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ABSTRACT

In order to develop an effective control strategy for the activated sludge process of a

wastewater treatment plant, an understanding of the nature of the influent load disturbances

to the wastewater treatment plant is necessary. Biological systems are among the most

difficult to control and predict. Due to the complex biological reaction me.chanisms, the highly

time-varying, and multivariable aspects of the wastewater treatment plant ('MNTP), the

diagnosis of the 'MNTP are still difficult in practice. The application of intelligent techniques,

which can analyse the multi-dimensional nonlinear process data using a visualisation

technique, can be useful for analysing and diagnosing the activated-sludge process in the

VVVVTP. This complex capability for nonlinearity representation combined with the fact that no

model exists for the WVVTP influent dynamics to a WVVTP, makes neural networks an ideal

choice for a solution.

Forecasting the behaviour of complex systems has been a broad application area for neural

networks. Applications such as economic forecasting, electricity load I demand forecasting,

and forecasting natural and physical phenomena have been extensively studied, hence the

numerous papers presented at annual conferences in this focus area. The cognitive ability of

artificial neural networks to map' nonlinear complex input-output relationships, which would

allow for better prediction and corrective control of processes, make them particularly

attractive.

The values of the influent disturbances are usually measured off-line in ~ laboratory, as there

are still no reliable on-line sensors available. This work presents the development of a neural

network model for prediction of the values of the influent disturbances based on historical

plant and weather data, which ultimately affect the activated sludge process. Three different

neural networks including the multilayer perceptron, recurrent and radial basis functions

neural network are developed for the prediction of the influent disturbances of Chemical

Oxygen Demand (COD), Total Kjeldahl Nitrogen (TKN) and influent flow rate respectively.

The application area is the prediction of the influent variables at a local municipal wastewater

treatment plant. The forecast result is used for the determination of the setpoint to a

controller, in order to· optimize plant performance. The results are first applied to a pilot

wastewater treatment plant.

Much hype exists surrounding the subject of neural networks, and they are sometimes

described as 'computers that think'. This sort of definition creates unrealistic expectations

and is one of the reasons why it is discredited. The results obtained will hopefully present

helpful insights as to the scope and possibilities as to the application for neural networks, but
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also present the practical challenges which neural network practitioners and designers of

intelligent systems face.

The solution of the problem for development of the mathematical model for dynamic

behaviour of the influent disturbances according to the influence of the weather conditions

and the season of the year is the first attempt in the scientific and research literature so far.
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CHAPTER ONE

INTRODUCTION

1.1 Awareness of the problem

South Africa's conventional water resources are rapidly being depleted. During these

times of water restrictions, the country is also faced with deteriorating water quality.

This could be accredited amongst others, to the enormous discharge of treated

effluents into rivers and streams. The effluent when discharged should not pollute the

stream, be a danger to pUblic health, or cause a local nuisance. Wastewater contains

nutrients that stimulate plant growth and it may contain toxic compounds. Effective

removal of pollutants such as nitrogen, phosphorous and carbon, from wastewater is

of the utmost importance. The removal of total dissolved solids is also important.

If untreated wastewater is allowed to accumulate, the decomposition of the organic

material can lead to the production of large quantities of malodorous gases (Sanchez­

Marre et al., 1995). Wastewater treatment (VVWT) plants are important to the

economic and social development of any country. They protect the public's health

from disease-causing bacteria and viruses. For these reasons, the immediate and

nuisance-free removal of wastewater from its sources of generation, followed by

treatment and disposal, is not only desirable but is also necessary in an industrialized

society (Metcalf and Eddy, 1991).

The original aim of sewage disposal is the removal of the waterborne waste from

domestic and industrial communities, and the removal of as much of the solids

content as is practical and economical, and then to oxidise (and subsequently

remove) the colloidal and dissolved solids without causing any danger to public

health. The method of treatment chosen for any particular installation depends on the

quality of effluent required.

Wastewater treatment plants are developed in order to remove unwanted nutrients

that are deposited in the water. The nutrients that are prevalent in wastewater include

Carbon, Nitrogen and Phosphorous. When these nutrients are discharged into water

it leads to what is known as eutrophication. large blooms of algae are a visible

indication of eutrophication, which cause difficulties when it comes to water

purification. Nutrients can be removed from wastewater effluents either by chemical

or biological means.
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Wastewater treatment plants 0/WVTPs) can be divided into two types, biological and

physical/chemical. Biological plants are commonly used to treat either domestic or

combined domestic and industrial wastewater from a municipality. Wastewater

contains many microorganisms and different bacteria. VWVTPs use basically the

same processes that occur naturally in the receiving water, where microorganisms in

the wastewater break down the solids, but provide controlled condition's favourable for

the growth of the bacteria, so that the biological reactions are completed before the

water is discharged back into the environment. Physical/chemical plants are often

used to treat industrial wastewaters directly, because they often contain pollutants

that cannot be removed efficiently by microorganisms. Wastewater treatment plants

that actually disinfect wastewater eliminate many harmful organisms.

Biological treatment processes are where microorganisms convert non-settleable

solids to settleable solids. Sedimentation typically follows, where the settleable solids

are allowed to settle out. There are usually three possible options including:

1. Activated Sludge - The most common option uses microorganisms in the
treatment process to break down organic material with aeration and agitation,
and then allows solids to settle out. Activated sludge containing bacteria is
continually recycled back to the aeration basin to increase the rate of organic
decomposition.

2. Trickling Filters - These are beds of coarse media (often stones or plastic)
Wastewater is sprayed into the air (aeration), and is allowed to trickle through
the media. Microorganisms attached to and growing on the media. break down
organic material in the wastewater. Trickling filters drain at the bottom; the
wastewater is collected and then undergoes sedimentation.

3. Lagoons - These are slow, cheap. and relatively inefficient, but can be used for
various types of wastewater. They rely on the interaction of sunlight, algae,
microorganisms, and oxygen (sometimes aerated).

Activated sludge is defined as sludge particles produced by the growth of

microorganisms in aerated tanks as a part of the process to treat wastewater. The

activated sludge process is the biological process where these organisms oxidize and

mineralise organic waste matter (Nadri. Hammouri and Fick, 2002). A typical

biological wastewater treatment plant process is depicted in Figure 1.1. The biological

VWVT process includes preliminary, primary, biological and tertiary (secondary)

treatment. These treatment processes as applied to the activated sludge process are

discussed at length in Chapter 2 of this thesis.

Preliminary treatment includes the mechanical screens for removal of all large objects

present in the wastewater influent. The grit chamber allows sand and small organic

material to sink to the bottom. Primary treatment provides a zone where the sludge is

allowed to settle and grease and other floating material is skimmed off the top.
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Figure 1. 1: A Block Diagram of the Biological Wastewater Treatment Process

The activated sludge process is a widely used system of biological wwr. The

wastewater enters a zone that is aerated where the sludge particles are brought into

contact with the organic matter in the wastewater. The organic matter is converted in

cell tissue and oxidised end products consisting mainly of carbon dioxide, CO2.The

contents of this aerated zone are referred to as mixed liquor. The biological mass

known as either mixed liquor suspended solids (MLSS) or mixed liquor volatile

suspended solids (MLVSS), consists mostly of microorganisms, inert matter and non­

biodegradable suspended matter. The secondary sedimentation (settling) tanks follow

the aeration zone, and the suspended solids (SS) are separated from the treated

wastewater. The biological solids are recycled back to the aeration zone in order to

maintain a population of microorganisms to treat the wastewater. The excess

biological solids are withdrawn from the secondary settling tanks. Some WWTPs

disinfect the treated wastewater effluent before discharging it into streams or rivers or

the ocean.

The activated sludge process is considered in the thesis.

1.2 Legislation and current situation

In South Africa legislation regarding pollution control and indirect reuse of treated

wastewater is regulated by the Water Act (54 of 1956). The removal of carbonaceous

material and the transformation of ammonia to nitrate are stipulated in the General

and Special Standards Act of 1962 (Ekama, Marais et al., 1984). The current situation

in the Cape Town region is that there are 22 municipal wastewater treatment plants in

operation. However it should be noted that not all of them are fully equipped to treat

wastewater using the activated sludge process. Only 14 plants are staffed with

personnel equipped to effectively operate the wastewater treatment plant and

associated equipment. The reality of the situation is that many of the plants are not

operating efficiently and produce effluent standards that are below acceptable levels.

3



Thus the need for monitoring and effective control of these wastewater treatment

plants may remedy this situation. The effluent standards are tabled in Chapter 2 of

this work.

1.3 Mathematical NIodelling and Simulations of Wastewater Treatment Plants

Many wastewater treatment processes are analysed and researched in order to

understand their complex dynamic behaviour. This is the reason that mathematical

models are developed describing the reactions betvveen the organisms and the

organic material present in the wastewater. Mathematical models are an important

tool in wastewater treatment (Vargas, Moreno and Zeitz, 2001 )and are used for:

• Design of the process. Modelling is useful in evaluating the impact of changes
in parameters.

• Process control. Efficient control strategies are often model based.
• Forecasting. Predictions can be made of future plant performance through

modelling.
• Education. Simulation models can be used for education and training.
• Optimisation. Plant performance can be enhanced.
• Research. Development and testing of hypothesis.

There are a number of commonly used models for the activated sludge process like

the IAWQ (International Association on Water Quality) activated sludge model

number 1 (ASM1) (Henze et al. 1987), number 2 (ASM2) (Henze et al. 1995), and the

University of Cape Town (UCT) model. to name but a few. These models describe the

removal of organic matter, nitrification and denitrification. Institutions throughout the

world have developed various mathematical models describing the different

wastewater processes. Alex. Ogurek and Jumar (2005) discuss the problems with the

development and standardisation of models. The availability of reliable models is a

fundamental pre-requisite for simulation of the wastewater treatment processes and

systems. The work by A/ex, Ogurek and Jumar, (2005) address the formulation of

model representation methods for model development. exchange. and analysis.

1.3.1 Simulation of the Wastewater Treatment Process

Simulations are an additional tool in the study and understanding of the behaviour

of these complex wastewater treatment processes. A simulation is an imitation of

the behaviour of the real plant or system. If the mathematical model has been

fairly well developed and calibrated, it is possible to predict the future behaviour

of the plant using simu/ations (Yoo, Lee and Lee, 2002). It should be noted that

any conclusions drawn from simulation results should be approached with

caution.
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Simulators are often equipped with a graphical user interface (GUI). The GUI

gives the operator a graphical display of the simulated data together with the data

presentation. A well-designed GUI can increase understanding of the process.

There are many commercial and non-commercial simulation platforms available.

Some of these include Matlab I Simulink and SIMBA.

1.4 Control of Wastewater Treatment Plants

The control of the biological process is important to maintain high levels of treatment

performance under a wide range of operating conditions. Successful process control

consists of reviewing present and historical data and laboratory test results to select

the proper operational parameters that provide the best performance at the least cost

(Simchez-Marre et al., 1995).

According to surveys conducted in the United States of America, more than 50% of all

newly constructed plants are discharging effluents that do not comply with the

definition of secondary treatment. The leading problem causing poor plant

performance is found to be the lack of treatment concepts and laboratory testing to

process control (Arthur, 1982).

The wastewater treatment process is a fairly complex, dynamic process. According to
Theilliol et al., (2003), certain factors need to be considered when attempting to
implement advanced real-time control of the process:

• The process is time varying (Carlsson and Lindberg, 1996). Parameters such
as temperature, composition of the influent water, amount of biomass, flows,
pH, etc, vary over a period of time.

• The process is non-linear and dynamic.
• The process has stiff dynamics. The time constants involved in the process,

range from seconds to months.
• The process is multivariable. There are several inputs and outputs.
• Sensors available in the plant are not very reliable although much progress

has been made in the development of sensors. Problems encountered are
often that sensors are very noisy, they have long response times, they require
frequent maintenance and they drift.

• Large disturbances affect the process. The influent flow and concentration are
subject to large variations particularly after heavy rains.

The chemical industry has demonstrated that automation improves the cost­

effectiveness of chemical processes while enhancing product quality. It is reasonable

therefore to conclude that automation should also improve the performance of

wastewater treatment systems with less cost and less energy consumption (Arthur,

1982).
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1.4.1 Reasons why Advanced Control is not implemented at WWT Plants

The major impediment to automating the wastewater treatment process is that many

of the processes have long response times, and it appears as if manual control is

effective. Most operators and engineers at wastewater treatment plants have limited

experience or training when it comes to plant automation that no efforts are made to

automate. In those rare cases when a control automation system is present, most

operators switch from automatic to manual mode (Arthur, 1982).

Listed below are some of the reasons why it is necessary to implement control of the

wastewater treatment process and also why this is not always the case:

• legislation regarding effluent quality has in many cases not been strictly
monitored and enforced.

• There is a lack of suitable understanding of engineering of many of the control
processes.

• On-line sensors require a lot of maintenance and are not very reliable.
• Plant workers do not understand how to use and maintain plant equipment

properly.
• Pumps, valves and actuators are manually switched on or off by an operator in

many plants.
• Processes at wastewater plants are fairly complex and it is not very easy to

implement automatic control of the plant or optimise plant performance.
• Traditionally plant managers and staff do not appreciate the benefits of

automatically controlling the plant and thus improving overall plant efficiency.
• Operator resistance to learning new technology and resistance to change.
• The use of daily average type data, not on-line data to control the process.
• The activated sludge process has not been studied completely as an object of

control. It is not clear what models are convenient for real-time control
implementation, what process variables are the most significant and in what
way the quality of the process and its product is affected, and what the optimal
combination of settings are for these significant variables.

• There is a lack of methods for measuring of important variables, for modelling
and parameter estimation and for optimisation and control calculation.

1.4.2 Reasons why Automatic Control should be implemented in a WWTP

• Stricter laws governing the effluent quality.
• General public awareness of environmental issues and focusing on

sustainability and energy consumption issues.
• Taxes and costs associated with the effluent quality are increasing.
• The design reliability of on-line sensors and actuators are improving.
• New processes at plants are becoming more and more difficult to control

manually.
• Various models for the control of wastewater plants are developed which are

suitable for real-time control of existing plants.

An important step in the design of an automatic control strategy is to determine which

signals to control, which signals to measure or estimate, and which control signals to

use (Garvey, 1997). Some of the variables affecting carbon and nitrogen removal,

which could be controlled. are:

• Dissolved Oxygen (DO) concentration;
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• the aeration volume;
• ammonium concentration by manipulating the DO setpoint;
• internal reticulation control;
• the influent and excess sludge flow rates;
• the recycle sludge flow rate; and
• if necessary the chemical feed rates.

The type of control that the attention is focused on for this work is the control of the

DO concentration.

1.5 Dissolved Oxygen Control

The Cape Peninsula University of Technology (CPUT) has initiated a collaborative

partnership with the local municipal wastewater treatment plant authorities. The

Athlone \NNTP is a municipal plant in the Cape Town region in South Africa. At the

Athlone wastewater treatment plant one of the parameters being monitored is DO

(dissolved oxygen) in the aerated zone.

Automatic control techniques are successfully applied to control the DO concentration

for many years, with tremendous cost and energy savings, and improved plant

performance (Arthur, 1982). According to Carlsson and Lindberg (1996) this could be

due to the fact that:

• On-line DO sensors have existed for several years.
• Energy conservation has to be considered in the control the DO, since it is

very expensive to blow air into the large tanks.
• The effluent quality and process efficiency depends on a suitable dissolved

oxygen level. .

An excessively high dissolved oxygen concentration results in increased energy

consumption. and deterioration in process performance as there is a reduction in

sludge quality and the denitrification process is less efficient. On the other hand low

DO concentrations lead to bad quality sludge and less efficient pollution removal

(Gutierrez and Vega. 2002).

The DO concentration should be high enough to support the growth of adequate

organisms, and low enough to conserve energy. Excessive mixing should be avoided

as the low DO levels contribute to nitrate recirculation in the advanced nutrient

process.

Different controllers are developed in the literature based on the DO mass balance

model (Olssen and Newe11, 1999).

1.1
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where So is the concentration of the DO, So.at is the concentration of the saturation of

the wastewater with oxygen, Qin and Qout are the input and output flow rates for the

aerobic tank, So,in is the input concentration of the DO, Kw is the function for transfer

of oxygen to wastewater V is the aeration tank volume and rSo is the oxygen uptake

rate. The oxygen uptake rate is an indicator for the dynamic behaviour of the

microorganisms and the influent load of COD and TKN, because it is function of the

microorganisms' growth rate and the concentrations of some of the components of

influent COD and TKN. Kw is a function of the air flow rate and is used to introduce

the control input into the model.

From the components of the model 1.1, it can be seen that the controller designed

according to this model will depend on the values of the influent disturbances. But

these disturbances cannot be measured on-line. Then the only possibility to apply

modern control techniques to the DO control is to incorporate in the control strategy a

software sensor for these variables. The prediction of the influent disturbances in real­

time will make the control strategy adaptive and close to the real operating conditions

oftheWWTP.

1.6 Adaptive Control Strategy

Research in the area of wastewater treatment systems has focused largely on the

dynamic behaviour of the activated sludge process of the waste~ater treatment

plants. The uncertainty in sludge activity and composition are caused by

unpredictable change in the load disturbances represented by the input flow rate and

waste concentrations. The latter consists mainly of carbonaceous and nitrogenous

compositions that are described by the chemical oxygen demand (COD) and the total

Kjeldahl nitrogen (TKN) (Olssen and Newell, 1999). The values of these load

disturbances are dependant on the seasonal variations in temperature and rainfall.

The control of the ASP depends strongly on the variations of the load disturbances

because they determine different operating conditions for this process. This means

that the control strategy has to be capable of generating control action according to

the change in the operating conditions. This type of control can be achieved if the

values of the disturbances are known or can be measured on-line. This is not

possible for COD and TKN as these are measured off-line in a laboratory, as there

are no reliable online sensors yet. The available off-line measurements are therefore

not available immediately for real-time control implementation.
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Another approach is to determine the expected values of the disturbance by

prediction using historical data from lab measurements and soft computing (neural

network) techniques (Kriger and Tzoneva, 2007a and 2007b). This approach is

adopted in this work as a first step in implementation of an adaptive optimal control

strategy for the ASP. This strategy determines the control of the dissolved oxygen

into the aeration tank of the process using hierarchical layers of adaptation,

optimization and direct control as depicted by Figure 1.2, and is implemented using a

personal computer (PC), programmable logic controller (PLC) with Adroit SCADA

(Supervisory Control and Data Acquisition) system, MySQL database and MATLAB.

The disturbance prediction is a part of a 3-layer control strategy developed for

adaptive optimal control of the activated sludge process (ASP) through repetitive

optimisation of the model parameters, controller set points and the controllers'

parameters according to the diurnal variation of the input flow rate and concentrations

of COD and TKN.

Functional control structure

Figure 1.2: Three.layer control strategy for adaptive optimal control of the ASP

This strategy is applied for development of a real-time control of a lab-scale

wastewater treatment plant (W\NTP) modelling a real process at the Athlone 'NNTP

in Cape Town. Realisation of the control strategy for dissolved oxygen (DO) control is

implemented in the Electrical Engineering Department at the Cape Peninsula

University of Technology and is shown in Figure 1.3. The DO concentration should be
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high enough to support the growth of adequate organisms, and low enough to

conserve energy. This means that the controller has to send a control signal

according to a set point that corresponds to the responding at the real-time

disturbances.

DO
setpoint

;::::::====-:::;-- _._------------_._---~
PLC. PC I
Kp, TI, Td I

I
Parameters Disturbances I
m~el . prediction i
estimation i
Controller 1

L.._.__•__.__ __.__._ _._.__.__ __ .__._ _ i

Figure 1. 3: Feed-folWard-feedback control system for DO control

1.7 Problem statement

On the basis of the discussion above the problem considered in the thesis can be

stated in the following way - To develop a mathematical model and technology for

prediction of the influent flow COD and TKN concentrations on the basis of their

dynamic behaviour caused by the weather conditions and the season (month) of the

year.

There are no known investigations in this field. Different authors emphasize on the

influence of the weather conditions, season, day of the week, time of the day over the

influent waste concentrations and flow rate (Bechmann et al., 1998), but no

mathematical model is proposed. Olsson and Newel! (1999) propose a formula for

diurnal behaviour of the influent concentrations based on their average values for

some period of time and combination of sinusoidal functions with different period. This

formula is not based on the natural laws; it is constructed according to the

observation of the process influent and the expert knowledge.

A more scientific approach to the solution of the problem can be developed (applied)

using the capabilities of the latest developments of the methods of the Artificial

Intelligence and especially of the neural network (NN) theory, based on the

information that is available for the dynamic behaviour of the influent variables:

the dependence between the weather conditions, season of the year is of the
type of a dynamic "black box" one, (Figure 1.4);
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knowledge for the relationships between the input and output variables of this
model is not available at all;
it can be assumed that the dependence between the input and output
variables is deterministic;

?•-------I
:
inoflu:ent flow rate:

weather (rain. win~\1 . =
month

•
Figure 1.4: Figure illustrating that the dependence between the weather and season

(month) is a type of dynamic "black box"

there are historical data available for both input and output variables. The data
for the influent are measured once every week in the scientific laboratory by
exact methods and could be accepted as equal to the true values of the
variables with some small error.
The black box model is multivariable - it has many inputs and outputs. The
number of outputs can be accepted to be three because the organic waste
material in the influent can be grouped in two main groups, COD and TKN.
The number and the type of the input variables has to be determined though
the process of research in such a way that the errors between the predicted
and the measured values of the disturbances are minimized.
The black box model is a nonlinear one.

The black box model has to be used as a part of the adaptive control strategy in real

time in order to act as a software sensor for the influent waste components. The

outputs of this model are the load disturbances input for the considered model for the

control of the DO (Figure 1.5).

COD ffI
.Rthp.r (rRin. wind\

influent flow rate e uen..

Influent
...

• ...
DO concentrationvariables COD influent .. Equation1.1

TKN effluent..

month predictor ... ..
• TKN influent

~..
load
disturbances i air flow rate

control input
u

Figure 1. 5: Connection between the process model and the influent disturbances
model

The structure of the black box model can be obtained in two ways:

assuming some type of mathematical connection between the input
and output and fitting the parameters of this mathematical
representation to the input-output data;
using the NN theory approach where the structure could be supposed
at the beginning and adjusted during the training in a more natural way
than in the first approach.
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The first approach is not very applicable because the model is multivariable and

nonlinear. It is very difficult to judge the type of nonlinearity and the connections

betv"een the variables. That is why many of the difficulties of the multivariable,

nonlinear fitting (regression) could be overcome by using the NN as predictors. The

problem is furtherwhat exactly NN type, architecture could be the most convenient for

the considered deterministic, dynamic, nonlinear multivariable model. The answer to

this question determines the objectives of the thesis.

1.8 Neural networks

As is described in the previous section, use is made of neural networks for prediction

of the inflow disturbances of COO, TKN and influent flow rate, by using historical data

obtained from the Athlone VVWTP and weather data obtained from the South African

Weather Service.

Hecht-Nielsen (1987) defines neural networks as follows:

A neural network (NN) is a parallel, distributed information processing structure

consisting of processing elements (Which can possess a local memory and can carry

out localised information processing operations) interconnected via unidirectional

signal channels called connections. Each processing element has a single output

connection that branches in to as many collateral connections as desired; each

carries to the same signal - the processing element output signal.

Artificial (so called to distinguish it from it biological counterpart) neural networks

(ANN) have developed as a result of man's interest in the working of the human brain

with the aim of achieving human-like performance. Please note that in this work the

term neural network refers to the ANN.

1.8.1 Training of Neural Networks

McCulloch and Pitts proposed the first artificial neuron model in the 1940's. They

described the behaviour of the neuron with the model:

1.2

where ji(k) is the output of the neuron, N is the number of inputs, y; are the input

variables, w; are called the synapse weights and h; is a bias term. The function f/J is a

nonlinear activation function. The activation function is typically a saturating function,

which normalizes the input signal to the standard values of the output signal

(Paplinski, 2004). These activations are typical unipolar or bipolar signals. Examples
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of activation functions are the logarithmic sigmoid, hyperbolic tangent, hard limit

threshold, radial basis function and the linear activation function to name but a few.

From the point of view of their active or decoding phase, NNs can be classified into

feed-forward and feedback systems (Paplinski, 2004). Feed-forward (static) NNs are

neural networks where the network is ordered into layers with no feedback paths,

while recurrent (dynamic) networks on the other hand have feedback connections

from the output of one neuron back to the input of a previous layer (Mandic and

Chambers, 2001).

Learning is defined as a dynamic process that modifies the weights of the network in

some desirable manner. Learning can be supervised or unsupervised. For supervised

learning the network is given a training set of data with a corresponding target output.

Unsupervised learning also known as self-organizing is where a network develops its

own classification rules using information present at the inputs presented to the

network.

Neural networks (NNs) gives one the flexibility of modelling arbitrary input data by

adjusting the internal network connections (weights) in such a way, that for a given

input the difference between the output and the desired response, the error is

minimised (Wang and Hu, 2002). In order to achieve this input-output mapping the

NN has to be "trained~ in order for it to model data efficiently. This .training usually

takes the form of supervised learning, where the network error is iteratively reduced

over a training set of matching input-output vectors. Methods of training include

gradient descent methods such as the very common backpropagation algorithm

(Haykin, 1999).

After the network is trained, the performance has to be measured by introducing a set

of data that is used to validate the model. This gives an indication of the

generalisation ability of the NN and determines whether the NN has not just

memorised the training data set.

1.8.2 Data preparation

Data preparation is fundamental to the success of a NN to solve a given problem. If

NN are presented with meaningless data, they usually produce meaningless results.

A careful examination of the input data is required, and usually some knowledge of

the relevance of including or excluding certain input data is advisable. Chapter 4
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discusses the pre-processing techniques applied to the input data presented to the

NN.

1.8.3 Types of Neural Networks

Broadly speaking NNs can be divided into' 2 application categories, namely networks

performing function approximation or regression (Masters, 1993) and those

performing classification (Ripley, 1996) tasks.

Feed-forward supervised networks are mostly used for function approximation tasks

and some types include:

• Linear recursive least mean square (LMS) networks;
• Backpropagation networks; and
• Radial basis networks

Feed-forward unsupervised networks are used to extract important properties of the

input data and to map it into a "representation" domain. These include:

• Hebbian networks performing principal component analysis (PCA); and
• Competitive networks are used to perform learning vector quantization (LVQ).

Feedback dynamic networks are used to process the temporal features of the input

data evolving over time. These include:

• Recurrent backpropagation networks;

• Associative memories; and

• Adaptive resonance networks.

(Paplinski, 2004).

The feed-forward supervised networks with delayed inputs and the recurrent

backpropagation network capabilities are investigated in the thesis to solve the

dynamic regression problem for prediction of the influent variables.

A description of the different types of neural networks, together with all the relevant

reference information, is presented in Appendix A.

1.8.4 Application areas for Neural Networks

Neural networks are widely applied in various disciplines for solving many real-world

problems. Application areas include:

Misuse detection on computer networks (Cannady, 1998), Flood forecasting (Chang,

et al., 2001), River flow forecasting (Danh, Phien and Gupta, 1998), Time series

(Malasri and Malasri, 2002), (Vahed, 2004), Wireless sensor networks <:Nu and

Jagannathan, 2007), Prediction of wind speed (Perez-Uera, et al., 2002), Nonlinear

Control (Cheng, et al., 2007), (Ahmida, Charef and
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Becerra, 2007), and Short-term load forecasting {Vermaak and Botha, 1998, Khan

and Ondrusek, 2000.

The potential of neural networks for monitoring and control of dynamic systems was

discovered a decade ago (Narendra and Parthasarathy, 1990, Bectroft et ai, 1991)

and many applications in industrial processes exist.

The feed-forward networks (Rumelhart et ai, 1986) and recurrent networks (Atkeson

et ai, 1997) are most commonly used in system identification I model estimation and

for control design and implementation.

These are only a few areas where NNs have be utilized to solve a particular problem.

1.8.5 Modelling of the Influent variables behaviour using Neural Networks

Neural networks offer the advantage of being able to model almost any system. The

real problem results as one tries to apply a NN model to a specific process. The

reasons for this being that considerable expertise is required in determining the

number of processing elements in the network, the number of training iterations

required, and the representation of data in the network

The resultant network model should be able to generalise for future unseen input

vectors, provided the training set represents the process detailing the relationship

between the input and output, accurately (Sakai, Homma and Abe, 2002).

The considered black box model process can be described as finite dimensional,

discrete time, time invariant process by the equations

y(k) =f[y(k),y(k - I)...y(k -zo),u{k),u{k - I)...u(k - 0)] 1.3

wh~re u(k)e R' are the model inputs and y(k)e Rm are the model outputs,

f: R' ~ Rm is a nonlinear function of inputs and outputs, k eO, K .

The problem for modelling and parameter estimation is stated when the function f is

unknown. The problem is to construct a model that displays the same input/output

behaviour as the original system. This problem has to be solved using only input and

output measurements (Potocnik, 2000).

For linear systems the solution of the problem is easier as the structure of the linear

model is assumed previously. For the nonlinear system (ASP) the structure of the
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model cannot be selected arbitrary. Then some assumptions need to be made to

make the problem meaningful and tractable. Following Levin and Nerendra, 1995 the

following assumptions can be made:

1) f is a smooth function
2) An upper bound of the order of the system is given.

The existence of the input/output model relies on the observability of the system

which in this case cannot be checked previously and can be proved by investigation

on the possibilities to make good prediction using the techniques of the NN theory.

1.8.6 Neural Networks implementation

The prediction of the influent variables of COD, TKN and influent flow rate is a

regression or function approximation problem. Three different neural network

topologies (architectures) are investigated to solve this particular problem, namely the

multilayer perceptron (MLP), the Elman recurrent neural network (ERNN) and the

radial basis function neural network (RBFNN). The structures best suited for

prediction problems are investigated and based on the finite impulse response (FIR)

and infinite impulse response (fIR) filter concepts from signal processing (Mandic and

Chambers, 2001). This is referred to as the autoregressive (AR), moving average

(MA) and autoregressive moving average (ARMA) concepts from statistical theory.

The practical issues that the neural network practitioner faces are investigated in this

work, including the number of hidden layers, the number of hidden layer neurons, the

number of training iterations, the choice of architecture, and training algorithm.

1.9 Research Aim

The research aim is to develop a model predictor for the dynamic behaviour of the

wastewater treatment plant influent variables (COD, TKN, Flow rate) as a result of

influence of the weather conditions (temperature, wind, rainfall) and the season of the

year (month) using NN theory.

1.10 Research Objectives

The research objectives are divided into categories, namely the scientific objectives

and the application results objectives.

1.10.1 Scientific objectives

In order to achieve the aforementioned aim, the following scientific objectives have

been identified:
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1. The role of the influent variables as the \MNTP process main disturbances to

be investigated.

2. The problem for the development of the mathematical model for the dynamic

behaviour of the wastewater treatment plant influent variables to be analysed,

and according to its characteristics a problem for prediction of the influent

variables to be formulated as a problem for development ora neural network

type and its structure.

3. Analysis of the existing types and structures of the NNs to be done according

to the requirements of the formulated problem and 3 types of NN to be

selected to be used:

• Multilayer perceptron network with delayed inputs
• Elman recurrent network

.• Radial basis function with delayed inputs
4. A procedure for preprocessing of data for the NN training and validation is to

be developed on the basis of analysis of the existing approaches in the·

literature.

5. MLP with delayed data to be developed for one-step ahead prediction of the

influent COD, TKN and Flow rate. Different variants I structures of the network

to be investigated on the basis of variation of the type and the number of

inputs.

6. Elman recurrent network to be developed for one-step ahead prediction of the

influent COD, TKN and Flow rate. Different variants of the network to be

investigated on the basis of the same as in point 5 variants of the input data,

7. Radial basis function network to be developed for one-step ahead prediction

of the influent COD, TKN and Flow rate. Different variants of the network to be

investigated on the basis of the same as in point 5 variants of the input data.

8. The generalized conjugate gradient method application to be investigated in

order to improve the convergence and to reduce the time of the training

process.

9. Different variants of the above NNs to be built and compared with those

previously developed according to the number of the hidden layers, number of

hidden layer neurons, number of epochs, and training to convergence (over­

training).

10. MATLAB software to be written to implement all tasks for pre-processing of

data, training, validation, analysis of the solutions and graphical user interface.

1.10.2 Application result objectives

In order to achieve the aforementioned aim, the following application result objectives

have been identified:
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1. Data from the Athlone wastewater treatment plant for the influent variables

and from the weather bureau to be gathered and processed.

2. Hardware structure of the control system for pilot wastewater treatment plant

to be developed where the physical connections between the components of

the system (plant, sensors, transmitters, PLC, PC) and their calibration to be

done.

3. Data acquisition system for DO, pH. conductivity, temperature and turbidity to

be developed using the sensors, transmitters, PLC. PC and MySQL database.

4. Adroit SCADA system to be developed for data acquisition, monitoring and

calculation of the predicted values of the influent disturbances.

5. Communication between the software platforms Adroit, MATLAB and MySQL

to be established in order to solve the problems for the influent COD, TKN and

Flow rate prediction in real time. An Adroit GUI to be developed to implement

the tasks for communication and prediction.

1.11 Literature survey

Judging by the number of publications in journals and at conferences, there are many

researchers working in the areas of neural networks and wastewater treatment

processes. This information was gleaned from consulting books, journal publications,

the Internet, and conference proceedings. Many authors have differing views on

many issues and many 'rules of thumb' have been proposed to solve different

practical implementation problems. The experience of the author has been to use

these rules as guidelines, but to solve many of the practical problems with rigorous

experimentation.

, 1.12 Outline ofthesis

The thesis consists of eight chapters detailing the background information and

developed methods, algorithms, techniques applied, and results of the research

project.

Chapter 2 briefly discusses the biological wastewater treatment process, particularly

the activated sludge process for the removal of Nitrogen and Carbon. The importance

of the nature of the influent disturbances of COD, TKN and inflow rate, and the effects

that they have on the activated sludge process are described. The influent

disturbances are characterized and the decomposition of Carbon and Nitrogen into

fractional components is discussed. These fractional components are used in the

mathematical model of the ASP.
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Chapter 3 provides a background to the theory of neural networks, including a brief

historical overview detailing the developments in the field. The process of supervised

training of the neural network and the practical considerations are detailed. Here

factors leading to problems such as over-training and overfitting the network are

defined.

Chapter 4 deals with the important aspect of data preparation and pre-processing.

Concepts such as missing data, data rejection, outlier detection, correlation, principal

component analysis, trends, 'the curse of dimensionality' and circular discontinuity are

addressed and the methods and techniques adopted in this work are tabled.

Chapter 5 discusses the design and practical implementation of the neural networks.

The three architectures considered are the multilayer perceptron, the Elman recurrent

and the radial basis function neural networks. All these architectures are applied to

the problem of prediction of influent disturbances of COD, TKN and influent flow rate,

one by one.

Chapter 6 presents the results of the implemented neural networks of the multilayer

perceptron, the Elman recurrent and the radial basis function neural networks.

Chapter 7 describes the real-time hardware implementation and describes the

different software algorithms applied throughout the work. The pilot lab scale plant,

sensors and actuators, the Modicon PLC, Adroit SCADA system. MySQL database,

and implemented neural network programs in MATLAB are presented.

