
DEVELOPMENT OF A DIGITISING WORKSTATION

FOR THE ELECTRONICS LABORATORY UTILISING

THE PERSONAL COMPUTER.

By H.P. Janse van Rensburg

Thesis submitted in part fulfilment of the requirements for

the Masters Diploma in Technology to the Department of

Electrical Engineering (light current) at the Cape

Technikon.

Research and Development Centre

Telkom S.A. LTD.

Cape Town

South Africa

July 1994

i

DECLARATION

I hereby declare that the contents of this thesis represents

my own work and the opinions contained herein are my own. It

has not been submitted before any examination at this or any

other institution.

H.P. Janse van Rensburg /!4't:j "'___ ~--------------------------
(Signature)

ii

ACKNOWLEDGEMENTS

On completion of this thesis, I would like to extend my

sincere thanks to the following individuals for their

assistance and support:

• Mr P.H. Kleinhans for suggesting and commissioning the

proj ect concept and under whose guidance this research

has been done. Furthermore, to the Cape Technikon for

funding the project.

• Mr G.V. Williams and his staff at the Telkom S.A.

Research and Development Centre, cape Town, for the use

of their facilities, their moral support and with whom

many meaningful discussions were held.

• My fellow student technologists, engineers and fellow

colleagues for their encouragement and assistance.

• My family and friends for their understanding, moral

support and encouragement throughout the design of this

project.

Hi

ABSTRACT

This thesis describes the design, development and

implementation of a digitising workstation for the

electronics laboratory that utilises the personal computer.

OPSOMMING

Hierdie tesis beskryf die ontwerp, ontwikkeling en

implimentering van . n gerekenariseerde werkstasie vir die

elektroniese laboratorium wat gebruik maak van

digitaliserende tegnieke.

iv

CONTENTS

1. lNTRODUCTION 1

2. OBJECTIVE.•••••••.••.•.•••••••••••.••.•••••••••••••••••••.•.••••.••.•.•••.•••••..•.•.••.•.•••••.••••••••••.••.•••• 3

3. BASIC PRINCIPLES OF DIGITAL STORAGE OSCILLOSCOPES

(DSOs) ••••••••••..•..•••••••••••••.••••••••••••••••••••••••••••••••••.•..••••••••.••.••.••••••••••.•.••••••••••••••••••••..•• 5

3.1. Sampling Techniques 6

3.1.1. Real-Time Sampling 7

3.1.2. Equivalent-Time Sampling 8

3.1.3 Sequential Sampling 9

3.1.4. Random Sampling 9

3.1.5. Slowing down the signal 10

3.1.6. Accuracy and resolution 11

3.1.7. Roll Mode 11

3.2. Analogue-To-Digital Conversion 12

3.2.1. Sample Rate 12

3.2.1.1. Aliasing 14

3.2.2. Vertical Resolution 15

3.2.3. Vertical levels 16

3.2.4. Vertical deflection sensitivity 16

3.3. Conversion Techniques 18

3.3.1. Flash Converters 18

3.3.2. Charge-Coupled Devices (CCDs) 19

3.3.2.1. Multiplexing CCDs 19

3.3.2.2. CCD parameters 20

3.3.4. Post- and Pre-triggering 20

3.3.5. Glitch-catching 21

v

4. ANALOGUE TO DIGITAL CONVERSION 22

4.1. Ramp Conversion , 22

4.2. Dual-Slope Integration 26

4.3. Successive Approximation 28

4.4. Parallel Conversion 31

5. HARDWARE IMPLEMENTATION••••••••.•••••..••••••••••••••.••••••••••••.••••.•.••••••.••••.•.•• 34

5.1. ADC-207 Video Flash Converter (DATEL) 34

5.1.1. General Description 34

5.1.2. Theory Of Operation 35

Table 1. Chip Select Truth Table 38

5.1.3. Technical Notes 39

5.1.4. Application 40

5.2. Buffer Memory 41

5.2.1. Conventional Memory 44

5.2.2. Extended Memory (XMS) 44

5.2.3. Expanded Memory (EMS) 45

5.2.4. Upper Memory Area 46

5.3. Programmable Peripheral Interface (8255) 47

5.3.1. OPERATING MODES 48

5.4. Circuit Description 51

5.4.1. Analogue Input Stage 52

5.4.1.1. Description of the analogue circuit 52

5.4.1.2. Detailed Analogue Circuit Description 53

5.4.2. Digital Capturing Stage 54

5.4.2.1. Description ofthe Digital Circuit... 55

5.4.2.2. Detailed Digital Circuit Description 58

5.5. Power Supply 60

vi

6. THE MSCOPE.EXE PROGRAM 61

6.1. Main Function 61

6.1.1. Menu 62

6.1.1.1. File Save 63

6.1.1.2. File Import 63

6.1.1.3. Scroll Value («» value) 63

6.1.2. Quit 64

6.1.3. Zoom X value «<X») 64

6.1.4. Zoom Yvalue «<Y») 64

6.1.5. Shift Backward 65

6.1.6. Shift Forward 65

6.1.7. Dot Display 65

6.1.8. Line Display 66

6.1.9. Manual 66

6.1.10. Internal Trigger 67

6.1.11. External trigger 67

6.1.12. Reference 68

6.1.13. Shift Up 68

6.1.14. Shift Down 68

6.1.15. Filter 68

6.1.16. AC ChI 69

6.1.17. DC ChI 69

6.1.18. Voltage Scale CHI 70

6.1.19. Trigger Level... 70

6.1.20. Sampling Rate 70

6.1.21. CHI UplDown Control 71

6.1.22. AC Ch2 71

vii

6.1.23. DC ChI 71

6.1.24. Ch2 UplDown Control 71

6.1.25. Voltage Scale Ch2 72

6.1.26. Ch2 On 72

6.1.27. Ch2 Off 72

6.2. Functions , 72

6.2.1. The draw function 72

6.2.2. Calculations 75

6.2.3. The readl and read2 Functions , 77

7. PROBLEMS ENCOUNTERED •••••••.•••••••••.••..•.•••••••••..•.•••••••••••••••.•••.••••••••.••••••••• 78

7.1. Bandwidth ofOp-Amps 78

7.2. Finding A Suitable A-D converter 79

7.3. Operating Speed 79

7.4. Component Soureing 80

7.6. Working on the PC Bus 80

7.7. Design ofthe PC Boards 80

7.8. Direct Addressing of the RAM 81

7.9. Software 81

8. TEST RESULTS 82

9. FUTURE ENHANCEMENTS.•••••••••••.•••••••••••••.•••••••••••.•••••.••.••.••••••••.••••••••••••.••••• 91

9.1. Writing a Wmdows based program 91

9.2. Adding Export Facilities to other File Formats 91

9.3. Adding Import Facilities from other File Formats 92

9.4. Automating the Calculation of the Signal Parameters 92

9.5. Converting the unit to a Logic Analyser 92

10. CONCLUSION ••••••••••..•••••••••••••••..••••.•••.••..•••...•••••...•••••••••••••••.••••....•.••.••••••.••••••. 93

11. BffiUOGRAPHY 94

viii

12. APPENDIX A 96

12.1. Flow Diagrams 96

12.2. SOFTWARE 99

12.2.1. Mscope.cpp 99

13.2.2. Include files 138

12.2.2 readl.inc 138

12.2.3. read2.inc 139

13. APPENDIX B 141

ix

1. INTRODUCTION.

The digitising workstation is a Personal-computer-based

test apparatus capable of digitising analogue signals at a

maximum sampling rate of 20MHz. The features of the

workstation are comparable to that of a dual channel Digital

storage oscilloscope (DSO) but at a great reduction in cost.

The controlling software allows the use of a mouse to

control all operations of the digitising workstation. The

output to the screen is in standard VGA resolution. The

digitising workstation features manual as well as trigger

control and all captured information can be archived to

file.

The workstation consists of two main units:

• The analogue input unit

• The digital capturing and control unit

The analogue input unit also contains the analogue to

digital converters used to digitise the input signals. The

main function of the analogue input unit is to interface the

input signal to the digital capturing and control unit. The

digital capturing and control unit captures and stores the

digitised analogue signal in fast static random access

memory (RAM) from where it is available to the PC for

processing.

The requirements for the PC are the following:

• IBM compatible PC with 80286 processor or higher

• 640K RAM

• VGA monitor

• Pointing device (mouse)

2

2. OBJECTIVE.

Sophisticated test equipment are very costly and cannot be

afforded by most electronics enthusiasts. The situation in

the education sphere is as such that funds are not always

available to equip all workstations in the electronic

laboratories with suitable test equipment. Sophisticated

test equipment are also not always utilised at full

potential by the students.

The availability of personal computers to the students is a

necessity considering the design tools available to the

electronics industry. Ideally all workstations in the

electronics laboratories should be equipped with personal

computers. It is thus a good idea to utilise these computers

as both design platforms as well as for testing purposes.

A digitising workstation utilising the personal computer was

suggested having the following features:

• The digitising workstation should have similar features

to an oscilloscope

• Two channels

• All operations should be controlled by the keyboard and

mouse

• 1 MHz signal resolution

• storage facilities to file

3

• Calculations of signal frequency, voltage, and phase

One of the main advantages of this unit is the storage

facilities to file. This allows the lecturer to capture and

store signals and build up a library that could be used for

future reference and demonstrations.

4

3. BASIC PRINCIPLES OF DIGITAL STORAGE
OSCILLOSCOPES (DSOs)

As the digitising workstation should have similar features

to a Digital Storage Oscilloscope the basic principle of

DSO's needs to be considered.

The benefits of retaining signals long after they have

disappeared from the input sockets have already been proved

with analogue storage oscilloscopes. Using storage CRTs with

special bistable state phosphors, and mesh storage layers

(variable persistence and fast transfer), analogue storage

scopes feature extremely high-writing speeds and the ability

to display many waveforms with good vertical resolution

still at a good performance/price ratio. For example, fast

transfer offers a high performance method of capturing

single-shot events. Nevertheless, the signal is only briefly

available to record with a camera.

Digital storage is forever! The accurate sampling of

analogue signals at fixed intervals, for conversion to 'cold

calCUlating' digital numbers, offers many extra advantages.

For example, compared to the 3% accuracy of an analogue

time-base, a digital time-base is accurate to better than

0.1%. [13] Signals stored in memory as digital words can be

recalled time after time without deterioration: this permits

manipUlation and an excellent quality display on a low-cost

5

CRT in whatever form required. The storage and display

flexibility not only allows such waveform calculations as

risetime, peak-peak, but also enables many mathematical

functions to be performed; e.g. mUltiplication of signals,

fast Fourier transforms, etc. for signal analysis and

comparison. In data system set-ups, signals can be sent via

the IEEE 488-bus to a remote computer or X - Y plotter; e.g.

for documentation or archiving purposes.

DSOs use a sampling technique to capture the fast analogue

signals with high resolution, the maximum sampling frequency

determining the frequency of signal that can be captured.

3.1. Sampling Techniques

primarily, DSOs can be used to capture displayed waveforms

and store them indefinitely, especially single events or

pUlse bursts, without the tedious problems of taking

photographs at the precise moment of interest.

In early models, the benefits of DSOs came at a high price,

and even then the performance was not particularly good.

The problem was to find efficient circuit devices to capture

very fast signals: previous high-speed data sampling

techniques had limited picture resolution. [13]

6

Sampling, or taking parts of a signal to get a picture of

the whole, is a technique used to piece together signals

that cannot be displayed directly. The more samples taken,

the more accurate the picture!

3.1.1. Real-Time Sampling

A one-time event obviously needs to be sampled at a single

sweep. At mid-frequencies (up to about 50MHz) , real-time

sampling is used for single-sw~ep acquisition.

REAL TIME SAMPLING

Figure 3.1

Here, the signal is sampled by successive data points taken

at equal time intervals until the end of the sweep. The

samples are then reconstructed on the display as a matrix

formed by the desired time and voltage points. The limiting

factor in real-time sampling is that the sample rate must be

high compared with the incoming signal frequency.

7

3.1.2. Equivalent-Time Sampling

For fast repetitive signals, samples can be taken at various

times over different sweeps to fill the waveform memory. It

can be compared to a series of quick looks at various parts

of a waveform because time doesn't allow one single look at

the whole. The separate images are then put together to

complete the picture as a continuous time trace. Two methods

of equivalent-time sampling are generally used: sequential

and random sampling.

1ST SWEEP
1,1......:

1

_

_...JnL.....:....__

NTH SWEEP
===~~_n_I......:_- - ~

SEQUENTIAL SAMPLING

Figure 3.2

8

3.1.3 Sequential Sampling

Here, one point along the waveform is sampled per sweep

until enough points are aquired by the memory. The number

of sweeps needed to capture a signal will therefore depend

on the number of points required to fill the memory.

Because of the fixed time relationship between sample and

trigger point, sequential sampling is not suitable for

showing the rising edge of short widely-spaced pulses.

3.1.4. Random Sampling

This is ideal for displaying fast rising edges, as the

sample is taken on random cycles of the oscilloscope clock.

9

1ST SWEEP

NTH SWEEP

i
--,--+-_M_-i-_
---'''...In...._
_ --'-lrL
_.....InL- _

RANDOM SAMPLING

Figure 3.3

Random sampling occurs once per sweep, each point being

stored in a memory location referenced to the trigger point.

The advantages of this storage technique with fixed

reference are pre- and post- triggering and jitter-free

displays, discussed in section 3.3.4.

3.1.5. Slowing down the signal

As high frequency linear amplifiers are difficult and

expensive to build, the DSO technique is to sample the high

frequency signals and then reduce their frequency to enable

them to be processed through reliable, linear amplifiers

10

before accurate conversion to digital values using an

analogue-to-digital converter. The resulting digital word

equivalents are then reconstructed to form a continuous

display.

3.1.6. Accuracy and resolution

Accuracy of signal reproduction depends on how well an

instrument can resolve or distinguish signal differences

within its specified accuracy. Although a DSO does not have

the 'infinite' resolution of an analogue oscilloscope, its

measuring power and storage capabilities are much more

extensive. High-frequency performance is comparable because

of the advantages in fast-sampling techniques already

mentioned some DSOs for example capture signals with

frequencies as high as 2 GHz.

3.1.7. Roll Mode

In contrast to the fast signal techniques, lower frequency

signals can also be captured and stored in memory. Because a

DSO time-base is derived from a crystal source, it can be

accurately divided to capture sloW signals such as

temperature drift over periods of several hours using time

base speeds of up to 1 hour/div. In this way, the DSO

effectively acts as a line recorder. This capability is

11

often called the ROLL mode as the waveform slowly rolls

across the screen from right to left.

3.2. Analogue-To-Digital Conversion

To appreciate the advantages of a DSO it is useful to

realise the importance of the ADC in determining the overall

performance. The ADC specifies two key factors - sample rate

and vertical resolution, both affecting accuracy of

conversion.

3.2.1. Sample Rate

This determines the maximum frequency of the input waveform

that can be sampled and reconstructed. The sampling clock

frequency must be as high as possible, since it determines

the time interval between points plotted for the matrix

display.

12

INPUT SIGNAL

LON SAMPLING RATE

INCREASED SAMPLING RATE

Figure 4.3

For good resolution of single-shot events, the clock

frequency should be between four and ten times the signal

speed, depending on wave shape. For instance, to look at a

transient in some detail, ten samples may be needed.

However, checking the presence of a repetitive signal, say a

sine wave, will probably only require four samples per

cycle.

The sampling theorem by Harry Nyquist places restrictions on

the frequency content of the time function signal, f(t), and

it can be simply stated as follows:

13

In order to recover the signal function fIt) exactly,

it is necessary to sample fIt) at a rate greater than

twice the highest frequency component. [12]

This sampling rate of twice the highest frequency component,

is refered to as the Nyquist rate.

The consequences of sampling a signal at a rate below twice

its highest frequency component results in the phenomenon

known as aliasing, overlapping or spectral folding.

3.2.1.1. Aliasing

A signal with a bandwidth, Fa, must be sampled at a rate,

Fs > 2Fa in order to avoid loss of information. If the

number of samples of a signal, F, is inadequate, i.e.,

Fs < 2F, a phenomenon called aliasing, inherent in the

spectrum of the sampled signal, will cause a frequency equal

to Fs - F, called an "alias" to appear in the signal band

(of frequencies below FS/2). For example, if Fs = 4kHz and F

= 3kHz, a 1kHz alias will appear. [11]

since noise is also aliased, it is essential to provide low

pass filtering prior to the sampling stage to prevent high

frequency noise on the signal line from being aliased into

the signal range.

