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ABSTRACT

In real world systems such as the wasie water trealment plants, the nonlinearifies,
uncertainty and compiexity play a2 major role in their daily operations. Effective controf of such
systems variables requires rabust cdnirol methods to accommodate the unceriainties and
harsh environmenis. it has been shown that intelligent control systems have the ability to
accommuodate the system uncertain parameters. Techniques such as fuzzy logic, neural
networks and genetic algorithms have had many successes in the field of control because
they contain essential characteristics needed for the design of identiflers and contrallers for

compiex systems where nonlinearities, complexity and uncertainties exist.

Approaches based on neural networks have proven o be powerful tools for solving noniinear
gonircl and optimisation problems. This is because neural networks have the ability to leam
and approximate nonlinear fungtions arbitrarily well. The appreximation capabilities of such
networks can be used for the design of both identifiers and controllers. Basically, an artificial
neural network is a computing architecture that consists of massively parailel
interconnections of simple compuling elements that provide insights into the kind of highly
parallel computation that is carried out by biclogical nervous system. A large number of
networks have been proposed and investigated with various topological structures,
functionality and training algorithms for the purposes cof identification and control of practical

systems.

For the purpose of this research thesis an appreach for the investigation of the use of neural
networks in identification, modelling and conirol of non-linear systems has been carried out.
in particular, neural network identifiers and controllers have been designed for the control of
the dissolved oxygen (DO} concentration of the activated sludge procéss in waste waler
treatment planis. These plants, being complex processes with several variables (states) and
also affected by disturbances require some form of control in order to maintain the standards
of effiuent. DO concentration controt in the aeration tank is the most widely used controlled
variable. Nonlinearity is a feature that describes the dynamics of the dissolved oxygen
process and therefore the DO estimation and control may not be sufficiently achieved with a

conventional linear controfler,

Neura!l networks structures are proposed, irained and utilized for purposes of identification,
modelling and design of NN controllers for noniinear DO control. Algerithms and programs
are developed using Matiab environment and are deployed on a hardware PLC platfcrm. The
research is limited o iher feedforward multilayer perceptron and the recurrent neural

networks for the identification and control, Control models considered are the direct inverse



mode! control, internal mode!l control and feedback linearizing confrol. Real-lime

implementation is limited to the lab-scale wastewater treatment plant.
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CHAPTER ONE

INTRODUCTION
Awareness of the problem
Research in non-linear control is motivated by the inherently non-linear characteristics
of the dynamic systems we often try to control. In reality, virlually many practical
systems are significantly non-linear in nature so that the important features of their
performance may be completely overlooked if they are analysed and designed through
linear control technigues. Nevertheless, finear controlier design methods have proved

fo be adequate.in many applications.

In recent years many authors became interested in how to asses the nonlinearity
problems of general dynamic systems and many different approaches can be found in
the following literatures {Dasoer, and Wang, 1880{2); Astorga, 1992; Nikolau, and
Mannousionthakis, 1989; Schweickhardi, and Allgower, 2005; Kihas, and Marquez,
2004; Engvist, and Ljung, 2002(a), 2004(b)) elc.

The system is non-linear if the principle of superposition is not fulfilled for at least cne
of its efements, All methods for the analysis of linear systems and the Laplace
transformation are not anplicable to such system. There is no equivalent mathematical
thecry, on which base a full theory of non-linear systems of conirol can be built. Thatis
why engineers use local linsar approximations of the nonlinear systems to develop
control laws (Guay et al, 2005). But this approach can be used only for "weak” nen
linearities and smail deviations from the steady state. In this way it is necessary for the
system to be analysed and designed totally like a non-linear system. Such methods
like: the phase plane method, the describing function technigue and the Lyapunov
stability criterion are offen used for the analysis. However, nonlinear controllers have
some drawbhacks when compared fo linear controllers due 1o the increased complexity
introduced by the non linearity of the model. Additionally, the investigation of control-
relevant properties of nonlinear systems can be extremely time-consuming because no

general framewaork has yet been evoived, {Hahn, and Marquardt, 2003).

Effective control of real world applications requires robust methods to accommodaie
system uncertainties and harsh environments, Intelligent control systems have the
ability to accommodate these uncertain parameters. Technigues such as fuzzy logic,

neural networks and genstic algorithms have had many successes in the field of

- control. In recent years a great deal of attention has been paid to the appiication of

neural networks to the modeiling and identification of dynamic processes and time
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series prediction. The novslty about neural networks fies in their ability to fearn and
approximate non<inear funclions arbitrary well. The contro! design is then based on
neural network model rather than the actual system. This therefore provides a possible
way of modelling complex non- linear functions. A large number of networks have been
proposed and investigated with various fopological structures, functionality and training
algorithms for the purposes of control. Previous applications are available in the works
of Psalties, et af (1888); Zerman, et a/ (1889}, Li, and Slotine, {1988); Narendra, and
Parthsarathy, (1990}; Funahasi, (1888); Cybenke, {1985); Homic, ef al (19898); Hecht-
Nielsen, 1990).

In this research neural networks are utilized for purpeses of identification, modelling
and design of NN controllers for a noniinear system. Algorithms and programs are
deveioped usiﬁg Matiab environment for deployment on a hardware platform to control
DO concentration of the activated sludge process of a wastewater treatment plant in

real-lime.

Description of Nonlinear systems

The maost fundamental property of a linear system from the contro!l point of view is the
validity of the principie of superposition. It is on account of this property that it can be
guaranteed that a linear system designed to perform satisfactorily when excited by a
standard test signal, will exhibit satisfactory behaviour under any circumstance. In
contrast to the linear case, the response of nonlinear systems to a particular test signal
is no guide to their behaviour to a standard input, since the superposition principle
does not hold. In fact, a nonlinear system giving its best respense for a certain step
input may exhébit-highiy unsatisfactory behaviour when the input amplitude is changed.
Further, the Laplace and z-transforms which are simple and powerful tools of linear
theory are inapplicable and hence the analysis of nonlinear systems for different time-
varying inputs is rendered quite difficult. (Nagrath, and Gopal, 1882}

In control systems, nonlinearities can be classified as incidental and intentional.
Incidental nonlinearities are those which are inherently present in the sysiem. The
designer strives to design the system so as to limit the adverse effects of these
nonlinearities. Common example of these nenlinearities are saturation, dead-zone,
coulomb f{riction, stiction, backlash, etsc. Research project targets these types of
nenlinearities which are common in many practical systems. The intentional
nonlinearities on the other hand, are those which are deliberately inseried in the
system to maodify system characteristics. The most common of this type of nonlinearity

is a relay. The relay is a nonlinear ampiifier which can provide large power

2
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amplification inexpensively and is therefore deliberately introduced in control systems
and find wide applications in the field of contrel. When the nonlinear component (relay)
is specially introduced into a feedback loop it is fo act as a controfler or part of the
controller. In this research the nonlinear ;ﬁant under consideration is the dissoived
oxygen concentration of the activated sludge process in the WWTR. 1t falls in the group

of the incidental nonlinearities.

General apﬁroach for analysis of the nonlinear systems

Nonlinear control theory is based on methods used in physics, in particular mechanics,
to describe the nonlinear phenomena. There is na single technique for analysis which
is suitable for all nonlinear systems.

Consider a general time-invariant system described by the state equaticns;

x(t) = fTx(@),u()]

W)= Hx@®] (1.1)
where, u(t), x(¢), and y(¢) represent, respectively the input, state and the output of the
system at time ., and f. h. are the nonlinear functions. In the control probiem the

object is to determine the input u(f) so that the system behaves in a desired fashion.

As mentionad at the infroduction, even if the nonlinear functions f and hare known,

the solution to egquation 1 is not quite so easy unless certain assumptions concerning

the controllability of the system and hence fand hare made. A number of methods

for nonlinear system analysis have been applied with success. The methods used
most for stability assessment are:

Phase plane Analysis

This method is based on a graphical representation of a given system response which
aids in understanding of the nature of the dynamic behaviour. The state space
approach is used with slate space vector equal to the output (or error) and its first
derivative, The term phase is equivalent to stale. The main pcinis of this method are as
listed {Torkel, and Ljung, 200C).

» [t is possible o get a good idea of the properties of a nonlinear system close to
equilibrium by studying the eigenvalues and eigenvectors of the linear
approximation when the resulis can be plotted.

» Two real distinct eigenvalues of the same sign give a tangen! node, siable for
negative values, unstable for positive ones.

s Complex eigenvalues with nonzero real parts give a focus, stable for negative real
parts, unstable for positive ones.

» Real eigenvalues of opposite signs give a saddle point.
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This is an extension of the frequency response approach used o predict whether limit
cycles will ocecur, and if so, 1o estimate their amplitude and frequency and facilitate
design to avoid ¢or minimise them. When the nonlinear slement is forced by 3
sinuscidal input function the steady state output is periodic with the same period as the
forcing function, but not sinuscidal. The cutput can then be represenied by a Fourier
series consisting of a sine wave of the fundamental frequency together with a number
of harmonic- components at integer multiples of the fundamental frequency. As this
signal passes round the loop the linear elements act as a low pass filter and attenuate
the higher ffequéncy components (whose ampilitudes are usually smalier than that of
the fundamenial} o a greater extent than the fundamental. The signal returning o the
linearity is thus Iiftie different to what it would be if the output of the non-linearity had

simply been the fundamental component.

Lyapunov stability criterion.

Lyapunov second method of stability assessment is based on energy considerations,
which does not require solution of the systems eguations. 1t involves searching for a
function of Lvapunov, which satisfies certain reguirements. In the context of non-linear
systerns, several classes of siability can be defined. For a system described by state
equations, and with a singularity in the state space where the system is at rest, then
the system is said to be stable if for a given disturbance every trajectory remains within
a ceriain defined region around the singularity, and asymptotically stable if it returns to
rest at the singularity. There is local stability if the trajectories remain within the small
region only after small perturbations, finite stability if they return from all points within
the entire state s;;ace. A sysiem in which tralectories end cn a limit cycle within the
region is defined as stable in this sense, although it is not asymptotically stable. A
finear system, if stable, coutld be said to be globally asymptotically stable.

Control of Waste Water Treatment plants

Wastewater treatment plants, being complex processes with several nonlinear
variables (states) and also affected by disturbances require some form cof control in
crder to maintain the standards of effluent. The complexity of the treatment process
arises due to the fact that significant perturbations in flow and lcad together with
variations in the composition of the incoming wastewater are normally difficult fo
predict and control. From a control engineer's point of view, the activated siudge plant
is the most important of the biochemical processes for wastewaler traatment because
of the big number of the stale variables and sub-processes describing the reactions

that take place inside the reactors leading to carbon and nitrogsn removal. This gives



an insight an the type of conirol strategy to be designed for the process hecause

controf can then reduce the externally perceived complexity of the plant.

The dissoived oxygen concenifration conirol is the most widely used manipulated
variable in WWTPs since the DO level in the aerobic reactors plays a significant
influence on the behavior and activily of the heterotrophic and autotrophic
m%cmorgani_sms living in the activated sludge. The DO concentration in the aeration
tank must be sufficient to sustain at all imes the desirable microorganisms in the
aeration tank, clarifier, and return sludge line back to the aeration tank. Without good
DO controd, thére is a danger that the plarnt may suffer one or both exireme DO
conditions. For any activated sludge plant, 3 very low DO concentraticn inhibis
treatment effectiveness and possibly promotes filament growth. Unhecessarily high DO
concentrations can create excess turbulence and may result in the break up of the
biological fior and waste energy (Carlson et al, 1984; Lindberg and Carlson, 1896;
Cho, Sung, and Lese, 2002}

To overcome the time-consumed manual tuning procedures of PID conireliers, many
cn.-iine identification methods have been proposed to obtain the process information.
Neural networks and fuzzy logic have gained increasing aliention to solve control
problems characterized by iil-defined systems, especially the nonlinear time-varying
biclogical wastewater treatment processes considered in this thesis. As far as
empirical data models are concermned, neural network models are normally used
because of the following advantages:

+ they constitute universal approximators {Homik et al,, 1989), hence are able fo

approximate any nonlinear behavior of technological dynamic processes (Hussain,
- 1999; Norgaard ef al., 2000; Cybenko, 1989},

« efficient identification algorithms and structure optimisation techniques have been
developed {Haykin, 1989; Osowski, 1996),

« they have a relatively small number of parameters and simple structures ensure
computational efficiency and accuracy,

e they can be easily incorporated intc model predictive control algorithms and
efficiently used on-line (Hussain, 1988; Lawrynczuk and Tatjewski, 2006; 2003;
2002; Norgaard et af., 2000},

+ they do not regquire a deep knowledge about the process or system to be treated
{they act rather like black-box}

The neural network theory is applied in this thesis for modelling and contro! design of
the DO concentration process. Thus differeni conirol struclures based on the
feedforward and the recurrent neural networks are developed in the accompanying

literature based on the nonfinear mass batance moce! of the DO concentration (Olssen
and Newell, 1998} whose state space equation is:
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where, S, (1) is the dissolved oxygen concentration in the input flow, §,(¢) is the
dissolved oxygen concentration in the aerobic tank, S0, (1) is the saturation value of
the dissolved oxygen concentration. Q(f) is the ﬁc}w rate of the waste water Vis the
volume of waste water. K, a(u) is the dissolved oxygen transfer function, u(f) is the
airflow rate in the aerobic tank from the air production system. r, (¢)is the respiration

rate. it is assumed thatS,(¢), S, () u(f)and Q(t) are measured and that S, (¢) and

sar

V are known constants. The oxygen transfer function K, a is nonlinear and this makes

Equation1.2 to be nonlinear.

Déscriptions of Neural networks
Historical perspective

Arificial neurat networks are compuiational models of the human brain, i.e. they

represent the brain’s structure and operation with varying degree of sophistication. The

' history of neural networks can be traced back to McCulioch and Pitfs who published a

paper in 1843(McCulloch, and Pitts, 1843) that described a formal calculus of networks
of simple computing elemenis and these basic ideas that were developed by them
forms the basis of ariificial neural nebworks. in their publication, they showed that
networks of artificial neurons could, in principle, compute any arithmestic and logical
function. Then in 1949, Donald Hebb (Mebb, 1949) developed what is known as the
‘Hebbian learning rule’. He found that if two connected neurons were simultanecusly
active, then the connection between them is proportionately strengthenad. In other
words, the more frequently a particular neuron is activated, the greater the weight

betwsen them (i.e., learning by weight adjustment).

In 1958, Rosenblatt devised the percepiron model, which generated much interest
because of its ability to solve some simple pattern classification problems. However
the interest staried to fade in 1969 when Minsky and Papert [1868] provided
mathematical proofs of the limitations of the perceptron and pointed out its
weaknesses in computation. In parficular, they proved that it was not capable of
solving the classic exclusive-or (XOR) problem. Such drawbacks led to the temporary

decline of the field of neural networks.

The developments of more-powerful networks, better training algorithms, and improved

hardware have all contributed {o the revival of the field of neural-networks. Neurai
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natwork paradigms in recent years includes, Widrow and Hoff's learning rule(1960),
the recurrent network (Hopfield's, 1982), Kohonen's network {1972}, Rumelhart's
competitive learning mode | (1986} with regards to back propagation techniques of
fraining multilayer percepiron, Fukushima's model, Carpenter and Grossberg's
Adaptive Resonance Theory model [Wasserman 19889, Freeman and Skapura, 1991).
Thus, the field of neural networks has generated interest from researchers in such
diverse areas as engineering, computer science, psychology, neuroscience, physics,
and mathematics eic.

Neural network structure

In the most general sense, a neural network is a dynamic system consisting of simple
processing units. often called "neurons” or "nodes,” and information passing links
between these nodes often called “interconnects” or "synapses,” which can perform
information-processing by responding to a set of input nodes containing information
requiring processing. Each neuron in a neural network usually combines the cufputs

from other neurons in the network or external inputs with values from previous

~ computations {local memory) to produce inputs o other neurons in the network. How

the inter-neuron connections are arranged and the nature of the connechons
determines the structure of a network. The processing elements each have a number
of internal parameters called weights. Changing the weights of an element will alter the
behavior of the element and, therefore will also alter the behavior of the whole network
(Pham, and Liu, 1886).The goal here is {0 choocse the weighis of the network to
achieve a desired inpu¥/ouiput relationship. The process is known as training the
network. How the weights (strengths} of the connections are adjusted or trained to
achieve the desired overall behavior of the network s governed by its learning
algorithm, Networks can be classified according to their structures and learning

algorithms,

The most common neural network architecture that has been applied in the field of
control is the multi-layer perceptron. The architecture of a mullilayer perceptron is
described in details in many textbooks and articles e.g. Chen, and Billings (1980},
Narendra, and Parthasarathy (1990), Rumelhart, and McClelland, (1986), Hechi-
Nielsen, {1990), Hagan, and Demuth, (1999) etc. 7

it is thus useful to investigate this topology, discuss its capabilities and show how it is

used in control system configuration.

A multilayer percepiron is a feed forward artificial neural network mode! that maps sels
of input data onto a set of appropriate output. It is a modification of the standard linear

perceptron in that it uses more than cne layer of neurons {nodes) with nonlinear

7
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activation functions, and is more powerful than the perceptron in that it can distinguish
data that is not finearly separsble. The ocufpul of neurons in the culput layer is
computed similarly. Typically the transfer function is chosen by the designer, and the
weights and biases are adjusted by sdme learning rule {(algorithm) so that the
relationship meetls some specific geal. One of the most commonly used functions with
multilayer networks that are trained using back propagation algorithm is the log-

sigmoid transfer function. This is because this function is differentiable.

Approximation capabilities of multilayer networks

Two layer netmforks, with sigmoid transfer functions in the hidden layer and linear
transfer function in the output layer, are universal approximators {Hornik, et af, 1889).
They provide proof that multilayer perceptron network with sigmoid transfer functions in
the hidden layer and a linear transfer functions in the ouiput layer can approximate
virtually any function of interest to any degree of accuracy, provided that sufficiently

many hidden unifs are available.

Use of neural networks in the control of nonfinear systems

Neural networks have been applied very successfully in the field of control engineering
and the literature in this area is quite voluminous. However, the thecry of nonlinear
systems neurcconirol is stil a developing one compared to the wvast amount of
knowledge and toc!s- that are available in the study and analysis of linear systems. This

is because of the diversity of non-linear systems in practice.

A neural control system is one in which an artificial neural network is used in the

process of determining the control signal that will bring the system to the required
performance specifications. The c!aésiﬁcation of neural network control schemes is
accomplished based on the methods by which the error signal for control is determined
e.g., supervised, Adaptive, Reinforcement, Predictive, Optimal, Mode! reference etc.
Research has shown that neural network controliers have important advantages over
conventional controliers in the following aspects:

s Neura! network controllers can effectively utllise a much larger amount of sensory
information in planning and exscuting a control action than a conventional industrial
comtroller can.

+ A neural network controller has the collective processing capability that enabies it to
respond quickly to complex sensory inputs while the execution speed of
sophisticated control algorithms in a conventional controller is severely iimited.

« Good control can be achieved through leaming The universal approximation
capabilities of the multilayer perceptron make it a popular choice for modeliing non-
finear systems and for implementing general purpose non-linear controilers{Hagan,
and Demuth, 1999).

There are typically two steps involved when using neural networks for control:

» System identification
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+ Control Design
In the system identification stage, a neural network model of the plant that requires to

be controiled is first developed. In the control design stage, the neural network plant
model developed is then used to design (or train} the controller. As mentioned earlier
the multilayer neural networks are used for identification as well as for controller
design. Several neural network architectures have been used for control. Each
confrofier has its own strengths and weaknessss. However, no single conirolier is

appropriate for svery application.

Research Aim and Objectives

The aim of this research is development and investigation of the structures of the
feedforward and recurrent neural networks in solution of the problems for identification
and control of nonlinear systemns.

The project objectives are:

Development of mathematical models for the nonlinear system.

¢+ Development of nonlinear identifier models for nonlinear systems by use of naural
nebworks.

« Development of neural network conircliers based on the inverse and internal
models

s Development of neural network controllers based on the closed lcop linearization
approach

» Development of algorithms and programs for the identifiers and confroliers in
Matlab for deployment on a hardware platform.

+ Real time implementation of the developed program on a real nonlinear system.

Statement of the problem

The main research problem is to investigate artificial neural networks (ANNSs) for the

purposes of identification, modelliing and contro! of the nontinear DO concentration of

the activated sludge process in WWTP.

Design and Implementation based problems
» Nonfinear mathematical model development of the nontinear system

« [nvestigation of the various technigues for implementation of neural networks in the
context of control.

« Use neural networks for system identification by dsveloping nonlinear identifier
models for nonlinear discrete time systems

» Use function inversion to provide neural network control with reinforcement fearning
for systems with multiple nonlinearities.

« Develop algorithms and programs for nonlinear controllers in Matlab for deployment
on a hardware platform.

» Develop software for embedding the neural network controlier's algorithm in the
software environment of a programmable legic contrelier {(PLC)
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The Hypothesis

The hypothesis is based on the possibility of applying neural network thecry and
control algorithms fo develop controllers for a nonlinear system to ensure that the
system meets the performance speciﬁcaiiohs.

Delimitation of the research

The research project will concentrate upon the design of nonlinear control systems and
the use of neural network theory for purposes of non-linear NN identification and
control of the DO concentration process of the activated sludge process in the WWTP.
The resylis are to be implemenied in real time. The resear_ch is fimited to the
feedforward mEiti%ayer perceptron and the recurrent neural networks for the
identification and control. Control models considered are the direct inverse maodel
contral, - internal “model  contro! and  feedback linearizing confrol. Realdime
implementation is limited to the lab-scale WWTP iccated in the department of electrical
Engineering, Cape Peninsula University of Technology, Belivilte Campus.

Motivation for the project development

Industrial applications present challenging problems {o face when dynamic models are
required for control of nonlinear systems. In contrast to a linear case, the response of
nonlinear systems to a particular test signal is no guide for their behaviour to other
inputs since the principie of superposition no longer holds. In model based control,
input-output ﬁonlineér models can eiiher be developed from physics principles or
obtained from a system of identification procedure. The first approach is most
adequate but, in practice, it often has some problems e.g.

» It is difficult to set the correct values for physical parameters in order to get a
relevant model for a specific application.

s The identification of physical parameters frecm data is not trivial; due to the structurs
of the nonlinear equations that govern their dynamic behaviour.

« The model based on theoretical fundamentals can be very complicated and ifs use
for control purposes is not straight forward.

An alternative solution is to use identification algorithms in order fo obtain a control

model for the nonlinear system. There is an ever increasing volume of literature on

neurat networks for control.

Assumptions
The following assumptions are made based on different parts of the research work:

e Good strong understanding of nenlinear control theory including stabiiity theory,
discrete-time theory and the analytical techniques for nenfinear systems.

o The mathematical model of the system to be controlied can be derived according to
the physical laws in order to determine the sciution of the above problems.

» The nature of the nonlinear function and the region where controllability and stability
of the system are of interest.

10



o Familiarity with different neural network topologies, learning techniques and control
architectures as well as the rigorous mathematical analyses of neaural nelwork
conirollers is encugh for development of the project.

o Neural netwarks are capable to meet the objectives because they are invaluable for
applications where formal analysis is difficult or impossible, such as nonlinear
system identification and control.

s« Hardware platform for deployment of the coniroliers is available.

1.11 Research methods

1.12

The field of Neural networks for control and especially for waste water treatment
process is quite new to the author and hence required integrated research approach

has been adopted. Methods adopled include:

« literature review method: whereby information on nonlinear systems and on
neural networks for control are gathered from related books. published journals,
previously done work, inlernet search enginss, questionnaires, elc in order to come
up with the best approach to the research preject. This entails good understanding
of nonlinear control theory including stability theory, discrete-time theory and the
analytical techniques for nonlinear sysiems. in addifion, famifiarity with different
neural network fopologies, learning iechniques and conirol archifectures is
essential.

» Design method: Rigorous mathematical analyses of nonlinear systems, neural
network controllers to  obtain the mathematical models. Development of
mathematical models and simulation in Matlab environment are done.

+ Design method: Algorithms and programs in Matlab software are designed and
developed for the prototype controliers.

o Experimental method: Simulaticn of the programs in Matlab environment is done on
a hardware platform in real Eme in order to test the effectiveness of the neural
network identification structure.

o Descriptive method: The designed system is described in terms of characteristics,
functionality, and methodology for the practitioners in the field of control in line with
the stated objectives.

Outline of the thesis

The thesis consisis of seven chapters detailing the background information, model
development, neural networks identification, NN controller design, system simulation
algorithms implementation, results of the research project and conclusion.

Chapter 1 presents the background study of the project. The challenges of the control
of nonlinear systems are highlighted and sclution of the control by neural networks is

suggested followed by a brief introduction to neural networks and the nonlinear plant to

~ be conirolied.

1"



Chapter 2 of the research project gives an overview of the necessity of clean water
and the need of proper wastewater treatment planis. It also contains a brief description
of how a wastewater treatment plant works, the various wastewater treatment medels,
and the different control strategies applied to the process. |t also gives an overview of

the modeis for dissolved oxygen concentration.

Chapter 3 examines artificial neural networks. It discusses arlificial neural networks
theory including the fundamental principles, the various structures and configurations
and the neural network application techniques for |dentification and control of nonlinear

processes,

Chapter 4 presents the theory of neural netwdrk modeliing o wasie water treatment
plants and in parficular, the emphasis is on the develepment of the models for
dissolved oxygen {BO) process using different approaches and different neural
natwork structures for identification. The chapter also gives an overview of the existing
solutions using neural networks for the identification of the nonlinear process. Then
nonlinear dynamics of the system is identified using the neural network based
methods, Simulation resuits for the identified models are also presented.

Chapter 5 presents an overview of how to design neural network controllers. This is
followed by the design and development of the neural network based controliers for
the DO process. The design is based on the identified models of the DO process.
Particular emnphasis are put on Internal model control and feedback Linearising Controf
design strategies to maintain the desired dissolved oxygen (DO) level of an activated
sludge system by manipulating the air flow rate in the aerobic reactor of an activated
sludge process. Simulation resulis are also presented.

Chapte} 6 describes the real process under consideration which is a lab-scale
wastewater pilot plant located in the Electrical department at the Cape Peninsula
University of Technology. The Real-Time implementation platiorm configuration
structure .and the PLC implementation for the designed neural network nonlinear

linearizing controller are described.

Chapter 7 provides the detailed conclusions and the future direction for the research in
the field of neural networks for control of the nonlinear DO concentration process. The
fist of papers describing the results of the thesis is shown at the end of the chapter.

The developed software and meodels are given in the appendices.

12
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2.2

: CHAPTER TWO
WASTE WATER TREATMENT PROCESS

Introduction

Water is something very special fo humanily and for svery living creature on earth.
This part of the research project gives an ovehffew of the necessily of clean water and
the need of proper wastewatsr treatment plants. it also contains a brief description of
how a wastewater freatment plant works, the various wastewaler freatment models,
and the différent control strategies applied fo the process. It also gives an overview of

the models for dissolved oxygen concentration.

*

Need of Waste Water treatment

There are a lot of good reasons why keeping water clean is an important priority to all.
Having ciean water is a necessity for life of aimost all creatures on earth. For example,
clean water is critical to plants and animals that live in water, human beings who live,
work and play close to waler, water birds thal use water catchment areas for resting
and feedings, species of fish which use water to habituate. In addition to being a
necessity to life for all creatures on earth, water is used for numerous pi.srpases among
them, domestic, commercial, public supply, agricultural, industrial production, energy
production, mining, etc. But for whatever the purpose is, processing and use normaily
resulis in the water being polluted. For health concerns and environmental
conservation, water has to be treated before it entars to a recipient. Instaliing water
treatment equipment not only improves the gualily of the water but also raises the
hygienic standard of the environment. Environmental protection is a priority in every
developed country with every country apportioning a percentage of its Gross Domestic

Product (GDP) for environment conservation.

Wastewater treatment is the process that removes the maijority of the contaminants
from wastewater and produces a liquid effluent suitable for disposal to the
environment. During the contaminants {especially the solid materials) decays, oxygen
which is needed by the plants and animals fiving in the water is used up: Because of
the effects of dissolved oxygen concentrations on aqualic life, wastewster freatment
engineers historically focused on the removal of poliutants that would deplete the
dissolved oxygen conceniration in the receiving waters. The history of wastewatsr
treatment can be traced as far back to the beginning of the 207 century where the
treatment process was mainly mechanical, tiﬁat is, the removal of larger obiects by use

of a grit and sand filter because by then the environment was not as polluted as itis in

-the present day. The biclogical treatment process was introduced late in 1950's,

whereby, microorganisms {e.g. bacteria) were used to remove organic matter present

13
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in the incoming wastewater. Later in the seventies, the chemical treatment was
employed to reduce the content of phosphorous. Nowadays, the biclogical processes
are aglso used to reduce the content of nitrogen and phosphorous (Halvarsson, B.,
2003).

Generally, while the primary goa! of a wastewater treatment plant is to achieve an
average reduction in nutrient levels, the secondary goal is to achieve good effluent
quality in spite of the many disturbances and a variety of characteristics of the
wastewater. In fact a.-key goal of the wastewater treatment process (WWTP) is to
maintain quaiiiy. standards of effluents at a minimum cost. Depending on the
characieristics of the wastewater, the desired effluent gquality, and other environmental
or social factors, the treatment of wastewater can be achieved in different ways as is

briefly outlined below.

The Waste Water Treatment Process

The treatment of wastewater generally uses a combination of primary, secondary and
tertiary treatment processes. Figure 2.1 shows a principal fayout of a typical
Wastewater Treatment Plant (WWTP). Operations of the various stages of the

treatment process are subsequently explained.

Biologicat Reactors

{Anaerobic, Anoxic,

Grit &Grease Chemical Precipitation

Removal . Aerobic)
Primary Secondary
Settler Settler l
Screens : ;
— A N I
i L/
- Influent Air Effiuen
Return Activated Sludge

To Sludge Treatment (WAS)

Figure 2.1 Principal layout of a typical Wastewater Treatment Plant.

Primary treatment simply screens and setlles large particles by sedimentation and
filtering. Secondary treatment biologically removes organic carbon and in newer plants
scluble nitfogen and/ or phosphates. Teddiary treatment attempis to limit the
microorganisms and other pathogens in freated water by membrane filtration and
some form of disinfection using chiorine, eic. A brief description of the various

treatment stages is subsequently provided.
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Pre-treatment Process

Pre-treatment involves use of simple mechanical processes to remove rubbish at very
low cost, so that the efficiency of the wastewater treatment plant is increased and cost
is minimized. Pre-treaiment process can be carried out by means of Screens, Grit
chambers, Skimming tanks, and Grease Traps. The first step is to remove floating and
suspended matter such as cloth, paper, kiichen refuse, pieces of wood, cork, hair,
fiber, faecal solids etc. This is achieved through screening process. Then the Grit
chamber is ﬁsed to remove solids having specific gravity greater than water. The Grit
chamber is an enlarged channel or long basin in which the cross-section is
increased to reduce the velocity of the flowing sewage sufficiently t0 cause heavy
inorganic matiter such as grit, sand and gravel 1o settle, while the lighter organic matier

remains in suspension.

Skimming tanks are also used ito remove the floating solids from wastewater.
A skimming tank is a chamber so¢ arranged that the floating matter, oll, fat, grease efc.,
rise and remain on the surface of the sewage until removed, while the liquid flows out
continuousty under partitions or baffles. Grease traps are designed with submerged
inlet and bottom outlet and have sufficient capacity to permit the sewage to coof and

grease {o separats.

Secondary treatment Process

Secondary treatment is designed to substantially degrade the biclogical centent of the
waste water. Secondary {reatment typically ulitizes biclogical treatment processes, in
which microorganisms convert non settleable solids to settleable solids. Sedimentation
typically foliows, allowing the settieable solids to settle out. The secondary or biological
treatment of water utilises a number of key processes. These include primary
processes for biclogical reactions and processes for settling and clarification. Chemical
precipitétfcn to remove phosphorous is sometimes utilised before the settling and
clarification. For this io be effective, the biota requires both oxygen and a substrate on
which to live. There are a number of ways in which this is done. In all these methods,
the bacteria and protozoa consume biodegradable soluble organic contaminants and
bind much of the less soluble fractions into floc. These options include:

» Activated Siudge- The most common oplion uses microorganisms in the treatmant
process to break down organic material with aeration and agitation, then aliows
solids to settie out. Bacteria-containing “activated sludge” is continually re-circulated
back to the aeration basin to increase the rate of organic decomposition

« Trickling Filters- These are beds of coarse media (often stones or plastic) 1-4m
deep. Wastewater is sprayed into the air (aeration), and then allowed to trickle
through the media. Microorganisms attached to and growing on the media. break
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down arganic material in the wastewater. Trickling filters drains at the bottom, and -
the wastewater is collacted which then undergoes sedimentation.
« Lagoons- These are slow, cheap, and relatively inefficient, but can be used for

various types of wastewater. They rely on the interaction of sunlight, algae,

microgrganisms, and oxygen (scmelimes aerated).

Tertiary treatment Process

After primary and secondary treatment, wastewater is usually disinfected using
chiorine {or other disinfecting compounds, or occasionally ozone or ultraviolet
light).This process kills any harmful organisms remaining in the treated water before it
is discharged. An increasing number of wastewater facilities also empioy tertiary
treatment; often using advanced treatment methods. Tertiary reatment may include
processes 1o remove nulrients such as nitrogen and phosphorus, and carbon
adsorption to remove chemicals. These processes can be physical, biclogical, or
chemical. Settled solids (sludge) from primary treatment and secondary treatment

setiling tanks are given further treatment and undergo several options for disposal.

Activated Sludge System (Biological Reactors)

Most of the wastewater reatiment plants use it. The activated sludge process aims to
achieve, at minimum costs, a sufficiently low concentration of bicdegradable matier in
the effluent together with minimal sfudge production. In order io create conditions
favourable for the growth of bacteria in an activated sludge system, the freatment plant
must have three distinct zones where conditions are carefully controlied to promote the
required biological activity:

1)Anaercbic zone (a zone deficient in nitrate and oxygen),

2)Anoxic zone (a zone deficient in oxygen but nitrate is present) and

3)Aerobic zone {a zone with oxygen and nitrate present).

These zones are meant for removal of Carbon, Nitrogen and Phosphorous.

Anaerobic zone

Anaerobic treatment of wastewater involves the breakdown of complex organic
material by bacteria in the absence of oxygen and air.Thé primary objective of most
anaerobic processes is stabilization of biodegradable organic matier through its
conversion to methane. The acid-producing bacteria metabolize the carbohydrates and
proteins with the production of organic acids and ammonia. The methane bacteria take
organic acids produced by acid-forming bacteria and the fatly acids in the water and
convert them to methane, Thus, the key to any successiul anzerobic system appears
to lie in the proper balance between the acid-forming bacteria and the methane-

forming bacteria (Richard R. Dague et &/, 1996).
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Anoxic refers to the presence of nitrates and the absence of dissoived oxygen
{Buchan, 1884; Pitman, 1984; Streichan et al,, 1990). Anoxic zone is defined as one
where no free oxygen is available, and thus respiring organisms are forced to utifise
the nitrate present as an oiygen source. Introducing an anoxic zone into the flow
scheme provides for denitrification of nitrate. In this zone, the endogenous oxygen
démand of mixed liquor suspended solids (MLSS) plus the carryover of BOD
{biochemical oxygen demand) from the anasrobic zone causes denitrification of the
nitrate produced in the aerobic zone. Because of this, the oxygen molecules are
stripped from the nitrale, causing the production of nitrogen gas {N3). Carbon dioxide
and water are also produced in the process, which results from the degradation of
BOD. in addition, a ;}ortion of the alkalinity consumed during the nitrification process is
restored through the denitrification process. Readily biodegradable volatile fatty acids
(VFAs} such as acetic acid, acetate, formic acid, etc., are used by the organis%ns inthe
mixed liquor. Methanol, ethancl, and acetate may be used as an additional carbon

source when required in the process stream.

Asgrobic zone

in this zone three imporiant processes take place: organic carbon compounds are
converted into water and carbon dioxide; ammonia is combined with oxygen to form
nitrites and nitrates; and Selected bacteria use food that they stored in the anaerobic
zone to grow and take up phesphorus within their cell structure. The fiow is then spiit.
Some of the flow is recycled to the anoxic zone and some to the clarifiers where the
bacleria setlle in the boltom as siudge. The sludge from the clarifiers is recycled to the
anaerobic tanks, while the liquid proceeds to the tertiary treaiment stage. Sludge is
also removed from the aerobic tanks to be processed in the sludge treatment part of
the p%ani. Phosphorous and other unwanted compounds bound up in the bacteria cell

structure are removed with the sludge.

Sludge treatment

Sludge from the aercbic zone is pumped to a Dissolved Air Floatation {(DAF) thickener.
This uses very fine air bubbles which aftach themselves to the siudge particies and
float with them to the surface where they are skimmed off. The thickened shudge is
then pumped to the sludge treatment plant for dewatering before being thermally dried.
The fiquids from the DAF unit are returned to the beginning of the biclogical treatment

Drocess,
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- 2.3.9 Basics of Waste Water Treatment nitrate removal steps

Biological conversion of ammonium to nitrogen gas is a two step process. Ammonium
must first be oxidized to nitrate; nitrate is then reduced to nifrogen gas. These
reactions require different environments and are often carried out in separate areas in
the wastewater treaiment system.

The first step in the process, the conversion of ammonia to nitrite and then to nitrate, is
called nitrification. This process requires and consumes oxygen. The process is
mediated by bacteria, which require an aerobic {presence of oxygen) environment for
growth and metabolism of nitrogen. Thus, the nitrification process must proceed under

aerobic conditions, -

The second step of- the process is the conversion of nitrate to nitrogen gas, and is
cailed denitrification. This process is alsc mediated by bacteria. For the reduction of
nitrate to nitrocgen gas to occur, the dissolved oxygen level must be at or near zero; the
denifrification process must proceed under anaerghic condifions.

Thus, any waste waler treaiment unit to be able lo remove nitregen during the
nitrification/denitrification process must be designed to provide both aerchic and

anaerchic zones.

2.4 Models of the Waste Water Treatment plants (WWTP)

241

Many models have been developed to provide a description of the complex biclogical
reactions that take place within the activated sludge process (ASP). These models
were developed as a tool to study the complex interactions that occur between the
different microbiological communities in an activated sludge plant, among them are:
the ASM No. 1 (ASM No. 2, ASM No. 2d {Henze et al., 1987, 1985, 1298) and ASM
No.3 (Gujer et al., 1899)). The internal processes in ‘the cell are explicitly taken into
account in the Delft mode! (Mumisitner et al., 1986).The EAWAG BioP-Module (Rieger
et al., 2001) enhances the ASM3 processes by describing the biclogical and chemical

phosphorus removal

International Association on Water Quality Activated Sludge models

in order to encourage practicing engineers 1o use modelling more extensively during
analysis of alternative wastewater lreatment systems, in 13983 the Infernational
Association on Water Quality (IAWQ) [formerdy the international Association on Water
Pollution Research and Control {IAWPRC)] appointed a task group fo review models
for suspended growth cultures and produce one c'apahfe of depicting the performance
of waste water treatment systems. They compieted their task in 1886 and submitlted a
report to IAWQ which was published in 1987, (Henze et al, Activated siudge modal No.
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2.4.2

1. IAWPRC Scientific and. Technical Reports, No. 1, 1987.), ouflining the major
fealures of activated sludge model (ASM) No. 1. The task group was influenced by the
published work- of many researchers, but that of Marais and colleagues at the
University of Cape Town in South Africa had an impact on their thinking. Modelling is
now used extensively in biological waste waler treatment, in large part because ¢f the
success of ASM No.1.

The Activated Sludge model (ASM NO.1)

The Activated Sludge Model No. 1 (ASM1; Henze et al., 1987) can be considered as
the reference ;noﬁe§ (benchmark model published by the International Water
Association Quality - IWAQ), since this model triggered the general acceptance of
WWTP modelling, first in the research community and tater on also in industry. This
model is regarded as one of the most popular mathematical descriptions of the
biochemical processes in the reactor for nitrogen and chemical oxygen demand
removal. The model is amenable to describe the process of carbon oxidation,
nitrification and deniirification. The model Is characterized by thirteen siate variables
and eight processes. Each reactor is defined by differential equations comprising the
state variablas and the eight processes describing the reactions that fake place inside

the reactor leading 1o carbon and nitrogen removal.

To cope with the complexilies involved, Petersen’s matrix format (Pelersen et al.,
2002} is adopted for model representation where the mode! state variables and the

processes are characterized as matrix columns (given the index, i} and rows (given the
index, j), respectively. Process rates {p,) are formulated mathematically and listed
down the right hand side of the matrix in line with the respective process.
Stoichiometric coefficients (7, ) for conversion from one state variable to the other are
expressed using consistent units or COD equivalents along each process row. The

overall reaction rate of each state variable r;is obtained by moving down each column
and muitiplying the Stoichiometric coefficient, 57, with the respective process rate p;,

then summing up:

K=Y pi=Ln (2.1)

et

Where mis the number of processes, and nis the number of variables.

To obtain the complete set of equations describing the system, these rates need to be

.complemented by mass balance equations according to the principie of conservation

of mass:
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Rate of accumulation = Rate of input - Rate of output + Rate of production by reaction
— Rale of reduction by death or consumption.

Assuming the reactor is fully mixed with constant volume, V, this results in a set of
ordinary differential equations of the general form:

ac, Q '
L =E(C.. ~C\+r 2.2
df V( iin x) r; ( )

Where C,is the concentration of the state variable J, inside the reactor and C., isits

concentration in the infiuent to the reactor or zone. Q represents the flow rate through
the continuousiy. stirred aerated reactor where inflow and outflow rates are equal.
Following this basis, if the reactor is divided into separate anoxic and aerchic zones,
then each zone should be treated as a separate unit with its own characteristics and
volume, flows and process constants {Samuelsson, 1998).

As the reaclion rates are mostly growth rates based on nonlinear Monod-type
expressions, the set of ordinary differential equations characterizing the model is
nonlinear as well and can not be solved analytically. Therefore, after appropriate initial
conditions of the mode! state variables, numerical integration techniq-ues based on
Euler and the Runge-Kutta methods are usually adopted for made! solution (Billing et
al, 1998). The list of state variables, with their definition and appropriate notation, is
given in Table 2.1, extracted from ASMI benchmark model (Henze et al, 1887).

Table 2.1 State Variables as defined by the ASM 1 model.

Definitions Notations

Soluble inert organic matter : S
Readily biodegradable substrate Sy
Particutate inert crganic matier X
Slowly biodegradable substrate Xs

- Active heterotrophic biomass Xzn
Active autoctrophic biomass Xa.a
Particuiate products arising from biomass decay Xs
Oxygen ' So
Nitrate and nitrate nitrogen Suo
NH," + NH; nitrogen S
Soluble biodegradable organic nitrogen Sus
Particulate biodegradabie crganic nitrogen X i
Alkalinity Sax
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The eight basic processes used 1o describe the biclogical behavior of the system are
listed:

1) Aerobic growth of heterofrophs; the process converts readily biodegradable
substrate, dissolved oxygen and ammonium into heterotrophic biomass.

2) Anaxic growth of heterotrophs; the process converts readily biodegradable
substrate, nitrate and ammonium into heterofrophic biomass.

3 Decay of heterotrophs; heterotrophic biomass is decomposed into slowly
degradabie substrate and other particulates.

4} Aerobic ‘éro'wth of autotrophs; the process converts dissolved oxygen and
amrmonium iqto autotrophic biomass and nitrate.

5) Decay of autétrophic biomass; aufotrophic biomass is decomposed into slowly
degradable subsirate and other particulates.

G} Hydrolysis of Xs to Ss; slowly biodegradable substrate is converted into readily
biodegradable substrate.

7 Hydrolysis of Xy to Skp; particulate biodegradable organic nitrogen is
fransformed 1o biodegradable organic nitrogen.

8) Ammonification of Sup 1o Sk Biodegradable organic nitregen is transformed
into ammonium.

The equations describing the overall process rates (production, dead, consumption) for

every process variables are formed on the basis of Peterson’s matrix, as follows:
The dynamic behaviour of the heterotrophic biomass concentration is affected by three

different processes in the form of aerobic growth, anoxic growth and decay according
to the differential Equstion 2.3. |

7 Ss So Kon Syvo
) * ' —b, |X 2.3)
Txsg lr‘"H[Kg +8¢ ){(Ko,g +SO] ng(KO’H +8, AK o +Sho L eH

The autotrophic hiomass concentration is simpler only because the autotrophs do not

grow in an anoxic environment hence the situation is depicted by Equation 2.4,

SNH So
Feny =| 424 —bA4 X 24
‘YBA [ [KA"“ + S.NT.{ ]{KD,A I' So J } B,A { }

The readily bicdegradable substrate concentration is reduced by the growth of
heterotraphic bacteria and by hydrolysis of slowly bindegradable substrate and the
differential equation describing the above conditions is Equation 2.5,
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re =| - ﬂH( Ss So +1, Kon Swo +
Y, \Ks+8s I\ Ko +S, Kou +S0 NKno +Swo
X/

: K
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_ K +(X/ J ,H+S Koy +So NKno +Swo

BH

The concentration of slowly biodegradable substrate is increased as a means of

(2.5}

recycling of dead bacteria as described by the death-regeneration hypothesis and as a

result decreased by the hydrolysis process according to the Equation 2.6,

Fye = (1 “fpbuXa,}; +bAXB,A )“

X/
-k, Xpn I( So J-HT’![ Kou J[ Syo J}XBH (2.5
K, _,_[X o ]1 Kon +5So Kon +So A\Kyo +Sxo '
BH

The concentration of inert particulate products arising from biomass decay is given by

Equation 2.7,

ro = folbyXppy +5,X54) (2.7}
the concentration of particulate organic nitrogen is increased by biomass decay and
decreased by the hydrolysis process and the resulting differential equation hecomes

Equation 8 as,
"—_(im —fp-tp)(b XB,H +bAXB,A)—

X/ ,
X K, S. {2.8)
1. = -H],,[ o = ]}X B.H
(X/ ) oﬂ+S Kou+8, NKno +Swo
XB,H

The concentration of soluble organic nitrogen is affected by ammonification and

hydrolysis, according to Equation 2.9.

X/

=~k Sy +k, L +

o K (X/ )(mﬁs}
£ YBH

K
+7, > ( SNOS ]} Xpn
Kong +80 AKwo +9w0

The ammonia concentration is affected by growth of all micro-organisms as ammonia

Fevp
{2.9}

is used as the nitrogen source for incorporation into the cell mass. The concentraticn is

also de¢reased by the nilrification process and increased as a result of ammonification
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of soluble organ’ici nitrogen, resuiting 1o a complex differential equation formulated as
Equation 2.10,

: S.
o s Yoo (2]
Yo =t—1 + : K,..+8 X,y —
SNH [ xaﬂﬁ[ K, +5, ]{[ Ko, + So] Ug( Kon +5, NO NO B.H

vk S, (2.10)
i 1 Sra S,
P PR X
”“["‘B YJ[KNH +SMJ{KO,A+SOJ 5.4

The concentration of nitrate employs two processes, which are increased by

nitrification and decreased by denitrification, hence the dynamic behaviour describing
this, is formulated by.Eguation 2.11,

Svo
b3 X +
o ’"”'73[286}’ J(K +SJ[ 0H+S }( O+SM,] d

+ﬂ_‘4( SNH ){ XB,A
YA KNH +SNH KO,A +SO

The ‘oxygen concentration in the wastewater is reduced by the aerobic growth of

2.11)

heterotrophic and autotrophic biomass, as described by the differential Equation 2.12.

Tep =—H I-YH SS KO'H X, —
5o Yy NKs+Ss \Kyu+So) °
i [4.57-};, }[ S J{ S, J n
B.A
4 Y, Ky + Sy Koa +S, '

Tables 2.2 and 2.3 describe the meaning and the values of the parameters used in the

{2.12)

above equations. Tables 2.2 and 2.3, lst Stoichiometric and Kinetic simulation

henchmark parameter values for the ASM1 for a temperature of 15° C (Cost 624) that

are usei_i in the research project,

Table2.2 Stoichiometric parameter values for ASM1 in the ‘benchmark’

Parameter description - | symbot Value
Autétrophic yield Ya 0.24
Heterotrophic yield Yu 0.67
Fraction of biomass to particulate products | f, 0.08
Fraction nitrogen in biomass Xoi 0.08
Fraction nitrogen in particutate products X.; (.06
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Table 2.3 Kinetic parameter values for ASM1 in the ‘simulation benchmark’

Parameter description Parameter | Value Units

‘ - symbol
Maximum heteroirophic growth T 4.0 day-1
rate :
Half-saturation (hetero. Growth) K 10.0 gCoODmM™
Half-saturation (hetero. oxygen) Ko 0.2 ¢O.m?
Half-saturation (nitrate) Kon 0.5 gNO:-N m?
Heterotrophic decay rate bu 0.3 day-1
Anoxic growth rate correction n 0.8 dimensionless
factor y
Anoxic hydrolysis rate correction | g, 0.5 dimensionless
factor
Maximum specific hydrolysis rate | K, 3.0 g Xs{g Xsu COD day)’
Half-saturation (hydrolysis) K, 0.1 g X{g Xs4CODY’
Maximum autotrophic growth rate | 4 - 0.5 day”
Half-saturation (auto. growth) Ky 1.0 eNH=-Nm*
Autotrophic decay rate ba 0.05 dav-1
Half-saturation (auto-oxygen) K., 0.4 202 m*
Ammonification rate k, 0.05 m*(g COD day}-1

Figure 2.2 is the Benchmark ASM 1 model used and is the one created by the working
group for the COST Benchmark plant. it provides comprehensive description of a
standardized simulation and evaluation procedure including plant layout, simulation
models and mode! parameters, a detailed description of disturbances to be applied
during testing and evaluation criteria for testing the relative effectiveness of simulated
strategies. It has two anoxic compartments and three aerchic compartments and a
secondary seitler. The benchmark plant thus combines nitrification with pre-
denitrification in a conﬁgurat?dn that is commonly used for achieving biciogical nitfrogen
removat in full-scale plants. The benchmark platform is a definition of a standard

wastewater treatment plant with standard influent conditions.
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Fig 2.2: General overview of the Benchmark ASM1 plant (Henze et al,, 1987).

