
Cape Peninsula University of Technology
Digital Knowledge

CPUT Theses & Dissertations Theses & Dissertations

11-1-2008

Development of models for short-term load
forecasting using artificial neural networks
Simaneka Amakali
Cape Peninsula University of Technology

This Text is brought to you for free and open access by the Theses & Dissertations at Digital Knowledge. It has been accepted for inclusion in CPUT
Theses & Dissertations by an authorized administrator of Digital Knowledge. For more information, please contact barendsc@cput.ac.za.

Recommended Citation
Amakali, Simaneka, "Development of models for short-term load forecasting using artificial neural networks" (2008). CPUT Theses &
Dissertations. Paper 32.
http://dk.cput.ac.za/td_cput/32

http://dk.cput.ac.za
http://dk.cput.ac.za/td_cput
http://dk.cput.ac.za/td
mailto:barendsc@cput.ac.za

DEVELOPMENT OF MODELS FOR SHORT-TERM LOAD FORECASTING

USING ARTIFICIAL NEURAL NETWORKS

by

Simaneka Amakali

Thesis submitted in fulfilment of the requirements for the degree

Master of Technology: Discipline Electrical Engineering

in the Faculty of Engineering

at the Cape Peninsula University of Technology

Supervisor: Prof. R. Tzoneva

Co-supervisor: C. Kriger

Bellville Campus
November 2008

 ii

DECLARATION

I, Simaneka Amakali, declare that the contents of this thesis represent my own unaided work, and

that the thesis has not previously been submitted for academic examination towards any

qualification. Furthermore, it represents my own opinions and not necessarily those of the Cape

Peninsula University of Technology.

Signed Date

 iii

ABSTRACT

Optimal daily operation of electric power generating plants is very essential for any power utility

organization to reduce input costs and possibly the prices of electricity in general. For a fossil fuel –

fired power plant for example, the benefits of power generation optimalization (i.e. generate what is

reasonably required) extends even to environmental issues such as the subsequent reduction in air

pollution. Now to generate “what is reasonably required” one needs forecast the future electricity

demands. Because power generation relies heavily on the electricity demand, the consumers are also

practically speaking required to wisely manage their loads to consolidate the power utility’s optimal

power generation efforts. Thus, for both cases, accurate and reliable electric load forecasting systems

are absolutely required.

To date, there are numerous forecasting methods developed primarily for electric load forecasting.

Some of these forecasting techniques are conventional and often less favoured.

To get a broad picture of the problem at hand, a literature survey was first conducted to identify

possible drawbacks of the existing forecasting techniques including the conventional one. Artificial

neural networks (ANNs) approach for short-term load forecasting (STLF) has been recently proposed

by a majority of researchers. But there still is a need to find optimal neural network structures or

convenient training approach that would possibly improve the forecasting accuracy.

This thesis developed models for STLF using ANNs approach. The evolved models are intended to

be a basis for real forecasting application. These models are tested using actual load data of the Cape

Peninsula University of Technology (CPUT) Bellville campus reticulation network and weather data

to predict the load of the campus for one week in advance.

The models were divided into two classes: first, forecasting the load for a whole week at once was

evaluated, and then hourly models were studied. In both cases, the inclusion of weather data was

considered. The test results showed that the hour-by-hour approach is more suitable and efficient for

a forecasting application. The work suggests that incremental training approach of a neural network

model should be implemented for on-line testing application to acquire a universal final view on its

applicability.

Keywords – power system operations, load forecasting, artificial neural networks, training mode,

accuracy

 iv

ACKNOWLEDGEMENTS

To the Almighty Lord, for granting me the wisdom, ability, perseverance, and clarity to do this work.

The research work is partially funded by the TESP Project “Advanced control of power systems” and

NRF project “Substation Automation and Energy Management System” No. ICD2006061900021.

The financial support received from the CPUT is also appreciated.

First of all I would like to show my special thanks to my supervisors Prof. R. Tzoneva and Mr. C.

Kriger for all their guidance and support. They supervised the whole process of my research, and

have provided many technical suggestions. I benefited a lot from their knowledge and experience on

programming and control systems.

Many thanks to the CENORED management, particularly Mr. Mburumba Appolous, for giving me

the chance to study in South Africa.

I wish also to thank Mr. L. Lombard and the entire CPUT maintenance team, for their continued

support and cooperation during data gathering process.

Many thanks to the South African Weather Service department in Cape Town for providing the

weather data used in this work.

I wish to thank every individual at the Cape Peninsula University of Technology, especially fellow

colleagues in the electrical department. Without their help and encouragement during the one year in

South Africa I wouldn’t have finished the Master research work.

I would also like to thank my parents and my brothers Chris, Ben, and Erastus for their support,

patience, and understanding of my research in Cape Town.

Many thanks to my ever encouraging lovely fiancée, Sarah, for being patient, and supportive

throughout the study period.

Cape Town, November 2008

Simaneka Amakali

 v

DEDICATION

To my father Aron Jonas and my mother Hilen Namukwambi

 vi

TABLE OF CONTENTS

 Declaration ii

 Abstract iii

 Acknowledgements iv

 Dedication v

 Table of content vi - xiii

 Glossary xiv-xvi

 List of abbreviations xvii- xviii

 List of symbols xix -xx

CHAPTER 1: INTRODUCTION

1.1 Summary 1 – 3

1.2 Scope of work of this research 3

1.3 Awareness of the problem 4

1.4 Problem statement 5

1.4.1 Load forecasting problem decomposition

1.4.1.1
Phase I – Approximation Tool

Neural network architecture
1.4.1.2 Back propagation algorithm and training parameters
1.4.1.3 Development of ANN-based forecasting models

1.4.1.4
Phase II – Data collection, bad data treatment and processing

Historical load data
1.4.1.5 Weather data
1.4.1.6 Phase III - Computing and training

Modelling
1.4.1.7 Phase IV – Validation and Results

Testing of models

5-7

1.5 Research aim and objectives 8,9

1.6 Hypothesis 9

1.7 Project motivation 9-11

1.8 Delimitation of the research 11

1.9 Assumptions 12

1.10 Research design and methodology 13-15

1.10.1 Investigation methods

1.10.2 Sampling methodologies

1.10.3 Literature review

1.10.4 Handling of data

1.10.5 Thesis organization outline

1.11 Conclusion 15

 vii

CHAPTER 2: LITERATURE REVIEW

2.1 Overview of load forecasting techniques 16,17

2.2 Classification of forecasting methods 17

2.2.1

2.2.1.1
Regression methods
Linear regression

18,19

2.2.2 Time series 19

2.2.3 Time-of-day approach 19

2.2.4 Similar days approach 20

2.2.5 Stochastic time series models 20-22

2.2.6 Intelligent system based models 22

2.2.6.1 Artificial neural networks 22

2.2.6.1.1 Neural network function approximation tool 22

2.2.6.1.2 Proposed forecasting ANN- based models 23

2.2.6.1.3 A multi layered perceptron (MLP) 23,24

2.2.6.2 Expert systems 23,24

2.2.6.3 Fuzzy approach 24

2.2.6.4 Evolutionary computing 24

2.2.7 Genetic-based optimization 25

2.2.7.1 How does a GA work? 25

2.2.7.2 Conventional optimization versus GA 26

2.2.8 Comparative analysis of some load forecasting ANN

based models

26 – 30

2.2.8.1 Literature comparison - findings 30 – 32

2.2.8.2 Conclusion 33

CHAPTER 3: POWER SYSTEM LOAD FORECASTING

3.1 Overview 34

3.2 Load characteristics 34

3.3 Factors affecting the load 34-35

3.3.1 short-term load forecasting 35-38

3.3.2 medium-to-long term load forecasting 38

3.4 Load features

3.4.1 Types of load bank 39 - 40

3.4.2 Load categories 40

3.4.3 Consumer classes 40

3.5 Prerequisites of a good STLF system 41

3.5.1 Fast speed 41

3.5.2 Accuracy 41

3.5.3 Automatic data access 41,42

 viii

3.5.4 Friendly interface 42

3.5.5 Timely forecast 42

3.5.6 Automatic model performance evaluation 42

3.5.7 Bad data detection 42

3.5.8 Automatic forecasting report generation 43

3.5 Conclusion 43

CHAPTER 4: ARTIFICIAL NEURAL NETWORKS (ANNs)

4.1 General artificial neural network overview 44 – 46

4.1.1 Basic architecture of a feed forward neural network 46

4.1.2 The perceptron – a network for decision making 47

4.1.2.1 Activation functions 47,48

4.2 Soft computing using ANN topologies 48

4.2.1 Feedforward(FF) network 48-50

4.2.2 Recurrent (ER) network 50

4.2.3 Radial basis function(RBF) network 50-52

4.3 ANN training and generalisation 52-53

4.3.1 Network coupled errors 53

4.4 ANN learning paradigms 53,54

4.4.1 Supervised learning 54

4.4.2 Unsupervised learning 54,55

4.4.3 Other types of learning 55,56

4.5 Competent learning process for ANNs 56,57

4.6 Error back propagation (BP) learning 57-59

4.7 Conclusion 59

CHAPTER 5: DATA COLLECTION AND PRE-PROCESSING

5.1 Data description 60 - 62

5.2 Data collection methods 62 -63

5.3 Description of load data

5.3.1 The combined (total) load 63-65

5.3.2 Departmental loads 66-68

5.3.3 Characteristics of the total load curve 69,70

5.4 Correlation Analysis between the load and weather data 70,71

5.5 Data storage 71,72

5.5.1 Importing data into MySQL Database 72-74

5.6 Data pre-processing 74,75

5.6.1 Data scaling methods 75

5.7 Bad data detection and replacement 76,77

5.8 Composition of input vector (IV) for the prediction

models

78-80

 ix

5.9 Conclusion 80

CHAPTER 6: APPLICATION OF ANNs IN LOAD FORECASTING

6.1 ANNs for load forecasting 81

6.2 Designing an input vector (IV) for a STLF model 81,82

6.3 Development of a load forecasting ANN-based model 82,83

6.3.1 Forecasting using a Feedforward (FF) Neural Network 84,85

6.3.2 Forecasting using an Elman Recurrent (ER) Neural Network 86-88

6.4 Description of the evolved forecasting models 88,89

6.5 Conclusion 90

CHAPTER 7: RESULTS AND DISCUSSIONS

 Preamble 91

7.1 Network architecture design for the prediction models 92

7.2 Forecasting the total load using a non-weather sensitive

FF model

92,93

7.2.1 Simulating the network using testing data 93-95

7.3 Forecasting the total load using a weather sensitive ER

model

95,96

7.3.1 Simulating the network using testing data 96

7.4 Forecasting the total load using a weather sensitive FF

model

96-100

7.5 Model responses to the new performance goal (1e-5) 101,102

7.6 Forecasting the total load using the hour-by-hour

approach

102-105

7.7 Error comparative analysis for the total load forecasting

models

105,106

7.8 Forecasting the departmental loads 107-108

7.8.1 Forecasting the load for the IT department 108-111

7.8.2 Forecasting the load for the Electrical department 111-113

7.8.3 Forecasting the load for the Mechanical department 114,115

7.8.4 Forecasting the load for the Administration building 114,116

,117,119,

120

7.8.5 Forecasting the load for the Air Conditioning Plant (ACP) 114,118

7.8.6 Error comparative analysis for the departmental loads 119,121

7.9 Conclusion 120,121

CHAPTER 8: CONCLUSION AND FUTURE OUTLOOK

8.1 Deliverables of the project 122-125

 x

8.2 Application of the models and results 125-127

8.3 Project outlook 127

8.4 Publications in connection with the thesis 128

REFERENCES 129-134

BIOGRAPHY 135

LIST OF FIGURES

Fig. 1.1: Types of load forecasting and focus of the research 3

Fig. 1.2: A typical load forecasting outline and some applications 10

Fig. 1.3: Load growth curve – for the CPUT Bvl Campus derived using extrapolated

annual NMD data

11

Fig. 2.1: A simple ANN structure 22

Fig. 2.2: A feedforward neural network with one hidden layer and multi-outputs 23

Fig. 3.1: A simple AC circuit – illustrating the load 33

Fig. 3.2: Possible influencing factors – for STLF 34

Fig. 3.3: Typical influencing factors – for M-LTLF 37

Fig. 4.1: A biological neuron 44

Fig. 4.2: An architecture of a feed forward neural network 45

Fig. 4.3: A Perceptron model 46

Fig. 4.4: Various types of transfer functions 47

Fig. 4.5: A feedforward network with one hidden layer and an output 48

Fig. 4.6: A structure of a Elman (recurrent) network 49

Fig. 4.7: A radial basis function network topology 50

Fig. 4.8: Errors vs. optimal network training 52

Fig. 4.9: A basic layout of a supervised learning paradigm using error correlation

technique

54

Fig. 4.10: A simple design flow chart for a supervised BP training method 57

Fig. 5.1: Single line diagram – 11kV network reticulation of the campus 60

Fig 5.2 (a): Load curves (Lowest & highest recorded load patterns in summer) 63

Fig 5.2 (b): Time series – load trend for the selected summer period. The first day is a

Friday (during holiday).

63

Fig. 5.2 (c): Structure of IV for the non weather sensitive model. 64

Fig. 5.2 (d): Load profile – for the selected winter period including Eskom’ load rationing 64

Fig 5.3 (a): The load over the period June 02 – 15, 2008 for the Administration Building.

The first day is a Friday.

65

Fig. 5.3 (b): Load profiles – for departmental loads (IT, ADM, and Electrical department). 66

Fig. 5.3 (c): Load profile – for the Air Conditioning Plant (First day is a Monday). 66

Fig. 5.3 (d): Load profile for the Mechanical Department including the surrounding

dwellings.

67

Fig 5.4: Hourly load curve –March 17, 2008 (Monday) 68

Fig 5.5(a): Cumulative daily load curve (Saturdays in summer) - Jan to May 2008. 68

 xi

Fig 5.5(b): Cumulative daily load curve (Sundays in summer) 69

Fig 5.6: Scatter plot between wind speed and the consumption in summer. 70

Fig 5.7 (a): A general overview of DB Manager – Workspace- (where historical load and

weather data are stored).

72

Fig. 5.7(b): A typical layout of some of the created tables. 72

Fig. 5.7(c): Importing data from an Excel spread sheet into MySQL DB 73

Fig. 5.7 (d): Raw load and weather data stored in the “ivalldata” Table for the IV # 1. 74

Fig 5.8(a): The effects of bad data on the load curves resulted from Eskom’s load

shedding. The total supply interruption period is 7 hours.

76

Fig 5.8 (b): The longest load shedding period - recorded in summer for the CPUT

Bellville Campus.

76

Fig. 5.9: Composition of the input vector # 2 78

Fig. 5.11: Structure of the IV # 1. 78

Fig. 5.10: Two weeks load profile for the CPUT Bellville Campus in summer (31
st
 March

to 13
th
 April 2008)

79

Fig 6.1: Flow chart for development of a supervised ANN-based model 82

Fig 6.2: Architecture of the feedforward neural network 83

Fig. 6.3: Elman recurrent neural network topology 85

Figure 6.4: Network architecture for the weather sensitive load forecasting model. 88

Fig 7.1 (a): De-normalized forecasts using the Feedforward Neural Network (non-weather

sensitive model) for the summer period.

92

Fig 7.1 (b): The associated actual error (kW) for the FFNN_TL_NWS01 model 93

Fig 7.1 (c): Network performance for a non-weather sensitive model. 93

Fig 7.2 Normalized forecasts using testing data – Feedforward ANN (non-weather

sensitive) in summer.

94

Fig. 7.3 (a): De-normalized forecast for the CPUT combined load (summer) - using Elman

Recurrent Artificial Neural Network (weather sensitive model)

95

Fig. 7.3 (b): The corresponding actual error for the ERNN_TL_NWS01 model 96

Fig. 7.3 (c): Network performance of the model 96

Fig. 7.4: CPUT combined load normalized forecasts (in summer) using Elman Recurrent

Neural Network

97

Fig. 7.5 (a): De-normalised forecasts (combined load) – using the Feedforward Neural

Network weather sensitive model.

97

Fig. 7.5 (b): The corresponding actual error (kW) for the FFNN_TL_NWS01 model 98

Fig. 7.5(c): Network performance of the model 99

Fig. 7.6: Normalized forecasts using Feedforward Neural Network weather sensitive

model

100

Fig. 7.7 (a): The network response of the Feedforward Neural Network Model (weather

sensitive)

101

Fig. 7.7 (b): The network response of the Elman Recurrent Neural Network Model (non-

weather sensitive)

102

Fig. 7.8(a): 1 week ahead forecast (summer) –Feedforward non-weather sensitive model 102

Fig. 7.8(b): The corresponding network performance-Feedforward non-weather sensitive)

model

103

Fig. 7.8(c): 1 week ahead forecast (winter) – Feedforward non-weather sensitive model 103

Fig. 7.8(d): The corresponding network performance of the FFNN_TL_WS02 (using

 xii

incremental training mode) – for the last forecast value (168h) 104

Fig. 7.10: Comparison of actual error – batch vs. incremental training mode. The forecast

is for the period from 7
th
 -13

th
 April, 2008.

107

Fig. 7.11(a): One week ahead forecast for the IT department (the forecast is for the week

of 17
th
 – 24

th
 August, 08) – FFNN_IT incrementally trained.

112

Fig. 7. 11(b): One week ahead forecast for the IT department (the forecast is for the week

of 17
th
 – 24

th
 August, 08) – FFNN_IT trained in batch mode. Forecast week

is from 17
th
 -24

th
 August, 2008.

108

Fig. 7.11 (c): Performance of the feedforward IT load forecasting model 108

Fig. 7.12(a): One week ahead forecast for the Electrical Engineering department

(ERNN_ELEC- trained in the batch mode. Forecast week is from the 16
th
 –

22 June, 2008.

111

Fig. 7.12(b): The corresponding network performance for the Elman model

(ERNN_ELEC)

111

Fig. 7.12(c): One week ahead forecast for the Electrical Engineering department

(FFNN_ELEC incrementally trained. Forecast week is from the 16
th
 – 22

June, 2008.

112

Fig. 7.12(d): The corresponding network performance for the Feedforward model

(FFNN_ELEC)

112

Fig. 7.13(a): One day forecast for the Mechanical Engineering Department electric load 114

Fig. 7.13 (b): The corresponding model performance 114

Fig. 7.14(a): One week ahead forecast for the Administration Building (ERNN_ADM

batch trained). Forecast week is from the 2
nd

 – 8
th
 of June 2008.

115

Fig. 7.14 (b): The corresponding model performance. 115

Fig. 7.14(c): One week ahead forecast for the Administration Building (ERNN_ADM

incrementally trained). Forecast week is from the 2
nd

 – 8
th
 of June 2008.

116

Fig. 7.14 (d): The corresponding model performance. 116

Fig. 7.14(a): One day forecast for the Air Conditioning Plant (ACP) electric load. 117

Fig. 7.14 (b): The corresponding model performance. 117

LIST OF TABLES

Table 2.1: Comparative analysis of some existing ANN-based forecasting models 27-

30

Table 5.1: A typical integrated schedule – for data gathering paradigm 62

Table 5.2: Correlation analysis between the load and exogenous variables 70

Table. 6.1: Developed forecasting models and the corresponding IV for total load

prediction.

87

Table 6.2: Schedule of the developed departmental load forecasting models 88

Table 7.1: Network Topology for the total load models 91

Table 7.1: Error comparative analysis on the evolved forecasting models for the total load 105

Table 7.2: Network Topology for the departmental load forecasting models 106

Table 7.3(a): Daily actual errors (kW) for the total load in summer – for the incrementally

trained Feedforward model

109

 xiii

Table 7.3(b): Daily actual errors (kW) – for the batch trained Elman Recurrent model

(total load in summer)

110

Table 7.4: Daily actual errors (kW) for the feedforward neural network incrementally

trained Model (FFNN_MEC)

114

Table 7.5(a): Daily actual errors (kW) for the feedforward neural network batch trained

Model (FFNN_ADM)

118

Table 7.5(b): Daily actual errors (kW) for the feedforward neural network incrementally

trained Model (FFNN_ADM)

119

Table 7.6: Error comparative analysis for departmental load forecasting models 120

Table 8.1: Composition of parameters for the total load models 122

Table 8.2: A schedule of the developed ANN-based electric load forecasting models 125

APPENDICES 136-224

Appendix A: The geographical layout of substations and some measurement points

and

 A single line diagram for the campus 11kV reticulation network

137,138

Appendix B: Detected bad data (load and weather related data) 139-143

Appendix C: Programming and installation guide for the Lovato power meter 144-149

Appendix D: Software routines (MATLAB Pseudo Codes) 150-206

Appendix E: Selected application results 207-222

Appendix F: Electric machines which were out of operation during measurements 223-224

 xiv

 GLOSSARY

MATLAB: A tool for doing numerical computations using existing functions

and user defined programs to analyze data and visualize the output.

Simulink: A platform for multi-domain simulation and model-based design of

dynamic systems.

Genetic Algorithm: An adaptive heuristic and global optimization technique based on

the mechanics of natural selection and genetics as observed in the

biological evolution

Artificial Neural Network: A biological inspired network which is capable of learning a pattern

from a set of training data and then able to generate the same outputs

as with the learning data when presented with a new set of data

which contains a similar pattern to that which the ANN was trained

with.

Demand: A rate at which electric energy is delivered to or by a system, part of

a system or a piece of equipment. It is expressed usually in kilowatts

at a given instant or averaged over any designated period of time (30

minutes). The primary source of "demand" is the power-consuming

equipment of customers.

Distribution: An act or process of delivering electric energy from convenient

points on the transmission system (usually a substation) to

consumers.

Load Profile or Curve: A curve on a chart showing power (watts) supplied, plotted against

time of occurrence, and illustrating the varying magnitude of the

load during the period covered.

Demand-Side Management: A broad term for electric load management applying to utility

actions, programs, and designs for the purpose of lowering system

peaks and reducing energy consumption by the consumer as well as

 xv

the utility system. There are direct actions and controls by the utility

that result in immediate results to lower peaks and reduce energy

requirements. There are also indirect (passive) programs requiring

the cooperation and participation by the consumer to achieve similar

results.

Load Management: An economic reduction of electric energy demand during a utility's

peak generating periods.

Reliability: A guarantee of a system performance at all times and under all

reasonable conditions to assure constancy, quality, adequacy, and

economy of electricity. It is also the assurance of the continuous

supply of electricity for customers at the proper voltage and

frequency.

Substation: An assemblage of equipment for the purposes of switching and/or

changing or regulating the voltage of electricity. Service equipment,

line transformer installations or minor distribution and transmission

equipment are not classified as substations.

Peak: A greatest load on an electric system during any prescribed demand

interval for a given period. The summer (or cooling) season peak is

normally smaller than winter season peak.

Forecasting: A process of estimation in unknown situations.

Perceptron: A type of artificial neural network invented in 1957 at the Cornell

Aeronautical Laboratory by Frank Rosenblatt.

Stochastic model: A time evolution of the model that contains random elements

Eskom: The largest South African power utility. City of Cape Town (CoCT)

purchases electric energy from Eskom.

Time-of-use electricity tariff: A tariff with three periods when energy is charged at

 xvi

different rates. The least expensive rate is called the off-peak period

and coincides with the time period when the system load is below a

certain threshold. The most expensive rate is called the peak-period

and corresponds to a period when the system load is above a certain

threshold. When the load is in between the off-peak and peak period

the time period is called the standard period. The rate for the

standard period is higher than the off-peak energy rates but lower

than the peak period energy rates.

Structured Query

Language (SQL): An American National Standards Institute (ANSI) standard

computer language for accessing and manipulating database

systems. SQL statements are used to retrieve and update data in a

dataset.

Non-essential load: refers to an electric load that can conceivably be shed for a limited

period at a time without negatively impacting on the operation of the

organisation as a whole.

Compact fluorescent

lamps (CFLs): are lamps which offer consumers lighting that have a longer life and

consume considerably less energy than conventional incandescent

globes.

 xvii

LIST OF ABBREVIATIONS

AI Artificial Intelligence

ANNs Artificial Neural Networks

AR Auto Regression

ARMA Auto Regression Moving Average

BL Boltzmann Learning

BP Back Propagation

CG Conjugate Gradient

CL Competitive Learning

CoCT City of Cape Town

CPUT Cape Peninsula University of Technology

CVP Cross Validation Pruning

ECL Error Correlation Learning

ECN Engineering Council of Namibia

EMS Energy Management System

ER Elman Recurrent

ES Expert System

FF Feedforward

GA Genetic Algorithm

HL Hebbian Learning

ICP Information Criterion Pruning

IPP Independent Power Producer

IV Input Vector

LM Lavenberg-Marquardt

LPU Larger Power User

MAPE Moving Average Percentage Error

 xviii

MLE Maximum Likelihood Estimation

MLP Multi Layer Perceptron

M-LTLF Medium-Long Term Load Forecasting

MPE Mean Percentage Error

MSE Mean Squared Error

NIEIR National Institute of Economic and Industry Research

NMD Notified Maximum Demand

pdf Probability Density Function

QN Quasi-Newton

RBF Radial Basis Function

RL Reinforced Learning

RSBP Rough Set Back Propagation

SSE Sum of Squared Error

STLF Short-Term Load Forecasting

TOU Time-of-use electricity tariff

 xix

LIST OF SYMBOLS

L̂ Forecast load value

L Actual load value

ju Output of the j
th
 hidden neuron

nL Normal or standard load value

ijw Weight factor between the input layer and the hidden layer

jw Weighted factor between the output layer and the hidden layer

x Model input

ε Error term

η Learning rate

iβ Regression parameter

m Input variable index

)(no Output of the output layer

)(tL Load value at time t

)1(−tL Load value of the previous hour

)2(−tL Load value at current hour minus 2 hours

)168(−tL Load value of the previous week at the same hour

)169(−tL Load value before the homologous load of the previous week

)(td Day indicator

)(tC Cloud rate at time t

)(tH Humidity at time t

)(tW Wind speed at time t

 xx

N Number of observations or data points

wL Weather sensitive part of the load

sL Special event component that creates a substantial deviation from

the usual load

ia Estimated slowly varying coefficients

iy Independent influencing factors such as weather effect

)(tS Seasonal term

)(tR Irregular or random component

sL Slope between the load at time t and load of the previous hour

B Backshift operator

ρ Basis function

ψ Momentum factor

1σ A tan sigmoid transfer function in the hidden layer neurons

2σ A pure linear transfer function in the output layer

K A coefficient of the pure linear transfer function

r Number of hidden layer neurons

iz The weighted sums of the i
th

hidden layer neuron

 1

CHAPTER ONE

 INTRODUCTION

This chapter encapsulates a brief overview of power system load forecasting, awareness of the problem,

problem statement, research aim and objectives, hypothesis, assumptions, delimitations and motivation of

the research. It also partially covers research design and sampling methodologies. The last part of this

chapter provides the organization and outline of the thesis.

1.1 Summary

With the skyrocketing growth of power system networks and the increase in their complexity, many

factors have become influential in electric power generation, demand or load management (Moulin et

al., 1999). Load forecasting in one of the critical factors for economic operation of power systems.

Forecasting of future loads is also important for network planning, infrastructure development and so

on. However, power system load forecasting is a two dimensional concept: consumer based

forecasting and utility based forecasting. Thus the significance of each forecast could be handled

disjointedly. Consumer based forecasts are used to provide some guidelines to optimize network

planning and investments, better manage risk and reduce operational costs.

In basic operations for a power generation plant, forecasts are needed to assist planners in making

strategic decisions with regards to unit commitment, hydro-thermal co-ordination, interchange

evaluation, and security assessments and so on. This type of forecast deals with the total power

system loads at a given time, and is normally performed by utility companies.

Nonetheless, power system load forecasting can be classified in three categories, namely short-term,

medium term and long term forecasting. The periods for these categories are often not explicitly

defined in a number of literature papers. Thus different authors use different time horizons to define

these categories. But roughly, short-term load forecasting covers hourly to weekly forecasts. These

forecasts are often needed for day by day economic operations of power generation plants.

Medium-term load forecasting deals with predictions ranging from weeks to a year. Outage

scheduling and maintenance of plants and networks are often roofed in these types of forecasts.

 2

Long term forecasting on the other hand deals with forecasts longer than a year. It is primarily

intended for capacity expansion plans, capital investments, and corporate budgeting. These types of

forecasts are often complex in nature due to future uncertainties such as political factors, economic

situation, per capital growth etc. Planning of new and extensions to existing power system networks

for both the utility and consumer require long-term forecasts.

The accuracy of the forecast is a critical feature in power system load forecasting. A poor load

forecast misleads planners and often results in wrong and expensive expansion plans. From the

consumer forecast view, accurate load forecasting is important for distribution system investments,

electric load management strategies. This subject also forms part of load rationing strategies i.e. load

shedding, DSM (demand side management) initiatives and so on. Without replicating, short term

load forecasting is an essential function in daily operational activities especially for utility

companies. A negative error in the forecast could severely affect consumer’s production levels,

particularly for larger power users. Thus accurate forecasts are required for power system security

and its overall reliability.

One of the convincing ways to predict loads that are known to be varying continuously on short-term

bases is to rather minimise load sampling points to several minutes or hours. This approach is called

very short-term load forecasting and is also discussed in this work.

Undoubtedly, both utility companies and consumers are challenged to accurately predict their

respective loads. This challenge has been in existence for decades, thus a variety of load forecasting

techniques ranging from classical to intelligent systems have been developed to date, and highlighted

in a number of studies. The ultimate distinction of these methods can be drawn on the bases of

forecast accuracy.

The most popular techniques used for load forecasting are time series based models, similar-day

approach and intelligent system based models. Some of the conventional forecasting methods have

major drawbacks especially their inability to map the non-linear characteristic of the load, thus a

substitute of classical methods with intelligent system based models is to a great extent essential.

Most forecasting models use statistical techniques or artificial intelligence algorithms such as

regression, neural networks, fuzzy logic, and expert systems (Feinberg et al., 2005)

 3

Amongst all other intelligent techniques, the use of ANN in STLF is very predominant. Most recent

load forecasting works are based on Artificial Neural Networks, and a majority of these papers

presented good estimates. Because ANNs are capable of generalization and learning non-linear

relationships between variables, ANN-based approaches are often favoured for STLF problems

(Lauret et al., 2007). The other important feature of ANNs is their capability to iteratively adjust the

synoptic weights between layers. Conventional methods on the other hand require static complex

mathematical equations and but still perform poorly in comparison to intelligent-based approaches.

Another leading load forecasting method is Fuzzy logic. Its application in load forecasting is based

on periodical similarity of electric load, where the input variables, output variables and the governing

rules are the key points. The scope of this work does not cover this technology despite a brief

introduction in following chapter. .

1.2 Scope of work of this research

This research work focuses on a specific area of load forecasting, short-term load forecasting. The

forecasts are achieved by using Artificial Neural Network (ANN) based models, i.e. feed-forward

and recurrent networks developed in MatLab and Simulink environment. The models are then

applied to the actual load data of the Cape Peninsula University of Technology to forecast what is

often referred to as “consumer own forecast”. The application of the models to factual data is done

merely as case study to validate the approach. Figure 1.1 below attempts to clarify the focus of this

research.

Fig 1.1: Types of load forecasting and focus of the research.

1.3 Awareness of the problem

Short-term load forecasting plays a major role in the real-time control and security functions of an

energy management system (Srinivasan, 1998). Laurent (Lauret et al., 2007) concluded that accurate

forecasts greatly benefit power system planners to accomplishing a variety of tasks such as economic

Power System Load

Forecasting

Very short term

Short term Medium term Long term

Area of interest

 4

scheduling of generating capacity, scheduling of fuel purchases etc. However, load forecasting is a

difficult task because the consumption is influenced by many factors, such as weather conditions,

vacations, economy status, and idiosyncratic habits of individual customers (Goa et al., 2001).

Inaccurate load forecasts may increase operating costs. (Bunn et al., 1985) reported that a one

percent increase in forecasting error of electricity demand resulted in a £10 million increase in

operating costs in the British power system. This is purely an error in the utility-type of load forecast.

Evidently, a poor load forecast misleads planners and often results in wrong and expensive expansion

plans.

Equally, overestimating future electric loads may result in a redundant reserve of electric power. On

the contrary, underestimation of loads causes failure in providing sufficient electric power (Pai,

2006).

For a planner to neither underestimate nor overestimate the load, convenient forecasting techniques

with reasonable degree of accuracy need to be developed. Although ANN based models entertain

some superiority in dynamic systems, possibilities to improve associated drawbacks can not be ruled

out. Amongst others, long training time, dependence on initial parameters, lack of appropriate

network topology are some of the disadvantages.

Therefore there is a need for development of optimal network structures for ANN based load

forecasting models to improve the forecast error. The main research question of the project can be

formulated as:

How can supervised ANN-based load forecasting models be rationally trained using back

propagation algorithms and possibly obtain an optimal network structure for short-term load

forecasting?

1.4 Problem statement

Generally, electric load forecasting is a complex exercise. Although ANNs are proven superior

methodologies for STLF compared to traditional techniques, the design of optimal network structures

has not yet been successfully implemented. And the fact that an electric load is a non-linear function,

traditional forecasting methods are simply not suitable for the application due to the lack of nonlinear

mapping ability. Intelligent techniques on the other hand, require optimal network structure and

 5

unified training algorithms in order to improve the accuracy of the forecast as well as the

performance of the network.

Problem statement: To develop optimised Artificial Neural Network-based models for Short-Term

Load Forecasting and apply these models to a real life case study to evaluate

the performance of the proposed approach and provide one week ahead

forecast for the CPUT Bellville Campus power system network.

1.4.1 Load forecasting problem decomposition

Phase I- Approximation tool

Analysis of the components of the existing neural network prediction structures,

development of the ANN-based models, the optimization criterion needs to be

reviewed.

1.4.1.1 Neural Network Architecture

 A basic introduction to ANN is required to assist the reader in having a far reaching

understanding on the concept, thus a chapter on this subject is an absolute requirement.

General applications of ANN have also to be highlighted.

 For model parameters selection, a systematic approach with regards to number of

hidden layers, number of nodes, epochs, network performance, desired activation

functions, and training period has to be unambiguously formulated.

 Moreover, the application of gradient descent error back propagation algorithm to the

network to get correct set of weights needs to be carefully analyzed.

 The evolved models need to be trained, thus the selection of training algorithm and

parameters needs to be explicitly understood.

1.4.1.2 Back Propagation Algorithm and Training Parameters

For the network to accomplish realistic targets, the network learning phase requires a

teacher. This requirement of is often referred to as “supervised learning”. The

following network development issues or points required a good understanding:

learning rate, momentum factor, local and global minima, generalisation, and

memorization of the network.

1.4.1.3 Development of ANN-based forecasting models

 6

The development forecasting models is the engine of phase I and the whole project

entirely. This implies that the appropriate ANN topology and training algorithm need

to be identified, implemented and analyzed.

Phase II – (Data Collection, Poor or Inadequate Data Treatment, Pre/Post Data

Processing)

1.4.1.4. Historical load data

The total electric load of the Cape Peninsula University of Technology needs to be

measured preferably at the main intake substation for at least two seasons (winter and

summer). Subsequently, measurements were taken at the main intake substation using

(E1 Enermax) Maximum Demand Meter and data were downloaded using Optical

head to RS232/USB communication options. As for departmental loads, a roving

Lovato Power Meter (DMK 40 type), class 1 meter, with data logging features, was

programmed and installed at various distribution boards/substations feeding the

following departments: Administration, Electrical, IT and Mechanical. Similarly, data

were also downloaded using the Serial port (RS232) communication option to a

stationary PC.

1.4.1.5. Weather data

As described earlier, an electrical load is a non-linear function influenced by a

variety of variables. Some major factors influencing the load need to be considered.

The selection of input variables is a critical research component individually, thus

only variables with a sound correlation with the load are considered. In this work,

only past contiguous load values and weather related data (daily wind speed,

humidity, minimum and maximum temperatures) are used. This decisive factor is

necessary to avoid network over fitting. The weather data (both for the summer and

winter period) were provided by the South African Weather Service Office based in

Cape Town.

 Phase III – Computing and Training

1.4.1.6 Modelling

 The developed ANN models are trained under MatLab
®
, ver. 7.1, environment.

Phase IV - Validation and Results

 7

1.4.1.7 Testing of Models

 This part is a key component of the project where the forecasts are compared to the

actual load, and the error is computed. Results obtained by using both Feedforward

and Elman Recurrent ANN-based models are analyzed and compared to the actual load

data. Thus, in this thesis, various input variables such as historical load data and

weather data are selected.

The standard mean absolute percentage error (MAPE) is most reported performance measure

function (Mandal et al., 2006, Al-Shareef et al., 2008, Sharif et al., 2000, Rashid et al., 2005,

Conzâlez et al., 2004 and Hayati et al., 2007).

∑
=

−=
N

i

LLL
N

MAPE
1

/)ˆ(*
100

(%) (1.1)

Where L denotes the actual load value, L̂ is the forecast load value, and N represents the number

of observations or data points.

 But in this work, the following performance measure functions were employed: mean squared error

(MSE) and mean percentage error (MPE) to evaluate the performance of the models.

2

1

)])(ˆ)([(
1
∑

=

−=
N

i

predictedactual nLnL
N

MSE (1.2)

NnLnLnLMPE
N

i

actualpredictedactual /)](/))(ˆ)([(
1

∑
=

−= (1.3)

Where
iactualL is the actual load,

iactualL̂ is the forecast value of the load, and N is the number of data

points.

Phase V – Documentation

The outline of the thesis is given at the end of this chapter. This work does not necessary form part

of the load forecasting problem. However, enough time is allocated to document this experiment.

1.5 Research aim and objectives

The impetus of the study is mainly to develop ANN-based models for STLF, and do network

assessments on the bases of the average forecast error, and network performance using different

training approaches. The models are trained by using error back propagation algorithm to adjust

 8

biases and connection weights between layers. Possibilities for minimizing the error means of other

intelligent-based technique such as genetic algorithm (GA) are also explored and evaluated.

Aim: To develop supervised ANN-based models for short-term load forecasting (STLF), and evaluate

the performance of these models by applying the actual load data of the Cape Peninsula University

of Technology Bellville campus to predict the load of one week in advance.

In order to accomplish this aim, the following objectives are to be achieved:

1.4.1 The process of load forecasting requires a time series of historical data, thus it is required to

gather the historical load data of the campus reticulation network.

1.4.2 Climatic conditions may affect the load greatly, especially in areas where sudden weather

changes are always anticipated such as Cape Town. Thus this work takes into account the

weather effect on the load. To enforce this feature, weather data such as minimum and

maximum temperatures, wind speed, and humidity should to be gathered and presented as

network inputs.

1.4.3 To acquire and set up a convenient local data management system (database) for storing all

collected data.

1.4.4 The possible existence of bad data in the load curves as well as in the weather data cannot

unfortunately be discarded. Therefore one of the objectives is to develop a strategy aimed at

detecting and eliminating the bad data.

1.4.5 ANNs are vulnerable to raw data, thus it is essential to select suitable techniques for

normalizing the data prior to applying them to the network for an attempt forecasting.

1.4.6 To develop two different Artificial Neural Network-based models for STLF and evaluate

their performance using the mean squared error (MSE) and other supplementary performance

measure functions.

1.4.7 To assess other forecasting methodologies by means of explanatory methods.

 9

1.4.8 The CPUT power system operators with their long time working experience might have

some good intuition in manual load forecasting. Therefore it is extremely important to

combine their experience in convenient manner.

1.4.9 To train the evolved models under the MATLAB environment and predict the total load for

CPUT Bellville campus and the loads of some selected departments with 168 hours lead time

forecast.

1.4.10 The other important objective is find convenient model training approach that yields the best

results.

1.4.11 Last but not least, to document the work done during the experiment and submit the thesis by

November 2008.

1.6 Hypothesis

The average forecast error can be improved by developing and implementing a customized ANN –

based models based on the standard error back propagation training algorithm using a convenient

training approach.

1.7 Project motivation

General view: accurate short-term load forecasting in power industry assists planners to make

strategic decisions on unit commitments, purchase of energy, optimal reserve capacity, system

security, and reliability etc. Consumers are also required to predict the load accurately for load

management and investment criterion purposes. Without replicating, load forecasting is a two

dimensional concept, and this distinction is repeatedly perplexed. Figure 1.2 hereunder attempts to

clear possible ambiguities on load forecasting dimensions in power system context. The first

dimension, specifically deals with utilities’ forecast, and the second one, fundamentally involves

consumer load forecast.

 10

Fig 1.2: A typical load forecasting outline and some applications.

The quality of the network investment decision is based on the analysis of load growth and an

economic sound decision can separate the good investments from the investments likely to end-up as

“stranded assets”.

Case study outlook: The CPUT notified maximum demand
1
 has considerably increased since the

inception from 0.5MVA in 1962 to 2.2 MVA in 2008.

In the absence of any similar studies, short-term future loads should certainly be investigated. As

already stated, the forecast can provide the campus management with some guideline with regards to

the current maximum demand, and possibly a more realistic NMD (notified maximum demand) can

be declared. In this light, load management requirement partially qualifies the significance and

applications of this research work. CPUT network planners greatly benefit from this work.

This process (energy management) is an essential element for both utilities and consumers. As

illustrated in Figure 1.2, load forecasting is certainly the prerequisite to any load management

programmes.

1- A Verbal feedback from the CPUT Management-

Power System Load

Forecasting

Very short term Short term Medium term Long term

Consumer’s own load forecast Utility load forecast

Consumer 1 Consumer N

Area of interest

Case Study

-Unit commitment

-Energy purchasing

-Optimal reserve capacity

-Improved system security

and reliability

-As a tool for corporate

energy management

programmes, etc. -Contingency network analysis

-Infrastructure development

- *Energy Management etc peak

clipping or filling, load scheduling

or DSM initiatives

 11

The developed models are applied to actual load of the CPUT – Bellville Campus to forecast the load

on short-term bases. Figure 1.3 illustrates extrapolated load growth pattern of the campus since its

inception in 1962.

The CPUT (Bellville Campus) Extrapolated Load

Curve - based on NMD-

0

0.5

1

1.5

2

2.5

1962 1965 1971 1978 1981 1990 1994 2003 2007

Period (year)

P
o

w
e

r
(M

W
)

Series1
Estimated Actual load

Fig. 1.3: Load growth curve –for the CPUT (Bellville-Campus) derived using extrapolated annual Notified

Maximum Demand data.

1.8 Delimitation of the research

The scope of work of this work is solely based on the ANN technique and the comparisons of the

results and performances are done only using ANN based models. However, other classical popular

load forecasting techniques are discussed and analyzed by means of explanatory methods.

The performance evaluations of these models are limited to the CPUT actual load data but the

models with slight modifications can be universalised for utilities’ applications.

Only short-term load forecasting is modelled and analyzed in this research work.

Although seasonal load variations (winter and summer) are considered, major sudden changes of

load are not easily detected by the models. Forecasting the load for holidays or special days does not

form part of this work.

The training data set used in this work is limited to four months of historical load pattern for each

season.

Both medium to long-term load forecasting are not covered in this work.

 12

1.9 Assumptions

To achieve the aforementioned research objectives, the following assumptions are made:

1.9.1 Short term load can be forecasted using limited historical data and the ANN model has the

ability to map the non-linear characteristic of the load given a number of inputs.

1.9.2 The optimal training of the MLP (Multi-Layered Perceptron) network is possible, and the

connection weights between layers can be adjusted as desired.

1.9.3 The load profile of each building or department can be measured and assessed separately.

1.9.4 It is also assumed that the installation and commissioning of Digital Power Multi-Meter

(DMK 40) for actual load measurements can be completed. Another crucial assumption is

that the meter has the required data storage capability, and/or the built-in 2Mbytes (MB) non-

volatile memory will be sufficient to uninterruptedly record data for at least two weeks.

1.9.5 The CPUT reticulation network operators (maintenance team) and the local meteorological

service office are, upon request, willing to provide the required data.