14

The danger of aliasing is that

displayed at several time-base

different harmonics.

a stable trace may

speeds, corresponding

be

to

Aliasing errors can be reduced in a DSO by switching special

filters into circuit at each time-base speed to remove input

frequencies above twice the sampling frequency at that

setting. However, these filters are expensive and will

attenuate high-frequency transients that may need to be

observed.

Often, a DSO incorporates a high-frequency detector with a

visual warning indicator. To avoid aliasing errors, the

rule-of-thumb is to start sampling at the highest sample

rate or time-base speed and work down.

3.2.2. Vertical Resolution

This determines the detail that can be displayed. The higher

the resolution, the nearer the reconstruction is to the

original signal. The waveshape information improves as the

vertical resolution increases.

15

3.2.3. Verticallevels

All the vertical levels of a signal must be represented as

digital numbers, therefore the higher the resolution, the

longer the binary word required. A single bit word length

(21) offers two levels and would be suitable to represent

signals of a rectangular nature where the levels are 0 and

1. Each extra bit doubles the resolution so a 2-bit word

(22) could be used to represent four vertical levels, for

example, 0, 0.25, 0.5, 0.75 and 1. A 3-bit converter would

have 8 levels. For most applications, eight bits is seen to

be an acceptable resolution, although for some specific

areas of use this would be too coarse.

3.2.4. Vertical deflection sensitivity

An 8-bit converter gives 28 or 256 possible levels while a

10-bit converter gives 210 or 1024 possible levels.

1.6

%RESOLunON =} x 100
2 -1

1
:. %RES(8 - Bll) =-,- x 100

2 -1
=0.4%

1
:.%RES(10-Bll)= 10 xl00

2 -1
=0.1%

Besides sample rate and vertical resolution, digital

sensitivity is also affected by the vertical deflection

coefficients of a 050, referred to in mVjdiv, and by its

particular full scale reference. For instance, is full scale

over a or lQ divisions or is it a specified voltage window?

Remember however that a vertical deflection of a 2 mVjdiv on

an a-bit 050 is not as sensitive as a 5mVjdiv on a 1Q-bit

050.

The 1Q-bit 050 has four times more resolution than the a-bit

050, so:

Sensitivity increase

17

= ~x4=1.6
5

3.3. Conversion Techniques

Two methods of sampling and converting analogue waveforms to

digital are generally used in DSOs: semiconductor 'flash'

converters or the charged-coupled devices (CCDs).

3.3.1. Flash Converters

Basically, a flash converter uses an array of comparators,

one less than the number of vertical decision levers (2n-1).

So a 10-bit ADC will have (2n -1) 1024-1 comparators.

Each comparator compares the input signal with a reference

level set by a resistor chain to give a 0 or 1 output. The

results are then decoded (256 for an 8-bit converter) to

give a digital word. Conversion speeds can be extremely

high, but high vertical resolution demands very accurate

resistors in the divider chain.

Around 300 MS/s, flash converters not only become expensive

but so do the memory devices. Even memories with access

times of 25 NS, which relate to 40 MS/s, are too expensive

for low-cost DSOs. Digital mUltiplexing and interlaced

memories can overcome these limitations, but demand

expensive circuit designs. Another problem is that the

restricted input band-width of flash converters limits the

upper frequency of capture. This can be avoided by using

18

sample-and-hold gates to extend the input bandwidth of the

ADC.

A sample-and-hold gate captures and holds an analogue signal

at a specific point in time, controlled by a timing strobe.

The signal is fed into a high input impedance amplifier.

The resulting current is switched to charge up a capacitor.

The stored voltage is held for analogue-to-digital

conversion until the next sample is switched in.

3.3.2. Charge-Coupled Devices (CCDs)

A charge-couple device consists of micro semi-conductor

capacitors, often referred to as 'wells', in which charges

are stored and sequentially transferred from one well to the

next. The device acts as an analogue shift register on a

first-in, first-out basis. In effect, it is a chain of

sample-and-hold gates similar to the ones described, along

which the charge ripples, whilst maintaining separation from

the next. Sampling is very fast. When all the cells are

full, the charge is an analogue replica of the signal that

can be read out slowly for conversion to digital form.

3.3.2.1. Multiplexing CCDs

Although a CCD gives high performances at a much lower cost

than an equivalent flash converter, CCDs are generally

19

limited to less than 1000 samples long because of cumulative

signal degradation from cell to cell (droop effect).

As with flash converters, CCDs can be mUltiplexed to

increase sample rate and memory depth. Some DSOs mUltiplex

up to thirty-two CCDs to give effective sample rates of 1.3

GSjs and memory depths of over 10 k-words, but at a cost.

3.3.2.2. CCD parameters

The most important CCD parameters are the leakage current,

transfer efficiency (percentage of electrons transported

from one well to the next), speed and size of charge packet.

The size of charge packet determines the signal-to-noise

ratio. Several types of CCD have been developed to improve

these parameters.

3.3.4. Post- and Pre-triggering

Analogue oscilloscopes are obviously limited to triggering

and displaying one screen of the waveform. However, one of

the great benefits of a DSO is its ability to acquire data

on both sides of the trigger point.

post-triggering enables it to delay acquisition until after

the trigger point by many screens (1000 for some DSOs),

20

thereby effectively increasing the memory size. This means

that any part of the wave-train can be selected for viewing

without the need (and cost) for large memories.

And DSOs have the powerful acquisition capability of

displaying pre-trigger information since the input waveform

is continuously recorded by the CCD. If acquisition is

stopped on receipt of a trigger, the CCD is already holding

pre-trigger data and this is selectable. For example, if

the DSO triggered on a fault, it is possible to observe the

conditions that led up to the fault.

3.3.5. GIitch-catching

As seen by a DSO, a glitch is the blind spot that falls

between samples. The chances of capturing these fast

transients are remote if the TIME/DIV setting for the

displayed waveform is well below that required for the

glitch frequency. Some DSOs incorporate a MIN/MAX mode using

analogue peak detectors, which is useful for displaying fast

glitches or indicating modulation envelopes. The TIME/DIV

setting can be selected to display the whole of the signal

you need, while the envelope-mode display is built-up at a

much faster digitising rate.

21

4. ANALOGUE TO DIGITAL CONVERSION

There are many methods by which an analogue signal can be

converted into a digital signal, with varying conversion

rates, costs, and susceptibility to noise. In this section

the major methods in use will be examined: ramp, dual-slope

integration, successive approximation and parallel

conversion.

4.1. Ramp Conversion

Ramp conversion is the least expensive and slowest method of

converting analogue information to digital. It is an ideal

method to use in a digital voltmeter where the nUmber of

conversions required per unit time is minimal.

22

CONVERT ~

OVERFLOW - CLOCKCONTROL
SIGN -
COMPLETE

INPUT ~

COMPARATOR
r

CLOCK RESET

Ir

O/A -::: COUNTER
CONVERTER

:::

..'

DISPLAY

Figure 4.1

Figure 4.1 is a block diagram of a ramp conversion A/D

converter. The input voltage to be measured is fed to the

voltage comparator: Upon receipt of the convert signal, the

control resets the counter to 0 and then supplies clock

pulses to the counter. The binary output of the counter is

fed to the D/A converter, which outputs an analogue voltage

in response to its digital input. This analogue voltage is

then fed to the voltage comparator that compares the output

of the D/A converter with the analogue input. As soon as the

23

D/A input exceeds the input voltage, the comparator signals

the control circuit, and it stops the counter. The binary

number in the counter then represents the voltage of the

input signal. The control circuit will also output a

polarity signal, indicating whether positive or negative,

and an overflow signal if the input signal exceeds the

highest possible voltage of the D/A converter.

ORIGINAL VEFORM

VOLTAGE

-- RECONSTRUCTED WAVEFORM
-"-.

.....

TIME

Figure 4.2

Figure 4.2 illustrates a waveform converted using this

method. As can be seen, most of the time between samples is

taken up by the counter. Because of this, only three samples

24

can be taken over the entire waveform. If these samples were

then converted back to analogue, the resultant waveform

would be shown by the dashed lines.

A modification of the converter results in much improved

operation. By making the counter an up/down counter, it can

proceed from its previous analogue point to the next

analogue point without having to reset. Figure 4.3

illustrates a waveform converted by this method. Note that

this results in many more samples, better representing the

original signal.

VOLTAGE

TIME
UP/DOWN RAMP WAVEFORM

Figure 4.3

25

4.2. Dual-Slope Integration

One of the disadvantages of the ramp converter is its

susceptibility to noise. This problem is overcome by the

dual-slope method (Figure 4.4). The core of this system is

the integrating amplifier, an operational amplifier

connected as an integrator.

c

INPUT

:~
A R

"".-.,..
I

VI
I
I
I
I INTEGRAliNG AMPURER

- Vl1If I
I

l
f~~CTORl.... ClOCK.... 1....

CONVERT

POL.Afll'TY
CClN"mOL

OVERR.OW
COMPlETE

COUNT RESET

COUNTER L
I

DISPLAY I
DUAL SLOPE INTEGRAllON AID CONVERTER

Figure 4.4

26

If point A of the amp was at +lv and R were lkQ, then the

current through R would be lmA. But this current can only

come from the capacitor, since the input of the amp is

assumed to have infinite impedance. However, the formula for

the charge on a capacitor is

Q = CV

where Q is charge in coulombs (C), C is capacitance, and V

is voltage. But observe that current is defined as charge

per unit time (coulombs per second). If lA is flowing

through a circuit, this represents 1 Cjs. If Q is increasing

at lCjs (thus, lA is flowing), then the voltage must be

increasing at some linear rate. Therefore, constant current

through a capacitor will result in a ramp voltage across

that capacitor.

From the foregoing discussion, it can be concluded that when

the integrating amp is connected to a voltage source, it

will produce a ramp voltage at its output. Upon receipt of a

convert signal, the amp is connected to the input for a

predetermined length of time. The counter is then turned on,

and the amp is switched to the -ref voltage, resulting in

current flow in the opposite direction through R,

discharging C. This produces a negative ramp at the amp

output, ultimately crossing through OV. When OV crossover is

detected, the counter is stopped and its binary value

represents the input voltage.

27

The dual-slope integration method has the advantage of low

cost, relatively short conversion time (approximately 50ms) ,

and good noise immunity, since the input is really an

average of the waveform while it is connected to the op amp.

4.3. Successive Approximation

with the advent of computers, shorter conversion times were

required on the order of microseconds, rather than

milliseconds. The successive approximation method was

devised to meet the challenge.

Figure 4.5

28

O/A

OUTPUT

VOLTAGE

32
28
24
20
16
12

26,2 V

n 1 1 n • n
u

TIME

D/A CONVERTER WAVEFORMS

Figure 4.6

Figure 4.5 is a block diagram of the system, and Figure 4.6

illustrates the output of the D/A converter compared with

the input voltage. Assume a five-bit conversion must be made

from a 26. 2V signal using a maximum reference voltage of

64V.

29

SET REG TO
ZERO

PUT AONE
IN ...sa
OF REG

IS
D/A OUTPUT

<:: INPUT?

NO

HAVE
All BTS BEEN

EXAJ.4INED ?

NO

SET !HE Nffi
8IT TO lH[

RIGHT 10 A ONE

"CS

'lES

~
~

FLOW DIAGRAM FOR SUCCESSIVE: APPROXltJ.ATION

Figure 4.7

Referring to the flow diagram, the register is first set to

0, then a 1 is placed in its MSB. This is converted by the

D/A and fed to the comparator where it is compared with the

input voltage. If the D/A output exceeds the input, the bit

is set to 0; if the D/A is less than the input, the 1 is

30

retained in the register. In this case, the output of the

D/A is 32V, resulting in this bit being set to O.

Next, a 1 is placed in the next bit to the right, reSUlting

in an output Of 16v from the D/A. Since this is less than

the input, the 1 is retained in this bit position. Placing a

1 in the third position results in a 24V output, again less

than the input. Therefore, the 1 is retained. Placing al in

the fourth position results in an output of 28V, exceeding

the input. Therefore, bit 4 is set to O. A 1 in bit 5

results in 26V, less than the input; it is therefore

retained. A I in bit 6 results in 27V output, exceeding the

input; it is therefore set to O. Thus, the resultant binary

word is 011010, representing 26V.

The successive approximation method is very fast; many units

convert in less than 250nS/bit. However, it is more

expensive than the ramp methods.

4.4. Parallel Conversion

Parallel conversion is the easiest of all the conversion

methods. It is also the fastest and most expensive. Figure

4.8 illustrates this method for a three-bit A/D converter.

31

..
"""""""

f--~ •
"" v
~ •

v
~ c

V
l

f--~ D
OOW ~""'.v

~b [

f--~ r

V

~~ ,
V

I
~L

""""

"""-',"""""

Figure 4.8

32

The input is fed to all seven voltage level comparators. If

the input were 3.23V, the outputs of comparators A, B, C,

and 0 would all be O's, and those from E, F, and G would be

l's. The encoder would then translate this into a three-bit

code and clock it into the register.

The big disadvantage of this system is the cost, for an N

bit converter requires 2n - 1 comparators. Therefore a 10

bit converter would require 2 10 - 1 or 1023 comparators.

However, in applications requiring little resolution and

great speed, it is very useful.

33

5. HARDWARE IMPLEMENTATION

In order to obtain 1 MHz resolution a sampling rate of at

least 10 MHz is necessary, giving 10 points from which to

reconstruct the signal. Any increase above 10 MHz would

obviously improve the signal clarity. Resolution of 8 bits

or better is preferable, but 7 bits will yield 128 levels.

Considering the resolution of standard VGA (640 x 480), 128

levels will produce a signal that will cover more than a

quarter of the screen height. If the space occupied by the

menu bar and the second channel is taken into account, 7

Bits resolution will be sufficient.

The device chosen for the A-D conversion is the ADC 207-MC

(DATEL). These A-D converters operate at sampling rates of

20MHz and has seven bit resolution.

5.1. ADC-207 Video Flash Converter (DATEL)

5.1.1. General Description

The ADC-207 is the industry's first 7-bit flash converter

using a high-speed 1.2 micron CMOS process. This process

offers some very distinctive advantages over other

processes, making the ADC-207 a unique device. The smaller

34

geometrics of the process achieves high-speed, better

linearity and better temperature performance. Since the ADC

207 is a CMOS device, it also has very low power consumption

(250 mW). The device draws power from a single +5V supply,

and is conservatively rated for 20 MHz operation. The ADC

207 allows using sampling apertures as small as 12nS, making

it more closely approach an ideal sampler. The small

sampling aperture also allows the device to operate at

frequencies greater than 20 MHz.

The ADC-207 has 128 comparators which are auto-balanced on

every conversion so as to cancel out any offsets due to

temperature and / or dynamic effects. The resistor ladder

has a midpoint tap for use with an external voltage source

to improve integral linearity beyond 7 bits. The ADC-207

also provides the user with 3-state outputs for easy

interfacing to other components. There are two models of the

ADC-207 covering the two operating temperature ranges, 0 to

70 degrees C and -55 to +125 degrees C.

5.1.2. Theory Of Operation

The ADC-207 uses switched capacitor scheme in which there is

an auto-zero phase and a sampling phase. Figure 5.1 shows

the simplified block diagram of the ADC-207. The ADC-207

uses a single clock input. When the clock is at a high state

35

(logic 1), the ADC-207 is in the auto-zero phase (01). When

the clock is at the low state (logic 0), the ADC-207 is in

the sampling phase (02). During phase 1, the 128 comparator

outputs are shorted to their inputs through CMOS switches.

This serves the purpose of bringing the inputs and outputs

to the transition levels of the respective comparators. The

inputs of the comparators are also connected to 128 sampling

capacitors. The other end of the 128 capacitors are also

shorted to 128 taps of a resistor ladder, via CMOS switches.

Therefore during phase 1 the sampling capacitors are charged

to the differential voltage between a resistor tap and its

respective comparator transition voltage. This eliminates

offset differences between comparators and yields better

temperature performance. During phase 2 (02) the input

. voltage is applied to the 128 capacitors, via CMOS switChes.

This forces the comparators to trip either high or low.

Since the comparators during phase 1 were sitting at their

transition point, they can trip very quickly to the correct

state. Also during phase 2 the outputs of the comparators

are loaded into internal latches which in turn feed 128 to 7

encoder. When going 'back into phase 1 the output of the

encoder is loaded into an output latch. The latch then feeds

the 3-state output buffer. This means that the ADC-207 is of

pipeline design. To do a single conversion, the ADC-207

requires a positive pUlse followed by a negative pUlse

followed by a positive pulse. Continuous conversion requires

one cycle/sample (one positive pulse and one negative

36

pulse). The 3-state buffer has two enable lines, CSl and

CS2. CSl has the function of enabling/disabling bits 1

through 7. CS2 has the function of enabling/disabling bits 1

through 7 and the overflow bit. Also a full-scale input

produces all ones, including the overflow bit at the output.