Chapter 8 provides detailed conclusions and the future direction for research in the

field of neural networks.
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CHAPTER TWO

WASTEWATER TREATMENT PROCESS AND ITS

DISTURBANCES

2.1 Introduction

Clean water plays a crucial role in our daily lives and is an important resource particularly

in Southern Africa where it is also a very scarce resource. Clean water is essential for

plants and animals that live in water. This is important to the fishing industry, sport fishing

enthusiasts, and future generations. Our rivers and ocean waters teem with life that

depends on shoreline, beaches and marshes. They are critical habitats for hundreds of

species of fish and other aquatic life. Migratory water birds use the areas for resting and

feeding.

Wastewater is not just sewage, but used water. It includes substances such as human

waste, food scraps, oils, soaps and chemicals. In homes, this includes water from sinks,

showers, bathtubs, toilets, washing machines and dishwashers. Businesses and

industries also contribute their share of used water that must be cleaned. Sewage is

therefore created by r~sidences, institutions, and commercial and industrial

establishments. In combined municipal sewage systems, wastewater also includes storm

water runoff. Although some people assume that the rain that runs dOWIl the street during

a storm is fairly clean, it isn't. Harmful substances that wash off roads, parking lots, and

rooftops can harm our rivers and lakes. If it is not properly cleaned, water can carry

disease. People live, work and play so close to water, therefore harmful bacteria have to

be removed to make water safe (USGS, 2006).

In the past people lived in relatively small population units, often in rural areas and the

disposal of human waste was not a major problem (Undberg, 1997). As rural populations

expanded the accumulation of human waste became a hygienic problem. Urbanisation

plays a major role in the increased production of large amounts of wastewater. This is

particularly true in the Southern African region where people move from rural areas and

from the northern and central regions of Africa into the major cities.

Wastewater treatment (WWT) plants are important to the economic and social

development of any country, Municipal wastewater treatment plants provide an important

buffer between the natural environment and the concentrated wastewaters from urban
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areas. WWT plants protect the public's health from disease-causing bacteria and viruses.

Treatment plants that actually disinfect wastewater eliminate many harmful organisms.

WWT plants also protect water quality so that clean oceans, lakes, streams and rivers

can be enjoyed.

The original aim of sewage disposal is the removal of the waterborne waste from

domestic and industrial communities without causing any danger to public health. The

principal aim of sewage treatment is to remove as much of the solids content as is

practical and economical, and then to oxidise (and subsequently remove) the colloidal

and dissolved solids before the remaining water, called effluent, is discharged back to the

environment. Wastewater also contains nutrients, which can stimulate the growth of

aquatic plants, and it may contain toxic compounds. Excessive amounts of organic

matter in water deplete dissolved oxygen (by micro organic metabolism). This is due to

the fact that as solid material decays, it uses up oxygen that is needed by the plants,

animals and other aquatic life forms living in the water to survive.

The effluent when discharged should not pollute the receiving body of water, be a danger

to public health, or cause a local nuisance. Nutrients can be removed from wastewater
\

effluents either by chemical or biological means. The latter is more economical and is

suitable for various forms of activated sludge systems (Lilley, Pybus and Power. 1997).

The method of treatment chosen for any particular installation depend~ on the quality of

effluent required.

This chapter discusses the wastewater treatment processes, the influent disturbances,

and also give information for some of the existing mathematical models describing the

activated sludge processes. Reasons are discussed for the development of an effective

control strategy. Furthermore the motivation for using neural networks as a too! for

developing a model to predict the influent disturbances to the wastewater plant is

discussed.

2.2 Legislation

The Department of Water Affairs and Forestry is the custodian of South Africa's water

and forestry resources and is responsible for formulating and implementing policies

governing these sectors. This is the body that establishes effluent limits for all point­

source discharges. Effluents should comply with uniform standards. which are set at

technologically, and economically attainable levels (Lilley, Pybus and Power, 1997).
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Since 1973 the Water Research Commission in South Africa has been involved in

coordinating and financing research and development in the field of nutrient removal from

the activated sludge process.

The limits imposed on each institution are determined by the receiving water's capacity to

assimilate the waste, as well as the use for which the water is intended. Water intended

for drinking requires more protection than water used only for boating. However, all water

quality should be suitable for swimming and fishing.

Legislation regarding pollution control and indirect reuse of treated wastewater is

expressed in the Water Act (54 of 1956). The removal of carbonaceous material and the

transformation of ammonia to nitrate are stipulated in the General and Special Standards

Act of 1962 (Ekama, Marais et al., 1984).

2.3 Current process control techniques

Currently the technology available in South Africa to remove pollutants from wastewater

has developed to a level that is in accordance with international standards. However the

construction of facilities is only part of the solution. Good operation, maintenance and

administrative programs must be in place, or the best of facilities produces unacceptable

effluent (Bartlett, 1971).

The majority of wastewater plants in South Africa, partiCUlarly in the Western Cape

region, are however manually controlled. This means that pumps and valves are

switched on and off, and opened and closed, manually. Automation then, should improve

the performance of wastewater treatment plants for less cost and with less energy

consumption.

Currently there are a few wastewater treatment plants in South Africa that are

automatically controlled to a certain degree, and monitored using some form of

supervisory control. These plants are however not optimised for suitable effluent quality,

or for conservation of energy (Vanrolleghem, 2000). There are at present twenty-two

recognized municipal wastewater treatment plants in the Western Cape region. However

of these only 14 plants are manned. The unmanned plants sometimes only have small

oxygenation tanks, but these "plants" are also serviced by the Western Cape

Municipality. There are six WWT plants that are known to have SCADA systems to some

degree. Not all the SCADA systems are utilized throughout the entire plant, but are
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sometimes limited to certain reactors only. Another fact to bear in mind is that many of

the SCADA systems are used for mostly monitoring instead of controlling the plant

processes. The plants that the Cape Peninsula University of Technology have been

actively involved in, and that have SCADA systems, include the Cape Flats and Athlone

'NVVT plants. The Cape Flats plant is one of the first to have a SCADA system for

monitoring plant variables and performance, and to a very limited degree, controlling of

certain parameters and processes. The other plants in the Western Cape with SCADA

systems are Wildevoelvleifontein, Kraaifontein, Macassar and Zandvliet WWT plants.

Given this perspective about 43% of plants in the Western Cape region have a SCADA

system of sorts.

2.4 The Wastewater Treatment Process

The biological wastewater treatment process depicted in Figure 1.1 in Chapter 1 can be

divided into four stages, namely preliminary, primary, biological and secondary treatment.

The importance of these phases in the biological treatment process is briefly discussed

below.

2.4.1 Preliminary Treatment

Preliminary treatment of wastewater is the stage in the process where sticks, bottles,

cans, stone, grit, rags and other large objects are removed to protect the equipment in

the plant from physical damage. This is achieved by the use of mechanical screens.

Grit removal is the next step in the process. Grit is sand and small hard inorganic

material that, much like sand paper wears down expensive eqUipment if not removed at

the beginning of the plant process. Grit chambers slow down the flow to allow grit to fall

out.

2.4.2 Primary Treatment

The wastewater flows from the preliminary treatment grit chambers to the primary

treatment process that removes floating solid materials from the wastewater. The primary

clarifiers provide a quiescent zone for the sludge to settle and be collected into hoppers

by a travelling flight and chain system. Grease and other floatable material is skimmed

from the surface and collected during the primary clarification process. The grease that is

collected from the primary clarifiers is concentrated, and then fed into the incinerators.
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2.4.3 Secondary Treatment

Pollutants dissolved in the wastewater or that do not settle in the primary clarifiers flow on

in the wastewater to the secondary treatment process. Secondary treatment further

reduces organic matter through the addition of oxygen to the wastewater that provides an

aerobic environment for the microorganisms to biologically break down this remaining

organic matter.

The primary effluent enters the head end of the tanks where it mixes with return activated

sludge that consists of microorganisms "activated" by the organic matter and oxygen.

This combination of primary effluent and return sludge forms a mixture known as "Mixed

Liquor", The mechanical mixer in each tank continuously stirs and thoroughly mixes the

mixed liquor.

Once the mixed liquor goes through the complete oxygenation process. it flows to the

secondary clarifiers where part of the biological solids produced during the oxygenation

process are allowed to settle and be pumped back to the first tank in the process. These

settled solids being pumped. called return activated sludge (RAS). mix with the primary

effluent to become mixed liquor (Yu et al., 2002). Since the population of

microorganisms is groWing some microorganisms in the return activated sludge are

removed from the system. This solids waste stream is called waste activated sludge

(WAS) and flows to the secondary gravity thickener for solids proces~ing. The cleaned

wastewater flows over the weir of the secondary clarifier and on to the disinfection

(chlorination) process.

. 2.4.4 Biochemical Oxygen Demand (BOO)

BOO is defined as the amount of dissolved oxygen (DO) consumed by microorganisms

for the chemical oxidation of organic and inorganic matter (Bitton. 1999). BOO is also

defined as a measure of the organic strength of the wastewater in parts per million or

mg/l. It is determined by a simple laboratory test that measures oxygen depletion on a

series of bottles of buffered distilled water seeded with active bacterial cultures. In

addition, different dilutions of the wastewater being tested are added to the bottles. The

organic content in the wastewater causes a depletion of oxygen that is measured after a

period of five days. This is reported in parts per million or mg/l of BOOs_
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2.4.5 Chemical Oxygen Demand (COD)

Chemical oxygen demand (COD) is the amount of oxygen required to oxidize the organic

carbon completely to carbon dioxide (C02), water (H20) and ammonia. COD is therefore

a measure of the oxygen equivalent of the organic matter as well as microorganisms in

the wastewater. The discussion for the composition of COD follows in section 2.6.

2.4.6 Total Suspended Solids (TSS)

Also known as non-filterable solids, this is a measure of the suspended solids content of

the wastewater also in parts per million or mgfl. This test is performed by filtering a

known volume of the wastewater through a pre-weighed filter paper, drying it to remove

the water content and reweighing it to determine the suspended solids content These

solids include both organic and inorganic matter. To determine the organic portion or

volatile suspended solids (VSS), the filtered solids must be heated in a muffle furnace

and the remaining portion weighed (Pons and Potier, 2002).

2.4.7 Fecal and Chlorine Residual

The purpose of chlorinating the effluent is to kill potentially pathogenic bacteria during the

summer months when the receiVing waters are most susceptible due to recreational use

and assimilative capacity ot the waters. Prior to final discharge, effluent chlorine residual

must be reduced to less than 0.06 mgfl.

The Athlone wastewater treatment plant, which supplies the plant data for this project,

does not have any chlorination stage for the treatment of the effluent so this topic is not

discussed further. After secondary sedimentation, the effluent passes to maturation

ponds and is finally discharged into the Uesbeeck River (Athlone plant).

2.4.8 The Activated Sludge Process (ASP)

The activated sludge process is an aerobic, suspended growth, biological treatment

method. It employs the metabolic reactions of microorganisms to produce a high quality

effluent by oxidation and conversion of organics to carbon dioxide, water and bio solids

(sludge) (Gernaey, 2000).

Refer to Figure 2.1 for a diagram of the conventional activated slUdge process using an

extended aeration system. The microorganisms are kept suspended either by blowing air

in the tank or by use of agitators.

26



FINAL CLARIFIERAERATION TANKSCREENED AND

DEGRITTED RAW EFFLUENT
WASTEWATER 0 0 0 0 0 • L---lJ=====j-~~+
-----1~•••• 0: 0: ell •

•-o·o.°tp:-.-.0-.0_#_#0°:_

Figure 2. 1: A The Activated Sludge Process with Extended Aeration

A basic description is that the system speeds up nature and supplies oxygen instead of

the aquatic environment. High concentrations of microorganisms (compared to a natural

aquatic environment) in the activated sludge use the pollutants in the primary treated

wastewater as food and remove the dissolved and non-settleable pollutants from the

wastewater. These pollutants are incorporated into the microorganisms' bodies and then'

settle in the secondary clarifiers. Oxygen needs to be supplied for the microorganisms to

survive and consume the pollutants.

2.4.8.1 The Aeration Tank

In this tank aerobic oxidation of the organic matter is performed. The primary influent is

introduced and mixed with the return activated sludge (RAS) to form the mixed liquor,

containing 1,5 - 2,5 mg/l of suspended solids. Mechanical devices such as blowers

provide aeration. The most important characteristic of the activated sludge process is the

recycling of a large proportion of the biomass. The sludge age (see below) is much

greater than the hydraulic retention time. The time that the organisms remain in this tank

varies from between 4 to 8 hours.

2.4.8.2 The Sedimentation Tank

The tank is used for the sedimentation of sludge (microbial floes) produced during the

oxidation phase in the aeration tank. Only a portion of the sludge in the sedimentation

tank is recycled back to the aeration basin, the rest is removed as excess sludge in order

to maintain a constant sludge concentration despite the growth of the microorganisms.

2.4.8.3 Mixed liquor Suspended Solids (MlSS)

The mixed liquor suspended solids (MLSS) is the total amount of organic and mineral

suspended solids, including microorganisms, in the mixed liquor. MLSS is calculated by

filtering an aliquot of mixed liquor, drying the filter at 105 °C, and determining the weight

of solids in the sample.
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2.4.8.4 Mixed liquor Volatile Suspended Solids (MLVSS)

The organic portion of MLSS is represented by mixed liquor volatile suspended solids

(MLVSS), which comprises of non-bacterial organic matter as well as dead and live

microorganisms and cellular debris. MLVSS is determined by heating of dried filtered

samples at 600 -650°C, and represents approximately 65-75% of MLSS.

2.4.8.5 Food-to-microorganism ratio

One of the strategies used to control the ASP is the food-ta-microorganism ratio (F:M).

This ratio (F:M) indicates the organic load into the activated slUdge system. It IS

expressed in kilograms BOO per kilogram of MLSS per day. F:M is controlled by the rate

of activated sludge wasting. The higher the wasting rate, the higher the F/M rate.

F:M= QxBOD 2.1 .
MLVSSxVa

where Q IS the flow rate of the influent in litres per day (lId), BOD is the 5 day bio­

chemical oxygen demand (mgll), MLVSS are the mixed liquor volatile suspended solids

(mg/l), and Va is the volume of aeration tank (litres).

A low F:M ratio indicates that the microorganisms in the aeration tank are starved, thus
\

leading to a more efficient wastewater treatment (Fuente, Sainz Palmero and Pindado,

2002).

The F: M control strategy attempts to maintain a specific balance between the mass

organic contaminant (F) applied to the aeration basin, and the mass of microorganisms

(M) contained within the basin.

2.4.8.6 Hydraulic Retention Time

The. hydraulic retention time (HRT) is the time that the influent spends in the aeration

tank. It is expressed as:

2.2

where Va is the volume of aeration tank, Q is the flow rate of the influent into the aeration

tank and D is the dilution rate.
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2.4.8.7 Sludge Age

Sludge age (also known as the sludge retention time) is the mean residence time of

microorganisms in the system. This time could be in the order of days (not hours). It is

expressed as:

MLSSxV
Sludge age = a

- SS. xQ.XSSwxQw
2.3

where MLSS is the mixed liquor suspended solids (mg/l), Va is the volume of the aeration

tank(L), SS. are the suspended solids in wastewater effluent (mg/l), Q. is the flow rate of

wastewater effluent (m3/day), SSware the suspended solids in wasted sludge (mg/l), and

Qw is the flow rate of wasted sludge (m3fday) (Lubenova, Simeonov and Queinnec,

2002).

Sludge age may vary from 5 to 15 days in conventional activated sludge process. It is

usually higher in winter than summer.

The important parameters controlling the operation of an activated sludge process are

organic loading rates, oxygen supply, and control and operation of the final settling tank.

This tank is used for clarification and thickening of the sludge.

2.4.8.8 Biological Nitrogen Removal (BNR)

Nitrogen is an essential nutrient for biological growth, and is one of the main constituents

in all living organisms (Carlsson and Lindberg, 1996). The discharging of nitrogen into

lakes, river, dams and other quiescent bodies of water has seen acceleration in the

growth of algae. This process is known as eutrophication (Lukasse, 2001), and can be

visibly noticed as large blooms of algae. Excessive algae growth is detrimental to the

aquatic ecosystem. The removal of nitrogen in the wastewater effluent is therefore of the

utmost importance. The biological removal of nitrogen is one of the most important and

most intensely studied topics (Gernaey. 2000). This is due to the more stringent effluent

criteria for nitrogen that have imposed for new and existing treatment plants (Nyberg et

al., 1992).

Nitrogen in wastewater can be subdivided into two main forms: free and saline ammonia

and organically bound nitrogen. The organically bound nitrogen can be subdivided further

into non-biodegradable and biodegradable.
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Nitrogen is characterised by the Total Kjeldahl Nitrogen (TKN) and the free and saline

ammonia tests. Nitrogen is present in several forms, e.g. ammonia (NH3), ammonium

(NH/), nitrate {NO~n, nitrite (NO£) and as organic compounds. In rivers, lakes and dams

the presence of nitrogen gives rise to some problems:

Cl Ammonia is toxic to aquatic organisms especially fish. The dissolved oxygen
concentration may be severely depleted when ammonium is oxidized to nitrate, as
there is a significant oxygen demand from the receiving water. .

Cl Nitrite in drinking water is toxic, especially for infants. The chlorine dosage in
drinking water is increased due to the presence of ammonia.

The biological nitrogen removal is performed in the anoxic and aerobic basins (tanks) of

the ASP. The aerobic zone has dissolved oxygen present, while the anaerobic zone has

neither dissolved oxygen or nitrate. The anoxic zone is characterised by its lack of

oxygen, but not nitrate (Figure 2.3). The anaerobic zone is required to effect the removal_

of phosphorus, while the anoxic zone is required for the removal of nitrogen (Lilley,

Pybus and Power, 1997).

The ammonium can be removed by oxidizing it to nitrate during aeration (dissolved

oxygen is present). This process is known as nitrification (Fruchard, Bernard and Gouze,

2002) and is described by the following equations:

NO~ + 0.502 ~ NO;

2.4

2.5

From the chemical reaction simplified in equations (2.4) and (2.5) it can be seen that,

ammonium (NH/) is first oxidized to nitrite {N02-} and then to nitrate (N03)

After nitrification, the nitrate can now be converted to nitrogen gas by denitrification. This

occurs in anoxic conditions (oxygenation is performed using nitrate).

2.6

For denitrification, anoxic zones are required in the activated slUdge process. These

zones can be either before the aeration zone (pre-denitrification), or after the aeration

zone (post-denitrification). For pre-denitrification, an extra recirculation flow is introduced

to transport the nitrified water back to the first zone (Figure 2.2). Denitrification is limited

by the amount of carbon entering the system (Carlsson and Undberg, 1996).
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Figure 2. 2: The Activated Sludge Process with Pre-Oenitrification

2.5 Disturbances to the Wastewater Treatment Process

The technological structure of the Athlone plant ASP is based on the UCT physical.

wastewater treatment plant (WVVTP) model structure and has three tanks: anaerobic,

anoxic and aerobic, and one secondary settling tank as depicted in Figure 2.4.

Disturbances can be either internal originating from the plant itself, or extemal imposed

on the plant by the surrounding environment. One important reason why there is an

interest in dynamics when dealing with wastewater treatment, is the nature of the influent

disturbances, which· are characterized by varying values of the influent flow rate and
\

waste concentrations mainly represented by the chemical oxygen demand (COD) and

total Kjeldahl nitrogen (TKN), Figure 2.3, (Olssen and Newel!, 1999).

Influent
(load disturbances)

Internal recycle Q

Figure 2. 3: The technological structure for the Athlone WWTP based on the UCT model

The variations of the inflow characteristics for the Athlone plant are presented in Figure

2.4. The uncertainty in sludge activity and composition caused by unpredictable change

in the external disturbances due to seasonal variations in temperature and rainfall

requires an adaptive control strategy to be developed and applied to the ASP. The

variation of the values of the input disturbances determine different operating conditions

for the process, which means that the control strategy has to be capable of generating

control action according to the change in operating conditions. Such type of control can

be achieved if the values of the disturbances are known or can be measured on-line. This

31



is not possible for COD and TKN as there is still a lack of reliable on-line sensors. The

measurement of the load disturbances is done at the influent where the flow rate of the

wastewater is measured by a flow meter and the COD and TKN concentrations are

measured by sampling. The available off-line measurements are calculated in a

laboratory and are not available immediately for real-time control implementation. These

data can be used on the basis of the methods of the Artificial Intelligence to develop

predictors for the future values of the inflow concentrations of the COD and TKN. The

predicted values can then be used for bUilding of the considered adaptive control strategy

in Chapter 1.

1; NI' ;I !A~...•. \ . • "~~J.i I'" ·J,li '.
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Figure 2. 4: Dynamics of the influent disturbances for the Athlone WWT Plant

The problem for prediction of the inflow disturbances is based on the analysis of the

environmental factors that could influence the input flow characteristics. The literature

review and plant operator experience showed that such factors include:

Cl weather conditions - temperature, wind velocity, rainfall, etc.;
Cl season, day of the week, time of day;
Cl human activities; and
Cl industrial activities.

The first two groups of factors are selected as a basis for disturbance prediction as some

pattern in the behaviour of the process can be observed when they are changed. The

weather data was obtained from the South African Weather Service.

Then the problem for input disturbances prediction can be formulated by finding a NN

model describing the behaviour of the inflow characteristics on the basis of variation of
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the considered inflow characteristics, the weather conditions and month of the year, in

such a way that the mean squared error between the real data for the inflow

characteristics and the NN prediction is minimum,

2.6 Influent Wastewater Characterization

The characteristics of the external disturbances COD and TKN and their influences on

the wastewater composition and microorganisms are discussed. The discussion is based

on the UCT (University of Cape Town) biological model Dold et al., (1991); and on the

biological Activated SlUdge Model 1 (ASM1) of the IAWQ (International Association on

Water Quality), (Jeppson 1996 and Henze et aI., 1987).

2.6.1 Chemical oxygen demand (COD) components in the UCT model

The carbonaceous material representation in the UCT model is in terms of the chemical

oxygen demand (COD). The total COD (S/i) is divided into biodegradable COD (Sb;) ,

non- biodegradable COD (inert mass) (Su;) and biomass (Figure 2.5). The influent

biodegradable and non- biodegradable COD are further subdivided into:

Unbiodegradable SUb-fractions: The influent unbiodegradable COD is divided into two

fractions, namely soluble COD (Sus;) and unbiodegradable particulate COD (Sup;) . Both

are assumed to be unaffected by the biological action in the ASP. The (Sus;) passes out

in the secondary settling tank overflow while the (SUpi ) is enmeshed in the sludge mass

and accumulates as inert VSS (volatile suspended solids).

Biodegradable sub-fractions: The influent COD is divided into two fractions, namely

readily biodegradable COD (RBCOD, Sbs;) and slowly biodegradable COD

(SBCOD, Sbp; ), RBCOD consists of molecules that can be readily absorbed by the

microorganisms and metabolized for energy and synthesis, while the SBCOD is made up

of particulate organic molecules that reqUire extracellular enzymatic breakdown prior to

absorption and utilisation,

The division of the influent wastewater COD into fractions is defined by the fractional

constants, fs.us' fs.up and fbs where, fs.us is the fraction of the total influent COD which is

unbiodegradable soluble; fs,up is the fraction of the total influent COD which is
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unbiodegradable particulate; Ihs is the fraction of the biodegradable influent COD which is

readily biodegradable. The division of the influent COD into the various sub-fractions,

using these fractional constants, can be expressed as:

Sup; == Is,up • SI;

2.7

2.8

The biodegradable influent COD (Sb;) is given by the difference of the total influent COD

Sti and the sum of Sus; and Sup; .

== Sti (1- h.us - h,up)

2.9

where,

Total COD

(So)

I• • •Biodegradable COD Active mass COD Non-biodeg.

(Sbl) (Szbi = l.,zbS ,;) COD (SUI)

+ + • •Readily Slowly Unbiodegradable Unbiodegradable
Biodegradable Biodegradable Soluble Particulate

(Sbsl = f b• - Sbl) (Sbpl =[1- fb.l-Sbl) (Sus; = I.... -So) (SupI = f •.up -So)

2.10

2.11

Figure 2. 5: COD components in the influent for the UCT model

The IAWQ Task group proposed another influent COD fraction. the COD of active

aerobic organisms present in the influent. In both models (UCT and ASM 1), this COD

fraction (S%h;) is with fractional constant Is,zb where S %h; == h,zb • Sti .
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For South African municipal wastewaters, it appears that the fractional constant t.,zb can

be assumed to be zero as the sewers are generally anaerobic.

2.6.2 Nitrogen components in the UCT model

The division of nitrogenous material in the influent wastewater is illustrated in Figure 2.6.

Based on the measurements of total Kjeldahl nitrogen (TKN), the nitrogen (N ) is divided

into ammonia nitrogen, organically bound nitrogen and active mass nitrogen, that is, a

fraction of the biomass that is assumed to be nitrogen.

Free and saline ammonia and organically bound fractions

The TKN (N,j ) is divided into free and saline ammonia (Naj ) and organically bound N

( Noj ). The influent organically bound nitrogen ( Nai ) is further divided into

unbiodegradable ( N oui ) and biodegradable (Nob; ).

Unbiodegradab/e organic nitrogen (Noui )

This nitrogen has two forms, unbiodegradable soluble (NOUSi) and unbiodegradable

particulate (NOUpi)' The unbiodegradable organic nitrogen is unaffected by biological

action in the system.

Biodegradable organic nitrogen ( N obi )

The influent biodegradable organic nitrogen has two forms, soluble (Nobs;) and

particulate (Nobpi)' The division of the influent wastewater TKN into fractions is defined

by the fractional constants, In,a' In,ous and In,obp where, In,a is the fraction of the total

influent TKN which is free and saline ammonia;

In ous is the fraction of the total influent TKN which is organic unbiodegradable soluble;

In,obp is the fraction of the organic biodegradable N which is particulate. The division of

the influent total TKN (N ,i ) into the various sub-fractions, using these fractional

constants, can be expressed as:

2.12

2.13

The influent unbiodegradable particulate organic nitrogen (Noupi ) is associated with the

influent unbiodegradable particulate COD (SUpi ) and is expressed as follows:
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2.14

where fz,n is the fraction of VSS (COD units) which is N. The influent biodegradable

organic nitrogen (Nob;) is given by the difference of the total influent TKN (N/i) and the

Nob; =N/i -No; -Nous; -Noup;

= N/i - <fn,o • N/i - fn,ouy • N,; - fz,n • fs,up • S,;

2.15

The soluble ( NobS;) and particulate (Nobp;) influent biodegradable organic nitrogen

concentrations are:

Nobs; =(1- fn,obp) • Nob;

N obp; =fn,obp • Nob;

Influent Total Kjeldahl

Nitrogen TKN ( N,; )

I

+ .. ..
Free and Saline Organically bound N Active mass N

ammonia (No; =[I-f",a]·N,;) N zb;
( Nat = In,a • N,; )

I.. •Biodegradable Unbiodegradable

(Nob; = N,;[l- In,. - I",ma]- Izb,n • !s,up e S,;: (Nou; =Noupi + Nma;)

I I
+ .. • ~

Soluble Particulate Soluble Particulate

( Nobs; = [1- I nob,p ] • Nob; ) (Nobpi = I nob,p • Nob;) (Nma; =I",ma eN,;) (Noupi = f.,n • Is,up e S,; )

2.16

2.17

Figure 2. 6: Nitrogen components in the influent for the UCT model

The IAWQ Task group recommended that an influent biological (active) mass nitrogen

fraction (Nzb;)' is included in both models (UCT and ASM 1), this COD fraction (Szb;) is

with fractional constant f.,zb where N zbi = fzb,n • Szb; and where fzb,n is the fraction of

biological (active) mass which is nitrogen.
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2.6.3 Influent Wastewater Characterization Summary

Process variables and influent wastewater variables are correlated as can be seen on the

basis of the above analysis of the components of the influent wastewater and of the state

variables (components) of the ASP models from Figures 2.5 and Figure 2.6 and from the

model equations. The current values of the process variables depend on the current

values of their corresponding influent parts. This means that the influent values of the

wastewater components have to be known by measurement in order to be capable to

properly monitor and control the ASP. As stated previously. there are still not reliable on­

line sensors to measure the carbonaceous and nitrogen components, currently only the

flow rate can be measured on-line. One of the solutions is to apply the achievements of

the modern control theory and to predict the values of the inflow components on the

basis of the regression or soft computing techniques. The latter approach is applied in

the thesis where only the total COD, TKN and influent flow rate are predicted. The values

of the components of COD and TKN are determined as a second step on the basis of the

obtained predictions using the fractional coefficients described above.

2.7 Summary of the chapter

The chapter introduces the wastewater treatment process, and the motivation for WWT is

discussed. Issues such as legislation and effluent reqUirements and compliance in South

Africa specifically are addressed. The current situation in the Western Cape region in

terms of municipal WWT plants and automation are tabled. The stru~ture of the \NINP is

examined together with the processes such as preliminary. primary. biological. and

secondary treatment that are involved in ensuring effective removal of nutrients. The

biological treatment of wastewater specifically the activated sludge process is described.

The influent process disturbances chemical oxygen demand (COD). total Kjeldahl

nitrogen (TKN) and influent flow rate. are identified and characterized. and reasons as to

why we need to predict these load disturbances are discussed. The total carbon and

nitrogen inflow components and their various fractional compositions with relation to the

UCT model are described.

In order to implement effective control of the ASP by controlling the dissolved oxygen, the

load disturbances have to be predicted on the basis of past plant behaviour and

environment conditions. This work utilizes this approach using neural networks to predict

the expected values of the disturbances with historical data from a municipal plant,

together with environmental variables such as temperature. rainfall and wind speed.
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Chapter 3 provides a background to the theoretical aspects of neural networks and

includes a historical oveNiew of the important developments in this field. Various

important topics such as learning (training), validation (testing), neural network

architectures, and generalization aspects are also discussed.
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CHAPTER THREE

NEURAL NEnNORKS BACKGROUND

3.1 Introduction

A neural network is an information processing system that simulates the way the

human brain works. The neural network is usually a computer-based software

algorithm and it operates differently to a conventional computer.

Work in the area of artificial neural networks have been motivated by the fascination

of mankind with the complexity of the human brain. The brain is a highly complex,

nonlinear and parallel computer (information processing centre). It can perform

certain computations many times faster than a digital computer in fields such as:

Cl Pattern recognition;
Cl Perception;
Cl Control; and
Cl Vision.

Cvtoplasm

'--- Cell

Figure 3. 1: Structure of the brain and the biological neuron

Biological neurons are the processing elements in the human brain. A neuron

typically consists of 3 parts, namely the cell body, dendrites and axon (Figure 3.1).

The cell body contains the nucleus and extends to the dendrites and axons. Dendrites

receive nerve impulses from neighbouring neurons, the cell body processes them and

the axon sends the resulting signals to other neurons. The point where the signals are

exchanged is called the synapse.

The human brain consists of ten billion neurons and each neuron can interact with as

few as a thousand or as many as two hundred thousand other neurons. Due to the
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huge number of interconnections, the brain is able to adapt to external signals and

make reasonable reactions (Park, 1996).

The brain is able to react to signals it has never experienced before because of the

massive connections between neurons interacting with each other. The correct

reactions are due to the genetic programming capability and the learning ability of the

brain to respond to the events. This fact is the main focus of the development of an

artificial neural network (ANN), or simply a neural network (NN) (Zupan 1993). The

term "artificial" is used to differentiate between its biological counterparts. In this

document the term "neural networK' simply refers to the artificial NN.

3.2 Artificial Neural Networks

A neural network is defined as an information processing system that simulates the

human brain. The work on artificial neural networks has been motivated by the fact·

that the human brain computes entirely differently from the conventional digital

computer (Haykin, 1999).

Haykin defines the neural network as a massively parallel, distributed processor

which is made up of simple processing units, having the ability to store experiential

knowledge and making it·available for use. Neural networks resemble the brain in two

respects:

• KnOWledge is acquired from its environment through a learning process.
• Interneuron connection strengths known as synaptic weights-are used to store

the acquired knowledge.

The basic processing element of a neural network is a neuron. Neurons can have

multiple inputs and a single output Two basic components of neurons are the

summing junction and activation functions (Figure 3.2).

3.3 A brief history of neural networks

To provide the background to this particular work, and because there is such a wealth

of material and applications for neural networks, a brief history has been included.

The history of neural networks can be traced back to the work of trying to model the

neuron. The original biological motivation for the feed-forward neural network stems

from McCulloch and Pitts (1943). The model they created had tvvo inputs and a single

output. The weights for the inputs were kept equal and the output was either logic 1 or

logic O. The output would remain zero until the weighted sum of the inputs reached a

certain threshold. The McCulloch and Pitts neuron became known as a logic circuit.
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The structure of an artificial neuron is shown in Figure 3.2.

x

Input
Signals

Xm .---t~

Synaptic
Weights

Summing
Junction

Figure 3. 2: Structure of an artificial neuron

The output of the neuron is given as:

m

Yk = f(wkOxO+L WAjX j )

j=\

3.1

where, Yk is the neuron output, W kO and Xo are the bias weight and magnitude, x j is

the input signal and wAj are the weights. fjJ is the activation function computed at the

summation node.

Donald Hebb was concerned about the adaptation laws involved in neural systems,

and in 1949 devised a learning rule for adapting the connections within artificial

neurons (Hebb, 1949).

The Perceptron was the next neuron model developed by Rosenblatt (1958).

Perceptrons are especially suited for simple problems in pattern classification.

Rosenblatt randomly interconnected the perceptrons and used trial and error to

randomly change the weights to achieve "learning". The McCulloch and Pitts' neuron

was however a much better model for the electrochemical process that goes on

inside the biological neuron than the perceptron. which is the basis for the modern

day field of neural networks (Anderson and Rosenfeld. 1988). Unfortunately the major

drawback of the perceptron is that it is only capable of classifying problems that are

linearly separable at the output (Masters. 1993 and Demuth et al., 2004).
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decision boundary

Figure 3. 3: A classification problem illustrating linear separable classes

Figure 3.3 shows a hypothetical classification problem with two feature variables Xj '

and X2- The decision boundary, denoted by the solid line, is able to provide good

separation of the two classes.

Around 1954, Minsky introduced reinforcement learning. (Ng, 1997).

The next major development was the formulation of new learning rules by Widrow

and Hoff in their application to a simple adaptive linear neuron (Adaline) (Widrow and

Hoff, 1960). The rule was also known as the least mean square (LMS) algorithm. The

extension of the ADALlNE to multi-layer network is called MADALlNE.

A significant breakthrough in neural networks was made in 1967 with the introduction

of the smooth sigmoid activation function by Cowan. This function has the ability to

approximate any nonlinear function. Instead of switching either on or off like the

perceptron, this activation function turns the output on gradually when activated. For

this and other common activation functions see section 3.5.

In 1969 Minsky and Papert published their book Perceptrons (Minsky and Papert,

1969) in which they showed the deficiencies of the perceptron models. Most neural

network funding was redirected and many researchers left the field. Only a few

researchers continued notably Teuvo Kohonen, Stephen Grossberg, James

Anderson and Kunihiko Fukushima (Krose and van der Smagt, 1996). The interest in

neural networks re-emerged only after some important theoretical res'ults were

attained in the eighties (most notably backpropagation).
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In 1974 Werbos published the backpropagation learning method, but this did not

receive a lot of pUblicity. This learning method deals with propagation of the

information about the errors back to the hidden layer.

