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ABSTRACT 

 
Optimal daily operation of electric power generating plants is very essential for any power utility 

organization to reduce input costs and possibly the prices of electricity in general. For a fossil fuel –

fired power plant for example, the benefits of power generation optimalization (i.e. generate what is 

reasonably required) extends even to environmental issues such as the subsequent reduction in air 

pollution. Now to generate “what is reasonably required” one needs forecast the future electricity 

demands. Because power generation relies heavily on the electricity demand, the consumers are also 

practically speaking required to wisely manage their loads to consolidate the power utility’s optimal 

power generation efforts. Thus, for both cases, accurate and reliable electric load forecasting systems 

are absolutely required.   

To date, there are numerous forecasting methods developed primarily for electric load forecasting. 

Some of these forecasting techniques are conventional and often less favoured.  

 

To get a broad picture of the problem at hand, a literature survey was first conducted to identify 

possible drawbacks of the existing forecasting techniques including the conventional one. Artificial 

neural networks (ANNs) approach for short-term load forecasting (STLF) has been recently proposed 

by a majority of researchers. But there still is a need to find optimal neural network structures or 

convenient training approach that would possibly improve the forecasting accuracy. 

This thesis developed models for STLF using ANNs approach. The evolved models are intended to 

be a basis for real forecasting application. These models are tested using actual load data of the Cape 

Peninsula University of Technology (CPUT) Bellville campus reticulation network and weather data 

to predict the load of the campus for one week in advance.  

 

The models were divided into two classes: first, forecasting the load for a whole week at once was 

evaluated, and then hourly models were studied. In both cases, the inclusion of weather data was 

considered. The test results showed that the hour-by-hour approach is more suitable and efficient for 

a forecasting application. The work suggests that incremental training approach of a neural network 

model should be implemented for on-line testing application to acquire a universal final view on its 

applicability. 

 

Keywords – power system operations, load forecasting, artificial neural networks, training mode, 

accuracy    
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 GLOSSARY 

 
MATLAB: A tool for doing numerical computations using existing functions 

and user defined programs to analyze data and visualize the output.  

  

Simulink: A platform for multi-domain simulation and model-based design of 

dynamic systems. 

 

Genetic Algorithm: An adaptive heuristic and global optimization technique based on 

the mechanics of natural selection and genetics as observed in the 

biological evolution 

 

Artificial Neural Network:  A biological inspired network which is capable of learning a pattern 

from a set of training data and then able to generate the same outputs 

as with the learning data when presented with a new set of data 

which contains a similar pattern to that which the ANN was trained 

with. 

 

Demand: A rate at which electric energy is delivered to or by a system, part of 

a system or a piece of equipment. It is expressed usually in kilowatts 

at a given instant or averaged over any designated period of time (30 

minutes). The primary source of "demand" is the power-consuming 

equipment of customers. 

 

Distribution: An act or process of delivering electric energy from convenient 

points on the transmission system (usually a substation) to 

consumers. 

 

Load Profile or Curve:  A curve on a chart showing power (watts) supplied, plotted against 

time of occurrence, and illustrating the varying magnitude of the 

load during the period covered.  

 

Demand-Side Management:  A broad term for electric load management applying to utility 

actions, programs, and designs for the purpose of lowering system 

peaks and reducing energy consumption by the consumer as well as 
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the utility system. There are direct actions and controls by the utility 

that result in immediate results to lower peaks and reduce energy 

requirements. There are also indirect (passive) programs requiring 

the cooperation and participation by the consumer to achieve similar 

results. 

 

Load Management: An economic reduction of electric energy demand during a utility's 

peak generating periods.  

 

Reliability: A guarantee of a system performance at all times and under all 

reasonable conditions to assure constancy, quality, adequacy, and 

economy of electricity. It is also the assurance of the continuous 

supply of electricity for customers at the proper voltage and 

frequency. 

 

Substation: An assemblage of equipment for the purposes of switching and/or 

changing or regulating the voltage of electricity. Service equipment, 

line transformer installations or minor distribution and transmission 

equipment are not classified as substations. 

 

Peak:  A greatest load on an electric system during any prescribed demand 

interval for a given period. The summer (or cooling) season peak is 

normally smaller than winter season peak. 

 

Forecasting:   A process of estimation in unknown situations. 

 

Perceptron: A type of artificial neural network invented in 1957 at the Cornell 

Aeronautical Laboratory by Frank Rosenblatt. 

 

Stochastic model: A time evolution of the model that contains random elements 

 

Eskom:  The largest South African power utility. City of Cape Town (CoCT) 

purchases electric energy from Eskom.  

Time-of-use electricity tariff:     A tariff with three periods when energy is charged at 
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different rates. The least expensive rate is called the off-peak period 

and coincides with the time period when the system load is below a 

certain threshold. The most expensive rate is called the peak-period 

and corresponds to a period when the system load is above a certain 

threshold. When the load is in between the off-peak and peak period 

the time period is called the standard period. The rate for the 

standard period is higher than the off-peak energy rates but lower 

than the peak period energy rates.  

 

Structured Query  

Language (SQL):     An American National Standards Institute (ANSI) standard 

computer language for accessing and manipulating database 

systems. SQL statements are used to retrieve and update data in a 

dataset.  

 

Non-essential load:  refers to an electric load that can conceivably be shed for a limited 

period at a time without negatively impacting on the operation of the 

organisation as a whole.                

  

Compact fluorescent  

lamps (CFLs):           are lamps which offer consumers lighting that have a longer life and 

consume considerably less energy than conventional incandescent 

globes. 
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-----------------------------------------------------

CHAPTER ONE  
     

            INTRODUCTION    

 
This chapter encapsulates a brief overview of power system load forecasting, awareness of the problem, 

problem statement, research aim and objectives, hypothesis, assumptions, delimitations and motivation of 

the research. It also partially covers research design and sampling methodologies. The last part of this 

chapter provides the organization and outline of the thesis.       

 
1.1 Summary  

With the skyrocketing growth of power system networks and the increase in their complexity, many 

factors have become influential in electric power generation, demand or load management (Moulin et 

al., 1999). Load forecasting in one of the critical factors for economic operation of power systems.  

  

Forecasting of future loads is also important for network planning, infrastructure development and so 

on. However, power system load forecasting is a two dimensional concept: consumer based 

forecasting and utility based forecasting. Thus the significance of each forecast could be handled 

disjointedly.  Consumer based forecasts are used to provide some guidelines to optimize network 

planning and investments, better manage risk and reduce operational costs.  

 

In basic operations for a power generation plant, forecasts are needed to assist planners in making 

strategic decisions with regards to unit commitment, hydro-thermal co-ordination, interchange 

evaluation, and security assessments and so on. This type of forecast deals with the total power 

system loads at a given time, and is normally performed by utility companies.    

 

Nonetheless, power system load forecasting can be classified in three categories, namely short-term, 

medium term and long term forecasting. The periods for these categories are often not explicitly 

defined in a number of literature papers. Thus different authors use different time horizons to define 

these categories. But roughly, short-term load forecasting covers hourly to weekly forecasts. These 

forecasts are often needed for day by day economic operations of power generation plants.     

 

Medium-term load forecasting deals with predictions ranging from weeks to a year. Outage 

scheduling and maintenance of plants and networks are often roofed in these types of forecasts.  
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Long term forecasting on the other hand deals with forecasts longer than a year. It is primarily 

intended for capacity expansion plans, capital investments, and corporate budgeting. These types of 

forecasts are often complex in nature due to future uncertainties such as political factors, economic 

situation, per capital growth etc. Planning of new and extensions to existing power system networks 

for both the utility and consumer require long-term forecasts.  

 

The accuracy of the forecast is a critical feature in power system load forecasting. A poor load 

forecast misleads planners and often results in wrong and expensive expansion plans. From the 

consumer forecast view, accurate load forecasting is important for distribution system investments, 

electric load management strategies. This subject also forms part of load rationing strategies i.e. load 

shedding, DSM (demand side management) initiatives and so on. Without replicating, short term 

load forecasting is an essential function in daily operational activities especially for utility 

companies. A negative error in the forecast could severely affect consumer’s production levels, 

particularly for larger power users. Thus accurate forecasts are required for power system security 

and its overall reliability. 

 

One of the convincing ways to predict loads that are known to be varying continuously on short-term 

bases is to rather minimise load sampling points to several minutes or hours. This approach is called 

very short-term load forecasting and is also discussed in this work.   

 

Undoubtedly, both utility companies and consumers are challenged to accurately predict their 

respective loads. This challenge has been in existence for decades, thus a variety of load forecasting 

techniques ranging from classical to intelligent systems have been developed to date, and highlighted 

in a number of studies. The ultimate distinction of these methods can be drawn on the bases of 

forecast accuracy.  

 

The most popular techniques used for load forecasting are time series based models, similar-day 

approach and intelligent system based models. Some of the conventional forecasting methods have 

major drawbacks especially their inability to map the non-linear characteristic of the load, thus a 

substitute of classical methods with intelligent system based models is to a great extent essential.  

 

Most forecasting models use statistical techniques or artificial intelligence algorithms such as 

regression, neural networks, fuzzy logic, and expert systems (Feinberg et al., 2005)  
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Amongst all other intelligent techniques, the use of ANN in STLF is very predominant. Most recent 

load forecasting works are based on Artificial Neural Networks, and a majority of these papers 

presented good estimates. Because ANNs are capable of generalization and learning non-linear 

relationships between variables, ANN-based approaches are often favoured for STLF problems 

(Lauret et al., 2007). The other important feature of ANNs is their capability to iteratively adjust the 

synoptic weights between layers. Conventional methods on the other hand require static complex 

mathematical equations and but still perform poorly in comparison to intelligent-based approaches.     

 

Another leading load forecasting method is Fuzzy logic. Its application in load forecasting is based 

on periodical similarity of electric load, where the input variables, output variables and the governing 

rules are the key points. The scope of this work does not cover this technology despite a brief 

introduction in following chapter. .  

1.2 Scope of work of this research  

This research work focuses on a specific area of load forecasting, short-term load forecasting. The 

forecasts are achieved by using Artificial Neural Network (ANN) based models, i.e. feed-forward 

and recurrent networks developed in MatLab and Simulink environment.  The models are then 

applied to the actual load data of the Cape Peninsula University of Technology to forecast what is 

often referred to as “consumer own forecast”. The application of the models to factual data is done 

merely as case study to validate the approach.  Figure 1.1 below attempts to clarify the focus of this 

research.  

 

Fig 1.1: Types of load forecasting and focus of the research.  

1.3 Awareness of the problem  

Short-term load forecasting plays a major role in the real-time control and security functions of an 

energy management system (Srinivasan, 1998). Laurent (Lauret et al., 2007) concluded that accurate 

forecasts greatly benefit power system planners to accomplishing a variety of tasks such as economic 
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scheduling of generating capacity, scheduling of fuel purchases etc.  However, load forecasting is a 

difficult task because the consumption is influenced by many factors, such as weather conditions, 

vacations, economy status, and idiosyncratic habits of individual customers (Goa et al., 2001).  

 

Inaccurate load forecasts may increase operating costs. (Bunn et al., 1985) reported that a one 

percent increase in forecasting error of electricity demand resulted in a £10 million increase in 

operating costs in the British power system. This is purely an error in the utility-type of load forecast. 

Evidently, a poor load forecast misleads planners and often results in wrong and expensive expansion 

plans. 

 

Equally, overestimating future electric loads may result in a redundant reserve of electric power. On 

the contrary, underestimation of loads causes failure in providing sufficient electric power (Pai, 

2006). 

 

For a planner to neither underestimate nor overestimate the load, convenient forecasting techniques 

with reasonable degree of accuracy need to be developed. Although ANN based models entertain 

some superiority in dynamic systems, possibilities to improve associated drawbacks can not be ruled 

out. Amongst others, long training time, dependence on initial parameters, lack of appropriate 

network topology are some of the disadvantages. 

 

Therefore there is a need for development of optimal network structures for ANN based load 

forecasting models to improve the forecast error. The main research question of the project can be 

formulated as: 

How can supervised ANN-based load forecasting models be rationally trained using back 

propagation algorithms and possibly obtain an optimal network structure for short-term load 

forecasting? 

 

1.4 Problem statement  

Generally, electric load forecasting is a complex exercise. Although ANNs are proven superior 

methodologies for STLF compared to traditional techniques, the design of optimal network structures 

has not yet been successfully implemented. And the fact that an electric load is a non-linear function, 

traditional forecasting methods are simply not suitable for the application due to the lack of nonlinear 

mapping ability. Intelligent techniques on the other hand, require optimal network structure and 
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unified training algorithms in order to improve the accuracy of the forecast as well as the 

performance of the network. 

Problem statement: To develop optimised Artificial Neural Network-based models for Short-Term 

Load Forecasting and apply these models to a real life case study to evaluate 

the performance of the proposed approach and provide one week ahead 

forecast for the CPUT Bellville Campus power system network. 

 

1.4.1 Load forecasting problem decomposition   

Phase I- Approximation tool 

Analysis of the components of the existing neural network prediction structures, 

development of the ANN-based models, the optimization criterion needs to be 

reviewed.   

1.4.1.1 Neural Network Architecture  

 A basic introduction to ANN is required to assist the reader in having a far reaching 

understanding on the concept, thus a chapter on this subject is an absolute requirement. 

General applications of ANN have also to be highlighted.   

 For model parameters selection, a systematic approach with regards to number of 

hidden layers, number of nodes, epochs, network performance, desired activation 

functions, and training period has to be unambiguously formulated.  

 Moreover, the application of gradient descent error back propagation algorithm to the 

network to get correct set of weights needs to be carefully analyzed. 

 The evolved models need to be trained, thus the selection of training algorithm and 

parameters needs to be explicitly understood. 

 

1.4.1.2 Back Propagation Algorithm and Training Parameters 

For the network to accomplish realistic targets, the network learning phase requires a 

teacher. This requirement of is often referred to as “supervised learning”. The 

following network development issues or points required a good understanding: 

learning rate, momentum factor, local and global minima, generalisation, and 

memorization of the network.   

 

1.4.1.3 Development of ANN-based forecasting models  
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The development forecasting models is the engine of phase I and the whole project 

entirely. This implies that the appropriate ANN topology and training algorithm need 

to be identified, implemented and analyzed.  

  

Phase II – (Data Collection, Poor or Inadequate Data Treatment, Pre/Post Data 

Processing) 

1.4.1.4. Historical load data 

The total electric load of the Cape Peninsula University of Technology needs to be 

measured preferably at the main intake substation for at least two seasons (winter and 

summer). Subsequently, measurements were taken at the main intake substation using 

(E1 Enermax) Maximum Demand Meter and data were downloaded using Optical 

head to RS232/USB communication options. As for departmental loads, a roving 

Lovato Power Meter (DMK 40 type), class 1 meter, with data logging features, was 

programmed and installed at various distribution boards/substations feeding the 

following departments: Administration, Electrical, IT and Mechanical. Similarly, data 

were also downloaded using the Serial port (RS232) communication option to a 

stationary PC.   

 

1.4.1.5. Weather data 

As described earlier, an electrical load is a non-linear function influenced by a 

variety of variables. Some major factors influencing the load need to be considered. 

The selection of input variables is a critical research component individually, thus 

only variables with a sound correlation with the load are considered. In this work, 

only past contiguous load values and weather related data (daily wind speed, 

humidity, minimum and maximum temperatures) are used. This decisive factor is 

necessary to avoid network over fitting. The weather data (both for the summer and 

winter period) were provided by the South African Weather Service Office based in 

Cape Town. 

 

    Phase III – Computing and Training  

1.4.1.6 Modelling 

 The developed ANN models are trained under MatLab
®
, ver. 7.1, environment.   

 

Phase IV - Validation and Results 
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1.4.1.7 Testing of Models 

 This part is a key component of the project where the forecasts are compared to the 

actual load, and the error is computed. Results obtained by using both Feedforward 

and Elman Recurrent ANN-based models are analyzed and compared to the actual load 

data.  Thus, in this thesis, various input variables such as historical load data and 

weather data are selected.  

 

The standard mean absolute percentage error (MAPE) is most reported performance measure 

function (Mandal et al., 2006, Al-Shareef et al., 2008, Sharif et al., 2000, Rashid et al., 2005, 

Conzâlez et al., 2004 and Hayati et al., 2007). 

∑
=

−=
N

i

LLL
N

MAPE
1

/)ˆ(*
100

(%)             (1.1) 

Where L denotes the actual load value, L̂ is the forecast load value, and N represents the number 

of observations or data points.   
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Where 
iactualL is the actual load, 

iactualL̂ is the forecast value of the load, and N is the number of data 

points. 

 

Phase V – Documentation  

The outline of the thesis is given at the end of this chapter.  This work does not necessary form part 

of the load forecasting problem. However, enough time is allocated to document this experiment. 

 

1.5 Research aim and objectives 

The impetus of the study is mainly to develop ANN-based models for STLF, and do network 

assessments on the bases of the average forecast error, and network performance using different 

training approaches. The models are trained by using error back propagation algorithm to adjust 
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biases and connection weights between layers. Possibilities for minimizing the error means of other 

intelligent-based technique such as genetic algorithm (GA) are also explored and evaluated.  

   

Aim: To develop supervised ANN-based models for short-term load forecasting (STLF), and evaluate 

the performance of these models by applying the actual load data of the Cape Peninsula University 

of Technology Bellville campus to predict the load of one week in advance.  

  

In order to accomplish this aim, the following objectives are to be achieved: 

1.4.1  The process of load forecasting requires a time series of historical data, thus it is required to 

gather the historical load data of the campus reticulation network.  

 

1.4.2 Climatic conditions may affect the load greatly, especially in areas where sudden weather 

changes are always anticipated such as Cape Town. Thus this work takes into account the 

weather effect on the load. To enforce this feature, weather data such as minimum and 

maximum temperatures, wind speed, and humidity should to be gathered and presented as 

network inputs.   

 

1.4.3 To acquire and set up a convenient local data management system (database) for storing all 

collected data. 

 

1.4.4 The possible existence of bad data in the load curves as well as in the weather data cannot 

unfortunately be discarded. Therefore one of the objectives is to develop a strategy aimed at 

detecting and eliminating the bad data. 

 

1.4.5  ANNs are vulnerable to raw data, thus it is essential to select suitable techniques for 

normalizing the data prior to applying them to the network for an attempt forecasting.  

 

1.4.6 To develop two different Artificial Neural Network-based models for STLF and evaluate 

their performance using the mean squared error (MSE) and other supplementary performance 

measure functions.    

1.4.7 To assess other forecasting methodologies by means of explanatory methods.  
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1.4.8 The CPUT power system operators with their long time working experience might have 

some good intuition in manual load forecasting. Therefore it is extremely important to 

combine their experience in convenient manner.  

 

1.4.9 To train the evolved models under the MATLAB environment and predict the total load for 

CPUT Bellville campus and the loads of some selected departments with 168 hours lead time 

forecast.  

 

1.4.10  The other important objective is find convenient model training approach that yields the best 

results.   

 

1.4.11 Last but not least, to document the work done during the experiment and submit the thesis by 

November 2008.  

 

1.6 Hypothesis 

The average forecast error can be improved by developing and implementing a customized ANN –

based models based on the standard error back propagation training algorithm using a convenient 

training approach.   

 

1.7 Project motivation  

General view: accurate short-term load forecasting in power industry assists planners to make 

strategic decisions on unit commitments, purchase of energy, optimal reserve capacity, system 

security, and reliability etc. Consumers are also required to predict the load accurately for load 

management and investment criterion purposes. Without replicating, load forecasting is a two 

dimensional concept, and this distinction is repeatedly perplexed. Figure 1.2 hereunder attempts to 

clear possible ambiguities on load forecasting dimensions in power system context. The first 

dimension, specifically deals with utilities’ forecast, and the second one, fundamentally involves 

consumer load forecast.  
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Fig 1.2: A typical load forecasting outline and some applications.  

 

The quality of the network investment decision is based on the analysis of load growth and an 

economic sound decision can separate the good investments from the investments likely to end-up as 

“stranded assets”.  

Case study outlook: The CPUT notified maximum demand
1
 has considerably increased since the 

inception from 0.5MVA in 1962 to 2.2 MVA in 2008.  

In the absence of any similar studies, short-term future loads should certainly be investigated. As 

already stated, the forecast can provide the campus management with some guideline with regards to 

the current maximum demand, and possibly a more realistic NMD (notified maximum demand) can 

be declared. In this light, load management requirement partially qualifies the significance and 

applications of this research work. CPUT network planners greatly benefit from this work.  

This process (energy management) is an essential element for both utilities and consumers. As 

illustrated in Figure 1.2, load forecasting is certainly the prerequisite to any load management 

programmes.  

_____________________________________ 
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The developed models are applied to actual load of the CPUT – Bellville Campus to forecast the load 

on short-term bases. Figure 1.3 illustrates extrapolated load growth pattern of the campus since its 

inception in 1962. 
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Fig. 1.3: Load growth curve –for the CPUT (Bellville-Campus) derived using extrapolated annual Notified 

Maximum Demand data.  

 

1.8 Delimitation of the research 

The scope of work of this work is solely based on the ANN technique and the comparisons of the 

results and performances are done only using ANN based models.  However, other classical popular 

load forecasting techniques are discussed and analyzed by means of explanatory methods.  

 

The performance evaluations of these models are limited to the CPUT actual load data but the 

models with slight modifications can be universalised for utilities’ applications.  

 

Only short-term load forecasting is modelled and analyzed in this research work.  

 

Although seasonal load variations (winter and summer) are considered, major sudden changes of 

load are not easily detected by the models.  Forecasting the load for holidays or special days does not 

form part of this work.  

 

The training data set used in this work is limited to four months of historical load pattern for each 

season.  

 

Both medium to long-term load forecasting are not covered in this work.  
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1.9 Assumptions 

To achieve the aforementioned research objectives, the following assumptions are made:  

1.9.1  Short term load can be forecasted using limited historical data and the ANN model has the 

ability to map the non-linear characteristic of the load given a number of inputs.  

 

1.9.2  The optimal training of the MLP (Multi-Layered Perceptron) network is possible, and the 

connection weights between layers can be adjusted as desired.   

 

1.9.3  The load profile of each building or department can be measured and assessed separately.  

 

1.9.4 It is also assumed that the installation and commissioning of Digital Power Multi-Meter 

(DMK 40) for actual load measurements can be completed. Another crucial assumption is 

that the meter has the required data storage capability, and/or the built-in 2Mbytes (MB) non-

volatile memory will be sufficient to uninterruptedly record data for at least two weeks.  

 

1.9.5 The CPUT reticulation network operators (maintenance team) and the local meteorological 

service office are, upon request, willing to provide the required data.  

 

1.9.6   The real-time simulation and modelling of the ANN models under the MatLab environment 

will be possible. 

 

1.9.7  It is further assumed that the electricity price or tariff remains unchanged or the change 

remains within ± 10%, as the impact of the electricity price change is not considered.  

 

1.9.8 The nature of the measured data can be presented by means of a time series load pattern with 

deterministic characteristics. 

 

1.9.9  A strategy can be formulated to detect and replace possible bad data. And the implementation 

of an algorithm to normalize all the input data can be easily carried out.   

 

1.9.10   The dependence of the load on the weather conditions is a deterministic one. 

 



 13  

1.10 Research design and methodology   

1.10.1  Investigation methods  

Data collection is a convoluted exercise, thus a combination of research methodologies needs to be 

defined. In this work, quantitative research method is used as a tool to get required data. Amongst 

other research investigation technique, some data are obtained by means of questionnaires, personal 

interviews, and equipment (power meters) for numerical data measurements.  

  

Questionnaires – were typically designed for energy end-users i.e. lecturers, students, house parents 

etc to provide info regarding electricity use pattern.  

Personal interviews – This arrangement is ideally designed to interact with the system operators, 

maintenance team, and officers from meteorological department. Such liaison structures are 

necessary to determine critical monitoring points or priority areas.  

Modelling – The selected input data are carefully interpreted and normalized before presented as 

model inputs to avoid, amongst others, over-fitting and input redundancy.  

       

1.10.2 Sampling methodology  

Sampling does not necessary apply to the selected method. However the forecasts need to be 

validated by comparing the output of the model with the actual load data. Another fact that needs to 

be considered is the measurement points in the campus ring network. More technical detail regarding 

the network is discussed in chapter 5. Due to limited data logging meters and the time frame, only 

limited residential and educational buildings are measured. These include and the electrical, 

information technology (IT), mechanical departments, air conditioning plant (ACP), and the 

administration building in addition to the total load of the campus recorded at the intake substation.  

 

1.10.3  Literature review 

To date, a number of load forecasting techniques have been developed, thus a comprehensive 

literature review needs to be conducted in order to evaluate different reported forecasting approaches, 

and possibly establish the associated drawbacks.  This subject is exclusively covered in the following 

chapter. A majority of papers report that intelligent system models, particularly ANN based model is 

more superior and attractive approach for dynamic systems compared to the conventional one. 

Further, the forecasting techniques proposed and used in journal papers, databases, and books have 

been extensively analyzed.  



 14  

 

1.10.4 Data collection, normalization, bad data detection and treatment  

The historical load data of the CPUT (Bellville Campus) were acquired by means of measurements 

(i.e. using DMK 40 Digital MultiMeters).  Weather data were obtained from a local meteorological 

office. The weather related data are essential for the model. The gathered data were then analyzed, 

interpreted, normalised, and assigned to the model in a simplified manner. Other factor such as 

seasonal change was also considered.  

 

1.10.5 Thesis organization outline   

This thesis document comprises eight chapters, arranged in a systematic manner: the first chapter of 

the document mainly discusses the background, purpose of the work and breakdown structure of the 

work.  

The second chapter covers literature review i.e. methods used for load forecasting, comparisons of 

various papers, findings and remarks. In this chapter, drawbacks of different forecasting methods are 

also highlighted. This chapter exclusively also discusses the application of genetic algorithm to 

STLF.  

 

Chapter three of this document broadly talks about power system load forecasting: i.e. the factors 

affecting the load, characteristics and features of the power system load. This chapter also roofs basic 

requirements of a good STLF system.  

The concept of Artificial Neural Networks is briefly introduced in chapter four. This section covers 

a history and topologies of ANNs, trainings, associated errors, learning paradigms of ANNs etc. 

Moreover, technique used for teaching ANNs i.e. error back propagation(BP) algorithm, Conjugate 

Gradient algorithm (CG), Quasi-Newton algorithm (QN), Lavenberg- Marquardt (LM) are also 

discussed in this chapter.  

 

The content of the fifth chapter entails description of the data, data collection methods, and pre-

processing. This section also defines how the selected data were imported into the local database and 

then into the MATLAB workspace. Moreover, this chapter further clarifies the existence of bad data 

in the load curves and the method used to replace such data prior to storage. The description of the 

collected data is also clearly defined in this chapter. Chapter six generally deals with the application 

of ANNs in load forecasting. This chapter also encompasses some essential procedure for developing 

ANN-based model as well the composition of the input vectors (IV) for the developed models.  
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The core section of the project, the simulation results, is discussed in Chapter Seven.  This section 

of the document also covers some specific discussions on different STLF models. In other words, 

this part of the document entails real implementation of the project i.e. Application of the duo models 

to STLF using the actual load data of the CPUT Bellville Campus as a CASE STUDY.  

 

The last chapter (Chapter 8) of the thesis encapsulates conclusion and future outlook of the project.  

 

1.11   Conclusion 
This chapter highlights the basic introduction of the proposed research project. Thus it generally 

covers the scope of work, significance and objectives of the proposed research project, some brief 

research methodologies. The chapter also discusses some well thought-out assumptions, 

delimitations of the research as well as the structure of the proposed work and final organization of 

the thesis.  

 

In order to establish possible shortcomings of some commonly used forecasting methods, one needs 

to extensively conduct a literature review on the existing forecasting techniques.  This subject is 

covered in the following chapter and some of the commonly used forecasting techniques are 

discussed by explanatory means therein.  

Moreover, the following chapter also covers a brief introduction of genetic-based search in STLF 

with a hope to minimize the error function.  

 

The next chapter also highlights a comprehensive comparison of some previous similar works on the 

following basis: problem statements, methodologies, findings, drawbacks, and areas of possible 

improvements. The findings, remarks, and conclusions of the literature comparison are also discussed 

in the next chapter.  
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-----------------------------------------------------

CHAPTER TWO  

                   LITERATURE REVIEW   

 
The subject of load forecasting has been in existence for decades, and a number of techniques have been 

developed. These methods are based on either classical or modern approach.  This part of the research work 

is necessary to establish the statistical relevance of the proposed research project, establish a generalized 

research question, analyze existing methods, and explore areas of possible improvements.  This chapter also 

covers the analysis of various existing load forecasting techniques, a comparative study of reviewed papers, 

findings and remarks. 

 
2.1 Overview of load forecasting techniques 

Load forecasting has become one of the most significant aspects of electric utility planning. The 

economic consequences of improved load forecasting approaches have kept development of 

alternate, more accurate algorithms at the forefront of electric power research (Kermanshahi et al., 

2001). Thus the significance of the subject in power systems has drawn alarming interests of many 

researchers, and to date a number of load forecasting approaches have been developed. Some of the 

most popular techniques are discussed in this chapter.   

 

Generally, load forecasting models can be classified into two categories: time-of-day models and 

dynamic models. Time-of-day model is a non-dynamic approach and expresses the load at once as 

discrete time series consisting of predicated values for each hour of the forecasting period. The 

second classification involves the dynamic model that recognizes the fact that the load is not only a 

function of the time of the day, but also of the load most recent behaviour.   

 

The load can be represented mathematically as a function of different factors such as time, weather, 

customer class etc. In a typical additive model, the estimated load is given by. 

 

rswn LLLLL +++=ˆ               (2.1) 

   

 Where L̂  is the total estimated load, nL  represents the normal part of the load, wL    represents the 

weather sensitive part of the load, sL  is a special event component that creates a substantial deviation 

from the usual load pattern, and rL is a complete random term, the noise.   
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The previous works presented that, better forecasting results could be realized by considering the 

electricity pricing in mathematical models. The representation of multiplicative approach can be 

formulated as.   

        

rswn FFFLL •••=ˆ               (2.2) 

Where nL  is the normal (base) load, and the correction factors wF , sF  and rF  are positive numbers 

that can increase or decrease the overall load. These corrections are based on current weather ( wF ), 

special events ( sF ) and random fluctuation ( rF ) which include factors such as electricity pricing or 

load growth factor. 

Forecasting the load using the proposed method involves weighted inputs which are passed through 

nonlinear transfers. Thus the proposed technique somehow uses a combination of additive and 

multiplicative methodologies to predict required load values.   

 

2.2 Classification of forecasting methods 

The following methods are widely used for load forecasting: similar day approach, regression 

models, time series, neural networks, expert systems, fuzzy logic, statistical learning algorithms, etc.  

These methods can be classified in terms of their degrees of mathematical analysis used in the 

forecasting model and are presented into two basic types, namely: quantitative and qualitative 

methods. 

 

In most cases historical data are insufficient or not available at all, yet it is anticipated for planners to 

accurately forecast, thus qualitative forecasting methods are generally used. Among others, these 

methods include: Delphi method, curve fitting and technological comparisons. Other forecasting 

techniques such as decomposition methods, regression analysis, exponential smoothing, and the Box-

Jenkins approach are quantitative methods. These methods are considered in the thesis.  

The following techniques for load forecasting are analyzed and compared in the thesis: 

� Regression models 

� Time series  

� Time-of-day models 

� Similar-day Approach  

� Stochastic time series models 

� Intelligent system based models (i.e. ANNs and GA) 

�  
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2.2.1 Regression methods  

Regression is one of the most widely used statistical techniques and it is often easy to be 

implemented. The regression methods are usually employed to model the relationship of load 

consumption and other factors such as weather conditions, day types, and customer classes. This 

method assumes that the load can be divided in a standard load trend and a trend linearly dependent 

on some factors influencing the load (Gross et al., 1987). 

The mathematical model can be written as: 

 

∑
=

++=
n

i

iin ttxatLtL
1

)()()()(ˆ ε             (2.3) 

where  )(tLn  is the normal or standard load at time t, ia  is the estimated slowly varying coefficients, 

)(txi  are the independent influencing factors such as weather effect, )(tε is a white noise 

component, N  is the number of observations, usually 24 or 168.  

 

2.2.1.1 Linear Regression  

Linear Regression is the most popular method, and often used to forecast the load affected by a 

number of factors ranging from meteorological effects, per capital growth, electricity prices, 

economic growth etc. The model can be formulated as: 

εββββ +++++= )()()()()(ˆ
22110 txtxtxttL kkL           (2.4) 

where, βi are the regression parameters with respect to xi, and ε  is an error term. 

 

This model assumes that the error term ε  has a mean value equal to zero and constant variance. 

In this model, regression parameters (βi) are estimated from observation of the load and the affecting 

factors. Let  βi (i=0,1,2,…k) be estimated in terms of  bi (i=0,1,2,…k). The forecast load ( L̂ ) 

becomes: 

)()()()(ˆ
2)(2110 txbxbtxbtbtL kkt ++++= L           (2.5) 

Using the least square estimates method which minimizes the Residual sum of squares (SSE) 

(Bowerman et al., 2005) the parameters bi can be obtained: 

[ ] LXXXbbbbB
TTT

k

1

210 )( −== L            (2.6) 

where L and X are the following column vector and matrix: 
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Hence the parameters are calculated, and this model can be used for prediction. Accurate load values 

( L̂ ) are achieved if the standard error s  is small. 

 

forecastednLactualnLnLnLSSE
kn

SSE
s

N

i

−−−=
+−

= ∑
=

)(ˆ,)(,))(ˆ)((,
)1( 1

2  (2.8) 

 

2.2.2 Time series  

Time series methods are based on the assumption that the data have an internal structure, such as 

autocorrelation, trend or seasonal variation. The first impetus of the approach is to accurately 

assemble a pattern matching available data, and then obtain the forecasted value with respect to time 

using the established model. The model characteristics can be formulated as: (Janacek et al., 1993) 

)()()()(ˆ tRtStLtL n ++=    ...2,1,0,1.... −=t                       (2.9) 

Where )(tLn denotes the standard load value, )(tS is the seasonal term, and )(tR is the irregular or 

random component.  

 

2.2.3 Time-of-day model  

This approach presents a simplest form of load forecasting. The model uses the previous week’s 

actual load pattern to predict the present week’s load. Alternatively, a set of load patterns is stored for 

typical weeks with different weather conditions. These are then heuristically combined to create the 

forecast. 

The equation of the model can be written as: (Gross et al., 1987)  

)()()(ˆ

1

ttfatL
n

i

ii ε+=∑
=

           (2.10) 

where the load at time t , )(ˆ tL is considered to be the sum of explicit time functions, )(tfi  usually 

sinusoids with a period of 24 hrs or 168 hrs depending on the forecast lead time, ia  are slowly time-

varying coefficients, and )(tε represents the error term.   
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2.2.4  Similar days approach  

Similar days approach can be formulated on the bases of Euclidean norm. The model assumes the 

load as a row vector in which weighted factors are used to assess the similarity between the forecast 

day and searched previous days.  Suppose, the vector x = [x1, x2, ..., xn]
nR∈ the equivalent Euclidean 

norm can be defined in 
nR  

space by the formula: 

22

1 ... nxxx ++=                          (2.11) 

Similarly, for Euclidean norm in a form of complex vector z = [z1, z2, ..., zn]
n

C∈ , where 
n

C  

represents the dimensional complex space. Hence the corresponding representation can be written as: 

22

1 ... nzzz ++=                         (2.12) 

where z is the amplitude of the i
th
 complex component.  

 

 It is useful to utilize the evaluation determined by the Euclidean norm, which makes us understand 

the similarity by using an expression based on the concept of norm. Decrease in Euclidean norm 

results in better evaluation of similar days. The model equation is used as Euclidean norm with 

weighted factors and can be formulated as: (Mandal et al, 2007) 

2

3

2

2

2

1 )()()( tst TwLwLwD ∆+∆+∆=          (2.13) 

P

ttt LLL −=∆              (2.14) 

P

sss LLL −=∆              (2.15) 

1−−= tts LLL              (2.16) 

where tL is the hourly load on forecast day,
P

tL is the hourly load on historical days, tL∆ is the load 

deviation between the load on forecast day and the load on historical days, sL  is the slope between 

tL and 1−tL ,
P

sL  is the load slope of historical days, sL∆  is the deviation of slope between the load on 

forecast day and the load on historical days, and ∆Tt is the temperature deviation.  

 

2.2.5 Stochastic time series models 

Unlike other classical forecasting techniques, the stochastic time series method expresses the current 

load linearly in terms of its previous value, and a white noise series with zero mean and variance. 

(Janacek et al., 1993 and Moghram et al., 1989) 
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This representation introduces the backshift operator and qualifies the method to partially handle the 

complexity of dynamic load forecasting. The model can be presented as: 

tptpttt xxxx εφφφ ++++= −−− ...2211                       (2.17) 

where, tx  is the current load value, 1−tx and 2−tx  are previous load values, and tε  is a zero mean 

white noise. 

The basic idea of this approach is to introduce a backshift operator. Suppose B  denotes the operator, 

then the previous load value becomes:   

tt Bxx =−1              (2.18) 

Similarly, the m
th
 previous load value can be formulated as: 

t

m

mt xBx =−              (2.19)  

Substituting equation (2.18) and (2.19), the model can be presented as: 

ttxB εφ =)(              (2.20)  

where, 
p

p BBBB φφφφ −−−−= K
2

211)(           (2.21) 

There are two popular methods used to calculate parameters iφ  for forecasting, namely maximum 

likelihood estimation (MLE) and least squares estimation.   

 

Literature reports that MLE method is considered attractive because it has minimum variance and is 

unbiased, thus this approach is considered in thesis.  