1.9.6 The real-time simulation and modelling of the ANN models under the MatLab environment

will be possible.

1.9.7 It is further assumed that the electricity price or tariff remains unchanged or the change

remains within ± 10%, as the impact of the electricity price change is not considered.

1.9.8 The nature of the measured data can be presented by means of a time series load pattern with

deterministic characteristics.

1.9.9 A strategy can be formulated to detect and replace possible bad data. And the implementation

of an algorithm to normalize all the input data can be easily carried out.

1.9.10 The dependence of the load on the weather conditions is a deterministic one.

 13

1.10 Research design and methodology

1.10.1 Investigation methods

Data collection is a convoluted exercise, thus a combination of research methodologies needs to be

defined. In this work, quantitative research method is used as a tool to get required data. Amongst

other research investigation technique, some data are obtained by means of questionnaires, personal

interviews, and equipment (power meters) for numerical data measurements.

Questionnaires – were typically designed for energy end-users i.e. lecturers, students, house parents

etc to provide info regarding electricity use pattern.

Personal interviews – This arrangement is ideally designed to interact with the system operators,

maintenance team, and officers from meteorological department. Such liaison structures are

necessary to determine critical monitoring points or priority areas.

Modelling – The selected input data are carefully interpreted and normalized before presented as

model inputs to avoid, amongst others, over-fitting and input redundancy.

1.10.2 Sampling methodology

Sampling does not necessary apply to the selected method. However the forecasts need to be

validated by comparing the output of the model with the actual load data. Another fact that needs to

be considered is the measurement points in the campus ring network. More technical detail regarding

the network is discussed in chapter 5. Due to limited data logging meters and the time frame, only

limited residential and educational buildings are measured. These include and the electrical,

information technology (IT), mechanical departments, air conditioning plant (ACP), and the

administration building in addition to the total load of the campus recorded at the intake substation.

1.10.3 Literature review

To date, a number of load forecasting techniques have been developed, thus a comprehensive

literature review needs to be conducted in order to evaluate different reported forecasting approaches,

and possibly establish the associated drawbacks. This subject is exclusively covered in the following

chapter. A majority of papers report that intelligent system models, particularly ANN based model is

more superior and attractive approach for dynamic systems compared to the conventional one.

Further, the forecasting techniques proposed and used in journal papers, databases, and books have

been extensively analyzed.

 14

1.10.4 Data collection, normalization, bad data detection and treatment

The historical load data of the CPUT (Bellville Campus) were acquired by means of measurements

(i.e. using DMK 40 Digital MultiMeters). Weather data were obtained from a local meteorological

office. The weather related data are essential for the model. The gathered data were then analyzed,

interpreted, normalised, and assigned to the model in a simplified manner. Other factor such as

seasonal change was also considered.

1.10.5 Thesis organization outline

This thesis document comprises eight chapters, arranged in a systematic manner: the first chapter of

the document mainly discusses the background, purpose of the work and breakdown structure of the

work.

The second chapter covers literature review i.e. methods used for load forecasting, comparisons of

various papers, findings and remarks. In this chapter, drawbacks of different forecasting methods are

also highlighted. This chapter exclusively also discusses the application of genetic algorithm to

STLF.

Chapter three of this document broadly talks about power system load forecasting: i.e. the factors

affecting the load, characteristics and features of the power system load. This chapter also roofs basic

requirements of a good STLF system.

The concept of Artificial Neural Networks is briefly introduced in chapter four. This section covers

a history and topologies of ANNs, trainings, associated errors, learning paradigms of ANNs etc.

Moreover, technique used for teaching ANNs i.e. error back propagation(BP) algorithm, Conjugate

Gradient algorithm (CG), Quasi-Newton algorithm (QN), Lavenberg- Marquardt (LM) are also

discussed in this chapter.

The content of the fifth chapter entails description of the data, data collection methods, and pre-

processing. This section also defines how the selected data were imported into the local database and

then into the MATLAB workspace. Moreover, this chapter further clarifies the existence of bad data

in the load curves and the method used to replace such data prior to storage. The description of the

collected data is also clearly defined in this chapter. Chapter six generally deals with the application

of ANNs in load forecasting. This chapter also encompasses some essential procedure for developing

ANN-based model as well the composition of the input vectors (IV) for the developed models.

 15

The core section of the project, the simulation results, is discussed in Chapter Seven. This section

of the document also covers some specific discussions on different STLF models. In other words,

this part of the document entails real implementation of the project i.e. Application of the duo models

to STLF using the actual load data of the CPUT Bellville Campus as a CASE STUDY.

The last chapter (Chapter 8) of the thesis encapsulates conclusion and future outlook of the project.

1.11 Conclusion
This chapter highlights the basic introduction of the proposed research project. Thus it generally

covers the scope of work, significance and objectives of the proposed research project, some brief

research methodologies. The chapter also discusses some well thought-out assumptions,

delimitations of the research as well as the structure of the proposed work and final organization of

the thesis.

In order to establish possible shortcomings of some commonly used forecasting methods, one needs

to extensively conduct a literature review on the existing forecasting techniques. This subject is

covered in the following chapter and some of the commonly used forecasting techniques are

discussed by explanatory means therein.

Moreover, the following chapter also covers a brief introduction of genetic-based search in STLF

with a hope to minimize the error function.

The next chapter also highlights a comprehensive comparison of some previous similar works on the

following basis: problem statements, methodologies, findings, drawbacks, and areas of possible

improvements. The findings, remarks, and conclusions of the literature comparison are also discussed

in the next chapter.

 16

CHAPTER TWO

 LITERATURE REVIEW

The subject of load forecasting has been in existence for decades, and a number of techniques have been

developed. These methods are based on either classical or modern approach. This part of the research work

is necessary to establish the statistical relevance of the proposed research project, establish a generalized

research question, analyze existing methods, and explore areas of possible improvements. This chapter also

covers the analysis of various existing load forecasting techniques, a comparative study of reviewed papers,

findings and remarks.

2.1 Overview of load forecasting techniques

Load forecasting has become one of the most significant aspects of electric utility planning. The

economic consequences of improved load forecasting approaches have kept development of

alternate, more accurate algorithms at the forefront of electric power research (Kermanshahi et al.,

2001). Thus the significance of the subject in power systems has drawn alarming interests of many

researchers, and to date a number of load forecasting approaches have been developed. Some of the

most popular techniques are discussed in this chapter.

Generally, load forecasting models can be classified into two categories: time-of-day models and

dynamic models. Time-of-day model is a non-dynamic approach and expresses the load at once as

discrete time series consisting of predicated values for each hour of the forecasting period. The

second classification involves the dynamic model that recognizes the fact that the load is not only a

function of the time of the day, but also of the load most recent behaviour.

The load can be represented mathematically as a function of different factors such as time, weather,

customer class etc. In a typical additive model, the estimated load is given by.

rswn LLLLL +++=ˆ (2.1)

 Where L̂ is the total estimated load, nL represents the normal part of the load, wL represents the

weather sensitive part of the load, sL is a special event component that creates a substantial deviation

from the usual load pattern, and rL is a complete random term, the noise.

 17

The previous works presented that, better forecasting results could be realized by considering the

electricity pricing in mathematical models. The representation of multiplicative approach can be

formulated as.

rswn FFFLL •••=ˆ (2.2)

Where nL is the normal (base) load, and the correction factors wF , sF and rF are positive numbers

that can increase or decrease the overall load. These corrections are based on current weather (wF),

special events (sF) and random fluctuation (rF) which include factors such as electricity pricing or

load growth factor.

Forecasting the load using the proposed method involves weighted inputs which are passed through

nonlinear transfers. Thus the proposed technique somehow uses a combination of additive and

multiplicative methodologies to predict required load values.

2.2 Classification of forecasting methods

The following methods are widely used for load forecasting: similar day approach, regression

models, time series, neural networks, expert systems, fuzzy logic, statistical learning algorithms, etc.

These methods can be classified in terms of their degrees of mathematical analysis used in the

forecasting model and are presented into two basic types, namely: quantitative and qualitative

methods.

In most cases historical data are insufficient or not available at all, yet it is anticipated for planners to

accurately forecast, thus qualitative forecasting methods are generally used. Among others, these

methods include: Delphi method, curve fitting and technological comparisons. Other forecasting

techniques such as decomposition methods, regression analysis, exponential smoothing, and the Box-

Jenkins approach are quantitative methods. These methods are considered in the thesis.

The following techniques for load forecasting are analyzed and compared in the thesis:

� Regression models

� Time series

� Time-of-day models

� Similar-day Approach

� Stochastic time series models

� Intelligent system based models (i.e. ANNs and GA)

�

 18

2.2.1 Regression methods

Regression is one of the most widely used statistical techniques and it is often easy to be

implemented. The regression methods are usually employed to model the relationship of load

consumption and other factors such as weather conditions, day types, and customer classes. This

method assumes that the load can be divided in a standard load trend and a trend linearly dependent

on some factors influencing the load (Gross et al., 1987).

The mathematical model can be written as:

∑
=

++=
n

i

iin ttxatLtL
1

)()()()(ˆ ε (2.3)

where)(tLn is the normal or standard load at time t, ia is the estimated slowly varying coefficients,

)(txi are the independent influencing factors such as weather effect,)(tε is a white noise

component, N is the number of observations, usually 24 or 168.

2.2.1.1 Linear Regression

Linear Regression is the most popular method, and often used to forecast the load affected by a

number of factors ranging from meteorological effects, per capital growth, electricity prices,

economic growth etc. The model can be formulated as:

εββββ +++++=)()()()()(ˆ
22110 txtxtxttL kkL (2.4)

where, βi are the regression parameters with respect to xi, and ε is an error term.

This model assumes that the error term ε has a mean value equal to zero and constant variance.

In this model, regression parameters (βi) are estimated from observation of the load and the affecting

factors. Let βi (i=0,1,2,…k) be estimated in terms of bi (i=0,1,2,…k). The forecast load (L̂)

becomes:

)()()()(ˆ
2)(2110 txbxbtxbtbtL kkt ++++= L (2.5)

Using the least square estimates method which minimizes the Residual sum of squares (SSE)

(Bowerman et al., 2005) the parameters bi can be obtained:

[] LXXXbbbbB
TTT

k

1

210)(−== L (2.6)

where L and X are the following column vector and matrix:

 19



















=





















=

nknn

k

k

n
xxx

xxx

xxx

Xand

L

L

L

L

L

MMMM

L

L

M

21

22221

11211

2

1

1

1

1

ˆ

ˆ

ˆ

 (2.7)

Hence the parameters are calculated, and this model can be used for prediction. Accurate load values

(L̂) are achieved if the standard error s is small.

forecastednLactualnLnLnLSSE
kn

SSE
s

N

i

−−−=
+−

= ∑
=

)(ˆ,)(,))(ˆ)((,
)1(1

2 (2.8)

2.2.2 Time series

Time series methods are based on the assumption that the data have an internal structure, such as

autocorrelation, trend or seasonal variation. The first impetus of the approach is to accurately

assemble a pattern matching available data, and then obtain the forecasted value with respect to time

using the established model. The model characteristics can be formulated as: (Janacek et al., 1993)

)()()()(ˆ tRtStLtL n ++= ...2,1,0,1.... −=t (2.9)

Where)(tLn denotes the standard load value,)(tS is the seasonal term, and)(tR is the irregular or

random component.

2.2.3 Time-of-day model

This approach presents a simplest form of load forecasting. The model uses the previous week’s

actual load pattern to predict the present week’s load. Alternatively, a set of load patterns is stored for

typical weeks with different weather conditions. These are then heuristically combined to create the

forecast.

The equation of the model can be written as: (Gross et al., 1987)

)()()(ˆ

1

ttfatL
n

i

ii ε+=∑
=

 (2.10)

where the load at time t ,)(ˆ tL is considered to be the sum of explicit time functions,)(tfi usually

sinusoids with a period of 24 hrs or 168 hrs depending on the forecast lead time, ia are slowly time-

varying coefficients, and)(tε represents the error term.

 20

2.2.4 Similar days approach

Similar days approach can be formulated on the bases of Euclidean norm. The model assumes the

load as a row vector in which weighted factors are used to assess the similarity between the forecast

day and searched previous days. Suppose, the vector x = [x1, x2, ..., xn]
nR∈ the equivalent Euclidean

norm can be defined in
nR

space by the formula:

22

1 ... nxxx ++= (2.11)

Similarly, for Euclidean norm in a form of complex vector z = [z1, z2, ..., zn]
n

C∈ , where
n

C

represents the dimensional complex space. Hence the corresponding representation can be written as:

22

1 ... nzzz ++= (2.12)

where z is the amplitude of the i
th
 complex component.

 It is useful to utilize the evaluation determined by the Euclidean norm, which makes us understand

the similarity by using an expression based on the concept of norm. Decrease in Euclidean norm

results in better evaluation of similar days. The model equation is used as Euclidean norm with

weighted factors and can be formulated as: (Mandal et al, 2007)

2

3

2

2

2

1)()()(tst TwLwLwD ∆+∆+∆= (2.13)

P

ttt LLL −=∆ (2.14)

P

sss LLL −=∆ (2.15)

1−−= tts LLL (2.16)

where tL is the hourly load on forecast day,
P

tL is the hourly load on historical days, tL∆ is the load

deviation between the load on forecast day and the load on historical days, sL is the slope between

tL and 1−tL ,
P

sL is the load slope of historical days, sL∆ is the deviation of slope between the load on

forecast day and the load on historical days, and ∆Tt is the temperature deviation.

2.2.5 Stochastic time series models

Unlike other classical forecasting techniques, the stochastic time series method expresses the current

load linearly in terms of its previous value, and a white noise series with zero mean and variance.

(Janacek et al., 1993 and Moghram et al., 1989)

 21

This representation introduces the backshift operator and qualifies the method to partially handle the

complexity of dynamic load forecasting. The model can be presented as:

tptpttt xxxx εφφφ ++++= −−− ...2211 (2.17)

where, tx is the current load value, 1−tx and 2−tx are previous load values, and tε is a zero mean

white noise.

The basic idea of this approach is to introduce a backshift operator. Suppose B denotes the operator,

then the previous load value becomes:

tt Bxx =−1 (2.18)

Similarly, the m
th
 previous load value can be formulated as:

t

m

mt xBx =− (2.19)

Substituting equation (2.18) and (2.19), the model can be presented as:

ttxB εφ =)((2.20)

where,
p

p BBBB φφφφ −−−−= K
2

211)((2.21)

There are two popular methods used to calculate parameters iφ for forecasting, namely maximum

likelihood estimation (MLE) and least squares estimation.

Literature reports that MLE method is considered attractive because it has minimum variance and is

unbiased, thus this approach is considered in thesis.

The MLE assumes a sample of dependent observations tx , t= 1,...,N each with density

function)(txf . The combined density function can be formulated as:

)|(),...,,(1

1

21 −

=

∏= tt

N

t

N xxfxxxf (2.22)

where, tx represents all observations up to and including tx .)|(1−tt xxf is the conditional

distribution of tx given all observations prior to t.

To compute the required forecasting parameters, the MLE approach further predicts that the zero

mean white noise (tε) remains normally distributed.

Suppose the mean of the conditional distribution is 2211 −− + tt xx φφ , and the variance is
2σ . The

model equation is derived as:

 22








 −−−
= −−

2

2

2211
21

2

)(
exp

)2(

1
),...,,|(

σ

φφ

σπ
ttt

Nt

xxx
xxxxf (2.23)

Similarly, set of 1x and 2x to be fixed and defined by the conditional likelihood as:

∏
=

−=
N

t

tt xxxxfL
3

121),...,,|()(
~

φ (2.24)

Finally, the desired parameters can be computed by minimizing)(
~

φL .

2.2.6 Intelligent system based models

“The thread that unifies so many different concepts is woven from the interpretation of the intelligent system.

Practically speaking, an intelligent system is one which employs Artificial intelligence (AI) to fulfil some or all

of its computation requirements” (Warwick et al., 1997)

Many studies have reported the superiority of the intelligent system methods in load forecasting

models. The next section now briefly discusses some of the widely used artificial intelligence based

techniques.

2.2.6.1 Artificial Neural Networks

An artificial neural network (ANN) is a computational model inspired by a biological nervous

system. The network consists of interconnected group of neurons and processes information using a

connectionist approach to computation. The distributed processing by neurons results in intelligent

outcome. ANN-based model learns to perform a desired task directly from examples using special

training algorithms. The basic structure of an ANN process is illustrated in Figure 2.1. This method

is also often regarded as an adaptive system that changes its structure based on external or internal

information that flows through the network during the training.

Fig 2.1: A simple ANN structure

2.2.6.1.1 Neural Network Function Approximation tool

Neural networks are essentially non-linear circuits that have the demonstrated capability to do non-

linear curve fitting. The approach is also suitable to analyze dynamic systems.

 23

The outputs of an artificial neural network are some linear or non-linear mathematical functions of its

inputs.

The inputs may be the outputs of other network elements as well as actual network inputs. In practice

network elements are arranged in a relatively small number of connected layers of elements between

network inputs and outputs. The target output is achieved by adjusting neuron weights in a

Multilayer Perceptron.

2.2.6.1.2 Proposed ANN-based Models

A number of ANN-based structures have been developed. The three common ANN family models

are: Feed-forward, Radial based, and Recurrent types ANNs. The proposed research project

explicitly analyzes the performance and accuracy of a feed-forward and a recurrent ANN-based

model.

2.2.6.1.3 A Multilayer Perceptron (MLP)

Figure 2.2 shows a network configuration of a three-layered feed-forward network.

The inputs are fed into the input layer and multiplied by interconnection weights, and then passed

through an activation function before passed on to the next layer.

Fig 2.2: A Feedforward neural network with one hidden layer and multi-outputs

1

2

3

4

5

r

wk x1

x2

x3

x4

xm

wij

1L̂

2L̂

3L̂

 24

2.2.6.2 Expert Systems (ES)

This method uses Artificial Intelligence at a high level perspective. It is derived by system

developers and experts through experience and close interactions. AI's scientific goal is to understand

intelligence by building computer programs that exhibit intelligent behavior. It is concerned with the

concepts and methods of symbolic inference, or reasoning, by a computer, and how the knowledge

used to make those inferences will be represented inside the machine.

The basic idea of this approach is to manipulate and encapsulate high level knowledge in an attempt

to imitate the behaviour of an expert (Warwick et al., 1997)

The ES does not require any particular model hierarchy or a historical trend. The forecasting process

is rather encapsulated by rules derived from interviews with human expert. Once these rules are

unambiguously and correctly defined, ideally the uncertainties which might influence the load would

be taken care of, thus this approach should be reliable.

2.2.6.3 Fuzzy approach

The term “fuzzy logic” emerged in the development of the theory of fuzzy set which Dr. L.A. Zadeh

pioneered by the mid 1960s. A fuzzy logic model is a logical-mathematical procedure based on an

“IF-THEN” rule system that mimics the human way if thinking in computational form. Generally, a

fuzzy rule system has four modules (Alvisi et al., 2005):

a. Fuzzification of the input – process that transforms the “crisp” into a fuzzy input.

b. Fuzzy rules – IF-THEN logic statement that connects the input to the output variables.

c. Fuzzy inference – process that elaborates and combines rule outputs.

d. Defuzzification of the output – process that transforms the fuzzy output into a crisp output.

Since inception, this technique has gained a wide recognition and a variety of products ranging from

washing machines, air conditioners, cameras to industrial process control, medical instrumentation,

signal processing and speech recognition have been developed, despite the early scepticism view in

the Western World.

In load forecasting specifically, fuzzy rules based on demand forecasts must be developed to provide

domain specific information to enhance the non-linear models. The expert knowledge developed in

the model can easily be incorporated using linguistic descriptions to high quality data for load

forecasting (Warwick et al, 1997).

 25

2.6.4 Evolutionary Computing

Literature of most recent STLF works reports that Genetic Algorithm (GA) is one of the suitable

approaches especially for load forecasting network structure optimization (Srinivasan, 1998 and EL-

Naggar et al., 2005) Most of the drawbacks associated with traditional intelligent systems are the

dependence on initial parameters, long training, network topology setup etc can easily be addressed

by using this method (Srinivasan, 1998).

Because of the projected dominance of GAs in STLF, it was found necessary to include a brief

introduction on theory of behind the approach.

2.2.7 Genetic-based optimization

The standard back propagation training-based rules can be used to solve a variety of simple

optimization problems. However, as problem complexity increases, their performance falls rapidly.

Other drawbacks include issues like: long training period, single point search, scaling, initial

parameters dependence etc. However, genetic algorithm (GA) is regarded as an alternative approach.

. This technique was initially discovered in the mid 1970s at University of Michigan by John

Holland. The main idea was to design artificial systems retaining the robustness and adoption

properties of natural systems. Since the inception, these methodologies were then further improved

by other researchers and are now widely used in various fields (business, science, engineering etc) to

solve a variety of optimization problems that lie outside the scope of the standard optimization

Toolbox.

GA mimics the biological processes to perform a random search in a defined N-dimensional possible

set of solutions. For an optimization problem, one needs to search and find the best solution in a

given search space. The idea behind the GA’s principle is inspired by Darwin’s theory of evolution

(survival of the fittest).

 2.2.7.1 How does a GA work?

The algorithm is commenced with a search space containing set of solutions (or chromosomes) called

population. Like its counterpart in nature, Chromosomes from one population are chosen based on

fitness and then combined to form new generation. The best fit individuals are more likely to be

selected and subsequently reproduce in the next generation. This approach is encouraged by a hope

that the new population will be better than the old one. These procedures are carried out repeatedly

until some pre-determined stopping conditions (such as generation, time limits) are met. Like its

counterpart in biology, this process requires some genetic operators such recombination, crossover,

and mutation (Mishra et al., 2008, Davis, 1991 and Eberhert at al., 1995).

 26

To implement a genetic based search, one needs to define the objective function to be optimized.

Strictly speaking, the objective function can be viewed as the input to the algorithm. This function is

primarily intended to provide a measure of how individuals have performed in the problem domain.

Depending on the optimization goal, most fit elements in case of a maximization problem would

ideally have the largest numerical values. For instance, the objective function of a supervised ANN-

based load forecasting model can be written as:

LLL
N

f
N

i

/)ˆ(
1

min
1

∑
=

−= (2.25)

where N is the total number of observations or hours, L denotes the desired load value, and

L̂ represents the predicted load.

2.2.7.2 Conventional Optimization versus GA

GA differs considerably from conventional search and optimization techniques. The four notable and

most important differences as discussed earlier and also reported in the work of (Goldberg, 1989 and

Maifeld et al., 1994) are:

1. GAs do not require derivative information or other auxiliary knowledge but use an objective

function instead.

2. GAs implement a parallel search in a population, not single point

3. GA use probabilistic transition rules, not deterministic ones.

4. Except in real-value representations, GAs work on encoding of the parameter set rather than

parameters themselves.

However, the proposed models will not be trained using GA based rule, but this brief GA

introduction could be useful for general knowledge. Thus the following section now brings a

comparative analysis of some ANN-based forecasting models.

2.2.8 Comparative analysis of some load forecasting ANN-based models

In order to establish the shortcomings and evaluate the performance of existing methods, various

papers had to be compared.

 The comparisons have been made on the following bases:

� Problem statement

� Objective of the project

� Proposed or used method

� Results or findings

� Drawbacks and possibilities for improvement

 27

2.2.8.1 Literature comparison – findings

The viewed papers illustrate a variety of solutions for load forecasting related problems using

different methods, particularly for short-term load forecasting, thus a universal distinction regarding

shortcomings of various techniques has been drawn and the proposed approach could be a superior

attempt.

Literature shows that different researchers use different methods to address a load forecasting. Sharif

et al., (2005) presented a multi-layer feed-forward neural network model with the aim to compare the

forecasting accuracy of a time-series and an ANN-based model. The ANN-based model gave

reasonable results.

Chen et al., (2002) evaluated the impact of electricity prices in a load forecasting model. This

assessment would typically be suitable for areas where sudden electricity tariff increases are

experienced as it greatly affects the forecasting accuracy.

Adepoju et al., (2007) have used a supervised neural network –based model to forecast the load in

the Nigerian power system. The study however did not consider the influences due to weather

conditions, thus the accuracy could be improved.

Satish et al., (2004) have discussed the effect of the temperature on the load trend using an

integrated ANN-based method. The study concluded that the integrated model resulted in less error

of prediction. Among other weather variables, only the temperature was incorporated in the model,

thus a consideration of other factors would greatly improve the result.

Rashid et al., (2005) presented a feed forward and feed back multi-context artificial neural network

(FFFB –MCANN) as a practical approach for load forecasting. They have proposed the use of the

rate values rather than the absolute to produce better accuracy.

Al-Saba et al., (1999) illustrated the application of the ANN to long-term load forecasting. The

model forecasted the annual peak demand of a Middle Eastern utility and repeated the process using

a time-series approach. The study established that the ANN-based model produces better forecast

rather classical methods (ARMA etc).

 28

Table 2.1: Comparative analysis of some existing ANN-based forecasting models
PAPER PROBLEM STATEMENT OBJECTIVE MODEL CONSTRAINTS FINDINGS

Sharif and Taylor,

2000

“Short-term load

forecasting by

Feed forward neural

networks”

To obtain Average

forecasting error using feed-

forward neural network

(FFNN) and a conventional

time series package

To predict an hourly load of one

day ahead using both methods

and evaluate the corresponding

performance index and

forecasting error.

A trained multi-layer

feed-forward neural

network was used for

STLF purposes.

Load forecasting

accuracy mainly

depends on the

training and selected

time period of the

forecast.

The FFNN produced better

results, thus the model was

used to forecast the load.

Chen, Canicares, and

Singh, 2002

“ANN-based Short-

term load forecasting in

Electricity Markets”

The impact of electricity

prices in a short-term load

forecasting model

To incorporate the electricity

pricing in the model and

establish influences.

The common multi-layer

feed forward ANN based

model was considered.

The load-price

relationship is highly

nonlinear and difficult

to model.

The study concluded that if

electricity prices are not

considered in a model, the

number of interactions

required to achieve the same

forecasting accuracy would

be practically doubled.

Adepoju,

Ogunjuyigbe, and

Alowode, 2007
“Application of Neural

Network to load

forecasting in Nigerian

Power System”

The operation and planning

of a power utility company

requires accurate model for

electric power load

forecasting.

To implement a short-term load

forecasting using neural

networks (ANNs) and apply it to

the Nigerian electric power

system.

A supervised artificial

neural network model

has been used to obtain

the forecasts.

The number of

neurons in the hidden

layer must carefully be

chosen – as too many

neurons may lead to

overspecializing and

subsequently loss of

generalizing

capability.

After experimenting a

variety of hidden layer

neurons from 5 – 11, the 11

neurons were finally utilized

because it offered a better

model characteristic.

Lauret, Fock,

Randrianarivony,

Manicom- Ramsamy,

2007 “Bayesian neural

network approach to

short-term load

forecasting”

Optimal Neural Network

structure for load

forecasting.

To improve the accuracy of

ANN-based model using

Bayesian method.

A probabilistic model

using Bayesian Neural

Network method was

presented.

Uncertainty in model’s

input needs to be

developed.

The developed model

considers a probability

density function (pdf) over

the weight space. This

arrangement handles some

of the uncertainties in the

modelling, thus further

development could increase

the quality of the forecasting

models.

 29

PAPER PROBLEM STATEMENT OBJECTIVE MODEL CONSTRAINTS FINDINGS

Satish, Swarup,

Srinivas, and Rao,

2004 “Effect of

temperature on short-

term load forecasting

using an integrated

ANN”

The impact of temperature

on the average forecasting

accuracy on short-term.

To evaluate the load variation

with and without considering the

temperature.

An ANN based model

was used to predict the

load. The model was

divided in various sub-

components namely; the

basic ANN, the Peak or

Valley Averager &

Forecaster, and adaptive

combiner to form an

integrated model.

The evaluation was

specific and did not

consider other

weather parameters

The average forecasting

error was around 4% even

with a sub-modeled system.

Rashid and Kechadi,
2005 “A practical

approach for electricity

load forecasting”

The impact of the absolute

values and change in

weather components, and

past load on forecasting

accuracy.

To utilize the change in weather

components and/or historical

load data rather than absolute

values.

The paper presented a

model called feed forward

and feed back multi-

context artificial neural

network (FFFB –

MCANN) using

exogenous and

endogenous variables.

Recurrent ANN

models are complex

and often require

good training

The recurrent neural

network has been used and

±1.5% a steadily mean

average percentage error

was achieved.

TAl-Saba, and El-

Amin, 1999 “Artificial

neural networks as

applied to long-term

forecasting”

Forecasting the annual peak

demand for a Middle

Eastern utility

To explore various forecasting

techniques and compare the

forecasts with the proposed

method.

The paper presented

different time-series load

forecasting models and

the ANN based approach

The future

uncertainty makes

long-term load

forecasting an

extremely

challenging

computational

problem.

The ARMA technique has

registered the maximum

error of about 40%. This

result proves the prior

selection of the ANN based

model. The ANN-based

model provided very good

results.

Ganzalez, and

Zamarreno, 2004

“Prediction of hourly

energy consumption in

building based on a

feedback artificial

Network.

Prediction of energy

consumption in buildings

To present an approach for load

prediction with high precision.

A feedback ANN-based

model was presented. The

ANN training had been

achieved by means of

hybrid algorithms.

Only limited load

variables were

considered.

The model used a non-

optimized data window size

and hidden layers which

could seriously affect the

over-all forecasting

accuracy.

 30

PAPER PROBLEM STATEMENT OBJECTIVE MODEL CONSTRAINTS FINDINGS

Srinivasan, 1998
“Evolving artificial

neural networks for

short-term load

forecasting ”

Shortcomings of commonly

used back propagation

ANN-based models

To improve the BP-based ANN

model, eliminate the drawbacks,

and establish an optimal network

structure for better forecast.

A three-layered feedback

back propagation

network, trained by

genetic algorithm (GA)

was developed.

The model did not

have the ability to

detect sudden load

changes.

The GA approach illustrated

a superior representation,

and addressed some of the

problems encountered by

using ordinal back

propagation models. The

approach also free the

model from long training

time weight adjustments

Madal, Senjyu,

Urasaki, and
Funabashi, 2006 “A

neural network based

on several-hour-ahead

electric load

forecasting using

similar days approach”

Linking traditional load

forecasting techniques with

an intelligent ANN based

network.

To unite similar days approach

load forecasting methods with

an ANN based network

A combination of an

ANN-based model and a

classical technique was

used to forecast one-to-

six hour ahead

forecasting. The model

used Euclidean norm and

weighted factors to a

simple algorithm.

A great variation in

weather conditions

may influence the

forecast accuracy

The model indicated very

good results for one hour

ahead forecasting with a

MAPE at 0.98% , despite

the further increase to 2.4%

for six-hour ahead

forecasting.

Topalli, Erkme, and

Topalli, 2006
“Intelligent short-term

load forecasting in

Turkey”

Inaccuracy in load

forecasting and numerical

instability for time-series

forecasting methods.

 To introduce an intelligent load

forecasting method.

They have used an

Elman’s recurrent neural

network model with

integrated hybrid learning

which prepares the model

to combine real-time load

forecasting and real time

trainings.

The ability of the

developed model to

establish an optimal

network structure and

corresponding

learning algorithms.

The model indicated better

results compared to that of a

time series. The average

forecasting error recorded

was approx. 1.6%

Kandil, Wamkeue,

Saad, and Georges,

2006 ”An efficient

approach for short-

term load forecasting

using neural networks”

The impact of estimated

values (Historical load data)

on load forecasting.

To demonstrate neural networks

– ability to predict the load with

minimal input data (i.e.

Temperature only)

The well-known multi-

layered feed forward

ANN-based model had

been used to forecast for a

local load. The model

used Levenberg-

Marguard training

algorithms.

Only preliminary

results were

discussed in the

study.

The paper presented the

approach only, and the

ANNs capabilities to

forecast the load without

using a historical load

threshold.

 31

Ganzalez et al., 2004 have used a feedback ANN-based model to predict energy consumption in buildings with high precision. The model was

train by means of hybrid algorithm. The optimal network structure was not evidently achieved.

Srinivasan (1998) has used a dominant back propagation ANN-based model and genetic algorithm as an attempt to evolve the optimal neural

network structure. This approach is powerful despites the fact that the model is unable to detect sudden load changes, thus the approach still needs

further development.

Madal et al., (2006) presented a comparison of a classical load forecasting technique with an ANN-based model using actual load data. The

models were used to forecast the load one-to-six hours ahead and again the MAPE showed that the ANN-based model provides reliable forecasts.

Again, the optimal network structure for better forecast was never achieved.

 Topalli et al., (2006) have used a recurrent neural network method using hybrid learning scheme to offline learning with real-time to forecast

Turkey’s total load one day in advance. The study reported an average error of 1.6%. The forecasting accuracy could be achieved by employing

good network training.

PAPER PROBLEM STATEMENT OBJECTIVE MODEL CONSTRAINTS FINDINGS

Xiao, Ye, Zhong and

Sun, 2007 “BP neural

network with rough set

for short-term load

forecasting”

Drawbacks in ANN-based

load forecasting models.

To evaluate the relationship

between inputs and outputs in a

dynamic environment.

They used a rough set

back propagation (RSBP)

neural network approach,

and momentum method to

enhance the training

speed despite improving

the credibility of the

Algorithms.

The development of

an optimal threshold

for attribute

deduction was never

achieved. More

historical data is

required.

The RSBP and BP model

results were compared. The

RSBP presented better

results for maximum values.

 32

Kandil et al., (2006) have explored the ANN capability to predict the load without necessary

using the historical load trend, but only temperature instead. The study reports that using

estimated load values may lead to a great degree of inaccuracy in the forecast, thus only the

temperature was used as an input. Because of the ANN’s input-output mapping ability, this

approach could be efficient. However, the better results could be achieved by selecting other

importance input variables and better network training parameters.

Xiao et al., 2007 have introduced the rough set and its ability to study and remember the

relationship between the inputs and outputs. A multi-layer back propagation neural network was

used in the study and momentum method was also applied to decrease the sensitivity of local

parts of error curve surface. This approach requires further development to attribute deduction

threshold.

Lauret et al., (2007) have used a model called Bayesian neural network as an attempt to design

an optimal network for short-term load forecasting. The Bayesian NN model is a new proposed

methodology but also requires derivation of better noise models and uncertainties consideration.

2.2.9 Conclusion

A comprehensive literature review on existing load forecasting techniques is carried out in this

chapter. Moreover, a comparative analysis of some specific models has been covered in this

chapter. The findings are as follows: various papers compared intelligent system based models to

conventional load forecasting methods. Such assessments, ideally are intended to prove the

capabilities of ANN-based models to classical ones, and often pay no attention to the

shortcomings of modern systems. The focus on network model optimization has never been

explicitly highlighted in a majority of reviewed papers, thus there is an enormous need in

evaluating similar network class models and exploring the possibilities of network optimization

for load forecasting. Literature also shows that classical methods are outperformed by intelligent

system based models, hence an ANN-based model is proposed for this project.

In the contrary, a majority of models that use Artificial Neural Networks have a number of

drawbacks. The three major problems encountered are: long training period, the dependence on

initial parameters, and the development of an optimal network structure for better load

forecasting. Surely ANN-based models for load forecasting can be improved by employing good

 33

network trainings using appropriate training algorithms (genetic algorithms, customized back

propagation algorithms, rough set theory etc), as a result this topic needs to be investigated.

Since this research project is based on forecasting an electric power system load, there is a need

to discuss general requirements for a good forecasting system and also the factors affecting the

load at different time horizons. Thus the following chapter of this document briefly covers the

aforementioned issues.

 34

CHAPTER THREE

POWER SYSTEM LOAD FORECASTING

This chapter discusses the characteristics of power system loads and the effect of endogenous and

exogenous factors on an electric load. These factors determine the amount of energy usage at a given time.

In fact, the accuracy of a forecast depends predominantly on these factors. In addition, the latter part of this

chapter covers general requirements of a good forecasting system.

3.1 Overview

An electric load refers to the power consumed by an electric circuit at its output terminal. Figure 3.1

shows a simple electric circuit presented by a voltage source sV in series with an internal

resistance sR , and then the load at the circuit terminal.

Fig 3.1: A simple AC circuit

The set-up illustrated in Figure 3.1 can readily be generalised to a complete AC circuit by

introducing line parameters such as reactive and capacitive impedances.

3.2 Characteristics of a power system load
The behaviour of a power system load depends on a number of factors. Thus the load does not satisfy

the superposition principle i.e. the load is not necessary the sum of linear independent variables, but

it is rather a nonlinear system. As commonly known, nonlinear problems are often difficult to solve

and much less understood than linear problems. Hence, power system load forecasting is a great

computational problem for many researchers and network planners.

3.3 Factors influencing the load
The system load, in power operation context, is the sum of consumers’ load at the time. A consumer

load trend is as different as ‘chalk and cheese’ and influenced by a thousand of factors. There is no

any engineering rule that guides the selecting of these factors. Thus this process is mainly based on

 35

experience gained from the correlation analysis between the load and potential influencing factors.

The only existing criterion is that load forecasting in power systems can generally be divided into

three different time horizons: short, medium, and long term load forecasting. However, factors

affecting the load at different time horizons are not necessary the same. The variation in the short-

term load depends heavily on time factors i.e. hour of the day, day of the week etc. Medium to long

term load is determined by factors such as population growth, per capital income, demographic

factors, gross domestic product (GDP) and so on. Most utility companies use this distinctive

dependence in selecting the input variables.

Possible factors that may influence the load in various time horizons are discussed the following

section.

3.3.1 Short-term load forecasting (STLF)

Generally, it is impractical to determine the major influencing factors for a certain forecast time

horizon. However, some of the factors highlighted in Figure 3.2 could be considered for STLF.

Fig. 3.2: Possible influencing factors – for STLF.

a) Consumer category: residential, commercial, and Industrial – the electrical usage trend is

unique for customers that belong to different categories. Normally, industrial type customers

consume a large part of electricity. Residential load are normally the smallest and often

complex to determine due to different consumer electricity usage routines.

b) Meteorological related-factors: temperature, humidity, cloud rate, and wind speed.

Weather conditions influence the short term load greatly. Literature shows that, weather

conditions have a strong correlation with the load, especially the temperature. In fact, load

forecasting can be concluded using only weather related inputs.

Recent load pattern Climatic conditions Seasonal effects

DSM

Random disturbances Time factors

Consumer category
Special events

STLF

 36

A general guideline on the effect of weather related conditions on the system load has been

discussed in the work of (Say, 1976). Typically, the impact are as follow: a 1˚C temperature

change will produce a change in load of about 1 per cent, an overcast sky as compared to a

clear sky will increase the load by 3-4 per cent, while thick fog may increase it by 10-12 per

cent, and an increase of 1 per cent in load for every 4km/h wind velocity. Authors (Satish et

al., 2004), report that STLF can be concluded by only using weather related conditions such

as temperature.

c) Recent historical load pattern: Despite the fact that load forecasting can be concluded by

using limited input variables, the recent and corresponding past load trend is mainly the

backbone of the forecast. The selected factors will then define the dimension of the training

data set. Ideally, the training data set should cover the whole problem space as this enables

the network to identify and map input-output patterns adequately. The biggest problem here

is to determine the optimal number of consumption instances, prior to the value to be

predicted. Usually, the data points set is arbitrary determined, but taking into consideration

the result obtained by using correlation analysis. However, the block entropy analysis

performed by (Santos et al., 2006), reports that the use of long chains of contiguous load

values does not offer any sort of benefit in the design of the IV of the ANN. For STLF, 1

week past contiguous load values could be adequate to design an IV structure and

subsequently forecast the load with reasonable accuracy (Santos et al., 2007).

d) Time of the day: The load has a cyclic characteristic. Unlike industrial load that is slightly

stable, depending on production levels, the residential one changes greatly during the day.

Peaks for a residential load are frequently observed in the mornings, mid days, and in the

afternoons.

e) Day of the week: i.e. weekdays or weekends. Generally, each day of the week has its unique

electricity demand trend. Sometimes the days of the week could be selected as inputs to a

forecasting model. (Adepoju et al., 2007) report that two load patterns namely: weekends

and week days load patterns. Their result illustrates that the greatest peak loads are often

recorded on Fridays, otherwise the load is slightly constant from Monday through Thursday.

f) Seasonal effects: The seasonal changes have direct influence on system loads. For supply

security and reliability, most utility companies consider worst case scenarios (seasonal

 37

variation effects). The heating loads (in winter) and cooling loads (in summer) are normally

viewed as maximum and minimum peak load thresholds respectively. The seasonal variation

determines whether a utility company is summer or winter peaking (Gross et al., 1987).

g) Special events: Depending on the magnitude of an episode in terms of power requirements,

the associated demand could significantly influence the planned system load. For instance,

the FIFA 2010 Word Soccer Cup related activities may greatly influence the load in the

South African power system. Often such events are thorny to consider in a load forecasting

model.

h) Holidays: Other factors that add uncertainties in the forecasts are religious or national

holidays. Load variations due to these factors are minimal and often negligible, thus often

weekend load curves are used instead.

i) Random disturbances: Unlike residential consumers with smooth load curves, a slight

change in industrial loads causes a significant load variation. For instance, if one considers

the impact on the load as a result of starting-up or shutting down large loads such as

smelters, wind tunnels, or steel mill, indisputably the change is not negligible.

j) DSM (Demand Side Management) Initiatives: This approach entails actions that influence

the quantity or pattern of use of electric energy consumed by end users. A good example

would be the prevailing power shortage especially in the South African region which has

certainly forced power utility companies in the region to implement ongoing and aggressive

DSM initiatives such as compact fluorescent lamps (CFL) lighting, the use of energy

efficient motors, implementation of time-of-use (TOU) tariffs, residential load management.

Other demand management strategies include emergency generation, independent power

production, and industrial cogeneration. Although DSM is a short term strategic approach, it

helps the utilities to defer the expenditure associated with additional generation capacity by

reducing total end-user demand (Boake, 2003). These measures are required immediately to

minimise the risk of load shedding of “non-essential load” until the additional generation

capacity can be built, but the reality is that they will be required for the foreseeable future

(Ross et al., 2008)

 38

The forecast time horizon determines which factors could be selected in the design of input vector of

a forecasting model. For medium-to-long term load forecasting the factors discussed below may need

to be considered.

3.3.2 Medium-to-long term load forecasting (M-LTLF)

Contrary to the factors affecting STLF, medium-to-long term load forecasting involves numerous

uncertainties that are often tricky to predict. Some of these factors are indicated in Figure 3.3.

Figure 3.3: Typical influencing factors – for M-LTLF

a) Economic growth: Depending on the economic growth indicator such as GDP (Gross

Domestic Product) of a particular state, an increase in the economic growth would ideally

raise the demand (NIEIR, 2007). In fact, economic related factors influence long term load

trend greatly, thus the consideration requires a special attention in a long term load

modelling.

b) Energy and environmental policies: Energy policies (often corresponding with

international laws) have direct influences on the system load. This involves policies aimed at

promoting energy efficiency, and development of off-grid power generations. Among others,

most of the utility companies are fully conversant of the environmental policies i.e.

greenhouse polices and/or emission trading schemes. For a utility to operate within these

policy bounds, it implies that additional electricity supply resources are required and thus it

influences the electricity demand growth.

c) Technological change: The change in technology may positively or negatively influence the

load. For instance, if one considers an aggressive use of gas air conditioning technology

which will as result offset the electric conditioning systems, thereby reducing the system

load.

Others Political factors Technological changes

Economic growth

Consumer category Demographic

factors

Per capital income
Special events

M-LTLF

 39

d) Per capital income: Often income rate per household determines the corresponding space

comforts. Consumer preferences (heating or cooling loads) rely heavily on real income

ranges, thus the demand is either positively or negatively influenced.

e) Demographic factors: A raise in the population of a certain locality would obviously result

in an increase in the demand. For a single locality, the impact seems to be relatively small

but the lump-sum effect is surely not negligible.

f) Customer category: The impact of a large industrial load growth could affect the forecast in

the long run, thus this should be considered.

g) Political factors: Politically motivated wars in a particular state can influence inhabitant’s

decisions to immigrate to other countries. The movement directly affects the population, and

subsequently affect the load negatively and vice versa. Other stakeholders such as

independent power producers (IPP) may also find it senseless to invest and operate in a peace

challenged country.