Parker (1985) and Le Cun (1986) rejuvenated the interest in backpropagation. The

error backpropagation method published by Rumelhart, Hinton and WiIliams (1986),

could train multi-layered neural networks to perform tasks where the perceptron had

failed. It was after this publication that the backpropagation was seen as a

breakthrough in neural network literature with the introduction of the generalised delta

rule. The backpropagation method has been used successfully in numerous

applications such as filtering operations, handwritten digit recognition, control

systems, etc. For a more detailed discussion on the history of NN see Ng (1997) and

Tarassenko (1998).

3.4 Network Architecture (Topology)

There are broadly speaking, essentially two types of NN topologies, namely the feed­

forward neural network (FNN) and the recurrent neural network (RNN). The fully

connected 3-layer FNN and RNN are illustrated in Figure 3.4 and 3.5 respectively.

There are a large number of different neural network topologies. For a more

comprehensive list of the different neural network topologies together with the

sources consulted see Appendix A. This list is by no means the only types of NNs

that are available.

Feed-forward NNs are restricted to finite-dimensional input and output spaces. RNNs

can in theory process arbitrarily long strings of numbers or symbols. But training

recurrent NNs has posed much more serious practical difficulties than training feed­

forward networks.

-
Finding an optimal network configuration is one of the most important problems

neural network designers face. The following neural network parameters should be

selected:

• the number of hidden layers;
• the number of neurons in each hidden layer; and
• the type of activation function, which can vary in the same layer.

These parameters must be selected carefully to avoid overfitting and underfitting and,

hopefully, to make the learning phase convergent (Khan and Ondrusek 2000). Due to

a lack of information about the variables represented in the hidden layer, NNs are

considered by most researchers to be a "black box" model (Kabundi, 2002).
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Inputs

hidden layer

Outputs

Figure 3. 4: Feed-forward Neural Network

neuron hidden layer

Inputs

Figure 3. 5: Recurrent Neural Network

Outputs

3.5 Activation functions

The output of the neuron is determined by the activation (or transfer) function of the

neuron. The aim of the activation function is to introduce nonlinearity into the network.

This nonlinearity combined with the interconnections of the neurons accomplishes

proper mapping from input signals to the corresponding output activities (Zupan

1993). Without this nonlinearity the multilayer perceptron would not be functionally

different from a linear filter and would not be able to perform nonHnear separation and

trajectory learning for nonlinear and non-stationary signals (Mandic and Chambers,

2001).

The transfer function can be something as simple as a binary function also called a

hard limiter or step function (Figure 3.6). The output depends upon whether the

product is positive or negative (Equation 3.2 and 3.3). The output is '1' for a positive

product and '0' for a negative product. The output can also be bipolar (between +1 or

-1) as indicated in Figure 3.7.
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Figure 3. 6: Binary (Threshold) Activation function
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Figure 3. 7: Bipolar Binary (Threshold) Activation function
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3.3

Another very popular activation function is the sigmoid or 'S'-shaped curve (Figure

3.8). The sigmoid (Equation 3.4) has the ability to approximate to a certain degree of

accuracy any nonlinear function. The sigmoid is also known as a Usquashing"

function, since the infinite input range is compressed into a finite output range. Here

the curve asymptotically approaches a minimum and maximum. The difference

between the sigmoid and the binary functions are that the logistic sigmoid turns on

gradually when activated. Sigmoid functions are characterized by the fact that their
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slope must approach zero, as the input gets large (Demuth et al., 2004). This is also

when the function is almost insensitive to input received from the input layer, and the

output is inactive. Mathematically the function and its derivative are continuous.
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Figure 3. 8: Logistic Sigmoid Activation function

I
a(v)=--­

1+ e-av
3.4

The hyperbolic tangent activation function (Figure 3.9) is similar to the sigmoid, but

the output is bipolar (Equation 3.5). The tangent tends to yield faster training models

than functions generating only positive values such as the sigmoid.
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Figure 3. 9: Hyperbolic Tangent Activation function

3.5

The pure linear function (Equation 3.6) is a linear activation function and does ho

compression of the values. The linear transfer function calculates the neuron's output
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by simply returning the value passed to it. The output layer for most function

approximation and regression applications is usually a linear function. If the last layer

of a mUlti-layer network has sigmoid neurons, then the outputs of the network are

limited to a small range. If linear output neurons are used the network outputs can

take on any value.

a= purelin(v)=v 3.6

Figure 3. 10: Pure linear Activation function

The radial basis activation function (Equation 3.7) has a different neuron input structure to that
\

of the other activation functions. The net input to the transfer function is the vector distance

between its weight vector wand the input vector multiplied by the bias.
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Figure 3. 11: Radial Basis Activation function

The radial basis function has a maximum of 1 when its input is zero (Figure 3.11). As

the distance between the weight and input increases, the output decreases.
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Therefore the radial basis function is said to act as a detector that produces 1

whenever the input and weight vectors are identical. The bias allows the sensitivity of

the radial basis neuron to be adjusted.

There are other less popular activation functions such as the satlin (Saturating linear)

function and the poslin (Positive linear) function (Burton, 2006). The success or failure

of the learning process depends on whether the activation function is differentiable or

not. Based on this requirement, the most popular nonlinear functions are the logistic

sigmoid and the hyperbolic tangent.

3.6 Neural Network Training / Learning

Training is the way a NN learns. Learning or training algorithms are procedures for

modifying the weights on the connections in a neural network structure. There are

normally 3 types of learning algorithms (Ng, 1997):

• Supervised learning
• Unsupervised learning
• Reinforcement learning

For supervised learning, a set of inputs and correct outputs are used to train the

network. The network then produces its own outputs. These outputs are compared

with the correct outputs and the difference (error) is used to modify the weights. This

type of learning is used in the thesis because of the nature of the available data.

Reinforcement learning is a special case of supervised learning where there is no set

of inputs and correct outputs. The network is just told whether a produced output is

'good' or 'bad', according to a defined criterion.

Unsupervised learning or self-organizing is where a network develops its own

classification rules by extracting information from the inputs presented to the network.

Batch training is where changes to the weights and biases are made based on the

application of the entire input set of data vectors to the network.

Incremental training is where the changes to the weights and biases are made after

the application of each individual input data vector. Incremental training is also

referred to as on-line training or adaptive training.

Training algorithms use historical data (training data set) to automatically adjust the

weights and thresholds in order to minimize the prediction error. The method used for
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adjusting the weights on the connections is called a learning rule. There are many

commonly used learning rules, but there are some that are proven to be efficient in

solving certain types of problems.

3.7 The Perceptron Leaning Rule

Rosenblatt's single (ayer perceptron is trained as follows:

1. Randomly initialise all the network weights.

2. Apply the inputs xand calculate the sum of each neuron Sik) =r.x;(k)wij(k) .
;=1

3. The outputs from each unit are:

4. Oik)={l Sik»thresho/d
o otherwise

5. Compute the errors eik)=OdJCk)-Oik) where Odj(k) is the known desired

output value.
6. Update each weight as wij(k+ 1) =wij(k)+~;(k)eik), where 1] is the gradient

procedure step (learning rate).
7. Repeat steps 2 to 4 until the errors reach a satisfactory level.

3.8 The Least Mean Square Algorithm

The Least mean square (LMS) learning algorithm is sometimes known as the delta

rule or Widrow-Hoff learning rule. The correction of the weights is determined by:
\

3.6

where E = Yd - Ym and where Yd is the desired output and Ym is the actual model

output.

The error is based on the sum of the inputs to the unit S.

3.7

The linear sum of the inputs S is passed through a tangent function that produces

the output '+1' or '-1' depending on the polarity ofthe sum.

The LMS algorithm is based on the instantaneous values for the cost function,

(Haykin, 1999):

49



q(w)=!e2(n) 3.8
2

where e(n) is the error signal measured at time n. Differentiating q(w) with respect

to the weight vector wyields,

a~(w) =e(n) de(n)
aw aw

3.9

3.9 The Backpropagation Training Algorithm

Backpropagation is an example of supervised learning. In many applications neural

networks are essentially function~mapping networks. The problem with mapping is to

discover the relationship between the network inputs and target outputs. This

relationship is in all likelihood probably nonlinear, as is the case with the activated

sludge process. The backpropagation algorithm has been effectively utilized in many

applications requiring nonlinear input-output mapping. With the ability to approximate

any continuous nonlinear function, the backpropagation network has extraordinary

mapping (forecasting) abilities (Rui and El-Keib 1995).

The term backpropagation refers to the manner in which the gradient is computed for

nonlinear multilayer networks. Generalizing the Widrow-Hoff learning rule to multipl~

layer networks and nonlinear differentiable transfer functions created the

Backpropagation algorithm.

The algorithm is based on steepest-descent (gradient descent) techniques extended

to each of the layers in the network by the chain rule (Ng, 1997). The partial derivative

of the error function with respect to the weights is computed as:

VE(k) = aE(k)
aW(k-l)

where W is the vector of the weights.

The error function is defined as:

3.10

3.11E(k) =![Yp(k)-Ym(k)]2
2

where Yp is the plant output and em (k) = Yp(k) - Ym(k) . The constant ;12 is chosen

to facilitate the computation of a derivative for the cost function which is essential in

the estimation of the parameters.
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The objective is to minimize the error function ECk) by taking the error gradient with

respect to the weight vector, W that is to be adapted. The weights are updated

using:

W(k)=W(k-I)+ aE(k)
17 aW(k-l)

where 1] is the learning rate and

dE(k) (k) aYm(k) (k) aOAk)
aW(k-l) =-em aW(k-l) -em dW(k-l)

3.12

It becomes evident that the success of the backpropagation technique depends on

three factors: the learning rate 17. the distance between the actual output and the

predicted output, and the activation function. The learning rate determines how fast

the network adjusts itself in response to the errors. If the learning rate is too high, the

adjusted weights oscillate between points with similar heights on the error surface

(Park. 1996) and the network does not converge to a minimum at all. If the learning

rate is set too low, training is slow and the network is trapped in a local minimum

(Figure 3.11). The learning rate should lie within the range 0 ~ 1] ~ 1 .

\
The backpropagation algorithm could be summarized as follows:

• A set of training inputs and corresponding target outputs are supplied to the
network;

• The network calculates the error signals, and this is used, to adjust the
weights;

• After many forward and backward· passes, the network error reaches a
.minimum on the training data;

• The network is tested on test data it has not seen before to measure the
generalization ability of the network.

A single pass of the first two steps above is known as an epoch. Training usually lasts

in some cases thousands of epochs until the network error is ~.elow a certain

threshold. From this it is evident that modelling with neural nen"lorks is extremely

time- consuming.

3.9.1 Limitations of the Backpropagation Training Algorithm

Limitations of the backpropagation training algorithm are given below:

• Long training times, therefore the speed of the convergence is relatively slow;
• Inappropriate training sets and learning strategy causes network paralysis. If

the weights get too large, the changes in the weights become minimal (since
for large weights, the derivative of the sigmoid is very small);

• No guarantee for convergence to a global minimum; sometimes the method
can get stuck in a local minima (See Figure 3.12);
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• There is no exact rule for setting the number of neurons and layers for the
bestpertormance;and

• Instability if the learning rate is too large.

Regardless of the above limitations to the backpropagation algorithm, it is still a very

popular one especially in the control community. There are however numerous

improvements to the common backpropagation algorithm. One improvement is

adding a momentum term.

....--------...;.--------1~WeightS
E

Figure 3. 12: The Learning algorithm could get stuck in a local minima

3.9.2 Heuristic Improvements to the Backpropagation Algorithm

One method to avoid an error trajectory in the weight space being oscill.atory is to add

a momentum term (Paplinski, 2004). Momentum is introduced to reduce the chance

for oscillations for a given learning rate. Momentum allows a network to respond not

only to the local gradient, but also to trends in the error surface (Demuth et a/., 2004).

Momentum is a modification of the generalized delta rule by including a term in the

weight updating equation (Equation 3.13). Including a momentum term can reduce

the network training time and speed up the network convergence.

dECk)
W(k) =W(k-l)+(-l] )+a.AW(k-l)

dW(k-l)
3.13

The momentum term parameter a is selected between 0< a <1. If the momentum

term is set to 0, the weight change is based only on the gradient. If the momentum

term is set to 1, the new weight change is equal to the last weight change and the

gradient is ignored. The gradient is calculated by summing the gradients calculated

after each training example.
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3.14

Such modification to the steepest descent learning law acts as a low-pass filter

smoothing the error trajectory. As a result it is possible to apply a higher learning rate,

TJ·

Modification to Equation 3.13 such as:

W(k) =W(k-l)+(-TJ aE(k) )+aAW(k-I)+ PAW(k-2)
aW(k-l)

was proposed by Nagata et al. (1990) where p is a constant decided by the user. The

claim was that this term reduces the possibility of the network being trapped in a local

minimum. However, this is a repeat of the role of a. and the advantage of adding p

is not very clear (Ng, 1997).

Despite the attempts at improving the traditional backpropagation algorithm by adding

momentum terms and other methods. there are other more efficient gradient methods

such as the scaled conjugate gradient. This method is used in this work and is

discussed in more detail in Chapter 5.

3.10 Generalization

It is rarely useful to have a NN simply memorize a set of data (function

approximation), since numerous algorithms for table look-up can do memorization

much more efficiently. Typically, it is required that the NN be able to perform

accurately on new data. that is, to generalize.

Generalization can be defined as the ability of the network to make a hypothetical

response to an input that has not been seen before, (Park, 1996) and make a

reasonable response.

3.10.1 Overfltting and underfitting

Overfitting or underfitting is essentially how well the NN make predictions for cases

that are not in the training set. NNs, like other flexible nonlinear estimation methods

such as kernel regression and smoothing splines, can suffer from either underfitting

or overfitting. A network that is not sufficiently complex can fail to detect fully the

signal in a complicated data set, leading to underfitting. A network that is too complex

fits the noise also. not just the signal. leading to overfitting (Figure 3.13). Overfitting is

especially dangerous because it can easily lead to predictions that are far beyond the

range of the training data with many of the common types of NNs. Overfitting can also

produce wild predictions in multilayer perceptrons even with noise-free data (NN

FAQ,2005).
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In the following example in Figure 3.13, a NN has been trained to approximate a

.noisy sine function. The underlying sine function is shown by the dotted line, the noisy

measurements are given by the '+' symbols, and the neural network response is

given by the solid line. Clearly this network has overfit the data and does not

generalize well (Demuth, Beale and Hagan, 2004).

There are generally three typical conditions necessary for good generalization:

The first condition is that the inputs to the network must contain sufficient information

pertaining to the target, so that a mathematical function relating correct outputs to

inputs with the desired degree of accuracy exists. A network cannot be expected to

learn a non-existent function.

The second condition is that the function that is being approximated should be, in

some sense, smooth. This means that a small change in the inputs should, most of

the time, produce a small change in the outputs. For continuous inputs and targets,

smoothness of the function implies continuity and restrictions on the first derivative

over most of the input space. Some neural networks can learn discontinuities as long

as the function consists of a finite number of continuous pieces. A nonlinear

transformation of the input space can increase the smoothness of the function and

improve generalization. A Boolean network with a small number of hidden units and

small weights computes a "smoother" input-output function than a network with many

hidden units and large weights.

•1~1L---:..:-L.•-"":".aJl':--:4:-':4-"":"...~2--70 -"":"a.':-2-~DA--::o.':-.-o~.•~...J

""'*
Figure 3. 13: An example of overfitting of a noisy sine wave (Oemuth, et ai, 2004)

The third requirement for good generalization is that the training cases be a

sufficiently large and a representative subset of the set of all cases. This requirement
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relates to the fact that there are two different types of generalization: interpolation and

extrapolation. Interpolation applies to cases that are more or less surrounded by

nearby training cases; everything else is extrapolation. In particular, cases that are

outside the range of the training data require extrapolation. Cases inside large "holes"

in the training data also effectively require extrapolation. Interpolation can often be

done reliably, but extrapolation is notoriously unreliable. Therefore it is important to

have sufficient training data to avoid the need for extrapolation. (NN FAQ, 2005).

If there are adequate samples for the training set, every case in the population is

close to a sufficient number of training cases. Under these conditions and with proper

training, a neural network does not generalize reliably well to the population.

If more information about the function, e.g. that the outputs should be linearly related

to the inputs is available, one can often take advantage of this information by placing

constraints on the network or by fitting a more specific model, such as a linear model,

to improve generalization. Extrapolation is much more reliable in linear models than in

flexible nonlinear models, although still not nearly as safe as interpolation. This

information can be used to choose the training cases more efficiently. For example,

with a linear model, training cases should be chosen at the outer limits of the input

space instead of evenly distributing them throughout the input space.

Typically, the purpose of training is to make predictions for future cases in which only

the inputs to the network are known. The result of conventional net\lIJork training is a

single set of weights that can be used to make such predictions. If a single-valued

prediction is needed, one might use the mean of the predictive distribution, but the full

predictive distribution also indicates how uncertain this prediction is.

Number ofneurons
Nwnbct of itet'dliofi& (ephoos) -

Figure 3. 14: Training error and generalization error
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3.10.2 Early stopping

<Another method for improving generalization is called early stopping. In this technique

the available data is divided into three subsets. The first subset is the training set,

which is used for computing the gradient and updating the network weights and

biases. The error of this data set is minimized during training.

The second subset is the validation set. This set is used to determine the network

performance on patterns which do not form part of the training set, but which

determine when to terminate training. The error on the validation set is monitored

during the training process. The validation error normally decreases during the initial

phase of training, as does the training set error. However, when the network begins to

overtit the data, the error on the validation set typically begins to rise. When the

validation error increases for a specified number of iterations, the training is stopped,

and the weights and biases at the minimum of the validation error are returned

(Demuth, Beale and Hagan, 2004) (Figure 3.15).

The third subset is the test set which is not used during the training, but is used for

obtaining an estimate of the true error rate of the network. It is also useful to plot the

test set error during the training process (Figure 3.15). If the error in the test set

reaches a minimum at a significantly different iteration number than the validation set

error, this indicates a poor division of the data set.

u ..........-----r----......----..........

Figure 3. 15: Early Stopping Method plotting the training, validation and test sets

There are also many other important problems that are so difficult that a neural

network is unable to learn them without memorizing the entire training set, such as:
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• Predicting random or pseudo-random numbers.
• Factoring large integers.
• Determining whether a large integer is prime or composite.
• Decrypting anything encrypted by a good algorithm.

3.10.3 Regularization

Another method for improving the generalization ability of a NN is regularization.

Statisticians use this technique to find the balance between the number of

parameters and goodness of the fit by penalizing large models. The performance

function is modified in such a way that the algorithm prunes the network by driving

irrelevant estimates to zero (Rech. 2002). This involves modifying the performance

function such as the sum of squares (mean square error) of the network error on the

training set.

1 N
F=mse=- L(e;)2

N ;=\

It is possible to improve generalization by modifying the performance function by

adding a term that consists of the mean of the sum of squares of the network weights

and biases (Demuth, Beale and Hagan. 2004).

msereg =Jmse +(1- r)msw

where r is the performance ratio and msw =.!..t W j
2

.
\ n j=l

3.15

Using this performance function causes the network to have smaller. weights and

biases, and this forces the network response to be smoother and less likely to overfit.

The main advantage of using regularization is that even if the NN model is over­

parameterized, the irrelevant parameter estimates are likely to be close to zero and

the NN model behaves like a small network (Rech, 2002).

3.11 Neural Network Positive Characteristics

Neural networks are characterized by the following positive capabilities:

• To solve tasks where it is beneficial to use a machine. but where it is
impractical to program responses to all possible outcomes (knowledge
engineering bottleneck);

• Learning from limited examples - 'human-like' learning behaviour: neural
networks are particularly suited to problems where the solution is complex and
difficult to specify. but provides an abundance of data from which a response
can be learnt (Tarassenko, 1998);

• Ability to generalize, Le. map similar inputs to similar outputs: neural; networks
are able to interpolate from a previous learning experience. With careful
design, a NN can be trained to give the correct response to data it has not
previously encountered (generalization) (Tarassenko. 1998);

• Ability to map linear and nonJinear functions: nonlinear mapping often give
neural networks the advantage of dealing with complex real-world problems;
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• Computational efficiency: training a NN can be computationally intensive, but
the computational requirements of a fully trained NN can be modest
(Tarassenko, 1998). For larger problems speed is gained through parallel
processing (Haykin, 1999);

• Robust in the presence of noise; and
• Multivariable capabilities.

3.12 Application Areas of Neural Networks

Some neural network application areas are listed in chapter 1, but also include (and

are not limited to):

• Recognition and forecasting disturbances;
• Performing statistical quality control;
• Multiple model control for vehicles (Cavalletti, Ippoliti and longhi, 2007);
• Adaptively tuning of process controllers; and
• Combining data from redundant sensors.

3.13 Neural Networks structures for use in prediction

The structure of a predictor underpins its ability to represent the dynamic properties of

a statistically non-stationary discrete time input signal and hence its ability to predict

some future value (Mandic and Chambers, 2001). Time whether continuous or

discrete, is an important aspect of the neural network learning process (Elman, 1999).

The most basic time-series predictions are made using lags from a single time series

of as all predictors (Masters, 1993). For prediction applications a MLP NN can be
\

compared to the FIR (finite impulse response) filter, or in terms of time series, moving

average (MA).

Time series prediction has traditionally been performed by the use of linear

parametric autoregressive (AR), moving average (MA) or autoregressive moving

average (ARMA) models. The multilayer perceptron (MLP) is a static network, as it

has no physical feedback connections. To transform the MLP into a dynamic network,

time delays (memory) in the input data are introduced (Olssen and Newell, 1999),

(Elman, 1990). The NN structure for prediction is shown in Figure 5.16 where the

variable to be predicted is time delayed by a finite number of steps and used at the

input. There are no physical feedback paths from the output back to the input in this

structure, but it has been successfully applied in many applications such as time

series prediction (Gao and Er, 2005), flood forecasting (Chang, Uang and Chen,

2001), short term load forecasting (Khan and Abraham, 2000), and time series

forecasting (Malasri and Malasri, 2002) among others. It is used in the thesis to

predict the time series data of the inflow disturbances. The other two structures are

the Elman and RBF networks.
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Figure 3. 16: Neural network structure for prediction applications where the inputs are
time-delayed a number of steps

3.14 Summary of the Chapter

This chapter provides a brief theoretical introduction to neural networks and starts by

examining the differences and similarities between the biological and artificial neuron.

A brief historical background provides some perspective as to the developments and

current research directions in the field of neural networks.

The development of the first perceptron. which ultimately led to the multilayer

perceptron and many other different types of neural networks, are briefly discussed.

The different types of activation functions such as the logarithmic sigmoid, hyperbolic

tangent, pure linear, and hard limit (threshold binary) activations are investigated and

proposed.

The manner in which a NN learns either by supervised or unsupervised learning is

discussed. The gradient descent method of the backpropagation' algorithm is

examined and an improved algorithm with momentum is investigated. The use of a

more efficient gradient method, the scaled conjugate gradient method is proposed.

This is discussed in Chapter 5.

The next section that is a fundamental issue in the training and testing (validation) of

NNs, is the generalisation ability of the NN. The definitions for overfitting and

underfitting are tabled and two methods to improve generalisation are proposed.

Overfitting occurs when the NN is in effect "over-trained". Underfitting occurs when

there are insufficient neurons in the hidden layer to solve the given problem.

The first method to improve generalisation is the early stopping method where the

data is divided in 3 sets. namely the training, validation and test sets. The error is

monitored on the training and validation sets to avoid overfitting the data, The second

method for improved generalisation is regularisation, where a modified performance
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function is introduced. This ensures that the weights and biases in the network remain

small.

Positive NN characteristics and application areas are described. Finally a brief look is

taken at structures used in prediction or forecasting applications, where the output is

delayed a finite number of steps and used at the input without any physical

connections.

The success of a particular application may lie in the quality and quantity of the data

presented to the neural network. Chapter 4 examines the importance of pre­

processing the input data to a NN. The plant and weather data sets are discussed,

and various techniques for transforming the data are investigated.
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CHAPTER FOUR

.DATA PRE-PROCESSING FOR SUPERVISED LEARNING

4.1 Introduction

Our world is increasingly becoming more and more data-driven. Data in various

formats surround us in almost sphere of our daily lives. This data is usually raw and it

must be analyzed, processed, and maybe converted into another more meaningful

format in order to inform, instruct and aid in our understanding and decision-making.

Neural networks can sometimes produce startlingly excellent results and offer an

attractive paradigm for the design and analysis of adaptive intelligent systems for a

broad range of applications (Garvey, 1997). They also handle seemly impossible

problems. From this point of view, neural network practitioners sometimes think that

they can throw anything at a neural network and it will handle it (Masters, 1993).

Neural networks when used wisely perform at least as well if not better in certain

instances, than traditional methods. Many factors however contribute to the success

of a neural network for a given problem. The representation and quality of the

instance data is first and foremost (Kotsiantis et al., 2006). If data is irrelevant,

redundant, noisy or unreliable, then knowledge discovery and the learning of the

relationships between cause and effect during the training phase are more difficult.

Data preparation and pre-processing although it takes a lot of time, is of utmost

importance to the success of the neural network performance. Data preprocessing

includes data cleaning, normalization, transformation, feature extraction and

selection, etc. After pre-processing, the data is presented to the neural network, after

which post-processing is performed to return the data in its original form (Figure 4.1).

The network performance is then calculated on the post-processed data.

There is no one single recipe of data pre-processing algorithms to follow in order to

guarantee the best performance for each data set. This chapter will present some

well-known pre-processing steps that can be considered and applied so that the best

performance is achieved for a given data set. These steps are applied to the data

used in the thesis where the NNs are built using COD, TKN, flow, weather and month

of the year as input data, and COD, TKN and flow as output data.
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Figure 4. 1: Block diagram illustration of the use of data pre-processing and post-processing
with a neural network (Adapted from Bishop (1995})

4.2 Data description

The plant data is obtained from the Athlone Wastewater Treatment Plant (Figure 4.2)

in Cape Town, South Africa. The Athlone plant provides treatment of domestic and

industrial waste. The plant has been designed with the following specifications:

• Plant capacity: 105 Ml;
• COD: 1125 mgll;
• Suspended Solids (SS): 400 - 450 mg/l; and
• Sludge Age: 13 days

The effluent standards for the plant according to the Department of. Water and

Forestry is:

• Suspended solids: 25 mg/l
• NH;l as N: 10 mg/l
• COD: 130 mg/l
• Ecoli: 1000/100 ml

The plant configuration is based on the UCT process model for Nitrogen and

Phosphorous removal.

The influent variables of interest chosen are the Chemical Oxygen Demand (COD),

Total Kjeldahl Nitrogen (TKN), and the influent flow rate. These variables are

measured at the influent (input) of the plant and are off-line measurements except for

the flow rate. These particular external disturbances are selected as they play a vital

role in the activated sludge process (see Chapter 2), and are used in the

mathematical models describing the activated sludge process. The historical data for

the COD, TKN and Flow rate are sampled from July 1992 up until January 2005.

Although data for COD and TKN are available from January 1985, the influent flow
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rate data is only available from July 1992 onwards. The plant data is converted from

the MS Excel format into the MySQL database format.

Figure 4. 2: An aerial view of the Athlone Wastewater Treatment Plant.

The weather data is obtained from the South African Weather Service Centre based

at the Cape Town International Airport. This is the historical weather data for the

Cape Town region between January 1985 and January 2005. The weather data used

is from the same time period as the plant data, July 1992 up to January 2005. The

data is converted from the ASCII text format to MS Excel and then transferred to the

MySQL database. The variables chosen are minimum temperature, maximum

temperature, rainfall. and wind speed.

The number of data points for both plant and weather data used for the training and

test data sets together are 658 points. All the time series data for the specified time

periods are displayed in Figures 4.3 to 4.9. The cyclic trends in the data variables are

fairly evident upon visual examination of the raw plant and weather data. This is the

case for particularly minimum and maximum temperature and the flow rate where

changes occur as the seasons change. The Athlone WWT plant data are sampled

daily but averaged to a weekly value. The daily weather data is also averaged to a
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weekly sample value. The description of the variables, units of measure, range of the

data, together with the mean and standard deviation of the plant and weather data

are presented in Table 4.1. The monthly data representing the time aspect is another

input to the NN and is reflected in Table 4.5 below.

Table 4. 1: The information for the process variables for the Athlone wastewater
treatment plant and weather data

Chemical Oxygen Demand - mg/l

otal Kjeldahl Nitrogen - mg!l

Influent flow rate to plant - mVld

Maximum ambient temperature - QC

Minimum ambient temperature - "e
Rainfall - mm/hr

ind speed - km/hr

2030.00

85.60

181.00

32.64

18.59

21.44

6.30 24.73

898.09

51.45

9136

22.36

11.79

1.42

13.70

249.14

11.22

22.36

3.98

3.50

2.33

2.56
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Figure 4. 3: Chemical Oxygen Demand (COD) time series data: 1992· 2005
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Figure 4. 4: Total Kjeldahl Nitrogen (TKN) time series data: 1992- 2005
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Rowrate time series data 1992 - 2005
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Figure 4. 5: Flow rate time series data: 1992- 2005

Maximum Temperature Time Series data 1992 - 2005
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Figure 4. 6: Maximum Temperature time series data: 1992- 2005
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Figure 4. 7: Minimum Temperature time series data: 1992· 2005
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Rainfall time series data 1992 -2005
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Figure 4. 8: Rainfall time series data: 1992- 2005
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Figure 4. 9: Wind Speed time series data: 1992- 2005

4.3 Data selection

Neural networks are data-driven and often require large amounts of training data

examples (Sarnett 1999). The first step in selecting data is the data specification and

collection, where variables of interest are identified and collected. The next step in the

process would be the analysis and examination of the collected data. These two steps

are usually performed iteratively and in parallel with each other (Casey, 2004).

Finding good inputs for a NN and collecting enough training data often take far more

time and effort than training the network.

Training data is essential to the success of neural computing applications

development, and the availability and quality of data should be confirmed at the

feasibility stage. The range of data available to train the network should be

representative of the data that the network would have to process after it is trained.
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There should be examples of extreme input conditions so as to ensure that the

network will perform correctly at these extremes (Tarassenko, 1998).

If data is not available immediately the feasibility of collecting it has to be assessed,

as there are usually practical problems and cost implications associated with

collecting data (Tarassenko, 1998). Some expert knowledge regarding the types of

data variables or different processes involved may assist in the selection of the input

variables to the NN.

The influent wastewater disturbance variables of COD, TKN and flow were selected

as an abundance of reliable data was available and these particular variables play an

important role in the activated sludge process. For the other variables of interest there

was not enough data available

4.4 Data preprocessing

Neural networks very rarely operate directly on the raw data, although this is possible.

The disadvantage of using raw data values is that the training time for the neural

network would be significantly longer as the various variables have very different

ranges. Data has to be pre-processed before it is inputted to a neural network

because:

• Neural networks learn faster and perform better if the input variables are pre­
processed before it is used to train the network;

• Neural networks are able to interpolate well, but perform poorly when
extrapolating data;

• The network should not be trained on one problem and tested on an entirely
different problem. Here problems with generalization may occur.

Data pre-processing can have a significant effect on the generalization performance

of a supervised neural network. Training a NN until the error converges to a minimum

does not mean that the NN will respond positively to the application of a test data set.

What usually occurs is that the NN has learned the training data set as well as the

underlying noise and is not able to generalise. The elimination of noise from data is

one of the most difficult problems in machine learning (Teng, 1999).

4.4.1 Missing data

Plant data is most times not very reliable and many problems can occur which can

affect the reliability or integrity of the data. One of the most common problems is that

of missing data. One of the many reasons for this could be as a result of operator

failure to record data, but the more likely explanation could be instrumentation

equipment failure. This is especially true of on-line sensors where all but the very
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simplest of devices are prone to repeated failure (Arthur, 1982). There are various

methods proposed to deal with the problem of missing data.

The first option should be to find the missing data. This step is almost always

overlooked. If data is truly missing it may be worthwhile to enquire as to why the data

is missing.

A single neuron can also be dedicated to be a "missing value" indicator. The neural

network is given some value in place of the missing data. If the variable is nominal,

the mode (most common value) could be used. If the data is ordinal the median is

appropriate. For interval or ratio data, the mean is probably the best. The important

point to consider is not to give it an oddball value that can be a misguided teacher,

particularly for supervised learning (Masters, 1993).

Tarassenko (1998) proposes three strategies to deal with missing data. The first

method consists of replacing the missing data value by its mean (Olssen and Newell,

1999) or median across the training set. The other method is to estimate the missing

value for an n-dimensional input vector from knowledge of the other 11-1 input

variables. The last method uses either a linear model or a NN network to predict the

nth value given the set (n-1)-dimensional vectors as inputs. Olssen and Newell (1999)

also propose using the previous good value, constant trend (replace using linear

regression of points on either side of the missing data), or more complex relations can

be used to interpolate (polynomials or splines).

The first approach that is used is that the missing data values are replaced by the

average (mean) value for the particular variable for the entire year. The problem with

this approach occurs if there are consecutive missing data values, as is the case with

the Athlone plant data set. This means that for the same inputs the NN will have

different output values. This can influence the response of the network to an entirely

different data set (test data).

The approach adopted eventually is to use a linear interpolation method to replace

the missing data values in the Athlone plant data set. There is no visible improvement

in the predictive performance of the neural network for the case of using the mean

value or the linear interpolation method in order to replace the missing data values.

This could indicate that either method would work equally well for this data set.
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The plant data for COD has 12 missing data points, for TKN there are 28 missing

data values and for the influent flow rate there are 12 missing data points. In a few

instances the missing data points were consecutive, but this did not extend to more

than 3 consecutive missing points. There were 5 points at which all influent

disturbance variables had missing data at the same moment in time. This could be

due to the fact that no data was available either because of maintenance schedules,

or no readings were captured. These influent data variables (influent disturbances)

are the only ones where the linear interpolation method is applied. Missing data in the

weather data set are replaced by using the monthly mean value for the particular

variable.

After the problem of the missing data points have been dealt with, careful attention

has to be paid as to which variables are selected as inputs to the NN. The first aspect

to consider and investigate is referred to as the ~curse of dimensionality".

4.4.2 The curse of dimensionality

The number of inputs to a NN determines the network size. Therefore, as the number

of inputs increase, the free parameters (weights) within that particular NN will also

increase. Haykin (1999) proposes a "rule of thumb" for determining the number of

data points that is required based on the number of inputs I to the NN:

4.1

where m is the number of training vectors to achieve a worst case generalisation

error, E, for the network with W weights and N nodes.

The "curse of dimensionality" (Bellman 1961) refers to the exponential growth of

hyper-volume as a function of the input dimension. Many NNs can be thought of

mappingJrom an input space to an output space. Every part of the input space needs

to be represented by the NN in order to know how that part of the space should be

mapped. Covering the input space takes resources, and the amount of resources

needed is proportional to the hyper-volume of the input space. Neural networks with

lots of unnecessary inputs generally perform relatively poorly. This is caused by the

fact that the dimension of the input space is high, and the network uses almost all its

resources to represent irrelevant portions of the input space. The Radial Basis

Function NN is one type of NN that is particularly prone to this problem.

A partial remedy is to pre-process the input in the right way, for example by scaling

the components according to their "importance", However, even if a network algorithm
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4.2

were able to focus on important portions of the input space, the higher the

dimensionality of the input space, more data would be needed to filter out irrelevant

information.

A priori information can help with the curse of dimensionality. Careful feature

selection and scaling of the inputs affects the severity of the problem, as well as the

selection of the type of neural network model (Mandic and Chambers, 2001). One

method used to aid in the selection of the inputs and to eliminate unnecessary inputs

to the NN, is correlation.