The plant layout is fully defined and has the following characteristic featurses: Five
biological tanks-in-series with a secondary settler. Total biological volume of the plant
is 5999m®. The first two tanks make up the anoxic zone with individua! volume of
1000m°, and the next three tanks create the asrobic zone with individual volume of
1333m°. Dissolved oxygen saturated concentration in aerated tanks is 8 gC.m”. ideal

settler without any reactions is assumed. The oxygen mass transfer coefficient rate is
set to 240day”, while K,aat the last tank is controlled in order to maintain the

dissolved oxygen concentration at 2mg/l. The flow rate of the internal recirculation is
kept at 55338m°/day. The secondary settler has a conical shape with the surface of
1500m® and depth of 4m. The flow rate of the sludge recirculation is 18446m°%day and
excess sludge is removed from the settler at 385m*/day.

Since disturbances play an imporiant role in the evaluation of controller performances,
influent disturbances are defined for different weath_sr conditions, that is, rain-weather,

dry-weather and stormy weather conditions. In this research, dry-weather data are

" considered containing 2 weeks of influent data at 15 minutes sampling interval. The

primary goal of contro! is to maintain the dissolved oxygen concentration at 2mg/t level

in the last tank.

Mass-balances for the process variables concentration in a vector form

in order to cbtain the complete set of differential equations for the different states, the
reaction rates previously presented have to be complemented by the terms for the
mass balance. Assuming @ system such as that shown in Figure 2.2, with a bioreactor
divided into 5 tanks, each of which is assumed to have a constant volume an'd to be

ideally mixed, the process variables are organized in a vector form
asZ =[S, Xgy Xs X Sxs S: S XND]T, The vector Z has different values for every

tank. The general mass-balance model for the Benchmark process is as follows

{reference):
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Fork =1 (unit 1 in the input of the influent flow):

‘%:‘_) - }L(Q;, (VZ,0+0,(0Z,()+Q,(Z,() + 1)V, = A (OZ,(1)

0N=0.0+0.0+0, (2.13)

Where: 0, (f) = internal recycle flow rate (m’day™)

0, ()= retum sludge recycls flow rate (m’day™)

0, (1) = waste sludge flow rate (m*day™),

And Q,(r)= Total flow rate {m’day™), r,(t)is the observed conversion rate for the

k-th tank, O, (#}is the flow rate and Z, is the concentration in each tank.

Fork=2to5

iz-c—;@=i(gk.l(r)zk.l () +7, (W, - 0, (Z, (1)) @
r Y,

O = Ok
For special case of oxygen (Sox), k=3 105

ds,,, (1) _ Qk-l (f)So,k_l -0, (t)SO.k ()
da v,

+rg, (N +(Ka(0,0 (DN (Soum —Sox () {2:15)

Where, K ca(#)is the oxygen transfer function, Q

air

is the air flow (that comes from the
blowers), and §

o 18 the oxygen saturation concentration and the reaction rate is Ik

University of Cape Town Process (Plant layout)

The University of Cape Town (UCT) Process is shown in Figure 3 in the UCT process,
both the return activated sludge and aeration tank contenis are recycled to the anoxic
zone, and the contents of the anoxic zone are then recycled to the anaerobic zone.

The recycle sequence decreases the chance of introducing residual nitrate to the

" anaerchic zone. The intermal regycle can be controlled to maintain zero nitrates in

effluent from the anoxic reactor, thereby ensuring that no nitrates will be returned to

the anaerobic reactor.
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Figure 2.3: UCT modei for biological nutrients remaval.

The above planf fayout is used with the UCT biological mode! describing the process

rates. This model is characterized with more process variables and processes.

Measures of Water Quality

The standard reference of the water guality in the measurement of chemical, physical,

and biclogical characteristics of water is the journal, ‘Standard Methods for

Examination of Water and Wastewater' (Apha, 1998). It lisls the following measures for

measurement of the water quality: '

« Dissolved oxygen, a significant determinant of water quality in systems and other
water courses;

¢ Biochemical Oxygen demand, a parameter indicating the poliution potential a
discharge would have on water courses;

s  Solids, including suspended solids and dissoived solids, some of which could be
detrimental to aqustic life or to people who drink the water;

» Nitrogen, a useful measure of water quality and a source of oxygen demand;

¢ Phosphorous, é critical nutrient,-which when in excess is responsible (along with
nitrogen) for accelerated eutrophication; and

* Bacteriological measurements, which are necessary to determine the potentia for
presence of infectious agents such as pathogenic bacteria and viruses and are
usually indirect due to the problems of sampling for a hterally infinite variety of

microorganisms.

Dissolved Oxygen

The availability of oxygen in varjous treatment processes, and in the waters receiving
the plant effluent, is perhaps-the single most important measure of water quality.
Wastewater in the primary clarifiers that are devoid of oxygen will have cdours and
might result in the floating sludge. Depressed oxygen levels in biological reactors can
genera!%y disrupt biolegical treatment. Similarly, low oxygen levels in the receiving
waters can cause anaercbic conditions, with the commensurate odour and ioss of

desirable aquatic life.
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2.4.7 Biochemical Oxygen Demand
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The Bicchemical oxygen demand (BOD) measures the rate at which oxygen is used by
the microorganisms decomposing efgénic matter. This parameter reflacts both rate at
which organic matter is assifniiated by microorganisms, and the quantity of organic
matter avaiiable to the microorganisms. If the discharge o a waler course has a high
BOD, the microorganisms in the water will rapidly use up the available oxygen. if the
reoxygenation from the atmosphere cannot keep pace with the use of oxygen, the
dissolved oxygen levels drops, and creating unacceptable conditions in the siream.
One of the primary objeclives of wastewater treatment plants is the removal of this '
demand for éxy'geﬂ, or BOD.

Solids

Solids can be a significant water poliutant and the separation of these solids from the
water is one of the primary objectives of waste water treatment. if high concentrations
of solids are discharged to the waler course, they can cause unsightly floating scum, or
they can sink and form potentially hazardous “mud” banks in streams. Most of these
solids are also organic, so these particles will start to decompose and create a demand
for oxygen. Finally, the floaling solids are also a public health hazard because

pathogenic organisms tend o “hide” on these sclids and resist disinfection.

Nitrogen

Nitrogen is an important element in biological reactions. In the organic and ammonia
form, nifrogen demands oxygen for oxidation to nifrate, NO3;, and is partially
responsible for depressing oxygen levels in streams. One of the intermediate
compounds formed during biological metabolism ié ammonia-nitrogen. Together with
organic nitrogen, ammonia is considered an indicator of recent pollution. These two
forms of nitrogen are often combined in one measure, known as Kjidahl nitrogen,

named after the scientist who first suggested the analytical procedure.
Agrohic decompesition eventually leads to nitrite (NO; ) and finally nitrates (NO7J }-

nitrogen forms. A high nitrate and low ammonia-nitrogen therefore suggests that
poliution has accurred, bu:t quite some time ago. To remove the nitrogen from waste
water in an ASP, two biological processes, nitrification, and denitrification are needed.
In aerobic zone ammonia may be converted to nitrate {(nitrification) and in anoxic zone

nitrate may be converted into gaseous nitrogen (denitrification).

2.4.10 Phosphorous

Phosphorous is often the limiting nutrient in Lake Eutrophication. Because only a smal]

guantity of phosphorous is available in a lake ecosystem, the metabolic activity is
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jimited. Were it not for the limited quantity of phosphorous, the ecosystem metabolic
activity could accelerate and eventually fill up with biomass because ali other
chemicals are in plenty supply. In order for the system to remain at steady state, some

key component, in this case phospharous, must limit the rate of metabolic activity by

acting as a break in the process.

Bacteriological Measurements

Bacterfological measurements are important in the protection of public health. Seeking
the presence of pathogens presents several problems. First, there are many kinds of
pathogens. Eath pathogen has 2 specific detection procedure and must be screened
individually. Secorid, the concentration of these organisms can be so small as to make
their detection virtually impossibte. Indicator organisms are used fo define
bacteriological water quality. The indicator most often used is a group of micrcbes
called coliforms. The concentration of coliforms in water is measured by filtering a
known quantity water through a sterile filter, thus capturing any coliforms, and then
placing the filter in a petri dish containing agar that soaks into the filter and promotes
the growth of coliforms while inhibiting other organisms,

Control of Waste Water Treatment plants

Geheraiiy, the aim of an automatic control sysiem is to maintain, direct or regulate
some dynamic variable or state of the process 1o a desired value in the presence of
disturbances. Wastewater treatment plants, being complex processes with several
variables (states) and also affected by disturbances require some form of control in
order to maintain the standards of effluent. The complexity of the treatment process
arises due fo the fact that significant perturbations in flow and load together with
variations in the composition of the incoming wastewater are normatly difficult to
predict and control. From a control engineer’s point of view, the activated sludge plant
is the most important of the bicchemical processes for wastewater treatment because
of the big number of the state variables and sub-processes describing the reactions

that take place inside the reactors leading to carbon and nitrogen removal. This gives

an insight on the type of coniro! strategy to be designed for the process because

control can then reduce the externally perceived complexity of the plant. A review on
the historical evolution of the activated sludge process and its automatic control
schemes can be found in, for example, (Jeppsson, 1996; Olsson et &/, 1998).

Control technigues used in waste water freatment processes can be simple classical

control strategies or more advanced controliars implemented in computers, using
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advanced software algorithms. Traditionally, there was little interest in using the latter

technique because of several constraints {Olsson, 1993) among them:

. Legislaﬁon-in many countries there were lack of tight regulatory standards which
made it unnecessary to tighten the controf on wastewater treatment plants.

s Education, %raining and understanding - In most couniries public awareness was
small due to delayed investments in better treatment faciliies, also operators were
not properly trained to deal with on-line instrumentation and control.

» Economf—Waste water treatment was considered a non-profit making venture and
therefore there was no .need {o invest heavily on it

s Measuring éevigesﬂ'here was lack of reliable-on-line sensors for ammonia,

phosphorus, and for chemical oxygen demand monitors.

However, the development towards tighter effluent demands, increasing public
awareness, plant complexity, better equipments, formulated effiuent standards and
improved tools have since contributed to an increasing interest in applying advanced
control technigues for waste water treatment (Olsson, 1893; Olsson and Newell, 1899;
Jeppsson, ef al., 2002). Several papers based on conirol of waste water have been
proposed, for example, Sotemayor ef af, (2001} proposed a simulation benchmark to
evaluate the performance of advanced control techniques in biclogical wastewater
treatment plants, Flanagan et al. {1977) proposed automatic dissolved oxygen control,
Carlsson et al. (2002) proposed a benchmark study on control of an activated sludge
process with nitrogen removal, Lindberg et al.,(1994) proposed an On-line estimation
of the respiration rate and the oxygen transfer rate, Bastin and Dochain (1990),
Lukasse (1988),Marian Barbu {2007) etc, proposed several mode! based automatic
control strategies for wastewater treatment plants.

Control handles for nitrogen removal,

As explained in the preceding section, the objective of automatic control is to reguiate
some system so that the output signals of the system follows some desired trajectory
by manipulating certain input signals by a control law. In the case of nitragen remaoval
in waste water treatment plants, fypical outputs aré ammonium and nitrale
concentrations and the typical inputs that could be manipulated are: Air flow rates,
Intemnal recycle flow rate, External sludge flow rate, the flow rate of an external carbon
source to improve sludge sedimentation (Ingildsen, 2002; Halvarsson, B.2003). For
example, the air flow rate is employed to affect the dissolved oxygen conceniration in
the aerated zones, thereby affecting the performance of the auiotrophic nitrification
bacteria. The most common procedure is to manipulate the air flow rate so as to

maintain a specific dissclved oxygen level. The internal recirculation flow rate afiects
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the supply of nitrate for denitrification process and aiso the dissolved oxygen
concentration in the anoxic tank. The external carbon dosaga can be applied when the
influent water does nol have snough rea'dity biodegradable subsirate to feed the
denifrification bacteria.

Never the less, the dissolved oxygen concentration control is the most widely used
manipulated variable since the DO level in the aerobic reactors plays a significant
influence on the behavior and activity of the heterotrophic and auictrophic
microorganisms lving in the activated sludge. The DO concentration in the aeration
tank must be sufficient to sustain at all times the desirable microorganisms in the
aecration tank, clarifit;r, and return sludge line back fo the aeration tank. Without gocd
DO control, there is a danger that the plant may suffer one or both extreme DO
conditions, For any sactivated sludge plant, a very low DO conceniration inhibits
treatment effectiveness and possibly promotes filament growth. Unnecessarily high DO
concenirations can create excess turbulence and may result in the break up of the
biclogical fioc and waste energy {Carlson et al, 1994, Lindberg and Carlson, 1998;
Cho, Sung, and Lee, 2002). The DO concentration control is considered in this thesis
on the basis of the application of the neural network theory.

Comparison of different Models for Dissolved oxygen concentration Control
Because of the importance of dissolved oxygen control many different control
stralegies have been proposed in the past. The DO level in the aerobic reactors has
significant influence on the performance of the microorganism in the activated sludge
process., Several papers based on simulation and control can be found for DO
process. These simulation models can be identified as linear models, nonlinear
models, or those based on artificial intefligence e.g. neural network models, Fuzzy
networks and those modeled by genetic algorithms. Although the ASP is multipie input
multiple output system, the different time constanis of the reatment processes allows
to decouple the many conirol actions into separate single input /single output
controllers (Olsson and Jeppsson, 1994; Steffen et al.,, 1997) and use linear control
techniques if it is possible. | '

Linear Control techniques commonly used are simple Conventional feedback control
(on/off and PID controllers). PID controllers are familiar to process operators and very
popuiar because of the simplicity, easiness in operation and robustness to modeling
error. But it is well known that the DO concentration cannot be controlled effectively by
using the PID controliers with fixed gain parameters. And the manual tuning of PiD

controller is tedious and laboricus. Additionally, PID controflers show poor performance
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for an integrating and with large time delay processes. Also, it can not incorporate
ramp-type set point change or slow disturbance (Sung W. and Beum L., 1996). in case
a linear model adequately describes the process behaviour, classical linear quadratic
regulator theory can be used to design an optimal feedback controller (Marsili-Libelli,
1998; Vaccari ef al., 1998; Heinzle ef al., 1993; Spanjers ef al., 1998).

For nonlinear models, linearization around the desired operating points is normally
used (Fan et al., 1973; Steyer et al., 1995; Weijers et al., Chang Yoo et al., 2003).
Nonlinearity is a feature that describes the dynamics of the dissolved oxygen process.
DO estimation and control may not be sufficiently achieved with a conventional linear
controller. Several adaptive control strategies have been suggested for the DO control.
The design approach starts from the nonlinear model to devise a nonlinear controller
which ensures that the closed loop behaviour is linear (Ko et al., 1982; Dochain and
Bastin, 1980; Lindberg, 1987; Holmberg et al., 1989; Carlsson, 1983).

To overcome the time-consumed manual tuning procedures of PID controllers, many

on-line identification methods have been proposed to obtain the process information.

Neural networks and fuzzy logic have gained increasing atiention to solve control

problems characlerized by ill-defined systems, especiaily the nonlinear time-varying

biological wastewater treatment processes considered in this thesis. As far as

empirical data models are concerned, neural network models are normally used

because of the following advantages:

» they constitute universal approximators (Hornik ef af,, 1989),' hence are able to

' approximate any nonlinear behavior of technological dynamic processes (Hussain,
1899; Norgaard ef al., 2000; Cybenko, 1989},

+ efficient identification algorithms and structure optimisétion techniques have been
developed {Haykin, 1999; Osowski, 1996},

+ they have a relatively small number of parameters and simple structures ensure
compuiational efficiency and accuracy,

« they can be easily incorporated intc model predictive control algorithms and
efficiently used on-line '(Hussain, 1999; Lawrynczuk aﬁd Tatjewski, 2006; 2003;
- 2002; Norgaard ef al., 2000,

» they do not require a deep knowledge about the process or system to be reated
(they act rather like black-box)

The neural neﬁwor!{ theory is applied in this thesis for modelling and control

design of the DO concentration process.

A sample of papers about the control design and model development for

WWTP and DO concentrations are tabulated in the Table 2.4 below.
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Table 2.4: Sample of papers based on controf for WWTP and dissolved axygen concentration.

PAPER

PROBLEM

STATEMENT

OBJECTIVE(S)

MODEL USED

RESULTS

Chang Kyoo Yoo et al,
2003 "Nonlinear model
basad DO control in a
hiological WWTP”,

A nonlinear control
scheme ta maintain the
DO leve! of an activated
sludge systemis
formulated

Totake K aand r, (1)

of the DO nonfinear
process madel into
account in the controller
design.

Estimate the K, a rate and
the time varying 7, () by

using the Kalman filter in the

controller design.

Nanlinear Generic-rmodel
based control strateqy
imbadded directly inlo a

Pl controller,

FProposed controller
shows enhanced control
performance than PtD,

Qscar Sotomayor, et
al, 2001. “Software
sensor for an-fine
estimation of
microbiological activity
in ASPs”.

Dasign of a softwarg
sansor for on-ling
estimation of biological
activities in ASPs where
degradation and
nitrification are
considered.

An estimation technique
issued from the control
and systems theory is
applied in the _
development of soft
sensors for on<ling
estimation of bio process

r, (). and K, a are

estimated through a
software sensor, which is
based on madified version
of the discrete extendecd
Kalman filter,

Filtered random walk
model for raspiration rate
estimation and an
exponential modet for the
oxygen transfer function
estimation.

The obtained results

have shown that the
used methodalegy was
successful in estimating

both K, g andr,, (1)

variables,
B, Holenda, et al, | Activated studge Simulation of the | To design and test the MPC | Model predictive contrel The resulls show that
2007, DO control of | WWTPs are difficult 1o alternating sludge | contraliers on the stralegy based on a linear | model predictive control
ASP  wusing  model | be controlied becauss of | process in order to | benchmark by controlling slate-space model ontwo | can be effectively used
prediciive control”, their complex and investigate the efficiency | the DO level in the final simutated case-studies. for 0O control in
nonfinear behaviour, of MPC in following | compariment by wastewaler freatment

MPC is investigated on
two examples using
systematic evaluaion
criteria,

rapidly changing DO set
point.

manipulating of the K, a
value,

plants.

Marian Barbu, et al,
2005, “Control
strafegies of a
muitivariabie
wastewater freatment
process. Comparative
study.”

Design of muliivatiable
controller for a MIMO
wastewater process.

The simplified ASM1
maodel of the waste water
treatment process is used
to for the controller
designs.

Develop two control
strategies congidering the
channels of interaction as
unchservable and then as
observable disturbances.

Pl type controller based
an decoupling procedure

anvl fead-forward control

structure,

The numerical
simulations illustrate a
good hehaviour of the
control structure
prapased for the control
of the nonlinear WWTP,

Azwar M. A et al,
2005, “The study of
noural natwork-based
controfier for controfling
DO concaniration in a
sequoncing baich
reactor.”

This paper proposes an
application of ANN io
control the DO
concentration in a
saquential batch reactor
(SBR).

NN- based cantrotler for
the DO concentration in a
SBR is designed. The
parformance is evaluated
through set point and
disturbance rejection
sludies

Design and

development of a NN-

based controlier
performance for the
aclivated sludge
process in a SBR by
manipulating the
airflow rate.

Hybrid NN consisting of a
basic NN controlior in
paratlel with a Pl
coentroller; Dired! inverse
neural network, and
internat model control
scheme.

Although in the HNN
controlier some
overshoot ocours,
however, compared tfo
the DINN and IMC
schames, the

performance of the HNN
controller in dealing with
disturbances s very
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satisfactory.

B. Ra’duly, et al, 2006,
"ANNS for rapid
wastewater
performance
evalualion: _
Methodology and case
study.” :

Thie influent model was
used to represent sewar
system effects on
dynamics of WWTP
influent dala, in order to
obtain a realistic
framework for
comparison of tha result
of mechanistic model
simulations with the

The approach combines
an influent disturbance
generator with a
machanistic WWTP
maodels for generating a
limited sequence of
training data. ANN is then
trained on the available
data and subsequently
used to simulale the

Provide different solutions
for the reduction of
simutation time by
demonstrating of the
capability of ANNs 1o
substantially reguce
sirmulation time compared to
mechanistic modals.

ASM3-hased WWTF
madet and ANN
simulations

The accuracy of the
ANN is sufficient for
applications in
simutation-based WWTP
design and simulation of
integrated urban
wastewater systems,

"especially when taking

inta account the
uncertainties reiated to

ANN predictions. remainder of data mechanistic WWTP
. generaled. modailing.
Kunwar P. Singh, et This paper describes Twao ANN models wora To construct an artificial Different ANN models This study shows that

al, 2009, "ANNSs
maodelling of the river
waler-A case study.”

the training, validation
and application of ANN
models for cormputing
the DO and BOD levels
in the Gomti river
{Inclia).

used for computation of
DO and BOD
concentrations in the
Gomti river water, The
performance of the ANN
models was assessed
through the coefficient
determination, square
correlation coefficient,
raot mean sguare error
and bias,

neural network model for
Gomti river water guality
{DO and BOD) and
demonstrate ds application
o complex water quality
data and how it can improve
the interpretation of the
results.

were constructad and
tested in order to
determine the optimum
number of nodes in the
hidden layer and transfer
functions.

the optimal ANNs are
capabie to capture long-
term trends observed for
tedious river water
quality variables (DO
and BQD) both in time
and space. The ANN
can ba seenas a
powerful predictive
allernative to traditional
modeling techniques

0. A. Z. Sotomayor, et
al, 2062, “mocdel -based
predictive confrol of a
pro-denitrification pant:
a

Linear state-space
model approach.”

Paper focuses on the
design of a model-based
pradictive control (MPC
or MBPC} technique to
regulate the
concentration  levels of
nifrate  in  both  anoxic
and aerobic zones of a
pra-denitrifying activated
sludge plant, aiming to

The synthasis of the MPC
controllar is based on a
linear Extended stale-
space model of the
process, whora an
identification  horizon s
added to include a
saquance of past
inputs/outputs. Thus
eliminating the need for a

a MPG based on an
extended linear

state-space model of the
process is developed,
aiming o control the -

NQ3J concentrations in the
anoxic and aarchic zones of
an ASP and, therefore, to
inferentially control the
effluent inarganic nitrogen

improve  the  nitrogen | state observer concentration.
{N}-remaval from
wastewater,

MPC controller

The MPC controller
performance is tested by
simuiation employing the
ASWWTP-USP
benchmark (Sotomayor
et al, 200ta)and the
resuits show the
efficiency of the
proposed strategy

M. Fikar_, B. et al,
*Optimal Operation of |
Afternating Activated

The study presents
dynarnic optimisation of
a smalt size single basgin

Based on the optimal
state trajectories results,
twa simple feedhack rules

An optimal sequence of
peration/non-

Leration times so that for a

The model used is based
on tha ASM
1(Henze at at., 1987).

Simulation resulis with
these rules show very
satisfactory control
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Sludge Processes”, wastewater are diurnal pattern of Based on the probiem performance.,
treatment plant Proposed and are fisturbances, effluent specifications, the
(WWTP). formulated. canstraints_ are respgctfad, the | optimisation task has
plant remains in periodical bean defined and solved
steady state, and energy using the dynamic
consumption is minimized., aptimisalion solver
DYNO,
Mohamed T. S. and |The purpose of the paper Dptimat  control  of  the | Two problems are | Activated Sludge Maodal | This application 1o
Laila  MF, 2005 |is to evaluate the benefits peration system is | formulated: one deals with | No. 1 (ASM1) is used fo | an  industrial  AAS
“Application of [that can be brought to an ponsidered  to  Improve | the minimization of nitrogen | describe  the  {ransient | treatment plant confinms
Activated Sludge (existing  industrial AAS pfficiency and reliability of | discharge and two | behavior of the plant, with | the great
Models in treatment  plant  upon fhe activated shudge | addresses the minimization | a sel of parameters polential  of  dynamic
Traditionally - Operatod {application  of  optimal process, with application to | of the gnergy consumption. | being  estimated  from | optimization methods for

Treatmen Plants--- caontrol theory an industrial - alternating | Special emphasis is placed | inputfoutpst experimental | improving the
A Software ctivated  sludge  (AAS) | on the jong-term behavior of | data In performances of
Environment Overview” reatment plant. the plant in order to ensure | order {0 coptimize  a | WWTPs.

optimality of  aeration | realistic system,

strategies,

M. A. STEFFENS and
P. A. LANT. 1998,
“Multivariable conlrol of
nutrient-removing
Activated sludge
systemns”

The aim of this paper is
to  evaluale  several
multivariable model-
based control algorithms
for contrafling nitrogen
removal  in  activated
sludge processes,

n this paper two questions
hre addressed,

1. What is the best contral
system structure for bio-
agical nutrient  removal
BNR) wastewater
freatmant processes

2. What are the most
Appropriate algorithms?

Evaluates linear

quadratic  contral  (LQC),
dynamic matrix control
(DMC) and nonlinear
prediclive control (NPC) in
this  study for nitrogen
removal in activated siudge
PrOCessas,

Dynamic matrix controlier

{DMC) Nonlinear
predictive controller
(NPC) Linear gquadratic
controtler (LQC), P

controller and Base case
controller.

Five control algorithms
were quaniitatively
evaluated using three
disturbance  scenarios.
NPC petformed the best
of any control algerithm
in terms of the process
performance  indicator
and has associated
costs which are
comparable to the base
case scenario. DMC and
LQc control also
allowed the process o
meat objectives in the
face of the disturbances
investigaled,

Baruch et al, 2003, Three adapiive neural | In this article a report on | Keep  concentration  of | An indirect, an inverse | A comparative  study
“Adaptive Recurrent network contral | the application of three | recycled biomass | model, and a direct | among the three neural
Neural struclures to regulate a | recurrent trainable neural | proportional o the influent | adaptive neural  control | confrof structures led to
Netwoark Controf of binlpgical wastewater { network models for real- | flow rate in the presence of | madels are developed. the conclusion that the

Biological
Wastewater

trealment process are

introduced: indirect,

time identification  and

state feedhack and

periodically acting

disturbances, paramedter

indirect and the inverse
model adaptive RTNN
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Treatrmeant,” inverse modei, and | feedforward control  of | variations, "and schemes Give
direct adaptive neural | biclagical wastewaler | measurement noise, This is qualitatively simitar
controf. tregtment is studied, achieved by Recurrent results, - Nevertheless,

Trainable Neural Network, the latter structure is
structure, permitting the use more  favorable  with
of the obtained parameters, respact 1o rejacting
during the leaming phase, senser noise and output
directly for control system osciflations  due o
design. ‘unknown perturbations,

P. Samuelsson and B, | A novel model based To develop an automatic | ASM1 model, Pl apd The  controller  -was

Carlsson. 2001, . feedforward control control strategy for adjusting { feedforward-feedback derived from a simplified

“Feedforward control of | strategy  is  developed the externat carbon flow rate | controller, version of the ASM1

the external carbon flow
rate in an

aclivated sludge
process”

using a steady slaie
analysis of a simplified
ABM1. This strategy is
combined with a Pl
controlier 1o compensats
for disturbances and
model simplifications.

50 that the nitrate
concentration in the iast
anoxic compartiment of an
activated sludge process is
kept at a low pre-specified
lavel.

model. In a simulation
study, the controfler
performed

very well and the nitrate
level was kept close o
its  set-point despite
major procass
disturbances
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2.5.4

Oxygen transfer function
When air is blown into the waste waler of an activated sludge process, oxygen is
fransferred to the waler. The function which relates the oxygen transfer to the
wastewater by aeration system is calied the K afunction. The most common way {o
describe the rate of cﬁange of DO concentration, due to the air blown into the waler, is
by the following expression

s, (1)

dt

Where, S, (f) is the DO conceniration, S, , is the saturated DO concentration and

= K, a(u()S,,, —So () 80,1500 {2.16)

u(t) is the airflow rate, Equation 2.16 shows that K,adepends only on the airflow
rateu(t). However, in real plants the oxygen fransfer function depends on several

factors, among them; type of the diffusers used, wastewater composition, temperature,
design of the aeration tank, tank depth, efc, but the main time varying dependence is
the airflow rate. -

The oxygen transfer function K, a can be considered to consist of two parts,
K,anda. The K, part can be seen as an absorption coefficient and the apart as an
area/volume ratio. Beth K, anda are, however, usually unknown so they are lumped
into one parameter dencted K;a. Similarly, when analysing the K a function, two
parameters, @ and F should be taken into consideration since they relate the K, a
values for clean water and wastewater. The K avalue for wastewater is found by

multiplying the: K, a for clean water (K a; )} by the constante, i.e. the constant & is

- defined as:
o =i (2.17)
K, a,

In a similar way B compensates for the difference in saturated dissolved oxygen

concentration between waste water §, , and the clean water§, .. .

ﬂ = _._S_o.fi_ (2.18)
SOsatCW

Dynamics of Dissolved oxygen process

In this section the dissolved oxygen dynamics are cutlined. Both continuous-lime

model and its corresponding discrete-time model are treated.
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2.5.4.1 A Continuous time model
Control of dissolved oxygen concentration requires airflow rate control in the aerobic
tanks. The mass balance equation relates a biomass activity to air supply and input

organic load and is of the form:

dsS
7;=%[(So,.,, (6)~ So O]+ K,a@(t)[So,., ()~ So O]+ 7, () (2.19)
Where,

So, 1) s tl’-ie dissclved oxygen concentration in the input flow

S,(1)  is the dissolved oxygen concentration in the aerobic tank

S, (1) s the saturation value of the dissolved oxygen concentration

O(r) isthe flow réte of the waste water

V is the volume of waste water

K a(u) is the dissolved oxygen transfer function

u(t)  isthe airflow rate in the agrobic tank from the air production system.
r,{t} isthe respiration rate.

In general, it is assumed thatS,(r),S, () u(Hand O(f) are measured and that

S, (1) and V are known constants. Equation (2.19) describes the rate of change in the

dissolved oxygen concentration. The first term on the right hand side in (2.19) is a pure

mass balance, influent-effiuent oxygen times the dilution rateQ/V . The next
term, K La(u(t))(sm,'—s(t)) caused by aeration is the addition of oxygen, and the last

term r, (f) describes the oxygen consumption by the microorganisms.

2.5.4.2 A Discrete-time model

There exists several ways to obtain a discrete-time model for a continuous-time model
fike {2.19). One way is o use zero-order-hold sampling. Zero-order-hold sampling
assumes that alf signals except §,(¢) are constant during the sampling interval. When
this is frue then the discrete-time-model describes the continuous model exactly at the
sampling instants and that the approximation is reasonable for sufficiently fast
sampling rates (Holmberg, 1980; Cook and Jowitt, 1895). The derivation is as follows:
{Lindberg. 1997).
Rewrite equation {2.19} to:

% = A(t)Sé (t)+ B(1) {2.20}

Where
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Ay =K atuen + L2y

B() =+r, Qé Ys,. (©)+K,a(u(®)S,,,

Assuming that A(f) and B(¢) are constant within each sampling period, model (2.20) is

sampled by using theory in {Astrcm and Wittenmark, 1990), it gives:

S,(kh+h) = eA‘H')"S (kh)+B(kh)( AR 1) (2.21)
A(kh)
Where, h is the sampling interval and £ is the discrete time. it is set
h =—i—(e"""”" -1 (2.22)
A(kh)

Then the sampled mode! becomes:
S, (kh+ ) — S, (kh)

X
For simplicity, replacing kh with ¢t and substituting A(t)and B(9) in equation {2.23)

= A(kh)S,, (kH) + B(kh) (2.23)

the discrete equation is obtained as:

Q(') (S, V- S, @]+ K, a@)]S,, (- So @47, D1+ sy (2.24)

Where, a term w has been added to describe measurement noise and mode! misfit.
Equation 2.24 represents the discrete mathematical model of the process of dissolving,
up taking and balancing the concentration of axygen intc the wastewater. The block

 diagram of the model is Mustrated in Figure 2.4.

disturbance(S,,,) disﬁtrbance(r's )

(S
airlow rate(u) DO model output(S,)

A 4

Figure 2.4: Block diagram of DO model.

The main disturbance for the process is the oxygen uptake rate r,,- {t depends on the

load COD and TKN in the input flow, on the toxic elements in the water flow rate. Other
disturbance for the process is the input concentration for the given tank obtained from
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model simulation. These disturbances will influence the process behaviour and also

will require recalculation of the process controlier parameters.

The respiration rate r,, and oxygen transfer rate K aare two of the most important

variables for monitoring biological activity and assessing process control performance.
Knowledge of the two variables is therefore of inferest in bolh process diagnosis and

process control. What makes it not easy {o identify the oxygen dynamics is that:

s The respiration rate r,_ (¢} is time-varying.
» The oxygen transfer function K ,a is nonlinear,

s The absolute levels of the respiration rate and K a are hard to be uniquely

determined.

K, ais a nonlinear function. That K,a function is not linear has been evaluated and
discussed by different researchers amongst them: (Bennetft, 1980} who presents
various physical models to estimate K 1 a. These models are: piecewise linear models,

polynomial, exponential and spline models (Bennett, 1880; Holmberg, 1890; Holmberg
et al., 1989) etc.

2.5.4.3 An exponential model of K, a

if adequate dissolved oxygen control is assumed at steady state then the derivative

term in eguation {2.19) may be assumed zero. Thus the steady state oxygen mass

balance is used here to relate K;a to the dissclved oxygen set-pointS, (7). as follows:

r + (560~ S0, ®)

So(0)=So., (1)

To maintain the dissolved oxygen at some value the K, amust be varied, which in turn

K,a= (2.25)

implies manipulating the air flow rate. Hence the requirement for a function relating
flow rate toK,a.An exponential K amodel is a suitable cheice (Lindberg and
Carlsson, 1996) in natural sense since the oxygen transfer deteriorates for high airflow
rate. The fitted exponential model of K, a is Equation {2.25)

K, a(u())=K,(1-&"*") (2.26)
Where, '

K, and K,, are model parameters associated with aerobic tanks, and which require

experimental estimation. u(¢) is the air flow rate. Rearranging for u(f) gives:
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From here the coefficients K,and K, can calculated if the values of the control

u(#) and the transfer function K, a are known.

u(?) =--k1—-1n[1-KLa}

2 Kl
K
K, =—— 1227 - (2.27)
u(t) K,
K,a
K, = 1= g Kt

Where K, and K, are the estimated parameters in the, K,a function,

Thus, by controlling the air flow rate, dissolved oxygen concentration can be controlied.
| Hence the function K, a must be incorporated in the design strategy of the envisaged

controller. Cosfficients K, andK, can be found using curve fitting method. To

caiculate the air flow-rate, therefore, involves solving Equation (2.26) for K, and then

calculating the air flow-rate from Equation (2.27).

2.5.4.4 Estimation of the coefficients X, and X,

The coefficients K, and K, can not be calculated together on the basis of the control

and oxygen transfer function because they depend on each cther. To overcome this
difficulty a function from Matlab “polyfit’ is used 1o fit this value of the transfer function

given by exponential equation (2.26) to the value of K,,=240d" as given by the
benchmark data. The estimated values of parameters K, andK, for the oxygen
transfer function K,a of Equation (2.26) are found to be 240 and 1.0961e-004

respectively. The simulated response is #lustrated in Figure 2.5,

Estimated value of KLa/day

KLa 2°0 T . . ; : :
! t : ) 1 !
] : 1 1 1 t
3 H 1 1 1 |
t H 1 1 1 |
_____ e R\ DU N -
200 : ; Trajectory of KLa function k
i ] T B T % -
'g i ] i r P :
1 ] [l + 1 :
B I i 3 1
_______________ L I ey R R
'0 150 ! i 1 + ' i
9 I 1 | ] |
¥ 1 E I 1
'g H ' ' | ! 1
i ! t 1 E 4 i
R S L T e e e e = m - — Lo - § IS U
1003 f i i 1 t 1
’ 1 H i 1 |
b 1 i 1 1 3
. 1 ' 1 1 i
; 1 ' 1 3 1
[T [ PR S J I, s e e e — [EpE -
: 1 E i 3 1
i i 3 1 t ]
H i 1 k 1
1 3 i k 1
t i ] ] ! 1
D i 1 1] ! 1 : i ]
] 0.5 1 1.5 2 25 . 3 3.5 4 4.5 5 u
Flow rate u m3/day x t0*

Figure 2.5: A typical curve of the X, (u) function
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The values of the parameters for building of the model of the DO concentration
_process in Simulink are taken from the benchmark structure at steady state as
- lustrated in Tables 2.5 and 2.8.

Table2.5: Process parameters from the Benchmark structure

Parameters S
o, sat

K I K 2 S K, 04 4 S,; ! Qa X BHS SNHS

-] a,in

Values B 230 | 1.0887e- { 0481 | 0.4 1333 | 0.0 9:0.1 | 55338 | 2558.3 | 1.733
004

Table 2.6: Process parameters from the benchmark structure continuation

Parameters Qr QD ﬂuH ﬂ A y H ¥y 4 K OH K 5 K NH X BAS S 5,55

Values 18446 | 184456 | 4 0.5 067 | 024 | 020 10 1.0 14378 | 0.888

2.5.4.5 Simulation of the DO concentration model
The differential equation of the plant representing the dissolved oxygen ;:oncentraiion
dynamics as depicted in equation {2.24) is used to develop an open loop block
diagram model in the software environment of Matlab/Simuiink where the input {o the
model is the air flow rate (u) and the oulputis the DO concentration (So). The vaiues of
the parameters for the building of the model of DO concentration in the Simulink are
taken from the Benchmark ASM1 plant {Henze et al., 1887} structure at steady state
as illustrated in Tables 2.5 and 2.6. These parameter values are taken to the Matlab
workspace. From there they are transferred to the Matlab/Simulink using bltocks “From -

workspace”. The resuiting model is as illustrated in Figure 2.6{a} and 2.6{b).

From From
Wokep acad Wokepaces
| i ahy ']Lﬁui h 9 LO E

To Wodspzced Scepe

'}v

S . L L, SWMZ Froducid
From -

- | o
> x V
Congtanill Congtanty X

Cornstanis loduckd

[ Fu e » = Productd
From ' Pmdud'zi #ath E

Wodspacs Function

Tao Wodspacet

‘Figure 2.6(a): Open icop DO concentration model with full model ofr,, i Simulink.
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Figure 2.6(b): Open loop BO concentration sub-system model in Simulink.

Figure 2.8 shows the resulting lime response cbtained for the DO concentration model
depicting the dynamic behaviour given by Equation 2.24 when simulated with an
airflow rate of 50000m¥day over a time interval equivalent to 0.1 of a day with fixed
step of integration as shown in Figure 2.7 . A total of 960 samples are obiained with a
sampling interval of 1min 30seconds. The low sampling time is used in order fo
capture the dynamic properties of the system. The steady state DO conéentraﬁon as
can be seen from the Figure 2.8 is 2.5mg/t. However the primary goal of control is to
maintain the dissclved oxygen concentration at 2mg/t [evet in the [ast tank. Therefore,
the data obtained from this mode! will be used in chapter 4 to design a neural network
controller o achieve the specified goal. The 880 data points sampled wilt be used 1o

train neural network in order to identify the DO congentration model.
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| — Daily flow rate trajectory
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Figure 2.7: Graph showing the Airflow rate
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2.6

Dynamics of the Disscolved oxygen
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Figure 2.8: Time response of the DO concentration model.

Conclusion

This chapter provides a theorstical overview of Wastewater treatment process. It starts
with an explanation of the operations of the various stages of the treatment process.
Then emphasis is put on the hiclogical process of wastewater reatment. The activated
sludge Benchmark model based on ASM1 biological model is explored in depth since
most of wastewater treatment processes use if for simulation and control verification.
Sample literature review about the control design and model development for WWTP

and for DO concentration is also provided.

The International Association on Water quality activated sludge model, ASM1(Henze
et al, 1987), considered as the reference model with defined characteristic features,
state variables and the basic processes used to describe the biclogical behaviour of
the system is described. The equations describing the overall process rates
{production, dead, consumption) for every process variables are given on the basis of

Peterson’s matrix.

In the literature review, it is found that the dissolved oxygen concentration control in
the activated sludge plants is the most widely used manipulated varizble since the
level of the dissclved oxygen in the aerobic reactor plays a significant influence on the
behaviour and activity of the heterotrophic and autotrophic microcrganisms leaving in
the activated siudge. It is also found that many different control strategies have been
employed for dissolved oxygen concentration control. However, neural networks and

fuzzy logics have gained attention io sclve conirol problems especially for nonlinear
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time-varying biclogical wastewater treatment plants because of the special features
they posses, Thus the neural network theory is applied in this thesis for modeliing and
controf design of the DO concentration.

Chapter 3 that follows examines artificial neural networks. it discusses ariificial neural
networks .theory including the fundamental principles, the various structures and
configurations and the neural nelwork application technigues for identification and
control of nonlinear processes. '
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CHAPTER THREE

NEURAL NETWORKS THEORY AND OVERVIEW
This 'chapter discusses artificial neural netwoa"'ks_ theory and its application techniques
fcr Identification and control of nonlinear processes. It covers the fundamental
principles of neural nef')vorks, their biclogical inspiration from the ceniral nervous

system, various types of activation functions used and the various structures and
configurations.

3.1 Introduction

The field of artificial neural networks have seen an explosion of interest over the years,
and are being successiully applied across an exiracrdinary range of problem domains.
Areas as diverse as finance, medicine, engineering, geology, defence, entertainment,
manufacturing, medical, telecommunication, physics and indeed, anywhere that there
are problems of prediction, ;artiﬁcia% neural networks can be used. The success in the
field of neural networks can be attributed to a few key factors such as: capability of
modeliing extremely compiex functions and ease of use. From the confrol sysiems
point of view, the ability to daal with non-linear systems is perhaps the most significant.
The networks are used to provide the non-linear system models requi%ecé by the
techniques for synthesis of non-linear controllers.

3.2 Biological Inspiration
The ocriginal inspiration for the neural network technique was from examination of the
central nervous system and the nsurons (and their axons, dendrites and synapses)
which constitute one of the most significant information processing elements. Figure

3.1 shows basic layout of a bioclogical neuron (U.S national institution of heaith).

Dendrite

Axon Terminsl
3, S B

Schwann cell
Mielin
Nucleus Sheath

Figure 3.1: Structure of a typical neuron {U.S naticnal institution of health).



An Axon or a nerve fiber is a long, slender projection of a nerve cell that conducts
electrical impuises away from the neuron’s cell body or soma. Dendrites are the
branched projections of a neuron that act to control the elecirochemical stimulation
received from other neural celis to the cell body from which dendrites project. Electrical
stimulation is transmitted onto dendrites by upstream nsurons via synapses which are
located at varicus peints throughout the dendrite arbor. Dendrites play a critical role in
integrating these synaptic inputs and in determining the extent to which action

potentiais are produced by the neuron.

The brain is prircipally composed of a very large number of neurons, massively
interconnected with an average of several thousand interconnects per neuron. Each
neuron is a specialized cell which can propagate an electrochemical signal. The
neuron ?‘xas a branching input structure {the dendrites), a cell body {soma), and a
branching output structure {the axon). The axon of one cell connects to the dendrites
of another via a synapse. When a neuron is activated, it fires an electrochemical signal
along the axon. This signal crosses the synapses to the other neurons, which may in
turn fire. A neuron fires only if the total signal received at the cell body from the
dendrites exceeds a cartain level termed the firing threshold. Thus, the strength of the
signal received by a neuron wili determine its chances of firing (Patterson, 1996) which
critically depends on the efficacy of the synapses. Each synapse actually contains a
gap, with neurctransmitter chemicais poised fo transmit a signat across the gap. Thus,
from a very large number of extremely simple processing units, each performing a
weighted sum of its inputs, and then firing a binary signa! if the fotal input exceeds a
certain level, the brain manages to perform extremely complex tasks.

3.3 Artificial neural networks
in the most general sense, a neural network is a dynamic system consisting of simple
processing units, called "neurons® or "nodes,” and information passing links between
these nodes called "interconnects” or "synapses,” which can perform information-
- processing by respbnding {0 a set of inpul nodes containing information requiring
processing. There are many definitions of neural networks available in the literature, a

sample of these are guoted below:

- = A neural network is a system composed of many simple processing elements
| operating in paraliel whose function is determined by network structure, connection
strengths, and the processing performed at computing elements or nodes. This is
accdrding to the DARPA Neural network Study {1988, AFCEA Intematicnal press,
p.60).
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¢ A neural network is a massively paraliel distributed processor that has a natural
propensity for storing experiential knowledge and making it available for use. It

resembles the brain in two respects (Haykin, 1994): -

1. Knowledge is acquired by the network through a learning process.
2. Interneuron connection strengths known as synaptic weights are used o store
the knowiedge.

» A neural network is a circuit composed of a very large number of simple processing
elements that are neurally based. Each element operates only on local information.
Furthermore each element operétes asynchroncusly; thus there is no overall
system clock {Nigrin, 19383).

» - Artificial neural systems,-of neural networks, are physical cellular systems which

can acquire, store, and utilize experiential knowledge { Zurada, 1992},

Each neuron in a neural network usually combines the cutputs from cother neurons in
the network or extémal in#ats with values from previous computations to produce
inputs to other neurons in the network. How the inter-neuron connections are arranged
and the nafure of the connections determines the structﬁre of a network. The
processing elements each have a number of internal parameters called weights.
Changing the weights of an element will alter the behavior of the element and,
therefore will also alter the behavior of the whole network {Pham, and Liu, 1996;
Haykin, 3., 1998). The goal here is to choose the weights of the network to achieve a
desired input/cutput relationship. The process is known as training the network, How
the weights (strengths) of the connections are adjusted or trained to achieve the
desired overall bshavior of the network is govemed by its leaming algorithm. An
Artificial neural network is normally configured for a specific application, such as
pattern recognition or data classification, through a learning process. Leaming in
biological systems invelves adjustments to the synaptic connections that exist between
the neurens. This is frue of artificial neural networks as well.

34 Historical background of Neural Networks
The field of neural networks simulation was established some decades ago, well
before the advent of computers but has found solid application only in the past thirfly
years or so, and has also survived at least one major setback and several eras.
' However many important advances have been boosted by the use of computer
emulations. The history of neural networks can be {raced back to McCulloch and Pitts
who published é paper (McCullcch, and Pitts, 1843) that described a formal calculus of
networks of simple computing elements and these basic ideas that were developed by
them form the basis of artificial neural networks, They develeped madeis of neural
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networks based on their understanding of neurciogy. These models made several
assumptions about how neurons worked. Their networks were based on simple
neurons which were considered to be binary devices with fixed thresholds. The resulis
of their models were simple logic functions such as AND, and OR models. The

technology available at that time did not allow them to do too much.

Then in 1948, Donald Hebb (Hebb, 1949) developed what is known as the ‘Hebbian
learning rule’. He found that if two connected neurons were simultaneously active, then
the connection between them is proportionately strengthened. In other words, the more
frequently a partiCular neuron is activated, the greater the weight between them (i.e.,
learning by weight adjustment). In 1858, Rosenblatt (1958) devised the perceptron
model, which generated much interest because of its ability to solve soms simple
pattern classification problems. Perceplron had three layers, the input layer {a sensory
area), the éutput layer {response area), with the middle ayer known as the association
layer. This system could learn to connect or associate a given input to a random output
unit. The perceptron convergence theorem stated: that if a pattern can be learned by

the perceptron, if means that it will be learned in finite numbaer of training iterations.

However, the interest on neural networks started to fade in 1869 when Minsky and
Papert {1968] provided mathematical proofs of the limitations of the singie layer
perceptron to multilayered systems and pointed out its weaknesses in computation. In
particular, they proved that it was not capable of solving the classic exclusive-or (XOR)
problem. it was only capable of classifying problems that were linearly separable at the
output (Demutﬁ et al., 2004). Such drawbacks led to the temporary decline of the field
of neural networks. Another system was the ADALINE {ADAgptive Linear Element)
which was developed in 1980 by Widrow and Hoff of Stanford University. The
ADALINE was an analogue electronic device made from simple components. The
method used for leaming was different {o that of the Percephtron; it employed the Least-
Mean-Squares (LMS) learning rule, Widrow and Hoff's learning rule {1960).

The developments of more-powerful networks, better training algorithms, and improved
hardware have all contributed o the revival of the field of neural-networks. A significant
breakthrough in neural networks was made by the introduction of the sigmoid
activation function {Cowan, 1967). The function has the ability to approximate any
neonlinear function. Instead of switching either on or off like the perceptron, this function
turns the output value between plus and minus infinity, and squashes the output into
the range 0 to 1. Neural network paradigms in recent years inciudes, the recurrent
network (Hopfield's, 1882). Kochonen's network {1972}, Rumethart's competitive

leaming model (1986) with regards {o back propagation techniques of training
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multilayer perceptron, Fukushima's model, Carpenter and Grossberg's Adaptive
Resonance Theory model [Wasserman 1989; Freeman and Skapura, 18811 One of
the reasons for-the renewed excitement on neural networks was the paper by
Rumethart, Hinton, and McClelland (1 986),.which made the backpropagation algorithm
famous. The .paper discussed how back-propagation leaming had emerged as the
most popular leamning set for the fraining of multi-layer percepiron. The
backpropagat%_on method could train muitilayered neurai networks to perform tasks that

the simple perceptron had failed,

Thus, the field of. neural networks has generated interest from researchers in such
diverse areas as engineering, computer science, psychology, neuroscience, physics,
an& mathematfcs', etc. Today, significant progress is being made in the field of neural
networks in many fronts and neural networks can be trained 1o solve problems that are
difficult for conventional computers or human beings. Neurally based chips are
emerging and applications to complex problems are being developed.

3.5 Neuron model and network Architectures
Figure 3.2 shows an artificial neuron. it includes a summer and an activaticn function
g. it receives a number of inputs. Each input comes via a connection that has strength
{weight). These weighis correspond o synaptic efficacy in a biological neuron. Each
neurcn also has a single threshold value. The weighted sum of the inputs is formed,
and the threshold subfracted, to compose the activation of the neuron. The activation
signal is passed through an activation function, g (also known as a transfer function) to

produce the ocutput of the neuron.

