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ABSTRACT 
 
 

As one of the biggest developing country in the world, South Africa is developing very fast 

resent years. The country’s industrialization process is rapidly evolved. The manufacturing 

industry as one of the most important sections of the industrialization is playing a very heavy 

role in South Africa’s economic growth. Big percentage of population is involved in the 

manufacturing industry. It is necessary to keep and enhance the competitiveness of the 

South Africa’s manufacturing industry in the world wide. But the manufacturing companies 

are facing with unpredictable market demands and global competitions. To overcome these 

challenges, the manufacturing companies need to produce new products which can cater to 

the market demand as soon as possible.  

 

Reconfigurable Manufacturing System (RMS) is one of the possible solutions for the 

manufacturing companies to produce the suitable product for the market in a short period of 

time with low cost and flexibility. That is because the RMS can be reconfigured easily 

according to the required specifications for manufacturing the appropriate product for the 

market and with above mentioned characteristics. Now, RMS is considered as one of the 

promising concepts for mass production. As one of the very latest research fields, many 

companies, universities and institutions have been involved to design and develop RMSs. 

South Africa as one of the most important manufacturing country in the world, her own 

universities and researchers has the obligation to study this field and follow the newest 

development steps.  

 

In this project, a lab-scaled reconfigurable plant and a Field Programmable Gate Array 

(FPGA) technology based reconfigurable controller are used to realize and verify the 

concepts of the RMS in order to find the methodology of developing RMSs. The lab-scaled 

reconfigurable plant can be reconfigured into the inverted pendulum and the overhead crane. 

Although it is not used for manufacturing purpose, it can be used to verify the RMS concepts 

and the control strategies applied to it. Furthermore, control of the inverted pendulum and the 

overhead crane are both typical problems in the control field. It is meaningful to develop the 

controllers for them. As the reconfigurable plant is configured, the reconfigurable controller is 

reconfigured synchronously in order to produce the proper control signal for the reconfigured 

plant. In this project, both linear and nonlinear control strategies are deployed. Good results 

are received.  

 

The outcomes of the project are mainly for the education and fundamental research 

purposes, but the developed control strategies have significant sense towards the military 

missile guidance and the overhead crane operation in industry. 
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( , , ) x̂ ŷ ẑ The object origin position coordinates in 3-

Dimension 
  
(x’, y’, z’) The object final position coordinates in 3-

Dimension  
  
a  Acceleration of a object when force is applied  
  
â The estimate parameters in MRAC 
  
A The state matrix in LTI system 
  
Ad The state matrix of the reference mathematical 

model 
  
AΦ The closed-loop constant matrix 
  
A∈Rn×n The constant state matrix for LTI system  

 xxiii



A(t) The state matrix in LTV system 
  
AL The state matrix of the linearized pendulum 

mathematical model 
  
Alin By using feedback linearization method linearized 

system state matrix 
  
b The friction coefficient between the cart wheel 

and the track of the pendulum system  
bm The viscous friction coefficient of the armature 

controlled d.c. motor 
  
bt The friction coefficient between the rod and the 

pivot of the pendulum system 
  
b(x) The nonlinear function of states  
  
B The input matrix in LTI system 
  
BΦ The closed-loop control matrix  
  
B∈Rn×m The constant control matrix for LTI system 
  
B(t) The input matrix in LTV system 
  
BL The input matrix of the linearized pendulum 

mathematical model  
  
Blin By using feedback linearization method linearized 

system input matrix 
  
B’ The magnetic filed flux density 
  
BR0 Sphere of values of x 
  
c The friction coefficient between the rod and the 

pivot 
  
C The output matrix in LTI system 
  
CΦ The closed-loop output matrix  
  
C∈R1×n The constant output matrix for LTI system  
  
C(t) The output matrix in LTV system 
  
d.c. Direct Current 
  
D The direct transmission matrix in LTI system 
  
D(t) The direct transmission matrix in LTV system 
  
e∈Rn The error between the desired trajectory and the 

plant output 
  
e’ The back e.m.f constant 

 xxiv



E A vector of the poles of the closed-loop matrix 
[AΦ-BΦKΦ] 

  
E(x) The second term of the nonlinear controller in 

feedback linearization  
  
E’  The total energy 
  
  
f Smooth vector fields on Rn

  
f’(ζ) New state matrix of a nonlinear after the state 

transformation  
  
f(x) The nonlinear function of states 
  
fc The friction force between the cart wheel and the 

track of the pendulum system  
  
F The horizontal control force applied on the cart 
  
g The gravitational acceleration  
  
g Smooth vector fields on Rn

  
g’(ζ) New input matrix of a nonlinear after the state 

transformation 
  
G The adjustment gain matrix in LTI system 
  
h(t) Nonlinear vector valued function in the nonlinear 

system mathematical model 
  
h.o.t High order terms 
  
h’(ζ) New output matrix of a nonlinear model after the 

state transformation 
  
H The horizontal reaction force on the rod 
  
Hp Force applied to the rod perpendicularly caused 

by horizontal force H of the pendulum system  
  
i The current flowing the motor wire 
  
ia The current flowing the armature controlled d.c 

motor 
  
I The moment of inertia of the rod about its center 

of gravity 
  
l The length of wire within the field 
  
J The rod and the pendulum moment of inertia of 

the pendulum system   
  
Jm The motor inertia 

 xxv



JP The performance index 
  
k The friction coefficient between the cart and the 

surface 
  
K The state feedback gain matrix in LTI system  
  
Kb The voltage constant 
KD Potentiometer Gain (derivative control for servo 

position) 
  
KL The feedback gain of the desired mathematical 

model 
  
Km The torque motor constant 
  
Kx Potentiometer Gain for measuring cart position 
  
Kω Tacho Gain for measuring cart velocity 
  
KΦ The feedback control gains 
  
K̂  The feedback control gains of the pendulum 

system 
  
L Distance between the pivot and the center of 

gravity of the rod  
  
La The inductance of the armature controlled d.c. 

motor 
  
L’ Lagrangian 
  
m Mass of the rod 
  
mP The payload mass of the crane 
  
mt The mass of the cart in the crane  
  
M Mass of the cart 
  
MP Mass of the pendulum 
  
M’ The second term of the Lyapunov function first 

derivative 
  
n System order 
  
N The number of the coil turns 
  
O The observability matrix of LTI system 
  
P∈Rn×n Positive-definite real symmetrical matrix  
  
P1; P2; P3; P4; P5 The desired poles of the closed-loop system 
 
 

 

 xxvi



Pg Potentiometer Gain (proportional control for 
servo position) 

  
Ps Servo amplifier Gain 
  
PΦ The matrix of the Riccati equation 
  
q The generalized coordinate  
  
qi

* Smooth vector fields on Rn, i=1,2,…,n 
  
Q; R; QΦ; RΦ The weighting matrix in the performance index. 

Positive-definite (or positive-semi-definite) 
Hermitian or real symmetric matrix 

  
r The reference signal  
  
r The armature controlled d.c. motor radius to belt 
  
rc The distance between the centre line of the shaft 

and the conductor 
  
R’ The controllability matrix of LTI system  
  
Ra The resistance of the armature controlled d.c. 

motor 
  
t0 The initial time 
  
t1 The ending Time 
  
[t0, t1] Time interval 
  
T The torque generated by the d.c. motor 
  
T(x) The transformation matrix  
  
Tω The torque generated by the servo motor 
  
T’ The kinetic energy 
  
u The control signal 
  
uzd The zero-dynamic system input signal  
  
u(t) The input vector in LTV system 
  
v New input of the linearized nonlinear system 
  
v∈Rm The control vector for the model reference 

system 
  
V The vertical reaction force on the rod 
  
Va The voltage applied to the armature circuit 
  
V(x) Lyapunov function  

 xxvii



V’ The potential energy 
  
Vp Force applied to the rod perpendicularly caused 

by vertical force V of the pendulum system  
( )xV&  The first derivative of the Lyapunov function 

respect to time  
W The angular momentum 
  
x The displacement of the cart from origin 
  
x(t) The state vector in LTV system 
  
X0 The initial state of the general system 
  
x&  The velocity of the cart 
  
x&&  The acceleration of the cart 
  
xd∈Rn The desired states vector of the model  
  
xe The equilibrium point 
  
xG The horizontal distance between the origin and 

the center of gravity of the pendulum and rod 
when the pendulum system is configured as the 
inverted pendulum and the overhead crane  

  
y The displacement of the pendulum from origin  
  
y The plant output 
  
y(t) The output vector in LTV system 
  
yd The desired output  
  
yd

sp The desired output set point value 
  
yG The vertical distance between the origin and the 

center of gravity of the pendulum and rod when 
the pendulum system is configured as the 
inverted pendulum and the overhead crane 

  
ym The desired trajectory  
ysp The set point  
  
z The states of the linearized nonlinear system 
  
z0 The initial conditions  
  
 

 xxviii



CHAPTER ONE 
INTRODUCTION 

 
1.1 Awareness of the problem 

Manufacturing industry remains an important foundation of the global economy which 

accounts large percentages of the Gross Domestic Product (GDP) (Moyne, Korsakas 

and Tilbury, 2004:1). South Africa’s economy has grown rapidly in recent years and has 

had significant impact on the world economy (Nayyar, D, 2008:1). As one of the biggest 

developing countries in the world, the manufacturing industry plays a very heavy role in 

contribution to determining the country’s economic growth. The latest released data show 

that 24% of South Africa GDP are contributed by the manufacturing industry in 2007 

(http://learn.eastday.com/view.jsp?code=1119) and manufacturing industry growth rate is 

14.8% over the same period of the previous year from January to July 2007 (South Africa 

Reserve Bank, 2008). This data reveals how import the manufacturing industry is for 

South Africa’s economic. Additionally, the manufacturing industry also provides a locus 

for stimulating the growth of other activities, such as services, and achieving specific 

outcomes, such as value addition, employment creation and economic empowerment 

(http://www.info.gov.za/aboutsa/economy.htm#manufacturing). In order to maintain the 

rapid economic growth rate and reduce the unemployment rate, it is very important to 

keep and enhance the competitiveness of the South Africa’s manufacturing industry in 

the world.  

 

In South Africa, automotive manufacturing industry, information technology products 

manufacturing, and white goods manufacturing are the pillar manufacturing industries. 

Especially the automotive industry, it is extremely important for the South Africa’s 

economy. This sector accounts for about 10% of South Africa’s manufacturing exports, 

making it a crucial cog in the economy. Locally, the automotive sector is a giant, 

contributing about 7.5% to the country’s GDP and employing around 36000 people 

(http://www.southafrica.info/business/economy/sectors/automotive-overview.htm). These 

key manufacturing industries share several common characteristics such as the large 

amount of production, labour-intensive production, huge investment and high added 

values. At the same time, the manufacturing industries also face some common 

challenges and problems such as unpredictable market demands, global competition and 

raw material prices and labour prices rising. These idiosyncrasies of the manufacturing 

industry can be easily understood by using the automotive industry as a typical example. 
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Now days, new model cars go to the market much more frequently than ever before. This 

requires the automotive manufacturers to change their production line more often, 

especially when the demands are fluctuating or the specifications are changing, in order 

to make it capable to produce the suitable product to the market.  

 

Traditionally, in order to produce the new product, a big portion of the old production line 

must be rebuilt. This means the manufacturing company must invest a huge amount of 

money, old equipment will be left unused and during the production line rebuilt period, all 

the production activities are stopped. Furthermore, the longer the manufacturing 

company takes to rebuild their new manufacturing line, the more its new product will lose 

competiveness in the market. Several ineradicable disadvantages of rebuilding the 

production line can be easily seen, such as: huge amount of investment, long period of 

production downtime and wasting of resources and labours. As a result, the 

manufacturing companies desire novel concepts to solve these problems in order to 

reduce the additional investment, reduce the production downtime, optimize the 

resources usage and most importantly, the manufacturing companies could produce new 

products which can cater for the market demand as soon as possible. The 

Reconfigurable Manufacturing System (RMS) is introduced as one of the prospective 

conceptual solutions (Lee and Tilbury, 2003:3402). 

 

1.2 Reconfigurable manufacturing system (RMS) 
1.2.1 Introduction of the reconfigurable manufacturing system 

The RMS provides the manufacturing industry with possibilities to produce the suitable 

product for the market in short periods of time with low cost and high flexibility. RMSs are 

currently considered as one of the promising concepts for mass production. In this 

system, quick start for new products, the rapid alteration of the manufacturing system 

capacity, and the fast integration of new process technologies into an existing system 

can be realised by rearranging or changing modular components (Lee and Tilbury, 

2003:3402). The RMS is defined as: one designed at the outset for rapid change in its 

structure, as well as its hardware and software components, in order to quickly adjust its 

production capacity and functionality within a part family in response to sudden market 

changes or intrinsic system change (Koren et al., 1999:528).  

 

The RMS takes advantage of the mass production of the dedicated manufacturing 

systems (DMS) and the flexibility of the flexible manufacturing system (FMS). So it 
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provides a cost-effective solution under changing the manufacturing line because it 

reduces the downtime, provides high speed capability and functional reliability solution.  

 

A complete RMS includes following main subsystems: 

 Reconfigurable machine (plant) 
 Reconfigurable controller 
 Methodology for the system design, diagnostics and reconfiguration 

In these three main subsystems: The reconfigurable machine (plant) subsystem 

represents the system hardware. It is the system that is necessary to be controlled. 

Normally it is the actual plant that can be reconfigured according to the specified 

requirements. The reconfigurable controller subsystem represents the reconfigurable 

controller which consists of the control hardware and control software. The 

reconfigurable controller is one of the most important subsystems of the modern 

manufacturing control system. It manages and optimizes the entire RMS. After the 

reconfigurable machine is reconfigured, the reconfigurable controller needs to be 

reconfigured according to the requirement of the reconfigurable system in the form of 

hardware and/or software, in order to realize the desired functions. The third subsystem 

consists of design software and reconfigurable logic, algorithms and methods which are 

realized in the RMS software to coordinate and adjust the process of reconfiguration. The 

third subsystems control design functions are object of investigation and development in 

the project (Koren et al., 1999:535).  

 

1.2.2 Characteristics of the reconfigurable manufacturing system 
RMS must be designed at the outset to be reconfigurable, and must be created by using 

hardware and software modules which can be integrated quickly and reliably. Otherwise, 

the reconfiguration process will be both lengthy and impractical. In order to achieve these 

goals, all of its subsystems must possess the following key characteristics: 

 Modularity – All the major components in the reconfigurable manufacturing system are 
modular.  

 Integrability – There are designed interfaces between different modules for easy 
integration. The integrated system performance is predicted based on a given 
performance of its components and the interfaces of both software and machine 
hardware modules. 

 Customization – This characteristic includes the customized flexibility and customized 
control. The customized flexibility means that machines are built around parts of the 
family that are being manufactured and provide only the flexibility needed for those 
specific parts, thereby reducing cost. Customized control is achieved by integrating 
control modules with the aid of open-architecture technology, providing the exact control 
functions needed. Open-architecture technology allows adding, upgrading and swapping 
components to the system. It provides the ability of easy reconfiguration to the 
reconfigurable manufacturing system.  
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 Convertibility – In a reconfigurable system the optimal operating mode is configured in 
batches that should be completed during one day, with short conversion times between 
batches. 

 Scalability – The ability to easily change production capacity by rearranging an existing 
manufacturing system and/or changing the production capacity of reconfigurable stations. 
Scalability is the counterpart characteristic of convertibility.  

 Diagnosibility – Detection unacceptable part quality is critical in reducing ramp-up time 
in RMS. As production systems are reconfigurable and are modified more frequently, it 
becomes essential to rapidly tune the newly reconfigured system so that it produces 
quality parts. (Koren et al., 2004:530) 
 

These key characteristics distinguish the RMS from the traditional manufacturing 

production line. They also bring the key research issues of RMS out.  

 

1.2.3 Research issues of the reconfigurable manufacturing system 
In order to posses above mentioned key characteristics of the RMS, the following key 

research issues in the process of designing and operating RMS must be studied. These 

key research issues can be classified into system-level issues, component-level issues 

and ramp-up time reduction issues. The project investigations are part of the 

components-level research issues. The detailed key issues on different levels are 

presented in Table 1.1 below. 

 
 
Table 1.1: RMS key research issues (Mehrabi, Ulsoy & Koren, 1998:17-19) 

System-level design issues Component-level issues Ramp-up time reduction 
issues 

Analysis and design of the full process 
from recognizing customer needs (or 
anticipated needs) through operation 
selection and system specification 

Development of fundamental 
principles and techniques for the 
design and analysis of 
reconfigurable machines along 
with their controllers 

Design of robust components 
that can operate reliably and 
safely under different operating 
conditions 

Analysis of the impact of system 
configuration on reliability, quality, and 
cost 

Design and development of a set 
of simple reconfigurable 
machines and controller to 
quickly produce two different 
parts for the proof of concept 

Development of systematic 
approaches and fundamental 
principles to indentify root-
causes of components failure, 
and quality and process 
variations 

Economic analysis of various system 
configurations and their selection 

  

Development of a systematic approach 
for design of RMS at the system level 

  

 
 

1.2.4 Historic and current development of the reconfigurable manufacturing system 
Reconfigurable manufacturing is one of the latest developments in the general field of 

computer-integrated manufacturing system. But the concept of RMS is proposed since 

1960s. The research history of the RMS can also ascended since that time when the firm 
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called “Moilns Company Ltd” developed the first integrated manufacturing system. Until 

now, RMSs have been developed extensively since 1970s in both the theoretical level 

and practical level. In Japan, Europe and USA the related projects have been started 

since 1980s and 1990s. Several landmark achievements are realized, including: The 

Flexible Manufacturing system Complex (FMC) project provided by Ministry of 

International Trade and Industry (MITI) in Tsukuba, Japan. In early 1990s, the European 

Union (EU) launched the European Modular Synthesis of Advanced Machine Tools 

(MOSYN) project, lead by the Hannover University. This project looks at customer-

specific configurations of modular machine tools. In 1996 an Engineering Research 

Centre of Reconfigurable Machining System (ERC/RMS) was founded at the University 

of Michigan, Michigan, USA. The researches focused on three main research main areas, 

reduction of design lead-time for reconfigurable system, design of reconfigurable 

machines and their reconfigurable controllers, and reduction of ramp-up time. Regarding 

issues of control, research efforts have been focused on open control architectures. In 

the world wide, there are three most important initiatives in open architecture control 

system: The EU project, OSACA and its German successor, HÜMONS; the Japanese 

initiative OSEC; and the North American OMAC-TEAM project (Koren et al., 2004:531).  

 

Till now, Japan, EU and USA are the three major contributors to the research of RMS in 

the world. The world biggest car manufacturer TOYOTA has successfully implemented 

the RMS concept in its production line. Several practical experiments have been 

successfully done in the laboratories as well. South Africa is one of the important 

manufacturing countries in the world, but the RMS research is relatively lagged. There is 

no university or company involved in this area. Three years ago the Council for Scientific 

and Industrial Research (CSIR) started a program for develop of RMS. The project under 

consideration develops methods, algorithms and software for development of the 

reconfigurable control methodology by studying a lab-scale reconfigurable plant.  

 

1.3 Reconfigurable system in this project 
This project provides investigation and development of the methodology for control 

development of the reconfigurable system. In this project, the hardware part includes a 

lab-scaled reconfigurable pendulum plant and an embedded logic controller. The 

reconfigurable plant can be reconfigured into either the inverted pendulum mode or the 

overhead crane mode by simply turn it upside down. The inverted pendulum and 

overhead crane are introduced in Chapter 2. The existing mathematical models of the 

inverted pendulum and overhead crane are also studied in the same chapter. In Chapter 
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3, this lab-scaled reconfigurable plant is described in detail before its mathematical 

models are derived. This lab-scaled reconfigurable plant consists of the plant module and 

the controller module. They are integrated together through a 26 way IDC microcomputer 

header. The input and output signals can be monitored by using the incidental Data 

Acquisition (DAQ) system. The described properties reveal that this lab-scaled 

reconfigurable plant has such characteristics as modularity, integrability, convertibility 

and diagnosibility. It fulfils the requirements of a module of RMSs. An embedded logic 

controller is developed as the reconfigurable controller in this project. It is based on the 

Field Programmable Gate Array (FPGA) technology in order to realize the key 

characteristics of the RMS control. FPGA technology is studied in Chapter 8 in detail and 

the Real-Time implementation results are presented in the same chapter as well. The 

software package that is used in this project includes the Mathworks Matlab/Simulink 

platform and the National Instruments (NI) Laboratory Virtual Instrumentation 

Engineering Workbench (LabVIEW) platform.  

 

Several different linear and nonlinear control strategies including the pole-placement 

method, Linear Quadratic Regulator (LQR) method, Model Reference Control (MRC) 

method, Lyapunov Direct Method (LDM), the feedback linearization method, are used for 

the controller design. These control strategies and theories are introduced in Chapter 3 

and applied in Chapter 4, 6 and 7 respectively, Matlab/Simulink and LabVIEW.  

 

The project is done by following the sequences of background study, mathematical 

model derivation, controller design, system simulation and Real-Time implementation. 

Firstly, RMS, the inverted pendulum, the overhead crane and the control strategies are 

studied. Then, the nonlinear mathematical models of the reconfigurable plant are derived. 

By linearizing the nonlinear models, the linear models are obtained. Thirdly, different 

controllers are designed based on different control methods. Then, the closed-loop 

systems are simulated and analyzed on the simulation platform. Once the proper results 

are achieved, the project shifts to the Real-Time implementations platforms. The 

simulation and Real-Time implementation are done in different software environments 

and Real-Time implementation platforms respectively.  

 

The outcomes of the project have noteworthy sense for the South Africa’s manufacturing 

industry. The results also have significant meaning for the military industry, in 

fundamental research in terms of missile and rocket guidance study and industry 
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applications in terms of overhead crane control in industry. It can also be used for 

fundamental research and education purposes. 

 

1.4 Research aim and objectives 
The aim of the project is to develop methodology for design and implementation of the 

reconfigurable nonlinear control systems in Real-Time based on embedded FPGA 

technology.  

 

The methodology is developed based on the following objectives: 

 Development of the linear and nonlinear mathematical models for the reconfigurable 
plant 

 Development of modern control methods for the reconfigurable plant 
 Evaluation of the model derivation and modern controller design methods by simulation 
 Real-Time implementation of the closed-loop systems using embedded platforms 
 Building of the methodology for design of reconfigurable embedded control systems 

 

1.5 Statement of the problem 
The research problem is stated as follows:  

To develop models, methods and algorithms for design of the nonlinear control those are 

capable of being implemented in Real-Time in the frameworks of embedded software 

and hardware platform. The FPGA based controllers with LabVIEW programming are 

used for controller implementation. 

 

The above stated research problem consists of the following sub-problems: 

1.5.1 System modeling sub-problems 
1.5.1.1 Sub-problem 1: Nonlinear mathematical models development 

The complete nonlinear mathematical models for different configuration of the lab-scale 

RMS are derived. The nonlinear mathematical model derivations are one of the most 

important tasks of the project.  

 

1.5.1.2 Sub-problem 2: Linear mathematical models development 
The complete linear mathematical models for different configuration of the lab-scaled 

RMS are obtained by linearizing the RMS nonlinear mathematical models.  

 

The process of the system modelling is an important approach of the system 

familiarization and understanding. The reconfigurable controllers are designed based on 

the system mathematical models and the modern control strategies.  
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1.5.2 Sub-problem 3: Reconfigurable controllers design and development 
The linear controllers and nonlinear controllers design methods are applied for designing 

and developing the reconfigurable controllers. Different modern control methods are 

applied, such as: pole-placement method; linear quadratic method; model reference 

control method; Lyapunov direct method and the feedback linearization method, to 

achieve the desired system responses.  

 

1.5.3 System simulation and emulation sub-problems 
1.5.3.1 Sub-problem 4: Mathematical models simulation and emulation 

In order to verify, confirm and finalize the system mathematical models, the models 

which are mentioned in section 1.5.1.1 and 1.5.1.2 are simulated in Matlab/Simulink 

software environment.  

 

1.5.3.2 Sub-problem 5: Closed-loop system simulation and emulation 
The closed-loop systems, which consist of the reconfigurable plant models and their 

corresponding controllers, are simulated in order to verify that the controllers are properly 

designed. Once the good results of the closed-loop simulation are obtained, the project 

shifts to the Real-Time implementation platform.  

 

1.5.4 Real-Time implementation 
The Matlab/Simulink with DAQ system platform is used first, in order to confirm that the 

systems are implementable on the Matlab Real-Time Target platform. If the Real-Time 

implementation is achieved on this platform, the corresponding controllers are designed 

in LabVIEW environment. This is to reduce the programming development time. Then the 

Real-Time implementation is shifted to the LabVIEW and CompactRIO FPGA platform. 

The above mentioned software and hardware are introduced in Chapter 8. 

 

1.5.4.1 Sub-problem 6: Real-Time implementation on DAQ system platforms 
The Real-Time implementations on DAQ system based platforms: 

 Matlab/Simulink with DAQ card Real-Time implementation platform 
 

1.5.4.2 Sub-problem 7: Real-Time implementation on embedded system platforms 
 LabVIEW with NI CompactRIO FPGA Real-Time implementation platform is used 
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1.5.5 Results comparison 
1.5.5.1 Sub-problem 8: Simulation results comparison 

The systems performances are studied by analysing and comparing the simulation 

results. The analysis focuses on the system performances. The comparisons concentrate 

on the simulation results that are obtained by using different control strategies. Through 

the comparison, the effects of each control method on the pendulum system are studied, 

revealed and summarised.  

 

1.5.5.2 Sub-problem 9: Real-Time implementation results comparison 
The Real-Time implementation platforms are compared by referring the requirement of 

the RMS. The obtained Real-Time implementation results from the different software and 

hardware platforms and the different control strategies are compared. The comparison 

shows which platform is better in terms of the system performance, such as: the 

smoothness of the transition behaviour, the stability of the system and the reliability of 

the system.  

 

1.5.6 Sub-problem 10: Metrology for control reconfiguration development 
The methodology of developing and implementing RMS control is concluded from the 

process of this lab-scaled RMS plant control development. This lab-scaled RMS has the 

key characteristics of RMS, so the developed methodology can be used for developing 

the industry RMS control.  

 

1.6 Hypothesis 
Certain hypothesises are the preconditions of the research. The hypothesises are based 

on the existing control theories and technologies. They can be formulated as: 

1.6.1 From the theoretical point of view:  
 The mathematical models of the nonlinear reconfigurable plants can be derived based on 

the existing mathematical and physical principles 
 The modern control methods can be applied for the linear and nonlinear controller design 
 The nonlinear controllers will result in closed-loop systems with better dynamic 

behaviours than the dynamics obtained from the linear control system  
 

1.6.2 From the implementation point of view: 
 The pendulum system has the key characteristics of the RMS. It is considered as a RMS 

in lab-scale variant.  
 All the parameters needed for the calculation, simulation and implementation can be 

obtained from the pendulum plant or from measurements 
 The embedded software can implement the nonlinear functions of the nonlinear control 

laws  
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 The embedded hardware can be reconfigured according to the required applications 
 The integration between the software and hardware can be done on different 

implementation platforms 
 The reconfiguration of the controller can be achieved in Real-Time 

 

1.7 Delimitation of research 
The research project is delimited in the following sections: 

 Modelling: The modelling of the reconfigurable plant focuses on the inverted pendulum 
and the overhead crane plant models derivation only.  

 Control strategies: MRC theory is used to organise the structure of the entire system, 
where the used linear reference models are designed based on the linear mathematical 
models and the LQR method. Two theories for design of nonlinear controllers are used – 
the Lyapunov second method and the geometrical theory for linearization of the closed-
loop system. Firstly, Lyapunov direct method is used to analyse the closed-loop systems 
stability. Secondly, it is also used to design a nonlinear controller. The feedback 
linearization method is the other method that is used for nonlinear controller design. 
Other control strategies are not applied in the reconfigurable system 

 Simulation platforms: All the simulations are done in the MATLAB/Simulink software 
environment only 

 Real-Time implementation platforms: The Real-Time implementations are deployed 
on the following platforms: 
a) NI DAQ card with MATLAB/Simulink platform 
b) NI DAQ card with LabVIEW platform  
c) NI CompactRIO FPGA with LabVIEW platform 
 

1.8 Assumptions 
The assumptions are made according to the different parts of the research work. These 

assumptions include: 

 The reconfigurable plant is working according to the prescribed instructions 
 The mathematical models can be derived according to the existing physical laws. The 

linearization of the nonlinear models can lead to linear models capable of being used for 
design of linear controllers in neighbourhood of the selected equilibrium points 

 The linear and nonlinear control methods and theories are powerful enough to support 
the design of a reconfigurable controller 

 The simulation environment results provide good approximation to the Real-Time 
implementation results 

 The hardware can provide high performance, based on the high speed I/O port and 
accurate signal processing technology associated with noise filtering 
 

1.9 Motivations for the research 
There are several motivations for doing this research project. First of all, from the social 

contribution point of view: Manufacturing industry is one of the major industries 

contributing to the economic growth in South Africa. It is necessary to keep South 

Africa’s manufacturing industry to be comparable world wide. RMS provides the 

possibilities that the manufacturing companies can produce the suitable product to the 
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market in a short period of time with low cost and flexibility. Now, RMS is regarded as the 

trend and the future of the manufacturing industry and the existing RMSs have proven 

their great advantages. In other word, RMS gives manufacturing companies the flexibility 

and the possibility of joining the intense market competition in the global economic 

process. On the other hand, there are demands for RMS, because the manufacturing 

companies need more advanced RMSs for greater efficiency, lower cost, easier 

configuration and so on.  

 

Secondly, from the country scientific competiveness point of view, research of RMS is 

one of the latest, most complex and across research area in the world. Many companies, 

universities, institutes and even governments have taken part in the RMS study. Huge 

amount of funds have been invested in this area. But, still there has not been big 

involvement from South African. As the ponderance of RMS, South Africa’s universities 

have the responsibility to join the research field of RMS and the research outcomes can 

serve the country’s manufacturing industry and economic development.  

 

Thirdly, from the control theory point of view, there are several technique challenges to 

motivate the research, such as:  

 The research is based on the nonlinear dynamic model of the system. This model is 
difficult to be used for the Real-Time control and several difficulties with the nonlinear 
models are involved: 
a) They do not follow the principle of superposition (linearity and homogeneity). 
b) They may have multiple isolated equilibrium points (linear systems can have only 

one). 
c) They may exhibit properties such as limit-cycle, bifurcation, chaos. 
d) Finite escape time: The state of an unstable nonlinear system can go to infinity in 

finite time. 

 Difficulties with the control of the inverted pendulum and the overhead crane: 
a) In the inverted pendulum configuration, the task is to control an inherently unstable 

system. In order to balance the pendulum in the inverted position the pivot must 
continuously be moved. 

b) In the overhead crane configuration, the task is to control the position of the load 
which possesses great oscillatory dynamics. 

 Difficulties in applying the nonlinear control strategies 
a) The Lyapunov direct method is applied to design one of the nonlinear controllers. It is 

well known that the Lyapunov function is difficult to be found. 
b) The feedback linearization method is the other nonlinear control method used to 

design the nonlinear controller in this project. The difficulty of using the feedback 
linearization method is how to select the reference model dynamics and how to make 
the nonlinear controller robust. 

 Difficulties in the Real-Time implementations: 
a) Many variables are difficult to be measured. 
b) Many parameters are difficult to be determined, especially in the nonlinear processes  
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c) Compatibility between different software and hardware platforms for embedded 
control implementation 

d) New Real-Time implementation platforms as FPGAs are used 
 

1.10 Research methods 
The field of RMS is a complex discipline which requires integrated approach for providing 

research activities. That is why different research methods are used during the different 

phases of the research work on the project.  

 Descriptive method: To describe the plants to be controlled as objects of control – The 
pendulum system. It is necessary to obtain information about the pendulum system parts: 
the hardware structure, the components specifications, the physical setup and the 
involved physical phenomenon. The information is gathered by observation, technology 
study, measurements, questionnaires and interviews with the operating personnel.  

 Experimental method: The cause and effect dependencies in the processes are studied 
in order to take data needed for mathematical model parameter estimation. The 
experiments are provided on the basis of information obtained from the descriptive 
method application, after planning, preparation and implementation of the planned 
actions. 

 Design method: Development of methods for design of control based on the existing 
control techniques. The information from the process description and model development 
is used. Novel technique or application of the existing knowledge is realized. Research 
on the control strategies, development of mathematical models and closed-loop systems 
simulations are done. 

 Design method: Combine and integrate different hardware and software for Real-Time 
implementation of the closed-loop system. Work with different hardware and software 
platforms, software for Real-Time implementation is written. 

 Experimental method: To study the behaviour of the process under the influence of the 
designed control action. The control methods and Real-Time control implementations are 
finalized. 

 Descriptive method: To describe the designed system with all specific characteristics and 
functions. To produce the methodology for the operator and guideline for the system 
control. Information is gathered from all above steps. 

 

1.11 Literature survey 
Judging by the number of publications in journals and at conferences, there are many 

researchers working in the field of nonlinear control, RMS, inverted pendulum, overhead 

crane and DAQ. A few of them are involved with FPGA. This information was gathered 

from consulting books, journal publications, the Internet, and conference proceedings. 

Different authors have different views on many issues and different solutions are 

proposed and implemented. The relative references are studied in Chapter 2 including 

the existing mathematical models, control strategies and the implementation platforms. In 

the other chapters, the other existing work are referenced or used as a basis for further 

developments.  
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1.12 Chapter Breakdown 
This thesis consists of nine chapters. These chapters include the background information, 

model development, controller design, system simulation, system implementation, results 

of the project and conclusion.  

 

Chapter 1 presents the background study of the project. The RMS is introduced by 

associating the challenges and problems in manufacturing industry in South Africa, 

especially the automotive manufacturing industry. The pendulum system as a lab-scale 

reconfigurable system is briefly introduced. The project statements include: the research 

aim and objectives, statement of the problem, hypothesis, research delimitation, research 

motivations, assumptions and research methods.  

 

Chapter 2 presents the existing work that is related to this project. It includes the study of 

the lab-scaled RMS, the existing mathematical models of the inverted pendulum and 

overhead crane. The existing Real-Time implementation platforms are studied as well.  

 

Chapter 3 provides the background study of both linear and nonlinear control theory by 

referring to the control of the inverted pendulum and overhead crane. The typical linear 

control strategies include the root locus method, the pole-placement method, the 

quadratic optimal control method and the typical nonlinear control strategies include the 

model reference control method, Lyapunov stability theory and feedback linearization 

method. The existing works of controller design for the inverted pendulum and the 

overhead crane are studied as well.  

 

Chapter 4 presents the detailed mathematical models derivation. The pendulum system 

is described in detail first. Based on the understanding of the pendulum system physical 

structure, the nonlinear and linear mathematical models are derived. The models are 

also simulated in Matlab.  

 

Chapter 5 shows the linear controller design based on the pole-placement method and 

the LQR method and the corresponding closed-loop simulation results. More importantly, 

by using the LQR method, the designed linear closed-loop system is used as the 

reference model in the nonlinear control system design. The closed-loop systems based 

on the pole-placement and LQR method are simulated and the simulation results are 

given.  
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Chapter 6 describes the nonlinear controller design based on LDM and the closed-loop 

simulation results. The common procedure of nonlinear controller design based on LDM 

is introduced firstly. By using this common procedure the LDM based nonlinear 

controllers for controlling the inverted pendulum and the overhead crane are designed. 

The closed-loop systems are simulated and the simulation results are presented. 

 

Chapter 7 presents the nonlinear controller design based on the feedback linearization 

method and the closed-loop simulation results. The new states are selected. The 

nonlinear models are converted to linear representation. By using the linear control 

technique, linear controllers are designed for the linearized closed-loop system. The 

closed-loop systems are simulated and the simulation results are shown.  

 

Chapter 8 describes the Real-Time implementation platforms configuration structure and 

the Real-Time implementation results. The used different hardware and software are 

introduced in detail. The Real-Time implementation results are shown.  

 

Chapter 9 provides the detailed conclusions and the future research direction in the field 

of RMS.  
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CHAPTER TWO 
LITERATURE REVIEW 

 
2.1 Introduction 

The research work of this project focuses on development of the control methodology for 

RMS. The RMS used in this project can be reconfigured into the inverted pendulum 

mode and overhead crane mode. Control of the inverted pendulum and the overhead 

crane are typical problems in automation control field, which have been studied 

extensively. The existing works include the mathematical models derivation, and control 

strategies design. The Real-Time implementation platforms for controlling of the inverted 

pendulum and the overhead crane are studied and summarized in this chapter. These 

related latest research works in interrelated fields are studied in the sequence of: 

 Reconfigurable system as inverted pendulum and overhead crane 
 Linear and nonlinear control strategies 
 FPGA technology 

Amount them, the central elements involved in the project are the nonlinear controllers 

design and Real-Time control implementation on the embedded FPGA platform.  

 

In this chapter, section 2.1 recapitulates the content of the chapter. Section 2.2 studied 

the reconfigurable system used in this project, as well as the existing mathematical 

models of the inverted pendulum and the overhead crane. In section 2.3, the control 

theories, techniques and methods are studied associated with the controlling of the 

inverted pendulum and the overhead crane. Some of the existing Real-Time 

implementation platforms are presented in section 2.4. At the end, the conclusion is 

given in section 2.5. 

 

2.2 Reconfigurable system used in this project 
The RMS is introduced in Chapter 1. In this project, a lab-scale RMS is used. This RMS 

is a pendulum system manufactured by Bytronic Limited, Staffordshire, England. 

Originally, the pendulum system is not used for manufacturing purposes, but mainly for 

educational and research purposes. In this project, the pendulum system is not used for 

manufacturing purpose either, but because it can be reconfigured into the inverted 

pendulum mode and the overhead crane model, it is an excellent example for 

demonstrating the basic idea of the reconfigurable plant.  

 

Both the inverted pendulum and the overhead crane are nonlinear mechanical systems 

and both of them have corresponding meaningful applications. The inverted pendulum 
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can be used as a simplified representation of the rocket or missiles guidance system 

(Tan and Habib, 2007:371) or it can be used to represent the human stances, such as 

stationary human standing (Barauskas, Krušinskienė, 2007:612) or human walking 

dynamic (Kuo, 2007:617). The problem of balancing an inverted pendulum by moving the 

pivot cart in horizontal direction is also commonly used in control education to provide a 

dramatic experiment and to illustrate the difficulties in controlling a plant which has 

unstable open-loop poles. The overhead crane is used widely in industry, in 

transportation systems and rehabilitation equipment (Chang et al, 2007). It works as a 

robot in many ways. It transports all kinds of massive goods. It is desired for the 

overhead crane to transport its payloads to the desired location as fast and as accurately 

as possible without collision with other equipment. Furthermore, the swing of the payload 

should be suppressed as much as possible (Liu et al, 2005). Furthermore, both the 

inverted pendulum and overhead crane are used as typical test benches for new control 

strategies. Because of these exclusive characteristics, both systems have been studied 

extensively in terms of their physical dynamics, and different control strategies have been 

applied.  

 

The development of the nonlinear and linear mathematical models of the inverted 

pendulum and the overhead crane in this project, based on the other researchers’ and 

engineers’ previous works is described in Chapter 4. In this section, some of the existing 

typical mathematical models of both the inverted pendulum and the overhead crane are 

studied. Basically, there are two approaches for the system model derivation: 

Newtonian’s approach and Lagrangian approach. Both approaches are studied in this 

section. The system linear mathematical models can be obtained from the corresponding 

nonlinear mathematical models through model linearization. For the dynamics of the 

inverted pendulum and overhead crane, four states are considered. These four states 

are the cart position state x, the cart velocity state , the rod angular position state θ and 

the rod angular velocity state θ . In the following sections, the inverted pendulum and 

overhead crane are studied. 

x&

&

 

2.2.1 Inverted pendulum 
There are several different kinds of the inverted pendulum systems, in terms of the 

structures setup, providing a variety of interesting control challenges (Bugeja, 2003), 

such as: the single rod with the pendulum on a cart which is studied in this project; the 

double inverted pendulum on a cart setup (Niemann, Poulsen, 2005:145), the triple 
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inverted pendulum on a cart configuration (Su and Woodham, 2003:425), the parallel-

type double inverted pendulum on a cart (Yi et al, 2000:105) and the rotational inverted 

pendulum (Yavin, 1999:131). Also, some inverted pendulum can move in 3-dimensions 

(Chaturvedi et al, 2008). The different inverted pendulum systems have different 

behaviours which correspond to different mathematical models. For this project, the 

studies focus on the inverted pendulum that has a single rod with pendulum weight on a 

cart. In the following sections, the Newton’s approach and the Lagrangian approach are 

studied respectively for the mathematical model derivations.  

 

2.2.1.1 Inverted pendulum models derivation based on Newton’s approach 
Newton’s approach is the most common way for deriving the inverted pendulum 

mathematical model. The classical Newton’s approach derives the system mathematical 

models by using Newton’s motion laws and Euler equations. If the inverted pendulum 

models are derived based on the Newton’s approach, firstly, the forces applied on the 

rod, the pendulum and the cart are analysed, and secondly the torque balance on the rod 

is studied. The force analysis is based on the Newton’s second law. The torque balance 

analysis is based on the forces applied on the rod and their corresponding moments. In 

this section, some existing typical inverted pendulum mathematical model derivations are 

investigated.  

 

One kind of the typical inverted pendulum only consists of the rod, the pendulum is not 

involved. The mathematical models of this kind of the inverted pendulum have been 

developed by different researches in different projects, such as M. Bugeja (2003), D. 

Angleli (2001), A. Irfan and J. Ashraf et al (2000). The mathematical model can be 

expressed as: 

θ−θ=θ+θ cosHLsinVLcI &&&               (2.1) 

xkxMHF &&& +=−                (2.2) 

where ( ) mgcosL
dt
dmV 2

2

+θ= ; ( θ+= sinLx
dt
dmH 2

2

) ; m is the mass of the rod; M is 

the mass of the cart; L is the distance between the pivot and the center of gravity of the 

rod; x is the displacement of the cart from origin; g is the gravitational acceleration; θ is 

the angular displacement between the rod and the vertical direction; c is friction 

coefficient between the rod and the pivot; k is the friction coefficient between the cart and 

the surface; I is the moment of inertia of the rod about its center of gravity; V and H are 

the vertical and horizontal reaction forces on the rod and F is the horizontal control force 
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applied on the cart (Bugeja, 2003). If no additional specification, these symbols are used 

with the same meaning in this chapter. 

 

The above mentioned mathematical model of the inverted pendulum has relatively closed 

formation to the model of the pendulum system when it is set into the inverted pendulum 

mode. But there is one important element of the system, the mass of the pendulum, 

which is not considered in this model, so the mathematical model does not contain the 

force analysis of the pendulum. The moment of inertia of the pendulum is not included 

either. Another incomplete fact is that the moment of inertia of the rod is not specified 

scientifically, no analysis and calculation procedures are presented. On the basis of the 

consideration above, this kind of mathematical model is not appropriate to be used to 

represent the inverted pendulum that is used in this project. 

 

In M. Henders and A. Soudack’s (1996) work, the system mass is concentrated at the top 

of the rod, the center of gravity is the center of the pendulum (Ogata, 2002:88). In this 

case, the rod mass and the moment of inertia of the pendulum about its center of gravity 

are ignored. This mathematical model is expressed as: 

FmLx)mM( =θ++ &&&&                (2.3) 

θ=+θ mgLxmLmL2 &&&&                (2.4) 

 
 
 

 
Figure 2.1:  Inverted pendulum physical mechanism setup schematic 

 
 
 
The assumption has been made in their work that the pendulum is capable of unlimited 

rotation, and the lateral excursion of the cart is also unlimited (Henders and Soudack, 

1996). These assumptions are different from the physical pendulum system which is 

shown in Figure 2.1 and considered in the project. The pendulum system does not have 

Inverted 
pendulum 

θ

Cart 

Belt Speed and 
position sensors Servomotor 
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the capability to rotate unlimitedly. The angular position θ is limited in the range of -

60°<θ(t)<60° from the vertical direction by a limitation mechanism. Also, the track length 

of the pendulum is limited to 50cm, and the initial position of the cart is in the middle of 

the track. Under these circumstances, the existing mathematical models of the inverted 

pendulum are incomplete. They are not sufficient to describe the pendulum system that 

is configured into the inverted pendulum mode.  
 

The other difference between the considered pendulum system and the described in the 

angular signal θ, in the symbolic form: 

⎢
⎢
⎢
⎢

⎣θ
θ⎥

⎦

⎤
⎢
⎣

⎡
=

xx
0100
0001

y

&

&
, (J. Lam’s, P. 

Gawthrop and L. Wang, 2006). Usually only one of these two outputs is used for control 

ecause of the above mentioned reasons, these mathematical models are not suitable 

2.2.1.2 verted pendulum model derivation based on Lagrangian approach 
ely simpler for 

papers inverted pendulums is the output signal. According to the structure of the 

pendulum system, the only output signal of the pendulum system is the position signal of 

the pendulum y. It is expressed as: y=x+Lsinθ. However, in most of the existing works, 

there are two output signals which are the cart position signal x and the pendulum 

⎤⎡x

purposes.  

 

⎥
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B

for describing the inverted pendulum that is being used in this particular project. But the 

essential idea of how to derive the mathematical model of the inverted pendulum based 

on the Newton’s laws is the same. Based on it, accurate and integrated nonlinear and 

linear mathematical models of the inverted pendulum are derived in Chapter 4.  

 

In
The Lagrangian approach provides an alternative method which is relativ

developing of the mathematical models. For a conservative system, Lagrangian (L’) is 

defined as kinetic energy (T’) of the system minus its potential energy (V’). It can be 

expressed as: L’=T-V’ (Blair, 2002:4). The Lagrangian’s equation is defined as:  

0
q
'L'Ld ∂⎞⎛ ∂

qdt
=

∂
−⎟⎟

⎠
⎜⎜
⎝ ∂&

               (2.5) 

where q is the generalized coordinate.  
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Substitute the Lagrangian expression directly into the Lagrangian’s equation; the 

obtained differential equations describe the motion of the system. For the cart, inverted 

pendulum system, it has two degrees of freedom. Two generalized coordinates are 

needed to represent the system fully. These two coordinates are chosen as the 

horizontal displacement of the cart from the origin x and the angular displacement of the 

pendulum from vertical direction θ.  

 

Lagrangian approach is used a lot for development of the inverted pendulum 

mathematical models. For example, in the work of Ö. Altinöz (2007:277), the inverted 

pendulum motion equations have been derived (Altinöz, 2007:278):  

( ) 2mLcosmLxmMF θ−θθ++= &&&&&              (2.6) 

( ) θ=θ+θ+− cosxmLsinmgLmLI 2 &&&&             (2.7) 

It can be seen from this model that there is no friction considered.  

 

A well organized mathematical model of the inverted pendulum by using Lagrangian 

approach is done by A. Stimac (1999). In his work, the generalized forces are analysed 

first: 

( ) xctfx &−=Ξ                 (2.8) 

θ−=Ξθ
&k                 (2.9) 

 

Then the Lagrange’s equations for x and θ can be expressed respectively: 

xx
L

x
L

dt
d

Ξ=
∂
∂

−⎟
⎠
⎞

⎜
⎝
⎛
∂
∂
&

             (2.10) 

θΞ=θ∂
∂

−⎟
⎠
⎞

⎜
⎝
⎛
θ∂
∂ LL

dt
d

&
 (Stimac, 1999:9)           (2.11) 

Simplifying and rearranging the Lagrange’s equations, the obtained system equations 

are: 

( ) ( )tFsinmLcosmLxkxmM 2 =θθ+θθ−++ &&&&&&          (2.12) 

( ) 0sinmgLcImLcosxmL 2 =θ+θ+θ++θ− &&&&  (Stimac, 1999:11)        (2.13) 

 

But the inverted pendulum system that he used does not have pendulum mass, only rod 

is involved. This is different from the pendulum system that is used in this project. Similar 

work has been done by different researches, such as: A. Formal’skii (2006:56-64), A. 

Brizard, G. González and so on.  
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2.2.2 Overhead crane 
There are several different kinds of overhead cranes. The cart can move in one-

dimension or two-dimensions, in other words, the cart moves along a straight line or on a 

surface. As a common fact, the systems have the same dynamics on their own directions 

(D. Liu et al, 2005). The payload is connected to the cart through a flexible cable 

(d’Andréa-Novel and Coron, 2000) or a rigid rod. The payload is fixed or it can move 

along the cable or rod. All these factors make the mathematical models of the overhead 

crane to be different. The reconfigurable plant used here can be configured into an 

overhead crane in which the cart can only move in one dimension. The pendulum 

corresponds to the payload in this system and it can move along the rod. The overhead 

crane is an inherently stable system. Its mathematical model can be derived by using the 

similar method that is used for the inverted pendulum mathematical model derivation. In 

this section, some existing overhead crane models are studied.  

 

2.2.2.1 Overhead crane model derivation based on Newton’s laws 
The overhead crane studied by Fang et al (2001) has very similar structure with the 

overhead crane that is used in this project. But there are some assumptions made to 

simplify the model of the crane system, which include: 

 the cart can move only in one direction, i.e. only a planar swinging of the load is 
considered; 

 the load can be regarded as a point mass; 
 the cable has negligible mass and it is rigid; 
 nonlinearities like backlash or coulomb friction are not considered (Fang et al, 2001:3767) 

 

In the considered pendulum system, the configuration is that the cart can only move in 

one dimension. The payload is a pendulum and it is homogeneous medium which can be 

considered as a point mass. Based on the frame of the pendulum system, the above first 

two assumptions are taken in this project. The third assumption ignores the mass of the 

rod and the forth assumption ignores the nonlinearities of the system. These two 

assumptions are not considered in the project. In the developed overhead crane 

mathematical model, the rod mass and the nonlinearities are considered for developing 

the complete models.  

 

In the work of Fang, another assumption is made: 

 The angular position and velocity of the payload and the planar position and velocity of 
the gantry are measurable (Fang et al, 2001:3766) 
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In the pendulum system, there is a servo potentiometer to measure the angle signal θ(t) 

and a multi-turn potentiometer to measure the position signal x(t). But there is no sensor 

for  measurement. This assumption is not adopted.  ( )tθ&

 

The above mentioned assumptions are included in the work of T. Burg et al (1996) as 

well. In addition, the other two assumptions are made:  

 The angular position θ(t) of the payload mass is assumed to always satisfy the inequality 
-90°<θ(t)<90° as measured from the vertical position 

 The control input to the system is the mechanical force applied directly to the cart (Burg 
et al, 1996:3155)  
 

The angular position of the payload mass of the considered pendulum system is limited 

by an angle limitation mechanism. The pendulum system consists of a servo system. It 

generates the force which is applied on the cart to control the payload. So these two 

assumptions accord with the structure of the physical pendulum system and they are 

adopted. Based on the above mentioned assumptions, the equations of motion for the 

overhead crane system are (Burg et al, 1996:3156): 

0singLmcosxLmLm pp
2

p =θ+θ+θ &&&&           (2.14) 

( ) FxbsinLmxmmcosLm 2
ptpp =+θθ−++θθ &&&&&&           (2.15) 

where mp is the payload mass, which equivalent to the mass of the pendulum; mt is the 

mass of the cart (Burg et al, 1996:3156). Other coefficients share the same meaning as 

predefined symbols. 

 

But this model does not contain a friction between the rod and the pivot and the mass of 

the rod. It is not sufficient to represent the overhead crane that is used in the project. 

Based on the selected assumptions and Newton’s laws, the nonlinear and linear 

overhead crane mathematical models are derived in Chapter 4.  

 

2.2.2.2 Overhead crane models derivation based on the Lagrangian approach 
The Lagrangian approach can also be used for development of the overhead crane 

model. In the work of D. Liu et al (2005), this approach is adopted and they derived the 

mathematical model for a two dimension overhead crane and one dimension overhead 

crane respectively. The similar work of the one dimension overhead crane model 

development is done by R. Huilgol (1995), and the obtained mathematical model 

equations are: 
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( ) FsinmLcosmLxmM 2 =θθ−θθ++ &&&&&           (2.16) 

0sinmgLcosxmLmL2 =θ+θ+θ &&&&  (Liu, 2005:508)          (2.17) 

In this model all frictions are ignored. The mathematical model is not integrated.  

 

Till now, it can be seen that there is not a complete nonlinear mathematical model for the 

inverted pendulum and overhead crane which can be used fully to describe the 

pendulum system that is used in this project. In addition, it can be noticed that the 

Newtonian’s approach of the inverted pendulum and overhead crane mathematical 

models derivation is clearer and easier for one to understand, as well. This is because 

one goes through the analysis of the forces and the torques applied to the rod, the 

pendulum and the cart during the model derivation process. This derivation procedure 

gives one a better understanding of the systems internal dynamics. The Lagrangian 

approach is based on the energy analysis, it is simpler in terms of the derivation once the 

procedure is mastered, but it is not intuitionistic for one to understand how the system 

behaves. So, in this project, the Newtonian’s approach is adopted.  

 

Both linear and nonlinear models of the inverted pendulum and overhead crane 

mathematical models are derived in this project. The linear models are relative simpler 

and they cannot represent the physical system accurately. The nonlinear models can 

describe the physical system exactly, but with more complicated expressions. The 

derived nonlinear mathematical models in this project have the features of accuracy and 

integrity. All the factors that affect the system behaviour are considered, such as the 

friction between the rod and the pivot, friction between the cart and the surface, the 

moment of inertia of the rod and pendulum and so on. The linear mathematical models of 

the system are obtained by linearizing the nonlinear mathematical models. The 

mathematical model derivations are done in Chapter 4.  

 
2.3 Control strategies 

As the pendulum system is accepted as a test bench of the new control strategies, 

different control theories and methods have been used to control the inverted pendulum 

and overhead crane. These control theories include from classical control to modern 

control; from frequency domain to time domain and from linear control to nonlinear 

control. The applied control methods include the phase-plane method, the root locus 

method (Lundberg and Roberge, 2003:4399-4404), the well-known pole-placement 

method (Ogata, 2002:850-855), the linear state feedback control method (Z. Lin et al, 
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1996:933-937), the LQR control method, 

(http://www.engin.umich.edu/group/ctm/examples/pend/digINVSS.html), the famous PID 

control method (Irfan et al, 2000), the fuzzy logic control (FLC) method, model reference 

control method, feedback linearization method (Bugeja, 2003), neural networks and so 

on. The above mentioned control methods have been studied extensively and some of 

these methods are standard examples which can be found in the control system text 

book. As part of the previous work, the applications of the two most common methods – 

the pole-placement method and the LQR control method, on the pendulum system for 

the case of linearized models are presented in Chapter 5.  