4.4.3 Correlation

Several statistical methods are available for determining the significance of, and the

relationship between variables. The problem is that many of these methods are linear

techniques, where neural networks on the other hand are usually based on non-linear

models. However certain linear methods such as correlation can be used to pre­

process data before it is used as inputs to the NN.

Correlation can assist in determining which variables are closely correlated and

removing any unnecessary inputs. Calculating the correlation coefficients for two

variables will give an indication' as to the strength of the relationship between them.

Correlation measures the degree to which two variables move together. This is

usually indicated by a value ranging from -1.0 to +1.0:

• 0 indicates no correlation;
• 1.0 indicates a high degree of positive correlation (when x is high Y is high);

and
• -1.0 indicates a high negative correlation (when x is high Y is low).

If two variables are highly correlated, they can be combined into one single input

variable, or one can be discarded altogether. This can help reduce the network size. If

we assume that X is the independent variable matrix and Y is the dependent

variable matrix, then the correlation coefficients can be calculated as the covariance

of the two variables divided by the product of their standard deviations:

p =_Cov(--=--X-,-'Y-,-)
·.Y q, eq,

• Y

where Cov(X,Y) is the covariance matrix of X and Y and is given as,

1 n

Cov(X,y)=- :L[(x-P,J-(y- Py)]
n j;l

4.3

and C5x e cry is the product of the standard deviations. The independent variable's

standard deviation is denoted by:
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1 n
(lx = -L(x; _X)2

. n-l ;=1
4.4

where
1 n

X = - L Xi and the dependent variable's standard deviation is:
n i=)

1 ~( -)2O'y = --L..J y; - y
n-l ;=1

1 n

where Y=- LYi
n i=)

4.5

Two cases of correlation are considered:

only between the input variables of the NN; and
between the input and output variable, paying attention that one of the input
variables is an output variable also, but considered at different instances in
time.

The correlation coefficients for the plant process variables and weather data at the

NN inputs are presented in Table 4.2 below where the dependent variable is the row

(d) and the independent variable is the column (i):

Table 4. 2: The correlation coefficients for the Athlone wastewater treatment plant data
and weather data at the NN input

-0.278 0.053

-0.2912 -0.135

0.396 -0.027

-0.521 0.239

-0.313 0.442

1 0.144

1

The maximum temperature and minimum temperature have a correlation coeficient of

about 0.85, which is close to 1. One of these two variables can therefore be

eliminated. The maximum temperature correlation coefficient for TKN and COD are

higher than that of the minimum temperature. This could indicate that the maximum

temperature can therefore be discarded as an input.

The method of correlation discussed above is discussed and applied in the work of

Khan and Ondrusek (2000), where the input variables are correlated with one another

and those that are highly correlated are eliminated. However another method of

correlation is investigated where calculation of the correlation coefficient of the NN

input with the NN output is done in order to determine the relationship between the

input and output. The results of these correlation coefficients are displayed in Table

4.3 where three NNs are described with the influent disturbance variables of COD,

TKN and Flow rate as the outputs of the NNs. Different combinations of inputs to
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these NNs are examined. The type and the number of the inputs form different

structures of the networks, which are called models in this thesis. There are 13

models for every one of the network types. Although a model number is presented in

the table, this does not include the complete input set. The entire set of inputs for a

specific model number is presented in detail in Chapter 5. The initial idea was to

perform a correlation of the entire input vector with the output vector, but this is not

possible as correlation can only be performed when the two vectors are of the same

size. Therefore the individual inputs are correlated with the NN output. After a cursory

examination of Table 4.3 it is fairly obvious that the NN with influent flow rate at the

output has the highest correlation coefficients for almost all input variations. The first

case of correlation is employed in this work although the latter is relevant when

looking at the predictive performance of the NN.

Table 4. 3: The correlation coefficients for the correlation between the inputs and
outputs for the three NNs for the different influent variables of COD, TKN and influent
Flow rate

Input Model Input variable Output Correlation

number Coefficient

Model 1 COD COD(k+1) 0.2820
Model 2 COD(k-1) COD(k+1 0.2482
Model 3 COD(k-2) COD(k+1 0.2274
Model 4 COD(k-3) COD(k+1 0.2699
Model 5 TKN COD(k+1 0.2618
Model 6 FLOW COD(k+1) -0.2579
Model 7 Month (2 input neurons) COD(k+1) 0.1463

0.1832
Model 8 Minimum Temperature COD(k+1 0.1602
Model 9 Rain COD(k+1 -02088

~
IIVind COD(k+1) 0.1152

TKN TKN(k+1) 0.4973Model 1
Model 2 TKN(k-1) TKNik+1) 0.4555
Model 3 TKN(k-2) TKN(k+1) 0.3955
Model 4 TKNik-3\ TKN(k+1) 0.3468
Model 5 COD TKNik+1) 0.2262
Model 6 FLOW TKN(k+1) -0.4198
Model 7 Month (2 input neurons) TKN(k+1) 0.2137

0.2006
Model 8 Minimum Temperature TKN(k+1) 0.2369
Model 9 Rain TKN(k+1) -0.2434
Model 10 Wind_

~
Model 1 FLOW FLOWlk+1) 0.8587
Model 2 FLOWik-1) FLOW(k+1) 0.7575
Model 3 FLOW(k-2) FLOW(k+1) 0.6894
Model 4 FLOW(k-3) FLOW(k+1) 0.6299
ModelS COD FLOW(k+1) -0.3213
Model 6 TKN FLOW(k+1) -0.4417
Model 7 Month (2 input neurons) FLOW(k+1) -0.4990

-0.3774
ModelS Minimum Temperature FLOW(k+1l -0.5342
Model 9 Rain FLOW(k+1) 0.4429
Model 10 Wind FLOW(k+1) -0.0478
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Another method to investigate the relationship between input variables and for the

elimination of any unnecessary inputs is principal component analysis (PGA).

4.4.4 Principal Component Analysis

When the input data is high dimensional and no obvious features can be extracted

from it, the input dimensionality must still be reduced in order to limit the number of

free parameters in the network. The free parameters are the total number of biases

and weights within the network and are determined mainly by the number of inputs

(Tarassenko, 1998). Sometimes the situation arises that the number of inputs to the

NN is large, but the components of the inputs in the input vector are highly correlated

(redundant). It is useful in this situation to reduce the number of the inputs to the NN.

A suitable technique for performing this dimensionality reduction is principal

component analysis (PGA). This technique has three effects: it orthogonalizes the

components of the input vector (so that they are uncorrelated with each other); it

orders the resulting orthogonal components (principal components) so that those with

the largest variation come first; and it eliminates those components that contribute the

least to the variation in the data set (Demuth, Beale and Hagan, 2004).

In the initial phases of this study, PCA is performed on the data inputs to the NN

using the plant and weather data, but there is no reduction of the dimensions to the

input vector. The need for PCA in this study is therefore not required.

4.4.5 Normalization (scaling)

Neural networks don't cope very well with a big range of values. If scaled data is

presented to the network, the weights can remain in small, similar predictable ranges.

Neural networks can be trained by using raw data as inputs, but the training time will

be considerably longer.

Some typical normalization methods include the following:

I I
actual value - min imum value

Norma ized va ue =---------­
max imum value - min imum value

actual value
Normalized value =-------­

sum of the weekly values

actual value
Normalized value =--------­

max imum value of the week

1
. d 1 actual value - average value

Norma lze va ue = --------"---­
max imum value - average value

4.6

4.7

4.8

4.9

One of the main reasons for normalizing is to equalize the importance of variables.

The scaling of the data is done in order to improve interpretability of network weights.
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Also the uniform scaling equalizes initially the importance of variables (Khan and

Ondrusek, 2000).

The normalization method chosen is represented by equation 4.8. This particular

equation in essence scales the data so that the maximum normalized value would be

~l.

4.4.6 Trends

Statistical and numerical measures of trends in historical data can prove to be fairly

valuable. The most salient information can be extracted from the historical data and

the NN is thus presented with only a summary measure. The elimination of trend and

seasonal variation is a very complex subject, and is discussed practically by Kendall

and Stuart, vol 3 (1976). The reasons, which might be considered before eliminating

large- scale trends, according to Masters (1993) include:

• The NN will assume that the trend is important information and will attempt to

use that information for prediction. By eliminating trends that are easily

predicted and added back in later, the NN is free to concentrate on finer

details.

• NN are as stated previously inherently nonlinear. This is one of major

advantages of the NN,but much of the activity takes place in fairly linear

regions of the neuron's activation functions. Thus the large variations are

superimposed on important subtle information. In the learning pro~ess these

smaller variation in the information may be scaled down or even neglected.

4.4.7 Seasonality

Some data sets have a seasonal or time-lagged aspect associated with it, and there

is often a natural cyclical phenomenon present. If a particular variable has this form, it

may not be appropriate to compare values if they are taken from different phases of a

cycle (e.g. summer, winter, autumn or spring).

To solve this problem of seasonality, many analysts compare quarterly data on a

lagged basis (Casey, 2004). This lagging of the data simply compares the current

period's data with the previous corresponding periods in the cycle. Fast Fourier

transforms or wavelets are used as a more sophisticated curve fitting technique, for

higher frequency time series.

The wastewater variables most definitely have a seasonality aspect associated with it.

This is evident as more people drink more fluids during the summer months and
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therefore use the toilet more frequently. Also during public holidays the

concentrations of the variables to the plant are higher than on days without any

holidays. The seasonality and circularity problem (below) is solved using sine and

cosine pairs to represent the month in which the sample is taken, thus taking the

season into account as well.

4.4.8 Circular discontinUity

Certain variables such as dates in the year may be fundamentally circular. With these

types of variables a problem arises when the date passes from 31 st December to 1st

January (day 365 to day 1). The neural network may interpret this to mean that these

days are extremely far apart, and may even classify day 365 as being more important

than day 1.

If the position of a rotating object is defined as being an angle measured from 0 to

360 degrees, a serious problem occurs when the object passes from 360 to 0

degrees. If a single neuron is used to decode this value, it is found that two extremely

close values, 359 and 1 degrees are represented by two extremely different

activations. Therefore variables with circular discontinuity are very difficult to learn

(Masters, 1993).

The same problem arises if the months of the year are used as inputs to a neural

network (in this partiCUlar project). Month 1 may be deemed less important by the

network than say, month 12.

One proposed method to get around this type of problem, is to present the data in a

different form to the network. The monthly data was initially presented as a 4-bit

binary value as an input to the network. This is illustrated in Table 4.3.

Table 4. 4: The monthly data represented as a 4·bit binary number instead of a
decimal value

Janua 0 0 0 1
Februa 0 0 1 0
March 0 0 1 1
April 0 1 0 0
May 0 1 0 1
June 0 1 1 0
July 0 1 1 1
August 1 0 0 0
September 1 0 0 1
October 1 0 1 0
November 1 0 1 1
December 1 1 0 0
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The above approach was investigated and implemented without much success in

terms of the network response to different inputs. This approach does not really

address the circularity problem, but does indeed transform the way that the data is

presented.-

Another more practical approach to this type of problem is to represent the data as an

angle around the circumference of a circle. The circle is divided into 12 sectors with

angles 8= 360° = 30°. Month 1 is represented with angle (JI = 30°. Month 2 is
12

represented with angle (J2 equal to 28 = 60°. Then the sine and cosine of the angle is

representative of the month. This is illustrated in Figure 4.10 and the result is

presented in Table 4.5. As stated previously, the daily plant and weather data is

averaged to a weekly sample value. The month in which the data is sampled is

presented as the time varying variable.

Month 10 1----::~~:..----:!_1 Month 4

Figure 4. 10: Circularity discontinuity: Diagram illustrating the approach used in presenting
data of a circular nature to the neural network

The angle is therefore calculated as being:

360° -
(J =--em=300m

m 12
4.10

where m = 1,12. Therefore every month is represented by two inputs to the neural

network. From equation 4.10 the sine and cosine pairs are determined. The values for

the month of year are represented by two inputs and these are indicated in Table 4.5

below.
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Table 4. 5: The monthly data represented as a sine I cosine pair

May 5 150 0.5 -0.866
June 6 180" 0 -1
July 7 210- -0.5 -0.866
August 8 240" -0866 -0.5
September 9 270" -1 0
October 10 300v -0.866 0.5
November 11 330" -0.5 0.866
December 12 360v 0 1

The best way to handle circular variables is to encode them using two or three

neurons. Usually two are sufficient (Masters, 1993).

4.4.9 OutJiers and data rejection

Data that appear to be very far away from the normal data distribution may be

classified as being outliers. In certain instances however, this outlying value may be

correct and is a natural product of the variable's distribution (Masters, 1993).

There are some important considerations to bear in mind. Firstly, in any given data

set there will be outliers. Also some abnormality in the data is normal. A rule of thumb

to follow is that no data point should be rejected unless it is really far out Masters

(1993) remarks, "Unless we can satisfy ourselves beyond a reasonable doubt that the

observed value is erroneous, we should endeavour to find an explanation for the

value and perhaps modify our collection procedure so as to include its relatives".

Another important fact to consider is that when a learning algorithm that minimizes

the mean error across the training set is used, rare outliers will have a comparatively

small impact on the learned weights. This is due to the fact that it is first "tamed" by

the squashing (activation) function, and then swamped out by the mass of correct

data.

Discarding any data from a relevant variable should only be considered as a last

resort. The recommended approach for data rejection is to plot a histogram of the

data distribution and then carefully scrutinize the data which appear as outliers. An

example of a histogram plot for the Chemical Oxygen Demand (COD) variable is

given in Figure 4.12. Possible outliers could be to the right of the histogram plot (close

to 3000 mgll) as the rest of the distribution of data is in a similar region. The
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histogram plots for the rest of the inputs are presented from Figure 4.13 up to and

including Figure 4.19.

Figure 4. 11: Histogram plots are useful for data rejection rather than automated outlier
rejection algorithms. The above figure shows the histogram plot of the COD variable
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Minimum Temperature Histogram
100

ao
III..:c 60
'"i..
0 40
ciz

20

°2 4 6 8 10 12 14 16 18 20
MinImum temperature/n degrees Celclus

Figure 4. 14: Histogram plot of the Minimum temperature
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Figure 4. 15: Histogram plot of the Maximum temperature

RalnfaD Histogram
6OOr-----.------r-----r-----...-----..,

:400
~
~300...
o

~ 200

100

5 10 15
Rainfall In mm

20 25

Figure 4.15: Histogram plotofthe Rainfall

An examination of the rainfall histogram (Figure 4.15) reveals that the data from about

10rllm up to 22mm cannot be classified as outliers as this could be the low rainfall
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periods and therefore this data is then most definitely valid. Therefore it is important

to have some prior knowledge as to the significance, importance and relevance of the

variables. This is the case for the wind speed variable (Figure 4.16) as well. The data

between 20 - 25 kmfhr may be regarded as outllers, if enough knowledge about the

wind conditions in the area is not known.
Windspeed Histogram
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Figure 4. 16: Histogram plot of the Wind speed

In the Cape region the wind speed may for the most time be very low, but may be

strong for a limited period of time.

Initially the possible outliers are ,not discarded and the different networks are trained

and tested on the original raw data with no missing points. For the influent variables

of COD and TKN, the predictive performance of the neural network is quite far from

the desired target test set, therefore the possible oumers are discarded and replaced

with values determined by linear interpolation, and the networks are re-examined.

After extensive experimentation the conclusion is reached that the predictive

performance results of the neural networks with or without the possible ouWers

appeared to be unchanged. The disturbance variables of interest are the only

variables where the ouWers are replaced using linear interpolation. The weather data

variables are not changed, as there does not appear to be any problems with ouWers.

Table 4. 6: Summary of implemented pre-processing techniques

Description of the Implemented
preprocessing technique in this work?
Handling of missing data YES

OuUiers and data rejection YES

Correlation of input YES
variables with each other
Normalization I sealino YES
Trends NO

Seasonahty YES
Circular discontinuity YES
Curse of dimensionality NO
Principal component NO
analysis
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Figure 4. 17: A summary of the pre-processing techniques implemented on the plant and
weather data

After the neural network has been trained, the network has to be tested with data it

has not seen before to determine the generalisation ability of the network. This data

is subjected to the same processing techniques as for the training data.

4.5 Data post-processing

Post-processing tasks include denormalizing the data back by its original scaled

value. The maximum value used in denormalizing the data is used to transform the

data into its original range.

4.6 Summary of the chapter

This chapter discusses the importance of careful selection of input data variables toa

neural network. The plant and weather input selection criteria are examined based on

operator experience and the literature survey. The raw plant and weather data are

available as two formats, namely MS Excel and ASCII text format. All data variables

are imported into the MySQL database before being processed by the MATLAB NN

algorithms.

Various pre-processing techniques are examined and proposed:

the handling of missing data;
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outliers and data rejection;
correlation;
normalization;
trends;
seasonality;
circular discontinuity;
the curse of dimensionality; and
principal component analysis.

A few of these techniques are summarised in Figure 4.18. These techniques are then

applied to the raw plant and weather data before being used as inputs to the NN

algorithm. Table 4.6 summarizes the techniques that are implemented in this work.

Chapter 5 discusses the actual development of the three different architectures

(topologies) including the multilayer perceptron, recurrent Elman and radial basis

functions NN. The various input combinations, the effect of varying the number of

neurons and epochs, training methods and performance measurements are

considered among other topics.
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CHAPTER FIVE

APPLICATION OF NEURAL NETWORKS FOR INFLUENT

DISTURBANCES PREDICTION

5.1 Introduction

Neural networks offer the ability to model arbitrary input data by means of adjusting

the internal network connections, such that for a given input the difference between

the network output and the desired response. the error, is minimized. This is the

process of 'training' the network by means of supervised learning, whereby the

network error is iteratively reduced over a training set of matching input-output

vectors. Provided the training set is representative of the process, the resultant NN

model captures the inherent relationship between input and output and with the ability

to generalise for future unseen inputs (Garvey, 1997).

The main objective of this research is to find a NN model to predict one by one the

influent disturbances COD, TKN, inflow rate to a wastewater treatment plant on the

basis of the predicted and other two influent disturbances and weather conditions.

One of the challenges is to find an optimal network topology by varying the types of

inputs to the network and so solve the particular input-output mapping problem. The

correct network architecture for a given application is highly problem dependent, a

diversity of the training set and the complexity of the underlying functio~ (Garvey,

1997).

Endeavouring to find the correct architecture involves the time-consuming task of

investigating the effect varying certain parameters has on the NN learning,

generalisation, and ultimately prediction capability. This chapter presents the

implementation strategy for the three different NN architectures (topologies), namely

the Multilayer Perceptron (MLP), the Elman Recurrent NN (ERNN) and the Radial

Basis Function NN (RBFNN). Each topology is implemented haVing three neural

networks, one for each influent disturbance namely, COD, TKN and influent flow rate.

The common factor for the three topologies is that the input variations remain the

same for all. Other factors such as the effect of the number of neurons, hidden layers

and epochs are considered. The training algorithms that are investigated and used

are also shown. The training and validation process is presented, and finally the

performance criterion is discussed.
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All the neural network algorithms presented in this work are implemented using the

Neural Network Toolbox for use with MATLA8 ®, Version 4.0.6, (R14SP3). The

MATLA8 version used is MATLA8 Version 7.1.0.246 (R14) Service Pack 3. All

references to the software can be cross-referenced in the work of Demuth, 8eale and

Hagan (2004)

The first NN presented is the MLP where different combinations of \NNTP influent

disturbances and weather inputs are presented to the NN, the number of hidden

layers and neurons are increased, training conditions are changed, and the network

response is observed. The second NN is the ERNN and finally the R8F NN is

presented.

5.2 The Multilayer Feed-forward Model

The limitations of the perceptron presented in Chapter 2, are overcome by arranging

the individual neurons in a multilayer configuration (Figure 5.1). The output of the one

neuron becomes the input of the neuron in the following layer. The network consists

of an input layer, followed by a hidden layer and lastly, the output layer. The input

layer does no processing on the arbitrary number of input nodes, but supplies the

input signals to the next layer of neurons. The hidden layer is a layer that consists of

an arbitrary number of neurons having a continuous activation function such as the

tangent-sigmoid function. The final output layer consists of neuron elements the same

as the hidden layer. however each output of the activation function represents the

network output. Therefore the MLP consists of 3 layers:

• an input layer with no weights, summation or activation function;
• a hidden layer with weights, summation and a hyberbolic tangent function; and
• output layer with weights, summation and a linear activation.

However it should be noted that certain references refer to the above MLP network as

a TWO-layer network as the input is not considered because no processing takes

place here.

Three different MLP NNs are implemented, one NN for each influent disturbance

variable, namely COD, TKN and Flow rate respectively. All the outputs are a

prediction of the input disturbance variable at one time interval ahead; in this case the

interval is one week ahead. The time horizon for the predicted output is one week

ahead.

The structure of the MLP for prediction of the [lh disturbance l=1,m 1 is given in

Figure 5.1 and 5.2.
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YI(k)

y(k)

w(k)

Figure 5.1: The Multilayer Perceptron Neural Network for prediction of an input disturbance

The NI; structure is given as

v,(k)

Figure 5. 2: The model of a neuron for the Multilayer Feed-forward Neural Network

The output of the neuron NI,; is:

V',i (k) =f/J"i (a"iY' (k - 1") +c,,;y(k) +b"iw(k) + bl,;h

where i = 1, n1 ' and the output of the NN is:

YI(k + 1) = 9', (d,v, (k)+ bl 0

5.1

5.2

5.3

where al,i =[al,i,I···a',;,p]e RP is a vector of the NN coefficients introducing the delayed

values of the /th disturbance; b,,; =[b"i,I··.bI,;,m2 ]e R m
2 is the vector of the NN

coefficients introducing all considered weather conditions; Cl,; =[CI,;,I'''C,,;,'''J ]e Rm
, is

the vector of the NN coefficients introducing the inflow disturbances; bu,h is the bias

coefficient; p is the number of delays, ml = 3 is the number of disturbances where, YI

=COD, Yz =TKN. Y3 =Flowrate; mz =5 is the number of weather conditions, where

W1 = month (sin). W z= month (cos), w3 = min temp. W 4 = rain, W s= wind speed; 9' is

the activation function of the output layer; and f/Ju is the activation function of the

hidden layer for the neuron N,.;, The estimation of parameters a,.;, b,,; and Cl,; is

based on minimising some error function, the most common being the mean squared

error or cost function given as:

1 N 1 N
mse=-Le(k)Z =-L(y(k)- Y(k» 2

N k=1 N k=1
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where ji(k) is the NN output and y(k) is the desired output.

5.2.1 Feed-forward Multilayer Neural Network Implementation Criteria

There are a number of factors to consider when attempting finding a solution to the

prediction problem. These factors include:

• Input selection;
• The length and selection of training and validation sets;
• Activation function;
• Error criterion;
• Number of hidden layers;
• Number of neurons in the various hidden layers;
• Number of epochs;
• Weight and bias initialisation;
• Training method;
• Learning rate;
• Gradient method;
• Training stopping criterion; and
• Performance measurement.

5.2.1.1 Input selection

The multilayer perceptron (MLP) is a static network, as it has no physical feedback

connections. To transform the MLP into a dynamic network, time delays (memory) in

the input data are introduced (Olssen and Newell, 1999), (Elman, 1990). These

delays are applied to the influent data of the predicted variable only and the period for

the delay is 3 tapped unit steps. This approach has been successfuHy applied in

short-term load forecasting (Khan. 2000) and flood forecasting (Chen, et al., 2001)

among others.

The problem for prediction of the inflow disturbances is based on the analysis of the

environmental factors that could influence the input flow characteristics. The literature

review and plant operator experience showed that such factors include:

a weather conditions - temperature, wind velocity, rainfall, etc.;
a season, day of the week, time of day;
a human activities; and
a industrial activities.

The first two groups of factors are selected as a basis for disturbance prediction as

some pattern in the behaviour of the process can be observed when they are

changed. Then the problem for input disturbances prediction can be formulated in the

following way:

find a NN model describing the behaviour of the inflow characteristics on the
basis of the predicted disturbance delayed data, all inflow disturbances data,
the weather conditions data and month of the year characteristics, as given in
Figure 5.3, in such a way that the mean square error in Equation 5.3 between
the real data for the inflow characteristics and the NN prediction is minimum.
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Figure 5. 3: Neural Network model describing the inflow characteristics on the basis of
environmental factors

The solution to this problem is based on the following steps:

• pre-processing of I/O data;
• selection of the NN architecture (topology);
• selection of the type of the predicting model - static or dynamic;
• calculation of the NN weights by training (learning); and
• validation of the model.

The method followed in order to determine the correct combination of disturbance and

weather variables in order to form the predicting NN inputs, is an arduous and

laborious task of empirical testing. The proposed combination of variables consists of

the influent disturbance variables and the environmental variables together with

delayed inputs of the disturbance variable to be predicted. The different combination

of the input variables determines different models of the NN. The model numbers

represent 13 different input variations which are summarized in Tables 5.1, 5.2 and

5.3, where the considered combinations of the NN inputs for the prediction of COD,

TKN and influent FLOW rate, are given respectively.

After the inputs have been selected, various processing techniques are performed on

the data before it is input to the NN. These preprocessing techniques are discussed in

Chapter 4.

5.2.1.2 Length and selection of training and validation sets of data

It is advisable to make the test set representative of the entire period of the training

set. Caution should be exercised however to ensure the test set does not include data

from the training set. If however the NN is trained with a particular set of data, yet

tested with another completely different data set, the network is not be able to

generalize. The total number of data points is 658 as is previously mentioned. One­

third of the data is used for the testing (validation) set (Haykin, 1999). The method

followed is to extract every 3rd sample from the entire 658 points as the test set. This

results in a test set of 218 points and a training set of 436 points. This method is

acceptable and is proposed in the literature consulted.
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One other method considered is the early stopping method where the data is divided

into three subsets, namely a training, validation and test set. The early stopping

method is discussed in Chapter 3. This method did not however produce acceptable

results and the first approach was adopted where the data is divided into two sets.

Table 5.1: Input variable combinations to the NN with COO as NN output

Disturbance on!'
Disturbance, disturbance
dela ed 1 time interval

3 Mode! 3 Disturbance. disturbance COD, COD(k-1), COD(k-2) COO(k+1)
dela ed 2 time intervals

4 Model4 Disturbance, disturbance COD. COD(k-1). COD(k-2}. COD(k-3) COD(k+1)
dela ed 3 time intervals

5 Mode! 5 Disturbance. delayed COD, COD(k-1), COD(k-2), COD(k-3), COD{k+1)
disturbance, one other TKN
disturbance

6 Model 6 Disturbance, delayed COD. COD(k-1), COD(k-2), COD(k-3). COO(k+1}
disturbance, all other TKN,FLOW
disturbances

8 Model? Disturbance, delayed COD. COD(k-1). COD(k-2). COD(k-3), COD(k+1)
disturbance. an other TKN, FLOW, Month
disturbances. month

9 Model 8 Disturbance. delayed COD. COD(k-1), COD(k-2), COD(k-3), COO{k+1)
disturbance, all other TKN, FLOW, Month. Minimum
disturbances. month, 1 Temperature
environmental

9 Mode! 9 Disturbance, delayed COD. COD(k-1). COD(k-2). COD(k-3). COD(k+1)
disturbance. all other TKN. FLOW, Month, Rain
disturbances, month, 1
environmental

9 lI:1odel10 Disturbance. delayed COD, COD(k-1), COD(k-2}. COD(k-3l. COD{k+1)
disturbance. an other TKN. FLOW, Month. Wind
disturbances. month. 1
environmental

10 Model 11 Disturbance. delayed COD, COD(k-1), COD(k-2), COD(k-3), COD(k+1)
disturbance, all other TKN, FLOW, Month. Minimum
disturbances, month, 2 Temperature. Rain
environmental

11 Model 12 Disturbance, delayed COD. COD(k-1). COD(k-2). COD(k.-3). COD(k+1)
disturbance. all other TKN, FLOW. Month, Minimum
disturbances, month. all Temperature, Rain. VVind
environmental

9 Model 13 Disturbance. delayed COD, COD(k-1), COD(k-2), COD(k-3), COD{k+1)
disturbance, month. all Month. Minimum Temperature. Rain.
environmental Wind

5.2.1.3 Activation Function

The activation function chosen, is the hyperbolic tangent sigmoid activation function

f/J in Equation 5.4 that states:

eaq/,i - e-aq/,i

f/J(q"i) =tanh(ql,i) =-aq-/.--_-aq-/-.
e .' +e ,/

5.4

where y is a the output of the neuron and the argument of the activation (transfer)

function. The coefficient a> 0 is set by the MATLAB initialisation function (see section

5.2.1.7). The reason that this (hyperbolic tangent) activation function is chosen is that
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the month data input ranges between +1 and -1. Therefore the much more common

log-sigmoid transfer function cannot suffice. The difference between the two

activation functions being that the log-sigmoid compresses data in the range between

oand 1, and the hyperbolic tangent compresses data between +1 and -1.

The output layer simply has a pure linear activation function, rp(Q2) = k2Q;, where k2is

the coefficient. This type of selection for the activation functions for the hidden and

output layers is fairly common for regression or forecasting applications.

Table 5. 2: Input variable combinations to the NN with TKN as NN output

Disturbance on!
Disturbance. disturbance
dela ed 1 time interval

3 Mode! 3 Disturbance, disturbance TKN, TKN(k-1}. TKN{k-2) TKN(k.+1}
dela ed 2 time intervals

4 Model4 Disturbance, disturbance TKN, TKN(k-1), TKN(k-2}, TKN(k-3) TKN(k+1)
dela ed 3 time intervals

5 ModelS Disturbance. delayed TKN, TKN(k-1). TKN{k-2), TKN(k-3), COD TKN(k+1}
disturbance, one other
disturbance

6 Model 6 Disturbance, delayed TKN, TKN(k-1), TKN(k-2). TKN(k-3), TKN(k+1)
disturbance. all other COD. FLOW
disturbances

8 Model? Disturbance. delayed TKN. TKN(k-1}, TKN(k-2l, TKN(k-3), TKN(k+1)
disturbance, all other COD, FLOW, Month
disturbances. month

9 Model 8 Disturbance, delayed TKN, TKN(k-1). TKN(k-2), TKN(k-3), TKN(k+1)
disturbance, all other COD, FLOW, Month, Minimum
disturbances, month, 1 Temperature
environmental

9 Model 9 Disturbance, delayed TKN, TKN(k-1), TKN(k-2), TKN(k-3). TKN(k+1)
disturbance. all other COD, FLOW. Month, Rain
disturbances. month, 1
environmental

9 Model 10 Disturbance. delayed TKN, TKN(k-1}, TKN(k-2l, TKN(k-3), TKN(k+1}
disturbance, all other COD, FLOW. Month. \lVind
disturbances, month, 1
environmental

10 Model 11 Disturbance, delayed TKN, TKN(k-1), TKN(k-2}. TKN(k-3}, TKN(k+1)
disturbance, all other COD, FLOW, Month, Minimum
disturbances, month, 2 Temperature. Rain
environmental

11 Model 12 Disturbance, delayed TKN. TKN(k-1), TKN(k-2), TKN(k-3), TKN(k+1)
disturbance. all other COD. FLOW. Month, Minimum
disturbances. month. all Temperature, Rain, Wind
environmental

9 Model 13 Disturbance. delayed TKN, TKN(k-1}. TKN(k-2). TKN(k-3), TKN(k+1)
disturbance, month. all Month. Minimum Temperature, Rain.
environmental 'vVlnd

5.2.1.4 Error criterion

The cost function used during training is the means squared error defined in Equation

5.3. The error is calculated as the difference between the target output and the

network output. We want to minimize the average of the sum of these errors. This is

accomplished by changing the weights and biases within the network. The neural
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network is trained until either the error is a minimum, or the maximum number of

epochs is reached.

Table 5. 3: Input variable combinations to the NN with influent FLOW rate as NN output

Disturbance ani
Disturbance, disturbance
dela ed 1 time interval

3 Model 3 Disturbance. disturbance FLOW, FLO\N(k-1), FlOW(k-2) FlOW(k+1)
dela ed 2 time intervals

4 Modet4 Disturbance, disturbance FLOW. FlOW(k-1). FLOW(k-2), FlOW(k+1)
dela ed 3 time intervals FlOW(l<-3

5 Model 5 Disturbance, delayed FLOW, FLOW(k-1). FLOW(k-2). FLOW(k+1)
disturbance. one other FLOW(k-3). TKN
disturbance

6 ~>10deI6 Disturbance. delayed FLOW. FLOW(k-1), FLOW(k-2), FLOW(k+1)
disturbance, all other FLOW(k-3), COO, TKN
disturbances

8 Model 7 Disturbance, delayed FLOW. FLOW(k-1). FLOW(k-2). FLOW(k+1)
disturbance. all other FlOW(k-3). COD, TKN. Month
disturbances. month

9 Model 8 Disturbance. delayed FLOW, FLOW(k-1), FLOW(k-2), FLOW(k+1)
disturbance, all other FlO\N(k-3), COD, TKN, Month, Minimum
disturbances. month. 1 Temperature
environmental

9 Model 9 Disttlfbance, delayed FLOW, FLOW(k-1}, FlOW(k-2), FLOW(k+1)
disturbance, all other FLOW(k-3). COD. TKN. Month. Rain
disturbances, month, 1
environmental

9 Model 10 Disturbance, delayed FLOW. FLOW(k.-1). FLOW(k-2). FLOW(k+1)
disturbance. all other FLOW(k-3). COD, TKN. Month. Wind
disturbances. month, 1
environmental

10 Model 11 Disturbance. delayed FLOW, FLOW(k-1), FLOW(k-2}, FLOW(k+1)
disturbance, all other FLOW(k-3), COD, TKN, Month, Minimum
disturbances, month. 2 Temperature, Rain
environmental

11 Model 12 Disturbance, delayed FLOW. FLOW(k-1}, FLDW(k-2l, FLOW(k+1)
disturbance, all other FLOW(k-3). COD, TKN. Month. Minimum
disturbances, month, all Temperature. Rain, Wind
environmental

9 Model 13 Disturbance, delayed FLOW, FLOW(k-1). FLOW(k-2). FLOW(k+1)
disturbance. month, all FLOW(k-3). Month. Minimum
environmental Tem srature. Rain. Wind

5.2.1.5 Number of hidden layers and hidden neurons

The multilayer perceptron is said to be able to approximate any function provided

there are sufficient neurons (Haykin, 1999) to solve a complex problem. A major

problem in designing a neural network is establishing the optimal number of layers

and number of neurons on each of it. For the input and output layers, the solution is

very easy, because for the input the number of neurons are equal to the numbers of

weights and biases (Krose,and van der Smagt, 1996), the problem being in

establishing the number of hidden layers and the number of neurons on each layer.

The literature research indicated that many authors propose rules of thumb to deal

with specific practical issues. However the experience of the author is that sometimes

these do not hold true as the problem at hand might warrant a different approach.
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Masters (1993) proposes using the following method (Figure 5.4) to determine the

number of hidden neurons.
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Figure 5. 4: Calculating the number of hidden layer neurons using a pyramid approach
(Masters, 1993)

Choosing the number of hidden layers and the number of neurons is therefore

difficult, because there are no generally acceptable theories, with solutions in the

literature only for specific cases. At present there are no formal ways of determining

the size ota neural network, according to complexity of the problem to solve. The

solutions normally are found by means of empirical testing. For real-world problems

with NNs the network tends to be of a large size. One practical consideration is to try

and minimize the size of the network while maintaining good performance. Smaller

NNs are less prone to noise in the training data set and generalize better.

