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ABSTRACT

Optimal control of fermentation processes is necessary for better behaviour of the
process in crder to achieve maximum production of product and biomass. The problem
for optimal control is a very complex nonlinear, dynamic problem requiring long time for
calculation. Application of decomposition-coordinating methods for the solution of this
type of problems simplifies the solution if it is implemented in a parallel way in a ciuster of
computers. Parallel computing can reduce tremendously the time of calculation through
process of distribution and parallelization of the computaticn aigorithm. These processses
can be achieved in different ways using the characteristics of the problem for optimal

conirol.

Problem for optimal control of a fed-batch, batch and continuous fermentation processes
for production of biomass and product are formulated. The problems are pased cn a
criterion for maximum production of biomass at the end of the fermentation process for
the fed-batch process, maximum producticn of metabolite af the end of the fermentation
for the batch fermentation process and minimum time for achieving steady state
fermentor behavicr for the continuous process and on unstructured mass balance
biological models incorporating in the kinstic coefficients, the physiochemical variables
considerad as control inputs. An augmentad functional of Lagrange is applied and its
decomposition in time domain is used with a new coordinating vector. Parallel computing
in a Matiab cluster is used fo solve the above optimal controf problems. The calculations
and tasks allocation to the duster workers are based on a shared memory architeciure.
Real-time control implementation of calculation algorithms using a cluster of computars

allows quick and simpler solutions to the optimal control probiems.
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1.1

CHAPTER ONE
INTRODUCTION

Awareness of the problem

Fermentation processes are widely used in SA for production of food, beverages,
medicines, chemicals. A Fermeniation process is classified according to the mode that
has been chosen for process coperation either as batch, fed-batch or continuous {(Agrawal
et al., 1888). it is clear that the pursuit o maximize the productivily whilst minimizing the
production costs is not the only reascn for the control engineers interest in fed-baich
fermentation processes. Existing control systems for the fermentation processes in the
scientific laboratories and industry are based only on the principles of classic control
{Flaus et al. 1988). The process behavior is not optimized according to existing

environmental conditions and the acting disturbances (likova and Tzonkov, 2004).

The non-stationary process dynamics, slow response, non-lingarity, sudden unexplainad
changes and irreqularities make these processes more interesting for researchers, The
developed project is based on the latest control technology using PC with Matiab
software technology. Ancther challenge is to integrate the whole system ie. Data
ecqusition(DAQ) and real time control system with the design methods for modeling,
parameter estimation and optimal control determination, in order to huild a fuily
automatic, adaptive and robust control system (Neif and Harvey, 1880). The problem that
will be considered and solved is concerned with the process behavior optimization based
on the existing dependencies between the chemical (environmental) process variables
like temperature pH, Dissolved oxygen {(DO) and the biclogical variables (concentration
of biomass substrate and preduct) (Zhang and Lennox, 2003). This problem is
characterized with many variables, nonlinear equations, big dimensions which lead to
very complex calculations. The time for calcuiation of the optimal contrel can be very iong

and in this way the real-time calculation is not possible.

Distributed and parallel computing is one of the new achisevements in computer sofiware
and hardware. it can reduce tremendously the time of calculation through distribution and
parallelization of the computation algerithm. These processes can be achieved in
different ways using the characteristics of the problem for optimal control. Solution of the
optimal control through mathematical decomposition is one of the best ways for

parallelization of the solution because it is done in such a way that the solution of the

1



1.2

problem is a sum from the solution of the sub-problem, this means that the optimality is

preserved.

Following the above, the thesis will investigate the new computational distributed and
paraliel technology capabilities to solve the problem for optimal contral of fermentation
processes on the basis of the decomposition methods.

Statement of the problem

The problem for control of fermentation process is very important these days because of
population increase and industrial developments. The fermentation process has proven
to have positive effects in many fields of domestic life and industry, but the different types
of fermentation processes thal are baich, fed-batch and continuous siill need deeper
understanding and improvement. Furthermore these processes have not been studied

fully yet as an object of control. It is not clear:

= Which kind of medels are convenient, for optimal control caleulation
= Which are dependencies between input and cuipuls,

= Which process variables are the most significant and in which way they affect the
quality of the process or its products,

= What the optimal combination of settings for these significant variables is,
according to the goals posed on the process quality and the product quantity.

»  There is a lack of methods for measuring of imporiant variables, for modeling and
parameter estimation and for optimization and contre! calculation.

» The existing methods for solution of the optimal conirol problems require complex
and time consuming calcuiations.

it is necessary for better control of the process to overcome the above difficulties by
developing adaptive multi-layer strategy of control in which the problem for optimal
control will be designed and implemented in integrity with others for controller design and
its implementation in order to achieve maximum production of yeast at the end of

fermentation processes.
Then the research preject problem can be stated in the following way.

To develop methads, algorithms and programme for paralle! solution of the problem for
optimal control such that the preccess of calculation is characterized with reduced

complexity and minimum time.

The research problem can be divided in the following sub problems:



1.3

1.3.1

1.3.2

1.3.3

1.34

Design based problems

Sub-problem 1: Mathematical modeling

The design and implementation of the connection between chemical and biological
variables in the existing process kinetic model for three types of fermentation processeas-
bateh, fed-batch and continuous. Unstructured model describing the behavior of the
biological variables identifying the dependencies between physiochemical and biclogical
variables will be introduced:

inputs to be considered as control signals

* Base/acid fiow rate

» On/off heating energy

*  Flow rate of oxygeh

*  Flow rate of subsirate

*  Temperature

» pH

= DO, conceniration.

State variables

» (oncentration of biomass
*  Concentration of substrate
= Concentration of product
= Volume of the reactor.

Sub-problem 2: Development of decomposition methods

Development of methods and algerithm for solution of the cptimal control problems

based on decomposition of the initial problem.

Sub-problem 3: Software development for calculation of the problem on one
computer.

Development of Matlab pregrams for optimal controi calculation using sequentia! mode of

calculation.

Sub-problem 4: Simulation

Simulation of the process with the develcped programme of optimal contrel 1o verify the

methods and soffware,



1.3.5

1.3.6

14

1.4.1

1.4.2

Sub-problem 5: Software development for calculation of the problemon a
cluster of computers

Development of Matiab programs for optimal control calcuiation using distributed mode of

calculation.

Optimization of the process of paraliel computation

Experiments with the developed programs and a benchmark program to investigate the
influence of the cluster architecture, number of workers, amount of communication
messages between the workers on the time of calculation. Different scenarios will be

designed and implemented.
Research Aim and objectives

Research Aim

The research is focused on developing a decompeosition method o solve the probiem for
optimal control of the fermentation processes for production of biomass and product. The
problem is based on two types of criteria —-maximum production of biomass and product
at the end of the fermentation process and maximum production of biomass and product
at the end of the unknown optimization period. The mass balance model of the process is
used. Methods, algorithm and programme have to be developed for calculation of the
optimal trajectories of the chemical and biological variables in Matlab. An aigorithm and
software for paralle! and sequential impilementation of the method in Matlab cluster has

to be developed.

Objectives

= To develop a unique mathematical model of the fermentation processes by
incorporating of physiochemical variables into the kinetic modes. This is
achieved by performing a study of varicus existing models and by studying the
complex dependencies between the process variables.

= To develop decomposition methods for optimat control caleulation of the three
considered types of fermentation processes. This is achieved by performing a
study of the existing methads for optimal centrol on the basis of g functional of
Lagrange.

»  To develop algorithms and programs in Matlab for sequential calculation of the
optimal control.

« To develop algorithms and programs in Matlab for distributed-parailel calculation
of the optimal trajectories.



1.5

1.6

1.7

Hypothesis

The hypothesis is connected with the possibilities for application of the methods and
technclogies of the modern control to the fermentation processes. It can be formulated
as:
=  The connection between the chemical and biological variables is possibly to be
created using special representation of the kinstic model paramsters.

* The created models can describe very well the process behavior and the optimal
control problem formulated and solved on their basis will optimize both chemical
and biological process variables.

= The parallel computaticn of the optimal control problems will reduce the time for
computation.

» The time for calculation in the cluster can be reduced by proper problem
decomposition and -reduced communication between workers and with
possibilities to achieve shorter time for optimal control problem formutation and
solution.

Delimitation of Research

» The research study is conducted at the Cape Peninsula University of Technology
in Department of Electrical Enginesring.

* The research will be concentrating on all three types of fermentation namely
batch, fed-baich and continuous.

* The considered physiochemical variables are temperature, DO, pH and rpm. Only
temperature is used in the developed process models.

»  Optimal control problem are solved using two-level computational structures and
theory of the variationai calculus.

»  Maximum number of used workers is 32.

Motiivation of the research

Better results from the fermentation process will be received if the control system
succeeds to optimize the environmental conditions for the cells. It is therefore quite
impertant to investigate how the chemical state causes changes in biclogical state. In
order to achieve the full biclogical potential, the chemical or environment conditions must
be maintained optimally. The chemical variables control the enzyme activity of the
biclogical variables and conseguently control the biological behavior. Therefore, they are
considered as control inputs. This means that if the optimal conditions for the chemical
variables are reached accerding fo a given optimization criterion, then the optimal
conditions for the biological ones will be also reached. The idea is not new but there has
never been any practical industrial application of this method. The ability o coniro!

5



1.8

1.9

fermentation processes accurately by foilowing desired frajectories is bslieved to be a
key factor in maintaining the product consistency and this believe can be proved by the
undertaken research project.

The oplimal control problems of fermentation processas have to be solved as these
processes are subjected io some disturbances. Taking into account the current
development of computer archifecture, it appears very useful to obtain optimal coniro!

faw by iterative methods which are well adapted fo parallel computation.

Assumption

The assumptions are made according to different paris of the project research work, as
follows:

= Process under study — it is working according to prescribed technology.

«  Model of the processes — the kinetic models of batch, fed-batch and continuous
can be used as a basis for description of the connections between the chemical
and biclogical variables.

« Optimal control problem solution — The Lagrange’s functional methodology can
successiuily be used to solve nonlinear problems for optimal contrel

= Parailel calcuigtion — the fime for communication between the workers is less
than the time for solution of the task by the workers,

= Cluster memory distribution — allows fast distribution of tasks between the
workers.

Description of the fermentation processes

Fermentation is the biotechnological practice that results in the creation of aicohol or
organic acids con the basis of growth of bacteria, mouids or fungi on special nutritional
media (Ahmed et al,, 1982). it is the process that takes place in tanks calied bioreactors
or fermentors. Fermentation processes are complex, dynamic autocatalytic processes in

which transformation, caused by biological catalysts called enzymes is taking place.

Enzymes are proteins of high molecular mass that act as biological catalysts. They are
substrate specific, versatile, and very effective biclogical catalysts resulting in much
higher reaction rates as compared to chemically catalyzed reactions under ambient
temperature. Enzymes are classified according to the reaction they catalyze. Enzymes
decrease the activation energy (E) of the reaction catalyzed by binding the substrate and
forming an enzyme-substrate (ES) complex. Molecular aspects of enzymes-substrate
interaction are not yet fully understood, but yet the enzymes require oplimal conditions

for pH, temperature, icnic strength, etc for their maximum activity. (Michael and Fikret,
8



1.9.1

1.9.2

1.9.3

1992). This dependence will be used in the thesis to develop mathematical models of the

processes for the purpese of optimization of the control and state trajectories.
The technology of the fermentation is as follows:

The nutrients are added and the celis are inoculated into the fermentation vessel,
environmental conditions such as pH, temperature, DO,, stc are kept convenient. The
cells start multiplying forming mass cells called biomass, and other substances called
secondary metabolites, or products. The research is based cn three different types of

fermentation:
Fed-bhatch fermentation

The input to the process is continuously added from the initial stage through the end of
the process, but the process buiput is not removed until the process is finished.

The fed-batch processes start with the calls being grown under the batch movement for
some time, usually until close io the end of the exponential growth phase. At this point
solution of substrate (nuirients) is fed into the reacior, without the removal of culture
fluids. This feed should be balanced enough to keep the growth of the microorganisms at
a desired specific growth rate and reducing simultaneously the production of by-products.
During the growth phase nutrients are added (Flow rate - F) when needed and acid and
base is added to control the level of pH. If the cells are grown in an aerobic condition,
using appropriate meters the oxygen flow rate can be measured. Also the rate into which
the oxygen is supplied can be conirolled. Temperature is one of the variables that nesd
to be controiled precisely. Many variables can influence the operation of the fermentation

process. The ones listed above are just the few that can be measured on-line,
Batch fermentation

The input {feed-nutrients) to the process is added before the in%rtial stage of the process
and the product {process cutput) is not removed until the process is cofnp%ete. The main
disadvantage of the batch process is that it is characterized by high down time betwesn
batches, comprising the charge and discharge of the fermentor vessel, the cleaning,

sterilization and the re-start of the whole process.
Continuous fermentation

The input to the process is continuously added and the process output is continuously

removed making it more economic compared to the other two type menticned above.
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Control system layers

The optimal control problem in the thesis will be solved in Matlab as part of the optimal
control strategy for the process. In future the Matlab cluster could be connected {0 the
PC and used for faster solution of the optimizaticn problem. The problem for calculation
of the optimal conirol is considered as a part of a rea!l time optimal and adaptive controt

strategy which could be implemented for every fermentor, Figure 1.1.

Adaptation layer

A

h 4
Optimization! eptimal confrol

F Y

h 4
Direct controf

A

Plant

Figure 1.1: Three layers of control system

The problem solved on each layer is as follows:

= Adaptation - model identification, { mode! parameters estimation)

s Optimization - optimization based on the model parameters from adaptaticn layer
and design of the direct contreller parameters. The study will consider and solve
optimal control problems.

= Direct controf - realization and implementation of the closed loop linear and non-
linear control according to optimal trajectories of the process variables oblained
from the optimization layer.

Parallel optimal control calculation

Computational necessities have been one of the main concemns for the cptimal control of
large-scale interconnected systems. The advent of parallel computers fostered a
considerable amount of effort to solve these problems by using parallel algorithms to
speed up computation time. The approach that is used in the thesis is based on the idea
of decomposition and coordination, where a large optimal control problem s
decomposed into a number of sub-problems, and appropriate coordinating variables are
introduced. This forms a two-level structure, where the low level consists of many smaller

optimal control sub-problems and the high level is a parameter optimization problem.

8
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With the coordinating variable given, low level sub-problems are decoupled and solved in
paraliel. In the thesis coupling variables and Lagrange multipliers are selecied as
coordinating variables. The global optimality is then ensured by Heratively updating
coordinating variables at the high level. Successful methods for seolving long-horizen
preblems have been developed along the line of time decompuosition, where the original
problem is decomposed along the time axis {Chang et al, 1988) and {Tang st al 1881)
and are further discussed in chapter three of the thesis.

Thesis Outline

Chapter 1 describes the need of the study discussed in the thesis and highlights
comparison between the different types of fermentation processes i.e. batch, fed-batch
and continuous processes for the production of yeast. The aim and the oblectives of the

dissertation are stated and explained.

Chapter 2 describes fermentation process, firstly a brief introduction in micreorganism’s
types, fermentatioh process phases, and fermentation technoiogy based on three
different types of fermentation as the research in the thesis is focusing on them. Models
that describe the system in all possible situations with a high accuracy are developed
based on the mass balance principle of fermentation processes for three fermentation

processes mantionad above.

Chapter 3 describes the imporiance of fermentation process contro! technology. It also
highlights some important adaptive optimization techniques as they are used as
cptimization methods needed in order to successiully obtain the optimal operating

policies of the processes.

Chapter 4 describes the formulation of the problem for optimal control of a batch
fermentation process. Decomposition method for solving discrete time formulation of the
problems based on varaticnal calculus using an augmented Lagrange functional and its
decomposition in time domain is developed. The algorithm of the methed that is used to

solve the optimal control problem is described.

Chapter 5 describes the formulation of the problem for optimal control of fed-batch
fermentation process. Decomposition method is firstly developed for batch processes to
solve the above problems on the basis of an augmented Lagrange functional and new
coordinating vector for its time domain decomposition is applied and is developed. The

algorithm of the method for solving the optimal contrel problem is developed.

9
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Chapter 6 describes the problem for minimum time control of continuous fermentation.
Decomposition method for solving discrete time formulation of the problems based on
varational calculus using an augmented Lagrange functional and its decomposition in
time domain is developed. The algorithm of the method that is used to solve the optimal
control problem is described.

Chapter 7 is firstly elaborating the reason why there is a need in applying paralis!
computing in chemical processes. lt also explains the concept of paraliel computing and
gives a brief history of parallel Matlab environment. Matlab Parailel Computing Toolbox
and Matlab Distributed Computing Server and its concepts are introduced.

Chapter 8 describes the programme of optimization in Matlab Distributed Computing
Engine and Parallel Computing Toclbox. The Results from calculations with the Matiab
sequential program and the paraliei calculations also are described. The resuits from the

sequential and parailel computing are compared.

Chapter 9 presents the conclusion stressing the developments in the dissertation as well

as the future work on the topic and the possible application of the developed work
Conclusion

This chapter explains the necessity of the research. Aim and the objectives of the thesis
are stated and explained. The selected development and simulation software used is
discussed. Three different types of fermentation processes ie. baich, fed-batch and
continuous are highlighted. Description of modeling approaches as applicable to the
thesis is discussed in chapter two. Also the derivation of the developed fermentation
models using mass bajance equations and rate laws is discussed and presenied in

chapter two.
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CHAPTER TWO
DESCRIPTION AND PROCESS MODELING OF FERMENTATION
PROCESSES

Introduction

This chapier describes growth siages of the processes in nutrient solution with
micreorganisny's cultivation under physiological conditions. Three different types of
fermentation processes ie. balich, fed-baich and continuous are discussed and
compared according to their characteristics. The description of modeling approaches as
applicable to the thesis and the comparison betweean different types is highlighted. The
derivation of the developed fermentation models using mass balance equations and rate

laws is discussed and presented.

In this chapter section 2.1 recapitulates the content of the chapter. Section 2.2 describes
fermentation process, firstly a brief introduction in microcrganism’s types, fermentation
process phases, and fermentation technology based on thres different types of
fermentation as the resaarch in the thesis is focusing on them. Modeling of fermentation
processes has always been somewhat challenge. However, it is neither necessary nor
desirable to construct comprehensive meachanistic process models that ¢can describe the
system in all possible situations with a high accuracy as presented in section 2.3. In
section 2.4 three modeling approaches are highlightad. In section 2.5 describes Kinetic
models of fermentation processes. In section 2.6 mass balance principle of fermentation

processes is presented. Lastly conclusion is given in section 2.7.
Fermentation process
Microorganism types

Fermentation is the oldest of gll bictechnological processes. The term is resuiting from
the Latin verb fevere, to boil—the outer shell of fruit extracts or malied grain acted upon
by yeast, during the production of alcohol. Microbiologists consider fermentation as ‘any
process for production of product by means of mass culture of micro-organisms’ and
Biochemists consider fermentation as ‘an energy generating process in which organic
compounds act both as electron donors and acceptors{ Pumphrey and Julien, 1988).
Fermentation process plays a key role in the pharmaceutical, biotechnology and focd
industries. Several species belonging to the following category of micro-organisms are

used in fermentation processes namely

11



= Prokaryotic
Comprise uniceliular organisms able of seilf duplication or of directing
their own replication. They do not possess a true nucleus or a nuclear

membrans.

=  Eukaryolic

They have nuciear enclosed within a distinct nuclear membrans.

Classification of microorganisms (Pumphrey and Julien, 1898) is shown below on
Figure2.1.

Protists
[ ' 1 v
Prokaryotes Eukaryotes Viratl
{ | [ l 1
Bacteria Cyancbacteria Yeasts Algas Protczoa Slime Moulds

- Figure 2.1: General Classification of microorganisms

The non-cellular protists do not undertake self-reproduction; instead they direct their
reproduction within ancther cell term the host. Cyan bacteria are classified ancther group
of microorganisms, although they are often considered to be included with cther bacteria.
Fungi are divided into lower fungi, slime moulds and higher fungi which comprise yeasts.
Yeasts are free-living, single cells which they closely resemble fungi. Protozoa are living,
organisms which although not generally engagead for biotechnology processes have been

included for comprehensiveness. Viruses can be regarded as intraceliular parasites.

Growth of organisms involve multifaceted energy based processes. The rate of growth of
micro-organisms is needy upcn more than a few culture conditions, which should supply
for the energy required for various chemical reactions. The speed of production ¢f micro-
organisms and hence the fusion of a range of chemical compounds under artificial
culture, requires organism specific chemical compound as the reproduction medium. The
kinds and relative concentrations of ingredienis of the medium, temperature. pH,

dissolved oxygen, flow rate, volume efc pressure microbial growth,

12




2.2.2 Fermentation process phases

After the inoculation of a nutrient solution with microorganisms and cultivation undsr

physicicgical conditions, four phases of growth can be observed.
= lagphase

Physiochemical equilibrium between microorganisms and the environment inoculation
with very little growth.

= logphase

At the end of the lag phase cells have muodified to the new environment of growth.
Growth of the cell mass is now described quantitatively as a repetition of cell number per
unit time for bacteria and yeasts. Plofting the number of celis, biomass against time cn a
semi logarithmic graph, a straight line will results. Although the cells adjust the medium
through uptake of substrate and emission of metabolic products, the growth of celis
remain steady at this phase and is independent on substrate concentration as long as

surplus substrate is there.
= Stationary phase

As soon poisonous subsiances have been created, growth slows down. The bicmass
increases steadily, although the composition of cells may alier. Various msiabolite

created in this phase are often of biclegical interests.
= Death phase

In this stage the energy reserves of the ceils are worn out. A straight line may be
obtained when a semi logarnthmic plot is made of survivors versus time, indicating that
the cells are dying at an expenential rate. The length of time between the siationary
phase and death phase depend on the microcorganism and the process used.
Fermentation is episcdic at the end of the log phase or before death phase begins. All

four growth phases are observed on Figure 2.2
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Log call number
Lag Phass

Log Phasa
Stationary phase
Dealh Phase

—
Time

Figure 2.2: Growth curve of a bacterial culture

In industry fermentation is a process that takes place in tanks called bioreactors or
fermentors. A typical industrial fermentation and typical process measurements that are

available are shown on Figure 2.3.

Batch, continuous On-line measured
i
and fed-batch

Process Inputy Process Outputs
Fermenior
Cf-line 'measured

Figure 2.3: Typical industrial fermentation

It is important to distinguish beiwesn those process variables measurements that can be
made off-line and on-line. Process inpuis are substrate flow-rate, Heat on or off, etc. On-
fine environmental control are, temperature, pH, etc). and off-line environmental conirel
are, biomass concentration, product concentration and substrate concentration. Off-line
measuremenis aré made by process operators taking a sample of broth and awaiting
results from laboratory before making corrections to the process inputs. The fermentation

process can be operated in either batch, fed-batch or continuous fermentors.

Comparison of fermentation processes

Fed-batch bioreac‘foré have a number of well known advantages over batch or

continuous fermentors (Banga et al,, 2002). For example, fed-batch can be the best (or

even only) alternative due fo its effectiveness in overcoming undesired effects like

substrate inhibition and catabolite repression. Besides, i provides better control of

deviations in the organism’s growth pattern and preduction of high cell densities can ke

possible due to extension of process time, which is useful for the production of
14
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substances associated with growth. An illustrative example of the importance of the fed-
batch culture is the large scale production of monoclonal antibodies, with product
revenues in USA of several bilions of USD (Bibila and Robison, 1984},

Modeling of fermentation processes

Fermentation processes are dynamic, non-linear and non stationary, in nature, thus
leading to many difficulties in modeling. Modeling of biological processes has always
been somewhat challenge. However, it is neither necessary nor desirable to construct
comprehensive mechanistic process modeis that can describe the system in all possible
situations with a high accuracy (Galvanauskas €t al., 1998). In order o optimize a resl
bictachnical production process, the model must be regarded as a vehicle to reach more
easily to the final aim. The model must describe those aspects of the process that
significantly affect the process performance. Modeling must be leaning at the
optimization task io be scived and must not uncritically sample all the informaticn
available about the microbial system used. From the theoretlical point of view, the model
describes the possible paths of the process through state-space representation. The

system is non-linear and time varying, state equation are written as

x(1) = a(x (), u(t), 1) (2.1)

Where x(r) is the state vector andu(r) s the control vector. The easiest modeling

concept presumes ideal mixing, which is rarely, if ever achieved. The asepticity necessity
create measurements from the fermentor non-trivial. Cellular process, mass transfer and
control aspects make the modeling appears more devastating, and thus it should
cautiously be considered, what actuaily needs fo be modeled given exact problem.
Different techniques have been developed in recent years for different modeling needs.
Some focus on the reactor, some on reaction kinetics (Eungdamrbng and lyengar, 2004).
and some on system biology: metabolomics, proteomics (Goesman et al., 2003; Klein et
al., 2002; Lemerie et al., 2005). Lack of specific sensctrs makes cerfain variables
unreachable by on-line measurements. The difficulties experienced by control engineers
when studying these types of processes, result from the fact that the process model is
based on nonlinear algebraic relations and differential equations. These difficulties make
the bictechnological process an excellent field for application of advanced control
(Dahhou et al., 1991a).
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2.4.1

242

Modeling Approaches

To be able to control an industrial process it is required to know the relationship between
the unprocessed material, process settings and end-product results (Jorgensen and
Naes, 2004). Measured input parameters can be mathematically modeled to end product
attributes, without any pricr knowledge or hypothesis of their contribution to those end-
product attributes. The use of predictive modeling methodologies can be used to build
predictive models for target responses (Estrada-Flores et al., 2008). There are three
maodeling approaches that were studied in the manufacturing of dairy products (Peter
Rcupas, 2008) namely
= White box modeis

= Black box models
»  Grey box models

White box modeis

White box modeling approaches are described as mechanistic, first principle,
hypothetico-deductive, phenomenological, or state-space modeling. These approaches
are based on the knowledge and fundamental theoretical principles of the process or
factor being modeled and universal equations can be applied to build the model. Such
models are applicable over any range of conditions or which medel assumptions hold.
Values of the input data are independent of measured and the accuracy of the model and
the validity of its assumptions and underlying theory, are tested against the real-world

measurements of the modeled process (Esirada-Flores et al,, 2008},
Black-box models

Black box modeling approaches are empirical, inductive or input/output modeling and are
useful when the mechanisms underlying a systems behavior are unknown or poorly
understood, or where known mechanisms are too complex {o be modsied efficiently from
first principle. Examples of this approach include multiple regression models or Artificial
Neural networks (ANN) models that require no theoretical basis. Black box medels are
developed from actual word information (Estrada-Flores et al., 2008) and have been
proven to be particularly helpful where serious parameters are identified and measured

on-line {O'Callaghan and Cunningham, 2005).
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243 Grey-box model

2.5

A grey box, or hybrid modeling approach combines the use of first principle based white-
box models and database black box models, and is particularly useful when there is a
lack of fundamental theory to describe the system, or process being modeled, when
there is a limited experimental data for validation, or when there is a need 1o decrease
the complexity of the model. This model approach has been used {o create mathematical
models {o predict the shelf life of chilled products or the thermal behavior of imperfectly
mixed fluids or to create Artificial Neural Networks (ANNs) and dynamic differential
equations for control-related applications (Estrada-Flores et al, 2008). It has an
advantage over white box in that it provides a way around missing information in a
complex system and performance from a coniro! point of view (O'Callaghan and
Cunningham, 2005). It has béen reported that such grey-box sclution have not perform
the separate white and black models in terms of predictive precision for explicit
applications {Jones and Brown, 2007). The grey box modeling gives opporiunities to

illustrate in a better way the performance of the fermentation processes.

The capability to predict the performance of fermentation systems enhances the
possibility of optimizing their performance. Mathematical expressions ¢f model systems
symbolize a too! for this and the most modsern advances in computer hardware and
software have made the approach more helpful than previcus basic attempts. The
current information of biocchemical microbial pathways and the experiencs in optimization
of chemical fermentors combined with very powerful and easily reached computers,
loaded with sasy to use software and mathematical routines, are changing the way
processes are being developad and opsrated. This possibility is investigated in the thesis
by development of mathematical models and decomposition methods for calculation of
optimal control of all three types of the fermentation processes using parallel computation

in a cluster of computers.
Kinetic models

Kinetic modeling expresses the verbally or mathematically expressed correlation
batween rates and reactant/product concentrations, that when inserted into the mass
balances, permits a prediction of the degree of conversion of subsirates and the yield of
individual product at other operating conditions( Nielsen and Villadsen, 1892). Kinetic
model is normally a black box model and can be shown diagrammatically by the structure
on Figure 2.4
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Figure 2.4: Kinetic model structure

Where s(t) is substrate concentration, p(t) is a product concentration, x(t) is a biomass
concentration and u(t) is the growth rate of microorganisms. If the rate expressions are
correctly set up, # may be possible fo express the course of an entire fermentation
experiment based on the initial values for the components of state vector, e.g.,
concentration of subsitrate. The basis of modeling is to express functional relationship
between the forward reaction rates of the reactions considered in the model and the

concentration of the substrates, metaboelic preducts and biomass:
= fls, p.x) {2.2)

Where u is the forward reaction rate. A good understanding of the kinetics in terms of

mathematical modeling is an important step in developing a successful control strategy. it
is often possible to accurately represent the growth of microorganism, which is an
unusually complex phenomencn by reiatively simple empirical models. One of the most
important factors influsncing the growth of Sachoromyces cerevisiae is the effect of
specific inhibitors. During ethanol fermentation, in general both product and substrate
inhibitions can be considered as significant. An extensive literature review on alcohol
tolerance of the microorganisms has been presented by (Casey and ingledew, 1988).
(D'Amore and Stewart, 1987), {(Jones, 1889), (Pamment, 1989) and (Warren et al, 1882)
have alsc presented a review of fiterature on ethanol inhibition. Ethanol inhibition has
been modeled in general by its effect on two parameters:

*  The specific growth rate of the microorganisms

*  The specific product formation rate
Bath models can be well thought-out as important in the case of batch fermentations
since these models can predict ethanol production in the lack of growth of the

microorganism

Kinetic modeis are investigationally derived mathematical formulas that fit the measured

data reasonably well. The easisst kinstic modeling praclice is the application of an

unstructured kinetic model. The kinetics can be linear or nonlinear, single-phase or
18



muliiple phase (Eungdamrong and lyengar, 2004}, {Mitchel et al.,, 2004). Linear kinetic
models take account of constant rate and first order kinetics. Nonlfinear kinetic models
comprise exponential, logistics, second order other defined functions (Eungdamrong and
lyengar, 2004}, {(Maurer and Rittmann, 2004) and (Mitchel et al., 2004).

The mainly accepied defined kinetic model function has certainly been the Monod model,
which contains two parameters that define the relation of growth and substrate utifization.
The Monod model was the foremost unstructured mechanistic model It can be
considered as the mainly basic model to describe the growth of a given microorganism in
the absence of any specific inhibition effects. This model is based on the hypothesis that

the growth is restricted by a single subsirate concentration and is given by:

gt | (2.3)
Where K5 is the Monod constant, Hmax 1s the maximum specific growth rate and s is the
substrate concentration [g/]. The importance of £ is that when substrate concentration
is numerically equal to K growth rats is exactly half of the maximum growth rate. In
many systems the product inhibits the rate of growth. The equation that is used {o

represent the product inhibition on the growth rate is {(Dochan et al, 1880
re=|1-2 (#maxXS] 24)
pr Ks+s

Where ry is the cell growth rate, x is the cell conceniration, p’is the product

concentration at which all metabolism cease and n is the empirical constant for
Saccharomyces cerevicerae. The investigations on the thesis are based on the kinetic
model {2.4). Maximum specific growth rate is expressed as function of ethanol
concentration. In other words the overall effect of ethano! inhibition on growth rate can be
accounied by adjusting growth rate in above. Contois and Moser (Kivinarju et al., 2007)
presented modifications to the Monod model. Contois theory was base on increase
inhibition by biomass itself, which has later been doubted (Niel.sen and Villadsen, 1994).
Other different formulas were presented by Teisser and Blackman (Kiviharju et al., 2007).
The logistics expression has also been successfully used in the growth estimations. The
Monod mode] has also been extended io substrate and product inhibition (NieLsen and

Villadsen, 1994). These, however have more parameters and require more computing
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power to fit appropriately. Kinetic models have been applied to the lag and death phases
and in particle interactions (Mitchel et al., 2004). Temperature and PH can change the
activities of many enzymes and influence the growth kinetics (Maurer and Rittmann,
2004), (Mitchel et al., 2004) and {NisLsen and Villadsen, 1994). The above menticned
models are ail empirical expressions, it is futile to debate which one is the best, simply

choose the one that best fits the system. Some of the kinetic models are given below;

Tessier medel
H= poe(l—(e)™'%) (2.5)

Where s is the concentration of substrate

Moser model
AL max S”
H = -
Ks+s (2.8)

Where n is the empirical constant for Saccharomyces cerevicerae
Contois model

A max §

i Kx+ s 2.7

Biackman modsl

5
={ Hmx—— 8 2K,
e

fox 22K (2.8}

Mass balance principle of fermentation processes

In modern approaches to fermentation control, a reasonably accurate mathematical
model of the reaction and reactor environment is required. Using process models,
progress beyond envirenmental control of bioreactors into the realm of direct biclogical
control can be achieved. Development of fermentation models is aided by information
from measurements taken during the process operation. Models are mathematical
relationship between variables. For biclegical processes, specifying the model structure
can be very difficult because of the complexity of cellular processes and the large

number of environmental factors which affect the celi culture.
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Process models vary in form but have the unifying feature, that they predict cutputs from
set of inputs. Another important factor affecting reactor performance is the mode of
operation such as batch, fed-batch and continuous. Choice of operating strategy has an
effect on substrate conversion, product concentration, susceptibility for contamination
and process reliability. The dynamic behavior of the growth of cne population of
microcrganisms on a single limiting substrate in a stirred tank reactor is most often
expressed by equations {Dochan and Bastin, 1990) which are obtained from straight
forward mass balances:

o m s m i m T plmeemcmimimaw s - i i mme— - = mimim e emrimemi— e e ——
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Mathematicaily {2.9) can be written by the following equation

dM(t) . . ,
2 = Mi(t) — Mo(t) + Ro(t) — Re(r), M(0Q) = My where ¢ is the time (2.10)

M =mass of component in the vessel
M = mass flow rate of component entering the vessel

M> = mass flow rate of component leaving the vessel

Rc = mass rate of generation of component by reaction
Rc = mass rate of consumption by reaction
M = Initial mass of the component in the vessel

The mass balance equation can be written for a separate component, or for the whole
process. This equation is used to develop the unstructured models of the different types
of fermentation processes. Three equations form the corresponding model of the
fermentaticn processes. They describe the mass balances for the biomass, subsirate
and the product. Equations are derived under the following assumptions

s« Stirred tank reactor

=  The process is assumed {0 be in complete mixed conditions; this implies
that the composition of the medium is homegeneous in the reactor.
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= The biomass growth and the substrate consumption are propositional to
the biomass concentration and are described below for every type of
fermentation process,

2.6.1 Models for Batch fermentation process

Batch processes operate in a closed system; subsirate is added at the beginning of the
process and product is removed only at the end of the process. It is assumed that the

reactor has no leaks and evaporation meaning the volume of the vessel I is constant.
» Derivation of the biomass equation

Assuming well mixed batch fermenter for cell culture or biomass concentration x and

applying mass balance equation (2.10)}, it can be wrilten

The reactor has no input and outpuf which means that

M=M=0 {2-;1}
Mass of cells in the reactor is equal to the product of the concentration of the biomass
and voiume.

M=xV (2.12)

Mass rate of cell growth Ro is equalto r’
Rc = ryV {2.13)

Whare rvis equal to ux, rx is the volumetric rate of growth, u is the spacific growth rate

of the microorganisms, which can be expressed by Monod kinetic faw in (2.3).

If cell death takes place in the reactor, the mass rate of consumption of biomass is given
by

Re=rdV (2.14)

Where rs=ka is the death of microorganisms and A is the death constant. Then

following equation (2.10) where

M=xV (2.15)

d(xV) =V —kaxV, x(0)=xs

dt {2.18)
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Taking derivatives of equation (2.16)

xd(V), Vd(x) _
dt dar

XV(ﬂ—kef),X(O)=I¢ (2.17)

. . dv
Since the volume of the reactor is constant, A = ( and the mass balance equation for

the biomass is

(x) =x(u—ki), x(0)=xs

dt (2.18)

= Derivation of the mass balance equation for the limiting substrate

The reacter has no input and output which means that mass flow rate entering the
reactor is equal o the mass flow rate leaving the reactor and equal to zero, which is

given by equation (2.11). The mass of substrate in the reactor is
M=sV (2.19)
Where s is the substrate concentration and V' the volume of the Reactor

No substrate generation in the reactorRo=0. The substrate is consumed by the

microorganisms in the reactor
Re=rV (2.20)

Where s is the rate of consumption, which depends on the specific growth rate, the
yield coefficient Y and the coefficient of maintenance of microorganisms m and

hiomass concentration x

Fs = -[—)u—'i- Hh)x
Fes 2.21)

Then

Re = —[L + ms)xl-’

Yis

{2.22)

Applying equation (2.10) the substrate mass balance equation describes only substrate

consumption
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(1)

dt Yrs (2.23)
Taking derivatives of equation (2.23)
d(S):__ MHmax§ sl S(O)=S¢
dr (K +5) {2.24)

= Derivation of mass balance equation for the product concentration

The reactor has no input and ouiput which means that mass flow rate entering the
reactor is equal to the mass flow rate leaving the reactor and equal to zerc, which is

given by equation (2.11).
The mass of product in the reéctor is

M=pV (2.25)
No product consumption in the reacior

Rec =0
Generation of the product in the reactor is

Re = rpV (2.26)

Where 1, is equal to gpx. 1, is the volumetric rats of product formation, q, is the specific

rate of product formation.

Applying equation (2.10) for the product mass balance equation

M = qﬂxr/
dr ' 227

The specific rate of product formation can be expressed as the sum of the maintenance

coefficient m, and the yield coefficient for the production of product by biomass Yex
gr = (¥mit +my) (2.28)

Then the product equation is

d(P) _ [erﬂ max § 4 mpJI, p(O) =p,

dr (K +5) {2.29)
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2.6.2

On the basis of the above derivation, the mass balance model of the batch fermentation

process is
.1-7=( Hmax § _kd]x’ x(()):)c‘;5
(Ks+5) (2.30)
s= —(—”&‘S—+ ms]x, s(0)=s,
Fis(K + 5) 2.31)
. _ (erﬂ max § 4 ?Hp)x, p(O) _ p¢
(K> +5) (2.32)

Models for Fed-batch fermentation process

The fed-batch process is characterized with substraie input, no output and changeable

- volume V because ¢f the input flow. The volume is limited by the vessel volume of the

reactor and this means that the input flow can be used with limifations.

