
The Development of an 8051 Micro
Controller Evaluation and

Training Board

Compiled by: Daniel Ne! de Beer

~ D E [F la {O" ~
(8 9 fA ra, ~ [- (an c....
(4 (5 (s f7 l (t (- (-

C0_ (1 (2 [3 [< ("" f> -
• •

This thesis is submitted in fulfilment of the requirements for

the Master Degree in Technology in the School of Electrical

Engineering of the Cape Technikon

Statement

It is hereby stated that the content of this thesis represents the own work of the

candidate, and that the opinions herein are his own and not necessary a reflection

of the opinions of the cape Technikon.

The content of this thesis has not been submitted towards any other academic

qualification.

A special word of acknowledgement must be included for the support given by the

school and the staff of the School of Electrical Engineering of the Cape Technikon

in terms of equipment, software, materials, time and finances.

DN de Beer Pr.Eng.

Summary

The development of the 8051 Evaluation and Training Board was in response to fulfil a

need to have a training board available for students at the start of a micro-controller

course. This board must be used to get hands-on experience in the internal architecture,

programming and operation of the controller through the testing of sample programs and

exercises. It can act as an example of a practical micro-controller application board, and

also as part of, or as an aid in the design and application of own projects.

The board had to be cheap enough so that each student can be issued with a personal

board for the duration of the course. It had to be adequately selfsufficient to be portable

and to operate independent of a host PC. In addition, it had to contain adequate

"intelligence" to guide the student in the use of the board: have a quick re-programming

turn-around cycle; and it must be possible to use the board for user program testing and

debugging.

After drawing up an initial set of objectives and investigating the economic viability of

similar systems in industry, an outline of the required design was made. This included

the selection of suitable communication between the o'cboard Operating System and a user;

the easiest way to load user programs into the board memory; and methods to test and

debug this program.

All the normal support circuitry required by a micro-controller to accommodate a

minimum system for operation was included into a single Field Programmable Gate Array.

Summary 1

The execution of the project was therefore divided into three distinct sections, the

hardware, the firmware (Programmable Array configuration) and the software. In the

design, the harmony between these sections had to be consolidated to yield a successful

final product. The simplicity and ergonomics of the operation and application from a

user's point of view, had to be accentuated and kept in mind throughout.

In a design of the complexity such as this, careful planning and the investigation of various

methods of approach were essential. The use of many computer-aided design and other

relevant computer packages was incorporated.

Interaction between the user and the Operating System on the board was done through a

standard 16-character by I-line LeD Display Module and a 32-key keyboard. The main

feature of the Operating System was to enable the inspection and editing of all the memory

locations on the micro-processor. The Operating System also contained the initial

intelligence on the board to load user programs from a PC through an RS232 serial link.

For the testing and debugging ofa user program, three Running Modes are available: The

Single Step Mode, the Break Point Mode, and the real time Execute Mode. In the Single

Step Mode the control will be handed back to the Operating System after the execution of

every instruction of the user program. For the Break Point Mode control will only be

handed to the Operating System at user-defined break points. In the real time Execute

Mode, the program will run at the design speed. By pressing an appropriate key, the user

may create a temporary break or interrupt at any point. The control would then be handed

over to the Operating System immediately.

Summary 2

With an intelligent display unit available, the options and selections in the Operating

System was done by a so-<:alled "menu driven" system. This makes the selection of a

particular option between many, very easy. Unfortunately, with the many pathways

avaiIable, it also made the software of the Operating System quite complex.

As an essential aid during the software design, various modifications to the conventional

use of flow diagrams were developed to suit this specific type of application. This also

proved its worth in the testing and debugging of the Operating System.

The hardware and finnware design had to cater for the decoding of all the input and

output devices, the keyboard scanner and encoder, and also the external interrupt circuits.

Various other features were also built into the finnware, such as the following:

Under normal circumstances the program of a micro-controller is stored in a non-volatile

memory, such as an EPROM. The design of the controller chip itself does not cater in

its instruction set or hardware controls, for writing to the code memory. To make it

possible in this circuit to load and edit the code memory of a user program, a 32K byte

battery backed-up RAM was used. Apart from the normal decoding at the lower 32K byte

of the Code Memory map, it was also mapped and decoded as the top 32K bytes of

External Data. This enabled the writing and reading of user code bytes to and from the

code memory, and also the executing of these bytes as normal code.

The Operating System had to be completely transparent when a user program was tested.

This means that the user program can be executed as if the Operating System was not

there. To achieve this, the user program had to be placed at the normal start of the code

memory map with all its user-interrupt vectors available. At power up, and when the

Summary 3

Operating System was taking over control, however, the Operating System requires the

same reset and interrupt vectors address locations occupied by the user program. In fact,

the whole Single Step and Break Point Modes of operation are based on a software

generated interrupt and an "Interrupt 0" subroutine being available to the Operating

System. The hardware was therefore designed to swap the address decoding of the first

48 code bytes of the user program with the addresses of the Operating System. lust

before a user program step was executed, the user vector addresses would be selected.

On power up or after a Single Step or Break Point interrupt, the addresses of the

Operating System would be selected. It will be swapped long enough to make a "Long

lump" out of the vector address area into the Operating System code, higher up on the

code memory map.

To facilitate the building and testing of own projects by the user, an extension socket was

included on the board. It allows direct access to all the pins of the miero-controIler. The

board can therefore be used as an easy re-programmable minimum controller system, and

the user only had to add his specific additional input and output circuits to the system.

Exhaustive prototype testing can then be done before a final independent board is designed

and built.

Fifteen of the training boards were built and issued to students of mixed experience in a

miero-controllers course. It had to test the reaction to, and the shortcomings of the board.

For the first time micro-controIler students, the impact was a little overwhelming. It took

a few weeks until they have gathered sufficient background and experience, before some

smaller projects on the board were attempted. For the more experienced students,

however, who have been through the labourious EPROM erase and re-programming

Summary 4

phases, and who were more acquainted with the structure of a micro-controller system,

the ease of use and application of the board were more appreciated. Some shortcomings

in the unconventional placement of the user program higher in the code memory map

initially, only became apparent when program modules were written in the "C for Micro

Controller" language, and Iinked and placed automatically by the "Ilnker" program.

These shortcomings have subsequently been corrected.

It can be concluded that the training board was only partially successful for new micro

controller students. Based on the observations in the course, it is recommended that the

board should only be issued and used by students who are further advanced in the

application of micro-controllers. A much simpler 8051 applications board would be more

suitable for first time micro-controller students.

Based on the experience gained in the development of the training board, such a simpler

board has subsequently been developed. It proved to be a huge success.

SUl7U1la1Y 5

Samevatting

Die ontwikkeling van die 8051 Evaluering and Opleidingsbord het ontstaan om die leemle

le vul om 'n toepassingsbord vir studenle onmiddelik beskikbaar le he, reg vanaf die begin

van 'n mikro-beheerder kursus. Hierdie bord kan as 'n jisies betTOkke metode gebruik

word om bekend le raak met die interne argitektuur, programmering en werking van die

beheerder, deur die toetsing van gegewe programme en oefeninge. Dit kan ook dien as 'n

voorbeeld van 'n praktiese mikro-beheerder toepassing, of as deel van, of as hulpmiddel

in die ontwerp en toepassing van eie ontwerpe.

Die bord moet goedkoop genoeg wees sodat elke student uitgereik kan word met 'n

persoonlike bord vir die duur van 'n kursus. Dit moet kompleks genoeg wees om

draagbaar en op sy eie le kan werk, onafhanldik van 'n gasheer rekenaar. Ook moet dit

genoeg "intellegensie" he om die student le lei in die gebruik van die bord; dit moet

gebruik maak van 'n vinnige metode vir herprogrammering; en die vermoe he om gebruik

le kan word in die toetsing en ontfouting van 'n gebruikersprogram.

Nadat die aanvanklike objektiewe daargeslel en die ekonomiese vatbaarheid van

soortgelyke stelse1s in die industrie ondersoek is, is 'n geheelbeeld van die benodigde

ontwerp gemaak. Dit het die keuse van toepasljke kommunikasie tussen die bedryfstelsel

en die gebruiker; die maklikste metode om gebruikersprogramme in die geheue te laai;

asook metodes om hierdie progr:am te toets en te ontfout, ingesluit.

AI die normale ondersteuningstroombane benodig vir 'n minimum mikro-beheerder slelsel

is ingebou op die board in 'n enkele Bedryfsprogrammeerbare Logiese Hek Reeks

stroombaan ("FPGA"). Die uitvoering van die projek was daardeur ingedeel in drie

SamevaJting 6

definitiewe afdelings, die hardeware, die fermware (die sarnestelling van die

Programmeerbare Reeks-stroombaan) en die sagteware. Die nougesette samewerking

tussen bierdie stelsels was noodsaaklik vir die suksesvolle werking van die finale produk.

Die eenvoud en ergonomie van die werking en toepassing vanuit 'n gebruikersoogpunt,

moes beldemtoon en gedurig voor oe gehou word.

In 'n ontwerp met sullre kompleksiteit, is versigtige bepIanning en die ondersoek van

verskeie metodes van benadering noodsaaklik. Die gebruik van vele rekenaa.r gerugsreunde

ontwerp- en ander toepaslike rekenaar pakkette is ingespan.

Interaksie tussen die gebruiker en die Bedryfstelsel van die bord word gedoen deur 'n

standaard 16-karakterby l-lyn LCD vertooneenheid en 'n 32-sleutel sleutelbord. Die hoof

eienskap van die Bedryfstelsel is die inspeksie en nasien van al die geheue adresse van die

mikro-beheerder stelseI. Die Bedryfstelsel bevat ook die nodige intelligensie op die bord

om gebruikersprogramme vanaf 'n rekenaar te laai deur 'n RS232 serie verbinding.

Vir die toetsing en ontfouting van 'n gebruikersprogram is drie uitvoeringsmetodes

beskikbaar, die Enkel Trap Metode, die BreekpunJ Metode en die intydse

Uitvoeringsmerode. In die Enkel Trap Metode, sal beheer oorbandig word aan die

Bedryfstelsel na die uitvoering van elke enkele instruksie van die gebruikersprogram. Vir

die BreekpunJ Metode, sal beheer net oorhandig word aan die Bedryfstelsel op

gebruikersgedefineerde punte. In die intydse Uitvoeringsmetode, sal die program teen

ontwerpspoed loop. In hierdie metode kan die gebruiker die program op enige plek

tydelik onderbreek deur 'n toepaslike sleutel te druk. Beheer sal dan onmiddelik

oorgeplaas word na die BedryfstelseI.

Samevatting 7

Met 'n intelligente vertooneenheid beskikbaar, is die opsies en keuses in die Bedryfstelsel

beheer deur 'n sogenaamde "spyskaart-aangedrewe steIsel". Dit maak die keuse van een

spesifieke opsie tussen vele ander baie maklik Onge1ukkig, met so veel moontlilre

uitvoeringspaaie beskikbaar, was die sagteware van die Bedryfstelsel redelik Irompleks.

As 'n noodsaaklike bulpmiddel in die sagteware ontwerp is verskeie verbeterings gemaak

aan die konvensionele gebruik van vloeidiagramme om aan te pas by die spesifielre

toepassing van bierdie projek. Hierdie verbeterings het ook hulle nut bewys tydens die

toetsing en ontfouting van die BedryfstelseL

Die hardeware en fermware van die ontwerp moes voorsien vir die dekodering van die

inset en uitgang randapparate, die sleuteIbord skandering ~ delrodering, asook die

eksterne ()l\detbrekingstroombane. Verskeie ander spesiale toepassings is ook ingebou in

die fermware, waaronder die volgende:

Onder nonnale omstandigbede sal die program van 'n mikro-beheerder in 'n nie

vernietigbare geheue, soos 'n EPROM, gestoor word. Die beheerder maak nie

voorsiening in die instruksie steI of in die hardeware beheer vir die skryf van data na die

kode geheue nie. Om dit moontlik te maak vir hierdie stelsel on gebruikersprogramme

te laai en. te verander in die Irode geheue, is 'n 32K greep battery-gerugsteunde lees-en

skryfgeheue-clement (RAM) gebruik. Bo en behalwe die normale toegang as kode geheue

op die onderste 32K greep helfte van die kode geheue, is die element ook gedekodeer om

beskikbaar te wees vir lees en skryf op die boonste helfte en die eksterne data geheue.

Dit was nOll rnoonlik om masjienkode data grepe na die kode geheue te lees en te skryf,

en bierdie grepe dan te kan uitvoer as gewone kode.

8

Die Bedryfstelsel moes geheel en aI ·deursigtig· wees terwyl 'n gebruikers-program

uitgevoer word. Dit beteken dat die program uitgevoer moet word asof die Bedryfstelsel

Die bestaan Die. Om dit te bewerkste1lig moes die gebruikersprogmn in die onderste

gedeelte van die kode-geheue geplaas word, met aI die onderbrekingsvektore van die

gebruikersprogram beskikbaar. Tog moes die selfde herstel- en onderbrekingsvektor

adresse beskikbaar wees vir die Bedryfstelsel nadat die stelsel aange<;kakel is, of as die

beheer oorgeplaas word vanaf die toetsing van 'n gebruikers program. Die hele Enk£l

Trap en Breekpunt uitvooringsmetodes is inderdaad gebasseer op 'n sagteware-gegenereede

onderbreking en die gebruik van sy eie ·Onderbrekingsroetine nommer O· deur die

BedryfstelseI. Die hardeware is dus ontwerp om die eerste 48 lrode grepe van die

gebruikersprogram om te ruiI met die van die BedryfstelseI. Net voor 'n instruksie van

die gebruikersprogram uitgevoer gaan word, word die gebruikersadres-gedeelte ingeskakeI.

Na die aanskakeling van die bord, of na 'n Enkel Trap of BreekpUllt onderbreking moot

die Bedryfttelsel se adres-gedeeite ingeskakel word. Die omruiling sal lank genoog duur

om uit die Iae adres-gedeelte le spring met 'n ·Long Jump· na die Bedryfslelsel hoer op

in die kode geheue.

Om die bou en toets van eie projekte deur die gebruiker moontlik le maak, is 'n

uitbreidingsok aangebring op die bord. Oit verleen direkte toegang na aI die verbindings

pennetjies van die mikro-beheerder. Die bord lean dan gebruik word as 'n maldik

herprogrammeerbare minumum st.eiseI. Die gebruiker hoef slegs sy eie addisionele inset

en uitgangstroombane by le voeg. Uitgebreide en volledige prototipe toetsing lean dan

gedoen word voor die ontwetp en bou van sy eie finale stroombaan.

SamevaJling 9

Vyftien van die opleidingsbordjies is gebou en uitgereik aan studente met wisselende

ervaring in 'n mikro-beheerder kursus. Dit sou die reaksie teenoor, en die tekortkominge

van die bord toets. VIr nuwe mikro-beheerder studente was die impak: 'n bietjie

oorweldigend. Dit het 'n hele paar weke geneem voordat die studente genoeg agtergrond

en ondervinding opgebou het om klein projekkies op die bord te toets. Meer gevorderde

studente, wat reeds deur die /angdrodige EPROM uitvee- en herprogrammeringsfases was,

en ook meer bekend was met die struktuur van 'n mikro-beheerder stelsel, het die gemak

van die gebruik en die toepassing van die bord meer waardeer. Daar was 'n paar

tekortkominge soos die ongerief van die onkonvensionele plasing van die

gebruikersprogram oorspronklik hoer op in die kode geheue. Dit het eers duidelik geword

nadat "C vir Mikro-Beheerder" programmodules outomaties qeur die "Linker" gekoppel

en gepiaas is in die finale program. Hierdie tekortkominge is sederdien reggestel.

Die gevolgtrekking kan gemaak word dat die opleidingsbord net gedeeltelik suksesvol was

vir nuwe mikro-beheerder studente. Gebasseer op die waarnemings gemaak tydens die

kursus, word dit aanbeveel dat die bord net aan meer gevorderde studente uitgereik meet

word. 'n Eenvoudiger 8051 toepassingsbord sal meer van toepassing wees op die nuwe

mikro-beheerder studente.

Gebasseer op die kennis opgedoen in die ontwikkeling van hierdie opleidingsbord, is 'n

eenvoudiger opleidingsbordtjie sederdien ontwerp. Die het homself reeds 'bewys as 'n

groot sukses.

Samevatting 10

Table of Contents
Page

List of Illustrations viii

Software Routine Listing Page References xi

Glossary ofTerms xiii

1. Introduction 1

1.1. The Development of Micro-Controllers 1

1.2. Teaching Micro-Controller Operation and Applications 3

1.3. The Basic Requirements of the Training Board 4

2. Design Objectives 6

3. Investigation of Similar Existing Systems 11

4. Design Considerations 12

4.1. Basic Architecture and Memory Map of an 8051 Micro-Controller 12

4.2. Access to External Data 14

4.3. The Memory Map Organisation for this Project 16

4.4. Interrupt Code Memory Segment Swapping and Decoding 18

4.5. Hardware Address Decoding and Other JIG Circuits 19

4.6. The LeA Configuration 20

4.7. The Initial Seeding Process 21

5. Product Description 23

5.1. General Layout and Component Identification 23

Table ofContents 1

5.2. Communication Between the User and the Operating System 25

5.3. An Overview of the Modes of the Operating System 27

5.4. The On-screen Help Facility 30

6. Product Specification 31

6.1. General Specifications 31

6.2. Computer Software Requirements and Data Files 32

6.3. The RS232 Serial Link 32

6.4. The 64K Byte Code Memory Map 32

6.5. The 64K Byte External Data Memory Map 32

7. Operating Modes 34

7.1. The Operating System Mode 34

7.2. The Single Step Mode 34

7.3. The Break Point Mode 35

7.4. The Execute Mode 35

8. Operating Procedures 36

8.1. Setting-Up Procedure 36

8.2. Power-Up and LeA Initialization 37

8.3. The Help Menus 39

8.4. The Main Menu and Sub-Menu Selection 39

8.5. Mode 1: Edit Memory Segment Mode 41

8.6. Mode 2: Edit Pre-Interrupt Registers 44

8.7. Mode 3: Store Internal Data and System Variables 47

Table ofColllents 11

8.8. Mode 4: Restore Internal Data and System Variables 47

8.9. Mode 5: Execute a User Program 48

8.10. Mode 6: Execute a User Program in the Single Step Mode 50

8.11. Mode 7: Execute a User Program in the Break Point Mode 51

8.12. Mode 8: Clear Internal Data Memory 54

8.13. Mode 9: Clear the User Program Area 54

8.14. Mode A: Clear the Break Point Table 55

8.15. Mode B: Load a Program or Data through the RS232 Link 55

8.16. Mode C: Dumping a Block of Data through the RS232 link 58

8.17. Mode D: Move a Block of External Data 61

8.18. Mode E: ProteetJUnproteet Memory 62

8.19. Mode F: Save Internal Data and Switch Ofr 62

8.20. The Seeding Process of the Board 63

9. The Hardware and Firmware Description 70

9.1. An Overview of the Xilinx 2064 Series LeA 71

9.1.1 The Configurable Logic Block (CLB) 71

9.1.2 The Storage Element 73

9.1.3 The Complete Configurable Logic Block 74

9.1.4 The Input/Output Blocks 75

9.1.5 CLB and I/O Block Intercilnnections 76

9.1.6 The LCA Special and General Purpose Pins 76

9.1.7 The Configuration Modes for an LeA device 77

9.1.8 The Design Entry to Realise an LCA Configuration 78

Table of Contents III

9.2. The Hardware Circuits Required to be Built into the LeA 80

9.2.1 The Address Latch 80

9.2.2 The Keyboard Scanner and Decoder 81

9.2.3 The LeA Control Register 84

9.2.4 The Code RAM Decoding 84

9.2.5 The External Data RAM Decoding 85

9.2.6 The Display Module Decoding 86

9.2.7 The Two User I/O Select Line Decoders 86

9.2.8 The Micro-Processor Reset Control 87

9.2.9 The Intenupt 0 and Reset Vector Swapping Circuits 87

9.3. Additional Hardware Circuits External to the LeA 89

9.3.1 The Power Control Circuits 89

9.3.2 The RS232 Serial Link to the PC 91

9.3.3 The Seeding Circuits and Jumpers 92

9.3.4 The LeA Configuration for the Seeding Process 94

9.3.5 The 62-Pin Extension Edge Connector 96

10. Software Description 98

10.I. Approach to Writing the Operating System 98

10.2. Assembler Language vs ·C for Micro-Controllers· 101

10.3. An Overview of the Operating System 102

10.4. Internal Data System Variables and Stack Definition 103

10.5. System Input/Output Addresses 103

10.6. General Startup Routines after Power-Up or a Reset 104

Table of Conrenrs IV

10.7. Mode 0: The Main Menu 108

10.8. Mode 1: Edit Memory Segment 112

10.9. Mode 2: Edit Pre-Interrupt Registers 130

10.10. Modes 3 and 4: Store and Retrieve Internal Data and System Variables 141

10.11. Mode 5: Execute a User Program in Real Time 149

10.12. Modes 6 and 7: Run a User Program in the "Single Step"

or "Break Point" Modes 150

10.13. Modes 8, 9 and A: Bulk clearing of Internal Data,

the User Program Area and the Break Point Table 163

10.14. Mode B: RS232 Serial Load from a PC 167

10.15. Mode C: Dump External Data to the PC through the ~232 Link 179

10.16. Mode D: External Data Block Move 185

10.17. Modes E and'p:"Protect/Unprotect Memory and Save and Off Modes 191

10.18. The Help Subroutine 196

10.19. The Interrupt 0 Subroutine 201

10.20. Restore and Return to Execute the User Program Routine 217

10.21. Supplementary Subroutines: Delay, Display and Keyboard Drive 222

11. Power Economy and Conservation 230

12. The Hardware and Software Debugging and Performance Tests 232

12.1. Hardware Integrity and Power Supply Control Tests 232

12.2. Fault Finding the Rest of the Hardware 232

12.3. The Manual Input/Output Micro-Controller Emulator 233

12.4. Hardware and Finnware Testing 235

Table of ContenJs v

12.5. Software Testing and Debugging 236

12.6. Classroom Application 237

13. Guidelines on the Writing and Assembling of User Programs 240

13.1. Performance Testing a User Program 244

13.2. Test Results 247

14. Conclusions and Recommendations

15. Future Modifications and Extensions

251

259

16. Other Project Developments as a Direct Result of this Project 262

16.1. A Simple EPROM Emulator 262

16.2. A Simple 8051 Emulator 262

16.3. A Simpler 8051 Training Board for First Time Students 264

16.4. The PlC Development System 265

17. Bibliography 266

../Appendices

Table ofConrenrs VI

Appendices Page

A: The Complete External Board Schematic Diagram 270

B: The Complete DECODER Schematic Diagram 271

C: The Complete SHIFr REGISTER Schematic Diagram 272

D: Numbers and Functions of the Extension Edge Connector Pins 273

E: Memory Map Allocations and Bulk Storage Addresses 2n

F: The Pinouts and FUIlctions of the XC2064 PLCC68 LCA Package 280

G: The Seeding Serial Data Download Cable 283

H: Listing of the Seeding Driver Program: SEED.EXE 284

I: Useful Subroutines Already Existing in the Operating System 291

J: The LCD Display Module and Control Commands 296

K: The Binary and INTEL Hex Format Files 305

L: The Component List for the Training Board 308

M: The Component Overlay and Connections 312

N: The Miero-Controller Board NetIist 313

0: Costing and Suppliers of the Components of the Board 318

Table of Contents vu

List of Rlustrations

Fig. 4.1. Memory Maps Available to the 8051 MicnrController

Fig. 4.2. Access to External Memory

Fig. 4.3. Dual Mapping of the Code Memory IC

Fig. 4.4. Reset and Interrupt Vector Swapping

Fig. 5.2. The Layout of the Key Pads

Fig. 9.1. The CLB Combinatorial Logic Circuit

Fig. 9.3. The Combinatorial Circuit Options

Fig. 9.3. The CLB Storage Element

Fig. 9.4. The Storage Element Options

Fig. 9.5. The Complete Configurable Logic Block

Fig. 9.6. The LeA Input/Output Block

Fig. 9.7. The Address Latch

Fig. 9.8. The Keyboard Scanner and Decoder

Fig. 9.9. The Interrupt 0 Circuit Diagram

Fig. 9.10. The Power Control Circuits

Fig. 9.11. The RS232 Cable Through Connections

Fig. 9.12. The External Seeding and Select Circuits

Fig. 10.1. A Broad Based Flow Diagram

Fig. 10.2. The Initialisation Flow Diagram

Fig. 10.3. The Main Menu Operating Diagram

Fig. 10.4. The Main Menu Flow Diagram

list tif lI1llslralions

Page

13

15

17

19

25

71

73

73

74

74

75

81

82

88

90

92

94

100

105

108

109

YIll

Fig. 10.5. Edit Memory Segment Operating Diagram (2 pages)

Fig. 10.7. Edit Memory Segment Flow Diagram (4 pages)

Fig. 10.11. Edit Pre-Interrupt Registers Operating Diagram

Fig. 10.12. Edit Pre-Interrupt Registers Flow Diagram (2 pages)

Fig. 10.14. Save Data and System Variables Operating Diagram

Fig. 10.15. Retrieve Data and System Variables Operating Diagram

Fig. 10.16. Save Data and System Variables Flow Diagram

Fig. 10.17. Retrieve Data and System Variables Flow Diagram

Fig. 10.18. Execute a User Program Mode Operating Diagram

Fig. 10.19. Execute a User Program Mode Flow Diagram

Fig. 10.20. Single Step Selection Operating Diagram

Fig. 10.21. Break Point Selection Operating Diagram

Fig. 10.22. Single Step & Break Point Selection Flow Diagrams

Fig. 10.23. Mode 8: Clear Internal Data Operating Diagram

Fig. 10.24. Mode 9: Clear Program Area Operating Diagram

Fig. 10.25. Mode A: Clear Break Point Table Operating Diagram

Fig. 10.26. Mode 8, 9 & A: Clear Memory Areas Flow Diagrams

Fig. 10.27. RS232 Load Operating Diagram

Fig. 10.28. RS232 Load Flow Diagram

Fig. 10.29. Select Baud Rate Operating Diagram

Fig. 10.30. Select Baud Rate and Enter 2 Keys Flow Diagrams

Fig. 10.31. Dump Data through the RS232 Link Operating Diagram

Fig. 10.32. Dump Data through the RS232 Link Flow Diagrams

Fig. 10.33. An Overlapping Block Move

ListofIUustrruwns

114

116

132

133

143

143

144

145

151

152

157

158

159

163

163

163

164

170

171

174

175

180

181

185

ix

Fig. 10.34. External Data Block Move Operating Diagram

Fig. 10.35. External Data Block Move Flow Diagram

Fig. 10.36. ProtectIUnproteet Memory Operating Diagram

Fig. 10.37. Save and Off Operating Diagram

Fig. 10.38. Proteet!Unproteet Memory and Save & Off Flow Diagrams

Fig. 10.39. Help Subroutine Operating Diagram

Fig. 10.40. Help Subroutine Flow Diagram

Fig. 10.41. Interrupt 0 Subroutine Operating Diagram

Fig. 10.42. Interrupt 0 Subroutine Flow Diagram (2 pages)

Fig. 10.44. Restore and Return Operating Diagram

Fig. 10.45. Restore and Return Flow Diagram

Fig. 10.46. Supplementary Subroutine Flow Diagrams

Fig. 12.1. The Manual Emulator Basic Circuits

Fig. A-I. The Complete External Board Schematic Diagram

Fig. A-2. The Complete DECODER Schematic Diagram

Fig. A-3. The Complete SHlFf REGISTER Schematic Diagram

Fig. A-4. The Seeding Data Cable Connections

Fig. A-5. The Component Overlay and Connections

List ofIllustralions

186

187

192

192

193

196

197

209

210

217

218

224

234

270

271

272

283

312

x

Initialisation Routine

Move or Increment Cursor Add for Mode 2 Subroutine

Clear Internal Data - Mode 80

Clear User Program Area - Mode 90

Clear Break Point Table - Mode AO

Load Data Through RS232 - Mode BO

Receive HEX Fonnat Byte Subroutine

Select BAUD RATE Subroutine

Enter 2 Bytes from Keyboard Subroutine

Save Internal Data & System Variables - Mode 30

Save Internal Data and SFR Subroutine

Restoring Data & System Variables - Mode 40

Execute a User Program - Mode 50

Select Single Step Execution - Mode 60

Edit Break Points and Start Execution - Mode 70

Software Routine Listing Page References
Page

106

lIO

III

120

128

128

129

135

140

146

146

147

153

160

160

165

165

166

172

174

176

117

Main Menu - Mode 0

Mode 0 Jump Table

Edit Memory - Mode 1

Write Data to Variable SFR Subroutine

Read Data from Variable SFR Subroutine

Read Data from Selected Memory Segment Subroutine

Edit Pre-Interrupt Registers & Data - Mode 20

Software Routine Listings xi

Dumping Memory to RS232 - Mode CO

Transmit Nibble or Byte Subroutine

XData Block Move - Mode DO

Move Block by Incrementing Addresses Subroutine

ProtectlUnproteet Memory - Mode EO

Write ProteetlUnprotect OPSYS in Xdata Segment Subroutine

Save and Off - Mode FO

Help Subroutine

Help file Sequences

Help File Messages

Operating System Reset and Interrupt Vectors

Interrupt 0 Subroutine from 5003H

Restore & Exit Routine

','

Write some Data or Instruction to Display Module Subroutine

Wait Short Subroutine (40 1L5)

Wait 1 or Wait a Part of a Second Subroutine

Clear Display Subroutine

Display 16-Character Message Subroutine

Read Keyboard Subroutine & Auto-off Timing

Binary Nibble to ASCII Conversion Subroutine

ASCII to Binary Conversion Subroutine

Messages Listing

User Test Program Listing

Software ROuJine Listings

182

184

188

190

194

194

194

198

199

199

212

212

219

225

225

225

226

226

227

228

228

228

244

XII

Assembler

Checkbyte

Chip

CLB

Code

DIL

DIP

DMA

DXF

EEPROM

EPROM

IC

INTEL

LeA

LCD

LED

LSB

MAX232

MSB

GWssary of Terms

Glossary of Terms

"Low level computer programming language" I "Software Tool program

to convert an Assembler program into Machine Code Instructions".

The byte value that, when added to the sum of a number of bytes (carries

ignored), will make the total sum equal to zero.

Integrated Circuit

Configurable Logic Block

Machine Code Instructions

Dual-In-Line (lC socket pins)

Dual-In-Line Pin Package

Direct Memory Access

A format of saving and transferring Drawing Files

Electrically Erasable Programmable Read Only Memory

Erasable Programmable Read Only Memory

Integrated Circuit

International Micro-Processor Manufacturer

Logic Cell Array

Liquid Crystal Display

Light Emitting Diode

Least Significant Bit

IC used to Convert Conventional Logic Levels to RS232 levels

Most Significant Bit

xiii

Netlist

Rasterscan

List of the connections between the pins of all the components of an

electronic circuit.

Non-Volatile A memory IC that would not lose its contents when the power is removed

Peripherals Surrounding Support Devices

PC Personal Computer

PCB Printed Circuit Board

RAM Random Access Memory - (normaIly volatile)

Scanning the rows and columns of a matrix, such as the keys of a

keyboard.

RS232 A Two-wire Computer Serial Communication Standard

SFR Special Function Register(s)

Smart Socket An le socket for a memory chip that contains a backup battery

Seeding The placing of the initial intelligence on the system

Userfriendly Comfortable and predictable user interface with a machine or program

Volatile A memory IC that would lose its contents when the power is removed

Vcc The positive supply voltage of an electronic circuit

Xdata

Xilinx

Glossary of Tenns

External Data (Memory)

International Manufacturer of Logic Cell Arrays

==========================

xiv

1. Introduction

1.1. The Development of Micro-Controllers

During the last decade or more, two distinct directions of computer system

development became apparent:

On one side was the development for faster systems, with bigger memory capacity

to handle large amounts of data. Overall, they were more versatile as general

purpose computers that can be used in a variety of applications. This resulted in,

for example, the INIEL 386, 486 and Pentium IBM compatible family of

micro-processors. Simultaneously it also introduced a whole family of support

chips that were essential for effective operation. These included the Bus

Controller, the Programmable Timer, the Programmable Interrupt Controller, the

DMA Controller, the Maths Co-processor and Parallel and Serial Interfaces. Some

of these support chips have been incorporated into the later processors, or

consolidated in large customer-specific ICs, but the aim was still to support a large

bank of RAM or Random Access Memory. This inevitably led to systems with a

complex hardware layout and a multiple of parallel interconnections between the

various chips.

To maintain the versatility a.nd general purpose application of the system,

intelligence must normally be loaded into the system from a magnetic disk every

time the computer is used. The standard interfaces for communication to and from

the user are the computer screen and a keyboard.

I. InJroducrion page I

The second direction of development was to be able to use the intelligence of

computer power in simpler and more specific practical applications. To reduce the

cost the hardware and chip count was reduced to a minimum. Intelligence should

be available in the system at power-up in a non-volatile form that would not be

destroyed when the power is switched off. For dedicated systems only a minimum

level of communication with external hardware is required. This made the normal

keyboard and monitor screen interfacing with a user superfluous. Inputs and

outputs must be limited to include only the essential elements to maintain effective

control and userfriendlyness: Inputs may be limited to one or a few push-buttons

or sensors for directional control, and the outputs may be limited to a LED lighting

up, or a relay switch being closed. Once a system is switched on, it should be able

to initiate and do what it was designed to do, without any additional help...

This direction resulted in the development of the so-called micro-controUers,

where all the essential parts of a working system were incorporated into a single

chip. Special emphasis was placed on economy, hardware flexibility to adapt to

various applications, and also power conservation. One such family of

micro-controllers is the 8051 series from INTEL.

In industry, the 8051 embedded micro-controller is a very popular and versatile

electronic tool. It can be used where-ever one requires a control system to have

a bit more intelligence than what can be achieved through straightforward logic

circuits. A personal computer or PC is designed to be as flexible as possible, to

be able to manipulate and store large amounts of data and to have easy interaction

between the computer and the user. In contrast a micro-controller is usually

1. 1nrroduaion page 2

dedicated to perform a specific task by using a fixed program. For economical

reasons it is provided with just sufficient memory and other essential hardware to

do the task. User interaction may be cut down to the bare necessities such as a

single push button or a LED indicator.

Devices, such as prognunmable microwave ovens, sewing- and washing machines,

electronic musical instruments, and also portable and battery driven devices, such

as calculators, instruments and clever toys, are all perfectly suited to be controlled

and made intelligent by a micro-controller.

1.2. Teaching Micro-Controller Operation and Applications

Industry is continuously in need of technicians who are familiar with the

application of micro-controllers. At the Cape Technikon it was decided to dedicate

some subjects to the operation and application of the 8051 series of

micro-controllers. This will acquaint the students with micro-controller systems

up to a point where they can be of immediate use in industry.

It usually takes a few weeks for a student in such a course to know the basic

micro-controller system sufficiently well to design and build his own applications

board. Furthermore they need considerable additional time to sort out all the

hardware problems before the circuit finally works. This leaves very little time,

in a semester course, to complete even a single project and still has sufficient

practice in writing software and obtains a wider experience in other applications

of the micro-controller as well.

1. InJrodu<:tion page 3

To enable the students to start getting experience in the software and the building

of small application projects as soon as possible, it has been decided to develop

and build a relatively simple but versatile evaluation and training board. This

board will contain all the essential parts of a minimum system that can easily be

adapted to use in a wide variety of student projects and other applications.

Having the essential parts ofa micro-<:ontroller system available on such a board,

only a few project-specific peripheral components, such as sensors,

analogue-to-digital converters, opto-isoIators, etc., need to be added on an
•

extension board to complete the circuit. It must then be possible, with a minimum

turnover time; to write and alter software programs on a PC; to load it into the

micro-<:ontroller immediately; and to do a few sample runs to test and improve the

hardware and software.

1.3. The Basic Requirements of the Training Board

While micro-rontrollers were designed to be as simple as possible and very

application-specific, such a training board must make the micro-<:ontroller chip

sufficiently versatile and flexible to be used in a large variety of applications. This

board should not hide or limit the basic system in a cluster of specific peripheral

hardware devices and operation system software. The user must continuously be

aware of and in touch with all the basic features and elements of the

micro-controller. The user must still be able to debug the software and hardware

and re-program the device with ease.

1. Introduction page 4

To make the board portable and independent of a host PC, the board must contain

sufficient input control and output monitoring capabilities. It must use the

computing power of the chip itself to provide a built-in Operating System. Neither

the software of the Operating System, nor the hardware circuits used for

monitoring the execution of a user application, must interfere with the normal

operation of a user program. When a PC is available, it must also be possible to

download a program with ease, or upload a current program or data to the PC for

disk storage.

1. Introduction page 5

2. Design Objectives

1. The board must be as simple and as cheap as possible, easy to assemble, and

all the components must be readily available.

2. The board must be portable, selfsufficient and independent of a host PC.

3. For economy, the board must be based on the 8OC31 micro-controller. It

must also be possible to use any of the other micro-controller members of the

8051 family as well, such as the 8OC32, the factory programmed 8051 and

8052, or the EPROM based 87C51 and 87C52. For initial testing, it must be

possible to disable the onboard code memory of those devices with built-in

code memory.

4. The system must have sufficient peripheral devices to enable sensible user

communication with the board without any additional external equipment.

5. User data entry and the control of the system must be from two 16-key pads,

one for normal hexadecimal values, and the other for general system control.

6. User monitoring of the Operating System must be through a 16-character by

I-line LCD Display Module.

7. The I/O devices must not limit or tie down the general use of any of the ports,

so that the system can be used and extended for user applications without any

prerequisites.

Z. Design Objeetivt!$ page 6

8. All the relevant signal lines of the micro-controller must be available for

connection to external test and application circuits through a 62-pin extension

socket.

9. The system must have approximately 32K bytes of Code memory and 32K

bytes of external data memory available.

10. The code and data memory must be battery backed-Up RAM based (Random

Access Memory), using smart sockets, to make it possible to re-program the

code memory without the normal twenty minute ultraviolet exposure for

erasing and the special programming equipment required by EPROMs.

11. The code memory must be Random Access Memory (RAM). After a user

program has been loaded into the system, it must be possible to edit and

change the byte values on the board, without having to go through the

complete program assembling procedure again.

12. The programming procedures and requirements must be simple and portable

to any PC, and must not be limited to a few PCs with special hardware and

software installations for programming.

13. Programming the code memory must be possible, without having physically

to remove the device or any other IC from the board.

14. Using smart sockets, the system does not require an additional battery for

memory backup to maintain the data when the system is transported between

external power supplies. A small onboard battery must be included to make

2. Design Objeaives page 7

the board portable and supply power to the board for nonnal operation when

an external supply is not available.

15. The supply to the board must be either from the onboard battery, or from an

external supply, with a/ool proof switch-over system between the sources.

This is essential to not charge and damage the onboard battery when an

external supply is used.

16. The system must be protected against accidental supply reversal, and have an

onboard regulator to desensitise and protect the circuit against supply voltage

variations and accidental circuit over-eurrents.

17. The system must contain an onboard Operating System, which must

incorporate the use of the LCD Display Module and the keyboard. This

Operating System must enable access and editing of the Code, the Internal and

External Data Memories and the Special Functions Registers of the

micro-eontroIler.

18. The Operating System must enable the loading of programs and data from a

PC through the RS232 serial port, and also the dumping of programs and data

to the PC for disk storage.

19. Through the Operating System, it must be possible to execute a user program

in a real time Execute Mode; or run a program in the Single Step Mode; or run

a program in user defined Break Point Mode. The last two modes should

provide access for inspection and editing of all the registers and memory

2 Design Objectives page 8

locations after each step or breakpoint.

20. After any Single Step or Breakpoint interrupt, the storing of all the system

variables and Special Function Register values must be possible. This data can

be retrieved at a later stage, so that a program can be started again at the same

program step and with exactly the same system variables and SFR values.

21. The Operating System must also enable bulk erasing of the Code segment, the

Internal Data memory segment and the user defined breakpoint table.

22. Block movement of data of any size and direction must be possible between

any combination of code, internal or external data memory.

23. The system must contain a three min?te auto-off facility to conserve power,
,.

when the system is not used during the prescribed period. Before the system

switches off, the micro-controller contents must be stored in the battery backed

up RAM, so that important data and settings will not be lost.

24. On-screen help facilities must exist for all operating modes to assist a user in

the expIanation of each mode, and the action keys required for successful

operation.

" '..
25. To place the initial intelligence on the board, a seeding process through a

serial download connection to the parallel printer port of a PC must exist.

This will load the Operating System into the battery backed-up code memory.

Afterwards, the RS232 port can be used for all other downloading.

2 Design Objectives page 9

26. A program for the PC must be written to read the seeding-, the normal

configuration-, and the Operating System data from a disk file and convert it

into a suitable format for the seeding process.

27. To investigate the power requirements of the circuit, and adjust, redesign and

adapt the circuit for minimum power dissipation and battery economy.

28. To compile a comprehensive operating- and maintenance manual for the

system.

29. To test the effectiveness of the training board in a classroom situation, where

each student will be issued with a personal training board for the duration of

the course.

30. Based on the response obtained from the students, the hardware, firmware and

software must be updated to suit any omitted requirements.

31. The general operation and programming of the board must be simple,

ergonomic and userfriendly.

2 Design Objectives page 10

3. Investigation of Similar Existing Systems

There are various micro-controller development and training systems available.

They mainly consist of some type of basic micro-controller board with some input

and output devices for limited user communication and control. Most of these

systems use EPROM based code memory for the Operating System and vollitile

RAM for the user programs, mapped higher up in the code memory segment.

An EPROM based code memory system is totally unsuited for a classroom

situation, as each student cannot afford his personal EPROM eraser and

programmer. That means he has to queue up for erasure and programming of his

EPROM chip, every time he makes the slightest change in his software

development.

One system from DALLAS, the DS5000, does have programmable code memory,

but software from a PC entirely drives this system, and can only work while it is

connected to the serial port.

Various evaluation systems, similar to this project, have been designed and built

by the author over the last fifteen years. All of these systems have had some

shortcomings and limitations. These should be amended by this project.

None of the systems investigated complied with the economy, flexibility,

portability and userfriendlyness that were required by the initial objectives of this

project.

.
3. Investigation ofSimilar Existing Systems page 11

4. Design Considerations

To appreciate the narrow design limits in which this project has to fall, a brief

discussion of the basic architecture and minimum system requirements of an 8051

micro-controller system will be discussed initially:

4.1. Basic Architecture and Memory Map of an 8051 Micro-Controller

The 8051-family of miCI'lH:Ontrollers has been designed to be as versatile as

possible. It can be used in many applications with the addition of the minimum of

hardware. Instead of the normal ad~s, data and control busses found in other

micro-processor systems, the micro-controller does all its communication with the

outside world through four 8-bit bidirectional ports. In some special applications,

some port pins are sacrificed for specific functions. The general philosophy is that

if a port pin is not used for its specific function, it must be available for general

use. Built into the micro-controller are two general purpose timers or counters,

a serial asynchronous communication port, two external interrupt sources and a

limited amount of internal Random Access Memory. The internal data memory

is limited to 128 bytes, and should more data space be required, up to 64K bytes

of external data memory can be added.

Various options for the code or program memory storage are available in the

micro-controller: It may be factory programmed memory, erasable programmable

read only memory, one-time programmable memory, or no external code memory.

The latter device is the most economical choice. If more code memory is required

4. Design Consideratio1lS page]'J;

for those devices with limited internal code memory, up to 64K bytes of external

code memory can be added. With internal code memory, it may be possible to

have an entire system consisting of a single le. It will contain the code memory,

some data memory, timers or counters, serial communication port, and thirty-two

bidirectional port pins for interaction with the outside world. The ports are divided

into four groups of eight pins each, ·Port O· to "Port 3".

Unlike 8086 systems, where the entire memory map is available and accessible for

programs and data, a micro-controller uses a completely separate Read Only code

memory map. An additional 64K bytes of external data memory can be added if

required. The memory maps for an 8051 system, using external code and external

data memory, are as follows:

Code Memory

FFFFh

Internal Data Memory External Data Memory

FFFFh

FFh

64K
Bytes
code

OOOOh

128
Bytes

SFR
80h

7Fh
128

Bytes
I Data

DOh i'--__-' OOOOh

64K
Bytes
Data

Fig. 4.1. Memory Maps Available to the 8051 Micro-Controller

Note: Addresses are shown in the hexadecimal notation.

4. Design Considerations page 13

4.2. Access to External Data

Two ports plus two additional control lines are sacrificed to enable immediate and

high speed access to external memory. To address 64K bytes external addresses

of 8 bits each, at least sixteen address and eight data lines are required. This is

besides the read and write control lines. Port 2 is used for the higher eight bits of

the sixteen bit address word. Port 0 is used for the low address byte and the data

input/output in a time multiplexed system.

To access external code or data, the high address is placed on Port 2

simultaneously with the low address byte on Port O. An Address Latch Enable

(ALE) control line is taken high, and the external hardware must provide for an

8-bit address latch to capture the low address and keep it stable during the rest of

the operation.

To read data from the code memory, the Program Store Enable (PSEN), must

enable the data from the Code Memory, and place it on the Port 0 pins to be read.

The ALE and PSEN control lines are separate controls that are not included and

are not part of the dual function port pins.

To read data from the External Data Memory, one of the dual function port pins

of Port 3, the Read Control, must be used to enable the data output from the

memory lC. Similarly, another dual function port pins Of Port 3, the Write

Control, must be used to write the data from the processor on Port 0 to the

memory le. The basic external memory address access system required by the

80C31 micro-controller is shown on the next page:

4. Design Considerations page 14

I
DE00

.~.

.,-- 07

Da~a

...

I
PSEN

ALE _.

AOIOO ~ ·l- OOLOO ':-- AD
PortO ~......+ +< +

A7/07 1- -107 Q7 ~ ••••••.•.,:.:.. ~ A7

Latch

'+ .
A 15 1-----.-..- , r:c-

Port2

AB 1---------...;.... '-- ...•••.~ AB

.......•. '+
f-'-' ~LA_'_5 .1

········l·~L---,
.· ...•~OO

=':-:-c-C'-'C-C.JO7

._- Low Add.

AD
,+. 10ATA I

.. A7

High Address
,:-:~,..,.,.-:"-'':-:-c~'''''''~AB

A15 DE WR

Por"'t.3 ~ I
WR 1---------------------'

Fig. 4.2. Access to External Memory

Because a micro-controller system in a normal user application is supposed to be

used in a dedicated system with pre-programmable EPROM code, no provision was

made in the design of the micro-controller to write to and to alter the programming

code bytes through software. The code memory can only be read, and no

instructions or control lines are available for writing w the code memory. Apart

from the normal program instructionfetch and execute access to the code memory,

the facility to read a code byte directly as data, is also available. This facility

allows access to code memory-based look-up tables and other fixed data. This is,

however, also a read only function.

4. Design Considerations pag~15

To activate the correct control lines for accessing external code or data memory,

or to access internal data memory, different types of instructions are used for each

segment. These are "MOVe" for code, "MOVX" for external data, and "MOV"

for internal data.

4.3. The Memory Map Organisation for this Project

In an application development environment, where the software of a program may

be altered and modified many times over, erasing and re-programming of an

EPROM is a tedious and time-consuming process. If an eraser and programmer

are not immediately available, one could at best do one or maybe two

modifications per day. To enable any software modifications to be loaded directly

into the code memory of a system, normal RAM can be used. To simulate the

non-volatility ofan EPROM, the RAM chip must be supplied with a smart socket.

This contains a Lithium battery and a circuit to switch in the battery backup to the

RAM when the power to the chip is removed.

New software will be loaded from the PC through the serial port in the lNTEL

Hex format. An onboard Operating System will use the micro-controller to write

the new code into the code memory segment. To enable this writing to the code

memory, for which no provision was made in the software or the hardware of the

micro-controller chip, a special hardware decoding manipulation was devised: Two

32K x 8-bit RAM chips were used. Both were supplied with smart sockets for data

retention when the power was removed.

4. Design ConsideraJions page 16

For nonnal execution ofa program, the 32K bytes ofCode Memory for the system

will be contained in a single IC. It will be decoded and read from the lower half

of the available 64K bytes for the code segment. At the same time, 32K bytes of

External Data RAM, contained in a second IC, will be available for reading and

writing in the lower half of the available 64K bytes of the External Data segment.

The Code Memory chip must also be decoded to be accessed as read or write data

memory in the top 32K bytes of the External Data segment. A byte written to the

first memory address of the top half of the data segment at address 8000h, can then

be accessed through either a read and write instructions for the data segment. It

can also be read as program step number OOOOh during the execution ofa program,

or accessed through direct code access using the "MOVC" cOmmand. The same

chip therefore occupies both the lower half of the code segment, and the upper half

of the data segment.

Code Memory Map External Data Memory Map

FFFFh

8000h

1FFFh

OOOOh

Not
available ~

and not
used

-

32K Code
Memory

FFFFh r-------,

32K Code
The same chip---> Memory

accessed
as data.

8000h

1FFFh

32K Data
The Xdata chip--> Memory

OOOOh L- ----'

Fig. 4.3. Dual Mapping of the Code Memory IC

4. Design Consideratum.. page 17

4.4. Interrupt Code Memory Segment Swapping and Decoding

The reset and interrupt starting addresses for an 8051 system are located at the

start of the code segment at the following address locations:

OOOOh Reset Address

0003h External Interrupt 0

OOOBh Timer 0 Roll-over Interrupt

OOl3h External Interrupt I

OOlBh Timer I Roll-over Interrupt

0023h Serial Port Receive and Transmit Interrupts

The onboard Operating System will use various interrupts to wake the system out

of the low power consuming Idle mode, but when a user program is executed, it

will require the same addresses for user interrupt subroutines. To make all

interrupts available for a user program, the Operating System.must be completely

transparent while running a user program. There must be very little or no

restrictions on the normal usage of the interrupt addresses for programming or the

operation of a user program. To achieve this, some physical hardware address

swapping had to be done to be able to read the correct code from the correct

addresses in either the user program ExecuJion Mode, or while the Operating

System takes over control. In principle, two blocks of code memory, addresses

OOOOh to OOOTh, or addresses OOOOh to 002Fh will be swapped with their

equivalent blocks at the lower end of the Operating System, which resides at code

addresses 5000h to 6FFFh. The exact detail will be explained later, but the basic

principle of operation is as follows:

4. Design CoIISideratiollS page 18

After a system reset or when the system is controlled by the Operating System, the

reset and interrupt subroutine starting addresses that are normally located at

addresses 5000h to 502Fh, are decoded to appear at the lower end of the code

memory map between addresses OOOOh and 002Fh. Just before a user program is

run, a bit in the hardware is set to swap back the normal lower portion of the code

memory. This will contain the user defined reset and interrupt vectors. These can

then be read and executed at their standard address locations.

Code Memory
7FFFh

7000h

S02Fh

S007h

SOOOh

0030h
002Fh

0007h

OOOOh

System variables,
Bulk data storage,
I/O addresses and
LCA Configuration

Operation System

Rest of Operating
System Interrupts

Operating System
reset and Int 0
Subroutine

Rest of User
program

Rest of User
Interrupts

User defined
Reset and Int 0
Subroutine

]<
<

Swapped by Swapped by
setting a setting a
hardware hardware
bit: OPS bit: ESCL

]< <

Fig. 4.4. Reset and Interrupt Vector Swapping

4.5. Hardware Address Decoding and Other 110 Circuits

The additional access of the code and external data memory, together with the

address swapping of the reset and address vectors, imply a rather complex address

4. Design Considerations page 19

decoding circuit It would need quite a few conventional logic circuits to realise

such a system. Therefore, to also include all the other logic circuitry, such as the

address latch, the rasterscan keyboard decoder, the address decoding of the display

module and the additional user I/O select lines, a single Field Programmable Logic

Cell Array, or LCA, was implemented. It incorporated all the logic circuits

required by the system, apart from the two 32K byte RAMs, the micro-controller

itself, and the display module. The only other two ICs on the board are the RS232

logic level converter, a MAX232, and an opto-isoIator used for the software

controlled auto-off circuits.

4.6. The LCA Configuration

The internal connections, or coniJgUl'ation of the field programmable LCA, are

completely made up of volatile memory bits. It must be re-configured every time

power is applied to the chip. On power up, the chip can be set to one of various

modes to load the configuration from some source. The internal circuits will then

be interconnected to emulate all the hardware circuitry it was designed to replace.

Such a system enables changes to most of the hardware to be as simple as changes

to the software of a normal program. This configuration of the LCA, not being

made up of fixed physical hardware circuits, nor b~ing software that can be

changed while the system is in operation, but are fixed only for the duration of a

current operating session, is referred to as the rll'Dlware.

The method of loading the LeA configuration depends on the logic levels set to

three control pins of the LeA on power up. The method chosen for this system

4. Design Considerations page 20

was the S<H:a1.Ied Master Parallel Mode (from high addresses to Iow addresses).

On power up, the LeA will place address FFFFh on its configuration address

lines. By means of a -Data Enable Control- line, it will read the configuration

data in on its data pins. While the configuration is in progress, the

micro-controller is kept at reset with all its port pins at high impedance. The pins

that would be used for the Iow address latch during normal operation were chosen

to be the same address and data lines used for the configuration uploading.

SimiIarly, the pin that would enable the reading of the code RAM, was also chosen

to be the -Configuration Data Enable" control line. Ignoring the address line

"AIS", the LeA will therefore start to load the configuration of approximately

l.SK bytes from the code memory IC, from address 7FFFh, downwards.,

4.7. The Initial Seeding Process

The hardware connections between the LeA and the memory chips were also used

for the S<H:a1.Ied seeding process. This process places the initial intelligence,

consisting of the Operating System and the normal configuration of the LCA, into

the Code RAM of the system. Theoretically, this should only be required after the

board has been assembled with unprogrammed memory chips, or if any

modifications to the firmware or the Operating System have been done.

For the seeding process, the changing of a hardware jumper on the board chooses

another configuration mode for the LCA, the Serial Slave Mode. In this mode,

the configuration must be loaded in from some external source into the LCA

through two pins, a "Clock" and a "Data-In- pin. This external source was chosen

4. Design Coruideratioru page 2I

to be two data pins from the parallel printer port of a PC. After power up, the

seeding process will start to configure the LeA as a Serial-In-Parallel-Out Shift

Register, and an Address Counter. After shifting eight data bits into the shift

register, the data will be written in parallel to the code memory chip, and the

address counter will be incremented or decremented by one. Two miniature slide

switches on the board, that are normally used to select the Running Modes of the

system, were also used for the seffiing process. The switches were configured to

reset the address counter to either 5000h for the Operating System, or to FFFFh

for the normal configuration data, and to select either the up or the down counting

of the address counter.

Three sets of data are therefore downloaded from the PC to the LeA through the

parallel port for the seeding process: First the LeA is configured to be a Shift

Register and an Address Counter. Then the data required to configure the LeA

for normal operation is serially shifted into the shift register, and loaded into the

top end of the code memory chip. Finally, the Operating System is serially shifted

in and loaded into addresses 5000h to 6FFFh. The smart socket maintains the

stored configuration and the Operating System data in the code memory chip.

The LeA, now configured in the Master Parallel Mode, will then be instructed

to re-configure. It will read the configuration data from the code memory chip and

configure itself to be the address latch, decoders and keyboard scanners required

for normal operation. The micro-controller reset pin is then released, and normal

operation of the system can continue.

4. Design Consideralwns page 22

5. Product Description

5.1. General Layout and Component Identification

The following user controls and intelligence exchange devices can be identified on

the pictures of the product:

From Above:

* 16-Character by I-line LeD Display Module.

* 16-Key hexadecimal keyboard.

* 16-Key Operating System Function keyboard.

* A Green LED - the ON indicator.

* A Red LED - the Busy Configuring Indicator.

* External Power Source Sockets. Red positive, Black negative.

5. Product Description pag~ 23

From the Right-Hand Side:

* 62-Pin extension edge connector socket.

* ON/Configure Push Button - next to the 62-pin extension socket

Through the Opening on the Top:

* Two Running Mode Control slide switches.

* Display Viewing Angle Adjustment Control potentiometer - below and to the

left of the display unit.

From the Left-Hand Side:

* 9-Pin female ~nnector for the RS232 link with a PC.

* 6-Pin single-in-line header connector for "seeding" - next to the D-eonnector.

(Pin 2 is blank for orientation)

* Seed Select Jumper - next to the 6-pin header.

* A 9 volt battery - secured on the component side of the peB.

Through the Opening on the Bottom End:

* Serial PROM Enable jumper (two pins) - In the middle of the lower end on the

component side.

* EA pin of the mic:ro-rontroller (3 pins) - next to the serial PROM jumper.

5. Produc1 Description page 24

Through the Back Cover:

From the rear end, the 8-pin DIL serial PROM socket for alternate configuration

loading, the 4O-pin micro-controller, the two 28-pin smart socketed Code and Data

RAMs, the 44-pin PLCC LCA chip, the MAX232 voltage level converter, and the

8-pin opto-isoIator can be identified. A voltage regulator in the TD-220 package

makes the system independent of battery and external supply voltage variations.

5.2. Communication Between the User and the Operating System

Most of the communication and interaction between the Operating System and the

user are through the 16-character by I-line LCD Display Module and the thirty-two

keys on the two key pads. The only other controls that may be used intermittently,

are the 'ON/Configure' button to switch on the power to the board, and the two

miniature Running Mode Select slide switches. These switches will select between

using the Operating System, or running a user program in the Single Step, the

Break Point or the real time Execute Modes.

