluate the performance of the Co₃O₄/Cu electrode for electrocatalytic oxidation of glucose in an alkaline solution of 0.1 M NaOH. Cyclic voltammetry was performed in the potential range between −0.2 V to 0.8 V vs. Ag/AgCl. Various ratios of Cu (98:2; 90:10; 85:15 and 80:20; Co₂O₄/Cu) was introduced into the Co₃O₄ host lattice structure to find the optimum level of Cu doping for enhanced electrochemical activity. The 90:10 ratio of Co₃O₄/Cu depicted the highest electrochemical activity (current density response) in comparison to the other ratios studied (Fig. S4, supplementary document). Electrode film thickness plays a big role in enhanced electrochemical performance of any sensor. In this study, the electrode film thickness was controlled by increasing the no. of layers deposited (N = 1 to 6) on the FTO substrate. From the EIS study it was found that the resistance for charge transfer (Rct) in 4 layer deposited electrode
was significantly lower (data not shown) than the other layers studied. Hence, the 4 layer deposited electrode showed the highest electrochemical activity (Fig. S5, supplementary document). All electrochemical results reported in this study were obtained using a 90:10 ratio of Co$_2$O$_3$:Cu with \(N = 4 \) electrode unless otherwise stated. A comparison between the CV of pristine Co$_2$O$_3$ and Cu doped Co$_2$O$_3$ highlighted the effect of Cu doping in Co$_2$O$_3$ host lattice structure, as the Cu doped Co$_2$O$_3$ showed enhanced electrochemical activity compared to pristine Co$_2$O$_3$ (Fig. S6, supplementary document). The pristine Co$_2$O$_3$ and Cu doped Co$_2$O$_3$ electrode exhibited a current density around 2.85 and 3.78 mA/cm2 respectively in the presence of 5 mM glucose at +0.65 V. The presence of Cu doping in Co$_2$O$_3$ enhanced the catalytic oxidation current by 33%. It can be seen from Fig. 4a that there is a significant increase in the anodic current in the presence of 2 mM glucose compared to the absence of glucose. This highlights the glucose sensing ability of the as prepared electrode. Two pairs of redox peaks can be observed (Fig. 4a) due to the electrochemical redox reaction between Co$_2$O$_3$ and the OH$^-$ ions [27]. The first pair of redox peaks (I/II) appeared in the relative low potential zone between +0.1 V to +0.3 V, and can be ascribed to the reversible transition between Co$_2$O$_3$ and CoOOH. The other set of redox peaks (III/IV) observed in the potential range of +0.6 to 0.7 V can be assigned to the conversion of CoOOH to Co$_2$O$_3$ [28]. Interestingly it can be observed from Fig. 4b that with increase in glucose concentration the anodic peak shifts towards more positive potential. The changes in Co$_2$O$_3$ and CoOOH species concentration result in the slight shift of the positive peak. The glucose oxidation mechanism can be summarized as follows:

\[
\begin{align*}
\text{Co}_2\text{O}_3 + \text{OH}^- + \text{H}_2\text{O} & \leftrightarrow 3\text{CoOOH} + e^- \\
\text{CoOOH} + \text{OH}^- & \leftrightarrow \text{CoO}_2 + \text{H}_2\text{O} + e^- \\
2\text{CoO}_2 + \text{Cu}_{2}\text{O}_2 & \rightarrow 2\text{CoOOH} + \text{Cu}_{2}\text{H}_2\text{O}_6
\end{align*}
\]

The change in anodic and cathodic peak current at various scan rate is presented in Fig. 4c. A linear correlation exists between the peaks and the scan rate. This provides evidence of a fast electrochemical process and that the process is a surface controlled process of redox reaction [27].