   

The MLE assumes a sample of dependent observations tx , t= 1,...,N each with density 

function )( txf . The combined density function can be formulated as: 

)|(),...,,( 1

1

21 −

=

∏= tt

N

t

N xxfxxxf           (2.22) 

where, tx  represents all observations up to and including tx . )|( 1−tt xxf  is the conditional 

distribution of tx given all observations prior to t. 

To compute the required forecasting parameters, the MLE approach further predicts that the zero 

mean white noise ( tε ) remains normally distributed.  

 

Suppose the mean of the conditional distribution is 2211 −− + tt xx φφ  , and the variance is
2σ . The 

model equation is derived as: 
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Similarly, set of 1x and 2x  to be fixed and defined by the conditional likelihood as: 

∏
=

−=
N

t

tt xxxxfL
3

121 ),...,,|()(
~

φ           (2.24) 

Finally, the desired parameters can be computed by minimizing )(
~

φL .  

 

2.2.6 Intelligent system based models 

“The thread that unifies so many different concepts is woven from the interpretation of the intelligent system. 

Practically speaking, an intelligent system is one which employs Artificial intelligence (AI) to fulfil some or all 

of its computation requirements” (Warwick et al., 1997) 

Many studies have reported the superiority of the intelligent system methods in load forecasting 

models. The next section now briefly discusses some of the widely used artificial intelligence based 

techniques.    

  

2.2.6.1 Artificial Neural Networks 

An artificial neural network (ANN) is a computational model inspired by a biological nervous 

system. The network consists of interconnected group of neurons and processes information using a 

connectionist approach to computation. The distributed processing by neurons results in intelligent 

outcome. ANN-based model learns to perform a desired task directly from examples using special 

training algorithms.  The basic structure of an ANN process is illustrated in Figure 2.1. This method 

is also often regarded as an adaptive system that changes its structure based on external or internal 

information that flows through the network during the training.  

 

Fig 2.1: A simple ANN structure  

 

2.2.6.1.1 Neural Network Function Approximation tool    

Neural networks are essentially non-linear circuits that have the demonstrated capability to do non-

linear curve fitting. The approach is also suitable to analyze dynamic systems.  
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The outputs of an artificial neural network are some linear or non-linear mathematical functions of its 

inputs. 

The inputs may be the outputs of other network elements as well as actual network inputs. In practice 

network elements are arranged in a relatively small number of connected layers of elements between 

network inputs and outputs. The target output is achieved by adjusting neuron weights in a 

Multilayer Perceptron.  

 

2.2.6.1.2 Proposed ANN-based Models 

A number of ANN-based structures have been developed. The three common ANN family models 

are: Feed-forward, Radial based, and Recurrent types ANNs. The proposed research project 

explicitly analyzes the performance and accuracy of a feed-forward and a recurrent ANN-based 

model.      

 

2.2.6.1.3 A Multilayer Perceptron (MLP) 

Figure 2.2 shows a network configuration of a three-layered feed-forward network.  

The inputs are fed into the input layer and multiplied by interconnection weights, and then passed 

through an activation function before passed on to the next layer.  

 
Fig 2.2:  A Feedforward neural network with one hidden layer and multi-outputs 
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2.2.6.2 Expert Systems (ES) 

This method uses Artificial Intelligence at a high level perspective. It is derived by system 

developers and experts through experience and close interactions. AI's scientific goal is to understand 

intelligence by building computer programs that exhibit intelligent behavior. It is concerned with the 

concepts and methods of symbolic inference, or reasoning, by a computer, and how the knowledge 

used to make those inferences will be represented inside the machine.  

The basic idea of this approach is to manipulate and encapsulate high level knowledge in an attempt 

to imitate the behaviour of an expert (Warwick et al., 1997)  

The ES does not require any particular model hierarchy or a historical trend. The forecasting process 

is rather encapsulated by rules derived from interviews with human expert. Once these rules are 

unambiguously and correctly defined, ideally the uncertainties which might influence the load would 

be taken care of, thus this approach should be reliable.    

2.2.6.3 Fuzzy approach  

The term “fuzzy logic” emerged in the development of the theory of fuzzy set which Dr. L.A. Zadeh 

pioneered by the mid 1960s. A fuzzy logic model is a logical-mathematical procedure based on an 

“IF-THEN” rule system that mimics the human way if thinking in computational form. Generally, a 

fuzzy rule system has four modules (Alvisi et al., 2005): 

a. Fuzzification of the input – process that transforms the “crisp” into a fuzzy input.  

b. Fuzzy rules – IF-THEN logic statement that connects the input to the output variables.  

c. Fuzzy inference – process that elaborates and combines rule outputs.  

d. Defuzzification of the output – process that transforms the fuzzy output into a crisp output.   

 

Since inception, this technique has gained a wide recognition and a variety of products ranging from 

washing machines, air conditioners, cameras to industrial process control, medical instrumentation, 

signal processing and speech recognition have been developed, despite the early scepticism view in 

the Western World. 

 

In load forecasting specifically, fuzzy rules based on demand forecasts must be developed to provide 

domain specific information to enhance the non-linear models. The expert knowledge developed in 

the model can easily be incorporated using linguistic descriptions to high quality data for load 

forecasting (Warwick et al, 1997).   
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2.6.4 Evolutionary Computing  

Literature of most recent STLF works reports that Genetic Algorithm (GA) is one of the suitable 

approaches especially for load forecasting network structure optimization (Srinivasan, 1998 and EL-

Naggar et al., 2005) Most of the drawbacks associated with traditional intelligent systems are the 

dependence on initial parameters, long training, network topology setup etc can easily be addressed 

by using this method (Srinivasan, 1998). 

Because of the projected dominance of GAs in STLF, it was found necessary to include a brief 

introduction on theory of behind the approach. 

 

2.2.7 Genetic-based optimization 

 

The standard back propagation training-based rules can be used to solve a variety of simple 

optimization problems. However, as problem complexity increases, their performance falls rapidly. 

Other drawbacks include issues like: long training period, single point search, scaling, initial 

parameters dependence etc. However, genetic algorithm (GA) is regarded as an alternative approach. 

. This technique was initially discovered in the mid 1970s at University of Michigan by John 

Holland. The main idea was to design artificial systems retaining the robustness and adoption 

properties of natural systems. Since the inception, these methodologies were then further improved 

by other researchers and are now widely used in various fields (business, science, engineering etc) to 

solve a variety of optimization problems that lie outside the scope of the standard optimization 

Toolbox.  

GA mimics the biological processes to perform a random search in a defined N-dimensional possible 

set of solutions. For an optimization problem, one needs to search and find the best solution in a 

given search space. The idea behind the GA’s principle is inspired by Darwin’s theory of evolution 

(survival of the fittest). 

 

 2.2.7.1 How does a GA work? 

The algorithm is commenced with a search space containing set of solutions (or chromosomes) called 

population. Like its counterpart in nature, Chromosomes from one population are chosen based on 

fitness and then combined to form new generation. The best fit individuals are more likely to be 

selected and subsequently reproduce in the next generation. This approach is encouraged by a hope 

that the new population will be better than the old one. These procedures are carried out repeatedly 

until some pre-determined stopping conditions (such as generation, time limits) are met. Like its 

counterpart in biology, this process requires some genetic operators such recombination, crossover, 

and mutation (Mishra et al., 2008, Davis, 1991 and Eberhert at al., 1995). 
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To implement a genetic based search, one needs to define the objective function to be optimized.  

Strictly speaking, the objective function can be viewed as the input to the algorithm. This function is 

primarily intended to provide a measure of how individuals have performed in the problem domain. 

Depending on the optimization goal, most fit elements in case of a maximization problem would 

ideally have the largest numerical values. For instance, the objective function of a supervised ANN-

based load forecasting model can be written as:  

LLL
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1

min
1

∑
=

−=             (2.25) 

where N is the total number of observations or hours, L denotes the desired load value, and 

L̂ represents the predicted load. 

 

2.2.7.2 Conventional Optimization versus GA  

GA differs considerably from conventional search and optimization techniques. The four notable and 

most important differences as discussed earlier and also reported in the work of (Goldberg, 1989 and 

Maifeld et al., 1994) are:  

1. GAs do not require derivative information or other auxiliary knowledge but use an objective 

function instead. 

2. GAs implement a parallel search in a population, not single point  

3. GA use probabilistic transition rules, not deterministic ones. 

4. Except in real-value representations, GAs work on encoding of the parameter set rather than 

parameters themselves.  

However, the proposed models will not be trained using GA based rule, but this brief GA 

introduction could be useful for general knowledge. Thus the following section now brings a 

comparative analysis of some ANN-based forecasting models.     

 

2.2.8 Comparative analysis of some load forecasting ANN-based models 

In order to establish the shortcomings and evaluate the performance of existing methods, various 

papers had to be compared. 

 The comparisons have been made on the following bases: 

� Problem statement 

� Objective of the project 

� Proposed or used method  

� Results or findings 

� Drawbacks and possibilities for improvement  
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2.2.8.1 Literature comparison – findings 

The viewed papers illustrate a variety of solutions for load forecasting related problems using 

different methods, particularly for short-term load forecasting, thus a universal distinction regarding 

shortcomings of various techniques has been drawn and the proposed approach could be a superior 

attempt. 

Literature shows that different researchers use different methods to address a load forecasting. Sharif 

et al., (2005) presented a multi-layer feed-forward neural network model with the aim to compare the 

forecasting accuracy of a time-series and an ANN-based model. The ANN-based model gave 

reasonable results.  

 

Chen et al., (2002) evaluated the impact of electricity prices in a load forecasting model. This 

assessment would typically be suitable for areas where sudden electricity tariff increases are 

experienced as it greatly affects the forecasting accuracy. 

 

Adepoju et al., (2007) have used a supervised neural network –based model to forecast the load in 

the Nigerian power system. The study however did not consider the influences due to weather 

conditions, thus the accuracy could be improved. 

 

Satish et al., (2004) have discussed the effect of the temperature on the load trend using an 

integrated ANN-based method. The study concluded that the integrated model resulted in less error 

of prediction. Among other weather variables, only the temperature was incorporated in the model, 

thus a consideration of other factors would greatly improve the result.  

 

Rashid et al., (2005) presented a feed forward and feed back multi-context artificial neural network 

(FFFB –MCANN) as a practical approach for load forecasting. They have proposed the use of the 

rate values rather than the absolute to produce better accuracy.  

 

Al-Saba et al., (1999) illustrated the application of the ANN to long-term load forecasting. The 

model forecasted the annual peak demand of a Middle Eastern utility and repeated the process using 

a time-series approach. The study established that the ANN-based model produces better forecast 

rather classical methods (ARMA etc). 

 

 



   28 

Table 2.1: Comparative analysis of some existing ANN-based forecasting models  
PAPER PROBLEM STATEMENT OBJECTIVE MODEL CONSTRAINTS FINDINGS 

Sharif and Taylor, 

2000  

“Short-term load 

forecasting by 

Feed forward neural 

networks”  

To obtain Average 

forecasting error using feed-

forward neural network 

(FFNN) and a conventional 

time series package  

To predict an hourly load of one 

day ahead using both methods 

and evaluate the corresponding 

performance index and 

forecasting error.  

A trained multi-layer 

feed-forward neural 

network was used for 

STLF purposes.  

Load forecasting 

accuracy mainly 

depends on the 

training and selected 

time period of the 

forecast.  

The FFNN produced better 

results, thus the model was 

used to forecast the load.  

Chen, Canicares, and 

Singh, 2002  

“ANN-based Short-

term load forecasting in 

Electricity Markets” 

The impact of electricity 

prices in a short-term load 

forecasting model  

To incorporate the electricity 

pricing in the model and 

establish influences.  

The common multi-layer 

feed forward ANN based 

model was considered.  

The load-price 

relationship is highly 

nonlinear and difficult 

to model. 

The study concluded that if 

electricity prices are not 

considered in a model, the 

number of interactions 

required to achieve the same 

forecasting accuracy would 

be practically doubled. 

Adepoju,  

Ogunjuyigbe, and 

Alowode, 2007 
“Application of Neural 

Network to load 

forecasting in Nigerian 

Power System” 

The operation and planning 

of a power utility company 

requires accurate model for 

electric power load 

forecasting. 

To implement a short-term load 

forecasting using neural 

networks (ANNs) and apply it to 

the Nigerian electric power 

system.  

A supervised artificial 

neural network model 

has been used to obtain 

the forecasts.  

The number of 

neurons in the hidden 

layer must carefully be 

chosen – as too many 

neurons may lead to 

overspecializing and 

subsequently loss of 

generalizing 

capability.  

After experimenting a 

variety of hidden layer 

neurons from 5 – 11, the 11 

neurons were finally utilized 

because it offered a better 

model characteristic. 

Lauret, Fock, 

Randrianarivony, 

Manicom- Ramsamy, 

2007 “Bayesian neural 

network approach to 

short-term  load 

forecasting” 

Optimal Neural Network 

structure for load 

forecasting.  

To improve the accuracy of 

ANN-based model using 

Bayesian method. 

A probabilistic model 

using Bayesian Neural 

Network method was 

presented.  

Uncertainty in model’s 

input needs to be 

developed.  

The developed model 

considers a probability 

density function (pdf) over 

the weight space. This 

arrangement handles some 

of the uncertainties in the 

modelling, thus further 

development could increase 

the quality of the forecasting 

models.  
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PAPER PROBLEM STATEMENT OBJECTIVE MODEL CONSTRAINTS FINDINGS 

      

Satish, Swarup,  

Srinivas, and Rao, 

2004 “Effect of 

temperature on short-

term load forecasting 

using an integrated 

ANN” 

The impact of temperature 

on the average forecasting 

accuracy on short-term.  

To evaluate the load variation 

with and without considering the 

temperature.  

An ANN based model 

was used to predict the 

load. The model was 

divided in various sub-

components namely; the 

basic ANN, the Peak or 

Valley Averager & 

Forecaster, and adaptive 

combiner to form an 

integrated model. 

The evaluation was 

specific and did not 

consider other 

weather parameters 

The average forecasting 

error was around 4% even 

with a sub-modeled system.  

Rashid and Kechadi, 
2005 “A practical 

approach for electricity 

load forecasting” 

The impact of the absolute 

values and change in 

weather components,  and 

past load on forecasting 

accuracy. 

To utilize the change in weather 

components and/or historical 

load data rather than absolute 

values.  

The paper presented a 

model called feed forward 

and feed back multi-

context artificial neural 

network (FFFB –

MCANN) using 

exogenous and 

endogenous variables.  

Recurrent ANN 

models are complex 

and often require 

good training 

The recurrent neural 

network has been used and 

±1.5% a steadily mean 

average percentage error 

was achieved.  

TAl-Saba, and El-

Amin, 1999 “Artificial 

neural networks as 

applied to long-term 

forecasting”  

Forecasting the annual peak 

demand for a Middle 

Eastern utility  

To explore various forecasting 

techniques and compare the 

forecasts with the proposed 

method. 

The paper presented 

different time-series load 

forecasting models and 

the ANN based approach  

The future 

uncertainty makes 

long-term load 

forecasting an 

extremely 

challenging 

computational 

problem.  

The ARMA technique has 

registered the maximum 

error of about 40%. This 

result proves the prior 

selection of the ANN based 

model. The ANN-based 

model provided very good 

results.  

Ganzalez, and 

Zamarreno, 2004 

“Prediction of hourly 

energy consumption in 

building based on a 

feedback artificial 

Network.  

Prediction of energy 

consumption in buildings  

To present an approach for load 

prediction with high precision.  

A feedback ANN-based 

model was presented. The 

ANN training had been 

achieved by means of 

hybrid algorithms.  

Only limited load 

variables were 

considered.  

The model used a non-

optimized data window size 

and hidden layers which 

could seriously affect the 

over-all forecasting 

accuracy. 
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PAPER PROBLEM STATEMENT OBJECTIVE MODEL CONSTRAINTS FINDINGS 

Srinivasan, 1998 
“Evolving artificial 

neural networks for 

short-term load 

forecasting ” 

Shortcomings of commonly 

used back propagation 

ANN-based models   

To improve the BP-based ANN 

model, eliminate the drawbacks, 

and establish an optimal network 

structure for better forecast.  

A three-layered feedback 

back propagation 

network, trained by 

genetic algorithm (GA) 

was developed.  

The model did not 

have the ability to 

detect sudden load 

changes.  

The GA approach illustrated 

a superior representation, 

and addressed some of the 

problems encountered by 

using ordinal back 

propagation models. The 

approach also free the 

model from long training 

time weight adjustments 

Madal, Senjyu, 

Urasaki, and 
Funabashi, 2006 “A 

neural network based 

on several-hour-ahead 

electric load 

forecasting using 

similar days approach” 

Linking traditional load 

forecasting techniques with 

an intelligent ANN based 

network.   

To unite similar days approach 

load forecasting methods with 

an ANN based network  

A combination of an 

ANN-based model and a 

classical technique was 

used to forecast one-to-

six hour ahead 

forecasting. The model 

used Euclidean norm and 

weighted factors to a 

simple algorithm.  

A great variation in 

weather conditions 

may influence the 

forecast accuracy  

The model indicated very 

good results for one hour 

ahead forecasting with a 

MAPE at 0.98% , despite 

the further increase to 2.4% 

for six-hour ahead 

forecasting.  

Topalli, Erkme, and 

Topalli, 2006 
“Intelligent short-term 

load forecasting in 

Turkey” 

Inaccuracy in load 

forecasting and numerical 

instability for time-series 

forecasting methods. 

 To introduce an intelligent load 

forecasting method.  

They have used an 

Elman’s recurrent neural 

network model with 

integrated hybrid learning 

which prepares the model 

to combine real-time load 

forecasting and real time 

trainings.   

The ability of the 

developed model to 

establish an optimal 

network structure and 

corresponding 

learning algorithms.  

The model indicated better 

results compared to that of a 

time series. The average 

forecasting error recorded 

was approx. 1.6%  

Kandil, Wamkeue, 

Saad, and Georges, 

2006 ”An efficient 

approach for short-

term load forecasting 

using neural networks” 

The impact of estimated 

values (Historical load data) 

on load forecasting. 

To demonstrate neural networks 

– ability to predict the load with 

minimal input data (i.e. 

Temperature only) 

The well-known multi-

layered feed forward 

ANN-based model had 

been used to forecast for a 

local load.  The model 

used Levenberg-

Marguard training 

algorithms.  

Only preliminary 

results were 

discussed in the 

study. 

The paper presented the 

approach only, and the 

ANNs capabilities to 

forecast the load without 

using a historical load 

threshold.  
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Ganzalez et al., 2004 have used a feedback ANN-based model to predict energy consumption in buildings with high precision. The model was 

train by means of hybrid algorithm. The optimal network structure was not evidently achieved. 

 

Srinivasan (1998) has used a dominant back propagation ANN-based model and genetic algorithm as an attempt to evolve the optimal neural 

network structure. This approach is powerful despites the fact that the model is unable to detect sudden load changes, thus the approach still needs 

further development.   

 

Madal et al., (2006) presented a comparison of a classical load forecasting technique with an ANN-based model using actual load data. The 

models were used to forecast the load one-to-six hours ahead and again the MAPE showed that the ANN-based model provides reliable forecasts. 

Again, the optimal network structure for better forecast was never achieved.    

 

 Topalli et al., (2006) have used a recurrent neural network method using hybrid learning scheme to offline learning with real-time to forecast 

Turkey’s total load one day in advance. The study reported an average error of 1.6%. The forecasting accuracy could be achieved by employing 

good network training.  

 

PAPER PROBLEM STATEMENT OBJECTIVE MODEL CONSTRAINTS FINDINGS 

Xiao, Ye, Zhong and 

Sun, 2007 “BP neural 

network with rough set 

for short-term load 

forecasting” 

Drawbacks in ANN-based 

load forecasting models.  

To evaluate the relationship 

between inputs and outputs in a 

dynamic environment.  

They used a rough set 

back propagation (RSBP) 

neural network approach, 

and momentum method to 

enhance the training 

speed despite improving 

the credibility of the 

Algorithms.  

The development of 

an optimal threshold 

for attribute 

deduction was never 

achieved.  More 

historical data is 

required.   

The RSBP and BP model 

results were compared. The 

RSBP presented better 

results for maximum values. 
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Kandil et al., (2006) have explored the ANN capability to predict the load without necessary 

using the historical load trend, but only temperature instead. The study reports that using 

estimated load values may lead to a great degree of inaccuracy in the forecast, thus only the 

temperature was used as an input. Because of the ANN’s input-output mapping ability, this 

approach could be efficient. However, the better results could be achieved by selecting other 

importance input variables and better network training parameters.  

  

Xiao et al., 2007 have introduced the rough set and its ability to study and remember the 

relationship between the inputs and outputs. A multi-layer back propagation neural network was 

used in the study and momentum method was also applied to decrease the sensitivity of local 

parts of error curve surface. This approach requires further development to attribute deduction 

threshold.   

 

Lauret et al., (2007) have used a model called Bayesian neural network as an attempt to design 

an optimal network for short-term load forecasting. The Bayesian NN model is a new proposed 

methodology but also requires derivation of better noise models and uncertainties consideration.    

 

2.2.9 Conclusion   

A comprehensive literature review on existing load forecasting techniques is carried out in this 

chapter. Moreover, a comparative analysis of some specific models has been covered in this 

chapter. The findings are as follows: various papers compared intelligent system based models to 

conventional load forecasting methods. Such assessments, ideally are intended to prove the 

capabilities of ANN-based models to classical ones, and often pay no attention to the 

shortcomings of modern systems. The focus on network model optimization has never been 

explicitly highlighted in a majority of reviewed papers, thus there is an enormous need in 

evaluating similar network class models and exploring the possibilities of network optimization 

for load forecasting. Literature also shows that classical methods are outperformed by intelligent 

system based models, hence an ANN-based model is proposed for this project.  

 

In the contrary, a majority of models that use Artificial Neural Networks have a number of 

drawbacks. The three major problems encountered are: long training period, the dependence on 

initial parameters, and the development of an optimal network structure for better load 

forecasting. Surely ANN-based models for load forecasting can be improved by employing good 
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network trainings using appropriate training algorithms (genetic algorithms, customized back 

propagation algorithms, rough set theory etc), as a result this topic needs to be investigated.     

 

Since this research project is based on forecasting an electric power system load, there is a need 

to discuss general requirements for a good forecasting system and also the factors affecting the 

load at different time horizons. Thus the following chapter of this document briefly covers the 

aforementioned issues.        
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----------------------------------------------------- 

CHAPTER THREE  

POWER SYSTEM LOAD FORECASTING

 
This chapter discusses the characteristics of power system loads and the effect of endogenous and 

exogenous factors on an electric load. These factors determine the amount of energy usage at a given time. 

In fact, the accuracy of a forecast depends predominantly on these factors. In addition, the latter part of this 

chapter covers general requirements of a good forecasting system.     

 

3.1 Overview  

An electric load refers to the power consumed by an electric circuit at its output terminal. Figure 3.1 

shows a simple electric circuit presented by a voltage source sV in series with an internal 

resistance sR , and then the load at the circuit terminal.  

 

Fig 3.1: A simple AC circuit  

 

The set-up illustrated in Figure 3.1 can readily be generalised to a complete AC circuit by 

introducing line parameters such as reactive and capacitive impedances.  

 

3.2 Characteristics of a power system load  
The behaviour of a power system load depends on a number of factors. Thus the load does not satisfy 

the superposition principle i.e. the load is not necessary the sum of linear independent variables, but 

it is rather a nonlinear system. As commonly known, nonlinear problems are often difficult to solve 

and much less understood than linear problems. Hence, power system load forecasting is a great 

computational problem for many researchers and network planners. 

 

3.3 Factors influencing the load 
The system load, in power operation context, is the sum of consumers’ load at the time. A consumer 

load trend is as different as ‘chalk and cheese’ and influenced by a thousand of factors.   There is no 

any engineering rule that guides the selecting of these factors. Thus this process is mainly based on 
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experience gained from the correlation analysis between the load and potential influencing factors. 

The only existing criterion is that load forecasting in power systems can generally be divided into 

three different time horizons: short, medium, and long term load forecasting. However, factors 

affecting the load at different time horizons are not necessary the same. The variation in the short-

term load depends heavily on time factors i.e. hour of the day, day of the week etc. Medium to long 

term load is determined by factors such as population growth, per capital income, demographic 

factors, gross domestic product (GDP) and so on. Most utility companies use this distinctive 

dependence in selecting the input variables.  

Possible factors that may influence the load in various time horizons are discussed the following 

section. 

 

3.3.1 Short-term load forecasting (STLF) 

Generally, it is impractical to determine the major influencing factors for a certain forecast time 

horizon. However, some of the factors highlighted in Figure 3.2 could be considered for STLF. 

  

Fig. 3.2: Possible influencing factors – for STLF.  

    

a) Consumer category: residential, commercial, and Industrial – the electrical usage trend is 

unique for customers that belong to different categories. Normally, industrial type customers 

consume a large part of electricity. Residential load are normally the smallest and often 

complex to determine due to different consumer electricity usage routines.   

 

b) Meteorological related-factors: temperature, humidity, cloud rate, and wind speed. 

Weather conditions influence the short term load greatly. Literature shows that, weather 

conditions have a strong correlation with the load, especially the temperature. In fact, load 

forecasting can be concluded using only weather related inputs.  

 

Recent load pattern Climatic conditions Seasonal effects  

DSM 

Random disturbances  Time factors 

Consumer category 
Special events 

STLF 
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A general guideline on the effect of weather related conditions on the system load has been 

discussed in the work of (Say, 1976). Typically, the impact are as follow: a 1˚C temperature 

change will produce a change in load of about 1 per cent, an overcast sky as compared to a 

clear sky will increase the load by 3-4 per cent, while thick fog may increase it by 10-12 per 

cent, and an increase of 1 per cent in load for every 4km/h wind velocity. Authors (Satish et 

al., 2004), report that STLF can be concluded by only using weather related conditions such 

as temperature. 

 

c) Recent historical load pattern: Despite the fact that load forecasting can be concluded by 

using limited input variables, the recent and corresponding past load trend is mainly the 

backbone of the forecast. The selected factors will then define the dimension of the training 

data set. Ideally, the training data set should cover the whole problem space as this enables 

the network to identify and map input-output patterns adequately. The biggest problem here 

is to determine the optimal number of consumption instances, prior to the value to be 

predicted. Usually, the data points set is arbitrary determined, but taking into consideration 

the result obtained by using correlation analysis. However, the block entropy analysis 

performed by (Santos et al., 2006), reports that the use of long chains of contiguous load 

values does not offer any sort of benefit in the design of the IV of the ANN. For STLF, 1 

week past contiguous load values could be adequate to design an IV structure and 

subsequently forecast the load with reasonable accuracy (Santos et al., 2007).  

 

d) Time of the day: The load has a cyclic characteristic. Unlike industrial load that is slightly 

stable, depending on production levels, the residential one changes greatly during the day. 

Peaks for a residential load are frequently observed in the mornings, mid days, and in the 

afternoons.   

 

e) Day of the week: i.e. weekdays or weekends. Generally, each day of the week has its unique 

electricity demand trend. Sometimes the days of the week could be selected as inputs to a 

forecasting model. (Adepoju et al., 2007) report that two load patterns namely: weekends 

and week days load patterns. Their result illustrates that the greatest peak loads are often 

recorded on Fridays, otherwise the load is slightly constant from Monday through Thursday.  

 

f) Seasonal effects: The seasonal changes have direct influence on system loads. For supply 

security and reliability, most utility companies consider worst case scenarios  (seasonal 
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variation effects). The heating loads (in winter) and cooling loads (in summer) are normally 

viewed as maximum and minimum peak load thresholds respectively. The seasonal variation 

determines whether a utility company is summer or winter peaking (Gross et al., 1987). 

 

g) Special events: Depending on the magnitude of an episode in terms of power requirements, 

the associated demand could significantly influence the planned system load. For instance, 

the FIFA 2010 Word Soccer Cup related activities may greatly influence the load in the 

South African power system. Often such events are thorny to consider in a load forecasting 

model.  

 

h) Holidays: Other factors that add uncertainties in the forecasts are religious or national 

holidays. Load variations due to these factors are minimal and often negligible, thus often 

weekend load curves are used instead.  

 

i) Random disturbances: Unlike residential consumers with smooth load curves, a slight 

change in industrial loads causes a significant load variation. For instance, if one considers 

the impact on the load as a result of starting-up or shutting down large loads such as 

smelters, wind tunnels, or steel mill, indisputably the change is not negligible.  

 

j) DSM (Demand Side Management) Initiatives: This approach entails actions that influence 

the quantity or pattern of use of electric energy consumed by end users. A good example 

would be the prevailing power shortage especially in the South African region which has 

certainly forced power utility companies in the region to implement ongoing and aggressive 

DSM initiatives such as compact fluorescent lamps (CFL) lighting, the use of energy 

efficient motors, implementation of time-of-use (TOU) tariffs, residential load management. 

Other demand management strategies include emergency generation, independent power 

production, and industrial cogeneration.  Although DSM is a short term strategic approach, it 

helps the utilities to defer the expenditure associated with additional generation capacity by 

reducing total end-user demand (Boake, 2003). These measures are required immediately to 

minimise the risk of load shedding of “non-essential load” until the additional generation 

capacity can be built, but the reality is that they will be required for the foreseeable future 

(Ross et al., 2008) 
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The forecast time horizon determines which factors could be selected in the design of input vector of 

a forecasting model. For medium-to-long term load forecasting the factors discussed below may need 

to be considered.   

 

3.3.2 Medium-to-long term load forecasting (M-LTLF) 

Contrary to the factors affecting STLF, medium-to-long term load forecasting involves numerous 

uncertainties that are often tricky to predict. Some of these factors are indicated in Figure 3.3.  

  

Figure 3.3: Typical influencing factors – for M-LTLF  

 

a) Economic growth: Depending on the economic growth indicator such as GDP (Gross 

Domestic Product) of a particular state, an increase in the economic growth would ideally 

raise the demand (NIEIR, 2007). In fact, economic related factors influence long term load 

trend greatly, thus the consideration requires a special attention in a long term load 

modelling.  

 

b) Energy and environmental policies: Energy policies (often corresponding with 

international laws) have direct influences on the system load. This involves policies aimed at 

promoting energy efficiency, and development of off-grid power generations. Among others, 

most of the utility companies are fully conversant of the environmental policies i.e. 

greenhouse polices and/or emission trading schemes. For a utility to operate within these 

policy bounds, it implies that additional electricity supply resources are required and thus it 

influences the electricity demand growth.  

  

c) Technological change: The change in technology may positively or negatively influence the 

load. For instance, if one considers an aggressive use of gas air conditioning technology 

which will as result offset the electric conditioning systems, thereby reducing the system 

load.  

Others Political factors Technological changes 

Economic growth 

 

Consumer category Demographic 

factors 

Per capital income 
Special events 

M-LTLF 
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d) Per capital income: Often income rate per household determines the corresponding space 

comforts. Consumer preferences (heating or cooling loads) rely heavily on real income 

ranges, thus the demand is either positively or negatively influenced.  

 

e) Demographic factors: A raise in the population of a certain locality would obviously result 

in an increase in the demand. For a single locality, the impact seems to be relatively small 

but the lump-sum effect is surely not negligible. 

 

f) Customer category: The impact of a large industrial load growth could affect the forecast in 

the long run, thus this should be considered.   

 

g) Political factors:  Politically motivated wars in a particular state can influence inhabitant’s 

decisions to immigrate to other countries. The movement directly affects the population, and 

subsequently affect the load negatively and vice versa. Other stakeholders such as 

independent power producers (IPP) may also find it senseless to invest and operate in a peace 

challenged country.  

 

Others: For example, upstream developments, such as a construction of a new generation plant or 

regional inter-connectors, will certainly influence electricity prices and demand through final retail 

prices. This implies that the electricity tariffs are highly likely to be increased, hence affordability 

determines usability. 

 

 3.4      Load features  
 

3.4.1   Types of load banks 
An electric load is formed by load banks. There are three common types of load banks: resistive load 

bank, reactive load bank, and capacitive load bank. Load banks are used for different purposes. A 

general example for a resistive load would be: the conversion of electric energy to heat by power 

resistor in a circuit. For a resistive load, the angle between the current and voltage is zero or in-phase, 

thus the circuit always operates at a unity power factor.  

Reactive load bank includes inductive apparatus such as induction motors, transformers, lighting etc, 

and has a lagging power factor. Capacitive load bank is somehow similar to the reactive load bank in 

rating and purpose, except that a leading power factor load is introduced.  
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3.4.2 Load categories 
Power system loads can be divided into three categories, namely: linear loads, nonlinear loads, and 

special loads. For linear loads, the load impedance is always constant regardless of the applied 

voltage and the load current increases proportionally as the voltage increases and vice versa. 

Typically, linear loads include motors, incandescent lighting, heating loads etc.  

 

For instance, starting a large motor has a great impact on power system load, especially for direct on 

line (DOL) motors due high starting currents. For a DOL, the starting current is normally 7 times 

higher than the rated full load current. Thus this type of loads may contribute significantly to cost 

intensive high peak demands. Other soft-starting techniques (i.e. star-delta, rotor resistance, auto 

transformer starting etc) are widely used for economic operations of electric machines. 

 

Load currents in electronic loads such as computers, uninterrupted power supply (UPS), variable 

speed motor drive, thyristor controlled equipment etc are neither proportional to the instantaneous 

voltage nor continuous. These loads are typical examples of nonlinear loads. Other loads, such as 

motors used in lift applications, have different nature of operations i.e. here motors are frequently 

started. Therefore, general design standards specify lower starting currents. Typically, starting 

current of a lift motor should be less than 75% of the rated current. The contribution of special loads 

and nonlinear loads to the overall power system load often falls within the average of the load base.  

 

3.4.3 Consumer classes    

 Electric power is used by different types of consumers: residential, commercial and industrial. Load 

profile for each consumer class is unique and it depends mainly on types of appliances used, daily 

activity patterns. Residential consumers generally use electric energy for heating, cooling, and 

illumination and consume about half of the electric power. Commercial businesses purchase 

electricity for a variety of commercial functions i.e. office machinery, store display lighting, parking 

bay lighting, escalators etc. Whilst industrial facilities and plants need electricity to power processes 

such as compressor, conveyor motor, air conditioning, and other manufacturing applications. This 

distinction of various consumer classes is essential for electric utilities in determining electricity 

prices, because rates charged for each class are different.   

 

The first section of this chapter gives a comprehensive introduction to the power system load. The 

following section now discusses some requirements for a good and reliable forecasting system. 
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3.5 Prerequisites of a good STLF System  
Most of demand or load management programs used by electric utilities comprise STLF units. Every 

utility intends to have a reliable STLF system for economical operations of power systems. The 

reliability and robustness of the system primarily depend on the accuracy of the forecasts. Though, 

there are other important requirements for a good STLF system. These requirements take account of:  

� Fast speed 

� Accuracy 

� Automatic data access 

� Friendly interface 

� Timely forecast  

� Automatic performance evaluation of the obtained forecast  

� Automatic bad data detection and forecasting report generation.    

 

3.5.1 Fast Speed  
Forecasting programs with different techniques, network topologies, training algorithm, desired 

goals, etc have diverse convergence periods. This means that the speed of the forecasting depends on 

the system structure. The idea is to put together an optimal forecasting structure that yields accurate 

results in the shortest period. 

  

3.5.2 Accuracy  
Accurate forecasts drastically benefit utilities and other stakeholders in a number of ways. In fact, the 

main goal of a majority of review papers on STLF is to produce forecasts with a reasonable degree of 

accuracy.  In essence in power generation sector, just a simple decision with regards to price based 

unit commitment (PBUC) requires an accurate STLF system. 

 

3.5.3 Automatic data access 
Load forecasting models or systems normally require a number of inputs, namely: historical load 

data, weather related inputs, sinusoidal functions and so on. Thus there exists a need of a database 

where all relevant model inputs are stored. This implies the system should be able to automatically 

access and extract required data from the database.  

 

The database is principally for historical data. Some inputs such as weather parameters may need to 

be captured automatically on-line. For this process, the use of some communication options (internet, 

telemetry, or external modems) could be enforced. The data base is also used to store the results from 

the developed forecasting models.   
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3.5.4 Friendly interface 

The forecasting model should be easy to use and convenient.  

 

3.5.5 Timely forecast  
 If a network operator gets forecasts, even accurate forecasts, from the planning department but 

outdated, it’s highly likely that the operator will implement unrealistic decisions.  Therefore, a good 

STLF system should yield forecasts which are timely and corresponding to the desired forecast lead 

periods.  

 

3.5.6  Automatic model performance evaluation 
Because accuracy is a key measure in forecasting, the design structure of a good forecasting system 

should specify some permissible error limits.  In this work, the standard mean squared error is 

employed. The error bound is defined as: %5.2%5.2 ≤≤− MSE . However, this performance measure 

condition is not applicable when the average forecast error is consistently smaller than these limits.  

 

3.5.7  Bad data detection  
Out of range data (outliers) is one of the major challenges in computational problems. In load 

forecasting for example, historical data are gathered and stored in a database. However, some these 

data especially estimated data, can fall beyond the reasonable data boundaries, hence a bad data 

detection strategy should be formulated and implemented to identify and replace the bad data. In the 

early days, STLF systems relied heavily on the power system operators to interpret the data and 

subsequently get rid of the bad data (Yang et al., 2006). Detecting bad data manually is a work 

burden and demanding exercise for operators, thus automated bad data detection can accelerate the 

forecasting process.  

 

3.5.8 Automatic forecasting report generation  

Forecasting results should be presented in a manner that is easily understood and interpreted by the 

end-user. In simple terms, the results may need to be illustrated in numerical and graphical forms.  