The layout of the keyboard is as follows:

~880 B B 8 IResetI
~~0~ I CodeI Inatal~ IXdatal

~~~[2] IHelpI [2] IStoreI I HxBnl

~[2]~~ ~[Q~ IEnterI

FIg.Sol. The Layout of the Key Pads

5. Produ.ct Description page 25



The left-hand key pad contains the normal hexadecimal numbers to specify

addresses, numbers or data, when requested by the Operating System.

The right-hand key pad contains the special function keys. There are four cursor

and menu direction keys for' <' (left), '>' (right), 't' (up) or 'I' (down)

selection, and an 'Enter' key to select the current option or to start the action. On

the second line from the bottom, buttons will supply on-screen help on the current

menu selection, a quick "Store Internal Data and Current System Variables"

button, and a button that will convert and display the current data in either

hexadecimal or binary digits.

The Binary or Hexadecimal Display Modes are very useful while in one of the

"Memory Segment Inspection and Editing" menu options. A byte such as the

Program Status Word, of which the bit settings have no relation to each other,

would normally be inspected in the binary notation. The contents of, for example,

an 8-bit counter, would rather be inspected in the hexadecimal notation.

The third line of buttons from the bottom is used as a quick way to select one of

the four memory segments for inspection and editing. They are the 'Code',

'Data', 'SFR' and 'Xdata' select buttons.

The top line of buttons contains the 'Escape' key, which will move the control

backwards out of the sub-menu selections. It is also used to create a break out of

one of the execution modes of a user program and return control to the Operating

System. The 'OFF' button automatically starts a "Store Internal Data and System

5. Product Description page 26



Variables" sequence, and switch the power off through software control. The same

sequence is followed for the three minute auto-<Jff facility. No hardware

'ON/OFF' switch as such is available to remove the power for the system. Finally

there is a system 'Reset' button, which will interrupt any current action and reset

the system.

5.3. An Overview of the Modes of the Operating System

The Operating System of the board contains sixteen different operating modes.

These modes are selected on the display module through push button control and

a menu driven system. Most of the menu selections also have sub-menus, and

displayed messages will lead the user to enter the correct data ~hen required. A

user can move around freely between the menus and sub-menus, without fear of

corrupting important data by accident. Before such corruption can occur, the

system will normally ask the user to confirm his choice, or to press the 'Escape'

key to cancel the selection and move back to the previous menu.

A brief description of each of the sixteen Main Menu Options is included below.

More in depth discussions for each menu option are included in the Operating

Procedures and the Software Description. The Main Menu options are:

Option

o

Mode

Main Menu

Description

Starting point for the selection of the various

other modes or options.

5. Prod:u:t Description page 27



Option

1

2

Mode Description

Edit Mem Segment Inspect and editing of anyone of the Code,
Data, SFR or Xdata memory segments.

Edit Pre-Int Reg Inspect and Edit the contents of the SFR and

internal data byte values before a Single

Step, Break Point or Escape break of a user

program.

3 Store IData&SysV Store the Internal Data and the System

Variables, to enable a restart of a program

from the same point and register values at a

later stage.

4 Restore Data&SyV Restore the Internal Data and the System

Variables, to restart from the same point and

register values stored previously.

5

6

Exe User Program

Single Step Run

Execute a user program located at default

address OOOOH, with only 'Escape' key

breaks.

Execute only Ol1e instruction of a user

program at a time, and return to the Operating

System for memory inspection and editing.

5. Product Description page 28



Option Mode Description

7 Run with BrkPnts Set up a break point table and execute a user

program until the Program Counter matches

one of the break points, before returning to

the Operating System.

8 Clear ldata Mem. Clear the internal data memory.
..<

9 Clear User Prog. Clear the user program area.

A Clr BrkPnt Table Clear the break point table.

B RS232 Mem Load Load data from a PC into the Code memory

through the RS232 link.

C RS232 Mem Dump. Dump external data or code to a PC for

storage on disk through the RS232 link.

D Xdata Block Move Move a block of external data. (All the other

memory segments are also contained in the

external data memory map.)

E Prot/Unprot Mem. Set or clear the software protection of the

Operating System and the LCA configuration.

F Save IMem + OFF Save the entire internal memory and SFR

values and switch off.

5. Product Description page 29



5.4. The On-screen Help Facility

On-screen "help" facilities are available for the main menu and for each sub-menu.

By pressing the 'Help' key, a few lines of help, describing the main features of the

menu option, and a list of the available action keys for that selection, will be

displayed.

5. Product Description page 30



6. Product Specification

6.1. General Specifications

* Physical Dimensions: W x L x H: 150 mm x 114 mm x 34 mm

* Power supplies: On-board 9 volt battery or a 7.5V to 35V External Supply

* Power dissipation: 22 ma @ 5 volt (after the voltage regulator)

* Micro-Controllers: INI'EL: 8051, 8031, 8051AH, 8031AH, 875lH,

-875IAH, 8052AH, 8032AH, 8752BH, 80C5lBH,

8OC31BH, 87C51 , 80C52, 8OC32, 83C51FA,

8OC51FA, 87C51FA, 83C51FB, 8OC51FB, 87C51FB.

DALLAS: DS5000, DS5000T.

PHILIPS: 87C751, 8OC562.

* Display Unit: 16-character x I-line LCD Display Module

* Keyboard: 16 hexadecimal keys and 16 Special Function keys

* Inputs and Outputs: Two Banana Sockets (External Power)

9-Pin Female D-Connector (RS232 link to PC),

5-Pin Header connector (Parallel PC Port),

62-Pin mM motherboard type edge connector socket.

(connections to a user board)

* Hardware Controls: 2-Pole Running Mode Select slide switch,

"Seeding Enable" jumper,

"Serial PROM as the Configuration Source" jumper,

"External/Internal Code select" jumper.

6. Prodw:t spedficaJion page 31



6.2. Computer Software Requirements and Data FIles:

The SEED.EXE seeding driver, which requires the following hex fonnat files:

* The SHIFI'REG.MSC seeding Shift Register Configuration,

* The DECODER.MCS Configuration for normal operation

* The OPSYS.HEX Operating System.

The DOS COpy command, Version 3.3 or higher.

6.3. The RS232 Serial Link:

Baud Rates: 300, 600, 1200, 2400, 4S00, 9600

Data Protocol: 8 data bits, No Parity, I Stop Bit

Connector on PC: Standard 25-Pin D-Connector (Male)

6.4. The 64K Byte Code Memory Map: (Read Access through PSEN)

0000 - 4FFFh Available for User Programs (20K bytes)

5000 - 6FFFh Operating System (8K bytes)

7000 - 7FFFh Not available as code (4K bytes): System Variables,

I/O Mapping and LeA Configuration.

8000 - FFFFh Code Addresses does not exist.

6.5. The 64K Byte External Data Memory Map: (Access by RD and WR)

0000 - 7FFFh External Data - 32K bytes available to the user.

8000 - CFFFh User Programs (20K bytes) - Xdata mirror of the Code.

DOOO - EFFFh Operating System (SK bytes) - write protected.

6. ProdJu:t Specification page 32



FOOO - F2FFh

F300 - F3FFh

F400 - F4FFh

F500 - F5FFh

F600h

F60lh

F602h

F603h

F604- F6FFh

F7oo-F7FFh

FBoo - FFFFh

6. Product Specification

System Variables, Internal Data and SFR store.

(See the appendix for a complete list and locations.)

As one WRITE byte to the Control Register, CREG, in the

LCA, overlaid by a READIWRlTE memory byte to enable

the reading of the current settings.

External Chip Select, CSO. (256 bytes)

External Chip Select, CSl. (256 bytes)

Display Module Command Instruction WRITE address.

Display Module Data WRITE address.

Display Module St<.tus READ address.

Display Module Data READ address.

Display Module mirror image addresses.

One READ byte for the Keyboard and the current state of

the Running Mode Select Switches.

LeA Configuration (2K bytes) - write protected.

page JJ



7. Operating Modes

Four types of Running Modes are available, and each mode is selected by the

setting of the two Running Mode Select slide switches. These switch setting will

be normally selected before power up, a hardware reset, or when prompted by the

system to do so. It may also be selected while running in anyone of the other

modes. The four Running Modes and switch settings are as follows:

7.1. The Operating System Mode

Inspecting and editing of memory locatior.s. The loading and dumping of user

programs from and to a PC. Storing and retrieving of the 8051 internal data and

current system variables. Memory block clearing and moving, etc.

Swl = OFF, Sw2 = OFF

7.2. The Single Step Mode

Execute only one instruction of a user program at a time, and jump back into the

Operating System. All the system variables, SFR contents and the internal data of

the mic:r<>-rontroller that would be corrupted by the Operating System, are stored

in memory. It can be inspected and edited directly t j the Operating System.

Before the next user instruction is executed, all these values, including the altered

ones, will be loaded back into the micro-controller:

Sw! = ON, Sw2 = OFF.

7. Operating Modes page 34



7.3. The Break Point Mode

Before executing any instruction of a user program, the address of the first byte

of the instruction is compared with a list of thirty-two possible addresses,

previously defined by the user in a Break Point Table. Only if a match is found,

the control will jump back to the Operating System. While running in the Break

Point Mode, pressing the 'Escape' key will cause a break after the current

instruction, even if no address match has been found:

Swl = OFF, Sw2 = ON.

7.4. The Execute Mode

The user program will be executed at normal speed, and will only be interrupted

when the 'Escape' key is pressed. A break will also occur if a running mode

selection switch is switched over to select another mode, while a user program is

executing:

Swl = ON, Sw2 = ON.

Z Operaring Modes page 35



8. Operating Procedures

For this description it will be assumed that the system has been seeded already, and

the LCA configuration and Operating System are stored and maintained by the

smart socket in the code memory chip. The procedure to seed the system will be

described in detail at the end of this section.

8.1. Setting Up Procedure

An external supply can be connected to the two banana sockets on the board, if

available. The applied voltage can be any value between 7.5 volt and 35 volt, but

a good average of 10 volt is recommended. The circuit for the power supply was

so designed that the power to the board will be taken from the higher voltage of

either the external supply or the onboard battery. No provision has to be made to

prevent the external supply to charge and damage the onboard battery. The

changeover between the power from the battery or an external supply can even take

place while the system is in operation, by just applying or setting the external

voltage higher or lower that the 9 volt of the onboard battery.

The seeding connection cable to a PC must not be connected to the board, the

SEEDING jumper must be open, L.'1.e SERIAL PROM jumper must be open, and

the central EA pin or the "External Memory Enable" jumper must be connected

to the ground (-ve). The serial load RS232 cable from a PC can either be

connected to the board or not.

8. Operating Procedures page 36



The Running Mode Selection slide switches must be set to the desired mode, but

unless a user program has already been loaded in before, only the Operating

System selection (both switches OFF), will be appropriate.

The user program must be available on disk in the INTEL Hex format. This

program will be downIoaded into the board through the RS232 serial port, using

the standard DOS COPY command.

8.2. Power Up and LeA Initialization

By pressing the 'ON/Configure' button, power will be supplied to the board, and

the Green LED will light up to show that the power is available. Initially, the

Red LED will also light-up briefly to show that the LCA is busy configuring.

When the red LED stays on, it is an indication that the configuration data got

corrupted, and that the board may have to be seeded again. This should not

happen during the normal run of events, but if the onboard battery is starting to go

flat, the supply voltage may not be sufficient to do a proper LCA configuration.

Once an adequate supply voltage has been restored, proper configuration should

take place without having to re-seed the board.

Assuming the Running Mode Selection switches have been set to select the

Operating System, a brief "Cape Technikon~ logo and a "p.C Trainer V:4.3"

message will be displayed on the LCD display module, before the system will go

to the top of the main menu, showed by the displayed message: "Main

MenuO ,Ent)". The display screen of the LCD module is driven by a time-

8. Operming Procedures page 37



multiplexed process, which limits the view angle of the screen to within specific

margins. The view angle adjustment potentiometer is accessible through the top

opening of the board, and can be used to adjust the view angle to suit the user.

The messages of the different menu options available from the main menu in the

shortened 16-character abbreviation, as well as the full name, are shown with the

mode numbers, below:

Option Mode Full NameIDescription

0 "Main Menu( ~ ,Ent)" Top of the Main Menu

I "Edit Mem Segment" FAit a Memory Segment Byte

2 "Edit Pre-Int Reg" Edit Registers before the Break

3 "Store IData&SysV" Store Internal Data and System Variables

4 "Restore Data&SyV" Restore Internal Data and Syst. Variables

5 "Exe User Program" Execute a User Program

6 "Single Step Run " Execute One User Instruction at a Time

7 "Run with BrkPnts" Execute until a Break Point is reached

8 "Clear Idata Mem. " Oear the Internal Data Memory

9 "Clear User Prog." Oear the User Program area

A "Clr BrkPnt Table" Oear the Break Point Table

B "RS232 Mem Load.. " Load data from a PC

C "RS232 Mem Dump.." Dump Data to a PC

D "Xdata Block Move" Move a Block of External Data

E "ProtlUnprot Mem. " Set or Oear the Software Protection

F "Save Thfem + OFF " Save Internal Memory and Power Off

8. OperaJing Procedzues page 38



8.3. The Help Menus

A few lines of on-screen help are available for all the major modes, giving a brief

description of what the option does, and also the appropriate action that can be

expected from the valid keys in that mode. The first line of each help menu is a

help line on using the Help Menu itself, and will display the message

"Next= ~ ,Bsc=Exit". The available lines for a Help Menu can be stepped

through by either pressing the ' ~ " the 'Help' or 'Enter' keys, or one can step

backwards by pressing the ' t ' key. The end of any help file will be shown by the

message "End of Help.. " and it will roll over back to the frrst line. The 'Bsc' key

will return the user to the mode from where the help was requested.

Active Function Key Summary: (In the Help Mode)

l or 'Ent' or 'Help' - To the next help line.

t - To the previous help line.

Bsc Back to the previous menu.

8.4. The Main Menu and Sub-Menu Selection

The Main Menu can be considered to be Mode 0, and contain the headings of the

sixteen available modes. The top of the main menu displays the message "Main

Menu( l ,Ent)", showing that the rest of the menu selections will be displayed by

stepping down through the selections using the ' l' key. The 'Enter' key will

select the current displayed option. The' t' key will step the options backwards,

rolling over from Mode '0' to 'F'. Once the hexadecimal number allocation of

specific options is better known, a required option can be selected quickly by just

8. Operating Procedures page 39



pressing the corresponding hexadecimal number on the key pad. This feature

provides a fast way of getting to a specific selection, without having to step

through all the options one by one.

From the main menu, it is also possible to move directly to any of the Memory

Segment Edit options through the 'Code', 'Data', 'SFR' and 'Xdata' keys. The

"Store Internal Data and System Variables" mode can also be selected directly

through the 'Store' key and the "Save Data and OFF" mode option can be selected

through the 'OFF' key.

The 'Help' key will display a few lines of help on the Main Menu, and also a brief

explanation on the action of the appropriate keys, valid for this mode.

If the control was given over to the Operating System by breaking out of the

execution of a user program, the next user program step can immediately be

selected by pressing the 'Exe' key.

The 'Esc' key will return the mode selection and the displayed message back to the

top of the Main Menu.

Active Function Key Summary: (Main Menu)

~ Next mode heading.

t Previous mode heading.

Ent Select currently displayed mode.

Help Main Menu Help facility.

Store Store internal data and system variables - Mode 3.

8. Operating Procedures page 40



Code

Data

SFR

XData

Esc

Exe

OFF

'Q'-'F'

Inspect and edit the code segment - Mode 1.

Inspect and edit the data segment - Mode 1.

Inspect and edit the SFRs - Mode 1.

Inspect and edit the external data segment - Mode 1.

Escape to the top of the main menu.

Execute the next user program step(s) - only when one of the

Running Modes is active.

Store internal data & system variables and switch off - Mode F.

Quick selection of modes 0 to F.

8.5. Mode 1: Edit Memory Segment Mode

This mode can be used to inspect and edit or alter any of the data bytes in any of

the available memory segments, such as the Code, Internal and External Data as

well as the current SFR values. Some Code memory bytes are protected against

accidental corruption, such as the LCA configuration and the Operating System.

This protection can however be disabled or re-enabled through the menu option

'E', but should be used with care. Some bytes do not exist physically, and will

normally be shown to have the same value as the low address byte. It will show

no reaction if an attempt is made to change the value.

Some values of the SFR and the first 24 bytes of the internal data shown in this

mode, will reflect the current values used by the Operating System, and changing

these values might lead to an unexpected reaction. When this happens, the 'Reset'

key can be used to re-initialise the system back to the Main Menu.

8. Operating Procedures page 41



Mode 1 is entered from the main menu by selecting one of the four memory

segments select keys on the keypad: 'Code', 'Data', 'SFR' or 'Xdata'. The code

segment can also be selected when 'Enter' is pressed while the message "Edit Mem

Segm" is displayed, or through the quick selection numeric key 'l'.

The display module will show the selected memory segment by the messages:

"Code Add: ", "Data Add: "," SFR Add: " or "Xdat Add: ", with the

cursor blinking on the first digit of the hexadecimal address to be entered.

The format for the display in the hexadecimal notation consists of a four-digit

hexadecimal address for the Code and the &ternal Data, or a two-digit address for

the SFR and Internal Data addresses. The data of the selected address follows as

a two hexadecimal digit value.

When the address digits are entered through the numeric keys '0' to 'F', the values

will show on the screen and the cursor will move one digit to the right

automatically. After the last address digit has been entered, the appropriate data

will be read from the address and displayed on the screen. To correct a digit, the

cursor can be moved left or right to the appropriate digit through the ' <' and '>'

keys, and the correct value keyed in to replace the existing value. Moving the

cursor to the right across undefined address digits, or ;:.ressing the 'Enter' key

before the complete address has been entered, will fill the rest of the digits with

zeros before displaying both the address and the specified data.

With the cursor on any of the two right-hand digits, data values can be inspected

and altered. When changing a data digit, the new value will fIrst be written to the

8. Operating Procedures page 42



appropriated memory segment, and then read back before it is displayed. This will

confirm that the address exits, are not write protected, and that the keyed-in data

has been stored properly.

An address can be changed by just moving the cursor to the appropriate digit and

entering the new address digit value. It is also possible to increment or decrement

the current address through the 'Up' or 'Down' keys. The data for the new

address will be displayed immediately.

Another memory segment can be selected by pressing the appropriate Memory

Segment Selection key, which will move the control back to the address entry stage

of the selected segment.

The data of a selected address can also be displayed in the binary notation. This

format will show the segment as a single letter, e.g. 'C:', 'D:', 'R:' or 'X:', and

the address in the normal hexadecimal mode, but the data byte will be displayed

as eight binary digits, e.g.: ·C:1234 01101001·. This display mode can be

selected by the 'HxBn' key, which will toggle between the hexadecimal and the

binary notation modes.

The data in the binary mode can be altered individually through moving the cursor

to the appropriate digit, and entering a 'I' or a '0'. The other number keys will

replace the entire high or the low nibble (4 bits) below the cursor.

The 'Help' key will display a brief description of this mode, and also a summary

of the control keys valid for this mode.

8. Operating Procedures page 43



Active Function Key Summary: (Edit Memory Segment)

< Move the display cursor one position to the left.

~ Increment the current address.

> Move the display cursor one position to the right.

Help Call the help screen facilities.

t Decrement the current address.

HxBn

Code

Data

SFR

Xdata

Esc

Exe

'0'-'F'

Toggle between hexadecimal and binary formats.

Select to inspect and edit the Code Memory Segment.

Select to inspect and edit the Internal Data Memory.

Select to inspect the Special Function Registers.

Select to inspect and edit the External Data Memory.

Escape back to the main menu.

Continue the execution of the user program after a Single Step,

Break Point or Normal Execute break, or ifone of these modes was

selected through the switches.

Enter Address or Data digits.

8.6. Mode 2: Edit Pre-Interrupt Registers

This option is only available when one of the user program running modes is

active. When a user program is interrupted while in the Single Step, Break Point,

or by the Escape key in the Execute mode, the program will enter the Operating

System through this mode. Before the jump, all the current values of the SFR and

internal Data that may be corrupted by the Operating System, will first be stored

8. Operating Procedures page 44



in the memory. This mode makes these values available for inspection and editing.

Only register and data bytes used by the Operating System, are available and are

displayed in this mode, the rest can be inspected and edited by the normal Edit

Memory Segment option. The order of the Pre-Interrupt Registers and the first

twenty-four internal data bytes displayed in this mode, is as follows:

Prog. Cntr:dd dd

PSW Ace :dd dd

DPH DPH :dd dd

SP B Reg:dd dd

IP lE :dd dd

TCON TMOD:dd dd

THO TLO :dd dd

TH1 TL1 :dd dd

D:OO=dd dd dd dd

D:04=dd dd dd dd

D:08=dd dd dd dd

D:OC=dd dd dd dd

D:10=dd dd dd dd

D:14=dd dd dd dd

Program Counter (when the break occurred)

Program Status Word and the Accumulator

Data Pointer bytes DPH and DPL

Stack Point:r and B Register

Interrupt Priorities and Interrupt Enables

Timer Control and Timer Mode registers

Timer 0 high and Iow bytes

Timer 1 high and low bytes

Internal Data: DOH to 03H

Internal Data: 04H to om

Internal Data: OSH to OBH

Internal Data: OCH to OFH

Internal Data: IOH to BH

Internal Data: 14H to 17H

('dd' = two hexadecimal digits)

Note: The Program Counter will display the address of the next instruction that

will be executed. If the SFR or internal data values are altered in this mode, the

8. Operating Procedures page 45



new values will be reloaded back into the SFRs and the first 24 internal data bytes,

before the next user program instruction is executed. By altering the program

counter value in Mode 2, it will define a new returning point when the user

program is continued.

To continue the user program, the Execute key will return to the user program to

execute the next instruction(s) until the next break occurs. The restoring of all the

previous SFR and internal data values back to their previous locations, makes the

Operating System completely transparent. It does not reserve or prevent the use

of any internal data bytes or Special Function Registers in a user program.

This mode is very useful in the debugging of a program. It allows one to inspect

and alter the values of the SFRs and internal data bytes at any specific point, just

before a next instruction will be executed.

Active Function Key Summary: (Edit Pre-Interrupt Registers)

< Move the display cursor one position to the left.

I Go to the next registerslbytes.

> Move the display cursor one position to the right.

Ent Go to the next registerslbytes.

Help Call the help screen.

t Go to the previous registerslbytes.

Esc Escape back to the main menu.

Exe Continue the execution of the user program.

'0'-'F' Enter Address or Data digits.

8. OperaJing Procedures page 46



8.7. Mode 3: Store Internal Data and System Variables

This mode enables one to store all the current values of the internal registers and

data of the micro-controller, as well as the system variables and the pre-interrupt

register values of Mode 2. This is useful when a bug in a program is creating a

system crash that can only be recovered by a hardware reset. The mode allows

one to restart at the same point"when the settings were saved, somewhere before

the crash occurred. After a hardware reset, all the stored values may be recovered

from memory after the nonnal initializat!on, and restored back into the internal

registers and data bytes through Mode 4.

Active Function Keys: (Store Internal Data and System Variables)

Ent Confirm the storing of the data.

Help Call the help screen.

Esc Escape back to the main menu - no storing.

8.8. Mode 4: Restore Internal Data and System Variables

This mode enables one to restart the execution of a user program from a previous

point stored by Mode 3, the "Save and OFF" option of Mode F, or just before the

3-minute auto-off facility. All the internal registers, the data, and the system

variables will be restored to exactly the same values as they were during the

previous store operation.

8. OperaJing Procedures page 47



Active Function Keys: (Store Internal Data and System Variables)

Ent Confirm the restoring of the data.

Help Call the help screen.

Bsc Escape back to the main menu - no restoring.

8.9. Mode 5: Execute a User Program

This mode initiates the running of a user program at normal speed from within the

Operating System. When selected, it will prompt the user to switch both the

Running Mode Selection switches ON. Then the starting address can be selected.

The default starting address for user programs is OOOOH, but the option is available

to start at any address between the limits of OOOOH and 4FFFH, which is the

memory area available for user programs.

The user program will be executed at normal speed, and can be interrupted any

time by pressing the 'Escape' key. Control will then go over to the Operating

System in the Edit Pre-Interrupt Registers Mode, displaying the code address of

the next instruction that will be executed.

All the normal interrupt vectors are available to the user, with the following simple

size and placement limitations to the interrupt subroutine:

The External Interrupt 0 routine must fit entirely into either code addresses 0003H

to 0007H, or it must use a ·Long Jump· to an address anywhere above 0030H.

The other interrupt subroutines must either be limited to addresses OOOBH to

8. Operating Procedures page 48



002FH, or contain a "Long Jump" to any address above 0030H. They may not

step over the 002FH to 0030H barrier normally, or through a relative or an

absolute jump.

The reason for these limitations lies in the method used by the system to enable

Single Step or Break Point operation. It uses interrupts extensively, but still

facilitate the full implementation of all the user interrupts. This is done by

swapping the interrupt starting addresses under certain conditions by hardware

control, so that either the user-interrupt routines, or the Operating System interrupt

routines are serviced. These conditions will be explained in detail under the

software description section.

To continue the execution of the user program, the 'Exe' key can be pressed from

within almost anyone of the Operating System Modes. If the program does not

resume, the 'Escape' key must first be pressed, followed by the 'Exe' key.

The system can also be set to start executing a user program after a hardware reset

or at power up. It can be accomplished by switching both slide switches ON, and

pressing the 'Reset' or the 'ON/Configure' buttons. After initialization of the

display and the setting of some system variables, the user program will start to

execute from the default address OOOOH.

If a user program clears the External Interrupt 0 Enable bit, or the Enable All

bit, the '£se' key cannot interrupt the operation until these bits are set again. A

full summary on the guidelines on writing user programs for the system, IS

included later in this document.

8. Operating Procethues page 49



Active Function Keys: (Execute a User Program)

Ent ·Confinn the Switches were set· I ·Run Program·.

Help Call the help screen.

Bsc Escape back to the main menu.

Exe Run the User Program.

'0'-'F' Select a new start address.

8.10. Mode 6: Execute a User Program in the Single Step Mode

For testing and debugging a user program, it is useful to be able to inspect all the

registers and data bytes after every instruction. This will confirm that the

program does what it is supposed to do. After the completion of each instruction

in the Single Step Mode, the control will jump to the Operating System into the

Edit Pre-Interrupt Registers Mode, displaying the code address of the next

instruction that will be executed. Normal inspection of any memory location or

the pre-interrupt registers, or any other function of the Operating System can also

be selected.

To continue the execution of the user program, the 'Exe' key can be pressed from

within almost anyone of the Operating System modes. If the program does not

resume, the 'Escape' key must first be pressed, followed by the 'Exe' key.

When entering this mode, the user is prompted to select the Single Step Running

Mode by switching slide Switch I ON and Switch 2 OFF. Then the starting

address can be selected. The default starting address is OOOOh, but it may be

8. Operating Procethves page 50



altered to any value within the address range available for user programs. The

'Escape' key will return control to the main menu.

The system can also be set to start executing a user program in the Single Step

Running Mode after a hardware reset or at power up. This is achieved by first

switching slide Switch 1 ON and Switch 2 OFF before the 'Reset' key or the

'ON/Configure' button is pressed. After initialization of the display and the

setting of some system variables, the user program will start to execute in single

steps from the default address of OOOOH.

Active Function Keys: (Execute a User p.;ogram in single steps)

Ent "Confirm the Switches are set" I "Run the P'rogram."

Help Call the help screen.

Esc Escape back to the main menu.

Exe Run the User Program.

'0'-'F' Select a new start address.

8.11. Mode 7: Execute a User Program in the Break Point Mode

This mode is similar to the Single Step Mode, except that the user can decide

where breaks in the program must occur. A break is obtained through entering

the address of the first byte of the instruction just ofte; the break into a Break

Point Table.

After the completion of each instruction, the address of the first byte of the next

instruction will be compared with every entry in the break point table. Only if

8. Operating Procedures page 51



a match is found will control be given over to the "Edit Pre-Interrupt Register"

mode of the Operating System.

The displayed code address in Mode 2 will be that of the next user instruction that

will be executed. Normal inspection of any memory location or the pre-interrupt

registers, or any other function of the Operating System can also be done during

this break.

Up to thirty-two break: points can be specified, and they do not have to be in any" ..

specific order. If less than thirty-two break points are used, the list must end

with an address value entry of OOOOh.

To remove a break point from the table without influencing the rest of the break:

points, it must not be simply cleared to OOOOh. The break point should be

replaced by an address that does TWt fall on the first byte of an instruction. The

address can also fall completely out of the address range of the program, so that

it will never be reached, such as FFFFh.

The break: point table is stored in a reserved space in the Code Memory IC.

Therefore, no special instructions have to be included in the user program to

cause a break. Such special instructions would move the relative positions of the

programming instructions, that is undesirable. Being stored in a battery backed

up memory, previous breakpoint set'".mgs v.ill be retained during power down.

To continue the execution of the user program, the 'Exe' key can be pressed from

within almost anyone of the Operating System modes. If the program does not

8. Operating l'roadJJres page 52



resume, the 'Escape' key must first be pressed, followed by the 'Exe' key.

When entering this mode, the user is prompted to select the Break Point

Running mode by switching slide Switch I OFF, and Switch 2 ON. The Break

Point Table can then be inspected and altered. The thirty-two break points will

be displayed from number OOH to IFH, and the up and down arrows allows one

to step forward or backwards through the table. To exit this editing mode, the

'Enter' key must be pressed. This will move on to the starting address selection.

The default starting address of OOOOh may be altered to any value within the

address range for user programs. An 'Escape' key will return the main menu.

The system can also be set to start executing a user program in the Break Point

Running Mode after a hardware reset or at power up. This can be achieved by

switching slide Switch 1 OFF and Switch 2 ON, before pressing the 'Reset' key

or the 'ON/Configure' button. After initialization of the display and the setting

of some system variables, the user program will start to execute in the Break

Point Mode from the default start address of OOOOH.

Active Function Keys: (Execute a User Program with Break Points)

Ent "Confirm the Switches were set" I "Exit the Break Point Table" I

"Run the Program."

< Move the display cursor one position to the left.

l Increment to the next break point.

> Move the display cursor one position to the right.

t Decrement to the previous break point.

8. Operllling Procedures page 53



Help

Bsc

Exe

'O'-'F'

Call the help screen.

Escape back to the main menu.

Run the User Program.

Select a new start address.

8.12. Mode 8: Clear Internal Data Memory

This mode will write OOH to all the internal data memory locations from OOH to

FFH, in the indirect addressing mode. In the 8OC31 , indirect addresses 80H to

FFH do not exist. Provision has also been made for using an 8OC32 as an

alternate micro-controller on the board.

Active Function Keys~ (Clear Internal Data Memory)

Ent Confirm the clearing of the data memory.

Help Call the help screen.

Bsc Do not clear and escape back to the main menu.

8.13. Mode 9: Clear the User Program Area

This mode will write OOH to all the user program code memory locations from

OOOOH to 4FFFH (20K Bytes).

Active Function Keys: (Clear the User Program Area)

Ent Confirm the clearing of the user program area.

Help Call the help screen.

Bsc Do not clear and escape back to the main menu.

8. Operating Procedures page 54



8.14. Mode A: Clear the Break Point Table

This mode will write OOOOH to all thirty-two available break point table locations.

Active Function Keys: (Clear the Break Point Table)

Ent Confirm the clearing of the break point table.

Help Call the help screen.

Bsc Do not clear and escape back to the main menu.

8.15. Mode B: Load a Program or Data through the RS232 Link

The serial data transmission protocol used, is 8 data bits with no parity, and the

baud rate is selectable between the standard baud rates of 300, 600, 1200, 2400,

4800 and 9600 baud. The RS232 link uses the standard logic voltage levels for

RS232 communication of -3 to -30 volt for a 'high', and +3 to +30 volt for a

'low'. These levels are generated and converted by the MAX232 IC before it is

connected to the serial cable via a 9-pin female ~nnector.

A link on the board connects the crs (Clear to Send) handshaking line to the

RTS (Request to Send) line. This generates an error on the PC if the board is not

connected, but no handshaking lines are used by the system as such. Some PC

communication systems also require a connection be.ween the DTR (Data

Terminal Ready) and the DSR (Data Set Ready) handshaking lines. This is taken

care of in the 25-pin D-eonnector plugged into the RS232 serial port of the PC.

The default protocol setting for a PC is normally 7 data bits, even parity, 2 stop

bits and a baud rate of 9600 baud. If a mouse driver was installed, it normally

8. Operaring Procedures page 55



changes to no parity, 8 data bits, and a baud rate of 1200 baud. The protocol of

the PC may be altered by using the DOS external MODE command:

MODE COM! br,pr,da,sb,P

where br is the baud rate from 110 to 9600,

pr is (O,E or N) for Odd, Even or No parity,

da is 7 or 8 for the number of data bits, and

sb is 1 or 2 for the number of stop bits.

Including P will cause continuous retries for timeout errors on the serial port.

A typical command will therefore be:

C:\DOS>MODE COMl 96OO,N,8,I,P

The incoming serial data is expected to be in the INTEL Hex format, which is

described in full in the appendix. It can be transferred from a pre-prepared

lNTEL Hex file through the serial port by the PC under DOS control, using the

standard COpy command. A typical example is:

C:\8051 > COpy .fiIename.HFJ{ COMl

No target starting address needs to be specified when this mode is selected,

because the INTEL hex format contains the target address for each line. To

compensate for the unique organization of this system to enable writing access to

the code memory, the MSB of each address will be set before it is stored. The

incoming code, specified to be at the normal code addresses, will therefore be

loaded into the top 32K bytes of the external data memory map. This will then

8. OperoJing l'rocedures page 56



be available as code at the lower 32K bytes of the code memory map.

A user can therefore prepare his program to start at the default starting address

of OOOOH, including any interrupt subroutines, and download it directly to the

board. The most significant address bit will be set by the system to load the data

from address SllOOH, upwards. When, however, the program is executed, it will

be read from the original code address of OOOOH. The Operating System in the

SK bytes between 5000H and 6FFFH and the configuration data above address

7S00H of the code memory, are write-protected. Any data specified for these

addresses, will be lost.

The setting of the MSB of the address caters specifically for the downloading of

the code of a user program. The system may also be used to download data into

the lower 32K byte of the external data memory map. For this operation, some

data manipulation is required: To load a block of data into the lower 32K byte

external data memory, it must first be loaded into an unused section of the user

program area, and then moved down by the Block Move Mode.

When entering the RS232 Load Mode, the Operating System will first request that

the appropriate receiving baud rate be selected. Then it will display the message

"RS232 Ready... ", and go into a waiting state for inco·:ting serial data. When

data is received, a message will display "RS232 Loading..". The data will be

stored at the appropriate address. A checkbyte will be accumulated up to the end

of each line and reception will be ended if a checksum error occurs. The process

will also stop after the INTEL hex format terminating line has been received, or

8. Operating Procedures page 57



a key was pressed on one of the key pads. Messages on the screen will show if

there was a "Checksum Error", if loading was "Aborted" by a key, or if

reception was "Done" with no errors. The operation will return to the RS232

Memory Load heading of the Main Menu for additional loads.

The only place in the Operating System where the 3-minute auUHlff timing does

not occur, is while waiting for serial data to be received. If the user therefore

wants the auto-off timing to be suspended, the system can be placed in this mode,

and reactivated by pressing any key to abort the serial loading process.

Active Function Keys: (Baud rate selectioli for RS232 Memory Load)

< or>

Ent

Help

~

Move the cursor to select another baud rate.

'Select the Receive Baud Rate' I "Start Reception'.

Call the help screen.

~ back to the main menu.

Note: Once reception was initiated, the pressing of any key will abort the

reception mode.

8.16. Mode C: Dumping a Block of Data through the RS232 Link

When entering this mode, the transmission baud rate musifirst be selected. Then

the starting address of the external data memory block and the number of bytes

will be requested, before serial transmission will commence. The outgoing data

will be converted into the INTEL Hex format. This will include a checksum, a

carriage return character after each line, the terminating line, and an 'End-of-

8. OperaJing Procedures page 58



File" chara,cter, ASCII number 26 or lAb. This last character will stop reception

by the PC and close the storage file on the disk.

The receiving PC must be prepared and set to the correct protocol and baud rate

beforehand. The PC can receive and store the data directly on a disk file through

the COPY command. Here, the copy command must specify the COM port as

the source, and the file name as the destination, e.g.:

C:\8051 >COPY COMl filename.HEX

Because the file is in the hex format, all the characters are readable and printable

characters, and the file can be inspected with any text editing or display package.

Due to timeout errors on the PC while it waits for the data to come in, zeros may

be read and stored on the disk file before the hex format data. This will not

create any serious problems when the file is inspected, because every INTEL Hex

format line can easily be identified: It must start with a colon and end with a

carriage return. The zeros may be deleted through normal text editing in any

word processing package, or left as they are. If the file needs to be reloaded

back into the board at a later stage, the zeros will be ignored by the reception

routine. The routine will only start to react after the initial colon ofan Intel Hex

format line was received.

Care must be taken with the restoring of a block of external data to the 8K byte

that corresponds to the Operating System, between addresses 5000H and 6FFFH:

The MSB of the address will be changed when it is restored, and it will be

directed to the protected Operating System area. To prevent this problem, move

8. Operating Procedures page 59



the block of data to an unused section of the user program area before dumping.

After reloading, move the block of data back to the original location.

If a user needs to save the current settings of a user program at any break point

to a PC disk file for later retrieval, the Bulk Storage Data can be dumped by

using this mode. The following initial settings should be used:

Starting Address: FOOOh

Number of Bytes: 0200h

The byte addresses will be included in the INTEL Hex data file, and will

automatically be restored to the same addresses when reloaded back from the PC.

If the original program is still in the code memory, or reloaded from the PC, a

user can continue from the same programming step, with exactly the variables and

settings he had, before the storage.

Active Function Keys: (RS232 Memory Dump)

< or > Move the cursor to select another baud rate.

Ent Select the current baud rate, or accept the displayed starting

address or the number of bytes, and start transmission.

Help Call the help screen.

Esc Escape back to the main menu.

Note: Once transmission was initiated, pressing any key will abort the

transmission mode.

8. Operating Procedures page 60



8.17. Mode D: Move a Block of External Data

All the infonnation in the code, internal and external data, and the Special

Function Registers, is accessible on the external data memory map after the store

operation of Mode 3.

The block move mode allows the moving of a block of data to another location

within the 64K byte external data memory map of the controller, provided

sufficient space is available. Moving can be done upwards or downwards, and

block overlapping is also included. If the destination extends beyond the limits

of the memory map, an error will be shown as "Too many bytes!". No provision

has been made to warn the user when a block is moved into a protected area, and

it assumes it was the intention of the user, and that the protection was disabled.

After this mode was entered, the lowest or starting address of the source block

must be keyed in. Then the lowest or starting address of the destination block

must follow and finally, the number of bytes to be moved.

Active Function Keys: (Block Move)

< or > Move the cursor to the left or right.

'0'-'F' Set a new start address, destination address or the number of bytes.

Ent Select the entered source or destination address, or the number of

bytes displayed.

Help Call the help screen.

Bsc Escape back to the main menu.

8. Operating Procedures page 61



8.18. Mode E: ProtectlUnprotect Memory

This mode toggles between "to set" or "to clear" the write-protection of the

Operating System and the LCA configuration. Care must be taken with this

mode, not to destroy important code in the Operating System or data in the LCA

configuration. It could cause a system crash. Then the original Operating System

and configuration must be restored through the seeding process, described later

in this section.

It is further possible to downIoad a modified LCA configuration into the RAM,

which will then take effect only after the 'ON/Configure' button has been pressed

again. A modified Operating System may also be loaded through the RS232 link,

but the system may crash when the code for the serial receiVing routines is

overwritten. Under normal circumstances, it should never be necessary to

unprotect the appropriate memory sections at all.

Active Function Keys: (ProtectlUnprotect Memory)

Ent Toggles between the protect and unprotect modes.

Help Call the help screen.

Bsc Escape back to the main menu.

8.19. Mode F: Save Internal Data and Switch Off

To enable the continuation of a program or process from the point where it was

stopped before the system was switched off, all the internal data and the contents

of the Special Function Registers will be stored in the battery backed up RAM

ll. Operaring Procedures page 62



before the system will switch off. The same contents may then be restored back

after the initialization of the micro-rontroller by the Restore Mode.

If the data and settings stored through Mode 3 must be kept and not overwritten

by the current settings and data before switeh-off, the previously stored data and

settings must first be restored by Mode 4 before the Store and Off sequence can

be initiated.

When this mode is selected, confinnation is first requested before the sequence

begins. Confinnation can be done through any of the 'Enter', 'OFF' or 'F' keys.

Key '4' will select the Restore Option if the stored values must be kept instead

of the current settings.

Active Function Keys: (Store and Off)

EntlOFFIF Initiates the Store and Off sequence.

'4' Select Restore Data and System Variable Mode

Help Call the help screen.

Esc Escape back to the main menu.

8.20. Th.e Seeding Process of the Board

When the board is powered up for the first time, there IS no intelligence in the

code RAM to enable the configuration of the LeA, nor to use the serial port for

serial reception. Similarly, if the LCA configuration or the Operating System has

been badly corrupted, it will be impossible to use the board. The Seeding Process

is the process to load the LeA configuration and the Operating System into the

8. Operating Procedures page 63



code RAM from a cold start. This is done through direct configuration and

downloading from the PC to the LeA and the code memory through the seeding

download cable. The Xilinx LeA has six different ways to be configured after

power is supplied to the IC. Three of these methods have been incorporated on

the board.

The first method of LeA configuration is the Master Parallel Mode, which is

used for the normal operation of the board. Here the LeA will generate

addresses and read data in parallel from a memory, either from the top of the

memory downwards, or from the bottom up. This downwards mode is used by

the normal hardware configuration of the board, and initiated by pressing the

'ON/Configure' button.

The second method of configuration is the Serial Slave Mode, which is used

initially for the seeding process. Here an external source, such as a PC, must

generate a serial data train and a synchronous clock signal that must be applied

to two pins of the LeA. This mode can be selected by closing the SEED jumper

on the board. The data and clock signals are applied from a parallel port of a PC

to the board, through a parallel download cable and the keyed 6-pin header

connection on the board. The initial data in the configuration file contains the

number of bits to follow. When this count has been reached, the LeA will come

out of the configuration mode and start to operate.

The third method of configuration is the Serial Master Mode, and it can be

selected by closing the "PROM" jumper in the board. This mode is similar to the

8. Operating Procedures page 64



slave mode, except that the LeA supplies the synchronous clock signal, and the

configuration can be loaded in from a serial PROM. Provision has been made for

this mode by the inclusion ofa blank 8-pin IC socket and a PROM select jumper.

This mode was included to be able to configure the LCA for an application where

the on board Code RAM will be disabled and not used at all.

The seeding process is initiated by selecting the Serial Slave configuration mode,

and it will initially configure the LCA to be a Serial-In-Parallel-Out Shift

Register, and an Address Counter. The data is stored in the INTEL Hex format

on a disk file called SHIFfREG.MCS, and converted into a serial data train with

a synchronous clock through a C-program called SEED.EXE. During the seeding

process, the two Running Mode Select slide switches are used as the Address

Counter Reset (Swl) and the Count Direction selector (Sw2).

Once the LCA is configured and the "Seed" jumper removed, the address counter

is reset and set to count from the top address downwards. The next serial data

train from the PC is then shifted into the shift register, and loaded in parallel into

the top end of the code RAM after every eight serial bits. This data contains the

configuration that will be used by the final circuit, and is stored on a disk file

called DECODER.MCS. This configuration will only take effect with the seed

jumper removed to select to Master Parallel mode, and a re-configure command.

The stored configuration will then be loaded into the LCA.

The next step is to reset the address counter again, and select the up counting

mode. Data from the PC now contains the Opernting System, and it is loaded

8. OperaJing Procedures page 65



into address 5000H upwards in the code RAM. The Operating System is stored

on a disk file called OPSYS.HEX.

Finally, the download cable is removed and the slide switches set to select the

Operating System. When the 'ON/Configure' button is pressed, the LeA will re

configure and the micro-controller will start to execute the Operating System.

The step-by-step procedure of the seeding process is displayed on the screen of