The interfacial properties of the pristine Co$_2$O$_3$ and the modified Co$_2$O$_3$:Cu electrode were studied by electrochemical impedance spectroscopy (EIS) and presented in the form of Nyquist plot (Fig. 4d). The Nyquist diagrams did not exhibit a clear semicircle for both the pristine Co$_2$O$_3$ and Cu:Co$_2$O$_3$ electrodes. Exhibited semicircle and linear part at high and low frequency region can be attributed to charge transfer (Rct)
and Warburg impedance (Z_w) respectively which provides indication of the electron transfer kinetics. It can be seen from Fig. 4d that the CuCo$_3$O$_4$ doped electrode exhibits a smaller semi-circle compared to the pristine electrode, highlighting higher electron transfer kinetics. Randle circuit (inset Fig. 4d) was used to calculate the R_{ct} values for both pristine ($R_{ct} = 292 \Omega$) and Cu doped Co$_3$O$_4$ electrode ($R_{ct} = 1.09 \Omega$). The Bode plot presented in supplementary document (Fig. S7) also shows that the charge transfer resistance decrease significantly with the presence of Cu in the Co$_3$O$_4$; highlighting the good electrochemical activity of the Cu doped Co$_3$O$_4$. Hall effect measurements were carried out to further evaluate the role of Cu doping in Co$_3$O$_4$ host lattice structure. The pristine Co$_3$O$_4$ sample was not very conductive, hence the input current was very low i.e. 0.2 μA. The Cu doped sample on the other hand displayed a greater conductivity thus the input current for conductivity measurement was in the range of 25–150 μA. The conductivity increased by three orders of magnitude with the addition of the Cu in Co$_3$O$_4$ and found to be 80 and 3.72×10^{-2} Ωcm for CuCo$_3$O$_4$ and Co$_3$O$_4$, respectively. The increased conductivity is due to the successful Cu-doping of the Co$_3$O$_4$, as evinced by the increased carrier (electron) concentration from 1.69×10^{16}/cm3 (for the pristine Co$_3$O$_4$) to 2.95×10^{19}/cm3 (for the Cu: Co$_3$O$_4$). It should be noted that both films exhibited the n-type semiconductor behaviour of the electrodes.

3.3. Chronoamperometry study of the Cu doped Co$_3$O$_4$ electrodes

It was shown earlier (Fig. 4a & b) that the oxidation peak of glucose was in the potential range of 0.6–0.7 V vs Ag/AgCl. Chronoamperometric (CA) detection of glucose was carried out (Fig. 5a) in the potential range of 0.6–0.8 V vs Ag/AgCl to evaluate the role of applied potential on the sensor sensitivity. Chronoamperometric measurement was performed under stirring at a successive addition interval of 30s. The sensor displayed a classical step style increase in current density after each successive addition of glucose at all applied potentials. The response time of the sensor in all cases were < 10 s. From the dose response curve presented in Fig. 5b it was observed that the sensor exhibits two distinctive linear ranges (18.3 μM to 1.44 mM and 1.44–7.36 mM). The sensitivity value was found to be larger in the low concentration range (18.3 μM to 1.44 mM) compared to higher concentration range (1.44–7.36 mM) for all applied potentials (table, inset Fig. 5b). The maximum sensitivity value was calculated to be 1850.4 μAcm$^{-2}$mM$^{-1}$ at +0.6 V (low range). However, the sensitivity in the second linear range increased with increasing applied potential. The reported sensitivity in this study was significantly higher compared to our previous studies [13,14]. The applied potential can be chosen depending on the application of the sensor. The limit of detection (LOD) was calculated utilizing the following equation.
Fig. 5. a) Chrono amperometry of the electrode at different applied potential, b) typical dose response curve generated from CA at +0.65 V, c) Selectivity study of the as prepared electrode and d) comparison of sensor data with conventional glucose detection technique.

\[
\text{LOD} = \frac{3\sigma}{m}
\]