 

With the development of the control theories, control techniques, modern computation 

technology and because of the disadvantages of the linear control strategies, the control 

methods that have been used to control the inverted pendulum and the overhead crane 

have been transferred from linear to nonlinear control theories and methods. During this 

transformation, many researchers have gone into the nonlinear control theories and 

methods. Many novel theories, techniques and approaches have been introduced 

including feedback linearization, variable structure control (sliding model control), 

backstepping, regulation control, nonlinear H∞ control, internal model principle, and H∞ 

adaptive fuzzy control. Some of these theories and approaches have been well adopted 

to control the inverted pendulum, the overhead crane and other systems.  

 

In recent years, the further work of controlling the inverted pendulum and overhead crane 

is focused on the combined linear-nonlinear, nonlinear-nonlinear control strategies. The 

combined control strategies demonstrate an incredible advantage over the individual 

control strategies in terms of the system responses and performance indices. Now, one 

may realise that this is also one of the development directions of the control theory. 

Different kinds of hybrid combinations of different control methods have been developed 

and applied onto controlling the inverted pendulum and the overhead crane. In the work 

of P. Phan and T. Gale (2008:871-899), a direct self-structuring adaptive fuzzy control 

(DSAFC) scheme is presented, which combines the self-structuring with adaptive control 

and FLC. This proposed control scheme is applied to control an inverted pendulum and a 

magnetic levitation system (Phan, Gale, 2007:871). An LQR-based linear control strategy, 

valid in the “linear region” of operation of the pendulum, is generalized to a nonlinear 

direct fuzzy control design and used to control an inverted pendulum in a large range 

(Yurkovich, Widjaja, 1996:455). The predictive control and pole-placement are brought 

together to form the predictive-pole-placement (PPP) algorithm in continuous-time by 
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Gawthrop and Ronco (2002). The method is used to control an inverted pendulum 

system in P. Gawthrop and L. Wang’s work (Gawthrop, Wang, 2005:1347). Q. Wu et al 

(2002) did work on combining the feedback control and neural network for controlling of a 

base-excited inverted pendulum (Wu, 2002:267). An on-line adaptive control scheme 

based on feedback-error-learning is proposed and applied to inverted pendulum by X. 

Ruan et al (2006). An adaptive sliding model fuzzy control approach is proposed for a 

two-dimensional overhead crane by D. Liu et al (2004). This method combines the 

robustness of the sliding-model-control (SMC) and independence of the FLC. In B. 

d’Andréa-Nove and F. Boustany’s work (1991), the linearization technique and the 

Lyapunov approach were combined with adaptive control to deal with the problem of 

parametric uncertainties and the methods are applied to control an overhead crane 

(1998). In the work of Ö. Altinöz (2007), the adaptive backstepping controller for inverted 

pendulum is designed. Adaptive nonlinear control is well known for solving the parameter 

uncertainty problems. The method of backstepping is a novel nonlinear control technique 

based on the Lyapunov design approach and its key idea is to drive the error equation to 

zero by designing unique control and parameter adjustment laws.  

 

On the basis of the said above it can be concluded that a lot of work has been done for 

controlling the inverted pendulum and the overhead crane by using different individual or 

combined control strategies. Among them, the adaptive control, feedback linearization 

control and Lyapunov stability theory attract more attention from researchers. This is 

because of the robustness of the adaptive control; the simplicity of the feedback 

linearization control and the universality of the Lyapunov stability theory. Because of the 

limitation of pages, not all of the above mentioned work can be presented in this thesis. 

However some of the representative control methods and theories, which have been 

used to control the inverted pendulum and the overhead crane, either in the individual 

forms or in the combined forms are studied in detail in the following sections.  

 

2.3.1 Adaptive control involved in the control of inverted pendulum and overhead crane 
Adaptive control of nonlinear systems has drawn much attention during last decade and 

many significant developments have been achieved (Yang and Wang, 2006:932). 

Adaptive control is used to control the system with uncertainty parameters. For instance, 

it can be used for ship steering. For a long distance cruise, the ship is controlled by the 

automatic steering. However, the dynamic of the ship strongly depends on many 

uncertain parameters, such as water depth, ship loading, wind speed and other factors. 

Adaptive control can be used to achieve good control performance under varying 
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operating conditions, and at the same time avoid the energy loss caused by excessive 

rudder motion (Slotine and Li, 1991:313). Adaptive control has been used in other fields, 

for example: robot manipulation, aircraft control, process control and so on. Though the 

adaptive control system can be used for linear and nonlinear system, the essence of the 

adaptive control is nonlinear and it is intimately connected with Lyapunov theory which is 

reviewed in a later section. There are two main methods for adaptive controller 

construction. One is called model-reference adaptive control method and the other is 

called self-tuning method (Slotine and Li, 1991:315).  
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Figure 2.2:  General structure of MRAC scheme 
 

(Adapted from Ioannou and Sun, 2003:314) 
 
 
 
Model reference adaptive control (MRAC) is one of the model-based approaches, which 

combines the model reference control (MRC) and adaptive control, has been widely used 

in control of nonlinear systems. The quantity of literature that has been published in this 

field proves this point. A model reference adaptive control system can be schematically 

represented by Figure 2.2. It consists of four basic parts: a plant containing unknown 

parameters, a reference model for compactly specifying the desired output of the control 

system, a feedback control law containing adjustable parameters, and an adjustment 

mechanism for updating the adjustable parameters (Slotine and Li, 1991:315).  
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The plant is assumed to have a known structure, although the parameters are unknown. 

 can be seen that the desired trajectory, in the MRAC system, is no longer specified by 

s was mentioned previously, Lyapunov theory is associated with adaptive control 

The reference model is chosen to generate the desired trajectory, yd, which the plant 

output y must follow. The tracking error e=y-yd represents the deviation of the plant 

output from the desired trajectory (Ioannou and Sun, 2003:313). The plant parameters, 

such as the tracking error signal, control signal and output signal are sent to the 

controller via the adjustment mechanism. Often, only the tracking error is sent to the 

controller via the adjustment mechanism. When the plant parameters are exactly known, 

the controller should make the plant output identical to the reference model. When the 

plant parameters are not known, the adaptation mechanism will adjust the controller 

parameters to ensure a perfect tracking is asymptotically achieved. The adjustment 

mechanism is used to adjust the parameters in the control law. The adaptation law 

searches for parameters such that the response of the plant under adaptive control 

becomes the same as the reference model. The essential idea is to make the tracking 

error converge to zero (Slotine and Li, 1991:316). A very important issue in adaptation 

design is to combine an adaptation mechanism that always ensures the control system is 

stable and the tracking error converges to zero while the plant parameters are varied. 

Frequently, Lyapunov theory is used to study the system stability by mean of Lyapunov 

functions.  

 

It

a constant value, but by the output signal of a reference model. The control signal is 

generated based on the plant parameters. During this process, the tracking error 

converges to zero. It is easy to distinguish the MRAC from others, because it consists of 

a reference model and an adjustment mechanism which is associated with the controller. 

The reference model is usually linear, stable, and of the same of order as the nonlinear 

plant. The reference model states are expected to be tracked by the plant states (Jain et 

al, 2004:939) as it is in the MRC. A model reference control structure has been 

successfully combined with fuzzy neural network (Chen, Teng, 1994:291).  

 

A

frequently for stability analysis. In fact, Lyapunov theory is one of the most important 

approaches used for the system stability analysis. Once a controller is designed, it is 

necessary to study the closed-loop system stability. Only when the closed-loop system is 

proven stable, then the controller design is successful. In the next section, through a 

detailed example, the Lyapunov direct method which is one of the most important parts 
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of the Lyapunov theory is presented. A close look at what Lyapunov stability contributed 

for the controlling of the inverted pendulum and the overhead crane is presented as well.  

 

2.3.2 Lyapunov stability theory involved in the control of inverted pendulum and 
overhead crane 
Lyapunov stability theory has been widely used in the control engineering and it is also 

involved in the control of an inverted pendulum quite frequently. Particularly the 

Lyapunov direct method is extensively applied for analysis of the system stability and 

design the controller based on the Lyapunov functions. The Lyapunov function made a 

remarkable impact on stabilization theory. It transformed the stability descriptions into 

tools for solving the stabilization tasks (Cai et al, 2006: 598). The Lyapunov stability 

theory is studied in Chapter 3 in detail. Here, referring to the control of the inverted 

pendulum, some exclusive Lyapunov functions are presented. First of all, the definition of 

the Lyapunov function is given: 

 

Definition 2.1: A smooth, proper and positive definite function V: Rn→R+ is a Lyapunov 

function of the nonlinear system: 

( ) ( )uxgxfx +=&              (2.18) 

where x∈Rn and u∈Rn are the state and input of the system respectively. f(x) and g(x) 

are the nonlinear functions.  

if:  

( ) ( ){ } 0uxVLxVLinf gf <+             (2.19) 

for x≠0 (Cai et al, 2006:598,599). 

where LfV(x) is the Lie derivative of V(x) with respect to f and LgV(x) is the Lie derivative 

of V(x) respect to g.  

 

The Lyapunov function can be used to analyse the system stability. In the work of I. 

Abdelmalek et al (2007), a quadratic Lyapunov function and a non-quadratic Lyapunov 

function are used to analyse the closed-loop system stability based on the derived 

parallel distributed compensation (PDC) scheme of a Takagi-Sugeno (T-S) fuzzy system. 

How to examine the stability of a system based on Lyapunov functions is presented. A 

general procedure of stability study is done. In this work, the inverted pendulum is 

represented by T-S fuzzy model whose construction is based on the identification (fuzzy 

modelling) using input-output data or derivation from given non-linear system equations. 

(Abdelmalek et al., 2007:598).  
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A quadratic Lyapunov function is defined as follows: 

Definition 2.2: The system ( ) ( ) ( )( )tu,txftx =&  is said to be quadratically stable if there 

exists a quadratic function: ( )( ) ( ) ( )tPx txtxV T= , ( ) 00V = , satisfying the following 

conditions: 

( )( ) 0txV > ,  and ( ) 0P0tx >⇔≠∀ ( )( ) 0txV <& , ( ) 0tx ≠∀        (2.20) 

If V exists, it is called a Lyapunov function.  

 

The stability conditions referring to a quadratic Lyapunov function for the above closed-

loop system were derived as follows by Tanaka and Sugeno in 1992. 

Theorem 2.1: The fuzzy system can be stabilized via the PDC controller if there exists a 

common positive definite matrix X and Mi, i=1,…,r, such that: 

0MBBMXAXA ii
T
i

T
ii

T
i >++−−            (2.21) 

0MBBMMBBMXAXAXAXA ij
T
j

T
iji

T
i

T
jj

T
ji

T
i >++++−−−−        (2.22) 

for all i<j such that hi∩hj≠∅, where 
1PX −= , XFM ii =              (2.23) 

whereas the single quadratic Lyapunov function is given by  

( )( ) ( ) (txXtxtxV 1−= )              (2.24) 

 

The problem of finding a Lyapunov function is transferred to finding the appropriate 

positive definite matrices Mi and X. If positive definite matrices Mi and X exist, then, the 

feedback gain Fi can be calculated. Here, the PDC controller is borrowed to demonstrate 

the procedures. Other control methods can be used in a similar manner. In the work, it is 

mentioned that because of the various fuzzy rules, it can constrain a range of positive 

definite matrices selection. But if the control strategy is not like FLC which is based on 

the different control rules, the quadratic Lyapunov function is sufficient for system stability 

analyse. Furthermore, the quadratic Lyapunov function can be used to analyse and 

design a suitable controller for the nonlinear system, as proven by this work.  

 

The controller design based on Lyapunov function is based on the definition of Lyapunov 

function. Referring to Definition 2.1: Lyapunov function itself must be positive definite 

V>0 and its first derivative referring time must be negative definite . If a control 

signal u is included in the Lyapunov function, by using the constraining conditions of the 

definition of Lyapunov function, the controller can be found.  

0V <&
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In this work, a non-quadratic Lyapunov function is shown as well which is defined as: 

Definition 2.3: (Tanaka and Sugeno, 1992) Equation:  

( )( ) ( )( ) (txPx tzhtxV i
T

r

1i
i∑

=
= )             (2.25) 

is a Lyapunov function, where Pi is a positive definite matrix. (Khalil, 1996; Tanaka et al., 

2003)  

 

By using this non-quadratic Lyapunov function and following the above mentioned 

procedures, a less conservative positive definite matrix solution can be found 

(Abdelmalek, 2007:41). Applying this approach, the objective of balancing and stabilizing 

the pendulum is realized with success for different initial conditions (Abdelmalek, 

2007:46).  

 

Other Lyapunov functions have been proposed as well. R. Lozano et al (2000:197) 

presented a control strategy and a Lyapunov function for the inverted pendulum based 

on the total energy of the system. In order to present the used Lyapunov function, the 

system model and energy equation are presented first. In this work, the model of the 

inverted pendulum is given by: 

( ) ( ) ( ) τ=++ qGqq,qCqqM &&&&             (2.26) 

Where: 
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The potential energy of the pendulum can be defined through G(q) as: 
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0
q
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The total energy of the cart and pole system is given as: 

( ) ( ) ( ) ( ) ( )1cosmgLqqMq
2
1qPq,qKq,qE T −θ+=+= &&&& ;         (2.28) 

 

Based on the total energy equation, the proposed Lyapunov function is expressed as:  

( ) ( ) 2x2v2E x
2

kx
2

kq,qE
2

kq,qV ++= &&&           (2.29) 
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where kE, kv and kx are strictly positive constants. It can be seen that  is a positive 

semi-definite function. Its first derivative according to time is expressed as: 

( q,qV & )

xxkxxkEEkV xvE &&&&&& ++=             (2.30) 

 

In the work of C. van Kats (2004), a Proportional Derivative (PD) controller is designed 

and a proposed Lyapunov function is used to analyse the closed-loop system stability. 

The Lyapunov function is expressed as: 

( 222 a
2
1

2
1V θ+θ+θ= & )

)

            (2.31) 

where a is a constant coefficient. The time derivative of V is: 

( 2abaV θ+θ−θ−= &&              (2.32) 

It can be seen, this Lyapunov function has the quadratic form as well. Its first derivative 

 can be easily proven as negative definite function.  V&

 

There are other Lyapunov functions that have been successfully applied to analyse the 

stability of the inverted pendulum or design a controller for the inverted pendulum. From 

above listed Lyapunov functions, one can easily see that the quadratic Lyapunov function 

has the inherent predominances in comparison with others, for instances: It is a well 

studied Lyapunov function which has been applied extensively for different linear and 

nonlinear systems and good results have been obtained; It has a much simpler 

expression, the simpler expression is very meaningful and helpful once the closed-loop 

system is complicated, because there are huge amount of derivations and calculations 

involved, a relative simpler Lyapunov function will reduce the mathematical work 

dramatically. Finally, though Abdelmalek et al (2007) did not used quadratic Lyapunov 

function to analyse the stability of the closed-loop inverted pendulum system, they have 

proved that the quadratic Lyapunov function is sufficient to analyse the stability of the 

inverted pendulum indirectly. Furthermore, the use of the quadratic Lyapunov function 

can be extended for controlling of the overhead crane easily. As it is known, the 

overhead crane is inherently stable. The other typical and lately used nonlinear control 

technique of feedback linearization is studied in next section.  
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2.3.3 Feedback linearization involved in the control of inverted pendulum and overhead 
crane 
Feedback linearization is a nonlinear control design method. It has attracted a great deal 

of research interest in recent years. The idea of this approach is to algebraically 

transform a nonlinear system dynamic into a (full or partly) linear one by choosing a 

different state representation (Hedrick and Girard, 2005:134). Then the linear control 

techniques can be applied (Slotine and Li, 1991:207). The feedback linearization 

approach has been applied successfully to address many real control problems. These 

include the control of an electromagnetic suspension system (Arreola, 2004:2153-2160), 

pendulum system (Hassanzadeh et al, 2008:1322-1328), spacecraft (Bajodah, 2006:35-

53), electrohydraulic actuated mechanism (Engleder, 2007:448-456), car-pole system 

(Bedrossian, 1992:1987-1992), bank-to-turn missile system (Huang and Lin, 1993:569-

573), and so on. Here, some of the successful applications of the feedback linearization 

method are presented.  

 

In the work of C. Chen et al (2007), proposed a feedback linearization for tracking 

disturbance decoupling control. The closed-loop system with the proposed controller is 

valid for any initial condition. The controller is successfully applied on the nonlinear 

AMIRA ball and beam system which has similar dynamic to the inverted pendulum.  

 

A summarized proposed controller derivation is described as follows:  

A nonlinear control system with disturbances is considered: 
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( ) ( )n21 x,...,x,xhty =              (2.34) 

This system can be presented in a compact for as: 

( ) ( )( ) ( )( ) ∑
=

θ++=
p

1i
i

*
iqutxgtxftx&            (2.35) 

( ) ( )( txhty = ) ,              (2.36) 

where ( ) ( ) ( ) ( )[ nT
n21 Rtx,...,tx,tx:tx ∈= ]  is the state vector, u∈R1 is the input, y∈R1 is the 

output, ( ) ( ) ( )[ T
p21 t,...,t,t: θθθ=θ ] is a bounded time-varying disturbance vector, f, g, 
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*
1q ,…,  are smooth vector fields on R*

pq n, and h(x(t))∈R1 is a smooth function. The 

nominal system is then defined as follows: 

( ) ( )( ) ( )( )utxgtxftx +=&             (2.37) 

( ) ( )( txhty = ) ,              (2.38) 

with relative degree r.  

( )( ) ,0txhLL k
fg =  1rk −<             (2.39) 

( )( ) 0txhLL 1r
fg ≠−              (2.40) 

for all x∈Rn and t∈[0, ∞).  

 

The desired output trajectory yd(t) and its first r derivative are all uniformly bounded and: 

( ) ( ) ( ) ( ) ( )[ ] d
r

d
1
dd Bty,...,ty,ty ≤             (2.41) 

where Bd is some positive constant.  

 

Under the assumption of well-defined relative degree, it has been shown that the 

mapping: 

( )( ) ( ) ( )( txhLt:tx 1i
fii
−=ξ=φ )

)

]

, i = 1, 2, …, r           (2.42) 

( )( ) (t:tx kk η=φ , k=r+1, r+2, …, n            (2.43) 

and satisfying 

( )( ) ,0txL kg =φ  k=r+1, r+2, …, n            (2.44) 

is a diffeomorphism onto image. For the sake of convenience, define that trajectory error 

to be: 

( ) ( ) ( ) ( )tyt:te 1i
dii
−−ξ= , i=1, 2, …, r            (2.45) 

( ) ( ) ( ) ( )[ rT
r21 Rte,...,te,te:te ∈=            (2.46) 

and ( ) ( ) ( ) ( )[ rT
r21 Rt,...,t,t:t ∈ξξξ=ξ ]
]

           (2.47) 

( ) ( ) ( ) ( )[ rT
r21 Rt,...,t,t:t ∈ηηη=η            (2.48) 

( ) ( )( ) ( ) ( ) ( )[ ]
[ ]Tn2r1r

T
nf2rf1rf

qqq:                

tL,...,tL,tL:t,tq

L++

++

=

φφφ=ηξ
          (2.49) 

 

Theorem 2.2: Suppose that there exists a continuously differentiable function which has 

V: Rn-r→R+ such that the following three inequalities hold for all η∈ Rn-r: 
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(a) ( ) 2
2

2
1   V  ηω≤η≤ηω , 1ω , 2ω >0,           (2.56) 

(b) ( ) ( ) 2
x22

T
t   20,,tqVV ηα−≤η∇+∇ η , 0x >α , where ( ) ( ηξ=η ,q0,,tq22 ) ,     (2.57) 

(c)   V 3
2

ηϖ≤∇η ,            (2.58) 03 >ϖ

Then, the tracking problem with almost disturbance decoupling is globally solvable by the 

controller defined by: 
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where  is some adjustable real matrix. ε is adjustable positive constant. [ n21 k,...k,k:K = ]
 

In the work of Sharma and Kar (2007), the feedback linearization method is combined 

with adaptive control to control a chaos system. The adaptive control is used to estimate 

the uncertain parameters in the model. The selected reference model has the same 

order as the plant and is a stable linear system. The system unknown parameters are 

evolved using an adaptation law. The adaptation law aims to drive the system towards 

the ideal condition to achieve the perfect matching with the reference model.  

 

A recurrent high-order neural network for both identifying and controlling unknown 

chaotic systems is proposed by Z. Lu et al (2006:2337-2354). In this work, the feedback 

linearization technique is used in an adaptive manner. The Lyapunov theory is used to 

prove the boundedness of the asymptotic stability of the tracing error (Lu et al, 

2005:2337-2354).  

 

An exact feedback linearization of the mobile robots is proposed in the work of K. Park et 

al (2000). Based on newly proposed coordinates, it is possible to transform the point 

stabilization problem into a problem of controlling a linear time-invariant system. By using 

the well-established linear control theory, the problem of the robot point stabilization is 

solved (Park et al, 2000). In this work, the linear feedback control is used. The developed 

kinematic system of the mobile robot satisfies the necessary and sufficient conditions for 

the state-space exact feedback linearization. The results can be extended to other 

kinematic system of the mobile robots with some modification (Park et al, 2000). 

 

From review of the above literature, it can be seen that the feedback linearization 

approach has been well adopted in different fields which are facing nonlinear control 
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problems. The inverted pendulum is a typical nonlinear system with the property of being 

under-actuated. In the work of C. Chen et al (2007), a good controller, which is almost 

universal, is proposed. However in that work, the desired trajectories are not specified.  

 

In section 2.3, different control theories, techniques and methods are briefly studied 

associated with controlling of the inverted pendulum and overhead crane. Based on the 

study of the existing research work, two methods are proposed in this project for the 

controller design. One is Lyapunov stability theory based model reference control design, 

the other is the feedback linearization based model reference control design. In next 

section, some existing Real-Time implementation platforms are introduced.  

 

2.4 Hardware implementation platform 
Most of the existing work and relative publications only focus on the simulation work and 

most of the simulations are done in the Matlab environment. Very limited studies have 

been done on the Real-Time implementations. In the work of J. Lam a general purpose 

data acquisition and control board MultiQ-3 associated with Matlab/Simulink is used to 

implement the controller and analyze data for the inverted pendulum (2004). Similarly, in 

N. Muškinja and B. Tovornik’s work (2006) control algorithm and data acquisition and 

visualization are realized with Matlab/Simulink, and Real-Time xPC target products on a 

personal computer (PC) with 12-bit AD/DA converter. The TMS320C6711 Digital Signal 

Processor (DSP) is used as the controller by M. Bugeja (2003) for the swing-up and 

stabilizing an inverted pendulum. The DSP (MS320C50) combined with a FPGA is used 

to implement the control of a biped robot by S. Oh et al (2003). In the work of A. Irfan et 

al (2000), a Single Board Computer (SBC) and a PI and PD op-amp based analog 

electronics circuit are used to construct a PID controller for controlling of an inverted 

pendulum. In the work of D. Liu et al (2004), the control algorithm for controlling of a two-

dimensional swing-free transporting overhead crane is implemented on a Pentium III 

800MHz PC running under the Windows operation system.  

 

From the existing implementation works, it can be seen that basically there are four ways 

to realize the Real-Time implementations. They are DAQ, DSP, SBC and analog circuits. 

In this project, the controller is designed as a reconfigurable controller which is used to 

implement complex nonlinear control algorithms in the industrial environment. So, it is 

necessary for the complicated nonlinear control algorithm to be deployed. It must be 

reprogrammed quickly in order to synchronize with the plant reconfiguration. According to 

these requirements, the implementation platform must have characteristics such as: 
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sufficient high speed Input/Output (I/O) ports, field programmable ability, and capacity to 

deal with complicated mathematical calculation. The FPGA can fulfil the above 

mentioned requirement. Furthermore, each I/O port of the FPGA can be defined by the 

user which makes it much more flexible, this is meaningful when it comes to the 

hardware design in terms of reducing the wiring and simplifies the design. Considering 

the application of the RMS in the industry, the reconfigurable controller must have the 

properties of: 

 Big capacity to accommodate huge control algorithms 
 Flexibility in terms of reconfiguration friendly 
 Customization in terms of reconfigurablility according to the requirements 
 Reliability for extended running periods without problem 
 Safety in terms of it not being harmful to the works and other equipment around 
 Easy maintenance in terms of easily de-bugging and fixing 
 Diagnosibility in terms of self-diagnosis 
 Cost efficiency, no additional cost 

 

In the previously mentioned papers above Real-Time implementation platforms cannot 

fulfil the above described properties. The DAQ must work with PC which limits the 

flexibility and reliability. The DSP is a good alternative candidate besides its cost 

efficiency. SBP has limited I/O ports and limited capability and speed. Analog circuit is 

not suitable for digital control and it is difficult to implement complex nonlinear control 

algorithms. As a contrast, the FPGA based controller, for example, NI CompactRIO 

FPGA is manufactured according to the industry standards. It can fulfil the above 

mentioned requirements. It is suitable for use in industry. Additionally, LabVIEW as the 

support software for the NI CompactRIO is well developed software. This provides easy 

compatibility for the software and hardware integration.  

 

In this project, the NI CompactRIO is adopted as the final Real-Time implementation 

platform as it is exclusively advantageous. The DAQ system based Real-Time 

implementation platform is used as well, but it is only used as the transition to prove that 

the designed controllers are capable to control the inverted pendulum and the overhead 

crane in Real-Time.  

 

2.5 Conclusion  
In this chapter, some of the existing mathematical models of the inverted pendulum and 

the overhead crane are studied. Some control strategies for controlling the inverted 

pendulum and the overhead crane have gone through and some existing Real-Time 

implementation platforms are shown as well. By studying these existing works, it proves 
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that the complete mathematical models for the pendulum system are necessary to be 

derived. These mathematical models include the inverted pendulum nonlinear and linear 

models, the overhead crane nonlinear and linear models. The proposed control 

strategies include a Lyapunov stability theory based model reference control design and 

a feedback linearization based model reference control design. In the next chapter, some 

typical control strategies either linear or nonlinear are studied, especially, the Lyapunov 

direct method, the feedback linearization method and the model reference method. From 

the implementation point of view, FPGA is the best choice to fulfil the requirement of the 

reconfigurable controller. The detailed descriptions of the FPGA are presented in 

Chapter 8.  
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CHAPTER THREE 
LINEAR AND NONLINEAR CONTROL THEORY 

 
3.1 Introduction 

The world consists of all kinds of different systems, big or small, simple or complicated. 

The human practice actions aim at knowing and changing the world. The control theory is 

the subject that studies different systems and finds the universal common control law. 

Nowadays the application of the control theory extends all over every aspect of the 

modern life. It becomes one essential artifice that human beings can use to understand 

and remodel the world. 

 

Control theory is the base of the automation. Automation releases the human from 

burdensome, even dangerous physical force labour, and it is also the key technique that 

boosts the work productivity and the product quality. For a given system, characterized 

with nonlinear behaviour and outside environmental uncertainty, control based only on 

the human sense or experience can not reach the high precise control requirements. 

Better solutions are given by the control theory. The control theory must give the best or 

satisfied control strategies in order to get the quantification precision or ideal targets. It is 

based on application of the mathematical methods. For every system to be controlled, 

the control theory must solve the following three basic questions: (Guo, 1997) 

 Is the system controllable 
 How to overcome the uncertainty of the system structure and the influence of the 

disturbance  
 How to find the detailed and satisfied implementable control strategy 

 

In order to answer the above mentioned questions, different control theories, techniques 

and methods are developed. Here are some examples. The primary thing of studying a 

system is to find the system mathematical model. Because of the complexity of the 

system, it is difficult to derive the accurate model only based on the physical, chemical 

and biological laws directly. As an alternative, by using the system input and output data, 

the parameters of the model can be found using the theory of identification. Because of 

many systems, states are not measurable and the disturbances include random noise, 

which initiated the development of the signal filtering theory. Since many system 

parameters are not a pre-determined and they are time varying, the robust control theory 

and adaptive control theory are carried out. For the more uncertain and more complex 

systems, the artificial neural networks and artificial intelligence are necessary to be 

deployed. With the aim of finding the idiographic control method, it is required to apply 
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the system optimal mathematical theories and methods. For implementing these control 

strategies, the advanced computation machine, different instruments and implementation 

components are used. Finally, the main concern is whether the system is stable under 

the closed feedback loop, and whether the system achieves the control target. To answer 

these questions on the theory level, the high-order nonlinear random dynamic equations 

must be solved.  

 

Since the end of the 1950s, the control theory went through a transformation from the 

classical control theory to modern control theory. The classical control theory focuses on 

the single-input and single-output (SISO) linear system, the typical theory includes: 

Routh-Hurwitz stability criterion, Nyquist analysis, Bode chart, Ziegler-Nichols tuning, 

Wiener filtering and so on. Euler equation and stationary random processes are the main 

mathematical tools used during the classical control period. The modern control theory, 

contacted almost all the sub-branches of the applied mathematics with the wider and 

deeper research spectrum. The modern control theory includes the following algebraic 

theories, such as: Pontryagin maximum theory, Bellman’s dynamic programming, 

Kalman filtering theory, state space model’s controllability, observability and feedback 

stabilization. During the past forty years, modern control theory developed rapidly driven 

by the engineering techniques need and computer technology development. Important 

progress has been made especially in the area of: nonlinear control, distributed 

parameter control, stochastic control, robust control, adaptive control and so on. 

 

With the rapid development of new computer and high technologies and with the growth 

of economical competitiveness in recent years, people face more and more complex 

dynamic systems where the requirements towards the system accuracy, efficiency and 

reliability are very high. New control problems in space technology, life science, industrial 

processes, society and environmental fields are bringing new challenges towards the 

control theories. The complex systems have the following common properties, such as: 

randomicity of the system dynamics and disturbances; high nonlinearity of the system 

dynamic; roughness of the measured information; the mixture of the continuous and 

discrete; high order and distribution of the state variables; strong coupling between 

subsystems. The complex system control has broken the limitation of the traditional 

control concepts and method in scale, complexity and agility. It requires the controller to 

have the ability to “study” and “recognize” the system, to adapt and to be robust towards 

the disturbances. It can be seen that the direction of development of control theory is to 

investigate more and more advanced intelligent control methods in order to process more 
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and more complicated practical systems. Control theory is a highly integrated cross 

subject, it has interactions with mathematics, computer science and engineering 

technique, it also has strong links with physical science and management science. The 

general concepts involved in the control theory have important influence over the 

technology progress and society development.  

 

As mentioned previously, the control theory is a powerful tool to guide the practice. In this 

chapter, the linear control theory and nonlinear control theory are presented in section 

3.2 and 3.3 respectively. Referring to this project, the main issue of the project is to deal 

with the nonlinear controller design which is discussed in detail. The linear control theory 

as the relative knowledge and fundamental control theory will be introduced briefly first.  

 
3.2 Linear control theory 

Linear control theory focuses on the linear control system analyses and design. When 

the linear control theory is used to analyse a control system, the system or plant model 

and the corresponding controller are given. Linear control theory deals with linear 

systems, but in the real world most systems are nonlinear. The linear systems have 

always being considered as a special case of the nonlinear systems. However, in many 

cases the nonlinearity is very small and can be neglected, or the limits of operation are 

small enough to allow a linear analysis to be applied (D’Azzo and Houpis, 1988:18). If the 

given model is nonlinear, it is necessary to find the equivalent linearized model first. Then, 

based on the system model and pre-designed controller, the performance of the control 

system is studied. The linearization can be done through the Taylor series expansion. 

The detailed procedures are revealed in a later section of the chapter. When the 

techniques are used to design the controller for a given process, the procedures are 

reversed. At this time, the control specifications are given. By applying the control 

theories and design techniques, a proper controller must be designed. Then, the 

designed controller should control the system to meet all specifications such as the 

required rising time, overshoot, steady state error and others.  

 

3.2.1 Linear system 
A system satisfying the superposition principle can be classified as linear system. A 

linear system can be described in the complex domain by a transfer function, or in time 

domain it can be described by a set of first order differential or difference equations for 

continuous time and discrete time respectively. To simplify the complexity, the systems 

considered in this chapter are all continuous ones and expressed in time domain. As an 
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example, the continuous Linear Time-Varying (LTV) system equation is presented in 

state space form as follow: 

( ) ( ) ( ) ( ) ( )
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+=&

              (3.1) 

where x(t)∈Rn is the state vector. y(t)∈Rl is the output vector and u(t)∈Rm is the input 

vector. A(t)∈Rn×n is the state matrix, B(t)∈Rn×m is the input matrix, C(t)∈Rl×n is the output 

matrix and D(t)∈Rl×m is the direct transmission matrix.  

 

As a very conventional control strategy, the linear control theory has been well developed 

and applied. The applications have covered such a broad range. Here the linear control 

theories are applied for linear system analyses and controller design.  

 

3.2.2 Linear system performance analyses 
Linear system performance analyses can be deployed in the complex domain and the 

time domain. In complex domain, the transfer function is used to represent the system, 

either open loop system or closed-loop system. As a well known mathematical tool, the 

Laplace transform is used to transform the system from time domain differential 

equations to the complex domain. The system performance analyses in complex domain 

take the study of the system steady state response to various inputs signals, for instance, 

impulse input, step input and ramp input. One of the very important benefits of this 

method to analyse linear systems is that the linearity and the algebraic feature of the 

Laplace transform allows for the modularizing of the total system into subsystems and for 

the combining of subsystems into large super systems in an easy and simple way. On 

the other hand, the transfer function based control strategies have the limitation to be 

applied on the system with non-constant parameters and multiple input multiple output 

(MIMO) systems. At this stage, the time domain state space analyses are introduced 

(Batzel, 2001:21). The state space theory has the advantages and includes features 

which are capable to handle MIMO systems, incorporates optimal design and provides 

numerical methods for solutions.  

 

At the system performance analysis stage, stability, controllability and observability are 

the most important properties of a system. These properties must be investigated to 

determine the level and usefulness of control that can be exerted on the system 

(Mohammad et al, 1992:56). For a Linear Time-Invariant (LTI) system, these properties 

can be determined by the characteristic equation in complex domain. In time domain, 
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they can be determined by the state space representation matrices (A, B, C and D) 

directly as shown in system equation 3.1. These properties of the LTI system and LTV 

system are studied briefly below because the linear control is not the main issue of the 

project.  

 

3.2.2.1 Stability analyses 
Stability is one of the most import properties of the system. Generally speaking, a system 

is useful only when it is stable. Stability is considered as a fundamental problem. Let it is 

assumed that the system is at some equilibrium state and is perturbed initially. If the 

trajectory of the perturbed system eventually returns to the equilibrium state, the system 

is stable. If the system trajectory moves further away from the equilibrium state, the 

system is unstable (Mohammad et al, 1992:56). There are stability definitions for a linear 

system: 

a) A linear system is stable if all poles of the closed-loop transfer function are in the left 
half complex plane. 

b) A linear system is stable if a bounded input produces a bounded output. 
c) A linear system is stable if the system impulse response integral is bounded. 
d) A linear system is stable if all poles of the matrix equation (sI-A)-1 are in the left half of 

the s plane. (Sage, 1981:153) 

There are several methods that can be used to determine the system stability, such as: 

Routh Hurwits criterion, Nyquist criterion. Both of them are well known and easily applied. 

There is also gain margin and phase margin method which can be used for stability 

assessment.  

 

3.2.2.2 Controllability  
A system controllability is investigated in the following way: a given system is at its initial 

state x(t0), if there exist such control input u(t) that can transfer the system from its initial 

state to the desired state, the system is controllable. Only when the system is 

controllable, its dynamics can be influenced by the input. This definition implies that u(t) 

is able to affect each state variable x(t) (D’Azzo and Houpis, 1988: 467). A LTI system is 

controllable if the controllability matrix has full rank. The controllability matrix can be 

expressed as: R=[A   AB   A2B.…An-1B], where n is the number of the states. A LTV 

system is controllable at time t0, if and only if, for a moment t1>t0 the rows of 

ϖ(t)=Φ(t0,t)B(t) are linearly independent in the period [t0,t1], where Φ(t0,t) is the system 

transition matrix. (Mohammad et al, 1992:59) 
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3.2.2.3 Observability  
A system is said to be completely observable if every initial state x(t0) can be exactly 

determined from the measurements of the output y(t) over the finite interval of time t0≤t≤tf. 

This definition implies that every state of x(t) affects the output y(t). (D’Azzo and Houpis, 

1988: 467) For LTI systems, if the rank of the observability matrix O=[C   CA   

CA2……CAn-1] has same value as the number of the states, then the system is 

observable. A LTV system is observable if and only if the columns of the matrix C(t) Φ(t0,t) 

are linearly independent in the interval [t0,t1]. 

 

3.2.3 Linear system controller design 
As the counter part of the linear system performance analysis, in the linear system 

controller design phase, the design specifications are given. Based on the study of the 

plant, a controller is necessary to be designed. The controller should be capable of letting 

the system follow the desired trajectory. The linear system controller design techniques 

are well studied in both classical and modern control era. Several different techniques 

have been developed for both complex domain and time domain. Here some of them are 

briefly described, for example, the root locus method, the pole placement method and the 

quadratic optimal control method.  

 

3.2.3.1 The root locus method 
The root locus method is a graphic method applied for the SISO LTV control systems. 

The fundamental idea of the root locus method is to add poles and zeros to the system’s 

open loop transfer function and to force the root loci to pass through the desired closed-

loop poles in the s-plane (Ogata, 2002:417). In the sense of controller design, the effect 

of the poles and zeros on the open-loop transfer function is studied first. Based on the 

understanding of the effect, the proper poles and zeros are selected to be put to the 

open-loop transfer function in order to get the desired root loci.  

 

In essence, the root loci in the root locus design are reshaped through the adding poles 

and zeros so that a pair of dominant closed-loop poles can be placed at the desired 

location. The extra poles added to the open-loop transfer function can pull the root locus 

to the right which can increase the system instability and slow down the settling of the 

response. On the other hand, the extra zeros added to the transfer function can pull the 

root locus to the left which can make the system more stable and speed up the settling of 

the response.  
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The procedure of adding poles and zeros to reshape the root locus in order to improve 

the system performance is called compensation or stabilization. When the system is 

compensated, it shows better performance, such as higher stability and better transient 

response. The steady state error can be reduced by using a bigger system gain (D’Azzo 

and Houpis, 1988: 343). The compensation either lead or lag can be deployed by using 

all kinds of different electrical or mechanical means, for example, Operational Amplifiers 

(Op-Amp), Resistor-Capacitor (RC) network and spring-dashpot systems.  

 

3.2.3.2 The pole placement method 
The root locus method is based on the use of transfer function in the complex domain. It 

is used to deal with the SISO systems. For the MIMO systems, the pole placement 

method, which is also known as the pole assignment method, is used. It is similar to the 

root locus method excepting that in the pole placement method all the closed-loop poles 

are placed to the desired locations rather than only the dominant closed-loop poles.  

 

In many design problems, a system is stabilized through state feedback. Here, the basic 

problem of pole placement by state feedback is to find a feedback control law: 

u(t)=Gr(t)+Kx(t) for a LTI system:  
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The closed-loop system can be expressed as: 
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where x(t)∈Rn is the state vector; y∈Rl is the outputs vector; u∈Rm is the inputs vector; 

r∈Rm is the reference signal. A∈Rn×n, B∈Rn×m, C∈Rl×n and D∈Rl×m are constant matrices 

with respected dimensions. Matrix G∈Rm×m is an adjustment gain. It is used when a 

nonsingular transformation on the input is applied. Matrix K∈Rm×n is called the state 

feedback gain matrix. One must be aware that only when the LTI system is completely 

controllable, then the eigenvalues of the closed-loop dynamic system can be arbitrarily 

chosen. To find the feedback gain matrix K, the standard procedures in control text 

books can be followed. The detailed procedures are described in Chapter 5. There 

commands which can be used for computation of the feedback gain matrix in Matlab are 

also introduced in Chapter 5. By using these commands, the problem can be solved 

easily. 
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3.2.3.3 The quadratic optimal control method 
An advantage of the quadratic optimal control method over the pole-placement method is 

that the former provides a systematic way of computing the state feedback control gain 

matrix (K. Ogata, 2002:897). In modern optimal control theory of linear deterministic 

dynamic system, represented in continuous time by Equations (3.2), the linear state 

feedback control signal is expressed as: u(t)=-Kx(t). By optimizing the value for the 

feedback gain K(t), the following performance criterion which is also called performance 

index is minimized: 

(∫∞ +=
0

TT dtRuuQxxJ )               (3.4) 

where Q∈Rn×n is a positive definite (or positive-semidefinite) Hermitian or real symmetric 

matrix and R∈Rm×m is a positive-definite Hermitian or real symmetric matrix.  

 

The criterion is selected wisely. It requires minimization of “square” of input, which is the 

control signal. In other words, it minimizes the input energy required to control a given 

system. On the other hand, it requires minimization of the “square” of the state variables. 

That means the differences between the desired trajectories and actual system states 

trajectories are minimized. The minimization can be interpreted as the goal of bringing 

the system as close as possible to the desired trajectories while optimizing the energy 

usage (http://www.ece.rutgers.edu/~gajic/psfiles/lqr.pdf). For the regulation problem, the 

origin is zero. If the problem is to regulate the state variables to some constant values, 

the problem becomes set point control problem. This transformation can be done easily 

by shifting the origin.  

 

In order to find the linear feedback law, there are standard steps to derive the method 

equations. The obtained controller equation is: 

( ) ( ) ( )tPxBRtKxtu T1−−=−=               (3.5) 

The matrix P must satisfy the following reduced Riccati equation:  

0QPBPBRPAPA T1T =+−+ −              (3.6) 

 

Now the procedure of designing a linear quadratic feedback controller can be 

summarized: 

 Solve the reduced-matrix Riccati equation for the matrix P. If a positive-definite 
symmetrical matrix P exists, the system is stable. 

 Substitute this matrix P into the Riccati equation, the matrix K is the optimal matrix.  
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There are other methods to analyse the linear system’s performances as well as other 

linear controller and observer design methods, such as the Linear-Quadratic-Gaussian 

control (LQG), H∞ control method and so on. As they are not the research emphases, 

they are not studied here.  

 

The linear system control theory has its drawbacks. Because the physical world is 

nonlinear essentially, linear systems cannot fully accomplish the desired goals. These 

limits and drawbacks force the engineers to look for more capable, more efficient control 

strategies. The nonlinear control theories are more advantageous in control strategies 

compared to the linear control ones.  

 

3.3 Nonlinear control theory 
Nonlinear control theory is the theory used to analyse and design the nonlinear control 

systems. Nonlinear control system contains nonlinear components; they can be either in 

the nonlinear plant or in the nonlinear controller, even exist in both of them at the same 

time. From a mathematical point of view, the nonlinear systems can be defined relatively 

easier by excluding linear parts from the systems. If the system satisfies both additively 

and homogeneity properties, the system is considered as a linear system, otherwise it is 

a nonlinear system. Commonly, a nonlinear dynamic system can be expressed by a set 

of nonlinear differential equations in the form of: 

( t,xfx =& )                 (3.7) 

In which f∈Rn×1 is a nonlinear vector function, and x∈Rn is the state vector. The number 

of states n is called the order of the system.  

 

The nonlinear methods for analysis and design of control system are developed in order 

to achieve the following goals: 

Improvement of existing control systems: Linear control methods rely on the key 

assumption of small range operation for the linear model to be valid (Slotine and Li, 

1991:2). In nature, most physical systems are inherently nonlinear, which means the 

linear model cannot completely describe the physical systems and its dynamics, because 

the nonlinearities of the system are not included in the model. Because of the above 

mentioned reason, the linear model is not sufficiently valid when the operation range is 

large. On the other hand, the nonlinear system can fully describe the system model and 

based on the more accurate model the controller can be designed to be more efficient. 
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The operation range of the nonlinear control system is also wider compared to the linear 

control system. 

Analysis of hard nonlinearities: In control engineering systems, there is much 

nonlinearity whose discontinuous nature does not allow linear approximation. These so-

called “hard nonlinearities” include Coulomb friction, saturation, dead-zones, backlash, 

and hysteresis (Slotine and Li, 1991:2). The linear control methods are not applicable for 

these systems. Because the nonlinearities frequently cause chaos in the control system, 

the nonlinear control theory must be developed to compensate for the inherent nonlinear 

performance of these systems. 

Dealing with model uncertainties: Many model parameters in the control problems are 

not determinable due to the circumstances changing. An application of a linear controller 

based on incorrect values of the model parameters can cause significant performance 

degradation or even instability of the closed-loop system. Nonlinearities can be 

intentionally introduced into the controller part of the control system so that model 

uncertainties can be tolerated (Slotine and Li, 1991:2-3). 

Design simplicity: Nonlinear controller designs are often deeply related with the 

essential physical phenomenon of the plants. This makes the nonlinear control designs 

possibly simpler and more efficient than their linear corresponded designs.  

 

Above mentioned reasons give an answer to the question: why must nonlinear control 

theory is developed? Thus, as a subject, nonlinear control is an important field of control 

system analysis and design. In the analysis, a nonlinear closed-loop system is assumed 

to have been designed, and the behaviour characteristics are necessary to be 

determined (Slotine and Li, 1991:1). There are several well developed techniques to 

analyse nonlinear control system, including: Describing function method; Phase plane 

method; Lyapunov stability analysis method; Singular perturbation method; Small-gain 

theorem. For the nonlinear controller design, the nonlinear plant to be controlled and 

some specifications of the closed-loop system behaviour are given. The task is to 

construct a controller so that the closed-loop system meets desired characteristics 

(Slotine and Li, 1991:1). The relative nonlinear controller design techniques include: 

Trial-and-error method; Feedback linearization method; Lyapunov redesign method; 

Nonlinear damping method; Sliding mode control method; Gain scheduling method; 

Robust control method; Adaptive control method and so on. 
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From the application point of view, the nonlinear control design and implementation 

requires big amount of computation. This was the limitation in the past for the application 

and development of the nonlinear control techniques. With the popularization of the 

computers and their price going down, the nonlinear control design and application for 

large range operations has attracted particular attention. The considered problem, control 

of an inverted pendulum in a large range, is a typical application of the nonlinear control. 

The task in this project is to design the suitable nonlinear controllers for the 

reconfigurable plant. Two typical nonlinear strategies are chosen: the Lyapunov direct 

method and the feedback linearization method. In this project, both of them are used to 

design the nonlinear controllers by associating with the model reference control (MRC) 

method. In the following sections, the MRC method, the Lyapunov stability theory and the 

feedback linearization are studied.  

 

3.3.1 Model reference control (MRC) 
One useful method for specifying system performance for nonlinear and uncertain 

systems is by means of a model that will produce the desired output (Datta, Loannou, 

1995:2370-2387). The objective of the MRC is to develop a control strategy that forces 

the plant dynamics to follow the dynamics of an ideal model. The ideal model is not the 

actual hardware. It can be only a mathematical model simulated on a computer. In the 

MRC system, the output of the model and that of the controlled system are compared 

and the error vector – e(t) is used to generate the control signals (Uçar, 2005:713). The 

MRC has been used to obtain acceptable performance in some very difficult control 

problems involving the systems containing nonlinearity and/or time varying parameters 

(Datta, Loannou, 1995:2370-2387). 

 

In the complex domain, the task is to design a controller whose closed-loop transfer 

function matches the reference model. In the time domain, the closed-loop response is 

necessary to follow the reference model response. The use of a reference model to 

follow is worthwhile in that the model is a system that has such good performance that it 

is worth imitating. (Paz, 2002:6). The reference model is set as the example that the 

closed-loop will follow. It must contain certain characteristics to ensure it has the distinct 

advantages, such as: 

 Internal stability 
 Steady-State Tracking capability 
 Transient performance according to the designer’s requirements 
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3.3.1.1 Internal stability 
Internal stability implies that the closed-loop system is a stable transfer function and that 

the controller cancels neither unstable poles nor zeros (Paz, 2002:7), because the 

unstable poles and zeros cancelation cannot make sure that all poles are stable. Internal 

stability also implies that the controller used is a proper controller (i.e., the relative degree 

of the controller be greater than or equal to zero) (Paz, 2002:7). For a proper reference 

model, it must have a relative degree that is greater than equal to that of the plant. In 

general, the relative degree of the model should be set to equal to the plant and requires 

that the relative degree is zero. Generally speaking, it is preferable to choose a model 

with the minimal relative degree and minimal order. A minimal order model is a model 

with a constant numerator that has the appropriate relative degree. 

 

3.3.1.2 Steady-state tracking 
Normally, for any problem, there are an infinite number of models to choose from. 

However, a good model makes all the difference. It provides a basis for conduct among 

infinitely many choices. Generally in the complex domain, if the numerators of the closed-

loop model transfer function is chosen carefully for a minimum order and minimum 

relative degree, and if the model is stable, then the model will asymptotically track the 

reference signal (Paz, 2002:9). But there is still infinite number of choices for a model.  

 

3.3.1.3 Transient performance 
It is difficult to define a good transient performance in order to find a good model. For 

different applications, the same transient performance can be perfect or disastrous 

disaster because the application determines what transient performance is good. But a 

good transient performance model shares some common properties. For example: It can 

be simpler model – the first and second order model. If the plant is of relative degree one 

or two, these may be the right ones. And it is an optimal model. These are models in 

which the very best model for a given criteria are provided. Since there are a lot of 

potential criteria, quite a few models are provided.  

 

These characteristics ensure the reference model can be chosen from infinite choices 

and they also ensure that the reference model has as close as possible behaviours to the 

ideal model. The reference model provides the desired trajectory. The different control 

strategies can be applied to design the controllers, which can guarantee the closed-loop 

system has an identical response to the reference model. Here, the Lyapunov stability 
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theory and the feedback linearization method are introduced on the basis of a reference 

model.  

 

3.3.2 Lyapunov stability theory 
3.3.2.1 Introduction of Lyapunov stability theory 

Unstable system is typically useless and dangerous. For a control system, one of the 

most important properties is whether the system is stable. The stability of the control 

system should be carefully studied no matter whether the system is linear or nonlinear. 

Lyapunov theory is the most useful and common method for studying the stability of the 

nonlinear control system. The theory is introduced in the late 19th century by the Russian 

mathematician Alexander Mikhailovich Lyapunov. There are two methods for stability 

analysis, linearization method (indirect method) and direct (Lyapunov second) method. 

Today, Lyapunov’s linearization method has come to represent the theoretical 

justification of linear control, while Lyapunov’s direct method has become the most 

important tool for nonlinear system analysis and design. Together, the linearization 

method and the direct method constitute the so-called Lyapunov stability theory (Slotine 

and Li, 1991:41). In the following content, the linearization method is mentioned briefly as 

the relative knowledge. As a focus of the stability study and Lyapunov’s direct method 

application for the nonlinear system controller design in this project, the Lyapunov direct 

method is studied carefully in detail.  

 

3.3.2.2 Lyapunov’s linearization method 
The local stability of a nonlinear system is considered by the Lyapunov’s linearization 

method. It is a formalization of the intuition that a nonlinear system should behave 

similarly to its linearized approximation for a small range motions (Slotine and Li, 

1991:53). As the linearized approximation is studied, the linear control techniques are 

used. If the linear control is stable, it guarantees the stability of the original physical 

system locally.  

 

For a particular system, its linearization can be easily found by ignoring all terms that 

have order higher than 1 in the corresponding Taylor series expansion of the nonlinear 

system derived for the equilibrium point xe, f(xe)=0. It can be expressed as follows: 

Consider the autonomous system described in Equation (3.1). If f(x) is continuously 

differentiable, the system can be written as: 
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is called linearization of the original nonlinear system at equilibrium point 0.  

 

Investigation of the solution of the linearized system in Equation (3.9) shows the 

capabilities of the system to go and stay at the equilibrium point. The following results 

make the accurate relationship between the stability of the linear system and its original 

nonlinear system. They are known as the Lyapunov’s linearization theorem. 

 

Theorem 3.1: Lyapunov’s linearization theorem:  

 If the linear system is strictly stable (i.e., if all eigenvalues of A are strictly in the left-half 
complex plane), then the equilibrium point is asymptotically stable (for the actual 
nonlinear system) 

 If the linearized system is unstable (i.e., if at least one of the eigenvalues of A is strictly in 
the right-half complex plane), then the equilibrium point is unstable (for the nonlinear 
system). 

 If the linearized system is marginally stable (i.e., all eigenvalues of A are in the left-half 
complex plane, but at least one of them is on the jω axis), then one cannot conclude 
anything from the linear approximation (the equilibrium point may be stable, 
asymptotically stable, or unstable for the nonlinear system). (Slotine and Li, 1991:55) 
 

Lyapunov’s linearization theorem is based on the approximation of the original system. 

Because of the linearization approximation, the stability of the original system can be 

studied in a very small range which is even difficult to be defined. These drawbacks 

promote the development of the Lyapunov’s direct method.  

 

3.3.2.3 Lyapunov’s direct method 
The Lyapunov’s direct method has been well studied and applied for both linear and 

nonlinear systems. The basic philosophy of Lyapunov’s direct method is the 

mathematical extension of a fundamental physical observation: If the total energy of a 

mechanical (or electrical) system is continuously dissipated, then the system, whether 

linear or nonlinear, must eventually settle down to an equilibrium point (Slotine and Li, 

1991:55). Then, a system’s stability can be concluded by evaluating the variation of a 

single scalar function. Because of the importance of these functions in the Lyapunov’s 

direct method, they are denoted as Lyapunov functions. The control Lyapunov function 
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made a marvellous impact on stabilization theory. It has converted stability descriptions 

into tools for solving stabilization tasks (Cai et al, 2007: 598-602). Lyapunov functions 

allow the determination of stability for non-linear systems without the need to find exact 

solutions as by the linearization method.  

(http://library.wolfram.com/infocenter/MathSource/547/nl_stab.txt, 18 April 2008). 

 

Before Lyapunov function is studied, some definitions and theorems are needed to be 

clarified, as: positive definite function, Lyapunov function, Lyapunov theorem for local 

stability, Lyapunov theorem for global stability, local invariant set theorem and global 

invariant set theorem. All these definitions and theorems are used to study the stability of 

linear or nonlinear systems. Furthermore they are also used to design the controller for 

different systems. Each of the above mentioned definitions and theorems are given as 

background knowledge below.  

 

Definition 3.1: (Global positive definite): A scalar continuous function V(x) is said to be 

locally positive definite if: 

Let x∈  for x=0, V(0)=0 and for x≠0→V(x)>0, where  is a sphere of values of x.  
0RB

0RB

If the above property holds over the whole state space, then V(x) is said to be globally 

positive definite.  

 

Definition 3.2: (Lyapunov function): If, in a sphere , the function V(x) is positive 

definite and has continuous partial derivatives, and if its time derivative along any state 

trajectory of the system (3.2) is negative semi-definite, i.e., 

0RB

( ) 0xV ≤& . 

then V(x) is said to be a Lyapunov function for the system. 