the PC by the SEED.EXE program. To start the seeding process, one must make

sure that the SEED.EXE, SHlFfREG.MCS, DECODER.MSC and OPSYS.HEX

files are all in the current sub-directory. The parallel download cable must be

plugged into any parallel port (take note which one, e.g. LPTI, LPT2, etc.) and

into the 6-pin header connection on the board. The "Seed" jumper must be

closed, and the 'ON/Configure' button pressed. The Red LED will go on to

show the board is ready and waiting. The SEED program can be run by typing

in the seeding program name, "SEED" at the DOS prompt. After a brief

description of what the program does, every step is prompted and clarified on the

PC screen, as follows:

Step-by-Step Seeding Procedure:

1. Connect the Controller Board to a parallel port of the PC.

2. Close the "SEED" jumper on the Controller Board.

3. Apply power to the board.

4. Press the 'ON/Configure' button. The Red LED on the Controller Board

should light up.

8. OperaJing Procedures page 66



Here the program will test if the files SHlFTREG.MCS. DECODER.MCS and

OPSYS.HEX are in the current directory, and if not. it will flag a "File not

Found· error message.

s. Select the appropriate printer port of the PC:

1. LPTl:

2. LPT2:

3. Quit.

(1,2,3k

Here the selected printer port will be tested and if not ready, an error message

will be given. e.g.:

Parallel Port 1 may not be ready!

Check the cable and if power is available on the board.

If the port is ready, it will clear the screen and display the message:

Port 1 is selected...

6. Press ENTER to start the shift register configuration.

Or press Q to Quit...

Here the program will load the SHIFTREG.MSCfile. convert it to a serial train,

generate the clockpulse and download it to the board through the selected printer

port. The screen will display the message:

Configuring the Xilinx LCA to a Shift Register and Address counter...

8. OperaIing Procedures page 67



A bell and the word "Done!· will indicate completion.

7. Open the ·SEED" jumper. (Done with shift register configuration.)

8. Set Switch 1 OFF and then ON again, to reset the internal

address counter. Switch 2 stays OFF to select loading from the top,

downwards.

9. Press any key to continue loading the configuration data for

normal operation, into the top of the RAM, or Q to quit:

Here the program will load the DECODER.MSC file and download it to the

board. The screen will display the message:

Loading the configuration data to the RAM.•••.

A bell and the word "Done!" will indicate the completion.

10. Set Switch 1 OFF then both ON. Switch 1 is the address counter reset.

Switch 2 selects the upwards count direction.

11. Press any key to continue loading the code of the operating

system into Code RAM, or Q to quit:

Here the program will load the OPSYS.HEXjile and download it to the board.

The screen will display the message:

Loading the operating system...• ·

A bell and the word "Done!" will indicate the completion.

8. Operating Procedures page 68



12. Remove the download cable, set all switches to OFF, and press

the 'ON/Configure' button of the Controller Board.

13. Now the Controller Board is seeded and ready!

Note: A complete listing of the SEED.C program is included in the appendix.

8. Operating Procedures page 69



9. The Hardware and Firmware Description

The hardware and finnware of this board are so interrelated that they have to be

described together. Some unique features of the LeA (Logic Cell Array) have

been used to enable the board to operate as it does.

The additional hardware to the micro-controller is mainly to add the essential

hardware to attain a minimum system for operation. This includes a voltage

regulator, the oscillator circuit, the external Code Memory and an address latch.

In addition, sufficient hardware has been added to make sensible and userfriendly

communication available between the user a.'1d the Operating System. A thirty

two-key keyboard and a I6-character by I-line LCD Display Module were included

on the board.

The Operating System enables direct access to all the internal registers and data of

the micro-controller, and also the external code and data memories. The hardware

either enables serial communication to and from a PC through an RS232 serial port

for the downloading of user programs. Storage of the current data on the board

to the PC for disk storage is also possible. Careful hardware design and some

address line swapping enable a user program to run the micro-controller without

any interference and virtually no prerequisites to cater for the existing hardware.

To appreciate the finnware design of t.'1e LCA, a brief description of the general

operation and architecture of the LCA will be given initially. The Xilinx XC2064

PLCC68 LCA has been chosen, because it is the mOst economical device of this

series that still suits all the requirements of the circuit.

9. The Hardware and Finnware DeScription page 70



9.1. An Overview of the Xilinx 2064 Series LCA

9.1.1 The CLB or Configurable Logic Block. (2000 Series)

Consider a combinatorial logic circuit with four inputs, and one (or two) output(s):

A
B
C
D

Combinatorial
Logic circuit

F

(G)

FIg. 9.1. The CLB Combinatorial Logic Circuit

Using normal logic AND, NAND, OR and NOR gate circuits, the outputs can be

configured to be l's or O's for any combination of l's and O's on the inputs. The

total number ofcombinations of the four input lines can be shown in a l6-line truth
.,., .,

table. The state of the output can be defined to be a 1 or a 0 for anyone of the

sixteen combinations, shown below:

A B C D Output

0 0 0 0 1 or 0
0 0 0 1 1 or 0
0 0 1 0 1 or 0
0 0 1 1 1 or 0

0 1 0 0 1 or 0
0 1 0 1 1 or 0
0 1 1 0 1 or 0
0 1 1 1 1 or 0

1 0 0 0 1 or 0
1 0 0 1 1 or 0
1 0 1 0 1 or 0
1 0 1 1 1 or 0

1 1 0 0 1 or 0
1 1 0 1 1 or 0
1 1 1 0 1 or 0
1 1 1 1 1 or 0

-
9. The Hardware and Finnware Description page 71



If, instead of using normal logic gates, one were to use a small 16 x 1 bit RAM,

where the four inputs represent the address lines, and the output is the single data

bit. The input combination will then select one unique address and the data stored

at that address, will appear on the output. The advantage of using such a RAM

in place of normal logic gates is that the represented logic circuit can be altered by

simply re-programming the data in the RAM. A further benefit is that any

combination will have the same delay through the circuit. Such a circuit can be

defined by a general Boolean equation as a function with four variables:

F = f(A,B,C,D)

To enable a second output, using the same inputs and the same 16-bit RAM, the

circuit can be configured to be two equations, each with only three variables:

F = f(A,B,C) or F = f(A,B,D)

G = f(A,B,D) or G = f(A,C,D)

Some limitations do exist of which inputs may be used together, but because the

inputs can be swapped at will, this limitation can be bypassed.

Various programmable options exist for each block. The:. are selected by other

stored RAM bits. These bits will be programmed to the selected options during

the configuration of the LCA. The programmable configuration options available,

over and above the combinatorial RAM content, are shown as multiplexers in the

sketches on the next page:

-
9. The Hardware and Finnware Description page 72



B

A Any AnyA
8 funct Ion

or 3 F C or 3 F

C 0

Any 0
A F

8 1'"unc-Clon
" "c or 4

Vi!!r-!ables A Any Any0 G A
8 t"unct Ion "funct Ion

or 3 G C or 3 G
Q C

Variables 0 Variables
0

Q Q

Fig. 9.3. The Combinatorial Circuit Options

9.1.2 The Storage Element

To complete the Configurable Logic Block, it also contains a storage element in

the fonn of a D-flip-flop, with asynchronous SEf and RESEf controls.

Clock >

Input D
SET

D-FF
Q Output

RESET

Fig. 9.3. The CLB Storage Element

The Input to the D-flip-flop is supplied from the F function of the combinatorial

circuit above, and the Clock, Set and Reset inputs can be programmed to be

supplied from various sources. The output can also be programmed internally to

be fed back as an input to the combinatorial logic section.

9. The Hardware and Finnware Description page 73



FIg. 9.4. The Storage Element Options

9.1.3 The Complete Configurable Logic Block

Such a CLB can now be programmed and used to fulfil a host of various functions,

such as boolean logic functions, a storage element of a register, one bit of a

synchronous or an asynchronous counter, multiplexers, state machines, etc.

A

B

C

o

~ lJ-1-
,)

,

F SET
0 Q

Comb.

~[J-,[J---
Logic G

RES
I

1 I

~M I~ l-

x

y

K

FIg. 9.5. The Complete COnIIgUrable Logic Block

9. TM Hardware and Finnware Description page 74



In the XC2064 device, there are sixty-four of these CLBs, and each can be

configured into any of the possible options available. The sixty-four CLBs are

organised in a matrix of eight rows of eight CLBs each.

9.1.4 The Input/Output Blocks

To interface with the outside world, the LCA also contains I/O blocks, connected

to the external pins of the chip. Each pin can be programmed to be either a

dedicated output (with tri-state control), a dedicated input (....ith a storage latch if

required) or a bidirectional port. The sketch below shows the architecture and

various options available to each I/O Block.

Pin

~--1I----------0utPutEnab I e

1------------0utput

Input

o Q

L-- [nput Latch

Fig. 9.6. The LCA Input/Output Block

There are 58 such I/O blocks available in the XC2064 device, and the I/O Blocks

are placed along the four edges of the CLB matrix. The device is available in

various packages, such as the PLCC44, the 48-pin DIP, a PLCC68 and a PGA84

9. The Hardware and Finnware Description page 75



package. For the smaller packages all the I/O Blocks are not physically connected

to output pins. Nevertheless, the blocks still exist on the device and may be used

as storage elements or to create delay lines.

9.1.5 CLB and 110 Block Interconnections

Between the rows and columns of the CLBs and I/O Blocks are a number of

programmable interconnect lines that can virtually connect any input from any

block to any output of the same or any other block. In this manner, a flexible and

rather complex digital circuit can be build up. Because all the CLBs and all the

I/O blocks are identical, it allows the swapping of the functions of the CLBs inside

the chip for the smallest delay time. The swapping of the functioni of the I/O pins

can place a specific input or output pin at a specific location to suit the PCB

layout.

9.1.6 The LCA Special and General Purpose Pins

Apart from the 58 I/O pins connected to the I/O Blocks in the device, there are

also a few dedicated control pins for the LCA. These are a Master Reset, Power

Down, DonelProgram, three Mode Selection Control pins, as well as two Vcc and

two Ground pins. During the configuration mode, some general I/O pins have

dedicated functions, such as the configuration address, data and control lines.

The positions of these special function configuration pins are fixed and cannot be

swapped in the design like the general purpose I/O pins for normal operation.

-
9. The HardwtlTf! and FirmwtlTf! Description page 76



9.1.7 The Configuration Modes for an LCA device

There are five modes available to configure the XC2064 devices, and the

appropriate mode is selected by the logic levels on the Mode Selection Pins MO,

MI and M2 when power is applied, or when the "DonelProgram" control line,

DP, is pulled low for reconfiguration. While the configuration is in process, the

"High During Configuration" pin, HDC is kept high, and the "Low During

Configuration" pin, LDC is kept low. When the configuration is completed, the

"DonelProgram" line is made high by the device, and the HCD and LDC pins

become general purpose I/O's. Pins that have no special functions during

configuration, will be pulled high through internal resistors.

The configuration modes, with a brief description of each, follow below:

Master Serial Mode. (MO,MI,M2 = OOOb)

The LCA will generate a clock pulse to a serial PROM, that will place the stored

data on the Configuration Data pin of the LCA. (This mode is available as an

alternate configuration mode for this project.) These serial PROMs also have a

RESEf pin that should be pulled low to reset the internal address counter of the

PROM. This pin is normally connected to the "Done/Program" line, but if the

PROM is not reset, a second set of configuration data c:m be loaded from the

PROM, if requested by the hardware.

Master Parallel Upwards Mode. (MO,MI,M2 = OOlb)

The Configuration Address Lines of the LeA will place a 16-bit address on an

external memory, such as a RAM or EPROM. The "Low During Configuration"

9. The Hardware and Finnware Description page 77



pin can be used to enable 8-bits of parallel data output from the memory. This

data will then be read into the LCA through the Configuration Data Lines. The

address will start at OOOOh and increment upwards until the required number of

bytes has been read (approximately 1.5K bytes).

Master Parallel Downwards Mode. (MO,Ml,M2 = 011b)

This mode operates in the same fashion as the Master Parallel Upwards Mode, but

the address starts at FFFFh, and decrement downwards until the required number

of bytes has been read. (This mode is used by this project for normal operation.)

Peripheral Parallel Mode. (MO,MI,M2 = lOlb)

In this mode, the device must be mapped and decoded through~ Chip Select

pins as an 8-bit Parallel Output Device. An intelligent external device, such as a

micro-rontroller, must download the configuration onto the data pins.

Serial Slave Mode. (MO,Ml,M2 = 11lb)

Only two pins are required for this mode, and an external device must generate a

clock signal and a serial data train. (This mode is used for the seeding process of

this project.)

9.1.8 The Design Entry to Realise an LCA ConfIgUration

With the multitude of CLB, I/O block and interconnection options, it is virtually

impossible to configure all the connections for a medium to complex digital design

by hand and to set up a configuration bit stream to configure the LCA successfully.

This is all done by the Xilinx program packages on the PC.

9. The Hardware and Firmware Description page 78



Various possible methods ofdesign entry exist and a set of conversion, routing and

testing programs will do the layout and report on any errors and excessive routing

delays. The layout is then converted into a bit stream that is used to configure the

LCA. Modifications to the configuration are relatively easy. It can be done by

just changing the original design and feeding it through the entire "mapping and

routing" process to generate a new configuration file. Simple modifications, such

as inverting the logic of a signal, can be done changing a sign in a formula in the

final layout, before a new bitstream is generated.

The design entry method used for this project was the ORCAD DRAFf schematic

capture package. It was used to draw the hardware design schematic diagram that

must be represented by the LCA. Special symbols, supplied with the package,

were used to generate the drawing. These symbols are equivalent to and include

all the normal logic gates, such as 2-, 3- and 4-input AND gates, or any

combination of one or more inputs being inverted before it is applied to the gate.

Similar symbols also exist for NAND, OR, NOR, XOR and XNOR gates. Then

there are many types of flip-flops, counters, shift registers and multiplexers, in

fact, equivalents for nearly all the normal ICs available to standard digital designs.

The schematic symbols used for the design entry, are special in that they are so

defined that a specific type of netlist can be generated once the components have

been placed and the connections made on the schematic drawing. Each symbol

must be given an unique name, and some signal lines may also be named. These

names will be carried through to the final LCA layout, so one can recognise which

part of the original circuit is represented by which CLBs and internal connections

9. Vu! Hardware and Finnware Description page 79



of the fmal layout.

Once the circuit has been converted, the software will normally select a suitable

device automatically. One may also choose a specific device and package type,

and where specific I/O pins must be located in the final layout. It is also possible

to set the "Place and Route" program of the Xilinx package to do repetitive

layouts. This will enable a user to select the best layout with the shortest delays

and the most effective CLB implementation.

9.2. The Hardware Circuits Required to be Built into the LCA

To keep the minimum chip count on the final training board, all the logic circuitry

required by the system had to be placed inside the LCA. The requirements,

schematic diagrams and operational descriptions for these circuits follow below.

These circuits are only extractions out of the final circuit and a complete design

entry schematic circuit diagram of the LCA is included in the appendix.

9.2.1 The Address Latch

The address latch is used to capture the multiplexed low address byte for external

code and external data access. The·Address Latch Enable· pin, ALE, from the

mic:ro-rontroller is used to latch the low address byte from Port 0 during the

address/data multiplexing cycle. The configuration of the LCA is done in the

Master Parallel Mode from the Code RAM, and therefore the data line inputs and

the address line outputs had to coincide with the fixed function pins used for the

configuration.

9. The Hardware and Firmware Description page 80



o L

o
o

o L o L o L o L o L

Q

o L o L

Fig. 9.7. The Address Latch

9.2.2 The Keyboard Scanner and Decoder

The thirty-two keys of the keyboard are raster scanned by eight row outputs and

four column inputs, as shown on the sketch on the next page. A '0' is placed on

each row in a successive sequence, and if a key was pressed, the appropriate

column input will be pulled low. When this is detected, the current column and

the row logic levels are decoded and stored as a binary value between DOh and

IFh. At the same time a "Data Available" control line generates an Interrupt 0 to

the micro-controller. The five bits representing the key value pressed, the "Data

Available" signal, DAY, and the state of the two Running Mode Selection slide

switches are available to be read by the micro-control1er from an internal 8-bit

Keyboard Register, KREG.

9. The Hardware and Firmware Description page 81



_d
OAV lCeybc;:erd

Q Q Q Q Q Q

To InterruPt.
D C R D C D C D C D C o Ccl ....cult.§;

"•
v

o•
v

, ,
-__ t~_·- :_:5. - ~~ -- _. -4"7-

, . , .
I , , ,, , ,, , ,
, , , ,
'0 '1 '2 '3

---t------~-------~------t--· , . ,

Gate

•
~-~
> ~1--.J----l----4

i ,I--.J---....
~I-+--+---+---,

5 '
~

b

,. ,
:Esc :Exe :OFF :Fleset---,------,-------,------,--, , ,, , ,, , ,, , ,
: : :, , ,
'COde 'Oe:t:a 'SFR 'X~t:

---t------~-------~------t--
: : : :
• , t •· , , ., , , ,, . , .
:Help:t :S't.c>re :l-bc8n

---~------~------~------~--
• , , I, , . ,· , , ,, , ,

___;= 1-* ~~ ;~~ter

.C :0 :E :F
-L'~"-' ---: - -----~---- ---~------:--

, , ,, , ,. , ,
: :, ,

:8 :9 A, :8---T------,------":------T--

Reset. QAv FF
when t.he "1·

has 15hi1"t.ed

t.hrOUOdh t.he
Reglst.er.

Q

Clock

Osc.

C

D

RD

C

o

Row Lines

6 • 2
7 5 3 1

"1· 11'" a I I FF·s _ 0

Fig. 9.8. The Keyboard Scanner and Decoder

9. The Hardware and Firmware Description page 82



Shown on the schematic drawing on the previous page, the row strobe is generated

by an 8-bit shift register. The outputs of the shift register are inverted by the

output buffers to supply the pins, and an 8-bit NOR gate from the registers supplies

the serial-in data bit of the shift register. Only when all the flip-flops are empty

('0'), a ' I' will be placed on the input flip-flop. After that zeros will be placed on

the input flip-flop until the ' I' has shifted through. An additional flip-flop at the

end will capture the '1' and reset the "Data Available" flip-flop, indicating that the

key has been released and "No key has been pressed for the last scan".

When a key is pressed and the appropriate column line goes low, the GATE signal

line will go high to clock a ' l' into the DAV flip-flop halfway through the shift

cycle on the negative going edge of the clock. The current levels on the column

lines, and the logic levels on the row lines are decoded to place an equivalent

binary value on the inputs of the keyboard register to be latched by the DAV

signal. The DAV signal, the GATE signal and the inverted clock will also reset

the column shift register to start scanning from the beginning. This allows

sufficient delay between key sampling to eliminate switch bounce. Once the DAV

flip-flop is set, the feedback from the output will keep the output high until the key

has been released and reset by a ' l' moving through the row shift register.

If two column keys are pressed simultaneously, the GATE signal will not go high,

and the keys will be ignored. If two row keys are pressed simultaneously, only

the first key encountered will be stored. If the key is changed to another legal key

while the DAV signal is still high, it will be ignored. The previous value has

9. The Hardware and Fumware Description page 83



already been stored in the keyboard buffer by the positive going edge of the DAV

signal.

The DAV signal will also cause an interrupt to the controller. The five data bits,

the DAV value, and the state of the two Running Mode Selection switches can be

placed on the data bus through the Keyboard Read select line.

9.2.3 The LeA Control Register

Three bit functions are controlled by the micro-controller in a ·Control Register"

in the LCA. They are; the Write Protect bit, that would prevent writing to the

addresses of the Operating System and the LCA configuration in the Code RAM;

the OFF bit for the software power off control; and the Operating System/User

Program select bit, OPS. The OPS bit must be cleared to swap the addresses of

the interrupt vectors between the Operating System addresses 5000h to 502Fh, and

the user program interrupt vectors between OOOOh to 002Fh. The swapping is

achieved by applying XOR functions to address lines Al2 and A14:

(5000h = 0101 0000 0000 0000b).

9.2.4 The Code RAM Decoding

The Code RAM must be enabled for reading code addresses between OOOOh and

6FFFh, with the PSEN control line. It must also be enabled for reading and

writing to the top 32K byte addresses as external data. The Operating System,

mapped between DOOOh and EFFFh, and the LCA configuration, mapped between

F800h and FFFFh on the external data memory map, may only be written to when

9. The Hardware and Finnware Description page 84



the "Write Protect" bit in the LCA Control register is set. The system I/O

devices, such as the Keyboard Read register and the Display Module and User I/O

Select lines, are all mapped between external addresses F400h and F7FFh, and the

Code RAM must be disabled for these addresses. The LCA Control Register is

only a write register at address F300h (to F3FFh). This address is also overlaid

by a code RAM byte, so that the previous contents written to the CREG register

can be read by the software. The Boolean Equation implemented in the LCA for

the Code RAM Enable output, CRM, is as follows:

CRM = (A1S + A14-A13'A12) • PSEN +

+ (A1S·A14·A13·A12·All·Al0). RD +

+ A1S·A14·A13·A12·All·WR·WP + •• ,

--- ----+ A1S'(A13'A12 + A14)'WR +

+ A1S·A14·A13·A12·All·Al0·WR

9.2.5 The External Data RAM Decoding

User Prog & Opsys
[OOOOh - 6FFFh]

Sys.Vars. & CREG
[8000h - F3FFh]

Opsys as Xdata
[DOOOh - EFFFh]

User Prog as Xdata
[8000h - CFFFh]

Sys.Vars. & CREG
[FOOOh - F3FFh]

The external data RAM is only available for reading and writing in the lower 32K

bytes of the external data memory map. They are used with the Read and Write

control pins from the micro-controller. The Boolean equation for the decoding of

the External Data RAM IC follows below:

DRM = A1S • (RD + WR)

.
9. The Hardware and Firmware Description

[OOOOh - 7FFFh]

page 85



9.2.6 The Display Module Decoding

Apart from the eight data lines and the positive active "Enable Control" line, RNA,

the display module has two additional mode select control lines, a

"DatalCommand" line, and a "ReadlWrite" line. The ENA line is decoded to

become active when any external data address between F600h and F6FFh is

accessed, and the address lines AO and Al will select between the "Datal

Command" and "ReadlWrite" options. The view angle of the multiplexed LeD

screen of the module is set by the voltage from a preset potentiometer on the Vo

pin of the unit. A description of the int-ernal registers and the programming

requirements for the LeD Display Module is included in the appendix.

The Boolean equation for the ENA control line is:

ENA = Al.5 ·Al.4 ·Al.2 'All'AlO 'A9 'AS' (RD + WR) ... [F600 - F6FFh]

9.2.7 The Two User I/O Select Line Decoders

For convenience, two user select lines, CSO and CSI, are available. Each covers

256 address bytes for reading and writing between F400h to F4FFh and F500h to

F5FFh on the external data memory map. Further decoding can be done on a user

board using address lines AO to A7, and the Read and Write control lines.

The Boolean equations for the two Chip Select lines are:

[F400 - F4FFh]

CSl. = Al.5·Al.4·Al.2·All·Al.O·A9·AS· (RD +,WR) •• [F500-F5FFh]

9. The Hardware and Finnware Description page 86



9.2.8 The Micro-Processor Reset Control

To keep the micro-rontroller in the reset state during configuration of the LCA,

the micro-rontroller reset pin is connected to the "High During Configuration" pin,

HnC. Once configured, this pin becomes a general purpose UO pin, the

"Il-eontroller Reset", URS. It is connected to generate a reset when the 'Reset'

button is pressed. This reset signal will also clear the CREG register and enable

the Code RAM Write Protect bit. It will also disable the power OFF control and

clear the OPS bit. The cleared OPS bit will swap the reset addresses OOOOh with

5000h to start the execution at the beginning of the code of the Operating System.

9.3.9 The Interrupt 0 and Reset Vector Swapping Circuits

For power conservation, and while the Operating System waits for a key response

from the user, the micro-rontroller will be in the idle mode for most of the time.

To wake the controller out of the idle mode when a key is pressed, the "External

Interrupt 0" is used. When a user program is running in the real time Execute

mode, the program can be interrupted by pressing the 'Escape' key. This will

create an "External Interrupt 0" to return the control to the Operating System.

Single Step and Breakpoint operation make use of a software generated interrupt,

just before the next user instruction is executed.

To prevent interference from user hardware on the Interrupt 0 pin of the micro

controller, the user must use the special IRQ pin on the edge connector for his

Interrupt 0 input. This signal will be directed by the LCA to the Interrupt 0 pin

of the micro-controller.

9. The Hardware and Finnware Description page 87



To indicate the source of the interrupt request to the micro-controller, so that the

correct action can be taken, the three external interrupt sources, the keyboard, the

'Escape' key and the User Interrupt, will each set a bit in a flop-flop in the LeA.

This will keep the Interrupt pin low, until either the keyboard is read to clear the

'Escape' and 'Keyboard' interrupt latches, or the CREG is accessed to clear the

External User Interrupt latch. The Interrupt 0 Driver Schematic Diagram is shown

below:

Trigger for any Swit.chlng "1 "

"Esc"---

Escape Latch

D

C Q A14 & A12 swap.

R

Keyboard Latch

"1 " D

C Q

R
"0 " or HI-Z

lnt. Lat.ch

"1 " D

C Q

R

OAV

1C8 ---I

ICB ----I

CREG ---I

IRQ

Fig. 9.9. The Interrupt 0 Circuit Diagram

After a system reset, the OPS and the Escape Latch bits in the LCA will be

cleared. This will swap the code addresses OOOOh to 002Fh with addresses 5000h

to 502Fh, so that the Operating System can start and take control of the system.

Before a user program step is executed, the OPS bit is set to swap the addresses

back to normal operation. The user program will then start at address OOOOh with

all it's normal interrupt vectors in place. After a single step execution, the OPS

9. The Hardware and Finnware Description page 88



bit will be cleared again to enable the Operating System to use its own interrupt

vectors, instead. When the 'Escape' key is pressed during nonnal user program

execution, the Escape Latch bit will create an address swapping of only addresses

OOOOh to 0007h, with addresses 5000h to 5007h. This includes only the Reset and

Interrupt 0 vectors. The interrupt subroutine will return control to the Operating

System.

The Boolean equations for the code address swapping are:

y = AlS'A14'A13'A12'All'AlO'A9'A8'A7'A6' (AS'A4'OPS + A5'A4'A3'ESCL)

[OOOO-OO2Fh] [OOOO-OOO7h]

A140 (Output) = A14 XOR Y

A120 (Output) = A12 XOR Y

A complete list of the pinouts and functions of the XC2064 PLCC68 LCA package

is included in the appendix.

9.4. Additional Hardware Circuits External to the LCA

9.4.1 The Power Control Circuits

To enable a 3-minute auto-off feature for power conservation when the circuit is

not in use, the on/off switching of the system has to be so:rware controlled. The

circuit is switched on by pressing the "ON/Configure" button, but switching off

must be done by executing a specific software routine. When power is applied,

the micro-controller has to be kept in a reset state while the LCA is configured.

The circuit to comply with all these requirements, is shown on the next page:

9. The Hardware and Finnware Description page 89



LCA

LM317

Adj

I

~.
==Battery +ve ....

Battery -ye

lExternal

Supply

r-----tOFF

Donel Program

L---5<==..o3~""U---+---t-j--1Res«

BUt:~ b
tTo ENA 01' --------+.----IENA

Display Unit

Fig. 9.10. The Power Control Circuits

The 'ON/Configure' button will make the initial power connection through an opto-

isolator and a current enhancement transistor. After the LCA Reset and

Done/Program pins have both been pulled low and the Reset pin made high again

by the release of the button, the configuration will start. The Done/Program pin

will become an output and it will stay low to keep the power active during

configuration, and it will go high after completion. Then the OFF pin will become

active low, take over, and keep the power on. The OFF pin is selected to be the

output of the OFF flip-flop in the CREG register, which will switch the power off

when set by software.

The general purpose 1/0 pins not used during configuration, will be pull high by

internal resistors. Only the positive active ENA control of the display unit will be

affected badly by such a high signal, and a diode to the Done/Program pin will

keep this control signal low and inactive.

9. The Hardware and Finnware Description page 90



If the LCA Reset pin is pulled low during configuration, the configuration process

will restart, but once completed, this Reset control will act as a global reset for all

the registers in the LCA.

9.4.2 The RS232 Serial Link to the PC

The voltage level protocol required for RS232 communication is that a 'low' be

represented by any voltage between +3 and +30 volt, while a 'high' is presented

by any voltage between -3 and -30 volt. There are no suitable negative voltages

on the board, so a MAX232 logic level converter had to be incorporated. This IC

will convert the normal +5 volt from a digital circuit to + 10 and -10 volt. It has

two input buffers and two output buffers that will interface the RS232 protocol
"

voltage levels to the normal digital circuit logic levels of 0 and +5 volt.

The serial port pins of the controller, RX and TX, are connected through the

MAX232 and the serial cable to the TX and RX pins on the serial port of the PC.

To enable the use of the RX pin for normal I/O operation while the serial port is

not in use, a diode will pull the controller pin low when a '0' is received. The

internal pull-up of the controller will pull the pin high for a received '1'. When

the serial cable is removed, a MAX232 internal resistor will keep the output of the

chip high, so it will not interfere with the other uses of the RX pin.

The RS232 handshaking lines are not used by the system as such, but the "Request

to Send" (RTS) and the "Clear to Send" (CfS) lines were connected and looped

through the RS232 device. Thus if the cable is not plugged into the board, or the

power to the board is off, a break in the loop through the system will be created.

9. The Hardware and Finnware Description page 91



This can be detected by the software of the PC. The RTS and crs can also be

connected to the "External Interrupt I" and the TO pin through wire jumpers to

enable the implementation of the handshaking lines in a communication system.

The other two RS232 handshaking lines, the "Data Terminal Ready" (DTR) and

the "Data Set Ready" (DSR), are shorted in the 25-pin female D-eonnector,

plugged into the PC. A test in the software for the integrity of this connection,

will detect if the serial cable is not plugged into the PC. The through connections

from the PC to the controller are shown in the sketch below:

9-p i n D 9-p i n 0

(Ma I e) CFema I e)

PC

2S-pin D

(Male)

Cable

25-pl n 0

(Female)

Cable Boar-d

MAX232 aQC31

~ ~ 8 - 9 .~10
TXO TXD RXD RXD .., Rxl P3. 0

~
2 14 - 11 11

RXD RxD TXD f- TXD - Txl P3. 1

~ ~ 7 10
~RTS RTS CTS CTS ..., IN1/P3.3

~
7 13 - 12

~CTS CTS RTS f- RTS - TO/P3.4

~ ~ 15 15 20
GND GND GND GND GND GNO

DSR ~ OSR 0DTR ~ OTR

Fig. 9.11. The RS232 Cable Through Connections

9.4.3 The Seeding Circuits and Jumpers

Three configuration modes are possible on the system, the Master Parallel

Downwards Mode for normal operation, the Serial Slave Mode for the seeding

process, and the Serial Slave Mode when the normal configuration must be loaded

9. The Hardware and Fimrware Descriptio" page 92



from a serial PROM. The logic levels of the Mode Control pins are as follows:

Conf"lgUration Mode

Master Parallel(down)

Serial Slave

Master Serial

MO M1 M2 Description

o 1 1 LeA supply addresses to CRAM

1 1 1 Ext clock and data from PC

o 0 0 LeA clock data from Serial PROM

To change from the Master Par3nel(down) mode to the Serial Slave mode, only

MO need to be pulled up. This is achieved by pulling !lown the MO pin on the

board through a resistor and the Seed jumper will pull the pin up to Vcc.

To alternate between the Master Parallel(down) mode and the Master Serial mode,

both the Ml and M2 pins must be pulled low. This is achieved by pulling both

pins high through a resistor, and the PROM jumper will pull and keep both pins

to ground. When a PROM is used for the configuration, the configuration is

already stored on the board and the seeding process to load the configuration is not

required.

The "Low During Configuration" pin is used to enable the Code RAM during

configuration. The Red 'CONF' LED between the HDC and LDC pins will light

up during this time. When the SEED jumper is inserted, it will pull the OUTPUT

ENABLE and CHIP SELECT pins of the Code RAM high. The data output from

the Code RAM will then not interfere with the serial data being loaded from the

PC. The LDC pin from the LeA is also selected as the "Code RAM Enable

Control", CRM, for normal operation. The schematic diagram for the seeding

circuits and connections is shown on the next page:

9. The Hardware and Ftrmware Description page 93



LCA

LC'

(""CO aOC31
URS _e<

~

+""

"'"' COde .....
M'

OE

.0 CS

0""

Cnd

Vcc

Cnd
0

GP

L
CCL-"

rhr.
scu:

pDo
f-- ~I _~ 00
C-

•.

Vcc

Ond
(ICe)')

""CC:L1r::

O,N

FIg. 9.12. The External Seeding and Select Circuits

The Seeding cable from the PC can be connected either to the 6-pin header

supplied on the board, or to the empty 8-piJl DIL serial PROM socket. The

Done/Program line is also available on the header to enable the use of the serial

download program and cable supplied by }(jlinx. The connections for the Seeding

cable are included in the appendix.

9.4.4 The LCA Configuration for the Seeding Process

The internal configuration of the LeA during the seeding process consists of a

Serial-In-Parallel-Out Shift Register, a Bit Counter and an Address Counter. Only

two signal lines from the PC are required to first configure the LeA in the Serial

Slave Mode as the shift register, then to load the normal configuration into the top

of the Code RAM, and finally, the Operating System into its appropriate addresses

between 5000h and 6FFFh.

The two signal lines from the PC consist of a Clock signal and Data signal, both

generated by the "SEED.EXE" program from the PC. This program will load the

9. The Hardware and FU71lware Description page 94



seeding configuration from the file called SHIFfREG.MCS, and clock the data out

on the parallel printer port through the seeding cable. For the Serial Slave Mode,

the clock signal must be applied to the "Configuration Clock" pin, CCLK, while

the data must enter through the "Data-In" pin, DIN. The DIN pin is also the DO

pin for parallel configuration and normal data access from the memory. The

Done'Program, HDC and LDC pins have the same logic levels as for any other

configuration type. The "Done'Program" pin will keep the power on and the HDC

will keep the micro-controller in the reset state. The LDC will attempt to enable

the Code memory, but it will be kept inactive high by the "seed jumper". The

complete circuit diagram of the Seeding Configaration is included in the appendix.

Once the LCA is configured as a shift register, the OFF and Display Enable pins

will be kept low permanently. The reset to the micro-controller, as well as the

address pins AlS and A14 will be kept high permanently. Address AlS is not

connected to the Code RAM and address A14 must be high for all the addresses

of both the configuration from FFFFh downwards, and the Operating System from

address 5000h upwards. The program will remind the user on the PC screen to

remove the SEED jumper to enable the control of the Code RAM. It will also

request that the slide switches must be set to select down counting of the address

counter and to preset the counter to FFFFh. The SEED.EXE program will load

the normal configuration from the disk file called DECODER.MCS and it will start

to clock the data out to the shift register in the LCA.

The clock signal will now be applied to the user defined Serial Clock, SCLK, and

the data will stil1 be entered at the DO pin, set to be an input. The most significant

9. The Hardware and Firmware Description page 95



bit of a data byte is shifted in first at the positive transition of the clock pulse.

After 7 clock pulses, the least significant bit will be on the input pin DO. On the

negative transition of the CLOCK, a modulus-7 counter will activate the Code

RAM enable and the WRITE control pins to the RAM. The seven shifted-in data

bits, and the LSB on the DO pin will be stored in the RAM. The following

positive transition of the clock will disable the writing, reset the modulus-7 counter

and decrement the address counter. Now the shift register is ready to receive the

next data byte.

After the normal configuration has been loaded into the RAM, the user is prompted

by the PC to select the up counting and to preset the counter to 5000h. This is

done through the setting of the slide switches. Then the Operating System is read

from the file OPSYS.HEX, converted to serial data and shifted into the LeA in a

similar process as for the configuration data.

Once the loading is completed, the seeding download cable is removed and the

'ON/Configure' button pressed. The LCA will now re-eonfigure in the Master

Parallel Mode and extract the data from the top end of the Code RAM.

9.4.5 The 62-Pin Extension Edge Connector

The extension edge connector socket is a standard mM motherboard bus connector

and blank mM prototype cards can be used to add circuitry to the Training board.

The pin numbers run from At to A31 on the side that faces the user, which will

probably be the component side of the extension card. Bl to B31 are on the

underside. Alt"the pins of the micro-controller are directly connected to the pins

9. The Hardware and Firmware Descriptwn page 96



of the extension socket, and a few extra features that may be useful for external

circuits. The pin numbers, names and functions of some of these few additional

features are included in the table below. A complete list is included in the

appendix.

Pin Name Description

Al GND Circuit Ground (NB: Not the battery ground!)

A2 Vce +5 V circuit positive (NB: Not the battery positive!)

A3 CSO External Chip Select O. Addresses F400h to F4FFh.

(256 bytes. Further decoding can be done with addresses AO

to A7, and the RD and WR control lines.)

A4 CSI External Chip Select 1. Addresses F500h to F5FFh.

AS ffiQ User External Interrupt 0, in place of Port 3.2. A high to low

transition on this pin will latch an interrupt to P3.2. The latch

must be reset by a write instruction to the LeA control register.

A28 ON External ON control. (Connect to BT- to switch on)

A29 BT+ Unregulated positive supply to the extemion card.

B28 OFF OFF control from LeA (Goes positive to switch off)

B29 BT- To Negative Battery Terrninal(NB: Not Circuit Ground)

9. The Hardware and Finnware Description page 97



10. Software Description

10.1. The Approach to Writing the Operating System

In the initial planning, it soon became apparent that the type of software required

to achieve the objectives of the Operating System, would need very careful

planning. A multi-menu key-driven system can divide the flow of the program

into many possible pathways. The selection of each pathway must follow a

simple logic that would be easy to understand, predict and anticipate for any user.

Each pathway chosen must give sufficient feedback to confirm that the correct

action has been taken, and it must follow through to return to the central core of

the program in a logic way. Many keystrokes at various points in the program

will give the same results, and these pathways must be identified, grouped

together, and reduced to single subroutines. The planning of such a system can

only be done effectively with the extended use of sequential lists and flow

diagrams.

Numerous modifications during the planning and design stages of such a system

are inevitable. After some initial planning and sketches on paper, it was decided

to use the drawing package "ACAD" to do draw all the flow diagrams. This

allows one to make modifications easy, without havin~ to scratch out and

overwrite modified sections, or to redraw sections that stay the same. After each

modification a new neat printout can be made to base the rest of the planning on.

It was soon realised that the conventional method of using flow dia.,orams does not

simplify the understanding and the ability to have an overview of a specific

10. Software Description page 98



section of the system as one would like it to be. The conventional method used

for flow diagrams has therefore been modified to establish two different types of

flow diagrams. To identify each type and for the lack of established traditional

names, the two types of flow diagrams were called Broad Based Flow Diagrams

and Single Line Flow Diagrams.

The Board Based Flow Diagram will be used to clarify a point in the program

where a number of equal options are available. A typical situation is where a

user may press anyone of a number of keys of equal preference. This is

indicated as a horizontal line with a singl6 entry and multiple exits. An example

of a Broad Based or Operating Flow Diagram is shown below:

on)

ities

Entry Point

I
Set up the data
for the test.

1+
I

I Wait for a response I

Test

Choice 1 IChoice 2 IChoice 3 other

tAction 11 IAction 21 IAction 31
Possibi1

I I (No Acti
I

IAction 4 I

t + 1+ +

FIg.IO.I. A Broad·Ba..~ Flow Diagram

Each exit will be represented by the pressing of a selected key or group of keys.

Some actions taken will be the same or closely related, while others may each

10. Software Description page 99



have its own set of instructions to follow. After the completion of these actions,

some choices may go back to the starting point of this selection. Others may fall

through to the next broad selection line, or move the flow of the program

completely over to another section of the program. The logic of this type of flow

diagram is relatively easy to follow at a glance and invaluable for debugging the

program during the performance tests.

Another suitable name for this type of flow diagram in this specific application,

is an Operating Diagram, showing how the logic and choices of each part of the

program operated.

A Single Line Flow Diagram, on the other hand, relates more closely to the final

assembler programming steps below one another, and the sequence of how the

various programming modules will be placed in the whole program. Forward and

backward jumps in the program are indicated as lines moving past program

sections to specific entry points. The convention was adopted to place forward

jump lines on the right-hand side of the flow diagram symbols and the backward

jump lines to the left. Each entry point of a jump must be given an unique name

or "label". These labels were already selected and defined in flow diagrams. A

label must make sense in describing the action of the section, but still be unique

in the program.

The composition of the single line flow diagrams was derived directly from the

broad based flow diagram. Starting on the left option of the multiple choices,

one may use simple "fesJ andjump ifnot true, or stay ifrrue" instructions. The

10. Software Description page 100



test will be followed by the set of action statements, and finally a jump statement

to wherever the program flow must go from there. Then the next test instruction

will follow, etc. The single line flow diagram also proved to be very valuable

to select positions for intermediate jumps. They are required to extend the range

of relative jumps that are limited to about 128 bytes forwards or backwards.

Once the single line flow diagrams were completed and all the labels selected and

placed, it was very simple to convert this into the actual programming steps. The

action and branching blocks of the single line flow diagrams were mostly kept in

the descriptive form of an operation. Using "Get Switches", or test and jump if

"Key> OFh", is easy to understand at a glance, but simple enough to convert

directly to the actual programming steps. Modifications to the program were

made very easy by starting at the broad based flow diagrams, transfer it to the

single line flow diagrams, and finally to me specific programming instructions.

The unique labels made the location of the routines very easy.

10.2. Assembler Language vs lie for Micro-Controllers"

Consideration was given to writing the entire Operating System in C, but after

a few trail tests, it was found that the code generated by a routine in C was

"traditionally' long and cumbersome. It also made such extensive use of

subroutines that the stack area requLred was far too big to afford. One of the

objectives of the Operating System was to make all the internal data and registers

available for the user program. It meant that a large portion of the user data had

to be stored temporarily for later re-use, whenever the control were handed back

10. Software Description page 10/



to the Operating System. To keep a solid control of the variable placing and

especially the stack requirements of the Operating System, it was decided to

rather write the program in Assembler. The use of the single line flow diagrams

helped to make this choice easy and simple to write, to locate and to modify.

10.3. An Overview of the Operating System

The Operating System consists of sixteen modes and each mode is available to the

user for a specific task. The system was designed as a so-called "menu-driven"

system. It uses the display unit to specify the options available and the keyboard

to make the choice. Mode 0 can be considered to be the "Main Menu", and the

other fifteen each a sub-menu. Each sub-menu returns to the main menu after the

action was completed, or cancelled by the 'Escape' key. The keystrokes required

in every mode were made as clear as possible, so that a user can go directly to

that section he wants to go to, and do what needs to be done with the minimum

of effort.

Help files for all the major modes were also included. Each Help fIle explains

the basic requirements for the current mode and the action available from the

keys. Various one second flash messages were included at various points to

explain what was required, such as "Select Baud Rate", before the actual options

are displayed on the screen. The aim was to enable a user with some basic

knowledge of the internal architecture and operating requirements of a micro

controller, to operate the system effectively with the minimum or no reference

to the handbook.

10. &ftware Description page 102



10.4. Internal Data System Variables and Stack Definition

To limit the internal data area required for the operation system to the minimum,

the system variables of all routines were limited to the first 8 data bytes of

internal data memory, and the next 16 bytes for stack operations. The global and

local system variables are shown below:

Address Name Description

OOh Mode Specifies current mode

Olh LoAdd Low Address of memory byte being edited

02h HiAdd High Address of memory byte being edited

03h CurAd Current Cursor Address

04 - 07h various Local variables (defined in various modes)

08 -17h Stack (Using the default Stack reset value of 07h)

10.5. System InpuUQutput Addresses

F300 - F3FFh As 1 WRITE byte to the Control Register, CREG, in the LCA,

overlaid by a READIWRITE memory storage byte to enable the

reading of the current setting.

F400 - F4FFh External Chip Select, CSO (256 bytes)

F500 - FSFFh External Chip Select, CSI (256 bytes)

F600h

F60lh

F602h

F603h

Display Module Command Instruction WRITE address

Display Module Data WRITE address

Display Module Status READ address

Display Module Data READ address

10. Software Description page 103



F604 - F6FFh

F700-F7FFh

(Display Module mirror image addresses)

1 READ byte for the Keyboard and the current

setting of the Running Mode Select Switches.

10.6. General Startup Routines after Power Up or a Reset

After power up and the configuration of the LeA, or after a system reset, the

following initial settings are done:

* The Operating System and configuration are write protected.

* The OPS bit in the Control Register in the LeA, for swapping the user and

Operating System reset vectors, as well as the OFF bit, are cleared. This is

actually done by the hardware, but to have a copy of the current setting of the

Control Register in the System Variables, these instructions were included.

* The Display Module is initialised. A complete description of the initialisation

process for the Display Module is included in the appendix. Two user

definable characters are defined on the display unit as the ·up arrow· (t) and

the ·down arrow· (~). These two characters are extensively used by the

Operating System display messages.

* The Break Point Table End, just aJ'ter the thirty-two Break Point Addresses,

is defined as OOOOh, to stop any further breakpoint address comparisons at this

point.

10. Software Description page 104



* The External Interrupt 0 is set at high priority and the Interrupt sources are set

to be edge-triggered. All the interrupt flags are cleared.

* Two I second messages are briefly displayed on the screen. They are "Cape

Technikon" and "lLe Trainer V:4.3".

* The Running Mode Selection Switches are then read to either go to the

Operating System, or go directly to execute a user program from address

OOOOh in the Single Step, the Break Point or the real time Execute Mode.

The Single Line Flow diagram, and the Assembler code listing for the

initialisation routine, are shown on the next few pages:

t Initi~1 ize )

I
START: OPS - O. RUN = 0

Store COn"tr'O I 1=teQ.

EA • 1

Init Oisploy Module

Define Ch.- 6 = .l..
De1'"fne Ctr 7 = t
C lr" B'-eak:: Po 1 nt

t.able End _ 0000

IntO HI-Priority

lotS Edge TrlQgered

I
/ Display Inlt.lallzat.lon /

/ Messages. /

1
/Read S ..... "(eMS /

~T~P
Y

(ModQG )

110~ 01.11

TUsrP: iLOAdd~HiAdd USrP;J

I
l~ MdSEx

Ftg.l0.2. The Initialisation Flow Diagram

10. Software Description page 105



Assembler Listing

;**********************************************************
; Initialization Routine
;**********************************************************

; Initialize LCA control Registers

; Initialise Display

START: MOV DPTR, #CntRg
MOVX A,@DPTR
ANL A,IOSH
MOVX @DPTR,A

;Reset LCA COntrol Register
; XData as was,
; Write Protect = 0,
; OFF = 0, OPS = 0
; to swap 0000 - 002F ->Sxxx

SETB EA
MOV DPTR,#OFFBSB
CALL WPSEC

;Enable ALL
;15 msec

MOV DPTR,IDspCm
MOV A,13BH
MOVX @DPTR,A

MOV DPTR,#OFFEOB
CALL WPSec

;Display command Address
;lst Display Setup Instruction