\(\sigma\) is the standard deviation of the sample linear range obtained after the addition of the glucose; \(m\) is the slope of the calibration curve. The extrapolated LOD was calculated to be 0.153 \(\mu\)M (S/N = 3). Table 1 shows a comparison of the applied potential of several typical non-enzymatic glucose electrodes. Compared with other studies, the present work exhibited high sensitivity and low detection limit with reasonable response time. Interference study (Fig. 5c) was conducted to evaluate the selectivity of the sensor in glucose detection due to the fact that the human blood contains other key species i.e. ascorbic acid (AA), acetaminophen (AC), uric acid (UA), fructose, sucrose, sodium chloride (NaCl) and potassium chloride (KCl). Interference study was conducted using a 1 mM glucose, 0.1 mM fructose, 0.1 mM sucrose, 0.1 mM AA, 0.1 mM NaCl, 100 mM NaCl and 100 mM KCl solutions respectively at an applied potential of +0.65 V. It can be seen that the sensors’ response to glucose is significantly higher than other interference species. Electrode poisoning due to the presence of NaCl and KCl is a common phenomenon in the case of noble metal based sensors. The as developed sensor maintained good response when glucose was added after the successive addition NaCl and KCl and also other interference species. This proves that the developed sensor can be used for reliable measurement of

<table>
<thead>
<tr>
<th>Material</th>
<th>Sensitivity ((\mu)Ac/m (\mu)M (^{-1}))</th>
<th>Response time (s)</th>
<th>LOD ((\mu)M)</th>
<th>Linear range</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>CuO/CoO</td>
<td>2008.82</td>
<td>(\leq 5)</td>
<td>0.34 (\mu)M</td>
<td>3 mM</td>
<td>[27]</td>
</tr>
<tr>
<td>CuO nano-fibers</td>
<td>36.25</td>
<td>(\leq 7)</td>
<td>0.97 (\mu)M</td>
<td></td>
<td>[29]</td>
</tr>
<tr>
<td>CuO/CoO/Ph2O</td>
<td>460</td>
<td>(\leq 2)</td>
<td>0.31 (\mu)M</td>
<td>5 (\mu)M-1.2 mM</td>
<td>[30]</td>
</tr>
<tr>
<td>CuO/CoO/(\text{FeCl}_3)</td>
<td>1.089</td>
<td>(\leq 5)</td>
<td>1.08 (\mu)M</td>
<td>5 (\mu)M-40 (\mu)M</td>
<td>[31]</td>
</tr>
<tr>
<td>Sn: CoO</td>
<td>921/265</td>
<td>(\leq 4)</td>
<td>0.10 (\mu)M</td>
<td>2 (\mu)M-0.5 (\mu)M &</td>
<td>[14]</td>
</tr>
<tr>
<td>Zn: CuO</td>
<td>193</td>
<td>(\leq 7)</td>
<td>2.0 (\mu)M</td>
<td>5.5 (\mu)M-0.62 (\mu)M</td>
<td>[13]</td>
</tr>
<tr>
<td>CuO/CoO</td>
<td>1620</td>
<td>–</td>
<td>0.05 (\mu)M</td>
<td>0.01-5.5 (\mu)M</td>
<td>[32]</td>
</tr>
<tr>
<td>CuO/CoO nanoporous nanoparticles</td>
<td>123.8</td>
<td>–</td>
<td>0.003 (\mu)M</td>
<td>0.3-3.3 (\mu)M</td>
<td>[34]</td>
</tr>
<tr>
<td>Graphene wrapped CuO nanotubes</td>
<td>285</td>
<td>(\leq 9)</td>
<td>0.13 (\mu)M</td>
<td>(\leq 2) (\mu)M</td>
<td>[35]</td>
</tr>
<tr>
<td>CoO/CoO/GC</td>
<td>520.7</td>
<td>(\leq 6)</td>
<td>0.13 (\mu)M</td>
<td>18.3 (\mu)M-1.44 (\mu)M * & 1.44 (\mu)M-7.6 (\mu)M</td>
<td>This work</td>
</tr>
<tr>
<td>Cu: CoO</td>
<td>1850/76</td>
<td>(\leq 10)</td>
<td>0.133 (\mu)M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sn: CoO</td>
<td>123/141</td>
<td>–</td>
<td>–</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2
Detection of glucose in saliva sample (n = 3).