The ADC-207 has an adjustable resistor ladder string. The

top end, middle point, and bottom end are brought out for

use with application circuits. These pins are called +Ref,

MID POINT, and -Ref, respectively. In typical operation +Ref

is tied to +5V, -Ref is tied to ground, and MID POINT is

bypassed to ground. Such a configuration results in a 0 to

5V de input voltage range. The MID POINT pin can also be

tied to a 2.5V source to further improve integral linearity.

This is usually not necessary unless better than 7 bit

linearity is needed.

37

Table 1. Chip Select Truth Tahle

CS 1 CS 2 Bits 1 - 7

o 0 3 state mode

1 0 3 state Mode

o 1. DATA output

1 1 3 state Mode

38

OVerflow Bit

3 state Mode

3 state Mode

DATA output

DATA Output

-••

-~

..-
••

••-• ••,- ••

••

.,-

••

-

---0----1 11

-

Figure 5.1

5.1.3. Technical Notes

1. Input BUffer Amplifier - since the ADC-207 has a switched

capacitor type input, the input impedance of the 207 is

dependent on the clock frequency. At relatively slow

conversion rates a general purpose type input buffer can

be used: at high conversion rates DATEL recommends either

the HA-5033 or the LH-0033.

39

2. Reference Ladder - Adjusting the voltage at +Ref adjusts

the gain of the ADC-207. Adjusting the voltage at - Ref

adjusts the offset or zero of the ADC-207. The midpoint

pin is usually bypassed to ground through a O.luF

capacitor, although it can be tied to a precision voltage

halfway between +Ref and Ref. This would improve

integral linearity beyond 7 bits.

3. Clock. Pulse Width - To improve performance above 20 MHz,

the clock should be adjusted so that the negative portion

of the clock signal is 15nS wide. This makes the ADC-207

sample over a shorter period of time thereby more closely

approach an ideal sampler.

·5.1.4. Application

Figure 5.2 shows typical connections for using the ADC-207.

In this configuration the input voltage range is 0 to 5V de.

The input voltage range is determined by the reference

voltage. For operating in lower input voltage ranges, the

reference input must be tied to the corresponding lower

voltage value. For example to operate the ADC-207 in 0 to 3V

input range the +REF input must be tied to +3V de. Further,

for higher speed operation (above 20 MHz) users may modify

the clock signal to facilitate duty cycle adjustment.

40

-21 11HZ a.ccK -r-

··lUF

Cl

tj!" '4,
C2

~

<\1~ U1•
ONlWW.Ol:

..I--- J1

• - 5V "PUT r- HA 583:J

:~
I..- ~II

~ 11 IlB8F
~ ~• •

~I -;~ AllC207

ON""""'" GNCANALOG

lYPlCAl. CONNECTIONS FOR USING "!HE ADC-207

Figure 5.2

5.2. Buffer Memory

LSB

llS8

The Random Access Memory (RAM) used in most Personal

Computers (PCs) have access speeds of about 70 nS. The

maximum write speed can be calculated as follows:

1
Speed= --= 14. 28MHz

70ns

41

The conversion rate of the A-D converter is 20MHz, thus

exceeding the maximum rate of the RAM available in the pc.

In order to store samples at rates of 20MHz and higher,

memory devices operating at 25 nS become a necessity. FIFa

memory devices are not readily available operating at the

required speeds so high-speed static RAM devices were

investigated. static RAM devices with a 20nS rating are

available to the computer industry and is most suitable for

this application.

The static RAM devices used are 5C6408-20 from MICRO

TECHNOLOGY. They are organised as 8192 words of 8 bits each.

Two static RAM devices are used one for each A-D

.converter.

Usually, the rate at which samples are written into the RAM

stays constant while the sampling rate of the A-D converter

is changed to allow for different sampling rates. At low

sampling rates successive address locations in RAM will

contain the same data thus wasting the capacity of the RAM.

In the case of the digitising workstation the sampling rate

of the A-D stays constant at 20MHz. The addressing rate of

the RAM is varied to allow for the sampling rates needed. At

high sampling rates the result is the same as with

conventional designs, but at low sampling rates only

selected samples are written into memory. Multiple addresses

42

containing the same data are thus eliminated thus improving

on the usage of available storage space.

The improvement in the use of storage space reduces the RAM

size requirements dramatically. The digitising workstation

uses 8 Kilobytes of static RAM per channel as opposed to

several Megabytes used in other designs. When the 8

Kilobytes of data is displayed, 13 screen lengths or pages,

can be scrolled through before the end of the RAM is

reaChed.

The data stored in RAM needs to be available to the PC for

display. Several options exist for transferring the data to

the PC, but the most suitable option was to memory map the

.external RAM as part of the internal RAM of the PC. The

following section describes the different memory

configurations found in the PC as well as the mapping option

used.

There are three basic configurations of memory:

• Conventional

• Extended

• Expanded

In addition, most systems have an upper memory area.

43

5.2.1. Conventional Memory

Conventional memory is the basic type of memory found on all

computers. Most computers have at least 640 kilobytes of

conventional memory. Programs can use conventional memory

without the special instructions needed to use other types

of memory.

MS-DOS uses some conventional memory. The device drivers and

commands listed in the CONFIG.SYS and AUTOEXEC.BAT files use

additional conventional memory. The memory left over is

available for other programs.

5.2.2. Extended Memory (XMS)

One way to add more memory to the system is to install

extended memory. Extended memory is available only with

80286 or higher processors.

Most programs that use conventional memory cannot use

extended memory because the number of addresses that

identify locations in extended memory to programs are beyond

the addresses most programs can recognise. Only the

addresses in the 640K of conventional memory are recognised

by all programs.

44

Programs need special instructions to recognise the higher

addresses in extended memory. Extended memory is fast and

efficient for programs that can use it. However, many

programs are not designed to use extended memory.

To use extended memory efficiently, a program should be

installed called an extended-memory manager. An extended

memory manager prevents different programs from using the

same part of extended memory at the same time. The

extended-memory manager also makes it easier for programs to

use extended memory.

5.2.3. Expanded Memory (EMS)

Another way to add memory in excess of 640K is to install

expanded memory. Most computers can accommodate expanded

memory, which consists of two parts: an expanded-memory

board, which must be installed on the computer; and a

program called an expanded-memory manager, which comes with

the expanded-memory board.

A program designed to use expanded memory does not have

direct access to the information in expanded memory.

Instead, expanded memory is divided into 16K segments called

pages. When a program requests information that is in

expanded memory, the expanded-memory manager maps or copies

45

the appropriate page to an area called a page frame. A

program gets the information from the page frame.

Expanded-memory boards and managers conform to the

Lotus/Intel/Microsoft Expanded Memory Specification (LIM

EMS) version 3.2 or 4.0, which specifies how programs make

use of expanded memory.

Some programs are unable to use expanded memory because they

were not designed to interact with an expanded-memory

manager. However, because expanded memory was introduced

before extended memory, more programs are designed to use

expanded memory rather than use extended memory.

Because an expanded-memory manager allows programs access to

a limited amount of information at one time, expanded memory

can be slower and more cumbersome for programs to use than

extended memory.

5.2.4. Upper Memory Area

Most systems have 384K of free space called the upper memory

area. This area is immediately adjacent to the 640K of

conventional memory. The upper memory area is not considered

part of the total memory of the computer because programs

cannot store information in this area. This area is normally

46

reserved for running the system I s hardware, such as the

monitor.

Information can be mapped from another type of memory to

parts of the upper memory area left unused by the system.

These unused parts are called upper memory blocks. (One use

of this mapping is for running programs that use expanded

memory.)

The RAM used in the Digitising Workstation is mapped at

address DOOOh and falls into an unused slot in the upper

memory area. A software function is used to fetch the data

from specified addresses. The data is transferred to the

conventional memory from where the software can present it

on the screen.

5.3. Programmable Peripheral Interface (8255)

In order to control the operation of the Digitising

Workstation an 8255 device is used. The 8255 eliminates the

need for manual switches and enables the use of software for

the selection of the various functions.

The Intel 8255 is a general purpose programmable I/O device

designed for use with Intel microprocessors and micro

controllers. It has 24 I/O pins which may be individually

47

programmed in two groups of 12 and used in 3 major modes of

operation. In the first mode (MODE 0), each group of 12 I/O

pins may be programmed in sets of 4 to be input or output.

In MODE 1, the second mode, each group may be programmed to

have 8 lines of input or output. Of the remaining 4 pins, 3

are used for handshaking and interrupt control signals. The

third mode of operation (MODE 2) is a bi-directional bus

mode which uses 8 lines for bi-directional bus, and 5 lines,

borrowing one from the other group, for handshaking.

The function of the 8255 is that of a general purpose I/O

component to interface peripheral equipment to the

microcomputer system bus. The functional configuration of

the 8255 is programmed by the system software so that

normally no external logic is necessary to interface

peripheral devices or structures.

5.3.1. OPERATING MODES

MODE 0 (Basic Input/Output). This functional configuration

provides simple input and output operations for each of the

three ports. No "handshaking" is required, data is simply

written to or read from a specified port.

Mode 0 Basic Functional Definitions:

• Two 8-bit ports and two 4-bit ports.

• Any port can be input or output.

48

• outputs are latched.

• 16 different Input/Output configurations are possible in

this Mode.

MODE 1 (strobed Input/Output). This functional configuration

provides a means for transferring I/O data to or from a

specified port in conjunction with strobes or "handshaking"

signals. In Mode 1, port A and port B use the lines on port

C to generate or accept these "handshaking" signals.

Mode 1 Basic FUnctional Definitions:

• Two groups (Group A and Group B)

• Each group contains one a-bit data port and one 4-bit

control/data port.

• The a-bit data port can be either input or output. Both

inputs and outputs are latched.

• The 4-bit port is used for control and status of the a

bit data port

MODE 2 (Strobed Bi-directional Bus I/O). This functional

configuration provides a means for communicating with a

peripheral device or structure on a single a-bit bus for

both transmitting and receiving data (bi-directional bus

I/O). "Handshaking" signals are provided to maintain proper

bus flow discipline in a similar manner to MODE 1. Interrupt

generation and enable/disable functions are also available.

49

MODE 2 Basic Functional Definitions:

• Used in Group A only.

• One 8-bit, bi-directional bus Port (Port A) and a 5-bit

control Port (Port C).

• Both inputs and outputs are latched.

• The 5-bit control port (Port C) is used for control and

status for the 8-bit, bi-directional bus port (Port A).

The 8255 is a very powerful tool for interfacing peripheral

equipment to the microcomputer system. It represents the

optimum use of available pins and is flexible enough to

interface almost any I/O device without the need for

additional external logic.

Each peripheral device in a microcomputer system usually has

a "service routine" associated with it. The routine manages

the software interface between the device and the CPU. The

functional definition of the 8255 is programmed by the I/O

service routine and becomes an extension of the system

software. By examining the I/O devices interface

characteristics for both data transfer and timing, a control

word can easily be developed to initialise the 8255 to

exactly fit the application.

It was decided to use the 8255 in MODE 0 as only basic

latched outputs were required.

50

5.4. Circuit Description

Figure 5.3 shows the simplified block diagram of the

Digitising Workstation. Only one channel is shown as the

second channel is a duplication of the first.

AlO
OATA

OATA !lJS OATA BUS
CONJRQ

~
~
~
a.
~

STATIC
OATA !lJS AOOR£SS !lJS AIll1lESS CONJRQ AIll1lESS BUS

RAIl

l-<E --- INPUT

S1MPUFJED I3lOCK IlAGRAlI AlXHSS G!MRATOR

Figure 5.3

The circuit diagram can be divided into two sections:

• Analogue input stage

• Digital capturing stage

51

5.4.1. Analogue Input Stage

INPUT AMPUFlER BLOCK DIAGRAM

Figure 5.4

5.4.1.1. Description of the analogue circuit

In order to allow small signals to be sampled a programmable

gain buffer amplifier is needed with a bandwidth of at least

1.0MHz. An ACjDC input is also required. Level shifting of

the signal is also required to allow sampling of signals

with negative polarity. Input impedance of at least l.MQ is

needed. Minimum input signal of 50 mV and maximum input

signal of ±1.2V is necessary. The output needs to be offset

by 2.5V and limited between +5V and OV to prevent overload

of the analogue to digital converter.

52

Figure 5.4 shows the simplified block diagram of the

analogue circuit.

The input can be connected through a capacitor or directly

via relay contacts. An input attenuator is used to raise the

input impedance above 1Mf!. The signal is then fed via a

wide-band buffer to the gain switching stage. Gain control

is done by using a programmable gain amplifier. The output

is then fed to an inverting amplifier with an output bias of

+2.5V. The signal is then fed to a wide-band buffer which

supplies the drive current for the switched capacitor input

of the A-D converter. A fifth order passive Butterworth

filter is used to limit the input bandwidth to the A-D

converter to lOMHz.

5.4.1.2. Detailed Analogue Circuit Description

Refer to appendix B.

The input circuit is identical for both channels and only

the operation of one channel will be discussed.

The input signal is applied to J5. Kl is a change-over relay

and functions as the input ACjDC switch. The relay is

operated by a transistor (Ql) under the control of the

software. When the input setting is on AC, the DC component

is blocked by Cl9. R27 and R30 forms the input attenuator

53

with an impedance of more than lMf!. U8 is a wide-band

unity-gain buffer (OPA633). The signal is then applied to

the variable gain amplifier (U5). The AD600 (U5) has a

bandwidth of 30 MHz at variable gains between 0 and 40 dB.

The gain of the AD600 is set by applying a voltage of

between 0 and 1 Volt on the C1HI pin. R9 to R12 are

potentiometers used to preset the gain settings. The gain

voltages are applied to an analogue multiplexer (U6) which

selects the gain voltage under software control.

The output from the U5 is fed to an inverting amp (U2). U2

is a high frequency op-amp set at a fixed gain of two. R8

and R7 are used to level shift the output of the inverting

amp to +2. 5V. The output is applied to a buffer amplifier

(Ul) which supplies the drive current for the switched

capacitor input of the A-D converter. Ll, L2, C3, C4 and C5

forms a 5th order low-pass Butterworth filter which has the

function of limiting the bandwidth to the A-D converter to

lOMHz.

5.4.2. Digital Capturing Stage

The Digital stage can be subdivided into the following

stages:

• Analogue to digital converter

• High speed static RAM

54

• Address counters

• Clock generator

• Address buffers

• Data buffers

• Address decoders

• Control circuits

5.4.2.1. Description of the Digital Circuit

The output from the input amplifier is connected to the

input of the analogue to digital converter (A-D). The A-D is

referenced at +5V and will therefore accept signals within

the 0 to +5V range. For the A-D to be able to digitise AC

signals the input amplifier is offset by 2. 5V. The output

code associated with +2.5V (64 Binary) will therefore

represent a signal of OV while an output code associated

with +5V (128 Binary) will represent a signal of +2.5V and

the code for OV (0 Binary) will represent -2.5V. By scaling

input signals accordingly it is possible to digitise

positive and negative signals.

The digital signal is applied via a bUffer to the static

RAM. The static RAM is an 8K x 8 bit device and is rated at

better then 20nS write time. The static ram is of a type

commonly used as cache ram in computer systems. Four high

speed binary counters are used for addressing the static

55

RAM. The counters are configured in such a way that they

form a 13 bit synchronys binary counter. Considering the

operating speed of the project, National Semiconductor's "F"

series of components proved to be vital and 74F161 devices

were used.

The datum-data from the A-D are therefore written into

memory under control of the address counter. When the

counter overflows the pervious data will be overwritten.

This enables the device to capture the most recent 8192

samples. When these samples are displayed on the computer

screen, 8192 samples will represent almost 13 screens of

information.

In order to allow the computer to read the data from the

RAM, the address lines are connected to the address lines of

the computer. This change-over is accomplished by using

buffers as switches. The write operation is also stopped and

the static RAM configured in the read mode using the 8255.