;Write Instruction

;Wait 6.4 msec (32 x 0.2 ms)

MOV DPTR,IDspCm
MOV A,13BH
MOVX @DPTR,A

;2nd Display Setup Instruction

MOV DPTR,IOFFFFH
CALL WPSec

;Wait 200 Ilsec

;3rd Display Setup Instruction

;Disp ON with CUrsor Char Blink

;Set CUrsor to Inc & Disp Steady

;Write Instruction 4th time
;Reset Display

MOV DPTR,IDspCm
MOV A,13BH
CALL WrDsp
CALL WrDsp
CALL ClDsp
MOV DPTR,IDspCm
MOV A,106H
CALL WrDsp
MOV A,IODB
CALL WrDsp

Define User Characters 06 and 07 (Down & Up Arrows);

MOV A,170B
CALL WrDsp
MOV DPTR,IDspDa
MOV A,#OOOOOlOOB
CALL WrDsp
CALL WrDsp
CALL WrDsp
CALL WrDsp
MOV A,100010lOlB
CALL WrDsp
MOV A,IOOOOlllOB
CALL WrDsp
MOV A,IOOOOOlOOB
CALL WrDsp
MOV A,IOOOOOOOOB
CALL WrDsp

;Add of User Character 6 (Dn)

;Define Down Arrow Chr = 16

; 1
; 1
; 1
; 1
; 1 1 1
; 1 1 1
; 1

10. Software Description page 106



MOV A,I00000100B
CALL WrDsp
MOV A,I00001110B
CALL WrDsp
MOV A,I00010101B
CALL WrDsp
MOV A,I00000100B
CALL WrDsp
CALL WrDsp
CALL WrDsp
CALL WrDsp

MOV A,IOOOOOOOOB
MOV DPTR,lDspCm
MOV A,I80B
CALL WrDsp

;Up Arrow Chr = #7

; 1
; 1 1 1
; 1 1 1
; 1
; 1
; 1
; 1

;eursor on 1st Character

; Set up system variables in Memory

MOV DPTR,#BPEnd
CLR A
MOn @DPTR,A
INC DPTR
MOn @DPTR,A
MOV IP,I01B
MOV TCON,I01H

MOV DPTR,IMsgl1
CALL DspMg
CALL W1sec
MOV DPTR,IMsgI2
CALL DspMg
CALL W1sec
MOV DPTR,IKyBrd
MOn A,@DPTR
ANL A,lOcOB

JNZ TUsrP
JHP ModOO

;OOOOB at end of BP table

;FXO high priority
;ExlntO = Edge and C1r Flags
; for SS, BP & Exe running modes
;Disp1ay Init Messages
;'Cape Technikon'

;'pC Trainer V:4.3'

;Mask in Switches only

iTa Execute User Program or
; to Operating System

; Run User Program from Initialisation

TUsrP: MOV DPTR,lUsrPg
MOV LoAdd,DPL
MOV HiAdd,DPH
JHP MdSEx

;Norma1 User Program Start
;Start Add in Hi & LoAdd

;To Mode 5 RET Exit

;**********************************************************

10. Software Description page 107



10.7. Mode 0: The Main Menu

The current mode value is stored as a number between 0 and Ph in the most

significant nibble of the Mode system variable byte. Sub-modes are stored in the

least significant nibble. The Operating Diagram as a Broad Based Flow Diagram,

showing the various options and paths available, the Flow Diagram and the

Assembler Listing for Mode 0 are shown on the next few pages:

Ern.... 1'....,... , ... 1"

UoclOO: IIoIc>cle..o:J I

-T_00
...... , n "'-"U(~. Ent) •

_60
'Slngle St..-p Po"OQ' _a ·Cl-..- Bl" T&eI'e.

....0"0 "&:II't ........ s.or-nt.·
_70

"eric Pm; Tabl_A.f
_ea

"I'lS.:l3:2 ....... 1.00Id·

"'g2C ·p,..e-lrrt_..~tcRe<;l·

_60
·Ct ... I m ....n I De:t.1lI •

_CO
"RS232 ...... 0...:.'....'" "save OI!I.1:a6Sy~\I'er· -- 'Cleer user- PrOQ' - 'XdiIlta SlOCX _.'_oc

'-',,00-. 0810&5_\1" _oa ·P,-ot/u.o-~ ........

....50 "E><. '--- Proor-_' -<~ _Fa s...v. Det.a .. OFF'

<~

l."a-I" . Eo« ") I~"'J or"C"E) S'tor-<:16) .... 11=<"..) ~C"3 Code('1lii1) WC'''') of'(15)

<~ sw,.. OlotD(19:t

I': SS (01) aa Co" HelpO SFR(1A)

BP (10) ~ ~ XdeUll('1B)

-lOl''I'(FC) ~ &-<:"1) J"" -.<J§- ...,
(JobdF1 ) (Fa) (2a) 1•.-.:1 Iobde

ST.cr•• 01'1') ...lfI,p SS E>c;t ...,., -"_·Y CS"ta.ot'f'J cS'tcre) _,a
~--

I _Fa -'"_,a (jIoslI:AoOt't) (A~.)
(Ex.)

FIg.IO.3. The Main Menu Operating Diagram

10. Software Descriplion: Mode 0 page 108



TStrO:

...ue:oo:

Tl-ItpO:

TEn't.O:

~O:

TS<.rO

THlpO

.....30

Store

~.S't.OI""e

TEn't.O

Ho'p
Call !ielpO

0.-

T\..pO:

AoA18
T,-,>O

TOnO

IEx.O:

T01'1'O:

18<.0

0".10.1"

-""=' SS E><1"t.

ex•
...Jnp WOd50 TOnO :

TSVO

OH

..Jnop ModF1

OspUd TS"t.rO

FIg.I0.4. The Main Menu Flow Diagram

10. Software Descriptwn: Mode 0 page 109



Assembler Listing

;**********************************************************
; Main Menu - Mode 0
;**********************************************************

ModOO:
DspMd:

RestO:

TEscO:

TExeO:

IExeO:

TOff0:

JMdFO:

TStrO:

JMd30:

TRlpO:

TEntO:

MOV Mode,#OOH
ANL OOH,#OFOH
MOV DPTR,#MsgOO
MOV A,Mode
ADD A,DPL
MOV DPL,A
MOV A,DPH
ADDC A,#OOH
MOV DPH,A
CALL DspMg

CALL ReadK

JB Acc.4,TEscO
CJNE A,#OFH,RestO
CJNE Mode,#OFOH,RestO
JMP ModFl

SWAP A
MOV Mode,A
JMP DspMd

CJNE A,#ICH,TExeO
JMP ModOO

CJNE A,#IDH,TOffO
MOV DPTR,#KyBrd
MOVX A,@DPTR
ANL A,#OCOH
JZ IExeO
JMP SSExt

JMP ModSO

CJNE A,#IEH,TStrO
CJNE Mode,#OFOH,JMdFO
JMP ModFI

JMP ModFO

CJNE A,#16H,TBlpO
CJNE Mode,#30H,JMd30
JMP Mod31

JMP ModJO

CJNE A,#14H,TEntO
MOV DPTR,#HelpO
CALL Help
JMP DspMd

CJNE A,#13H,TMemO
MOV DPTR,#JmpTb
MOV A,Mode
SWAP A
MOV B,#03H
MOL AB
JMP @A+DPTR

lCancel any Sub Modes

lAdd mode to MsgOO
1 to display message

lJmp if not a Number Key
lTest if it is OFF Key
lIs Mode F selected as well
lDirect save & Off

lSet Mode:Key

lTest if Esc Key

lTest if Exe Key
lGet Switches

lMask in Switches
lTo Mode 5 for No Switches
lTo ss & BP Exit

lLong jump to Mode 5

lTest if OFF Key
lIs Mode F selected as well
lDirect save & Off

lCOnfirm Save & Off

lTest if STORE Key
lTest if Mode : Store also
lStore directly

;Confirm Store

lTest if Help Key
;Hain Menu Help

;Test if Enter Key
lDPTR : Jump Table

lMode in LSN

lMode x 3
;Jump to current selected mode

ID. Software Description: Mode 0 page 110



THemO:

TUpO:

InDcM:

IDspM:

TDnO:

Mev B,A
ANL A,IOFCH
CJNE A,11BH,TUpO
JMP Mad10

Mev A,B
CJNE A,#lSH,TOnO
MeV A,IOFOH
ADD A,Mode
MeV Mode,A
JMP DspMd

CJNE A,#llH,IDspM
MOV A,110H
JMP InDcM

;store Key in B
;A11 Mem keys to 1B
;Test if Mem key
;To Made 1 with B=Mem Segm

;Get Key back in Ace
;Test if Up Key

;Subtract 10H from mode

;Test if Down Key

;**********************************************************
; Mode 0 Jump Table
;**********************************************************

JmpTb: JMP ModOO
JMP Mod10
JMP M0d20
JMP Mod30
JMP MOO40
JMP ModSO
JMP ModGO
JMP MOO70
JMP MOOSO
JMP Mod90
JMP ModAO
JMP ModBO
JMP ModCO
JMP ModOO
JMP MoelEO
JMP ModFO

;*********************************************************."

10. SoftwlITt! Description: Mode 0 page 1Il



10.8. Mode 1: Edit Memory Segment

This routine allows the user to inspect and alter any internal or external memory

byte of the system. The main entry point is from Mode 0, where the Code

segment will be selected automatically. Other entry points are form the main

menu when one of the memory segment select keys 'Code', 'Data', 'SFR' or

'Xdata' has been selected.

It is not normally possible to have write access the Code memory in an 8051

system. This was bypassed by the mapping of the Code memory on the upper

half of the external data memory as well, where reading or writing access is done

through the "MOVX" instruction. The address of the current byte being edited,

is stored in the two system variables 'LoAdd' and 'HiAdd' in the internal data

memory. The memory segment being accessed depends on the type of instruction

used. The upper address byte for the Internal Data and the SFRs does not have

any significance, and for writing or reading to or from the SFRs, a special system

specific manipulation had to be applied:

Reading and Writing to a "Variable" SFR Address

To enable access to any of the specified memory segment bytes on the external

or internal memory maps, indirect memory access could be used with the

'LoAdd' and 'HiAdd' bytes containing the address of the byte. For the SFRs,

however, indirect addressing does not exit. Indirect addressing to one of these

addresses between 80h and FFh, will result in access to the hidden 128 bytes

behind the SFRs, which only exists for the 8052 series of micro-controllers.

10. Software Description: Mode 1 page 112



To access an SFR register specified in the 'LoAdd', a software modification to

the Operating System had to be devised to change the direct addressing

instructions to contain the specified SFR address as the operand. Because the

Operating System is stored in RAM and therefore ·soft·, this operation was

achieved with relative ease: Before a read or write instruction to an SFR register

is executed, the software protection bit in the LeA Control Register was disabled.

The address value in the operating instruction byte is then changed to reflect the

selected SFR address value, before the modified "direct addressing" instruction

is executed. The write protection bit was then enabled again before continuing.

The aim of the Edit Memory Segment mode is to enable the user to inspect and

change the contents of any byte in any of the segments. Some bytes, however,

do not exist in this system, and others may be write protected. To confirm that

a specified byte in any of the memory segments was changed by the user, the

contents are re-read and displayed from the actual address after the change was

written to the byte. If the value does not reflect the value keyed in by the user,

it will mean that the address was protected, or does not exist.

The Operating Diagram, the Flow Diagram, and the Assembler Listing of the

software routines for Mode I follow on the next few pages:

10. Software Description: Mode 1 page 113



(Ent.~ f~om Ma,"

Mod 10 / 'Edl t '--m s.o.... nt. •

IAdd.OOOO

"ce.l(.

Dot"C 19) 51"RC 1") IXdll.teC 1B) l~dttC 115)
MOCl•• 15 I Ent..~' 13)

Mod•• 11 <?-s Mod•• 11i1 Mode. 10

<?-O <?-X ?-eSFR Add'

I 'Date. "de:lt 1 I'Xdll.t ....del: 'COele ....dd: 1
I I~Ur-Ad.C3 I

CUr-Ad.C3 I LOAdd.eo !CIr ....d.C1 ICurAd.C1

T
Place c .......or-

I
IR.tld Key /

1<.
eec'1C) 1,0-' . Enter(13)

[-' 10)
--(12) He'p(14) Code' 19) [Ke' 10) Fl••T.

Dllt_C 18)

Cu......d Cu~Ad Cur ....d SFFlC 1A' SW3,s,,,,e, e.
I~'

e- e, r e. le, e. le, co xdataC 19) 55(01)
J
COO

)
~d. e- ca. I 1'4.11:)1 BPC 10)

~
Mod. 1.-..:c:.H'AdH 1 ....c:c::.LO....dH EK.(11)

A.,1.1 0,' ¥ 11 Aee.~1AdL I1HIAClL.l(ey LOAdL.l<ey •• EI(IU

!-,?- Oee CU......d

HI ....aH.K.y LO....ClH.I(.y

MOde

""" ModOO 10(11) se 15) IXC11i1) C(1D)

CoOOd. <.':~
Write to Ollp t.J1TlD D J (.Jmp X)

,"0 CU~""'.:l

! (","0 • ...., e )

'ne Mode I
~

Mod1X )

Flg.IO.S. Edit Memory Segment Operating Diagram (page 1 of 2)

10. Software Description: Mode 1 page 114



... ' .... 11 ••"')
... It.. "11:

or..,. 11

1
1~~- .•11''', \,....d<I
... 11-.. . "

~,.

"I .. C.........

11 W.",)

J:;II ":•• J

''''' C.......

_..
.."
C17)

c"""" ")
P-t., ,.)

"IlC''')
ll...·ac ~II)

Flg.10.6. Edit Memory Segment Operating Diagram (page 2 of 2)

/0. Software Description: Mode / page //5



sec... ,on "'0 sect.'on ""I' SQoCt.lon "'2

lEn"ry rrOl'l .... ,n Plan TK..". .. P'c.-., TAg'"

Co<;» <'8:1 ~ ,~

ca1:& ("IQ)

"""0"10 "" C~, -, ~,

_"- (19)
T~": _.- Tl'Ig1." : Key"''':;!

.....- ("3).
<>-F

-"'0'
T"OC:":

T"Dat.1, "'->''''''9
~.,

H'_ A<:c..wl_

~~ ~-.,.,.

'0i!Il.a AGO T.,DC2: T1.,C<!':

eur_C3

P.c....'1 t11 ....fl.'-:'y Acc::-HIAdl..

~ DocAd

TSRM. ~~,

"'->'''',..
T"~: T11C3:

......,~,
-~y ~-~

~

SFR ...,<;1: -" _.
C.....-.-.:3 ""Ptc..., ~, ~.,

...nll
'TH'p1

"''' -~
plCU1

TXOa1, ""'''''8
~o

_11.. c ..... --"
.....1'9: ,~ ar~

PICtJ1

THlp.. , 1CeV"'''''
T&.'1

'XlSI!I1: 1Oo<l<:l:

l"OC4: LoAdL-'V

eur_C'1

'" " -'1'"
Ptc.u"1

I~: ,-- ....."-"_"'10:
-~ --"'e- Add,

~1,

C...._C1 .....,.
noa..", --_.."

PICu1: PI...,. CUI"""""

...... -...."
-<~ Tl.:t'1.1:

T&c1: ",->,"'1C ....' n..a1.. -

__1V
1-..0:"0

T1OC1 :

""'
--~

..-.,..-..V

P'CU'1 ....' ~w
I ""'CJ'1O: --"T1~: ~

~W
TE.... '!'

_.3001'

plCu1 CAo'1.&.SI=I'I ~< ~~

....... -co
O<:CA'1 . "",,ar~

PlCu1

1'1 c....1
~

~M ,-
PlCu1 """ - ~~

Fq:.lO.7. Edit Memory Segment Flow Diagram (page 1 of 4)

10. &ftware Description: Mode 1 page 116



PI ,a"

PI1CU

"'I1CU

T-rx..... :

T11,-,'" ,

T1XC." -~.
~,~

''!XC.,'
O.

__ :a-C

.. , ,e:u

l;l<:1CA: - ~-
.,~

,.~: ~
T"'lXa.:;l

Cu'"AC..S5

.'~

T'!XIi-2:

., .

P,"o..

~.-...
o:;g'I:

~"g'

~1 I.COd CO, CII2

C<><M cet...oA OaHIA
l1Cod, £FH OR _

~

s-:t.I .... ""1-4

CooN..-... HI •

I..ow Nlt>bl_ 0'

~._I".

''0 DI_I ..~._I'l.

i~:~~~-~~~~=j
Ac.eE 'I:'

_I". "X:' er 'C'
PIC82: "._ e..-- _ ICII

DIoHIA' e--t HI •

l.e. Hlt>bl_ at
HIAdd ••1".

'<;OD,_lay

.... ~~
~__" HI.

L.o- Nlbbl_ cd

Det;a ..... 1'<;_

I:~';·;O:'''~'~-i·~~f~
PI1Cu

_1' _,,<;_ "1.."

~D: Plac.. CI.r........ CD

.-

"'ac. o.r_ • c'-..

T"tSFA;

AcC"" 'd·

I~~~~i~·'~~~i[[~
DoOotg" D,_,.y.-g1V15

.,Ioe. c..r_ • C3

~

~

call AdSF'A

S-C"IOIO *13

-~

~, ~~

,,",,"

o.AII; -~~

~" «--Cl.A A.D

-~
T__.---... 0.".

CPT~11-

""C3

PI1CU T1Ag't.

FIg.10.8. Edit Memory Segment Flow Diagram (page 2 of 4)

10. Software Description: Mode 1 page 117



SIoc1:.""' ....1I ~'_ .... 7 $a<rt ............

.,~ .- ,p,'tC '-- ........00 ~~

T'HI~ .--, ~7 .- T1"<'OI , ~ .-T ..~: ....... -- ~
CPI.- __O

-....,
._, ,-

~~ - ...... laA'l
.,~

~~

.- DUo" T'J"tC&' ~
,=

T"fXC7,

1-=; ~~ ~~

...... o.u.l' ~"

~_.
TU~;

...-
T_, ...- H.c....__

ftOlR:

~~ C.D.S.X
~.,~

___'0

~"_..
'"~

...... e:t.or"_
~..

T......)" •.,,'c
c.)' __,

C_")
__ ColA"

'~I'tC: ....." ~I 'K.u ~

~_.

~,.
~,,-.

T"""" c.)'...,...

~.-'. -"
_.

-" .... IP' .=,-, -, __ ea.o."

1....'1)(; ..- (aA" --, ~.. IXCod

T_' -~, "- ...-,p ou,.1-
T.,.,C3

...- DIlA ••

T='
-~,- 11ICo<I;-,..... '""- -,

,--"", ...... tla"' ••

.- ColAII

-- ''!YC7, C.....-_c&
T_; .."..,

T .....a· -" ~_.- ---~ ...... --, ,~~--. ~-,,_.. -
_T ------ _.

...... ~I' -, l.C.4O<I • ..,. ..

.ClI'tC --
'caA"

....... '7:

~

Tn~ T_

FJg.IO.9. Edit Memory Segment Flow Diagram (page 3 of 4)

10. Software Description: Mode 1 page 118



WSFRX: RET

..... 1". SFP S!.lI:l-Rout' .... ~.d ...U SUt>-~'''''''"

Ent.er": A.c;<;.o.t..~ '--_ Add Ex I" , ""'" 'n A«.

Ex'" : SFR dII."....~I.c-=l

_~OI"

~

Gt.o.t. :

"'-SFR:
L_ TWSF2

WS'RX

T'lIS"2 :

"'"
Tw=s.F3'

""XdnGtSFR: '-":00<'16

""" """'"
TlIISF4 , "'"

""-~

WSFR:

Gt)(OII , '-":00<1"
GtCod

""" _ot x~u

'""'" •
~~

DP'TAooS..llQOB "'"
~e<.SFR ol.dCl

e-O (Pr'O't.)

GtCod;

Call _ot

"'"

ent.__ : SFR Add In LCUto<I<S.

Ex't.: A<::c _ Cont.e<tt!ll of' SFR.oezca:

Seoctlon "''15

T""""
T'1Z83

Tcaan, ......
..... .......

Ttt83:

..... ........

T1Ze4:

..... ObLAH

T"IZ85:

o.-~-eo

-- "".."

''1ZCn" O-F:I Acc.O

( AOSf'R 1

Q..rlod.g

0"'"

FlI.ACC: ....
DcZ""

cPT_S.&em9H

Bl<~.sFR A<ScI

e-a (_o"J

FIg.IO.IO. Edit Memory Segment Flow Diagram (page 4 of 4)

10. Software Description: Mode 1 poge 119



Assembler Listing

;**********************************************************
; Edit Memory - Mode 1
;*••***.*.**••••••**••* ••**••**••**••****••* ••••••* ••******

; Select Memory Segment for Editing

ModlO:

TDatl:

Modll:

TSFR1:
ModlS:

MOV LoAdd,'O
MOV HiAdd,'O
MOV A,B
CJNE A,'19H,TSFRl
MOV Mode,'llH
MOV DPTR,'Msgll
CALL DspMg
MOV CurAd"OC3H
JMP P1Cul

CJNE A,'lAH,TXdal
MOV Mode,'lSH
MOV DPTR,'MsglS
CALL DspMg
MOV LoAdd,,80H
MOV CurAd,lOC3H
JMP P1Cul

;B=Mem Key: 18=Code 19=Data
; 1A=SFR lB=Xdata

;Test if Data Memory

; 'Data Add:

;Test if SFR Memory

;' SRF Add:

;SFR Add for direct start

;Test if Xdata Memory Kod19:TXdal: CJNE A,'lBH,ModlD
MOV Mode,'19H
MOV DPTR,'Msg19
CALL DspMg
MOV CurAd,'OC1H
JMP P1Cul

; 'Xdat Add: •

ModlD:

P1CU1:

TEscl:

TKeyl:

MOV Mode,'lDH
MOV DPTR,'MsglD
CALL DspMg
MOV CurAd,lOC1H

MOV DPTR, 'DspCm
KOV A,CurAd
CALL WrDsp

CALL ReadK

CJNE A,'lCH,TKeyl
JMP KodOO

JB Acc.4,TEntl

; 'COde Add:

;Place cursor at Cl or C3

;Test if Escape Key

;Jmp if not Key O-F

; Replace digit under cursor with Key value.

T10C1:

T10C2:

CJNE CurAd,'OC1H,T10C2
SWAP A
ANL 02H,IOFH
ORL 02H,A
SWAP A
JMP DeeAd

CJNE CurAd,#Oc2H,T10C3
ANL 02H,#OFOH
ORL 02H,A
JMP DeeAd

;Test if CurAd=Cl (1st Digit)
;Key in Ace MaN
;Clear Hiadd Hi
;Write key to Hi HiAdd
;Key back to Lo nibble
; for displaying digit

;Test if CurAdd=C2 (2nd Digit)
;Clear Hiadd Lo
;Write key to Lo HiAdd

10. Software Description: Mode J page 120



Tloc3:

STMSB:

DecAd:

IlOC4:

IncMd:

;

TEntl:

TLfU:

TlC3:

DoCAl:
IPeul:

TRgtl:

TllC2:

TllC3,

CJNE eurAd,IOC3H,IlOC4
SWAP A
ANL OlH,lOFH
CJNE Mode,115H,STMSB
ORL 01H,I80H
ORL OlH,A
SWAP A

CALL BnASC
MOV DPTR,IDspDa
CALL WrDsp
INC eurAd
JMP Pleul

ANL OlH,#OFOH
ORL OlH,A
INC Mode
JMP MOOlX

Test other Keys

CJNE A,113H,TLftl
JMP IncMd

CJNE A,llOH,TRgtl
CJNE CurAd,IOClH,TlC3
JMP Pleul

CJNE CUrAd,IOC3H,DOCAl
MOV A,Mode
JB Acc.3,DoCAl
JMP Pleul

DEC CurAd
JMP Pleul

CJNE A,I12H,TMeml
CJNE eurAd,IOClH,TllC2
MOV A,HiAdd
SWAP A
JMP DecAd

CJNE CUrAd,IOC2H,TllC3
MOV A,HiAdd
JMP DecAd

CJNE CurAd,#OC3H,IncMd
MOV A,LoAdd
SWAP A
JMP DecAd

;Test if CurAdd=C3 (3rd Digit)

;Clear t.oAdd Hi
;Jump if not SFR
;Set MSB for SFR Adds 80 - FF
;Write key to Hi t.oAdd

;Key still in Ace

;Write Character to Display
;eursor on next character

;Clear too LoAdd
;Place key in LoAdd

;Test if Enter Key

;Test if Left Key
;Test if eurAd is on digit 1
; then don't Dec CurAd

;Test if CurAd is on digit 3

;Jmp if not SFR(ll) or Data(15)

;Intermediate Long Jump

;Test if Right key
;Test if on 1st digit
;Get existing value to display
;HiAdd Hi in Ace LSN

;Test if on 2nd digit
;Get existing value to display

;Test if on 3rd digit
;Get existing value to display
;LoAdd Hi in Ace LSN

; New Memory Segment Selected Keys

THeml:

TRlpl:

MOV B,A
ANL A,llCH
~ A,118H,TRlpl
JMP MedlO

MOV A,B
CJNE A,I14H,TExel
MOV DPTR'#Helpl
CALL Help
~ MOOe,IllH,TMd15
JMP Modll

; Store Key in B
;Clear 2 LSBs, all ->18
;Test if a Mem Key
;Key in B

;Get Key back in Ace
;Test if Help Key

;Test if Data Mode

10. Software Description: Mode I page 121



TMdl5:

TMdlA:

IMdlD:

CJNE Mode,#l5H,TMdlA
JMP Modl5

CJNE Mode,#l9H,IMdlD
JMP Modl9

JMP ModlD

;Test if SFR Mode

;Test if Xdata Mode

;Else COde Mode

; Exe Key: only active while in SS, BP or Exe running modes.

TExel: CJNE A,#lDH,IPCUl
MOV DPTR,#KyBrd
MOVX A,@DPTR
ANL A,#DCDH
JZ IPCUl
JMP SSExt

iRest of keys

;Read Switches
;Mask in switches
;Ignore if no switches
; else to SS & BP Exit

;**********************************************************
; Edit Memory - Mode lX
;*****.****************************************************

ModlX: MOV CUrAd,#DC6H ;Entry from ModlD, 4th Add key

; Decode and Display SFR or Data Addresses

DsAll:

DMsgl:

TlSFR:

PlC84:

CALL ClDsp
MOV A,Mode
CLR Acc.O
CJNE A,#l2H,TlSFR
MOV A,@LoAdd
PUSH Acc
MOV DPTR,#Hsgll
MOV A,Mode
JNB Acc.O,DMsgl
MOV A,I'D'
JMP PlC84

CALL DspMg
MOV DPTR,#DspCm
MOV A,#DC3H
CALL WrDSP
JMP DsLoA

CJNE A,#l6H,TlXda
CALL RDSFR
PUSH Acc
MOV DPTR,#MsglS
MOV A,Mode
JNB Acc.O,DMsgl
HOV A,I'R'

MOV DPTR,#DspDa
CALL WrDsp
HOV A,I':'
CALL WrDsp
MOV DPTR, #DspCm
MOV A,#84H
CALL WrDsp
JMP DsLoA

;Both Bin & Hex mode
;Test if Data (both Bn & Hex)
;Get LoAdd Data .
;Save Data in stack'
i'Data Add:

; Jump if Hex Mode
;Prepare to write '0:'

;Display Msgll/l5 for Hex

;Place CUrsor at C3 for Hex

;Test if SFR (both Bn & Hex)
;Read SFR Data
; and store in stack
;' SFR Add:

;Jump if Hex Mode
;Write 'R:'

;write '0' or 'R' on 80,

; then ':'

;Place CUrsor at DSp Add 84

; Decode and Display Xdata or Code Addresses

TlXda: MOV DPL, LoAdd
MOV DPH,HiAdd
CJNE A,#lAH,IlCod
MOVX A,@DPTR

;DPTR=Hi & LoAdd for X: & C:

;Test if Xdata (both Bn & Hx)
;Read Xdata

10. Software Description: Mode 1 page 122



DsMsl:

nCOd:

PlC82:

DsHiA:

;

DsLoA:

;

PUSH Ace
MOV DPTR.#Msg19
MOV A.Mode
JNB Aee.O,DsMsl
MOV A,#'X'
JMP PlC82

CALL DspMg
MOV DPTR,#DspQn
MOV A.#OC1H
CALL WrDsp
JMP DsSiA

ORL DPH.#SOH
MOVX A.@DPTR
PUSH Aec
MOV DPTR,#MsglD
MOV A.Mode
JNB Aee.O,DsMsl
MOV A.#·C'

MOV DPTR,#DspDa
CALL WrDsp
MOV A,I':'
CALL WrDsp
MOV DPTR,#DspQn
MOV A.#82H
CALL WrDsp

;Display Hi Address

MOV DPTR,#DspDa
MOV A,HiAdd
SWAP A
CALL BnASC
CALL WrDsp
MOV A.HiAdd
CALL BnASC
CALL WrDsp

Display La Address

MOV DPTR,#DspDa
MOV A.LoAdd
SWAP A
CALL BnASC
CALL WrDsp
MOV A.LoAdd
CALL BnASC
CALL WrDsp
MOV A,I' ,
CALL WrDsp
MOV A.Mode
JB Ace.O,DsBnD

Display Data in Hex mode

POP Ace
PUSH Aec
SWAP A
CALL BnASC
CALL WrDsp
POP Ace
CALL BnASC
CALL WrDsp
JMP pllCU

i and store
; 'Xdat Add:

;Jump if Hex Mode
;Prepare to write 'X:'

;Display Msg19/1O for Hex

;Place cursor at Add Cl

;Seleet COde Xdata Addres
;Read COde Data

;Jump if Hex Mode
;Write 'e:' to Display

;Plaee CUrsor at Dsp Add 82

;Hi HiAdd in Ace LSN

;Write High Nibble Character

;Write Low Nibble Character

;Hi LoAdd in Ace LSN

;Write High Nibble Character

;Write Low Nibble Character

;write a Spao::e

;Jump if Binary Mode

;Get Data
;Resave for La Nibble

;Write Hi Data Nibble

;Write La Data Nibble
iTa Place Cursor

10. Software Description: Mode 1 page 123



; Display Data in Binary Mode

Wrl:

DsBnD:

NxRol:

Roll:

PUSH Acc
MOV A,#~l'

JHP Roll

MOV DPTR,#DspCm
MOV A,IOCOH
CALL WrDsp
MOV DPTR, #DspDa
POP Acc
MOV B,#08H
JB Acc.7,Wrl
PUSH Acc
MOV A,I'O'

CALL WrDsp
POP Acc
RLA
DJNZ B,NxRol

;Character '1'

;Cursor at Dsp Add CO for Bin
;set up DPTR for Data

;Set up B as a Bit Counter
;Test if HSB is "1"

;Character 'Q'

;NeJ<t bit to Acc HSB

; Return point for cursor movement keys

PllCu:

T1Esc:

;

TlLft:

T1XC1:

TlXC3:

IlXC3:

;

DclCA:

T1CuA:

TlX82:

MOV DPTR,#DspCm
MOV A,CurAd
CALL WrDsp

CALL ReadK

CJNE A,11DH,T1Esc
MOVX A,@DPTR
ANL A,#OCOH
JZ PllCu
JHP SSExt

CJNE A,11CH,TlLft
JHP ModOO

Cursor Left in Hex Mode

CJNE A,110H,T1Rgt
MOV A,Mode
JB Acc.0,T1CuA
CJNE CurAd,IOC6H,T1XCl
MOV CurAd,#OC4H
JHP PllCu

CJNE CurAd,#OClH,TlXC3
JHP PllCu

CJNE CurAd,#OC3H,DclCA

JNB Acc.3,Pl1Cu

Cursor Left in Binary Mode

DEC CurAd
JHP PllCu

CJNE CurAd,IOCOH,TlX82
MOV CurAd,185H
JHP PllCu

CJNE CurAd,182H,T1X84
JHP PllCu

;place Cursor

;Test if Exe Key ,
;DPTR still set from ReadK
;Mask in switches only
;Ignore for no switches
;E1se SS & BP Exit

;Test if Esc Key

;Test if Left Key

;Jump if Binary Mode
;Test if on left Data digit
; to right Add digit if it is

;Test if on left Add digit
; ignore if it is

;Test if on 3rd Add digit

;ACC still Mode. Jmp Dat/SFR

;Dec for CurAd;C7,C4,C2,(C3)

;Left Data digit in Bin Mode
;TO last of Add digits

;On Left of Add digits

ID. Software Description: Mode I page 124



TlX84:

;

TlRgt:

TlXC7:

TlXC4:

InlCu:
IPlIC:

;

TIHlp:

IMdlX:

TIDwn:

TIUp:

THxBn:

IlXCO:

;

TlMem:

;

TIKey:

CJNE CurAd,I84H,DclCA
JMP IlXC3

Cursor Right key

CJNE A,I12H,TIHlp
CJNE CurAd,185H,TIXC7
MOV CurAd,lOCOH
JMP PllCu

CJNE CurAd,IOC7H,TlXC4
JMP PllCu

CJNE CurAd,IOC4H,InlCu
MOV A,Mode
JB Acc.O,InlCu
MOV CurAd,IOC6H
JMP PllCu

INC CurAd
JMP PllCu

other Keys:

CJNE A,I14H,TIDwn
MOV DPTR,IHelpl
CALL Help
JMP DsAll

CJNE A,lIIH,TIUp
INC OlH
CJNE LoAdd,lOOH,IMdlX
INC 02H
JMP DsAll

CJNE A,I15H,THxBn
DEC OlH
CJNE LoAdd,lOFFH,IMdlX
DEC 02H
JMP DsAll

CJNE A,I17H,TlMem
XRL OOH,IOIH
MOV A,Mode
JB Acc.O,IIXCO
MOV CurAd,IOC6H
JMP DsAll

MOV CurAd,lOCOH
JMP DsAll

New Memory Segment key.

MOV B,A
ANL A,#OFCH
CJNE A,Il8H,TIKey
JMP ModlO

'O-F' Keys

JB B.4,IPlIC
MOV A,Mode
JNB Acc.O,RpAds
JMP TCaBn

;On 3rd Add digit

;Test if Right Key
;Test if on right Add digit
; To 1st Data digit (Bn Mode)

;Test if on right Data digit

;Test if on Rgt Add digit(Hex)

;Jmp if Bin Mode
;Else to 1 Data in Hex Mode

;Inc for CA=83,84,85,CI-C6
;Intermediate Long Jump

;Test if Help Key

;Test if Down Key
;Inc LoAdd
;SFR Add corrected in ModlX
;Inc HiAdd on roll over

;Test if Up Key
;Dec LoAdd
;SFR Add corrected in ModlX
;Dec HiAdd on roll over

;Test if HxBn Key
;Compliment Mode.O

;Jmp if now Bin Mode
;CurAd=C6 for Hex Mode

;CurAd=CO for Bn Mode

;Store Key
;18,l9,lA,lB -> 18
;Test if a Mem Key

;Return for rest of keys
; B still holds key

;Jmp if Bin Mode

10. Software Description: Mode r page 125



Replace Add digits in Hex Hode

RpAds:

RpHAH:

T1YC2:

RpHAL:

T1YC3:

RpLAH:

SMSBT:

IDsAl:

TMd17:

T1YC4:

RpLAL:

HOV A,B
CJNE CurAd"OClH,T1YC2

SWAP A
ANL 02H,'OFH
ORL 02H,A
INC CurAd
JHP DeAll

CJNE CurAd,'OC2H,T1YC3

ANL 02H"OFOH
ORL 02H,A
INC CurAd
JHP DeAll

CJNE CurAd,,0C3H,T1YC4

SWAP A
ANL OlH,'OFH
ORL OlH,A
INC CurAd
CJNE Hode,'16H,TMd17
ORL 01H,,80H

JHP DsAll

CJNE Hode,'17,IDsAl
JHP SMSBT

CJNE CurAd"OC4H,T1YC6

ANL OlH,#OFOH
ORL OlH,A
INC CurAd
INC CurAd
JHP DsAll

iKey to Acc
iTest if CurAd on Add 1

iKey in Acc KSN
iClear HiAdd Hi
iWrite Key

;Test if CurAd on Add 2

;Clear HiAdd Lo
;Write Key

;Test if CurAd on Add 3

;Key in Acc MSN
;clear LoAdd Hi
;write Key

;Test if SFR fix Mode
iSet MSB for Add 80-FF

;Test if SFR Bn Mode

;Test if CurAd on Add 4

;Clear LoAdd Lo
;write Key

Replace Data Digits in Hex Mode

T1YC6:

StDat:

TXSFR:

TXXda:

CJNE CurAd,'OC6H,I1YC7
MOV CurAd"OC7H
HOV A,Mode
CALL GtDat
ANL A,IOFH
SWAP A
ORL A,B
SWAP A

HOV B,A
MOV A,Mode
CLR Acc.O
CJNE A,'12H,TXSFR
HOV @Rl,B
JHP DsAll

CJNE A,'16H,TXXda
HOV A,B
CALL WRSFR
JHP DeAll

CJNE A,'lAB,IXCod
HOV A,B
MOV DPL,LoAdd

;Test if CurAd on Data 1
;Key = B
;Mode in Acc for GtDat RpHDa:
;old Data in A
;Clear Hi Nibble

;write Key
;New Data in Hi Nibble

;Data in B

;Same for Bn or Hex
;Test if Data Segment
;Store Data

;Test if SFR Segment
;New data in Acc for WRSFR

;Test if Xdata Segment

10. Software Description: Mode 1 page 126



MOV DPH,HiAdd
MOVX @DPTR,A
JMP DsAll

;write data

IXCOd: MOV A,B
MOV DPL,LoAdd
MOV DPH,HiAdd
ORL DPH,180H
MOVX @DPTR,A
JMP DsAl1

;set COde Write Add
;write data

IlYC7: MOV CurAd,IOC6H
MOV A,Mode
CALL GtDat
ANL A,IOFOH
ORL A,B
JMP StDat

;Set cursor. B=Key
;Mode in Ace for GtDat RpLDa:

;C1ear Low Nibble
;New Data in Ace

Replace Address digit in Binary Mode

TCaBn: MOV A,B
CJNE CurAd,182H,T1Z83
JMP RpHAH

;Key in Ace and in B
;Test if Add 1
;Cursor Ine in RpHAH

T1Z83:

T1Z84:

TlZ8S:

CJNE CurAd,183H,T1Z84
JMP RpHAL

CJNE CurAd,184H,T1Z8S
JMP RpLAH

CJNE CurAd,18SH,T1ZCn
MOV CurAd,#OCOH
JMP RpLAL

;Test if Add 2

; Test if Add 3

;Test if Add 4
;Cursor to Data digit 1

;New data in B

;Data in Ace for stDat

;Restore CurAd + 1
;Make CurAd C8 -> CO

;Set up B as bit counter
;Test if CurAd is on KSB
; Flag to Carry
;Rep1ace KSB with Key

;Jump if Key not "0" or "1"
;Mode in Ace for GtDat
,Return with Ace = old data
;Key "I" or ·0· to Flag 0

Replace Data bit in Binary Mode

CLR Acc.O
JNZ Not01
MOV A,Mode
CALL GtDat
MO>: C,B.O
MOV FO,C
MOV B,108H
CJNE CurAd,IOCOH,RLACC
MOV C,FO
RLC A
Dec CurAd
DJNZ B,NxtR1
MOV B,A
MOV A,CurAd
ADD A,#09H
CLR Acc.3
MOV CurAd,A
MOV A,B
JMP StDat

NxtR1:

T1ZCn:

DcZCa:

RLACC: RLA
JMP DcZca

Replace data digit if key not '0' or '1'

Not01: ANL 03H,#OFCH ;CUAdd: CO-C3>C0 C4-C7>C4
XRL 03H,100000100B ;C4->C0 and CO->C4
CJNE CurAd,loC4H,RpLDa ,La Dat if cursor not on C4
JMP RpHDa ; else Hi if cursor was on C4

;**********************************************************

10. Software Description: Mode 1 page 127



;**********************************************************
; Some Relavent Subroutines
;**********************************************************
; Write Data to Variable SFR Subroutine
;**********************************************************

;
;
;
;

Enter: Ace = Data, LoAdd(Rl) = SFR Add
Exit: SFR data replaced
Corrupt: DPTR, Ace, C
Subs & Stack: 5 = 3 (WProt 2)

WrSFR:

TWSF2:

TWSF3:

TWSF4:

WSFR:

WSFRX:

CJNE LoAdd,#ODOH,TWSF2
JMP WSFRX

CJNE LoAdd,#80H,TWSF3
JMP WSFRX

CJNE LoAdd,#81H,TWSF4
JMP WSFRX

CJNE LoAdd,#OAOH,WSFR
JMP WSFRX

POSH Ace
SETB C
CALL WProt
MOV A,LoAdd
MOV DPTR,#$+800BH
MOVX @DPTR,A
CLR C
CALL WProt
pop Ace
MOV 04H,A
RET

;Test PSW

;Test PO

;Test SP

;Test P2

;Onprotect Code Mem

;Code Write Add
;Write New Code ipo 04H

;write Protect Code Hem

;04H was replaced by SFR Add

;**********************************************************
; Read Data from Variable SFR Subroutine
;**********************************************************.

;Code Write Add

;Onprotect Code Hem

;Write Protect Code Hem

;
;
;
;

RdSFR:

Enter: LoAdd(Rl) = SFR Add
Exit: Acc=Data
Corrupt: DPTR, Ace, C
Subs & Stack: 4 = 2 (WProt 2)

SETB C
CALL WProt
HOV A,LoAdd
HOV DPTR,#$+8009H
MOVX @DPTR,A
CLR C
CALL WProt
MOV A,04H
RET

;**********************************************************

10. Software Description: Mode 1 page 128



;**********************************************************
; Read Data from Selected Memory Segment Subroutine
.**********************************************************,

;For Hex OR Bin Modes
;Test if Data
;Read Data

;
;
;
;
;

GtDat:

Enter: Segment in Acc: 12=D, 16=SFR, lA=X, 1E=COde
Address in (HiAdd) & LoAdd [(R2) & R1]

Exit: Data in Acc
COrrupt: DPTR, Acc, C
Subs & Stack: 6 = 2 (RdSFR 2 (WProt 2»

MOV DPH, HiAdd
MOV DPL,LoAdd
MOV A,Mode
CLR Acc.O
CJNE A,#12H,GtSFR
MOV A,@R1
RET

GtsFR:

Gtxda:

GtCOd:

CJNE A,#16H,Gtxda
CALL RdSFR
RET

CJNE A,#lAH,GtCod
MOVX A,@DPTR
RET

ORL DPH,#80H
MOVX A,@DPTR
RET

;Test SFR

;Test if Xdata

;Code Xdata Address
;Read COde

;**********************************************************

10. Software Description: Mode ] page 129



10.9. Mode 2: Edit Pre-Interrupt Registers

This mode will be entered after the execution of every user instruction executed

in the Single Step Mode, when a Break Point Match has been found in the Break

Point Mode, or when the 'Escape' key has been pressed in the real time Execute

Mode. It allows the user to inspect and alter the user program values of the SFR

registers and the internal data memory at the point of the break. Only those

registers and the data bytes that would be corrupted by the Operating System will

be stored in the external memory storage area. They are directly accessible in

this mode. The other SFRs and internal data memory can be accessed by the

normal "Memory Edit Mode". Should any Vlliue be changed in the "Pre-Interrupt

Registers", the new values will be loaded into the registers before the next user

instruction is executed. Even the program counter may be changed to allow the

user to start executing at a new point in his program.

The current Pre-interrupt register values and all the other system variables may

be stored by the "Save Data & System Variables" of Mode 3. A user may then

start again at the same point and with exactly the same system variables and

settings after, for example, a system crash or a power-off break. The stored

values can be re-loaded by using the "Restore Data & System Variables" of Mode

4, after a reset or power up.

The sequence of the Pre-Interrupt registers as they would appear on the screen

of the display, and the external addresses where they are stored on the external

memory map, are shown on the next page:

10. Software Description: Mode 2 page 130



"Prog.Cntr: dd dd" F043 F042

11 PSW ACC: dd dd" F045 F044

11 DPH DPL: dd dd" F047 F046

11 SP BReg: dd dd" F049 F04S

"IP IE: dd dd" F04B F04A

"TCON TMOD: dd dd" F04D F04C

11 THO TLO: dd dd" F04F F04E

11 THl TL1: dd dd" F05l F050

"D:OO=dd dd dd dd" F052 - F055

"D:04=dd dd dd dd" F056 - F059

"D:OS=dd dd dd dd" F05A - F05D

"D:OC=dd dd dd dd" F05E - F06l

"D:10=dd dd dd dd" F062 - F065

"D:14=dd dd dd dd" F066 - F069

("dd" = hexadecimal digits)

Registers: Digits Pre-Int.Storage Bulk Storage

FOC3 FOC2

FOC5 FOC4

FOC7 FOC6

FOC9 FOCS

FOCB FOCA

FOCD FOCC

FOCF FOCE

FODl FODO

FOD2 - FOD5

FOD6 - FOD9

FODA - FODD

FODE -'FOEl

FOE2 - FOE5

FOE6 - FOE9

When the 'Exe' key is pressed from this or any other menu option, these values

will be restored in the registers and the next user instruction will be executed.

If there is no immediate reaction from the 'Exe' key, the 'Esc' key must be

pressed first, then the 'Exe' key. The Running Mode Selection Switches must

be set to select anyone of the Running Modes.

The Operating Diagram, the Flow Diagram and the Assembler Listing of the

software routines for Mode 2 are shown on the next few pages:

10. Software Description: Mode 2 page 131



."t... , ... """ ~ln ". BP .. fi.c fi"'t ..

""dOlO ~ ~, SW1";;1 St~Q I:t.or. OI.I:>'.r.d d,t..
Sw11k2 eo Cu...,," PosItIon.

11.10"" Edl t COO) lR_t. I
~".

C..,. ...,. B'.... ·Ro..tl"., T"",.'Onl In liS I!IP'I!>< '''''"021
Mod22: 1_211 I"t.IovC,.

~'(l "'.T:c. ,. C..,."d"C:I C..,. ...d .. 1I5

I" " lOO " t"C:C1C) 1,*IPC1'1) "'..
1'.... 1'1 C"","'d I P... " Cl,l,. ...d "'- MIo...!!!.i!....

C...........CD e..........clS
ModDO .... ,1'2 ""'c:.. 1S..CMc>d.w 22) " ·1>r' ..g.C".... : dd dd

I CLY"'d.. C3 I
0"1'1'1""""'";:,. ...",, D' . " PSW .....", "el ....

" . OPH OPL: ad dd
0. ~ DO. ,. ...... . ""'c:wI.Ao"'w:;!'" " ' SI' IlR,,,: dol dd

.l- '1'.. t.laln _"..) 0.•. .. 01'1:>, ... " '" " ..el Cl"

""
OPTRot.\PC-.:t.-22 OPTR-MPC-t.IoCl.· 2" " 'TCON Tl.OO: CId CId

L..""'CI.aOPTR R'I. RS. LOIkHI "aa.. " , THO TLO: Cle! Cle!

H''''''d••Of>TR.' OOPTR..0•• 1••a ...3 .. TH1 TL1: dd CId

0.000"... OI'I:>I.y 0."....... Ol"play •• '0: DOoodd del Clel cI<l '

"' .. Lo"'<:td H'''LoACld R'I R' n '0: O'l_d (Id da del '

" '0: Oll-dd del dd cid '

OD '0: DcotOd ..a aa dl:l '

"" ,~~ n '0:1Daaa ad aa dd'

" '0: 14-dd dd <:Id <:la'

PI'e. e......or

RPa le

<0

... C 10) w_ C 111)1"'" 1C) 1".'10) "'P'1") I~C") 1~"t""'1~)

I~,e-:~
l~'t,

DnC 11)
~.D ""aDD slie.. t, ~, • """-

" CD ..
I~'

MO"C.. ~M II'IC _<loa .. " CD " I" " I" "I" ....
I~D'lS~~f'~ ~D' I"' " "<0 ., 1'1<1 ..I:, .... 1"'1-41.1<. LO"'''''I ..'''"

\"" ." .......... .,,, I'" 0",

1 IC'.......d .. lIll

1
,

"
.,. , 1'1'1 .Ie HIALo.1C L,,"'Lo .. lC.

c".....d ..e1 o.c~ .....doo.. ;llI

1_... ."
I~'·P"... I ..LO"_ I I::;R-L_-
IOI"TR ..O ., .. 2 ., TA.. ' ..HIAdd

J
_C"

I

Fig.IO.H. Edit Pre-Interrnpt Registers Operating Diagram

10. Software Description: Mode 2 page 132



t.lio<t20: Gat. SW1&2

'Only In SS~~E><

Oilll ""p2

Mod22:

...,22

T<up

1-N22:

T2Qn:

1nc:t.12 :

,....,

T2ent.

I=lea<l and $tO......

Dl$lay Cu-so..-.
R4 _ c..r Add

""'" .NltSt.o

Ds.2Dt: :

05Dt2"

W2PIC:

T2E><e:

t.l2PIC

Cell CIOsp

·0:

DPTR=MPC-22.......

L.oAdd-ooPTR

HI Adct-P'iR.1

Fl5"IIOPTR·2
RooIl_ooPT A.3

Decode • OI~I.y

I:Ie.g J'I'5 and A.4

"""',

Place c..r~

__ """"0

T2Hlp

123Dn"

T2Ent.;

T:zRgt·

T2Lft

T2CO:

T2Agt
ltey.13 ,,---

lncJAZ Ent....

T2U"t

cal I ",""""Cu

M2PIC

WPIC

WDd21:

T2'I-Ilp;

ex.

l(eY.1~

ce.11 Help2

T2C£;;

~lC "21<:_)1

urAd:<CS
T'03

FJg.I0.U. Edit Pre-Interropt Registers Flow Diagram (page 1 of 2)

10. Software Description: Mode 2 page 133



....""e and lne c;"sor - ,~

/ot2"'";
-~

T~3 T~~ CA.2S6 ~o -Co

1'2C3- Oc2CA T2Cc;.4
~~ C'l266· ........c:u· ~Ad>C7

Le>(R5)_1Cey ~

......0

C'l2S:5: T2CC:4 : .....,. T2CC1
Le>(m)~

..,
.."",

..,..-0' ~22_ ~-a;

C.r-e., "ET

-"
0=-, .,.."" T2CC1 :-"

c....Aet-C31

T2l:ey : <., -, l<!l:"~y
A;dd.""><C~2A) RET

<~

.oK." ·0: Ada=dd ~ clod Oc:t

-.co T2Clt6 : ~...... "2CA
ca"

l;!",(~y: (..-:l 0>"" )
C....._CO

LoAdd Lo-t::ey w:z....- A : eoPT_O.·.... "ET

~o LOAdd. /'ll_

ca" -"" 1"2CJ',:
II"IC C....._

CA2C6- ..... 00200 RET

....~ CA2CJ

CA26S

f'Jg;.10.13. Edit Pre-Interrupt Registers Flow Diagram (page 2 of 2)

10. Stiihvare ]JtScription: Mode 2 page 134



Assembler Listing

;**********************************************************
; Edit Pre-Interrupt Registers 6< Data - Mode 20
;**********************************************************

M0d20:

T2lHp:

Jmp2M:

HOV DPTR,IKyBrd
HOVX A,@DPTR
ANL A,IOCOH
JNZ Mod21
HOV DPTR,IMsg21
CALL DspMg
CALL ReadK
CJNE A,IICH,T21Hp
Jmp MOOOO

CJNE A,114H,Jmp2M
HOV DPTR,IHelp2
CALL Help
JMP DspHd

;Read Switches
;Mask in Switches
;Jmp if none set
; •Only in SS&BP Md'

;Test if Ese Key

;Test if Help Key

;Rest, to Main Menu

; Store Display Data and Cursor Address

StMsg:

SHore:

NxtRd:

NxSto:

StDsp:

HOV DPTR,IDspAd
HOVX A,@DPTR
CALL WSHRT
SETB Aee.7
HOV DPTR,IDsCSt
HOVX @DPTR,A
HOV R4,180H
HOV RS,107H

HOV DPTR,IDspan
HOV A,R4
CALL WrDsp
HOV DPTR,#DspRd
HOV B,#08H

HOVX A, @DPTR
CALL WShrt
PUSH Ace
DJNZ B,NxtRd

HOV DPTR,IHsgSt
HOV A,RS
ADD A,DPL
HOV DPL,A
HOV B,108H

POP Ace
HOVX @DPTR,A
DEC DPL
DJNZ B,NxSto
CJNE R4,180H,StDsp
HOV R4,IOCOH
HOV RS,IOFH
JMP SHore

HOV DPTR,IDspan
HOV A,IOGH
CALL WrDsp
HOV A,#ODH
CALL WrDsp

;Entry from SS, BP or Exe Ese
;~ead Address from Display

;Ready for restore
;Display Cursor Store

;setup for 1st 8 bytes
;setup for MsgSt offset

;Ready to read data
;Counter = 8

;Read Display Byte

; and store in stack

;Message Store in Memory

;Add offset

;store bytes in reverse order

;Exit after second read
;2nd line Cursor Add
;2nd offset

;lne Cursor, display steady

;Display ON, cursor char blink

10. Software Description: Mode 2 page 135



Mod21:
Mod22:

MOV Mode,#22H
CJNE Mode,#2AH,$+J
JNC Ds2Dt

;Point to PC 22-2A
;C=O if Mode>29H = data
;C$l for Registers

; Display Registers, Hi & Lo bytes

Display Internal Data as: 'D:aa=dd dd dd dd'
Stored in: RO RS R4 R2 RI

Ds2Rg:

Ds2By:

;
;
Ds2Dt:
DsDt2:

HOV CurAD,#OCJH
MOV A,Hode

ADD A,/ODEH
SWAP A
HOV DPTR, #Msg22
ADD A,DPL
HOV DPL,A
CLR A
ADDC A,DPH
HOV DPH,A
CALL DspMg

HOV A,Mode
ADD A,/ODEH
RLA
MOV DPTR,/MPC
ADD A,DPL
MOV DPL,A
CLR A
ADDC A,DPH
HOV DPH,A

HOVX A,@DPTR
HOV LoAdd,A
INC DPTR
HOVX A,@DPTR
KOV HiAdd,A

MOV DPTR,/DspCm
HOV A,/OCJH
CALL WrDsp
HOV DPTR,/DspDa
HOV A,HiAdd
SWAP A
CALL BnASC
CALL WrDsp
MOV A,HiAdd
CALL BnASC
CALL WrDsp
MOV A,## ,
CALL WrDsp

MOV A,LoAdd
SWAP A
CALL BnASC
CALL WrDsp
MOV A,LoAdd
CALL BnASC
CALL WrDsp
JMP M2PlC

MOV CUrAd,/8SH
CALL ClDsp
MOV A,Mode
ADD A,/OD6H
RLA
RLA
PUSH Acc

;Left on Left digit
;calculate Message Ref
;Subtraet 22H

;x16
;DPTR=Msg22+16x(Hode-22)

;Set up to Get Registers
;Acc=Mode-22H
;ACc=2x(Mode-22H)
;Register store base add

;Decode & Disp Hi&LoAdd

;place cursor on CJ

;Hi Nibble

;Lo Nibble

; space

;Hi Nibble

;Lo Nibble

;Jmp to Place Cursor

;clear display
;Translate Mode to D:Add
; Mode-2AH
; (Mode-2A)x4

10. Software Description: Mode 2 page 136



Display Registers, Hi & Lo bytes

Display Internal Data as: 'D:aa=dd dd dd dd'
Stored in: RO R5 R4 R2 RI

Mod2l:
Mod22:

,
Ds2Rg:

Ds2By:

;
;
Ds2Dt:
DsDt2:

MOV Mode,I22H
CJNE Mode,12AH,S+3
JNC Ds2Dt

MOV CurAD,#OC3H
MOV A,Mode

ADD A,IODER
SWAP A
MOV DPTR,IMsg22
ADD A,DPL
MOV DPL,A
CLR A
ADDC A,DPH
MOV DPH,A
CALL DspMg

MOV A,Mode
ADD A,IODEH
RLA
MOV DPTR,I!!:PC
ADD A,DPL
MOV DPL,A
CLR A
ADDC A,DPH
MOV DPH,A

MOVX A,@DPTR
MOV LoAdd,A
INC DPTR
MOVX A,@DPTR
MOV HiAdd,A

MOV DPTR,IDspOn
MOV A,IOC3H
CALL WrDsp
MOV DPTR,IDspDa
MOV A,HiAdd
SWAP A
CALL BnASC
CALL WrOsp
MOV A,HiAdd
CALL BnASC
CALL WrDsp
MOV A,I' ,
CALL WrDsp

MOV A,LaAdd
SWAP A
CALL BnASC
CALL WrOsp
MOV A,LoAdd
CALL BnASC
CALL WrDsp
JMP M2PlC

MOV CurAd,I85H
CALL CIDsp
MOV A,Mode
ADD A,IOD6H
RLA
RLA
PUSH Ace

;Point to PC 22-2A
;C=O if Mode>29H = data
;e=1 for Registers

;Left on Left digit
;Calculate Message Ref
;Subtract 22H

;x16
;DPTR=Msg22+16x(Mode-22)

,Set up to Get Registers
;Acc=Mode-22H
;Acc=2x(Mode-22H)
;Register store base add

;Decode & Disp Hi&LaAdd

;Place cursor on C3

;Hi Nibble

;Lo Nibble

; space

;Hi Nibble

;La Nibble

;Jmp to Place Cursor

;Clear display
;Translate Mode to D:Add
;Mode-2AH
; (Mode-2A) x4

10. SoftwtlTf! Description: Mode 2 page 136



MOV DPTR,/DspDa
MOV A,I'D'
CALL WrDsp
MOV A,I': I

CALL WrDsp
pop Aee
PUSH Aee
SWAP A
CALL BnASC
CALL WrDsp
POP Aee
PUSH Aee
CALL BnAse
CALL WrDsp
HOV A,#'='
CALL WrDsp

POP Aee
MOV DPTR,/MIDat
ADD A,DPL
KOV DPL,A
CLR A
ADDC A,DPH
MOV DPH,A

MOVX A,@DPTR
MOV RS,A
INC DPTR
MOVX A,@DPTR
MOV R4,A
INC DPTR
MOVX A,@DPTR
MOV HiAdd,A
INC DPTR
MOVX A,@DPTR
MOV LoAdd,A

MOV DPTR,/DspDa
MOV A,RS
SWAP A
CALL BnAse
CALL WrDsp
KOV A,RS
CALL BnAse
CALL WrDsp
KOV DPTR,/DspClll
MOV A,/OCOH
CALL WrDsp
KOV DPTR,/DspDa
MOV A,R4
SWAP A
CALL BnAse
CALL WrDsp
MOV A,R4
CALL BnAse
CALL WrDsp
JMP Ds2By

;Data store base add

;Data store offset

;Hi Nibble Add

;Ta use again

;La Nibble Add

; Aee=4x (Mode-2AH)
;MeIII Data Referenee
;Add offset in Aee

;lst Data to RS

;2nd Data to R4

;3rd Data to R2

;4th Data to R1

;Hi Nibble, 1st data byte

;Lo Nibble

;Set cursor for 2nd data byte

;Hi Nibble, 2nd data byte

;Lo Nibble

;To display other 2 bytes

; Return point for key functions

K2P1C: MOV DPTR,/DspClll
MOV A,CUrAd
CALL WrDsp

;Place cursor at CUrAd

10. Software Description: Mode 2 page 137



M2Key: CALL ReadK

CJNE A,IICH,T2Exe
.JHP ModOO

T2Exe: CJNE A,llDH,T2Hlp
.JHP SSExt

T2Hlp: CJNE A,114H,T20p
MOV DPTR,IHelp2
CALL Help
.JHP M0d22

T2Up: CJNE A,11SH,T2Dn
DEC Mode
CJNE Mode,12lH,IJM22
MOV Hode,12FH

IJM22: .JHP M0d22

T2Dn: CJNE A,IIlH,T2Ent
IneM2: INC Mode

CJNE Mode,130H,IJM22
MOV Mode,122H
.JHP M0d22

T2Ent: CJNE A,ll3H,T2Rgt
.JHP IneM2

T2Rgt: CJNE A,ll2H,T2Lft
CALL MovCu
.JHP M2PlC

T2Lft: CJNE A,llOH,T2Key
CJNE CurAd,18SB,T2CO
.JHP M2PIC

T2CO: CJNE CurAd,IOcOB,T2C6
MOV CurAd,186H
.JHP M2PlC

T2C6: CJNE CurAd,IOC6B,T2C3
MOV CurAd,IOC4B
,]Mp M2PlC

T2C3: CJNE CurAd,IOC3H,De2CA
CJNE Mode,12AH,$+3
JC M2PlC
MOV CurAd,IOClH
,]Mp M2PIC

De2CA: DEC CurAd
,]Mp M2PIC

T2Key: JNB Aee.4,I2Key
,]Mp M2Key

I2Key: CJNE CurAd,IOC7H,CA2C6
ANL OlH,IOFOH
ORL OlH,A
,]Mp M2WrD

CA2C6: CJNE CurAd,IOC6H,CA2C4
ANL OlH,IOFH
SWAP A
ORL OlH,A
,]Mp M2WrD

10. Software Description: Mode 2

;Test if Esc Key

;Test if Exe Key

;Test if Help Key

;Redisplay all

;Test if Up Key

;Test if on top of list

;Intermediate jump

;Test if Down Key

;Test if at bottom of list

;Test if Enter Key
;same result as Down Key

;Test if Right Key,

;Test if Left Key

;Dee for other values
;C=O if Mode>29H = data
;C=l, Reg, no change
; else to Cl for data

iDee for rest of cursor adds

;Test if 'O-F' Key
;Too far for JB M2Key

;Clear LoAdd Lo
;write Key

;Clear LoAdd Hi

;write Key

page 138



CA2C4: CJNE CurAd,#OC4H,CA2CJ
ANL 02H,#OFOH
ORL 02H,A
.nIP H2WrD

CA2CJ: CJNE eurAd,#0C3H,CA2Cl
ANL 02H,#OFH
SWAP A
ORL 02H,A
.nIP H2WrD

CA2Cl: CJNE eurAd,#OClH,CA2CO
ANL 04H.lOFOH
ORL 04H,A
.nIP H2WrD

CA2CO: CJNE CurAd,#OCOH,CA286
ANL 04H,#OFH
SWAP A
ORL 04H,A
.nIP H2WrD

CA286: CJNE CurAd,#86H,CA28S
ANL OSH.lOFOH
ORL OSH,A
.nIP H2WrD

CA28S: ANL OSH,#OFH
SWAP A
ORL OSH,A

H2WrD: CJNE Mode,#2AH,$+J
JC H2WrR

;Clear HiAdd Le
;Write Key

;Clear HiAdd Hi

;write Key

;Clear R4 Le
;write Key

; Clear R4 Hi

;write Key

; Clear RS Le
;Write Key

; Clear RS Hi

;write Key

;C=o if Mode>29H = data
;e=!, Registers

; Write new Internal Data back to store

MOV A,Mode
SUBB A,#2AH
RLA
RL A
MOV DPTR,#MIDat
ADD A,DPL
MOV DPL,A
CLR A
ADDC A,DPH
MOV DPH,A
MOV A,RS
MOVX @DPTR,A
INC DPTR
MOV A,R4
MOVX @DPTR,A
INC DPTR
MOV A,HiAdd
MOVX @DPTR,A
INC DPTR
MOV A,LoAdd
MOVX @DPTR,A
CALL MovCu
.nIP DsDt2

;Calculate offset
lMode-2A = zero ref
;x4

;Mem Data Reference

;write RS

;write R4

;write HiAdd

lWrite LoAdd
lCursor one digit right

10. Software Description: Mode 2 page 139



; Write new Register values back to store

K2WrR: MOV A,Mode
ADD A,/ODEH
RLA
MOV DPTR,/MPC
ADD A,DPL
MOV DPL,A
CLR A
ADDC A,DPH
MOV DPH,A

MOV A,LoAdd
MOVX @DPTR,A
INC DPTR
MOV A,HiAdd
MOVX @DPTR,A
CALL MovCu
JMP Ds2Rg

;Calculate the Reg offset
; Mode-22
;x2
;Mem PC Reference

;write LoAdd

;Write HiAdd

;**********************************************************
; Move or Increment Cursor Add for Mode 2 Subroutine
;**********************************************************

;

MovCu:

T2CC4:

T2CCl:

T2C86:

COrrupt: CurAd, 2 stack Bytes

CJNE CurAd,/OC7H,T2CC4
RET

CJNE CurAd,/OC4H,T2CCl
MOV CurAd,/OC6H
RET

CJNE CurAd,/OCIH,T2C86
MOV CurAd,/OC3H
RET

CJNE CurAd,/86H,In2CA
MOV CurAd,/OCOH
RET

In2CA: Inc CurAd
RET

;Rest of positions

;.*********************************************************

10. Software Description: Mcxk 2 page 140



10.10. Mode 3 & 4: Store and Retrieve Internal Data & System Variables

When the power to the board is switched off, all the internal data and SFR values

of the micro-processor will be destroyed. The "Smart Socket" battery backed up

Code and Data RAM ICs, however, will preserve their contents during a power

break. To conserve the power dissipation from the onboard battery, a three

minute auto-off timer was built into the software: Ifno button is pressed for three

minutes· while in the Operating System, the internal data and SFRs of the

controller will be stored in the Code RAM IC, and the power will be switched

off automatically. This was included so that if a user is testing a program and

some interference, such as a front door or telephone call, cause the user to leave

the system for too long, it will switch the system off automatically. To prevent

a few hours work being destroyed, the current settings, before the switch off, will

be stored and can be retrieved at any later stage.

A small extension to the power off storage allows a user to also store all the

current settings of the system at any point. He can then restart again at a specific

point in a user program, without having to re-run the program right from the

beginning. Say one discovers there is an error somewhere in the program that

creates a system crash and the system can only be recovered by a reset: A break

point can be inserted just before the suspect routine. When the control is over

to the Operating System after the break point, all the current settings are stored

using Mode 3. They can even be dumped to a PC for disk storage and later

reloaded back into the system. Now the user can Single Step or run through the

suspect routine to try to find the error. If the system crashes, the settings at the

10. Software Description: Modes 3 & 4 page 141



last storage point can be retrieved with Mode 4. Then the user can try another

strategy to find the error. He does not have to go through the entire program

again from the beginning.

With this storage facility, a user can also interrupt his program at any point, store

the current settings on disk, and test an entire new program. At a later stage, the

first program and settings can be reloaded, and the user can continue from exactly

the same point where the break occurred.

The bulk storage of the internal data and system variables is only initiated by one

of the following: When selected by the user tJ do so in Mode 3; when the three

minute auto-off period has expired; or when the user selects the "OFF" option of

Mode F. The normal system variables occupy a different block of memory than

the bulk storage area. The normal usage of the Operating System will therefore

not corrupt these values.

The Operating Diagrams, the Flow Diagrams and the Assembler listings of the

software routines for Modes 3 and 4 are included in the next few pages:

10. Software Description: Modes 3 & 4 page 142



(Enter from Ma i n

-l
T

Mod30: / ·Ent.er LO Save"

I
fRead Key I

I

.I Msg31

I

IEnter(13)

I Msg32

·Sav I ng Data .... I (Jrrp

I
save 255 bytes

of I nter-na I Date

System Var (ab Ies

and SFR's In

Upper Code RAM.

I

IEscC 1C) II-Ie I pC 14)

ModDD ( Ca " He I p3
I

/ 'Data & Vars saved I Msg33

I
IMode=3D I

I

eTo Main Menu)

Fig. 10.14. Save Data and System Variables Operating Diagram

( Ent.er from Main)

,.l
T

Mod40: I·Enter to Res"tore -; "-+5g41

I
fReed Key I

I

IEnt.ere 13)
Mod41:

I\.+sg42

/ 'Res"tor I ng Data. " .1-
I

Restoring Internal

Data~ System Varia

bles and SFR's from

Previous St.ore in

Non-volatile Memory.

I

IEscC 1C) 1He IPC 14)

(Jrrp ModDD ) (ca I I He ,p4
I

/ "Dat.a Restored. " / Msg-43

I
IMode=4D I

I
( DspMd )

Fig. 10.15. Retrieve Data and System Variables Operating Diagram

10. Software Description: Modes 3 & 4 page 143



Mode 3: Save Data & System Variables, Save Sub-Routine Flow Diagram.

TEsc3

Msg33

fI..1sg32

( Enter Sub ')

I
lSav f ng Data _ . 7

I
r RO=255 IDPTR=DatSt

1
y

A=!l'RD

gOPTR=A

Ine DPTR

Dec RD

~NxReg

DPTR=SFRSt

Store: PO~P1

P2 .. P3~ PCON~ ,
SCON ~ T 2CON ~

RCAP2H~

RCAP2L,

TL2 & TH2.

Sour-se: 8PRe'f

Dest I na: SVar-s

No Bytes: 7F

I
(Ca 11 81kMv)

I
/ 'Dat.a&Vars saved 7

I
(Ca 11 W1sec

I
( RET )

NxReg:

Save:

THlp3

Key::;i13

Key:t:14
Key30

Key30:

TEsc3:

Mod3D:

THlp3:

Fig. 10.16. Save Data and System Variables Flow Diagram

10. Software Description: Modes 3 & 4 page 144



tvtod40:

NxDt4:

( Enter from ~in ')
T
'(

II ·Enter to ~estore . /Ms
T

IRead Key 7

TEsc4
Key::i13

Msg42

/~estoring Data .. 7

SOurce: SVars

oestina:8PRei

No. Bytes: 7F

I
( Call BlkMv')

RD=255

DPTR-DatSt

A=!jDPTR

!jRD=A

Inc DPTR

Dec RD

RD,<1BH
NxDt4

DPTR=SFRSt

Restore: P1 # P3

PCON, SCON,

T2CON,

RCAP2H,

RCAP2K,

TL2 & TH2.

I

g41

Mod40

TEsc4:

THlp4:

Res"t4:

Key:oi1C

Key:oi14

TEsc4

THlp4

Rest4

Mod4D TEsc4

Fig. 10.17. Retrieve Data and System Variables Flow Diagram

10. Software Description: Modes 3 & 4 page 145



Assembler Listings

;**********************************************************
; Save Internal Data & System Variables - Mode 30
;**********************************************************

ModJO:

Key30:

Mod31:

TEsc3:

THlp3:

MOV DPTR.#Msg31
CALL DspMg
CALL ReadK
CJNE A.#13H.TEsc3
CALL SAVE
MOV Mode.#30H
JMP DspMd

CJNE A.#lCH.THlp3
JMP ModOO

CJNE A.#14H.Key30
MOV DPTR.#Help3
CALL Help
JMP Mod30

; 'Enter to Save'

;Test if Enter Key

;Restore Mode
; To Main Menu

;Test if Esc Key

;Test if Help Key

,**************•••************••********••••*********.*****
; Save Internal Data and SFR Subroutine
;**********************************************************

;
;
;
;

corrupt: DPTR. Ace. C. TwO. RO. EXO=l
Subs & Stack: 10 = 2 (DspMg 4 (WrDsp 2 (TOInt 2»).

6 = 2 (WlSec 2 (TOInt 2».
8 = 4 (BlkMv 4)

SAVE:

NxReq:

MOV DPTR.#Msg32
CALL DspMg
CALL WlSec

MOV RO,#OFFH
MOV DPTR.#DatSt

MOV A.@RO
MOVX @DPTR.A
INC DPTR
DEC RO
CJNE RO.#18H.NxReq

MOV DPTR.#SFRSt
MOV A.PO
MOVX @DPTR,A
INC DPTR

MOV A.P1
MOVX @DPTR.A
INC DPTR

MOV A.P2
MOVX @DPTR.A
INC DPTR

MOV A.P3
MOVX @DPTR.A
INC DPTR

MOV A,PCON
MOVX @DPTR.A
INC DPTR

i'Saving Data•••• '

; COunter = FFH
;Start of Data Storage

;Store Internal Data

;Down to 18H

;Start of SFR Storage
;Port 0

;Port 1

;Port 2

;Port 3

;PCON

10. Scftware Description: Modes 3 &: 4 page 146



MOV A,SCON
MOVX @DPTR,A

INC DPTR
MOV A,OC8H
MOVX @DPTR,A

INC DPTR
MOV A,OCAH
MOVX @DPTR,A
INC DPTR

MOV A,OCBH
MOVX @DPTR,A
INC DPTR

MOV A,OCCH
MOVX @DPTR,A
INC DPTR

MOV A,OCDH
MOVX @DPTR,A

;SCON

;T2CON

;RCAP2H

;RCAP2L

;TL2

;TH2

; Store Current System Variables

PUSH 005
PUSH 02H
MOV DPTR, #SVars
MOV RO,DPL
MOV R3,DPH
MOV Rl,#07FH
MOV R2,#OOH
MOV DPTR,#BPRef

CALL BlkMv

POP 025
POP 015

MOV DPTR,#Msg33
CALL DspMg

CALL WlSec

RET

;3tore LoAdd still in RO
; and HiAdd
;Destination Add
; in R3,RO

;Byte COunter 1

;Source Add for Sys Vars

;Recover Lo & HiAdd

; •Data&:Vars Saved #

;********************************************************.*
; Restoring Data & System Variables - Mode 40
J***************************************************** *****

Mod40: MOV DPTR,#Msg4l
CALL DspMg
CALL ReadK
CJNE A,#13H,TEsc4
MOV DPTR,#Msg42
CALL DspMg

i'Enter to Restore'

;Test if Enter Key
i'Restoring Data •• '

; Restore System Variables and pre-Interrupt Registers

MOV DPTR,#BPRef
MOV RO,DPL
MOV R3,DPH
MOV R1,#07FH
MOV R2,#OOH
MOV DPTR,#SVarS
CALL BlkMv

10. Software Description: Modes 3 .{ 4

;Destination Address
; in RJ,RO

;counter (128 Bytes - 1)
; in R2,Rl
;DPTR = Source Address
;To Block Move (Up)

page 147



; Restoring save Internal Data (231 bytes)

NxDt4:

MOV RO,/OFFEl
MOV DPTR,/DatSt

MOVX A,@DPTR
MOV @RO,A
INC DPTR
DEC RO
CJNE RO,#18H,NxDt4

;counter and Data Add

;Get byte from Mem
;Restore Internal Data

;Test if done (FF to 18)

; Restoring saved SFR (11 bytes)

DpMdI:

TEsc4:

THlp4:

Rest4:

MOV DPTR,/SFRSt+l
MOVX A,@DPTR
MOV Pl,A
INC DPTR
INC DPTR
MOVX A,@DPTR
MOV P3,A

INC DPTR
MOVX A,@DPTR
MOV PCON,A

INC DPTR
MOVX A,@DPTR
MOV SCON,A

INC DPTR
MOVX A,@DPTR
MOV OCSH,A

INC DPTR
MOVX A,@DPTR
MOV OCAH,A

INC DPTR
MOVX A,@DPTR
MOV OCBH,A

INC DPTR
MOVX A, @DPTR
MOV OCCH,A

:mC DPTR
MOVX A,@DPTR
MOV OCDH,A

MOV DPTR,/Msg43
CALL DspMg
MOV DPTR,#OE2B4H
CALL WPSec
MOV Mode,/40H

JMP DspMd

CJNE A,/1CH,THlp4
JMP ModOO

CJNE A,/14H,Rest4
MOV DPTR,/Help4
CALL Help
JMP Mod40

;Pl in memory

;Port 3

;PCON

;SCON

;T2CON

;RCAP2L

;RCAP2L

;TL2

;TR2

; 'Data Restoredl

;wait 1.5 seconds
;Restore Mode

;Intermediate Jump

;Test if Esc Key

;**********************************************************

10. Scftware Description: Modes 3 & 4 page 148



10.11. Mode 5: Execute a User Program in Real Time

This mode is one of the three options where a user program can be run after it

has been loaded in form a PC, or keyed in through the "Edit Memory Segment"

Mode. The other two modes are running a user program in the "Single Step"

mode (Mode 6), or the "Break Point" mode (Mode 7). All three modes are

essentially the same and they all exit into the execution of the user program

through this mode.

The Execution Mode enables a user to execute a user program in real time to test

hardware configurations, such as switch bounce and multiplexed displays. These

cannot be tested successfully on a simulator or in one of the other slower modes.

It is, however, possible to interrupt the normal execution of a user program by

pressing the 'Escape' key. Such a break is considered to be a temporary

suspension of the operation, and all the relevant SFR, internal data and system

variables are stored before control is handed over to the Operating System. The

user can then inspect the Pre-Interrupt Registers through Mode 2, or use any of

the other Operating System options. When the 'Exe' key is pressed, all the

stored SFR and internal data values will be reloaded back into the micro

controller, and the execution will continue with exactly the same settings it had

before the break.

The default starting address of the user program at OOOOh may also be changed

before the execution of the user program is initiated, so that a user can start

running any of his other modules or subroutines immediately. It must be pointed

10. Software Ikscriplion: Mode 5 page 149



out that when a user program is initiated to start running using Mode 5, it is

assumed that the contents of the micro-controller registers can be any value. The

essential register settings required must be included at the beginning of the user

program. The exit routine into the user program for this mode is not the same

routine that is used after a "Single Step", "Break Point" or 'Esc' key break

return, that would reload previous SFR and internal Data values.

The method selected to exit the Operating System into the execution of a user

program, is done with an unconventional "Return from Interrupt", instruction.

This was chosen to enable the Single Step and Break Point running modes as

well: The data book specifies that no interrupt will happen directly after any