  

3.6    Conclusion   
To briefly summarize the preceding chapters, the following concepts have been covered: firstly, a 

general overview on the subject topic was discussed, and then a review on the existing methods and 

drawbacks of these techniques were explored. Secondly, here the third chapter covers the basic 

requirements of a load forecasting model.  
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The next part of this document now introduces the proposed forecasting method. In other words, the 

following chapter (chapter four) now covers the concept of Artificial Neural Networks (ANN) in 

general context, network training, learning paradigms etc as an attempt to help the reader in 

understanding the architectural network designs of the proposed models.      
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----------------------------------------------------- 

CHAPTER FOUR  

       ARTIFICIAL NEURAL NETWORKS (ANNs) 
 

This chapter introduces a brief history of Artificial Neural Networks (ANNs). The chapter also 

covers an overview of the ANN concept, simplified architecture network topologies, and its basic 

elements, network training, learning paradigms, generalization and training algorithms including 

the proposed error back propagation (BP) algorithm. 

 

4.1 General overview of Artificial Neural Network 

The novelty of Artificial Neural Network (ANN) theory could undoubtedly be attributed to the 

experiment performed by McCulloh and Pitts in modelling bio-systems using nets of simple logical 

operations back in 1943. The idea was to find a simple parametric nonlinear model for a real neuron. 

Ever since this innovation, there has been a great interest from various researchers and scientists, thus 

several ANN-based models in different fields were discovered. The technology though had lost its 

momentum in the late 1969 till 1986 when the back-propagation of error was discovered. To date, 

ANN-based models have been successfully implemented in a number of industries ranging from: 

Aerospace, automotive, defence, electronics, entertainment, financial and so on. Artificial neural 

Networks have been also successfully applied in medical fields. Crawford, 2000 reports acute 

appendicitis (diseases and health conditions) analysis based on ANN methodologies specifically. 

More information regarding the application of ANNs can be found in (Demuth et al., 2008) 

 

ANN is a part and parcel of intelligent based systems, designed distinctively to improve the 

performance of conventional computing techniques. The biggest drawback associated with the so 

called conventional methods is the inability to learn and identify patterns in dynamic systems. Thus 

the need to eliminate this shortcoming through learning is proven essential.  

 

Artificial Neural Network is an information processing paradigm inspired by the way biological 

nervous systems, such as the brain, process information. The characteristic of the biological neuron is 

briefly introduced as an attempt to assist the reader to understand the concept better. The human 

brain has 100 billion biological neurons with about 100 000 connections per neuron. A simplified 

biological neuron is illustrated in Figure 4.1. 
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Fig. 4.1: A biological neuron 

 

Biological neurons receive spikes through synapses located on the dendrites of the neuron. When the 

spikes received are strong enough and exceed a definite threshold, the neuron is activated and fires a 

signal though the axon. This signal travels from the body, down the axon, to the next neuron(s). 

Learning arises by adjusting the effectiveness of the input (synapses) so that it influences one neuron 

on other changes. Humans and highly trained animals use the same configuration and summing up to 

extremely complex networks.  

 

 Similarly, an artificial network is made up of simple interconnected processing elements called 

neurons. The neurons are arranged in a layered structure to complete a network competent of 

executing parallel and distributed computations. Architecture of a simple ANN is shown in Figure 

4.2. The attraction of ANN-based models comes with the network’s ability to learn, recognise data 

patterns, and adapt to a changing environment like the human brain. This adaptive characteristic is 

often called “the human-like reasoning”.  

 

The architecture illustrated in Figure 4.2, presents a three layered feed-forward network. ANN has a 

remarkable capability to develop sense from convoluted or imprecise data,  extract patterns and 

detect trends that are too complex often only noticeable by either humans or other computer 

techniques. A supervised neural network can be trained as a "guru" in a given problem space.   

In broad terms, ANN-based models offer a variety of benefits namely: adaptive learning, self 

organization, real time operation, fault tolerance via redundant information coding. Thus neural 

network processes information in the similar way the human brain does.   
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Fig. 4.2: Architecture structure of a feedforward neural network  

 

4.1.1 Basic Architecture of a feed-forward network   

The feed-forward network topology illustrated in Figure 4.2 permits signals to travel one way only, 

from the input through the hidden layer to the output layer. These types of networks are somehow 

straight forward and associate inputs with outputs. They are extensively used in pattern recognition. 

This kind of organisation is also referred to as bottom-up or top-down and commonly used in pattern 

recognition. 

Figure 4.2 also shows the commonest type of artificial neural network which consists of three layers. 

The hidden layer neurons are connected to the output layer neurons. The functions of each layer in 

the network are defined below: 

a) The input layer neurons represent the pre-processed data fed into the network.  

b) The input of each hidden layer neuron is defined by the sum of the input vector set and the 

connection weights between the input layer and hidden layer.  

c) The input of the output neuron is determined by the weighted sum of outputs of the hidden layer 

neurons.  

d) The output of a neuron is defined by the type of the transfer function used in that specific layer.  

This type of network is attractive because the hidden neurons are free to develop their individual 

representations from the input set.  

 

Input layer Hidden layer Output layer 
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4.1.2 The Perceptron – a network for decision making  

The perceptron, a basic neuron, invented by Rosenblatt in 1957 at the Cornell Aeronautical 

Laboratory in an attempt to understand human memory, learning, and cognitive processes prior to his 

demonstration on the first machine that could "learn" to recognize and identify optical patterns in the 

early 1960. The mathematical model of the perceptron or artificial neuron is modelled in the similar 

manner of the biological architectural set-up. Again, the three major components are considered: 

Axons and synapses of the neuron are modelled as inputs and weights respectively.  

 

The strength of the connection between an input and a neuron is denoted by the value of the weight. 

The mathematical model of this topology is illustrated in Figure 4.3. The weighted inputs are added 

together and passed through a nonlinear activation transfer function. Finally, the activation function 

controls the amplitude of the output of the neuron. The suitable scale of output is usually between 0 

and 1, or -1 and 1.  

 
Fig. 4.3: A perceptron model   

 

Thus the output L̂ can be mathematically formulated as:  
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4.1.2.1 Activation functions 

The activation function acts as a squashing function. In simple terms, the network activation rule is 

denoted as activation function. A number of transfer functions are available for selection. These 
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function, linear function, cosine function and so on. Some of these functions are illustrated in Figure 

4.4.  

 

 

Fig. 4.4: Various types of transfer functions  

 
However there is no engineering rule or “rule of thumb” for the selection of transfer function thus 

the choice is frequently performed arbitrarily. In fact, the effect of different transfer functions on 

network performance has not been explicitly reviewed in a number of literature papers.   

 

4.2 Soft Computing  using Neural Network Topologies 

Generally, there are three common types of neural networks: radial basis function network (RBFN), 

multi-layered perceptron networks (MLP), and recurrent neural networks (RNNs). The distinction in 

different network topologies can perhaps be attributed to the arrangement of neurons and the 

connection patterns of the layers.  A Multi-Layer Perceptron network is the most popular neural 

network type and the most of the reported neural network in STLF.  

 

The inner structure of the processing element (neuron) in each network is interconnected differently, 

and the configuration set-up is often referred to as network topology. The behaviour of the network 

relies greatly on the network topology.   

 

4.2.1 Feedforward Network  

In a MLP feed-forward network, connections are unidirectional and no loops are introduced in the 

network, thus each neuron is linked only to neurons in the next layer. In (Mehta et al., 2003) a feed-

forward network is referred to as a directed cyclic graph. This implies no backward links either.    
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The importance of loopless networks is that computation can proceed uniformly from input neurons 

to output neurons. And since there are no backward links, activation functions from the preceding 

time step play no role in the computation.  Figure 4.5 shows a simple multi-layered feed-forward 

network topology with inputs pxx ,...,1 and output L̂ .  Synoptic weights connected to the hidden 

layer are denoted as ijw and kw for the output layer respectively.  

  

Fig. 4.5: A feedforward network with one hidden layer and one output layer.  

 

Mathematically, the functionality of the hidden neuron is formulated as:  
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Where weights and biases ],[ jij bw are illustrated with arrows feeding into the neuron, 1σ is the tan-

sigmoid, 2σ represents the pure linear transfer function, [ mxx ,...,1 ] denotes the input vector, and 

k =1,2,…,r is the number of hidden layer neurons.  

In Figure 4.5, only one output layer neuron is considered and these types of networks are used for 

single output problem (Sjöberg, 2004). In some approximation problems, the number of output 

neurons equals to the number of outputs. Finally, the output, L̂ , is represented by the compact notion 

as ),( xg φ and it is further simplified as: (Sjöberg, 2004).  
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Where, φ is the parameter vector containing all weights of the network, r  and m  represent the 

number of neurons in the hidden layer and input vector respectively. 
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4.2.2 Elman Recurrent (ER) Network  

The organisation of a recurrent network is comparable to a human brain network. Unlike MLP 

network, recurrent structure introduces cycles or loops and backward links in the network (Mehta et 

al., 2003).  Feedback networks are exceptionally dominant and can get extremely convoluted. The 

behaviour of these types on networks is known to be changing continuously until they reach an 

equilibrium point. This implies the state of the network remains at the equilibrium point until the 

input changes and a new equilibrium needs to be found. Feedback architectures are also referred to as 

interactive or recurrent, although the latter term is often used to denote feedback connections in 

single-layer organisations. Figure 4.6 shows a typical topology of recurrent networks. 

    

 

Fig. 4.6: A structure of an Elman (Recurrent) Network  

 

 

4.2.3 Radial Basis Function (RBF) Network  

The radial basis function network is probably the second widely used type of Artificial Neural 

Network in contrast to the standard Feedforward MLP network.  RBF emerged as a variant of ANN 

in late 80’s and it is commonly as a pattern recognition technique. Some of the typical applications of 

this network include: clustering, function approximation, spline interpolation (Tou et al., 1974).  

 

 The RBF network topology is also configured like that of a feedforward network, but the distinction 

is conceivably can be attributed to the structure of the hidden layer and its output computation 

approach. Its network also comprises of input, hidden or memory, and output neurons respectively.  

 

Figure 4.7 shows network structure of a two-layered radial basis function network topology. A linear 

transfer function is used in the output layer and a nonlinear transfer function (normally the Gaussian) 

for the hidden layer.  
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The idea of RBF is to execute a mapping of vector variable x  into another vector variable u  based 

on the set of learning samples. As commonly known, the estimator which minimizes the mean square 

error is the conditional average estimator (CAE).  Mathematically, the RBF output forms a linear part 

given by: 

),(ˆ ugL φ=                 (4.4) 

Whereφ is the parameter vector containing all weights of the network and x denotes the input vector.    

 
 
    Fig. 4.7:  A radial basis function network (RBF) network topology. 

 

Hence, the output L̂ is formulated as: 
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Where ( )φ,ixxw − represents a smooth approximation of delta function, as illustrated below:  
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Applying a Gaussian function, Equation (4.5) becomes:   
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Where the parameters xi and φ describe the center and the width of the receptive field of i-th neuron 

respectively and .  denotes the Euclidean norm.         

 

Each hidden neuron in an RBF takes its input from all the outputs of the input layer x
i
. The hidden 

neuron contains a "basis function" with parameters "center" and "width". The center of the basis 

function is a vector of numbers c
i
 of the same size as the inputs to the neuron and there is normally a 

different center for each neuron in the neural network. Thus the radial distance‘d’ between the input 

vector x
i
 and the center of the basis function is the computed as: 

 

( ) ( ) ( )( )2222211 ... nn cxcxcxd −++−+−=                       (4.8) 

 

The output of the neuron in the output layer L̂  is then calculated by applying the basis function ρ  to 

this distance divided by the width w: 

 









=

w

d
L ρˆ

               (4.9) 

 

This type of network is not applied in this work, however more reading materials on RBF can be 

found in (Neruda et al., 2004), and (Sjöberg, 2004).  

 

4.3 ANN Training and Generalization  

There are various processes involved in developing a supervised ANN-based model. Amongst others, 

training process and validation process are some of the vital steps. The input-output patterns are 

repeatedly presented to the network during the training process. Through this process, the network 

learns the subjected environment or patterns, and eventually yields the desired output. The desired 

output is attained as a result of adjusting weights of all interconnections between neurons to establish 

the correct set of input-output response. However, during the training process, optimal training time 

is required to avoid overtraining. Overtraining of the network can be prevented by employing 

complex stopping criterion. Early stopping (the most common), regularization, pruning, information 

criterion pruning (ICP), cross-validation pruning (CVP) are some of the stopping methods. Due to 

space limitation, only some of these methods are covered in this work. However the reader is 

encouraged to refer to the work of (Rech, 2002).    A detailed reference on overfitting is discussed in 

(Paruelo et al., 1997). 
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Training the network at infinitum normally results in a reduced error function for a given set of 

inputs. Though, this does not guarantee better accuracy and robustness of the network because the 

error could be extremely big if the network is presented with the data it has not seen before. This 

characteristic is explored during the validation process. Moreover, the validation process also 

improves the network reliability and generalisation. 

 

4.3.1 Network Coupled Errors  

Broadly speaking, there exist two types of errors during the training process: training error and 

generalization error. The general error presentation can be seen in Figure 4.8. At the beginning of the 

training, the training error is at maximum, and gradually decreases as time elapses.  Optimum 

training time should be within the circled area in order to maintain network generalisation tendency. 

In essence, the desired goal should not be an error-free output, as the network will tend to memorise 

the input-output patterns if trained at infinitum.   

 

 

 

 

 

 

Fig. 4.8: Errors vs. Optimal network training time 

 
4.4 ANN Learning Paradigms  

Like in any other intelligent based systems, a desired output of the network does not come by chance. 

The network rather adapts itself to a stimulus, and ultimately yields the desired output. The main 

difference here perhaps could be featured to the type of learning a particular network is subjected to. 

 

Broadly speaking, there are different learning paradigms that can be used to train neural networks. 

Supervised and unsupervised learning are the most common, with reinforced and competitive 

learning techniques also gaining considerable popularities. 

The learning process is essential to adjust network weights in order to reduce the error. During the 

process of adapting and adjusting the synaptic weights, the network acquires knowledge similar to 

human-like reasoning.   

 

Error 

Training time 

Training Error  

Generalisation 

Error 
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However, the learning process requires sets of mathematical algorithms describing how synoptic 

network weights and biases are attuned.  By default, MatLab
®
 employs gradient descent based 

training algorithm commonly known as “Levenberg-Marquardt”.  However other training algorithms 

could be selected or derived.   

 

4.4.1 Supervised Learning  

This is a type of training approach where the input and the desired output are clearly specified. 

Suppose, the input vector is represented by [ mxx ,...,1 ] and the corresponding output vector is 

denoted by myy ,...,1 , an optimal rule is to be determined such that:  

 

ε+= ],...,[],...,[ 11 mm xxfyy           (4.10) 

Whereε represents the approximation error. In this example, the error could be a vector.  

 

The idea is that the network adjusts its weights as an attempt to minimize the approximation error 

preferably to the smallest value possible, and thereafter the network returns a trial result. This result 

is then compared to the desired output. Figure 4.9 illustrates a basic network structure for a 

supervised ANN model. Here the error function is fed back into the system as an attempt to find a 

correct set of input vectors.    

 

If the desired threshold is not attained, another update of the network weight vectors could be 

initiated. In dynamic systems especially, the need for a network to map the nonlinear relationship 

between inputs and outputs is enormous, thus this approach is commonly employed in ANN based 

models.  

Some of the key measures to evaluate a supervised learning session are: time required per iteration, 

number of iterations per unit pattern, convergence points i.e. local or global minima(s) etc.   

 

4.4.2 Unsupervised learning  

In contrast to supervised learning, this training method does not require an external teacher. This 

implies there no explicit target output is presented to the network. 
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Fig 4.9: A basic layout for a supervised learning paradigm using error correction technique  

 

Unsupervised learning studies how the system can respond to various input patterns during the 

training session, and subsequently presents the input patterns in a way that reflects the statistical 

structure of the overall collection of the input patterns.  Because this learning method self-organises 

data offered to the network and discovers their emergent shared properties, it is also often referred to 

as “self-organised learning”. Hebbian learning is one of the common unsupervised learning 

paradigms. 

 

(Kalteh et al., 2007) report that self organising maps (SOMs) are promising techniques to investigate, 

model, and control many types of water resources processes and systems. Moreover, unsupervised 

learning is proved superior in a number of applications including data visualisation, pattern 

classification etc. In (Valova et al., 2005) a parallel growing architecture for self organising maps has 

been investigated.  

 

4.4.3 Other Types of Learning 

Reinforced learning and competitive learning are other types of learning paradigms. In the reinforced 

learning an external teacher is required although still no desired output targets are presented to the 

network. The teacher scores or rates the output of the network with either a pass or fail. A fail score 

implies the network has to readjust its parameters again and again until targeted outputs are 

eventually observed. If the network yields a correct response, a reward is given otherwise a penalty is 

guaranteed for out-of-range responses. However, the response rating limits of the network should be 

declared so that the teacher should not continue scoring at infinitum.            

Competitive learning is known to be a “racing” learning method. This approach uses a rule based on 

the idea that only one neuron in the layer fires at a time for a given iteration. In other words, neurons 

compete among themselves to be activated. The output neuron that wins the “racing” is then referred 

to as the winner-takes-all neuron. In the winner-takes-all schema, the output neuron receiving the 

largest input is fully credited, whereas outputs of other neurons are suppressed to a 0 value.  
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Competitive learning rule can be mathematically defined as: 

)()()1( kwkwkw ijijij ∆+=+        (4.11) 

 

Where, )()( ijij wxkw −=∆ η  for ji = , otherwise 0)( =∆ kwij , η  denotes the learning rate, x is a 

randomly picked input, and )(kwij is the current weight value.  

 

Competitive learning is very common, and most of the feature maps are based on this method. For 

instance, self-organising feature maps, Kohonen’s special class of neural networks introduced in the 

late 1980s.    

 

4.5 Competent Learning Process for ANNs  

In addition to the ANN learning paradigms discussed earlier in this chapter, here other main issues 

compulsory for a successful ANN training are exclusively introduced. They are: learning rule, and 

learning theory. Unlike learning paradigm, learning rule classifies how network weights should be 

adjusted in the learning trials. There are four basic types of learning rule: error-correlation learning 

(ECL), Boltzmann learning (BL), Hebbian learning (HL) and competitive learning (CL).  Most of the 

supervised learning algorithms use these learning rules during training.   

Error-correction learning is the method of comparing the network output to the desired output value, 

and using that error to guide the training. In the most guiding phases, the error values can be used to 

directly adjust the tap weights, using an algorithm such as the backpropagation algorithm. 

Mathematically, the error used by this method can be formulated as:  

LL ˆ−=ε              (4.12) 

Where, ε is the error value, L is the target output, and L̂ denotes the network output.  

At each training iteration, error correction learning algorithms attempt to minimize this error 

function. This method is mostly used in backpropagation learning algorithms. 

 

The originality of the Hebbian learning rule could perhaps be attributed to a hypothesis proposed by 

D. Hebb back in the year 1949. The concept is currently adopted as Hebb’s Law, and is one of the 

key ideas in biological learning. The Hebb’ Law can be presented in the form of two sub-rules:  

1. If two neurons on either side of a connection are activated synchronously, then the weight of that 

connection is increased. 

2. If two neurons on either side of a connection are activated asynchronously, then the weight of that 
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connection is decreased. 

In simple terms, the Hebbian learning rule specifies how much the weight between two neurons 

should be increased or decreased in proportion to their activation (Hebb,1949, Mazzoni et al., 1991, 

and Hertz et al., 1991). Suppose iα and jα are the activations of the neurons i and j , and ijw is the 

synoptic weight between them, then the basic form of the Hebbian rule can be formulated as:  

jiijw αηα=∆          (4.13) 

Where, ijw∆ is the change is in the synoptic weight, and η  is the learning rate. Another powerful 

learning rule is the delta rule. This rule utilizes the discrepancy between the desired and actual output 

of each output unit to change the weights between neurons. 

 

Another vital component for competent learning process of neural networks is the learning theory. 

This concept covers issues related to data quality, data quantity, and best convergence etc. i.e. 

training data in general. In most of the viewed papers, researchers tend to omit explanations with 

regards to criterion used for selecting certain variables, training samples, data quality etc. It’s obvious 

there is no general rule in selecting historical data of the phenomena of interest. Thus the input 

variables are purely identified based on judgements and experiences. In most cases, variables with 

strong correlation with the target output(s) are suggested.  The selection of training data is extremely 

crucial as it could improve adaptability, reliability, and robustness of an ANN. Training data with an 

extended phenomena space margin and free from outrange data points are normally preferred. The 

larger training data can increase the accuracy of network generalization but it also increases the 

computation time of the learning process.   

 

4.6 Error Back Propagation (BP) Learning Algorithm. 

Error back propagation is a common technique of teaching ANNs how to perform a given task. The 

term back-propagation refers to the manner in which the gradient is computed for nonlinear 

multilayer networks. In simple terms, the gradient is the derivatives of the error with respect to the 

weight (
k

k
w

g
∂

∂
=

ε
), and rk ,1= . This method was first described by Paul Werbos in the mid 1970s, 

and it only gained recognition about ten years later.  

Figure 4.10 shows a simplified supervised ANN training design chart using backpropagation method. 

First of all, the input(s) and desired target (s) are presented to the network prior to computing the 

resulting output. The difference between the desired and resulting outputs is known as the error. If 
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Apply input(s)-target(s) to the network 

Compute the error 

YES NO 

Goal met/ End Use the error to modify the weights and biases  

Start 

Compute the resulting Output 

 

Resulting Output = Desired output 

the error is greater than the acceptable threshold, the network will continue to adjust the weights and 

biases for all neurons using the error.  

Though, this process (adjusting of weights and biases) does not continue at infinitum.    

The network repeats the process until the error reaches an acceptable value (typically error ≤ goal), 

which means that the NN was trained successfully. If a maximum count of iterations is reached 

without attaining the goal, this implies that the NN training was not successful.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 4.10: A simple design chart for a supervised BP training method 

 

The basic implementation of backpropagation learning deals with the adjusting of network weights 

and biases in the direction in which the performance function decreases most rapidly, the negative of 

the gradient. The basic back propagation algorithms are: gradient descent and gradient descent with 

momentum. The simplest approach of this technique can be formulated as:  

kkk gww η−=+1             (4.15) 

Where kw  denotes the vector of current weights and biases, kg  is the current gradient, and η  is the 

learning rate. 

Gradient descent algorithm are reported too slow for practical problems and highly likely to get stuck 

in a shallow local minima. Thus a momentum term is introduced to enable the network to respond 

not only to the local gradient, but also to global minima.  
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With the standard descent algorithms, the arbitrarily selected learning rate is kept constant 

throughout training. And since the performance of the algorithm is very sensitive to the proper 

setting of the learning rate, optimal setting of the learning rate is extremely essential. If the learning 

rate is set too high, the algorithm can oscillate and become unstable. If the learning rate is too small, 

the algorithm takes too long to converge. (Alam et al., 2007) conducted a study on network structure 

parameters and concluded that the learning rate, number of hidden layers and neurons have impact on 

network training. To improve the learning process, other algorithms with variable learning rate such 

as: Conjugate Gradient algorithm (CG), Quasi-Newton algorithm (QN), Lavenberg- Marquardt (LM) 

could be used. These types of algorithms are designed primarily for high performance, 

optimalization, and faster convergence and are often recommended for real world problems.  

 

4.7 Conclusion  

This chapter contains the backbone theory of the ANNs. It commences with a brief history of ANNs, 

some applications and also the biological background for the methodology. Moreover, the chapter 

also highlights the commonly used Neural Network topologies, and some essential training issues 

such as input vector (IV), various learning paradigms, stopping criterion, generalisation, and some 

basic information about training algorithms (including the proposed error back propagation).  

 

It can be seen that prior to training, one needs to present an IV containing training data of the 

phenomenon of interest to the network. Thus there is a call for data collection. The process of data 

collection is fairly involving and often time consuming in a sense that the data have to be 

preprocessed to get rid of out-of-range data. In addition, all data should be normalized or scaled to 

values ranging from 0 to 1 due to ANN’s vulnerability to raw data and to avoid convergence related 

problems. These important topics are exclusively covered in the next chapter (Chapter 5).  
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-----------------------------------------------------

CHAPTER FIVE  

         DATA COLLECTION AND PRE-PROCESSING  
 

The purpose of this chapter is primarily to discuss types of data used as inputs to the proposed 

forecasting models and data collection methods used in the research. The chapter also covers the 

importance of data processing, particularly pre-processing of data prior to forecasting. Moreover, 

this section talks about the configuration and setting-up of the database engine, and retrieval of 

data from the database to various forecasting models.  

 

5.1 Data Description   

Data collection is a significant function of any type of research study. Inaccurate or insufficient data 

can impact the results of a study and ultimately lead to invalid or skewed results (Lendasse et al., 

2000). In this work, various data collection methods had been employed to ensure adequate historical 

samples of the load.  

 

As discussed in previous chapters, a power system load is affected by a number of factors. These 

include exogenous and endogenous variables. A good forecasting system requires variables which 

have a strong correlation with the load. Thus the evolved models will be presented with the following 

inputs: load and weather data to forecast the load in different time horizons. As previously discussed, 

the selection of the input variables is rather done arbitrary, based on the correlation analysis, and 

sometimes on recommendations made in previous works and experience. Literature reports that, 

amongst all other weather related factors, temperature has the most notable dependency in load 

variation.     

 

The actual load data for the CPUT Bellville campus were used to evaluate the effectiveness of the 

models. The campus 11kV ring connected reticulation network comprises 13 substations mainly 

feeding educational buildings, residential buildings, and a sport field.  The network has 8 x 500kVA, 

11/0.4 kV and 6 other 1000kVA, 11/0.4kV distribution transformers. A single line diagram of this 

network is shown in Figure 5.1.   Two types of loads were measured: total load and departmental 

loads. The measurements for departmental loads were taken at the LT side of transformers. As for the 

total (combined) load, measurements were taken at the main in-intake sub station (labelled as 

Pentech in Fig. 5.1). The geographical layout of these sub stations as well as some measurement 

points are also shown in the Figure 5.1.  
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Fig. 5.1: Single line diagram – 11kV network reticulation of the campus  
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During data collection process, power meters were installed at designated substations to measure 

power consumptions at different integration periods i.e.  quarterly, sub-hourly, and hourly bases.  

Weather data were obtained from a local meteorological office.  

 

5.2  Data collection methods  

In this work, various quantitative data gathering strategies were utilized. Some of the strategies 

used to gather relevant information are given below: 

� Taking measurements -  (i.e. the actual load for the entire campus, and departmental loads)   

� Observing and recording well-defined load trend (e.g., recess break periods, special events, 

anomalous days etc) 

� Obtaining relevant data from management information systems (the contractual maximum 

demand threshold – 2.2 MW declared by the institution to the CoCT).   

� Administering surveys with closed-ended questions with network operators (e.g., face-to 

face and telephone interviews, questionnaires)  

 

Based on the Audience, Behaviour, Conditions, and Degree (ABCD) rule on measurable 

objectives, several inception meetings with audiences or stakeholders were held. Inter alia, the 

widely used face-to-face interactions approach with stakeholders i.e. network operators, CPUT 

management, and suppliers was initiated to establish rapport and thereof possibly gain their 

cooperation.  Contrary to the said strategy, telephone interviews were also used not only to 

optimally utilise the resources but also because this communication method is less time 

consuming. The data collection is an involving exercise and often consumes a lot of time and 

resources. Table 5.1 – shows a chronological data gathering schedule for this research. Two 

historical load data namely: combined load and departmental loads can be observed.  The 

combined load constitutes the cumulative actual load for the entire campus recorded by a 

statistical or check meter at the main in-take substation. As per Eskom/CoCT Maximum demand 

metering requirements, this meter has been configured to record the load using a 30 minutes 

integration period. 

 

For departmental loads, the scope of this research was as result extended to record power 

consumptions for different departments and building within the campus premises at a lower 

integration sampling period. These data were recorded by a roving Lovato DMK40 power meter 

for a period of 2 weeks per locality.   The DMK40 meter is class 1 meter to IEC/EN 61036 and 

IEC/EN 61268 standards and it can measure and display more than 251 power parameters.    
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Table 5.1: A typical integrated schedule – for data gathering paradigm  

 

5.3 Description of the load data 

5.3.1 The combined (total) load data 

As previously mentioned, the combined load data were measured at the main in-take substation of 

the CPUT Bellville Campus for a period of four months per season. Because the load is greatly 

influenced by seasonal changes, the data set for the total load used has been divided into two 

categories (seasons): winter and summer. These seasons were subsequently defined as follow: 

winter - a window period from February till May and the latter season from June – September. 

 

 Figure 5.2(a) shows the highest and lowest load curves recorded in winter. With respect to the 

present notified maximum demand (NMD) of 2.2MW, it can be seen that the load has 

staggeringly exceeded the contractual threshold. One now begins to think about the subsequent 

penalty charges, normally billed per exceeded kVA, payable by CPUT to CoCT. These charges 

can obviously to be avoided if the NMD is reasonably declared. Thus the NMD needs to be 

redefined to a value close to at least 3 MW. 

 

The entire load profile for the total load, excluding power interruptions due to Eskom load 

shedding, for the selected winter period is shown in Figure 5.2 (b).  

The peaks and valleys shown in Fig.5.2 (b) represent typical power consumptions for weekdays 

and weekends respectively. It is extremely important to analysis the historical load data to 

determine input-output data structure. 

Data type Data Source Recording 

Integration 

Period 

Parameter  Location/Bui

lding  

Mobility Duration 

Total load  E-max Max. 

Demand Meter 

30 mins kW Main In-take 

substation 

Stationary 9 months 

Departmental loads DMK 40 Lovato 

Meter 

15 mins kW Admin. BLD,  

Elec. ENG,  

IT, 

Mech. ENG, and  

Air Conditioning  

Plant (ACP) 

Roving  2 weeks/ 

department 

Weather  Meteorological 

office  

daily Min, Max 

Temp (°C), 

Wind Speed, 

Humidity, and 

Cloud rate   

Nearest weather 

service point 

(Cape Town) 

** Jan – August 

2008. Daily 

records  
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Summer  l oad cur ves vs.  NMD -  CPUT Bel l vi l l e Campus ( Feb - Jul y 2008)
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Fig 5.2 (a): Load curves (Lowest & highest recorded load patterns in summer) 
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Fig 5.2 (b): Time series – load trend for the selected summer period. The first day is a Friday     

(during holiday). 

For instance, if one uses the past load values for the weekend load pattern to predict the load for a 

week day, the network is likely to yield wrong results. In this work, the input-output data 

structure is also determined on the basis of historical load trend analysis. Fig. 5.2 (c) shows the 

selected past load values and modelled as network IV to forecast the load for a week ahead on 

hour-by-hour basis and collectively.  
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Fig. 5.2 (c): Structure of IV for the non weather sensitive model.  

 

The total load of the campus is a sum of many departmental and residential loads. The following 

section introduces the descriptions of the load for the selected educational buildings and 

departments.  

A typical load profile for the selected winter period (June – September) is shown in Figure 5.2 

(d).  
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Fig. 5.2 (d): Load profile – for the selected winter period including Eskom’ load rationing  

5.3.2 Departmental loads  

As per measurement schedule illustrated in table 5.1, individual loads for different departments 

were also measured. A typical daily load profile for the Administration building (for a non-
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holiday period) is shown in Figure 5.3(a). The first measurement was taken on Thursday, 5
th
 June 

for a period of six days.  

In Figure 5.3(a) one observes that the load for reaches the peak (approx. 145 kW) at about 08h30 

every week day. Usually, this department gets occupied at around 08h30 till 16:30 for weekdays. 

Thus the average load recorded after 16:30 indicates a reduction of approx. 50% i.e. 65 kW. As 

for weekend load profiles, an average 78 kW was recorded and practically speaking, this big 

power consumption reduction seems to be valid because the building would ideally be 

unoccupied on weekends.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.3 (a): The load over the period June 02 – 15, 2008 for the Administration Building. The first day is a 

Friday. 

  

 As shown in figure 5.3(a), two different load patterns during day time and after hours can be 

clearly observed. Convincingly, the load reaches the peak during the day and then gradually 

reduces immediately after hours. Typical weekly load profiles for the IT, electrical engineering, 

and the administration building are shown in Figure 5.3 (b).   

 

The highest peak of more than 300kW was recorded in the IT Building.  

 

The other interesting load profile, with unique features in terms of fluctuations, was measured at 

the air conditioning plant (ACP). A typical load profile for the ACP is shown in Figure 5.3 (c).  

A load with this type feature is extremely difficult to predict because of the lack of consistence in 

the load pattern. However, the IV structure of this particular load needs to be reviewed. Possibly, 
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instead of using the entire past load values defined in the structure of the previous IV, only most 

recent past load values could be considered.  
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Fig. 5.3 (b): Load profiles – for departmental loads (IT, ADM, and Electrical department). 

 

Load cur ve:  Ai r  Ci ndi t i oni ng Pl ant  -  CPUT Bel l vi l e campus ( 6 -  19 Oct ober  ' 8)
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Fig. 5.3 (c): Load profile – for the Air Conditioning Plant (First day is a Monday). 
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Fig. 5.3 (d): Load profile for the Mechanical Department including the surrounding dwellings. 

  

 

The load profile for the Mechanical department as shown in Figure 5.3 was recorded for a week 

period (1
st
 till 7

th
 September 2008). However, some machines were not in use or operation when 

measurements were taken. Please refer to Appendix F. Thus it was found necessary to add a 45% 

load to the measured load to cater for the worse case scenarios (if machines were to be running 

collectively). Again the peaks and valleys shown in the profile indicate the different load patterns 

on weekdays and weekends. It must however be noted that the load profile shown in Figure 5.3 

(d) also includes the electric energy consumed at the buildings located in the Mechanical 

department geographical zone (including the Craft Tech building).   

 

5.3.3 Characteristic of the total load curve 

As clearly shown in Figure 5.4, the lowest power consumption of the campus is normally at night 

and then the load picks up early in the morning around 07:30. This Figure indicates the load 

profile for Monday 17
th
, 2008. All other weekdays would ideally have similar load curves when 

the institution is fully operational. However load profiles during holidays would obviously be 

different from the pattern shown in Figure 5.4.  

From these graphs, one learns that there is a need for pattern classification. Thus the day-type 

classification in accordance with their corresponding load patterns reflects more or less a precise 

relation with the target load. The recording sampling period is 30 minutes, thus the daily 
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maximum threshold ends at 48. The load profiles for Saturdays and Sundays in winter are shown 

in Figure 5.5 (a) and 5.5 (b) respectively. 
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Fig 5.4: Hourly load curve –March 17, 2008 (Monday)  
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Fig. 5.5(a): Cumulative daily load curve (Saturdays in summer) - Jan to May 2008.  
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Fig. 5.5(b): Cumulative daily load curve (Sundays in summer) 

 

The weekend load profiles show that the power consumption is the lowest on Sundays. 

 

5.4 Correlation analysis between the load and weather data  

Weather conditions influence the load greatly. Without replicating, the weather data used in this 

work were provided by the South African Weather Service office based in Cape Town. Thus the 

correlation between weather related conditions and the consumption is conclusively essential, 

particularly in regions where significant changes in weather conditions are experienced. The 

graph in figure 5.6 shows a scatter plot between the load and wind speed in summer. The other 

weather related variables such as daily average minimum and maximum temperatures, humidity, 

and wind speed were also incorporated into a local database.  

 

The correlation analysis between climatic and load data was also performed to measure the 

statistical association between variables. Table 5.2 summarizes the closeness of linear relations 

defined by correlation coefficients. Mathematical formulation can be defined as follow: suppose, 

x  denotes the consumption and y  represents a weather variable, then the population correction 

between two variables x  and y is given as (Shen, 1999)  

2/1)}(var*)(/{var),(var),( yiancexianceyxianceCoyx =ρ              (5.1) 
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Where ρ  is called the product moment correction coefficient or simply the correlation 

coefficient.    
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Fig 5.6: Scatter plot between wind speed and the consumption in summer.   

 

Consumption Climatic data ),( yxρ    

Wind speed -0.1443 

Humidity 0.0934 

Min_temp -0.1603 

 

Load 

Max_temp -0.1631 

Table 5.2: Correlation analysis between the load and exogenous variables - summer data set 

 

The sign (+ or -) indicates the direction of the relationship. For this particular analysis, all weather 

variables excluding humidity indicate inverse relationships. This implies that if one variable 

increases the other variable decreases.  

 

5.5 Data Storage  

The proposed ANN based forecasting models will be trained off-line using past load data and 

weather forecast data stored in a local database. A general practice for a good STLF system is that 

the relevant data from database are accessed automatically by the model. For this configuration, 

the desired database needs to be identified, and subsequently be correctly installed in a local 

personal computer (PC). There are a number of freeware databases available for data storage 

namely: IBM, DB2, Informix, Ingres, Microsoft Access, Microsoft Excel, Microsoft SQL Server, 
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MySQL, Oracle, PostgreSQL etc. However, if one intends to use MATLAB Database Toolbox, 

the selecting of an appropriate data management system is required because this Toolbox mainly 

supports ODBC/JDBC protocol compliant systems. A comprehensive procedure on how to set up 

MySQL Database and conversion of data into required format can be found in (Kriger, 2007).  

 

 In this work, all historical data are stored in MySQL DB Manager Database and then imported 

into MATLAB as desired via ODBC communication protocol. The DB (MySQL) Manager 

Professional 3.0 software is a freeware data management system and it is primarily designed for 

research purposes.   

Since the models need to automatically access the input data stored in the Database, some 

MATLAB Database Toolbox functions (Structured Query Language (SQL)) syntax are used to 

extract the required data from the Database into MATLAB Workspace.  