 

Theorem 3.2: (Local stability): If, in the sphere , there exists a scalar function V(x) 

with continuous first partial derivatives such that: 

0RB

 V(x) is positive definite (locally in ) 
0RB

  is negative semi-definite (locally in ( )xV& ( ) 0xV ≤& ) 

then the equilibrium point 0 is stable. If, actually, the derivative  is locally negative 

definite in , , then the stability is the asymptotic one.  

( )xV&

0RB ( ) 0xV <&
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Theorem 3.3: (Global stability): Assume that there exists a scalar function V of the state 

x, with continuous first derivatives such that: 

 is positive definite ( )xV
  is negative definite ( )xV&

 →∞ as ║x║→∞ ( )xV

then the equilibrium at the origin is globally asymptotically stable. 

 

Theorem 3.4: (Local invariant set theorem): Consider an autonomous system of the form 

(3.7), with f continuous, and let V(x) be a scalar function with continuous first partial 

derivatives. Assume that: 

 For some l>0, the region Ωl defined by V(x)<l is bounded 
  for all x in Ω( )xV& 0≤ l 

Let R be the set of all points within Ωl where ( )xV& =0, and M be the largest invariant set 

in R. Then, every solution x(t) originating in Ωl tends to M as t→∞. 

 

Theorem 3.5: (Global invariant set theorem): Consider an autonomous system of the 

form (3.1), with f continuous and let V(x) be a scalar function with continuous first partial 

derivatives. Assume that 

 V(x) →∞ as ║x║→∞ 
  over the whole state space ( )xV& 0≤

Let R be the set of all points within Ωl where ( )xV& =0, and M be the largest invariant set 

in R. Then all solutions globally asymptotically converge to M as t→∞. 

 

Applying the above theorems, it is not difficult to study the system’s stability or to design 

a particular controller for linear or nonlinear system based on the Lyapunov’s direct 

method. Even appears that a common method of studying the systems’ stability can be 

found. Unfortunately, the other problem which is how to find the Lyapunov functions for a 

specific nonlinear problem arises. In fact, there is no general approach to construct 

Lyapunov functions for nonlinear systems. This is a fundamental drawback of the 

Lyapunov’s direct method. Therefore, the construction of Lyapunov function becomes the 

bottleneck of the design technique developed by using Lyapunov function. Faced with 

specific systems, one has to use experience, intuition, and physical insights to find and 

construct a suitable Lyapunov function (Slotine and Li, 1991:55). Two useful methods, 

one is called Krasovskii’s method, the other is called variable gradient method can 
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provide systematic ways to determine a suitable Lyapunov function, and are introduced 

briefly in the following sections. (http://netlib.org/linalg/html_templates/node20.html, 

February 20th, 2007) 

 

3.3.2.3.1 Lyapunov analysis of LTI systems 

For a stable LTI system: ( ) ( )tAxtx =& , its Lyapunov function satisfies:  

V(x)>0, V(0)=0             (3.10) 

( ) 0
dt
dx

x
V

dt
dVxV ≤

∂
∂

==&             (3.11) 

A LTI system is stable, if such a scalar function V(x) associated with the system and 

satisfying the both conditions exists. The system is asymptotically stable if  is negative 

definite. A quadratic Lyapunov function can be chosen as: 

V&

( ) ( ) ( )tPx txxV T=              (3.12) 

where P∈Rn×n is a given symmetric positive definite matrix (P=PT>0). Then: 

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )tQxtxtxPAPAtxtxP txtPx txxV TTTTT −=+=+= &&&        (3.13) 

where Q∈Rn×n is a positive definite matrix (Q=QT>0). Equation ATP+PA=-Q is called the 

Lyapunov algebraic equation. Now the Lyapunov stability theory for the LTI System can 

be formulated as: 

Theorem 3.6: A necessary and sufficient condition for a LTI system ( ) ( )tAxtx =&  to be 

strictly stable is that, for any symmetric positive definite matrix Q, a unique matrix P, the 

solution of the Lyapunov algebraic equation is symmetric and positive definite.  

 

3.3.2.3.2 Krasovskii’s method 
Krasovskii’s method provides a Lyapunov function candidate for autonomous nonlinear 

system in the form of V(x)=fTf. The basic idea of the method is to find out whether this 

particular choice indeed leads to a Lyapunov function (Slotine and Li, 1991:84). The 

method is well concluded in the Generalized Krasovskii theorem, stated as follows: 

Theorem 3.7: (Generalized Krasovskii theorem) Consider the autonomous system 

defined by Equation (3.1), with the equilibrium point of interest being the origin, and let 

A(x) denote the Jacobian matrix of the system. Then, a sufficient condition for the origin 

to be asymptotically stable is that there exist two symmetric positive definite matrices P 

and Q, such that, ∀A≠0 the matrix  

( ) QPAPAxF T ++=              (3.14) 
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is negative semi-definite in some neighbourhood Ω of the origin. The function V(x)=fTPf is 

then a Lyapunov function for the system. If the region Ω is the whole state space, and if 

in addition, V(x)→∞ as ║x║→∞, then the system is globally asymptotically stable. 

(Slotine and Li, 1991:85) 

 

3.3.2.3.3 The variable gradient method 
The variable gradient method is another useful method for finding suitable Lyapunov 

functions. The theory of the method is to assume a certain form for the gradient of an 

unknown Lyapunov function first, then find the Lyapunov function itself by integrating the 

assumed gradient (Slotine and Li, 1991:86). In this method, a special form of gradient ∇V 

is assumed instead of assuming a special form for the Lyapunov function V. The detailed 

mathematical expression and explanation can be found in relative nonlinear control text 

books.  

 

Lyapunov stability theory has been studied and applied extensively. It is one of the 

fundamental tools to study the system stability. Additionally, based on the Lyapunov 

direct method, nonlinear control law can also be derived. In this project, a Lyapunov 

stability theory based MRC by using the Lyapunov direct method design is applied to 

control the inverted pendulum and the overhead crane. This part of work is presented in 

chapter 6.  

 

3.3.3 Feedback linearization 
3.3.3.1 Introduction of the feedback linearization 

Feedback linearization as an approach for the nonlinear control design has drawn a lot of 

attention in past decade. It has been studied extensively. Many related papers have been 

published and many ramifications have resulted. “The central idea of the feedback 

linearization approach is to algebraically transform a nonlinear system dynamics into a 

(fully or partly) linear one, so that linear control techniques can be applied.” (Slotine and 

Li, 1991:207) Although this approach is linearizing the nonlinear system, it is completely 

different from the conventional linearization. The feedback linearization is done through 

changing of variables and a suitable control input is derived that simply makes a linear 

approximation of the system dynamics.  

 

Feedback linearization has been widely used in different fields. The successful 

applications include the control of helicopters, high performance aircraft, industrial robots 

55 



and biomedical devices. The advantages of feedback linearization are that the design of 

control can be used generally, in the sense that the same principle can be used on all 

systems of the right type. Moreover, extensions have been developed to take into 

account possible model inaccuracies.  

 

As the control tasks can be divided into two categories: stabilization (regulation) and 

tracking (servo) which is more difficult that the other generally, the study of feedback 

linearization approach is also considered for these two kinds of problems. The typical 

examples of stabilization tasks are temperature control of refrigerator, altitude control of 

aircraft and position control of robot arms. In the tracking task, the controller aims to drive 

the system output to follow the reference time-varying trajectories. Typical examples 

include the ship cruise liner following the specified path and a robot arm moving in a 

desired manner. In the following sections, feedback linearization approach is studied in 

detail.  

 

Here, the feedback linearization theory is studied generally. The overall idea of the theory 

is presented. In Chapter 7, the feedback linearization theory is studied in a deeper 

manner and applied to the pendulum system.  

 

3.3.3.2 Important terminologies 
Before the input-output linearization is introduced, there is some terminology that needs 

to be clarified and understood. This terminology includes: the relative degrees, the 

internal dynamics and the zero dynamics.  

 

Relative degree: The number of differentiation needed to be taken on the output y in 

order to generate an explicit relationship between the output y and the input u. For 

example, if the output y is necessary to be differentiated ρ times, in order a clear 

relationship between output y and input u to be obtained, the system is said to have 

relative degree ρ. This terminology is consistent with the notation of relative degree in 

linear system which is the excess of poles over zeros. It can also be shown that for any 

controllable system of order n, it will take at most n differentiations of any output for the 

control input to appear. This can be understood naturally: if it took more than n 

differentiations, the order of the system would be higher than n; if the control input never 

appeared, the system would not be controllable (Slotine and Li, 1991:218).  
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Internal dynamics: A part of the system dynamics that has been rendered 

“unobservable” in the input-output linearization. This part of the dynamics is called the 

internal dynamics, because it cannot be seen from the external input-output relationship. 

If the internal dynamics are stable – the states remain bounded during tracking or 

stabilizing, the problem is solved. If not, the designed controller is worthless, because the 

instability of the internal dynamics would imply undesired phenomena such as the 

burning-up of fuses or the violent vibration of mechanical members.  

 

Zero-dynamics: A relatively simpler way of studying the system internal dynamics is by 

studying the zero-dynamics. The zero-dynamics are defined as the internal dynamics of 

the system when the system output is kept at zero by the input. For linear systems the 

stability of the internal dynamics can be determined by the locations of zeros. If all zeros 

are in the left-half complex plane the global asymptotic stability of the zero-dynamics is 

guaranteed, and the stability of the zero-dynamics implies the global stability of the 

internal dynamics. In nonlinear systems, the local asymptotic stability of zero-dynamics is 

enough to guarantee the local asymptotic stability of the internal dynamics for both 

stabilizing and tracking problems. But, no results can be drawn on the global stability or 

even large range stability for internal dynamics of nonlinear systems, for instance, only 

local stability is guaranteed for the internal dynamics even if the zero-dynamics is 

globally exponentially stable (Slotine and Li, 1991:227).  

 

Two useful remarks can be made about the zero-dynamics of nonlinear systems. First, 

the zero-dynamics is an intrinsic feature of a nonlinear system, which does not depend 

on the choice of control law or the desired trajectories. Secondly, examining the stability 

of zero-dynamics is much easier than examining the stability of internal dynamics, 

because the zero-dynamics only involve the internal states. (Slotine and Li, 1991:228) 

 

Diffeomorphisms: A function µ: Rn→Rn, defined in a region Ω, is called a 

diffeomorphism if it is smooth, and if its inverse µ-1 exists and is smooth. If the region Ω is 

the whole space Rn, then µ(x) is called global diffeomorphism. Global diffeomorphisms 

are rare, and therefore one often looks for local diffeomorphisms.  

 

After clarify the terminologies that are used for study of the feedback linearization theory. 

The feedback linearization theory is studied generally in the following sections.  
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3.3.3.3 Nonlinear system in companion form 
Feedback linearization can be directly applied if a nonlinear system is in the companion 

form which is also known as the controllability canonical form. The companion form of a 

nonlinear system can be expressed as: 

( ) ( ) ⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+

=
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⎥

⎦

⎤

⎢
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⎡

−

uxbxf
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x
x

x

dt
d

n

2

n

1n

1

LL
≡ ( ) ( )uxbxfxn +=          (3.15) 

where u is the scalar control input, x is the scalar output of interest,  is 

the state vector, and f(x) and b(x) are nonlinear functions of the states. This form is 

unique in the fact that, although derivatives of x appear in this equation, no derivative of 

the input u is present.  

( )[ ]T1nx,...,x,xx −= &

 

If a system can be expressed in the companion form, by using the control input (assume 

b(x) to be non-zero) can be expressed as:  

( ) [ fv
xb
1u −= ]              (3.16) 

Then the system nonlinearities are cancelled and the system is expressed in the linear 

form as: 
( ) vx n =               (3.17) 

Thus, the control law for the stabilization task is: 
( )1n

1n10 xkxkxkv −
−−−−−= L&            (3.18) 

It is necessary carefully to choose the ki, (i=0, 1,…,n-1) so that the polynomial 

 has all it roots strictly in the left-half complex plane which means 

the system turns to exponentially stable. 

0
1n

1n
n ksks +++ −

− L

If the task is tracking a desired output yd(t), the control law is: 
( ) ( )1n

1n20
n

d ekekekxv −
−−−−−= L&            (3.19) 

where e(t)=x(t)-xd(t) is the tracking error. This control law leads the system to 

exponentially convergent tracking.  

 

It can be seen that the control derivation is straightforward if the nonlinear system is in 

the companion form. But if the nonlinear system is not in the companion form, it either 

must be transformed into the companion form or partially be linearized instead of be fully 
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linearized. The following subsections include the input-state linearization and input-output 

linearization which deal with these kinds of problems.  

 

3.3.3.4 Input-state linearization of a SISO system 
3.3.3.4.1 Input-state linearization definition 

The input-state linearization definition is given as: 

Definition 3.3: A single-input nonlinear system in the form of: 

( ) ( )u xgxfx +=&              (3.20) 

with f(x) and g(x) being smooth vector fields on Rn, is said to be input-state linearizable if 

there exists a region Ω in Rn, a diffeomorphism φ: Ω→ Rn, and a nonlinear feedback 

control law  

( ) ( )v xxu β+α=              (3.21) 

such that the new state variable z=φ(x) and the new input v satisfy a linear time-invariant 

relation 

bvAzz +=&               (3.22) 

where ; ; z is the linearizing state; u is the linearizing 

control law.  
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3.3.3.4.2 Condition for input-state linearization  
The following theorem defines the condition for a nonlinear state equation in the form of 

 to be input-state linearized. This is one of the most fundamental results 

of feedback linearization theory.  

( ) ( )u xgxfx +=&

 

Theorem 3.8: The nonlinear system in the form of ( ) ( )uxgxfx +=& , with f(x) and g(x) 

being smooth vector fields, is input-state linearizable if, and only if, there exists a region 

Ω such that the following conditions hold: 

 The vector fields { }gad ,...,gad ,g 1n
ff
−  are linearly independent in Ω 

 The set { }gad ,...,gad ,g 2n
ff
−  is involutive in Ω 

where adfg is Lie derivative.  
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3.3.3.4.3 Procedure of forming the input-state linearization 
The procedure of input-state linearization can be performed through the following steps: 

 Construct the vector field g, adfg, …, adf
n-1g for the given system 

 Check whether the controllability and involutivity conditions are satisfied  
 If both are satisfied, find the first state z1 (the output function leading to input-output 

linearization of relative degree ρ) from the equation: 

0zL...zLzL 1gad1gad1g 2n
ff

==== − , i.e.,           (3.23) 

0gadz i
f1 =∇ , i=0, …, n-2            (3.24) 

0gadz 1n
f1 ≠∇ −              (3.25) 

 Compute the state transformation [ ]T1
1n

f1f1 zLzLzz −= L  and the input 
transformation ( ) ( )v xxu β+α= , with  

1
1n

fg

1
n
f

zLL
zL
−

−=α              (3.26) 

1
1n

fg zLL
1
−

−=β              (3.27) 

 

3.3.3.4.4 Controller design based on the input-state linearization 
After the system is successfully transferred into the linear form, the controller can be 

constructed by using the controllers described in section 3.3.3.3 for both stabilization and 

tracking problems.  

 

3.3.3.5 Input-output linearization of SISO system 
A single-input-single-output nonlinear system expressed as: 

( ) ( )u xgxfx +=&              (3.28) 

( )xhy =               (3.29) 

where y is the output of the system is considered. 

 

3.3.3.5.1 Generating a linear input-output relation 
From Equations (3.28) and (3.29), it can be seen that the output y is indirectly related to 

u through the state variable x and the nonlinear state equations. The relationship 

between the output y and the input u can be created by differentiating the output function 

y repeatedly until the input u appears. Then design u to cancel the nonlinearity.  
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3.3.3.5.2 Control design procedures 
Procedures of control design based on input-output linearization can be summarized in 

three steps: 

 Differentiate the output y until the input u appears 
 Choose u to cancel the nonlinearities and guarantee tracking convergence 
 Study the stability of the internal dynamics 

If the system order equals to the relative degree associated with the input-output 

linearization, the nonlinear system is fully linearized and the above procedure indeed 

leads to a satisfactory controller based on an accurate model. If the system order is 

higher than the relative degree, the nonlinear system is only partly linearized and 

whether the controller can indeed be applied depends on the stability of the internal 

dynamics. The internal dynamics stability can be studied through the zero-dynamics 

study (Slotine and Li, 1991:228). 

 

In the Chapter 7, the feedback linearization theory is studied in a deeper manner for 

Single-Input-Single-Output (SISO) systems, Multi-Inputs-Multi-Outputs (MIMO) systems 

and Single-Input-Multi-Outputs (SIMO) systems and the feedback linearization is applied 

to the pendulum system. 

 

3.6 Conclusion 
Control theory has been under development for thousands of years. It becomes more 

and more useful and powerful than ever before because of its positive impacts. As a 

cross subject in the modern world, it plays a very important role in different aspects, such 

as: industry process, national defence, biomedical engineering, social science, economy 

and even daily life. In this chapter, linear control theory and nonlinear control theory are 

studied, especially nonlinear control theory. The control theory provides the theoretical 

basis which is a powerful tool for the engineers and researchers to solve the control 

problems in different fields. In the project, the MRC associated with the Lyapunov 

stability theory and the MRC associated with the feedback linearization approach are 

applied to design control for the inverted pendulum and the overhead crane. Before the 

control theory is applied, the mathematical models of the plant are developed. In next 

chapter, the mathematical nonlinear and linear models are developed for the inverted 

pendulum and the overhead crane.  
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CHAPTER FOUR 
MATHEMATICAL MODEL OF THE PENDULUM SYSTEM 

 
4.1 Introduction 

Mathematical model represents certain system or phenomenon by using symbolic 

mathematical expressions, involving different elements, such as: letters, numbers, 

mathematical notations, equations and so on. A mathematical model of a dynamic 

system is defined as a set of equations that represents the dynamics of the systems 

accurately (Ogata, 2002:53). Normally, they are a set of differential equations. It is one of 

the most useful tools that humans can utilize to describe the physical world precisely and 

unambiguously. In this way of representation, the quantified values or letters are used 

instead of the general describing words. This enables the internal relationships and the 

system characteristics to be demonstrated. One of the remarkable benefits of using the 

mathematical model, is that well known mathematical manipulation can be utilized. 

Additionally, this enables the modern computation technology to be applied through 

varying computation or simulation software. Mathematical models are broadly used in 

physical science and engineering fields. Furthermore, they are also used in the social 

science field – especially in Economics. The process of finding the mathematical model 

of a system or phenomenon is called “mathematical modelling”. The mathematical 

modelling processes enable a thorough understanding of the modelled system. It is a 

process whereby one can also apply the mathematical theories into an application-

oriented mathematical implementation.  

 

A given system can be represented by different mathematical models, because when a 

model is built, different modellers may emphasise different factors in the model, however 

the essence of these mathematical models is the same or very similar. “An exact plant 

model should produce the same output response as the plant, provided the input to the 

model and initial conditions are exactly the same as those of the plant” (Ioannou, Sun, 

1995:2). The mathematical model can be represented in transfer function form or state 

space form. The SISO-LTI systems are represented in a differential equation form or a 

transfer function form. In these forms, the frequency response and system transient 

response are easily analysed. On the other hand, state space representations with time 

domain analyses are used for MIMO system. For a particular control problem, once the 

mathematical model is obtained, it is analysed and studied in detail in order to find and 

understand its characteristics and properties.  
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How good a model is can be measured by the degree of the truth the model presents. 

Under different circumstances, for the same system, the mathematical model can be 

highly precise or generally accurate, simple or complicated, linear or nonlinear. A highly 

precise model is normally more complicated, as it represents the system more 

completely, although the related expression may be fuzzy. A generally accurate model 

represents the system adequately with simplified expressions, but probably misses some 

tiny detail factors. The most famous scientist Einstein said that: "A good theory" (or 

model) "should be as simple as possible, but not simpler."  

 

The relationship between the linear and nonlinear models is discussed in the previous 

Chapter 3. This chapter is organized in the following way that: the reconfigurable plant is 

introduced in the section 4.2. The complete mathematical models of the reconfigurable 

plant including the inverted pendulum and the overhead crane are developed according 

to Newton’s laws in the section 4.3. Incorporation of the actuator model into the 

pendulum model is developed in the section 4.4. In the section 4.5, the developed 

mathematical models are constructed and simulated in the Matlab/Simulink environment 

based on their parameters. The mathematical models which are built in Matlab/Simulink 

environment are shown and the simulation results are presented in the section 4.6. The 

simulation results are discussed in the section 4.7.  

 

4.2 Description of the reconfigurable plant 

The reconfigurable plant that is studied in the project is a pendulum system. The 

pendulum system consists of two modules: the carriage module and the control module.  

 
 

 
Figure 4.1:  The pendulum system  

 
(Adopted from http://www.bytronic.net/html/pcs.htmlT, 5  May 2007) th
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They are linked through a connecting cable. The carriage module consists of a cart that 

carries a pivoted rod and a pendulum. The cart is mounted on a 50cm long track and 

driven by a dc servo motor through a toothed belt. The pendulum system is shown in 

Figure 4.1 and Figure 4.2. 

 
 
 

 
Figure 4.2:  The carriage model is configured into overhead crane mode 

 
(Adapted from http://www.bytronic.net/html/pcs.html, 5th May 2007) 

 
 
 
The pendulum system can be configured into two modes. When the carriage module 

stands upright, it behaves as an inverted pendulum, shown in Figure 4.1. When the 

carriage is simply turned upside down, the rod and the pendulum represent the lifting 

block of an overhead crane shown in Figure 4.2 (Bytronic international LTD, 2001: 1.1). A 

mimic diagram is shown on the control module. This mimic diagram is given in Appendix 

C. 1. The complete circuit diagram of the pendulum system is given in Appendix C. 2. It 

can be used as an analog linear controller for the pendulum system. But, for this project, 

the control module is only working as a connector which takes in and sends out signals 

through its connection slots. The control signal is produced by the controllers which are 

developed in this project. The developed controllers are deployed in different hardware 

and software platforms. The detailed technique is discussed in the later chapters.  

 

4.3 Mathematical models derivation for the inverted pendulum system and the 
overhead crane system 

The inverted pendulum is a nonlinear inherently unstable system. The overhead crane is 

a stable nonlinear system with oscillation. Because of the special characteristics of the 

inverted pendulum and overhead crane behaviour, controlling the both systems is a 

typical control problem. Both of them are often used to demonstrate concepts of the 

control theory such as the stabilization of unstable and oscillating systems. They are also 
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the ideal test bench for control theory verification and implementation. Based on the 

physical structure of the pendulum system, the inverted pendulum model has been 

developed first.  

 
4.3.1 Inverted pendulum system 
4.3.1.1 Introduction of the inverted pendulum 

The specified inverted pendulum consists of a pendulum and a thin rod, the pendulum is 

attached on the rod, and the pendulum can move up and down along the rod. The 

pendulum and the rod are mounted on a moving cart through a pivot. This mechanism 

also ensures that the pendulum system is a two-dimensional mechanism in which the 

pendulum and the rod move only in one plane. The inverted pendulum is inherently 

unstable. In order to keep the pendulum standing upright in the inverted position, the cart 

must continuously move to correct the position of the pendulum. Control of an inverted 

pendulum is a typical problem in dynamic and control theory; it is also considered as a 

typical physics problem. It is broadly used as a test bench for control strategies, such as: 

PID control method (http://www.engin.umich.edu/group/ctm/examples/pend/invPID.html), 

fuzzy logic control method (Yi et al, 2002: 105) and pole placement control method 

(http://www.engin.umich.edu/group/ctm/examples/pend/digINVSS.html) and so on. The 

pendulum system shares the same type of behaviour as the rocket and the missile 

guidance (Ali, et al., 2000: 3-4), where thrust is actuated at the bottom of a tall vehicle. 

The other application related with the inverted pendulum is the moving of cargos in the 

port by cranes. When the goods are transporting, the cranes move carefully ensuring 

there are no swings or sways. The goods are always kept at the desired position even 

under certain challenging conditions, for example, when the cranes stop moving or 

increase their speed.  

 

4.3.1.2 Inverted pendulum mathematical model derivation 
The inverted pendulum mathematical model can be derived based on the physical rules 

and mathematical derivations, such as: Newton’s motion laws and trigonometric 

functions, for example. The other way to find the inverted pendulum mathematical model 

is by using the Lagrange’s equations (Stimac, 1999: 8). In this project, the first method is 

used. In this section, the mathematical model of the inverted pendulum is derived, 

linearized and presented into state space form. As the inverted pendulum is a MIMO 

system, the state space mathematical model is created. There exist many mathematical 

models for the inverted pendulum. It is not difficult for one to find one, but most time 

these mathematical models are simplified, linearized and most of them do not specify the 
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moment of inertia for the pendulum and the rod. In this section, a full scale mathematical 

model for the inverted pendulum is derived with a detailed explanation for each step.  

 

The motion of the inverted pendulum system consists of translational movement and 

rotational movement. In physics, translation is the movement that changes the position of 

an object in a straight direction. A relative simple mathematical expression can represent 

the translation as:  

( ) ( ) )'z,'y,'x(zz,yy,xxẑ,ŷ,x̂ =∆+∆+∆+→            (4.1) 

where ( , , ) are the object original position coordinates, (∆x, ∆y, ∆z) are constant 

vectors which represent the translational movements, (x’ ,y’ ,z’) represent the object final 

position.  

x̂ ŷ ẑ

 

A rotational movement is a movement of an object in a circular motion. A two-

dimensional object rotates around a center (or point) of rotation. The point can be within 

the object, then the object is said to rotate upon itself, or spin. Alternatively, an object’s 

circular motion about an external point is called an orbit or more properly an orbital 

revolution. For this project, the second condition is applied, as the pendulum moves 

about the pivot which is at the end of the rod. After the motion of the plant is clarified, the 

model of the inverted pendulum can be derived according to its movement characteristics 

based on the physical laws.  
 
 
 

θ+= sinLxxG  

 
Figure 4.3:  The inverted pendulum system simplified diagram 
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Refer to the inverted pendulum the system diagrammatic drawing shown in Figure 4.3. 

Assume the center of gravity of the pendulum and the rod is at point A; M [kg] is the 

mass of the cart; m [kg] is the mass of the pendulum and of the rod; L [m] is the length 

from the pivot to the center of gravity of the pendulum and the rod; θ [rad] is the angle 

between the rod and the vertical direction. F [N] is the force applied to the cart. x [m] is 

the displacement of the cart from the original position; H [N] and V [N] indicate the 

horizontal and vertical reaction forces the rod and cart. The vertical line on the left hand 

side of the diagram indicates the original position of the cart. This line is also considered 

as the reference position for the cart. Because the pendulum and the rod have similar 

motion characteristics, the analysis about the pendulum and the rod are taken as a whole.  

 

Define the x, y coordinates of the center of gravity of the pendulum and the rod at point A 

as xG and yG, then:  

θ+= sinLxxG                (4.2) 

θ= cosLyG                 (4.3) 

where xG and yG represent the displacement of the pendulum and the rod away from the 

origin referring to their centre of gravity in x and y direction respectively. 

 

The cart, the pendulum and the rod movements can fall into two categories: 

 Translational movements for the cart, the pendulum and the rod refer to the original 

position 

 Rotational movements for the pendulum and the rod according to its pivot 

 

4.3.1.2.1 Inverted pendulum mathematical model derivation on the basis of the 
translational movement 
For the inverted pendulum system, the cart, the pendulum and the rod move together 

along the track horizontally. This movement is translational movement caused by the 

force horizontally applied on the cart. According to the Newton’s first law, also known as 

the law of inertia - A physical body will remain at rest, or continue to move at a constant 

velocity, unless an external net force acts upon it. According to the Newton’s second law 

– The net force on a body is equal to its mass multiplied by its acceleration; it can be 

expressed by the equation:  

amF ⋅=                 (4.4) 

where F [N] is the net force applied to the body; m [kg] the mass of the body and a [m/s2] 

is the acceleration when the force is applied to the body. 
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Additionally according to the physics law the second derivative of the displacement 

(respect to time) is the acceleration, which is: 

ax
dt

xd
2

2

== &&                 (4.5) 

where x [m] is the displacement. 

Then the mathematical model of the inverted pendulum describing its translational 

movement can be derived.  

 

By applying Newton’s second law, based on the force applied to the cart and the 

displacement of the pendulum and the rod, the first equation of the inverted pendulum 

mathematical model is derived. The pendulum and the rod are considered as a whole 

which shares one center of gravity, so they are analyzed together. H is the horizontal 

force applied to the cart.  

 

4.3.1.2.1.1 Horizontal force applied to the pendulum and rod 
Horizontal force H is expressed. It is the force applied to the pendulum and the rod in the 

horizontal direction. x+Lsinθ is the displacement of the pendulum and the rod away from 

the original position referring to their center of gravity. Then, H can be expressed as 

follows: 

( θ+⋅= sinLx
dt
dmH 2

2

)               (4.6) 

where m=mp+mr, mp is the mass of the pendulum; mr is the mass of the rod. 

Simplify the Equation (4.6): 

( θθ+= cosLx
dt
dmH && )              (4.7) 

mH = ( )[ ]θ−θθ+θθ+ sinLcosLx &&&&&&              (4.8) 

( ) θθ−θθ+= sinLmcosLmxmH 2&&&&&              (4.9) 

 

4.3.1.2.1.2 Force analysis on the cart 
According to the Newton’s second law, the net force applied on the object is equal to its 

mass multiplied by its acceleration. Here the “body” is referring to the cart which has 

mass of M. The displacement of the cart is x, so its acceleration is the second derivative 

of x. Consider the forces applied to the cart shown in Figure 4.4, there are three forces. F 

is the force applied on the cart to keep the pendulum and the rod in balance. H is the 

force from the motion of the pendulum and the rod, which has opposite direction of F. 
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The third force is a small friction force which is caused by the friction between the cart 

wheel and the surface. It can be expressed as: fc=b⋅v, where b is the friction coefficient 

between the cart wheel and the track; v is the velocity of the cart. It is well known that the 

first derivative of the displacement is the velocity, then xbfc &⋅= . This force has opposite 

direction of F as well. 
 
 
 

 
Figure 4.4:  Force analysis on the cart 

 
 
 
Then, according to the Newton’s second law, the equation can be expressed as: 

HbvFMa −−=              (4.10) 

Rearrange the equation and substitute H into the equation, the first equation to describe 

the dynamic of the inverted pendulum is obtained as follows: 

HbvMaF ++=              (4.11) 

( ) θθ−θθ+++= sinLmcosLmxmbvMaF 2&&&&&          (4.12) 

( ) ( ) θθ−θθ+++= sinmLcosmLxbxmMF 2&&&&&&          (4.13) 

 

4.3.1.2.2 Inverted pendulum mathematical model derivation on the basis of the rotational 
movement 

4.3.1.2.2.1 Introduction of the torque 
Based on the torque balance on the pendulum and the rod, the second inverted 

pendulum mathematical model equation is derived. In physics, torque τ is defined as: the 

Center 
Line 

x

F

θ  

M

H

xbbv &=  
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moment of a force; the measure of a force's tendency to produce torsion and rotation 

about an axis, equal to the vector product of the radius vector r[m] from the axis of 

rotation to the point of application of the force F[N]. It can be stated in the equation: 

τ=r×F. 

If the torque is presented as a function of time, it is the time-derivative of angular 

momentum:  

dt
dW

=τ               (4.14) 

where W is the angular momentum. 

Angular momentum on a rigid body can be defined by its moment of inertia J and its 

angular velocity ω as: 

ω⋅= JW               (4.15) 

It is known that the first derivative of the angular displacement is the angular velocity and 

the second derivative of the angular displacement is the angular acceleration. If J is 

constant, then: 

α=
θ

=
ω

=τ J
dt
dJ

dt
dJ 2

2

            (4.16) 

where α is the angular acceleration; θ is the angular displacement of the rigid body.  

 

4.3.1.2.2.2 Torque analysis on the rod and the pendulum 
Refer to the torque balancing diagram shown in Figure 4.5. Based on the torque balance 

on the pendulum and the rod, the second mathematical model equation for the inverted 

pendulum is derived. The horizontal and vertical forces are split into two directions: the 

direction perpendicular to the rod and the direction parallel to the rod. These forces 

perpendicular to the rod are used to form the torque balance equation. The torque 

applied to the rod causes the rod and the attached pendulum to rotate around the pivot.  

 

Referring to the Figure 4.4, the angle between the vertical direction and the rod is θ. 

Analyse the vertical force V, the component of force which is perpendicular to the rod can 

be expressed as: 

θ⋅+θ⋅= sinmgsinVVP             (4.17) 

and the horizontal force H’s component that is perpendicular to the rod can be expressed 

as: 

θ⋅= cosHHp               (4.18) 
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Figure 4.5:  Pendulum and rod torque balancing diagram 

 
 
 

Both forces Vp and Hp are acting at the pivot, so the length of the lever is L. Then, the 

torque balancing equation for the pendulum and the rod can be determined. The 

equation is stated as follows: 

( ) θ+θ=⋅θ⋅++⋅θ⋅− &&&
tbJLsinmgVLcosH           (4.19) 

where J is the moment of inertia for the pendulum and the rod;  is the angular velocity; 

 is the angular acceleration; b

θ&

θ&& t is the viscous friction coefficient at the pivot. 

 

The horizontal direction force H is derived in previous section in Equation (4.8). Now, in 

order to complete the Equation (4.19), the moment of inertia J and the vertical force V 

need to be determined. 

 

4.3.1.2.2.3 The moment of inertia 
According to the definition: the scalar moment of inertia of a point mass rotating about a 

known axis is defined by:  
2rmJ ⋅=                (4.20) 

where m [kg] is the mass and r [m] is the distance of the point mass to the axis of rotation.  

The pendulum and the rod can be considered together as a point at their center of gravity 

with the mass of m. The pendulum and the rod are rotating about the pivot. The distance 

between the pivot and the center of gravity of the pendulum and the rod is L. So the 

above mentioned definition is applicable. Referring to Equation (4.19) the moment of 

inertia of the pendulum and the rod J [kg m2] then can be similarly given as: 
2mLJ =               (4.21) 

 

θ  

H

V

θ  

θ  

L 

θsinV  

θsinmg
mg

θcosH  
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A characteristic of the considered pendulum system is that the pendulum can be moved 

along the rod, then the length L will be changed. If the centre of gravity is in the middle of 

the rod the formula is: 

2mL
3
1J =               (4.22) 

where m [kg] is the total mass of the object. L [m] is the distance between the pivot and 

the centre of the gravity. 

 

4.3.1.2.2.4 Vertical force applied to the pendulum and the rod 
The derivation is based on the Newton’s second law. Consider the vertical forces applied 

to the pendulum and the rod. V is the force applied on the pendulum in the vertical 

direction. It is caused by the cart movement and the gravitational force. mg is the 

gravitational force applied on the pendulum. Lcosθ is the displacement of the pendulum 

from the pivot to its center of gravity in the vertical direction. By using Newton’s second 

law, V can be expressed as: 

θ= cosL
dt
dmV 2

2

             (4.23) 

Simplifying the above equation: 

([ θ−⋅⋅θ= sinL
dt
dmV & )]            (4.24) 

( ) ( )[ ]θ⋅θ⋅⋅θ−θ−⋅⋅θ= cosLsinLmV &&&&           (4.25) 

The vertical force applied on the pendulum is stated as: 

( ) θ⋅⋅θ⋅−θ⋅⋅θ⋅−= cosLmsinLmV 2&&&           (4.26) 

 

4.3.1.2.2.5 Formation of the torque balancing equation 
Both the horizontal and the vertical forces H and V are derived. Substitute both force H 

which is expressed in Equation (4.9) and force V which is expressed in Equation (4.26) 

into Equation (4.19), then: 

( ) θ+θ=⋅θ⋅++⋅θ⋅− &&&
tbJLsinmgVLcosH           (4.19) 

( )( )
( )( )

θ+θ=

=⋅θ⋅+θ⋅⋅θ⋅−θ⋅⋅θ⋅−+

+⋅θ⋅θθ−θθ+−

&&&

&&&

&&&&&

t

2

2

bJ
LsinmgcosLmsinLm

LcossinLmcosLmxm

        (4.27) 

Simplify the Equation (4.27): 
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( )
( ) θ+θ=θ⋅θ⋅⋅θ⋅−θ⋅⋅θ⋅−

−θ⋅⋅⋅+θ⋅θ⋅⋅θ⋅+θ⋅⋅θ⋅−⋅θ⋅⋅−

&&&&&&

&&&&&

t
2222

2222

bJsincosLmsinLm

sinLgmcossinLmcosLmLcosxm
     (4.28) 

Since sin2θ+cos2θ=1, then: 

θ⋅⋅⋅−θ+θ=⋅θ⋅⋅−⋅θ⋅− sinLgmbJLcosxmLm t
2 &&&&&&&         (4.29) 

( ) θ⋅⋅⋅+θ−⋅θ⋅⋅−=θ⋅⋅+ sinLgmbLcosxmLmJ t
2 &&&&&         (4.30) 

Then, the second equation of the inverted pendulum mathematical model is obtained as 

follows: 

( ) θ⋅⋅⋅+θ−⋅θ⋅⋅−=θ⋅⋅+ sinLgmbLcosxmLmJ t
2 &&&&&         (4.31) 

 

Till now, two important equations are obtained – Equation (4.13) and (4.31). These two 

equations describe the translational and rotational movement of the inverted pendulum 

respectively. Because this particular project deals with the inverted pendulum that has 

two-dimensional movements, the pendulum and the rod move only in one plane. These 

obtained Equations (4.13), (4.31) can fully describe the motion of the inverted pendulum 

as follows: 

( ) ( ) θθ−θθ+++= sinmLcosmLxbxmMF 2&&&&&&          (4.13) 

( ) θ⋅⋅⋅+θ−⋅θ⋅⋅−=θ⋅⋅+ sinLgmbLcosxmLmJ t
2 &&&&&        (4.31) 

 

4.3.1.2.3 Conversion of the inverted pendulum model into a state space representation 

From Equations (4.13), using the algebra elimination method, x  can be expressed as in 

Equations (4.32):  

&&

( )
mM

sinLmcosLmxbFx
2

+
θθ+θθ−−

=
&&&&

&&           (4.32) 

Substitute Equation (4.32) into Equation (4.31) to eliminate  from the equation, then: x&&

( ) ( )
θ⋅⋅⋅+θ−⋅θ⋅

+
θθ+θθ−−

⋅−=θ⋅⋅+ sinLgmbLcos
mM

sinLmcosLmxbFmLmJ t

2
2 &

&&&&&&  

               (4.33) 

( ) ( )
θ−=⋅θ⋅

+
θθ+θθ−−

⋅+θ⋅⋅⋅−θ⋅⋅+ &
&&&&&&

t

2
2 bLcos

mM
sinLmcosLmxbFmsinLgmLmJ  

               (4.34) 

Rearrange Equation (4.34),  can be expressed as follow: θ&&
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( ) ⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

θ−θθ⋅⋅θ⋅
+

−

−⋅⋅θ⋅
+

+⋅⋅θ⋅
+

−⋅θ⋅⋅
×

×⎥⎦
⎤

⎢⎣
⎡

+
θ

⋅⋅θ⋅−⋅+=θ
−

&&

&

&&

t
2

1
2

bsinLmLcos
mM

m

xbLcos
mM

mFLcos
mM

mLsingm

mM
cosmLLcosmLmJ

       (4.35) 

 

Substitute Equation (4.35) into Equation (4.32) to eliminate  from the equation, then x  

can be stated as: 

θ&& &&

( )

( ) ⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

θ−θθ⋅⋅θ⋅
+

−

−⋅⋅θ⋅
+

+⋅⋅θ⋅
+

−⋅θ⋅⋅
×

×⎥⎦
⎤

⎢⎣
⎡

+
θ

⋅⋅θ⋅−⋅+⋅
+

θ
−

+
θθ+−

=
−

&&

&

&&
&&

t
2

1
2

2

bsinLmLcos
mM

m

xbLcos
mM

mFLcos
mM

mLsingm

mM
cosmLLcosmLmJ

mM
cosmL

mM
sinLmxbFx

     (4.36) 

Simplify Equation (4.36),  can be expressed as: x&&

( )
( ) ( )

( ) ( ) θ⋅⋅−+⋅+
⋅++θθ⋅++

+θ⋅θ⋅⋅⋅+θ⋅θ⋅⋅−⋅⋅+−

= 2222

222

t
222

cosLmmMmLJ
FmLJsinmLmLJ

cosbLmcossinLgmxbmLJ

x
&

&&

&&        (4.37) 

Simplify Equation (4.35),  can be expressed as: θ&&

( ) ( ) ( )

( ) ( ) θ⋅⋅−+⋅+
θ⋅⋅⋅−⋅⋅θ⋅⋅+

+θ⋅⋅+−θ⋅θ⋅θ⋅⋅−θ⋅⋅⋅+

=θ 2222

t
222

cosLmmMmLJ
cosLmFxbcosLm

bmMcossinLmsinLmgmM
&

&&

&&       (4.38) 

 

From Equation (4.37) and Equation (4.38), the inverted pendulum nonlinear 

mathematical model can be put into its first order differential equation form. In order to 

avoid the confusion of the letter usage, from now one, the states are expressed by the 

letter z. x is used as the displacement state only.  

Let , then using the Equation (4.37) and Equation (4.38) the state space 

model can be expressed as follows: 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

θ
θ

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

&

&x
x

z
z
z
z

4

3

2

1

21 zz =&               (4.39) 
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( )
( )

( ) FLmJ        

zsinzLmmLJ
zcoszbLmzcoszsingLmzbmLJ

z

2

3
2
4

2
34t33

22
2

2

2

⋅
σ
⋅+

+

+
σ

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⋅⋅⋅⋅++

+⋅⋅⋅⋅+⋅⋅⋅⋅−⋅⋅+−

=&      (4.40) 

43 zz =&               (4.41) 

( ) ( )

F zcosLm       

zbzcosLm
zbmMzcoszsinzLmzsinLgmmM

z

3

23

4t33
2
4

22
3

4

⋅⎥⎦

⎤
⎢⎣

⎡
σ
⋅⋅−

+

+
σ

⎥
⎦

⎤
⎢
⎣

⎡

⋅⋅⋅⋅+

+⋅⋅+−⋅⋅⋅⋅−⋅⋅⋅⋅+

=&
    (4.42) 

where ( ) ( ) 3
2222 zcosLmmMmLJ ⋅⋅−+⋅+=σ          (4.43) 

 

The nonlinear state space model equations are: 
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( )
( )

( )

F
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0
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0
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               (4.44) 

 

4.3.1.2.4 Inverted pendulum model linearization  
For linear state control of the inverted pendulum, it is necessary to convert the state 

equations (4.39)-(4.42) to state space representation in the form: BFAzz +=& . 

For the trigonometric functions, if θ is a very small angle (smaller than 5°), sinθ≈θ, 

cosθ≈1. From the Taylor series expansion, the higher order terms are neglected, so 

, then: ( ) 02
≈θ&

The denominator can be linearized and simplified as follow:  
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( ) ( )

( ) 2

22222

222

MmLmMJ
LmLmMmLmJMJ

LmmMmLJ'

++=

=−+++=

=⋅−+⋅+=σ

          (4.45) 

 

Then, the inverted pendulum linear mathematical model in the form of a first order 

differential equation is obtained as: 

21 zz =&               (4.46) 

( )[ ] ( ) F
'

LmJ
'

zbLmzgLmzbmLJz
2

4t3
22

2
2

2 ⋅
σ
⋅+

+
σ

+⋅⋅⋅+⋅⋅⋅−⋅⋅+−
=&       (4.47) 

43 zz =&               (4.48) 

( ) ( )[ ]
F

'
 Lm

'
zbmMzLgmmMzbLmz 4t32

4 ⋅⎥⎦
⎤

⎢⎣
⎡

σ
⋅−

+
σ

⋅⋅+−⋅⋅⋅⋅++⋅⋅⋅
=&       (4.49) 

 

The linearized mathematical model into state-space form is expressed as follows: 
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The linearized model in Equations (4.45) to (4.48) is used in Chapter 5 to derive the 

linear control of the inverted pendulum. The nonlinear model in Equations (4.39) to (4.42) 

is used in Chapters 6 and 7 to design nonlinear control based on the Lyapunov second 

method and based on the feedback linearization approaches respectively.  

 

According to the structure of the pendulum system, the inverted pendulum is controlled 

through the position of the pendulum. Its displacement is defined as: y=x+Lsinθ, then the 

linearized output of the model can be expressed as: 
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4.3.2 Overhead crane system 
4.3.2.1 Introduction of the overhead crane 

The overhead crane is widely used in Industry. It is especially used in the heavy 

assembly industry for mass carrying and assembling. The problem the overhead crane 

operator faces is how to carry mass from point A to point B safely without oscillations and 

using the least amount of time to complete the task. Assume one ball is connected with a 

string that is much longer as compare to the ball’s diameter. One holds the end of the 

string and moves it in a horizontal direction rapidly. If one stops the movement suddenly, 

because of the inertia, the ball will continue to move in the same direction along a circle 

which has the radius of the length of the string and one’s hand is the circle’s origin. Then, 

because of the gravitational force, the ball falls back. The oscillation starts. When the 

energy that consists in the system dissipates, the ball stops swing and stay below one’s 

hand. Similarly, if the operator moves the mass fast, he or she cannot stop it at the 

desired position. Otherwise, the mass can only be moved slowly. A controller is 

necessary to be developed. The controller can help the operator to move mass rapidly 

and without oscillations. 

 

In the considered pendulum system, when the carriage module is turned upside down 

the pendulum acts as an overhead crane. It has exactly the same behaviour as 

mentioned above. For example, if the position of the cart is changed, the pendulum starts 

swinging naturally. With the energy dissipating, it eventually stops at a stable equilibrium 

position where the centre of the mass of the pendulum is below the pivot. The problem is 

now to control the position of the load, which possesses oscillatory dynamics.  

 

4.3.2.2 Development of the model of the crane 
The model of the crane is developed following the same steps as for the model of the 

inverted pendulum. Because of the similarities, the model derivation for the overhead 

crane is described in a relatively simpler way as compared to the inverted pendulum 

model.  
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The movement of the crane is characterised within the considered above two types: 

 Translation movement for the cart, the pendulum and the rod 

 Rotational movement for the pendulum and the rod on the pivot 

The direction of the movement of the pendulum is the clock one. All assumptions made 

for the inverted pendulum are considered in this case also. 

The coordinates of the crane are (in the IV-th quadrant) of the coordinate plane 

θ+= sinLxxG              (4.52) 

θ−= cosLyG               (4.53) 

 

4.3.2.2.1 Overhead Crane mathematical model derivation from the translational 
movement 
The balance of the forces acting on the cart is:  

G2

2

2

2

x
dt
dMFHF

dt
dxb

dt
xdM −=−=+            (4.54) 

Substitute Equation (4.52) in Equation (4.54), then the first equation for describing the 

overhead crane is obtained as follow: 

( ) θθ+θθ+++= sinmLcosmLxbxmMF 2&&&&&&           (4.55) 

This equation is the same as the equation for the inverted pendulum in the quadrant I of 

the plane. 

 

4.3.2.2.2 Overhead crane mathematical model derivation on the basis of the rotational 
movement 
There are three forces applied on the pendulum and the rod centre of the gravity. H is in 

the horizontal direction; V and mg are in the vertical direction.  

 

The equation for the balance of the vertical forces for the pendulum and the rod is: 

( θ−==−− cosL
dt
dmy

dt
dmmgV 2

2

2

2

)          (4.56) 

The signs of V and mg are negative because they are in the IV-th quadrant. Simplify 

Equation (4.56), 

( )
θθ−θθ−−=

θ−
−−= cosmLsinmLmg

dt
cosLdmmgV 2
2

2
&&&        (4.57) 

where ( ) ( )
θθ+θθ=

θθ
=

θ− cossin
dt
sind

dt
cosd 2

2

2
&&&

&
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The equation for the horizontal force H is: 

θθ−θθ+== sinmLcosmLxm
dt

xdmH 2
2
G

2
&&&&&           (4.58) 

The torque balance equation for the pendulum and the rod in the overhead crane mode 

can be expressed as: 

θ−θ=θ+θ cosHLsinVLbJ T
&&&            (4.59) 

Equation (4.57) and (4.58) are substituted in equation (4.59). The second equation for 

describing the overhead crane is obtained:  

( ) 0cosxmLsinmgLbmLJ T
2 =θ+θ+θ+θ⋅+ &&&&&          (4.60) 

The model of the crane is given by the Equations (4.55) and (4.60). These equations are 

used to derive the state space model of the crane. 

 

4.3.3 State space model 

From Equation (4.54) and (4.59), by using the algebra elimination method, x  and  can 

be expressed as: 

&& θ&&

( )
( ) ( ) ( )
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⎥
⎥
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⎤

⎢
⎢
⎣
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The same states as for the inverted pendulum are used: 

Let  then the state space nonlinear model can be expressed as follows: 
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21 zz =&               (4.63) 
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zcoszsingLmzbmLJ

z
2
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2
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2
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⋅⋅⋅⋅+⋅⋅⋅⋅++
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=&      (4.64) 

43 zz =&               (4.65) 
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where ( ) ( ) 3
2222 zcosLmmMmLJ ⋅⋅−+⋅+=σ          (4.67) 

 

The nonlinear state space equations are: 
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               (4.68) 

 

Linearize the Equation (4.63) to (4.66), and then put them into the state space form: 

21 zz =&               (4.69) 

( )[ ] ( ) F
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4t3
22
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43 zz =&               (4.71) 
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where             (4.73) ( ) 2MmLmMJ' ++=σ

 

The linearized mathematical model into state-space form is expressed as follows: 
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The output signal is expressed as: y=x+Lθ, into state space form, its representation is: 
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4.3.4 Comparison between the models of the inverted pendulum and the overhead crane 
The nonlinear and the linear models of the inverted pendulum in Equations (4.44) and 

(4.50) and the overhead crane in Equations (4.68) and (4.74) have the same structures 

and elements. The difference is in the signs in front of sinz3 and z3=θ. These expressions 

give the positions of the angle θ in the coordinate plane.  

 

4.3.5 Parameters of the inverted pendulum and the overhead crane 
The parameters used for the inverted pendulum and the overhead crane mathematical 

model derivation are shown in Table 4.1. These parameters are specified in the 

developed Matlab software m-files and are used for the simulations and Real-Time 

implementation.  
 
 
Table 4.1: Table of the parameter for the pendulum system 

Symbol  Description Value Unit 
M Mass of the cart 0.050 kg 
m Mass of the pendulum and rod (m=mp+mr) 0.280 kg 
mp Mass of the pendulum 0.220 kg 
mr Mass of the rod 0.060 kg 

L 
Distance between the pivot and the pendulum and rod’s centre of 
gravity 0.22 m 

J Moment of inertia of the pendulum and rod 0.0013 Kgm2

b Friction between the cart wheel and the surface 0.1 m/s3

bt Friction at the pivot 0.01 m/s3
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4.4 Mathematical model derivation for the servo system 
In the section 4.3, the mathematical models of the inverted pendulum and the overhead 

crane are derived. From the model, it can be seen that the control signal applied to the 

pendulum system is force F. In this reconfigurable plant, according to its physical 

structure the driven force applied to the cart is generated by a servo system. This servo 

system consists of servomotor, speed amplifier, feedback amplified and a toothed belt. In 

this section, the d.c. motor mathematical model is derived from basic electromagnetic 

relationships; the servo system mathematical model is derived based on the study of the 

servomotor and the servo system formation. Through the study of the servo system, the 

force applied to the cart can be represented by the electrical signal.  

 

A servomotor which is also called servo is an electro-mechanical device in which an 

electrical input determines the position of the armature of a motor. Servos are used 

extensively in robotics and radio-controlled puppets, cars, airplanes and boats 

(http://www.ee.duke.edu/~cec/final/node59.html). The servomotor used in this pendulum 

system also has an integral tachometer (Bytronic international LTD, 2001: 1.1). A 

tachometer is an instrument designed to measure the speed of an object or substance. 

The d.c. motor is the actuator at the heart of a position control servomechanism such as 

servomotor. It is the means by which electrical energy is converted to mechanical energy. 

In this section, the d.c. motor mathematical model derivation is presented firstly. 

 

4.4.1 Direct current servomotor mathematical model derivation 
There are armature controlled d.c. motors and field controlled d.c motors. In the first 

mode the field current is held constant, and an adjustable voltage is applied to the 

armature. In the second mode the armature current is held constant, and an adjustable 

voltage is applied to the field. In this pendulum system, an armature controlled d.c. motor 

is used. In this section, the armature controlled d.c. motor is studied in detail.  

 

4.4.1.1 Basic operation principle of the direct current motor 
Consider a piece of wire carrying a constant current i suspended in a magnetic field of 

uniform flux density B’, where the direction of the current is at right angles to the flux, as 

shown in Figure 4.6 below. In a d.c. servomotor the magnetic field B’ is usually produced 

by a strong permanent magnet and this part of the motor is known as the stator. 

 

According to Ampere’s law, force F is produced whose direction is orthogonal to both the 

current and flux. Its magnitude is given as: 
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F=B’li               (4.76) 

where l is the length of wire within the field and i is the current flowing the wire as shown 

in Figure 4.6. 
 
 
 

i

B
B 

F

F
i  

Figure 4.6:  Force analysis of a piece of wire with carrying a constant current suspended in 
a magnetic field 

 
 
 
Instead of having a single current carrying wire, the coil in the magnetic filed is supported 

in the middle on a shaft which rotates in bearings at either end of the motor. This part of 

the motor is known as the rotor or armature. The net effect of the two forces, one upward 

and one downward, is to exert a turning moment or torque of value: 

T=2Frc               (4.77) 

Where rc is the distance between the centre line of the shaft and the conductor. This 

causes the coil/shaft assembly to turn with the direction of anticlockwise shown in Figure 

4.7. The force direction or the shaft turning direction can be reversed by simply changing 

the direction of the current in the coil.  

 

In a particular d.c. servomotor, supposing the coil has N turns instead of just one, then 

the motor torque can be calculated as: 

Tm=2NB’lrci              (4.78) 

where N, B’, l and rc are constant for any particular motor. It can also be written as: 

Tm=Kmi               (4.79) 

where Km=2NB’lrc is known as the motor’s torque constant with units of NmA-1. 
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rc

B 

 
Figure 4.7:  Circuit analysis of the d.c. motor coil 

 
 
 
According to Faraday’s Law, a coil of length l rotating in a uniform magnetic field of flux 

density B’ will generate an electromagnetic force (e.m.f.). In other words, when the coil is 

driven by electrical energy, the coil generates electrical energy while it is turning at the 

same time. This e.m.f. is given by: 

dt
de λ

−=               (4.80) 

where λ is the flux linking the coil.  