= Derivation of the biomass mass halanhce equation

The output does not exist and Mo= 0, the input exists and is given by the fiow rate F,. The

mass of the biomass coming into the reactor is given by

M= Fx (2.33)
Where ¥, is the concentration of biomass into the inflow. The mass of biomass in the
reactor is

M=xV (2.34)
The consumption of biomass in the reactor is given by the death éf microorganisms
Re=rdV =kaV (2.35)
The generation of microorganisms is given by

Re¢ =71V = uxV {2.38)

Substitution of the above equations (2.33). (2.34), (2.35) and (2.38) intc the general

mass balance equation (2.10) gives

25



2.6.2

Cn the basis of the above derivation, the mass balance model of the batch fermentation

process is

XZ( JumzﬂS "dex, x(()):x#
(Ks+s5) (2.30)

s= —[—”ﬂg—+ms)x, s(0) =s,
Yis(Ks + 5) 2.31)

: Xar/_l max §
=|————+mp |x, p(0)=p,

(Ks+5) (2.32)

Models for Fed-batch fermentation process

The fed-batch process i8 characterized with substrate input, no output and changeable
volume V because of the input flow. The volume is limited by the vessel volume of the

reactor and this means that the input flow can be used with imiiations.

= Derivation of the biomass mass balance equation

The output does not exist and Mo= 0, the input exists and is given by the flow rate F,, The

mass of the biomass coming into the reacter is given by

M= Fx (2.33)
Where X, is the concentration of biomass into the inflow. The mass of biomass in the
reactor is

M=xV {2.34)

~ The consumption of biomass in the reactor is given by the death of microorganisms

RC=I‘dV:k¢a’V (235}
The generation of microcrganisms is given by

Ro = r. V = uxV {2.36)

X

o

Substitution of the above equations (2.33). (2.34), (2.35) and (2.36) intc the general

mass balance squation (2.10) gives
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W) _ by gV —kxV,  x(0) = %,

dr
{2.37)
By differentiation, equation (2.37) becomes
xd(V) Vd(x) _
o + ar = EYI+XV(ﬂ—kd), X(O) = x¢ (238)
The derivative of the volume is equal to the input flow rate
a_
dt . {2.39)
Dividing the obtained equation by the volume V it is obtained that
) _ fﬂ-*x(y—kd-i)
dt vV V
But dilutionrate D= £
(2.40)
Then equation (2.38) becomeas
d(x) _ .

dr
= Derivation of the limiting substrate mass balance equation
The fermenter has no output and the output mass flow rate is given by the equation
M.=0.
The substrate is not generated in the fermenter and Rg= 0. The substrate consumption is

given by
v | H
Re=rsV =+ —~+m |xV {2.42)
¥
The mass of the substrate in the fermenter

M =5V (2.43)

The rate of mass infiow into the fermentor is
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M= Fsi (2.44)
Where s; is the concentration of the input substrate

Applying the general mass balance equation (2.10), the mass balance equstion for
limiting substrate is.

A7) = Fisi —(?’u-——l- ms]xV, s(0)=s,

dt & (2.45)

After differentiation equation (2.45) becomes
4 7

Sd(]: )+ Id(s) - Fsi— [Ty__;_ms xV’ S(O) =S¢

dt dt Fxs
Dividing by the volume V then the mass balance equation for limiting substrate is
d
ﬂ = D(si—5)— [H‘fi + mxjx, s(0) = s,

d Tis (2.46)
Derivation of the mass balance equation for the product
The input mass rate is given
M= Fp: (2.47)

Where p; is the concentration of the input product and the fermenter has no output M, =
0.

The rate of mass of the product generation is

Re =1V =YeqpxV ' (2.48)
The mass of the product in the fermenter is

M=pV (2.45)
After substitution in the general mass balance equation and after some algebraic

transformations the obtained mass balance equation for the product is

d -
dlp) _ ~D(p— p)+ Yeure, p(0)=p,
dr 2.50)
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2.6.3

On the basis of the above derivation, the mass

fermentation process is

d(x) o | HmeS _

dt [(Kv+s) g D)]x’ *O=%
A _ oy oy | MmsS -
e Di(s:i—5) [}ﬁs(l(s+s)+mij, s(0) 5,
d(p)__ . A max § -
i = hw p)+(1’m’ (&H)x]_. p0)=p,
dv

& _F Vo)=Y,
7 )=V,

balance model of the fed-baich

(2.51)

(2.52)

(2.53)

(2.94)

Normally it is accepied that the input concentration of the biomass and the product are

zero, pi = 0, x, = 0 and the input concentration of the substrate is bigger than the

concentration of substrate in the fermenters; > s.

Models for Continuous fermentation process

In continucus process model nutrients are added continuously and also product is

continuously removed. The rate of fed flow is assumed to be equal to the rate of the out

flow such that there will be no change in volume. Models are derived using both dynamic

and steady state conditions.

2.6.3.1 Dynamic-state balances are:

= Derivation of the equation for biomass mass balarnce

The rate of biomass inflow to the fermenter is
ﬁ-‘f:‘ = Fx:'
The rate cf the cutput mass is

Mo= Fx

(2.55)

(2.56)

Where the output concentration of the biomass is equal to the biomass concentration in

the fermentor. The generation of biomass concentration in the fermenter is given by

equation (2.38). The consumption of biomass is given by the death of microorganisms
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presented by equation {2.35). The mass into the fermenter is given by equation (2.34).
After substifution in the general mass balance sguation {2.10) the following is obtained

’d
W) _ peo— Pe+ juc — kel
df {(2.57)
After diffsrentiation

V) Va) . po R ol —kaV, x(0) = x,

dr dat

. ) dy oL ) F
Since the volume of the fermenter is constant E =0 and the dilutionrate is D= I_f it
is obtained
d(x
% :Dxi +X(ﬂ—kd-D), x(0)=x¢ {258}

= Derivation of the mass balance equation for the substrate

The mass of the substrate in the fermenter is given by equation (2.43). The rate of the
input mass of the substrate is given by equation {2.44). The outpui rale of mass of

substrate is
M= Fs (2.55)

The generation of substrate is zero Rg= 0. The consumptiocn of substrate is given by
equation (2.42). After substitution in the general mass balance equation (2.10) and

differentiation this is cbtained

Y

MO T _ b F- (B ey, 5=,

df dt (2.60)
iy— =0 then
dt
96) _ psi—s)- [i + mst, 5(0)=s,
df I.&'S (261}

Derivation of the mass balance equation for product
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The mass rate of the input product is given by equation (2.47). The mass of the product
in the fermenter is given by eguation {2.439) and the consumption of the product in the

fermenter is zero Rg = Q. The mass rate of the output product is
M. = Fp (2.62)
The generation of the product in the fermenter is

Re = rpV = qPYV (2.63)

After substitution in the general mass balance equation it is obtained

d(pV)

g poipt ey (2.64)

After some algebraic manipuiation the following is obtained

d .
_(El =D{pi—p)+(Yexpt +mp)x,  p(0) = p,
7 (2.65)

The modet for continuous fermentation process is

d(xy _ D Hmax § -

e x+(m—kJ‘DJx, x(0) = x, (2.68)
) _ ey | =S -

g - Pl (1?5(K}+S)+m}x’ 0=, (2.67)
d(p)_ o . fmax § i 0) =

— =D p)T(ﬁ.v(Ks+s)+mpr, p(0)=p, (2.68)

Normaily no concentrations of biomass and product in the input_ flow,x;=0and p=0in

the above equations.
2.6.3.2 Steady —state equations description

The steady state equations are obtained after considering steady-state mode of
operation in which the derivatives of the biomass, substrate and product variables are

zero. Then the equstions are
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2.6.4

D(si—s)— (—@LT ms)x =0
Yis(Ks+5) (2.70)
Dp +(H>X M3 o mp)x =0
(Ks+5) 271

Physiochemical variables incorporation into the biological variables equation
In industry

= The processes fed-batch and continuous are controlled by input flow rate
(F; and keeping constant T, pH, DO; at some previcusly determined
values.

» Batch processes keeping T, pH. DO; etc at some previously determined
values.

This is far from reality because of disturbances influence and microorganisms
requirements. The complex relationship between physiochemical and biological variables
and sudden unexpiained changes in the process are reflected in the values of the
equation kinetic paramelers Una, Ks, Yxs and Ypx which can be considersd as functions
of the physiochemical variables. Then the physiochemical variables can be considered
as control inputs for the process. The optimal value of these variables will determine the
optimal value of the biomass and product concentration. The production of yeast and
alcohol is dependent in a strong way on the temperature. This is why the thesis
developments are based on considerations that the process kinstics cosfficients depend

on the temperature in the following way:

M =@y +a, T +a;T" (2.72)
K =b +bT+bT" (2.73)
Yo=c¢ +e, T +e,T° (2.74)
Yox =d, +d,T +d;T° (2.75)

Input variables for the above models are the temperature T' and the input flow rate F |
output variables are the biclogical variables x, s, p, where p is the product of ethano!
giving inhibitory effect on the cell growth. The coefficients values of a; —a;, bi—bs, ¢; —
c; and dy — dz are not known and alse they cannot be determined theoretically. As a
result of the latter, these coefficients are determined on the basis of experimental data

and application of the least mean square (LSM) approach for the paramster estimation.
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For inhibition of the cell growth by the sthanol production, the Monod equation can be

written as:
n Jumaxs
pa=({1- ;f%;) X 15 (2.76)

Once the vaiues of fhnax, Ks, Yxs and Yex have been determined, the modeal is used to
estimate cell biomass, substrate and product concentration as a function of time. The
main problem with the fermentation process is that model parameters are difficult to be

cealculated because they change with time.
2.6.5 Discrete models of the fermentation processes

For the purposes of optimal control calculation and compuier application a discrete
version of the mass balance equation is derived on the basis of consideration of the first
derivative as follows
dz _ z(k+1)—z(k)

2.77
dt A ( )

Where z is representing x, s, p and V and At is the sampling pericd. Discrete models are

obtained afier substituting equation (2.77) in the mass balance equaticns.

« For batch fermentation process

x(k+1)—x(k) _ _p® ] xBse) | o

~ “ﬂmxiil Pr } [Ks -i-s(k)} k x(k),x(0) =x, (2.78)
Sk+D)—5k) . Huw | _PH) | x(k)s(k) —mx(k), 5(0) = (2.79)

At Yis p* || K, +stky] 7 ! '
plk+1)~ pk) _ _ B[] xR)sk) } .

Af _iumaxYP.‘i' [l p* j! !:Ks +S(k):!-]—7(0) 0 (280‘}

The above equations can be written in the following way:
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p(t) || x(k)s(k)
x(k+1)=x(ic)+mpm[1- o } [Ks +S(k)}—mkdx(k),x(0)=x¢ (2.81)
_ o D [ p® T xtlysth) | _
s(k +1) = s(k)— o [1 > ] {K H(k)jl Atm x(k), s(0) = s, (2.82)
_ _ 1| xh)s(h) _
p(k—i_l)_p(k)'{-mymaxYPXlil p* :! {KE'{"S(]C)}JP(O)_O (283)
=  For fed-batch fermentation process
xtk+D-xk) . p@®T| x®)s) | . .. FRx(k) _
P __I p*J [K, +s(k)} ke, x(k) ) ,x{(0)=x, (2.84)
sk+D)=s(k) M|, PR | xB)s) ] k),
N Fo _l p*] [KS +s(k):j )+l LSO =5, (2.85)
plk+1)— p(k) _ B xkystky | Fpky ,
Y —ﬂmYp.{l } {KS-I-S(k)} At ) ,p(0)=0 (2.88)
e 2,7 Y8 - Fe,v©) =, 1K) =7, (2.87)
The above equations ¢an be written in the following way:
|
PN LG N [ o |
x(k+1y = x(k) Awm[l e } {Ks +S(k)} Atk (k) — At 5 .x(0) =x, (2.88)
Ntoe | PB || xt)s(h) Fo,
stk+D)=s(k)— Vs {1 pry [KS +s(k)] Armx(k) + Mt 0 )[s s(k)],s(0)= =S, (2.89)
Pk +1) = pl) + A T 1-2 (")} [ X026 }—NF ©OFE) poy=0 (2.90

p* § K +s(k) 40
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V(k+1) =V (k) + MF(R),V(0) =V, V(K) = Vo (2.51)

F(k)
= 2.
D(k) Z0 (2.82)
= For continuous fermentation process
xk+D)-x(k) _ |, pE) [T xR |, _
v =4 [1 e ] {Ks N s(k)] kyx(k)— D(k)x(k), x(0) = x, {2.93)

S =5(R) _ _ fh {1_ p(k)}”[ x()s(k)

At Yis p* || K, +S(k):|_msx(k)+D(k)[S¢ -s(k)].s(0)=5, (2.84)

plE+D=pk) _ [1 _ P(")} [ x(k)s(k) } — AD(k) p(k), p(0) = 0

At p* LK, +s(k) (2.95)

The above equations can be written in the following way:

p* LK +s(k)

x(k+1) = x(k)+ Aty {1 G )} {x(k)s(k) ]— Atk x(k) - AID(R)x(k), x(0) =x,  (2.96)

s(k+1) =s(k) — A’;‘;ﬂ‘ [1— p;?:l [;(ki (g)}—mmx(k)-i-ND(k)[si —s(Bls®=s5, (297

o _p ]| st | _
p(kfl)—p(k)TAf#mpr[l e } [ X +s(k)} AD(R)p(k), p(B) =0 (2.98)

Dy =£%) (2.99)
V{k)
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2.7

The discrete time models are used for formulation and the solution of the problems for
optimai conirol of the fermentation processes. The modeis (2.81-2.83), {(2.88-2.92) and
(2.96-2.99) are used to solve the problem for optimal controi of fed-batch, batch and

continuos fermentation process.
Conclusion

Simple models of growth kinetics have evolve little over the past years, and methodical
analysis of growth profiles in fermentation systems have not been undertaken. The fact
that all fermentation variables cannot be identified is causing the process fo be very
complicated to medel. This can be accredited fo the investigationa! difficuliies faced in
growth kinetic studies. Further, to be useful in fermentor models, such equations should
describe how growth is affected by variations in key environmental parameters such as
temperature but current models do this in a very simple fashion and are based on timited
experimental data. Experimental work is necessary to describe how growth and death
depend on these factors over wide ranges, and how temporal variations in these factors
affect the physiologica!l state of the microcrganism.

Mathematical models for baich, fed-baich and continuous fermeniation processes are
developed using the mass balance equations and rate laws. The influence of the
environmental for the process temperature over the process of growth and death is
proposed to be considered by representation of the kinetic coefficient as function of the
temperature. The developed mass balance equations are used further in chapter 4, 5
and 6 for determination of the process optimal conirol. Overview of the existing
approaches for fermentation process contrel is provided in chapter 3 which describes the
importance of computer control, optimization and decomposition of bioprocess optimal

control.
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3.1

3.2

CHAPTER THREE
CONTROL, OPTIMIZATION AND DECOMPOSITION OF BIOPROCESS
OPTIMAL CONTROL PROBLEM

introduction

This chapter describes the importance of fermentation process, precisely looking at
principal features, advantages and limitations of a computer control which has been used
to solve fermentation problems. Also the optimal and hierarchical control techniques
which are particularly effective and efficient in the solution of some fermentation
preblems and which can be implemented using a computer. A review on the different
techniques which have been applied on the optimization of fermentation processes,
which are becoming rather popular. A review on the decomposition methed that will be

used on scliving optimal control problem of the processes.

In section 3.2 describes the importance of fermentation process control. Section 3.3 and
section 3.4 presents batch, fed-baich and continuous control technology. Section 3.5
describes some important adaptive optimization technigues as they are used as
optimization methods needed in order to successfully obtain the optimal operating
policies of the processes. Section 3.8 explains decomposition methods for farmentation
process oplimal conirol and last in section 3.7 conclusion

Importance of the fermentation process control

Bioprocesses are becoming more important and with an increasing role in the areas of
health care, focd, chemicals, agriculture, energy production etc. An increasing number of
biclogical manufacturing routes are promising to compete with traditional chemical
engineering production processss; this requires the implementation of modern control
concepis {Leigh and Thoma, 1986). Various phases of the development of bioprocesses
and their importance has besn discussed in details by {Scragg, 1688), {Springham,
1881) and {(Humphery, 1880).Successful production of important products from
bioprocesses requires the implementation of modern control strategies so that the
various stages of the process are efficiently operated at their optimal conditions. The
automatic control of bioprocesses is of considerable interest to both research and
industry since it may result in many process improvements, including an increass in
amount of product produced per unit of biomass, and sustaining consistent levels of
increased productivity. Other benefits contain optimizing use of raw materials and
improving product guality, which could significantly decrease downstream processing
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costs {Bishop and Lobert, 1980). Implementation of advanced control strategy may zalso
help in establishing economically viable process. it may compliment the endless efforts of
technical experts to reduce the unit costs of production in order to survive in a highly
competitive global market. Engineer concerned with implementation of computer based
modern controf strategies o bicreactors faces a more difficult task than those invoived in
other chemical processing units {(Reuss, 1988). Bioprocesses are highly complex, non-
linear, poorly defined and time dependent systems. There are factors that indicate the
complexity of bioreactors i.e.

= There are 2000 or more complex set of different biochemical reactions,

representing enzymes kinetics inside a micro-crganisms.

= The gperating conditions in a bioreactor may change due o day-day varigtions in
feed composition. .

= Microorganism may adapt to the environment through mutations

There are important characteristics that hinder realistic approach for implementation of
advanced conirol sirategies (Wang and Stephanopoulous, 1984), (Semones and Lim,
1887) and (Shi et al., 1988) in bioreactor
»  [ack of on-line sensors for measurement of important state varigbles such as
biomass, substrate and product concentration.

=  Absence of good mathematical models from enginesering point of view which
would take into account the numerous factors which influence the growth of
microgrganism.

. Strong non-linear dynamic behavior with poorly defined or identified time varying
paramsters

These distinctiveness have had the regrettable result of leaving the biochemical
engineering field behind cother Engineering fields in implementation of advanced
computer control schemes, and in exploiting the on-line optimization techniques
(Villadsen, 1989; Williams, 1980). They obstruct the introduction of new bioprocesses for
production of mass chemicals. In the present circumstances the fuel ethanol process can
be considered a good example which has to contend with gasoline production from crude
oil. Its importance was discussed in detail in { Maioreila, 1985; Springham, 1981; Warren,
1692). Ethanol is considered as a desirable fuel since carbon dioxide emissions to the
envirenment are not an additional load to the greenhouse effect. The production of
ethano! from biomass generates a whole new agri-industry based on high starch or sugar

based crops. These pesitive features have created both small-scale and large scale
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ethanol processes in North America and Brazil (Murtagh, 1886; Springham, 1891;
Laluce, 1891).

On-line optimal control known that is adaptive optimization requires high-quality on fine
information about the process operating state, which in turn depends upon logical
instrumentation for on-line monitoring, methodical interpretation of the measured signals
and estimation of important variables. There are three essential steps for adaptive
optimization algorithm.
=  On-line monitoring of key state parameters of the system in order to present
feedback to the algorithm.

= Estimation of the optimum operating point for the given performance index or
traiectory of the optimized variabie.

»  Adjustment of the manipulated variables to drive the system to the optimum within
a reasonable time, when compared to the time constant of the process. In
continuous processes all above steps must be exscuted at every sampling or
control interval in order to account for ali possible changes in the process
conditions which may influence the optimum in either positive or negative ways.

The ability for optimal control of the fermentation processes (maximize or minimize
product yield) is of great commercial importance in the biotechnology industry. The use
of computers for the control of bioprocesses has increased significantly in the last ten to
fifteen years. The advent ¢f microprocessors and the decrease in cost of computers have
had a significant effect in the area of real-time computer applications fo fermentation
processes. One aspeact in which the capabilities of the computer can be truly realized is

in implementstion of adaptive control and optimization strategies (Rolf and Lim, 1985).

In general, the development and implementation of a suitable contrel strategy for the
bioreactor depends on iis mode of operation ie. baich, fed;batch and continuous
because each one has diffsrent operational problems. Research endeavor has been
invested towards optimization of fed-batch and batch fermentation processes, since the
maijority of biotechnological processes are presently operated in either of these
processes (Weigand, 1978) and (Engasser, 1988). Only a few on-line optimization and
adaptive control of continuous bicreactors have been reported in liferature. On an
industrial scale, continuous unifs are limited due to technological problems asscciated
with contamination, mutations and other complexities associated with design and
operation of continuous fermenters. However the future will see a greater use of
continuous fermentation processes to produce high quantities of chemicals or fugls frem

renewable resources. The advantages of continuous process: reduce cost, provide better
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operational control, improved yields is due to steady operating conditions (Guidoboni,
1984) and (Shama, 1888). The ouiput can be expected to get better with implementation
of adaptive optimization straiegies which offer possibility of continuously operating at
best conditions. Since raw malterial costs are high, sven a small yield can results in
considerable savings (Montague et al, 19839).The area of on-ine optimization of

continuous fermenter is with growing interasis in control engineers.

A number of extensive reviews have been published covering different aspects of the
area cf computer control of fermentation processes {Dorby and Jost, 1877), (Weigand,
1978), (Aiba, 1979}, (Rolf and Lim, 1982) (Clarke et al.. 1885) (Johson, 1887), (Gerson et
al., 1988) and (Montagué et al, 1889). Their emphasis was on the application of
computer as a process tool in the farmentation industry. They considered implementation
of advanced control schames -and on-line optimization technique as the fulure challenge
in the fermentation process control. They also consider the goal of optimal operation as
the future direction in computer control of fermentation processes. Control philosophy
has been influenced by modern biclogical genestics. (Sarkar and Modak, 2004) developed
an optimization technigue based on Genetic Algorithm (GE) to determine optimal

substrate feeding policy for fed-batch bioreactors with a multi control variables.

Currently in industry the idea of designing a conire] system that does not rely on
mathematical descriptions of the process is receiving increasing atiention owing fo
remarkable progress in intelligent technelogy. The techniques used for the improvement
of soft sensors, Artificial Neural Network {ANN) has been a accepted approach recently,
The advantage of ANN is that it does not need any previous kncwledge about the modsl
of the process. Scoftware sensors have been developed using ANN such as in (James et
al., 2002). Control techniques have been developed to control fermentation processes in
the lterature of (Dairaku et al, 1983) and other researches. However, in many cases
there are difficulties in constructing an exact mathematical model due to the time-varying
nature and non-finear characteristic of fermentation process. It is more appropriate to uss
fuzzy control to monitor and improve the control operations by synthesizing the
knowledge of the experienced operator and advances in computer technelogy. Fuzzy
controf has been helpful for bicprocess control during past years (Honda and Kebayashi,
2004). In the work of (Karakuza et al., 2005) they used fuzzy control system for industrial
scale barker's yeast production process using sofi-sensors, where the controlier

determines molassas( as substrate) and air feeding rates to maintain the specific growth
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3.3

rate of the yeast cells and dissolved oxygen concentration at desired set points. The
problems for optimal control of the fermentation process are with different formulation
and specifics because of the process technology. That is why the review of the existing
literalure is separately below.

Batch and fed-batch control

Most of the published work on optimization of batch fermenters is concerned with finding
an optimal profile of some important eperating variables such as temperature, pH,etc,
which can influence the process operation{ Weigand, 1878),{ Reinikainen et al.,, 1986
and{ Winkler, 1988). In genera! optimization of fed-batch processes is concerned with the
manipulation of the feed rate of a limiting substrate, which requires on-line estimation of
critical state variables of the fermenter. An example is fed-batch of baker's yeast using
computer (Williams et al., 1584}, {Dekkers and Vostier, 1985), (Wu et al., 1985) and
{Pomerleau and Perrier, 1880, 1982} Here the sugar' feed rate has been manipulated fo
controtl the residual sugar concentration in the medium in order to obtain the maximum
subsirate conversion. The adaptive optimization algorithm for this fed-batch bioreactor
determines the sugar feed rate, based on the on-line estimation of substrate and ethanc!
concentration medium, which in fum depends on state estimation. A similar principle was
used in the control of fed-baich peniciliin production {(Montague et al., 1986), where the
timing and rate of nutrient addition was manipulated in order to obtain the maximum
penicillin production. Most favorable approach for the fed-batch fermentation of most
organisms is to feed the growth limiting substrate at the same rate with demand for the
subsirate. Four different ways have been used in attempts fo balance feed rate with

demand:

= Open loop control schemes in which fead is added according {0 history data

= Indirect monitoring of feed rate based on non feed source parameter such as pH,
off gas analysis, DO{dissolve oxygen} or concentration of organic products..

* Indirect control schemes based on mass balanced equations

= Direct controt schemes based on direct, on-line measurements of substrates. The
figure below describes schematically the concept
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Figure 3.1: Adaptive clossed-loop controls

(Ahmad et al., 2008) used optimal contro! of a nonlinear fed-batch fermentation process
based on modsl prediction approach and on a detailed unstructured model for penicillin
preduction. Moreover avoiding hign computational cost, the nonlinear model was
substituted with neuro-fuzzy piecewise linear models obiained from method called locally
linear model tree. The optimization problem was obtained using Sequential Quadratic
Programming {8QP] type method and the algorithm was implemented in Matlab.

Continuous bioprocess control

Adaptive control and on-line opiimization of continuous processes have not heen studied
due to its limited popularity in the fermentation industry. However some atlempts have
been made to study optimal control of the following few bicprocesses.
= Bazker's yeast in the Continuous Stirred Tank Bioreacter, CSTBR (Roif
and Lim, 1984, 1985a), (Semcnes and Lim, 1988) and (Chang and
Lim1888, 1990).
»  Wasie-water treaiment in an anaerchic biofiim fluidized sand-bed
bicreacter{ Ryhiner et al., 1892)
=  Conversion of fumaric acid to aspardic acid in a packsated-bed
immobilized-cell reactor.

s Ethanol production in a C8TR (Karim and Traugh, 1887), {Vigie et al.
1890) and {Queinnec et al., 1891).

Some important Adaptive Optimization Techniques
Steady-State optimization

This approach can be explained by considering a simple Continuous Stirred Tank
Bioreactor, CSTBR, where biomass productivity needs to be maximized using the dilution
rate D as the manipulated variable. In this cptimization strategy, a step change in dilution

rate from D1 to D2 is introduced at each control interval. The corresponding change in

41



3.5.2

steady-state productivity from DX1 to DX2 is evaluated based on offline/ on-ine

information and the steady-state process gain is estimated as shown below.

2 —
[d(DX)}m _D2x2-DIx1 3.1)

dD D2-Di

The manipulated variable is then adjusted based ¢n this observed steady-state process
gain and repeated until the process gain approaches zero, i.e. No further improvement
in productivity can be observed. However in the case of a process with an ever-changing
environment this manual procedure has to be repeated. This is the time consuming
process since each time one has fo wait for the system to atiain steady-state before
adjusting the manipulated variable. This approach will be useful for any time-invariant
process with a low time constant for which no reliable mathematical model is avaliable.
However this method is not suitable for bioprocess with high time-constants and with
continuous environment disturbances (Rolf and Lim, 1982, Hamer and Richenberg,
1988). -

Dynamic Optimization

This optimization allows the computation of the optimal operating point. i.e. the best time
varying feed rates which ensure the maximum of a predefined performance index
{productivity, or an economical index derived from thé operation profile and the final
concenirations). i is also called optimal control. However more thoroughly speaking is
called open-loop optimal control in order o avoid confusion between it and the closed
loop (feedback) optimal control. Most fed-batch fermentation models have high nonlinear
dynamics and consiraints are aiso frequently present on both state and the control
variables (Banga et al, 2002). Efficient and dynamic optimization techniques are in need
in order to successfully obtain the optimal operating point of the system. The optimization
problem consists in determining the optimal feeding profile during a fixed time horizon so
that a performance index is maximized or minimized subjected to some constraints. In
addition, the convergence of the optimization algorithm is dependend on the correctness
of the initial guess of the control variable that is iused in the Hamiltonian principle

functional.

Gradient-free methods, also calied direct search methods, are possible computationa!
methods for these kind of problems and they can possibly atiain the global optimum.
Numerous direct search methods have been reported, such as iterative dynamic
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programming (Luus., 1893) and random optimization (Rhinehart, 1990). However, a large
amount of the direct search methods are very time consuming and inefficient because

they usually require a large number of iterations to search for global optimum.

Gradient based methods, Sequential Quadratic Programming (SQP) are useful for
constrained eptimization. This method is consiructed by solving a quadratic programming
sub-problem at each iteration. An estimate is made of the hessian of the Lagrangian
function using a quasi-Newton updating technique. This is then used to create Quadratic
Programming (QP) sub-problem whose solution is used to form a search direction for a
line search procedure. However this kind of computational technigue has fo deal with
problems of numerical vakﬁatéon of derivatives and feasibility issues. Partial derivatives of
the objective function as well as pariial derivatives of the constraints are not easy to be
obtained in nonlinear system.é. The gradients have to be calculated by predetermined
difference estimation in the SQP methoed. This procedure systematically perturbs each
variable in order to calcuiate the partial derivatives of the objective function and the
constraints with respect to the control. i the systematic partial derivatives are p'rovided
directly, the problem will be solved more precisely and professionally. In (Hough et al.,
1971), {Pollok, 1979) and (Tenney, 1989) some research on professional fundamental
view of the brewing process have been done whilst on (Sonnleiner and Kappeli, 1886)
they consider the main physiological phenomena at cell level. (Gee and Ramirez, 1894)
did reaserch considering mathematical studies. (Andres., 1898) decided to employ the
same wort and yeast as industry and the same procedures to control only temperature.
Temperature has important influence and several series of experiments have been done
to obtain a mathematical description of the process. The objective was {0 acceralate the
industrial fermentation, reaching the required ethanol level with less time. Dynamic
programming was first chosen as the optimization method because of the algorithm
formulation. To apply this method fermentation variables (temperature and time intervais)
were discretized. The expectation was that dynamic programming could be carried with
sufficient speed but when it was applied, important difficulties of long calculations and big
memory demands appeared. Locking for speed, to accomplish first exploration, a
distributed computation system was devised, using a local network of six computers and

a decomposition method of discritization grid as six horizon bands.

As corroborated by several scientist (Cuthrell and Bieger, 1989), (Chen and Hwang.
1850) and (Luus, 1990) that there is difficulties of dynamic programming application and
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some alternatives have been proposed. This is the present issue, that is motivating
iterative formulation of dynamic programming (Bojkov and Luus, 1994a, 1994b) and
(Dadebo and Mcauley, 1995). After the use of dynamic programming, then the use of
genetic algorithm was implemented (Goldberg, 1988) and (Davis, 1994). According to the
Genetic Algorithm (GA) the numeric description of the temperature profiles (temperature
values at the corner points of the sections were taken as chromosomes. {Michalewicz,
1894) developed a GA implementation by means of Matlab using directly the integer
values of chromosomes instead of binary based procedure. (Tebbani et al., 2007) soived
cpen-loop optimization problem of fed-batch bioreactor based on a non-linear objective
function, namely the production or biomass growth at the final time, under nonlinear
constraints on the state trajectory. This optimization problem is a singular problem, since
the control variables appear lingarly in both the performance index and system dynamics.
Determining cpen-foop optimal feeding law can be carried out by applying Hamiltonian
maximum Principle (Bryson and Ho,1875) and transforming the optimization problem into
a two point boundary value problem (TPBVP). ( Banga, 2005} and( Vassiliadis, 1984)
develop ancother approach that transforms the initial problem into a Nonlinear
Optimization Preblem ( NLP) and solving it using local search methods namely centrol
vector parameterization and the complete parameterization. This is a direct approach of
optimization that transforms the original dynamic optimization problem into a nonlinear
{NLP) probiem. For both these techniques, the state and control variables can be
discretized and parameterized and a new NLP finite dimensicnal problem is derived and

solved.

Control Vector Parameterization {CVP) approach, the control variable is approximated by
interpolation functions usually polynomials and state variables are computed by
integrating system dynamics. Gradients based local methods are the best option for
solving NLP’s provided that these problems are unimodal and smoocth. Seguential
Quadratic Linearization (8QL) msthods are usually recognized as the state of art in this
domain and number of authors has successfully solved bioreactor optimization problems
using SQL within CVP network. In Compiste Parameterization (CP) approach, the state
and conirol variables are both approximated by predefined functions and the continuity of
the trajectory is satisfied with the addition of constraints. The optimization was built
around a hybrid method combining these two techniques: state and control variables are
both optimized, but with an integration of the trajectory along different time steps. To

guarantee a globally optimal solution, direct methods (including CVP) should use Global
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Optimization methods (GO). Essentially, GO can be classified as deterministic and
stochastic strategies (Torn et al., 1999) and (Guus et al., 1995). (Esposito and Floudas,
2000) have presented a deterministic globa! optimization approach which can solve
nenlinear optimal control problem. {Singer et al.,, 2001), (Papamichail and Adgiman,
2002) are making good progress in deterministic global optimization of dynamic systems,
yet several barriers regarding requirements and computational effort are still present.
However, in practice the engineer can be satisfled if these methods provide a very good
solution in modest computational time. Evolutionary computation (Bio-inspired methods)
that were developed in late 1980 and early 1970 are:

=  Genetic Aigoriihm(GE)( Holland, 1975),( Goldberg, 1989)and{

Michalewicz, 19956)

*  Evolutionary programming{ Fogel et al., 19686} and (Fogel, 1998)

» Evolution strategies( Schwefel, 1895),( Beyer, 1986),( Beyer 2002)
Genetic Algorithms are so far the most popuiar types of methods but as many authors
have reported during recent years they are usually not the most efficient and robust
aigorithms for GO. This complicates the selection of methods for a given type of problem.
For the case of GO of nonlinear dynamic processes different recent experiments indicate
that certain simple stochachatstic methods present the best performance. {Simutis and
Lubbert, 1997}, (Luus and Hennessy, 1898) and (Rodriguez-Acosta et al., 1899) have
used other types of stochastic algorithm including different random search algorithms
and reached similar conclusions. GE algorithm and related evolutionary approaches that
were suggested for solving general optimal control problems by (Michalewiz et al., 1982;
Seywald et al., 1995; Yamashita, 1997) have also been used for optimization of feb-
baich optimization. { Lee, 1989) have performed comparison on different types of
rmethods but more work siill needs {o be done in order to come outpui with some
meaningful conclusion. A uniform set of benchmark problems should be used
(performance index versus computational time). To asses the performance of diverse
solution techniques in a fair way case studies have been used as benchmark problems,

as follows

*  Fed-batch Reactor for Ethanol production: This case study considered
the dynamic optimization of fed-batch involving production of ethancl by
Saccharcmyces cerevisiae (Chen and Hwang, 1890; Luus, 19393; Banga

et al., 2002; Jayaraman, 2001). The free terminal time optimal contro!
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3.6

problem was to maximize the yield of ethanol using the feed rate as

control variable.

Fed-batch reactor for penicillin production: This problem considered the
dynamic optimization of fed-batch reactor for the production of penicillin.
(Banga et al., 2002) used CVP scheme and stochastic optimization and
{Luus et al, 1993) used lterative dynamic programming. The optimal
ceontrol problem was o maximize the total amount of penicillin produced
{periormance index) using the feed rate of substrate as the control

varigbla.

Park-Ramirez fed-baich Bioreactor: this problem was dealing with optimal
production of secreted preotein in the fed-batch reactor and originally
formuiated by (Park and Ramirez, 1988). The objective was to maximize
the secreted protein by a yeast strain in a fed-batch culiure. The dynamic
model accounted for host-cell growth, gene expression and the secretion

of expressed polypeptides.

Lee-Ramirez Fed-batch bioreactor: this problem was initially offered by
{Lee and Ramirez, 1994) and deals with the optimal fed-batch control of
induced foreign protein production by recombinant bacteria. The nuirients
and inducer feeding rates to the fermenior were control variables. The

primary aim was to maximize the profitability of the process.

The above problem was studied by (Tholudur and Ramirez, 1998) using
neural networks parameter function models and by (Carrasco and Banga
1997} using an adaptive stochastic algorithm to obtain better results. The
authors indicated that the original performance index exhibited a very low
sensitivity with respect to the controis and (Theludur and Ramirez, 1897)
presented a modified parameter function set for this problem in order to

increase sensitivity fo the controls.

Decomposition methods for fermentation process optimal control

Engineering problems are usually large, non-convex, non-differentiable and highly
coupied. The existing tools in engineering cesign deal with the highly-coupled nature of
decomposed preblem by means of estimations. This results in errors, making the

coordination cumbersome, this lead to incorrect solutions and a large number of iterations
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may be required. Lagrangian theory aliows decomposition of the original problem into
completely decoupled sub-problems. In order to deal with non-convexity, the Lagrangian
can be augmented (i.e. augmented Lagragian theory) to convexify the original problem
{Fadel et al,, 2005). These methods are useful because they converge to the correct

solution of the original problem.

Research have been done on the Lagragian duality in the large-scale systems for past
years. {Everelt, 1963) pioneered the use of this theory for decomposition. in his research
products of the Lagrange multipliers and the constraints are added to the objective
functional and an unconstrained problem is then optimized. Meaning the new
unconstrained problem is completely separated and each sub-system can be solved
independently. {Lasdon and Schoeffier, 1985} extended the theory to deal with muiti-
level structures. They used Légrange muitipliers as variables of dual problem related to
the original problem, and in this case are as impertant as the coriginal problem variables
since finding a solution to the dual can lead to primal sclution. (Kronsjo, 1969) proposed
dual two level two specially structured large-scale convex nonlinear programs.
(Schosffler, 1971) transformed the underlying constrained optimization problem intc a
two-level problem by fixing cerfain coordinating variables, and achieved 3 solution
through passing values back and fourth between upper coordinating level and a sub-
problems decomposition of the original problem. A decompesition-coordinating algorithm
based on augmented Lagragian formulation was used by (Chancelier and Renaud,
1984). (Di Pilie and Lucidi, 2001) emphasize an exact augmented Lagragian, including a
penalty term on the whole subset of the first-order necessary conditions cerresponding

equsalities.
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3.7

Conclusion

It is clear that although any fermentation process will have its own optimal control
preblems, there are cerfain themes in terms of control system consideration and design.
A significant conclusion is that, in order to achieve improved control, the processes must
become more computerized. Greater computer application leading to improved control

and cptimization.