The static RAM is address decoded at DOOOh and falls into an

unused area in the upper memory area. Configuring the

external memory as internal memory, the transfer of data is

achieved at the same rate as that of the computer. The data

lines are connected to the DO-07 lines. This would mean that

on an AT system only the even addresses will contain data

from the static RAM. On odd addresses, data will be expected

on the 08-015 lines. To overcome this problem a circuit was

56

designed that uses an inverted BHE signal connected to AO

of the static RAM. On even addresses the data byte will

appear on the data bus and the computer will read it from

the 00-07 lines into the accumulator (AL). On odd addresses,

data from the next position will also appear on the 00-07

lines but the computer will now read this data into the High

byte of the accumulator (AR) and the data on the 08-015

lines (which contains no information) will be read into the

AL. By swapping the alternative AL and AH bytes using

software this problem is overcome and the need to have

connections to 08-015 eliminated. This also means a

reduction of the component count.

The data is arranged as an array of data and displayed by

the computer.

A trigger circuit is needed to facilitate an internal

trigger function. This is accomplished by using two four-bit

magnitude comparators that are configured to react to a

digital code greater than a pre-set code selected by the

8255. The output signal is latched and then used to control

a binary counter, which will allow a predetermined number of

samples to be stored in RAM. When the counter reaches

terminal count, it will stop the write operation of the RAM

and control will be handed over to the PC to read out the

stored information. By using the scroll function in the

software, it is possible to view signals before and after

57

the trigger point. The trigger point is user selectable and

allows 128 trigger levels.

The external trigger interfaces to the internal trigger and

shares the same circuitry. The external trigger is

controlled by a +5V signal.

5.4.2.2. Detailed Digital Circuit Description

Refer to appendix B.

The circuit lay-out of the A-D converter is similar to the

circuit described in Figure 5.2. The recommended input

buffer (HA 5033) is replaced by the analogue input circuit

described previously.

Jl is a crystal oscillator module operating at 20MHz. It is

used to generate the master clock for the circuit. The clock

signal is fed to the A-D converter via three inverters (U3

E, U3-F and U23-A). These inverters are used to time the

data from the A-D converter according to the capturing

circuit. The clock output also feeds the timebase generator

formed by two binary counters (U16 and U20). The outputs

provide the eight basic sampling rates used on the circuit.

These eight frequencies are applied to a multiplexer (U25).

The 8255 (U19) is used to control the mUltiplexer and only

58

one frequency or sampling rate can be selected at a time.

The selected sampling frequency is applied to the a 13 bit

synchronous counter (U17, U21, U24 and U26). These counters

are used as the address counter for the static Ram devices

(U8 and U13). The addressing is applied via buffers (U7 and

Ull). The logic circuit formed by U6-A, U4-A, U3-A and U3-B,

controls the write and read operation of the static Ram's.

U9 and U12 are buffers used to control the addressing from

the PC. The logic circuit will allow addressing either from

the address counter or from the PC under control of

software. The data lines (ADO - AD6 and ACO - AC7) are also

controlled by means of buffers (U5 and U14). The data lines

will either be connected to the A-D converters or to the PC

bUS, depending on the read or write cycle of the circuit.

The address decoding for the memory devices are done by U2,

which is an eight bit magnitude comparator that is pre-set

to decode addresses above DOOOh. The decoding signal is used

to control the buffers used during the transfer of data to

the PC bus.

UIO and U15 forms the circuit that determines the number of

bytes stored under control of the trigger signals.

The data lines of the 8255 (U19) are buffered by U18 in

order to prevent loading of the PC bus. The 8255 is memory

mapped at address 300h and the decoding is done by U22. The

59

outputs of the 8255 are used to set up the internal trigger

level, control the read and write operation of the static

RAM devices, control the sampling rate and control the gain

settings and input switches of the buffer amplifiers.

5.5. Power Supply

The Digital circuit draws its power from the PC and requires

only +5V.

The analogue circuit requires ±12V and ±5V. These voltages

are supplied by a separate power supply external to the PC.

It was decided to use an external power supply for the

analogue circuit, because the switch mode power supply of

the PC induced noise into the circuit.

60

6. THE MSCOPE.EXE PROGRAM

6.1. Main Function

The main function calls the initialize_graphics function to

auto detect the graphics driver used and will abort if an

error is encountered.

The outport function is used to initialise the 8255 with

value 80h. This places the 8255 in the latched output mode

(mode 0).

The menubar function is used to construct the menu bar at

the top as well as the bottom of the screen.

The mouse driver is then initialised for graphics mode. If

the mouse is not detected the program will abort and a

message displayed on the screen. The mouse is initialised to

show an arrow cursor on the screen. The Mouse.Event function

is used to return the screen co-ordinates where the event

occurred.

A switch statement is used to determine whether a key was

depressed. If a Q was pressed the program will abort. The

user will be prompted to enter a filter value when the F key

is pressed. The filter function will be explained at a later

stage. The user will also be prompted for a clock frequency

61

value when the C key is pressed. This allows the use of

different clock frequencies.

The Mouse.Event is the main event in the program. A switch

statement is used to determine whether the left mouse button

was pressed. The screen co-ordinates are returned to the

function and mUltiple if statements are used to determine

whether the button was depressed in a defined area called a

hot spot. Hot spots are defined for all the menu functions.

The user calls a menu item by moving the mouse cursor over

the menu item and then pressing the left mouse button. The

program will then determine which part of the program to

execute. The individual items of the mouse event will be

described in detail.

6.1.1. Menu

The menu option is defined by hot spot 1. The menu1 function

is used to draw a sub menu on the screen when the mouse

button is pressed over the menu option. The menu items used

are the FILE SAVE, FILE IMPORT and scroll value «< »

VALUE) options.

62

6.1.1.1. File Save

The File_store function prompts the user to specify a data

drive as well as a file name. A binary file is then opened

with the specified filename. If an error condition exists, a

message will be displayed on the screen indicating that the

file cannot be opened. Fwrite commands are then used to

write the sampled data for both channels as well as the

sampling parameters to the file.

6.1.1.2. File Import

The file dir function creates a list of all the files,

containing sampled data, on the specified drive. The file is

then opened and tested for an opening error. The fread

function is used to read the file and to place the sampled

data as well as the sampling parameters in the arrays and

variables specified.

6.1.1.3. Scroll Value («» value)

The user is prompted for a shift factor. This factor

determines the number of addresses to move at a time when a

forward or backward scroll of the signal is performed.

63

6.1.2. Quit

The QUIT option is defined by hot spot 2. This function is

used to terminate the operation of the program and return to

DOS.

6.1.3. Zoom X value («X»)

This function, defined by hot spot 3, is used to expand or

reduce the X value when the signal is displayed on the

screen. The user is prompted for an X value. The X value is

then enlarged or reduced accordingly. The factor is written

to the EXP variable. The atoi function is used to convert

the ASCII value entered on the keyboard to an integer value.

The X co-ordinate is then multiplied with the factor when

the signal is displayed.

6.1.4. Zoom Y value «<Y»)

This function, defined by hot spot 4, is used to expand or

reduce the Y value when the signal is displayed on the

screen. The user is prompted for an Y value. The Y value is

then enlarged or reduced accordingly. The factor is written

to the VERT variable. The atoi function is used to convert

the ASCII value entered on the keyboard to an integer value.

64

The Y co-ordinate is then multiplied with the factor when

the signal is displayed.

6.1.5. Shift Backward

The variable SHIFT is used as an index into the arrays VAL

and VALl. By decrementing the value of the index, it is

possible to move backwards in the array. The variable SHIFTF

defines the number of addresses to shift at a time. The

shift backward option is controlled by hot spot 5.

6.1.6. Shift Forward

The variable SHIFT is used as an index into the arrays VAL

and VALl. By incrementing the value of the index, it is

possible to move forward in the array. The variable SHIFTF

defines the number of addresses to shift at a time. The

shift forward option is defined by hot spot 6.

6.1.7. Dot Display

When the mouse button is depressed over hot spot 7, the

signal will be displayed as individual pixels using the

putpixel command. The variable DISP, having a zero value, is

used by the display function to place it in the dot mode.

65

6.1.8. Line Display

Hot spot 8 is used to control the line display function. In

this mode the signal is presented as a solid line connecting

the sampling points using the lineto command. The variable

DISP, having a value of 1, is used by the display function

to place it in the line display mode.

6.1.9. Manual

Hot spot 9 controls the manual sampling operation of the

digitising workstation. The manual function uses outport

commands to write to the 8255 controlling the write

operation of the RAM. After a delay of 500 ms, capturing is

stopped and the chan1 function used to enable the read

operation for channel 1. The read1 function is used to read

the data from the RAM, which is memory mapped, and place it

in an array called VAL. If the second channel was enabled,

the chan2 and read2 functions are used to read from the

second channel and place it in an array called VAL1.

The display function is then used to display the signals on

the screen. The workstation is then prepared for the next

capture.

66

6.1.10. Internal Trigger

Hot spot 10 controls the internal trigger operation of the

digitising workstation. The inttrig function does the set-up

for the internal trigger operation. When a signal greater

than the trigger level is experienced, the hardware will

react to the trigger pulse and stop the capturing of samples

after a fixed count. The data from both channels are

transferred to the PC in the same way as described under

section 6.1.9.

The trigtest function is then used to determine the validity

of the trigger pulse and the operation repeated until a

valid trigger pulse is received. The operation will abort

when a key is depressed.

6.1.11. External trigger

Hot spot 11 controls the external trigger operation of the

digitising workstation. The external trigger operation is

similar to the internal trigger operation described in

section 6.1.10. The trigger pulse in this case is controlled

from an outside source. Again the validity of the trigger

pUlse needs to be verified before the signal is displayed.

67

6.1.12. Reference

When the mouse is pressed over hot spot 12, the program is

prepared for calculations. A reference position is created

at the position of the next mouse event which is used for

calculating voltage, frequency, period and phase angle.

6.1.13. Shift Up

The OFFSET and OFFSET2 variables define the offset from the

top of the screen. The movement of the display is fixed at

increments of 10 pixels. The offset decreases by 10 when the

signal is shifted upwards.

6.1.14. Shift Down

The OFFSET and OFFSET2 variables define the offset from the

top of the screen. The movement of the display is fixed at

increments of 10 pixels. The offset increases by 10 when the

signal is shifted downwards.

6.1.15. Filter

The digitising workstation uses two filtering techniques.

The first one is a display filter that will ignore any stray

samples that deviate from the previous sample with the

68

parameter set up using the F key. This technique was

described earlier.

The second filtering technique replaces samples that deviate

from the previous sample, with more than a pre-set value,

with an averaged value using interpolation. The pre-set

value is stored in the variable filter and is entered by the

user as the start value. The filter value is decremented and

the operation repeated until the stop value is reached (also

specified by the user). This technique removes all unwanted

samples without effecting the signal negatively.

It must be stressed that the filters are only used to rid

the signal from unwanted noise and spikes and not to

introduce specific cut-off frequencies associated with

analogue filters.

6.1.16. AC Chi

The value 40h is written to port B of the 8255 to control

the AC input of channel 1.

6.1.17. DC Chi

The value of port B is ANDED with BFh to control the DC

input of channel 1.

69

6.1.18. Voltage Scale CHI

The vscale function is used to select the input attenuator

for channel 1 and to scale the signal accordingly. Three

scales are available: 10V, 5V and IV.

6.1.19. Trigger Level

The function trigger_level is used to set up the trigger

level needed. Values between 0 and 128 will be accepted.

When the internal trigger option is used, a signal exceeding

the trigger level will start the counter which determines

the number of samples to captured. Capturing will stop when

the counter reaches terminal count and the signal will be

displayed.

6.1.20. Sampling Rate

The sampling rate is set up using the sscale function. Eight

sampling rates are available: 20 MHz, 10 MHz, 5 MHz,

2.5 MHz, 1.25 MHz, 625 KHz, 312.5 KHz and 156.2 KHz.

70

6.1.21. CHI UplDown Control

A value of 0 in the variable ch_1 enables channel 1 to be

shifted vertically. When the mouse key is pressed over hot

spot 21, ch 1 is reset to o.

6.1.22. AC Ch2

The value 80h is written to port B of the 8255 to control

the AC input of channel 2.

6.1.23. DC ChI

The value of port B is anded with 7Fh to control the DC

input of channel 2.

6.1.24. Ch2 UplDown Control

A value of 1 in the variable ch_1 enables channel 2 to

shifted vertically. When the mouse key is pressed over hot

spot 24, ch 1 is set to 1.

71

6.1.25. Voltage Scale Ch2

The vscale function is used to select the input attenuator

for channel 2 and to scale the signal accordingly. Three

scales are available: lOV, 5V and lV.

6.1.26. Ch2 On

The variable chan20n is set to 1, which is used to by the

display function to enable channel 2.

6.1.27. Ch2 Off

The variable chan20n is reset to 0, which is used to by the

display function to disable channel 2.

6.2. Functions

In this section the most important functions will be

explained.

6.2.1. The draw function

The draw function is used to display the signal on the

screen.

72

The draw function has a number of options:

• Line or dot display

• X scale factor

• y scale factor

• Offset on screen

• position in the data array

• Colour

• Channel 2 on/off

• OV reference line

• Display filter

The background colour is set by the function setbkcolor to

black. The variable PIXEL_COUNT is set to 640 which is equal

to the number of pixels on the screen in the X direction. A

for loop is used to control the position where the value

should be displayed. If the LINE variable is reset, the

signal will be displayed as dots. If the LINE variable is

set, the signal will be displayed as a solid line. The

putpixel command is used to display the signal as dots,

while the lineto command is used for the line display.

The i variable defines the horizontal position on the

screen. The EXP variable defines the X scale factor. By

mUltiplying the i variable with the EXP variable, the signal

can be horizontally expanded. The user is prompted for an X

value when the mouse button is depressed over hot spot 3.

73

The OFFSET variable is used to determine the vertical

position on the screen. The value of the OFFSET variable is

incremented or decremented when the mouse button is

depressed over hot spot 13 or hot spot 14.

The VAL variable defines an array of chars. This array

contains the data to be displayed. The SHIFT variable

together with the i variable is used as an index into the

array. The signal exists only as seven bit data, so the

value is anded with 7Fh to mask bit number eight. The signal

value is also mUltiplied with the VERT variable, which

determines the vertical scale. The user is prompted for a Y

value when the mouse is depressed over hot spot 4.

The display filter mentioned earlier is used to ignore stray

samples not associated with the signal. The absolute value

of the first sample is compared with the absolute value of

the second one. When the difference is greater than the

value specified in the fil variable, the second sample will

be ignored and the next sample considered. In this way

samples not forming part of the signal can be ignored. The

fil variable can be changed by pressing the F key and

entering a new value.

The operation of the second channel is similar to the first

channel. The only differences are the array called VAL1,

74

containing the data for the second channel as well as the

variable OFFSET2, which defines the vertical position.

A reference line is drawn for both channels showing the

relationship of the signal to OV. The reference line will

follow the signal when it is shifted vertically. In this

way, the signals for both channels could be displayed

separately without overlapping each other and still

maintaining a reference to OV. The signals could also be

overlapped by shifting them vertically.

6.2.2. Calculations

Calculations are done by using the mouse. After the signal

is displayed, the left mouse button and the right mouse

button are used to mark references on the wave from which

calculations for voltage, frequency, period and phase angle

are done. The pixels on the screen and the sampled values

have a linear relationship. It is thus possible to use the

mouse co-ordinates to calculate the required signal

parameters.

When the left mouse button is pressed for the first time a

reference point is created from which all measurements are

calculated. The first reference point is stored in the

variables xvall and yvall. When the left mouse button is

75

pressed again, the co-ordinates are stored in variables

xval2 and yval2. When the right mouse button is pressed the

co-ordinates are stored in the variables xval3 and yval3.

When the difference between yvall and yval2 is taken, the

potential difference between the two points can be

calculated. The following statement is used for the

calculation of the potential difference:

volt = «yvall - yval2)*O.039370078)/VERT;

By deviding with the vertical scale factor, VERT, voltage

calculations stays true for all vertical scales.

Frequency and period between the reference and the second

marker can be calculated by taking the difference between

xvall and xval2. The following statements are used to

calculate the frequency and period:

frek = (1/(xval2 - xvall)*SAMPLE*lOOO)*EXP;

time = «xvaI2 - xvall)*l/SAMPLE)/EXP;

The phase angle and period are calculated using the

difference between xvall and xval3 as well as the first

period calculation. The following statements are used:

76

phase = «(xval3 - xval1)*1/SAMPLE)/EXP)/time*360;

time1 = «xval3 - xval1)*1/SAMPLE)/EXP;

The SAMPLE variable represents the sampling frequency and

the EXP variable, the horizontal scale.

The sampling parameters are also shown on the screen

together with the calculations. The function gprint is used

to display the results in graphics mode.

6.2.3. The read! and read2 Functions

The read1 and read2 functions are written in assembly

language and included as part of the main program.