Figure 3.2: Single layer madel! of artificial neural network.
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3.5.1

The inputs, x,,j =ﬁto the neuron are multiplied by weights w, and summed up
together with the constant bias term 8;. The resulting n,is the input to the activation

function g. The most commonly used activation functions are hyperbolic tangent (tanh),
hard limit (hardlim), pure linear {purelin), radial basis or a sigmoid functions. However
there are other funclions fike the positive linear, saturating linear which are used but

less popular. The output of node i becomes:

k
yi = gi = g[zwﬁxj +9‘} . (31)
Jj=1

Two or more of the neurons can be combined in a layer, and a particular network could
contain one or more such layers to form architecture or a network. In terms of their
structures, neural networks can be divided info two types; namely, the Feed-forward
networks and the Feedback networks (recurrent nefworks).

Feedforward networks

Feed-forward networks as shown in Figure 3.4 allows signals to travel ons way only
from input to output. There are no feedback loops, i.e. the output of any layer does not
affect that same layer. The neurons are generally grouped into layers. Signals flow
from input fayer through fo the output layer via unidirectional connections, the neurons
being connected from one layer o the next, but not within the same layer.

Cutputs

Figure 3.3: Feed-forward Neural networks.

Feed-forward neural networks tend to be straight forward networks that associate
inputs o oulpuls. The feedforward neural networks were the first and arguably the
simplest type of artificial neural networks to be devised. They are the most popular and
most widely used models in many practical situations. Examples of feedforward
networks include the multi-layer perce;ﬁtron {Rumelhart and McClelland, 1986), the
learning vector guantization network {(Kohonen, 1989}, the cerebellar model articulation
control network (Albus, 1975a) and the group method of data handling network {Hecht-
Nielsen, 1990). Feedforward nefworks can mostly naturally perform static mappings
between input space and output space, the cutput at a given instant is a function only
of the input at that instant.

51



3.5.2 Feedback networks
In the feedback neural networks (also known as recurrent neural networks), there are
feedback connections. This means that they a closed loop topology. The outputs of
some neurons are fed back io the same neurons or to neurons in the preceding lavers.
Thus signals can flow in both forward and feedback directions. Figure 3.4 shows an
example of a partially connected recurrent neurat network (Schalkoff, 1997).

Context

mprats

Figure 3.4: Example of partially connected recurrent neural network (Schalkoff, 1997).

Recurrent neural networks (RNN) were developed to deal with time va{yi}\g or time-
lagged patterns and are usable for problems where the dynamics of the considered
process is complex and the measured data is noisy. A RNN is a network with feedback
{closed loop) connections (Fauseft, 1984). Examples of recurrent networks include
BAM, Hopfield, Boltzmann machine (Hopfield, 1982) and the recurrent
backpropagation networks {Hecht-Nielsen, 1880).The architectures range from fully
interconnected to partially connected networks. In a fully connected RNN all hidden
un%té are connected recurrently, whereas in a partially connected RNN, the recurrent
conditions are omitted partially. Recurrent networks have a dynamic memory in that
there outputs at a given instant refiect the current input as well as the previous inputs

and outputs.

3.6 Neural networks activation functions
Two functions determine the way signals are processed by neurons. The activation
function acting on the input vector determines the total signal a neuron receives, and
the output function, operating on a scalar activation, determines the scalar cutput. The
compaosition of the activation and the output functions is called the transfer function.
For some transfer functions there is no natural division between activation and output
functions. Typically, activation functions have a “quashing” effect such that the output
of a neuron in a neural network is between certain values {(usually 0 and 1, or -1 and
1). There is a wide range of activating functions in use with neural networks. Only a

few of these are used by default; others are available for customization.
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Also, activation functions are needed to infroduce nonlinearity into the network.
Without nonlinearity, hidden units would not make networks more powerful than just
plain perceptron (which do not have any hidden units,'just input and outputs units). For
bac'kpropagation learning, the activation function must be differentiable, and helps if
the function is boundad. The sigmoid functions such as logistic and tanh and the
Gaussian functions are the most common choice. Functions such as fanh or arc lan
that produce only positive and negative values tend to yield faster training than
functions tha%i produce only positive values such as Jogistic, because of beiter
numerical conditioning. A brief overview of the characteristics of the most common
activation functions in use is lustrated (Pham, D.T, 1994).

1. - Threshold function: For this type of aclivation function, described by the
characteristic of Figure 3.5,can be written as:
g(n)= {(1} 3: H;OO 7_ | (3.2)
in engineering, this form of a threshold function is commoniy referred to as a Heaviside
function. Correspondingly, the output of neuron i employing such a threshold function
is expressed as:

lif g, =0
,_={0 ) S (3.3)
if g0 :
Where g, is the induced local field of the neuron: that is,
3
Yi=8 =& Zwﬁxj'{'gi (3.4}
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Figure 3.5: Threshold Activation function
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The shown hard-fimit transfer function limits the output of the neuron to either 0, if the
- input argument is jess than 0, or 1, if n is greater than or equal to 0. This function is

normaliy used in perceptions 1o create neurons that make classification decisions.

2. The linear transfer function. The linear activation function is essentally no
activation at ali. It is probably the least commonly used of the activation functicns. The
finear activation function does not modify a patiern before outputting it. Neurons of this
type are used-as linear appmximators; By simply retuming the value passed to if, the
function performs linear approximation. The linear activation functiqn may be ussful in
situations when entire range of numbers to be outputted is needed. Figure 3.6 shows
the characteristics of this function which can be generated by the equation:

a = purelin (n). | (3.5)

Neurons of these iypes are used as linear approximators in “"Adaptive Linear Filters”.
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Figure 3.6: Pure linear Activaticn function.

3. Sigmoid transfer function: The sigmaid transfer function shown in Figure 3.7 takes
the input, which can have any value between plus and minus infinity, and quashes
the output into the range 0 to 1.This transfer function is commonly used in
backpropagation networks as shall be seen later, because this function is
differentiable. The sigmeid activation function plays a critical role in neural network
modeliing. The purpose of the sigmoid transfer function to the neural network
design is to normalize and shrink the weight estimates in the hidden layer or output
layer with a distribution that is centered about zero in order to assure convergence

to the correct values.
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The sigmoid function is defined by f(n) =

— .The term sigmoid means curved in
+e

twe directions, like the [etter “S™, .One important thing about sigmoid activation function
is that it only returns positive values. if the neural network is needed to retum negative
numbers, then the sigmoid function will be .unsuitabie, The characteristics of this
function can be generated by the equation:

a = logsig (n) {3.6)

1

o2
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. .7
0.6

= 05
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0.2
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Figure 3.7: Logistic Sigmoid Activation function.

4 Hyperbolic Tangent Function: Another common choice of activation function in the
neural network is the hyperbolic tangent function. One reason is that it is a very
flexible, non<inear function. i is also centinuous and differentiable. The hyperbaolic
tangent and sigmoid funclions are equivalent. The difference is that the sigmoid
activation function does not return values less than zero. However, it is possible 1o
“move” the sigmoid function ta a region of the graph so that it does provide negative
numbers. This is do-ne using hyperbolic tangent function. The hyperbolic tangent
function has an ideal network modeling property, in that the function leads to faster
convergence in oplimization process with comparison to the various logistic functions
given a sufficiently large sample sizes. The equaticn for the hyperbolic function is

eZn
2n

given by f(n) = _i .The graph of the hyperbolic function is shown in Figure 3.8.
+ _

€
One important thing about hyperbolic funciion is that it retumns both positive and
negative values.
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Figure 3.8: Hyperbolic Tangent Activation function
5. The Radial Basis Function: Radial functions are usually Gaussian. They are

used in approximation theory and in paitern recognition (Haykin, 8., 1894). The
procedure starts with a vector of inputs. The disiance between the inpuls and ths
vector of weights is calculated, multiplied by the vector of bias and sent to the radial
basis function. This can be expressed as a function: N

a = radbas (n). ' ' (3.7
The_ commonly used radial basis activation functions are the muiti quadratic functions

and the Gaussian function given by radbas(n)=e” “as is illustrated in Figure 3.9.

Typically the radial basis functions are used in radial basis networks fo construct local
approximations o nonlinear input-output mapping, with the result that the networks are
capable of fast learning and reduced sensitivity to the order of presentation of training
data.

Radial Basis Function
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Figure 3.9: Gaussian Radial Basis Activation function

Neural networks’ leaming categorisation
Updating the weights by training the neural networks is known as the learning feature

of the neural networks. Learning algorithms may be carried out in continucus-time (via
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3.71

3.7.2

3.7.3

differential equations for the weighis). or in the discrete-time (via difference equations
for the weights). Learning algorithms in neural networks are many but can be broadly
classified into three basic types: supervised, unsupervised and reinforced learning
methods. |

Supervised learning
In this method, every input pattern that is used o train the network is associated with
an outpul pattern, which is the target or the desired pattern. Thus, a supervised

{earning algorithm adjusts the strength or weights of the inter-neuron connections

according to the difference between the desired and the actual network outputs
corresponding to a given input. The supervised learning requires a teacher or a
suéewisdr to provide desired or target output signals. The difference (error) can then
be used fo change the network parameters, which results in an improvement in
performance. Examples of supervised leaming algorithms include the delta rule
(Widrow and Hoff, 1960), the generalized delta rule or backpropagation algorithm
{(Rumelhart and McClelland, 1986), and the learning vector quantization algorithm
{Kohonen, 1988),

Unsupervised learning

Unsupervised learning algorithms (aiso called seif-organizing behavior) da not require
the desired outputs {0 be known. The target output is not presenied to the network.
During training, only input patterns are presented fo the network which automatically
adapts the weights of its connections to cluster the input patterns into groups with
similar features. It is as if there is no teacher 1o present the desired patierns as the
system learns on itself. Examples of unsupervised learning algorithms include the
Kohonen (Kohonen, 19838), the Adaptive Resonance Theory (Carpenter and
Grossberg. 1988) competitive learning algorithms.

Reinforced learning

Thi_s method can be regarded as a special form of supervised learning. Instead of
using a teacher to give target outpuls, a reinforcement learning algorithm employs a
critic only to evaluate the goodness of the neural network output corresponding to a
given input. The weights associated with a particular neuron are not changed
proportionally to the outlput error of that neuren, but instead are changed in proportion
to some reinforcement signal. Howevér, reinforced leaming is not one of the popuiar
forms of learning. An example of a reinforcement lgaming algorithm is the genetic
algorithm (Holland, 1975; Goidberg, 1983).
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3.8

3.8.1

Types of neural networks

There are quite a number of neural networks configurations available in the present
world, among them; the nulli-layer perceptron (MPL), the Leaming' Vector
Quantization (LVQ) network, the Cerebellar Model Articulation Control (CMAC)
nefwork, the Group Method of Data MHandling (GMDH) network, the Hopfield network,
the Elman and Jordan networks, the Kohonsen network, and the Adaptive Rescnance
Theory (ART) network. For an overview of different systems engineering application to
these neiwarks reference is made in {Pham, 1894). Howsever, the most important
classes of neural networks for real world problem solving which are covered in this
fiterature review include:

. Mutti—layef Perceptron.

+ Radial Basis Funclion Networks.

= Kohonen Self organizing Feature Maps.

Multi-layer Perceptron (MLP) "

A perceptron neural network with one or more layers of nodes between the input and

output nodes is called multi-layer perceplron network. MPLs are perhaps the best

known type of feedforward neural networks in use today, due to its originality to

Rumethart and McClelland (1988) and discussed at length on most neural network

textbooks and journals. it is also the most popuiar form of neural network architecture

possessing the foliowiﬁg features:

s Has any number of inputs.

. H_as one or more hidden layers with any number of units

« Uses linear combination functions in the input layers.

» Uses generally sigmoid activation function in the hidden layers.

» Has any number of outputs with any activation function.

s Has connecticns between the input fayer and the first hidden layer, between the
hidden layers and between the last hidden layer and the cutput layer, i.e. signals
fiow in the forward directions only.

Given enough data, enough hidden units, and enough training iterations, a multi-layer

perceptron with only one hidden layer can approximate virtually any function to any

degree of accuracy. For this reason, multidayer perceptron are known as universal
approximators and can be used to approximate virtually any function {Hornik, et al,

' 1989). The number of layers, and the number of units in each layer, determines the

function’s complexity. Important issues in the multi-layer perceptron design therefore
include specification of the number of hidden layers and the number of unils in these
layers (Haykin, 1994; Bishop, 1985).
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3.82

The topology representation of a muiﬁ—iayer percepiron network with one input layer
with three nodes, one hidden layer with four nodes and an output layer with two nodes
is illustrated in Figure 3.10.

Input Outputs

Figure 3.10: Multitayer Perceptron Neural nehmerké,

Radial Basis Function Networks

Radial basis functions (RBF) neiwcrks are also feedforward, but they have only one

hidden layer. In a nutshell, the RBF networks posses the following features:

* Has any number of inputs.

. Typic'a!ly has one hidden layer with any number of units.

» Uses radial combination functions in the hidden layer, based on the squared
Euclidean distance between the input vector and the weight vector.

s Typically uses expconential or Gaussian activation functions in the hidden layer, in
which case the network is a Gaussian RBF network.

¢ Has any number of outputs with any activation function.

s Have connections between the input layer and the hidden layer, and between the

hidden layer and the output layer.

Figure 3.11 illustrates an RBF network with inputs x,,x, and output y. The arrows in

the figure symbolize parameters in the network. The RBF network consists of ons
hidden layer of basis functions; or neurcns. At the input of each neuron, the distance
between the neuron center and ihput vector is calculated. The cutput of the neuron is
then formad by applying the basis function to this dislance. The RBEF network is formed
by é weighted sum of the neuron outputs and the unity bias. The governing equation
is:

y@=Ywolc—c)h (3.8)

i=1
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3.8.3

Where N is the number of neurons in the hidden laver, ¢, is the center of the vector

neuroni, and w, are the weights of the linear output neuron. In the basic form all inputs

are connected to each hidden neuron. The norm is typically taken io be the Euclidesan
distance and the basis function p is taken to be Gaussian.

px—c]) = expl- AJx~c | o (3.9)

The Gaussian basis functions are local in the sense that
K plx-c =0, (3.10)
This means that changing parameters of one neuron has only a small effect for input

values that are far away from the center of that neuron. RBF networks are universal

épprcximaiors. Provided that RBF network has enough hidden neurons it can

approximate any continucus function with arbitrary precision. The weights w, c,and B

" are determined in a manner that optimizes the fit between the ouiput y and the input

data.
s Radial
x2 bas 15
functions
¥
Inputs
’ Radial
basis 7
% functions Weights

| Weights
Figure 3.11: Radial Basis Function network

The basis Gaussian beil function is the most commonly used, aithough other basis
functions may be chosen. RBF networks are normally used to solve a common set of
problems like, Function approximation, classification, modeling of dynamic systems

and time series prediction {Moody and Darken, 1889; Roger D. Jones et a/, 1990).

Kohonen Self organizing Feature Maps

Self Organiiing Feature Map (SOFM, or Kohonan) networks are quite different to the
oth'_er networks. Whereas all the other networks are designed for supervised learning,
the SOFM networks are designed primarily for unsupervised learning (Patterson,
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Where N is the number of neurons in the hidden layer, ¢, is the center of the vector

neurani , and w, are the weights of the linear output neuron. In the basic form all inputs

are connected to each hidden neuron. The norm is typically taken to be the Euclidean
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distance and the basis function £ is taken to be Gaussian.

px-clp = expl- fx —c,[f - (3.9)

The Gaussian basis functions are local in the sense that

Limpr-cp=o0. | (3.10)

This means that changing parameters of one neuron has oniy a small effect for input
values that are far away from the center of that neuron. RBF networks are universal
approximators. Provided that RBF network has enough hidden neurons it can

approximate any centinuous function with arbitrary precision. The weights w, ¢, and B

~ are determined in a manner that optimizes the fit between the output y and the input

data.
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Figure 3.11: Radial Basis Function network

The basis Gaussian bell function is the most coemmonly used, aithough other basis

functions may_be chosen. RBF networks are normally used to solve a commeon set of

. problems like, Function approximation, classification, modeling of dynamic systems

and time series prediction (Moody and Darken, 1889; Reger D. Jones ef af, 1980).

Kohonen Self organizing Feature Mabs _

Seif Organizing Feature Map (SOFM, or Kohonen) networks are quite different to the
other networks. Whereas all the other networks are designed for supervised learning,
the SOFM networks are designed primarily for unsupervised leaming {(Patterson,
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1896). A Kohonen network or self-organizing feature map has fwo layers, an input
buffer layer fo receive the input pattern and an output layer. Neurons in the output
taifer are usually arranged into a regular two-dimensional array. Each neuron is
connected 1o all input neurons. The weights of the connections form the components of
the reference vector associated with the given output neuron. The Kohenen technigue.

creates a network that stores informationin . such a way that any topological

-relationships within the training set are maintained. Figure 3.12 shows the structure of

a Kohonen network.

Cutput neurons

Input neurons

Input vector

Figure 3.12: Kohonen network.

Training of a Kohonen network involves the following steps:

Initiatise the reference vectors of all output neurons to smail random values:
Present a training input pattern;
Determine the w%nhihg output neuron, i.e. the neuron whose reference vector is
closest {o the input pattern. The Euclidean distance between a reference vector and
the input vector is usually adopied as the distance measure;
Updsate the reference vector of the winning neuron and those of its neighbours.
These reference vectors are brought closer to the input vector. The adjustment is
greatest for refereﬁce vector of the winning neuron and decreased for reference

vectors of neurons further away. The size of the neighbourhood of a neuron is
reduced as the training proceeds uniil, towards the end of training, only the
reference vector of the winning neuron is adjusted.

In & welldrained Kohonen network, output neurons that are close to one another have

 similar reference vectors. After training, a labelling procedure is adopted where input

patterns of known classes are fed to the network and class labels are assigned to
output neurons that are activated by those input patterns, That means that an output

61



3.9

3.9.1

neuron is activated if it wins the competition against other oulput neurons, i the

reference vector is closest to the input pattern.

Training Algorithms

Training a neural network o learn patterns in the data involves iteratively presenting it
with examples of correct known answers. The objective of training is to find the set of
weights belween neurons that determine the global minimum error function. This
invalves decisién regarding the number of iterations, i.e., when {o siop {raining and the
selection of the learning rate (a constant of proportionality which determines the size of
the weight ad}ustménts_ made after iferation), and momentum values (how past weight
changes aﬁebt current weight changes). The procedure for selecting the network
parameters (weights and biases) for a given prcbiefn is called training the network.
There are a number of algorithms for training; most of them can be viewed as a

straightforward application of optimization theory and statistical estimation. Given a

- cost function, there are several ways 1o find an optimal solution. Optimization

- {echnigues can be calegorized onto the following approaches:

e Caiculus Gradient techniques which adjust a parameter @ based on the sensitivity

(AJ/A 6) = yariation of cost function over variation of parameter). Examples include

the Delia Rule, Hili Climbing, Back-Propagation, etc.

» Artificial Intelligent Heuristic techniques which expand a branch in a tree search
based on evaluation of cost function. Examples include Breadth first, Depth first, A*
algorithm, etc. '

» Evolution type technigues which use a population of parameters to evolve into
better and belter generations of poputations. Examples are the Evolution algerithm,

the Genetic algorithm, Genetic p%egramming eic.

The Delta Rule

Suppose a cost function J(@)which has a minimum as shown in the Figure 3.13 is
considered. The Delta rule for searching for a minimum is {o;

s Step backwards if the gradient is uphill

s Step forward if the gradient is downhil

. Sto;) if the gradient is close to being fiat,

6 may be a vector, although drawn in the figure as a scalar.
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3.9.2

J(&)“

Figure 3.13: The Delta Rule.

Mathematically the rule can be described as: Change in peramester value

&7 ,
Ab=-y— 3.1
'd 50 (3.11)
Parameter update, 8. =0, +A0 {(3.12)

Where, y =a factor that determines the search step size. Back-propagation is a well-

known gradient search technique for training feed-forward neural networks that is
based on the Delta Rule. Many of the training algorithms are based on the gradient
decent algorithm. The following section describes the backpropagation aigorithm.

Back-propagation algorithm

Back-propagation can train multi-layer feed-forward networks with differentiable
transfer functions to perform function approximation, pattemn association, and pattern
classification. It has been shown (Hornik, Stinchcombe, & White, 1989; Cybenko,
1989; Haftman, Keeler, & Kowalski, 1890} that only one layer of hidden units can
successfully épproximate any function with finitely many discontinuities to arbitrary
precision, provided the activation funclions of the hidden unils are non-linear. The
proof is given by the universal approximation theorem. Other types of networks can be

trained as well, atthough the multilayer network is commonly used.

The back-propagation learning law is a very pcpular and conseguently imporiant

leamning rule applied to multi-laysr feedforward neural networks. Because of its

popularity, multi-layer perceptron are often referred to as the back-propagatién

‘neura! networks. The back-propagation law is a supervised error-correction rufe in

which the output error, that is, the difference between the desired and the actual cutput
is propagated back to the hidden tayers. Now, if the error output at each layer can be
determined, it is possible to apply any method which minimizes the performance index
to each layer sequentially. A common cost function {performance index} is the sum of

the sduared errors (A.P.Paplinski, 2002),
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J=%ng | (3.13)

r

The summation is over all the output neurons of the network. The network is trained by
minimizing J with respect fo the weights, and this leads to the gradient method. The
factor 1/2 is used to simplify the differentiation when minimisingJ. Consider a single

layer of nonfinear neurons as in Figure 3.14 (A.P.Paplinski, 2002), where his the input

dy

signal, Wis the Lxmweight matrix in the input layer, d—is the derivative of the
1

output signal with respect to the manipulate signalu, & is the activation function (e.q.

sigmoid) and & is the delta error.

h u y
— i W —‘n—e*@ "
L * v
&
du
9 -
5 & fl; d
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Figure 3.14: Back-Propagation Errors (A.P.Paplinski, 2002}.

If the error measured at the neuron’s ocutput is

g’ =d-y : {3.14}
where, d is the desired 6utput, | '

Then an equivalent input error, ¢ that is, an input perturbation which would cause the

output errcr, ¥ can be determined as:

" =W 8,8 =[6,.ceerrrrrne 5.1 (3.15)
Whaere the k-th delta signal is
! ¥ ath . ) |
5 =8 -&° =—%.g7 4 {3.16)
k k k du k

L
There are several diffaerent types of back-propagation training algorithms. They have a
variety of different computation and storage requirements, and no one algorithm is best

suited to all applications.

The back-propagation aigorithm has the following steps (Lippmann, 1987) as follows:

+ [nitialise weights. Set all weights o small random values.



« Present inputs and desired outpuls (training pairs). Present an input vector u and
specify the desired outpuis d. if the network is used as a classifier then all the
desired outpuls are typicaﬁy zero, {exceptone settoa 1). The inpﬁts could be new
on each trial, or samples from a training set could be presented cyclically until
weights stabilize. _

+ Calculate actual oulputs. Calculate the outputs by successive use of
y=fW" -u)where fis a vector of the activation functions and W is a vector of
the weights.

» Adapt weights. Start at the output neurons and work backwards to the first hidden

layer while adjusting weights by:w, =w, +75,y, (3.17)
in equation {3.17) wis the weight from the hidden neuron i{or an input node) to
neurecn j, y,is the output of neuron i{or an input), n is the leaming rate parameter,

and &,is the gradient,

+ Gotostep 2

The standard back-propagation algorithm suffers from a number of problems. The

main problems are:

» If it does converge (this usually happens when the learning rate is smali), it will be
very slow.

+ Training performance is sensitive to the initial conditions

»- Oscillations may occur during learning (this usually happens when the leaming rate
is high}.

s if the error function is shaliow, the gradient is very small leading to small weight
changes. This is known as the “flat spot” problem. '

s+ The convergence o a local minimum of the error function can oceur under ceriain
circumsiances and there is no proof that the standard back-propagation algorithm

finds a glebal minimum.

 For these reasons several methods of speeding up back-propagation algorithm for
quick convergence have been proposed {Donald L. Prados, 1992, Martin Riedmiiler,
1894; Femando, S. et al, 1990; Yoshio and Hijiya, 1891; Dilip Sarkar, 1985). Thgse
high performance algorithms can converge from ten fo hundred time's faster than
back-propagation algorithms. These faster algorithms fall into two main categories:
heuristic technique (vériab!e learning rate back-propagation, resilient back-
propagation} and numerical optimization téchniques {Conjugate gradient, quasi-
Newton, Levenberg-Marguarct {Bishop, 1995; Shepgherd, 1997). Levenberg-Marguardt
is the fastest algorithm but as the number of weights and biases in the network
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increase, the advantage of this algorithm decreases. From an optimization point of
view, learning in a neural network is eguivalent to minimising a glebal error function,
which is a muitivariable function that depends on the weights in the network.

3.9.2.1 Conjugate gradient method {Bishop, 1995)

The idea here is that, once the algorithm has minimized along a partficular direction,
the second derivative along that direction should be kept to zero. Conjugate directions
are selected to maintain this zero second derivative on the assumption that the surface
is a nice smooth surface. If this condition holds, N epochs {where N is the number of
iterations it takes t0 converge) are sufficient to reach a minimum. In reality, on complex
error surface the conjugate deteriorates, but the algorithm still typically require far less
epochs than back-propagation, and also converges o a better minimum.

3.9.2.2 Quasi-Newton method
- Quasi-Newton training is based on the observation that the direction pointing directly
towards the minimum on a gquadratic surface is the so-calfled Newton direction. This is
very expensive to calculate analytically, but quasi-Newton iteratively builds up a good
approximation o it. Quasi- Newton method is usually a little faster than the conjugaie
gradient descent, but. has subsiantially larger memory requiremenis and is

- oceasionally numerically unstable

3.9.2,3 Levenberg-Marquardt method
Levenberg-Marquardt {Levenberg, 1994; Marquardt, 1863; Bishop, 1995} is typically
the fastest of the training algorithms, although it has some limitations, specifically: it
can only be used on single output networks, can only be used with the sum squared
error function, and has memory requirements to the number Gf weighis in the network;

this makes it impractical for reasonably big networks.

3.9.2.4 Generalization (lnterpolatio'n and Extrapolation)

Generalization can be defined as the ability to have the outpuis of the neural networks

approximate target values -given the inputs that are not in the training . set

Generaiization requires a prior knowledge of what the relevant inputs are in order for

the net'wofk to generalize. The critical issue in developing a neural nelwork is

Gen'eratizaticn, i.e. how well will the network make predictions for cases that are not in

the training set. There are three conditions that are typically necessary for good

gen_eralization:

» The inputs to the network must contain sufficient information pertaining to the
target, to ensure the existence of a mathematical function relating correct cutputs to
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inputs with the desired degree of accuracy. Finding good inputs for a network and
collecting enough training data often takes far more time and effort than training the
network. _

+ The function to be fearnt must be smooth. In other words, a small change in the
inputs should, most of time, produce a small change in the cutputs. Often a
nonlinear transformation of the input space can increase the smoothness of the
function and improve generé!ization.

+ The training cases should be sufficiently large and be representative subsets of the
sel of all classes thal is {o be generalized. The importance of this condition is
related to the fact that there are, two different types of generalization: interpoiation
and extrapolation. intarpolation zpplies io the cases that are more or less
surrounded by nearby training case; everything else is extrapolation. interpolation
can often be done reliably, but extrapolation is notoricusly unreliable.

. Neural networks, fike other flexible nonlinear estimation methods such as kernel
regression, and smoothing splines, can suffer from either under-fitting or over-fitting. A
network that is not sufficlently complex can fail to fully detect the signal in a
complicaled data set, leading o under-fitting. Similarly, a network that is oo complex
may fit the noise, not just the signal, leading to over-fitting. Over-filling is especially
dangerous because it can easily lead to predictions thet are far beyond the range of
the training data with many of the common types of neural networks. Over-fitting can
also produce wild predictions in multilayer perceptron even with noise-free data (Smith,
1996; Geman et al, 1992).

While there is little to be done to improve the network performance outside the range

of training data, the ability to interpolate between data points éan be improved. Given a

fixed number of training data, there are at least six approaches to avoiding underfitting

and overiitling, and hence getting good generalization. These are: model selection,

Jittering, Early stoppage, Weight decay, Bayesian leaming. and combining networks.

s Model selection: The complexily of a network is related fo both the number of
weights and the size of the weights. Model selection is concerned with the number
of weights, and hence the humber of hidden units and layers. The more weights
there are, relative to the number of training cases, the more overfitiing amplifies
noise in the targets {Moody 1992).

o Jittering: Jitter is artificial noise deliberately added to the inputs during training.
Training with jitter is a form of smoothing related to kemnel regression. i is also
closely relaled to regularization methods such as weight decay and ridge

regression. Training with jitter works mostly with smooth functions. In other words, if
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there are two cases with similar _inputs, the desired outputs will usually be similar.
That means, any training case can be taken and new cases training can be
generated by adding small amounts of jitter to the inputs. As long as the amount of
jitter is sufficiently small, it can be assumed that the desired ouiput will not change
enough to be of any consequence. So the same target value can be used. The
more training cases, the merrier; so this looks like a convenient way to improve
training. But too much jitter will obviously produce garbage, while too little jitter will

have litfle effect (Koistinen and Holmstrém 1892).

Early stoppage: A portion of the training data is placed into a validation data set.
The performance of the network on the validation set is monitored during training.
During the early stages of training the validation error will come down. When
overfitting begins, the validation error will begin to increase, and at this point the
training is stopped. However, the validation error is not a good estimate of the
generalization error. One method for getting an unbiased estimate of the
generalization error is 1o run the network on a third set of data, the test set that is
nof used at all during the {raining process.

Weight decay. Weight decay adds a penally term 1o the error function. The usual
penalty is the sum of squared weights times a decay constant. Weight decay is a
subset of regularization methods. The penally term in weight decay, by definition,
penalizes large weights. The weight decay penalty term causes the weights to
converge to smaller absolute values than they otherwise would. Other regularization
methods may involve not only the weights but various derivatives of the ouiput
function {Bishop 1995). ,

Béyesian Learning: The Bayesian School of statistics is based on a different view of
what it means to learn from data, in which probability is used to represent
uncertainty about the relationship being learned. The result of Bayesian training is a
posterior distribution over network weights. if the inputs of the network are set to
the values for some new case, the posterior distribution over network weights will
give rise to a distribution over the outputs of the network, which is known as the
predictive distribution for this new case. If a single-valued prediction is needed,
one might use the mean of the predictive distribution, but the full predictive
distribution aiso tefls how uncertain this prediction is.

Reguiization: With this method the performance index is modified to include a term
which penalizes network compiexity. The most commen penalty term is the sum of
squares of the network weights. This performance index forces the weights to be

“small, which produces a smoother network response.
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Neural networks and control

With specific reference to neural networks in control the following characteristics and

properties of neural networks are important as compared with other conventional
modeiling methods (K. J. Hunt st ai, 1992; Moscinski, J. and Ogonowski, Z, 1985);

Nonfinear systems. Neural networks have greatest promise in the realm of
nonlinear control problems. This stems from their theoretical ability t¢ approximate
arbifrary nonlinear mappings. Nelworks may also achieve more parsimonicus
modeling than alternative approximation schemes,

Paralflel distributed processing. Neural networks have a highly parallel structure
which lends itself immediately to paraliel implementation. Such én implementation
can be expecled o achieve a higher degree of fault tolerance than conventional
schemes. The basic processing slement in a neural network has a simple structure.
This, in conjunction with parallel implementstion, results in very fast overall
processing.

Hardware implementation. Not only can the networks be in parallel, a humber of
vendors have recently introduced dedicated very large scale integration (VLS!)
hardware implementations. This brings additional speed and increases the scale of
networks which can be implemented.

Learning and adaption. Networks are trained using past data records from the
system under study. A suitably trained network then has the ability to generalize
when presented with inpuis not appearing in the training data. Networks can also
adapt on-line.

Data fusion. Neural networks can operate simultaneously on both guantitative and
gualitative datfa. in this respect networks stand somewhere in the middle ground
between tradiional engineering systems {quantitative data) and processing

techniques from the artificial intelligence field (symbolic data).

“Multivariable systems. Neural networks naturally process many inputs and have

many outpuls; they are readily appiicable to multivariable systems.

It is clear that a2 modeling paradigm which has all of the above features has a great

promise. From the control point of view, the ability of neural networks to deal with

nonlinear systems is perhaps the most significant. The great diversity of nenlinear

systems is the primary reason why no sysiematic and generally applicable theory for

nonlinear control design has yet evolved. However, a range of ‘traditional’ methods for

the analysis and synthesis of nonlinear controllers for specific classes of nonlinear

systems, exist. Such methods include: plane analysis methods, finearization

techniques and techniques for describing functions.
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Control system applications

There are typically two steps involved when using neural networks for control: system
identification and control design. In the system identification stage, a neural network
model of the plant that has to be controlled is developed. In the conirol design stage,
the neural network plant model is used to design (or train) the controller (Martin T.
Hagan et al, 1998). The nonlinear functional mapping properties of the neural networks
are central to their use in control. In each of the control architectures the identification

phase is similar.

A number of resulis have been published showing that a feedforward network of the

muitilayer perceptron type can approximate arbitrarily well a continuous function

- (Cybenko (1988, 1989); Carcl and Dickson (1889); Funahashi (1989); Homik et al,

(1989). These papers prove that a continuous function can bhe arbitrarily weil
approximated by a feedforward network with only one hidden layer where each unit in
the hidden layer has a continuous sigmoid nenlinearity. The use of nonlinearities other
than sigmoid is alsc discussed. in summary, a large body of theogretical resulis relating
fo approximation using neural networks exists. These resulis provide theoretically
imporiant possibility thecrems and deep insight into ultimate performance of networks
and their application in the field of control. The section that fol%éws provides an

overview of papers based on neural networks and their successful applications,

Overview of existing solutions of ANN in Identification and Contro'l applications
The following provides a sample of papers reviewed for modeling and control design

applications of neural network theories.

Mohamed Azlan Hussain, {1998) provided an extensive review of the various
applications utilizing neural networks for chemical process control, both in simulation
and online implementation. The review was categorized under three maior control
schemes; predictive conirol, inverse-model-based control, and adaplive conirgl
methods, respectively. The review revealed the tremendous prospect of using neurat
networks in process control. it ajso showed that the multifayered neural network was
the most. popular network for such process control applications.

Coéme Rafael and Marcano-Gamero, (2004) proposed plant identification and
control using a neural Controller based on a reference model. This work presented an
application example of the neural network controller based on reference model, as had
been treated by researchers such as Prof. Marios Polycarpou of the Southern
California University, From the resuits reporied by simulations, some conclusions were
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{Chapman and Patry, 1988) for applying a real-lime expert system shell {o monitor and

operate WWTP processes.

In T.Y. Pai et al, (2007}, Grey model and artificial neural networks wers employed fo
predict suspended solids, chemical oxygen demand and pH in the effluent from
conventional activated process of an indusirial wastewater treatment plant using
simple online monitoring parameters. According to the resulls, the online monitoring

parameters could be applied on the prediction of effluent quality.

D, Aguado et al; (2003} presenied a case study on methodology for sequencing batch
reaclor {SBR) identification with artificial neural networks. The results successiully
Hlustrated that the developed ANNs could be practical and cost-effective tools for
moniforing SBR systems as both ANNs provided accurate and on-line predictions of
Phosphorus concentration in the SBR.

K. A'zman et al, (2007}, In this paper the Gaussian process model is used for
dynamic systems identification with emphasis on some of iis properties: model
predictions containing the measure of confidence, low number of parameters and
facilitated structure delermination. The GP model identification procedure with
emphasis on the validation was illusirated with a simulated example and applied to two
case studies. The wasiewater treatment plant case study resuited in a purposeful
maodel, while the algae growth modei of the second case study showed that the lack of
information content in fraining data prevented the development of a trustworthy

Gaussian process model.

Sundarambal Palani et al, {2008} developed ANN models {0 predict safinily, water
temperature, dissolved oxygen in Singapore’s coastal water both temporally and
spatially using continuous weekly measurements of water quality variables at different
stations. In spite of largely unknown factors controlling seawater quality variation and
the limited data sel size, a relatively good correlation was cobserved between the

measured and predicted values.

Willis M.J., et al, {1992) demonstrated that given the approgriate network topology,
the neural network could be trained to characterize the behavior of a system.
Additionatly, the ability of ANN nonlinear controller t¢ improve control when compared

to the conventional “linear” techniques was demonstrated.
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Emmanoulides, C. and Petrou, {1895} demonstrated the use of adaptive, on-line
frained neural networks for identification and control of a complex, nonlinear
bicprocess (an anaercbic digester). The developed controller exhibited desired
tracking, regulation and robustness properties in such cases as set points or procass
variations and overcame the problems arising from the nonlinear nature of the process

and the presence of measurement noise.

S. Boulabel et al, {2008) siudied neural networks extensively for identification and
prediction of wastewater process parameters. Three methods are implemented 1o drive
the system’'s opefation. In the first case difference neural networks inpuls are ignored
but considered in the second case. An extended Kalman filter is used for the third
case. High performance was derived from the approaches adopted which considered
input difference effects and therefore fitted better to overcome the complex wastewater

problems for parameter estimation.

A. Andrasik et al, {2003) developed a special control structure, incorporating the
algorithm for on-line tuning of PID weight coefficients, where the convergance was
guaranieed by proper selection of the learning rate. The performance of the proposed
adaptive neural control system was assessed through the simulation of the controlled
operation of a nonlinear continuous biochemical process. For prediction of process
output, a hybrid model, consisting of a mechanistic mass balance complemented by

Neural black-box pre-trained off-line for kinetic prediction, was utilized. The results of
simulation experiments confirmed good regulatory and tracking performance of the

augmented adaptive neural controller that was impiemented.

Conclusion

This chapter provides a theoretlicai overview of artificial neural networks and their
application to the field of conirol engineering. it starts with an introduction o the neural
network, its biological inspiration and gives the historical background which outlines
some perspectives as io the development of the field of neural networks and o the

current direction as periaining to the research.

Neural network model and different types of network architectures: The feediorward
and the feedback {recurrent network) structures are discussed. Next, the different
types of the networks activation functiens such as the togarithmic sigmoid, hyperbolic
fangent, pure linear, hard limit (thresh-hold), the radial basis functions and their
signifance are investigated. Various learning methods such as  supervigsed,

unsupervised and reinforced learning are discussed. The most imporiant ciass of
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neural networks for real world prob%ems covered in this liderature review includes,
Multi-layer Perceptron, Radial Basis Function Networks, and Kohonen Self organizing
Feature Maps.

The slgorithms for training, most of them can be viewed as a sirzightforward
application of optimization theory and statistical estimation, are also discussed leading
to the most frequently used, the backpropagation algorithm. It is very popular and
conseguently important leaming rule applied to multi-layer feedforward neural
networks. Hs weaknesses and several methods of speeding up back-propagation
algorithn for quick convergence are also proposed e.q. Conjugate gradient, Quast-
Newton, Levenberg-Marguardt methods. Methods o improve generalizalion model
selection, Jittering, Early stoppage, Weight decay, Bayesian learning, and Regulization
are also discussed. An overview of neural network identification and control is also
provided.

Chapter 4 that follows examines neural nefwork modeling methods for the DO process

using different approaches and different structures that are used in this thesis.
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4.2

CHAPTER FOUR

NN MODEL OF THE DO PROCESS (SYSTEM IDENTIFICATION)
This chapter appfies the theory of neural network modelling to waste water treatment
plants and in particular, the emphasis is on the development of the models for
dissolved oxygen (DO} process using different approachss and different neural
network structures for identification. The chapter gives an overview of the existing
solutions using neural networks for the identification of the noniinear process. Then
nonlinear dynamics of the system is ideniified using the neural network based
methods. The identified modsel will be used further as a part of predictive controf
algorithm and linearizable control for the DO plant that is used as a case study in this

thesis.

Introduction

The DO concentration control in activated siudge system in WWTPs is important
because it can give improved performance and pravide economic ingentive to minimize
the oxygen consumplion by supplying the necessary air to meet the time-varying
biclogical oxygen demand in the system. The mathematical mode! of DO concentration
process of the activated sludge process of WWTP was developed in chapter 2. For
simulations of the DO concentration’s characteristic, the ASM1 benchmark model
parameters and state variable values listed in chapter 2 were used. The system was
developed and simutated in the Matlab/Simulink environment and the time response as
a function of airflow rate was plotted in Figure 2.7. The aim of this chapter is o use
neural network theory for the identification of the DO process using the data obtained
in chapter 2 and then to use the identified mode! in the following chapters to construct
neural network controllers for the DO plant. Due to their impressive capability in
dealing with severe nonlinearity and uncertainty in systems, the application of neural
network method for the design of contrellers is premising. Before the NN-based
controller can be designed, an identification procedure of obiaining the neural netwark

maodel to predict the plant output of the DO cencentration has to be performed.

In this research thesis, two types of neural network modei structures, the feedforward
multilayer perceptron and the recurrent neural networks are studied for identification

and control. The procedural steps are discussed in the next few seclions.
NN in Identification and control

Experimental data are the only source of information used to build a neural network

model. The first step is 1o generate some experimential inputioutput data from the
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4.3

process to be modeled. In the case of the DO process this would be the input air fliow
rate and the output is the DO concentration.

An essential characteristic of the use of neural nefworks is the learning stage that
precedes the application. During this stage, examples of the desired behaviour are
applied to the network and with a leaming algorithm; the parameters of the network are
adjusted. Once the neural network is trained, then it can be applied for different tasks,
such as process control (Miller et al., 1990; Hunt et al., 1992). For control systems
applications, the inputs of the neural networks consist of the measurements of the
process. A control action is then obtained as the neural network output.

The ANN model

Neural netwdrks are composed of simple elements operating in parafiel. These
elements are inspired by the biclogical nervous systems as was explained in chapter
3. As in nature, the network function is determined largely by the connections between
elements. A neural network can be trained o perform a particular function by adjusting
the values of the connections (weighits) between elements. For a detailed overview of
ANN see chapler 3. -

Commonly neural networks are adiusted, or trained, so that a particular input leads to
a specific target outpul. Such a situation is shown in Figure 4.1 below. There, the
network is adjusted, based on a comparison of the output and the target, until the
network output matches the target. Typically many such input/target pairs are needed

to train a network.

Input Neural network
Including all connections
A (Called weights)

Between neursns

Adjust :
Weights Error

Figure 4.1: Training neural networks

Each neuron in a neural network usually combines the oulputs from other neurons in
the network or external inputs with values from previous computations (local memory)
to produce inputs 1o other nsurens in the network., How the inter-neuron conneclions

are arranged and the nature of the conpections determines the structure of a network.
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Identifiability theory

Identification is used o mods! dynamic systems from experimential data, According to
Norton (1986} in contra!l engineering, mode! building from measurements of a dynamic
sysiem is known as jidentification. 1t is the process of constructing a mathematical
mode! of a dynamic systermn from observations and some prior knowledge (Norion,
1986:1)

The first stage in the use of neural networks for control is to frain the network fo
represent the forward dynamics of the plant to he controlied. The error between the
plant oufput ang the neural network output is used as the neural network training
signal. This stage is known as the identification phase. An important guestion in
system identification is that of the system identifiability {Ljung and Soderstrom, 1983;
Liung, 1987; and Soderstrom and Stoica, 1989). Le. given a particular model structure,
can the system under study be adequalely represented within that structure? In the
absence of such concrete theorstical resuits for neural networks it is assumed that all
systems under study belong to the class of systems that the chosen network is able to
represent within the structure. For nonlinear black box identification, it is necessary to
be sure that the system inputs and outputs cover the operating range for which the

controller will be applied.

Design of neural network ldentifier models
The discrete-time mathematical mode! for the DO concentration process based on

ASM1- model data and cbiained through a zero-order-hold circuit with a sampling fime

of 1min 30sec is used to generate simulation data. The model! equation is:

0]

Solk+ D)= S, () + B [=—|(S,, (k)-8 (k) |+ K alu(k)) SO (K)Y—S, (K j+r, (k)] .
0[5, (615, 0] S0, -5, 0] @)

Whereh", is the sampling period and t is is time. The Simufink model circuit
discretized with the zero order hold together with tapped delays incorporated at the
input and outputs to provids for previous values of the input airflow and the previous
values of the output DO concentration process is iilustrated in Figure 4.2 together with

simulated response trajectories illustrated in Figure 4.3 and 4.4 respectively.
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Figure 4.2: Simutink Discrete model of DO process

From which the simulated response irajectories of both the airflow rate u(m” / day)

and the dissolved oxygen trajectories S, (mg /[ are illustrated in Figures 4.3 and 4 4.

Daily flow rate

Daily flow rate trajectory

Daily fliowrate

time(days)

Figure 4.3: Airflow tfajectory to the Simulink Discrete model of DO process
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Figure 4.4: DQ process trajectory from the Simulink Discrete model

The data resuiting from the DO concentration simulation were samplad at 1min 30sec
sampling interval, to make the ANN training less computationally demanding (hence
8960 samples were used for training). These §imuiaiion data are used to design neural
network models. Before the NN-based controliers can be applied, the procedure for
obtaining the NN models, Le,, the forward and inverse modei used in these étfategies
has o be developed.

The neural network for identification is designed as a three-layer network. It has an
input layer, a hidden layer and an output fayer. N/, N and N, are their output values
respectively. Superscript idenocies the identification while the subscripts 1,2and 3

stand for the input ia\}er, hidden layer and output layer respectively. The numbers of
the neuron in the hidden layer can ‘be chesen depending on the practical training
rasults at any given instant. The identifier modeis are trained to iearn the forward
dynamics of the plant (DO concentration). Twelve inputs and one output are selected
to build the identifier model for the system. Initially one input and one output modetl is
tesfed and successively more inpuils are added. The twelve inpuls are:
il Wt—k),k=0.2,z(t-m),m=0.2,and i2_2(t—n),n=0..2.whereil 1 is the
normalized airflow rate, zis the time trajectory and i2_2is the normalized cutput of

the DO process. These signals provide the present and previous input air flows and
alsg incorparate the historical trend from the present and last time steps, and finally the
present and three delayed values of the DO concentration are alsc used. A set of
corresponding input ‘and cutput training pafterns is selected from the open-loop

continuous signal response of the system.
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442 Forward modeling

The procedure of training a neural network to represent the forward dynamics of a

system is referred as forward modeling, and is iliustrated in Figure 4.5 where y7is the

plant output, | y™is the neural output d andd' are various plant disturbances.

LIRS
> Error

=

Algorithm l

Figure 4.5: Plant ldentification procedure.

The neural network model is placed in parallel with the system and the error befween
the sysiem and the network outpuls (the prediction error) is used as the network
fraining signal. As pointed out (Jordan and Rumelhart, 1991) this learning structure is a
classical supervised leamning problem where the teacher {i.e. the system) provides
farget vaiues {i.e. the oulputs) directly in the output coordinate system of the learner
{i.e. the network model). In the particular case of a muitilayer perceptron type neural
networks siraightforward backpropagation of the prediction error through the network

would provide a possible training algerithm.

in training a2 neural network to tearn the forwardr dynamic model of the plant the
backpropagaticn error signal between the plant output and the output fayer is
expressed as:

8; =y" (kY- y" (k) {4.2)
. Where, y?(k)is the target pattern and y™ (k) is the actual output of the identifier, and

the backpropagation error signal between the hidden and input layers is
expressed as

S, = f'(net,)>.5,.w,, (4.3)
3

Where, f'(net,)is the derivative of the activation function f(ret,), the one used is the

sigmoid activation function as explained in Chapter 3 where,
1

e 4.4}
S (mety) 1+ exp(—net,) (4]
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Subscripts 1,2and3 stand for the input layer, hidden layer and oulput layer
respectively.  The weights between the input and hidden layers are updated as,

Aw, (k+1D)=7-5,-N] +a:Aw, (k) {4.5)
And the weights between the hidden and output layers are updated as,

Awy,(k+D) =7-6,-N! +a - Awy, (k) (4.6)

Where, Nf and_Ni are outputs of the input and hidden layers respectively, n7 is the

learning rate, @ is the momentum coefiicients. These constants are alf chosen
empiricaily.

The structure of a neural network plant model is given in Figure 4.6, where the blocks
labelled TOL are tapped delay lines that store the previous values of the input signal.
The forward modelling in this case refers io iraining the plant output of DO

concentration at the next instant of time(k +1).

Inputs Layer Layer i(Hidden) Layer 2(0utput)
rp N A} i "\m
(k) mo.
Y —p o e T ¥y (k+1)
P LW —
u(k) f
N ey BN e +
= @ |-
19 w
St 1
L J\ — . J

Figure 4.6: Neural Network Plant model (NN Toolbox-math works, 2002).

IW™is a weight matrix from input number jto layer number i.LW " is a weight
matrix from layer number jto layer number i. It is important that the training data

covers the entire range of plant operation, bescause it is known from previous

discussion that nonlinear neural networks do not extrapolate accurately. The input to
this network is an B= (n” +n" +n") - dimensional vector of the previous plant
outputs y and inputsuwhich have to be determined. It is this space that must be
covered adequately by the training data, where n” is the dimension of the vector of the

plant output, n” is the dimension of the vector of the plant input and n* is the dimension

of the vector of time. .

Multi-layer feed forward neural networks design
Feedforward networks often have one or more hidden layers of sigmoid neurons

followed by an output layer of linear neurons. Multipie layers of neurons with nonlinear
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transfer functions allow the network to learn nonfinear and linear relationships betwsen
input and output vectors. The training of the network is done in the Matiab software
environment. Thus, afl the neural network algorithms presented in this thesis are
implemented using the neural network tool box for use with Matlab. Using neural
network toolbox and Matlab environment, it is possible to develop muitiniayér
perceptron neural networks for identification. The first step in training a feedforward
network is to create the network object. The Matiab function “newff” creates a
feedforward network. It requires four types of inputs and returmns the network object.
The first input is a P by 2 matrixes of minimum and maximum values for each of the P
elements of the Input vector. The second input is an array containing the sizes of each
layer. The third input is a cell array containing the names of the transfer functions to be
used in each layer. The final input contains the name of the training function to be
used. Before fraining a feedforward network, the weights and biases must be
initialized. The “newfT” command automatically initializes the network,

Once the network weights and biases have been initialized, the network is ready for
training. The network can be trained for function approximation (noniinear regression),
pattern association, or patiern classification. The iraining process requires a set of
examples of proper network behavior - network inputs (P) and target outpuis (T).
During training the weights and biases of the nelwork are Heratively adiusied to
minimize the network performance function “nel.performFen™. The default performance
function for feedforward networks is mean square error “mse” - the average squared
error between the network outputs and the target outputs. it is very difficult to know
which training algorithm will be the fastest for a given problem. It will depend on many
factors, including the complexity of the problem, the number of data points in the
training set, the number of weights and biases in the network, the error goal, and
whether the network is being used for pattern recognition or function approximation
(regressicn).