The number of neurons must be high enough for generating a configuration of the

decision areas and complex enough for a given problem. However, if the number of

neurons is too big, then the number of connections becomes too big and there is a

risk that the balance of these connections are not be calculated using only the

available examples. In this case it is possible for the network to generate noise

(Hornik; et al., 1990); hence the phenomenon of overfitting the neural network. On the

other hand if the number of neurons from the hidden layers is too small, the neural

network can't learn the entire input-output mapping relationship, and therefore cannot

solve the given problem. Thus there is a tradeoff between the number of neurons,

training time, and problem solving ability (Park, 1996).

One method proposed for the determination of the optimal architecture of a neural

network for solving the same problem is the choosing of a large number of networks

with different architectures and training them on a set of common database, until the

performance criteria is fulfilled and then selecting the structure with the smallest
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dimensions. The disadvantage of this is that the results depend on the initial

architecture selection and it takes a very long time to implement (Ostafe, 2005).

Haykin (1999) proposes two techniques to remedy this dilemma, namely network

growing and network pruning. Network growing involves the recommendation to start

with only one hidden layer, and jf the results are not good, increase the number of

hidden layers. (Hornik, et al., 1990) (Haykin, 1999). The second method of network

pruning is where a large MLP is used that has adequate performance and is able to

solve the problem at hand, and then prune it by eliminating certain weights in a

selective and orderly manner (Haykin, 1999).

The approach adopted in this work is one of network growing, where a small network

is grown. However it needs to be mentioned that the method of network pruning is

attempted, but a large enough MLP able to generalize could not be successfully

implemented. The number of neurons is varied from 1 to 5 up to 10. The number of

hidden layers is determined experimentally to be one layer. Results for two layers are

included for selected models in Chapter 6.

5.2.1.6 Number of epochs

The number of epochs is determined by experimentation. A low mean squared error

(MSE) during training suggests that the network construction is of a good quality.

However, this is not usually the case as overfitting occurs. The generalization ability

of the network therefore has to be monitored as the number of epochs is increased.

The number is varied from 500 to 1000 epochs. There are results where the epochs

are varied as low as 100 and the performance of the network is similar to that where

the number of epochs is high.

5.2.1.7 Weight and bias initialisation

The initial weights and bias values are critical to the success of the learning process.

Incorrectly initialised weights cause the activation potentials to be large which

saturates the neurons. In saturation the derivatives of the activation function is equal

to zero and no learning takes place (Paplinski, 2004).

All weights and biases are initialised randomly in the initial tests performed. Later

initialisation of all the weights and biases was performed using the Nguyen-Widrow

layer initialisation function (Demuth, Beale and Hagan, 2004). The Nguyen-Widrow

method generates initial weight and bias values for a layer, so that the active regions

of the layer's neurons are distributed approximately evenly over the input space. The

advantages over purely random weights and biases are:
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• Few neurons are wasted; and

• Training is faster.

Proper initialisation can significantly speed up the learning process.

5.2.1.8 Training Method

As discussed in Chapter 3, there are broadly speaking two different styles of training,

namely incremental training and batch training. In incremental training the weights

and biases of the network are updated each time an input is presented to the

network. Incremental training can be applied to both static and dynamic networks,

although it is more commonly used with dynamic networks, such as adaptive filters.

For batch training the weights and biases are only updated after all the inputs are

presented. The training method used in this work is the batch training method.

5.2.1.9 Learning rate

The least mean square (LMS) algorithm is an example of supervised learning where

the learning rule is provided with a set of inputs and desired target outputs. The LMS

(also referred to as the Widrow-Hoff) learning algorithm is based on an approximate

steepest descent procedure. Upon application of each input to the network, the

network output is compared to the target. The LMS algorithm minimizes the mean

squared error.

When the learning rate (see Chapter 3) is large, learning occurs quickly. If the

learning rate is too large, it leads to instability and the errors even increase. To

ensure stable learning, the learning rate must be less than the reciprocal of the

largest eigenvalue of the correlation matrix of the input vectors (Demuth, Beale and

Hagan, 2004). The learning rate for the considered case is set to a value of 0.6; this is

determined by experimentation.

5.2.1.10 Gradientmethod

Once the number of layers and the number of neurons in each layer has been

selected, the weights and biases must be adjusted so as to minimize the prediction

error made by the network. This is the role of training algorithms. This process is

equivalent to fitting the model represented by the network to the available training

data (Statsoft, 2003). The objective of training is to find the lowest point in the multi­

dimensional error surface. NN error surfaces are complex and are characterized by

local minima. It is not possible to analytically determine where the global minimum of

the error surface is. NN training is thus an exploration of the error surface (Bishop,

1995). Typically the gradient (slope) of the error surface is calculated at the current
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point, and used to make a downhill move (Statsoft, 2003), The algorithm stops at a

low point, which is hopefully the global minimum,

In selecting a training algorithm the one crucial factor considered is the time taken for

the mean square error to reach a minimum. This varies depending on factors such as

the complexity of the given problem, the number of data points in the training set, the

number of weights and biases in the network, the error goal, and whether the network

is being used in an application for pattern recognition (discriminant analysis) or

function approximation (regression). The MATLAB Neural Network Toolbox contains

many training algorithms as summarized in Table 5.4.

Table 5. 4: Training algorithms for use with the MATLAB Neural Network Toolbox

Acronym Algorithm Description

LM trainlm Levenberg-Marquardt

BFG trainbfg BFGS Quasi- Ne\-vtoll

RP trainrp Resilient Backpropagation

SCG trainscg Scaled Conjugate Gradient

CGB traincgb Conjugate Gradient with Powell!Beale Restarts

CGF traincgf Fletcher-PoweIl Conjugate Gradient

CGP traincgp Polak-Ribiere Conjugate Gradient

ass trainoss One-Step Secant

GDX traingdx Variable Learning Rate Backpropagation

Of all the algorithms presented in the table, only four are discussed and the

advantages and disadvantages considered. In order to provide the proper perspective

needed for this discussion, one of six benchmarks for a real world application (Engine

operation) taken from Demuth, Beale and Hagan (2004), is presented in Figure 5.5.

The results show the convergence time in seconds for the Levenberg-Marquardt,

Scaled Conjugate Gradient, Resilient Backpropagation and Variable Learning Rate

Propagation are 18.45, 36.02, 65.91 and 188.50 respectively. The discussion below

pertains to the benchmark problem.

Generally speaking, on function approximation problems, for networks that contain up

to a few hundred weights, the Levenberg-Marquardt (LM) algorithm has the fastest

convergence and is especially suited to problems requiring very accurate training.

Compared to the other algorithms, the LM is able to obtain'lower mean square errors.

The drawback to the LM algorithm is that an increase in the number of weights in the

network causes the advantage of using this algorithm to decrease. Another

disadvantage is that algorithm does not perform well for pattern recognition problems.
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The memory storage requirements of the LM algorithm are larger than the other

algorithms tested.

The resilient backpropagation (RP) algorithm is the fastest algorithm on pattern

recognition problems, but performs poorly on function approximation problems.

Reducing the error goal causes this algorithm to degrade. On advantage is that this

algorithm is not as memory intensive compared to the other considered algorithms.
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Figure 5. 5: The Engine benchmark problem illustrating the convergence speed for the
different training algorithms

The scaled conjugate gradient (SCG) algorithm appears to perform well over a wide

variety of problems, particularly for networks with a large number of weights. This

algorithm is faster than the LM algorithm for large networks for function approximation

problems and almost as fast as the RP algorithm on pattern recognition problems.

The performance of the SCG does not degrade as qUickly as the RP algorithm does

when the error is reduced. One major advantage is the conjugate gradient algorithms

have relatively modest memory requirements.

The variable learning rate algorithm (GDX) is usually much slower than any of the

other algorithms, but it can still be useful for some problems. However when using

early stopping the training algorithm should not converge too quickly otherwise

inconsistent results are obtained. For this benchmark application, the GDX algorithm

is probably the best option to consider.
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For the practical implementation of the MLP and ERNN in this work, all four training

algorithms discussed in the previous section are considered. The Levenberg­

Marquardt is the initial algorithm that exhibits promising performance for the given

problem. The LM is an example of a backpropagation algorithm that is optimized

using numerical methods. However for the larger networks, the LM algorithm is slow

and prone to reaching a minimum gradient, thus stopping the training prematurely.

The slowness of the algorithm is attributed to the fact that this algorithm is memory

intensive. The RP and GDX exhibit similar performance to that of the LM.

The conclusions reached after the practical implementation of the LM, RP and GDX

training algorithms are:

that the standard backpropagation method is too slow;

the faster modified backpropagation algorithm with a momentum term added,

still did not perform satisfactorily in terms of training speed;

that although the LM, RP and GDX are faster than the standard

backpropagation algorithms, the execution speed was still slower than the

SCG; and

for larger networks the LM algorithm ran out of memory.

The scaled conjugate gradient algorithm compared to the above algorithms performs

the best if faster training is required. The scaled conjugate gradient uses a search

along the error surface based on the conjugate direction of the gradient and not the

steepest descent, like the standard backpropagation method. This search in the

conjugate direction gradient results in faster convergence.

Based on all of the above considerations and by extensive experimentation, the

scaled conjugate gradient (SCG) algorithm is eventually selected as being the best

for the given problem. The results for the time required for training the Levenberg­

Marqtiardt versus the scaled conjugate gradient is reported in Chapter 6.

5.2.1.11 Training Stopping criterion

In order to ensure that the NN is able to generalize. it is sometimes necessary to stop

the training (learning) before the network converges to a global minimum. The

learning or training phase of a NN can be interrupted on three conditions:

• The maximum number of epochs has been reached;
• The mean squared error has converged to a minimum; or
• The learning algorithm has reached a minimum gradient.
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5.5

The operator can also manually abort the learning algorithm if it is observed that the

error stays constant for a sufficiently long number of training iterations (epochs).

5.2.1.12 Performance measurement

The prediction performance of the NN can be measured using a number of different

factors. One has to be careful as to what criterion is used when deciding on the

measurement to determine the NN performance. In the thesis three methods are

employed to measure the predictive performance of the NN.

The first method is to determine the regression or correlation coefficient between the

desired target output and the NN output. Regression analysis is used to describe

techniques that help in deciding whether there is a relationship between particular

variables. Correlation on the other hand is defined as the measure of the linear

relationship between variables. The relationship between regression and correlation

is discussed in Betlely, et al. 1994. In order to determine the relationship between the

NN output and the desired target output a regression line is drawn. This can be seen

graphically in Figure 6.5 in Chapter 6. Many of the calculations involved in finding the

correlation coefficient are the same as those used in the calculation of regression line

(Betteley, et al. 1994). Therefore one can use the correlation measurement, r to

determine whether the NN output is close to the target output.

nLY-(Ly)(~:J;)
r =--;::===::::::::::=========:===::::::::::::::==J(nLy2_(Ly)2).(nLy2-CLy)2)

where y is the target output, and y is the NN output and n is the number of data

points.

The correlation coefficient always has a positive value between minus one and plus 1,

which is expressed as -1 ~ r ~+1.

• .. For r =+1, there is perfect positive correlation and all points lie on a straight
line with a positive slope.

• For r =-1, there is perfect negative correlation and all points lie on a straight
line with a negative slope.

• For r =0, there is no correlation.

Therefore for r =+1, the NN has approximated the function (fitted the data) very well.

The second measure of performance is the coefficient of determination r2 xl00. This

is stated as a percentage.

The third and final performance measurement used in this work is the absolute

percentage error (APE) and is given by:
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APE=100x[!y- y)/ yll

where y is the desired target output, and y is the NN output.

5.6

The performance is measured during both the training and validation phases. The

results of the NN performance are presented in Chapter 6.

5.3 The Elman Recurrent Neural Network Model

Recurrent NNs have feedback connections and are often used to represent dynamic

systems. Two straightforward ways of including recurrent connections in NNs is the

activation feedback, where the feedback connection is from the output of the hidden

neuron back to the input, and output feedback where the feedback is from the output

back to the input (Mandic and Chambers, 2001). These recurrent networks can be

either locally recurrent such as the Elman and Jordan recurrent NN. The Elman

network is also referred to as locally recurrent-globally feed-forward structure. Elman

networks are two-layer (excluding the input) backpropagation networks, with the

addition of a feedback connection from the output of the hidden layer to its input

(Figure. 5.5). This feedback path allows Elman networks to learn to recognize and

generate temporal patterns, as well as spatial patterns. These recurrent connections

are what give the network memory (Elman, 1990). Every neuron in the hidden layer

receives as input, in addition'to the external inputs of the network, the outputs of the

hidden layer neurons. Other recurrent networks such as the Williams-Zipser network

that is a fully connected recurrent NN is presented in Mandic and Chamb~rs (2001).

The inputs to both the feed-forward and recurrent NNs are considered to be exactly

the same, therefore Equations 5.1 and 5.2 can be modified as follows:

V/,I (k) =;/,1 (a/,IY/ (k-t)+C/,ly(k)+b/,i w(k)+ g/,iv/(k-(}) +b/,ih ), i =1, n\

and the output of the RNN is:

y/(k+1) =fP/(d/v/(k)+b/,o)

5.7

5.8

where additionally to the previous notation g/,i E Rnl is a vector of the NN weight which

introduces the delayed output of the first hidden layers as an input to the first hidden

layer where (}E R:'l is the vector of unit delays.
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y(k)

w(k)

Figure 5. 6: The Elman Recurrent Neural Network for prediction of an input disturbance

The NI; structure is given as

y,(k)

y(k)

w(k)
rfJ/,i

v,(k)

Figure 5. 7: The model of a neuron for the Elman Recurrent Neural Network

5.3.1 Elman Recurrent Neural Network Implementation Critena

The factors considered for implementation of the ERNN included:

• Input selection;
• The length and selection of training and validation sets;
• Activation function;
• Error criterion;
• Number of hidden layers;
• Number of neurons in the various hidden layers;
• Number of epochs;
• Weight and bias initialisation;
• Training method;
• Learning rate;
• Gradient method;
• Training stopping criterion; and
• Performance measurement.

5.3.1.1 Input selection

The inputs for the ERNN are the same as for the MLP and are described in Tables
5.1 -5.3. .
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5.3.1.2 Length and selection of training and validation sets

The partitioning of data into a training and test set for the ERNN are exactly the same

as for the MLP. The training set has 436 data points and the test set has 218 data

points. The test set is representative of the entire data set as every third sample is

extracted.

5.3.1.3 Activation Function

The activation function for the hidden layer for the ERNN is the hyperbolic tangent

(Equation SA), and the linear function for the output layer.

5.3.1.4 Error criterion

The performance function for the training phase is the minimising of the mean

squared error (Equation 5.3).

5.3.1.5 Number of hidden layers and hidden neurons

The number of hidden layers is found by experimentation to be one. The number

neurons are varied from 1 to 5 to a maximum of 10. However this has been increased

gradually to a maximum of 80.

5.3.1.6 Number of epochs

The number of epochs is varied from 500 to 1000 epochs. The epochs are also varied

from 100 epochs although these results are not included in this document due to

space considerations.

5.3.1.7 Weight and bias initialisation

All weights and biases are initialised using the Nguyen-Widrow layer initialisation

function.

5.3.1.8 Training Method

The NN is trained using the batch method where the entire input set is applied before

the weights and biases are updated.

5.3.1.9 Learning rate

The learning rate was kept at a value of 0.1. Changing the learning rate from 0.1 to

1.0 did not have a noticeable effect on the NN learning or predictive performance.
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5.3.1.10 Gradientmethod

The error is minimised using the scaled gradient conjugate training algorithm for the

considered case. This algorithm is faster than the Levenberg-Marquardt training

algorithm.

5.3.1.11 Training Stopping criterion

Training stops when the error is at a minimum, or the algorithm encounters a

minimum gradient, or when the operator manually stops the training phase.

5.3.1.12 Performance measurement

There are three performance measurements as indicated in section 5.2.1.12. These

are the correlation or regression coefficient r described by Equation 5.5, the

coefficient of determination r 2 and the absolute percentage error APE (Equation

5.6). The ideal values for r is as close to 1 as possible, r 2 should ideally be close to

1 or 100%, the APE should ideally be as small as possible.

5.4 The Radial Basis Function Neural Network Model

The final topology considered is that of the Radial basis function NN. The RBFNN has

a form similar to that of the MLP, as it is also a feed-forward network. The RBFNN is

a three-layered feed-forward network (if the input is considered as a layer),

comprising of the input, hidden layer and output layer respectively. The structure is

represented in Figure 5.8 with the neuron structure in Figure 5.9. The difference

between the MLP and the RBFNN is the activation for hidden neurons. For the

RBFNN it is the radial basis function. The output layer is like the MLP a linear output

which is the best layout for function approximation problems such as this.

Radial basis functions arise as optimal solutions to problems of interpolation,

approximation and regularisation of functions (Haykin, 1999). Much of the inspiration

for RBF neural networks comes from traditional statistical pattern classification

techniques (Casey, 2004).

The unique feature of RBFNN is the process performed in the hidden layer. The idea

behind this is that the patterns in the input space form clusters. If the centres of these

clusters are known, then the distance from the cluster centre can be measured. This

distance measurement is made nonlinear, so that if a pattern is in an area that is

close to a cluster centre it gives a value close to 1 (Casey, 2004).
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Radial basis functions ~x;t;) form a family of functions of a p-dimensional vector,

x, each function being centered at point t;. A very common radial basis function is

the Gaussian function that depends only on the distance between the current point x,

and the center point, t;. and the variance parameter u; :

~x;t;)=Gqlx-t;II)=exp( /lx;;;f)
I

5.9

where Ilx-t;11 is the norm of the distance vector between the current vector x and the

center point t;, of the symmetrical multi-dimensional Gaussian surface. The spread of

the surface is controlled by the variance parameter (Y;. The equation 5.9 represents a

Gaussian bell-shaped curve as shown in Figure 3.11 in Chapter 3.

The distance measurement to the center of the cluster is referred to as the Euclidian­

distance and is represented by:

n

rJ = L(x; _tij)2
;=1

5.10

y,(k)

y(k)

w(k)

Figure 5. 8: The Radial Basis Neural Network for prediction of an input disturbance

The N,,; structure is given as

Figure 5. 9: The model of a neuron for the Radial Basis Neural Network

The equations for the radial basis function are exactly the same as for the MLP, the

only difference being the activation, which is now represented by the radial basis

function in Equation 5.9.
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5.4.1 Radial Basis Function Neural Network Implementation Criteria

Radial basis networks often require more neurons than the MLP feed-forward NN, but

it can be designed in a fraction of the time it takes to train the MLP NN. The RBFNN

works best when many training vectors are available.

The factors considered for implementation of the ERNN included:

• Input selection;
• The length and selection of training and validation sets:
• Activation function;
• Error criterion;
• Number of hidden layers;
• Number of neurons in the various hidden layers;
• Number of epochs;
• Weight and bias initialisation;
• Training method;
• Error goal;
• Spread constant;
• Training stopping criterion; and
• Performance measurement.

5.4.1.1 Input selection

The inputs were selected as per the Tables 5.1 - 5.3.

5.4.1.2 Length and selection of ~raining and validation sets

The partitioning of data into a training and test set for the RBFNN are exactly the

same as for the MLP and ERNN.

5.4.1.3 Activation Function

The activation function for the RBFNN is different to the MLP and ERNN, and is the

radial basis function for the hidden layer, and the linear function for the output layer.

The coefficient t; is set by the MATLAB function for the initialisation of the RBF

network.

5.4.1.4 Error criterion

The performance function for the training phase is the minimising of the sum of

squares error (Demuth, Beale and Hagan, 2004).

5.4.1.5 Number of hidden layers

The number of hidden layers is kept at one layer.
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5.4.1.6 Number of epochs and hidden neurons

A neuron is added to the hidden layer after each training epoch. The number of

neurons is therefore much higher than that of the MLP.

5.4.1.7 Weight and bias initialisation

All weights and biases are initialised using the Nguyen-Widrow layer initialisation

function.

5.4.1.8 Error goal

The NN is trained until the error goal is reached. There is a trade-off that has to be

made between the training to convergence and the generalisation performance of the

network. Therefore the error is not set to a minimum value such as zero.

5.4.1.9 Spread constant

The spread constant denoted by the variance parameter u j is varied together with

the error goal to find the best performance for the given set of inputs. The larger the

spread, the smoother the function approximation is. Too large a spread means a lot of

neurons are required to fit a fast-changing function. Too small a spread means many

neurons are required to fit a smooth function, and the network does not generalize

well. The spread constant is '1aried between 0.1 to 1.0 and the value giving the best

predictive performance is chosen.

5.4.1.10 Training Stopping criterion

Training stops when the error is at a minimum, or the algorithm encounters a

minimum gradient, or when the operator manually stops the training phase.

5.4.1.11 Performance measurement

There are three performance measurements as indicated in section 5.2.1.12. These

are the correlation or regression coefficient r, the coefficient of determination r 2 and

the absolute percentage error APE. The ideal values for r is as close t01 as

possible, r 2 should ideally be close to 1 or 100%, the APE should ideally be as small

as possible.

5.5 Comparison of the advantages and disadvantages cl the MLP and RBFNN

Radial basis function neural networks have become very popular and are serious

rivals to the multilayer perceptron. According to Casey (2004):

• RBF NNs train faster than the MLP FFNN;
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• Another advantage that is claimed is that the hidden layer for the RBFNN is

easier to interpret than the hidden layer for a MLP.

• RBF NNs although they are trained much quicker than a MlP, in actual use it

is much slower. Therefore if speed is a consideration, the MlP is faster.

5.6 Software implementation

All software algorithms are implemented using code developed by author, together

with the Neural Network Toolbox for use with MATLAB ®, Version 4.0.6, (R14SP3).

The MATLAB™ version used is MATLAB Version 7.1.0.246 (R14) Service Pack 3.

5.7 Summary of the chapter

This chapter describes the implementation of the three neural net\"Iorks, namely the

MLP, ERNN and the RBFNN. The combination of the variable selection to the input of

the NNs are discussed including the conversion of the static properties of a MLP into

a dynamic model by introducing time delays at the input. The partitioning of the data

into two sets is discussed. The architecture, including the number of hidden layers

and the number of hidden neurons are investigated and presented. The incorrect

selection of these leads to the problems of overfiUing the model and over-training, in

the case of increasing the number of epochs. The training algorithms used and the

methods for minimizing the mean squared error and the sum of squared error during

training are presented. The validation process and the measurement of the NN

performance using the regression coefficient, the coefficient of determination, and the

absolute percentage error are described for each implemented neural network. The

differences between the various types of NNs are investigated and presented.

Chapter 6 provides the results of the implemented neural networks for the influent

disturbances of COD, TKN and flow rate. The results of all the different types of NNs

are presented together so as to provide the reader with some visual form of

comparing network performance.
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CHAPTER SIX

RESULTS

6.1 Introduction

This chapter presents the implementation of the NNs for one step prediction of the

influent disturbances with the influent disturbances. weather, and month of the year

as input data. The results are presented for three different NN topologies namely, the

multilayer perceptron neural network (MLPNN), Elman recurrent neural network

(ERNN), and radial basis functions neural network (RBFNN).

There are 13 different input variations to the NNs consisting of the influent variable,

delayed influent variable, weather and month of the year data as presented in

Chapter 5, Table 5.1, Table 5.2 and Table 5.3. These input variations are specified

from Model 1 up to Model 13 with the input variations being the same for the MLP.

ERNN and the RBFNN.

Due to the sheer magnitude of the number of available results and the space

considerations in this document, only selected results are included in the document.

However it should be noted t",at all results are available for inspection and can be

viewed on the enclosed CD.

6.2 COD Neural Network Results

The NN presented in this section is for the influent variable COD as the predicted

output of the different NNs. The NN model numbers as per the inputs are specified in

tables at the beginning of the results for the corresponding model. All the models in

this section have only one hidden layer.

6.2.1 COD Neural Network MODEL 1

The input for model 1 is COD(k} and the output is COD(k+1) one time step ahead.

These are tabled below:

Table 6. 1: Input variables for COD Model 1

The structure of the MLP and RBF NNs for Model 1 are presented in Figure 6.1

below. The figures are generated using the nntool command in MATLAB. The

practitioner is able to design and view the created NNs using this graphical user
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interface (GUI) development environment. This tool is however only used for

visualisation of the created NNs. The only NN that cannot be visualised in this design

environment is the Elman recurrent NN. The structure of the Elman and all the other

NNs are however described in the previous chapter.

(a)

4

(b)

Figure 6. 1: (a) MLP Feed-forward NN Model 1 with 1 input, 1 hidden layer, 1 hidden
neuron and 1 output neuron; and (b) Block Diagram for the COO RBFNN Model 1 with 1
input, 4 hidden neurons

The results for Model 1 are presented in Table 6.2 up until Table 6.4 for the MLP,

Elman and RBF NN respectivelY, where:

• Hid layers refer to the number of hidden layers;
• Hid neurons are the number of hidden neurons;
• Train algorithm is the training algorithm used;
• trainscg is the MATLAB training algorithm used, in this case - 'the Scaled

Conjugate Gradient (Demuth et al., 2004);
• Hidden activation is the hidden layer activation function;
• tansig is the MATLAB function for the hyperbolic tangent sigmoid activation

function in Equation 5.3;
• Output activation is the activation function between the hidden layer and

output layer;
• purelin is the Linear activation function;
• Epochs refer to the number of training iterations;
• Performance is the error function used;
• MSE is the mean squared error cost function in Equation 5.2;
• SSE is the sum of squared error function used for the RBF NN;
• Min train err is the minimum error value for the mean squared training error;
• Learn rate is the rate that determines the length of each step of weight

change;
• Momentum is the momentum factor;
• Error goal is the minimum Sum of squares error goal; .
• Spread is the constant for Gaussian function used in the RBF NN;
• r_train is the training correlation coefficient;
• ,_test is the correlation coefficient after a test (validation) set of data is

applied;
• A is the NN output;
• T is the desired target output;
• R_sq_train is the determination coefficient for the training phase;
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• R_sq_test is the determination coefficient for the testing phase;
• Avg_tesCerr is the instantaneous error between the target output and the

predicted output of the NN; and
• APE is the absolute percentage error

The definitions above pertain to all the other tables described later in this chapter. As

is seen from the tables, for the MLP and the ERNN the number of neurons in the

hidden layer are varied from 1 to 5 and finally to 10 neurons. The number of training

iterations (epochs) is varied from 500 to a maximum of 1000. The activation function

for the hidden layer is the hyperbolic tangent for the MLP and Elman RNN, and for the

RBF NN the Gaussian radial basis function is used. Training for the MLP and ERNN

stops when the mean squared error goal is reached, or when the maximum number

of epochs is reached. For the RBF training stops when the sum of square error

reaches a minimum or when the training iterations equal the maximum number of

input data points.

For the NN having TKN as an output in section 6.3, all tables and abbreviations

remain the same as per the section above for the NN with COD as output. The inputs

are specified as per Table 52. For space considerations only for Model 1 all figures

are included, the rest of the models only have the final NN response to the application

of the test data set. However,. please note that all results can be viewed using the

program on the enclosed compact disc (CD).

From Figure 6.2 up to Figure 6.7 the training, the testing (validation), and

performance measurement phases are displayed.
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Table 6. 2: Results for the MLP Feed-forward Neural Network Model 1 with COD as NN output.

500MSE
500MSE
500MSE
993MSE

1000 MSE
1000 MSE

Table 6. 3: Results for the Elman Recurrent Neural Network Model 1 with COD as NN output.

Table 6.4: Results for the Radial Basis Function Neural Network Model 1 with COD as NN output.

-29.475 20.268
-33.176 20.430
-34.451 20.418
-28.830 20.262
-34.307 20.554
-31.400 20.353
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Figure 6. 2: Training error versus the number of epochs for COD: (a) MLP FFNN Model 1
with 1 hidden neuron, 500 epochs; (b) ERNN Model 1 with 1 hidden neuron, 500 epochs;
and (c) RBFNN Model 1 with 4 hidden neurons, 4 epochs
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Figure 6. 3: A scatter-plot of the training input data and the NN response with the
application of the training set for the COD: (a) MLP FFNN Model 1 with 1 hidden neuron,
500 epochs; (b) ERNN Model 1 with 1 hidden neuron, 500 epochs; and (c) RBFNN Model
1 with 4 hidden neurons, 4 epochs
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Figure 6. 4: A scatter-plot of the test (validation) data and the NN response with the
application of the. test set for the COD: (a) FFNN Model 1 with 1 hidden neuron, 500
epochs; (b) ERNN Model 1 with 1 hidden neuron, 500 epochs; and (c) RBFNN Model 1
with 4 hidden neurons, 4 epochs
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Figure 6. 5: Network performance showing the linear regression (correlation)
coefficients for training data (normalized) on' the left, and the validation data set
(denormalized) on the right for the COD: (a) MLP FFNN Model 1 with 1 hidden neuron
and 500 epochs; (b) ERNN Model 1 with 1 hidden neuron, 500 epochs; and (c) RBFNN
Model 1 with 4 hidden neurons, 4 epochs, where A and T are the NN output and desired
target output respectively
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Test Set Instantaneous Error Plot
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Figure 6. 6: The instantaneous error across the entire validation data set for the COD:
(a) MLP FFNN Model 1 with 1 hidden neuron and 500 epochs; (b) ERNN Model 1 with 1
hidden neuron, 500 epochs; and (c) RBFNN Model 1 with 4 hidden neurons, 4 epochs
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Network response to Validation Set
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Figure 6. 7: The NN response to the application of the test (validation) data set for COD:
(a) MLP FFNN Model 1 with 1 hidden neuron and 500 epochs; (b) ERNN Model 1 with 1
hidden neuron, 500 epochs; and (c) RBFNN Model 1 with 4 hidden neurons, 4 epochs
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An examination of Figure 6.2 (a) and (b), shows the training error for the MLP and

ERNN drops to a value of 0.01. However although the training error has converged to

a minimum, the scatter plots for the training data and target output displayed in Figure

6.3 (a) and (b) reveal that the NN response to the application of the TRAlNING data

set is not good, and the regression analysis in Figure 6.5 (a) and (b) shows the

training regression coefficient is only 0.331 for both the MLP and the ERNN. The

same can be said about the RBFNN. The regression coefficient for the RBFNN is only

slightly higher at 0.361. The linear regression coefficient for the TEST phase also

shows that the NN is not able to generalize well, with the coefficients being 0.243,

0.243 and 0.248 for the MLP, ERNN and RBF respectively. The instantaneous error

between the test data and the NN output for each point across the test set are

displayed in Figure 6.6. Finally the plots for the target and NN output are displayed in

Figure 6.7.

The results show that although three different architectures are used, the prediction

performance of all three neural networks is very similar.
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6.2.2 COD Neural Network MODEL 2

The inputs for Model 2 are COD(k) and COD(k-1) and the output is COD(k+1) one

time step ahead, These are tabled below:

Table 6. 5: Input variables for COD Model 2

,he structure of the MLP and RBF NNs for Model 2 are presented in Figure 6,8

below.

2 1

(a)

2 34

(b)

Figure 6. 8: (a) A MLP Feed-forward neural network Model 2 with 2 inputs, 1 hidden
layer, 1 hidden neuron and 1 output neuron; (b) Block Diagram for the COD RBFNN
Model 2 with 34 hidden neurons
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Network response to Validation Set
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Figure 6. 9: The NN response to the application of the test (validation) data set for COD:
(a) MLP FFNN Model 2 with 1 hidden neuron and 500 epochs; (b) ERNN Model 2 with 10
hidden neurons, 500 epochs; and (cl RBFNN Model 2 with 34 hidden neurons, 34
epochs
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Table 6. 6: Results for the Feed-forward Neu~al Network Model 2 with COD as NN output.

500MSE
500MSE

1000 MSE
1000MSE
1000MSE

Table 6. 7: Results for the Elman Recurrent Neural Network Model 2 with COD as NN output.

500MSE
500MSE

1000MSE
1000 MSE
1000MSE

Table 6. 8: Results for the Radial Basis Function Neural Network Model 2 with COD as NN output.

-31.271 19.936
-28.459 20.348
-26.242 20.664
-31.259 19.940
-32.254 20.723
-24.468 20.853

-31.269 19.939
-25.393 20.281
-26.551 20.135
-31.244 19.938
-25.509 20.314
-26.039 20.120
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6.2.3 COD Neural Network MODEL 3

The inputs for Model 3 are COD(k), COD(k-1), COD(k-2), and the output is COD(k+1)

one time step ahead, These are tabled below:

Table 6. 9: Input variables for COD Model 3

3 1

(a)

3 2

Figure 6. 10: (a) A MlP Feed-forward neural network Model 3 with 3 inputs, 1 hidden
layer, 1 hidden neuron and 1 output neuron; and (b) Block Diagram for the COD RBFNN
Model 3 with 2 hidden neurons, 2 epochs
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Network response to Validation Set
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Figure 6. 11: The NN response to the application of the test (validation) data set for
COD: (a) MLP FFNN Model 3 with 1 hidden neuron and 500 epochs; (b) ERNN Model 3
with 1 hidden neuron, 500 epochs; and (c) RBFNN Model 3 with 2 hidden neurons, 2
epochs
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Table 6.10: Results for the Feed·forward Neural Network Model 3 with COO a's NN output.

Table 6.11: Results for the Elman Recurrent Neural Network Model 3 with COO as NN output.

-26.593 19.608
-29.764 19.785
-20.808 20.888
-26.587 19.616
-21.007 20.000
-16.545 20.506

Table 6. 12: Results for the Radial Basis Function Neural Network Model 3 with COO as NN output.
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6.2.4 COD Neural Network MODEL 4

The inputs for Model 4 are COD(k), COD(k-1), COD(k-2), COD(k-3), and the output is

COD(k+1) one time step ahead. These are tabled below:

Table 6. 13: Input variables for COD Model 4

4

(a)

4

(b)

Figure 6. 12: (a) A MLP Feed-forward neural network Model 4 with 4 inputs, 1 hidden
layer, 1 hidden neuron and 1 output neuron; and (b) Block Diagram for the COD RBFNN
Model 4 with 2 hidden neurons, 2 epochs
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Network response to Validation Set
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Figure 6. 13: The NN response to the application of the test (validation) data set for
COD: (a) MLP FFNN Model 4 with 1 hidden neuron and 1000 epochs; (b) ERNN Model 4
with 1 hidden neuron, 500 epochs; and (c) RBFNN Model 4 with 2 hidden neurons, 2
epochs
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Table 6. 14: Results for the Feed-forward Neural Network Model 4 with 'COD as output.

Le
fa

Table 6. 15: Results for the Elman Recurrent Neural Network Model 4 with COD as output.

-28.174 19.361
-27.574 20.111
-24.997 19.835
-28.169 19.365
-32.342 19.607
-24.614 20.502

Table 6. 16: Results for the Radial Basis Function Neural Network Model 4 with COD as output.
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6.2.5 COD Neural Network MODEL 5

The inputs for ModelS are COD(k), COD(k-1), COD(k-2), COD(k-3), TKN{k) and the

output is COD(k+1) one time step ahead. These are tabled below:

Table 6. 17: Input variables for COD Model 5

5

(a)

(b)

Figure 6. 14: (a) A MLP Feed-forward neural network Model 5 with 5 inputs, 1 hidden
layer, 1 hidden neuron and 1 output neuron; and (b) Block Diagram for the COD RBFNN
Model 5 with 3 hidden neurons, 3 epochs
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Network response to Validation Set
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Figure 6. 15: The NN response to the application of the test (validation) data set for
COD: (a) MLP FFNN Model 5 with 5 hidden neurons and 500 epochs; (b) ERNN Model 5
with 1 hidden neuron, 500 epochs; and (c) RBFNN Model 5 with 3 hidden neurons, 3
epochs
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Table 6.18: Results for the Feed-forward Neural Network Model 5 with.COD as output.