These functions read the sampled data from the digitising

workstation to the arrays VAL and VAL1.

77

7. PROBLEMS ENCOUNTERED

During the development of the digitising workstation several

problems were encountered.

7.1. Bandwidth of Op-Amps

The requirement to be able to sample signals at 1MHz

eliminated the use of normal operational amplifiers as their

gain bandwidth products are limited to values less than

2MHz. If gain were to be introduced into the circuit,

insufficient bandwidth would result. Several discrete

designs were considered but failed because of physical size,

noise and distortion. The best option proved to be video

amplifiers. The AD829 (Analog Devices) video op-amp was used

having a bandwidth greater than 50MHz at gains of up to 20

and slew rate of 230V/~s. The use of these amplifiers solved

the bandwidth problem but introduced some other problems.

Oscillations in the region of 40MHz occurred when these op

amps were used. This was rectified by using decoupling

capacitors on the power leads as well as using a capacitor

towards earth on the compensation pin.

Another problem encountered with the op-amps was output

drift when the input was high impedance. The output would

78

not settle around OV when the input was disconnected, but

drifted to +VCC. The only way to overcome this was to

terminate the input of the op-amp reducing the input

impedance. To increase the input impedance high speed

buffers (OPA633) were used having a slew rate of 2500V/~s.

7.2. Finding A Suitable A-D converter

When the project was commissioned, suitable high speed A-D

converters were not available or were too costly. ADC207

(DATEL) devices were imported from the United states of

America.

7.3. Operating Speed

The operating speed of the project caused normal logic

components to fail or to cause excessive delays. The F

series from National Semiconductor corporation were the only

type of component that would meet the speed requirements.

The F series are not fully supported in South Africa and

the design had to be changed several times because of

component shortages.

The speed of the project caused breadboarding to fail in

most cases. pc boards had to be designed each time the

circuit was modified.

79

7.4. Component Sourcing

Component sourcing proved to be a difficult task. When

stocks were not available, suppliers were not prepared to

order small quantities. Frequently components specified in

data books were not supported by the distributors. Sourcing

was done throughout the country as well as abroad.

7.6. Working on the PC Bus

Interfacing the project with the PC bus also created

problems. Any loading of the bus caused the operation of the

PC to cease. Buffers were used throughout to rectify this.

7.7. Design of the PC Boards

The design of the pc board layout was also a difficult task

as well as time consuming because of a complex circuit.

Specialised Computer Aided Design (CAD) tools only became

available at a mature stage of the project. Orcad was used

for the initial schematic capture while the routing was done

using Tango.

80

7.8. Direct Addressing oftbe RAM

When a Micro Processor is used in a design, the addressing

of the RAM is handled by the processor. In the case of the

digitising workstation, the rate of addressing is too high.

The addressing had to be done manually using counters. The

counters used needed to be of the F series (National

Semiconductor), but were not readily available.

7.9. Software

The complexity of the software required the use of a high

level language.

81

8. TEST RESULTS

The digitising workstation is fully functional, operating at

a clock frequency of 20MHz and captures samples of two

channels simultaneously. Captured signals can be written to

file. Calculations like voltage, frequency and phase angle

can be done.

Extra features included are:

• mouse driver

• scroll functions

• zoom functions

• filtering of the signal

• trigger options

PC

Figure 8.1

82

Figure 8.1 shows the main screen with the logo that will be

displayed for two seconds. Different colours are used to

differentiate between the menus.

FiLE SAOE

FlLEII"W>'O$iT~

« » UALUE

!CH1.!ACjoclrJtFt.lT NlHGElrRIOOER L£VEL!SAtlPLIHG RAT~~ltfA.lIRAHCE80FFiCLSI

Figure 8.2

Figure 8.2 shows the main menu with the file import, file

save and shift factor options.

83

uot..T~: 0. U
FRm: .2DO Jda : S ~
TI~: 2.:5
PHA!:E : .t.en D£Q
1 Hl"UT RANGE CH,1.: :aJ U
:AN"L.IHIl RATE: an I'Itk

,~. \

\ ..i

.*' ../ \'"

'. '
~..

.+.

\./ \./ \ ../

Figure 8.3

Figure 8.3 shows a sine wave displayed in the dot mode. The

reference cursors are also visible. The calculations field

shows the parameters of the signal.

84

\,1, \,; \1 \j \1 I,I
" \1 \ . . f \,1
\1 '\/ \1 \f '1V __ ,,I V \.J 'J

I
/'\ (\ ('\ /'\ r\ 1"\ A

I ~; \ I ~ I' I, /'i.,'I \ I \ f \ / \ i \ / \
;

I

Figure 8.4

Figure 8.4 shows the same signal in the line display mode.

UDl.TAGE: 0.G3937 U
FFlai: :2SO km : 4 us
TUIE: 0.:35 UA
PHME: 3.1.'5 Den
]. HPUT RAIHGlE CH.!.: 20 U
SAl'lPt. J:,..g RATE: 20 I'fHz

./
I·

i
/ I

I

i

/
./

./

!
/~

·1
!

/
:/"

i

:t'
/

/

/ -

;
/

/
/

I
/

I
/

i

/
I

I

/

.'
I

/
i
/.

i

/
i

I
.'

/

Figure 8.5

85

Figure 8.5 shows a more complex waveform in the dot mode.

The individual samples can clearly be seen•

. ~
/. "70

._,

-.

./
~"".....--:.-.:.

.'

. /..-...-....
."

.,

\,
-~-

Figure 8.6

Figure 8.6 shows a noisy sine wave.

86

/
tJ

/'\/ ,
\ /
\ /

'-.-'

\\. / \ / \
/

\, \
'''-/ \, / ''J

I
i,
I
!,

Figure 8.7

Figure 8.7 shows the same signal as in Figure 9.6 with the

display filter activated. The line mode is used to connect

the samples.

87

..-- :__.

Figure 8.8

Figure 8.8 shows a square wave.

88

,-- ,--

"-

Figure 8.9

Figure 8.9 shows the same square wave as shown in figure

8;8, but after the filter was used. The interpolated samples

are clearly visible.

89

HEJ«J !«)(»!«VH!« i»1.. .l-iHAalAl...jIHT TRIGlsrr TfUGIREF!U"iD~!FILTER!???IOUlT

UOLTAGE: 0 U
FftEQ~ 8.44~ kttz: .118.4 u
TUtE: 0 ~
PHRoSE: 0 DEG
IHFUT AAHGE CH.. : ::s U
IN'UT~ CH:a:: :s- U
$AM"LIHG RATE: 1.25 PtH;:r;

/\..,
/

/ \.
./ '

\ ./,
\ ..//

\. /
.. i•. /

"

".--'.•
. "~

/ '\
i

,f \

-*-'.
? "•

./ \.
!

.'
/,

/
.I

':..r

'.. ./, ,-.

,,,

'•.•.

i, /

\ /
>.

... .I
'.

,~-

...- '.

f

/,

.!

.'

/
\ .•/

Figure 8.10

Figure 8.10 shows signals on both channels.

90

9. FUTURE ENHANCEMENTS

Software development is an on-going process that is

susceptible to future enhancements. The following possible

enhancements could be included in the next version:

• Writing a Windows based program

• Adding export facilities to other file formats

• Adding import facilities from other file formats

• Automating the calculation of the signal parameters

• Converting the unit to a Logic Analyser

9.1. Writing a Windows based program

The mscope.exe program is currently a DOS application. The

interaction between various Windows paCkages which allows

files to be transferred between them should appeal more to

users preferring a multitasking environment.

9.2. Adding Export Facilities to other File Formats

The file format used for saving signal data does not

correspond to other designs. It could be useful to be able

to convert the captured images to other file formats.

91

9.3. Adding Import Facilities from other File Formats

Importing captured images from other packages could be

useful when comparisons with signal, captured with other

packages, needs to be done.

9.4. Automating the Calculation of the Signal Parameters

currently a cursor scheme is implemented to calculate the

signal parameters. Automating the calculations could improve

the overall performance of the unit.

9.5. Converting the unit to a Logic Analyser

With the analogue buffer removed, the unit could be used as

a Logic Analyser with 8 inputs. This would entail a change

in the software.

92

10. CONCLUSION

The Digitising Workstation has wide ranging applications in

the educational and general electronics market, not only as

a laboratory instrument, but as a general-purpose digitising

unit.

In the electronics maintenance sphere, the unit could be

very useful. Standard waveforms at various test points could

be captured and archived and then compared with test points

on the circuit under test. In this way a library of standard

waveforms can be created. The Digitising Workstation could

be installed in a Notebook computer resulting in a fully

portable test and measuring unit. A hardcopy output of the

unit could be included in reports giving visual proof that a

fault has been resolved.

In the education sphere the workstation could also be very

useful. A library of captured signals could be used in class

demonstrations by the lecturer. Students could also use

hardcopy results in documentation of research projects.

To conclude, the final product surpasses the requirements

initially requested and would prove to be advantageous in

any electronics environment.

93

11. BffiLIOGRAPHY

1.

2.

3.

4.

5.

6.

7.

HOROWITTZ,P.

HILL, W.

INTEL CORPORATION

NATIONAL

SEMICONDUCTOR

COMPANY

NATIONAL

SEMICONDUCTOR

COMPANY

TEXAS INSTRUMENTS

BURR-BROWN

McGRAW-HILL

1987

1988

1988

1988

1973

1986

1990

94

The Art of

Electronics

Memory Components

Handbook

Linear Databook

1,2,3

cmos Logic Databook

The Linear and

Circuits Data Book

Integrated Circuits

Data Book

Teach Yourself C

8. BORLAND

9. BORLAND

10. ABEL, P.

11. ANALOG DEVICES

12 •. NATIONAL

SEMICONDUCTOR

COMPANY

13. PHILIPS

1992

1991

1987

1992

1988

95

Turbo C++, Users

Guide

Borland C, Library

Reference

LB.M. P.C.

Assembler Language

and Programming

Data Converter

Reference Manual

Volume 2

Application note 236.

An Introduction to

the Sampling Theorem

Basic Principles of DSOs

using the Philips PM3350

12.1. Flow Diagrams

12. APPENDIX A

INITIALIZE GRAPHICS MODE

KEYSTROKE?

Initialisation

MOUSE EVENT

F ENTER FILTER VALUE

C ENTER CLOCK FREQUENCY

:Key Event

96

HOT SPOT1 /,£NU

HOT SPOT2 QUIT

HOT SPOT 3 ZOOMX

HOT SPOT4 ZOOMY HOT SPOT 16 ACOil

HOT SPOT5 SHFT BACKW'JID HOT SPOT 17 DC Oil

HOT SPOT6 SHFT FOR'MRD HOT SPOT 18 VOLTAGE SCALE CHI

HOT SPOT 7 lXlT DISPlAY HOTSPOT19 lRlGGER LEVEL

HOT SPOT8 UNE DISPlAY HOT SPOT 20 SAM'UNG RATE

HOT SPOT 9 MANUAL HOT SPOT 21 CH1 UP/DCMIN COI'lTROL

HOT SPOT10 INTERNAL lRIGGER HOT SPOT 22 ACCH2

HOT SPOT 11 EXTERNAL lRIGGER HOT SPOT23 DCCH2

HOT SPOT 12 REFERENCE HOT SPOT 24 CH2UP/DCMIN CCNlROL

HOT SPOT 13 SHFTUP HOT SPOT 25 VOLTAGE SCALE CH2

HOT SPOT 14 SHFT [J()\/',N HOT SPOT 25 CH200

HOT SPOT 15 ALTER HOTSPOTZl CH2cr'F

Mouse Event

97

IIOTSPOT28

HOT SPOT 30

EN~WWTOR

FII£IlII!IVE

FILE IMPORT

SCROLL VALUE

98

12.2. SOFTWARE

12.2.1. Mscope.cpp

#include <graphics.h>
#include <stdlib.h>
#include <stdio.h>
#include <conio.h>
#include <bios.h>
#include <dos.h>
#include <sys/stat.h>
#include <string.h>
#include <fcntl.h>
#include <io.h>
#include <dir.h>
#include "msmouse.h"
#include <math.h>
#include <ctype.h>

void clearviewport_ (void)
{

Mouse.Hide ():
clearviewport ():

)

void gdisplay (char gch)
{
switch (gch)

(
case t a I : outtext("a") : break:
case •b' : outtext("b"): break:
case 'c I : outtext("c") : break:
case 'd I : outtext (lid") : break:
case •e' : outtext("e"): break:
case • f' : outtext("f") : break:
case 'g' : outtext("g") : break:
case •h' : outtext ("h") : break:
case ' i' : outtext("i"): break:
case I j I : outtext(IIjll): break:
case •k' : outtext("k") : break:
case '1' : outtext("1"): break:
case I m I : outtext("m"); break:
case •n' : outtext("n"): break:
case '0' : outtext("o"): break:
case I pi: outtext("p"); break:
case . q' : outtext("q"); break:

99

case 'r I : outtext("r"); break;
case I Si: outtext("s"); break;
case 't' : outtext("t"); break;
case 'u' : outtext("u"); break;
case 'v I: outtext ("v") ; break;
case 'w' : outtext ("w") ; break;
case 'x I : outtext("x"); break;
case 'y ': outtext ("y") ; break;
case • z I : outtext("z"); break;
case '0' : outtext("O"); break;
case ' l' : outtext("1"); break;
case • 2 I : outtext("2"); break;
case I 3 I : outtext("3"); break;
case '4 I : outtext("4"); break;
case '5 • : outtext("5"); break;
case '6 I : outtext("6"); break;
case I 7 I : outtext("7"); break;
case '8 • : outtext("8") ; break;
case 'g' : outtext("g"); break;
case • A I : outtext("A"); break;
case 'B' : outtext ("B") ; break;
case 'c' : outtext("C"); break;
case 'D ': outtext("D"); break;
case •E': outtext ("E") ; break;
case 'F I : outtext ("F") ; break;
case I G' : outtext("G"); break;
case 'H' : outtext ("H") ; break;
case 'I I : outtext("I"); break;
case I J I : outtext ("J") ; break;
case • K' : outtext ("K") ; break;
case 'L' : outtext("L"); break;
case 'M' : outtext ("M") ; break;
case 'N' : outtext ("N") ; break;
case 10 r : outtext("Q"); break;
case • p' : outtext("P"); break;
case 'Q' : outtext ("Q") ; break;
case 'R' : outtext ("R") ; break;
case I S': outtext("S"); break;
case 'T' : outtext("T"); break;
case 'U' : outtext("U"); break;
case 'v· : outtext ("V") ; break;
case 'w' : outtext("W"); break;
case I X I : outtext ("X") ; break;
case • y' : outtext("Y") ; break;
case • Z ' : outtext (" Z") ; break;
case 1-' : outtext("-"); break;
case ' ! ' : outtext("!"); break;
case ' @, : outtext("@"); break;
case • :# • : outtext("if"); break;
case ' $' : outtext("$"); break;
case '%' : outtext("%"); break;
case ' : outtext("A,,); break;
case '&' : outtext("&"); break;
case '* I : outtext("*"); break;

100

case '(': outtext(II(II); break;
case ')': outtext(II)II); break;
case ' ': outtext(II "); break;
case ':j:,: outtext("+"); break;
case 'I': outtext (" I"); break;
case "': outtext("'"); break;
case '-': outtext("-"); break;
case '=': outtext("="); break;
case '[': outtext (" ["); break;
case ']': outtext("]"); break;
case ';': outtext(";"); break;
case ',': outtext(II,II); break;
case '.': outtext("."}; break;
case '/': outtext ("/"); break;
case '(': outtext("{"); break;
case '}': outtext("}"}; break;
case ':': outtext(":"); break;
case '<': outtext("<"); break;
case '>': outtext(">"); break;
case '?': outtext("?"); break;
case ' ': outtext(" "); break;

}
}

char* gscan ()
{

char *test,*testl;
testl = test;
while «*test = getch(» != 13) gdisplay(*test++);
return testl;

}

char* gscanxy (int x, int y)
(

moveto(x,y);
char *test,*testl;
testl = test;
while «*test = getch(» != 13) gdisplay(*test++);
*test++=O;
return test1;

}

int giscanxy (int x, int y,int retint)
(

moveto(x,y) ;
char *test,counter=O;
retint=O;
char upcounter = 0;
while «*test = getch(» != 13)
(gdisplay(*test++) ;counter++;}

101

while (counter-- > 0)
(

retint +=(*(--test) - 48) * pow10(upcounter++);
}
return retint;

}

int giscan (int retint)
{

char *test,counter=O;
retint=o;
char upcounter = 0;
while «*test = getch(» != 13)
{gdisplay(*test++);counter++;}

while (counter-- > 0)
(

retint +=(*(--test) - 48) * pow10(upcounter++);
)
return retint;