 

Consider the coil of length l and radius rc to be at an angle θm to the magnetic field. The 

magnetic flux λ linking the coil is given by: 

λ=B’l2rccosθm              (4.81) 

And the magnetic flux linkage is: 

λ=Nφ=2NB’lrccosθm             (4.82) 
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If the coil is rotating at a constant angular speed ωm then its angle at any time t is ωmt, 

then: 

( )
dt

tcosdlr'NB2
dt
d'e m

c
ω

−=
λ

−=            (4.83) 

∴ e’=-2NB’lrc(-ωmsin(ωmt))=2NBlrωmsin(ωm )          (4.84) 

when the coil is at θm=90°, the term sin(ωmt)=1 and: 

e’=2NBlrcωm=Kbωm             (4.85) 

where e is called back e.m.f constant, with units of Vrad-1s-1. Kb is the voltage constant.  

 

There is a basic relationship between the torque constant and voltage constant.  

Km=Kb×1.345              (4.86) 

But mostly, Km and Kb are simply considered to be having the same value.  

 

4.4.1.2 Armature controlled direct current motor model derivation 
Based on the study of the d.c. motor operation principle, the armature controlled d.c. 

motor model is derived. In a particular d.c. motor, if Va is the voltage applied to the 

armature circuit, it causes a current ia to flow and produces a proportional torque. This in 

turn accelerates the armature. As the armature gathers speed, a proportional e.m.f. is 

generated, according to the back e.m.f., which tends to oppose the current. Eventually, 

the rotor gathers sufficient speed such that the back e.m.f. just equals the applied voltage. 

In the steady state, when Va=e’, no current flows in the coil so there is no further 

acceleration and the rotor turns at a constant speed.  
 
 
 

Ra La

bm 

 
Figure 4.8:  The d.c. motor equivalent circuit 
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However, assumes a perfect motor with no friction at all in the bearings and no electrical 

power losses. In practices, running a motor at steady speed requires a small amount of 

current to flow, sufficient to just overcome the friction at that speed. The rotor coil will 

also have some resistance Ra, so any current will cause ohmic losses and a small 

voltage drop. The coil also has self-inductance La. If the current in the coil changes then 

there will be an induced back e.m.f which opposes that change. In Figure 4.8, the 

equivalent circuit of the d.c. motor is shown. From Figure 4.8, the voltage equation can 

be derived as:  

e
dt
diLRiV a

aaaa ++=             (4.87) 

or 
dt
diLRieV a

aaaa +=−             (4.88) 

Take the Laplace transforms of Equation (4.87): 

Va(s)-E(s)=(Ra+Las)Ia(s)            (4.89) 

 

Applying Newton’s Law (by summing moments) for the rotational motion of the motor 

gives: 

∑ =M mmem bT
dt
dJ ω−=
ω

            (4.90) 

or  emmm TbJ =ω+ω&

where Te is the input torque to the load system; bm is the viscous friction coefficient; Jm is 

the motor inertia. 

Thus, the transfer function from the input motor torque to rotational speed changes is: 

( )
mmmm

m

e bsJ
1

Jbs
J1

T +
=

+
=

ω             (4.91) 

 

From Equation (4.88), if the coil self-inductance is small enough to be neglected, the 

current draw of the motor can be calculated in the following way: 

i=[va-e]/Ra              (4.92) 

Substitute Equation (4.85) into Equation (4.92): 

i=[Va-Kb⋅ωm]/Ra             (4.93) 

The torque output of the motor generated by electrical energy is: 

Te=Kmi               (4.94) 

where Km is the motor torque constant.  
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Substitute Equation (4.93) into Equation (4.94), then: 

[ ] [ ]
a

m
mbaambame R

KKVRKVKT ⋅ω⋅−=ω⋅−⋅=          (4.95) 

Tω is the load torque which can be expressed as: 

Tω=F×r               (4.96) 

where r is the motor radius to belt. 

 

From the schematic of the servo system, the following equation is obtained: 

mmme bJTT ω+ω=− ω &  

 
 
 

 
Figure 4.9:  The d.c. motor closed-loop block diagram 

 
 
 
Equation (4.85), (4.87) and (4.94) can describe the characteristics of a d.c. armature 

controlled motor very well. Combine these three equations, the closed-loop block 

diagram of a d.c. motor is shown in Figure 4.9. 

 
4.4.2 Servo system mathematical model derivation 

The pendulum system in the trainer is controlled by electrical signal. The servo system in 

the pendulum system converts the electrical control signal u into the mechanical energy 

in the form of the force F and the torque T. The servo system consists of the servomotor, 

the servo amplifier and the servo controller. Based on the studying of the d.c. motor and 

according to the configuration of the pendulum system, the mathematical model of the 

servo system is derived in this section. In Figure 4.10, the schematic diagram of the 

servo system is shown. Based on its study, the equivalent block diagram of the servo 

system can be drawn. It is shown in Figure 4.11. 
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Figure 4.10:  Servo system hardware configuration 

 
 
 

The parameters which are used for the servo system mathematical model derivation are 

listed in Table 4.2. 
 
 
Table 4.2:  Table of the servo system parameters g
Symbol Name Value Unit 

Pg
Potentiometer Gain (proportional control for servo 
position)  270/47 - 

Ps Servo amplifier Gain 750/47 - 

KD
Potentiometer Gain (derivative control for servo 
position) 0.5(47/56) - 

Kx Potentiometer Gain for measuring cart position 5/0.125 - 
Kω Tacho Gain for measuring cart velocity 10/0.25 V/m/s 
Km Motor torque constant 9 Ncm/A 
Kb Motor voltage constant 10.3 V/1000rpm 
r Motor radius to belt 0.02 m 
Jm Motor inertia  0.00002245 kg⋅m2

bm Viscous friction coefficient 0.0011225 kg⋅m2/s 
Ra Armature resistance  5 Ohm 
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The block diagram of the servo system simplifies the relationships between different 

parameters and subsystems in the servo system. The mathematical model of the servo 

system is derived according to the block diagram. 
 
 
 

 
Figure 4.11:  Servo system block diagram 

 
 
 
Following the servo system block diagram, the mathematical model of the servo system 

is derived. Equation (4.97) represents the relationship between the torque applied to the 

motor shaft and the speed of the motor as shown below. 

mmmme bJTT ω+ω=− ω &             (4.97) 

Substitute Equation (4.96) into Equation (4.97), then: 

mmmme bJrFT ω+ω=⋅− &             (4.98) 

mmmme bJTrF ω−ω−=⋅ &             (4.99) 

r
b

r
J

r
T

r
bJTF mmemme ω

−
ω

−=
ω−ω−

=
&&

        (4.100) 

 

From the servo system block diagram, Te can be expressed as: 
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Simplify the expression: 
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Substitute Equation (4.102) into Equation (4.100), then: 
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If ϕ  is the angle of the motor, then the following equations can be formulated: xr =ϕ ; 

; ; ϕ=ω & xr &=ω x
s
r

=
ω  and xr &&& =ω . By using these equations, the further simplification is 

taken, then: 
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Let          (4.106) xNxNxNuNF 4321 &&& +++=

where 
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2
m

4 r
JN −=             (4.110) 

Expressed in the state space notations: 

2423121 zNzNzNuNF &+++=          (4.111) 

The control u, which represents the reference position input to the servo system P, KD is: 

1

242312

N
zNzNzNF

u
&−−−

=           (4.112) 

Equation (4.111) represents the servo system. It can be seen from Equation (4.111) that 

the input signals to the servo system is the control signal u and the output is the force F 

applied to the cart. In the next subsection, the complete mathematical model of the 

pendulum system is derived by combining the inverted pendulum and overhead crane 

system mathematical models with the servo system mathematical model respectively.  

 

4.5 Complete pendulum system mathematical model derivation 
In the Section 4.3, the inverted pendulum and the overhead crane mathematical models 

are derived. In the Section 4.4, the mathematical model of the servo system is derived. 

The combined pendulum system mathematical models are derived in this subsection by 

integrating the inverted pendulum and the overhead crane mathematical models with the 

servo system mathematical model. The mathematical models derived in the Section 4.3 

have for inputs the force F. By combining the servo system with the pendulum system, 

the system inputs become control signal u.  

 

4.5.1 Complete inverted pendulum mathematical model 
The complete inverted pendulum mathematical model is derived by substituting Equation 

(4.111) into Equation (4.40) and Equation (4.42). Then, the complete inverted pendulum 

mathematical model is expressed as: 
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43 zz =&             (4.115) 

91 



( ) ( )

[ ]2423121
3

23

4t33
2
4

22
3

4

zNzNzNuN
 zcosLm

       

zbzcosLm
zbmMzcoszsinzLmzsinLgmmM

z

&

&

+++⋅⎥⎦

⎤
⎢⎣

⎡
σ
⋅⋅−

+

+
σ

⎥
⎦

⎤
⎢
⎣

⎡

⋅⋅⋅⋅+

+⋅⋅+−⋅⋅⋅⋅−⋅⋅⋅⋅+

=    (4.116) 

where ( ) ( ) θ⋅⋅−+⋅+=σ 2222 cosLmmMmLJ  

 

Simplifying Equation (4.114) and Equation (4.116), then: 
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43 zz =&             (4.119) 
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These equations are very complex because of the  appearing in the expression for . 

If the motor inertia J

2z& 4z&

m is very small and can be neglected which means that 

0
r
J

N 2
m

4 =−= , then:  

23121 zNzNuNF ++=           (4.121) 

The Equations (4.117) to (4.120) can be simplified significantly as: 

21 zz =&             (4.122) 
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43 zz =&             (4.124) 
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The nonlinear complete inverted pendulum mathematical model can be represented in 

the following way: 

21 zz =&             (4.126) 

( ) ( )uzgzfz 112 +=&            (4.127) 

43 zz =&             (4.128) 

( ) ( )uzgzfz 224 +=&            (4.129) 
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The inverted pendulum mathematical model in Equation (4.126) to (4.129) can be 

linearized when θ is a very small angle. When <5°θ<5°, sinθ≈0 and cosθ≈1, then:  

21 zz =&             (4.130) 
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43 zz =&             (4.132) 
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where             (4.45) ( ) 2MmLmMJ' ++=σ

 

If ( ) , then the complete inverted pendulum state space linear mathematical model 

can be expressed as: 
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4.5.2 Complete overhead crane mathematical model 
Follow the same procedure of the complete inverted pendulum mathematical model 

derivation, the complete overhead crane mathematical model is derived by substituting 

Equation (4.121) into Equation (4.64) and Equation (4.66). Then, the complete overhead 

crane mathematical model is expressed as: 
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Simplifying the Equation (4.137) and (4.138), the overhead crane mathematical model 

can be expressed as: 
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43 zz =&             (4.141) 
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The nonlinear complete overhead crane mathematical model can be represented in the 

following way: 

21 zz =&             (4.143) 
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After the linearization, the complete overhead crane mathematical model can be 

expressed as: 

21 zz =&             (4.147) 
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43 zz =&             (4.149) 
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Then the complete overhead crane state space linear mathematical model can be 

expressed as: 
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             (4.151) 

 

Till now, all the mathematical models of the pendulum system are derived. This includes 

the inverted pendulum and overhead crane linear and nonlinear mathematical models, 

the servo system mathematical model and the integrated pendulum system mathematical 

models for the inverted pendulum and the overhead crane respectively. The servo 

system is used to convert control signal from its electrical form to a mechanical form.  
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The integrated pendulum system mathematical models are much complicated. This can 

complicate the controllers’ designs. In the following controller design chapters, the 

inverted pendulum and overhead crane linear and nonlinear mathematical models are 

used directly without the servo system, in order to simplify the controller design process. 

The servo system is added after the design of the controllers, in order to convert the 

control signal from electrical form to mechanical form.  

 

The inverted pendulum and overhead crane linear and nonlinear mathematical models 

are simulated in the following sections.  

 

4.6 Pendulum system mathematical models simulation 
The linear and nonlinear mathematical models of the inverted pendulum and the 

overhead crane are built and simulated in Matlab/Simulink environment. Equation (4.44) 

and (4.68) can be written in the following form: 
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where fi(z) and gi(z), 4 ,1i =  are continuous nonlinear functions. 

 

Then the nonlinear mathematical model can be constructed by using the nonlinear 

functions f(z) and g(z) whose Simulink block diagrams are shown in Figure 4.12 and 4.13. 

Here the inverted pendulum’s nonlinear Simulink model is shown in Figure 4.14. The 

linear Simulink model is shown in Figure 4.15. For the overhead crane, the structures are 

the same; just two values in the function f have opposite signs.  
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Figure 4.13:  The nonlinear function g(z) 
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Figure 4.14:  Inverted pendulum nonlinear model 
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Figure 4.15:  Inverted pendulum linear model 
 
 
 

The inverted pendulum and the overhead crane share the same parameters. The 

parameters necessary for the calculation are introduced in Matlab workspace by the 

same program which is called “model_test.m”. The corresponding Simulink files called 

“model_test.mdl”. The m-file is given in the Appendix A. 1.  

 

The simulation is given for a step input F=0.1m. The results are shown in Figure 4.16 to 

4.25, where NLIP stands for Non-Linear Inverted Pendulum, NLOC for Non-Linear 

Overhead Crane. The results signals include the states signals and the output signals. 

The simulation results are discussed in the follow section.  
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Figure 4.16:  Inverted pendulum nonlinear model states x, x_dot responses 

when the step input is 0.1m 
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Inverted Pendulum nonlinear model test (theta; theta_dot)
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Figure 4.17:  Inverted pendulum nonlinear model states theta, theta_dot responses 

when the step input is 0.1m 
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Figure 4.18:  Inverted pendulum linear model states x, x_dot responses  

when the step input is 0.1m 
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Figure 4.19:  Inverted pendulum linear model states theta, theta_dot responses  

when the step input is 0.1 
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Inverted Pendulum nonlinear/linear output y
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Figure 4.20:  Inverted pendulum nonlinear output and linear output y  

when the step input is 0.1m 
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Figure 4.21:  Overhead crane nonlinear model states x, x_dot responses  

when the step input is 0.1m 
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Figure 4.22:  Overhead crane nonlinear model states theta, theta_dot responses 

when the step input is 0.1m 
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Figure 4.23:  Overhead crane linear model states x, x_dot responses  

When the step input is 0.1m 
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Figure 4.24:  Overhead crane linear model states theta, theta_dot responses  

when the step input is 0.1 
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Figure 4.25:  Overhead crane nonlinear output and linear output y  

when the step input is 0.1m 
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4.7 Discussion of the results 
The behaviours of the inverted pendulum and the overhead crane are shown in Figure 

4.16 to 4.25. Referring to the physical pendulum system, the above obtained results are 

discussed.  

 

The linear model is a good approximation of the plant behaviour only around the non-

stable equilibrium point θ=0. As the plant is not under control and step continuous force 

is applied, the pendulum is moving far from the point θ=0. Then the values of the position 

and the velocity of the position are becoming negative. This can be seen also from the 

linearized equations.  

 

The position state response and velocity state response of the inverted pendulum and 

the overhead crane nonlinear models are shown in Figure 4.16 and 4.20. Under the 

constant force driven, eventually the cart moves with a constant acceleration in other 

words, the speed of the cart increases by a constant number towards to infinity in one 

direction. 

 

For the angle state response and the angular velocity state response, the inverted 

pendulum and the overhead crane exhibit different behaviours. The inverted pendulum is 

inherently unstable. If there is no proper controller in the system, the pendulum falls, 

oscillates and stops at the position under the pivot. From Figure 4.17, it can be seen that 

the angle signal swings from its initial condition and settles at π≈3.14159, which means 

the pendulum is at the down position. This position is the other equilibrium point of the 

system. In Figure 4.22, the overhead crane angle state swings from its initial condition 

and stops at 0 with a much small amplitude.  

 

4.8 Conclusion  
In this chapter, the nonlinear and linear mathematical models of the inverted pendulum 

and overhead crane are developed and simulated in Matlab/Simulink environment. From 

the simulation results, the behaviours of the system are understood deeper and wider.  

 

Based on these mathematical models, the linear controllers and nonlinear controllers for 

the force F are developed. Different control strategies are used. In Chapter 5, the pole-

placement method and quadratic optimal control method is deployed. The Lyapunov 

direct method based MRC and feedback linearization method based MRC are developed 
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in Chapter 6 and Chapter 7 respectively. The real-time controllers for the armature 

control of the motor driving the pendulum are derived and implemented in Chapter 8.  

105 



CHAPTER FIVE 
LINEAR CONTROL 

 
5.1 Introduction 

The mathematical models of the inverted pendulum and overhead crane are developed 

in the previous chapter. The task of the project is to develop nonlinear controllers based 

on the MRC theory. Two kinds of nonlinear control techniques are used, the Lyapunov 

direct method and the feedback linearization method. According to the theory of the MRC, 

it is necessary to create the reference models. For this project, two reference models are 

needed. One is used for the inverted pendulum control, the other for the overhead crane. 

These two reference models generate the desired trajectories which the actual system 

will follow under the nonlinear control signal. To complete the project, the first target now 

becomes to find the reference models. 

 

For this project, linear models are selected as reference models. In order to find the 

reference models, the linearized plant is studied and the linear controllers are designed 

based on the pole-placement method and quadratic optimal control method. By studying 

the linear system, the reference models are derived and a better understanding of the 

plant is obtained. 

 

This chapter is organized in the following way, in the section 5.1, the introduction gives 

the overview of the chapter and explains the purposes of studying the linearized plant. 

The pole-placement method and quadratic optimal regulator method are reviewed in the 

section 5.2. As the application of the controller design methods, the linear controllers are 

designed, based on different control techniques for both the inverted pendulum and the 

overhead crane, in the section 5.3. In this section, the feedback control matrices are 

calculated by one of the most used computation tools – Matlab/Simulink. In the section 

5.4, the obtained results are discussed. The conclusion is presented in the section 5.5. 

The discussion of the results and the conclusion are given in the sections 5.4 and 5.5 

respectively.  

 

5.2 Review of the state space linear controller design methods 
The linear controllers are designed by using the pole-placement method and the 

quadratic optimal regulator method. These two methods are very useful and powerful for 

the linear controller design. They have been used extensively as the time-domain 

methods. The controllers designed by using these two methods are in the form of a state 
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feedback gain matrix K. In this chapter, these two methods are studied on the theory 

level, in terms of the controller derivation. 

 

5.2.1 Pole-placement method  
The root locus method is based on the transfer function in the complex domain. It is used 

to deal with the SISO systems. In the root locus method, only the dominant poles have 

the desired damping ratio and undamped natural frequency. The nondominant closed-

loop are ignored. The pole-placement method, which is also called pole assignment 

method, is similar to the root locus method with the exception that in the pole-placement 

method all the closed-loop poles are placed to the desired locations rather than only the 

dominant closed-loop poles. The closed-loop poles can be placed at arbitrarily chosen 

locations with the precondition that the system must be completely state-controllable. 

(Ogata, 2002:827).  

 

In many design problems, a system is stabilized through state feedback. Consider a 

control system as follows: 

( ) ( ) ( ) ( )
( ) ( ) ( )tDutCxty

x0     xtButAxtx 0

+=

=+=&
            (5.1) 

where x(t)∈Rn×1 is the state vector; y is the output scalar; u∈Rm×1 is the control vector. 

A∈Rn×n is the state matrix; B∈Rn×1 is the control matrix; C∈R1×n is the output matrix and D 

is a constant, x(0) is the initial state condition. 

The control signal is chosen as: 

u=-Kx(t)                 (5.2) 

where K∈R1×n is the feedback gain matrix.  

 

Substitute Equation (5.2) into Equation (5.1), then: 

( ) ( ) ( )txBKAtx −=&                (5.3) 

Solve Equation (5.3), the solution is given as: 

( ) ( ) ( )0xetx tBKA−=                (5.4) 

 

The eigenvalues of the matrix A-BK determine the stability and transient response 

characteristics. If matrix K is selected appropriately, the matrix A-BK is asymptotically 

stable matrix and for x(0)≠0, it is possible to make x(t) to approach zero as t approaches 

infinity. The eigenvalues of matrix A-BK are called the regulator poles. If these regulator 
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poles are placed in the left-half s plane, then x(t) approaches zero as t approaches 

infinity (Ogata, 2002:829).  

 

It can be proven that a necessary and sufficient condition for arbitrary pole placement is 

that the system must be completely state controllable. If the system is completely 

controllable, all eigenvalues can be arbitrarily placed by choosing the controller matrix 

according to the equation: 

[ ] ( ) 1
11nn  K −

− ΓΨδδδ= L              (5.5) 

where  

a) [ ]BAABB 1n−=Γ L  is the controllability matrix;  

b) . The a

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⋅⋅⋅⋅⋅
⋅⋅⋅⋅⋅
⋅⋅⋅⋅⋅

=Ψ

−−

−−

0001
001a

01aa
1aaa

1

3n2n

12n1n

L

L

L

L

i’s in Ψ are coefficients of the characteristic 

polynomial: n1n
1n

1
n asasasAsI ++++=− −

− L . 

c) In the preceding equation [ ]11nn δδδ − L can be solved from the system 

characteristic equation:  

0BKTTATTsI 11 =+− −− , if the parameters are substituted, then 

( ) ( ) ( ) 0asasas nn1n1n
1n

11
n =δ++δ+++δ++ −−

− L  

 

There are other ways to find the feedback gain matrix K. They all have the same 

approach.  

 

The above described pole-placement method derivation is for the system where the 

reference input is always zero. If the reference input to the system is always a constant 

which can be zero or a nonzero constant, the system is called a regulator system. With 

the help of the modern computation tools, the feedback gain matrix K can be easily 

calculated.  
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5.2.2 Quadratic optimal regulator method 
There are several good reasons for developing the optimal control method. First of all, an 

advantage of the optimal control method over the pole-placement method is that the 

former provides a systematic way of computing the state feedback control gain matrix 

(Ogata, 2002:897). Secondly, in the pole-placement method the closed-loop pole 

locations must be determined, but the designer may not really know where they are 

located. The optimal control method avoids finding the desired pole locations. Thirdly, for 

the same system, there is not unique control law based on the pole-placement method. 

The designer may not know how to choose the best one. The control law of the optimal 

control method optimizes performance of the system in the precise sense, and the above 

difficulties are avoided (Friedland, 1986: 337).  

 

In modern optimal control theory of linear deterministic dynamic systems, represented in 

continuous time by: 

( ) ( ) ( )tButAxtx +=& , ( ) 0x0x =              (5.6) 

the linear state feedback control signal is expressed as: 

( ) ( )tKxtu −=                 (5.7) 

where u∈Rm is the vector of the control signal, B∈Rn×m, K∈Rm×n. 

 

By optimizing the value for the feedback gain K, the following performance criterion 

which is also called performance index is minimized: 

( ) ( ) ( ) ( )( )∫
∞

+=
0

TT
P dt tRututQxtxJ              (5.8) 

where Q is a positive definite (or positive-semidefinite) Hermitian or real symmetric matrix 

and R is a positive-definite Hermitian or real symmetric matrix.  

 

Matrices Q and R are the weighting matrices. They are often called the state weighting 

matrix and control weighting matrix, respectively (Friedland, 1986:339). Weighting 

matrices Q and R along with matrices A and B define the dynamic of the process. But it 

is impossible to predict the effect of the weighting matrices on a system. The suitable 

approach for finding the feedback gain matrix K would be as follows: a range of weighting 

matrices Q and R are chosen. Simulate the system with these selected weight matrices 

and examine the corresponding closed-loop response. The gain matrix K that generates 

the response closest to meeting the desired objective is the ultimate selection (Friedland, 

1986:341).  
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The criterion is selected wisely. It requires minimization of “square” of input, which is the 

control signal. In other words, it minimizes the input energy required to control a given 

system. On the other hand, it requires minimization of the “square” of the state variables. 

That means the differences between the desired trajectories and actual system states 

trajectories are minimized. The minimization can be interpreted as the goal of bringing 

the system as close as possible to the desired trajectories while optimizing the energy 

usage (http://www.ece.rutgers.edu/~gajic/psfiles/lqr.pdf). For the regulation problem, the 

origin is zero. If the problem is to regulate the state variables to some constant values, 

the problem becomes set point control problem. This transformation to the regulation 

problem can be done easily by shifting the origin.  

 

The solution of the optimal problem is determined by one of two dynamic optimization 

mathematical techniques: dynamic programming and calculus of variations. The solution 

is given in terms of the solution of the famous Riccati equation. It can be shown 

(http://www.ece.rutgers.edu/~gajic/psfiles/lqr.pdf) that the required optimal solution for 

the feedback gain is given by: 

( ) ( ) ( )tPxBRtKxtu T1−−=−=               (5.9) 

The symmetrical positive definite matrix P∈Rn×n must satisfy the following algebraic 

Riccati equation:  

0QPBPBRPAPA T1T =+−+ −            (5.10) 

 

Now the procedure of design a linear quadratic feedback controller can be summarized 

as follow: 

 Solve the reduced-matrix Riccatie equation for the matrix P. If a positive-definite matrix P 
exists, the system is stable. 

 Substitute this matrix P into the feedback gain Equation (5.9), the matrix K is the optimal 
matrix.  
 

5.3 Linear controller design for the inverted pendulum and overhead crane 
Based on the linearized mathematical models of the inverted pendulum in Equations 

(4.46) to (4.49) and the overhead crane in Equation (4.69) to (4.72), the linear controllers 

are designed and simulated. Here the pole-placement method and the quadratic optimal 

regulator method are used for the controllers design. The controllers are computed in 

Matlab and the closed loop system is simulated in Simulink. 
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5.3.1 State Space Pole-placement Method Controller Design 
The control method is based on the pole-placement design techniques in state space. 

The linearized models of the inverted pendulum and overhead crane are used. This 

implies that the obtained stabilizing control will only ensure local stability in the vicinity of 

the upright equilibrium point, the point about which the equations were linearized.  

The pole-placement method permits the design of a linear controller which achieves 

arbitrary desired closed-loop poles. The desired closed-loop poles should be chosen 

wisely so that the desired closed-loop characteristics are achieved, for example 

 The settling time is approximately 2~3 seconds 
 The maximum overshoot is 3%~5% in the step response of the cart position 

The final control law, from this design, is the result of a matrix multiplication between the 

state vector z and a gain matrix of compatible dimension K, such that the control signal is 

u=-Kz(t) 

where z∈R4×1 is the state space vector of the inverted pendulum and the overhead crane 

 

For this project, the aim is to: 

 Keep the inverted pendulum upright as much as possible which is z3=θ=0 for t→∞ and 
 Control the position of the cart according to a given set point ysp for the output, for 

example, move the cart in a step manner.  
 The process dynamic behaviour must meet the specification mentioned above 

 
 
 

 
Figure 5.1:  Type 1 servo system 

 
 
To control the position of the cart, with zero steady state error according to the required 

set point ysp, a type 1 servo system is needed (Ogata, 2002:850). There is no built in 

integrators in the inverted pendulum and the overhead crane. Both of them are type 0 

plants. Therefore, the position signal y is sent back to the input to be compared with the 

set point and an integrator is used in the feed-forward path as shown in Figure 5.1. The 
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output considered for both the inverted pendulum and the overhead crane is given by 

Equation (4.51). 
 

The general approach of developing a servo system is presented shortly now. From the 

above block diagram, the following differential and algebraic equations are obtained: 

( ) ( ) ( )tButAxtx +=&              (5.11) 

( ) ( )tCxty =               (5.12) 

( ) ( ) ζ+−= IKtKxtu              (5.13) 

( ) ( ) ( ) ( ) ( )tCxtytytyt' spsp −=−=ζ& ,           (5.14) lR'∈ζ&

where ζ’ is the output of the integrator. 

 

It can be seen there are two differential equations which can be grouped into one state 

space model as follow: 

( )
( )

( )
( ) ( ) ( )ty

1
0
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0
B

t
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⎦
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−
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⎣

⎡
ζ&
&

          (5.15) 

It can be stated, for ysp(t) constant that the requirements for ysp(t)=y(t) are equivalent to 

the requirements that x(∞), ζ’(∞), u(∞) approach constant values and in the steady state 

. Then r(∞) and y(∞) are constant. ( ) 0t' =ζ&

 

At steady state the equation of the extended system (5.15) can be written as: 

( )
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        (5.16) 

 

If ysp is a step input applied at t=0, then for t>0 it is a constant. By subtracting Equation 

(5.16) from Equation (5.15) it is obtained: 

( ) ( )
( ) ( )

( ) ( )
( ) ( ) ( ) ( )[ ∞−⎥

⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
∞ζ−ζ
∞−

⎥
⎦

⎤
⎢
⎣

⎡
−

=⎥
⎦

⎤
⎢
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utu
0
B

't'
xtx

0C
0A

't'
xtx
&&

&& ]        (5.17) 

After a new definition of variables: 

( ) ( ) ( )txxtx e=∞−              (5.18) 

( ) ( ) ( )t''t' eζ=∞ζ−ζ              (5.19) 

( ) ( ) ( )tuutu e=∞−              (5.20) 

the Equation (5.17) can be written as: 
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(5.21) 

where ( ) ( ) ( )tKtKxtu eIee ζ+−=            (5.22) 

If the vector , then the Equation (5.21) and (5.22) can be written as: 
( )
( ) ( )te
t'
tx

e

e =⎥
⎦

⎤
⎢
⎣

⎡
ζ

( ) ( ) ( )tuBteAte eΦΦ +=& , ,           (5.23) lnRe +∈ m
e Ru ∈

( ) ( )teK̂tue =               (5.24) 

where , , ⎥
⎦

⎤
⎢
⎣

⎡
−

=Φ 0C
0A

A ⎥
⎦

⎤
⎢
⎣

⎡
=Φ 0

B
B [ ]IKKK̂ = , ( )lnmRK +×∈        (5.25) 

 

Following the described general approach for design of the type 1 servo system above, a 

control servo system for the inverted pendulum and the overhead crane can be 

developed. For the considered case n=4, m=1, L=1. The matrix C=[1  0  L  0]. From the 

manual of the pendulum system “Document for the Bytronic Pendulum Control System”, 

it can be seen that inverted pendulum and overhead crane share the same natural 

frequency 6.16rad/s and damping ratio 0.0033 (Bytronic international LTD, 2001: 5.5).  

 

In the manual a second order mathematical model Gp is given as: 

( ) 2
2

2
nn

p s0264.0s00122.01
1

s1s21

1sG
++

=

ω
+

ω
ζ

+
=         (5.26) 

In the denominator, the term 0.00122s is very small, so it is neglected. Then, the inverted 

pendulum mathematical model can be presented as: 

2p s0264.01
1G

+
=              (5.27) 

A suitable compensator Gc is given at the same time, which is presented as: 

( )
s01.01

s1.01sGc +
+

=              (5.28) 

By using the given mathematical model and suitable compensator, the closed-loop 

system poles can be determined. The closed-loop transfer function G can be expressed 

as: 

( ) ( )
( ) ( )sGsG1

sGsG
G

pc

pc

+
=              (5.29) 
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Substitute Gp(s) and Gc(s) into Equation (5.29), then: 

( )( ) s1.01s01.01s0264.01
s1.01

s01.01
s1.01

s0264.01
11

s01.01
s1.01

s0264.01
1

G 2

2

2

++++
+

=

+
+

⋅
+

+

+
+

⋅
+=       (5.30) 

From the characteristic equation, the closed-loop poles can be determined by solving 

equation in Matlab:  

(1+0.0264s2)(1+0.01s)+1+0.1s=0           (5.31) 

The results are:  

-96.495614428933182941444876409678 

-1.7521927855334085292775617951608-8.6855424835188583024103261365093*i 

-1.7521927855334085292775617951608+8.6855424835188583024103261365093*i 

For the overhead crane the closed-loop poles can be obtained by solving equation:  

(1-0.0264s2)(1+0.01s)+1+0.1s=0 

The results are:  

-103.32303041979847555614431132269 

-10.383999162801621108324101821326 

 -7.0609687430031455521797904986407 

 

The same closed-loop poles are placed at z=pi, (i=1, 2, 3, 4, 5), where p1=-1.752+8.685j, 

p2=-1.752-8.685j, p3=-16, p4=-17 and p5=-100. Among these poles, poles p1, p2 and p5 

are chosen according to the given closed-loop poles from the manual. Poles p3 and p4 

are located far left of the dominant pair of closed-loop poles and therefore, their effect 

over the overall response is minimal. After the poles are chosen, it is necessary to prove 

that the closed-loop systems are completely state controllable. This can be done in 

Matlab. By using command ‘ctrb’, the controllability matrix can be calculated. If the matrix 

has full rank, then the system is controllable. The controller design follows the standard 

procedures. In the project, the calculations are done through Matlab. The function ‘place’ 

is used to compute the feedback gain matrix K . Please refer to Appendix A. 2 and 

Appendix A. 3 for the associated m-file “PP_OP_IP.m” and “PP_OP_OC.m”. 

ˆ

 

The calculation results of the feedback gain for the inverted pendulum and the overhead 

crane respectively are: 

[ ]7641.281357.01434.110233.37724.15K̂ −−−=  (Inv. Pend.)      (5.26) 
[ ]7641.287931.10047.119658.31362.16K̂ −−−−=  (Crane)       (5.27) 

These matrices are used for the simulations.  
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The simulation of the closed loop system is done in the Simulink environment. In the 

Figure 5.2, the Simulink block diagram “Linear_PP_OP.mdl” for the closed-loop system is 

shown. This Simulink block diagram is associated with the above mentioned two m-files. 

The first m-file “PP_OP_IP.m” is for the inverted pendulum. The second one 

“PP_OP_OC.m” is for the overhead crane. These two m-files are used to compute the 

feedback gain matrix K  based on the pole-placement method. Once the calculation is 

done, all the parameters and the calculation results including the feedback gain matrices 

values are restored in the workspace of the Matlab. All the values that are necessary for 

running the Simulink block diagram can be found in the workspace. Once the Simulink 

block diagram starts running, it takes the necessary parameters from the workspace in 

order to complete the simulation. 

ˆ
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Figure 5.2:  Simulink block diagram for closed-loop simulation with controller design 
based on the pole-placement method 

 
 
 

The Simulink block diagram is built for one output y. It is constructed as: y=x+Lθ, where x 

is the cart position signal and θ is the angle signal which shows how much the pendulum 

is away from the vertical direction. There are five states x [m], x  [m/s], θ [rad], θ  [rad/s] 

and ζ [m], the feedback gain matrix has dimension of 1 by 5. The first four elements of 

the matrix are multiplied with the first four states respectively. The fifth element is placed 

& &
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after the added integrator. The error signal is the difference between the set point and 

the actual output signal.  

 

For the inverted pendulum and the overhead crane, the initial conditions are z(0)=[0.03  

0.05  0.09  0.04] and z(0)=[0.03  0.05  0.35  0.04] respectively. These two vectors specify 

the initial values for the four states x, x , θ and θ . The third states for specifying the initial 

angle values are different in these two vectors. For the inverted pendulum, the third state 

is 0.09 radian which means initially the pendulum is around 5 degree away from the 

vertical direction. For the overhead crane, the third value is 0.35 radian which 

corresponds the pendulum is 20 degree away from the vertical direction at the beginning. 

The set point (desired position) is set by three different values: 0.0m, 0.05m and 0.1m. 

The simulations are done by utilizing all of these three values. The signals shown below 

include the output signal y; the control signal F; the position signal x, the velocity signal 

, the angle signal θ and the angular velocity signal θ . These simulation results are 

shown in the figures following. They are organized in such a manner that: for each set 

point the signal y, u, x, x , θ and θ  of the inverted pendulum and the overhead crane are 

presented.  

& &

x& &

& &

 
 
 

Inverted Pendulum y and u (pole-placement method)
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Figure 5.3:  Inverted pendulum signal y and F when the set point is 0 
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Inverted Pendulum x and x_dot (pole-placement method)
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Figure 5.4:  Inverted pendulum state signal x and  when the set point is 0 x&

 
 

Inverted Pendulum theta, theta_dot (pole-placement method)
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Figure 5.5:  Inverted pendulum state signal θ and  when the set point is 0 θ&

 
 

Overhead Crane y and u (pole-placement method)
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Figure 5.6:  Overhead crane signal y and F when the set point is 0 
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Overhead Crane x, x_dot (pole-placement method)
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Figure 5.7:  Overhead crane state signal x and  when the set point is 0 x&

 
 

Overhead Crane theta,theta_dot (pole-placement method)
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Figure 5.8:  Overhead crane state signal θ and  when the set point is 0 θ&

 
 

Inverted pendulum y and u (pole-placement method)
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Figure 5.9:  Inverted pendulum signal y and F when the set point is 0.05m 

 

118 



Inverted Pendulum x and x_dot (pole-placement method)
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Figure 5.10:  Inverted pendulum state signal x and  when the set point is 0.05m x&

 
 

Inverted Pendulum theta, theta_dot (pole-placement method)
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Figure 5.11:  Inverted pendulum state signal θ and θ when the set point is 0.05m &

 
 

Overhead Crane y and u (pole-placement method)
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Figure 5.12:  Overhead crane signal y and F when the set point is 0.05m 
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Overhead Crane x and x_dot (pole-placement method)
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Figure 5.13:  Overhead crane state signal x and  when the set point is 0.05m x&

 
 

Overhead Crane theta, theta_dot (pole-placement method)
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Figure 5.14:  Overhead crane state signal θ and θ when the set point is 0.05m &

 
 

Inverted Pendulum y and u (pole-placement)
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Figure 5.15:  Inverted pendulum signal y and F when the set point is 0.1m 
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Inverted Pendulum x and x_dot (pole-placement method)
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Figure 5.16:  Overhead crane state signal x and  when the set point is 0.1m x&

 
 

Inverted Pendulum theta, theta_dot (pole-placement method)
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Figure 5.17:  Inverted pendulum state signal θ and θ when the set point is 0.1m &

 
 

Overhead Crane y and u (pole-placement method)
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Figure 5.18:  Overhead crane signal y and F when the set point is 0.1m 
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Overhead Crane x and x_dot (pole-placement method)
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Figure 5.19:  Overhead crane state signal x and  when the set point is 0.1m x&

 
 

Overhead Crane theta, theta_dot (pole-placement method)
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Figure 5.20:  Overhead crane state signal θ and θ when the set point is 0.1m &

 
 
 

The controllers design based on pole-placement method has been done for the inverted 

pendulum and the overhead crane. The simulations have been done as well. The 

simulation results are shown above. In the next subsection, the linear quadratic optimal 

method control is used for the linear controller design.  

 

5.3.2 Linear quadratic optimal controller design  
This method is based on a LQR design using the linearized system (5.23) (5.24). In 

section 5.2.2, the method has been studied. In a LQR design, the gain matrix K  for a 

linear state feedback control law  is found by minimizing the performance 

index in the form of: 

ˆ

e(t)K̂-u(t) =
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( ) ( ) ( )∫
∞

+=
0

TT dt)t(RututQeteJ            (5.28) 

where Q∈R5×5 is a positive definite (or positive semidefinite) Hermitian or real symmetric 

matrix. R∈R1 is a positive definite Hermitian or real symmetric matrix. The matrices Q 

and R are weighting parameters that penalize certain states or control inputs and ysp=0. 

In Matlab, the command “lqr” is used to solve the continuous-time, linear, quadratic 

regulator problem. This command computes the feedback gain matrix K .  ˆ

 

5.3.3 Set point control 
For the LQR method, the matrices Q and R determine the relative importance of the error 

and the expenditure of the energy. They are selected based on the experience gained 

from the simulations. The following values are chosen for control of the inverted 

pendulum and overhead crane respectively:  

Qip=diag {8900   900   80000   100   50000}  Rip=1        (5.29) 

Qoc=diag {50000   500   10000   100   500000} Roc=1        (5.30) 

 

The initial conditions and the set points for the different variables are the same as these 

used for the pole-placement method simulation. By using the method described above 

and the selected weighting matrices, the linear controllers are designed and applied to 

the linear mathematical models of the inverted pendulum and overhead crane. Based on 

this design, the controller gain matrix K  for the linearized inverted pendulum and 

overhead crane are: 

ˆ

[ ]6068.2236024.43823.2948834.750768.207K̂ −−=  (Inv. Pend.)        (6.6) 

[ ]1068.7078377.392684.4141857.116785.462K̂ −−−−=  (Crane)        (6.7) 

 

For the simulation, the same Simulink block diagram “Linear_PP_OP.mdl” is used, but it 

is also associated with these two m-files which are called “PP_OP_IP.m” and 

“PP_OP_OC.m”. These m-files contain the commands and parameters for the quadratic 

optimal controllers design. For the detail of the m-files, please refer to Appendix A. 2 and 

Appendix A. 3.  

 

The simulation results are shown in the figures below. The signals shown below include 

the output signal y, the position signal x, the velocity signal , the angle signal θ and the 

angular velocity signal θ . They are arranged in the same order as mentioned above for 

the inverted pendulum and overhead crane, respectively. 

x&

&
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Inverted Pendulum y (optimal method)
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Figure 5.21:  Inverted pendulum output signal y when the set point is 0 

 
 

Iverted Pendulum u (optimal method)
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Figure 5.22:  Inverted pendulum control signal F when the set point is 0 

 
 

Inverted Penduum x and x_dot (optimal method)
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Figure 5.23:  Inverted Pendulum state signal x and  when the set point is 0 x&
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Inverted Pendulum theta, theta_dot (optimal method)
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Figure 5.24:  Inverted pendulum state signal θ and θ when the set point is 0 &

 
 

Overhead Crane y (optimal method)
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Figure 5.25:  Overhead crane output signal y when the set point is 0 

 
 

Overhead Crane u (optimal method)
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Figure 5.26:  Overhead crane control signal F when the set point is 0 
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Overhead Crane x, x_dot (optimal method)
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Figure 5.27:  Overhead crane state signal x and  when the set point is 0 x&

 
 

Overhead Crane theta,theta_dot (optimal method)
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Figure 5.28:  Overhead crane state signal θ and θ when the set point is 0 &

 
 

Inverted Pendulum y (optimal method)

0

0.01

0.02

0.03

0.04

0.05

0.06

0 1 2 3 4 5 6 7time (s)

y-
di

sp
la

ce
m

en
t (

m
)

8

y

 
Figure 5.29:  Inverted pendulum output signal y when the set point is 0.05m 
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Inverted Pendulum u (optimal method)
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Figure 5.30:  Inverted pendulum control signal F when the set point is 0.05m 

 
 

Inverted Pendulum x and x_dot (optimal method)
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Figure 5.31:  Inverted Pendulum state signal x and x  when the set point is 0.05m &

 
 

Inverted Pendulum theta, theta_dot (optimal method)
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Figure 5.32:  Inverted pendulum state signal θ and θ when the set point is 0.05m &
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Overhead Crane y (optimal method)
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Figure 5.33:  Overhead crane output signal y when the set point is 0.05m 

 
 

Overhead Crane u (optimal method)
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Figure 5.34:  Overhead crane control signal F when the set point is 0.05m 

 
 

Overhead Crane x and x_dot (optimal method)
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Figure 5.35:  Overhead crane state signal x and  when the set point is 0.05m x&
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Overhead Crane theta, theta_dot (optimal method)
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Figure 5.36:  Overhead crane state signal θ and θ when the set point is 0.05m &
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Figure 5.37:  Inverted pendulum output signal y when the set point is 0.1m 
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Figure 5.38:  Inverted pendulum control signal F when the set point is 0.1m 
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Inverted Pendulum x and x_dot (optimal method)
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Figure 5.39:  Inverted Pendulum state signal x and  when the set point is 0.1m x&
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Figure 5.40:  Inverted pendulum state signal θ and θ when the set point is 0.1m &
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Figure 5.41:  Overhead crane output signal y when the set point is 0.1m 
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Overhead Crane u (optimal method)
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Figure 5.42:  Overhead crane control signal F when the set point is 0.1m 
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Figure 5.43:  Overhead crane state signal x and  when the set point is 0.1m x&
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Figure 5.44:  Overhead crane state signal θ and θ when the set point is 0.1m &
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5.4 Discussion of the results 

According to the simulation results, the closed-loop systems with the quadratic optimal 

controllers have better response than the one with the pole-placement controllers. The 

output signal is critically damped. Overshoot is less than 1%. The system responses are 

faster than those of the corresponding pole-placement method designed closed-loop 

system. As a result, the linear systems with the quadratic optimal controllers are selected 

as reference models for the design of the nonlinear controllers. These references are 

used in the nonlinear controller design for both Lyapunov direct method and feedback 

linearization method. The specifications of the dynamic output behaviour according to the 

obtained results are given in Table 5.1. The closed-loop poles of the systems are given in 

Table 5.1 as well. 
 

Table 5.1: Table of the simulation results comparison 

Set point characteristics 
Inverted 
pendulum 
(pole-
placement) 

Overhead 
crane 
(pole-
placement) 

Inverted 
pendulum 
(Optimal) 

Overhead 
crane 
(Optimal) 

Time Delay 0 0 0 0 
Overshoot 5% 200% 2% 200% 
Rising Time 0.8s 0.04s 0.05s 0.02s 
Steady State error 0.01 0.001 0.01 0.001 

0 

Settling Time 2.5s 1.8s 2.3s 1.8s 
Time Delay 0 0 0 0 
Overshoot 3% 200% 1% 150% 
Rising Time 0.8s 0.03s 0.05s 0.01s 
Steady State error 0.005 0.001 0.001 0.003 

0.05 

Settling Time 1.5s 1.4s 2.1s 2s 
Time Delay 0 0 0 0 
Overshoot 3% 200% 1% 40% 
Rising Time 0.9s 0.05s 1.8s 0.001s 
Steady State error 0.005 0.001 0.001 0.001 

0.1 

Settling Time 1.8s 1.7s 2s 1.7s 
 
 

5.5 Conclusion 
In this chapter, the pole-placement method and the linear optimal control method are 

studied. Based on the developed linearized mathematical models of the inverted 

pendulum and overhead crane, the linear controllers are designed based on the pole-

placement method and linear optimal control method. From the simulation results, it can 

be seen that the closed-loop systems with linear optimal controller have better responses. 

In Chapter 6 and Chapter 7, the closed-loop system with linear optimal controller is used 

as a reference model for the design of the nonlinear controllers. 
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CHAPTER SIX 
LYAPUNOV STABILITY THEORY  

BASED MODEL REFERENCE CONTROL DESIGN 
 

6.1 Introduction 
Lyapunov stability theory allied with the model reference control method has been used 

to control complicated nonlinear systems. Especially, the Lyapunov Direct Method (LDM) 

which is also known as the Lyapunov second method has been widely used. It has 

become one of the most important tools for nonlinear system analysis and nonlinear 

controller design (Slotine and Li, 1991:41). The application of the Lyapunov direct 

method requires the Lyapunov function to be constructed first. Then the Lyapunov 

function is used to obtain a rigorous mathematical technique for designing the control 

vector (Ucar, 2005). In this chapter, the Lyapunov stability based model reference control 

method is deployed. Nonlinear, linearizing the closed-loop system according to the linear 

reference model controller is designed based on the requirements for negative 

definiteness of the Lyapunov function first derivative. Referring to the previous Chapter 5, 

a linear quadratic regulator is used to control the reference model and optimize the 

performance of the entire closed-loop system.  

 

According to the nonlinear controller design procedure, this chapter is organized as 

follows: in the section 6.2, the common nonlinear controllers’ design is based on the 

Lyapunov direct method and the model reference control method. In the section 6.3, the 

common controller developed from the section 6.2 is applied to the inverted pendulum 

and overhead crane models. The Simulink block diagrams, which are used for the 

simulations and the simulation results, are shown in the section 6.3.  

 

6.2 Design of the nonlinear controller 
One useful method for specifying system performance is by means of a model that will 

produce the desired output for a given input (Landau, 1979). The basic idea of the MRC 

is to develop a control strategy that can force the plant dynamics to follow the dynamics 

of an ideal model. The ideal model needs not be actual hardware. It can only be a 

mathematical model simulated on a computer. In a MRC system, the output or states of 

the model and that of the plant are compared. The difference is used to generate the 

nonlinear or linear control signals. The MRC has been used to obtain acceptable 

performance in some very difficult control problems involving the systems containing 

nonlinearity and/or time varying parameters (Landau, 1979). In this project, the MRC 
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associated with the Lyapunov second method for stability is used to design control of the 

inverted pendulum and the overhead crane.  

 

The general procedure developed for design of a nonlinear controller based on the 

Lyapunov second method consists of the following steps: 

6.2.1 Step 1: Find the plant mathematical model 
The task in this step is to find the nonlinear model of the system. The plant is described 

by a set of first order nonlinear differential equations, in the form of: 

( ) ( )
( )xhy

xt     xt,u,xfx 00

=

==&
              (6.1) 

where x∈Rn is the state vector; u∈Rm is the control vector; f∈Rn is a nonlinear vector 

valued function; y∈Rl is the vector of the output; h(t) ∈Rl is a nonlinear vector valued 

function.  

 

Referring to the project, the task is to find the nonlinear models of the inverted pendulum 

and the overhead crane. This has been done in the Chapter 4 by Equations (4.40) to 

(4.43) and (4.63) to (4.67), respectively.  

 

6.2.2 Step 2: Determining the specifications for the behaviour of the closed-loop system 
It is desired that the controlled closed-loop system follows closely the reference model 

system. The problem for design of a controller is to calculate a controller that always 

generates a signal that forces the plant states towards the reference model states. With 

the time tending to infinity, the error vector between the system state vector and the 

desired state vector has to go to zero. The closed-loop system configuration is given in 

Figure 6.1 shown below. 
 
 
 

 
Fig 6.1:  General block diagram for model-reference control 
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The model reference system can be different, linear or nonlinear, time-invariant or time 

variant, and so on. In this particular project, it is assumed that the model reference 

system is linear time-invariant system, which is given by the equation: 

( ) ( ) ( ) ( )
( )tCxy

x0     xtBvtAxtx

d

0dd

=

=+=&
             (6.2) 

where xd∈Rn is the desired states vector of the model; v∈Rm is the control vector for the 

model reference system; A∈Rn×n is the constant state matrix; B∈Rn×m is the constant 

control matrix and C∈R1×n is the constant output matrix. 

 

The matrix A of the reference model is selected equal of the matrix A of the closed-loop 

optimal control system for the linearized models of the inverted pendulum in Equation 

(4.50) or the overhead crane in Equation (4.74), respectively. The matrix B is selected 

equal of the matrix B of the linearized models. The control input v is selected in such a 

way that the state vector xd follows some desired trajectory, which then will be followed 

by the actual plant. 

 

6.2.3 Step 3: Determining the error between the reference model states and the plant 
states 
The error e(t) can be expressed as follows: 

( ) ( ) ( )txtxte d −=                (6.3) 

Where e ∈Rn, x(t) is the actual state of the plant. 

 

The requirements towards the closed-loop systems are that the error e(t) has to be 

reduced to zero by a suitable control vector u(t) when the time goes to infinity. In order to 

integrate both the reference model equation and the plant equation into the error 

Equation (6.3), it is necessary to differentiate the error Equation (6.3) according to the 

time. Once done, both model equations can be substituted into the differentiated 

equation, which is shown as follows: 

( ) ( ) ( ) =−= txtxte d &&&  

( ) ( ) ( ) =−+= t,u,xftBvtAxd  

( ) ( ) ( ) ( ) ( ) =−+−+= t,u,xftBvtAxtAxtAxd  

( ) ( )[ ] ( ) ( ) ( ) =−++−= t,u,xftBvtAxtxtxA d  

∵ e(t)=xd(t)-x(t), then the equation can be simplified as: 
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( ) ( ) ( ) =−= txtxte d &&&  

( ) ( ) ( ) ( )tBvt,u,xftAxtAe +−+=              (6.4) 

Equation (6.4) is a differential equation for the error vector. 

The problem now is to design a controller so that at the equilibrium state , dxx = dxx && =  
or . Thus the equilibrium e=0 will be the origin of the coordinate system.  0ee == &

 

6.2.4 Step 4: Design of a controller 
Based on the understanding of the Lyapunov direct method, the positive definite 

Lyapunov function V for the system is constructed and its time derivative V  is examined. 

If  is negative definite, that means that the energy contained in the system is 

continuously dissipating. The system is moving towards the stable equilibrium. The 

following sub-steps present the procedures of how the nonlinear controller design is 

based on the Lyapunov direct method. 

&

V&

 

6.2.4.1 Construction of a Lyapunov function for the system 
There is no general method for finding and constructing a Lyapunov function for a 

nonlinear system. In this project, the Lyapunov function is assumed to be done by a 

quadratic form: 

( ) ( ) ( )tPe teeV T=                (6.5) 

where P∈Rn×n is positive definite real symmetrical matrix. Because the function V(e) is in 

quadratic form and the matrix P is positive definite, it is true that V(e) is positive definite.  

 

6.2.4.2 Calculation of the first time derivative of the function of Lyapunov according to the 
trajectory of the error equation 
Lyapunov function V(e) is defined in Equation (6.5). Differentiating the positive definite 

function V(e) along the system trajectory, its time derivative is obtained as follows: 

( ) ( ) ( ) ( ) ( ) =+= teP tetPe teeV TT &&&  

( ) ( ) ( ) ( )[ ] ( ) =+−+= tPe  tBvt,u,xftAxtAe T  

( ) ( ) ( ) ( ) ( )[ ] ( ) =+−++ tPetBvt,u,xftAxtAeP te TT  

( ) ( ) ( ) ( )[ ] ( )
( ) ( ) ( ) ( ) ( )[ ] =+−++

++−+=

tBvt,u,xftAxtAe P te
tPe B tvt,u,xfAtxAte

T

TTTTTTT

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) =+−++

++−+=

tPBv tet,u,xPf tetPAx tetPAe te
tPeB tvtPe t,u,xftPeAtxtPeAte

TTTT

TTTTTTT
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( ) [ ] ( ) M2te PAPA te TT ++=               (6.6) 

where ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )+−−+= t,u,xPf tetPe t,u,xftPAx tetPeAtxM 2 TTTTT  

           ( ) ( ) ( ) ( ) =++ tPBv tetPeB tv TTT  

( ) ( ) ( ) ( ) ( ) ( ) ( )+−−+= t,u,xPf tet,u,xPfetPAx tetPAx te TTTT  

     ( ) ( ) ( ) =++ tPBv tetPBve TT

( ) ( ) ( ) ( )[ ]tBvt,u,xftAxP te2 T +−=              (6.7) 

This derivation is based on the fact that P is a symmetrical matrix with the property of 

 or  PPT =

( ) ( ) ( ) ( )[ ]tBvt,u,xftAxP te'M T +−=              (6.8) 

M’ is a scalar quantity 

 

6.2.4.3 Calculation of the control vector 
The assumed function V(e) is a Lyapunov function, it is not only positive definite, but also 

its first derivative must be negative definite. The first derivative of the function V(e) is 

expressed in Equation (6.9) as follows: 

( ) ( ) [ ] ( ) 'M2te PAPA teeV TT ++=&              (6.9) 

The time derivative of the Lyapunov function consists of two terms. In order ( )eV&  to be 

negative definite, the two terms have to either be negative definite at the same time or 

one term must be negative definite and the other term can be negative definite or equal 

to zero. For easier analysis and understanding, these two terms are examined separately 

in conditions one and two.  

