dspaceThe Cape Peninsula University of Technology (CPUT) Electronic Theses and Dissertations (ETD) repository holds full-text theses and dissertations submitted for higher degrees at the University (including submissions from former Cape Technikon and Peninsula Technikon).

Show simple item record

dc.contributor.authorIlutu, Danny Makimi
dc.descriptionThesis (MTech(Electrical Engineering))--Cape Peninsula University of Technology, 2011.en_US
dc.description.abstractNanosatellite is an electronic device that requires a steady and reliable electrical power supplier (EPS) in order to drive all its electronic circuits. Its unpredictable failures can lead to extensive financial and time losses. The failures may be owing to the environment in which the satellite operates; the technique and the method used to generate power. In order to effectively minimise the risk of the EPS failures, a better technique is essential. The direct energy transfer (DET) technique was chosen for this research because it provides high efficiency and high reliability, unlike the maximum power point tracking (MPPT) technique, which obtains maximum power from the solar cells by using a microcontroller. DET works on a fixed working point of current-voltage characteristic and responds to all satellite power system requirements. The microcontroller is not a suitable device in satellite electrical power systems that requires high reliability, but is used because it is difficult to track the maximum power of solar cells without it. The analog MPPT system is another option, but the technique requires discrete components. Its deployment is limited because of the system's operating frequency and large electronic components such as the inductor and capacitor.en_US
dc.publisherCape Peninsula University of Technologyen_US
dc.titleLinear power control system for a nanosatelliteen_US

Files in this item


This item appears in the following Collection(s)

Show simple item record

Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by-nc-sa/3.0/za/