These research efforts show that the use of augmented Lagrangian technigue may
provide satisfactory convergence properties. Based on the sbove research, augmented
Lagragian will be used as the decomposition method to solve the optimal control problem
for the fermentation processes. it can be seen that the optimization methods based on
the multilevel techniques are applied to solve several fermentation problems using a
computer cluster. The knowledge from chapter three is used in chapter four, chapter five
and chapter six for development of decomposition methods for solving optimal control

problem of batch, fed-batch and continuous process.
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4.1

4.2

CHAPTER FOUR
DEVELOPMENT OF A DECOMPOSITION METHOD FOR OPTIMAL
CONTROL CALCULATION FOR BATCH FERMENTATION PROCESS

Introduction

Conirol of batch fermentation processes is usually complex due to varicus reasons
(Bastin and Dochain, 1980), (Mikler et al., 1985), (Shen et al., 1995} and (Staniskis,
1883). Complex process of microbial synthesis is proceeding in the fermenter. Several
internal and external factors influence this process such as the concentrations of
substrate and product, pH, temperature of the medium etc. Variations in the physical
properties along the batch process may alter the dynamics of the process control fogps.
Changes in the gquality of the raw material may also be a source of variance. The batch
fermentation processes are described by nonlinear equations with time varying
parameters (Bastin and Dochain, 1990), (Mikler et al., 1995) and (Staniskis, 1883). The
problem for optimal control of the batch process is characterized by a non-quadratic
criterion, 2 nonlinear dynamic model with slowly varying parameters, linear control and
by implied by physical limitations constraints placed upon process variables. These
preblems have been solved by techniques based on (Mikler et al, 1985), (Staniskis,
1993) and {Breusegen and Bastin, 1990).

Secticn 4.2 describes the formulation of the problem for optimal control of a batch
fermentation process. Decomposition method for solving discrete time formulation of the
problems based on varafional calculus using an augmented Lagrange functional and its
deccemposition in time domain is developed in section 4.3, The method is developed for a
general description of the batch fermentation processes by means of unstructured
models with slowly varying parameters. The method is characterized by a new
cocrdinating vector which permiis an asugmented Lagrange functional to be used for
solving nonconvex optimal control problem, and for preserving the full decomposition in
the domain of the dual problem. Section 4.4 describes the algorithm of the method that is

used to solve the optimal control problem.

Formulation of the problem for optimal control of a batch fermentation process
The aim of the optimal control of the batch fermentation process is to find trajectory of the
temperature: T(k),k =5,K——1 to produce maximum end concentration of the product at

the end of operation period.
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4.3

J = p(K}—> max (4.1a)

for the model equations: {2.81), (2.82), (2.83) and (2.72)-(2.75) written in the form
vik+1) = f,(k},v(0) = vy, k= 0,K -1 {4.1b)
where v = x, 5, p, and satisfies the constraints

Xow (KY S x(KY < x, (K), E=0,K
Sun (EYS s(k)< s, (k), ¥=0,K
Pun (B)S p(B)< p (), k=0,K
Too (K)<T(k)< T, (k) k=0,K-1

max

(4.2)
The probiem {2.81)-(2.83), (2.72)-(2.75) and (4.1)-(4.2) is solved on the basis of
variational calcuius using an augmented Lagrange's functional.

Augmented Lagrange functional formulation for batch fermentation process
The considered problem for optimal control has the following characteristics:

Criterion only at the final point of the optimization horizon

Nonlinear mode! with three state variables i.e. for batch: biomass

concentration (s), substrate concentration (s) and product concentration

(p) one controf varisble i.e. temperature (T}

Long optimization horizen
These characteristics determine which methodclogy io be selected for solution of the
optimal contrgl problem. The theory of variational calcuius gives possibilities to handle
problem with high dimension and nonlinearities by using the Lagrange functional. The
affine control however in the case of non-quadratic criterion determines that the
derivative of the Lagrange funciional, according to this conirol does not depend on it.
This creates preblems with the solution of the two-point bouﬂdary value problem. in order
{o overcome the linear dependability of the Lagragian on the control variable an
augmented functional of Lagrange is considered. The augmented Lagrange’s functional

is assumed here in the form:

L=p(K)+ KZ S ®vk+) + £ 0]+ % wl-vk+D+ f(OF } (4.3)

k=0 v=x,8,p

where 4,,v =x,s,p, is the vector of the conjugate variables, ,, v =x,s,p is the
vector of the penalty coefficients. The augmented functional has to be maximized
50



4.3.1

according to state and control variables and minimized according to conjugate variables

on the basis of the theory of duality, under process consirainis presented in (4.2)

Necessary conditions for optimality for batch fermentation process

Solution of the problem for optimal control is based on the necessary conditions for
optimality of the functional of Lagrange (4.3). The equations of these conditions are used
fo build the algorithm for calculation of the optimal state and conircl variables. This

algorithm is used for parallel calculation in a cluster of computers.

Necessary conditions for optimality according to the biomass
B R E Y77 o G GO SV
ox(ky p* | LK, +s(k)

. _ e st |
1, (Ox(k +1) ft(k)]{lmﬂm[l PH K5+S(k):l Arkd}

()~ b || P) Tosw ||
’ Yo p* | | K, +s(k)

—m(k)[s(m)—ﬁ(kn{— AlH [z-if’j}H s(k) ]—Atm}»

Vi Ks +s(k)

, B[] sk i
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, T sty || e
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» Necessary conditions for optimality according to the substrate
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= Necessary conditions for optimality according to the product
n-t
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=0=e¢,(k), k=0,K -1

oL, _ (4.6)
ap(K)
= Necessary conditions for optimality according to temperature
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oK
pry ]| B
-
p*} K, +s®0f

+ AI}’PX#maX [

_ . [ OV , ay,m} _ PR T x(kysh) .
# (B p(k+D - £, (k)][AtL ap Hoas F e — 1 1 2% | K. +5(8) + (4.7)
oK
n| = x(k)s(k) -
+A1‘YPX;1m|i1—p(k)} OF \|-0=e,(k),k=0,K -1
p* [, +s(B)]

Where the partial derivatives of the kinetic parameters according to the temperature are:

Ct e =a, + 2a3T(k), OA; = b, + 2b3T(k)-

= Fraals k=0.K-1 (4.8)
LS _ o v2e,7(k), OXor — v 24,7 (),

o =2 or

= Necessary conditions for optimality according to the conjugats variables

oL _ _
D ~x(k+1)+ f.(k)=0=e (k),k=0,K -1 {4.9)
oL —

= — -+ =Uy=¢e. k,k: ,K_]. 410
NG stk+D+ f.(k)=0=¢e,(k),k=0 {4.10)
oL

. = —=£. =4y, —1 .
0 plk+1)+ £, (k) =0=e¢,,(k),k=0.K {4.11)

Coordinating vector for the batch fermentation process

The optimal trajectories of the variables can be calculated as a solution of the obtained
set of nonlinear equations (4.4)-(4.11). It can be seen that the number of equations and
variables is big. The solution could be found easier if the problem is decompesed.
Decomposition in time domain could reduce complexity of the system equations

(Tamura, 1975) and (Singandlitty, 1982).

The solutions in time domain will consists of K+1 separate solufions, everyons at
separate time moment k. The decompesition in time domain could be obtained on the

basis of the coordinating procsdure in two level computing structure{ given in Figure 4.1)
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using the conjugate variables A as coordinating ones{Tamura, 1975), but this methed is
applicable for normatl functional of Lagrange. The used augmented functional could not
be fully decompeosed because of the quadratic terms and variables x{(k + 1),s(k +
1) and p(k + 1) in them. They play a role of interconnections in time domain (Lin, 1892).
This type of functional can be fully decomposed if the considered above variables are
sejected also as a part of the coordinating vector. To overceme the difficulties with full

decomposition of the augmented functional of Lagrange, it is proposed {0 gonsider
S(E)=vk+1),v=x,5,p, k=0,K—-1 4.12)

as coordinating variables. Then the values of the coordinating variables are sst from the

second level of the two level calculating structure:

Aky=A7 (k) v=x,5.p, k=0,K (4.13)

3Ek)=8'(k),v=x,5,p, k=0,K (4.14)

where | is the index of the coordinating process iterations. When the values of the
coordinating variables from equations (4.13) — (4.14) are substituted into the Lagrange’s
functional, its full decomposition according o the discrate time moments k is obtained.
The functional is decomposed into K+1 sub-functionals Lu(k) and each of them
determines the optimal control and state at the given moment K. The above algorithm will
be implemented in Matlab software environment in two ways:

«  Sequentially in one computer
= Paraliel, using the cluster of computers

The decomposition in time domain is based on a two level calculation structure as shown

in Figure 4.1
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Fig 4.1 Two level calcuiation structure for batch fermentation process

4.3.3 First level sub-problems for batch fermentation process

The solutions of the first level sub-problems represent solution of the set of equations
{4.4} - {4.8) in which the coordinating variables are substituted. These equations are
solved for every separate moment of time in a parallel way. The structure of the
equations (4.4) — (4.8) does not allow to use analytical solution that is why numerical

solution is used. Gradient method is used in the form:
VIR =v () v ae, (k) v =x,5,p,T, k=0,K-1 (4.15)

where «,. > 0are the steps of the gradient procedures, e, (k) are the gradients according

to the equations (4.4} — (4.8) and i is the iteration index of the procedures. The first level
sub-problems are determined under the sel from the second level coordinating variables
according to the nscessary conditions for optimality of the sub-functionals L (k) and alsc
{4.4)-(4.8) can be simplified further by using nscessary conditicns for optimality

accerding to the conjugate variables presented by using (4.9)—(4.11) in the form:

For the biomass
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O e ()= b s Jry kY |+

a0 =e, (B—{Hmﬂm{l e J X+ 30 Atkd}[);x k) —pe, '( )]
A0\ GECCTRV PR ]

N Yy [l p*} K, +s(k) M":I[;i-s (k)—nge,, (k)]"‘ (4.16)

_p®] sk J ey N P
+ NYR\'ﬂmax{l p"‘] KS+S(]C):I[,1P (k) ‘UPE'J-P (k)l 0,K-1

For the substrate

oL g pyT x(b)Ks
=g k =| A 11— m ﬁ‘r B — €. Ey+
65(]{) e ( ) |: tluma_\li p* } [KS +S(k)]_ }[ ( ) H.e ( )}
s opw] sk o
T AT - pe, 417
+ Yoo | P*] {Ks-i-s(k)]z [ S (ky—pe;  ( )]+ ( )

p) ] x(WK
p* | [K, +s(Of

2, = pe,, 0}k =0,K -1

+ ArYP.X’Aumax 1-

For the preduct

oL _, i :{ N #M[l_p(k)} n[ ;—i } *(k)sth) }[ixf(k)_ e B

) ) K, +s(k)
[ @) T Rs® [ vl
[ Vs [l p*] H[P*}Ks-ks(kj[is ®-ines )

| _p®] =11 205® o tale o 5T
{hmyﬂym[l p*} n[p*}Ks+s(k)}[AP (k)—p,e; 7« )l 0,

(4.18)
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For the temperature

oL
oty &)=

a &
_| At [1- p(k)]n x(®)sk) | [l,p(k)}" st ||

°r p* 1 K +s(k) p* || [k, +st0)f

*[4.(0) - 4, (B, ()] +
[ Bu oY,
ﬂK\S —Hpax —ﬁ;‘(S " A
_pp 0T : o |,_p) | x(k)sth)
Yy p¥* | K, +s{k)

x,

o x()s(k) e
ARY-u ke, {k
] TR A, (k) - 1, (B)e,, (B) )+

YXS r*

Ty f._p®) " x(B)sth)
"ET p* | K, +s(k)
K, (4.19)

o x(k)s(k)
ar : ] e

A (k)= (e, )l.k=0.K-1
} K +sh)] [p( )=, (k)e, ( )1

a;umax
+|:At pe Y,, +u

A/ e l} - 40,
; p*

These equations can be simplified further for the purpese of calcuiations. Some

expressions in them are repeated, that is why commen notations are used to represent

them:
R sy _ 4.20
Awm[l p*] K +s(0) . (k) (4.20)
n-1
P p K, +s(k)
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Awm[l—p (k)} WK (4.22)

p* ] [k, +sF

A{i—p (k)} x(k)s(E) = ¢, (k) (4.23)

p* | K, +s(k) -

=¢J2(k)=k =09K-1

p(k)}” x(k)s(k)

Atp |1- .
# ‘“"[ p* | K, +sT

(4.24)

Using notations from (4.20) - {4.24) equations from (4.16)-{4.19) can be written in the

form:

For the biomass

TN ST AN ,
ax(k)"ex (k)-[1+{0x (k) Arkdlftx (k) — i (F)e, . (k)]+

_{_ 7" ®)

RaY

—Arm}[flf () — 1, (B, ()] + (4.25)
F 0O |1 (B - g1, (e, ) ()} = 0K -1

For the substrate

oL By — o Pl oy j
= 0= O ©) - e, ) ®))+

Jl-wﬁm-% Be, W]+ (4.26)

x!s

Y, (B, () -1, (e, ()] e =0.K 1

For the product

oL ity S
) ® =0, w2 0 -pe, o)
+[¢°}—",(]9}[Asf<k)—yse;_;<k>]+ (4.27)

-0, @ -, (e, o)}k =0 K -1
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For the temperature

5L Ji _
T e (k)=

atumzm o) g
xs ;‘!ma‘{ -\;;S

— af‘,'lﬂla.‘c QISE_ 1 J - i _ T ¢
[col(k) T +@,(k) o7 }[/»,r (k)= (ke (k)]+ AL 7 +

Ry

(Dz(k)% 7 - NE
+ = J[ﬂs (0)- 1, Kge, (k)]{@(k){

) ou
- T+ Y /| - 4,28
6T /uma.\ PX aT { )

K., A _
~¥p 0, (k)a—i,f}[ﬁp’ (ky—p, ke, ,’ (k)],k =0,K-1

The calculation of the gradients is done with the old values of the state and conirol
variablesv’’, v =x.s, p.T . The calculation with the gradient procedure will continue

until the necessary conditions for optimality towards siate and conirol variables are

fulfilied. This means that the values of the gradients are approximately equal to zero:

le.(®)|<e.c,>0v=x,5pT, k=0K-1 (4.29)

The new calculated values have to be checked for belonging to the area of constrainis

x,. <x(b)<x,,, k=0,K {(4.30)
Som SS(EYS 5., k=0,K {(4.31)
Poin SPKY< P, k=0,K (4.32)
T, <T()<T, ,k=0,K-1 | (4.33)

Simple way to do and correct the obtained new values is o project them over the

constraints domain according to the rafafion:

(oo i VR <v,

. v (k), if v, <vi(K)<v .
V7 (k) = © f.. e 2 (4.34)
l’m&‘ if‘ VJJ (k) > l”[ﬂa.‘(

wherev = x,s, p, k:ﬁ, v=T, k=0,K-1
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4.3.4

The obtained values of the trajectories of the state and control variables are function cf
the coordinating variables. They are optimal for the given values of the coordinating
variables. If the coordinating trajectories are optimal ones, then the obtained state and
control variables also will be the optimal according to the theory of the duality in optimal
control and Lagrange methods.

The coordinating sub-problem for batch fermentation process

The coordinating variables are obtained from the necessary conditions for optimality of
the augmented Lagrange functional according to them. For the conjugate variables these
are equations {4.9)-{4.11). The necessary conditions for optimality according fc the new

introduced interconnections in time domain are:

oL

" =2, (k) - ,[- 3, (15) + fB)]=-A () e, (K)=e;,(k)=0 {4.35)
6o (k)
oL . ~ _ _ _
D —A, (=[-8, () + £.(0)]=-A (k) —pe, (K)=e; (k) =0, (4.36)
oL X N
= A, (0 1,6, (0 £, ()] =2, () - e, () = e () =, (4.37)
aé , (k)
where

=0, (k)+ f.(B)=e, (k),v=x5p,

according to equations {4.9)-(4.11). The necessary conditions for optimality (4.6}-(4.11)
and {4.35)-(4.37) can be combined in a gradient procedure. Equations {(4.35)-(4.37) give

the values of the gradients for the conjugate variables muitiplied by the peanalty co-

efficient. g., v=x,5.p

it appears that:

oL oL

A -n, k=0K-1 (4.38)
aé‘v(k) ‘() # 6).1'(]()

Gradient procedure can be built for both type of coordinating variables, as foliows:

For conjugate variables:
A7 =1 (k) -a,e 5 (k). (4.39)
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4.4

whers

e alky==8,"(ky+ f/v{k)v=x5p k=0K-1, (4.40)
87 (ky=38"(k)+a;,e; k), k=0,K-1 (4.41)

where «, and @, are the steps of the procedures for calculation of the conjugate

variables and the inlerconnection in time, respectively. As the calculations are based on
gradient iterative procedure, they will stop when the gradient is going to zero, or

practically achieving some conditions for optimality, given by

lle! (k) — /3 ()] < &méy >0, k=0K
e’ 5, (k) — 5, (B)|| < €550 > 0, k=0,KE—1 (4.42)

where €5, &, are a very small positive numbers. For every step of the gradient

procedure for the cocrdinating process the full iteration cycle of the sub problems of the
first level is done. The calculations of the coordinating variables are done with the values
of state and conirol variables of the first level sub problems and the calculations of the
first level sub problems are done with the values of the calculated on the previous
iteration coordinating variables. The iterative process of coordination and the optimal
solution of the whole problem for optimal control is obtained when the optimal solution of
the coordinating sub problem is reached, this means conditions (4.42) are fulfilled and if

these conditions are not reached the error is computed.

el*t = {[|9j+1}.vl|2 + nejﬂav"z}l/z 443
The new penalty coefficient is calculated from the conditions.

ifj=1lorel* <el, theny*t =yl (4.44)
if j > land e/*1 = efthen p/** = ap/, a = [0.1 10.0] (4.45)
Algorithm of the Augmented Lagrange for batch fermentation process

The calcuiations in the two-level structure can be grouped and represented in the

foltowing algerithm:
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1. On the coordinating level the initial values of the coordinating and gradient

procedures, variables and parameters, initial frajectories of the siate, control and

coordinating variables are set as follows:

Maximal number of step of the coordinating precess — M2.
Maximal number of steps for state and control variables gradient
procedure- M1,

Steps of the gradient procedures

- For coordinating conjugate variables -, ,v=1x,5.p.

- For coordinating interconnection intime a; ,v=x,5,p

- For state variables and control variablea,,v =x, s, p,T
Values for error and termination of the calculations for coordinating
procedures. ¢, ,&; .,V =X,s, p and for gradient procedures on first level.
g.,v=x8pT
tnitiat %rajectoé'ies of the conjugate variables. ', (k),v = x, 5, p.k= m

Initial values of the state variables, x{0), s(0), p(0).
Number of steps in the optimization horizon — K and value of the sampling

‘pericd AL

Initial trajectories of the control variables TV (k) k = 0,K — 1

The initial trajectories of the control variables are substituted in the model
equations (2.81)-(2.83) and (2.72}-(2.75) and the state frajectories are
calculated,

The initial irajectories of the interconnections in time domain are

calculated from 8 (k) =v(k+1),k=0,K -1

Indtial traiectories of the coordinating variables and initial state and contrcl
trajectories are sent to the first level,

Coefficients of the model a; —a;, bi—b;, €1 — ¢, and dy — ds, kg, m, n
and p*

2. On the first level the following calculations are done:

Derivatives of equations {4.8) are calculated.

The kinetic coefficients . K, .Y,5. Y, from equations (2.72)-(2.75) are
calculated.

The expressicns @, (k), ¢, (k),¢,(k), 0 (k). ¢, (k). k=0,K -1 are
calculated from equations {(4.20)-(4.24).

The gradients evj (k),k=0,K -1v=x,s, p,T are calculated from
equations (4.25)-(4.28).

The errors for the end of the gradient procedures are calculated according
to equation {4.29). If the error is less thaneg, , the calculations of the first
level stop and the current values of the state and control variables are the
optimal enes. If the error conditions are not satisfied the new values of the

state and control valuas are calculated.
The new values of state and control variables are calculated from

equation (4.15).

63



4.6

*  The obtained state and control variables are projected over the constraint
domain according to equation (4.34). The obtained trajectories are sent to
the second isvel.

3. On the second level the following calculstions are done:;

* The gradiente, (k),k=0.K-Lv =ux,s, pare calculated from equations

(4.9)-(4.11).

= The conditions for the end of the calculations are checked according to
Equation (4.42). If the conditions are fulfilled the optimal solution of the
coordinating and of the whole problem are obtained. If the conditions are
not satisfied the new values of the cocrdinating variabies are calculated.

= New values of the conjugate variables are calculated according to
equation (4.38)-(4.40).

= The new values of the interconnections are calculated from equation
(4.41). These trajecteries are seni o the first level sub probiems where
the calculations from p.2a tifl 3b are repested and so on. The schematic
diagram of the algerithm is given on Fig 4.2

Description of the Matlab sequential program for optimal control of batch

fermentation process

The compiex relationship beilwsen physiochemical and biological variables and sudden
unexplained changes in the process are reflecied in the values of the equation kinetic
parameters equations (2.72)-(2.75) which can be considered as functions of the
physiochemical varisbles. Then the physiochemical variables can be considered as
control inputs for the process. The optimal value of these variables will determine the
optimal value of the biomass and product concentration. The production of yeast and
alcchol is dependent in a strong way on the temperature. This is why the thesis
developments are based on considerations that the process kingtics cosfficients depend
on the temperature. Table 4.2 defines process kinetic values that are calculated from
Matlab by using polyfit function from a certain given values of the equation kinetic

parameters equations
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Set Initial values

M. M, a, a, a;,5,,.£5,.8,

2 (k) p, , x(0),5(0), p(0), m,n,
K, P‘ Ky Al

+{)
Set upT ()
k=0,K-1

Calculation of initial state trajeciories

vV (k+1).k=0K

j=!

y

A ky=A(k),6' (k) =8"(k)
vy =vi(k),v =x,5,p,T

.
L

4

i=1

Y

Caiculation of derivatives, Equations {4.8)

h 4

Calcutlaticn of kinetic coefficients,
Equations {2.72)-{2.75)

h 4

Calculation of expressions:

govj,is¢}.-¢3a k:O,K—I

h 4

Calculation e’*, (k) from equations (4.25)-{4.28).

v

Calculation ”e"”’v (k)” from equations {4.43).

@
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Yes | e (k) = o k)

v=X,5p,.7

v (k) = v (k)

vii(ky=v”(k)+a’. (k)
v=ux,5,p7T

h ¥
Projection on constraint domain Equation {4.35)

Caleulation of Equations (4.9)-{4.11)
e’ (k) A, = Agshsrd,

F 3

h 4

Calculation of [l 1. (k)| equation (4.43)
i

No
j=j+1
Calculation
47 (), 87, () No
Equation (4.40)-(4 42) v(k)=v'' (k) [—
yy v=x,5p1

v
STOP Yes

Figure 4.2: Flow chart of the algorithm for calculation of batch fermentation process state
and control trajectories.
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Description and calculation results from the sequential program of the

algorithm of the method in Matiab for batch fermentation process
The algorithm presented in section 4.4 is implemented in Matlab in a sequential
way{Appendix A). The table below represents the relationship betwesn mathematical

notation and program notation of the Matlab program.

Table 4.1: Correspondence between mathematical and programs notations for
batch fermentation process

Name 0 D1 Netationinthetext 00 7707 0 Nptation in Matlab.
Siate variable
Biomass
Substrate X X
Product
s 5
P . P
Control variable
Temperature T T
Steps of the Oy ax
gradient
procedures a, as
For state
variables p ap
[ 420 afx
;g als
@i aEﬂ
U5 adx
agp ads
sy adp
Conjugate ) ix
varizhble *
i is
¥s
A, i
fnterconnecticns 5 dx
in time domain *
S ds
¥
é dp
I
Coefficients a1, 8, 8a at, az, a3
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b4, bz, b b1, b2, b3

€:, €2, C3 cl, 2, ¢3

di, do, da di, d2, d3

Ke Kd

Ks Ks

m 4]

n n

Yis Yxs

Y ox Ypx

Si st

p pl

ANf di

;uma:c mmax
Initial values of | x{0) X
state varisbles

s(() s0

p(0) )
Penalty u mx
coeficients *

m ms

4, P
Min and max of | Xmax ®max
state variables

Xemin xmin

Smax smax

Smin smin

Pmax pmax
Min and max of | Tnx Tmax
controf variables

Tmin Tmin
Derivatives of the | 3 /] dmmaxdT(kj=a2+2"a3"T{k};

model
paramelers

{
2 — g, + 20,7 (k
oT N T (k)

‘in =b, +25,T(k)
or B

dRsdT(K)=b2+2" 63 T(K)-

8y
© e 32c.T(k
ar - riel®

d¥xsdi{k)=c2+2*c3 T{k);
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-

oY,
;; =d, +2d,T(k)

-~

aYprdT(K)=d2+2°d3*T{k};

Error e, (k) =0x(k)—x(k +1) elx(k) = dx{kx(k+1)
e, (ky=20os(k)—s(k+1) els{k) = ds{k)-s(k+1)
¢, (k) = p(k) - p(k +1) 09 = dp(R)-plcrT)
es (k)= p (k)e, (k) edx(Kj=mx"eIx(K)
e, (k)= pt,(B)e, ' (k) eds(kKj=ms-eis(k)
e5, (k)= 1, (K)e, ,’ (k) edpR)=mp elp(k)
e, (k)= /lxj (ky—p, (k)gzrj (k) sex(K)=Ix{k)-mx"eixik)
e (k)= 2, (k) - u,(k)e, . (k) ees(=ls(K)-ms els(k)
e, (k)= ipj (k) —p, (ke ,,_pf (k) eep(k)=lp(k)-mp~elp(k)
Formulas fy=cmmax(x) *((1-pk/ph*0.52)

. o
Atp, 1_% = 9, (k)
At |1- ik stk)  _ o (k) | FEOSRSRIKSK) + s(0)
. p* | K, +s(k)
= - Fs(R)=F(k)Ke(k) * X(KWURs() +
pkyy  x(k)s(k) _ s(k))A2)
Afﬂmu 1- . T (‘95 (k)
P K sf

BT x®s®
Az;.em{l p*] X H(k)-%(k)

fpki=drmmax(k;™{{1-p{&) /o {n-
U xKs{R/(pKs{k) + s{ky))

Atlii— (k) } XBSE) _

p*

K, +s(ky

F1{0O=F %k sK){Ks{k) + S(K))

_p(k)}" x(k)s(k)
[

At:umax I:I P *

=o,(k
K, +s(k)f #:(k)

f2{x)=t1 (G ((Ks(k) + s{k})*2
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4.6.1

Table 4.2: Mode! parameter va!nes for batch fermentation process

Symbol.. i . Name . R A T AR “Value - ST Unit
at Modei cc—efrxment 0.6004

a2 Modei co-efficient 0.0001

a3 Modet co-efficient 0.0002

b1 Model co-efficient 0z

b2 Model co-efficient .03

b3 Model co-efficient 0.0

ci Model! co-efficient P

c2 Model co-efficient 0.3

o3 Mode! co-efficient 0.021

d+ Mode!l co-efficient .0040

d2 Model co-efficient 0.0060

da3 tModel co-efficient {.001

Kd Death constant 0.00008

i Inhibition factor p™. 50

n power coefficient ) 0.52

m Maintenance co-efficient. 2.0011

X Hiomass conceniration o
S Substirate concentration gl
o Product concentration g/l
at Sampling period 0.25

Umey Maximum growth raie

Ks Moned's constant

Yis Stochiometry cosfficient for biomass growih

Program batch_seque.m is developed to implement the decomposition method in a
sequential way. The program calculates the optimal values of the state and control
variables. The whole program is in appendix A. The function modelbatch_funcZ2 is used
to calculate the trajectoriss of the derivatives of the state space vector, according to the
Equations (2.78 — 80). Then the program is called by the solver ode15s for integration of
the model equations. The input variables are t the time at moment t from the considered
time interval y initial, or value of the state vector in the moment £ The ocutput variables
are the values of the state space vector derivatives ydol. The program is given in

appendix A.
Resuits from sequential calculation of batch fermentation process

The program for sequential calculation is used to calculate the optimal trajectories of the

control and state variables of the batch fermentation process. The optimal trajectories are

presented in figure 4.3 -4.8.
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Initial trajpctries of state variablas
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Figure 4.3: Initial trajectories of state variables
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Optimised Results forthe substrate

T

substrate

Ortimised Resuilts f the product state
T 1&

¢ l ' ' l | """ product |

m

...........................
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Figure 4.5: Optimali trajectory of product
for batch fermentation process
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Optimbs ed Resulls for the conjugate vaiables [ambda
1 L]
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ﬂ“\ """"" Lambda s
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.
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4L s
. !
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180 X0 25D
time in samplas

Figure 4.7: Optimal trajectory of conjugate variables
for batch fermentation process
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4.7

4.8

Discussion of the results for batch fermentation process

Substrate and product levels showed the greatest rate of changs about short time after
inoculation. Thereafler they moved at a steady state, decreasing towards the end. These
runs could be regarded as fairly typical batch fermentation process with a relative small

inoculums.
Conclusion

This chapter describes the formulation of the problem for optimal control of a batch
fermentation process. An augmentsd Lagrange functional is used and a decomposition
method is developed for solving discrete iime formulation of the problem, based on
varationat calculus and decomposition in time domain. The sequential algorithm of the
decomposition method is describes and implemented in Matlab in serial mode of
caiculation. The paraliel implementation of the decomposition method is described in
chapter eight. The problem for optimal control of fed-batch fermentation process is

considerd and solved in chapter five.
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5.1

CHAPTER FIVE
DEVELOPMENT OF A DECOMPOSITION METHOCD FOR OPTIMAL
CONTROL PROBLENM CALCULATION FOR FED- BATCH
FERMENTATION PROCESS

Introduction

The fed-batch fermentors are used to produce vaccines, enzymes, antibictics, baker's
yeast etc. 1t is difficult to model and control these processes because many uncertainties
and nonlinearities are encounterd, the mechanism of the process is poorly understood,
and the process variables are difficult to measure. The coptimal control of fad-batch
fermentors consisis of twé stages (Johnson, 1987} and (Masda, 1987). Conirol variables
such as pH, temperature, agitation and aeration are kept steady fo pursue certain

trajectories using conventional sat point controllers {Fishman and Biryukov, 1874).

The first stage of control problem is considered in the thesis on the basis of dynamic
mathematical model of Saccharomyces cerevisiae fermentation and finite horizon cost
criterion for maximum production at the end of the process. This optimal control problem
is characterized by nongquadratic critericn, nonlinear dynamic mode! with linear control
and constraints over the process variables corresponding o the physical limitations. The
problem can be solved by means of techniques based on the dynamic programming,
Green's Theorem and Variational Calculus {Kishimoto et al, 1887). Ths optimal
frajectory of the feedrate is singular kind of control. Nonlinear two point boundry value

problem is solved which is characterized by many calculations and computing errors.

in section 5.2 formuiation of the problem for optimal conirol of fed-baich fermentation
process is developed. In the chapier decomposition method is firstly developed for batch
processes to solve the above problems on the basis of an augmented Lagrange
functional and new coordinating vector for its time domain decomposition is applied and
is developed in section 5.3. It overcomes the pointed above difficulties. This method is
extended here to solve the problem for optimal control of the fed-baich process in the
case when the kinetic coefficients depend on the temperature. The algorithm of the

method for solving the optimatl contrel problem is developed in section 5.4
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5.2 Formulation of the problem for optimal control of fed-batch fermentation process

The aim of the optimal control of the fed-batch fermentation process is to find trajectories
of the feed flow rate and temperature: F(%),T(k).k = 0,K —1 such that the concentration

of the biomass at the end of operation period. k = 0, K is maximum:

J =x(K) — max 5.1)

Under the modei equations (2.88)-(2.81) and (2.72)-{2.75) and satisfy the constraints

X (B)<x(By<x__(k). k=0,K
Sme(B)<s(R)Ss . (B),E=0K

Prin (5} S plA)YS p (E)Lk=0,K
Voen(BYSF(E)SFP e, k=0, K — 1
T (D)ST(EYST o (RB).E=0.K—1
Fon(E)SF(R)SF (). k=0,K—1

(5.2)
53  Augmented Lagrange functional formulation for fed-batch fermentation process
The considered problem for optimal control has the following characteristics:

= Criterion only at the final peint of the optimization

= Nonlinear model with four state variables ie. for fed-baich: biomass
concentration(x), substrate concentration(s), Volume(V) and product
concentration(p).two contro!l variables i.e. temperature(T) and input flow
rate{F)

= Long oplimization horizon

= Affine control according to input flow rate

These characteristics determine which methedology to be selected for solution of the
optimal control problem. The theory of variational calculus gives possibilities to handle
problem with high dimension and nonlinearities by using the Lagrange functional. The
affine control however in the case of non-quadratic criterion determines that the
derivative of the Lagrange, accerding to this contrel does not depend on it. This creates
problems with the solution of the two-point boundary value problem. in order to overcome
the linear dependabifity of the Lagragian on the control variable an augmented functiona!
of Lagrange is considered. The augmented Lagrange function is assumed here in the

form:
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L=x(K)+Y. Yambvk+ g, (k)]+ plvk+n+ L0F }

k=0 v=xs.pF (53}
where A4,,v = x,5,p,V s the vector of the conjugate variables, u,, v =x,s,p,V is the
vectar of the penalty coefficients. The augmented functional has to be maximized
according to state and control variables and minimized according to conjugate variables

on the basis of the theory of duality, under process constraints presented in point (5.2)
Necessary conditions for optimality for fed-batch fermentation process

Solution of the problem for optimal control is based on the necessary conditiens for
optimality of the funclional of Lagrange. The equations of these conditions are used to
build the algorithm for calculation of the optimal state and confrol variables. This

algorithm is used for parallel éa!cuiaﬁon in a cluster of computers.

= Necessary conditions for optimality according to bicmass

oL =,1r(k){1+mpm[1—p(?} { s() J-Arkd JAF U")}_
p

ox(k) K, +s(k) v (k)

_ p0 sty _AF®
—yx(k)[x(kn)—ft(k)]{xmwm{l pr HA H(k)} Mk, = }

ap [ p®] s |
o) Sl 0[] am

ap [ po ] st ]
— g, (F)[s(k+1) - f(k)]I: [1 | [Km(k)} Nm}

A OO
+AP(A)1:AIIPX/JUMXI:]‘ p* } |:K5 "I'S(k)_\‘

i o[ s 1 o
*ﬂp(k)[P(kﬂ)—fp(k)]l:-’—\ﬁpxﬂm[l"' p*} [Ks+s(k)J}—0—€x(k)k—0,K 1
cx
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= Necessary conditions for optimality according to substrats

oL _ ik mﬂm{l-f’(")}" XK, +5(6) —x(R)s(R) ||
ds(k) r* [K, +s(0)F
o Ok <D £ (1 Ara _p(k)}” x(k)Ks
Rk +1) = £, )]{Awm{l v | |K +soF ||”
+/ls(k) I_At:umax {l_p(k)} x(k).Ks 7:!HAI;FUC) _
Yis p* | |[K,+sF | Vb
Aty p) ]| _x(OK | AF(k)
—u (B)s(k+1 k 2= 01— -
#(B)s(k+1D) - f( )1{ Y., [ p*J [[Kﬁs(k)]’} T w

2 o) I_p(k)}’[ *(K)K; ] .
+ p( ){ ‘auma_ﬁ:|: p* [Ks"i'S(k):[d

B xbK S
- - Y. ]_—p =0: k}k:o}ﬂ_l
4up (k)[p(k+1) fp (k)][AI PX luma:g!: p* :I [[Ks _|_S(k)]2 i” ES( )

oL
as(K)

(5.5)

= Necessary conditions for oplimality according to product

oL _p | 1| xRIsR)
5p(k)—Ax(k)]:AI‘u ‘““[l p*} [ }{ K, +s(0) ﬂ

| pE) | 1| x)sth)
- },j(k)[x(le)—fr(k)]l:Atﬂm[ } { p* }[K +s(k)ﬂ

a T p®17 T 1T xthso)
””‘){ Y {1_ p*J { ]{ nwmﬂ
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_ ool Mt [ p®TT T 1 T xtes)
sk +1) fs(k)]{ 2 {1 P*} n[ pL +S(k)ﬂ+

$

+ 2, (0| 1+ AT {1 _ ﬁ'(r’f)}"_1 n[_ L}{ x(k)s(k) } MFGR) |
P PY #Fmax P:s p* KS +S(k) V(k)

— (O plk +1)— £, (k)] 1+ AT, 1_@]n_1 [__L}[x(k)s(k)}mﬂk)
’L_""( Aptke D=7, )}{+ ‘”“‘“[ p* | T K s | v

5

=0=e,(k), k=0,K—1

or__ (5.8)
dp(K)

= Necessary conditions for optimality according to Volume

oL F(k)x(k)—'_ _' F(kx(k) |
,,V(k) A ){ ) | 4 (kYx(k+1) fr(k)l{ﬂt V) }T
+ﬂ»s(k)[ L ("))[s stk )1 — , (OLsCk+ 1) f(k)][Ar L ("‘)) [s, - s(k )]}

, A FRpR) —F ok F(k)pk)
+Ap(k){ N—Vg(k) } s (pk+1) - f,( )]{N——Vz(k) :[+
+ A, (B)[H=-p BV (k+D) - f(BL1l=0=¢,(k).k=0,K~1

o __ (5.7)
aV(K)

* Necessary cohditions for optimality according to Flow rate

oL x(k)At | D F ok — Atx(k)
FR (){ 0 } p B x(k+1) - f( )]l: 0 }r

Atfs, —s(k)]
J —p (B)s(k+1)~ f, (k)]{—“ﬁ)—-} +

s,
(k)

+ 4, (ic){m [s ;f(—ki (K)]

+,zp<k>[ %{g")} 1, (Ol +1) - f(k)][
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+ A (DA — p (W (k+D) - £, ()JAr =0=e, (), k=0,K -1 (5.8)

» Necessary conditions for optimality according to temperature

K,
O, iy At [l_p(m}" W) {I_p(k)}" Reacrdin
Tk orT p* | K, +s(k) mas p* K, +s(B)]
3K
i . i — x(kys(h) s
aop [ p® ] x®s) piy ]} BB
—u (BDx(k+D— f.(k 1— +A |1-
‘le( ){X'( + ) fx( )] ﬁT l: p*} KS+S(k) ma:{l: p*j| [Ks+s(k)]2
ey _ P Oy i
e B Tmoar |, plR) | x(k)s(R)
+A,(k)| - A1 e {1 pr } K <00

» o} — x()s(e) SR
GOk 1)~ £, ] e {1— ! }fk)} ;f?i(f;) D, {1— p}fﬁ)} i S(k)‘]af
) ag;ax Yo — M %%i{l- p(k)]l x(k)s(k) _
” Vs p* | K, +s(k)
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oK |

Aty [1- p(k)]’

Y p* K, +s(0OF
aﬂm o y oy, .
o O s(E D= ol =g BT = = T b p(B) | xh)sth)
# (B)s(k+1) = f, (k)] T -2 £
_ Ay, [I_p(k)}” _
Y p* &, s
+ 24, (k) Ar[———aY‘DX fo + ¥y o } x()s(B) | _pd |,
? aT "= TR ar | K, +s(k) p
61\
AT ,1—*"(")} ~
+ P_Uuma\{: p* []\5 +S(k)]
_ L 0¥y, Ot | X(E)sB) [ PO
w1, (k) plk +1) fp(k)]{ [OT Hay + Yoy T } Ks+s(k){l > } + (5.9)
AY, 1—”’”] 0T ||—p=e (K)k=0.K-1
+ PX:umax[ p* [Ks -§-S(k)]2 eI‘( )

Where the partial derivatives of the kinetic parameters according to the temperature are:

Ol T ) |
or or B k=0,K -1 = 4
At a v, (G. |O}
S
——=¢, +2¢,T(k), X =d, +2d.T(k),
T c;T(k), Pl (k).
« Necessary conditions for optimality according to the conjugate variables
oL =-x(k+1)+ f (k)=0=e, (K)k=0,K-1 (5.11)
a4 (k) g o i '
¢l
- =—s(k+D)+ f(k)=0=¢, (k)i = OK 1 {5.12}
84, (k)
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53.2

oL

aﬂp(k)=—p(k+1)+fp(k):O:ejp(k)k=0,K——l (5.13)
ol S
AR V(k+1)+ f,(k)=0=e, (kK)k=0,K —1 (5.14)

Two level computing structure is introduced where the set of equations {5.4)-(5.14) are
solved using decomposition of the necessary conditions for optimality in time domain and

coordination to combine the decomposed solutions in the original problem.
Coordinating vector for fed-batch fermentation process

The optimal trajectories of the variables can be calculated as a solution of the obtained
set of nonlinear equations (5.4)-(5.14). It can be seen that the number of equations and
variables is big. The solution could be found easier if the problem is decomposed.
Decomposition in time domain could reduce complexity of the system eqguations
(Tumara, 1275} and (Singandiitty, 1882).