Others: For example, upstream developments, such as a construction of a new generation plant or

regional inter-connectors, will certainly influence electricity prices and demand through final retail

prices. This implies that the electricity tariffs are highly likely to be increased, hence affordability

determines usability.

 3.4 Load features

3.4.1 Types of load banks
An electric load is formed by load banks. There are three common types of load banks: resistive load

bank, reactive load bank, and capacitive load bank. Load banks are used for different purposes. A

general example for a resistive load would be: the conversion of electric energy to heat by power

resistor in a circuit. For a resistive load, the angle between the current and voltage is zero or in-phase,

thus the circuit always operates at a unity power factor.

Reactive load bank includes inductive apparatus such as induction motors, transformers, lighting etc,

and has a lagging power factor. Capacitive load bank is somehow similar to the reactive load bank in

rating and purpose, except that a leading power factor load is introduced.

 40

3.4.2 Load categories
Power system loads can be divided into three categories, namely: linear loads, nonlinear loads, and

special loads. For linear loads, the load impedance is always constant regardless of the applied

voltage and the load current increases proportionally as the voltage increases and vice versa.

Typically, linear loads include motors, incandescent lighting, heating loads etc.

For instance, starting a large motor has a great impact on power system load, especially for direct on

line (DOL) motors due high starting currents. For a DOL, the starting current is normally 7 times

higher than the rated full load current. Thus this type of loads may contribute significantly to cost

intensive high peak demands. Other soft-starting techniques (i.e. star-delta, rotor resistance, auto

transformer starting etc) are widely used for economic operations of electric machines.

Load currents in electronic loads such as computers, uninterrupted power supply (UPS), variable

speed motor drive, thyristor controlled equipment etc are neither proportional to the instantaneous

voltage nor continuous. These loads are typical examples of nonlinear loads. Other loads, such as

motors used in lift applications, have different nature of operations i.e. here motors are frequently

started. Therefore, general design standards specify lower starting currents. Typically, starting

current of a lift motor should be less than 75% of the rated current. The contribution of special loads

and nonlinear loads to the overall power system load often falls within the average of the load base.

3.4.3 Consumer classes

 Electric power is used by different types of consumers: residential, commercial and industrial. Load

profile for each consumer class is unique and it depends mainly on types of appliances used, daily

activity patterns. Residential consumers generally use electric energy for heating, cooling, and

illumination and consume about half of the electric power. Commercial businesses purchase

electricity for a variety of commercial functions i.e. office machinery, store display lighting, parking

bay lighting, escalators etc. Whilst industrial facilities and plants need electricity to power processes

such as compressor, conveyor motor, air conditioning, and other manufacturing applications. This

distinction of various consumer classes is essential for electric utilities in determining electricity

prices, because rates charged for each class are different.

The first section of this chapter gives a comprehensive introduction to the power system load. The

following section now discusses some requirements for a good and reliable forecasting system.

 41

3.5 Prerequisites of a good STLF System
Most of demand or load management programs used by electric utilities comprise STLF units. Every

utility intends to have a reliable STLF system for economical operations of power systems. The

reliability and robustness of the system primarily depend on the accuracy of the forecasts. Though,

there are other important requirements for a good STLF system. These requirements take account of:

� Fast speed

� Accuracy

� Automatic data access

� Friendly interface

� Timely forecast

� Automatic performance evaluation of the obtained forecast

� Automatic bad data detection and forecasting report generation.

3.5.1 Fast Speed
Forecasting programs with different techniques, network topologies, training algorithm, desired

goals, etc have diverse convergence periods. This means that the speed of the forecasting depends on

the system structure. The idea is to put together an optimal forecasting structure that yields accurate

results in the shortest period.

3.5.2 Accuracy
Accurate forecasts drastically benefit utilities and other stakeholders in a number of ways. In fact, the

main goal of a majority of review papers on STLF is to produce forecasts with a reasonable degree of

accuracy. In essence in power generation sector, just a simple decision with regards to price based

unit commitment (PBUC) requires an accurate STLF system.

3.5.3 Automatic data access
Load forecasting models or systems normally require a number of inputs, namely: historical load

data, weather related inputs, sinusoidal functions and so on. Thus there exists a need of a database

where all relevant model inputs are stored. This implies the system should be able to automatically

access and extract required data from the database.

The database is principally for historical data. Some inputs such as weather parameters may need to

be captured automatically on-line. For this process, the use of some communication options (internet,

telemetry, or external modems) could be enforced. The data base is also used to store the results from

the developed forecasting models.

 42

3.5.4 Friendly interface

The forecasting model should be easy to use and convenient.

3.5.5 Timely forecast
 If a network operator gets forecasts, even accurate forecasts, from the planning department but

outdated, it’s highly likely that the operator will implement unrealistic decisions. Therefore, a good

STLF system should yield forecasts which are timely and corresponding to the desired forecast lead

periods.

3.5.6 Automatic model performance evaluation
Because accuracy is a key measure in forecasting, the design structure of a good forecasting system

should specify some permissible error limits. In this work, the standard mean squared error is

employed. The error bound is defined as: %5.2%5.2 ≤≤− MSE . However, this performance measure

condition is not applicable when the average forecast error is consistently smaller than these limits.

3.5.7 Bad data detection
Out of range data (outliers) is one of the major challenges in computational problems. In load

forecasting for example, historical data are gathered and stored in a database. However, some these

data especially estimated data, can fall beyond the reasonable data boundaries, hence a bad data

detection strategy should be formulated and implemented to identify and replace the bad data. In the

early days, STLF systems relied heavily on the power system operators to interpret the data and

subsequently get rid of the bad data (Yang et al., 2006). Detecting bad data manually is a work

burden and demanding exercise for operators, thus automated bad data detection can accelerate the

forecasting process.

3.5.8 Automatic forecasting report generation

Forecasting results should be presented in a manner that is easily understood and interpreted by the

end-user. In simple terms, the results may need to be illustrated in numerical and graphical forms.

3.6 Conclusion
To briefly summarize the preceding chapters, the following concepts have been covered: firstly, a

general overview on the subject topic was discussed, and then a review on the existing methods and

drawbacks of these techniques were explored. Secondly, here the third chapter covers the basic

requirements of a load forecasting model.

 43

The next part of this document now introduces the proposed forecasting method. In other words, the

following chapter (chapter four) now covers the concept of Artificial Neural Networks (ANN) in

general context, network training, learning paradigms etc as an attempt to help the reader in

understanding the architectural network designs of the proposed models.

 44

CHAPTER FOUR

 ARTIFICIAL NEURAL NETWORKS (ANNs)

This chapter introduces a brief history of Artificial Neural Networks (ANNs). The chapter also

covers an overview of the ANN concept, simplified architecture network topologies, and its basic

elements, network training, learning paradigms, generalization and training algorithms including

the proposed error back propagation (BP) algorithm.

4.1 General overview of Artificial Neural Network

The novelty of Artificial Neural Network (ANN) theory could undoubtedly be attributed to the

experiment performed by McCulloh and Pitts in modelling bio-systems using nets of simple logical

operations back in 1943. The idea was to find a simple parametric nonlinear model for a real neuron.

Ever since this innovation, there has been a great interest from various researchers and scientists, thus

several ANN-based models in different fields were discovered. The technology though had lost its

momentum in the late 1969 till 1986 when the back-propagation of error was discovered. To date,

ANN-based models have been successfully implemented in a number of industries ranging from:

Aerospace, automotive, defence, electronics, entertainment, financial and so on. Artificial neural

Networks have been also successfully applied in medical fields. Crawford, 2000 reports acute

appendicitis (diseases and health conditions) analysis based on ANN methodologies specifically.

More information regarding the application of ANNs can be found in (Demuth et al., 2008)

ANN is a part and parcel of intelligent based systems, designed distinctively to improve the

performance of conventional computing techniques. The biggest drawback associated with the so

called conventional methods is the inability to learn and identify patterns in dynamic systems. Thus

the need to eliminate this shortcoming through learning is proven essential.

Artificial Neural Network is an information processing paradigm inspired by the way biological

nervous systems, such as the brain, process information. The characteristic of the biological neuron is

briefly introduced as an attempt to assist the reader to understand the concept better. The human

brain has 100 billion biological neurons with about 100 000 connections per neuron. A simplified

biological neuron is illustrated in Figure 4.1.

 45

Fig. 4.1: A biological neuron

Biological neurons receive spikes through synapses located on the dendrites of the neuron. When the

spikes received are strong enough and exceed a definite threshold, the neuron is activated and fires a

signal though the axon. This signal travels from the body, down the axon, to the next neuron(s).

Learning arises by adjusting the effectiveness of the input (synapses) so that it influences one neuron

on other changes. Humans and highly trained animals use the same configuration and summing up to

extremely complex networks.

 Similarly, an artificial network is made up of simple interconnected processing elements called

neurons. The neurons are arranged in a layered structure to complete a network competent of

executing parallel and distributed computations. Architecture of a simple ANN is shown in Figure

4.2. The attraction of ANN-based models comes with the network’s ability to learn, recognise data

patterns, and adapt to a changing environment like the human brain. This adaptive characteristic is

often called “the human-like reasoning”.

The architecture illustrated in Figure 4.2, presents a three layered feed-forward network. ANN has a

remarkable capability to develop sense from convoluted or imprecise data, extract patterns and

detect trends that are too complex often only noticeable by either humans or other computer

techniques. A supervised neural network can be trained as a "guru" in a given problem space.

In broad terms, ANN-based models offer a variety of benefits namely: adaptive learning, self

organization, real time operation, fault tolerance via redundant information coding. Thus neural

network processes information in the similar way the human brain does.

 46

Fig. 4.2: Architecture structure of a feedforward neural network

4.1.1 Basic Architecture of a feed-forward network

The feed-forward network topology illustrated in Figure 4.2 permits signals to travel one way only,

from the input through the hidden layer to the output layer. These types of networks are somehow

straight forward and associate inputs with outputs. They are extensively used in pattern recognition.

This kind of organisation is also referred to as bottom-up or top-down and commonly used in pattern

recognition.

Figure 4.2 also shows the commonest type of artificial neural network which consists of three layers.

The hidden layer neurons are connected to the output layer neurons. The functions of each layer in

the network are defined below:

a) The input layer neurons represent the pre-processed data fed into the network.

b) The input of each hidden layer neuron is defined by the sum of the input vector set and the

connection weights between the input layer and hidden layer.

c) The input of the output neuron is determined by the weighted sum of outputs of the hidden layer

neurons.

d) The output of a neuron is defined by the type of the transfer function used in that specific layer.

This type of network is attractive because the hidden neurons are free to develop their individual

representations from the input set.

Input layer Hidden layer Output layer

 47

4.1.2 The Perceptron – a network for decision making

The perceptron, a basic neuron, invented by Rosenblatt in 1957 at the Cornell Aeronautical

Laboratory in an attempt to understand human memory, learning, and cognitive processes prior to his

demonstration on the first machine that could "learn" to recognize and identify optical patterns in the

early 1960. The mathematical model of the perceptron or artificial neuron is modelled in the similar

manner of the biological architectural set-up. Again, the three major components are considered:

Axons and synapses of the neuron are modelled as inputs and weights respectively.

The strength of the connection between an input and a neuron is denoted by the value of the weight.

The mathematical model of this topology is illustrated in Figure 4.3. The weighted inputs are added

together and passed through a nonlinear activation transfer function. Finally, the activation function

controls the amplitude of the output of the neuron. The suitable scale of output is usually between 0

and 1, or -1 and 1.

Fig. 4.3: A perceptron model

Thus the output L̂ can be mathematically formulated as:

()∑ +=
p

i

ii bxwfL (ˆ (4.1)

Where iw are the synoptic weights, ix represents the model input vector, and b denotes the bias.

4.1.2.1 Activation functions

The activation function acts as a squashing function. In simple terms, the network activation rule is

denoted as activation function. A number of transfer functions are available for selection. These

activation functions include (and not limited to): step function, logistic function, tangent-hyperbolic

x1

x2

xm

 ∑w2

w1

wp

)(uf

Engineering approach:

Natural approach:

Inputs Weights Bias Transfer

Function
Output

Axons Synapses Dendrite

s
Cell body *** Axons

b

•

•

•

Target output

(y

L̂

L

 48

function, linear function, cosine function and so on. Some of these functions are illustrated in Figure

4.4.

Fig. 4.4: Various types of transfer functions

However there is no engineering rule or “rule of thumb” for the selection of transfer function thus

the choice is frequently performed arbitrarily. In fact, the effect of different transfer functions on

network performance has not been explicitly reviewed in a number of literature papers.

4.2 Soft Computing using Neural Network Topologies

Generally, there are three common types of neural networks: radial basis function network (RBFN),

multi-layered perceptron networks (MLP), and recurrent neural networks (RNNs). The distinction in

different network topologies can perhaps be attributed to the arrangement of neurons and the

connection patterns of the layers. A Multi-Layer Perceptron network is the most popular neural

network type and the most of the reported neural network in STLF.

The inner structure of the processing element (neuron) in each network is interconnected differently,

and the configuration set-up is often referred to as network topology. The behaviour of the network

relies greatly on the network topology.

4.2.1 Feedforward Network

In a MLP feed-forward network, connections are unidirectional and no loops are introduced in the

network, thus each neuron is linked only to neurons in the next layer. In (Mehta et al., 2003) a feed-

forward network is referred to as a directed cyclic graph. This implies no backward links either.

 49

The importance of loopless networks is that computation can proceed uniformly from input neurons

to output neurons. And since there are no backward links, activation functions from the preceding

time step play no role in the computation. Figure 4.5 shows a simple multi-layered feed-forward

network topology with inputs pxx ,...,1 and output L̂ . Synoptic weights connected to the hidden

layer are denoted as ijw and kw for the output layer respectively.

Fig. 4.5: A feedforward network with one hidden layer and one output layer.

Mathematically, the functionality of the hidden neuron is formulated as:











+= ∑

=

m

j

jjiji bxwu
1

1σ (4.2)

Where weights and biases],[jij bw are illustrated with arrows feeding into the neuron, 1σ is the tan-

sigmoid, 2σ represents the pure linear transfer function, [mxx ,...,1] denotes the input vector, and

k =1,2,…,r is the number of hidden layer neurons.

In Figure 4.5, only one output layer neuron is considered and these types of networks are used for

single output problem (Sjöberg, 2004). In some approximation problems, the number of output

neurons equals to the number of outputs. Finally, the output, L̂ , is represented by the compact notion

as),(xg φ and it is further simplified as: (Sjöberg, 2004).

∑ ∑
= =

+









+=

r

i

m

j

ijjik bbwwL
1

2

1

1

,

1

,2
ˆ σ (4.3)

Where, φ is the parameter vector containing all weights of the network, r and m represent the

number of neurons in the hidden layer and input vector respectively.

Input layer Hidden layer Output layer

 1x

2x

.

.

.

kw

ijw

∑

∑

∑

∑

.

.

.

∑

1

2

3

L̂

1σ

1σ

1σ

1σ

2σ

mx

r

ru

1u

3u

2u

mx

 50

4.2.2 Elman Recurrent (ER) Network

The organisation of a recurrent network is comparable to a human brain network. Unlike MLP

network, recurrent structure introduces cycles or loops and backward links in the network (Mehta et

al., 2003). Feedback networks are exceptionally dominant and can get extremely convoluted. The

behaviour of these types on networks is known to be changing continuously until they reach an

equilibrium point. This implies the state of the network remains at the equilibrium point until the

input changes and a new equilibrium needs to be found. Feedback architectures are also referred to as

interactive or recurrent, although the latter term is often used to denote feedback connections in

single-layer organisations. Figure 4.6 shows a typical topology of recurrent networks.

Fig. 4.6: A structure of an Elman (Recurrent) Network

4.2.3 Radial Basis Function (RBF) Network

The radial basis function network is probably the second widely used type of Artificial Neural

Network in contrast to the standard Feedforward MLP network. RBF emerged as a variant of ANN

in late 80’s and it is commonly as a pattern recognition technique. Some of the typical applications of

this network include: clustering, function approximation, spline interpolation (Tou et al., 1974).

 The RBF network topology is also configured like that of a feedforward network, but the distinction

is conceivably can be attributed to the structure of the hidden layer and its output computation

approach. Its network also comprises of input, hidden or memory, and output neurons respectively.

Figure 4.7 shows network structure of a two-layered radial basis function network topology. A linear

transfer function is used in the output layer and a nonlinear transfer function (normally the Gaussian)

for the hidden layer.

 51

The idea of RBF is to execute a mapping of vector variable x into another vector variable u based

on the set of learning samples. As commonly known, the estimator which minimizes the mean square

error is the conditional average estimator (CAE). Mathematically, the RBF output forms a linear part

given by:

),(ˆ ugL φ= (4.4)

Whereφ is the parameter vector containing all weights of the network and x denotes the input vector.

 Fig. 4.7: A radial basis function network (RBF) network topology.

Hence, the output L̂ is formulated as:

()
()

()∑

∑

=

=

−

−

=
R

j

j

R

i

ii

xxw

xxwy

xL

1

1

,

,.
ˆ

φ

φ
 (4.5)

Where ()φ,ixxw − represents a smooth approximation of delta function, as illustrated below:

()










 −
−=−

2

2

2
exp,

φ
φ i

i

xx
xxw (4.6)

Applying a Gaussian function, Equation (4.5) becomes:

() ()

()∑
=

−

−
=−Φ

r

j

j

i
i

xxw

xxw
xx

1

,

,

φ

φ
 (4.7)

Input layer Hidden layer Output layer

1x

2x

.

.

.

.

.

.

∑

1

2

3

L̂

mx

r

1u

2u

3u

ru

 52

Where the parameters xi and φ describe the center and the width of the receptive field of i-th neuron

respectively and . denotes the Euclidean norm.

Each hidden neuron in an RBF takes its input from all the outputs of the input layer x
i
. The hidden

neuron contains a "basis function" with parameters "center" and "width". The center of the basis

function is a vector of numbers c
i
 of the same size as the inputs to the neuron and there is normally a

different center for each neuron in the neural network. Thus the radial distance‘d’ between the input

vector x
i
 and the center of the basis function is the computed as:

() () ()()2222211 ... nn cxcxcxd −++−+−= (4.8)

The output of the neuron in the output layer L̂ is then calculated by applying the basis function ρ to

this distance divided by the width w:









=

w

d
L ρˆ

 (4.9)

This type of network is not applied in this work, however more reading materials on RBF can be

found in (Neruda et al., 2004), and (Sjöberg, 2004).

4.3 ANN Training and Generalization

There are various processes involved in developing a supervised ANN-based model. Amongst others,

training process and validation process are some of the vital steps. The input-output patterns are

repeatedly presented to the network during the training process. Through this process, the network

learns the subjected environment or patterns, and eventually yields the desired output. The desired

output is attained as a result of adjusting weights of all interconnections between neurons to establish

the correct set of input-output response. However, during the training process, optimal training time

is required to avoid overtraining. Overtraining of the network can be prevented by employing

complex stopping criterion. Early stopping (the most common), regularization, pruning, information

criterion pruning (ICP), cross-validation pruning (CVP) are some of the stopping methods. Due to

space limitation, only some of these methods are covered in this work. However the reader is

encouraged to refer to the work of (Rech, 2002). A detailed reference on overfitting is discussed in

(Paruelo et al., 1997).

 53

Training the network at infinitum normally results in a reduced error function for a given set of

inputs. Though, this does not guarantee better accuracy and robustness of the network because the

error could be extremely big if the network is presented with the data it has not seen before. This

characteristic is explored during the validation process. Moreover, the validation process also

improves the network reliability and generalisation.

4.3.1 Network Coupled Errors

Broadly speaking, there exist two types of errors during the training process: training error and

generalization error. The general error presentation can be seen in Figure 4.8. At the beginning of the

training, the training error is at maximum, and gradually decreases as time elapses. Optimum

training time should be within the circled area in order to maintain network generalisation tendency.

In essence, the desired goal should not be an error-free output, as the network will tend to memorise

the input-output patterns if trained at infinitum.

Fig. 4.8: Errors vs. Optimal network training time

4.4 ANN Learning Paradigms

Like in any other intelligent based systems, a desired output of the network does not come by chance.

The network rather adapts itself to a stimulus, and ultimately yields the desired output. The main

difference here perhaps could be featured to the type of learning a particular network is subjected to.

Broadly speaking, there are different learning paradigms that can be used to train neural networks.

Supervised and unsupervised learning are the most common, with reinforced and competitive

learning techniques also gaining considerable popularities.

The learning process is essential to adjust network weights in order to reduce the error. During the

process of adapting and adjusting the synaptic weights, the network acquires knowledge similar to

human-like reasoning.

Error

Training time

Training Error

Generalisation

Error

 54

However, the learning process requires sets of mathematical algorithms describing how synoptic

network weights and biases are attuned. By default, MatLab
®
 employs gradient descent based

training algorithm commonly known as “Levenberg-Marquardt”. However other training algorithms

could be selected or derived.

4.4.1 Supervised Learning

This is a type of training approach where the input and the desired output are clearly specified.

Suppose, the input vector is represented by [mxx ,...,1] and the corresponding output vector is

denoted by myy ,...,1 , an optimal rule is to be determined such that:

ε+=],...,[],...,[11 mm xxfyy (4.10)

Whereε represents the approximation error. In this example, the error could be a vector.

The idea is that the network adjusts its weights as an attempt to minimize the approximation error

preferably to the smallest value possible, and thereafter the network returns a trial result. This result

is then compared to the desired output. Figure 4.9 illustrates a basic network structure for a

supervised ANN model. Here the error function is fed back into the system as an attempt to find a

correct set of input vectors.

If the desired threshold is not attained, another update of the network weight vectors could be

initiated. In dynamic systems especially, the need for a network to map the nonlinear relationship

between inputs and outputs is enormous, thus this approach is commonly employed in ANN based

models.

Some of the key measures to evaluate a supervised learning session are: time required per iteration,

number of iterations per unit pattern, convergence points i.e. local or global minima(s) etc.

4.4.2 Unsupervised learning

In contrast to supervised learning, this training method does not require an external teacher. This

implies there no explicit target output is presented to the network.

 55

Fig 4.9: A basic layout for a supervised learning paradigm using error correction technique

Unsupervised learning studies how the system can respond to various input patterns during the

training session, and subsequently presents the input patterns in a way that reflects the statistical

structure of the overall collection of the input patterns. Because this learning method self-organises

data offered to the network and discovers their emergent shared properties, it is also often referred to

as “self-organised learning”. Hebbian learning is one of the common unsupervised learning

paradigms.

(Kalteh et al., 2007) report that self organising maps (SOMs) are promising techniques to investigate,

model, and control many types of water resources processes and systems. Moreover, unsupervised

learning is proved superior in a number of applications including data visualisation, pattern

classification etc. In (Valova et al., 2005) a parallel growing architecture for self organising maps has

been investigated.

4.4.3 Other Types of Learning

Reinforced learning and competitive learning are other types of learning paradigms. In the reinforced

learning an external teacher is required although still no desired output targets are presented to the

network. The teacher scores or rates the output of the network with either a pass or fail. A fail score

implies the network has to readjust its parameters again and again until targeted outputs are

eventually observed. If the network yields a correct response, a reward is given otherwise a penalty is

guaranteed for out-of-range responses. However, the response rating limits of the network should be

declared so that the teacher should not continue scoring at infinitum.

Competitive learning is known to be a “racing” learning method. This approach uses a rule based on

the idea that only one neuron in the layer fires at a time for a given iteration. In other words, neurons

compete among themselves to be activated. The output neuron that wins the “racing” is then referred

to as the winner-takes-all neuron. In the winner-takes-all schema, the output neuron receiving the

largest input is fully credited, whereas outputs of other neurons are suppressed to a 0 value.

-

)(εerror

BiasesWeights

Adjust

&

VectorInput _ OutputDesired _

orithmA

Learning

Supervised

lg

ANN

L̂ L

w

x

 56

Competitive learning rule can be mathematically defined as:

)()()1(kwkwkw ijijij ∆+=+ (4.11)

Where,)()(ijij wxkw −=∆ η for ji = , otherwise 0)(=∆ kwij , η denotes the learning rate, x is a

randomly picked input, and)(kwij is the current weight value.

Competitive learning is very common, and most of the feature maps are based on this method. For

instance, self-organising feature maps, Kohonen’s special class of neural networks introduced in the

late 1980s.

4.5 Competent Learning Process for ANNs

In addition to the ANN learning paradigms discussed earlier in this chapter, here other main issues

compulsory for a successful ANN training are exclusively introduced. They are: learning rule, and

learning theory. Unlike learning paradigm, learning rule classifies how network weights should be

adjusted in the learning trials. There are four basic types of learning rule: error-correlation learning

(ECL), Boltzmann learning (BL), Hebbian learning (HL) and competitive learning (CL). Most of the

supervised learning algorithms use these learning rules during training.

Error-correction learning is the method of comparing the network output to the desired output value,

and using that error to guide the training. In the most guiding phases, the error values can be used to

directly adjust the tap weights, using an algorithm such as the backpropagation algorithm.

Mathematically, the error used by this method can be formulated as:

LL ˆ−=ε (4.12)

Where, ε is the error value, L is the target output, and L̂ denotes the network output.

At each training iteration, error correction learning algorithms attempt to minimize this error

function. This method is mostly used in backpropagation learning algorithms.

The originality of the Hebbian learning rule could perhaps be attributed to a hypothesis proposed by

D. Hebb back in the year 1949. The concept is currently adopted as Hebb’s Law, and is one of the

key ideas in biological learning. The Hebb’ Law can be presented in the form of two sub-rules:

1. If two neurons on either side of a connection are activated synchronously, then the weight of that

connection is increased.

2. If two neurons on either side of a connection are activated asynchronously, then the weight of that

 57

connection is decreased.

In simple terms, the Hebbian learning rule specifies how much the weight between two neurons

should be increased or decreased in proportion to their activation (Hebb,1949, Mazzoni et al., 1991,

and Hertz et al., 1991). Suppose iα and jα are the activations of the neurons i and j , and ijw is the

synoptic weight between them, then the basic form of the Hebbian rule can be formulated as:

jiijw αηα=∆ (4.13)

Where, ijw∆ is the change is in the synoptic weight, and η is the learning rate. Another powerful

learning rule is the delta rule. This rule utilizes the discrepancy between the desired and actual output

of each output unit to change the weights between neurons.

Another vital component for competent learning process of neural networks is the learning theory.

This concept covers issues related to data quality, data quantity, and best convergence etc. i.e.

training data in general. In most of the viewed papers, researchers tend to omit explanations with

regards to criterion used for selecting certain variables, training samples, data quality etc. It’s obvious

there is no general rule in selecting historical data of the phenomena of interest. Thus the input

variables are purely identified based on judgements and experiences. In most cases, variables with

strong correlation with the target output(s) are suggested. The selection of training data is extremely

crucial as it could improve adaptability, reliability, and robustness of an ANN. Training data with an

extended phenomena space margin and free from outrange data points are normally preferred. The

larger training data can increase the accuracy of network generalization but it also increases the

computation time of the learning process.

4.6 Error Back Propagation (BP) Learning Algorithm.

Error back propagation is a common technique of teaching ANNs how to perform a given task. The

term back-propagation refers to the manner in which the gradient is computed for nonlinear

multilayer networks. In simple terms, the gradient is the derivatives of the error with respect to the

weight (
k

k
w

g
∂

∂
=

ε
), and rk ,1= . This method was first described by Paul Werbos in the mid 1970s,

and it only gained recognition about ten years later.

Figure 4.10 shows a simplified supervised ANN training design chart using backpropagation method.

First of all, the input(s) and desired target (s) are presented to the network prior to computing the

resulting output. The difference between the desired and resulting outputs is known as the error. If

 58

Apply input(s)-target(s) to the network

Compute the error

YES NO

Goal met/ End Use the error to modify the weights and biases

Start

Compute the resulting Output

Resulting Output = Desired output

the error is greater than the acceptable threshold, the network will continue to adjust the weights and

biases for all neurons using the error.

Though, this process (adjusting of weights and biases) does not continue at infinitum.

The network repeats the process until the error reaches an acceptable value (typically error ≤ goal),

which means that the NN was trained successfully. If a maximum count of iterations is reached

without attaining the goal, this implies that the NN training was not successful.

Fig 4.10: A simple design chart for a supervised BP training method

The basic implementation of backpropagation learning deals with the adjusting of network weights

and biases in the direction in which the performance function decreases most rapidly, the negative of

the gradient. The basic back propagation algorithms are: gradient descent and gradient descent with

momentum. The simplest approach of this technique can be formulated as:

kkk gww η−=+1 (4.15)

Where kw denotes the vector of current weights and biases, kg is the current gradient, and η is the

learning rate.

Gradient descent algorithm are reported too slow for practical problems and highly likely to get stuck

in a shallow local minima. Thus a momentum term is introduced to enable the network to respond

not only to the local gradient, but also to global minima.

 59

With the standard descent algorithms, the arbitrarily selected learning rate is kept constant

throughout training. And since the performance of the algorithm is very sensitive to the proper

setting of the learning rate, optimal setting of the learning rate is extremely essential. If the learning

rate is set too high, the algorithm can oscillate and become unstable. If the learning rate is too small,

the algorithm takes too long to converge. (Alam et al., 2007) conducted a study on network structure

parameters and concluded that the learning rate, number of hidden layers and neurons have impact on

network training. To improve the learning process, other algorithms with variable learning rate such

as: Conjugate Gradient algorithm (CG), Quasi-Newton algorithm (QN), Lavenberg- Marquardt (LM)

could be used. These types of algorithms are designed primarily for high performance,

optimalization, and faster convergence and are often recommended for real world problems.

4.7 Conclusion

This chapter contains the backbone theory of the ANNs. It commences with a brief history of ANNs,

some applications and also the biological background for the methodology. Moreover, the chapter

also highlights the commonly used Neural Network topologies, and some essential training issues

such as input vector (IV), various learning paradigms, stopping criterion, generalisation, and some

basic information about training algorithms (including the proposed error back propagation).

It can be seen that prior to training, one needs to present an IV containing training data of the

phenomenon of interest to the network. Thus there is a call for data collection. The process of data

collection is fairly involving and often time consuming in a sense that the data have to be

preprocessed to get rid of out-of-range data. In addition, all data should be normalized or scaled to

values ranging from 0 to 1 due to ANN’s vulnerability to raw data and to avoid convergence related

problems. These important topics are exclusively covered in the next chapter (Chapter 5).

 60

CHAPTER FIVE

 DATA COLLECTION AND PRE-PROCESSING

The purpose of this chapter is primarily to discuss types of data used as inputs to the proposed

forecasting models and data collection methods used in the research. The chapter also covers the

importance of data processing, particularly pre-processing of data prior to forecasting. Moreover,

this section talks about the configuration and setting-up of the database engine, and retrieval of

data from the database to various forecasting models.

5.1 Data Description

Data collection is a significant function of any type of research study. Inaccurate or insufficient data

can impact the results of a study and ultimately lead to invalid or skewed results (Lendasse et al.,

2000). In this work, various data collection methods had been employed to ensure adequate historical

samples of the load.

As discussed in previous chapters, a power system load is affected by a number of factors. These

include exogenous and endogenous variables. A good forecasting system requires variables which

have a strong correlation with the load. Thus the evolved models will be presented with the following

inputs: load and weather data to forecast the load in different time horizons. As previously discussed,

the selection of the input variables is rather done arbitrary, based on the correlation analysis, and

sometimes on recommendations made in previous works and experience. Literature reports that,

amongst all other weather related factors, temperature has the most notable dependency in load

variation.

The actual load data for the CPUT Bellville campus were used to evaluate the effectiveness of the

models. The campus 11kV ring connected reticulation network comprises 13 substations mainly

feeding educational buildings, residential buildings, and a sport field. The network has 8 x 500kVA,

11/0.4 kV and 6 other 1000kVA, 11/0.4kV distribution transformers. A single line diagram of this

network is shown in Figure 5.1. Two types of loads were measured: total load and departmental

loads. The measurements for departmental loads were taken at the LT side of transformers. As for the

total (combined) load, measurements were taken at the main in-intake sub station (labelled as

Pentech in Fig. 5.1). The geographical layout of these sub stations as well as some measurement

points are also shown in the Figure 5.1.

 61

Fig. 5.1: Single line diagram – 11kV network reticulation of the campus

 62

During data collection process, power meters were installed at designated substations to measure

power consumptions at different integration periods i.e. quarterly, sub-hourly, and hourly bases.

Weather data were obtained from a local meteorological office.

5.2 Data collection methods

In this work, various quantitative data gathering strategies were utilized. Some of the strategies

used to gather relevant information are given below:

� Taking measurements - (i.e. the actual load for the entire campus, and departmental loads)

� Observing and recording well-defined load trend (e.g., recess break periods, special events,

anomalous days etc)

� Obtaining relevant data from management information systems (the contractual maximum

demand threshold – 2.2 MW declared by the institution to the CoCT).

� Administering surveys with closed-ended questions with network operators (e.g., face-to

face and telephone interviews, questionnaires)

Based on the Audience, Behaviour, Conditions, and Degree (ABCD) rule on measurable

objectives, several inception meetings with audiences or stakeholders were held. Inter alia, the

widely used face-to-face interactions approach with stakeholders i.e. network operators, CPUT

management, and suppliers was initiated to establish rapport and thereof possibly gain their

cooperation. Contrary to the said strategy, telephone interviews were also used not only to

optimally utilise the resources but also because this communication method is less time

consuming. The data collection is an involving exercise and often consumes a lot of time and

resources. Table 5.1 – shows a chronological data gathering schedule for this research. Two

historical load data namely: combined load and departmental loads can be observed. The

combined load constitutes the cumulative actual load for the entire campus recorded by a

statistical or check meter at the main in-take substation. As per Eskom/CoCT Maximum demand

metering requirements, this meter has been configured to record the load using a 30 minutes

integration period.

For departmental loads, the scope of this research was as result extended to record power

consumptions for different departments and building within the campus premises at a lower

integration sampling period. These data were recorded by a roving Lovato DMK40 power meter

for a period of 2 weeks per locality. The DMK40 meter is class 1 meter to IEC/EN 61036 and

IEC/EN 61268 standards and it can measure and display more than 251 power parameters.

 63

Table 5.1: A typical integrated schedule – for data gathering paradigm

5.3 Description of the load data

5.3.1 The combined (total) load data

As previously mentioned, the combined load data were measured at the main in-take substation of

the CPUT Bellville Campus for a period of four months per season. Because the load is greatly

influenced by seasonal changes, the data set for the total load used has been divided into two

categories (seasons): winter and summer. These seasons were subsequently defined as follow:

winter - a window period from February till May and the latter season from June – September.

 Figure 5.2(a) shows the highest and lowest load curves recorded in winter. With respect to the

present notified maximum demand (NMD) of 2.2MW, it can be seen that the load has

staggeringly exceeded the contractual threshold. One now begins to think about the subsequent

penalty charges, normally billed per exceeded kVA, payable by CPUT to CoCT. These charges

can obviously to be avoided if the NMD is reasonably declared. Thus the NMD needs to be

redefined to a value close to at least 3 MW.

The entire load profile for the total load, excluding power interruptions due to Eskom load

shedding, for the selected winter period is shown in Figure 5.2 (b).

The peaks and valleys shown in Fig.5.2 (b) represent typical power consumptions for weekdays

and weekends respectively. It is extremely important to analysis the historical load data to

determine input-output data structure.

Data type Data Source Recording

Integration

Period

Parameter Location/Bui

lding

Mobility Duration

Total load E-max Max.

Demand Meter

30 mins kW Main In-take

substation

Stationary 9 months

Departmental loads DMK 40 Lovato

Meter

15 mins kW Admin. BLD,

Elec. ENG,

IT,

Mech. ENG, and

Air Conditioning

Plant (ACP)

Roving 2 weeks/

department

Weather Meteorological

office

daily Min, Max

Temp (°C),

Wind Speed,

Humidity, and

Cloud rate

Nearest weather

service point

(Cape Town)

** Jan – August

2008. Daily

records

 64

Summer l oad cur ves vs. NMD - CPUT Bel l vi l l e Campus (Feb - Jul y 2008)

0. 00

500. 00

1000. 00

1500. 00

2000. 00

2500. 00

3000. 00

3500. 00

00
: 3

0
01

: 3
0

02
: 3

0
03

: 3
0

04
: 3

0
05

: 3
0

06
: 3

0
07

: 3
0

08
: 3

0
09

: 3
0

10
: 3

0
11

: 3
0

12
: 3

0
13

: 3
0

14
: 3

0
15

: 3
0

16
: 3

0
17

: 3
0

18
: 3

0
19

: 3
0

20
: 3

0
21

: 3
0

22
: 3

0
23

: 3
0

Ti me i n hour s

Ac
ti

ve
 P

ow
er

 (
kW

)

2.2 MW (NMD)

Lowest load curve

Highest load curve

Fig 5.2 (a): Load curves (Lowest & highest recorded load patterns in summer)

Load Cur ve (The Sel ect ed Summer per i od) - CPUT(Bel l vi l l e Campus)

0

500

1000

1500

2000

2500

3000

1 147 293 439 585 731 877 1023 1169 1315 1461 1607 1753 1899 2045 2191 2337 2483 2629 2775 2921 3067
Ti me(hour s)

Ac
ti

ve
 P

ow
er

 (
kW

)

Fi r st Ter m Begi ns - Jan 28, Monday
Fi r st Ter m Ends - 23 Apr i l , Wednesday

2 Weeks - Recess

Second Ter m Begi ns 5 May

Fig 5.2 (b): Time series – load trend for the selected summer period. The first day is a Friday

(during holiday).

For instance, if one uses the past load values for the weekend load pattern to predict the load for a

week day, the network is likely to yield wrong results. In this work, the input-output data

structure is also determined on the basis of historical load trend analysis. Fig. 5.2 (c) shows the

selected past load values and modelled as network IV to forecast the load for a week ahead on

hour-by-hour basis and collectively.

 65

Weekl y l oad cur ve - Apr i l 08

0

500

1000

1500

2000

2500

3000

1 13 25 37 49 61 73 85 97 109 121 133 145 157 169 181 193 205 217 229 241 253 265 277 289 301 313 325
Ti me(hr s)

Ac
ti

ve
 P

oa
we

r
in

 [
kW

]

kW

L(t)

L(t-1)

L(t-2)

L(t-169)

L(t-168)

Training data (31 March to 6 April, 08) Target (7 to 13 April, 08)

Fig. 5.2 (c): Structure of IV for the non weather sensitive model.

The total load of the campus is a sum of many departmental and residential loads. The following

section introduces the descriptions of the load for the selected educational buildings and

departments.

A typical load profile for the selected winter period (June – September) is shown in Figure 5.2

(d).

Hour l y Load Pr of i l e - CPUT Bel l vi l e Campus (June - Sept ember 08)

0

500

1000

1500

2000

2500

3000

3500

1 121 241 361 481 601 721 841 961 1081 1201 1321 1441 1561 1681 1801 1921 2041 2161 2281 2401 2521 2641 2761
Ti me i n hour s

Ac
ti

ve
 P

ow
er

 (
W)

Fig. 5.2 (d): Load profile – for the selected winter period including Eskom’ load rationing

5.3.2 Departmental loads

As per measurement schedule illustrated in table 5.1, individual loads for different departments

were also measured. A typical daily load profile for the Administration building (for a non-

 66

holiday period) is shown in Figure 5.3(a). The first measurement was taken on Thursday, 5
th
 June

for a period of six days.

In Figure 5.3(a) one observes that the load for reaches the peak (approx. 145 kW) at about 08h30

every week day. Usually, this department gets occupied at around 08h30 till 16:30 for weekdays.

Thus the average load recorded after 16:30 indicates a reduction of approx. 50% i.e. 65 kW. As

for weekend load profiles, an average 78 kW was recorded and practically speaking, this big

power consumption reduction seems to be valid because the building would ideally be

unoccupied on weekends.

Fig. 5.3 (a): The load over the period June 02 – 15, 2008 for the Administration Building. The first day is a

Friday.

 As shown in figure 5.3(a), two different load patterns during day time and after hours can be

clearly observed. Convincingly, the load reaches the peak during the day and then gradually

reduces immediately after hours. Typical weekly load profiles for the IT, electrical engineering,

and the administration building are shown in Figure 5.3 (b).

The highest peak of more than 300kW was recorded in the IT Building.

The other interesting load profile, with unique features in terms of fluctuations, was measured at

the air conditioning plant (ACP). A typical load profile for the ACP is shown in Figure 5.3 (c).

A load with this type feature is extremely difficult to predict because of the lack of consistence in

the load pattern. However, the IV structure of this particular load needs to be reviewed. Possibly,

Load Cur ve - ADMI N Bl d

0

20

40

60

80

100

120

140

160

08
:4

8:
53

12
:0

3:
55

15
:1

8:
57

18
:3

4:
03

21
:4

9:
10

01
:0

4:
13

04
:1

9:
17

07
:3

4:
22

10
:4

9:
28

16
:5

2:
01

20
:0

7:
06

23
:2

2:
12

02
:3

7:
20

05
:5

2:
26

09
:0

7:
34

12
:2

2:
39

15
:3

7:
46

18
:5

2:
52

22
:0

7:
57

01
:2

3:
03

04
:3

8:
11

07
:5

3:
18

11
:0

8:
26

14
:2

3:
32

17
:3

8:
38

20
:5

3:
45

00
:0

8:
50

03
:2

3:
55

06
:3

8:
59

09
:5

4:
07

13
:0

9:
11

16
:2

4:
16

19
:3

9:
21

22
:5

4:
25

02
:0

9:
32

05
:2

4:
38

08
:3

9:
48

11
:5

4:
53

Ti me

kW kW

Thursday

 Saturday Sunday Monday Tuesday

Friday

 67

instead of using the entire past load values defined in the structure of the previous IV, only most

recent past load values could be considered.

Load cur ves - I T(12 - 31 Aug) , ADMI N(02- 15 June) , ELEC ENG(16 - 29 June) ' 08

0

50

100

150

200

250

300

350

1 14 27 40 53 66 79 92 105 118 131 144 157 170 183 196 209 222 235 248 261 274 287 300 313 326 339
Ti me(hr s)

Ac
ti

ve
 P

ow
er

 (
kW

)

I T
ADMI N
ELEC ENG

Fig. 5.3 (b): Load profiles – for departmental loads (IT, ADM, and Electrical department).

Load cur ve: Ai r Ci ndi t i oni ng Pl ant - CPUT Bel l vi l e campus (6 - 19 Oct ober ' 8)

0

20

40

60

80

100

120

140

160

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 191 201 211 221 231 241 251 261 271
Ti me i n Hour s

Ac
ti

ve
 P

ow
er

 (
kW

)

Fig. 5.3 (c): Load profile – for the Air Conditioning Plant (First day is a Monday).

 68

Load Pr of i l e - MECdepar t ment (i ncl . 45% cont i g.) 1- 7 Sept ember , 08

0

20

40

60

80

100

120

140

160

180

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 103 109 115 121 127 133 139 145 151 157
Ti me i n hour s

Ac
ti

ve
 p

ow
er

 (
kW

)

Fig. 5.3 (d): Load profile for the Mechanical Department including the surrounding dwellings.

The load profile for the Mechanical department as shown in Figure 5.3 was recorded for a week

period (1
st
 till 7

th
 September 2008). However, some machines were not in use or operation when

measurements were taken. Please refer to Appendix F. Thus it was found necessary to add a 45%

load to the measured load to cater for the worse case scenarios (if machines were to be running

collectively). Again the peaks and valleys shown in the profile indicate the different load patterns

on weekdays and weekends. It must however be noted that the load profile shown in Figure 5.3

(d) also includes the electric energy consumed at the buildings located in the Mechanical

department geographical zone (including the Craft Tech building).