 

6.2.4.3.1 Condition one: The condition for the first term to be negative definite 

It can be seen in Equation (6.10), the first term of ( )tV&  is the quadratic form:  

( ) [ ] ( ) ( ) ( )te Q tete PAPA te TTT −=+            (6.10) 

where . QPAPA T −=+

 

The necessary condition for Equation (6.10) to be negative definite is that the matrix Q 

must be a positive definite matrix. That means matrix P must be carefully selected in 

order to ensure Q is positive definite. However, this “natural” approach may lead to an 

inconclusive result, for example, the system is stable but with non-positive definite matrix 

Q (Slotine and Li, 1991:81). 
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A relatively simpler and more useful way is to define a positive definite matrix Q first, then 

to solve for P from the Lyapunov Equation (6.10), then examine whether P is positive 

definite. If P is positive definite, then the first term of V (e) is negative definite, and the 

problem with the selection of the Lyapunov function matrix is solved. 

&

 

6.2.4.3.2 Condition two: The condition for the second term to be negative definite 
For the second term, in order to satisfy the condition of the Lyapunov function time 

derivative negative definiteness, it is straight forward that M’<0 or M’=0. That means, the 

control signal u(t) must be selected carefully in order to make M’ negative definite or 

equal to zero. 

 

On the basis of condition 1 and 2, it can be concluded that M’ can be made negative or 

equal to zero through convenient and appropriate choice of the plant control vector F(t). 

Then from noting that V(e)→0, can be seen that the equilibrium state e=0 is 

asymptotically stable in the large. 

 

Condition 1 can always be fulfilled by a proper choice of P since the first term is in 

quadratic form. The problem now is to choose an appropriate vector F(t) so that M is 

either zero or negative scalar quantity. The calculations of F(t) can be done with selected 

values of a matrix P or a matrix Q. 

 

The general procedures for designing a nonlinear controller based on the Lyapunov 

stability and MRC method are described above. Now the method is applied to the 

inverted pendulum and the overhead crane. The developed control should always keep 

the inverted pendulum standing up and the oscillations of the overhead crane have to be 

reduced fast. The specifications determined for the linear control systems are used for 

design of the MRC systems in this chapter too. 

 

6.3 Development of MRC system for the inverted pendulum based on the Lyapunov 
direct method 
The same method is applied to the inverted pendulum and overhead crane. In the thesis, 

the application of the method to the inverted pendulum is described in detail. For the 

overhead crane, it is described briefly, because only the model of the overhead crane is 

different whilst the steps of the procedure are the same.  
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6.3.1 Design of the nonlinear Lyapunov controller for the model of the inverted 
pendulum 
Based on the study and understanding of the MRC theory, the Lyapunov stability theory, 

the Lyapunov direct method and LQR control method, the following sub-sections cover 

the general procedures as described above, and applied to the inverted pendulum 

system. The nonlinear controller for controlling of the inverted pendulum is developed 

step by step. 

 
6.3.1.1 The nonlinear model of the inverted pendulum 

The nonlinear model of the inverted pendulum is developed in previous Chapter 4. In 

order to avoid the confusion of the letters usage, the states of the inverted pendulum are 

denoted by z, where .  
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Then, the nonlinear mathematical model of the inverted pendulum can be expressed as 

follows:  
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               (6.11) 

( ) ( )tCzty =               (6.12) 

where ( )( ) 3
2222 zcosLmmLJmM −++=σ ; u=F and C=[1   0   L   0]. 

Or the model can be written in the following common form: 

( ) ( )( ) ( )( ) (tF tz gtz ftz )+=&             (6.13) 
( ) ( )tCzty =                (6.14) 
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6.3.1.2 The model of the desired system  
The linear reference model for this project can be written in the form of: 

( ) ( ) ( ) ( )
( ) ( )tCxty

x0    xtBvtAxtx

d

0dddd

=

=+=&
           (6.15) 

where xd∈R4 is the desired state space vector, v∈R1 is the control vector for the 

reference model, A∈R4×4, B∈R4×1 and B∈R1×4 are the state space, control and output 

matrices of the reference model, xd0 is the initial state.  

 

The reference model is designed in two steps: 

 The first step: A LQR system is designed based on the linearized inverted pendulum 
mathematical model following the Chapter 5 derivations but without considering the 
integration of the error signal between the set point and the output of the plant 

 The second step: The state matrix Ad of the reference model is found in such a way that: 

LLLd KBAA −=              (6.16) 

where 
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L
 is the control matrix of the linearized model; 

 and K( ) 2MmLmMJ' ++=σ L∈R1×4 is the feedback gain matrix.  

 

Because the set points are different, the corresponding reference models are different 

from each other. In the Table 6.1, the weighting matrices Q∈R4×4, R∈R1×1, the feedback 

gain KL and the desired system state matrices Ad are specified for different set points. 
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Table 6.1: Parameters table of the reference model 
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point 

Q R KL Ad=AL-BL×KL
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⎥
⎥

⎦

⎤

⎢
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⎢
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⎡
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⎢

⎣
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⎥
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⎦
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⎢
⎢
⎢
⎢

⎣
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108.8374-672.2686-270.3096-504.5290-
1000

26.0413171.637765.0726121.4571
0010

 

 
 
The matrix B can be selected equal to the matrix B of the linearized model.  
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⎥
⎥
⎥
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⎢
⎢

⎣

⎡

σ
−

σ
+

=

21.9153-
0

5.2758
0

b
0

b

0

'
Lm

0
'

  mLJ

0

B

2

1

2

          (6.17) 

The matrix C is C=[1  0  L  0]=[1  0  0.22  0] 

 

6.3.1.3 Determination of the error between the reference model and plant states 

e(t)=xd(t)-z(t), e∈R4×4             (6.18) 

The error e(t) has to be reduced to zero by a suitable control vector u. The differential 

equation of the error is: 

( ) ( ) ( ) ( )( ) ( )( ) ( )
( ) ( ) ( ) ( ) ( )( ) ( )( )
( ) ( )( ) ( ) ( ) ( )( ) ( )( ) ( )

( ) ( ) ( ) ( )( ) ( )( ) ( )tu tz gtz ftBvt zA t eA 
t u tz gtz ft v Bt zA t ztxA 

u(t) tz gtz ft v Bt zA t zA tA x
tu tz gtz ft v BtA xt z(t)x(t) e

d

d

dd

−−++=

=−−++−=

=−−+−+=

=−−+=−= &&&

        (6.19) 

The problem is to design a control vector F(t), such that at the equilibrium state 

 is achieved.  0ee,xz,xz ddd ==== &&&
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6.3.1.4 Design of the nonlinear controller 
6.3.1.4.1 Construction of the Lyapunov function 

Construction of the Lyapunov function for the error differential equation shown in 

Equation (6.18) is:  

)t(Pe)t(e)e(V T= ,             (6.20) 

where P is a symmetrical positive definite matrix , P∈Rn×n

 

6.3.1.4.2 Calculation of the first derivative of the function of Lyapunov 

=+= (t)e(t)Pe(t)Pee(e)V TT &&&  

[ ]
( )[ ] =−−+++

+−−++=

)g(z(t))F(tf(z(t))Bv(t)Az(t)tAe(t)Pe   
Pe(t)F(t) g(z(t))f(z(t))Bv(t)Az(t)Ae(t)

T

T

 

( )[ ]
[ ] =−−+++

+−−++=

)g(z(t))F(tf(z(t))Bv(t)Az(t)Ae(t)(t)Pe   
Pe(t) (z(t))g (t)F(z(t))fBtv(t)Az(t)Ae

T

TTTTTTTTT

 

=−−+++

+−−++=

)F(t)(t)Pg(z(t)e)(t)Pf(z(t)e(t)PBv(t)e(t)PAz(t)ePAe(t)e   
)(z(t))Pe(t(t)gF)(z(t))Pe(tfPe(t)(t)BvPe(t)AzPe(t)(t)Ae

TTTTT

TTTTTTTTT

 

=−−−−

+++++=

)F(t)(t)Pg(z(t)e)F(t)(t)Pg(z(t)e)(t)Pf(z(t)e)(t)Pf(z(t)e   
-(t)PBv(t)e(t)PBv(t)e(t)PAz(t)e(t)PAz(t)ePAe(t)ePe(t)(t)Ae

TTTT

TTTTTTT

 

[ ] [ ] =−−+++= )t(F))t(z(g))t(z(f)t(Bv)t(AzP)t(e2)t(ePAPA)t(e TTT  

'M2)t(Qe)t(eT +−=  

PAPAQ T +=  is a positive definite matrix, Q is symmetrical. 

( ) ( )( )[ )t(Ftzg)t(zf)t(Bv)t(AzP)t(e'M T −−+= ]          (6.21) 

The obtained equation is the equation of the first derivative of the Lyapunov function. In 

order for the error in the closed-loop system to go to zero as time t→∞, it is necessary for 

this equation to be negative definite. The first part is a negative definite as Q is selected 

to be positive definite. Then the second part M’ can be made zero or negative M’≤0 by a 

proper selection of the control F(t). 

 

6.3.1.4.3 Calculation of F(t) 
Calculation of the nonlinear control is done by some mathematical transformations of the 

expression for M’: 

( ) ( )( )[ ] 0)t(Ftzg)t(zf)t(Bv)t(AzP)t(e'M T ≤⋅−−+=  

( )[ ] ( )( ) 0)t(FtzPg)t(e)t(zf)t(Bv)t(AzP)t(e'M TT ≤⋅−−+=  
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( )( )[ ] ( )( ) )t(FtzPg)t(etzf)t(Bv)t(AzP)t(e TT ⋅≤−+          (6.22) 

The expressions from both sides of the equations are scalars, which depend on time. 

That is why it is possible to divide both sides by eT(t)Pg(z(t)) and to obtain: 

( )( )[ ] ( )( )[ ] )t(Ftzf)t(Bv)t(AzP)t(etzPg)t(e T1T ≤−+
−

 

or ( )( )[ ] ( )( )[ ]tzf)t(Bv)t(AzP)t(etzPg)t(e)t(F T1T −+≥
−

        (6.23) 

 

6.3.1.5 Diagram of the closed-loop system 
Based on the above equations, the diagram of the closed-loop system can be drawn. 

The expression for the nonlinear controller is multiplied by a number n>0 in order to 

make the fulfilment in the Equation (6.23) stronger. The nonlinear control given by the 

Equation (6.23), makes the first derivative of the Lyapunov function negative and 

linearizes the closed-loop system consisting from the nonlinear controller and the plant 

and equals to the reference model. The block diagram of the closed-loop system is given 

in Figure 6.2.  
 
 
 

 
Figure 6.2:  Block diagram of the closed-loop system 

 
 
 

6.3.2 Design of the linear optimal control v of the closed-loop system 
It can be seen that the desired vector xd depends on the input control vector v(t) for the 

reference model. Different values of v(t) will determine different values of xd(t). It can be 

seen from the expression for the nonlinear control in Equation (6.23) that the values of 

the F(t) depend on the parameters of the nonlinear plant model. Real implementation of 

the nonlinear control then cannot be very successful because of the disturbance 

influence and parameter variance. The linearizing and stabilizing effects could be lost. 

This means that additional control has to be designed to make the closed-loop system 

output exactly equal to the desired behaviour of the closed-loop system. It is possible to 

( ) ( ) ( )tBvtAxtx dd +=&   

( ) ( )( )[ ] ( ) ( ) ( ) ( )( )[ ]tzftBvtAzPtetzPgten T1T −+
−  ( ) ( )uzgzfz +=&+ 

-

C

( )txd

z

( )tF
z

 

z   

 
 

dC
dy

v
v  

 

 
y  
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apply the theory of optimal linear quadratic control, in order to design optimal controller 

for the system of the reference model.  

 

6.3.2.1 Specification of the closed-loop system for the reference model and the linearized 
closed-loop system 
It is supposed that the desired output of the entire closed-loop system is a set point value 

ysp. Based on this assumption, it is necessary to determine the optimal controller in such 

a way that y(t)=ysp.  

 

6.3.2.2 Formulation of the problem for linear optimal control  
The problem in the designing of the optimal linear control v(t) is formulated and solved 

following the development in Chapter 5, sections (5.32) and (5.33). The problem is 

solved for the output yd=xd+Lθd=z1d+Lz3d, but the real-time implementation is done for the 

real output y=x+Lθ in order to additionally compensate for all disturbances influencing the 

plant.  

 

Following the derivations in a Chapter 5, the vector 
( )
( ) ( )te
t
tx

d
e

de =⎥
⎦

⎤
⎢
⎣

⎡
ζ

 and the model of the 

error between the reference model states and their steady state values can be written in 

the following form: 

( ) ( ) ( )tvBteAte edd ΦΦ +=& , ,          (6.38) 1n
d Re +∈ m

e Rv ∈

( ) ( )teK̂tv de =               (6.39) 

where , , ⎥
⎦

⎤
⎢
⎣

⎡
−

=Φ 0C
0A

A
d

⎥
⎦

⎤
⎢
⎣

⎡
=Φ 0

B
B [ ]IKKK = , ( )1nmRK +×∈        (6.40) 

 

The basic idea of obtaining Equation (6.38), (6.39) is that the servo-problem is converted 

to a problem for design of a regulator system in which the set point in the criterion is zero. 

The problem can then be formulated in such a way that finds the matrix of the regulator K 

to fulfil the criterion: 

( ) ( )[ ] dt  tv  te  J
0

2

Re
2

QP ∫
∞

+= , ( )( )Q , 1n1nR ++∈ mmRR ×∈         (6.41) 

is minimized under the model Equation (6.38). The solution of this problem is based on 

the linear-quadratic controller design theory. 
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6.3.2.3 Solution of the problem for design of the optimal regulator 
The solution of the problem in Equation (6.38), (6.39) and (6.41) is given by the equation 

( ) ( ) ( ) ( ) ( )tePBRtKtKxteKtv d
T1

Idede ΦΦ
−

Φ −=ζ+−=−=         (6.42) 

where PΦ is a solution of the equation of Riccati; KΦ=[K   KL]∈R1×5

 

The solution of the problem in Equation (6.38), (6.39) and (6.41) is done by using Matlab 

function ‘lqr’: 

[ ] ( )R ,Q,B,AlqrE,P,K ΦΦΦΦ =  

where KΦ is the matrix of the regulator, PΦ is the matrix of the Riccati equation and E is a 

vector of the poles of the closed-loop matrix [AΦ-BΦKΦ]. If the system is stable all the 

poles have to be with negative real part.  

 

The control ve(t) can be obtained in the following way: 

( ) ( ) ( ) ( ) ( )[ ] ( ) ( )[ ]∞ζ−ζ+∞−−=ζ+−== Φ tKxxKtKtKxteKtv IddeIdede       (6.43) 

The steady state values are: 

( ) ( ) ( )∞+∞==∞ vBxA0x ddd&             (6.44) 

( ) ( )∞−==∞ζ d
sp Cxy0&             (6.45) 

In a vector matrix form 

( )
( ) ⎥

⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
∞
∞

⎥
⎦

⎤
⎢
⎣

⎡
−

=⎥
⎦

⎤
⎢
⎣

⎡
sp

d

y
0

v
x

0C
BA

0
0

           (6.46) 

The rank of the matrix  has to be checked to be equal to (n+1). Then, 

            (6.47) 

⎥
⎦

⎤
⎢
⎣

⎡
− 0C

BA

( )
( ) ⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
−

−=⎥
⎦

⎤
⎢
⎣

⎡
∞
∞

−

sp

1
d

y
0

0C
BA

v
x

Also, ( ) ( ) ( )∞ζ+∞−=∞ Id KKxv , then ( ) ( ) ( ) ( )∞−ζ+−= vtKtKxtv Ide  

From here ( ) ( ) ( )[ ∞+∞=∞ζ Kxv
K
1

I

]           (6.48) 

The algorithm of calculation is: 

1. Determine KΦ 

2. Determine xd(∞), v(∞). 

3. Determine ve(t) 

4. Determine ( ) ( ) ( )[ ]∞+∞=∞ζ d
I

Kxv
K
1  
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Then ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]tytyKtKxtKtKxvtvtv sp
IdIde −+−=ζ+−=∞+=       (6.49) 

 

6.3.2.4 Application of the obtained linear control to the nonlinear control system and the 
reference model 
The diagram obtained for the nonlinear control is extended with the optimal control v 

shown in Figure 6.3. 
 
 
 

 
Figure 6.3:  The structure block diagram of the Lyapunov stability based MRC system 

 
 
 

6.3.2.5 Design of the linear controller KΦ for the inverted pendulum plant 

The matrices A, B, C are given from the part for designing of the linear controller. The 

matrices AΦ and BΦ are formed as:  

⎥
⎦

⎤
⎢
⎣

⎡
−

=Φ 0C
0A

A ,   ⎥
⎦

⎤
⎢
⎣

⎡
=Φ 0

B
B

where  and . ⎥
⎦

⎤
⎢
⎣

⎡

∈∈
∈∈

=
××

××

Φ 1141

1444

R0RC
R0RAA ⎥

⎦

⎤
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∈
∈

=
×

×

Φ 11

14
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The matrix RΦ∈R1×1 is RΦ=1. The matrices QΦ∈R5×5 is selected differently for different set 

points. In Table 6.2, the matrices QΦ are shown.  

 

The feedback control gain KΦ can be found by using the Matlab command “lqr”.  

[ ] ( )R  ,Q,B,AlqrE,P,K ΦΦΦΦ =  

For different set points, the values of the feedback control gain KΦ are shown in Table 6.2. 

 
 
 
 
 

∫ KI 
Reference 

model 
Nonlinear 

plant 

K

Nonlinear 
controller 

ev ( )tFev  
  

z  z  

dx  ζ&  

- -
+ + +

z  

y  spy

- 
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Table 6.2: Parameters table for linear control design 

Set 
point 

QΦ KΦ

0.0m 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

7000000000
010000
00100
0001000
00009000

 [ ]6600.8362996.236120.1816857.836059.389 −−−−  

0.05m 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

6000000000
04000
00400
0001100
00009000

 [ ]5967.7741849.212922.1665148.776252.362 −−−−  

0.1m 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

2200000000
03000
001000
0001300
00009000

 [ ]0416.4698526.177821.1348087.635103.261 −−−−  

 
 
The obtained values for K=[KΦ11  KΦ12  KΦ13  KΦ14] and KI=-KΦ15 are used in Simulink 

diagram to form the closed-loop system. 

 

6.4  Simulation 
The simulation is done in the Matlab/Simulink environment. In this section, the 

associated m-files and the Simulink block diagrams are introduced first, and then the 

simulation results for both inverted pendulum and overhead crane are shown. The results 

are discussed at the end of the section.  

 

6.4.1 Associated m-files 
There are two m-files used for the simulation in this chapter. These two m-files are: 

named as “LDM_IP.m” and “LDM_OC.m”. “LDM_IP.m” deals with the inverted pendulum 

and “LDM_OC.m” deals with the overhead crane. These two m-files calculate the linear 

feedback control gain, form the reference model, calculate the closed-loop feedback 

control gain and trigger the Simulink files. The complete programs code is in Appendix A. 

4 and Appendix A. 5 respectively.  

 

147 



6.4.2 Simulink block diagram 
The system is simulated in Simulink. The overall Lyapunov direct method Simulink block 

diagram “LDM_IP.mdl” is shown in Figure 6.4. It consists of several subsystems, 

including:  

 The linear controller subsystem (Figure 6.5) 
 The linear model subsystem – from Chapter 4 
 The nonlinear controller subsystem (Figure 6.6) 
 The nonlinear model subsystem – from Chapter 4  
 The derivative of the Lyapunov function subsystem (Figure 6.7) 
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Figure 6.5:  Linear optimal controller Simulink block diagram 
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Figure 6.6:  Nonlinear controller Simulink block diagram 
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Figure 6.7:  Derivative of the Lyapunov Function Simulink block diagram 

 
 
 

The linear controller subsystem and the linear model subsystem form the reference 

model system. The nonlinear controller subsystem produces the nonlinear control signal 

which corresponds to Equation (6.23). The derivative of the Lyapunov function 

subsystem is used to monitor the stability of the system. The Simulink block diagrams of 

the linear model and the nonlinear model are shown in Chapter 4.  

 

As the Lyapunov direct method is applied on the inverted pendulum and the overhead 

crane, the differences exist in the models. The Lyapunov Simulink block diagram for the 

inverted pendulum can be converted to an overhead crane block diagram by simply 

replacing all the inverted pendulum models with the overhead crane models. These 

changes take place in the “nonlinear model” subsystem, the “nonlinear controller” 

subsystem and the “v_dot” subsystem. The Simulink file for the overhead crane is called 

“LDM_OC.mdl”. 
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6.4.3 Simulation results 
The simulation results are presented. These results include the following signals: the 

linear/nonlinear states, linear/nonlinear outputs, linear/nonlinear control signals, error 

signals between four states and the signal of the derivative of the Lyapunov function. The 

notation linear is used for the reference model variables and nonlinear for the inverted 

pendulum and overhead crane variables.  
 
 
 

Inverted Pendulum displacement and angle states (LDM)

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0 0.5 1 1.5 2 2.5 3 3.5 4

time (s)

x-
(m

);
 th

et
a-

(r
ad

ia
n)

x-linear

x-nonlinear

theta-linear

theta-nonlinear

 
Figure 6.8:  Inverted pendulum displacement and angle state signals  

when set point is 0m 
 
 

Inverted Pendulum velocity and angular velocity states (LDM)
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Figure 6.9:  Inverted pendulum velocity and angular velocity state signals  

when the set point is 0m 
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Inverted Pendulum output signal (LDM)
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Figure 6.10:  Inverted pendulum output signals  

when the set point is 0m 
 

Inverted Pendulum control signal (LDM)
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Figure 6.11:  Inverted pendulum control signals  

when the set point is 0m 
 

Inverted Pendulum error signals (LDM)
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Figure 6.12:  Inverted pendulum states error signals  

when the set point is 0m 
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Inverted Pendulum error signals (LDM) conti
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Figure 6.13:  Inverted pendulum error signals  

when the set point is 0m  
 

Inverted Pendulum signal V-dot (LDM)
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Figure 6.14:  Inverted pendulum signal of Lyapunov function derivative  

when the set point is 0m 
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Figure 6.15:  Inverted pendulum displacement and angle signals  

when the set point is 0.05m 
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Inverted Pendulum velocity and angular velocity states (LDM)
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Figure 6.16:  Inverted pendulum velocity and angular velocity signals  

when set point is 0.05m 
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Figure 6.17:  Inverted pendulum output signals  

when the set point is 0.05m 
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Figure 6.18:  Inverted pendulum control signals  

when the set point is 0.05m 
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Inverted Pendulum error signals (LDM)
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Figure 6.19:  Inverted pendulum states error signals  

when the set point is 0.05m 
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Figure 6.20:  Inverted pendulum error signals  

when set point is 0 .05m  
 

Inverted Pendulum signal V-dot (LDM)
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Figure 6.21:  Inverted pendulum signal of Lyapunov function derivative  

when set point is 0.05m 
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Inverted Pendulum displacement and angle states (LDM)
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Figure 6.22:  Inverted pendulum displacement and angle signals  

when the set point is 0.1m 
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Figure 6.23:  Inverted pendulum velocity and angular velocity state signals  

when the set point is 0.1m 
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Figure 6.24:  Inverted pendulum output signals  

when the set point is 0.1m 

156 



Inverted Pendulum control signal (LDM)
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Figure 6.25:  Inverted pendulum control signals  

when the set point is 0.1m 
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Figure 6.26:  Inverted pendulum states error signals  

when the set point is 0.1m 
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Figure 6.27:  Inverted pendulum error signals  

when the set point is 0 .1m 
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Inverted Pendulum signal V-dot (LDM)
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Figure 6.28:  Inverted pendulum signal of Lyapunov function derivative  

when the set point is 0.1m 
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Figure 6.29:  Overhead crane displacement and angle state signals  

when the set point is 0m 
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Figure 6.30:  Overhead crane velocity and angular velocity state signals  

when the set point is 0m 
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Overhead Crane output signal (LDM)
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Figure 6.31:  Overhead crane output signals  

when the set point is 0m 
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Figure 6.32:  Overhead crane control signals  

when the set point is 0m 
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Figure 6.33:  Overhead crane states error signals  

when the set point is 0m 
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Overhead Crane error signals (LDM) conti
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Figure 6.34:  Overhead crane error signals  

when the set point is 0m 
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Figure 6.35:  Overhead crane signal of Lyapunov function derivative  

when the set point is 0m 
 

Overhead Crane displacement and angle states (LDM)

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

0 0.5 1 1.5 2 2.5 3 3.5

time (s)

x-
(m

);
 th

et
a-

(r
ad

)

4

x-linear
x-nonlinear
theta-linear
theta-nonlinear

 
Figure 6.36:  Overhead crane displacement and angle state signals  

when the set point is 0.05m 
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Overhead Crane velocity and angular velocity states (LDM)
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Figure 6.37:  Overhead crane velocity and angular velocity state signals  

when the set point is 0.05m 
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Figure 6.38:  Overhead crane output signals  

when the set point is 0.05m 
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Figure 6.39:  Overhead crane control signals  

when the set point is 0.05m 
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Overhead Crane error signals (LDM)
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Figure 6.40:  Overhead crane states error signals  

when the set point is 0.05m 
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Figure 6.41:  Overhead crane error signals  

when the set point is 0.05m 
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Figure 6.42:  Overhead crane signal of Lyapunov function derivative  

when the set point is 0.05m 
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Overhead Crane displacement and angle states (LDM)
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Figure 6.43:  Overhead crane displacement and angle state signals  

when the set point is 0.1m 
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Figure 6.44:  Overhead crane velocity and angular velocity state signals  

when the set point is 0.1m 
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Figure 6.45:  Overhead crane output signals  

when the set point is 0.1m 
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Overhead Crane control signal (LDM)
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Figure 6.46:  Overhead crane control signals  

when the set point is 0.1m 
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Figure 6.47:  Overhead crane states error signals  

when the set point is 0.1m 
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Figure 6.48:  Overhead crane error signals  

when the set point is 0.1m 
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Overhead Crane signal V-dot (LDM)
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Figure 6.49:  Overhead crane signal of Lyapunov function derivative  

when set point is 0.1m 
 
 
 

6.4.4 Discussion of the results 
From the simulation results, for both the inverted pendulum and the overhead crane, the 

following points can be summarized: 

 All the states are stabilized 
 The plant output follows the reference model and the set point trajectories 
 The errors go to zeros 
 The derivative of the Lyapunov function is smaller than 0 and when t→∞, →0 V&

 
 
 
Table 6.3: Table of the simulation results 

Set point characteristics Inverted pendulum Overhead crane 
Time Delay 0 0 
Overshoot 40% 12% 
Rising Time 1s 0.02s 
Steady State error 0.001 0.001 

0m 

Settling Time 1.2s 1.3s 
Time Delay 0 0 
Overshoot 26% 5% 
Rising Time 0.8s 0.01 
Steady State error 0.001 0.001 

0.05m 

Settling Time 1,2s 0.8s 
Time Delay 0 0 
Overshoot 2% 3% 
Rising Time 1.2s 0.4s 
Steady State error 0.002 0.001 

0.1m 

Settling Time 1.3s 0.6s 
 
 
 
Compared to the linear control designed in Chapter 5 for the linear model, the results 

obtained for the nonlinear control system show better achievement of the required 
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specifications. The performance of system is formed in Table 6.3 for different set points 

according to requirements for overshoot rising time, steady state error, settling time. It 

can be seen that the results are better than the given at the beginning requirements.  

 

6.5 Conclusion 
The general procedures for developing the nonlinear controller based on the Lyapunov 

direct method is given in this chapter. It can be applied on various systems. The 

reference model plays a heavy role in the system. It must be designed optimally. In this 

chapter, there are two pairs of weighting matrices Q and R. The first pair is used to 

design the feedback gain for the liner control. The second pair is used to develop the 

reference model system. In order to get the best closed-loop simulation results, these 

two pairs of weighting matrices are adjusted separately. The simulation results 

demonstrate that the successful nonlinear controllers have been designed based on the 

Lyapunov direct method. The designed controllers are used in Chapter 8 to control of the 

inverted pendulum and the overhead crane.  
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CHAPTER SEVEN 
FEEDBACK LINEARIZATION METHOD BASED 

MODEL REFERENCE CONTROL SYSTEM DESIGN 
 

7.1 Introduction 
As the feedback linearization theory is studied generally in Chapter 3. In this chapter, the 

feedback linearization theory is applied and developed for Single-Input-Single-Output 

(SISO) systems, Multi-Inputs-Multi-Outputs (MIMO) systems and Single-Input-Multi-

Outputs (SIMO) systems. The feedback linearization is a principle of control which has 

drawn much attention. The central idea is to algebraically transform nonlinear systems 

dynamics into (fully or partly) linear one, so that the linear control techniques can be 

applied. This completely differs from conventional (Jacobian) linearization, because 

feedback linearization is achieved by exact state transformation and feedback, rather 

than by linear approximations of the dynamics. The advantages of feedback linearization 

are that the design of control can be used generally, in the sense that the same principle 

can be used on all systems of the right type. Moreover, extensions have been developed 

to take into account possible model inaccuracies. The successful applications of the 

feedback linearization method include control systems for helicopters, high-performance 

aircraft, industrial robots, biomedical devices and vehicle control.  

 

In this thesis, the controller is related to the model reference controller because the 

nonlinear controller is designed to make the closed-loop system to behave linearly 

according to a specific transfer function model. This has the consequence that feedback 

linearization is basically subject to the same limitations as direct inverse control and 

shares the same characteristics, such as: 

The advantages: 
 Implementation is simple 
 Only a model of the system to be controlled is required 
 Tuning of the closed-loop response can be made without retraining of the model. An 

outer feedback can be introduced containing a linear pole placement controller.  
 The linearization is exact not like the approximate linearization of the nonlinear model 

equations 

and the disadvantages: 
 Restricted to a particular class of systems. Difficult to resolve whether an unknown 

system actually belongs to this class  
 Lack of design parameters for tuning of the controller  
 Problems when the inverse system (locally) is unstable or near the stability border 
 The linearizing effect of the controller depends on the values of the model parameters 
 Very big control efforts sometimes have to be realized to linearize the closed-loop system 

 

The nonlinear linearizing control linearizes the closed-loop system consisting of the 



nonlinear plant and the nonlinear controller with output u(t). This type of control is very 

sensitive to variations in the model parameters. In order to overcome these difficulties an 

additional linear control v(t) designed for the linearized system is needed. The basic idea 

of the feedback linearization approach is to use a control which consists of two 

components: one component cancels out the plant’s nonlinearities and the other 

component controls the resulting linear system. The basic structure of the feedback 

linearization is shown in Figure 7.1. The method is limited to a class of dynamic systems 

or plants, whose models are efficiently smooth, that is, the plants whose right hand sides 

of the modelling differential equations are sufficiently many times differentiable. 
 
 
 

 
Figure 7.1: Feedback linearized system with external linear controller 

 
 
 
This chapter is organized in the following way: In the section 7.2, the nonlinear system 

model as the plant to be controlled is presented. In the section 7.3, the feedback 

linearization theory is applied to different nonlinear systems, such as SISO systems, 

MIMO systems and SIMO system. Based on the study of the feedback linearization, the 

pendulum system is linearized in the section 7.4. The suitable linear controllers for 

controlling of the inverted pendulum and the overhead crane are designed in the section 

7.5. The closed-loop system simulation results are represented in the section 7.6.  
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7.2 Nonlinear plant model 
For a nonlinear plant model, the dynamic systems that are considered are of the type: 

( ) ( )( ) ( )( ) ( ) ( ) 0x0x   tu txgtxftx =+=&             (7.1) 
( ) ( )t,xhty =                 (7.2) 

where f(x(t))∈Rn, g(x(t))∈Rn×m, h(x,t)∈Rl are vector and matrix functions. g(x) can be 

written as: g(x(t))=[g1(x(t))   g2(x(t)) ⋅⋅⋅ gm(x(t))] where gi(x(t))∈Rn. It is assumed that f(0)=0 

and h(0)=0.  

Linearizing 
feedback 

Nonlinear 
Plant 

Linear 
Controller 

r(t) v(t) u(t) y(t) 

+ 
_ 

x(t) 



The single input nonlinear system can be expressed as: 

( ) ( )( ) ( )( ) ( ) ( ) 0x0x    tutxgtxftx =+=&              (7.3) 
( )( txhy = )                (7.4) 

 

A LTI model can be expressed as: 

( ) ( ) ( ) ( ) 0x0x   tButAxtx =+=&               (7.5) 
( ) ( )tCxty =                 (7.6) 

From the analogy between the linear and nonlinear descriptions it can be seen that the 

linear model is a special case of the above nonlinear model in Equation (7.1) and (7.2).  

 

The aim of control of the nonlinear plant is to design a state-feedback stabilizing control 

for the system in Equation (7.1) and (7.2). To construct such a controller it is necessary 

according to the theory to work with an equivalent system model rather than with the 

original one. The first step then is to reduce a nonlinear system model into one 

equivalent form that is a generalization of the controllable and observable form known 

from linear system theory. In order to obtain this form a special type of derivatives called 

Lie derivative are introduced.  

 

Some related terminologies and definitions include relative degree ρ, internal dynamics, 

zero dynamics, diffeomorphisms and input-state linearization have been given in Chapter 

3. In the feedback linearization theory, there are Input-State Linearization and Input-

Output feedback linearization. In the input-state feedback linearization, the input is 

related with the state directly. The Input-State linearization is realized by a combination of 

a state transformation and an input transformation. It achieves the linearization of the 

input and state. Different from the input-state linearization, in the input-output feedback 

linearization, the output is indirectly related to the input. The relationship between the 

input and output is created by differentiating the output function until the input appears, 

and then designing the control to cancel the nonlinearity of the system. From the relative 

degree point of view, when the relative degree ρ equals to the system order n, the input-

output linearization can be considered as the input-state linearization. In other words, the 

input-state linearization is a special case of the input-output linearization. For this project, 

since the inverted pendulum is a under actuated system, the input-output linearization is 

studied and applied to the pendulum system.  
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7.3 Study of the Feedback linearization approach 
The input-output linearization theory can be applied to the stabilizing and tracking 

problems. For this particular project, the reference model generates the desired trajectory, 

the feedback linearization approach is used for the tracking the desired trajectory. 

Consider the following nonlinear system: 
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)

( ) ( ) ( )(   tu,txftx =&                (7.7) 

( ) ( )( txhty =                 (7.8) 

where y is the system output. The objective of the tracking control is to keep the output 

y(t) follows the desired output trajectory yd(t). The difficulty is that the output y is indirectly 

related to the input u, through the state variable x and a nonlinear equation. A direct and 

simple relation between the system output y and the control input u can be created by 

continuously differentiating the output y. The approach that generates a linear input-

output relation first and then formulating a controller based on linear control techniques is 

known as the input-output linearization approach. The approach can also be extended to 

the stabilizing control problem. In the following subsections, the input-output linearization 

approach is studied applied to SISO systems, MIMO systems and SIMO systems.  

 

7.3.1 Single-Input-Single-Output (SISO) systems  
Consider the nonlinear SISO system expressed as follows: 

( ) ( )( ) ( )( ) ( ) ( ) 0x0x , t u txgtxftx =+=&              (7.9) 

( )( )txhy =                          (7.10) 

where f, g and h are with continuous behaviour and have continuous derivative of high 

order in some domain Ω, where Ω∈Rn and x∈Ω∈Rn. The mapping (transformations) f: 

0→Rn and g: 0→Rn are called vector fields on Ω. 

It is necessary to find a control input:  

u(t)=α(x)+β(x)v                        (7.11) 

which can linearize and stabilize the nonlinear system expressed in Equation (7.9) and 

(7.10) according to a given reference trajectory ysp(t).  

 

The input-output linearization means the dependence between the output y(t) and the 

input u(t) of the linearized system is a linear dependence. In order to find such 

dependence, it is necessary to express y(t) as a function of u(t) in the nonlinear system 

expressed in Equation (7.9) and (7.10). It can be seen that u(t) only appears in Equation 

(7.9), it does not appear in Equation (7.10). But if derivatives of y(t) according to time are 



taken, then Equation (7.9) can be substituted in these expressions for the derivatives, 

and u(t) can appear in the output equation. From this such obtained dependence u(t) can 

be selected to linearize the closed-loop system. Then the following steps are done in 

order to obtain the linearizing control u(t).  

 

7.3.1.1 Differentiation of the output 
The differentiation of the output Equation (7.10) is taken. The time t is omitted for clarity 

in the reading of the equations. 

( ) ( )[ ] ( ) ( )uxhLxhLuxgxf
x
hx

x
hy gf +=+

∂
∂

=⋅
∂
∂

= &&                     (7.12) 

where ( ) ( )xf
x
hxhLf ∂
∂

=  is called the Lie derivative of h with respect to f, or along f, and 

 is called the Lie derivative of h with respect to g, or along g.  ( )xhLg

 

The Equation (7.12) expresses the notion of the derivative h along the trajectory of the 

system . The new notation is convenient when the repetition of 

differentiation of y=h(x) is done. The following rules are used: 

( ) ( )u xgxfx +=&

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )xhxhL

xf
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∂
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=

−
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                      (7.13) 

 

If it appears in Equation (7.12) that Lgh(x)=0, then: 

( )xhLy f=&                          (7.14) 

that means y  is independent on the control input u. New differentiation is necessary to 

be taken in order to find dependence between y and u. The second derivative of 

Equation (7.14) is: 

&

( ) ( ) ( ) ( ) ( )[ ] ( ) ( )uxhLLxhLuxgxf
x
hLx

x
hLyy fg

2
f

ff2 +=+
∂

∂
=

∂
∂

== &&&                   (7.15) 

Once again if LgLfh(x)=0, then y(2) is independent on u and is: 
( ) ( )xhLy 2

f
2 =                          (7.16) 

If the process of differentiation is repeated ρ-1 times and if: 
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( ) 0xhLL 1i
fg =−  for i=1, 2, ⋅⋅⋅, ρ-1 

which means that u(t) does not appear in the equations for , and if finally it 

appears in the equation of y

( )1y  ,y ,y ,y −ρL&&&

(ρ), then  

( ) 0xhLL 1
fg ≠−ρ  and the ρ-th derivative is: 

( ) ( ) ( )u xhLLxhLy 1
fgf
−ρρρ +=                        (7.17) 

 

Equation (7.17) shows dependence between y and u, which means that the system 

expressed in Equation (7.9) and (7.10) is input-output linearizable. Equation (7.17) is 

obtained after ρ times differentiating of y according to time. The integer ρ is the relative 

degree of the system expressed in Equation (7.9) and (7.10). This means y(t) can be 

obtained by integrating the Equation (7.17) ρ times as shown in Figure 7.2. It can be 

written that the output y is obtained after ρ times integrating of the signal:  
( ) vy =ρ                          (7.18) 

where v is a new input which is called the synthetic input or synthetic control. A linear 

relation between y and v is established.  
 
 
 

( ) ( ) vuxhLLxhL 1
fgf =+ −ρρ
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Figure 7.2: Relationship between the new input and output 

 
 
 
If this signal v is known then the control can be calculated in order to cancel the 

nonlinearities  and ( )xhLf
ρ ( )xhLL 1

fg
−ρ .  

( ) ( ) ( )uxhLLxhLvy 1
fgf
−ρρρ +==                        (7.19) 

 

7.3.1.2 Linearization controller design for the SISO system 
From Equation (7.17) and (7.18), the control input u can be expressed as: 

( ) ( )[ ]                       (7.20) vxhL
xhLL

1u f1
fg

+−= ρ
−ρ

s
1  

s
1  

s
1  

s
1  

y 

ρ integrators



It can be verified that if Equation (7.20) is substituted in Equation (7.19), the Equation 

(7.18) is obtained as shown in Equation (7.21). 

( ) ( ) ( ) ( )
( ) ( ) ( ) vxhLvxhL
xhLL
xhLv

xhLLxhLy ff1
fg

f1
fgf =−+=

−
⋅+= ρρ

−ρ

ρ
−ρρρ                   (7.21) 

The equation y(ρ)=v is a linear equation, which means that if the system (7.19) is 

controlled by a control function which is expressed in Equation (7.20), the resultant 

closed-loop system will have linear behaviour.  

 

The nonlinear system expressed in Equation (7.19) with its corresponding controller 

expressed in Equation (7.20) is graphically represented in Figure 7.3. The cancellation of 

the nonlinearities is exact and the input output behaviour of the linearized system is given 

by a chain of ρ integrators.  

 

It can be seen that the nonlinear plant can be represented by a new set vector of state 

space:  

( )[ ]T1y,,y,y,y −ρ=ζ L&&&                         (7.22) 

or written by the Lie derivatives: 

( ) ( ) ( )[ ]T1
ff xhLxhLxh −ρ=ζ L                       (7.23) 
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Figure 7.3:  The linearizing loop 

 
 
 
As the order of the system is n→x∈Rn, then in order fully to represent the system in 

Equation (7.9) and (7.10) by Equation (7.17), the value of the relative degree ρ has to be 
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equal to the order of the system, which is ρ=n. Then the system is fully controllable. If the 

relative degree is smaller than the system order, which is ρ<n, then there are dynamics 

that are unobservable in the input-output linearization. They cannot be influenced by the 

nonlinear control u. In such case the nonlinear control can only partly linearize the 

system, but the closed-loop system will be stable only if these unobservable dynamics 

are stable. As it is mentioned before, because these dynamics cannot be seen from the 

external input-output relationship, they are so called “internal dynamics”. The study of the 

internal dynamics stability can be simplified locally by studying that of the zero-dynamics 

instead. If the zero-dynamics are unstable, different control strategies should be sought, 

only simplified by the fact that the transformed dynamics is partly linear.  

 

7.3.1.3 The state transformation 
A continuous differentiable map with a continuously differentiable inverse is known as a 

diffeomorphism. The definition of diffeomorphism has been given in Chapter 3. From the 

definition of the diffeomorphism, Lemma 7.1 is given as: Let T(x) be a smooth function 

defined in a region Ω in Rn. If the Jacobian matrix ∇T is non-singular at a point x=x0 of Ω, 

then T(x) defines a local diffeomorphism in a sub-region of Ω. (Slotine and Li, 1991:233) 

 

A diffeomorphism is used to transform a nonlinear system into another nonlinear system 

with new set of states. Referring to the nonlinear system expressed in Equation (7.9) and 

(7.10), the change of the states x to the new set of states ζ can be represented by a 

transformation T, then the new set of states ζ can be defined by: 

( )xT=ζ                          (7.24) 

Differentiation of ζ yields, 

( ) ( )[ ]uxgxf
x
Tx

x
T

+
∂
∂

=
∂
∂

=ζ &&  

Then the new state space representation of the system can be expressed as: 

( ) ( )u'g'f ζ+ζ=ζ&                         (7.25) 

( )ζ= 'hy                          (7.26) 

The transformation must be invertible, which is, it must have an invertible map T-1(x) such 

that x=T-1(ζ) for all ζ∈T(Ω) where Ω is the domain of T, f, g. Moreover, because the 

derivatives of ζ and x should be continuous, it is necessary both T and T-1 to be 

continuously differentiable.  
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7.3.1.4 The normal forms 

When the relative degree ρ is smaller than the system order n, the nonlinear system can 

be transformed, using ( )1ry,,y,y −L&  as part of the new state components, into a so called 

normal form. The normal form provides the convenience of studying the internal 

dynamics and zero-dynamics, because the normal form makes part of the system 

dynamic linear. Consider a nonlinear system which is expressed in state space notation 

as: 

( )

( ) vyy

yyy

yyy
yyy

1
1

32

21

==

==

==

==
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ρ

ρ
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&
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&&

                        (7.27) 

If the nonlinear plant in state space notation is expressed by the vector ζ, then: 

( )ρ
ρ

ρ−ρ

ζ=ζ

ζ=ζ

ζ=ζ

ζ=ζ

&

&

M

&

&

1

32

21

                         (7.28) 

From Equation (7.22), (7.27) and (7.28),  

[ ] ( )[ ]T1T
321 y,,y,y,y,,, −ρ

ρ =ζζζζ=ζ L&&&L                      (7.29) 

The normal form of the system then can be expressed as: 

ρ−ρ ζ=ζ

ζ=ζ

ζ=ζ

1

32

21

&

M

&

&

                         (7.30) 

( ) ( )u,b,a ηζηζζ ρ +=&  

or ( η)ζϕη ,=& , where                       (7.31) ( ) nR, ∈ηζϕ

with the output defined as: 

1y ζ=                           (7.32) 

where ( ) ( ) ( )[ ]ηζηζ ρρ ,ThLxhL,a 1
ff

−==  and ( ) ( ) ( )[ ]ηζηζ ρρ ,ThLLxhLL,b 11
fg

1
fg

−−− == , the 

ζi∈Rρ, ηj∈Rn-ρ are referred to as normal coordinates or normal states at x0.  
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In order to show that the system expressed in Equation (7.9) and (7.10) can be 

transformed in to the normal form, it is necessary to prove that a diffeomorphism T(x) 

exists such that Equation (7.30) and (7.31) are verified. T(x) is in the form of: 

( ) [ ]Tn2121 ,,,,,xT ρ−ρ ηηηζζζ= LLL                       (7.33) 

or                          (7.34) ( ) ⎥
⎦

⎤
⎢
⎣

⎡
η
ζ

=xT

From Lemma 7.1, it is known that if the gradients ∇ζi and ∇ηj are all linearly independent, 

then T is diffeomorphism. The gradients ∇ζi are linearly independent. This can be shown 

by Lemma 7.2 which states that: If the relative degree of the system expressed in (7.9) 

and (7.10) is ρ in the region Ω, then the gradients ∇ζ1, ∇ζ2, …, ∇ζρ are linearly 

independent in Ω. (Slotine and Li, 1991:250) 

 

Because the relative degree ρ is always smaller than the system order n, which means in 

order to complete the coordinate transformation, it is necessary to prove there are n-ρ 

more functions ηj exist and the gradients ∇ηj are all linearly independent as well. This 

can be proved in the same way of proving the gradients ∇ζi are linearly independent by 

using Lemma 7.2. The complementary condition for the gradients ∇ηj to be linearly 

independent of the gradients ∇ζI is to verify that: 

( ) 0xg
x

i =
∂
η∂  for 1 ≤ i ≤ n-ρ                       (7.35) 

which ensures that: 

( ) ( )[ ] ( )xf
x

uxgxf
x

x
x ∂

ϕ∂
=+

∂
ϕ∂

=
∂
ϕ∂

=η &&                      (7.36) 

In other words, Equation (7.36) describes the dynamics of the system do not depend on 

the control u.  

 

At this point, it has been proven that the gradients ∇ζi and ∇ηj are all linearly 

independent. As stated at the beginning, if the gradients ∇ζi and ∇ηj are all linearly 

independent, then diffeomorphism T exists. Furthermore, if T is proven to exist, then the 

nonlinear system stated in Equation (7.9) and (7.10) can be expressed in the normal 

form as in Equation (7.30), (7.31) and (7.32).  

 

7.3.1.5 The zero-dynamics 
The normal form in Equation (7.30) decomposes the system described in Equation (7.9) 
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and (7.10) into an external part ζ and an internal part η. The external part is linearized by 

the state feedback control u=α(x)+β(x)v and it represents the linear relation between y 

and v. The input v can be designed to have desired output y. The internal part is 

unobservable for this control. It is important to determine the behaviour of the internal 

dynamics. The stability of the system internal-dynamics can be studied by examining the 

stability of the zero-dynamics. The definition of the zero-dynamics is given in Chapter 3.  

 

Here, the zero-dynamics is studied referring to the system stability. Setting ζ=0 in 

Equation (7.36), it gives the equation: 

( )0 ,fo η=η&                          (7.37) 

which is called zero dynamics. It is an intrinsic feature of a nonlinear system and does 

not depend on the choice of control law or the desired trajectories. The system is said to 

be asymptotically minimum phase if Equation (7.34) has an asymptotically stable 

equilibrium point in the domain of interest. In the case n=ρ, the system has not zero 

dynamics and, by default, is said to be minimum phase.  

 

7.3.1.6 Linear controller design and the study of the system stability 
By using the feedback linearization method, the nonlinearity of the nonlinear system is 

cancelled. Therefore, the linear control techniques, such as the most popular ones: pole-

placement method and LQR method can be used to design the linear controller based on 

the linear input-output relation and then the internal dynamics stability is checked. For the 

stabilization problem, the controller for the system expressed in Equation (7.9) and (7.10) 

is stated as: 
( ) ykykykv 01

1
1 −−−−= −ρ
−ρ

&L                        (7.38) 

If ki are chosen carefully such that the polynomial 

( ) 01
1r

1 kpkpkpp'K ++++= −
−ρ

ρ L                       (7.39) 

has all its roots strictly in the left-half plane, then the complete controller can be 

constructed by using Equation (7.20) and (7.39) as: 

( ) ( )[ ] ( ) ( ) ( )[ ]ykykykxhL
xhLL

1vxhL
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1f1
fg
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fg
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ρ
−ρ

&L                (7.40) 

The control law expressed in Equation (7.40) stabilizes the whole system locally.  

 

If the system relative degree equals to its order, the control law expressed in Equation 

(7.40) can guarantee the closed loop system global asymptotic stability, because there is 
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no internal dynamics. But when the system relative degree is smaller than its order, the 

system can only be partial feedback linearized, the stability of the zero-dynamics can 

only ensure the local stability of a control system based on input-output linearization. In 

order to obtain the control law that can achieve the global stability for the partial feedback 

linearization, a standard Lyapunov method is used. The basic idea or this approach is to 

put the nonlinear system into the normal form which makes part of the dynamics linear 

first. Then, refereeing to the normal form Equation (7.30), its input is ζ and output is η. 

The internal dynamics are stabilized by a control expressed in Equation (7.41): 

( )ηζ=ζ 00                          (7.41) 

 

An associated Lyapunov function V0 is used to show the internal dynamics stability. The 

internal dynamic has lower order than the original system, so the control law is generally 

easier than finding a stabilizing control law for the original system. Thirdly, back to the 

global control problem, a Lyapunov function candidate V is appropriately defined as a 

modified version of V0. By carefully choosing the control input v, the newly defined 

Lyapunov function candidate V can meet the requirement of being the Lyapunov function 

for the whole closed-loop system. The obtained control law based on partial linearization 

can guarantee the global stability of the whole system.  

 

For the tracking problem, the pole-placement method and LQR method are used. 

Consider the nonlinear system in Equation (7.9) and (7.10), and the problem of tracking a 

given desired trajectory yd(t). Let 

[ ]T1
dddd yyy −ρ=ζ L&                        (7.42) 

and define the tracking error vector as: 

( ) ( ) ( )ttt~
dζ−ζ=ζ                         (7.43) 

Then the following result is obtained: 

Theorem 7.1: Assume that the system in Equation (7.9) and (7.10) has relative degree ρ 

(defined and constant over the region of interest), that ζd is smooth and bounded, and 

that the solution ηd of the equation 

( )ddd ,ηζϕ=η& ,                        (7.44) ( ) 00d =η

exists, is bounded, and is uniformly asymptotically stable. Choose constant ki such that 

the polynomial in Equation (7.39) has all its roots strictly in the left-half plane. Then, by 

using the control law:  
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( )
( )[ ]                   (7.45) 101r1
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The whole state remains bounded and the tracking error ζ~  converges to zero 

exponentially. (Slotine and Li, 1991:256) 

 

7.3.2 Multi-Input-Multi-Output (MIMO) systems 
The concepts used in the SISO system, such as input-output linearization, zero-

dynamics, internal-dynamics and so on, can be extended to the MIMO systems. The 

MIMO system considered here is a square system in a neighbourhood of point x0, which 

has the same number of inputs and outputs: 
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++++=
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                     (7.46) 

where x∈Rn, u∈Rl, y∈Rl, f and gl are assumed to be smooth vector fields and hl are 

smooth functions. The problem for design of control is to find a static state feedback that 

linearizes the system in Equation (7.46). 

 

7.3.2.1 Differentiation of the j-th output of the system 
The derivatives of the j-th output of the system expressed in Equation (7.46) are taken: 

( )∑
=
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l

1i
ljgjfj uhLhLy

i
&                         (7.47) 

If each of the , then the inputs u( ) 0xhL jgi
= j do not appear in the Equation (7.47). 

If χj is the smallest derivative integer, such that at least one of the inputs appears in , 

that is: 

j
jyχ
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fgjfj u hLLhLy j

i

jj , l ,1j =                       (7.48) 

with at least one of the ( ) 0hLL j
1

fg
j

i
≠−χ , for some x. After differentiation of all outputs, the 

similar Equation (7.48) can be written.  

 

If Equation (7.48) is written in a vector matrix form, it will have the following 

representation: 
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The matrix in front of the control vector u is represented by the notation E(x).  

 

7.3.2.2 Calculation of the nonlinear control 
Equation (7.49) is used for linearization of the closed-loop system. It can be seen that 

matrix E(x) must be non-singular one which means that det[E(x)]≠0 for some given point. 

From Equation (7.49), the nonlinear control u can be expressed as: 
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                       (7.50) 

yields a linear closed-loop system: 
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The control and closed-loop system can be expressed by Equation (7.50) and (7.51), 

only if the system (7.46) has a relative degree vector [χ1, χ2⋅⋅⋅χl]T, where  at a 

point x=x

∑
=
χ=ρ

l

1i
i

0, and if: 

( ) 0xhLL i
k
fgi

=  for 0≤k≤χj-2                        (7.52) 

and , which means that the matrix A(x( ) 0xhLL i
1

fgi
j ≠−χ

0) is not singular. If ρ=n, there is no 

internal dynamics, with the control law in Equation (7.50), an input-state linearization of 

the original system is obtained and the system expressed in Equation (7.46) is fully 

linearizable.  

 

7.3.2.3 Decoupling of the linearized system 
From Equation (7.51) can be seen that the closed-loop system can be decoupled to l 

separate subsystems. Thus, decoupling is a by-product of linearization. Equation (7.51) 

is called a decoupling control law. The invertible matrix E(x) is called the decoupling 
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matrix of the system. The MIMO system in Equation (7.46) then has relative degree of (ρ1, 

…, ρl) at x0, and the scalar ρ=ρ1+ … +ρl is called the total relative degree of the system at 

x0. 

 

7.3.2.4 Normal form of the system 
The normal form of the MIMO system is written for every of the outputs in the same way 

as for SISO system where the system state has two parts – the controllable part and non-

controllable part.  

 

7.3.3 System with Single-Input-Multi-Outputs (SIMO) 
The SIMO system can be represented in the following form of: 

( ) ( )
( )
( )

( )xhy

xhy
xhy

uxgxfx

ll

22

11

=

=
=

+=

M

&

                        (7.53) 

where x∈Rn, u∈Rl, y∈Rl and f, g are assumed to be smooth vector fields and hj are 

smooth functions.  