Neura! network fraining can be made more efficient if certain pre-processing steps are
performed on the network inputs and targets. Before training, it is ofien useful to scale
the inputs and targets so that they always fall within a speciﬁe'd range. This is because
neural networks can not cope with a big range of data values. if scaled data is
presentaed to the network; the weights can remain in small but predictable ranges. To
preduce the most efficient fraining, it is cften helpful to preprocess the data before
.training. it is afso helpful to analyze the network response after fraining. One method cf
prepossessing the data is normalization. The original network inputs and targets with
the given matrices are normalized such that the normalized inpuis and targets, which
are returned, will all fall in the interval [0, 1]. The new vector components that are

received are the fraction of the maximum value of the original inpuls, and the fraction
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of the maximum value of the original targets. The normalization method used in this
work is:

Normalized value(il_1)=- actual valus(il ) :
- max imum value of the variable(il)

(4.7)

The simulation data given in section (4.4.1) resulting from the Benchmark process with
the biological model ASM1 and which describes the trajectory of u(#) and the trajectory
of §,(#) . are pre-processed by normalization to reduce their sizes for neural network
training. This means that the input air flow rate of
w(4.7¢E+004 tp 5.3 E +004)m’ / day is normalized in the range i1_1 [0, 1]. Similarly
the dissolved oxygen concentration of values 0 to 2.5624mg/l is normalized by

Equation 4.7 to range of i2_2 [0, 1]. The resulting normalized graphs are illustrated in
Figures 4.7(a) and (b) respectively.

Daily flow rate
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Figure 4.7(a): Graph showing the Normalized Airflow rate
dissolwad oxygen concentration
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Figure4.7 (b): 'Graph showing the Normalized time response of DO concentration
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The next step is to divide the data up into training, validation and test subsets. Half of
the data (480 points) was used as training set, one fourth of the data (240 points) was
used for the validation set and another one fourth (240 points} was used as the test
set. These seis éveré picked as equally spaced points throughout the original data.
Figures 4.8(a), (b) and {c¢) shows the division of training, validation and test data points
used. Affer the network has been trained with the normalized data, the vectors so
formed are used io transform any future inpuls that are applied o the network since
they effectively become a part of the network, just like the network weights and biases.
The data subsets for training, validation and test for different cases of input matrices to

the networks were designed using different number of plant inputs, outputs and time

domain.
Training farget
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Figure 4.8(a): Graph showing the training data set for Normalized Airflow rate and DO
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Figure 4.8(c): Graph of the test data set for Normalized Airfiow rate and DO
concentration
4.4.4 Construction of Multi-layer feed forward neural networks
The architecture of a multilaver network is not completely constrained by the problem
to be solved. The number of inputs to the network is constrained by the problem, and
the number of neurons in the output layer is constrained by the number of oulputs
required by the prohblem. However, the number of layers between network inputs and
the output layer and the sizes of the layers are up 1o the designer. However, the two-
layer sigmoid/linear network can represent any functional relationship between inpuls
and outputs if the sigmoid layer has enough neurons as explained in chapter 3. There
are severgl different backpropagation fraining algorithms. They have a variety of
different computation and storage requirements, and no cne aigorithm is best suited to

all locations.

The different Multilayer perceptron (MLP) ANNs structures implemented in this work
are as illustrated in table 4.1. The used ANN structures are as a result of systemnatic
identification process which considered the influence of the number of neurons, the
number of hidden layers, the type of training algorithms used, the number of lagged
input variables used, etc. The first network consists of a single input vector of the
normalized air flow rate and a target vector of the normalized Dissolved oxygen
concentration. The second ANN structure implemented has two input vectors of air
flow rate and time while the target is Dissolved oxygen concentration. The third ANN
implemented consists of three input vectors (airflow rate, time and Dissolved oxygen
concentration while the target output is the Dissolved oxygen cencentration. The fourth
one consists of airflow rate, three delays of airflow rate, time, three delays of time
function, dissolved oxygen concentration, three delays of dissolved oxygen
concentration as input vector while the targst is the dissolved oxygen concentration,
etc. One of the topology of the Feedforward neural MLP network as used in this thesis

excluding biases is shown in Figure 4.9, where, kois the first delay value ofil _1, kl is
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the second delay value ofil_1, andk2 is the third delay value ofil _ 1. z is the time
value ofno is the first delay value ofi2 _2,nl is the second delay value ofi2_2 and

n2 is the third delay value ofi2_ 2.

Inputicyer Hiddenlayve r Cutputiayer

il _ 1)

il _ 10D

i1_1&x2)

=z

fz2_z2
F2 _ 20ma)

12 _ 2D

Figure 4.9: Topelogy of the MLP Feedforward neural network
A summary of the sfructures implemented are tabulated in the in table 4.1 for MLP
feadforward networks as implanied and iested using the three different training

algorithms.

Tabled.1; Input combinatians to the NN with DO as the target.

Number of | Model Input description Input symbol output

input

vectors -

1 Model 1 Nomalized Adrflow rate veclor i1 1 B0

2 Model 2 Nermalized Airfiow rate and Time | 11.1. 2 DO
vector

3 Model 3 Normalized Aiflow rate, Time j 11_1,Zandi2_2 DG
and Normalized DO vector

12 Model 4 Normalized Airflow rate, 3 | H_1, {1_1(ko}, I1_1{k1), Do
delayed normsiized aiflows, [ i1_1(k2), Z, Z(mo), Z{m1},
Normatized DO, 3  delayed | Z(m2), endi2_2,12 2
Normalized DO, Time, and 3 | {no), 12_2 {n1}, 12_2 (n2},
delayad Time veciors

4.5  Training the feedforward networks
For the feedforward MLP, three different types of backpropagation training algerithms
are used to compare their effectiveness in identifying the DO concentration process
model. These are:
s The Scaled conjugate gradient algorithm {%ra;’nscg"). This is because it is the only
conjugate gradient algorithm that requires no line search and a very good general

purpose training algerithm.
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s Levenberg-Marquardt algerithm {"trainim”}. This is because it is the fastest training
“algorithm for networks of moderate size. Has memory reduction feature for use
when the training sel is large.

s Resilient backpropagation {*trainrp”). Simple batch mode training algorithm with fast

convergence and minimal storage requirements.

Networks can be trained incrementally or in batch. In incremental training the weights
and biases of the natwork are updated each time an input is presented to the network.
In batch training the weights and biases are updated after ali the inputs are presented.
The type of training used here is batch training. This is because it typicaily has access
to more efficient training algorithms e.g. bevenberg-Marquardt. In addition baich
fraining can be applied to both static and dynamic networks. For this case, the input
vectors can either be placed in a matrix of concurrent veciors or in a celf array of
sequential vaectors which is converted to a matrix of concurrent vectors. The function
‘frain’ always operates in batch mode. Batching concurrent inputs is computationally
more efficient training and the matrix notation used in MATLAB makes bafching

simple.

net=newff (minmax (P), [10 17],{ tansiqg’, "purelin'},'trainscg’);
net.trainParam.mem_reduc=2;

net.trainParam.lr=0.05;

net.trainParam.show=25;

net.trainParam.epochs=10000;

net.trainParam.goal=le-§;

netl=train{net,P,T}:

gl=input {*Stike any xey....')s

a=sim(netl, P);

where P is the range of network input vector and T is the range of network target
output vector. The above Matiab code creates a feedforward network, Minmax (P)
represents the range from minimum to maximum of the input vector (P).

The function ‘newd allows the user to spscify the number of layers, the number of
neurcns in the hidden layers and the activation functions used. For the example of the
code given above, the network contains 10 neurons in its hidden layer. The hidden
tayer contains fansig’ activation functions and the outpui {ayer contains a pure linear
function. The type of training used is aiso set here, and for the example above itis the
scaled conjugate gradient descent training algorithm.

The show parameter (net.tfrainParam.show) aliows the number of epochs between
feedbacks during training to be set. The result is shown after every 25"iterations

{epoch). it gives the training status information.
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46.1

The sections that foliow will consider different models developed and trained with the

three different algorithms seiecte_é, together with the results achieved and the various

conclusions derived from the considered cases of Table 4.1.

Feedforward identification with one input and trainrp algorithm—model1

Table 4.2 shows the results of the feed forward multilayer perceptron neural networks
trained with “frainrp” algorithm with different number of hidden neurons, fraining
epochs, leaming rates and the mean squared error MSE achieved for one single input
variable: the normalized input airflow rate (i1_1) as a function of time. The target is the
normalized DO toncentration (i2_2), where MSE stands for the mean squared error
between the desired target and the network oufput.

Tabled 2: Feediorward identification with ane input and trainip algerithm modelt

Type of Activation functionsé& No of Training Learning | MSE
ANN(Network training hidden Epochs rates

structure) algorithm({trainmp) nodes

NEWFF Tansig, Purelin 2 10000 0.05 0.00721334
NEWFF Tansig, Purelin 3 45 0.05 (.00721489
NEWFE Tansig, Purglin 4 321 0.05 3.00721188
NEWFF Tansig, Purelin 5 - 10000 0.05 0.00721094
NEWFF Tansig, Purelin 10 3914 (.05 Qo0711717
NEWFF Tansig, Purselin 15 10000 0.05 .00700723
NEWFF Tansig, Purelin 26 16000 0.05 0.00701271

The trajectories of the calculated outpuis of the NN in comparison with the target
outputs and the tralectories of the errors between them are shown in the Figures 4.10
to 4.13.
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hidden neurons and 1 cutput (model 1) respectively.
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Figure 4.13: Feedforward networks response with 1 input, 1 hidden layer, 20 hidden
neurons and 1 output (model 1) and the Performance MSE achieved.

Figure 4.13 shows the MSE achieved with the Feedforward nebtwork having 20 neurons

irt the hidden fayer. The number of neurons was incrementally added from 2 o 20 as

depicted in Table 4.2. Analysis of the graphs plofted for the raining data, NN ocutput

and the error as a function of time ilustrated in Figures 4.10 - 4.13, and in addition

analysis of Table 4.2 for the performance index (MSE) have shown that:
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s With only one input vector to the Feedforward network, the network does not map
the required target when trained with the trainrp algorithm irrespective of the
number of neurons in the hidden layer.

+ The lowest MSE of 0.00700723 is obtainable after several numbers of training
epochs. This value confirms that the function is not well approximated.

+« The graphs show that as the number of neurons is increased, the response is no
better. Therefore more than 3 neurons in the hidden layer are unnecessary for only
one input vector range.

4.6.2 Feedforward identification with one input and trainim algorithm-modeld
Table 4.2 shows the results of the feed forward multilayer perceptron neural networks
trained with frainim algorithm with different number of hidden neurons, training epochs,
learning rates and the mean squared error achieved for one single input variable: the
normaiized input airflow rate (i1_1) as a function of time. The target is the normalized
DO concentration (i2_2).

Tabied 3: Feedforward identification with one input and fainfm algorithm-modea!f

Type of Activation functionsé& No of Training Learning | MSE
ANN(Network training hidden Epochs rate
structure) algorithm{trainim) nodes
NEWFF Tansig, Purelin 2 10000 .08 J.00717659
NEWFF Tansgig, Pur 3 10600 0.05 0.00688308
NEWFF Tansig, 4 10000 0.05 3.00706282
NEWFF Tansig. 5 10000 (.03 0.00680652
NEWFF Tansig, 10 16000 0.05 0.00687287
NEWFF Tansig. 15 10000 0.05 $.60675638
NEWFEF Tansig. 20 10000 0.05 0.00666949 -

The trajectories of the calculated outputs of the NN in comparison with the target
outputs and the trajectories of the errors between them for the model trained with
fraintm algorithm are shown in the Figures 4.14 to 4.17.
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Figure4.14: Feedforward networks response with 1 input, 1 hidden layer, 2 and 3
hidden neurons and 1 output {model 1) respectively.
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+ With only one input vector to the Feedferward network, the network does not map
the required target when trained with the frainrp algorithm irrespective of the
number of neurons in the hidden fayer.

+ The lowest MSE of §0.00700723 is obtainable after several numbers of training
epochs. This value confirms thai the function is not well approximated.

+« The graphs show that as the number of neurens is increased, the response is ne
better. Therefore more than 3 neurons in the hidden layer are unnecessary for only
one input vecior range.

4.6.2 Feedforward identification with one input and #rainim algorithm-model1

Table 4.3 shows the results of the feed forward multilayer perceptron neural networks

trained with frainim algorithm with different number of hidden neurons, training epochs,

learning rates and the mean squared error achieved for one singls input variable: the
normalized input airflow rate (i1_1) as a function of time. The target is the normalized

DO concentration (i2_2).

Tabled4.3: Feediorward identification with one input and frainim algorithm-maoda!t

Type of Activation functions& No of Training Learning | MSE
ANN(Network training hidden Epochs rate

structure) algorithm{trainim) nodes
NEWFF Tansiy, Pure, L 2 10000 0.05 0.00717699
NEWEF Tansig, Purelii. 3 10600 6.05 0.006098306
NEWFF Tansig, Pure. .o 4 10000 0.05 0.00708282
NEWEF Tansig, Pure-in 5 10000 0.05 0.006e0e52
NEWFF Tansig, Fure_au 10 10000 G.C5 0.00887287
NEWFF Tansig, Pursliu 15 10000 0.05 0.00675698
NEWFF Tansig. Pure. ru 20 10000 .05 0.00886548 -

The trajectories of the calculated outpuis of the NN in comparison with the target
outputs and the trajectories of the errors between them for the model trained with

trainim algorithm are shown in the Figures 4.14 to 4.17,
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Figure 4.15; Feedforward networks response with 1 input, 1 hidden layer, 4 and 5
hidden neurons and 1 output (model 1) respectively.
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Figure 4.16; Feedforward networks response with 1 input, 1 hidden layer, 10 and15
hidden neurons and 1 cutput {(model 1) respectively.
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Figure 4.17: Feedforward networks response with 1 input, 1 hidden layer, 20 hidden
neurons and 1 output (model 1) and Performance MSE achieved.

Figure 4.17 shows the MSE achieved with the Feedforward netwark having 20 neurons
in the hidden layer. The number of neurons was incrementally added from 2 to 20 as
depicted in Table 4.3. Analysis of the graphs plotted for the training data, NN output
and the error as a function of time as illustrated in Figures 4.14 - 4.17, and in addition
analysis of Table 4.3 for the performance index (MSE) have shown that:
With only one input vector to the Feedforward network, the network does not map
the required target when trained with the frainim algorithm irrespective of the

number of neurons in the hidden layer
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» The lowest MSE of 0.00666949 is obtainable after several numbers of training
epochs. This value confirms that the function is nat well approximated.

» However the rate of convergence for the network when trained with frainfrm is much
faster than irainrp algorithm.

s Analysis between the graphs shows that as the number of neurons is increased, the
response is no better. Therefore more than 3 neurons in the hidden layer are

unnecessary for only one input vector range.

4.6.3 Feedforward identification with one input and trainscg algorithm- model1
Table 4.4 shows the results of the feed forward multitayer perceptron neural networks
trained with frainscg algorithm with different number of hidden neurons, training
epochs, learning rates and the mean squared error achieved for one single input
variable. the normalized input airflow rate (i1_1) as a function of time. The target is the
normalized DO concentration (i2_2). These combinations constitute mods! 1.

Table4.4: Feedforward identification with one input and frainscg aigorithm-madeal

Type of Activation functions& | No of Training | Leaming MSE
ANN{Network fraining hidden Epochs rates

structure) algorithm(trainscg} | nodes

NEWFF Tansig, Pureiin 2 31 0.05 0.00721295
NEWFF Tansig. Pureiin 3 288 0.05 0.060720517
NEWFF Tansig, Furs.in 4 234 0.05 0.04720332
NEWFF Tansig, Pure.in 5 667 0.058 0.00719574
NEWFF Tansig, Puresin 10 732 0.05 G.C0703853
NEWFF Tansig, Purslin 15 5063 (.05 3.00685217
NEWFF Tansig. Purelin 20 10060 0.05 (.00688632

The trajectories of the calculated outputs of the NN in comparison with the target
cutputs and the trajectories of the errors between them for the model trained with

trainscg algorithm are shown in the Figures 4 18 to 4.33.
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Figure 4.18: Feedforward networks response with 1 input, 1 hidden layer, 2 and 3
hidden neurons and 1 cutput {(model 1).
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Figure 4.19:Feediorward networks response with 1 input, 1 hidden layer, 4 and 5
hidden neurons and 1 output (modet 1).
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‘Figure 4.20: Feedforward networks response with 1 input, 1 hidden layer, 10 and 15
hidden neurons and 1 output (mode! 1).
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Figure 4.21: Feedforward networks response with 1 input, 1 hidden layer, 20 hidden
neurons and 1 output {modetl 1) and Performance MSE achieved.

Figure 4.21 shows the MSE achieved with the Feedforward network having 20 neurons

in the hidden layer. The number of neurons was incrementally added from 2 tc 20 as

depicted in Table 4.4. Analysis of the graphs plotted for the training data, NN ocutput

and the error as a function of time as iliustrated in Figures 4.18 - 4.21, and analysis to

Table 4.4 for the performance index (MSE) have shown that:

¢ With only one input vector to the Feedforward network, the network does not map
the required target when trained with the trainscg algorithm irrespective of the

number of naurons in the hidden iayer
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4.6.4

s The lowest MSE of 0.00688632 is obtainable after several numbers of training
epochs when the network has 20 neurons in the hidden layer.

» if there are very few neurons in the hidden layer then the convergence speed is
very fast. This can be seen from the data of Table 4.4,

+ The value of MSE achieved confirms that the mode! does not approximate the
target when ftrained with trainscg algorithm. However the rate of convergence for
the network when trained with frainscg is much faster than with frainrp algorithm but
a bit slower than the network trained with train/m algorithm.

*  Analysis hetween the graphs shows that as the number of neurons is increased, the
response is no beller. Therefore more than 3 neurons in the hidden layer are
unnecessary for only one input vector range.

In conclusion, from the experimental work done on model1 it is found that irrespective
of the number of neurons in the hidden layer the different types of algorithms used for
training, the network does not map the required farget if the input vector has only one
input variable. The trainlm algorithm is the fastest and reguires very few numbers of
Herations for convergence than the other two. The next network tested is with two input
vectors consisting of the variable of the normalized input flow rate trajectory and the
variable of the time function. The procedure adopied was the same as that of one input

vector. The resulls are explained in the proceeding sections.

Feedforward identiﬁcétion with 2 input vectors and frainrp algorithm-model2

Tabie 4.5 shows the feed forward multilayer perceptron neural networks trained with
trainrp algorithm, different number of hidden neuwrons, training epochs, learning rates
and the mean squared error achieved for a vector of two inpui variables: the
normalized input airflow rate (i1_1) and time function (Z). These combinations
constitute model 2. The responses of training data, NN output and the error between

the input and the target are illustrated in the subsequent Figures 4.22 {0 4.25.

Tabled.5: Feedforward identification with two inputs and trainrp algorithm-model2

Type of Activation functions& No of Training Learning | MSE
ANN(Network training hidden Epochs rates

structure) algorithm(trainrp) nodes

NEWFF Tansig. Pursisn 2 10000 0.05 0.000268548
NEWFF Tansig. Fureiin 3 10000 0.08 (.000235694
NEWFF Tansig, 4 10000 0.05 0.000226355
NEWFF Tansig. P 5 10000 .05 2.94758e-005
NEWFF Tansig, Fur 10 10000 0.08 7.881192-008
NEWFE Tansig, Pure: 15 10000 0405 4.705376-005
NEWFF Tansig, 20 10060 0.05 (.000357682
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Figure 4.25: Feedforward networks response with 2 inputs, 1 hidden layer, 20 hidden
neurons and 1 cutput {model 2) and Performance MSE achieved.

Figure 4.25 shows the MSE achieved with the Feediorward network having 20 neurons

in the hidden layer. The number of neurons was incremeniailly added from 2 to 20 as

depicted in Table 4.5. Analysis of the gra;;ihs plotied for the fraining data, NN output
and the error as a function of ﬂme as ilustrated in Figures 4.22 - 4.25, and analysis of

Table 4.5 for the performance index (MSE) have shown that:

» With two input vector variables 1o the Feedforward network, the network can map
the required target when trained with the frainrp algorithm if the hidden layer has at
least 5 neurons.

s The lowest MSE of 3.10831e-005 is obtainable after several numbers of training
epochs when the network has 5 neurons in the hidden layer. This can be seen from
the data of Table 4.5. However, it requires at least 10000 {raining epochs in order to
converge to this low value. The value of MSE achieved confirms that the model

does approximate the target when trained with frainrp algorithm.

Feedforward identification with 2 input vectors and train/m algorithm-mode!2
Table 4.6 shows the feed forward multilayer perceptron neural networks trained with
Levenberg-Marquardt algorithm (trainfm), using different number of hidden neurons in
the hidden layer, training epochs, learning rates and the mean squared error achieved
for a vector of two input variables: the normalized input airflow rate (i1_1) and time
function (Z). These combinations constitute mode! 2. The responses of training data,
NN output and the error between the input and the target are illustrated in the
subsequent Figures 4.26 to 4.48.



Table4 6. Feedforward identification with two input and frainfrm algorithm-model2

Type of- Activation functions& No of Training Leaming | MSE
ANN(Network - | training hidden Epochs rates
structure) algorithm(trainim} nodes
NEWFF . Tansig, Pureiin 2 Matrix close to singularity.
NEWFF ' Tansig, Purelin 3 317 0.95 9.17779e-007
NEWFF Tansig, Purelin 4 757 0.05 8.99907e-007
NEWFF | Tansig, Purelin 5 404 005 9.26623e-007
NEWFF Tanslg, Puralino 10 242 0.05 9.68056e-007
NEWFF Tansig, Purelin 15 163 0.05 7.48259a-007
NEWFF Tansly, Durelin 20 420 0.05 - | 8.9236%e-007
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Figure 4.26: Feedforward networks response with 2 inputs, 1 hidden layer, 3 and 4
hidden neurons and 1 ocutput (model 2).
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Figure 4.27: Feedforward networks response with 2 inputs, 1 hidden layer, 5 and10
| hidden neurons and 1 output {modet 2).
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Figure 4.28: Feedforward networks response with 2 inputs 1 hidden layer, 15 and 20
hidden neurcns and 1 output {model 2).
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Figure 4.29: Performance MSE with 2 inputs. 1 hidden layer, 20 hidden neurons and 1
oulput {model 2).

Figure 4.29 shows the MSE achieved with the Feedforward network having 20 neurons

in the hidden layer The numbers of neurons were incrementally changed from 2 to 20

with each set being tested as depicted in ‘!:gbie 4.6. Analysis of the graphs plotted for

the training data, NN output and the error as a function of time as illustrated in Figures

4.25 - 4.29, and in addition the analysis of Table 4.6 for the performance index (MSE)

have shown thét:

»  With two input vector variables to the Feedforward network, the network can map
the required target when trained with the trainim algorithm if the hidden layer has at
ieast 3 neurons. _

s The lowest MSE of 7.48259e-007 is obtainable afier only 163 iterations of the
training epochs when the network has 15 neurons in the hidden layer, This can be
seen from the data of Table 4.6. The low values of MSE achieved from all the tests
confirm that the model does approximale the target when trained with train/m
algorithm. However the convergence time is very small and therefore the resulls

may not be relied upon if 1ihe training data is large.

'Feedforward identification with 2 input vectors and trainscg algorithm-model2

Table 4.6 shows the feed forward mullilayer perceptron neural networks trained with
scaled cbnjugate gradient algorithm training function, the different number of hidden
neurons in the hidden layer, training epochs, learning rates, the mean squared errors
achieved for a vector of two input variables: the normalized input airflow rate (i1_1) and
time fundion {Z). These combinations constitute model 2. The responses of training
data, NN output and the error between the input and the target are lllustrated in the
subsequent Figures 4.30 10 4.33.
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Tabled.?: Feedforward identification with twao inputs and trainscy algorithm-model2

Typeof - Activation functions& | Na of Training Learning MSE
ANN(Network - | training hidden Epochs rates
structure) algorithm(trainscg) nodes
NEWFF - Tansig, Purslin 2 10000 0.65 0.000121779
NEWFF - Tansig, Purelin 3 10000 .05 8.75194e-0G5
NEWFF Tansig, Purglin 4 10000 .05 0.000863383
NEWFF Tansig, Purelin 5 10000 .05 1.30457e-005
MNEWFF Tansig, Pureiin 10 10000 0.05 0.000783204
EWFF Tansig, Purelin 15 16000 0.05 0.000658148
NEWFF Tansig, Puralin 20 10000 0.05 (.000938597
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Figure 4.30: Feedforward networks respoﬁse with 2 inputs, 1 hidden layer, 2and 3
hidden neurans and 1 gutput {modet 2).
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Figure 4.31: Feedforward networks response with 2 inputs, 1 hidden layer, 4and &
hidden neurons and 1 output {model 2).
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.Figure 4.32: Feadforward networks response with 2 inputs, 1 hidden layer, 10 and 15
hidden neurons and 1 output {modetl 2).
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Figure 4.33: Feedforward networks response with 2 inputs. 1 hidden layer, 20 hidden
neurons and 1 output (model 2) and Perfoermance MSE achieved.

Figure 4.33 shows the MSE achieved with the Feedfohuard network trained by the

scaled conjugate gradient (frainscg) algorithm and having 20 neurons in the hidden

fayer. The numbers of neurons were incrementally changed from 2 to 20 with each set
of hidden neurons being tested as depicted in Table 4.7. Analysis of the graphs plotied
for the fraining data, NN output and the error as a function of time as illustrated in

Figures 4.30 - 4.33, and analysis in addition to Table 4.7 for the performance indices

(MSE) have shown that:

» With two input vector variables to the Feedforward network, the network can map
the required target when trained with the frainscg algorithm if the hidden layer has 3
neurons. '

+ The lowest MSE of 0.000151732 is obtainable after 10000 iterations of the training
epochs when the network has 3 neurons in the hidden layer. This can be seen from
the data of Table 4.7. However the convergence time for achievement of the low
values of MSE from sll the tests is quite long compared with frainim and trainrp
éfgoriihms. | |

« Having more than 3 neu;ans in the hidden layer the model does not approximate
the iarget when trained with #rainscg algorithm.

In conclusion, from the experimental work on model2 it is found that with the number of

neurons in the hidden layer increasing from 3 onwards, the network trained with trainim

algorithm does map the targeted trajectory however; the convergence time is very
short, that shows the results may not be relied upon. The other two algorithms used for
training, does map the required target approximately if the input vector has two
variable ranges of vaiues. The next network tested was three input vector consisting
the variables of the normalized input flow rate trajectory, normalized DO process
trajeciory and the variable of time function. The procedure adopted was the same as

that of one input vector. The results are explained in the proceeding sections.
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4.6.7 Feedforward identification with 3 input variables and trainrp algorithm-mddelS

Table 4.8 shows the feed forward multilayer perceptron neural networks model trained

with resilient backpropagation (frainrp) algorithm, different number of hidden layers,

training epochs,' learning rates and the mean squared error achieved for three input

variables: the normalized input airflow rate (i1_1), fime function (Z) and normalized

output (i1_2) as input variables vector to the model and the target is the DO

concentration variable (i2_2). These combinations const%’sute mode! 3. The responses

of training data, NN output and the error between the input and the target are

Hustrated in the subsequent Figures 4.34 to 4.37 for varying number of hidden nodes.

Tabled 8. Feedforward identification w'rEh three inpuis and frainrp algorithm-model3

Type of ' Activation functions& No of Training Learming | MSE
ANN{Network training hidden Epochs rates

structure) algorthm(trainrm) nodes

NEWFF Tansig, Purslin 2 10000 .05 3.10031e-003
NEWFF Tansig, Purelin 3 6724 0.05 2 54358e-005
NEWFEF Tansig, Purglin 4 16000 .05 4.38057e-008
NEWFF Tansig, Purslin 5 16600 0.05 §,17743e-006
NEWFF Tansig, Purelin 10 10000 0.05 3.865048-006
NEWFF Tanslg , Purelin 15 10080 0.05 1.56183e-005
NEWFF Tansig . Purelin 20 10600 0.05 3.78744e-005
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Figure 4.34: Feedforward networks response with 3 inputs, 1 hidden layer, 2 and 3

hidden neurons and 1 output {model 3).

dissolved axygen contantraiion
\x T T T

i
I
o-'wr-l—--—-'-—-—l "

I I

i
t

02 L ’ r

-] 001 0oz 843 o004 095 008 0.0? CI.UB DOB 0.t

Emua{daysHor vextors P33 and a3-T3

Output of i nubwark and smoe ofsd)

"ﬂnm-...:,,m
1

b |

1

|

T

i

1

|

1

1

1

|

|

Bkl

1

_

1

]

]

1

1

1

1

1

1

1

i

L]

Ouapt af the nobwnrk @nd emor offao)

disnolupd oy gan concendration

1
}
o 002 003 0.04 ons 008 0.07 0.08 UCB G

tims{days)

Figure 4.35: Feedforward rﬁetworks response with 3 inputs, 1 hidden layer, 4 and 5

hidden neurons and 1 cutput {modal 3).

1M




12 . dissoled orygen concentration : ‘2 dissohed oxygen concenmration
i T T ¥ T T T & T T T ¥ T T
! ot Traioing-Dat= | [ A Teining Dtz |
R [ ' ¥ 3 —— NNt | - ! 1 L] H 1 ] ‘ —— NMoupt |
= ' " " e Erroe h - ot . L s e SO M »
3 i 1 1 ' L - F | gl ' 3 t 1 1
w [ i ' P i [ & L [ i ' i 1
5 L e e e itk i e A iahais Rty j 118 'F‘*F‘*i**'l"*l*‘_“-—!_-“:‘_‘;‘_‘
E 7 1 1 ' t i : E | ' ! 1 i ' ' | 1 t
B '.f ] 1 b 1 3 i i i i 1 1 1 1 1 | ' | t
Lo el e it el = ———— - L B e e e B el e e
§ E ' 1 i 3 E b 4 1 : ¢ ! I 1 i L L i
H b ] 3 ' H k . | ‘ i H 1 | 1 ) t 1 t
Qdr - —p - - — —— - —m - = — - = = —t-— L i L e e “4- -
2 P ! ) : ' . | g ! : t I ; | i
% ' 1 : H i P | 5 . 1 1 I b 1 : i 1
g5 Br—— e — e -t = fm e = — ] H 02— — = =l — =l o e i [ P
g- i tooot 1 ' 1 1 ¢ i ' I} 1 | ' 1 1 ! 1
1 ' t 1 1 ' 1 i ! 3 H ' 1 ' ¢ ! [ 1 1 |
[ ! . uwr-m-,-—u———_.-__A_-_l__.,.‘.ﬁ_,,__.,A_A..x__ﬁ-
i ] t | : 1 [} H 1 1 t t 1 | H ]
! i ' ' ' 1 1 1 1 l ! | ' \ : ¢ i
025 b L L . I I . : L ! I 1 . ! 1 . - i ' :
¢ ot a0z 003 04 005 00§ 007 008 009 01 13 047 002 0B 904 Q05 006 047 008 008 041

rni(days}

Figure 4.36: Feedforward networks response with 3 inputs, 1 hidden layer, 10 and 15
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hidden neurons and 1 output (model 3).
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Figure 4.37: Feedforward networks response with 3 inpuls, 1 hidden layer, 20 hidden

neurons and 1 output {modet 3) and Performance MSE achieved.

Figure 4.37 shows the MSE achieved with the Feedforward network trained by the
resifient backpropagation f{irainrp) algerithm and having 20 neurons in the hidden layer.
However, the numbers of neurons were incrementally changed from 2 to 20 with each

set of hidden neuron being“ tested as depicted in Table 4.8. Analysis of the graphs

plotted for the training data, NN output and the error as a function of time as iliustrated
in Figures 4.34 - 4.37, and analysis in addition to Table 4.8 for the performance indices

(MSE) have shown that:

« With three input variables to the Feedforward network, the network can map the

required target when frained with the {rainrp algorithm if the hidden layer has at

least 4 or more naurons in the hidden layer.

be seen from the data of Table 4.8. However the convergence time for achievement

of the fow values of MSE from ali the lests is quite long with the algorithm.
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4.6.8 Feedforward identification with 3 input variables using trainim algorithm-model3
Table 4.9 shows the feed forward multitayer perceptron neural networks mode! trained
with LeVenberg-Marquardt aégoﬁthm (trainim} aEgcrithm. different number of hidden
nodes in the hidden layer, training epochs, learning rates and the mean squared er?or
achieved for three input variables: the nommalized input airflow rate (i1_1), time
f{mction (Z) and normalized output (i1_2) combined as input variables vector to the
model and the target is the DO concentration variable (i2_2). These combinations
constitute model 3. The responses of training data, NN output and the error between
the input and ‘fhe target are illustrated in the subsequent Figures 4.38 o 4.41 for
varying number of hidden nodes.

Table4.9: Feedforward identification with three inpuls and frainim algorithm-mode!2

Type of Activation functions& Nao of Training | Leaming MSE
ANN(Network training hidden Epochs rates
structure) algorithm(trainim) neurons
NEWFF Tansig, Purelin 2 465 0.05 7.88427e-007
NEWFF Tansig, Purelin 3 137 0.05 8.65285e-007
NEWFF Tansig, Purglin 4 226 .05 9.665128-007
NEWFF Tansig, Purelin 5 308 0.05 9.704072-067
NEWFF Tansig, Purelin 10 189 £.05 4.892540-007
NEWFE Tansig , Purelin 15 73 £.05 9.80598e-007
NEWFF Tansig , Purelin 20 15 0.05 9.85758e-007
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Figure 4.38: Feedforward networks response with 3 inputs, 1 hidden layer, 2 and 3
hidden neurons and 1 cutput {model 3).
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Figure 4.39: Feediorward networks response with 3 inputs, 1 hidden layer, 4 and5
hidden neurons and 1 output {mode! 3).
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Figure 4.40: Feedforward networks response with 3 inputs, 1 hidden layer, 10 and 15
’ hidden neurons and 1 oufput (model 3).

Perfomance is 9.80538e-007, Goat is 16005
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F“igure 4.41: Feedforward networks respense with 3 inputs, 1 hidden layer, 20 hidden
neurons and 1 oufput {model 3) and Performance MSE.

Figure 4.41 shows the MSE achieved with the Feedforward network trained by the
resilient backpropagation (frainim} algorithm and having 15 neurons in the hidden
layer. The numbers of neurons were incrementally changed from 2 to 20 with each set
of hidden neurons being tested as depicted in Table 4.8. Analysis of the graphs plotied
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4.6.9

for the fraining data, NN output and the error as a function of time as illustrated in
Figures 4.38 - 4.41, and analysis in addition to Table 4.9 for the performance indices
{MSE) have shown that: '

» With three input variables to the Feedforward network, the network can map the
required target when trained with the trainfm algorithm if the hidden layer has at
ieast 3 or more neurons.

+ This algoriﬁzm requires_ the least number of training epochs fo converge to the
lowest MSE. This can be seen from the set of data given in Table 4.9, and the
performance index of Figure 4.41 that shows that with only 73 training epochs an
MSE of 8.80588e-007 is obtainable.

Feedforward identification with 3 input variables and trainscg algorithm-model3
Table 4.10 shows the feed forward mullilayer perceptron neural networks model
trained with Scaled conjugate gradient algorithm {trainscg) algerithm, different number
of hidden nodes in the hidden layer, training epochs, learning rates and the mean
squared error achieved for three input variables: the normalized input airflow rate
{i1_1), time function {Z} and normalized output {i1_2) as input variables vector to the
model and the target is the DO conceniration variable (i2_2). These combinations
constitute model 3. The responses of training data, NN oufput and the error between
the input and the target are illustrated in the subsequent figures 4.42 to 4.4 for varying
number of hidden nodes.

Tabied.10: Feedforward identification with three inputs and trainscg algorithm-modei3

Type of Activation functions& No of Training | Leaming MSE
‘ANN(Network training hidden Epochs rates

structure) algorithm(frainscg) {layers)

NEWFF Tansig. Purelin 2 5123 0.05 8.85238e-008
NEWFF Tansig. Purelin 3 2217 0.05 8.99855e-006
NEWFF Tansig, Purelin 4 1 3n7 0.05 4 54658e-006
NEWFF Tansig. Puzelin 5 6485 0.05 4.09831e-006
NEWFF Tansig, Fu 2 10 5808 0.05 6.01692e-008
NEWFF Tansig, Purelin 15 10000 0.05 8.39238e-008
NEWFF Tansig, Purelin 20 1184 0.05 9.98938e-007
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Figure 4.42: Fesadforward networks response with 3 inputs, 1 hidden layer, 2and 3
hidden neurons and 1 output (model 3).
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Figure 4.43: Feedforward networks response with 3 inputs, 1 hidden layer, 4 and 5

hidden neurons and 1 output {model 3).
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Figure 4.44. Feedforward networks response with 3 inputs, 1 hidden layer, 10 and 15
hidden neurons and 1 output {(model 3).
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Figure 4.45: Feedforward networks response with 3 inputs, 1 hidden layer, 20 hidden
' neurons and 1 output {model 3) and Performance MSE.

Figure 4.45 shows the MSE achieved with the Feedforward network trained by the
Scaled conjugate gradient algorithm (trainscg) algorithm and having 20 neurons in the
hidden layer. The numbers of neurons were incrementally changed from 2 to 20 with
each set of hidden neurons being' tested as depicted in Table 410. Analysis of the
graphs plotted for the training data, NN output and the error as a function of time as
illustrated in Figures 4.42 - 4.45, and analysis in addition to Table 4.10 for the
performance indices (MSE) have shown that: |

+ With thrée input vaﬁabiés io the Feedforward network, the network can map the
required target when trained with the frainscg algorithm if the hidden layer has at
teast 3 neurons or more.

« However as the number of neurons in the hidden fayer is increased, this algorithm
requires more fraining epochs in 6rc§er to converge to the lowest MSE. This can be
seen from the set of data given in table 4.10, and the performance index of figure
4.80 that shows that an MSE 0f2.98936e-007 is obtainable with 1184 training
epochs.

In conclusion, from the experimental work on maodel3, it is found that with the number
of neurons in the hidden' layer increasing from 3 onwards, and with the different types
of algorithms used for training, the network maps the required target very well if the
Enpht vector has three variables of i1_1, i2_2 and Z. The trainim algorithm performs
better than the other algorithms since the convergence time is minimal and occurs only
after very little number of iterations. It is also the fastest of the algorithms used. The
next network tested is twelve inputs consisting of the variables of the normalized input
flow rate trajec’iory together with its three delayed values trajectories, normaiized DO

~ process trajectory with its three delayed values trajectories and the variable of time
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function with its three delayed values tfa}ectories. The procedure adopted was the

same as that of one input vector. The results are explained in the proceeding sections.

4.6.10 Feedforward identification with 12 input variables and trainrp algorithm-model4
Table 4.11 shows the feed forward muitilayer perceptron neural networks model
trained with resilient backpropagation algorithm {trainrp), different number of hidden
nodes in the hidden layer, training epochs, learning rates and the mean squared error
achieved for twelve input variables: the normalized input airflow rate (i1_1), three
delayed va{ues: of the normalized input airflow rates, time, three delayed time
functions, normalized output (i2_2) and three dﬁia'yeci normalized values of the output
forming the input vector P=[Z m0 m1 m2 i1_1 k0 k1 kZ i2_2 n0 nt1 n2], where
the variables have been defined and an culput vector T=[i2_2]'. These combinations
constitute model 4. |

Table4.11: Feedforward identification with tweive inputs and frainip algorithm - modei4

Type of Activation functions& No of Training Leaming MSE
ANN{Network fraining hidden Epochs rates

structure) algarithm(trainrp} nodes

NEWFF Tansig, Purelin 2 : 10000 -1 0.05 1.641912-006
NEWFF Tansia, Purelin 3 10000 0.05 1.4405e-008
NEWFF Tansig, Pureiin 4 7418 .05 9.59885e-007
NEWFF Tansig, Purelin 5 1000 0.05 5.87302e-008
NEWFF Tansilg, Purdlin 10 16000 0.85 6.73703e-006
NEWFF Tansig , Purelin 15 16600 0.05 1.37315e-005
NEWFF Tansig ., Purelin 20 10600 0.05 1.50525e-006

The trajectories of the calculated outputs of the NN in comparison with the target
outputs and the trajectories of the errors between them for the modeld trained with

trainrp algorithm for varying number of hidden nodes are shown in the Figures 446 to
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Figure 4.46: Feedforward networks response with 12 inputs, 1 hidden layer, 2and 3

hidden neurons and 1 output {model 4).
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Figure 4.47: Feedforward networks response with 12 inputs, 1 hidden layer, 4 and 5
hidden neurons and 1 output (model 4).
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Figure 4.48: Feedforward networks response with 12 inputs, 1 hidden layer, 10 and15
hidden neurons and 1 ocutput {model 4}
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Figure 4.49: Feedfcrward networks response with 12 inputs, 1 hidden layer, 20 hidden
neurons and 1 output {(mode! 4) and Performance MSE achisved.

Figure 4.49 shows the MSE achieved with the Feedforward network trained by the
resilient backp&opagation (trainrp} algerithm and having 20 neurons in the hidden layer.

The numbers of neurons were incrementally changed from 2 to 20 with each set of
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4.6.11

hidden neurons being tested as depicted in Table 4.11. Analysis of the graphs plotied

for the training data, NN output and thé error as a function of time as ill.ustrated in

Figures 4.46 - 4,49, and in analysis addition to Table 4.11 for the performance indices

(MSE) have shown that; -

s With the twelve Eﬁput vector variables to the Feedforward network, the network can

' map the required target when trained with the frainrp algorithm so long as the
hidden fayer has at least 4 neurons and above,

. Howéver t?}%_s algerithm requires more training epochs in order to converge to the
lowest MSE. This can be seen from the set of data given in Table 4.11, and the
performance index of Figure 4.49 that shows that an MSE of 1.50829e-006 is

 obtainable with 10000 training epochs.

Feedforward identification with 12 input variables and frainim algorithm-model4

Table 4.12 shows the feed forward multilayer percepiron neural networks model
trained by the Levenberg-Marquardt algorithm (trainim), different number of hidden
nodes in the hidden layer, training epochs, leaming rates and the mean squared error
achieved for twelve input variables: the nommalized input airflow rate (i1_1), three
delayed values of the normalized input airflow rates, time, three delayed time
functions, normalized output (i2_2) and three delayed normalized values of the output

~ forming the input vector P=[Z m0 m1 m2 i1_1 kO k1 k2 i2_2 n0 n1 n2}J, and an

output vector T=[i2_2]. These combinations constitute model 4. The responses of
training data, NN cutput and the error between the input and the target are illustrated
in the subsequent Figures 4.50 and 4.53 for varying number of hidden nodes.

Tabled.12: Feedforward identification with twelve inputs and frainfm aigorithm-modsi4

Type of Activation functions& No of Training | Leaming MSE
ANN{(Network training o hidden Epochs rates

structure) algorithm {trainim, neurons

NEWFF Tansig, Purelin 2 49 0.05 9,77948e-007
NEWFF - Tansig. : 3 16 0.05 8.18441e-007
NEWFF - | Tansig, 4 23 0.05 9.306%3e-007
NEWFF Tansig. 5 46 0.05 9.78218e-007
NEWFF Tansig, 10 7 0.056 9.2187e-007
NEWFF Tansig . 15 8 0.05 1.484828-007
NEWFF Tansig , 20 10 0.05 9.32983e-007
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Figure 4.50; Feedforward networks response with 12 inputs, 1 hidden layer, 2and 3

hidden neurons and 1 oulput {(model 4).
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Feedforward networks response with 12 inputs, 1 hidden layer, 4 and 5

Figure 4.51

hidden neurons and 1 cutput {(mode! 4).
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Figure 4.52

Feedforward networks response with 12 inputs, 1 hidden layer, 10 and15

hidden neurons and 1 oufput (mode! 4).
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Figure 4.53: Feedforward networks response with 12 inputs, 1 hidden layer, 20 hidden
* neurons and 1 cutput {model 4) Perormance MSE achieved.

Figure 4.53 shows the MSE achieved with the Feedforward network trained by the
L'evenberg-Marquafdt algorithm {frainim), and having 20 neurons in the hidden layer.
The numbers of neurons were incrementally changed from 2 to 20 with each set of
hidden neurons beihg tested as depicted in Table 4.12. Analysis of the graphs plotted
for the training data, NN cufput and the error as a funclion of time as illustrated in
Figures 4.89 - 4.54, and in addition to Table 4.12 for the performance indices (MSE)
f;ave shown that:
+  With the twelve iﬁput vector variables to the Feedforward network, the network can
_ map'the required target when trained with the frainlm algorithm so long 2s the
hidden layer has at least 3 or more neurons.
» This algorithm converges very fast to the lowest MSE. This can be seen from the
set of data given in tabie 4.12, and the performance index of figure 4.93 that shows
that an MSE of 9.32963e-007 is obtainable with 7 training epochs only. Therefore

the results may not be accurate.

4.6.12 Feedforward identification with 12 inputs and trainscg algorithm-model4

Table 4.13 shows the feed forward multilayer perceptron neural networks model
trained by the scaled conjugate gradient algorithm (trainscg), different number of
hidden nodes in the hidden layer, training epochs, leaming rates and the mean
squared error achieved for the twelve input variables: the normalized input airflow rate
(i1_1), three delayed values of the normalized input airflow rates, time, three delayed
fime functions, normalized ocutput (i2_2) and three delayed normalized values of the
output forming the input vector P=[Z m0 m1 m2 i1_1 kO k1 k2 i2_2 n0 n1 n2J,
and an cutput vector T=[i2_2J. These combinations constitute modet 4. The responses
of training data, NN output and the emor between the inpul and the farget are
iHustrated in the subsequent Figures 4.54 {g 4.57 for varying number of hidden nodes.
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Tabled.13: Feedforward identification with twelve inputs and trainscg algoritthm — modeld

Type of | Activation functions& No of Training | Leamning MSE
ANN(Network fraining : hidden Epochs rates
structure) algorithm(frainscg) (layers) '
NEWFF Tansig, 2 2873 0.05 1.58367e-005
NEWFF Tansig, 3 5427 0.05 1.25745e-006
NEWFF Tansig, 4 5165 0.05 2.62275e-006
NEWFF Tansig, 5 3072 0.05 3.11822e-008
NEWFF Tansly, Po : 10 2410 0.05 9.91026e-007
NEWFF ) Tansig, Purgiin 15 2150 0405 §.988712-007
NEWFF Tansig, Purelin 20 1667 0.05 9.99857e-007
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Figure 4.54: Feedforward networks response with 12 inputs, 1 hidden layer, 2and 3
hidden neurons and 1 output {model 4).
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Figure 4.55: Feedforward networks response with 12 inputs, 1 hidden layer, 4 and &
hidden neurons and 1 output {model 4).
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Figure 4.56: Feedforward networks response with 12 inputs, 1 hidden layer, 10 and 15
hidden neurons and 1 output {model 4).
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Figure 4.57; Feedforward networks response with 12 inputs, 1 hidden layer, 20 hidden
neurons and 1 cutput (model 4) Performance MSE achieved.

Figure 4.57 shows the MSE achieved with the Feedforward network trained by the
scaled conjugate gradient (trainscg), and having 20 neurons in the hidden layer.
However, the numbers of neurons were incrementally changéd from 2 to 20 with each
set of hidden neurons being tested as depicted in table 4.13. Analysis of the graphs
plotted for the training data, NN output and the error as a function of time as illustrated
in Figures 4.54 - 4.57, and in addition to table 4.13 for the performance indices (MSE)
resulting from varying neurons in the hidden layer, have shown that:

+«  With the twelve input vector variables to the Feedforward netwerk, the network can
map the required target when trained with the frainscg algorithm so long as the
hidden layer has at least 3 or more neurons.

s However this algorithm converges very fast o the lowest MSE as the number of
neurons to the hidden layer is increased. This can be seen from the set of data
given in Table 4.13, and the performance index of Figure 4.57 that shows that an
MSE of 8.68957e-007 is obtainable with 1607 training epochs only.
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4.6.13 Discussion of the results for feedforward networks

Four models have been developed and {rained with three different types of training
algorithms in order to Setermine which model describes the best mapping of the DO
process dynamicé and which tréining algerithm gives the best results. The models
_developed are summarized in Table 4.1. Models 3 and 4 gave betier resuits of the
mapping compared to rﬁoc_iels 1 and 2. However, a variation of model 4 where six input
variables are used for the identification of the DO process as subsequently discussed
is chosen as the best model. In terms of the training algorithms used, the Levenberg-
Marquardt (trai;;[m) algorithm, performed betfer than the other two algorithms in terms
of the speed of convergence, accuracy of approximation, ability fo drive the mean
squared error-{o the lowest lavel. Also, the error in thé Levenberg-Marquardt (trainim)
algorithm decreases much more rapidly with time than the other two algorithms.
Similarty the scaled conjugate gradient descent algorithm converges faster than the
resilient backpropagation algorithm however it requires more iterations than trainim
algorithm {o converge to mi.némum MSE. Thus from the three algorithms tested, the
Levenberg-Marquardt {frainim) aigorithm is chosen for training the of model the DO
process chosen because it requires few convergence epochs, it is also the fastest, it
guarantees a low MSE, and gives better function approximation of the target trajectory
than the other two.

The section that follows provides the analysis of the resulis for the chosen medel
trained with trainfm algorithm and verification of the suitability of the mode! and the

algorithm.