instruction accessing any of the interrupt control registers, or a "Return from

Interrupt" instruction. At least one further instruction will be executed before the

interrupt occurs. This principle is used by pushing the return address into the

stack and by setting the Interrupt 0 flag by software just before an "Enable

Interrupt 0" and the "Return from Interrupt" instructions. The execution will

"return" to the address in the stack, execute one user instruction, and only then

react on the interrupt request by jumping to the Interrupt 0 subroutine. When the

Execution mode is selected, however, the interrupt flag will not be set before

jumping to the user program.

The Operating Diagram, the Flow Diagram, and the Assembler listing of the

software routines for Mode 5 are included on the next few pages:

10. Software Description: Mode 5 page 150



1!1\t.... f ..o«\ ..... 1...

.......,SO: 'I!I"" .. 2 ON .. ent.· "-gS1

1'1_" K.,
, ..", 1C) l ... lPC',.) 'nt....CU) L

-00 ~, •
I ••• BP Moa,.. em.")'

l.bo::ll1 : C ....."".Col

"",,1'1 c........"

'ex......0 " .....052

0.,,_...... Dl.pl.v
HI .. Lo NIDl:lI •• ofAdd. 'lll"'It,. loa 0.1",

Po!:> Cl.i" ...o::l

PI.". C.....OI'"

_<I c.
,.1-' lp, 1"l) ... , 1(1) .... C 12) lli.c'1C) IiK.,1C) I,'" ·I~".1'\1....(1:1)

~, , _00 u ....."

1 CUI'""'Cl c........ct t.4sa'll3 I" " " -,
" 1-' " IRe

•
to •....cut 1 ~.

L".o.ctL_I::. t11 ...ctL_l':e

Dee CUI""'Cl lno:: C.....ACl I'l_d DAVIoS"

!
I I LO"'Clf<ool:·V Hl"'ClH-Kel'

hit tl II I::ey ... 1••••

Ilost.up fer I!K• .-:

OPS-1. 11!0.1.1II1.JNo11 1ne C........d

Soot.. f.- II • IP:

OP5-0. 1I!O.1.ilIUN-1

"",,"1'1 "'etel

asa-RP ..NO "'_..OOllaH

". rAd<l.!I000

1I...bl. IIxO

om

Flg.IO.IS. Execute a User Program Mode Operating Diagram

10. Software Description: Mode 5 page I5I



~,

'Sw 1&2 ON & En"t. • l"Rgts:
TEsc5

""sex

0''''''

TEnt;S

TSHlp

Eoe
.....,0

InCAS:

InCAS

PICuS

I ne CU""Ad

PICuS

TSHlp:
T>En<

o 'dAd

TEscS:
T€><eS

HI""-O

Holp5

ModSO Eoe Rv"t HIAddzSO

I..,SO: ..." ""'""0
OIdA<:1: Enetble EXO

Tsen~ :

E,.,t~
TEmS

RET

~co ~SEx: 'Execut;lng Plo-OQ.
n::ey5

c...... S()r" • C7

_It. 1/4 sac

lM051
eoy -,

COY

TSAoC6
....Ad-e7

LOA<:IL-_Key

-- PI5C"

T.,AoC5
~"""".

L-o-"'<1-'::ey

'~C5

I~S1

T1::eyS

T5AC6-

DAV_1

P ....11 AoCId

<:='1 "fer ex.
e-O for Ssa.SP

-"""'Og
Ace.O=C CoPS)
Ace _7_1 CRt.N)

ocmOg=A

C"'" c
exo-o
'EQ:C

TL1't.5

call HelPS

PISCu

P/CuS:

TSAC5: ...-ACI-eS

PICUS 1SAC",:

occ.o.s: Dot<: c...... Aol:l

PICuS

IncC5:

PICu5 T_5

FIg.IO.19. Execute a User Program Mode Flow Diagram

10. Software Descriptwn: Mode 5 page 152



Assembler Listing

;**••*_._-*---_._-------------*-------._-----*--------*****; Execute an User Program - Mode SO
;*****************************************************-**--

ModSO:

TSHlp:

TSEnt:

MOV DPTR,#MsgSl
CALL DspMg

CALL ReadK

CJNE A,#lCH,TSHlp
JMP ModOO

CJNE A,#14H,TSEnt
MOV DPTR,#HelpS

CALL Help

JMP ModSO

CJNE A,113H,ModSO
MOV DPTR,IKyBrd
MOVX A,@DPTR
ANL A,IOCOH
CJNE A,#OCOH,DpMdI
MOV DPTR,#UsrPg
MOV 8iAdd,DPH
MOV LoAdd,DPL

;'Sw 1 & 2 ON & Ent'

;Test if Esc Key

;Test if Help Key

;Test if Enter Key

;Test if switches set

Entry from SS & BP Modes

Display/Edit User Program Start Address

ModSl:

MdSEx:

MOV DPTR, #MsgS2

CALL Ent2B

CJNE A,11CH,MdSEx
Jmp ModOO

MOV DPTR,#MsgS3
CALL DspMg

MOV DPTR, #DspCm
MOV A,IOC7H
CALL WrDsp

MOV DPTR,#OFB1EH
CALL WPSec

MOV DPTR,#KyBrd
MOVX A,@DPTR
JB Acc.S,$-l

; 'Exe Prog. C:

;Test if Esc Key

;Place cursor on Disp Add C7

;~ second

;Wait for key release (DAV=l)

;Prepare for User Program Execution

PUSH 018
PUSH 028
MOV C,Acc.6
ANL C,Acc.7
MOV DPTR, ICntRg
MOVX A,@DPTR

10. Software Description: Mode 5

; Push LoAdd &
;8iAdd in stack for RET jmp

;C=l for EXE mode

page 153



OldAd:

MOV Acc.o,e
SETB Acc.7
CLR Acc.l
MOVX @DPTR,A
CPLC
CLR EXO
MOV IEo,e

JNC OldAd
CJNE LoAdd,#30H,S+3
JNC OldAd
CJNE HiAdd,#OOH.OldAd
pop Acc
MaV A,#SOH
PUSH Acc

SETB EXO

RETI

;OPS=l for EXE, 0 for SS&BP
;EDIT=l for all modes
;Set Write Protect OPSYS
;Store and Reset IRQ Latch
;C=O for EXE, 1 for SS&BP
;Disable Interrupt
;IEO=l to create SS interrupt

;Address stay as is for EXE
;Test if LoAdd < 30H
; and jump if not
; or jump if HiAdd not OOH
;Hi Return Address
;Set Add for swapped vectors
;Restore in stack

;Enable SS, BP or Esc Int

;Exe Program at stack ADD

i***************************************************** *****

10. Softwar" Dt!Scriplion: Mod<!: 5 pag" 154



10.12. Modes 6 and 7: Run a User Program in the "Single Step" or

"Break Point" Modes

These two modes operate approximately in the same way, in that the user

program is only allowed to execute one instruction step before it is interrupted.

In the Single Step mode, the current SFR and internal data will be stored before

the control is handed over to the Operating System. In the Break Point mode, the

current program counter will be compared with up to thirty-two user definable

addresses. Only if a match is found, will the current data be stored and control

handed over to the Operating System. If no match is found, the next user

program step will be executed directly.

To run a user program through the Single Step Mode, the screen will prompt the

switching of the Running Mode Select Slide switches, before the Start Address

can be changed and the execution initiated. Here, the Interrupt 0 flag will be set

by the software before the "Enable Interrupt 0" and the "Return from Interrupt"

instructions. One user instruction will be executed before the interrupt request

will take effect. The Interrupt 0 subroutine of the Operating System will be

discussed in detail later, but what it does in principle, is to test if another

interrupt is pending and enabled. If so, it will store the interrupt vector as an

additional return address in the stack, so that the next step will be the first

instruction of the user interrupt subroutine. This enables a user to do single

stepping through his own interrupt subroutines as well, without appreciable pre

requisites or interference from the Operating System.

10. Software Descriptio1l: Modes 6 & 7 page 155



The Break Point Table is not part of the user program. It is therefore not

l1ecessary to insert special instructions in the user program to enable a Break

Point interrupt. The table is stored in the system variable area in the Code

RAM. The BI1eak Point Addresses need not be in numerical order. The system

will compare all the BI1eak Point values with the current user program counter

value until either a match or a OOOOh value is found.

When the Break Point Mode is selected, the user may inspect and alter the

existing BI1eak Point Table, or add new bI1eak points as required. To eliminate

a BI1eak Point halfway through the table, the user must alter the address to some

impossible address that will never be reached, such as FFFFh. Placing a OOOOh

in that position will create an "End of Break Point Table", which is not desirable.

Mode A will clear the entire BI1eak Point Table and replace all the values with

OOOOh.

The Operating Diagram, the Flow Diagrams, and the Assembler Listings of the

software routines for Modes 6 and 7 are included on the next few pages:

-
10. Software Description: Modes 6 & 7 page 156



Enter from Main

~
'(

Mod60: I'Set SW1 ON & Ent ' I Msg61

I
IRead Key I

!Key

Esc( 1C) Help(14) Exe( 1C) Rest

Enter( 13)

( ModOO ) ( He Ip6

IGet SW1&2 I
SW1&2--

IRestSS( 01)

/Mode=61

( ModS1

(To Exe Mode)

Fig.tO.20. Single Step Selection Operating Diagram

10. Software Description: Modes 6 & 7 page 157



"'1lI?1

p".._ ....... P, '"
....P.',,_ .
OPTA.IP"".I.'
I-".M\-'-~_T'"

Dlocl,OlI MI.L......aa

i··C 'C)I .... ':'~i..C('C)L

~\..t.o:><lOC

I

~
C("C) I... IPC'''') 1:i><ec 1C)
~ l,n_(U)

_00 ~
a... 800'162

5"""2

~
""") .....

M:>.... "

100><1"

(To I". 100><1.)

Flg.10.21. Break Point Selection Operating Diagram

10. Software Description: Modes 6 & 7

.....

page 158



V7tcC

T~

.-lne CI.r/44

T~:

IoOlcC:

li~~~~~~~"~~: --Pny-
i"Ji"J ER IF

c.e. Olsp~

[)l:"ll:l B ,+2><....._.-.
o.:a.o.> HI~

M7PIC:

17C7:

T'7Cl!i:M7PIC:

,."..,.

THlp6:

"1~.~I'tI_

TEm.6:

L ""'·'·CJ .~-

THlp7:

TRo;J1;7:

T7Dn:

n.1'~7

-~W7PIC

T7£m.:

TH'07:

..,..,. _..0
C_"::J ...

n
Eo' ~"".

~.

--
~"1C

TH'p?

00<___1;10

Tb.?
11;_.."",_..
~" _'p?

_n

T~'
~"'1P

.,..
~, ...2

~
.-.::c..e.o-"

T~:

...., IcC T7C5 T7En~

L __...!'''"·,,'.J ...,-

FJg.I0.22. Single Step & Break Point Selection Flow Diagrams

10. Software Description: Modes 6 & 7 page 159



Assembler Listings

i**********************************************************
; Select Single Step Execution - Mode 60
;**********************************************************

Mod60:

THlp6:

TExe6:

Exe6:

IDpMd:

TEnt6:

MOV DPTR,#Msg61
CALL DspMg
CALL Read1\:
CJNE A,#lCH,THlp6
JMP ModOO

CJNE A,#l4H,TExe6
MOV DPTR,#Help6
CALL Help
JMP Mod60

CJNE A,#lDH,TEnt6

MOV DPTR,#KyBrd
MOVX A, @DPTR
ANL A,#OCOH
JNB Acc.6,IDpMd
JB Acc.7,IDpMd
MOV DPTR,#UsrPg
MOV Rl,DPL
MOV R2,DPH
JMP ModSl

JMP DspMd

CJNE A,#l3H,Mod60
JMP Exe6

;'set Sw 1 ON & Ent'

;Test if Escape Key

;Test if Help Key

;Test if Exe Key

;Mask in switches
;Repeat if SS not set
;Repeat if BP set
;Normal User Program Start
; in Hi and LoAdd

;Go to Exe Mode to start

; Intermedi.ate jump

;Test if Enter Key
iSame action as Exe key

;****************************************************************
; Edit Break Points and Start Execution - Mode 70

i***************************************************** ***********

Mod70:

Mod71:

M7DsB:

MOV Mode,#OOH
MOV CurAd,#OC4H
MOV DPTR,#Msg71
CALL DspMg
ANL OOH,#lFH
MOV DPTR,#DspCm
MOV A,#OClH
CALL WrDsp
MOV DPTR,#DspDa
MOV A,Mode
SWAP A
CALL BnASC
CALL WrDsp
MOV A,Mode
CALL BnASC
CALL WrDsp
HOV A,I':'
CALL WrDsp
MOV DPTR,#BPRef
KOV A,Mode
RL A
ADD A,DPL
KOV DPL,A
CLR A
ADD A,DPH
MOV DPH,A
MOVX A,@DPTR

;RO=Mode=Break Point number

; , BrkPnt No :

;Round off after Inc or Dec
; 32 BPs are between OO-lF
; each BP is two bytes

IBP number

;Write Hi Nibble

;write Lo Nibble
iRewrite ':', and
; place Cursor on C4
;BP Reference in Mem

;BP Number offset

;Get Lo BP

10. Software Description: Modes 6 & 7 page 160



M7P1C:

MOY LoAdd,A
INC DPTR
Mon A,@DPTR
MOY HiADD,A
MOV DPTR,#DspDa
SWAP A
CALL BnASC
CALL WrDsp
MOV A,HiAdd
CALL BnASC
CALL WrDsp
MaV A,LoAdd
SWAP A
CALL BnASC
CALL WrDsp
MaV A,LeAdd
CALL BnASC
CALL WrDsp

ANL 03H,#OC7H
ORL 03H,IOC4H
MOV DPTR,#DspCnl
MOV A,CUrAd
CALL WrDsp

lGet Hi BP

;HiBP Hi Nibble

;HiBP Le Nibble

lLoBP Hi Nibble

lLeBP Le Nibble

IReset C8->e4 after left
lReset C3->e7 after right

M7Key:

Return point after cursor mo-,e functions

CALL Readk

T7Hlp:

T7Lft:

T7Rqt:

T7Up:

T7Dn:

T7Key:

M7IcC:

T7CS:

CJNE A,11CH,T7Hlp
JHP MedOO

CJNE A,114H,T7Lft
MOV DPTR,IHlpBP
CALL Help
JHP Med7l

CJNE A,110H,T7Rqt
DEC CUrAd
JHP M7P1C

CJNE A,112H,T70p
INC CUrAd
JHP M7P1C

CJNE A,11SH,T7Dn
DEC Mode
JHP M7DsB

CJNE A,lllH,T7Key
INC Mode
JHP M7DsB

JB Acc.4,T7Ent

Edit Break Points

CJNE CurAd,IOC4H,T7CS
ANL 02H,#OFH
SWAP A
ORL 02H,A

INC CurAd
JHP M7WBP

CJNE CurAd,IOCSH,T7C6

lTest if Esc Key

lTest if Help Key

;Test if Left Key

lTest if Right Key

lTest if Up Key
;BP Number

lTest if Down Key
lBP Number

lTest if O-F Key

;Test if was on 1st digit
lBlank Hi Nibble

lReplace Hi Nibble

10. Software Description: Modes 6 & 7 page 161



T7C6:

17C7:

M7WBP:

T7Ent:

M7Iky:
T7Exe:
Mod72:

Mod73:

TRlp7:

TExe7:

Exe7:

TEnt7:

ANL 02H,IOFOH
ORL 02H,A
JMP M7IcC

CJNE CurAd,IOC6H,I7C7
ANL OIH,IOFH
SWAP A
ORL OIH,A
JMP M7IcC

ANL OIH,IOFOH
ORL OIH,A
HOV CurAd,IOC4H

HOV DPTR,IBPRef
HOV A,Mode
RLA
ADD A,DPL
HOV DPL,A
CLR A
ADD A,DPH
HOV DPH,A
MOV A,LoAdd
HOVX @DPTR,A
INC DPTR
HOV A,HiADD
HOVX @DPTR,A
JMP M7DsB

CJNE A,113H,T7Exe
JMP Mod72

JMP M7Key
CJNE A,IIDH,M7IKy
HOV DPTR,IKyBrd
MOVX A,@DPTR
ANL A,IOCOH
JZ Mod73
JMP SSExt

HOV DPTR,IMsg72
CALL DspMg
CALL ReadK
CJNE A,IICH,THlp7
JMP ModOO

CJNE A,114H,TExe7
MOV DPTR,IHelp7
CALL Help
JMP Mod73

CJNE A,IIDH,TEnt7

MOV DPTR,IKyBrd
HOVX A,@DPTR
JNB Acc.7,Mod73
JB Acc.6,Mod73
MOV Mode,171H
HOV DPTR,IUsrPg
MOV Rl,DPL
MOV R2,DPH
JMP ModSl
CJNE A,113H,Hod72
JMP Exe7

;Blank Lo Nibble
;Replace La Nibble

;Blank Hi Nibble

;Replace Hi Nibble

;Blank Le Nibble
;Replace Le Nibble

;Write Lo BP

;Write Hi BP

;Test if Enter Key
;Same action as Exe key

jNo action from rest of keys
;Test if Exe Key

;Mask in Switches
;Go to SSExt if
; switches already set

;'Set SW2 ON & Ent'

;Test if Esc Key

;Test if Help Key

;Test if Exe Key

;Read Switches
;Repeat if BP not set
;Repeat if SS set
;Set Mode.O for BP
jNormal User Program start

;Go to Exe !lode to start
iTest if Enter Key
iSame action as Exe key

i**********************************************************

10. Software Description: Modes 6 & 7 page 162



10.13. Modes 8, 9 and A: Bulk clearing of Internal Data, the User
Program Area and the Break Point Table

Er>try .,.,....... ..... I "

~. ~ ,"0 Cl ... , ...ta ~,

FIg.IO.23. Mode 8: Clear Internal Data Operating Diagram

En~ .,............,"

'R-ogr-_ Ct~"'l .

FIg.IO.24. Mode 9: Clear Program Area Operating Diagram

En'try .,...__ 'n

~d "'...

<ey

1~1~14) I~=)L
-f 'CI__ 1 8PT.t>1.·

L- --' (;1_ ~ w_

>"0''''''. (1&4 8,""'_)

1nc;1_'"I;I 1_", 2....-

FIg.IO.2S. Mode A: Clear Break Point Table Operating Diagram

10. Softwl1Te Description: Modes 8, 9 and A pagt! 163



M::>de 8: Clear- I rrtet"'"na I Data"

Enter- "'r-om Me. I n

MsgS1

Ent.er- "',..om Jr.AI!l.ln

l.5091

Mode A: Clear Erealr: Point Table.

Ent.er "'rom Moln

~QA.1

Mod80: "Ent to Clr I Dates "

Read t:::ey

W::x:t90: "Erne<"" 'to CLFi flrQ"

Read t:::ey

ModAO: "Enter 'to CLF< PrQ"

Read t:::ey

THlp8:

ThlpB
l(ey:of1C

Ese

.Jrrp ModOO

TEnt.S
t:::ey:of14

Help

THlp9:

THlp9

Ese

.Jnp t.4odOO

rEnt.9

Help

THlpA:

Key::t1C

Ese

..Jmp l.bdOO

t:::ey:of14

He'p

THlpA:

TEnt.A

Call HelPS

"""ao

TEnt8: 'c---::c::-<t:::ey:of13""",ao
(Rest)

Enter t.A$QS2

'Clear-lng Oeto"

Call HalpS

Mod90

REnt9: 'c---:::::-<t:::ey::t13
"""'90
(Rest)

DPTR=USrPg+SOOO

CLR Ace

TEn..A:

Cal I Ha IpA

"""'Aa

ModAL-,,-O:::-<: Ke y,.( 13

(Fiest)
Ent.er MsQA2

"C I ear I r1Q BPTesb le"

OPTI=l=BP!=lef'

B=42H

CLR Ace

'---<'D..JNZ Ra
,,"Ooa

Msg83

"IOl:l.ta Clear-ed!

Call W1Sec

(To Main Menu)

Nlo: B't.9:

Ca I I W1Setc

eTO MaTn Menu)

'---<[),JNZa
~B"A

~QA3

"BP Table Cleared'

Call W1See

eTo Main Menu)

FIg.I0.26. Mode 8, 9 & A: Clear Memory Areas Flow Diagrams

10. Software Description: Modes 8, 9 and A page 164



Assembly Listings

;**********************************************************
; Clear Internal Data - Mode 80
;**********************************************************

Mod80:

TRlp8:

TEnt8:

NxDa8:

MOV DPTR,IMag81
CALL DspMg
CALL ReadK
CJNE A,11CH,TRlpS
JMP ModOO

CJNE A,114H,TEntS
MOV DPTR,IHelpS
CALL Help
JMP Mod80

CJNE A,113H,ModSO
MOV DPTR,IMsg82
CALL DspMg
MOV RO,IOFFH
CLR A

MOV @RO,A
DJNZ RO, NxDa8

MOV DPTR,IMag83
CALL DspMg
CALL WISec
MOV Mode,180H
JMP DspMd

;'Ent to Clr IData'

lTest if Esc Key

lTest if Help Key

1Test if Enter Key
1 'Clearing IData•• •

lCounter and Data Add

;Te~t if done (FF - 01)

;'IData Cleared!

;Wait 1 sec
;Restore Mode

;**********************************************************
; Clear User Program Area - Mode 90
;**********************************************************

Mod90:

TRlp9:

TEnt9:

NxBt9:

MOV DPTR,IMsg91
CALL DspMg
CALL ReadK
CJNE A,11CH,TRlp9
JMP ModOO

CJNE A,114H,TEnt9
MOV DPTR,IHelp9
CALL Help
JMP Mod90

CJNE A,113H,Kod90
MOV DPTR,IMsg92
CALL DspMg
MOV DPTR,IUsrPg
ORL DPH,180H

CLR A
MOVX @DPTR,A
INC DPTR
MOV A,DPH
CJNE A,IODOH,NxBt9

MOV DPTR,IMsg93
CALL DspMg
CALL WISec
MOV Mode,190H
JMP DspMd

;'Ent to Clr Usrpg'

;Test if Esc Key

lTest if Help Key

lTest if Enter Key
i'Clearing Program'

; Start of user program
lCode Write Add is Code+8000H

;Write zero to Xdata

;Upper end of User Program + 1

; , Program Cleared 1'

;Wait 1 sec
;Restore M.ode

10. Scfiwan Description: Modes 8. 9 and A page 165



;**********************************************************
; Clear Break Point Table - Mode AO
;**********************************************************

ModAO:

THlpA:

TEntA:

NxBtA:

MOV DPTR.IMsgAl
CALL DspMg
CALL ReadK
CJNE A.I1CH.THlpA
JMP MedOO

CJNE A.I14H,TEntA
MOV DPTR,IHelpA
CALL Help
JMP ModAO

CJNE A,113H.ModAO
MOV DPTR,IMsgA2
CALL DspMg
MOV DPTR.IBPRef
MOV B.142H
CLR A

MOVX @DPTR,A
INC DPTR
DJNZ B.NxBtA

MOV DPTR,IMsgA3
CALL DspMg
CALL W1Sec
MOV Mode ,10AOH
JMP DspMd

;'Ent to Clr BkPts'

;Test if Esc Key

;Test if Help Key

;Test if Enter Key
; 'clearing BPTable'

;Start of Break Points
;Clear 64 + 2 Bytes

;Write zero to BP Table

;'BP Table Cleared'

;Wait 1 sec
;Restore Mode

;**********************************************************

10. Software Description: Modes 8, 9 and A page 166



;**********************************************************
; Clear Break Point Table - Mode AO
;**********************************************************

KodAO.

TBlpA.

TEntA.

NxBtA.

KOV DPTR,IMsgAl
CALL DspMg
CALL ReadK
CJNE A, IICB, TBlpA
JKP KodOO

CJNE A,114H,TEntA
MOV DPTR,IHelpA
CALL Help
JKP ModAO

CJNE A,IIJH,KodAO
MOV DPTR, #MsgA2
CALL DspMg
MOV DPTR,IBPRet
MOV B,#42H
CLR A

Mon @DPTR,A
INC DPTR
DJNZ B,NxBtA

MOV DPTR,IMsgAJ
CALL DspMg
CALL WISec
MOV Mode,IOAOH
JKP DspMd

; 'Ent to Clr BkPts'

;Test it Esc Key

;Test it Help Key

;Test it Enter Key
; 'Clearing BPTable'

; Start at Break Points
;Clear 64 + 2 Bytes

;Write zero to BP Table

;'BP Table Cleared'

;Wait 1 sec
;Restore Mode

;**********************************************************

10. Software Description: Modes 8, 9 and A page 166



10.14. Mode B: RS232 Serial Load from a PC

The 11.059 MHz crystal used on the system allows one to select any of the

standard asynchronous serial baud rates between 300 and 9600 baud accurately.

The data format protocol is 8 data bits, No Parity and 1 Stop Bit.

The serial data expected must be in the INTEL Hex format. In each line the

number of bytes and the address of the first byte in the line are specified,

followed by the data bytes and a checkbyte. A complete description of the

INTEL Hex format is included in the appendix, but a brief summary of the

contents of one line of data is as follows:

:10123400112233445566778899AABBCCDDEEFFOOCC
Ul-JU' IU

* A line always starts with a colon (:)

* Two hexadecimal digits specify the number of data bits included in that line

with a maximum of sixteen.

* Four hexadecimal digits specify the address of the first data bit, with ascending

addresses for the following bytes.

* Two Control digits follow (00 = Normal Data, and 01 = the End Line).

* From one to sixteen data bytes, made up of two hexadecimal digits each.

* A two hexadecimal digit checkbyte.

-
10. Software Description: Mode B page 167



After selecting the appropriate baud rate in this mode, the system will monitor

the RS232 link until the colon of an INTEL Hex format line is received. Each

line will be interpreted and stored until the "End of Transmission" line is

received. Ifa checkbyte error was detected, or any key was pressed by the user,

the reception will be aborted. The loading process from the PC is initiated by the

normal DOS COpy command to, for example, COMl.

The only place in the Operating System where the 3-minute auto-off feature is not

working, is when the system waits for a next INTEL Hex line. This feature can

be used to keep the system active and not switching off within the prescribed

three minutes. The system does not have to be connected to a PC and the

pressing of any key will return the control to the main menu.

The main aim of the serial load feature is to load user programs into the system.

It is also possible to dump and reload any of the other memory segments to or

from a PC. The contents of all the memory segments are accessible for reading

and writing on the 64K byte External Data Map of the micro-controlIer. The

table below shows the external address locations of the various segments:

Segment Nonnal Address Memory

Xdata (32K) OOOOh - 7FFFh Data RAM

User Code (22K) OOOOh - 4FFFh Code RAM

Qp.System (8K) 5000h - 6FFFh Code RAM

-
10. Software Description: Mode B

External Address

OOOOh - 8FFFh

8000h - CFFFh

DOOOh - EFFFh

page 168



Segment Normal Address Memory External Address

SFR (128b) 08h - FFh Internal F0C2h - FODlh

Code RAM Fl00h - FlOAh

Idata (24b) OOh - 17h Internal FOD2h - FOE9h

ldata(rest)(232) 18h - 7Fh Internal F118h - FIFFh

F800h - FFFFhConfiguration Code RAM F800h - FFFFh

The code addresses of an assembled user program on the PC are normally from

address OOOOh upwards, and stored as such in the INTEL Hex format. To enable

one to load such a file and write it directly to the correct code addresses, the

most significant address bit ofany data byte read through the RS232 channel, will

automatically be set by the software. It will therefore be written to the top half

of the 64K byte external data memory map from address 8000h upwards.

Bulk storage of the current settings of a program is al110cated in the top half of

the 64K bytes external memory. It can be stored to disk by using Mode C, and

reloaded back without any problems created by the setting of the most significant

bit of the address. These bits are set already. The only problem that can exist is

when a user wants to store some of his normal external data in the lower 32K

bytes to disk, for later retrieval.

Here, the most significant address bit will be zero, but when reloaded, will land

in the top half of the 64K byte address map. With some care, this can also be

bypassed by using the Xdata Block Move Option. It is very easy to load the user

program that one can 'borrow' the user code address space temporary, and reload

-
10. Software Description: Mode B page 169



the program again afterwards. To dump external user data from the lower half

of the memory map, it may be dumped to the PC directly. After reloading, it

needs to be block-moved downwards. Data between external addresses 5000 and

7FFFh must first be block-moved downwards before dumping, else it will be lost

when trying to overwrite the protected Operating System and LeA configuration

areas.

The Operating Diagram, the Flow Diagrams, and the Assembler listings of the

software routines for Mode B and related subroutines are included on the

following pages:

(Ente.... from Ma in)

J..
T

ModBO: (Call BAUOR )

lAce

IEsc( 1C) I~t

( MedOO / "RS232 Load ~eedy I Msg83

I
IRun Timer &. Enable I n'ts I

1
T

Ildle Model

IRI
11cserial I nterrupt),1Key

"'g84 T Msg86

/ 'RS232 LOadlf'll';J./.. / 'Load Aborted .. J..
I I

Read 58UF (Call'lo'1Sec )

Check: & Store I
Data In RAM. C.Jn"p OSpMd )

I,contr""ol. Count

&. CheCKSumU ,",xt I &-ror IDone Key

MsgB7 Msg35

/ 'CheCk:sum Err-or! I I'Loadlng Doney

I I
/Read J::ey / (Call W1Sec )

key I
!EsCC 13) IHe I s::( 14:) Rest ( ..J~ DspM::f

("""'00 ) ( call HelpS

1

FIg.IOol7. RS232 Load Operating Diagram

10. Software Description: Mode B page 170



ModBO:

ModB1 :

ModB2:

ca I I ao.UOR

,"0'."

°RS232 LOlld Ready -

Idle Uode

.lBC RI

SLBT1 SLBT4

CCII RxByt

L.S Nltlble

or HI Adl:t

OPH-AeC:+80

ChQelc.A

Call RJcSyt

Call RxSyt

LS Nibble

0< LoAdd

OPL-'CC

cnEr-r:

THlpS:

ChEr...

...., UodOO

...,.

TOo~

THlpB

,,,,eo

SLABR:

call W1Sec

t.ioOe..eo

SNxBt :

Chock.'

cal I RxByt

Cal I RxByt

,,"Z

Cal I RxByt

TOo~

IMdBO-

TOo.... :

Calt HalpS

SOo~
Acc::t2

'RS232 LOeldll'1'\J,M:iBRx :

SLEtt 1·

SLSTO

.lBC RI

SLA8R

SLet.O

call RxByt

LS NlbOl~

0", Date:

DOPTR~A

CheClc.A

SOo,..:

JIro SLBT1

°LOOdlno Done!

Call W1Sec

Cal I [)lj;;polAd

SLBTO:

~--<AeC""
SLBT1

'RS:;!32 U;)edlng_

Call RxByt

LS NlbOle

o~ CO....nt.

CNT=.o.

NZ Cnt. ...

Ca_ I RxBy't.

~.IV. Byt. Sl,b-Routl .....

Ent... y

lED-a

EXO-1

ES=1
Idle Mode

ES=O

EXo.O

~L~n
PopAcc><2 I

a-ck••

SL6T"

SLETn

FJg.I0.28. RS232 Load Flow Diagram

"'-SauF I

ca I I ",scen

OET

10. Softwan Description: Mode B page 171



Assembler Listing

;**********************************************************
; Load Data Through RS232 - Mode BO
;**********************************************************

ModBO:

ModBl:

ModB2:

SLABR:

MdBRx:

SLBT1:

SLaTO:

CALL BaudR
CJNE A,#lCH,ModSl
.JMP ModOO

MOV DPTR,#MsgB3
CALL DspMg

MOV SCON,#OlOlOOOOB
SETS EXO
SETB ES
SETB TRl

ORL PCON,lOlH
CLR EXO
CLR ES
JBC RI, MdBRx

CLR TRl
MOV SCON,#OOH
MOV DPTR,#MsgB6
CALL DspMg
CALL W1Sec

MOV Mode,#OBOH
.JMP DspMd

MOV DPTR,#MsgB4
CALL DspMg
.JMP SLBTO

ORL IE,#OOOlOOOlB
ORL PCON,#OlH
JBC RI,SLBTO
.JMP SLABR

MOV A,SBUF
CJNE A,#':',SLBTl

;To Set Baud Rate
;Test Esc out of BaudR sub

;'RS232 Load Ready'

;Mode 1 Recieve
;For Keyboard Interrupt
;Enable Rx Interrupt
;start Buad Rate Generator

;Wait for Rx or Key
;Disable interrupts

;Jmp if Serial Rx Interrupt
;~lse for Esc key interrupt
;stop Baud Rate
;Stop Serial Rx
; 'Load Aborted 1

;Wait 1 Second

;Reset Mode
;Back to Main Menu

;'RS232 Loading••• '
;Only 1st time .

;Enable Key and Serial Ints
;Wait for Rx or Key
;Jmp if Serial Rx Interrupt

;wait for ';'

; Receive and Store Data Byte counter for line

;

CALL RxByt
SWAP A
ORL B,A

CALL RxByt
ORL A,B
MOV B,A
MOV RJ,A

Receive and store Address

CALL RxByt
SWAP A
MOV DPH,A

CALL RxByt
ORL A,OPH
MOV DPH,A
ADD A,R3

;MSN of Byte Counter in line

;Write Hi Nibble of Count

;LSN of Byte Counter
;Add MSN of C<-unt
; store
;Start of Checksum

;HiAdd Hi

;write hi nibble

;Add in Ace
;write Lo nibble
;Add Checksum

10. Software Description: Mode B page 172



MOV R3,A
ORL DPH,#80H
CALL RxByt
SWAP A
MOV DPL,A

CALL RxByt
ORL A,DPL
MOV DPL,A
ADD A,R3
MOV R3,A

;Store Checksum
;COde Write Add = Code+8000H
;LoAdd Hi

;Write hi nibble

;Add in Ace
;Write La nibble
;Add Checksum
;Store Checksum

Receive and Store COntrol Byte

CALL RxByt

CALL RxByt
JNZ TDone

;Get following '0'

;Get Directive
;1f not '0' test type

Receive and store Data Bytes

SNxBt:

ChErr:

TRlpB:

1MdBO:

TDane:

CALL RxByt
SWAP A
MOV RO,A

CALL RxByt
ORL A,RO

MOVX @DPTR,A
1NC DPTR
ADD A,R3
MOV R3,A

DJNZ B,SNxBt

CALL RxByt
SWAP A
MOV RO,A

CALL RxByt
ORL A,RO

ADD A,R3
JZ SLBTI

CLR TRI
MOV SCON,#OOH
MOV DPTR,#MsgB7
CALL DspMg

CALL ReadK
CJNE A,#ICH,THlpB
JMP ModOO

CJNE A,#14H,IMdBO
MOV DPTR, #HelpB
CALL Help

MOV Mode,#OBOH
JMP DspMd

CJNE A,#02H,SDone
JMP SLBTI

;Next data byte Hi

; StC're Hi Data Byte

;Lo Data Byte
;Add Hi Nibble

;Write Byte to Add + 8000H
;Ready for next Byte
;Add Checksum
;Store Checksum

;Test if line done

;MSN of Rx Checksum

; store

;LSN of Rx Checksum
;Add MSN

;Add to make zero
;Start new line if OK

;stop Baud Rate
;Stop Serial Rx
;'Checksum Error'

;Test if Eec Yey

;Test if Help Key

;Reset Mode
;Back to Main Menu

;Test if a '2'~ Init line
;Go to wait for next ':'

10. Sojiwan Description: Mode B page I7J



SDone: CLR 'l'Rl
MOV SCON,/OOH
MOV DPTR,/MsgBS
CALL DspMg
CALL WlSec
MOV Mode,/OBOH
JMP DspMd

;Stop Baud Rate
;Stop Serial Ra
i'Laading Done!'

iWait 1 second
;Reset Mode
;Back to Main Menu

;**********************************************************
; Receive HEX Format Byte Subroutine
;**********************************************************

;
;
;
;
;

Exit: COnverted Ra Byte in Acc (00 to OF) or any key.
COnditions: Serial Receive enaIJled and Baud running.
COrrupt:DPTR, Ace, C, EXO=O
Subs & Stack: 4 = 2 (SXlnt 2), 4 = 2 (AscBn 2),

8 = 2 (XOlnt 6)

RaByt:

SLBTn:

CLR IEO
SETB EXO
SETB ES
ORL PCON,/OlH
CLR ES
CLR EXO
JBC RI,SLBTn
pop Acc
pop Acc
JMP SLABR

MOV A,SBUF
CALL ASCBn
RET

;In case of previous setting
;possible Key interrupt
;EnaIJle Serial Int
;wait in Idle mode

;Test if INT was Serial
;Enpty stack of return add

;Jump to 'Load Aborted'

;**********************************************************

Baud Rate Selection Subroutine

_,,, '1/2 __

"3 a U:M _ geI" ~

F"1g.10.29. Select Baud Rate Operating Diagram

10. Software Description: Mode B page 174



ExIt.: -.. 6<>...., Ro~. _'<- tx,n: no~ ......nnlt'Q_
Ent.r", DPTR _ -.s__ Add

A<XI • Old A40r_

ExIt.' __ 2 e.yt_ In H'...- & LooOdd

'TC7'S:

'TAgt.S·

DlsPley C<rr8'ftt ....

~_DlOP'ey

Hf and Le n'I:O'_
..1" HI_. \..<>AOCI.

call ...,s.c:

PICuS:

THlpS

Te-S, PICS2 1::ey._O

(Not. -:.y)

PIC$:2,

TL"BR
THlpS:

TLrEl$l: .....'0 >'""'''"'"''--,

"'" TCAC5:
TCAC6

1_~j:'~-:'l·;<;·~·~_J
ICAS2

I CAC7 LoAdt...-o:."

0,=

H; .....l.• .,."

lCA52
'TEm.5

OcCA5,

THlp5:

~~,
~

,~-

PIC<.oS TEnt.S·

CtrAdd-3

PIC... S

,.-....."
T\'1',,-5·

TC4S·

TIl6BR:

TC"8R:

Ctr-e.,

PIC...S Gt.2tk PICS2 'TAgt.S

TEnSl":

FJg.IO.30. Select Baud Rate and Enter 2 Keys Flow Diagrams

10. Software Descriplion: Mode B page 175



Assembler Listing

-**********************************************************,
; Select BAUD RATE Subroutine
-*********************.*.****************.*****************,
;
;
;
;
;
;

Exit:Baud Rate Selected but not running
COrrupt: TlnO, Tml, DPTR, Ace, B, C, RJ-R7
Subs & Stack: 10 = 2 (DspMg 4 (WrDsp 2 (TOInt 2»),

10 = 2 (ReadK 2 (XOInt 6),
12 = 2 (Help 2 (DspMg 4 (WrDsp 2 (TOInt 2»»)

12 = 2 (Help 2 (ReadK 2 (XOInt 6»)

BaudR:
DspBR:

PlCuS:

TRlpC:

TLfBR:

TCIBR:

SubBR:

TRtBR:

T86BR:

AddER:

IBAUD:

TEnBR:

HOV CurAd,,086H
HOV DPTR,'HsgB1
CALL DspMg
HOV DPTR,'OF640H
CALL WPSec
HOV DPTR,'HsgB2
CALL DspMg

HOV DPTR,'DspClll
HOV A,CurAd
CALL WrDsp
CALL READK
CJNE A,'les,TRlpC
RET

CJNE A,'14H,TLfBR
HOV DPTR,#HelpC
CALL Help
JHP DspBR

CJNE A,'10H,TRtBR
CJNE CurAd,,80H,TCIBR
JHP PlCuS

CJNE CurAd,'OClH,SubBR
HOV CurAd,#86H
JHP PlCuS

DEC CurAd
DEC CurAd
DEC CurAd
JHP PlCus

CJNE A,'12H,TEnBR
CJNE CurAd,'0C1H,T86BR
JHP PlCuS

CJNE CurAd,'86H,AddBR
HOV CurAd,'OCIH
JHP PlCuS

INC CurAd
INC CurAd
INC CurAD
JHP PlCuS

JHP BaudR

CJNE A,'l3H,PlCuS
ANL TROD,'Orn
ORL TROD,nOH
ANL PCON"OlllllllB

;Place cursor at 86 (1200 bd)
;'Select Baud Rate'

;wait 1/2 second

;'3 6 12 24 48 96'

iPlace Cursor

;Test ESC key

;Test Help key

;Test Left key
;Stay at left side

;From Cl to 86

;Else subtract 3

;Test Right
;Stay at right side

;From 86 to Cl

;Else Add 3

;Intermediate Jump

;Test Enter key
;Set Timer 1 = Hode 2

;SHOD = 0

10. Softwau Description: Mode B page 176



TBR6:

TBR12:

TBR24:

TBR48:

TBR96:

CJNE CurAd,180H,TBR6
MOV THl,IOAOH
RET

CJNE CurAd,183H,TBR12
MOV THl,IODOH
RET

CJNE CurAd,IS6H,TBR24
HOV TBl, #OESH
RET

CJNE CurAd,#OClH,TBR48
MOV THl,IONH
RET

CJNE CurAd,IOC4H,TBR96
MOV THl,IOFAH
RET

CJNE CurAd,IOC7H,IBADD
MOV THl,#OFDH
RET

;Test 300 baud

;Test 600

;Test 1200

;Test 2400

;Test 4800

;Test 9600

;**********************************************************
; Enter 2 Bytes from Keyboard Sl:broutine.
-************.*********************************************,

;
;
;
;
;
;
;

Ent2B:

;

Enter: Message Add in DPTR .
Exit: New 2 bytes (4 Nibbles) in HiAdd & LoAdd
COrrupt: DPTR, Ace, B, C, TlnO, Tlnl, Rl-R7, EXO=l
Subs & Stack: 11 = 3 (DspMg 4 (WrDsp2 (TOInt 2»),

10 = 3 (ReadK 2 (XOInt 5»,
13 = 3 (Help 2 (DspMg 4 (WrDsp 2 (TOInt 2»»,

13 = 3 (Help 2 (ReadK 2 (XoInt 6»)

PUSH DPL
MOV CurAd,IOC4H

Display Message and Hi & LaAdd

GtMsg:

Gt2Dt:

POP DPL
PUSH DPL

MOV DPH,16SH
CALL DspMg
MOV DPTR,IDspCm
MOV A,IOC4H
CALL WrDsp
MOV DPTR,IDspDa
MOV A,HiAdd
SWAP A
CALL BnASC
CALL WrDsp
MOV A,HiAdd
CALL BnASC
CALL WrDsp
MOV A,LaAdd
SWAP A
CALL BnASC
CALL WrDsp
MOV A,LoAdd
CALL BnASC
CALL WrDsp

;Get Message Ref in DPTR
;Store for re-use

;Display Current Message
;Place CUrsor on C4

;Display Data Add
;Get HiAdd Hi Nibble

;Write Character to disp
;Get HiAdd Lo Nibble

;Get LaAdd Hi Nibble

;Write Character to disp
;Get LoAdd La Nibble

-
10. Software Description: Mode B page 177



PlCS2:

THlpS:

TEntS:

TLftS:

DcCAS:

TRgtS:

InCAS:

TKeyS:

MOV DPTR,IDspCm
MOV A,CurAd
CALL WrDsp
CALL Reac1K

CJNE A,llCH,THlpS
Dec SP
RET

CJNE A,114H,TEntS
MOV DPTR,IHe1pS
CALL Help
JMP GtMsg

CJNE A,113H,TLftS
Dec SP
RET

CJNE A,110H,TRqtS
CJNE CurAd,IOC4H,DcCAS
MOV CurAd,IOC7H
JMP PlCS2

DEC CurAd
JMP PlCS2

CJNE A,112H,TKeyS
CJNE CurAd,IOC7H,InCAS
MOV CurAd,IOC4H
JMP PlCS2

INC CurAd
JMP PlCS2

JB Acc.4,PlCS2

iPlace Cursor

;Test Esc Key
;Empty Stack

;Test Help Key

;Test Enter Key

;Normal Return, Adds as is.

;Test Left Key
;Test Cursor is on left digit

;Test Right Key
;Test Cursor is on right digit

;Jmp if not a Number Key

; Replace Hi & LoAdd with key value

lCAS2:

TCACS:

TCAC6:

lCAC7:

CJNE CurAd,IOC4H,TCACS
SWAP A
ANL 02H,IOFH
ORL 02H,A

INC CurAd
JMP Gt2Dt

CJNE CurAd,IOCSH,TCAC6
ANL 02H,IOFOH
ORL 02H,A
JMP lCAS2
CJNE CurAd,IOC6H,ICAC7
SWAP A
ANL OlH,#OFH
ORL OlH,A
JMP lCAS2

ANL OlH,IOFOH
ORL OlH,A
MOV CurAd,IOC4H
JMP Gt2Dt

;Test if Cursor Add = C4
;Key to MSN
;Mask out MSN of HiAdd
;write Key to Hi HiAdd

;Cursor on next digit

;Test if Cursor Add = CS
;Mask out LSN of HiAdd
;Write Key to Lo HiAdd

;Test if Cursor Add = C6
;Key to MSN
;Mask out MSt; of LoAdd
;write Key tc Hi LoAdd

;Mask out LSN of LoAdd
;write Key to La LoAdd

i**********************************************************

10. Software Description: Mode B page 178



10.15. Mode C: Dump External Data to the PC through the RS232 Link

In this mode, a user specified number of bytes from a specified starting address

will be converted to the INTEL Hex format and transmitted through the RS232

link at a selected baud rate. All the standard asynchronous serial data

transmission baud rates from 300 to 9600 are available. The transmission format

is set to the protocol of 8 data bits, No parity and 1 stop bit.

The default protocol setting for the RS232 communication of a PC is normally

Even parity, 7 data bits, and a baud rate of 9600 baud. If a mouse driver was

installed, it normally changes to No parity, 8 data bits, and a baud rate of 1200

baud. The protocol of the PC may be altered by using the external MODE

command. (See page 55 for a description of the use of the MODE command.)

The selected data in the·external memory will be placed in groups of sixteen or

fewer data bytes per line in the standard INTEL Hex format. Each is completed

with a "carriage return" character, OCh. When the end of the data block has

been reached, the standard terminating line will be transmitted, followed by an

"End-of-File" character, 26d or lAb.

To store the data on a PC disk, the standard DOS COPY command must be used

before the transmission is started from the board:

C:>COpy COl\fi: fi1ename.HEX

The PC will wait for the serial transmission train, store it on disk and close the

file after receiving the "End of File" character. A normal Control-e on the

10. Software Description: Mode C page 179



keyboard of the PC will end the reception prematurely and close the file. While

waiting for the data from the board, some PCs will write a "timeout" 0 to the

disk every one to two seconds. This will not adversely affect the reloading of the

data back the board, because the board will ignore any initial characters until a

colon <:> is received.

(Enter- 'frOl'l'l Io.e In)

1
ModCC: (Ca I I BAlJQR )

IACc
IEsc( 1CJ IRes<

(ModOO ) IDPTR=MsgC1 I
I

(Ca\' En~28)

I 'Start Add X: 1 MsgC1

IAcc
IRes< j1C CEsc)

I~USh HI & LoAdd I
OPTR=MsgC2 (..Jmp MooOQ )

I
(ca 1I Ent.28 )

I·No 01" Bytes: I MsOC2

IACC
11C (Esc) I~<

10ee SPx2 t tPop OPTR \

I I
(....Imp ModeD ) j'OurplOQ ~mory . . IMsoc3

1
T

Ildle Model

IT,
11C5et-I2l I I nt.errl.oPt.) <ey

MsOCS
_1<e up lNTEL / ·D~ 1 r'lQ Abort.ed \ I
Hex For-mat

I i ne and t.,-ens

m I t t. tT-OUQh

ser I 0 I POrt..

INo of Byt.es

U'"'x< I"'~
MsgC4

/ 'D~ i no Dor.e! I
I

(Call W15ec)

I
( jnp Osp"",, )

Fig.l0.31. Dump Data through the RS232 Link Operating Diagram

-
10. Software Description: Mode C page ISO



Call r ..Bt1

.-: T'

e.x.rt.7
1

'dle~

Aee= "F' Che<;l<"

ca 11 .1Se<;

T
Ac;e-'O •

c.ll BnASC

--

wc.""
I

IJ.Iodo!-co I

I Ace'" 'F . I CI"Ie<:k2

(Call TxSt')

I

Call Tdk1)_0.
1rtem 0......:. f ne Done'

(RET 1'ro- T.Byt

T ..et.1 :

T..e,..,...lt. NltlOlelByte S\.b-Rouet'~

Eftt_: Nlbblel9Yt_ In Ace:.

CEnd3"

CEnd1:

wcena-

I

l~haCk=Cnt..
Aec;-.HICr1'tr'"

I
ea" ~By<

fA-.Loe.rtr I
I

ea" T_By<

Cr.c:tc..-H' Add

Ac:c_HIAddHI

I
ea" T_By<

Acc-H' Addl.O

CllII TxBy'!;}

Check.LoAdd IAc:c~ L.CI

(Call T><Elytl
I

l.r.ec_LoAdd Hi

ea" r",By't.-r
Con't..-ol

""<=0
I By<-

C.. I I T><By't )

oI<e"'O
I

(call T_Byt1

"""" .
,~ DFTR

Check...(let.a

,,",,=c.o.t.. loll

I
ea" rICByt. )

Ao;c:_o.t .. Lo

ea" TxBytl

k$>
Ched<;-o-Check'l
Ace_Check HI

"'", T",Byt.

fA<:(: cnecto:: Lo -,

ea" T>cByt)

1==: I

0~
..II'IlC o.e.,..t

IAce-·' .

Q.R C

Cn'U.-1Q

on_c
S't.~.10

T2S'oI1 ;

JA:Sl;., :

"""CO
1,oCB'!02 :

r.IodCO:

Mode'
...".'C

-~

; Start ....
"'", Ent2B

UodC2
...".,C

-~

ModC2"
_ aT

By~

ea" Errt28

"'><OC3
Aoc;.,C

Do< 5"'"--=
ModC3: WCNo<S:

·~Ing_)'. _c,
;St__ t

Add

wc_
MC""'t. : /IItec.cmcH

....,.
-'NZ

.25.

Cal I T",~2

T')(lt:

FJg.I0.32. Dump Data through the RS232 Link Flow Diagrams

10. So.frwan Description: Mode C pag~ 181



Assembler Listings

.**********************************************************,
; Dumping Memory to RS232 - Mode CO
i**********************************************************

ModCO:

ModCI:

ModC2:

ModC3:

MClst:

T2Sml:

Sub16:

CALL BaudR
MOV RO,TRl
CJNE A,#lCB,ModCI
JMP ModCX

MOV LoAdd,IOOB
MOV BiAdd,IOOB
MOV DPTR,IMsgCI
CALL Ent2B
CJNE A,#ICB,ModC2
JMP ModCX

Push om
Push 02B
MOV LaAdd,lOOB
MOV BiAdd,/OOH
MOV DPTR,/MsgC2
CALL Ent2B

CJNE A,/ICB,ModC3
Dec SP
Dec SP
JMP ModCX

MOV DPTR,/MsgC3
CALL DspHg
Pop DPH
Pop DPL

MOV SCON,/OIOOOOOOB
MOV TRI,RO
ANL TROD,/Om
ORL THOD,/20H
SETS TRl

MOV A,BiAdd
JNZ Subl6
CJNE RI,#IOH,T2Sml
JNC Subl6
MOV B,Rl
MOV Rl,/OOH
JMP MCBtl

MOV A,RI
CLR C
SUBB A,#lOH
MOV Rl,A
MOV A,R2
SUBB A,/OOH
MOV R2,A
MOV B,/lOB

;To Set Baud Rate
;Save Baud Rate Setting
;Test Esc out of sub

; 'start Add X:
;Enter 2 Bytes
;Exit after Esc

;store start Add

; 'No of Bytes:
;Enter 2 Bytes
;Bvte Counter in Hi&LoAdd
;Exit after Esc

; , Dumping Memory •• I

;Retrieve Start Add to DPTR

;Mode I - Transmit
;Recall Baud Rate Setting
;Set Timer I = Mode 2

;start Baud Rate Generator

iHi Counter
;If BiCnt > 0, can subtract 16
;Set C if LoCnt smaller than 16
;Not smaller, goto -16
;Line Byte Counter in B
; and clear La Byte Counter

;subtract 16
iRestore new La Count
;Update Bi Count
; if rollover carry set
istore Hi Count
; and Line counter is 16

; Transmit ':' and Number of data bytes in line

MCBtl: MOV A,I':'
CALL TxBt2

;Set up for start
;Tx without BnASC conversion

10. Software Descriprwn: ModL C page 182



MCBt2:

;

MOV RJ,B
MOV A,B
SWAP A
CALL TxByt
MOV A,B
CALL TxByt

Transmit Address

MOV A,DPH
ADD A,RJ
MOV RJ,A
MOV A,DPH
SWAP A
CALL TxByt
MOV A,DPH
CALL TxByt

MOV A,DPL
ADD A,R3
MOV R3,A
MOV A,DPL
SWAP A
CALL TxByt
MOV A,DPH
CALL TxByt

;NO of line bytes to checksum

;Hi counter in La Ace
iTx Hi Count
;Le counter in A
;Tx Le COunt

;Hi Data Address
; Add HiAdd to Checltsum
;store checksum
;Data Hi Add
;HiAdd Hi
;Tx Hi Add

;La Data Address
;Add LeAdd to Checksum
;Store checksum
;Data Le Add
;LoAdd Hi
,Tx Lo Add

; Transmit COntrol byte = OOH

;

MCNxB:

;

MOV A,I'O'
CALL TxBt2
MOV A,I'O'
CALL TxBt2

Transmit Data Bytes

MOVX A,@DPTR
ADD A,RJ
MOV RJ,A
MOVX A,@DPTR
SWAP A
CALL TxByt
MOVX A,@DPTR
CALL TxByt
INC DPTR
DJNZ B,MCNxB

Transmit Checksum

CLR A
CLR C
SUBB A,RJ
MOV R3,A
SWAP A
CALL TxByt
MOV A,R3
CALL TxByt
MOV A,/ODH
CALL TxBt2

MOV A,HiAdd
ORL A,LoAdd
JZ MCEnd
J!lP MClst

;Token '0' for no~l lines

;valid Data = 2nd '0'

;Next data byte in Ace
;Add Data to Checksum
;Store checksum
iData
;HiData in Le Ace
;Tx Le Add

;Test if last byte of line

; 00 - ChecksUl'1
;St~re

;Tx Hi Checksum

;Return character
;Transmit without BnAsc convert

;Test if there is more data
;Another line

ID. Software Description: Mode C poge 183



; Transmit #End of Transmission· line

MCEnd:

CEndl:
CEnd2:

CEnd3:

ModCX:

Abort:

MOV A,I':'
CALL TxBt2

MOV B,#07H
MOV A,I'O'
CALL TxBt2
DJNZ B,CEnd2

MOV A,I'l'
CALL TxBt2
MOV A,#'F'
CALL TxBt2
MOV A,I'F'
CALL TxBt2
MOV A,/lAH
CALL TxBt2

MOV DPTR,/MsgC4

CLR TRl
CALL DspMg
CALL WISec
MOV Mode, 10COH
JMP DspMd

MOV DPTR,/MsgCS
JMP CEnd3

;Start of Last line

;COunter = 7 for 7 x '0'
; 2 for Byte COunter
; + 4 for Address
; + 1 for first control char

;'End of Transmission' code

;Checksum always FFH

;End of File Character

;Stop Baud Rate

iRestore Mode
;To Main Menu

; 'Dumping Aborted I ,

;**********************************************************
; Transmit Nibble or Byte Subroutine
;**********************************************************

;
;
;
;
;

Enter: Nibble (00 to OF) or Byte in Acc
COnditions: Baud running
Corrupt: DPTR, Acc, C, EXO=O
Subs & Stack: 4 = 2 (BnASC 2), 4 2 (SXlnt 2),

8 = 2 (XOlnt 6)

TxByt:
TxBt2:

CALL BnASC
MOV SBUF,A
CLR IEO
SETB EXO
SETB ES
ORL PCON,lOlH
CLR ES
CLR EXO
JBC TI,TXit
pop Acc
pop Acc
JMP Abort

;Convert Nibble to Ascii
;start Tx
;Possible previous interrupt
;Possible Key interrupt

;Wait to finish in Idle

;Exit if SInt
;Empty stack of return add

;Exit to Abort

TXit: RET

;**********************************************************

10. Software Description: Mode C page 184



10.16. Mode D: External Data Block Move

This mode is useful for moving blocks of data to other locations for temporary

storage to make space for other data. For such a block move, the user must enter

the lowest address for the source block, the lowest address of the destination

block, and the number of bytes that must be moved. The data can be moved

upwards or downwards, and the two blocks may even be overlapping, as long as

both blocks fall within the boundary of the 64K byte external memory map of the

controller.

For non-overlapping source and destination blocks, the move action will not

create any problems. The first byte of the source is simply copied to the first

byte of the destination block. The destination block will be a perfect copy of the

source block. If the blocks are overlapping, however, the problem may exit that

source bytes are overwritten as destination bytes, before they are moved. This

is illustrated in the example below:

ove one
byte

<:----,

Destination
Block

(Overwrite Src)

Source M
Block

Source Start ->

Destination Start ->

Fig.l0.33. An Overlapping Block Move

10. Software Description: Mode D page 185



When the lowest byte of the source block is written to the lowest byte of the

destination block, it overwrites and destroys the data at the top of the source

block. The solution is to start the movement of the data bytes from the highest

byte of the source block to the highest byte of the destination block. When the

overwriting occurs, the data has already been moved.

The Operating System will test the values of the source and destination addresses,

as well as the number of bytes. If overlapping occurs, it will decide whether to

start from the top or from the bottom. Address rollovers from FFFFh to OOOOh

are not allowed. The program will test if both blocks fall within the 64K bytes

memory map. It not, an error message ·Too many Bytes· will be displayed on

the screen. The Operating Diagram, the Flow Diagrams, and the Assembler

listings for the Block Move Mode D are included on the next few pages:

Em:_ ........ _I ...

(T._"_~~~cal' ErTt21!l

"Ooos't.'-X· ~-
cs;> £'7'

("To "In _ ....)

. -'"

~.~.'-OO,
lob.,. BlOC'<

"S'_~ O<:one"~. ""Q04--
F"Ig.I0.34. External Data Block Move Operating Diagram

10. Software Description: Mode D page 186



When the lowest byte of the source block is written to the lowest byte of the

destination block, it overwrites and destroys the data at the top of the source

block. The solution is to start the movement of the data bytes from the highest

byte of the source block to the highest byte of the destination block. When the

overwriJing occurs, the data has already been moved.

The Operating System will test the values of the source and destination addresses,

as well as the number of bytes. If overlapping occurs, it will decide whether to

start from the top or from the bottom. Address rollovers from FFFFh to OOOOh

are not allowed. The program will test if both blocks fall within the 64K bytes

memory map. It not, an error message "Too many Bytes" will be displayed on

the screen. The Operating Diagram, the Flow Diagrams, and the Assembler

listings for the Block Move Mode D are included on the next few pages:

".~,.-:~~call Ent2e
bes't. _ >I. "'-Q02

~

1C (Esc:)

0
~'T._'::""'_'
""''''''-<=

CflI' ErrT.:nI

...... of' 8Yt_, . W5QC2

~

I=~= C;;£'

FJg.I0.34. External Data Block Move Operating Diagram

10. Software Description: Mode D page 186



UodDO:

Uod01 :

Ent:r-y "'r-om Melln

call Ent28

·So.....c:eAdd:

__ ,""""x

Push SAdc:I

Add=OOOO

DPTA=Usg02

ca I I ErTt.28

.Dest:. Add:

.....By

TOAI5:

TsRoI

TORIS
BtsLooi:FF

Dec BtsHI

AOO DestAdd

to Byt:eia and

Test: ,.. 641(

"""Oon

UovUP

TsCr2
AJt-OHI Ad

~Q)(1 :

UodD2:

..-x1D3:

.....By

SP "" 07

__ ModOX

Pus h OAOdt-lI

AO=OAddLo

Add=OOOO

call Ent:28

"No .of' Byt:es:

A,.!.1C

TsRoI

0.,.r-&4:

TDSTS:

MvOon:

UodDX;

TsCar- :

COSTS

'Too Many Byt.es!

Ca I I W1Se<:;

TsCar-
OHA

Tseor-

Block Move Done!

Ca I I W1Se<:;

""C>ViOQ uem BIOCIe'

Tst.UP

TsCr2:

NKOn :

TORI3:

TORI1"

loIovUP:

Oec: BtsLo

TORI3
SLo.eFF

Oec SAdd

Wrlt.e t.o OAdd

Oec 0Add

A=Bt:sL OR St.sH

"""Oon

Cell Bile.......

"""Oon

FIg.I0.3S. External Data Block Move Flow Diagram

10. Software lJe;rcription: Mode D page 187



Assembler Listings

-**********************************************************,
; XData Block Move - Mode DO
;**********************************************************

;Get Destination Add

;Store Source in memory

; 'SourceAdd X:
;Get New Source Add

ModDO:

ModDl:

MdDX1:

MOV LoAdd,/OOH
MOV HiAdd,/OOH
MOV DPTR,/MsgDl
CALL Ent2B
CJNE A,/ICH,ModDl
Jmp ModDX

Push Oill
Push 02H
MOV DPTR,/MsgD2
MOV LoAdd,/OOH
MOV HiAdd,/OOH

CALL Ent2B
CJNE A,/ICH,ModD2
MOV SP,#07H
Jmp ModDX

;'Dest. Add X:
;Clear Add

,

ModD2:

NumBy:

ModD3:

TDR1S:

Ovr64:

PUSH 02H
MOV RO,OIH

MOV LoAdd,/OOH
MOV HiAdd,/OOH
MOV DPTR,#MsgC2

CALL Ent2B
CJNE A,/ICH,ModD3
Jmp MdDXI

Pop 03H
Pop DPH
Pop DPL

DEC OlH
CJNE RI,/OFFH,TDR1S
DEC 02H

MOV A,DPL
ADD A,Rl
MOV A,DPH
ADDC A,R2
JC Ovr64

MOV A,RO
ADD A,RI
MOV A,RJ
ADDC A,R2
mc TDBTS

PUSH DPL
PUSH DPH
PUSH 03H
MOV DPTR.#MsgDS
CALL DspMg
CALL WISec

JMP NumBy

;Store Hi Destination in Stack
;La Destination in RO

; 'No.of Bytes:

;Get Number of Bytes

;Destination Hi
; Placement: RO RI R2 R3 DPH DPL
; DL CL CH DH SH SL

;Minus I to correct Addition
;Test roll over

;Source La
;Add Lo Count to test Carry
;source Hi
;Add Hi Count, C=l if > 64K

;Destina La
;Add Le Count to test Carry
;Destina Hi
;Add Hi Count, C=l if > 64K

;store Source Add

;Store Hi Dest
; 'TOO Many Bytes I

;Get new No. of Bytes

10. Software Description: Mode D page 188



TDBTS:

HvDon:

HodDX:

MOV A,DPH
CJNE A,03H,TsCar
MOV A,DPL
CJNE A,OOH,Tscar

HOV DPTR,/MsgD4
CALL DspHg
CALL W1Sec

HOV Hode,/ODOH
JHP DspMd

;If SAB > DAB then c=O
; to move upwards.
; Else downwards,
; or end if equal

;'Block Hove Donel'

;Reset Hode
iTa Main Menu

;'Moving Hem Block'

;Save Carry C=O Up, C=l DownTscar:

CALL DspHg

PUSH PSW
PUSH DPL
PUSH DPH
MOV DPTR,/MsgD3

pop DPH
pop DPL
pop PSW

;
;

RO Rl R2 R3 DPH DPL
DL CL CH DH SH SL

; Test for Block OVerlap for Downwards transfers

TsCr2:

mc HovUP

MOV A,DPH
ADD A,R2
CJNE A,03H,TsCr2
MOV A,DPL
ADD A,Rl
CJNE A,00H,TsCr2

JC HovUP

MOV A,DPL
ADD A,Rl
MOV DPL,A
HOV A,DPH
ADDC A,R2
MOV DPH,A

HOV A,RO
ADD A,Rl
MOV RO,A
MOV A,R3
ADDC A,R2
MOV R3,A
JHP TDR13

;Test for overlap DA>SA

;Ar.c = Source Hi
;Add Hi Count
;Set C if DH > SH+CH
;Source Le
; Add Le COunt
;Set C if DL > SL+CL

;Goto Move by Increment

;Hove by Decrement

;Source = Source + count

;Destination

;Destina = Destina + count

;Skip first decriment

; Move Block by Decrementing Addresses

NxDn:

TOR13:

TORll:

DEC OlH
CJNE Rl,/OFFH,TDR13
DEC 02H

HOVX A, @DPTR
PUSH Acc
DEC DPL
MOV A,DPL
CJNE A,/OFFH,TORll
DEC DPH
pop Acc
PUSH DPL
PUSH DPH
MOV DPL,RO
MOV DPH,R3

;Decriment CO~nt

;Test if Rl R~ll over

;Read from Source Add
;Store Data

;Test for roll over

;Store new Source Add

iDestination

10. Softwart! Description: Mode D page 189



TDR12:

KOvUp:

MOVX @OPTR,A
OEC RO
CJNE RO,#OFFH,TDR12
OEC RJ
pop OPH
POP DPL
MOV A,R2
ORL A,Rl
JNZ NxDn
,]Mp MvDon

CALL BlkKv
,]Mp MvDon

;Write to Destination Add
;DecrLment Destination Add

;Restore Source Add in DPTR

;Test if count = 0

iGe to Done

.*****.****************************************************,
; Move Block by Incrementing Addresses Subroutine
-**************************************.*******************,

;
;
;
;
;
;

Enter: DPTR = Source Address
R3,RO = Destination Add
R2,Rl = Number of Bytes - 1

Conditions: Blocks Non-overlapping & Sufficient
Address space available

Corrupt: DPTR, RO to R3, Ace, C, 4 Stack Bytes

NxUp:

BlkMv:

DEC RI
CJNE Rl,#OFFH,BlkMv
DEC R2

MOVX A, @DPTR
INC DPTR
PUSH DPL
PUSH DPH
MOV DPL,RO
MOV DPH,RJ
MOVX @DPTR,A
INC DPTR
MOV RO,DPL
MOV RJ,DPH
POP DPH
POP DPL
MOV A,R2
ORL A,Rl
JNZ NxUp
RET

;D~crement Counter

;Read Source Add

;Store Source

;Destination Add

;Write to Destination

;Restore Desination

;Restore Source

;Test if count = 0

;*******.**************************************************

10. &ftw- Description: Mode D page 190



10.17. Modes E and F: ProtectlUnprotect Memory and Save and OffModes

The ProtectJUnprotect option will test if it is possible to write successfully to the

last byte in the Operating System memory area. It will write a '55' to the byte

and confirm that a '55' is read. Then it will write 'AA' to the byte and test

again. If either of the tests fails, the block is protected and the message "Enter

to Unprot" will be displayed. If the write tests were successful, it will display

"Enter to Protect". Pressing the 'Enter' key will toggle the Write Protect bit in

the LeA Control Register, and repeat the test. An 'Esc' key will return the

control to the main menu. The external data memory areas that will be protected

against accidental overwriting, are:

The Operating System: DOOOh to EFFFh (5000h to 6FFFh Code)

The LeA Conf"IgUration: F800h to FFFFh (Not available as Code)

The "Save and Off" Mode will bulk store the current internal data of the micro

controller in the Code Memory IC before the power is switched off. The data

bulk storage is normally used to store the place and current system variables of

a specific point in a user program. Thus one can reload the data and continue

from the same point and with exactly the same data and system variables.

Bulk storing at any other point, or the "Store and Off Mode" will overwrite the

previous stored values. If one wants to conserve the previous values before

switching the system off, the "Restore System Variables and Data" of Mode 4

can be called directly from within the Mode F menu, by simply pressing key '4'.

After the bulk storage data has been restored to the micro-controller and the

10. Software Description: Modes E and F page 191



system variables, a normal "OFF" can follow. It will place the original stored

values back into the bulk storage.

To continue from the "stored point" in the user program after a reset or power

up, Mode 4 can be used to reload the bulk storage back into the micro-rontroller.

The user can then continue rurming the program in any of the Running Modes.

The Operating Diagrams, the Flow Diagrams, and the Assembler Listings of

Modes E and F are included on the next few pages:

(Enter 'from Ma In)

1
y

Mx:tEo: ITe5t Mem I
IWr&Rd "55' 1!'H'Id ·AA .

Unprotected IProtected

/ 'Enter 'to Pr-o'tectJ 'MSgE1 / "En1:er to LlnprO't I
I 1

Y
/Re~d t:ey /

IKey

tcscC1
C)

He \PC 14) Ent.er (13) IRest.
ModOO ) HelpE """"IF'rO 'tCE1) IUnpr-ot( E2)

! j ...... l't.e Pro't I lwr Ite Unprot I
I I

T

MsQE2

FIg.10.36. ProtecUUnprotect Memory Operating Diagram

( En'ter from Main

1
T

MooFO: / 'Cont" rr-m Save+-OFF I MsgF1

I
/Read Key /

IKey

4
~1c)

Help(14) En'terC 13) Iqest.

OffC 1E)

ModOO (HelpF ) ·F "(OF)

( ..,d41 ) ( Save )

I
/wr-Ite OFF/

F1g.10.37. Save and OFF Operating Diagram

10. Software Description: Modes E and F page 192



Prote<:t/Unprotect Memory Flow Diagram.

Entry "from ~ I n

Save and Of'" Flow Diagram

En'try t"rom Ma I n

Wt-1T.e 55

to EFFF

Read EFFF

5etE1

write AA

to EFFF

!=lead EFFF

ModFO: ·Con1'"lrm Save+OFF'

Read Key

THlpF

set. E1

Pro,

THlpF:
TEn't.F

Key=l14

Help

lnleyE:

Unpro't.

Mode=E2

Call Peadle

THlpE

Ese

TEnt.F;

ModF1'

call HelpF

"""FO

TOFF
KeY"'1)

r --<~Ent.er

Call Save

Wr l'te OFF

bl't 'to Sw'"

(ENO)

THlpE:

TEntE:

TEn'tE
l(ey=l14

Help

cell HelpE

"""'EO

1---< l(ey::i1)
"""EO

EnT.t::r

~---<t.Iode::iE1

TOFF:

TKe,yF:

KeY"'1E

t.IOdF1 'or,,·

ModFO

~-1---< KeY"'OF

"""'F1

Tt(eyF

TFIC:y4

SetE:1:

"""'EO

call WPro't.

"""'EO

-EnT. to Unprotect

Inl(yE

TFKy4:
ModFQ

Key::t(}4

.JrTt' Mod4Q

FJg.I0.38. Protect!Unprotect Memory and OFF Flow Diagrams

10. Software Description: Modes E and F page 193



Assembler Listings

-**********************************************************,
; Protect/Unprotect Memory - Mode EO
.****************************************************. __ a __,
ModEO:

InKyE:

TRlpE:

TEntE:

SetEI:

MOV DPTR,/OEFFFH
MOV A,/55H
MOVX @DPTR,A
MOVX A,@DPTR
CJNE A,/55H,SetEl
MOV A,/OAAH
MOVX @DPTR,A
MOVX A,@DPTR
CJNE A,/OAAH,SetE1
MOV Mode,/OE2H
MOV DPTR,/MsgEl
CALL DspMg

CALL ReadK

CJNE A,/1CH,THlpE
JHP ModCC

CJNE A,/14H,TEntE
MOV DPTR,/HelpE
CALL Help
JHP ModEO

CJNE A,/13H,ModEO
MOV A,Mode
MOV C,Acc.O
CALL WProt
JMP ModEO

MOV Mode,/OEIH
MOV DPTR,/MsgE2
JHP InKyE

.-

;Select Test Byte

;Write ' 55B'
;Read same byte
;Jmp if not the same

;Write 'AAH'
;Read same byte
;Jmp if not the same
;Is Unprotected (0010)
;'Enter to Protect'

;Test if Esc Key

;Test if Help Key

;C=O to Protect
;C=l to Unprotect

;Is Protected (0001)

