AUTOMATION OF THE ACQUISITION SYSTEM OF THE 1,9m TELESCOPE
FOR THE CHARGE COUPLED DEVICE {CCD) CAMERA

By D.B. Carter

Submitted in part fulfilment of the requirements laid down for the
Master Diploma
in the School of Electrical Engineering
at the Cape Technikon

November 1988

Electronics Section
South African Astronomical Observatory
Council for Scientific and Industrial Research

mﬁKOﬂ

\\\

Abstract

This thesis describes the control system developed to improve the efficiency
of star acquisition on a ground-based optical telescope. "Star Acquisition" refers to the
process of identifying the star of interest in a field of stars and centering it on the optical
axis of the telescope , as well as setting an autoguider detector on a suitable star so the
autoguider can improve the tracking performance of the telescope. Efficiency is improved
by making all functions remote controlled , so the astronomer does not have to move
between the control room and the telescope to operate the ingtrument.

CONTENTS

1. Objective.
2. Introduction.
2.1. The 1,9m Telescope.

2.2. Telescope Instruments and Acquisition system.

2.3. Use of the Acquisition System.
3. Discussion of design Principles.
3.1. Choice of computer system.
3.2. Choice of User Interface.
3.3. Choice of Motive Power.
3.4. Choice of position feedback systems.
3.5. Implementation of Velocity mode
3.6. Choice of software environment
4. Hardware implentation
4.1. The Control Computer.
4.1.1. The Dual Analog-to-Digital Converter.
4.1.2. The RS422/TTL 1/0 Interface.
4.1.3. The Programmable Frequency Source.
4.1.3.1. The Oscillator Card.
4.1.3.2. The Frequency Synthesizer
4.2. The Musclebox.
4.2.1. The CD10 Interface.
4.2.2. The Stepper Motor Translators
4.2.3. The Monitor Module.
4.3. The Converter Box.
4.4. The Acquisition Box.
5. Software
5.1. Diagnostic Tools.
5.2. Memory Map.
6. Problems Encountered.
6.1. Stepping Motor phase lag at High step rates
6.2. System Health check on Program start—up.
6.3. Response of Keyboard.
6.4. Alignment of the Slotted Disk Encoder

:o-q-qo:cac:.pwww'—'l?
9
®

[T Y T N T N T N T N T N B S e R Y o e ol e
XYL EEREIRERRREo o et o

7. Test Results

8. Future Plans

9. Glossary of Terms
10. Bibliography.

11. Acknowledgements.

Appendix A. System Specifications
Appendix B. XYslide User's Manual
Appendix C. XYslide Software Manual
Appendix D. Xyslide Circuit Diagrams

AUTOMATION OF THE ACQUISITION SYSTEM OF THE 1,9m TELESCOPE
FOR THE CHARGE COUPLED DEVICE (CCD) CAMERA

By D.B. Carter

Submitted in part fulfilment of the requiréments laid down for the
Master Diploma
in the School of Electrical Engineering
at the Cape Technikon

November 1938

Electronics Section
South African Astronomical Observatory
Council for Scientific and Industrial Research

Abstract

This thesis describes the control system developed to improve the efficiency
of star acquisition on a ground-based optical telescope. "Star Acquisition” refers to the
process of identifying the star of interest in a field of stars and centering it on the optical
axis of the telescope , as well as setting an autoguider detector on a suitable star so the
autoguider can improve the tracking performance of the telescope. Efficiency is improved
by making all functions remote controlled , so the astronomer does not have to move
between the control room and the telescope to operate the instrument.

CONTENTS

1. Objective.
2. Introduction.
2.1. The 1,9m Telescope.

2.2. Telescope Instruments and Acquisition system.

2.3. Use of the Acquisition System.
3. Discussion of design Principles.
3.1. Choice of computer system.
3.2. Choice of User Interface.
3.3. Choice of Motive Power.
3.4. Choice of position feedback systems.
3.5. Implementation of Velocity mode
3.6. Choice of software environment
4. Hardware implentation
4.1. The Control Computer.
4.1.1. The Dual Analog—to—Digital Converter.
4.1.2. The RS422/TTL 1/O Interface.
4.1.3. The Programmable Frequency Source.
4.1.3.1. The Oscillator Card.
4.1.3.2. The Frequency Synthesizer
4.2. The Musclebox.
4.2.1. The CD10 Interface.
4.2.2. The Stepper Motor Translators
4.2.3. The Monitor Module.
4.3. The Converter Box.
4 4. The Acquisition Box.
5. Software
5.1. Diagnostic Tools.
5.2. Memory Map.
6. Problems Encountered.
6.1. Stepping Motor phase lag at High step rates
6.2. System Health check on Program start—up.
6.3. Response of Keyboard.
6.4. Alignment of the Slotted Disk Encoder
7. Test Results

conq-qmo:o:hwww*—‘i,;?
q
T

I R T e e e
= O G0 o O o B O

8. Future Plang

9. Glossary of Terms
10. Bibliography.

11. Acknowledgements.

Appendix A. System Specifications
Appendix B. XYslide User's Manual
Appendix C. XYslide Software Manual

1. Objective.

The objective of the project which is described is to improve the efficiency of an
observer in the process of star acquisition , which can be a laborious , time—consuming task
for an observing astronomer. It involves moving the telescope to point at the coordinates
of the required star , looking through the telescope eyepiece to identify the required star in
the field of stars seen (in a crowded field , this can be quite difficult) , and adjusting the
telescope position to centre this star on the telescope optical axis. On a large telescope this
process can involve a considerable amount of moving around between the control room ,
the observing floor , and the telescope eyepiece — which involves climbing up and down
ladders. If a closed circuit Television system is used instead of an eyepiece , and the
telescope acquisition system automated and remotely controllable , then a considerable
amount of time can be saved by the observer being able to control most of the process
from one place. A detailed explaination of the star acquisition process can be found in
section 2.3 pg 4. :

This is the background to the proposal for the project to automate the
acquisition system of the 1,9m telescope. The Low light level closed circuit television
system required has been in use with other instruments on this telescope for a number of
years.

A further reason for the project was in connection with the 1986 apparition of
comet Halley. To photograph a comet , which is moving relative to the stars , with a
telescope which is designed to track the movement of stars across the sky , requires a
system that can compensate for the relative movement between the stars and the comet
and for this system to control the telescope drive system appropriately. The remote
controlled , automated X-Y motion table (called the XYslide) which forms part of the
automated acquisition system , can , in conjunction with an existing instrument called an
autoguider , perform this task.

2. INTRODUCTION.

The South African Astronomical Observatory undertakes Ground-based
Optical Astronomical research at it's observing station near Sutherland in the Karco. The
Electronics group forms part of the technical support group necessary for the operation of
the telescopes. The electronics group undertakes developement of improvements to the
telescope control systems and detector instrumentation , by modifying existing equipment
and building new systerns.

2.1. The 1.9m Telescope.

The telescope is a 1,9m f18 reflector instrument mounted on a polar axis system
(ie one axis is parallel to the axis of rotation of the earth). The dimension 1,9m refers to
the diameter of the main mirror in the optical system. The optics of the telescope are
illustrated in Fig. 1.

PRIMARY MIRROR

- ' FoCUs

—
— ——
e
— —

Fig. 1.

A computerized encoding and display system gives the telescope's' pointing
position. A computerized slow motion drive system controls the slow movement of the
telescope to track the path of a star across the sky. The turret rotation is computer
controlled so that the slit (opening in the turret) automatically follows the telescope
movement. Data acquisition instruments are bolted onto the telescope and the data are
stored in a minicomputer system. The instruments are all controlled by the computer to
some degree.

2.2. Telescope Instrumentation and Acquisition Svstem.

All Instruments bolted onto the telescope contain a system of lenses and
mirrors referred to as the acquisition system. This enables the astronomer to see the stars
in the telescope field of view , identify the program star and align it on the telescope's
optical axis. If required , he also identifies a nearby star for use as a guide star , and sets
the autoguider probe on it. '

An autoguider is an instrument which detects and compensates for small errors
in the telescope's ability to accurately track the motion of a star across the sky. These
errors are introduced by mechanical factors such as flexure of the telescope structure and
machining tolerances of the drive gearing , as well as refraction effects of the earth's
atmosphere.

The acquisition system used with the CCD camera is illustrated in Fig 2.

PRIMARY MIRROR‘-' i

!
S
|

CCD CAMERA

Fig. 2

The Offset Guide Mirror (1) is a circular flat mirror , with a central hole . It is
mounted at 45 degrees to the optical axis on linear bearings such that the hole can be
centred on the optical axis or positioned to one side of the axis. The Rear Viewing mirror
(2) is a small flat mirror , also mounted at 45 degrees to the optical axis and on linear
bearings , able to move in and out of the star beam.

The T.V. camera (3) is a low light level integrating camera used in place of an
eyepiece , with a monitor screen in the telescope control room.

The magnification of the autoguider probe (4) optics is such that it can see only
a small part of the telescope's field of view. It is thus necessary to mount it on a moveable
table (5) so it can be positioned to see a star anywhere in the field of view. The
developement of this moveable table , called the XYslide , is the subject of the major part
of this thesis.

2.3. Use of the Acquisition Svstem.
A typical sequence of operations is described in using the acquisition system to
identify and centre a program star and set up a guide star.

The telescope is first moved to point at the coordinates of the program star.
Then the following is done.

1) With the offset guider mirror in the CENTRE position and the rear viewing mirror IN
the beam , the star field is examined on the acquisition TV system. The program star is
identified , and using the telscope slow motion controls , the telescope is moved to centre
the program star on the telescope optical axis.

2) With the help of a finding chart , a suitable guide star in the field of view is identified
and the XYslide is moved the precalculated position X', Y' so that the autoguider probe
is centred on the guide star. The astronomer looks through the autoguider eyepiece to
check that the probe is correctly positioned. If not the manual control pushbuttons are
used to drive the XYslide to the correct position.

3) The rear viewing mirror is moved OUT of the beam.

4) The autoguider GUIDE function is started.

5) A short exposure is taken on the CCD camera to check that the program star is suitably
central in the CCD frame , and if necessary the telescope pointing is adjusted.

6) An exposure is taken for data acquisition. The exposure time will depend on the
magnitude (light intensity) of the object.

3. Discussion of desien Principles.

With reference to the required specifications (see App. A pg A-1), the design
decisions to be made are :

3.1. Choice of Computer Svstem.

The SAAQ Electronics group had standardized on using Motorola 6800—series
processors in the SABUS (South African Standard Bus)environment for small computer
controlled projects. Due to the expertise and experience available in this low—cost , reliable
system , it was decided to implement this project in the SABUS environment. As the
SABUS is designed to be compatible with the INTEL series of microprocessors , the 6809
cpu board design had to generate various control signals not output by the microprocessor
itself.

In retrospect , having completed the project , the choice of CPU was not ideal ,
as the combination of high level programming language and performance required
approached the limits of the CPU capabilities. If the software had been implemented in
assembler language or a faster processor used there would have been fewer constraints.

3.2. Choice of the User Interface.

A traditional control panel with switches and status annunciators was
considered as a user interface , with the advantages of simplicity and single 'keystroke'
control. This option was discarded in favour of a standard computer terminal due to the

inherent flexibility of such a system. The advantages of single keystroke operation were
retained by programming the terminal function keys to implement certain of the most
often used commands. The video screen is also very useful for status information.

Consideration was also given to using the terminal screen in a screen mapped
mode , to provide permanent real time status information on mirror and autoguider probe
positions. This option was not implemented due to the software overhead required for
cursor addressing , and also text string handling , which can get very complicated and
unnecessarily slow the processor down.

3.3. Choice of Motive Power.

Three separate units needed to be moved to satisfy the requirements of
acquisition system automation. These are :

a) The autoguider probe.
b} The Offset Guider mirror in the acquisition box.
¢) The Rear—viewing mirror in the acquisition box.

The acquisition box mirror positioning system was already defined. It had
originally been designed as a manually operated pneumatic system , where manually
operated valves controlled a pneumatic cylinder and piston which moved the mirror slides.
The manual controls were situated on a control panel attatched to the acquisition box. As
the system had proved to be reliable , it was decided to retain most of it and only change
the manually operated control valves for electro-mechanical equivalents. The design
decisions involved the modifications required to provide local/remote control of the
preumatic system.

The existing manually operated XYslide used two leadscrews rotated by means
of crankhandles to move the autoguider probe mounting plate. The leadscrew method was
retained , due to the simplicity and ruggedness of the design , so the design decisions
required were what motive power and what form of positional feedback to use. A D.C.
motor servo system was considered due to the efficiency and small physical size of the
motors and drive electronics. The alternative was stepping motor drive. The stepping
motor system was chosen due to it's suitability to the velocity mode requirements of the
specification. To improve efficiency chopper drives were chosen for the stepping motor
translators.

3.4. Choice of position feedack Svstem.

Position status is required of both mirrors in the acquisition box and the
autoguider probe.

It is a requirement of the specification that the acquisition box mirror positions
be monitored both in and out of the optical beam , so that if the mechanism seizes up at
some intermediate position where the mirror obstructs the optical path the system can flag
an error. The simplest method of encoding this is with microswitches at each end of the
linear travel.

Monitoring the position of the X-Y motion of the autoguider probe is
complicated by the accuracy and resolution required (see specifications in Appendix A pg
A-1) , and the circular nature of the limits to movement. High resolution linear
potentiometers , LVDT transducers and linear optical encoding systems were considered ,
but were discarded due to large physical size or cost factors. A dual system of low
resolution , gear—driven ten—turn potentiometers for absolute position sensing , and
software step counters for incremental | high resolution position sensing was implemented.

The ten turn potentiometers are used as voltage dividers and the
position—dependant voltage is digitised with Ten-bit resolution. The potentiometers are
driven through an 8:1 gear ratio which results in 9,4 of the available ten turns being used
to encode the full distance of travel of the probe. This gives a resolution of approximately
31 steps of the stepping motor (27.7 degrees of rotation), equal to 153 micron linear
movement of the autoguider probe.

The software step counters are initialized with a count of zero when the probe is
at the centre of the movement area , and subsequent step commands to the stepping
motors increment or decrement the counters , depending on direction { up/down or
left/right). Thus the probe position is known in cartesian coordinates in terms of the
number of steps from a centre zero position , the sign (positive or negetive) being
significant. The calibration of the stepping motor is :

1 step = 5 microns linear movement.

Thus the user can be given the coordinates of the probe position in terms of millimetres .
This system is thus open loop , relying on the stepping motors never to miss a step
command. In practise stepping motors cannot miss a single step initiated by the drive
electronics , but can jump four or eight steps , depending on the mode of operation (4 or 8
step mode) , the instantaneous load , or the step frequency.

To ensure the software step counters are accurate , an encoding system
consisting of a slotted disk with two optical limit switches is mounted on the stepping
motor shaft. The encoding disk has ten radially cut slots equally spaced around the
circumference , thus there is a slot every 40 steps ofthe stepping motor. One slot is longer
than the other nine , defining a reference position once per revolution. One of the optical
limit switches is set to detect all ten slots , the other detects the one long slot only,
producing two signals FPOS and FREF , where FREF occurs once per revolution and
FPOS ten times per revolution of the stepping motor. See Fig. 3.

Fig 3.

The software uses this facility as follows :

A modulo 40 counter is kept in software , initialized to 39 when FREF and FPOS are true.
Before the start of each move sequence of the X—Y slide this modulo 40 counter is loaded
with a value calculated from the current position , such that it will underflow at the
instant that a slot signal (FPOS) should be true. The move function is then initiated ,
and the modulo 40 counter is decremented by one for each step of the stepping motor.
When the modulo 40 counter underflows , FPOS is checked. If the signal is correct (i.e. a
slot is present) , no error is flagged and the modulo 40 counter is loaded with 39. If the
signal is not true (no slot present , therefore the probe is not in the correct position) an
error is flagged and the move function is aborted.

The one long slot (FREF) is used to define a reference position once per
revolution. This is used in conjunction with the absolute encoders during the initialization
process to define the centre of the movement area.

3.5. Implementation of Velocity Mode.
The requirement of the so—called 'velocity' mode called for moving the
autoguider probe at a very accurate , slow constant velocity with a high resolution on

speed changes. The scheme chosen was to use an accurate temperature stabilized crystal
oscillator and frequency synthesizer combination. The frequency synthesizer design gives
nine decimal places of resolution , of which six are software programmable and three are
preset in the hardware. A characteristic of the rate multiplier integrated circuits used in
the frequency synthesizers is the instantaneous variation of the output frequency caused by
the randomly varying markspace ratio. This would cause unacceptable errors while moving

10

the probe. This disadvantage is overcome by following the synthesizer with a divider stage
set to divide-by—five thousand , which smooths out the frequency variations to within
acceptable limits.

3.6. Choice of Software Environment,

The SAAO Electronics group has.a Motorola EXORcisor microcomputer with a
6809 processor which is used as a software developement station. An OMEGASOFT
PASCAL compiler was obtained for the system , to develop the software required for this
project.

The EXORcisor has an interface for driving the SABUS (ref SAAO internal
documents) , so during program development the target system input/ouput hardware is
used.

The OMEGASOFT compiler has the useful features of producing ROMable
code and supporting merging assembly language code into the high level code. A few
procedures were written in assembly language due to execution speed requirements or
because structures were required that PASCAL does not efficiently provide. Interrupt
routines were also written in assembler to reduce execution time to a minimum.

11

4. Hardware implementation.

Due to previous experience with noise interference (EMI)} problems in the
telescope environment , communication between the computer hardware and the
instrument was carefully considered. The requirement is to keep cable lengths short and to
use well buffered signal lines. The best solution from this point of view is to mount the
microcomputer on the telescope mirror cell , as close as possible to the instrument it has to
control. This approach was not practical due to lack of available space and weight
limitations , so the microcomputer and stepping motor translator card frames were

mounted in a rack in the telescope control room , and careful attention given to the
cabling /connections and commnication standard used between the microcomputer and the
instruments on the Telescope.

The status/control communication between the microcomputer and the
instrument on the telescope was implemented using the RS422 differential communication
standard. The nature of this standard required doubling up on the number of wires and
larger connectors , thus adding to the cost. This was deemed to be justified due to the
improved noise performance. In addition , many signals are optically isolted to prevent the
possibility of earth loop problems. All power supplies are left floating with respect to
safety ground.

The microcomputer system was built in an SABUS card frame. A second
cardframe (called the 'musclebox’) in the same equipment rack housed the Stepping
motor translators and power supply , with optical isolation on all signals between the two
cardframes to prevent possible interference from the large currents being switched in the
stepping motor translators.

On the telescope a third smaller cardframe housed power supplies and circuitry
for conversion between TTL and RS422 signals. This cardframe is used as a plugboard for
interconnecting all the units on the telescope , as well as being a convenient place to
mount the pushbuttons for controlling the autoguider probe position. A block diagram of
the system is represented in Fig. 4.

ACQUISITION BQOX
XYSLIDE MECHANISM
MIRROR ACTUATORS &
STATUS ENCODERS i i MOTORS & ENCCDERS
“CONVERTER 80X
CONTAINS POWER SUPPLIES
& RS422-TTL CONVERSION y §
CIRCUITS.
F
ON TELESCOPE
IN CONTROL ROOM
) 4
TERMINAL SABUS COMPUTER TMUSCLEROXC
L gl HOUSES STEP MOTOR
TRANSLATORS %
INTERFACES
[——enmtmh\
Fig 4,

4.1. The Control computer.
-*The computer was implemented on the SABUS , in a standard commercially

available card frame. Input/Qutput interfacing was implemented where possible with with
commercially available units. Fig. 5 is a block diagram of the SABUS crate. Where these
were not available or not entirely suitable , proprietry interfaces were designed and built.

The computer system is assembled from the following modules :
6309 CPU :

This module was designed by G.F.W. Woodhouse of the SAAO. It has a 64K
EPROM on board and 2K of RAM. The CPU runs at 1MHz.

MAINS IN

POWER SUPPLIES
5V 6A D.C.
+-12V 1.5A D.C.
(UPS &5)
6809 CPU
2K RAM OSCILLATOR
4K EPROM
e () O
(x)
COUNTER/ /L () '\ FREQUENCY
TIMER _ _/ SYNTHESIZER
<CH\| Rsa22 t;g
DUAL RS232 16 AIT |
) /| aaTam
(d\ DUAL ADC
DUAL RS232 G B

6]
)

;

32K RAM :
This is a commercially available module produced by Basic Electronics.

Triple Counter/Timer :
-+ This module was designed by G.F.W. Woodhouse of the SAAO. It uses an
INTEL Triple counter I.C.

Dual RS232 Interfaces.
These are commercial modules produced by Basic Electronics with two

independant RS232 serial ports. Provision is made for communication with the terminal
for user input , and for communication with the telescope control slow motion drive and
instrument control computers.

14

The following modules were designed by the author with the exception of the
RS422 1/0 interface which consists of circuitry designed by the author built on a
commercially available wire wrap I/O board which comes complete with all bus buffering
and decoding circuitry. These circuits are described in some detail.

4.1.1. Dual Analog to digital Converter,
Refer dwg No. E3—0271, App. D.
The dual A-D converter uses two National Semiconductor 10 bit converters

with the following specifications :

Type : ADC1001
Resolution : 10 bits
Conversion time : 200 microsec.
On chip clock generator.

Single 5V supply.

Needs 2.5V reference.

0 to 5V analog input range.

Logic I/0 signals are TTL levels.
The 10 bit output is read out as two bytes automatically by strobing the RD line, format
left justified and high byte first. The least significant 6 bits of the second byte are set to
Z€r0.

Circuit,_Description.

Addressing : The card address is switch selectable in the standard SABUS
format. A switch in the ON state implies the associated address bit must be a 1 to select
the card. The circuit occupies four addresses , one of which is unused. The two least
significant bits are decoded by IC 1 to directly select the circuits on the card. The address

map is as follows :

Bitl Bit0
ADC1 0 0
ADC2 0 1
INTR status 1 0
Not used 1 1

15

The ADC circuits : The ADC1001 can be configured to operate in one of three modes ,
selectable by links on the P.C. Board. (See Fig. 6).
The modes are :

Link
1) Continuous conversion A,D&E
2) Program control, no interrupt B&C
3) Program control with interrupt B,C&F
UNKS
NTR OF g— dINTR
RESET E Vraf
W 4 Los WR 2.5V

tfl

w o
o)

|

&

e

Mode 1 — Free run conversion : The computer hardware RESET toggles the WR input and
starts the first conversion. Thereafter the EOC signal (INTR o/p) restarts the process
via link E, so it becomes self starting. Link A permenent.ly selects the CS i/p, so the
output can be obtained by strobing the RD line twice to obtain the two bytes of data.

Mode 2 —Program control, no interrupt : The conversion is started by strobing the WR
line with CS held low. Data is read by either waiting for more than 200 microseconds
before reading, or monitoring the appropriate bit (6 or 7) of the 8 bit input port (IC 13)
and waiting for it to go low.

Mode 3 — Prosram control with interrupt : conversion is started as above but end of

Conversion causes an interrupt via link F. The interrupt routine must poll the § bit input
port bits 6 & 7 to identify which converter caused the interrupt.

16

The 8-bit input port : This is primarily for identifying which of the converters has caused
an interrupt. Identification is as follows :

Bit 7 Bit 6

ADC1 (address 00) 1 0
ADC?2 (address 01) 0 1

Use is made of the other 6 bits by bringing them out through the front panel on a delta
15-S connector. These inputs can be terminated by inserting a DIL resistor pack in
position IC 13, and by means of link U or D can be pulled high (link U) or low (link D).

The analog inputs are available either on the delta 15-S connector or on two
LEMO 0304 sockets. 5V power is available on the LEMO and delta connectors.

4.1.2. The RS422/TTL 1/0 Interface.
Refer dwg.No. E4-0273, & Basic Electronics dwg. 701/1, App. D.

This module is the main status/control port for the acquisition system
hardware. It is built on a commercially available general purpose Wire Wrap board by
Basic Electronics. The board is supplied with all address decoding , bus buffering and
interrupt circuitry , and has an uncommitted 24 bit programmable peripheral interface
with an area of the board avaiable for application specific circuitry.

The requirements of the acquisition system hardware meant that this circuitry
had to be a mixture of RS422 differential input /output and optical isolation input.

The interrupts are not used. Note the modification to the board interrupt
circuit to prevent noise generating an interrupt.

The 8255 is programmed in mode 0 as 16 input and 8 output lines. Port A and
B are defined as inputs, and port C is an output. The control byte is $92.

The inputs and outputs are connected through a DIN41612 AC64 connector on
the front panel.

17

Circuit Description :

Port A : All 3 bits of this input port are status lines from the XYSlide mechanism on the
telescope, and are transmitted as RS422 signals. Thus IC 8 & 13 (RS422 receivers) convert
the signals to TTL levels before feeding in to the 8255. The RS422 signals are terminated
in 150 ohrns.

Port B : Bits 0 — 3 are status lines from the X—Y mechanism and are R5422 as above. Bits
4 - 7 are status from the musclebox, and are optically isolated (IC 12 & 17) and buffered
before feeding in to the 8255. Note that XFAULT and YFAULT signals are inverted
before going to the 8255.

Port C : Only bits 0 — 3 of this port are used to control the acquisition box. IC 9 converts
the signals to R5422 levels. Bits 4 — 7 are buffered in IC 10 and outputted as TTL levels .
They are not used at present.

19

The oscillator frequency can be trimmed by means of a 10-turn potentiometer
on the P.C. board and a trimmer capacitor internally mounted in the oscillator.