4.6.14 Best selected model of the DO process and the verification results
The data for training, validation and testing were sampled at 1.041677E™ days
{1min.30s) intervals with 960 data sets collected. 480 data sets were used for training,
240 data sets for validation (for observing the performance of the models when faced
with unknown 'situaticms:: or dynamic changes of different amp%ih}des andfor
frequencies) and 240 data sets for testing. The division was such that the testing set
starts with the second point of the considered time period of the DO process behavior
and takes every fourth point. The validation set starts with the fourth point and take
every fourth point of the time period, while the training set takes the remaining points.
The data collected included the present and past values of the control input airflow rate

u(k) and the DO concentration dynamics S, (k) as required for identification purposes.
The data gathered weré scaled for fraining purposes. In this work the training dala
were nommaiized to the range [0 1], as i1_1 and i2_2 foru(k) and S (k) respectively
and the network was c.rea’ied and trained using the normalized data and then
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simulated. Eventually the network output was de-normalized, and a linear regression
bet\&een the network outputs (de- normaiézed) and the targets io check the quality of
the network training was performed. The following Matlab algorithm of Figure 4.58
depicts the procedure used to normalize data, split the data, train the network, simulate

and perform linear regression analysis.

R _ Load Data {(P1, 71} .

_ Data;
Divide data into fraining, validation and test sets.

Yy
Network Structure
Create « Feedforward. Define network
size {number of hidden neurans,
layers, activation functions and so on.
L 2
Choose suitable network parameters
Learning rate; Momentum term; Performance
Function; Tralning algorithm, No. of epochs and
nstwork training goal
L2

Present the network with the training set
{inputs and the comresponding outputs)
v
Train the network
Y

Calculate the Network performance error
parameter - (MSE}) ’

NO

Is MSE £ set
YES

Display the connection weights and biases
2

[ * Display regression ]

analvsis

- y
- De-nomalize
The taroet
¥
Stop

Figure 4.58: The algorithm used to frain the model of the feedforward network

The abéve Maﬁab algorithm creates a feedforward network. P1, T1 represents the

variables of the normalized inputs and target vectors. k0, k1, n0 and n1 are the delays
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ini1_1 and i2_2. The best structure of the identifled neural mode! chosen was 6-8-1;
ie. 6 Enputs of the normalized airflow rate with two delayed values kO and k1 and
normalized DO process with two delayed values n0 and n1, 8 nodes in the hidden
layer and 1 node at the output.

Training was done by switching between the training, validation and test data set; a

iechnique Rnovém as ‘early stpppfng methodology’. The training was performed in the

_ no.rmai way on the training set until a reasonably small error (root mean square - RMS)
was achieved for this set. Once a reasonable and continucusly decreasing RMS error
was achieved for all the sets of data, the training was stopped automatically and the
network was validated by”appiying different test data, not utilized before. Eventually the
topology and configuration were finalized. The method of early stopping was to prevent
over- fraining. The error on the validation set will normally decrease during the initial
part of the fraining. However, when the network begins to over fit the data, the
validation set error will start to rise. When this increase continues for a pre defined
number of iterations the training is sfopped and the weight values are kept. The test
set is used to compare with the validation set to see if they exhibit a similar behavior. if
validation errors and test errors do not show a similar behavior, this may indicate a
poor division of data. In Figure 4.59, the mean squared error belween the calculated

-values and the target fraining, validation and test seis are plotted against the epoch
(number of iterations).

.45

7 Training
0.4 ; =i Validation
- wm Tast

0.35 : -
0.3 : =

0.25 1 ] q

Sqead Grar

0.2¢ : —

aos+ §- -
IL o
o 5 10 15 20 25
: Epoch

Figure 4.59: Plot of the training, validation and test errors for a generalized neural
network.

The results of Figure 4.60 shows the plot of the mean squared error between the
calculated values and the target training, validation and test sets plotted against the
epoch (number of the training, validation and test errors) with the convergence

performance of the MSE of 2.1631e” achieved for architecture with 8 hidden neurons.
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Analysis of the piot-tefié that it reguires only 15. iterations to0 map the farget when

trained with frain/m algerithm.
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Figure 4.60: Performance MSE with 6 inputs, 1 hidden layer, 8 hidden neurons and 1

output.

The post analysis of the plots showing regression analyses between the network

outputs and the corresponding targets (in original units) is subsequently done as

ilustrated in Figure 4.61.

| Bast Linaar Fit: A = (1) T + (-0.0048)

3;
i [ (=] Data Points
I R=1 i e Bast Linear Fit
2.5% 4 - A=T
2+ 3
1.5 -i
i
o :
Q.5+ "
|
o )
o 0.5 1 1.5 2 2.5 3

Figure 4.61: Post-Training analysis with Matlab command routine (postreg)

Figure 4.61 'dispta'ys the plots showing regression analyses between the network

outputs and the corresponding targets (in original units of data). The routine postreg is

'des'igned' to perform this analysis. Here the network output and the corresponding

targets are passed to postreg. It returns three parameters. The slope, and the y-

Enterc_e'pt'of the best linear regression relating targets to neiwork oufputs and the

correlation coefficient (R-value) between the outputs and targets. In the analysis it can

be seen that a perfect fit indicated by the solid fine results {outpuls are exactly equal to

targets), because the slope is equal to one 1.0019, and the y-intercept is -0.0048, and
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the R-value is also equal to 0.9999 because the fit is good. This therefore confirms that
the chosen model is a gooed identifier of the DO process.
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Figuré 4.62: Training data, NN. output and the error response of the de-normalized DO
: process.

Figure 4.62 shows the de-normalized neural network output. This trajectory is an

épproximate of the. DO process model. This therefore conforms that the results of the

verification is correct. The coefficients of the selected trained model are tabulated in

the following Tables 4.14 and 4.15 respectively.

Tabled.14: Hidden layer weights and biases

Hidden layer weights (w) for the inputs -~ Hidden layer bias
' ’ . (ow)
inputs
\\ i1_1 kO k1 22 ro ¥

noded - '
1 £.2529 3.0721 1.8230 -1.4732 -0.0028 0.03a3 -3.685%
2 14.9851 3.1787 2.0182 2.5868 0.4582 -1.060 -1702288
3 -11.3550 0.6225 0.7572 -3,1186 i.3531 2.8114 9.2861
4 9.0209 -0.8408 1.5078 2.0463 -1.8158 -2.859 -10.5883
5 17,9717 -0.6396 182004 -2.0804 2.4011 $.0345 -16.5887
8 11.8529 -0.5056 06998 -1.0551 -2.2873 1.5074 _ -7.7795
7 24.1757 -0 8853 -2.7178 7444 9.1513 {.5888 -18.5192
& .24.4854 -(.3813 -1.384 25122 -0.4113 -1.308 -21.2873

Table 4.15: Output layer weights and biases

Hidden -0.0466 | 0.0643 | 04622 | -0.1818 | 0.2917 | -0.3228 | 0.0945 | 0.1525
weights(v) -

Hidden 0.6329

bias{bv) _

The sectioh that follows will consider thé recurrent neural networks for the identification
of the DO process. The models are developed and trained with three different

algorithms.
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4.7

471

Recurrent ANN identification with different activation functions

The next type of ANN tested are the Eiman networks. These networks are discussed in
Chapter 3. The built in feedback loops of the Elman networks enable the%n to have
dynamic memory and hence they are more suilable for identification of dynamic
systems.

Construction of the recurrent neural networks

The Elman netwcrk has “tansig” neurons in ils hxdden {recurrent) !ayer and purelin
neuron in its output layer. This combination is special because the two-layer networks
with these transfer functions can approximate any function (with a finite number of
éiscontinuiﬁés)_with arbitrary accuracy. The only requirement is that the hidden layer

must have enough neurons. However, more hidden neurons are needed as the

function being fitted increases in complexity. An Elman network with two or more

layers can be created with the Matlab function “newelm”. The hidden layers commonly
have “ansig” transfer functions, so that it is the default for newelm. As shown in Figure
108, purelin is the commonly used output-layer transfer function. The feedback in the
considered Elman neural network mode! is from the output of the hidden layer to its
input using a delay of one step of time for all variables.

Tl
huE1) igl
WLl
: . -
Wk )=y
Ve G2 WY ey -
Rix¥ \ B Fixl S<xi
Six@l + el
i Sty |/
1 In L
F O Sial st Sixl 52
A ' : AN : Y
. Input Recurrent tansig layer Cutput purelin layer

alfk) = mansig(IWip +LWiiank-1) + b1} ax®) = purelin(LW2ia:(%) + b3

Figure 4.63: Architecture of Elman networks (Howard Demuth, Mark Beale, 2002)

The default backpropagat;;on training function is frainbfg. One might use frainlm, but it
tends to proceed so rapidly that it does not necessarily do well in the Elman networks.
The backpropagétion weight/bias learning function default is traingdm, and the default
performance functibn_is the mean square error (MSE). When the network is created,
each. layer's weights and biases are initialized with the Nguyen-Widrow layer
initialization method implemented by the function “nitrw”. This informaticon is obtained
from the Neural Network Toolbox for Use with MATLAB User's Guide (Howard Demuth
Mark Beale, 20{}2)
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4.7.2 Training an Elman Networks for identification of the DO concentration process
' Elman networks can be trained with gither of two Matlab functions, frain or adapi.
- When using the function frain to train an Elman network the following occurs. At each
epoch:

1 The entire input sequence is presented to the network, and its outputs are calculated
and compared with the target sequence to generate an error sequence.

2 For each time step, the error is back propagated to find gradients of errers for each
weight and bias. This gradient is actually an approximation since the contributions
of weights and biases to errors via the defayed recurrent connection are ignored.

3 This gradieni is then used to update the weights with the backpropagation training
function chosen. The function fraingdx is recommended.

For an Elman network {0 have the best chance for learning a problem of function
approximation it has to have more hidden neurons in its hidden layer than are actually
required for a solution by another method, While a solution may be avaitable with fewer
neurons, the Elman network is less able to find the most appropriate wéights for
hidden neurons since the error gradient is approximated. Therefore, having a fair
number of neurons to begin with makes it mgre likely that the hidden neurons will start
out dividing up the input space in useful ways. The function "frain” trains an Elman
_network to generate a seq{:ence of target vectors when it is presented with a given
.sequen'ce of input vectors. The input vectors and target vectors are passed {o train as
vectors P and T. Train takes these veciors and the initial weights and biases of the
nehuctk, trains the network using backpropagation with mornentum and an adaptive
learning rate, and returmns new Weights and biases. Because Eiman networks are an
extension of the two-layer sigmoidflinear architecture, they inherit the ability to fit any

input/output function with a finite number of discontinuities.

Elman networks with different sizes of hidden layer were tested. The learning rate,
tréining atgorith'ms,. training epochs, and set up of activation functions were all used to
determine the most accurate mapping of the recurrent network to the normalized DO
concentration trajectory of Figure 4.7. The following commands create recurrent

_ network;

net.trainParam.mem_reduc=Z;

net.trainParam.lr=0.05;

net.trainParam.epochs=1000;

net. trainParam.goal=le-§;

For the code given above, the network contains 5 neurons in its hidden layer, The
hidden layer contains fansig activation functions and the output layer contains a pure
linear function. The type of training used is alsc set here, and for the example

ilustrated, it is the Levenberg-Marquardt (trainim) algorithm training function,
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4.8

4.8.1

The backpropagation training algorithms, in which the weights are moved in the
direction of the negative gradient, are described in chapter 3. Three different types of
mare complex backpropagation algorithms that increase the speed of convergence are
used to determine the effectiveness of each in the identification of the normalized DO
concentration trajectory. These algorithms are:

+ Resilient Backpropagation iraining function (trainrp} as the default. The function
combines adaptive learning rate with momentum training parameter.

e Scaled Conjugate Gradient (frainscg), since it tends to perform well over a wide
variety of problems, and also because it is the only conjugate gradient algorithm
that requires no line search and is a very good general purpose training algorithm.

» levenberg-Marquardt (frainim) algorithm, the fastest convergence in function
approximation problems, {or networks that contain up to a few hundred weights. It
is used if very accurate training is required.

Elman NN models developed

The method followed to determine the correct combination of the input variables for
successful identification involved quite a laborious task and time for empirical testing of
each set of the input variables and different training algerithms. However, different
combinations of input variables to the network and specific training algerithm, in order
to achieve the targeted DO conceniration tralectory, were developed. These mode!

‘structures are summarized in Table 4.16.

Tahied 16 Input combinations to the Elman ANNs with DO conceniration as the target.

Number of Model Input description input symbol output
input

variables

1 Model § Normalized Airflow rate vector . i1 1 80

2 Modet 2 Normalized Aidflow rate and Time | 11_1, 2 Do
vector

3 Modei 3 Normalized Airflow rate, Time | #1_1, Zandi2_2 oo
and Normalized no
conceniration

4 Modsl 4 Nomalized Airflow rate, 3 | M_1, 11_t{ko), 11_1{k1}, bo
delayed normalized  aiflow | i1_1(k2). Z, Z(mo), Z{m1),
variables, Normalized DO, 3| Z(m2), andi2 2,12 2
delayed Normalized DO, Time, | (no), 12_2(n1), 12_2 (n2),
and 3 delaved Time varigbles

Elman network model1 with one input variable and traingdx algorithm.

Tabie 4.17 shows the results of the Elman model trained with the Variable Learning
Rate Backpropagation algorithm (traingdx} with different number of hidden neurons,
training epochs, leaming rates and the mean squared error achieved for one single
input variable: the normalized input airffow rate {(i1_1) as a function of time. The
function fraingdx is normally recommended for Elman networks. The responses
{trajectory) of training data, NN output and the error between the input and the target
are illustrated in the subsequent Figures 4.64 to 4.67.
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Table4.17: Results for the Elman ANNs with 1_1as input variable and DO as the largst —madelt

Type of Activation functions& No of Training Learning | MSE
ANN(Netwark training hidden Epochs rates
structure) algorithm{traingdx) nodes
NEWELM Tansig. Purelin Z2 10004 0.05 0.00721507
NEWELM Tansig, Purelin 3 10000 005 0.00721366
NEWELM Tansig, Purelin 4 10000 0.05 0.060721311
NEWELM Tansig, Purelin 5 10000 0.05 0.007213686
NEWELM Tansig, Purelin 10 100060 0.05 0.00721343
NEWELM Tansig. Purslin 15 10000 0.05 400721280
NEWELM Tansig. Purelin 20 10600 .05 0.00721887
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Figure 4.64: Eiman networks response with 1 input, 1 hidden layer, 2 and 3 hidden
layer neurons and 1 oufput {model 1).
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Figure 4.65: Eiman networks response with 1 input, 1 hidden layer, 4 and 5 hidden
tayer neurons and 1 ocutput (modei 1).
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Figure 4.66: Elman networks response with 1 ingui, 1 hidden layer, 10 and 15 hidden
iayer neurons and 1 ocutput (model 1).
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Figure 4.67: Elman networks response with 1 input, 1 hidden !ayer, 20 hidden layer
neurons and 1 output (model 1) MSE performance.
Figure 4.67 shows the MSE achieved with the Elman network having 20 neurons in the
hidden layer. The number of neurons was incrementally added from 2 to 20 for
different models as depicted in Table 4.17. Analysis of the graphs plotted for the
training data, NN output and the error as a function of time illustrated in Figures 4.63 -
4.67, and in addition to Table 4.17 have shown that:
« With only one input variable to the Elman network, the network does not map the
required target when trained with the fraingdx algorithm irrespective of the number
of neurons in the hidden layer.

+ The lowest MSE is obtainable afier several numbers of training epochs.

EIman network model!1 with one input vector and trainscg algorithm.

Table 4.18 shows the Scaled Conjugate Gradient {frainscg) training algorithm, used
with different number of hidden neurons in the hidden layer, training epochs, leaming
rates and the mean squared error achieved for one single input variable: the

normalized input airflow rate trajectory (i1_1) as a function of time. The responses
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(trajectory) of training data, NN output and the error between the input and the target
are illustrated in the subsequent Figures 4.68 t0 4.71.

Table 4.18: Resuits for the Elman ANNs trained with (trainscg),

Type of Activation functions& No of Training Leamning | MSE
ANN({Network training hidden Epachs rates

structure) algorithm(trainscy) nodes

NEWELM - Tanslg, Purelin 2 71 0.05 0.00721885
NEWELM Tansig, Puretin 3 63 .05 0.00720958
NEWELM Tansig. Purelin 5 400 0.05 0.00726824
NEWELM Tansig, Pureiin 10 5190 .05 (.00720884
NEWELM °| Tansig, Purslin 15 2550 .05 (.00720893
NEWELM Tansig, Pureiin 20 2078 0.05 0.007210063
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Figure 4.68: Elman networks response with 1 input, 1 hidden fayer, 2 and 3 hidden
neurons and 1 output (model 1).
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Figure 4.69: Eiman networks response with 1 input, 1 hidden layer, 5 and 10 hidden
neurons and 1 culput (model 1).
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Figure 4.70; Elman networks response with 1 input, 1 hidden layer, 15 and 20 hidden
neurons and 1 cutput {mode! 1).
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Figure 4.71: MSE performance with 1 input, 1 hidden layer, 20 hidden neurons and 1
output {model 1).

Figure 4.71 shows the MSE of 0.00721003 achieved with the Eiman network having 20

neurons in the hidden 3ayef. The number of neurons was incrementally added from 2

to 20 as depicted in Table 4.18. Analysis of the graphs plotted for the training data, NN

output and the error as a function of time illustrated in Figures 4.68 - 4.71, and analysis
in addition to Table 4.18 for the performance index (MSE) have shown that:

« With only one input variable of the airflow rate o the Elman network, the network
does not map the required farget when trained with the trainscg algorithm
irrespective of the number of neurons in the hidden layer.

. The convergence to the iowest MSE is cobtainable after only a few numbers of

iterations as compared to fraingdx algorithm.
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4.8.3 Elman network model1 with one input variable and trainin algorithm.

Table 4.19 shows the Levenberg-Marquardt algorithm function (frainim}, used with

different number of hidden layers, fraining epochs, leaming rates and the mean

squared error achieved for one single input variable: the normalized input airflow rate

(i1_1) as a function of ime while the output is the normalized DO concentration (i2_2).

The responses of training data, NN output and the mse between the input and the

target are illustrated in the subsequent Figures 4.72 10 4.74.

Table 4.19 Recurrent ANN with Levenberg-Marquardt training algerithm (irainim) — modelt

Type of Activation functions& No of Training Leamning | MSE
ANN{Network training hidden Epochs rates
structurs) algarithm{trainim} nodes
NEWELM Tansig, Purelin 2 1118 0.05 0.00714228
NEWELM Tansig, Purelin 3 10000 8.05 0.00631485
NEWELM Tansig, Purelin 5 16000 0.05 0.00683535
NEWELM Tansig, Purelin 10 10000 .05 0.60714415
NEWELM Tansig, Purelin 15 10000 0.05 0.00720000
NEWELM Tansig, Purelin 20 401 005 0.00720913
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Figure 4.72: Elman networks response with 1 input, 1 hidden layer, 2 and 3 hidden
neurons and 1 output (modef 1).
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Figure 4.73: Elman networks response with 1 input, 1 hidden layer, § and 10 hidden
neurens and 1 autput (model 1).
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Figure 4.74: Eiman networks response with 1 input, 1 hidden layer, 15 and 20 hidden
neurons and 1 output (modei 1).

Analysis of the graphs plotted for the training data, NN oculput and the error as a

function of time illustrated in figures 4.72 - 4.74, and in addition to Table 4.19 for the

performance index (MSE) have shown thal;

s With only one input vector of the aifflow rate to the Elman network, the network
dees not map the required target when trained with the trainm algorithm
irrespective of the number of neurons in the hidden layer.

s The convergence o the lowest MSE is obtainable after several numbers of

iterations.

Thus, the general conclusion made from the three types of the gradient descent
training algorithms used to train the Eiman network for a single input variable is that
the convergence to MSE is approximately the same. However, the network trained with
trainscg converged much faster than the other two. Poor function approximation was
achieved and hence the network did not identify the DO conceniration model
trajectary.

The next network tested was with two inputs composed of the variable of the
normalized input flow rate trajectory and the variable of time function. The procedure
adopted was the same as that of one input vector. These are explained in the

proceeding sections.

Elrﬁan network with two inputs vectors and trained with traingdx algorithms

Table 420 shows the Varizble Learning Rate Backpropagation training function
(traingdx) used with different number of hidden neurons in the hidden layer, training
epochs, learning rates and the mean squared error achieved for a vector of two input
variables: the nommalized airflow rate trajectory (i1_1) and a time functicn Z.  The

targeted output is the normalized DO concentration traiectory (i2_2). The responses
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{trajectories) of training data, NN output and the MSE between the input and the target

are illustrated in the subsequent Figures 4.75 to 4.78.

Table 4.20: Recurrent ANN for model2 with Adaptive backpropagation training algorithm fraingdx - model2

Type of Activation functions& No of Training Learning | MSE
ANN(Network training hidden Epochs rates
structure) algorithm{traingdx) nodes
NEWELM Tansig. Purelin 2 16800 2.05 .00440213
NEWELNM Tansiy, Pursiin 3 15000 .05 (3.00454345
NEWELM Tansig, Purelin 4 10000 0.05 £.00323278
NEWELM | Tansig, Pureiin 5 10000 .08 8.00332548
NEWELM Tansig, Purelin 10 10000 .05 0.00309181
NEWELM Tansig, Purelin 15 10600 0.05 0.00346776
NEWELM Tansig, Purelin 20 10000 0.05 0.00144195
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Figure 4.75: Elman networks response with 2 inputs, 1 hidden layer, 2 and 3 hidden
neurons and 1 cutput {mode! 2).
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Figure 4.76: Elman networks response with 2 inputs, 1 hidden layer, 4 and 5 hiddan
neurons and 1 output {model 2).
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Figure 4.77: Elman networks response with 2 inputs, 1 hidden layer, 10 and 15 hidden
neurons and 1 output {model 2).
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Flgure 4.78: Efman networks response with 2 inputs, 1 hidden layer, 20 hidden
neurons and 1 output {model 2) and Performance MSE achieved.

Analysis of the graphs plotted for the training data, NN output and the error as a

fun'ch‘on of time as illusirated in figures 4.75 - 4.78, and analysis of Table 4.20 have

shown that:

s There is a significant improvement on the network performance since the
convergence MSE is improved. However the network still fails to map the required

target when trained with traingd>x.

Elman network model2 with two input variables trained with trainscg algorithms
Table 4.21 shows the Scaled Conjugate Gradient (frainscg). used with different
number of hidden neurons, training epochs, §eaming rates and the mean squared error
achieved for a vector of two input variables: the normalized airflow rate (i1_1)and a
time function Z. The targeled output is the normalized DO concentration (i2_2). The
responses {irajectories) of trainiﬁg data, NN output and the error between the input
and the target are illustrated in the subsequent Figures 4.72 {0 4.82.
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Table 4.21: Resuits for the Elman ANNSs frained with {frainscg) - model2

Type of .| Activation functions& No of .| Training Learning | MSE
ANN(Network training hidden Epochs rates
structure) algorithm(trainscg} nodes
NEWELM Tansig, Purelin 2 3788 0.05 5.55371e-006
NEWELM Tanslg. Purelin 3 2953 - (.05 2 43055e-006
NEWELM Tansig, Purelin 4 6319 0.05 2.24714e-005
NEWELM Tansig, Purelin 5 10000 0.05 0.000101717
NEWELM Tansig, Purelin 10 10000 (.05 (3.0008704107
NEWELM - Tansig, Purglin 15 10000 .05 (.000568941
NEWELM Tansig, Pur@iir_} 20 10000 G058 0.00183286
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Figure 4.79: Eiman networks response with 2 inputs, 1 hidden layer, 2 and 3 hidden
neurons and 1 output {model 2).
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'Figure 4.81: Elman networks response with 2 inputs, 1 hidden tayer, 10 and 15 hidden
neurons and 1 output {model 2).
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Figure 4.82: Eiman networks response with 2 inputs, 1 hidden layer, 20 hidden
neurons and 1 oufput (modet 2) and Performance MSE achieved.

Analysis of this network from the perspective of the graphs plotted for the training data,

NN output and the error as a function of time as illustrated in Figures 4.79 - 4.82, and

analysis in addition to Table 4.21 which details the performance index (MSE) have

shown that:

s 2a network with 3, 4 and 5 newons in the hidden layer and which is trained with
frainscg algorithm is 2 good identifier of the DO concentration model

+ asmall convergence time of a low MSE is also achieved with this algorithm.

«. the number of epochs for convergence is drastically reduced.

E!mén network model2 with two input variables trained with trainim algorithms

Table 4.22 shows the results of the Elman recurrent neural networks trained with the
Levenberg-Marquardt algorithm (frain/m’). Different number of hidden neurons,
training epochs, learning rates and the mean squared error achisved for a vector of
two input variables: the normalized input airflow rate trajectory (i1_1) and a time
function Z. The targeted output is the normalized DO concentration trajectory (i2_2).
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The responses (frajectories) of the training data, NN output and the error between the

input and the target are illustrated in the subsequent Figures 4.83 to 4.86.

Table 4.22: Results for the Elman ANN modei2 trained with (rainfm)-meodei3

Type of Activation functions& No of Training Learning | MSE
ANN(Network training hidden Epochs rates
structure) . algorithm{trainim) nodes
NEWELM Tansig, Purelin 2 1504 0.05 9.971324e-007
NEWELM Tansiy, Purelin 3 3086 .05 §.896699e-007
NEWELM Tansty, Pureiin 4 76 0.05 §.88386e-007
NEWELM Tansig, Puraiin 8 292 0.05 9.94264e-007
NEWELM Tansig, Purelin 10 287 0.05 8.927e-007
NEWELM Tansig, Purelin 15 1131 0.05 89.95884e-007
NEWELM Tansig, Pureiin 20 2343 0.05 8.96201e-007
dissofhed axygan concantration 2 dizsohed gxygen concentration
- T n 12— ¥ -
Lo L L Lo
= — : g - i et —— i
T a i : ! | + A i 1 | I p——— ' |
: L N i I Y ALUNUNUREEE E v oy U B
] ' i 1 1 NN autput i 1 1 ¢t~ ~— Emor i 1
‘g ! 1 i - — ~ Emar g 1 H 1 T T T ]
q BEF- - — i ——m — - e e i Pt s g OG- - m b —— R e _——— - L
- - | t 1 i i - B ] 1 1 i L ] 1
L 1 1 ' l E i i 1 1 1 1
% SR e B e st
z A N I ! !
§ "f“'f"'E"'.:"“f"?"”ﬁ"' §_”f".”"i"'T"i’"T"'".I“""T'"
3 i ! 1 \ B H\ o _:_ P 3 DL 1 ; | ¢ i 1 :_ _
; | ; ; | b ‘ :_ v 1 i T )
R SR R S S b L : L
.01 n.‘nz u,'cn ¢4 005 Q06 co07 008 009 01 -0.20 00% 092 003 004 Q05 096 007 008 0084 01
time{days) ma(days)

Figure 4.83: Elman networks response with 2 inputs, 1 hidden layer, 2 and 3 hidden
neurcns and 1 output {model 2).
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Figure 4.84: Eiman networks response with 2 inputs, 1 hidden layer, 4 and 5 hidden
neurons and 1 output (modet 2).
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thure 4.85: Elman networks response with 2 inputs, 1 hidden layer, 10 and 15 hidden
neurons and 1 output (model 2).
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- Figure 4.86: Elman networks response with 2 inputs, 1 hidden layer, 20 hidden
: neurons and 1 output (model 2} and Performance MSE achieved.

Analysis of this network from the perspective of the graphs plotted for the trajectories

of the training data, NN output and the error as a function of time as Hlustrated in

?igures 483 - 4.86, and in adé%tion_ to Table 4.22 which details the performance

indices (MSE) have shown that:

¢ a network with 3 neurcns in the hidden layer and which is trained with trainim
algorithm is just encugh to identify the DO concentration model trajectory.

« asmall convergence time to a low MSE of 9.96698e-007 is also achieved after 6niy
306 number of epochs for a network of 3 neurons in the hidden layer.

Thus, the general conclusion made from the three types of the gradient descent
training algorithms used to train the Elman network model 2 for a two input variable is
that the variable leaming rate backpropagation algorithm {traingdx) produced
moderately low value of the MSE but exhibited pocr mapping of the target. The
network trained with the scaled conjugate gradient aigorithm {trainscyg) produced much

lower MSE after a fewer number of training epochs, converged much faster for a smati
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4.8.7

number ch hidden layer nodes, but exhibited poor mapping with increased number of
hidden nodes. Levenberg-Marquardt sigorithm (frainlm} was the fastest in
convergence with only a few numbers of epochs, very low MSE, better mapping of the
target than the other two.

The next nebwork tested was with three input variables compaosed of the variable of the
normalized input flow rate trajectory and the variable of time function and that of
norma_!ized BO process. The procedure adopted was the same as that of one input

variable. The resulls are explained in the proceeding sections.

Elman network model3 with three input variables and traingdx training algorithm
Table 4.23 shows the resuits of the Elman recurrent neural networks trained with the
Variable Leaming Rate Backpropagation training function (traingdx). Different number
of hidden layers, training epochs, learning rates and the mean squared error achieved
for three input variables: the normalized input airflow rate trajectory (i1_1), a time
function Z, and the normalized DO concentration trgjectory (i2_2). The targeted cutput
is the normalized DO concentration (i2_2). The responsés {traiectories) of the training

- data, NN output and the error between the input and the target are illustrated in the

subsequent Figures 4.87 t0 4 90

Table 4.23: Results for the thrae input vector to Elman ANNs and trained with fraingdx — model3

Type of Activation functions& Noof Training Leaming | MSE
ANN(Netwark training hidden Epochs rates’
structure) glgorithm{iraingdx) nodes
NEWELM Tansiy, Purelin : 3 10000 0.G5 6.39714e-005
NEWELM Tansig, Pu in 4 10000 - 0.05 1.4187e-005
NEWELM. Tansig, P 5 10000 0.05 5.012e-005
NEWELM Tansig, © 10 10600 0.05 3.12111e-005
NEWELM Tansig, ru r 15 10000 0.05 1.104686¢-005
NEWELM Tansig. Purelin 20 10000 0.05 1.44177e-G06
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Figure 4.87: Eiman networks résponse with 3 inputs, 1 hidden layer, 3 and 4 hidden
' neurons and 1 output {modet 3).
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Figure 4.88: Elman networks response with 3 inputs, 1 hidden layer, 5 and 10 hidden
neurons and t output {modei 3).
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Flgure 4.89: Elman networks response with 3 inputs, 1 hidden layer, 15 and 20 hidden
neurons and 1 output {model 3).
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Figure 4 90: Performance MSE with 3 inputs, 1 hidden layer, 20 hidden neurons and 1
output {mode! 3).

Analysis of this network from the perspective of the graphs plotied for the training data,

NN output and the error as functions of time as illustrated in Figures 4.87 - 4.90, and

analysis in addition to Table 4.23 which details the performance index (MSE) have

shown that:
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+ a network with. 3 neurons in the hidden layer and which is trained with frainim
aigorﬁhm is just encugh to identify the DO concentration model fra}ectory and that

s a small convergence time to a low mse of 1.44177@-005 is also achieved.
However, the model requires a very large number of iraining epochs in order to

achieve the minimum convergence.

4.8.8 Elman network model3 with three input variables and trainscg training algorithm
Table 4.24 shows the Scaled Conjugate Gradient training algorithm (frainscg), used
with different number of hidden nodes in the hidden layer, different number of training
epochs, learning rates and the mean squared error achieved for three input variables:
the normalized input airflow rate trajectory (i1_1). a time function Z, and the normatized
DO concentration trajectory (i2_2). The targeted output is the normalized DO
concentration trajectory (i2_2). The responses (trajectories} of the training data, NN
output and the errar between the input and the target are illustrated in the subseguent
Figures 4.91 {0 4.94.

Table 4.24; Results for the three input variables to Elman ANNs and trained with trainscg

Type of Activation functions& No of Training Learning | MSE
ANN{Network training hidden Epochs rates
structure) algorithm(trainscy) nodes
NEWELM Tansig, Purslin 3 2531 0.05 2.65284e-007
NEWELM Tansig, Purslin 4 4151 0.05 . 3.14788e-006
NEWELM Tansiy, purelin 5 3480 0.05 1.07039e-006
NEWELM Tansig, Purelin 10 1498 0.05 2.39351e-007
NEWELM Tansig, Purelin 15 : 3040 0.05 1.76323e-007
NEWELM Tanslg, purelin 20 3208 0.05 1.06008e-007
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Figure 4.91: Elman networks response with 3 inputs, 1 hiddan layer, 3 and 4 hidden
neurons and 1 cutput {(madel 3).
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Figure 4.92: Elman networks response with 3 inputs, 1 hidden layer, 5 and 10 hidden
neurons and 1 output {model 3).
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Figure 4.93: Eiman networks response with 3 inputs, 1 hidden iayer, 15 and 20 hidden
' neurons and 1 output {mode! 3).
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4.8.9

Analysis of this network from the perspective of the graphs plotted for the training data,

NN output and the error as functions of time as illustrated in Figures 4.91 - 4.94, and

analysis in addition to Tabie 4.23 which details the performance indices (MSE) have

shown that:

* a network with 3 neurons in the hidden layer and which is trained using trainscg
algorithm is enough to identify the DO concentration model trajectory and

s asmall convergence time to a low MSE of 1.060088—007 is also .achieved after only
3208 training epochs. This is a considerable improvement to the network trained
with fraingdx algorithm which required a large number of training epochs in order to

achieve the minimum convergence for the same model.

Elman network model3 with three input variables and train/m training algorithm)

Table 4.25 shows the Lévenberg~Marquardt training algorithm ({“frainim’), used with
different number of hidden layers, varying numbers of training epochs, learing rates
and the mean squared error achieved for three input variables: the normalized input
airflow rate trajectory (i1_1), a time function Z, and the normalized DO concentration
trajectory (i2_2). The targeted output is the normalized DO concentration (i2_2). The
responses (trajectories) of the training data, NN output and the error between the input
and the target are illustrated in the subsequent Figures 4.95 10 4.68.

Table 4.25: Results for the three input vector to Elman ANNSs and trained with trainim

Type of Activation functions& No of Training Learning | MSE
ANN{Network training hidden Epochs rates
structure) algorithm(trainim) nodes
NEWELM Tansig. Purelin - 3 227 (.05 9 85751e-0U0%
NEWELM Tansig. Purelin 4 260 Q.05 9.922762-008
NEWELM Tansig. Purelin 5 227 0.05 9.97313e-009
I NEWELM Tansig, Purelin 10 9 0.05 8.03592e-009
KREWELM Tansig, Pureilin 15 7 .65 2.13548e-0082
NEWELM Tansig, Purelin 20 17 0.05 ©.45116e-009
12 I ?’”'Tm’@“ s ‘ s dissohat cxygen concentration
. : s H ——— Trairing-Deea | 1 : ' i H i —
A ooy B N IR |
3 f L e s T . g .
1 S TE TN A e R e
a b H B H 5 i $ 1 L i H v i 3 1 '
e S T TS R s s thh e bts
g 4 ¢ : ' ' : ¢ i 1 5 i % f 1 ) 1 1 :
04F — — = - L ————— - — j.___l___L—-T_—j BAE -~ — - | b m | S b e o
A A AR R s :
e s TN E= R e [N e e e
g Lo [T - N X ; I ;
o6 T v - —r= r T T : o: -~ + : g ]
] i i 1 ] 1 3 B | ] 1 1 1 :
: D S S I
-0.20 u.Ln 0.‘02 &63 404 005 G06 4Or omA 00 {9 -0'20 901 002 003 404 005 005 o0Or Qo8 008 O

ta(days) timaidoys)

Figure 4.95: Eiman netwaorks response with 3 inputs, 1 hidden layer, 3 and 4 hidden
neurons and 1 output (model 3}.
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Figure 4.96: Elman networks response with 3 inputs, 1 hidden layer, 5 and 10 hidden
neurons and 1 output {(modei 3}
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Figure 4.97; Elman networks response with 3 inputs, 1 hidden tayer, 15 and 20 hidden
neuvrons and 1 output {model 3).

Performance is 9.45116e-009, Goal is 1e-008
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Figure 4.98: Performance mse with 3 inputs, 1 hidden fayer, 20 hidden neurons and
1 cutput {modei 3).

Analysis of this network from the perspective of the graphs plotted for the training dala,
NN cutput and the error as a function of time as illustrated in Figures 4.95 - 4,98, and
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analysis in addition to Table 4.25 which details the performance indices (MSE) .have

shown that: - '

« a network with 3 nsurons in the hidden tayer and which is trained with trainim

- algorithm is just enough to identify the DO concentration model.

» asmall convergence time to a low MSE of 9.45116 e-009 is alsc achieved after
only 88 training epochs.

+ This justifies that this training algorithm is much faster compared to the other two
tested which required a considerable number of training epochs in order to achieve

the minimum convergence for the same model.

Thus, the general conclusion made from the three types of the gradient descent
training algorithms used {o train the Elman network model 3 for three input variables is
that the varigble leaming rate backpropagation slgorithm (fraingdx) produced
moderately low value of the MSE and exhibited not so good mapping of the targst. The
network trained with the scaled conjugate gradient algorithm (trainscg) produced lower

_MSE after a fewer number of training epochs, converged much faster for a small

number of hidden layer nodes, exhibited good mapping of the target. Levenberg-
Marquardt algorithm (frainim} was the fastest in convergence with only a few numbers
of epochs, very low MSE, better mapping of the target than the other two.

The next network tested was twelve input variables composed of the variable of the
normalized input flow rate trajectory with its two time delay variables and the variable
of time function with its two time delays and that of normalized DO process with its two
time delays as variables. The procedure adopted was the same as that of one input

variable. The results are explained in the proceeding sections.

Eiman network model4 with 12 Input variables and fraingdx algorithm

Table 4.26 shows the results of the Elman recurrent neural networks when trained with
the adaptive algorithm function ‘traingdx”. The function tféingdx combines adaptive
learning rate with momentum fraining. 1t has the momentum coefficient as an additional
training parameter. Different number of hidden neurons in the hidden layer, different

number of training epochs, learning rates and the mean squared error achieved for

" twelve ihput_ variables consisting of the normalized input airflow rate trajectory (i1_1),

three delayed values of the normalized input airflow rates, time, three delayed values
of ime function, normalized output trajectory (i2_2) and three delayed values of the
normalized butputs forming the input vector P=[Z m0 mt m2 i1_1 kO ki1 kZ i2_2
ho n1 n2} used, and an output vecter T=[i2_2[ are also tabled. The targeted output

is the normalized DO concentration (i2_2). The responses {fraiectories) of the training
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data, NN output and the error between the input and the {arget are illustrated in the
subsequent Figures 4.99 fo 4.102.

Table 4.26: Resuits for the twelve input vector to Elman ANNs and trained with traingdx algorithm-modeid

Type of Activation functions& Na of Training { Learning MSE
ANN{Network training hidden Epochs rates

structure) agorithm(traingdx} {layers)

NEWFF - Tansig. Purelin 2 10600 0.05 0.000128831%
NEWFF Tansig, Pursli 3 10000 0.05 0.000228408
NEWFF Tansig, 4 10000 0.05 2.57074e-005
NEWFF .. | Tansig, 5 10000 0.05 9.03885e-005
NEWFF Tansig, Pur d 10 16000 0.05 1.986712-005
NEWFF Tansig, Purelin 15 10600 0.05 2.60324e-005
NEWFF Tansig, Purelin 20 10000 0.05 1.544328-005
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Figure 4.99: Eiman networks response with 12 inputs, 1 hidden layer, 2 and 3 hidden
' neurons and 1 output {model 4).
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Figure 4.101: Elman networks response with 12 inputs, 1 hidden layer, 10 and 15
hidden neurons and 1 output (model 4).

Paromance is 1.54423a-005, Goal is 16-006
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Figure 4.102: Eiman networks response with 12 inputs, 1 hidden layer, 20 hidden
neurons and 1 output {model 4) and Performance MSE achieved.
Analysis of this network from the perspective of the graphs plotted for the training data,
NN output and the error as functions of time as illustrated in Figures 4.98 - 4.101, and
analysis in addition to Table 4.26 which details the performance indices (MSE) have
shown that: | _ |
+ A network with 4 neurons in the hidden layer and which is trained with traingdx

algorithm is just enough to identify the DO concentration model.

« A small convergence error as low mse of 1.57326e-005 also achieved.

. waever,' this algorithm, takes long time and a considerable large number of

4811

"tréining epochs in order to achieve the minimum convergence the DO largst

frajectory.
Elman network model4 with 12 Input variables and trainscg algorithm

Table 4.27 shows the results of the Elman recurrent neural networks trained with the
scaled conjugate gradient algorithm ‘frainscg” see (Moller, 1993) for a detailed
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explanation of the algorithm. .The functicn frainscg is a numerical oplimization
technique - which requires that the network response fo all training inputs to be
computed through a line search in the shortest time possible. Different number of
hidden neurons in the hidden layer, different number of training epochs, learning rates
and the mean squared error achieved for the twelve input variables: the normalized
input airflow rate tra}ect'ory (i1_1), three delayed normalized input values of the airflow
rates, time, three delayed fime functions, normalized output trajectory (i2_2) and three
delayed normalized values of the outputs forming the input vector P=[Z m0 m1 m2
it 1 kO k1 kEz i2 2 n0 n1 n2f ére used. The iargeted output is the normalized DO
concentration (i2_2). The responses (rajectories) of the training data, NN output and
the error between the input and the target are illustrated in the subseguent Figures
4.103 to 4.106. |

Table 4.27: Results for the twelve input vector to Elman ANNs and trained with frainscg algorithm

i
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Type of Activation functions& No of Training Learning MSE
ANN{(Network training hidden Epachs rates
structure) algorithm(trainscg) (layers)
NEWFF Tansig, Purelin i 3976 0.05 1.42528e-005
NEWFF Tansig, Purelin 3 4224 0.05 1.2438%e-006
NEWFF - Tanslg, Pur 4 7G74 0.05 9.95962e-007
NEWFF Tansig. 5 6083 0.05 9.9998e-007
NEWFF Tansig. Purelin 16 2800 0.05 0.84083e-007
NEWFF Tansig ., Purelin 15 3160 0.05 0.99833e-007
NEWFF Tansig, Purzlin 20 1028 0.08 9.68951e-007
dissolved axygen concentration

08

X}

04

02

0--.__..__*_4-_,*‘._5...__...*‘._ ——— — _,

-020

tLire{days}

. ; : L ! :
001 0.02 0-53 .04 0-05 008 007 008 G093 01

Flgure 4 103: Elman networks response with 12 inputs, 1 hidden layer, 2 and 3 hidden
neurons and 1 output {mode! 4).
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Eiman networks response with 12 inputs, 1 hidden layer, 20 hidden

neurans and 1 cutput {model 4) and Performance MSE achieved.
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Analysis of this network from the perspective of the graphs plotted for the traihing data,
NN outpu't and the error as a fuhct;’on of time as illustrated in Figures 4.103 - 4.106,
and analysis in addition o Table 4.27 which details the performance indices (MSE)
have shown that: '

% 2 network with 4 neurons in the hidden layer and which is trained with trainscg

4812

algorithm is just enough to identify the DO concentration model

. A smali convergenée err{;r as low as an MSE of 9.98802e-007 i3 alsc achieved.

» The network model trained with this algorithm is much faster than the cne trained
wiih traingdx. Moreover it takes only a couple of hundreds of iterations for the mse-

to converge to minimum as compared to the model trained with fraingdx.

Eiman network model4 with 12 Input variable and trainim algorithm.

Table 4.27 shows the results of the Eiman recurrent neural networks trained with the
Levenberg-Marquardt training algorithm {“trainim’}. Different number of hidden neurons
in the hidden layer, different number of training epochs, learning rates and the mean
squared error achieved for an input vector of twelve input variables consisting of the
normalized input airflow rate trajectory (i1_1), three delayed values of the normalized
input airflow rates, time, threé delayed values of time function, normalized cutput
trajectory (i2_2) and three delayed values of the normalized outputs. The input vector
formed'P=[Z m0 m1 m2 M_1 kO k1 k2 i2 2 n0 n1 n2J, and an output vector T=
[i2_2T are also tabled. The targeted output is the normalized DO concentration (i2_2).
The responses (irajectories) of the training data, NN output and the error between the
input and the target are illustrated in the subsequent'Figures 4.107 t0 4.110.

Table 4.28: Results for the 12 input variables to Elman NN and trained with trainim algorithm- model4

Type of Activation functions& No of Traming | Leaming MSE
ANN(Network . | training hidden Epochs rates

structure} slgodthmitrainim} neurons

NEWFF . Tansig, Purelin 2 24 0.05 8.890140-007
NEWFF Tansig, Purelin 3 ] 0.05 §.892727e-007
NEWFF Tansig, Purelin 4 28 .05 4.6925¢-007
NEWFF | Tansig, Pur=iin 5 & 0.05 2.94908e-007
NEWFE "~} Tansig, Purelin 10 § 0.08 8.03488e-007
NEWFF Tansig, Pu 15 & 0.05 4.34115e007
NEWFF Tansig. Purelir 20 6 0.05 1.4652e-007

148



{ow)ie Joue pue o8 yomeu ) o nding

g O B P
m 1 1 1 1 H
| m, L A B #m
| [ ! | ! =]
I DT S T
' 7 1 0 ' t =
bl it
: LI e e _p__“ 13
: 1 | 1 1 |
H
m S A SV SRS S
1 | 1 ! ?
1 | ) 1
e e g e g e =L 8
w [ s
1 1 | ) )
I U - §
m S S N B
r ) 1 3 |
RO S UGy SO A
L " ' H ' [ 3
1
f i [ @
i |
4 ! 5
1 S
de
0
.m
23
o
g
d
|8
o
8
a
B
o
13
]
8
=
g
1 =]
o
- L m )
) ) 1 ) d
1 ' 1 ~
S B R T -

timeldays)

timalgays)

Figure 4.107: Eiman networks response with 12 inputs, 1 hidden layer, 2 and 3 hidden

neurons and 1 output (modet 4):
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neurons and 1 output {model 4).

T T s
1 ) | 1 '
- ) ) ) ) *
mm%;:rsnl_-nnru.l_lusrl..gm
' b 1 ] ¢ =
) 1 1 1
_ _Lurxn.rn:r'x._-nurl;-w
| [ ' [ ﬂ =]
1 o |
e - \ I _ _ |8
| 1 1 1 =
) t 1 | .*
1111111 [ TR TN DY T |-
g "| 1 1 1 M; <
m. ¢ 1 1 +
: I R e e (&
w " _. _ | 1 <
1 ' t 1
L P D T T 8
® ‘ i h ( — =
' ] 1 |
|||||||||| Y TP RN MU |-
S i ey Rl tnbaly <
i t ! ! “
S [N TNV TRV (SURPRY R ¢ 4
1 1 1 1 | <
. AU | -
S8 s 39 ° %
(08))0 JOUR pus OB WO $) [0 RdING
e I et E ..-«-"il...m
LS ) S S N
R
.ka e e R = B A |
! i N | _ =
LSS U SO N O
L R e R i 1 1 [ o
i 1 I |
m ,,,,,,, S R T P —. 48
1 1 ) ) a
1 t
fh--d--- PO PRy R T R
( ' 1 i
g ' I t 1 _ 2
|||||| | Sp— a— P - R
mﬁ e T S
) 1 i )

...... [T RO DU B AP 3 - |
_m‘v | L. 1 ¥ Fv s
1 ) I

L T R
Nl 1 M o
1 1 -
S T S S
R B
| 1 _
" 1

2 s 3 3 8 = 3

(0940 Jaue pus o' oMIEU BU) 6 ININD

timeldys)

timnafciays)

a

Elman networks .response with 12 inputs, 1 hidden layer, 10 and 15

hidden neurons and 1 cutput (mode! 4).

- Figure 4.109

147



dissoived mygen cancentralian N . . Perfommanca is 1.4652a-007, Goal is 1o-006

12 T T ; T T : . 1
A R N
Wbt \ , . ! NN oulput ﬂ
£ T e S
ERHL 1 : o 3 1 ! 1 1
b e S S i R i s ey 3
-3 ! i ' £ : ) 1 Pl E]
2 1 3 1 ' H 1 1 1 ! %
Y1 S S S Y S Sy . ]
- { i J 4 ] ¥ ' i IL u]
'g 1 i 3 1 1 1 A
E i i t ' t 1 I 1 ! %
] e e s T o
c | | 'R E | 1 £
.- 2 =
= 1 ¥ | 1 1 H 1 3 ®
-7 -3 Ay T S S S S S ) QP { [
= ' P Pt t i 1 1 1 i
i . i 1 1 1 1 i 3 t t i
a3 l__ : i 3 1 i ' i T i
g I A S S S S S S
H i k ¥ 1 i 1 1 1 !
I 1 - H 3 i H 3 ! 1 1
.2

v : ' Il S 1 . 1 i
9 GOt 002 003 044 005 006 007 Q08 003 OF

time(days)

Figure 4.110: Elman networks response with 12 inputs, 1 hidden layer, 20 hidden
neurons and 1 output (modet 4) Performance MSE achisved.

Analysis of this network from the perspective of the graphs plotted for the training data,

resuftant NN output and the error as a function of time as illustrated in Figures 4.107 -

4,110, and analysis in addition o Table 4.28 which details the performance indices

(MSE) have shown that

»  a network with at least 2 neurons in the hidden layer and which is trained with
frainim algorithm is just enough to identify the DO concentration model trajectory
and that a convergence error as low as1.4652e-007 is also achieved with only &
number of iterations if the network has 20 neurons in the hidden layer.

+ The network mode! frained with this algorithm is the fastest of all the other
algorithms tested. | '

» Moreover it takes only a couple of hundred iterations for the MSE to converge to
minimum as éompared to frainscg and traingdx algorithms.