The solutions in time domain will consists of K separate solutions, everyone at separate
time moment k. The decomposition in time domain could be obtained on the basis of the
coordinating procedure in two level computing structure( Figure 4.1) using the conjugate
variables A as coordinating ones(Tumara, 1875), bui this method is applicable for normal
functional of Lagrange. The used augmented functional could not be fully decomposed
because of the quadratic terms and variables x(k + 1),s(k+ 1). p(k+ 1) and V(k +
1) in them. They play a role of interconnections in time domain (Lin, 1992). This type of
functional can be fully decomposed if the considered variables are selected also as a

part of the coordinating vector. To overcome these difficuities it is proposed to consider

MEy=vik+1),v=x,5,p,V,k=0,K - (5.15)

as coordinating variables. Then the values of the coordinating variables are set from the

second level of the two level calculating structure:

Adk)= A (), v=x,5,p,V, kE=0,K {(5.16)

Sk) =& (k),v=x,5,p,V, k=0,K (5.17)
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5.3.3

where | is the index of the coordinating process iterations. When the values of the
coordinating variables from equations (5.16) — {5.17} are substituted into the Lagrange’s
functicnal, its full decompeosition according to the discrete time moments k is cbtained.
The functional is decomposed into K sub-functionals L,(k) and each of them determines
the optimal control and state at the given moment k. The above algerithm is implemented
in Matlab software environment in two ways:

»  Sequentially in one computer
v Parallel, using the cluster of computers

The decomposition in time domain is based on a two level calculation structure, given in
Fig 4.1.

First level sub-problems for fed-batch fermentation process

The solutions of the first level sub-problems represent solution of the set of equations
(5.4} — (5.10) in which the coordinating variables are substituted. These equations are
solved for every separate moment of time in a paraliel way, The stucture of the
equations {5.4) — (6.10) does not aliow o use analytical solution. Gradient method is

used in the form:

Vj,i‘vl (k) =/ (k)+ayevj’j (k),V =X,$, P, V.T.F. k= O,K—l (518}
iKY = LK =1, TK -1, FK-D],v=x5pV

where a, > 0 are the steps of the gradient procedures, e, (k) are the gradients according

to the equations (5.4) — {5.10} and iis the iteration index of the gradient procedures. The
first level sub-problems are determined under the set from the second level coordinating
variables according to the necessary conditions for optimality of the sub-functionals Ly(k).
Equations (5.4)-(5.10) can be simplified further by using necessary conditions for

optimality according to the conjugate variables presented by (5.11)—(5.13) as foliows:

For the biomass
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p®] sl F®IL e il
0| Toean M [ e Wl

oL TP
6x(k) =e (k)= [1 + Aty {I

-+

Aty {1_ p(k)}" (k)

_ Fein j
IIXS p* KS +S(k) Atm [;"s (k) luSe;.j‘ (k)]+

+ AIYPX :umax [l

~ p(k)}" s(k)

}[ﬂj (K)y—pe,e;, )|k =0,K~1

p* | K, +s(k)
(5.19)

For the substrate

el B " x(b)K

—e Uy =|At. |1- A (k)— k

5_;(];) e, ( ) [ Aumax{ R p* jl {KS -}-S(k)]z}[ x( ) luxe}_x( )]'i‘

o [ ] sk FO . )

1- 1- - A A (kY- pe, ' (k 2
1T o p*} (K. +s(0f V(k)}[s 0= mes, B+ (520

L p(k)}" x(k)s(k)

ALY g
el Ko

}[,1;‘ B -pye,, (b =0.K-1

For the product

aplk) p*IK, +s(k)

_Ar#max __p(k) i :1_ M ; B ;
[ Ys {1 p*} HI:P*:IKS+S(k):f[ZS (- pe;,/ (0]

oL -ep“(k){amm[l— - n[i}w}[ﬁj(k)—#xe;._,’(k)]

p®T T 5 0sh)  FO s sl e
+{1+NYPX¢‘umax|:}‘ p*} H|:p*} Ks"i-S(k) AIV(k):[[AP (k) /’lpei_p (k)lk 0*-[\- I
(521
For the Volume
oL i Lo Foxth) _
6V(k) - e[" (k) _!:A‘t Vg(k) :|[‘;{x (k) Auxeﬁ.x (k)]+
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| AFR ol
1w [s, S(k’]][ﬂs (B)- e, )]+
N NM:I[APf(k)— e, B+

V2 k)
+70) - pye,, O E=0,K -1

For the flow rate

oL__, i) {w A 5B
aF (k)

V(k)
At
V(&)

!
+

[s. - S(k)];l[isj ()~ pe,,’ (k)]+

+ —AIEQQ

V (k) :I[J"Pj (k) - ‘uPeipj (k)]+

+ Ar[z,,f (k)= e’ (k)]: e (k),k=0,K -1

For the temperature

oL
o7 (k)

=e; (k)=

J[ftx () — e, (B)]+

»| x(k)s(k)

(5.22)

{5.23}

3K,
ar_ ||+

_| avdp,,, {1 _ p(k)]" x(R)s®) _ {1 _pk)
HAX p *

aT p* | K, +s(k)

3
Huse 3 oY,

R
5 - # L -
max OT

&, +s®F

3

*[2,06) - g1, (e, (o))+| —Ar—2L

)
Ry

or
X, +st0)f

o Dttty [1 0]

" x(k)S(k)gg
Y p* :’
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aﬂmax aIf’r’S
—“Y‘ -+ max —_— 0
o7 S THeaTor [1 ~ p(k)J x(B)s(k)

+| At -
Vg p* | K +s(k)
| - (5.24)
o] x(k)s(k) s
—Atu_ Y. 1-*"(]‘)] O W3 (k) —p, (e, (k)| k=0,K ~1
L [ el R s 4, (0 - 1, (B)e,, ()} k=0,

These equations can be simplified further for the purpose of calculations. Some
expressions in them are repeated, that is why the common notations are used to

represent them:

Atp, :1— L ;,?:n ng( 5 0.0 (5.25)
wli@;% - 526
] 25

% ~ 0 | (5.29)

At 1_p(k)}” 0 _ o -G |
g [ r* | [K +stof (5.30)

Using notations from {5.25) - {5.30) equations from (5.19)-{5.24) can be written in the

form:
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For the biomass

cl o _ Ji _ _ .@ ; B ; s
6x(k)—ex (:’f)—[l+{£%r (k)—Atk, NV(k):}[ﬂx (k) — p, (e, (k)]

+ [@ - Aﬁn}[ﬂpﬁ (611, (B)e,,” () |+ (531)

i3

+0.” (B)Y,, [;.pf (K)-p, (ke (k)l k=0,K-1

For the substrate

oL R o
o TN =y I A J
= ©=o. O (0= 1, (Bre,. (B)]+
o B L FPm J ,
+[1 T (k)}[ﬁf -, (Be,. )+ (5.32)

Yoo, O, (B - a1, (B)e, ()} =0, K -1

For the product

oL Ji i Jopy i

e, ®=lo, w1 ®-pe, ' ®)

KA 55
Y

_ BV GO} PR y 0K
{1 @, (k) AIV(k):{[ﬁ.p (K) =, (ke (k)lk 0.K -1

Flow the volume

Lo (k) =gy (B (B - s, (Be,, ()]
oV (k) v v x x 1x
0y B, - A, (0 - 1, ke, ) 0]+
+o,-(k) p(k)[ﬁ.pj (ky~p,(k)e;,’ (k)]+ [ﬂw" (k) — g1, (K)e,” Uf)] (5.34)
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Forthe flow rate

oL e

F(k)_eb“ (k)=

___Afx(k) J _ i N[Si -S(k)] ¥ _ J 3

S 700 - (e, (k)]+—V(k) 7 () - 1, (e, ()] (5.35)
i’f;,i’;’ ) 0=, (e, )+ il 8- 1, Bye,, 0] k=0 K -1

For the temperature

oL

3T (k) =er (k)=
Jumax 61’\5
b g 35 7 Mmax T 4
{(ﬂl(k) Ho %(k) }[ﬂ (k) —u (ke (k)] [-o.(0)] &L = of
(;02 (k) % a _ J aYPX 7 alumax —
+—Y_rs T :I[As (k) —p (ke (k)]+{¢’1(k)[ a7 Hinoe + Yoy T }

5K . (5.36;}
~ Y, (k) %ﬂ[&,ﬁ(m -, (Be,, (D} k=K1

The caiculation of the gradients for every step is done with the previous values of the
state and conirol variablesv’”, v=ux,s,p,V,F,T. The calculation with the gradient

procedure wiil continue until the necessary conditions for optimality towards state and
control variables are fulfiled. This means that the values of the gradients are

approximately equal to zero:

le, (k)| <e,.e, >0v=x,5,p,V,F.T.k=0,K~1 (5.37)

The values of the state variables, the final point are calculated from the optimal values at
the previous peint according to equation (5.18). The new calculated values have to be

checked for belonging to the area of constraints.
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X Sxb)<x, k=0K (5.38)

0,K (5.39)

s SS(k)Ss, L K

Pun SPEY<p..., k=0,K (5.40)
Voin V() <V min, k=0,K (5.41)
Fouin < F() < Foax ,k=0,K—1 {5.42)
T ST()<T,. .k=0K-1 (5.43)

Simple way to do and correct the obtained new values is to project them over the

constrainis domain according to the relation:

(v L if v ) <vy,

g Ik, i v vk < \

V'U(k)Z-sVW( ) UF 1mm v ( ) Vmax L (544)
- l”jll (k)>l”max

k=0,K forv=ux,s,pV andk=0,K-1for v=T,F]

The obtained values of the tralectories of the siate and control variables are function of
the coordinating variables. They are optimal for the given values of the coordinating
variables. If the coordinating trajectories are optimal onss, then the obtained state and
centrol variables also will be the optimal according to the theory of the duality in optimal
control and Lagrange methods. The optimal values of the coordinating variables are

obtained by the solution of the coordinating problem.
The coordinating sub-problem for fed-batch fermentation process

The coordinating variables are obtained from the necessary conditions for optimality of
the augmented Lagrange functional according to them. For the conjugate variables these
are equations (5.11)-{5.14). The necessary conditions for optimality accerding to the new

introduced interconnections in time domain are:

cL

—— =2 (O)-p[5.(0)- £ (B]=-A () -pe, (k) =e, (k) =0 (5.45)
85, (k)
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oL

- =—2.(0)-u1,[8,(k)~ f,(0)]=-4, (k) — e, (k) =e;, (k) =0 (5.46)
a5, (k)

0=, [5,00- £,(0]= 2, @ - a,e, (B =es, (k) =0 (5.47)
aé'p (k) P rlp P P Prip dp :
L -5, £.B]= 2, (0 - e, (R =e5, (B) =0 (5.48)
06, (k)

where 6,(k) — f,(k) = e;,(k),v =x,s,p,Vaccording to eguations (5.11(5.14). The
necessary conditions for optimality {(5.11)-{5.14) and (5.44)-(5.47) can be combined in a
gradient procedure. Equations (5.44)-(5.47) give the values of the gradients for the

conjugate variables multiplied by the penaity co-efficient. ., v=x,5,p,7

It appears that;
oL ' ol _
==A(k)—p, —==A, —u.e, (k). k=0,K-1 5.49
350 (k) —u . Hpe;, (k) (5.49)

Gradient procedure can be built for both type of coordinating variables.

For conjugate variables:

A7 =4, () —a e, (F),

(5.50)
where
e 0 (k)==58"(k)+ f/ (), v=x,5pV k=0K—1, (5.51)
8, (k=6 (k) +ay,e; (k) k=0,K 1 (5.52)

wherea,; and «; are the steps of the procedures for calculation of the conjugate

variables and the interconnection in time, respectively. As the calculations are based on
gradient iterative procedure, they will stop when the gradient is going to zero, or

practically achieving some ccnditions for optimality, given by
[13j+11v(k) - ejlv(k)” L EgmEw > 0 k= 0,K

[l 5,0k — &/ 5,(0)| < 5085 > 0,k =D,K —1 | (5.53)

g0



5.4

where ggy, &,

.. are a very small positive numbers. For every step of the gradient
procedure for the ceordinating process the full iteration cycle of the sub problems of the
first leve! is dene. The calculations of the coordinaling variables are done with the values
of state and control variables of the first level sub problems and the caiculations of the
first level sub problems are done with the values of the calculated on the previous
iteration coordinating variables. The iterative process of coordination and the optimal
solution of the whole problem for optimal control is obtained when the optimal solution of
the coordinating sub problem is reached, this means conditions (5.52) are fulfilled and if

this condition is not reached the error is computed.

. _ . /
e/*t ={lle+ 1| + Ile”’%vlfz}1 : (5.54)

The new penalty coefficient is calculated from the conditions.

ifj=1orei™ < e/ thenui*t = uf (5.55)
if j > land e/*1 2 ) then /™ = ap/,a = [01 10.0] {5.56)
Algorithm of the method for fed-batch fermentation process

The calculations in the two-level structure can be grouped and represented in the

following algorithm:

On the coordinating level the inttial values of the coordinating and gradient procedures,

initial trajectories of the state, control and coordinating variables are set as foliows:

= Maximal number of step of the coordinating process — M2,

=  Maximal number of steps for stgte and control variables gradient
procedure- M1

= Steps of the gradient procedures

- For coordinating conjugate variables U,V = x5 pV.
- For coordinating interconnection intime -a; ,v =x,5, p,V .
- . For state variables and control variabler,,v =x,5,p.T, F

s Values for error and termination of the calculations for coordinating
procedures. £,.,8;,,V =X,S,p,V and for gradient procedures on first

level. g,,v=x,5,p.V
= |nitial values trajectories of the conjugate variables.
k), v =x,5,p.V,k=0,K-1
« Initial values of the state variables, x(0), s(0), p(0) and V(0).
= Number of steps in the optimization horizon - K.

= Initial trajecteries of the control variables T (k), FM (k),k=0,K ~1
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The initial trajectories of the control variables are substituted in the mode!
equations (2.88)-(2.61) and (2.72)-(2.75) and the state trajectories are
calcuiated.

The initial trajectories of the interconnections in time domain are

calculated from &, (k) =v(k+1),k=0,K -1, v=1x,5,p,V

Initial {rajeciories of the coordinating variables and initial state and control
trajectories are sent i the first level.

2. Onthe first level the following calculations are done:

Derivatives of equations (4.8} are calculated.

The kinetic cosfficients g, K.Y <, Y, from equations (2.72)-(2.75) are
caiculated.

The expressions @, (k),@, k)., (k). (k),0,(k),k=0,K -1 are
calculated from equations (5.25)-(5.30).

The gradientse,” (k),k=0,K —Lv=x,s5,p,V,F,T are calculated from
equations {5.31)-(5.36).

The errors for the end of the gradient procedures are calculated according
ta equation (5.37). If the error is less thang , the calculations of the first

tevel stop and the current values of the stale and conirel variables are the
cptimal ones. If the error conditions are not satisfied the new values of the
state and conirol values are caicuiated.

The new values of state and control variables are calculated from
equation {(5.18).

The obtained state and control variables are projecied over the constraint
domain according to equation {5.44). The obtained trajectories are sent to
the second level.

3. On the second level the following caiculations are done:

The final value of state trajectories v{k) are calculated

The gradients e, (kK).k=0,K-Lv=xs5pVare calculated from
equations (5.11)-(5.14).

The conditions for the end of the calculations are checked according to
Equation (5.53). if the conditions are fulfilled the optimal solution of the
coordinating and of the whole problem are obtained. If the conditions are
net satisfiad the new values of the coordinating variables are calculated.
New values of the coniugate variables are caiculated according to
equation (5.50)-(5.51).

The new values of the interconnections are calculated from eguation
(5.52). These irajectories are sent to the first level sub problems where
the calculations from p.2a till 3b are repeated and so on, The schematic
giagram of the algorithm is given on Fig 5.1
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Setinitial values
M.M,,a.a, a8, .85 .8,

A,° (), 11, %(0), 5(0), p(0), ¥ (0)
Setup

FO(k),T°(k),
k=0,K~1

Calculation of initial siate trajectories

vk +1),k=0,K

(k)= 2 (k).6° (k) =6 (k)
v (By=vi(b),v=x,s5,p,V,F.T

T
™

i=1

¥

Calculation of state and conirol derivatives,
Eguations {5.4)4{5.10)

A

Calculation of kinetic coefficients, Equations
{2.72)-(2.78)

Calculation of expressions:

@yj‘ia¢ii¢2’ kxO’K...l

h 4

Calculation e’”..(k) from equations (5.31)-(5.35)

¥

Calculation ”ej"v (k)” from equations (5.38)

o3




v (k) =v/ (k)
v=xs5pV.F,T

V_f.i (k) — Vj.i (k)

¥

vi(k) =v/ (k)+ a‘*f‘iv(k)
v=x,5pV,F.T
v v

Projection on constraint domain Equation (5.43)

h 4

Caloulation of Equations (5.11)-(5.14)
e 2 (k) Ay = A2 Ay Ay

v

Calculetion of e’ 4, (k)“ equation (5.52)

Calcutation A7 (), 674 (k)
Equation {(5.49)-(5.50)

F 3

N j=j+1
¥ No
v(k) = v/ (k)
v=x,s,pV.F,T
v
STOP Yes

Figure 5.1: Flow chart of the algorithm for calculation of optimal trajectories of fed-batch

fermentation process
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5.5

Description and calculation results from the sequential program of the

algorithm of the method in Matlab for fed-batch fermentation process

The algorithm presented in section 5.4 is implemented in Matlab in a sequential
way{Appendix B). The table below represenis the relationship betwesen mathematical
notation and program notation of the Matiab program.

Table 5.1: Correspondence between mathematical and programs notations for
Fed-t)atch fermentation process

e Hotaticnan Ly te
State varigble
Biomass X X
Subsirate s s
Product p )
volume v "
Control variable
Temperature T T
Flowrate F F
Steps of the ay ax
gradient
procedures as as
For state
variables a o
y a¥
g alx
Lo als
Qap a!p
Tip alv
dsx adx
55 ads
220 ady
Conjugate P i
variable *
i is
“s
ip
‘p
F W
Yy
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interconnections S dx
in time domain ¥
55 ds
d
3, P
§v agv
Coefficients ar, az, a3 at. a2, a3
b1, bz, by b1. b2, b3
G1, €2, C3 ct, 02, ¢c3
ds, do, da a1, d2,d3
Ka Kd
Ks Ks
m m
n n
Yes YXS
pr YDX
S 8i
p pi
Af dt
U mmax
max
initial values of | x{(0) x0
state variables i
s{0) s0
p{0) p0
v{0) v
Penalty u mx
coeffiicients x
U ms
A !
My mp
p mv
¥
Min and max of | Xnax XmMax
state varighies
Xmmin Xmin
Smax smax
Sin smin
Pmax pmax

g6




Pmin pmin
Vmax vmax
Vmin vmin
Min and max of | Tmax Tmax
controf variables
Tmin Tmin
Frmax Fmax
Frmin Fmin
Derivaives of the | 5 11 . T(k) dmmexdT{ky= a2+2%a3*T(k};
model — L mix =a, +2a,
parameters orT
b K, b b T(k) dKsdT{K)=b2+2"h3"T{Kk);
aT T .
aY d¥YxsdT(K)=c2+27c3 T{k);
= =c, +2¢,T(k
e A (k)
ay dYpxdT(k)=d2+2*d3*Tik);
—d, +2d.T(k)
aT 2 3
Error €, ( k) = 6x( k) _ x( k+ 1) eix(K} = dx{k-x{k+1}
e, (k) = 6S(]C) —S(k + 1) als(k) = ds(k}-s{k+1)
€ (k)= ap(k) - p(k +1) elp(k) = dp{k)-plk+1)
e, (k) — 6’!2(/() _ v(k + 1) ehv(k) = dv{k}-vik+1)
e. (K)=—4_ — 1 (ke i (k) edx{k)=-ix-mx*eix(k)
& ‘x x Ax
e& (k) — _'_2 _ ﬂ (k)e; i (k) EG’S{ka—gX‘ms*e%S(k)
‘p(k) — - (Ke, J (k) edpiki=-x-mp*elpik)
7 Aip
€. (k) — _/1 _ /_l . (k)€; K (k) edv(k}-—-—ix-mv*e'iv(k)
Formulas - ﬁ’{ ky=di*mmax(ky{{1-
{I _pk)| _ — 0, (k) pkiph*0.52)
p*
- fx{K)=fE Ky s(K)/(Ks (k) + s{k))
k s(k
Biptg | 1- 2B SO, )
. p* | K +s(R)
- - (=K Ks (0™ x(KA(Ks(k)
s (1 PB] _xBs®)__ gy | s a
ma\h p* | [Kj +S’(k)]2 5

g7




5.6

1 ) STk=dt mmax(kr{(1-
At I_p(k) =1 x(k)s(h) _ &) ip(k}fpl)"(r;-ﬁaxg (
Hinax | = =9 (K "s (OBl (Ks (k) +
P p K, +s(k) <)
Ar F(ky ® fu(k)=dtFR)/(v(K)*2)
Vg(k) - @v .
. =R XK s(Kek) +
At l—p(k) x(k)s(k) =0,(k) s(k)}
p* | K, +s(k)

Atpr 41— P (i) x(k)stk)  _ @, (k) 2()=f1RM((Ks{l)+ sk))"2
p* | K, +s®F

Description of the Matlab sequential program for optimal control of fed-batch
fermentation process

The complex relationship between physiochemical and biclogical variables and sudden
unexplained changes in the process are reflected in the values of the equation kinetic
parameters equations (2.72}-(2.75) which are the same as from section 4.8, Table 5.2
defines process kinetic values that are calculated from Matlab by using polvfit function

from gz certain given values of the equation kinetic parameters.

Program fedbatch_seque.m is developad o implement the decomposition methed in a
sequential way. The program calculates the coptimal values of the state and control
variables accerding to the algorithm 5.4, The whole program is in appendix B. The
function modeifedbaich_func2 is used to calculate the trajectories of the derivatives of
the state space vector, according to the Equations (2.84 — 2.86). Then the program is
called by the solver ode?5s for integration of the model equations. The input variables
are t the Hime at moment t from the censidered time interval, y initial, or value of the state
vector in the moment £ The output variables are the values of the state space vector

derivatives ydof. The program is given in appendix B.
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Table 5.2: Model parameter values for fed-batch process

Symbo!  Name oo CoiValue oo Unit
al Modei co-efficient 0.0604
a2 Model co-efficient 0.0001
a3 Modei co-efficient 0.0002
b1 Mode! co-efficient 0.2
b2 Model! co-efficient 0.03
b3 Model co-efficient 0.01
c1 Modei co-efficient 2
c2 Modeal co-efficient 0.3
c3 Mode! co-efficient 0.021
d1 Model co-efficient 0.0380
d2 Model co-afficient 0.008
d3 Model co-efficient 4.003
Kd Death constant $.00008
pl inhibition factor p*. 50
n Powerc-cefficient 0.52
m Maintenance-coefficient. 0.0011
X Bicmass concentration gil
s Substrate concentration g/l
o Product concentration gil
at Sampling period 0.25
Urriax Meaximum growth rate
Ke Monod's constant
v Stochiometry coefficient for biomass
= growth

5.6.1 Results from sequential calculation of fed-batch fermentation process

The program for sequential calculation is used o calculate the optimal trajectories of the
conirol and state variables of the fed-baich fermentation process. The optimal trajectories

are presented in figure 5.2 -5.8
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Figure 5.2: Initial trajectories of state variables

for fed-batch fermentation process

Figure 5.3: Optimal trajectory of hiomass
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Figure 5.5: Optimal trajectory of substrate
for fed-batch fermentation process

Figure 5.4: Optimal trajectory of product
for fed-batch fermentation process
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5.7

5.8

Discussion of the results for fed-batch fermentation process

The bicmass concentration generally continued to rise after feed was started, as at
that stage growth rate exceeded dilution rate, but within few hours after increases in
the feed rate, it invariably began to fall. Substarte levels generally rose slowly
throughout the feed period as desired although it is fairly sensitive to feed rate.
Product concentration on the other hand rises sharply for several hours after the feed
was switched on and then reached a plateay, rising slowly afier the feed was

exhausted.
Conclusicn

This chapter describes the formulation of the nroblem for optimat contro! of a fed-
batch fermentation process. An augmented Lagrange functional is used and a
decomposition method for solving discrete time formulation of the problem is
developed based on varafional calculus and decomposition in time domain. The
sequential algerithm of the decomposition methed is describes and implemented in
Matlab. The results arg shown and discussed. The parallel implementation of the
decomposition method is described in chapter eight. The problem for optimal control

of continuous fermentation process is considerd in chapler six.

104



6.1

6.2

CHAPTER SIX
DEVELOPMENT OF A DECOMPOSITION METHOD FOR OPTIMAL
CONTROL PROBLEM CALCULATION FOR CONTINOUS FERMENTATION
PROCESS

Introduction

The continuous process has some advantages when compared to the fed-batch and
batch mode. If steady state is aftained, quality of the final product is constant, as the
operational conditions are invariable. Besides, the volume of the fermentor can typicaily
be smaller, as shut-downs for harvesting and sterilization are less frequent. However,
due to the high probability of contamination and culture degeneration caused by a long
operational time, continuous processes are used only in few cases in the fermentation

industry, such as cell mass and ethano} production,

Before a continuous fermentor reaches stable state operation, there is a transient period
in which it is filled up to the working volume. This is called the start-up of the fermentor
and refers to the progression of operations that leads it from an original state to the finaf
state of continuous operation. It is impertant to determine the efficient start-up strategy of
the fermentaor as it saves time. Bio-chemical reactions are typically slower than chemical
reactions and an inappropriate stari-up may cause the fermentor to spend time to reach

the steady state conditions.

The problem for minimum time controt of continuous fermentation process is formuiated
in section 6.2 on the basis of a decomposition methed. This method uses an augmented
Lagrange functional in order to overcome the difficuities with the singular type of controi
and no quadratic criterion is developed in section 6.3. A coordination vector, constructed
to achieve separability of the dual problem is developed. The problem for minimum time
can be decomposed in time domain and be soived in a two level computing structure. A

computer algorithm is developed to solve this problem in section 6.4.
Formulation of the problem for optimal control of continuous fermentation process

The problem for minimizing start-up time of continucus fermentation process is
considered (Tzoneva and Patarinska, 1885). The problem for minimum time is a dynamic
oche and the used meodel is dynamic {Tscneva and Popchev, 1985). The aim is to
minimize the time necessary for the process to reach steady state values of

conceniration of biomass, substrate and product. Mathematically, discrete minimum time
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6.3

control problem for the continuous fermentation process is to find a control trajectory
D(k).k =0,K —1 which in minimum tims
] = KAt 6.1

leads the system presented by equations (2.96)- {2.98) and {2.72)-(2.75) from initial state
x(0) = x9,5(0) = 50, p(0) = py to the optimal steady state x(K) =%, s(K) =5,p(K)=p
while satisfying constraints for state and control variables

Xmin(K) € x(k) < X (k). k =0,K (6.2)
Smin(k) € 5(K) < S (), k = TR (6.3)
Prmin (k) < p(k) < g (k). k =0,K (6.4)
Drnin () < D(K) € D (), k =0, K -1 (8.5)

and constraints for the sampling interval
0 < At < Aty (6.6)

Where At,,., is determined on the basis of stability requirements for the fermentation

process

Decomposition method for optimal control problem solution for continuos

fermentation process
The considered problem for optimal control has the following characteristics

*  The objective is to minimize a function of the final time with a free final time
starting from known initial conditions.

» For different initial conditions, different optimum for the minimum time values
will be obtained.

= in the start-up of a continuous fermentation process the known conditions for
the state equations are the final conditions.

* The stated problem is characterized by nonquadratic criterion and bilinear
model with the control entering linearly the model equaticns

These characteristics determine which methodology to be selected for solution of the
optimal control problem. The minimum time problem is transformed inte a problem for
minimizing the value of the sampling interval in the limits of {6.6). As the sampling peried
is easier to be included in the model] equations and tc be minimized, the number of
sampling steps wili then be fixed. The sampling pericd also enters linearly into the model
equations. This means that the soluticn of the optimal control problem can be singular

because the first derivative of the funclional of Lagrange towards the control variable and
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6.3.1

the sampling period will not include these variables. To overcome these difficulties an
augmented functional of Lagrange proposed in (Tzoneva and Patarinska, 1995) is used
to solve the problem.

L, =KAt+ Z*v:x,s,p {A,U (K)[v(K) ~ 7] + ’21'!-’,, [v(K) — 1_7]2} + 25;& Ev:x,s,p {Av(k) [_V.(k +

D+ +£,00] + 2p,[-vk + 1) + £,(01?} (6.7)

where v = x,5,p
Necessary conditions for optimality for continuous fermentation process

Solution of the preblem for optimal control is based on the necessary conditions for
optimality of the functional of Lagrange {(6.7). The equations of these conditions are used
to build the algorithm for calculation of the aptimal state, control variables and sampling

period. This algorithm is used for parallel calculation in a cluster of computers.

* Necessary conditions for optimality according to biomass

oL _ | [ sk ] . _
ax(k)—ﬂ,x(k)[l-rmym[l - } {Ks H(k)} Atk ArD(k)}

p* +s(k)

o) Mt [ _2®TT st ] 1
CE |

s p* K, +s(k)

— p (O[x(k +1) - fx(k)]{l + Ar,am{z _P U‘)} [K s(k) }—Arkd - AID(k)} +

—,us(k)[s(kﬂ)—mkn{a”;‘m [1—*”"‘) { s) }—Arm]Jf

XS r*

4 ) _p(k) g S(k) ] -
+/.P(k){ﬂﬂpxs“mﬁ[l p* } lth +S(k)J

—yp(k)[p(k+1>—fp<k)][mmym{1w" (k)M S¢) H=0=ex(k),k=o,1<—1

p* || K, +s(k)

oL —
=] 3 —xl=elK)= 6.8
K A(K)+ ux[r(K) r] e(K)=0 {(6.8)
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* Necessary conditions for optimality according to substrate

oL
as(k)

— 1 (B)[xk+1)— f. (k)] Atymx[l—p(k)} { (HKs ] .
r* K, +s(B)f

M| p®T]| xBK
A (B 1— 1- _ |- AtD(k) |-
. ){ Vs [ p* } {[Ks+s(k)]“} ( )}

- At plk) ! x(KYKs
—u stk -+~ f (k)] 1- L - —~AID

A (B)| AtY,. 1-p(k)T XK
+ p( )l: Pk#max[ p* [Ks_;_s(k)F

p(k)]’{ (DK
p* | K, +s®f

= 4, (b)| Atz {1 . p(k)}” |ix(k)(Ks +s(R) - x(bysky ||
x max p* [Ks +S(k)]2

Fﬂp(k)[p(k +1)_fp (k)]!:NYPYﬂmax li]' - }} = 0 = es (k)ak = O,K _1

oL - \
avi = R0 s 5] =0 59

= Necessary cenditions for optimality according to product

a0 Arum[I—@} - n[-i}{—“k”(k)} +
ap(k) p* p* | K, +s(k)

_ . p® T [ 1T kst
# (Ox(E+D -/, (k)]{awm[z p*] n[ p}{_._K +S(k)ﬂ+

w1 o) M [P0 [ 1 T xths®) ]
' Vi r* p* K, +s(k)
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_ _ e[ 20T T 1T xtsh)
1 (OLs(h +1) fs(k)][ s [1 p*} ;{ p*“KsH(kJ}

@) T T xsth) ] _
+Ap(k)[1+my,,j,ym{1 p*} n[ p*}[&ﬂ(k)h AtD(k)}

(DG~ f, (k)][lmrnxﬂm [1—@} _ n[— H[M}ND(@}

p* p* || K, +s(k)

=0=e, (k). k=0,K—1
oL

-M—K)zlp(K)_’—#P[p(K)hp]:f?p(K)=O

(6.10)

= Necessary conditions for optimality of the Lagrange functional(6.7} according to

iemperature
K,
aL A:apm[ p(k)i|n x(k)s(k) [ p(k)}n —x(kysth)—-
= A (k) - + At | 1- ZA
2g L] Kt p* || Tk, =0
— { (B)x(k +1) - £, ()]
K,
Ata;zm[ p(k)}" x(k)s(k) { p(k):ln = x(k)s(h) =
1— +AI max 1“ gl
or p* | K, +s(k) p* &, +s(0)F
Oy, s \
a by BT P e [ p@)] st _
* Yl 2% | K. +s(k)
oK
b, {1 _ p(k)}” BT
Vi r* [KS -i—S(k)]2
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Y,
Y _ 15 5
s e o [ B xWse)
Yig p* | K, +s5(k)

aﬂl‘lmax
— g2, (B)[s(k+1) — £, (k)] - e L

oK,
2

K, +sOF

—x(k)s(k)

s [ pw)|
Yis r*

+4, (k)|:m{5§; L 4T, Ol }{1_ p(k)} x(k)s(k) .

max oT p* | K +sk)
o[
— p, O p(k 4D~ (k)]{m[a;%um 7,y L }{1 - P}fﬁ)}" o R
]| G o

Where the partial derivatives of the kinetic parameters are derived in equations (5.10)

= Necessary conditions for optimality of the augmented Lagrange functional(6.7)

according to dilution rate

aff(‘,‘() = L (k) [—Atx ()] + p [—x(k + 1) + fe (R [—Bex (k)] + A, (k) [At(s® — s(k))] +

pl=sk + 1) + (01t (s° — s())] + A, () [-At{p(k))] +
Ho[=plk +1) + f ()] (—At(p(k))=ep (k) = 0,k =0, K - 1 6.12)

» Necessary conditions for optimality of the augmented Lagrange functional (6.7)

according to the conjugate variables

cL

O e x(k+)+ f(k)=0=e, (K),k=0.K—-1 (6.13)
o4, (k)
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aL

TN [X(K) — x] = ez, (KD, (6.14)
cL _— , \
6}.3(]{)_—S(k+1)+fs(k)_Oze“(k)’k"O’K_l {6.15)
% = [S(K) - -§] = E;{S(K) (5?6}
325(K) _
ol -
37 (8 =-plk+)+ [, (k) =0=e¢,(k),k=0,K -1 6.17)
a&iIEK) = [p(K) —p] = e (K) (6.18)

= Necessary conditions for optimality of the augmented Lagrange funclional
according to the sampling interval At.