5.3.3 Characteristic of the total load curve

As clearly shown in Figure 5.4, the lowest power consumption of the campus is normally at night

and then the load picks up early in the morning around 07:30. This Figure indicates the load

profile for Monday 17
th
, 2008. All other weekdays would ideally have similar load curves when

the institution is fully operational. However load profiles during holidays would obviously be

different from the pattern shown in Figure 5.4.

From these graphs, one learns that there is a need for pattern classification. Thus the day-type

classification in accordance with their corresponding load patterns reflects more or less a precise

relation with the target load. The recording sampling period is 30 minutes, thus the daily

 69

maximum threshold ends at 48. The load profiles for Saturdays and Sundays in winter are shown

in Figure 5.5 (a) and 5.5 (b) respectively.

Hour l y Load Cur ve - Mar ch 17, 2008

0. 00

500. 00

1000. 00

1500. 00

2000. 00

2500. 00

3000. 00

00
: 3

0
01

: 3
0
02

: 3
0
03

: 3
0
04

: 3
0
05

: 3
0
06

: 3
0
07

: 3
0
08

: 3
0
09

: 3
0
10

: 3
0
11

: 3
0
12

: 3
0
13

: 3
0
14

: 3
0
15

: 3
0
16

: 3
0
17

: 3
0
18

: 3
0
19

: 3
0
20

: 3
0
21

: 3
0
22

: 3
0
23

: 3
0

Ti me i n hour s

Ac
ti

ve
 P

ow
er

 (
kW

]

Fig 5.4: Hourly load curve –March 17, 2008 (Monday)

CPUT Bvl Dai l y Load Pr of i l e - Sat ur days (Summer) Jan - May 08

0. 00

500. 00

1000. 00

1500. 00

2000. 00

2500. 00

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47
Ti me i n hour s

Ac
ti

ve
 P

ow
er

 [
kW

]

Fig. 5.5(a): Cumulative daily load curve (Saturdays in summer) - Jan to May 2008.

 70

CPUT Bvl - Dai l y Load Pr of i l e - Sundays(Summer) Jan - May 08

0. 00

500. 00

1000. 00

1500. 00

2000. 00

2500. 00

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49
Ti me i n hour s

Ac
ti

ve
 P

ow
er

 [
kW

]

Fig. 5.5(b): Cumulative daily load curve (Sundays in summer)

The weekend load profiles show that the power consumption is the lowest on Sundays.

5.4 Correlation analysis between the load and weather data

Weather conditions influence the load greatly. Without replicating, the weather data used in this

work were provided by the South African Weather Service office based in Cape Town. Thus the

correlation between weather related conditions and the consumption is conclusively essential,

particularly in regions where significant changes in weather conditions are experienced. The

graph in figure 5.6 shows a scatter plot between the load and wind speed in summer. The other

weather related variables such as daily average minimum and maximum temperatures, humidity,

and wind speed were also incorporated into a local database.

The correlation analysis between climatic and load data was also performed to measure the

statistical association between variables. Table 5.2 summarizes the closeness of linear relations

defined by correlation coefficients. Mathematical formulation can be defined as follow: suppose,

x denotes the consumption and y represents a weather variable, then the population correction

between two variables x and y is given as (Shen, 1999)

2/1)}(var*)(/{var),(var),(yiancexianceyxianceCoyx =ρ (5.1)

 71

Where ρ is called the product moment correction coefficient or simply the correlation

coefficient.

Scat t er Consumpt i on Vs. Wi nd Speed

0

500

1000

1500

2000

2500

3000

0 2 4 6 8 10 12 14
Wi nd Speed (m/ s)

Ac
ti

ve
 P

ow
er

 (
kW

)

Fig 5.6: Scatter plot between wind speed and the consumption in summer.

Consumption Climatic data),(yxρ

Wind speed -0.1443

Humidity 0.0934

Min_temp -0.1603

Load

Max_temp -0.1631

Table 5.2: Correlation analysis between the load and exogenous variables - summer data set

The sign (+ or -) indicates the direction of the relationship. For this particular analysis, all weather

variables excluding humidity indicate inverse relationships. This implies that if one variable

increases the other variable decreases.

5.5 Data Storage

The proposed ANN based forecasting models will be trained off-line using past load data and

weather forecast data stored in a local database. A general practice for a good STLF system is that

the relevant data from database are accessed automatically by the model. For this configuration,

the desired database needs to be identified, and subsequently be correctly installed in a local

personal computer (PC). There are a number of freeware databases available for data storage

namely: IBM, DB2, Informix, Ingres, Microsoft Access, Microsoft Excel, Microsoft SQL Server,

 72

MySQL, Oracle, PostgreSQL etc. However, if one intends to use MATLAB Database Toolbox,

the selecting of an appropriate data management system is required because this Toolbox mainly

supports ODBC/JDBC protocol compliant systems. A comprehensive procedure on how to set up

MySQL Database and conversion of data into required format can be found in (Kriger, 2007).

 In this work, all historical data are stored in MySQL DB Manager Database and then imported

into MATLAB as desired via ODBC communication protocol. The DB (MySQL) Manager

Professional 3.0 software is a freeware data management system and it is primarily designed for

research purposes.

Since the models need to automatically access the input data stored in the Database, some

MATLAB Database Toolbox functions (Structured Query Language (SQL)) syntax are used to

extract the required data from the Database into MATLAB Workspace.

Figure 5.7(a) gives a general layout of MySQL Database. MySQL Database Software allows a

user to create one or more databases and tables. For the purpose of this research, 1 database

(‘combinedloaddata’) was created and then configured. In this database, various table storing data

for different models have been created. Figure 5.7 (b) shows some of the tables that were created

in the Database. The required data were then extracted from these tables using Standard Query

Language (SQL) MATLAB functions into MATLAB workspace.

5.5.1 Importing Data into MySQL Database

The DBManager can import, export structure data to and from some known databases. Depending

on the format and structure of the required data, the DAO or Text import wizard can be used to

import the data into MySQL Database.

The DAO wizard uses the MS DAO drivers to convert and import data from the supported files:

MS-Access, MS-Excel, Dbase/Clipper/FoxPro, ODBC data sources etc. To use this wizard one

must have MS Office or at least the DAO drivers installed. This import wizard often has some

conversion problems, especially if one deals with data in different formats.

Unlike the DAO, the text wizard imports fixed or delimited text files into a database table. Here

data are kept or imported in designated delimited columns as shown in Figure 5.7 (c). Again,

depending on the format of the data and types, the suitable delimiter i.e. tab, semicolon, comma

 73

or spaces should be selected. The text wizard method appears to be the most convenient approach

particularly if one plans to import data in different formats.

Fig. 5.7 (a): A general overview of DB Manager – Workspace (where historical load and weather data are

stored).

Fig. 5.7(b): A typical layout of some of the created tables.

 74

Fig. 5.7(c): Importing data from an Excel spread sheet into MySQL DB

Alternatively, the use of enterprise software for converting Excel files/MSAcess to MySQL

databases is promoted. This application is designed primarily to eliminate time-consuming data

entry and the errors that accompany it. The commonly-known Navicat’s Database Transfer Tool

Software or Excel-MySQL Converter could be used instead. Navicat is a third party product for

MySQL and is the leading MySQL GUI for MySQL server management and development. For

this application one often needs to procure a commercial license.

5.6 Data Pre-processing

The database stores raw or pre-processed weather and load data as shown in Figure 5.7(d).

However, the data should be normalized prior to presenting them to a model for training or any

forecasting attempt.

Data scaling is essential due to the fact that neural networks are often vulnerable to raw data, it’s

extremely important that data are scaled (typically values between 0 and 1, or -1 and 1) to avoid

convergence problems. There are several methods that can be used for data normalization as

defined in Equation (5.2) to (5.2).

 75

Fig. 5.7 (d): Raw load and weather data stored in the “ivalldata” Table for the IV # 1.

5.6.1 Data Scaling Methods

Data can be normalized using one of the following equations:

valueminimumvaluemaximum

valueminimumvalueactual

−

−
=valueNormalized (5.2)

valuesdaytheofsum

valueactual
=valueNormalized (5.3)

valuemaximum

valueactual
=valueNormalized (5.4)

valueaverage valuemaximum

valueaveragevalueactual

−

−
=valueNormalized (5.5)

The scaling of the data is done in order to improve interpretability of network weights and the

uniform scaling equalizes initially the importance of variables. In this work, Equation (5.4) has

certainly been adopted and implemented to normalize both the historical load data and weather

data.

 76

5.7 Bad data detection and replacement

 As perfectly defined in (Yang, 2006)’s work, the existence of bad data in historical load curve

affects the precision of load forecasting result.

There are two kinds of bad data in the daily load curve: false channel bad data and abnormal

event bad data. False channel bad data are due to the measurement and transmission mistakes, and

often they are far from their real physical values. Abnormal event bad data come from some

unexpected sudden incidents, such as short circuit and equipment overhaul, which cause

unnatural sudden changes of the load curve trend.

With no exception, some bad data were detected in the total load curves as well as in the weather

data. Figure 5.8 shows daily load curves for six days including valleys due to bad data. The

valleys are as a result of Eskom’s load management strategies to temporarily reduce cost

intensive peaks by shedding “non essential loads”. The impact of a load shedding process could

be viewed as an absolute inconvenient power interruption method as it affects daily production

activities. However, this partial power interruption helps to prevent a total power black-out.

The nature of bad data discussed in Fig 5.8 is neither false channel bad data nor abnormal event

bad data type, but rather bad data as result of a planned strategy. Nonetheless, a strategy for

detecting and replacing these data needs to be formulated prior to importing data into the

Database.

The longest power interruption period (as shown in figure 5.8(b) because of load shedding was

recorded on 16
th
 April for a period of 2 hours in total. For more information on other load

shedding recorded in summer, please refer to the records in Appendix B.

In this work, a similar technique to replace bad data, proposed in the work of (Santos et al., 2005)

has been adopted. The rule used for this purpose has been, briefly: if the lost or bad data period is

longer than an hour, then the whole day is replaced with the average load profile of the two

homologous days of the two previous weeks; else the average load of three previous hourly loads

is considered instead; if the bad data corresponds to a special or holiday – the closest similar day

is used.

Applying this rule to all recorded bad data as shown in Figure 5.8(a), the load profile for the 16
th

April was subsequently replaced with the average load profile recorded for the two homologous

days of the two previous weeks (i.e. averaging the profiles for past two similar day - 26
th
 and 19

March).

 77

Det ect ed Bad Dat a

0. 00

500. 00

1000. 00

1500. 00

2000. 00

2500. 00

3000. 00

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47
Ti me i n hour s

Ac
ti

ve
 P

ow
er

 (
kW

)

02- Apr
10- Apr
16- Apr
23- Apr

Fig. 5.8(a): The effects of bad data on the load curves resulted from Eskom’s load shedding. The total

supply interruption period is 7 hours.

Because the supply interruption period of other days (02 April, 10 April, and 23 April) is shorter

than an hour, the average load of three previous hourly loads was taken. No bad data

corresponding to a special or holiday was recorded.

Bad Dat a03 - Load sheddi ng (16 Apr i l) Summer dur at i on: 2 hr s

0. 00

500. 00

1000. 00

1500. 00

2000. 00

2500. 00

3000. 00

00
: 3

0
01

: 3
0

02
: 3

0
03

: 3
0

04
: 3

0
05

: 3
0

06
: 3

0
07

: 3
0

08
: 3

0
09

: 3
0

10
: 3

0
11

: 3
0

12
: 3

0
13

: 3
0

14
: 3

0
15

: 3
0

16
: 3

0
17

: 3
0

18
: 3

0
19

: 3
0

20
: 3

0
21

: 3
0

22
: 3

0
23

: 3
0

Ti me(hr s)

Ac
ti

ve
 P

ow
er

 [
kW

]

kW

Fig 5.8 (b): The longest load shedding period - recorded in summer for the CPUT Bvl Campus.

 78

5.8 Composition of the Input Vector (IV) of the prediction models

The structure of the input vector specifies the selected endogenous and exogenous variables. In

this work, only past load values and weather related data have been used. Some times sinusoidal

functions and binary codes could be presented to the network to provide the model with the cyclic

behaviour of the load. (Chen, 1991) applied autocorrelation analysis on the historical load to

determine the input variables and reported that loads of the same hours have very strong

correlation with the load measured at the same hour and day of the previous weeks. In the work of

(Monohar et al., 2008) only five inputs selected from the previous day and five each from the

previous weeks on the same day to predict the load of the next day.

 In (Santos, at al., 2008, and Hippert et al., 1093), the construction of the IV structures were

based on some contiguous past values of the load. The most convoluted task in time series

forecasting is to determine an adequate data points for training. If data points are insufficient, the

forecasting will be poor. If on the contrary, data points are useless or redundant, modeling will be

difficult or even skewed (Lendasse et al., 2000).

In this work, two forecasting approaches were considered, namely: first, forecasting the load for a

whole week at once (batch) was evaluated, and then hourly (incremental) forecasting was studied.

In both cases, the inclusion of weather data was considered.

The IV for the weather sensitive model is:

))((min_));((max_));((_

));((__);169();168();2();1(]1#_[

minmax tTtemptTtemptHhumidityave

tWspeedwindavetLtLtLtLVectorInput −−−−=
 (5.6)

The predicted output is a nonlinear function of the IV # 1 and is defined as:

())();();();(();169();168();2();1()(ˆ
min tHtWtTtTtLtLtLtLftL man−−−−= (5.7)

where)(tW denotes daily average wind speed,)(tH is the daily average humidity,)(min tT and

)(max tT represent daily maximum and minimum temperatures on the forecast day.

The IV and the predicted output for the non-weather sensitive model are:

)169();168();2();1(]2#_[−−−−= tLtLtLtLVectorInput (5.8)

());169();168();2();1()(ˆ −−−−= tLtLtLtLftL (5.9)

 79

The IV structure used in this work, as discussed earlier, consists of two previous hours active

power values, L(t-1) and L(t-2) and some homologous consumption past load values of the

previous week L(t-168) and L(t-169). The inclusion of these values provides information

regarding the consumption trend in the past homologous periods (Santos, at al., 2008). These

inputs are presented to the network to predict the load)(ˆ tL .The structure of IV # 1 and 2 are given

in Figure 5.9 and 5.10 respectively.

Fig. 5.9: Composition of the input vector (IV) # 2 (non-weather sensitive model)

For weather sensitive models, the structure of the input vector is slightly modified to take into

account the effect of weather conditions on the load as illustrated in Figure 5.10.

Fig. 5.10: Structure of the IV # 1.

In this work, the period chosen for load memory series analysis was defined from February to

May 2008. However only 1 week past load values were used in addition to the weather-related

data point, producing a set of N = 1352 points. The load data were taken every hour for a period

of one week. The training data was defined from Monday, 31
st
 March till 6

th
 April 2008 and the

corresponding target was defined for the period from 7
th
 to 13

th
 April 2008. The models were also

 80

evaluated for generalization capability, thus testing data set was defined from the first week of

March (3
rd

 to 9
th
). Figure 4 shows weekly load profile from which the training data and target

were derived.

Weekl y l oad cur ve - Apr i l 08

0

500

1000

1500

2000

2500

3000

1 13 25 37 49 61 73 85 97 109 121 133 145 157 169 181 193 205 217 229 241 253 265 277 289 301 313 325
Ti me(hr s)

Ac
ti

ve
 P

oa
we

r
in

 [
kW

]

kW

L(t)

L(t-1)

L(t-2)

L(t-169)

L(t-168)

Training data (31 March to 6 April, 08) Target (7 to 13 April, 08)

Fig. 5.11: Two weeks load profile for the CPUT Bellville Campus in summer (31

st
 March to 13

th
 April

2008)

These models were also evaluated for generalization, thus the testing data were selected from the

first week of March (3
rd

 to 9
th
).

More network architectural details on the developed models are given in the following chapter,

where a fully-fledged application of ANN in load forecasting is introduced.

5.9 Conclusion

This chapter discusses the methodologies used to gather the required data, the descriptions of

these data, and some results from the correlation analysis between the load and exogenous

variables. In addition, the chapter also gives some details with regards to the storage of input data

and results. Some detected bad data and subsequent replacement strategies are also highlighted.

The other important topic covered in this chapter is the composition of the input vectors (IVs) of

the proposed models.

The context of the previous chapters has explicitly covered some good introduction to a load

forecasting problem. Now it is time to experiment. Thus the following chapter will discuss real

application of ANN in STLF.

 81

CHAPTER SIX
 APPLICATION OF ANNs IN LOAD FORECASTING

This chapter presents a comprehensive approach to power system load forecasting using Artificial

Neural Network methodologies. Furthermore, the chapter covers some important steps that need

to be followed prior to developing a forecasting model. And the last part of this chapter deals with

the network structures, input vectors and various STLF models developed in this work.

6.1 ANNs for load forecasting

As highlighted in the previous chapters, there are different types of neural networks, namely: radial

basic function, feedforward, recurrent, dynamic, Hopfield, perceptron, vector quantization,

unsupervised. Some networks perform better than others in specific applications. For function

approximation, classifications, and for dynamic system modelling: radial basis function, feedforward,

and recurrent are dominant. Unsupervised networks are normally used for clustering. The structure of

feedforward and radial basis functions neural network types can be modified to suit a specific

problem. For example, the neuron activation function can be changed to some other suitable

functions.

The basic idea of ANN in load forecasting is that the load can be observed as a non-linear function

influenced by a number of factors, i.e. historical load, weather-related, time factors etc. The

relationship between the load and these factors is often difficult to model using conventional

methods. ANNs can map complex, non-linear relations, thus many researchers and planners

frequently use these methodologies in power system load forecasting (Mandal et al., 2005).

The weather-related factors (daily maximum temperature, minimum temperature, humidity, and wind

speed on the forecast day) were selected and then modelled as network inputs. The selection of

network parameters is made rather arbitrary. However, presenting a neural network with less

significant inputs may result in convergence problems and subsequently affect the performance of the

network.

 6.2 Designing an Input Vector (IV) for a STLF model

The accuracy of the forecast relies on the configuration of the model’s input vector. Thus the

correlation analysis between the load and exogenous variables was carried prior to selecting

 82

appropriate input variables. The following section talks about how the change in weather conditions

and the load can be modelled mathematically.

6.2.1 Variation in Weather-Related Inputs

The change in load and weather variables (temperatures, wind speed, and humidity) can be described

as follow:

)1()()(−−=∆ tLtLtL

)1()()(minminmin −−=∆ tTtTtT

)1()()(maxmaxmax −−=∆ tTtTtT (6.1)

)1()()(−−=∆ tCtCtH

)1()()(−−=∆ tWtWtW

Where)(tL is the load at time t,)1(−tL is the load of the previous hour,)(min tT is the minimum

temperature at time t,)1(min −tT is the minimum temperature of the previous hour,)(max tT is the

maximum temperature at time t,)1(max −tT is the maximum temperature of the previous hour,)(tH is

the humidity at time t,)1(−tH is the humidity of the previous hour,)(tW is the wind speed at time t,

())1−tW is the wind speed of the previous hour.

Generally, weather variables are considered to be key inputs especially for short-term load

forecasting and often small errors in weather data could affect the prediction.

6.3 Development of a load forecasting ANN-based Model

 Load forecasting could be viewed as a non-linear function approximation problem. Most forecasting

models reported in literature, were subjected to different training approaches, and subjected to

different data quality (Sharif et al., 2000, Medal et al., 2006, Lauret et al., and Srinivasan, 1998).

However, it’s extremely important, especially for intelligent systems, to undertake some crucial

model development steps. The flow chart in figure 6.1 attempts to illustrate some essential model

developmental steps. The first one involves the type of forecast and data collection. Here one needs

to define the system requirements in terms of forecast time horizon, and then gather the required

data. Thereafter, a correlation analysis between variables and the load, data preparation and

processing should be carried out. The latter step covers details with regards to network architecture

and suitable model parameters i.e. defining type and size of network, learning paradigm, network

performance function etc.

 83

Fig. 6.1: Flow chart for development of a supervised ANN-based model

Structure

Create Network – Feedforward/Recurrent

etc. Define network size (number of layers,

hidden neurons, and so on)

Choose suitable network parameters

Learning rate; Momentum term; Performance

Function; Training algorithm, No. of epochs and

network training goal

Present the network with the training set (inputs and

the corresponding outputs)

Train the network

Calculate error (e) -

Network performance parameter- (mse/sse/mape/msereg etc)

Is mse ≤ set goal

No

Yes

Display the connection weights between

layers (input – hidden – output)

Stop

Start

 84

6.3.1 Forecasting using a Feedforward (FF) Neural Network

The back propagation multi-layered perceptron (MLP) type neural network is most reported and

suitable network structure for STLF (Dillion et al., 1991, Lee, 1992 and Djukanvic, 1993). A

multilayer perceptron is a family of feedforward neural networks that maps sets of input data onto a

set of appropriate output. These networks use three or more layers of neurons with nonlinear

activation functions. The superiority of this type of networks, in contrast to the conventional

methods, is that it can distinguish data that are not linearly separable and thus it is commonly used in

STLF.

The multilayer perceptron consists of an input and an output layer with one or more hidden layers of

nonlinearly-activating neurons.

Each neuron in one layer connects with a certain weight to every other neuron in the following layer.

In this work, only the Feedforward neural network is considered. However, different sub-models

(weather sensitive and non-weather sensitive models) were developed to evaluate different cases. The

topology of the Feedforward neural MLP network used in this work excluding biases is shown in

Figure 6.2.

Fig. 6.2: Architecture of the feedforward neural network

where w denotes a vector of the synaptic weights, x and u are vectors of the inputs to the layers, m is

the number of input variables, and r is the number of neurons in the hidden layer.

The weighted sums for the hidden and the output layers are:

∑
=

=
m

l

lklk xwnz
1

,)((6.6)

and

∑
=

=
r

k

kk nuwno
1

')()((6.7)

M M

M

)(1 nx

)(2 nx

)(nx
m

)(1 nu

)(2 nu

)(1 nz
1,1w

)(2 nz

)(ˆ nL)(no

'

1w

'

rw

'

2w

rw ,1

)(nzr
)(nur

1σ

1σ

1σ

2σ

∑
2

1

r
∑

∑

∑

 ∑

rmw ,

 85

where rk ,1= and Nn ,1= , where N is the number of data points used for training of the model.

The outputs of the neurons in the hidden layer and output layer are computed by passing the

weighted sum of inputs through the tan sigmoid and pure linear transfer functions respectively.

Mathematically, the outputs of the hidden layer and the output layer can be defined as:

)(
1

1
))((

)(1 nu
e

nz knzk
k

=
+

=
−

σ (6.8)

)(ˆ)(*)(2 nLnoKno ==σ (6.9)

Where K is a coefficient of the pure linear transfer function.

If the desired output is not attained, the network can reiteratively be trained until it yields reasonable

results. However, over-training should be avoided to ensure network generalisation. By default

MATLAB trains with Lavenberg-Marquardt (LM) training algorithm. Thus any different training

algorithm needs to be specified prior training. During the training, network parameters (weights and

biases) are iteratively adjusted on the bases of the derivatives of the error w.r.t. The derivative is then

multiplied by a step size or learning rate. For a standard gradient algorithm the learning rate is held

constant throughout the training, and this is often problematic for network optimalization. Thus a

training algorithm with varying learning rate is considered appropriate as an alternative.

Mathematically, the approach for a standard gradient based search algorithm can be formulated as:

ij

ij
w

w
∂

∂
=∂

ε
η (6.10)

j

j
w

w
∂

∂
=∂

ε
η (6.11)

Where ijw is the weight between the input layer and the hidden layer, jw is the weight between the

output layer and the hidden layer, ε is the network error, and η is the learning rate.

 Contrary to the network topology, a neural network can have some interconnections and feedback

paths between layers. This type of configuration is known as Recurrent Network. The following

section discusses the architecture of the Elman Recurrent Neural Network designed for the prediction

model.

 86

6.3.2 Forecasting using an Elman Recurrent (ER) Neural Network

The Elman network commonly, is a two back propagation network with feedback (delay)

connections as shown in Figure 6.3. The Elman prediction model is designed based on this network

topology.

Custom ER networks can be configured to have internal connections as desired. Unlike the

conventional MLP networks, the first layer of this Elman network has recurrent connections. The

delay),...,2,1(riDi = in this connection stores values from the previous time step, which can be

used in the current step. The same transfer functions used in the Feedforward prediction model were

also used here. This implies the tag sigmoid (1σ) in the hidden layer and pure linear (2σ) activation

function in the output layer. This configuration is special in that two-layer networks with these

transfer functions can approximate any function with discontinuities.

Fig. 6.3: Elman recurrent neural network topology

where w denotes a vector of the synaptic weights, x and u are vectors of the inputs to the layers, m is

the number of input variables, and r is the number of neurons in the hidden layer.

The weighted sums for the hidden and the output layers are:

∑
=

−+=
m

l

kDlklk nuwxwnz k

1

,)1()((6.12)

and

∑
=

=
r

k

kk nuwno
1

')()((6.13)

M M

M

)(1 nx

)(2 nx

)(nxm

)(1 nu

)(2 nu

)(1 nz
1,1w

)(2 nz

)(ˆ nL)(no

'

1w

'

rw

'

2w

rw ,1

)(nzr)(nur

1

2

r

1σ

1σ

1σ

2σ

r
D

2
D

1
D

•

•

•

)1(1 −nu

)1(2 −nu

)1(−nur

∑

∑

∑

rmw ,

 87

where rk ,1= and Nn ,1= , where N is the number of data points used for training of the model.

The outputs of the neurons in the hidden layer and output layer are computed by passing the

weighted sum of inputs through the tan sigmoid and pure linear transfer functions respectively.

Mathematically, the outputs of the hidden layer and the output layer can be defined as:

)(
1

1
))((

)(1 nu
e

nz knzk
k

=
+

=
−

σ (6.14)

)(ˆ)(*)(2 nLnoKno ==σ (6.15)

Where K is a coefficient of the pure linear transfer function.

Other training parameter that was considered is the momentum factor as an attempt to prevent the

network to get stuck in a shallow local minimum. Equation (6.16) shows how the synoptic weights

are adjusted. The network determines the value of the increment ()(nw∆ on the basis of the previous

value of the increment.

)(
)(

)(nw
w

n
nw ∆+

∂

∂
=∆ ψ

ε
 (6.16)

The effect of the momentum factor to the performance of the algorithm is discussed in (Phansalkar,

1994). The other important training parameter is the learning rate which controls the amount of

change imposed on connection weights during training and to provide faster convergence also needs

to be defined.

Mathematically, the weights are updated using the equation:

)()()1(nwnwnw ∆−=+ η (6.17)

Where (η) is the learning rate.

A comparison of the accuracy of neural network using different learning algorithms and momentum

factors is explicitly discussed in (Ho, 1992).

Finally, the amount of change in weights of the network topology illustrated in Fig. 6.2 for the

hidden and output layers are defined as:

mjrinw

nxnwnununLnLnLnLnw

ij

jiiiij

,...,1,,...,1)1(

)()()](1)[(*)](ˆ1)[(ˆ)](ˆ)([)('

==−∆

+−−−=∆

ψ
 (6.18)

 88

 and

rinwnunLnLnLnLnw iii ,...,1)1()(*)](ˆ1)[(ˆ)](ˆ)([)('' =−∆+−−=∆ ψ (6.19)

6.4 Description of the evolved forecasting models

In this work, a number of ANN-based models have been developed and presented with actual load

data to forecast the load a week in advance. Firstly, two Neural Network models, Feedforward (FF)

and Elman Recurrent(ER), were developed and then applied to the total load of the campus. Some of

the evolved models are non-weather sensitive, but the effect of climatic conditions on load has also

been analyzed in this work. Only two seasons (summer and winter) have been considered for the total

load.

Secondly, the same models were applied to the other sub-loads of various departments. In Table 6.1 a

list of different models as well as the associated IVs for the two seasons is given.

Table. 6.1: Developed forecasting models and the corresponding IV for total load prediction.

Without replicating, two forecasting approaches were considered, namely: first, forecasting the load

for a whole week at once (batch) was evaluated, and then hourly (incremental) forecasting was

studied. In both cases, the inclusion of weather data was considered. The developed models for

forecasting the total load and departmental loads were bases of these approaches.

For network performance comparison purposes, it was found necessary that the configuration of both

networks remains unchanged in both cases. The network structure for the non-weather sensitive

model was defined as follows: (4-10-1) i.e. 4 inputs for past contiguous consumption instances, 10

hidden layer neurons, 1 output neuron for hour by hour forecast. Similarly, the latter network

Model Season Input Vector (VI)
FFNN_TL_NWS01 Past Contiguous Consumption Values (PCCV):

)169();168();2();1(−−−− tLtLtLtL

ERNN_TL_NW01 PCCV

FFNN_TL_WS01 PCCV; Wind speed; Humidity; Max Temp; Min Temp

ERNN_TL_WS01

Summer

(February – May 2008)

PCCV; Wind speed; Humidity; Max Temp; Min Temp of

the forecast day

FFNN_TL_NWS02 PCCV

ERNN_TL_NWS02 PCCV

FFNN_TL_WS02 PCCV; Wind speed; Humidity; Max Temp; Min Temp of

the forecast day

ERNN_TL_WS02

Winter

(June – September

2008)

PCCV; Wind speed; Humidity; Max Temp; Min Temp of

the forecast day

Note: model number 01 – is for the summer model and model # 02 represents a winter model

 89

structure was slightly modified to include the effects of the weather related variables. Thus the

network structure was then changed to (8-10-1) - as shown in figure 6.4.

Fig. 6.4: Network architecture for the weather sensitive load forecasting model.

This network uses a tan sigmoid and pure linear transfer functions in the hidden layer and output

layer respectively.

The mathematical models of the input vectors are defined as in Equation (5.6), (5.7), (5.8) and (5.9)

in chapter 5

The other forecasting models for predicting some departmental loads have also been developed with

the similar network configuration. However, the hidden layer neurons for neural networks for

predicting departmental loads were reduced to 5. Table 6.2 shows a list of the other 10 sub-models,

developed to forecast departmental loads.

The following departments or units were considered: Information Technology (IT), Mechanical, and

Electrical Engineering departments, Air Conditioning Plant (ACP), and the Administration building.

The measurements were taken at every department/building for a period of two to three weeks with

the exception of the Mechanical department load data which were recorded for only a week period.

Sub Models Department/ Unit IV structure
FFNN_IT

ERNN_IT

Information

Technology

1#_ VectorInput

FFNN_ADM

ERNN_ADM

Administration 1#_ VectorInput

FFNN_MEC

ERNN_MEC

Mechanical)2()1(−− tLandtL

FFNN_ELEC

ERNN_ELEC

Electrical 1#_ VectorInput

FFNN_ACP

ERNN_ACP

Air Conditioning

Plant (ACP)

)2()1(−− tLandtL

Table 6.2: Schedule of the developed departmental load forecasting models

 90

6.5 Conclusion

The application of Artificial Neural Network in STLF and different developed forecasting models are

described in this chapter. The chapter also covers some important steps to be considered when

developing a supervised ANN model for function approximation problems. Moreover, the

architecture and mathematical modelling of the selected neural networks have also been presented in

this chapter.

And now that the ANN approach to electric load forecasting has been clearly demonstrated, the

following chapter (chapter 7) finally discusses the results obtained from different developed

forecasting models and some specific findings.

 91

--

CHAPTER SEVEN
 RESULTS AND DISCUSSIONS

This chapter presents the simulation results of various forecasting models discussed in the previous chapter.

Few discussions pertaining specific forecasting results have also been incorporated in this chapter. The first

part of this chapter talks about forecasts for the combined load and the latter part encapsulates departmental

forecasts. Responses from the two forecasting approaches (i.e. batch and incremental training modes) have

also been clearly indicated. Results emerged from non-weather sensitive models are also included and

discussed.

Preamble

The models discussed in chapter 4 were subsequently trained under MATLAB
®
, ver. 7.1,

environment using Neural Network Toolbox, ver. 4.0.6. And this chapter now presents forecasts

emerged from these forecasting models. Comparisons between the developed weather sensitive and

non-weather sensitive models are also included. Another important component of this chapter to note

is that, these models were simulated with the same network architectural layout. Thus no

modification in terms of network parameters and structure of these models were made. Both input

vector #1 and # 2 (as specified in the previous chapter), were individually and collectively presented

to the models, and simulated.

Firstly, the models were trained by applying all the inputs to the network before the weights and

biases are updated. This approach is also known as “batch training mode”. And secondly, the

models were trained using the incremental training mode (i.e. the weights and biases of the network

are iteratively adjusted every time an input is applied to the network).

In addition, the following performance measure functions were employed: mean squared error (MSE)

and mean percentage error (MPE) to evaluate the performance of the models. The actual error in kW

is also compared.

2

1

)])(ˆ)([(
1
∑

=

−=
N

i

predictedactual nLnL
N

MSE (7.1)

NnLnLnLMPE
N

i

actualpredictedactual /)](/))(ˆ)([(
1

∑
=

−= (7.2)

Where)(nLactual
is the actual load,)(ˆ nLactual

is the forecast value of the load, and N is the number of

data points.

 92

7.1 Network architectural design for the prediction models

The network parameters for the models are given in the table below. The network comprises 10

hidden layer neurons and 1 output neuron. For activations, a tan sigmoid transfer function was used

for the hidden layer and pure linear one in the output layer. Both momentum factor and learning rate

were held constant throughout the training at 0.75 and 0.35 respectively.

Network Hidden

Layer

Hidden

neurons

Output

nodes

Training

function

Transfer

functions

Momentum

factor

Learning

rate

Feedforward

and

Elman

Recurrent

1 10 1 Gradient

descent

algorithm

Tan

sigmoid

and

Pure

linear

0.75 0.3

Table 7.1: Network Topology for the total load models

The parameters shown in the table 7.1 defines the ANN topology. All models were firstly trained

using this arbitrary designed structure.

7.2 Forecasting the total load using the non-weather sensitive FF model

The FFNN_TL_NWS01 model, as discussed in chapter six, was specifically designed to ignore any

climatic related influences on the load. Thus the model merely uses past contiguous load values

(input vector # 2) to predict hourly loads for at least a week ahead. The input vector was firstly

applied to a Feedforward Neural Network and eventually the model was trained using summer

training data. In Figure 7.1, one observes an example of some summer forecasts produced by this

Feedforward forecasting model. This model is trained using Scaled Conjugate Gradient

backpropagation algorithm and the actual error presented in Figure 7.2 (b). The performance of the

network is shown in Figure 7.3 (c). The same procedures were then repeated for an Elman Recurrent

Network based model (ERNN_TL_NWS01) in both seasons.

The forecasts produced by both networks (Feedforward and Elman Recurrent) are approximately the

same and thus the results not further discussed here. The reader is however encouraged to view the

records in Appendix E or forecasts emerged from Elman Recurrent based forecasting model

(non-weather sensitive) as well as other application results and error comparative analysis.

The network response (forecasts) for the Feedforward network using batch training mode is shown in

Figure 7.1 (a). In the same Figure, one notices that the first peak for the CPUT Bellville Campus

 93

normally occurs at about 08:00 to 09:00 and the latter peak in the evening from 19:00 to 21:00. This

“m-shaped” daily load characteristic confirms the non-linear features of the load and often affects the

accuracy negatively. The “m-shaped” load feature in essence symbolises daily peaks, namely:

morning and evening peaks.

The highest error (more than 10%) was recorded on Wednesday evening. Otherwise an average error

of kW100± was maintained throughout the forecast lead time. Figure 7.1 (c) shows the

performance of the model. It can be seen that the network has successfully failed to meet the test goal

(1e-3) after 1000 iterations.

0 20 40 60 80 100 120 140 160 180
1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

Forecast and target output (training data) CPUTBvl FFNN-TL-NWS01

Time in hours

A
c
ti
v
e
 P

o
w

e
r/

L
o
a
d
 i
n
 [

k
W

]

Target

Forecasted load

Mon Tues Wednes Thurs Fri

Satur Sun

Fig 7.1 (a): De-normalized forecasts using the Feedforward Neural Network (non-weather sensitive model) for

the summer period.

7.2.1 Simulating the network using testing data

To evaluate generalization capability of the network, the model was again re-simulated using the data

it has not seen before. An example of the response of the network for a non weather sensitive model

is shown in Figure 7.2. Despite the fact that the network has not met the goal, it can be seen that its

generalisation is surely not very bad as shown in Figure 7.2.

 94

0 20 40 60 80 100 120 140 160 180
-400

-300

-200

-100

0

100

200

300

Actual error (kW)- for the Training data set (non-weather sensitive model)

Time in hours

Fig. 7.1 (b): The associated actual error (kW) for the FFNN_TL_NWS01 model

0 100 200 300 400 500 600 700 800 900 1000
10

-4

10
-3

10
-2

10
-1

10
0

10
1

1000 Epochs

T
ra

in
in

g
-B

lu
e

G
o
a
l-
B

la
c
k

Performance is 0.00129832, Goal is 0.001

Fig. 7.1 (c): Network performance for a non-weather sensitive model. The goal was never met in 1000

iterations.

 95

0 20 40 60 80 100 120 140 160 180
0.4

0.5

0.6

0.7

0.8

0.9

1

Test inputs (normalized)vs. Target CPUTBvl FFNN
T
L

N
WS01

Time in hours

A
c
ti
v
e
 P

o
w

e
r/

L
o
a
d
 n

o
rm

a
li
z
e
d

Forecasted load

Target

Mon Tues Wednes

Thurs Fri

Satur Sun

Fig 7.2: Normalized forecasts using testing data – Feedforward ANN (non-weather sensitive) in summer.

The following models now introduce the effect of the weather conditions.

7.3 Forecasting the total load using the weather sensitive ER model

Similarly, the simulation was again repeated, but then using the input vector # 1. As previously

defined, this vector takes into account the effect of weather conditions. The following weather

variables were used: daily average wind speed, humidity, and maximum and minimum temperatures.

And as duly specified in chapter six, the two models (FFNN_TL_WS01 and ERNN_TL_WS01)

which represent Feedforward and Elman Recurrent Neural Networks were trained. Some obtained

results and actual error in kW in Figure 7.3 (a) and (b) respectively. These particular results were

obtained by training the Elman Recurrent Neural Network based model (ERNN_TL_WS01). The

performance of this model is shown in Figure 7.3 (c). In Figure 7.3 (b), one observes that the weather

sensitive forecasting model performs slightly better than the first one. The actual error for this model

has improved to approximately 50% in comparison with the model discussed earlier.

 96

0 20 40 60 80 100 120 140 160 180
1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

Forecasted load and target (training data) CPUTBvl(Summer)ERNN-TL-WS01

Time in hours

A
c
ti
v
e
 P

o
w

e
r/

L
o
a
d
 i
n
 [

k
W

]

Target

Forecasted load

Mon Tues Wednes Thurs Fri

Satur Sun

Fig. 7.3 (a): De-normalized forecast for the CPUT combined load (summer) - using Elman Recurrent Artificial

Neural Network (weather sensitive model)

The performance goal for the Recurrent forecasting in Figure 7.3 (c) was successfully met only in

218 epochs.

7.3.1 Simulating the network using testing data

Again to evaluate the model’s degree of generalization, this model was again simulated using the

testing data, and the simulation results are shown in Figure 7.4.

7.4 Forecasting the total load using the weather sensitive FF model

Inline with the objectives of this research project, particularly the objective that was primarily

designed to assess the performance of two different Artificial Neural Networks, it was decided to

again present the same input vector to the Feedforward Neural Network model (earlier defined as

FFNN_TL_WS01) and simulate the model. The subsequent simulation results, corresponding error,

and network performance for this model are shown in Figure 7.5 (a), (b), and (c) in the sequence

order. The goal was also successfully met in 354 epochs. And finally, the network response after

presenting the model with the testing data is illustrated in Figure 7.6.

 97

0 20 40 60 80 100 120 140 160 180
-250

-200

-150

-100

-50

0

50

100

150

200

Actual error (kW)- for the Training data set (weather sensitive model ER)

Time in hours

e
rr

o
r(

k
W

)

Fig. 7.3 (b): The corresponding mean squared error for ERNN_TL_WS01 model.

0 20 40 60 80 100 120 140 160 180 200
10

-4

10
-3

10
-2

10
-1

10
0

10
1

218 Epochs

T
ra

in
in

g
-B

lu
e

G
o
a
l-
B

la
c
k

Performance is 0.000999722, Goal is 0.001

Fig. 7.3 (c): Network performance of the model (ERNN_TL_WS01).

 98

0 20 40 60 80 100 120 140 160 180
0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized forecasts vs.Target CPUTBvl(Summer)ERNN-TL-WS01

Time in hours

A
c
ti
v
e
 P

o
w

e
r/

L
o
a
d
 n

o
rm

a
li
z
e
d

Forecasted load

Target

Mon Tues Wednes

Thurs Fri

Satur Sun

 Fig.7.4: CPUT combined load normalized forecasts (in summer) using Elman Recurrent Neural Network

(ERNN_TL_WS01). Only testing data were used.

0 20 40 60 80 100 120 140 160 180
1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

Forecasted load vs. target (training data) CPUTBvl(Summer)FFNN-TL-WS01

Time in hours

A
c
ti
v
e
 P

o
w

e
r/

L
o
a
d
 i
n
 [

k
W

]

Target

Forecasted load

Mon Tues Wednes Thurs Fri

Satur Sun

Fig. 7.5 (a): De-normalised forecasts (combined load) – using the Feedforward Neural Network weather

sensitive model.

 99

0 20 40 60 80 100 120 140 160 180
-250

-200

-150

-100

-50

0

50

100

150

200

Actual error (kW)- for the Training data set (weather sensitive model)

Time in hours

e
rr

o
r(

k
W

)

Fig. 7.5 (b): The corresponding actual error (kW) for the FFNN_TL_WS01 model

0 50 100 150 200 250 300 350
10

-4

10
-3

10
-2

10
-1

10
0

10
1

354 Epochs

T
ra

in
in

g
-B

lu
e

G
o
a
l-
B

la
c
k

Performance is 0.000998517, Goal is 0.001

Fig. 7.5 (c): Network performance of the model (FFNN_TL_WS01).

 100

0 20 40 60 80 100 120 140 160 180
0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized forecasts vs. Target CPUTBvl(Summer)FFNN-TL-WS01

Time in hours

A
c
ti
v
e
 P

o
w

e
r/

L
o
a
d
 n

o
rm

a
li
z
e
d

Forecasted load

Target

Mon Tues Wednes

Thurs Fri

Satur Sun

Fig. 7.6: Normalized forecasts using Feedforward Neural Network weather sensitive model

As clearly indicated in Figure 7.2 (c), the non-weather sensitive models have successfully failed to

meet the defined goal (1e-3). However, the models presented with the IV that brings the effect of the

weather conditions on the load have surprisingly met the goal as shown in Figure 7.3(c) and 7.5 (d).

The very same models have also performed better than the non-weather sensitive ones when

presented and simulated with data which where not used during training. Figure 7.4 shows the typical

response of the weather sensitive models when simulated with testing data.

However, it should be noted that the defined performance goal (1e-3) was arbitrarily selected for

preliminary model’s performance evaluation. In this work, the absolute performance goal of 1e-5 was

used to ensure improved forecast accuracy.

The following section now covers the responses emerged from different forecasting models when

subjected to the new performance goal. Another important topic also covered in the next section is

the implementation of the incremental training mode. This means that the connection weights

between layers and biases are iteratively computed and adjusted every time an input is applied to the

network. The subsequent errors and model performance results presented in both tabular and

graphical forms are also included in the following section.

 101

7.5 Model responses to the new performance goal (1e-5)

Firstly, the following models were evaluated using the batch training mode: FFNN_TL_NWS01,

FFNN_TL_WS01, ERNN_TL_NWS01, and ERNN_TL_WS01. In all cases, none of these models

manage to meet the goal.