 

7.3.3.1 Differentiation of the j-th output of the system 
Following the same procedure in SISO and MIMO system, in order to find the relation 

between output y and control input u, differentiation of the j-th output of the system 

Equation (7.53) is taken: 

uhLhLy jgjfj +=&                         (7.54) 

If , the Equation (7.54) does not depend on u. 0hL jg =

If χj is the smallest derivative for which u appears in the , it can be written as: j
jyχ

( )uxhLLhLy jfgjfj
1jjj −χχχ += , l ,1j =                       (7.55) 

where .  ( ) 0xhLL jfg
1j ≠−χ

 

After differentiation of all outputs as in Equation (7.55) the common presentation of the 

linearizable system can be written in a vector-matrix form: 
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                   (7.56) 

Equation (7.56) is used for linearization of the closed-loop system. The vector in front of 

u can be written as a vector a(x).  

 

7.3.3.2 Calculation of the nonlinear control 
In this case, in order to obtain full linearization of the closed-loop system, it is necessary 

the system expressed in Equation (7.56) to have full relative degree 

 Then Equation (7.56) can be solved according to the control u. .nl21 =χ++χ+χ=ρ L

( ) ( ) vuxaxb =+                         (7.57) 

( ) ( )xbvuxa −=                         (7.58) 

( ) ( ) ( ) ( ) ( )xbxavxauxaxa TTT −=                       (7.59) 

Every term of the Equation (7.59) multiply by ( ) ( )[ ] 1T xaxa −
, then: 

( ) ( )[ ] ( ) ( ) ( ) ( )[ ] ( ) ( ) ( )[ ] ( ) ( )xbxaxaxavxaxaxauxaxaxaxa T1TT1TT1T −−−
−=                  (7.60) 

The control law is obtained by simplifying Equation (7.60).  

( ) ( )[ ] ( ) ( ) ( )[ ] ( ) ( )xbxaxaxavxaxaxau T1TT1T −−
−=                     (7.61) 

The control given by Equation (7.61) is linearizing the closed-loop system which can be 

presented as: 
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                         (7.62) 

The condition for existence of (7.61) and (7.62) is that all . 0LL 1
fg

j ≠−χ

 

Referring to nonlinear SISO, MIMO and SIMO system, the input-output feedback 

linearization are studied comprehensively till now in this chapter. Based on the study of 

the feedback linearization theory, the input-output feedback linearization approach is 

applied to control the inverted pendulum and the overhead crane. The detailed work is 

presented in the following sections.  
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7.4 Design of an input-output linearizing controller for the pendulum system 
The pendulum system can be configured into the inverted pendulum mode and the 

overhead crane mode. The mathematical models of the pendulum system have been 

derived in Chapter 4. The derived mathematical models include the inverted pendulum, 

the overhead crane and the servo system. The inverted pendulum and the overhead 

crane are the essential plants that need to be controlled. The servo system is used to 

convert the mechanical signal force to the electrical signal u. It is considered separately 

from the inverted pendulum and the overhead crane. The feedback linearization 

approach is applied to the inverted pendulum and the overhead crane individually without 

the servo system involved. Although the input-output linearizing controllers are designed 

for the inverted pendulum and the overhead crane individually, there are many aspects in 

which they are very similar. The studies of the input-output linearization for the overhead 

crane are done by using the inverted pendulum as the reference.  

 

7.4.1 Design of an input-output linearizing controller for the inverted pendulum  
7.4.1.1 The inverted pendulum mathematical model  

In this project, the considered equilibrium point for the inverted pendulum is in the range 

of -5°<θ<5°. Since the angle is varying in a very small range, the output y=z1+Lsinz3 can 

be linearized as: y=z1+Lz3. Then the inverted pendulum can be expressed as:  
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where ( ) ( ) 3
2222 zcosLmmMmLJ ⋅⋅−+⋅+=σ  

 

All four states equations of the inverted pendulum can be represented in the standard 

affine form as: 

( ) ( )uzgzfz 111 +=&                         (7.63) 
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( ) ( )uzgzfz 222 +=&                         (7.64) 

( ) ( )uzgzfz 333 +=&                         (7.65) 

( ) ( )uzgzfz 444 +=&                         (7.66) 

The output is: 

y=z1+Lz3=[1   0   L   0]z                       (7.67) 

where z=[z1   z2   z3   z4]T; u=F; f1(z)=z2; g1(z)=0; f3(z)=z4; g3(z)=0;  

( )

( )
( )
σ

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⋅⋅⋅⋅++⋅⋅⋅⋅+

+⋅⋅⋅⋅−⋅⋅+−

= 3
2
4

2
34t

33
22

2
2

2

zsinzLmmLJzcoszbLm
zcoszsingLmzbmLJ

zf ; ( )
σ
⋅+

=
2

2
LmJzg ; 

( )

( )
( )

σ

⎥
⎦

⎤
⎢
⎣

⎡

⋅⋅⋅⋅+⋅⋅+−

⋅⋅⋅⋅−⋅⋅⋅⋅+

= 234t

33
2
4

22
3

4

zbzcosLmzbmM
zcoszsinzLmzsinLgmmM

zf ; ( )
σ
⋅⋅−

=
 zcosLm

zg 3
4 . 

From the mathematical model of the inverted pendulum, it can be seen the inverted 

pendulum is a fourth order system.  

 

7.4.1.2 Differentiation of the output 
In order to find the linear dependence between the input and output, the differentiation of 

the output is taken. The first derivative of the output is: 

( )
( ) ( ) ( ) ( ) ( ) ( )tuzgLzfLtuzgzf

zLzty

3311

31

&&&&

&&&

+++=

+=
  

Because g1(z)=0 and g3(z)=0, then:  

( ) ( ) ( ) 4231 LzzzLfzfty +=+=&                       (7.68) 

The control input u(t) does not appear in the expression of the first derivative in Equation 

(7.68). The relationship between input u(t) and output y(t) is not found. Take the second 

derivative of y(t) then:  
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                      (7.69) 

It can be seen from Equation (7.69) that the second derivative of output y(t) depends 

explicitly on the control input u(t). This means that the inverted pendulum has relative 

degree of two.  
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7.4.1.3 The linearized equation of the inverted pendulum 

Let                          (7.70) ( ) ( )tvty =&&

where v(t) is the new control signal which represents two integrators in series as shown 

in Figure 7.4.  
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Figure 7.4:  Output integration 

 
 
 
As shown in the inverted pendulum mathematical model, its output is y=z1+Lz3. Based on 

the system output, Figure 7.4 and Equations (7.70), the following equations are obtained: 

( ) ( ) 4221 Lzzytyty +=== &&  

( ) ( ) ( ) ( ) ( ) ( )[ ] ( )tvuzLgzgzLfzftyty 42422 =+++== &&&  

In a matrix form the model for linearization is: 
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7.4.1.4 Calculation of the control signal for the inverted pendulum 
The control signal u(t) can be calculated from the second equation of the linearization 

model in Equation (7.71).  

Since: ( ) ( ) ( ) ( )[ ] ( ) ( )tvtuzLgzgzLfzf 4242 =+++  

Then: ( ) ( ) ( ) ( )
( ) ( )zLgzg

zLfzftvtu
42

42

+
−−

=                       (7.72) 

From Equation (7.72), it can be seen that the control signal u(t) exists only when 

g2(z)+Lg4(z)≠0. First of all, find the region of g2(z)+Lg4(z)≠0.  

From the inverted pendulum mathematical model, it is known that ( )
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                                    (7.73) 

∫
yv &&=  y y&   

∫
1y2y   
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 orde to guarantee (z)+L (z)≠0 tor and the denom

                  (7.74) 

In r g2 g4 , the numera inator of the Equation 

(7.73) must not equal to zero at the same time, where: 

( ) 0zcos1mLJ 3
2 ≠−+      

( ) ( ) 0zcosLmmMmLJ 3
2222 ≠⋅⋅−+⋅+=σ                      (7.75) 

Equation (7.75) can be rewritten as: 

( ) ( ) 0zcos1LmmMLmMJ 222 −+++=σ 3 ≠                      (7.76) 

Since -1≤cosz3≤1, it is easy to get -1≤-co ≤1. Further more, the limit

7.74) and (7.76) can be found as:  

                (7.77) 

sz3 ation of 1-cosz3 

can be obtained as: 0≤1-cosz3≤2.  

Then the limitation of the Equation (

( ) 2
3

2 mL2Jzcos1mLJJ +≤−+≤       

( ) ( ) ( ) ( ) 2222 LJ+              (7.78) 3
222 m2mMLmMzcos1LmmMLmMJmMLmMJ +++≤−++≤++

Since all the parameters involved in the Equation (7.77) and (7.78) are posi

7.4.1.5 vestigation of the inverted pendulum zero-dynamics 
ck the stability of the system 

=θ                          (7.79) 

Based on this equality

7.4.1.5.1 Controller at the zero-dynamics 

                         (7.80) 

4+  

on (7.80) and (7.81) a  be wr en in e follo ing fo  that

tive numbers, 

the values of the expression in these two equations are always a positive values, then it 

can be proven that Equation (7.74) and (7.76) never equal to zero in the range of 

0≤z3≤2π. So, the control signal exists all the time when z3 varies in this interval. 

 

In
The control signal u(t) is obtained. It is necessary to che

internal-dynamics by studying the system zero-dynamics. The zero-dynamics is 

characterized by a set of variables where the output is identically equal to zero. This 

means: 

Lxy += 0

, the inverted pendulum zero-dynamics are studied.  

 

The inverted pendulum is a fourth order system. As the relative degree for the output 

y=z1+Lz3 is two, the closed-loop system will be locally stable only if the zero-dynamics 

have stable behaviour. The zero-dynamics can be obtained from the model for 

linearization: 

y=z1+Lz3=0 

y1=y=z1+Lz3=0

then, z0y 21 ===&                       (7.81) 0Lz

Equati  c n itt th w rm : 



z1=-Lz3 or z3=-z1/L 

z2=-Lz4 or z4=-z2/L 
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vides these conditions is: The control that pro
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u
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=                        (7.82) 

where v=0 as only the linearizing part is considered. 

 is the system model in which the 

7.4.1.5.2 The zero dynamics of the cart sub-system 
 inverted pendulum is: 

                (7.83) 

The zero-dynamic model of the inverted pendulum

control uzd is applied and the conditions z1=-Lz3, z2=-Lz4 are fulfilled.  

 

The “cart” subsystem mathematical model of the
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After substitution of uzd, it is obtained that: 

                    (7.85) 21 zz =&       
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By substituting the expressions of f2, f4, g2 and g4, the linearized cart model can be 

derived as: 
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Simplify the expression in Equation (7.89), then Equation (7.90) is obtained. 

( ) ( )
( ) ( )

( ) ( )[ ]23
2222

2
4t

2
34t

22

2
3

2
33

33

2442
zcosLmmMmLJ

LmJzbmMzcoszbLm
LmJzsinLgmmMzcoszsingLm

gfgf
⋅⋅−+⋅+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⋅+⋅⋅⋅++⋅⋅⋅⋅−

⋅+⋅⋅⋅⋅⋅+−⋅⋅⋅⋅

=−  

( ) ( )[ ]
( ) ( )[ ]

( ) ( )[ ]23
2222

4t
2
3

222
3

2
3

222

2442
zcosLmmMmLJ

zbzcosLmmMLmJ
zsinLgmzcosLmmMLmJ

gfgf
⋅⋅−+⋅+

⋅⋅⋅⋅−+⋅⋅++

⋅⋅⋅⋅⋅⋅−+⋅⋅+−

=−  

( ) ( )[ ] ( )
( ) ( )[ ]23

2222

34t
2
3

222

2442
zcosLmmMmLJ

zsinLgmzbzcosLmmMLmJ
gfgf

⋅⋅−+⋅+

⋅⋅⋅−⋅⋅⋅⋅−+⋅⋅+
=−  

( ) ( )
42
31

Lzz
Lzz3

2222
34t

2442 zcosLmmMmLJ
zsinLgmzb

gfgf
−=
−=⋅⋅−+⋅+

⋅⋅⋅−⋅
=−                    (7.90) 

and It is easy to get,  
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Then the zero-dynamics model of the “cart” can be expressed as: 

21 zz =&                          (7.92) 
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The stability of the inverted pendulum’s “cart” subsystem zero-dynamics model is 

investigated according to the Lyapunov function:  
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Its first derivative is: 

188 



⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

−+

+−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==

L
zcosmLmLJ

L
zsinmgLzb

z

z
z

z
z

z
z

V
dt
dV

122

12
2t

2
T

2

1

2

1
T

2

1

&

&
&

L
zcosmLmLJ

L
zsinzmgLzb

zz
122

1
2

22
2t

21

−+

+−
+=  

L
zcosmLmLJ

L
zsinzmgLzb

L
zcosmLmLJzz

122

1
2

22
2t

122
21

−+

+−⎟
⎠

⎞
⎜
⎝

⎛ −+
=                    (7.95) 

It can be easily seen that the selected Lyapunov function is positive definite. So, if  can 

be proven to be negative definite, the system is stable; if  equals to zero, the system is 

at the margin of the stabilization. Otherwise, the system is unstable.  

V&

V&

 

According to the inverted pendulum’s “cart” subsystem zero-dynamics model, the stability 

of the cart system is investigated in Matlab/Simulink environment. First, the cart zero-

dynamics model is built graphically in the Simulink as shown in Figure 7.5. Based on the 

linearized cart model, the Lyapunov function and its derivative are built as shown in 

Figure 7.6. An associated m-file in Appendix A. 6 called “zero_dyn.m” is used to provide 

all the parameters that are used in the Simulink files. Based on the system zero-

dynamics and the simulation results, the stability of the linearized cart system is 

investigated.  
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Figure 7.5:  The linearized inverted pendulum cart model 

189 



z2z1

num

den

V_dot

V

z1

z2

J+ml2-ml2cos(z3)

sin(z3)

Subsystem

Scope6

Product4

Product3

Product2

Product1

u2

Math
Function2

u2

Math
Function1

u2

Math
Function

Divide

m*g*l^2

Constant3

-bt

Constant2

0.5

Constant1

Add

 
Figure 7.6:  The Lyapunov function of the cart model 

 
 
 

The simulation results are presented in Figure 7.7 to Figure 7.10. In Figure 7.7 and 

Figure 7.8, the states z1 and z2 are shown respectively. It can be seen that both states 

convergence to constant values. The oscillation amplitudes of the states decrease with 

time. The Lyapunov function V is positive definite, as proved by Figure 7.9. In Figure 7.10, 

the derivative of the Lyapunov function V  is shown. Firstly, it can be seen that V  is not 

negative definite, secondly V  oscillates and its amplitude is decreasing with time. 

Eventually, it settles at zero. This means the system is at the margin of the stabilization. 

The external controller is needed to stabilize the system.  
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Figure 7.7:  The linearized inverted pendulum cart model state z1
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Figure 7.8:  The linearized inverted pendulum cart model state z2
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Figure 7.9:  The Lyapunov function 
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Figure 7.10:  The derivative of the Lyapunov function 
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7.4.1.5.3 The zero dynamics of the pendulum 
The “pendulum” subsystem mathematical model of the inverted pendulum is: 
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After substitution of uzd, the model is: 

43 zz =&                          (7.98) 
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By substituting the expression of f2, f4, g2 and g4, the linearized cart model can be derived 

as shown in Equation (7.100) and (7.101).  
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Then the model of the zero dynamics of the pendulum is: 
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The stability of the inverted pendulum’s “pendulum” subsystem zero-dynamics is studied 

according to the Lyapunov function: 
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The simulations are done in Matlab environment. In the Figure 7.11, the pendulum zero-

dynamics model is built. Based on this model, the Lyapunov function V and its derivative 

 are built as shown in Figure 7.12. From the simulation results which are shown in 

Figure 7.13 to Figure 7.16, the stability of the system is determined. In Figure 7.13, it can 

be seen the pendulum swings and stops at the position of 2π where the angle θ=180

V&

°. 

That means the feedback control signal u can not stabilize the pendulum at position θ=0°. 

If the pendulum is at the position of θ=180°, the pendulum stops swinging , as 

shown in Figure 7.14. The chosen Lyapunov function is positive definite, it can be seen 

from Figure 7.15. The derivative of the Lyapunov function converges to zero as shown 

in Figure 7.16. The pendulum is not stable at θ=0

0=θ&

V&
° and stable at θ=180°. The external 

controller is needed to stabilize the system.  
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Figure 7.11:  The linearized pendulum model of the inverted pendulum 
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Figure 7.12:  The Lyapunov function of the pendulum model 

 
 

194 



0

1

2

3

4

5

6

0 5 10 15 20 25 30 35 40 45 50
time (s)

z3
=t

he
ta

 (r
ad

)

 
Figure 7.13:  The linearized inverted pendulum “pendulum” model state z1 
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Figure 7.14:  The linearized inverted pendulum “pendulum” model state z2
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Figure 7.15:  The Lyapunov function 
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Figure 7.16:  The derivative of the Lyapunov function 

 
 
 

By studying of the cart subsystem zero-dynamics and the pendulum subsystem zero-

dynamics of the inverted pendulum, it can be seen both system are at the margin of the 

stabilization but for θ=180°. That means the linearizing control u is not sufficient to 

stabilize the system. The external control is necessary to be designed. In this project, the 

model reference control based linear quadratic regulator is used.  

 

7.4.1.6 The linearized inverted pendulum model  
The linearized inverted pendulum system is obtained after substitution of the obtained 

control u in Equation (7.72) into the nonlinear model of the inverted pendulum: 
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Then, the inverted pendulum nonlinear mathematical model can be written in the linear 
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form with the new input v: 
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Simplify the expression in Equation (7.105) and its simplest form is obtained as shown in 

Equation (7.106): 
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The obtained closed-loop system in Equation (7.106) is not fully linearized by the 

designed linearizing controller u, because the relative degree of the linearizing system is 

two and the nonlinear system has order four. In order to improve the performance of the 

obtained closed-loop system, a linear controller is necessary to be designed. In order to 

obtain it, the closed-loop system is linearized around the point θ=z3≈0, for which sinz3=z3 

and cosz3=1 and the value  is approximately equal to zero.  2θ&
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After substitution of the obtained transformations the linearized system can be written in 

the state space form as shown in Equation (7.107): 
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                  (7.107) 

with the output:  31 Lzzy +=

The linearized inverted pendulum mathematical model in Equation (7.107) is used to 

design the inverted pendulum linear closed-loop control v.  

 

7.4.2 Design of an input-output linearizing controller for the overhead crane 
From Chapter 4, it can be seen that the overhead crane has very similar mathematical 

model with the inverted pendulum. Because of the mathematical model similarity, the 

input-output linearizing controller design for the overhead crane is simplified dramatically. 
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By following the procedure of the feedback linearization approach applied to the inverted 

pendulum, the input-output linearizing controller for the overhead crane is designed and 

the zero-dynamics are studied for the overhead crane. The linearized mathematical 

model of the overhead crane is presented at the end of this section. In this section, an 

anti-swing controller is designed. (Park et al, 2007:379) 

 

7.4.2.1 The overhead crane mathematical model 
The overhead crane mathematical model with linear output is:  
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31 Lzzy +=  

where ( ) ( ) 3
2222 zcosLmmMmLJ ⋅⋅−+⋅+=σ  

 

The above overhead crane mathematical model can also be written in the form of: 

( ) ( )uzgzfz 111 +=&                       (7.108) 

( ) ( )uzgzfz 222 +=&                       (7.109) 

( ) ( )uzgzfz 333 +=&                       (7.110) 

( ) ( )uzgzfz 444 +=&                       (7.111) 

The output is  

y=z1+Lz3=[1   0   L   0]z                     (7.112) 

where z=[z1   z2   z3   z4]T; u=F; f1(z)=z2; g1(z)=0; f3(z)=z4; g3(z)=0; 

( )

( )
( )

σ
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⋅⋅⋅⋅+⋅⋅⋅⋅++

+⋅⋅⋅⋅+⋅⋅+−

= 34t3
2
4

2
33

22
2

2

2

zcoszbLmzsinzLmmLJ
zcoszsingLmzbmLJ

zf ; ( ) ( )
σ
⋅+

=
2

2
LmJzg ; 

( )

( )
( )

σ

⎥
⎦

⎤
⎢
⎣

⎡

⋅⋅+−⋅⋅⋅⋅−

−⋅⋅⋅⋅+−⋅⋅⋅⋅+

= 4t33
2
4

22
323

4

zbmMzcoszsinzLm
zsinLgmmMzbzcosLm

zf ; ( )
σ
⋅⋅−

=
 zcosLm

zg 3
4 . 

199 



7.4.2.2 Calculation of the control 
The control signal u is:  

( ) ( ) ( ) ( )
( ) ( )zLgzg

zLfzftvtu
42

42

+
−−

=                      (7.113) 

It exists for 0≤z3≤2π.  

 

7.4.2.3 Investigation of the zero dynamics 
The zero-dynamics of the overhead crane are studied by applying the same principle 

used to investigate the inverted pendulum stability which is let y=0.  

 

7.4.2.3.1 The zero dynamics of the cart sub-system 
The “cart” subsystem mathematical model of the overhead crane is: 

21 zz =&                        (7.114) 
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After substitution of uzd, it is obtained that: 

21 zz =&                         (7.116) 
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By substituting the expression of f2, f4, g2 and g4, the cart zero-dynamics model can be 

derived as shown in Equation (7.123) and (7.124).  
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Simply the expression in Equation (7.120), then Equation (7.121) is obtained. 
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and it is easy to get,  
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Then the model of the zero dynamics of the cart is: 

21 zz =&                        (7.123) 
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It can be seen that the only difference between the inverted pendulum “cart” subsystem 

zero-dynamics model and the overhead crane “cart” subsystem zero-dynamics model is 

the sign of the term mgL2sin(z1/L). Based on the overhead crane “cart” subsystem zero-

dynamics model, the stability of the system is investigated according to the Lyapunov 

function: 
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Its derivative can be expressed as: 
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The overhead crane “cart” subsystem zero-dynamics model is built based on the inverted 

pendulum “cart” zero-dynamics model. The simulation results are presented in Figure 

7.17 to Figure 7.20. Figure 7.17 and Figure 7.18 show that the system states 

convergence to zero. Figure 7.19 shows the chosen Lyapunov function is positive 

definite. Its derivative is not negative definite as shown in Figure 7.20, but it convergence 

to zero, which means the system is at the margin of the stabilization. The external 

controller is needed to stabilize the system. 
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Figure 7.17:  The linearized overhead crane cart model state z1
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Figure 7.18:  The overhead crane linearized cart model state z2 
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Figure 7.19:  The Lyapunov function 
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Figure 7.20:  The derivative of the Lyapunov function 
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7.4.2.3.2 The zero dynamics of the pendulum 
The “pendulum” subsystem mathematical model of the overhead crane is: 

43 zz =&                        (7.127) 
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After substitution of uzd, the model is: 
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By substituting the expression of f2, f4, g2 and g4, the linearized cart model can be derived 

as shown in Equation (7.136) and (7.137).  
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Simplify the expression in Equation (7.133), then Equation (7.134) is obtained. 
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and it is easy to get, 
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Then the model of the zero dynamics of the pendulum is: 

43 zz =&                        (7.136) 
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Similar with the difference between the inverted pendulum’s “cart” subsystem zero-

dynamics model and the overhead crane’s “cart” subsystem zero-dynamics model, the 

difference between the inverted pendulum’s “pendulum” subsystem zero-dynamics and 

the overhead crane’s “pendulum” subsystem zero-dynamics is the sign of the term 

mgLsin(z3). Based on the study of the overhead crane “pendulum” subsystem zero-

dynamics model, the stability of the system is investigated according to the Lyapunov 

function: 
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Its derivative can be expressed as: 
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The overhead crane’s “pendulum” subsystem zero-dynamics model is obtained by 

modifying the inverted pendulum’s “pendulum” subsystem zero-dynamics model. The 

simulation results are presented in Figure 7.21 to Figure 7.24. Figure 7.21 and Figure 

7.22 show that the system states convergence to zero. Figure 7.23 shows the chosen 

Lyapunov function is positive definite. Its derivative is not negative definite as shown in 

Figure 7.24. The derivative of the Lyapunov function converges to zero means the 

system is at the margin of the stabilization. The external controlle is needed to stabilize 

the system.  
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Figure 7.21:  The linearized overhead crane “pendulum” model state z1 
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Figure 7.22:  The linearized overhead crane “pendulum” model state z2 
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Figure 7.23:  The Lyapunov function 
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Figure 7.24:  The derivative of the Lyapunov function 

 
 
 

7.4.2.3.3 The linearized overhead crane model 
From Equation (7.106) the linearized overhead carne model can be derived. Equation 

(7.140) is the linearized closed-loop system.  
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Same as Equation (7.106), the obtained closed-loop system in Equation (7.140) is not 

fully linearized by the designed linearizing controller u, because the relative degree of the 

linearizing system is two and the nonlinear system has order four. In order to improve the 

performance of the obtained closed-loop system, a linear controller is necessary to be 
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designed. In order to obtain it, the closed-loop system is linearized around the point 

θ=z3≈0, for which sinz3=z3 and cosz3=1 and the value  is approximately equal to zero.  2θ&
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After substitution of the obtained transformations the linearized system can be written in 

the state space form as shown in Equation (7.141): 
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                  (7.141) 

with the output:  31 Lzzy +=

The system in Equation (7.141) is used to design the overhead crane linear closed-loop 

control v in the following section.  

 

7.5 Design of the linear controller 
The system stability is examined by studying the system’s zero-dynamics. It can be seen 

that the nonlinear controller is not sufficient to control the system. The systems are at the 

margin of the stability, so the external linear controllers are needed to stabilize the whole 

system. The external linear controller is design based on the linear quadratic regulator 

(LQR) technique. In this chapter, the LQR technique is applied in the same manner as it 

is implemented in Chapter 5, but the linearized mathematical models used in Chapter 5 

are replaced by the input-output feedback linearized models. As shown in Figure 7.25, 

the linear control v is used to stabilize the linearized nonlinear system. Here the 

linearized nonlinear system is not simply linearized by the approximation of the 

trigonometric function, such as: if -5°<θ<5°, sinθ≈0 and cosθ≈1, but it is linearized by the 

nonlinear control u.  
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LQR technique is presented and applied in Chapter 5. In a LQR design, the gain matrix 

 for a linear state feedback control law  is found by minimizing the 

performance index in the form of: 

K̂ e(t)K̂-u(t) =

( ) ( ) ( )∫
∞

+=
0

TT dt)t(RututQeteJ                     (7.142) 

where Q∈R5×5 is a positive definite (or positive semidefinite) Hermitian or real symmetric 

matrix. R∈R1 is a positive definite Hermitian or real symmetric matrix. The matrices Q 

and R are weighting parameters that penalize certain states or control inputs and ysp=0. 

In Matlab, the command “lqr” is used to solve the continuous-time, linear, quadratic 

regulator problem. This command computes the feedback gain matrix K . The weighting 

matrices Q and R used for controlling the inverted pendulum and the overhead crane are: 

ˆ

Qip=diag {9000   130   10   3   220000}  Rip=1                 (7.143) 
Qoc=diag {150   150   100   100   3000}  Roc=1                 (7.144) 
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Figure 7.25:  The structure block diagram of the feedback linearization system 

 
 
 
 
By using the selected weighting matrices, the LQR controllers are designed by using 

Matlab. The controller gain matrix K  for the inverted pendulum and the overhead crane 

are: 

ˆ

[ ]0416.4696466.178868.1294596.640967.266K̂ −−−−=                (7.145) 

[ ]7723.541790.22601.381802.266956.56K̂ −−−=                  (7.146) 

 

7.6 Simulation 
Based on the block diagram of the feedback linearization control system in Figure 7.25, 

the system is built in Simulink as shown in Figure 7.26. The Simulink files for the inverted 

pendulum and the overhead crane are called “FBL_IP.mdl” and “FBL_OC.mdl” 
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respectively. The Simulink block diagrams for the inverted pendulum and the overhead 

crane have the same structure. The differences are the actual controlled plant and the 

parameters used to construct the controllers. The subsystem contained in Figure 7.26 

consists of the linear controller and the nonlinear controller which are shown in Figure 

7.27 and Figure 7.28 respectively. The associated m-files: “FBL_IP.m” and “FBL_OC.m” 

are used to declare the necessary parameters and calculate the feedback control gain 

matrices. These two m-files are presented in Appendix A. 7 and A. 8.  
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Figure 7.26:  The Simulink block diagram of the  

feedback linearization system 
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Figure 7.27:  The Simulink block diagram of the linear controller 
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Figure 7.28:  The Simulink block diagram of the nonlinear controller 

 
 
 

The simulation results are presented in Figure 7.29 to Figure 7.52. The presented signals 

include the position signal x, the angle signal θ, the velocity signal , the angular velocity 

signal , the output signal y, the linear and nonlinear control signals v and u. The 

simulations are done for different set points 0m, 0.05m and 0.1m for both of the inverted 

pendulum and the overhead crane. The initial conditions for both the inverted pendulum 

and the overhead crane are z(0)=[0.03  0.05  0.09  0.04].  

x&

θ&

 

From the simulation results, the following points can be concluded:  

 All the states are stabilized 
 The plant output follows the set point trajectories 
 The errors go to zeros 
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Figure 7.29:  Inverted pendulum displacement and angle state signals  

when set point is 0m 
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Inverted pendulum velocity and angular velocity states (FBL)
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Figure 7.30:  Inverted pendulum velocity and angular velocity state signals  

when the set point is 0m 
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Figure 7.31:  Inverted pendulum output signal 

when the set point is 0m 
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Figure 7.32:  Inverted pendulum control signals 

when the set point is 0m 
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Figure 7.33:  Inverted pendulum displacement and angle signals  

when the set point is 0.05m 
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Figure 7.34:  Inverted pendulum velocity and angular velocity signals 

when set point is 0.05m 
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Figure 7.35:  Inverted pendulum output signal 

when the set point is 0.05m 
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Inverted pendulum control signal (FBL)
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Figure 7.36:  Inverted pendulum control signals  

when the set point is 0.05m 
 
 

Inverted pendulum displacement and angle states (FBL)

-0.3
-0.25
-0.2

-0.15
-0.1

-0.05
0

0.05
0.1

0.15
0.2

0 0.5 1 1.5 2 2.5 3 3.5

time (s)

x-
(m

);
 th

et
a-

(r
ad

ia
n)

4

x

theta

 
Figure 7.37:  Inverted pendulum displacement and angle signals  

when the set point is 0.1m 
 
 

Inverted pendulum velocity and angular velocity states (FBL)

-10

-8

-6

-4

-2

0

2

4

6

0 0.5 1 1.5 2 2.5 3 3.5 4

time (s)

x_
do

t (
m

/s
);

 
th

et
a_

do
t (

ra
d/

s)

x_dot

theta_dot

 
Figure 7.38:  Inverted pendulum velocity and angular velocity state signals  

when the set point is 0.1m 
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Inverted pendulum output signal (FBL)
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Figure 7.39:  Inverted pendulum output signal 

when the set point is 0.1m 
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Figure 7.40:  Inverted pendulum control signals  

when the set point is 0.1m 
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Figure 7.41:  Overhead crane displacement and angle state signals  

when the set point is 0m 
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Overhead crane velocity and angular velocity states (FBL)
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Figure 7.42:  Overhead crane velocity and angular velocity state signals  

when the set point is 0m 
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Figure 7.43:  Overhead crane output signal 

when the set point is 0m 
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Figure 7.44:  Overhead crane control signals  

when the set point is 0m 
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Figure 7.45:  Overhead crane displacement and angle state signals  

when the set point is 0.05m 
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Figure 7.46:  Overhead crane velocity and angular velocity state signals  

when the set point is 0.05m 
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Figure 7.47:  Overhead crane output signal 

when the set point is 0.05m 
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 Overhead crane control signal (FBL)
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Figure 7.48:  Overhead crane control signals  

when the set point is 0.05m 
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Figure 7.49:  Overhead crane displacement and angle state signals  

when the set point is 0.1m 
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Figure 7.50:  Overhead crane velocity and angular velocity state signals  

when the set point is 0.1m 
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Overhead crane output signal (FBL)
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Figure 7.51:  Overhead crane output signals  

when the set point is 0.1m 
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Figure 7.52:  Overhead crane control signals  

when the set point is 0.1m 
 
 
 

7.7 Conclusion 
In this chapter, the input-output feedback linearization is presented in a very detail way. 

The nonlinear systems of the inverted pendulum and the overhead crane are linearized 

by using the input-output linearization. By differentiating the output, the linear dependent 

relationship between the input u and output y are crated. Based on this relationship, the 

nonlinear control u is found. By studying the system’s zero-dynamics, it is proven that the 

nonlinear controller is not sufficient to stabilize the complete system, the external 

controllers are needed. In this project, the external controllers are designed based on the 

LQR technique. The simulation results show that the systems are stabilized by the 

external linear controller. Compare to the linear controller, the feedback linearization 
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approach gives better system response in terms of the system performances. Compare 

with the Lyapunov stability based nonlinear control, they have very similar behaviours. In 

the next chapter, the Real-Time implementation is done based on the designed nonlinear 

controllers, including the Lyapunov stability theory based MRC and the feedback 

linearization method based control. 



CHAPTER EIGHT 
REAL-TIME IMPLEMENTATION CONFIGURATION AND RESULTS 

 
8.1 Introduction 

In order to verify the concept of the RMS, the developed nonlinear controllers are 

implemented in Real -Time for the lab-scaled RMS which consists of the reconfigurable 

plant and the controller. The plant and the reconfigurable controllers are reconfigured in 

parallel and synchronously. In other words, the reconfigurable plant and the 

reconfigurable controller are always corresponding to each other. The control designs 

are useful and meaningful only when they can be used to achieve certain goals, for 

example, to regulate or stabilize certain processes or quantities in real world. This also 

requires the Real-Time implementation to prove the designed controller achieves the 

specifications. Real-Time implementation means using the software and hardware 

platform to realize the control implementations in reality. Difference between the 

simulation and the Real-Time implementation is that in the Real-Time implementation all 

the mathematical functions are replaced by the actual devices or equipments. The plant 

mathematical model is replaced by the actual plant.  

 

In the thesis, the closed-loop control systems are simulated in Chapter 5, Chapter 6 and 

Chapter 7. Good results are received. The next step is to shift the project from the 

simulation platform to the Real-Time implementation platform. On the Real-Time 

implementation platform, the Bytronic pendulum system is used as the reconfigurable 

plant and the National Instruments (NI) CompactRIO FPGA with the NI LabVIEW are 

used as the final reconfigurable controller. As all the simulations are done in the Matlab 

software environment, it is convenient first to transfer the program from the simulation 

mode to the Real-Time implementation mode in the same environment using Real-Time 

Windows Target (RTWT). Then, the Real-Time implementations of the reconfigurable 

controllers are done on the platform of the I/O DAQ device with signal conditioning, PC 

and Matlab first, it is considered as the first transition platform. Once the Real-Time 

implementations are achieved on this platform, which means the project is 

implementable and the plant models and the controllers are designed and developed 

successfully. Then, the reconfigurable controller is implemented on the platform of I/O 

DAQ device and signal conditioning with LabVIEW which is considered as the second 

transition platform. On this platform, the software of reconfigurable controllers is 

designed in the LabVIEW software environment. The first and second transition platforms 

share the same hardware structure, the controller algorithms are sitting in the PC, the I/O 
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ports are connected through the I/O DAQ device for the signal conditioning with the plant, 

but they have different software environment, Matlab and LabVIEW respectively. The 

second transition platform is used to create a LabVIEW version of the reconfigurable 

controllers in term of software. Based on these LabVIEW version reconfigurable 

controllers, the final reconfigurable controllers based on the NI compactRIO FPGA with 

LabVIEW is developed.  

 

This chapter is organized in the following manner. In the section 8.1, the introduction 

gives an overview of the chapter. In the section 8.2, the I/O DAQ devices, signal 

conditioning and PC with Matlab Real-Time implementation platform is studied. Include 

the hardware and software. The CompactRIO Real-Time implementation platform is 

studied in the section 8.3 in terms of the structures of the CompactRIO implementation 

platform. The Real-Time implementation platform configurations are shown in the section 

8.4 for both Real-Time implementation platforms. In the section 8.5, the Real-Time 

implementation results are presented. These results include: a) by using the I/O DAQ 

devices and signal conditioning with PC platform associated with the Lyapunov stability 

theory based control and feedback linearization theory based control; b) the CompactRIO 

and PC platform with Lyapunov stability theory based control and feedback linearization 

theory based control. The conclusion is presented in the section 8.6.  

 

8.2 I/O DAQ device with signal conditioning and PC Real-Time implementation platform 
The I/O DAQ device with signal conditioning and PC Real-Time implementation platform 

consists of five basic components shown in Figure 8.1. These basic components are: 
 
 

 
Figure 8.1:  Data Acquisition system 

 
(Adopted from http://zone.ni.com/devzone/cda/tut/p/id/3536, April 25th 2007) 
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 Transducers and sensors 
 Signals 
 Signal conditioning 
 I/O DAQ hardware 
 Drivers and Application software 

 

These five components are introduced associate with the project individually in the 

following subsections.  

8.2.1 Transducers and sensors 
A transducer is a device that converts a physical phenomenon into a measurable 

electrical signal, such as voltage or current. The ability of I/O DAQ system to measure 

different phenomena depends on the transducers to convert the physical phenomena 

into signals measurable by the I/O DAQ hardware. In this project, the transducers are 

integrated with the reconfigurable plant. A 5K servo potentiometer is used to measure the 

angle signal (θ) and a 5K multi-turn potentiometer is used to measure the position signal 

(x).  

 

8.2.2 Signals 
The appropriate transducers convert physical phenomena into measurable signals. 

Signals can be classified into analog and digital ones. Analog signals have three primary 

characteristics including level, shape and frequency. The useful information that can be 

measured from a digital signal includes the state and the rate. The transducers in the 

reconfigurable plant convert the angle signal (θ) and the position signal (x) into the 

electrical voltage (V) form.  

 

8.2.3 Signal conditioning 
Sometimes the generated by the transducers signals are not suitable to be measured by 

the I/O DAQ device directly. Signal conditioning is essential for an effective I/O DAQ 

system. It maximizes the accuracy of a system, allows sensors to operate properly, and 

guarantees safeness of the control system. The signal conditioning used in this project is 

the SCC portable, low-cost, modular signal conditioning system. SCC products condition 

a variety of analog input and digital I/O signals. Because the transducers used in the 

pendulum system generate analog signals and the control signal send to the pendulum 

system is an analog signal, the analog input and output SCC modules are used for the 

data acquisition. These pods like SCC modules are plugged into NI SC-2345 connector 

blocks in the signal conditioning carrier shown in Figure 8.2.  
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Figure 8.2:  SC 2345 signal conditioning carrier 

 
(Adopted from http://www.transducertechniques.com/I/O DAQ-SCC-2345.cfm, May 11th 

2008) 
 
 
 

The enclosures for SCC signal conditioning modules connect directly to 68-pin I/O DAQ 

devices. In this project, the used SCC modules include:  

 NI SCC-A10 Voltage Attenuator 
 NI SCC-FT01 Feedthrough 

NI SCC-A10 Voltage Attenuator and NI SCC-FT01 Feedthrough are used as the analog 

input (AI) and analog output (AO) respectively shown in Figure 8.3.  
 
 
 

 
 

Figure 8.3:  SCC analog Input module (left) and analog output module (right) 
 

(Adopted from http://sine.ni.com/nips/cds/view/p/lang/en/nid/1714, May 10th 2007; 
Adopted from http://sine.ni.com/nips/cds/view/p/lang/en/nid/1717, May 10th 2007) 

 
 
 

The NI SCC-A10 is a dual-channel module that accepts input voltage sources up to 

60VDC. Each channel of the NI SCC-A10 includes a 10:1 attenuation circuit and 

differential instrumentation amplifier with low-impedance outputs for maximum scanning 

rates by the multifunction I/O DAQ device. The NI SCC-FT01 is a feedthrough module 

that offers direct connection to analog input, analog output, digital I/O, and General 
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Purpose Counter (GPCTR) channel of the I/O DAQ device. The data sheet of the SCC is 

in Appendix D. (http://www.ni.com/pdf/products/us/4daqsc253-265_194-196.pdf) 

 

8.2.4 I/O DAQ hardware 
I/O DAQ hardware acts as the interface between the computer and the outside world. 

The fundamental function of the I/O DAQ hardware is to digitize incoming signals so that 

the computer can interpret them. NI offers PCI bus based I/O DAQ boards which can 

plug into any desktop computer. The I/O DAQ board used in this project is the NI PCI-

6035E 200kS/s, 16-Bit, 16-Analog-Input Multifunction I/O DAQ shown in Figure 8.4. This 

multifunction data acquisition device provides full functionality. The data sheet of this I/O 

DAQ board is in Appendix E. 
 
 
 

 
Figure 8.4:  NI PCI-6035E I/O DAQ board 

 
(Adopted from http://sine.ni.com/nips/cds/view/p/lang/en/nid/11915, May 6th 2008) 

 
 
 

The I/O DAQ board and the Signal conditioning carrier are connected through a cable 

shown in Figure 8.5. 
 
 
 

 
Figure 8.5:  Connection between the I/O DAQ board and the signal conditioning carrier 

 
(Adopted from http://sine.ni.com/nips/cds/view/p/lang/en/nid/11915, May 10th 2008) 
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8.2.5 Driver and application software 
The software components include the driver software and the application software. Driver 

software is the layer of software for easily communicating with the hardware. It forms the 

middle layer between the application software and the hardware. The application 

software can be either a development environment or a configuration-based program. 

Application software adds analysis and presentation capabilities to driver software. The 

used I/O DAQ system in the project is compatible with both Matlab/Simulink and 

LabVIEW software environment.  

 

Matlab is the short for “matrix laboratory”. It is a numerical computing environment and 

programming language. Simulink is a tool for modelling, simulating and analyzing multi-

domain dynamic systems. Matlab and Simulink are integrated tightly and they have been 

widely used in control theory and digital signal processing for simulation and design. As 

shown in Chapter 5, Chapter 6 and Chapter 7, the Matlab and Simulink have been used 

for the system simulation. In this chapter, the Real-Time implementation is done by using 

Matlab/Simulink software and NI I/O DAQ system as the above mentioned I/O DAQ 

system is compatible with Matlab/Simulink software environments  

(http://www.mathworks.de/products/daq/supportedio14005.html, April 10th 2008).  

 

LabVIEW is short for “Laboratory Virtual Instrumentation Engineering Workbench). It is a 

platform and development environment for a visual programming language developed by 

National Instruments. Above mentioned I/O DAQ system is the product of NI, it is 

compatible with LabVIEW (http://sine.ni.com/nips/cds/view/p/lang/en/nid/1191, April 12th 

2008) 

 

8.3 NI CompactRIO Real-Time implementation platform 
The final Real-Time implementation platform is executed on NI CompactRIO control and 

acquisition system in order to realize the reconfigurability of the reconfigurable controller. 

The National Instruments CompactRIO programmable automation controller (PAC) is an 

advanced embedded control and data acquisition system designed for applications that 

require high performance and reliability. The CompactRIO has the characteristics of: 

system’s open, embedded architecture, small size, extreme ruggedness, and flexibility. It 

enables the designers to quickly build the customized embedded systems. In the word 

“CompactRIO”, RIO means Reconfigurable Input/Output technology. The RIO technology 

enables engineers to build the customized hardware circuitry using reconfigurable FPGA 

chips and LabVIEW graphical development tools. It is ideal for building optimized and 
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flexible electric circuitry for I/O Communication and Control (IOCC) applications without 

actually building custom circuitry. The CompactRIO provides the benefit of modular 

FPGA-timed I/O with built-in signal conditioning and direct signal connectivity.  

 

8.3.1 CompactRIO architecture overview 
From the architecture point of view, CompactRIO combines an embedded Real-Time 

processor, a high-performance FPGA and hot-swappable I/O modules. Each I/O module 

is connected directly to the FPGA, providing low-level customization of timing and I/O 

signal processing. The FPGA is connected to the embedded Real-Time processor via a 

high-speed PCI bus. This represents a low-cost architecture with open access to low-

level hardware resources. LabVIEW contains built-in data transfer mechanisms to pass 

data from the I/O modules to the FPGA and also from the FPGA to the embedded 

processor for Real-Time analysis, post-processing, data logging, or communication to a 

networked host computer shown in Figure 8.6. (http://www.ni.com/compactrio/whatis.htm, 

July 29th 2008) 
 
 
 

 
Figure 8.6:  NI CompactRIO Control and Acquisition System 

 
(Adopted from http://www.ni.com/compactrio/whatis.htm, 22nd April 2008) 

 
 
 

The CompactRIO PAC combines the ruggedness and reliability of Programmable Logic 

Controllers (PLCs) with the software capabilities and the flexibility of PCs. PACs provide 

a new level of performance and flexibility for industrial control and acquisition. 

CompactRIO is an open embedded system that gives engineers a unique, low-cost 

architecture containing a reconfigurable FPGA for complete control over low-level 
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hardware and software resources. From Figure 8.6, it can be seen that the CompactRIO 

consists of three basic components, the I/O Modules, FPGA and Real-Time Processor. 

These three components are introduced briefly in the following subsections.  

 

8.3.1.1 CompactRIO I/O modules 
The I/O modules: A variety of I/O types are available including voltage, current, 

thermocouple, RTD, accelerometer, and strain gauge inputs; up to ±60V simultaneous-

sampling analog I/O; 12, 24, and 48 V industrial digital I/O; 5 V/TTL digital I/O; 

counter/timers; pulse generation; and high voltage/current relays. There are built-in 

signal conditioning contained in the modules, the wires can be connected directly from 

the C series modules to the sensors and actuators.  

 

8.3.1.2 CompactRIO FPGA 
The FPGA: FPGA is abbreviation of Field Programmable Gate Array. It is a 

semiconductor device containing Configurable Logic Block (CLB), Interconnect Resource 

(IR) and Input/Output Block (IOB) as shown in Figure 8.7. The Configurable Logic Block 

can be programmed to duplicate the functionality of basic logic gates (such as AND, OR, 

XOR, NOT) or more complex combinatorial functions such as decoders or simple math 

functions. In most FPGAs, these Configurable Logic Blocks also include memory 

elements, which may be simple flip-flops or more complete blocks of memories. FPGA 

has several advantages, such as a shorter time to market and ability to re-program in the 

field to fix bugs, and lower non-recurring engineering costs. The FPGA makers may offer 

less flexible versions of their FPGAs that are cheaper. The development of these designs 

is made on regular FPGAs and then migrated into a fixed version that more resembles 

an ASIC due to lack of ability to modify the design once it is committed. Considering from 

the technical point of view, FPGA offer large logic capacity, exceeding several million 

equivalent logic gates, and include dedicated memory resources, special hardware 

circuitry that is often needed in digital system and supports a wide range of 

interconnection standards. (Zhang L. K, 2005) 

 

For the CompactRIO, the embedded FPGA is a high-performance, reconfigurable chip, 

which the engineers can program with LabVIEW and LabVIEW FPGA module graphical 

development tools.  
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Figure 8.7:  The internal structures of the FPGA 

 
 
 

Configurable Logic 

Block (CLD) 

Input/Output 
module (IOB) 

Interconnect 
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8.3.1.3 NI CompactRIO Real-Time processor 
The CompactRIO embedded system features an industrial 400MHz Freescale MPC5200 

Real-Time processor that deterministically executes the LabVIEW Real-Time 

applications on the reliable Wind River VxWorks Real-Time operating system. LabVIEW 

has built-in functions for transferring data between the FPGA and the Real-Time 

processor within the CompactRIO embedded system. It is possible to choose from more 

than 600 built-in LabVIEW functions to build the multithreaded embedded system for 

Real-Time control, analysis, data logging, and communication.  

 

8.3.2 CompactRIO hardware deployment for the Real-Time implementation of the 
pendulum system 
The CompactRIO system used in this project, consists of four basic components, which 

are:  

 Real-Time Controllers 
 Reconfigurable Chassis 
 I/O Modules 
 Development Software 

These four components are introduced below.  
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8.3.2.1 CompactRIO Real-Time controller  
The CompactRIO Real-Time controller used in this project is cRIO-9004 as shown in 

Figure 8.8. It offers stand-alone embedded execution for deterministic LabVIEW Real-

Time applications (http://sine.ni.com/nips/cds/view/p/lang/en/nid/14155). It is used for 

Real-Time analysis, control and data logging. It features a 200MHz industrial processor 

that reliably and deterministically executes the LabVIEW Real-Time applications, 512 MB 

of non-volatile CompactFlash storage, 64 MB DRAM memory, 10/100BaseT Ethernet 

port with embedded Web and file servers with remote-panel user interface and RS232 

serial port for connection to peripherals. The Real-Time processor also features dual 11 

to 30 VDC supply inputs, a user DIP switch, LED status indicators, a Real-Time clock, 

watchdog timers, and other high-reliability features.  
 
 
 

 
Figure 8.8:  CompactRIO Real-Time controller 

 
(Adopted from http://sine.ni.com/nips/cds/view/p/lang/en/nid/14155, April 10th 2008) 

 
 
 

8.3.2.2 Reconfigurable Embedded Chassis 
The reconfigurable embedded chassis are the heart of the CompactRIO system shown in 

Figure 8.9. The reconfigurable I/O (RIO) FPGA core is contained in it. This user-defined 

RIO FPGA is a custom hardware implementation of the control logic, input/output, timing, 

triggering and synchronization design. The RIO core is connected to each I/O module in 

a star topology for direct access to each module for precise control and unlimited 

flexibility in timing, triggering, and synchronization. It is programmed using easy to use 

elemental I/O functions to read and write signal information from each module. The RIO 

230 



core is connected to the Real-Time controller as well through a local PCI bus. 

(http://sine.ni.com/nips/cds/view/p/lang/en/nid/14154, April 10th 2008). 
 
 
 

 
Figure 8.9:  CompactRIO reconfigurable embedded chassis 

 
(Adopted from http://sine.ni.com/nips/cds/view/p/lang/en/nid/14154, 10th April 2008) 

 
 
 

8.3.2.3 CompactRIO I/O modules 
CompactRIO I/O provides direct hardware access to the input/output circuitry of each I/O 

module using LabVIEW FPGA elemental I/O functions and it can also be directly 

connected to the sensors, actuators and communication buses. Each I/O module 

contains built-in signal conditioning and screw terminal. Different kinds of I/O types are 

available (http://sine.ni.com/nips/cds/view/p/lang/en/nid/14147). By integrating the 

connector junction box into the modules, the CompactRIO system significantly reduces 

the space requirements and cost of field wiring. In addition, by using the CompactRIO I/O 

Module Development Kit, engineers can create their own modules.  

(ftp://ftp.ni.com/pub/devzone/pdf/tut_2856.pdf) 

 

The I/O modules used in the project are the simultaneous-sampling analog 

inputs/outputs: 

 NI 9201 8-Channel, 500kS/s, 12-Bit Analog Input Module 
 NI 9263 4-Channel, 100kS/s, 16-bit, ±10V, Analog Output Module  

as shown in Figure 8.10. 

 

The detailed CompactRIO I/O wiring is shown in Appendix B. 
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Figure 8.10:  NI 9201 analog input (left) and NI 9263 analog output (right) 

 
(Adopted from http://sine.ni.com/nips/cds/view/p/lang/en/nid/14588, 11th April 2008; 
Adopted from http://sine.ni.com/nips/cds/view/p/lang/en/nid/14170, 11th April 2008) 

 
 
 

8.3.2.4 Development software  
The following software is needed for building an embedded system: 

 LabVIEW FPGA for specifying hardware I/O in the user-configurable FPGA core 
 LabVIEW Real-Time for Building deterministic and reliable Real-Time applications 

(http://sine.ni.com/nips/cds/view/p/lang/en/nid/14294) 

In this project, the NI Developer Suite Core Package with the Real-Time Deployment and 

FPGA Deployment are used. It contains all the software that is needed.  

 

8.4 Real-Time hardware and software configurations 
Based on the learning of the Real-Time implementation hardware and software, the 

hardware can be configured by following the structures of the closed-loop block diagrams 

showed in Chapter 6 and Chapter 7. The hardware configuration basically forms the 

closed-loop control system in the physical hardware manner. In other words, all the 

components contained in the closed-loop system block diagram are replaced by the 

actual controller, the necessary to be controlled plant or system and the sensors involved 

in the feedback loops.  

 

In this project, the plant to be controlled is the pendulum system, which can be 

configured into the inverted pendulum mode and the overhead crane mode. The 

controllers are different for different plant configurations. In this section, the hardware 

configurations for these two different platforms are presented respectively.  
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8.4.1 The I/O DAQ device with signal conditioning and PC Real-Time implementation 
platform hardware and software configurations 
The I/O DAQ device and signal conditioning Real-Time implementation platform consists 

of the PC, the I/O DAQ card, the signal conditioning units and the reconfigurable plant. In 

this platform, the controllers are deployed in the PC via the Matlab Real-Time Windows 

Target. The Matlab Real-Time Windows Target is a PC solution for prototyping and 

testing Real-Time systems. In this environment, the PC with Matlab and Simulink is used 

as a host and target. The models are created in the PC by using the Simulink blocks 

diagrams. After creating a model and simulating it with Simulink in normal mode, the 

executable code can be generated with Real-Time Workshop and the Open Watcom 

C/C++ compiler. Then the application can be executed in Real-Time with Simulink 

external mode. One useful feature of the integration between Simulink external mode 

and the Real-Time Windows Target is that the parameters in the Simulink model can be 

changed while running an application in Real-Time. The designed Simulink controllers 

are interfaced with the plant by using the Real-Time windows target analog input/output 

functions. These Real-Time windows target analog input/output units acquire and send 

signals via I/O DAQ card and the signal conditioning modules from and to the 

reconfigurable plant sensors and the actuators respectively.  
 
 
 

 
      PC with Matlab         I/O DAQ       Signal conditioning           Reconfigurable plant 

Figure 8.11:  The I/O DAQ device with signal conditioning and PC Real-Time 
implementation platform Hardware and software configurations 

 
 
 
In this project, Matlab/Simulink software environment is used. This software platform is 

regarded as one of the best compatible software platforms for both simulation and Real-

Time implementation in automation control field.  

 

This platform is mainly used to verify that the whether the designed control algorithms 

are correct. Once it is proved that the designed control algorithms are capable to control 
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the reconfigurable plant, the hardware and the software implementation platform are 

shifted to the CompactRIO FPGA platform.  

 

8.4.2 CompactRIO Real-Time implementation platform hardware and software 
configurations 
In the CompactRIO Real-Time implementation platform three basic components are 

included, which are the NI CompactRIO PAC, the PC and the reconfigurable plant. 