The sampling period are only calculaied for the last period k=K then x(k) =

x(K),s(k) = s(K) and p(k) = p(K) and the augmented Lagrangian function is:
Ly = KAt + 2, (K)x(K) — %] + %px [x(K) = x}* + A,(K)[s(K) — 5] + %ps [s(K) —3]° +
2, ()P — B + 54, [p(K) — pI? (6.19)

Since x(K),s(K)and p(K) are all function of At, they can all be expressed by the
following models

x(K)=1+Aty,__ [1- ”‘K‘l’]n ["(K‘”“K‘l)] — Atkgx(K — 1) +AtDK — Dx(K — 1)

p* K;+s(K-1)
(6.20)
_ a4 Aty [ pE-DT" frE-Ds(R-1)] _ - 001 —
s(K) =1 — ~Fmax]y PEDN (MR ] - Atma(K — 1) + AD(K ~ D[s°(F)
—s(K — 1)} ' (6.21)
_ pK-DT" [x(K-Ds(K-1)] _ _ _ A
p(K) =1+ At Yox [1 - = ] [ KD ] AtD(K — Dp(K — 1) (8.22)

If the above equations (8.20), (6.21) and (6.22) are substituted into the augmented
Lagrange functional of equation (6.19), then the necessary condition for optimality
according to the sampling interval is:
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ds(K)

ALa (K dx(K dx(K = a
Tt =K+ Z00(0 + G x (0 — 71+ 52400 + 5

aAL aat dat dat

#s[S(K) - —E] +

ap(K)Ap(K) + ap(K) iy [P(K) — 5] = en,(K) = 0

At AL

Therefore

Ko+ SR 00 + el ) = 21] + Z2[2:00 + pols () =51+ +F2 1,060 +
tpfp(K) —Pl| = ear(K) =0 (6.23)

The necessary condifions for oplimaiity of the sampling interval are dependent on
biomass, substrate and product. These variables depend on the sampling interval on
control values at the moment K-1. In order to find explicit dependence of the necessary

conditions for optimality (6.23) on At all state variables at the moment K are represented

by their corresponding equatibns at the moment K-1. Then the derivatives 20

aae’ v = XSP

are calculated. These calculations are done separately for every state variable and then

the results are substituted in {8.23) as follows. Lst

pE-1)1" x(K—l)s(K;i) _
Hpma |1 = = ][ P IEXACEE (6.24)
Since it is commeoen in every equation.
For the biomass.

a _

O [0:(K) + pelx ) — 71| = [p3(K — 1) — kgx(K — 1) — DK — —1)x(K —

DI[A(K) + py[x(K — 1) + Aty (K ~ 1) — Atkgx(K — 1) — —AtD(K — Dx(K — 1) — ][ =

1 ht{[p3 (K — D —kgx(K —1) = D(K — Dx(K — —DI[ + [p3(K = D=kax(K ~ 1) -
D — Dx(K — DA (K) + pe[x(K — 1) — —7]] (6.25)

For the substrate

a;f{? [A4:(F) + psls(K) —5]] = [—%;” —mx(K —1) + D(K — 1)[s® ~ s(K —

—1)]] {AS(K) + psk—1) - At%lw Atmx(K — 1) + AtD(K — —1)[s° — s(K — 1)] —

(K- 1)

’]] = p At [%(K b +mx(K 1)~ DK —1)[s" ~s(K - —1)]] {(‘03 = mx(K—1) —
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6.3.2

D(K — 1)[s® — s(K — 1)}] [, (K) + +us[s(K — 1) — 5] (6.26)

For the preduct

ap(K)

a_At["?(K) + up[p(K) _ﬁ]] = [p3(K — D)¥px — D(K — 1)p(K — 1)} [[.lp[p(l(— -+
Atg3(K = 1)Yey = AD(K — Dp(K ~ 1) = p1]] = e[l (K — D¥px — ~D(K - Dp(K —

DI + [03(K = D¥px = DK — Dp(K = 11 [1,00 + +t, [p(K — 1) — 5] (6.27)

The equations (6.25), {(6.26) and (6.27) are combined to form the necessary condition for
optimality for calculation of At.as a coordinating variable. The equation (6.23) becomes:

K + peAt[[ps(K — D—kagx(K — 1) — DK — Dx(K ~ D]]* +

Hpa (K — D—kax(K —1) — D(K — Dx(K = D][A(K) + py [x(K — 1) — 2]} +
At [‘”—3‘("—;;-19- mx(K — 1) — D(K — 1)[s° — s(K — 1)]] [“’3“‘ Dy mr® - 1) -

DK — 1)[s® —s(K — 1)1] [2:(K) + pe[s(K — 1) — 5] + +upAt[@s(K — 1)Ypx ~

DK —DpK = DI +[03(K = Doy — DK — —Dp(K - 1) [1,(6) + K — 1) 5] =
=0 (6.28)

Coordinating vector for continuous fermentation process

Equations (6.8)-(6.12) and (6.28) determine the necessary conditions for optimality of the
minimum time control problem. It can be seen that the number of equations and
variables is big. The solution could be found easier if the problem is decomposed.
Decompoesition in time domain could reduce complexity of the system equations
(Tamura, 1875) and (Singandlitty, 1882).

The solutions in time domain will consists of K+1 separate solutions, everyone &t
separate time moment k. The decomposition in fime domain could be obtained on the
basis of the coordinating procedure in two level computing structure{ given in Figure 6.2)
using the conjugate variables A as coordinating ones(Tamura, 1975}, but this method is

applicable for normal functional of Lagrange. The used augmented functional could not
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be fully decomposed because of the quadratic terms and variables x(k + 1),s(k + 1) and
p(k + 1)in them. They play a role of interconnections in time domain (Lin, 1882}, The
unkewn sampiing interval At also prevents the full decomposition. I its value is Kknown by
selecting it to be a coordinating variable, the full decomposition can be obtained. This
fype of functional can be fully decomposed if the considered variables are selected also
as a part of the coerdinatihg vector. To overcome these difficulties it is proposed to

consider

Siuk)y=vk+),v=x,5pk=0,K
ANt=At

(6.29)

Where j is the index of the coordinating procedure, Then the values of the coordinating
variables are set from the second level of the two level calculating structure:

(k)= A’ (k),v = x,5, p,k = 0,K, At = A’ (6.30)

Sky=8' (), v=x,5pk=0,K 6.31)

where | is the index of the cocordinating process iterations. When the values of the
coordinating variables from equations {6.30)-(6.31) are substituted into the Lagrange’s
functional, its full decomposition according to the discrete time moments K is oblained.
The functional is decomposed into K+1 sub-functionals Li(k) and each of them
determines the optimal control and state at the given moment k. The above algorithm is
implemented in Matlab software environment in two ways:

= Sequentially in one computer
= Parallel, using the cluster of computers

The decomposition in time domain is based on a two level calcufation structure, given in

Figure 6.1
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6.3.3

Coordinator ({0, as8.Gnv = x,5,p,7, 0

3

nik) At Hx-1 1iEd

TS S iR +fix -3

sl A (x-31) plF—1)

*(ky D{F—{1}
y p(Rd k4
Sub-problem Sub-probiem Sub-proslem Sub-problem
k=0 k=k k=K-1 k=K

Figure 6.1 Two Level computing structure for minirmum startup time

First level sub-problems for continuos fementation process

The sclutions of the first level sub-problems represent solution of the set of equations
(6.8) — (6.12) and (6.28) in which the coordinating variables are substituted. These
equations are solved for every separate moment of time in a parallel way. The structure
of the equations (6.8) — (6.12) and (6.28) does not allow o use analytical solution.
Gradient method is used in the form:

vy =vi () —age,” (B).v=x5pk=0,Kv="T,D,x5,pk=0K-1 (6.32)

where ¢, > 0are the'sieps of the gradient procedures, e, (k)are the gradients according

to the squations (8.8) — (6.12) and (6.23) and /j is the iteration index of the procedures.
The first level sub-problems are determined under the set from the second level
coordinating variables according to the necessary conditions for optimality of the sub-
functionals La(k). The equations (6.8) — (6.12) and {6.23) cah be simplified further by
using necessary conditions for optimality according to the conjugate variables presented
by using {6.13)—(8.18) in the form:

For the biomass
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p *
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(6.33)

(6.34)

k=0,K -1

(6.35)



For the temperalure

oL

o 0T
oK,
o | A [1_;;(@}" B _ {1_;:(!:)}" T I
or | pr] K+s®) L pr ] K, +s0]

10— e, )]

a.umax Y _ aItXS‘ n
ar = e o [ p® ] xthst) |
Yiss p* | K, +s(k)

oK,

A, [ p [T |
3% ].— ;1- k _ k j k +
" { P*} (K, +s(0)] [ (k)= ps (ke ( )]

+[Af Oﬂ;ax YPX +ﬂmax aYPX I:l_ p(k):| x(k)s(k) _

c or p* | K, +s(k)
oK 8.36
—Atu T {z—pm O [, (0 -, ®)e, ) )bk =0.K -1 o
Huee L py P * [Ks +S(k)]2 ‘p ﬂp Ap ]

For the dilution rate
—[AOI A (B - e, ()] + [Ae(s; — sG] |47 () - e, (0] - [Atp (T
4, (k)= g, (B)e, ! ()} R =0.K 1 (6.37)

These equations can be simplified further for the purpose of calculations. Some
expressions in them are repeated, that is why the common notations are used o

represent them:
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| st
Artumax _I p* | KS +S(k) - gﬂx(k) {638)
e -1 xkste)
Arpm_l | pnm__KS+s(k)_ , (5) (6.39)
At 1—p(k)]n XK _ ok 6.40
ﬂw[ 2* | K +s0] (k) (6.40)
p ] xk)sth) _
Ar[l p*} Ks+s(k)fq9l(k) (6.41)
—Atu z—p(k)}” MBS k) k=0.K 1 6.42
ﬂm\{ 2* | K, +s(0] 9, (k) : (6.42)

Using notations from {6.38) - (6.42) equations from (8.33)-(6.37) can be written in the

form:

For the biomass

oL et =i+o.” (0)-amk, -ap®]L 0 - 1, (0re, ./ )]+
(k)

{@“‘“‘“I: - A””}[ﬂﬁ(k) - (e, )+ ©.43)

0. e, 0= 1, (Bre, ) () k=0, K1

For the subsirate

oL i P ¥ a F _ i
= 0= ©A () - . (Be,,” (0)|+
+ [1 - @; *® _ AtDY }[Aj (k) —u (ke,,’ (k)]+ (6.44)
iy

FE 0 (DA, () -, (B, (k= 0,K -1

For the product
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oL Ji gy Jiny J

o= ® =l O 0]+

+[M}[fts’(k) — e, B+ (6.45)
Vs

g, 0 -a02) ) - 4, e, )}k =01
For the temperature

oL
oT (k)

[ M (k) 'u‘“a" +@, (k) }[ﬁ (k) - #x(k)e,xf(k)]v

=er (k)=

O}al;ﬂx ‘Y:YS Hlu max EA};’TYS
HEa®] +
3 }7 -
meKh%@#ﬁ%ﬂM+%® B+ g (6.45)
Yoo oT ar

an }[ﬂbp B - a1, (Be, ) (O k=0K -1

+ Vo0,

For the dilution rate

%o epii = —[Ax (A (k) - e, ()] + [At(s; — s(K))] — [Atp(R)] +

ab

|10 -, (B, Bk =0.K -1 (6.47)
For sampling interval

K + e bt[[@3(K = D—kgx(K — 1) = DK = Dx(K = D]]* + [pa(K — =D —kgx(K — 1) -

3(K-1)

DK — Dx(K — 1)][A (K) + g [x(K - 1) — x]] + +u At [‘O +mx{K-1) -

D(K — 1)[s® — s(K —~ 1)]]2 - [%1—% +mx(K — 1) — DK — D[s® — s(K — D]} [1,(K) +
usls(K = 1) = 51] + +upAt[[@3 (K — D¥px — DK — Dp(K — DI] + [93(K — D¥px —

D(K — ~1)p(K — 11 [2,(K) + tp [p(K — 1) = P]] = eae(K) = 0 (6.48)
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6.3.4.

The calculation with the gradient procedure will continue until the necessary conditions
for optimality towards siate and control variables are fulfilled. This means that the values

of the gradients are approximately equal to zero:

le, @)

<g,,6,>0v=xs5p DT k=0,K-1 - (6.45)

The obiained values for the sampling interval and for the iralsclories of stals and contrg!

are projected over ithe constrainis domain {£.48) respectively to account for the

constraints

(Vi I V7 (B) <V

vk, if v, vk <y
v ky=3sv . if v (k) >y, b (6.50)
k=0,_K forv=x,s,p,k=m

The coordinating sub-problem for continuous fermentation process

The coordinating variables are obtained from the necessary conditions for optimality of
the augmented Lagrange funclional. For the conjugate variables these are equations
from {6.13)-(6.18). The necessary conditions for optimality accerding to the new

introduced interconnections in time domain are:

aL

3.0 = A -pu -6+ f.()]=-A (k) —pe, k)=e, (k)=0 6.51)
"?L =_is(k)_ﬁ*[_§S(k)+fs(k)]:—ﬂ‘s(k)_luse/_g(k)=eo'5(k)=0~ (552)
08, (k)
aL |
== - — = - a2 k =g = ]
35, (k) 2,00 1,128,000+ £,00]= -2, 00— pe,, (0 = e, (B) =0, (6.53)

6,(k) is also in the expression for 4,[—6,(k) + f,(k)] where
—0,(k) + fo (k) = e (k) k=0,K -1

The necessary conditions for optimality (6.13), (6.15) and (6.17) and (6.51)-(6.53) ¢an be
combined in a gradient procedure. Equations (6.51)-(6.53) give the values of the

gradients for the conjugate variables muliiplied by the penalty co-efficient.

Ho V=X5,p
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The equations (6.51)-(6.53) can be represented in the following way:

oL oL
RSN (6.54)
Gradient procedure can be built for both type of coordinating variables.
For conjugate variables:
AR =2 )+ e, el i (B), (6.55)
where
el (B)==8"(k)+ s (-k),v =x,5,pk=0,K—1Ar = Ar/ (6.56)
For the interconnection in time domain
8, (k))=5, (k)-as,e;, (k). k= 0,K-1 (6.57)

where e, (k) is calculated according to equations(6.51)-(6.53).a, and a;, are the steps

of the procedures for caloculation of the conjugate variables and the interconnection in
time, respectively. As the calculations are based on gradient iterative procedure, they will
stop when the gradient is going o zero, or practically achieving some conditions for

optimality, given by

lle”* 3 (k) — /3 (0)|| < &1, 839 > 0k = DK, v = x,5,p

e/t sp (k) — e/ 5y (|| < €50 85y > 0,k =0 K ~Lv =x,57 (8.58)

where €5, &, are a very small positive numbers. For every step of the gradient

procedure for the coordinating process the full iteration cycle of the sub problems of the
first level is done. The calcuiations of the coordinating variables are done with the values
-of state and contro! variables of the first level sub problems and the calculations of the
first level sub problems are done with the values of the calculated on the previous
iteration coordinating variables. The iterative process of coordination and the optimal
solution of the whole problem for optimal control is obtained when the optimal solution of
the coordinating sub problem is reached, this means conditions {6.58) are fulfilled and if

this condition is not reached the error is computer.
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6.3.5

e+l — {”ejﬂimnz + ”ej+1§v”2}1/2,v =X,5,p {6.59)
The new penaity coefficient is calculated from the conditions.

if j =1ore, ™ <e,f then p,/*t = 1 (5.60)
ifj>1ande, ! 2 e, then u, /"t = au,/, a =[0110.0,v = x,5,p (.61

The coordinating sub-probiem for At is given by the analytical solution of the necessary

conditions for optimality of equation (6.28) as follows

i At[@s (K — 1) —kzx(K — 1) — D(K — D)x(K — 1)]? + p At [‘p—sgs_—l)—l- +mx(K—-1) —
2

D(K — 1)[s° - s(K ~ 1)]] +

Hipht] 93 (K = 1)¥py = D(K—1)pK ~ D]’ = —K — [93(K = D=kx(K ~ 1) -

—D(K — D)x(K — DI[A(K) + [x(K — 1) — 2] + {%—1—) +me(K — 1) — ~D(K — 1)[s° —

s(K=)1] [250 + s[5 (K = 1) = 51] = [p3 (K = D¥oy = ~D(K = DpK — 1] [1,(6) +
+p[p (K = 1) - 7] (6.62)

Therefore the analytical solution is:

AtTHl= {—K —[pa(K — D—kgx(K — 1) — D(K — Dx(K — DI[A(K) + p [x(K — 1) — x]] +
+ [% +mx(K —1) — D(K - 1)[s; — s(K — 1)]] [ (K) + sk — 1) — 5]] -

~[p3(K — 1)¥px = DK — D)p(K — 1] [2,(K) + prplp (K — 1) - ﬁ]]} / {uxirpg(fc -

D—kgx(K ~ 1) = DK — Dx(K - D]? + 1 [%:—” +mx(K —1) — D(K — 1)[s° — s(K —

2
1)1] + @3 (K = D¥py — DK - 1)p(K — 1)]2} (6.83)

Sufficient conditions for optimality for continuous fermentation process

In order to check if the sclution found gives minimum value of the criterion, the sscond

derivative of the Lagrangian is derived using equation (6.28). The second derivative is:
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6.4

2 —
228 = o3 (K — D—kax(K — 1) = DK — Dx(K — DI + g {9{,—;—9 +mx(K —1) —
2
=D(K = D5 = s = ]| +#ylps (K = D¥py = DK — Dp(K = DI (6.64)
It can be seen that 212 >0 if 1, > 0,41, > 0,4, > 0. This is always satisfied as the

penally coefficients are selected as positive. The conclusion is that the solution of the
problem determines the minimum time of the problem for minimum start-up time of the

process
Algorithm of the method for continuous fermentation process
{1.) At second level of the computing siructure the values of

»  The numbers of steps K

= The number of iterations for the gradients procedures, M1, M2

= The values of the coordinating variables A/ (k)k = 0,K, 67 (k),
k=0,K—-1, At/

»  Penally coefficient ,V=Xx5,p

. ErTOrs g, €3,V =X,5p

« Final values of state variables, 7 = X, 5, p

= initial values of x,5,p, T, D aresetupi= 1

The coordinating variables are sent to the first level

{2.) At first level the initial trajectories of the control D(k), T(k),k =0,K — 1 are set and

the initial trajectories of the states x(k), s(k).p(k),k = 0,K are calculated.

{3.) The gradients e (), v=x,5pT.D,k=0,K—1 are calculated and the new
state and control trajectories are obtained from equations (6.43)-(6.48). They are

projected {o the constraint domain {6.50)

{4). The state and control error conditions are checked. If they are satisfied the obtained
state and control trajectories are transferred to the second level. If the conditions are not

satisfied, items 3, 4 arerepeated, i=i+1

{5.) The new values of the coordinating variables are calculated from equation (6.55)-
(6.57), j =j +1 and conditions (6.58) are checked. If they are satisfied the optimal
solution of the coordinating sub-problem and ¢f the global problem are obtained. If these
are not satisfied, new values of the penalty coefficienis are calculated according to
{6.80)-(6.61) and items 3, 4, 5 are repsated and so on.
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Set initial values
ﬂ/;'l,ﬂ'fg ,a’,,,a’lv,ag,. ,gg_yagg,;?gv
A% k), pt, . x(0), 5(0), p(0)

D(k).T" (),
up
k=0,K-1

Set

Cealculation of initial state irajectories

Vo(k+1)9k :O,K,V=X,S,P

j=1

-

Aky=2"(k),8 (k)= 8°(k), At! = A®
vy =vi(k),v=xs5,pDT

N
i=1
*

Calculation of derivatives, Equations {6.8)-
{6.12} and (6.28)

h 4

Calcuiation of kinetic coefficients, Equations
(2.72-{2.75)

Calculation of expressions:

‘P;-j’j,¢1,¢g, k =O,K—1

h 4

Calculation e’ (k) from equations (6.43)-(6.48)

A 4

Calculation ”e”y (k)%' from equations (6.50)
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Yes v =v (k)
v=uxs.pDT

No vj,i (k) = Vj',z' (k)

v (ky=v (k)Y +al’e, (k)
v=x,5,p,DT
v v

Projection on constraint domain Equation (6.50)

v

Calculation ¢of Equations (6.13)-(5.18)

e i (k) A, = A2 A,

|
h 4

Calculation of “e M (k);'l ggualion {6.59)

-

Ne j=j+1
_ | vky=v¥ (k) | Mo
Calcutation A (k), 877 (k) v=xs,pD,T
Equation (6.58). (6.57) l
) YES
STOP

Figure 6.2: Flow chart of the algorithm for calculation of continuous fermentation process
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Description and calculation results from the sequential program of the
algorithm of the method in Matlab for continuos fermentation process

The algcrithm presented in secticn 6.4 is implemented in Matlab in a sequential
way{Appendix C). The fable below represents the relationship between mathematical

notations and program notaticns of the Matlab program.

Table 6.1: Correspondence between mathematical and programs notations for

continuous fermentation process

Name Notation in the text Notation in Matiab
Siate varisble
Biomass X
Substrate s
Product p
Control variable
Temperature T T
Ditution D - D
Steps of the ay ax
gradient
procedures _ e as
for stals variabies
tp ap
Wiy alx
7 als
Tip aip
A5 adx
Ass ads
Tsp adp
Conjugale A ix
variable *
A is
Ys
Ip
;"p
interconnections S dx
in time demain *
S ds
§
dp
§p
Coefiicients &t, a2, A3 al, a2, a3
b4, bz, bs b1, b2, b3
C1, Cz, Ca ct,¢2,c3
dy, dz, da d1,d2,d3
Ka Kd
Ks Ks
m m
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n n
Yus Yxs
Yox Ypx
8 si
P pl
AF dt
I mmax
max
Initial  values of | x(0) x0
state variables
s(0) s0
p(Q) p0
Penalty U - mx
cosflicients *
5
H,y me
KMin and max of | Xmax XIMax
state variables Xmin Xmin
Smax smax
Smin SN
Pmax pmax
Prnin pmin
Min and max of | Tma Tmax
controf variables
Tm'm Tm!n
Dmax Bmax
Dmin Dmin

Cerivatives of the
maodel parameters
-

o — g, +2a,T(k)
ol B

dmmaxdT{k} = a2+2 a3 " T(k};

GI;S = b, +2b,T(k)

dKsdT(K)=b2+ 203" T(k}:

oY,

2 =c, +2c.T(k
= =, + 2,1 (h)

dYxsdT(k)=c2+2*c3* T k)

-
¢
-

oY,
2 —d, +2d.T()
er - ;

dYpxdT(k)=d2+2"d3 T (k};

Error

e, (k) = ox(k) - x(k +1)

eix{ky = dx(k}-x{k+1)

e, (k)=0s(k)-s(k+1)

els(k) = ds(ki-s{k+1)
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6.6

e;, (k) = 8p(k) — p(k +1) elp(k) = dp{k)-p{k+1)

es k) ==2,(6)- pre, (k) sdx(io=-be -micelx(x)
e (k) =—A4,(6) - e, (k) eds(k)=ts-ms*els()
e5 () ==4,(K) = i e, , (k) <o0=p-mp elp(l)
Formuizs - —n fi(y=dt*mmax{k)*{{1-pk/pl}*0.52)
- plk
Abfh 1- ﬁ;‘)— =@y (k)
. P
- —n BR=E S (K(KS (k) + s()
Bt 1- 2B SO g
. p* i K, +s(k)
= ~a fs(k)=f(k)*Ks(k) * x{(K/((Ks{x} +
atp [1- PR _2W0s®)__ o Fsior o
max_ p* | [KS'FS(k)]z 5

T fo(=drmmax(k)y (1~ plxiphA-
A m{l_P(k)} it xls(k) () | Hster (st + s

p*] P K sk
” Q=R XK} S () (Ks(kI+ s(k;
J o0 xbstk) ’ =Ky (k) s(HKs(k)+ sik))
E— =@, (k)
p* i K +s(k)
T Byt 200)=1 (KAKs(R) + s()1)2
Ai AX ]'- = "(k
Ho [ p*} K, +stof "
_ pE-DT K-Ds D] _ _ 13(K)=rmmax*{1-
Frmax [1 > ] [ Ko +s(K—1) ]‘ es(K—1) p(K)!p1)"O.;Z’(X(K)’S(K))!(Ks+

s(K))

Description of the Matlab sequential program for optimal control of continuos
fermentation process

The complex relationship between physiochemical and biological variables and sudden
unexplained changes in the process are reflected in the values of the equation Kinetic
parameters equations (2.72)-(2.75) which are the same as from section 4.6 of chapter
four. Table 6.2 defines process kinetic values that are calculated from Matlab by using
polyfit function from a certain given values of the mass-balance model equations kinetic

parameters.
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6.6.1

Table 6.2: ?ﬁodei parameter values for coatmuous pmcess

Symbol - Name = = S - . |Value - . | Unit
a1 Model coefﬁczeﬂi 0.0004
a2 Model| co-efficient ) 2.0001
83 Model co-efficient G.0002
b1 Model co-efficient 0.2
b2 Model co-efficient 0.03
b3 Model co-efficient 0.01
cl Model co-efficient 2
c2 Modse! co-fficient 0.3
c3 Model co-efiicient 3.021%
d1 Model co-efficient 0.604
a2 Model co-sfficient 0.008
d3 Mode! co-gfficient 0.001
Kd Death constant .00008
ol inhibition factor p*. 50
n powsr coefficient 0.52
m Maintenance co-efficient. 0.0011
X Biomass concentration gi
S Substrate concentration g/l
i Product concentration o/l
Urax | Maximum growth rate 0.5
di Sampling period 0.618867
Y., Sicchiometlry coefficient for bicmass 0.421
" growth
¥ Monod's constant 0.5
tochiomstry  coefficient  for biomass
Yis arowth 0.172

Program continuos_seque.m is developed to implement the decomposition method in a
sequential way. The program calculates the optimal values of the state and control
variables according aigorithm 8.4. The whole program is in appendix C. The function
modelcontinuos_func? is used to calculate the trajectories of the derivatives of the state
space vector, according to the Equations (2.93 -2.95). Then the program is called by the
solver ode15s for integration of the model equations. The input variables are { the time at
moment t from the considered time interval, y initial, or value of the state vector in the
moment f. The output variables are the values of the state space vecter derivatives ydot.
The program is given in appendix C '

Results from sequential calculation of continuous fermentation process

The program for sequential calculation is used to caiculate the optimal trajectories of the
control and state variables of the batch fermentation pracess. The optimal trajectories are
presented in figure 6.3 -8.10.The calculated minimum length of the sampling period is At

= 0.01967, the number of steps in the optimization horizon is K = 256 and the minimum

time is equal to APK = 5.0355 for reaching steady state behavior.
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6.7

6.8

Discussion of the results for continuous fermentation process

The biomass concentration generally continued fo rise after feed was started, as at
that stage growth rate exceeded diiution rate, but within few hours after increases in
the feed rate, it invariably began fo fall. Subsiarde levels generally rose siowly
throughout the feed period as desired although it is fairly sensitive 1o feed rate.
Product concentration on the other hand rises sharply for several hours after the feed
was swilched on and then reached a plateau, rising slowly after the feed was

exhausted.
Conclusion

This chapler describes the formulation of the problem for optimal control of a
continuous fermentation process. An augmented Lagrangs functional is used and a
decomposition method is- developed for solving discrele time formutation of the
problem based on varational calculus and decomposition in time domain. The
sequential aigorithm of the decomposition method is described and implemented in
Matlab. The paraliel implementation of the decomposition methed is given in chapter
eight. Description of the Matlab cluster of computers as usad for the calculation is

given in chapler seven.
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CHAPTER SEVEN
PARALLEL COMPUTING TOOLBOX AND MATLAB DISTRIBUTED
COMPUTING SERVER ON A CLUSTER

introduction

Computing costs have went done and computers have become larger and faster, the
dynamic modelling and control of chemica! progression at greater levels of detail is an
area of growing interest. As opposed to commonly used steady-state process models, a
dynamic model provides information about process. fransient performance during startup
and process upsets, and the coupling beitween unit operations. Inherently transient
behaviour such as reaction kinetics can be included in the model. These advantages are
mainly obvious for baich processes that do not show true steady-state behavicur in the
first place. However, dynamic modeilling and control involve greater computational effort
than is needed {0 solve for a single steady-state operating condition. One technique
useful in reducing computational time is to divide the problem into sub-problems and
solve the paris in paralle! on multiple computer processors. Parallel computing has been
used to advantage in areas of science and engineering and has increasingly been useful

to industrial engineering problems.

Section 7.1, the introduction is elaborating, why there is a need in applying parallel
computing in chemical processes. Section 7.2 explains the concept of paraliel computing.
Section 7.3 gives a brief history of parallel Matlab environment. Section 7.4 gives some
reasons why there should be parallel Matlab. Section 7.5 gives a brief survey in parallel
Matlab. Saction 7.6 describes Matlab Parallel Computing Toclbox and Matiab Distributed
Computing Server and its concepts and section 7.7 describes program development

based on algorithms developed in chapler 4,5.6,.
Parallel computing

Parallel computing is a form of computating that sclves a problem using multiple
computer resources at the same time. Hardware that supports parallel computing
consists of multicore computer(Cuiler et al, 1898), symmetric muitiprocessor, distributed
computer such as cluster workstations{ Wilkinson and Alien, 2005) and specialized
parallel processors such as FPGA and GPU(Feng and Manocha, 2007) and application
specific integrated circuit (AISC)( Robert et al, 1992). With the deployement cf the

hardware that supporis paraliel computing, use of multicore computer. paralie
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programming architecture becomes more important insolving complexy computing
probiems.

There are, however many reasons why parailel is the wave of the future in computing.
The main obstacle for rapid introduction of parallel computing are the investments in
scftwares for sequential machines that have heen made throughout the werld, and
difficulty in programming rﬁos‘t parailel computers. The mechanism that is generally
adopted is to increase the speed, completing larger tasks quicker and more efficiently.

Like in all other cases speed is always the concern in computational world.
Amdahl’s law

The performance of an algorithm on a parallel computing platform depends on
paralielizing the algorithm to achieve better performance (Decegama, 1989). The small
parf of the program which cannot be paralislized limiis the speedup available for

paralielization. It can be stated mathematically
S=1/(1-r)) (7.1

where S is the speedup and P is the fraction that can be paraliglized

7.2.2 Gustafson’s law

7.3

7.3.1

It can alsc be represented in 2 mathematical form
S(P)= P-— a(P-1) (7.2}

where S is equal to the speedup, P represents the number of processors and @

represents non-parallelizable part of the process(Decegama, 1939).

Parallel Computer Memory Architecture

There are different types of parallel computer memory architecture and are as follows
Shared memory

Shared memory parallel computers vary widely, but with carefully scheduling and
problem subdivision it is possible for parallel computer to carry computation much more
rapidly than single processcr {Van Loan, 2060). In a shared memoery environment 2ach
node is able to read and write in a shared memory. Each processor has its own memory
and executes its own node program. The act of writing a program like this, is the act of
writing a program for each node. The node programs typically reference local variables

housed in the processors own memory and global variables that are situated in sharad
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memory. The idea is for all node programs execuie af the same time in a cocrdinated

way that resuits in the required calculation. Figure 7.1 illustrates the situation.

=T
CPU e MEMORY K cpu

1i

CPU

Figure 7.1: Shared memory mulliprocessor

Distributed memory

In computer language, disiributed memory refers to a muitiple-processor computer
system in which each computer has its own, private program memory{see Figure7.2}).
This requires tasks to be distributed o each CPU for processing. After that, data must be
reassembled. This requires a communication network or switch. There is no gichal
address space across all processors. Message passing interface (MP1) is associated with

this memory architecture (Dongarra et. al, 1892).

MEMORY | CPU MERORY CRY

SWMTCH

[

Figure 7.2: Bistributed memory multi-processor

Distributed shared memory

This architectures employs both distributed and shared memory, the shared memory is
usually cache cohsrent symmetric multiprocessing (SMP) machine. Processors on a
given SMP can address that cther machine as global.  Networking is required to move
data from one SMP to other. This type of memory is used in multi-core computers,

Figure7.3.
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Figure 7.3: Distributed shared-memory
History of Parallel MATLAB

Cleve Moler, the orig%na? Matlab author and the cofounder of Mathworks worked on a
version of Matlab for both an Intel hypercube and Ardent Titan in the late 1980s( Moler,
1885). Mcler's 1995 article :Why there 1sn't a paraliel Matlab"{ Moler, 1995) described
the three major obstacles in developing a paralle! Matlab language: memory model,
granularity of computations, and business situation. The variance between Matlab's
global memory model and the distributed model of most paraliel systems meant that the
large dala matrices had .‘{c be sent back and forth between the host and the parallel
computer. Also at the time Matlab spent only a fraction of its time in parallelizable
routines compared to parser and graphics routines which made a parallelization effort not
very attractive. The last obstacie was simply a dose of reality for an organization with
finite resources—there were simply not enough Matiab users that wanted to use Matiab

on parallel computers, and the focus instead was on improving the uniprocessor Matlab.

A number of factors have made the parzllel Matlab development a very important one
inside Mathworks: Matlab has established into a most excellent technical computing
environment supporting large scale projects, easy access to multiprocessor machines,
and a need for a full fledged solution from the user community. Three approaches have
been used to create a system for paraliel computing with Matlab. The first approach aims
at transiating Matlab or similar programs into a lower-leve! language such as C or
Fortran, and uses annoiations and other mechanisms 1o generate parsllel code from a
compiler. Examples of such projects inciude Conlab{ Jacobson et al, 1992), and
falcon{DeRose et al, 1995). Translating regular Matiab code to C or Fortran is a difficuit
problem. In fact, the Matlab Compiler software from the Mathworks switched from
producing C code to producing wrappers arcund Matlab code and libraries to be able to

support all the language features. Ancther technique is to make use of Matlab as a
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“browser” for parallel computations on a parallel computer while Matlab itself remains
unchanged and the Maﬂab environment does not run natively on the parallel computer.
This appreach does not really classify as a “parallel Matlab” solution any more than a
Web browser used 10 access a portal for launching parallel applications is itself a paralle!

application.

Last technique is to use Matlab via libraries. Recently, the MatlabMP! and pMatiab
projects at MIT Lincein Laboratory and the Multi Matiab project at Comell University
{with which The Math-works was also involved) are among the more successful and
widely used libraries for parallel computing with Matlab. Gther projects inciude ParaM
and GAMMA projects{ Panuganti et al, 2006), Parallel Toolbox for Matlab( Hollingsworth
et al, 1988) (which uses PVM for message passing), and various MP! toclbox
implementations for Matlab, including the most recent heMPI (Biue Collar MP1) from Ohio
Supercomputer center. The MathWorks introduced Parallel Computing Toolbox software
and Matlab Distributed Computing Server in November 2004, (originally named
Distributed Computing Toolbox™ and Matlab Distributed Computing Engine™,
respectively). These fall into the last category of solutions. When they started to expand
the capabilities of Matlab into parallel computing. they decided to target embarrassingly
parallel problems, given that their initial survey showed a large number of the users
wanted to simplify the process of running Monte Carlo or parameter sweep simulations

on their groups computers.

Implicit and explicit muitithreading of computations are other methods to paralielize
Matlab computations on a single multicore or multiprocessor machine and will be
discussed later in the chapter.

Why there should be parallel Matlab

Matlab has been a serial program. Cleve Moler(1995) of Mathworks stated not to develop
parallel Matlab at that time. it has been fifteen years since the article was written, and
many changes in the computing world have been seen. These changes invalidated
disagreements that there should not be a parailel Matiab.

Memory model

Modern scientific and engineering problems develop in complexity, the computation time

and memory requirements. The increment of processor speed and the amount of

memory that can be mounted in one computer could not catch up with the rapidity of

computation needs. Current technical problems basically do not fit into the memory of a
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one machine, making parallel computation to be essential. Combining with development
in interconnect technologies, parallel computation has become a most useful tool for

solving computational problems.
Granularity

Over the past fifteen years simple parallel Matlab jobs consists of only 2 m-files, have
shown that multiple Matlab instances running on a parallel computer could be used to
solve embarrassingly parallel problems, without any change to Matlab itseif. Raise in
computational problem size and processor speed have reduced the part of time spent in

non-computation associated routines
Business situation

The past few years have seén the introduction of Beowulf clusters. Beowulf clusters are
paraliel machines that are prepared from commodily off-the-shelf (COTS) hardware.
They are compuiers that are connecied together with Ethernet switch or other common,
non-proprietary interconnect Beowulf clusters are mostly used by reasearchers over
supercomputers because of their user-friendliness 1o setup and maintain and cheap
enough However, often not everyone in science can use parallel computing to solve
problems. The leading way of parallel programming, MP! is too low-leve! and too error
prone. Matlab is well known for its user-friendliness. There is a enormous potential

market for a Matlab that could be used to program paraliel computers.

7.6 Parallel Matlab survey

(Raikiran &t al, 2007) discussed the influence of paraliel computing over the past years
ncted that irrespective of its complexity still remains the biggest task. This makes paralie!
computing to be recognized as the most challenging in the effective use of high-
performance computing as highlighted by the DARPA High Productivity Computing
Systems (HPCS) program. They mentioned the increase in high-ievel languages such as
Matlab and Python that can provide enormous productivity advantages. Another key
features for the Matlab success has been the availabiity of a different toolboxes (library

components) for various fields.

{Coy and Edelman, 2003) did a survey and found through extensive web searching 27

parallel Matlab projects. These projects vary in their scope.

» Some are individual projects that offer basic embarrassingly paraliel capabilities
{o Matlab.
=  Some are for learning purposes or government lab investigate projects.
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* Some are industrial projects that facilitate the user of Matiab in product
expansion.

Some run Matlab files into parallel code

Some offer a parallel back-end to Matlab, using Matlab as a graphical front-end.
Some cothers organize multiple Matlab processes to execute in parallel.

While some are entering their second or third revision.

The expansion in IT promoting parallelization of many forms influence the Mathworks fo
alter s negative siandpoint' and to accelerate the development of parallel Matlab of its
own( Moler, 2007). It appeared in 2004 in form of two products: Distributed Computing
Toolhox (DCT) and Matlab Distributed Computing Engine. DCT is a toolbox that adds
new constructs to the Matlabs C-like scripting programming language to provide paraliel
functionality. MDCE, a paraliel runtime environment, provides the backend (behind-the-
scenes) support for the DCT and is quite fransparent to users. Version 1 of DCT/MDCE
alltowed to develop just coarse-grained parallel algorithms, which give rise to independent
tasks without mutual interaction. This in Matlab terms “distributed” computing modeil
follows in fact the manager-worker {ask-scheduling scheme and is suitable for
embarrassingly parallel problems only. Since iis initial release the Mathworks are
strongly pushing forward the development of DCT/MDCE, resulting in a new version with
substantial improvements released every year. In 2005 version 2 delivered among cther
important features the support for explicit communication among interdependent tasks,
taking advantage of the industry-standard Message Passing Interface (MP1). This makes
DCT/MBCE to a true message passing system and aliows to develop parallel
applications based on the general message passing model without restrictions. Version 3
of 2006 presented additional interesting parallel constructs, such as distributed arrays or
the parfor loop, where one can recognize strong motivation from the so called data
parallel approach typical for e.g. High Performance Foriran. From the user's point of
observation the good news is, that since version 3.1 (2007) one can use up io fowr
processorsicores of a symmetric multiprocessor without purchasing the costly DCE

license.