}

void gprint (char *tet)
{

while (*tet != 0) gdisplay(*tet++);
}

void gprintxy (char *tet, int x, int y)
(

moveto(x,y);
while (*tet != 0) gdisplay(*tet++);

}

void *save;

#define PIXEL_COUNT 640

int Mx, My;
unsigned E=Mouse.Event(Mx,My);

int BCOLOR=0,DISP=0,OFFSET=100,EXP=1,GRID=50,PCOLOR=15;
int VERT=l;
int GR=0,SHIFT=1,SHIFTF=320,handle,porta,portb,portc;
int filter=100,SKIP=1;
int stopvalue=O;
int trigval=O;
int OFFSET2=200;
int fil = 1000;
float elk = 20;
int ch 1=1;
char filename;

102

FILE *fp;
char VAL[8192];
char VALl [8192] ;
char TEMP[8192];
float SAMPLE=20;
float IN SCALE;
float IN-SC2;
void *buf;
float FREQ;
int second = 0;
char monster[4];
char inset[4];
float xvall=400,xva12=400,xva13=400,yvall=400,yval2=400;
float yval3=400;
int calc = O,calcval = O,man = O,inter = O,exter = 0;
int AC1=1,DC1=4;
int chan2on=1;
int AREG;
#include "readl.inc"
#include "read2.inc"
#include "read eprom.inc"

void
{
int

)

initialize_graphics (void)

gdriver = DETECT, gmode, errorcode;

initgraph(&gdriver, &gmode, 1111);
errorcode = graphresult();
if (errorcode != grOk)
{

printf ("Graphics error: %s\n",
grapherrormsg(errorcode»;
printf ("press any key to halt: 11) ;
getch() ;
exit (1);

}

void change_drive
{

(void)

clearviewport_ ();
setviewport(2,40,638,451,2);
setfillstyle(l,l);
int poly[8];
poly[O]=lO;
poly[l]=lO;
poly[2]=200;
poly[3]=10;
poly[4]=200;
poly[5]=35;
poly[6]=10;
poly[7]=35;
fillpoly(4,poly);
outtextxy (20,20,"ENTER DRIVE: (A - F)11);

103

Mouse. Show () :

switch (getche())
{
case 'a' :
case •A' : setdisk (0) :

break:
case •b' :
case •B' : setdisk (1) :

break:
case le' :
case 'C':setdisk (2) :

break:
case Id' :
case •D' : setdisk (3) :

break:
case •e' :
case •E' : setdisk (4) :

break:
case • f' :
case 'F':setdisk (5) :

break:

}
}

void
(

struct

fi1e_dir (void)

ffb1k ffb1k:

int done,disk,counter=O:
clearviewport () :
setviewport(2~40,638,451,2):
change drive ():
clearviewport_ ():
setviewport(0,40,638,451,0):
done = findfirst ("*.dat",&ffblk,O):
while (!done)
(

gprintxy(ffb1k.ff_name,20,15*counter++):
done = findnext (&ffblk }:

}

Mouse.Show ():
gotoxy (18,10):
printf (" ENTER FILENAME: ") :
line (0,452,0,28):
scanf ("%5", &filename):

setviewport(2,40,638,451,0):

104

}
void file store
{

(void)

}

clearviewport_ ();
setviewport(2,40,638,451,2);
change_drive ();
Mouse.Show ();
clearviewport_ ();
gotoxy(18,10);
printf (" ENTER FILENAME: ");
scanf ("%s", &filename);
Mouse.Show ();

int j;
for (j=O; j!=8192:j++)
{

void
{

FILTER (void)

}

if (abs(VAL[j+l]-VAL[j]»filter)

VAL[j+1] = (VAL[j]+VAL[j+2]) *0.5;

else

VAL[j+1] = VAL[j+l];

}
int k;
if (chan2on == 1)
{
for (k=O; k!=8192;k++)
{

if (abs (VAL1[k+l]-VALl[k]) >filter)

VALl[k+l] = (VALl[k]+VALl[k+2])*0.5;

else

VALl[k+l] = VALl[k+l];

}
}

void FILTER_ (void)
{

int k;
if (filter>=stopvalue)

{
for (k=filter; k!=stopvalue;k--)

105

i, j , k;
LINE;

setbkcolor(BCOLOR);

}

void
{
int
int

{
FILTER ();
filter = filter - 1;

}
}

draw (void)

for (i=o; i<=PIXEL COUNT;i++)

{
LINE = DISP; /* "0" = dots, "1" = line */
if (LINE != 1)
{

while (abs(VAL[i+l]-VAL[i]»fil)
{
if (i=639)

{
break;

}
i++;

}
putpixel(i*EXP, OFFSET+(VAL[i+SHIFT] &
OX7f)*VERT,PCOLOR);

}
else
{

while (abs(VAL[i+l]-VAL[i]»fil)
{
if (i=639)
{
break;
}
i=i+l;
}
lineto(i*EXP, OFFSET+(VAL[i+SHIFT] &
OX7f)*VERT);

}

}
if(chan20n = 1)
(

moveto(O,O);

106

for (j=O; j!=PIXEL_COUNT;j++)
{

LINE = DISP; /* "0" = dots, "I" = line */
if (LINE != 1)
{

while (abs(VAL[j+l]-VAL[j]»fil)
{
if (j=639)
{
break;
}
j++;
}
putpixel(j*EXP, OFFSET2+ (VALl [j+SHIFT] &
OX7f)*VERT,PCOLOR);

}
else
{

while (abs(VAL[j+l]-VAL[j]»fil)
{
if (j==639)
{
break;
}
j++;
}
lineto(j*EXP, OFFSET2+(VALl[j+SHIFT] &
OX7f)*VERT);

}

}
)
for (k=O; k!=PIXEL_COUNT;k++)

{
putpixel(k*EXP, OFFSET+(64*VERT), 1);
putpixel(k*EXP, OFFSET2+(64*VERT), 1);

}
}

void ehanl
{

(void)

porte = (porte & Oxf7);
outport(Ox302,porte) ;

porte = (porte I OX08);
outport(Ox302,porte);

}
void
{

}

ehan2 (void)

107

void calculations (void)
{
float volt,frek,time,phase=0,time1=0;

if (calcval == 1)
{

setviewport(2,30,225,125,1);
clearviewport_ ();
volt = « yva11 - yva12)*0.039370078)/VERT;

if «xva12 - xva11)!=0)
{
frek =(1/(xva12 - xva11)*SAMPLE*1000)*EXP;

//16000
}

time =« xva12 - xva11)*1/SAMPLE)/EXP;
time1 =« xva13 - xva11)*1/SAMPLE)/EXP;
phase = «(xva13 -xva11)*1/SAMPLE)/EXP)/time*360;

char string[25];

int sig = 5;
char *VOLT = "VOLTAGE: ";
char *Vo = " V";
char *FR = "FREQ: ";
char *FRE = " kHz : ";
char *TI = "TIME: ";
char *TIM = " us";
char *PH = "PHASE: ";
char *DEG = " DEG";
char *VS = "INPUT RANGE CH1: ";
char *VS2 = "INPUT RANGE CH2: ";
char *SR = "SAMPLING RATE: ";
char *ME = " MHz";

gcvt(volt,sig,string);
moveto(10,10);
gprint (VOLT);
gprint (string);
gprint (VO);
gcvt(frek,sig,string);
moveto(10,22);
gprint (FR);
gprint (string);
gprint (FRE);
sig=4;
gcvt(time,sig,string);
gprint (string);
gprint (TIM);
gcvt(time1,sig,string);
moveto(10,34);

108

gprint (TI);
gprint (string);
gprint (TIM);
moveto(10,46);
sig=3;
gcvt(phase,sig,string);
gprint (PH);
gprint (string);
gprint (DEG);
moveto(10,58);
sig=5;
gcvt(IN_SCALE,sig,string);
gprint (YS);
gprint (string);
gprint (YO);
moveto(10,58);
if (chan2on == 1)
{

moverel(0,12);
gcvt(IN_SC2,sig,string) ;
gprint (YS2);
gprint (string);
gprint (YO);
llloveto(10,70);

}
moverel(0,12);
gcvt(SAMPLE,sig,string);
gprint (SR);
gprint (string);
gprint (ME);
setviewport(2,40,638,45l,0);
Mouse.Show ();

}
}

void display
{

(void)

draw ();
calculations ();
Mouse.Show ();

}

int trigtest (void
{

delay (200);
int t=O;
while (bioskey(l) ==0)
{

for (t=O; t != 8l92;t++)

109

{

if ((VALEt] & Ox80) != 0)
{

t=O;
Ilchanl () ;
Ilreadl () ;
IIchan2 () ;
IIread2 () ;
read_eprom () ;
return 1;

)

}

t=O;
clearviewport_ ();
Mouse.Show (};
setfillstyle(l,l);
int poly[8];
poly[0]=10;
poly[1]=10;
poly[2]=240;
poly[3]=10;
poly[4]=240;
poly[S]=3S;
poly[6]=10;
poly[7]=3S;
fillpoly(4,poly);
outtextxy (20,20,"WAITING FOR TRIGGER");
delay (2000);
t=O;
II chanl ();
II readl ();
II chan2 ();
II read2 ();
read_eprom ();

}
return 0;

}

void trigger_level (void)
{

gotoxy(10,10);
printf("ENTER TRIGGER VALUE: ");
scanf("%d",&trigval);

}
void inttrig
{

(void)

110

outport(Ox300,trigval);
porte = (porte I OX20);
outport(OX302,porte);
porte = (porte I OXSO);
porte = (porte & OXOef);
porte = (porte I OX40);
outport(Ox302,porte);
porte = (porte & OXOdf);
porte = (porte & OX7f);
outport(Ox302,porte);
delay (200);

}

void external (void)
{

porte = (porte I OX20);
outport(Ox302,porte) ;
porte = (porte OXSO);
porte = (porte OX40);
porte = (porte OXI0);
outport(Ox302,porte);
porte = (porte & OX7f);
porte = (porte & Oxdf);
outport(OX302,porte);

ehanl ();
readl ();
if (ehan2on -- 1)
{
ehan2 ();
read2 ();
)
trigtest ():
elearviewport ();
display ();
Mouse.Show ();

}

void manual (void)
{

porte = (porte & Oxbf);
porte = (porte & Oxdf);
outport(Ox302,porte);
delay (500);
porte = (porte I OX20);
outport(OX302,porte) ;

}

Ijset man

Ilset reset
Ij reset inter
Ilset eont

Ijreset man
Ij reset reset

Ijset man

Ilset reset
II set eont
II set inter

Ilreset reset
Ijreset man

Ilreset eont
Ilreset man

Ilset man

void vseale
{

(void)

111

setviewport(2,40,638,451,2);
clearviewport ();
setviewport(0~0,638,451,0);
setfillstyle(1,2);
int poly[8];
poly[0]=96;
poly[1]=40;
poly[2]=150;
poly[3]=40;
poly[4]=150;
poly[5]=165;
polY[6]=96;
poly[7]=165;
fillpoly(4,poly);
outtextxy (100,50,"10.0 v");
outtextxy (100,75,"5.00 V");
outtextxy (100,100,"1.00 V");
outtextxy (100,125," 11);
outtextxy (100,150," 11) ;

line (96,65,150,65);
line (96,90,150,90);
line (96,115,150,115);
line (96,140,150,140);

setfillstyle(l,l) ;

poly[0]=216;
poly[1]=210;
poly[2]=400;
poly[3]=210;
poly[4]=400;
poly[5]=237;
poly[6]=216;
poly[7]=237;
fillpoly(4,poly);
outtextxy (226,220,"SELECT VOLTAGE SCALE: ");
setviewport(2,40,638,451,2);
Mouse.Show ();

}
void sscale
{

(void)

setviewport(2,40,638,451,2);
clearviewport_ ();
setviewport(0,O,638,451,0);
setfillstyle(1,2) ;
int pOly[8];
poly[0]=96;
poly[1]=40;
poly[2]=176;
poly[3]=40;

112

poly[4]=l76;
poly[5]=240;
poly[6]=96;
poly[7]=240;
fillpoly(4,poly);
outtextxy (100,50,"20.00 MHz");
outtextxy (100,75,"10.00 MHz");
outtextxy (100,100,"5.000 MHZ");
outtextxy (100,125,"2.500 MHz");
outtextxy (100,150,"1.250 MHz");
outtextxy (100,175,"625.0 MHz");
outtextxy (100,200,"312.5 kHz");
outtextxy (100,225,"156.2 kHz");

line (96,65,176,65);
line (96,90,176,90);
line (96,115,176,115);
line (96,140,176,140);
line (96,165,176,165);
line (96,190,176,190);
line (96,215,176,215);
setfillstyle(1,1);

poly[0]=216;
poly[1]=210;
poly[2]=400;
poly[3]=210;
poly[4]=400;
pOly[5]=237;
poly[6]=216;
poly[7]=237 ;
fillpoly(4,poly);
outtextxy (226,220,"SELECT SAMPLING RATE: ");

setviewport(2,40,638,451,2) ;
Mouse.Show ();

}
float vrange1 (void)
{

setviewport(2,40,638,451,2);
clearviewport_ ();
Mouse.Show ();
outport(Ox303,Ox80) ;
porth = «portb & OXOf8) I OXOO);
outport(Ox301,portb);
return (20.0);

}
float vrange2 (void)
{

setviewport(2,40,638,451,2);

113

clearviewport ();
Mouse.Show (f;
outport(Ox303,OxSO);
porth = «porth & OXOfS) I OXOl);
outport(Ox30l,portb);
return (s.O);

)
float vrange3 (void)
(

setviewport(2,40,63S,4Sl,2);
clearviewport_ ();
Mouse. Show ();
outport{OX303,OXSO);
porth = «porth & OXOfS) I OX02);
outport(Ox30l,portb);
return (1. 0) ;

)
float vrange4 (void)
(

setviewport(2,40,63S,4Sl,2);
clearviewport_ ();
Mouse.Show ();
outport(Ox303,OXSO);
porth = «portb & OXOfS) I OX03);
outport(Ox30l,portb);
return (O.S);

)
float vrangeS (void)
(

setviewport(2,40,63S,4Sl,2);
clearviewport_ ();
Mouse.Show ();
outport(Ox303,OXSO);
portb = «porth & OXOfS) I OX04);
outport(Ox30l,portb);
return (0.1);

)
float vrange6 (void)
(

setviewport(2,40,63S,4Sl,2);
clearviewport_ ();
Mouse.Show ();
outport(Ox303,OxSO);
portb = «portb & OxOc7) I OXO);
outport(OX30l,portb);
return (20.0);

}
float vrange7 (void)
(

setviewport(2,40,63S,4Sl,2);
clearviewport_ ();
Mouse.Show ();

114

outport(OX303,OxSO),
portb = «portb & OXOe7) I OxS),
outport(Ox301,portb),
return (5.0),

)
float vranges (void)
{

setviewport(2,40,63S,451,2),
elearviewport_ (),
Mouse. Show (),
outport(Ox303,OXSO),
porth = «portb & OXOe7) I OxlO),
outport(Ox301,portb),
return (1.0),

)
float vrange9 (void)
{

setviewport(2,40,63S,451,2),
elearviewport_ (),
Mouse. Show (),
outport(Ox303,OxSO),
portb = «porth & OXOe7) I OX1S),
outport(Ox301,portb),
return (0.5),

}
float vrangelO (void)
{

setviewport(2,40,63S,451,2) ,
elearviewport_ (),
Mouse. Show (),
outport(Ox303,OXSO),
portb = «portb & OXOe7) I Ox20),
outport(Ox301,portb);
return (0.1),

}

float rangel
{

(void)

outport(OX303,OXSO),
porte = «porte & OxfS) I OXO),
outport(Ox302,porte),
return (elk),

)
float range2
{

(void)

outport(Ox303,OxSO);
porte = «porte & OxfS) I OX01),
outport(Ox302,porte);
return (elkj2);

}
float range3
{

(void)

115

outport(Ox303,OxSO);
porte = «porte & OXfS) I OX02);
outport(Ox302,porte);
return (elk/4) ;

}
float range4
{

(void)

outport(Ox303,OxSO);
parte = «porte & OXfS) I OX03);
outport(Ox302,porte);
return (elk/S);

}
float range5
{

(void)

outport(OX303,OxSO);
parte = «porte & OxfS) I OX04);
outport(OX302,porte);
return (elk/16);

}
float range6
{

(void)

outport(Ox303,OxSO);
parte = «porte & OxfS) I OX05);
outport(Ox302,porte);
return (elk/32);