 

Figure 5.7(a) gives a general layout of MySQL Database. MySQL Database Software allows a 

user to create one or more databases and tables. For the purpose of this research, 1 database 

(‘combinedloaddata’) was created and then configured. In this database, various table storing data 

for different models have been created. Figure 5.7 (b) shows some of the tables that were created 

in the Database. The required data were then extracted from these tables using Standard Query 

Language (SQL) MATLAB functions into MATLAB workspace.   

    

5.5.1 Importing Data into MySQL Database  

The DBManager can import, export structure data to and from some known databases. Depending 

on the format and structure of the required data, the DAO or Text import wizard can be used to 

import the data into MySQL Database.  

 

The DAO wizard uses the MS DAO drivers to convert and import data from the supported files: 

MS-Access, MS-Excel, Dbase/Clipper/FoxPro, ODBC data sources etc. To use this wizard one 

must have MS Office or at least the DAO drivers installed. This import wizard often has some 

conversion problems, especially if one deals with data in different formats.  

 

Unlike the DAO, the text wizard imports fixed or delimited text files into a database table. Here 

data are kept or imported in designated delimited columns as shown in Figure 5.7 (c).  Again, 

depending on the format of the data and types, the suitable delimiter i.e. tab, semicolon, comma 
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or spaces should be selected. The text wizard method appears to be the most convenient approach 

particularly if one plans to import data in different formats. 

 
Fig. 5.7 (a): A general overview of DB Manager – Workspace (where historical load and weather data are 

stored). 

  

Fig. 5.7(b): A typical layout of some of the created tables.  
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Fig. 5.7(c): Importing data from an Excel spread sheet into MySQL DB 

 

Alternatively, the use of enterprise software for converting Excel files/MSAcess to MySQL 

databases is promoted. This application is designed primarily to eliminate time-consuming data 

entry and the errors that accompany it. The commonly-known Navicat’s Database Transfer Tool 

Software or Excel-MySQL Converter could be used instead. Navicat is a third party product for 

MySQL and is the leading MySQL GUI for MySQL server management and development. For 

this application one often needs to procure a commercial license.  

 

5.6 Data Pre-processing  

The database stores raw or pre-processed weather and load data as shown in Figure 5.7(d). 

However, the data should be normalized prior to presenting them to a model for training or any 

forecasting attempt. 

Data scaling is essential due to the fact that neural networks are often vulnerable to raw data, it’s 

extremely important that data are scaled (typically values between 0 and 1, or -1 and 1) to avoid 

convergence problems.  There are several methods that can be used for data normalization as 

defined in Equation (5.2) to (5.2).    
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Fig. 5.7 (d): Raw load and weather data stored in the “ivalldata” Table for the IV # 1. 

 

5.6.1 Data Scaling Methods  

Data can be normalized using one of the following equations: 

 

valueminimumvaluemaximum

valueminimumvalueactual

−

−
=valueNormalized       (5.2) 

 

valuesdaytheofsum

valueactual
=valueNormalized         (5.3) 

 

valuemaximum

valueactual
=valueNormalized         (5.4) 

 

valueaverage valuemaximum

valueaveragevalueactual

−

−
=valueNormalized          (5.5) 

      

The scaling of the data is done in order to improve interpretability of network weights and the 

uniform scaling equalizes initially the importance of variables. In this work, Equation (5.4) has 

certainly been adopted and implemented to normalize both the historical load data and weather 

data.  
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5.7 Bad data detection and replacement  

 As perfectly defined in (Yang, 2006)’s work, the existence of bad data in historical load curve 

affects the precision of load forecasting result.  

There are two kinds of bad data in the daily load curve: false channel bad data and abnormal 

event bad data. False channel bad data are due to the measurement and transmission mistakes, and 

often they are far from their real physical values. Abnormal event bad data come from some 

unexpected sudden incidents, such as short circuit and equipment overhaul, which cause 

unnatural sudden changes of the load curve trend. 

 

With no exception, some bad data were detected in the total load curves as well as in the weather 

data. Figure 5.8 shows daily load curves for six days including valleys due to bad data.  The 

valleys are as a result of Eskom’s load management strategies to temporarily reduce cost 

intensive peaks by shedding “non essential loads”. The impact of a load shedding process could 

be viewed as an absolute inconvenient power interruption method as it affects daily production 

activities. However, this partial power interruption helps to prevent a total power black-out.    

 

The nature of bad data discussed in Fig 5.8 is neither false channel bad data nor abnormal event 

bad data type, but rather bad data as result of a planned strategy. Nonetheless, a strategy for 

detecting and replacing these data needs to be formulated prior to importing data into the 

Database. 

The longest power interruption period (as shown in figure 5.8(b) because of load shedding was 

recorded on 16
th
 April for a period of 2 hours in total. For more information on other load 

shedding recorded in summer, please refer to the records in Appendix B.   

 

In this work, a similar technique to replace bad data, proposed in the work of (Santos et al., 2005) 

has been adopted. The rule used for this purpose has been, briefly: if the lost or bad data period is 

longer than an hour, then the whole day is replaced with the average load profile of the two 

homologous days of the two previous weeks; else the average load of three previous hourly loads 

is considered instead; if the bad data corresponds to a special or holiday – the closest similar day 

is used.  

Applying this rule to all recorded bad data as shown in Figure 5.8(a), the load profile for the 16
th
 

April was subsequently replaced with the average load profile recorded for the two homologous 

days of the two previous weeks (i.e. averaging the profiles for past two similar day -  26
th
 and 19 

March). 
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Fig. 5.8(a): The effects of bad data on the load curves resulted from Eskom’s load shedding. The total 

supply interruption period is 7 hours.   

  

Because the supply interruption period of other days (02 April, 10 April, and 23 April) is shorter 

than an hour, the average load of three previous hourly loads was taken. No bad data 

corresponding to a special or holiday was recorded. 
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Fig 5.8 (b): The longest load shedding period - recorded in summer for the CPUT Bvl Campus.   
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5.8 Composition of the Input Vector (IV) of the prediction models 

The structure of the input vector specifies the selected endogenous and exogenous variables. In 

this work, only past load values and weather related data have been used. Some times sinusoidal 

functions and binary codes could be presented to the network to provide the model with the cyclic 

behaviour of the load. (Chen, 1991) applied autocorrelation analysis on the historical load to 

determine the input variables and reported that loads of the same hours have very strong 

correlation with the load measured at the same hour and day of the previous weeks. In the work of 

(Monohar et al., 2008) only five inputs selected from the previous day and five each from the 

previous weeks on the same day to predict the load of the next day. 

 In (Santos, at al., 2008, and Hippert et al., 1093), the construction of the IV structures were 

based on some contiguous past values of the load.  The most convoluted task in time series 

forecasting is to determine an adequate data points for training. If data points are insufficient, the 

forecasting will be poor. If on the contrary, data points are useless or redundant, modeling will be 

difficult or even skewed (Lendasse et al., 2000). 

 

In this work, two forecasting approaches were considered, namely: first, forecasting the load for a 

whole week at once (batch) was evaluated, and then hourly (incremental) forecasting was studied. 

In both cases, the inclusion of weather data was considered.  

The IV for the weather sensitive model is: 

))((min_));((max_));((_

));((__);169();168();2();1(]1#_[

minmax tTtemptTtemptHhumidityave

tWspeedwindavetLtLtLtLVectorInput −−−−=
                    (5.6)  

 

The predicted output is a nonlinear function of the IV # 1 and is defined as: 

( ))();();();(();169();168();2();1()(ˆ
min tHtWtTtTtLtLtLtLftL man−−−−=                       (5.7) 

 

where )(tW denotes daily average wind speed, )(tH is the daily average humidity, )(min tT and 

)(max tT represent daily maximum and minimum temperatures on the forecast day.  

 

The IV and the predicted output for the non-weather sensitive model are:  

)169();168();2();1(]2#_[ −−−−= tLtLtLtLVectorInput                    (5.8) 

 

( ));169();168();2();1()(ˆ −−−−= tLtLtLtLftL                  (5.9) 
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The IV structure used in this work, as discussed earlier, consists of two previous hours active 

power values, L(t-1) and L(t-2) and some homologous consumption past load values of the 

previous week L(t-168) and L(t-169). The inclusion of these values provides information 

regarding the consumption trend in the past homologous periods (Santos, at al., 2008). These 

inputs are presented to the network to predict the load )(ˆ tL .The structure of IV # 1 and 2 are given 

in Figure 5.9 and 5.10 respectively.   

 

Fig. 5.9: Composition of the input vector (IV) # 2 (non-weather sensitive model) 

 

For weather sensitive models, the structure of the input vector is slightly modified to take into 

account the effect of weather conditions on the load as illustrated in Figure 5.10. 

 

Fig. 5.10: Structure of the IV # 1.  

 

In this work, the period chosen for load memory series analysis was defined from February to 

May 2008. However only 1 week past load values were used in addition to the weather-related 

data point, producing a set of N = 1352 points. The load data were taken every hour for a period 

of one week. The training data was defined from Monday, 31
st
 March till 6

th
 April 2008 and the 

corresponding target was defined for the period from 7
th
 to 13

th
 April 2008. The models were also 
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evaluated for generalization capability, thus testing data set was defined from the first week of 

March (3
rd

 to 9
th
). Figure 4 shows weekly load profile from which the training data and target 

were derived.  
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Fig. 5.11: Two weeks load profile for the CPUT Bellville Campus in summer (31

st
 March to 13

th
 April 

2008)  

 

 

These models were also evaluated for generalization, thus the testing data were selected from the 

first week of March (3
rd

 to 9
th
). 

   

More network architectural details on the developed models are given in the following chapter, 

where a fully-fledged application of ANN in load forecasting is introduced.  

 

5.9  Conclusion  

This chapter discusses the methodologies used to gather the required data, the descriptions of 

these data, and some results from the correlation analysis between the load and exogenous 

variables. In addition, the chapter also gives some details with regards to the storage of input data 

and results.  Some detected bad data and subsequent replacement strategies are also highlighted. 

The other important topic covered in this chapter is the composition of the input vectors (IVs) of 

the proposed models.  

 

The context of the previous chapters has explicitly covered some good introduction to a load 

forecasting problem. Now it is time to experiment. Thus the following chapter will discuss real 

application of ANN in STLF.  
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----------------------------------------------------- 

CHAPTER SIX  
          APPLICATION OF ANNs IN LOAD FORECASTING 

 
This chapter presents a comprehensive approach to power system load forecasting using Artificial 

Neural Network methodologies. Furthermore, the chapter covers some important steps that need 

to be followed prior to developing a forecasting model. And the last part of this chapter deals with 

the network structures, input vectors and various STLF models developed in this work.   

 
6.1 ANNs for load forecasting 

As highlighted in the previous chapters, there are different types of neural networks, namely: radial 

basic function, feedforward, recurrent, dynamic, Hopfield, perceptron, vector quantization, 

unsupervised. Some networks perform better than others in specific applications. For function 

approximation, classifications, and for dynamic system modelling: radial basis function, feedforward, 

and recurrent are dominant. Unsupervised networks are normally used for clustering. The structure of 

feedforward and radial basis functions neural network types can be modified to suit a specific 

problem. For example, the neuron activation function can be changed to some other suitable 

functions. 

The basic idea of ANN in load forecasting is that the load can be observed as a non-linear function 

influenced by a number of factors, i.e. historical load, weather-related, time factors etc. The 

relationship between the load and these factors is often difficult to model using conventional 

methods. ANNs can map complex, non-linear relations, thus many researchers and planners 

frequently use these methodologies in power system load forecasting (Mandal et al., 2005).  

 

The weather-related factors (daily maximum temperature, minimum temperature, humidity, and wind 

speed on the forecast day) were selected and then modelled as network inputs. The selection of 

network parameters is made rather arbitrary. However, presenting a neural network with less 

significant inputs may result in convergence problems and subsequently affect the performance of the 

network. 

 

 6.2 Designing an Input Vector (IV) for a STLF model   

The accuracy of the forecast relies on the configuration of the model’s input vector. Thus the 

correlation analysis between the load and exogenous variables was carried prior to selecting 
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appropriate input variables. The following section talks about how the change in weather conditions 

and the load can be modelled mathematically.  

 

6.2.1 Variation in Weather-Related Inputs 

The change in load and weather variables (temperatures, wind speed, and humidity) can be described 

as follow: 

 )1()()( −−=∆ tLtLtL  

)1()()( minminmin −−=∆ tTtTtT  

)1()()( maxmaxmax −−=∆ tTtTtT                (6.1) 

)1()()( −−=∆ tCtCtH                     

)1()()( −−=∆ tWtWtW             

Where )(tL  is the load at time t, )1( −tL is the load of the previous hour, )(min tT is the minimum 

temperature at time t, )1(min −tT  is the minimum temperature of the previous hour, )(max tT is the 

maximum temperature at time t, )1(max −tT  is the maximum temperature of the previous hour, )(tH is 

the humidity at time t, )1( −tH  is the humidity of the previous hour, )(tW is the wind speed at time t, 

( ))1−tW is the wind speed of the previous hour.  

  

Generally, weather variables are considered to be key inputs especially for short-term load 

forecasting and often small errors in weather data could affect the prediction.  

 

6.3 Development of a load forecasting ANN-based Model 

 Load forecasting could be viewed as a non-linear function approximation problem.  Most forecasting 

models reported in literature, were subjected to different training approaches, and subjected to 

different data quality (Sharif et al., 2000, Medal et al., 2006, Lauret et al., and Srinivasan, 1998). 

However, it’s extremely important, especially for intelligent systems, to undertake some crucial 

model development steps.  The flow chart in figure 6.1 attempts to illustrate some essential model 

developmental steps. The first one involves the type of forecast and data collection. Here one needs 

to define the system requirements in terms of forecast time horizon, and then gather the required 

data. Thereafter, a correlation analysis between variables and the load, data preparation and 

processing should be carried out.  The latter step covers details with regards to network architecture 

and suitable model parameters i.e. defining type and size of network, learning paradigm, network 

performance function etc.  
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Fig. 6.1: Flow chart for development of a supervised ANN-based model   
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6.3.1 Forecasting using a Feedforward (FF) Neural Network  

The back propagation multi-layered perceptron (MLP) type neural network is most reported and 

suitable network structure for STLF (Dillion et al., 1991, Lee, 1992 and Djukanvic, 1993). A 

multilayer perceptron is a family of feedforward neural networks that maps sets of input data onto a 

set of appropriate output. These networks use three or more layers of neurons with nonlinear 

activation functions. The superiority of this type of networks, in contrast to the conventional 

methods, is that it can distinguish data that are not linearly separable and thus it is commonly used in 

STLF. 

 

The multilayer perceptron consists of an input and an output layer with one or more hidden layers of 

nonlinearly-activating neurons. 

Each neuron in one layer connects with a certain weight to every other neuron in the following layer. 

In this work, only the Feedforward neural network is considered. However, different sub-models 

(weather sensitive and non-weather sensitive models) were developed to evaluate different cases. The 

topology of the Feedforward neural MLP network used in this work excluding biases is shown in 

Figure 6.2. 

  

 

Fig. 6.2: Architecture of the feedforward neural network  

 

where w denotes a vector of the synaptic weights, x and u are vectors of the inputs to the layers, m is 

the number of input variables, and r is the number of neurons in the hidden layer. 

The weighted sums for the hidden and the output layers are: 
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where rk ,1=  and Nn ,1= , where N is the number of data points used for training of the model.  

The outputs of the neurons in the hidden layer and output layer are computed by passing the 

weighted sum of inputs through the tan sigmoid and pure linear transfer functions respectively.  

 

Mathematically, the outputs of the hidden layer and the output layer can be defined as:  

)(
1

1
))((

)(1 nu
e

nz knzk
k

=
+

=
−

σ                  (6.8)  

)(ˆ)(*)(2 nLnoKno ==σ                                 (6.9) 

Where K is a coefficient of the pure linear transfer function.  

 

If the desired output is not attained, the network can reiteratively be trained until it yields reasonable 

results. However, over-training should be avoided to ensure network generalisation. By default 

MATLAB trains with Lavenberg-Marquardt (LM) training algorithm. Thus any different training 

algorithm needs to be specified prior training. During the training, network parameters (weights and 

biases) are iteratively adjusted on the bases of the derivatives of the error w.r.t. The derivative is then 

multiplied by a step size or learning rate. For a standard gradient algorithm the learning rate is held 

constant throughout the training, and this is often problematic for network optimalization. Thus a 

training algorithm with varying learning rate is considered appropriate as an alternative.  

Mathematically, the approach for a standard gradient based search algorithm can be formulated as: 
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Where ijw is the weight between the input layer and the hidden layer, jw is the weight between the 

output layer and the hidden layer, ε  is the network error, and η  is the learning rate. 

 

 Contrary to the network topology, a neural network can have some interconnections and feedback 

paths between layers. This type of configuration is known as Recurrent Network. The following 

section discusses the architecture of the Elman Recurrent Neural Network designed for the prediction 

model.  
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6.3.2 Forecasting using an Elman Recurrent (ER) Neural Network 

The Elman network commonly, is a two back propagation network with feedback (delay) 

connections as shown in Figure 6.3. The Elman prediction model is designed based on this network 

topology.  

Custom ER networks can be configured to have internal connections as desired. Unlike the 

conventional MLP networks, the first layer of this Elman network has recurrent connections. The 

delay ),...,2,1( riDi = in this connection stores values from the previous time step, which can be 

used in the current step. The same transfer functions used in the Feedforward prediction model were 

also used here. This implies the tag sigmoid ( 1σ ) in the hidden layer and pure linear ( 2σ ) activation 

function in the output layer. This configuration is special in that two-layer networks with these 

transfer functions can approximate any function with discontinuities.  

 

Fig. 6.3: Elman recurrent neural network topology 

 

where w denotes a vector of the synaptic weights, x and u are vectors of the inputs to the layers, m is 

the number of input variables, and r is the number of neurons in the hidden layer. 
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where rk ,1=  and Nn ,1= , where N is the number of data points used for training of the model.  

 

The outputs of the neurons in the hidden layer and output layer are computed by passing the 

weighted sum of inputs through the tan sigmoid and pure linear transfer functions respectively. 

Mathematically, the outputs of the hidden layer and the output layer can be defined as:  
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Where K  is a coefficient of the pure linear transfer function.  

 

Other training parameter that was considered is the momentum factor as an attempt to prevent the 

network to get stuck in a shallow local minimum. Equation (6.16) shows how the synoptic weights 

are adjusted. The network determines the value of the increment ( )(nw∆  on the basis of the previous 

value of the increment. 
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The effect of the momentum factor to the performance of the algorithm is discussed in (Phansalkar, 

1994). The other important training parameter is the learning rate which controls the amount of 

change imposed on connection weights during training and to provide faster convergence also needs 

to be defined.  

 

Mathematically, the weights are updated using the equation:  

)()()1( nwnwnw ∆−=+ η                                               (6.17) 

Where (η ) is the learning rate.  

 

A comparison of the accuracy of neural network using different learning algorithms and momentum 

factors is explicitly discussed in (Ho, 1992).   

Finally, the amount of change in weights of the network topology illustrated in Fig. 6.2 for the 

hidden and output layers are defined as: 
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 and 

rinwnunLnLnLnLnw iii ,...,1)1()(*)](ˆ1)[(ˆ)](ˆ)([)( '' =−∆+−−=∆ ψ                              (6.19) 

 

6.4 Description of the evolved forecasting models  

In this work, a number of ANN-based models have been developed and presented with actual load 

data to forecast the load a week in advance. Firstly, two Neural Network models, Feedforward (FF) 

and Elman Recurrent(ER), were developed and then applied to the total load of the campus. Some of 

the evolved models are non-weather sensitive, but the effect of climatic conditions on load has also 

been analyzed in this work. Only two seasons (summer and winter) have been considered for the total 

load. 

 

Secondly, the same models were applied to the other sub-loads of various departments. In Table 6.1 a 

list of different models as well as the associated IVs for the two seasons is given.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table. 6.1: Developed forecasting models and the corresponding IV for total load prediction.  

 

Without replicating, two forecasting approaches were considered, namely: first, forecasting the load 

for a whole week at once (batch) was evaluated, and then hourly (incremental) forecasting was 

studied. In both cases, the inclusion of weather data was considered.   The developed models for 

forecasting the total load and departmental loads were bases of these approaches.   

 

For network performance comparison purposes, it was found necessary that the configuration of both 

networks remains unchanged in both cases. The network structure for the non-weather sensitive 

model was defined as follows: (4-10-1) i.e. 4 inputs for past contiguous consumption instances, 10 

hidden layer neurons, 1 output neuron for hour by hour forecast. Similarly, the latter network 

Model Season  Input Vector (VI) 
FFNN_TL_NWS01 Past Contiguous Consumption Values (PCCV): 

)169();168();2();1( −−−− tLtLtLtL  

ERNN_TL_NW01 PCCV 

FFNN_TL_WS01 PCCV; Wind speed; Humidity; Max Temp; Min Temp 

ERNN_TL_WS01 

Summer 

(February – May 2008) 

PCCV; Wind speed; Humidity; Max Temp; Min Temp of 

the forecast day 

FFNN_TL_NWS02 PCCV 

ERNN_TL_NWS02 PCCV 

FFNN_TL_WS02 PCCV; Wind speed; Humidity; Max Temp; Min Temp of 

the forecast day 

ERNN_TL_WS02 

Winter 

(June – September 

2008) 

PCCV; Wind speed; Humidity; Max Temp; Min Temp of 

the forecast day 

Note: model number 01 – is for the summer model and model # 02 represents a winter model  
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structure was slightly modified to include the effects of the weather related variables.  Thus the 

network structure was then changed to (8-10-1) - as shown in figure 6.4.   

 

Fig. 6.4: Network architecture for the weather sensitive load forecasting model.  

 

This network uses a tan sigmoid and pure linear transfer functions in the hidden layer and output 

layer respectively.  

 

The mathematical models of the input vectors are defined as in Equation (5.6), (5.7), (5.8) and (5.9) 

in chapter 5  

 

 

The other forecasting models for predicting some departmental loads have also been developed with 

the similar network configuration. However, the hidden layer neurons for neural networks for 

predicting departmental loads were reduced to 5. Table 6.2 shows a list of the other 10 sub-models, 

developed to forecast departmental loads.  

 

The following departments or units were considered: Information Technology (IT), Mechanical, and 

Electrical Engineering departments, Air Conditioning Plant (ACP), and the Administration building.  

The measurements were taken at every department/building for a period of two to three weeks with 

the exception of the Mechanical department load data which were recorded for only a week period. 

  

Sub Models Department/ Unit  IV structure  
FFNN_IT 

ERNN_IT 

Information 

Technology 

1#_ VectorInput  

FFNN_ADM 

ERNN_ADM 

Administration 1#_ VectorInput  

FFNN_MEC 

ERNN_MEC 

Mechanical )2()1( −− tLandtL  

FFNN_ELEC 

ERNN_ELEC 

Electrical 1#_ VectorInput  

FFNN_ACP 

ERNN_ACP 

Air Conditioning  

Plant (ACP) 

)2()1( −− tLandtL  

Table 6.2: Schedule of the developed departmental load forecasting models 
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6.5 Conclusion  

The application of Artificial Neural Network in STLF and different developed forecasting models are 

described in this chapter. The chapter also covers some important steps to be considered when 

developing a supervised ANN model for function approximation problems. Moreover, the 

architecture and mathematical modelling of the selected neural networks have also been presented in 

this chapter. 

 

And now that the ANN approach to electric load forecasting has been clearly demonstrated, the 

following chapter (chapter 7) finally discusses the results obtained from different developed 

forecasting models and some specific findings.    
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------------------------------------------------------------ 

CHAPTER SEVEN 
                          RESULTS AND DISCUSSIONS

 

This chapter presents the simulation results of various forecasting models discussed in the previous chapter. 

Few discussions pertaining specific forecasting results have also been incorporated in this chapter. The first 

part of this chapter talks about forecasts for the combined load and the latter part encapsulates departmental 

forecasts. Responses from the two forecasting approaches (i.e. batch and incremental training modes) have 

also been clearly indicated. Results emerged from non-weather sensitive models are also included and 

discussed.       

  

Preamble   

The models discussed in chapter 4 were subsequently trained under MATLAB
®
, ver. 7.1, 

environment using Neural Network Toolbox, ver. 4.0.6. And this chapter now presents forecasts 

emerged from these forecasting models. Comparisons between the developed weather sensitive and 

non-weather sensitive models are also included. Another important component of this chapter to note 

is that, these models were simulated with the same network architectural layout. Thus no 

modification in terms of network parameters and structure of these models were made. Both input 

vector #1 and # 2 (as specified in the previous chapter), were individually and collectively presented 

to the models, and simulated. 

  

Firstly, the models were trained by applying all the inputs to the network before the weights and 

biases are updated. This approach is also known as “batch training mode”.  And secondly, the 

models were trained using the incremental training mode (i.e. the weights and biases of the network 

are iteratively adjusted every time an input is applied to the network).  

In addition, the following performance measure functions were employed: mean squared error (MSE) 

and mean percentage error (MPE) to evaluate the performance of the models. The actual error in kW 

is also compared.  

2

1
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Where )(nLactual
is the actual load, )(ˆ nLactual

is the forecast value of the load, and N is the number of 

data points. 
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7.1 Network architectural design for the prediction models  

The network parameters for the models are given in the table below. The network comprises 10 

hidden layer neurons and 1 output neuron. For activations, a tan sigmoid transfer function was used 

for the hidden layer and pure linear one in the output layer. Both momentum factor and learning rate 

were held constant throughout the training at 0.75 and 0.35 respectively. 

Network Hidden 

Layer 

Hidden 

neurons 

Output 

nodes 

Training 

function 

Transfer 

functions 

Momentum 

factor 

Learning 

rate 

Feedforward 

and 

Elman 

Recurrent  

1 10  1 Gradient 

descent 

algorithm 

Tan 

sigmoid 

and  

Pure 

linear 

0.75 0.3 

Table 7.1: Network Topology for the total load models  

 

The parameters shown in the table 7.1 defines the ANN topology. All models were firstly trained 

using this arbitrary designed structure. 

 

7.2 Forecasting the total load using the non-weather sensitive FF model  

The FFNN_TL_NWS01 model, as discussed in chapter six, was specifically designed to ignore any 

climatic related influences on the load. Thus the model merely uses past contiguous load values 

(input vector # 2) to predict hourly loads for at least a week ahead. The input vector was firstly 

applied to a Feedforward Neural Network and eventually the model was trained using summer 

training data. In Figure 7.1, one observes an example of some summer forecasts produced by this 

Feedforward forecasting model. This model is trained using Scaled Conjugate Gradient 

backpropagation algorithm and the actual error presented in Figure 7.2 (b). The performance of the 

network is shown in Figure 7.3 (c). The same procedures were then repeated for an Elman Recurrent 

Network based model (ERNN_TL_NWS01) in both seasons.  

 

The forecasts produced by both networks (Feedforward and Elman Recurrent) are approximately the 

same and thus the results not further discussed here. The reader is however encouraged to view the 

records in Appendix E or forecasts emerged from Elman Recurrent based forecasting model 

(non-weather sensitive) as well as other application results and error comparative analysis.  

 

The network response (forecasts) for the Feedforward network using batch training mode is shown in 

Figure 7.1 (a). In the same Figure, one notices that the first peak for the CPUT Bellville Campus 
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normally occurs at about 08:00 to 09:00 and the latter peak in the evening from 19:00 to 21:00. This 

“m-shaped” daily load characteristic confirms the non-linear features of the load and often affects the 

accuracy negatively. The “m-shaped” load feature in essence symbolises daily peaks, namely: 

morning and evening peaks.   

 

The highest error (more than 10%) was recorded on Wednesday evening. Otherwise an average error 

of kW100± was maintained throughout the forecast lead time. Figure 7.1 (c) shows the 

performance of the model. It can be seen that the network has successfully failed to meet the test goal 

(1e-3) after 1000 iterations.    
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Fig 7.1 (a): De-normalized forecasts using the Feedforward Neural Network (non-weather sensitive model) for 

the summer period.  

    

7.2.1 Simulating the network using testing data  

To evaluate generalization capability of the network, the model was again re-simulated using the data 

it has not seen before. An example of the response of the network for a non weather sensitive model 

is shown in Figure 7.2.  Despite the fact that the network has not met the goal, it can be seen that its 

generalisation is surely not very bad as shown in Figure 7.2. 
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Fig. 7.1 (b): The associated actual error (kW) for the FFNN_TL_NWS01 model  
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Fig. 7.1 (c): Network performance for a non-weather sensitive model. The goal was never met in 1000 

iterations.  
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Fig 7.2: Normalized forecasts using testing data – Feedforward ANN (non-weather sensitive) in   summer.  

 

The following models now introduce the effect of the weather conditions.  

     

7.3 Forecasting the total load using the weather sensitive ER model  

Similarly, the simulation was again repeated, but then using the input vector # 1. As previously 

defined, this vector takes into account the effect of weather conditions. The following weather 

variables were used: daily average wind speed, humidity, and maximum and minimum temperatures. 

  

And as duly specified in chapter six, the two models (FFNN_TL_WS01 and ERNN_TL_WS01) 

which represent Feedforward and Elman Recurrent Neural Networks were trained. Some obtained 

results and actual error in kW in Figure 7.3 (a) and (b) respectively. These particular results were 

obtained by training the Elman Recurrent Neural Network based model (ERNN_TL_WS01). The 

performance of this model is shown in Figure 7.3 (c). In Figure 7.3 (b), one observes that the weather 

sensitive forecasting model performs slightly better than the first one. The actual error for this model 

has improved to approximately 50% in comparison with the model discussed earlier.   
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Fig. 7.3 (a): De-normalized forecast for the CPUT combined load (summer) - using Elman Recurrent Artificial 

Neural Network (weather sensitive model)   

 

The performance goal for the Recurrent forecasting in Figure 7.3 (c) was successfully met only in 

218 epochs.    

 

7.3.1 Simulating the network using testing data  

Again to evaluate the model’s degree of generalization, this model was again simulated using the 

testing data, and the simulation results are shown in Figure 7.4.   

 

7.4 Forecasting the total load using the weather sensitive FF model  

Inline with the objectives of this research project, particularly the objective that was primarily 

designed to assess the performance of two different Artificial Neural Networks, it was decided to 

again present the same input vector to the Feedforward Neural Network model (earlier defined as 

FFNN_TL_WS01) and simulate the model. The subsequent simulation results, corresponding error, 

and network performance for this model are shown in Figure 7.5 (a), (b), and (c) in the sequence 

order. The goal was also successfully met in 354 epochs. And finally, the network response after 

presenting the model with the testing data is illustrated in Figure 7.6.  
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Fig. 7.3 (b): The corresponding mean squared error for ERNN_TL_WS01 model. 
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Fig. 7.3 (c): Network performance of the model (ERNN_TL_WS01).  
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 Fig.7.4: CPUT combined load normalized forecasts (in summer) using Elman Recurrent Neural Network 

(ERNN_TL_WS01). Only testing data were used.  
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Fig. 7.5 (a): De-normalised forecasts (combined load) – using the Feedforward Neural Network weather 

sensitive model.   
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Fig. 7.5 (b): The corresponding actual error (kW) for the FFNN_TL_WS01 model  
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Fig. 7.5 (c): Network performance of the model (FFNN_TL_WS01). 
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Fig. 7.6: Normalized forecasts using Feedforward Neural Network weather sensitive model  

 

As clearly indicated in Figure 7.2 (c), the non-weather sensitive models have successfully failed to 

meet the defined goal (1e-3). However, the models presented with the IV that brings the effect of the 

weather conditions on the load have surprisingly met the goal as shown in Figure 7.3(c) and 7.5 (d). 

The very same models have also performed better than the non-weather sensitive ones when 

presented and simulated with data which where not used during training. Figure 7.4 shows the typical 

response of the weather sensitive models when simulated with testing data.  

 

However, it should be noted that the defined performance goal (1e-3) was arbitrarily selected for 

preliminary model’s performance evaluation. In this work, the absolute performance goal of 1e-5 was 

used to ensure improved forecast accuracy. 

  

The following section now covers the responses emerged from different forecasting models when 

subjected to the new performance goal. Another important topic also covered in the next section is 

the implementation of the incremental training mode. This means that the connection weights 

between layers and biases are iteratively computed and adjusted every time an input is applied to the 

network. The subsequent errors and model performance results presented in both tabular and 

graphical forms are also included in the following section.  
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7.5 Model responses to the new performance goal (1e-5)  

Firstly, the following models were evaluated using the batch training mode: FFNN_TL_NWS01, 

FFNN_TL_WS01, ERNN_TL_NWS01, and ERNN_TL_WS01. In all cases, none of these models 

manage to meet the goal.  

 

Some network performances obtained from these models are shown in Figure 7.7 (a), (b), and in 

Appendix E. The network performance of the Elman Recurrent Neural Network weather sensitive 

model (ERNN_TL_WS01) is shown in Figure 7.7. This type of response also emerged from all other 

forecasting models including the forecasting models which predict the load during the winter period. 

Evidently, it can be seen that presenting a neural network with a lot of input data points does not 

guarantee improved accuracy or a better network performance. 
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Fig. 7.7 (a): The network response of the Feedforward Neural Network Model (weather sensitive) 

 

The following section now discusses the network responses obtained from different forecasting 

models after the implementation of the incremental training mode.  
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 Fig. 7.7 (b): The network response of the Elman Recurrent Neural Network Model (non-weather sensitive) 

 

7.6 Forecasting the total load using the hour-by-hour approach    

The evolved Feedforward and Elman Recurrent Neural Network models for predicting the load in 

both seasons (winter and summer) were trained incrementally. In all cases, the input vector (IV) # 1 

and # 2 were applied to the networks to predict the load with 168 hours lead time. As stated in the 

previous chapters, the IV # 2 is specifically designed to ignore the effect of weather related 

conditions on the load. The composition of the latter IV brings the effect of climatic conditions. 

 

Figure 7.8 (a) shows 1 week ahead forecast for the CPUT total load emerged from the Feedforward 

Neural Network non-weather sensitive model (ERNN_TL_NWS01). The forecast and network 

performance came into sight after predicting the load using the Elman Recurrent weather sensitive 

model (ERNN_TL_WS01) are given in Figure 7.9 (a) and 7.9 (b) respectively.  

In these figures, it can be seen that the incremental training mode is undoubtedly superior compared 

to the performance of the batch trained models.  
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Fig. 7.8(a): 1 week ahead forecast (summer) – FFNN_TL_NWS01 (Feedforward non-weather sensitive model)  
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Fig. 7.8(b): The corresponding network performance- FFNN_TL_NWS01 (Feedforward non-weather sensitive) 

model) 
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Fig. 7.8(c): 1 week ahead forecast (winter) – FFNN_TL_NWS01 (Feedforward non-weather sensitive model)  
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Fig. 7.8(d): The corresponding network performance of the FFNN_TL_WS02 (using incremental training 

mode) – for the last forecast value (168h)  
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Figure 7.8 (a) and (b) show a 1 week ahead forecast in winter. The forecast period is 04
th
 – 10

th
 

August, 2008.  Other subsequent forecasts and performance responses can also be found in 

Appendix E. Similarly, these models were also presented with the matching testing data. The results 

are summarized in Table 7.1.  

 

7.7 Error comparative analysis for the total load forecasting models.   

The developed models were evaluated using the standard mean squared error (MSE). The percentage 

mean error (MPE) was also used as a supplementary performance measure. The outcome of the 

analysis is also illustrated in Table 7.1. The result in the table shows that forecasting the whole week 

at once (batch training approach) can severely affect the accuracy of the forecast compared to the 

hour-by-hour approach. The testing result also indicates that the incremental training technique 

improves the degree of generalisation for a neural network.  

 

Fig. 7.10: Comparison of actual error – batch vs. incremental training mode. The forecast is for the period from 

7
th

 -13
th

 April, 2008. 

 

Figure 7.10 shows the actual daily errors for the Feedforward Neural Network model trained in the 

batch manner and incrementally respectively. Some more comparisons of the actual error are given in 

tabular form in Appendix E.
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Table 7.1: Error comparative analysis on the evolved forecasting models for the total load  

 

 

Model Input Vector (IV) Network training mode MSE MPE Season 

                training testing training testing      

FFNN_TL_NWS01 Feedforward batch 0.001364707 0.006668 5.78E-06 0.001575 

ERNN_TL_NWS01 

IV # 2 

Elman Recurrent  batch 0.001175932 0.005098 4.41E-06 0.000498 

FFNN_TL_WS01 Feedforward batch 0.000667856 0.014004 8.67E-07 0.004432 

ERNN_TL_WS01 

IV # 1 

Elman Recurrent  batch 0.000753235 0.025275 5.92E-07 0.000394 

CFFNN_TL_NWS01 Feedforward incremental 5.40E-06 8.98E-03 7.03E-07 3.50E-04 

CERNN_TL_NWS01 

IV # 2 

Elman Recurrent  incremental 2.07398E-06 0.001477 2.73E-09 3.48E-05 

CFFNN_TL_WS01 Feedforward incremental 5.40215E-06 6.54E-02 7.03E-07 9.11E-06 

CERNN_TL_WS01 

IV # 1 

Elman Recurrent  incremental 3.41951E-06 1.95E-03 2.17E-09 5.21E-05 

su
m

m
er

 

FFNN_TL_NWS02 Feedforward batch 0.005585235 0.011151 6.77E-05 0.000205 

ERNN_TL_NWS02 

IV # 2 

Elman Recurrent  batch 0.005636492 0.013949 7.34E-05 0.000308 

FFNN_TL_WS02 Feedforward batch 0.003314488 0.020662 2.36E-05 0.000169 

ERNN_TL_WS02 

IV # 1 

Elman Recurrent  batch 0.002287125 0.018256 1.37E-05 0.000479 

CFFNN_TL_NWS02 Feedforward incremental 4.85248E-06 7.25E-05 1.17E-07 3.86E-04 

CERNN_TL_NWS02 

IV # 2 

Elman Recurrent  incremental 3.63666E-06 4.48E-04 1.61E-08 2.23E-06 

CFFNN_TL_WS02 Feedforward incremental 4.85E-06 6.30E-02 1.17E-07 3.36E-05 

CERNN_TL_WS02 

IV # 1 

Elman Recurrent  incremental 3.15444E-06 1.66E-04 2.25E-08 4.24E-04 

w
in

te
r 
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7.8 Forecasting the departmental loads   

Since the characteristics of the department load profiles are already highlighted in chapter 5, 

there is no need to replicate or further discuss these profiles. Thus the following topic directly 

talks about forecasts obtained from the developed forecasting models. One more thing that 

needs to be understood here is that the batch training mode is no longer considered due to the 

associated high degree of inaccuracy. This implies that all forecasting models for different 

departments would be incrementally trained to forecast respective loads as desired.  