Some network performances obtained from these models are shown in Figure 7.7 (a), (b), and in

Appendix E. The network performance of the Elman Recurrent Neural Network weather sensitive

model (ERNN_TL_WS01) is shown in Figure 7.7. This type of response also emerged from all other

forecasting models including the forecasting models which predict the load during the winter period.

Evidently, it can be seen that presenting a neural network with a lot of input data points does not

guarantee improved accuracy or a better network performance.

0 100 200 300 400 500 600 700 800 900 1000
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

1000 Epochs

T
ra

in
in

g
-B

lu
e

G
o
a
l-
B

la
c
k

Performance is 0.00331449, Goal is 1e-005

Fig. 7.7 (a): The network response of the Feedforward Neural Network Model (weather sensitive)

The following section now discusses the network responses obtained from different forecasting

models after the implementation of the incremental training mode.

 102

0 100 200 300 400 500 600 700 800 900 1000
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

1000 Epochs

T
ra

in
in

g
-B

lu
e

G
o
a
l-
B

la
c
k

Performance is 0.00228713, Goal is 1e-005

 Fig. 7.7 (b): The network response of the Elman Recurrent Neural Network Model (non-weather sensitive)

7.6 Forecasting the total load using the hour-by-hour approach

The evolved Feedforward and Elman Recurrent Neural Network models for predicting the load in

both seasons (winter and summer) were trained incrementally. In all cases, the input vector (IV) # 1

and # 2 were applied to the networks to predict the load with 168 hours lead time. As stated in the

previous chapters, the IV # 2 is specifically designed to ignore the effect of weather related

conditions on the load. The composition of the latter IV brings the effect of climatic conditions.

Figure 7.8 (a) shows 1 week ahead forecast for the CPUT total load emerged from the Feedforward

Neural Network non-weather sensitive model (ERNN_TL_NWS01). The forecast and network

performance came into sight after predicting the load using the Elman Recurrent weather sensitive

model (ERNN_TL_WS01) are given in Figure 7.9 (a) and 7.9 (b) respectively.

In these figures, it can be seen that the incremental training mode is undoubtedly superior compared

to the performance of the batch trained models.

 103

0 20 40 60 80 100 120 140 160 180
1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

Network response - using training data (a 168 hrs ahead forecast)

Time in hours

A
c
ti
v
e
 P

o
w

e
r/

L
o
a
d
 i
n
 [

k
W

]

Actual load values

Predicted load values

Mon Tues Wednes Thurs Fri

Satur Sun

Fig. 7.8(a): 1 week ahead forecast (summer) – FFNN_TL_NWS01 (Feedforward non-weather sensitive model)

0 1 2 3 4 5 6
10

-6

10
-5

10
-4

10
-3

6 Epochs

T
ra

in
in

g
-B

lu
e

G
o
a
l-
B

la
c
k

Performance is 2.02207e-006, Goal is 1e-005

Fig. 7.8(b): The corresponding network performance- FFNN_TL_NWS01 (Feedforward non-weather sensitive)

model)

 104

0 20 40 60 80 100 120 140 160 180
1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

168hrs in advance forecast -CPUTBvl(training data -winter) FFNN-TL-WS02

Time in hours

Actual load values

Predicted load values

Mon Tues Wednes Thurs Fri

Satur Sun

Fig. 7.8(c): 1 week ahead forecast (winter) – FFNN_TL_NWS01 (Feedforward non-weather sensitive model)

0 1 2 3 4 5 6 7 8 9 10
10

-6

10
-5

10
-4

10
-3

10
-2

10 Epochs

T
ra

in
in

g
-B

lu
e

G
o
a
l-
B

la
c
k

Performance is 2.15669e-006, Goal is 1e-005

Fig. 7.8(d): The corresponding network performance of the FFNN_TL_WS02 (using incremental training

mode) – for the last forecast value (168h)

 105

Figure 7.8 (a) and (b) show a 1 week ahead forecast in winter. The forecast period is 04
th
 – 10

th

August, 2008. Other subsequent forecasts and performance responses can also be found in

Appendix E. Similarly, these models were also presented with the matching testing data. The results

are summarized in Table 7.1.

7.7 Error comparative analysis for the total load forecasting models.

The developed models were evaluated using the standard mean squared error (MSE). The percentage

mean error (MPE) was also used as a supplementary performance measure. The outcome of the

analysis is also illustrated in Table 7.1. The result in the table shows that forecasting the whole week

at once (batch training approach) can severely affect the accuracy of the forecast compared to the

hour-by-hour approach. The testing result also indicates that the incremental training technique

improves the degree of generalisation for a neural network.

Fig. 7.10: Comparison of actual error – batch vs. incremental training mode. The forecast is for the period from

7
th

 -13
th

 April, 2008.

Figure 7.10 shows the actual daily errors for the Feedforward Neural Network model trained in the

batch manner and incrementally respectively. Some more comparisons of the actual error are given in

tabular form in Appendix E.

Act ual er r or _FFNN_TL_WS01(Bat ch Tr . Mode)

- 400

- 300

- 200

- 100

0

100

200

300

400

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Ti me i n hour s

Ac
ti

ve
 p

ow
er

 (
kW

) Monday
Tuesday
Wednesday
Thur sday
Fr i day
Sat ur day
Sunday

Act ual er r or (kW) _ CFFNN_TL_WS01(I ncr ement al Tr . Mode)

- 10

- 8

- 6

- 4

- 2

0

2

4

6

8

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Ti me i n hour s

Ac
ti

ve
 P

ow
er

 (
kW

) Monday
Tuesday
Wednesday
Thur sday
Fr i day
Sat ur day
Sunday

 106

Table 7.1: Error comparative analysis on the evolved forecasting models for the total load

Model Input Vector (IV) Network training mode MSE MPE Season

 training testing training testing

FFNN_TL_NWS01 Feedforward batch 0.001364707 0.006668 5.78E-06 0.001575

ERNN_TL_NWS01

IV # 2

Elman Recurrent batch 0.001175932 0.005098 4.41E-06 0.000498

FFNN_TL_WS01 Feedforward batch 0.000667856 0.014004 8.67E-07 0.004432

ERNN_TL_WS01

IV # 1

Elman Recurrent batch 0.000753235 0.025275 5.92E-07 0.000394

CFFNN_TL_NWS01 Feedforward incremental 5.40E-06 8.98E-03 7.03E-07 3.50E-04

CERNN_TL_NWS01

IV # 2

Elman Recurrent incremental 2.07398E-06 0.001477 2.73E-09 3.48E-05

CFFNN_TL_WS01 Feedforward incremental 5.40215E-06 6.54E-02 7.03E-07 9.11E-06

CERNN_TL_WS01

IV # 1

Elman Recurrent incremental 3.41951E-06 1.95E-03 2.17E-09 5.21E-05

su
m

m
er

FFNN_TL_NWS02 Feedforward batch 0.005585235 0.011151 6.77E-05 0.000205

ERNN_TL_NWS02

IV # 2

Elman Recurrent batch 0.005636492 0.013949 7.34E-05 0.000308

FFNN_TL_WS02 Feedforward batch 0.003314488 0.020662 2.36E-05 0.000169

ERNN_TL_WS02

IV # 1

Elman Recurrent batch 0.002287125 0.018256 1.37E-05 0.000479

CFFNN_TL_NWS02 Feedforward incremental 4.85248E-06 7.25E-05 1.17E-07 3.86E-04

CERNN_TL_NWS02

IV # 2

Elman Recurrent incremental 3.63666E-06 4.48E-04 1.61E-08 2.23E-06

CFFNN_TL_WS02 Feedforward incremental 4.85E-06 6.30E-02 1.17E-07 3.36E-05

CERNN_TL_WS02

IV # 1

Elman Recurrent incremental 3.15444E-06 1.66E-04 2.25E-08 4.24E-04

w
in

te
r

 107

7.8 Forecasting the departmental loads

Since the characteristics of the department load profiles are already highlighted in chapter 5,

there is no need to replicate or further discuss these profiles. Thus the following topic directly

talks about forecasts obtained from the developed forecasting models. One more thing that

needs to be understood here is that the batch training mode is no longer considered due to the

associated high degree of inaccuracy. This implies that all forecasting models for different

departments would be incrementally trained to forecast respective loads as desired.

The forecast lead time (168 hours) remains unchanged for the IT, Electrical departments and

the Administration building. However, the characteristic of the load for the Air Conditioning

Plant (ACP) is uniquely noticeable and needs to be handled differently. This load lacks

consistence in its pattern due to fast load fluctuations. Thus the forecast lead time is reduced

to 24 hours as an attempt to possibly use more meaningful training data. The 24hrs lead time

forecast horizon was also used to predict the for the Mechanical Engineering department.

Some networks for departmental load forecasting models were only presented with the IV # 2,

because the effect of weather related variables was not explicitly observed in the previous

model performance evaluation. In simple terms, all departmental load forecasting are

non-weather sensitive one and incrementally trained.

Moreover, the architecture of the neural networks for the departmental forecasting models has

been slightly modified as clearly indicated in Table 7.2.

Network Hidden

Layer

Hidden

neurons

Output

nodes

Training function Transfer

functions

Momentum

factor

Learning

rate

Feedforward

&

Recurrent

1 5 1
Gradient Descent

Algorithm with

momentum

Tan sigmoid

and Pure

linear

0.75 0.3

Table 7.2: Network Topology for the departmental load forecasting models

 108

The error comparison analysis for the departmental load forecasting models is summarized in

Table 7. 6.

7.8.1 Forecasting the load for the IT department

The load measurements of the IT department were taken from 12th August – 01 September 08.

Thus the data set was defined as: training data (25
th
 August – 1

st
 September), target data (17

th

– 24th August), and testing data specified as the training data set. And subsequent 1 week

ahead forecast of the weather sensitive IT load forecasting models is shown in Fig. 7.11(a)

and (b).

The performance of this model is shown in Figure 11 (c). And a comparison in terms of the

actual errors of the incrementally and batch trained forecasting Recurrent models described in

section (7.5.1) is given in Table 7.3 (a) and (b). The result shows that the batch trained model

gave some good forecast at specific hours of the forecast day (hr 7 is a good illustrative case)

compared to the incremental one.

0 20 40 60 80 100 120 140 160 180
100

150

200

250

300

350

Network response - using IT training data (a 168 hrs ahead forecast)

Time in hours

A
c
ti
v
e
 P

o
w

e
r/

L
o
a
d
 i
n
 [

k
W

]

Actual load values

Predicted load values

Mon Tues Wednes Thurs Fri

Satur Sun

Fig. 7.11(a): One week ahead forecast for the IT department (the forecast is for the week of 17
th

 – 24
th

August, 08) – FFNN_IT_WS, incrementally trained.

 109

0 20 40 60 80 100 120 140 160 180
100

150

200

250

300

350

IT 1 week ahead forecasts vs. target - ERNN
I
T

W
S

Time(hrs)

A
c
ti
v
e
 P

o
w

e
r/

L
o
a
d
 (

k
W

)

Target

Forecasted load

Mon Tues Wednes Thurs Fri

Satur Sun

Fig. 7.11(b): One week ahead forecast for the IT department (the forecast is for the week of 17th – 24th

August, 08) – FFNN_IT_WS, trained in batch mode. Forecast week is from 17
th

 -24
th

August, 2008.

0 1 2 3 4 5 6
10

-6

10
-5

10
-4

10
-3

6 Epochs

T
ra

in
in

g
-B

lu
e

G
o
a
l-
B

la
c
k

Performance is 2.02207e-006, Goal is 1e-005

Fig. 11 (c): Performance of the feedforward IT load forecasting model

 110

 Actual error (kW) - FFNN Prediction model (FFNN_IT_WS) – IT Depart.

 Incremental training mode, IV # 1

Hours Monday Tuesday Wednesday Thursday Friday Saturday Sunday

1 -0.95922 0.804706 0.693268 0.778046 0.900866 -0.49954 -0.82276

2 0.891821 0.804706 0.768659 0.594778 0.369755 0.551078 0.177239

3 0.891821 -0.33195 -0.23134 -0.40522 -0.88637 -0.88384 0.384564

4 0.770119 0.357281 0.75073 -0.85719 -0.82377 0.924761 -0.61544

5 0.773542 -0.64272 0.75073 -0.85719 0.17623 -0.90688 0.690262

6 0.773542 0.827941 0.765069 -0.81159 0.940984 0.09312 0.738388

7 0.775038 0.827941 0.771335 0.659381 0.935289 0.882777 -0.26161

8 -0.88443 -0.4505 -0.85734 -0.96226 -0.49892 0.822744 0.903394

9 0.066452 -0.84466 -0.92864 -0.61864 -0.71533 -0.86994 -0.43382

10 0.753781 -0.74181 -0.85347 -0.56968 0.872549 -0.95749 -0.43382

11 -0.44184 -0.7465 0.757985 0.933934 -0.90196 0.868333 -0.43382

12 0.497649 0.61381 -0.65594 -0.95498 -0.54234 0.766422 -0.43382

13 0.348151 0.883782 0.668995 -0.95498 -0.56487 0.766422 -0.39831

14 -0.46357 0.36884 -0.66071 0.591803 -0.72682 -0.82392 0.699938

15 0.556739 -0.3553 -0.89117 -0.85141 -0.36043 -0.57996 -0.96056

16 0.559937 0.644696 0.887261 -0.85141 -0.39438 -0.40614 0.430761

17 0.695615 0.71262 0.515753 0.940458 0.739232 -0.45041 0.872765

18 -0.71286 -0.71195 -0.82966 -0.96765 -0.44262 -0.69935 -0.64975

19 0.504963 0.720817 -0.58026 -0.85986 -0.39878 0.700432 -0.57458

20 0.709216 0.743198 -0.96396 -0.42114 -0.84993 0.700432 0.696694

21 -0.83293 -0.82758 -0.93891 -0.34405 0.920056 0.700432 0.696694

22 -0.80852 0.949348 -0.77753 -0.34405 -0.90894 0.770703 -0.55206

23 0.492489 -0.43136 -0.36315 -0.81987 0.913795 0.773797 0.824441

24 0.688315 0.68626 -0.87675 0.61579 0.676946 -0.2262 -0.38447

Table 7.3(a): Daily actual errors (kW) for the total load in summer – for the incrementally trained

Feedforward model

However, the incrementally trained model, again, convincingly gave the smallest error

through out the forecasting period. As indicated in these Tables, the highest actual error

(2.029 kW) for the batch trained model was obtained Thursday, 21
st
 August at hour 11:00.

While the latter model has the highest error (0.967 kW) also recorded on the same Thursday

at hour 18:00.

 111

 Actual error (kW) - ERNN Prediction model (ERNN_IT_WS)

 batch training mode, IV #1

Hours Monday Tuesday Wednesday Thursday Friday Saturday Sunday

1 0.149638 1.223561 1.660549 1.012544 0.520114 1.311398 0.002132

2 -0.53001 0.213081 -0.7514 -0.19228 0.636313 0.783025 -0.02204

3 0.255152 -0.26234 -0.91741 0.216178 0.454916 0.904801 0.219287

4 0.445805 -0.309 -0.3348 -0.27605 0.329877 0.834964 0.31462

5 0.758461 0.306812 0.003725 -0.15065 0.340497 0.926882 0.503543

6 0.807855 0.364453 -0.73107 -0.22648 0.460012 1.051486 0.632146

7 0.0665 -0.873 -3.26473 -0.48492 -0.03401 0.541077 0.658862

8 -0.55545 -0.18761 -1.98104 -0.30779 -1.24355 -0.51694 0.611654

9 2.724826 0.913159 0.053649 -0.5775 -0.9788 -2.26558 0.544614

10 -0.56628 0.99162 -0.39992 -1.81375 -1.25437 -1.24268 0.509075

11 0.083661 1.260355 0.197767 2.029063 -1.31592 -0.90452 0.494106

12 0.067505 0.57129 -0.02848 1.708496 -0.65242 -1.26235 0.556299

13 0.588693 0.638934 -0.29831 1.463113 -0.37503 -1.33406 0.441867

14 0.089182 0.641629 -0.33242 1.235145 -0.49898 -1.23709 -0.46426

15 0.567706 0.034676 -0.62884 1.280102 -1.01618 -0.81763 -0.64704

16 0.255615 -0.82382 -0.80222 1.098009 -1.22382 -0.67205 -0.79084

17 0.250436 -0.42794 -0.4879 0.059361 -1.21163 -0.46398 -0.94612

18 0.140326 0.472933 -0.55465 -0.10456 -1.01218 0.16661 -0.58569

19 0.250231 0.434557 -0.58545 -0.35829 0.071418 0.193609 -1.05459

20 -0.21827 0.276391 -0.55177 -0.45309 0.046667 -0.8051 -0.72501

21 0.006146 0.782483 -0.4912 -0.25263 -0.20298 -0.61597 -0.45221

22 0.16186 0.71347 -0.6831 -0.37219 0.208327 -0.60896 1.102097

23 0.158397 0.8536 -0.44208 -0.18312 0.272807 -0.54808 1.194572

24 0.716072 1.858276 2.152413 1.565315 3.994725 -0.85638 1.198676

Table 7.3(b): Daily actual errors (kW) – for the batch trained Elman Recurrent model (total load in

summer)

7.8.2 Forecasting the load for the Electrical department

The electric load for the Gold field (Electrical) department was record for a two week period

from 16th – 30 June, 08. The training data and target were defined from 23rd – 29 of June and

16
th
 – 22

nd
 of June respectively. The evolved models were also simulated with the training

data. The results and performance obtained from these Feedforward and Recurrent weather

sensitive models are shown in Figure 7.12 (a), (b), (c), and (d).

 112

0 20 40 60 80 100 120 140 160 180
10

20

30

40

50

60

70

80

90

Elec. Eng. 1 week ahead forecasts vs. target - ERNN
E
LEC. ENG

W
S

Time(hrs)

A
c
ti
v
e
 P

o
w

e
r/

L
o
a
d
 (

k
W

)

Target

Forecasted load

Mon Tues Wednes Thurs Fri

Satur Sun

Mon Tues Wednes Thurs Fri

Satur Sun

Fig. 7.12(a): One week ahead forecast for the Electrical Engineering department (ERNN_ELEC_WS-

trained in the batch mode. Forecast week is from the 16
th

 – 22 June, 2008.

0 100 200 300 400 500 600 700 800 900 1000
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

1000 Epochs

T
ra

in
in

g
-B

lu
e

G
o
a
l-
B

la
c
k

Performance is 0.00107376, Goal is 1e-005

Fig. 7.12(b): Corresponding network performance for the Elman model (ERNN_ELEC_WS)-

 113

0 20 40 60 80 100 120 140 160 180
10

20

30

40

50

60

70

80

90

Network response (ELEC. ENG)- using training data (a 168 hrs ahead forecast)

Time in hours

A
c
ti
v
e
 P

o
w

e
r/

L
o
a
d
 i
n
 [

k
W

]

Actual load values

Predicted load values

Mon Tues Wednes Thurs Fri

Satur Sun

Fig. 7.12(c): One week ahead forecast for the Electrical Engineering department (FFNN_ELEC_WS-

incrementally trained. Forecast week is from the 16
th

 – 22 June, 2008.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
10

-7

10
-6

10
-5

10
-4

2 Epochs

T
ra

in
in

g
-B

lu
e

G
o
a
l-
B

la
c
k

Performance is 7.81095e-007, Goal is 1e-005

Fig. 7.12(d): The corresponding network performance for the Feedforward model (FFNN_ELEC)

 114

7.8.3 Forecasting the load for the Mechanical department

The recording of the total load for the Mechanical department was exceptionally tricky

because some of the big machinery (lathe machines) were not in operation when

measurements were taken from 01st – 10th of September 2008. However, for forecasting

purposes it was found necessary to add up a 45% to the measured load to cater for

contingences (the worse case scenario here is when all machines and other big loads are in

use at the same time). Since the recorded data is only for a week period, which is insufficient

for the defined model input vector (IV) structure in terms of the required past contiguous load

values, it was found appropriate to reduce the forecast lead time (168 hours) to a 24 hours

forecast instead. This implies that only most recent past load values)1((−tL , and))2((−tL

of the previous similar day are used to the load for the next hour. Figure 7.13 (a) shows a

24hrs forecast for the department. The corresponding performance of the model and actual

error (kW) are given in Table 7.4 and Figure 7.13 (b) respectively. The forecast day was

Tuesday, 2nd of September. The load data for Monday, 01st September were used to train the

model.

7.8.4 Forecasting the load for the Administration Building

The Lovato power meter was installed and commissioned at the Sacco min-substation to

record the load for the administration building for a two week period (02
nd

 – 15
th
 June, 2008).

Similarly, the second week recorded data were used as the training data and the other

remaining data were defined as the target. Figure 14 (a), (b), (c), and (d) show the obtained

forecasts and performance of different models. Some actual error comparisons of the develop

load forecasting models for this building are given in Table 7.5 (a) and (b).

7.8.5 Forecasting the load for the Air Conditioning Plant (ACP)

The load for the ACP is the most convoluted one. Not only that this load fluctuates

unexpectedly, but also because it has a “z-shaped” unique pattern which makes it extremely

difficult to predict. The approach used here briefly is as follow: the forecast lead time was

also reduced to 24 hours and only two past contiguous load values (as discussed in section

7.53) were used to predict the load of the next hour.

 115

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

-6

10
-5

10
-4

One Epoch

T
ra

in
in

g
-B

lu
e

G
o
a
l-
B

la
c
k

Performance is 2.67643e-006, Goal is 1e-005

 Actual error (kW) - FFNN Prediction model (FFNN_MEC) - MECHANICAL. ENG Department - for 24hrs lead time forecast. Forecast day is Tuesday, 2nd of Sep, 08

kW 0.39 0.2 0.35 -0.21 -0.28 -0.41 0.25 -0.23 -0.28 0.39 -0.48 -0.23 0.14 -0.37 0.5 -0.26 0.22 -0.29 0.16 0.47 -0.53 0.19 -0.26 -0.28

Hr 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Table 7.4: Daily actual errors (kW) for the Feedforward Neural Network incrementally trained Model (FFNN_MEC)

0 5 10 15 20 25
90

100

110

120

130

140

150

160

170

a 24 hrs ahead forecast for Mechanical Depart. (Tuesday, 02nd Sep, 08)

Time in hours

A
c
ti
v
e
 P

o
w

e
r/

L
o
a
d
 i
n
 [

k
W

]

Actual load values

Predicted load values

Tues

Fig. 7.13(a): One day forecast for the Mechanical Engineering Department electric load Fig. 7.13 (b): The corresponding model performance

 116

0 20 40 60 80 100 120 140 160 180
40

60

80

100

120

140

160

 1 week ahead forecasts vs. target (Admin) - ERNN
A

DMIN

Time(hrs)

A
c
ti
v
e
 P

o
w

e
r/

L
o
a
d
 (

k
W

)

Target

Forecasted load

Mon Tues Wednes Thurs Fri

Satur Sun

Fig. 7.14(a): One week ahead forecast for the Administration Building (ERNN_ADM_WS- batch

trained). Forecast week is from the 2
nd

 – 8
th

 of June 2008.

0 100 200 300 400 500 600 700 800 900 1000
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

1000 Epochs

T
ra

in
in

g
-B

lu
e

G
o
a
l-
B

la
c
k

Performance is 0.00334752, Goal is 1e-005

Fig. 7.14 (b): The corresponding model performance.

 117

0 20 40 60 80 100 120 140 160 180
40

60

80

100

120

140

160

Network response (ADMIN)- using training data (a 168 hrs ahead forecast)

Time in hours

A
c
ti
v
e
 P

o
w

e
r/

L
o
a
d
 i
n
 [

k
W

]

Actual load values

Predicted load values

Mon Tues Wednes Thurs Fri

Satur Sun

Fig. 7.14(c): One week ahead forecast for the Administration Building (ERNN_ADM_WS-

incrementally trained). Forecast week is from the 2
nd

 – 8
th

 of June 2008.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
10

-6

10
-5

10
-4

10
-3

2 Epochs

T
ra

in
in

g
-B

lu
e

G
o
a
l-
B

la
c
k

Performance is 4.15251e-006, Goal is 1e-005

Fig. 7.14 (d): The corresponding model performance.

 118

Some results and performance indicators obtained from the developed ACP load forecasting

models are shown in Figure 7.15 (a) and (b).

0 5 10 15 20 25
85

90

95

100

105

110

a 24 hrs ahead ACP forecast, Tuesday, 7th October,08 - FFNN ACP

Time in hours

A
c
ti
v
e
 P

o
w

e
r/

L
o
a
d
 i
n
 (

k
W

)

Actual load values

Predicted load values

Tues

Fig. 7.14(a): One day forecast for the Air Conditioning Plant (ACP) electric load.

0 1 2 3 4 5 6 7
10

-6

10
-5

10
-4

10
-3

10
-2

7 Epochs

T
ra

in
in

g
-B

lu
e

G
o
a
l-
B

la
c
k

Performance is 5.1429e-006, Goal is 1e-005

Fig. 7.14 (b): The corresponding model performance.

 119

Actual error (kW) - Elman Recurrent Prediction model (ERNN_ADMIN BLDG)

Recurrent Model for predicting the load for the Administration Building

 batch training mode, V # 1

Hours Monday Tuesday Wednesday Thursday Friday Saturday Sunday

1 8.57 -1.36 0.88 1.28 -3.75 -0.61 0.61

2 2.12 5.58 -0.73 -0.69 6.27 -3.88 3.37

3 0.64 1.10 -3.43 6.94 3.80 5.18 2.23

4 -1.70 -1.93 4.90 9.37 19.41 6.40 -3.07

5 1.46 -6.41 -5.42 0.88 1.68 -0.53 -8.07

6 -5.28 5.35 4.23 -1.25 -4.24 -12.33 19.43

7 -4.13 6.39 -8.74 -0.14 6.00 -10.78 6.23

8 21.02 -13.57 -10.63 -13.62 -7.09 -6.87 2.27

9 1.11 10.42 12.99 8.86 10.58 -11.85 6.09

10 -10.86 14.71 -0.26 -16.79 -3.32 -12.14 5.82

11 -15.39 -3.41 5.58 6.08 -9.72 -16.03 0.41

12 -0.95 -6.84 0.45 5.90 -2.77 -2.54 1.16

13 -1.25 -8.83 5.62 1.69 0.05 -3.64 -5.93

14 3.22 -0.14 -1.54 -10.52 -8.59 -11.43 5.64

15 -1.68 1.07 6.93 -6.17 -11.84 -9.45 7.73

16 -18.23 -15.71 7.00 13.46 39.21 -7.36 -7.21

17 21.18 32.70 15.76 8.20 -2.94 -7.45 -4.77

18 -11.66 -3.57 7.25 2.76 3.23 -5.82 -3.31

19 -0.09 -0.33 3.35 0.71 10.63 -9.05 -2.45

20 -5.05 -6.93 -2.19 1.30 -2.98 -7.74 2.00

21 -4.08 3.05 -0.69 0.26 -2.74 -0.38 -2.92

22 -7.02 6.93 0.83 0.14 -1.36 13.58 -7.59

23 4.55 -1.85 2.27 -0.75 -0.98 -7.02 0.63

24 5.29 5.29 0.95 -0.73 -0.25 -5.88 3.59

Table 7.5(a): Daily actual errors (kW) for the Feedforward Neural Network batch trained Model

(FFNN_ADM)

7.8.6 Error comparative analysis for the departmental load forecasting models

Precisely as the preceding error analysis performed on the total load forecasting models

summarized in Table 7.1, the same assessment (i.e. the MSE and MPE) was also carried to

evaluate the performance of the developed forecasting models for the departmental loads.

The result of this analysis is summarized in Table 7.6. The evaluation result also indicates

that the incremental training mode is the best approach compared to the latter.

 120

Actual error (kW) - FFNN Prediction model (FFNN_ADMIN) - ADMIN BLDG

Feedforward Model for predicting the load for the Administration Building

 Incremental training mode, IV # 1

hour Monday Tuesday Wednesday Thursday Friday Saturday Sunday

1 0.308401 -0.3488 -0.20587 0.274827 -0.26028 -0.32685 0.280213

2 -0.20334 0.23762 0.242645 0.274827 0.34796 0.145954 -0.14082

3 0.352367 -0.20587 -0.30294 0.367077 0.34796 0.398199 -0.14082

4 0.352367 0.242645 0.274984 0.367077 0.441141 -0.24072 0.125491

5 -0.25905 -0.30294 -0.27598 -0.30842 0.261576 -0.33013 -0.3498

6 -0.15216 0.417887 0.347399 0.143926 0.411227 0.166162 0.344761

7 0.423274 0.174032 -0.34485 -0.12583 0.264772 0.166162 0.292076

8 -0.37596 -0.27959 0.41639 -0.45033 -0.24062 0.14884 -0.23965

9 0.151355 0.205803 0.182094 0.190117 0.202189 0.423628 0.241519

10 -0.16409 0.221708 -0.32716 0.190117 -0.24224 0.423628 0.241519

11 -0.14884 0.252525 -0.32716 -0.15294 -0.18728 0.423628 -0.3129

12 0.209038 0.223377 -0.19032 0.164107 0.314842 0.408119 0.274838

13 0.171505 0.150884 -0.19907 -0.42285 0.405367 0.285107 0.189768

14 0.421134 0.148294 -0.18574 -0.15801 -0.19987 -0.2399 0.364038

15 -0.30649 -0.20906 0.314897 -0.19529 -0.14842 -0.2399 -0.25438

16 -0.43966 -0.329 0.405361 0.207378 0.423408 0.304042 -0.4378

17 0.448729 -0.22809 -0.19987 0.252691 -0.28424 0.406555 -0.4378

18 -0.1826 -0.22652 0.396557 0.286952 0.418555 0.157428 -0.28184

19 0.243557 -0.19508 -0.34309 -0.38273 0.229308 -0.33703 -0.28184

20 -0.24138 0.131459 -0.15516 -0.38273 0.182865 0.265188 0.240012

21 -0.19345 -0.15226 -0.31293 0.152101 0.182865 0.331007 -0.24151

22 0.131279 0.236749 -0.31293 0.152101 0.182865 -0.16617 0.303397

23 -0.15226 -0.3488 0.274827 -0.12673 0.182865 0.280213 0.332372

24 0.236749 0.23762 0.274827 0.349308 0.182865 0.280213 0.293439

Table 7.5(b): Daily actual errors (kW) for the Feedforward Neural Network incrementally trained

Model (FFNN_ADM)

7.9 Conclusion

This chapter visibly demonstrates the application of Artificial Neural Networks to a

short-term load forecasting problem. The simulation results obtained from different

forecasting models are self-explanatory. It is also evident in this chapter that STLF can

accurately implemented using only past load values. Most importantly one needs to pay

attention to the training approach of the model.

All in all, the error analysis comparison result for both cases (total & departmental loads)

shows that the developed hour-by-hour models are reliable, efficient and have a high degree

 121

of generalization as these models responded unconditionally very well to the presented

testing data. The hour-by-hour approach also eliminates the need to forecast the load for

each day separately.

The context of this chapter also has brought this research work to an end. However, one

more epigrammatic section to summarize the work done and highlight the future outlook of

this project is discussed in the following chapter.

Table 7.6: Error comparative analysis for departmental load forecasting models

Model Network training mode MSE MPE

 training Testing training Testing

FFNN_IT Feedforward incremental 5.34E-06 7.34E-04 2.73E-08 4.72E-08

ERNN_IT Elman Recurrent batch 8.64E-06 0.000456 9.88E-09 8.53E-09

FFNN_ADM Feedforward incremental 3.84E-06 6.84E-03 1.57E-07 3.52E-08

ERNN_ADM Elman Recurrent batch 0.003348 0.004357 4.49E-05 6.07E-04

FFNN_MEC Feedforward incremental 3.7E-06 5.70E-05 5.46E-07 4.13E-05

ERNN_MEC Elman Recurrent batch 0.00118 0.003142 2.87E-05 0.000534453

FFNN_ELEC Feedforward incremental 3.51E-06 1.94E-06 1.67E-07 2.83E-06

ERNN_ELEC Elman Recurrent batch 0.001074 0.002763 5.23E-06 8.48E-04

FFNN_ACP Feedforward incremental 4.01E-06 8.28E-06 2.03E-06 3.50E-09

ERNN_ACP Elman Recurrent batch 0.00278 0.0061 4.23E-05 3.85E-04

 122

CHAPTER EIGHT

 CONCLUSIONS AND FUTURE OUTLOOK

This chapter now concludes the work, application results and findings of the project. In addition, the

chapter summarises the comparative analyses of various evolved models and gives a summary of the

deliverables of the project. Possibilities to improve the obtained results and to better the features of the

developed models are also highlighted.

8.1 Deliverables of the project

The main objective of this research project is to provide power system planners with an accurate

and reliable short-term load forecasting (STLF) system which may assist to economically

optimize power system operations. In the deregulated electricity market, the key power system

operational activities such as priced-based unit commitment (PBUC), energy interchange, and

adequate power reserves rely heavily on a forecasting result with reasonable accuracy. Equally,

STLF is also essential, especially for large power users (LPUs), to duly manage their notified

maximum demands (NMD) and perhaps even better their expansion plans. These requirements

are the main impetus of this work.

This thesis is sequentially arranged, commencing with the general introduction of STLF,

literature review, some basic requirements of a convenient STLF system, a detailed introduction

of the selected technique (ANNs), data collection, and processing, development of models, and

finally the obtained application results for the CPUT, Bellville campus reticulation network.

In this work, a number of ANN-based models for STLF have been developed and studied. The

development of these models was based on two different neural networks (Feedforward and

Elman Recurrent) and trained using real life data as a case study. Table 8.1 presents a complete

schedule of network parameters of the developed models.

The load was divided into two categories namely: total load and departmental loads and

subsequently forecasted individually. Thus 18 sub models were developed to provide one week in

 123

advance forecasts in two seasons (summer and winter) for the total load. Ten more sub models

were developed to hourly and daily forecasts of the departmental loads. As clearly shown in

Table 8.1, 10 neurons were used in the hidden layer and 1 neuron in the output layer for the total

load forecasting models.

However, the number of hidden layer neuron was later reduced to merely 5 for the departmental

load forecasting models. For activations, a tan sigmoid and pure linear transfer functions were

used in the hidden layer and output layer respectively. The error is computed by means of the

negative of the gradients and conjugate directions using the standard gradient descent (GD)

algorithm with momentum and the scaled conjugate gradient (SCG) algorithm. The mean squared

error (MSE) has been used to evaluate the performance of the models. Mean percentage error

(MPE) was also used as a supplementary measure.

Table 8.1: Composition of parameters for the total load models

The forecasting approach was divided into two categories: models for forecasting the load of one

week at once (or the batch training approach), and models providing hourly forecasts (previously

referred to as incrementally trained models). This differentiation enables one to observe basic

properties of different forecasting modules. Generally, the models trained using the batch

approach provided fast responses in terms of the total time taken for the forecasting process.

Model

type

Input

Vector

Network No. of

hidden

layer

neurons

No. of

output

layer

neuron

Training

algorithm

Transfer

functions

Training

mode

Performance

Measure

NWS

 and

WS

Past

load

values

and/or

weather

data

FF and

ER

10

1 Gradient

descent

algorithm

with

momentum

Tan

sigmoid

and pure

linear

Batch and

Incremental

MSE and

MPE

Note: NWS – Non weather sensitive model, WS - Weather sensitive model, FF – Feedforward, ER – Elman Recurrent, MSE – Mean squared error

and MPE – Mean percentage error

 124

However, these models have some drawbacks particularly in a case of real time implementation.

Inter alia, some of the disadvantages include the inability of the batch trained models to allow

hourly updating or logging of historical load and weather data. This limitation could severely

affect the accuracy of the forecast.

Another major shortcoming of these models is the poor accuracy in the forecast, caused by the

manner in which the connection weights and biases are computed and adjusted. As explicitly

pointed out in chapter 7, the performance of a neural network also depends on how the training

and testing data are presented to the network. The result shows that the batch trained approach

yields very poor network performance.

The latter training approach (the hour-by-hour), as discussed in chapter 7, section 7.4, looks more

attractive despite the delay of extra 60 minutes in obtaining a complete 1 week forecast. The

hour-by-hour forecasting approach is not only superior in terms of the accuracy compared to the

first approach, but it offers hourly data logging flexibility. And this option is the key feature of

STLF system for real-time applications.

The effect of climatic conditions on the load has also been considered in this work. Firstly, the IV

2, which ignores any weather related effect, was presented to different models using both

forecasting approaches. Again, the hour-by-hour trained models outperformed the batch trained

ones.

And secondly, the other IV (which brings the effect of weather on the load) was then applied to

the networks. Surprisingly, the batch trained models presented with a combination of load and

weather data performed slightly better than the non-weather sensitive models (as indicated in

section 7.2 of the previous chapter). Nonetheless, the result of the incrementally trained models

shows that the inclusion of weather effect has no noticeable impact on the accuracy of the

forecasts. Thus it can be reported that STLF can accurately be concluded using only past

contiguous load values as defined by the structure of the input vector (IV) # 2.

 125

This finding is also in support with the conclusion made by (Santos et al., 2007) pertaining the

optimal number of required training and testing data points. The Authors report that using a large

amount of data points does not offer any sorts of advantage with regards to the accuracy of the

forecast.

From the case study view, the Cape Peninsula University of Technology (CPUT) management

(or the concerned department) needs to urgently review the notified maximum demand (NMD),

presently declared at 2.2MW, for the campus to avoid possibly penalties charges payable to City

of Cape Town (CoCT) for exceeding the contractual maximum demand threshold.

All in all, various forecasting models have been developed to predict the total load and other

departmental loads of the Cape Peninsula University of Technology on hourly to daily basis. The

deliverables of this project is summarized in Table 8.2. However, it should be noted only main

developed models are illustrated in this Table. For the total load alone, 16 models based on the

two training modes have been developed and studied. In all cases, the incremental training

approach proved to be extremely superior to the latter training mode.

8.2 Application of the models and results

Although the evolved models are trained using a consumer load data, these models can be

slightly modified to accurately forecast the total load of a power utility company. In an area with

a prevailing power shortage, like South African region, the first step for utilities to ensure

continuity of supply in the region is to acquire good forecasting systems which provide accurate,

efficient, and reliable forecasts.

By so doing, power system planners and operators would economically operate complex power

system networks by making good strategic decisions in executing main operational tasks such as

generation scheduling, optimal energy interchange and risk assessment purposes. It is a known

fact that a simple thermal-hydro coordination decision or energy importing/exporting schedule

can cost a utility company millions of dollars if poorly derived. And all these decisions are

mainly based on the forecast, thus accurate forecasting systems are undeniably essential.

 126

Network Model type Type of load Season Training

mode

Model ID

Batch Summer

Incremental

FFNN_TL_WS01

Batch

Feedforward Weather

sensitive

Campus’ total

load

Winter

Incremental

FFNN_TL_WS02

Batch Summer

Incremental

FFNN_TL_NWS01

Winter Batch

Feedforward Non-weather

sensitive

Campus’ total

load

 Incremental

FFNN_TL_NWS02

Batch Summer

Incremental

ERNN_TL_WS01

Batch

Elman

Recurrent

Weather

sensitive

Campus’ total

load

Winter

Incremental

ERNN_TL_WS02

Batch Campus’ total

load

Summer

Incremental

ERNN_TL_NWS01

Winter Batch

Elman

Recurrent

Non-weather

sensitive

Campus’ total

load Incremental

ERNN_TL_NWS02

 Departmental

loads

Feedforward Incremental FFNN_IT

Elman

Recurrent

Weather

sensitive

IT department Summer

 Incremental ERNN_IT

Feedforward Incremental FFNN_ELEC

Elman

Recurrent

Weather

sensitive

Electrical

department

Summer

Incremental ERNN_ELEC

Feedforward Incremental FFNN_MEC

Elman

Recurrent

Non-weather

sensitive

Mechanical

department

Summer

Incremental ERNN_MEC

Feedforward Summer Incremental FFNN_ADM

Elman

Recurrent

Weather

sensitive

Administration

building Incremental ERNN_ADM

Feedforward Incremental FFNN_ACP

Elman

Recurrent

Non-weather

sensitive

Air

Conditioning

Plant (ACP)

Summer

Incremental ERNN_ACP

Table 8.2: A schedule of the developed ANN-based electric load forecasting models

 127

As for power consumers, especially LPUs, it is extremely important to manage their load to

consolidate demand management strategies enforced by utility companies to address the known

power crisis situation in South African region. This implies forecasting the load accurately will

aid to facilitate the power demand management process. This exercise also prevents possible

penalty charges for exceeding the declared maximum demand payable by consumers. For the

CPUT in particular, the obtained forecasts can be used as a guideline to formulate internal load

management strategies, such as emergency power generation and implementation schedule for

demand side management initiatives.

The developed models can also used as a part of the postgraduate course materials for soft

computing and further research in the fields of ANNs, prediction and control.

8.3 Project outlook

The scope of work of this project was specifically limited to off-line training. But for real-time

applications, some matters still need to be carefully addressed during model development

process. To start with, the existence of bad data (outliers) in the historical load curve as well as in

the weather data can affect the accuracy of the forecast negatively. In this work, a manually based

strategy for detecting and replacing bad data was employed. However, this approach is

inappropriate for real-time implementation, thus a technique aimed at identifying and replacing

abnormal data in the input variable curves needs to be automated.

For a comprehensive model performance evaluation, it would be a good idea to develop a

genetic-based model and then compare the subsequent errors as well as network performance

indices for further assessment or benchmarking purposes.

Another matter that needs to be reviewed is the use of more precise hourly weather data rather

than the daily average values. For this, measurement apparatus may need to be installed on the

campus premises to record the required weather data on hourly basis.

Evidently, the evolved models have numerous features equivalent to a good forecasting system,

but a user friendly graphical user interface (GUI) can be developed as an attempt to guide the

user throughout the forecasting process.

 128

 8.4 Publications in connection with the thesis

1. S.Amakali and R. Tzoneva “A consumer-based short-term load forecasting using artificial

neural networks”, 2008 – submitted to SAIEE Africa Research Journal.

2. S.Amakali and R. Tzoneva “Short-term electric load forecasting: Review of the methods and

some results of a distribution network”, 2008 – submitted to PAC magazine.

 129

REFERENCES:

E.A. Feinberg and D. Genethliou (2005) “Load forecasting In: Applied Mathematics for

Restructured Electric Power Systems”: Optimization, Control, and Computational Intelligence, J.H.

Chow et al. (eds.), Springer.

M. EL-Naggar, and A. AL-Rumaih (2005)”Electric Load Forecasting using Genetic Based

Algorithm, Optimal Filter Estimator and least error squares Technique”, Comparative study,

PWASET, pp. 138 -142

Ping-Feng Pai (2006) “Hybrid ellipsoidal fuzzy systems in forecasting regional electricity loads”

Energy Conversion and Management, Volume 47, Issues 15-16, September 2006, Pages 2283-2289

Janacek G and Swift L (1993) Time Series Forecasting, Simulation, Application. Ellis Horwood,

New York.

D.W. Bunn and E.D. Farmer (1985) “Comparative models for electrical load forecasting”, John

Wiley and Sons, New York. pp.232

Gross, G and Galiana, F.D (1987), “Short-Term Load Forecasting”, Proceedings of the IEEE,

Vol.75, No.12, pp. 1558-1572.

Mohsen Hayati and Yazdan Shirvany (2007) “Artificial Neural network Approach for Short-term

load forecasting for Illam Region”, Volume1 Number 2, WASET ORG

S.S. Sharif and J.H. Taylor (2000) “Short-term Load Forecasting by Feed Forward Neural

Networks”, Proc. IEEE ASME First Internal Energy Conference (IEC), Al Ain, United Arab Emirate,

http://www.ee.unb.ca

S.S. Sharif and J.H. Taylor (2000) “ Real-time Forecasting by Artificial Neural Networks” Proc.

IEEE Power Engineering Society Summer Meeting (PES), Seattle, Washington

K. Y. Lee and J. H. Park (1992) “Short-Term Load Forecasting Using an Artificial Neural Network”

IEEE Trans. Power Systems, vol. 7, no. 1

Hong Chen, Caludiom A. Canicares, and Ajit Singh, (2002) “ANN-based Short-term load

forecasting in Electricity Markets” Proc. IEEE Power Engineering Society Winter Meeting.