}
float range7
{

(void)

outport(Ox303,OxSO) ;
parte = «porte & OxfS) I OX06);
outport(Ox302,porte);
return (elk/64);

}
float rangeS
{

(void)

outport(Ox303,OxSO);
parte = «parte & OxfS) I OX07);
outport(Ox302,porte);
return (elk/12S);

}

void
{

screen (void)

setbkeolor (0);

setviewport (5,43,122,240,1);
elearviewport ();
setviewport(2,40,63S,451,2) ;
setfillstyle(1,4);

}
void
{

menul (void)

116

}
void logo
{

int polY[8];
poly[0]=3;
poly[1]=3;
poly[2]=120;
poly[3]=3;
poly[4]=120;
polY[5]=200;
poly[6]=3;
poly[7]=200;
fillpo1Y(4,poly);
outtextxy(10,10,"FILE SAVE");
outtextxy(10,30,"FILE IMPORT");
outtextxy(10,50,"« » VALUE");

(void)

}

void
{

setbkeolor(BCOLOR);
settextstyle(SANS SERIF FONT,HORIZ DIR,8);
outtextxy (50,160:-"PC SCOPE"); -
settextstyle(DEFAULT FONT,HORIZ DIR,l);
outtextxy (50,400,"Copyright (C) 1993
RENSBURG");

menubar (void)

setfillstyle(1,4);
int poly[8];
poly[O]=O;
poly[l]=O;
poly[2]=639;
poly[3]=0;
poly[4]=639;
poly[5]=25;
poly[6]=0;
poly[7]=25;
fillpoly(4,poly);

line (0,28,639,28);
line (639,28,639,452);
line (639,452,0,452);
line (0,452,0,28);

setfillstyle(l,l);

117

HP J van

bar3d(0,455,32,479,0,0);
outtextxy (5,464,ICH1");
setfillstyle (1,4);
bar3d(32,455,54,479,0,0);
outtextxy (36,464,IAC");
bar3d(54,455,76,479,0,0);
outtextxy (58,464,IDC");
setfillstyle(1,4);
bar3d(76,455,168,479,0,0) ;
outtextxy (78,464,"INPUT RANGE");
bar3d(168,455,277,479,0,0);
outtextxy (171,464,"TRIGGER LEVEL");

setfillstyle(1,2);
bar3d(277,455,387,479,0,0) ;
outtextxy (281,464, 11 SAMPLING RATEII) :

setfillstyle(l,l);
bar3d(387,455,419,479,0,0);
outtextxy (392,464,ICH2");
setfillstyle (1,4);
bar3d(419,455,441,479,0,0):
outtextxy (423,464,IAC");
bar3d(441,455,463,479,0,0) ;
outtextxy (445,464,IDC");
bar3d(463,455,556,479,0,0);
outtextxy (466,464,"INPUT RANGE");
setfillstyle (1,1);
bar3d(556,455,578,479,0,0);
outtextxy (560,464,ION");
setfillstyle (1,4);
bar3d(578,455,608,479,0,0);
outtextxy (582,464,IOFF");
bar3d(608,455,639,479,0,0) ;
outtextxy (613,464,ICLS");

outtextxy (5,10,IMENU");
outtextxy (45,10,1«X»");

line (41,25,41,0);
line (88,25,88,0);
outtextxy (92,10,1«Y»");
line (135,25,135,0);
outtextxy (139,10,"«");
line (158,25,158,0);
outtextxy (162,10,"»");
line (181,25,181,0);
outtextxy (183,10," .•. ");
line (208,25,208,0);
line (212,15,230,15);
line (234,25,234,0);
outtextxy (238,10, "MANUAL") ;
line (288,25,288,0);
outtextxy (292,10,"INT TRIG");

118

line (358,25,358,0):
outtextxy (362, 10, "EXT TRIG"):
line (428,25,428,0):
outtextxy (432,10,"REFIl):
line (458,25,458,0):
outtextxy (462,10,"Upl):
line (480,25,480,0):
outtextxy (484,10,lDOWN");
line (518,25,518,0):
outtextxy (522,10,lFILTER");
line (572,25,572,0);
outtextxy (576,10,"???"):
line (602,25,602,0):
outtextxy (606,10,IQUIT");

}

int main (void)
{
int escape= O,submenu= 0:

initialize_graphics():
outport(Ox303,Ox80) :
screen ():
menubar ();
logo ():
delay (2000):
setviewport(2,40,638,451,2);
clearviewport ():
setviewport (0,0,640,480,1);

Mouse.Setup(Graphics):
if (!Mouse.Operating(» {

closegraph () ;
cprintf(IlMouse not detected. \n"):
exit(l);

}
Mouse.SetGCUrsor(Arrowcursor):

while (!escape)
II while (!escape 11 E !=RMouseDown)

(
E=Mouse.Event(Mx,My) ;

char ch=' ':
if (bioskey(l» ch = bioskey(O);

switch
{

(ch)

case 'q':

119

case 'Q':escape = 1;
cleardeviee ();
break;

case 'f':
case 'F': gotoxy(20,8);

printf ("ENTER FILTER VALUE: ") ;
scanf("%d",&fil);
break;

case 'e': gotoxy(20,8);
printf ("ENTER CLOCK FREQ: ") ;
scanf("%f",&clk);
break;

}
switch (E) {

case LMouseDown:
if (My>=O && My<25) Ilfirst line

{
if (Mx >=0 && Mx<40)
{

sound (30) ;
delay(10);
nosound();
ealcval=O;
ealc=2;

setviewport(2,40,638,451,2) ;
Ilmenu
menu1() ;.
submenu=l;
break;

}

if (Mx >=603 && Mx<639)
(sound(30);

delay(10);
nosound();
setviewport(2,40,638,451,2);
elearviewport ();
Mouse.Show ();
escape = 1;
break;

}
if (Mx >=42 && Mx<87)
{ sound(30);

delay(10);
nosound ();
calcval=O;
ealc=2;
char *test;
setviewport(2,40,638,451,2);

Ilx

120

clearviewport_ ();
setfillstyle(1,1);
int poly[8];
poly[O]=10;
poly[1]=10;
poly[2]=250;
poly[3]=10;
poly[4]=250;
poly[5]=35;
poly[6]=10;
poly[7]=35;
fillpoly(4,poly);
outtextxy (20,20,"SELECT
HORIZONTAL SCALE: ");
test=gscanxy(230,20);
EXP=atoi(test);
clearviewport_ ();
setviewport(2,40,638,451,2);
display ();
Mouse.Show ();
break;

)
if (Mx >=89 && Mx<134)
{ sound(30);

delay(10);
nosound();
calcval=O;
calc=2;
char *test;
setviewport(2,40,638,451,2);
Ily
clearviewport_ ();
setfillstyle(1,1);
int poly[8];
poly[O]=10;
poly[1]=10;
poly[2]=240;
poly[3]=10;
poly[4]=240;
poly[S)=3S;
poly[6]=10;
poly[7]=3S;
fillpoly(4,poly);
outtextxy (20 , 20, 11 SELECT
VERTICAL SCALE: 11);
test=gscanxy(220,20);
VERT=atoi(test);
clearviewport_ ();
setviewport(2,40,638,451,2);
display ();
Mouse.Show ();
break;

}
if (Mx >=136 &&Mx<157)

121

{ sound (30) ;
delay(10);
nosound();
calcval=O;
calc=2;
setviewport(2,40,638,451,2);
//backward
clearviewport_ ();
SHIFT =(SHIFT - SHIFTF);
display ();
Mouse.Show ();
break;

}
if (Mx >=159 &&Mx<180)
{

sound(30);
delay(10);
nosound();
calcval=O;
calc=2;
setviewport(2,40,638,451,2);
//forward
clearviewport_ ();
SHIFT =(SHIFT + SHIFTF);
display ();
Mouse.Show ();
break;

}
if (Mx >=182 &&Mx<207)
{

sound(30);
delay (10) ;
nosound():
setviewport(2,40,638,451,2);
//dot
clearviewport_ ();
DISP = 0;
display ();
Mouse.Show ():
break;

}
if (Mx >=209 &&Mx<233)
{

sound(30);
delay(10);
nosound();
setviewport(2,40,638,451,2);
//line
clearviewport_ ();
DISP = 1:
display ();
Mouse.Show ();
break;

}

122

if (Mx >=235 &&Mx<287)
{

sound(30)t
delay(10)t
nosound()t
ealcval=Ot
eale=2t
setviewport(2,40,638,451,2)t
//manual
elearviewport_ ()t
manual ()t
ehan1 ();
read1 ()t
if (ehan2on -- 1)
{

ehan2 ();
read2 ();

}
display ();
man=O;
porte = (porte & Oxbf);
//reset eont
porte = (porte & OXdf);
//reset man
outport(Ox302,porte)t
Mouse.Show ();
break;

}
if (Mx >=289 &&Mx<357)
{

sound(30)t
delay(10);
nosound ();
ealcval=O;
eale=2t
setviewport(2,40,638,451,2)t
elearviewport_ ();
inttrig ()t
ehan1 ()t
read1 ();
if (ehan2on == 1)
{

ehan2 ()t
read2 ()t

}
trigtest ();
elearviewport_ ();
display ()t
Mouse.Show ();
inter = 0;
Mouse.Show ();
break; //internal

}
if (Mx >=359 &&Mx<427)

123

{
sound(30) ;
delay(10);
nosound();
calcval=O;
calc=2;
setviewport(2,40,638,451,2);
clearviewport_ ();
external ();
exter=O;
Mouse.Show ();
break; Ilexternal

}
if (Mx >=429 &&Mx<457)
{

sound (30) ;
delay(10);
nosound();
calcval=O;
calc=2;
setviewport (xvall,yvall
5,xvall,yvall+5,1);
clearviewport ();
setviewport (xvall
5,yvall,xvall+5,yvall,1);
clearviewport ();
setviewport(2,40,638,45l,2);
display ();
calc = 1; Ilref
Mouse.Show ();
break;

}

if (Mx >=459 &&Mx<479)
{

sound(30); Ilup
delay(lO);
nosound ();
calcval=O;
calc=2;
if (ch_l == 1)
{

OFFSET = (OFFSET - 10);
}
else
{

OFFSET2 = (OFFSET2 - 10);
}
setviewport(2,40,638,45l,2);
clearviewport_ ();
display ();
Mouse.Show ();
setviewport(2,40,638,451,2);
break;

124

}
if (Mx >=481 &&Mx<517)
(

sound(30); jjdown
delay(10);
nosound();
calcval=O;
calc=2;
if (ch_l == 1)
{

OFFSET = (OFFSET + 10);
}
else
{

OFFSET2 = (OFFSET2 + 10);
}
setviewport(2,40,638,451,2);
clearviewport_ ();
display ();
Mouse.Show ();
setviewport(2,40,638,451,2);
break;

}
if (Mx >=519 &&Mx<571)
(

sound(30) ;
delay(10);
nosound();
calcva1=0;
calc=2;
char *test;
setfillstyle(1,1);
int poly[8];
poly[0]=10;
poly[1]=10;
poly[2]=240;
poly[3]=10;
poly[4]=240;
poly[5]=35;
poly[6]=10;
poly[7]=35;
fillpoly(4,poly);
outtextxy (20,20, "ENTER START
VALUE: ");
test=gscanxy(200,20);
filter=atoi(test) ;
fillpoly(4,poly);
outtextxy (20,20,"ENTER STOP
VALUE: ");
test=gscanxy(200,20);
stopvalue=atoi(test);
fillpoly(4,poly);
outtextxy (20,20, "PLEASE
WAIT");

125

FILTER ()~

setvieWport(2,40,638,451,2)~
clearviewport_ ()~

display ()~

setviewport(2,40,638,451,2)~

Mouse.Show ()~

break~

)

}
if (MY>=455 && My<480)
{

if (Mx >=1 && Mx<32)
{

ch 1 = 1~

break~

}
if (Mx >=33 &&Mx<53l
{

setviewport(32,455,54,479,2)~

clearviewport_()~

setviewport(O,O,639,479,2)~

setfillstyle(I,I)~

bar3d(32,455,54,479,O,O)~

outtextxy(36,464,ltAClt l ~

setviewport(54,455,76,479,2)~

Mouse. Show ()~

clearviewport_()~

setviewport(O,O,639,479,2)~

setfillstyle(I,4)~

bar3d(54,455,76,479,O,O) ~

outtextxy(58,464,ltDClt)~

setviewport(2,40,638,451,2)~

Mouse. Show () ~

portb = (portb I OX40)~
jjset ac chI
outport(Ox301,portb)~

break~

}
if (Mx >=55 &&Mx<75)

{

setviewport(54,455,76,479,2)~

clearviewport_()~

setviewport(O,O,639,479,2);
setfillstyle(I,I)~

bar3d(54,455,76,479,O,O)~

outtextxy(58,464,ltDClt)~

setviewport(32,455,54,479,2)~

Mouse. Show ()~

clearviewport_()~

setviewport(O,O,639,479,2l~

126

setfillstyle(I,4);
bar3d(32,455,54,479,0,0);
outtextxy(36,464,IAC");
setviewport(2,40,638,451,2);
Mouse. Show ();
portb = (portb & Oxbf);
jjreset ac chI
outport(Ox301,portb);
break;

)
if (Mx >=77 &&Mx<167)

{
man=2;
vscale ();
break;

)
if (Mx >=169 &&Mx<276)

jjtriggerlevel
(

setviewport (2,40,638,451,2);
clearviewport_();
trigger level();
setviewport (2,40,638,451,2);
clearviewport ();
Mouse.Show ();
break;

}
if (Mx >=278 &&Mx<386) jjsampling

{
man = 1;
sscale ();
break;

}
if (Mx >=387 &&Mx<420}

{
ch 1 = 0;
break;

}
if (Mx >=420 &&Mx<440)
(

setviewport(419,455,441,479,2) ;
clearviewport_(};
setviewport(0,0,639,479,2);
setfillstyle(I,I);
bar3d(4l9,455,441,479,0,0);
outtextxy(423,464,IAC") ;
setviewport(441,455,463,479,2) ;
Mouse. Show ();
clearviewport_();
setviewport(0,0,639,479,2);
setfillstyle(l,4) ;
bar3d(441,455,463,479,0,0) ;

127

outtextxy(445,464,"DC");
setviewport(2,40,638,451,2);
Mouse. Show ();
portb = (portb I aX80);
//set ac ch2
outport(Ox301,portb);
break;

}
if (Mx >=442 &&Mx<462)
(
setviewport(441,455,463,479,2) ;
clearviewport_();
setviewport(O,O,639,479,2);
setfi11sty1e(1,1);
bar3d(441,455,463,479,O,O);
outtextxy(445,464,lDC");
setviewport(419,455,441,479,2) ;
Mouse. Show ();
c1earviewport ();
setviewport(O~O,639,479,2);
setfil1sty1e(1,4) ;
bar3d(419,455,441,479,O,O) ;
outtextxy(423,464,lAC") ;
setviewport(2,40,638,451,2);
Mouse. Show ();
portb = (portb & aX7f);
//reset ac ch2
outport(Ox301,portb);
break;

}
if (Mx >=464 &&Mx<555)
{
man=3;
vscale ();
break;
}
if (Mx >=557 &&Mx<577)
(
setviewport(556,455,578,479,2);
clearviewport ();
setviewport(O~O,639,479,2);
setfil1sty1e(1,1);
bar3d(556,455,578,479,O,O);
outtextxy(560,464,lON");
setviewport(578,455,608,479,2);
Mouse. Show ();
c1earviewport_();
setviewport(O,O,639,479,2);
setfil1sty1e(1,4);
bar3d(578,455,608,479,O,O) ;
outtextxy(582,464,lOFF");
setviewport(2,40,638,451,2);

128

chan20n = 1;
display ();
Mouse. Show ();
break;
}
if (Mx >=579 &&Mx<607)
(
setviewport(556,455,578,479,2);
clearviewport_();
setviewport(O,O,639,479,2);
setfillstyle(l,4) ;
bar3d(556,455,578,479,O,O);
outtextxy(560,464,ION") ;
setviewport(578,455,608,479,2);
Mouse. Show ();
clearviewport_();
setviewport(O,O,639,479,2);
setfillstyle(l,l);
bar3d(578,455,608,479,O,O);
outtextxy(582,464,IOFF");
setviewport(2,40,638,451,2);
Mouse.Show ();
clearviewport_ ();
chan20n = 0;
display ();
Mouse.Show ();
break;
}
if (Mx >=609 &&Mx<638)
(
setviewport(2,40,638,451,2);
clearviewport_();
Mouse.Show();
break;
}