For the XYslide, which requires a master clock of 560KHz for velocity mode,
the oscillator output is divided down by a factor of ten before going to the prescaler
synthesizer. This is due to the HCD—80 oscillator unit used having a minimum frequency
of 4.5MHz.

4.1.3.2. The Frequency Synthesizer.
Refer to drawing No. E3-0127, App. D.

This circuit is designed to accept the output of the Oscillator card and allow
programmable control of the output frequency, although any TTL level signal can be used
as a source. It also has a seven—bit latched output port. All inputs and outputs are fully
buffered TTL signals.

A post divider circuit offers four switch selectable divisor factors to smooth the
output pulse train.

The frequency synthesizer output function follows the formula :

F,,, = MxF, /1000000

where M is a six digit decimal number in the range 0 — 999999. The number M
is set up as a six figure BCD number in the 24 bit output port under program control.

Circuit Description.
Addressing : Address bus bits 3-7 are switch selectable in the standard SABUS fashion. If
a switch is in the ON position the corresponding bit must be a 1 to select the card. Bits
0-2 are decoded as follows :
AB2 AB1 ABO
7T-bit latched O/P 0 0 0
missing codes not used.
Synth. control LSB 1 0 0
Synth. control 1 0 1
Synth. control MSB 1 1 0
~ 8255 control byte 1 1 1

20

These address bits are combined with CARDSEL to produce DATASEL (7-bit
latched O/P) & SYNTHSEL in IC 8.

The synthesizer : The synthesizer is formed by IC's 911 & 14-16, controlled by the 24 bit
number on the O/P of IC12, the 8255. The synthesized output is obtained at IC13 p8.
This pulse train is then divided in IC's 18 & 19. The divisor factor is selected by the
4~way DIL switch with the following truth table:

Divisor factor swl sw2 sw3 swd

200 Cl. X (L X
500 Ct. X X CL
2000 X CL CL X
5000 X (€. X CL

Where X = Not allowed.
The synthesizer I/P and O/P are fully buffered. The I/P is via a LEMO 0302
connecter and the O/P is on the Delta 9-S connecter on the front panel.

The latched O/P, (IC17), using the 8212, is limited to 7 bits by the constraints
of the 9-way output connecter, which already has the frequency synthesizer output on it,
thus only bits 06 are used.

Programming : There is only one device on the circuit that needs programming. The 8255
PPI is used in mode 0 only, control byte $80 to configure it correctly.

A peculiarity of the circuit is that after a hardware RESET, due to the I/O
pins of the 8255 being programmed to inputs, the frequency synthesizer will have an

output of :

Fo = 0.999999 x F, /D

where D is the divisor factor.

21

4.2. The Musclebox.

This is the second cardframe situated in the control room rack housing the
power supplies and drive translators for the stepping motors , and optical isolation
interfaces for the control signals coming from the microcomputer. Fig. 8 illustrates the
main components.

FROM | SIGNAL
[SOLATICN
COMPUTER STEP MOTOR
TRANSLATQR | ©OTO MOTOR
3
STATUS TO _ IMONITOR CARD
COMPUTER '
gt
STEP_MOTOR
CONTROL coio I/F _/_' IRANSLATOR | OTO MOTOR
SIGNAL
FROM | 1SOLATION
COMPUTER

Fig. 8

= LI~ A}

The units in the musclebox are as follows :

4.2.1. The CD 10 I/F.
Refer Dwg. No. E3-0162

The CD 10 I/F was designed to interface the Digiplan CD 10 stepper motor
driver to the SABUS computer system. It provides the following features :
A) Optical isolation of all control signals from the computer.
B) Singlé‘step test facility.
C) Annunciator LED's for direction of rotation, steps in progress, Phase Zero, and CD 10
fault condition.

Circuit Deseription : The control signals come in on a front panel connecter and are
optically isolated in IC's 1. If required, the FAST and SLOW signals must be
implemented by inserting links 2 & 3.

The STEP input is controlled by STEP ENABLE — this would normally be
used to control the input from an external pulse source such as the SABUS frequency
synthesizer. The incoming step/pulse signal is shaped in IC 12.

22

All outputs of the circuit are open collector high voltage drivers to comply with
the stepping motor translator input requirements.

4.2.2. The Stepper Motor Translators. _

These are commercially available units from Digiplan. They are a bipolar
switching design which makes for much improved efficiency. The approximate 20KHz
switching frequency generates EMI whick degrades the performance of the CCD
preamplifiers , so the stepping motors are kept unpowered (de—energised) unless
movement of the autoguider probe is required , and a CCD camera data transfer (data
readout) is only initiated after the stepping motors have been de—energised..

4.2.3. Monitor Module.

Refer to drawing no. E4-0279, App. D.

This card provides a means of getting the FAULT and Phase Zero status of the
two stepper driver modules back to the computer (IC 1), as well as power supply monitor
points and visual indication of the stepping motor phases. Two—colour led's are used to
monitor the phases. The resistor/diode circuit aroiund the led is designed to get nearly
equal brightness from the two colours.

4.3. The Converter Box.
Refer Dwg. No. E3-0275, E3—0276, App. D.
This is the 1/4 size crate that is bolted on to the left hand side of the
acquisition box. All communication with the computer is routed through it. A block
diagram is seen in Fig. 9. It has two modules as follows :

The Power Supply : This unit has a 5v 3A supply for all the TTL logic and the position
encoders, and a +/-12v 240mA encapsulated supply for the autoguider graticule and
(regulated to +—5v), for the autoguider preamp.

The Logic Circuit : This module contains the logic circuitry for conversion between R5422
levels and TTL levels. There is also optical isolation for the six signals to and from the
acquisition box. The front panel carries led status of the control and status signals. There

is provision for a remote handset to duplicate the X~Y position control functions of the
pushbuttons on the top panel.

23

POWER
SUPPLIES
5v 3A
RS422 LINE DRIVERS 12V 160mA
& RECEIVERS +/~5V 300mA
STATUS LED'S
TO X—Y MECHANISM
FROM____|
PUTER
. TO AUTOGUIDER
PROBE
OPTICAL
ISOLATION OF
ACQUISITION |——TO ACQUISITION
BOX SIGNALS BOX
Fig. 9.

4.4. The Acquisition Box.
Refer Dwg. No. E3-0259, E3-0260, E4-0261.

The modifications to the existing acquisition box comprised rewiring the unit to
mount a power supply and control circuitry in the control panel , and changing the layout
of the control panels to allow for computer or manual control of the mirror positions. The
control circuit provides for :

a) Manual or computer control of the position of both mirrors.

b) Manual or computer control of Eyepiece graticule illumination (On/Off only)

c¢) Interlocking graticule illumination of the Rear viewing eyepiece with mirror position
such that the graticule illumunation can be on only when the mirror is in the beam.

d) Switch selection of control of the mirror position from the control panel or from a
remote controller(the microcomputer).

e} Mirror position status lamps on the control panel , and status indication to the remote
controller.

f) Mirror position status to the data acquisition control computer.

24

5. The Software.
(See Appendix C for program listings and flowcharts.)
The major part of the program was written in PASCAL using an
OMEGASOFT Pascal compiler , with a few sections written in assembler, The source code
was split into a number of separate "include" files to facilitate editing.

The command set can be broadly divided into four catagories. (See Appendix B
pg B-9 for the complete command set). These catagories are :
A) Commands to do with moving the probe. eg VMODE , MOV, CENTR.
B) Commands to control the Acquisition Box.
C) Utility commands. eg LPOSN , FUNCSET , HELP.
D) Diagnostic commands. eg TEST , MOTON , MOTOFF.
Appendix B — The XYslides User Manual — has a full description on how to use these
commands except for the diagnostic commands which are described in para. 6.1. below.

The main program flow is shown in Fig. 10. The software is structured such
that most modes of operation are serviced as procedures which are exited only on
completion of the command. This implies the program loop time can extend to as much as
15 seconds as in the case of the MOV command.

An exception to this is the velocity mode function VMODE , and the
pushbuttons mode. Stepping motor movement under VMODE is controlled by the
programmable frequency synthesizers , thus the program only has to set up direction of
movement and program the required speed into the synthesizers then enable the stepping
motor translators. The probe then moves at the defined speed independant of any further
software action , until the movement is terminated or the speed changed. The pushbuttons
are checked once through every program loop { see flow chart in Fig. 10) and if a
movement pushbutton is pressed the probe moves accordingly. Periodic position checks are
required for both pushbutton and velocity mode to ensure the probe does not hit the
mechanical limits of movement.

XYSLIDE SYSTEM
MAIN PROGRAM LQOOP

(START)

INITIALIZE
Set up [/C Porta
and injtial voiues

for varigbies

SYSTEM NO
STATUS CHE]
oK ?
PROMPT USER
YES

WITH ERROR
MESSAGE
LENTRE :
Drive probe to L_YES
centre position
CHECK VDU FOR
COMMAND STRING
COMMAND YES
RECEIVED ?]
INTERPRET AND
EXECUTE

i

VELOCITY

NO MODE ACTIVE 7

YES

CHECK CHECK PROBE
PUSHBUTTONS POSITICN AND
AND TAKE FLAG ERROR
APPROPRIATE IF NECESSARY
ACTION

Fig. 10

—

26

A fast interrupt routine (FIRQ) for controlling the movement of the stepping
motors was written in assembler to reduce execution time to a minimum. The routine
repeats at a 2KHz rate (every 500 microseconds) with a 265 microseconds worst case
execution time. The normal interrupt (IRQ) is reserved for a future update.

The Motorola 6809 CPU has three levels of interrupts ~ Non Maskable
Interrupt (NMI) , Fast Interrupt (FIRQ) , and normal interrupt. The design of the CPU
circuit board does not allow for interrupt management , and the three interrupt levels were
assigned as follows :

NMI —Not Used

FIRQ— Control of stepping motors for normal movements

IRQ - reserved for a future update
The lack of interrupt management severely restrained the software design , as the terminal
and pushbuttons could not be interrupt driven , but had to be serviced as part of the main
program loop. The disadvantage of this approach is that if any part of the program loop
lengthens appreciably (e.g. position checking calculations requiring square root functions)
the terminal fails to respond , and user input is lost. Thus program loop time had to be
kept to a minimum to prevent data being lost from the terminal/computer
communication, or for there to be an unacceptably slow reaction time on the pushbutton
controls. This feature is going to be changed as part of the IRQ update.

All commands to move the probe are mutually exclusive i.e. CENTR exor
MOV exor VMODE exor PUSHBUTTONS. Software traps had to be inserted to prevent
any possibility of simultaneous execution of these commands.

5.1. Diagnostic Tools.
The software includes some 'hidden' commands which do not appear in the
'"HELP' menu. These functions are designed to make faultfinding a little easier. The

functions available are :

MOTON Applies power to the stepping motors (ENERGISE function) , which are
de-energised by default unless actually moving the slides. Useful for setting up the slotted
disk encoders etc.

MOTOFF De-energises the stepping motors.

BUZZ Sounds the buzzer in the converter box on the telescope for approximately one
second.

27

TEST Very useful! This command gives you five options of items to test. The options
are :

Print status bits of STAT1 port.

Print status bits of STAT2 port.

Print hex number reading of X & Y potentiometers.

Do a Testmove.

Change hex value of centre co—ordinates.

;R W N e

Exit to command processor.

The eight-bit status ports have the following bit assignments
STAT1 (8 bits)

Bit 0 A /G 45deg mirror 0 = out 1 = in beam.
1 Acqu. box COMPUTER/MANUAL select switch status
0 = manual. 1 = computer.
2 Rear view mirror position 0=in 1 = out beam.
3 Guide mirror position 0 =in 1 = out beam.

4 Xleft pushbutton

5 Xright pushbutton

6 Yup pushbutton 0 = inactive 1 = asserted.
7 Ydown pushbutton

STAT?2 (8 bit)

Bit 0 Xref
Yref
Xslot
Yslot
Xfault
Yiault
XPho
YPhO

-] & Ot B W N

The potentiometer readings are given as 4 digit hex numbers. In the centre
position the value should be approximately $200 (S0A either way is acceptable). Other
typical figures are :

X Axis extreme left -83C
extreme right -33BD
Y Axis extreme up —-$3C3

extreme down —-841

28

These figures will vary depending on which X—Y mechanism is being checked
and whether it has been disassembled at any stage. The reason for the difference is that
the potentiometers are driven through a gearbox , thus after disassembly it is unlikely that
the gears will be meshed in exactly the same position.

The TESTMOVE f{function prompts for two sets of co—ordinates and then
moves continuously between them and the centre position. This is useful for doing
oscilloscope tests on any of the stepping motor control bits or the feedback signals { FPOS,
FREF, PHO). Pressing any key will stop this test at the end of the current cycle.

The '"CHANGE VARIABLES' option should really only be used if there is a
suspicion that the XYslide is not centering properly , or if the mechanism has been
stripped and needs to be re—setup. It allows changing the reference values used in the
calculations for finding the centre position during the initialization process.

9.2. Memorv Map.

29

As the Motorola 6809 Processor does not have separate I/O and memory
addressing capability , all input/output is mapped into the main memory. SAAQ has
standardized on allowing 256 bytes for input/output , starting at location $EQ000. Limiting
the I/O to 256 locations simplifies the I/O port address decoding as only eight bits have to
be decoded. The CPU card generates the required bus control signals to differentiate

between memory and I/O accesses by decoding the address bus.
The memory is apportioned as per Fig. 11.

RESTART VECTORS ﬁé‘;ﬁ
[/0 INTERFACES o
e
24 K
EPROM—
SPACE -
S~ PROGRAM START $8000
4000 RAM MAP
SYSTEM STACK
DATA STACK
- 7FF JUMP VECTORS
ZK RAM 3000

Fig. 11.

P
31

010
0GF

$000

The 1/0 section of the map is apportioned as follows :

$E000 : X motor control

SE004 : LS Byte

SE005 : Middle byte frequency synthesizer step rate control
SE006 : MS Byte

$E007 : Synthesizer control word (set to $80)
SE008 : 'Y motor control

SEQ0C : LS Byte

$E00D : Middle byte {req. synthesizer step rate control
SEOOE : MS Byte

$ECOF : Synthesizer control word (set to $30)
$E0L0 : Terminal data

SE011 : Terminal port control word

SE012 : Nova data

SE013 : Nova port control word

$E018 : Slow motion drives data

$E0L9 : slow motion drives port control word
$E0IA : Data — spare port

SE0IB : control word — spare port

SE030 : not used

$E031 : timer card status

$E032 : Timer card control

SE033 : 8255 control word

$E034 : Counter 0 — pulse counter

$E035 : Counter 1 — FIRQ timer

$E036 : Counter 2 - IRQ timer

$E037 : Counter chip control word

SE040 : X axis A-D converter

$E041 : Y axis A-D converter

$E042 : X-Y ADC interupts & 6 bit I/P (not used)
SE0S0 : STAT1

SE0S1 : STAT2

$E082 : AQBOX control

$E083 : I/O control word

30

31

6. Problems encountered.

6.1. Stepping Motor Phase lac at hich step rates.

An unforeseen problem was encountered when running the X~-Y mechanism
stepping motors at a 2KHz step rate. The instantaneous phase lag of the permenent
magnet rotor w.r.t. the rotating magnetic field of the stepping motor (see fig. 12.) meant
that when the program checked for the presence of a slot , the slots of the slotted disk
encoder were not in the correct position , although the motor had not 'lost' any steps.
Thus a movement error was flagged. This phase lag varies with speed and instantaneous
load (which changes with telescope position).

STEP PULSE l_]

SLOT

MICRO CHECKS
FOR SLOT

The slot width was manufactured to be equivalent to 6 steps of the stepping
motor , which means that there is a three step leeway for each direction of rotation. In
practice , due to the difficulty of setting the position of the optical limit switch detector
accurately in the middle of the slot , the leeway tends to be about 2.5 to 3 steps on one
side. This , combined with the natural oscillation around a step position , is not enough to
ensure that the slot will be true at exactly the right moment.

The solution to the problem was implemented in the software , in the FIRQ
interrupt routine. At the time when a slot is supposed to be true , a counter is initialized
with a value of 2. The counter is then decremented as each step is performed , and a check
is done on the slot. If the slot status is true before the counter underflows , no error is
flagged. If the counter underflows before the slot status comes true , an error is flagged and
the move sequence is aborted , with appropriate error messages being printed on the
terminal. The flowchart in fig. 13 illustrates this.

32

!

DO ONE STEP
DECREMENT
MODULO 40

COUNTER

P TRUE ?
CLEAR ERROR FLAG
RESET MCD. 40

COUNTER
SET SLOT CHECK
COUNTER = 2

SET ERROR
FLAG
DECREMENT
CLEAR ERROR FLAG SLOTCHECK
RESET SLOTCHECK
COUNTER TQ O
SET ERROR FLAG
Y ¥ g

Fig. 13.

6.2. Svatern 'Health' Check on Proeram Start—up.

As the power supplies for the separate units that make up the system are
individually controlled , it is possible to start the system up without switching on power to
all of the units. Due to the number of plug—in connections , it is also possible to start up
with some of the connections not made.

This combination of circumstances can result in the program reading false data
from the encoders when initializing the probe to the centre position. This can lead to the
probe being driven into the mechanical limits of movement , which is undesirable!

33

An oversight at the design stage meant that there was no direct method of
checking that the encoder circuits and musclebox were powered up before starting to move
the probe to the centre position during the initialize sequence.

The solution was found to be to check the data obtained from the position
encoding potentiometers against a minimum valid value. If the reading obtained is less
than the minimum , this is interpreted as meaning the encoder reading is invalid , and an
appropriate error message is given to the operator to check the connections and power
supplies to the encoder. See the flowchart in Fig. 14.

The musclebox is checked in a similar fashion by checking the FAULT and PHO
status signals from the stepping motor translators. If the FAULT signals are true , or if
the PHO signals are false , an error condition is flagged and the operator is prompted to
check the hardware.

STATUS CHECK

SET ERROR FLAGS

CLEAR FLAGS POTERROR &
YES PROMPT USER SYSERROR
WITH ERROR T

MESSAGE L

MOTCR .
STATUS OK

? SET ERRCR FLAGS
CLEAR FLAGS MOTORERRCR &
SYSERRCR

i |

YES NO

¥

CONTINUE
WITH PROGRAM

Fig. 14.
6.3. Response of Kevboard.

Due to the lack of interrupt management facilities in the target system , the
terminal keyboard entry is serviced as part of the program loop. The program loop time
thus had to be kept below about 2mS to ensure capture of every character from the
terminal { 4800 baud rate = 3.1mS per character }. This was not possible in all cases ,
especially where calculation routines performed square root functions , thus there are
periods when the keyboard 'dies’. The solution to this is to make the keyboard interrupt
driven. This will be implemented in a future update where the interrupt will occur at 1mS

intervals , each time checking the keyboard entry port for waiting characters.

34

6.4. Alienment of Slotted disk Fncoder.

The alignment of the slotted disk encoder on the stepping motor shaft with the
optical limit switch detectors used to produce the signals FPOS and FREF is critical and
rather difficult.

The slots in the encoder disk are machined to the equivalent of 6 steps of the
stepping motor to allow for the natural oscillation around a step position of a stepping
motor. This slot could not be made any wider as the stepping motor phase pattern repeats
every eight steps , and the slot was required to be unique to only one eight-step pattern.
The slots were originally made much narrower , but due to the phase lag problem
explained in section 6.1. above were widened somewhat.

The process of aligning the stepping motor encoding disks is part of the X-Y
mechanism set—up procedure which is explained below :

6.4.1. Setting Up the XY Mechanism.
This procedure has three steps as follows :

a) Manually move the probe carriage to the centre of the movement area as defined by the
dimensions X in Fig. 15.

b) Rotate the Ten turn potentiometer until a reading of $200 is obtained using the TEST
command , then mount it in the gearbox , being careful not to rotate the shaft. Do this for
each axs.

¢) Align the slotted disk encoder on each shaft as follows :

1) Set the system up on a bench and connect up everything. Switch on in the normal way.
The XYslide will drive to the centre point (The procedure can be done on the telescope,
but it is a bit awkward.)

2) Set the X-Y mechanism in the centre of the movement area by manually rotating the
the leadscrews and setting the dimension X shown in fig. 15 to 77.5mm.

3) Use the command MOTON to energise the stepping motors. Ensure the SD2 stepper
drivers are at Phase zero.

4) Loosen the grubscrews holding the slotted disk on to the motor shaft and rotate until
both REF and SLOT signals are true. (This can best be monitored by watching the
appropriate led's on the converter box front panel.) Ensure that the longest slot activates
the REF optical limit switch.

35

5) Rotate the slotted disk on the shaft while watching the led's to obtain the centre point
of the slot over the optical switch. Tighten the grubscrews slightly.

X—-MOTOR J

X —=

I —]

MOTOR

Fig. 15.

6) Use the single step function of the CD10 I/F with a test rig to control the direction
input. Rotate the stepping motor in each direction until the led's switch off. The led's
should go off after an equal number of steps in each direction from the centre as defined by
phase zero.

7) Repeat steps 5) & 6) until satisfied that the slotted disk is well centered. Finally
tighten the two grubscrews. DO_NOT OVERTIGHTEN as this causes the grubscrew to
nick the shaft which makes adjusting it in future nearly impossible.

More precise control of the optical limit switch position is necessary to enable
proper adjustment under dynamic conditions. This will be rectified by re—designing the
mounting arrangement of the optical limit switches.

36

7. Test Results.

Due to the inherent accuracy of the stepping motor { 5% of a step position =
0,25 micron) and the resolution of the feedback (equal to one step) , the only parameter
to test is the accuracy of positional repeatability of the XY mechanism. This is , in effect,
a measure of the mechanical backlash in the drive mechanism. This parameter was tested
using a dial gauge to set up a reference position , the probe was then moved away from
this position and back again , and a reading taken of the error. The test was repeated for
different directions of movement in both axes , in the horizontal plane. The test results are
as follows :

X Axis :
Test No.
1. overshoot .010 micron
2. overshoot .000
3. overshoot .004
Y Axis :
Test . overshoot .000

. overshoot .003
. avershoot .003
. overshoot .008
Average : 0.007 micron
Thus the average error of position repeatability is 7 microns (equivalent to 1.4

1 O r

steps of the stepping motor). The specifications (see appendix A) called for 200 microns.

For other results see appendix A. for a comparison of achieved performance
versus required specifications.

- 37

8. Future Plans.

The Acquisition control system is planned to be merged with the new
Autoguider currently under developement. The merger involves additions to the
microcomputer hardware and a substantial update of the software by merging two
separately developed programs.

A second system will be manufactured for use on the 1.0m telescope at
Sutherland , on which a Charge Coupled Device Camera has been in use for some years.
Many of the remote control features of the system will not be used on this telescope as
there is at present no closed circuit TV system available.

38

9. Glossarv of Terms.

Autoguider. — A system which , with the telescope slow motion drive system controls the
telescope following a star track across the sky. Many factors can influence a telescope
ability to accurately follow a star , among which are :

a) Machining tolerances in the drive gearing.

b) Refraction caused by the atmosphere.

c) Flexure of the telescope structure.
The autoguider has a light detector which can detect minute relative motion between the
star and the telescope , and generates an error signal which controls the slow motion drive
to counteract these movements. Thus the autoguider and slow motion drive system
become a servo control system to keep the telescope stationary with respect to the star.

Control Room. ~ An enclosed area on the side of the observing floor which acts as the
control centre for most of the operations involved in telescope control and data capture.
All the control computers are in this area.

Guide Star. — A star in the telescope field of view other than the program star , used as a
reference for guiding. The autoguider system would use this star to detect any movement
between the telescope and the star.

Observing Floor. — The floor of the telescope building where the telescope is. This is
normally the first floor of the building.

Program Star. — The star which is to be studied as part of a scientific research project.

Polar Axis System. — A mounting system for a telescope where one axis is mounted such
that it is parallel to the axis of rotation of the earth. The advantage of this system as
against an Altitude-Azimuth mounting is that only one axis need be driven at a slow ,
constant velocity to track the path of a star across the sky. This makes the control and
drive systems very much simpler. A disadvantage is the increased mass of the mounting to
obtain the necessary mechanical rigidity.

Slit. — The opening in the telscope dome through which the telscope can see the sky. The
slit is closed by specially shaped doors called shutters.

39

Slow Motion Drive. — A computerized control system for moving the telescope at a slow
constant velocity to follow a star track across the sky. The system controls both axes of
the telescope when the observer is aiming the telescope at a star.

Telescope Pointing. — A phrase refering the position of the telescope when it is being set to
aim at a particular star.

Turret. — The telescope dome of the 1,9m telscope is referred to as the Turret due to it's
shape — a cylinder with a flat roof , instead of the more usual dome shape.

40

10. Bibliography.
The TTL Data Book for Design Engineers.

Texas Instruments Corporation.

Peripheral Design Handbook.
Intel Corporation.

SABUS 6809 CPU with EPROM/RAM.
SAAOQ Internal Document by G.F.W. Woodhouse.

SABUS Counter/Timer.
SAAO Internal Document by G.F.W. Woodhouse.

The South African Microprocessor Bus Standard , Bus Specification,
Basic Electronics Document.

SABUS Dual Channel Serial Communication Card — Module 805/1.
Basic Electronics.

Maggs Industrial Micros SABUS Cards. General Purpose I/O Wire Wrap card 701/1
Basic Electronics.

SD2 & SD3 Stepping Motor Translator Provisional Data Sheet.
Digiplan (Pty.) Ltd.

OmegaSoft 6809 Pascal Language Handbook.
Certified Software Corporation.