500MSE
500MSE

1000 MSE
1000 MSE
1000 MSE

Table 6. 19: Results for the Elman Recurrent Neural Network ModelS with COD as output.

500MSE
500MSE
500MSE
244MSE

1000 MSE
1000 MSE

Table 6. 20: Results for the Radial Basis Function Neural Network ModelS with COD as output.

:e
-30.832 19.456
-30.011 19.137
-32.669 19.947
-30.636 19.447
-29.848 20.617
-28.624 20.401
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6.2.6 COD Neural Network MODEL 6

The inputs for Model 6 are COD(k), COO(k-1), COD(k-2), COD(k-3), TKN(k),

FLOW(k) and the output is COD(k+1) one time step ahead. These are tabled below:

Table 6. 21: Input variables for COD Model 6

6

(a)

6 4

(b)

Figure 6. 16: (a) A MLP Feed-forward neural network Model 6 with 6 inputs, 1 hidden
layer, 1 hidden neuron and 1 output neuron; and (b) Block Diagram for the COD RBFNN
Model 6 wj~h 4 hidden neurons, 4 epochs
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Network response to Validation Set
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Figure 6. 17: The NN response to the application of the test (validation) data set for
COD: (a) MLP FFNN Model 6 with 1 hidden neuron and 500 epochs; (b) ERNN Model 6
with 1 hidden neuron, 500 epochs; and (c) RBFNN Model 6 with 4 hidden neurons, 4
epochs
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Table 6. 22: Results for the Feed-forward Neural Network Model 6 with'COD as output.

500MSE
500MSE
500MSE

1000 MSE
1000 MSE
1000 MSE

Table 6. 23: Results for the Elman Recurrent Neural Network Model 6 with COD as output.

-30.027 19.370
-26.644 19.458
-33.317 19.663
-30.030 19.372
-29.089 20.160
-19.36020.100

Table 6. 24: Results for the Radial Basis Function Neural Network Model 6 with COD as output.
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6.2.7 COD Neural Network MODEL 7

The inputs for Model? are COD(k), COD(k-1), COD(k-2) COD(k-3), TKN(k),

FLOW(k), MONTH and the output is COD(k+1) one time step ahead. These are

tabled below:

Table 6. 25: Input variables for COO Model 7

COD(k}. COD(k-1). COD(k-2}. COD(k-3), TKN(k). FLOW(k), COD(k+1)
Month

(a)

8 19

(b)

Figure 6. 18: (a) A MLP Feed-forward neural network Model 7 with 8 inputs, 1 hidden
layer. 1 hidden neuron and 1 output neuron; and (b) Block Diagram for the COD RBFNN
Model 7 with 19 hidden neurons, 19 epochs
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(a)
Network response to Validation Set
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Figure 6. 19: The NN response to the application of the test (validation) data set for
COD: (a) MLP FFNN Model 7 with 5 hidden neurons and 1000 epochs; (b) ERNN Model 7
with 5 hidden neurons, 1000 epochs; and (c) RBFNN Model 7 with 19 hidden neurons,
19 epochs
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Table 6. 26: Results for the Feed·forward NeJ,Jral Network Model 7 with'COD as output.

\.:
ra

500MSE
500MSE
500MSE
645MSE

1000 MSE
1000 MSE

Table 6. 27: Results for the Elman Recurrent Neural Network Model 7 with COD as output.

Table 6. 28: Results for the Radial Basis Function Neural Network Model 7 with COD as output.

·21.388 19.429
·25.797 19.812
-21.897 20.941
-20.799 19.459
-19.122 19.525
-26.473 21.058

-20.950 19.449
-26.419 19.674
-21.980 21.045
-20.802 19.459
-25.175 19.718
-10.84721.804
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6.2.8 COD Neural Network MODEL 8

The inputs for Model 8 are COD(k), COD(k-1), COD(k-2) COD(k-3), TKN(k),

FLOW(k), MONTH, Minimum Temperature, and the output is COD(k+1) one time step

ahead. These are tabled below:

Table 6. 29: Input variables for COD Model 8

COD(k), COD(k-l), COD(k-2), COD(k-3), TKN(k),
FLOW'k . Month. Minimum Tem ralure

COD(k+l)

9

(a)

(b)

Figure 6. 20: (a) A MLP Feed-forward neural network Model S with 9 inputs, 1 hidden
layer, 1 hidden neuron and 1 output neuron; and (b) Block Diagram for the COD RBFNN
Model 8 with 25 hidden neurons, 25 epochs
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Network response to Validation Set
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Figure 6. 21: The NN response to the application of the test (validation) data set for
COD: (a) MlP FFNN Model 8 with 1 hidden neuron and 500 epochs; (b) ERNN Model 8
with 5 hidden neurons, 500 epochs; and (c) RBFNN Model 8 with 25 hidden neurons, 25
epochs
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Table 6. 30: Results for the Feed-forward Ne.ural Network ModelS with'COD as output.

Table 6. 31: Results for the Elman Recurrent Neural Network Model 8 with COD as output.

Table 6. 32: Results for the Radial Basis Function Neural Network Model 8 with COD as output.

-30.519 19.323
-17.005 20.951
-33.171 21.328
-22.411 19.331
-13.123 21.731
-35.579 23.268

-22.521 19.324
-21.235 19.152
-28.433 21.592
-22.502 19.325
-23.752 21.546

-6.577 22.959
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6.2.9 COD Neural Network MODEL 9

The inputs for Model 9 are COD(k), COD(k-1), COD(k-2) COD(k-3), TKN(k),

FLOW(k), MONTH, Rain, and the output is COD(k+1) one time step ahead. These

are tabled below:

Table 6. 33: Input variables for COD Model 9

'In
COD(k). COD(k-1). COD(k-2), COD(k-3), TKN(k).
FLOW(k). Month, Rain

COD(k+1)

(a)

Q 18

(b)

1

Figure 6. 22: (a) A MLP Feed-forward neural network Model 9 with 9 inputs, 1 hidden
layer, 1 hidden neuron and 1 output neuron; and (b) Block Diagram for the COD RBFNN
Model 9 with 18 hidden neurons, 18 epochs
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Network response to Validation Set
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Figure 6. 23: The NN response to the application of the test (validation) data set for
COD: (a) MLP FFNN Model 9 with 1 hidden neuron and 520 epochs; (b) ERNN Model 9
with 1 hidden neuron, 500 epochs; and (c) RBFNN Model 9 with 18 hidden neurons, 18
epochs
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Table 6. 34: Results for the Feed·forward Neural Network Model 9 with' COD as output.

L

Table 6. 35: Results for the Elman Recurrent Neural Network Model 9 with COD as output.

Table 6. 36: Results for the Radial Basis Function Neural Network Model 9 with COD as output.
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6.2.10 COD Neural Network MODEL 10

The inputs for Model 10 are COD(k), COD(k-1), COD(k-2) COD(k-3), TKN(k),

FLOW(k), MONTH, Wind, and the output is COD(k+1) one time step ahead. These

are tabled below:

Table 6. 37: Input variables for COD Mode/10

COD(k), COD{k-1), COD(k-2), COD(k-3), TKN{k),
FLOW(k , Month. \'Vind

COD(k+1)

Q

(a)

(b)

Figure 6. 24: (a) A MLP Feed-forward neural network Model 10 with 9 inputs, 1 hidden
layer, 1 hidden neuron and 1 output neuron; and (b) Block Diagram for the COD RBFNN
Model 10 with 20 hidden neurons, 20 epochs
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Network response to Validation Set
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Figure 6. 25: The NN response to the application of the test (validation) data set for
COD: (a) MLP FFNN Model 10 with 5 hidden neuron and 1000 epochs; (b) ERNN Model
10 with 1 hidden neuron, 500 epochs; and (c) RBFNN Model 10 with 20 hidden neurons,
20 epochs
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Table 6. 38: Results for the Feed·forward Ne.ural Network Model 10 with COD as output.

500MSE
500MSE
500MSE
943MSE

1000 MSE
1000 MSE

Table 6. 39: Results for the Elman Recurrent Neural Network Model 10 with COD as output.

-21.254 19.498
-29.691 19.575
-23.349 22.211
-21.234 19.500
-31.542 19.961
-36.008 22.105

Table 6. 40: Results for the Radial Basis Function Neural Network Model 10 with COD as output.
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6.2.11 COD Neural Network MODEL 11

The inputs for Model 11 are COD(k), COD(k-1), COD(k-2) COD(k-3), TKN(k),

FlOW(k), MONTH, Minimum Temperature, Rain, and the output is COD(k+1) one

time step ahead. These are tabled below:

Table 6.41: Input variables for COD Model 11

COO(k). COD(k-1). COO(k-2), COD(k-3), TKN(k).
FlOW\K}. Month, Minimum Temperature, Rain

10

(a)

10 19

(b)

1800

Figure 6. 26: (a) A MLP Feed-forward neural network Model 11 with 10 inputs, 1 hidden
layer, 1 hidden neuron and 1 ou~put neuron; and (b) Block Diagram for the COD RBFNN
Model 11 with 19 hidden neurons, 19 epochs
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Network response to Validation Set
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Figure 6. 27: The NN response to the application of the test (validation) data set for
COD: (a) MLP FFNN Model 11 with 10 hidden neurons and 500 epochs; (b) ERNN Model
11 with 5 hidden neurons, 500 epochs; and (c) RBFNN Model 11 with 19 hidden
neurons, 19 epochs
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Table 6. 42: Results for the Feed-forward NeJ,Jral Network Model 11 with COD as output.

500MSE
500MSE
500MSE
537MSE

1000 MSE
1000 MSE

Table 6.43: Results for the Elman Recurrent Neural Network Model 11 with COD as output.

e
-23.804 19.282
-27.965 20.242
-18.301 20.796
-23.742 19.281
-26.683 20.514
-34.433 24.988

Table 6. 44: Results for the Radial Basis Function Neural Network Model 11 with COD as output.
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6.2.12 COD Neural Network MODEL 12

The inputs for Model 12 are COD(k), COD(k-1), COD(k-2) COD(k-3), TKN(k),

FLOW(k), MONTH, Minimum Temperature, Rain, Wind, and the output is COD(k+1)

one time step ahead. These are tabled below:

Table 6. 45: Input variables for COD Model 12

COO(k}, COO{k-1}, COO{k-2), COD(k-3}, TKN(k},
FlOW(k), Month, Minimum Temperature, Rain, Wind

11

(a)

11 25

(b)

Figure 6. 28: (a) A MLP Feed-forward neural network Model 12 with 11 inputs, 1 hidden
layer, 1 hidden neuron and 1 ou~ut neuron; and (b) Block Diagram for the COD RBFNN
Model 12 with 25 hidden neurons, 25 epochs
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Network response to Validation Set
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Figure 6. 29: The NN response to the application of the test (validation) data set for
COO: (a) MLP FFNN Model 12 with 1 hidden neuron and 500 epochs; (b) ERNN Model 12
with 1 hidden neuron, 500 epoChs; and (c) RBFNN Model 12 with 25 hidden neurons, 25
epochs
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Table 6. 46: Results for the Feed-forward Neural Ne~work Model 12 with COD as outpu't.

Table 6. 47: Results for the Elman Recurrent Neural Network Model 12 with COD as output.

500MSE
500MSE
500MSE
823MSE

1000 MSE
1000MSE

Table 6. 48: Results for the Radial Basis Function Neural Network Model 12 with COD as output.

-24.696 19.281
-36.501 20.793
-32.881 20.809
-23.780 19.307
-36.529 20.437
-34.419 22.906
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6.2.13 COD Neural Network MODEL 13

The inputs for Model 13 are COD(k), COD{k-1), COD{k-2) COD(k-3), MONTH,

Minimum Temperature. Rain, Wind, and the output is COD(k+1) one time step ahead.

These are tabled below:

Table 6.49: Input variables for COD Model 13

COD(k), COD(k-1), COD(k-2), COD(k-3).
Month, Minimum Temperature. Rain, Wind

COD(k+1)

1

(a)

4

(b)

Figure 6. 30: (a) A MLP Feed-fQrward neural network Model 13 with 9 inputs, 1 hidden
layer, 1 hidden neuron and 1 output neuron; and (b) Block Diagram for the COD RBFNN
Model 13 with 4 hidden neurons, 4 epochs
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(a)

Network response to Validation Set
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Figure 6. 31: The NN response to the application of the test (validation) data set for
COD: (a) MLP FFNN Model 13 with 1 hidden neuron and 1000 epochs; (b) ERNN Model
13 with 1 hidden neuron, 1000 epochs; and (c) RBFNN Model 13 with 4 hidden neurons,
4 epochs
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Table 6. 50: Results for the Feed-forward Neural Ne~work Model 13 with COD as output.

500MSE
500MSE
500MSE

1000 MSE
1000 MSE
1000 MSE

Table 6. 51: Results for the Elman Recurrent Neural Network Model 13 with COD as output.

Table 6. 52: Results for the Radial Basis Function Neural Network Model 13 with COD as output.
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6.3 TKN Neural Network Results

The NN presented in this section is for the influent variable TKN as the predicted

output of the different NNs. The NN model numbers as per the inputs are specified in

tables at the beginning of the representation of the results for every model. All the

models have only one hidden layer.

6.3.1 TKN Neural Network MODEL 1

The input for model 1 is TKN(k) and the output is TKN(k+1) one time step ahead.

These are tabled below:

The physical structure for the MLP FFNN and the RBF NN are represented in the

following figure. Due to limitations on the MATLAB program for the visualisation of the

physical NN, the Elman Recurrent NN is not displayed here.

\ \

(a)

I ~.
&_L,'!'!\,lI.tt':',t1~ _

1 0

(b)

Figure 6. 32: (a) MLP Feed-forward NN Model 1 with 1 input, 1 hidden layer, 1 hidden
neuron and 1 output neuron; and (b) Block Diagram for the TKN RBFNN Model 1 with 1
input, 6 hidden neurons

For the NN with TKN as an output in this section 6.3, all tables and abbreviations

remain the same as per the section in 6.2 for the NN with COD as output. The inputs

are specified as per Table 5.2. For space considerations only for Model 1 all figures

are included, the rest of the models only have the final NN response to the application

of the test data set. However, please note that all results can be viewed using the

program on the enclosed CD.
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Table 6.54: Results for the Feed-forward Neural Network Model 1 with TKN as output.

500MSE
500MSE
500MSE

1000 MSE
1000MSE
1000MSE

Table 6.55: Results for the Elman Recurrent Neural Network Model 1 with TKN as output.

-0.864 14.991
-1.123 15.344
-0.976 15.417
-0.873 15.020
-1.122 15.365
-0.964 15.442

Table 6.56: Results for the Radial Basis Function Neural Network Model 1 with TKN as output.
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Figure 6. 33: Training error versus the number of epochs for TKN: (a) MLP FFNN Model
1 with 1 hidden neuron, 500 epochs; (b) ERNN Model 1 with 5 hidden neuron, 500
epochs; and (c) RBFNN Model 1 with 6 hidden neurons, 6 epochs
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Figure 6. 34: A scatter-plot of the training input data and the NN response with the
application of the training set for the TKN: (a) MLP FFNN Model 1 with 1 hidden neuron,
500 epochs; (b) ERNN Model 1 with 5 hidden neurons, 500 epochs; and (c) RBFNN
Model 1 with 6 hidden neurons, 6 epochs
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Figure 6. 35: A scatter-plot of the test (validation) data and the NN response with the
application of the test set for the TKN: (a) MLP FFNN Model 1 with 1 hidden neuron, 500
epochs; (b) ERNN Model 1 with 5 hidden neurons, 500 epochs; and (c) RBFNN Model 1
with 6 hidden neurons, 6 epochs

157



Unear correlation coetliclent·VaDdation data

o Data Points
--Best Linear Fit
""'''A''T

1008060
T

4020

R·O.44

Linear correlation coefflclent·Training data
90

0 OataPolnb 0

--Bnt Unear Fit 0
0.9 ·······A·T 80

0.8
R"O.548

70
0

0.7 60

« 0.6 <50

0.5 40

0.4 30

0.3 0 20
0

0

O~AS 0.5 0.55 0.6 0.65 0.7 0.75
10

0
T

(a)
Linear correlation coetliclent· Validation data

T

o Data Points
--Best Linear Fit
......·A·T

60

70 R·0,424

0(50

40 .'
.'

30

0

0 20

10
00.65 0.7 0.75 20 40 60 80 100

Unear correlation coefflclent·Training data

0 Data Points
--Best Linear Fit
·······A·T

0.8 R·0.55

0.7

< 0.6

0.5

0.4

0.3
0

0

°tAS 0.5 0.55 0.6
T

(b)

Linear regr.sslon co.ffld.nt· Training data Linear regression coefflclent· Validation data

o Data Points
--Best Linear Fit
......·A·T

70

<50

40 /

.
30 .'

20

10
00.9 20 40 60 80 100

T

(C)

o

o

R=0.562

o Data Points
--Best Linear Fit
··•··.. A·T

o
o

o
°-b~.5----:0:-'::.6:----='0.7=----=0'::.8------='·

T

Figure 6. 36: Network performance showing the linear regression (correlation)
coefficients for training data (normalized) on the left, and the validation data set
(denormalized) on the right for the TKN: Ca) MLP FFNN Model 1 with 1 hidden neuron
and 500 epochs; (b) ERNN Model 1 with 5 hidden neurons, 500 epochs; and (c) RBFNN
Model 1 with 6 hidden neurons, 6 epochs, where A and T are the NN output and desired
target output respectively
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Figure 6. 37: The instantaneous error across the entire validation data set for the TKN:
(a) MLP FFNN Model 1 with 1 hidden neuron and 500 epochs; (b) ERNN Model 1 with 5
hidden neurons, 500 epochs; and (c) RBFNN Model 1 with 6 hidden neurons, 6 epochs
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Network response to Validation Set
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Figure 6. 38: The NN response to the application of the test (validation) data set for
TKN: (a) MLP FFNN Model 1 with 1 hidden neuron and 500 epochs; (b) ERNN Model 1
with 5 hidden neurons, 500 epochs; and (c) RBFNN Model 1 with 6 hidden neurons, 6
epochs
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6.3.2 TKN Neural Network MODEL 2

The inputs for Model 2 are TKN(k) and TKN(k-1) and the output is TKN(k+1) one time

step ahead, These are tabled below:

Table 6. 57: Input variables for TKN Model 2

2 1

(a)

2 2 1

20

80

(b)

Figure 6. 39: (a) A MLP Feed-forward neural network Model 2 with 2 inputs, 1 hidden
layer, 1 hidden neuron and 1 output neuron; (b) Block Diagram for the TKN RBFNN
Model 2 with 2 hidden neurons
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Network response to Validation Set
9Or------,-------,-----,-------;========;--,

80

70-D
.§.. 60
"0
lI)

.!:!

E50...
o
c:
~ 40
z
~

30

20

_.--.- Actual Predicted out
---Target output

1~00 120 140 160
Time in weeks

180 200 220

(b)

Network response to Validation Set
9Or----,----r----,-----;::=r:::======r::====::=:::;l

80

70

-.--.- Actual Predicted out
---Target output

-:::::
tI)

.§.. 60 • t"0 j
ID i.!:! iE50 i... !.g
lI)

40"0

Z
~
I-

30

20

1~00 120 140 160
Time in weeks

(c)

180 200 220

Figure 6. 40: The NN response to the application of the test (validation) data set for
TKN: (a) MLP FFNN Model 2 with 1 hidden neuron and 500 epochs; (b) ERNN Model 2
with 10 hidden neurons, 500 epochs; and (c) RBFNN Model 2 with 2 hidden neurons, 2
epochs
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Table 6. 58: Results for the Feed·forward Neural Network Model 2 with TKN as output.

359MSE
500MSE
500MSE
324MSE

1000 MSE
1000 MSE

Table 6. 59: Results for the Elman Recurrent Neural Network Model 2 with TKN as output.

328MSE
500MSE
500MSE
232MSE

1000MSE
1000 MSE

Table 6. 60: Results for the Radial Basis Function Neural Network Model 2 with TKN as output.

-0.606 14,347
-0,599 14,776
-0,702 14.728
-0.606 14,347
-0.480 14,577
-0.472 14,870

-0,607 14.352
-0,507 14,592
-0,559 14,700
-0,606 14,347
-0.397 14.688
-0,529 14,731
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6.3.3 TKN Neural Network MODEL 3

The inputs for Model 3 are TKN(k}, TKN(k-1), TKN(k-2), and the output is TKN(k+1)

one time step ahead. These are tabled below:

Table 6. 61: Input variables for TKN Model 3

3 1

(a)

3 2

Figure 6. 41: (a) A MLP Feed-forward neural network Model 3 with 3 inputs, 1 hidden
layer, 1 hidden neuron and 1 output neuron; and (b) Block Diagram for the TKN RBFNN
Model 3 with 2 hidden neurons, 2 epochs
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Network response to Validation Set
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Figure 6. 42: The NN response to the application of the test (validation) data set for
TKN: (a) MLP FFNN Model 3 with 5 hidden neurons and 1000 epochs; (b) ERNN Model 3
with 1 hidden neuron, 500 epochs; and (c) RBFNN Model 3 with 2 hidden neurons, 2
epochs
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Table 6. 62: Results for the Feed-forward Neural Network Model 3 with·TKN as output.

Table 6. 63: Results for the Elman Recurrent Neural Network Model 3 with TKN as output.

0.261 -0.547
-0.092 14.508
-0.294 14.994
0.261 -0.546
0.245 -0.418

-0.491 15.118

Table 6. 64: Results for the Radial Basis Function Neural Network Model 3 with TKN as output.
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6.3.4 TKN Neural Network MODEL 4

The inputs for Model 4 are TKN(k), TKN(k-1). TKN(k-2), TKN(k-3), and the output is

TKN(k+1) one time step ahead. These are tabled below:

Table 6. 65: Input variables for TKN Model 4

TKN(kl. TKN{k-1). TKN(k-2). TKN(k-3)

4

(a)

(b)

Figure 6. 43: (a) A MLP Feed-forward neural network Model 4 with 4 inputs, 1 hidden
layer,1 hidden neuron and 1 output neuron; and (b) Block Diagram for the TKN RBFNN
Model 4 with 2 hidden neurons, 2 epochs
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Figure 6. 44: The NN response to the application of the test (validation) data set for
TKN: (a) MLP FFNN Model 4 with 10 hidden neurons and 500 epochs; (b) ERNN Model 4
with 1 hidden neuron, 500 epochs; and (c) RBFNN Model 4 with 2 hidden neurons, 2
epochs
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Table 6. 66: Results for the Feed·forward Neural Network Model 4 with·TKN as output.

102 MSE
500MSE
500MSE
214MSE

1000 MSE
1000 MSE

Table 6. 67: Results for the Elman Recurrent Neural Network Model 4 with TKN as output.

-0.588 14.052
-14.884 14.169
-0.593 14.153
-0.593 14.153
-0.900 15.314
-0.152 14.503

Table 6. 68: Results for the Radial Basis Function Neural Network Model 4 with TKN as output.
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6.3.5 TKN Neural Network MODEL 5

The inputs for Model 5 are TKN(k). TKN(k-1), TKN(k-2), TKN(k-3), COD(k), and the

output is TKN(k+1) one time step ahead. These are tabled below:

Table 6. 69: Input variables for TKN Model 5

TKN(k), TKN(k-1). TKN(k-2), TKN(k-3). TKN(k+1)
CODk

5

(a)

5 5

(b)

Figure 6. 45: (a) A MlP Feed-forward neural network Model 5 with 5 inputs, 1 hidden
layer, 1 hidden neuron and 1 output neuron; and (b) Block Diagram for the TKN RBFNN
ModelS with 5 hidden neurons, 5 epochs
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Network response to Validation Set
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Figure 6. 46: The NN response to the application of the test (validation) data set for
TKN: (a) MLP FFNN Model 5 with 1 hidden neuron and 500 epochs; (b) ERNN Model 5
with 1 hidden neuron, 500 epochs; and (c) RBFNN Model 5 with 5 hidden neurons, 5
epochs
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Table 6. 70: Results for the Feed-forward Neural Network Model 5 with TKN as output.

Table 6. 71: Results for the Elman Recurrent Neural Network Model 5 with TKN as output.

Table 6. 72: Results for the Radial Basis Function Neural Network Model 5 with TKN as output.

Ar
a

1radbas

173



6.3.6 TKN Neural Network MODEL 6

The inputs for Model 6 are TKN(k), TKN(k-1), TKN(k-2), TKN(k-3), COD(k), FLOW{k),

and the output is TKN(k+1) one time step ahead. These are tabled below:

Table 6. 73: Input variables for TKN Model 6

TKN(k+1}

6 1

(a)

6 9

(b)

Figure 6. 47: (a) A MLP Feed-forward neural network Model 6 with 6 inputs, 1 hidden
layer, 1 hidden neuron and 1 output neuron; and (b) Block Diagram for the TKN RBFNN
Model 6 with 9 hidden neurons, 9 'epochs
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Figure 6. 48: The NN response to the application of the test (validation) data set for
TKN: (a) MLP FFNN Model 6 with 1 hidden neuron and 500 epochs; (b) ERNN Model 6
with 1 hidden neuron, 500 epochs; and (c) RBFNN Model 6 with 9 hidden neurons, 9
epochs
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Table 6. 74: Results for the Feed-forward Neural Network Model 6 with ,TKN as output.

Table 6. 75: Results for the Elman Recurrent Neural Network Model 6 with TKN as output.

-0.502 13.700
-0.428 14.364
-0.264 14.743
-0.502 13.701
-0.319 14.354
-0.008 14.208

Table 6. 76: Results for the Radial Basis Function Neural Network Model 6 with TKN as output.
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6.3.7 TKN Neural Network MODEL 7

The inputs for Model 7 are TKN(k), TKN(k-1), TKN(k-2), TKN(k-3), COD(k), FLOW(k),

MONTH, and the output is TKN(k+1) one time step ahead. These are tabled below:

Table 6. 77: Input variables for TKN Model 7

TKN(k+1)

t

(a)

(b)

Figure 6. 49: (a) A MLP Feed-forward neural network Model 7 with 8 inputs, 1 hidden
layer, 1 hidden neuron and 1 output neuron; and (b) Block Diagram for the COD RBFNN
Model 7 with 17 hidden neurons, 17 epochs
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Figure 6. 50: The NN response to the application of the test (validation) data set for
TKN: (a) MLP FFNN Model 7 with 1 hidden neuron and 500 epochs; (b) ERNN Model 7
with 5 hidden neurons, 1000 epochs; and (c) RBFNN Model 7 with 17 hidden neurons,
17 epochs
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Table 6. 78: Results for the Feed·forward Neural Network Model 7 with.TKN as output.

187MSE
500MSE
500MSE
407MSE

1000 MSE
1000MSE

Table 6. 79: Results for the Elman Recurrent Neural Network Model 7 with TKN as output.

Table 6. 80: Results for the Radial Basis Function Neural Network Model 7 with TKN as output.

-0.448 13.471
-0.688 14.233
-0.550 14.879
-0.548 13.638
-0.196 14.315
-0.475 14.559
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6.3.8 TKN Neural Network MODEL 8

The inputs for Model 8 are TKN(k), TKN(k-1), TKN(k-2), TKN(k-3), COD(k), FLOW(k),

MONTH, Minimum Temperature, and the output is TKN(k+1) one time step ahead.

These are tabled below:

Table 6. 81: Input variables for TKN Model 8

TKN{k). TKN(k-1), TKN(k-2), TKN(k-3}, COD(k), TKN(k+1)
FLOW!k . Month, Minimum Temoerature

9

(b)

Figure 6. 51: (a) A MLP Feed-forward neural network Model 8 with 9 inputs, 1 hidden
layer, 1 hidden neuron and 1 output neuron; and (b) Block Diagram for the TKN RBFNN
ModelS with 17 hidden neurons, '17 epochs
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Network response to Validation Set
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Figure 6. 52: The NN response to the application of the test (validation) data set for
TKN: (a) MLP FFNN Model 8 with 1 hidden neuron and 500 epochs; (b) ERNN Model 8
with 5 hidden neurons, 500 epochs; and (c) RBFNN Model 8 with 17 hidden neurons, 17
epochs
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Table 6. 82: Results for the Feed-forward Neural Network Model 8 with :rKN as output.

322MSE
500MSE
500MSE
287MSE

1000 MSE
1000 MSE

Table 6. 83: Results for the Elman Recurrent Neural Network Model 8 with TKN as output.

Table 6. 84: Results for the Radial Basis Function Neural Network Model 8 with TKN as output.
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6.3.9 TKN Neural Network MODEL 9

The inputs for Model 9 are TKN(k), TKN(k-1), TKN(k-2), TKN(k-3), COD(k), FLOW(k),

MONTH, Rain. and the output is TKN(k+1) one time step ahead. These are tabled

below:

Table 6. 85: Input variables for TKN Model 9

TKN(k). TKN(k-1), TKN(l<-2). TKN(k-3).
COD k. FLOW{k). Month, Rain

(a)

1:>1:4
D 1~ 1

(b)

Figure 6. 53: (a) A MLP Feed-forward neural network Model 9 with 9 inputs, 1 hidden
layer, 1 hidden neuron and 1 output neuron; and (b) Block Diagram for the TKN RBFNN
Model 9 with 19 hidden neurons, 19 epochs
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Figure 6. 54: The NN response to the application of the test (validation) data set for
TKN: (a) MLP FFNN Model 9 with 1 hidden neuron and 1000 epochs; (b) ERNN Model 9
with 1 hidden neuron, 500 epochs; and (c) RBFNN Model 9 with 19 hidden neurons, 19
epochs
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Table 6. 86: Results for the Feed-forward Neural Network Model 9 with :rKN as output.

500MSE
500MSE
376MSE

1000 MSE
1000 MSE

Table 6. 87: Results for the Elman Recurrent Neural Network Model 9 with TKN as output.

Table 6. 88: Results for the Radial Basis Function Neural Network Model 9 with TKN as output.

-0.448 13.457
-0.441 13.721
-0.621 13.970
-0.448 13.456
0.129 15.216

-0.619 14.824

-0.448 13.458
-0.221 13.655
-0.662 13.771
-0.448 13.457
-0.406 14.042
-0.464 14.977
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6.3.10 TKN Neural Network MODEL 10

The inputs for Mode/10 are TKN(k), TKN(k-1), TKN(k-2), TKN(k-3), COD(k),

FLOW(k), MONTH, Wind, and the output is TKN(k+1) one time step ahead. These

are tabled below:

Table 6. 89: Input variables for TKN Model 10

TKN(k+1)

9

(a)

9 16

(b)

Figure 6. 55: (a) A MLP Feed-forward neural network Model 10 with 9 inputs, 1 hidden
layer, 1 hidden neuron and 1 output neuron; and (b) Block Diagram for the TKN RBFNN
Model 10 with 16 hidden neurons, 16 epochs
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Figure 6. 56: The NN response to the application of the test (validation) data set for
TKN: (a) MLP FFNN Model 10 with 1 hidden neuron and 1000 epochs; (b) ERNN Model
10 with 1 hidden neuron, 500 epochs; and (c) RBFNN Model 10 with 16 hidden neurons,
16 epochs
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Table 6. 90: Results for the Feed·forward Neural Network Model 10 with'TKN as output

408MSE
500MSE
500MSE
328MSE

1000 MSE
1000 MSE

Table 6. 91: Results for the Elman Recurrent Neural Network Model 10 with TKN as output.

-0.431 13.527
-0.257 13.819
-0.708 14.818
-0.432 13.527
-0.879 14.670
-0.980 14.992

Table 6. 92: Results for the Radial Basis Function Neural Network Model 10 with TKN as output.
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6.3.11 TKN Neural Network MODEL 11

The inputs for Model 11 are TKN(k), TKN(k-1), TKN(k-2), TKN(k-3), COD(k),

FlOW(k), MONTH, Minimum Temperature, Rain, and the output is TKN(k+1) one

time step ahead. These are tabled below:

Table 6. 93: Input variables for TKN Model 11

TKN(kl, TKN(k-1), TKN(k-2}. TKN(k-3). COD(k). TKN{k+l}
FLOW ki, Month, Minimum TemDerature. Rain

(a)

(b)

Figure 6. 57: (a) A MLP Feed-forward neural network Model 11 with 10 inputs, 1 hidden
layer, 1 hidden neuron and 1 output neuron; and (b) Block Diagram for the TKN RBFNN
Model 11 with 24 hidden neurons, 24 epochs
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Network response to Validation Set
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Figure 6. 58: The NN response to the application of the test (validation) data set for
TKN: (a) MLP FFNN Model 11 with 1 hidden neuron and 1000 epochs; (b) ERNN Model
11 with 5 hidden neurons, 500 epochs; and (c) RBFNN Model 11 with 24 hidden
neurons, 24 epochs
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Table 6. 94: Results for the Feed·forward Neural Network Model 11 with'TKN as output.

479MSE
500MSE
500MSE
368MSE

1000MSE
1000MSE

Table 6.95: Results for the Feed-forward Neural Network Model 11 with TKN as output.

-0.426 13.503
-0.942 13.744
-0.780 14.717
-0.426 13.503
-0.669 13.906
-0.205 14.829

Table 6. 96: Results for the Radial Basis Function Neural Network Model 11 with TKN as output.
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6.3.12 TKN Neural Network MODEL 12

The inputs for Model 12 are TKN(k}, TKN(k-1}, TKN(k-2), TKN(k-3), COD(k),

FLOW(k), MONTH. Minimum Temperature, Rain, Wind, and the output is TKN(k+1)

one time step ahead. These are tabled below:

Table 6. 97: Input variables for TKN Model 12

TKN(k), TKN(k-1), TKN{k-2). TKN(k-3), COD(k),
FLOW(k), Month. Minimum Temperature, Rain.
Wind

TKN(k+1)

11

(a)

11 18

(b)

Figure 6.59: (a) A MLP Feed-forward neural network Model 12 with 11 inputs,1 hidden
layer,1 hidden neuron and 1 dutput neuron; and (b) Block Diagram for the TKN RBFNN
Model 12 with 18 hidden neurons,18 epochs
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Network response to Validation Set
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Figure 6. 60: The NN response to the application of the test (validation) data set for
TKN: (a) MLP FFNN Model 12 with 5 hidden neurons and 500 epochs; (b) ERNN Model
12 with 1 hidden neuron, 500 epochs; and (c) RBFNN Model 12 with 18 hidden neurons,
18 epochs
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Table 6. 98: Results for the Feed-forward Ne~ral Network Model 12 with TKN as output.

500MSE
500MSE
500MSE
782MSE

1000MSE
1000 MSE

Table 6. 99: Results for the Elman Recurrent Neural Network Model 12 with TKN as output.

-0.595 14.160
-0.651 14.155
-1.011 14.893
-0.578 14.194
-1.035 14.944
-1.093 15.373

Table 6. 100: Results for the Radial Basis Function Neural Network Model 12 with TKN as output.
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6.3.13 TKN Neural Network MODEL 13

The inputs for Model 13 are TKN(k), TKN(k-1), TKN(k-2), TKN(k-3), MONTH,

Minimum Temperature, Rain, Wind, and the output is TKN(k+1) one time step ahead.