}

if (Mx>=O && Mx<100) jjfile save
{
if (My >=42 && My<63)
{
if (submenu -- 1)
(
sound(30);
delay(10);
nosound();
file store ();
if (ffp = fopen(&filename,"wb"»=NULL)
(
printf(llcannot open file");
exit(l);
}
fwrite(&SAMPLE,sizeof(float),l,fp) ;
fwrite(&IN_SCALE,sizeof(float),l,fp);

129

fwrite (&IN_SC2,sizeof(float),1,fp);
fwrite (VAL,sizeof VAL,1,fp);
fwrite (VAL1,sizeof VAL1,1,fp);
fclose(fp) ;
clearviewport ();
setviewport(2~40,638,451,2);
submenu = 0;
Mouse.Show ();
break;
}
}
if (My >=65 && My<85) jjfile import
{
if (submenu -- 1)
{
sound(30);
delay(10);
nosound();
file_dir ();
if((fp = fopen(&filename, "rb"))--NULL)
{
printf("cannot open file"};
exit (1);
}

fread(&SAMPLE,sizeof(float),1,fp};
fread(&IN SCALE,sizeof(float),1,fp);
fread(&IN=SC2,sizeOf(float),1,fp);
fread(VAL,sizeof VAL,1,fp);
fread(VAL1,sizeof VAL1,1,fp);
fclose (fp);
clearviewport ();
setviewport(2~40,638,451,2);
display ();
submenu = 0;
Mouse.Show ();
break;
}
}

if (My >=87 && My<97)
{
if (submenu -- 1)
(
sound(30) ;
delay(10) ;
nosound();
char *test;
setviewport(2,40,638,451,2);
clearviewport_ ();
setfillstyle(l,1);
int poly[8];
poly[0]=10;
poly[1]=10;

130

poly[2]=300:
poly[3]=10:
pOly[4]=300:
poly[5]=35:
poly[6]=10:

pOly[7]=35:
fillpoly(4,poly):
outtextxy(20,20,"SELECT SHIFT FACTOR: "):
test=gscanxy(200,20):
SHIFTF=atoi(test):
setviewport(2,40,638,451,2):
clearviewport ():
display (): -
Mouse.Show ():
break:
}
}

if (Mx >=361 && Mx<440)
{
cleardevice ():
break:
}
if (Mx >=441 && Mx<540)
{
cleardevice ():
break:
)
if (Mx >=541 && Mx<640)
{
cleardevice ();
break:
}
}

if (My>=40 && My<451) jjcalculations
{
if (Mx >=2 && Mx<638)
{
if (calc == 1)
{
sound(30):
delay(10):
nosound():
setviewport(O, 0,638,451,2) ;
xvall = Mx:
yvall = My:
calc = 0:
Mouse.Hide ():
setcolor (14);
line (xvall,yvall-5,xvall,yvall+5):
line (xvall-5,yvall,xvall+5,yvall):
setcolor (15):
Mouse.Show ():

131

setviewport(2,40,638,451,2);
break;
}
}
if (Mx >=2 && Mx<638)
{
if (calc==O&& man==O && inter==O && exter==O)
{
sound(30);
delay(10);
nosound();
setviewport (xval2,yva12-5,xval2,yva12+5,1);
clearviewport_ ();
setviewport (xval2-5,yval2,xva12+5,yva12,1);
clearviewport_ ();
Mouse.Show ();
setviewport (0,0,638,451,1);
xval2 = Mx;
yval2 = My;
calcval = 1;
Mouse. Hide ();
setcolor (14);
line (xval2,yva12-5,xval2,yva12+5);
line (xva12-5,yva12,xval2+5,yva12);
setcolor (15);
setviewport(2,40,638,451,2);
display ();
Mouse. Show ():
break;
}
}
}
if (Mx >=96 && Mx<176)
{
if (My >=40 && My<65)
{
if (man == 1)
{
SAMPLE = rangel();
outport(Ox301,portb);
man = 0;
setviewport(2,40,638,451,2) :
clearviewport_():
Mouse. Show();
break:
}

}
if (My >=65 && My<90)
{
if (man == 1)
{
SAMPLE = range2 ();
outport(Ox301,portb) ;

132

man = 0:
setviewport(2,40,638,451,2) :
clearviewport_():
Mouse. Show ():
break:
}
}
if (My >=90 && My<115)
{
if (man = 1)
{
SAMPLE = range3 ():
outport(OX301,portb) :
man = 0:
setviewport(2,40,638,451,2) :
clearviewport_():
Mouse.Show():
break:
}
}
if (My >=115 && My<140)
{
if (man == 1)
{
SAMPLE = range4 (}:
outport(OX301,portb):
man = 0:
setviewport(2,40,638,451,2) :
clearviewport_():
Mouse. Show ():
break:
}
}
if (My >=140 && My<165)
{
if (man == 1)
(
SAMPLE = range5 ():

outport(OX301,portb) :
man = 0:
setviewport(2,40,638,451,2);

clearviewport_():
Mouse. Show ():
break:
}

}
if (My >=165 && My<190)
{
if(man=l)
{
SAMPLE = range6 ():

133

outport(OX301,portb);
man = 0;
setviewport (2,40,638,451,2);

clearviewport ();
Mouse. Show (>";
break;
}
}
if (My >=190 && My<215)
{
if(man=l)
{
SAMPLE = range7 ();

outport(OX301,portb);
man = 0;
setviewport (2,40,638,451,2);

clearviewport ();
Mouse. Show ();
break;
}
}
if (My >=215 && My<240)
{
if(man=l)
{
SAMPLE = range8 ();

outport(OX301,portb);
man = 0;
setviewport (2,40,638,451,2);

clearviewport ();
Mouse. Show ();
break;
}

}
}

if (Mx >=96 && Mx<150)
{
if (My >=40 && My<65)
{
if (man -- 2)
{

IN SCALE = vrange1 ();
man = 0;
break;
}
if (man - 3)

134

{

IN_SC2 = vrange6 ();
man = 0;
break;
}
}
if (My >=65 && My<90)
{
if (man = 2)
{

IN SCALE = vrange2 ();
man = 0;
break;
}
if (man == 3)
{

IN_SC2 = vrange7 ();
man = 0;
break;
}
}
if (My >=90 && My<115)
{
if (man - 2)
{

IN SCALE = vrange3 ();
man = 0;
break;
}
if(man=3)
{

IN SC2 = vrange8 (};
man = 0;
break;
}

}
if (MY >=115 && My<140)
{
if(man=2}
{
IN SCALE = vrange4 ();
man = 0;
break;
}
if (man = 3)
{

IN SC2 = vrange9 ();

135

man = 0;
break;
}

}

if (My >=~40 && MY<~65)

{
if(man=2)
{
IN SCALE = vrange5 ();
man = 0;
break;
)
if (man == 3)
{

IN_SC2 = vrange~O ();
man = 0;
break;
}
}
)
break;

case RMouseDown: if (My>=40 && MY<45~)

jjphase angle
{
if (Mx >=2 && Mx<638)
{

{
if (calc==O && man==O && inter == 0&& exter -- 0)
{
sound(30) ;
delay(~O);

nosound ();
setviewport (xva13,yva13-5,xva13,yva13+5,~);

clearviewport_ ();
setviewport (xva13-5,yva13,xva13+5,yva13,~);

clearviewport_ ();
Mouse.Show ();
setviewport (0,0,638,45~,~);

xva13 = Mx;
yva13 = My;
caleval = ~;

Mouse.Hide ();
setcolor (~4);

line (xva13,yva13-5,xva13,yva13+5);
line (xva13-5,yva13,xva13+5,yva13);
setcolor (~5);

setviewport(2,40,638,45~,2);
display ();

~36

}

Mouse.Show ();
break;
}
}
}
}

}
}
Mouse.TurnOff();
closegraph ();
return 0;

U7

13.2.2. Include :fIles

12.2.2 readl.inc

void
{

asm{

read1 (void)

PUSH AX
PUSH BX
PUSH CX
PUSH OX
PUSHF
PUSH SI
PUSH 01
PUSH OS
MOV CX,4096
MOV SI,OOH

}
JUMPBACK:

asm{
MOV AX,OOOOOH
MOV OS,AX
MOV AX, [SI]
AND AX,OFFH
MOV OX,AX
POP OS
MOV AREG,DX
MOV [VAL+SI] ,OL
INC SI
PUSH OS
MOV AX,ODOOOH
MOV OS,AX
MOV AX, [SI]
AND AX,OFFOOH
XCHG AL,AH
MOV DX,AX
POP DS
MOV AREG,DX
MOV [VAL+SI] ,DL
INC SI
DEC CX
PUSH OS
JNE JUMPBACK
POP DS
POP DI
POP SI
POPF
POP OX

138

pop CX
POP BX
POP AX

}
}

12.2.3. read2.inc

void
{

asm{

read2 (void)

PUSH AX
PUSH BX
PUSH CX
PUSH OX
PUSHF
PUSH SI
PUSH OI
PUSH OS
MOV CX,4096
MOV SI,OOH

}
JUMPBACK:

asm{
MOV
MOV
MOV
AND
MOV
POP
MOV
INC
PUSH
MOV
MOV
MOV
AND
XCHG
MOV
POP
MOV
INC
OEC
PUSH
JNE
POP
POP

AX,ODOOOH
OS,AX
AX, [SI]
AX,OFFH
OX,AX
OS
[VAL1+SI],DL
SI
OS
AX,OOOOOH
OS,AX
AX, [SI]
AX,OFFOOH
AL,AH
OX,AX
OS
[VAL1+SI],OL
SI
CX
OS
JUMPBACK
OS
OI

139

}
}

POP SI
POPF
POP DX
pop ex
POP BX
POP AX

140

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

13. APPENDIX B

141

I A I u I

~
>

-_ .. "
1<2 I~ 1 ----

~I

I/~~
+12V I

~i

lCND
+5V Jl ~1{11 CND 7

1 '"C2 R4 '" .~'
1;.;:;: +12V -12V+5V-5V

- U2 Ul 1, I "
L1 L2 , Q!l2F

C6

~11 OPA633 frs I
74HC4051 CND '/I----!(l

!>LF.351J k~ ,~(';
r~

J2

~ III =
/~;

~ GND 5

1- D' i:i t R5 C,7

ITVrJ,
-, 0< , '" i ,I "

~ ~
• C2

'" < • 1"R8 CO"
R6 f--

" i:i. .J, CND

" C! 0

R7 C8

'" '" '" ' 0 '" +' ,J;4 , lli!ZI:

a t: 3

~ ~ '"
.", CND

'Ne ~ i:i. +8 i' +p-
" CND

'u3 t 5'y +" R14 H~
, J3

2
J4 ~ GNO OlP16 }GND L U5

cl.J
\-C\LO C1HII- t-

-.- ~ 1 "=" GND 2

" ~U4Alfll Aiel.! t----</,
"'lO ...lOP Z

GN O;A633t~
GAT1 WO, " GND
GAT:2 '"EO H, ot

DB6M i:i
"'" "'201' ,
"''' m, -;- CND 5

1CND

CZLO C2HIf-'- R15 'i:i74HC4051 ..

~ III ~
AD600 I-

f-- '" C15
,I' >

Y
D' , ~ GND N R16

" '" , 0 :!;v +.", ";...,
~

01
De . CND ~J

" N St~;: 0: N '"
'/1----4

'" '" N I
7 0-

~
1 L" '"

C16 R22 ,
,

~ ~ W '" ~
- U7 '"

J -=: CND 'us N' R24 CND
,

-;" GNO QIP16 +' IVV :1 1f !I LF35 1J 3
~ GND ;;:1V "I----!

J5 "KL8 ,
C19

~
f::, Rft

"I
,.

F5' 1
CND <0

~ F~N " "
f-- u lM . :>.. I '" z i:i,

~ r:2~'
R28 R2900•

.J,GN'

R27 +'
1:CND

-
'" ~,.--L. GN !I OPA633'"'" F '"N C25

'-' " K2,8 , C24

.. 1£1, K1:A CND.J,
f R31 'i:iJ;, I ~,

~Lo...~ OPA633
"

ID ,H '"4 J7 +' R32 j? .> '" GND ~
n '"

R34
\!::)
~

K2:A A
1+ R35

~-: U9
Title

4

DB2F ,H ,"
BUFFER AMPLIFIER

~J6 I ~
C26 Size Number

~I 02 I A3
IR"

R37 .,. CND
R38 ,;>

I~ , "
A I B I

Fih>nnrnp h

C I D

Rov

P3

I-

DBZ5M

U3:D

2

J-

74Hca4

r;;;;:,-----------I 4
Title

.j,- GND

U6:C

74HC08 ••

. " I

•
ttl/ PI.. u

~ -rl~.,

u

•74HC161 B
c

U26

.

I

T

"

"

'"

..
"""

U2J:A

A

74HC161

JZ

DR2F
I

UJ:F

,

J.GND

J 1

DB4F . ~:::">'C,Jt_-J'Y

74HC04 741:;r<1~04

" " ,

" ""

74HC161

uz.

1__U~~~~f~~'Io:~:'" "'~'""'"

vTee
U16

r~]~~~i:JJL~~:I.OAD I '"
'''' 'OO~ENP

~t

4

2

J-

A I
74HCB5

B I c -1 o

-- -~-- -------- - - - - - . ,
A LJ ,

" 1 ,

r'E- PI
•

1 '"
, DVo

"
0, Ul:A " " 1

P2 "'
1 ,.."" I

,. wc "
0<,. OJ

f "
02

74HC00
PO "
P7 ... ---

DO

"
p-a 'DY

0' ""
0'

."

~

0'
m

U4:A U3:A
0'

m

...J " .
U3:B

, 0'

.,.
I-

, , 0, a'
, '"

, . '"
0' ~

...
7'4Hc32

7mB8 .."
."

74HC04
. "

."

, §l
."

74HC134 U8 • ."

J .--'E-
0'.. ... "

g~
ro ~

El ao, " "
,.

:'3
,);.2 aa, " " "

.' • aa, '" " "
,.

2 L
02

, ao. " " '"., • ao<
~

, '" " "
c-

.,
"

.. 00' '" Y6 "
" " " a" " " " 2

, , '" " " aQ7 , .,

• " " , •
~ 74HC541

..
'" "', "

,,,

~
.. " " ~

"'SE'
" " "

"V

ClR '1
... " .' '

• IRQ2.

7£'
.. -"

:: !=aA elK
.0 "

02 MEat

~IB
'"

'"
-12V

- OB . - '" "
., NO

:: I-- QC "
m " " • +12V

00 02 " " "a

:: "
~ 0 6264 " A1

31: "'" -

"
.,

" " " !lJll

=t " " " 0'.. ... U13 Y6 " • ""
'" >0 L .. '" " .. '" " " ""'--

::t QI "L,;!. " "
El ""

ON:KJ

>lJ " '"
El ao< 74HC541

OIlEOJ

"
.. Y6 • 00'

TIACiIT., .,
"

, 00' "- ,..':!!L
., ,",0'

74HC4040
ao< i'il:ilm"

74~y~4'
.. 005 .' .. ,

"(C

,,,

:I ~

., 00•
IRQ?

.., ore , -"-"'- '" 00' 02
IR06

"
IRQ~

CC, " .. " " " " "'" J

'"
"< , 02

~
, " "- ., !!!9..L

" " ~ """"
10 10

.,
" " " "

1C

:: 10 " != • • " '"
,. Y6 "

01£

" " " " "
, Y6 " '"

=t " ~gl- 'l:
.. "

16
'(/ "

am

" " '"
." !!!!!.....

::j "' ~g~ t .. Y6
." 74HC541

C- " lR' " "
EDG62-PC

74HC273 74HC541
74HC04 6264

I~o, P2 I-

M' = JliJ I-~+~". " 1-8 .,
F~' '" ft;· ro '" '" F~+P fS,U3,C =

,m u u u u u """ "al
u u

w.
:: """"CONTROL :::; l.A11

1.l(t.lR

:Il MEI.lW

4 '"~ "016 4
~ a11 Title", SCOPE2
-i '":::l 0,. Size Number IR"
~ A3

EDG1B PC , w

A I B
" t f

C T D

	Table of Contents
	1: Introduction
	2: Objective
	3: Basic Principles of Digital Storage Oscilloscopes
	4: Analogue to Digital Conversion
	5: Hardware Implementation
	6: The MSCOPE.EXE Program
	7: Problems Encountered
	8: Test Results
	9: Future Enhancements
	10: Conclusion
	11: Bibliography
	12: Appendix A
	13: Appendix B