6809 Asssembly Language Programming.
L.A. Leventhal , Osborne/McGraw~Hill.

11. Acknowledsements.
I wish to thank my collegues in the electronics section of S.A.A.O. , especially
Mr. G. Woodhouse , with whom many helpful discussions were held.

—A-1

Appendix A.
XYslide Specifications

1. Mechanical.

Ideal Achieved
Resolution 100 microns 10 microns
Limits of travel X axis 145 mm. Circle of

Y axis 135 mm. radius 140 mm.

Accuracy{repeatability) 200 microns See note 1 below
nonlinearity(max} 300 microns See note 2 below
Velocity mode accuracy 9 microns 5 microns
Time to travel 100mm 5 seconds 10 seconds

2. Functions.

2.1. User interaction : The user must be able to control the system from a standard
computer terminal.

2.2. Autocentre : Probe to automatically find the centre position on power up. ie. a
position approximately at the centre of the telescope field of view.

2.3. Move to a position : System must be capable of moving to a position defined by
coordinates entered in at the terminal.

2.4. Manual position control : The User must be able to control probe movement from the
eyepiece position.

2.5. Velocity Mode : The probe must be able to move in a defined direction at a defined
speed, suitable for tracking comets (i.e. speeds ranging from 0,1 mm/S to 10mm/S.)

2.6. Control of Acquisition Box : The system must have control of the position of the
mirrors in the acquisition box.

—A-2

Note 1 : Positional repeatability depends on the specification of the stepping motor and
minimum flexure/backlash in the mechanical coupling between the motor and the
leadscrew. The motor has a specified repeatability of 5% of a step position. As one step is
equivalent to 5 microns linear movement, the uncertainty is 5% of 5 micron = 0.25
micron. The backlash in the coupling was measured at an average of 2.5 microns for
repeated fests on both axes in the horizontal plane.

Note 2 : Nonlinearity is a function of the accuracy to which the precision—ground
leadscrew is machined, plus step motor repeatability (0.25 micron) plus coupling
backlash (2.5 micron). The leadscrew used has a maximum specified machining error of

T_10 microns over 300 mm. Thus the maximum linearity error is +-12.75 microns.

SO A o o e

Appendix B.

Automated X-Y Slides
User's Manual
Bv : D Carter Julv '86.

INDEX

Introduction

XY slides Vital Statistics.
Getting started
Use/capabilities of the system
Explaination of Commands
Command Set

—B-2

1. Introduction,

The X-Y Slide system is a computer controlled two dimensional movement
mechanism designed to facilitate the positioning of the telescope autoguider probe. The
system block diagram is represented in Fig.1.

ACQUISITION BOX
XYSLIDE MECHANISM
MIRROR ACTUATORS &
STATUS ENCCDERS I l MOTORS & ENCODERS
“CONVERTER BOX”
CONTAINS POWER SUPPUES
& RS422-TTL CONVERSION
CIRCUITS. ?
A
ON TELESCOPE
IN CONTROL ROOM
h 4
TERMINAL | SABUS COMPUTER MUSCLEBOX”
T i HOUSES STEP MOTOR
' TRANSLATORS &
INTERFACES
[t
Fig. 1.

""The block labelled 'CONVERTER BOX' in Fig. 1 is a small ELMASET card
frame crate bolted on the side of the acquisition box. It contains some electronic circuitry ,
and incorporates a set of pushbutton switches for manual control of the X—Y mechanism
position , as well as graticule illumination countrol for the autoguider eyepiece. (This latter
will only work with the SAAQ autoguider , not the Grubb-Parsons equipment.)

—B-3

2. XYSlide Vital Statistics.

Area of movement : Circle of radius 70mm

Movement method : Stepping motors and precision
ground leadscrew of 2mm pitch

Position encoding : 10-turn potentiometer and

slotted disk encoder with
software counters.

Step resolution : 5 microns

Positioning resolution : 10 microns

Maximum speed : 2200 steps/second, limited
to 2000, or 10mm/second.

Velocity mode method : Programmable frequency

synthesizer and temperature—
stabilized crystal oscillator.

3. Getting Started.

3.1. Switch on pawer to the musclebox first , then switch on the microcomputer. This
should result in the following sequence :

A} The terminal should come up with :

e ke o ek o sk ok ot o ok ok ok o e e sk sk o o sk K R o o sk ok SRR R KR R R R K

XYSLIDE CONTROL PROGRAM
ver. 5.03 Mar. 86

sk ek e ok ok o oK ko o o SR o 3K ok oK kSR o Ao RS kAR ok SRRk ok R R ok oK

B) The X—Y mechanism motors should operate, driving the autoguider probe to the centre
of the field. A buzzer should then sound at the telescope for approximately 1 second.
C) The following should appear on the terminal :

XYSLIDE CENTRED
Setup complete
Type 'HELP' for command menu

HFHH#HH

Enter Command :

The XYSlide is now ready to use.

3.2. Alternatively , the terminal bell will ring and the following message will appear :
SYSTEM HARDWARE ERROR DETECTED
and then one or other (or both) of the following messages

a) Check mains supply to Converter Box.

b) Check Musclebox CD10 I/F modules :
FAULT lights must be OFF , and
PHO lights must be ON.

If not , switch Musclebox OFF then ON again.
Message (a) most probably means the mains supply to the converter box {labelled
MANUAL CONTROL BOX in Fig. 1) has been switche off or disconnected. Message (b)
implies that the musclebox is in an incorrect state — to rectify , switch it off , wait ten
seconds , and switch on again. As soon as the fault state has been rectified , the program
will continue with the initialize sequence as in para. 3.1.

3.3 WHAT HAPPENS IF ... it doesn't work. Either go to bed or if all else fails call the
duty electronics technician.

4. Uise/Capabilities of the svstem,

The equipment as configured at the moment has operations/commands that can
be divided into four catagories :

4.1. XYslide Positioning : Move to a defined position, centering or re—initializing itseif ,
moving in response to pushbuttons, list current position of probe.
Commands are: MOV, CENTR, LPOSN, SPEED

4.2. XYSlide Tracking — or Velocity mode : Moving in a defined direction at a defined
speed.
Commands are: VMODE, VSTOP, VC, VHOLD, VSPEED

4.3. Acquisition box Control : Control of the position of the mirrors in the acquisition box
, and the graticule illumination of the Rear viewing optics.
Commands are: GMVIEW, GMCEN, RVMIN, RVMOUT

4.4 Test Functions : These are a series of commands to facilitate fault finding the
equipment. The commands do not appear in the "HELP' menu, but are explained in the
technical manual.

—B-5

5. Explaination of Commands.

5.1. Use of the kevboard.

5.1.1 There are two methods to enter commands : Either type in the command in full ~
shortened forms are not accepted — or use the function keys as explained in para. 5.1.3.
below.

5.1.2. Typing errors : the ESPRIT terminal unfortunately does not allow the use of the
backspace key , but CTRL-H { CTRL key and H pressed simultaneously) does the correct
backspace function to correct typing errors.

5.1.3. Function key use : Certain commands are available as single keystroke commands , (
as well as being typed in full) , by using the ESPRIT III terminal function keys. To
implement the command simply press the apropriate function key ~ it is not neccessary to
press return. The commands are :

Command Function key
CENTR F1

MOV F2

GMCEN F3
GMVIEW F4

RVMIN F5
RVMOUT Fé6

HELP ‘ Fl11

NOTE : 1) This facility only works with the ESPRIT terrninal.

5.2. XYSlide Positioning commands.
5.2.1. MOV { or F2) will prompt you for a destination position in X and Y. The
positioning system is based on normal cartesian coordinates , as in Fig. 2.

+Y

o(Fx+y)

.(_—xq'!'YL +X

-X

. o(+x~y}

-Y

~B-6

The units are hundreths of millimetres. The available area of movement is a circle of
70mm radius. If the position you defined is outside this circle, the terminal will come up
with :

PGSITION QUT OF RANGE!

Have another go!
the process is aborted and you have to start again.

5.2.2. CENTR (or F1) This will move to the hardware defined centre position and
re-initialize the software position counters , useful if you think the XYslide has forgotten
where it is !

5.2.3. LPOSN Will list the current X—Y position on the terminal in units of hundreths of
mm.

5.2.4. SPEED Allows changing the speeds of moving for the MOV command and the
pushbuttons. Default values are 2000Hz and 500Hz respectively, which are 10mm/sec and
2,5mm/sec. linear speed.

The pushbuttons at the telescope are 'live'at all times except if velocity mode is active.
The position is checked continually , and if you attempt to move out of the valid area , the
appropriate pushbutton dies and the buzzer sounds. To extricate yourself from this
predicament , press the appropriate button to reverse direction.

5.3. XYSlide Tracking Commands.
5.3.1. VMODE Initiates the velocity mode. The terminal will prompt you to press
RETURN to apply previously entered speeds, or press any other key to enter new speeds,
in which case it prompts for speeds in X and Y — direction is indicated by + and —signs ,
default is +. Maximum speed allowed is 0.46mm/second siderial. Units are hundreths of
mm. per second siderial. The terminal will prompt for any key to be pressed when you
want the tracking to start. There is a crude position check done at regular intervals , and
if the X-Y mechanism attempts to move outside the available area , it is automatically
stopped. A message appears on the terminal as follows :

XYSLIDE IN INVALID POSITION !

use VSTOP command to reset it.
At this stage use of VSTOP will re—centre the X-Y mechanism to re-initilize the
positioning system. (See explaination of VSTOP command in para. 5.3.4 below.) It is
essential to use VSTOP at this point.

~B-7

5.3.2. VC Allows you to change the velocity mode speeds currently used. The command
prompts for new speeds and implements them after the second speed has been entered.

5.3.3. VHOLD Suspends the tracking function , but does not exit the velocity mode , and
enables the pushbuttons for ‘tweaking' the position of the autoguider probe. Prompts for
any key to be pressed to continue tracking.

IMPORTANT : The position checking does not operate in this state , so it is possible to
move into the limits of travel. BE CAREFUL!

5.3.4. VSTOP Stops velocity mode operation and automatically recentres the X-Y
mechanism. (This is a requirement of the hardware , because as soon as VMODE is
entered , the X-Y position is no longer updated in software.)

5.3.5. VSPEED Allows changing the calibration constant applied in the conversion of the
user entered speeds to a number that is applied to the synthesizer to generate the required
speed. _

Due to errors introduced by rounding and resolution this constant might need
to be 'tweaked'. Below is an example of how the constant was calculated , but first an
explaination of how the velocity made speed is obtained. A block diagram of the frequency
synthesizer is shown in Fig. 3.

PRESCALAR SYNTHESIZER
CRYSTAL DIVIDE DIVIGE —--OO/P
5 oM BY TEN gag bbbbbb BY 5000
z fout="fin %3500 fout™=fin*Tgaa000
Fig. 3.

The three digit nurnber 'aaa’ is fixed in the hardware by switches. The six digit
number 'bbbbbb’ is set by user input at the keyboard to control the speed.
Constants : Scale : 200 steps = 1mm of movement.
6 arcsec = lmm (74")
13.8 arcsec = 1mm (40")

Using the slowest specified speed of 1 arcsec per hour of time :
For 74" : 1 arcsec/Hr = 0.166mm/Hr.

= 46.296 x 1070 mm/sec

= 46.296 x 1079x 200 steps/sec

= (.009258 steps/sec
Synthesizer input frequency = 462962.5 Hz
Required synthesizer output frquency = 0.009258 x 5000

= 46.292 Hz
Thus the synthesizer control number to obtain this frequency :
N = 46.292/462962.5
= (.000100

This is the number applied to the synthesizer control input. To obtain this number from
the keyboard input (which is in units of hundreths of mm/sec) , the VSPEED constant is
applied :
VSPEED constant = 0.0001/0.004629

= 0.021601

5.4. Acquisition box commands
For these commands to function , the COMPUTER/MANUAL switch on the
acquisition box front control panel must be set to COMPUTER.

54.1. GMCEN (or F3) Puts the offset guider mirror to the centre (out of beam)
position.

5.4.2. GMVIEW (or F4) Puts the offset guider mirror into the view (in the beam)
position.

5.4.3. RVMIN (or F5) Puts the Rear viewing mirror into the beam.

5.4.4. RVMOUT (or F6) Puts the rear viewing mirror clear of the beam.

5.4.5. GROFF switches the graticule illumination of the rear viewing optics ON.
5.4.6. GROFF switches the graticule illumination OFF.

NOTE : GRON and GROFF do not do anything at present if the LLTV camera is
mounted , as there is no graticule to illuminate in the optics of the camera.

6. Command Set.

CENTR
FUNCSET
GMCEN
GMVIEW
HELP
LPOSN
MOV
RVMIN
RVMOUT
SPEED
VC
VHOLD
VMODE
VSPEED
VSTOP

-B-9

Move to the initialize centre position.

Program the Terminal function Keys.

Move the Offset Guider Mirror out of the Beam.

Move the Offset Guider Mirror to the View position

List the Help Menu on the screen.

List the current X-Y coordinates of the probe on the screen.
Move the probe to the specified coordinates.

Move the Rear—viewing mirror into the View postion.

Move the Rear—viewing mirror out of the Beam.

Change the probe movement speeds.

Change Velocity mode speeds.

Temporarily suspend velocity mode to change probe position.
Initiate Velocity Mode.

Change The Constant used in velocity mode speed calculations.
Exit velocity mode.

Appendix C

XYSlide Software Mannal

v:D. Carter Oct. '87

1. Introduction

2. Include files

3. Assembly Language Code

4. Procedure for program creation

5. Source File Listings
5.1. Main program XYSLIDE.SA
5.2. Include File XYVAR.SA
5.3. Include File XYMOV.SA
5.4. Include File XYCEN.SA
5.5. Include File UTILS.SA
5.6. Include File VELOCE.SA
5.7. Include File HANDSET.SA
5.8. Include File VDUDRIVE.SA
5.9. Include File AQBOX.SA
5.10. Assenibly Source POTPOSN.SA
5.11. Assembly Source INTRPT.SA
5.12. Assembly Source FIRQ1.SA
5.13. Assembly Source FIR(Q)2.SA
5.14. Assembly Source FIRQ3.SA
5.15. Assembly Source VECTOR.SA

6. Flowcharts

C12
C19
C24
C28
C35
C42
C45
C49
C50
Csl
C54
C57
C60
C61

1. Introduction.

The XYslide program is written in Omegasoft Pascal , compiled to run on a
Motorola 6809 processor. The important feature of this implementation of Pascal is that
the compiler produces fully ROMable code. It also provides easy interfacing to assembly
language procedures. The program was developed as a stand—alone system , but has since
been converted to form a module of the combined XYslide/ Autoguider program.

2. Include Files.

The Omegasoft Pascal compiler provides for include files, which facilitates
separating the source code into small files to make editing very much easier. The XYslide
Module code has been split into many include files , each combining a logical grouping of
procedures and functions.

3. Assembly Language Code.
A few procedures were written in assembler for reasons of speed or efficiency ,

and a fast interrupt routine for stepping the motors was also written in assembler because
of execution time constraints.

The Xyslide uses the 6809 Fast interrupt line { FIRQ) to run the code that
moves the stepping motors under 'normal' operation —i.e. Not Velocity mode. This code is
assembled using the Omegasoft Relocatable Assembler , and linked to the compiled
PASCAL code by the Omegasoft Linkage creator. '

There is also a short’ assembly code program called VECTOR.SA which creates
the restart vectors at the top of the memory map ($FFF8 — SFFFF). This code is
assembled using the Motorola Asembler program RASMO09 instead of the Omegasoft
assembler as the latter will not produce absolute code.

4. Procedure for Prosram Creation.

a) Enter the source code using a text editor. (The Motorola text editor E <filnam> can
be used , or the text can be entered using the Turbo PASCAL editor on a PC and then
posted across to the Exorcisor on the RS$232 link using the utility programs SND.PAS and
REC.PAS).

—C-2

b) Compile the source code with the Omegasoft PASCAL compiler , the command is —
PC <filnam> , then assemble the code with the command — RA <filnam>

c) Enter the text for the Asssembler code modules and assemble them with the command —
RA <filnam>.

d) Run the linkage creator program to link all XYslide assembled modules and create an
object code file. Command — LC <filnam>.

The code can now be run in the EXORcisor for test purposes. To do this the
SABUS crate with all the XYslide interfacing must be connected to the EXORcisor via the
EXORcisor—t0-SABUS interface. The restart and interrupt vectors at top of memory
must also be set up — Use the EXORcisor Monitor EXBUG to do this.

e) If the unmodified CPU board is being used, use the Motorola utility PP509 to program
a set of 2732 EPROMSs. Aproximately 20 memory chips will be necessary. Transfer the
. code in 2K chunks into successive memories, with an offset of $800. i.e. program only the
top 2K of each EPROM chip. When finished, insert the memory chips into the 32K
memory board. program the restart vectors into a 2732 memory chip and insert it into the
socket on the CPU board.

f) Alternatively, if the new (modified) CPU board is being used in the target system, do
the following :

Post the debugged code to the PC compatible computer using the utility
programs OBJSND and OBJREC. This step is necessary because the Motorola Prom
programmer cannot handle 64K x 8 EPROM's. Now burn the code into a 27512 memory
chip using the command EPROM on the PC—compatible. Also transfer the restart vectors
into the top 16 locations. Insert the program code EPROM into socket on the SABUS
6809 CPU board and ensure that a 32K memory board with at least 6K of RAM is plugged
into the bus, and test the system.

5. Source files for the XYslide.

version numbers are correct as at 24/11/87.

routine

The following is a list of all the files needed to create an XYslide Program. The

XYSLIDE.SA
XYVAR.SA
XYMOV.SA
XYCEN.SA
UTIL1.SA
VELOCE.SA
HANDSET.SA
VDUDRIVE.SA
AQBOX.5A
POTPOSN.SA

INTRPT.SA
FIRQL.SA
FIRQ2.SA
FIRQ3.SA
VECTOR.SA

v6.06
v1.09
v2.04
v1.05
v1.05
v1.02
v1.03
v1.01
v2.05
v1.00

v1.00
v1.06
v1.12
v1.00
v1.03

Main Program

Constants, types & Variable definitions
Move routines

Centre routines

various utility routines

Velocity mode routines

Pushbutton moving routines

Terminal driver

Acquisition Box control routines

Assembler code A-D Converter read

Assembler code to set interrupt vector
Assembler code Fast interrupt routine
Assembler code Fast interrupt routine
Assembler code Fast interrupt routine
Assembler code restart vectors.

-C-4

{
This is ver 6.06, the standalone ROMable version
with restructured memory map.

Start address $8000

Data stack $10 - $4FF

Systemstack $500 -~ $5FF

FIRQ vector is $0. This bhas a jump instr.to start of FIRQ routine

Sededdkkd ok kdkkoiohk

ver 5 25/01/86 : restructured I/0 addresses

ver 5.01 4/02/86 Esprit function key programming

ver 5.02 27/02/8% Changes to velocity mode structure

ver 5.03 24/03/86 VHOLD command added, changes to vmode for
error checking., UTIL]l include file created

ver 5.04 12/08/86 : Changes to HANDSET to remove “lst time

thru “ bug. Consolidating Sendline statements

Changes to fast interrupt routine

to overcome step motor phase lag problem

Changes to VELOCE to tidy up VHOLD and add

trap to TRACK for implementing old speeds

also change to BUZZER for hardware mod

"ore A

ver 5.05 15/08/86

ver 5.06 21/08/86

% ok ok ok % oF b ok 3k o % oF b % % 3k % % o O %
* % % o ¥ % Ok % % o o ok & o F ok * * % * %

ver 5.07 18/12/86 : tidy up of sendline statements and code
ver 6.00 20/12/86 : Vmodeflag to VmodeActive
ver 6.01 21/12/86 : Handsetflag to PBactive, delete Syserror
ver 6.02 21/12/86 : Delay calls changed
ver 6.03 22/12/86 : Systemcheck more intelligent
ver 6.04 28/01/87 : corrections to 6.03 , RVYMINTOREAM
ver 6.05 28/01/87 : added DISPLAY
ver 6.06 28/01/87 : corrections to DISPLAY
Sedeictododededocdoie gk g dedekReAd e deddedododedodekedeioko dokooedoiciock ook R ek ke deide i dedede dodede il dode ok kokok
}
PROGRAM XYSLIDE ;
{$IXYVAR.SA:1} {GLOBAL VARIABLES INCLUDE FILE}
{$IVDUDRIVER.SA:1}
{$IXYMOV.SA:1} {ROUTINES FOR MOVING IN X & Y}
{$IXYCEN.SA:1} {ROUTINES FOR INITIALIZING POSITION}
{$IUTIL1.SA:1} {VARIOUS UTILITIES}
{$IAQBOX.SA:1} {ROUTINES FOR CONTROLLING AQU. BOX}
{$THANDSET.SA:1} {ROUTINES FOR MOVING VIA PUSHBUTTONS}

{$IVELOCE:1} {ROUTINES FOR VELOCITY MODE}

-C-5

{***********************PRO CEDURE DI SPLAY*#H**#H**##*************‘**}

Procedure Display ;
Begin
Sendline(CONCAT(C,L,L, Press any key to stop this display mode ~,
“and wait until the prompt “))
Sendline{CONCAT(C,L, appears before entering any other ~
“commands.”,C,L)) ;

4

Charflag := false
WHILE NOT Charflag DO
Begin

Centre

GMView

Delay(30000) ;

Delay(30000) ;

Mov(5143,-3789) ;

Printpos ;

Getchar(CH);

IF Charflag THEN Exit ;

Sendline(CONCAT(C,L,L, Press any key to stop this display mode -,

“and wait until the prompt 7)) ;
Sendline (CONCAT(C,L, appears before entering any other -,
“commands.”,C,L)) ;

RVMintoBeam ;
GMCentre ;
Delay(30000) ;
Mov(-6999,0) ;
Printpos ;
Getchar(CH);
IF Charflag THEN Exit ;
Delay(30000);
Mov(-4567 ,-4567)
Printpos ;
RVMoutBeam ;
Delay(30000);
Mov(0,6789);
Printpos ;
Delay(30000) ;
Getchar(CH) ;
End ;
Charflag := false
End ;

"1

we

[FexddickkikddodkikdhididckdkPROCEDURE INITIALIZE**kdkkhhkkdkikiiikhiik)

PROCEDURE Init ;
Begin
MskFir ;

xsltch := #$0
yslteh := #350

-

Switch := false ;
Initial := false ;
YmodeActive := false ;

MBerror = false ;
PotError = false ;
PBactlive := false ;
Timer =0 ;
Goingleft := false ;
Golngright := false ;
Goinglp = false ;
GolngDown := false ;
Setimer := false ;
Con74 := 0.0216637 ;
Slewspeed : 1F4

Hsetspeed :

$
$7D0 ;

{(* Default 2000 Hz *)
{(* Default 500 Hz *)

(* This section initializes the terminal I/0 port *)

Vdusts
Vdusts
Vdusts
Vdusts
CH

1= #39

b
:= #64
= #78 3
:= #55
:= Vdudata ;

SetUpFuncKeys ;

(* This section set”s up the I/0 Ports *)

Counterbrdcw = §$82
Countercontrol
xcontrol := chr($0) ;
yeontrol := chr($0) ;
xmotor := xcontrol ;
ymotor := ycontrol ;
xsynthew := fregqsetup
ysynthew := fregsetup
Iocw := statsetup
Aqbox := chr($0) ;
Firvec
Cmndflag := true ;
Charflag := false ;
MesRx := false ;
Msgsent := false ;
Crmd =07 ;
MsgInBuf := "0 ;
Ptr = #0 ;
MsgInBuf[0] := Ptr ;
Data =707 3

End ;

{H*‘k********************PRO CEDURE PRIN‘I‘PROMP‘I‘#***********‘********}

Procedure Printprompt ;

Begin

:= c¢hr($55) ;

e M wae

-C-6

{All counters inhibit & reset}

Sendline(CONCAT{(C,L,L, #####° ,C,L,L,”Enter Command : 7))

End ;

>

{***********************PRO CEDURE CHNDINI‘#*************************}

Procedure Cmndint ;
Begin
IF Cmnd = “MOV” THEN Move
ELSE
IF Cmnd = “CENTR® THEN Centre
ELSE
IF Cmnd = “LPOSN” THEN Printpos
ELSE
IF Cmnd = “GMVIEW”™ THEN GMView
ELSE
IF Cmnd = “GMCEN” THEN GMCentre
ELSE
IF Cmnd = “RVMIN® THEN RVMintoBeam
ELSE
IF Cond = “RVMOUT” THEN RVMoutBeam
ELSE
IF Comnd = “GRON™ THEN Graton
ELSE
IF Cmmd = “GROFF” THEN Gratoff
ELSE
IF Cond = “BUZZ” THEN Buzzer
ELSE
IF Cmnd = "MOTON™ THEN Motorsom
ELSE
IF Cmnd = “MOTOFF” THEN Motorsoff
ELSE
IF Cmnd = “HELP” THEN Help
ELSE
IF Cmnd = “SPEED” THEN Changespeed
ELSE
IF Cmnd = “TEST” THEN Test
ELSE
IF Cond = “VMODE™ THEN Track
ELSE
IF Cmnd = “VSPEED” THEN Velocityspeed
ELSE
IF Cmnd = “VC™ THEN VChange
ELSE
IF Cmnd = “VSTOP” THEN Vstop
ELSE
IF Cmnd = “FUNCSET” THEN SetUpFuncKeys
ELSE
I¥ Cund = “VHOLD” THEN Vhold
ELSE
IF Cmnd = “DISPLAY" THEN Display
ELSE
Sendline (CONCAT(Pardon? I don”“t understand”,
Bell,C,L,L));
Condflag := true ;
End ;

~C~8

{*****H*****************MAIN PRQGRAH***********’***************‘****}

REGIN
Init ;
Sendline(CONCAT(C,L)) H
Sendline(CONCAT(’***',C,L,L));

Sendline (CONCAT(” XYSLIDE CONTROL PROGRAM”,C,L,L,
- Ver. 6.06 Jan. 877,C,L,L)) ;
Sendline { CONCAT (ki ik ik ook ko kiekokook ok ™ € 1)) 3
Buzzer ;
IF Syserror THEN
Begin

Sendline(CONCAT(C,L,Bell,L,“SYSTEM HARDWARE ERROR DETECTED .”,C,L));
IF Poterror THEN
Sendline (CONCAT(”Check mains supply te Converter Box.”,C,L));
IF MBerror THEN
Begin
Sendline (CONCAT(” Check Musclebox CD10 I/F Modules : 7,C,L,
“ FAULT Lights must be OFF , and”,C,L)};
Sendline (CONCAT(” PHD Lights must be ON .”,C,L,”If not ,”,
< Switch Musclebox OFF then ON again.”,C,L)});
End ;
Sendline (CONCAT(L,”Then press RESET on X¥slides Microcomputer.”,C,L));
WHILE Syserror DO ;

End ;

Ce
Se
Fo
CH
Se

ntre ;
ndline (CONCAT(L, Type "HELP" for Command Menu.”,C,L)) ;
rever := true ;
:=RBell ;
ndchar(CH) 3

Printprompt ;
WBILE forever = true DO

B

egin
Checkvdu
IF MesBx
Begin
MesRx :=
Cmndint ;
Printpreompt ;
End ;
IF VmodeActive THEN
CheckPotPosn
ELSE
PushButtons ;

It e

true THEN

false ;

End ;

End.