<table>
<thead>
<tr>
<th>Spiked (mM)</th>
<th>Measured by Sensor (mM)</th>
<th>% Recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.311</td>
<td>0.32</td>
<td>102</td>
</tr>
<tr>
<td>0.615</td>
<td>0.58</td>
<td>94.3</td>
</tr>
<tr>
<td>1.678</td>
<td>1.55</td>
<td>92.3</td>
</tr>
</tbody>
</table>

glucose in physiological samples. The good selectivity of the CuCo3O4 sensor towards glucose at +0.65 V can be attributed to the repelling effect at the CuCo3O4 surface as was first proposed by Ding and co-authors [8]. The results obtained from the interference study confirm that the developed method for electrode fabrication is suitable for making biosensors for glucose detection. The developed sensor was also applied to detect glucose in human serum sample. Fig. 5d exhibits the chronoamperometric response of the proposed sensor after successive addition of 1 mL serum (6.26 mM glucose concentration) in 46 mL of electrolyte solution. Clear increase in current response was observed after addition of human serum. The concentration of glucose in serum was measured by UV–vis spectrophotometry. The good agreement (Fig. 5d inset) between our proposed sensor and UV–vis spectrophotometry technique highlights the potential application of the non-enzymatic glucose sensor. In order to develop a non-invasive route for glucose detection, the sensor was used to detect glucose in spiked human saliva as a proof of concept. The saliva samples were spiked with different amount of known glucose concentration for electrochemical analysis. Table 2 shows that the obtained recovery is in the range of 92–97%. This highlights the sensor’s potential application in glucose detection of real samples.

3.4. Reproducibility, repeatability, stability and shelf life of the proposed sensor

Reproducibility of glucose sensors is vital for the accurate measurement of analyte concentrations. Four individual electrodes were prepared accordingly and tested with 1 mM glucose at 25 mV/s. The anodic oxidation current peaks were then compared for inter electrode reproducibility. The percentage relative standard deviation (% R.S.D) was calculated to be 9% for four sensors. Reproducibility tests were performed by measuring the current response of the electrode in 1 mM glucose solution (n = 5). Before each measurement, the sensor was washed with distilled water and dried under air flow to be tested in freshly prepared 1 mM glucose solution immediately. The % R.S.D. was calculated to be 10% between five replications of the same electrode (Supplementary document, Fig. S8). Chemical stability of the sensor was determined by cyclic voltammetry for 100 cycles (Supplementary document, Fig. S8) in a 1 mM glucose solution at a scan rate of 25 mV/s. It can be seen that no new redox pairs were found even though the anodic current decreases slightly. Hence it can be concluded that the chemical stability of the sensor is good. The shelf life of the sensor was evaluated over a four-week period. The sensor was tested, washed with distilled water and stored under ambient conditions after testing each week. The sensor maintained 80% of the initial current response after the four-week period (data not shown). This highlights the long term storage and testing ability of the proposed sensor.

4. Conclusion

In this study, elemental Cu was successfully substituted into the lattice structure of Co3O4 by a chemical solution method. Introduction of Cu resulted in increased electrical conductivity, charge carrier density and decreased charge transfer resistance in Co3O4. This ultimately resulted in enhanced electrochemical activity when compared to pristine Co3O4. The as-developed Cu doped Co3O4 sensor, showed very high sensitivity of 1850 μAcm⁻²M⁻¹ with a limit of detection of 0.153 μM and, was used successfully to measure glucose concentration in human serum and spiked saliva sample.

Acknowledgments

Mahabubur Chowdhury would like to thank the National Research Foundation of South Africa for financial assistance (Grant no: 88220).

Conflicts of interest

The author declares no conflicts of interest.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.jsb.2019.100262.

References

[21] M.E. Donders, H.C.M. Knops, M.C.M. Van, W.M.M. Kessels, P.H.L. Notten, Remote...