These are tabled below:

Table 6.101: Input variables for TKN Model 13

TKN(k), TKN(k-1). TKN(k-2). TKN(k-3l,
Month, Minimum Tem erature. Rain, Wind

(a)

g 14

(b)

Figure 6. 61: (a) A MLP Feed-forward neural network Model 13 with 9 inputs, 1 hidden
layer,1 hidden neuron and 1 output neuron; and (b) Block Diagram for the TKN RBFNN
Model 13 with 14 hidden neurons, 14 epochs
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Figure 6. 62: The NN response to the application of the test (validation) data set for
TKN: (a) MLP FFNN Model 13 with 1 hidden neuron and 1000 epochs; (b) ERNN Model
13 with 1 hidden neuron, 1000 epochs; and (c) RBFNN Model 13 with 14 hidden
neurons, 14 epochs
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Table 6.102: Results for the Feed-forward N!'!ural Network Model 13 with TKN as output.

500MSE
500MSE
408MSE

1000 MSE
1000 MSE

Table 6.103: Results for the Elman Recurrent Neural Network Model 13 with TKN as output.

500MSE
500MSE
337MSE

1000MSE
1000 MSE

Table 6. 104: Results for the Radial Basis Function Neural Network Model 13 with TKN as output.

-0.471 13.617
-0.850 14.882
-1.141 14.979
-0.471 13.617
-0.939 14.557
-0.523 15.470
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6.4 Flow Neural Network Results

The final set of NN results presented in this section is for the influent variable input

FLOW rate as the predicted output of the 3 different NN architectures. The NN model

numbers as per the inputs are specified in tables at the beginning of the results for

the corresponding model. All the models have only one hidden layer.

6.4.1 FLOW Neural Network MODEL 1

The input for model 1 is FLOW(k), and the output is FLOW{k+1) one time step ahead.

These are tabled below:

Table 6.105: Input variables for FLOW Model 1

The physical structure for the MLP FFNN and the RBF NN are represented in the

following figure. Due to limitations on the MATLAB program for the visualisation of the

physical NN, the Elman Recurrent NN is not displayed here.

(a)

(b)

Figure 6. 63: (a) MLP Feed-forward NN Model 1 with 1 input, 1 hidden layer, 1 hidden
neuron and 1 output neuron; and (b) Block Diagram for the FLOW RBFNN Model 1 with
1 input, 6 hidden neurons

For the NN with FLOW as an output in this section 6.4, all tables and abbreviations

remain the same as per the section in 6.2 for the NN with COD as output. The inputs

are specified as per Table 5.3. For space considerations only for Model 1 all figures

are included, the rest of the models only have the final NN response to the application

of the test data set. However, please note that all results can be viewed using the

program on the enclosed CD.
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Table 6.106: Results for the Feed-forward Neural Network Model 1 with FLOW as output.

Table 6.107: Results for the Elman Recurrent Neural Network Model 1 with FLOW as output.

119MSE
500MSE
500MSE
279MSE

1000 MSE
1000 MSE

Table 6.108: Results for the Radial Basis Function Neural Network Model 1 with FLOW as output.

-0.457 8.782
0.753 -0.423

-0.467 8.833
-0.472 8.823
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Figure 6. 64: Training error versus the number of epochs for FLOW: (a) MLP FFNN
Model 1 with 1 hidden neuron, 309 epochs; (b) ERNN Model 1 with 5 hidden neuron, 500
epochs; and (c) RBFNN Model 1 with 7 hidden neurons, 7 epochs
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Figure 6. 65: A scatter-plot of the training input data and the NN response with the
application of the training set for the FLOW: (a) MlP FFNN Model 1 with 1 hidden
neuron, 309 epochs; (b) ERNN Model 1 with 5 hidden neurons, 500 epochs; and (c)
RBFNN Model 1 with 7 hidden neurons, 7 epochs
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Figure 6. 66: A scatter-plot of the test (validation) data and the NN response with the
application of the test set for the FLOW: (a) MLP FFNN Model 1 with 1 hidden neuron,
309 epochs; (b) ERNN Model 1 with 5 hidden neurons, 500 epochs; and (c) RBFNN
Model 1 with 7 hidden neurons, 7 epochs
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Figure 6. 67: Network performance showing the linear regression (correlation)
coefficients for training data (normalized) on the left, and the validation data set
(denormalized) on the right for the FLOW: (a) MLP FFNN Model 1 with 1 hidden neuron
and 309 epochs; (b) ERNN Model 1 with 5 hidden neurons, 500 epochs; and (c) RBFNN
Model 1 with 7 hidden neurons, 7 epochs, where A and T are the NN output and desired
target output respectively
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Figure 6. 68: The instantaneous error across the entire validation data set for the
FLOW: (a) MLP FFNN Model 1 with 1 hidden neuron and 500 epochs; (b) ERNN Model 1
with 5 hidden neurons, 309 epochs; and (c) RBFNN Model 1 with 7 hidden neurons, 7
epochs
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Network response to Validation Set
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Figure 6. 69: The NN response to the application of the test (validation) data set for
FLOW: (a) MLP FFNN Model 1 with 1 hidden neuron and 309 epochs; (b) ERNN Model 1
with 5 hidden neurons, 500 epochs; and (c) RBFNN Model 1 with 7 hidden neurons, 7
epochs
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6.4.2 FLOW Neural Network MODEL 2

The inputs for Model 2 are FLOW(k), FLOW(k-1), and the output is FLOW(k+1) one

time step ahead. These are tabled below:

Table 6. 109: Input variables for FLOW Model 2

2

(a)

2 3

(b)

Figure 6. 70: (a) A MlP Feed-forward neural network Model 2 with 2 inputs, 1 hidden
layer, 1 hidden neuron and 1 output neuron; (b) Block Diagram for the FLOW RBFNN
Model 2 with 3 hidden neurons
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Network response to Validation Set
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Figure 6. 71: The NN response to the application of the test (validation) data set for
FLOW: (a) MLP FFNN Model 2 with 5 hidden neurons and 1000 epochs; (b) ERNN Model
2 with 10 hidden neurons, 1000 epochs; and (c) RBFNN Model 2 with 3 hidden neurons,
3 epochs
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Table 6.110: Results for the Feed·forward Neural Network Model 2 with FLOW as output.

L
r

Table 6. 111: Results for the Elman Recurrent Neural Network Model 2 with FLOW as output.

Table 6. 112: Results for the Radial Basis Function Neural Network Model 2 with FLOW as output.
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6.4.3 FLOW Neural Network MODEL 3

The inputs for Model 3 are FLOW, FLOW(k-1), FLOW(k-2), and the output is

FLOW(k+1) one time step ahead. These are tabled below:

Table 6.113: Input variables for FLOW Model 3

3 1

(a)

(b)

Figure 6. 72: (a) A MLP Feed-forward neural network Model 3 with 3 inputs, 1 hidden
layer, 1 hidden neuron and 1 output neuron; and (b) Block Diagram for the FLOW
RBFNN Model 3 with 17 hidden neurons, 17 epochs
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Network response to Validation Set
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Figure 6. 73: The NN response to the application of the test (validation) data set for
FLOW: (a) MLP FFNN Model 3 with 10 hidden neurons and 1000 epochs; (b) ERNN
Model 3 with 10 hidden neurons, 1000 epochs; and (c) RBFNN Model 3 with 17 hidden
neurons, 17 epochs
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Table 6. 114: Results for the Feed-forward Neural Network Model 3 with FLOW as output.

330MSE
500MSE
500MSE
263MSE

1000 MSE
1000MSE

0.5 0.860
0.5 0.860
0.5 0.858
0.5 0.861
0.5 0.864

Table 6. 115: Results for the Elman Recurrent Neural Network Model 3 with FLOW as output.

500MSE
500MSE
433MSE

1000 MSE
1000 MSE

Table 6. 116: Results for the Radial Basis Function Neural Network Model 3 with FLOW as output.
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6.4.4 FLOW Neural Network MODEL 4

The inputs for Model 4 are FLOW(k), FLOW(k-1), FLOW(k-2), FLOW(k-3), and the

output is FLOW(k+1) one time step ahead. These are tabled below:

Table 6.117: Input variables for FLOW Model 4

4

(a)

(b)

Figure 6. 74: (a) A MLP Feed-forward neural network Model 4 with 4 inputs, 1 hidden
layer, 1 hidden neuron and 1 output neuron; and (b) Block Diagram for the FLOW
RBFNN Model 4 with 35 hidden neurons, 35 epochs
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Network response to Validation Set
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Figure 6. 75: The NN response to the application of the test (validation) data set for
FLOW: (a) MLP FFNN Model 4 with 5 hidden neurons and 500 epochs; (b) ERNN Model 4
with 5 hidden neurons, 1000 epochs; and (c) RBFNN Model 4 with 35 hidden neurons,
35 epochs
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Table 6.118: Results for the Feed-forward Neural Network Model 4 with FLOW as output.

Table 6. 119: Results for the Elman Recurrent Neural Network Model 4 with FLOW as output.

392MSE
500MSE
500MSE
344MSE

1000 MSE
1000 MSE

Table 6.120: Results for the Radial Basis Function Neural Network Model 4 with FLOW as output.
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6.4.5 FLOW Neural Network MODEL 5

The inputs for Model 5 are FLOW(k), FLOW(k-1), FLOW(k-2), FLOW(k-3), COD(k),

and the output is FLOW{k+1) one time step ahead. These are tabled below:

Table 6.121: Input variables for FLOW Model 5

i>\<
FLOW(k), FlOW(k-1}, FlOW(k-2), FlOW(k-3), FLOW(k+1}
COD{k}

5

(a)

5 22

(b)

Figure 6. 76:(a) A MLP Feed-forward neural network Model 5 with 5 inputs, 1 hidden
layer, 1 hidden neuron and 1 output neuron; and (b) Block Diagram for the FLOW
RBFNN Model 5 with 22 hidden neurons, 22 epochs
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Network response to Validation Set
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Figure 6. 77: The NN response to the application of the test (validation) data set for
FLOW: (a) MLP FFNN Model 5 with 5 hidden neurons and 1000 epochs; (b) ERNN Model
5 with 5 hidden neurons, 500 epochs; and (c) RBFNN Model 5 with 22 hidden neurons,
22 epochs
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Table 6. 123: Results for the Elman Recurrent Neural Network Model 5 with FLOW as output.

Table 6. 124: Results for the Radial Basis Function Neural Network Model 5 with FLOW as output.
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6.4.6 FLOW Neural Network MODEL 6

The inputs for Model 6 are FLOW(k), FLOW(k-1), FLOW(k-2), FLOW(k-3), COD(k),

TKN(k), and the output is FLOW(k+1) one time step ahead. These are tabled below:

Table 6.125: Input variables for FLOW Model 6

FLOW(k). FlOW\k-1), FLOW(k-2l, FLO\N(k-3),
COO(k. TKNk

6

(a)

6 16

(b)

Figure 6. 78: (a) A MLP Feed-forward neural network Model 6 with 6 inputs, 1 hidden
layer, 1 hidden neuron and 1 output neuron; and (b) Block Diagram for the FLOW
RBFNN Model 6 with 16 hidden neurons, 16 epochs
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Network response to Validation Set
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Figure 6. 79: The NN response to the application of the test (validation) data set for
FLOW: (a) MLP FFNN Model 6 with 1 hidden neuron and 1000 epochs; (b) ERNN Model 6
with 1 hidden neuron, 500 epochs; and (c) RBFNN Model 6 with 16 hidden neurons, 16
epochs
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Table 6.126: Results for the Feed-forward Neural Network Model 6 with FLOW as output.

0.865 0.859
0.871 0.846
0.859 0.868
0.867 0.861
0.873 0.854

Table 6. 127: Results for the Elman Recurrent Neural Network Model 6 with FLOW as output.

Table 6.128: Results for the Radial Basis Function Neural Network Model 6 with FLOW as output.
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6.4.7 FLOW Neural Network MODEL 7

The inputs for Model? are FLOW(k), FLOW(k-1), FLOW(k-2), FLOW(k-3), COD(k),

TKN(k), MONTH, and the output is FLOW(k+1) one time step ahead. These are

tabled below:

Table 6. 129: Input variables for FLOW Model 7

'In
FLOW(k}. FLOW(k-1), FLOW(k-2), FLOW(k-3), FLOW(k+1)
COD(k), TKN(k). Month

a t

(a)

8 35

(b)

Figure 6. 80: (a) A MLP Feed-forward neural network Model 7 with 8 inputs, 1 hidden
layer, 1 hidden neuron and 1 output neuron; and (b) Block Diagram for the FLOW
RBFNN Model 7 with 35 hidden neurons, 35 epochs
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Network response to Validation Set
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Figure 6. 81: The NN response to the application of the test (validation) data set for
FLOW: (a) MLP FFNN Model 7 with 1 hidden neuron and 1000 epochs; (b) ERNN Model 7
with 1 hidden neuron, 1000 epochs; and (c) RBFNN Model 7 with 35 hidden neurons, 35
epochs
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Network response to Validation Set
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Figure 6. 81: The NN response to the application of the test (validation) data set for
FLOW: (a) MLP FFNN Model 7 with 1 hidden neuron and 1000 epochs; (b) ERNN Model 7
with 1 hidden neuron, 1000 epochs; and (c) RBFNN Model 7 with 35 hidden neurons, 35
epochs
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Table 6.131: Results for the Elman Recurrent Neural Network Model 7 with FLOW as output.

439MSE
500MSE
500MSE
511 MSE

1000 MSE
1000 MSE

Table 6. 132: Results for the Radial Basis Function Neural Network Model 7 with FLOW as output.
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6.4.8 FLOW Neural Network MODEL 8

The inputs for Model 8 are FLOW(k), FLOW(k-1), FLOW(k-2), FLOW(k-3), COD(k),

TKN(k), MONTH, Minimum Temperature, and the output is FLOW(k+1) one time step

ahead. These are tabled below:

Table 6. 133: Input variables for FLOW Model 8

FLOW(k), FLOW(k-1). FLOW(k-2). FLOW(k-3), COD(k),
TKN(k . Month. Minimum Tem erature

9

(a)

(b)

Figure 6. 82: (a) A MLP Feed-forward neural network Model 8 with 9 inputs, 1 hidden
layer, 1 hidden neuron and 1 output neuron; and (b) Block Diagram for the FLOW
RBFNN Model 8 with 35 hidden neurons, 35 epochs
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Network response to Validation Set
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Figure 6. 83: The NN response to the application of the test (validation) data set for
FLOW: (a) MLP FFNN Model 8 with 5 hidden neurons and 500 epochs; (b) ERNN Model 8
with 5 hidden neurons, 500 epochs; and (c) RBFNN Model 8 with 35 hidden neurons, 35
epochs
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Table 6.134: Results for the Feed·forward Neural Network Model 8 with FLOW as output.

MI
rr

Table 6. 135: Results for the Elman Recurrent Neural Network Model 8 with FLOW as output.

Table 6. 136: Results for the Radial Basis Function Neural Network Model 8 with FLOW as output.
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6.4.9 FLOW Neural Network MODEL 9

The inputs for Model 9 are FLOW(k), FLOW(k-1), FLOW(k-2), FLOW(k-3), COD(k),

TKN(k), MONTH, Rain, and the output is FLOW(k+1) one time step ahead. These are

tabled below:

Table 6. 137: Input variables for FLOW Model 9

"In
FLOW(k). FLOW(k-1), FLOV\l(k-2). FLOW(k-3), FLOV\l(k+1)
COD(kl, TKN k , Month. Rain

(a)

(b)
\

Figure 6. 84: (a) A MLP Feed-forward neural network Model 9 with 9 inputs, 1 hidden
layer, 1 hidden neuron and 1 output neuron; and (b) Block Diagram for the FLOW
RBFNN Model 9 with 27 hidden neurons, 27 epochs
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Network response to Validation Set
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Figure 6. 85: The NN response to the application of the test (validation) data set for
FLOW: (a) MLP FFNN Model 9 with 1 hidden neuron and 1000 epochs; (b) ERNN Model 9
with 1 hidden neuron, 1000 epochs; and (c) RBFNN Model 9 with 27 hidden neurons, 27
epochs
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Table 6.138: Results for the Feed·forward N"eural Network Model 9 with FLOW as output.

L
ra

500MSE
500MSE
500MSE
481 MSE

1000 MSE
1000 MSE

Table 6. 139: Results for the Elman Recurrent Neural Network Model 9 with FLOW as output.

500MSE
500MSE
501 MSE

1000 MSE
1000 MSE

Table 6. 140: Results for the Radial Basis Function Neural Network Model 9 with FLOW as output.
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6.4.10 FLOW Neural Network MODEL 10

The inputs for Model 10 are FLOW(k), FLOW(k-1), FLOW(k-2), FLOW(k-3), COD(k),

TKN(k), MONTH, Wind and the output is FLOW(k+1) one time step ahead. These are

tabled below:

Table 6.141: Input variables for FLOW Model 10

FLOW(k}, FLOW(k-l}, FLOW{k-2). FLO\N(k-3),
COD kl, TKN(kl, Month, Wind

9

(a)

9 21

(b)

Figure 6. 86: (a) A MlP Feed-forward neural network Model 10 with 9 inputs, 1 hidden
layer, 1 hidden neuron and 1 output neuron; and (b) Block Diagram for the FLOW
RBFNN Model 10 with 16 hidden neurons, 16 epochs
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Network response to Validation Set
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Figure 6. 87: The NN response to the application of the test (validation) data set for
FLOW: (a) MLP FFNN Model 10 with 1 hidden neuron and 500 epochs; (b) ERNN Model
10 with 1 hidden neuron, 1000 epochs; and (c) RBFNN Model 10 with 27 hidden
neurons, 27 epochs
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0.5 0.886

0.5 0.899

0.5 0.870

0.5 0.875

0.5 0.8860.0031
0.003
0.0031

0.002

0.003
500MSE
500MSE
500MSE

634MSE

1000 MSE
1000 MSE

Table 6.142: Results for the Feed-forward N'eural Network Model 10 with FLOW as output.

Mln
rr

0.003

Table 6.143: Results for the Elman Recurrent Neural Network Model 10 with FLOW as output.

Table 6. 144: Results for the Radial Basis Function Neural Network Model 10 with FLOW as output.
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6.4.11 FLOW Neural Network MODEL 11

The inputs for Model 11 are FLOW(k), FLOW(k-1), FLOW(k-2), FLOW(k-3), COD(k),

TKN(k), MONTH. Minimum Temperature, Rain, and the output is FLOW(k+1) one

time step ahead. These are tabled below:

Table 6. 145: Input variables for FLOW Model 11

(a)

I~
10 :ZI:)

(b)

Figure 6. 88: (a) A MLP Feed-forward neural network Model 11 with 10 inputs, 1 hidden
layer, 1 hidden neuron and, 1 output neuron; and (b) Block Diagram for the FLOW
RBFNN Model 11 with 26 hidden neurons, 26 epochs
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Network response to Validation Set
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Figure 6. 89: The NN response to the application of the test (validation) data set for
FLOW: (a) MLP FFNN Model 11 with 1 hidden neuron and 500 epochs; (b) ERNN Model
11 with 1 hidden neuron, 1000 epochs; and (c) RBFNN Model 11 with 26 hidden
neurons, 26 epochs
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Table 6.146: Results for the Feed·forward Neural Network Model 11 with FLOW as output.

500MSE
500MSE
517 MSE

1000 MSE
1000 MSE

Table 6. 147: Results for the Elman Recurrent Neural Network Model 11 with FLOW as output.

432MSE
500MSE
500MSE

1000 MSE
1000 MSE
1000 MSE

Table 6. 148: Results for the Radial Basis Function Neural Network Model 11 with FLOW as output.
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6.4.12 FLOW Neural Network MODEL 12

The inputs for Model 12 are FLOW(k), FLOW(k-1}, FLOW(k-2), FLOW(k-3}, COD(k),

TKN(k), MONTH, Minimum Temperature, Rain, Wind, and the output is FLOW(k+1)

one time step ahead. These are tabled below:

Table 6. 149: Input variables for FLOW Model 12

FLOW(k). FLOW(k-1), FLOW(k-21, FLOW(k-3), COD(k),
TKN(k . Month. Minimum Tem erature, Rain, Wind

11

(a)

11 31

(b)

Figure 6. 90: (a) A MLP Feed-forward neural network Model 12 with 11 inputs,1 hidden
layer, 1 hidden neuron and\ 1 output neuron; and (b) Block Diagram for the FLOW
RBFNN Model 12 with 31 hidden neurons, 31 epochs
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Network response to Validation Set
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Figure 6. 91: The NN response to the application of the test (validation) data set for
FLOW: (a) MLP FFNN Model 12 with 1 hidden neuron and 1000 epochs; (b) ERNN Model
12 with 1 hidden neuron, 1000 epochs; and (c) RBFNN Model 12 with 31 hidden
neurons, 31 epochs
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Table 6. 150: Results for the Feed-forward Neural Network Model 12 with FLOW as output.

L
ra

500MSE
500MSE
500MSE
722MSE

1000 MSE
1000 MSE

Table 6.151: Results for the Elman Recurrent Neural Network Model 12 with FLOW as output.

Table 6.152: Results for the Radial Basis Function Neural Network Model 12 with FLOW as output.
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6.4.13 FLOW Neural Network MODEL 13

The inputs for Model 13 are FLOW(k), FLOW(k-1), FLOW(k-2), FLOW(k-3), MONTH,

Minimum Temperature, Rain, Wind, and the output is FLOW(k+1) one time step

ahead. These are tabled below:

Table 6.153: Input variables for FLOW Model 13

iln
FLOW(k), FLOW(k-1), FlOW(k-2), FlOW(k-3), IFLOW(k+1)
Month, Minimum Temperature. Rain, \Nind

(a)

(b)

Figure 6. 92: (a) A MLP Feed-forward neural network Model 13 with 9 inputs, 1 hidden
layer, 1 hidden neuron and, 1 output neuron; and (b) Block Diagram for the FLOW
RBFNN Model 13 with 24 hidden neurons, 24 epochs
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Network response to Validation Set
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Figure 6. 93: The NN response to the application of the test (validation) data set for
FLOW: (a) MLP FFNN Model 13 with 1 hidden neuron and 500 epochs; (b) ERNN Model
13 with 1 hidden neuron, 1000 epochs; and (c) RBFNN Model 13 with 24 hidden
neurons, 24 epochs
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Table 6. 154: Results for the Feed-forward Neural Network Model 13 with FLOW as output.

247MSE
500MSE
500MSE
688MSE

1000 MSE
1000 MSE

Table 6.155: Results for the Elman Recurrent Neural Network Model 13 with FLOW as output.

Table 6.156: Results for the Radial Basis Function Neural Network Model 13 with FLOW as output.
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6.5 Investigation of the variation of the structure of the NNs and the training
process
The following section investigates the effect that varying the structure of the NN by

increasing the number of hidden layers, neurons and epochs, has on the predictive

and ultimately generalisation pertormance of the network.

6.5.1 The effect of increasing the number of hidden neurons

The first set of results in section 6.5.1 examines effect of increasing the number of

hidden neurons. The type of NN is the ERNN for prediction ofTKN. The inputs are

TKN(k), TKN(k-1), TKN(k-2), TKN(k-3), COD(k), FLOW(k), MONTH, Minimum

Temperature, Rain, Wind, and the output is TKN(k+1) one time step ahead. The

epochs are kept at 1000 while the neurons are increased to 40. Figure 6.94 displays

the: (a) training error versus the epochs, (b) regression analysis with the linear

correlation coefficients for the training (left) and test (right) phases, and (c) NN

response to the application of the test (validation) set. Table 6.157 summarises the

results by comparing it to the previous case where the neurons are varied from 1 to 5

to 10 (lower part of the table).

P.~onnane.lsO.00622581,Go~lsO
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10'
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Figure 6. 94: The NN response to the application of the test (validation) data set for TKN
ERNN Model 12 with 40 hidden neurons, 1000 epochs, where the number of neurons is
increased: (a) Training phase; (b) Regression coefficients for training (left) and test
phases (right); and (c) NN response to the test set

6.5.2 The effect of increasing the number of epochs

This section examines the effect that increasing the number of training iterations

(epochs) has on the network performance. The neural network is the MLP with

FLOW(k), FLOW(k-1), FLOW(k-2), FLOW(k-3), COD(k), TKN(k), as inputs and the

output is FLOW(k+1) one time step ahead. The hidden neurons are kept at 10 while

the epochs are increased to 5000. Figure 6.95 displays the: (a) training error versus

the epochs, (b) regression analysis with the linear correlation coefficients for the

training (left) and test (right) phases, and (c) NN response to the application of the

test (validation) set. The results are summarised in Table 6.158 that provides a

comparison of the previously obtained results for this same model.
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Figure 6. 95: The NN response to the application of the test (validation) data set for
FLOW MLP FFNN Model 6 with 10 hidden neurons, 5000 epochs, where the epochs is
increased: (a) Training; (b) Regression coefficients for training (left) and test phases
(right); and (c) NN response to the test set
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6.5.3 The effect of increasing the number of hidden layers

This section examines what effect increasing the number of hidden layers to two has

on the network performance. The considered network is the MLP with inputs COD(k),

COD(k-1), COD(k-1) COD(k1), TKN(k), FLOW(k), MONTH, Minimum Temperature,

Rain, Wind, and the output is COD(k+1) one time step ahead. The hidden neurons for

the first and second hidden layers are set to 5. The network is trained for 1000

epochs. Figure 6.96 displays the: (a) training error versus the epochs, (b) regression

analysis with the linear correlation coefficients for the training (left) and test (right)

phases, and (c) NN response to the application of the test (validation) set. The results

are tabled in Table 6.159 where the networks with one hidden layer are compared

with the network having two hidden layers.
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Network response to Validation Set
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Figure 6.96: The NN response to the application of the test (validation) data set for COD
MLP FFNN Model 12 with 5_5 hidden neurons, 1000 epochs, where there are 2 hidden
layers: (a) Training; (b) Regression coefficients for training (left) and test phases (right);
and (c) NN response to the test set
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6.5.4 The effect of training to convergence

This section examines what the effect is when the network is trained until the error

converges to a minimum. The considered network is the RBF with inputs COD(k),

COD(k-1), COD(k-2) COD(k-3), TKN(k), FLOW(k), MONTH, and the output is

COD(k+1) one time step ahead. The spread constant is set to a value of 0.6 and the

error goal is set at 0.01. Figure 6.97 displays the: (a) training error versus the epochs,

(b) regression analysis with the linear correlation coefficients for the training (left) and

test (right) phases, and (c) NN response to the application of the test (validation) set.

The results are tabled in Table 6.160 where it is compared to the previously

considered case.
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Figure 6.97: The NN response to the application of the test (validation) data set for COD
RBFNN Model 7 with 414 hidden neurons, 414 epochs, where the network is trained to
convergence: (a) Training; (b) Performance for training and test sets; (c) NN response

6.5.5 The training time when using different training algorithms

The different training algorithms execute at different speeds as presented in Chapter

5. The training algorithms are changed from initially the Levenberg-Marquardt to the

scaled conjugate gradient algorithm. The NN is the MLP for COD with inputs COD(k),

COD(k-1), COD(k-2) COD(k-3), MONTH, Minimum Temperature, Rain, Wind, and

the output is COD(k+1) one time step ahead. The times are measured with the tic

and toc MATLAB functions. The number of hidden neurons is 10 and the network is

trained for 1000 epochs.

The training execution time result for the scaled gradient is 8.9755 seconds. The time

taken using the Levenberg-Marquardt is 25.5834 seconds. This shows the

considerable difference in training speeds.
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Table 6. 157: Results for the ERNN Neural Network Model 12 with TKN as output, and where number of hidden neurons are increased to 40
compared to 1,5 and 10

904MSE
1000 MSE
1000 MSE

0.01
0.01
0.01

0.5 0.597 0.504
0.5 0.686 0.465
0.5 0.690 0.502

0.356
0.470
0.477

0.254
0.216
0.252

Table 6. 158: Results for the MLP Neural Network Model 6 with FLOW as output, and where epochs are increased to 5000 compared to 500 and
1000

500MSE
1000 MSE

0.003
0.003

0.6
0.6

0.5 0.871 0.846
0.5 0.873 0.854

0.759
0.762

0.716 -0.903 9.285
0.729 -0.204 8.955

Table 6.159: Results for the MLP Neural Network Model 12 with COD as output, and where the hidden layers are increased to two compared to
one hidden layer

1 N/A
5 N/A

10 N/A

0.6
0.6
0.6

0.5
0.5
0.5

Table 6.160: Results for the Radial Basis Function Neural Network Model 7 with COD as output, and where the network is trained until the error
converges to a minimum compared with the previous considered case
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6.6 Discussion of results

The three topologies examined included the MLP, ERNN and the RBFNN. Generally

speaking the results for particularly the mUltilayer perceptron and the recurrent NN

were very close, with the radial basis function NN not very far off. Thirteen models are

presented where the inputs are varied to include combinations of the influent variable,

delayed influent variable, other influent variables, environmental variables of

temperature. rainfall and wind speed, and the month of the year. The physical

structure for all the considered NNs in this section only has ONE hidden layer. The

hidden activation functions for both the MLP and the ERNN are the hyperbolic

tangent, and the output has a linear activation function. The RBF NN has a Gaussian

radial basis function for the hidden layer activation function and a linear activation at

the output. The epochs are increased for the MLP and the ERNN from 500 to 1000

epochs. The number of neurons in the hidden layer are increased from 1, 5 up to 10

neurons for the both the MLP and ERNN. The parameters for the RBF that are varied

are the sum of squares error goal and the spread of the Gaussian function. The only

model where the entire set of figures are presented is the case for Model 1. However

the plots and all software algorithms for all other models are available for examination

on the enclosed CD. The plots for the instantaneous error indicate the difference

between the NN output and the desired target output for the entire test data set.

6.6.1 COD NN results

The first set of results is for the COD NN and is presented in section 6.2. The input

combinations for COD are presented in Table 5.1. The figures for COD Model 1 are:

• Figure 6.2 - the training versus number of epochs plots for the, (a) MLP FFNN,
(b) ERNN and the (c) RBFNN.

• Figure 6.3 - the scatterplot for the NN response to the training data set for the,
(a) MLP FFNN, (b) ERNN and the (c) RBFNN.

• Figure 6.4 - the scatterplot for the NN response to the test (validation) data set
for teh, (a) MLP FFNN. (b) ERNN and the (c) RBFNN.

• Figure 6.5 - the network performance showing the linear correlation coefficient
during the training phase (left) and the test phase (right) for the (a) MLP
FFNN, (b) ERNN and the (c) RBFNN.

• Figure 6.6 - the instantaneous error showing the difference between the NN
output and the desired target output for the, (a) MLP FFNN, (b) ERNN and the
(c) RBFNN.

• Figure 6.7 - the NN response to the application of the test (validation) data set
for the, (a) MLP FFNN, (b) ERNN and the (c) RBFNN.

The results for the COD neural networks show that although the training error (mean

squared error) is a minimum (0,01 on average), the NNs are not able to respond well

to the input training data. Hence the generalisation performance of the networks are

not vey good. The regression coefficient r for the validation phase upon application

of the test set, ranges from 0.2 till 0.4 on average. The coefficient of determination r 2
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for the COD NN ranges from 0.5% to 0.19% on average. The absolute percentage

. error for the difference between the desired target output and the NN output range

between 19% and 22% on average. These figures indicate that the NN for COD at the

output is therefore not able to solve this particular input-output mapping problem.

The results could not be improved despite investigating additional networks where the

neurons are gradually increased up to a maximum of 80, and the epochs are

increased to a maximum of 10 000. The problem when the number of hidden neurons

is increased is that the training error is minimised, and the correlation coefficients for

the training phase increase. while the test phase correlation coefficient decreases.

The problem with increasing the number of epochs, is that the network eventually

converges, but this does not mean that the NN has learned the training data. This is

what is meant by the trade-off between generalization (performance) and training to

convergence. This is best illustrated in Figure 6.97 where a RBF NN having 414

neurons is able to approximate the training data, but is unable to generalize. The

correlation coefficient for the test phase is -0.015 and the coefficient of determination

is O. This indicates that the network has memorized the training data but cannot make

any accurate predictions with the test data. The APE is unacceptably high at a value

of 41.327%.

The best result of the 13 models considered for COD is the MLP FFNN, Model 13

with inputs COD(k), COD(k-1), COD(k-2) COD(k-3), MONTH, Minimum Temperature.

Rain, Wind, and the output is COD(k+1) one time step ahead. The results are tabled

in Table 6.50. The number of hidden neurons is 1, the training error 0.0117, the linear

correlation coefficient is 0.4 for the test phase, and the APE is 19.119%. This result

shows that the NNs are unable to solve this particular input-output mapping problem.

6.6.2 TKN NN results

The second set of results is for the TKN NN and is presented in section 6.3. The

figures for TKN Model 1 are:

• Figure 6.33 - the training versus number of epochs plots for the. (a) MLP
FFNN, (b) ERNN and the (c) RBFNN.

• Figure 6.34 - the scatterplot for the NN response to the training data set for
the, (a) MLP FFNN, (b) ERNN and the (c) RBFNN.

• Figure 6.35 - the scatterplot for the NN response to the test (validation) data
set for teh, (a) MLP FFNN, (b) ERNN and the (c) RBFNN.

• Figure 6.36 - the network performance showing the linear correlation
coefficient during the training phase (left) and the test phase (right) for the (a)
MLP FFNN, (b) ERNN and the (c) RBFNN.

• Figure 6.37 - the instantaneous error showing the difference between the NN
output and the desired target output for the, (a) MLP FFNN, (b) ERNN and the
(c) RBFNN.
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• Figure 6.38 - the NN response to the application of the test (validation) data
set for the, (a) MLP FFNN, (b) ERNN and the (c) RBFNN.

The results for Model 3 in Table 6.62 are interesting as the APE falls for the MLP is­

0.547 and the regression coefficient is 0.588 for the test phase. This indicates that

this model has the best result throughout. However all other results are not too far off.

The regression coefficient ranges from 0.38 up to a maximum of 0.588. The

determination coefficient ranges from 0.241 to 0.346. The APE ranges from 15.290%

in Model 1 to 13.457% in Model 9. For many of the models the results for the MLP

and the ERNN were very similar.

The NNs for TKN performed better than the one for COD when comparing the

performance figures. However the NNs for TKN could not learn the training data

either although the training error reached an average value of 0.01, therefore the

generalization performance of the networks are not very good either.

6.6.3 FLOW NN results

The third set of results examined the NNs with the flow rate as the influent

disturbance at the NN output. These results are presented in section 6.4. The figures

for FLOW Model 1 are:

• Figure 6.64 - the training versus number of epochs plots for the, (a) MLP
FFNN, (b) ERNN and the (c) RBFNN.

• Figure 6.65 - the scatterplot for the NN response to the training data set for
the, (a) MLP FFNN, (b) ERNN and the (c) RBFNN. .

• Figure 6.66 - the scatterplot for the NN response to the test (validation) data
set for teh, (a) MLP FFNN, (b) ERNN and the (c) RBFNN.

• Figure 6.67 - the network performance showing the linear correlation
coefficient during the training phase (left) and the test phase (right) for the (a)
MLP FFNN, (b) ERNN and the (c) RBFNN.

• Figure 6.68 - the instantaneous error showing the difference between the NN
output and the desired target output for the, (a) MLP FFNN, (b) ERNN and the
(c) RBFNN.

• Figure 6.69 - the NN response to the application of the test (validation) data
set for the, (a) MLP FFNN, (b) ERNN and the (c) RBFNN.