-C-9

{Fdsdeicioiedink ik Aok INCLUDE FILE XYVAR . SAkdriakdiokddcidod drdicodod sk sk dedikorkdk

This compiles as an include file in PROGRAM XYSLIDE.
It contains all constant and variable declarations.

FRRAF ik b Aok ok dok dok dekdedodeo e inic ke ok dododok Jodedededoie dode dodo ook dodededede o de deiek R otk dedok ek ke ke

* Version 1last update *
* 1.00 ? *
% 1.01 18/12/86 remove Syserror *
* 1.02 20/12/86 Vmodeflag to VmodeActive *
* 1.03 21/12/86 Delete Selstat *
* 1.04 21/12/86 Delete GMpos , RVMpos, Handsetflag to PBactive *
* 1.05 21/12/86 Delete Yref, Xref, YPhQ, XPhO *
* 1.06 21/12/86 Xmeror, Ymeror : boolean *
* 1.07 21/12/86 Deleted Delaymax *
* 1.08 22/12/86 Added MBerror, PotError *
* 1.09 27/01/87 corrections to 1.08 *
%* *
ek dedede At koA At Ao do ke gk dde i e dedede skt Atk ke ek sk e ko Ak Aok
}
CONST .

Xeentre = $01F0 ;

Ycentre = $0201 ;

cw = #38 ;

energ = #$1 ;

stp = #$20 ;

Stepenable = #3$80 ;

Synthenable = #3$40 ;

statsetup = #3$92 ;

freqsetup = #$80 ;

Xrefmask = #301 ;

XphOmask = #$40 ;

Yrefmask = #$02 ;

YphOmask = #3380 ;

Countmax = 200 ;

Calibrate = $00IF ;

Bell = #$7 ;

Buzz = #$8 ;

Selstatmask = #$2 ;

GMposcontrol = #$2 ;

RVMposcontrol = #3$1 ;

RVMoutMask = #$4 ;

GMcenMask = #3$8 ;

Gratcontrol = #8%4 ;

Firqgate = #3508 ;

FirqReset = #$04 ;

FirqStatusMask = #$04 ;

Irqgate = #8520 ;

Irqreset = #$10 ;

Irgstatusmask = #$10 ;

-C-10

Limit = 49000000 ;
ConRxRegMask = #§1 ;
ConTxRegMask = #$2 ;

TxRdy = #$5 ;
RxRdy = #$2
C = #13 ;
L = #10 3

VAR
xmotor : byte at $E0QO
ymotor : byte at $E008

xsynthew : byte at $E007
ysynthew : byte at $EQQF

XsynthLSE : Byte at $EQ04
XsynthMidB : byte at $E0QO5
XsynthMSB : byte at $E006
YsynthLSB : byte at $EQQC

YsynthMidB : byte at $EQOD
YsynthMSB : byte at $EQQE

W WA WM W WE MR U M e W

VduSts : byte at $E0I11 ;
VduData : byte at $E010 ;
ADC1 : byte at $E040 ;
ADC2Z : byte at $E041
Statl : byte at $E030 ;
Stat2 : byte at $E081 ;
Agbox : byte at $E082 ;
Tocw : byte at $EQ083 ;

Counterstatus : byte at $EQ31
Countercontrol : byte at $E032
CounterBrdcw : byte at $E033

e NP gs el W

FIRQcentr : byte at $E035
Irqentr : byte at $E036
Countercw : byte at $E037
Xchkstp : byte entry ;
Ychkstp : byte entry ;
xcontrol : byte entry ;
ycontrel : byte entry ;
xsltch : byte entry ;
ysltch : byte entry ;
Initial : boolean entry ;
Switch : boolean entry ;
Ymeror : Boolean entry ;
Xmeror : Boolean entry ;
Xdest : lanteger entry ;
Ydest : integer entry ;
Xposn : Integer entry ;
Yposn : Integer entry ;
ysteps : hex entry ;

Xsteps hex entry ;

.

Xdummy : byte ;
Ydummy : byte ;
Temp : byte ;
Goingleft : boolean ;
GoingRight: boolean ;
Goinglp : boolean ;
GoingDown : boolean ;
Setimer : boolean ;
PotError : boolean ;
MBerror : hoolean ;
VmodeActive : boolean
Forever : boolean
PBactive : boolean
Msgsent : booclean
Xdestdec : real ;
Ydestdec : real ;
Con74 : real ;
Xtemp : Integer ;
XLtempent : Integer ;
Ytemp : integer ;
Ytempent : integer ;
Speedint : integer ;
Timer : Integer ;
Count, I : integer ;
N, Dummy : integer ;
Xstpent : hex ;
Ystpent : hex ;
Speed : hex ;
Slewspeed : hex ;
Hsetspeed : hex ;
Xpos, Ypos : hex ;
Test s char ;
Charflag : boolean ;
Cmnd : string[80]
Data : string[80]
Line : string[80]
MsgInBuf : string[8Q]
CcH : char ;
Ptr : char ;
MesRx :+ boolean ;
Condflag : boolean ;

wt U s W

Y I T Y]

-C-11

~C-12

[Fdeddedddrdnk ik dok ok INCLUDE FILE XYMOV . SA% i irdbrkdok ki dddoddoid ik ik kR ArrAx

This code compiles as an include file in PROGRAM XYSLIDE.

It contains routines for moving to specified destination positions
in X and Y.

g
|
l
!

* Version Last Update *
* 1.00 ? *
* 1.01 19/12/86 Restructure of Sendline calls *
* 1.02 20/12/86 Put diagnostic traps in abort mov code *
* 1.03 20/12/86 Vmodeflag to VmodeActive *
* 1.04 21/12/86 MskIrg to MskFir , ClrIrq to ClrFir *
* 2.00 21/12/86 Xmeror, Ymeror ; Boolean , Restructure *
*) Calcsteps IF THEN ELSE *
* 2.01 21/12/86 Changed Delay procedure call *
* 2.02 27/01/87 corrections to 2.01 *
* 2.03 28/01/87 added MOV(X,Y) *
* 2.04 29/01/87 changed DELAY to be longer *
* *
Sedediridededededede el e drdddede Aok otk dookd ook St oo ook ook ook etk dedede ke dode dedode
}

| [Fekeddcick ek dokek ok dede ke dkede ik PROCEDURE . DELA Yo Aok deodo de ok dekovk ek |
PROCEDURE delay{delaymax : integer) ;

VAR
N : hex ;
BEGIN
FOR I := 1 TO delaymax DO
N :=N+ $1;
END ;

[k irkdoooiokoiokkkodkok ok ko k PROCEDURE - MSK TRQA ek ke ook ke }
{Assembly routine to mask out IRQ}

PROCEDURE MskFir ; extermal ;

{Fckidkkkdnkk kAR Xk kikdx X PROCEDURE CLRIRQ¥ ko dokde ke dede dedek dedededek |
{Assembly routine to enmable IRQ}

PROCEDURE ClrFir ; extermal ;

{**********************PRO CEDURE MOTORSO FF********‘******‘***********}

PROCEDURE MotorsOff ;

Begin
Delay(1000) ;
Xcontrol := xcontrol AND NOT emnerg ;

yecontrol := ycontrol AND NOT energ ;
xmotor := xcontrol ;
ymotor := ycontrol ;

End ;

-C-13

{Fedededkdcioddok dk ¥k k ki *PROCEDURE MOTORSONFkfdddiirkdhkdddioddkidhdiokink}

PROCEDURE Motorson ;

Begin
xcontrol := xcontrol QR energ
ycontrol := ycontrol OR energ
xmotor := xcontrol ;

we

-e

ymotor := ycontrol ;
Delay(1000) ;
End;

{**********************PROCEDURE SETSPEED*********************#***}

PROCEDURE Setspeed (Speed : hex) ;
Begin
Countercontrol := Countercontrol AND NOT Firgqgate ;
Countercw := chr($74) ;
Firqeantr := chr(Speed AND $FF) ;
Speed := Speed >> $8 ;
Firqcatr := chr(Speed AND $FF) ;
Countercontrol := Countercontrol OR Firggate ;
End ;

-C-14

PROCEDURE Slew ;

PROCEDURE Initialslew
Begin
WHILE Xsteps <> $0 DO
ClrFir ;
WHILE Ysteps <> $0 DO
ClrFir ;
MskFir ;
Xmeror := false
Ymeror := false
End ;

4

e e

Begin
Motorson ;
Speed := Slewspeed ;
Setspeed (Speed) ;
Countercoutrol := Countercontrol AND NOT Firqreset ;
Xmeror := false ;
Ymeror := false ;
IF Ipitial THEN
Initialslew {No checks on motors in initialize}
ELSE
Begin
Temp := Ycontrol AND StepEnable ;
WHILE Temp <> chr(0) DO
Begin '
Temp := Ycontrol AND StepEnable ;
ClrFir ;
IF Xmeror THEN EXIT ;
IF Ymeror THEN EXIT ;
End ;
Temp := Xcontrol AND stepenable ;
WHILE Temp <> chr(0) DO
Begin
Temp := Xcoutrol AND stepenable
ClrFir ;
IF Xmeror THEN EXIT ;
IF Ymeror THEN EXIT ;
End ;
MskFir ;
End ;
IF Xmeror THEN
Sendline (CONCAT(Bell,”XMOTOR OUT OF SYNCH. MOVE ABORTED!”,C,L,
“Use CENTR command to re-initialize.”,C,L))}

IF Ymeror THEN
Sendline (CONCAT(Bell, YMOTOR OQUT OF SYNCH. MOVE ABORTED!”,C,L,
“Use CENTR command to re-initialize.”,C,L));
Motorsoff ;
End ;

-C-15

{F3drdioicdeiode ook ik PROCEDURE - CAL CSTEP S rricnkinikoikodriok ko kk |
{Calculates no. of steps and direction to move to destination}

PROCEDURE Calcsteps ;

b

VAR
Xtemp : integer ;
Xtempcnt t integer ;
Xstpent : hex ;
Ytemp : Integer ;
Ytempent : integer ;
Ystpent : hex ;

BEGIN

Xtemp := Xposn MOD 40
Ytemp := Yposn MOD 40
IF Xposn = Xdest THEN
Begin
Xcontrol := Xcontrol AND NOT stepenable ;
Xtempent := 0
End
ELSE
IF Xdest < Xposn THEN
Begin :
Xcontrol := Xcontrel OR cw ;
Xcontrol := Xcontrol OR stepenable ;
IF Xtemp < O THEN
Xtempcnt := 40 + Xtemp ;
IF Xtemp > O THEN
Xtempent := Xtemp ;
IF Xtemp = O THEN
Xtempent := 40 ;

wes e

End
ELSE
Begin
Xcontrol := Xcontrol AND NOT cw ;
Xcontrol := Xcontrel QR stepenable ;
IF Xtemp < 0 THEN
Xtempent := ABS(Xtemp)
IF Xtemp > 0 THEN
Xtempcnt := 40 - Xtemp ;
IF Xtemp = O THEN
Xtempent := 40 ;
End ;
IF Yposn = Ydest THEN
Begin
Ycontrol := Ycontrol AND NOT stepenable ;
Ytempcnt := 0
End
ELSE
IF Ydest < Yposn THEN
Begin
Ycontrol := Ycontrol AND NOT cw ;
Ycontrol := Ycontrol OR stepenable ;
IF Ytemp < O THEN
Ytempent := 40 + Ytemp ;
IF Ytemp > O THEN
Ytempent := Ytemp ;
IF Ytemp = O THEN

1)

’

-C~16

Ytempcut := 40 ;
End
ELSE
Begin
Yecontrol := Ycontrol OR cw ;
Ycontrol := Ycontrol OR stepenable ;
IF Ytemp < 0 THEN
Ytempcat := ABS(Ytemp) ;
IF Ytemp > 0 THEN
Ytempent := 40 - Ytemp ;
IF Ytemp = 0 THEN
Ytempent = 40 ;
End ;
Ystpent := HEX(Ytempent) ;
Ychkstp := CHR(Ystpent) ;

Xstpent := HEX(Xtempent)
Xchkstp := CHR(Xstpcnt) ;
END 3

[Fedck &Sk dkdok ko dodkokokdok kA PROCEDURE CHANGESP EED* ke dediok ook sk sk drkaok }
PROCEDURE Changespeed ;

VAR
Decspeed : real ;

Begin
Sendline(CONCAT(C,L,L, Enter new slew speed in Herz(max. 2000)7));
Cmndflag := false ;
Decspeed := 3000 ;
WHILE Decspeed > 2001 DO
Begin
Sendline (CONCAT(C,L,L,”Enter Slew Speed : 7)) ;
WHILE MesRx = false DO
CheckVdu ;
MesRx := false ;
Decspeed := INTEGER(Data) ;
End ;
Decspeed := 1000000 / Decspeed ;
Slewspeed := HEX(Decspeed) ;
Decspeed := 3000 ;
Sendline (CONCAT(L, Enter new pushbutton speed in herz. (max. 1000)7});
WHILE Decspeed > 1001 DO
Begin
Sendline{CONCAT(C,L,L, Enter Pushbutton Speed : 7)) ;
WHILE MesRx = false DO
Checkvdu ;
MesRx := false ;
Decspeed := INTEGER(Data) ;
End ;
Decspeed := 1000000 / Decspeed ;

Hsetspeed := HEX(Decspeed) ;
Cmndflag := true ;

CH :=1L ;

Sendchar{CH) ;

End ;

{*********************PRO CEDURE HOVE*************#***‘**************}

PROCEDURE MOVE ;

CONST

Limit = 49000000 ;

VAR

Stepsize : real ;

Xmm,

Yom : real ;

Checkpos : real ;
Xtemp : real ;
Ytemp : real ;

Xchk, Ychk : hex ;

Xdestdec : real ;

Ydestdec : real ;
BEGIN

IF VmodeActive THEN
Sendline(CONCAT(C,L, Cannot move - Velocity mode active.”,Bell,C,L))

ELSE
Begin

Sendline (CONCAT(“Enter destination position in hundreths of “,C,L))

Sendline(CONCAT(millimeters from centre”,C,L,

-Cc-17

“{i.e. +3000 and -5347 will move to a positicn 7));
Sendline(CONCAT(" 30mm to the right,”,C,L, and 53.47mm below the”));

Sendline (CONCAT(” centre of the XYslide movement range.”,C,L,L,

“Enter Destinatifon X : 7))

Cendflag := false ;
WHILE MesRx = false DO

CheckVdu ;
MesRx := false ;
Xmm := REAL(Data) ;
Sendline (CONCAT(L, Enter Destination ¥ : 7});
While MesRx = false DO

Checkvdu ;
MesBx := false ;
Ymm := REAL(Data) ;
CH ==L ;
Sendchar(CH) ;
Stepsize =5/ 10 ;
Xtemp := Xmm ;
Ytemp := Ymm ;
Checkpos := SQR(Xtemp) + SQR(Ytemp) ;
IF Checkpos > Limit THEN

Sendline(CONCAT(C,L,Bell, POSITION OUT OF RANGE !~,C,L,
Have another go !7,C,L))

r

ELSE

Begin
Xdestdec := Xmm / Stepsize ;
Ydestdec := Ymm / stepsize ;
Xdest := INTEGER(Xdestdec) ;
Ydest := INTEGER(Ydestdec) ;
Calcsteps ;
Slew ;

End ;

End ;

END ;

- -C-18

{Feedddededrdcdeiiodedk ok ki ook X PROCEDURE. MOVE(X, Y) %k ekt |
Procedure Mov(X,Y : integer) ;

BEGIN
Xdest :=X
Ydest := Y
Calcsteps ;
Slew ;

End ;

{ ddeddedddickdek ddokiolokdcodok ke ok o ik ke dodededododede dedodede dedede iRk de ke dedoke dedede de de de e dode e doke ke ke }

-C~-19

{*****************INCLUDE FILE XYCEN. SA*diiidkikikidkidhdiiidkkiiikiikiddhihhiit

This code compiles as an include file inm PROGRAM XYSLIDE.
It contains routines for driving in X & Y to the hardware
defined centre position.

?
|
|
i
|
§

* version last update *
* 1.00 ? *
* 1.01 19/12/86 Restructure sendline calls *
* 1.02 21/12/86 PhOY to Function YPH), Refy to Funmction Yref ¥
* PhOX to Function XPHO, Refx to Function Xref, *
* Resructure X & Y-Finecentre, add error trap. *
* 1.03 21/12/86 Changed Delay calls *
* 1.04 27/01/87 corrections to 1.03 *
* 1.05 28/01/87 corrections to 1.04 *
* *
Frkddrdok o kA ok ek ok Ak dek ok Ak g ek ke do dedek e drokod d ok dedekd
}

{************************PROCEDURE XCOORD**************************}

{ Assembly language subroutine to get and right justify 10 bit
number from A-D Couvertor}

PROCEDURE Xcoord (VAR Pos : hex) ; extermal ;

{Fdkicdcidcicick i ikt deiekk ke k% PROCEDURE Y COORD* ki ik dede ke ok dedoe o }
{ Assembly language routine as above xcoord}

PROCEDURE Ycoord (VAR Pos : hex) ; external ;

{***********************PROCEDURE CNT******************************}

PROCEDURE Cnt ;
Begin

Count := Count + I ;
End;

{*************************PROCEDURE YSTEP***************************}

PROCEDURE ystep ;

BEGIN
ycontrol := ycontrol OR stp ;
ymotor := ycontrol ;
ycontrol := ycontrol AND NOT stp ;
ymotor := ycontrol ;
delay(4);
Cnt ;

END 3

{FArkidedckdoickodck ek ik ki ik A PROCEDURE X STE PArkinickdrirk ik ek dokekdok ik ook |

PROCEDURE xstep ;

BEGIN
xcontrel := xcontrol OR stp ;
xmotor := Xcontrol ;
xcontrol := xcontrol AND WOT stp ;
Xxmotor := xcontrol ;
delay(4) ;
Cnt ;

END ;

{***********************FUNCTION YPHO******************************}

Function YPhO : boolean ;

Begin
IF Stat2 AND YphOmask = Y¥YphOmask THEN
Yph0 := true
ELSE
Yph0 := false ;
End ;

{***********************FUNCTION XPHD******************************}

Function XPhQ : boolean
Begin
IF Stat2 AND XphQOmask = XphOmask THEN
Xph0 := true
ELSE
XphQ := false ;
End ;

-

{***********************FUNCTION YREF******************************}

Function Yref : boolean ;
Begin
IF Stat2 AND Yrefmask = Yrefmask THEN
Yref := true
ELSE
Yref := false ;
End ;

{***********************FUNCTION XREF******************************}

Function Xref : Boolean ;
Begin
IF Stat2 AND Xrefmask = Xrefmask THEN
Xref := true
ELSE
Xref := false ;
End ;

-C-20

-Cc-21

{ Faccdeddedriciccioiodcioe ik ki ko deo kX PROCEDURE - FIND YPHO R Ak tesdededesdedk ek e dede ek Feeke o |

PROCEDURE FindYphO ;
BEGIN

WHILE NOT YPhQ DO ystep ;
END ;

{*************************PROCEDURE FINDXPHO************************}

PROCEDURE FindXphO ;
BEGIN

WHILE NOT XPh0 DO xstep ;
END ;

[************************PROCEDURE YFINECENTRE*********************}

PROCEDURE Yfinelentre ;
Begin
ycontrol := ycontrol OR cw ;
IF NOT YPhO THEN Find¥YphQ ;
Count := Q ;
IF NOT Yref THEN
Begin
WHILE NOT Yref DO
begin
FOR N := 1 to 8 DO ystep ;.
IF Count = Countmax THEN exit ;
end ;
IF NOT Yref THEN
Begin
ycontrol := ycontrol AND NOT cw ;
FOR N := 1 TO 200 DO ystep ;
Count := (0 ;
WHILE NOT Yref DO
begin
FOR N := 1 TO 8 DO ystep 3
IF Count >= Countmax THEN exit ;
end ;
End 3
End;
END 3

{*************************PROCEDURE XFINECENTRE********************}

PROCEDURE XfineCentre ;3
Begin
xcontrol := xcontrol OR cw ;
IF NOT Xph0 THEN FindXphO ;
Count := 0 ;
IF NOT Xref THEN
Begin
WHILE NOT Xref DO
begin
FOR N := 1 to 8 DO xstep ;
IF Count = Countmax THEN exit ;
end ;
IF NOT Xref THEN
Begin
Xcontrol := xcontrol -AND NOT cw ;

FOR N :=1 TO 200 DO xstep ;
Count := 0 ;

WHILE Xref = false DO

begin

FOR N := 1 TO 8 DO xstep ;
IF Count >= Countmax THEN exit ;
end ;
End ;
End;
END ;

{**k*********i—k**ﬂ****PRo CEDURE CAL CMOVE**************************}

PROCEDURE CalcMove ;

VAR
Distance : hex ;
Ypospot : hex ;
Xpospot : hex ;
BEGIN

Xcoord (Xpospot)
Ycoord (Ypospot) ;
IF Xpospot = Xcentre THEN
Begin
Lsteps := $0 ;
Xcontrol := Xcontrol AND NOT stepenable ;

End
ELSE
IF Xpospot > Xcentre THEN
Begin
Distance := Xpospot - Xcentre ;
Asteps := Distance * Calibrate ;
xcontrol := xcontrol OR cw ;
xcontrol := xcontrol OR stepemable ;
End
ELSE
Begin
Distance := Xcentre - Xpospot ;
Xsteps := Distance * Calibrate ;
xcontrol := xcontrol AND NOT cw 3
xcontrol := xcontrol OR Stepenable ;
End ;
IF Ypospot = Ycentre THEN
Begin
Ysteps := $0 ;
Yeontrol := Ycontrol AND NOT stepenable ;
End
ELSE
IF Ypospot > Ycentre THEN
Begin
Distance := Ypospot — Ycentre ;
Ysteps := Distance * Calibrate ;
ycontrol := ycontrol AND NOT cw 3
ycontrol := ycontrol OR Stepenable ;
End
ELSE
Begin

DIstance := Ycentre - Ypospot ;
Ysteps := Distance * Calibrate ;

-C-22

-C-23

Ycontrol := ycontrol OR cw ;

Ycontrol := ycontrol OR Stepenable
End ;
END 3

{ Fekekedcdededdedeohodok ki dtck ik PROCEDURE CENTRE****************************}

PROCEDURE Centre ;
Begin
Calemove
Initfal :
Slew ;
Initial := false ;
Motorson ;
Xfinecentre
Yfinecentre
IF Stat2 AND #$F = #$F THEN
Begin
Sendlire (CONCAT(C,L,”X-Y SLIDE CENTRED .",Bell,(C,L,L,
“Initialization Complete. “,C,L));

|t e

true ;

-
¥
-
b 4

Xposn := 0 ;
Yposn := 0 ;
Motorsoff ;
End
ELSE
Begin :
Sendline(CONCAT(C,L, ERROR — CANNOT FIND CENTRE.”,C,L,Bell,
“Press RESET on XYSLIDE Microcomputer and 1f7)};
Sendline (CONCAT(” that does not work,”,C,L,
“ ecall a technician.”,Bell,C,L));
End;
End ;

-C-24

{*****************INCLUDE FILE UTILI . SA*dkdikihikidkiihiiiintriocidordob ok ok

This module compiles as an include file in PROGRAM XYSLIDE.
It contains some general utility procedures and functioms

Fekricic ik doeke dnknineieiniodeiniciok ik de de g dede dede e R e R KRR K AR R ARk e do ke dedededede dedediede dodededede vk dede ek