Thus, the general conclusion made from the three types of the gradient descent
training algorithms used to train the Eiman network model4 for twelve input variables is
“that the variabie  leaming rate "'backpropagaﬁon algorithm (framgdx) produced
maoderately low value of the MSE and exhibited not so good mapping of the target. The
network trained with the scaled conjugate gradient algorithm {frainscgj produced lower
MSE after a fewer number of fraining epochs, converged much faster for a small
number of hidden layer nodes, exhibited good mapping of the target. Levenberg-
Marquardt algorithm (trainim} was the fastest in convergence with only a few numbers
of epochs, very low MSE, belter mapping of the target than the other two. Also with
twelve inputs to the network two hidden nodes are just enough for the trainim to map

the target cf the DO process.
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4.8.13 Discussion of the results for Elman neural networks
' Four models have been developed and trained with three different types of training
algorithms in order to determine which model describes the best mapping for the DO
- process dyﬁamics ahd which training algorithm gives the best results. The models
developed are summarized in Table 4.16. Models 3 and 4 gave better results of the
mapping compared to models 1 and 2. The other observation js that the number of
| %ﬂput.variabies need not be twelve in order to approximate the DO process. Therefore
a variation of.modei 4, i.e. six input variables i1_1, i2_2 and their two delays will be
chosen for the DO process. This model is subsequently ana!y'séd and verified as the
best model. |
In terms of the training algorithms used, the Levenberg-Marquardt (frainim) algorithm,
performed better than the other algorithms in terms of the speed of convergence,
- accuracy of approximation, ability to drive the mean squared error to the lowest level.
- Adso, the error in the Levenberg-Marquardt {trainim) algorithm decreases much more
rapidly with time than the other two algorithms. Similarly the scaled conjugate gradient
descent algorithm converges faster than the resilient backpropagation algorithm
however it requires more iterations than frainim fo converge o minimum MSE. Also as
the number of input Qan'ab!es is increased, the number of hidden nodes also increases
for best mappings. Thus, from the three algorithms tested, the Levenberg-Marquardt
(trainlm} algorithm is chosen for ﬁ'aining the model of the DO process.

To increase the efficiency of training, and to decide when to stop training, the data is
divided into three subsets; one half is used for the training, one quarter for validation
. and the last quarter for testing. The section that follows provides the generalization
analysis, post-training analysis and regression analysis, of the resuits for the chosen
_model trained with frainim algorithm and verification of the suitability of the model and
the algorithm for the DO process identéﬂcatéon.

- 4.8.14 Best selected Elman model of the DO pracess and the verification results
The data for fraining, s}a?idation and testin.g were sampled at 1.041677*10° days
(1 miﬁ.303} intervals with 960 data sets collected. 480 data sets were used for training,
240 data sets for validation (for observing the performance of the models when faced
“with unknown situations or dynamic- changes of different amplitudes andfor
frequencies) and 240 data. sets for testing. The division was such that the testing set
starts with the second point of the considered time interval of the pé'ocess dynamic
behavior and takes every fourth point. The validation set starts with the fourth point
and take every fourth point, while the training set takes the remaining points. The data
- coitectéd included the present and past values of the contro! input u(k)and the DO
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concentration S, (k) as required by for identification purposes. The data gathered were

scaled for training purposeé. In this work the training data were normalized to the
range [0 1], as i1_1 a.nci' i2_2 foru(k)and So(k)réspectiveiy and the network was
created and irained using the normalized data and simulated. Eventually the network
~ output was. de-norma!ized, and a linear regression between the network outputs (de-
normalized) and the targels to check the quality of the network training was performed.
Figure 4.111 shows Matlab commands algorithm that were used to normalize data,
split the data, train the network, simulate and perform finear regression analysis.

Start

Load Data {P1, T1}
Y

Data:
Divide data into training, validation and test sets.

ik 2

Network Structure
Create - Recyrrent etc, Define
network size {(number of hidden
neurons, layers, activation functions
and sc on. '

y

Choose suitable network parameters
Leaming rate; Momentum term; Performance
Function; Training aigorithm, No. of epochs and
nstwork fraining goal

v

Present the network with the training set
{inputs and the corresponding outpuits)

F
* Train the network
v

Calculate the Network performance error
parameter - {MSE)

fs MSE < set goal

YES

Display regression
analusis

i 7

De-nomalize
Tha tarmeat

Flgure'4.111: The algorithm used to train the model of the Efman netwark.
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The above Matiab algorithm represents the code that creates a recurrent network. P71,
- T1represents the range of the normalized inputs and target vectors. k0, k1, n0 and n1
are the delays in i1_1' and i2_2. The best structure of the identified neural model
chosen was 6-6-1; i.e. 6 inpuis of the normalized airfiow rate with two delayed values
- kO and k1 and normatized DO process with two delayed values n0 and n1, 6 nodes in
the hidden layer and 1 node at the output.

Training was done by swétc;hiﬁg between the training, validation and fest data sst; a
technique known as ‘early stopping’ methodology. The training was performed in the
normal way on the training set until a reasonably small error (root mean square - RMS)
was achiaved for this set. Once a reasonable and continucusly decreasing RMS error
was achieved for all the sets of data, the training was stopped automatically and the
network was validated by applying different test data, not utilized before. Eventually the
fopology and configuration were finalized. This method was used to prevent over-
training. The error on the validation set will normally decrease during the inifial part of
the training. However, when the network begins 1o over fit the data, the validation set
error will start to rise, When this increase tontinues for a pre defined number of
iterations the training is stopped and the weight values are kept. The test setis used to
compare with the validation set to see if they exhibit a similar behavior. if validation
errors and test errors do not show a similar behavior, this may indicate a poor division
of data. In Figure 4.112 the mean squared error between the calcuiated values and the
target training, validation and test sets are plotted against the epoch (number of

iterations).

0.16

. ‘ ) " e Training
1 ' . == === Validation
T [ e e Togt

Sauered Emor
o 0O
33

I
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Epoch

Figure 4.112: Plot of the training. validation and test errors for a generalized network.
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The results of Figure 4,113 shows the plot of the mean squared error between the
calculated values and the target training, validation and test sets plotted against the

~epoch (number of the training, validation and test errars) with the convergence
perfarmance of the MSE of 6.15821¢® achieved for architecture with 6 hidden neurons.
Analysis of the pict tells that it requires only 29 iferations to map the target when
trained with frainfm algorithm.

Performance is 6.15821e-008, Goal is 0

— data1
w—-yglp—— Test
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| 29 Epachs

Figure 4.113: Performance MSE with 6 inputs, 1 hidden fayer, 6 hidden neurons and 1
output,

The post-training analysis of the plots showing regression analyses beitween the

network outputs and the corresponding targets (in original units} is subsequently done

as illustrated in Figure 4.114.

Best Linear Fit: A = (1.02) T + (-0.0173)
1.4 - — -

[ jote] Data Points
| R=0.998 i —e=——— Best Unear Fit
127 : e AT

0.8
q
6.6
0.4
0.z2;
oo i
o
0.2 .4 Q.6 a8 +
T

Figure 4.114: Post-Training analysis with Matiab command routine (postreg)
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Figure 4.114 displays the plots showing regression anéiyses between the network
gutputs and the correspcndéng targeis {in original units of data). The routine postreg is
designed to pérfcrm this analysis. Here the network output and the corresponding
targets are passed to postreg. Ut returns three parameters. The slope, and the y-
intercept of the best linear regression relating targets to network oulpufs and the
cérre%aﬁqn coefficient (R-valug} between the oufputs and targets. In the analysis it can
be seen that a perfect fit indicated by the solid line results (outputs are exactly equal o
targets), because the slope is equal to one 1.02, and the y-intercept is -0.0173, and the
R-value is éégso equal to 0.998 because the {it is good. This th'erefore confirms that the
selected neural model! is a good identifier of the DO process,

dissolved oxygen concentration

b
s
i
Fr==== (it AT T T T-————- r-TTT "
[ b ! ) '
_— ! ) . ! 3 !
8 ' L ' 1 1
i [ | ] 1
r-=-—-—- (it St e e Foomm ]
1 1 ' t ! 1 1
N r 3 i | 1 s
] i1 1 | ! i 1 i
T 1 i i ) + ;
r-—— - |- == - T——— - = e T—=— == [
L § ! 1 i 1
' ; ; ) | | 1 :
' 1 1 ! ' 1 [
B L H B P ' 1
g - - - fm - == e e d- = e
| 1 1 1 | ‘ ¥
\b ! 1 3 P 1 1
; I 1 : t 1
. 1 H 1T ! ' i
05-—---+ I~ m m e — - L e m e m e e e m e e — e o d——— - e —— o
t I 1 t : 1 ] :
' + ' H | i k] i
| s 1 i | + ) 1
1 b 1 H Al 1 I
O 2 . ; i . :
t ] 1 1 1 f H 1 i
) 1 1 | . 1 I
t ] r i P 1 1
f | i : : J '
0.5 : : :
) 0

0 001 002 0.03 004 005 0.06 0.0T 0.08 0.09 0.1

time(days)
Figure 4.115: De-normalized NN output trajectory of the DO process.

Figure 4.115 shows the de-normalized neural network output. This traieciory is an
approximate of the DO procéss model. This therefore conforms that the results of the
Qeriﬁcation is correct. The coefficients (weights and biases) of the selected model
trained with the command newslm are tabulated in the following Tables 4.28 and 4.29

respectively.

Table 4.29: Hidden layer weights and biases

Hidden layer bias (bw1)
Hidden layer weights {w1)
npts : .

: it_1 g KO ki 2z ol nt

aodes
1 -5, 1483 B3.4401 01207 -3.7573 -1.3918 11183 8.7504
2 502529 ‘-G. 1234 -£.7384 £.5185 -0.8094 -0.52558 - -8.1561
3 -3.6311 -5.0338 0.0385 G6748 06072 {33148 0 4865
4 12 8846 &.0814 1.1943 -3.8821 0. 2578 -1.7118 -18.7253
5 -608504 31782 0.6988 14511 -1.8511 -0.3012 8.2623
5] 52535 (.8855 0.2022 G324 -3.7314 12588 -3.8475
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4.9

4.10

Table 4.3¢: QOutput layer weights and biases.

Output -{.1514 3.2871 24115 -0.0087 -3.0925 1.0862
weights{vi)
Output - -0. 366
bias{bv1}

Comparison of the Eiman model and the Feedforward models developed.

From the analyses done and verification results of the two selected models both {the
recurrent network and the feedforward networks trained with the Levenberg-Marquardt
{trainim) algorithm the conclusion derived is that both models chosen can be used for
identification of the DO process since both networks yields satisfactory results for the
DO process.

Conclusion.

Systemn identification is concerned with deveioping the neural model of the DO
concentration trajectory based on the input and output data of the actual system. The
different rheihods of identifying the DO concentration trajectory using neural networks
have been studied in this chapter. The fwo types of neural network model structures
(the Feedforward and the Recurrent networks} used in this project for identification
have been explored. Several simulation resulis have been provided for different types
of the training algorithms (the Levenberg-Marquardt training algorithm, the scaled
conjugate gradient descent algorithm, the Variable Learning Rate Backpropagation

training algorithm, and the adaptive algorithm function).

The resulis have been used o show the algorithm effectiveness in identifying the
dissclved oxygen trajectory. These algorithms have been chosen because of their
salient features. Analysis of the results of all the models used and verified, together
with the aigorithms used, helped six input variables to be selected as the neural
network input. A 6-8-1 feedforward neural network has been verified to be an ideal
identifier of the DO process. Similarly a 6-6-1 recurrent network has been proven to
identify the DO process. Therefore these two structures wili be used te. design the
neural netwerk controliers which are discussed in the chapter 5. The Levenberg-
Marguardt training algorithm has also been adapted as the suitable training algorithm

for these networks.

Chapter 5 that follows gives an overview of how to design neural network controliers.
This is followed by the design and development of the neural network based
controllers for the DO process. The design will be based on the identified models of the
DO process. Particular emphasis will be put on Internal mode! control and feedback

Linearising Control design strategies to maintain the desired dissolved oxygen (DO)
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level of an aclivated sludge system by manipulating the air flow rate in the aerobic

reactor of an activated sludge process.
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CHAPTER FIVE

NN CONTROLLER DESIGN

The aim of controller design is to construct a controller that generates control signals
that in turn generate the desired output of the plant subject to given plant’s constraints.
Control of nonfinear systems is stilf a challenging area in control systems theory and
many efforts have been made lo study this subject. This chapter provides some
background cbncerm‘ng concepts in control theory, gensral issues involved in nonlinear
control design, and the neural ‘networks used for nonfinear control. Subsequently the
objectives of this chapter is to design a MISO robust conirol law for reguiation of DO
concentration of an Activated shidge process of WWTR via the airflow rale(non-affing
control input).This is to be achieved by varfous NN-based controller structures. In
particufar, a comparative study of the different approaches for NN controller design
used in this project, as the NN direct Inverse modsl control, internal model controf
{IMC) and feedback linearization controf strafegies to stabilize the dissolved oxygen
{00) Ievel of an aclivated sludge system according fo a given sef-point by
manipulating the air flow rate is performed.

Concepts of control systems theory

As explained in section 2.4, generally the aim of an auiomatic control system is to

maintain, direct or regulate some dynamic variable or state of the process to a desired

value in the presence of disturbances. Control is only one area in which neural

networks have been applied, yet control has its own unique set of problems to sclve

when applying any methodology. The main principle behind control is to change the

performance of the system fo conform to a set of specifications. This goal can be

complicated by uncertainties in the system, including noniinéarities. As a starting point,

the four building blocks of any clased loop contral system are:

+ the process to be controlled,

« the actuators that allow manipulation of the process,

« the control algorithm that calculates a proper action for disturbance rejection or set
point tracking, and

» the measurement devices that provide information on the important output
variables and disturbances.

These building blocks are illustrated in Figure 5.1 as a feedback control loop.
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Figure 5.1: General feedback control loop (P. Vanrolleghem., 1994)

Norsmally e control structure design comprises of two steps, namely input Joutput
sele-clion and control configuration selection. This latter step is a very important one,
because 2 wrong choice of control structure can put fundamental limits on the
performance of the fotal system (P. Vanrolleghem., 1994). In this project a basic
cantrol sieleagy is proposed 1o 1est the benchmark model. lts aim is to conbrol the
dissolved oxygen levet at a set point of 2 g/m” in the ASM1 mode! of the reactor by
manipulaton of the air flow rate. However it must be acknowledged that the activated
sudge precess of a WWTP is a multivariable process and that several variables can
be rnanipdated in order to achieve nitrogen and phosphorus removal. However, the
mairy contel signal in this thesis is the manipulation of the air flow rate to the aeration
fankc in crder to achieve an output which is the desired lavel of the dissolved oxygen
concentratory. The control should guarantee that aerobic bacteria are sufficiently

aeraated toachieve carbon consumption and nitrification,

Ove rviewof controllers for wastewaier treatment plants(WWTP)

In thiis sedion, a non-exhaustive overview is given on the various structural control
mod els the! have been used in wastewater reafment plants. In the control literature a
rumber ¢iwell established and deeply analysed structures exist and can be guoted

under the bilowing headings:

52_1 Conwenticnal classical feedback contro!

Manvy methods and approaches fo control have been developed and are available in
vancous tiwatures. These include: on-off controd, e.g. the simple PLC+echnigues, on-
off control with a time delay (for time control), classical control, including P! and PID
controllers, and cascade control. However, in the view of the characteristics of the
WW TP preeaess, which is nondinear, time variant (as a result of changing parameters),
rmuitivariabe and relatively slow, the performance in terms of effiuent quality has not

heer perfict. For example, even though PID contrallers are familiar to process
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operators and very popular because of the simplicily, easiness in operation and
robustness to modeling error, it is well known that the DO concentration cannot be
controlled effectively by using the PID controllers with fixed gain parameters. And the
manual tuning of PID controller is {edious and laboricus. To overcome the time-
consumed manual funing procedures of PID controllers, many on-line idenfification

methods have been proposed to obiain the process information.

Because of the importance of dissolved oxygen control many different control
strategies have been proposedv in the past. However, majority of these proposals have
been on the classical control point of view, among them {Olssen and Newell, 1999;
Flanagan et al, 1877; Chang Kyoo Yoo et al, 2003; Holmberg et al, 1983, Carisson,
1992; Lindberg and Carlsson, 1998; Lindberg, 1897; Van Lupe et al, 1998, or
Andrews, 1982; Olsson G., Jeppsson U., 19%4; Steffens,. ef ai) to mention just a few,
have contribited to the development of contro! strategies aimed at maintaining proper

levels of dissolved oxygen concentration in the aerobic tanks.

5.2.2 Optimal control

5.2.3

Optimal control schemes have also been applied most widely in wastewater treatment
processes for a fong time (Andrews J.F., 1974; Marsili-Libelli S., 1989; Herremans C.,
et al., 1997; Spanjers H., 1998b; Olsson G., Newell R.B., 19939). The coniroller design
methods have been deveioped which aim o devise a controller that extremises a
certain criterion function on the basis of effluent substrate concentration
measurements. When nonéinear models are the only reasonable means to describe
the process dynamics, only a few results of an analytical solution of the cptimal control
law have been published, among them, (D'ans G., et ai, 1971; Herremans C. e t al,
1897). A solution is to approach the optimisation problem by numerical means and a
number of exercises have been performed. The main problem with the resuiting control
strategies is that no closed-loop solution is obtained and that the optimal control
solution relies on the assumption of a perfect process model with fixed model structure

and parameters.

Feedforward control

Another control scheme that has been implemented in the past for WWIP is the
feedforward contrel scheme. In a feedforward confrol scheme the knowledge on
upcoming disturbances is used to the benefit of a treatment plant's operation by
preparing it to cope with for instance toxic loads, important hydraulic disturbances or
increased organic loading. In such set-up, the feedforward part of the controfler aims to

anticipate for the effect of measured disturbances, while the feedback part corrects for
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5.2.4

5.2.5

any deviations that result frem the deficiencies in process model, control limits and
inadequate measurement or prediction of the disturbance(s). Ratio control is a simple
feedforward condrol aigorithm that consists of setting a control variable proportional to
the disturbance. A classical example is the ratic confrol of the sludge recycle flow rate
to the influent flow rate that acls as the disturbance. The goal of the control action is to
maintain the sludge conceniralion in the aeration tank and therefore the
bicdegradation capacity nearly constant (Brett RW.J., et al, 1973; Andrews J.F,
1974).

Multi-lnputhuItf-Output control

Multi-input Multi-output {MIMO) control strategies have also been applied 1o WWTPs
with success. MIMO controller design technigues aim for complete elimination of the
interaction between loops (Steffens M, et al, 1897}. A good exampie of this is provided
by (Weijers S.R, 2000; Nielsen M.K., and Onnerth T.B., .1995). They showed the
advantage of employing a two-input control of a denitrification reactor, Both the carbon
addition and the oxygen supply were manipulated for the control of effluent nitrate.
Moreover, in this work the costbenefit was clearly proven at a full-scale WWTP.
However, (Steffens M, ot al, 1984; Weilers B.R., 2000; Lech R.F., 19782} And Lech
R.F., 1978b) also exemplified for a wastewater treatment system that interactions
between control loops may alsc lead to process instability.

Nonlinear control

As mentioned previously, there are cases when adaptive linear control schemes would
not perform well when faced with a highly nonlinear precess. This is because the
adaptive mechanism may not be fast enough to track changes in process
characteristics. Appropriately designed nonlinear controflers would therefore be
expected o perform better. An emerging field is that of nonlinear controller design by
the use of differential geometric concepts. The aim of the design is opposite to the use
of Taylor series expansion to linearise the nonlinear model prior to application of linear
model based controller designs. The nonlinear control technigue can prodﬁce a linear
closed loop sysiem on the basis of a nonfinear process and a nonlinear controller. This |
approach is called feedback linearization. The method is based on either nonlinear
change of coordinates or nenlinear state feedback. Several authors give a thorough
treatment of input-cutput and input-state feedback linearization in a continuous time

sefling.

Mlustrative examples of linearized models as portions of model based control systems

to ensure that the closed-lcop behaviour is finear can be found in (Weijers S.R., 1997;
Ko KUY, et al 1982; Bastin G., Dochain D., 1890; Lindberg C.-F., 1887}. The extension
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of linearising control towards MIMO models was presented by (Dochain B., 1891) and
applied to wastewater treaiment systems in (Vanrolleghem P.A., et all, 1991; Dochain
D., et all, 1987).-

5.2.6 Adaptive and robust control

5.2.7

Changes such as shifling the operating point in nonlinear control systems often lead to
parameter variations. These variations can affect the system accuracy and stability
saverely. Th‘rough the use of_ adaptive control, control engineers aim to make the
sysiem to automatically redesign the controller when parameter changes occur. Self-
tuning PiD regullétorS have been used in the adaptive control of dissclved oxygen in
activated sludge plants {QOlsson G., et all, 1985; Marsili-Libelli S., 19 80; Carisson B., et
al, 1994).

Robust conirol means the design of a confroller such that some level of performance of
the controlied system is guaranieed irrespective of changes in the plant dynamics
within a predefined class. Robust conirol theory has also been applied in the field of
wastewater treatment. More literature work on robust control ¢can be found in {Haarsma
G.-d., Keesman K., 1995; Steyer J.P., et all, 1985; Weijers S.R., 2000).

Neural networks and Fuzzy control

Several researchers have provided rigorous mathematical analyses of neural networks
in closed-loop conirol applications. There is a rich collection of nonlinear neural
networks conirol techniques using neural models and the inverse models, with each
technique dealing with different classes of nonlinear problems. However, the
background of all these efforts have been provided by Narendra and co-workers in
several seminal works in the early 1990s followed by Lewis and co-workers in the mid-
1980s (Sarangapani, Jagannathan. 2006).

The abjective of control design is to construct a feedback control law to make the
closed lcop system display the desired behaviour. Usually, stability and robustness are
the performance requirements for closed-loop systems. For linear, time invariant
systems it is straight forward to investigate stability of a system by examining the -
location of the poles in the s-plane. However, for nonlinear systems there are no direct
fechnigues. 7

For a control application, the inpuls of a neural network controller consist of
measurements of the process. Control action is then obtained as the network cutput.
Two approaches can be distinguished in choosing the control structure forrsuch a
process: the first one is process-driven and the second one is model-based. The first
approach deals with the separate control of the most important variables. Within this

category, the well-known problem of coniroliing the dissolved cxygen level is one of
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5.3

the most important issues for a good operation of the wastewater treatmant plants
since a good level of dissolved oxygen allows for optimal growth of microorganisms
used in the WWTP process.

Application of the NN in process conirol is usually done in one of the two ways:

1) Direct control and

2) indirect control.

Direct NN control means that @ NN is an active element of the controlier; usually this
type requires on-line training. Examples of direct NN controllers are. NN maodel
reference conircg, feedforward with NN inverse model conirol and NN intemal model
control. The indirect methods represent a more conventional approach, where the
design is based on NN model of the system to be controlled. In this case the controfier
is not itseif a NN. The idea is to use a NN o model the system io be controlled, and
then this model is employed in a more conventional confrolier design. Neural networks
for indirect control have been widely applied to system identification and indirect
control of nonlinear systems, while less work had been presented about the use of NN
3s direct controilers (Muang and Lewis, 2003).

in case a lot of qualitative knowledge is available, the fuzzy sets can provide an
excellent means of representing the control scheme in mathematical terms. Fuzzy
control systems have been designed for the different unit processes of wastewater
freatment plants, e.g. confrolling the influent pumping rate in a sewer system,
anaerobic digestion regulation dissolved oxygen control {Fukano T., 1883; Muller A, et
al 1997; Steyer J.P., et al 1897).

Nonlinear control Problem

Generally, the task of control systems can be divided into two categories: stabilization
{or regulation) and tracking {(or servomechanisms). In stabilization problems, a control
system is designed such that the state of the closed ioop system will be stabilized

around an equilibrium point. In the tracking control problems, the design ob;ectwe isto

~ construct a controller, so that the systems output tracks a given time-varying trajectory.

The following formal definitions suffice for the types of control schemes:

Asymptotic stabilization problem: Given a nonlinear dynamic system described by

x(k+1) = f(x(k),u(k)) find a controf law usuch that, starting from anywhere in the

region in ), the state xtendfo Gas t —> .
Asymptotic tracking problem: Given a nonlinear dynamic system described by

x(k + 1) = f{x(k),u(k))
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5.3.1

y(k) = h(x(k))
and the desired output trafectory y ;, find a control law for the input u such that, starting

from any initial state in a region in Q, the tracking error y(k)—y,(k) goes to zero,

while the whole state x remains bounded.
The focus on this thesis is on stabilization problems, i.e. the design objective is to

construct nonlinear neural networks controller so that the system output is stabilized to
a given set_—point y¥ (nonlinear DO concentration system). When the closed loop
sysiem is such that proper inéﬁai states imply zero steady state error for gl the time,
e yk)=y* ) Vk 20, the control system is said to be capable of perfect

stabilization.

There is no general method for the design of a nonlinear controller. However, there is
rich collection of alternative and complementary techniques, each best applicable to
particutar class of nonlinear control problems. In this study; neural networks based
control structures are selected for control problem design. These are presented in the
following seclions and eventually applied for the DO conceniration process under
consideration. As will be shown, the existence of such a controiler is guaranteed if the
system under consideration is controllable around the origin. The neura! networks will

be used to determine the control input u.

Design of nonlinear neural networks controllers for DO concentration

Models of dynamic systems and their inverses have immediate utility for control
design. in the nonlinear controf literature, a number of well established and deeply
analysed structures have been proposed and used to control nenlinear plants subject
to uncertainties and disturbances, These have been reviewed in the preceding
sections. The universal approximation capabilities of the muitilayer percepiron have
made it a popular choice for modeling nonlinear systems and for implementing
geherai-purpose nonfinear controllers. This section presenis the design and
development of neural network-based controliers for the DO concentration in the .
activated sludge process. In particular, the model of the DO process dynamics derived
in chapter 2 equation (2.24) is used for the design. A comparative study of the various
néurai network-based controllers such as the direct inverse control, intermal mode!
control and Feedback linearization neural networks control strategies is provided first
and then these techniques are used to design NN contrallers in order to maintain the

DO concentration level in an activated sludge system by manipulating the air flow rate.
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5.32 The Inverse Model of a Dynamic System

A siraight forward approach to model-based design of a controller for a nonlinear
process is the -adaplive inverse control. The inverse model of a sysiem plays an
important part in the theory of neural conirol design. This can be applied to a class of
systems that are open-loop stable (that are siabilizable by feedback) and whose
inverse is stable as well, i.e., the system that doss not exhibit non minimum phase
behavior. The strategy consists of the neural network inverse model that acts as the
controller placed in series with the process under control. in this work, the neural
network inverse model is trained in a similar way as for the process ideniification as
described in chgpter 4 and is ulilized to predict the manipulated airflow rate u to the
aeration tank fo bring the process .output {DO concentration) {o desired conditions of
the set-point of 2mg/l. The approach is explained for SISO mathematical modeis.
Consider the discrete time dynamic system described by Equation (5.1):
y(k+1)= fiy(k), y(k —Dyenen. vk —n+ D) u(k),u(k -1),....u(k—m+1)] {5.1)
In the control problem, the objective is to determine the input u(k) so that the system

behaves in a desired fashion. In many practical situations, the plant input is fimited in
ampfitude, i.e. there exists w g and u_, such that, for anyk: u, Sw(k)<wu_, . The
vector

x(k) =[y(k), y(k = 1)..coy(b —n+ Dyutk =1)..... u(k = m+ D] (5.2)
where nis the number of delays in the input states, and mis the number of delays in

the control inputs, denotes the actual state and thus it does nct include the current

control input u(k) such that the system’s output at the next sampling instant is equal to
the desired (reference) input r(k +1).Thus the task is to learn how to control the plant
described in Equation (5.1} in order to follow a specified reference r(k +1) minimizing
some norm of the errore{k) = r(k) — y(k) . The control input can be calculated on the

basis of the process model of Equation {5.1} according to:

u(k) = 7 (o), r(k +1)) {6.3)
This can be re-writtenas: ' '
u(le) = £ [r(k +1), y()yoomre k= 1+ 1,20k =T), oot~ 2 +T)] (5.4)

Generally, it is difficult to find the inverse function f™'in an analytical form. it can

however, always be found by numerical optimization techniques using the objective

function of Equation (56.9):
J(@(k) =[rk+1) — f(x(0), u(k) {6.5)
where the minimization of J with respect to u(k) gives the control signal

corresponding to the inverse function of Equation (5.4), if it exists, or the least-square
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5.3.2 The Inverse Model of a Dynamic System

A straight forward approach to model-based design of a controller for a nonlinear
process is the adaptive inverse control. The inverse model of a system plays an
impertant part in the theory of neural control design. This can be applied to a class of
systems thal are open-loop stable (that are sigbilizable by feedback) and whose
inverse is stable as well, i.e., the system that does not exhibit non minimum phase
behavior. The strategy consists of the neural network inverse model that acts as the
controller placed in series with the process under control. In this work, the neural
network inverse model is trained in a similar way as for the process identification as
described in chéiater 4 and is utilized to predict the manipulated airflow rate u to the
zerztion tank to bring the process output (DO concentration) to desired conditions of
the set-point of 2mg/l. The approach is explained for SISO mathematical models.
Consider the discrete time dynamic system described by Equation (5.1}
¥k +1) = fIyv(k), y(k —1),........ y(k —n+ D u(R),u(k - 1),.....u(k —m+1)] (5.1}
In the control problem, the objective is to determine the input u(k) so that the system
behaves in a desired fashion. In many practical situations, the plant input is limited in
amplitude, t.e. there exists u_, and wu_, such that, for anyk: v, Su{k)<wu,, . The
vector:
x(k) = [y(k), p(k =)oyl = n+ 1), u(l ~1)......u(lk —m+ D (5.2)
where nis the number of delays in the input states, and mis the number of delays in

the control inputs, denotes the actual state and thus it does not include the current

control input u(k) such that the system’s output at the next sampling instant is equal to
the desired (reference) input r(k +1). Thus the task is to learn how to control the plant
described in Equation {5.1) in order to follow a specified reference r(k+ 1) minimizing
some norm of the errore(k) = r(k) — y(k) . The control input can be calculated on the

basis of the process model of Equation (5.1) according to:

u(k) = £ (x(k), r(k +1)) (5.3)
This can be re-writien as; ' —
u(k) = £ r(k +1), (k)i y (o = n+ D u(k =1, s(k —m +1)] (5.4)

Generally, it is difficult to find the inverse function f~'in an analytical form. It can

however, always be found by numerical optimization technigues using the cbjective
function of Equation {5.5): .

J((®) =[rtk +1)— f(x(®),uk)]’ (5.5)
where the minimization of J with respect to u(k) gives the control signal

corresponding to the inverse function of Equation (5.4), if it exists, or the least-square
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5.3.3

approximation of it otherwise. A wide variely of oplimization techniques are available
and can be applied such as the Newton-Gaussian method or the Levenberg-Marquardt
cptimization. Thus, the simplest way o arrive at a system inverse neural model is it to
frain the neural network using the oplimization algorithms {o approximate the system

inverse model.

Development of Inverse Model of the DO concentration process

The various steps of neural network based inverse model controlier for the DO process
are presented Ijere- Inverse models provide the neural network structure which
represents the Afnverse of the DC concentration dynamics in the region of the
fraining/identification. There are several ways o carry cut this identification process.
The tech'nique in the thesis here is known as the generalized inverse training method
(Nbrgaard, M., 2000; Psaltis et al., 1988; Hunt & Sbarbare, 1991, and Hunt et al.,
1992). Here, the network is fed with the required future output (DO process) together
with past outpuls to predict the current input or the control action (airflow rate)

u(k) .The trained network then represents the inverse of the model of the system (DO

concentration dynamics). Once again, the assignment of the input nodes is as in the

case of the forward model (identified DO process models) but with the prediction of

So(k +1) replaced by the control input u(k) as is illustrated in Figure 5.2. The cenirol

input u(k) data is given. Here [is the number of delays.

u(k) PLANT So()

+ .
e(k)| TRAINING yad A
ALGORITHM [\ :

(k) NEURAL
NETWORK

YYYVY)

» Z—I

» Z-l

Figure 5.2: Generalized method for the training the Inverse Neural Networks for control

The inverse model is then trained based on the mean-squared error between the

desired signal u(k) and the signal produced by the modelu(k).

164



5.3.3.1 Inverse model of the DO process
The above eguations are appiied to the model of the DO concentration under study,

i.e.

So(k+1)=So(k)+h‘{—§-[so..,,<k)~So<k)]+KLa(u(k))[So,,,,(k)—So(k)]wso(k)} (56)

S,(k+1)=S,(k)+ h{% S, ()= S, (0)]+ K, (1—e )8, (k) ~ Sy (k)]+ 750 (k)}

where the cutput of the process, y(k)=S5,(k) and all other terms have been defined.
The considered.fime series is based on the measuremenis of system inputs and
outpuls for some period of time, K =0,K —1.

The inverse model equation is derived as follows:
Sok+D=So()=h" L (S gy = S5 () ~Hrip 'K\ (S — Soh) =

=-hKe " (S, — 5, (k)

From here,

Solk+D) = So0) =" (S0, = S6 ()~ =K, (S = So )
= i 5.8
h Kl (S()sat “SO (k) ( )

K, ¥(E)

Logarithm is taken to both sides of the equation, thus:

S0tk +1) =S50~k 2 (S5, =500~ Hrip = KKy (S = S0 )

Kaull) = 7K, o — S50

(5.9)

From here, for S,(k+1)=S,%

So* = So®) = LS4, =S50~ 150 =1 K, (Soue = So(h)
{5.10)

u(k) =—- v
K, : h K (Sgm —Solk))
The equation for u(k) represents the inverse nontinear model of the DO concentration.

This equation can be implemented using NN theory. Inputs of the NN are formed on
the basis of the measured present and past values of the DO concentration plus

vaiues of the controf input, set point value, inflow concentration for the DO and oxygen
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uptake rate. The oufput of the NN inverse model is the control signalu(k). The

structure of the inverse model is as shown in Figure 5.3.

':m Som

So’""J
S, (k)
S,(k—1)
Solk =71 | \NVERSE NN MODEL u(k)
u(k—1)_ OF DO >

7 CONCENTRATION
u(k —2) R PROCESS
u(k — 3) IMPLIMENTATION

- g

u(k —m)

Figure 5.3: /O NN Inverse model of the DO process for common case

5.3.3.2 Feedforward NN Inverse Model development

The data for training, validation and testing were sampled at 1.041677e-* days
{1min.30s} intervals with 960 data sets collected. These data sets are open loop data.

480 data sets were used for training, 240 data sets for validation (for cbserving the
perfarmance of the models when faced with unknown situations or dynamic changes of
different amplitudes and/or frequencies) and 240 data sets for testing. The division was
such that the testing set starts with the second point and takes every fourth point. The
validation set starts with the fourth point and takes every fourth point, while the training
set takes the remaining points of the system trajectory and control input. The data

collected inciuded the present and past values of the control input u(k)and the DO
concentration S, (k)as required by for identification of the inverse model. The data
gathered were scaled by normalization to the range of [0 1], as i2_2 for S, (k) as the

input to the network and i1_1 for u(k)as the output of the network respectively.

Similarly the reference was also scaled as well rso11 as the normalized oxygen upiake -
rate and Soin11 as the dissolved oxygen and the nelwork was created and trained
using' the normalized data and simulated. Eventually the network output was un-
normalized, and a linear regression between the network outputs (un- normalized) and
the targets to check the quality of the nelwork training was performed. The Matlab
commands used to normalize data, split the data, perform linear regression énd train

the inverse feedforward network can be found in the appendix C.7:script-INVERFF.m
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In this script filte, P1if and T1if represent the range of the normalized inputs and target
variables. KO, k1, k2, n0 and n1 are the delays in i1_1 and i1_2. rso11 represents the
normalised oxygen upiake rate éncé Soint1, the dissolved oxygen concentration in the
input airfiow. The best structure of the identified neural model was 8-8-1; i.e. 8 inputs
consisting of the normalized reference signal j1, normalized forward model output,
with detayed values k0, and k1, and the two delayed values k0 and k1, of normalized
airflow rate. in addition to rso11and_ Soin11 with 8 nodes in the hidden layer and 1 node
at the outpui. The fraining algorithm used was the scaled conjugate gradient trainscg.
This NN structure is used for ti'ze NN feedforward inverse model training.

Training was done in the same way as for the forward model identification by switching
between the taining, validation and {est data sef; a technique known as ‘earfy
stopping’ methodology. The fraining was performed in the normal way on the training
set until a reascnably small error (root mean square - RMS) was achieved for this set.
Once a reasonable and continuously decreasing RMS error was achieved for all the
sets of data, the training was stopped automatically and the network was validated by
applying different test data, not utilized before. Eventually the topology and
configuration were finalized. This method was used to prevent over- training. The error
on the validation set will normally decrease during the initial part of the training.
However, when the network begins to over fit the data, the validation set error will start
fo 'rise. When this increase continues for a pre defined number of iterations the training
is stopped and the weight values are kept. The test set is used to compare with the
validation set to see if they exhibit a similar behavior. If validation errors and test errors
do not show a similar behavior, this may indicate a poor division of data. In Figure 5.3,
the mean squared error between the calculated values and the target training,
validation and test sets are plotled agéinst the epoch (number of iterations).

0.8

| f

0.6 4 =

0.5 ' i Training
: ' i == =x» Validation :
04.- | wmams Test -

Souared BEmar

0.3 - . -
oz- ' -

0.1+ -

Epoch
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Figure 5.4; Plot of the traihing. validation and iest errors for a generalized network.

This plot shows that with about 25 training epochs the training, validation and test
errors reduces to minimum.

The results of Figure 5.4 show the plot of the mean squai’ed error between the
calculated values and the target training, validation and test sets plotted against the
epoch {number of the training, validation and iest errors) with the convergence
performance of the MSE of 3.64254¢e° achieved for architecture with 3 hidden neurons.
Analysis of the plot tells that-it requires only 100 iterations to map the target when
trained with frainscg algorithm.

o FPerformance is 0.00146892, Goal is O

10 , . : :
data1i
| ==Ek= Test ]
@ | nut s - \faidation | |
ﬁ i Training
=
E 10™ -
% 107 __
; |
= 4
-3 um--
10 - : !
0 5 10 15 20
24 Epochs
Figure 5.5: Performance MSE with 7 inputs, 1 hidden layer, 8 hidden neurcns and 1

_output.

The post-training analysis of the piots showing regression analyses between the
network ocutputs and the corresponding targets (in original units) is subsequently done
as illustrated in Figure 5.5.

Beast Linear Fit: A = {(0.025) T + (0.927)

< Data Points :
R = 0.0t44 o i ——— Best Linaar Fit
t.3- ™ H e A =T i

Figure 5.6: Post-Training analysis with Matiab command routine (postreg)
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Figure 5.6 displays the plois showing regression analyses between the nstwork
outputs and the corresponding targets (in original units of data). The routine postreg is
designed to perform this analysis. Here the network output and the corresponding
targets are passed itoc posfreg. It returns three parameters. The slope, and the y-
intercept of the best linear regression relating targets to nefwork outputs and the
correlation coefficient (R-value) between the outputs and iarge.ts. In the analysis it can
be seen that the fit is not perfect as indicated by the solid line results (outputs are not
exaclly equal to targsts), because the slope is equal to 0.025, and the y-intercept is
0.927, and the R—vaiue is also equal to 0.0144 because the fit is not good. This means
that that the se ected neural model does not identify of the inverse dynamics of the

forward model exaclly. i .
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Figure 5.7: (a) De-normalized NN output trajectory of the Inverse feedforward neural
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Figure 5.7; (b} De-normaiized NN output trajectofy of the Inverse neural mod'et
zoomed in the range {0.008-0.016) days.
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Figure 5.7 (c): De-normalized NN output trajectory of the Inverse neural model zoomed
in the range {0.07-0.082) days.

Figure 5.7 shows the comparison between the de-normalized neural network output

togsther with training data and the training data for the airflow rate. This is the closest

trajectory as an approximate of the input. This therefore conforms that the results of

the verification is moderately accurate. The coefficients {weights and biases) of the

selected inverse mode! trained with the command newff are tabulated in the following

Tables 5.1 and 5.2 respectively.

Table 5.1: Hidden Iayer' weights and biases for the inverse model

Hidden
Hidden layer weights { wif) fayer
' biases
inputs
\ ji i2_2 no ni k0 k1 rsoll bwif
nodes
1 0.57586 1.3864 26712 24239 -0.0533 ~1.4367 -0.6528 53583
2 ~3.7951 | 0.9564 14114 1 01770 1.7127 0.3367 0.26835 22836
3 1.1977 | -1.8541 | ~1.9687 | 17708 1.2627 -15979 | -0.6042 0.4815
4 -2.1401 | 1.1146 -1.56476 1 -1.4382 § 1.7517 1.7461 -0.4261 -2.8118
5 -1.2051 | -2.0097 1.7189 { 21615 | 04600 -0.5772 1.6436 4.0500
3] -1,3238 | 1.8247 -0.0580 § 1.6083% i -1.8046 0.2274 -2.7986 23236
7 1.8547 0.3825 0.7962 1.6842 | -1.8136 | -0.518% | -2.2385 21345
8 -1,2380 | 1.7638 0.3414 17074 | 19837 1.7937 -1.1506 -2.8342
Tabls 5.2: Qutput fayer weights and biases for the inverse mode!
“Outputiayer | -0.8028 | 0.7178 00675 | 0.5584 | 04341 §.2392 .0591 0.0160
weights({vif)
Qutput layer | 0.7962
bias {bvif)
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The same procedure was used to oblain the inverse modal of the recurrent madel and
the verified results are given in the proceeding section.
5.3.3.3 Elman NN Inverse Model development

After testing different numbers of hidden layers and hidden neurons for the Elman
network, a structure with 10 hidden tansig neurons and 1 linear output neuron was
created to model the inverse of the DO process. The input variables {o the network
were selected as the normalized reference signal i1, the normalized DO process i2_2
with its two time delays n0, n1 and the first delay of the normalized target signal kO.
Thus, the structure for the inverse neural model was 5-10-1; i.e. 5 inputs, 10 hidden

neurons and 1 ouiput.

Training was done in the same way as for the feedforward inverse model by swiiching
between the training, validation and test data sets. In Figure 5.8, the mean squared
error between the calculated values and the target training, validation and test sets are

piofted against the epoch {(number of iterations).

wem— Training |
==« » = Validation ' =

= = Test

0 2 4 6 8 10 12 14 16 18 20
Epoch

Figure 5.8: Plot of the training, validation and test errors for a generalized network.

The results of Figure 5.9 show the plot of the mean squared error between the
calculated values and the target training, validation and test sets plotted against the
epoch {number of the training, validation and test errors) with the convergence
performance of the MSE of 0.000687654 achieved for architecture with 10 hidden
neurons. Analysis of the plot tells that it requires only 13 iterations to approximate the

target when trained with #rainscg algorithm,
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that the selected neural mode! does not approximate the inverse of the forward model

exacily.
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{b) De-normalized NN output trajectory of the Inverse neural model

Figure 5.11

zoomed in the range (0.013-0.018) days.
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Figure 5.11 {c). De-normalized NN cutput trajectory of the Inverse neural model
zoomed in the range (0.075-0.082) days.
Figure 5.11 shows comparison between the de-normalized neural network output
together with training data and the training data for the airflow rate. This trajectory is an
approximate of the controf input airflow rate. This therefore conforms that the results of
the verification is correct. The coefficients (weights and biases) of the selected trained
inverse mode! trained with the command newelm are tabulated in the following Tables

5.3 and 5.4 respectively.

Tabled.3: Hidden layer weights and biases for the inverse Eiman model

Hidden layer weights Hidden layer
blases
pufs
71 i2_2 n0 nl %0 k2 rsolt Sot1 bwie

nodes
1 $.0259 1.0573 | -0.3504 | 0.2422 | -0.0381 | -1.5174 | 0.0052 | 0.0258 -1.3835
2 -G6.0132 | -1.2083 ) 04153 | 08929 | -1.1910 ;1 -0.5148 | -0.0026 | -0.0132 2.2833
3 0.0265 | 2.3953 | 09021 | 00437 | 07771 | 02638 | 00053 | 0.0265 -3.3242
4 -3.1008 | 02560 | -0.4656 | 0.9709 | 05716 | -0.5379 { -0.0202 | -0.1008 -0.4769
5 0.0145 | 06288 | -0.3021 | -0.0295 | -1.3047 | 0.2537 | ¢.0028 | 00445 0.0598
6 00271 | -1.3552 1 0.6139 | -1.2328 | 0.2269 | -1.8230 | -0.0054 | -0.0271 1.6867
7 -0.0491 | 01414 | 0.8528 | 0.5006 | 0.7760 | (.0628 | -0.0098 | -0.04813 -(.8513
g 0.00057- | 1.5158 | -0.3462 | 13053 | 0.4735 | 05456 | 00001 | 0.0005 -1.5101
9 00408 | -05124 | -0.0855 | 1.0770 | 15674 | 1.3518 | 0.0081 | 0.0406 -2.6412
10 30102 | 66046 | 02844 | 08115 | 13906 | 0.7530 | -0.0020 | -0.6102 -, 2687

Tabla 5.4: Qutput layer weights and biases for the inverse Eiman model

Qutput 0.2947 0.5457 -0.2183 § -0.3860 0.3878 08312 | 05248 | -0.1047 15588 -3.1382

bias

{bvie)

Qutput (.6853

weights

{vie}
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5.3.4 Discussion of the results for the two inverse models developed

5.3.5

The two inverse models developed; namely the Elman inverse network structure and
the feedforward inverse model structure yields approximate resulis for the inverse
problem. However, the Elman network required a large number of the hidden neurons
in order to produce better resuits than the feedforward network. Although the training
paramsters set ensured a low convergence of MSE, the responses did not fit the
targets exactly. This is evident on the frajectories plotted in both the Elman and the
feedforward networks. Similarly, the regression analyses performed on both networks
by passing the ngtwork outputs to the correspanding targets show that the fits were far
from linear and thus are not very good. This can be seen from the R-values
{correlation coefficients between the outputs and the targets) which are very low in
both cases. However, because the target magniiude is quite big and fluctuating, the

error margins are of accepled order.

Once an inverse model has been trained there are different ways in which it can be
used for conltrol. Thus the two inverse models developed are further used fo implement
the inverse model controller and the internal model controlier in the following sections.

The Implementation of the Inverse Model Controller

Many control structures have been proposed, most of which are adapted from linear
control. In this section direct inverse control and the internal model control structures
are tested. Direct inverse control is the simplest solution for conirol that consists of
connecting in series the inverse maodel of the DO process and the DO plant as can be

seen in Figure 5.12. If the inverse medel is accurate, then the output of the system
8, (k) will foflow the reference §77 (k) with the delayed samples of control and output

feadback to the inverse model input.

Z—f
=12

u(k S,k
Inverse model ® Plant of )=

S, 7 (k)

Z—I
/=12

Figure 5.12: Structure for Direct inverse control
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The two neural models for the recurrent and feedforward neural networks were created
using Neural network toolbox residing in the Matiab environment and the structures of
direct inverse controf (feedforward and recurrent) were implemented in the Simulink
environment as depicted in Figure 5.13 and 5.14.
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Figure 5.13: The simulation scheme of direct inverse controt {(Eiman) structure,
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Figure 5.14: The simulation scheme of direct inverse control (Feedforward) structure

For each coniroiller structure, off-line simulation was performed of the time responses
for the contral signal and system output for a constant reference value of the set-point
of 2mg/l. Figure 5.15 shows the off-line simulated time responses for both struciures.
As can be seen the rise time for beth schemes is the same. However the steady state
values are different. From the output trajectory of the feedforward inverse control

scheme as depicted in Figure 5.15 {a), the steady state error is -0.4, whereas for the
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5.3.6

Elman inverse control scheme as depicted in Figure 5.15 (b), it is +0.3. This may be
due io the fact that the exact inverse NN mode! of the plant was not achieved. The
Efman network settles below the set point while the feedforward setiled above the set
point. The results show that this design and configuration of the NN control is not
effective if it is based only on the inverse'moéeé approach.
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Figure 5.15: Time trajectories comparison of the two networks with a constant set-point

The Implementation of the Internal Model Controller

Once the inverse model has been trained, then a convenient way to implement an
inverse neural network control technique is via a noniinear internal model structure
which is basically an extension of the linear internal model! control (iIMC) method. The
biock structure is ilusirated in Figure 5.16. In this scheme, both the forward neural
network model {i.e. one which predicts future outputs given previous inputs and
autputs) and the inverse model (i.e. the one which predicts the required inputs given
previoﬁs inputs and outputs and a desired future output) in the feedback loop are
used. The relationship between the forward and inverse neural network models are as
depicted in Figure 5.15. The IMC has been thoroughly examined and shown to yield
transparently to robustness and stability of the closed locp system (Morari and Zafiriou,
1989, Economou et al, 1986). The subsystem F is usually a linear filter which can be
designed to introduce desirable robusiness and tracking response to the closed loop

system.
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Figure 5.16: Neural network structures in intemal model control (IMC) configuration

This structure is implemented in the Matllab/Simulink environment by the biock
diagrams of both the Feedforward and the Elman structures as iliustrated in Figures
5.17 and 5.20.

5.3.6.1 The Implementation of the feedforward Internal Model Controller in Simulink
This structure is implemented in the Matlab/Simulink environment by the block diagram
of the Feedforward structures as illustrated in Figure 5.17.
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Figure 5.17: The simulation scheme of internal model control with Feedforward NN
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Figure 5.18: Comparison of time trajeciories for the DO process and the feedforward
NN DO process model in IMC structure with a constant set-point of 2mg/l.
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Figure 5.19: Error trajectory between the DO process and the feedforward NN DO
process model in IMC structure with a constant set-point of 2mg/i.
Off-line simulation was performed of the time responses of the system output and NN
DO process model for a constant reference value of the set-point of 2mg/l. Figure 5.18
shows the off-line simulated time responses for the forward and inverse structures
connected in the internal model scheme. As can be seen the rise time for both
schemes is the same. The trajectory of the error signal between the inverse model and
the forward model is also illustrated in Figure 5.19. The steady state error tends

towards zero.
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5.3.6.2 The implementation of the Elman Internal Model Controller in Simulink
This structure is implemented in the Matlab/Simulink environment by the block diagram
of the Elman structures as illustrated in Figure 5.20.
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Figure 5.20: The simulation scheme of internal model control with Elman NN
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Figure 5.21: Comparison of time tra}ectorzes for the DO process and the Elman NN DO
process model in IMC structure with a constant set-point of 2mg/!.
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Figure 5.22: Error trajectory between the DO process and the Elman NN DO process
' model in IMC sfructure with a constant set-point of 2mg/l.