i-
a
_.-.---------------------------------------------------; Write Protect/Unprotect OPSYS in Xdata Segment Sub

;.__.--_._._._------_.-._------_._-------------------------
;
;

Enter: C = 0 for protect, C = 1 for Unprotect
COrrupt: DPTR, Acc, C, 2 Stack bytes

WProt: MOV DPTR,/CntRg
MOVX A,@DPTR
MOV Acc.I,C
MOVX @DPTR,A
RET

;Previous COntrol Setting

;Write Protect Bit
;Store in Memory

.*****************************************************----,
; Save and Off - Mode FO
.******************************~****************.***** ----,

ModFO: MOV DPTR,/MsgFl
CALL DspMg
CALL ReadK

CJNE A,/1CH,THlpF
JHP ModOO

;'Confirm Save+OFF'

;Test if Esc Key

10. Scftware Description: Modes E and F page 194



THlpF,

TEntF'

HadFl'

TOFF'

TKeyF,

TFKy4,

CJNE A,#l4H,TEntF
HOV DPTR,#HelpF
CALL Help
JHP HodFO

CJNE A,#13H,TOFF

CALL Save
HOV DPTR, ICntRg
HOVX A,@DPTR
SETB Acc.2
HOVX @DPTR,A
ORL PCON,#02H

CJNE A,#lEB,TKeyF
JHP HadFl

CJNE A,#OFH,TFKy4
JHP HadFl

CJNE A,#04H,HodFO
JHP Hod40

;Test if Help Key

;Test if Enter Key

;Auta-off bit D2=1
;Switch OFF
;Stop operating

;Test if OFF key

;Test if 'F' Key

;Test if '4' key
;Retrieve Data & SFR

;******************************.****~***************** *****

10. Software Description: Modes E and F page 195



10.18. The Help Subroutine

Many of the lIelp File lines are repeated in various other help files as well. To

conserve space, each Help File was made up by a sequence line. It starts with

the number of lines in the file, followed by the reference numbers of each Help

line. In this fashion, only one Help File subroutine was required, with a set of

lookup tables. The Operating Diagram is shown below, and the Flow Diagram

and Assembler listing are included on the next pages:

Enter with Help File ~~erence In DDTR

Corrupt: DPTR. Acc~ Band 16 St.ack Bytes

( Enter )

I
Push Cur-Ad

Ace :0 0

Ge't. No.of' LI nes

Store In R3

Sto.-e HI pFR

Count.er = 1

1
Y

Pop HlpFI=l

Push Counter

Get. next. of'f'set.

S'tQre In 8

Pop Counter

S't.ore HlpFR

St.or-e COunt.er

Ot"1'set. x 16

DPTr:r-HlpLI neRef"

Add ol"1"se't. x 16

""" D5PM!;J )

/ Olsp select.ed Help line!

1
y

/I=lead t::::ey /

Key

IEn'ter( 13) LP( 15) lesc 1C) IQestjon(11)

1- R3 • 4 I

IPop Coun<~ 1 1,_ Coun,~ 1 I
Ine CounLe"- Dec c-'?t..;nter ( RET )

\ Count.er Counter

I:Noo' Cl n~ I" 1:0 _0

'coun'ti=1 ! Icoun't.er=~.o1' Llnesl

FIg.~O.39. Help Subroutine Operating Diagram

la. Softwart! Descriplion: Help Subroutine page 196



Ente~ with Help File Refe~ence CHlpFR) In DPTR.

l-lelp: Ace = 0

Get No.of Ll

Acc=§A+DPTR

Nof'Ln=Ace

R6RS=HlpFA

Counter=1

NxKyH
NxLnH IHEnt

THDn:

CR4=NofLn)

CR7=Counter)

THOn

Key:;i11

IHEnt Down

THlp

THlp:
THLP

THOn

I HEnt Same as

Down

Line

Key:ot15
THEse

NxLnH
1---1-----<:Cntr.=0

THUp:

(Help Line Ref.)

Key.:;t:1C

DPTR=R6RS

Acc=Counter

Get Nxt Of''fset

B=Offset

Acc=16

Mul AB

DPTR=HlpLR

DPTR + A + 8

NxLnH:

NxKyH:

IHEnt:

1---I---l----:'.Cnt~NofLn
NxLnH

THEse: L -< Key:ot1C
NxKyH

NxLnH IHEnt

NxKyH

THDn

FIg.I0.40. Help Subroutine Flow Diagram

10. Software Description: Help Subroutine page 197



Assembler Listing

;**********************************************************
; Help Subroutine
;**********************************************************

;
;
;
;

Enter:Help Reference in DPTR
COrrupt:DPTR, Ace, B, C, R4-R7, EXO:l
Subs & Stack: 10: 2 (DspMg 4 (WrDsp 2 (TOINT 2»),

10 : 2 (ReadK 2 (XOINT 6»

Help:

NxLnH:

NxKyH:

IHEnt:

TllDn:

THlp:

THUp:

THEse:

CLR A
MOVC A,@A+DPTR
MOV R4,A
INC DPTR
MOV RS,DPL
MOV R6,DPH
MOV R7,100H

MOV DPL,RS
MOV DPH,R6
MOV A,R7
MOVC A,@A+DPTR
DEC A
MOV B,A
MOV A,/16
MOL AB
MOV DPTR,/HlpLR
ADD A,DPL
MOV DPL,A
MOV A,B
ADDC A,DPH
MOV DPH,A
CALL DspMg

CALL ReadK
CJNE A,/13H,THDn
INC R7
MOV A,R7
CJNE A,04H,NxLnH
MOV R7,/OOH
JMP NxLnH

CJNE A,/llH,THlp
JMP IHEnt

CJNE A,/14H,THUp
JMP IHEnt

CJNE A,/lSH,THEsc
DEC R7
CJNE R7,/OFFH,NxLnH
MOV 07H,R4
DEC R7
JMP NxLnH

CJNE A,/lCH,NxKyH
RET

;No of Lines to Ace
;Store Number of lines
;Point to first line no.
;Store Help Reference

;Set counter = 0

iGet Count
;Cet offset : HlpFR+Count
;Correction for line 0
;B=offset from Help base

;BA : No of Help offset bytes
;Help base address
iCalculate new offset
; and add to base add

,Test Enter
;Increment Count

;Nx line if more lines
;Start again if last line

;Test Down

;Test Help Key

;Test UP

;Prev line if not at top
;Last line+l if at top

iNot Esc, read key again

i***************************************************** *****

10. Software Description: Help SubroUIine page 198



;**********************************************************
; Help file Sequences
;**********************************************************

He1pO:
He1p1:

He1p2:
He1p3:
He1p4:
He1p5:
He1p6:
H1pBP:
He1p7:
He1p8:
He1p9:
He1pA:
He1pB:
He1pC:
He1pE:
He1pF:
HelpS:

DB 18,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,98
DB 19,1,18,19,20,21,22,23,24
DB 5,25,26,27,28,29,30,31,17,32,98
DB 16,1,33,34,35,36,37,38,39,5,40,41,26,25,17,32,98
DB 6,1,42,43,44,45,98
DB 6,1,46,47,48,49,98
DB 11,1,50,51,52,53,5,26,25,17,32,98
DB 7,1,54,55,5,56,32,98
DB 12,1,57,58,59,60,5,25,26,61,56,32,98
DB 6,1,62,63,56,32,98
DB 6,1,64,65,66,67,98
DB 6,1,68,69;70,67,98
DB 7,1,82,83,5,75,32,98
DB 8,1,71,72,73,74,75,32,98
DB 11,1,76,77,78,79,80,5,26,81,32,98
DB 7,1,84,85,86,87,88,98
DB 11,1,89,90,91,92,93,5,94,95,32,98
DB 9,1,96,97,5,26,25,75,32,98

;**********************************************************
; Help File Messages
;**********************************************************

H1pLR: DB 6,'=Next(Esc=Exit), ; 1
DB 'Main Menu Help:-' ; 2
DB 'Step to Option &' ; 3
DB 'press Enter key.' ; 4
DB 'Key functions:-' ; 5
DB 6,'=Next Option ; 6
DB 7,'=PreviousOption' ; 7
DB 'Ent=Se1ectOption' ; 8
DB 'Esc=Top of Menu ; 9
DB 'CODE=Edit Code ; 10
DB 'DATA=Edit Data ; 11
DB 'SFR=Edit SFRegs.· ; 12
DB 'XOAT=Edit Xdata' ; 13
DB 'STO=Store Da&Var' ; 14
DB 'OFF=store + OFF' ; 15
DB 'O-F=Quick Select· ; 16
DB 'EXE=Run/COntinue' ; 17
DB 'Key in Add&Data.· ; 18
DB • C:0000-7FFF is' ; 19
DB 'a1so X:8000-FFFF' ; 20
DB 'C:5000 - 7FFF is' ; 21
DB 'write protected.' ; 22
DB 'Unprotect using' ; 23
DB 'menu option E ; 24
DB ·0-F=Rep1aceDigit· ; 25
DB '</>=Move Cursor' ; 26
DB 6,'/',7,'=Inc/Dec Add.' ; 27
DB 'ENT=Disp1ay Data' ; 28
DB 'HxBn=Dsp Hex/Bin' ; 29
DB ·CODE/DATA/SFR••• • ; 30
DB ' •• /XOAT=Rese1ect • ; 31
DB 'Esc=To Main Menu' ; 32
DB 'On1y significant' ; 33
DB 'in SS, BP or Exe' ; 34
DB ' running modes.' ; 35
DB 'Disp1ay user Pgm' ; 36
DB • pre-interrupt ; 37
DB 'SFRs & ID:OO-17H' ; 38
OH 'to Inspect&Edit.· ; 39

10. Software Description: Help SubrouriTlt! page 199



DB 6,'/Ent=Next Reg.· ; 40
DB 7,'=Previous Reg.' ; 41
DB 'Ent=Save current' ; 42
DB 'IData & System•• ' ; 43
OB 'variables in mem' ; 44
DB 'Esc=No Saving••• • ; 45
DB 'Restore previous' ; 46
DB 'saved IData&Vars' ; 47
DB ·Ent=Restore... ; 48
DB 'Esc=No Restore •• ' ; 49
DB 'Key in start Add' ; 50
DB 'Set SW 1&2 ON to· ; 51
DB 'exe program. Use' ; S2
DB 'Esc to interrupt· ; 53
DB "Execute a single" ; 54
DB 'proq step & exit' ; 55
DB •Exe/Ent=Continue' ; 56
DB 'Key in BrPnt Add' ; 57
DB 'A BP is a 2 Byte' ; 58
DB 'Hi&Lo Code Add.' ; 59
DB 'End table =00 00' ; 60
DB 6,'/',7,'=InC/Dec BPNo' ; 61
DB 'Wi11 exe program' ; 62
DB ·till PC=Any BrPt· ; 63
DB 'Clears internal' ; 64
DB 'Data memory only' ; 65
DB 'ENT=Clear Da&SFR' ; 66
DB 'ESC=No clearing.' ; 67
DB 'Clear User COde' ; 68
DB 'C:OOOO to C:4FFF' ; 69
DB 'ENT=Clear Code ; 70
DB 'Check Con.cable.' ; 71
DB 'Hatch Baud Rate.' ; 72
DB 'Check data is in' ; 73
DB 'INTEL HEX format· ; 74
DB 'ENT=COntinue ; 75
DB 'Move cursor to ; 76
DB 'select Baud Rate' ; 77
DB • 3=300 6=600 ; 78
DB '12=1200 24=2400' ; 79
DB '48=4800 96=9600' ; 80
DB 'ENT=Select BaudR' ; 81
DB 'Clears entire... ' ; 82
DB 'BreakPoint Table' ; 83
DB 'Toggles between' ; 84
DB 'write protect or' ; 85
DB 'write unprotect' ; 86
DB 'ENT=Toggle P/UnP' ; 87
DB 'ESC=Leave as is.' ; 88
DB 'Save current ; 89
DB 'IData&Vars & OFF' ; 90
DB 'For no save, re-' ; 91
DB 'store IData&Vars' ; 92
DB 'Then SAVE + OFF.' ; 93
DB 'ENT/OFF=Save+OFF' ; 94
DB '4=Restore IData' ; 95
DB 'Key in Digits as' ; 96
DB • required & Ent.' ; 97
DB 'End of Help••••• • ; 98

;**********************************************************

10. Software Description: Help SubroUline page 200



10.19. The Interrupt 0 Subroutine

All the hardware interrupts used by the Operating System, and the Single Step

and Breakpoint software interrupts, make use of the External Interrupt O. Free

access must be allowed for a user to all his interrupt subroutines. Careful

manipulation of the current byte values was therefore required to not corrupt any

of the user bytes or registers, when this interrupt subroutine is called. Two spare

bits in the LCA Control Register, together with the Interrupt 0 flip-flops in the

LCA, help the software to identify the source from where the interrupt request

occurred. The bit allocation for the Control Register is as follows:

Control Register Bit Functions (Address X:F200H)

DO OPS bit: 0 = Swap interrupt vectors

01 WP bit: 0 = Operating System is write protected

02 OFF bit: 1 = System power OFF

D3-D5 (not used)

06 KB bit: 1 = Busy with the Keyboard Read subroutine

07 RUN bit: 1 == In a Running Mode, 0 = in Edit Mode

The Interrupt subroutine had to cater for all external interrupt sources while in

the Operating System: This includes the 'Escape' latch interrupt when the

'Escape' key was pressed during the execution of a user program; the Running

Mode Selection switches switched from the Execution mode to one of the other

Running Modes; and also the software interrupt when running the user program

in one of the monitor modes.

10. Software Description: Inrerrupt 0 Subroutine page 201



The routine must also test if there were any other user interrupt requests and

whether they were enabled. Their interrupt addresses will then be pushed into

the stack as the return address.' In this way the routine will simulate a user

interrupt call that is normally done by the micro-controller internal hardware.

Interrupt Vector Swapping

When an interrupt is requested, the micro-controller will automatically call the

appropriate interrupt vector or address in the code memory. A different set of

interrupt subroutines had to be used for the Operating System that would not

interfere with the user interrupt routines. A programmable bit in the LeA, the

OPS bit, will cause the swapping of the code memory addresses between OOOOH

and 002FH with addresses 5000H to 502FH through hardware decoding. It will

simply invert the logic levels of addresses A12 and A14.

The default or reset value of the OPS bit is '0', so when the micro-controller

calls address OOOOH, the memory decoding will actually return the address

5000H. A 'Long Jump' will place the control into the Operating System. All

the interrupts used by the Operating System will generate the normal interrupt

addresses between 0003H and 0023H, but the code memory decoding will also

return the contents of the addresses between 5003H and 5023H, instead.

Before control is handed over to the user program in one the Running Modes, the

OPS bit is set to not swap the starting and interrupt vector addresses. The user

program can then be executed from address OOOOH and all the interrupt vectors

are available at their nonnal addresses.

10. Softw~ Description: lnlt!TTllpt 0 SubrolUW page 202



When the 'Esc' key is pressed, or one of the switches switched to either the

Single Step or Break Point running modes during the execution of a user

program, a latch in the LCA, the "Escape Latch", will swap the addresses OOOOH

to 0007H with 5000H to 5007H. It will also generate an External Interrupt O.

The Operating System's Interrupt 0 subroutine will therefore be executed, in

place of the normal user interrupt. A "Long Jump" will take the control out of

the swapped interrupt memory area into the Operating System area.

The Escape Latch is cleared by reading any data from the keyboard buffer at

external address F300H. At that stage, control will already be out of the

swapped interrupt vector area. The pre-interrupt register values will be stored,

the 'OPS' bit cleared and the control will go to Mode 2 of the Operating System.

When the 'Exe' key is pressed, the pre-interrupt register values will be reloaded

back into the micro-controller, the 'OPS' bit will be set. A normal stack "Return

from Interrupt" Will jump back to execute the next instruction of the user

program.

Single Step and Break Point Running Mode Operations

The Single Step and Break Point operation relies on the fact that an interrupt will

not occur directly after a "Return from Interrupt" instruction, or after any other

instruction that accesses any of the interrupt control registers. The interrupt will

only occur tifter the next instruction has been executed. The External Interrupt

must be set to high priority and edge triggering.

-
10. Software Dt!$cnplWn: /nJerrupl 0 Subroutine page 203



To execute only a single user instruction and return to the Operating System

immediately, the user program return address must be pushed into the top of the

stack. The Interrupt 0 request flag is set by software and the interrupt is enabled.

A "Return from Interrupt" instruction will then return control to the user

program. Both these last two instructions will ignore the enabled interrupt

triggered by the software setting of the interrupt request flag.

One complete instruction will be executed before the interrupt request will take

effect. Control is then handed back to the Operating System in the Single Step

Mode, or the return address is compared with the addresses in the break point

table. If a match is found, control goes to the Operating System. If not, the

register contents of the micro-controller are restored, an interrupt triggered, and

the next user instruction executed.

None of the SFRs or the internal data of the micro-controller will be corrupted

by a Single Step, Breok Point or an Escape break, except for nine stack bytes

above the point that the stack was at that stage of the user program. If any of the

timers were running, they will be stopped temporarily, and restored again when

control goes back"to the user program. Only a few counts will be lost.

Simulation of Other User Interrupt Requests

In the Single Step or Break Point running mode, Interrupt 0 at highest priority,

is the only true interrupt that is executed. To enable other interrupt requests in

the user program as well, their interrupt flags are polled by the Interrupt 0

subroutine of the Operating System. If set and enabled, the user interrupt return

10. Software Description: Interrupt 0 Subroutine page 204



address will be pushed into the top of the stack and it's associated interrupt flag

cleared. When control returns to the user program, the user interrupt subroutine

will be executed.

Under these conditions, the user interrupts are executed as nonnal program

instructions, and no nonnal- or higher priority blanking occurs. Another

interrupt request may now interrupt the program while it is still busy with a

current interrupt subroutine. This deviation from normal operation is a small

price to pay to enable single stepping through the user interrupt subroutines as

well. In the Execute Mode, however, the nonnal- and higher priority blanking

is maintained.

In the Single Step and Break Point modes, the OPS bit stays cleared to swap the

interrupt vectors. The user interrupt simulation is done by placing the user

interrupt vector address plus 5000H in the stack. When the program returns, the

swapped memory areas will return the user code, now decoded between 5000H

and 502FH. The OPS bit is still cleared.

This partial swapping may create a problem if a user interrupt subroutine steps

over the 002FH and 0030H boundary, or when a relative or absolute jump is

used. The calculated program counter value will return the wrong code. If a

"Long Jump" is used instead to jump out of the interrupt vector area, the

complete and correct address is specified in the code and the instruction at the

correct address will be executed.

.
10. Software Description: /nlerrupt 0 Subroutine page 205



Programs compiled by a C-compiler usually make use of ajump instruction at all

the interrupt addresses and place the actual subroutine somewhere higher in the

code. When writing a program in assembler, and an interrupt subroutine is

longer than the allowed eight bytes, the user should also adopt this method.

A User External Interrupt 0 Pin, IRQ

Provision has been made for a user hardware Interrupt 0 input on the 'ffiQ' pin

of the edge connector, in place of the normal P3.2 pin. A high-to-low transition

on the ffiQ pin, will set a latch in the LCA. It will pull pin P3.2 low and

generate a normal interrupL There are three latches in the LCA that can pull pin

P3.210w: One is activated by the pressing of any key, and reset when a keyboard

read instruction is executed. The second latch is activated by the ffiQ pin, and

reset when a write instruction is executed to the LCA Control register. This

write instruction must follow a read instruction from the same address, to rewrite

the same previous data and not upset the 'OFF', 'Write Protect' and 'OPS' bits.

The third latch is the .Est; key or the SS or BP switch' latch that will also be

reset when reading from the Keyboard Register.

To test if the interrupt was generated by either the keyboard or from the user

hardware Interrupt 0, or from both, the state of pin P3.2 can be monitored while

resetting the Key Latch: If the pin P3.2 does not go high, the interrupt was from

the IRQ pin. To test if a simultaneous interrupt also occurred from the keyboard,

the DAV bit (Data bit 5) from the keyboard will stay set while a key is being

pressed. When implemented, these tests must all be included in the user interrupt

subroutine, or directly after it was executed.

10. Software Description: Interrupt 0 Subroutine page 206



The Interrupt 0 Subroutine Operation

The jump vector for the Interrupt 0 subroutine is located at address 5003h, but

it will be decoded as address 0003h when either the 'OPS' bit in the Control

Register, or the 'Escape Latch' are set. The program will jump immediately to

a location outside the swapped memory area to the rest of the subroutine located

in the Operating System code.

Immediately after entering the subroutine, the TCON register will be stored in

the stack and the timers disabled to try to maintain and conserve a possible timing

process in the user program. The TCON register value will be restored just

before the user program continues so that the timers can continue if they were

enabled originally. Only a few counts will be lost.

Afterwards, the registers used by the subroutine will also be stored in the stack

to conserve the current user values. If the system was busy executing a user

program in one of the Running Modes, the RUN bit in the Control Register would

have been set. This is used to select if this interrupt was a software interrupt or

an interrupt from the keyboard while in the Operating System. If it were from

the keyboard, the registers will be restored and the control handed back to the

keyboard routine with a normal "Return From Interrupt" instruction.

While in one of the Running Modes, i.e. RUN was set, the interrupt may be from

one of the following sources: It can be a user keyboard routine; an external user

interrupt on the 'IRQ' pin; a break created by a software interrupt; or an 'Esc'

key break. A user keyboard interrupt must have the KB bit in the Control

10. Software Description: InJerrupt 0 Subroutine page 207



Register set to restore the registers and return the control to the user keyboard

program. If a user program is run in the Execute Mode, the vector memory

swapping will not occur for a user keyboard or external interrupt. The user must

therefore supply his own interrupt subroutine at the normal vector address of

0003h.

The Interrupt 0 subroutine will make various test to test the origin of the

interrupt, as well as the state of the Running Mode Select switches, and act

accordingly. If a user interrupt was requested on Interrupt 0 or any of the other

enabled sources, the user interrupt vector address will be pushed into the stack.

This will simulate a normal hardware controlled interrupt subroutine. When the

system is set to the Break Poilll mode, the user program counter value in the

stack will be compared with the Break Point Table values. If a match was not

found, it will restore the registers and return to execute one more user

instruction. Should a Break Point match be found, or in all cases when the Single

Step mode was selected, or when the 'Esc' key was pressed, the micro

controller's SFR and internal data that will be corrupted by the Operating System,

will be stored in the Pre-Interrupt registers. Even the current displayed

characters and the cursor address of the display unit will be stored before control

is handed over to the "Edit Pre-Interrupt Register" mode

The Interrupt 0 Subroutine Operating Diagram, the Flow Diagram, and the

Assembler Listings are included on the next pages:

10. Software Description: /nJerrupt 0 Subroutine page 208



- Eo<
'RC)

TlnUl- Enter ",...om 50031"+ )CS~ In~er... up~ VQc~ors)

PU!i1"l TCON

StOP Tr..--s

Pusn ACe
._ CPL

~"""
Acc:-OC.,t.RQ

I~ '-":<:.7)

o (FrOfll EO I T 1'-:,d.O) I: CPr~ Running ..-)

CRie'ad1:: S\Jb: t:ey or

Swl't.C_ to SSl"BP)
Ta..-)":

~< 6 (~..d':: bit."'

1 (F.-Cfn ...- call 0

to ReodK sub) C"'~ SS, BP

I~Qt. I RJ Uot.ci br"_ or user

Reed ll:eySoard

<ox

"'- ~<

T",tSw: £CTCON] .1_1

Fa-DAV TsP32 : ~t....... oPTR~Acc

c-' _0 PS'<

Swltc_ ~ oPTR

~CEX~
01 (SS) ..~ 0

8.'-0 1Q (BP)

. ops.., ., 2 l' fmO .'0r(1::.)' or II'lQ
, ,

1Cm.~c

l~x
I rtt .... rUQ1:) ,

,-.. IRQ LDt.ch)

N:.c.l(eye.o.r-d 1 C"-y) o (Im:OISw) /"'d "'.....d
("'--et. I<:ey LDt.ch) 11(~'t t:ey L ..tch)

" ,
o C IRQ lnt.) 1 (lI::.y Int)

: Rest.ore ReQlllit.e.-sl Po;f1 10: F1Q..et 1Ra Late" I
" ..00II St.8C!<. CPl._LOW Rete AOd T~, Ir·enyOt

I nte...-'-uPt -
RET' ) e'"'ll.bled ANO_t..

It. l;>OCI<: t.o Ree<lK S<..JI:» T~ ~

DPL_LO Ro' _

~CI_" "I ..OC

I..,
A

_~OJOH ,"",5tle:

_.
St...k Up

''''cllrn : T_
~ 2 byt_~ r...-l.

I~ "'-0- '0
HI.-..:ld-HIAdd-'$O 1 TCl:lN • n s1;,,«I<
CSwat>Po>d Add _

Pus" tp~ LoAQcI)

.......... 11<1 In st.adc:) PU5l"l ...1 ~OO_.
"'d t:eyEioer"d /

I,.x
Eo< "'_

SW
TSl-SP" 1'0 CBP)"" CSS)

1:-"0 PC ·"°.1Br_pclrtt....

t_t BDQrI' .~

I~tc.,
IT- No or E~

sa,,~: 5.-...._ ~j.1:""••O"ICI

~ bytes 1 n1:.erna I

De.1:. I .. ........"...."

OPS:lJ (S"""P .....:1:..0"".)

I'<l..-O (EO 1T 1<o'oOe)

Pl...s., DspS~

I
.ET< ..JfI'II:> ~tU5

CEx

"'tEx

(&11: ln1:.__r...n to Stcr_ DisPlay I.., IoIc><:>- 2)

FJg.I0.41. Interrupt 0 Subroutine Operating Diagram

10. Software Description: InJerrupt 0 Subroutine page 209



Enter ~rom S003H

TINTO: Puosoh TCON

Stop Tlroer-s

Push Ace

Push DPL

Push OPH

Aec--octrRQ

TsP32: Pc::,.:I OPTR

Pop Ace

Push TCON

Push Ace.

"""" 0
Push PSW

PUlSh OPTFI·

P3.2=1
IniTO

Edit Mode

gcntRQ=A

PsMIO

RetE><; Pop [)PH

Pop OPL

Pop Ae.e.

TsTO

!=IETl

ACe. • a.1 >TCs,P::.=3~2_,

PshIO: Ace.=l!PCntl=!Q

@tCrttRg...Ae.e.

Of'\-l '" FFH

OF'L - 03H

.......Stk

I=leedl( Sub

OCn"t.Ro.=l=A

Esc: I(ey LTCs",-P"302~_+---1

Vel.- Only

Ace.="CH
TstSo-

....... Stlc::

NK5tk:

PUGh RO

RO=SP ...2

SP=SP-'5

Ac;e.=(TCON]

A=A AN) DPH

R.irstore (TCON]

SP=SP ... 5
t.bv. 6 s"t.e.e.1<:

bytes 2 pi oe.es

1.0 'for Ffet AOO.

Nolnt

Read Sw&OA.v

a:TCONJ OR 03

FO_ACe . se DAV)

e-,

.me

Nolnt:

TsOAV
Ace.6.t:1

Clr B[TCON).

,a,....-OCotRg

Ace. OCOPS)_1

lICm:.RQ=A

TstSw:

FJg.I0.42. Interropt 0 Subroutine Flow Diagram (page 1 of 2)

10. Software Description: InJerrupt 0 Subroutine page 2/0



NoChg:

ISvRg:

T5itBP:

TLllSt.:

Nx"'Cn:

Is"'Cn:

NOMen:

Blank: In Value

Keyot1CH

Bla.nk In Swlte:~

SW.SOH
'SvRg

Pus,", RC

Push B

RO=SP-8

DPTR=-8PAef

B=Low SPAeI"

A=HI .." BP'kt'f

A=AOQS

lBExt

A=Low ~Rel"

Jnc OPTl

B=QlRO [PCL)

Dec OPL

'ne FOe

A=HIgt1 BPFle1'

e-Fe (PCH)

00< RO

..e

lne OPTR

TLast.

18Ext

IEiExt. ;

TsTD:

TSSer- :

18Ext.

~ R.-tl.Ja

(SS Exit.)

TsTO

TsX1

TsX1
TFo..t1

TsT1
EX[);.,I1

TsT1
IEG-'1

...Jr<p ...... St.k

ET1:ot1

.)rrp ...... St.k

INOln

1=11"'1

INcln

SevRg: Pop and St.ore;

DPH. DPL. PS.....

Ace:.. TCON.. PCH

and PCL.

Star. Reo Jet....

B.. SP. lE. II'.

n.IJO.. TLO. THO.

TL1 .. T1-I1.

Store f ..."t 2"!

"'10ll: I nt.... ,... I Date.

I:>yt_.

SP=07H

Clear ACe:

~Ro--Ac:e:

QPTR-StMsg

Push [)PTR

ReT>

(Exit. Int.........ot. t.o OPSYS)

FJg.IO.43. Interrupt 0 Subroutine Flow Diagram (page 2 of 2)

10. SoftwaTr! Description: lnurrupt 0 Subroutine page 2ll



Assembler Listing

1**********************************************************
; Operating System Reset and Interrupt Vectors
;**********************************************************

eRG 5000H
JMP START

XINTO:

TOINT:

XINTl:

TlINT:

SXINT:

eRG 5003H
JMP TINTO
DB 255,255,255,255,255

eRG 500BH
RETI
DB 255,255,255,255,255,255,255

eRG 50l3H
RETI
DB 255,255,255,255,255,255,255

eRG 50lB8
CLR e
RETI
DB 255,255,255,255,255,255

eRG 50238
RETI
DB 255,255,255,255,255,255,255
DB 255,255,255,255,255

1**********************************************************
; Interrupt 0 Subroutine from 50038
;***************************************************•• *****

;
;
;
;
;
;

;

Enter from Software SS, BP or Esc Key Interrupts
only if OPS=O, or if (OPS=l) AND (ESe key pressed OR
switches switched to SS or BP).
Corrupt in :

• EDIT Mode: 6 stack bytes
• Running Mode (SS&BP&Esc): TCON.1, 9 stack bytes

(+2 IntSub)
• User ReadK sub: B.l, e, FO, 6 stack bytes

TINTO:

RetE><:

TBusy:

PUSH TCON
ANL TCON,#lOlOllllB
PUSH Acc
PUSH DPL
PUSH DPH
MOV DPTR, #entRg
MOVX A,@DPTR

JB Acc.7,TBusy

MOVX @DPTR,A
MOV DPTR,#KyBrd
MOVX A,@DPTR

POP DPH
POP DPL
POP Acc
POP TCON
RETI

JNB Acc.6,TsP32

;stop possible timers

;Get RUN Bit

;Jump if in Running mode
;Else, in Edit Mode - Restore
;Reset possible IntO Latch

;Read key & reset Latch

;Restore registers

;Exit back to ePSYSjReadK Sub

;Jmp if KBusy flag not set

10. Softwar~ lkscription: Interrupt 0 Subroutine pag~ 212



TstSw:

TsDAV:

TsP32:

ITsTO:

PshIO:

MvStk:

i

NXStk:

MOVX @DPTR,A
MOV DPTR,IKyBrd
KOVX A,@DPTR
ANL A,IIFH
CJNE A,IICH,TstSw
JMP TsP32

MOVX A,@DPTR
ORL B,103B
MOV C,Acc.S
MOV FO,C
SETB C
JNB Acc.7,TsDAV
JNB Acc.6,TsDAV
CLR B.l
MOV DPTR,#CntRg
KOVX A,@DPTR
SETB Acc.O
MOVX @DPTR,A

JB FO,RetEx

Pop DPH
Pop DPL
Push PSW
ANL PSW,IIIIOOIIIB
Push DPL
Push DPB

JB P3.2,ITsTO

KOV DPTR,IKyBrd
MOVX A,@DPTR
JNB P3.2,PSBIO

Jmp TsTO

MOV DPTR,ICntRg
MOVX A,@DPTR
MOVX @DPTR,A
MOV DPB,IOFFB
MOV DPL,103B

Push OOH
MOV RO,SP
Inc RO
Inc RO
MOV A,SP
ADD A,IOFBB
MOV SP,A
Pop Ace
ANL A,DPB
Push Ace
KOV A,SP
ADD A,#OSB
MOV SP,A
MOV DPB,106B

Move Stack up 2 bytes

POP Ace
MOV @RO,A
DEC RO
DJNZ DPB,Nxstk

; Else, busy with ReadK sub
ilgnore possible IntO Latch

iRead Key & Reset Key Latch
iBlank in Key Value
iTest if Esc key and
i go through to SavRg

iRead SW and DAV
iSet software int on ReadK exit
i and ensure Edge Triggered
iStore DAV = Acc.S
ilndicate Key-int for ReadK
iTest mode setting and
i if SW 11 (EXE), clear
i software Int in B[TCON].l
i to prevent interrupt when
i returning from ReadK sub.
iOPS=l for user int vectors

;Return if it was another key

iSelect Bank 0

iJmp if software Int

iRead Key
iJmp if Usr IntO

ilntermediate Long Jump

;Write to reset IntO Latch
;No alterations to TCON
;User Sub Low Address

iStore RO

;To new Ra position

iSubtract S
iPoint to saved TCON

iClear Int F.ag
iStore TCON

iBack to old RO

iGet byte & Dec SP
;Store in new place

iMove 6 bytes

10. Snftwan Description: Interrupt 0 Subroutine page 213



Nolnt:

PshHA:

NoChg:

;

lSvRg:

TBPMd:

TstBP:

PUSH DPL
CLR A
PUSH Ace
MOV A,SP
ADD A,IOGH
MOV SP,A
POP OOH

MOV A,SP
ADD A,IOFAH
MOV SP,A
POP Ace
PUSH Ace
CJNE A,130H,$+3
mc NOChg

lNC SP
POP Ace
CJNE A,150H,PshHA
CLR A
Push Ace
DEC SP

MOV A,SP
ADD A,IOGH
MOV SP,A

Test for Esc key

MOV DPTR,IKyBrd
MOVX A,@DPTR
ANL A,llFH
CJNE A,llCH,TBPMd

Jmp SavRg

MOVX A,@DPTR
ANL A,IOCOH
CJNE A,180H,lSvRg

PUSH OOH
PUSH B
MOV A,SP
ADD A,IOF8H
MOV RO,A
MOV DPTR,IBPRef

;LOW User lnt Add

;Hi User lnt Add

;point to new RO pas

;Restore RO

;Point to Hi Return Add

;Dec & Pop Lo Return Add
;Restore SP

;No change if LoAdd not < 30B

;Dec & Pop Hi Return Add
;Jmp if not Busy in User lnt

iRestore SP

;Blank in Key Value
;Test if Esc key was pressed

;Also intermediate Long Jmp

;Blank in Switches
;Jmp if not BP Mode

;Store RO
iStore B

;Subtract 8
;Point to PCL
;Lo BPRef

; Test if Last BPRef (=OOOOH)

TLast: MOVX A,@DPTR
MOV B,A
lNC DPL
MOVX A,@DPTR
DEC DPL
ORL A,B
JZ lBPEx

;Get LoBPR

;Get HiBPR
; DPTR->LoBPR
;OR with LoBPR
;Test if last 8PRef=OOOO

; Match Break Point with Program Counter

NxMch: MOVX A,@DPTR
lNC DPTR
MOV B,@RO
CJNE A,8,NoMch
lNC RO
MOVX A,@DPTR
MOV B,@RO

;Get Lo BpRef
; DPTR->HiBPR
iLa PC
;Test if.LoPC=LoBPR
;RO->HiPC
;Get HiBPR
;Get HiPC

10. Software Description: Illlerrupt 0 Subroutine page 214



IsMch:

NoMcH:

IBPEx:

DEC Ra
CJNE A,B,NoMch

POPB
pop OOH
JMP SavRg

INC DPTR
JMP TLast

POPB
POP OOH
JMP RetUs

;[ROJ->PCL (Reset Ra)
;Test if HiPc=HiBPR

;Reset Stack to Save Reg

; entrys to SavRg

; [DPTRJ=Next LeBPR
;Jmp to test if last BP

;Reset stack to exit

;RETI exit to User Program

;Clear TFO
;User TO Int Le Add

;

TsTO:

;

Test interrupts from TO, Xl, TI and Serial

JNB ETO,TsXI
JNB TFO,TsXI
MOV DPH,IIIOIIIIIB
MOV DPL,IOBH
Jmp MvStK

Test User External Interrupt 1

TsXl: JNB EXl,TsTl
JNB IEl,TsTI
MOV DPH,IIIIIOIIIB
MOV DPL,I13H
Jmp MvStk

;Clear IEl
;User Intl Le Add
iJmp to Move stack up 2x

; Test User Timer 1 Interrupt

TsTl:

;

INoIn:
TsSer:

IsSer:

JNB ETl,TsSer
JNB TFl,TsSer
MOV DPH,IOIIIIIIIB
MOV DPL,IIBH
Jmp MvStk

Test User Serial Interrupt

JMP NoInt
JNB ES,INoIn
JB RI,IsSer
JNB TI,INoIn
Push Acc
MOV DPH,IOFFH
MOV DPL,I23H
Jmp MvStk

;Clear TFl
;User TI Int Le Add
;Jmp to Move stack up 2x

;No Changes to TCON
;User SerInt Le Add
;Jmp to Move stack up 2x

; Save Registers before going to Opsystem

SavRg: MOV DPTR,IMDPH ;Memory start=!
POP Acc
MOVX @DPTR,A ; Store User DPH
DEC DPL
POP Acc
MOVX @DPTR,A ; store User DPL
DEC DPL
POP Acc
MOVX @DPTR,A ; store User PSW
DEC DPL
POP Acc
MOVX @DPTR,A ; Store User Ace
MOV DPTR,IMTCON
POP Acc
MOVX @DPTR,A iStore User TCON

10. SoftwtlTe Description: Interrupt 0 SubroUJine page 215



NxIDa:

MOV TCON,/OIH
MOV DPTR,/MPC+I
pop Ace
MOVX @DPTR,A
DEC DPL
pop Ace
MOVX @DPTR,A
MOV DPTR,/MBReg
MOV A,B
MOVX @DPTR,A

INC DPTR
MOV A,SP
MOVX @DPTR,A
INC DPTR
MOV A,IE
CLR Acc.7
MOVX @DPTR,A
MOV IE,/SOH
INC DPTR
MOV A,IP
MOVX @DPTR,A
MOV IP,/OIH
INC DPTR
MOV A,THOD
MOVX @DPTR,A
INC DPTR
INC DPTR
MOV A,TLO
MOVX @DPTR,A
INC DPTR
MOV A,THO
MOVX @DPTR,A
INC DPTR
MOV A,TLI
MOVX @DPTR,A
INC DPTR
MOV A,THI
MOVX @DPTR,A
MOV DPTR,/MIDat
MOV A,OOH
MOVX @DPTR,A
INC DPTR
MOV RO,/OIH

MOV A,@RO
MOVX @DPTR,A
INC RO
INC DPTR
CJNE RO,/ISH,Nxlda

MOV SP,/07H
MOV DPTR,/CntRg
MOVX A,@DPTR
ANL A,/OIIIIIIOB
MOVX @DPTR,A
MOV DPTR,/StMsg
PUSH DPL
PUSH DPH
RETI

iReset Ex & Timer lot Flags

iStore User PCH

;Store User PCL

;Store User B Reg

;store User SP

iPrevent lots when restoring
iStore Oser lE
;Reset current Interrupts

;Store User IP
;All Low except PXO

;~tore User TMOD

;Step over MTCON

;Store User TLO

;Store User THO

;Store User TLI

;Store User THI

;RO bank 0
;Store User RO Bank 0

;Point to 2nd Idata

;Read & Store Idata

;Store next 23 bytes

;Define stack for Mem Edit

;Clear EDIT and OPS bits
iOPS=O to swap lot vectors
;Jmp to Store Display data
; in Mode 2

;RETI to StMsg & exit interrupt
; mode to enable interrupts

;**********************************************************

10. Software Description: InJeTTl1pt 0 Subroutine page 216



10.20. Restore and Return to Execute the User Program Routine

This routine will be executed when the 'Exe' key is pressed from within the

Operating System. It will continue the execution of the user program after a

break.

..... 5'

s

OOH

En"t-eo'" c:t"'ter Exe Key

/ Restore OISoPI8Y/

Read KeyBoard /

IDAV (Ace. "
I' (St.lll Pressed) o (Released)

lRestore Cursor /

rup< [)an Store. I
I=lestore "('lrst 2.

ored Display [)an Int-ernel Dat.a by't.e5

<~ed ClrSOr'" Position Re'st.ore ReQ I sters .

lrs't. 2. 1Dri!l"t.iIl byt.es B, SP. lE (EA_C).

HO IP CPXOc1)~ n.oO,

U TLO. THO. TL1. TH1.

HO SuI Id new St.eck: :

La OPH. OPL. PSW. Ace

CON TeON. PCH. PCL.

0 I
P fRee.d l(eyBoe....-d /

E I
P C _ Ace 6 AND Aee 7- (C=1 EXE. e-O SS&6P)

CL" Ace

L Ace.O=C COPS)

SW Ace.7""1 (RUN M:::lde)

e OCnt.F:1Q:A,Cc

<~n Add Acc:TCON 'form Stock

P Tat-le End (0000) CPL C CC.. , ,~ SS&8P)

P Table TeON," (lED) - C

Rest-ore TeQN 'n St.ack:

e.ck.. C

o CEXE) \' CS,..P)

Re< Add<OO301-l

No
ITe

Add=Add.~O

I

I=les't.ore ~ " ....om St.ack:·

ble Ret. ...... n AOd [)PH. ope. p"". Ace. TCON.."" "" 'n • Scb. ....0 (Enable I..,t.......up'ts)

'n I De.t.e. M9m.

ove.-eel 'r~ ( PET' )

TDON
PCL

PCH

(Possi

" be
St. I I!

Ace

SF' -7
OPH

OPL

.".

Pr-e- I nt.er

FOS6-F07A." St.

FQ6A: 5

F052-F069' F

F051: T

F050 T

F04F: T

F04E; T

FQ40· T

FQ.4C; TMO

FQ4B;

F04A:

FQ49: S

FQ48: e

Fa47· [)PH

FQ46: OP

F045: P

F04.. : Ac.

F042-F043: Re

F040-F041: B

FOOO-F03F: 8

FIg.I0.44. Restore and Return Operating Diagram

10. Software Description: Restore and Return Routine page 217



Exe

Rst.Sk
..!NC

SS&8P

.JNC

Acc.::t'O

RSt.St

Acc<30H

Dec SP x 2

Aee = [PCLow]

I ne SP x 2

StPCH:

~stSt :

ed

( Entry from MaIn

I MsoSt

f Restore Display /

/~ead KeyBoard /

DAV=1

Key Reteas

/ ~estore Cursor/

T
Rest.ore 24 bits

j nterna I Data

Rest.ore Registers:

B,SP, lE, lP, TMOD,

TLO,THO,TL1,TH1.

Bur Id new st.ack:

PCL#PCH# TCON#ACC;

PSW,DHL,DPH.

SP=SP-4 [TCON]

T
/ Read Switches /

C=Acc.6 AND Acc.7

Clear Ace

Ace.1=C COPS)

Ace.7=1 C~UNJ

fl)Cnt Rg:;;;:Aee

CPL C

[TCON. 1]-C [EXO]

I

SSExt:

NxOal:

PstSk ; Restore ~gjsters:

DPH; DPL~ PSW#

Acc; TCON.

(Ret.urn t.o Execut.e USer Program)

FJg.I0.45. Restore and Return Flow Diagram

10. Softwan Description: Restore and Rerum RoUlw page 218



Assembler Listing

;**********************************************************
; Restore & Exit Routine
;**********************************************************

SSExt: ANL PSW.#lllOOlllB ;Set Bank 0

; Restore Previous Display Message & Cursor

MOV DPTR,#KsgSt
CALL DspMg
MOV DPTR.#KyBrd
MOVX A.@DPTR
JB Acc.5.$-1
MOV DPTR.#DsCSt
MOVX A.@DPTR
MOV DPTR,#DspCm
CALL WrDsp

;'(Previous Message)'
; at the Xdata Address

;Wait for key release
;Get old Cursor Add

;Replace CurAdd

; Restore first 24 Internal Data bytes

NxDaI:

;

MOV RO.#17H
MOV DPTR.#MIdat+23

MOVX A.@DPTR
MOV @RO.A
DEC DPL
DJNZ RO,NxDaI
MOVX A, @DPTR
MOV RO.A

Restore SFRs

MOV DPTR,#MBReg
MOVX A.@DPTR
MOV B,A
INC DPTR
MOVX A,@DPTR
MOV SP,A
INC DPTR
MOVX A,@DPTR
CLR Acc.7
MOV IE,A
INC DPTR
MOVX A,@DPTR
SETB Acc.O
MOV IP.A
INC DPTR
MOVX A,@DPTR
MOV TMOD,A
INC DPTR
INC DPTR
MOVX A.@DPTR
MOV TLO,A

INC DPTR
MOVX A.@DPTR
MOV THO.A
INC DPTR
MOVX A,@DPTR

MOV TLl,A

;23 bytes

;Get RO

;EA = 0

;IntO Hi-Priority

lOVer TCON

LO. Softwtur! Description: Restore and Return Routine page 219



INC DPTR
MOVX A,@DPTR
MOV THl,A

MOV DPTR,#MPC
MOVX A,@DPTR
PUSH Ace
!NC DPTR
MOVX A, @DPTR
PUSH Ace
MOV DPTR,#MTCON
MOVX A,@DPTR
SETB Acc.O
PUSH Ace

MOV DPTR,#MAcc
MOVX A,@DPTR
PUSH Ace
INC DPTR
MOVX A,@DPTR
PUSH Ace
INC DPTR
MOVX A,@DPTR
PUSH Ace
INC DPTR
MOVX A,@DPTR
PUSH Ace

;Build New Stack
;PCL->Stack

;PCH->Stack

; TCON->Stack
;Set IntO edge triggered

; Acc->Stack

;PSW->Stack

;DPL->Stack

;I1PH->Stack

Clr/Set OPS, IEO and add 5000H to Int Vectors if < 003

RetUs:

TRstS:

StPCH:

MOV A,SP
ADD A,#OFCH
MOV SP,A

MOV DPTR,#KyBrd
MOVX A,@DPTR
MOV C,Acc.6
ANL C,Acc.7
MOV DPTR,#CntRg
MOVX A,@DPTR
MOV Aee.O,C
SETB Acc.7
MOVX @DPTR,A
CPL C

JB Aee.6,TRstS
POP Ace
MOV Ace.l,C
PUSH Ace

JNC RstSk

DEC SP
DEC SP
POP Ace
lNC SP
lNC SP
CJNE A,#30H,$+3
JNC RetSt
POP Ace
JNZ StPCH
MOV A,#50H

PUSH Ace

;Subtract 4
;TCON is Top of Stack

;55 bit
;C=l for Exe, c=o for SS/BP
;Set up CntRg

;OPS=l for Exe. 0 for SS &
;EDIT=l for all Running Mod
;Write to LCA COntrol Reg
;C=l for SS & BP modes

;No software int for ReadK
iTCON in Ace
;Set up for Software Int
;TCON is top of stack

;No Change of PC for Exe Md
;Hi Add => ~JH for SS or BP
; if Add < 0030H
;Point to PCL
;Aec = PC Low
;Restore SP
;PCH is top of stack
;Test Ace < 30H
;C = I if Add < 30H
;A <- PCH
;Jmp if PCH not OOH
;User lnt swapped Hi Add

;Restore PCH

10. SoftwtITl! Description: Restore and Return Routine page 220



RstSt:

RstSk:

INC SP

MOV A,SP
ADD A,/04H
MOV SP,A
pop DPH
pop DPL
pop PSW
pop Ace
POPTCON
SETB EA

RETI

;Point to TCON

;stack points to DPH
;Restore User DPH
;Restore User DPL
;Restore PSW and Bank
;Restore User Ace
;Restore TCON and Int Flags
;Enable Interrupts

;Jump to Usrpg or UsrInts

;**********************************************************

10. Software lkscription: Resto~ and Return Routine pag~ 221



10.21. Supplementary Subroutines: Delay, Display and Keyboard Drive

Among the rest of the subroutines are a few delay routines, which can delay

operation from very short delays from approximately 40 micro-seconds up to one

second. These are used for display driving routines and the flashing of messages

on the screen. These routines use Tuner 0, and the Timer 0 Interrupt subroutine

contains only a "Return From Interrupt" instruction.

The Display Module driving subroutine is used extensively by the Operating

System, and is also available to the user. All that need to be done by the user,

is to define a 16-character data block, and to enter the routine with the address

of the first character of the data block in the Data Pointer. The display driving

subroutine uses the delay subroutines above, and the necessary timer interrupt

subroutines must be included in the user program.

If a user program is run on the board, it is not required to initialise the display.

That will be done automatically on power-up. If the user program is going to be

used on another board, the initialisation sequence for the display unit must be

included. The routines in the Operating System may be used as a template for

driving any similar LeD Display Module.

The Keyboard Read subroutine used for the Operating System is a bit more

complex than what would normally be required by a system, but it was necessary

to cater for all the possible scenarios in using the entire system. The 3-minute

auto-off facility is also contained in this subroutine. A timer and the DPTR as

a down counter were used. The keyboard subroutine is also available for user

-
10. Software Description: Supplememary Sub-Routines page 222



subroutines, by simply calling the correct subroutine address in the Operating

System. The starting addresses for useful subroutines in the Operating System

are included in the appendix.

When entering the keyboard read subroutine, it will wait for any previous keys

to be released first, before it will go into the power conserving idle mode of the

miero-controller. The controller will only "wake up" when a key is pressed and

it will return with the key value from 'OOh' to 'lFh' in the accumulator, without

waiting for the key to be released. This will create the effect that when a key is

pressed, immediate action is taken, and not only after the key was released.

The 'Esc' key and the 'Reset' key should not be implemented in a user program.

The 'Esc' key will return control to the Operating System, and the 'Reset' key

will cause a system reset.

The user External Interrupt 0 and Timer 0 subroutines to serve the Keyboard

subroutine need only contain single "Return From Interrupt" instructions.

Keyboard Buffer Contents (Address X:F300H)

DO-D4

D5

D6

D7

The current or the last key value

Data Available (DAV): 1 = Key presseJ, 0 = Key released

Single Step Selection switch state - Swl (1 if ON)

Break Point Selection switch state - Sw2 (1 if ON)

The Flow Diagrams and Assembler listing for the above and related subroutines

are included on the next few pages:

-
10. SI1ftwan Description: Supplemelllary Sub-&urines pog~ 223



Wait Short Sub Flow Diagram. Ol$pl ..y Me-'!S!5ag,e Sub Flow Dlagra....

Qv.. Tm

I

Ent.... WPseo;;; OPTR=&4j(-( no _ o~ 0 2mse<:;)

Set:C: (;;1

EXD=1

Idle.

EXo-D

"C
I!ll(ey

ev..T",:

""NZ •

Pop OPTR

In; OPTR

pusn DPTR

Read OD.ta

Clr EXO

OPTR.ElOOO

De< DFTR
Push OPTR

C....sor G SO

B-101-C 16)

ClT50r lJ CO

D..... '

......Ite to Olspla

..,,,

NoDec:

D!5Mg1 :

(O_2rnsec)

)
I

Cl .. EXO
TMOclobdO:2

THQ:;-4e;H

Enebl<t1 ETO

Flun TUC

Clr EXO

~,

TLI'J_FF06 ( ""OuS)

Enable ETO

Flun TO

Idle Mode

Stoo TO

Dlsat>le ETO

Seta EXO

""sec

( RET

Will t 1 Sec:ond Sub Flow 0 I ..gr......

we I t Part 01' Il sec;:ond 5Lb.

WSI-IRT:

wPSee :

W1SQc: DPTR:F1FO

W110l,..: Idle MOde

lne [)PTR

....DPH

ORL ""'-

Foe:> OPTR

RET

Read Keyboard Sub Flow Ol~a... _

PUS" "'cc

.....OCntRg

1<:.C .6=0

OCntRQ=A

QvT.

OvrTm

Pop ACe

Ace: AND 1F

TCON=8

EXO=1

Stap&Clr T"'1

OvTm-

(71tnSec)

(3,.,ln)

(1<:.c 7)

(Reset "elf

Lat.ch)

Tm'''''''od 1

T",1=OOOO

DPTR-F61OH

Flun .. Ere

Timer 1

EXo-D

l=<eOO "yBr-d

A=OCnt:Rg

Set KSUSY l' 1BQ

LOC"""C"-"""'r J CStore a. RIot:

IRQ Latc"')

Red1C2:

Call WLo",",

OPTi=looo{1. ems)

Cleer Olsolev 5Lb Flo_ DIeQr"8I'II_

CIOsop:

Call WLo"'i!

avrT...

FJg.I0.46. Supplementary Subroutine Flow Diagrams

10. Software Description: SupplerMnJary Sub-Roll1ines page 224



Assembler Listing

;**********************************************************
i Supplementary Subroutines
;**********************************************************
i Write some Data or Instruction to Display Module
;****************************************************.*****
i Wait Short Subroutine (40 /lS)
-*****************************************************._-*,

i
i

WrDsp:

Corrupt: TInO, EXO=l
Subs & Stack: 4 = 2 (TOInt 2)

MOVX @DPTR,A

WShrt: CLR EXO
ANL TCON,IIIOOIIIIB
ANL THOD,IOFOH
ORL THOD,lOlH
MOV THO,IOFFH
MOV TLO,IODBH
SETB THO
SETB ETO
ORL PCON.lOlH
CLR THO
CLR ETO
SETB EXO
RETI

iDisable SS ints
iStop & Clr Timer 0
iReset Timer 0
iTimer 0 = Mode 1

i40 /lS
iRun Timer 0
iEnable Timer 0 Interrupt
iIdle Mode
iStOP Timer
iClear Interrupt
;Enable software inta

-****************************************.*** •••***********,
i Wait 1 or Wait a Part of a Second Subroutine
;**********************************************************

i Enter: WPSec with DPTR = 64K - Loop Counter (0.2 msec/count)
i COrrupt: TmO, DPTR, ACC, EXO=l
i Subs & Stack: 4 = 2 (TOINT 2)

WlSec:

WPsec:

WlIDL:

MOV DPTR,IOE284H

CLR EXO
ANL TCON,lIlOOIIIlB
ANL THOD.lOFOH
ORL THOD,I02H
MOV THO,I48H
MOV TLO,I48H
SETB THO
SETB ETO

ORL PCON,lOlH
INC DPTH
MOV A,DPH
ORL A,DPL
JNZ WlIDL
CLR THO
CLR ETO
SETB EXO
RET

i64K - E284h = 1 sec

;Prevent SS ints
iStop & Clr Timer 0
iReset Timer 0
iTimer 0 = Mode 2
;0.2 msec each

;Run Timer O'
iEnable Timer 0 Interrupt

iIdle Mode

iTest if loop done
iStoP Timer
iClear Interrupt
iEnable possible SS int

;**********************************************************

10. Software Description: SupplemenJary Sub-Rowines page 225



-**********************************************************,
; Clear Display Subroutine
-**********************************************************,

; 'Reset & Clear Instruction'
;Write command
;Wait 1.8 ms

;
;

ClDsp:

COrrupt: DPTR, Ace, TroO, EXO:l
Subs & Stack: 6 = 2 (WPsec 2 (TOINT 2)

MOV DPTR,#DspCm
MOV A,#OlH
MOVX @DPTR,A
MOV DPTR,IOFFF6H
CALL WPSec
RET

;**********************************************************
; Display 16 Character Message Subroutine
-**********************************************************,
;
;
;

Enter: Message Lable in DPTR (Code Address)
COrrupts: Acc, B, C, TIDO, EXO:l
Subs & Stack: 8 : 4 (WrDsp 2 (TOINT 2)

DspMg:

NoDec:

DsMgl:

DsMg2:

DsMgX:

CLR EXO
ORL DPH,#aOH
DEC DPL
MOV A,IOFFH
CJNE A,DPL,NoDec
DEC DPH

PUSH DPH
PUSH DPL
MOV DPTR,lDspCm
MOV A,laOH
CALL WrDsp
CLR EXO
MOV B,#lOH

pop DPL
pop DPH
INC DPTR
PUSH DPH
PUSH DPL
MOVX A,@DPTR
MOV DPTR,lDspDa
CALL WrDsp
CLR EXO
DJNZ B,DsMg2
Jmp DsMgX

MOV A,B
CJNE A,lOaH,DsMgl

MOV DPTR,lDspCm
KOV A,IOCOH
CALL WrDsp
CLR EXO
JKP DsMgl

pop DPH
pop DPL
SETS EXO
RET

;Prevent SS interrupts
;Set DPH.7 to read as Xdata
;1 less than Message Ref

;Jmp if No decrement of DPH

;Place cursor on 1st Char

; Byte COunter

;Get Message Ref in DPTR

;Increment &
; store for next byte

;Get Character as XData
;Display Data Address
;Write Character

;Donel

;Cursor on 2nd disp line

;Reset Stack

;Enable SS Interrupts

;**********************************************************

ID. Software Description: Supplementary Sub-Rourine.r page 226



;**********************************************************
; Read Keyboard Subroutine & Auto-off Timing
;**********************************************************
; Exit: Key value in Acc, 3 MSB's masked, (Auto-off)
; EDIT Mode:
; COrrupt: Tm1, DPTR, Acc, B, C, nO=1
; Subs & Stack: 8 = 2 (XINTO 6), 4 = 2 (TIINT 2)
; RUN Mode: (User ReadK call)
; COrrupt: DPTR, Acc, B, C, FO, TCON.I, nO=1
; Subs & Stack: 8 = 2 (XINTO 6)

ReadK:

RedK2:

OvrTm:

SetC:

IsKey:

0vTm:

MOV B,TCON
MaV TCON,#OIH
CLR EXO
MOV DPTR,/KyBrd
MOVX A,@DPTR
MOV DPTR, ICntRg
MaVX A, @DPTR
SETB Acc.6
MOVX @DPTR,A
JB Acc. 7,OvrTm
ANL THOD,/OFH
ORL THOD,/IOH
MOV TBl,/OOH
MOV TLl,/OOH
MOV DPTR,/OF61DH
SETB TBI
SETB ETI

SETB ITO

SETB C
CLR IEO
ORL IE,/8lH
ORL PCON,/OIH

CLR EXO
JC IsKey
INC DPTR
MaV A,DPL
ORL A,DPH
JNZ SetC
CLR TRl
CLR ETl
MOV SP,/07H
JMP ModFI

MaV DPTR,/KyBrd
MOVX A,@DPTR
JNB Acc.5,RedK2
JNB P3.2,RedK2
PUSH Acc

MOV DPTB,/cntRg
MOVX A,@DPTR
CLR Acc.6
MaVX @DPTR,A
JB Acc.7,0vTm
CLR TRl
CLR ETl

POP Acc
ANL A,/IFH
MOV TCON,S
SETB EXO
RETI

;Preserve lEO for SS&BP if
; sub is used by a User Call
;Prevent SS & BP Interrupts

;Read key to reset Key latch
; during this sub
;Get RUN bit
;Indicate busy with ReadK sub
;Store & Reset Usr Int Latch
;Don't set Auto-Off if in
; a Running Mode (RUN = 1)
;Set Timer 1 to Mode 1
;Max TLmer count = 71 msec

;1531 x 71ms = 180 seconds
;Run Timer 1
;Enable Timer 1 interrupt

;Int 0 edge triggered - must
; release key & press again
;C will indicate which int-sub
;Clear INTO flag if set before
;Enable All and INTO
;Wait for Key (or Timer)
;Acc is still @CntRg
;Prevent Software Int
;Jump if int was from Pin
;Else it was from Timer

;To idle if not terminal count
;Stop & Disable Timer

;Empty Stack
;To direct save and off

;Keyboard Address
;Read Keyboard & Rst Key latch
iRepete if it was the switches
;Repete if INTO was Usr IntO
;Store Key value

;Get EDIT bit. Cleared while
; in Qpsys or Edit Mode.
;Almost done with ReadK sub

iOver Timer in a running mode
;Stop Timer I
iDisable Timer 1 interrupt

iRecover Key value
;Mask out 3 MSS's(SS,SP & DAV)
;Restore TCON (Software Int)

10. Softw"" De.rcription: Supplementary Sub-RouriMS page 227



i**********************************************************
i Binary Nibble to ASCII Conversion Subroutine
i**********************************************************

Enter:Nibble in LSN of Ace
Exit:ASCII in Ace
COrrupt: Ace, C, 2 Stack Bytes

BnASC:

BnAsS:

ANL A,#OFU
CJNE A,IOAH,$+3
JC BnAsS
ADD A,107H
ADD A,I30H
RET

;Hask KSN
;Test > 10H
;Add only 48 if is
;COrreet for A - F
;Add 48

.**********************************************************,
; ASCII to Binary COnversion Subroutine
.**********************************************************,

Enter:ASCII in Ace
Exit:Nibble in Ace
COrrupt: Ace, C, 2 Stack Bytes

AseBn:

ASBnS:

ADD A,IODOH
CJNE A,IOAH,$+3
JC ASBnS
SUBB A,I07H
RET

;Subtraet 48
;Test > 10H
iLeave as is if not
i correct for A - F

.***.**-*****-******-*****.***********-********************,
; Messages Listing
i**********************************************************

MagOO:
MsglO:
Msg20:
Msg30:
Mag40:
MsgSO:
Mag60:
Mag70:
Mag80:
Mag90:
MagAO:
MsgBO:
MagCO:
MsgDO:
MagEO:
MsgFO:
Magll:
MagIS:
Mag19:
Mag1D:
Msg2l:
Msg22:
Mag23:
Msg24:
Mag2S:
Mag26:
Msg27:
Hsg28:
Mag29:
Hsg3l:
Hsg32:
Hsg33:
Hsg4l:

DB 'Main Menu(',6,',Ent)'
DB 'Edit Mem Segment'
DB 'Edit Pre-Int Reg'
DB 'Store IData&SysV'
DB 'Restore Data&5yV'
DB 'Exe User Program'
DB 'Single Step Run,'
DB 'Run with BrkPnts'
DB 'Clear IData Mem.'
DB 'Clear User Prog,'
DB 'Clear BrkPtTable'
DB 'RS232 Mem Load,.'
DB 'RS232 Mem Dump,,'
DB 'Xdata Block Move'
DB 'Prot/Unprot Hem.'
DB 'Save IMem + OFF
DB 'Data Add: '
DB ' SFR Add:
DB 'XOat Add:
DB 'COde Add:
DB 'only SS,BP&ExeMd'
DB 'Prog. Cntr:
DB PSW Ace: '
DB DPH DPL:
DB SP B Reg:
DB IP lE
DB 'TCON THOD:
DB 'THO TLO:
DB 'THl TLl:
DB 'Enter to Save ••• '
DB 'Saving Data••••• '
DB 'Data&Vars savedl'
OB 'Enter to Restore'

;Start of Main Henu

;Pre-Interrupt Reg.
;IData & System Variables

;Run Program in Single Step
;Defining BP Table Reference
;Internal Data memory
;User Program Area
;Break Point Table
;Serial loading
;Serisl dumping

;Protect/Unproteet Top RAM
;Saving Internal Memory + Off
;Edit Data Segment (Hex)
;Edit SFR Segment (Hex)
;Edit XData Segment (Hex)
;Edit COde ,egment (Hex)
;Warning for NOT SS,BP or Exe
;Program Counter

iCOnfirm Saving
iBusy .•••
iDane!
;Confirm Restoring

10. Software Description: Supplementary Sub-RouJines page 228



Hsg42:
Hsg43:
HsgSl:
HsgS3:
Hsg61:
Hsg71:
Hsg72:
HsgBl:
HsgB2:
Hsg83:
Hsg91:
Hsg92:
Hsg93:
HsgAl:
HsgA2:
HsgA3:
HsgBl:
MsgB2:
HsgB3:
HsgB4:
MsgBS:
HsgB6:
HsgB7:
MsgC3:
MsgC4:
HsgCS:
MsgD3:
MsgD4:
MsgDS:
MsgEl:
HsgE2:
MsgFl:

HsgS2:
MsgCl:
HsgC2:
HsgDl:
HsgD2:

HsgIl:
MsgI2:

DB ·Restoring Data •• '
DB 'Data restoredl
DB 'SW 1&2 on & Ent.'
DB 'Executing Prog •• '
DB 'Set Swl on & Ent·
DB •BrkPnt No :
DB 'Set Sw2 on & Ent·
DB 'Ent to Clr IData'
DB 'Clearing IData•• •
DB 'IData cleared I •
DB 'Ent to Clr Usrpg'
DB 'Clearing program'
DB 'Program clearedl'
DB 'Ent to Clr BkPts'
DB 'Clearing BPTable'
DB 'BP Table cleared'
DB 'Select Baud Rate'
DB'3 6 12 24 4B 96'
DB 'RS232 Load Ready'
DB 'RS232 Loading••• •
DB 'Loading Done!
DB 'Load Aborted•••• •
DB 'Checksum Errorl '
DB •Dumping Hemory•• •
DB 'Dumping done!
DB 'Dumping Abortedl'
DB 'Moving Block•••• '
DB 'Block Hove Done!'
DB 'Too Many Bytesl •
DB 'Enter to Protect'
DB 'Enter to Unprot.·
DB 'COnfirm Save+oFF'

DB 'Exe Prog. C:
DB 'start Add X:
DB 'No of Bytes:
DB 'SourceAdd X:
DB ·Dest. Add X:

DB 'cape Technikon
DB 22B.·C Trainer V:4.3

iBusy•••
iDane!
iSettinq switches for Exe.
;Busy•••
;Switches for Single Step run
;Display & Edit Breakpoints.
;Switches for Break Point run
;COnfirm clearing IData

iDane!
;COnfirm Clearing User Program
;Busy••
iDonel
;Confirm Clearing Break Points
;Busy••
iDane!
;Flash Baud Rate Request
;Baud Rate Options
;Wait for Serial Train
;Loading Serial Data

;Protect Hemory
;Unprotect Hemory
;COnfirm Save then OFF

;Start COde Add (Same Hi Add)
;Request Xdata Start Add
;Request Number of Bytes
;Request Source Address
;Request Destination Addres

;Initialisation Messages

.**********************************************************,

10. Software Description: Supplemenrary Sub-Rowines page 229



11. Power Economy and Conservation

The onboard battery for the system is a standard 9 volt PP3 size battery. The aim

of this battery is to enable a user to run the board for short periods, only when an

external power source is not available. To supply the board for extended

operation, external power source connections were included on the board.

Throughout the hardware and software design of the system, power conservation

was kept in mind continuously. Default s;gnal levels were chosen to use the

minimum power. All the delay and waiting routines in the software were designed

to place the micro-rontroller in the low power consuming Idle mode.

For all the delay subroutines, a timer was set to run from a specific preset value

before the controller was placed in the idle mode. As soon as the rollover

interrupt occurred, the controller would wake up and return from the subroutine.

The entire Operating System is menu-driven and controlled by the pressing of

keys. While the system is waiting for a key to be pressed, it was also placed in

the idle mode. If one considers the speed at which the controller operates

compared to the speed a user can read a displayed message and press a key, the

controller will be in the Idle mode for almost all of the time, waiting for a key to

be pressed. The keyboard routine uses a hardv.-are generated external intenupt to

wake up from the Idle mode.

11. POW" Economy and CollServaJion page 230



For the hardware design, various power conservation tactics were attempted: One

possible way to reduce power, is to lower the oscillator frequency of a system.

To be able to generate various accurate baud rates, the frequency had to stay at the

readily available crystal frequency of 11.059 MHz. The free running oscillator of

the keyboard scanning, however, could be reduced by a factor of 10. Other

modifications that were possible, was to increase all the pull-up and pull-down

resistors from 10 kO to 33 kO, and to replace the LM7805 fixed voltage regulator

with an LM317 adjustable voltage regulator. This made quite a difference: The

quiescent current through the ground pin of the LM7805 is 4 mA and is basically

wasted power. It was replaced by the 'iuiescent current of the LM317 of

approximately 50 p.A, which made a difference of approximately 10% to the

original average current dissipated by the board.

The inclusion and current dissipation of the 'ON' LED was under careful

consideration. It was eventually placed in series with the opto-isolator internal