* Version 1last update *
* 1.00 ? *
* 1.01 18/12/86 Restructure of code and sendline statements *
* Systemcheck now a function Syserror ' *
* 1.02 19/12/86 Changes to TEST *
* 1.03 20/12/86 More changes to TEST *
* 1.04 22/12/86 Changes to Syserror *
* 1.05 20/01/87 More changes to Syserror *
* *
Sedriesk dedde ko ek At Ak A A Ao i Aok ko b ek Aok ok ok ok
}
[Feddededcdede ok ok ki ko dddk PROCEDURE FIRV EChddoscddrsrdiok doe ki doddode ik)
{Assembly language routine to set up interupt vector}
PROCEDURE Firvec ; external ;
[Fexddcdddedekdok ek dokcde ik PROCEDURE PRINTPOS I T LON kit dedese dedcdrdedoins }
PROCEDURE Printpos ;
VAR

Xtemp : integer ;

Ytemp : integer ;

X : stringl6] ;

Y : string[6] ;
Begin

Xtemp := Xposn div 2 ;

Ytemp := Yposn div 2 ;

X := STRING(Xtemp) ;

Y := STRING(Ytemp) ;

Sendlfne({CONCAT(C,L, Current position iIs : X = 7,X,

- Y= -,Y,C,L)) ;

End ;
[Hdriiseirioanoo ook dok ek &k k PROCEDURE HEL Pk ik ok e ok koo ik |
PROCEDURE Help 3
Begin

Sendline{CONCAT(C,L, Commands available are :7,C,L)) ;

Sendline(CONCAT(” MOV - Move in X & Y to specified destination.”,

C,L)) ;

Sendline(CONCAT(®~ LPOSN =~ List current position co-ordinates.”,C,L));

Sendline{CONCAT(~ CENTR - Move to centre of field of view.”,C,L));

Sendline{CONCAT(~ VMODE - Velocity mode.”,C,L,

-C=25

- vC
Sendline(CONCAT(” VHOLD

Change velocity mode speed.”,C,L});
Suspend vmode tracking and enable 7,
“pushbutton operation.”,C,L)) ;
Sendline (CONCAT(”~ VSTOP Stop velocity mode of operation.”,C,L)) ;
Sendline(CONCAT(” VSPEED Examine / Change constant applied for”,C,L));
Sendline (CONCAT(” setting up velocity mode speeds.”,C,L));
Sendline(CONCAT(” SPEED Change motor speeds.”,C,L));
Sendline (CONCAT(~ GMCEN Offset guide mirror to centre positiom.”,C,L
Sendline(CONCAT(” GMVIEW Offset guide mirror to view positiom.”,C,L))
Sendline(CONCAT(”~ RVMIN Rear viewing mirror to view position.”,C,L})
Sendline(CONCAT{~ RVMOUT Rear viewing mirror out of beam.”,C,L));
Sendline(CONCAT(” GRON Rear view optics graticule {l1lum. ou.”,C,L)};
Sendline(CONCAT(”~ GROFF Rear viewing graticule illum, Off.”,C,L));
Send1ine(CONCAT(~ FUNCSET - Set up Esprit terminal functiom keys.”,C,L));
Send1ine(CONCAT(~ HELP ~ List this command menu.”,C,L)} ;
Sendline(CONCAT(L,” Press any key for more......”)) 3
Charflag := false ;
WHILE Charflag = false DO

Getchar(CH) ;
Charflag := false ;
Sendline(CONCAT(C,L,L,L,L,” GUIDE - Start Autoguiding.”,C,L)) ;
Sendline(CONCAT(” AQUIRE - Search for and lock on to a star.”)});
Sendline(CONCAT(C,L,L,” Function Keys :7,C,L,

. - Fickdedrickcdeiocikok k™ C L)) ;

Sendline (CONCAT(” Certain XYSLIDE/AUTOGUIDER commands”,C,L));
Sendline(CONCAT(” can be inittated from the functiom keys of”,C,L));
Sendline{CONCAT(” the Esprit III terminal. These are :”,C,L)) ;

1)

i

Sendline{CONCAT(” CENTR - Fl17,C,L,

- MOV - F2°,C,L,

- GMCEN - F37,C,L));
Sendline(CONCAT(” GMVIEW - F4~,C,L,

- RVMIN - F57,C,L,

- RVMOUT - F67,C,L));
Sendline(CONCAT(” HELP - F117,C,L));
Sendline(CONCAT(L,” NOTE - Do NOT use the Function keys while 7,

“YMODE is active”,C,L,” as they 7)) ;
Sendline(CONCAT("will not work correctly.”,C,L,L,L,
- Press any key to continue......)

Charflag := false ;
WHILE Charflag = false DO
Getchar(ch) ;
Charflag := false
End ;

(************************PROCEDURE TEST****************************)

PROCEDURE Test 3

VAR
Choice : Integer ;
Temp : byte ;3
Templ : byte ;
N : integer ;

PRocedure LISTSTATUS(Var Testio : byte; N : integer);

Begin
Temp := Testio ;
Sendline (CONCAT(C,L, BIT7 6 S 4 3 2

Sendline(CONCAT(C,L)) ;
IF N = 1 THEN
Sendline (CONCAT(“YDWN
ELSE
Sendline (CONCAT(“YPHO XPHO YFLT XFLT YSLT XSLT YREF
FOR N := 1 TO 8 DO
Begin
Templ := Temp AND #$80 ;
IF Templ = #$80 THERN

YUP XBGT XLFT GMPN RVMP SLCT

Sendline (CONCAT(” 1)
ELSE
Sendline (CONCAT(~ O 7)) ;

TEmp := Temp << #$1 ;
End 3
Sendline(CONCAT(C,L)) ;

End ;
Procedure ListPotCoord ;
VAR

Posn : hex ;
Position : stringl[6] ;

Begin
Xcoord(Posn}
Position := STRING(Posn) ;

Sendline (CONCAT(C,L, X Pot. value 1is :

“,Position,C,L))
Yeoord(Posn) ;

Position := STRING(Posn) ;
Sendline(CONCAT(C,L,”Y Pot. value is : “,Position,C,L)} ;
End ;
BEGIN
Sendline(CONCAT(The following options are available”,C,L,
- 1. Statl 7,C,L,
- 2 . Stat2z 7,C,L)) ;
Sendline{CONCAT(” 3 . Potentiometers “,C,L,
- 4 , Exit this routine 7,C,L,
“Enter code of choice : 7));
Data := “0007 ;
Cmndflag := false ;
Charflag := false ;
Choice := 0 ;
WHILE Choice <> 4 DO
Begin

WHILE MesRx = false DO
CheckVdu ;

MesRx := false ;

Choice := INTEGER(Data) ;

CASE Choice OF

1 : Liststatus(Statl,l);
2 : Liststatus(Stat2,2);
3 : ListPotCoord

End

-C-26

BITO",C,L))3

AGMR”,C,L))

XREF~,C,L));

-C-27

IF Choice <> 4 THEN
Sendline (CONCAT(C,L, Enter code of choice : 7))} ;
End ;
Cmndflag := true ;
MesRx := false ;
End ;

{******#****************FUNCTION SYSERROR********************—*********}

Function Syserror : boolean ;

H

Var
Xpot : hex ;
Ypot ¢ hex ;
Dummy : byte ;
Begin

Motorson ;
Xcoord(Xpot) ;
Ycoord(Ypot) ;
Dummy := Stat2 AND #$F0 ;
IF Xpot < $20 THEN
Poterror := Ltrue
ELSE
IF Ypot < $20 THEN
Poterror := true ;
IF Dummy <> #$C0 THEN
MBerror := true ;
IF Poterror THEN
Syserror := true
ELSE
IF MBerror THEN
Syserror := true
ELSE
Syserror := false ;
End ;

b

-C-28

{*****************INCLUDE FILE VELQCE.SA%¥ikdkkidihiddkidihdiibddhikiihiiink

This code compiles as an include file in PROGRAM XYSLIDE,
It contains routines for moving in X & Y in velocity mode,
i.e. speed controlled by the frequency synthesizers.

* version last update *
* 1.00 ? %
* 1.01 20/12/86 Vmodeflag to VmodeActive and restructure of *
* sendline calls *
* 1.02 28/01/87 corrections to 1.0} *
* *

!
;

(********************PROCEDURE VELOCITYSPEED***********************)

Procedure Velocityspeed ;

VAR
Dummy : string[20] ;

Begin
Dummy := STRING{Con74) ;
Sendline (CONCAT(Current comstant is : “,Dummy,C,L,
“Enter new Velocity mode constant”,C,L));
Sendline(CONCAT(” (maximum allowed is 0.09) ~,C,L,
“Enter coustant : 7));
Cmndflag := false ;
WHILE MesRx = false DO
CheckVdu ;
MesRx := false ;
Con74 := REAL(Data) ;
Sendchar(L) ;
End ;

{********************PROCEDURE STOPSYNTH****************************}

Procedure StopSynth ;

Begin
Xcontrol := Xcontral AND NOT Synthenable ;
Ycontrol := Ycontrol AND NOT Synthenable ;
xmotor := xcontrol ;
Ymotor := ycontrol ;

End ;

-C-29

{**************************PROCEDURE CHECKPOTPOSN******************}
Procedure CheckPotPasn ;
VAR

Xpospot : hex
YposPot : hex

S uE e ws

Xdistance : hex
Ydistance : hex ;
X¥distdee : longinteger ;
Ydistdec : longinteger ;
Radius : real ;

Dummy : string{15] ;
Xpos : string[10] ;
Ypos : string(10] ;

Begin

Xcoord(XposPot) ;
Ycoord(YposPot) ;
IF Xpospot = $200 THEN
Xdistance := $1
ELSE
IF Xpospot < $200 THEN
Xdistance := $200 - Xpospot
ELSE
Xdistance ;= Xpospot - $200 ;
IF Ypospot = $200 THEN
Ydistance := $1
ELSE
IF Ypospot < $200 THEN
Ydistance := 3200 - Ypospot
ELSE
Ydistance ;= Ypospot - $200 ;
Xdistdec := LONGINTEGER(Xdistance} ;
Ydistdee := LONGINTEGER(Ydistance) 3
Radius := SQRT(SQR{Xdistdec) + SQR(Ydistdec)}) ;
IF Radius > 445 THEN
Begin
Stopsynth ;
IF Msgsent = false THEN
Begin
Buzzer ;
Xpos := STRING(Xpospot) ;
Ypos := STRING(Ypospot) ;
Sendline (CONCAT(C,L,L,Bell,"XYSLIDE IN INVALID POSITION")) ;
Sendline(CONCAT{C,L,L, Pot. Readings : X “,Xpes,”, Y 7,Ypos)) ;
Sendline (CONCAT(C,L,L,” Use VSTOP command to reset it.”,C,L,L});
Msgsent = True ;
End ;
End ;
End ;

-C-30

{Frkdckedkdcdedededededekdeicioicdonciodok % PROCEDURE | VSTOP ki ik inkrdok sk }

Procedure Vstop ;
Begin
IF VmodeActive THEN
Begin
StopSynth ;
VmodeActive := false ;
Msgsent = false ;
Centre ;
End
ELSE
Sendline (CONCAT(C,L, Velocity mode not active.”,C,L));
End ;

{ dedrirkdedokdoledoiokdedodnie kR ke ki deoke i ok PROCEDURE SETUP SYNTHA R hddkkkkhhkikkiiiki }

Procedure Setupsynth ;

VAR
Dummy : real ;
Xspeed : real ;
Yspeed : real ;

Xspeedint : longinteger ;
Yspeedint : longinteger ;
Xspeedstr : string{10] ;
Yspeedstr : string[l0] ;
Qutloop : boolean ;

Bytel : byte ;
Byte2 : byte ;
Byte3 : byte ;
Error : boolean ;
(* ~PROCEDURE PACKBCD *)

Procedure PackBCD(Var Str : string) ;

VAR
CHl : byte ;
¢z : byte ;

(* PROCEDURE PACK *)

Procedure Pack ;

Begin
CH1 := CHl AND #$F ;
Ch2 1= Ch2 << #%$4 ;
Chl := Chl OR Ch2 ;

End ;

BEGIN

Chl := Str[7]

-e

Ch2 := Str[6] ;

Pack ;
Bytel :=

Chl := Str[5]
Ch2 ;= Str[4)

Chl ;

e e

-C-31

Pack ;
Byte2 := Chl ;
Chi := str{3] ;
Ch2 := Str[2] ;
Pack ;
Byte3 := Chl ;
End ;
(* PROCEDURE LEFT
Procedure Left ;
Begin
Xspeedint := Xspeedint - 1000000 ;
Xspeedint := Xspeedint * (-1) ;
Xcontrol := Xcontrol OR cw 3
End ;
(* PROCEDURE RIGHT

Procedure Right ;

Be

(*

gin
Xspeedint

:= Xspeedint + 1000000 ;

Xcontrol := Xcontrol AND NOT cw ;
End ;

A*)

*)

PROCEDURE UP

Procedure Up ;
Begin

Yspeedint
Ycontrol

End ;

(*

:= Yspeedint + 1000000 ;

t= Ycontrol OR cw ;

*)

PROCEDURE DOWN

Procedure Down ;
Begin

Yspeedint
Yspeedint
Ycontrol

End ;

:= Y¥speedint - 1000000 ;
:= Yspeedint * (-1) ;

:= Ycontrol AND NOT cw ;

*)

-C-32

{ START OF PROCEDURE SETUPSYNTH }

BEGIN :
Sendline(CONCAT(C,L, Enter speed in hundreths of mm per second”,C,L}) ;
Sendline(CONCAT(~ {.e. X = 43.56 -,C,L,” Y = -217,C,L}) ;
Sendline{CONCAT(” Will move at 0.4356 mm/sec to the right”)) ;
Sendline{CONCAT(C,L,” and 0.21 mm/sec down.”,C,L)) ;
Error 1= true ;
WHILE Error = true DO
Begin
Sendline (CONCAT(Enter X speed (max. 46) : 7)) ;
Cmndflag := false j
WHILE MesBRx = false DO
CheckVdu ;
MesRx := false ;
Xspeed := REAL(Data) ;
Sendline(CONCAT(C,L));
Dummy := SQR(Xspeed) ;
Dummy := SQRT(Dummy) ; (* Remove sign *)
IF Dummy > 46.1 THEN
Error := true !
ELSE
Error := false ;
End ;
Error = true ;
WHILE Error = true DO

Begin
Sendline(CONCAT{ Enter Y speed (max. 46) : 7)) ;
Condflag := false ;
WHILE MesRx = false DO
Checkvdu ;
MesRx := false ;
Yspeed := REAL(Data)

Sendline (CONCAT(C,L))
Dummy := SQR{Yspeed)
Dummy := SQRT{(Dummy)
IF Dummy > 46.1 THEN
Error := true
ELSE
Error := false ;

e wr w4

(* Remove sign *)

End ;
Sendline(CONCAT(C,L)) ;
Xspeed := Xspeed * Con74 * 1000000 ;

Yspeed := Yspeed * Con74 * 1000000
Xspeedint := LONGINTEGER(Xspeed) ;
Yspeedint := LONGINTEGER(Yspeed) ;
IF Xspeedint < 0 THEN

Left

ELSE

Right ;
IF Yspeedint < 0 THEN

Down

ELSE

Up ;
Xdummy := Xcontrol ;
Ydummy := Ycontrol ;
Xspeedstr := STRING(Xspeedint) ;
Yspeedstr := STRING(Yspeedint) ;
PackBCD(Yspeedstr) ;

R 1)

-C-33

YsynthLSB := Bytel ;
YsynthMidB := Byte2 ;
YsyuthMSB := Byte3 ;

PackBCD(Xspeedstr) ;

XsynthLSBE := Bytel

XsynthMidB := Byte2

XsynthMSB := Bytel
End ;

e W we

{******************ﬁ***PRO CEDURE GETSYN‘I’HGQ***********************}

Procedure GetSynthGo ;
Begin
Sendline (CONCAT(C,L, Press any key to start velocity mode track :7));
Charflag := false ;
WHILE Charflag = false DO
Getchar(CH) ;
Charflag := false ;
Sendline (CONCAT(C,L,L));
xcontrol ;= Xcontrol OR Synthenable ;

yecontrol := Ycontrol OR Synthenable ;
xmotor := xcontrel ;
Ymotor := ycontrol ;

End ;

[Fededddede ik dk ik dk dokdck k% PROCEDURE TRA CK ik dedriniedriok ik drk ik ki ik }
frocedure Track ;

Begin
IF VmodeActive THEN
Sendline (CONCAT(C,L, Velocity mode already active”,Bell,C,L))
ELSE
Begin
VmodeActive := true ;
Printpos H
Xposn
Yposn
Motorson H
Sendline (CONCAT(C,L, Press RETURN to apply previous speed ~
“settings, or any other key”,C,L));
Sendline (CONCAT{ to enter new speeds..... 7)) s
WHILE Charflag = false DO
Getchar(CH)
Charflag = false 3
CH := CH AND #3$7F ;
IF CH <> #13 THEN
SetUpSynth
ELSE
Begin
Xcontrol := Xdummy-;
Ycontrol := Ydummy ;
End ;
GetsynthGo ;
Sendline(CONCAT(C,L, When Velocity mode is stopped - by 7)) ;
SendLine (CONCAT{ command VSTOP - the X - Y mechanism”,C,L,
“is automatically Centred .”,C,L));

Wy wae

0
0 {To allow pushbutton use in VHOLD}

End ;
End ;

-C-34

{*********************PROCEDURE VCHANGE****************************}

Procedure Vchange ;
Begin
IF VmodeActive THEN
Begin
SetUpSynth ;
Xmotor := Xcontrol
Ymotor := Ycontrol
End
ELSE
Sendline (CONCAT(C,L, Velocity mode not active - do VMODE -,
“command first”,C,L});

we e

End

{***************************PROCEDURE VHOLD************************}

Procedure Vhold ;

Var
Xmotorstatus : byte ;
Ymotorstatus : byte ;

Begin

IF VmodeActive THEN

Begin
Xmotorstatus := xcontrol j
Ymotorstatus := Ycontrol ;
Xcontrol := Xcontrol AND NOT Synthenable ;
Xmotor := Xcontrol ;
Ycontrol := Ycontrol AND NOT Syathenmable
Ynotor := Ycontrol ; '
Sendline(CONCAT(C,L,L,” Press any key to continue VMODE track :7));
Charflag := false ;
WHILE Charflag = false DO
Begin

Getchar(CH) .3
Pushbuttons ;

End ;
Charflag := false ;
Sendline (CONCAT{(C,L,L));
Xcontrol := Xmotorstatus ;
Xmotor := Xcontrol ;
Ycontrol := Ymotorstatus ;
Ymotor := Ycontrol ;

End

ELSE
Sendline (CONCAT(C,L, Velocity Mode not active.”,Bell,C,L));

End ;

-C-35

{**#**************INCLUDE FILE HANDSET. SA¥F ikl ki irihkiodd iy

This code compiles as an {include file into PROGRAM XYSLIDE.
It contains routines for moving in X & Y in response to the
pushbuttons on the handset,

dedkrkdodokdokdinkdokekrkkedok dodokedednioke dededodederdedededkode dodedodededede dedeke e dede dekedededrde dede dede dedededodrkdode ke de ke deok deoke

* vyersion 1last update *
* 1,00 ? *
* 1,01 19/12/86 Resructure sendline calls *
* 1,02 21/12/86 Handsetflag to PRactive *
* 1,03 28/01/87 corrections to 1.02 *
* %*

%

{*************************PROCEDURE PUSHBUTTQNS********************}

PROCEDURE PUSHBUTTONS ;

VAR

Posnerror : boolean ;
Temp : byte ;
Temphex : hex ;
Xposnreal : real ;
Yposnreal : real ;
Checkpos : real ;
Msgsent : boolean ;

Rightenable : boolean ;
Leftenable : boolean
UpEnable boolean
DownEnable : boclean

L LENT)

(* PROCEDURE STOP *)

PROCEDURE STOFP 3
begin
Xeontrol := Xcontrol AND NOT Stepenable ;
Ycontrel := Ycontrol AND NOT Stepenable ;
Goingleft := false ;
Goingright := false ;
Goingup := false ;
Goingdown := false ;
End ;

(* PROCEDURE RIGHT

PROCEDURE RIGHT ;

Procedure Subright ;
Begin

Temp := Statl AND chr($¢0) ;

IF Temp = chr(0) THEN
Begin

Ycontrol := Ycontrol AND NOT Stepenable

Goingup := false ;
Golngdown := false ;
End ;
IF Goingright = false THEN
Begin
Goingright := true ;
Xcontrol

Xmotor
IF Xtemp < 0 THEN

= xcontrol ;

Xtempent := ABS(Xtemp) ;

IF Xtemp > 0 THEN
Xtempent := 40 ~ Xtemp

IF Xtemp = 0 THEN
Xtempcnt := 40 3

Xstpent := HEX(Xtempent)
Xchkstp := CHR(Xstpent) ;

Switch := true ;
End ;
End ;

Begin
IF Rightenable = true THEN
Subright
ELSE
Begin

Xcontrel := Xcontrol AND NOT Stepenable ;

Xmotor 1= Xeontrol
End ;
Eod ;

.
’

(* PROCEDURE LEFT

PROCEDURE LEFT ;

Procedure Subleft ;
Begin

Temp := Statl AND chr({$cO) ;

IF Temp = chr{0) THEN
Begin

Ycontreol := Ycontrol AND NOT Stepenable ;

Goingup := false ;

Goingdown := false ;
End 3
IF Goingleft = false THEN
Begin

Goingleft := true ;

Xcontrol := Xcontrol QR cw ;
Xcontrol := Xcontrol OR stepenable

-C-36

:= Xcontrol AND NOT cw ;
Xcontrol := Xcontrol QR stepenable

*)

*)

"Juago1d je pasn jou are L9y,

-C-37

Xmotor := xcontrol
IF Xtemp < 0 THEN
Xtempent := 40 + Xtemp ;
IF Xtemp > 0 THEN
Xtempcnt := Xtemp ;
IF Xtemp = O THEN
Xtempent := 40 3
Xstpent := HEX(Xtempcnt) ;
Xchkstp := CHR(Xstpcnt) ;
Switch := true ;
End ;
End ;

Begin
IF Leftenable = true THEN
Subleft
ELSE
Begin
Xeontrol := Xcontrol AND NOT Stepenable ;
Imotor 1= Xcontrol ;
End ;
Enmd ;

(* PROCEDURE UP _ *)
PROCEDURE UP ;

Procedure Subup ;
Begin
Temp := Statl AND chr($30) ;
IF Temp = chr(0) THEN
Begin
Xeontrol := Xcontrol AND NOT Stepenahble ;
Goingleft := false ;
Goingright := false ;

End ;
IF Goingup = false THEN
Begin
Goingup := true ;
Ycontrol Yeontrol OR cw ;

Ycontrol := Ycontrol OR stepenable ;

Ymotor := Yeontrol ;

IF Ytemp < O THEN"
Ytempent := ABS(Ytemp)

IF Ytemp > 0 THEN
Ytempent := 40 - Ytemp

IF Ytemp = O THEN
Ytempent := 40 ;

Ystpent := HEX(Ytempent)

Ychkstp := CHR{Ystpcnt) ;

Switch := true ;

End 3
End ;

-

Begin
IF Upenable = true THEN
SubUp
ELSE
Begin
Ycontrol := Ycontrol AND NOT Stepenable
Ymotor := Ycontrel
End ;
End ;

(* PROCEDURE DOWN
PROCEDURE DOWN ;

Procedure SubDown ;
Begin
Temp:= Statl AND chr{$30) ;
IF Temp = chr(0) THEN
Begin
Xcontrol ;= Xcontrol AND NOT Stepenable
GoinglLeft := false ;
GoingRight := false j
End ;
IF Goingdown = false THEN
Begin
Goingdown := true ;
Ycontrol := Ycontrol AND NOT cw ;
Ycontrol := Ycontrel OR stepenable ;
Ymotor := Ycontroel ;
IF Ytemp < 0 THEN
Ytempcnt := 40 + Ytemp ;
IF Ytemp > O THEN
Ytempcnt := Ytemp ;
IF Ytemp = (0 THEN
Ytempent := 40 ;
Istpent := HEX(Ytempcnt) ;
Ychkstp := CHR(Ystpent)
Switch := true
End ;
End ;

.
]

»
H

Begin
IF Downenable = true THEN
SubDown
ELSE
Begin
Yeontrol := Ycontrol AND NOT Stepenable ;
Ymotor := Ycontrol ;
End
End 3

*)

{ PROCEDURE UPANDLEFT

PROCEDURE UpandLeft ;
Begin

Up ;

Left ;

Goingdown := false ;

Golngright := false j;
End ;

-C-38

{ PROCEDURE UPANDRIGHT

-C-39

Procedure UpandRight
Begin
Up ;3
Right ;
Goingdown :
Goingleft :
End ;

wae

false
false

]
-e

-we

{ PROCEDURE DOWNANDLEFT

PROCEDURE DownandLeft
Begin
Down ;
Left ;
Goingup := false ;
Goingright := false

End ;
{ PROCEDURE DOWNANDRIGHT }
PROCEDURE DownandRight ;
Begin
Down ;
Right ;
Golnglp := false ;
Goingleft := false ;
End ;
{ PROCEDURE INVALID }
PROCEDURE Invalid ;
Begin
Stop
Buzzer ;
End ;
{ PROCEDURE CHECKPOSN -}
PROCEDURE CHECKPOSN ;
Begin
Xposnreal := REAL(Xposn) ;
Yposnreal := REAL(Yposn) ;
Xposnreal := Xposnreal / 2 ;
Yposnreal := Yposnreal f 2 ;
Checkpos := SQR(Xposnreal) + SQR(Yposnreal) ;
IF Checkpos > Limit THEN
Begin
IF NOT Msgsent THEN
Begin
Stop 3
Sendline(CONCAT(C,L,”X~Y SLIDE IN INVALID POSITION.”,Bell,C,L,L)) ;
Msgseant := true ;
End ;

Buzzer ;

IF Xposn > Q0 THEN

Rightenable := false
ELSE
Leftenable := false
IF Yposn > 0 THEN
Upenable := false
ELSE
Downenable := false
End
ELSE
Begin
Msgsent := false ;
Rightenable := true ;
Leftenable = true ;
Upenable := true ;
Downenable := true ;
End ;
End
{
BEGIN

IF {Statl AND #$F0) <> #0 THEN

Begin
Setimer := false

H

IF NOT PBactive THEN

Begin

PBactive := true ;

Motorson ;

Speed := Hsetspeed ;

Setspeed (Speed) ;

Countercontrol := Countercontrol AND NOT Fqureset

Msgsent := false 3

Rightenable :=
Leftenable :
Upenable
Downenable
End ;
CheckPosn
Temp := Statl AND
CASE Temp OF

tnon

true
true
true
true

chr($F0)

ME wr W W

#30 : Stop ;

#3510 : Left ;
#$20 : Right ;
#3530 : Invalid ;
#$40 : Up ;
#$50 : UpandLeft ;
#$60 : UpandRight ;
#$70 : Invalid
#$80 : Down ;
#$90 : DownandLeft ;
#$A0 : DownandRight ;
#$BO..#$F0 : Iovalid

End ;

ClrFir ;

End

ELSE

MAIN PROCEDURE

-

-C-40

Begin

IF PBactive THEN

Begin
MskFir ;
Golngleft := false ;
Goingright := false ;
Goinglp 1= false ;
Goinghown := false ;

End

End

IF Setimer = false THEN
Setimer := true
ELSE
Begin
Timer := Timer + 1
IF Timer = 1000 THEN
Begin
Setimer :=
Timer := 0
?