Similar with the I/O DAQ with signal conditioning and PC platform, all software 

development is done in the host PC. The difference is that the software used in this 

platform is the graphical programming language LabVIEW.  
 
 
 

 
 PC with      Real-Time   cRIO FPGA 
            LabVIEW     Processor      chassis 

Figure 8.12:  The CompactRIO Real-Time implementation platform  
hardware and software configurations 

 
 
 
From Figure 8.11 and Figure 8.12, it can be seen that the CompactRIO Real-Time 

implementation platform has similar structure as the I/O DAQ device with signal 

conditioning and PC platform. As mentioned previously, the analog input and analog 

output modules are used in this project. The CompactRIO AI takes the measured signal 

from the sensors. According to the designed control algorithms in the cRIO FPGA, the 

control signal is generated and sent to the reconfigurable plant via the CompactRIO AO. 

But there are some essential differences between these two Real-Time implementation 

platforms. First of all, in the I/O DAQ device with signal conditioning platform, the PC is 

the host and target at the same time which means the control algorithms is developed in 

the PC and can only be deployed into the PC. As a result, the PC is running all the time 

during the control process. But for the CompactRIO Real-Time implementation platform, 

once the developed control algorithms are downloaded into cRIO FPGA, the 

CompactRIO can work as stand-alone or with a graphical user interface running on a 

network, the host PC. Furthermore, the CompactRIO system includes a built-in web 

TCP/IP
Internal 

PCI AI

AO

Analog I/O Reconfigurable plant
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browser to automatically publish the front panel user interface of the embedded 

application. CompactRIO does not have to work with the PC. This characteristic enables 

the CompactRIO Real-Time implementation platform to reduce the power consumption of 

the system and it occupies much less space. The second major difference between 

these two platforms is their architecture. For the I/O DAQ device with the signal 

conditioning and PC platform, the data process relies on the PC processor and the I/O 

DAQ device is directly inserted into the PC motherboard PCI slot. The control algorithm 

and the logging data are stored in the PC memory while the Application software is 

running. For the CompactRIO Real-Time implementation platform, the CompactRIO has 

its own processor and the data is processed by it. The control algorithm is deployed into 

the cRIO FPGA. From the architecture of these two platforms, it can be seen that the 

CompactRIO is better integrated. This reduces the system response time and enhances 

the system performance. Thirdly, because the CompactRIO is designed to work in the 

hardest industrial environment, it is reliable and suitable for the industrial applications. 

The I/O DAQ device with signal conditioning and PC Real-Time implementation is mainly 

for prototype application only.  

 

8.5 Real-Time implementations and results 
Based on the study of the I/O DAQ device with signal conditioning and PC Real-Time 

implementation platform and the CompactRIO Real-Time implementation platform 

hardware, software and the configurations, the Real-Time implementations are executed 

on these two platforms by using the developed control algorithms in the previous 

chapters, including: the Lyapunov stability based MRC and the feedback linearization 

method based control.  

 

The developed Real-Time implementation software models are presented; The Real-

Time implementation data results are acquired and plotted and the results are analysed 

and studied.  

 

8.5.1 Real-Time implementation on the I/O DAQ device with signal conditioning and PC 
Real-Time implementation platform 
For the I/O DAQ device with signal conditioning and PC Real-Time implementation 

platform, models are developed in the Matlab/Simulink software environment based on 

the control algorithms and Simulation block diagram developed in Chapter 6 and 

Chapter 7. The hardware configurations are as shown in Figure 8.11.  

 
235 



8.5.1.1 Lyapunov stability based MRC Real-Time implementation 
8.5.1.1.1 Lyapunov stability based MRC Real-Time implementation Simulink block 

diagrams 
Lyapunov stability based MRC Real-Time implementation Simulink block diagram is 

developed first. This Simulink block diagram can be obtained by using the corresponding 

simulation Simulink block diagrams presented in Chapter6 Figure 6.4, with some 

changes, such as, 1) add the Real-Time windows Target I/O units for data acquiring and 

sending; 2) remove the plant mathematical model and send the control signal to the 

actual plant; 3) add the circuit for converting the control signal from force F to voltage u 

given in Equation 4.112. For this project, according to the trainer manual (Bytronic 

international LTD, 2001: 5.14), the sampling time of the signal is equal to 0.055s.  
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Figure 8.13:  The Lyapunov stability based MRC Real-Time implementation  

Simulink block diagram 
 
 
 

The Real-Time implementation Simulink block diagram is shown in Figure 8.13. The 

associated m-file for the Real-Time implementation only needs to provide the necessary 

parameters. The m-file called “LDM_IP.m” can be used. It is presented in Appendix A. 4. 

This m-file ensures the Real-Time implementation programme runs smoothly. It also 

provides functions to convert the data from “structure” to “double” type which enables the 

data to be plotted in MS-excel.  
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8.5.1.1.2 Lyapunov stability based MRC Real-Time implementation results 
In the Lyapunov stability based MRC Real-Time implementation, the following signals 

including: the position signal x, the angle position signal θ, the velocity signal x , the 

angular velocity signal θ , the output signal y, the control signal u, the error signal e and 

the signal of the derivative of the Lyapunov function V , are taken for the inverted 

pendulum and the overhead crane control, respectively.  

&

&

&

 

The initial conditions for all the Rea-Time implementation are specified in the following 

way: For the inverted pendulum, the initial cart position is at 0 m, it is held by hand in 

approximate vertical direction with the limit of angle position θ ≤ ±5° away from it; for the 

overhead crane, the initial cart position is at 0 m as well, but the pendulum is placed at 

the furthest position away from the equilibrium point, approximate θ≈20°. Once the Real-

Time implementation programming is started to run, the pendulum is released at the 

same time and the pendulum is controlled by the developed programme which is 

implemented by the associated hardware platforms. Two different set points for the 

output y are attempted, including 0 m and 0.1m.  

 

Figure 8.14 to Figure 8.19 shows the Real-Time implementation results of Lyapunov 

stability based MRC control algorithm is applied to control the inverted pendulum at the 

set point of 0 m. 
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Figure 8.14:  Inverted Pendulum Real-Time displacement and angle signals 

when set point is 0 m 
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Real-Time Inverted Pendulunm velocity and angular velocity 
states (LDM)

-30

-20

-10

0

10

20

30

0 0.5 1 1.5 2 2.5 3 3.5 4

time (s)

x_
do

t-(
m

/s
); 

th
et

a_
do

t-(
ra

d/
s)

x_dot theta_dot

 
Figure 8.15:  Inverted pendulum Real-Time cart velocity and angular velocity signals  

when the set point is 0 m 
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Figure 8.16:  Inverted pendulum Real-Time output signal  

when the set point is 0 m 
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Figure 8.17:  Inverted pendulum Real-Time control signal  

when the set point is 0 m 
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Real-Time Inverted Pendulum error signal e (LDM)
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Figure 8.18:  Inverted pendulum Real-Time error signal  

when the set point is 0 m 
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Figure8.19:  Inverted pendulum Real-Time signal of Lyapunov function derivative  

when the set point is 0 m 
 
 
 

From Figure 8.14, it can be seen that the position signal x is at around 0 m with 

oscillations which has amplitude of less than 5 cm. The angle signal θ is oscillates in a 

small range of less than ±7.5°. The output shows that the pendulum is at the position of 

about 0 m. The error signal turns to 0. In Figure 8.19, it can be concluded that the energy 

of the system is continuously dissipating. The system is bounded. From these graphs, it 

can be seen that all the states and output of the system are bounded and converge to 

zero. That means the inverted pendulum is well kept at the vertical position. The 

controller’s designs are successful. Figure 8.20 to Figure 8.25 shows the results of 

Lyapunov stability based MRC are applied to control the inverted pendulum at the set 

point of 0.1 m. 
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Figure 8.20:  Inverted Pendulum Real-Time displacement and angle signals 

when the set point is 0.1 m 
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Figure 8.21:  Inverted pendulum Real-Time cart velocity and angular velocity signals  

when the set point is 0.1 m 
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Figure 8.22:  Inverted pendulum Real-Time output signal  

when the set point is 0.1 m 
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Real-Time Inverted Pendulum control signal (LDM)
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Figure 8.23:  Inverted pendulum Real-Time control signal  

when the set point is 0.1 m 
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Figure 8.24:  Inverted pendulum Real-Time error signal  

when the set point is 0.1 m 
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Figure 8.25:  Inverted pendulum Real-Time signal of Lyapunov function derivative  

when the set point is 0.1 m 
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It can be seen that the position signal x has overshoot during the rising stage. But late 

converges to approximate 0.1 m and with small amplitude oscillations. The angular signal 

θ oscillates around zero radian. The output signal y goes to 0.1 m. The error signal e 

goes to 0 as well. The above mentioned result shows that the inverted pendulum is kept 

at the vertical direction with the displacement of 0.1 m away from the initial position. The 

control target is achieved. It is well know that the inverted pendulum is inherently 

unstable. From Figure 8.14 to Figure 8.25, it can be seen that the inverted pendulum are 

well controlled by the developed controller for different initial conditions and set points. 

The results from the Real-Time control of the crane are shown on Figure 8.26 till 8.31 for 

a set point for the output equal to 0 m and from Figure 3.32 till Figure 3.37 for the output 

set point of 0.1 m.  
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Figure 8.26:  Overhead Crane Real-Time displacement and angle signals 

when set point is 0 m 
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Figure 8.27:  Overhead Crane Real-Time velocity and angular velocity signals  

when the set point is 0 m 

242 



Real-Time Overhead Crane output signal y (LDM)
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Figure 8.28:  Overhead Crane Real-Time output signal  

when the set point is 0 m 
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Figure 8.29:  Overhead Crane Real-Time control signal  

when the set point is 0 m 
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Figure 8.30:  Overhead Crane Real-Time error signal  

when the set point is 0 m 
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Real-Time Overhead Crane signal V_dot (LDM)
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Figure 8.31:  Overhead Crane Real-Time signal of Lyapunov function derivative  

when the set point is 0 m 
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Figure 8.32.:  Overhead Crane Real-Time displacement and angle signals 

when set point is 0.1 m 
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Figure 8.33:  Overhead Crane Real-Time cart velocity and angular velocity state signals  

when the set point is 0.1 m 
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Real-Time Overhead Crane output signal y (LDM)
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Figure 8.34:  Overhead Crane Real-Time output signal  

when the set point is 0.1 m 
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Figure 8.35:  Overhead Crane Real-Time control signal  

when the set point is 0.1 m 
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Figure 8.36:  Overhead Crane Real-Time error signal  

when the set point is 0.1 m 
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Real-Time Overhead Crane signal V_dot (LDM)
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Figure 8.37:  Overhead Crane Real-Time signal of Lyapunov function derivative  

when the set point is 0.1 m 
 
 
 

For the overhead crane, the other associated m-file called “LDM_OC.m” is used which is 

presented in Appendix A. 5. It has the same functions as the previous one, but with the 

parameters for the overhead crane Real-Time implementation. The overhead crane is an 

inherently stable system, but it has the characteristic of oscillations. For this particular 

reconfigurable plant, the friction coefficient between the rod and the pivot is very small. If 

the pendulum is placed at the furthest position away from the equilibrium position, it 

takes about 30 seconds without control for the pendulum to settle down. But from Figure 

8.26 and Figure 8.32 can be seen that under the help of the developed Lyapunov stability 

based MRC controller in this project, the oscillations of the overhead crane die down in a 

very fast way with respect to set point of 0 m and 0.1 m. From the output signals in 

Figure 8.28 and Figure 8.34, it can be seen the overhead crane settles down at the 

desired positions. The error signals converge to approximate 0 as shown in Figure 8.30 

and Figure 8.36. From these graphs, it can be concluded that the oscillations of the 

system die very fast down, the developed controller works well and according to the 

specifications.  

 
8.5.1.2 Feedback linearization method Real-Time implementation 
8.5.1.2.1 Feedback linearization method Real-Time implementation Simulink block 

diagrams 
The feedback linearization method based Real-Time implementation is done as well. In 

Figure 8.38, the corresponding Simulink block diagram is shown. It is derived from the 

corresponding simulation Simulink block diagram shown in Chapter 7, Figure 7.26 with 
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some changes. The changes include: 1) add the Real-Time Windows Target units; 2) 

add the circuit to convert the signal from force F to voltage V given by Equation 4.112; 3) 

and remove the plant mathematical model and connect the control signal to the plant. 

The sampling time is 0.055s. It is specified in the Real-Time Windows Target Units. An 

associated m-file called “FBL_IP.m” is used to specify and generate the necessary 

parameters, including all the parameters used for the Real-Time control, the feedback 

control gain, the weight matrix and so on. This m-file is given in Appendix A. 7. 
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Figure 8.38:  The feedback linearization method Real-Time implementation  

Simulink block diagram 
 
 
 

8.5.1.2.2 Feedback linearization method Real-Time implementation results 
For the feedback linearization method based Real-Time implementation, the following 

signals are taken, including: the position signal x, the angle position signal θ, the velocity 

signal , the angular velocity signal θ , the output signal y, the nonlinear control signal u, 

the linear control signal v and the error signal e. These signals are presented in the 

x& &
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following graphs in this order for the inverted pendulum and the overhead crane 

respectively. Two different set points 0 m and 0.1 m are used. The initial conditions are 

mentioned in the previous section.  

 

In Figure 8.39 to Figure 8.44, the relative signals of the inverted pendulum for set point 

at 0 m are presented. It can be seen that the pendulum position signal x is in the range 

of ±0.02 m. The angle signal θ is in the range of ±0.04 Radian which equal to 

approximate ±2.5°. The output y is also in a small range of between ±0.03 m. These 

values show that the inverted pendulum is kept in the vertical direction. The nonlinear 

control signal u, linear control signal v and the error signal e are present as well.  
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Figure 8.39:  Inverted Pendulum Real-Time displacement and angle signals 

when the set point is 0 m 
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Figure8.40:  Inverted pendulum Real-Time cart velocity and angular velocity signals  

when the set point is 0 m 
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Real-Time Inverted Pendulum output signal (FBL)
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Figure 8.41:  Inverted pendulum Real-Time output signal  

when the set point is 0 m 
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Figure 8.42:  Inverted pendulum Real-Time nonlinear control signal  

when the set point is 0 m 
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Figure 8.43:  Inverted pendulum Real-Time linear control signal  

when the set point is 0 m 
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Real-Time Inverted Pendulum error signal e (FBL)
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Figure 8.44:  Inverted pendulum Real-Time error signal  

when the set point is 0 m 
 
 
 

For the set point of 0.1 m, the Real-Time implementation results are presented in Figure 

8.45 to Figure 8.50. Similarly, from these figures, it can be seen, the inverted pendulum 

is kept at the position of 0.1 m. There are overshoot at the rise stage. The cart position 

signal x is with oscillation of the amplitude of about ±0.03 m. The angle signal θ is limited 

in the range of ±0.05 Radian which is approximate 3°. The output signal y is in the range 

of between 0.08 m and 1.12 m. This Real-Time implementation results show that the 

inverted pendulum is well controlled. The developed control algorithms are suitable for 

controlling the inverted pendulum for different set point and initial conditions.  
 
 
 

Real-Time Inverted Pendulum displacement and angle 
states (FBL)

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0 0.5 1 1.5 2 2.5 3 3.5

time (s)

x-
(m

); 
th

et
a-

(r
ad

ia
n)

4

x theta

 
Figure 8.45:  Inverted Pendulum Real-Time displacement and angle signals 

when set point is 0.1 m 
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Real-Time Inverted Pendulunm velocity and angular velocity 
states (FBL)
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Figure 8.46:  Inverted pendulum Real-Time velocity and angular velocity signals  

when the set point is 0.1 m 
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Figure 8.47:  Inverted pendulum Real-Time output signal  

when the set point is 0.1 m 
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Figure 8.48:  Inverted pendulum Real-Time nonlinear control signal  

when the set point is 0.1 m 
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Real-Time Inverted Pendulum linear control signal v (FBL)
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Figure 8.49:  Inverted pendulum Real-Time linear control signal  

when the set point is 0.1 m 
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Figure 8.50:  Inverted pendulum Real-Time error signal 

when the set point is 0.1 m 
 
 
 

Between Figure 8.51 and Figure 8.62, the feedback linearization method is applied to 

control the overhead crane in Real-Time by using the I/O DAQ device with signal 

conditioning and PC for different output set points 0 m and 0.1m. The very similar 

Simulink block diagram is used as previous one used for controlling of the inverted 

pendulum as shown in Figure 8.38. The necessary change is done for the parameters in 

the linear control and the nonlinear control blocks. A new associated m-file called 

“FBL_OC.m” is used to generate the necessary parameters. It is give in Appendix A. 8. 

From the Figure 8.51 to 8.62, it can be seen that under the help of the developed 

controller the overhead crane goes to the equilibrium point in a very short period of time. 

For the different set points, the controller performs well. The control tasks are completed 

according to the specifications.  
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Figure 8.51:  Overhead Crane Real-Time displacement and angle signals 

when set point is 0 m 
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Figure 8.52:  Overhead Crane Real-Time velocity and angular velocity signals  

when the set point is 0 m 
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Figure 8.53:  Overhead Crane Real-Time output signal  

when the set point is 0 m 
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Real-Time Overhead Crane nonlinear control signal (FBL)
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Figure 8.54:  Overhead Crane Real-Time nonlinear control signal  

when the set point is 0 m 
 

Real-Time Overhead Crane linear control signal v (FBL)

-1000

-800

-600

-400

-200

0

200

400

600

800

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

time (s)

v-
(V

)

 
Figure 8.55:  Overhead Crane Real-Time linear control signal  

when the set point is 0 m 
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Figure 8.56:  Overhead Crane Real-Time error signal 

when the set point is 0 m 

254 



Real-Time Overhead Crane displacement and angle states 
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Figure 8.57:  Overhead Crane Real-Time displacement and angle signals 

when set point is 0.1 m 
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Figure 8.58:  Overhead Crane Real-Time velocity and angular velocity signals  

when the set point is 0.1 m 
 

Real-Time Overhead Crane output signal (FBL)

-0.05

0

0.05

0.1

0.15

0.2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

time (s)

y-
(m

)

 
Figure 8.59:  Overhead Crane Real-Time output signal  

when the set point is 0.1 m 
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Real-Time Overhead Crane nonlinear control signal (FBL)
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Figure 8.60:  Overhead Crane Real-Time nonlinear control signal  

when the set point is 0.1 m 
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Figure 8.61:  Overhead Crane Real-Time linear control signal  

when the set point is 0.1 m 
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Figure 8.62:  Overhead Crane Real-Time error signal 

when the set point is 0.1 m 
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8.5.1.3 Real-Time implementation results comparison  
On the I/O DAQ device with signal conditioning and PC Real-Time implementation 

platform, both Lyapunov stability based MRC and feedback linearization method are 

deployed. It can be seen that when both methods are applied to control the inverted 

pendulum, the Lyapunov stability based MRC method has smaller overshot but larger 

oscillation amplitude. The feedback linearization method shows better steady state 

behaviour, such as: smaller oscillation amplitude for both position signal x and the angle 

signal θ. This method also shows a shorter rising time. When both methods are applied 

to the overhead crane, the Lyapunov stability based MRC method behaves much 

smoother than the feedback linearization method. Both methods take approximately the 

same time to settle down the overhead crane.  

 

8.5.2 Real-Time implementation on the CompactRIO Real-Time implementation platform 
The CompactRIO is the final Real-Time implementation platform. The CompactRIO 

realizes the concepts of the reconfigurable controller, associated with the pendulum 

reconfigurable plant. The lab-scale reconfigurable system is presented. In this project, 

both the Lyapunov stability based MRC control and the feedback linearization theory 

control simulation diagrams are developed in LabVIEW as well. Based on the LabVIEW 

simulation diagrams, the Real-Time implementation LabVIEW program is developed and 

implemented by using NI CompactRIO. In this section, the Real-Time implementation 

LabVIEW programs and the corresponding results are presented and analysed.  

 

The reconfigurable control and acquisition system contain four major components, 

including: 

 RIO FPGA core application for input, output, communication and control 
 Time-critical loop for floating-point control, signal processing, analysis, and point-by-

point decision making 
 Normal-priority loop for embedded data logging, remote panel Web interface, and 

Ethernet/serial communication  
 Networked host PC for remote graphical user interface, historical data logging, and 

postprocessing  
 

Referring to this project, the reconfigurable control and acquisition system are configured 

in the following way, Figure 8.63: 

 RIO FPGA core is configurable to read and write from the input-output ports only. 
The benefit of such configuration is the HOST VI and the FPGA VI are separated. 
FPGA VI specifies the input-output ports that are used in the project. The control 
algorithms are deployed in the HOST VI. Each time of changing the control 
algorithms code, only the HOST VI is downloaded to the CompactRIO, but the FPGA 
VI does not need be compiled again. This kind of the configuration is meaningful 
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because normally compilation a FPGA VI takes more than 10 minutes. During the 
compilation time the LabVIEW programs are locked, no software development can 
be done. In this configuration, the system development time is saved.  

 The signals are taken from the system and the data are logged into MS-Excel 
 One laptop is used as the host PC, the Real-Time signal can be monitored. It is also 

used to download the HOST VI to the CompactRIO 
 
 
 

Host PC 

 
Figure 8.63:  Structure of the reconfigurable control and acquisition system 

 
 
 

8.5.2.1 LabVIEW based subsystem for Simulation and Real-Time implementation 
There are some basic subsystems built in LabVIEW according to the developed 

Matlab/Simulink block diagrams. Based on these subsystems, the completed LabVIEW 

simulation diagrams and the LabVIEW and CompactRIO based Real-Time 

implementations platform are constructed. The basic subsystems for the Lyapunov 

stability based MRC includes the linear controller, linear model, nonlinear controller and 

the nonlinear model. The subsystems built for the feedback linearization theory are the 

linear controller, nonlinear controller and the nonlinear models. These subsystems are 

different for the inverted pendulum and the overhead crane by means of the parameters 

and coefficients. But they have the same structures. In the following figures, these 

LabVIEW diagrams are presented. The I/O structure diagram and the shared FPGA VI 

are presented as well.  
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Normal priority Network
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Figure 8.64:  Linear controller diagram for both the Lyapunov stability based MRC and the 

feedback linearization approach 
 
 
 

 
Figure 8.65:  Linear model of the inverted pendulum 
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Figure 8.66:  Nonlinear controller of the Lyapunov stability based MRC 
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Figure 8.67:  Nonlinear model of the inverted pendulum 
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Figure 8.68:  Nonlinear controller of the feedback linearization approach 
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In the above diagram, Figure 8.69, the input-output structure is set up. The HOST VI is 

 

developed based on this diagram. This VI acquires the output signal y, states signal x, θ 

and sends the control signal u to the actual plant. But there is no control algorithm 

between the inputs and the output. As shown in Figure 8.69, between point A and B, the 

proper control algorithm should be inserted. In this project, the design controllers are 

based on the Lyapunov stability and feedback linearization theory. The diagram below 

shows how the FPGA VI is configured. This FPGA VI is only used for data acquiring and 

to send control signal.  

 
 

 
Figure 8.70:  The shared FPGA VI 

Based on above presented subsystems, the LabVIEW Real-Time implementation 

8.5.2.2 yapunov stability based MRC Real-Time implementation 
on LabVIEW diagrams 

e 

model are contained. 

 
 
 

diagrams and their Real-Time implementation results are presented in the following 

sections. 

 

L
8.5.2.2.1 Lyapunov stability based MRC Real-Time implementati

In the Figure 8.71, the complete Lyapunov stability based MRC Real-Tim

implementation LabVIEW diagram for the inverted pendulum is shown. In this diagram, 

the FPGA I/O, the linear control, linear model, nonlinear controller and the nonlinear 
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The same LabVIEW diagram is used to control the overhead crane

changing the corresponding parameters. The Real-Time implemen

presented in the next section.  

 

Lyapunov stability based MRC Real-Time implementation results 
On the CompactRIO Real-Time platform, the very similar resu

I/O DAQ with signal conditioning and PC platform. The received results are prese

below.  
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Figure 8.72:  Inverted Pendulum Real-Time displacement and angle stat

when set point is 0 m 
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Figure 8.73:  Inverted pendulum Real-Time velocity and angular velocity state signals  

when the set point is 0 m 
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Real-Time Inverted Pendulum output signal (LDM)
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Figure 8.74:  Inverted pendulum Real-Time output signal  

when the set point is 0 m 
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Figure 8.75:  Inverted pendulum Real-Time control signal  
when the set point is 0 m 
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Figure 8.76:  Inverted pendulum Real-Time error signal  
when the set point is 0 m 
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Real-Time Inverted Pendulum signal V-dot (LDM)
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Figure8.77:   derivative  Inverted pendulum Real-Time signal of Lyapunov function

when the set point is 0 m 
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Figure 8.78 te signals :  Inverted Pendulum Real-Time displacement and angle sta

when set point is 0.1 m 
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Figure 8.79:  In  state signals  

w
verted pendulum Real-Time velocity and angular velocity

hen the set point is 0.1 m 
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Real-Time Inverted Pendulum output signal (LDM)
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Figure 8.80:  Inverted pendulum Real-Time output signal  

when the set point is 0.1 m 
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Figure 8.81:  Inverted pendulum Real-Time control signal  

w  hen the set point is 0.1 m
 

Real-Time Inverted Pendulum error signal e (LDM)

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

0 0.5 1 1.5 2 2.5 3 3.5 4

time (s)

e-
(m

)

 
Figure 8.82:  Inverted pendulum Real-Time error signal  

when the set point is 0.1 m 
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Real-Time Inverted Pendulum signal V-dot (LDM)
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Figure 8.85:  derivative   Inverted pendulum Real-Time signal of Lyapunov function

when the set point is 0.1 m 
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Figure 8.8 nals 4:  Overhead Crane Real-Time displacement and angle state sig

when set point is 0 m 
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Figure 8.85:  O tate signals  verhead Crane Real-Time velocity and angular velocity s

when the set point is 0 m 
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Real-Time Overhead Crane output signal y (LDM)

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

time (s)

y-
(m

)

 
Figure 8.86:  Overhead Crane Real-Time output signal  

when the set point is 0 m 
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Figure 8.87:  Overhead Crane Real-Time control signal  

w  hen the set point is 0 m
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Figure 8.88:  Overhead Crane Real-Time error signal  

when the set point is 0 m 
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Real-Time Overhead Crane signal V_dot (LDM)
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Figure 8.89:  derivative   Overhead Crane Real-Time signal of Lyapunov function

when the set point is 0 m 
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Figure 8.90. te signals :  Overhead Crane Real-Time displacement and angle sta

when set point is 0.1 m 
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Figure 8.91:  O  state signals  

w
verhead Crane Real-Time velocity and angular velocity

hen the set point is 0.1 m 
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Real-Time Overhead Crane output signal y (LDM)
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Figure 8.92:  Overhead Crane Real-Time output signal  

when the set point is 0.1 m 
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Figure 8.93:  Overhead Crane Real-Time control signal  

w  hen the set point is 0.1 m
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Figure 8.94:  Overhead Crane Real-Time error signal  

when the set point is 0.1 m 
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Real-Time Overhead Crane signal V_dot (LDM)
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Figure 8.95:  derivative  

 
 

8.5.2.3 Feedback linearization method Real-Time implementation 
8.5.2.3.1 Feedback linearization method Real-Time implementation LabVIEW block 

diagrams 
Similarly, based on the subsystems from Figure 8.64 to Figure 8.70, the feedback 

linearization theory Real-Time implementation LabVIEW diagram is constructed as 

Shown in Figure 8.96.  

 

 

 Overhead Crane Real-Time signal of Lyapunov function
when the set point is 0.1 m 
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8.5.2.3.2 
 theory method 

control on th
 
 
 

Feedback linearization method Real-Time implementation results 
The Real-Time implementation results of the feedback linearization

e CompactRIO are presented.  
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Figure 8.97:  Inverted Pendulum Real-Time displacement and angle state signals 

when set point is 0 m 
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Figure8.98:  Inverted pendulum Real-Time velocity and angular velocity state signals  

when the set point is 0 m 
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Real-Time Inverted Pendulum output signal (FBL)
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Figure 8.99:  Inverted pendulum Real-Time output signal  

when the set point is 0 m 
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Figure 8.100:  Inverted pendulum Real-Time nonlinear control signal  

when the set point is 0 m 
 

Real-Time Inverted Pendulum linear control signal v (FBL)

-1200
-1000
-800

-600
-400
-200

0
200

400
600
800

0 0.5 1 1.5 2 2.5 3 3.5 4

time (s)

v-
(V

)

 
Figure 8.101:  Inverted pendulum Real-Time linear control signal  

when the set point is 0 m 

277 



Real-Time Inverted Pendulum error signal e (FBL)
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Figure 8.102:  Inverted pendulum Real-Time error signal  

when the set point is 0 m 
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Figure nals  8.103:  Inverted Pendulum Real-Time displacement and angle state sig

when set point is 0.1 m 
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Figure 8.10 e signals  

w
4:  Inverted pendulum Real-Time velocity and angular velocity stat

hen the set point is 0.1 m 
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Real-Time Inverted Pendulum output signal (FBL)
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F

w
igure 8.105:  Inverted pendulum Real-Time output signal  

hen the set point is 0.1 m 
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Figure 8.106:  Inverted pendulum Real-Time nonlinear control signal  

w  hen the set point is 0.1 m
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Figure 8.107:  Inverted pendulum Real-Time linear control signal  

when the set point is 0.1 m 
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Real-Time Inverted Pendulum error signal e (FBL)
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Figure 8.108:  Inverted pendulum Real-Time error signal 

when the set point is 0.1 m 
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Figur als e 8.109:  Overhead Crane Real-Time displacement and angle state sign

when set point is 0 m 
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Figure 8.1  signals  10:  Overhead Crane Real-Time velocity and angular velocity state

when the set point is 0 m 
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Real-Time Overhead Crane output signal (FBL)
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Figure 8.111:  Overhead Crane Real-Time output signal  

when the set point is 0 m 
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Figure 8.112:  Overhead Crane Real-Time nonlinear control signal  

w  hen the set point is 0 m
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Figure 8.113:  Overhead Crane Real-Time linear control signal  

when the set point is 0 m 
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Real-Time Overhead Crane error signal e (FBL)
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Figure 8.114:  Overhead Crane Real-Time error signal 

when the set point is 0 m 
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Figure 8.115:  Overhead Crane Real-Time displacement and angle state signals 

when set point is 0.1 m 
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Real-Time Overhead Crane output signal (FBL)
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igure 8.117:  Overhead Crane Real-Time output signal 

hen the set point is 0.1 m 
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Figure 8.118:  Overhead Crane Real-Time nonlinear control signal  

w  hen the set point is 0.1 m
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Figure 8.119:  Overhead Crane Real-Time linear control signal  

when the set point is 0.1 m 
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Real-Time Overhead Crane error signal e (FBL)
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Figure 8.120:  Overhead Crane Real-Time error signal 

when the set point is 0.1 m 
 
 
 

On the NI CompactRIO Real-Time implementation platform, similar results are received 

as previously acquired data from the I/O DAQ device with signal conditioning and PC 

platform. The results acquired from the CompactRIO platform have much less noises. 

This is because of the structures of CompactRIO Real-Implementation platform. On the 

CompactRIO platform, the data are processed by the CompactRIO Real-Time processor 

according to the control algorithm which already is downloaded into the CompactRIO 

FPGA module. But for the I/O DAQ device with signal conditioning and PC platform, the 

signal acquired from the plant needs to be sent to the signal conditioning first, from the 

signal processing I/O units to the I/O DAQ device, then the data can be processed by 

the PC proc buses will 

absorb noises. 

 

8.6 Conclusion  
In this chapter, the Real-Time implementation platforms used in this project are 

introduced. There are two platforms including the I/O DAQ device with signal 

conditioning and PC platform and the NI CompactRIO platform. Referring to both Real-

Time implementation platforms, both of the Lyapunov stability based MRC and the 

feedback linearization approach are implemented. The Real-Time implementation 

results are acquired, saved and plotted in MS-Excel.  

 

Comparing the received results from these two Real-Time implementation platforms, they 

are similar. Bu  are different 

essor. Each time the data pass through the different cables and 

t from the system ese two platforms structure point of view, th
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from each other. In this project, the concept of the RMSs is presented. For the I/O DAQ 

device with signal conditioning and PC platform is mainly used for the prototyping in the 

laboratory. The platform is not suitable for the industrial environment. The CompactRIO 

platform is more reliable and it is built according to the industrial standards. Furthermore, 

the CompactRIO is a real reconfigurable plant in terms of rapidly design custom 

hardware; take advantage of customizable circuitry for IOCC and use off-the-shelf RIO 

measurement hardware for wide variety of signals. Till now, the project is successfully 

completed. In next chapter, the project is reviewed and concluded.  
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CHAPTER NINE 
CONCLUSION AND FUTURE DIRECTION OF RESEARCH 

 
9.1 Deliverables 

The RMSs are become more and more important in the industry. They show the further 

development direction of the industry as a whole. For this project, a lab scale 

reconfigurable plant is used to represent the RMS. Based on the statement of the 

problem, the project aim and objectives are to develop the methodology for design and 

implementation of the reconfigurable nonlinear control systems in Real-Time based on 

embedded FPGA technology. According to the aim and objectives of the project, the 

following work has been done: 

 

9.1.1 Mathematical model development and simulation  
 The nonlinear mathematical model of the inverted pendulum is developed 
 The nonlinear mathematical model of the inverted pendulum is simulated in 

Matlab/Simulink software environment  
 The nonlinear mathematical model of the overhead crane is developed 
 The nonlinear mathematical model of the overhead crane is simulated in 

Matlab/Simulink software environment  
 The mathematical model of the trainer servo model is developed 
 The complete mathematical model of the inverted pendulum incorporating the servo 

model is developed 
 The complete mathematical model of the overhead crane incorporating the servo 

model is developed  
 The linear mathematical model of the inverted pendulum is developed 
 The linear mathematical model of the overhead crane is developed 

 

9.1.2 Linear controller design and system simulation 
 The linear controller for the inverted pendulum is designed based on the pole-

placement method  
 The linear controller for the overhead crane is designed based on the pole-placement 

method  
 The closed-loop system which consists of the inverted pendulum and the pole-

placement controller is simulated in Matlab/Simulink software environment for the 
output set points of 0 m, 0.05 m and 0.1 m 

 The closed-loop system which consists of the overhead crane and the pole-
placement controller is simulated in Matlab/Simulink software environment for the 
output set points of 0 m, 0.05 m and 0.1 m 

 The linear controller for the inverted pendulum is designed based on the linear 
quadratic optimal control method 

 The linear controller for the overhead crane is designed based on the linear quadratic 
optimal control method 

 The closed-loop system which consists of the inverted pendulum and the linear 
quadratic controller is simulated in Matlab/Simulink software environment for the 
output set points of 0 m, 0.05 m and 0.1 m 
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 The closed-loop system which consists of the overhead crane and the linear 
quadratic controller is simulated in Matlab/Simulink software environment for set 
points of 0 m, 0.05 m and 0.1 m 

 The simulation results are analyses and compared  
 

9.1.3 Nonlinear controller design and closed-loop system simulation 
9.1.3.1 Lyapunov stability based MRC controller design and system simulation  

 The Lyapunov stability based MRC controller is designed for the inverted pendulum 
 The closed-loop system which consists of the Lyapunov stability based MRC 

controller and the inverted pendulum is simulated in Matlab/Simulink for different 
output set points including 0 m, 0.05 m and 0.1 m 

 The simulation results are acquired and plotted in MS-Excel for the inverted 
pendulum closed-loop behaviour for the output set points of 0 m, 0.05 m and 0.1 m 

 The Lyapunov stability based MRC controller is designed for the overhead crane  
 The closed-loop system which consists of the Lyapunov stability based MRC 

controller and the overhead crane is simulated in Matlab/Simulink for different output 
set points including 0 m, 0.05 m and 0.1 m 

 The simulation data are acquired and plotted in MS-Excel for the overhead crane 
closed-loop behaviour for the output set points of 0 m, 0.05 m and 0.1 m 

 The simulation results are analyses and compared  
 

9.1.3.2 Feedback linearization method controller design and system simulation 
 The feedback linearization method based controller is designed for the inverted 

pendulum  
 The closed-loop system which consists of the feedback linearization method based 

controller and the inverted pendulum is simulated in Matlab/Simulink for different 
output set points including 0 m, 0.05 m and 0.1 m 

 The simulation data are acquired and plotted in MS-Excel for the inverted pendulum 
system closed-loop behaviour 

 The feedback linearization method based controller is designed for the overhead 
crane  

 The closed-loop system which consists of the feedback linearization method based 
controller and the overhead crane is simulated in Matlab/Simulink for different output 
set points including 0 m, 0.05 m and 0.1 m 

 The simulation data are acquired and plotted in MS-Excel for the overhead crane 
system closed-loop behaviour 

 The simulation results are analyses and compared  
 

9.1.4 Real-Time implementation  
9.1.4.1 Real-Time implementation on I/O DAQ device, signal conditioning and PC platform 
9.1.4.1.1 Real-Time Lyapunov stability based MRC control 

 The Real-Time Simulink block diagram for the inverted pendulum is developed in 
Matlab/Simulink 

 The Real-Time Simulink block diagram for the overhead crane is developed in 
Matlab/Simulink 

 Real-Time implementation of the inverted pendulum control by using the Lyapunov 
stability based MRC controller of the set points of 0 m and 0.1 m is done 

 The Real-Time implementation results are acquired and plotted in MS-Excel for the 
inverted pendulum system closed-loop behaviour  
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 Real-Time implementation for the overhead crane control by using the Lyapunov 
stability based MRC controller for the set points of 0 m and 0.1 m is done 

 The Real-Time implementation results are acquired and plotted in MS-Excel for the 
overhead crane system closed-loop behaviour  

 The Real-Time implementation results are analyses and compared  
 

9.1.4.1.2 Real-Time feedback linearization based controller 
 The Real-Time Simulink block diagram for the inverted pendulum is developed in 

Matlab/Simulink 
 The Real-Time Simulink block diagram for the overhead crane is developed in 

Matlab/Simulink 
 Real-Time implementation of the inverted pendulum control by using the feedback 

linearization based controller of the set points of 0 m and 0.1 m is done 
 The Real-Time implementation results are acquired and plotted in MS-Excel for the 

inverted pendulum system closed-loop behaviour  
 Real-Time implementation for the overhead crane control by using the feedback 

linearization based controller for the set points of 0 m and 0.1 m is done 
 The Real-Time implementation results are acquired and plotted in MS-Excel for the 

overhead crane system closed-loop behaviour  
 The Real-Time implementation results are analyses and compared  

 

9.1.4.2 Real-Time implementation on the CompactRIO platform  
9.1.4.2.1 Real-Time Lyapunov stability based MRC controller 

 The Real-Time implementation host VI and FPGA VI are developed in LabVIEW by 
using the Lyapunov stability based MRC method 

 Real-Time implementation for the inverted pendulum by using the Lyapunov stability 
based MRC controller for the output set points of 0 m and 0.1 m on the CompactRIO 
Real-Time implementation platform is done 

 Real-Time implementation for the overhead crane by using the Lyapunov stability 
based MRC controller for the set points of 0 m and 0.1 m on the CompactRIO Real-
Time implementation platform 

 The Real-Time implementation results are acquired and plotted in MS-Excel for both 
of the inverted pendulum and the overhead crane  

 

9.1.4.2.1 Real-Time feedback linearization based controller 
 The Real-Time implementation host VI and FPGA VI is developed in LabVIEW by 

using the feedback linearization based method 
 Real-Time implementation for the inverted pendulum by using the feedback 

linearization method based controller for the output set points of 0 m and 0.1 m on 
the CompactRIO Real-Time implementation platform is done 

 Real-Time implementation for the overhead crane by using the feedback linearization 
method based controller for the output set points of 0 m and 0.1 m on the 
CompactRIO Real-Time implementation platform is done 

 The Real-Time implementation results are acquired and plotted in MS-Excel for both 
of the inverted pendulum and the overhead crane  

 The Real-Time implementation results on the CompactRIO platform are analyses and 
compared  
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9.1.5 Software programs for simulation and Real-Time Implementation 
The methods for design described above are examined through simulation and Real-

Time implementation using two software environments – Matlab and LabVIEW 

CompactRIO. Separate software programs are developed for every of the deliverables 

from 9.1.1 till 9.1.4. The developed software for simulation and Real-Time 

implementation are grouped in Table 9.1 and Table 9.2 respectively.  
 

Table 9.1: Table of programs used for simulation 

Simulation 
Model PP OP LDM FBL  
m-file Simulink m-file Simulink m-file Simulink m-file Simulink m-file Simulink 

IP model_test
.m 

model_test
.mdl 

PP_OP_IP
.m 

Linear_PP
_OP.mdl 

PP_OP_IP
.m 

Linear_PP
_OP.mdl LDM_IP.m LDM_IP.m

dl 

Zero_dyn.
m 
FBL_IP.m 

FBL_IP.m
dl 

OC model_test
.m 

model_test
.mdl 

PP_OP_O
C.m 

Linear_PP
_OP.mdl 

PP_OP_O
C.m 

Linear_PP
_OP.mdl 

LDM_OC.
m 

LDM_OC.
mdl 

Zero_dyn.
m 
FBL_OC.
m 

FBL_IP.m
dl 

 

Table 9.2: Table of programs used for Real-Time implementation  

Real-Time implementation 
LDM FBL 

 

m-file Simulink LabVIEW m-file Simulink LabVIEW 

IP LDM_IP.m RT_LDM_IP.mdl LDM_IP_host.VI 
FPGA.VI FBL_IP.m RT_FBL_IP.mdl FBL_IP_host.VI 

FPGA.VI 

OC LDM_OC.m RT_LDM_OC.mdl LDM_OC_host.VI 
FPGA.VI FBL_OC.m RT_FBL_OC.mdl LDM_OC_host.VI 

FPGA.VI 
 
Note:  
PP – pole-placement method OP – Optimal control method 
LDM – Lyapunov Direct Method FBL – Feedback Linearization method  
IP – Inverted Pendulum OC – Overhead Crane 
 
 
For the entire project, based on the above deliverables a methodology for design and 

implement of the reconfigurable nonlinear control systems in Real-Time based on 

embedded FPGA technology is developed. The developed methodology can be used to 

guide the researcher and students into the field of the RMSs research and 

implementation. 

 

For the detailed research outcomes, the complete linear and nonlinear mathematical 

models of the inverted pendulum and the overhead crane are derived. These derived 

mathematical models are complete and accurate. The linear and nonlinear controllers 

are derived based on different control strategies including the pole-placement method, 

linear quadratic method, Lyapunov stability based MRC method and the feedback 
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linearization based method are developed. The simulation results show that the above 

mentioned controllers are designed successfully.  

 

The Real-Time implementation results show that the project aim and objectives are 

achieved. On the DAQ with signal conditioning and PC platform, the software and 

hardware can be configured in the laboratory for prototype verification, but it is not 

suitable for the industry applications. On the CompactRIO platform, the different control 

algorithms can be deployed easily by simply download the new control algorithm to the 

CompactRIO. The CompactRIO is designed and manufactured according to the industry 

standards. It is perfect for the industry applications of RMSs. 

 

9.2 Applications 
The control of the inverted pendulum and the overhead crane are meaningful in the real 

world. The applications include in the military, outer space, industrial and education field.  

 

9.2.1 Applications of the inverted pendulum 
Military and outer space application: The inverted pendulum presents the same concept 

of how to control the rocket or the missile to follow the desired trajectories. The inverted 

pendulum is balanced by moving the cart, similarly by controlling the thrust angle at the 

bottom of the rocket, it does not fall over. 

 

Education application: The control of the inverted pendulum is a classical problem in 

dynamics and control fields. It attracts the interests of the students towards the fields of 

control. The inverted pendulum is also a benchmark for testing control algorithms. The 

developed control algorithms in this project can be used for demonstration purpose or as 

examples for the students.  

 

9.2.2 Applications of the overhead crane  
The overhead cranes are well used in the workshops and harbours. Mainly they are used 

to move heavy loads. The essential idea is to suppress the oscillations while the goods 

are moving rapidly from one location to the other by using suitable controller.  

 

9.3 Further work  
For the further work, different control strategies are going to be implemented, for 

example: the fuzzy logic control, the sliding mode control, the backstepping method 
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control and so on. Nonlinear control is one of the most important research areas. Based 

on the study of the existing control techniques, novel control strategy can be carried out.  

 

9.4 Publications 
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Control of an Inverted Pendulum”. Proceedings of Africon 2007; CD-ROM; Ref. No. 

1-4244-0987-X/07/$25.00 ©2007 IEEE. IEEE Africon 2007 international conference, 
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2. Han. Y., Tzoneva, R. 2008. “Reconfigurable Plant Control by Using Lyapunov 

Stability Theory based Model Reference Control Design”, submitted to SAIEE 
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Linearization Method with Optimal Control Method”, submitted to SAIEE Research 
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APPENDIX A 
 

THE DEVELOPED MATLAB M-FILES 
 

The m-files used in the thesis are presented in Appendix A. These m-files are associated 

with corresponding Simulink files. They are used to generate, calculate and provide the 

necessary parameter and coefficients for the Simulink files to run. The Simulink files 

include the pendulum mathematical models, the closed-loop system and the Real-Time 

implementation system.  

 

A. 1: MATLAB script file – model_test.m 
 
% M-file: model_test 
%========================    M-FILE DESCRIPTION    ===================== 
% This m-file is used to provide the parameters for the Simulink file: 
% model_test.  
% The Simulink file: model_test contains the linear and nonlinear  
% mathematical models of the inverted pendulum and the overhead crane 
% Since the inverted pendulum and the overhead crane share the same 
% parameters, this m-file is used for testing both systems  .
% In this m-file, the necessary parameters are specified.  
% For the linear model, A-the state matrix, B-the input matrix, C-the 
% output matrix, D-the feedforward matrix are specified in the m-file.  
% By using A, B, C, D the state space model of the inverted pendulum and 
% the overhead crane are built 
% For the nonlinear model x_dot=f(x)+g(x)u, the functions f(x) and g(x) 
% are built in the Simulink file first as subsystems. The nonlinear  
% model of the inverted pendulum and the overhead crane are built in  
% Simulink by using these subsystems. 
 
clear                   %Clear the workspace 
clc                     %Clear the command window 
 
J = 0.0013;             %Moment of inertia of the pendulum and rod 
m = 0.285;              %Mass of the pendulum and the rod 
M = 0.165;              %Mass of the cart 
l = 0.22 ;              %Distance between the pivot and the pendulum and  
                        %rod's centre of gravity 
b = 0.1;                %Friction between the cart wheel and the surface 
bt = 0.01;              %Friction at the pivot 
g = 9.8;                %The gravity acceleration  
 
% The inverted pendulum linearized model in the state-space form 
 
sigma_l = (M+m)*(J+m*l^2)-m^2*l^2 % common denominator 
 
% A_l, B_l, C_l and D_l represent the linear model 
 
 
 
%  
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A_l_ip = [ 0            1                   0                   0; 
        
        0    -(J+m*l^2)*b/sigma_l   -m^2*l^2*g/sigma_l    m*l*bt/sigma_l; 
         
        0            0                      0                   1; 
         
        0  (m*l*b)/sigma_l   ((M+m)*m*l*g)/sigma_l  (-(M+m)*bt)/sigma_l; 
         
       ] 
  
B_l_ip = [0; (J+m*l^2)/sigma_l; 0 ; -(l*m)/sigma_l] 
  
C_l_ip = [1 0 l 0] 
  
D_l_ip = 0 
  
% Checking the controllability of the inverted pendulum 
C_ip = ctrb(A_l_ip,B_l_ip) 
 
% Checking the rank of the controllability matirx  
R_ip = rank(C_ip) 
  
% Linearized model of the overhead crane model in the state space form 
  
% A_l_oc, B_l_oc, C_l_oc and D_l_oc represent the linear model of the  
% overhead crane   
 
A_l_oc = [ 0            1                      0                   0; 
         
        0    -(J+m*l^2)*b/sigma_l    m^2*l^2*g/sigma_l    m*l*bt/sigma_l; 
         
        0            0                      0                   1; 
         
        0   (m*l*b)/sigma_l  -((M+m)*m*l*g)/sigma_l  (-(M+m)*bt)/sigma_l; 
         
       ] 
  
B_l_oc = [0; (J+m*l^2)/sigma_l; 0 ; -(l*m)/sigma_l] 
  
C_l_oc = [1 0 l 0] 
  
D_l_oc = 0 
  
% Checking the controllability of the inverted pendulum 
C_oc = ctrb(A_l_oc,B_l_oc) 
 
% Checking the rank of the controllability matirx  
R_oc = rank(C_oc) 
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A. 2: MATLAB script file – PP_OP_IP.m 
 
% m-file: PP_OP_IP.m 
%========================    M-FILE DESCRIPTION    ===================== 
% This m-file specifies and calculates all the parameters that are  
% used for the linear control of the inverted pendulum (IP) by using  
% the pole-placement method (PP) and the optimal control method (OP) 
%                            
clc 
clear 
%=====================     PARAMETER DEFINITION    ===================== 
M = 0.165                % Mass of the cart; Unit is Kg. 
m = 0.285                % Mass of the pendulum-bob and rod; Unit is Kg. 
m1 = 0.22                % Mass of the bob; Unit is Kg. 
m2 = 0.065               % Mass of the rod; Unit is Kg. 
L = 0.22       % Length of the center gravity to the pivot; Unit is m. 
r1 = 0.015               % Outside radius of the bob; Unit is m. 
r2 = 0.003               % Internal radius of the bob; Unit is m. 
J1 = (1/2)*m1*(r1^2+r2^2)% The bob moment of inertia; Unit is kg*m^2. 
J2 = (1/3)*m2*L^2        % The rod moment of inertia; Unit is kg*m^2. 
J = J1+J2                % Moment of inertia of the pendulum. 
B = 0.1                  % Friction of the cart; Unit is N/m/sec. 
BT = 0.01                % Friction of the rod; 
g = 9.8 
%====================================================================== 
  
  
%======================== Transfer Function =========================== 
%Transfer function G1(s)=X(s)/F(s); G2(s)=theta(s)/F(s) 
a0 = -m*L*g; 
a1 = BT; 
a2 = J+m*L^2; 
b0 = 0; 
b1 = B*m*L*g; 
b2 = B*BT-(M+m)*m*L*g; 
b3 = (M+m)*BT+(J+m*L^2)*B; 
b4 = (J+m*L^2)*(M+m)-L^2*m^2; 
c1 = -m*L; 
G1 = tf([a2 a1 a0], [b4 b3 b2 b1 b0])   % X(s)/F(S) 
G2 = tf([c1 0], [b4 b3 b2 b1])          % Theta(s)/F(s) 
% Polynomial division (simplify the equation).  
G11= deconv([b4 b3 b2 b1 b0], [a2 a1 a0]) 
G22= deconv([b4 b3 b2 b1 b0], [c1 0]) 
% Polynomail order reduce: 
balred(G1, 3) 
balred(G2, 2) 
  
subplot(4,1,1) 
rlocus (G1) 
title('root locus plot x transfer function without load') 
  
subplot(4,1,2) 
rlocus (G2) 
title('root locus plot theta transfer function without load') 
%====================================================================== 
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%=================== Linearized State-Space form ====================== 
% State vector identification: z=[x     x_dot   theta   theta_dot]'. 
%                                 z1     z2      z3         z4 
% For simplifing the state space representation, v1 & v2 are introduced: 
 
v1=(M+m)/[J*(M+m)+M*m*L^2]; 
v2=(J+m*L^2)/[J*(M+m)+M*m*L^2]; 
  
A = [ 0        1                  0                        0; 
      0      -B*v2    -[(m*L^2)*g*v2]/(J+L^2*m)   (m*L*BT*v2)/(J+L^2*m); 
      0        0                   0                        1; 
      0   (m*L*B*v1)/(m+M)     m*L*g*v1                 -BT*v1] 
  
B = [ 0; 
      v2; 
      0; 
-(L*m*v1)/(m+M)] 
  
C = [1 0 0 0; 
     0 0 1 0] 
  
D =[0; 
    0] 
%======================================================================= 
  
  
%========= Check the controllability matrix M of the system ============ 
M1 = [B A*B A^2*B A^3*B] 
rank(M1) 
%======================================================================= 
  
  
%=====================Poles of the Transfer Function==================== 
pt=eig(A) 
[num, den] = ss2tf(A, B, C, D) 
h1 = tf([num(1:1, 1:4)], [den]); 
h11=deconv([den], [num(1:1, 3:5)]) 
subplot(4,1,3) 
rlocus (h1) 
title('root locus plot x state space without load') 
h2 = tf([num(2:2, 1:4)], [den]); 
h22=deconv([den], [num(2:2, 3:3)]) 
subplot(4,1,4) 
rlocus (h2) 
title('root locus plot theta state space without load') 
%======================================================================= 
  
  
%======================== Pole Placement Method  ======================= 
% p is the desired poles 
p = [-18+2.685j -18-2.685j -25 -26] 
% computes a feedback gain matrix K that achieves the desired closed-
loop  
% pole locations p 
K = place(A,B,p) 
%======================================================================= 
phat = [-18+2.685j -18-2.685j -25 -26 -27] 
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Chat = [1 0 0 0] 
Ahat = [A zeros(4,1); -Chat 0] 
Bhat = [B;0] 
Khat = place(Ahat, Bhat, phat) 
  
%============================== Simulink =============================== 
% Vector for initial conditions  
z0=[0.3 0 0.2 0] 
sim('poleplace_con_noload.mdl'); 
sim('poleplace_con_noload_ref.mdl'); 
%======================================================================= 
  
  
%======================== Optimal Control Method ======================= 
% For no reference 
Q = C'*C 
Q1 = [50000     0     0     0; 
          0   500     0     0; 
          0     0   100     0; 
          0     0     0    10] 
R = 1 
Ko = lqr(A, B, Q1, R) 
  
% For reference 
Q2 = [500000        0       0       0           0; 
           0      500       0       0           0; 
           0        0   10000       0           0; 
           0        0       0     100           0; 
           0        0       0       0      500000] 
Kohat = lqr(Ahat, Bhat, Q2, R) 
%======================================================================= 
  
  
%=======================Optimal Control Simulation====================== 
sim('optimal_con_noload.mdl'); 
sim('optimal_con_noload_ref.mdl'); 
%======================================================================= 
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A. 3: MATLAB script file – PP_OP_OC.m 
 
% m-file: PP_OP_OC.m 
%========================    M-FILE DESCRIPTION    ===================== 
 
% This m-file specifies and calculates all the parameters that are  
% used for the linear control of the overhead crane (OC) by using  
% the pole-placement method (PP) and the optimal method (OP) 
clc 
clear 
%=====================     PARAMETER DEFINE    ======================== 
M = 0.165               % Mass of the cart; Unit is Kg. 
m = 0.285               % Mass of the pendulum-bob and rod; Unit is Kg. 
m1 = 0.22               % Mass of the bob; Unit is Kg. 
m2 = 0.065              % Mass of the rod; Unit is Kg. 
L = 0.22        % Lenght of the center gravity to the pivot; Unit is m. 
r1 = 0.015              % Outside radius of the bob; Unit is m. 
r2 = 0.003              % Internal radius of the bob; Unit is m. 
J1 = (1/2)*m1*(r1^2+r2^2)% The bob moment of inertia; Unit is kg*m^2. 
J2 = (1/3)*m2*L^2       % The rod moment of inertia; Unit is kg*m^2. 
J = J1+J2               % Moment of inertia of the pendulum. 
B = 0.1                 % Friction of the cart; Unit is N/m/sec. 
BT = 0.01               % Friction of the rod; 
g = 9.8 
%====================================================================== 
  
  
%======================== Transfer Function =========================== 
%Transfer function G1(s)=X(s)/F(s); G2(s)=theta(s)/F(s) 
a0 = -m*L*g; 
a1 = BT; 
a2 = J+m*L^2; 
b0 = 0; 
b1 = B*m*L*g; 
b2 = B*BT-(M+m)*m*L*g; 
b3 = (M+m)*BT+(J+m*L^2)*B; 
b4 = (J+m*L^2)*(M+m)-L^2*m^2; 
c1 = -m*L; 
G1 = tf([a2 a1 a0], [b4 b3 b2 b1 b0])   % X(s)/F(S) 
G2 = tf([c1 0], [b4 b3 b2 b1])          % Theta(s)/F(s) 
% Polynomial division (simplify the equation).  
G11= deconv([b4 b3 b2 b1 b0], [a2 a1 a0]) 
G22= deconv([b4 b3 b2 b1 b0], [c1 0]) 
% Polynomail order reduce: 
balred(G1, 3) 
balred(G2, 2) 
  
subplot(4,1,1) 
rlocus (G1) 
title('root locus plot x transfer function without load') 
  
subplot(4,1,2) 
rlocus (G2) 
title('root locus plot theta transfer function without load') 
%====================================================================== 
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%=================== Linearized State-Space form ====================== 
% State vector identification: z=[x     x_dot   theta   theta_dot]'. 
%                                 z1     z2      z3         z4 
% For simplifing the state space representation, v1 & v2 are introduced: 
 
v1=(M+m)/[J*(M+m)+M*m*L^2]; 
v2=(J+m*L^2)/[J*(M+m)+M*m*L^2]; 
  
A = [ 0       1                   0                        0; 
      0    -B*v2    +[(m*L^2)*g*v2]/(J+L^2*m)    (m*L*BT*v2)/(J+L^2*m); 
      0       0                   0                        1; 
      0  (m*L*B*v1)/(m+M)     -m*L*g*v1                 -BT*v1] 
  
B = [ 0; 
      v2; 
      0; 
-(L*m*v1)/(m+M)] 
  
C = [1 0 0 0; 
     0 0 1 0] 
  
D =[0; 
    0] 
%======================================================================= 
  
  
%========= Check the controllability matrix M of the system ============ 
M = [B A*B A^2*B A^3*B] 
rank(M) 
%======================================================================= 
  
  
%=====================Poles of the Transfer Function==================== 
pt=eig(A) 
[num, den] = ss2tf(A, B, C, D) 
h1 = tf([num(1:1, 1:4)], [den]); 
h11=deconv([den], [num(1:1, 3:5)]) 
subplot(4,1,3) 
rlocus (h1) 
title('root locus plot x state space without load') 
h2 = tf([num(2:2, 1:4)], [den]); 
h22=deconv([den], [num(2:2, 3:3)]) 
subplot(4,1,4) 
rlocus (h2) 
title('root locus plot theta state space without load') 
%======================================================================= 
  
  
%======================== Pole Placement Method  ======================= 
% p is the desired poles 
p = [-18+2.685j -18-2.685j -25 -26] 
% computes a feedback gain matrix K that achieves the desired closed-
loop  
% pole locations p 
K = place(A,B,p) 
%======================================================================= 
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phat = [-18+2.685j -18-2.685j -25 -26 -27] 
Chat = [1 0 0 0] 
Ahat = [A zeros(4,1); -Chat 0] 
Bhat = [B;0] 
Khat = place(Ahat, Bhat, phat) 
  
%============================== Simulink =============================== 
% Vector for initial conditions  
z0=[0.3 0 0.2 0] 
sim('poleplace_con_noload.mdl'); 
sim('poleplace_con_noload_ref.mdl'); 
%======================================================================= 
  
  
%======================== Optimal Control Method ======================= 
% For no reference 
Q = C'*C 
Q1 = [50000     0     0     0; 
          0   500     0     0; 
          0     0   100     0; 
          0     0     0    10] 
R = 1 
Ko = lqr(A, B, Q1, R) 
  
% For reference 
Q2 = [500000        0       0       0           0; 
           0      500       0       0           0; 
           0        0   10000       0           0; 
           0        0       0     100           0; 
           0        0       0       0      500000] 
Kohat = lqr(Ahat, Bhat, Q2, R) 
%======================================================================= 
  
  
%=======================Optimal Control Simulation====================== 
sim('optimal_con_noload.mdl'); 
sim('optimal_con_noload_ref.mdl'); 
%======================================================================= 
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A. 4: MATLAB script file – LDM_IP.m 
 
% m-file: LDM_IP 
%========================    M-FILE DESCRIPTION    ===================== 
 
% This m-file proved the parameters for Lyapunov direct method Simulink 
% Block diagrams 
% This is the m-file which is associated with the Simulink for the  
% inverted pendulum simulation with Model reference control method based 
% on the Lyapunov second method. 
% In this file, only one output is considered, which is y=x+l*theta 
  
%======================================================================= 
clear 
clc 
 
% Parameters statement 
n = 1.5; 
J = 0.0013;  
m = 0.285; 
M = 0.165; 
l = 0.22 ; 
b = 0.1; 
bt = 0.01; 
g = 9.8; 
  
M0 = m*l;          % coeff m*l 
M1 = M+m;          % coeff M+m 
M2 = M0*bt;        % coeff m*l*bt 
M3 = M0*b;         % coeff m*l*b 
M4 = M0^2;         % coeff m^2*L^2 
M5 = M1*bt;        % coeff (M+m)*bt 
M6 = M1*M0*g;      % coeff (M+m)*m*l*g 
M7 = M4*g;         % coeff m^2*L^2*g 
  
J1 = J + M0*l;     % coeff J+m*l^2 
J2 = J1 * b;       % coeff (J+m*l^2)*b 
J3 = J1 * M0;      % coeff (J+m*l^2)*m*l- 
  
%======================================================================= 
  
% The inverted pendulum linearized model in the state space form 
  
sigma_l = (M+m)*(J+m*l^2)-m^2*l^2 % common denominator 
  
 
% A_l, B_l, C_l and D_l represent the linear model 
%  
A_l = [ 0            1                      0                   0; 
         
        0    -(J+m*l^2)*b/sigma_l   -m^2*l^2*g/sigma_l   m*l*bt/sigma_l; 
         
        0            0                      0                   1; 
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        0    (m*l*b)/sigma_l  ((M+m)*m*l*g)/sigma_l  (-(M+m)*bt)/sigma_l; 
         
       ] 
  
B_l = [0; (J+m*l^2)/sigma_l; 0 ; -(l*m)/sigma_l] 
  
C_l = [1 0 l 0] 
  
D_l = 0 
  
% form the linear model 
sys_l = ss(A_l,B_l,C_l,D_l) 
  
Cl=ctrb(A_l,B_l) 
 
R_l = rank(Cl) 
  
%======================================================================= 
  
% Design the linear-quadratic (LQ) state-feedback regulator by using  
% function lqr for the linear model in order to find the closed-loop  
% poles Where Q is a positive-definite Hermitian or real symmetric  
% matrix and R is a positive definite Hermitian or real symmetric matrix.  
  
