dspaceThe Cape Peninsula University of Technology (CPUT) Electronic Theses and Dissertations (ETD) repository holds full-text theses and dissertations submitted for higher degrees at the University (including submissions from former Cape Technikon and Peninsula Technikon).

Show simple item record

dc.contributor.advisorSheldon, ME
dc.contributor.advisorNtwampe, SKO
dc.contributor.authorBasitere, Moses
dc.date.accessioned2018-03-28T07:47:21Z
dc.date.available2018-03-28T07:47:21Z
dc.date.issued2017
dc.identifier.urihttp://hdl.handle.net/20.500.11838/2632
dc.descriptionThesis (DTech (Chemical Engineering))--Cape Peninsula University of Technology, 2017.en_US
dc.description.abstractThe process of anaerobic digestion (AD) is one of the most cost-effective and environmentally sustainable technologies to treat wastewater in the agricultural sector. In South Africa, in some industries in the agricultural sector, such as the poultry industry in particular, slaughterhouses have the highest consumption of potable water, culminating in the production of a large quantity of high strength wastewater. This high consumption of potable water has become a concern in South Africa due to water scarcity and reduced rainfall attributed to global warming, including weather changes. Furthermore, the generation of a large volume of wastewater poses environmental pollution concerns. The wastewater from poultry slaughterhouses can be quite easily treated to a suitable quality for reuse, using various bioreactor systems that utilise low cost anaerobic digestion processes. However, as this wastewater contains a high quantity of biodegradable organic matter – with the primary pollutants being proteins, blood, fats, oil and grease (FOG) – selecting a suitable anaerobic reactor configuration (up-flow vs down-flow) plays an important role in achieving high reactor performance. In this study, both the up-flow, (i.e. Expanded Granular Sludge Bed Reactor) and the down-flow (i.e. Static Granular Static Granular Bed Reactor), were studied to quantitatively determine their performance in treating poultry slaughterhouse wastewater. Firstly, the feasibility of treating poultry slaughterhouse wastewater with an up-flow Expanded Granular Sludge Bed Reactor (EGSB) coupled with anoxic and aerobic bioreactors was investigated at an HRT of 7 (168 hr), 4 (96 hr) and 3 (72 hr) days using organic loading rates of 0.5, 0.7 and 1.0 gCOD/L.day. The averaged tCOD removal for the EGSB reactor was 40%, 57% and 55%, respectively, at the various OLRs and HRTs investigated. The overall tCOD removal of the system (EGSB-anoxic/aerobic) at high OLR of 1.0 gCOD/L.day was increased to 65%. The redundant performance of the up-flow EGSB reactor was attributed to the periodical sludge washout experienced during its operation due to high FOG and TSS concentrations in the influent. Due to the periodic sludge washout, the reactor required continuous re-inoculation resulting in the EGSB being operated for a short period (i.e. 26 days). As a result of such system deficiency, it was recommended that to improve the performance of the up-flow EGSB reactor in treating poultry slaughterhouse wastewater, a pre-treatment system – such as a Dissolved Air Floatation system (DAFs) or a FOG skimmer – is required to reduce the FOG and total suspended solids (TSS) load prior to the wastewater fed to the EGSB. This will minimise system failure and the need for a continuous re-inoculation of the system (see Appendix C for improved operation strategy of the EGSB reactor). Furthermore, a system redesign was recommended, thus the use of the SGBR. Secondly, after the EGSB system evaluation, the performance of a down-flow system (i.e. SGBR) for the new design, the following were deemed appropriate for improved system (SGBR) design: 1) reduced HRT for high wastewater treatment through-put rates; 2) the ability to adequately treat the wastewater with higher organic loading rates; and 3) reduction of the plant footprint by using a membrane filtration system (i.e. a single process unit) to effectively reduce process requirements needed for the anoxic/aerobic bioreactors (i.e. n=2 process unit) used with the EGSB. Similarly, for large-scale operations, it is advisable to have a backwash system to adequately handle declogging processes (i.e. these systems modifications were evaluated in the SGBR). The SGBR, coupled with an ultra-filtration (UF) membrane system, was then investigated for treating the poultry slaughterhouse wastewater at an HRT of 55 hrs and 40 hrs, including average OLRs of 1.01 and 3.14 gCOD/L.day, respectively. The average maximum performance of the SGBR in terms of tCOD, TSS and FOG removal was > 90% at the OLRs and HRTs investigated. The UF membrane system used as a post-treatment system further yielded a system performance improvement for tCOD, TSS and FOG of 64%, 88% and 60%, respectively. The overall performance of the combined system (SGBR and UF membrane system) in terms of tCOD, TSS and FOG removal was 98%, 99.8% and 92.4%, respectively. The highest performance for the down-flow SGBR was attributed to its ability to retain granulated sludge in the reactor while maximizing the digestion of the organic matter fed into the reactor, even at higher OLRs. Furthermore, for effective declogging, the implementation of a periodic backwash system to effectively remove dispersed fine sludge particles in the underdrain and excessive suspended solids entrapment was observed to ease the system operational deficiencies.en_US
dc.language.isoenen_US
dc.publisherCape Peninsula University of Technologyen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/za/
dc.subjectPoultry plants -- Waste disposalen_US
dc.subjectSlaughtering and slaughter-houses -- Waste disposalen_US
dc.subjectAgricultural wastesen_US
dc.subjectSewage -- Purification -- Anaerobic treatmenten_US
dc.titlePerformance evaluation of an up- and down-flow anaerobic reactor for the treatment of poultry slaughterhouse wastewater in South Africaen_US
dc.typeThesisen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

http://creativecommons.org/licenses/by-nc-sa/3.0/za/
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by-nc-sa/3.0/za/