.
>

PBactive
Motorsoff
Switch := false ;
End ;
End ;

End ;

»

-C-41

-C-42

{*****************INCLUDE FILE VDUDRIVE_SA*********************************

This code compiles as an include file in PROGRAM XYSLIDE. It
contains routipes for handling Terminal ifmput and output.

Jod kRt Ak ok ke dededeidode dedniodeie oot de dode i o ek ek de dedede ot il de i de dedcioke R i ok ko e
* version last update *
* 1.00 7 *
* 1.01 28/01/87 restructure sendline calls *
* *

{***********************PROCEDURE SENDCHAR***********************}

Procedure Sendchar(CH : char) ;
begin
WHILE (Vdusts AND TxRdy) <> TxRdy DO
begin
end ;
VduData := CH ;
End ;

{***********************PROCEDURE SENDLINE**************************}

Procedure Sendline(Line : stringi{80]) ;
Begin
For I := 1 TO LENGTH(line)} DO
Begin '
CH := Line[I] ;
Sendchar(CH) ;
End ;
End ;

{**********************PROCEDURE GETCHAR***************************}

Procedure Getchar(Var CH : char) ;
begin
IF (Vdusts AND RxRdy) = Rxrdy THEN
Begin
CH := VduData ;
Charflag := true ;
Sendchar(CH) ;
End 3
End ;

-C-43

{ Fdededededeicdnindon ki deok ke k¥ PROCEDURE CHECRV DU A sk drdsrdok ik fdkhidk)
{Checks terminal input, and puts character on stack if present}

Procedure CheckVdu ;

{ PROCEDURE PUTCHINBUF }
Procedure PutCHinBuf ;

Procedure Delete ;

Begin
Sendline(CONCAT(#3$20,#$08));
Ptr := MsgInBuf[O0] ;

Ptr := Ptr - #1 ;
MsgInBuf{0] := Ptr ;
End ;

Begin
IF CH = #$08 THEN
Delete
ELSE
Begin
Ptr := MsgInBuffO0} ;
Ptr = Ptr + #1 ;
MsgInBuf{Ptr] := CH ;
MsgInBuf[0] := Ptr ;
End ;
End ;

{ START OF PROCEDURE CHECKVDU }

Begin
Getchar(CH)
IF Charflag
Begin

Charflag := false ;
Ch := CH AND #$7F ;
IF CH <> #13 THEN
PutCHinBuf
ELSE
Begin
MesRx := true ;
IF Cmndflag THEN
Cmnd := MsgInBuf

I e

true THEN

ELSE

Data := MsgInBuf ;
CH := #10 ;
Sendchar(CH) ;
Ptr := #0 ;
MsgInBuf{Q] := Ptr ;

End ;
End ;

End 3

{************************PROCEDURE SETUPFUNCKEY5*******************}

Procedure SetUpFuncKeys ;

CONST
Esc = #$1B ;
A = {#8$7C
CR = #%0D ;
EM = #319 ;
BEGIN

Sendline (CONCAT(Esc,A,”17,71”,"CENTR”,CR,EM,
Esc,A, 27,717, MOV~ ,CR,EM,
Esc,A,”3”,717,“GMCEN",CR,EM,
Esc,A,” 47,717 ,”GMVIEW" ,CR,EM));

Sendline(CONCAT(Esc,A,”5”,71”, "RVMIN” ,CR,EMN,
Esc,A,” 67,717, RVMOUT”,CR,EM,
Esc,A,”7°,”1”,“GUIDE” ,CR,EM,
Esc,A,”8,”17,” AQUIRE” ,CR,EM,
Esc,A,”;”,”1”,"BELP",CR,EM));

END ;

-C-45

{*****************INCLUDE FILE AQBOX.SA*****************************#******

This code compiles as an include file in PROGRAM XYSLIDE.
It contains routines for controlling the Acquisition box
mirrors positioms.

kddk Aok iod ik ke ek ko kok ke ke kR koo bk i R Rk ook dek dkdek dedr ook ook dede ke ek drde ok ek

* version last update *
* 1.00 ? *
* 1.01 21/12/86 Restructure sendline calls *
* 2.00 21/12/86 checkselstat to function Computereselected *
* 2.01 21/12/86 CheckGMposition to Function GMinBeam *
* 2.02 21/12/86 CheckRVMposition to Function RVMinBeam *
* 2.03 21/12/86 Changed Delay calls *
* 2.04 27/01/86 corrections to 2,03 *
* 2.05 28/01/86 corrections to 2.04 *
* *
Sk R R AR AR Ak R AR R A A Aok Ak Ak drh Ak Aok ok dok Ao ko S R h kAo
}

{*********************FUNCTION COMPUTERSELECTED********************}

FONCTION Computerselected : boolean ;
Begin
IF Statl AND Selstatmask = Selstatmask THEN
Computerselected := true
ELSE
Computerselected := false;
End ;

[Fhkiddkikidki ikt FUNCTION GMINBEAM ¥k kkddidddddohidiodhddkiiikd]

Function GMinBeam : boolean ;
Begin
IF Stat]l AND GMCenmask = GMcenMask THEN
GMinBeam := false
ELSE
GMinBeam := true ;
End ;

{********************FUNCTION RVHINBEAM*****************************}

Function RVMinBeam : boolean ;
Begin
IF Statl AND RVMoutmask = RVMoutmask THEN
RVMinBeam := false
ELSE
RVMinBeam := true ;
End ;

-C-46

{********************PROCEDURE ERRMESGEl***************************}

PROCEDURE Errmesgel ;
Begin
Sendline(CONCAT(”CANNOT CONTROL AQUISITION BOX”,Bell,C,L, Check Compu”));
Sendline (CONCAT(ter/Manual select switch on Aquisition box Panel”,C,L));
- End ;

{ Fdkdededricirkok i ke ke dok ki A% PROCEDURE ERBME SGE 2 dricdeddedrdr ik dnioiokadkdoiokk |

PROCEDURE Errmesge2 ;
Begin

Sendline (CONCAT("MIRROR NOT MOVING - Check gas pressure”,Bell,C,L)) ;
End ;

{*******************PROCEDURE GRATON*******************************}

PROCEDURE Graton ;
Begin
IF ComputerSelected THEN
Begin
IF RVMinBeam THEN
Sendline(CONCAT(“Rear View Mirror not in beam - cannot”,
“switch graticule on.”,Bell,C,L})
ELSE
Begin
Agbox := Agbox OR Gratcontrol ;
Sendline (CONCAT("Graticule illumination is ON. “,C,L));
End ;
End
ELSE
Errmesgel ;
End ;

{*******************PROCEDURE GRATQFF*********************#********}

PROCEDURE Gratoff ;
Begin
IF ComputerSelected THEN
Begin
Agqbox := Aqbox AND NOT Gratcontrol ;
Sendline(CONCAT(Rear View Eyepiece graticule illumination OFF”,C,L});
End
ELSE
ErrMesgel;
End ;

{*********************PROCEDURE BUZZER*****************************}

PROCEDURE Buzzer ;

Begin
Agqbox := Aqbox OR Buzz ;
Aqbox := Aqbox AND NOT Buzz ;

End ;

-C-47

PROCEDURE GMview ;
Begin
IF ComputerSelected THEN
Begin
IF GMinBeam THEN
Sendline (CONCAT(Guide mirror already in view position”,Bell,C,L))
ELSE
Begin
Agbox := Aqbox OR Gmposcontrol ;
Delay{30000) ;
IF GMinBeam THEN
Sendline(CONCAT{ Guider mirror in view position”))

ELSE
Sendline(CONCAT{“Guider Mirror not moving - Check gas pressure”,
Bell,C,L));
End ;
End
ELSE
Errmesgel ;

End

2
{*********************PROCEDURE GHMCENTR Exdrdrkkdddbdid ik tdiddkr]

PROCEDURE GMCentre ;
Begin
IF ComputerSelected THEN
Begin
IF GMinBeam THEN
Begin
Agbox := Agbox AND NOT GMposcontrol H
Delay(30000) ;
IF GMinBeam THEN
Errmesge?
ELSE
Sendline(CONCAT(Guider mirror Centre”,C,L))
End
ELSE
Sendline (CONCAT(”Guide mirror already Centred”,Bell,C,L));
End
ELSE
Errmesgel ;
End ;

-C-48

{Fedk gtk ok k k% PROCEDURE RVMOUTBEAM* % dedirediniririnkr ik k kAo ikt }

PROCEDURE RVMoutBeam ;
Begin
IF ComputerSelected THEN
Begin
IF RVMinBeam THEN
Begin
Agqbox := Aqbox AND NOT RVMposContgroel ;
Delay(30000) ;
IF RVMinBeam THEN
Errmesge2
ELSE
Sendline(CONCAT{ Rear View Mirror out of Beam”,C,L})
End
ELSE
Sendline(CONCAT(Rear view mirror already out of Beam”,Bell,C,L));
End
ELSE
Errmesgel ;
End ;

{*ﬂm*ﬁ***ﬂ**ﬂﬂp ROCEDURE RVMINTO BEAM*************************}

PROCEDURE RVMintoBeam 3
Begin
IF ComputerSelected THEN
Begin
IF RVMinBeam THEN
Sendline(CONCAT{ Rear view mirror already in beam”,C,L,Bell)})

ELSE

Begin
Aqbox := Aqbox OR RVMposcontrol ;
Delay(30000) ;

IF RVMinBeam THEN
Sendline{CONCAT(“Rear view mirror in beam”,C L))
ELSE
Errmesge? ;
End ;
End
ELSE
Errmesgel ;
End 3

=C-49

FhRFARR ARk ASSEMBLY SOURCE CODE POTPOSN. SAxkiikddikikdidtihdiiiiliirinegr

* This file contains assembly language routines
* for reading the 10 bit ADC and manipulating the

* data into a form acceptable for the PASCAL.
*

Fedkdokdekodokedeiok kR Rk Aiokok ko dokkiokodok dok ki kkiiokk ek ok ki kededrk ke ok ke dokdeok heok ke

* version last update *
* 1.00 ? *
%* *

kkedededede ook kddck ok Iokdedodeicioi R ddciok ek kedok ke ichodododo ik ek Fe ke doke ik e ko ok
*
*
*

*SUBROUTINE TO GET Y-POT COORDINATES
* -

NAM POTPOSK
*

YCOORD PSHU A,B,X,Y SAVE REGISTERS
LDY 6,0 GET YPOS ADDRESS OFF STACK
LDA ADC2 GET MS BYTE
LDB ADC2 GET LS BYTE
LDX #3586

LOOP LSRA ROTATE 16 BITS UNTIL

- RORE RIGHT JUSTIFIED

LEAX -1,X
BNE LOOP
STD 0,Y UPDATE YPOS VARTABLE
PULU A,B,X,Y RESTORE REGISTERS
LEAU 2,0 REMOVE YPOS ADDRESS FROM STACK
RTS RETURN

*

*SUBROUTINE TO GET X-POT COQRDINATES
*

XCOORD PSHU A,B,X,Y SAVE REGISTERS .
LDY 6,0 GET ADDRESS OF XPOS OFF STACK
LDA ADCl GET M.S. BYTE
LDB ADCl GET L.S. BYTE
LDX #36
LOOP1 LSRA ROTATE 16 BITS UNTIL
RORB RIGHT JUSTIFIED
LEAX ~1,X
BNE LOOPL .
STb 0,Y UPDATE XPOS VARIABLE
PULU A,B,X,¥ RESTORE REGISTERS
LEAU 2,0 REMOVE XPOS ADDRESS FROM STACK
RTS RETURN

ADC1 EQU $EQ040
ADC2 EQU $E041

XDEF XCCOORD
XDEF YCCORD

END

-C-30

File for linking into XYSLIDE program at link/load
time . It contains routimes for setting and
clearing the FIRQ mask bit, and for setting up
the FIRQ vectors.

* % ¥ ¥ % 3} ¥

* wversion last update *
* 1.00 ? *
* 1.01 04/12/86 corrected FIRQ masking *
* 1,02 21/12/86 Mskirq to MskFir, also ClrFir *
* *

TARRFRAARRAA Ik kiRl kiR kR idokiokdk ok kik ki ki ki xkikii
*
*

*ROUTINES TO SET AND CLEAR INTERUPT MASKS

*

*
NAM INTRPT

*

MSKFIR ORCC #$40 MASK COUT FIRQ
RTS

CLRFIR ANDCC #$BF ENABLE FIRQ
RTS

*

Adkkdkddkkddbhkhki bk ki ikkkikkiidiickikikiiik ki iik
*

*ROUTINE TO SET UP FIRQ VECTOR
* :

FIRVEC PSHU A,X SAVE REGISTERS
LDX #INTADD GET FIRQ. RTN. START ADDRESS
LDA #37E OPCODE FOR JMP(EXT)
STA $0000
STX $0001
LDX #30
STX $FFF8 SET UP FIRQ VECTOR
PULU A,X RESTORE REGISTERS
RTS

XREF INTADD

3¢

XDEF MSKFIR
XDEF CLRFIR
XDEF FIRVEC

END

-C-51

Fhddrakkdk kil ASSEMBLY SOURCE CODE FIRQl « SAFARRR AT TR R e e e
*

*FIRQ ROUTINE FOR MOVING STEPPING MOTORS OF XYSLIDE

*
*
ddekdokdkddokdok ok dokdedokodeo ke kdded ok dkokockk ok dok koo ok e ke de dodok ke de ko dodek ok ke

04/12/86 1.01 Top of stack TSTACK added
28/01/87 1.02 TSTACK = $5FF
28/01/87 1.03 TSTACK = $4FF
5/02/87 1.04 TIDY UP COMMENTS
6/02/87 1.05 PUT IN TEST CODE TO CHECK SLOTS
6/02/87 1.06 CORRECTIONS TO 1.05

W ok ok o ok ¥ %

*i
i

*NOTE !! TSTACK MUST BE CHANGED IF PASCAL

* LEVEL DATASTACK ALLCCATION CHANGES.
*

Er r t P T At N T R T T E A P A L Nt T R R R L R R L N T LY X
*
NAM FIRQRINE
*
Jedodd b ko i ok Fe kR Aok ke Yok Rk R ke e e ke ke R A R ik ik ke kR ke ik ke ik
*
TSTACK EQU $4FF PASCAL DATASTACK START
*
Fkdkkdkdokickkiiokkkiiok ik dokekinokoiciodnknke deknkokeiedadodeink e deknkink dok ko bk ok ke
*
AQBOX EQU $E082
ICNTRL EQU $E032
STAT2 EQU $E081
XMOTR EQU $E000
YMOTR EQU $E008

BASE EQU TSTACK-$16 ADDR. OF GLOBAL STACK START
*

Feddri kb ko ook ok ook e Rk ke ko ok kR ARk ik kel Rk kk ke ok ke k vk kdk
*

XREF¥ XSLTICH
XREF YSLTCH
XREF SWITCH
XREF PBUTON
XREF INITIA
XREF INIT

XREF XCONTR
XREF YCONIR
XREF XCHKST
XREF YCHKST
XREF XMEROR
XREF YMEROR
XREF XPOSN

XREF YPOSN

XREF XDEST

XREF YDEST

XDEF INTADD

XDEF OUT
*

*hdh ik ik ki kiR Rk ok ek ko ko oo inn ke dedcke ke ok ke e detok ke keok

*

INTADD PSHU
LDY
LDA
ORA
STA

LDA
LBNE
LDA

LEBNE
*

-C-52

A,B,X,Y SAVE WORKING REGISTERS

BASE GET GLOBAL BASE REGISTER
ICNTRL GET TIMER CONTROL BYTE
#$04 SET TIMER ONE(FIRQ) RESET, I.E.

ICNTRL CLEAR INTR. AT SQURCE.

INITIA,Y IS INITIALIZE IN PROGRESS?
INIT YES, DO IT,

SWITCH,Y NO , MOVING FROM PUSHBUTTONS?
PBUTON YES,USE PBUTON PATH

* Start of doeing X motor step

*
LDA
PSHU
ANDA
LBEQ
BULU
ORA
STA
ANDA
NOP
STA

DEC
BNE
LDB
ANDB
BEQ
CLR
LDB
STB
LDB
STB
NXPHCH LDB
BEQ

LDB
ORB
STB

LDB
ANDB
BNE

LDB
ANDB
STB

DEC

- BNE
XERROR LDB
STB

BRA

CLRXER CLR
CLR

XCONTR,Y GET XMOTOR STATUS AND

A SAVE IT FOR LATER

#$30 ISOLATE STEP ENABLE BIT
NOXSTP X STEP REQUIRED ?

A YES , GET X STATUS TG STEP
#320

XMOTR STEP = 1

#$DF

STRETCH STEP PULSE
XMOTR STEP = 0, DONE

XCHKST,Y DECR.MODULO 40 COUNTER
NXPHCH IF N.E. ZERO, NOCHECK,
STAT2 IF EQ. ZERO, CHECK PHO
#$40 IS TRUE

XERROR FLAG ERROR IF NOT.
XMEROR,Y ELSE CLR ERROR AND
#$28 RESET MOD 40 COUNTER,
XCHKST,Y

#5$03 AND SET SLOTCHECK COUNTER
XSLTCH,Y

XSLTCH,Y GET SLOTCHECK COUNTER
NOXCHK IF = 0, NO CHECK.

AQBOX GET CURRENT AQBOX STATUS
#3504 AND SET BIT2 FOR SCOPE TESTS
AQBOX OF SLOT

STAT2 ELSE CHECK SLOT
#$04 SLOT TRUE?
CLRXER YES,

AQBOX GET AQBOX STATUS AND
#$B RESET BIT 2
AQBOX

XSLTCH,Y NO, DECREMENT SLOTCHECK COUNTER
NOXCHK IF N.E. ZERQ, TRY NEXT TIME
#$FF ELSE SET ERROR FLAG

XMEROR,Y

NOXCHK NOW UFPDATE POSITION COUNTER

XMEROR,Y CLEAR ERROR FLAG AND
XSLTCH,Y SLOT CHECK FLAG.

LDB
ANDB
STB

NOXCHK LDX
ANDA
BEQ
LEAX
BRA

RIGHT LEAX

DESTX CMPX
BNE
ANDA
STA

MOREX STX
BRA

NOXSTP PULU
*

AQBOX
#$B
AQBOX

XPOSN, Y
#3508
RIGHT
~1,%
DESTX
1,X

XDEST, Y
MOREX
#$7F
XCONTR, Y
XPOSN, Y
YSTEP

A

GET AQBOX STATUS AND
RESET BIT 2

NOW UPDATE POSITION COUNTER.
WHAT DIRECTION?

IF LEFT, DECR POSITION,

IF RIGHT, INCR POSITION.

AT DESTINATION?

NO , MORE STEPS TO DO.

YES , DISABLE MORE X STEPS
AND SAVE.

SAVE STEP COUNT

AND CBECK Y MOTOR

ADJUST USER STACK

FhiFikkididkikkidkickkickikdiidkiioh ik kikidokddokickdekid ik ik kikxiik

*

* Start of doing Y step.

*

ISTEP LDA
' PSHU
ANDA

LBEQ

PULU

ORA

STA
ANDA

NOP

STA

DEC
BNE
LDB
ANDB
BEQ
CLR
LDB
SIB
LDB
STB
NYPHCH LDB
BEQ
*
LDB
ORB
STB

LDB
ANDB
BNE

LDB
ANDB
STB

YCONTR,Y

A
#$80
NOYSTP
A

#3$20
YMOTR
#$DF

YMOTR

YCHKST, Y
NYPHCH
STAT2
#$80
YERROR
YMEROR, Y
#$28
YCHKST, Y
#3$02
YSLTCH,Y
YSLTCH, Y
NOYCHK

AQBOX
#$0E
AQBOX

STAT2
#3508
CLRYER

AQBCX
#51
AQBOX

GET YMOTOR STATUS

ISOLATE STEP ENABLE BIT
Y STEP REQUIRED, IF NO , EXIT
YES , GET STATUS TO STEP

STEP = 1

STRETCH STEP PULSE
STEP = 0

DECR .MODULO 40 COQUNTER
IF N.E. ZERO, NOCHECK,
IF EQ. ZERQ, CHECKX PHO
IS TRUE

FLAG ERROR IF NOT,.
ELSE CLR ERROR AND
RESET MOD 40 COUNTER,

AND SET SLOTCHECK COUNTER

GET SLOTCHECK COUNTER
IF = 0, NO CHECK.

GET CURRENT AQBOX STATUS
AND SET BITO FOR SCOPE TESTS
OF SLOT

ELSE CHECK SLOT
SLOT TRUE?
YES , CLEAR ERROR FLAG

GET AQBOX STATUS AND
RESET BIT O

-C-53

DEC
BNE
YERROR LDB
STB
ERA

CLRYER CLR
CLR

LDB
ANDB
STB

NOYCHK LDX
ANDA
BEQ
LEAX
BRA

DOWN LEAX

DESTY CMPX
BNE
ANDA
: STA
MOREY STX
BRA
NOYSTP PULO
BRA
*
0UT LDA
ANDA
STA
PULU
RTI

~C=54

YSLTCH,Y NO, DECREMENT SLOTCHECK COUNTER
NOYCHK IF N.E. ZERO, TRY NEXT TIME
#$FF ELSE SET ERROR FLAG

YMEROR,Y

NOYCHK NOW UPDATE POSITION COUNTER

YMEROR,Y CLEAR ERROR FLAG AND
YSLTCH,Y SLOT CHECK FLAG.

AQBOX GET AQBOX STATUS AND

#$51 RESET BIT ©
AQBOX

YPOSN,Y NOW UPDATE POSITION COUNTER

#3$08 WHAT DIRECTION ?

DOWN

1,X IF 4P, INCR POSITION
DESTY

~1,X IF DOWN,DECR POSITION

YDEST,Y AT DESTINATION ?

MOREY NO , MORE STEPS TO DO.
#$7F YES , DISABLE MORE STEPS
YCONTR,Y AND SAVE

YPOSN,Y SAVE STEP COUNT

ouT :

A

ouT

ICNTRL GET TIMER CONTROL BYTE
#$FB ENABLE INTERUPTS

ICNTRL

A,B,X,Y RESTORE ORIGINAL CONTENTS

Fdrk bk ARt doickio ki ke ik ek i R ke e e i bk e e ol

*
END

-C-55

FRAIAIIARA AR ASSEMBLY SOURCE CODE FIRQZ.SA****************************

*

* This is part of the FIRQ routine., It assembles

* separately for linking at Link/Load time.

* It contains the routines for Initial Slew,

* {.e. for moving in X & Y without error checking.