LED that had to be on in any case to maintain the power to the board. The 'ON'

LED could therefore stay. The ·Busy Configuring· LED is only used for a short

time during configuration, and for the convenience of this indicator, it was kept.

All the power limiting modifications reduced the average supply current of the first

prototype board from 33 mA to 22 mA on the final boa:ds, a factor of 33 %!

-
11. Power Economy and ConservaJion fNlge 231



12. The Hardware and Software Debugging and
Performance Tests

U.!. Hardware Integrity and Power Supply Control Tests

Exhaustive circuit integrity testing was done by comparing each hardware

connection directly with the netlist of the Printed Circuit Board, and testing for any

possible short circuits between adjacent connections. With all Ies removed from

the board, current limited power was applied slowly to test the voltage regulating

and on/off switching of the circuit All the Ies, except the micro-controller, were

then inserted and the power brought up again slowly to test for any unwanted over-

currents.

U.2. Fault Finding the Rest of the Hardware

In any digital circuit with a complexity such as this board, special consideration

had to be given to ways and means to test the hardware. The fact that most of the

hardware was embedded in the LeA made it even more difficult. The chances of

a system not working for the first tests, is virtually 100%. The high speed at

which the system operates, and not being able to test intermediate signal levels

inside the LCA, prompted the design and construction of r testing device what can

be called a Manual InpuUOutput l'tficnrController Emulator. It simulates the

input and output operations of the micro-controller by means of hardware switches

and LEDs.

12. Hardware and Software Debugging and PerfomuJnCe Tests page 232



12.3. The Manual InpuUOutput Micro-ControlIer Emulator

Direct connections to all the relevant pins of the micro-controller are available on

the 62-pin mM motherboard type edge connector. A blank mM prototype

development board was used to design and build the Manual Emulator. It made

use of toggle switches to place the required logic levels on selected signal lines as

outputs from the simulated micro-controller. Buffer-driven LEDs were used to

monitor the relevant simulated input signal levels.

The same bi-directional Input/Output pin principle used by the micro-controller was

adopted for the Manual Emulator: A switch will connect a signal line hard to

ground to generate a 'low'. When the switch is open, a pull-up resistor of 10 Id}

will supply the line to generate a 'high'. When the line is high, external circuitry

can pull the line down to ground. A 'low' will then be detected on the input from

the circuit, or a 'high', if not pulled to ground. The monitoring LEDs were driven

by buffers to reduce the loading on the signal lines. The relevant signal lines

controller and monitored were the 16 address lines from AO to AIS, the 8 data

lines, and various control lines. They are summarised below:

Outputs (Controlled by switches and pull-up resistors)

A8 - Al5 High Address Byte (Connected to Port 2)

PSEN Program Store Enable

ALE Address Latch Enabled

RD External Data Read Control (Pin P3.7)

WR External Data Write Control (Pin P3.6)

12 Hardware and Software Debugging and Peifo~ Tests page 233



Bi-Directional (Controlled by switches and Monitored by LEDs)

AO-A7

DO-D7

Low Address Byte (From Address Latch to Memory)

Data lines (port 0)

Inputs (Monitored by LEDs)

INTO External Interrupt 0 Pin (Pin P3.2: From LeA)

INTl External Interrupt 1 Pin (Pin P3.3: From LeA)

RX . Serial Receive (Pin P3.0: From MAX232)

TO Timer 0 (Pin P3.4: From MAX232)

The basic circuits for individual pins of e:-.ch group of inputs, outputs or bi-

directional pins, are shown below:

IntO. In't;1. Rx TO

vcc

DO - 07

OI$abIQ/E~ble

Oeta Switches

r-~4----'
~__ To ott-

~__ oat.a I I ne-a

FIg.12.1. The Manual Emulator Basic Circuits

This circuit enabled the testing of all the hardware, by simulating the address

multiplexing and the reading and writing operations of the micro-controller. The

12. Hardware and Software Debugging and Peifo177lil1lCe Tests page 234



expected results were monitored at a controlled pace and cross checked after each

step.

12.4. The Hardware and Firmware Testing

With the rnicro-controller removed from its socket, the board was seeded and the

Manual Micr<K;ontroller Emulator testing device plugged into the extension edge

connector. By pressing the 'ON/Configure' button, the LeA was configured and

the hardware testing of the input and output devices could commence:

The Low Address line circuits were only used as monitors, and all the switches

were switched to the inactive' I' levels. A Low Address Byte value was placed

on the Data Lines and the ALE signal strobed high. The latching of the data on

to the Low Address Lines could now be monitored by the Low Address LEDs.

The High Address Byte was set by its switches and placed on the address lines as

well.

To read a byte from the Code Address, the Data Control switches were disabled,

and the PSEN control line taken to active low. The stored data from the memory

would then appear on the Data LEDs. Various spot checks were made to confirm

that the correct configuration and operating data bytes were at the correct

addresses. Similarly, any data byte can be written to in th..: 64K external data map

by activating the WR line, or read from memory by activating the RD line. The

address had to exist and it should not be write protected.

Using this device, the correct decoding of the LCA to the two RAM IC's, and also

to the Input/Output devices, such as the display unit and keyboard, was tested.

12. Hardware and Software Debugging and Perfonnance Tests page 235



The keyboard action to give an interrupt signal, the correct key value and the state

of the Running Mode switches, proved to react as expected. The setting and

resetting of the three LCA internal interrupt latches were also tested to perform as

planned.

After all the hardware was adjusted and corrected, the rnicro-controller could be

inserted in its socket to test the software.

u.s. Software Testing and Debugging

The Operating or Broad Based Flow Diagrams proved to be very useful in the

testing of the software. By using a coloured pen, one could test and mark every

possible pathway that can be followed on the diagram. The marking ensured that

all the pathways were tested. Notes of all errors or responses that were not quite

satisfactory, were made directly on the diagrams. From there it was easy to trace

the errors directly to the Single Line Flow Diagrams and the original Assembler

listing by means if the chosen label names. Adjustments to display messages and

the timing thereof were made to enable the best and most userfriendly interaction

with the system.

A simple user test program was written in Assembler. It was specifically designed

to test most of the features of the board and the Operati:lg System. It tested for

the correct execution of the user interrupt subroutines. The existing Operating

System subroutines, the uploading though the RS232 serial port, and the Single

Step-, the Break Point- and the E'.xecUJe Running Modes were also tested. A

complete report on the testing of this user program is included in the section on the

12 Hardware and Software Debugging and Perforrnanee Tests page 236



pre-requisites and guidelines for writing of a user program. This section also

includes notes on what to expect when running and testing such a program.

Quite a few modifications to the original user program monitoring strategy were

made that only became apparent during the application in a classroom situation.

Only the final pre-requisites and guidelines for user programs and performance

tests are included in this report.

12.6. Classroom Application

A production model of the board was designed and fifteen sets built. A course on

the operation and application of the 8051 micro-controller was offered and each

student was issued with a personal board for the duration of the course. For most

of the students attending the course, micro-controllers were a complete new

concept and they had to start from the very basics. It was assumed that the

visibility of the internal registers and data of the micro-controller through the

Operating System of the board would make the understanding of the operation of

the controller much easier. It might have to some extend, but the general

impression left was that initially the complexity of the board was rather seen as a

thread. The board was left untouched by some students until much later in the

course. Some students, who had previous experience of ITilcro-controllers, adapted

to the use of the board with ease. They could appreciate the flexibility and

freedom to inspect the internal registers of the micro-controller and the memory

segments, and especially the Single Step debugging feature.

12 Hardware and Software Debugging and Perfo= Tests pag~ 237



Initially, the system was designed that the user programs only started at address

2000h, while the Operating System occupied the first 8K bytes of code memory.

This strategy was chosen mainly to enable the use of the interrupt vectors by the

Operating System. A user program had to be designed to start at address 2000h,

and its interrupt vectors placed at 2003h, 2013h, etc. For programs written in

assembler, this was easily achieved by using "ORG" statements at the beginning

of the program and at the beginning of each interrupt subroutine. The "ORG"

directive would redirect the Assembler to place the statements following from that

specific code address, upwards.

To enable the use of the interrupts for both the Operating System and for user

interrupts, the Operating System contained jump vectors to the Operating System

interrupt routines, while in the "Edit" mode. When in a "Running Modes", the

jump instructions will move the control over to the equivalent address of the user

program section between 2003h and 202Fh. This system worked well enough, as

long as the user had proper control over the placement and the content of the

interrupt vectors. This is relatively easy when writing the modules in the

Assembler language.

When the course got to the stage of writing program modules in the programming

language "C for Micro-Controllers", endless problems started to appear to

convince the C-Compiler and Linker programs to place the user modules to start

at address 2000h. All the Interrupt subroutines had to be written in Assembler to

force the Linker to place them at the appropriate higher addresses when they were

linked to the main C-program module.

12. Hardware and Softy.°are Debugging and PerfOT11UUlce Tests page 238



These problems lead to the redesign of the Operating System and user program

interaction, and eventually to the firmware modification of the interrupt memory

segment swapping. The decoding modification to the firmware was done with

relative ease, because it was re-prograrnrnable. The only hardware modifications

that bad to be made, were the cutting of two tracks of the All and A14 address

lines from the micro-controller, and the inclusion of two wire jumpers to connect

these address lines to two other pins of the LeA. Two of the original four general

purpose "Chip Select Outputs" from the LeA had to be sacrificed.

It was also found in the final circuit that the internal pull-down resistor on the reset

pin of the micro-controller was sometimes inadequate to release the reset state of

the micro-controller after configuration. An additional 4.7 kO pull-down resistor

was added.

The new modifications enabled user programs and interrupt subroutines to be

written in C, with very few pre-requisites. A tinker directive, $ CODE(0030H),

can be included when changing a relocatable object file to an absolute fIle. This

directive places the start of the main program at address 0030h. The standard

"ACE_DUMMY" module, included automatically by the Unker, will supply the

"Jump Vector" to the beginning of the main program, after clearing the data fields

and redefining the stack to just above the user variables. The exact pre-requisites

for writing a user program for successful testing and debugging on the board, are

included in the next section.

12 Hardware and Software Debugging and PeifomulI,,:e Tests page 239



13. Guidelines on the Writing and Assembling of
User Programs

The code memory area allocated for user programs is 20K bytes, ranging from

address OOOOH to 4FFFH. All the interrupt vectors are available for use. There

are only minor limitations on the address usage of user interrupt subroutines, and

the same- and higherpriority blanking conventions. This will be discussed detail.

The entire Internal Data space, all the Special Function Registers, and the first 32K

bytes of External Data, are available to the user.

To write a program in Assembler, the user must include an "ORG 0030H"

directive at the beginning of the main program. A suitable jump instruction to this

location must be included at code address OOOOh. This is the normal practice when

interrupt subroutines are used, but it must also be included even when no interrupts

are used! The user must also make sure that the "Interrupt 0 Subroutine" is limited

to addresses 0003h to 0007h, and the others between OOOBh and 002Fh. For

longer interrupt subroutines, 'Long Jump" instructions to the appropriate locations

of the rest of the subroutines must be used in the interrupt vector space. Any

interrupt subroutine must be concluded with the standard "Return from Interrupt"

instruction.

If any of the existing subroutines of the Operating System are used, the starting

addresses must be defined by the CODE directive. A list of some useful existing

subroutines and their starting addresses is included in the appendix.

12. Hardware and Software Debugging and Per:fOT11ltlJlCe Tests page 240



To access the Keyboard and Display Unit directly, the appropriate external access

addresses must be defined by the XDATA directive. Notes on the operation and

commands of the Display Module have also been included in the appendix.

Relocatable assembler programs, or programs written in C or another high level

languages, will normally be placed to start at OOOOH by the Linker program, unless

instructed to do otherwise. User interrupt subroutines will push the main program

upwards. If this is not sufficient to move the main program past the 002Fh limit, .

the linker directive, $ CODE(0030H), must be included. This will encourage the

linker to place the main program at address 0030H. If the problem still exists, the

linker may be forced to start the program at address 0030H, by including a small

assembler module to the other object files when they are fed through the linker

program. This module may consist of an "ORG OOOOH" directive and a data

storage statement, "DS 30H", only.

The command line instruction to run the Linker program, could then be in one of

the formats shown below as examples:

C:\ASM> 1.51 main.OBJ,ne.rt.OBJ,another.OBJ

C:\ASM>L51 main.OBJ $ CODE(0030h)

C:\ASM>1.51 main.OBJ,space.OBJ

[Assembler programs]

[C programs]

[C p~ogram + 30 byte space]

All the interrupts are avaiIable to the user. Special procedures have been included

in the Operating System to make them transparelll, although the Operating System

uses its own interrupt subroutines extensively. To summarise, the user must keep

the following in mind when writing and using interrupt subroutines:

12 Hardwar~and Softwar~ Debugging and PerfomUllI(:l! Tests page 241



* If a user program clears the "Enable All" (EA) or the "External Interrupt

Enable" (EXO) flags, the Single Step, or Break Point operations, or causing a

break with the Escape key, will be disabled until these flags are set again.

Breaks will not occur after any instruction that accesses one of the Interrupt

Control registers or the "Return from Interrupt" instruction.

* A Single Step, Break Point or 'Escape' break out of a user program, will corrupt

nine additional bytes of the user stack above the current stack pointer setting.

* For Single Step and Break Point operations, the program will jump into the

Operating System with a "Return from InteITUpt" instruction that will remove the

blanking effect of the interrupt. The Operating System can then make use of its

own interrupts. When single-stepping through a user interrupt subroutine, the

normal blanking effect of lower priorities will not take place. Any enabled

interrupt will be serviced as soon as it is requested. This implies that all the

registers and data that will be corrupted by an interrupt subroutine, must first be

stored in the stack before the routine is executed. It must again be restored

before returning to the main program.

* The Operating System sets the "External Interrupt 0" to be edge triggered, so

that when it simulates an interrupt call, the interrupt r.Ajuest flag can be set by

software. If set to level triggering, the flag can only be changed by changing the

pin level. This could create an unwanted interrupt request repeat of the same

subroutine. The Interrupt 0 level should therefore stay edge triggered and high

priority!

13. Guidelines on the Writing and Assembling of User Programs page 242



* The user "Interrupt 0 Subroutine" must either be entirely contained between

addresses 0003H and 0007H, or it must use a "Long Jump" to jump out of this

area for longer routines. In a high level language, this may be encouraged by

a function call in the interrupt routine. The function must then be defined

somewhere else. The normal "Return from Interrupt" after the function call,

will still fit into the available eight bytes reserved of the interrupt vector.

* In any other interrupts used by the user system, the interrupt subroutines must

fit into the area OOOBh to 002Fh. It may also contain "Long Jump" instructions

out of this address area. Higher level compilers for the 8051 do have special

instructions to identify and place interrupt subroutines. The linker will normally

place a jump instruction at the conventional reserved address location for the

interrupt vector, and the rest of the subroutine somewhere else where it can find

the space. Again, the use of a function call will encourage the use of a "Long

Call" instruction at the vector address, and the function will be placed higher.

Interrupt subroutines are not normally called by assembler program instructions,

and the linker may give a warning that these modules are never used. This is not

a terminating error and the modules will still be included in the final program.

The Operating System always sets the Enable All, the E'ltemal Interrupt 0 Enable

and the Edge Trigger flags of Interrupt 0, before a user program starts to run. It

is recommended that the user would include these instructions in his program as

well for the sake of testing the program on the Simulator successfully.

13. Guidelines on the Writing and Assembling of User Programs pag~ 243



13.1. Performance Testing a User Program

As an example for testing a user program and user interrupt subroutines in the

various running modes, a special test program was designed. The listing of this

program is shown below. Some of the existing subroutines in the Operating

System will also be called from this program.

The program will use the Port 1 pins as monitors to test if user interrupt

subroutines were executed. The results can either be inspected by the Operating

System in Mode 1, at the SFR value 9Oh, or by adding LEDs to the Port 1 pins

as hardware monitors. The two Timers will be preset to give roll-over interrupts.

The keyboard and an external user interrupt on pin IRQ can be tested as well.

Initially, the Single Step mode will be tested for executing the user interrupts.

Then the Break Point mode, for the incrementing of the DPTR in a loop will be

tested. After that the facility to store the settings of a program at a specific point

will be tested. Finally, the Execute mode will test the use of the existing Operating

System subroutines, and the user External Interrupt 0 subroutine.

MCS·Sl MCRD ASS9IIlLER USl:RPROO

DOS 3.31 (038-N) MCS·Sl MCRD ASSEMBLER, V2.2
OBJECT MCIlULE PLACED IN USl:RPROO.OBJ
ASSEMBLER IIMlKED BY: C: \ASM\ASMS 1.EXE USl:RPROO.SRC

LOC OBJ LINE saJIlCE

User Test Program

il(eyboard and Switches
;Oisptay Modlle Ccmaand
:Display McdJle Data
iLCA Contral Register
iBinary to ASCII Slb
;Display Message sUJ
;Read ~eyboard slb
;~ai t 1 secord slb
iDisplay 1 character sub
;Auto-off Exit
;Power control register

DF300H
OFroOH
OF701H
OF200H
620CH
6IJ7FH
60CBH
604AH
6IJ2AH
S086H
0087H

XDATA
XDATA
XDATA
XDATA
CalE
CalE
CCllE
CalE
CalE
CalE
DATA

~y8rd

DSPCM
DSPDA
CIITRG
BNASC
DSPMG
READ~

~1SEC

IlRllSP
NOOFl
PCOII

1 S IICI4R NOP I
2
3 ;
4
5
6
7
8
9

10
11
12
13
14
15

noo
F700
Frol
F200
620C
6IJ7F
6IJCB
604A
6IJ2A
5086
0087

13. Guidelines on the Writing and Assembling of Usa Programs page 244



16
0000 17 ORG ooooH

18
0000 020030 19 JMP STAllT ;Jq> to Main at 0030h

20
00C3 21 ORG 0003H ;User Int. 0 Vector

22
0003 020098 23 JMP UsrlO ;JUIp to User- lnt am

24
OOOS 25 ORG 0008K iTiIlef" 0 lnt .. SUrRtn.

26
OOOS B292 27 CPL Pl.2 ;TO (Pl • 11111011)
0000 32 28 RET!

29
0013 30 ORG 0013H :User Int .. 1 Sl.tt-Rtn.

31
0013 B293 32 CPL Pl.3 ;Intl (PI = 11110111)
0015 32 33 RET!

34
00IB 35 ORG 001BH ;Ti.er 0 Int. sutrRtn.

36
00IB B294 37 CPL Pl.4 i T1 (PI = 11101111)
0010 32 38 RET!

39
40 ; Main User Test Program
41

0030 42 ORG 0030H
43

0030 7590FF 44 STAllT: MOV Pl,#OFFH ;Set prrt 1 ~ 11111111
0033 758911 45 MOV TMOO,#11H ;Timers : Md 1 (16 btl
0036 758CFf 46 MOV THO.IlOFFH ;Preset Ti.er values:
0039 758AFO 47 MOV TLO.tIOEAH ; lID) = FFEAh
003C 758DFF 48 MOV TH1.IlOFFH ; T.' = FFCAh
OO3f 758SE0 49 MOV TL1.tIOCAH
00420ZAF 50 SETB EA ;Enable All
0044 OZA9 51 SETB ETO ;Enable Tiller 0
0046 02AB 52 SETB ET! :Enable Tilter 1
0048 02AB 53 SETB EXO ;Enable Ext. Int. 0
004A 0288 54 SETB ITO ;Set ExO Edge Trigger
004C OZAA 55 SETB EXl ;Enable Ext. Int. 1
004E 028A 56 SETB 1T1 ;Set Ex1 Edge Trigger
0050 9OFFF8 57 MOV OPTR.IlOFFf8H :Preset CPTR
0053 438850 58 ORl TCQI.150H :RI.I1 Timers

59
0056 A3 60 CllJIIT: nc OPTR ;Loop for SS & Break
0057 E583 61 MOV A,DPH ; Point testing
0059 A2E5 62 MOV C,ACC.5
OO5B9297 63 MOY Pt.7,C iP1.7 = DPH.O (Monitoring)
0050 4582 64 ORL A,OPL :Setup for Test DPTR=OOOO
OO5f 7Of5 65 JNZ Cl1JNT ;Repeat to Test T.o,

; T.l & Exl Ints.
0061 5388Af 66 ANL TCQI ••l0101111B ;Stop TiDerS

67
68 ; USe Opsys S_out i nos and Test ExO InterM4Jt
69

0064 900088 70 MalEKT: MOV OPTR.lMsgOl
0067 12607f 71 CALL Osplg ;Oisplay "Press any keytl

n
006A 9Of700 73 MOV OPTR ,IDSpOa
006D 74C7 74 MOV A,#OC7H ;0 i spl ay Cursor
OO6f 1260ZA 75 CALL WrDsp
oon l260CB 76 CALL Read( ;Read Keyboard Sf.b

77
0075 12620C 78 CALL BnAso ;Convert Key value
0078 309002 79 JNS Pl.0.WllCHR ;JUlp if Keyboard Int.
0078 7458 80 MOV A."X' i/X' for User Ext Int.
0070 9Of701 81 IIlCHR: MOV DPTR,lDspDa
0080 1260ZA 82 CALL WrDsp ;Oisplay Key or 'X'
D083 l2604A 83 CALL W1Sec ;Wait 1 second
0086 BODC 84 JMP MOREKT ;Repeat the loop

85

13. Guidelines on tU Wriring and Assembling of User Programs page 245



OOAB 32

OOAZ 9OF300
00A5 EO
00A6 308202
00A9 C290

0098 9OF200
0098 EO
009C FO
0090 308202
OOAO C29l

~.*_*******••••*.**••**.*__****••*.*******.*••******.__ a _

;Keyboard (PI % 11111110)

;Rd Key I Rst Key Latch

;Rd l Wr control Register

: to Reset IRQ Latch
;Jump if ExO Pin = 0
;IRQ (PI % 11111101)

•
; User Inter~ 0
a __ a_•••_••••••••••••• __•••• ••••••__••••••••••• _

ENO

Msg01: DB 'Press any Key: '

RSTICY: lIOV OPTR .lI:yllrd
MOVX A.illlPTR
JNB P3.2.NONE
ClR Pl.0

;*'**.~''''''''T'***~'''''''''''T'*.*~''''''''T'T'***~''''',*.**__''''''********************
;Data Storage

;.*••*.***••• ****.*._*****~''''''''''''T'***~'''''''''''*.*~."'.......T.***~."'."'.'**·**********

NOllE: RETI

UsrlO: lIOV OPTR.lCntRg
MOVX A,iIlPTR
MOVX alPTR,A
JN8 P3.2.RSTKl
elR Pl.1

ll6
87
88
89

00l!8 50726573 90
008C7320616<
0090 79204865
0094 793A2020

91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110

SYMBOl TABLE LISTING

N A ME T Y P E V A L U E A T T RIB U T E S

ACC••
BNASC.
CNTRG.
COUNT.
OPH••
DPL••
DSPCM.
DSPDA.
DSPMG.
EA •
ETO.
ETl.
EXO.
EXl.
ITD.
ITl.
ICYBRD.
MalFl.
MOREICY
MSG01.
NOllE
P1 •
P3 •
PCOII
READK.
RSTICY.
START.
TClJi
THO.
TH1.
TLD.
TLl.
TMCXl
USRIO.
\/1 SEC.
IIRCHR.
IIRDSP.

D ADDR
C ADDR
X ADDR
C ADDR
D ADOR
D ADOR
X ADDR
X ADDR
C ADOR
8 ADDR
8 ADOR
8 ADOR
B ADDR
8 ADOR
B ADDR
8 ADDR
X ADDR
C ADDR
C AnOR
C ADDR
C ADDR
D ADOR
D ADOR
D ADDR
C AnDR
C AnOR
C ADOR
o ADDR
D AnOR
D ADOR
D ADOR
o ADOR
o ADOR
C ADOR
C ADOR
C ADOR
C ADDR

OOEOH A
620CH A
F200H A
0056H A
0083H A
0082H A
F700H A
F701H A
607FH A
00ABH.7 A
00ABH.1 A
OOABH.3 A
OOABH.O A
00ABH.2 A
0088H.0 A
0088H.2 A
F300H A
5086H A
OO64H A
OO88H A
OOABH A
OO9OH A
OOBOH A
0087H A
60CBH A
OOA2H A
0030H A
OO88H A
OO&H A
008llH A
D08A!l A
0088H A
OO89H A
0098H A
604AH A
0070H A
60ZAH A

13. Guidelines on the Wriling and Assembling of User Programs page 240



13.2. Test Results

The test program was assembled and loaded into the user code area by the RS232

serial link. The menu option to start running the user program in the Single Step

mode, was selected. The Running Mode Switch 1 was switched ON and the

default starting address of OOOOh was kept.

A brief second after the 'Enter' key was pressed, the message ·Exec. User Prog.

was displayed, and almost immediately replaced by displaying the first of the Pre

Interrupt Registers, the Program Counter. It reflected the address of the next

instruction that would be executed, 0030h. The fIrst instruction was the ·Jump to

address 0030h· instruction. It was therefore executed successfully, and a Single

Step break: returned the control to the Operating System. From within the

Operating System in Mode 2, it was possible to use any of the other Operating

System features, such as the inspection of memory segments, etc.

When the 'Exe' key was pressed, the next instruction ·To set Port 1·, was

executed and the address of the following instruction, 0033h, was displayed. This

instruction at address 0033h will set the TCON register. The TCON register was

therefore inspected at the currenr state, and again after the instruction had been

executed. It confirmed that the correct operation had taken place.

In this fashion, the rest of the setup instructions were executed one at a time, and

the results examined immediately in the Pre-Interrupt Registers. They reflected the

state of the internal registers just before a break: occurred. These register values

may not be same values as one would found when using the Edit SFR and Data

13. Guidelines on the Writing and Assembling of User Programs page 247



options of Mode 1. Mode 1 will display the current values that is used by the

Operating System.

Single Step breaks will not happen after any instructions that access the interrupt

control registers or a "Return from Interrupt" instruction. As expected, no breaks

occurred for these instructions between addresses 0044b and 004Ah. The break

only occurred after completing the SETB ITO instruction at address 004Ch.

The Pre-Interrupt values of Timers 0 and 1 just before the "Run Timers"

instruction of address 0053h, reflected the preset values of FFEAh and FFBAh.

After executing this instruction, the Timtr values were FFF2h and FFC2h,

effectively eight counts later. These counts were lost in the Single Step break

interrupt subroutine, before the current Timer values were stored. After the next

instruction, the Timer values were FFFFh and FFEFb, effectively fourteen counts

later. The additional counts were lost while the Timer values were reloaded and

the execution of the next user instruction enabled.

The Timer 0 value at HUh was just about ready to create a roll-over interrupt.

After the next instruction was executed, the program counter was at address

OOOBh, which is the first instruction of the user interrupt subroutine for Timer O.

The Port 1 pin 2 was cleared and examined at address 9Ch of the SFRs. For this

inspection, one has to 'Esc' out of the Pre-Interrupt Mode and select the "Edit

SFR" of Mode 1. Displaying the Port 1 value in the Binary Mode, confirmed that

the pin 2 was cleared. To execute the next instruction, one had to 'Esc' back to

the main menu before the 'Exe' key could be pressed.

J3. Guidelines on the Wriling and Assembling of Us« Programs pag~ 248



After the Timer 0 interrupt was completed, one more instruction of the main

program was executed before Timer 1 generated a roll-over interrupt. The

Program Counter reflected address OOlBh, which is the first address of the

interrupt subroutine of Timer 1.

The next few instructions of the main program increments the DPfR and test of

OOOOh have been reached. The program looped between instruction addresses

0056h and 005Fh, with only the DPfR incremented by one for every loop. In this

section, the breakpoints and the current system variable storage facility were tested.

The main program was single stepped to address 005Dh. In Mode 7, a break point

was defined at address 005Dh. The Running Mode Selection Switches were

switched to select the Break Point Mode (Sw 1 = OFF, Sw 2 = ON). The 'Exe'

key was pressed to execute the next instructions until the address 005Dh was

encountered. The DPTR was inspected on every break to confirm an increment

of one count for every loop.

When the DPfR reached a value of FFFCh, the storage facility of Mode 3 was

tested by bulk storing the current values of the user program. After another two

loops, when the DPfR was at FFFEh, the previous stored values were retrieved

by Mode 4. When the pre-interrupt values were inspected, the value of the DPfR

reflected the previous stored value of FFFCh.

Finally, the Execute running mode and the use of Operating System routines were

tested by setting both the switches ON. After the 'Exe' key was pressed, the

expected message ·Press any Key: • was displayed, as specified in the user

13. Guidelines on the Writing and Assembling of User Programs page 249



program. The pressing of any hexadecimal key displayed the value on the screen

for one second. Then it was cleared to wait for another key. When the 'Bsc' key

was pressed, control was returned to the Operating System, showing the program

counter at 6OFFh. This is somewhere in the keyboard read subroutine of the

Operating System. To prove that the user Interrupt 0 subroutine was used, the

register of Port I was inspected to confirm that ·pin O· was cleared.

IJ. Guidelines on the Writing and Assembling of User Programs page 250



14. Conclusions and Recommendations

Although one of the main objectives of the project, °to make it easier to understand

the internal operation and architecture for a first time student·, was only partially

fulfilled, the acquiring of an in depth knowledge of various aspects the micro-

controller operation and application made the execution of this project very

worthwhile. For a first time micro-controller student, the complexity of a micro-

controller system, together with the intricate program development process, were

more than enough to occupy the student's concentration completely. Sufficient

time must be given to get acquainted and ·used to· all the new concepts. To add

the complexity of this system to all the rest, was just too much to expect. Most

of the first time micro-controller students left the board alone until much later in

the course. The more advanced students, who only had to adapt a little further to

understand the possibilities and features of the board, found it quite helpful and

easy to use.

In view of the above findings, it is recommended that: ·The board should only be

made available to students in a more advanced micro-controller courseo
• It would

still provide an immediate channel to realise and test various user applications,

without having to go through the time-consuming process ofdesigning and building

his own system. The adaptability of HIe system will allow him to complete various

projects during the course, varying from very simple te more complex applications.

A big advantage is that those simple applications, which does not really deserve the

trouble of making a special board for testing, can easily be put together on a blank

-
14. Concblsions and Recommendations page 251



mM prototype board and tested thoroughly. The existence of the basic minimum

system, together with the ease of programming, testing and modifying the

software, require only the additional user specific circuits to be added to the

system.

Additional benefits that came from the execution of this project are the in depth

knowledge acquired in various aspects of the operation of the miCflH:Ontroller, and

also of the hardware and software design. A great deal was also learned about the

approach, planning and execution of a complex project in general.

For the micro-controller specifically, the use of the interrupts had to be studied and

tested in detail, especially the interrupt trigger levels, priorities and the exact

behaviour of instruction execution sequences. The Single Step, Break Point and

'Escape' break features were entirely based on the unique reaction of the micro-

controller on an interrupt request.

The operation and application of the Field Programmable Logic Array, and the

entire circuit development process from an OReAD-based design entry schematic

drawing had to be studied and applied. This included the conversion of the

schematic drawing to a netlist, the placing and the routing of the final LeA, the

selection of the best layout, and the conversion of tIe configuration into a

bitstream. Various techniques had to be tested and "re-invented" to convince and

enable the XiIinx software to map all the required hardware into the small 2064

package and place specific VO pins at specific locations to suit the PC Board

layout. Where the placing and routing of an LeA normally take a PC about

-
14. Com:w.sions aNi Reronunendations page 252



twenty minutes to complete, the final process for this layout took 36 hours! The

configuration modes of the LCA had to be assessro and the most suitable selected

for the seeding process and the normal operation. The exact behaviour of the

special configuration control pins had to be studied to design the additional

hardware to control the configuration processes to do precisely what they were is

expected to do, with the minimum of external components.

Valuable experience in the use of the ·Borland-e++· (for PCs) was gained in the

compilation of the SEED.EXE program. This includes the reading of the

configuration and Operating System data files from disk, and the conversion of the

data to synchronous serial data trains for transmission through the parallel printer

port of the PC.

A set of 25 production Printed Circuit Boards were made professionally, which

gave valuable experience in using the computer package ·TANGO· to do the

preparation of CAM (Computer Aided Manufacturing) files according to the

production house specifications. These include Gerber Plot and Number Control

Drill (NC Drill) files. Although the final fifteen boards built was not a large

production run, it still gave valuable insight into possible variations and

modifications to ease production that should be considered and build into a board

right from the initial stages. Repeatability, ease of construction and faultfinding,

and also the maintenance of the final product had to be kept in mind.

The package •ACAD· was also used to draw the hardware schematic diagram

(external to the LCA), and an unconventional method of schematic diagram

14. Conclusions and RecommendoJions page 253



drawing has been developed. This method specifically caters for the schematic

drawing of micro-controller type circuits. They usually have a multitude of

parallel running busses and connections. All the integrated circuit blocks were

drawn as long narrow rectangular boxes next to one another. Each connection, or

net, between the various ICs, was then drawn as a separate horizontal line through

all the blocks. Connections made to a specific pin of a block were shown as

semicircles, placed on the crossing between the lines and the block border. The

correct pin numbers were also placed next to the semi-circles. The next net was

placed below the first, so that each horizontal line represents one net. This circuit

diagram can then be used with great ease to directly draw up a netlist for the PC

board layout by hand.

In this type of layout, it is also much easier to follow the connection path through

to the various Ies than in conventional schematic drawings. Connecting lines on

these drawings have numerous 90° bends and cross-overs to other connections.

Again by using the "ACAD" drawing package, modifications and the shifting the

various connections around for the clearest and most logic drawing layout, were

made very easy. The final schematic drawing of the external hardware, using this

technique, is included in the appendix.

The attempt to reduce the total current dissipation of tlJe prototype board proved

to be very valuable exercise and had a profound influence on the design and

approach to any other projects since: "To aim for the minimum possible current

dissipation without any loss of performance, right from the initial planning and

design stages of a project!"

14. COflClusions and Recommendations page 254



Similar innovations were made on the software side:

The development of the Broad Based or Operating Diagrams and the Single Line

Flow Diagrams from the conventional flow diagram standards, were so useful in

clarifying the flow of a program, that it has since been used in quite a few

consequent projects. It was also imported into a few formal courses in the

programming of miero-controllers. By using the computer package"ACAD", all

the flow diagram design work was done on the computer screen, which made

changes and modifications easy and allowed neat printouts to be made to base the

rest of the development on.

Due to the stack limitations set by the objectives, careful track had to be kept on

the stack depth when using subroutines within other subroutines. It was also

important to know what preset values were required when entering a subroutine

and what outputs would result when returning. Equally important were which

registers and variables would be corrupted when a specific subroutine was

executed. These requirements forced the development of the good habit: "To

include a summary at the beginning of each subroutine, stating the name, a short

description of what is done, the input requirements, and also what output will

result and where it could be found. It also states which registers will receive new

data that would corrupt old values, which other subroutines would be called from

within the subroutine, and the stack depth used". Some subroutines even have

various possible stack depths, depending on which options were chosen from within

the subroutine.

14. Conclusions and Recommendations page 255



To be able to predict the placement of Assembler and "Franklin C-Compiler"

modules by the L51 Linker program, a vast number of test modules were written

in both source languages. These modules were assembled and compiled, and tested

in various combinations with various placement directives, to find which gave the

best and most consistent results. The suggestions for writing user programs were

all based on these results. At the same time, a fair amount of knowledge was

accumulated about the use and general compilation process ofa C-<:ompiler and the

151 Linker program.

In general, the use of all the various existing computer packages for various

aspects of the project, was in itself a valuable experience. A brief summary of all

the packages used and their various applications, follows:

* PCTYPE.EXE: A word processing package, used for writing the source files

for the Operating System, the Seeding Driver, and various test files. Further,

it was used for the inspection of computer generated error files, listing files and

Hex files, and the preparation of symbol files for the simulator program.

Finally, it was used to compile the draft copy of the documentation.

* W51.EXE: The WordPerfect word processing package for the preparation of

the final documentation.

* ASM51.EXE: The Assembler program, used for assembling the Operating

System and the various assembler test fIles.

14. Conclusions and Recommendations page 256



* AVSIM.EXE: The 8051 Simulator, used to test and debug the logic and flow

of the Operating System and test program modules.

* LSl.EXE: The Rel0cat0r-T .inker program, used to convert and link together

relocatable object files of assembler modules and modules written in C into

absolute object files.

* C51.EXE: The Franldin C-Compiler for Micro-Controllers, for compiling and

investigating the placement of main programs and interrupt subroutines, written

in C.

* BC.EXE: BorIand c++ Compiler for writing and compiling the seeding

driver program, SEED.EXE.

* DRAFI'.EXE: The ORCAD schematic capture package for drawing the LCA

design entry circuits for the general decoding and support of the micro-

controller, as well as the Seeding Shift Register and the Address Counter.

* PLOTALL.EXE: The ORCAD plot driver program to convert the schematic

drawings of ORCAD to DXF files, for loading into the drawing package ACAD

to generate neat and proper printouts.

* Xilinx Package: A set ofapproximately 10 programs used to test, convert, map,

place, route and check the internal configuration of the LCA, and to produce the

final bitstream Hex files, ready for loading into the LCA.

,

-
14. Conclusions and Recommendations page 257



* PCB.EXE: The TANGO PCB layout for the design and testing of the netlist

integrity and Design Rule Check (minimum spacing), of the external circuit

diagram of the board, as well as to generate Gerber Photoplot and NC Drill files

for production.

* ACAD.EXE: A general purpose drawing package, for the drawing of the

Operating and Flow Diagrams of the Operating System, the drawing of the

external schematic diagram of the board, the printout of the ORCAD schematic

diagrams, and the preparation of the sketches and drawings for the

documentation. The drawings were converted and stored in the DXF format for

transfer to the WordPerfect package.

* GRAPHCNV.EXE: Conversion program for a DXF format drawing to the

WPG format, required by the WordPerfect package.

* ASEASY.EXE: A spreadsheet package, for the simulation and testing of the

decoding circuits of the LCA and the generation and testing of the final PCB

netlist, with the aid of macros.

* HG.EXE: Harvard Graphics for the generation of the sketches and drawing of

the notes for the micro-controller course.

Without the aid of the computer and applicable CAD packages, an engineering

project like this would probably be very difficult or impossible to execute

effectively!

"

14. Concu.swns and Recommendlllions page 258



15. Future Modifications and Extensions

Throughout the building, testing and application of the final production board, a

few items were noted which should be modified in future circuits. They are as

follows:

The auto-off routine and hardware circuits worked well, as long as the battery

voltage was sufficient and no undue short circuits were placed on the supply. This

can easily happen when an mM prototype card or other circuit is plugged into the

board. It sometimes happens that the configuration data in the Code RAM gets

corrupted and causes the LCA to not configure properly. It will then stay in the

configuration mode. If the seeding cable and a PC are handy, it will be simple to

re-seed the board and continue. If not, however, there is not an easy way to

switch the power to the board off, except to remove and disconnect the battery.

It is recommended to place two connections on the board that are accessible

through the side openings. One can then, for example, use a coin to short out two

pins to switch the power off manually.

If the View Angle Adjust potentiometer is moved slightly away on the PCB layout

from under the display, it would be possible to place the potentiometer on the

DisPlay Module side of the board. The adjustment shaft can then be extended out

through the face plate. This will make the adjustment of the view angle much

easier.

The jumper and track cutting modifications to the address lines AU and A14

should be build into the PCB layout of the board. It may require a new pin

15. Future ModificQIiollS and ExtellSions page 259



allocation of the general I/O pins of the LCA, and another "place and route" run

for the LCA. The additional micro-controller Reset pull-down resistor should also

be incorporated into the PCB layout.

If it is possible, another circuit configuration for the software controlled power off

circuits should be designed. The supply break should not be made in the line

between the circuit ground and the battery or the external supply ground. They

should be connected permanently. A common ground line would be a great

advantage for e~rimental circuits that require more current than the onboard

regulator can supply, and that uses the external supply directly though its own

regulating circuits.

The spacing of the jumper connections should be such that adjacent jumpers can

be mounted using a single jumper strip, with only the pin between the two jumpers

removed or cut off. To mount and line up one longer strip only, is much easier

than two short strips next to each other.

The seeding and RS232 serial download cables are never used together. They

could be made into a single cable with two different sets of plugs and sockets at

the ends.

An attempt was made to use the board as an in-eircuit emulator for another micro

controller system. This was done by extending the pins of the lI'icro-eontroller

though the edge connector and a multi-eore cable to a 4O-pin rc plug. The 4O-pin

plug was plugged into the rc socket of the micro-eontroller of the other board to

emulate its micro-controller and take over the control of the hardware. The

15. FlU""" ModijicaJions and Extensions page 260



emulator system will then have the advantage of direct downloading of modified

programs from the PC, and being able to Single Step or use Breakpoints to test and

debug the hardware and software of the other board. The PSEN and oscillator

connections to the user board were disabled and the Interrupt 0 pin from the user

board was re-routed to the IRQ pin of the system through the multi-core cable.

These emulator experiments were only partially successful on the specific system

tested. It was possible to access and test the memory and I/O circuits of the user

board without any problems. The Single Step and Execute running modes did not

work very successfully. It could have been more the result of the complexity of

the tested system itself. The system was a burglar alarm that would be battery

powered if a power mains break was detected. Special emphasiS was therefore

placed on power conservation, and the system was placed in the Power Down or

Idle modes for most of the time. It was only ·woken up· by a hardware reset or

interrupt request when required. The routing of the critical Reset and Interrupt 0

request lines through the LCA was probably the cause of the problems.

Further tests to use the board as an in-circuit emulator on simpler application

circuits may prove more successful.

15. Furure Modifications and Extensions page 261



16. Other Project Developments as a Direct Result
of this Projeet

As the direct result of the background knowledge acquired in the execution of this

project in the basic requirements of a minimum micro-eontroller system, some

other micro-controller projects were developed. The first two projects described

below, led up to two distinct and very successful student training systems: One was

a simpler 8051 system, and the other for the PICl6C84 micro-controller.

16.1. A Simple EPROM Emulator

The external data RAM and the smart socket of this Training board were used to

emulate an EPROM for another system. This was done in an effort to steer clear

of the time-consuming process of having to erase and program EPROMs. The user

program was loaded into the Code RAM of the Training board through the RS232

link, then "Block Moved" into the External Data RAM. The RAM, together with

its smart socket, was then removed and simply plugged into the EPROM socket of

the user board. This system works very well as an EPROM emulator.

16.2. A Simple 8051 Emulator

Soon the plugging and unplugging of the EPROM Emulator above, also became

labourious and another solution was sought. If the RAM IC, the micro-controller

and an address latch were placed on a separate board and the micro-eontroller pins

extended underneath the board, it can be used as an in-circuit emulator. All that

16. Other Project Developments as a Direa ResuIt o/lhis Project page 262



was still required was to find some easy way to load the RAM directly from the

PC, independent of the Training Board. This board can then be plugged into and

left in the micro-rontroller IC socket of the user board. It will act as an in-circuit

emulator with an easy re-programmable "piggy-back" RAM for the Code memory.

The final system required one more address latch for the high address byte and an

octal latch to load the RAM directly through the parallel printer port of the PC.

This system did not require an existing Operating System on the board that would

receive and store the data. A logic voltage level converter, such as one would

require if the RS232 serial port were used, was not required. Data from the PC

will be downloaded directly to the board in a nibble format. The nibble format

consists of four parallel data and four control lines.

The system operated as follows: The high nibble of the high address byte would

be loaded into four registers of the 8-bit D-flip-flop with a clock control signal.

Then the low nibble would be loaded into the same four flip-flop registers, while

the high nibble is parallel shifted to the other four registers. The outputs of the

octal D-flip-flop would then contain the whole high address byte. The high address

is then stored in the high address latch through one of the control lines. The

outputs of the high address latch are directly connected to th~ high address pins of

the RAM. The low address byte would be loaded in a similar two-part operation

and latched into the low address latch. The low address latch outputs are

connected to the low address lines of the RAM. Finally, the data byte will be

loaded into the D-flip-flop, of which the outputs are also connected to the data pins

of the RAM. The fourth control line will write this data into the RAM.

16. Other Project Developments a. a Direct Result of this Project page 263



During the loading process, the miero-controller is placed in the ONCE or "On

Circuit Emulation" Mode, where all activity on the controller is suspended. Once

loaded, the cable to the PC can be removed, the high address latch and D-flip-flop

disabled, and the miero-controller taken out of the ONCE mode to run the

program. The sman socket became superfluous because it was not necessary to

remove the RAM from the constant supply of the board. Forty DIL pins out on

the underside of the board can be extended to plug directly into the micro

controller socket of a user board.

16.3. A Simpler 8051 Training Board for First Time Students

Eight LEDs for outputs, and four push-buttons for inputs were added to the above

board to make it a very good training tool for first time miero-controller students.

The ease of programming and portability of the system, and the low cost of the

components placed it within the limited budget of a student. Each can construct

his own board to take home to practice at will. A small conversion program

converted a standard Hex file into a so-called "Nibble" file, which could be

downloaded through the parallel printer port using the standard DOS COPY

command. No additional plug-in cards or sophisticated programming software was

required from the driving PC. That made the programming;ystem portable to any

PC with a parallel printer port. The board could initially be used as is, to teach

the operation of the miero-controller md simple programming techniques. It was

also possible to add external hardware to the board though extension connectors.

The extension pins out on the underside of the board, allowed the board to be used

as an in-circuit emulation of the micro-controller of another system as well.

16. Other Project Developme1llS as a Dired R""ult of this ProjeCf page 264



As a basic training board for first time micro-controller students, and as an 8051

Emulator, this circuit worked most successfully.

16.4. The PlC Development System

As a direct descendanr of the Simplified 8051 Training Board, a similar system

was developed for the PlC family of micro-controllers. The PlCI6C84 was chosen

as the template for learning about all the other members of the PlC family, because

it was the only micro-controller with easy programmable EEPROM code memory.