T, Rashid and T. Kechadi (2005) “A practical approach for electricity load forecasting”

Proceedings of world academy of science, engineering and technology volume 5,

http://www.waset.org

Mandal P, Senjyu T, Urasaki N, Funabashi T, Srivastava AK. A novel approach to forecast

electricity price for PJM using neural network and similar days method. IEEE Transactions on

Power Systems 2007; 22(4): 2058-2065.

Tawfig Al-Saba, and Ibrahim El-Amin (1999) “Artificial neural networks as applied to long-term

forecasting, http://www.elsevier.com

 130

Pedro. A. Ganzalez, and Jësus M. Zamarreno (2004) “Prediction of hourly energy consumption in

building based on a feedback artificial Network. Energy and Buildings, Volume 37, Issue 6, June

2005, Pages 595-601 http://www.elsevier.com

Dipti Srinivasan (1998) “Evolving artificial neural networks for short-term load forecasting ”,

Neurocomputing, Volume 23, Issues 1-3, 7 December 1998, Pages 265-276 www.ee.nus.edu.sg

Paras Madal, Tomonobu Senjyu, Naomitsu Urasaki, and Toshihisa Funabashi (2006) “A neural

network based on several-hour-ahead electric load forecasting using similar days approach”

International Journal of Electrical Power & Energy Systems, Volume 28, Issue 6, July 2006, Pages

367-373 http://www..elsevier.com

Ayca Kumluca Topalli, Ismet Erkme, and Ihsan Topalli (2006) “Intelligent short-term load

forecasting in Turkey” International Journal of Electrical Power & Energy Systems, Volume 28,

Issue 7, September 2006, Pages 437-447 http://www..elsevier.com

Nahi Kandil, Rene Wamkeue, Maarouf Saad, and Semaan Georges (2006) ”An efficient approach for

short-term load forecasting using neural networks” International Journal of Electrical Power &

Energy Systems, Volume 28, Issue 8, October 2006, Pages 525-530 http://www..elsevier.com

Zhi Xiao, Shi-Jie Ye, Bo Zhong and Cai-Xin Sun (2007) “BP neural network with rough set for

short-term load forecasting” Expert Systems with Applications, In Press, Corrected Proof.

Philippe Lauret, Eric Fock, Rija N. Randrianarivony, Jean-Francois Manicom- Ramsamy (2007)

“Bayesian neural network approach to short time load forecasting”

Energy Conversion and Management, Volume 49, Issue 5, May 2008, Pages 1156-1166

J. Al-Shareef, E. A. Mohamed, and E. Al-Judaibi (2008) “One Hour Ahead Load Forecasting Using

Artificial Neural Network for the Western Area of Saudi Arabia” Proceedings of world academy of

science, engineering and technology volume 27

Mohsen Hayati, and Yazdan Shirvany (2007) “Artificial Neural Network Approach for ShortTerm

Load Forecasting for Illam Region” International journal of electrical, computer, and systems

engineering volume 1 number 2.pp.1307-5179

B. Satish, K. S. Swarup, S. Srinivas and A. Hanumantha Rao (2004) “Effect of temperature on short

term load forecasting using an integrated ANN”

Electric Power Systems Research, Volume 72, Issue 1, 15 November 2004, Pages 95-101

Luciano S. Moulin and Alexandre P. Alves da Silva, 1999 “Neural Network based short-term

eleteric load forecasting with confidence intervals”, proceedings of the IV Brazilian conference on

neural networks, pp. 007 – 012

Bahman Kermansllahi and Hiroshi Iwamiya, 2002 “Up to year 2020 load forecasting using neural

nets”, International Journal of electrical power & energy systems, volume 24, pp:789-797

Rang Gao and Lefteri H. Tsoukalas, 2001 “Neural-wavelet Methodology for load forecasting”

Journal of intelligent and robotic systems, pp: 149-157

 131

Axay J. Mehta, Hema A. Mehta, and T.C. Munjunath, 2003 “A multi layer artificial neural network

architecture design for load forecasting in power systems”, Internal journal of applied mathematics

and computer sciences, volume 4, number 4, pp:227-240

Moghram I, Rahman S (1989) Analysis and evaluation of five short-term load forecasting techniques.

IEEE Trans Power Syst, 4:1484–1491

A.M. Kalteh, P. Hjorth and R. Berndtsson, 2007 “Review of the self-organizing map (SOM)

approach in water resources: Analysis, modelling and application”, Environmental Modelling &

Software, Volume 23, Issue 7, July 2008, Pages 835-845

Iren Valova, Daniel Szer, Natacha Gueorguieva, and Alexandre Buer, 2005 “A parallel growing

architecture for self-organizing maps with unsupervised learning” NeurocomputingVolume 68,

October 2005, Pages 177-195

Gianluigi Rech, 2002 “Forecasting with artificial neural network models” SSE/EFI Working paper

Series in Economics and Finance, No 491, pp: 1 – 36

Peter Raicevic and Christopher Johansson, 2001 “Biological Learning in Neural networks”

Neurovetenskap – från jonkanal till kognition Del II

J.B. Alam, C.K. Sarkar and E.U. Ahmed, 2007, “Study on thickness of two-way slab” ASIAN

JOURNAL OF CIVIL ENGINEERING (BUILDING AND HOUSING) VOL. 8, NO. 5, PAGES

573-579

Purnia, V.S. and Patodi, S.C., A Counterpropagation Neurocomputing Approach for

Analysis and Optimum design of Slab. IE (I) Journal, 82(2001).

Lendasse, J. Lee, V. Wertz, M. Verleysen, 2000 “Time Series Forecasting using CCA and Kohonen

Maps - Application to Electricity Consumption”, ESANN'2000 proceedings - European Symposium

on Artificial Neural Networks Bruges (Belgium), 26-28 April 2000, D-Facto public., ISBN 2-

930307-00-5, pp. 329-334.

J. N. Fidalgo, "Previsão de carga em saídas de subestações- resultados perliminares," presented at

the 4º encontro Luso-Afro-Brasileiro de Planejamento e Exploração de Redes de Energia- ELAB’99,

Rio de Janeiro, Jun 7-10, 1999, Paper ST 7-2.

P.J. Santos, A.G. Martins, A.J. Pires, J.F.Martins, and R.V. Mendes, "Short Term load forecast using

trend information and process reconstruction”, International Journal of Energy Research, 2006;

30:811-822

H. S. Hippert, C. E. Pereira and R. Castro Souza, "Neural networks for short-term load forecasting:

A review and evaluation," IEEE Trans. on Power Systems, vol. 16, pp. 44-55, Feb. 2001.

T.Gowri Monohar and V.C. Veera Reddy, “Load forecasting by a novel technique using ANN”,

ARPN Journal of Engineering and Applied Sciences, VOL. 3, NO. 2, April 2008

Sanjib Mishra and Sarat Kumar Patra “Short Term Load Forecasting using Neural Network trained

with Genetic Algorithm & Particle Swarm Optimization” First International Conference on

Emerging Trends in Engineering and Technology, IEEE Computer Society, Vol.94, DOI

10.1109/ICETET,2008

 132

C. Kriger, “Prediction of the influent wastewater variables using neural network” Master Thesis,

2007

L. Davis, “Handbook of Genetic Algorithms”, New York: Van Nostrand Reinhold, 1991.

C. B. Lucasius and G. Kateman, “Towards Solving Subset Selection Problems with the Aid of the

Genetic Algorithm”, In Parallel Problem Solving from Nature 2, R. Männer and B. Manderick,

(Eds.), pp. 239-247, Amsterdam: North-Holland, 1992.

R. C. Eberhert and J. Kennedy, “A new optimizer using particle swarm theory”, Proceeding of the

Sixth International Symposium on Micro Machine and Human Science, page 39-43,, Nagoya, Japan,

1995, IEEE Service Center, Piscataway, Nj.

R. B. Holstien, Artificial Genetic Adaptation in Computer Control Systems, PhD Thesis, Department

of Computer and Communication Sciences, University of Michigan, Ann Arbor, 1971.

D. E. Goldberg and J. Richardson, “Genetic Algorithms with Sharing for Multimodal Function

Optimization”, Proc. ICGA 2, pp.41-49, 1987.

H. Mühlenbein and D. Schlierkamp-Voosen, “Predictive Models for the Breeder Genetic Algorithm”,

Evolutionary Computation, Vol. 1, No. 1, pp. 25-49, 1993.

M. F. Bramlette, “Initialization, Mutation and Selection Methods in Genetic Algorithms for Function

Optimization”, Proc ICGA 4, pp. 100-107, 1991.

K. A. De Jong, Analysis of the Behaviour of a Class of Genetic Adaptive Systems, PhD Thesis, Dept.

of Computer and Communication Sciences, University of Michigan, Ann Arbor, 1975.

W. M. Spears and K. A. De Jong, “An Analysis of Multi-Point Crossover”, In Foundations of

Genetic Algorithms, J. E. Rawlins (Ed.), pp. 301-315, 1991.

L. Booker, “Improving search in genetic algorithms,” In Genetic Algorithms and Simulated

Annealing, L. Davis (Ed.), pp. 61-73, Morgan Kaufmann Publishers, 1987.

D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, Addison

Wesley Publishing Company, January 1989.

Tomothy Maifeld and Gerald Sheblé, “Short-term load forecasting by a neural network and a

refined genetic algorithm”, Electric Power Systems Research 31 (1994) 147 – 157

G.A.Adepoju, S.O.A Ogunjuyigbe, and K.O Alawode “Application of Neural Network to Load

Forecasting in Nigerian Electrical Power System” The Pacific Journal of Science and Technology,

Volume 8, Number 1, May 2007.

P.J.Santos, A.G. Martins, and A.J. Pires “Designing the input vector to ANN-based models for short-

term load forecast in electricity distribution systems” International Journal of Electrical Power and

Energy Systems, 2007 - Elsevier

 133

J.T. Tou and Gonzalez, RC, (1974)“Pattern Recognition Principles”, Reading, MA:- Addison-

Wesley

D.Shen “Computation of correlation coefficient and its confidence interval in SAS”, WCI, SUGI31,

posters, 1999

V.V. Phansalkar, “Analysis of the Back-Propagation Algorithm with Momentum”, IEEE Trans. on

Neural Networks,Vol. 5, No. 3, May 1994.

K.L. Ho, “Short Term Load Forecasting Using a Multilayer neural Network with an

AdaptiveLearning Algorithm”, IEEE Trans.on Power Systems, Vol. 7, No. 1, pp. 141-149, Feb.

1992.

J.M. Zurada, “Introduction to Artificial Neural Systems”, West Publishing Company, 1992.

Mazzoni, P., R.A. Andersen, and M.I. Jordan, A more biologically plausible

learning rule for neural networks. Neurobiology, 1991. 88: p. 4433-4437.

Lendasse, J. Lee, V. Wertz, M. Verleysen, 2000 “Time Series Forecasting using CCA and

Kohonen Maps - Application to Electricity Consumption”, ESANN'2000 proceedings - European

Symposium on Artificial Neural Networks Bruges (Belgium), 26-28 April 2000, D-Facto public.,

ISBN 2-930307-00-5, pp. 329-334.

Hollstein, R.B. (1971): Artificial genetic adaptation in computer control systems, PhD Thesis,

Univ. of Michigan

Ackley, D. H. (1997): A Connectionist Machine for Genetic Hillclimbing, Boston, MA: Kluwer

Academic Publishers.

Joe Ross and Graeme Millis, 2008, Demand Side Management System, A power meter technics

White Paper, www.meteringonline.com,

Say, M.G “Electrical engineer’s reference book”, 13
th
 ed., 1973

Boake, Ian Gordon, “A strategy for electricity load management in the south African mining

industry”, Doctoral Thesis, 2003

Hebb, D.O., The Organization of Behavior. 1949, New York: John Wiley Inc.

National Institute of Economic and Industry Research (NIEIR), The demand forecasts and new

consumer usage, 2007, www.nieir.com.au/

Yang, Jingfei and Juergen Stenzel, “Short-term load forecasting with increment regression tree”,

Electric power systems research, Volume 76, Issues 9-10, June 2006, pages 880-888

Howard Demuth, Mark Beale and Martin Hagan, “Neural Network Toolbox ver. 6.0, User’s Guide

”, The MathWork Inc, march 2006

Crowford, William Jeffrey “An Ensemble and Modular Neural Network Approach to the Diagnosis

of Acute Appendicitis”, Master Thesis, 2000

 134

MySQL AB. Why MySQL?, (http://www.mysql.com/why-mysql)

J.M. Paruelo and F. Tomasel, Prediction of functional characteristics of ecosystems: a comparison of

artificial neural networks and regression models, Ecol. Model. 98 (1997), pp. 173–186.

Hertz, J., A. Krogh, and R.G. Palmer, Introduction to the Theory of Neural

Computation. 1991: Addison-Wesely.

T.S. Dillon, Short-term load forecasting using anadaptive neural network, Electrical Power &

Energy Systems, pp. 186-191, 1991.

K.Y. Lee, Short-Term Load Forecasting Using an Artificial neural Network, IEEE Trans. On Power

Systems, Vol. 7, No. 1, pp. 124-131, Feb.1992.

M.Djukanvic,Unsupervised/supervised learning concept for 24-hour load forecasting, IEEE Proc.-

C, Vol. 140, No. 4, pp. 311-318, July,1993.

Bahman Kermanshahi and Hiroshi Iwamiya, “Up to year 2020 load forecasting using neural nets”

International Journal of Electrical Power & Energy Systems,Volume 24, Issue 9, November 2002,

Pages 789-797

K.L. Ho, “Short Term Load Forecasting Using a Multilayer neural Network with an Adaptive

Learning Algorithm”, IEEE Trans.on Power Systems, Vol. 7, No. 1, pp. 141-149, Feb. 1992.

S.Alvisi, G. Mascellani, M. Franchini and A. Bardossy, ”Water level forecasting through fuzzy logic

and artificial neural network approaches”, Hydrology and Earth System Science Discussions, 2, pp

1107 – 1145, June 2005

 135

BIOGRAPHY

Simaneka Amakali, born in Etope, Oshakati,

Namibia on July 18, 1982 is a registered incorporated

engineer (in-training) with the Engineering Council of

Namibia (ECN). He received the B.Tech Degree in

Electrical Engineering from the Polytechnic of

Namibia in 2006 in First Class Distinction.

He has worked in the electricity distribution industry

as a project engineer for 2 years, with majority of

work concentrating on providing new consumer

supplies on the medium voltage (11kV, 22kV, 33kV)

networks including single wire earth return (SWER)

network.

He has been actively involved in the projects starting with preliminary planning, estimation,

budgeting, design and specification, tendering, tender allocation, construction and contractor

management, payment certification up to final delivery. Besides this he has also been

involved in project supervision and planning of urban distribution and supply networks.

During this time he has also developed a closer understanding of tariff structuring as well as

operations and maintenance issues.

His research interests are in the areas of power systems planning, with particular emphasis in

electric load forecasting.

 136

APPENDICES

 137

APPENDIX A

CPUT Bellville Campus-

Substations geographical layout and single line diagram for

the 11kV reticulation network

 138

Fig. A 1: Substations geographical layout

- symbolises a designated point for measurements where historical profile data were captured-

Fig. A 2: single line diagram – for the 11kV reticulation network

 139

APPENDIX B

Detected Bad Load and Weather Data

 140

Bad dat a01 - Load sheddi ng (02 Apr i l) Summer
dur at i on: 30mi ns

0. 00

500. 00

1000. 00

1500. 00

2000. 00

2500. 00

3000. 00

00:
30

01:
30

02:
30

03:
30

04:
30

05:
30

06:
30

07:
30

08:
30

09:
30

10:
30

11:
30

12:
30

13:
30

14:
30

15:
30

16:
30

17:
30

18:
30

19:
30

20:
30

21:
30

22:
30

23:
30

Ti me(hr s)

Ac
ti

ve
 P

ow
er

 [
kW

]

kW

Fig. B.1: Bad data recorded on 02 April, 08 at 9h30.

Bad Dat a02 - Load sheddi ng (10 Apr i l) Summer
dur at i on: 1h30

0. 00

500. 00

1000. 00

1500. 00

2000. 00

2500. 00

3000. 00

00:
30

01:
30

02:
30

03:
30

04:
30

05:
30

06:
30

07:
30

08:
30

09:
30

10:
30

11:
30

12:
30

13:
30

14:
30

15:
30

16:
30

17:
30

18:
30

19:
30

20:
30

21:
30

22:
30

23:
30

Ti me(hr s)

Ac
ti

ve
 P

ow
er

 [
kW

]

kW

Fig. B 2: Bad data recorded on 10 April, 08 at 11h30.

 141

Bad dat a04 - Load sheddi ng (23 Apr i l) Summer . dur at i on 1 hr 30 mi ns

0. 00

500. 00

1000. 00

1500. 00

2000. 00

2500. 00

00
: 3

0
01

: 3
0

02
: 3

0
03

: 3
0

04
: 3

0
05

: 3
0

06
: 3

0
07

: 3
0

08
: 3

0
09

: 3
0

10
: 3

0
11

: 3
0

12
: 3

0
13

: 3
0

14
: 3

0
15

: 3
0

16
: 3

0
17

: 3
0

18
: 3

0
19

: 3
0

20
: 3

0
21

: 3
0

22
: 3

0
23

: 3
0

Ti me (hr s)

Ac
ti

ve
 P

ow
er

 [
kW

]

kW

Fig. B 3: Fig. Bad data recorded on 23 April, 08 at 8h30.

Hour l y Load Pr of i l e - CPUT Bel l vi l e Campus (June - Sept ember 08)

0

500

1000

1500

2000

2500

3000

3500

1 121 241 361 481 601 721 841 961 1081 1201 1321 1441 1561 1681 1801 1921 2041 2161 2281 2401 2521 2641 2761
Ti me i n hour s

Ac
ti

ve
 P

ow
er

 (
W)

Fig. B 4: Bad data recorded on 06 June, 08 at 11h30.

 142

CPUT Bvl Campus Pr of i l e Dat a 25 Jan - Jul y 2008

0
250
500
750

1000
1250
1500
1750
2000
2250
2500
2750
3000
3250
3500

1 283 565 847 1129 1411 1693 1975 2257 2539 2821 3103 3385 3667 3949 4231 4513 4795 5077 5359 5641 5923 6205 6487 6769 7051 7333 7615 7897 8179 8461
Hour

kW

Fig. B 5: Total load profile – including bad data as a result of Eskom’ load shedding

Bad Dat a Det ect i on

0. 00

500. 00

1000. 00

1500. 00

2000. 00

2500. 00

3000. 00

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47
Ti me i n hour s

Ac
ti

ve
 P

ow
er

 [
kW

] 02- Apr
10- Apr
16- Apr
23- Apr
06- Jun
22- Jun
00: 30

Fig. B 5: Some selected bad data for the total load.

 143

Mont hl y wi nd Speed

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Ti me i n days

wi
nd

 s
pe

ed
 (

m/
s) FEB

MAR
APR
MAY
JUN
JUL
AUG

Fig. B 6: Detected bad data – wind speed

Humi di t y - August ' 08

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Ti me i n hour s

hu
mu

di
ty

(%
)

AUG

Fig. B 7: Detected bad data – humidity

 144

APPENDIX C

Setting up and programming a DMK 40 Lovato and

Technical specifications

 (Digital Meter for load measurements)

 145

Setting up and programming a DMK 40 Lovato Digital Meter –

Measurement for departmental loads

1. Software installation

The DMK 40 Digital meter with data logger options comes by default with the software.

 The installation of this very simple-

2. Communication options

Use Serial port RS232/RS485 communication interface – to connect the meter to a local PC.

Please also ensure that the Aux supply is connected and functional.

3. Access or Password

For a meter reader – no password is required.

Engineering password (full rights) to reset and re-program the meter – please click on password in

the main menu and type in “lovato”

4. Programming – record data

To specify measurement parameters - Click on Configuration in the tool bar and the options

The window shown below will appear. Click on Data log in the tool bar

 In this window you can then specify what exactly you want measure and the period of measurements

etc. And then click ok.

5. Programming – technical data

 146

To set up the installation – please click on parameters in the main menu, and then click on base

setup.

The DMK 40 requires CT ratio programming (typically 1-5A max). For voltage measurements

less than 830VAC/DC – no need for PT ratio programming. More technical data for this meter –

please refer to the enclosed technical data sheet.

6. Installation and Commissioning

As shown in the figure below – the following connections were made to present voltage and

current signals to the meter. Moreover, the meter also requires a separate AUX supply: 100 – 240V

AC / 110 – 250V DC.

7. Data Logging and Storage

To view the recorded data – please click on View in the main menu and then click on Data Log.

A window showing all records will then pop-up.

 147

8. Uploading Logged Data

Before exporting saved data, click (View all) – to display all records and then export to either a

text file or Excel spread sheet.

9. DMK Main Page

10. Data retrieval note

Because this meter has no internal memory backup – please ensure that the connection to a local

PC is always available. For this, one needs to have a roving PC merely for measurements.

Otherwise, if one disconnects the meter before uploading the data – all data will be lost.

The author hopes that you will find this guide useful – good luck.

 By: S. Amakali, CPUT, 2008

 148

 149

 150

APPENDIX D

Software Routines (MATLAB Pseudo Codes)

 151

D.0: GENERAL MATLAB SCRIPT LAYOUT & SOME MAIN FUNCTIONS

The structure below is used to describe MATLAB source code for every model

% OVERVIEW OF SCRIPT DESCRIPTION

1. File name

2. Aim of the model

3. Forecasting methodology

4. Input Vector

5. Output Vector

Notes:

CONNECTING TO THE DATABASE:

% conn - connects a MATLAB session to a database via the specified ODBC driver

% returns a connection object

% database - MATLAB function used to connect to an ODBC/JDBC database

%

% exec - returns the cursor object to the variable "curs"

% fetch - imports data from the cursor

% curs.Data - returns the data at the cursor object

 % corrcoef - calculates a matrix of correlation coefficients for an array.

% tansig - tan sigmoid transfer function

% purelin - pure linear transfer function

% tic - Starts a stopwatch timer

% WS - Weather sensitive model

%NWS - Non-weather sensitive model

%FFNN - Feedforward Neural Network

%ERNN - Elman Recurrent Neural Network

% VERIFYING THE CONNECTION TO THE DATABASE

% isconnection - MATLAB function that detects if database connection is valid,

% and returns a 1 if the DB connection is valid, otherwise a 0 will be displayed.

% setdbprefs - set preferences for data retrieval format. Often numeric format

% uses less memory and offer better performance than the cellarray format

% CLOSING THE CONNECTION TO THE DATABASE

% close(connect) - closes the database connection.

% Defining the training functions and performance function

% traingdm - gradient descent with momentum backpropagation.

% mse - mean squared error performance function.

%Author: S. Amakali

%Institution: Cape Peninsula University of Technology

%Date: September 2008

 152

 D.1: MATLAB Script: Feedforward non-weather sensitive model for predicting the

total load in summer

1. File name : FFNN_TL_NWS01.m

2. Aim of the model : This model is designed specifically to ignore any weather related effect

on the load. Thus the model uses only past load values to predict the

load as discussed in chapter 6 (section 6.3.1 and 6.4) and chapter 7

(section 7.2)

3. Methodology : This model predicts the load for the whole week at once (batch training

mode)

4. Input Vector : IV # 1.

5. Output Vector : one week ahead forecasts

6. Note : This model has failed to meet the performance goal (1e-5)

 %Clearing the screen and memory

clc

clear

 tic;

% establishing the connection to the DB and extracting the required data

% Inserting the username and password to access the DB

% importing the required data into MATLAB using SQL Syntax from a table named 'ivsalldata'

conn = database('combinedloaddata', 'root', 'password1')

DATABASE_CONNECTION = isconnection(conn)

curs= exec(conn,'SELECT Consump FROM ivsalldata');

setdbprefs('DataReturnFormat','cellarray')

curs = fetch(curs);

m = curs.Data;

Consump = str2double(m);

clear m;

curs= exec(conn,'SELECT Humidity FROM ivsalldata');

setdbprefs('DataReturnFormat','cellarray')

curs = fetch(curs);

m = curs.Data;

Humidity = str2double(m);

clear m;

curs= exec(conn,'SELECT Wind_Speed FROM ivsalldata');

setdbprefs('DataReturnFormat','cellarray')

curs = fetch(curs);

m = curs.Data;

Wind_Speed = str2double(m);

clear m;

 153

curs= exec(conn,'SELECT Max_Temp FROM ivsalldata');

setdbprefs('DataReturnFormat','cellarray')

curs = fetch(curs);

m = curs.Data;

Max_Temp = str2double(m);

clear m;

curs= exec(conn,'SELECT Min_Temp FROM ivsalldata');

setdbprefs('DataReturnFormat','cellarray')

curs = fetch(curs);

m = curs.Data;

Min_Temp = str2double(m);

clear m;

%Correlation Analysis between the load and exogenous variables

Consump_Wind_Speed = corrcoef(Consump,Wind_Speed);

Consump_Humidity = corrcoef(Consump,Humidity);

Consump_Max_Temp = corrcoef(Consump,Max_Temp);

Consump_Min_Temp = corrcoef(Consump,Min_Temp);

% Input Data Preprocessing

%**************************************

MaxConsump = max(Consump);

norm_Consump = (Consump/MaxConsump)';

% Preparing Data

%****************************

% defining data set dimensions

n = 1584:1762; % Training data

k = 1752:1919; % Target

s = 913:1081; % Testing data

x = 1752:1919; %Target - testing data

P = [norm_Consump(n);norm_Consump(n-1);norm_Consump(n-168);norm_Consump(n-169)];

[mat,padded] = vec2mat(P,168);

[r,s]=size(mat);

P1 = mat(1:4,1:168);

[mat,padded] = vec2mat(P,168);

[r,s]=size(mat);

l = 1584:1751;

Pw = [P1];

Tw = norm_Consump(k);

Ptst = [norm_Consump(s);norm_Consump(s-1);norm_Consump(s-168);norm_Consump(s-169)];

[mat,padded] = vec2mat(Ptst,168);

[r,s] = size(mat);

 154

P2 = mat(1:4,1:168);

Pwtstd = [P2];

Tw1 = norm_Consump(x);

% Defining ANN Topology

%******************************

%Designing a custom Feedforward Neural Network with 1 input layer, 1 hidden layer with 10 neurons

and 1 output neurons

net = network;

net.numInputs = 1;

net.inputs{1}.size = 4;

net.numLayers = 2;

net.layers{1}.size = 10;

net.layers{2}.size = 1;

net.inputConnect(1) = 1;

net.layerConnect(2,1) = 1;

net.outputConnect(2) = 1;

net.targetConnect(2) = 1;

net.layers{1}.transferFcn = 'tansig';

net.layers{2}.transferFcn = 'purelin';

%Defining which layers have biases

net.biasConnect(1) = 1;

net.biasConnect(2) = 1;

net = init(net); %Initialise the weights and biases

net.trainFcn = 'traingdm';

net.performFcn = 'mse';

net.trainParam.lr = 0.3;

net.trainParam.mc = 0.75;

net.trainParam.epochs = 1000;

net.trainParam.show = 50;

net.trainParam.goal = 1e-5;

[net,tr,a] = train(net,Pw,Tw);

forecast = a;

delta = Tw – forecast;

% Reset weight and biases - Optional for trial only

%net.initFcn = 'initlay';

%net.layers{1}.initFcn = 'initnw';

%net.layers{2}.initFcn = 'initwb';

%net.inputWeights{1,1}.initFcn = 'rands';

%net.biases{1}.initFcn = 'rands'

%net.layerWeights{1,2}.initFcn = 'rands'

 155

% simulating the network using the testing data

 a2 = sim(net,Ptst,Tw1);

 forecast1 = a2;

 delta2 = (Tw - forecast1;

 e1 = delta2;

N=168;

MPE = sum((((Tw - forecast)/Tw)*100)/N)

MSE = sum(((Tw - forecast).^2)/N)

MSE_test = mse(Tw - forecast)

% saving the forecast for the training data

saveas(gcf, 'traingdm_err Training', 'fig');

save tr tr;

% calculating the sum squared error

num=168;

MSE = (sumsqr(delta))/num;

fprintf('MSE = %d', MSE*100)

perf = mse(delta)

% De-normalization

O_Pw_denorm = forecast*MaxConsump;

Tw_denorm = Tw*MaxConsump;

% Plotting the Graphs

%**************************

figure(1)

hold on

title('Network response - using training data (a 168 hrs ahead forecast)');

xlabel('Time in hours');

ylabel('Active Power/Load in [kW]');

grid on

plot(Tw_denorm, 'r--', 'LineWidth',3, 'MarkerSize',10);

plot(O_Pw_denorm, 'gx', 'LineWidth',3, 'MarkerSize',10);

legend ('Actual load values', 'Predicted load values');

% Plotting simulation results - using testing datatest.

figure(2)

hold on

title('Network response using testing data');

xlabel('Time(hrs)');

ylabel('Active Power - normalized');

 156

grid on

plot(forecast1, 'b--', 'LineWidth',3, 'MarkerSize',12);

plot(T, 'm*', 'LineWidth',3, 'MarkerSize',10);

legend('Predicated load values', 'Actual load values');

 %Plotting the error: using training data

%**

figure(3)

%Actual_error = delta*MaxConsump;

plot(error, 'b--', 'LineWidth',2, 'MarkerSize',10);

title('Hourly actual error (W)- (training data');

xlabel('Time(hrs)');

ylabel('Error(Watts)');

legend ('e - ttr');

grid on

% Saving the MSE,MPE and Actual error(kW) to an Excel spread sheet

a = delta*MaxConsump;

[mat,padded] =vec2mat(a,24);

e_tr = mat(1:7,1:24);

actual_error_tr = xlswrite('error(W)_CERNN_TL_WS01_tr',e_tr');

c = {'MSE_tr','MPE_tr';MSE_tr MPE_tr};

d = xlswrite('MSEMPE_CERNN_TL_WS01' , c, 'A1');

% closing the connection to the DB

close(curs)

close(conn)

isconnection(conn)

toc;

forecast_time = toc

% End

 157

D.2: MATLAB Script: Elman Recurrent weather sensitive model for predicting the

total load in summer

1. File name : ERNN_TL_WS01.m

2. Aim of the model : This model brings the effect of climatic conditions on the load on the load.

More details about this model can be found in the thesis, chapter 6 (section

6.4) and chapter 7 (section 7.3)

3. Methodology : This model predicts the load for the whole week using the hour-by-hour

approach.

4. Input Vector : IV # 1.

5. Output Vector : one week ahead forecasts

6. Note : This model has successfully met the performance goal (1e-5) in only few

iterations.

%Clearing the screen and memory

clc

clear

 tic;

% Establishing the connection to the DB and extracting required data

% Inserting the username and password to access the DB

% importing the required data into MATLAB using SQL Syntax from a table named 'ivsalldata'

%**

conn = database('combinedloaddata', 'root', 'password1')

DATABASE_CONNECTION = isconnection(conn)

curs= exec(conn,'SELECT Consump FROM ivsalldata');

setdbprefs('DataReturnFormat','cellarray')

curs = fetch(curs);

m = curs.Data;

Consump = str2double(m);

clear m;

curs= exec(conn,'SELECT Humidity FROM ivsalldata');

setdbprefs('DataReturnFormat','cellarray')

curs = fetch(curs);

m = curs.Data;

Humidity = str2double(m);

clear m;

curs= exec(conn,'SELECT Wind_Speed FROM ivsalldata');

setdbprefs('DataReturnFormat','cellarray')

curs = fetch(curs);

m = curs.Data;

Wind_Speed = str2double(m);

clear m;

 158

curs= exec(conn,'SELECT Max_Temp FROM ivsalldata');

setdbprefs('DataReturnFormat','cellarray')

curs = fetch(curs);

m = curs.Data;

Max_Temp = str2double(m);

clear m;

curs= exec(conn,'SELECT Min_Temp FROM ivsalldata');

setdbprefs('DataReturnFormat','cellarray')

curs = fetch(curs);

m = curs.Data;

Min_Temp = str2double(m);

clear m;

%Correlation Analysis between the load exogenous variables

Consump_Wind_Speed = corrcoef(Consump,Wind_Speed);

Consump_Humidity = corrcoef(Consump,Humidity);

Consump_Max_Temp = corrcoef(Consump,Max_Temp);

Consump_Min_Temp = corrcoef(Consump,Min_Temp);

% Input Data Preprocessing

%**************************************

MaxConsump = max(Consump);

MaxWind_Speed = max(Wind_Speed);

MaxHumidity = max(Humidity);

MaxMax_Temp = max(Max_Temp);

MaxMin_Temp = max(Max_Temp);

norm_Consump = (Consump/MaxConsump)';

norm_Wind_Speed = (Wind_Speed/MaxWind_Speed)';

norm_Humidity = (Humidity/MaxHumidity)';

norm_Max_Temp = (Max_Temp/MaxMax_Temp)';

norm_Min_Temp = (Min_Temp/MaxMin_Temp)';

% Preparing Data

%****************************

%defining data set dimensions

n = 1584:1762; %Training data

k = 1752:1919; % Target - training data

s = 913:1081; % Testing data

P = [norm_Consump(n);norm_Consump(n-1);norm_Consump(n-168);norm_Consump(n-169)];

[mat,padded] = vec2mat(P,168);

[r,s]=size(mat);

P1 = mat(1:4,1:168);

 159

Temp1 = [norm_Max_Temp(k);norm_Min_Temp(k)];

[mat,padded] = vec2mat(P,168);

[r,s]=size(mat);

Temp = mat(1:2,1:168);

l = 1584:1751;

Humid = [norm_Humidity(k)];

Wind = [norm_Wind_Speed(k)];

Pw = [P1;Temp;Humid;Wind];

Tw = norm_Consump(k);

Ptst = [norm_Consump(s);norm_Consump(s-1);norm_Consump(s-168);norm_Consump(s-169)];

[mat,padded] = vec2mat(Ptst,168);

[r,s]=size(mat);

P2 = mat(1:4,1:168);

Pwtstd = [P2;Temp;Humid;Wind];

%Target - testing data

Tw1 = norm_Consump(x);

 % Defining ANN Topology

%******************************

nhn = 10; % Number of hidden layer neurons

net = newelm([minmax(Pw)],[nhn 1],{'tansig','purelin'},'traingdm');

net.layers{1}.initFcn='initnw';

net.layers{2}.initFcn='initnw';

net = init(net); % Initialization of network

net.performFcn='mse';

net.trainParam.epochs = 1000; % Maximum no. of epochs

net.trainParam.show = 50; % No. of epochs to display

net.trainParam.lr = 0.3; % Learning rate

net.trainParam.mc = 0.75; % Momentum term

net.trainParam.goal = 1e-5; %Defining the goal

init_in_weights = net.IW{1,1}; % Determining the initial input weights

init_out_weights = [net.LW{2,1}(:)]; % Determining the initial output

init_in_bias = net.b{1}; % Determining the initial input bias

init_out_bias = net.b{2}; % Determining the initial output bias

for i = 1:168;

 P = Pw(:,i);

 T = Tw(1,i);

 [net,tr,a] = train(net,P,T);

 forecast(1,i) = a;

 delta(1,i)= Tw(1,i) - forecast(1,i);

end

% Saving the forecast for the training data

saveas(gcf, 'trainscg_err Training', 'fig');

 160

save tr tr;

 % Reset weight and biases - Optional for trial only

%net.initFcn = 'initlay';

%net.layers{1}.initFcn = 'initnw';

%net.layers{2}.initFcn = 'initwb';

%net.inputWeights{1,1}.initFcn = 'rands';

%net.biases{1}.initFcn = 'rands'

%net.layerWeights{1,2}.initFcn = 'rands'

% Calculating the sum squared error

num=168;

MSE = (sumsqr(delta))/num;

fprintf('MSE = %d', MSE*100)

MPE_tr = ((1/num)* sum((delta/Tw).^2))*100

MSE_tr = (1/num)* (sum(delta.^2))

perf = mse(delta)

% De-normalization

O_Pw_denorm = forecast*MaxConsump;

Tw_denorm = Tw*MaxConsump;

% simulating the network using the testing data

%***

 for i = 1:168;

 Pts = Pwtstd(:,i);

 T = Tw1(1,i);

[a2 pf af]= sim(net,Pts,T);

O_Pwtst(1,i) = a2;

forecast_tstdata = O_Pwtst(1,i);

 delta_tst = T - forecast_tstdata;

end

% Plotting the Graphs

%**************************

figure(1)

hold on

title('Network response - using training data (a 168 hrs ahead forecast)');

xlabel('Time in hours');

ylabel('Active Power/Load in [kW]');

grid on

plot(Tw_denorm, 'r--', 'LineWidth',3, 'MarkerSize',10);

plot(O_Pw_denorm, 'gx', 'LineWidth',3, 'MarkerSize',10);

legend ('Actual load values', 'Predicted load values');

 161

% Plotting forecast for the testing data

figure(2)

hold on

title('Network response using testing data');

xlabel('Time(hrs)');

ylabel('Active Power - normalized');

grid on

plot(forecast_tstdata, 'b--', 'LineWidth',3, 'MarkerSize',12);

legend('Predicated load values', 'Actual load values');

%Plotting the error:

%**************

figure(3)

Actual_error = delta*MaxConsump

plot(Actual_error, 'b--', 'LineWidth',2, 'MarkerSize',10);

title('Hourly actual error (W)- (training data');

xlabel('Time(hrs)');

ylabel('Error(Watts)');

legend ('e - ttr');

grid on

% Saving the MSE,MPE and Actual error(kW) to an Excel spread sheet

a = delta*MaxConsump;

[mat,padded] =vec2mat(a,24);

e_tr = mat(1:7,1:24);

actual_error_tr = xlswrite('error(kW)_ERNN_TL_WS01_tr',e_tr');

c = {'MSE_tr','MPE_tr';MSE_tr MPE_tr};

d = xlswrite('MSEMPE_ERNN_TL_WS01' , c, 'A1');

% closing the connection to the DB

close(curs)

close(conn)

isconnection(conn)

toc;

forecast_time = toc

% End

 162

D.3: MATLAB Script: Feedforward weather sensitive model for predicting the total

load in winter)

1. File name : FFNN_TL_WS02.m

2. Aim of the model : This model is designed specifically to ignore any weather related effect

on the load. Thus the model uses only past load values to predict the load

as discussed in chapter 6 (section 6.4) and chapter 7 (section 7.6)

3. Methodology : This model predicts the load for the whole week using the hour-by-hour

approach.

4. Input Vector : IV # 1.

5. Output Vector : one week ahead forecasts

6. Note : This model has successfully met the performance goal (1e-5) in only few

iterations.

%Clearing the screen and memory

clc

clear

 tic;

% establishing the connection to the DB and extracting required data

% Inserting the username and password to access the DB

% importing the required data into MATLAB using SQL Syntax from a table named 'iv_tl_winter'

%**

conn = database('combinedloaddata', 'root', 'password1')

DATABASE_CONNECTION = isconnection(conn)

curs= exec(conn,'SELECT consump FROM iv_tl_winter');

setdbprefs('DataReturnFormat','cellarray')

curs = fetch(curs);

m = curs.Data;

consump = str2double(m);

clear m;

curs= exec(conn,'SELECT Humidity FROM iv_tl_winter');

setdbprefs('DataReturnFormat','cellarray')

curs = fetch(curs);

m = curs.Data;

humidity = str2double(m);

clear m;

curs= exec(conn,'SELECT Wind_Speed FROM iv_tl_winter');

setdbprefs('DataReturnFormat','cellarray')

curs = fetch(curs);

m = curs.Data;

wind_speed = str2double(m);

clear m;

 163

curs= exec(conn,'SELECT Max_Temp FROM iv_tl_winter');

setdbprefs('DataReturnFormat','cellarray')

curs = fetch(curs);

m = curs.Data;

max_temp = str2double(m);

clear m;

curs= exec(conn,'SELECT Min_Temp FROM iv_tl_winter');

setdbprefs('DataReturnFormat','cellarray')

curs = fetch(curs);

m = curs.Data;

min_temp = str2double(m);

clear m;

%Correlation Analysis between the load and exogenous variables

Consump_Wind_Speed = corrcoef(consump,wind_speed);

Consump_Humidity = corrcoef(consump,humidity);

Consump_Max_Temp = corrcoef(consump,max_temp);

Consump_Min_Temp = corrcoef(consump,min_temp);

% Input Data Preprocessing

%**************************************

MaxConsump = max(consump);

MaxWind_Speed = max(wind_speed);

MaxHumidity = max(humidity);

MaxMax_Temp = max(max_temp);

MaxMin_Temp = max(max_temp);

norm_Consump = (consump/MaxConsump)';

norm_Wind_Speed = (wind_speed/MaxWind_Speed)';

norm_Humidity = (humidity/MaxHumidity)';

norm_Max_Temp = (max_temp/MaxMax_Temp)';

norm_Min_Temp = (min_temp/MaxMin_Temp)';

% Preparing Data

%****************************

%defining the data set dimensions

n = 1345:1514; %Training data

s = 1513:1682; % Target - training data

k = 1681:1850; % Testing data

P = [norm_Consump(n);norm_Consump(n-1);norm_Consump(n-168);norm_Consump(n-169)];

Ptst = [norm_Consump(s);norm_Consump(s-1);norm_Consump(s-168);norm_Consump(s-169)];

P1 = P(:,1:168);

P2 = Ptst(:,1:168);

Tw1 = norm_Consump(k);

 164

Tw = Tw1(:,1:168);

Temp1 = [norm_Max_Temp(k);norm_Min_Temp(k)];

Temp = Temp1(:,1:168);

Humid1 = [norm_Humidity(k)];

Wind1 = [norm_Wind_Speed(k)];

Humid = Humid1(:,1:168);

Wind = Wind1(:,1:168);

Pw = [P1;Temp;Humid;Wind];

Pwtstd = [P2;Temp;Humid;Wind];

%Designing a custom Feedforward Neural Network Model with 1 input, 1 hidden layer with 5 neurons

and 1 output neurons

net = network;

net.numInputs = 1;

net.inputs{1}.size = 8;

net.numLayers = 2;

net.layers{1}.size = 5;

net.layers{2}.size = 1;

net.inputConnect(1) = 1;

net.layerConnect(2,1) = 1;

net.outputConnect(2) = 1;

net.targetConnect(2) = 1;

net.layers{1}.transferFcn = 'tansig';

net.layers{2}.transferFcn = 'purelin';

%Define which layers have biases

net.biasConnect(1) = 1;

net.biasConnect(2) = 1;

net = init(net);%Initialise the weights and biases

% Reset weight and biases - Optional for trial only

%net.initFcn = 'initlay';

%net.layers{1}.initFcn = 'initnw';

%net.layers{2}.initFcn = 'initwb';

%net.inputWeights{1,1}.initFcn = 'rands';

%net.biases{1}.initFcn = 'rands'

%net.layerWeights{1,2}.initFcn = 'rands'

% Declare the hour by hour forecasting Algorithm and other training parameters

for i = 1:168;

 Pin = Pw(:,i);

 T = Tw(1,i);

net.trainFcn = 'traingdm';

net.performFcn = 'mse';

 165

net.trainParam.lr = 0.3;

net.trainParam.mc = 0.75;

net.trainParam.epochs = 1000;

net.trainParam.show = 50;

net.trainParam.goal = 1e-5;

[net,tr,a] = train(net,Pin,T);

 forecast(1,i) = a;

 delta(1,i)= Tw(1,i) - forecast(1,i);

end

 % saving the forecast for the training data

saveas(gcf, 'traingdm_err Training', 'fig');

save tr tr;

% simulating the network with the same inputs used to train the network

O_Pw = sim (net,Pw);

% calculating the sum squared error

 e = (Tw-O_Pw);

MSE = mse(e);

num=168;

% calculating the mean percentage error

MPE_tr = ((1/num)* sum((delta/Tw).^2))*100

MSE_tr = (1/num)* (sum(delta.^2))

%Denormalization

O_Pw_denorm = forecast*MaxConsump;

Tw_denorm = Tw*MaxConsump;

ae = Tw_denorm - O_Pw_denorm;

% Plotting the Graphs

%*******************

figure(1)

hold on

title('168hrs in advance forecast -CPUTBvl(training data -winter) FFNN-TL-WS02');

xlabel('Time in hours');

ylabel('Active Power/Load in [kW]');

grid on

plot(Tw_denorm, 'r--', 'LineWidth',3, 'MarkerSize',10);

plot(O_Pw_denorm, 'g:', 'LineWidth',3, 'MarkerSize',10);

legend ('Actual load values','Predicted load values');

% simulating the network using the testing data set

%***

O_Pwtst = sim (net,Pwtstd);

% saving the forecast

saveas(gcf, 'testscg_err', 'fig');

save O_Pwtst O_Pwtst;

 166

e1 = Tw - O_Pwtst;

MSE2 = mse(e1)

MPE_ts = ((1/num)* sum((e1/Tw).^2))*100

MSE_ts = (1/num)* (sum(e1.^2))

% Plotting the graph for the testing data

figure(2)

hold on

title('Normalized 168hrs ahead forecast CPUTBvl(TestingData winter)FFNN-TL-WS02');

xlabel('Time in hours');

ylabel('Active Power/Load normalized');

grid on

plot(O_Pwtst, 'b--', 'LineWidth',3, 'MarkerSize',12);

plot(Tw, 'm-', 'LineWidth',3, 'MarkerSize',10);

legend('Predicted load values', 'Actual load values');

% plotting the error

%***************

figure(3)

plot((ae), 'b--', 'LineWidth',2, 'MarkerSize',10);

title('error (training data');

xlabel('Time in hours');

ylabel('error(W)');

legend ('error (FFNN-TL-WS02)');

grid on

% Saving the MSE,MPE and actual error(kW) to an Excel spread sheet

a = ae;

[mat,padded] =vec2mat(a,24);

e_tr = mat(1:7,1:24);

actual_error_tr = xlswrite('error(kW)_FFNN_TL_WS02_tr',e_tr');

b = e1*MaxConsump;

[mat,padded] =vec2mat(b,24);

e_ts = mat(1:7,1:24);

actual_error_ts = xlswrite('error(kW)_FFNN_TL_WS02_ts',e_ts');

 c = {'MSE_tr','MSE_ts','MPE_tr','MPE_ts';MSE_tr MSE_ts MPE_tr MPE_ts};

d = xlswrite('MSEMPE_FFNN_TL_WS02' , c, 'A1');

%closing the connection to the DB

close(curs)

close(conn)

isconnection(conn)

% End

 167

D.4: MATLAB Script: Elman Recurrent non-weather sensitive model for predicting

the total load in winter

1. File name : ERNN_TL_NWS02.m

2. Aim of the model : This model is also designed specifically to ignore any weather related effect

on the load. Thus the model uses only past load values to predict the load as

discussed in chapter 6 (section 6.4) and Appendix E.