The Mathworks announced new versions of its Matlab paraliel computing products.
Paratlel Computing Toolbox (FCT) enables users to run applications in up to eight cores,
empowering Matlab users to take more advantage of multi-core desktep computers
without major progrémmmg efforts. Matlab Distributed Computing Server (MDCS) now
supports Microsoft HPC Server 2008, providing users with access 1o the most recent
enhancements in this cluster environment software. The Mathworks establish other
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products in the Matlab and Simulink product families that help users to make use of
advanced hardware systems.
Matlab Parallel Computing Toolbox and Matlab Distributed Computing Server

Parallel Computing Toolbox (PCT) solve computationally and data intensive problem
using Matlab and Simulink on mutticore and multiprocessor computers. It consists of two
separate products that make up the Mathworks Paralle! computing environment: the
Parallel Computing Toolbox (PCT) and the Matlab Distributed Computing Server
(MDCS). PCT is a set of commands and functions that are executed from the Matlab
command window, or from an m-file, just like cther toolboxes. The computer on which
PCT is running is defined here as the PCT client. MDCS is a service that runs in the
background on computers running either worker or job manager processes. Figure 7.4
shows the basic Matlab distributed computing environment.{ Paraliel Computing toolbox
users guide 4.2). The PCT client defines and submiis jobs fo the job manager. The job
manager process, which is controlled by MDCS, “coordinates the execution of jobs and
the avaluation of their tasks. The job manager ¢an run on any computer that has MDCS
installed. A worker is a separate process, also controlled by MDCS, which evaluates a
task assigned to it by the job manager, and returns the resuits te the job manager. A
worker process is usually installed on ifs own computer, so that mu!ﬁple workers can
operate simuitaneously to complete a job faster. However, for initial development and
debugging of a waveform, PCT, the job manager, and worker processes can ail be

installed on the same computer.
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Figure 7.4: Typical parailel computing cluster.(adapted from
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computing/?s_cid=HP_FP_ML _paralleicompthx)

To Develep paralle! applications with paraliel computing toolbox is possible in two ways.
The toolbox permits application prototyping on the main computer with eight iocal nodes
depending on the number of CPU’'s and with Matlab Distributed Computing server
applications can be scaled to multiple computers on a cluster. In order to understand
parallel processing some basic terms that needed to be known are discussed (Tokhi et al
2003).

7.7.1 Parallel Computing Toolbox Terminology

There are maior terms that are continuously used in Parailel Computing Toolbox. The

following table summarizers few of them.
. 7.7.2 Programming parailel applications in Matlab

in paraile! computing choosing a type of parallelism can be very complicated; this is why
it is important to consider this carefully.

MATLAB supports three kinds of paralielism: multithreaded, distributed computing, and
explicit parallelism { Mcler, 2007).
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Table 7.1: Parallel Computing Terms

Client The Matlab session that defines a job using the Distributed Computing Toolbox,
Job The entire large-scale process 1o perform in Matlab composed of a sst of tasks.
Job-manager The part of the Matlab Distributed Computing Server that coordinates job execution,

distributing fasks 1o individual workers for evaluation. This is represented in the
client session by a iob manager obiect.

Task A task is the smallest unit of the work that neads to be dene. In othar words, it is the
independently executable smallest unit of a program that is executed by cne
processor and COnNCUmenty 2mong processors is exploited only across fask

Worker The session of Matlab in the Matlab Distributed Computing Engine that evaluates
iasks by executing the tasks’ functions. This is represented in the dlient session by
a worker ohjsct.

Processes A process performs the tasks assignad to it Usually more than one task is assigned

io & process. However, a process can consist of only one task. A program in the
paraiisl executable format is composed of a number of processes, each of which
performs a subsel of tasks in the program.

Parallel Task A task that can be executed by multiple processors safely

Serial Execution | Execution of a program seguentiaily, one siatement at a time. In the simplest
sense, this is what happens on a one processor machine. However, almost sl
paraliel tasks.will have sections of a parallel program that must be executed in
sequential way.

Parails Execution of g program by many nodes, with each task able to execute the same or

] Execution unlike statement at the same moment.

7.7.2.4 Multithreaded parallelism

in multithreaded one case of Matlab automatically creates muitiple simuitaneous
instruction streams. Multiple cores, sharing the memory of a single machine execute

these streams.

7.7.2.2 Distributed computing

in distributed, multiple occurrence of Matlab run multiple in-dependent computations on

different computers, each with its own operating system.

7.7.2.3 Explicit parallefism

7.7.3

In explicit, some occasion of Matiab run on numerous processors, often with separate
memories and simuitaneously execute a single Matlab command on M-function including
paraliel for foops and distributed arrays.

Working in an interactive parallel environment

Parallel computing Toolbox extends the Matlab interactive environment, letting the user
to use familiar Matlab environment for prototyping and developing task and data parallel
applications. The matlabpool statement assigns a set of dedicated computational
resources. it connects a Matlab session to a pool of Matlab workers that can run either
focally on desktop or on a computer cluster. It sets up an interactive paralle! execution
envirenment which can execute a parallel Matlab code from the Matlab command prompt
and retrieve results immediately as computations ends. In this environment paratiel

programming constructs such as parfor and spmd automatically detect the presence of
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workers and distribute computations and data between the Matlab session and the

workers.

The Parallel Command Window {pmods) is an extension of the Matlab command window
that sets up a data-paraliel execution environment which can use distributed arrays,
associated parallel functions, and message-passing functions. Commands issued at the
parallel prompt are executed simultaneously on all pariicipating workers and resulis are
accessible immediately, i enables to befler track application behavier across
multiprocessor system at each step. Commands can be collected into a Matlab function

and submitied for offline execution.
Working in Batch Environments

Parailel Computing Toolbox can use batch environments for ofiline execution, enabling o
free Matlab client session for other activities while exécuténg large Matlab and Simulink
apglications. MATLAB client session can be shut down while application executes and
retrieve results later. The batch function can execute Matiab gcripts offline. it offers a
apparatus for data transfer between Matlab client and worker workspaces, which stops
the user from explicitly managing data in muitiple workspaces. The toolbox also provides
job and task objects. These obiects gives a lower-ievel but more general mechanism fo
perform parallel Matlab applications in batch environment. The batch command and the
job and task obiects can be used to off-joad the execution of sequential Matlab programs

from a client Matlab session {o a node.
Cluster Using MATLAB Distributed Computing Server

Paraliel Computing Toolbox offers the capability to use up {o four local nodes on a
muylticore or multiprocessor computer using a one toolbox license. When used with Matlab
Distributed Computing Server, can extent application to use any number of nodes running
on a cluster of computers. Matiab Distributed Computing Server supports interactive and
batch work-flows. Matlab applications that make use Parallel Computing Toolbox
functions can be built into stand-alone executables and shared software components
using Matlab compiler. The bbraries can connect to Matiab Distributed Computing Server
and execute Matlab computations on a computer cluster. Matlab Distributed Computing
Server can be connected with many schedulers: the MathWorks job manager {provided
with the product) or any other third-parily scheduler such és Platform LSF®, Microsoft®
Windows® Compute Cluster Server, Altair PBS Pro®, and TORQUE. Using the

Configurations Manager in the toolbox can maintain named seftings such as scheduler
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type, path settings, and cluster usage policies. Switching between schedulers or clusters
normally needs changing the configuration name only. Matlab Distributed Computing
Server energetically allows the need licenses on the cluster based on the user's profile
when an application runs. As a result, administrator need to manage only a server license
on the cluster rather than separate toolbox and block set licenses on the cluster for every

cluster user.
7.7.6 Steps in running a distributed job using Parallel Computing Toolbox (PCT)

= Find a Job Manager: The network may have one or more jcb managers
available. The command used to find a job manager creates an object in the
current Matlab session to represent the job manager that will run the job.

= (Create a Job: Ajob is created to hold a collection of tasks. The job exists on the
job manager, but 2 job object in the local Matlab session represents that job.

s Create Tasks: Whils the job is in the pending state, tasks can be created to add
to the job. Each task of a job can be represented by a task object in the local
Matlab session.

=  Submits a Job to the Job Queue for Execution: When the job has all ifs tasks
defined, it is submitted o the queue in the job manager. The job manager
distributes the job's tasks to the worker sessions for evaluation. When all of the
workers are completed with the job's tasks, the job manager moves the job fo the
finished state.

* Retrieve the Job's Results: The resulting data from the evaluation of the job is
available as a property value of each task object. All the steps above can be
represented diagrammaticaliy with Figure 7.5 below

Task
lob Results
Client | —
All Results
Task
Job
Mcncger Results
Job
A
Client .
“ ATResus Task
Results

Figure 7.5: Client, job-manager and worker interaction

7.7.7 Code execution at the client and workers 4
The sequential code is executed at the client. If the code can be parallelizable,

parallelizing function are called. After the scheduler or Mathworks job-manager sends
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data fo workers. Results are coliected from the workers at the client. Sequential code

continues executing at client machine. This can be represented on Figure 7.6 below.

§ SELEHtET COTE SRESUted 3Tt 3
eligme i

{ Parglictizable
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i Resulrs coliected from the workers at the ciienz}
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g Sequenna{ COBE ERECUtET SRS i
Llient

Figure 7.6: Code execution {adapted from Samuel et al, 2008)
7.7.8 Design of Load balancing Algorithm

it refers to the practice of sllocating work among tasks so that all tasks are kept busy ali
the time. Load balancing is very imporiant on designing parallel programs for
performance reasons (R. Shah et al, 2007). Generally load balancing algoerithm censists
of two basic policies namely a transfer pclicy and a location policy. Location policy
determines the under lcaded processor. In other words it places corresponding nodes
toffrom which a node can sendireceive workload to improve the cluster performance.
Further, while balancing the load, types of information such number of jobs waiting in
queue, job arrival rate, CPU processing rate, at each processor may be exchanged
among the processors o improve system performance. Load can be classified as aither
static, dynamic and adaptive but the thesis uses static scheduling. The principle of load

balancing can be presented in the foilowing flowchart, Figure7.7.
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Exchange this information with buddy processor
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Figure 7.7 A: Flow chart for load balancing
Processing by each processor i (Pi) on every status exchange

Program Development
The algorithms described in chapter 4, chapter 5 and chapter 6 are applied for

organization of the calculations in two ways:
Sequential in one computer

This algerithm is used for calculation of the optimal state and control trajectories.
Execution of a program resuliss {o a prograssion of calls to functions defined in different
modules in a2 sequential way, called sequential compesition. In sequential programming
the program is run on a single computer meaning having single Central processing unit
{CPU). Program is discretized in into series of instruction. Block diagram for sequential

implementation is given on Figure?.8

Sequence of
Problem > 4 » CPU

instructions

Figure 7.8: Sequential programming block diagram

In a paraliel program that is created with the use of only sequential composition, each
CPU executes the same program, which in tum performs a series of calls to separate
program components. These program paris may communicate and coordinate, but they
cannot generate new tasks. Hence, the whole computation progresses in serial from cne
paraliel operation to the other. The sequential computation resuits are descriped in

chapterd, 5 and 8.
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7.8.2 Paralle), using the of computers

A paraliel composition identifies which program components are to be processed in
which division of the computer and how these components are to exchange data. In
standard any program expressed as a parallel composition can be changed to a
sequential composition that interleaves the execution” of the range of program
components appropriately. And hence the use of parallel composition can improve

scalability and locality. Parallel programming can be achieved on one computer with
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multi-cores, in cluster of computers connected on one network. An example of parallel

configuration of a cluster of computers is given on Figure7.9.

The algorithm for optimal condrol is pregrammed in both sequential and paraliel way. The
goal of parallelization is to obtain high performance and increased speed over the
sequential program that solves the same problem. This is toc ensure efficient load
balancing among processors, reduction in communication overhead and synchronization.
The parallel implementation and the results from the calcuiations are described in

chapter 8.

- Sequence of
Problem o —® CrU
imsfruclicns

Preblermn . i ﬁ
;

Sequence of

instructions

Figure 7.9: Parallel programming block diagram
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multi-cores, in cluster of computers connected on one network. An example of paralls!

configuration of a cluster of computers is given on Figure7.9.

The aigorithm for optimal control is programmed in both sequential and parallel way. The
goal of paralielization is to obtain high performance and increased speed over the
sequential program that solves the same probilem. This is to ensure efficient load
baiancing among processors, reduction in communication overhead and synchronization.
The parallel implementation and the results from the calculations are described in

chapter 8.

Sequence of

Froblem

instructions

Froblem < ﬁ

Sequence of

instruciions

Figure 7.9: Parallel programming block diagram
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7.9

Conclusion

A review of the developments of serial computers has revealed a lot of ways parallelism
has been intrcduced info sequential computers. While the application of paralielism in
sequential computers has been hidden from user program, it has been the key
mechanism of defivering speed in computer from the architerature and system design
perspective as opposed advance in solid-state electronic technology. Parallel
appiications are thus the next nalural step in computational speed that can accompany

and further the process in technoiogy.

Although Mathworks hesitated with the introducing parallelism into Matiab, they finally
completed a very good work. The Matlab engineers did their best to design the
paralielization APl in a Matlab-like, i.e. very user-friendly manner (including peculiar
terminclogy). Thus, Para!iel'Matiab (PCT/MDCS) is an ideal environment for a smocth
transition {0 the world of paralie! scientific computing. especially for current Matiab users.
The programs that are develeped using PCT/MDCS in parallel way for batch, fed-batch
and continuous fermentation process are given in appendices D, Eand F
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8.1

8.2

8.21

CHAPTER EIGHT
DESCRIPTION OF THE MATLAB PARALLEL PROGRAMS FOR OPTIMAL
CONTROL PROBLEM OF FERMENTATION PROCESSES

Introduction

This chapter describes the programmes for parallel calculation of optimal state and

control trajectories of batch, fedbaich and continuous fermentation processes.

The knowledge from chapter seven is used to implement the sequential algorithm of the
sequential programs that are discussed and presented in chapter 4, chapfer 5§ and
chapter 6 in 2 parallel way. The 2algorithm is implemented in paraliel for the three
fermentation processes ie. baich, fed-batch and continuous, which is described in

sections 8.2-8.4.
Matlab parallel program for optimal contro! of the batch fermentation process

The program baich_paralielm transforms the sequential pregram for optimal control
calculation of batch process using special functions and commands from the Parallel
Computing Toolbox. The inputs and outputs are the same as for the sequeantial program.
The program subprob2_batch.m is the program that is sent to the workers for paraliel
calculation of the optimal control and state trajectories with the Fifedependencies function
from Parallel Computing Toolbox(FPCT). The definition of variables in a Matlab script-file

batch_paraliel.m is as follows:

global par T kd m pl n si K M1 eps1 mu | x s p el conmin conmax statemin statemax

astate acon dt y0 x1 s1 p1 T1.

This variables are defined glohal since they have to be accessible at a shared memory
which in this case is used as jobmanager. They are defined glebal in the script

batch_parallel and subprob2_batch.m.
Starting parallel computation for batch fermentation process

The start of the coordinaiing procedure described in chapter4 is used for parallelization of

the calculation of the state and control trajectories for parts of the optimization interval.

=1

{vhile j<=M2; Second level iterations

jm = findResource('scheduler’,'configuration’, jobmanagerconfigs’)
pjob=createParallelJob(jm)

set(pjob, MinimumNumberOfWaerkers',numlabs)

set(pjob, MaximumNumberOfWerkers', numlabs)
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8.2.2

The function subprog2 batch.m is on the client path, but it has to be accesible to the
workers. The FileDependencies property of the pjob is used to transfer this function to all

the workers that are available on the computer cluster.
set(pjob, FileDepandencies' {'subprog2_batch.m'})

Starting parallef computing is done by creating a task which is the same for every worker,
The task has oniy one output with 4 output arguments and not input arguments to the
function.

Task1=createTask({pjob, @subprob2_batch,4,{})

submit{pjob)
The function subprog2 _batch.m is calculating the first level problem for an optimization

interval with 258 periods, 32 machines, the time horizons for 8 steps and the last point for
k = 257 is computed in the worker with index1.When the calculation completes, the
output results are in the global variables x1, s1, p1, T1, and are transformed to the

variables X, s, p, T, by the workar with index1

waitForState(pjob, finished’)

results=getAllOutputArguments(pjob)

The results are used for caloulation of the improved values of the coordinating variables,
which again are used for calculation of state and control variables until the cenvergence
of the coordination process is achieved. The parallel version of the program is given in

appendix D.1.
Function for parallel calculation of batch fermentation process

The part of the program implemented in a paraliel way is described by the function file
subprog2_batch.m.

function [x,s,p, T ]=subprog2_batch

The same global parameters are declared.

global par T kd m pl n si K M1 eps1 mu | x s p el conmin conmax statemin statemax
astate acon dt yO x1 s1 p1 T1.

The subprog2_batch.m starts with calculation of the start(a) and stop(b) points of the
optimization horizon for every worker.
dd=K/numlabs

a=(labindex-1)*dd+1
b=labindex*dd
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8.2.3

Decomposition in time domain inside every subinterval is done

for k=a:b
i=1
The function determines the first level iterations number.

white i <= M1

Calculation of the expressions Iv(k), k=0,K-1, v = x, s, p is foliowed by calculation of the
errors and the values of the stale and control variables. The iferations continue untii the
state and control gradients are less than the errcr eps1 or until the number of iterations
becomes equal to M1. The program has o reach this point for every worker. The function
labBarrier is used for this purpose: This function causes the workers that complsied

evaluation tasks eariier o wait for the ones that completed late.
fabBarrier

The Parallel Computing Toolbox function labBarrier is used to synchronize the paraliel
calculations and to ensure that all workers have done the necessary calculations, Then
the worker with labindex equal to 1 is forming the whole trajectory of state and control
variables from the tasks using their global definition in the following way.

labBarrier

if labindex==

x2=reshape(x1,1,numel(size(x1)));

s2=reshape(s1,1,numel(size(s1))};

p2=reshape(p1,1,numel(size(p1)}));

T2=reshape(T1,1,numel(size(T1)})

x=x2([a:b,labindex])

s=s2([a:b,labindex]}

p=p2{[a:b, labindex])

T=T2([a:b,labindex])
The obtained frajactories are the output of the subprogram. They are used in the main

program for calcylation of the coordinating variables. The calculations stop when the
number of iterations is reached or when the criteria for convergence of the coordinating
procedure is satisfied. The program for calculation of the first-level subproblems in

parailel is given in appendix D2.
Results from calculations with the Matlab parallel program for batch process

The optimal trajectories of state and control variables are given in figures8.1-8.6
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8.3

8.3.1

Matlab paralle! program for optimal control of fedbatch fermentation process

The program fedbatch_parailel. m transforms the sequential program for optimal control
calculation of fed-batch process using special functions and commands from the Parallel
Computing Toolbox. The inputs and outputs are the same as for the sequential program.
The program subprob2 fedbatch.m is the program ihat is sent to the workers for parallel
calculation of the optimal contrel and state frajectories with the Filedependencies function
from the Parallel Compuling Toolbox(PCT). The definition of variabies in a Matlab script-
filte bafeh_parallel.m is as follows:

global par T F kd m pl n si KM1 epst mu [ x s p v el conmin conmax statemin statemax
astate acon dityOxt s1 p1t vi F1 71,

This variables are defined Qlobai since they have o be accessible at a shared memory
which in this case is used as jobmanager. They are dsfined glebkal in the script
fedbatch_paraliel and subprob2_fedbatch.m.

Starting parallel computation for fed-batch fermentation process

The start of the coordinating procedure described in chapterd is used for parallelization of
the calculation of the state and confrol trajectories for parts of the optimization interval.
=1

while j <=M2; Second level! iterations
im = findResource('scheduler','configuration’,jocbmanagerconfigs’)

pjob=createParallelJob(jm)

set(pjob, MinimumNumberQfWorkers', numlabs)
set(pjob,'MaximumNumberOfWorkers',numlabs)

The function subprog2_fedbatch.m is on the client path, but it has to be accesible to the
workers. The FileDependencies property of the pjob is used to transfer this function to all

the workers that are available on the computer cluster .
set{pjob, FileDepandencies' {'subprog2_fedbatch.m'})

Starting paralle! computing is done by creating a task which is the same for every worker.
The task has only one output with 6 cutput arguments and not input arguments to the

function.

Task1=createTask(pjob, @subprob,6,{})
submit{pjob)
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8.3.2

The function subprog2 fedbaich.m is calculating the first level problem for an
optimization interval with 258 periods, 32 machines, the time horizons for 8 steps and the
last point for k = 257 is compuied in the worker with indexi, When the calculation
completes, the oulput results are in the globa! variables x1, s1, p1,v1, T1,F1 and are
transformed to the variabies X, s, p.v, T,F by the worker with index1

waitForState(pjob, finished")
results=getAllOutputArguments{pjob)

The results are used for calculation of the improved values of the coordinating variables,
which again are used for calculation of state and control variables until the convergence
of the coordination process is achieved. The parallet version of the program is given in

appendix E.1.
Function for paraliel calculation of fed-batch fermentation process

The part of the program implemented in a paraliel way is described by the function file
subprog2.fedbatch.m
function [x,s,p,v,T,F [=subprog2_batch

The same global parameters are declared.

global par T F kd m pl n si K M1 epst1 mu I x s p v el conmin conmax statemin statemax
astate acon dtyOx1 st ptvi F1 71,

The subprog2_fedbatch.m starts with calculation of the stari(a) and stop(b) points of the
optimization horizon for every worker. The number of points from the optimization interval
for calculation of the optimal state and control variables is the same for every worker
dd=K/numiabs

a=(labindex-1)*dd+1
b=labindex*dd

Decomposition in time domain inside every subinterval is done
for k=a:b

i=1

while i <= M1

Calculation of the expressions Iv(k), k=0,K-1, v = x, s, p,vis followed by calculation of the
errors and the values of the state and contro! variables. The iferations continue until the

state and control gradients are less than the error eps1 or until the number of iterations
159



- 8.3.3

becomes equal to M1. The program has to reach this point for every worker. The function
labBarrier is used for this purpose:

labBarrier

The Paralle! Computing Toolbox function /abBarrfer is used to synchronize the paraliel
calculations and to ensure that all workers have done the necessary calculations. Then
the worker with fabindex equal to 1 is forming the whole trajectory of state and control
variables on the tasks of their global definiticn in the following way.

labBarrier

if labindex==
x2=reshape(x1,1,numel(size(x1))};
s2=reshape(s1, 1,numel(size(s1)));
p2=reshape(pt,1,numel(size(p1)));
v2=reshape(v1,1,numel(size(v1)))
T2=reshape(T1,1,numel(size(TH))
F2=reshape(F1,1,numel{size(F1)));
x=x2([a:b,labindex])
s=s2([a:b,labindex])
p=p2([a:b,labindex])
=y2([a:b,labindex])
T=T2([a:b,labindex])
F=F2([a:b,labindex])

The cbtained trajectories arse the cutput of the subprogram. They are used in the main
program for caloulation of the coordinating variables. The calculations stop when the
number of iterations is reached or when the criteria for convergence of the coordinating
praocedure is satisfied. The program for calculation of the first-level subproblems in

parallel is given in appendix E2.
Results from calculations with the Matlab parallel program for fed-batch process

The optimal trajecteries of state and control variables are given in figures 8.7-8.14.
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8.4

8.4.1

Matlab parallel program for optimal control of continuous fermentation process

The program continuous_paraflel.m transforms the sequential program for optimal ¢ontrol
calculation of continuous process using special functions and commands from the
Parallel Computing Teolbox. The inputs and outputs are the same as the sequential
program. The program subprob2_coniinuos.m is the program that is sent {0 the workers
for parallel calculation of the optimal control and state trajectories with the
Filedepandencies function from the Parallel Computing Toclbox(PCT). The definition of
variables in a Matlab scriptfile continuous_parallef.m is as follows:

global par T D kd m pl n si K M1 eps1 mu | x s p el conmin conmax statemin statemax
astate acon dty0 x1 s1 pt D1 T1.

This variables are difined gfobai since they have to be accessible at a shared memory
which in this case is used as jobmanager. They are difined global in the script

continuous__paraltel and subprob2_continuos.m.
Starting parallel computation of continuous fermentation process

The start of the coordinating procedure described in chapterd is used for paralielization of
the calculation of the state and control trajeciories for parts of the optimization interval.
i=!

while j <=M2; Second level iterations

jm = findResource('schaduler','configuration’, jobmanagerconfighs')
piob=createParallelJob{jm)

set(pjob, MinimumNumberOfWorkers', numlabs)

set(pjob, MaximumNumbarOfWorkers',numlabs)

The function subprog2_continouos.m is on the client path, but it has to be accesible to
the workers. The FileDependencies property of the pjob is used to transfer this function afl

the workers that are available on the computer ciuster .
set{pjob, FileDepandencies’ {'subpro2_continuous.m'}

Starting parallel computing is done by creating a task which is the same for every worker.
The task has only one cutput with 5 output arguments and not input arguments to the

function.

Task1=createTask{pjob, @subprob2_continuous,5,{})
submit{pjob}
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The function subprog2_continuous.m is calculating the first level problem for an
optimization interval with 258 periods, 32 machines, the time horizons for 8 steps and the
last point for k = 257 is computed in the worker with index1. When the calculation
completes, the output resulis are in the global variables x1, s1, p1, T1,D1 transformed to
the variables x, s, p, T.D by the worker with index1

waitForState(pjob, finished")
results=getAllOutputArguments(pjob)

The results are used for calculation of the improved values of the coordinating variables,
which again are used for calculation of state and control variables until the convergence
of the coordination process is achieved. The parallef version of the program is given in
appendix D.1.

Function for parailel calculation of continuous fermentation process

The part of the program impiemented in a paraliel way is described by the function file
subprogZ2.continuous.m
function [x,s,p,T,F ]=subprog2_continuous

The same global parameters are declared.

global par T D kd m pl n si K M1 eps1 mu | x s p el conmin conmax statemin statemax

astate acon dty0 x1 st p1 D1T1,

The subprog2_continouos.m starts with calculation of the start and stop points of the

optimization horizon for every worker.

dd=K/numlabs
a=({labindex-1)*dd+1
b=labindex*dd

Decomposition in time domain inside every subinterval is done
for k=a:b

i=1

The function determines the first level iterations number.

while i <= M1

Calcuiation of the expressions v(k}, k=0,K-1, v = x, s, p is follewed by calculation of the
errors and the values of the state and conirot variables. The iterations continue untif the

state and control gradients are less than the error epst or until the number of iterations
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becomes equal to M1. The program nas o reach this point for every worker. The function
labBarrier is used for this purpose:

labBarrier

The Parallel Computing Toolbox function labBarrier is used to synchronize the parallel
calculations and to ensure that all workers have done the necessary calculations. Then
the worker with labindex equal to 1 is forming the whole trajectory of state and control

variables of the tasks using their global definition in the following way.
labBarrier

if labindex==
x2=reshape(x1,1,numel(size(x1)));
s2=reshape(s1,1,numel(size(s1)));
p2=reshape(p1,1,numel{size{p1}));
T2=reshape(T1,1,numel(size(T1)))
D2=reshape(D1,1,numel(size(F1)));
x=x2([a:b,labindex])
s=s2([a:b,labindex])
p=p2([a:b,labindex]})
T=T2([a:b,labindex])
D=D2([a:b,labindex])

The obtained trajectories are the output of the subprogram. They are used in the main
program for calculation of the cocrdinating variables. The calculation stop when the
number of iterations is reached or when the criteria for convergence of the coordinating
procedure is satisfied. The program for calculation of the first-level sub-preblem in

paraliel is given in appendix F2.
Results from calculations with the Matlab parallel program for continuous process

The optimal trajectories of state and contro! variables are given in figures 8.15-8.22.
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8.5

8.5.1

8.5.2

8.5.3

8.6

Comparison of the results from the sequential and parallel computing

The results of sequential program are compared with the results of paraliel ones for
calculation of optimai state and control of fermentation processes. The three fermentation

processes are considerad i.e. balch, fed-batch and continuous.

Comparison of the results from the sequential and paraliel computing for batch
fermentation process

The optimal state and conirol trajectonies given from figure 4.3 -4.8 are compared with
the optimal control and state trajectories of figure 8.1-8.6. it is clear that the results from
the segquential calculation and the paraliel calculation of oplimal state and control

irajectories are the same. -

Comparison of the results from the sequential and parallel computing for
fed-batch fermentation process

The optimal state and conirc! trajectories given from figure 5.2 -5.9 are compared with
the optimal control and state trajectories of figure 8.7-8.14. Again the resuits from the
sequential calculation are the same with the ones from parallel calculation of optimal

state and control trajeciories.
Comparison of the results from the sequential and parallel computing for
continuous fermentation process

The optimal state and control trajectories given from figure 6.2 -8.9 are compared with
the optimal control and state trajectories of figure 8.15-8.22. It is clear that the results
from the sequential calculation are the same with ones from the parailel calculation of

optimal state and control trajectories.
Conclusion

This chapter describes the programmes for optimal control calculation in Parallel
Computing Toolbox. The input and cuiput variables of the programmes and the used
functions and commands are described. The Results from calcuiations with the Matlab
sequential program and the paralle! calculations also are described. The resuits from the
sequential and parailel computing are compared. Conclusion of the thesis is given in

chapter nine.
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9.1

9.2

CHAPTER NINE
CONCLUSION AND FUTURE RECOMMENDATIONS

introduction

The purpose of this project is to develop methods, algorithms and programme for paraliel
solution of the preblem for optimal control such that the process of calculation is

characterized with reduced complexity and minimum time.

Fermentation, dus to an inherent flexibility of the technology provides a valuable tool in
bioctechnology, not oniy to study microorganisms, but also to commercially produce
valuable components, However, many requisites and variables should be taken into
consideration in its implementation. Mcrecver, the control of the process is mandatory,
which ctherwise would render the mode ¢f operation compiexity useless. in addition 1o
the complexity of the fermentaticn, the control mode and parameters to be controlied
should also be anzalysed.

The control of fermentation processes can implicate many difficulties: low accuracy of on-
ine measurements of subsirate concentrations, limited validity of the feed scheduls
under a variety of conditions and prediction of varigtions due {o strain modification or
change in the quality of the nutrient medium. These aspects point to the need of a
fermentation process control strategy, which is model independent, identifies the optimal
state on-ine, incorporates a negative feedback control in the nutrients feeding system
and contemplates saturation kinetic model, variable yield model, variations in feed
sitbstrate concentration and product inhibited fermentation. (Agrawal et al, 1894). The
problem for formulation and solution of the typical optimal control problems of the
fermentation processes gsing decomposition methods is considerd and solved in the

thesis.

. Aim and objectives

The research is focused on developing a decompeosition method to solve the problem for
optimal control of the fermentation processes for production of biomass and product. The

project aim is divided into the following objectives:

= Developing a unique mathematical model of the fermentation processes by
incorporating of physicchemical variables into the kinetic modes.
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9.3

9.3.1

9.3.2

9.3.3

= Developing decomposition method for optimal control calculation of the three
considered types of fermentation processes ie. batch, fed-batch and
continuous.

* Developing algorithms and programs in Matlab for sequential calculation of the
optimal controi problem.

= Developing algorithms and programs in Matlab for distributed-paraliel calculation
of the optimal trajectories.

Thesis delivarables

Development of the mass balance models for different types of fermentation

processes

Based on mass balance principle, the models of batch fed-baich and continuous
fermentation processes are derived in chapter two. The developed models incorporate
the physiochemical variable temperature, in the biological mass balance equations. In
this way: the control of the enzymes over the biological variables is utilised and

cppoeriunities for process oplimisation ars generated.

Development of a decomposition method for solution of the optimal control
problem

The cptimal control problems for the mass balance modsls are formulated based on the
optimal conirol theory using criteria for maximum preduction of product for the batch,
maximum biomass for the fed-batch precess and minimum time for the continuous
process.The method for solution is obiained based on the Lagrange’s functional and
decomposition coordination approach for time domain decomposition of the problem.
Special coordinating vector is introduced in order to fully decompose the Lagrange’s
functional in time domain. . In this way the complexity of the problem is reduced and the

solution of the nonlinear two-point boundary value problem is avoided.

Development of the algorithms and programs in Matlab for sequential calculation

of the optimal control trajectories

The algorithms are developed for sequential calcuiation of control and state trajectories
of the fermentation processes and are implemented in Matlab. The programs are given in

appendix A,B and C and are presented in Table 8.1.
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9.3.4

Tabie 9.1: Sequential programs for calculation of optimal state and control trajectories

Fermentation | Main program .~ .. -Sub—program T _Timé of calculation
| process R R T R TR DR S RIS e SRR, '
Baich Bzich seque.m Modelbaich funcZ.m 17.732429seconds

Fed-baich Fedbatch segue.m Modeifedbaich_funcZ.m 585.285686seconds.

Continuous Continuous_seque.m | Medeleentinuous_funcZ.m | 27.245219 seconds.

Development of the algorithms and programs in Matlab for distributed-parallel

calculation of the optimal control trajectories

Decompesition method allows naturally application of the parallel computing cluster of
computers by which the sub-problems on the optimal confrol probiem are solved in
paraliel on the first level of the two level calculating structure. The algerithms developed
for paralle! calculation of cantrol and state trajeciories of the fermentation processes are
implemented in Matlab. The programs are given in appendix D.E and F and are

presented in Table §.2.

Table 9.2: Paraliel programs for calculation of optimal state and control trajectories

Fermentation | ° Main 7~ Parallel - |7 Model - - Time
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9.4

9.5

8.6

Application of results

The developed approach for modeling and for optimal control problem solution can be
appiied with small modifications to some industrial processes with similar characteristics,

as:

Wasterwater purification plants.

Beer indusiry.

Food industry.

Mining industry for extraction of metal ions.

Sugar and pharmaceutical industry.

Control purposes in education.

As an application plant for different control strategies

Future research
The future developments can be decomposed in the following way:

s Testing of the two-layer control system on the working plant

» Testing of the cptimisation program for different experiments

= Testing of the developed application on the bigger scale fermentor

= Application of the developed methods and programmes for different batch, fed-
batch and continuous processas.