Off-line simulation was performed of the time responses of the system output and NN
DO process model for a constant reference value of the set-point of 2mg/i. Figure 5.21
shows the off-line simulated time responses for the forward and inverse struciures
connected in the intemal model scheme. As can be seen the rise time for both
schemes is the same. However the NN DO process model exhibits initial oscillations
which eventually die away. The trajectory of the error signal between the DO process
model and the forward model is also illustrated in Figure 5.19. The steady state error
0.25

Thus the structure implemented with the feedforward networks performs better than
the Elman though the required system output is not achieved for both networks

simulated.

5.3.6.3 Discussion of the IMC simulation results
The results for both the intemal model control structures (IMC) indicate better
performance in comparison with the case of the inverse model control, but still the
desired behavior of the system ouiput can not be achieved. The filter is nct
implemented here. If a Pl controller may have been included in the design to act as a
filter, may be the resulis could have improved. Thus for future improvement a Pl

controller should be considered in the place of e(k) which is usually a linear filter and
can be designed to introduce desirable robustness and tracking response to the closed

loop systemn.
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54

Controller design for the model of the DO concentration by feedback

Linearization _

As mentioned previously, there are cases when adaptive linear control schemes wouid

not perform well when faced with a highly nonlinear process. This is because the

adaptive mechanism may not be fast enough 1o track changes in process

characteristics. Appropriately designed nonlinear controller would therefore be

expected to perform betier.

The use of neural network model based controllers has already been mentioned.

Another emerging field is that of nonlinear controller design by the use of differential

geometlric concepts {Isidori, 1989; Kraviaris and Kantor, 1990; Slotine and Li, 1891).

Also the combination of feedback linearization and continuous-time recurrent neural

networks has been studied {Nikolaou and Hanagandi, 1993).

Basically, two approaches of feedback linearization can be distinguished:

s Input-Output feedback linearization in which case, the input-output relationship of
the closed ioop system must be linear, and

» Input-State feedback linearization in which the relationship between the input and
the states of the closed loop system must be linear.

in this work, only the first case is considered because the developed neural networks

models are inpui-output models. A combination of neural networks based process

models with input-output feedback linearization techniques is used o provide the

control design. Input-Output feedback linearization is a method used to find a static

state feedback conirol law¥ ; such that the closed-loop system has a linear input-

output behavior. A schematic of this strategy is shown in Fig.5.23. In this figure the

relationship between yand yis nonlinear and between y and vis linear; futhermore

the relationship between wand v, wand xis also nonlinear where vis a reference

input for the nonlinear controller,

Lo e e it 1
ot ' '
npu : - v E
i . . V Cutput
v 5 Noni:n.ear /N Nonlinear ; ip
: mapping . Process :
; »  (Controller) 4
! x .
' '
' ]
: H
Linear system

Figure.5.23. Input-Cutput feedback linearization
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5.4.1

In the case of continuous-time systems, there exists a number of ways for the design
of feedback linearization for affine systems. Affine systems are those in which the input
u appears linearly in the state-space equation. Such a system can be represented as:

x(0) = f(x,0) + g(x,0u®) {5.6)
y({)=h(x,t)

Where, x € R"is the state vector, u e U < R™is the input vector, and ye Y cR%is
ocutput of the system. f(x)andh(x)are smooth vector fields and g(x,f}is an

nxmmatrix whose columns are smooth vecier fields having continuous pariial

derivatives of any required order.

Theory on Input-Output Feedback Linearization

To start with, consider the following analytic non affine MIMO discrete-time nonlinear
system:

x(@) = f(x(D) + g(x(D)u(t) x(0) = x,

y(k) = K(x,1) {5.7)
Where, x € Xis the state vector, w eUls the input vector, and y e Yis output of the
system. X is the aliowed values of x, Uis the allowed values of u ,andY is the allowed
values of y, f,g and hare smooth vector fields and gis an nxmmatrix whose

columns are smooth vector fields having coniinuous partial derivatives of any required
order. The cbjective of input-output linearization is to ¢btain a nonlinear control in the

form:

u = p(x)+q(x)v : (5.8}
Whare p and g are variable parameter.s in such away that the resuiting closed ioop
control system is linear and results in a linear transfer function between y andvy given

in Laplace domain by:

Where, ris the relative degree of the nonlinear system. Assume that the system given
by Equaﬁon (6.7) has an equilibrium pointx_,u,, ie. f(x,,u,)=x,.The input-output
finearization is based on the idea of a relative degree of the process under control. The

relative degree is the smallest order of derivatives of the output y, for which the output

- depends explicitly onu;; J =i;_n.;. The relative degree at operating pointx, is defined

by the integerr which satisfies:
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LgLth(x) =0 Vi< randx near0

i1 : (5.10)
L.L, h(x)#0 V xuear )
Where, L . and L, are the Lie derivatives defined as:
2 ch
L h(x) = Z{ f,.(x)g(x) (5.11)
i oL h
LLHx) =2 g(x)——x) (5.12)

=]
While the hégher'order Lie derivatives can be written as:
Lik(x)=L, (L5 h)
{5.13}

The time derivatives of the sysiem outpui can be expressed as aigebraic function of

thesea Lie derivatives as follows:

dy _
}? = th(X)

'y . (5.14)
=L

d’y
dr”
The proceeding equations show that the relative degree represents how many times

=L h(x)+ L, L h(x)u

the output must be differentiated with respect to time to explicitly recover the inputu .
From Equation5.9 and 5.14 the feedback control law can be expressed by the

following transformations:. -

1. Express v from Equation 5.9 as
V(s)=(B,5" +.et Bs+ By)y(8) (5.15)
and transform it under zero initial conditions to time domain, then
dy dy
= Font ff—+ (t) {5.16
V( ) ﬂr dfr ﬂi dt ﬂﬂy )
, _ dy
2. Express the higher order derivative as o as follows
d'y dy dy
=v(t)— —_— .= t {5.17
b v v(t)— B - B, r By (@) { )

3. Expressing the derivatives of y(#) by their Lie derivatives according to equations
5.14, then
BIL, h(x)+ L,L,  HxuO =V = B, oL, W)= BLIX) - Boy(t)  (5.18)
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5.4.2

4. Expression of u(f)from the above equation gives

_ v(t)= B, L, h(x)—- ﬁr—lLf’_lh(x) ----------- =P Lh(x) - Byy(t)
B.LL7 h(x)

where ¥(t) = h(x). From the last equation 5.20 the expression for u(f)can be written

ut) (5.20)

in short as:

ORW AL
u(r) = = - (5.21)
AL L RG)

Similar derivations ¢an be wrilten for the discrete time systems.

The above appreach is applied for the design of NN noniinear finearizing controiler for

the DO concentration. The considerations are in disgrete time domain.

NN Nonlinear Controller design for the model of DO by VO Linearization of the
closed loop system

The procass for the design of the nonlinear linearising controller is based on the
following:

e Selection of a linear reference model as a desired model for the closed loop

linearized system of the form described in the following way:
x(k +1) = ax(k) + bv(k) x(0)=x, {5.22)

e Comparison of the desired and the DO _modei and derivation of the expression for
the DO controller.

5.4.2.1 Representation of the DO model in a standard affine form

The model of the DO concentration process is nonlinear and the discrete-time

dynamics are expressed as:
S, (k+1)=S,(k)+h {% [So,, ) =S, ()] + K a@(k)]S,,., (F) — So (k)] + e (k)} (5.23)
For K,a(u(k)) = K,(1—e **®)the equation 5.23 becomes

=5,(%) +h %Sﬂfﬂ d —IQ;SO(k)"' h‘Kl (Spser —So (k) —

(5.24)
~h K e M (S, - So () + h.’}a
If it is introduced thatul(k) = ™%, Equation 5.24 can be written as
S, (k+1) =S, ()~ %So FHK, (S - S, (k) -
0 (5.25)
—B' K (S, —So(kNul(k)+h }—So,.,, +h'r,

From here the standard affine presentation of Equation 5.23 is
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Sotk+D = f(So(k) + g(So(kDul + £, (SN0 (k) + £, (SoWDrp (k) (6.26)

Where, h'is the sampiihg time and all the other terms have béen'deﬁned in Chapter 2.

F(Sy(B) = S, (B1— K %] YR, (g — S () (5.27)
(S, () =[S, (B) - S, (B]* K, (5.28)
£ (S (k) =h'-§—=Coﬁstant - (5.29)
£:(So(k)) = i =Constant ' | (5.30)
ul(ky=e™"® (5.31)

The expression for the control function u(k) is obtained as:

1
u(k)=- %

In(ul(k)) (5.32)

A block diagram of the linearized closed loop system is shown in Figure 5.24, Thus

using the nonlinear mode! u(k) can be easily obtained where additionally some type of

a linear controller designed to control the linearized by the nonlfinear controller closed

loop system in order to follow the set point S,,* can be used.

' Linearized System ;
; Linearizing Nonlinear v S,
e Vi H
Soy, & Controlier H Transform | Do [
~ : Nonlinear Process vl
E Controller '
' '

Figure 5.24: Basic idea with the nonlinear linearizing controller

5.4.2.2 Calculation of the linearizing controller
Feedback linearization is a common methed for controliing certain classes of nonlinear
processes. In this section the DO process conirol system applying the Feedback
linearization technique that is based on a neural network model of the process is

- derived. The input to the DO prbcess is the manipulated airflow rateu(k) and the

output is the DO concentration S, (k).

Knowing the relative degree, the theory of input-output feedback linearization which
has been presented in the previous section is used fo design the controlier. A first
order desired linear mode! is derived describing the BO process. The eguation of the

desired process is:
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S g serea T = aS o peired F) FBV(K) . S, (0) =S, _ - {5.33)
Where aandbare the parameters of the desired linear model. The .parameterais
selected in such a way that the desired model is stable and has desired behavicr. By
feedback linearization technique the closed loop system containing the neural network
controlter and the nonlinear DO process are required to behave like the linear state-
space model given 'by equation {5.33). Thus, equating (5.28) with (5.33) the following
feedback iinearising contro! law is deduced.

Solk+1)= S5 g (K +1)

534
= aS, (k) + bv(k) = (S, () + g(So (k)ul + £S5 (K)S g1 (k) + £, (So (KD)r;, (K) ©34
From which the following feedback linearizing control law ul(k) is deduced as:

() = BB+ 0 = S (So () = 21(So (S0 () = 8250 RN B) 5 5

g(S, (k)
This is the model of the linearizing controlier.
Selecting the virtual control v(k), as an appropriate linear combination of past outputs
plus the reference enabies an arbitrary assignment of the closed-icop poles of the
linearized by the nonlinear controfier system. Thus, Feedback linearization is a

nonfinear counterpart to pole placement with all zeros canceled (see Astrom &
- Wittenmark, 1995).

5.4.2.3 NN Nonlinear controller design for the model of DO by VO Linearization
in this section the NN nonlinear controller is designed based on the Feedback
linearizing controller given by equation (5.35) derived in the preceding section. It can

be seen that this equation describes an inputioutput process with inputs

v(k), So(k), S, (k), and r,, (k) and the output isul(k) .Equation 5.35 is used further to
calculate the real nonlinear controlu(k) . In this way the NN linearizing controller has

two parts; the NN and a nonlinear function connected in series as illustrated in Figure

5.25.

v(k) e E
So®]) ___+ .| Nonlinear ” , )
Spk—net) | Mmook MO = intiy/K) |0

*) " | Controller IQ :
r.fﬂ : :

Figure 5.25: NN nonlinear controlier.
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5.4.3

A NN controller made! can be estimated from the historical input-cutput'data by lefting

neural networks approximate the equaﬁon 5.35. The data for the reference input
function v(k),and S, (%), S, (k),r,, (k) used for approximating the functions are

obtained from the closed loop response of the desired reference model trajectory

controfled by a linear Pl controller #lustrated by the block diagram of Figure 5.26.

Linear Pl v Linearized closed So
Controller - loop system

Figure 5.26: A closed loop system designed as hybrid one.

The NN linearizing controller is designed as a discrete time controlier. The DO process
is confinuous process and in order to be close o its nature the closed loop system is
designed as 2 hybrid one, where the Wnearized closed loop is considered as
continuous one and the linear Pl controller is designed as continuous one.
Transformation of the signals between continuous and discrete time components of the
closed loop system is implemenied by the zero-order holds.

Linear controller design
Pole placement technique is used o choose suitable parameters of a Pl regulator for
the desired linear rhodef‘ in the DO process contrel application considered in this
thesis, the objective is to maintain the DO output at a desired sef-peoint despite the
presence of disturbances. Consequently 2 linear controller, a Pl controlier is applied
{MclLellan et al,, 1990) as:

v K{(So’"’ _S, )+~ [(8o" =5, (t))dr} (5.36)
Ty %

- Where the gaink,, and the time constant?,, are additional controller tuning

parameters. The transfer function for a continuous-time Pl reguiator is:
1 |
Vis)=K, (1 +-—-—)E(s) . (5.37)
T.s
Where V(s) and E(s) are the Laplace transforms of the controiler output and the error

signal. The closed loop block diagram of the desired reference model is shown in
Figure 5.27.
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Linear Neural ¥{(s) | Desired model S,(5)

Controller Transfer
Ge(s) function
Ge(s)

Figure 5.27: Block diagram of the desired closed loop system with Pl regulator

As expiained earlier, the desired model is of first order whose dynamics are:

Sy (b +1) = aS, (k) + by(k)

Assuming coniinuous-  time dynamics, the Laplace transfer function
b

§—=a

S
Gp(s)=2) = (5.38)

By combining Equations 538 and 539 the closed loop transfer function

fromSyg.10 8, is found to be:

Ss(s) K. (Tis+1)b
=— (5.39)
Sop(8) Tps” +T (K, —a)s+ K,
The characteristic equation is then found to be:
T,s* +sTy(Kpb—a)+Kpb=0 (5.40)

This equation Is of second order form. To calculate suitable parameter values for
gain K, and the time constantT), the closed loop pales are selected according fo the

requirements towards the performance specifications. In this case the following
specifications are required for the desired linear system:
» The closed loop system must be stable,
» The dissolved oxygen dynamics to have minimum overshoot and quick rise-time,
» Zerg steady siate error.
Thus in order to achieve the specified performance characteristics, the closed loop
~ poles are_sé!ected as complex conjugates with values of: s,,5, =-2% jJE .Real -

poles are also a possible selection but are not considered here.
Comparing the poles of equation 5.40 with the desired pole location yields:

(5+2~ jV2)(5+2- ji2)=T;s* +sT (K, —a)+ K, (5.41)

Comparing the coefficients ofs yields two equations for the tuning parameters K,

andT;, as:
Kp =6, (5.42)
6T, —a=4
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From these two equations the coefficients of the Pl controller are obtained as:

K,=4+al,
(4+a)b . . (5.43)
T, =———
6 .
Then the equation of the Pl controller can be written as;
w(t) = (4 + a)e(t) + ———— [ett)ar] (5.44)
) b(4+a)/6 '

Thus from equation 5.44 it is seen thal only one parameter a of the desired DO siate
space equation_is chosen for the desired pole location. Using the resulls obtained from
the preceding analyses, the closed loop desired model is simulated in Matlab
environment using the Simulink block diagram illustrated in Figure 5.27(a) where the
zero order hold has been incorporated in order to discretize the trajectories with
sampling time of 1.041887e-4 (1min.30s). 960 samples for each variabls of interest are
obtained. These samples are used for the neural network controlier fraining.

Add

To Woncpace

ViR

Vigh-2)1
=]

Va1
Valk-2]
e

Figure 5.28(a): Simulink block diagram of the desired closed loop system with P}

regulator.
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Closed loop response of the desiraed trajectory
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Figure 5.28(b): Trajectory of the desired closed loop system with Pl regulator.
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Figure 5.28(b}: Controiler and Error Trajectory of the desired closed loop system with
Pt reguiator.

Figures 5.28 (b} and (c) illustrate the trajectories of the closed loop, error and the
‘coniroller responseé of the desired linear model controfied with a Pl regulator. Data
collected from these trajectories are used to design the neural controller depicted in

equation 5.35.

5.4.3.1 Calculation of the function !
From eguation 5.35 the trajectory of wl(k) is derived by simulation of the various
functions to obtain the training data for the neural network. The trajectory of ul(k)is as

E%lustraied in Figure 5.29. This is achieved from the commands in the appendix c11:
script file-parametersforul.m derived from Eguation 5.35: where all the parameters

have been defined.
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x 10° Trajectory of the Linearizing controller
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Figure 5.29: Trajectory of the model of the Linearizing controfier.

Here also the data for the desired §,(k)and v(k)for training, validation and testing

were sampled at 1.041677e-* days (1min.30s) intervals with 960 data sets collected
from the simulation runs. 480 data sets were used for training, 240 data sets for
validation {for cbserving the performance of the models when faced with unknown
situations or dynamic changes of different amplitudes andfor frequencies) and 240
data sets for testing. The division was such that the testing set starts with the second
point and takes every fourth point. The validation set starts with the fourth point and
take every fourth point, while the training set takes the remaining points. The data

collected included the present and two past values of the desired output S, (k)and the
finear Vcontroiler output variable v(k) and the finearizing controller medet output ul(k)
as fequired by for identification of the model for the linearizing controlier in addition to
the constantsr, (k) and S, (k) for the inputs to the neural network. The data gathered
for ul(k) were scaled by normalization to the range of [0 1], as »1_1land that for
r (k) also in the range [0 1] as fmll and the network was created and trained using

the normalized data and simulated. Eventually the network cutput was un-normalized,
and a linear regression between the network outputs {un- normalized) and the targets
to check the gquality of the network training was performed. The closed loop block

diagram for the linearizing control of the DO concentration is shown in Figure 5.30.
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Figure 5.30: The closed loop block diagram for the linearizing control of DO

concentration.
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5.5

The following algorithm was used o train the model of the linearizing controller.

Prepare inputs/target data for training,
cross validation and testing

y

Design the structure of the neural networks
(Feedforward/Recurrent, number of the
hidden layers, number of hidden nodes,

activation functions etc.)

Set the network structure by
changing the number of hidden
layers and hidden nodes in the

Set initial weights

”

\
Train the network with training data
sets unti! the mean square error is
less than the specified value
¥
Test the network with cross

validation data set
¥

Compute the test errors by passing
the testing data.

hidden layer

Change the
number of layers
or nodes

No

Examine the desired
MSE

" Obtain the neural
network model

Figure 5.31: The algorithm used to train the model of the linearizing controlter.

Elman NN Nonlinear linearizing controller model realization

‘The structure of the Elman network was constituted as follows: Pc and Tc represent

the range of the normalized inputs and target variables Vo_11 V1_11, K0i, rso11,

Soin11, and u1_11. rso11 is the normalized ‘oxygen uptake rate and Soin11 is the

dissolved oxygen concentration in the input airflow ,and , KOi is the delay in the

desired dissolved oxygen concentration inS, (k). The best structure of the identified

neural model was 5-7-1; i.e. 5 inpuis of the normalized variables, 7 nodes in the hidden

layer and 1 node at the output. The training algorithm used was the scaled conjugate
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gradient frainscg. The Matlab commands used to normalize data, split the data,
. periorm linear regression and train the Eiman neural network as per the algorithm of

Figure 5.31 are contained in the script file in appendix ¢ 10: nonlinearconsim.m

Training was done in the same way as for the forward model identification by switching
between the training, validation and test dala set; a technigue known as ‘early
stopping’ methodology. The training was performed in the nommal way on the training
set until a reascnably small error {root mean square - RMS) was achieved for this set.
Once a reasonable and continuously decreasing RMS error was achieved for all the
sets of data, the training was stopped automatically and the network was validated by
applying different test data, not utilized before. Eventually the topoiogy and
configuration were finalized. This method was used to prevent over- training. The error
on the validation set wili normally decrease during the initial part of the training.
However, when the network begins to over fit the data, the validation set error will start
io rise. When this increase continues for a pre defined number of iterations the fraining
is stopped and the weight values are kept. The test set is used to compare with the
validation set to see if they exhibit a simitar behavior. If validation errors and test errors
do not show a similar behavior, this may indicate a poor division of data. In Figure
532 the mean squared error between the calculated values and the target fraining,

validation and test sets are plotted against the epoch (number of iterations),

3_5‘[—

3; :

2.5 _ -

. 5 1.5 —— Training E n
== »==-Validation ;

e m o Tost

0 5 10 - 15 20 25 30 35 40 45
Epoach

Figure 5.32: Plot of the training, validation and test errors for a generalized network.
The resQ{ts of Figure 5.32 shows the plot the mean squared efror betwéen the
calculated values and the target fraining, validation and test ssts plotted against the

epoch (number of the training. validation and fest errors) with the convergence
‘performance of the MSE of 8.19516¢® achieved for architecture with 7 hidden neurons.
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Analysis of the plot tells thai it requires only 100 iterations to map the target when
trained with frainscyg algorithm.

s Performance is 8.189516a-008, Gozl is O

¢ ——— datal
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Figure 5.33: Performance MSE with § inputs, 1 hidden layer, 7hidden neurons and 1
cutput.
The post-training analysis of the plots showing regression analyses between the
network outputs and the corresponding targets {in original units) is subsequently done
as illustrated in Figure 5.34.

Beast Linear Fit: A = (0.967) T + (0.000462)

Data Points

Best Linear Fit ’
----------- A =T 4

Figure 5.34: Post-Training analysis with Matiab command routine (postreg)

Figure 5.34 displays the plols showing regression analyses between the network
outputs and the corresponding targets (in original units of data). The routine posireg is
designed to perform this analysis. Here the network output and the corresponding
targets are passed to postreg. It returns three parameters. The siope, and the y-
intercept of the best lfinear regression relating targets to network outputs and the

comralation coefficient (R-value) between the outpuls and targets. In the analysis it can
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be seen that a perfect fit indicated by the solid line resulfs {oulputs are exactly equal to
targets), because the slope is equal to 0.981, and the y-intercept is 0.0179, and the R-
value is also equal fo 0.999 because the fit is good. This therefore confirms that the

selected neural model is a good identifier of the NN model of the linearizing controller.

x 10° Output of the linearizing nonlinear controller
10 r
l T

i denormalized-Data(u1) | I
‘ ' ‘ |

ut(k)

e e e e — e A e e, ————

Peta for ul(lo)

'

i

i

1

1

1

|

t

1
004 005 006 0067 008 009 0.1
time(days)

Figure 5.35:De-normalized NN output trajectory of the model of the nonlinear
controlier.

Figure 5.35 shows the de-normalized neural network oufput. This trajectory is an
approximate of the output moedel of the finearizing controller derived from equation 5.35
for the trajectory ofwl(k) . This conforms that the results of the verification is correct.
The coefficients (weights and biases} of the selected model with the command newelm
are tabulated in the following Tables 5.5 and 5.6 respectively.

Table5.5: Hidden iayer weighis and biases

Hidden layer weights (wc) Hidden layer
biases
uts Vo_11 Vi_11 KOi

nodes v(k) So(k) Sofk-1) rsol1 Soin11 {bwe)
1 -0.0485 1.56340 0.1962 0.0222 0.0044 0.9107
2 -1.4283 01752 -0.5193 0.3604 0.0721 2.9122
3 -(.7601 -1.3814 1.3388 -0.1071 -0.0214 0.8416
4 -0.1516 -1.0417 0.3693 0.1478 0.0296 0.6528
5 0.7284 -1.5844 1.2408 -0.2421 -0.0484 -0.0821
5 0.1273 -3.6780 0.7168 0.0087 0.0017 1.0804
7 -1.6022 -4.6120 0.6872 00415 £.0083 -1.1544

Table 5.6: Ouiput layer weighis and biases

Output weights 0.1953 0.7444 | -0.5152 | 1.0088 0.2776 04574 05120
{ve)

Quiput biastbve) | -0.5120
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5.5.1 Feedforward NN Nonlinear linearizing controller mode! realization
The structure of the Feedforward network was constituted with the same inputs and
the same oulput as the Elman network as follows: Pc and Tc represent the range of
the normalized inputs and target variables Vo_11 V1_11, K0, rso11, Soini1, and
ul_11. rso11 is the normalized oxygen uptake rate and Soin11 is the dissolved oxygen

concentration in the input airflow ,and , KO0i is the delay in the desired dissolved

oxygen concentration in S, (k). The best structure of the identified neural modet was 5-

5-1; i.e. 5 inputs of the normalized variables, 7 nodes in the hidden layer and 1 node at
the output. The training algorithm used was the scaled conjugate gradient frainscg.
The Matlab commands contained in the script file - nonlinearconff.m in appendix ¢.9;
were used to normalize data, split the data, perform linear regression and frain the

feedforward neural network as per the algorithm of Figure 5.31.

Training was done in the same way as for the Elman network by swiiching between the
training, validation and test data set; a technique known as ‘early stopping’
methodology. The training was performed in the normal way on the training set until a
reasonably small error {root mean square - RMS) was achieved for this set. Once a
reasonable and continuously decreasing RMS error was achieved for all the sets of
data, the training was stopped automatically and the network was validated by
applying different test data, not utilized before. Eventually the topology and
configuration were finalized. This method was used 1o prevent over- {raining. The error
on the validation set will normally decrease during the initial part of the training.
However, when the network begins to over fit the data, the validation set error will start
{o rise. When this increase conlinues for a pre deﬁnéd number of iterations the {fraining
is stopped and the weight values are kept. The test set is used to compare with the
validation set to see if they exhibit a similar behavior. If validation errors and test errors
do not show a similar behavior, this may indicate a poor division of data. In Figure
5.36, the mean squared error between the calculated values and the target training,

validation and test sets are plotted against the epoch {(number of iterations).
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Figure 5.36: Piot of the training, validation and test errors for a generalized network.

The results of Figure 5.37 shows the plot the mean squared error between the
calculated values and the target training, validation and test sels ploited against the
epoch {number of the Yraining, validation and test errors) with ihe convergence
performance of the MSE of 5.60993¢° achieved for architecture with 5 hidden neurons.
Analysis of the plot tells that it requires only 48 ilerations to map the target when
trained with trainscg algorithm.

1 Performance is 5.60993e-006, Goal is 0
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Figure 5.37: Performance MSE with 5 inputs, 1 hidden layer, 5 hidden neurons and 1
ouiput.
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The post-training analysis of the plols showing regression analyses between the
network outputs and the corresponding targets (in original units) is subseguently done
as #lustrated in Figure 5.38.

Best Linear Fit: A = (0.989) T + (4.38e-005)
1.2 .

© Data Points
Best Linear Fit |
wmnmw. A =T i

i
R = 0.998 i
1TF

0.8~

0.6

0.4

0.5 4] 0.5 1
T

Figure 5.38: Post-Training analysis with Matiab command routine {posireg)

Figure 5.38 displays the plois showing regression analyses between the network
outputs and the corresponding targets (in original units of data). The routine postreg is
designed to perform this analysis. Here the network oulput and the corresponding
fargets are passed io posireg. it refurns three parameters. The slope, and the y-
intercept of the best linear regression relating targets to network outpuls and the
correlation coefficient (R-value} between the outputs and targets. In the analysis & can
be seen that a perfect {it indicated by the solid line results (outputs are exactly equal to
targets), because the siope is equal to 0.989, and the y-intercept is 4.989e-005, and
the R-value is also equal to 0.998 because the fit is good. This therefore confirms that

the selected feedforward neural model is a good identifier of the linearizing controller.

Output of the linearizing nonfinear controller
T B I

1 1
denomalized-Data(u1) ' .

a 0.01 0.02 0.03 0.04 0.05 0.06 Q.07 0.08 0.09 0.1
time{days)

Figure 5.39: De-normalized NN output trajectory of the model of the nonlinear
controller,
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Figure 5.39 shows the de-normalized neural network output. This trajectory is an
approximate of the outpui model of the linearizing controller considered earlier in . This
conforms that the resulis of the verification is correct. The coefficients {weights and
biases) of the selected model inputs with the command newff are tabulated in the
following Tables 5.7 and 5.8 respectively.

Tableb.7: Hidden layer weights and biases

Hidden layer weights (wc) Hidden layer
biases {bwc)
™JUnputs Vo_11 vi_11 KGi rsol1 Seinit
\ {norm v) {norm So(k)} | {(norm Sa(k-1))
nodes
1 -4,22557 -0.09609 -0.838646 £.442493 {.0RB49685 i} 5826484
2 -2.76142 2484213 3.158872 -0.07590% -0.015189 -0.328605
3 -2.34929 -3.286141 -4.082701 0.2172842 0.043458 3.668438
4 -1.75079 -1.078750 -4 475848 -0.224419 -0.044883 2.073978
5 2.968892 -0.4125549 -3.888217 £.010488 4.002087 3.002849
Tahie 5.8: Output layer weights and biases
Cutput weights {vc) 0.19217 -3.44494 -0.13706 -0.20706 0.43572
Cuiput bias (bvc) 0.07738

5.5.2 Discussion of the results from the training of the two developed models of the

NN linearizing controller
Both the feedforward and the Eiman networks have been trained off-line to implement
the model of the NN nonlinear linearizing controller for the dissolved oxygen process
dynamics. A range of hidden layer neurons were tested. The models were trained with
the trainscg algorithm. The results from the feedforward model indicate that with only 5
neurons in the hidden layer, an approximate trajectory of the target is achieved after
only 47 iterations with a low MSE between the models of the linearizing controller
autput signal and the neural model signal. The same applies to the Elman network
which indicates that afier testing a range of neurons in the hidden layer, an
approximate mode! of the target with a low MSE is achieved with 7 neurons in the
The -
conclusion derived therefore is that any of the two neural models developed

hidden layer. To approximate the target it required only 42 training epochs.

{(feedforward or the Elman network) can be implemented in the closed loop contro! of
the nonlinear plant under consideration in this project. When the training was finished
the two models developed with their weights are saved and were used in the
construction of a complete closed loop system in the Simulink environment as

illustrated in the proceeding section.
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553

Simulation of the closed loop feedforward neural-control in the Simulink/Matlab
environment
The Simulink block diagram representation of the closed loop realization of the
feedforward neural-control scheme is as depicted in Figure 5.40.
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Figure 5.40: The closed loop biock diagram for nonlinear linearizing and Pi control of
the process of DO concentration

Offline simulation was performed of the time responses of the of the system output for

‘a consiant reference value of the set-point. Figures 5.41, 5.42 show the off-line

simulated time responses of the closed loop structure with a set-point of 2 and whose
linearizing neural controller is implemented by the feedforward network. As can be
seen from the trajectories, the rise time for the scheme has improved when compared
with the other schemes so far developed (inverse control, internal model control
schemes). In addition, the controlled response tracks the set point trajectory with
minimum steady state error. The overall performance analyses are tabulated in Table
5.5. This scheme will be tested for real time control of the DO process to determine the

effectiveness of the control approach.
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Closed loop trajectory of the DO process
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Figure 5.41: DO Time response trajectory of the closed system for a set-point of 2.
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Figure 5.42: Time response trajectory of the model of the NN nonlinear controiler (u1).

5.5.4 Investigations of the influence of the process set-point and disturbance values
over the closed loop system behavior.
Investigations were carried out on the effectivenass of this scheme by varying some

process parameters like set-point change, varying the disturbances like the oxygen

uptake rate constant r, (k) and Soin. These parameter values are varied to be below

and above their steady state values. They are used for simulations in order to observe
their effects on the overall performance on the control system. The effects caused by
various values of the set point are illustrated in Figures 5.43 and 5.44. The normalized

values for r, (k) and Soin are used for the simulation as 1 and 0.1 respectively.
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The effects changes for the various values of r,, (k) for a constant set point of 2 are

depicted in Figures 5.45 and 5.46.
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Closed loop trajectory of the DO process
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- Figure 5.49: DO Time trajectories for Sein of 10 and set point of 2.

Analyses of the simulation results similarly show that any change inSoin has an effect
on the DO trajectory and steady state error. However the steady state errors due to

variations in Seoin are not as significant as the steady staie errors due o variations
inr_ (k). The variations of the NN nonlinear contraller outputs (k) for various set-point

changes are as depicted in Figures 5.50 to 5.52. Analyses of the figures show that for
a set-point of 2, the nonlinear controller output can be manipulated within a big range
without affecting the controlled output. However, as the set-point is varied, the input

must be maintained at specific values.
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Figure 5.50: Nonlinear controller output trajectories for set points of 2 and 2.2.
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x 10‘ nontinear control variable u(k}or a set-point of 2.8
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Figure 5.52: Nonlinear controller output trajectory for set point of 2.8.

Table 5.9 details the various performance indicators {rise-time, settling time, steady
state error and peak overshoot) for the DO trajectories. Analyses of the selected
values cobtained for the behaviour of DO trajeciory to changes in set-point and

disturbances show that the control approach meets performance specifications.,

Table 5.9: Performance analyses for the selected values

DO'set- | Oxygen S Rise-time Settling Steady Peak overshoat
point | uptake Om (,)(Days) | time(z,) | Stateemor (M)
(SO"” y |rate 7, (Days) {e.)
2 r, Som <0.002 <0.004 a 0%
22 r. Son <0.002 <0.004 0 0%
24 7. Son <0.002 <0.004 +0.05 +2.1%
26 r. S, <0.002 <0.004 0.1 -3.1%
28 r. S, <G.002 <0.0G4 0.2 -7.14%
2 7,09 S <0.002 <(.004 0.4 £20%
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2 Ir,m2 | S, <0.002 <0.004 G
2 7,13 Soin <0.002 <0.004 ~-0.025 ~1.25%
2 r,*1.5 S, <0.002 <0.004 507

2 Vo Sp,*0.25 | <0002 <0.004 0.2 +10%

2 r, S,,*0.5 | <0002 <0.004 %01

2 |, S g 4 <0.002 <0.004 3004

2 Yo S0, "6 <0.002 <0.004 ~-0.0258 ~1.25%
2 r., S, *10 <0.002 <0.004 -0.07 35%

55.5 Simulation of the closed loop system with Elman nonlinear linearizing neural-

controller in the Simulink/Matlab environment.

The Simulink block diagram representation of the closed loop realization with the

Elman linearizing neural-controiler scheme is as depicted in figure 5.53.
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Figure 5.53: The closed loop block diagram with the Elman NN nonlinear linearizing

controller and Pl controt of the process of DO concentration.

Similar to the Feedforward netwark discussed abave, off-line simulation was also

performed of the time responses of the system output for a constant reference value of

the set-point. To obtain the given trajectories, the proportional gain of the linear PI

requlator was increased by a factor of 10. Figure 5.54 shows the simulated time

response of the ciosed loop structure with a set-point of 2. As can be seen from the

trajectory, the output tracks the sel-point with very low steady state error when

compared with the other schemes so far developed (inverse control, internal mode!

control schemes).
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Closed loop trajectory of the DD process
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Figure 5,54; DO Time response trajectory of the ciosed system for a set-point of 2.

5.5.5.1 Investigations of the influence of the set point change and process disturbances
— over the results of simulations on the closed loop system with the Eiman NN
nonlinear linearizing controtler
tnvestigations were carried out on the effectiveness of this control system by varying
the set-point first and then the disturbance parameters like the oxygen uptake rate
constant r (k) andSoin in order to observe their effects on the overall performance
on the control system. These parameter values were varied {o be below and above
their steady state values. The effects for various values of set point change are

itlustrated in Figures 5.55(a), (b), {c), (d) and {e). The normalized values for r, (k) and

Soin are used for the simulation as 1 and 0.1 respectively.
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Figure 5.55: () DO Time response {rajectories for set point of 2.8.

The results from the above figiires demonstrate that this control system is capable

tracking changes in sel-point; hence it can be concluded that the closed loop system

with the Elman NN nonlinear linearizing controller is effective in controlling the DO

process trajectory. The effects of varying the disturbances constants r, (k) and Soin

are fllustrated in Figures 5.56 and 5.57 that follows for a constant set point of 2mg/l.
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Lo 0 005 00t 05 0 &0 00 o6 a1

Closad Joop trjectory of the DO procoss

Bo: 006 006 007 G 008 0t

24

o~ o
b - e
SRR S el Sy i I I N A S M 0 W. " v “ 1 m " m = 0
| ) 1 i | 1 1 4 ) } 1 1 1 ) | =
! ! ! | ! ! ! 8 & i L e R L S I S S m =
m. I | i e A R S B I mw, m,.m. [ m. | e R
i ! T [ T N T T TR i )
<80 |Lpn“..|._..uL||“||r.L.||m 2 et ,2w. R et R ' _..~..;..-.m s E ﬁ 1 I
d.w [ [ N < - O ® NW 1 1 b b 1 1 1 ; O Q@ M. o 1
1 -5 | R s i ket - Bl L
MM.. |_l|"ll_|, _||"||+_. < o rnu... MM | i | 1 i ) 1 i =4 “Ui ﬂw 0 v
o o e e v 2 A8 | D B R B B A [ MM ) "
U P S gl i Fegem ERY] _
o : * ' 1 l 1 | 1 I ke d | '
‘‘‘‘ [ R S R A wm. P Lo L ztr|L|..._||r||_|:r||rv}wm. A 8 I L
r T :Jrl_aa_;ll_nn.il_zl_s..xa,m. ] e cr 3 4 ~_ ' 1
| T T T S T E§ . O : ! T T S T T B 25 W o s i )
.l ||_..1_:ir|L||_x.._..|._.||m ©“ m T B R | .. m m S | I t
| 1 | | i 1 1 I — \m | 1 | 1 | | I 1 — t 1 1
| [ T T T T TR o)) | | ( i 1 ! 1 1 g o ) | L. X oL
k- \;_r.._a‘TL4r.A_;\+\_[‘.m 4 Pr--r-fi--t--~q--r s r - -G S M g ) ' i
) [ N N B T T < m i [ T T Y T TR L \ s |
! R . | T o o F-r=f-= =
inialiat | Siadis Satid ol ity Sl il el it =+ < i Al { et At T S AR R S = O i i i
! I N T T B R — ! [ S S T — I | ru._
! Vo 1 Ll TR | DT SR T AR R T A F - . ! i !
T |._:-._.-"lurunpnrl_.;ﬂu-w ﬂn\ =" 1 rtoTTETh E] w ' ) !

! 1 o 1 i 1 1 ! 1 U | -
L _ _ L 1 o r.m e b iy yon e L L L Cl rm 1 1“ t
LR T R A s ad I g S i

Awooalen oo :.nw Aiotaelel oa .mu. N 3 2 =
oy 7]
o 8
e
Q [}
.. ] i e e s ot - o
] IR A ST T T T T T S e e
Ak | R S ! - oy ! ' 1 ) ! ! 1 a Py 1 ' 1
o R R i i bl el ] o] E- 4 R { [T R - ] _ ! . - F -
B [ T T b ¥ I = t ) i
-] | P RO N S TR DU T |- =20 | T N N S S I A T | Mm. ¢ i |
3g S R S R i B = o m m.m S R e e e © ﬁm- r ) T
.mmi |.”,...."||_T|.”||"1e"..|".||m o = .m. R 5 2] ‘m m. " " i
38 T S R T T ..wm ||w...|"|n.“luunulnusa_,||"||1o. - mm ) B T
: R T T S P N A |- an..,.O m_ _ T LTt "R s R NP m...u. o m __= . ) i
- ] I | | ] 1 .

LU ey €2 BEEERENE--N N
il ain | e che Tt il Sl Rl iy 1 S \hw., TN | DR RN TOUUE TN TR SONDUN S W |- e ol e [l 3 L
| [ T T T T T M 8§ & J 1 ! ! ! ! ) ! OM. S’ w | | | ¢
[ | ST TRV S RO S T S - St b - ) [ = 3 i ! ] \
™7 R R R I B -~ — b - S P A O A S |- [ i | St Sl Sl whiis Sl Sl il
I T T T - & B ! o e e it = gl (T T T T P T
(PR UREN | SISO R SR S £ B ..m\ © I oo Lo a —~ ST | S Y TP TR S [P S T
T R S S R T — R | S A R A A A = Q M N [

) o o - t ! i ! ! ! ! i 0 | | T T T |
I |4f.‘_:i1|4||_1s_1,1.ﬂ|-m — , T T o ~— SERVUY | AU U SR AU SUL AN S
! [ e T T T | e A | A A (T S g l [ R N T N
1 | S A A N I | 5 © [ ! ! ! ! ' ! ! =} ' [ R N
i | i e Sl iy S e el W I v e | Tt i S PR A |- 10 i aa | At ettt iy Sl Sl nll e
: :H.u_ul.“......_ e ) o 0 ! ﬁ... (N L bl \__Tl.ll__t.. _t.._ H %
FELEE- NI g R L I T B SR M R e IR NTETE xy v gR R
Aiojoalas O wu Lojein 0g Wu : Awjoelen 00
(o iC

time{days}

(d}: Soincf0.5

u.

211

rm{toys)

(c): Soin0O70.25
{c) and (d) DO Time trajectories for Soin of 0.25 and 0.5 for set point of 2

aot Q02 no3

Figure 5.57



N Clossd loop rjactory of e DO process : Closad koo tractony of the DO procass
4 T T 1 T T T 12

T T T T T T
1 ‘t ] ] 1] s Sek-point of 2 mgh ! ] 1 ] 3 || mmm— Sat-poird of Z mgh
22p - - — —d— — ~i— — = — — 4| —— Closed loop DO trejectory 1 28— —l-— = - — 4 — — % — ~ H ' Closad Joop DO IMactory
1 i t ' 3 T T T g ] i i r % H T T —— T
sl > F1 = >
i 1 b [ I i | ' [ 1 P ] ' [ j i ' i i
: | t ! L ' L t 1 ! ' \ 1 ) ¢ ' i |
e ¥ 1T T 1 i ¥ [ R Ky et S A S el A e T
t 1 i t i \ V i 1 | 1 | 1 L 1 : 1 1 |
E-’S i nddier it bl el Bl St il il it g1-5T“I"‘;"T**T"‘r"r'*“l“‘\'“T,**‘
& 1 1 i i 1 ot ! t g i 1 f i i ! t 1
B r mmr e —m e m d e m —f — e = — = %1,4-——|———< ————— FrmmF b m e - =5 - —
£ L 1 ' 1 1 t 1 ' ! = 1 ! ' | [ f | !
[=JE'T] S T YD S QU SV RPN SO SR [=3XT] S S SR SRR S SN S RN PR
: | I [ f 1 1 ¢ 1 ' T f [ i t t 1 :
I ' | 1 ] ' 1 : 1 i i i ' 1 P ' ' :
K ittty e it Sty At et i uec L St i e B S e e A
3 ] b ] I t L] 1 ' 1 b | [} 3 1 ] ] 1
L e e e Bttt Baditl Sl el Jhdt el el e8f — — v - - sk el it ati Sl Bl fdaaly
| [ 1 1 1 1 i ) ! : i 1 ¢ i 1 1 i
U — = ——m i —— A~ — A~~~ —— = —— Ok = =l — - - —— il e e B R
! 1 f ' ¢ i | ' ' l i 1 ) i ' 1
04 } ' L ‘ [ . 1 s ' 04 ' . ' i ‘ i -
[ 00f 002 003 004 005 006 DOT QD8 009 01 1] 0 o002 903 Q04 005 006 Q07 Q0B 008 @1
time{days) . timefdays}
{c): SoinOf 4 (d); Soinof 6

Figure 5.57: (c) and {d) DO Time trajectories for Seinof 4 and 6 for set point of 2

Closed loap trajectory of the DO process
2.4 . T T :

Set-point of 2 mg/l
Closed loocp DO trajectory [~

1 3 t

b E b ] i
22----- e N D

13 ] ] i

S | S S

o
or--

®

e
Al
o)

o]

-

)

1 :

\ . - .
o 0.0t 0.02 .03 004 ¢.05 0.06 0.07
time(days}

Figure 5.57: (C) and (d) DO Time trajectories for Sein of 10 for set point of 2

Analyses of the traje_ctcﬁeé of the DO process for the variation in the values of r, (k)

and Soin indicate that there is effect on the steady state ‘errors as well as the peak
overshoot. The results of investigation on the effects of changing various parameters
are tabulated in Table 5.7 which details the various performance indicators (rise-time,

settling time, steady state error peak overshoot} for the control system.

Table 5.10: Performance analysas for the selected vaiues

DO set- | Oxygen So Rise-time Settling Steady state | Peak overshoot
) i
point | uptake (t,) tme(z,} | emor{e,)} (M,)
(S.:;?J ) |rater, {days) (days)
18 Ky <(.002 0.001 +0.025 +2.5%
r, Oin :
0.0 001 -3.05 -5%
2 r, S <(.002 0 o
. <0.002 0.01 0 0%
2.2 rso SODI : o
24 r S <0.002 0.001 +0.02 +1%
so Qin
. <(.002 0.001 +0.1 +5%
26 ’;a SOD!
23 r 5 <0.002 0.001 +3.3 -15%
so Oin
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r,, 0.9 SOin <0002 8.001 0.2 -10%

2

2 a2z |8, |02 0.001 0.22 1%
2 r13 | S, <0002 0.001 T3 A15%
2 ro15 | Som <0.002 0061 | - 025 125%
2 r S,. 025 | <0002 0.001 02 -10%
2 r. S, 05 | <0002 0.001 oz -10.5%
2 I, S, <0.002 0.001 022 1%
2 r S0 7 <0.002 0.001 023 A15%
Z 7o | Sou10 <0.002 0.001 025 125%

Figure 5.58(a) shows the Non linear linearizing controller output trajectory ul(k) for a
set point of 2 and Figure 5.58 (b) the trajectory of the control output «(k). Analysis of

these two figures reveal that the control culput signal required for a set-point of 2 is

. 3
about 40000 /day.
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Fgure 5.58: (a) Non linear linearizing controller trajectory for set point of 2.and (b) the
trajectory of the control signal u(k).

5.5.5.2Discussion of the.results from the two controllers developed

The results of simulation of the two control schemes considered in this section {the
feedforward and the Elma nonlinear linearizing controller architectures) have shown
the effectiveness of the schemes for the control of the dissolved oxygen trajectory.
These have been measured on the specific performance indicators for the DO process
on effects of disturbances, set-point changes etc. The controlled response tracks the
set point trajectory very well. The overall performance analyses are tabulated in Tables
5.6 and 5.7. The controller struciures will be implemented for real time contro! of the
DO process lo determine the effecliveness of the control approach in chapter six
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5.6  Conclusion

This chapter has been concemned with the design and development lcf the neural
network based 'cont'roners for the DO process. Several control schemes have been
~ studied based on the Feedforward and the Elman networks. Several off-line simulation
resuls have been provided for the different types of the control schemes namely; the
Inverse model, the Internal model control scheme and the nonlinear linearizing control
“structures utilizing the feedforward and the Elman networks for each of the structures

developed.

The results have been used 1o show the effectiveness of the schemes for the controf of
the dissolved oxygen irajectory. These have been measured on the specific
p.erfom}ance indicators for the DO process. Results for the inverse model control as
well aé for the inéemall madel control have not been satisfactory for the control of the
DO process. Resuits from the nonlinear linearizing control scheme designed with the
feedforward NN and the Elman network gave satisfactory simulation results for the
different performance indices for the DO process. Thus these control structures will be
implemented on the real-time lab-scale WWTP to see their effectiveness for the control

of the DO process.

Chapter 6 that follows gives an overview of the lab-scale WWTP to be used for the
implementation of the d'esignéd feedforward and Elman NN nonlinear linearizing
controller structures for the DO process concentration via the airflow rate in order to
maintain the dissolved oxygen concentration at desired level. The chapter also
' descrfbés the hardware configuration of the various parts that form the process control
loop tdgether with the software used ahd the procedure adopted in the implementation

of the real time control of the 'proce:ss.
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6.1

CHAPTER SIX

REAL-TIME IMPLEMENTATION OF PROCESS CONTROL
The aim of this chapter is to program the structure and parameters of the Pl and the
neural networks noniinear linearizing controller using PLC software in PLC
environment, in crder to determine the effectiveness of the controliers when applied on
real-time situations. The process under consideration is the lab-scale wastewater pilot
plant focated in the Electrical Engineering department at the Cape Peninsula University
of Technology. The real-time control faw is for regulation of DO concentration via the
airflow rate in order {o maintain the dissclved oxygen conceniration at a desired level.
The chapter also describes the hardware configuration of the various parts that form
the process control loop fogether with the software used and the procedure adopted in

the implementiation of the conirof system.

The DO Plant and the control system structure

The pilot plant of wastewater treatment is located in the Depariment of Electrical
Engineering of Cape Peninsula University of Technology, Bellville campus. it creates
possibilities to physically model different configurations of a real wastewater plant and
to provide different types of experiments. Figure 6.1 shows the siructure of the pilot

plant.

=

through two internal and sludge recycles. There are sensors piaced inside these tanks
which can measure variables such as dissolved oxygen concentration, conductivity,
pH, turbidity and temperature. Each of these sensors has a transmitter which displays
the currently measured variable and the signal can also be sent o the PLC. For the

purpase of this study measurement and controi of
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6.2

considered. The dissolved oxygen is measured by a sensor and a transmilter/meter.
The oulput aof the meter from the measurement being sensed by the sensor is
converied 1o a 4-20mA signals which are then sent to the input of the PLC. The FLC is
connected to the PC with Adroit SCADA software via serial communication (R38232).
The entire hardware and scftware structure layout utiized for data scquisition,

calculations, and for process control is presented in Figure 6.2,

MySQL <+—— Matlab

: g e
» - Software  § ! y :
: Part P :
R . ADROIT i
I SCADA '
i SYSTEM PC ;
E -------------------------------------- = e -; ----------------- -
: Programmable '
: Logic Controller ;
; (PLC) g
' Transmitter v Hardware
‘| COMPRESSOR ——'|><|*— ¥ Part :
! Proportional s ;
! Valve !
a , :'
a oo |
) Sensar ‘
5 Aeration Tank ;

Figure 6.2: Block diagram of the Hardware and Software interaction for real-time control.

Figure 6.2 also illusirates at what level the interaction of programs and devices take
place. Thus, for effective realtime control, a data acguisition system for the DO
concentration using DO sensor, transmitter, PLC, PC and MySQL database has to be
established. Communication between the software platforms used, namely; Adroit,
MATLAB and MySQL has to be eslablished and an Adroil GUI that implements the
communication has to be developed. Brief discussions of the various blosk functions

are given in the subsequent sections.