 

The forecast lead time (168 hours) remains unchanged for the IT, Electrical departments and 

the Administration building. However, the characteristic of the load for the Air Conditioning 

Plant (ACP) is uniquely noticeable and needs to be handled differently. This load lacks 

consistence in its pattern due to fast load fluctuations. Thus the forecast lead time is reduced 

to 24 hours as an attempt to possibly use more meaningful training data. The 24hrs lead time 

forecast horizon was also used to predict the for the Mechanical Engineering department.  

 

Some networks for departmental load forecasting models were only presented with the IV # 2, 

because the effect of weather related variables was not explicitly observed in the previous 

model performance evaluation. In simple terms, all departmental load forecasting are 

non-weather sensitive one and incrementally trained.  

Moreover, the architecture of the neural networks for the departmental forecasting models has 

been slightly modified as clearly indicated in Table 7.2.  

  

Network Hidden 

Layer 

Hidden 

neurons 

Output 

nodes 

Training function Transfer 

functions 

Momentum 

factor 

Learning 

rate 

Feedforward 

& 

Recurrent  

1 5 1 
Gradient Descent 

Algorithm with 

momentum 

Tan sigmoid 

and  Pure 

linear 

0.75 0.3 

Table 7.2: Network Topology for the departmental load forecasting models 
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The error comparison analysis for the departmental load forecasting models is summarized in 

Table 7. 6. 

 

7.8.1 Forecasting the load for the IT department   

The load measurements of the IT department were taken from 12th August – 01 September 08. 

Thus the data set was defined as: training data (25
th
 August – 1

st
 September), target data (17

th
 

– 24th August), and testing data specified as the training data set. And subsequent 1 week 

ahead forecast of the weather sensitive IT load forecasting models is shown in Fig. 7.11(a) 

and (b).  

The performance of this model is shown in Figure 11 (c). And a comparison in terms of the 

actual errors of the incrementally and batch trained forecasting Recurrent models described in 

section (7.5.1) is given in Table 7.3 (a) and (b). The result shows that the batch trained model 

gave some good forecast at specific hours of the forecast day (hr 7 is a good illustrative case) 

compared to the incremental one. 
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Fig. 7.11(a): One week ahead forecast for the IT department (the forecast is for the week of 17
th

 – 24
th

     

August, 08) – FFNN_IT_WS, incrementally trained.  
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Fig. 7.11(b): One week ahead forecast for the IT department (the forecast is for the week of 17th – 24th 

August, 08) – FFNN_IT_WS, trained in batch mode. Forecast week is from 17
th

 -24
th

 

August, 2008.  
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Fig. 11 (c): Performance of the feedforward IT load forecasting model  
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  Actual error (kW) - FFNN Prediction model (FFNN_IT_WS) – IT Depart. 

       Incremental training mode, IV # 1      

Hours Monday Tuesday Wednesday Thursday Friday Saturday Sunday 

1 -0.95922 0.804706 0.693268 0.778046 0.900866 -0.49954 -0.82276 

2 0.891821 0.804706 0.768659 0.594778 0.369755 0.551078 0.177239 

3 0.891821 -0.33195 -0.23134 -0.40522 -0.88637 -0.88384 0.384564 

4 0.770119 0.357281 0.75073 -0.85719 -0.82377 0.924761 -0.61544 

5 0.773542 -0.64272 0.75073 -0.85719 0.17623 -0.90688 0.690262 

6 0.773542 0.827941 0.765069 -0.81159 0.940984 0.09312 0.738388 

7 0.775038 0.827941 0.771335 0.659381 0.935289 0.882777 -0.26161 

8 -0.88443 -0.4505 -0.85734 -0.96226 -0.49892 0.822744 0.903394 

9 0.066452 -0.84466 -0.92864 -0.61864 -0.71533 -0.86994 -0.43382 

10 0.753781 -0.74181 -0.85347 -0.56968 0.872549 -0.95749 -0.43382 

11 -0.44184 -0.7465 0.757985 0.933934 -0.90196 0.868333 -0.43382 

12 0.497649 0.61381 -0.65594 -0.95498 -0.54234 0.766422 -0.43382 

13 0.348151 0.883782 0.668995 -0.95498 -0.56487 0.766422 -0.39831 

14 -0.46357 0.36884 -0.66071 0.591803 -0.72682 -0.82392 0.699938 

15 0.556739 -0.3553 -0.89117 -0.85141 -0.36043 -0.57996 -0.96056 

16 0.559937 0.644696 0.887261 -0.85141 -0.39438 -0.40614 0.430761 

17 0.695615 0.71262 0.515753 0.940458 0.739232 -0.45041 0.872765 

18 -0.71286 -0.71195 -0.82966 -0.96765 -0.44262 -0.69935 -0.64975 

19 0.504963 0.720817 -0.58026 -0.85986 -0.39878 0.700432 -0.57458 

20 0.709216 0.743198 -0.96396 -0.42114 -0.84993 0.700432 0.696694 

21 -0.83293 -0.82758 -0.93891 -0.34405 0.920056 0.700432 0.696694 

22 -0.80852 0.949348 -0.77753 -0.34405 -0.90894 0.770703 -0.55206 

23 0.492489 -0.43136 -0.36315 -0.81987 0.913795 0.773797 0.824441 

24 0.688315 0.68626 -0.87675 0.61579 0.676946 -0.2262 -0.38447 

Table 7.3(a): Daily actual errors (kW) for the total load in summer – for the incrementally trained 

Feedforward model  

 

However, the incrementally trained model, again, convincingly gave the smallest error 

through out the forecasting period. As indicated in these Tables, the highest actual error 

(2.029 kW) for the batch trained model was obtained Thursday, 21
st
 August at hour 11:00. 

While the latter model has the highest error (0.967 kW) also recorded on the same Thursday 

at hour 18:00.       
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  Actual error (kW) - ERNN Prediction model  (ERNN_IT_WS) 

   batch training mode, IV #1      

Hours Monday Tuesday Wednesday Thursday Friday Saturday Sunday 

1 0.149638 1.223561 1.660549 1.012544 0.520114 1.311398 0.002132 

2 -0.53001 0.213081 -0.7514 -0.19228 0.636313 0.783025 -0.02204 

3 0.255152 -0.26234 -0.91741 0.216178 0.454916 0.904801 0.219287 

4 0.445805 -0.309 -0.3348 -0.27605 0.329877 0.834964 0.31462 

5 0.758461 0.306812 0.003725 -0.15065 0.340497 0.926882 0.503543 

6 0.807855 0.364453 -0.73107 -0.22648 0.460012 1.051486 0.632146 

7 0.0665 -0.873 -3.26473 -0.48492 -0.03401 0.541077 0.658862 

8 -0.55545 -0.18761 -1.98104 -0.30779 -1.24355 -0.51694 0.611654 

9 2.724826 0.913159 0.053649 -0.5775 -0.9788 -2.26558 0.544614 

10 -0.56628 0.99162 -0.39992 -1.81375 -1.25437 -1.24268 0.509075 

11 0.083661 1.260355 0.197767 2.029063 -1.31592 -0.90452 0.494106 

12 0.067505 0.57129 -0.02848 1.708496 -0.65242 -1.26235 0.556299 

13 0.588693 0.638934 -0.29831 1.463113 -0.37503 -1.33406 0.441867 

14 0.089182 0.641629 -0.33242 1.235145 -0.49898 -1.23709 -0.46426 

15 0.567706 0.034676 -0.62884 1.280102 -1.01618 -0.81763 -0.64704 

16 0.255615 -0.82382 -0.80222 1.098009 -1.22382 -0.67205 -0.79084 

17 0.250436 -0.42794 -0.4879 0.059361 -1.21163 -0.46398 -0.94612 

18 0.140326 0.472933 -0.55465 -0.10456 -1.01218 0.16661 -0.58569 

19 0.250231 0.434557 -0.58545 -0.35829 0.071418 0.193609 -1.05459 

20 -0.21827 0.276391 -0.55177 -0.45309 0.046667 -0.8051 -0.72501 

21 0.006146 0.782483 -0.4912 -0.25263 -0.20298 -0.61597 -0.45221 

22 0.16186 0.71347 -0.6831 -0.37219 0.208327 -0.60896 1.102097 

23 0.158397 0.8536 -0.44208 -0.18312 0.272807 -0.54808 1.194572 

24 0.716072 1.858276 2.152413 1.565315 3.994725 -0.85638 1.198676 

Table 7.3(b): Daily actual errors (kW) – for the batch trained Elman Recurrent model (total load in 

summer) 

 

7.8.2 Forecasting the load for the Electrical department    

The electric load for the Gold field (Electrical) department was record for a two week period 

from 16th – 30 June, 08. The training data and target were defined from 23rd – 29 of June and 

16
th
 – 22

nd
 of June respectively. The evolved models were also simulated with the training 

data. The results and performance obtained from these Feedforward and Recurrent weather 

sensitive models are shown in Figure 7.12 (a), (b), (c), and (d). 
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Fig. 7.12(a): One week ahead forecast for the Electrical Engineering department (ERNN_ELEC_WS- 

trained in the batch mode. Forecast week is from the 16
th

 – 22 June, 2008.   
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Fig. 7.12(b): Corresponding network performance for the Elman model (ERNN_ELEC_WS)- 
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Fig. 7.12(c): One week ahead forecast for the Electrical Engineering department (FFNN_ELEC_WS- 

incrementally trained. Forecast week is from the 16
th

 – 22 June, 2008.  
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Fig. 7.12(d): The corresponding network performance for the Feedforward model (FFNN_ELEC)
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7.8.3 Forecasting the load for the Mechanical department  

The recording of the total load for the Mechanical department was exceptionally tricky 

because some of the big machinery (lathe machines) were not in operation when 

measurements were taken from 01st – 10th of September 2008. However, for forecasting 

purposes it was found necessary to add up a 45% to the measured load to cater for 

contingences (the worse case scenario here is when all machines and other big loads are in 

use at the same time). Since the recorded data is only for a week period, which is insufficient 

for the defined model input vector (IV) structure in terms of the required past contiguous load 

values, it was found appropriate to reduce the forecast lead time (168 hours) to a 24 hours 

forecast instead. This implies that only most recent past load values )1(( −tL , and ))2(( −tL  

of the previous similar day are used to the load for the next hour. Figure 7.13 (a) shows a 

24hrs forecast for the department. The corresponding performance of the model and actual 

error (kW) are given in Table 7.4 and Figure 7.13 (b) respectively. The forecast day was 

Tuesday, 2nd of September. The load data for Monday, 01st September were used to train the 

model.  

 

7.8.4 Forecasting the load for the Administration Building  

The Lovato power meter was installed and commissioned at the Sacco min-substation to 

record the load for the administration building for a two week period (02
nd

 – 15
th
 June, 2008). 

Similarly, the second week recorded data were used as the training data and the other 

remaining data were defined as the target. Figure 14 (a), (b), (c), and (d) show the obtained 

forecasts and performance of different models. Some actual error comparisons of the develop 

load forecasting models for this building are given in Table 7.5 (a) and (b).   

 

7.8.5 Forecasting the load for the Air Conditioning Plant (ACP) 

The load for the ACP is the most convoluted one. Not only that this load fluctuates 

unexpectedly, but also because it has a “z-shaped” unique pattern which makes it extremely 

difficult to predict. The approach used here briefly is as follow: the forecast lead time was 

also reduced to 24 hours and only two past contiguous load values (as discussed in section 

7.53) were used to predict the load of the next hour. 
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  Actual error (kW) - FFNN Prediction model (FFNN_MEC) - MECHANICAL. ENG Department - for 24hrs lead time forecast. Forecast day is Tuesday, 2nd of Sep, 08 

kW 0.39 0.2 0.35 -0.21 -0.28 -0.41 0.25 -0.23 -0.28 0.39 -0.48 -0.23 0.14 -0.37 0.5 -0.26 0.22 -0.29 0.16 0.47 -0.53 0.19 -0.26 -0.28 

Hr 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

Table 7.4: Daily actual errors (kW) for the Feedforward Neural Network incrementally trained Model (FFNN_MEC) 
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Fig. 7.13(a): One day forecast for the Mechanical Engineering Department electric load    Fig. 7.13 (b): The corresponding model performance 
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Fig. 7.14(a): One week ahead forecast for the Administration Building (ERNN_ADM_WS- batch 

trained). Forecast week is from the 2
nd

 – 8
th

 of June 2008.  
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Fig. 7.14 (b): The corresponding model performance.  
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Fig. 7.14(c): One week ahead forecast for the Administration Building (ERNN_ADM_WS- 

incrementally trained). Forecast week is from the 2
nd

 – 8
th

 of June 2008.  
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Fig. 7.14 (d): The corresponding model performance.  
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Some results and performance indicators obtained from the developed ACP load forecasting 

models are shown in Figure 7.15 (a) and (b).  
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Fig. 7.14(a): One day forecast for the Air Conditioning Plant (ACP) electric load.  
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Fig. 7.14 (b): The corresponding model performance. 
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Actual error (kW) - Elman Recurrent Prediction model  (ERNN_ADMIN BLDG) 

Recurrent Model for predicting the load for the Administration Building 

       batch training mode, V # 1      

Hours Monday Tuesday Wednesday Thursday Friday Saturday Sunday 

1 8.57 -1.36 0.88 1.28 -3.75 -0.61 0.61  

2 2.12 5.58 -0.73 -0.69 6.27 -3.88 3.37  

3 0.64 1.10 -3.43 6.94 3.80 5.18 2.23  

4 -1.70 -1.93 4.90 9.37 19.41 6.40 -3.07  

5 1.46 -6.41 -5.42 0.88 1.68 -0.53 -8.07  

6 -5.28 5.35 4.23 -1.25 -4.24 -12.33 19.43  

7 -4.13 6.39 -8.74 -0.14 6.00 -10.78 6.23  

8 21.02 -13.57 -10.63 -13.62 -7.09 -6.87 2.27  

9 1.11 10.42 12.99 8.86 10.58 -11.85 6.09  

10 -10.86 14.71 -0.26 -16.79 -3.32 -12.14 5.82  

11 -15.39 -3.41 5.58 6.08 -9.72 -16.03 0.41  

12 -0.95 -6.84 0.45 5.90 -2.77 -2.54 1.16  

13 -1.25 -8.83 5.62 1.69 0.05 -3.64 -5.93  

14 3.22 -0.14 -1.54 -10.52 -8.59 -11.43 5.64  

15 -1.68 1.07 6.93 -6.17 -11.84 -9.45 7.73  

16 -18.23 -15.71 7.00 13.46 39.21 -7.36 -7.21  

17 21.18 32.70 15.76 8.20 -2.94 -7.45 -4.77  

18 -11.66 -3.57 7.25 2.76 3.23 -5.82 -3.31  

19 -0.09 -0.33 3.35 0.71 10.63 -9.05 -2.45  

20 -5.05 -6.93 -2.19 1.30 -2.98 -7.74 2.00  

21 -4.08 3.05 -0.69 0.26 -2.74 -0.38 -2.92  

22 -7.02 6.93 0.83 0.14 -1.36 13.58 -7.59  

23 4.55 -1.85 2.27 -0.75 -0.98 -7.02 0.63  

24 5.29 5.29 0.95 -0.73 -0.25 -5.88 3.59  

Table 7.5(a): Daily actual errors (kW) for the Feedforward Neural Network batch trained Model 

(FFNN_ADM) 

 

7.8.6 Error comparative analysis for the departmental load forecasting models  

Precisely as the preceding error analysis performed on the total load forecasting models 

summarized in Table 7.1, the same assessment (i.e. the MSE and MPE) was also carried to 

evaluate the performance of the developed forecasting models for the departmental loads. 

The result of this analysis is summarized in Table 7.6. The evaluation result also indicates 

that the incremental training mode is the best approach compared to the latter.   
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Actual error (kW) - FFNN Prediction model  (FFNN_ADMIN) - ADMIN BLDG 

Feedforward Model for predicting the load for the Administration Building 

  Incremental training mode, IV # 1      

hour Monday Tuesday Wednesday Thursday Friday Saturday Sunday 

1 0.308401 -0.3488 -0.20587 0.274827 -0.26028 -0.32685 0.280213 

2 -0.20334 0.23762 0.242645 0.274827 0.34796 0.145954 -0.14082 

3 0.352367 -0.20587 -0.30294 0.367077 0.34796 0.398199 -0.14082 

4 0.352367 0.242645 0.274984 0.367077 0.441141 -0.24072 0.125491 

5 -0.25905 -0.30294 -0.27598 -0.30842 0.261576 -0.33013 -0.3498 

6 -0.15216 0.417887 0.347399 0.143926 0.411227 0.166162 0.344761 

7 0.423274 0.174032 -0.34485 -0.12583 0.264772 0.166162 0.292076 

8 -0.37596 -0.27959 0.41639 -0.45033 -0.24062 0.14884 -0.23965 

9 0.151355 0.205803 0.182094 0.190117 0.202189 0.423628 0.241519 

10 -0.16409 0.221708 -0.32716 0.190117 -0.24224 0.423628 0.241519 

11 -0.14884 0.252525 -0.32716 -0.15294 -0.18728 0.423628 -0.3129 

12 0.209038 0.223377 -0.19032 0.164107 0.314842 0.408119 0.274838 

13 0.171505 0.150884 -0.19907 -0.42285 0.405367 0.285107 0.189768 

14 0.421134 0.148294 -0.18574 -0.15801 -0.19987 -0.2399 0.364038 

15 -0.30649 -0.20906 0.314897 -0.19529 -0.14842 -0.2399 -0.25438 

16 -0.43966 -0.329 0.405361 0.207378 0.423408 0.304042 -0.4378 

17 0.448729 -0.22809 -0.19987 0.252691 -0.28424 0.406555 -0.4378 

18 -0.1826 -0.22652 0.396557 0.286952 0.418555 0.157428 -0.28184 

19 0.243557 -0.19508 -0.34309 -0.38273 0.229308 -0.33703 -0.28184 

20 -0.24138 0.131459 -0.15516 -0.38273 0.182865 0.265188 0.240012 

21 -0.19345 -0.15226 -0.31293 0.152101 0.182865 0.331007 -0.24151 

22 0.131279 0.236749 -0.31293 0.152101 0.182865 -0.16617 0.303397 

23 -0.15226 -0.3488 0.274827 -0.12673 0.182865 0.280213 0.332372 

24 0.236749 0.23762 0.274827 0.349308 0.182865 0.280213 0.293439 

Table 7.5(b): Daily actual errors (kW) for the Feedforward Neural Network incrementally trained 

Model (FFNN_ADM) 

 

7.9 Conclusion 

This chapter visibly demonstrates the application of Artificial Neural Networks to a 

short-term load forecasting problem. The simulation results obtained from different 

forecasting models are self-explanatory. It is also evident in this chapter that STLF can 

accurately implemented using only past load values. Most importantly one needs to pay 

attention to the training approach of the model.  

All in all, the error analysis comparison result for both cases (total & departmental loads) 

shows that the developed hour-by-hour models are reliable, efficient and have a high degree 
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of generalization as these models responded unconditionally very well to the presented 

testing data. The hour-by-hour approach also eliminates the need to forecast the load for 

each day separately. 

The context of this chapter also has brought this research work to an end. However, one 

more epigrammatic section to summarize the work done and highlight the future outlook of 

this project is discussed in the following chapter. 

Table 7.6: Error comparative analysis for departmental load forecasting models  

 

 

 

 

 

 

 

 

 

  

Model Network training mode MSE MPE 

               training Testing training Testing 

FFNN_IT Feedforward incremental 5.34E-06 7.34E-04 2.73E-08 4.72E-08 

ERNN_IT Elman Recurrent  batch 8.64E-06 0.000456 9.88E-09 8.53E-09 

FFNN_ADM Feedforward incremental 3.84E-06 6.84E-03 1.57E-07 3.52E-08 

ERNN_ADM Elman Recurrent  batch 0.003348 0.004357 4.49E-05 6.07E-04 

FFNN_MEC Feedforward incremental 3.7E-06 5.70E-05 5.46E-07 4.13E-05 

ERNN_MEC Elman Recurrent  batch 0.00118 0.003142 2.87E-05 0.000534453 

FFNN_ELEC Feedforward incremental 3.51E-06 1.94E-06 1.67E-07 2.83E-06 

ERNN_ELEC Elman Recurrent  batch 0.001074 0.002763 5.23E-06 8.48E-04 

FFNN_ACP Feedforward incremental 4.01E-06 8.28E-06 2.03E-06 3.50E-09 

ERNN_ACP Elman Recurrent  batch 0.00278 0.0061 4.23E-05 3.85E-04 
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--------------------------------------------------- 

CHAPTER EIGHT 

                CONCLUSIONS AND FUTURE OUTLOOK   

 
This chapter now concludes the work, application results and findings of the project. In addition, the 

chapter summarises the comparative analyses of various evolved models and gives a summary of the 

deliverables of the project. Possibilities to improve the obtained results and to better the features of the 

developed models are also highlighted.   

 

8.1 Deliverables of the project   

The main objective of this research project is to provide power system planners with an accurate 

and reliable short-term load forecasting (STLF) system which may assist to economically 

optimize power system operations. In the deregulated electricity market, the key power system 

operational activities such as priced-based unit commitment (PBUC), energy interchange, and 

adequate power reserves rely heavily on a forecasting result with reasonable accuracy. Equally, 

STLF is also essential, especially for large power users (LPUs), to duly manage their notified 

maximum demands (NMD) and perhaps even better their expansion plans. These requirements 

are the main impetus of this work.  

 

This thesis is sequentially arranged, commencing with the general introduction of STLF, 

literature review, some basic requirements of a convenient STLF system, a detailed introduction 

of the selected technique (ANNs), data collection, and processing, development of models, and 

finally the obtained application results for the CPUT, Bellville campus reticulation network. 

 

In this work, a number of ANN-based models for STLF have been developed and studied. The 

development of these models was based on two different neural networks (Feedforward and 

Elman Recurrent) and trained using real life data as a case study. Table 8.1 presents a complete 

schedule of network parameters of the developed models.  

 

The load was divided into two categories namely: total load and departmental loads and 

subsequently forecasted individually. Thus 18 sub models were developed to provide one week in 
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advance forecasts in two seasons (summer and winter) for the total load. Ten more sub models 

were developed to hourly and daily forecasts of the departmental loads. As clearly shown in 

Table 8.1, 10 neurons were used in the hidden layer and 1 neuron in the output layer for the total 

load forecasting models.  

 

However, the number of hidden layer neuron was later reduced to merely 5 for the departmental 

load forecasting models. For activations, a tan sigmoid and pure linear transfer functions were 

used in the hidden layer and output layer respectively. The error is computed by means of the 

negative of the gradients and conjugate directions using the standard gradient descent (GD) 

algorithm with momentum and the scaled conjugate gradient (SCG) algorithm. The mean squared 

error (MSE) has been used to evaluate the performance of the models. Mean percentage error 

(MPE) was also used as a supplementary measure.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 8.1: Composition of parameters for the total load models   

 

The forecasting approach was divided into two categories: models for forecasting the load of one 

week at once (or the batch training approach), and models providing hourly forecasts (previously 

referred to as incrementally trained models). This differentiation enables one to observe basic 

properties of different forecasting modules. Generally, the models trained using the batch 

approach provided fast responses in terms of the total time taken for the forecasting process. 

 

Model  

type 

Input 

Vector 

Network No. of 

hidden 

layer 

neurons 

No. of 

output 

layer 

neuron 

Training 

algorithm 

Transfer 

functions 

Training 

mode 

Performance 

Measure 

NWS 

 and  

WS 

Past 

load 

values 

and/or 

weather 

data 

FF and 

ER 

10  

 

1 Gradient 

descent 

algorithm  

with 

momentum 

Tan 

sigmoid  

and pure 

linear  

Batch and  

Incremental  

MSE and  

MPE 

Note: NWS – Non weather sensitive model, WS - Weather sensitive model, FF – Feedforward,  ER – Elman Recurrent, MSE – Mean squared error 

and MPE – Mean percentage error 
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However, these models have some drawbacks particularly in a case of real time implementation. 

Inter alia, some of the disadvantages include the inability of the batch trained models to allow 

hourly updating or logging of historical load and weather data. This limitation could severely 

affect the accuracy of the forecast.  

 

Another major shortcoming of these models is the poor accuracy in the forecast, caused by the 

manner in which the connection weights and biases are computed and adjusted. As explicitly 

pointed out in chapter 7, the performance of a neural network also depends on how the training 

and testing data are presented to the network. The result shows that the batch trained approach 

yields very poor network performance.  

 

The latter training approach (the hour-by-hour), as discussed in chapter 7, section 7.4, looks more 

attractive despite the delay of extra 60 minutes in obtaining a complete 1 week forecast. The 

hour-by-hour forecasting approach is not only superior in terms of the accuracy compared to the 

first approach, but it offers hourly data logging flexibility. And this option is the key feature of 

STLF system for real-time applications. 

 

The effect of climatic conditions on the load has also been considered in this work. Firstly, the IV 

# 2, which ignores any weather related effect, was presented to different models using both 

forecasting approaches. Again, the hour-by-hour trained models outperformed the batch trained 

ones.  

 

And secondly, the other IV (which brings the effect of weather on the load) was then applied to 

the networks. Surprisingly, the batch trained models presented with a combination of load and 

weather data performed slightly better than the non-weather sensitive models (as indicated in 

section 7.2 of the previous chapter). Nonetheless, the result of the incrementally trained models 

shows that the inclusion of weather effect has no noticeable impact on the accuracy of the 

forecasts. Thus it can be reported that STLF can accurately be concluded using only past 

contiguous load values as defined by the structure of the input vector (IV) # 2.  
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This finding is also in support with the conclusion made by (Santos et al., 2007) pertaining the 

optimal number of required training and testing data points. The Authors report that using a large 

amount of data points does not offer any sorts of advantage with regards to the accuracy of the 

forecast.   

 

From the case study view, the Cape Peninsula University of Technology (CPUT) management 

(or the concerned department) needs to urgently review the notified maximum demand (NMD), 

presently declared at 2.2MW, for the campus to avoid possibly penalties charges payable to City 

of Cape Town (CoCT) for exceeding the contractual maximum demand threshold. 

   

All in all, various forecasting models have been developed to predict the total load and other 

departmental loads of the Cape Peninsula University of Technology on hourly to daily basis. The 

deliverables of this project is summarized in Table 8.2. However, it should be noted only main 

developed models are illustrated in this Table. For the total load alone, 16 models based on the 

two training modes have been developed and studied. In all cases, the incremental training 

approach proved to be extremely superior to the latter training mode. 

   

8.2 Application of the models and results  

Although the evolved models are trained using a consumer load data, these models can be 

slightly modified to accurately forecast the total load of a power utility company. In an area with 

a prevailing power shortage, like South African region, the first step for utilities to ensure 

continuity of supply in the region is to acquire good forecasting systems which provide accurate, 

efficient, and reliable forecasts.   

 

By so doing, power system planners and operators would economically operate complex power 

system networks by making good strategic decisions in executing main operational tasks such as 

generation scheduling, optimal energy interchange and risk assessment purposes. It is a known 

fact that a simple thermal-hydro coordination decision or energy importing/exporting schedule 

can cost a utility company millions of dollars if poorly derived. And all these decisions are 

mainly based on the forecast, thus accurate forecasting systems are undeniably essential.    
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Network  Model type Type of load Season Training 

mode 

Model ID   

Batch  Summer 

Incremental  

FFNN_TL_WS01 

 

Batch  

Feedforward  Weather 

sensitive  

Campus’ total 

load  

Winter 

Incremental  

FFNN_TL_WS02 

 

Batch  Summer 

Incremental  

FFNN_TL_NWS01 

 

Winter Batch  

Feedforward Non-weather 

sensitive 

Campus’ total 

load 

 Incremental  

FFNN_TL_NWS02 

 

Batch  Summer 

Incremental 

ERNN_TL_WS01 

 

Batch  

Elman 

Recurrent 

Weather 

sensitive 

Campus’ total 

load 

Winter 

Incremental 

ERNN_TL_WS02 

 

Batch Campus’ total 

load 

Summer 

Incremental 

ERNN_TL_NWS01 

 

Winter Batch 

Elman 

Recurrent 

Non-weather 

sensitive 

Campus’ total 

load  Incremental 

ERNN_TL_NWS02 

 

 

 Departmental 

loads 

 

Feedforward Incremental FFNN_IT 

Elman 

Recurrent 

Weather 

sensitive 

IT department Summer 

 Incremental ERNN_IT 

 

Feedforward Incremental FFNN_ELEC 

Elman 

Recurrent 

Weather 

sensitive 

Electrical 

department 

Summer 

Incremental ERNN_ELEC 

      

Feedforward Incremental FFNN_MEC 

Elman 

Recurrent 

Non-weather 

sensitive 

Mechanical 

department 

Summer 

Incremental ERNN_MEC 

 

Feedforward Summer Incremental FFNN_ADM 

Elman 

Recurrent 

Weather 

sensitive 

Administration 

building   Incremental ERNN_ADM 

 

Feedforward Incremental FFNN_ACP 

Elman 

Recurrent 

Non-weather 

sensitive 

Air 

Conditioning 

Plant (ACP) 

Summer 

Incremental ERNN_ACP 

Table 8.2: A schedule of the developed ANN-based electric load forecasting models  
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As for power consumers, especially LPUs, it is extremely important to manage their load to 

consolidate demand management strategies enforced by utility companies to address the known 

power crisis situation in South African region. This implies forecasting the load accurately will 

aid to facilitate the power demand management process. This exercise also prevents possible 

penalty charges for exceeding the declared maximum demand payable by consumers. For the 

CPUT in particular, the obtained forecasts can be used as a guideline to formulate internal load 

management strategies, such as emergency power generation and implementation schedule for 

demand side management initiatives. 

The developed models can also used as a part of the postgraduate course materials for soft 

computing and further research in the fields of ANNs, prediction and control.     

 

8.3 Project outlook  

The scope of work of this project was specifically limited to off-line training. But for real-time 

applications, some matters still need to be carefully addressed during model development 

process. To start with, the existence of bad data (outliers) in the historical load curve as well as in 

the weather data can affect the accuracy of the forecast negatively. In this work, a manually based 

strategy for detecting and replacing bad data was employed. However, this approach is 

inappropriate for real-time implementation, thus a technique aimed at identifying and replacing 

abnormal data in the input variable curves needs to be automated.  

 

For a comprehensive model performance evaluation, it would be a good idea to develop a 

genetic-based model and then compare the subsequent errors as well as network performance 

indices for further assessment or benchmarking purposes.  

Another matter that needs to be reviewed is the use of more precise hourly weather data rather 

than the daily average values. For this, measurement apparatus may need to be installed on the 

campus premises to record the required weather data on hourly basis.   

 

Evidently, the evolved models have numerous features equivalent to a good forecasting system, 

but a user friendly graphical user interface (GUI) can be developed as an attempt to guide the 

user throughout the forecasting process. 
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 8.4 Publications in connection with the thesis  

1. S.Amakali and R. Tzoneva “A consumer-based short-term load forecasting using artificial 

neural networks”, 2008 – submitted to SAIEE Africa Research Journal.  

2. S.Amakali and R. Tzoneva “Short-term electric load forecasting: Review of the methods and 

some results of a distribution network”, 2008 – submitted to PAC magazine.   
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CPUT Bellville Campus-  

Substations geographical layout and single line diagram for 

the 11kV reticulation network 
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Fig. A 1: Substations geographical layout 

 

 

- symbolises a designated point for measurements where historical profile data were captured-  

Fig. A 2: single line diagram – for the 11kV reticulation network   
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Fig. B.1: Bad data recorded on 02 April, 08 at 9h30.  
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Fig. B 2: Bad data recorded on 10 April, 08 at 11h30.  
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Fig. B 3: Fig. Bad data recorded on 23 April, 08 at 8h30.  

 

Hour l y Load Pr of i l e -  CPUT Bel l vi l e Campus ( June -  Sept ember  08)

0

500

1000

1500

2000

2500

3000

3500

1 121 241 361 481 601 721 841 961 1081 1201 1321 1441 1561 1681 1801 1921 2041 2161 2281 2401 2521 2641 2761
Ti me i n hour s

Ac
ti

ve
 P

ow
er

 (
W)

 

Fig. B 4: Bad data recorded on 06 June, 08 at 11h30.  
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Fig. B 5: Total load profile – including bad data as a result of Eskom’ load shedding 
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Fig. B 5: Some selected bad data for the total load.  
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Fig. B 6: Detected bad data – wind speed  
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Fig. B 7: Detected bad data – humidity 
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Setting up and programming a DMK 40 Lovato and 

Technical specifications  

 (Digital Meter for load measurements) 
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Setting up and programming a DMK 40 Lovato Digital Meter – 

Measurement for departmental loads 

 

1. Software installation  

The DMK 40 Digital meter with data logger options comes by default with the software.    

       The installation of this very simple- 

2. Communication options 

Use Serial port RS232/RS485 communication interface – to connect the meter to a local PC.  

Please also ensure that the Aux supply is connected and functional.  

3. Access or Password  

For a meter reader – no password is required. 

 

Engineering password (full rights) to reset and re-program the meter – please click on password in 

the main menu and type in “lovato” 

 

 

4. Programming – record data  

To specify measurement parameters - Click on Configuration in the tool bar and the options 

 

The window shown below will appear. Click on Data log in the tool bar  

 

 In this window you can then specify what exactly you want measure and the period of measurements 

etc.  And then click ok.  

 

5. Programming – technical data  
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To set up the installation – please click on parameters in the main menu, and then click on base 

setup. 

The DMK 40 requires CT ratio programming (typically 1-5A max).  For voltage measurements 

less than 830VAC/DC – no need for PT ratio programming. More technical data for this meter – 

please refer to the enclosed technical data sheet.   

 

6. Installation and Commissioning  

As shown in the figure below – the following connections were made to present voltage and 

current signals to the meter. Moreover, the meter also requires a separate AUX supply: 100 – 240V 

AC / 110 – 250V DC.    

 

 

7. Data Logging and Storage  

To view the recorded data – please click on View in the main menu and then click on Data Log.  

 

 

A window showing all records will then pop-up.  
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8. Uploading Logged Data 

Before exporting saved data, click (View all) – to display all records and then export to either a 

text file or Excel spread sheet.   

 

9. DMK Main Page  

 

10. Data retrieval note 

Because this meter has no internal memory backup – please ensure that the connection to a local 

PC is always available. For this, one needs to have a roving PC merely for measurements.  

Otherwise, if one disconnects the meter before uploading the data – all data will be lost.  

 

The author hopes that you will find this guide useful – good luck.   

                   By: S. Amakali, CPUT, 2008 
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APPENDIX D 
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D.0: GENERAL MATLAB SCRIPT LAYOUT & SOME MAIN FUNCTIONS  

The structure below is used to describe MATLAB source code for every model  

 

%   OVERVIEW OF SCRIPT DESCRIPTION  

1. File name               

2. Aim of the model       

3. Forecasting methodology  

4. Input Vector  

5. Output Vector  

Notes:  

 

CONNECTING TO THE DATABASE: 

%   conn      -        connects a MATLAB session to a database via the specified ODBC driver 

%                 returns a connection object 

%   database   -    MATLAB function used to connect to an ODBC/JDBC database 

% 

%   exec       -        returns the cursor object to the variable "curs" 

%   fetch       -       imports data from the cursor 

%   curs.Data   -   returns the data at the cursor object  

 %  corrcoef   -   calculates a matrix of correlation coefficients for an array. 

% tansig       -   tan sigmoid transfer function  

% purelin      -   pure linear transfer function  

%   tic        -    Starts a stopwatch timer 

% WS      -  Weather sensitive model 

%NWS        -  Non-weather sensitive model   

%FFNN       -    Feedforward Neural Network 

%ERNN      -    Elman Recurrent Neural Network 

 

%                  VERIFYING THE CONNECTION TO THE DATABASE  

%  isconnection  -   MATLAB function that detects if database connection is valid,  

%                  and returns a 1 if the DB connection is valid, otherwise a 0 will be displayed. 

  

%  setdbprefs   -    set preferences for data retrieval format. Often numeric format 

%                  uses less memory and offer better performance than the cellarray format             

  

%               CLOSING THE CONNECTION TO THE DATABASE  

% close(connect)    -     closes the database connection.  

% Defining the training functions and performance function  

% traingdm   - gradient descent with momentum backpropagation. 

% mse       -    mean squared error performance function. 