Publication

Mbangeni, L. & Tzoneva, R. 2010. Development of methods for parallel computation of
the solution of the problem for optimal controt of baich fermeniation process. Submitted

fo SAIEE research journal

Mbangeni, L. & Tzoneva, R. 2010. Parallel computation of the problem for maximum
production of biomass in a fed-batch fermentation process. Submitfed to control and

automation journal

Mbangeni, L. & Tzoneva, R. 2010. Development of a decomposition method and
algorithm for paraliel calculation of minimum time control of a continuous fermentation

process using cluster of computers. Submifted to SAJIEE research journal
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APPENDIX A: MATLAB SEQUENTIAL PROGRAM FOR CALCULATION OF
CONTROL AND STATE FOR BATCH FERMENTATION PROCESS

A% MATLAB script file - batch_seque.m

ifi
et

o b

.0 S
no
of e

¢.001;

S =====Tnitizl traiectuory valuez 27 the = -= varishlos=== =
1x = zercs (1, K};
lp = zercos (1, K);
1s = zeros (1, K);
for k¥ = 1: K
1x (k) =0.Q01;
ls (k) =0.005;
1p (k) =0.002;
end
T=16.0;
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ssmmr==ssssssmnansssss=sa=Model co-gfficlients=srmnsm—sroseoome——awmo====—a

al = 0.0004; a2 = 0.000%; a3 = 0.0002;

bl = 0.2; b2 = 0.03; b3 = 0.01;

cl =2; c2 = 0.3; ¢3 = 0.021;

dl = 0.0040; d2 = 0.006; d3 = 0.001;

par = [al a2 a3 bl b2 b3 cl ¢2 3 d1 d2 431;

kd = 0.00008; % deat? ; i

pl = 50; 5 in!

m = 0.11;

n = 0.52;

si= 266.6;

dt = 0.25;

FEssw==s—ms==m==—==initial valiues ¢of siste varighless=vm——=c——c=—zooozmmoas

x0=1.83;

s50=150.0;

pd= 0;

v0=[{x0 80 pol':

Tmin 10;

Tmax 20;

%——-——77 ey S e e T T TR T e T e e e e e e e e

Fm===== ==== (onstraints ¢f state varizbleg=s=——========== ===
on of the initiagl tradectories of =ztate viriablessss====-

‘e, vl =odelSs {(@ (t, y)} modelbatch func2 (t, y, par T, kd, m, pl, n,
si), t, v0);

x=(y {:, 1)) ';

s=(y{:,2))";

p=(y(:,3})";

figqure (1)
plot(t,x, -}
title('™n

2
o0
oo
nou
=
n W
PR
o
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0*ones(l ¥);

Tr= IECCC‘_""_CS

g===m=Cgloulation of tChe initial treijeciories ¢f Zrror Lambda - K} mmm=m=
for k=1:K N -
elx(k) = dx(k}-x(k+1);
els(k) = ds(k}-s(k+l);
elp(k) = dp(k)-p(k+1};
end

zeros(1,K);
zeros(1,K};
zeroz(l,K);
zeros{1,K);

dmmaxdT =
d¥sdT =

dYxsdT =
d¥pxdT =

‘mmax = zeros{l,K);
Ks = zeros{l,K);
Yxs = zeros(1,K};

zerog(1,K) ;
£f = zeros{l,X);
fx = zeros{l,K);
= zeros{l,K);
= zeros(1,K};
= zeros(1,X};
zeros(i,X);

Ypx =

eex = geros{l,K);
ees = zeros{l,K);
eep = zeros(1l,K);
ex = zeros(Ll,K};
&8 = zeros(1,K};
ep = zeros(1,K};
eT = zeros(1l,X);

dmmaxdT(k) par(2)+2*par(3)*T(k),
szdT(k}-par(S)+2*par(6)*T(k),

dyxzsdT (k) =par (8} +2¥par(9) *T(k);
dexdT{k)—par(ll)+2*par(12)*T(k

z
I~
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Ks (k) =par (4) +par (5) *T (k) +par (6) * (T (k) "2); %
Yxs (k) =par{7) +par(8) *T (k) +par(a)* (T(k)™2); %
pr(k):par{10)+par(1l)*T{k)+par(12)*(T{k)AZ);

g======s=======Cslculation of the functions Tx,fg, 5,71 and fl===========
pk=p(k};

Ff(k)=dt*mmax(k) *({1l-pk/pl)”n);

fx(k)=ff(k)*s(k}/(Ra(k) + s({k}}; % Bguatic

Fa(k)=Ff£f(k)*Ks (k) * x{k)})/((¥s{k) + s(k)}™2); )
£p (k) =dt*mmax (k) * ({1-p (k) /p1) " (n- 1))*x(k)*n*s(k)/(pl*(xa(k) ¥ os(k))); 3
FEguation £.21

££1 (k) =££ (k) *x (k) *s (k) / (Ks{k) + s(k}); %Equation 4.23

F1(k) = £fi({k)/mwmax(k)

fz(k) =Ffi(k)/(Ks(k) + s(k}}; %Eguation 4.24

LAl ILaTion Gk

eex(k) =1x (k) mX*elx(k)
ees (k) =1s (k) -ma*els (k);
eep{k) lp (k) -mp*elp (k) ;

* eep(k} zEquation 4.25

es({k)= rs(k)*eex{k)+(1—fs(k)/Yxs(k))*ees(k)+¥px(k)*

f1(k) *eep(k) ;2Eguation 4.2€
ep{k)——fp(k)*eex(k)+(fD(k)/YXS{k))*EES(k)+(l+fp(k))*eep(k) :¥Fovation

P TN ST + = =
(U L R T R s ] e ee ntg Fo : i
RlCuilaTicn I The gr adients for Cconirpl

eT{k) = (f1(k)*dmmaxdT(k)+£2(k)*dKsdT(k))*eex(k) + ((-
£1{k}/{(¥xs(k))"2)* (domaxdT (k) *¥xs (k) -mmax (k) *dvxsdT (k) ) +
(f2 (k) /¥xs (k) } *dKsdT (k)} *ees(k) +

(£1 (k) * (d¥pxdT (k) *mmax (k) +¥Ypx (k) *dmmaxdT (k) ) -

pr(k)*fz(k)*szdT(k))*eeD(k),
$Teiation 4,78

] Hati0r

nl [ex(k) es(k) ep(k} eT(k}I';

norm(nl) ;

p(k)=p0;
T(k) = T(k} + aT*eT(k};

x{k) = x(k} + axvex(k);
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0
a
]

g(k) + as*es{k);
p(k) + ap*ep(k);
T{k}) + aT*eT(k};

ke
z
]

= xmin; -

eglseif x(k) > xmax
x(k} = xmax;

end

if s(k) < smin
s{k) = smin;

elseif g(k} > smax
gs(k} = smax;

end

if plk} < pmin
p{k) = pmin;

elseif p(k} > pmax
p(k) = pmax;

f T(k}) <« Tmin
T{k) = Tmin;
elseif T(k) > Tmax

T(k) = Tmax;

¥K1=x{K)+f1(K)-dt*kd*x (X} ;
sKl=s{K)-f1(X)/¥xs(K) -dt*m*x{K) ;
PKl=p (K)+f1(K) *Ypx(K);

if XK1 <= zmin
XK1 = xmin;
glseif XK1 =>=xmax
XK1 = xXmaX;
nd
if 8Kl <= smin
= smin;
glseif gKl »= smax
SK1 SmaX;
end
if pKl <= pmin
pKl = pmin;
elself pKl »= pmax
pKl=pmax;

0}

il

end
x(¥+1)=xK1;
p{X+1)=pKl;
s (K+1)=8K1;




Fmommm———=====Cglculigtion of the gradient elv, whers v = i, 5, pe——=======
for k=1:K
elx (k) = dx{k) - x{k+l);
els(k) = ds{k) - s(k+l};
elp(k) = dp(k) - p{k+1l);
en
nni=ncrm{elix)+ norm{els)+ norm{elp);
if nnl«<=eps2
break
else
k====Czlculation ¢f the cocrdinaring variables 1v and 4dv, wherse v =
for k =1:X
Ixtk) = 1x{k}) - alx*elx{(k);
1s{k}) = 1s(k) - als*els{k);
lpik) = 1p(k) - alp*elp{k);
edx{k) = -1x(k)})-mx*elx(k};
eds{k) = ~ls(k)-ms*els(k);
edp{k) = -1p(k}-mp*elp(k);
dx{k} = dx{k) + adx¥edx{k);
ds{k} = ds{k}) + ads*eds{k);
dp{k) = dplk) + adp¥*edp(k);

fitle( Coss
vilabel ('

legend(’'t
figure(3)
plec(t,p, k")
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legend(’'substrate’, "Location’, "HorthEsstOutside")
tl=1:K;
figure(s)
plot(tl, T,
title('Cpt
yvlabel('g/:
xlabel (¢
legend('T
Flgure(s)
plot (1, 1x,
ticle('Cput
ylabel (*gq. :
xlabel('tims in
legend( Lambdsa

function ydot= medelbatch func2 (t, y, par, T, kd, m, pl, n, si}

ot
|
\

ydot {1} =(par (1) +par (2) *T+par (3) *(T*T}) * ({1-
(v(23)/p1}) "n) *v (1) *y (2} / {({par(4) +par (5} *T+par (&) * (T*T)+y (2} ) - (kd*y (1))} ;

[0 e POV S 7
"SL—{Zu;L.LCH z.78

ydot {2) = (par (1) +par (2) *T+par(3) * (T*T)) *((1-

(v(3)/p1})"n) +y (1) *y (2} / ( (par(4)+par(5)*T+par(6)*(T*T)+y(2))/-
(par(7)+par (8) *T+par (9} * (T*T) ) -m+y (1)) ;$Fquaticn .73

ydot (2) = (par (1) +par (2) *T+par (3) * {T*T)) * ({1-

{(y(3)/p1)) "n) *y (1) *y (2} / ((par (4) +par (5) *T+par{6) * (T*T) } +y (2) ) * (par (10) +p

ar(11)*T+par{l2)*{T*T}};%xguation 2.5
ydot- [ydot (1) ydot (2} ydot (3)]"
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APPENDIX B: MATLAB SEQUENTIAL PROGRAM FOR CALCULATION OF
CONTROL AND STATE FOR FED-BATCH FERMENTATION PROCESS

B.1: MATLAR script file - fedbatch_segue.m

R

o

o Py o

P AT it 4y T
I CRTRHIZATION 0T

I

mx=0.0010;
m=g=0.0010;
mp=0.0010;
mv=0.0010;

T=16.0;
F=0;

31 = 0.0004; a2 = 0.0001; a3 = 0.0002;
bl = 0.2; b2 = 0.03; b3 = ¢.01

cl = 2; ¢2 = 0.3; ¢3 = 0.021;

dl = 0.0040; d2 = ¢.006; d3 = 0.001%;




x0=1.83;
s0=150.0;
p0=2.1;
v0=2.1;

[t, v =cdelhs{@(t,y) modelfedbatch func2(t,y, par, T.F, kd, m, pl, n,
si),t,y0);

x={y (:, 1})';

s=(y{:,2))";

p=(y{:,3))";

v=({y{:,4)})"';

figure (1}

rlot{t,x,’ JE.8, ikt LR e, TR,
title (' Ini 1 traijectories of stats varianlass');
vizbel('g H
xlabel{'ti in sa
ss', "’ voiume', "Locaticont, "NorthEastout
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)
g
Il
8]
o
e

elx{k) = dx(k)-x(k+l);
elstk) = ds{k)-s{k+1);
elp(k) = dp(k})-plk+i);
elvik) = dvi{k)-v(k+1);

f=————=mwm=Prafllicocation ¢f variables for faster eyacullion=s=============
dmmaxdT = zeros(1,K};
dEKsdT = =zeros{l,K);
d¥xsdT = zeros{l,K);
dvpxdT = zeros{i,X);
mmax = zeros(li,K);
Ks = zeros(i,K);
¥Yxs = zeros(1,X);
Ypx = zeros(l,K};
£f£ = zeros(i,X);
£x = zeros (1,K);
£s = zeros(l,XK);
fp = zeros(1,K);
£1 = zeros(1,X};
£2 = zeros(l1,X};
eex = zeros(1,K};
ces = zeros(l,X);
eep = zeros(1,K);
ex = zeros(l,X};
es = zeros(1,K);
ep = zeros(l,K);
eT = zeros{l,K);
eF = zeros{l,K):

Per the o
(3)*T{k};
d¥sdT (k) =par(5) +2*par (6} *T{k);
d¥xsdT (k) =par(8)+2*par{39) *T (k) ;
d¥pxdT (k) =par (11) +2*par(12) *T (k) ;
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temmmomwmanmame——=g T onlgtion 0f CThe kinetis coefficients=sscomssoooeoooo—o
mmax (k) =par (1) +par(2) *T (k) +par(3) *(T(k}"2); = s 2.7Z
Ks{k})=par(4)+par(5)*T (k) +par{s) *{T(k) "2); % 2,73

Yxs (k) =par(7) +par{8) *T (k) +par(9) * (T(k) *2); : .74
pr(k):par{lo)+par(ll)*T(k)+par(12)*(T(k)*2); : = on 2.75

% ttﬂiz?a__“_*t s of the expressicns £v whare = x,3,p,v and 71 and

pk—p(k),
£f(k)=dt*mmax{k) *({1-pk/pl)*n};
fxik)=FF(k)*s{k)/{Ks{k) + s({k)); 3% Equation °

fe(k)=ff(k)*Ks(k) * x{k)/((Ks({k) + s(k))™2); 2Eguation 5.27
fp k) =dt*mmax (k) * ( {(1-p (k) /pl) *{n-1)) *x (k! *n*s{k) /(pl* (Ks(k) + s(k}}); 3

- PP
Eouation 5026

fvik)=dt*F(k}/(v{k)"2); %Eguation °

ffl{k)=ff(k) *x(k)*s(k)/(Ks{k) + 5,24
fa(k)=Fff1{k)/(Ks{k) + s{k)}; % Equation

filk) = £f1(k)/mmax(k)

f=Czlculation of the expressions es v {ki=lambda{kim v*E lanm Nt =
eex (k) =1x{k) -mxrelx{k);

ees(k)=1s({k) -ms*els(k);

eep (k) =1p (k) -mp*elp(k);

eev (k) =1vi{k) -mv*elv(k};

ex(k)—(1+fx(£; dg*kd dt*F{k}/v(&))*eex(k)+((fx{k)/Yxs?k)):_dt*m)*ees(k +

fx(k)*ypx (k) * eep(k);iBEjuation .31

es{k)=Ffs{k) *eex (k) +(1-f5(k) /¥xs (k) -dt*F (k) /v (k) ) *ees (k) +Ypx (k) *
fa(k)*eep(k);iEguaticon 5,32

ep(k)=-fp(k} *eex (k) +(fp (k) /¥xs (k) ) *ees (k) +(1-fp (k) -

de*F (k) /v(k))*eep (k) ;%Equation .23

evik)=fv{k) *x (k) *eex(k} - {(fv(k) * (si-s{k}) *ees (k) ) + {(£v (k) *p (k) *eep (k) ) +

eev(k};

FeE===—======{ 2 CULiaTIon 0 TLIZ u;g Jiern

eF(k)=-dt*x (k) /v(k) *eex (k) + (dt* (si- s(k )/v(k))*ees(k)—
(dt*p (k) /vik) Y *eep (k) +dt*eev(k) ;¥ Equation 5.3

eT{k) = (fl(k)*dmmaxdT(k)+f2(k)*szdT(k))*eex(k) + {(-
FI{k)/{¥xs(k}) ™2} * (GmmaxdT (k) *¥Yxs (k) -mmax (k) *d¥y=xsdT (k) ) +
{f2 (k) /¥xs(k))*dKsdT{(k}) *ees{k}) +

{£1 (k) * (dYpx=dT (k) *mmax (k) +¥px (k) *dmmaxdT (k) ) -

ypx (k) *£2 (k) *dKsdT (k) ) *eep (k) ;

zEquatisn 5.35

ni={ex{k) es{k) epl(k} ev{k} eF(k) eT(k)l"';




T xikiexn{K+ll=x®l;sKl
®XK1=x(K) +£1{K) -dt*kd*x (K} -dt*F(K) *x (X} /v (K) ;
sKl=s5(X)-f1(K) /¥xs (K) -dt*m*x (K} +dt*F(K) * {si-s (K} ) /v (K) ;
PRI=p({X)+I1(K) *Ypx (K) -dc*F({K) *p (K} /v (K} ;
VE1=v{X})+dt*F(X) ;
if Xx¥X1 <= xmin
K1l = xmin;
aelgseif xX1 >=xmax
XK1 = xmax;
end
if 5Kl <= smin
sK1I = sgmin;
elseif sK1 »>= gmax
sKl = smax;
end
if pXl <= pmin
PKl = pmin;
elseif pKl »>= pmax
pKl=pmax;
end
1T vElI <= vmin
vkl = wvmin;
elseif vKEKiI »>= vmax
vKI = vmax;
end
x(K+1)=xK1l;
p{K+1)=pX1l;
s{K+1)=s8K1;
v(K+l)-vK1,

for k= 1 K

ax (k) - x{k+1l};
= ds(k) - s{k+1};
= dp(k} - plk+i);
= dv(k) - v{k+1);

= Tal ‘-'-‘“C‘ P SR S
'-;,._.u‘.(, = O LIl

nnls= norm(elx}+- norm{els)+ norm(elp)l+ norm{elv};

if mnle=eps2% check condition for ferminstion 2 the second leval
iteration
break

Ix(x) = lx(k) - alx*elx(k);
Is(k) = 1s(k) - als*els(k);
lIp(k) = 1p(k) - alp*elpl(k);
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Foxi{ky=x {K+1i=xKl;sKi, pK

*¥E1=x (K} +f1 (X) -db*kd*x (K} -dt*F(K) *x (K) /v(K} ;
sKi=g(¥X)-£1(K) /Yxs(K) -dt*m*x (K) +dt*F{(K) * (si-s5 (K) ) /v{K) ;
pPKl=p(K)+£1(K) *Ypx (K) -dt*F (K) *p (K) /v (K) ;
vEl=v(K) +dt*F (X} ;
if %K1 <= xmin

XK1 = xmin;
elseif %K1 »>=xmax

XK1 = xmax;
end
if s¥X1 <= smin

sK1 = gmin;
elseif sK1 »= gmax

sKl = smax;
nd
if pK1l <= pmin

PXl = pmin;
elseif pXl »>= pmax
pKl=pmax;
end
if vK1 <= vmin

vkl = vmin;
elseif vKl >= vmax

vkl = vmax;

(]

end

X (K+1)=xK1;
p(X+1)=pKZ%;
s (K+1)=8K1;
v{K+1)=vKl;

= dx({k) - x(k+1);
= ds{k) - s{k+l);
= dp{k) - plk+l});
= dvik) - wv(k+1l);

tCaloulation of the norm of the gradients of the
nnl=norm(elx)+ normi{els)+ normi{elp)+ norm{elv);

= el ]
Si L Lo

if l<=eps2% chack condition for fermination of the second lsvel
iteration
break

1x{k) - alx*elx(k);
1s{k) - als*els(k);
Ip(k) - alp*elp(k);

1x{k) =

-
T ou
&z
o
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Iv(k) = 1Ivi{k) - alv*elvik);

+ adx* {-lx-mx*elx{k));
+ adax{-ls-mg*els{k)};
dp({k) = dp(k) + adp*{-lp-mp*elp{k));
+ adv* (-1lp-mp*elp(k));

t=1:K+1;
plot{t,x, *-k'}
title{'Cp ,
ylabel ('g/
xlabel{'ti
legend('bi
figure{3)
plot(t,p,
title('Co
viabel{ g/
xlagbel('ti
legend{'product!
figure{4)
title('Cpxi
yiabel('g/
xlabel(*zi
plot{s,’
legend(’
figqure{5)
plot{t,v,'—.%’
title ('O
ylabel('g/
xlabel('ti
legend('volume
tl1=1:K;
figure(6)
plot(£l,T, " -k")
title{'Cpt o

figure(8)
plot{tl,ix, '~k'

title('Conim?
')



Yw-l

si)

function ydot=modelfedbatch func2(t,y,par, T, F, kd, m, pl, n,

2 PR
== == M i) Tro T oAt o
MCOR: VaFriIghlies

ydot (1) = (par (1) +par (2) *T+par(3) * (T*T} ) * ({1-
(vI(3)/pl))*n) *y (1) *y{2) / ((par(4) +paxr(5) *T+par (&) * (T*T) +v{2}) - (kd*y (1)) -

- ~ n
SToustion Z.R4

F*y (1) /y(4)); %Eguation
ydot (2) ={par{l}+par(2) *T+par {3} *{T*T} ) ¥ ({1-
(y(3)/p1))‘n)*y(l)*y(Z)/((par(4)+par(5)*T+par(6)*(T*T)+y(2))/-

{(par(7) +par(8) *T+par(8) * (T*T) ) -m*y (1) -F* {si-y(2) ) /y{4));*% ation Z.

ydot(B)—(par(1)+par(2)*TTpar(B)*{T*T))*((l—

(y(3)/pl)) "ny*v {1} *v (2} / ({par(4) +par (B) *T+par(6) * (T*T) ) +y (2) } * (par{10) +p
ar(11)*T+par (12) * (T*T} ) -F*y (3) /y{4);2Equaticon 2.8¢

vdot (4)=F; %Equaiicn 2.87

ydot [ydot (1} ydot(z) ydot{3) vdot (4)] ';

[£§}
en
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APPENDIX C: MATLAB SEQUENTIAL PROGRAM FOR CALCULATION OF
CONTROL AND STATE FOR CONTINUOS FERMENTATION PROCESS

C.1: MATLAB script file - continusus_seque.m

epsi=0.001;
eps2=0.001;

f=——=—=======Tnitial CTrajectcries for the conjugats variabplez=—s=ms—cn===
ftor k = 1: XK+1

1x (k) =0.001;

Is (k} =0.005;

1p (k) =0.002;

end

fm========Tnitizl Tradecicrises ¢f the conirel varliablsss===ss=s=========
T = 16;

D= 0;

1)
=
I

= 0.0004; &2 = 0.0001; a3 = 0.0002;

= 0.2; b2 = 0.03; b3 = 0.0%;

2; ¢c2 = 0.3; ¢3 = 0.021;

di = 0.0040; 42 = 0.006; d3 = 0.001;

par = [al a2 a3 bl b2 b3 cl c2 c3 41 dz d3i;
= 0.00008; & d
= 50; & inhibi

0 o
[y
11

'
u
I

'
s
|
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m= 0.11;
n= {.52;
si= 266.6;
Ks = 0.5;
dimax
mmax = 0.
dtmin and d!—
Yxs = 0.172;
growth for cal
Ypx = 0.421;

s for

fmmm=m=ss==========Initiz] values of state

x0=1.83;

s0=150.0;

pl= G;

y0=[x0 =0 p0l°*;

T A R S = =zteady state valuss of state variabloss=====szzwssmzsns
xbar = 100*cnes (1, XK+1);

sbhar = 30*ones (1, K+1);

prar = 100*cnes (1, K+l};

Z ==== of control variabhlss== Smm—mmemme e
Tmin = 10;

Dmin = 0;

Tmax = 25;

Dmax = 5;

G omma— = mmm=====Constraints of Stzte varigbleg=====rwmoocomsomeoao
xmin = 0.83;

xmax = 100;

smin = 5;

smax 300;

pmin = 0;

pmax 100;

Fmme= and max = S

dtmax = 0.01%(Ks + smax)/ {(mmax-kd- Dmax)*squ - Ksg*(kd + Dmax});
dtmin = 0.01*{Ks + smin)/ ((mmax-kd-Dmin)*smin - Ks*(kd + Dmin)};

2
Gt T~ a4 A AF FRa drmitdnl trvotomterioas AF st ats vt ol ccmm—mm— e
2==_S2 L LCULATION oL UIle I1iTIial LIz ECLOUILEs C FLauT TaAY I ALl o= =sm

t=1: KE+1;
[£, vl =odelSs (@ (t, y) modelcontinuos func2 (t, y, par, T, D, kd, m,
pl, n, si}, t, v0);

x=(y {(:, 1))*;

s={y{:,2)}"';

p=(y(:.,3))"';

t = 1:K+1;

figqure(l)

£t = 1:K+1;

plot{t,x, '-k',t,s, ":x",t,p,"—. ¥’
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title('Initi
viabel{'g
xlakel {"tim
legend('ﬁ

T = 16*ones (1, X);
D = 1.25*ones (1 K);

%(====Czlculaticn of the initial trajectories of el v {k,v=3,y, pers=——===
for k=1:K B

elx{k) = dx(k)-={k+1};

els (k) = ds(k)-s{k+l};

elp(k) = dp(k)-p{k+1};

end

j=m========Calculation of elx{K} at trhe last

el®x(K) = x(K+1)- xbar{K+1l};
elg(k) = s(R+1l)- sbar(K+1l};
elp(k} = p(K+1}) - pbar(K+1)

for k=1:K %Decomposition In time domain

i=1;

while 1 <= M1 %¥irst lsvel iterziicons
fom=mmwm==Drefllincation of variables for fastaer

dmmaxdT = zeros(l,K);
dKsdT = zeros(1,K);
zeros (1,K) ;

dy¥yxsdT =

dYpxdT = zeros{l,K};
mmax = zeros{l,K);
s = zeros{l,K);

Yxs = zeros{l,K);
Ypx zeros (1,K);
££ = zeros{1,K);
fx zerog (1,K);
fs = zeros(1,X);
fe zeros(1i,XK);
£1 = zerog({l,X);

H
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zeros {1,K);

eex = zeros(l,K);
ees = zgeros(1l,K);
eep = zeros{l,K);
ex = zeros{l,K);
es = zeros(1,K)};
ep = zerogs(l,K);
eT = zeros(l K);
QERIVATIVES OF THE KINETIC COUFPICILENTS TOWARDS THE
Fmmamms o= ==——==—wm= Foy the tem S — s —— —

dmmaxdT (k) = par{2)+2*par{3)*T(k);
szdT(k):par(S)+2*par(6)*T(k)
dY¥xsdT (k) =par{8) +2*par(9) *T (k) ;
dexdT(k)-par(ll)+2*par(12)*T{k),

f==========m==Czlculation of the Rinetic co

mreax (K} =par (1) +par{2)*T(k)+par(3)*{T(k)*2);
Ks(k)=par(4)+par(5) *T (k) +par(6)* (T{k) "2);
vxs (k) =par(7)+par{8) *T(k)+par{9) * (T(k) "2} ;
pr(k) =par(1l0) +par(1l)*T (k) +par{12)*(T{k})"2);

pmmsswe=Caiculation of the expressions from eguation [(6.38)-i8.4f=—==ma=
pk=p(k) ;

FE(k)=dt*mmax{k) *{(L-pk/pl)’n);

£f2 (k)= de*{((1-pk/pl) *n):

Ex(k)=fE{k)*s(k)/(Ks(k) + s(k)); % Ecuaticn §.38

Fa(k)=FEFf(k)*Ks(k) * x(k)/{{Ks(k) + s(k))™2}; = qa sion §.490

£p (k) =-dt*mmax (k) * Ypx (k) *{(1-p (k) /pl)~(n-1)) *n%x (k) *s (k) / (p1* (Ks (k) +
s{k))); % Eguation 6.39

£1(k}= ff2(k)*x(k)*s(k)/(1{s(k) + si{k));

rz(k)——fl{k)*mmax(k)/(Ks(k) + s(k));

Do T P A e e - o PR Yol F s mrm wmw DT —mba i o« iy
F===Calculation of the CAPYESI20ONE &8 VO {X;=iambUd (K -m VoL LETDTIA v Ll

eex{k) =1x{k) -mx*elx(k};
ees (k) =1s{k)-ms*els{k};
eep(k) Ip (k) -mp*elp(k) ;

f===w====z=Calcuiation of the gradients for staete verizbplsg=s========wu=
ex{k)={1+fx (k) -dt*kd+de*D (k) ) *eex (k) + ({£x (k) /¥xs (k) ) -dt*m) *ees (k) +

Fx(k)*Ypx{k) * eep(k);:Eoaaticn 6.43
es{k)=fs(k)*eex(k}+(1-fs (k) /¥Yxs (k) -de*D{k} ) *ees (k) +¥px (k) *
fa{k)*eeplk) ;sEgusticn 6,44

eplkl= fp(k}*eex(k)—(fp(k)/Yxs(k))*ees(k)+(l+fp(k)-

dt*D {k)} *eep(k) ; 3E on 6,45

-2 for

m

[OOSR ALY

SD(k) —-de*x (k) *eex (k) + (de* (si_s (k) ) *ees (k) ) - (de*p (k) *eeif('
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eT{k) = (£1(k)*dmmaxdT(k)+£2(k}*dKsdT (k) ) *eex(k}) + ({-
Fl(k)/{¥xs(k})™2)* {(dmmaxdT (k) *vxs (k) -mmax (k) *d¥xsdT (k} ) +
(f2 (k) /¥Yxsi{k))*dKadT (k}) *ees(k) +

(£1 (k) * (d¥pxdT (k} *mmax {k)} +¥px (k) *dmmaxdT (k) ) -

ypx{k) *£2 (k) *dKsdT (k) } *eep (k) ; 3Eguation £.48

nl=[lex{k) es(k) ep(k) eD(k) eT{k)l’;

=l

nn = norm{nl};

lf nn <=epsliChec! on the firgt
of the new valuss of the =tfats and conirol

- aT*eT(k);

- ab*eD(k);

- ax*ex(k);

- as*es{k);

(k} - ap*eplk);

z) - aT*eT(k);

¢} - abh*eD(k);
Z== === =mamem====={hgrk against conatrainis=rsmemsmmomo s s e

x{k} = xmin;
elseif x(k) > xmax
x(k) = xmax;
end
if s{k}) < smin
a{k) = smin;
eliseif s(k}) > smax
a(k) = smax;
Hel

@
3

p{k} < pmin
p(k) = pmin;
1seif pi{k}) > pmax
plk) = pmax;
nd
D(k) < Dmin
D(k) = Dmin;
- eglseif D(k) > Dmax
D(k} = Dmax;
end
if T{k} < Tmin
T{k) = Tmin;
elseif T{k) > Tmax
T(k) = Tmax;

-

o]

-

Ity

T
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ex{Kl)= 1x{Kl)+ mx*(x(X1l)-xbar(¥i));
es{Kl)= 1s{Kl)+ ms*(s(K1l)-sbar(Ki))};
ep{K1}= 1p{K1l}+ mp*(p (K1) -pkbar(Kl));

Sm==============={alculation of the final valus of

xK1 = x(K1) - alx*ex{Xl);

sK1l = g(K1} - als*es(Xl};

PK1l = p{K1} - alp*ep(X1};

Fm==mmmwms======CneCKk The Constrzinits at the finzal point======= =====

XX1 = xmin;
elseif xK1 >=xmax
x¥X1 = xmax;
end
if 8Kl <= smin
sK1 = smin;
elseif sKl »>= smex
sK1l = smax;
end
if pX1l <= pmin
P¥1 = pmin;
elseif pK1l >= pmax
pKl=pmax;

x (K+1)=xX1;
p(K+1)=pX1;
s(K+1)=s8X1;

x(E+1) -xbar(X+1);

elx({K+1l) =

els{K+1) = s(¥X+1)-sbar{X+1);
elp{K+l) = p(X+1) -pbar(X+1);
end :

mnl=normi{elx}+ norm({els)+ norm{elp};

for k =1:XK+1



Ix(k) = lx(k) + alx*elx{k);

1s{k) = Is(k) + als*ecls{k);

Ip(k) = 1lp(k) + alp*elp(k):

end

g=====Cgliculation ¢f L{he improved valiues 2f the

mmax (K) =par (1) +par (2) *T(K) +par(3) * (T (K) *2);

Ks (K)=par{4)+par{5}*T(K) +pax(6) * {T(K}*2);

Yxs {K)=par (7} +par(8)*T (K} +par (9} * {T(K)"*2);

Ypx{K}=par(10)+par{l1l}*T (K)+par(12)*{T{K)"*2)

eex{R)=1x(K)+ mx* (x(K}-xbar(K})};

ees (K)=1s(K)+ ms* {s(K)-sbhar{K));

eep (K) =1p{K) + mp* {p(K) -pbar({K));

fE1(K) = mmax{K) *((1-pk/pl)}*n);

£3(K) = £EL{K)*x(K)*s(K)/(Ks(K) + s(K));% Eguaticn 6.2

dt = {-K -{£3(K)-(kd*x(K) D(K)*X(K))*eex(K)+(f3(K)/Yxs(K)+ m*x(K) -

D(K)}*(si-s (X)) *ees (K) - (Ypx (K) *£3{K) -D{K) *p (X)) *eep (K) } / {mx* (£3 (K) -

kd*x (R} -D{K) *x (K} )} "2 + ms*(FB(K)/Yxs(K}+ m*x {K) -D(X) * (si-g(K)) "2+
mp*(pr(K)*fs(K))—D(K)*p(K)) 2);

=Check the constzaints for the improved value ¢f di==—===c=smossoes
<= dtmin
= dtmin;
elselr dt >=dtmax
dt = dtmax;

end

for k = 1:K
dx (k) = dx(k) - adx*{(-mx*elx(k)-1x(k}));
ds(k) = ds{k) - ads*(-ms*els(k)-1s(k));
dplk) = dp(k) - adp*{(-mp*elp(k)-Ip(k));

flgure{z)
t=1:K+1;
plot(t,x, "-k*)

title ("0p?
ylabel(*g/
xlabel('time in
legend{'bicnma

figure(3)
plot{t,p,’
t1tle(“;"m
ylabel {'g/

xlabelf'time

legend{'product

fiqure{4)

plot(t,s, '-k’

title(’Cot t sed Results Toy the substrate')

ylabel{'é/
xlabel{'tims



legend({'substrate’, 'Location', "NorthEastOutsida ')
t1=31:K;

figure(s)

plot (tl, T, *-k7)

ticle('Cptimised Results for the Temparature T')

vlabel (F
xlabel(*
legend({‘':
tl=1:K;

figure(s)

plot{tl,D,’
title('Opt
yviabel (Tg/
xlabel ('t

figqure(7)

tl=1:K+1;

plot{tl,lx,'-¥',tl,1ls, " :kx',t1l,1p, " —.%")

title('Cy ised Resulis for the conjugate variables lambdz')

ylabel ("qg/ ;

xlabel ("time in sam

legend(': x*, ‘Tambda p', 'Locatien’, "HorthEastCutside')
figure(8)

t = L:K+%;

ploti{t,x, "-k',t,s, ' :kx%,&,p, "~k
title{*opzi i ~
ylabel (*

So DL

- 7 ’
xlabel('time in
legend('bicmass’ , "product!, TLoocation’, 'NorthEastOuiside )

vdot (2) =(par (1) +par(2)*T+par(3}* (T+T) )} *{ (1~
(v(3)/p1)) "n) *y (1) *y (2) / ( (par{4) +par(5) *T+par(6) * {(T*T) +y (2)) /-
(par(7)+par{8) *T+par(9)* (T*T} ) -m*y (1) + D*(si-y{2))});%Equaticon 2.34

vdot (3} =(par(l)+par(2) *T+par(3)* (T*T) ) * {par(10)+par(11) *T+par(12) * ('T+T) )
{((1-(y(3)/p1)) "n)*y (1) *y(2) / {(par(4) +par(5) *T+par(6) * {T*T) ) +y (2} ) -
(D*v (3} ) ;%Equats Z

o 2.9%
ydot=[ydot {1) ydot(2) ydot(3)1';

- Fo
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APPENDIX D: HATLAB PARALLEL PROGRAM FOR CALCULATION OF
CONTROL AND STATE FOR BATCH FERMENTATICN PROCESS

DI MATLAB script file — parailel_batch.m

[ S

clear 511% clear WOTrKSDace

global par T kd m pl n si K ML M2 epsl mu 1 x s p el conmin conmax
statemin statemax astate acon dt y0 x1 s1 pl T1

ms=0.0010;

1x (k) =0.001;
1s (k) =0.005;
1p (k) =0.002;

al = 0.0004; &2 = 0.9001; a3 = 0.0002;

bl = 0.2; b2 = 0.03; B3 = 0.01;
el = 2; ¢2 = 0.3; 3 = 0.021;
dl = 0.0040; d2 = 0.006; d3 = 0.001;



par = [al a2 a3 bl b2 b3 cl c2 3 d1 42 43];
kd = 0.00008; % death cons

Pl 50; % 1 o

m= 0.11;
n = Q0.52;
si= 266.6;
dt = 0.25;

it

Z== === Initial wvalues of state variables ====sw==
x0=1.83;

=50=150.0;

pl= G;

yG=[x0 s0 p0]';

f=============Ccnstraints of conirgl variablegs====== ==
Tmin = 10;

Tmax = 20;

t=1: K+1;
[t, yv] =odelss (@ (t, y) wmedelbatch func2{t, vy, par T, kd, m, pl, n,

si}, t, v0);

x={y (:, 1)) ';
s={y{:.2})"';
p={y{:,3})";

figure(1)
ploti{t,x,'-%",t,s, "tk',t
title{'Initial trajectior

xlabel ('t:
legend('bi
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fer k=1:X

elx(k) = dx(k)-x{k+l);
els{k) = ds(k)-s(k+l};
elp(k) = dp(k}-p{k+1);

end

cpen

M
oo

d
t

jm = findResource(’
dlsp{get(jm))

tlmlngstart'= tic;
start = tig;

[ —— 7 lono
BEEEETE 1ond

times.jobCreateTime
description. jobCreateT1me

]

Tasks = findTask{pjcbl)
[pending running flnlShEd] = flndTask(pjo 1)
set (pjobl, ": n 15
set(pjobl, 'MlnimumNumberoFWorkers

set (pjobl,
set(pjobl,
get (jm) ! ;

is ch
dlsp(get(pjobl))
disp('busy workers')

1=p(get(jm, 'NumberCfbusyWorkers') )

]
o
0
[ #]
—
0
sl
)
K
ot

times. taskCreateTlme



n\“

submlt(pjobl)

9]

¢ long it takes to submili g job=—=s=sss===s================
tlmes submitTime = toc{start}
descrlptlon submitTime = *Job

waltForState(p}obl
times.jchbWaitTime

degcription.pjobWaitTime = '.Joi
et(jm)

results getAllOutputArguments(p b1}
times.resultsTime = toc(start)
descrlptlon resultsTime = 3

errmsgs = get(pjobl task {
nenempty = ~cellfun{@isempty, errmsgs)
celldisp(errmsgs (nonempty} }

fime elapsad
Liilie _w._}./qu\.A

tlmes totalTlme = toc(start)
operationtime = etime(clock,tl)

destroy(pjobl}
matlapool close?