3. Methodology : This model predicts the load for the whole week using the hour-by-hour

approach.

4. Input Vector : IV # 2.

5. Output Vector : one week ahead forecasts

6. Note : This model has also successfully met the performance goal (1e-5) in only

few iterations.

%Clearing the screen and memory

clc

clear

% Establishing the connection to the DB and extracting required data

% Inserting the username and password for the DB

% Importing required data into MATLAB using SQL Syntax from a table named 'iv_tl_winter'

%**

tic;

conn = database('combinedloaddata', 'root', 'password1')

DATABASE_CONNECTION = isconnection(conn)

curs= exec(conn,'SELECT consump FROM iv_tl_winter');

setdbprefs('DataReturnFormat','cellarray')

curs = fetch(curs);

m = curs.Data;

Consump = str2double(m);

clear m;

curs= exec(conn,'SELECT humidity FROM iv_tl_winter');

setdbprefs('DataReturnFormat','cellarray')

curs = fetch(curs);

m = curs.Data;

Humidity = str2double(m);

clear m;

curs= exec(conn,'SELECT wind_speed FROM iv_tl_winter');

setdbprefs('DataReturnFormat','cellarray')

curs = fetch(curs);

m = curs.Data;

Wind_Speed = str2double(m);

clear m;

 168

curs= exec(conn,'SELECT max_temp FROM iv_tl_winter');

setdbprefs('DataReturnFormat','cellarray')

curs = fetch(curs);

m = curs.Data;

Max_Temp = str2double(m);

clear m;

curs= exec(conn,'SELECT min_temp FROM iv_tl_winter');

setdbprefs('DataReturnFormat','cellarray')

curs = fetch(curs);

m = curs.Data;

Min_Temp = str2double(m);

clear m;

%Correlation Analysis between the load and exogenous variables

Consump_Wind_Speed = corrcoef(Consump,Wind_Speed);

Consump_Humidity = corrcoef(Consump,Humidity);

Consump_Max_Temp = corrcoef(Consump,Max_Temp);

Consump_Min_Temp = corrcoef(Consump,Min_Temp);

% Input Data Preprocessing

%**************************************

MaxConsump = max(Consump);

MaxWind_Speed = max(Wind_Speed);

MaxHumidity = max(Humidity);

MaxMax_Temp = max(Max_Temp);

MaxMin_Temp = max(Max_Temp);

norm_Consump = (Consump/MaxConsump)';

norm_Wind_Speed = (Wind_Speed/MaxWind_Speed)';

norm_Humidity = (Humidity/MaxHumidity)';

norm_Max_Temp = (Max_Temp/MaxMax_Temp)';

norm_Min_Temp = (Min_Temp/MaxMin_Temp)';

% Preparing Data

%****************************

% defining data set dimensions

n = 1345:1514; % Training data

k = 1681:1850; % Target

s = 1513:1682; % Testing data

Tw1 = norm_Consump(k);

Tw = Tw1(:,1:168);

Humid = Humid1(:,1:168);

Wind = Wind1(:,1:168);

P = [norm_Consump(n);norm_Consump(n-1);norm_Consump(n-168);norm_Consump(n-169)];

 169

Ptst = [norm_Consump(s);norm_Consump(s-1);norm_Consump(s-168);norm_Consump(s-169)];

Temp1 = [norm_Max_Temp(k);norm_Min_Temp(k)];

P1 = P(:,1:168);

P2 = Ptst(:,1:168);

Temp = Temp1(:,1:168);

Humid1 = [norm_Humidity(k)];

Wind1 = [norm_Wind_Speed(k)];

Pw = [P1];

Pwtstd = [P2];

% Defining ANN Topology

%******************************

%Designing a Elman Recurrent Neural Network with 1 input, 1 hidden layer with 10 neurons and

1output neurons

nhn = 10; % Number of hidden layer neurons

net = newelm([minmax(Pw)],[nhn 1],{'tansig','purelin'},'traingdm');

net.layers{1}.initFcn='initnw';

net.layers{2}.initFcn='initnw';

net = init(net); % Initialization of network

net.performFcn='mse';

net.trainParam.epochs = 1000; % Maximum no. of epochs

net.trainParam.show = 50; % No. of epochs to display

net.trainParam.lr = 0.3; % Learning rate

net.trainParam.mc = 0.75; % Momentum term

net.trainParam.goal = 1e-5; %Defining the goal

init_in_weights = net.IW{1,1}; % Determining the initial input weights

init_out_weights = [net.LW{2,1}(:)]; % Determining the initial output

init_in_bias = net.b{1}; % Determining the initial input bias

init_out_bias = net.b{2}; % Determining the initial output bias

for i = 1:168;

 P = Pw(:,i);

 T = Tw(1,i);

 [net,tr,a] = train(net,P,T);

 forecast(1,i) = a;

 delta(1,i)= Tw(1,i) - forecast(1,i);

end

Saving of the forecast for the training data

saveas(gcf, 'trainscg_err Training', 'fig');

save tr tr;

% Calculating the sum squared error

num=168;

MPE_tr = ((1/num)* sum((delta/Tw).^2))*100;

MSE_tr = (1/num)* (sum(delta.^2));

 170

perf = mse(delta);

% De-normalization

O_Pw_denorm = forecast*MaxConsump;

Tw_denorm = Tw*MaxConsump;

% Simulating the network using the testing data

%***

 for i = 1:168;

 Pts = Pwtstd(:,i);

 T = Tw(1,i);

[a2 pf af]= sim(net,Pts);

O_Pwtst(1,i) = a2;

forecast_tstdata = O_Pwtst(1,i);

 delta_tst = T - forecast_tstdata;

end

% Plotting the graphs

%**************************

figure(1)

hold on

title('Network response - using training data (a 168 hrs ahead forecast)');

xlabel('Time in hours');

ylabel('Active Power/Load in [kW]');

grid on

plot(Tw_denorm, 'r--', 'LineWidth',3, 'MarkerSize',10);

plot(O_Pw_denorm, 'gx', 'LineWidth',3, 'MarkerSize',10);

legend ('Actual load values', 'Predicted load values');

% Plotting simulation results - using testing data test.

figure(2)

hold on

title('Network response using testing data');

xlabel('Time(hrs)');

ylabel('Active Power - normalized');

grid on

plot(forecast_tstdata, 'b--', 'LineWidth',3, 'MarkerSize',12);

legend('Predicated load values', 'Actual load values');

 % Saving the MSE,MPE and actual error(kW) to an Excel spread sheet

a = delta*MaxConsump;

[mat,padded] =vec2mat(a,24);

e_tr = mat(1:7,1:24);

actual_error_tr = xlswrite('error(W)_CERNN_TL_NWS02_tr',e_tr');

c = {'MSE_tr','MPE_tr';MSE_tr MPE_tr};

 171

d = xlswrite('MSEMPE_ERNN_TL_NWS02' , c, 'A1');

% closing the connection to the DB

close(curs)

close(conn)

isconnection(conn)

toc;

Forecast_Time = toc

% End

 172

D.5: MATLAB Script: Feedforward Model for predicting the load of the IT

Department

1. File name : FFNN_IT.m

2. Aim of the model : This model also brings the effect of climatic conditions on the load. Thus it

uses a combination of the past load values and weather data to predict the

load for the IT department as discussed in chapter 6 (section 6.4) and chapter

7 (section 7.8.1).

3. Methodology : This model predicts the load for the whole week using the hour-by-hour

approach.

4. Input Vector : IV # 1.

5. Output Vector : one week ahead forecasts

6. Note : This model has also successfully met the performance goal (1e-5) in only

few iterations. The target vector used during the training was later defined as

the testing data.

%Clearing the screen and memory

clc

clear

 tic;

% Establishing the connection to the DB and extracting required data

% Inserting the username and password to access the DB

% importing the required data into MATLAB using SQL Syntax from a table named 'ivit22'

%% The model is trained using the batch incremental mode

%**

conn = database('combinedloaddata', 'root', 'password1')

 DATABASE_CONNECTION = isconnection(conn)

curs= exec(conn,'SELECT Consump FROM ivit22');

setdbprefs('DataReturnFormat','cellarray')

curs = fetch(curs);

m = curs.Data;

Consump = str2double(m);

clear m;

 curs= exec(conn,'SELECT Humidity FROM ivit22');

setdbprefs('DataReturnFormat','cellarray')

curs = fetch(curs);

m = curs.Data;

Humidity = str2double(m);

clear m;

 curs= exec(conn,'SELECT Wind_speed FROM ivit22');

setdbprefs('DataReturnFormat','cellarray')

curs = fetch(curs);

m = curs.Data;

Wind_Speed = str2double(m);

 173

clear m;

 curs= exec(conn,'SELECT Max_temp FROM ivit22');

setdbprefs('DataReturnFormat','cellarray')

curs = fetch(curs);

m = curs.Data;

Max_Temp = str2double(m);

clear m;

 curs= exec(conn,'SELECT Min_temp FROM ivit22');

setdbprefs('DataReturnFormat','cellarray')

curs = fetch(curs);

m = curs.Data;

Min_Temp = str2double(m);

clear m;

 %Correlation Analysis between the load and exogenous variables

Consump_Wind_Speed = corrcoef(Consump,Wind_Speed);

Consump_Humidity = corrcoef(Consump,Humidity);

Consump_Max_Temp = corrcoef(Consump,Max_Temp);

Consump_Min_Temp = corrcoef(Consump,Min_Temp);

% Input Data Preprocessing

%**************************************

MaxConsump = max(Consump);

MaxWind_Speed = max(Wind_Speed);

MaxHumidity = max(Humidity);

MaxMax_Temp = max(Max_Temp);

MaxMin_Temp = max(Max_Temp);

norm_Consump = (Consump/MaxConsump)';

norm_Wind_Speed = (Wind_Speed/MaxWind_Speed)';

norm_Humidity = (Humidity/MaxHumidity)';

norm_Max_Temp = (Max_Temp/MaxMax_Temp)';

norm_Min_Temp = (Min_Temp/MaxMin_Temp)';

% Preparing Data

%****************************

%defining the data set dimensions

n = 313:480; %Training data

s = 145:312; %Target

 P = [norm_Consump(n);norm_Consump(n-1);norm_Consump(n-168);norm_Consump(n-169)];

Tw = [norm_Consump(s)];

 174

%defining weather data dimensions

 Temp1 = [norm_Max_Temp(s);norm_Min_Temp(s)];

[mat,padded] = vec2mat(P,168);

[r,s]=size(mat);

Temp = mat(1:2,1:168);

Humid = [norm_Humidity(s)];

Wind = [norm_Wind_Speed(s)];

%Defining the final input vector # 1.

Pw = [P;Temp;Humid;Wind];

% Defining a custom ANN Topology

%******************************

%Designing a custom Feedforward Neural Network Model with 1 input, 1 hidden layer with 5 neurons

and 1 output neurons

net = network;

net.numInputs = 1;

net.inputs{1}.size = 8;

net.numLayers = 2;

net.layers{1}.size = 5;

net.layers{2}.size = 1;

net.inputConnect(1) = 1;

net.layerConnect(2,1) = 1;

net.outputConnect(2) = 1;

net.targetConnect(2) = 1;

net.layers{1}.transferFcn = 'tansig';

net.layers{2}.transferFcn = 'purelin';

%Define which layers have biases

net.biasConnect(1) = 1;

net.biasConnect(2) = 1;

net = init(net);%Initialise the weights and biases

 for i = 1:168;

 P = Pw(:,i);

 T = Tw(1,i);

net.trainFcn = 'traingdm';

net.performFcn = 'mse';

net.trainParam.lr = 0.1;

net.trainParam.mc = 0.75;

net.trainParam.epochs = 1000;

net.trainParam.show = 50;

net.trainParam.goal = 1e-5;

[net,tr,a] = train(net,P,T);

 forecast(1,i) = a;

 delta(1,i)= Tw(1,i) - forecast(1,i);

end

 175

% saving the forecast -

saveas(gcf, 'traingdm_err Training', 'fig');

save tr tr;

% calculating the sum squared error

num=168;

MPE_tr = ((1/num)* sum((delta/Tw).^2))*100

MSE_tr = (1/num)* (sum(delta.^2))

perf = mse(delta)

% De-normalization

O_Pw_denorm = forecast*MaxConsump;

Tw_denorm = Tw*MaxConsump;

% Simulating the network using the same data used during training-

%***

for i=1:168;

[a2 pf af]= sim(net,Pw(:,i));

end

% Plotting the Graph

%**************************

figure(1)

hold on

title('Network response - using IT training data (a 168 hrs ahead forecast)');

xlabel('Time in hours');

ylabel('Active Power/Load in [kW]');

grid on

plot(Tw_denorm, 'r--', 'LineWidth',3, 'MarkerSize',10);

plot(O_Pw_denorm, 'bo', 'LineWidth',2, 'MarkerSize',5);

legend ('Actual load values', 'Predicted load values');

% Plotting simulation results – for the testing data set.

figure(2)

hold on

title('Network response using testing data');

xlabel('Time(hrs)');

ylabel('Active Power - normalized');

grid on

plot(a2, 'b--', 'LineWidth',3, 'MarkerSize',12);

%plot(T(1,i), 'm*', 'LineWidth',3, 'MarkerSize',10);

legend('Predicated load values', 'Actual load values');

 176

%Plotting the error: for the training data

%**

figure(3)

Actual_error = delta*MaxConsump;

plot(Actual_error, 'b--', 'LineWidth',2, 'MarkerSize',10);

title('Hourly actual error (kW)- (training data');

xlabel('Time(hrs)');

ylabel('Error(kilo Watts)');

legend ('e - ttr');

grid on

% Saving the MSE,MPE and Actual error(kW) to an Excel spread sheet

 error = delta*MaxConsump;

[mat,padded] =vec2mat(error,24);

e_tr = mat(1:7,1:24);

actual_error_tr = xlswrite('error(kW)_FFNN_IT',e_tr');

c = {'MSE_tr','MPE_tr';MSE_tr MPE_tr};

d = xlswrite('MSEMPE_FFNN_IT' , c, 'A1');

% closing the connection to the DB

close(curs)

close(conn)

isconnection(conn)

toc;

Forecast_Time = toc

DB_connection = isconnection(conn)

% End

 177

D.6: MATLAB Script: Elman Recurrent weather sensitive model for predicting the

load of the IT Department

1. File name : ERNN_IT.m

2. Aim of the model : This model ignores the effect of climatic conditions on the load. Thus it

merely uses the past load values and weather data to predict the load for the

IT department as discussed in chapter 6 (section 6.4) and chapter 7 (section

7.8.1).

3. Methodology : This model predicts the load for the whole week at once

4. Input Vector : IV # 1.

5. Output Vector : one week ahead forecasts

6. Note : This model has failed to meet the performance goal (1e-5). The target vector

used during the training was later defined as the testing data.

%Clearing the screen and memory

clc

clear

 tic;

% Establishing the connection to the DB and extracting required data

% Inserting the username and password to access the DB

% importing the required data into MATLAB using SQL Syntax from a table named 'ivit22'

% The model is trained using the batch training mode

%**

conn = database('combinedloaddata', 'root', 'password1')

DATABASE_CONNECTION = isconnection(conn)

curs= exec(conn,'SELECT Consump FROM ivit22');

setdbprefs('DataReturnFormat','cellarray')

curs = fetch(curs);

m = curs.Data;

Consump = str2double(m);

clear m;

curs= exec(conn,'SELECT Humidity FROM ivit22');

setdbprefs('DataReturnFormat','cellarray')

curs = fetch(curs);

m = curs.Data;

Humidity = str2double(m);

clear m;

curs= exec(conn,'SELECT Wind_speed FROM ivit22');

setdbprefs('DataReturnFormat','cellarray')

curs = fetch(curs);

m = curs.Data;

 178

Wind_Speed = str2double(m);

clear m;

curs= exec(conn,'SELECT Max_temp FROM ivit22');

setdbprefs('DataReturnFormat','cellarray')

curs = fetch(curs);

m = curs.Data;

Max_Temp = str2double(m);

clear m;

curs= exec(conn,'SELECT Min_temp FROM ivit22');

setdbprefs('DataReturnFormat','cellarray')

curs = fetch(curs);

m = curs.Data;

Min_Temp = str2double(m);

clear m;

%Correlation Analysis between the load and exogenous variables

Consump_Wind_Speed = corrcoef(Consump,Wind_Speed);

Consump_Humidity = corrcoef(Consump,Humidity);

Consump_Max_Temp = corrcoef(Consump,Max_Temp);

Consump_Min_Temp = corrcoef(Consump,Min_Temp);

% Input Data Preprocessing

%**************************************

MaxConsump = max(Consump);

MaxWind_Speed = max(Wind_Speed);

MaxHumidity = max(Humidity);

MaxMax_Temp = max(Max_Temp);

MaxMin_Temp = max(Max_Temp);

norm_Consump = (Consump/MaxConsump)';

norm_Wind_Speed = (Wind_Speed/MaxWind_Speed)';

norm_Humidity = (Humidity/MaxHumidity)';

norm_Max_Temp = (Max_Temp/MaxMax_Temp)';

norm_Min_Temp = (Min_Temp/MaxMin_Temp)';

% Preparing Data

%****************************

n = 313:480; %Training data

s = 145:312; %target

P = [norm_Consump(n);norm_Consump(n-1);norm_Consump(n-168);norm_Consump(n-169)];

Tw = [norm_Consump(s)];

 179

%Defining the weather data

 Temp1 = [norm_Max_Temp(s);norm_Min_Temp(s)];

[mat,padded] = vec2mat(P,168);

[r,s]=size(mat);

Temp = mat(1:2,1:168);

Humid = [norm_Humidity(n)];

Wind = [norm_Wind_Speed(n)];

Pw = [P;Temp;Humid;Wind];

% Defining ANN Topology

%******************************

nhn = 5; % Number of hidden layer neurons

net = newelm([minmax(Pw)],[nhn 1],{'tansig','purelin'},'traingdm');

net.layers{1}.initFcn='initnw';

net.layers{2}.initFcn='initnw';

net = init(net); % Initialization of network

net.performFcn='mse';

net.trainParam.epochs = 1000; % Maximum no. of epochs

net.trainParam.show = 50; % No. of epochs to display

net.trainParam.lr = 0.3; % Learning rate

net.trainParam.mc = 0.75; % Momentum term

net.trainParam.goal = 1e-5; %Defining the goal

init_in_weights = net.IW{1,1}; % Determining the initial input weights

init_out_weights = [net.LW{2,1}(:)]; % Determining the initial output

init_in_bias = net.b{1}; % Determining the initial input bias

init_out_bias = net.b{2}; % Determining the initial output bias

[net,tr] = train (net,Pw,Tw);

% simulating the network with the same inputs used to in the training

O_Pw = sim (net,Pw);

e = (Tw - O_Pw);

% Calculating the sum squared error

num=168;

 MPE_tr = ((1/num)* sum((e/Tw).^2))*100

MSE_tr = (1/num)* (sum(e.^2))

perf = mse(e)

%Data De-normalization

O_Pw_denorm = O_Pw*MaxConsump;

Tw_denorm = Tw*MaxConsump;

% Plotting the Graphs

%**************************

figure(1)

 180

hold on

title('IT 1 week ahead forecasts vs. target - ERNN_IT');

xlabel('Time(hrs)');

ylabel('Active Power/Load (kW)');

grid on

plot(Tw_denorm, 'r--', 'LineWidth',3, 'MarkerSize',8);

plot(O_Pw_denorm, 'g*', 'LineWidth',3, 'MarkerSize',7);

legend ('Target', 'Forecasted load');

% Saving the MSE,MPE actual error(W) to an Excel spread sheet

 error = e*MaxConsump;

[mat,padded] =vec2mat(error,24);

e_tr = mat(1:7,1:24);

actual_error_tr = xlswrite('error(kW)_ERNN_IT',e_tr');

c = {'MSE_tr','MPE_tr';MSE_tr MPE_tr};

d = xlswrite('MSEMPE_ERNN_IT' , c, 'A1');

%Plotting the error

%*********************

figure(3)

plot((e), 'b--', 'LineWidth',2, 'MarkerSize',10);

title('error (training data)');

xlabel('Time(hrs');

ylabel('actual error(kW)');

legend ('error (ERNN IT)');

grid on

%closing the connection to the DB

close(curs)

close(conn)

DB_connection = isconnection(conn)

% End

 181

D.7: MATLAB Script: Elman Recurrent weather sensitive model for predicting the

load of the Electrical Engineering Department

1. File name : ERNN_ELEC.m

2. Aim of the model : This model also brings the effect of climatic conditions on the load. Thus it

uses a combination of the past load values and weather data to predict the

load for the Electrical engineering department as discussed in chapter 6

(section 6.4) and chapter 7 (section 7.8.2).

3. Methodology : This model predicts the load for the whole week at once

4. Input Vector : IV # 1.

5. Output Vector : one week ahead forecasts

6. Note : This model has failed to meet the performance goal (1e-5). The target vector

used during the training was later defined as the testing data.

%Clearing the screen and memory

clc

clear

 tic;

% Establishing the connection to the DB and extracting required data

% Inserting the username and password to access the DB

% Importing the required data into MATLAB using SQL Syntax from a table named 'ivelec1'

%**

conn = database('combinedloaddata', 'root', 'password1')

DATABASE_CONNECTION = isconnection(conn)

curs= exec(conn,'SELECT Consump FROM ivelec11');

setdbprefs('DataReturnFormat','cellarray')

curs = fetch(curs);

m = curs.Data;

Consump = str2double(m);

clear m;

curs= exec(conn,'SELECT humidity FROM ivelec11');

setdbprefs('DataReturnFormat','cellarray')

curs = fetch(curs);

m = curs.Data;

humidity = str2double(m);

clear m;

curs= exec(conn,'SELECT wind_speed FROM ivelec11');

setdbprefs('DataReturnFormat','cellarray')

curs = fetch(curs);

m = curs.Data;

wind_speed = str2double(m);

 182

clear m;

curs= exec(conn,'SELECT max_temp FROM ivelec11');

setdbprefs('DataReturnFormat','cellarray')

curs = fetch(curs);

m = curs.Data;

max_temp = str2double(m);

clear m;

curs= exec(conn,'SELECT min_temp FROM ivelec11');

setdbprefs('DataReturnFormat','cellarray')

curs = fetch(curs);

m = curs.Data;

min_temp = str2double(m);

clear m;

%Correlation Analysis between the load and exogenous variables

Consump_Wind_Speed = corrcoef(Consump,wind_speed);

Consump_Humidity = corrcoef(Consump,humidity);

Consump_Max_Temp = corrcoef(Consump,max_temp);

Consump_Min_Temp = corrcoef(Consump,min_temp);

% Input Data Preprocessing

%**************************************

MaxConsump = max(Consump);

MaxWind_Speed = max(wind_speed);

MaxHumidity = max(humidity);

MaxMax_Temp = max(max_temp);

MaxMin_Temp = max(max_temp);

norm_Consump = (Consump/MaxConsump)';

norm_Wind_Speed = (wind_speed/MaxWind_Speed)';

norm_Humidity = (humidity/MaxHumidity)';

norm_Max_Temp = (max_temp/MaxMax_Temp)';

norm_Min_Temp = (min_temp/MaxMin_Temp)';

% Preparing Data

%****************************

n = 169:336; %Training data

s = 1:168; %Target

P = [norm_Consump(n);norm_Consump(n-1);norm_Consump(n-167);norm_Consump(n-168)];

Tw = [norm_Consump(s)];

%Defining the weather data

 183

Temp1 = [norm_Max_Temp(s);norm_Min_Temp(s)];

[mat,padded] = vec2mat(P,168);

[r,s]=size(mat);

Temp = mat(1:2,1:168);

Humid = [norm_Humidity(s)];

Wind = [norm_Wind_Speed(s)];

Pw = [P;Temp;Humid;Wind];

% Defining ANN Topology

%******************************

nhn = 5; % Number of hidden layer neurons

net = newelm([minmax(Pw)],[nhn 1],{'tansig','purelin'},'traingdm');

net.layers{1}.initFcn='initnw';

net.layers{2}.initFcn='initnw';

net = init(net); % Initialization of network

net.performFcn='mse';

net.trainParam.epochs = 1000; % Maximum no. of epochs

net.trainParam.show = 50; % No. of epochs to display

net.trainParam.lr = 0.3; % Learning rate

net.trainParam.mc = 0.75; % Momentum term

net.trainParam.goal = 1e-5; %Define the goal

init_in_weights = net.IW{1,1}; % Determining the initial input weights

init_out_weights = [net.LW{2,1}(:)]; % Determining the initial output

init_in_bias = net.b{1}; % Determining the initial input bias

init_out_bias = net.b{2}; % Determining the initial output bias

[net,tr] = train (net,Pw,Tw);

% simulating the network with the same inputs used to in the training

O_Pw = sim (net,Pw);

e = (Tw-O_Pw);

 % calculating the sum squared error

num=168;

 MPE_tr = ((1/num)* sum((e/Tw).^2))*100

MSE_tr = (1/num)* (sum(e.^2))

perf = mse(e)

%Data De-normalization

O_Pw_denorm = O_Pw*MaxConsump;

Tw_denorm = Tw*MaxConsump;

% Plotting the Graphs

%**************************

 184

figure(1)

hold on

title('Elec. Eng. 1 week ahead forecasts vs. target - ERNN_ELEC. ENG_WS');

xlabel('Time(hrs)');

ylabel('Active Power/Load (kW)');

grid on

plot(Tw_denorm, 'r--', 'LineWidth',3, 'MarkerSize',8);

plot(O_Pw_denorm, 'm*', 'LineWidth',3, 'MarkerSize',7);

legend ('Target', 'Forecasted load');

% Saving the MSE,MPE and Actual error(kW) to an Excel spread sheet

 error = e*MaxConsump;

[mat,padded] =vec2mat(error,24);

e_tr = mat(1:7,1:24);

actual_error_tr = xlswrite('error(kW)_ERNN_ELEC',e_tr');

c = {'MSE_tr','MPE_tr';MSE_tr MPE_tr};

d = xlswrite('MSEMPE_ERNN_ELEC' , c, 'A1');

%Plotting the error

%*********************

 figure(3)

plot((e), 'b--', 'LineWidth',2, 'MarkerSize',10);

title('error (training data)');

xlabel('Time(hrs');

ylabel('actual error(kW)');

legend ('error (ERNN ELEC. ENG WS)');

grid on

%closing the connection to the DB

close(curs)

close(conn)

DB_connection = isconnection(conn)

% End

 185

D.8: MATLAB Script: Feedforward weather sensitive model for predicting the load

of the Electrical Engineering Department.

1. File name : FFNN_ELEC.m

2. Aim of the model : This model also brings the effect of climatic conditions on the load. Thus it

uses a combination of the past load values and weather data to predict the load for the Electrical Engineering

department as discussed in chapter 6 (section 6.4) and chapter 7 (section 7.8.2).

3. Methodology : This model predicts the load for the whole week using the hour-by-hour

approach.

4. Input Vector : IV # 1.

5. Output Vector : one week ahead forecasts

6. Note : This model has successfully met the performance goal (1e-5) in only

few iterations. The target vector used during the training was later defined

as the testing data.

%Clearing the screen and memory

clc

clear

 tic;

% Establishing the connection to the DB and extracting required data

% Inserting the username and password to access the DB

% importing the required data into MATLAB using SQL Syntax from a table named 'ivelec1'

%**

conn = database('combinedloaddata', 'root', 'password1')

DATABASE_CONNECTION = isconnection(conn)

curs= exec(conn,'SELECT Consump FROM ivelec11');

setdbprefs('DataReturnFormat','cellarray')

curs = fetch(curs);

m = curs.Data;

Consump = str2double(m);

clear m;

curs= exec(conn,'SELECT humidity FROM ivelec11');

setdbprefs('DataReturnFormat','cellarray')

curs = fetch(curs);

m = curs.Data;

humidity = str2double(m);

clear m;

curs= exec(conn,'SELECT wind_speed FROM ivelec11');

setdbprefs('DataReturnFormat','cellarray')

curs = fetch(curs);

m = curs.Data;

 186

wind_speed = str2double(m);

clear m;

curs= exec(conn,'SELECT max_temp FROM ivelec11');

setdbprefs('DataReturnFormat','cellarray')

curs = fetch(curs);

m = curs.Data;

max_temp = str2double(m);

clear m;

curs= exec(conn,'SELECT min_temp FROM ivelec11');

setdbprefs('DataReturnFormat','cellarray')

curs = fetch(curs);

m = curs.Data;

min_temp = str2double(m);

clear m;

%Correlation Analysis between the load and exogenous variables

Consump_Wind_Speed = corrcoef(Consump,wind_speed);

Consump_Humidity = corrcoef(Consump,humidity);

Consump_Max_Temp = corrcoef(Consump,max_temp);

Consump_Min_Temp = corrcoef(Consump,min_temp);

% Input Data Preprocessing

%**************************************

MaxConsump = max(Consump);

MaxWind_Speed = max(wind_speed);

MaxHumidity = max(humidity);

MaxMax_Temp = max(max_temp);

MaxMin_Temp = max(max_temp);

norm_Consump = (Consump/MaxConsump)';

norm_Wind_Speed = (wind_speed/MaxWind_Speed)';

norm_Humidity = (humidity/MaxHumidity)';

norm_Max_Temp = (max_temp/MaxMax_Temp)';

norm_Min_Temp = (min_temp/MaxMin_Temp)';

% Preparing Data

%****************************

n = 169:336; %Training data

s = 1:168; %Target

P = [norm_Consump(n);norm_Consump(n-1);norm_Consump(n-167);norm_Consump(n-168)];

Tw = [norm_Consump(s)];

 187

%Defining the weather data

Temp1 = [norm_Max_Temp(s);norm_Min_Temp(s)];

[mat,padded] = vec2mat(P,168);

[r,s]=size(mat);

Temp = mat(1:2,1:168);

Humid = [norm_Humidity(s)];

Wind = [norm_Wind_Speed(s)];

Pw = [P;Temp;Humid;Wind];

% Defining ANN Topology

%******************************

%Designing a custom Feedforward Neural Network Model with 1 input, 1 hidden layer with 5 neurons

and 1 output neuron

net = network;

net.numInputs = 1;

net.inputs{1}.size = 8;

net.numLayers = 2;

net.layers{1}.size = 5;

net.layers{2}.size = 1;

net.inputConnect(1) = 1;

net.layerConnect(2,1) = 1;

net.outputConnect(2) = 1;

net.targetConnect(2) = 1;

net.layers{1}.transferFcn = 'tansig';

net.layers{2}.transferFcn = 'purelin';

%Define which layers have biases

net.biasConnect(1) = 1;

net.biasConnect(2) = 1;

net = init(net); % Initializing the weights and biases

% Reset weight and biases - Optional for trial only

%net.initFcn = 'initlay';

%net.layers{1}.initFcn = 'initnw';

%net.layers{2}.initFcn = 'initwb';

%net.inputWeights{1,1}.initFcn = 'rands';

%net.biases{1}.initFcn = 'rands'

%net.layerWeights{1,2}.initFcn = 'rands'

% declaring the hour by hour forecasting Algorithm and other training parameters

for i = 1:168;

 P = Pw(:,i);

 T = Tw(1,i);

net.trainFcn = 'traingdm';

 188

net.performFcn = 'mse';

net.trainParam.lr = 0.3;

net.trainParam.mc = 0.75;

net.trainParam.epochs = 1000;

net.trainParam.show = 50;

net.trainParam.goal = 1e-5;

[net,tr,a] = train(net,P,T);

 forecast(1,i) = a;

 delta(1,i)= Tw(1,i) - forecast(1,i);

end

% Saving the forecast for the training data

saveas(gcf, 'traingdm_err Training', 'fig');

save tr tr;

% Calculating the sum squared error

num=168;

 MPE_tr = ((1/num)* sum((delta/Tw).^2))*100

MSE_tr = (1/num)* (sum(delta.^2))

perf = mse(delta)

% De-normalization

O_Pw_denorm = forecast*MaxConsump;

Tw_denorm = Tw*MaxConsump;

% simulating the network using the same data - no testing data available

%***

for i=1:168;

[a2 pf af]= sim(net,Pw(:,i));

end

% Plotting the Graph

%**************************

figure(1)

hold on

title('Network response (ELEC. ENG)- using training data (a 168 hrs ahead forecast)');

xlabel('Time in hours');

ylabel('Active Power/Load in [kW]');

grid on

plot(Tw_denorm, 'r--', 'LineWidth',3, 'MarkerSize',10);

plot(O_Pw_denorm, 'bo', 'LineWidth',2, 'MarkerSize',5);

legend ('Actual load values', 'Predicted load values');

% Plotting simulation results - using testing datatest.

figure(2)

 189

hold on

title('Network response using testing data');

xlabel('Time(hrs)');

ylabel('Active Power - normalized');

grid on

plot(a2, 'b--', 'LineWidth',3, 'MarkerSize',12);

legend('Predicated load values', 'Actual load values');

%plotting the error of the training data

%**

figure(3)

Actual_error = delta*MaxConsump;

plot(Actual_error, 'b--', 'LineWidth',2, 'MarkerSize',10);

title('Hourly actual error (kW)- (training data');

xlabel('Time(hrs)');

ylabel('Error(kilo Watts)');

legend ('e - ttr');

grid on

% Saving the MSE,MPE and Actual error(kW) to an Excel spread sheet

 error = delta*MaxConsump;

[mat,padded] =vec2mat(error,24);

e_tr = mat(1:7,1:24);

actual_error_tr = xlswrite('error(kW)_FFNN_ELEC ENG',e_tr');

c = {'MSE_tr','MPE_tr';MSE_tr MPE_tr};

d = xlswrite('MSEMPE_FFNN_ELEC ENG' , c, 'A1');

% closing the connection to the DB

close(curs)

close(conn)

DB_connection = isconnection(conn)

% End

 190

D.9: MATLAB Script: Feedforward model for predicting the load of the Mechanical

Engineering Department.

1. File name : FFNN_MEC.m

2. Aim of the model : This model also ignores the effect of climatic conditions on the load. Thus it

merely uses the past load values to predict the load for the Mechanical Engineering department as discussed

in chapter 6 (section 6.4) and chapter 7 (section 7.8.3).

3. Methodology : This model predicts the load for the whole week using the hour-by-hour

approach.

4. Input Vector : Two past load values (L (t-1)) and (L (t-2)).

5. Output Vector : a 24 hours ahead forecast

6. Note : This model has successfully met the performance goal (1e-5) in only

few iterations. The target vector used during the training was later defined as the testing data.

a) An additional 45% was added to the measured load to cater for

machines which were not in operation when load measurements

were taken.

%Clears memory and screen

clc

clear

% Establishing the connection to the DB and extracting required data

% Inserting the username and password for the DB

% Importing required data into MATLAB using SQL Syntax form a table named 'iv_mec'

%**

tic;

conn = database('combinedloaddata', 'root', 'password1')

DATABASE_CONNECTION = isconnection(conn)

curs= exec(conn,'SELECT consump FROM iv_mec');

setdbprefs('DataReturnFormat','cellarray')

curs = fetch(curs);

m = curs.Data;

Consump = str2double(m);

clear m;

% Input Data Preprocessing

%**************************************

MaxConsump = max(Consump);

norm_Consump = (Consump/MaxConsump)';

% Preparing Data

%****************************

 191

n = 2:25; %Training

k = 25:48; %Target -

s = 48:72; % Testing data

P = [norm_Consump(n);norm_Consump(n-1)];

P1 = P(:,1:24);

Pw = [P1];

Tw = norm_Consump(k);

Ptst = [norm_Consump(s);norm_Consump(s-1)];

P2 = Ptst(:,1:24);

Pwtstd = [P2];

% Defining ANN Topology

%******************************

%Designing a custom Feedforward Neural Network with 1 input layer, 1 hidden layer with 10 neurons

and 1 output neuron

net = network;

net.numInputs = 1;

net.inputs{1}.size = 2;

net.numLayers = 2;

net.layers{1}.size = 5;

net.layers{2}.size = 1;

net.inputConnect(1) = 1;

net.layerConnect(2,1) = 1;

net.outputConnect(2) = 1;

net.targetConnect(2) = 1;

net.layers{1}.transferFcn = 'tansig';

net.layers{2}.transferFcn = 'purelin';

net.biasConnect(1) = 1;

net.biasConnect(2) = 1;

net = init(net); %Initializing the weights and biases

 % Reset weight and biases - Optional for trial only

%net.initFcn = 'initlay';

%net.layers{1}.initFcn = 'initnw';

%net.layers{2}.initFcn = 'initwb';

%net.inputWeights{1,1}.initFcn = 'rands';

%net.biases{1}.initFcn = 'rands'

%net.layerWeights{1,2}.initFcn = 'rands'

 % defining the hour-by-hour algorithm

for i = 1:24;

 P = Pw(:,i);

 T = Tw(1,i);

net.trainFcn = 'traingdm';

net.performFcn = 'mse';

 192

net.trainParam.lr = 0.3;

net.trainParam.mc = 0.75;

net.trainParam.epochs = 1000;

net.trainParam.show = 50;

net.trainParam.goal = 1e-5;

[net,tr,a] = train(net,P,T);

 forecast(1,i) = a;

 delta(1,i)= Tw(1,i) - forecast(1,i);

end

% Saving the forecast

saveas(gcf, 'traingdm_err Training', 'fig');

save tr tr;

% Calculating the sum squared error

num=24;

MSE = (sumsqr(delta))/num;

fprintf('MSE = %d', MSE*100)

MPE_tr = ((1/num)* sum((delta/Tw).^2))*100

MSE_tr = (1/num)* (sum(delta.^2))

perf = mse(delta)

% De-normalization

O_Pw_denorm = forecast*MaxConsump;

Tw_denorm = Tw*MaxConsump;

% Simulating the network using the testing data

%***

for i=1:24;

[a2 pf af]= sim(net,Pwtstd(:,i));

end

% Plotting the Graph

%**************************

figure(1)

hold on

title('a 24hrs ahead forecast for Mec. Eng.- for Tuesday the 2nd Sep, 08');

xlabel('Time in hours');

ylabel('Active Power/Load in [kW]');

grid on

plot(Tw_denorm, 'r--', 'LineWidth',3, 'MarkerSize',10);

plot(O_Pw_denorm, 'gx', 'LineWidth',3, 'MarkerSize',10);

legend ('Actual load values', 'Predicted load values');

% Plotting simulation results - using the testing data set.

figure(2)

 193

hold on

title('Network response using testing data');

xlabel('Time(hrs)');

ylabel('Active Power - normalized');

grid on

plot(a2, 'b--', 'LineWidth',3, 'MarkerSize',12);

legend('Predicated load values', 'Actual load values');

figure(3)

Actual_error = delta*MaxConsump;

plot(Actual_error, 'b--', 'LineWidth',2, 'MarkerSize',10);

title('Hourly actual error (W)- (training data');

xlabel('Time(hrs)');

ylabel('Error(Watts)');

legend ('e - ttr');

grid on

% Saving the MSE,MPE and Actual error(kW) to an Excel spread sheet

error = delta*MaxConsump;

e_tr = error';

actual_error_tr = xlswrite('error(kW)_FFNN_MEC',e_tr);

c = {'MSE_tr','MPE_tr';MSE_tr MPE_tr};

d = xlswrite('MSEMPE_FFNN_MEC' , c, 'A1');

% closing the connection to the DB

close(curs)

close(conn)

isconnection(conn)

toc;

Forecast_Time = toc

% End

 194

D.10: MATLAB Script: Feedforward model for predicting the load of the Air

Conditioning Plant (ACP).

1. File name : FFNN_ACP.m

2. Aim of the model : This model also ignores the effect of climatic conditions on the load. Thus it

merely uses the past load values to predict the load for the Air Conditioning

Plant as discussed in chapter 6 (section 6.4) and chapter 7 (section 7.8.5).

3. Methodology : This model predicts the load for the whole week using the hour-by-hour

approach.

4. Input Vector : Two past load values (L (t-1)) and (L (t-2)).

5. Output Vector : a 24 hours ahead forecast

6. Note : This model has successfully met the performance goal (1e-5) in only

few iterations. The target vector used during the training was later defined as

the testing data.

An additional 15% was added to the measured load to cater for some

machines which were not in operation when load measurements were taken.