 

%Author:           S. Amakali 

%Institution:       Cape Peninsula University of Technology 

%Date:     September 2008 
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 D.1: MATLAB Script: Feedforward non-weather sensitive model for predicting the 

total load in summer 

 

1. File name      :  FFNN_TL_NWS01.m            

2. Aim of the model           :  This model is designed specifically to ignore any weather related effect       

on the load. Thus the model uses only past load values to predict the   

load as discussed in chapter 6 (section 6.3.1 and 6.4) and chapter 7 

(section 7.2) 

3. Methodology               :   This model predicts the load for the whole week at once (batch training 

mode) 

4. Input Vector      :   IV # 1. 

5. Output Vector      :   one week ahead forecasts  

6. Note         :   This model has failed to meet the performance goal (1e-5) 

 

 %Clearing the screen and memory 

clc 

clear 

 tic; 

%   establishing the connection to the DB and extracting the required data 

%   Inserting the username and password to access the DB  

%   importing the required data into MATLAB using SQL Syntax from a table named 'ivsalldata' 

conn = database('combinedloaddata', 'root', 'password1') 

DATABASE_CONNECTION = isconnection(conn) 

curs= exec(conn,'SELECT Consump FROM ivsalldata'); 

setdbprefs('DataReturnFormat','cellarray') 

curs = fetch(curs); 

m = curs.Data; 

Consump = str2double(m); 

clear m; 

  

curs= exec(conn,'SELECT Humidity FROM ivsalldata'); 

setdbprefs('DataReturnFormat','cellarray') 

curs = fetch(curs); 

m = curs.Data; 

Humidity = str2double(m); 

clear m; 

  

curs= exec(conn,'SELECT Wind_Speed FROM ivsalldata'); 

setdbprefs('DataReturnFormat','cellarray') 

curs = fetch(curs); 

m = curs.Data; 

Wind_Speed = str2double(m); 

clear m; 
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curs= exec(conn,'SELECT Max_Temp FROM ivsalldata'); 

setdbprefs('DataReturnFormat','cellarray') 

curs = fetch(curs); 

m = curs.Data; 

Max_Temp = str2double(m); 

clear m; 

  

curs= exec(conn,'SELECT Min_Temp FROM ivsalldata'); 

setdbprefs('DataReturnFormat','cellarray') 

curs = fetch(curs); 

m = curs.Data; 

Min_Temp = str2double(m); 

clear m; 

  

%Correlation Analysis between the load and exogenous variables  

Consump_Wind_Speed = corrcoef(Consump,Wind_Speed); 

Consump_Humidity = corrcoef(Consump,Humidity); 

Consump_Max_Temp = corrcoef(Consump,Max_Temp); 

Consump_Min_Temp = corrcoef(Consump,Min_Temp); 

 

%       Input Data Preprocessing  

%************************************** 

MaxConsump = max(Consump); 

norm_Consump = (Consump/MaxConsump)'; 

 

%      Preparing Data 

%**************************** 

% defining data set dimensions  

n = 1584:1762;   % Training data 

k = 1752:1919;   % Target 

s = 913:1081;   % Testing data 

x = 1752:1919;   %Target - testing data  

P = [norm_Consump(n);norm_Consump(n-1);norm_Consump(n-168);norm_Consump(n-169)]; 

[mat,padded] = vec2mat(P,168); 

[r,s]=size(mat); 

P1 = mat(1:4,1:168); 

[mat,padded] = vec2mat(P,168); 

[r,s]=size(mat); 

l = 1584:1751; 

Pw = [P1]; 

Tw = norm_Consump(k); 

Ptst = [norm_Consump(s);norm_Consump(s-1);norm_Consump(s-168);norm_Consump(s-169)]; 

[mat,padded] = vec2mat(Ptst,168); 

[r,s] = size(mat); 
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P2 = mat(1:4,1:168); 

Pwtstd = [P2]; 

Tw1 = norm_Consump(x); 

 

%   Defining ANN Topology 

%****************************** 

%Designing a custom Feedforward Neural Network with 1 input layer, 1 hidden layer with 10 neurons 

and 1 output neurons 

 

net = network; 

net.numInputs = 1; 

net.inputs{1}.size = 4; 

net.numLayers = 2; 

net.layers{1}.size = 10; 

net.layers{2}.size = 1; 

net.inputConnect(1) = 1; 

net.layerConnect(2,1) = 1; 

net.outputConnect(2) = 1; 

net.targetConnect(2) = 1; 

net.layers{1}.transferFcn = 'tansig'; 

net.layers{2}.transferFcn = 'purelin'; 

 

%Defining which layers have biases 

net.biasConnect(1) = 1; 

net.biasConnect(2) = 1; 

net = init(net);   %Initialise the weights and biases 

net.trainFcn = 'traingdm'; 

net.performFcn = 'mse'; 

net.trainParam.lr = 0.3; 

net.trainParam.mc = 0.75; 

net.trainParam.epochs = 1000; 

net.trainParam.show = 50; 

net.trainParam.goal = 1e-5; 

[net,tr,a] = train(net,Pw,Tw);  

forecast = a; 

delta = Tw – forecast;  

% Reset weight and biases - Optional for trial only 

%net.initFcn = 'initlay';   

%net.layers{1}.initFcn = 'initnw'; 

%net.layers{2}.initFcn = 'initwb'; 

%net.inputWeights{1,1}.initFcn = 'rands'; 

%net.biases{1}.initFcn = 'rands' 

%net.layerWeights{1,2}.initFcn = 'rands' 
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% simulating the network using the testing data 

 

  a2 = sim(net,Ptst,Tw1); 

   forecast1 = a2; 

   delta2 = (Tw - forecast1; 

   e1 = delta2; 

 

N=168; 

MPE = sum((((Tw - forecast)/Tw)*100)/N) 

MSE = sum(((Tw - forecast).^2)/N) 

MSE_test = mse(Tw - forecast) 

 

% saving the forecast for the training data 

saveas(gcf, 'traingdm_err Training', 'fig'); 

save tr tr; 

  

% calculating the sum squared error 

num=168; 

MSE = (sumsqr(delta))/num; 

fprintf('MSE = %d', MSE*100) 

perf = mse(delta) 

  

% De-normalization  

O_Pw_denorm = forecast*MaxConsump; 

Tw_denorm = Tw*MaxConsump; 

 

%    Plotting the Graphs 

%************************** 

figure(1) 

hold on 

title('Network response - using training data (a 168 hrs ahead forecast)'); 

xlabel('Time in hours'); 

ylabel('Active Power/Load in [kW]'); 

grid on 

plot(Tw_denorm, 'r--', 'LineWidth',3, 'MarkerSize',10); 

plot(O_Pw_denorm, 'gx', 'LineWidth',3, 'MarkerSize',10); 

legend ('Actual load values', 'Predicted load values'); 

  

% Plotting simulation results - using testing datatest. 

figure(2) 

hold on 

title('Network response using testing data'); 

xlabel('Time(hrs)'); 

ylabel('Active Power - normalized'); 
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grid on 

plot(forecast1, 'b--', 'LineWidth',3, 'MarkerSize',12); 

plot(T, 'm*', 'LineWidth',3, 'MarkerSize',10); 

legend('Predicated load values', 'Actual load values'); 

 

 %Plotting the error:   using training data 

%**************************************** 

figure(3) 

%Actual_error = delta*MaxConsump; 

plot(error, 'b--', 'LineWidth',2, 'MarkerSize',10); 

title('Hourly actual error (W)- (training data'); 

xlabel('Time(hrs)'); 

ylabel('Error(Watts)'); 

legend ('e - ttr'); 

grid on 

 

% Saving the MSE,MPE and Actual error(kW) to an Excel spread sheet 

a = delta*MaxConsump; 

[mat,padded] =vec2mat(a,24); 

e_tr = mat(1:7,1:24); 

actual_error_tr = xlswrite('error(W)_CERNN_TL_WS01_tr',e_tr'); 

c = {'MSE_tr','MPE_tr';MSE_tr MPE_tr}; 

d = xlswrite('MSEMPE_CERNN_TL_WS01' , c, 'A1'); 

 

%   closing the connection to the DB 

close(curs) 

close(conn) 

isconnection(conn) 

toc; 

forecast_time = toc 

 

%   End 
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D.2: MATLAB Script: Elman Recurrent weather sensitive model for predicting the 

total load in summer 

1. File name       :    ERNN_TL_WS01.m            

2. Aim of the model        :    This model brings the effect of climatic conditions on the load on the load. 

More details about this model can be found in the thesis, chapter 6 (section 

6.4) and chapter 7 (section 7.3)    

3. Methodology           :   This model predicts the load for the whole week using the hour-by-hour 

approach.  

4. Input Vector       :   IV # 1. 

5. Output Vector       :    one week ahead forecasts  

6. Note                  :   This model has successfully met the performance goal (1e-5) in only few    

iterations.   

 

%Clearing the screen and memory 

clc 

clear 

 tic; 

%   Establishing the connection to the DB and extracting required data 

%   Inserting the username and password to access the DB  

%   importing the required data into MATLAB using SQL Syntax from a table named 'ivsalldata' 

%************************************************************************** 

conn = database('combinedloaddata', 'root', 'password1') 

DATABASE_CONNECTION = isconnection(conn) 

curs= exec(conn,'SELECT Consump FROM ivsalldata'); 

setdbprefs('DataReturnFormat','cellarray') 

curs = fetch(curs); 

m = curs.Data; 

Consump = str2double(m); 

clear m; 

  

curs= exec(conn,'SELECT Humidity FROM ivsalldata'); 

setdbprefs('DataReturnFormat','cellarray') 

curs = fetch(curs); 

m = curs.Data; 

Humidity = str2double(m); 

clear m; 

  

curs= exec(conn,'SELECT Wind_Speed FROM ivsalldata'); 

setdbprefs('DataReturnFormat','cellarray') 

curs = fetch(curs); 

m = curs.Data; 

Wind_Speed = str2double(m); 

clear m; 
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curs= exec(conn,'SELECT Max_Temp FROM ivsalldata'); 

setdbprefs('DataReturnFormat','cellarray') 

curs = fetch(curs); 

m = curs.Data; 

Max_Temp = str2double(m); 

clear m; 

  

curs= exec(conn,'SELECT Min_Temp FROM ivsalldata'); 

setdbprefs('DataReturnFormat','cellarray') 

curs = fetch(curs); 

m = curs.Data; 

Min_Temp = str2double(m); 

clear m; 

  

%Correlation Analysis between the load exogenous variables  

Consump_Wind_Speed = corrcoef(Consump,Wind_Speed); 

Consump_Humidity = corrcoef(Consump,Humidity); 

Consump_Max_Temp = corrcoef(Consump,Max_Temp); 

Consump_Min_Temp = corrcoef(Consump,Min_Temp); 

 

%       Input Data Preprocessing  

%************************************** 

MaxConsump = max(Consump); 

MaxWind_Speed = max(Wind_Speed); 

MaxHumidity = max(Humidity); 

MaxMax_Temp = max(Max_Temp); 

MaxMin_Temp = max(Max_Temp); 

  

norm_Consump = (Consump/MaxConsump)'; 

norm_Wind_Speed = (Wind_Speed/MaxWind_Speed)'; 

norm_Humidity = (Humidity/MaxHumidity)'; 

norm_Max_Temp = (Max_Temp/MaxMax_Temp)'; 

norm_Min_Temp = (Min_Temp/MaxMin_Temp)'; 

  

%      Preparing Data 

%**************************** 

%defining data set dimensions  

n = 1584:1762;  %Training data 

k = 1752:1919;  % Target - training data 

s = 913:1081;  % Testing data 

P = [norm_Consump(n);norm_Consump(n-1);norm_Consump(n-168);norm_Consump(n-169)]; 

[mat,padded] = vec2mat(P,168); 

[r,s]=size(mat); 

P1 = mat(1:4,1:168); 
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Temp1 = [norm_Max_Temp(k);norm_Min_Temp(k)]; 

[mat,padded] = vec2mat(P,168); 

[r,s]=size(mat); 

Temp = mat(1:2,1:168); 

l = 1584:1751; 

Humid = [norm_Humidity(k)]; 

Wind = [norm_Wind_Speed(k)]; 

Pw = [P1;Temp;Humid;Wind]; 

Tw = norm_Consump(k); 

Ptst = [norm_Consump(s);norm_Consump(s-1);norm_Consump(s-168);norm_Consump(s-169)]; 

[mat,padded] = vec2mat(Ptst,168); 

[r,s]=size(mat); 

P2 = mat(1:4,1:168); 

Pwtstd = [P2;Temp;Humid;Wind]; 

%Target - testing data  

Tw1 = norm_Consump(x); 

 

 %   Defining ANN Topology 

%****************************** 

nhn = 10;       % Number of hidden layer neurons 

net = newelm([minmax(Pw)],[nhn 1 ],{'tansig','purelin'},'traingdm'); 

net.layers{1}.initFcn='initnw'; 

net.layers{2}.initFcn='initnw'; 

net = init(net);       % Initialization of network 

net.performFcn='mse';        

net.trainParam.epochs = 1000;   % Maximum no. of epochs 

net.trainParam.show = 50;    % No. of epochs to display 

net.trainParam.lr = 0.3;    % Learning rate 

net.trainParam.mc = 0.75;    % Momentum term 

net.trainParam.goal = 1e-5;    %Defining the goal  

init_in_weights = net.IW{1,1};   % Determining the initial input weights 

init_out_weights = [net.LW{2,1}(:)]; % Determining the initial output 

init_in_bias = net.b{1};     % Determining the initial input bias 

init_out_bias = net.b{2};    % Determining the initial output bias 

for i = 1:168; 

    P = Pw(:,i); 

    T = Tw(1,i); 

 [net,tr,a] = train(net,P,T); 

    forecast(1,i) = a; 

    delta(1,i)= Tw(1,i) - forecast(1,i);     

end 

 

% Saving the forecast for the training data 

saveas(gcf, 'trainscg_err Training', 'fig'); 
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save tr tr; 

 

 % Reset weight and biases - Optional for trial only 

%net.initFcn = 'initlay';   

%net.layers{1}.initFcn = 'initnw'; 

%net.layers{2}.initFcn = 'initwb'; 

%net.inputWeights{1,1}.initFcn = 'rands'; 

%net.biases{1}.initFcn = 'rands' 

%net.layerWeights{1,2}.initFcn = 'rands' 

% Calculating the sum squared error 

num=168; 

MSE = (sumsqr(delta))/num; 

fprintf('MSE = %d', MSE*100) 

   

MPE_tr = ((1/num)* sum((delta/Tw).^2))*100 

MSE_tr = (1/num)* (sum(delta.^2)) 

perf = mse(delta) 

  

% De-normalization  

O_Pw_denorm = forecast*MaxConsump; 

Tw_denorm = Tw*MaxConsump; 

  

% simulating the network using the testing data 

%*********************************************** 

 for i = 1:168; 

   Pts = Pwtstd(:,i); 

    T = Tw1(1,i); 

[a2 pf af]= sim(net,Pts,T); 

O_Pwtst(1,i) = a2; 

forecast_tstdata = O_Pwtst(1,i); 

 delta_tst = T - forecast_tstdata; 

end 

  

%    Plotting the Graphs 

%************************** 

figure(1) 

hold on 

title('Network response - using training data (a 168 hrs ahead forecast)'); 

xlabel('Time in hours'); 

ylabel('Active Power/Load in [kW]'); 

grid on 

plot(Tw_denorm, 'r--', 'LineWidth',3, 'MarkerSize',10); 

plot(O_Pw_denorm, 'gx', 'LineWidth',3, 'MarkerSize',10); 

legend ('Actual load values', 'Predicted load values'); 
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% Plotting forecast for the testing data  

figure(2) 

hold on 

title('Network response using testing data'); 

xlabel('Time(hrs)'); 

ylabel('Active Power - normalized'); 

grid on 

plot(forecast_tstdata, 'b--', 'LineWidth',3, 'MarkerSize',12); 

legend('Predicated load values', 'Actual load values'); 

 

%Plotting the error:    

%************** 

figure(3) 

Actual_error = delta*MaxConsump 

plot(Actual_error, 'b--', 'LineWidth',2, 'MarkerSize',10); 

title('Hourly actual error (W)- (training data'); 

xlabel('Time(hrs)'); 

ylabel('Error(Watts)'); 

legend ('e - ttr'); 

grid on 

  

% Saving the MSE,MPE and Actual error(kW) to an Excel spread sheet 

a = delta*MaxConsump; 

[mat,padded] =vec2mat(a,24); 

e_tr = mat(1:7,1:24); 

actual_error_tr = xlswrite('error(kW)_ERNN_TL_WS01_tr',e_tr'); 

c = {'MSE_tr','MPE_tr';MSE_tr MPE_tr}; 

d = xlswrite('MSEMPE_ERNN_TL_WS01' , c, 'A1'); 

  

%   closing the connection to the DB 

close(curs) 

close(conn) 

isconnection(conn) 

toc; 

forecast_time = toc 

%    End 
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D.3: MATLAB Script: Feedforward weather sensitive model for predicting the total 

load in winter)  

1. File name       :  FFNN_TL_WS02.m            

2. Aim of the model        :  This model is designed specifically to ignore any weather related effect       

on the load. Thus the model uses only past load values to predict the   load 

as discussed in chapter 6 (section 6.4) and chapter 7 (section 7.6) 

3. Methodology           :   This model predicts the load for the whole week using the hour-by-hour 

approach.  

4. Input Vector       :   IV # 1. 

5. Output Vector       :    one week ahead forecasts  

6. Note                   :   This model has successfully met the performance goal (1e-5) in only few      

iterations.   

 

%Clearing the screen and memory 

clc 

clear 

 tic; 

%   establishing the connection to the DB and extracting required data 

%   Inserting the username and password to access the DB  

%   importing the required data into MATLAB using SQL Syntax from a table named 'iv_tl_winter' 

%************************************************************************** 

conn = database('combinedloaddata', 'root', 'password1') 

DATABASE_CONNECTION = isconnection(conn) 

curs= exec(conn,'SELECT consump FROM iv_tl_winter'); 

setdbprefs('DataReturnFormat','cellarray') 

curs = fetch(curs); 

m = curs.Data; 

consump = str2double(m); 

clear m; 

  

curs= exec(conn,'SELECT Humidity FROM iv_tl_winter'); 

setdbprefs('DataReturnFormat','cellarray') 

curs = fetch(curs); 

m = curs.Data; 

humidity = str2double(m); 

clear m; 

  

curs= exec(conn,'SELECT Wind_Speed FROM iv_tl_winter'); 

setdbprefs('DataReturnFormat','cellarray') 

curs = fetch(curs); 

m = curs.Data; 

wind_speed = str2double(m); 

clear m; 
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curs= exec(conn,'SELECT Max_Temp FROM iv_tl_winter'); 

setdbprefs('DataReturnFormat','cellarray') 

curs = fetch(curs); 

m = curs.Data; 

max_temp = str2double(m); 

clear m; 

  

curs= exec(conn,'SELECT Min_Temp FROM iv_tl_winter'); 

setdbprefs('DataReturnFormat','cellarray') 

curs = fetch(curs); 

m = curs.Data; 

min_temp = str2double(m); 

clear m; 

  

%Correlation Analysis between the load and exogenous variables  

Consump_Wind_Speed = corrcoef(consump,wind_speed); 

Consump_Humidity = corrcoef(consump,humidity); 

Consump_Max_Temp = corrcoef(consump,max_temp); 

Consump_Min_Temp = corrcoef(consump,min_temp); 

 

%       Input Data Preprocessing  

%************************************** 

MaxConsump = max(consump); 

MaxWind_Speed = max(wind_speed); 

MaxHumidity = max(humidity); 

MaxMax_Temp = max(max_temp); 

MaxMin_Temp = max(max_temp); 

norm_Consump = (consump/MaxConsump)'; 

norm_Wind_Speed = (wind_speed/MaxWind_Speed)'; 

norm_Humidity = (humidity/MaxHumidity)'; 

norm_Max_Temp = (max_temp/MaxMax_Temp)'; 

norm_Min_Temp = (min_temp/MaxMin_Temp)'; 

  

%      Preparing Data 

%**************************** 

%defining the data set dimensions 

n = 1345:1514;    %Training data 

s = 1513:1682;    % Target - training data 

k = 1681:1850;    % Testing data 

P = [norm_Consump(n);norm_Consump(n-1);norm_Consump(n-168);norm_Consump(n-169)]; 

Ptst = [norm_Consump(s);norm_Consump(s-1);norm_Consump(s-168);norm_Consump(s-169)]; 

P1 = P(:,1:168); 

P2 = Ptst(:,1:168); 

Tw1 = norm_Consump(k); 
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Tw = Tw1(:,1:168); 

Temp1 = [norm_Max_Temp(k);norm_Min_Temp(k)]; 

Temp = Temp1(:,1:168); 

Humid1 = [norm_Humidity(k)]; 

Wind1 = [norm_Wind_Speed(k)]; 

Humid = Humid1(:,1:168); 

Wind = Wind1(:,1:168); 

Pw  =  [P1;Temp;Humid;Wind]; 

Pwtstd  =  [P2;Temp;Humid;Wind]; 

  

%Designing a custom Feedforward Neural Network Model with 1 input, 1 hidden layer with 5 neurons 

and 1 output neurons 

net = network; 

net.numInputs = 1; 

net.inputs{1}.size = 8; 

net.numLayers = 2; 

net.layers{1}.size = 5; 

net.layers{2}.size = 1; 

net.inputConnect(1) = 1; 

net.layerConnect(2,1) = 1; 

net.outputConnect(2) = 1; 

net.targetConnect(2) = 1; 

net.layers{1}.transferFcn = 'tansig'; 

net.layers{2}.transferFcn = 'purelin'; 

 

%Define which layers have biases 

net.biasConnect(1) = 1; 

net.biasConnect(2) = 1; 

net = init(net);%Initialise the weights and biases 

  

% Reset weight and biases - Optional for trial only 

%net.initFcn = 'initlay';   

%net.layers{1}.initFcn = 'initnw'; 

%net.layers{2}.initFcn = 'initwb'; 

%net.inputWeights{1,1}.initFcn = 'rands'; 

%net.biases{1}.initFcn = 'rands' 

%net.layerWeights{1,2}.initFcn = 'rands' 

  

% Declare the hour by hour forecasting Algorithm and other training parameters 

for i = 1:168; 

    Pin = Pw(:,i); 

    T = Tw(1,i); 

net.trainFcn = 'traingdm'; 

net.performFcn = 'mse'; 
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net.trainParam.lr = 0.3; 

net.trainParam.mc = 0.75; 

net.trainParam.epochs = 1000; 

net.trainParam.show = 50; 

net.trainParam.goal = 1e-5; 

[net,tr,a] = train(net,Pin,T); 

    forecast(1,i) = a; 

    delta(1,i)= Tw(1,i) - forecast(1,i);     

end 

 % saving the forecast for the training data 

saveas(gcf, 'traingdm_err Training', 'fig'); 

save tr tr; 

 

% simulating the network with the same inputs used to train the network 

O_Pw = sim (net,Pw); 

% calculating the sum squared error 

 e = (Tw-O_Pw); 

MSE = mse(e);  

num=168; 

% calculating the mean percentage error 

MPE_tr = ((1/num)* sum((delta/Tw).^2))*100 

MSE_tr = (1/num)* (sum(delta.^2)) 

 

%Denormalization  

O_Pw_denorm = forecast*MaxConsump; 

Tw_denorm = Tw*MaxConsump; 

ae = Tw_denorm - O_Pw_denorm; 

%    Plotting the Graphs 

%******************* 

figure(1) 

hold on 

title('168hrs in advance forecast -CPUTBvl( training data -winter) FFNN-TL-WS02'); 

xlabel('Time in hours'); 

ylabel('Active Power/Load in [kW]'); 

grid on 

plot(Tw_denorm, 'r--', 'LineWidth',3, 'MarkerSize',10); 

plot(O_Pw_denorm, 'g:', 'LineWidth',3, 'MarkerSize',10); 

legend ('Actual load values','Predicted load values'); 

% simulating the network using the testing data set 

%******************************************* 

O_Pwtst = sim (net,Pwtstd); 

% saving the forecast 

saveas(gcf, 'testscg_err', 'fig'); 

save O_Pwtst O_Pwtst; 
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e1 = Tw - O_Pwtst; 

MSE2 = mse(e1)  

MPE_ts = ((1/num)* sum((e1/Tw).^2))*100 

MSE_ts = (1/num)* (sum(e1.^2)) 

 

% Plotting the graph for the testing data 

figure(2) 

hold on 

title('Normalized 168hrs ahead forecast CPUTBvl(TestingData winter)FFNN-TL-WS02'); 

xlabel('Time in hours'); 

ylabel('Active Power/Load normalized'); 

grid on 

plot(O_Pwtst, 'b--', 'LineWidth',3, 'MarkerSize',12); 

plot(Tw, 'm-', 'LineWidth',3, 'MarkerSize',10); 

legend('Predicted load values', 'Actual load values'); 

 

% plotting the error 

%*************** 

figure(3) 

plot((ae), 'b--', 'LineWidth',2, 'MarkerSize',10); 

title('error (training data'); 

xlabel('Time in hours'); 

ylabel('error(W)'); 

legend ('error (FFNN-TL-WS02)'); 

grid on 

 

% Saving the MSE,MPE and actual error(kW) to an Excel spread sheet 

a = ae; 

[mat,padded] =vec2mat(a,24); 

e_tr = mat(1:7,1:24); 

actual_error_tr = xlswrite('error(kW)_FFNN_TL_WS02_tr',e_tr'); 

b = e1*MaxConsump; 

[mat,padded] =vec2mat(b,24); 

e_ts = mat(1:7,1:24); 

actual_error_ts = xlswrite('error(kW)_FFNN_TL_WS02_ts',e_ts'); 

 c = {'MSE_tr','MSE_ts','MPE_tr','MPE_ts';MSE_tr MSE_ts MPE_tr MPE_ts}; 

d = xlswrite('MSEMPE_FFNN_TL_WS02' , c, 'A1'); 

 

%closing the connection to the DB 

close(curs) 

close(conn) 

isconnection(conn) 

%    End 
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D.4: MATLAB Script: Elman Recurrent non-weather sensitive model for predicting 

the total load in winter 

1. File name       :  ERNN_TL_NWS02.m            

2. Aim of the model        :  This model is also designed specifically to ignore any weather related effect        

on the load. Thus the model uses only past load values to predict the load as 

discussed in chapter 6 (section 6.4) and Appendix E. 

3. Methodology           :   This model predicts the load for the whole week using the hour-by-hour 

approach.  

4. Input Vector       :   IV # 2. 

5. Output Vector       :    one week ahead forecasts  

6. Note                  :    This model has also successfully met the performance goal (1e-5) in only 

few iterations.   

 

%Clearing the screen and memory  

clc 

clear 

%   Establishing the connection to the DB and extracting required data 

%   Inserting the username and password for the DB 

%   Importing required data into MATLAB using SQL Syntax from a table named 'iv_tl_winter' 

%************************************************************************** 

tic; 

conn = database('combinedloaddata', 'root', 'password1') 

DATABASE_CONNECTION = isconnection(conn) 

curs= exec(conn,'SELECT consump FROM iv_tl_winter'); 

setdbprefs('DataReturnFormat','cellarray') 

curs = fetch(curs); 

m = curs.Data; 

Consump = str2double(m); 

clear m; 

  

curs= exec(conn,'SELECT humidity FROM iv_tl_winter'); 

setdbprefs('DataReturnFormat','cellarray') 

curs = fetch(curs); 

m = curs.Data; 

Humidity = str2double(m); 

clear m; 

  

curs= exec(conn,'SELECT wind_speed FROM iv_tl_winter'); 

setdbprefs('DataReturnFormat','cellarray') 

curs = fetch(curs); 

m = curs.Data; 

Wind_Speed = str2double(m); 

clear m; 
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curs= exec(conn,'SELECT max_temp FROM iv_tl_winter'); 

setdbprefs('DataReturnFormat','cellarray') 

curs = fetch(curs); 

m = curs.Data; 

Max_Temp = str2double(m); 

clear m; 

  

curs= exec(conn,'SELECT min_temp FROM iv_tl_winter'); 

setdbprefs('DataReturnFormat','cellarray') 

curs = fetch(curs); 

m = curs.Data; 

Min_Temp = str2double(m); 

clear m; 

  

%Correlation Analysis between the load and exogenous variables  

Consump_Wind_Speed = corrcoef(Consump,Wind_Speed); 

Consump_Humidity = corrcoef(Consump,Humidity); 

Consump_Max_Temp = corrcoef(Consump,Max_Temp); 

Consump_Min_Temp = corrcoef(Consump,Min_Temp); 

 

%       Input Data Preprocessing  

%************************************** 

MaxConsump = max(Consump); 

MaxWind_Speed = max(Wind_Speed); 

MaxHumidity = max(Humidity); 

MaxMax_Temp = max(Max_Temp); 

MaxMin_Temp = max(Max_Temp); 

norm_Consump = (Consump/MaxConsump)'; 

norm_Wind_Speed = (Wind_Speed/MaxWind_Speed)'; 

norm_Humidity = (Humidity/MaxHumidity)'; 

norm_Max_Temp = (Max_Temp/MaxMax_Temp)'; 

norm_Min_Temp = (Min_Temp/MaxMin_Temp)'; 

  

%      Preparing Data 

%**************************** 

% defining data set dimensions  

n = 1345:1514;      % Training data 

k = 1681:1850;    % Target  

s = 1513:1682;    % Testing data 

Tw1 = norm_Consump(k); 

Tw = Tw1(:,1:168); 

Humid = Humid1(:,1:168); 

Wind = Wind1(:,1:168); 

P = [norm_Consump(n);norm_Consump(n-1);norm_Consump(n-168);norm_Consump(n-169)]; 



 169 

Ptst = [norm_Consump(s);norm_Consump(s-1);norm_Consump(s-168);norm_Consump(s-169)]; 

Temp1 = [norm_Max_Temp(k);norm_Min_Temp(k)]; 

P1 = P(:,1:168); 

P2 = Ptst(:,1:168); 

Temp = Temp1(:,1:168); 

Humid1 = [norm_Humidity(k)]; 

Wind1 = [norm_Wind_Speed(k)]; 

Pw = [P1]; 

Pwtstd = [P2]; 

  

%   Defining ANN Topology 

%****************************** 

%Designing a Elman Recurrent Neural Network with 1 input, 1 hidden layer with 10 neurons and 

1output neurons 

nhn = 10;       % Number of hidden layer neurons 

net = newelm([minmax(Pw)],[nhn 1 ],{'tansig','purelin'},'traingdm'); 

net.layers{1}.initFcn='initnw'; 

net.layers{2}.initFcn='initnw'; 

net = init(net);          % Initialization of network 

net.performFcn='mse';        

net.trainParam.epochs = 1000;    % Maximum no. of epochs 

net.trainParam.show = 50;    % No. of epochs to display 

net.trainParam.lr = 0.3;     % Learning rate 

net.trainParam.mc = 0.75;    % Momentum term 

net.trainParam.goal = 1e-5;    %Defining the goal  

init_in_weights = net.IW{1,1};   % Determining the initial input weights 

init_out_weights = [net.LW{2,1}(:)]; % Determining the initial output 

init_in_bias = net.b{1};    % Determining the initial input bias 

init_out_bias = net.b{2};    % Determining the initial output bias 

for i = 1:168; 

    P = Pw(:,i); 

    T = Tw(1,i); 

 [net,tr,a] = train(net,P,T); 

    forecast(1,i) = a; 

    delta(1,i)= Tw(1,i) - forecast(1,i);     

end 

Saving of the forecast for the training data 

saveas(gcf, 'trainscg_err Training', 'fig'); 

save tr tr; 

 

% Calculating the sum squared error 

num=168; 

MPE_tr = ((1/num)* sum((delta/Tw).^2))*100; 

MSE_tr = (1/num)* (sum(delta.^2)); 
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perf = mse(delta); 

  

% De-normalization  

O_Pw_denorm = forecast*MaxConsump; 

Tw_denorm = Tw*MaxConsump; 

  

% Simulating the network using the testing data 

%*********************************************** 

 for i = 1:168; 

   Pts = Pwtstd(:,i); 

    T = Tw(1,i); 

[a2 pf af]= sim(net,Pts); 

O_Pwtst(1,i) = a2; 

forecast_tstdata = O_Pwtst(1,i); 

 delta_tst = T - forecast_tstdata; 

end 

  

%    Plotting the graphs 

%************************** 

figure(1) 

hold on 

title('Network response - using training data (a 168 hrs ahead forecast)'); 

xlabel('Time in hours'); 

ylabel('Active Power/Load in [kW]'); 

grid on 

plot(Tw_denorm, 'r--', 'LineWidth',3, 'MarkerSize',10); 

plot(O_Pw_denorm, 'gx', 'LineWidth',3, 'MarkerSize',10); 

legend ('Actual load values', 'Predicted load values'); 

  

% Plotting simulation results - using testing data test. 

figure(2) 

hold on 

title('Network response using testing data'); 

xlabel('Time(hrs)'); 

ylabel('Active Power - normalized'); 

grid on 

plot(forecast_tstdata, 'b--', 'LineWidth',3, 'MarkerSize',12); 

legend('Predicated load values', 'Actual load values'); 

 % Saving the MSE,MPE and actual error(kW) to an Excel spread sheet 

a = delta*MaxConsump; 

[mat,padded] =vec2mat(a,24); 

e_tr = mat(1:7,1:24); 

actual_error_tr = xlswrite('error(W)_CERNN_TL_NWS02_tr',e_tr'); 

c = {'MSE_tr','MPE_tr';MSE_tr MPE_tr}; 
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d = xlswrite('MSEMPE_ERNN_TL_NWS02' , c, 'A1'); 

  

%   closing the connection to the DB 

close(curs) 

close(conn) 

isconnection(conn) 

toc; 

Forecast_Time = toc 

%     End 
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D.5: MATLAB Script: Feedforward Model for predicting the load of the IT 

Department 

 

1. File name       :  FFNN_IT.m 

2. Aim of the model        :  This model also brings the effect of climatic conditions on the load. Thus it 

uses a combination of the past load values and weather data to predict the 

load for the IT department as discussed in chapter 6 (section 6.4) and chapter 

7 (section 7.8.1). 

3. Methodology           :  This model predicts the load for the whole week using the hour-by-hour 

approach.  

4. Input Vector       :   IV # 1. 

5. Output Vector       :   one week ahead forecasts  

6. Note                  :   This model has also successfully met the performance goal (1e-5) in only    

few iterations. The target vector used during the training was later defined as 

the testing data.    

 

%Clearing the screen and memory 

clc 

clear 

 tic; 

%   Establishing the connection to the DB and extracting required data 

%   Inserting the username and password to access the DB  

%   importing the required data into MATLAB using SQL Syntax from a table named 'ivit22' 

%% The model is trained using the batch incremental mode 

%************************************************************************** 

conn = database('combinedloaddata', 'root', 'password1') 

 DATABASE_CONNECTION = isconnection(conn) 

curs= exec(conn,'SELECT Consump FROM ivit22'); 

setdbprefs('DataReturnFormat','cellarray') 

curs = fetch(curs); 

m = curs.Data; 

Consump = str2double(m); 

clear m; 

 curs= exec(conn,'SELECT Humidity FROM ivit22'); 

setdbprefs('DataReturnFormat','cellarray') 

curs = fetch(curs); 

m = curs.Data; 

Humidity = str2double(m); 

clear m; 

 curs= exec(conn,'SELECT Wind_speed FROM ivit22'); 

setdbprefs('DataReturnFormat','cellarray') 

curs = fetch(curs); 

m = curs.Data; 

Wind_Speed = str2double(m); 
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clear m; 

 curs= exec(conn,'SELECT Max_temp FROM ivit22'); 

setdbprefs('DataReturnFormat','cellarray') 

curs = fetch(curs); 

m = curs.Data; 

Max_Temp = str2double(m); 

clear m; 

 curs= exec(conn,'SELECT Min_temp FROM ivit22'); 

setdbprefs('DataReturnFormat','cellarray') 

curs = fetch(curs); 

m = curs.Data; 

Min_Temp = str2double(m); 

clear m; 

 

 %Correlation Analysis between the load and exogenous variables  

Consump_Wind_Speed = corrcoef(Consump,Wind_Speed); 

Consump_Humidity = corrcoef(Consump,Humidity); 

Consump_Max_Temp = corrcoef(Consump,Max_Temp); 

Consump_Min_Temp = corrcoef(Consump,Min_Temp); 

 

%       Input Data Preprocessing  

%************************************** 

MaxConsump = max(Consump); 

MaxWind_Speed = max(Wind_Speed); 

MaxHumidity = max(Humidity); 

MaxMax_Temp = max(Max_Temp); 

MaxMin_Temp = max(Max_Temp); 

  

norm_Consump = (Consump/MaxConsump)'; 

norm_Wind_Speed = (Wind_Speed/MaxWind_Speed)'; 

norm_Humidity = (Humidity/MaxHumidity)'; 

norm_Max_Temp = (Max_Temp/MaxMax_Temp)'; 

norm_Min_Temp = (Min_Temp/MaxMin_Temp)'; 

  

%      Preparing Data 

%**************************** 

%defining the data set dimensions  

n = 313:480;        %Training data 

s = 145:312;        %Target 

 P = [norm_Consump(n);norm_Consump(n-1);norm_Consump(n-168);norm_Consump(n-169)]; 

Tw = [norm_Consump(s)]; 
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%defining weather data dimensions 

 Temp1 = [norm_Max_Temp(s);norm_Min_Temp(s)]; 

[mat,padded] = vec2mat(P,168); 

[r,s]=size(mat); 

Temp = mat(1:2,1:168); 

Humid = [norm_Humidity(s)]; 

Wind = [norm_Wind_Speed(s)]; 

%Defining the final input vector # 1.  