The rest uses EPROM memory only. The code memory is internal to the

controller and no external memory or add= latches were required. It resulted

in a much smaller and simpler board. The mid-range of PlC miero-controllers can

be programmed by two serial lines while still plugged into the applications circuit.

A small programmer was developed which plugs into the board and is driven from

a PC through the parallel printer port. The 12.5 volt programming voltage

required, was derived from a converter on the Programmer Board. It draws its

supply directly from the 5 volt of the Basic Board. The programmer was kept on

a separate board so that it could also be used to program PlC controllers in other

circuits.

Again the portability to any PC with a printer port, and the ;implicity and ease of

re-programming were maintained, which was indeed also one of the main

objectives of the original "parent" project.

=============~=============

16. Orho Project Developments as a Direct Result of this Project page 265



17. Bibliography

Chapman WA. Mastering C Programming. 1991. Macmillan Education Ltd.,

Houndmills, Bastingstoke, Hampsire, RF232XS. ISBN 0-333-49842-9.

Dallas Semiconductor, Inc. Product Data Book. 1992-1993. Dallas Semi

conductor Corporation, Dallas, Texas, 75244-3292.

Franldin Software, Inc. CS1 Compiler Reference Manual. Rev. 10.90, 1990.

Franldin Software, Inc., San Jose, California, 95129.

General Instrument, Inc. General Instruments Optoelectronic Products. 1995.

General Instrument Optoelectronic Division, Palo Alto, California, 94304.

Goldstein U & Gntz L. Hands-on Turbo C. 1989. Brady, Simon & Schuster,

Inc. Gulf & Western Building, One Gulf & Western Plaza, New York, 10023.

ISBN 0-13-383704-1.

Intel Corporation. Embedded Microcontrollers & Processors. Volume I, 1992.

Intel Literature Sales, Mt Prospect, Illinois, 60056-7641. ISBN 1-55512-140-3.

Intel Corporation. Memory Products. 1992. Intel Literature Sales, Mt Prospect,

Illinois, 60056-7641. ISBN 1-55512-117-9.

Intel Corporation, Inc. MCS-51 Macro Assembler User's Guide for DOS

Systems. 1986. Intel Corporation, Santa Clam, California, 95051.

17. Bibliography page 266



Kernigham BW & Richie DM. The C Programming Language. Second Edition,

1988. Prentice Hall, Englewood Cliffs, New Jersey, 07632. ISBN 0-13-110370-9.

Kochan SG. Programming in C. Revised Edition, 1988. Hayden Books, 11711

North College, Suite 141, Carmel, Indiana, 46032, USA. ISBN Q-672-48420-X.

National Semiconductor Corporation. CMOS Logic Databook. 1988. National

Semiconductor, Santa Clara, California, 95052-8090.

National Semiconductor Corporation. Linear 1 Databook. Rev. 1, 1988.

National Semiconductor, Santa Clara, California, 95052-8090.

National Semiconductor Corporation. Memory Databook. Rev. 1, 1988.

National Semiconductor, Santa Clara, California, 95052-8090.

Optrex Corporation. Dot Matrix LCD Module User's Manual. Optrex

Corporation, 3-14-9, Yushima, Bunkyo-ku, Tokyo 113, Japan.

Waite M et al. C Primer Plus. 1984. Howard W. Sams & Co., Inc., 4300 West

62nd Street, Indianapolis, Indiana, 46268, USA. ISBN 0-672-22090-3.

Xilinx, Inc. User Guide and Tutorials. Vol. I & II. 1991. Xilinx, Inc., San

Jose, California, 95124.

Xilinx, Inc. Design Implementation Reference Guide. 1992. Xilinx, Inc., San

Jose, California, 95124.

17. Bibliography page 267



Xilinx, Inc. ORCAD Schematic Design Interface Reference Guide. 1991.

Xilinx, Inc., San Jose, California, 95124.

Xilinx, Inc. The Programmable Logic Data Book. 1993. Xilinx Inc. San Jose,

California, 85124.

====================================

17. BihIWgraphy page 268



Table of Contents to the Appendices
Page

A: The Complete External Board Schematic Diagram 271

B: The Complete DECODER Schematic Diagram 272

C: The Complete SRIFf REGISTER Schematic Diagram 273

D: Numbers and Functions of the Extension Edge Connector Pins 274

E: Memory Map Allocations and Bulk Storage Addresses 227

F: The Pinouts and Functions of the XC2064 PLCC68 LCA Package 280

G: The Seeding Serial Data Download Cable 283

H: Listing of the Seeding Driver Program: SEED.EXE 284

I: Useful Subroutines Already Existing in the Operating System 291

Wait for a Programmable Period Subroutine 292

Reset and Oear the LCD Display Module 292

Display a l6-Character Message on the Display Module 293

Wait for and Decode a Key from the Keyboard 293

Select BAUD Rate Subroutine 294

Binary Nibble to ASCII Conversion 294

ASCIl to Binary Conversion 295

J: The LCD Display Module and Control Commands 296

K: The Binary and Hex Format Files 305

L: Component List for the Training Board 308

M: Component Overlay and Connections 312

N: MicnrController Board Netlist 313

0: Costing and Suppliers of the Components of the Board 318

Appendices page 269



Appendix A: Complete External Schematic Circuit Diagram

~o •
R28 OFF

"GNO
...~ ll'lCl

29 ST-

foIlcr'"o-Cont:r'"oller
Board

."

·'0
."
."
."•

,
•,

EA

Er:~ .,a
...,3 1"11

<? 1"12

il!r3 1"13

t::~"="R~"~~-~",,=p;~~Jlfl~=--i:~;t RST

kg r22 CS 1"16
(lIE 1"17

,., 39
"" pca

01 1:<1 37 PC"

= ~'~=~E~ PC,
03 18 ]'5 PCl3

:: ~1:~.7~=j:,_~ ::
CB PC.,. ,
07 P07, ,
'lIR I,n 1"36
Aa

"A'
A>

AA..
AS

A7

A'.,
"a
",

8 "20
An ,

Fi"i ""040 ;:If!

~ f-,.~
f- """~.

~,
'0

7

,
•,
,

",
7

'0

,
n,,.

0'

=
0'

'"0'
00
07

~

AD

"
~

A>

AA..
A'
A'....
"0

",.,.
An
A,.

Vo

27-3-96

00

0'O.
D3

""os
00
07

AD..

Appendices page 270



Appendix B: The Complete DECODER Schematic Diagram

! i r
! i 0•«-••wa

a
a«
•
a
wa
a
0
w
a

Appendices page 271



Appendix C: The Complete SIllFf REGISTER Schematic Diagram

•

'~i
«
w
0

= I 0

,
~
"z
~

~ ,
"~
«
w•• 0
w
w•

i•

Appendices page 272



Appendix D: Numbers and Functions of the Extension Edge
Connector Pins

The extension edge connector is the size of a standard mM motherboard bus extension

edge connector, and blank mM prototype circuit cards can be used to add circuitry to the

Training board. The pin numbers run from Al to A31 from the bottom to the top on the

side that faces the user, and B1 to B31 are on the underside. All the pins of the micro-

controller are directly connected to the pins of the extension socket, plus a few that may

be useful for external circuits.

Top Side: (Facing a user)

Pin

Al

A2

A3

A4

AS

A6

A7

Name

GND

Vcc

CSO

CSl

IRQ

OSC

RD

Description

Circuit Ground (NB: Not the battery ground!)

+5 V circuit positive (NB: Not the battery positive!)

External Chip Select O. Addresses F400 to F4FF. (256 bytes. Further

decoding can be done with addresses AO to A7, RD, and WR)

External Chip Select 1. Addresses F500 to F5FF.

User External Interrupt 0, in place of Port 3.2. A high to low

transition on this pin will1atch an interrupt to P3.2. The latch must

be reset by a write instruction to the LCA co-.trol register.

Oscillator output from Pin 19 of the micro-controller

Read control from Port 3.7

Appendices pag~ 273



Pin Name Description

--
AS WR Write control from Port 3.6

A9 Tl T"uner I external counter input to Port 3.5

AIO TO T"uner 0 external counter input to Port 3.4

All INI External Interrupt I to Port 3.3

AI2 INO External Interrupt 0 to Port 3.2, used for a key or IRQ interrupt

generation.

A13 TX Serial Transmit from Port 3.1

A14 RX Serial Receive to Port 3.0

A15 URS Micro-Controller Reset to pin 9

A16 P17 To/from Port 1.7

A17 P16 To/from Port 1.6

AIS P15 To/from Port 1.5

A19 P14 To/from Port 1.4

A20 PI3 To/from Port 1.3

A21 PI2 To/from Port 1.2

A22 PH To/from Port 1.1

A23 PlO To/from Port 1.0

A24 Al Address I from address latch in the LeA

A25 A3 Address 3 from address latch in the LeA

A26 A5 Address 5 from address latch in the LCA

A27 A7 Address 7 from address latch in the LeA

A2S ON External ON control. (Connect to BT- to switch on)

A29 BT+ Unregulated positive supply to the extension card

Appendices page 274



Pin Name Description

A30 Vcc +SV circuit positive

A31 GND Circuit Ground

Under Side: (Away from the user)

Bl GND Circuit Ground

B2 Vcc +SV circuit positive

B3 A12 Address 12 to the LCA for interrupt vector swapping

B4 A14 Address 14 to the LCA for interrupt vector swapping

B5 A8 Address 8 from Port 2.0

B6 A9 Address 9 from Port 2.1

B7 AI0 Address 10 from Port 2.2

B8 All Address 11 from Port 2.3

B9 A12 Address 12 from Port 2.4 to the edge connector only

BlO AB Address 13 from Port 2.5

Bll A14 Address 14 from Port 2.6 to the edge connector only

B12 AlS Address 15 from Port 2.7

BB PSEN Program Segment Enable form micro-controller pin 29

B14 ALE Address Latch Enable from micro-controller pin 30

BlS EA External Code Enable to micro-controller pin 31

Bl6 D7 AddresslData 7 from Port 0.7

B17 D6 Address/Data 6 from Port 0.6

Bl8 D5 Address/Data 5 from Port 0.5

Bl9 D4 Address/Data 4 from Port 0.4

Appendices page 275



Pin Name Description

B20 D3 AddresslData 3 from Port 0.3

B21 D2 AddressJData 2 from Port 0.2

B22 D1 AddresslData 1 from Port 0.1

B23 DO Address/Data 0 from Port 0.0

B24 AO Address 0 from address latch in the LeA

B25 A2 Address 2 from address latch in the LeA

B26 A4 Address 4 from address latch in the LeA

B27 A6 Address 6 from address latch in the LeA

B28 OFF OFF control from LeA (Goes p.Jsitive to switch off)

B29 BT- To Negative Battery Terminal (NB: Not Circuit Ground)

B30 Vcc +5V circuit positive

B31 GND Circuit Ground

===================================

AppendiCt!S page 276



Appendix E: Memory Map Allocations and Bulk Storage Addresses

The 64K Byte Code Memory Map: (Read Access through PSEN)

0000 - 4FFFh Available for User Programs (20K bytes)

5000 - 6FFFh Operating System (8K bytes)

7000 - 7FFFh Not available as code (4K bytes): System Variables, I/O Mapping and

LCA Configuration.

8000 - FFFFh Code Addresses do not exist.

The 64K Byte External Data Memory Map: (Access Using RD & WR)

0000 - 7FFFh External Data - available to the -lser.

8000 - CFFFh User Programs (20K bytes) - mirror image of Code

DOOO - EFFFh Operating System (8K bytes) - write protected

FOOO - F2FFh System Variables, Internal Data and SFR store

F300 - F3FFh As 1 WRITE byte to the Control Register, CREG, in the LCA,

overlaid by a READ/WRITE memory byte to enable the reading of

the current settings.

F400 - F4FFh

F500 - F5FFh

F600h

F601h

F602h

F603h

F604 - F6FFh

Appendices

External Chip Select, CSO (256 bytes)

External Chip Select, CSI (256 bytes)

Display Module Command Instruction WRITE address

Display Module Data WRITE address

Display Module Status READ address

Display Module Data READ address

Display Module mirror image addresses

page 277



F700 - F7FFh I READ byte for the Keyboard and the Running Mode Switches.

F800 - FFFFh LeA Configuration (2K bytes) - write protected

System Variable and Bulk Storage Address Locations

Normal System Variables Bulk Storage:

FOOO to F03F Break Point Table F080 to FOBF (64 bytes)

F040 to F041 Table End (OOOOH) FOCO to FOCI (2 bytes)

Pre-Interropt Storage: System Variable Storage:

F042 to F043 Program Counter FOC2 to FOC3 (2 bytes)

F044 Ace FOC4

F045 PSW FOC5

F046 DPL FOC6

F047 DPH F0C7

F048 B FOC8

F049 SP FOC9

F04A lE FOCA

F04B IT FOCB

F04C TMOD FOCC

F04D TCON FOCD

F04E TLO FOCE

F04F THO FOCF

F050 TU FODO

F051 THI FODI

Appendices page 278



F052 to F069

F06A

F06B to F07A

F07B to F07F

Internal Data

Cursor position

Displayed Characters

(Not used)

FOD2 to FOE9 (24 bytes)

FOEA

FOEB to FOFA (16 bytes)

FOFB to FOFF (5 bytes)

Other SFR Registers (Not stored as Pre-Interrupt values):

Port 0 FlOD

Port 1 FlOl

Port 2 Fl02

Port 3 F103

PCON Fl04

SCON Fl05

TICON [8OC32] F106

RCAP2L [8OC32] F107

RCAP2H [8OC32] FI08

TU [8OC32] FI09

TH2 [8OC32] FlOA

Future use FlOB to F1l7 (28 bytes)

Internal Data F1l8 to FlFF (top 231 bytes)

The current lower 24 bytes are not stored, because they will be corrupted by the Operating

System and the stack operations during the Internal data and System Variable storage and

retrieval operations of Modes 3 and 4. The contents of these 24 bytes for a User Program

are stored together with the Pre-Interrupt register values.

=====~===================

Appendices page 279



Appendix F: The Pinouts and Functions of the XC2064 PLCC68 LCA Package

Pin Sym. Normal Function I/O Mast. Par. Conf. Serial Slave Conf.

1 GND Ground Ground Ground

2 AI3 Address 13 I Al3 (0) <High>

3 A6 Address 6 0 A6 (0) <High>

4 A120 Address 12 0 A12 (0) <High>

5 A7 Address 7 0 A7 (0) <High>

6 All Address 11 I All (0) <High>

7 A8 Address 8 I A8 (0) <High>

8 AlO Address 10 I AIO (0) <High>

9 A9 Address 9 I A9 (0) <High>

10 PWDN Power Down I Power Down (I) Power Down (I)

11 OFF Off Control 0 <High> <High>

12 WR Write I <High> <High>

13 PSEN Code Read I <High> <High>

14 ALE Address Enable I <High> <High>

15 1N0 Interrupt 0 0 <High> <High>

16 1Nl (not used) <High> . <High>

17 RD XData Read I <High> <High>

18 Vce +5 volt +5 volt +5 volt

19 A14 Address 14 I <High> <High>

20 Al2 Address 12 I <High> <High>

21 IRQ User Interrupt I <High> <High>

22 CSl Chip Select 1 0 <High> <High>

Appendices page 280



23 csO Chip Select 0 0 <High> <High>

24 SCLK (not used) I <High> <High > (Ser.Clk)

25 Ml (not used) I Ml = 1 (I) Ml = 1 (I)

26 MO (not used) I MO = 0 (I) MO = 1 (I)

27 M2 (not used) I M2=I(I) M2=I(I)

28 URS 8OC31 Reset 0 HDC (0) HDC (0)

29 SS SS Switch I <High> < High> (Reset)

30 CRM Code RAM Ena 0 LDC (0) LDC (0)

31 BP BP Switch I <High> < High> (Up/Down)

32 KOP4 Keybrd Out 4 0 <High> <High>

33 KOP5 Keybrd Out 5 0 <High> <High>

34 KOP6 Keybrd Out 6 0 <High> <High>

35 GND Ground Ground Ground

36 KOP7 Keybrd Out 7 0 <High> <High>

37 KIPO Keybrd In 0 I <High> <High>

38 KIPI Keybrd In 1 I <High> <High>

39 KIP2 Keybrd In 2 I <High> <High>

40 KlP3 Keybrd In 3 I <High> <High>

41 D7 Data 7 I/O D7 (I) <High>

42 D6 Data 6 I/O D6(I) <High>

43 OSC2 Oscillator 2 I <High> <High>

44 RST LeA Reset I Reset (I) Reset (I)

45 PD Program I Done (0) Done (0)

46 OSCI Oscillator I I <High> <High>

Appendices page 281



47 ENA ENA Display 0 <High> <High>

48 D5 Data 5 IJO D5 (I) <High>

49 DRM DataRAMEna 0 <High> <High>

50 D4 Data 4 IJO D400 <High>

51 m Data 3 IJO moo <High>

52 Vcc +5 volt +5 volt +5 volt

53 KOPO Keybrd Out 0 0 <High> <High>

54 D2 Data 2 IJO D200 <High>

55 KOP1 Keybrd Out 1 0 <High> <High>

56 m Data 1 IJO moo <High>

57 KOP2 Keybrd Out 2 0 <High> <High>

58 DO Data 0 IJO DO (I) DIN (I)

59 KOP3 Keybrd Out 3 0 (D0m) <High>

60 CCLK (not used) I (CCLK) CCLK (I)

61 AO Address 0 0 AO (0) <High>

62 Al Address 1 0 Al (0) <High>

63 A2 Address 2 0 A2 (0) <High>

64 A3 Address 3 0 A3 (0) <High>

65 A15 Address 15 I (Al5 (0)) <High>

66 A4 Address 4 0 A4 (0) <High>

67 A140 Address 14 0 A14 (0) <High>

68 A5 Address 5 0 A5 (0) <High>

I = Input, 0 = Output, <High> = High Impedance (weak pull-up)

==================

Appendices page 282



Appendix G: The Seeding Serial Data Download Cable

(On the PC Side)

25-Pin D-Connector (Male)

(On the Board Side)

6-Pin Header (Female)

Name Pin Pin Name

used)

tation Key)

In

used)

DO 2 6 Data

x 5 (not

D1 3 4 Clock

Out+ 12 - x 3 (Orien

Gnd 18 2 Gnd

Busy+ 11 - x 1 (not

Paper

================~======

Appendices page 281



Appendix H: Listing of the Seeding Driver Program: SEEDoEXE

#include <stdio.h>

#include < stdlib.h>

writebits(char filename(13], char port[5], char hila);

main(void)

( char prt,chl,cb2;

char port[6] = ·LPTn:· ,filename(13];

FILE *SS, *CS, *05, *pr, *op, *inp;

system(·cls·);

puls(·ltltltSerial-Parallel SEEDlNG Program. .);

puts(·\nltThis program is used to place some inteUigence cn a new·);

puts(°ltonntroller board with a blank or corrupted Operating System or·);

puts(·ltoonfigoration for the Xilinx rc, in the Code RAM.•);

puts(·\nltThe Xilinx rc in the I ·Serial Slave Model·, is first configured to·);

puts(·lthe a Shift Register and an Address Counter through this program and·);

puts(°ltthe file I°SHIFfREG.MCSI·••);

puts(°\nltThe configured Shift Register is then used to convert a clocked·);

puts(°ltserial data train from a PC to load the Configuration data forO);

puts(·ltthe Xilinx chip for normal operation, from the file DECODER.MCSO);

puls(Oltinto the top of the Code RAM••);

puts(°\nltThen the code of the Operating System from the file OPSYS.HEX, is·);

puts(°ltloaded into the bottom of the Code RAM••);

printf("\nltPress ENTER to Continue. .••);

getchar();

system(·clsO);

puts(°ltThe loading of the above files, or the I ·seedingl° process, is doneO);

puts(°ltthrough the Xilinx download cable from a parallel printer port of");

Appendices page 284



puts("\ta PC to the keyed 5-pin header plug on the controller board. A");

puts("\tmade up cable from the printer port to either a 6-pin header");

puts("\tsocket to the 8-pin OIL socket OD the controller board can be");

puts("\tused. The specification for such a cable is in the documentation. ");

puts("\n\tThe seeding process is controlled by this program, in conjunction");

puts("\twith the slide switches OD the Controller Board. The jumper on the");

puts("\tboard's component side, marked \"SEED\" must be closed to initiate");

puts("\tseeding. Switch 1 resets the address connter when OFF, and Switch 2 ");

puts("\tcontrols the direction of the address counter: OFF = From the top");

puts("\tdownwards, and when switched ON = From the bottom, upwards. ");

printf("\n\tPress ENTER to Continue...");

getcbar();

system("cls");

puts("\t\t\tStep-by-step Seeding Procedure:\n");

puts("\t 1. Connect the Controller Board to a parallel port of the PC.\n");

puts("\t 2. Close the \ "SEED\" jumper on the Controller Board.\n");

puts("\t 3. Apply power to the board.\n");

puts("\t 4. Press the ON/CONF button. The Red LEO on the");

puts("\t Controller Board should ligbt up. ");

if«ss=fopen("sbiftreg.mcs","r")= = (FILE *) NUll)

{ puts("\n\nUnable to find SHIFrREG.MCS in current directory!\a");

exit(O);

}

if«cs=fopen("decoder.mcs" ,"r"»==(FILE *) NUll)

{ puts("\n\nUnable to find OECOOER.MCS in current directory!\a");

exit(O);

}

if({os=fopen("opsys.hex","r"»= = (FILE *) NUll)

Appendices page 285



{ puts("\nlnUoahle to find OPSYS.HEX in current directory!la");

exit(O);

}

fclose(ss);

fclose(cs);

fclose(os);

puts("\nlt 5. Select the appropriate printer port of the PC: ");

puts("\nltIU. LPTl:\nltl12. LPT2:\nltlt3. QuiL ");

do

{ printf("\nlt\t(1,2,3): ");

scanf(" %c",&prt);

if(prt= = '3') exit(O);

if(prt= = '2') port{3] = '2';

if(prt=='l') port{3]='1';

}

while (prt<'l' 11 prt> '3');

if«pr=fopen(port, "w"»= =(FlLE *) NUll.)

{ printf("\nlnParallel Port %s may not be ready!\a",port);

printf("\nCheck the cable and if power is avai1able on the board. ");

} fclose(pr); systern("cls"); printf("\t\tPort %s is selected!",port);

puts("\n\n\t 6. Press ENTER to start the Shift Register configuration. ");

printf("\t Or Press Q to QuiL.");

chi =gelchar();

if(chl=='Q'llchl=='q') exit(O);

system("cls");

printf("\n\nlt Configuring the Xilinx to a Shift Register..... ");

writebits("SHIFIREG.MCS",port,T);

puts("laDone! ");

Appendices page 2B6



puts("\n\t 7. Open the \"SEEm" jumper. (Done with Shift Register configuration.)");

puts("\n\t 8. Set Switch I OFF and then ON again, to reset the internal");

puts("\t address counter. Switch 2 stays OFF to select loading from");

puts("\t the top, downwards. ");

puts("\n\t 9. Press any key to continue loading the configuration data for");

printf("\t normal operation, into the top of the RAM, or Q to quit: ");

chi = getchar();

if(chl=='Q'llchl=='q') exit(O);

system("cls");

printf("\n\t Loading the configuration data to the RAM.••.. ");

writehits("DECODER.MCS",port,'h');

puts("\aDone! ");

puts("\n\t10. Set Switches I OFF then both 2 ON. Switch I is the address counter");

puts("\t reset. Switch 2 selects the upwanIs count direction. ");

puts("\n\t11. Press any key to continue loading the code of the operating");

printf("\t system into the bottom of the RAM, or Q to quit:");

chi =getchar();

if(chl=='Q'llchl=='q') exit(O);

system("cls");

printf("\n\t Loading the Operating System...• ");

writehits("OPSYS.HEX",port,'h');

puts("\aDone!");

puts("\n\t12. Remove the downIoad cable, set all switches to OFF, and press");

puts("\t the ON/CONF button of the ControUer Board. ");

puts("\nltlJ. Now the ControUer Board is Seeded and ready! ");

retum(O);

}

Appendices page 287



writebits(char filename[13], char port[5], char hilo)

{ char chl,ch2;

int iJ,no_bytes,startln,endln,byte_val,bitv,parv,btl,bt2;

FILE *inp,*pr;

inp=fopen(filename, Or");

pr=fopen(port,"a");

putc(char)255,pr); 1* Set all Data bits = I *1

do

{ startIn = 0;

endln = 0;

do

chI = gelc(inp); 1* read until ':' is found.*1

while(chl!= ':');

chl=gelc{inp); 1* read number of bytes in this line *1

ch2=gelc(inp);

btI = (inl)chI-48;

if (bt1>9) btl=btl-7;

bt2=(int)ch2-48;

if (bt2>9) bt2=bt2-7;

DO_bytes=btl*16+bt2;

for(i=l;i<7;i++) 1* read 6 ch Address & control *1

{ chl=gelc{inp);

}

if(chl=='2') 1* 2 = start line */

startln= I; 1* do nothing, go back to : */

if(chl=='l')

endln= I; 1* I = end of data *1

Appendices page 288



for(i=no_bytes;(i> O)&&(startIn= =O)&&(endln= =O);i-)

{ chl=getc(inp);

ch2=getc(inp);

btl =(int)chI-48;

if (btl>9) btl=btl-7;

bt2=(int)ch2-48;

if(bt2>9) bt2=bt2-7;

byte_val=btl*16+bt2;

for(j=I;j <9;j + +)

{ if (hilo= = '1')

bitv = byte_val % 2;

else

bitv=b}te_val/128;

parv= 180+bitv; 1* Clock = 0 *1

if«char)parv<'-j'II(char)parv>',') exit(O);

putc(chat)parv,pr);

if (hilo=='!')

byte_val = byte_vall2;

else

byte_val=2*(byte_val % 128);

parv=parv+2; 1* Set Clock *1

if«char)parv<'-j'II(char)parv>',') exit(O);

potc«char)parv,pr);

}

}

}

Appendices page 289



while(endln= =0);

putc«char)255,pr);

fclose(inp);

fclose(pr);

retum(O);

}

===============================

Appendices page 290



Appendix I: Useful Subroutines Already Existing in the
Operating System

When a user program is run on the training board from address OOOOH, the subroutines

already in the Operating System, are directly available and can be used in user

applications. The user only has to use a subroutine CALL to the correct address in his

program. To prevent the unwanted corruption of existing data, summaries of the register

usage and stack requirements, have been included on the next page, so that provision can

be made by the user. The number of stack bytes includes the stack bytes required by the

subroutine, and other subroutines called from within. The starting addresses of the

subroutines in the Operating System are also included.

Some of these subroutines make use of other subroutines, but those CALL addresses are

already contained in the code. When subroutines are used that also use interrupt

subroutines, the user must include an appropriate interrupt subroutine in his program. A

single RETI instruction will be sufficient as a user interrupt subroutine in all the cases.

When a user program that uses some of these routines is tested on the simulator, and error

would be flagged if these routines do not exist on the simulator. One may either type out

and include the routines together with the user program, or a sing~e "RETURN" statement

and a breakpoint can be placed at the appropriate address. The result of the subroutine

can then be simulated by typing in the expected value into the appropriate registers of the

simulator.

Appendices page Z91



Wait for a Programmable Period Subroutine

Description:

Usage:

Goes into the Idle Mode and waits for a programmable period,

form 0.2 msec up to 13.1 seconds, in steps of 0.2 msec.

Call subroutine with the loop counter in the DPTR. Calculate time

as (65536 - DPTR) x 0.2 msec.

Corrupt: Timer 0, DPTR, Ace and 4 stack bytes.

Subroutines Used: Timer 0 Interrupt (RETI only)

Starting Address: C:604Dh

(Wait for 1 second: C:604Ah)

(Listing on page 225)

Reset and Clear the LCD Display Module

Description: Executes the Reset Display command, and waits a bit more than the

prescribed minimum 1.64 msec.

Usage: Call subroutine.

Corrupt: Tuner 0, Ace and 6 stack bytes.

Subroutines Used: Timer 0 Interrupt (RETI only).

Starting Address: C:6073h

(Listing on page 226)

Appendices page 292



Display a 16-Cbaracter Message on the Display Module

Description:

Usage:

Corrupt:

Subroutines Used:

Starting Address:

(Listing on page 226)

Displays a user defined 16-character message on the LCD display

module.

Place 16 ASCII characters as Data Bytes somewhere in the code

memory, set the DPTR to this address and call the subroutine.

Timer 0, DPTR, Ace, B, C, 8 stack bytes.

Timer 0 Interrupt (REIT only)

C:607Fh

Wait for and Decode a Key from the Keyboard

Description:

Usage:

Corrupt:

Subroutines Used:

Starting Address:

(Listing on page 227)

Appendices

Wait in the Idle mode until a key is pressed. Decode the key and

return. When entered, it will wait until a previous key has been

released and the new key pressed.

Return with the key value, OOh to IFh in the Accumulator. The

three MSBits have been masked out and cleared.

DPTR, Acc, B, C, EXO= 1 and 1 stack bytes in SS or BP modes,

or 4 stack bytes in Exe mode.

Operating System interrupt 0 in SS & BP, or User Interrupt 0 in

EXE mode (REIT only).

C:6OCBh

page 293



Select BAUD Rate Subroutine

Description:

Usage:

Corrupt:

Subroutines Used:

Starting Address:

(Listing on page 176)

Uses the LeD to display and select a baud rate together with the

arrow and the Enter keys. The Help file is available and can be

called by the Help button.

Return with the BAUD RATE set, but not running.

Both Timers, DPrR, Acc, R4 to R7 and 13 stack bytes.

External Interrupt 0, Timer 0 (REIl only)

C:6185h

Usage:

Description:

Binary Nibble to ASCII Conversion

Converts the least significant nibble in the Accumulator to its

ASCII equivalent (Oh - Fh, to '0' - 'F').

Enter with value in Accumulator, mask out the MS Nibble and exit

with the ASCII value in the Accumulator.

Corrupt: Acc and 2 stack bytes.

Starting Address: C:620Ch

(Listing on page 228)

Appendices page 294



Description:

Usage:

ASCII to Binary Conversion

Converts and ASCII number form '0' to 'F' to its binary value.

Enter with ASCII number in Accumulator, and exit with the binary

value in the Accumulator.

Corrupt: Acc and 2 stack bytes.

Starting Address: C:6218h

(Listing on page 228)

=============~=========

Appendices page 295



Appendix J: The LCD Display Module and Control Commands

The LCD display module is controlled by its own dedicated onboard micro-controller and

communication to and from the board is done through 4 or 8 data- and 3 control lines.

The display module can almost be treated as a simple peripheral device, except that the

prescribed reset sequence and timing requirements must be strictly adhered to. The same

internal controller and software are used for similar but bigger display units, such as 20,

24, 32- and 4O-characters by I-line, or the same number of characters by 2-lines. During

the initialization sequence of the display module, the internal controller must be told which

type of display it is controlling.

The control lines are a "CommandIData" line, a "ReadlWrite" control and a positive

active "Enable" control. The data lines and the two command lines must be stable before

the Enable control can go positive. It must stay active for more than 450 nsec before it

n
can be pulled low again. After a normal instruction to the display controller, a waiting

period of at least 40 p.sec must be allowed before the next instruction.

To adhere to these requirements, the display module had to be decoded at separate reading

and writing addresses on the Training Board. The module is decoded to only read form,

or only write to the appropriate addresses, else the outcome may be indeterminate.

The Command Write address is: F700h

The Data Write address is: F701h

The Status Read address is: F702h
c

The Data Read address is: F703h

Appendices page 296



In the display module, there are two sets of RAM accessible to a user, the "Display Data

RAM" or DDRAM and the "Character Generator RAM" or CGRAM. The DDRAM is

for the stornge of the ASen code of the displayed character, and the CGRAM is used for

the bit image of eight user definable characters. The DDRAM consists of two sets of 40

characters each, of which only 8 bytes of each set is displayed on the 16-character display.

The addresses that contain the left eight characters are from SOh to A1h, and the right-

hand eight characters are from COh to E1h. The reset window for the displayed characters

is at the lowest addresses of each section, i.e. SOh to 81h, and COh to C7h.

DDRAM Organization:

40 Characters
< >
80 81 •• 86 87 88 89 A7

_____---'!--> Shift

Left 8 displayed chars.

40 Characters
< >
CO Cl C6 C7 C8 C9.. E7

L.- --l!--> Shift

Right 8 displayed chars.

The display windows can be shifted to cover any eight consecutive bytes in a continuous

loop, i.e. SOh will follow A7h, and COh will follow E7h. The windows of the two

sections can only be shifted simultaneously. The position of the cursor determines at

which address the next data byte will be placed. Initialization system commands will

determine if the cursor position must increment or decrement when a character is written

to the DDRAM, or that the cursor position must stay steady, and the displayed characters

moves left or right past the cursor position.

Data can also be written to characters not currently displayed. They will then appear

when the displayed characters are moved left or right. The two sections can only be

shifted simultaneously, although the cursor is set to be in only one section.

Appendices page 297



A display reset command will clear the whole DDRAM. The ASCII number 32, a

"space", will be written to all the addresses. The position of the display window will be

placed over the first 8 bytes of each section, and the'cursor will be placed on address 80h,

the first left-hand character of the 16-character display.

With the display set to the cursor increment mode, a message can be written to the display

by first placing the cursor on the address 80h by a ·cursor placement" command to the

command address. After the prescribed 40 p.sec waiting period, the first character can be

written in its standard ASCII code to the Data Write address. After the same waiting

period, the next character can be written, and so Oil, for the first eight characters. Then

the cursor must be placed on the first character of the second section, COH, before the rest

of the characters are written to the data address.

The Character Generator RAM

All the standard ASCII characters are stored in the character generator ROM, plus a few

lesser know graphic and Japanese characters. A complete list is included at the end of this

section. It is also possible to generate eight user characters on a 5 by 8-bit map in the

Character Generator RAM or CGRAM. The ASCII codes 0 to 7 have been allocated to

display these user defined characters. Addresses 40h to 7Fh (8 sets of 8 bytes each) have

been allocated to store the byte values of the user characterr, OnIy the five least

significant bits of each byte are used.

To define a user character, the required address of the first byte of one of the user

characters must first be determined by the formula: 40h + n x 8, where n is the number

of the user character, and also the ASCII code ('0' to '7') by which it must be called.

Appendices page 298



The bit image of the user character must be designed on a 5 by 8 grid, as shown below:

A 'I' will set the appropriate pixel and a '0' will clear the pixeI. The byte values of the

pattern must then be determined. The cursor is placed on the first byte address calculated

above (40h to 7Fh) through the Cursor Place command. After that the group of data bytes

can follow. They must be written to the Data Write address of the display module. The

internal cursor address of the CGRAM counter will be incremented automatically after

each data write operation.

CGRAM Organization

'. Character 0: Address Byte Value Bit values to display 't'

40h 04h xxx00100

4lh 07h xxxOl110

42h 15h xxxlOIOI

43h 04h xxxOOIOO

44h 04h xxxOOIOO

45h 04h xxxOOIOO

46h 04h xxxOOIOO

47h 04h xxxOOIOO

Character 1: Address Byte Value Bit values to display , ~'

48h

49h

etc. etc.

Appendices

4Fh (Last byte of character I)

page 299



Char. 2 to 7: Address Byte Value Bit values to display

50h etc. etc.

5Ih

7Fh (Last byte of character 7)

Whether a set of data is written to the DDRAM or the CORAM, will depend on the

address of the "last" cursor position selected. If it was between 40h and 7Fh, the

CORAM will be aceesserl, while if it was between SOh and A7h, or between COh and

E7h, the DDRAM will be aceesserl.

Reading the Current Data or an Addresses from the Display Module

It is also possible to read either the data stored in the DDRAM or the CORAM, or the

cursor address counter value of either the DDRAM or the CORAM.

The current cursor address is read from the Status (or Address) Read address and

depending on which RAM the last cursor place command was addressed to, the return data

will either be that of the DDRAM or the CORAM. The most significant bit from either

address counter will contain the "Busy Flag". When it is set, it will indicate that the

display module controller is still busy with internal operations and any commands or data

to the module will be ignored.

Appendices page 300



The stored data of the DDRAM or the CGRAM can also be read through the Data Read

address, and the previous cursor place command will determine from which RAM and

from which address the data will be returned. Reading data from either RAMs, will

automatically increment the address counter for the reading of the next data byte

immediately.

Command Instructions of the LCD Display Module (In the Hex format)

Initial Display Type Setup Instructions: (40 JLsec execution time)

20 = 4 Data bits, 1 Line Display Unit, 5 x 7 Character bit map

24 = 4 Data bits, 1 Line Display Unit, 5 x 10 Character bit map

28 = 4 Data bits, 2 Line Display Unit, 5 x 7 Character bit map

2C = 4 Data bits, 2 Line Display Unit, 5 x 10 Character bit map

30 = 8 Data bits, 1 Line Display Unit, 5 x 7 Character bit map

34 = 8 Data bits, 1 Line Display Unit, 5 x 10 Character bit map

38 = 8 Data bits, 2 Line Display Unit, 5 x 7 Character bit map (*)

3C = 8 Data bits, 2 Line Display Unit, 5 x 10 Character bit map

(* = Used for this device)

Set Cursor or Display Movement Crom Here Onwards Commands. (40 p.s)

04 = Display will stay steady and Cursor position will Decrement.

05 = Display will move Right and Cursor position will stay steady.

06 = Display will stay steady and Cursor position will Increment.

07 = Display will move Left and Cursor position will stay steady.

Appendices page 301



System Commands (1.64 msec Execution time each)

01 = Reset display and cursor positions and clear DDRAM.

03 = Reset display and cursor positions only - no clearing.

Show Cursor and Display Commands: (40 ILsec)

08 = Display OFF, Cursor OFF, Cursor character NOT blinking.

09 = Display OFF, Cursor OFF, Cursor character blinks.

OA = Display OFF, Cursor ON, Cursor character NOT blinking.

OB = Display OFF, Cursor ON, Cursor character blinks.

QC = Display ON, Cursor OFF, Cursor character NOT blinking.

OD = Display ON, Cursor OFF, Cursor character blinks.

OE = Display ON, Cursor ON, Cursor character NOT blinking.

OF = Display ON, Cursor ON, Cursor character blinks.

(When the Cursor is ON, the underscore character appears.)

Shift Cursor or Display Commands: (40 ILsec)

10 = Cursor moves 1 character Left, display stays steady.

14 = Cursor moves 1 character Right, display stays steady

18 = Display moves 1 position Left, cursor stays on same character

lC = Display moves 1 position Right, cursor stays on same character

Place Cursor and Select DDRAM or CGRAM Commands: (40 Jlsec)

40 to 7F = Place cursor at CGRAM Addresses

80 to A7 = Place cursor at 1st window of DDRAM addresses.

CO to E7 = Place cursor at 2nd window of DDRAM addresses.

Appendices page 302



The Display Module Initialization Sequence

1. Wait 15 milli-seconds after power up.

2. Write 38h to command address - select 8 data bit mode.

3. Wait 4.1 milli-seconds.

4. Write 38h to command address again - dummy byte in case the 4 data bit mode was

active.

5. Wait 100 It-seconds.

6. Write 38h to command address - 8 data bits, 2 line, 5 x 7 font (This Module is

considered to be a 2-line device.)

7. Wait 40 wseconds.

8. Write 38h to command address - 8 data bits, 2-1ine, 5 x 7 font

9. Wait 40 Wseconds.

10. Write 01h to command address - reset module.

11. Wait 1.64 milli-seconds - delay for reset.

12. Write 06h to command address - Cursor Increment and display steady.

13. Wait 40 It-seconds.

14. Write ODh to command address - Display ON, Cursor OFF and cursor character

blinks.

..{The LCD Display Module Internal Character Set.

Appendices page 303



The LCD Display Module Internal Character Set

1111

-:-:· .._.

.-.· .· .--.· -· .....:

Illa

·- ·-·..'-' ...
· · -· , · -· ::::--

··, ·· · · ·· · ·
·:- : .:-

- _.
·.· · , ---- -·: .:-:.·-, · ··, ··-
-_..

·
-·. · ·

·-·.· _.·.-- · .· · .
- ·"i:.. -•-r-·.·

~-···

-· .-

·:::....:
· .·..
I_I.

-
-· .· ,

.

·.--
·-

- .· .

· ..:-:.

lilt

· ....---
.-·.._.
· .-

-.· -· .· .-

.-f i

..-=_:

.- .· .· .· .

._..

.-:.-
·.·..":"

·.·.

-·.
--

:-:: : ..._. -_",:

· .-

1110

-::..
· .·

-.· .

· .!.:::

J.

-: ..:

....

· .toOl-

-· .· .· .:.-:

-

-.--.

._.'

: :· .· ,.'.·.55:.-

.
'.'.' .
-+---
+-:·.;

1101

·::..:

.-;-

~.'

•••J
-'

.'

':00

......

...

:-:....:

.-....

1011

=

-1-:-:1-:-- -:- -.-.- : .- ..

"-

.-

1010

'. I .I-~I·.. .. ...... - .. ..: : .-. :.. - .. "

:-0.
r

0111

..=.

.: I' 11 . :1·.....·1 .: ....::--: : ..'.:.. -- -- .-

---


'-'

:-J. ~I -1 :-q ....._.. .... .. .... ...... .. - .. -: : .- -. ..: -_ .. : ..

- .· .

OltO

_.· -· .- ,

, I-'d.. .. .... .. ..-= : :

;

.
,

· ", '!" .-.· . -· , - -

0101

· .· -

· .re

·-'

-I' .. .., .- ..- .. .- .

• H····\ i1'1 I':'-~ 1-'-r.: .. .. :.-. ...:. --: : .- :: -: ::.a::::_ :i :

'-'rr ] l-·1 I. q-E i :-: +- ::: '1-· i ..=__a _ __a • __ __ _.

:. -11:: :· .• •

r :.

· IT' ... .. .. .... .. .. ..- ,.. .. ...... .. .. .... .. .. ..

- .· .

0100

· .·
'-'

· .· .· .

.-.
:J.£

:'17 .; 1..... 1_1:1. ...
= -_: I==- -_: .::..1~ I.-J I: :=

: :
:::=

-i

.''.'-'

· .:_:

tlGlt

· ..'.::...

.-.·-:.- :
'-'

"..'

.',
".

: :

:..-
:.:.:

..

.......

-.'.'.=

..--..
-.+-

tlGIO

1 + .(al.···I:··

COl 1-1=
(SI 1_ 1·:'- i \::.:.: 1 . I I+-: I: :'""'1.. .... .. .. .. ...' I .; I .... --.- .--

(ZJ

01

1<11.+-':: ::.,: 1L· r-:. 1-.:- 1 ; i' l ;.. "I._ : -.1:.. :_. _.•-:'1.- 1-_

Cal

l7l

ISl

(11

tzl

!Cl

(01

(31

CG
RAI.I
(I)

oooa

xXXXI111

xxxxltot

xXXXtl1e

XXXXI1QO

xxxxlQl1

x"xxtCIO

XX.XX1OQl

xxxxl000

xxxxOtl0

xxxxOIII

xxxxOl(11

xxxXGIQG

xxXXOOIO

xxxxooal

xxxXOQlt

XXXXOOQQ

FONT TABLE Gx11llc:sl - -

Appendices
pag~ 304



Appendix K: Binary and INTEL Hex Format Files

The contents of a memory IC can be stored on disk, either in the Binary or the Hex

formats:

In the Binary format, no address information is included in the fIle. The fIrst byte of a

Binary fIle starts at address zero, and each consecutive byte contains its true binary value.

All undefined address spaces are filled with OOh or FFh, and the fIle mayor may not end

off with an 'End of File' marker (ASCII 26<1 or lAh). The number of bytes contained

in the fIle is defined in the directory of the disk. The file cannot successfuJIy be inspected

on a PC screen or printed out, because some values of the bytes may be unprintable

characters. A surreptitious "End of File' marker, which can be a normal byte value, may

cause an unexpected break.

In the INTEL Hex format, however, each program instruction or data byte value is

represented as two hexadecimal digits from '0' to 'F'. Only bytes defined by the source

program are included in the fIle. Open areas are not cleared to OOh and are not specified

or included in the me.

The data bytes are grouped together in sixteen (or less) sets of (Wo hexadecimal digits per

line. It is assumed that all the bytes in one line will follow at consecutive addresses.

When an open area is encountered, the previous line may end off with less than 16 data

bytes, and the next line will start at the address where the next defined bytes continue.

The number of data bytes in a line, and the absolute starting address of the first data byte

Appendices page 305



of a line, are included at the beginning of each line. Each line of a hex file is treated as

a separate entity, and lines need not be in a strict numerical address order. All the

characters used in the Hex file are printable or readable characters between the ASCII

numbers 32d and 127d.

Each line of data of an INfEL Hex file is compiled as follows:

:10123400112233445566778899AABBCCDDEEFFOOCC
UL-JUI IU

* A line always starts with a colon (:)

* The first two hexadecimal digits specify the number of data bits included in the line

with a maximum of sixteen.

* The next four hexadecimal digits specify the 16-bit address of the first data bit, with

ascending addresses for the following bytes in the same line.

* Two Control digits follow, indicating one of the following:

00 = Normal data,

01 = End of this section,

02 = Start of a new section (Only used if unrelated data is stored in the same
~

file or memory device)

* From 1 to 16 data bytes, made up of two hexadecimal digits each.

* A two hexadecimal digit checkbyte, which when added to the total of the values of

each pair of digits in the line (carries ignored), will result in OOh.

* A Carriage Return/Line Feed character (ASCII 13d or ODh)

Appendices page 306



* The last line of a file is indicated by a line with zero data bytes, address OOOOh,

control digits 01, and a checkbyte:

:OOOOOOOlFF

* The file must be ended off by the End-of-file marker (ASCII 26 or lAR) to close the

file when loaded to the PC for disc storage.

===================================

Appendices page 307



Appendix L: Component List for the Training Board

Ref Designator Pattern TypelValue

BAT LED PPJ (9V)

Cl CAP200 lOOJtF

C2 CAP200 O.lJtF

C3 CAP200 lOJtF

C4 CAP200 lOJtF

C5 CAP200 lOJtF

C6 CAP200 lOJtF

C7 CAP200 lOJtF

C8 CAP200 10nF

C9 CAP200 lOnF

ClO CAPlOO 33pF

Cll CAPlOO 33pF

C12 CAP200 ljtF

Cl3 CAP200 llLF

C14 CAP200 llLF

C15 CAP200 O.lJtF

CONF LED RED LED

CRM DIP28 62256

D1 D0300 Signal Diode

D2 D0300 Signal Diode

D3 D0300 Signal Diode

page 308



Ref Designator Pattern TypeJValue

D4 D0300 Signal Diode

D5 D0300 Signal Diode

D6 D0300 Signal Diode

D7 D0350 Rectifier Diode

D8 D0350 Rectifier Diode

DCON D-9 D-eonnector

DISP SIPl4 LTNl1IR-IO

DNLD SIP6 SIL6

DRM DIP28 62256

EXT ffiMEDGE 62PFEMALE

JPI SIP2 SIL2

JP2 SIP2 SIL2

JP3 SIP3 Sll3

KBI SIP8 16KEY#

KB2 SIP8 16KEY#

LCA PLC68 XC2064

MAX DIPl6 MAX232

ON LED Green LED

OPTO OPTO 4N35

PB SIP2 SIL2

PRM DIP8 XCl736

RI RES400 lId}

R2 RES400 4.7Idl

page 309



Ref Designator Pattern Type/Value

R3 RES400 470Q

R4 RFS400 33ldl

R5 RFS400 2.2ldl

R6 RFS400 33ldl

R7 RFS400 33ldl

R8 RFS400 33ldl

R9 RES400 820Q

RIO RES400 470Q

RH RES400 33ldl

RI2 RES400 22ldl

RI3 RES400 22ldl

RI4 RES400 22ldl

RI5 RES400 22ldl

RI6 RES400 I20ldl

RI7 RES400 I20ldl

RI8 RFS400 2.2ldl

R19 RES400 33ldl

R20 RES400 33ldl

R2I RFS400 4.7ldl

R22 RES400 I2ldl

R23 RES400 4.7ldl

REG REG 3171'

SW DIP4 DPDT

Appendices page 310



Ref Designator

T1

TRM

UC

VR

XTL

Appendices

Pattern

TD-5

TERM

DIP40

TRMPOT

XTAL

Type/Value

2N3053

Banana

8OC3l

4.7ldl

ll.059MHz

==========

page 311



Appendix M: Component Overlay and Connections

$
• DOEl) • • •• • • 00• CRll • • 00• ttlS6 • • 0

0• • • 0

• • • !lOON

• • • El),0 0 0
'0 • 0

• • •
- - _IlBLClI\ • 0' 0

• 0 •2...0000 0 • •11· 0 • •
• 0 ..
0 • ~;;:§• •• • - !!!! ~~

• •• vc • OCIJ/O• • ••••• 0 0 ••••• 0 o. o(IDa

• 000' • o.
0 • •• ""PPJ• •
~

11. C=J B.<TlERY0 • ••• 0 ••0 • o.
0 0 0 ••••• • m .0.0• ••• ~I 1Ui!l5Swtr ' • Of

""'" Iw ..

6'
El)

SCALE 1 : 0.9

Appouiices page 312



Appendix N: Micro-Controller Board Netlist

(Used for FauItfinding on the Board)

BAT+: TRM-I D7-I

REG: D7-2 REG-3 EXT-A29 D8-2

OFF: LCA-Il OPTQ-2 Dl-I EXT-B28

OFI: R3-2 ON-I

OF2: OPTQ-I ON-2

OF3: Tl-2 OPTQ-4

OF4: OPTQ-5 RI-2

BAT-: BAT-2 TRM-2 PB-2 EXT-B29 Tl-I

RST: PB-I D2-2 R4-2 LCA-44 EXT-A28

DP: DNLD-5 02-1 Dl-2 LCA-45 PRM-3 PRM-4 D5-2

CCLK: LCA-60 LCA-24 R18-2

DCLK: DNLD-4 PRM-2 RI8-1 R19-2

DIN: DNLD-6 R5-1 PRM-I

PlO: UC-l EXT-A23

PIl: UC-2 EXT-A22

P12: UC-3 EXT-A21

P13: UC-4 EXT-A20

P14: UC-5 EXT-AI9

P15: UC-6 EXT-AI8

P16: UC-7 EXT-A17

P17: UC-8 EXT-AI6

Appendices page 313



MI: LCA-25 LCA-27 R6-2 m-I

ENA: DISP-6 LCA-47 D5-1

EA: JP3-2 UC-31 EXT-BI5

WR: CRM-27 LCA-I2 DRM-27 UC-I6 EXT-A8

DO: R5-2 DlSP-7 CRM-ll LCA-58 DRM-ll UC-39 EXT-B23

A2: CRM-8 LCA-63 DRM-8 EXT-B25

AI: CRM-9 LCA-62 DRM-9 EXT-A24 DISP-5

AO: DlSP-4 CRM-IO LCA-61 DRM-IO EXT-B24

CRM: LCA-30 RIQ-I R9-2

CEC: RIQ-2 CRM-20 CRM-22 D3-2

DRM: LCA-49 DRM-20 DRM-22

MO: LCA-26 04-2 Rll-I

SEED: D3-1 04-1 JPI-2

KOP7: KBI-4 LCA-36

KOP6: KBI-3 LCA-34

KOP5: KBI-2 LCA-33

KOP4: KBI-I LCA-32

KOP3: KB2-4 LCA-59

KOP2: KB2-3 LCA-57

KOPI: KB2-2 LCA-55

KOPO: KB2-I LCA-53

KIPO: KBI-5 KB2-5 RI2-2 LCA-37

KIPI: KBI-6 KB2-6 R13-2 LCA-38

KlP2: KBI-7 KB2-7 RI4-2 LCA-39

Appendices pag~ 314



KIP3: KBI-8 KB2-8 R15-2 LCA-40

CIP: MAX-I C3-1

CIN: MAX-3 C3-2

C2P: MAX-4 C4-1

C2N: MAX-5 C4-2

VP: MAX-2 C5-1

VN: MAX-6 C6-2

RX': DCON-3 MAX-8

BP: LCA-31 SW-2 R7-2

Dl: DISP-8 CRM-12 LCA-56 DRM-12 UC-38 EXT-B22

D2: DlSP-9 CRM-13 LCA-54 DRM-13 UC-37 EXT-B21

D3: DlSP-I0 CRM-15 LCA-51 DRM-15 UC-36 EXT-B20

04: DlSP-ll CRM-16 LCA-50 DRM-16 UC-35 EXT-BI9

D5: DlSP-12 CRM-17 LCA-48 DRM-17 UC-34 EXT-BI8

D6: DISP-13 CRM-18 LCA-42 DRM-18 UC-33 EXT-BI7

D7: DlSP-14 CRM-19 LCA-41 DRM-19 UC-32 EXT-BI6

YO: YR-2 DISP-3

YOR: YR-3 R2-2

A15: LCA-65 UC-28 EXT-BI2

A14: CRM-I LCA-67 DRM-I UC-27 EXT-Bll

A13: CRM-26 LCA-2 DRM-26 UC-26 EXT-BlO

A12: CRM-2 LCA-4 DRM-2 UC-25 EXT-B9

All: CRM-23 LCA-6 DRM-23 UC-24 EXT-B8

AIO: CRM-21 LCA-8 DRM-21 UC-23 EXT-B7

Appendices page 315



A9: CRM-24 LCA-9 DRM-24 UC-22 EXT-B6

A8: CRM-25 LCA-7 DRM-25 UC-21 EXT-B5

RD: LCA-17 UC-17 EXT-A7

A7: CRM-3 LCA-5 DRM-3 EXT-A27

A6: CRM-4 LCA-3 DRM-4 EXT-B27

A5: CRM-5 LCA-68 DRM-5 EXT-A26

A4: CRM-6 LCA-66 DRM-6 EXT-B26

A3: CRM-7 LCA-64 DRM-7 EXT-A25

RXD: MAX-9 D6-2

RX: D6-1 UC-lO EXT-AI4

TX': DCON-2 MAX-I4

TX: MAX-ll UC-ll EXT-AI3

RTS: DCON-7 MAX-7

TO: UC-I4 EXT-AlO

crs': DCON-8 MAX-13

crS: MAX-IO MAX-I2

Tt: UC-I5 EXT-A9

1NT1: LCA-I6 UC-13 EXT-All

INTO: LCA-I5 UC-12 EXT-AI2

PSEN: LCA-13 UC-29 EXT-B13

ALE: LCA-I4 UC-30 EXT-BI4

URS: LCA-28 UC-9 EXT-AI5 CONF-I

CONF: CONF-2 R9-I

asCI: LCA-46 RI6-2 C8-I

Appendices page 316



OSC2: LCA-43 R17-2 C9-i

XT2: UC-18 CiQ-i XTL-2 EXT-A6

XTi: UC-19 Cll-i XTL-i

SS:LCA~9SVV-iR8~

CSO: LCA-23 EXT-A3

CSi: LCA-20 EXT-B3

CS2: LCA-22 EXT-A4

CS3: LCA-19 EXT-B4

IRQ: LCA-2i EXT-AS R2Q-2

REGA: REG-i R2i-2 R22-i

BT2+: BAT-i D8-i

VCC: Ci-i C2-i C5-2 C7-i C12-i C13-i C14-i C15-i JP3-i REG-2 LCA-18 LCA-52

Ri-i R2-i R3-i R4-i R6-i R7-i R8-i R12-i R13-i R14-i R15-i Rl6-i R17-i

R2Q-i DNLD-i PRM-7 PRM-8 DISP-2 CRM-28 DRM-28 UC-40 EXT-A2

EXT-B2 EXT-A30 EXT-B30 JPi-i MAX-16 LCA-iO R19-i R2i-i

GND: LCA-i LCA-35 Cl-2 C2-2 C6-i C7-2 C8-2 C9-2 CiQ-2 Cll-2 C12-2 C13-2

Cl4-2 C15-2 DNLD-2 PRM-5 VR-i Rll-2 DISP-i CRM-14 DRM-14 UC-20

EXT-Ai EXT-Bi EXT-A3i EXT-B3i JP2-2 SVV-4 SVV-3 DCON-5 MAX-15 JP3-3

Tl-3 R22-2

===============================

Appendices page 317



Appendix 0: Costing and Suppliers of the Components of the Board

One of the objectives of the project was to make the board as cheap as possible, using

only components that are readily available. 'The implementation of the Field

Programmable Array reduced the possible component count, the board size and the

number of IC interconnections to a minimum. The PC board itself was used as the main

frame of the project. All the external components were mounted and connected to the

board by machine screws and PC board mounted sockets. The final board size was not

decided by the number of components that had to contain, but by the size of the keyboard

and the display unit.

Quotes for the components from various suppliers in Cape Town were requested, and the

fInal cost of the 15 production boards, at 1994 component prices, are shown below:

Bill of Materials for the Controller Board. (MK 4)

Supplier: MicroSource

Quantity Type

Integrated Circuits:

unit Price Total

15

15

4N35 OPTD-Isolator

LTNlllR-lO 16 Ch X 1

LCD Display Module

R 1.60 R 2.40

R 40.00 R600.00

Seaiconductars: (Transistors, LEns and Diodes)

15

15

15

90

30

Appendices

2N3053 (1 Watt) 105

GREEN LED (small)

RED LED (small)

Signal Diodes 50 mA

Rectifier Diodes 1 A

R 0.75

R 0.28

R 0.20

R 0.06

R 0.07

R 11.25

R 4.20

R 3.00

R 5.40

R 2.10

page JI8



Miscellaneous:

30

15

16-KEY Rasterscan Keyboards

11.059MHz Crystal

R 16.00

R 2.25

R480.00

R 33.75

Plugs, SOckets and Connectors:

15 PLCC68 Socket (Tulip) R 2.75 R 41.25

15 40p IC Socket (Tulip) R 3.60 R 54.00

15 16p IC Socket (Tulip) R 1.25 R 18.75

15 Bp IC Socket (Tulip) R 0.60 R 9.00

15 6p IC Socket (Tulip) R 0.50 R 7.50

Plugs, Sockets and COnnectors:

15 9P-DCON (F) PCB Mounted R 1.25 R 18.75

15 9P-DCON (M) cable connection + cover R 4.50 R 67.50

15 25P-DCON (F) cable connection + cover R 3.80 R 57.00

15 62-Pin IBM Edge COnnector R 2.10 R 31.50

15 PP3 BATTERY COnnector R 0.39 R 5.85

10 Right Angled Header Strip

20-pin Single Line R 0.77 R 7.70

45 2-pin Jumpers R 0.10 R 4.50

capacitors:

15 lOOIlF Elect. Radial, 25V R 0.15 R 2.25

75 lOIlF Tantalum 16V (5mm pins) R 0.55 R 41.25

45 11lF Tantalum l6V (5mm pins) R 0.35 R 15.75

30 O.lIlF ceramic (5mm pins) R 0.13 R 3.90

30 10nF ceramic (5mm pins) R 0.18 R 5.40

30 33pF cera.IIiic (2.5mm pins) R 0.18 R 5.40

Appendices page 319



Resistors:

30 120kll 5% ~ watt carbon R 0.02 R 0.60

105 33Kll 5% ~ watt carbon R 0.02 R 2.10

60 22Kll 5% ~ watt carbon R 0.02 R 1.20

15 12Kll 5% ~ watt carbon R 0.02 R 0.30

30 4.7Kll 5% ~ watt carbon R 0.02 R 0.60

30 2.2Kll 5% ~ watt carbon R 0.02 R 0.60

15 1Kll 5% ~ watt carbon R 0.02 R 0.30

15 820n 5% ~ watt carbon R 0.02 R 0.30

30 470n 5% ~ watt carbon R 0.02 R 0.60

---------
R 1544.90

Add 14% VAT 216.29

---------
R 1761.19

======

Supplier: Communica (pty)Ltd.

15 4.7Kll Preset Potentiometer

with shaft (CA9MV + REF004)

15

15

15

15

80C31BH Micro-Controller

MAX232

LM317T TO-220 Regulator

2 Pole Slide Switches KTSA02

(Vertical Mounted)

R 12.15 R 182.25

R 7.74 R 116.10

R 2.55 R 38.25

R 0.79 R 11.85

R 2.98 R 44.70

R 393.15

Add 14% Vl'T R 55.04

Appendices

R 448.19

===:;:::::;::;:;::;:

page 320



Supplier: Tarsus Technologies

30

30

62256 32K static RAM

28-Pin SmartSockets

R 15-80 R 474.00

R 41-10 R1233.00

Supplier: Saftec Sales

Add 14'" VAT

R 1707.00

R 238.98

R 1945.98

=========

15 Push Buttons MS 402

15 Banana Sockets RED

15 Banana Sockets BLACK

60 32-pin SIL IC socket strips

R 5.44 R 81.60

R 2.12 R 31.80

R 2.12 R 31.80

R 3.67 R220.20

---------
R 365.40

Add 14 '" VAT R 51.16

Supplier: Sarnes (Stellenbosch)

R 416.56

=========

15 XC2064-50 PC68C LCA R 65.00 R 975.00

Supplier: Harnrads

Add 14 '" VAT R 136.50

R 1111.50

==========

32

Appendices

meter 5-Core Cable (4-core + screen) R 2.70

(VAT Inclusive)

R84.40

=======:

page 3Zl



Supplier: WH Circuit

25

1

PCBoards

Initial charge for photoplot

R 27.90 R

R

697.50

240.00

Subtract 10 boards @ R45 each

Supplier: Cape Plastics

Add 14\ VAT

R 937.50

R 131.25

R 1068.75

- R 450.00

R 618.75

===:======

25+25 Perspex Back and Display Covers

3 m 6mm PVC Tubing

(VAT Inclusive) R

R 40.00

R 14.02

54.02

Supplier: D Byl & Co.

====;:::=:=:====

90 Mounting Screws & Nuts (VAT Inclusive) R 52.95

Supplier: Meltzer Agencies

15 PP3 9-volt Batteries (6F22K) R 2.69

Add 14\ VAT

R 40.35

R 5.65

Appendices

Total Costs

Cost per board

R 46.00

=========

R 6546.04

R 436.40

========

page 322



Note: The cost of the labour for the construction and testing of the boards was not

included, and could be calculated to be approximately three hours per board at the

current labour rate.

Possible Cost Savings per Board:

Only one Smart Socket may be used for the CODE RAM. (-R46.85)

Leave out the 8-pin socket and JP2 (Future Serial PROM) (- RO.60)

A cheaper ON button (- R6.20)

Non-throughplated PC boards are available at R25.00 (-R20.00)

Own Serial Download Cable available (-RI4.l!6)

The components can be supplied in kit form for self construction by the students to save

on labour costs.

=============================

Appendices page 323


	Table of Contents
	List of Illustrations
	Software Routine Listing Page References
	Glossary of Terms
	1. Introduction
	2. Design Objectives
	3. Invesigation of Similar Existing Systems
	4. Design Considerations
	5. Product Description
	6. Product Specification
	7. Operating Modes
	8. Operating Procedures
	9. The Hardware and Firmware Description
	10. Software Description
	11. Power Economy and Conservation
	12. The Hardware and Software Debugging and Performance Tests
	13. Guidelines on the Writing and Assembling of User Programs
	14. Conclusions and Recommendations
	15. Future Modifications and Extensions
	16. Other Project Developments as a Direct Result of this Project 
	17. Bibliography