Q = [ 540    0     0    0   ; 
       0     8     0    0   ; 
       0     0    10    0   ; 
       0     0     0    1   ; 
     ] 
 
R=1; 
  
[K_l_hat, S_l_hat,E_l_hat]= lqr (A_l, B_l, Q, R) 
  
%======================================================================= 
  
% Form the desired model matrix A 
% 4 by 4 matrix 
  
A_d_n = A_l-B_l*K_l_hat  
  
%======================================================================= 
  
% Formation of a matrix A for closed-loop system 
A_d_hat = [A_d_n zeros(4,1); -C_l 0] 
  
% Calculation and formation of matrix B 
V1 = M1/(J*M1+M*m*l^2);% M1 = M+m;   coeff M+m 
V2 = J1/(J*M1+M*m*l^2);% J1 = J + M0*l;  coeff J+m*l^2 
                       % M0 = m*l;   coeff m*l 
b1s = V2 
b2s = M0*V1/M1 
B_d=[0; b1s; 0; -b2s] 
  
B_d_hat = [B_d ; 0] 

302 



  
% Formation of a matrix C D 
C_d = [1 0 l 0] % from C it can be seen that y = x + length*theta 
  
D_d = 0 
  
% Compute the controllability matrix 
Co=ctrb(A_d_hat,B_d_hat) 
% The system is controllable if Co has full rank n 
  
% Check the rank of Co in order to find if the system is controllable 
R_sys_d = rank(Co) % R_sys_d = 5 proves the system is controllable 
  
  
% Form the desired system 
sys_d = ss (A_d_n,B_d,C_d,D_d) 
  
% Compute controllability and observability grammians 
Wc = gram(sys_d,'c') 
Wo = gram(sys_d,'o') 
  
%======================================================================= 
  
% Design linear-quadratic (LQ) state-feedback regulator for state-space 
% systems Where Q is a positive-definite Hermitian or real symmetric  
% matrix and R is a positive definite Hermitian or real symmetric matrix.  
  
Q = [ 9000     0       0      0      0    ; 
       0     100       0      0      0    ; 
       0       0       1      0      0    ; 
       0       0       0     10      0    ; 
       0       0       0      0    700000 ] 
 
R=1; 
  
[Khat, Shat,Ehat]= lqr (A_d_hat, B_d_hat, Q, R) 
  
%======================================================================= 
  
% Lyapunov matrix 
  
% set the positive definite matrix Q1 
  
Q1 = [1 0 0 0; 0 1 0 0; 0 0 1 0; 0 0 0 1] 
  
% By using Q to calculate P, where -Q1 = A'P+PA 
  
syms P2 
  
A_transp=A_d_n'; 
  
P2 = -Q1 /(A_transp + A_d_n) 
  
% Check P2 whether positive definite  
  

303 



[R_P2,P_P2] = chol(P2) 
  
[R_Q1,P_Q1] = chol(Q1) 
  
% If X is not positive definite, an error message is printed 
  
% Both P2 and Q1 are positive definite 
  
%======================================================================= 
  
% Call for the simulation 
  
gain=1 
sp=0 
sim('Lyapunov_MRC_new_ip'); 
sim('Lyapunov_MRC_new_ip_new_V_dot'); 
  
% 
%======================================================================= 
%  
% Convert the data from struct to cell array which is editable 
  
% Ve_w ===> The linear control signal+++++++++++++++++++++++++++++++++++ 
% w for workspace;  s for size;  d for data;  c for convert; f for final 
  
s_Ve_w = size(Ve_w); % Find the size of the signal [1 1 10001]  
d_Ve_w = s_Ve_w(:,3:3); % Get the number of 10001  
  
for n_Ve_w = 1:d_Ve_w;  
Ve_w_c(n_Ve_w) = Ve_w(1, 1, n_Ve_w); 
n_Ve_w = n_Ve_w+1; 
end 
  
Ve_w_f = (Ve_w_c)'; 
  
f_Ve_w = Ve_w_f; 
  
 
 
%+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
  
% u_w ===> The nonlinear control signal+++++++++++++++++++++++++++++++++ 
% w for workspace;  s for size;  d for data;  c for convert; f for final 
  
s_u_w = size(u_w); % Find the size of the signal [1 1 10001]  
d_u_w = s_u_w(:,3:3); % Get the number of 10001  
  
for n_u_w = 1:d_u_w;  
u_w_c(n_u_w) = u_w(1, 1, n_u_w); 
n_u_w = n_u_w+1; 
end 
  
u_w_f = (u_w_c)'; 
  
f_u_w = u_w_f; 
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%+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
  
% z_x ===> The state signal x 
% w for workspace;  s for size;  d for data;  c for convert; f for final 
s_z_x_w = size(z_x_w); % Find the size of the signal [1 1 10001]  
d_z_x_w = s_z_x_w(:,3:3); % Get the number of 10001 d for data 
  
for n_z_x_w = 1:d_z_x_w;  
z_x_w_c(n_z_x_w) = z_x_w(1, 1, n_z_x_w); 
n_z_x_w = n_z_x_w+1; 
end 
  
z_x_w_f = (z_x_w_c)'; 
  
f_z_x_w = z_x_w_f; 
  
%+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
  
% z_x_d ===> The state signal x dot 
% w for workspace;  s for size;  d for data;  c for convert; f for final 
s_z_x_d_w = size(z_x_d_w); % Find the size of the signal [1 1 10001] 
d_z_x_d_w = s_z_x_d_w(:,3:3); % Get the number of 10001 d for data 
  
for n_z_x_d_w = 1:d_z_x_d_w;  
z_x_d_w_c(n_z_x_d_w) = z_x_d_w(1, 1, n_z_x_d_w); 
n_z_x_d_w = n_z_x_d_w+1; 
end 
  
z_x_d_w_f = (z_x_d_w_c)'; 
  
f_z_x_d_w = z_x_d_w_f; 
  
%+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
  
% z_theta ===> The state signal theta 
% w for workspace;  s for size;  d for data;  c for convert; f for final 
s_z_theta_w = size(z_theta_w); % Find the size of the signal [1 1 10001] 
d_z_theta_w = s_z_theta_w(:,3:3); % Get the number of 10001 d for data 
  
for n_z_theta_w = 1:d_z_theta_w;  
z_theta_w_c(n_z_theta_w) = z_theta_w(1, 1, n_z_theta_w); 
n_z_theta_w = n_z_theta_w+1; 
end 
  
z_theta_w_f = (z_theta_w_c)'; 
  
f_z_theta_w = z_theta_w_f; 
  
%+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
  
% z_theta_d ===> The state signal theta dot 
% w for workspace;  s for size;  d for data;  c for convert; f for final 
s_z_theta_d_w = size(z_theta_d_w); % Find the size of the signal [1 1 
10001] 
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d_z_theta_d_w = s_z_theta_d_w(:,3:3); % Get the number of 10001 d for 
data 
  
for n_z_theta_d_w = 1:d_z_theta_d_w;  
z_theta_d_w_c(n_z_theta_d_w) = z_theta_d_w(1, 1, n_z_theta_d_w); 
n_z_theta_d_w = n_z_theta_d_w+1; 
end 
  
z_theta_d_w_f = (z_theta_d_w_c)'; 
  
f_z_theta_d_w = z_theta_d_w_f; 
  
%+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
  
% y_n_w ===> The nonlinear output signal y_n 
% w for workspace;  s for size;  d for data;  c for convert; f for final 
s_y_n_w = size(y_n_w); % Find the size of the signal [1 1 10001] 
d_y_n_w = s_y_n_w(:,3:3); % Get the number of 10001 d for data 
  
for n_y_n_w = 1:d_y_n_w;  
y_n_w_c(n_y_n_w) = y_n_w(1, 1, n_y_n_w); 
n_y_n_w = n_y_n_w+1; 
end 
  
y_n_w_f = (y_n_w_c)'; 
  
f_y_n_w = y_n_w_f; 
  
%+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
  
% y_dsd_w ===> The linear output signal y_l 
% w for workspace;  s for size;  d for data;  c for convert; f for final 
s_y_dsd_w = size(y_dsd_w); % Find the size of the signal [1 1 10001] 
d_y_dsd_w = s_y_dsd_w(:,3:3); % Get the number of 10001 d for data 
  
for n_y_dsd_w = 1:d_y_dsd_w;  
y_dsd_w_c(n_y_dsd_w) = y_dsd_w(1, 1, n_y_dsd_w); 
n_y_dsd_w = n_y_dsd_w+1; 
end 
  
y_dsd_w_f = (y_dsd_w_c)'; 
  
f_y_dsd_w = y_dsd_w_f; 
  
%+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
  
% V_dot_w ===> The derivative of the Lyapunov function V dot 
% w for workspace;  s for size;  d for data;  c for convert; f for final 
s_V_dot_w = size(V_dot_w); % Find the size of the signal [1 1 10001] 
d_V_dot_w = s_V_dot_w(:,3:3); % Get the number of 10001 d for data 
  
for n_V_dot_w = 1:d_V_dot_w;  
V_dot_w_c(n_V_dot_w) = V_dot_w(1, 1, n_V_dot_w); 
n_V_dot_w = n_V_dot_w+1; 
end 
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V_dot_w_f = (V_dot_w_c)'; 
  
f_V_dot_w = V_dot_w_f; 
  
 
%+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
  
% V_dot_p2_M_w ===> The 2nd part of the V dot signal M 
% w for workspace;  s for size;  d for data;  c for convert; f for final 
s_V_dot_p2_M_w = size(V_dot_p2_M_w); % Find the size of the signal 
d_V_dot_p2_M_w = s_V_dot_p2_M_w(:,3:3);  
  
for n_V_dot_p2_M_w = 1:d_V_dot_p2_M_w;  
V_dot_p2_M_w_c(n_V_dot_p2_M_w) = V_dot_p2_M_w(1, 1, n_V_dot_p2_M_w); 
n_V_dot_p2_M_w = n_V_dot_p2_M_w+1; 
end 
  
V_dot_p2_M_w_f = (V_dot_p2_M_w_c)'; 
  
f_V_dot_p2_M_w = V_dot_p2_M_w_f; 
  
%+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
  
% x_dsd_w ===> The desired states x 
% w for workspace;  s for size;  d for data;  c for convert; f for final 
s_x_dsd_w = size(x_dsd_w); % Find the size of the signal 
d_x_dsd_w = s_x_dsd_w(:,3:3);  
  
for n_x_dsd_w = 1:d_x_dsd_w;  
x_dsd_w_c(n_x_dsd_w) = x_dsd_w(1, 1, n_x_dsd_w); 
n_x_dsd_w = n_x_dsd_w+1; 
end 
  
x_dsd_w_f = (x_dsd_w_c)'; 
  
f_x_dsd_w = x_dsd_w_f; 
  
%+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
  
% x_dsd_dot ===> The desired state x dot 
% w for workspace;  s for size;  d for data;  c for convert; f for final 
s_x_dsd_dot_w = size(x_dsd_dot_w); % Find the size of the signal 
d_x_dsd_dot_w = s_x_dsd_dot_w(:,3:3);  
  
for n_x_dsd_dot_w = 1:d_x_dsd_dot_w;  
x_dsd_dot_w_c(n_x_dsd_dot_w) = x_dsd_dot_w(1, 1, n_x_dsd_dot_w); 
n_x_dsd_dot_w = n_x_dsd_dot_w+1; 
end 
  
x_dsd_dot_w_f = (x_dsd_dot_w_c)'; 
  
f_x_dsd_dot_w = x_dsd_dot_w_f; 
  
%+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
  
% theta_dsd_w ===> The desired state theta 

307 



% w for workspace;  s for size;  d for data;  c for convert; f for final 
s_theta_dsd_w = size(theta_dsd_w); % Find the size of the signal 
d_theta_dsd_w = s_theta_dsd_w(:,3:3);  
  
for n_theta_dsd_w = 1:d_theta_dsd_w;  
theta_dsd_w_c(n_theta_dsd_w) = theta_dsd_w(1, 1, n_theta_dsd_w); 
n_theta_dsd_w = n_theta_dsd_w+1; 
end 
  
theta_dsd_w_f = (theta_dsd_w_c)'; 
  
f_theta_dsd_w = theta_dsd_w_f; 
  
%+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
  
% theta_dsd_dot_w ===> The desired state theta dot 
% w for workspace;  s for size;  d for data;  c for convert; f for final 
s_theta_dsd_dot_w = size(theta_dsd_dot_w); % Find the size of the signal 
d_theta_dsd_dot_w = s_theta_dsd_dot_w(:,3:3);  
  
for n_theta_dsd_dot_w = 1:d_theta_dsd_dot_w;  
theta_dsd_dot_w_c(n_theta_dsd_dot_w) = ... 
    theta_dsd_dot_w(1, 1, n_theta_dsd_dot_w); 
n_theta_dsd_dot_w = n_theta_dsd_dot_w+1; 
end 
  
theta_dsd_dot_w_f = (theta_dsd_dot_w_c)'; 
  
f_theta_dsd_dot_w = theta_dsd_dot_w_f; 
  
%+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
  
% e_y_w ===> The output y error signal +++++++++++++++++++++++++++++ 
% w for workspace;  s for size;  d for data;  c for convert; f for final 
  
s_e_y_w = size(e_y_w); % Find the size of the signal [1 1 10001]  
d_e_y_w = s_e_y_w(:,3:3); % Get the number of 10001  
  
for n_e_y_w = 1:d_e_y_w;  
e_y_w_c(n_e_y_w) = e_y_w(1, 1, n_e_y_w); 
n_e_y_w = n_e_y_w+1; 
end 
  
e_y_w_f = (e_y_w_c)'; 
  
f_e_y_w = e_y_w_f; 
  
%+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
  
% e_x_w ===> The state x error signal++++++++++++++++++++++++++++++++++ 
% w for workspace;  s for size;  d for data;  c for convert; f for final 
  
s_e_x_w = size(e_x_w); % Find the size of the signal [1 1 10001]  
d_e_x_w = s_e_x_w(:,3:3); % Get the number of 10001  
  
for n_e_x_w = 1:d_e_x_w;  
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e_x_w_c(n_e_x_w) = e_x_w(1, 1, n_e_x_w); 
n_e_x_w = n_e_x_w+1; 
end 
  
e_x_w_f = (e_x_w_c)'; 
  
f_e_x_w = e_x_w_f; 
  
%+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
  
% e_x_d_w ===> The state x dot error signal+++++++++++++++++++++++++++++ 
% w for workspace;  s for size;  d for data;  c for convert; f for final 
  
s_e_x_d_w = size(e_x_d_w); % Find the size of the signal [1 1 10001]  
d_e_x_d_w = s_e_x_d_w(:,3:3); % Get the number of 10001  
  
for n_e_x_d_w = 1:d_e_x_d_w;  
e_x_d_w_c(n_e_x_d_w) = e_x_d_w(1, 1, n_e_x_d_w); 
n_e_x_d_w = n_e_x_d_w+1; 
end 
  
e_x_d_w_f = (e_x_d_w_c)'; 
  
f_e_x_d_w = e_x_d_w_f; 
  
%+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
  
% e_theta_w ===> The state theta error signal+++++++++++++++++++++++++++ 
% w for workspace;  s for size;  d for data;  c for convert; f for final 
  
s_e_theta_w = size(e_theta_w); % Find the size of the signal [1 1 10001]  
d_e_theta_w = s_e_theta_w(:,3:3); % Get the number of 10001  
  
for n_e_theta_w = 1:d_e_theta_w;  
e_theta_w_c(n_e_theta_w) = e_theta_w(1, 1, n_e_theta_w); 
n_e_theta_w = n_e_theta_w+1; 
end 
  
e_theta_w_f = (e_theta_w_c)'; 
  
f_e_theta_w = e_theta_w_f; 
  
%+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
  
% e_theta_d_w ===> The state theta dot error signal+++++++++++++++++++++ 
% w for workspace;  s for size;  d for data;  c for convert; f for final 
  
s_e_theta_d_w = size(e_theta_d_w); % Find the size of the signal [1 1 
10001]  
d_e_theta_d_w = s_e_theta_d_w(:,3:3); % Get the number of 10001  
  
for n_e_theta_d_w = 1:d_e_theta_d_w;  
e_theta_d_w_c(n_e_theta_d_w) = e_theta_d_w(1, 1, n_e_theta_d_w); 
n_e_theta_d_w = n_e_theta_d_w+1; 
end 
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e_theta_d_w_f = (e_theta_d_w_c)'; 
  
f_e_theta_d_w = e_theta_d_w_f; 
  
%+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
  
  
% The End 
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A. 5: MATLAB script file – LDM_OC.m 
 
% m-file: LDM_OC.m 
%========================    M-FILE DESCRIPTION    ===================== 
 
% This m-file proved the parameters for Lyapunov Direct Method (LDM)  
% Simulink Block diagrams of Overhead Crane (OC) 
% This is the m-file which associated with the Simulink for the inverte  d
% pendulum simulation with Model reference control method based on the  
% Lyapunov second method. 
% In this file, only one output is considered which is y=x+l*theta 
  
%======================================================================= 
clear 
clc 
% Parameters statement 
n = 1.5; 
J = 0.0013;  
m = 0.285; 
M = 0.165; 
l = 0.22 ; 
b = 0.1; 
bt = 0.01; 
g = 9.8; 
  
M0 = m*l;          % coeff m*l 
M1 = M+m;          % coeff M+m 
M2 = M0*bt;        % coeff m*l*b  t
M3 = M0*b;         % coeff m*l*b 
M4 = M0^2;         % coeff m^2*L^2 
M5 = M1*bt;        % coeff (M+m)*bt 
M6 = M1*M0*g;      % coeff (M+m)*m*l*g 
M7 = M4*g;         % coeff m^2*L^2*g 
  
J1 = J + M0*l;     % coeff J+m*l^2 
J2 = J1 * b;       % coeff (J+m*l^2)*b 
J3 = J1 * M0;      % coeff (J+m*l^2)*m*l- 
  
%======================================================================= 
  
% The inverted pendulum Linearized model in the state space form 
  
sigma_l = (M+m)*(J+m*l^2)-m^2*l^2 % common denominator 
  
% A_l, B_l, C_l and D_l represent the linear model 
%  
A_l = [ 0            1                      0                   0; 
         
        0    -(J+m*l^2)*b/sigma_l    m^2*l^2*g/sigma_l    m*l*bt/sigma_l; 
         
        0            0                      0                   1; 
         
        0   (m*l*b)/sigma_l  -((M+m)*m*l*g)/sigma_l  (-(M+m)*bt)/sigma_l; 
         
       ] 
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B_l = [0; (J+m*l^2)/sigma_l; 0 ; -(l*m)/sigma_l] 
  
C_l = [1 0 l 0] 
  
D_l = 0 
  
% form the linear model 
sys_l = ss(A_l,B_l,C_l,D_l) 
  
Cl=ctrb(A_l,B_l) 
R_l = rank(Cl) 
  
%======================================================================= 
  
% Design the linear-quadratic (LQ) state-feedback regulator by using  
% function lqr for the linear model in order to find the closed-loop  
% poles Where Q is a positive-definite Hermitian or real symmetric  
% matrix and R is a positive definite Hermitian or real symmetric matrix. 
  
Q = [ 10     0     0    0   ; 
       0     10    0    0   ; 
       0     0     1    0   ; 
       0     0     0    1   ;     
     ] 
R=1; 
  
[K_l_hat, S_l_hat,E_l_hat]= lqr (A_l, B_l, Q, R) 
  
%======================================================================= 
  
% Form the desired model matrix A 
% 4 by 4 matrix 
  
A_d_n = A_l-B_l*K_l_hat  
  
%======================================================================= 
  
% Formation of a matrix A for closed-loop system 
A_d_hat = [A_d_n zeros(4,1); -C_l 0] 
  
% Calculation and formation of matrix B 
V1 = M1/(J*M1+M*m*l^2);% M1 = M+m;   coeff M+m 
V2 = J1/(J*M1+M*m*l^2);% J1 = J + M0*l;  coeff J+m*l^2 
                       % M0 = m*l;   coeff m*l 
b1s = V2 
b2s = M0*V1/M1 
B_d=[0; b1s; 0; -b2s] 
  
B_d_hat = [B_d ; 0] 
  
% Formation of a matrix C D 
C_d = [1 0 l 0] % from C it can be seen that y = x + length*theta 
  
D_d = 0 
  
% Compute the controllability matrix 
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Co=ctrb(A_d_hat,B_d_hat) 
% The system is controllable if Co has full rank n 
  
% Check the rank of Co in order to find if the syste mis controllable 
R_sys_d = rank(Co) % R_sys_d = 5 proves the system is controllable 
  
  
% Form the desired system 
sys_d = ss (A_d_n,B_d,C_d,D_d) 
  
% Compute controllability and observability grammians 
Wc = gram(sys_d,'c') 
Wo = gram(sys_d,'o') 
  
%======================================================================= 
  
% Design linear-quadratic (LQ) state-feedback regulator for state-space 
% systems Where Q is a positive-definite Hermitian or real symmetric  
% matrix and R is a positive definite Hermitian or real symmetric matrix.  
  
Q = [ 45       0       0      0      0    ; 
       0       1       0      0      0    ; 
       0       0      120     0      0    ; 
       0       0       0      1      0    ; 
       0       0       0      0    3000000  ] 
R=1; 
  
[Khat, Shat,Ehat]= lqr (A_d_hat, B_d_hat, Q, R) 
  
%======================================================================= 
  
% Lyapunov matrix 
  
% set the positive definite matrix Q1 
  
Q1 = [1 0 0 0; 0 1 0 0; 0 0 1 0; 0 0 0 1] 
  
% By using Q to calculate P, where -Q1 = A'P+PA 
  
syms P2 
  
A_transp=A_d_n'; 
  
P2 = -Q1 /(A_transp + A_d_n) 
  
% Check P2 whether positive definite  
  
[R_P2,P_P2] = chol(P2) 
  
[R_Q1,P_Q1] = chol(Q1) 
  
% If X is not positive definite, an error message is printed 
  
% Both P2 and Q1 are positive definite 
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%======================================================================= 
  
% Call for the simulation 
  
gain=1 
sp=0 
sim('Lyapunov_MRC_new_oc_new_V_dot'); 
  
% %===================================================================== 
%  
% Convert the data from structure to cell array which is editable 
  
% Ve_w ===> The linear control signal+++++++++++++++++++++++++++++++++++ 
% w for workspace;  s for size;  d for data;  c for convert;  f for 
final 
  
s_Ve_w = size(Ve_w); % Find the size of the signal [1 1 10001]  
d_Ve_w = s_Ve_w(:,3:3); % Get the number of 10001  
  
for n_Ve_w = 1:d_Ve_w;  
Ve_w_c(n_Ve_w) = Ve_w(1, 1, n_Ve_w); 
n_Ve_w = n_Ve_w+1; 
end 
  
Ve_w_f = (Ve_w_c)'; 
  
f_Ve_w = Ve_w_f; 
  
%+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
  
% u_w ===> The nonlinear control signal+++++++++++++++++++++++++++++++++ 
% w for workspace;  s for size;  d for data;  c for convert;  f for 
final 
  
s_u_w = size(u_w); % Find the size of the signal [1 1 10001]  
d_u_w = s_u_w(:,3:3); % Get the number of 10001  
  
for n_u_w = 1:d_u_w;  
u_w_c(n_u_w) = u_w(1, 1, n_u_w); 
n_u_w = n_u_w+1; 
end 
  
u_w_f = (u_w_c)'; 
  
f_u_w = u_w_f; 
  
%+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
  
% z_x ===> The state signal x 
% w for workspace;  s for size;  d for data;  c for convert;  f for 
final 
s_z_x_w = size(z_x_w); % Find the size of the signal [1 1 10001]  
d_z_x_w = s_z_x_w(:,3:3); % Get the number of 10001 d for data 
  
for n_z_x_w = 1:d_z_x_w;  
z_x_w_c(n_z_x_w) = z_x_w(1, 1, n_z_x_w); 
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n_z_x_w = n_z_x_w+1; 
end 
  
z_x_w_f = (z_x_w_c)'; 
  
f_z_x_w = z_x_w_f; 
  
%+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
  
% z_x_d ===> The state signal x dot 
% w for workspace;  s for size;  d for data;  c for convert;  f for 
final 
s_z_x_d_w = size(z_x_d_w); % Find the size of the signal [1 1 10001] 
d_z_x_d_w = s_z_x_d_w(:,3:3); % Get the number of 10001 d for data 
  
for n_z_x_d_w = 1:d_z_x_d_w;  
z_x_d_w_c(n_z_x_d_w) = z_x_d_w(1, 1, n_z_x_d_w); 
n_z_x_d_w = n_z_x_d_w+1; 
end 
  
z_x_d_w_f = (z_x_d_w_c)'; 
  
f_z_x_d_w = z_x_d_w_f; 
  
%+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
  
% z_theta ===> The state signal theta 
% w for workspace;  s for size;  d for data;  c for convert;  f for 
final 
s_z_theta_w = size(z_theta_w); % Find the size of the signal [1 1 10001] 
d_z_theta_w = s_z_theta_w(:,3:3); % Get the number of 10001 d for data 
  
for n_z_theta_w = 1:d_z_theta_w;  
z_theta_w_c(n_z_theta_w) = z_theta_w(1, 1, n_z_theta_w); 
n_z_theta_w = n_z_theta_w+1; 
end 
  
z_theta_w_f = (z_theta_w_c)'; 
  
f_z_theta_w = z_theta_w_f; 
  
%+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
  
% z_theta_d ===> The state signal theta dot 
% w for workspace;  s for size;  d for data;  c for convert;  f for 
final 
s_z_theta_d_w = size(z_theta_d_w); % Find the size of the signal [1 1 
10001] 
d_z_theta_d_w = s_z_theta_d_w(:,3:3); % Get the number of 10001 d for 
data 
  
for n_z_theta_d_w = 1:d_z_theta_d_w;  
z_theta_d_w_c(n_z_theta_d_w) = z_theta_d_w(1, 1, n_z_theta_d_w); 
n_z_theta_d_w = n_z_theta_d_w+1; 
end 
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z_theta_d_w_f = (z_theta_d_w_c)'; 
  
f_z_theta_d_w = z_theta_d_w_f; 
  
%+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
  
% y_n_w ===> The nonlinear output signal y_n 
% w for workspace;  s for size;  d for data;  c for convert;  f for 
final 
s_y_n_w = size(y_n_w); % Find the size of the signal [1 1 10001] 
d_y_n_w = s_y_n_w(:,3:3); % Get the number of 10001 d for data 
  
for n_y_n_w = 1:d_y_n_w;  
y_n_w_c(n_y_n_w) = y_n_w(1, 1, n_y_n_w); 
n_y_n_w = n_y_n_w+1; 
end 
  
y_n_w_f = (y_n_w_c)'; 
  
f_y_n_w = y_n_w_f; 
  
%+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
  
% y_dsd_w ===> The linear output signal y_l 
% w for workspace;  s for size;  d for data;  c for convert;  f for 
final 
s_y_dsd_w = size(y_dsd_w); % Find the size of the signal [1 1 10001] 
d_y_dsd_w = s_y_dsd_w(:,3:3); % Get the number of 10001 d for data 
  
for n_y_dsd_w = 1:d_y_dsd_w;  
y_dsd_w_c(n_y_dsd_w) = y_dsd_w(1, 1, n_y_dsd_w); 
n_y_dsd_w = n_y_dsd_w+1; 
end 
  
y_dsd_w_f = (y_dsd_w_c)'; 
  
f_y_dsd_w = y_dsd_w_f; 
  
%+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
  
% V_dot_w ===> The derivative of the Lyapunov function V dot 
% w for workspace;  s for size;  d for data;  c for convert;  f for 
final 
s_V_dot_w = size(V_dot_w); % Find the size of the signal [1 1 10001] 
d_V_dot_w = s_V_dot_w(:,3:3); % Get the number of 10001 d for data 
  
for n_V_dot_w = 1:d_V_dot_w;  
V_dot_w_c(n_V_dot_w) = V_dot_w(1, 1, n_V_dot_w); 
n_V_dot_w = n_V_dot_w+1; 
end 
  
V_dot_w_f = (V_dot_w_c)'; 
  
f_V_dot_w = V_dot_w_f; 
  
%+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
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% V_dot_p2_M_w ===> The 2nd part of the V dot signal M 
% w for workspace;  s for size;  d for data;  c for convert;  f for 
final 
s_V_dot_p2_M_w = size(V_dot_p2_M_w); % Find the size of the signal 
d_V_dot_p2_M_w = s_V_dot_p2_M_w(:,3:3);  
  
for n_V_dot_p2_M_w = 1:d_V_dot_p2_M_w;  
V_dot_p2_M_w_c(n_V_dot_p2_M_w) = V_dot_p2_M_w(1, 1, n_V_dot_p2_M_w); 
n_V_dot_p2_M_w = n_V_dot_p2_M_w+1; 
end 
  
V_dot_p2_M_w_f = (V_dot_p2_M_w_c)'; 
  
f_V_dot_p2_M_w = V_dot_p2_M_w_f; 
  
%+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
  
% x_dsd_w ===> The desired states x 
% w for workspace;  s for size;  d for data;  c for convert;  f for 
final 
s_x_dsd_w = size(x_dsd_w); % Find the size of the signal 
d_x_dsd_w = s_x_dsd_w(:,3:3);  
  
for n_x_dsd_w = 1:d_x_dsd_w;  
x_dsd_w_c(n_x_dsd_w) = x_dsd_w(1, 1, n_x_dsd_w); 
n_x_dsd_w = n_x_dsd_w+1; 
end 
  
x_dsd_w_f = (x_dsd_w_c)'; 
  
f_x_dsd_w = x_dsd_w_f; 
  
%+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
  
% x_dsd_dot ===> The desired state x dot 
% w for workspace;  s for size;  d for data;  c for convert;  f for 
final 
s_x_dsd_dot_w = size(x_dsd_dot_w); % Find the size of the signal 
d_x_dsd_dot_w = s_x_dsd_dot_w(:,3:3);  
  
for n_x_dsd_dot_w = 1:d_x_dsd_dot_w;  
x_dsd_dot_w_c(n_x_dsd_dot_w) = x_dsd_dot_w(1, 1, n_x_dsd_dot_w); 
n_x_dsd_dot_w = n_x_dsd_dot_w+1; 
end 
  
x_dsd_dot_w_f = (x_dsd_dot_w_c)'; 
  
f_x_dsd_dot_w = x_dsd_dot_w_f; 
  
%+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
  
% theta_dsd_w ===> The desired state theta 
% w for workspace;  s for size;  d for data;  c for convert;  f for 
final 
s_theta_dsd_w = size(theta_dsd_w); % Find the size of the signal 
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d_theta_dsd_w = s_theta_dsd_w(:,3:3);  
  
for n_theta_dsd_w = 1:d_theta_dsd_w;  
theta_dsd_w_c(n_theta_dsd_w) = theta_dsd_w(1, 1, n_theta_dsd_w); 
n_theta_dsd_w = n_theta_dsd_w+1; 
end 
  
theta_dsd_w_f = (theta_dsd_w_c)'; 
  
f_theta_dsd_w = theta_dsd_w_f; 
  
%+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
  
% theta_dsd_dot_w ===> The desired state theta dot 
% w for workspace;  s for size;  d for data;  c for convert;  f for 
final 
s_theta_dsd_dot_w = size(theta_dsd_dot_w); % Find the size of the signal 
d_theta_dsd_dot_w = s_theta_dsd_dot_w(:,3:3);  
  
for n_theta_dsd_dot_w = 1:d_theta_dsd_dot_w;  
theta_dsd_dot_w_c(n_theta_dsd_dot_w) = ... 
    theta_dsd_dot_w(1, 1, n_theta_dsd_dot_w); 
n_theta_dsd_dot_w = n_theta_dsd_dot_w+1; 
end 
  
theta_dsd_dot_w_f = (theta_dsd_dot_w_c)'; 
  
f_theta_dsd_dot_w = theta_dsd_dot_w_f; 
  
%+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
  
% e_y_w ===> The the output y error signal +++++++++++++++++++++++++++++ 
% w for workspace;  s for size;  d for data;  c for convert;  f for 
final 
  
s_e_y_w = size(e_y_w); % Find the size of the signal [1 1 10001]  
d_e_y_w = s_e_y_w(:,3:3); % Get the number of 10001  
  
for n_e_y_w = 1:d_e_y_w;  
e_y_w_c(n_e_y_w) = e_y_w(1, 1, n_e_y_w); 
n_e_y_w = n_e_y_w+1; 
end 
  
e_y_w_f = (e_y_w_c)'; 
  
f_e_y_w = e_y_w_f; 
  
%+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
  
% e_x_w ===> The state x error signa++++++++++++++++++++++++++++++++++++ 
% w for workspace;  s for size;  d for data;  c for convert;  f for 
final 
  
s_e_x_w = size(e_x_w); % Find the size of the signal [1 1 10001]  
d_e_x_w = s_e_x_w(:,3:3); % Get the number of 10001  
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for n_e_x_w = 1:d_e_x_w;  
e_x_w_c(n_e_x_w) = e_x_w(1, 1, n_e_x_w); 
n_e_x_w = n_e_x_w+1; 
end 
  
e_x_w_f = (e_x_w_c)'; 
  
f_e_x_w = e_x_w_f; 
  
%+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
  
% e_x_d_w ===> The state x dot error signal+++++++++++++++++++++++++++++ 
% w for workspace;  s for size;  d for data;  c for convert;  f for 
final 
  
s_e_x_d_w = size(e_x_d_w); % Find the size of the signal [1 1 10001]  
d_e_x_d_w = s_e_x_d_w(:,3:3); % Get the number of 10001  
  
for n_e_x_d_w = 1:d_e_x_d_w;  
e_x_d_w_c(n_e_x_d_w) = e_x_d_w(1, 1, n_e_x_d_w); 
n_e_x_d_w = n_e_x_d_w+1; 
end 
  
e_x_d_w_f = (e_x_d_w_c)'; 
  
f_e_x_d_w = e_x_d_w_f; 
  
%+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
  
% e_theta_w ===> The state theta error signal+++++++++++++++++++++++++++ 
% w for workspace;  s for size;  d for data;  c for convert;  f for 
final 
  
s_e_theta_w = size(e_theta_w); % Find the size of the signal [1 1 10001]  
d_e_theta_w = s_e_theta_w(:,3:3); % Get the number of 10001  
  
for n_e_theta_w = 1:d_e_theta_w;  
e_theta_w_c(n_e_theta_w) = e_theta_w(1, 1, n_e_theta_w); 
n_e_theta_w = n_e_theta_w+1; 
end 
  
e_theta_w_f = (e_theta_w_c)'; 
  
f_e_theta_w = e_theta_w_f; 
  
%+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
  
% e_theta_d_w ===> The state theta dot error signal+++++++++++++++++++++ 
% w for workspace;  s for size;  d for data;  c for convert;  f for 
final 
  
s_e_theta_d_w = size(e_theta_d_w); % Find the size of the signal [1 1 
10001]  
d_e_theta_d_w = s_e_theta_d_w(:,3:3); % Get the number of 10001  
  
for n_e_theta_d_w = 1:d_e_theta_d_w;  
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e_theta_d_w_c(n_e_theta_d_w) = e_theta_d_w(1, 1, n_e_theta_d_w); 
n_e_theta_d_w = n_e_theta_d_w+1; 
end 
  
e_theta_d_w_f = (e_theta_d_w_c)'; 
  
f_e_theta_d_w = e_theta_d_w_f; 
  
%+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
  
% The End 
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A. 6: MATLAB script file – zero_dyn.m 
 
% m-file: zero_dyn.m 
%======================================================================= 
% The Zero dynamic checking for the linearized system. 
% This m-file is used for specifing the parameters that are used in the 
% Simulink block diagram which is checking the system stability  
n = 1.5; 
J = 0.0013;  
m = 0.285; 
M = 0.165; 
l = 0.22 ; 
b = 0.1; 
bt = 0.01; 
g = 9.8; 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

321 



A. 7: MATLAB script file – FBL_IP.m 
 
% m-file: FBL_IP 
%========================    M-FILE DESCRIPTION    ===================== 
 
% This m-file provides all the parameters for the Simulink block diagram 
% of simulating the closed-loop system based on the feedback  
% linearization method for the inverted pendulum. 
% In this file, only one output is considered which y=x+l*theta 
  
%======================================================================= 
clear 
clc 
% Parameters statement 
n = 1.5; 
J = 0.0013;  
m = 0.285; 
M = 0.165; 
l = 0.22 ; 
b = 0.1; 
bt = 0.01; 
g = 9.8; 
  
M0 = m*l;          % coeff m*l 
M1 = M+m;          % coeff M+m 
M2 = M0*bt;        % coeff m*l*bt 
M3 = M0*b;         % coeff m*l*b 
M4 = M0^2;         % coeff m^2*L^2 
M5 = M1*bt;        % coeff (M+m)*bt 
M6 = M1*M0*g;      % coeff (M+m)*m*l*g 
M7 = M4*g;         % coeff m^2*L^2*g 
  
J1 = J + M0*l;     % coeff J+m*l^2 
J2 = J1 * b;       % coeff (J+m*l^2)*b 
J3 = J1 * M0;      % coeff (J+m*l^2)*m*l- 
  
%======================================================================= 
  
% Linearized model of the inverted pendulum model in the state space 
form 
  
sigma_l = (M+m)*(J+m*l^2)-m^2*l^2 % common denominator 
  
% A_l, B_l, C_l and D_l represent the linear model 
%  
A_l = [  
         
        0            1            0           0; 
         
        0            0       -m*g*l^2/J    l*bt/J; 
         
        0            0            0           1; 
         
        0            0          m*g*l/J     -bt/J; 
         
       ] 
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B_l = [   
     
                0; 
                 
        (J+m*l^2)/sigma_l; 
         
                0; 
                 
         -(l*m)/sigma_l 
          
      ] 
  
C_l = [1 0 l 0] 
  
D_l = 0 
  
% form the linear model 
sys_l = ss(A_l,B_l,C_l,D_l) 
  
%======================================================================= 
  
% Design the linear-quadratic (LQ) state-feedback regulator by using  
% function lqr for the linear model in order to find the closed-loop 
poles 
% Where Q is a positive-definite Hermitian or real symmetric matrix and 
R 
% is a positive definite Hermitian or real symmetric matrix.  
  
Q = [  
       
      530    0     0    0   ; 
       0     8     0    0   ; 
       0     0     1    0   ; 
       0     0     0    1   ;  
        
     ] 
R=1; 
  
[K_l_hat, S_l_hat,E_l_hat]= lqr (A_l, B_l, Q, R) 
  
%======================================================================= 
  
% Form the desired model matrix A 
  
A_d_n = A_l-B_l*K_l_hat % 4 by 4 matrix 
  
%======================================================================= 
  
% Formation of a matrix A for closed-loop system 
A_d_hat = [A_d_n zeros(4,1); -C_l 0] 
  
% Calculation and formation of matrix B 
V1 = M1/(J*M1+M*m*l^2);% M1 = M+m;   coeff M+m 
V2 = J1/(J*M1+M*m*l^2);% J1 = J + M0*l;  coeff J+m*l^2 
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                       % M0 = m*l;   coeff m*l 
b1s = V2 
b2s = M0*V1/M1 
B_d=[0; b1s; 0; -b2s] 
  
B_d_hat = [B_d ; 0] 
  
% Formation of a matrix C D 
C_d = [1 0 l 0] % from C it can be seen that y = x + length*theta 
  
D_d = 0 
  
% Compute the controllability matrix 
Co=ctrb(A_d_hat,B_d_hat) 
% The system is controllable if Co has full rank n 
  
% Check the rank of Co in order to find if the syste mis controllable 
R_sys_d = rank(Co)  
% R_sys_d = 5 proves the system is controllable 
  
  
% Form the desired system 
sys_d = ss (A_d_n,B_d,C_d,D_d) 
  
% Compute controllability and observability grammians 
Wc = gram(sys_d,'c') 
Wo = gram(sys_d,'o') 
  
%======================================================================= 
  
% Design linear-quadratic (LQ) state-feedback regulator for state-space 
% systems 
% Where Q is a positive-definite Hermitian or real symmetric matrix and 
R 
% is a positive definite Hermitian or real symmetric matrix.  
  
Q = [ 9000    0        0     0    0    ; 
       0     130      0     0    0    ; 
       0       0      10    0    0    ; 
       0       0       0    3   0    ; 
       0       0       0     0   220000  ] 
R=1; 
  
[Khat, Shat,Ehat]= lqr (A_d_hat, B_d_hat, Q, R) 
  
%======================================================================= 
  
% Lyapunov matrix 
  
% set the positive definite matrix Q1 
  
Q1 = [1 0 0 0; 0 1 0 0; 0 0 1 0; 0 0 0 1] 
  
% By using Q to calculate P, where -Q1 = A'P+PA 
  
syms P2 
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A_transp=A_d_n'; 
  
P2 = -Q1 /(A_transp + A_d_n) 
  
% Check P2 whether positive definite  
  
[R_P2,P_P2] = chol(P2) 
  
[R_Q1,P_Q1] = chol(Q1) 
  
% If X is not positive definite, an error message is printed 
  
% Both P2 and Q1 are positive definite 
  
 %====================================================================== 
%The End 
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A. 8: MATLAB script file – FBL_OC.m 
 
% m-file: FBL_OC 
%========================    M-FILE DESCRIPTION    ===================== 
 
% This is the m-file which associated with the Simulink for the inverted 
% pendulum simulation with Model reference control method based on the  
% Lyapunov second method. 
% In this file, only one output is considered which y=x+l*theta 
  
%======================================================================= 
clear 
clc 
% Parameters statement 
n = 1.5; 
J = 0.0013;  
m = 0.285; 
M = 0.165; 
l = 0.22 ; 
b = 0.1; 
bt = 0.01; 
g = 9.8; 
  
M0 = m*l;          % coeff m*l 
M1 = M+m;          % coeff M+m 
M2 = M0*bt;        % coeff m*l*bt 
M3 = M0*b;         % coeff m*l*b 
M4 = M0^2;         % coeff m^2*L^2 
M5 = M1*bt;        % coeff (M+m)*bt 
M6 = M1*M0*g;      % coeff (M+m)*m*l*g 
M7 = M4*g;         % coeff m^2*L^2*g 
  
J1 = J + M0*l;     % coeff J+m*l^2 
J2 = J1 * b;       % coeff (J+m*l^2)*b 
J3 = J1 * M0;      % coeff (J+m*l^2)*m*l- 
  
%======================================================================= 
  
% Linearized model of the inverted pendulum model in the state space 
form 
  
sigma_l = (M+m)*(J+m*l^2)-m^2*l^2 % common denominator 
  
% A_l, B_l, C_l and D_l represent the linear model 
%  
A_l = [  
         
        0            1            0           0; 
         
        0            0        m*g*l^2/J    l*bt/J; 
         
        0            0            0           1; 
         
        0            0        -m*g*l/J      -bt/J; 
         
       ] 
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B_l = [   
     
                0; 
                 
        (J+m*l^2)/sigma_l; 
         
                0; 
                 
         -(l*m)/sigma_l 
          
      ] 
  
C_l = [1 0 l 0] 
  
D_l = 0 
  
% form the linear model 
sys_l = ss(A_l,B_l,C_l,D_l) 
  
%======================================================================= 
  
% Design the linear-quadratic (LQ) state-feedback regulator by using  
% function lqr for the linear model in order to find the closed-loop 
poles 
% Where Q is a positive-definite Hermitian or real symmetric matrix and 
R 
% is a positive definite Hermitian or real symmetric matrix.  
  
Q = [ 10    0     0    0   ; 
       0   10     0    0   ; 
       0    0     5    0   ; 
       0    0     0    5   ;     
     ] 
R=1; 
  
[K_l_hat, S_l_hat,E_l_hat]= lqr (A_l, B_l, Q, R) 
  
%======================================================================= 
  
% Form the desired model matrix A 
  
A_d_n = A_l-B_l*K_l_hat % 4 by 4 matrix 
  
%======================================================================= 
  
% Formation of a matrix A for closed-loop system 
A_d_hat = [A_d_n zeros(4,1); -C_l 0] 
  
% Calculation and formation of matrix B 
V1 = M1/(J*M1+M*m*l^2);% M1 = M+m;   coeff M+m 
V2 = J1/(J*M1+M*m*l^2);% J1 = J + M0*l;  coeff J+m*l^2 
                       % M0 = m*l;   coeff m*l 
b1s = V2 
b2s = M0*V1/M1 
B_d=[0; b1s; 0; -b2s] 
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B_d_hat = [B_d ; 0] 
  
% Formation of a matrix C D 
C_d = [1 0 l 0] % from C it can be seen that y = x + length*theta 
  
D_d = 0 
  
% Compute the controllability matrix 
Co=ctrb(A_d_hat,B_d_hat) 
% The system is controllable if Co has full rank n 
  
% Check the rank of Co in order to find if the system is controllable 
R_sys_d = rank(Co) % R_sys_d = 5 proves the system is controllable 
  
  
% Form the desired system 
sys_d = ss (A_d_n,B_d,C_d,D_d) 
  
% Compute controllability and observability grammians 
Wc = gram(sys_d,'c') 
Wo = gram(sys_d,'o') 
  
%======================================================================= 
  
% Design linear-quadratic (LQ) state-feedback regulator for state-space 
% systems 
% Where Q is a positive-definite Hermitian or real symmetric matrix and 
R 
% is a positive definite Hermitian or real symmetric matrix.  
  
Q = [ 150       0        0        0       0    ; 
        0     150        0        0       0    ; 
        0       0      100        0       0    ; 
        0       0        0      100       0    ; 
        0       0        0        0     3000   ] 
R=1; 
  
[Khat, Shat,Ehat]= lqr (A_d_hat, B_d_hat, Q, R) 
  
%======================================================================= 
  
% Lyapunov matrix 
  
% set the positive definite matrix Q1 
  
Q1 = [1 0 0 0; 0 1 0 0; 0 0 1 0; 0 0 0 1] 
  
% By using Q to calculate P, where -Q1 = A'P+PA 
  
syms P2 
  
A_transp=A_d_n'; 
  
P2 = -Q1 /(A_transp + A_d_n) 
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% Check P2 whether positive definite  
  
[R_P2,P_P2] = chol(P2) 
  
[R_Q1,P_Q1] = chol(Q1) 
  
% If X is not positive definite, an error message is printed 
  
% Both P2 and Q1 are positive definite 
  
%====================================================================== 
%The End 
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APPENDIX B 
 

COMPACTRIO I/O WIRING 
 
 

 

AI 0 (measure output signal y) 
AI 1 (measure displacement signal x) 
AI 2 (measure angle signal θ) 
 
 
 
 
 
 
GND 

 
AI-NI cRIO-9201 

 
 
 
 

 

AO 0 (control signal u) 
GND 

 
AI-NI cRIO-9263 
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APPENDIX C. 1 
 

THE PENDULUM UNIT CONTROL CONSOLE 
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APPENDIX C. 2 
 

THE CIRCUIT DIAGRAM OF THE PENDULUM SYSTEM 
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