Pw = [P;Temp;Humid;Wind]; 

 

%   Defining a custom ANN Topology 

%****************************** 

%Designing a custom Feedforward Neural Network Model with 1 input, 1 hidden layer with 5 neurons 

and 1 output neurons 

net = network; 

net.numInputs = 1; 

net.inputs{1}.size = 8; 

net.numLayers = 2; 

net.layers{1}.size = 5; 

net.layers{2}.size = 1; 

net.inputConnect(1) = 1; 

net.layerConnect(2,1) = 1; 

net.outputConnect(2) = 1; 

net.targetConnect(2) = 1; 

net.layers{1}.transferFcn = 'tansig'; 

net.layers{2}.transferFcn = 'purelin'; 

%Define which layers have biases 

net.biasConnect(1) = 1; 

net.biasConnect(2) = 1; 

net = init(net);%Initialise the weights and biases 

 for i = 1:168; 

    P = Pw(:,i); 

    T = Tw(1,i); 

net.trainFcn = 'traingdm'; 

net.performFcn = 'mse'; 

net.trainParam.lr = 0.1; 

net.trainParam.mc = 0.75; 

net.trainParam.epochs = 1000; 

net.trainParam.show = 50; 

net.trainParam.goal = 1e-5; 

[net,tr,a] = train(net,P,T); 

    forecast(1,i) = a; 

    delta(1,i)= Tw(1,i) - forecast(1,i);     

end 
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% saving the forecast -   

saveas(gcf, 'traingdm_err Training', 'fig'); 

save tr tr; 

  

% calculating the sum squared error 

num=168; 

  

MPE_tr = ((1/num)* sum((delta/Tw).^2))*100 

MSE_tr = (1/num)* (sum(delta.^2)) 

perf = mse(delta) 

  

% De-normalization  

O_Pw_denorm = forecast*MaxConsump; 

Tw_denorm = Tw*MaxConsump; 

  

% Simulating the network using the same data used during training- 

%*********************************************** 

for i=1:168; 

[a2 pf af]= sim(net,Pw(:,i)); 

end 

%    Plotting the Graph 

%************************** 

figure(1) 

hold on 

title('Network response - using IT training data (a 168 hrs ahead forecast)'); 

xlabel('Time in hours'); 

ylabel('Active Power/Load in [kW]'); 

grid on 

plot(Tw_denorm, 'r--', 'LineWidth',3, 'MarkerSize',10); 

plot(O_Pw_denorm, 'bo', 'LineWidth',2, 'MarkerSize',5); 

legend ('Actual load values', 'Predicted load values'); 

  

% Plotting simulation results – for the testing data set. 

figure(2) 

hold on 

title('Network response using testing data'); 

xlabel('Time(hrs)'); 

ylabel('Active Power - normalized'); 

grid on 

plot(a2, 'b--', 'LineWidth',3, 'MarkerSize',12); 

%plot(T(1,i), 'm*', 'LineWidth',3, 'MarkerSize',10); 

legend('Predicated load values', 'Actual load values'); 
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%Plotting the error:   for the training data 

%**************************************** 

figure(3) 

Actual_error = delta*MaxConsump; 

plot(Actual_error, 'b--', 'LineWidth',2, 'MarkerSize',10); 

title('Hourly actual error (kW)- (training data'); 

xlabel('Time(hrs)'); 

ylabel('Error(kilo Watts)'); 

legend ('e - ttr'); 

grid on 

  

% Saving the MSE,MPE and Actual error(kW) to an Excel spread sheet 

 error  = delta*MaxConsump; 

[mat,padded] =vec2mat(error,24); 

e_tr = mat(1:7,1:24); 

actual_error_tr = xlswrite('error(kW)_FFNN_IT',e_tr'); 

c = {'MSE_tr','MPE_tr';MSE_tr MPE_tr}; 

d = xlswrite('MSEMPE_FFNN_IT' , c, 'A1'); 

  

%   closing the connection to the DB 

close(curs) 

close(conn) 

isconnection(conn) 

toc; 

Forecast_Time = toc 

DB_connection = isconnection(conn) 

%       End  
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D.6: MATLAB Script: Elman Recurrent weather sensitive model for predicting the 

load of the IT Department  

 

1. File name       :  ERNN_IT.m 

2. Aim of the model        :  This model ignores the effect of climatic conditions on the load. Thus it 

merely uses the past load values and weather data to predict the load for the 

IT department as discussed in chapter 6 (section 6.4) and chapter 7 (section 

7.8.1). 

3. Methodology           :  This model predicts the load for the whole week at once   

4. Input Vector       :   IV # 1. 

5. Output Vector       :   one week ahead forecasts  

6. Note                  :   This model has failed to meet the performance goal (1e-5). The target vector 

used during the training was later defined as the testing data.    

 

 

%Clearing the screen and memory 

clc 

clear 

 tic; 

%   Establishing the connection to the DB and extracting required data 

%   Inserting the username and password to access the DB  

%   importing the required data into MATLAB using SQL Syntax from a table named 'ivit22' 

% The model is trained using the batch training mode 

%************************************************************************** 

conn = database('combinedloaddata', 'root', 'password1') 

DATABASE_CONNECTION = isconnection(conn) 

curs= exec(conn,'SELECT Consump FROM ivit22'); 

setdbprefs('DataReturnFormat','cellarray') 

curs = fetch(curs); 

m = curs.Data; 

Consump = str2double(m); 

clear m; 

  

curs= exec(conn,'SELECT Humidity FROM ivit22'); 

setdbprefs('DataReturnFormat','cellarray') 

curs = fetch(curs); 

m = curs.Data; 

Humidity = str2double(m); 

clear m; 

  

curs= exec(conn,'SELECT Wind_speed FROM ivit22'); 

setdbprefs('DataReturnFormat','cellarray') 

curs = fetch(curs); 

m = curs.Data; 
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Wind_Speed = str2double(m); 

clear m; 

  

curs= exec(conn,'SELECT Max_temp FROM ivit22'); 

setdbprefs('DataReturnFormat','cellarray') 

curs = fetch(curs); 

m = curs.Data; 

Max_Temp = str2double(m); 

clear m; 

  

curs= exec(conn,'SELECT Min_temp FROM ivit22'); 

setdbprefs('DataReturnFormat','cellarray') 

curs = fetch(curs); 

m = curs.Data; 

Min_Temp = str2double(m); 

clear m; 

  

%Correlation Analysis between the load and exogenous variables  

Consump_Wind_Speed = corrcoef(Consump,Wind_Speed); 

Consump_Humidity = corrcoef(Consump,Humidity); 

Consump_Max_Temp = corrcoef(Consump,Max_Temp); 

Consump_Min_Temp = corrcoef(Consump,Min_Temp); 

  

%       Input Data Preprocessing  

%************************************** 

MaxConsump = max(Consump); 

MaxWind_Speed = max(Wind_Speed); 

MaxHumidity = max(Humidity); 

MaxMax_Temp = max(Max_Temp); 

MaxMin_Temp = max(Max_Temp); 

  

norm_Consump = (Consump/MaxConsump)'; 

norm_Wind_Speed = (Wind_Speed/MaxWind_Speed)'; 

norm_Humidity = (Humidity/MaxHumidity)'; 

norm_Max_Temp = (Max_Temp/MaxMax_Temp)'; 

norm_Min_Temp = (Min_Temp/MaxMin_Temp)'; 

  

%      Preparing Data 

%**************************** 

n = 313:480;        %Training data 

s = 145:312;        %target 

P = [norm_Consump(n);norm_Consump(n-1);norm_Consump(n-168);norm_Consump(n-169)]; 

Tw = [norm_Consump(s)]; 
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%Defining the weather data 

 Temp1 = [norm_Max_Temp(s);norm_Min_Temp(s)]; 

[mat,padded] = vec2mat(P,168); 

[r,s]=size(mat); 

Temp = mat(1:2,1:168); 

Humid = [norm_Humidity(n)]; 

Wind = [norm_Wind_Speed(n)]; 

Pw = [P;Temp;Humid;Wind]; 

 

%   Defining ANN Topology 

%****************************** 

nhn = 5;         % Number of hidden layer neurons 

net = newelm([minmax(Pw)],[nhn 1 ],{'tansig','purelin'},'traingdm'); 

net.layers{1}.initFcn='initnw'; 

net.layers{2}.initFcn='initnw'; 

net = init(net);        % Initialization of network 

net.performFcn='mse';        

net.trainParam.epochs = 1000;    % Maximum no. of epochs 

net.trainParam.show = 50;     % No. of epochs to display 

net.trainParam.lr = 0.3;      % Learning rate 

net.trainParam.mc = 0.75;     % Momentum term 

net.trainParam.goal = 1e-5;     %Defining the goal  

init_in_weights = net.IW{1,1};    % Determining the initial input weights 

init_out_weights = [net.LW{2,1}(:)];  % Determining the initial output 

init_in_bias = net.b{1};      % Determining the initial input bias 

init_out_bias = net.b{2};     % Determining the initial output bias 

[net,tr] = train (net,Pw,Tw); 

  

% simulating the network with the same inputs used to in the training 

O_Pw = sim (net,Pw); 

e = (Tw - O_Pw); 

  

% Calculating the sum squared error 

num=168; 

 MPE_tr = ((1/num)* sum((e/Tw).^2))*100 

MSE_tr = (1/num)* (sum(e.^2)) 

perf = mse(e) 

%Data De-normalization  

O_Pw_denorm = O_Pw*MaxConsump; 

Tw_denorm = Tw*MaxConsump; 

  

%    Plotting the Graphs 

%************************** 

figure(1) 
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hold on 

title('IT 1 week ahead forecasts vs. target - ERNN_IT'); 

xlabel('Time(hrs)'); 

ylabel('Active Power/Load (kW)'); 

grid on 

plot(Tw_denorm, 'r--', 'LineWidth',3, 'MarkerSize',8); 

plot(O_Pw_denorm, 'g*', 'LineWidth',3, 'MarkerSize',7); 

legend ('Target', 'Forecasted load'); 

  

  

% Saving the MSE,MPE actual error(W) to an Excel spread sheet 

 error  = e*MaxConsump; 

[mat,padded] =vec2mat(error,24); 

e_tr = mat(1:7,1:24); 

actual_error_tr = xlswrite('error(kW)_ERNN_IT',e_tr'); 

c = {'MSE_tr','MPE_tr';MSE_tr MPE_tr}; 

d = xlswrite('MSEMPE_ERNN_IT' , c, 'A1'); 

  

%Plotting the error 

%********************* 

  

figure(3) 

plot((e), 'b--', 'LineWidth',2, 'MarkerSize',10); 

title('error (training data)'); 

xlabel('Time(hrs'); 

ylabel('actual error(kW)'); 

legend ('error (ERNN IT)'); 

grid on 

 

%closing the connection to the DB 

close(curs) 

close(conn) 

DB_connection = isconnection(conn) 

 

%       End 
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D.7: MATLAB Script: Elman Recurrent weather sensitive model for predicting the 

load of the Electrical Engineering Department 

 

1. File name       :  ERNN_ELEC.m 

2. Aim of the model        :  This model also brings the effect of climatic conditions on the load. Thus it 

uses a combination of the past load values and weather data to predict the 

load for the Electrical engineering department as discussed in chapter 6 

(section 6.4) and chapter 7 (section 7.8.2). 

3. Methodology           :  This model predicts the load for the whole week at once   

4. Input Vector       :   IV # 1. 

5. Output Vector       :   one week ahead forecasts  

6. Note                  :   This model has failed to meet the performance goal (1e-5). The target vector 

used during the training was later defined as the testing data.    

 

 

%Clearing the screen and memory 

clc 

clear 

 tic; 

%   Establishing the connection to the DB and extracting required data 

%   Inserting the username and password to access the DB  

%   Importing the required data into MATLAB using SQL Syntax from a table named 'ivelec1' 

%************************************************************************** 

conn = database('combinedloaddata', 'root', 'password1') 

DATABASE_CONNECTION = isconnection(conn) 

curs= exec(conn,'SELECT Consump FROM ivelec11'); 

setdbprefs('DataReturnFormat','cellarray') 

curs = fetch(curs); 

m = curs.Data; 

Consump = str2double(m); 

clear m; 

  

curs= exec(conn,'SELECT humidity FROM ivelec11'); 

setdbprefs('DataReturnFormat','cellarray') 

curs = fetch(curs); 

m = curs.Data; 

humidity = str2double(m); 

clear m; 

  

curs= exec(conn,'SELECT wind_speed FROM ivelec11'); 

setdbprefs('DataReturnFormat','cellarray') 

curs = fetch(curs); 

m = curs.Data; 

wind_speed = str2double(m); 
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clear m; 

  

curs= exec(conn,'SELECT max_temp FROM ivelec11'); 

setdbprefs('DataReturnFormat','cellarray') 

curs = fetch(curs); 

m = curs.Data; 

max_temp = str2double(m); 

clear m; 

  

curs= exec(conn,'SELECT min_temp FROM ivelec11'); 

setdbprefs('DataReturnFormat','cellarray') 

curs = fetch(curs); 

m = curs.Data; 

min_temp = str2double(m); 

clear m; 

  

%Correlation Analysis between the load and exogenous variables  

Consump_Wind_Speed = corrcoef(Consump,wind_speed); 

Consump_Humidity = corrcoef(Consump,humidity); 

Consump_Max_Temp = corrcoef(Consump,max_temp); 

Consump_Min_Temp = corrcoef(Consump,min_temp); 

 

%       Input Data Preprocessing  

%************************************** 

MaxConsump = max(Consump); 

MaxWind_Speed = max(wind_speed); 

MaxHumidity = max(humidity); 

MaxMax_Temp = max(max_temp); 

MaxMin_Temp = max(max_temp); 

  

norm_Consump = (Consump/MaxConsump)'; 

norm_Wind_Speed = (wind_speed/MaxWind_Speed)'; 

norm_Humidity = (humidity/MaxHumidity)'; 

norm_Max_Temp = (max_temp/MaxMax_Temp)'; 

norm_Min_Temp = (min_temp/MaxMin_Temp)'; 

  

%      Preparing Data 

%**************************** 

n = 169:336;      %Training data 

s = 1:168;        %Target 

P = [norm_Consump(n);norm_Consump(n-1);norm_Consump(n-167);norm_Consump(n-168)]; 

Tw = [norm_Consump(s)]; 

  

%Defining the weather data 
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Temp1 = [norm_Max_Temp(s);norm_Min_Temp(s)]; 

[mat,padded] = vec2mat(P,168); 

[r,s]=size(mat); 

Temp = mat(1:2,1:168); 

Humid = [norm_Humidity(s)]; 

Wind = [norm_Wind_Speed(s)]; 

  

Pw = [P;Temp;Humid;Wind]; 

  

%   Defining ANN Topology 

%****************************** 

nhn = 5;          % Number of hidden layer neurons 

net = newelm([minmax(Pw)],[nhn 1 ],{'tansig','purelin'},'traingdm'); 

net.layers{1}.initFcn='initnw'; 

net.layers{2}.initFcn='initnw'; 

net = init(net);         % Initialization of network 

net.performFcn='mse';        

net.trainParam.epochs = 1000;     % Maximum no. of epochs 

net.trainParam.show = 50;      % No. of epochs to display 

net.trainParam.lr = 0.3;       % Learning rate 

net.trainParam.mc = 0.75;      % Momentum term 

net.trainParam.goal = 1e-5;      %Define the goal  

init_in_weights = net.IW{1,1};     % Determining the initial input weights 

init_out_weights = [net.LW{2,1}(:)];   % Determining the initial output 

init_in_bias = net.b{1};       % Determining the initial input bias 

init_out_bias = net.b{2};      % Determining the initial output bias 

[net,tr] = train (net,Pw,Tw); 

  

% simulating the network with the same inputs used to in the training 

O_Pw = sim (net,Pw); 

e = (Tw-O_Pw); 

 

 % calculating the sum squared error 

num=168; 

 MPE_tr = ((1/num)* sum((e/Tw).^2))*100 

MSE_tr = (1/num)* (sum(e.^2)) 

perf = mse(e) 

 

%Data De-normalization  

O_Pw_denorm = O_Pw*MaxConsump; 

Tw_denorm = Tw*MaxConsump; 

  

%    Plotting the Graphs 

%************************** 
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figure(1) 

hold on 

title('Elec. Eng. 1 week ahead forecasts vs. target - ERNN_ELEC. ENG_WS'); 

xlabel('Time(hrs)'); 

ylabel('Active Power/Load (kW)'); 

grid on 

plot(Tw_denorm, 'r--', 'LineWidth',3, 'MarkerSize',8); 

plot(O_Pw_denorm, 'm*', 'LineWidth',3, 'MarkerSize',7); 

legend ('Target', 'Forecasted load'); 

   

% Saving the MSE,MPE and Actual error(kW) to an Excel spread sheet 

 error  = e*MaxConsump; 

[mat,padded] =vec2mat(error,24); 

e_tr = mat(1:7,1:24); 

actual_error_tr = xlswrite('error(kW)_ERNN_ELEC',e_tr'); 

c = {'MSE_tr','MPE_tr';MSE_tr MPE_tr}; 

d = xlswrite('MSEMPE_ERNN_ELEC' , c, 'A1'); 

  

%Plotting the error 

%********************* 

 figure(3) 

plot((e), 'b--', 'LineWidth',2, 'MarkerSize',10); 

title('error (training data)'); 

xlabel('Time(hrs'); 

ylabel('actual error(kW)'); 

legend ('error (ERNN ELEC. ENG WS)'); 

grid on 

 

%closing the connection to the DB 

close(curs) 

close(conn) 

DB_connection = isconnection(conn) 

 

%     End 
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D.8: MATLAB Script: Feedforward weather sensitive model for predicting the load 

of the Electrical Engineering Department. 

 

1. File name       :  FFNN_ELEC.m 

2. Aim of the model        :  This model also brings the effect of climatic conditions on the load. Thus it 

uses a combination of the past load values and weather data to predict the load for the Electrical Engineering 

department as discussed in chapter 6 (section 6.4) and chapter 7 (section 7.8.2). 

3. Methodology           :  This model predicts the load for the whole week using the hour-by-hour 

approach.  

4. Input Vector       :   IV # 1. 

5. Output Vector       :   one week ahead forecasts  

6. Note                   :   This model has successfully met the performance goal (1e-5) in only    

few iterations. The target vector used during the training was later defined 

as the testing data. 

 

 

%Clearing the screen and memory 

clc 

clear 

 tic; 

%   Establishing the connection to the DB and extracting required data 

%   Inserting the username and password to access the DB  

%   importing the required data into MATLAB using SQL Syntax from a table named 'ivelec1' 

%************************************************************************** 

conn = database('combinedloaddata', 'root', 'password1') 

DATABASE_CONNECTION = isconnection(conn) 

curs= exec(conn,'SELECT Consump FROM ivelec11'); 

setdbprefs('DataReturnFormat','cellarray') 

curs = fetch(curs); 

m = curs.Data; 

Consump = str2double(m); 

clear m; 

  

curs= exec(conn,'SELECT humidity FROM ivelec11'); 

setdbprefs('DataReturnFormat','cellarray') 

curs = fetch(curs); 

m = curs.Data; 

humidity = str2double(m); 

clear m; 

  

curs= exec(conn,'SELECT wind_speed FROM ivelec11'); 

setdbprefs('DataReturnFormat','cellarray') 

curs = fetch(curs); 

m = curs.Data; 
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wind_speed = str2double(m); 

clear m; 

  

curs= exec(conn,'SELECT max_temp FROM ivelec11'); 

setdbprefs('DataReturnFormat','cellarray') 

curs = fetch(curs); 

m = curs.Data; 

max_temp = str2double(m); 

clear m; 

  

curs= exec(conn,'SELECT min_temp FROM ivelec11'); 

setdbprefs('DataReturnFormat','cellarray') 

curs = fetch(curs); 

m = curs.Data; 

min_temp = str2double(m); 

clear m; 

  

%Correlation Analysis between the load and exogenous variables  

Consump_Wind_Speed = corrcoef(Consump,wind_speed); 

Consump_Humidity = corrcoef(Consump,humidity); 

Consump_Max_Temp = corrcoef(Consump,max_temp); 

Consump_Min_Temp = corrcoef(Consump,min_temp); 

 

%       Input Data Preprocessing  

%************************************** 

MaxConsump = max(Consump); 

MaxWind_Speed = max(wind_speed); 

MaxHumidity = max(humidity); 

MaxMax_Temp = max(max_temp); 

MaxMin_Temp = max(max_temp); 

  

norm_Consump = (Consump/MaxConsump)'; 

norm_Wind_Speed = (wind_speed/MaxWind_Speed)'; 

norm_Humidity = (humidity/MaxHumidity)'; 

norm_Max_Temp = (max_temp/MaxMax_Temp)'; 

norm_Min_Temp = (min_temp/MaxMin_Temp)'; 

  

%      Preparing Data 

%**************************** 

n = 169:336;      %Training data 

s = 1:168;        %Target 

P = [norm_Consump(n);norm_Consump(n-1);norm_Consump(n-167);norm_Consump(n-168)]; 

Tw = [norm_Consump(s)]; 
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%Defining the weather data 

Temp1 = [norm_Max_Temp(s);norm_Min_Temp(s)]; 

[mat,padded] = vec2mat(P,168); 

[r,s]=size(mat); 

Temp = mat(1:2,1:168); 

Humid = [norm_Humidity(s)]; 

Wind = [norm_Wind_Speed(s)]; 

  

Pw = [P;Temp;Humid;Wind]; 

  

%   Defining ANN Topology 

%****************************** 

%Designing a custom Feedforward Neural Network Model with 1 input, 1 hidden layer with 5 neurons  

and 1 output neuron 

net = network; 

net.numInputs = 1; 

net.inputs{1}.size = 8; 

net.numLayers = 2; 

net.layers{1}.size = 5; 

net.layers{2}.size = 1; 

net.inputConnect(1) = 1; 

net.layerConnect(2,1) = 1; 

net.outputConnect(2) = 1; 

net.targetConnect(2) = 1; 

net.layers{1}.transferFcn = 'tansig'; 

net.layers{2}.transferFcn = 'purelin'; 

%Define which layers have biases 

net.biasConnect(1) = 1; 

net.biasConnect(2) = 1; 

net = init(net);     % Initializing the weights and biases 

   

% Reset weight and biases - Optional for trial only 

%net.initFcn = 'initlay';   

%net.layers{1}.initFcn = 'initnw'; 

%net.layers{2}.initFcn = 'initwb'; 

%net.inputWeights{1,1}.initFcn = 'rands'; 

%net.biases{1}.initFcn = 'rands' 

%net.layerWeights{1,2}.initFcn = 'rands' 

  

% declaring the hour by hour forecasting Algorithm and other training parameters 

for i = 1:168; 

    P = Pw(:,i); 

    T = Tw(1,i); 

net.trainFcn = 'traingdm'; 
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net.performFcn = 'mse'; 

net.trainParam.lr = 0.3; 

net.trainParam.mc = 0.75; 

net.trainParam.epochs = 1000; 

net.trainParam.show = 50; 

net.trainParam.goal = 1e-5; 

[net,tr,a] = train(net,P,T); 

    forecast(1,i) = a; 

    delta(1,i)= Tw(1,i) - forecast(1,i);     

end 

  

% Saving the forecast for the training data 

saveas(gcf, 'traingdm_err Training', 'fig'); 

save tr tr; 

  

% Calculating the sum squared error 

num=168; 

 MPE_tr = ((1/num)* sum((delta/Tw).^2))*100 

MSE_tr = (1/num)* (sum(delta.^2)) 

perf = mse(delta) 

  

% De-normalization  

O_Pw_denorm = forecast*MaxConsump; 

Tw_denorm = Tw*MaxConsump; 

  

% simulating the network using the same data - no testing data available 

%*********************************************** 

for i=1:168; 

[a2 pf af]= sim(net,Pw(:,i)); 

end 

%    Plotting the Graph 

%************************** 

figure(1) 

hold on 

title('Network response (ELEC. ENG)- using  training data (a 168 hrs ahead forecast)'); 

xlabel('Time in hours'); 

ylabel('Active Power/Load in [kW]'); 

grid on 

plot(Tw_denorm, 'r--', 'LineWidth',3, 'MarkerSize',10); 

plot(O_Pw_denorm, 'bo', 'LineWidth',2, 'MarkerSize',5); 

legend ('Actual load values', 'Predicted load values'); 

  

% Plotting simulation results - using testing datatest. 

figure(2) 
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hold on 

title('Network response using testing data'); 

xlabel('Time(hrs)'); 

ylabel('Active Power - normalized'); 

grid on 

plot(a2, 'b--', 'LineWidth',3, 'MarkerSize',12); 

legend('Predicated load values', 'Actual load values'); 

  

 

%plotting the error of the training data 

%**************************************** 

figure(3) 

Actual_error = delta*MaxConsump; 

plot(Actual_error, 'b--', 'LineWidth',2, 'MarkerSize',10); 

title('Hourly actual error (kW)- (training data'); 

xlabel('Time(hrs)'); 

ylabel('Error(kilo Watts)'); 

legend ('e - ttr'); 

grid on 

  

% Saving the MSE,MPE and Actual error(kW) to an Excel spread sheet 

 error  = delta*MaxConsump; 

[mat,padded] =vec2mat(error,24); 

e_tr = mat(1:7,1:24); 

actual_error_tr = xlswrite('error(kW)_FFNN_ELEC ENG',e_tr'); 

c = {'MSE_tr','MPE_tr';MSE_tr MPE_tr}; 

d = xlswrite('MSEMPE_FFNN_ELEC ENG' , c, 'A1'); 

  

%   closing the connection to the DB 

close(curs) 

close(conn) 

DB_connection = isconnection(conn) 

 

%     End  
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D.9: MATLAB Script: Feedforward model for predicting the load of the Mechanical 

Engineering Department. 

 

1. File name       :  FFNN_MEC.m 

2. Aim of the model        :  This model also ignores the effect of climatic conditions on the load. Thus it 

merely uses the past load values to predict the load for the Mechanical Engineering department as discussed 

in chapter 6 (section 6.4) and chapter 7 (section 7.8.3). 

3. Methodology           :  This model predicts the load for the whole week using the hour-by-hour 

approach.  

4. Input Vector       :   Two past load values (L (t-1)) and (L (t-2)). 

5. Output Vector       :   a 24 hours ahead forecast   

6. Note                       :   This model has successfully met the performance goal (1e-5) in only    

few iterations. The target vector used during the training was later defined as the testing data.  

a) An additional 45% was added to the measured load to cater for 

machines which were not in operation when load measurements 

were taken.  

 

 

%Clears memory and screen  

clc 

clear 

  

%   Establishing the connection to the DB and extracting required data 

%   Inserting the username and password for the DB 

%   Importing required data into MATLAB using SQL Syntax form a table named 'iv_mec' 

%************************************************************************** 

tic; 

conn = database('combinedloaddata', 'root', 'password1') 

DATABASE_CONNECTION = isconnection(conn) 

curs= exec(conn,'SELECT consump FROM iv_mec'); 

setdbprefs('DataReturnFormat','cellarray') 

curs = fetch(curs); 

m = curs.Data; 

Consump = str2double(m); 

clear m; 

  

%       Input Data Preprocessing  

%************************************** 

MaxConsump = max(Consump); 

  

norm_Consump = (Consump/MaxConsump)'; 

  

%      Preparing Data 

%**************************** 
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n = 2:25;           %Training 

k = 25:48;          %Target - 

s = 48:72;          % Testing data 

P = [norm_Consump(n);norm_Consump(n-1)]; 

P1 = P(:,1:24); 

Pw = [P1]; 

Tw = norm_Consump(k); 

Ptst = [norm_Consump(s);norm_Consump(s-1)]; 

P2 = Ptst(:,1:24); 

Pwtstd = [P2]; 

  

%   Defining ANN Topology 

%****************************** 

%Designing a custom Feedforward Neural Network with 1 input layer, 1 hidden layer with 10 neurons 

and 1 output neuron 

net = network; 

net.numInputs = 1; 

net.inputs{1}.size = 2; 

net.numLayers = 2; 

net.layers{1}.size = 5; 

net.layers{2}.size = 1; 

net.inputConnect(1) = 1; 

net.layerConnect(2,1) = 1; 

net.outputConnect(2) = 1; 

net.targetConnect(2) = 1; 

net.layers{1}.transferFcn = 'tansig'; 

net.layers{2}.transferFcn = 'purelin'; 

net.biasConnect(1) = 1; 

net.biasConnect(2) = 1; 

net = init(net);      %Initializing the weights and biases 

 % Reset weight and biases - Optional for trial only 

%net.initFcn = 'initlay';   

%net.layers{1}.initFcn = 'initnw'; 

%net.layers{2}.initFcn = 'initwb'; 

%net.inputWeights{1,1}.initFcn = 'rands'; 

%net.biases{1}.initFcn = 'rands' 

%net.layerWeights{1,2}.initFcn = 'rands' 

 

 % defining the hour-by-hour algorithm  

for i = 1:24; 

    P = Pw(:,i); 

    T = Tw(1,i); 

net.trainFcn = 'traingdm'; 

net.performFcn = 'mse'; 
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net.trainParam.lr = 0.3; 

net.trainParam.mc = 0.75; 

net.trainParam.epochs = 1000; 

net.trainParam.show = 50; 

net.trainParam.goal = 1e-5; 

[net,tr,a] = train(net,P,T); 

    forecast(1,i) = a; 

    delta(1,i)= Tw(1,i) - forecast(1,i);     

end 

  

% Saving the forecast  

saveas(gcf, 'traingdm_err Training', 'fig'); 

save tr tr; 

  

% Calculating the sum squared error 

num=24; 

MSE = (sumsqr(delta))/num; 

fprintf('MSE = %d', MSE*100) 

MPE_tr = ((1/num)* sum((delta/Tw).^2))*100 

MSE_tr = (1/num)* (sum(delta.^2)) 

perf = mse(delta) 

  

% De-normalization  

O_Pw_denorm = forecast*MaxConsump; 

Tw_denorm = Tw*MaxConsump; 

  

% Simulating the network using the testing data 

%*********************************************** 

for i=1:24; 

[a2 pf af]= sim(net,Pwtstd(:,i)); 

end 

%    Plotting the Graph 

%************************** 

figure(1) 

hold on 

title('a 24hrs ahead forecast for Mec. Eng.- for Tuesday the 2nd Sep, 08'); 

xlabel('Time in hours'); 

ylabel('Active Power/Load in [kW]'); 

grid on 

plot(Tw_denorm, 'r--', 'LineWidth',3, 'MarkerSize',10); 

plot(O_Pw_denorm, 'gx', 'LineWidth',3, 'MarkerSize',10); 

legend ('Actual load values', 'Predicted load values'); 

% Plotting simulation results - using the testing data set. 

figure(2) 
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hold on 

title('Network response using testing data'); 

xlabel('Time(hrs)'); 

ylabel('Active Power - normalized'); 

grid on 

plot(a2, 'b--', 'LineWidth',3, 'MarkerSize',12); 

legend('Predicated load values', 'Actual load values'); 

  

figure(3) 

Actual_error = delta*MaxConsump; 

plot(Actual_error, 'b--', 'LineWidth',2, 'MarkerSize',10); 

title('Hourly actual error (W)- (training data'); 

xlabel('Time(hrs)'); 

ylabel('Error(Watts)'); 

legend ('e - ttr'); 

grid on 

  

% Saving the MSE,MPE and Actual error(kW) to an Excel spread sheet 

error  = delta*MaxConsump; 

e_tr = error'; 

actual_error_tr = xlswrite('error(kW)_FFNN_MEC',e_tr); 

c = {'MSE_tr','MPE_tr';MSE_tr MPE_tr}; 

d = xlswrite('MSEMPE_FFNN_MEC' , c, 'A1'); 

  

%   closing the connection to the DB 

close(curs) 

close(conn) 

isconnection(conn) 

toc; 

Forecast_Time = toc 

 

%        End 
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D.10: MATLAB Script: Feedforward model for predicting the load of the Air 

Conditioning Plant (ACP). 

 

1. File name       :  FFNN_ACP.m 

2. Aim of the model        :  This model also ignores the effect of climatic conditions on the load. Thus it     

merely uses the past load values to predict the load for the Air Conditioning 

Plant as discussed in chapter 6 (section 6.4) and chapter 7 (section 7.8.5). 

3. Methodology           :  This model predicts the load for the whole week using the hour-by-hour 

approach.  

4. Input Vector       :   Two past load values (L (t-1)) and (L (t-2)). 

5. Output Vector       :   a 24 hours ahead forecast   

6. Note                   :  This model has successfully met the performance goal (1e-5) in only         

few iterations. The target vector used during the training was later defined as 

the testing data.  

An additional 15% was added to the measured load to cater for some 

machines which were not in operation when load measurements were taken.  

 

%Clears memory and screen  

clc 

clear 

  

%   Estabilishing the connection to the DB and extracting required data 

%   Inserting the username and password for the DB 

%   Importing required data into MATLAB using SQL Syntax form a table named 'iv_acp' 

%************************************************************************** 

tic; 

conn = database('combinedloaddata', 'root', 'password1') 

DATABASE_CONNECTION = isconnection(conn) 

curs= exec(conn,'SELECT consump FROM iv_acp'); 

setdbprefs('DataReturnFormat','cellarray') 

curs = fetch(curs); 

m = curs.Data; 

Consump = str2double(m); 

clear m; 

  

%       Input Data Preprocessing  

%************************************** 

MaxConsump = max(Consump); 

norm_Consump = (Consump/MaxConsump)'; 

  

%      Preparing Data 

%**************************** 

%Defining data set dimensions 

n = 2:25;    %Training data 
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k = 25:48;    %Target 

s = 48:72;             % Testing data 

P = [norm_Consump(n);norm_Consump(n-1)]; 

P1 = P(:,1:24); 

Pw = [P1]; 

Tw = norm_Consump(k); 

Ptst = [norm_Consump(s);norm_Consump(s-1)]; 

P2 = Ptst(:,1:24); 

Pwtstd = [P2]; 

  

%   Defining ANN Topology 

%****************************** 

%Designing a custom Feedforward Neural Network with 1 input layer, 1 hidden layer with 10 neurons  

and 1output neuron 

net = network; 

net.numInputs = 1; 

net.inputs{1}.size = 2; 

net.numLayers = 2; 

net.layers{1}.size = 10; 

net.layers{2}.size = 1; 

net.inputConnect(1) = 1; 

net.layerConnect(2,1) = 1; 

net.outputConnect(2) = 1; 

net.targetConnect(2) = 1; 

net.layers{1}.transferFcn = 'tansig'; 

net.layers{2}.transferFcn = 'purelin'; 

net.biasConnect(1) = 1; 

net.biasConnect(2) = 1; 

net = init(net);    %Initializing the weights and biases 

  

 % Reset weight and biases - Optional for trial only 

%net.initFcn = 'initlay';   

%net.layers{1}.initFcn = 'initnw'; 

%net.layers{2}.initFcn = 'initwb'; 

%net.inputWeights{1,1}.initFcn = 'rands'; 

%net.biases{1}.initFcn = 'rands' 

%net.layerWeights{1,2}.initFcn = 'rands' 

 

% Declaring the hour by hour forecasting Algorithm and other training parameters 

for i = 1:24; 

    P = Pw(:,i); 

    T = Tw(1,i); 

net.trainFcn = 'traingdm'; 

net.performFcn = 'mse'; 
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net.trainParam.lr = 0.1; 

net.trainParam.mc = 0.75; 

net.trainParam.epochs = 1000; 

net.trainParam.show = 50; 

net.trainParam.goal = 1e-5; 

[net,tr,a] = train(net,P,T); 

    forecast(1,i) = a; 

    delta(1,i)= Tw(1,i) - forecast(1,i);     

end 

  

% Saving the forecast for the testing data  

saveas(gcf, 'traingdm_err Training', 'fig'); 

save tr tr; 

  

% Calculating the sum squared error 

num=24; 

MSE = (sumsqr(delta))/num; 

fprintf('MSE = %d', MSE*100) 

MPE_tr = ((1/num)* sum((delta/Tw).^2))*100 

MSE_tr = (1/num)* (sum(delta.^2)) 

perf = mse(delta) 

  

% De-normalization  

O_Pw_denorm = forecast*MaxConsump; 

Tw_denorm = Tw*MaxConsump; 

  

% Simulating the network using the testing data 

%************************************* 

for i=1:24; 

[a2 pf af]= sim(net,Pwtstd(:,i)); 

End 

 

%    Plotting the Graph 

%************************** 

figure(1) 

hold on 

title('a 24 hrs ahead ACP forecast, Tuesday, 7th October,08 - FFNN ACP'); 

xlabel('Time in hours'); 

ylabel('Active Power/Load in (kW)'); 

grid on 

plot(Tw_denorm, 'r--', 'LineWidth',3, 'MarkerSize',10); 

plot(O_Pw_denorm, 'gx', 'LineWidth',3, 'MarkerSize',10); 

legend ('Actual load values', 'Predicted load values'); 
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% Plotting simulation results - using testing datatest. 

figure(2) 

hold on 

title('Network response using testing data'); 

xlabel('Time(hrs)'); 

ylabel('Active Power - normalized'); 

grid on 

plot(a2, 'b--', 'LineWidth',3, 'MarkerSize',12); 

legend('Predicated load values', 'Actual load values'); 

  

%Plotting the error:   using training data 

%**************************************** 

figure(3) 

Actual_error = delta*MaxConsump; 

plot(Actual_error, 'b--', 'LineWidth',2, 'MarkerSize',10); 

title('Hourly actual error (W)- (training data'); 

xlabel('Time(hrs)'); 

ylabel('Error(Watts)'); 

legend ('e - ttr'); 

grid on 

  

% Saving the MSE,MPE and Actual error(kW) to an Excel spread sheet 

error  = delta*MaxConsump; 

e_tr = error'; 

actual_error_tr = xlswrite('error(W)_FFNN_ACP',e_tr'); 

c = {'MSE_tr','MPE_tr';MSE_tr MPE_tr}; 

d = xlswrite('MSEMPE_FFNN_ACP' , c, 'A1'); 

  

%   closing the connection to the DB 

close(curs) 

close(conn) 

isconnection(conn) 

toc; 

Forecast_Time = toc 

 

%              End 
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D.11: MATLAB Script: Elman Recurrent weather sensitive model for predicting the 

load of the Administration Building  

 

1. File name       :  ERNN_ADM.m 

2. Aim of the model        :  This model also brings the effect of climatic conditions on the load. Thus it 

uses a combination of the past load values and weather data to predict the 

load for the Administration Building as discussed in chapter 6 (section 6.4) 

and chapter 7 (section 7.8.4). 