The Matlab block
MATLAEB (Matrix Laboralory) is a general, nigh-performance language for technical

computing. It integrates computation, visualization and programming in a common
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6.3

environment. MATLAB is an interaclive system and includes a large library of
predefined mathematical functions. i also provides the user with the possibilily to
extend this library with new functions. MATLAB is available for most hardware
platforms and is considered 1o be one of the most fundamental scftware tcols at many
technical universities as well as industries all over the world. Additional use is made of
Matlab’s Neural Network Toolbox. This tooibox has the ability to create a neural
network topology suited for identification and control of the ASP. This includes

derivation of transfer functions, learning rules, type of output weight adjustmenits eic.

The Adroit Agenis are configured in order to achieve communication with the PLC.
MATLAB communicates via the MySQL database to Adroit. The MATLAB program
requires the measured signal from the PLC in order to perform the calculations of the
Pi and the NN nonlinear controller parameters. Therefore, for these signals to get fo
MATLAR they must be sent to MySQL database. MATLAB receives the mathematical
model coefficients of the DO process, DO set point, and DO measuremeants. These are
used for the design of the nonlinear linearizing controller and the Pl controller for
simufation and control of the entire closed loop system. The obtained NN controller
weights, biases and Pl controller parameters are sent to MySQL database. From there
they are sent to Adroit and PLC registers. The communication between Modicon PLC
and PC with Adroil as driving software is set up by communication agent Adroit for

real-time operations.

The Adroit SCADA system A

Adroit is an acronym for Advanced Distributed, Real-time, Object-criented, Intelligent,
Toolkit. Adroit is a technologically advanced 32-bit SCADA (Supervisory Control and
Data Acquisition} System designed for process control, manufacturing systems and
open automation applications. It is developed specifically for Windows NT. Adroit has a
flexible object-oriented client-server architecture that supports from a stand-alone
implementation to an installation that spans muitiple-sites. Adroit does not have a
separate development package. All the tocls to fully configure the system, draw
process mimics, etc. are packaged in the basic system - as are all the standard
drivers. Adroit is an exampie of what is known as a client-server architecture or model.
in this model the client portion, which is typically the part of the appiication that
interacts with the user, communicates with the server portion, which is usually a data
repository. Thus, in Adroit system the server part of the client-server architecture is
called the Agent Server. This contains a coliection of intelligent objects known as
agents. Adroit agents are intelligent objects because, in addition to containing state

information, as do conventional database records they also include functionality. The
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6.4

Adroit user interface or client portion consists of several different user windows. The
mimic windows within the user interface are themselves made up of objects, in this
case graphical cbjects such as picture elements. In addition to state information, such
as the properties of the size, location, colour, etc., Adroit graphical objects may be
configured to display a varety of animation behaviours. By connecting these
behaviours to data values within agents, different animated display effects can be
conﬁgured, to depict real world events. The following are a summary of the language

and lerminology of Adroit.

e User Interface: This provides the windows through which the user can supervise
and control the system. With the drawing tools provided, mimics representing the
real world can be created. To each element the user can then assign specific
properties and behaviours, and associate them with real time data residing in the
Agent Server.

» Agent Server. This stores real time and historical data. The real time data resides
within intelligent objects, known as agents, which exchange messages with other
agents or picture objects either from the local host machine or from remote
computer nodes on the network. Historical data is slored on disk where it is
available for rapid retrieval.

s Agents: As well as being able to manipulate their own dala, they have the ability to
read and write to other objects and influence them. Each kind of obiect, or agent
type, has well defined rules for interfacing with other agents ensuring that an
extremely robust and versatile environment has been created to handle any real
world situation.

Various types of agents provide the means by which different information storage and
manipulation mechanisms are delivered. Some -types of agents are designed to be
purely data containers and other types have their functionality extended to provide
intelligent conditioning of their own data or another agent's data. The user may create

as many instances of each agent type as desired.

Development of an Operator interface in Adroit.

An operator interface is developed in Adroit for real time control and monitoring of the
real plant. Lab measured process variables and DO values from the real time process
are gathered via PLC and reflected on the Adroit interface window for analysis and
determination of the DO process trajectories. Adroit communicates to MATLAB via
MySQL database. Any change in the status of the process such as valve open or

ciosed, are then reflected on Adroit.

Thus, the Adroit window created is used to achieve the following:

* Acquire sensor data from the PLC,
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6.5

e Siore this data in a Database,

» Acquire coefficients of the Neural networks linearizing controller and set point
values from a Database,
Update these values to PLC in real-time and

» Allow for the change in parameters and observe process responses and trends due
to these changes.

The block diagram representation of the communication between the various blocks for

the implementation of the control strategy is as depicted in Figure 6.3.

So Sazr Sg s
lab NN weights MySOL > process
optimization
S, Data base
h J
, Sxo So*
Adroit /Screen S
S, S | S
b [H] Oir 5
S° y ¥ A h
Y
S, ul Matiab
PLC registers (U NN
PI controller design |weights
u NN Controller biases
h 4 training PI parameters

Do
—  sensor Plant

Figure 6.3; Block diagram reprasenting communication for real-time contro! design and
‘implementation.

Embedding the Pl and NN controlier to PLC.
The PLC's used in industry have very limited possibiliies for implementation for
different controllers. Normailly the PLC has P, P, PID controller algorithms embedded
in the software environment. This situation is very resiricting for the modern control
applications. At the same time the PLC's are used widely in industry. The question is {o
use the existing PLC’s but to find a way of programming them o implement the
algorithms of the new nonlinear controller. The challenge is how to select some of the
linear and nonlinear functicns of the PLC and to apply them for the nonlinear NN
controller implementation.
The development of the structure for embedding in PLC is going through two main
steps:

+ Buiiding the controller structure in Simulink

» Building the controller structure in PLC.
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The first step was necessary to be done for comparison and validation purposes. The

experience of the first step is used during the second step.

6.5.1 Simulink implementation of the structure and parameters of the NN linearizing
controller.
The NN confrolier can be implemented in Simulink using vector and matrix operations.
PLC has dot these types of variables and funciions. This means that the NN controller
structure has to be built using the simplest possible PLC software blocks as coefiicient
blocks and mfjlzipiicaﬁon and summation functions, In this case the number of used
elements is growing. This means that PLC memory volume can be limited for some
applications and some balance between the complexity of the algorithnm and the
available memory has to be tade. The NN nondinear linearizing controller is
configured in the Simulink environment first in order to validate the conirol structure. A

block diagram of the struciure with Pl and NN nonlinear linearizing conirolier is shown

in Figure 6.4.
Sz S oim
+ ‘
PI vV NN ul . u
controller » nonlinear nonlinear |——»
linearizing Sfunction
o controller
So SO ,:fo

Figure 6.4: Structure with Pl and NN nonlinear linearizing controlier
The Simulink diagram of the realization of the NN nonlinear linearizing controller is as
depicted in Figure 6.5. In this structure the NN controller is realized by the Simulink

toolbox functions which are missing in the PLC.
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Figure 6.5: Simulink Block diagram representation of the NN linearizing controiter.

in this Simulink block diagram the NN linearizing controller has two parts; the NN and a
nonlinear function connected in series as was presented in Figure 5.25, and
reproduced in Figure 6.4. It is constructed using simple functions from the Simulink
fibrary in order to realize the NN controller functions using the feedforward and the
recurrent neural networks. This step is necessary because with such simple functions
it is easy to wire up the PLC to act as NN. The simulated trajectory from the set up is
as illustrated in Figure 6.6 for the functionul(k) .
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Figure 6.6; Simulink frajectory representation of the NN linearizing controller autput
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6.5.2

The trajectory is for the weights of the feedforward NN finearizing controlier
implamented eariier in chapter 5. The same Simulink block can be implemented using
the Elman network. Analysis of the trajectory represented in Figure 8.4 reveals that the
controller cuiput trajectery at steady slate is about 4000m3/day. This value is not the
same as the one recorded using the neural networks. The difierence may be as the
result that some of the neural network activation functions such as the tan sigmoid and
the puref;fn were approximated functions for implementation and not the actual
functions. From practical point of view the oblained result is applicable to the real

-

process.

The Programmabile logic controller {PLC) NN controller implementation

This seclion shows the implementation of conirol algorithms to programmable logic
controllers (PLC). The first phase is the development of the control algorithm in a
simutation environment and its verification on simulated models. Next, a real control
system is connected 1o the computer via 2 PLC to test the algorithm on a real physical
maodel. The PLC serves only for YO as all computations are still being done in the
simulation environment - MATLAB/Simulink. In the third phase the control algorithm is
completely ported into the PLC. Monitoring of the process and parameters
configuration may still be done using the connected PC with MATLAB/Simulink. The
PLC used is the Modicon M340 programmable controllers.

The Modicon M340 programmable conirofiers are programmed with Unity Pro, the
latest IEC 61131-3 development sofiware designed fo affordably and effectively handie
the requirements of very simple machine tasks tc the most compiex machine solutions.

Figure 6.7 shows layout of the structure.

Figure 6.7: Structure of Software Modicon M340

Modicon M340 design is developed by Schneider Electric and possesses the following
features:

« Compact, rugged and exceptionally powerful and is ideal for complex machine
control and medium sized infrastructure applications.

s Open connectivity to other devices with serial, Ethernet, CANopen and USB all buiit
into the processor



s On-board web server enables powerful and easily accessible remote control and
monitoring and recipe and data management.

» Powerful integrated motion capabilities making “Plug & Move” soluticns a reality.
Maodicon M340 counter modules are independent of the CPU enabling exceptional
performance with simple configuration

Unity Pro software offers five IEC61131-31 programming languages as standards.
Each section of the code can be programmed in the language of choice, adapied fo

each processing operation. Al edil, debugging, and operation tools are assessable
whatever language is used. The languages are as listed:

LD: Ladder diagram

i Instruction fist

ST: Structured text

SFC: Sequential function chart
FBD: Function block diagram

L B I BN

The Simulink block representing the structure and the parameters of the NN nonlinear
linearizing controller, together with the Pl controller parameters are to be implemented
by programming the PLC with Unity Pro software. The structure of the neural network
controller {activation functions, weights, biases, number of layers, and nodes) are to be
represented by the Simulink structure of Figure 6.5, where simple elements given in
the Simulink diagram are tc be wired up in PLC. A control loop functions library is
integrated in Modicon M340 as standard in Unity Pro software. 1IEC 61131-3 Function
Block Diagram language enables graphic and highly flexible programming. The control
loop algorithm can be optimized and control of operation kept without disturbances.

This programming language is used {o wire up the PLC.

The PLC program using functional block diagram is constructed in such a way that it
calculates the relevant values needed from parameters caiculated by Matlab and
entered by the user or Adroit. The DO process value and set point value are measured
and obtained from MySQL database. The controllers’ outputs will atlempt to achieve
the set-point value. Mathematical operators, ADD (Addition), SUB (Subtraction), MUL
{(Multiplication) and DIV (Division), are used to calculate the controller outputs. The
parts of the NN nonlinear linearizing controfier implemented in the Simulink modeit
Figure 6.5 are used for setting up of the various function block elements of the Pl and
NN controllers in addition to the mathematical operators menticned sbove to
implement the controlier algorithm. After the function blocks are designed, they are

downloaded to the PLC. The schematics of the structure are depicted in Figures 6.8.
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Figure 6.8: Function block diagram loaded on PLC

MySQL Database Manager Professional

A database is used as the middleman to establish communication between Adroit and
Matlab. This connection is necessary for Matlab to be able to extrapolate data acguired
by Adroit about the system to be controlled and the variable states. Furthermore this
connection aliows Matlab to be used for calculation as well as control purposes. In
addition to the connection property of the Database its primary purpose is the
gathering and logging of historical data of both the process and various variables of the
process under control. MySQL is used to create and manage a database. It stores or
retrieves all data received from or sent to Matlab, Adroit and the operator. In order for
the other programs to make use and communicate with the database. it has to b
added to the ODBC Data Source Administrator of Windows XP. Appendix D explains

how to create and set up a new database in order o work with Windows and
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6.8

communicate with cther applications. MySQL Query Browser is a separate application,
which forms. part of the MySQL group. lf is used o browse through the database and
ganerate a query script and execuie this script. This allows the user o view data that |

siored in the dalabase. The browser can be execulsd from the Adroll main menu.

MySQL communication with Matlab
The DO sensor signal is sent to the PLC for execution of the program after which the
=] N
measured signal is communicaled to Adroit. From the Adroit the daia is sent fo My2QL
databass. My8QL database siores and relrieves the daia nzeded for training the NN
{(Som:Sp€tC.), weights and biases, Pl controller parameters. The training is in the
Matlab environment. After fraining, the data is sent o the databasze which then
o

communicates with Adroit to transfer the dala to the PLC registers wnere the data sits,

Conclusion

This chapter has provided an overview of the real time implementation approach

undertaken for the project. The lab-scale WWTP 21 CPUT iogether with the scfiware
algorithms have been presented in addition o the PLC programs

Chapter 7 that follows provides the conclusion

project and provides a direction on the future impr
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7.1

CHAPTER SEVEN

CONCLUSION: DELIVERABLES, DISCUSSION OF THE RESULTS AND FUTURE
DIRECTION OF RESEARCH.
This chapter gives an overview of the project, application results and findings of the
investigetion. In addition, the chapter summarizas the comparaiive analyses of various
NN developed modsais and controllers and gives a summary of the deliverables and the

possibilities for improvement of the oblained resuits in future ressarch.

Introduction
Research in non-linear contrel is motivated by the inherently non-linear charactaristics

of the dynamic systems we often try to conlrol. In reality, virtually many practical
systems are significantly non-linear in nature so that the important features of their
periormance may te completely overlocked if thay ars fvsad and designed through
lingar conirol techniques. There is no eguivalent mathematical thecry on which base a
fuil theory of nonlinear systams for control can be built. Effsctiva control of nonfinear
systems requires robust methods to accommodate system unceriainfies and harsh
environments. Wasle water treatment plant is one such nonlinear system with complex
multivariable problems which require effective control because of the increased

requirements cf the guality of the effluent.

Inteliigent control techniques such fuzzy logic, neural networks and genatlic aigoritnms
have had many successes in ithe field of contrel because of their ability io
accommaoadate nonlinear parameters and harsh environment, The acitivated siudgs
processes are highly complex because they are characterised with a lot of varisbles,
complex dependencies a2nd nonlinear interconnections betwsen variables.

difficuties reguire robust methods of conirg! dasign and implementation. For this

3

thesis, the probiem of modeling of activated sludge process {ASP) and identification
and control of disscived oxygen (DO) concantration in WWTP using the neurgl

¥ i

netwo; ks theory has bDean considered. Tabie 7.1 presants a complele scheduls of

H

network algorithms of ihe models develonad.

TABLE 7.1: THE SIMULINK MODELS AND MATLAB PROGRAMS DEVELOPED
This section presents a table of the aigorithms and Simulink models deveioped

SIMULINK MODEL “FUNCTION
DO_MODELZ 2.ma P T

DESIRED md

DESIRESNOMNLINEAR mdl




iinearizing ©o v Eiman ciosed ioop control Irg;
neural nehwork in closed loop af the DO process

siory

DESIREDNONLUINEARSY456im, mdl

m_

e of fasdforward uighion of the Simutink
inearizing cantrol by sad 100D control
ne |'gI f*e?. HOCK N S cf the DO process

%)

ulahon of the S8
inverss contrel b Feeﬁfs;ward ctosed icop control ¥

9
@
a
Ll
o

INVERFF1.mdi

naural nehwork of the DO orocess
INVERELM modeid. mdi l.,,u ementation of direct Simuiahion of 1he Simuiink
rverse contrel by Elman Giosed [ooD conirot frgieciony
neure% nehwor of the DO procees
INVERFFimemedslZ . mdl Impiameniation of internat Simuationof the 8
modsa! cordrol Hv Fcec};omard csed 00D oo

P
™

s DO h*{;ﬁ::%

INVERELM fmomodseiZ.mdt impiemantatic
mode! cordtre! by Elman neural
network in ciosed loor

MATLAB PROGRAMS NAME
{script file)

Paramatars_DOm Staady state parameters orthe

D(} :mcess
‘: r‘etﬂmws

Modsitam

and recurrant)

& DG process

Modeid.m Seript fitg for NN the _;O 5roCass

1
ihree inputs and ong OL{ID H uging ural nelworks

todeld.m
SRNTTKS

lraeciaﬂva'd. “d rec urrgnty

iation of feaaforward

ESTELM m

MNVERELMm

7.2 Aims and Objectives
Based on the statement of the problem, the project aim and cbisctives are
E

davelopment and investigation of the structures cf muttilayer

and recurrent neural naetworks in the solution of the problems for identification and

control of nonlinsar sysiems.
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7.3

7.3.1

73.2

» Development of mathematical madels for the nonfinear system.
» Development of nonlinear identifier models for nenlinear systems by use of neural
networks.

s+ Development of neural network cenircliers based on the inverse and internal
models

» Development of neural network confroflers based on the closed loop linearization
approach

» Development of algorithms and pregrams for the ideniifiers and controliers in
Matlab for deployment on a hardware platiorm,

+ Real time implementation of the daveloped program on a real nonfinear system.

» Deployment of the NN controller structure and parameters into PLC environment for
purpeses of real-time control.

Deliverables of the thesis

According to the aim and obisctives of the project, the foliowing work has been done:

Mathematical model development and simulation

&« The nonlinear mathematical model of the DO congeniration process was devaioped

¢+ The nonlinear mathematical model of the DO concentration process was simulaisd
in Matlab/Simuiink scftware environment in order to obtain the Alflow rate/DO
process trajectories in order o oblain the training data for the nsural nshwork
identifiers and controller development. The develonad mode! is documented in

Chapter 2.

Development of nonlinear NN identifier models for nenlinear DO process.

System identificalion is concerned with developing the neural modsl of the DO
concentration fraleciory basad on the input and cuiput data of ihe actual sysiem.
Neural networks identifier maodeis are developed for both the feediorward and ihe
recurrent types. The inpuls these two types are varied o include compination of the

DO process, delayed values of DO process, the air flow rate and dslayed valuss of th

N

airflow rate in order 1o come up with the inpuls that give the required largels. Intdiall

Z

[b)

single-input single-output networks were developed, the input being the airflow rats

¢

and tha output being the DO process Yaeciory.

7.3.2.1 Development and investigation of Feedforward NN tdentifier models

o

The first type to be develcped was the feedforward netwerks. Feecforward natworks
with a range of hidden layer neurons were testad. The MSE betwesan the process and
the target was monitored. Thus, increasing the number of hidden layer neurcns ang
tha nurber of inpuls had a direct influsnce on the accuracy of the model unti the hast

model was chosen. The developed models are dosumsnted in chagter 4,
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7.3.2.2 Development and investigation of Eiman NN identifier models
Recurrent ‘Elman’ networks are the second type of neural networks to be developed.
Elman nelworks have bullt in feedback lcops which enable them to moedel dynamic
systems such as the DO process more accuralely. Similarly, Eiman networks with
different size of the hiddan layver neurons were lesied in order o come up with the best
mode! that represents the DC process. The developed models are also gdocumentad in
chapter -4_ The resuils from the deveioped models indicate that the networks
{feedforward and Elman) with € inpuis frained with Levenberg marguardt algorithm

yicided an accurate mode! of the DG process.

From the analyses done and varification resuils of the two seiecied medels both ({the
recurrent netwerk and the feedforward networks trained with the Levenberg-Marquardt
{frainim) algorithm, the conclusion derived is that both  models can be used for
identification of the DO process since bolh networks yield satisfactory resulls for the
DO process with minimum sguare errer (MSE). The results of these models are
tabulated in Tables 4.14 and 4.15 {for feediorward nefwork) and Tables 4,29 and 4.30

{for Elman networks).

7.3.3 Development of NN controllers
Three different control strategies, inciuding the inverse conirol, the infemal mods)
control, and the feedback linearizing noniinear contrel mechanisms have heen
employed and evaiuated based on the models developed to delermine which control
technigue would be the most efficient to implement. These controiiers have been
developed for both the feedforward and the Eiman networks. Summarized from the
simulation resulls presented in chagter 4, 5 and ©, the following subsections give ths

=

conclusions derived.

7.3.3.1 Development of NN controller based on inverse model
NN based controllers for DO concentration based on model inversion technicue for
both the feedforward and the Elman network have been studied. The controlisrs’
parformanceas to control the DO process were evaiuated through set-point stabilization
studies. The two neural modeis for the recurrent and fesdforward neural natworks
were created using nsural network foolbox residing in the Matlab environment, The

siructures of closed loop direct inverse control (feediorward and recurrent) were
implemented in the Simulink envirenment as gepicled in Figure 513 and 514, Tha
simulation resulls show that this design and configuration of the NN conirg! = not

(e S

effective if it is based only on the inverse model asproach.
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7.3.3.2 Development of NN controller based on internal model control {IMC)

These siructures are also implementad in the Matlab/Simulink environment by the
biock diagrams ilustrated in Figure 5.17 and 5.20. The results for both the internal
model contro! structures [IMC) indicate bsiler performance in comparison with the
case of the inverse madel control, but still the desired behavior of the system oulput
can not be achigved, The fiiter shown on Figure 5,16 is not implemented here. If 2 P
controlier may have bgen included in the design and conirot implementation fc actas a

fiter in the forward path, may be the resulls could have improved. Thus for fulure

improvement a Pl controlier should be considered © an input e(k) and an oulput
v(k)going to be input for the NN controller. This Pi controlier can be designed to

introduce desirable robusiness and tracking responses 10 the closed loon system.

7.3.3.3 Development of NN controllers based on closed loop linearization approach

7.4

NN based conirgllers for DO concentration based on closed loop linsarization
approach for both the feecforward and the Elman network have been studisd. The
resuifs of simulgtion of the two control schemes (the fecdforward and the Eim

nomiinear fneanzing controller architectures) have shown the effectiveness of the
schames for the conirol of the dissclved oxygen trajsctory. Thase have besen
meaasurad on the specific performance indicators for the DO process on effects of
disturbances, setooint changses ele. The controlied responss tracks the set point

fraigciory vary well,

in conclusion, savere! centrol schames have been studied basad on the Fesdiorward
and the Elman networks. Several simulation results have been provided for the

different types of the control schemes namely; the Inverse modgl, ine Internal medel
control scheame and the nonkinear linearnzing control structures ulilizing the
and the Elman networks for each of the structures developed. The resulls nave been
used to show the effectiveness of the schemss for the contro! of the disscived oxygen
traiectory. Results for the lnverse model contrel as well as for the intarmal model

control have not bean satisfactory for the control of the DO procsss. Results from the

nontinaar Inearizing contro! scheme designed with the feedicrward NN and the Eiman

netwerk gave satisfactory simulation resulis

Development of algorithms and programs
The meathods for dasign described above are examined twough simulalicn and Real
Time implementation using software programs and algoritnms deveiooed in Malial
environment as weall as Simulink Block ¢

z

developed for every of the deliverables from 7.3.1 1 7.3.4,



7.5

7.6

simulations ¢f the models is tabuiated in the Table 7.1, For aclivations of the various
neural network topclogies, fan sigmoid and purs linear transfer functions were used in
the hidden layer and oulput layer of the NN respectively. The fraining errcr was
computed by means of the negative of the gradienis and conjugate directions using
the scaled conjugate gradient aigerithm and the Levenberg marguardt aigorthm. The

mean squared error (MSE) was used o evaluale the perfiormance of the models.

Embedding the NN nonlinear controller structure in PLC for real-time control

Matiab/Simulink/Neural Networks is the software utilized to implement the models and
the algorithms, and to carry oul identification and conlrol simulation. tventually tha
neural networks models cbiained are transported through Simulink to PLC for real-time
implemeantation. Communicalion bebween the software platforms Adrolt, MATLAR and
MySGL is established in order to implement the real time control on the iab-scals
wastewaier treatment plani. In any conirol problem a control loop will normally be
implementad {o facilitate the conirol procedurs. The control loop that implements the
reai-time DO control is as illustrated in Figure 8.3, This cenirat configuration is realized

by interfacing various software packagses to accompiish the control process.

Importance of deliverables

The meain focus of this project has been akout investigation of neural netwerks for

2

purposes of identification and control of nonlinear system. The scientific anc

{

o

application results obtained have been as a result of the research work undertaken o

the theory of neural networks as weil as the study of the DO concentration process in

waste water irealment piant being a nonlinear sysiem. The deliverables are significant
inthat:

» They provide a knowledge base in nonlinear contre!l by application of neural
networks theory.

+ This will enable utilisation of neural networks for conirel and provide an attarnative
mathed for noniinear control design.

s For educations! apptication, the control of nonlinsar DO conceniration oy use of
neurat networks is cf interest to undergraduate and posigraduats students towards
the fieid of conircl. They can use thesse findings as a benchmark for desicn and
testing of basic neural identifiers and controfiers

» The conirol algorithms developed in this proiect can also be used for demonstration
purpeses or as exampies for students.

¢« The operaters in the fisid of wastewsater trealment induslry can uss the simulaton

rasuits o show tha!t the neural net
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7.8

» The proposed PLC implementation of the NN linearizing controller can improve the
controf of the WWTP.

Application of the thesis results
The developed models, slgorithms and software serve for
Understanding: Gives insight in the waslewaler treatment processes and how
suitable mathematical models are derived.
Education and iraining: Operalors are not always adequalely frained o operate
advanced sensor and conirel eguipment and most environmential engineers would
need more basic understanding of process dynamics and conirol in order io
appreciate the potential of instrumentation. control and automation.
Meural network theory practitioners: The field of ardificial inislligence and in particular
naural networks is still a developing one, The resuits could be considered as a2 ool
for future postgraduate siudents’ proiects at university level
Communication: As 2 pasis of communication betwsen the varicus scitwars
piatforms Adroit, Matlab/Neural networks and MySQL in order to scive the problem
of DO control and other precess centrel problems.
Real time control. Function approximation by neural networks is a commion feature
in many areas of process modeling and identification beth in on-line applications
such as real time control and in off-ine applications such as the medeling of the
dynamics of DO processas. These resuils can be used as a basis of further

davelopment of the thecry of naural networks for contre! of the BO procass.

Future research work

Resuits for the Inverse model control as wetll as for the intarnal modsl contral by neurs!
networks have not been quite satisfaciory for the centrol of the DO process. This may
be due to the fact that a filler element was not inciuded in the design. Thus for future
work an improvement on the design of these conircliars is necessary. Secondly, the
practical implementation introcduced various cbsiacles. For exgcution of the project,
some notable problems were encountered such as the interconnection of MATLAB
neural nehbwork weighls to the PLLC via fhe datzbase. This necessitated the
construction of a Simulink block diagram 1o imitale the neutral network and then usad
the block diagram fo program the PLC. This connection is of extrems importancg as it
forms the iink to the communication between the softwars packages. it is also througn
this link that thal control is established as Adroit and MATLAB cannct communicals

giractly. Thus for fulure research work, improvements are necessary on this arsa.
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List of publications related to the thesis

The work on this project resulied in a number of publications as listed below:

Muga, JN., Tzeneva, R, 2068, ‘Development of neural network process moedels and
linearizing controllers for DO concentration process real-lime control in wastewater
treatment plants’. [EEE Transactions on Noural Networks {submitted to journal)
Muga, JN., Tzoneva, R. 2009. ’Investigations on the structure of multiayer
feecforward nsural networks for identification of DO concentration process in
wastewater reatment plants’. Submitied to SAIEE research journal.

Muga, JN., Tzoneva, R. 2002, 'Investigation of the sltruclure of muliilayer recurrent
neura! networks for identification of DO congeniration process in wastowater
treatment planis’. Submiited to journal of Artificis! infelligence.

Muga, JN., Tzoneva, R, 2008. 'Design of neural networks fesdiorward linsarizing
controlier for DO concentration process in wastewster reatment plants’. Submitted
to International journal of neural systems.

Muga, JN., Tzoneva, R. 2008, 'Design of the recurrent neural networks linearnzing
controfier for DO concentralion process in wastewatsr treatment plants’. Conirol
and automation journal.

Muga, JN., Tzoneva, R. 2008. 'Design of the Inverse model and the internal model
neural network confrollers for DO concentration process in wastewater treatment

plants’. Submitted to SAICE ressarch journal,
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APPENDIX A2: Script file: parmeters_DO.m

MATLAB PROGRAM TO SIMULATE THE DO PROCESS USING ASM1 STEADY
STATE PARAMETERS

Sosat=8%
K1l=240%¢
KZ2= 1.0961e-00
Soo=0.491
V=1333%volome of The asratilion Lank

S0in=0.2;

t=0:1.041667Te-4:0.1;

u=50000+1000. *randn (1, 960} ;

Qg=553318

Qr=1844¢

Qo=184446

Q=Qg+Qr+Qo

D=0Q/V

a=-0.02;

b=200;

muA=0.5

muH=4

Koh=0.20

Yh=0.867

Ya=0.24

Ks=10

Enh=1.0

Koa =0.4

Xbhs=2559.344

Xbas=14%.789%9

Snhs=1.733

Ss5s5=0.389

Snh=Snhs*ones (1, 960) ;

Sz=8ss*ones (1, 960);

Xba=Xbas*ones (1, %60) ;

Xbh=Xbhs*ones (1, %60Q) ;

Z=t"';

U=u"';

Ass=38s';

Asnh=8nh';

Axba=Xba';

Axbh=¥bh';

KLa=K1* (1-exp (-K2*u}); soxvaen wass bLransfsy cosilililisnt

rso=-muE* ((1-Yh)/Yh) * (Sss/ (Xs+5s3) ) * (Sco/ (Koh+5c0))

*¥bhs+ (-muhA* ( (4.57-Ya) /¥a) )} {Snhs/ (Xnh+Snhs)) * (Soo/ (Koca+500) ) *Xbas;
rsol=rso*cnes {(1,%60) ;%
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APPENDIX B:

TABLE GIVING THE SIMULINK MODELS DEVELOPED
This section presents a table of the algorithms and Simulink models developed

MODEL

NAME

FUNCTION

DQ_MODEL2_2.mdi

20 progess paramelers
obtained from ASMY

'atﬁch of tne Bimuiink 0O
sl fraisgiory

DESIRED.mdi

implementation of desire
referance modet in closed joop

diation of the Sk sr-x

CESIREDNONLINEAR mdi

Implemeniation of nontinsar
inearizing coniro! by
Feadforward neural nely
ciosed oo

or of the Simuding
309 control trajectory
ha DO process

DESIREDNONLINEARem mdl

i”ﬁﬂﬂ"e’}tatz{)”‘ or onfs ea:
inearzing ©
neural "e;\,ﬂ,c'v( i

diation of the Simulink
ciosed loop contre! Irajeciory
of na DO process

DESIRCOMONLINEARST45elmmal

neural network in S:

wiation of the Simuling
ciosed loop control trajectory
of the DO provass

NVERFF 1mdl

gnglementation of direct

.
inverse "“’”‘"L’Gl oy Feedforward

s aElm
Sy a"""" of tha Simulini

closed foop control tralactory

neural nabtaork of tha ?‘Q DIOGESS
INVERELM modei2 mdi Er'") emantaton of dregt
verse control by Elman ry

INVERFFimemodeiZ2 mdi

¢ Gﬁf‘:u ooa conirol
of the 0 procsess

INVERELM imemoedei2 mdl

Simulation of the Simt
ciosed 00D conire: ajaniony
of tne 00 nrocess

Program (script file)

FUNCTION

Farameters DOm

seript fle for simuialion of the
DO process using

ASMMisl Eﬁd‘l a‘”‘e Daramelsrs

Modellm

UBing ﬁ’E’L.'. =H ﬂEZ‘f-Ct ks
{Taa’fjfc‘*\‘—ﬁ ,—r{ nnfi oL ‘f"‘Cf"‘-j“!

ModeiZ2.m

LAl rpm iy st
or NN rain g wilh

wis and ong output

INVERELM M

Script £

fraint

INVERFF.m

e -

]
it

Parametersiorui.m
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APPENDIX C:
SOFTWARE ROUTINES

This section presents the implementsd MATLAB software algerithms that are used in

the development of the neural neltworks for identification and for control of the
dissolved oxygen conceniration iralectories. The topoiogies considered are both the
feedforward and the Elman networks. The description of these script files are

contained in chapters 4, 5, and 6 as well as the Table in appendix B.

C.1:  HMATLAB script-feedforward/Elman model —modelt.m

i lmax max(ll)
11 1*11 /1 lmax

quure(l)

plot(Z,il 1,%'x-1);

grid

xlabel ('t

ylabel(“ e
title('Daiiy Zicocw rat=')

12—30 (: 4 1}

i 2méx~¢ax(12)
12 2=1i2./1 Zmax

2T Ar fhe mermalized outooes
RIS Lhe NoFXmMmnirFZael UTLLE

flgure(2)

plot{Z,12 2, 'x—7)
grid on
xlabel ('zi:
ylabel (*
title('a:

=3

Pr=[11 1]':=
={iz 21"

net=newff {mirmax{Pr}, {2 1], {’carsig’, "puralin'}, 'trainscy')y;

net.trainParam.mem_ reduc=2;

net.trainParam.lr=0.05;

net.trainParam.epochs=10000;

net.trainParam.show=50;

net.trainParam.goal=1le-6;

netl=train (net,Pr,Tr);

gl=input {'Enike any ¥sy....'};

P
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APPENDIX C:
SOFTWARE ROUTINES

This section presents the implemented MATLAB sofiware algorithms that are used in
the development of the neural networks for identification and for conirol of the
dissalved oxygen concentration irajectories. The topologies considered are both the
feedforward and the Eiman networks. The descripticn of these script fies are

contained in chapters 4, 5, and 8 as weall as the Tabls in appendix B.

C.1: MATLABE script-feediorwardiElman mode!l -modselim

orngliied 1nNDuTa

flgvetl)
plot{Z,il_1,%'x=-");
grid
xIabel (P timzidavs:')

ylabel(’ dayi )
title('Daily fiow raca’)
i2=so(:,l)

EMorgilize Lne

1 Zfrax—'r‘ax (i2)

flq&fetz) Fa
plotlZ,12_2, "%~}
grid oo

("1

®label
ylabel ('
1"1:(

Pr [i1_ 117
Tr=[i2 2] ':%tar

net=mewif ('t"lrlmax( r), [2 17, ("oznsig’, 'purelin'}, 'tzeinecd’);
niet.zrainParam,.men reducs=2;

nat.trainParam. 1r=0.05;

niet.crainParam. epochs=10000;

et.trainParam, show=30;

et.trainParam,.geczl=le-g;

netl=wrain{net, pr,Tr) ;

gl=impat ("Zfize any REy.ooL 0t

bo Jas B
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a=sim(netl, Pr);
figure (3)
hold <

ploL(Z Tr,
plot{Z,a, "x+:7, 'mq
plot(z,a—Tr,‘k*',
grid

xlabel (7%
ylakel ¢
title ('«
legend({':
hold oz

Zend

C.2: BMATLAB script-feedforward/Eiman model ~modeal2.m

i_Imax-maxz(il)
i1 1=i1./i lmax
figure(l)
plot({Z,11_1j;
grid

title ('
iz2;
i_Z2max=max (12)

12 2=i2./1i_Zmax
figure(2):
plot(Z,1i2 2)

grid on
xlabel("zimeidavs;

pet=newe1m(mlqmax(9),{3 11,
net_trainParam.mem reduc=2;
net.trainParam.lr=0.05;
net.trainfParam.show=25;
net.trainParam.epochs=10000;
net.trainParam.gcal=le-6;
net?=train{net,P s T);
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a= 51m(net2 P),
f1gure(3)

plot(z T, Arkars
plot({Z,a,'r’', mﬁf?%fSA
plot(Z,a-T, ‘markersize’, 3)
grid

xlabel ('t

ylabel ('S
title(Fdis

C.3: MATLAE script-feedforward/Elman model —model3.m

load caza_t=z;

i lwax=max (il}
i1 1=i1./i_ Imax
figure(l)
plot iz, i1 _13};
grid

xlabel( 'tz

i2;
inmax=max(i2)
i2 2=1i2./1 Zmax
fiqure(2):
plot(Z,1i2_2)
grid cn

et—neweln(mlnmax(g),[B 1
net.trainParam.mem red_c-z,
net.trainParam.lr=0, 05;
net.,trainParam.show=25;
net.trainParam.epochs=1G000;
net.trainParam.goal=le-6;

st
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net=train{nat,P,T);
gl=input( : 5

& v ke

e 11T E Lnie Nelwork
a=sim(net,P);

figure(3)

lot(Z,T,"
plot(Z,a, ':

ylabel ('Cu
title( '«
legend(
held <ff

SO0

s ofize) t);

C.4: MATLAB script-feedforward/Elman model ~modeld.m

close
clear =
locad data
i Imax=max(il)
il 1=il./i_lmax
figure (1)
ploc{z,il 1};
grid

xlabel {'tims

iz2;

i 2max=max (i2)
12 2=12./i_Zmax
figure(2);
plet(Z,12_2)

grid o
xlabel{'timsidava; ")
vliabel{'3c')

title{'dissolved ouygsn concentration')
length{il_1):

k=il 1(1:960);
kKO=[0;k(1:959)]1;
k1=[0;0;k(1:958)1;
k2=[0;0:0;k(1:957}1;
length(Z);
m=7{1:9260);
m0=[0;m(1:959)];
ml=[0;0;m(1:958);
m2=[0;0;0;m(1:957)};
iz 2;

n=i2 2(1:960);
n0=[0;n(1:959)];
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nl=[0;0;n(1:558)];
n2 [0:0:0; n(l 957)]

Togriiaent ’.‘.12.{‘0"‘ (e
nef-newrf(mlnmax(P),[2 11, {'%an
net.trainParam.mem reduc=2;
net.trainParam.lr=0.05;
net.trainParam.show=25;
net.trainParam.epochs=10000;
net.trainParam.goal=le-6;
net=train{net, B, T),
gl input('z:

a=sim(net,P);
figure(S)

plot(Z T el s
plot(Z,a, =%, "m:

plot(Z,a-T, 'g
grid

#label(®
ylabel(’
title('d
legend (!’
hold <£f

C.5: MATLAB script-fesdforward model - BESTFF.m

x0={C; k(l 959)],
k1=[0;0;k(1:958)];
K2 [O O 0 K(l 957)]f
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nl={0:n(1:959)1;

nl=[0;0;n(1:258)]:

n2=[0:0;0;n{1:957)1;

Pl={il 1 k0 kl 12 2 nl nll't;zinpur variables to the HY
Ti=[i2 2]‘- N

[R T3 siz
iitst = 2:4
iival = 4:4
iitr = 1:2:

validaticon.P = P1(:,1iival);
validation.T = T1(:,iival)
testing.P = Pl{:,iitst}
testing.T = Tl(:,iitst)

ptr = Pl{:,iitr}

ttr Tl (:,iitr)

pause
netl =

L8 DI S 0]

[ etl, tr]—traln(netl ptr ttr,[],[
netl.trainParam.show=5;% Zhow int

alldatlon,testlpg)

(b'——‘l

r
rm

netl;
w=netl.IW{1,1}
bw=netl.b{1}
v=netl.LW{2,1}
bv=neti.b{2}

el
o

) R I LIl LD T aiLiiiagy

figure (3)

plot(tr.epoch,tr.perf, 'r’,tr.epoch, tr.vpert, 'z *g',tr.epoch, tr.tperf, '~
5«\')

Ve

e -l)s

{1

legend('T
xlabel ('E
ylabel(’

figure (3)
heold oo

251



plot(Z,T1, k", size’,6)
plet(Z,an, 'z}, 'markersize’, 6} ;
plot({Z,err,'g', 'markarziza’, 6)
grid;

xlabel (F&i

vlabel (
title('dis i
legend (' Trainin

3 The
vyl = an’.*i Zmax;
figure (6}
held on

plet (Z,¥1, '=
grid;
xlabel ('t
ylabel (*C
title({"diss
legend( n
held o
Hend

C.6: MATLAB script - Elman mode!l - BESTELM.m

k=il 1(1 960).
kO~[O,k(1.939)§;
k1=[0:0:k(1:958)1;
k2 [0 0; O k(1l: 957)1,

n=i2 2(1 960);
n0=[0;n(1:959) 17
nl=[0;0;n(1:958)1;

n2={0;0;0;n(1:857)1;

Fl=[iZ 2 n0 nl il l kO k1l'pxicpur walu=e o the NN
Ti=[{i2 | 21 :
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iival = 4:4

iigr = 1:2: T

validation.P = P1l(:,iival);
validation.T = Tl {:,iival}
testing.P = P1{:,iitst)}
testing.T = Tl(:,iitst)

ptr = PI{:,1itr)

ctr = T1(:z,iitr)

o

err2 T1l- 51m(net

net2;
wl=net2.IW{1,1};
bwi=net2.b{l}:;
vi=net2.LW{Z,1};
bvl—net2 b{2},

rlgure(B) ’
plet (tr.epoch, tr.pe
RN
legend({*Training', "Yalidstion’, "Test',-1);
xlabel ('Er

ylabel(‘?

H)
I
[
-
o
Aol
Q
[p]
[xy
t
A
(6]
H
h
T
(a1
(]
g
O
0
[ag
rt
[a]
r
o]
o
Al
Hh

flgure(S)

hold <

plot(Z Tl,

ploti{Z,a2,’

plot{Z,errZ,

grid;

xlabel(“

ylabel ('C =yt ;g
title('d:

legend(*Trainin

hold -




figure (6)

held on

plot(Z,y2,

plot(Z,errZ

grid;

xlabel ('t

ylabel ('O ;
tltle('aiss :
legend( ‘s

hol nfF;

C.7: MATLARB script-fesdforward inverse model - INVERFF.m

Ref;

7 max=max(Ref);
jl=Ref./] max:
]2 31(1 960),

rsol_lmax=max(rsol);
rsoll=rsol./rsol lmax;:
rsoll=rsoll';: Lhz nor

Soinl= 0 2*on s{l, 96
Soznll SOlnl"

oot

iitst =
iival =
iitr = 1
validati

i
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testing.T = Tif(:,1itst)
ptr = Pif(:,iltr)
ttr = Tif(:,iitr)

. 5 - P
i 19 L uIchs

{ et tr]‘traln(netlf,ptr ttr, [1,[
lf trainParam.show=5;% Show inter

errif= TlF-SLm(qetlf,Plf)

Lhariern)

g1=1nput(';;”

netlf,

wif=netif.IW{l,1}
bwif=netif.b{1l}
vif=netif IW({2,1}
bvif=netif.b{2}

3 ZEOE

figure(3)
plot{tr.epoch,tr.perf, "r*,tr.epocn, tr.vperf, ' :¢*,tr.epoch, tr.tperf, ' -

BN

legend('T P 'Validation', 'T2st', 3);

xlabel(

ylabel ('S

pause : =0 "display the regression analysis,

flgure(4)

v
[t

postreg{alf Tlf

)

flgure(S)

hold <n

plot(Z,Tif, '-** )

plot(Z,aif, ' --x 3);

plot (2, Tif-aif,’ &', 3)

grid;

xlabel{'x ;

ylabel { " s nefwirk,u{kl, target and srror ')
title(': )i

legend( a', "HH outpunt,'Error'}

Loenc o z

yilif = aif'.*i_Imax;

figure (6)

kold on
plot(Z2,ylif, 'mark

plot(Z,il,"'--xz¥",

plet (Z,il-y1if,

grid;

xlabel ('

ylabel ( P.iarget Erocrty;
title(':

legend(’ Y, Errar )




@]
—
)
133
0]
o

2 A R o [T HES I
& ADKE (O O R = A} ER i A S Ly &

j_max=max (Ref) ;
jl=Ref./j max;
j2=j1(1 960),

5on

rsol lmax max(rsol},
rsoll—rsol /rsol_lmax

oll rsoll'-% the

nl=0. 2*ones(l 960Q)
nll=Scini*;

pLe*[]l 12 i nO nl KO k1 Solnll T'soll]“-"'=i¥“__;\-
=[i1 117 {

siz
iitst = 2:4
iival = 4:4
iitr = 1:2:
validation.P = Pie(:,iival);
validation.T Tie(:,1ival)
testing.P = Pie(:,iitst)
testing.T = Tied(:,iitst)

ptr Pie(:,iitr)

u

trtr = Tie{:,1iitr}




[netie,tr]l=train{netie,ptr ttr,[].[] valldatlon testlng)
netle tralnParam show=5;

errie=Tie-sim(netie, Pie);
saveas (gcf, "tra i
save *: ir;

netie;
wie=netie.IW{1,1}
bwie=netie.b{l}
vie=netie.LW{2,1}
bv;e—netle b{2}

flgure(B)
plot{tr.epoch,tr.perf, 'v*',tr.epoch, tr.vperf, ' :¢', tr.epoch,tr.tperf, '~

legend('T?
xlabel {';
yiabel {®

Ly i [

flgure(B)

hold =<n
plot{Z,Tie, "r+--'
plot{Z,aie, "=, 'n
plot (Z,errieg, '~
grid;
xlabel(':
ylabel {'C
title(*Ai
legend(’
hold

figure(6)

hold on
plot(Z,ylie, 'r-=', 'marz=rsize’, 3}
plot(Z,il, '—"', 'markarsizs’

ploti{Z,il-ylie, "~"', 'markersl
grid;
xlabel ("t}
ylabel ('C
title('Adi
legend('Irs
hold =ff;
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C.9: MATLARB script-nonlinear linearizing controller feedforward mode! -
nonlinearconfi.m

rsol lmax=max{rscl);
rsoll= rsol /rsol lmax,

ul llmax=max(ul);
ul I1l=ul./ul llmax;®Kormzlize flow rats ul by divading with “he wax

=

N—ul 11(1 960}
NQO= [O N(1:959)1;
N1=[C;0;N(1:958)];%
N2=f(Q;0:0;N(1:957)1;%

Ni=vVo 11(1:960):"
NOi=[0;Ni{1:539)1;
N1i=[0;0;Ni(1:9358)]1;%
N2i={O,O,O,N1(1.937)};*v

Ki=v1 11 (1:960);
KQi={0;Ni{1:95%)];
K1i=[C:0;Ni(1:958)]
K2i-[070;05Ni (1:957)




Pc {Vo ll Vl 11 KOL rsoll S oi
Te=ful 11]°*: :

[Re,Qc] = size(Pc);

iitst = 2:4:Q¢;

iival = 4:4:Qc:

iitr = 1:2:Qc:

validation.P = Po(:,iivall;
validation.T = Tc(:,iival)
testing.P = Pc(:,iitst}
testing.T = Tc{:,iitst)
ptrc = Pc(:,iitr)

ttrc = Te(:,iitr)

%(ﬁlmax(ptrc{, {5 11, { !

netcts
we=netcf,IW{l,1}
bwe=netcf.b{1}
ve=netcf.LW{2,1}
bvc=netcf.bi{2}

flgare(l)
plot(tr.epoch,tr.perf, '«

1

z',tr.epcgch, tr.tperf, '~
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pause %
figqure(2

figure (3)
hold zn
plot(Z,Tc, !
ploti{Z,act,
plot(Z,errc,
grid;
xlabel('ti
ylabel{*
title{'C

figure (4)

held 2n
plot{Z,ycEt, 'r', s
plot (Z,errc, fs', 'm
grid;
Xlabel (*%i
yvlabel (TOutput - b
title{'Cutpur 25 Ui i rizing noni ;

CA0:MATLAB  scripi-nonlinear  linearizing controller Elman  model
nonlinearconelm.m

ISR TEE TR T}

5
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rsol lmax=max{rsecl):%
rsoll=rsol./rsol_lmax;
rsoli=rsoll';% the no

ul 1lmax—max(ul),
al 11—u1 fal llmax;*®

&

Vi liiw

V1 Imax=max (V1) ;3Ncrmalize linsar controller ouiput by div
- normalazed Linesr controller ocutpun lnte ool

N=ul 11(1 960) 7
MNC=[0;N(1:959)];2
N1=[{0;0;N(1:958)];"
N2=[0;0;0;N(1:957)];%ul

Ni=Vo 11(1:960};%
NOi=[0;Ni(1:959)];%v
N1i=[0;0;Ni(1:958)];%%

N2i=[0;0;0;,Ni(1:957)]1;35%

Ki=V1(1:96C);%n
KO0i=[0;Ki(1:959)]:;%
Kli=[0;0;Ki{1:958)]1;%55 =
ﬂZl—[O Q; O Nl(l 957)

PC
Tc

iitr = 1
validaticon.
validaticn.T = Tcf: ,11vql)
testing.P = Pec{:,litst}

;
= Pc(:,1iival):
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testing.T = Tg{:,iitst)
ptrc = Po:,iitr)
ttre = Tc(:,iitr)

netc;
we=netc.IW{l, 1}
bwe=netc.b{l}

ve=netc.LW{2,1}
bvcsretc b{2}

Pigct the Tzaining, vialidarticn and et .
flgu?ell}
plot({tr.epoch, tr.perf, 'r',tr.epoch, tr.vperi, '¢',tr.epoch, tr.tperf, '~
legend(': TRz, 3);
xlabel ('

viabel(’

pause

figure(3)
hold o=
plot{Z,Tc,
plot(Z,ac, '2°
plot{Z,errc,’

v

ty




ylabel(
title ("
legend(
hold <

vC ac'. *ul _1lmax;
figure (4)

hold on
plot{Z,yc, ’r', i
plot(2,errc, '3,
grid;

C.11: MATLAB script-nonlinear function-parametersforut.m

[P
LI

B
SEEEE R )

g2—h.-..:;-\,-=i

g=h* (Sosat~ Soo)*Kl,

f=Scc* {1-gi)+h*Kl* (Sosat-Sco};
ul—((a*V1+b*Vo)—:-gl-(gZ*rso))/g.*

= M lelal ol jr\v“1?‘
UL S 3 Lo
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APPENDIX D:
DATABASE ANDCONVERSION INTO MYSQL FORMAT

This section presenis the conversion of the ASCH {ext files and the MS Excel files into
MySQL database formatl The procedure for sefting up the MySQL is alsc database is
aiso discussed.
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APPENDIX E:

COMMUNICATION BETWEEN THE SOFTWARE PLATFORMS ADROIT,
MATLAB AND MySQL

This section discusses the develepment of 8 GUI for the implementation of the

communication belween varicus platforms.
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