%Clears memory and screen

clc

clear

% Estabilishing the connection to the DB and extracting required data

% Inserting the username and password for the DB

% Importing required data into MATLAB using SQL Syntax form a table named 'iv_acp'

%**

tic;

conn = database('combinedloaddata', 'root', 'password1')

DATABASE_CONNECTION = isconnection(conn)

curs= exec(conn,'SELECT consump FROM iv_acp');

setdbprefs('DataReturnFormat','cellarray')

curs = fetch(curs);

m = curs.Data;

Consump = str2double(m);

clear m;

% Input Data Preprocessing

%**************************************

MaxConsump = max(Consump);

norm_Consump = (Consump/MaxConsump)';

% Preparing Data

%****************************

%Defining data set dimensions

n = 2:25; %Training data

 195

k = 25:48; %Target

s = 48:72; % Testing data

P = [norm_Consump(n);norm_Consump(n-1)];

P1 = P(:,1:24);

Pw = [P1];

Tw = norm_Consump(k);

Ptst = [norm_Consump(s);norm_Consump(s-1)];

P2 = Ptst(:,1:24);

Pwtstd = [P2];

% Defining ANN Topology

%******************************

%Designing a custom Feedforward Neural Network with 1 input layer, 1 hidden layer with 10 neurons

and 1output neuron

net = network;

net.numInputs = 1;

net.inputs{1}.size = 2;

net.numLayers = 2;

net.layers{1}.size = 10;

net.layers{2}.size = 1;

net.inputConnect(1) = 1;

net.layerConnect(2,1) = 1;

net.outputConnect(2) = 1;

net.targetConnect(2) = 1;

net.layers{1}.transferFcn = 'tansig';

net.layers{2}.transferFcn = 'purelin';

net.biasConnect(1) = 1;

net.biasConnect(2) = 1;

net = init(net); %Initializing the weights and biases

 % Reset weight and biases - Optional for trial only

%net.initFcn = 'initlay';

%net.layers{1}.initFcn = 'initnw';

%net.layers{2}.initFcn = 'initwb';

%net.inputWeights{1,1}.initFcn = 'rands';

%net.biases{1}.initFcn = 'rands'

%net.layerWeights{1,2}.initFcn = 'rands'

% Declaring the hour by hour forecasting Algorithm and other training parameters

for i = 1:24;

 P = Pw(:,i);

 T = Tw(1,i);

net.trainFcn = 'traingdm';

net.performFcn = 'mse';

 196

net.trainParam.lr = 0.1;

net.trainParam.mc = 0.75;

net.trainParam.epochs = 1000;

net.trainParam.show = 50;

net.trainParam.goal = 1e-5;

[net,tr,a] = train(net,P,T);

 forecast(1,i) = a;

 delta(1,i)= Tw(1,i) - forecast(1,i);

end

% Saving the forecast for the testing data

saveas(gcf, 'traingdm_err Training', 'fig');

save tr tr;

% Calculating the sum squared error

num=24;

MSE = (sumsqr(delta))/num;

fprintf('MSE = %d', MSE*100)

MPE_tr = ((1/num)* sum((delta/Tw).^2))*100

MSE_tr = (1/num)* (sum(delta.^2))

perf = mse(delta)

% De-normalization

O_Pw_denorm = forecast*MaxConsump;

Tw_denorm = Tw*MaxConsump;

% Simulating the network using the testing data

%*************************************

for i=1:24;

[a2 pf af]= sim(net,Pwtstd(:,i));

End

% Plotting the Graph

%**************************

figure(1)

hold on

title('a 24 hrs ahead ACP forecast, Tuesday, 7th October,08 - FFNN ACP');

xlabel('Time in hours');

ylabel('Active Power/Load in (kW)');

grid on

plot(Tw_denorm, 'r--', 'LineWidth',3, 'MarkerSize',10);

plot(O_Pw_denorm, 'gx', 'LineWidth',3, 'MarkerSize',10);

legend ('Actual load values', 'Predicted load values');

 197

% Plotting simulation results - using testing datatest.

figure(2)

hold on

title('Network response using testing data');

xlabel('Time(hrs)');

ylabel('Active Power - normalized');

grid on

plot(a2, 'b--', 'LineWidth',3, 'MarkerSize',12);

legend('Predicated load values', 'Actual load values');

%Plotting the error: using training data

%**

figure(3)

Actual_error = delta*MaxConsump;

plot(Actual_error, 'b--', 'LineWidth',2, 'MarkerSize',10);

title('Hourly actual error (W)- (training data');

xlabel('Time(hrs)');

ylabel('Error(Watts)');

legend ('e - ttr');

grid on

% Saving the MSE,MPE and Actual error(kW) to an Excel spread sheet

error = delta*MaxConsump;

e_tr = error';

actual_error_tr = xlswrite('error(W)_FFNN_ACP',e_tr');

c = {'MSE_tr','MPE_tr';MSE_tr MPE_tr};

d = xlswrite('MSEMPE_FFNN_ACP' , c, 'A1');

% closing the connection to the DB

close(curs)

close(conn)

isconnection(conn)

toc;

Forecast_Time = toc

% End

 198

D.11: MATLAB Script: Elman Recurrent weather sensitive model for predicting the

load of the Administration Building

1. File name : ERNN_ADM.m

2. Aim of the model : This model also brings the effect of climatic conditions on the load. Thus it

uses a combination of the past load values and weather data to predict the

load for the Administration Building as discussed in chapter 6 (section 6.4)

and chapter 7 (section 7.8.4).

3. Methodology : This model predicts the load for the whole week at once

4. Input Vector : IV # 1.

5. Output Vector : one week ahead forecasts

Note : This model has failed to meet the performance goal (1e-5).

% Clearing the screen and memory

clc

clear

% Estabilishing the connection to the DB and extracting required data

% Inserting the username and password for the DB

% Importing required data into MATLAB using SQL Syntax form a table named 'ivadmin11'

%**

conn = database('combinedloaddata', 'root', 'password1')

DATABASE_CONNECTION = isconnection(conn)

curs= exec(conn,'SELECT Consump FROM ivadmin11');

setdbprefs('DataReturnFormat','cellarray')

curs = fetch(curs);

m = curs.Data;

Consump = str2double(m);

clear m;

curs= exec(conn,'SELECT humidity FROM ivadmin11');

setdbprefs('DataReturnFormat','cellarray')

curs = fetch(curs);

m = curs.Data;

humidity = str2double(m);

clear m;

curs= exec(conn,'SELECT wind_speed FROM ivadmin11');

setdbprefs('DataReturnFormat','cellarray')

curs = fetch(curs);

m = curs.Data;

wind_speed = str2double(m);

clear m;

 199

curs= exec(conn,'SELECT max_temp FROM ivadmin11');

setdbprefs('DataReturnFormat','cellarray')

curs = fetch(curs);

m = curs.Data;

max_temp = str2double(m);

clear m;

curs= exec(conn,'SELECT min_temp FROM ivadmin11');

setdbprefs('DataReturnFormat','cellarray')

curs = fetch(curs);

m = curs.Data;

min_temp = str2double(m);

clear m;

%Correlation Analysis between the load and exogenous variables

Consump_Wind_Speed = corrcoef(Consump,wind_speed);

Consump_Humidity = corrcoef(Consump,humidity);

Consump_Max_Temp = corrcoef(Consump,max_temp);

Consump_Min_Temp = corrcoef(Consump,min_temp);

% Input Data Preprocessing

%**************************************

MaxConsump = max(Consump);

MaxWind_Speed = max(wind_speed);

MaxHumidity = max(humidity);

MaxMax_Temp = max(max_temp);

MaxMin_Temp = max(max_temp);

norm_Consump = (Consump/MaxConsump)';

norm_Wind_Speed = (wind_speed/MaxWind_Speed)';

norm_Humidity = (humidity/MaxHumidity)';

norm_Max_Temp = (max_temp/MaxMax_Temp)';

norm_Min_Temp = (min_temp/MaxMin_Temp)';

% Preparing Data

%****************************

n = 169:336; %Training data

s = 1:168; %target

P = [norm_Consump(n);norm_Consump(n-1);norm_Consump(n-167);norm_Consump(n-168)];

Tw = [norm_Consump(s)];

Temp1 = [norm_Max_Temp(s);norm_Min_Temp(s)];

[mat,padded] = vec2mat(P,168);

[r,s]=size(mat);

 200

Temp = mat(1:2,1:168);

Humid = [norm_Humidity(s)];

Wind = [norm_Wind_Speed(s)];

Pw = [P;Temp;Humid;Wind];

% Defining ANN Topology

%******************************

nhn = 5; % Number of hidden layer neurons

net = newelm([minmax(Pw)],[nhn 1],{'tansig','purelin'},'traingdm');

net.layers{1}.initFcn='initnw';

net.layers{2}.initFcn='initnw';

net = init(net); % Initialization of network

net.performFcn='mse';

net.trainParam.epochs = 1000; % Maximum no. of epochs

net.trainParam.show = 50; % No. of epochs to display

net.trainParam.lr = 0.3; % Learning rate

net.trainParam.mc = 0.75; % Momentum term

net.trainParam.goal = 1e-5; %Define the goal

init_in_weights = net.IW{1,1}; % Determining the initial input weights

init_out_weights = [net.LW{2,1}(:)]; % Determining the initial output

init_in_bias = net.b{1}; % Determining the initial input bias

init_out_bias = net.b{2}; % Determining the initial output bias

[net,tr] = train (net,Pw,Tw);

% Simulating the network with the same inputs used to in the training

O_Pw = sim (net,Pw);

e = (Tw-O_Pw);

% Calculating the sum squared error

num=168;

 MPE_tr = ((1/num)* sum((e/Tw).^2))*100

MSE_tr = (1/num)* (sum(e.^2))

perf = mse(e)

%Data De-normalization

O_Pw_denorm = O_Pw*MaxConsump;

Tw_denorm = Tw*MaxConsump;

% Plotting the Graphs

%**************************

figure(1)

hold on

title('1 week ahead forecasts vs. target(Admin) - ERNN_ADMIN');

 201

xlabel('Time(hrs)');

ylabel('Active Power/Load (kW)');

grid on

plot(Tw_denorm, 'r--', 'LineWidth',3, 'MarkerSize',8);

plot(O_Pw_denorm, 'c+', 'LineWidth',3, 'MarkerSize',7);

legend ('Target', 'Forecasted load');

% Saving the MSE,MPE and Actual error(kW) to an Excel spread sheet

 error = e*MaxConsump;

[mat,padded] =vec2mat(error,24);

e_tr = mat(1:7,1:24);

actual_error_tr = xlswrite('error(kW)_ERNN_ADMIN',e_tr');

c = {'MSE_tr','MPE_tr';MSE_tr MPE_tr};

d = xlswrite('MSEMPE_ERNN_ADMIN' , c, 'A1');

%Plotting the error

%*********************

 figure(3)

plot((e), 'b--', 'LineWidth',2, 'MarkerSize',10);

title('error (training data)');

xlabel('Time(hrs');

ylabel('actual error(kW)');

legend ('error (ERNN ADMIN)');

grid on

%closing the connection to the DB

close(curs)

close(conn)

DB_connection = isconnection(conn)

% End

 202

D.11: MATLAB Script: Feedforward weather sensitive model for predicting the load

of the Administration Building

1. File name : FFNN_ADM.m

2. Aim of the model : This model also brings the effect of climatic conditions on the load. Thus it

uses a combination of the past load values and weather data to predict the load for the Administration

Building as discussed in chapter 6 (section 6.4) and chapter 7 (section 7.8.4).

3. Methodology : This model predicts the load for the whole using the hour-by-hour approach

4. Input Vector : IV # 1.

5. Output Vector : one week ahead forecasts

6. Note : This model has also successfully met the performance goal (1e-5).

%Clearing the screen and memory

clc

clear

% Estabilishing the connection to the DB and extracting required data

% Inserting the username and password for the DB

% Importing required data into MATLAB using SQL Syntax from a table named 'ivadmin11'

%**

conn = database('combinedloaddata', 'root', 'password1')

DATABASE_CONNECTION = isconnection(conn)

curs= exec(conn,'SELECT Consump FROM ivadmin11');

setdbprefs('DataReturnFormat','cellarray')

curs = fetch(curs);

m = curs.Data;

Consump = str2double(m);

clear m;

curs= exec(conn,'SELECT humidity FROM ivadmin11');

setdbprefs('DataReturnFormat','cellarray')

curs = fetch(curs);

m = curs.Data;

humidity = str2double(m);

clear m;

curs= exec(conn,'SELECT wind_speed FROM ivadmin11');

setdbprefs('DataReturnFormat','cellarray')

curs = fetch(curs);

m = curs.Data;

wind_speed = str2double(m);

clear m;

 203

curs= exec(conn,'SELECT max_temp FROM ivadmin11');

setdbprefs('DataReturnFormat','cellarray')

curs = fetch(curs);

m = curs.Data;

max_temp = str2double(m);

clear m;

curs= exec(conn,'SELECT min_temp FROM ivadmin11');

setdbprefs('DataReturnFormat','cellarray')

curs = fetch(curs);

m = curs.Data;

min_temp = str2double(m);

clear m;

%Correlation Analysis between the load and exogenous variables

Consump_Wind_Speed = corrcoef(Consump,wind_speed);

Consump_Humidity = corrcoef(Consump,humidity);

Consump_Max_Temp = corrcoef(Consump,max_temp);

Consump_Min_Temp = corrcoef(Consump,min_temp);

% Input Data Preprocessing

%**************************************

MaxConsump = max(Consump);

MaxWind_Speed = max(wind_speed);

MaxHumidity = max(humidity);

MaxMax_Temp = max(max_temp);

MaxMin_Temp = max(max_temp);

norm_Consump = (Consump/MaxConsump)';

norm_Wind_Speed = (wind_speed/MaxWind_Speed)';

norm_Humidity = (humidity/MaxHumidity)';

norm_Max_Temp = (max_temp/MaxMax_Temp)';

norm_Min_Temp = (min_temp/MaxMin_Temp)';

% Preparing Data

%****************************

n = 169:336; %Training data

s = 1:168; %target

P = [norm_Consump(n);norm_Consump(n-1);norm_Consump(n-167);norm_Consump(n-168)];

Tw = [norm_Consump(s)];

Temp1 = [norm_Max_Temp(n);norm_Min_Temp(n)];

[mat,padded] = vec2mat(P,168);

[r,s]=size(mat);

Temp = mat(1:2,1:168);

 204

Humid = [norm_Humidity(n)];

Wind = [norm_Humidity(n)];

 Pw = [P;Temp;Humid;Wind];

% Defining ANN Topology

%******************************

%Designing a custom Feedforward Neural Network Model with 1 input layer, 1 hidden layer with 5

neurons and 1 output neurons

net = network;

net.numInputs = 1;

net.inputs{1}.size = 8;

net.numLayers = 2;

net.layers{1}.size = 5;

net.layers{2}.size = 1;

net.inputConnect(1) = 1;

net.layerConnect(2,1) = 1;

net.outputConnect(2) = 1;

net.targetConnect(2) = 1;

net.layers{1}.transferFcn = 'tansig';

net.layers{2}.transferFcn = 'purelin';

net.biasConnect(1) = 1;

net.biasConnect(2) = 1;

net = init(net); %Initializing the network

 % Reset weight and biases - Optional for trial only

%net.initFcn = 'initlay';

%net.layers{1}.initFcn = 'initnw';

%net.layers{2}.initFcn = 'initwb';

%net.inputWeights{1,1}.initFcn = 'rands';

%net.biases{1}.initFcn = 'rands'

%net.layerWeights{1,2}.initFcn = 'rands'

% Declare the hour-by-hour forecasting Algorithm and other training parameters

for i = 1:168;

 P = Pw(:,i);

 T = Tw(1,i);

net.trainFcn = 'traingdm';

net.performFcn = 'mse';

net.trainParam.lr = 0.3;

net.trainParam.mc = 0.75;

net.trainParam.epochs = 1000;

net.trainParam.show = 50;

net.trainParam.goal = 1e-5;

[net,tr,a] = train(net,P,T);

 205

 forecast(1,i) = a;

 delta(1,i)= Tw(1,i) - forecast(1,i);

end

% Saving the forecast for the training data

saveas(gcf, 'traingdm_err Training', 'fig');

save tr tr;

% Calculating the sum squared error

num=168;

MPE_tr = ((1/num)* sum((delta/Tw).^2))*100

MSE_tr = (1/num)* (sum(delta.^2))

perf = mse(delta)

% De-normalization

O_Pw_denorm = forecast*MaxConsump;

Tw_denorm = Tw*MaxConsump;

% simulating the network using the same data - no testing data available

%***

for i=1:168;

[a2 pf af]= sim(net,Pw(:,i));

end

% Plotting the Graphs

%**************************

figure(1)

hold on

title('Network response (ADMIN)- using training data (a 168 hrs ahead forecast)');

xlabel('Time in hours');

ylabel('Active Power/Load in [kW]');

grid on

plot(Tw_denorm, 'r--', 'LineWidth',3, 'MarkerSize',10);

plot(O_Pw_denorm, 'bo', 'LineWidth',2, 'MarkerSize',5);

legend ('Actual load values', 'Predicted load values');

% Plotting simulation results - using testing data set

figure(2)

hold on

title('Network response using testing data');

xlabel('Time(hrs)');

ylabel('Active Power - normalized');

grid on

plot(a2, 'b--', 'LineWidth',3, 'MarkerSize',12);

legend('Predicated load values', 'Actual load values');

 206

 %Plotting the error:

%**************

figure(3)

Actual_error = delta*MaxConsump;

plot(Actual_error, 'b--', 'LineWidth',2, 'MarkerSize',10);

title('Hourly actual error (kW)- (training data');

xlabel('Time(hrs)');

ylabel('Error(kilo Watts)');

legend ('e - ttr');

grid on

% Saving the MSE,MPE and Actual error(kW) to an Excel spread sheet

 error = delta*MaxConsump;

[mat,padded] =vec2mat(error,24);

e_tr = mat(1:7,1:24);

actual_error_tr = xlswrite('error(kW)_FFNN_ADMIN',e_tr');

c = {'MSE_tr','MPE_tr';MSE_tr MPE_tr};

d = xlswrite('MSEMPE_FFNN_ADMIN' , c, 'A1');

% closing the connection to the DB

close(curs)

close(conn)

isconnection(conn)

toc;

Forecast_Time = toc

DB_connection = isconnection(conn)

% End of MATLAB Pseudo codes

 207

APPENDIX E

Selected Application Results

 208

Some Simulation Results

0 20 40 60 80 100 120 140 160 180
1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

Forecast and target output (training data) CPUTBvl Campus(Summer)ERN

Time in hours

A
c
ti
v
e
 P

o
w

e
r/

L
o
a
d
 i
n
 [

k
W

]

Target

Forecasted load

Mon Tues Wednes Thurs Fri

Satur Sun

E.1: De-normalized forecasts for the combined load using Elman Recurrent Neural Network based

model (non-weather sensitive) – in summer

0 20 40 60 80 100 120 140 160 180
-10

-5

0

5

10

15

Time in hours

M
S

E
(%

)

Performance (Trainingdata)ERNN
T
L

N
WS01

error (ERNN
T
L

N
WS01)

E.2: Associated error for Elman Recurrent based model – ERNN_TL_NWS01

 209

0 20 40 60 80 100 120 140 160 180
0.4

0.5

0.6

0.7

0.8

0.9

1

Test inputs (normalized)vs. Target CPUTBvl FFNN
T
L

N
WS01

Time in hours

A
c
ti
v
e
 P

o
w

e
r/

L
o
a
d
 n

o
rm

a
li
z
e
d

Forecasted load

Target

Mon Tues Wednes

Thurs Fri

Satur Sun

E.3: Forecasts after simulating ERNN_TL_NWS01 with the testing data

0 100 200 300 400 500 600 700 800 900 1000
10

-4

10
-3

10
-2

10
-1

10
0

10
1

1000 Epochs

T
ra

in
in

g
-B

lu
e

G
o
a
l-
B

la
c
k

Performance is 0.00141105, Goal is 0.001

E.4: Goal vs. training response for ERNN_TL_NWS01 model. The was also not met in 1000 epochs.

 210

The performance goal was then changed to 1e-5.

0 100 200 300 400 500 600 700 800 900 1000
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

1000 Epochs

T
ra

in
in

g
-B

lu
e

G
o
a
l-
B

la
c
k

Performance is 0.00331449, Goal is 1e-005

Fig. E.5: The network response of the FFNN_TL_WS01 (using batch training mode)

0 100 200 300 400 500 600 700 800 900 1000
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

1000 Epochs

T
ra

in
in

g
-B

lu
e

G
o
a
l-
B

la
c
k

Performance is 0.00228713, Goal is 1e-005

Fig. E.6: The network response of the ERNN_TL_NWS01 (using batch training mode)

 211

0 20 40 60 80 100 120 140 160 180
1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

168hrs in advance forecast -CPUTBvl(training data -winter) FFNN-TL-WS02

Time in hours

A
c
ti
v
e
 P

o
w

e
r/

L
o
a
d
 i
n
 [

k
W

]

Actual load values

Predicted load values

Mon Tues Wednes Thurs Fri

Satur Sun

Fig. E.7: The network response of the FFNN_TL_WS02 (using incremental training mode) - winter

0 1 2 3 4 5 6 7 8 9 10
10

-6

10
-5

10
-4

10
-3

10
-2

10 Epochs

T
ra

in
in

g
-B

lu
e

G
o
a
l-
B

la
c
k

Performance is 2.15669e-006, Goal is 1e-005

Fig. E.8: The corresponding network performance of the FFNN_TL_WS02 (using incremental training

mode) – for the last forecast value (168h)

 212

0 20 40 60 80 100 120 140 160 180
1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

Network response - using training data (a 168 hrs ahead forecast)

Time in hours

A
c
ti
v
e
 P

o
w

e
r/

L
o
a
d
 i
n
 [

k
W

]

Actual load values

Predicted load values

Mon Tues Wednes Thurs Fri

Satur Sun

Fig. E.9: The network response of the ERNN_TL_WS02 (using incremental training mode) - winter

0 1 2 3 4 5 6
10

-6

10
-5

10
-4

10
-3

6 Epochs

T
ra

in
in

g
-B

lu
e

G
o
a
l-
B

la
c
k

Performance is 2.2085e-006, Goal is 1e-005

Fig. E.10: The corresponding network performance – for the last forecast value (168h) of the

ERNN_TL_WS02 (using incremental training mode)

 213

 Actual error (kW) - Elman Recurrent Prediction model (ERNN_TL_WS01)

 batch training mode

Hours Monday Tuesday Wednesday Thursday Friday Saturday Sunday

1 29.41 -155.48 -275.08 -105.28 -229.54 -149.52 -55.16

2 65.35 -284.95 -259.09 -172.16 -154.76 -220.10 -22.42

3 4.72 -258.92 -290.75 -166.33 -169.28 -189.64 -53.76

4 4.18 -238.11 -277.04 -163.82 -190.99 -209.69 -15.04

5 9.88 -222.68 -213.45 -162.58 -174.52 -151.55 -9.13

6 -30.94 -164.74 -160.67 -123.76 -75.28 -117.03 -32.67

7 -39.47 -155.24 -162.75 -115.66 -90.46 -62.48 -38.06

8 -113.78 -212.86 -310.30 -224.69 -196.97 -155.34 -20.72

9 -223.41 -128.05 -215.11 -228.03 -177.29 -179.65 -55.87

10 -130.68 9.60 -37.47 1.70 41.15 -126.00 8.23

11 -69.02 103.33 105.99 150.35 195.86 -64.52 42.82

12 99.45 82.07 173.53 180.36 227.16 91.83 97.10

13 233.57 69.03 165.33 219.37 251.83 67.33 84.18

14 223.61 15.23 286.77 229.43 225.36 74.19 113.21

15 166.39 29.93 235.04 203.70 226.93 135.14 90.58

16 185.83 -5.00 262.41 186.23 232.26 122.02 106.10

17 161.05 61.79 260.26 129.84 180.52 80.92 97.72

18 167.79 68.48 238.98 105.14 109.96 84.14 35.93

19 79.07 34.70 150.56 61.68 129.64 -0.53 47.89

20 120.33 16.96 137.23 51.35 54.74 20.21 54.57

21 88.41 -53.19 64.87 6.56 -21.88 33.69 59.31

22 3.35 -88.18 9.83 -51.71 8.17 7.81 67.75

23 -88.35 -194.77 -21.69 -123.58 -62.91 -51.86 40.37

24 -100.87 -262.34 -53.33 -222.63 -143.29 -38.16 -3.19

Fig. E.11: Daily actual errors (kW) for the batch trained Elman Recurrent model (total load in

summer)

 214

Actual error (kW) - Elman Recurrent Prediction model (ERNN_TL_WS01)

Total load

 Incremental training mode

Hours Monday Tuesday Wednesday Thursday Friday Saturday Sunday

1 -8.37 6.34 7.73 -5.43 3.21 7.44 3.12

2 4.40 -7.04 7.47 -8.85 4.95 7.59 -2.90

3 -3.22 2.65 -3.83 -0.70 1.08 -5.43 2.01

4 6.88 -7.32 5.22 2.35 0.89 0.43 1.45

5 5.06 5.26 0.36 5.76 3.37 -2.24 -7.05

6 1.52 4.58 -1.27 -6.30 -2.31 -8.87 -1.33

7 6.29 5.47 1.92 8.71 -2.23 3.22 2.75

8 3.12 -4.33 2.33 -8.79 6.89 -5.75 5.19

9 8.47 3.12 -3.37 2.97 7.75 -5.59 5.58

10 6.37 -4.50 7.32 8.57 -8.62 -8.17 -6.43

11 -7.19 -6.47 0.75 -2.17 -6.16 -7.12 -5.60

12 -8.54 7.65 0.56 0.39 7.75 -1.77 -3.49

13 -2.68 4.57 2.70 5.39 6.85 -6.49 5.85

14 4.03 -0.64 3.07 -7.03 -8.55 -1.85 -6.48

15 4.50 -5.10 5.69 3.93 -6.94 -4.59 7.79

16 7.86 7.48 -4.82 6.04 -0.86 5.16 -5.89

17 -6.46 0.07 0.29 -6.35 -3.18 5.35 6.64

18 2.95 -0.70 -0.88 3.29 -7.53 6.83 -8.53

19 -5.44 4.58 -3.57 -6.22 2.75 7.95 -8.31

20 -7.77 -0.82 -0.83 7.08 -2.15 -1.65 -6.34

21 2.60 3.38 -8.42 -0.29 7.08 -8.85 -6.50

22 -0.23 5.54 -2.82 7.24 -5.52 0.70 3.32

23 -7.92 -6.38 7.40 -5.50 -1.11 8.45 -3.08

24 -7.60 -2.68 -3.74 2.99 -4.90 5.73 -4.12

Fig. E.12: Daily actual errors (kW) for the incrementally trained Elman Recurrent model (total load in

summer)

 215

Actual error (kW) - ERNN Prediction model (ERNN_TL_NWS01) - TOTAL LOAD

(WINTER)

 incremental training mode, IV # 1

hour Monday Tuesday Wednesday Thursday Friday Saturday Sunday

1 0.62 -6.38 -3.68 -6.77 -9.09 8.14 -6.62

2 -6.69 -3.27 -9.09 -3.85 -9.18 -4.31 -3.39

3 -7.79 -5.27 -3.49 -5.45 8.83 -8.60 -6.58

4 6.00 3.71 -7.62 8.31 5.20 -7.93 7.17

5 5.73 5.27 7.08 7.48 -6.83 8.02 8.15

6 -8.24 -6.84 -7.60 -7.01 -8.33 8.73 4.16

7 -5.16 -8.14 -5.54 -5.76 -8.87 -7.04 8.23

8 -5.53 -8.54 -6.08 4.13 7.99 -5.95 8.45

9 8.44 7.27 5.12 -8.38 3.42 -8.52 8.51

10 7.01 -4.03 7.12 -8.81 -3.74 4.44 9.17

11 -4.16 -3.31 6.25 -3.45 8.76 3.67 7.16

12 4.14 7.48 -3.78 -3.85 -6.97 8.01 -4.66

13 -3.69 -6.99 -3.66 -8.38 5.15 -3.54 3.17

14 -6.12 -6.36 -5.16 -3.62 7.95 -4.01 8.84

15 -7.47 -7.61 -3.28 6.62 7.75 -4.63 -3.83

16 6.93 -6.44 7.92 -6.49 5.10 -5.55 6.29

17 3.76 3.52 8.98 -4.83 -5.64 -7.55 -9.12

18 -6.75 -5.60 4.44 8.26 -3.69 7.52 -5.69

19 -6.92 4.95 9.27 -5.62 -8.73 -5.87 -3.64

20 -4.54 -5.42 -4.47 -5.20 -8.01 -5.73 -9.15

21 -7.79 -6.98 5.96 5.49 5.46 -8.40 7.29

22 5.36 -9.17 -5.16 5.78 5.73 -5.13 -7.94

23 4.96 8.25 6.06 7.64 -6.73 -8.08 5.15

24 6.10 4.94 7.30 -4.30 -5.51 6.22 -4.39

Fig. E.13: Daily actual errors (kW) for the incrementally trained Elman Recurrent model (total load in

winter)

 216

Actual error (kW) - FFNN Prediction model (FFNN_TL_NWS02) - TOTAL LOAD

WINTER

 incremental training mode, IV # 1

hour Monday Tuesday Wednesday Thursday Friday Saturday Sunday

1 5.09 -4.78 8.84 -4.65 4.86 8.21 6.16

2 4.18 6.54 4.97 7.68 4.88 8.84 5.55

3 3.08 -3.17 5.61 -9.23 -4.95 4.56 3.61

4 -5.39 -7.84 -3.39 3.94 -9.17 -4.99 -6.13

5 -2.75 3.10 4.87 4.83 -4.10 5.45 4.96

6 -3.44 -4.24 -3.24 3.31 -5.23 5.73 -8.19

7 -7.60 -5.11 -8.15 8.00 -3.85 -4.36 5.04

8 7.23 -3.70 7.95 3.24 -6.13 3.86 -5.55

9 -7.30 -5.61 3.92 -8.02 -5.47 -3.88 -4.41

10 0.29 -3.15 -2.61 6.12 8.66 3.13 7.69

11 9.28 6.70 -3.30 5.44 8.46 -7.39 -2.60

12 3.24 -3.98 -5.33 6.93 -7.27 2.07 -3.46

13 7.67 3.95 7.68 -7.43 -6.83 7.92 4.37

14 -3.68 -3.85 6.19 7.33 3.55 6.96 5.94

15 -4.90 -4.98 5.48 -8.38 3.38 8.30 8.17

16 -9.09 -4.20 3.30 4.15 3.24 -3.24 -3.75

17 -5.95 5.76 6.60 6.77 7.40 -3.27 -3.80

18 8.60 7.49 -8.86 5.92 6.15 -3.37 -3.60

19 -0.49 3.77 7.67 -3.83 -1.07 5.30 7.24

20 8.62 -3.66 -3.04 -3.40 -5.07 -3.42 5.20

21 -4.72 -4.59 -7.84 -7.20 -7.12 -5.52 4.38

22 -6.99 -6.03 -3.93 -8.11 -8.04 -3.32 -5.39

23 -7.00 3.51 -7.97 3.45 -4.98 5.44 7.70

24 -8.51 -6.72 3.30 9.29 -3.61 -7.75 8.73

Fig. E.14: Daily actual errors (kW) for the incrementally trained Feedforward model (total load in

winter)

 217

Actual error (W) - FFNN Prediction model (FFNN_IT_WS01) –

for the IT Department

 Incremental training mode, IV # 1

hours Monday Tuesday Wednesday Thursday Friday Saturday Sunday

1 -959.22 804.7064 693.268 778.0462 900.8662 -499.539 -822.761

2 891.8208 804.7064 768.6587 594.7778 369.7553 551.0776 177.2389

3 891.8208 -331.95 -231.341 -405.222 -886.369 -883.843 384.5636

4 770.1193 357.2808 750.7299 -857.186 -823.77 924.7608 -615.436

5 773.5422 -642.719 750.7299 -857.186 176.2302 -906.88 690.2619

6 773.5422 827.9413 765.069 -811.59 940.9841 93.12046 738.3879

7 775.0379 827.9413 771.3351 659.3814 935.2891 882.7766 -261.612

8 -884.428 -450.5 -857.343 -962.261 -498.916 822.7444 903.3944

9 66.45194 -844.665 -928.641 -618.639 -715.328 -869.94 -433.824

10 753.7812 -741.811 -853.473 -569.682 872.549 -957.489 -433.824

11 -441.841 -746.503 757.9851 933.9338 -901.961 868.3326 -433.824

12 497.6494 613.8098 -655.939 -954.981 -542.342 766.4216 -433.824

13 348.1506 883.7821 668.9949 -954.981 -564.869 766.4216 -398.312

14 -463.575 368.8399 -660.708 591.8032 -726.819 -823.922 699.9378

15 556.7394 -355.304 -891.165 -851.412 -360.43 -579.957 -960.555

16 559.9375 644.6958 887.2615 -851.412 -394.379 -406.142 430.7615

17 695.615 712.6196 515.7534 940.4584 739.2318 -450.409 872.7645

18 -712.862 -711.951 -829.661 -967.648 -442.62 -699.347 -649.751

19 504.9628 720.8167 -580.264 -859.862 -398.783 700.4323 -574.58

20 709.2163 743.1982 -963.961 -421.139 -849.93 700.4323 696.6938

21 -832.928 -827.578 -938.906 -344.051 920.0557 700.4323 696.6938

22 -808.518 949.3483 -777.532 -344.051 -908.936 770.7034 -552.061

23 492.4888 -431.362 -363.147 -819.871 913.7951 773.7974 824.4413

24 688.3151 686.2602 -876.754 615.7897 676.9462 -226.203 -384.474

Fig. E.15: Daily actual errors (W) for the incrementally trained Feedforward Neural Network model

(IT department load forecasting model)

 218

Actual error (W) - ERNN Prediction model (ERNN_IT_WS) –

For the IT Department

 batch training mode, IV # 1

Hours Monday Tuesday Wednesday Thursday Friday Saturday Sunday

1 149.64 1,223.56 1,660.55 1,012.54 520.11 1,311.40 2.13

2 -530.01 213.08 -751.40 -192.28 636.31 783.03 -22.04

3 255.15 -262.34 -917.41 216.18 454.92 904.80 219.29

4 445.81 -309.00 -334.80 -276.05 329.88 834.96 314.62

5 758.46 306.81 3.72 -150.65 340.50 926.88 503.54

6 807.85 364.45 -731.07 -226.48 460.01 1,051.49 632.15

7 66.50 -873.00 -3,264.73 -484.92 -34.01 541.08 658.86

8 -555.45 -187.61 -1,981.04 -307.79 -1,243.55 -516.94 611.65

9 2,724.83 913.16 53.65 -577.50 -978.80 -2,265.58 544.61

10 -566.28 991.62 -399.92 -1,813.75 -1,254.37 -1,242.68 509.08

11 83.66 1,260.35 197.77 2,029.06 -1,315.92 -904.52 494.11

12 67.51 571.29 -28.48 1,708.50 -652.42 -1,262.35 556.30

13 588.69 638.93 -298.31 1,463.11 -375.03 -1,334.06 441.87

14 89.18 641.63 -332.42 1,235.14 -498.98 -1,237.09 -464.26

15 567.71 34.68 -628.84 1,280.10 -1,016.18 -817.63 -647.04

16 255.61 -823.82 -802.22 1,098.01 -1,223.82 -672.05 -790.84

17 250.44 -427.94 -487.90 59.36 -1,211.63 -463.98 -946.12

18 140.33 472.93 -554.65 -104.56 -1,012.18 166.61 -585.69

19 250.23 434.56 -585.45 -358.29 71.42 193.61 -1,054.59

20 -218.27 276.39 -551.77 -453.09 46.67 -805.10 -725.01

21 6.15 782.48 -491.20 -252.63 -202.98 -615.97 -452.21

22 161.86 713.47 -683.10 -372.19 208.33 -608.96 1,102.10

23 158.40 853.60 -442.08 -183.12 272.81 -548.08 1,194.57

24 716.07 1,858.28 2,152.41 1,565.31 3,994.72 -856.38 1,198.68

Fig. E.16: Daily actual errors (W) for the batch trained Elman Recurrent Neural Network model (IT

department load forecasting model)

 219

Actual error (W) - ERNN Prediction model (ERNN_ELEC_WS) –

for the ELECTRICAL ENGINEERING Department

 batch training mode, IV # 1

hour Monday Tuesday Wednesday Thursday Friday Saturday Sunday

1 760.85 1,970.83 -111.01 3,837.95 1,391.44 474.69 -618.99

2 -683.15 3,429.56 -800.63 -962.05 -336.94 1,723.78 116.31

3 -208.41 1,931.77 4,069.21 -1,981.71 1,503.31 184.49 339.50

4 1,182.45 474.96 3,730.08 4,974.60 1,521.62 -1,211.36 -974.66

5 -1,224.57 1,042.60 1,311.56 1,352.66 -692.11 1,246.95 260.13

6 546.93 545.87 -662.67 -1,771.66 1,350.35 -538.28 347.91

7 132.08 629.18 2,852.52 -2,049.31 -1,407.86 193.58 214.85

8 -5,594.92 -3,568.73 -6,190.41 -17,934.60 -4,787.47 -1,087.68 121.34

9 3,818.99 1,828.64 -1,096.91 3,513.68 -500.16 -1,674.62 274.97

10 83.37 1,024.67 927.77 -2,598.72 -1,119.21 -1,075.37 154.94

11 -1,523.04 1,739.88 1,085.49 -747.93 -1,093.92 -1,516.41 429.46

12 -786.39 507.05 -4,248.54 2,190.06 -1,749.94 -1,210.31 176.14

13 -1,183.73 171.50 -305.55 850.68 264.45 -2,006.99 300.65

14 -236.46 290.82 14.87 -300.32 -453.93 -920.25 326.69

15 -609.31 -56.14 -1,069.47 137.95 -176.76 -1,670.86 196.93

16 546.16 419.95 795.57 11,979.18 -411.20 -1,854.44 271.08

17 678.25 3,600.28 309.68 -10,113.83 72.60 -1,713.56 287.45

18 5,760.62 1,358.80 -2,514.91 -8,362.70 -4,607.35 -1,775.83 441.25

19 -1,901.44 669.15 1,288.86 3,331.33 64.22 -1,394.13 342.19

20 -2,603.59 1,475.49 3,281.31 977.66 -1,486.95 -1,558.07 1,274.34

21 -997.19 1,543.70 1,851.23 -395.88 937.50 -1,658.21 1,455.65

22 303.44 492.22 2,719.85 3,314.37 1,630.97 -1,712.31 1,106.98

23 -721.67 2,216.84 1,070.07 2,560.69 1,489.04 -1,822.57 1,347.60

24 -2,956.74 2,613.45 2,586.47 1,633.63 117.36 -1,897.00 -385.78

Fig. E.17: Daily actual errors (W) for the batch trained Elman Recurrent Neural Network model (Elec.

Engineering department load forecasting model) –

 220

Actual error (W) - FFNN Prediction model (FFNN_ELEC_WS) –

for the ELECTRICAL ENGINEERING Department

 Incremental training mode, IV # 1

hour Monday Tuesday Wednesday Thursday Friday Saturday Sunday

1 161.7226 171.5153 -104.107 -108.095 -201.782 83.94322 182.7599

2 -144.271 88.29698 -219.548 106.7704 176.1961 -86.2338 193.104

3 -171.13 -232.636 232.1807 171.7259 202.7869 -242.444 -106.896

4 106.8243 88.14866 92.38903 220.4901 -128.513 114.6688 -146.722

5 6.824322 -93.7843 -232.49 -124.308 -151.067 154.1452 -84.1037

6 -242.751 -153.399 88.15389 -193.788 219.6758 -158.832 115.8963

7 191.7026 108.8424 -93.7843 -196.27 140.8357 112.2209 215.8963

8 -108.297 -77.9727 -153.399 -196.27 -114.107 204.8884 15.89627

9 -231.809 -212.449 -252.158 132.0248 -223.625 -153.447 15.89627

10 -131.809 221.3694 -97.955 -168.523 -206.401 -247.121 -184.104

11 -31.8092 -134.351 -114.25 -234.462 154.7041 -90.9981 166.3585

12 -249.501 -34.3506 -132.695 -172.209 103.9825 -190.998 80.70056

13 123.272 65.64937 -92.3831 101.0252 -198.438 241.0098 232.2802

14 -95.6284 84.51483 76.16214 -175.02 -185.719 115.7878 172.9121

15 -158.251 135.205 152.7695 -117.003 214.2814 -103.041 -127.088

16 83.40765 -95.2021 -108.865 -114.93 -234.287 -161.216 72.91209

17 135.1654 -117.724 -225.39 -106.868 91.77162 38.78363 -27.0879

18 -95.2035 142.8274 233.7928 199.8194 -89.6086 135.5135 -27.0879

19 -96.6394 105.289 -226.483 198.0199 -111.435 -80.9065 -130.835

20 -96.6394 202.1156 123.9131 122.9328 241.3142 -152.363 -106.608

21 121.3442 -197.884 -238.509 222.9328 -94.9838 -152.363 -242.643

22 74.65214 2.115596 103.236 107.4774 164.4482 -152.363 114.6908

23 -250.139 107.2531 142.644 76.17749 -108.448 82.75989 -155.616

24 71.51531 -114.064 -125.691 -104.456 -150.35 -17.2401 72.11776

Fig. E.18: Daily actual errors (W) for the batch trained Elman Recurrent Neural Network model (Elec.

Engineering department load forecasting model) –

 221

 Actual error (kW) - ERNN Prediction model (ERNN_MEC_WS) - MECHANICAL. ENG Department - for 24hrs lead time forecast. Forecast day is Tuesday, 2nd of Sep, 08

kW 4.43 8.07 1.31 -2.38 1.54 -0.46 -9.92 -1.26 -1.60 -4.89 -5.17 -0.85 8.20 17.99 -5.98 -2.23 6.29 -3.21 -5.08 -6.56 -0.69 3.63 -1.56 0.37

Hr 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Fig. E.15: Daily actual errors (kW) for the batch trained Elman Recurrent Neural Network model (Mec. Engineering department load forecasting model) –

0 5 10 15 20 25
90

100

110

120

130

140

150

160

170

a 24hrs ahead forecast for Mec. Eng.- for Tuesday the 2nd Sep, 08

Time in hours

A
c
ti
v
e
 P

o
w

e
r/

L
o
a
d
 i
n
 [

k
W

]

Actual load values

Predicted load values

Tues

Fig. E.19(a): One day forecast for the Mechanical Engineering Department electric load Fig. E.19 (b): The corresponding model performance

0 100 200 300 400 500 600 700 800 900 1000
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

1000 Epochs

T
ra

in
in

g
-B

lu
e

G
o
a
l-
B

la
c
k

Performance is 0.00118038, Goal is 1e-005

 222

 Fig. E.20: 1 week ahead forecast in both seasons – summer(left) and winter (right).

0 20 40 60 80 100 120 140 160 180
1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

168hrs in advance forecast -CPUTBvl(training data -winter) FFNN-TL-WS02

Time in hours
A

c
ti
v
e
 P

o
w

e
r/

L
o
a
d
 i
n
 [

k
W

]

Actual load values

Predicted load values

Mon Tues Wednes Thurs Fri

Satur Sun

0 20 40 60 80 100 120 140 160 180
1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

Network response - using training data (a 168 hrs ahead forecast)

Time in hours

A
c

ti
v

e
 P

o
w

e
r/

L
o

a
d

 i
n

 [
k

W
]

Actual load values

Predicted load values

Mon Tues Wednes Thurs Fri

Satur Sun

 223

APPENDIX F

List of Machines (Mechanical Engineering Department)

 224

G.1 List of Machines

Note: These machines were not in use when electric load measurements were taken at the

department.

LIST OF MACHINES (MECHANICAL ENGINEERING DEPARTMENT)

Main Workshop

Name Qty Rating Type

Colchester 1800 lathe machine 9 3HP 3-phase

High speed-gap bed lathe machine 6 3kVA 3-phase

Others 4 6kVA 3-phase

Thermodynamic Lab

Diesel engine test bench

Compressor

Gas turbine

Boiler

Steam turbine

Air conditioner unit

Refrigeration unit

no details obtained

CNC Workshop

Fanuc lathe machine 2 20kVA 3-phase

Universal cylindrical grinder 1 8kVA 3-phase

63 Ton Press brake 1 7.55kW 3-phase

Milling machine 2 20kVA 3-phase

	Recommended Citation
	Cape Peninsula University of Technology
	Digital Knowledge
	11-1-2008

	Development of models for short-term load forecasting using artificial neural networks
	Simaneka Amakali