3. Methodology           :  This model predicts the load for the whole week at once   

4. Input Vector       :   IV # 1. 

5. Output Vector       :   one week ahead forecasts  

Note                       :   This model has failed to meet the performance goal (1e-5).  

 
% Clearing the screen and memory 

clc 

clear 

  

%   Estabilishing the connection to the DB and extracting required data 

%   Inserting the username and password for the DB 

%   Importing required data into MATLAB using SQL Syntax form a table named 'ivadmin11' 

%************************************************************************** 

conn = database('combinedloaddata', 'root', 'password1') 

DATABASE_CONNECTION = isconnection(conn) 

curs= exec(conn,'SELECT Consump FROM ivadmin11'); 

setdbprefs('DataReturnFormat','cellarray') 

curs = fetch(curs); 

m = curs.Data; 

Consump = str2double(m); 

clear m; 

  

curs= exec(conn,'SELECT humidity FROM ivadmin11'); 

setdbprefs('DataReturnFormat','cellarray') 

curs = fetch(curs); 

m = curs.Data; 

humidity = str2double(m); 

clear m; 

  

curs= exec(conn,'SELECT wind_speed FROM ivadmin11'); 

setdbprefs('DataReturnFormat','cellarray') 

curs = fetch(curs); 

m = curs.Data; 

wind_speed = str2double(m); 

clear m; 
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curs= exec(conn,'SELECT max_temp FROM ivadmin11'); 

setdbprefs('DataReturnFormat','cellarray') 

curs = fetch(curs); 

m = curs.Data; 

max_temp = str2double(m); 

clear m; 

  

curs= exec(conn,'SELECT min_temp FROM ivadmin11'); 

setdbprefs('DataReturnFormat','cellarray') 

curs = fetch(curs); 

m = curs.Data; 

min_temp = str2double(m); 

clear m; 

  

%Correlation Analysis between the load and exogenous variables  

Consump_Wind_Speed = corrcoef(Consump,wind_speed); 

Consump_Humidity = corrcoef(Consump,humidity); 

Consump_Max_Temp = corrcoef(Consump,max_temp); 

Consump_Min_Temp = corrcoef(Consump,min_temp); 

 

%       Input Data Preprocessing  

%************************************** 

MaxConsump = max(Consump); 

MaxWind_Speed = max(wind_speed); 

MaxHumidity = max(humidity); 

MaxMax_Temp = max(max_temp); 

MaxMin_Temp = max(max_temp); 

  

norm_Consump = (Consump/MaxConsump)'; 

norm_Wind_Speed = (wind_speed/MaxWind_Speed)'; 

norm_Humidity = (humidity/MaxHumidity)'; 

norm_Max_Temp = (max_temp/MaxMax_Temp)'; 

norm_Min_Temp = (min_temp/MaxMin_Temp)'; 

  

%      Preparing Data 

%**************************** 

n = 169:336;        %Training data 

s = 1:168;          %target 

P = [norm_Consump(n);norm_Consump(n-1);norm_Consump(n-167);norm_Consump(n-168)]; 

Tw = [norm_Consump(s)]; 

Temp1 = [norm_Max_Temp(s);norm_Min_Temp(s)]; 

[mat,padded] = vec2mat(P,168); 

[r,s]=size(mat); 
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Temp = mat(1:2,1:168); 

Humid = [norm_Humidity(s)]; 

Wind = [norm_Wind_Speed(s)]; 

  

Pw = [P;Temp;Humid;Wind]; 

  

%   Defining ANN Topology 

%****************************** 

nhn = 5;          % Number of hidden layer neurons 

net = newelm([minmax(Pw)],[nhn 1 ],{'tansig','purelin'},'traingdm'); 

net.layers{1}.initFcn='initnw'; 

net.layers{2}.initFcn='initnw'; 

net = init(net);         % Initialization of network 

net.performFcn='mse';        

net.trainParam.epochs = 1000;      % Maximum no. of epochs 

net.trainParam.show = 50;      % No. of epochs to display 

net.trainParam.lr = 0.3;        % Learning rate 

net.trainParam.mc = 0.75;       % Momentum term 

net.trainParam.goal = 1e-5;                     %Define the goal  

init_in_weights = net.IW{1,1};                  % Determining the initial input weights 

init_out_weights = [net.LW{2,1}(:)];             % Determining the initial output 

init_in_bias = net.b{1};                        % Determining the initial input bias 

init_out_bias = net.b{2};                       % Determining the initial output bias 

[net,tr] = train (net,Pw,Tw); 

  

% Simulating the network with the same inputs used to in the training 

O_Pw = sim (net,Pw); 

e = (Tw-O_Pw); 

  

% Calculating the sum squared error 

num=168; 

 MPE_tr = ((1/num)* sum((e/Tw).^2))*100 

MSE_tr = (1/num)* (sum(e.^2)) 

perf = mse(e) 

 

%Data De-normalization  

O_Pw_denorm = O_Pw*MaxConsump; 

Tw_denorm = Tw*MaxConsump; 

  

%    Plotting the Graphs 

%************************** 

figure(1) 

hold on 

title('1 week ahead forecasts vs. target(Admin) - ERNN_ADMIN'); 
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xlabel('Time(hrs)'); 

ylabel('Active Power/Load (kW)'); 

grid on 

plot(Tw_denorm, 'r--', 'LineWidth',3, 'MarkerSize',8); 

plot(O_Pw_denorm, 'c+', 'LineWidth',3, 'MarkerSize',7); 

legend ('Target', 'Forecasted load'); 

  

  

% Saving the MSE,MPE and Actual error(kW) to an Excel spread sheet 

 error  = e*MaxConsump; 

[mat,padded] =vec2mat(error,24); 

e_tr = mat(1:7,1:24); 

actual_error_tr = xlswrite('error(kW)_ERNN_ADMIN',e_tr'); 

c = {'MSE_tr','MPE_tr';MSE_tr MPE_tr}; 

d = xlswrite('MSEMPE_ERNN_ADMIN' , c, 'A1'); 

  

%Plotting the error 

%********************* 

 figure(3) 

plot((e), 'b--', 'LineWidth',2, 'MarkerSize',10); 

title('error (training data)'); 

xlabel('Time(hrs'); 

ylabel('actual error(kW)'); 

legend ('error (ERNN ADMIN)'); 

grid on 

 

%closing the connection to the DB 

close(curs) 

close(conn) 

DB_connection = isconnection(conn) 

 

%     End 
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D.11: MATLAB Script: Feedforward weather sensitive model for predicting the load 

of the Administration Building  

 

1. File name       :  FFNN_ADM.m 

2. Aim of the model        :  This model also brings the effect of climatic conditions on the load. Thus it 

uses a combination of the past load values and weather data to predict the load for the Administration 

Building as discussed in chapter 6 (section 6.4) and chapter 7 (section 7.8.4). 

3. Methodology           :  This model predicts the load for the whole using the hour-by-hour approach   

4. Input Vector       :   IV # 1. 

5. Output Vector       :   one week ahead forecasts  

6. Note                       :   This model has also successfully met the performance goal (1e-5).  

 
%Clearing the screen and memory  

clc 

clear 

  

%   Estabilishing the connection to the DB and extracting required data 

%   Inserting the username and password for the DB 

%   Importing required data into MATLAB using SQL Syntax from a table named 'ivadmin11' 

%************************************************************************** 

conn = database('combinedloaddata', 'root', 'password1') 

DATABASE_CONNECTION = isconnection(conn) 

curs= exec(conn,'SELECT Consump FROM ivadmin11'); 

setdbprefs('DataReturnFormat','cellarray') 

curs = fetch(curs); 

m = curs.Data; 

Consump = str2double(m); 

clear m; 

  

curs= exec(conn,'SELECT humidity FROM ivadmin11'); 

setdbprefs('DataReturnFormat','cellarray') 

curs = fetch(curs); 

m = curs.Data; 

humidity = str2double(m); 

clear m; 

  

curs= exec(conn,'SELECT wind_speed FROM ivadmin11'); 

setdbprefs('DataReturnFormat','cellarray') 

curs = fetch(curs); 

m = curs.Data; 

wind_speed = str2double(m); 

clear m; 
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curs= exec(conn,'SELECT max_temp FROM ivadmin11'); 

setdbprefs('DataReturnFormat','cellarray') 

curs = fetch(curs); 

m = curs.Data; 

max_temp = str2double(m); 

clear m; 

  

curs= exec(conn,'SELECT min_temp FROM ivadmin11'); 

setdbprefs('DataReturnFormat','cellarray') 

curs = fetch(curs); 

m = curs.Data; 

min_temp = str2double(m); 

clear m; 

  

%Correlation Analysis between the load and exogenous variables  

Consump_Wind_Speed = corrcoef(Consump,wind_speed); 

Consump_Humidity = corrcoef(Consump,humidity); 

Consump_Max_Temp = corrcoef(Consump,max_temp); 

Consump_Min_Temp = corrcoef(Consump,min_temp); 

 

%       Input Data Preprocessing  

%************************************** 

MaxConsump = max(Consump); 

MaxWind_Speed = max(wind_speed); 

MaxHumidity = max(humidity); 

MaxMax_Temp = max(max_temp); 

MaxMin_Temp = max(max_temp); 

  

norm_Consump = (Consump/MaxConsump)'; 

norm_Wind_Speed = (wind_speed/MaxWind_Speed)'; 

norm_Humidity = (humidity/MaxHumidity)'; 

norm_Max_Temp = (max_temp/MaxMax_Temp)'; 

norm_Min_Temp = (min_temp/MaxMin_Temp)'; 

  

%      Preparing Data 

%**************************** 

n = 169:336;        %Training data 

s = 1:168;        %target 

P = [norm_Consump(n);norm_Consump(n-1);norm_Consump(n-167);norm_Consump(n-168)]; 

Tw = [norm_Consump(s)]; 

Temp1 = [norm_Max_Temp(n);norm_Min_Temp(n)]; 

[mat,padded] = vec2mat(P,168); 

[r,s]=size(mat); 

Temp = mat(1:2,1:168); 
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Humid = [norm_Humidity(n)]; 

Wind = [norm_Humidity(n)]; 

 Pw = [P;Temp;Humid;Wind]; 

   

%   Defining ANN Topology 

%****************************** 

%Designing a custom Feedforward Neural Network Model with 1 input layer, 1 hidden layer with 5 

neurons and 1 output neurons 

net = network; 

net.numInputs = 1; 

net.inputs{1}.size = 8; 

net.numLayers = 2; 

net.layers{1}.size = 5; 

net.layers{2}.size = 1; 

net.inputConnect(1) = 1; 

net.layerConnect(2,1) = 1; 

net.outputConnect(2) = 1; 

net.targetConnect(2) = 1; 

net.layers{1}.transferFcn = 'tansig'; 

net.layers{2}.transferFcn = 'purelin'; 

net.biasConnect(1) = 1; 

net.biasConnect(2) = 1; 

net = init(net);       %Initializing the network 

  

 % Reset weight and biases - Optional for trial only 

%net.initFcn = 'initlay';   

%net.layers{1}.initFcn = 'initnw'; 

%net.layers{2}.initFcn = 'initwb'; 

%net.inputWeights{1,1}.initFcn = 'rands'; 

%net.biases{1}.initFcn = 'rands' 

%net.layerWeights{1,2}.initFcn = 'rands' 

 

% Declare the hour-by-hour forecasting Algorithm and other training parameters 

for i = 1:168; 

    P = Pw(:,i); 

    T = Tw(1,i); 

net.trainFcn = 'traingdm'; 

net.performFcn = 'mse'; 

net.trainParam.lr = 0.3; 

net.trainParam.mc = 0.75; 

net.trainParam.epochs = 1000; 

net.trainParam.show = 50; 

net.trainParam.goal = 1e-5; 

[net,tr,a] = train(net,P,T); 
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    forecast(1,i) = a; 

    delta(1,i)= Tw(1,i) - forecast(1,i);     

end 

  

% Saving the forecast for the training data 

saveas(gcf, 'traingdm_err Training', 'fig'); 

save tr tr; 

  

% Calculating the sum squared error 

num=168;  

MPE_tr = ((1/num)* sum((delta/Tw).^2))*100 

MSE_tr = (1/num)* (sum(delta.^2)) 

perf = mse(delta) 

  

% De-normalization  

O_Pw_denorm = forecast*MaxConsump; 

Tw_denorm = Tw*MaxConsump; 

  

% simulating the network using the same data - no testing data available 

%*********************************************** 

for i=1:168; 

[a2 pf af]= sim(net,Pw(:,i)); 

end 

%    Plotting the Graphs 

%************************** 

figure(1) 

hold on 

title('Network response (ADMIN)- using  training data (a 168 hrs ahead forecast)'); 

xlabel('Time in hours'); 

ylabel('Active Power/Load in [kW]'); 

grid on 

plot(Tw_denorm, 'r--', 'LineWidth',3, 'MarkerSize',10); 

plot(O_Pw_denorm, 'bo', 'LineWidth',2, 'MarkerSize',5); 

legend ('Actual load values', 'Predicted load values'); 

  

% Plotting simulation results - using testing data set 

figure(2) 

hold on 

title('Network response using testing data'); 

xlabel('Time(hrs)'); 

ylabel('Active Power - normalized'); 

grid on 

plot(a2, 'b--', 'LineWidth',3, 'MarkerSize',12); 

legend('Predicated load values', 'Actual load values'); 
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 %Plotting the error:   

%************** 

figure(3) 

Actual_error = delta*MaxConsump; 

plot(Actual_error, 'b--', 'LineWidth',2, 'MarkerSize',10); 

title('Hourly actual error (kW)- (training data'); 

xlabel('Time(hrs)'); 

ylabel('Error(kilo Watts)'); 

legend ('e - ttr'); 

grid on 

  

% Saving the MSE,MPE and Actual error(kW) to an Excel spread sheet 

 error  = delta*MaxConsump; 

[mat,padded] =vec2mat(error,24); 

e_tr = mat(1:7,1:24); 

actual_error_tr = xlswrite('error(kW)_FFNN_ADMIN',e_tr'); 

c = {'MSE_tr','MPE_tr';MSE_tr MPE_tr}; 

d = xlswrite('MSEMPE_FFNN_ADMIN' , c, 'A1'); 

  

%   closing the connection to the DB 

close(curs) 

close(conn) 

isconnection(conn) 

toc; 

Forecast_Time = toc 

DB_connection = isconnection(conn) 

 

 

 

%    End of MATLAB Pseudo codes 
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Some Simulation Results 
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E.1: De-normalized forecasts for the combined load using Elman Recurrent Neural Network based 

model (non-weather sensitive) – in summer   
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E.2: Associated error for Elman Recurrent based model – ERNN_TL_NWS01 
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E.3: Forecasts after simulating ERNN_TL_NWS01 with the testing data  
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E.4: Goal vs. training response for ERNN_TL_NWS01 model. The was also not met in 1000 epochs.  
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The performance goal was then changed to 1e-5.  
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Fig. E.5: The network response of the FFNN_TL_WS01 (using batch training mode) 
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Fig. E.6: The network response of the ERNN_TL_NWS01 (using batch training mode) 
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Fig. E.7: The network response of the FFNN_TL_WS02 (using incremental training mode) - winter 
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Fig. E.8: The corresponding network performance of the FFNN_TL_WS02 (using incremental training 

mode) – for the last forecast value (168h)  
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Fig. E.9: The network response of the ERNN_TL_WS02 (using incremental training mode) - winter 
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Fig. E.10: The corresponding network performance – for the last forecast value (168h) of the 

ERNN_TL_WS02 (using incremental training mode)  
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  Actual error (kW) - Elman Recurrent Prediction model  (ERNN_TL_WS01) 

   batch training mode      

Hours Monday Tuesday Wednesday Thursday Friday Saturday Sunday 

1 29.41 -155.48  -275.08 -105.28 -229.54 -149.52 -55.16 

2 65.35 -284.95  -259.09 -172.16 -154.76 -220.10 -22.42 

3 4.72 -258.92  -290.75 -166.33 -169.28 -189.64 -53.76 

4 4.18 -238.11  -277.04 -163.82 -190.99 -209.69 -15.04 

5 9.88 -222.68  -213.45 -162.58 -174.52 -151.55 -9.13 

6 -30.94 -164.74  -160.67 -123.76 -75.28 -117.03 -32.67 

7 -39.47 -155.24  -162.75 -115.66 -90.46 -62.48 -38.06 

8 -113.78 -212.86  -310.30 -224.69 -196.97 -155.34 -20.72 

9 -223.41 -128.05  -215.11 -228.03 -177.29 -179.65 -55.87 

10 -130.68 9.60  -37.47 1.70 41.15 -126.00 8.23 

11 -69.02 103.33  105.99 150.35 195.86 -64.52 42.82 

12 99.45 82.07  173.53 180.36 227.16 91.83 97.10 

13 233.57 69.03  165.33 219.37 251.83 67.33 84.18 

14 223.61 15.23  286.77 229.43 225.36 74.19 113.21 

15 166.39 29.93  235.04 203.70 226.93 135.14 90.58 

16 185.83 -5.00  262.41 186.23 232.26 122.02 106.10 

17 161.05 61.79  260.26 129.84 180.52 80.92 97.72 

18 167.79 68.48  238.98 105.14 109.96 84.14 35.93 

19 79.07 34.70  150.56 61.68 129.64 -0.53 47.89 

20 120.33 16.96  137.23 51.35 54.74 20.21 54.57 

21 88.41 -53.19  64.87 6.56 -21.88 33.69 59.31 

22 3.35 -88.18  9.83 -51.71 8.17 7.81 67.75 

23 -88.35 -194.77  -21.69 -123.58 -62.91 -51.86 40.37 

24 -100.87 -262.34  -53.33 -222.63 -143.29 -38.16 -3.19 

Fig. E.11: Daily actual errors (kW) for the batch trained Elman Recurrent model (total load in 

summer) 
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Actual error (kW) - Elman Recurrent Prediction model  (ERNN_TL_WS01) 

Total load  

   Incremental training mode      

Hours Monday Tuesday Wednesday Thursday Friday Saturday Sunday 

1 -8.37 6.34 7.73 -5.43 3.21 7.44 3.12 

2 4.40 -7.04 7.47 -8.85 4.95 7.59 -2.90 

3 -3.22 2.65 -3.83 -0.70 1.08 -5.43 2.01 

4 6.88 -7.32 5.22 2.35 0.89 0.43 1.45 

5 5.06 5.26 0.36 5.76 3.37 -2.24 -7.05 

6 1.52 4.58 -1.27 -6.30 -2.31 -8.87 -1.33 

7 6.29 5.47 1.92 8.71 -2.23 3.22 2.75 

8 3.12 -4.33 2.33 -8.79 6.89 -5.75 5.19 

9 8.47 3.12 -3.37 2.97 7.75 -5.59 5.58 

10 6.37 -4.50 7.32 8.57 -8.62 -8.17 -6.43 

11 -7.19 -6.47 0.75 -2.17 -6.16 -7.12 -5.60 

12 -8.54 7.65 0.56 0.39 7.75 -1.77 -3.49 

13 -2.68 4.57 2.70 5.39 6.85 -6.49 5.85 

14 4.03 -0.64 3.07 -7.03 -8.55 -1.85 -6.48 

15 4.50 -5.10 5.69 3.93 -6.94 -4.59 7.79 

16 7.86 7.48 -4.82 6.04 -0.86 5.16 -5.89 

17 -6.46 0.07 0.29 -6.35 -3.18 5.35 6.64 

18 2.95 -0.70 -0.88 3.29 -7.53 6.83 -8.53 

19 -5.44 4.58 -3.57 -6.22 2.75 7.95 -8.31 

20 -7.77 -0.82 -0.83 7.08 -2.15 -1.65 -6.34 

21 2.60 3.38 -8.42 -0.29 7.08 -8.85 -6.50 

22 -0.23 5.54 -2.82 7.24 -5.52 0.70 3.32 

23 -7.92 -6.38 7.40 -5.50 -1.11 8.45 -3.08 

24 -7.60 -2.68 -3.74 2.99 -4.90 5.73 -4.12 

Fig. E.12: Daily actual errors (kW) for the incrementally trained Elman Recurrent model (total load in 

summer) 
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Actual error (kW) - ERNN Prediction model  (ERNN_TL_NWS01) - TOTAL LOAD 

(WINTER)  

  incremental training mode, IV # 1      

hour Monday Tuesday Wednesday Thursday Friday Saturday Sunday 

1 0.62 -6.38 -3.68 -6.77 -9.09 8.14 -6.62 

2 -6.69 -3.27 -9.09 -3.85 -9.18 -4.31 -3.39 

3 -7.79 -5.27 -3.49 -5.45 8.83 -8.60 -6.58 

4 6.00 3.71 -7.62 8.31 5.20 -7.93 7.17 

5 5.73 5.27 7.08 7.48 -6.83 8.02 8.15 

6 -8.24 -6.84 -7.60 -7.01 -8.33 8.73 4.16 

7 -5.16 -8.14 -5.54 -5.76 -8.87 -7.04 8.23 

8 -5.53 -8.54 -6.08 4.13 7.99 -5.95 8.45 

9 8.44 7.27 5.12 -8.38 3.42 -8.52 8.51 

10 7.01 -4.03 7.12 -8.81 -3.74 4.44 9.17 

11 -4.16 -3.31 6.25 -3.45 8.76 3.67 7.16 

12 4.14 7.48 -3.78 -3.85 -6.97 8.01 -4.66 

13 -3.69 -6.99 -3.66 -8.38 5.15 -3.54 3.17 

14 -6.12 -6.36 -5.16 -3.62 7.95 -4.01 8.84 

15 -7.47 -7.61 -3.28 6.62 7.75 -4.63 -3.83 

16 6.93 -6.44 7.92 -6.49 5.10 -5.55 6.29 

17 3.76 3.52 8.98 -4.83 -5.64 -7.55 -9.12 

18 -6.75 -5.60 4.44 8.26 -3.69 7.52 -5.69 

19 -6.92 4.95 9.27 -5.62 -8.73 -5.87 -3.64 

20 -4.54 -5.42 -4.47 -5.20 -8.01 -5.73 -9.15 

21 -7.79 -6.98 5.96 5.49 5.46 -8.40 7.29 

22 5.36 -9.17 -5.16 5.78 5.73 -5.13 -7.94 

23 4.96 8.25 6.06 7.64 -6.73 -8.08 5.15 

24 6.10 4.94 7.30 -4.30 -5.51 6.22 -4.39 

Fig. E.13: Daily actual errors (kW) for the incrementally trained Elman Recurrent model (total load in 

winter) 
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Actual error (kW) - FFNN Prediction model  (FFNN_TL_NWS02) - TOTAL LOAD 

WINTER  

  incremental training mode, IV # 1      

hour Monday Tuesday Wednesday Thursday Friday Saturday Sunday 

1 5.09 -4.78 8.84 -4.65 4.86 8.21 6.16 

2 4.18 6.54 4.97 7.68 4.88 8.84 5.55 

3 3.08 -3.17 5.61 -9.23 -4.95 4.56 3.61 

4 -5.39 -7.84 -3.39 3.94 -9.17 -4.99 -6.13 

5 -2.75 3.10 4.87 4.83 -4.10 5.45 4.96 

6 -3.44 -4.24 -3.24 3.31 -5.23 5.73 -8.19 

7 -7.60 -5.11 -8.15 8.00 -3.85 -4.36 5.04 

8 7.23 -3.70 7.95 3.24 -6.13 3.86 -5.55 

9 -7.30 -5.61 3.92 -8.02 -5.47 -3.88 -4.41 

10 0.29 -3.15 -2.61 6.12 8.66 3.13 7.69 

11 9.28 6.70 -3.30 5.44 8.46 -7.39 -2.60 

12 3.24 -3.98 -5.33 6.93 -7.27 2.07 -3.46 

13 7.67 3.95 7.68 -7.43 -6.83 7.92 4.37 

14 -3.68 -3.85 6.19 7.33 3.55 6.96 5.94 

15 -4.90 -4.98 5.48 -8.38 3.38 8.30 8.17 

16 -9.09 -4.20 3.30 4.15 3.24 -3.24 -3.75 

17 -5.95 5.76 6.60 6.77 7.40 -3.27 -3.80 

18 8.60 7.49 -8.86 5.92 6.15 -3.37 -3.60 

19 -0.49 3.77 7.67 -3.83 -1.07 5.30 7.24 

20 8.62 -3.66 -3.04 -3.40 -5.07 -3.42 5.20 

21 -4.72 -4.59 -7.84 -7.20 -7.12 -5.52 4.38 

22 -6.99 -6.03 -3.93 -8.11 -8.04 -3.32 -5.39 

23 -7.00 3.51 -7.97 3.45 -4.98 5.44 7.70 

24 -8.51 -6.72 3.30 9.29 -3.61 -7.75 8.73 

Fig. E.14: Daily actual errors (kW) for the incrementally trained Feedforward model (total load in 

winter) 
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Actual error (W) - FFNN Prediction model  (FFNN_IT_WS01) –  

for the IT Department  

   Incremental training mode, IV # 1      

hours Monday Tuesday Wednesday Thursday Friday Saturday Sunday 

1 -959.22 804.7064 693.268 778.0462 900.8662 -499.539 -822.761 

2 891.8208 804.7064 768.6587 594.7778 369.7553 551.0776 177.2389 

3 891.8208 -331.95 -231.341 -405.222 -886.369 -883.843 384.5636 

4 770.1193 357.2808 750.7299 -857.186 -823.77 924.7608 -615.436 

5 773.5422 -642.719 750.7299 -857.186 176.2302 -906.88 690.2619 

6 773.5422 827.9413 765.069 -811.59 940.9841 93.12046 738.3879 

7 775.0379 827.9413 771.3351 659.3814 935.2891 882.7766 -261.612 

8 -884.428 -450.5 -857.343 -962.261 -498.916 822.7444 903.3944 

9 66.45194 -844.665 -928.641 -618.639 -715.328 -869.94 -433.824 

10 753.7812 -741.811 -853.473 -569.682 872.549 -957.489 -433.824 

11 -441.841 -746.503 757.9851 933.9338 -901.961 868.3326 -433.824 

12 497.6494 613.8098 -655.939 -954.981 -542.342 766.4216 -433.824 

13 348.1506 883.7821 668.9949 -954.981 -564.869 766.4216 -398.312 

14 -463.575 368.8399 -660.708 591.8032 -726.819 -823.922 699.9378 

15 556.7394 -355.304 -891.165 -851.412 -360.43 -579.957 -960.555 

16 559.9375 644.6958 887.2615 -851.412 -394.379 -406.142 430.7615 

17 695.615 712.6196 515.7534 940.4584 739.2318 -450.409 872.7645 

18 -712.862 -711.951 -829.661 -967.648 -442.62 -699.347 -649.751 

19 504.9628 720.8167 -580.264 -859.862 -398.783 700.4323 -574.58 

20 709.2163 743.1982 -963.961 -421.139 -849.93 700.4323 696.6938 

21 -832.928 -827.578 -938.906 -344.051 920.0557 700.4323 696.6938 

22 -808.518 949.3483 -777.532 -344.051 -908.936 770.7034 -552.061 

23 492.4888 -431.362 -363.147 -819.871 913.7951 773.7974 824.4413 

24 688.3151 686.2602 -876.754 615.7897 676.9462 -226.203 -384.474 

Fig. E.15: Daily actual errors (W) for the incrementally trained Feedforward Neural Network model 

( IT department load forecasting model) 
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Actual error (W) - ERNN Prediction model (ERNN_IT_WS) –  

For the IT Department 

   batch training mode, IV # 1      

Hours Monday Tuesday Wednesday Thursday Friday Saturday Sunday 

1 149.64 1,223.56 1,660.55 1,012.54 520.11  1,311.40 2.13 

2 -530.01 213.08 -751.40 -192.28 636.31  783.03 -22.04 

3 255.15 -262.34 -917.41 216.18 454.92  904.80 219.29 

4 445.81 -309.00 -334.80 -276.05 329.88  834.96 314.62 

5 758.46 306.81 3.72 -150.65 340.50  926.88 503.54 

6 807.85 364.45 -731.07 -226.48 460.01  1,051.49 632.15 

7 66.50 -873.00 -3,264.73 -484.92 -34.01  541.08 658.86 

8 -555.45 -187.61 -1,981.04 -307.79 -1,243.55  -516.94 611.65 

9 2,724.83 913.16 53.65 -577.50 -978.80  -2,265.58 544.61 

10 -566.28 991.62 -399.92 -1,813.75 -1,254.37  -1,242.68 509.08 

11 83.66 1,260.35 197.77 2,029.06 -1,315.92  -904.52 494.11 

12 67.51 571.29 -28.48 1,708.50 -652.42  -1,262.35 556.30 

13 588.69 638.93 -298.31 1,463.11 -375.03  -1,334.06 441.87 

14 89.18 641.63 -332.42 1,235.14 -498.98  -1,237.09 -464.26 

15 567.71 34.68 -628.84 1,280.10 -1,016.18  -817.63 -647.04 

16 255.61 -823.82 -802.22 1,098.01 -1,223.82  -672.05 -790.84 

17 250.44 -427.94 -487.90 59.36 -1,211.63  -463.98 -946.12 

18 140.33 472.93 -554.65 -104.56 -1,012.18  166.61 -585.69 

19 250.23 434.56 -585.45 -358.29 71.42  193.61 -1,054.59 

20 -218.27 276.39 -551.77 -453.09 46.67  -805.10 -725.01 

21 6.15 782.48 -491.20 -252.63 -202.98  -615.97 -452.21 

22 161.86 713.47 -683.10 -372.19 208.33  -608.96 1,102.10 

23 158.40 853.60 -442.08 -183.12 272.81  -548.08 1,194.57 

24 716.07 1,858.28 2,152.41 1,565.31 3,994.72  -856.38 1,198.68 

Fig. E.16: Daily actual errors (W) for the batch trained Elman Recurrent Neural Network model (IT 

department load forecasting model)  
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Actual error (W) - ERNN Prediction model (ERNN_ELEC_WS) –  

for the ELECTRICAL ENGINEERING Department 

  batch training mode, IV # 1      

hour Monday Tuesday Wednesday Thursday Friday Saturday Sunday 

1 760.85 1,970.83  -111.01 3,837.95  1,391.44 474.69  -618.99 

2 -683.15 3,429.56  -800.63 -962.05  -336.94 1,723.78  116.31 

3 -208.41 1,931.77  4,069.21 -1,981.71  1,503.31 184.49  339.50 

4 1,182.45 474.96  3,730.08 4,974.60  1,521.62 -1,211.36  -974.66 

5 -1,224.57 1,042.60  1,311.56 1,352.66  -692.11 1,246.95  260.13 

6 546.93 545.87  -662.67 -1,771.66  1,350.35 -538.28  347.91 

7 132.08 629.18  2,852.52 -2,049.31  -1,407.86 193.58  214.85 

8 -5,594.92 -3,568.73  -6,190.41 -17,934.60  -4,787.47 -1,087.68  121.34 

9 3,818.99 1,828.64  -1,096.91 3,513.68  -500.16 -1,674.62  274.97 

10 83.37 1,024.67  927.77 -2,598.72  -1,119.21 -1,075.37  154.94 

11 -1,523.04 1,739.88  1,085.49 -747.93  -1,093.92 -1,516.41  429.46 

12 -786.39 507.05  -4,248.54 2,190.06  -1,749.94 -1,210.31  176.14 

13 -1,183.73 171.50  -305.55 850.68  264.45 -2,006.99  300.65 

14 -236.46 290.82  14.87 -300.32  -453.93 -920.25  326.69 

15 -609.31 -56.14  -1,069.47 137.95  -176.76 -1,670.86  196.93 

16 546.16 419.95  795.57 11,979.18  -411.20 -1,854.44  271.08 

17 678.25 3,600.28  309.68 -10,113.83  72.60 -1,713.56  287.45 

18 5,760.62 1,358.80  -2,514.91 -8,362.70  -4,607.35 -1,775.83  441.25 

19 -1,901.44 669.15  1,288.86 3,331.33  64.22 -1,394.13  342.19 

20 -2,603.59 1,475.49  3,281.31 977.66  -1,486.95 -1,558.07  1,274.34 

21 -997.19 1,543.70  1,851.23 -395.88  937.50 -1,658.21  1,455.65 

22 303.44 492.22  2,719.85 3,314.37  1,630.97 -1,712.31  1,106.98 

23 -721.67 2,216.84  1,070.07 2,560.69  1,489.04 -1,822.57  1,347.60 

24 -2,956.74 2,613.45  2,586.47 1,633.63  117.36 -1,897.00  -385.78 

Fig. E.17: Daily actual errors (W) for the batch trained Elman Recurrent Neural Network model (Elec. 

Engineering department load forecasting model) – 
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Actual error (W) - FFNN Prediction model  (FFNN_ELEC_WS) –  

for the ELECTRICAL ENGINEERING Department  

  Incremental training mode, IV # 1      

hour Monday Tuesday Wednesday Thursday Friday Saturday Sunday 

1 161.7226 171.5153 -104.107 -108.095 -201.782 83.94322 182.7599 

2 -144.271 88.29698 -219.548 106.7704 176.1961 -86.2338 193.104 

3 -171.13 -232.636 232.1807 171.7259 202.7869 -242.444 -106.896 

4 106.8243 88.14866 92.38903 220.4901 -128.513 114.6688 -146.722 

5 6.824322 -93.7843 -232.49 -124.308 -151.067 154.1452 -84.1037 

6 -242.751 -153.399 88.15389 -193.788 219.6758 -158.832 115.8963 

7 191.7026 108.8424 -93.7843 -196.27 140.8357 112.2209 215.8963 

8 -108.297 -77.9727 -153.399 -196.27 -114.107 204.8884 15.89627 

9 -231.809 -212.449 -252.158 132.0248 -223.625 -153.447 15.89627 

10 -131.809 221.3694 -97.955 -168.523 -206.401 -247.121 -184.104 

11 -31.8092 -134.351 -114.25 -234.462 154.7041 -90.9981 166.3585 

12 -249.501 -34.3506 -132.695 -172.209 103.9825 -190.998 80.70056 

13 123.272 65.64937 -92.3831 101.0252 -198.438 241.0098 232.2802 

14 -95.6284 84.51483 76.16214 -175.02 -185.719 115.7878 172.9121 

15 -158.251 135.205 152.7695 -117.003 214.2814 -103.041 -127.088 

16 83.40765 -95.2021 -108.865 -114.93 -234.287 -161.216 72.91209 

17 135.1654 -117.724 -225.39 -106.868 91.77162 38.78363 -27.0879 

18 -95.2035 142.8274 233.7928 199.8194 -89.6086 135.5135 -27.0879 

19 -96.6394 105.289 -226.483 198.0199 -111.435 -80.9065 -130.835 

20 -96.6394 202.1156 123.9131 122.9328 241.3142 -152.363 -106.608 

21 121.3442 -197.884 -238.509 222.9328 -94.9838 -152.363 -242.643 

22 74.65214 2.115596 103.236 107.4774 164.4482 -152.363 114.6908 

23 -250.139 107.2531 142.644 76.17749 -108.448 82.75989 -155.616 

24 71.51531 -114.064 -125.691 -104.456 -150.35 -17.2401 72.11776 

Fig. E.18: Daily actual errors (W) for the batch trained Elman Recurrent Neural Network model (Elec. 

Engineering department load forecasting model) – 
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 Actual error (kW) - ERNN Prediction model  (ERNN_MEC_WS) - MECHANICAL. ENG Department - for 24hrs lead time forecast. Forecast day is Tuesday, 2nd of Sep, 08 

  

kW 4.43 8.07 1.31 -2.38 1.54 -0.46 -9.92 -1.26 -1.60 -4.89 -5.17 -0.85 8.20 17.99 -5.98 -2.23 6.29 -3.21 -5.08 -6.56 -0.69 3.63 -1.56 0.37  

Hr 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24  

Fig. E.15: Daily actual errors (kW) for the batch trained Elman Recurrent Neural Network model (Mec. Engineering department load forecasting model) – 
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Fig. E.19(a): One day forecast for the Mechanical Engineering Department electric load      Fig. E.19 (b): The corresponding model performance 
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 Fig. E.20: 1 week ahead forecast in both seasons – summer(left) and winter (right).   
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APPENDIX F 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

List of Machines (Mechanical Engineering Department) 
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G.1 List of Machines  

Note: These machines were not in use when electric load measurements were taken at the 

department. 

 

LIST OF MACHINES (MECHANICAL ENGINEERING DEPARTMENT) 

   

Main Workshop       

Name Qty Rating Type 

Colchester 1800 lathe machine  9 3HP 3-phase 

High speed-gap bed lathe machine 6 3kVA 3-phase 

Others 4 6kVA 3-phase 

        

Thermodynamic Lab 

Diesel engine test bench    

Compressor   

Gas turbine   

Boiler   

Steam turbine   

Air conditioner unit   

Refrigeration unit    

no details obtained 

        

CNC Workshop 

        

Fanuc lathe machine  2 20kVA 3-phase 

Universal cylindrical grinder 1 8kVA 3-phase 

63 Ton Press brake 1 7.55kW 3-phase 

Milling machine  2 20kVA 3-phase 
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