*

Sk dedriciodcked ik dodeddokodnbdok ke ok hdoknekedrdotee e ko dodode ook ek ke Sk ke ik dodek
* version last update *
* 1.00 ? *
% *

FhAAC ik kokeiriniek ek iokiodokeke ke ke ok dokodoke dode ke o o do ke de deke ke ki ke ki ok frk d ke ke ke

* % * %

*FIRQ ROUTINE FOR INITTALIZE SLEW
*

NAM FIRQ2

*

INIT LDA XCONTR,Y GET XMOTOR STATUS
PSHU A
ANDA #3%80 ISOLATE STEP ENABLE BIT
BEQ NOXSTP NO X STEP REQUIRED, Y ?
PULU A GET X STATUS TO STEP
ORA #$20
STA IMOTR STEP = 1
ANDA #$DF
NOP STRETCH STEFP PULSE

STA - XMOTR STEP = 0, DONE
NOXCHK 1LDX XSTEPS,Y NOW COUNT

LEAX -1,X THE STEP AND CHECK
BNE MOREX IF MORE STEPS TO DO.
ANDA #37F DISABLE MORE X STEPS

STA XCONTR,Y AND RESTORE TO STACK
MOREX STX XSTEPS,Y SAVE STEP COUNT
BRA YSTEP AND CHECK Y MOTOR

NOXSTP PULU A ADJUST USER STACK
YSTEP LDA YCONTR,Y GET YMOTOR STATUS
PSHU A
ANDA #3$80 ISOLATE STEP ENABLE
BEQ NOYSTP NO Y STEP REQUIRED, OUT
POLU A
ORA #$20
STA YMOTR STEP = 1
ANDA #$DF
NGP STRETCH STEP PULSE

STA YMOTR STEP = 0
NOYCHE LDX YSTEPS,Y COUNT THE

LEAX -1,X STEP AND CHECK
BNE MOREY IF MORE STEPS TO DO.
ANDA #37F DISABLE MORE STEPS

STA YCONTR,Y AND RESTORE TO STACK.
MOREY STX ¥STEPS,Y SAVE STEP COUNT
LBRA OUT
NOYSTP PULU A
LEBRA OUT

XMOTR
YMOTR

EQU
EQU

XDEF

XREF
XREF
XREF
XREF
XREF

$E00D
$E008

INIT

ouT

XSTEPS
YSTEPS
XCONTR
YCONTR

-C-56

-C-57

Tk A de iAok kdek ok x % ASSEMBLY SQURCE CODE FIRQ3_SA****************************

*
* This code is part of the FIRQ routine . It contains
* code for moving in X & Y in response to the pushbuttons
* i.e. There is no reference to a destination positionm.
*
ek doke kg dekedeioicrdodricioiedoiokooniooke oo ook dokk koo ki ek ko deicok T docdodedok ke
* wversion last update *
* 1.00 ? *
* %
Fk Ak ok drdcktririokriniok ke ok i doiokokokde et kel doinniololokede ik dok e oo
*
*
*
¥*
%*
PBUTON LDA XCONTR,Y GET XMOTOR STATUS

PSHU A

ANDA #$80 ISOLATE STEP ENABLE BIT

BEQ NOXSTP NO X STEP REQUIRED, Y ?

PULD A GET X STATUS TOQ STEP

ORA #$20

STA XMOTR STEP =1

ANDA #$DF

NOP STRETCH STEP PULSE

STA IMOTR STEP = 0, DONE

DEC XCHKST,Y DECR,MODULO 40 COUNTER
BNE NOXCHK IF N. E. ZERO, NO CHECK
LDB STAT2 IF EQ. ZERO, CHECK

ANDB #3544 POSITION BY ISOLATING
CMPB = #3%44 XPHO & XSLOT. IF

BNE XERROR NCT TRUE,ERROR CONDITION
CLR XMEROR,Y IF TRUE,CLR ERROR FLAG.
LDB #3$28 RESET MODULO 40

STB XCHKST,Y COUNTER

BRA NOXCHX

XERROR LDB #3$FF SET ERROR FLAG TRUE
STB XMEROR,Y

NOXCHK LDX XPOSN,Y NOW CHECK POSITION

ANDA #308 WHAT DIRECTION?
BEQ RIGHT
LEAX -1,X IF LEFT, DECR POSITION
BRA DESTX AND CHECK
RIGHT LEAX 1,X IF RIGHT, INCR POSITION

DESTX STX XPOSN,Y SAVE STEP COUNT
BRA YSTEP AND CHECK Y MOTOR

NOXSTP PULU A ADJUST USER STACK
YSTEP LDA YCONTR,Y GET YMOTOR STATUS
PSHU A
ANDA #$80 ISOLATE STEP ENABLE

BEQ NOYSTP NO Y STEP REQUIRED, OUT
POLO A

-C-58

ORA #$20

STA TMOTR STEP =1

ANDA #$DF

NOP STRETCH STEP PULSE

STA IMOTR STEP = 0

DEC YCHKST,Y DECR.MCDULO 40 COUNTER
BNE NOYCHK IF N. E. ZERO, NO CHECK
LDB STAT2 IF EQ. ZERO, CHECK

ANDB #$88 POSITION BY ISOLATING
CMPB #$88 YPHO & XSLOT. IF

BNE YERROR NOT TRUE,ERROR CONDITION
CLR YMEROR,Y IF TRUE,CLR ERROR FLAG.
LDB #3528 RESET MODULO 40

STB YCHKST,Y COUNTER

BRA NOYCHK

YERROR LDB #§FF SET ERROR FLAG TRUE
STB YMEROR,Y

NOYCHK LDX YPOSN,Y NOW CHECK POSITION

ANDA #508 WHAT DIRECTION ?
BEQ DOWN
LEAX 1,X IF UP, INCR POSITION
BRA DESTY AND CHECK
DOWN LEAX -1,X IF DOWN,DECR POSITION
DESTY STX YPOSN,Y SAVE STEP COUNT
LERA OUT
NOYSTP PULU A
LBRA OUT

*

STATZ FEQU $E081
XMOTR EQU $E000
YMOTR EQU $EQ08

*
XREF XCONIR
XREF YCONTR
XREF XCHKST
XREF YCHKST
XREF XMERCR
XREF YMEROR
XREF XPOSN
XREF YPOSN
XREF OUT

*
XDEF PBUTON

*

END

~C-59

Fetrick koo ook R ASSEMBLY SOURCE CODE VECTOR . SAXhkickddkkkokick et il dkick
*

* This file contalins code for PROMMING the

* 6809 vectors at top of memory. It is

* assembled with option ABS.
*

Fhddrdr ki ke dok e dokioh dekkokkok Rk k Rk ek ok dok ok ko ko ke ke ke ke doke ke okeodeok

* version last update *
* 1.00 ? *
* 1.01 20/01/86 IRQ vector added *
* *

Fhdkickidkddddkdkkddikkiiddkikikikiohiirikihikihickikkikikikrikir
x

*
*
*SET UP VECTOR MAP OF XYSLIDE
*VER4 JAN 86
*
NAM VECTI
QPT ABS
*
ORG $F000
x*
LDA #$00 DUMMY STATEMENTS
LDA #$FF
*
ORG $FFF2 START OF VECTOR MAP
x*
FDB $8000
FDB $8000
FDB $0000 LOCATION OF FIRQ ROUTINE START
FDB $0003 LOCATION OF IRQ ROUTINE START
FDBE $8000
FDB $0006 LOCATION OF NMI ROUTINE START
FDB $8000
*

-C-60

6. Flowcharts.

Flowcharts are shown for the major program blocks and the
fast interrupt routine. The flowcharts are not totally explicit - they are
drawn to show the important routes and tasks performed In the program. To

see the details within each flow read the appropriate listing.

XYSLIDE PROGRAM FLOWCHARTS

MAIN

PROGRAM LOOP

(START)

INITIALIZE
set up !/0 ports
set Initial values

for variables

SYSTEM

STATUS CHECK ~-NO

oK /
YES

PRINT ERROR
MESSAGE

YES

CENTRE
Drive probe to
centre position

NO

CHECKVDU

Grab a character

from the terminal
(if There)

STATUS CHECK
oK 7

COMMAND YES
RECEIVED ? 1
INTERPRET
AND
EXECUTE

VELQCITY

MODE ACTIVE YES
?

CHECK
PUSHBUTTONS
AND TAKE
APPROPRIATE
ACTION

CHECK PROBE

POSITION AND

FLAG ERROR IF
NECESSARY

:

)

FAST INTERRUPT ROUTINE FLOWCHART
(ASSEMBLER CODE)

(FIRQ)

SAVE REGISTERS
GET STACK ADD,
DISABLE FIRQ.

PUSHBUTTON
SLEW 7

FUSHBEUTTON NORMAL SLEW INITIAL SLEW
SLEW MODE, MOVE MODE. MOVE TO MODE. NO ERROR
iF P/B PRESSED A DESTINATION. CHECKING.

ENABLE FIRQ
RESTORE REG.

RTI

FAST INTERRUPT ROUTINE FLOWCHART
NORMAL" SLEW FUNCTION

(ASSEMBLER CODE)

@

SAVE X MOTOR
STATUS ON STACK

NG X STEP
REQUIRED
T
TES

DO DNE STEP
DECREMENT
MODULO 40

COUNTER

ERROR FLAG
SLOT CHECK
CNTR TO ©

NO

DECR SLOT
CHECK CNTR.
SLTCHM
CNIR = 0O 1Es
T
SET ERROR
FLAG

DOWN_x DRECTION
r
DECREMENT INCREMENT
POSITION . POSITION
CQUNTER COUNTER
AT
M9 pestmiamion =
4
DISARLE
FURTHER
X STEPS
REPEAT THIS

FOR Y AXIS

FAST INTERRUPT ROUTINE FLOWCHART

INITIAL" SLEW
(ASSEMBLER CODE)

NTIAL
SLEW

SAVE X MOTOR
STATUS ON STACK

NQ

X STeP
REQ‘-#RED

YES

DO X STEP
DECREMENT
STEP COUNTER

PULL X MOTCR
$TATUS OFF STACK

DISABLE MORE
X STEPS

SAVE Y MOTOR
STATUS ON STACK

DO Y STEP
DECREMENT Y
STEP COUNTER

PULL ¥ MOTOR
STATUS OFF STACK

DISABLE MORE
Y STEPS

VDU DRIVER FLOWCHART

(CHECKVDU)

SET MESRx FLAG
TRUE

IS CHAR A
BACKSPACE
T

NO

PUTCHINBUF

PUTCHInBUF
{Procedure)

PONTER. Pt
POl PUT
SEND SPACE X
CHAR IN
MSGINBUF AT BACKSPACE TO

PNTR POSITION

TERMINAL

coPY coPY
MSGINBUF T0 MSGINBUF TO
DATA buffer DATA buffer
‘]
SEND LF,
RESET MSGINBUF
POINTER TO .

(SENDCHAR)

o/P PORT NO
READ

QUTPUT
CHARACTER

RTS

GRAB IT &

ECHO T

(__RTS)

RTS

CENTRE FLOWCHART

(CENTRE)

CALCMOVE
(Calcuiate No,
of steps to

move to approx.
centre posn.)

SET INITIAL
FLAG TRUE

SLEW. (Move
to approx.
centre posn.)

SET INITIAL
FLAG FALSE.

FINECENTRE
(Find precise
centre in X,Y)

PRINT ERROR
MESSAGE

PRINT MESSAGE
SET POSITION
COUNTERS TO Q
POWER OFF MOTORS

RTS

CALCMOVE FLOWCHART
SUB—PROCEDURE OF 'CENTRE'

GET CURRENT X
& Y COORDS
fROM POTS.

DISABLE X
MOVEMENT
{le move RIGHT) NO YES (le move LEFT)
SET CCW. DIRCTN SET C.W. DIRCTN
ENABLE STEPS ENABLE STEPS
CALC No. OF CALC No. OF
STEPS TO CENTRE STEPS 7O CENTRE
SET UP FIRQ SET UP FIRQ
STEP CNTR STEP CNTR
5 K
YES
DISABLE Y
MOVEMENT

(ie move UP} NO je_mave DOWN)

SET C.W. DIRCTN SET CCW. DIRCTN
ENABLE STEPS ENABLE STEPS
CALC. No. OF CALC No. OF

STEPS TO CENTRE STEPS TO CENTRE

SETUP FIRQ SET UP FIRQ
STEF CNTR STEP CNTR.

B!

RTS

FINECENTRE FLOWCHART
SUB—PROCEDURE OF 'CENTRE’

: XFINECENTRE SHOWN

YFINECENTRE IS IDENTICAL

NOTE

(XFINECENTRE)

SET C.W. DIRCTN

PHO TRUE
?
YES

RTS

FINDXPHO
NO XREF
TRUE
?
DO 8 STEPS YES
C.W.
DONE 200 YES .
STEPS YET 3
?
YES XREF
TRUE
?
NO
DO 200 STEPS
CCW.
XREF NG
TRUE
?
YES DO B STEPS
cCW
DONE NO
YES 200 STEPS
?

MOVE—to—~POSITION FLOWCHART

(MOVE)

PRINT PROMPT
FOR DESTINATION
COORDINATES

[

PROMPT FOR X

DESTINATION
X DEST\
ENTERED NO
?
YES
PROMPT FOR Y
DESTINATICN
¥ DEST.
ENTERED HO
?
YES
CALCULATE
RADIUS OF
DESTINATION
YES NO
SET UP
DESTINATION
VARIABLES FCR
FIRQ ROUTINE
PRINT ERROR
MESSAGE.
CALCSTEPS
{Colculate Nao.
of steps for
first slot check
& set dirctn.)
SLEW.
(Move in X & Y
to destination)

v

RTS

CALCSTEPS FLOWCHART
SUB PROCEDURE OF 'MOVE'

{move LEFT) YES

CALCULATE
MODULO 40
OF CURRENT X
& Y POSITION

SET C.W. DIRCTN

PHO & SLT CHECK

NO (move RIGHT)

DISABLE X
MOVEMENT

r

SET CCW. DIRCTN

ENABLE STEPS ENABLE STEPS
CALC. No. of CALC. No. OF
STEPS TO FIRST STEPS TO FIRST

PHO & SLT CHECK

;

. DISABLE Y
(le move DOWN) YES ie_move UP) MOVEMENT
SET CCW. DIRTN. SET C.W. DIRTN
ENABLE STEPS ENABLE STEPS
CALC. No. OF CALC. No. OF
STEPS TO FIRST STEFS TO FIRST
PHO & SLT CHECK PHO & SLT CHECK

SET INITIAL
VALUES OF
MODULD 40

COUNTERS (X & Y)
FOR FIRQ

ROUTINE

RTS

SLEW ROUTINE FLOWCHART

(SLEW)

MOTORSON
SET UP SPEED
ENABLE FIRQ
COUNTER .
RESET ERROR
FLAG

INITIALSLEW
{ie no checks on
movernent

INITIAL
SLEW

NO

" CLEAR FIRQ
FLAG. (ie
start moving)

MASK FIRQ
FLAG (ie
stop moving,)

XORY
MOVEMENT
ERROR ?

NO

PRINT ERROR
MESSAGE

l

MOTORSOFF

RTS

VELOCITY MODE SET UP FLOWCHART

SET WODE TRUE
SET POSN = 0,0
MOTORSON

PROMPT FOR
NEW OR OLD
SPEEDS

APPLY PREVIOUS

SPEEDS AND SETUPSYNTH
DIRECTION

GETSYNTHGO

PRINT PROMPT FOR
VSTOP COMMAND

RTS

VELOCITY MODE FLOWCHARTS

CHECK PROBE POSITION
FROM POTENTIOMETERS

‘ CHECKPQTPOSN)

GET X &Y
POTENTIOMETER
COORDS.

CALCULATE X
& Y COORDS
THEN CALCULATE
RADIAL
POSITION

STOPSYNTH

ERROR
PROMPT SENT
7

NO

PRINT
ERROR PROMPT

RTS

SUSPEND V—-MODE OPERATION

NO

YES

STORE CURRENT
MOTORS STATUS
STOPSYNTH

PRINT PROMPT
TO CONTINUE
VELOCITY MODE

|

CHECK P/BUTTONS
AND MOVE IF
REQUIRED.

ENABLE
SYNTHESIZERS

RTS

VELOCITY MODE PROCEDURES
SETTING UP FREQUENCY SYNTHESIZERS

(SETUPSYNTH)

PRINT PROMPT
FOR SPEEDS

]

PROMPT FOR
X SPEED .

PROMPT FOR
Y SPEED

Y SPEED
CORRECTLY
ENTERED

REMOVE DECIMAL
POINT AND APPLY
CONSTANT FACTOR

la move RIGHT) NO X SPEED
(T NEGETIVE YES (le_move LEFT)
ph .
SET C.W. DIRCTN
SET CCW. DIRCTN REMOVE SIGN
! ‘
e m UF) NO Y SPEED
(ove UF) NEGETIVE YES (ie move DOWN)
b 4
SET C.W. DIRCTN SET CCW. DIRCTN
REMOVE SIGN
STCRE MOTCOR
STATUS FOR
FUTURE USE
CONVERT SYNTH

CONTROL NUMBER
10 & DIGIT

BCD NUMBER AND
PROGRAM
SYNTHESIZER

RTS

START V—-MODE

{GETSYNTHGO)

PRINT PROMPT
'PRESS ANY KEY
TO START

KEYPRESSED >12
1

YES

ENABLE X & Y
SYNTHESIZERS
(START MOVING)

RTS

PUSHBUTTONS FLOWCHART

NO

PBACTIVE
?

YES

MASK FIRQ
FLAG ie

STOP MOTORS

RESET FLAGS

RIGHT, LEFT

GOINGDOWN, UP,

INCREMENT
TIMER

NO TIMER

YES

NO

RESET SETIMER
FLAG

FIRST P/B
ACTIVITY
?

NO

SET PBACTIVE
MOTORSON
SET P/B SPEED
ENABLE FIRQ
COUNTER

ENABLE MOVEMENT
IN ALL

DIRECTIONS

SETIMER = TRUE

SETIMER = FALSE
TMER = O
PBACTIVE=FALSE
MOTORSOFF
SWITCH = FALSE

CHECKPOSITION

IDENTIFY
REQUIRED
DIRECTICNS TO
MOVE AND SET
UP MOTORS
ACCORDINGLY.

CLEAR FIRQ
FLAG Ie

START MOVING

RTS

CHECK POSITION FLOWCHART
(IN PUSHBUTTON ROUTINE)

(CHECKPOSN)

CALCULATE
RADIAL
PQOSITION

MSGSENT=FALSE
ENABLE ALL
DIRECTIONS

STOP MOTORS.
SEND ERROR
MESSAGE

SOUND WARNING
BUZZER

DISABLE
MOVEMENT TO
THE LEFT

v

PROBE 1O

DISABLE
MOVEMENT TO
THE RIGHT

DISABLE
DOWNWARDS
MOVEMENT

g

DISABLE
UPWARDS
MOVEMENT

RTS

MIRROR POSITION CONTROL FLOWCHART

(GMVIEW SHOWN. GMCEN, RVMIN, RVMOUT
HAVE IDENTICAL STRUCTURE)

GMVIEW

NO COMPUTER
CONTROL

7

PRINT ERROR
PROMPT "CANNOT
CONTROL AQU BOX’

PUT GUIDER
MIRRCR IN BEAM

PRINT MESSAGE
"GUIDER MIRRCR
ALREADY IN BEAM'

WAIT FOR MIRRCR
TO MOVE

PRINT STATUS
PRINT ERROR ‘MIRROR IN
MESSAGE POSITION’

RTS

Appendix D.

Automated X=Y Slides
Circuit Diagrams

The following drawings are included, in order of appearance :

Drawing No. Title

E3-0264 XYslide System Block Diagram.

E3-0283 XYslide Status/Control Wiring Diagram.
E3-0281 XYslide Mechanism Wiring Diagram.

E3-0285 XYslide Musclebox Backplane Wiring Diagram.
E4-0279 XYslide Musclebox Monitor Circuit Diagram.
E3-0162 XYslide Musclebox CD10 I/F Circuit Diagram.
E3-0275 Converter Box Circuit Diagram, Sht. 1.

E3-0276 Converter Box Circuit Diagram, Sht. 2.

E3-0271 SABUS Dual 10-bit ADC Circuit Diagram.
E4-0273 SABUS RS422/TTL I/O Interface Cct. Diagram.
701/1 Basic Electronics G.P. Wirewrap I/F Cct. Diagram.
E3-0125-01 SABUS Oscillator Card Circuit Diagram.
E3-0127 SABUS Frequency Synthesizer Circuit diagram.
E3-0259 Acquisition Box Wiring Diagram.

E3-0260 “Acquisition Box Control Circuit diagram.

vl MUSCLEBOX l
sunpfy
ngz . I
MICROCOMPUTER coper o
m__1 SYSTEM soz xb l |
supgly I stepper driver X Y
Frequency o UE | MOTOR MCTOR
Synthesizer
Frequency ow UF {
Synthesizer I I XYSUIDE
Osciltator EHT Supply | MECHANISM
- | Aytoguider i
6809 €PU Manitar <o ¢ M T 1
2K RaM | ' 0-T 0-T
EPROM ’) signal Pot, Pt
| cHed ted
Scan il driver dist, disc
& ENT_contral Autoguider mourt
Counters Timer | ossembly
Dual 106it AOC 1_analag _pasition
|_RS422 control & stahs Mai
| CONVERTER BOX v
RS&22 11D
{%in,8 aut) PLUG
RS232 10 PANEL |
{ dual] [<
RS232 110
{dual }
e
~__|
ACQUISITION Mo
BOX —
INSTRUMENT SLOW
Terminat COMPUTER MOTION
{NOVA 3) DRIVE
COMPUTER
IN_WARM ROOM ON TELESCOPE
pate 5-3-85 orawn [).(C. oesianep [J, CARTER niree XYSLIDE AUTOGUIDER. SYSTEM BLOCK DIAGRAM |csiR-saao E3-0264
T

crahd $4+324 03-84

NOTES 1. Connetions to AL camettors by flak cable

2,Fins 10,1, 002,08, & (14 are

commoned with (%

3. A - to culoguider 45" mirror via LEMO 0302

B - to external x-y handset via Sway DELTA

{ -m x-y slotted disk encodes

via 9way DELTA
O -t oquistion box vig

15wy DELTA

E -to musdebox via 9way DELTA on

rock plug ponel

o o

PORTC

£ un

PORT B

—0 5y

from powes supply ‘_/D m__

@
XLEFT 1~
S, >
XRIGHT 60 A3

|

CSIR-SAA0 E3-(283

FORT C

L]

port 3 8255 PP

L

ey

STATUS WIRING

TITLE X-Y SLIDES/AUTOGUIDER

oesianen [). CARTER

orawn [.(,

Ak
|
N 10y L6 Sy
A 1>
- .
N —
>_mc| N REE 2~ 7
™~ A} N YREF 8 [>A8
>Qﬁ<:| @ XSLOT 3 ¢
__l>_ﬂ7<j N I
_,%?C‘ @ e SE1STAT Y. [l apho
h_ GUEN [[[issate]
H oS o
optical [[y 2 YPHOD N — Qv tynote? — (15 4
<] |—Ah}——l XHE N RMPOS o AL o]
isolation |—%)3 YRUT A o OIP0S 2o AN
| o8 xmur) \ mAN 1, E>Ag_m<ﬁl]
—1o O
2 mgg g;o SPARE x5 " >.
20 I
E gg g; . GRATON 21; AT
M 061 o i DLIH
D e . Ge0s Zo o >
AO-—
m RVMPOS 2 Dms_,>—
<——C2"<3——o'5 O
’——AZQC}——CZL YSLOT 2%
21— Pat e
A | A\ . XSLOT " 9, : ﬁz
= & <
——&3—o0A o A d
—< i A3~ A XREF 21 AR g
2 4 o
I eg kil 20 %
25 ov 100
——< A5 o Yup 26 g ;i z
IR ¥/ gy, WG ¢ 1
——< A2 e XRIGHT 303: g E:: <
—— ok 20
_‘< A ol XLEFT o gjz
——— & ——P o &?K
——< 2 N2 GMCEN
——-—Eng}—'"C"‘ 1
——< AR - RVMOB ;‘E g ;: g
.__ng_____cis 150 g; }
_< AX — . 34 SELSTAT 11(3 ’
Ol . 1 31
—< N DS A/G 45 MIRROR 255 .
— < 3—o0f! IO—— 2
Lik“ —O0% o-—A 4
ﬂ:ﬂ' mir

oate 21-3-85

0F-04

raby 84-37%

Soyriau B4D serias

XMOTOR

12-p cornector delta 9
ol O 14
ol O ol 1t
ol o) | 38 2a
ok O - 2h_
To musclebox in _§
wam room 4 0 ._5_3_—
ol
|
o

X MOTOR ASSEMBLY

15-p dalfa 9w
ol P
To microcomputer ol 00— Qv
in warm room ol e]
o 00! S
O~ XFEF
.03_ X3OT.
‘07 Oy
|
. |
9-5 deltn 9-w
O] PPt
.09_- Oy
T tar bo o] 2" o ;
o converter box ¥
on 'r:.l.l:scopn g; Yﬁ‘ép —:O—'— T
O_lv Y3LOT —.()—I* YSLOT.
07 By .CL {y
Y MOTOR ASSEMBLY
deifn 9w
g.l.ﬁ = 1a
O.Ll 15
Aotiﬁ 2qa YMOTOR
Oetl 28
oate 17-4-85 orawn (].C, pesienen [, CARTER niree XYSLIOE X-Y MECHANISM WIRING DIAGRAM csir-saa0 £3-(0281 //
ci4ha B4=125 01-n4 1