N

Qo0
i

for (k=1:K)

elx{k) = dx{k) - x{k+l);
els{k) = ds({k) - s{k+l);
elp({k) = dp{k}) - p{k+l);
end

el=[elx;els;elp 1;
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1x{k)
Is{k)
1p (k)

Ix(k) - alx*elx{k};
Is(k) - als*els(k);
Ip(k) - alp*elp(k};

edx{k) = -lx(k)-mx*elx(k);
eds {k) -ls (k) -ms*els(k);
edp(k} = -lp(k)-mp*elp(k);

dx (k) + adx*edx(k);

dx(k) =
ds(k) = ds{k) + ads*eds(k);
dp(k) = dplk) + adp*edp(k);

end

end
1=[Ix;1s;1pl; .
=i+l

end

f1gure(2}
t=1:K+1;

xXlabel ('t ir
legend('bicm

NorthEastOutside')

fiqure (3}
plot(t,p, ":k*)

ohimis Resulits for ine product shate')

o 1 samplies’)

legend (F* O“::u::‘,’Locatlo:',’"":—“LZStOuts;de')
figure{4)
title{'Optimised Razsults for ths substrate’)

ploti{s, '-k7)
legend(*substrate’, *Location’, "NorthEastOutside)
tl1=1:K;
figure(5)
plot(tl, T, '—

title{'Cp
viabel{'g
xlabel ('t
legend('T
£iqure(6}
plot{ty, 1x,’
title('On
vlabel{'g
xlabel ('t
legend{'

SM_TITT S TR TDTTOAN —

. 228 ;A N I F e L O I e A R e e S
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oL ths stats
glckbal par T kd m pl n si X Ml M2 epsl mu 1 X s p el conmin conmax
statemin statemax astate acon dt y0 xl1 sl pl T1
======Cglouliation ¢f the initial and final pcoint ¢f the subintsrvalaw==

dd K/numlabs
a={labindex-1}*dd+1
b=labindex*dd

Smem=m—=ms==Dralllacsation oF variables for faster execublions——=zzss==s====
dmmaxdT = zexros{l,K);

d¥sdT = zeros(l,X);

dyxsdT = zeros(1l,X};
dypxdT = zeros(l,K);

mmax = zeros(l,K);

Ks = zeros(1,K);

Yxs = zeros(1,K)};

¥px = zeros({1l,K};

£f = zeros{l,X};

fx = zeros(l,X};

s = zercos{l,K);

fp = zeros({1,K);

£f1 = zeros(1,K);

f2 = zeros(1l,K);

eex = zeros(1,¥X);

ees = zerosi{l,K};

eep = zeros{l,¥);

ex = zeros{l,K);

es = zeros{l,K);

ep = zeros{1l,X);

eT = zeros(l,X};

¢=Caliculation of the paramsterys deri the taxperaTturs====
dmmaxdT (k) = par{2)+2*par(3)*T(k);

dKsdT (k) =par (5} +2*par{6) *T(k);

d¥xsdT (k) =par(8)+2*par(9)*T{k);
d¥pxdT (k) =par (11} +2*par{12) *T (k) ;

fommeme========Calculation of the kinetic coaffs S e e G
mmax (k) =par (1) +par(2) *T (k) +par(3) * (T(k) *2); y 2,77
Ks (k) =par (4) +par(5) *T{k) +par(6) *(T(k) "2); . 2.3
vxs (k) =par{7) +par (8} *T(k} +par(9) ~ (T(k)"2}; 3 2.74
pr(k)-par(IO)+par{ll)*T(k)+par(12)*(T(k) 2} ;853 i
exprezsions lambda v {1}, =0,K-1, ¥ = ¥,z,p and

££ () —dtrmmane (k) *((1-p (&) /pl) *m) ;
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fx(k)=fE{k) *s{k)/(Ks(k) + =s(k}); % Equ
£s (k) =££ (k) *Ks (k) *x (k) / ( (Ks (k) + s(k))"2); n
fp (k) =dt*mmax (k) * ({1-p (k) /pl) " (n-1)) *x(k} *s(k)/(pl*(Ks(k)+s(k)}}
Equaticn £.21

E£1 (k) =£F (k) *x (k) *s (k) / {Ks (k)
£2(k)=£f1(k)/({Ks(k) + s(k)); & E
fl(k) = ££1(k) /mmax (k)

[ S RO R F 5 - et o mm
iCalculation of the expressions ee

eex(k)=1(1,k)-mu{1)*el(l,k);
ees{k)=1{2,k)-mu(2)*el(2,k);
cep (k)=1(3,k) -mu{3)*el(3,k);

F=======Cglculation ¢f thes gradients for =ztats variablesses==w=sssss=====
ex(k)=(1+fx{k) -dt*kd) *eex{k) + ( {(fx (k) /Yxs (k) ) -

dre*m) *ees (k) +dt*fx (k) *Ypx{k) * eep{k);:iEquaticn 4.Z5

es (k) =Ffs (k) *eex (k) +{1-fs (k) /¥xs (k) } *ees{k) +Ypx (k) *
£1{k)*eep(k);itquation 4.286
ep(k)—-rp(k)*eex(kjr(fp(k}/Yxs{k})*ees{k)+{1 fp(k)) *eep(k) ;2Zguation

4,27

- o~ - . - - . 4 s
% m————meee="n crlation of the aradienta far control variand
== ==i_ CHAAT IO OoFf LIS oal (=38 T SoNITYO; AYialni sS=mmmmmsme=—=

eT(k}) = (£1({k)*dmmaxdT(k}+£2(k)*dKsdT(k))*eex(k}) + ({-
Filk)/{¥xs(k))*2)* (dmmaxdT (k) *¥Yxs (k) -mmax (k) *dyxsdT (k) ) +
{(F2 (k) /¥xs(k) ) *dKsdT(k)) *ees(k) +

(£l {k)* (d¥pxdT (k} *mmax (k} +¥px (k) *dmmaxdT (k) } -
pr{k)*fz(k)*szdT(k)}*eep(k);

?.».:;ux.—\‘;_.lu.\ L0

nl fex(k) es(k) eplk) eT(k)]"';

x1(1, k
s1(1,k,labindex}=y0{2);
pl(l,k,labindex}=y0{3);
T1(1,k,labindex}) = T(k)}
clse

index)=y0{1);

+

acon (1) *eT (Xk};

x1(1,k,labindex) = x{k) + astate(l)*ex(k);

s1{1,k,labindex) = s{k) + astate(2)*es(k};

pl{1,k,labindex) = pl{k) + astate(3)*ep(k);

T1(1,k,labindex) = T{k) + acon(l)*eT{k)

end

i=i+d

and

‘-Tf:'u:::‘”:::ﬁ'“‘-’-T"T'“*ﬂ“::-:::;;:='=h’“c"’.‘( ac:in':: CSI’-_SLI'EiEtS:::ii=:=='—=’"~=ﬂi‘: AT SR T

if x1{1,k,labindex) < statemin(l}
xl(l,k labindex) = statemin(l);
elseif x1{1,k,labindex) > gtatemax(l)
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x1(1,%, labindex) = statemax(l};

end

if s51{1,k,labindex) <statemin(2)
s1{1,k,labindex) = statemin(2};
elseif g1(1,k,labindex) > statemax(2)}
51{1,k,labindex) = statemax(2)};

en

if pi{l,k,labindex) < statemin(3)
pl(l,k, labindex) = statemin(3};
elseif pi(l,k,labindex) > statemax(3)
pl{l,k,labindex) = statemax(3};

end '

if T1{1,k,labindex) < conmin{1)
T1(1,k,lakindex) = commin{1);

elseif T1{(1l,k,labindex) > conmax(l)
Ti1(1,k,labindex) = conmax{l}:

interval {a,b;

{2, D
labBarrler
if labindex==1
x2?=reshape{xl,1,numel {size{xl}})};
s2=reshape(sl,l,numel {(size{sl})};
p2=reshape(pl, 1,numel (size(pl}));
T2=reshape{Tl, 1, numel (size(T1)})
x=x2{ [a:b, labindex]}
s=52([a:b, labindex])
p=p2([a:b,labindex])
T=T2([a:b, labindex])
F======Calculation of the final value of x{k}=x{K+il)=x¥l;sKl, pHlimmwemomws

¥R1=x{K)+E1(X) dt*kd*x{K)
sKl=s(X)-f1(X) /Yxs(K)-dt*m*x (X} ;
pKl=p (X)+E1(K) *Ypx {K) ;
if %K1 <= statemin{l)
%K1 = statemin(l)
celseif xK1 >=statemax(l}
xK1 = statemax(l};
en
x{49)=xK1
if sKl1 <= statemin(2)
sKl = statemin(2);
elseif sK1l »= statemax(2)
sK1 = statemax(2);

D..

en
s(49)=sK1
if pKl <= statemin(3)
pPEKl = statemin(3};
elseif pKl >= statemax(3)
pKl statemax(3)

1l

D3 MATLAB cnpt file — modelbatch_ funcz m

e meria it Funsg om
57 MOOSIiSaTCnR IunlL.
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ydot {1)={par{l) +par(2) *T+par{3) * {T+*T} )}~ ((1-
(vi3)/pl}) "n)y*y (L) *v(2) / ({par(4)+par(5) *T+paxr (6} * (T*T) +y (2} ) - (kd*y{1}));

[C PR S Fat
'1:3.‘3_1_‘«_4._; 1 L£.4iD

véot{2)=(par{l) +par{2) *T+par (3} *{T*T)) * ({1-

(y{3)/p1)) "n) *y (1) *y (2) / ({par{4) +par (5) *T+par(6) * (T*T) +y {2} ) /-
(par(7)+par(8) *T+par (9} * (T*T) } -m*y (1} ) ;%Eguation 2.73

ydot (3} ={par (1) +par (2} +T+par(3) *{T*T} )} *((1-

(v{(3)/pl)) *n) *y (1) *v {2} / {{par(4) +par (5) *T+paxr (6} * {T*T) ) +y {2) } * (par {10} +b
ar{ll) *T+par {12}« {T*T)}) ;tkguation 2.8C

ydot— [ydot (1) -ydot (2) ydot (3)]"
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APPENDIX E: MATLAB PARALLEL PROGRAM FOR CALCULATION OF
CONTROL AND STATE FOR FED-BATCH FERMENTATION PROCESS

E.1: MATLAB script file —fedbatch_ paraliel.m

tic; % st the ¢iock

N

[

o

§o—emm======Tnitial waluses 0f the penalty cosificientg==rmwassommoTam===
mx=0.0010;
ms=0.0010;
mp=0.0010;
mv=0.0010;
fe=—m====—==Tnitizl Trajaectories for the Zonjugate varliazblesss=====ss=s=====
for k = 1: K
1x (k} =0.00%;
1s {k)} =0.005;
1p {(k} =0.002;
v {k} =0.003;
end
A =Initial trajectories of the control vairlzblegsssss=s=s======+
T=16.0;
7=0;
S === Model co-gfficients S —

= 0.0004; a2 =
= 0.2; b2 =
2; c2 = 0.

dl = 0.0040; d2 = 0.006; &3 = 0.001;

par = [al a2 a3 bl b2 b3 ¢l c2 c3 d1 d2 d3l;

0oy
-~
oo



= 0.00008;

b

e
e

0t

i
"

[ BT

Fieiean

P

p0=2.1;
v0=2.%;
y0=[x0 s0 p0 VvO0l';:

W

0

Tmin = 10;
Fmin = 0;

[t, y] =odelss{@(t,y) modelfedbatch funez{t,y, par, T,F, kd, m, pl, n,
si},e,y0);

x=(y {:, 1}}';

s=(y(:,2)}"';

p=(yv(:,3))";

v={y({:,4)}";

figure (1)

G
z
|
8]
(8]
°
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end

E== : : trajectoriss of the control varizbles== =======
T=16.0*ones (1, K);

F=5.0%*ones {1, X);

]

] e o~ T N I
alation of the initial

41
—
"

z
|

dx{k}-x{k+1);
ds (k) -s{k+1};
dp (k) -p{k+1);
dvi{k}-v{k+1);

(]
el
0]
=z
Il

gl
e

o
|t

j=1;
while j <= M2;%35eco
if matlabpocl(’sizs

matlabpool('cic

jm = findResourc
dlsp(get(jm)) of
the icbm gax

timingStart = tic;
start = tic;

pjobz—createParallelJob(jm,'chflgcra:_ch‘,‘
parallel From i age
get{pjobz) = oiokl

times.jobCreateTime = tcc(start)
descrlptlon jobCreateTime = 'Job creaticon time

e

Tasks = findTask(pjob2}
[pending running finished] = findTask(pjeobl)

set (pjobl, 'Configuraticn’, 'ickmanayorconfigh’
set (pjcb, 'MinimumNumberOfWorkers', 32) ;
set {(pjcb, 'MaximumNumberOfWorkers',32) ;
Set(pjobl TTilslependencies’ { :L%w b

disp(get (pjob2))
dlsp('gusy warwers')
disp(get(jm, 'NumberOfbusyWorkers'})
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a
o L« tr@

tasks= createTask(pjob2.
get {pjob2, 'task’)

i+ takes o
times. taskCreateTlme = toc(start)
description. taskCreateTime = 'Task

long it takxes fo
times.submitTime = toc{start)
descrlptlon submitTime =

waitForState (pjob2, 'finishead’)
times.jobWaitTime = toc(start}
description.pjobWaitTime = 'Jcb w
get (jm)

results-getAllOutputArguments(pjobz)
times.resultsTime = toc(start)
description.resultsTime =

% o s o e S T T S I R S A A S T S B M O I SR AT S e

- 3 =

S 3 TR S Sh S e [
Pmmmmmmes==== Y S rITY THAT —_— ———

errmsgs = get(pjob2.task, {
nonempty = ~cellfun{@isempty, errmsgs)
celldlsp(errmsgs(nonempty))

Time eliapsed
toc(start}
etime{clock, t0)

k1

destroy(pjobz)
matlapeool close® close

for {k=1:K)

elx{k) = dx(k}) - x(k+1);
elsi{k) = ds(k} - s{k+1);
eipi{k) = dp{k}) - plk+l);
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elvik) = dvik} - wv{k+l);

end

el={elx;els;elp;elvi;

nni=ncrm{elx)+ norm(els)+ norm{elp}+ norm(elv); zCzaiculation <f the norm
cf the

E308; L the oY 1 i ¥ - e R P N, . U - d =
EiLfL ¥ Q0L In Conver It T TiRe Coordiniting pr Jure ICr ne and oI

I1x(k) = lxi{k) - alx*elx(k};
als*els(k);
alp*elp(k);
alvrelvik);

o
4T 0
EEX
oo
ol
< n
ERR
I [} I

adx* {-lx-mx*elx(k));
ads*{-ls-ma*els(k));
adp* {-lp-mp*elp(k));
adv* {-1p-mp*elp(k)}:

g &

Ex

([

g &

ZZ
+ o+ 4+ o+

end
1=[1x%;1s;1lp;1v];
J=j+1

end

figure(2)
t=1:X+1;
plotit,x, -k}
title{ ' Ooitimiszes
vlabel (*g:
xlabel (" tim
legend ('oicnma
figure (3}
plot{t,p,’:
title{'Cptimi
ylabel ('g/1");
xlabhel {'time
legend ('praoduct
figure(4)
ticle{'Optinise
vliabel (Tg/1');
xlabel (*time in samplias’);
ploti{s,'-k")

legend('su
figure(5)
ploti{t,v,’'-.k")

title{'optimised Results for the volume sitate')
ylabel('s/17});

xlabel ("ti i
legend('wv
tl=1:K;
figure(6)
plot(tl, T, '-k'}

o8
7
[
0}

o}
]
i
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title( Cpri for the Temperature T')
viabel{("g/1

xlabel {"tire in samples');

legend (' Temperature T', 'Logaticn'’, 'NorthiZastOuiside')

figqure(7)
plot{tl,F, '—-kF
title{"Optimt
viabel{‘g/1")
xlabel{'ti i
legend (' Input
figure (8}
plot{t:,lx, ' -1
title('Optimi

AF Fho gt seo
I e 3Tate

function [x,s8,p,Vv.T,F]}=subprob2 fedbatch

globzl par T F kd mpl n 81 K ML M2 epsl mu 1 x 5 p v el conmin conmax
statemin statemax astate acon 4dt y0 x1 si pl vl Tl F1

dd=K/numlabs
a={labindex-1)*dd+1
b=labindex*dd

AT eEEEEEET ——— ==== eSS
for ir

i=1

while 1 <= M1l %First lsvel lisraticns

{m=m=m====Drallladation of variables for faster sxecutlons=ssssesmss=wmms

dmmaxdT = zeros(l,X);
dgsdT = zeros(i,K);
d¥xsdT = zeros(1,X);
dypxdT zeros (1,K};
mmax = zeros({l,K);
Xs zeros (1,K) ;
vxz = zercs{l,K);
¥px zereos (1,K);
f£ = zercs(1l,K};

i

fx = zeros(1,K);
fs = zeros(l,K);
fp = zeros(1,K};
f1 = zeros(1,K};
f2 = zeros(1,K)};

eex = zeros(1,X};
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EE€S = zeros(1,K};

eep = zeros(l,K};

ex = zeros{1l,K};

es = zeros(1,K);

ep = zercs({l,K);

eT = zeros(i,X);

eF = zeros(1,K);

Fe=mmums==ssewss=s=====Fcr Lhe Cemng S e i S O RS
dmmaxdT(k} = par{2}+2*par(3}*T(k); 15
dEKsdT (k) =par{5)+2*par (&) *T(k) ;

d¥xsdT (k}=par (8} +2*par(9) *T (k};

d¥pxdT (k}=par(11l)+2*par (12} *T(k);

mmax(k)-par{1}+par(2)*T(k)Tpar(B)*(T(k) 2),
Ks (k) =par{4)+par(5)*T(k)+par{s) *{T(k}"2};
Yxs (k) =par{7) +par(8) *T{k)+par(9) *(T{k)"2};

pr(k)—par(10)+par(ll)*T(k)+par(12)*(T(k) 2} ; > .75
sxpressions lambda Ky, k=0,¥-1, = ¥,8%,5,v anc

£f (k) dt*mmax(k)*((l pik) /pl}*n);
fx(kK)=FFf(k)*s(k)/(Es(k) + s(k)); :
fa(k)=ff (k) *Ks (k) *x(k) / ((Ka(k) + s(k)) 2) %7
£p (k) =dt*mmax (k) * ({1-p (k) /pl) " (n- l))*x(k)*s{k)/(pl*(Ks(k}+s(k))),s

s -~
Fauiatinn 5
FASRO LRSI P ) 26

fv (k) = dt*P(k)/(v{k) 2); BEc
£E1({k)=f£(Xk) *x (k) *s(k)/(Xs
f2({k)=ff1(k}/{Ks(k) + s{
f1(k) = ££f1(k)/mmax(k)

_E %

PR ——— - R P P, QG S
iCaleulisticon of the Q’“ZESS_CQS 22 V¥V o {(4}=izm

eex(k)=1(1,k) mu(l)*el(l k);

ees{k)=1(2,k)-mu(2)*el{2,k);
eep(k}=1(3,k}-mu(3)*el(3,k);
esvik)=1{4,k)-mu(4)*el{4,k);

sme=====Cgloulaticn of the gradients for state variaples=wm=s=—=us

ex (k) ={1+Ffx (k) -de*kd+dt*F (k) /vik} ) *eex{k)+{ {fx{k) /fYxs (k) } -

dt*m) *ees (k) +fx (k) *Ypx(k} * eep(k);<fouaticn 5.31

es{k)=Ffs (k) *eex (k) +(1-£fs(k) /¥xs (k) -dt*F(k} /v(k)) *ees(k) +Ypx (k) *

fs(k) *eep(k) ;ilgquation 3.32

ep (k) =-fp (k) *eex (k) + (fp (k) /¥xs (k) ) *ees(k} +(1-fp(Xk) -

de*F (k) /vik) ) *eep (k) ;*Zguation .32

evi{k) =fvik) *x (k) reex (k) - (Ev(k}* {si-s(k}) *ees (k) }+{fv (k) *p (k) *eep(k) ) +

eev(k),

e e = anie = [ar=) o ko T maTmtral ool e
I=====e====_alCRIET1L0N i the 3_“3¢_;;3 _____ T rOL YATXIALliegT— e w=ooo=om

eF (k) =dt*x (k) /v (k) *reex (k) +(dt* (si-s(k)) /v(k) ) *ees (k) -
{(dt*p (k) /v(k) ) *eep (k) +dt*eev (k) ;2Eguaticn 5.34
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eT(k) = (£1(k)*drmaxdT (k)}+£2(k)*dKsdT (k) )*eex{k) + ((-
f1(k)/ (¥xs{k))"2)* (dmmaxdT (k) *¥xs (k) -mmax (k) *dyxsdT (k) ) +

(£2({k) /Y=xs (k) ) *dK=sdT(k}) *ees{k) +

(£1 (k) * (d¥pxdT (k) *mmax (k) +¥px (k) *dmmaxdT (k} ) -

Ypx{k) *£2 (k) *dRsdT (k) } *eep (k) ;

3Equ

=2 T
TICOR 2.20

s1(1,k, labindex)=y0(2};
pl(l,k, labindex)=y0(3};
vli(1l,k,labindex)=y0({4);
T1({1,k,labindex) = T(k)
F1(1,k,labindex}) = F{k)
else

x1(1,k, labindex) = x(k)

+ o+

acon{1}*eT (k) ;
acon{4)*eF (k) ;

astate(l) *ex{k};

+
s1(1,k,lsbindex} = s(k) + astate(2)*es{k);
pl{l,k,labindex} = p(k) + astate(3)*ep(k);
vl{l,k,labindex) = w(k} + astate(4)*ev(k};
Ti{1,k,labindex} = T(k) + acon(l)*eT(k)}

+

F1(1,k,labindex} = F(k)
end

inst

¥1(1,%,labindex) = statemin(i};
elseif x1(1,k,labindex} > statemax(l}
x1{1,k,labindex) = statemax(1l);
end
if s1(1,k,labindex} <statemin(2)
s1{1,k,labindex) = statemin(2);
elseif a1(l,k,labindex) > statemax(2}
21(1,k,lakindex) = statemax(2);
end
if pl(l,k,labindex) < statemin(3)
pl(l,k,labindex} = statemin(3);
els=if pl{l,k,labindex) > statemax{3)
pi(l,k,labindex) = statemax(3};

if v1{1l,k,labindex) < statemin(4)
v1(1l,k,labindex) = statemin(4);
elseif vl(i,k,labindex) > statemax(4)
v1{1,k,labindex) = statemax(4);
end

if T1(1,k,labindex) < conmin{l)
T1{1,k,labindex) = coenmin{l)};
elseif T1(1l,k,labindex) > conmax(l)
T1{1,k,labindex} = commax{l);
end
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if F1(1i,k,labindex) < conmin(2)
F1(l,k,labindex) = conmin(2);

elseif Fi(1l,k,labindex) > conmax(2)
F1(1,k,labindex) = conmax(2);

end

end %end of the iterations in the subproblerm Tims interval fa, b}

% —_——— = ===
labBarrier

if labindex==1

x2=reshape(xl,1 numel({size(x1))};
s2=reshape(sl,l,numel{size(sl))};
p2=reshape (pl, 1, numel (size (pl))}:
T2=reghape (T, 1,numel (size(T1)))
F2=reshape(F1l,1,numel{size(Fl1)));

x=x2{[a:b,labindex]}
s=z2{[a:b, labindex])
p=p2{[a:b,labindex])
T=T2({a:b,labindex]}
F=F2 ({a:b,labindex])

2 Tryiardesn

(e

Lo lQUREaT A

sKl=s(K) f1(K)/YXS(K) dt*m*x(K}+dt*F(K)*(sl s(K))/v(K),
pK1=p (K) +£1(K) *Ypx (K) -dt*F (K) *p (X} /v (K) ;
vEl=v{K)+dt*F{K} ;

if XK1 <= statemin(l)

xKl statemax(l),
end
x(49)=xKl

if sK1 <= statemin(2)
sK1 = statemin(2z);

elgseif sKl >= statemax(2)
sK1 = statemax(2):;

end

s5(49)=sK1

if pKi <= statemin(3)
pKl = statemin(3);

elseif pKl >= statemax(3)
pKl=statemax(3)

end

p{49)=pKl

it vK1 <= statemin(4)
vEkl = statemin(4);

elseif vK1 >= statemax(4)
vkl = statemax(4};

en

v(49)=vKl

end
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E.3: MATLAB script file — modelfedbatch_funcZm

ydot(l)_(par(l)fpar(z)*T+par(3)*(T*T))*((l-

(v{3)/pl) ) "n)*y{1) *y (2} / {{par{4) +par(5) *T+par (&) * (T*T) +y (2} ) - (kd*y (1)) -
Foy (1) /y{4)); %Eguation Z.34

ydot (2}={par{l)+par(2) *T+par{3} * (T+*T} )} * ((1-

(y{3)/pL) ) " n)y*y (1) *y (2} / ({par{4) +par(5) *T+par (&) * (T*T)+y {2} ) /-
(par(7)+par{8) *T+par (9} * {T+*T) )} -m*y (1} -F* (si-y(2))} /y{4));%Equation C£.35
ydot (3) ={par (1) +par(2) *T+par (3} * (T+*T} ) * ((1-

(v{3)/pl) ) n) *v (1) *v {2} / ((par(4) +par (5) *T+par (6} * {T*T) ) +y{2) )} * (par (10} +p
ar {(11) *T+par{l2) * {T*T)} -F*y(3) /vy (4) ;3Equaticn 2.8¢

vdot {4} =F; %zguaticn Z.87

ydot-[ydot(l) ydot (2) ydot(3) ydet(4}l’;

Eomm——— —ee T
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APPENDIX F: MATLAB PARALLEL PROGRAM FOR CALCULATION OF
CONTROL AND STATE FOR CONTINUOS FERMENTATION PROCESS

F.I: MATLAB scnpt file - mnﬁnueus _parallelm

clear z131% clear workspa
global par TD kd mpl nn s1i K ML M2 epsl mu 1 x s p el conmin conmax
gtatemin statemax astate acon dt yO X1l sl pl Tl D1

mx=0.0010C;
ms=0.001G;

L Tritial trajectoriss Zor the conjuuate variablege=========
for k = 1: K+1

Ix (k) =0.001;

1s (k) =0.005;

Ip (k) =0.002;

end

é:x:::=======z;it;al trajectories of the contrcl varizblesssms=s=—————==
T = 16;

D 0;

fmmm—tm——moomwe—— == =Mndol co-efficignts—s==========m=——mom=—mo===—

a2 = 0.0001; a3 = £¢.0002;
= 0.03; b3 = 0.0L;
cl = 2; ¢2 = 0.3; ¢3 = 0.021;
dl = 0.0040; 42 = 0.006; 43 = 0.001;
par = [al a2 a3 bl b2 b3 ¢l ¢2 c3 d1 d2 a3];
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kd

-0.00008;
pl 50; & i
m 0.11;
n = 0.52;
si= 266.6;

I

X0=1.83;
s0=159.0;

0= 0;

yO0=[x0 =0 p0l°';

fe=masmonsmss—s=ssme=ctegdy state values of state variablegs=—=swmassssso==
xbar = 100*cones {1, K+1)};
sbar = 3¢*ones (1, K+1});
pbar = 100*ones (1, K+1);

i = raints <l
Tmin = 10;
Dmin = Q;
Tmax = 25;
Dmax = 5;

F== ==== Felmuniagtisen nF O

LG iCQULIETICN G L2.Ta miy MmN === =S smmam et

citmax = 0.01*(Ks + smax)/ {(mmax-kd-Dmax Ks*({kd + Dmax));
dtmin = 0.01*(Xs + smin)/ {(mmax-kd-Dmin)*smin - XKe*(kd + Dmin)};

—
"
g .
b
)

t=1: K+l;
ft, vl =odelSs (@ (t, y} modelcontinuos func2 (t, y, par, T, D, kd, m,
pl, n, si), t, y0);
x=(y {:, 1)) ";
s={y(:,2))";
p=(y(:,3)}";
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figure (1)
t = 1:K+1;
plot(t x,'—k‘ t, s,’

ylabel(‘g';’);
xlabel ’+5ﬂe in

T = lé*ones (1, Kj;
D = 1.25*cnes (1, K);

s o of the imitiszl ot : tas of 81 v {},vywms,w, n=m=====
2L, H [ 4 LI L [ k: SOOI omi VoK, YRR, Y, 0

for k=1:K
elx{k) = dx(k)-x(k+l);
els{k) = da(k)-s(k+1l};
elp(k}) = dp{k)-p(k+1l);

end
o3 - ~ 3 Py - o _ SA T W e W e e e e e o o e
== O SiXMiR] AT g L3St golinitososoowmssss=sSmsmmTmss

elx(K) = K(K+1)— xbar(K+i),
els(k) = s(X+1l)- sbar(kK+1);
elp(k) = p(K+1) - pkar(K+1);

R

matlabpool (* a
pool cpen
matlal crkars ILrci o
L CalilculaTicon

jm = findRescurcel(’
dlsp{get(jm))

timingStart = tic;
start = tic;
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pjob3= createParallelJob(jm, Confi

parailel 3ob I
get (pjob3)

of
It
]

s ] akes
times. jobCreateTlme = toc(start)
description.jobCreateTime = 'Job

Tasks = findTask(pjob2)
fpending runnlng finished] = flndTask(p}obl)
set (piob3, “iguration',
set {pjob3, 'MlnlmLmNLmberOfWorkers‘ 32);
set (pjob3, 'Max1mumNumberOFWorkers' 32);
set {pich3, Depen s*,{"=u 2
get(jm)

{ x5 Y
%9

- nnpdﬁﬁ;ﬁ?‘ﬁﬁ

dlsp{get(pjobB)}
disp('busvy ;
dlsp{get(jm, 'NumberOfbusyWorkers 1)

task createTask(pjobB @subprob2_batch, 5, {})
get {pjobZ, "task")

iy
{1k

i -:-L =

times. taskCreateTlme = toc{ t
description. taskCreateTime = 'Ta

times.submitTime = to
descrlptlon submitTime

waltForState{pjobB Pfinished!
times.jobWaitTime = toc(start)

description.pjobWaitTime = 'Jcoi
get {jm)

results-getAllOutputArguments{pjobB)
times.resultsTime = toc(start)

description.resultsTime = 'E




s
1
i
i
¢
|
|
i,
)
<
e
aH
-

errmsgs = get(p]ObZ task
nonempty = ~cellfun{@isempty, errmsgs)
celidisp (errmsgs (nonempty) )

Mo oiive Tha +mtsl Fimes 21laong P ey oS
Zhie ] e L= rermo oiongsan Tyryom SETIno =
Measure The ToL3al time £igpes3ed Irom Crsesating Ths

times.totalTime = toc{start)
cperationtime=etime{clock, t0} icparatic

3

.
!
ot
o

computing

destroy (pjob3)
matlapool close: clicose matlapoo

for k=1:K

elx(K+1) = x(K+1)-xbar{K+l);
els{K+1l}) = s(K+1) -sbar{K+1);
elp{K+1} = p(K+l)-pbar(K+l);
end

mml=norm({elx)+ norm{els)+ norm{elp};

if nnl<=eps2

break

else

% Calculation of ths ixn
for k =1:XK+1

Ix(k) = lx(k} + alxrelx(k};

=

o r
Y‘-t- Lt v

413

.
L

1s{k}) = 1ls(k) + als*els(k);

ip(k) = lptlk) + alp*elp(k);

end

sCaiculiaticn of the improvad valuess of the szar

mmax(K)—par{l)+par{2)*T{K)+par(3)*(T{K) 2);
Ks (K) =par (&) +par (5) *T(K) +par {6} * (T(K) “2);
Yxs (K) =par({7)+par(8) *T(K) +par(9) *{T(X)"2);
Ypx (K) =par (10) +par{11) *T (K)+par(12) * (T(K) “2) ;
eex (K)y=1x(K)+ mx* (x(X)-xbar(X});

ees (K)=1z (K)+ ms* {s(K)-sbar(X});

eep (K) =1p (K) + mp* {p(K)-pbar(X));

ff1(K) = mmax{K) *((1-pk/pl)*n);

FI{K) = FIL(E)*x(K)})*s{K}/{Ks{K) + s(K)};%¥ Eguaticn &.04

dt = (-K -{£f3(K)-(kd*x(K)-D(K)*x(K)}*eex(K)+(£3(K) /Yxs({K)+ m*x (X} -
DR} *{si- s(K))*ees(K)—(pr(K)*fB(K) D(K)*p(K))*eep(K))/(mX*(f3(K)
kd*x (X)) -D(K) *%x{K))*2 + ms*(fB(K)/Yxs(K)+ m*x (K) -D{K) *{si-s{K)) "2+

mp* (¥Ypx (K) *£3 (K) ) -D(X) *p(K)) *2) ; % Eguaticn £6.563

if dt <= dtmin

dt = dtmin;
elseif dt >=dtmax
dt = dtmax;

for k = 1:K

= dx(k) - adx* (-mx*elx(k)-1lx{k));
ds(k) - ads*{-ms*els(k)-1s{k))};
= dp(k) - adp*{-mp*elp(k)-Ip(k});
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fiqure (2)
t=1:K+1;
plot({t,x, -k
tﬁtle(’“ yoimi
ylabel ('
xXlabel ( 'time in
legend('bicmass’
figure(3)
plot(t,p,’ .k ")
title('Cptims
ylabel{‘ﬂlé
xlabel('tim
legend{’i;
figure{4)
plot{t,s,’
title(’“

legend('
tl=1:X;
figure (s}

plot (1, T, '-k')

title('Cp sed Results for thes Temperaturs 7'}
y¥label ('3

xlabel (71

legend (" ,NorthEastCutbtsids'}

figure (6}

plot(£1,D, "'
title{'Cp
yvlabel ('g
xlabel(’*'
legend (*
flgure(7)
tl1=1:K+1;

plot(tl, 1x,’ t,tl,1s, 'tk , L, 1p, !

titlie('Gnti ed suits Zor the CGEJ‘T“ variaples lambda!
viabel{'g

xlabel ('tim

legend ('L sV, "Lambda p', "Locaticn', "NorthEgstl

figure(8)"
t = 1:K+1;
plot{t,x, '-
title('Cpo
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A e g

functienl[x, s,p,v,T,Dl =subprcb2 continucus

global par TD kd m pl n s1 K M1 M2 epsi mu 1 x s p el conmin conmax
statemin statemax astate acon dt y0 x1 sl pl Ti D1

g======Caglculation of the initial and final point of the subintervzla=—=
dd=K/numlabs

a={labindex-1)*dd+1

b=labindex*dd

% —_———— —_—— —_—— T —
i=1

wWwhile 1 <= Ml %First level lierations

tm====w===DPreAllocation oFf variagbples for faster exegcution=—ssswomzmssso—

dmmaxdT = zeres{l,K};
dKsdT = zeros{l,K}:
d¥xsdT = zeros(l,X);
dypxdT = zeros(l,X};

mmax = zeros{l,K);
K3 = gzeros{l,K);
Yxs = zeros(1l,K);
Ypx = zeros(1l,K);
ff = zeros(1,K);
fx = zeros(l1l,K);
fs = zeros(1l,K};
fp = zeros(1,K);
£f1 = zeros{1l,K};
f2 = geros(l,K};
eex = zeros(1,K};
ees = zeros({1l,K);
eep = zeros(l,K);
ex = zeros(1l,K);
es = zeros({l,K);
ep = zeros(1,K);
eT = zerosa(i,X);

eD = zeros(l X);:

dmmaxdT(k} par(2}+2*par(3)*T(
szdT(k}:par(5)+2*par(6)*T(k}

d¥xsdT {k) =par(8) +2*par(9) *T(k};
dexdT(k)—par(ll}+2*par{l2)*T(k);

mmax(k)—par(l)+par(2)*T(k)+paf(3)*(T(k} "2);
Xs (k) =par (&) +par (5) *T (k) +par(6) * (T (k) "2) ;
YXS(k)-par(7)+par(8)*T(k)+par(9)*(T(k)‘2),%
pr(k)-par{lo)+par(ll)*T(k)+par(12}*(T(k) 2) ;%Fauation
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J—— ____v."-.'E—-w'e b
=======Calculat

pk=p(k};

££ (k) =dt*mmax{k) *{{1-pk/pl) "n);
££2 (k)= dt*((1-pk/pl)} *n};
fEx(k)=ff(k)*s(k)/(Ks(k}) + s(k)); % Eguation .38

Es(k)=£ff (k) *Ks{k) =* x(k)/((Ks(k) + s(k))*2); %EJEatio& £.40

fp (k) =-dt*mmax (k) * ({1-p (k) /p1) " {n-1) ) *n*x{k) *s (k) / (p1*(Ks(k) + s(k))); =
Bauation 6.3%
fi(k)=ff2 (k) *x (k) *s{k)/{Ks(k) + =s(k))};
f2{k)=-f1(k) *mmax (k) /{Xs(k) + s(k)); &

B3 S

W

ion of the sSXprassicon

$Calgulation ¢f the expressions e v {kY=lambda({k}-m v*E
eax{k)=1(1,k)-mm({1)*el(1,k);
ees{k)=1(2,k)-mu{2)*el(2,k);

eep{k) =1(3, k}—mu(B)*el(3 k);

U

[ L Y T i 4 ~E = p=
fmme====Czlculation of thse 41

ex{k})=(1+fx (k) -dt*kd-dt*D{k} ) *ee
Ex (k) *¥px (k) *eep (k} ; 3Eguaticn &.
es (k) =fs{k) *reex(k}+{1-fs(k) /Yxs(
s (k) *eep (k) ;3Equaiicon §.34
ep (k) =fp (k) *eex(k} - {(fp (k) /¥xs (k) } *ees (k) + (1+fp (k) -
dt*D (k) ) *eep (k) ; 3Eguat £, 47

o

o+ ronrtahd e e e e e e e e e e
ate variablas

k)/YXs(k)} -dt*m) *ees (k) +

dt*D(k))*ees(k)+pr(k)*

S==========gloulaticn of the gradianits fcocr control varizhlegs=====
eD(k)=-dt*x (k) *eex{k)+(dt* (si-s{k})) *ees (k) ]} - {dt*p(k)*eep|(

5,47

eT(k) = (£f1(k)*dmmaxdT(k)+£f2(k)*dKsdT(k))*eex(k) + ({-
f1(k)/{vxas(k))™2)* (dmmaxdT (k) *¥xs (k) -mmax (k) *d¥x=dT (k) } +
(2 (k) /¥xs{k))*aKsdT(k}) *ees{k} +

{(£1 (k) * (dYpxdT (k} *mmax (k} +¥Ypx (k) *dmmaxdT (k) ) -
pr(k)*fZ(k)*szdT(k))*eep(k).

ETrmraid~rm &

oy
FLUUSRTIOIL 2.20

index)=y0{2);
plii, k labindex)=y0{3);
x1(1,k,labindex)=y0{1};

T1(1,k,labindex) = T(k) + accn(l)*eT(k);
D1(1,k,labindex) = D{k} + acon(2)*eD(k);
alse

x1(1,%,1abindex) = x{k} astate (1) *ex (k) ;
s1{1l,k, labindex) = s(k) astate(2})*es{k);

astate(3) *ep(k);
aceon(l) *eT (k)
acon(2) *eD{(K);
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pl{l,k, labindex) = p(k)
T1{1,%k,labindex) = T{k}
D1{1,k,labindex} = D(k}

R A



fmmmsmmm—=s===—=—==ssm=m=xwe{(hack against consirainig====——=s===s—=zus=s==—====
if x1{1.k,labindex} < statemin(l)}
x1({1l,k,labindex) = statemin(i):
elseif x1(1,k,labindex) > statemax(1)
x1(1,k,labindex) = statemax(l);
end
if 81(1,%k,labindex) <statemin(2)
51{1,k,labindex) = statemin(2};
elseif s1(1,k,labindex) > statemax(2)
s1(1,k,labindex} = statemax(2);
end
if pl{l,k,labindex) < statemin{3)
pl(1,k,labindex} = statemin(3};
elseif pi(l,k,labindex}) > statemax(3}
pi(1,k,labindex) = statemax(3};
end
if T1(1i,k,labindex) < conmin{l)
‘'T1{1l,%k,lakindex) = conmin{l);
elseif T1(1l,k,labindex} > conmax(l)
T1(1,k,labindex) = commax(l};
end
if D1{1,k,labindex}) < conmin(2)
D1(1l,%k,labindex) = commin(2);
elsaif D1{(3i,k,labindex) > conmax(2}
Dl(1,k, labindex) = conmax(2);
end %end of the iterastions in the subproblem i

e

labBarrier

if labkindex==1
x2=rashape(x1,1,numel(size(x1)));
s2=reshape{sl, 1, numel(size(s1)));
p2=reshape{pl, 1, numel (size(pl)));
T2=reshape(T1,1,numel{size(T1}))
D2=reshape (D1, 1,numel{size{D1}});

x=x2([a:b,labindex])
s=s2{[a:b,labindex])
p=p2{[a:b,labindex])
T=T2{ [a:b, labindex])
D=D2{ [a:b, labindex])

h

. = T L T R R N S
on O Tne ILndl vaiuge oI Ziﬂ;*A{ai;}—/{= SXi, LR i=mwm====

ex{Kll= Ix(K1}+ mx*(x(K1l)-xbar(Kl});
ez{RKl)= 1s(Kl}+ ms*{s(Kl)-sbar(Kl)};
ep{Kl)= 1p(K1)+ mp*{p(Kl)-phar{Kl)};

$fateuiation of the final valus of state
XK1 = (K1) - alx*ex(Kl};

sK1 = s(Kl) - als*es{Kl};

pKl = p(El) - alp*ep(Ki);

% Check the constraints at the final polint



if xKI <= xmin
XK1 = xmin;
elseif xK1 >=xmax
xK1 = xmax;
end
if sK1 <= smin
sK1i = smin;
elseif sK1 >= smax
sK1 = smax;
end
if pKl1 <= pmin
pKl = pmin;
elseif pKl >= pmax
pEl=pmax;

vdot (1) =(par (1) +par(2) *T+par (3)* {(T*T})* {(1-
{(yv(3)/p1)) *n)*vi{1l) *v(2) / ((par(4) +par (5) *T+par (6} * (T*T) +y{2) } - (kd*y (1)) -
Dxy(1)); %Eguation 2.93

vdot (2} ={par{l) +par(2) *T+paxr (3)*(T*T)} * {{1-

(v (3)/pl)) *n) *y (1) *y(2) /( (par (4} +par (5) *T+par(6) * (T*T)+y(2)) /-
(par (7)+par (8) *T+par (9) *(T*T)) -m*y (1) + D* (si-y(2})) ;% Equation .52
ydot (3)=(par(l) +par(2) *T+par{3) *(T*T) ) * (par(10) +par{ll) *T+par(12) * {(T*T))
F(I-(y(3)}/pl)) "n) *y{3) *v(2) /{ (par{4) +par{5) *T+par (&) * (T*T) ) +y(2)]) -
{D*y(3)};%Eqguation 2.85

vdot=[ydot {1} ydot(2) ydot{3}]1';
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