PIN No. TO/FROM FUNCTION PIN No. TO/FROM FUNCTION PIN No TO/ FROM FUNCTION PIN No| FROM | FUNCTN|
ACH PL 2,36/a00; PS +Sy ACY PL1,3fACY PSS +Sy AT PL1,2/ACT PS. +5y 1 PsACE | PHIA
A20 PL4/C30 ENERGISE A2D PLS/C30 ENERGISE c1o PLIIC20 PL4JC20 FAULT 2 PLSIAL | PHIB |
c20 PLAIC20 PL3AID FAULT c PLS/C20 PL3/C1e FAULT c12 PL1,6/C22 PHASE ZERD Y 3 ALS/AC2 | PH2A
c22 PL&/C22 ; PLIICT2 PHASE ZERC £22 PLS/C22 PLIKLTS PHASE ZERO Cls PLZ,5/C20 FAULT X 4 PLS/ACL | PHEB
AL26 PL4/C26 DIRECTION AC26 PLS/C26 DIRECTION 15 PL2,5/C22 PHASE ZERQ X 5 CHASSIS | GROUND
AC28 PL4/C2B X'y AC28 PLS/ C28 CLK 2 PL&4IACZ PH2A 6 PL4/ACE | PHIA)
AC16,8, 32 PL2,3,4,5/A016,18 ; Qv AC16,18,32 PL1,3,4,5/AC16,18 :>0v 3 PL4ACH PH2B 7 PLL/ACE | PHB Ly
PL2,3,6/AC32 PL1,3,6/AC32 Ch PL4/ACE PHIB 8 PLLIAC2 | PHZA
s PLLACE PHIA % PLLACL | PHZB
o PLS/AC2 PHZA
7 PLS/ACL PH2B
c8 PLS/ALS PH1B
(o PLS/ACH PH1A
AC6,18,32 PL1,2,4,5/A016,18
.8, ey . 0
PL1,2,6/AC32 D Y SKZ X'MOTOR
PIN No| FROM [FUNCTN
6 PLS/ACE | PHIA
2,7 PLS/ALE PH18
38 PLS/AC2 PH ZA
PL4 Y-AXIS _ SD2 PLS X-AXIS SD2 PL6 EHT. SUPPLY UL el Bt
by 5 CHASSIS | GROUND
PIN No. TQ/FROM FUNCION PIN No. TO/ FROM FUNCTION PIN No. TO/FROM FUNCTICN
AC2 PL3/C2 SK1/8 SK3/38 PHZA AC2 PL3/C6 SKU3 SK238 PH 2A AC16 24 v Power supply 2y
ACL | PL3MI SKU9 SK3L9 PH 28 ACh PLYCT SKI/G SK2/49 PH 288 ACR2 PLY,2,3/AC32 Sov
A6 PLI/Ch SKV/T SK3/27 PH 1B ACG PLI/CB SKI2 SKa2,7 PH1B PL1,2,3,6,5/A016,18
AC8 PLIE SKIU6 SKI6 PH 1A ACS PL3/CT SKIN SK21,6 PH1A -
A2 PL5/A1Z TRI-1Bv >LOGiC SUPRLY AN PL4/IZ TRI- 1By SLOGIC SUPPLY SK 3 Y-MOTOR
Ath PLS/A1L TR1-1Bv Alh PLA4AY, TRI-18v PIN Nol FROM FUNCTN.
az PLG/C12 TRI-26v c12 PL4L/C1Z TRE-18v
MOTOR SUPPLY
14 PLS/C1G TRY-26v >”°m SuPRLY (16 PLLICG TRI- 28y > 1,6 PL4IALS PH1A
AC16,1B PL1,2,3,5/AC16,18 ACt6,18 PL1,2,3,4/AC16,1E 27 PL4IACS PH 1B
M1,2,3,6/A032 0 PL1,2,3,6/AC32 LY 38 PLLACZ | PH2A
c2 PL3IICI0 PLYICZO FAULT L PL3/CIL PLZ/C20 FAULT 49 PL4/ACH PH2B
wy] pL3/CIZ PLI/L22 PHASE ZERD 2 PLI/CIS PL2JC22 PHASE ZERO 5 CHASSIS | GROUND
£26 PL1/AC26 DIRECTION €26 PLZIAC26 CIRECTION
€28 PL1/AC28 g £28 PL2/AC28 s
30 PL1/AZO ENERGIZE Ci0 PL2/AC20 ENERGISE
A3 PL5/A30 SYNC. A30 PL4IAZD TYNC
oate 5-7-85 orawn [. C. oestanen J. CARTER nree XYSLIDE MUSCLEBOX BACKPLANE WIRING csIR-sAA0 E3-0285 ///
T

opabo 84+32% 02-84

LK7 d type 9-S
e [C——BH0 i k{>*8 PHO Q2
1
cto>—Y—FAULT vy 3%>w FAUCT o3
1
as>—X 20 : “o>’f’ PHO —O7
1 [>—XFAULT D 50>15 FAULT Os
T4 S540 1,6
pirs 1819 to Ov
>4
PH1 Y ' % (£ %
INGILE
[;,D b N
24 '
bPHZ Y
c3E> ~—_—
o> !
b PHT X -
CB! - ~—
s[>4 ;
h PHZ X
Red/green led's
5V
ACT >
al> ©:i'his lead to B side
f ph
:‘g oV — Zmm test poirts or phase
AC32 on front panel

DESIGNED . CARTER

oATE 21-3-86

orawnN D.C.

TITLE XYSLIDES MUSCLEBOX
MONITOR CARD

CSIR-SAAOQ
E4-0279

azahid 84-326

c2-84

9-;10 TYPE HePL 2530 s
ENERGISE) -1 8 LSSLO ngg.ﬁfrné
- 3 L o8 ERERGISE) 430
7
02 ’b j
3 5
[
U 1 g ot : re | |s80
stow O +
E% naé 6—-———13 0_1—1&{%6 S0 alm
1 [
CIRECTIGN (O -— 102) 1C 10 7407 09#;@IREETION .
5 Dk§ v I— .p DIRECTION 5o
soosT O— i 0.
s G 1 s> BOGET. <oz
‘ L
¢ I3
puse & { p rie| (680
06 — 3 1cs
" jﬂ PHASE 0° 7
STEPENARSD - a E; €20
D7 L) .b.'
.——ﬂj’:}——%—l 2
A— o il 104 G (- '
STEP -
0 Re 08 . .b. N SE NOTE 2 RETR §
oy O—4 o
120 . :
1) Ic 5 p*
NOTES.1, § DENOTES 4K7 PULLUP RESISTOR ol - b b7
21 normal - IC97
2. THESE CONNECTIONS ARE iNORMAL! e ot AN i BN A K acas
' uis123 o
NEAR FRONT OF BOARD FOR Taie
FUTURE USE } = ;
3. LNKS. THE USE OF THE ENERGISE Lo i 1 €7 ' PuF edl lsao
FUNCTION REQUIRES A MOD TO 5";&«5 | I..l Ll
THE €D 19 Ln e 101 o cTeRS
b IC1-4 HCPL 2530 Dt-B NGB w ' 9 1012 <9,
1€5 7405540 in.smm
106 T4LS541
3
I£7T 741800 [- ~JACH
TCaNTLLS02 10rF L?g-{*]—
1C9 7406 T T
100 7407 . . —<_J AC 16,18
1012 TaLsi23
oate 4-2-83 orawn [) (. DESIGNED D CARTER nree (D10 INTERFACE (SIR-SAAD E3-0162
¥

Qralvd 8141072

0 50T &

3mm red led's x 12

390R < 12 . o o5y from Acqy Box N 10)
alb L0 o 14 : WK1 20
° > . D
RVMPOS " mEEIEILl . hﬁ : Sﬁﬁ ShLic)] ol Sl & % RAMPOS Al —) 35
1C 2
1 ,-,J%,l HOPL P2
o’ e, B, 2530 i
GMPOS U—*um}}-l ol —t 16 & 5 03 1 GMPOS A 2
P AR ! 1c8 T -~ <! 0
|y - i [
[
Py >0, & I]. I " 4KT
GRATON %5 —2i1cq 1ty pl 2 o GRATON ___ A9 — 10
2 AL) HCPL, o~
. — : m;l 2530 12 Deltn 155
3 [0) 1017 - to
® - /I fo Gy 1 Aquisition box
g SN < 10152 ' Mﬂ 8 14 L -] IPa— 15 M AT 4§
L AL IC4
1 e 4 3 wpL 14d 19 4L 5540
ol {> 8 1 2530
RVMOB zc*.;]" lu I f e o s 1 :<} 6 o RUMOB | A13— 50
ol AL é N —
0—[<|——-—I:}-—J Sy 1208
15 30 2 /]
.
SELSTAT IU:'_L 2 @ g |] 1 s bl ol—ls n 7 o SHSTAT| _ Ak — 50
- ' | S et
Pt —,AL0 3 \| . ’355’5)
10- .
K7 I P 4liliRk|] C]SG 9 MOJ
L
Detta 37-P_| gl (A 1 II:] —J] ;
fo xyslide AGVMIB 1162 18 pl t - AGVMIE Al }——(0 Delta 9-5
mictocamputer Dmeg',‘f’geunhﬁgi';efmé To Autoguider
| (Nt} o 0 0 O €2 9~ mount
{ (I A £ T (R ,j: - 2 O
P o2t 2) G
YOOWN 1035 ! —Lo p ! YOO Abey by 5 o
ol Al 3 . Cigitl 0y
1 ‘ . rait
.10 DEZS [3
e @5\7 ' 16{}9 i X Lo rd4—0 o—4Suitthes
ol i 2 on top
[riaht ponel of
.H 25 10 :T : box
XRIGHT tc;]-9 1301 p2 f KEIGHT By 2 oo |
.30 > "o
.12 DCZ? ' | 19 left
XLEFT T ey S RLEFT G v o o
.31 DAZT 13 ZZUT‘ 100K
H — 08 o 45 l;l 13 BUZZE]
i —g " 1,\3 1 Dt K| S LS I Y S 10 TS 2 Cs
BUZZ 1 ¢ IC 8
20 —, AlS 1 L~ LS
. — ,7?,1’2
- SH.A -
sate 9-3-85 orawn 0. C, oesteveo 0, CARTER ririe XYSLIDE RS422-TTL CONVERTER BOX . 3"7|csir-saao E3-0275
1
ang 84125 0Z- B4

rrom spr. T

.5_____________E,>EIO 14 f*
PN N Y 13 ; — d
ASAT—) ilg
.ﬁ DE21 10 L% 3mm red lads ta r"l"
. XSLOT < Tz l2 b x 3908 . J@:k l XSIoT 8 e
"—Céﬂ—-{:-—'
7 ~—L22] 2 Delfa 9-P
¢ gl YREF # 1;]7 . 1 i YREF M~y Bgl to xside
.26 r~A22 - el encodars
L
B 02 i 1
i = I|1 o 18 2 f RREF LT~ 2
XREF 1c2 €7 . <] 9
.27 —A1 3 .
| By rj s \
S <} Q)
o2 Leds ol o
ON o
to power : - f By ACIG To power
._3.2__.‘ supply module
supply madule mn Pl
.13 Detta 15-§
L FS1 I AC2 Sy JJ-.Acao 015 Aqu. box
MAINS IN A SOLY T~ 7 Deltad-P
IEC oon.| | n gsv-g.k Oy &ECEZ WRAP _PCB ' —9, xyslide
o - | CCT AS PER ABOVE 34 Delta 37-P
L A ' To microcomputer
- 2
PM537 POWER SUPPLY MODULE f
+-12y 6
260mA __,_l
NOTES - il TOP PANEL CONTROLS Tjg\
1€ 17,17 7405540 Grgticule illuminatign
102345 HEPL25%0 T ’ ! AL it o ¢37 0
I£5%0 390RDILPACK | 5K
Ice 745541 *5v 2408 | + ACZ4 ey} Cetta9-S
1Ic9 120R DIL PACK I & o | To autoguider Mount
e 261532 T 0y A2 WED)
I£120516 26LSH =2 10yF
113 LKT0L PACK FI0+1 -Sy_,J-m[zg 20
S5y 1208 "~ 4
Mz _w.é,m.
SH. 2 -
oate 12-3-85 orawn 0. C. esisnen [, CARTER. nme XYSLIDE RS422-TTL CONVERTER BOX 3f slcsir-saao E3-0276
T

oraiid B4-32% 03-24

NI NOTES :
> 7 8 9 I) 1. ¥ Danctes 4K7 putiup
0 ——of 5 resistor in OiL pack
10! v sistor in .
w87 ta > Wi 14 g]@s— QE 5 2. § Denctes 220R cesishr
] X oc w i n DIL pack. This packdC 13
() . wn be comected as pull-yl
1y puli-up
A3 >— o [‘LQ: I"OB s M35 or pull-dawn by links U
,__SEJ,/O_ZLZ) Tl Luc Jnﬂ ADC 00 2 0, '
10K 3. Addressing: AB] AB
> CTSPEETE .]] A s g <9 P! 2470 =m0 o0
— o_f_ﬂ) 3 ADZ 0
' 9 112 o7 130pF Poraliel INE 1§
N r;J;; v
> Ty]1_; 1 :
Y o—-‘-—-m) }2 L | | gm0
E"D T - A% 0 1 3 — B0k
! o4 i’D Hpoo m[:c
i it
> w3 6 . | F .
—o [1 g Sw
1 E
mn . 3 s o] 3 1K
0 C WR
Asocg::% hda % i : ® : 3
1 b ["['G] ,,i’,A - 9 336
L o
8T 2> ”@C’z ! i ﬁr:n
s ! 7 /;_"mp,: 5
] . H | o L
1 + —IL- Lema
} n 2 Jma| 0304
o aul> 3{}&) i 000 mgf(
1
> f 1cs pu Deifa 15-5
W an> - e L N 5v—_08, 5
l J) L—015
o] 1 199 07
1 9 1t .
o7 5> :2 5 " 7 “""“"—O_O;"
ASC> —é i—
AD Tl 7% & 1] 1 [n —On
a> o oLssh |13 1Bl LS5 5 Y2 o3
> 1% 4 14 4 Y3 o)
A m e fa o ri3 3 15 52
> :3 . 8 f Yy a9
Y. 3 1,23
L1 74LS139 18,9 741532 ;—O .
AC> * . o5y 1026 741586 101013 T4LS561 sea note 3
L o Lo 04 7407 1CH,12 ADC OO 5v-—°Ugj—IC B3p16
33UFT T nr IC5 74L530 IC13 Z20R Res. ”J;oa
v 107 4K7Res.
an> 2
oate 19-3-85 prawn [J.C. oesioneo [J. CARTER nree SABUS DUAL A-D CONVERTER (10-bit) [csir-saro E3-0271 //
T

arahg 84-37%

Gle-04

NOTE [C's 8,9,11,3 have p12to Ov & p& pulled high, IC10 has p1 &9 to Ov
3x26LS32 , 12x 150R, 1C16,15 m(T,—DAG)
31
Bof2 | 1 A/GLS"HIR.DC
: O | 3
0
2 s 7 S =00 | =
€8 - {430 &
- . <L 9 = e =7 | o
m ek
« | Bl] | gV €28
. - 725 -~ >SAB | <
E L0 3 \\-\ 1 ‘ | —| T ¥XLEFT gﬁg %"
5| 7 gy S Qv {5 | &
18 ol B350 =
m <+ — A5 | o
C24
anld7 Bl © 1 voon = w
h— ~—— {>A24 =
\D—1 1 XREF az3| =
19 c /' 0 — ? s €22 o
Ic1 170 (L >A22 s
. =1 o e Tl I
14 o
F Bl YSLOT M
o 15 =
& = XFAULT LA -3
22 18 < 2 t v/ Q- TRTE [00R 1 {>an o
) (] IC0 ' =
6254 12 n lad gcase MR ~p5 &
=
. o
<io_1_i_'fa itz P (R XP:O oAl | o
LS04 | 1016 t s S| g
B7 25 b <}D—~ HCPLZ530 ' (TR} Y PHO DC”" %
2 L]
19
Bofla— =2 b RVMPOS gm ;f,
< &
15 7 {08
5 GMPOS .
. 26LS319 109 1 17
GRATON
/2 }Z >A17
17 s D { >06
w 13 BUZZ DAC
'—
o
&1 13 4 > 16 CSai
12 2 > = >0
T4LS541 10
1 § > 14 T>n0
gle 71 [N |13 —
e
pDeSIGNED D CARTER TITLE SABUS RS422 1/0 CSIR-SAAO
DATE 19-3-85 |oRAawN O (BUlE‘II'TERF%CEC E?EETRXYSUDE'
-3- DRA N BASI ONICS GENERAL -
" PURPOSE WIRE_WRAP CARD 701A E4-0273

ozahd 84-326 02 - 84

+H2V——C 31— +12V
+5V A1 +5V
+5V C1 r >
' N . |&E o 4
AB7 C13 2 J
13 -
2)JIC De—3 |sw2 Swin/ -
ABE A13 ril 8} ¢ 1 s
: Nico—r ?
ABS c12 2 25
| 1c 7 0o 5CS PACH
10
o) » oA —
ABL A12 H PAZ
a IC 5 PAS-
[z 3] 1c g 2 P1A PAL'”
172 V4
: P , PA7 L ———
682 A1l % A P
ABI C10 %A1 PRI
ABO——A1Q = 2 A0 N L I
9 PR ——
- ra PBE—-—-——-
oW A 20— ¥ WR PRI
R AlS » 5RD pPR7RE—
1 19
DBO A2 —e— Z - 34 0o pPCOM—r
CB1 c2 — 2 L 3 34 TR —
0B2 A3 - 18 202 pCAt—
DB3 c3 ' > 13 303 pPC3e
B4 Al ’ - : 2 sl - oo
35 Cé * ; :z z: 05 Pc§—————:j‘
JE6 AS » ; 1C : > L6 pca.o_.___
= : 07 e
387 C 5 na l!T 15 1S5 |14 [13 [12 i1t 7{‘ LSZAS PC?
+5 ' 7
1 19 7-/—,-—
1cz2! 4 ‘ = 2 E0ARD
7 3 & Is 16 {7 18 9 am—/ ! INTA
A23 !
T o C D +5 BOAR D
C25 &t . INTERRUPT
NG A8 — _J
INT——AZ5 T sl s oF SUARD
IC 4 s el ’:—:‘—.D__B_
12V €30 -12V —?-: INTESRUPT
¥R €23 C
g i
- C18—

YHYNYCHYIYHYH YL Y
Clit) 2|3 S6i|7

GENERAL PURPOSE 1/0
WIRE WRAP CARD 70%1 Fev1

MAGGS INDUSTRIAL MICROS |

~- o] r<t-l~f----------- - -F=
nsai, i f A4 Les
L2225 L2 A 2R
WORTE N NN il
-— o 1y
1>] 220F _{0nF 5 z 18w
5% It3 1 IC 2 .
/l l 1 [i I—E
ey y 7167 467
PETIRE LBP LB
6y T fr}n 10
AC32 - . o By X AXIS
‘ DIVIUE By __ 10 SYNTHESIZER
:- Sy : n;-
| Il
| |
|]n '14 5 |
HCD 80 : T o N LT
10K OSCILLATOR b e IO 3 — %) MONITOR
5.62703MHz | g | L~
VAL
! P o>l
:This chc;.c onmml -
"piggy back’) ‘
______ B 70
”li’ L. = d .m- . 0302 Y AXIS
4 ,-,J-,—,_ SYNTHESIZER
NOTE: } DENOTES A PULLUP RESISTOR IN
DL PACKAGE 14-2-332, IC's & & 8
1€ 9 - TuLSS41
1010 - 74LS0
WiTH PRE-DIVIDE MOD. - -
wate 5-7-85 orawn 0. C. cesianen). CARTER nre SABUS OSCILLATOR MOOULE FOR XYSLIDES CSIR-SAAQ £3-0125-01
T

1y
AB T C13[C> 3
————90"'05—’—’) Gl bzhsTzpe 2l B Lo

¢ S1C2 lL-&:/os—‘ ‘ C20 :
At) @ Loz 1 e19 18 SWé 2[\5;,\13 SYNTH, OUTPUT __~¢
! °_L(’J LS 350 g3 [b-d] L

c7
s10 s [ms oW
W

=)
=

5 102 12 §.-)
au> " lw) m Sw
| 1gy3f
> = " . 8 3
—0k 86 530 g T
mn Ics 5 /104 1 /1Ch
i
. cé 16 Y1z
ANz
AN [y Leo "
. ' Lol s Is slmls o I tols o lo Inls Is L I fs Is I bals b
s> B Sl 1C 11 f 1C10 -f 109 _ﬁ 114 IE 1c1s _f 1C16
1 7 7 7 .
[%“ 1 TW67 mL 76187 H o TueT 1 Tme7 - IR WL w167
AB 0 AL 915yﬂ AR iR 5% Bz 15 fie T 5Te Fis 1%
S SR A
BuF = O1F o haks 17_ft6 L5 e shbilr & lnbotole 3718 B9 j4 1 f2 B
AcazD—I—Tﬂ 2 0 Y P 1012 Bl 5T A9
~ { R
RESET A 21> 3 sut 8 [A I
- DATA SEL Y6~ 27[B 19 Popi o B e
W anC> I
A0 9> pR A
oa? > Z 18 22 051 OS2 %5 DELTA
o> 3 17 29 95 15 og
> L IC1 14 M\ oorc17 @A [0 M~
5 15 16 59 1 o2
‘:;g . 1% 9 08 2 5,
A LS54t |13 I sz B L$541 Hée—yy
QD 8 12 A £ 5 lﬁ......_.....O3
3 4
DB o A >— ’ 1 J.?__...O;,
9 NOTE:1. } CENOTES 2K2 PULLUP RESISTOR IN 27 To | :
DL PACKAGE 16-2-222, IC3. K2 .-
2. 4-WAY SW. TRUTH TABLE. X-NOT ALLOWED.
SWl W2 SW3 Swh LY

L. x CL X 200
CL. X X CL +500
X CL.CL X +2000
X X Ll +5000

DATE 21-9-82 DRAWN [.C. TITLE SABUS FREQUENCY SYNTHESIZER SAAQ-CSIR E3-0127

Quaatid 871072 I

l oy | d ¥ TW]G ‘60 QUT OF BEAM w

REAR PANEL
AQU'S]T‘ON HJX GMVIEW O o.ﬁ D'M A1T:<: n.o Iﬁ:;‘ %_
E of ¥ {02 C1e< 80 Sv
| GRATICULE
o] & >0 18] 00 ﬁ ¢
| I 1K , LEMOONZ TO GRAT
M. centre__ ‘ol U >4z M6 —90 Oy i
| GRATICULE ON/OFF
Ot — Saa (23 2 Yo o
9-W DEL
RV.MIRROR ASSEMBLYL 00 0! ‘:Jcr. A‘JB:G leo MIRRORS _STATUS 14
_ BN 35S T0 CCD
RyMoUTEEAM O _ 0] @ Oh ' Too DIM U9|C? ‘90 M !
VM, : —X
 Jou 901 >'ts A19 '<: Leo o X SITICN
L .07 .01 548 P.C. BOARD 522|G 7.0 GRATON 10\
sea dwg. no, E3-0260)
RVMINGEAN T_;‘ o0t o0 DIM 9 A22|C} PN G.M, POS zob
0——1Q)
a1 0 (1< ‘90 BM.POS 0
e W DELTA 9-W DELTA | e By | 15-S DELTA
AT PN GMCEN 50 | 10 XY SLiDES
FRONT PANE] —— 1y | MICROCOMPUTER
I ERONT EANEL % : N el w00 czolC} ‘800 RYMCB 0
& W 10 | 13 S| STAT ———0
ol a9 A< - . Je 20
P s 07
smi>}-LENTRE ol = >0
COMPUTER .
¢ —[w AC24,25 <7 12y Elomnp
S | SOV 15-12
oa? A o] [o o
TO GRATICULE 2 °; & el E>| AC8 AC26.27 <) Oy N
1
7/ % centre o 1 C>on £
GM 4 o 7
POS. @ 12 I LRVM] [6M7]
DS_QRAIQEE—Q Vigw O® DA“ solenoids — £
W 5-S N - 15A SKT
10 STAP DB o] AC29 '|<:!— N MAINS OUT
D CENTRE oy - {}103 as <3 Y
\& NOT CENTRE o.‘ll. DMB
N\—15-W DELTA |
oate 6-2-85 orawn [.C. esisveo 0. CARTER nree 74 & 40" AQUISITION BOX WIRING DIAG. [csir-saao E3-(259 ///
T

oratd B4-325 02+ Be

NOTES: ’ INDICATES 4K7 PULLUP RESISTOR

11,2 - 74LS03 IC9 - TulS04 \
63,4 - T4LS00 cz8 Aizj;
Ics - 74LS08
166 - T6lS261 e CENTRE Ao
L7 - 74LS541 8
18 - 7407 WTR 0 STaP
G é &y , 2o > NOTCENTRE <
GH.VIEW = ML ' (577 912 R13 re[J2¢2 MRSTAT <A 10 CCD
o K8 X8
\CZD ' 4] 2 3 1 ¢
p i : P12 Pz N3904
> = R Ov < Tlarece, A8
G.M.CENTRE—AZ[>——¢ 3
i 2
a3] 1315 Tm\ﬁ GMCEN Dt
> L 8 1 e
é@] 14 8\1’2 RVMOB R
RVMOUTBEAM— AL [>—9 3 LT y <_Jc20 TO X-¥ SuDEs
s> i GE[CZ* —-
> { I_s_ NI SELSTAT < an
ws> * 11czak- 17 4
- 1cs 168 <]C23 FROM GRAT. SW.
RVMINBEAM —| AS[>——¢
L[> i s A 16 <JC18T0 GRATICULE
| |_-Z : % 5 o GRATON e
(> 3 N
3 . s
COMP/MAN, _| l_ v
SELECT i [:-?— —~ A 1,5 .
A >— K107 [9-SHPCS <TJAZA-FROM X-Y SLIDES
(> L 1 1 \ R
A ez blle 106 220R
G.M. POSITIONA l - : ,/L
9} IC3 107 o BYMPOS <o
{nD \J
: Ri7
69[} i 1 ; 2208
s “ 5
N d Y TACID,C16
RVMPCSITEN—
| o 1t B s L oo g (51T — Tz
b] l
Qw[:) + —I—n Tzv 1 "szw
. * —+ <_] AL26,27
oate 71-2-85 orawn J.C. oesianeo O, CARTER nree 74 & 40" AQUISITON BOX PC.B CIRTUIT DIAGRAM [csIR-saa0 E3-0260 ///
i r——— — T

	Contents
	1. Objective
	2. Introduction
	3. Discussion of design principles
	4. Hardware implementation
	5. Software
	6. Problems encountered
	7. Test results
	8.Future plans
	9. Glossary of terms
	10. Bibliography
	11. Acknowledgements
	Appendices