These set of results are by far the best. In general all the types of NNs are able to

solve this problem to a certain degree. The generalisation ability of the FLOW NN has

increased considerably when compared to that of COD and TKN. The regression

coefficients for Model 8 in Table 6.136, for the RBF are 0.889 and the APE at 8.150

and the determination coefficient is at 0.790. This result is the best of all the results

for the flow rate NNs. However additional experimentation could not improve this

result significantly. The range for the regression coefficient is between 0.846 and

0.889 for the test phase. The APE ranged from 8.150% in Model 8, to 10.791 in
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Model 12. As is seen from the table, the training regression coefficient has increased

drastically to an average value of 0.9. The coefficient for the test phase on average is

also around 0.9. Although the results are not ideal, they are good, as the

generalization performance of the network has improved considerably compared to

that of the neural networks for COD and TKN.

6.6.4 Variation of the NN structures results

For the first case in section 6.5.1 the hidden neurons are increased to a value of 40.

When compared to that of the previous cases where the the neurons are varied from

1 to 5 to 10. it is obvious that increasing the number of hidden neurons:

• does not guarantee that the network will converge;
• does not guarantee that the generalisation ability of the network will improve;

in fact it deteriorates.
The results in Table 6.157 for regression value for the training phase has increased

from about 0.66 for the previous case to 0.789. However the regression value for the

test (validation) phase has now decreased from an average value of 0.490 for the

previous case. to 0.391. The APE has increased from an average value of about

14.566 for the previous case to 17.687. Therefore the neurons have to be increased

gradually and a trade-off in terms of the number of hidden neurons versus the

generalisation ability of the network, has to be estaQlished.

In the next case in section 6.5.2, the number of training iterations are increased

dramatically to a value of 5000. When the graph in Figure 6.95 (a) is examined, it is

obvious that the error has not changed drastically from around 500 epochs. The

results in Table 6.158 show that the training error has decreased from 0.0035 for the

previously considered case, to 0.0031. There is therefore not much difference

between the error for these two cases presented. The regression coefficient has

increased slightly from 0.872 for the training phase of the previous case, to 0.889

once the epochs are increase. The regression value for the test phase shows a

decrease from 0.85 for the previous case to 0.810 when the epochs is increased.

The APE has increased to value of 9.405% when the training iterations are increased.

In section 6.5.3 the number of hidden layers are increase to two. The number of

hidden neurons are selected to be 5 for both the first and second hidden layers.

Although the training error has decreased to a value (0.0088) that is lower than the

previous considered cases, the generalisation ability of the network is compromised.

This is seen from the low value 0.206 for the regression coefficient in the test

(validation) phase.
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The variation considered in section 6.5.4 is where the NN is trained until the error

converges to a minimum. The number of neurons in the hidden layer for the RBF has

increased from a modest 19 to 414 neurons. The regression analysis value in Figure

6.97 (b) on the left shows a perfect fit for the training phase, but not good at all for the

validation phase in the figure on the right. Figure 6.97 (c) shows the network is unable

to generalise and the predicted values are pretty 'wild' with the APE at 41.327%.

6.7 Summary of the chapter

The chapter presents the results of the NNs for COD, TKN and flow rate for the MLP

FFNN, ERNN and the RBFNN. The models presented are variations on the input data

combinations to the NNs. Thirteen models are presented for each considered case.

Overall the results show that NNs are a promising alternative to traditional linear

prediction methods. However additional improvements to the NN structures have to

be investigated.

Chapter 7 presents the practical implementation of this work as part of the control

system for a lab-scale pilot plant at the University. All SCADA and PLC programs are

presented and the NN GUI for the operation of the NN programs for the influent

disturbances are shown.
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CHAPTER SEVEN

REAL-TIME IMPLEMENTATION

7.1 Introduction

The project under study is practically implemented using a pilot plant located in the

Electrical Engineering Department at the Cape Peninsula University of Technology

(CPUT) (Figure 7.1). This chapter presents the real-time implementation and

describes the hardware configuration of the various components in the project

together with a description of all software used. All software algorithms are presented

in Appendix B. The technical information pertaining to the sensor connections,

transmitters, calibration procedures, wiring and the PLC are presented in Appendix C.

7.2 Pilot plant and control system

The pilot plant is a lab-scale version of an actual wastewater treatment plant. The

plant is used to simulate conditions on a smaller scale to that of an actual WWTP.

There are tanks (zones) that can be connected for various plant configurations such

as those used for the UCT, Johannesburg and the Phoredox process structures,

among others (Lilley, Pybus and Power, 1997). There are sensors placed inside the

tanks and they measure pH, turbidity, conductivity, temperature and dissolved oxygen

(DO). These sensors are connected to transmitters (Figure 7.2), which in turn are

connected to the PLC. The PLC is in turn connected to the personal computer (PC)

via the serial (RS232) port. The entire plant structure together with the software

requirements for real-time implementation is displayed in Figure 7.3. The data

acquisition was implemented with the assistance of a student whose document

describes the technical aspects of the acquisition system (Mapisa. 2004) and can be

viewed in Appendix C as is previously stated. A detailed description of all facets of the

system follows.

7.3 Raw plant and weather data conversion

The raw weather data received from the South African Weather Service

(www.weathersa.co.za)asdescribedinChapter4.isin the ASCII (American

Standard Code for Information Interchange) text format. The data is converted from

this format into the MS (Microsoft) Excel format. The data is then converted once

more from MS Excel into the format used by the MySQL database. Similarly the plant

data received from the Athlone Municipal Wastewater Treatment Plant is converted

from MS Excel into the MySQL database format. This conversion procedure for the

raw data is illustrated in a step-by-step procedure in Appendix E.
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Figure 7. 1: The WWT Pilot plant together with the Modicon PLC and transmitters in the
Electrical Engineering Department, CPUT

Figure 7.2: The Dissolved Oxygen transmitter

WEATHER
Data

(Raw data)

Historical Plant
Data

(Raw data)

__________________________________________________1

I
I
I
I
I
I
I

1I :...,i:lant data I

ConverSIon from
Excel to MySQL

Format

ODBC t
CONNECTION

PC

Conversion from
ASCII Text to
Excel Format

Figure 7. 3: The structure for the real-time implementation of the influent disturbances
prediction showing the pilot plant, PLC, SCADA system, MySQL database with plant
and weather data, and MATLAB NN algorithms
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7.4 SCADA system

The plant sensory information is displayed on a graphical user interface (GUI) known

as a SCADA (Supervisory Control and Data Acquisition) system. The SCADA system

software utilised for the project is Adroit Version 5.0. The sensor data is transmitted to

the PLC and then to the PC via an RS232 cable, where Adroit can retrieve data sent

from the PLC on certain specified channels. The SCADA system is linked using the

OOSC (open database connectivity) protocol, to the MySQL database that is the

repository for all data utilized in this work. The database is at the heart of the

communication between all the different software platforms used.

Adroit is an acronym for Advanced, Distributed, Real-time, Object-oriented,

Intelligent, Toolkit. Not only does Adroit compete successfully, it has become the

product of choice for users in mainstream as well as lesser-known industrial sectors.

Adroit is an example of what is known as a client-server architecture, or model. In

this model, the "client" portion, which is typically the part of the application that

interacts with the user, communicates with the "server" portion, which is usually a

data repository.

In Adroit, the server part of the client-server architecture is called an Agent Server.

This contains a collection of. intelligent objects known as Agents. Adroit agents are

intelligent objects because, in addition to containing "state" information, as do

conventional database records, they also embody "behavior". The definition of an

object in object-oriented terms is precisely the same as an agent: namely, an entity

that has identity, state, and behavioL

Adroit's User Interface, consisting of several different types of windows, makes up the

client portion of the client-server architecture. The pictorial display windows within the

user interface are themselves made up of objects, in this case graphical objects

known as picture elements. In addition to state information, such as the properties of

size, location, color, etc., In Adroit graphical objects may also be configured to have a

wide variety of animation behaviors. Sy connecting these behaviors to data values

within agents, many different animated display effects can be configured which, in

real-time.

Adroit's two main components, the user-interface and the agent server are, therefore,

founded on sound object-oriented principles. It is now widely recognized that such

use of object-oriented principles is the most effective way of designing and

implementing software that is robust and flexible enough to meet future, as yet
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unforeseen, requirements. Exploitation of the object-oriented paradigm is,

furthermore, fully carried through into Adroit's implementation, by use of C++, the

programming language that is increasingly becoming recognized as the most

effective way of delivering production grade object-oriented applications.

Typical Adroit configurations will in fact involve many of these object-oriented agent

servers and user-interfaces running on several different physical computers

connected in a local - or even wide-area network - with client-server communications

happening transparently and seamlessly across the network. Adroit may therefore be

succinctly described as an open, portable, object-oriented, industrial application

toolkit, structured around a distributed client-server architecture, and hosted on

operating systems from the industry standard Microsoft® 32 bit Windows™ family

(Adroit User Manual, 1990-2000).

The developed Adroit SCADA GUI (Figure 7.4) allows the operator:

• to view all current variables of pH, turbidity, conductivity, and DO;
• to view current and historical trend data for these variables;
• to manually enter off-line laboratory variables manually in the database
• to execute the neural network program for training and validation of the NN

for prediction of the influent disturbances of COD, TKN and flow rate;
• , to use the predicted values for the program for the optimal control strategy;
• to implement the algorithm for real-time prediction of the inflow

Figure 7. 4: The SCADA system graphical user interface allows the user to view real­
time plant variables, trend information, enter data in manual mode, run the neural
network software for training and validation, and view and enter data in the database
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7.5 Programmable Logic Controller (PLC) system

The Modicon Momentum PLC is programmed using software called Concept version

2.2. Concept is designed for use in any system configuration and it can be interfaced

to powerful operators and monitoring systems. In this project it is used to acquire data

from the wastewater treatment pilot plant in order to monitor and control process

variables through the use of corresponding sensors and actuators and it is interfaced

with the SCADA software package. Adroit. The type of programming language is

ladder logic. It consists of schematic block diagram functions with unique functionality.

The PLC program below consists of relays. coils and a function block.

300001 000100

300002 • 000101

4J0201

#1

Figure 7. 5: The PLC program to move sensory data from the ConduCtivity and DO
sensors, from one analogue input register to another holding register

This PLC program is used to acquire data from the sensors (Figure 7.5). The BLKM

or block move function is used to move the data from the analogue input 300001 to

the holding register 400200. The address 000100 is for the output coil, which is also

used to latch the normally closed contact, which is the input to the BLKM. The

analogue input 300001 is used to acquire data from the Conductivity sensor. The

Conductivity sensor signal is physically connected to this input 300001.

The second BLKM is also configured in the same way as the first one except that it is

used to acquire data from the DO sensor, which is physically connected to the PLC

analogue input 300002. The BLKM moves this data to the holding register 400201.

For additional PLC programs and connection information please consult Appendix D.
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7.6 MySQL Database

A database is a structured. searchable collection of data or records. Databases are

designed to offer an organized mechanism for storing, managing and retrieving

information (Chapple 2005). Databases are actually much more powerful than

spreadsheets in the way they are able to manipulate data. Databases could be used

for:

• Retrieval of all records that match certain criteria
• Updating records in bulk
• Cross-referencing records in different tables
• Performing complex aggregate calculations

There are several types of databases in use today, with some of the most common in

order of popularity, being:

1. Relational databases;
2. Object databases; and
3. Flat file databases.

The latter two types are not considered. however some popular relational databases

include MySQL, Oracle and Microsoft SQL Server. Relational databases use tables to

store information. The fields are represented as columns and records are represented

as rows in a table, and they have a specific relationsl1ip between them; hence the

term, 'relational database'. The relational database stores and tracks data by
\

establishing relationships between different pieces of information. It is therefore

possible to find specific information very easily, and sort this information based on

any field or record.

Data is requested from the database by sending it a query. This is usually

accomplished by using a special programming language called SQL (Structured

Ouery Language), which has been designed for the retrieval and management of data

in databases. Queries allow one to select, insert. update, and locate data, etc in a

database. For a particular query, the database returns a result set listing the rows

with the requested information. The resulting rows can also be filtered to return the

exact information required. SOL is the foundation for all popular database

applications available today. For an introductory tutorial on SOL, please consult

http://www.w3schools.com/sgl/default.asp. An example of the SQL script for

extracting data from the database into the MATLAB workspace is found in the

Open_aILdata.m script file (Appendix C).

As is stated previously the database is at the core of the entire research project. The

database forms the interface between the plant with the PLC and SCADA system on

one hand, and the neural network processing software, MATLAB (Matrix Laboratory)
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on the other (Figure 7.3). The database contains the historical plant data from the

Athlone wastewater treatment plant and the weather data from the Cape Town

Weather Service. The outputs of the neural network are also stored in the database.

The software used for the database is MySQL® version 5.0.4.

The MySQL® database software falls into the category of those programs that are

regarded as freeware. This means that one is able to operate and use the software

freely without the need of a license. The MySQL® database software has become

one of the most popular open source databases due to its consistent fast

performance, high reliability and ease of use. The MySQL database suite of products

consists of :

• MySQL Query Browser 1.1.10
• MySQL Administrator 1.0.21
• MySQL Server 4.1.11
• DB Manager ProfessionaI3.0.3a

The DB Manager Professional is one of the most powerful applications for data

management and is used to set up and manage the database functions.

The connection between the MySQL database, MATLAB and the Adroit SCADA

system. is made using the ODBe protocol. ODBC is a standard Application
\ .

Programming Interface (API) developed by the Microsoft Corporation that allows one

to connect to a data source (logical name for a data repository), for example, a

MySQL database. This API allows databases created by vario.us database

management programs to be accessed using a common interface independent of the

database file format. With an ODBe connection, one is able to connect to any ODSe

compliant database from any ODSC compliant software platform. ODBC defines a set

of function calls, error codes and data types that can be used to develop database

independent applications. ODBC is usually used when database independence or

simultaneous access to different data sources is required. Please refer to Appendix

E.3 for the procedure to set up the ODBC connection.

The MySQL database window displayed in Figure 7.7 is the DBManager Professional

application that allows the operator to inspect the various databases and tables that

are configured here. The user is able to extract certain information from the fields

within the different tables, or import or export data, or perform other management

functions, should it be required.
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Figure 7. 6: The MySQL database is shown with the tables with the data for the Athlone
WWTP influent variables and the weather data

7.7 Neural Network Software algorithms

As stated previously all neural network algorithms presented in this work are

implemented using the Neural Network Toolbox for use with MATLAB ®, Version

4.0.6, (R14SP3). The MATLAB™ version used is MATLAB Version 7.1.0.246 (R14)

Service Pack 3. (Demuth et al., 2004). A standard desktop computer with Windows

XP as an operating system is used to implement the programs.

MATLABTM/Simu/inkTM is a general high-level language for technical computing that

includes a large library of predefined mathematical functions, There are

approximately 40 toolboxes for use with MATLAB available that extend the MATLAB

environment to solve particular classes of problems.

Simulink is an add-on software product to Matlab for modelling, simulating and

analyzing any type of dynamic system. Matlab and Simulink are fully integrated,

meaning that all functionalities of the MATLAB tooIboxes are available in the Simulink

environment as well. Simulink provides a graphical user interface for building models

as block diagrams and manipulating these blocks dynamically. A large number of

predefined building blocks are included and it is easy to extend the functionality by

creating custom blocks or new ones.

The Neural Network Too/box facilitates the implementation of neural networks in

MATLAB. The toolbox consists of a set of functions and structures that handle neural
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networks. so it is not necessary to write programs for all activation functions, training

algorithms, etc. that we want to use. The nntool command shows a graphical

representation of the neural network structure. This interface is similar to the Simulink

interface.

The neural network program is executed when the operator clicks on the NN program

button in the Adroit SCADA GUI. or types the 'NN_GUf' command in the MATLAB

workspace. The user can select the type of NN required and the influent disturbance

that needs to be predicted (Figure 7).

Figure 7. 7: The MATLAB GUI for the Neural Network program for prediction of the
influent disturbances

Upon execution of the program, 7 figures are displayed (Figure 7.8). These include:

• the training phase showing the error being minimized;
• the scatter-plot of the network response to the training data;
• the scatter-plot of the network response to the test (validation) data;
• the instantaneous error between the desired target and the network response;
• the plot of the desired target and the NN response;
• regression plot for the training phase; and
• regression plot for the validation phase.
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Figure 7. 8: The plots illustrate the training, validation, and NN response to training
validation data, and network performance

When executing the script files in the MATLAB editor or workspace. the order of

execution for the files is:

1. Open_aILdata.m
2. Preprocess.m
3. raw_norm_inputs.m
4. Train_tst_data.m
5. Feedforward.m
6. Elman.m
7. RBF.m
8. Postprocess

The descriptions of the MATLAB script files for use in the implementation of the

neural network prediction algorithms are summarized in Table 7.1. A selection of the

implemented MATLAB software algorithms together with a description of variables

used is presented in Appendix C. The flow chart describing the neural net\vork

software algorithm development is given in Figure 7.9.
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Table 7.1: MATLAB script files and the functional description in the development of the
NN program for the prediction of the influent disturbances of COD. TKN and influent
Flow rate

Filename Description
Open_aILdata.m This file establishes communication between MATLAB and the

MySQL database. All raw wastewater treatment influent plant and
environmental weather variables are loaded into the MATLAB
workspace. These include COD, TKN, flow rate, minimum and
maximum temperature, rainfall, and wind speed.

Correlation_Coefficients.m This file calculates the correlation coefficients between the
different input variables of influent disturbances, COD, TKN, flow
rate, minimum and maximum temperature, rainfall, and wind
speed. This measure gives an indication of the relationships
between the variables and aid in eliminating redundant variables.

Preprocess.m In this file the raw data variables are normalized using a scaling
method of dividing them by the maximum value. This ensures that
at! variables remain in more or less the same range so that and no
one variable appears to be more important than another. This also
ensures that all input variables to the NN are normalized to a
value not greater than +1.

raw_normJnputs.m In this file the normalized data is divided into an input and target
output set. Also the time-delayed inputs for influent variables are
set up here.

Train_tst_data.m The data is divided into two sets, a training and test (validation)
set. Two thirds of the entire data set is used for training and one-
third for validation. Every third sample is extracted for validation.

Feedforward.m Here a feed-forward NN is designed with a specified number of
parameters such as the number of hidden layers, neurons, and
epochs, training algorithm, mean square error goal, and the
activation functions for the hidden and output layers. The NN is
trained and simulated with the training data. The validation phase
follows and the NN is simulated with the test data.

Elman.m The design of an Elman recurrent NN is implemented with a
specified number of parameters such as the number of hidden
layers, neurons, and epochs, training algorithm, mean square
error goal, and the activation functions for the hidden and output
layers. The NN is trained and simulated with the training data. The
validation phase follows and the NN is simulated with the test
data.

RBF.m A radial basis function NN is designed where the sum of square
error goal and the spread constant of the Gaussian activation
function, is specified. The NN is trained and simulated with the
training data. The validation phase follows and the NN is
simulated with the test data.

Postprocess.m All data variables are denormalized and the NN performance is
calculated. The regression coeeficient, determination coefficient,
and absolute percentaQe error are calculated

Activation.m This script file plots the various activation functions such as the
hard limit, bipolar hard limit threshold, logarithmic sigmoid
function, hyperbolic tangent function, radial basis function and the
pure linear function.

Std_min max.m In this file the calculations for the minimum, maximum and- standard deviation values, are performed.
Components.m Calculates the COD and TKN influent components using the UCT

model special coefficients
NN_GULfig The GUI for the NN program. Three different NNs topologies are

developed: MLP, ERNN and the RBFNN. Three NNs, one for each
influent disturbance of COD, TKN and flow rate is also developed.
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7.B Real-time implementation algorithm

7.B.1 NN retuning and calculation ofthe new predicted values if COD, TKN, Flow rate

The following procedure is implemented weekly:

1. ihe operator checks the database every Monday morning at 8hOO to ensure

that the input data for the inflow COD, TKN and flow is saved.

2. ihe operator acquires the weather data and sends it to the database.

3. lfthe data is saved properly, the operator starts the GUI for prediction of the

COD, TKN and flow for the next week.

4. ihetype of NN is selected.

5. ihe MATLAB program for training the NN is started.

6. The resulting weights are checked; if they differ +/- 10% more than the old

weights, the old weights are selected from the database.

7. The prediction of the COD, TKN and flow rate is calculated using the selected

weights.

8. The operator checks the results for predicted COD, TKN and flow. If they differ

by more than +1- 10% from the corresponding measured values for the last 2

weeks, the old values are used.

9. The results are sent to the database and displayed on the Adroit window.

10. The procedure is repeated every week.

7.8.2 Calculation of the inflow COD and TKN components

When the operator accepts the new predictions, the program for calculation of the

COD and TKN is started. The obtained values of the concentrations of all

biodegradable and non-biodegradable components are sent to the MySQL database.

With this step the tasks for prediction of the influent disturbances are completed. The

software for process simulation, state and parameter estimation, optimization and

controllerdesign then reads the obtained values.

In this way the repetitive calculation of the influent disturbances every week forms the

basis for the adaptive optimal control strategy of the activated slUdge process.

The period for prediction is one week, but it could very easily be made a couple of

hours if the special model of the hourly, daily and weekly change of the inflow

concentr<:llions around the measured weekly average value is accepted (Olssen and

Newel!, 1999). Then the control strategy could be adjusted also according to the

diurnal variations of the influent variables.
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The real-time implementation algorithm is based on the old historical data with new

values for the influent disturbances from the laboratory measurements and from the

flow sensors, weather data from the weather bureau and the current month of the

year, added every week. The new data is added to the training data set first and then

to the test (validation) set. In this way the number of data points in the sets is growing

which leads to better results from the prediction and better generalization when the

number of data points reaches some limit (10 000). Some of the oldest data points

are removed from both sets.

7.9 Summary of the chapter

The chapter provides an overview of the real-time implementation strategy for the

project. The pilot plant at CPUT is presented together with the PLC program for

acquiring data from the process sensors. The SCADA system implemented in Adroit

is coupled to the MySQL database using the OOSC protocol. The complete software

algorithms are presented in Appendix C, while the connection and wiring diagrams

are presented in Appendix O. Appendix E presents the conversion of the formats into

the MySQL database format.

Chapter 8 provides the conclusion to this work and provides future direction to the

project.
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CHAPTER EIGHT

CONCLUSIONS AND FUTURE DIRECTION OF RESEARCH

8.1 Conclusion

The problem statement spells out quite clearly the need for effective control of

wastewater treatment plant processes particularly the activated sludge process. The

effect that the influent disturbances of COD, TKN and influent flow rate have on

effectively controlling the ASP is highlighted.

The problem that the implemented neural networks are required to solve is the

prediction one step ahead of the influent disturbances of COD, TKN and influent flow

rate on the basis of historical measurement of these disturbances, weather conditions

and the month of the year. The data inputs are represented as time series in order to

incorporate the dynamic character of the environment and influent behaviour. Three

NN architectures are investigated to solve this problem, namely the mUltilayer

perceptron with delayed inputs, the Elman recurrent NN and the radial basis function

NN. The results of the performance of the neural networks are provided in Chapter 6.

The results show all three \types of neural networks exhibited very similar forecasting

behaviour, although the impression is obtained from the literature survey that one

type of architecture is better than the other. One of the definite differences between

the three types of neural networks is the speed at which the different networks are

trained. Some types of neural networks are however suited to particular types of

problems (Haykin, 1999) and perform better than others. The differences between the

multilayer perceptron and the radial basis functions are noted in Chapter 5.

The inputs to all three types of NN are varied to include combinations of the influent

disturbance, delayed influent disturbance, other influent disturbances, environmental

variables of temperature, rainfall and wind speed, and month of the year data. The

input combinations are reflected in Chapter 5, Table 5.1, Table 5.2 and Table 5.3 as

Model 1 till Model 13.

The first set of results in section 6.2 pertains to those for the COD influent disturbance

variable as the output. The results for the COD neural networks show that all three

.types of neural network are unable to respond well to the input training data, and the

generalisation performance of the networks are also compromised. Upon application

of the test set, the regression coefficient r, the coefficient of determination r 2 and
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the absolute percentage error for the difference between the desired target output

and the NN output, indicate that the NN for COD at the output is not able to solve the

given input-output mapping problem well. Despite rigorous experimentation by

increasing the number of neurons gradually up to a maximum of 80, and the number

of epochs up to a maximum of 10 000, the NN did not perform any better.

The second set of results in section 6.3 pertains to those for the TKN influent

disturbance variable at the output. The results for the TKN neural networks show that

all three types of neural network are again unable to respond well to the input training

data, although the results are an improvement to that obtained for the COD neural

networks. Once more the generalisation performance of the networks are poor as the

NN gives a poor representation of the underlying training data.

The third set of results pertains to that of the influent flow rate variable at the output

and is presented in section 6.3. This time there is a marked improvement in terms of

the predictive performance of all three types of NN. The regression coefficients for the

test or validation phase are on average throughout all the various input combinations

at a value of approximately 0.85. Similarly the coefficient of determination has

increased to a value of approximately 0.72. Although these figures are not too bad,

the absolute percentage error is above 8%. This indicates that the neural network's

generalisation ability although not poor when compared with the training regression

figures, is still not acceptable. Additional experimentation on all three different

architectures did not yield an improvement on performance for the neural networks for

the influent flow rate variable.

The final set of results in section 6.4 is a comparison of the effect that increasing or

decreasing the number of epochs and number of neurons in the hidden layer, has on

the network performance. Also the effect that training a NN to convergence has on

the generalisation ability of the network are presented here. Networks that are over­

trained tend to learn the noise patterns in the training data set as well.

The fact that the neural networks could not solve the problem well indicates that:

• the problem is non-deterministic and the NN will never solve it; or
• the input data is not representative enough of the process.

These two reasons according to Masters (1993) are the only two in his opinion why

neural networks are not successful. The first reason is the most likely option and is

the experience of many NN practitioners whom the author has spoken to has been

that the real-world applications are the most difficult to solve.
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Additionally the quality of the wastewater treatment plant data may be another factor

to consider. The experience of many plant operators and engineers has been that

often plant equipment fails, and at times data is then erroneously reported,

sometimes unknowingly. The problems encountered at wastewater treatment plants

are reported in Chapter 1. The current situation in Cape Town, South Africa is that

there are around 43% of the "manned" plants that have some sort of SCADA system

as reported in Chapter 2. This advent of monitoring and control by introduction of an

automation system might positively contribute to earlier fault detection and may

decrease the incidence of faulty equipment and a lack of reliable reported data.

8.2 Thesis results and application of the results

Scientific and application results are obtained as a result of the research done on the

problem for development of a model for the dynamic behaviour of the wastewater

treatment plant influent variables (COD, TKN, Flow rate) as a result of influence of the

weather conditions (temperature, wind, rainfall) and the season of the year (month).

The scientific results can be stated as follows:

1. The wastewater treatment monitoring and control is considered and the role of

the influent variables as the treatment process main disturbances is stated.

2. The problem for th~ development of the mathematical model for the dynamic

behaviour of the wastewater treatment plant influent variables is analysed,

and according to its characteristics a problem for prediction of the influent

variables is formulated as a problem for development of a neural network type

and its structure.

3. Analysis of the existing types and structures of the NNs is done according to

the requirements of the formulated problem and 3 types of NN are proposed

to be used:

• Multilayer perceptron network with delayed inputs

• Elman recurrent network

• Radial basis function with delayed inputs

4. A procedure for preprocessing of data for the NN training and validation is

developed on the basis of analysis of the existing approaches in the literature.

5. MLP with delayed data is developed for one-step ahead prediction of the

influent COD, TKN and Flow rate. Thirteen (13) different variants I structures

of the network are created on the basis of variation of the type and the number

of inputs (Model 1 - Model 13).

6. Elman recurrent net\vork is developed for on-step ahead prediction of the

influent COD, TKN and Flow rate. Thirteen (13) different variants of the
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network are created on the basis of the same as in point 5 variants of the input

data (Model 1 - Model 13).

7. Radial basis function network is developed for on-step ahead prediction of the

influent COD, TKN and Flow rate. Thirteen (13) different variants of the

network are created on the basis of the same as in point 5 variants of the input

data (Model 1 - Model 13).

8. The generalized conjugate gradient method is applied in an innovative way to

organize the training process in all variants of the developed NNs.

9. Different variants of the NNs are developed and compared with those

previously developed according to the number of the hidden layers, number of

hidden layer neurons, number of epochs, and training to convergence (over­

training).

10. MATLAB software is written to implement all tasks for pre-processing of data,

training, validation, analysis of the solutions and graphical user interface.

The application results can be stated as follows:

1. Data from the Athlone wastewater treatment plant for the influent variables

and from the weather bureau is gathered and processed.

2. Hardware structure of the control system for pilot wastewater treatment plant

is developed where, the physical connections between the components of the

system (plant, sensors, transmitters, PLC, PC) and their calibration is done.

3. Data acquisition system for DO, pH, conductivity, temperature and turbidity is

developed using the sensors, transmitters. PLC, PC and MySQl:. database.

4. Adroit SCADA system is developed for data acqUisition, monitoring and

calculation of the predicted values of the influent disturbances.

5. Communication between the software platforms Adroit, MATLAB and MySQL

is established in order to solve the problems for the influent COD, TKN and

Flow rate prediction in real time. A GUI is developed to implement the tasks

for communication and prediction.

8.3 Application of the obtained results

The developed NN models for prediction of the influent disturbances have the

following positive characteristics:

the structures of the NN are simple, with one hidden layer and do not require
complex calculation;
the time for the training of the networks is short;
the scaled conjugate gradient method application leads to test and stable
convergence to the minimum of the least squares error; and
it is able to solve nonlinear real-world problems.
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On the basis of the above the applicability of the results could be considered in the

following directions:

as a basis for further development of the theory for prediction of the influent
variables for WWTP;
as an expert system for the advice of the operator in the municipality VWVTP;
as a real-time toolbox of the existing SCADA systems in the WWTPs; and
as a tool for future postgraduate student's projects at university.

Implementation of the developed software in the municipality SCADA systems can be

done very easily because these SCAOA systems are built using Adroit software and

Modicon PLCs. Then the operation of the process done according to the predicted

values of the influent disturbances will lead to adaptive control of the aeration,

corresponding to these disturbances and as a result will reduce the power needed for

control.

The solution of the problem for development of the mathematical model for dynamic

behaviour of the influent disturbances according to the influence of the weather

conditions and the season of the year is the first attempt in the scientific and research

literature so far. The results give knowledge for the connection of these groups of

variables and the methods and software for its acquisition.

8.4 Future research
\

The research has shown that neural networks are a viable option to consider for

prediction of the influent disturbance variables to a wastewater treatment plant.

However the effective implementation may warrant additional research. The literature

research and the opinion of other more experienced neural network practitioners have

indicated that a hybrid network might be the solution. This might include other soft

computing options such as a fuzzy-neural network, or a neural network combined with

a genetic algorithm.
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Figure A. 1: Well-known types of Neural Networks
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APPENDIX B

SELECTED RESULTS OF INITIAL AND FINAL WEIGHTS AND

BIASES

This section provides the initial and final conditions for the weights in the neural

network for selected models. All weights are saved in Excel and are also imported

into the database. For the real-time implementation. the current weights are examined

for newly trained networks and the previous weights are considered before selecting

a new predicted result.

The tables below all have the following abbreviations:

init inp weights

init out weights

Initial inp bias

Initial out bias

Final inp weights

Final out weights

Final inp bias

Final out bias

b(1)

b(2)

initial input weights

initial output weights

initial input bias

initial ouput bias

final input weights (after training)

final output weights (after training)

\ final input bias

final output bias

input bias

output bias
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B. 1: Feed-Forward Neural Network for COD - MODEL 1

The input for model 1 is COD(k) and the output is COD(k+1).

Table B. 1: The initial inputs weights and biases for COD Model 1

15.975
-15.975
-15.975
15.975

-15.975
31.951
31.951

-31.951
-31.951
-31.951
-31.951
-31.951
31.951

-31.951
-31.951

-3.195
-15.975
15.975

-15.975
-15.975
15.975
31.951

-31.951
-31.951
-31.951
-31.951
31.951
31.951

-31.951
31.951

-31.951

16.579
-15.748
-15.741
15.310

-15.520
33.003
31.917

-31.809
-31.233
-32.379
-31.245
-32.184
32.246

-31.766
-32.043

-5.689
-16.740
16.993

-15.946
-15.446
15.735
33.199

-31.828
-32.007
-30.986
-32.959
30.403
32.350

-32.221
31.558

-32.098

-0.003
-0.419
0.346
0.916
0.533
0.828

-0.543
0.724
0.313
0.782

-0.024
0.985

-0.253
0.063

-0.637
0.317
0.027

-0.574
-0.793
-0.685
-0.185
0.122
0.232
0.324
0.233
0.370
0.020
0.428
0.030
0.212
0.933
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B. 2: Feed-Forward Neural Network for COD - MODEL 2

The inputs for Model 2 are COD(k) and COD(k-1) and the output is COD(k+1).

Table B. 2: The initial inputs weights and biases for COD Model 2

5.817
-3.651
4.186
6.754

-4.681
-8.257
-6.513
-0.057
-2.804
4.481
9.634

-6.665
7.031
7.516
9.644
1.485
7.143
5.996

-7.071
-5.707
-4.204
0.806
4.409
7.746

-0.813
-4.995
-8.017
-1.189
-4.378
-7.033
10.084

-4.310
-6.382
-6.016
2.420

-5.608
6.051
8.027

-10.499
-10.087

9.410
3.163

-7.890
-7.540
-7.017
-3.130
2.939

-0.154
-4.037
-1.061
4.466

-6.002
10.466

9.447
6.741

-10.465
9.127
6.390

10.426
-9.462
7.538
0.657

6.325
-3.530
3.659
6.250

-4.191
-9.206
-6.973
-0.051
-2.354
4.860
9.636

-7.129
6.016
7.644
9.679
0.688
8.161
6.227

-7.684
-5.891
-0.567
0.697
3.145
8.753

-0.330
-4.618
-8.121
-0.001
-2.482
-7.610
10.077
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B. 3: Feed-Forward Neural Network for COD - MODEL 3

The inputs for Model 3 are COD(k), COD(k·1), COD(k-2), and the output is COD(k+1)

Table B. 3: The initial inputs weights and biases for COD Model 3

-2.072
-3.882
0.064
0.787
3.026
4.140

-3.158
-2.497
-3.221
5.121

-0.273
-1.602
6.405

-1.718
6.484
1.272

-4.637
2.897

-0.967
3.014
3.155

-5.825
-4.280
1.869

-0.082
-3.818
-4.194
5.165

-3.263
-4.197
-5.024

5.053
-0.380
4.900

-0.367
-3.498
-4.613
-3.691
4.382
0.339

-4.660
3.303

-6.262
2.594
6.637

-1.727
2.350

-1.998
2.215
4.455
2.555

-3.262
1.724
5.081

-4.790
-4.727
3.747
3.780
0.929
4.698
5.651
0.542

0.891

-0.042
0.096

-0.695

0.121

-0.675
1.602

1.757



B. 4: Feed-Forward Neural Network for COD - MODEL 4

The inputs for Model 4 are COD(k), COD(k-1), COD(k-2), COD(k-3), and the output is COD(k+1).

Table B. 4: The initial inputs weights and biases for COO Model 4

CODk-2 i

lOll
"el

-1.110 -2.269 0.037 2.05 -0.364
1.679 -3.46 1.270 2.71 1.346
4.056 1.165 0.728 2.15 1.479
2.373 2.986 -2.903 1.00 1.369

-0.089 -3.001 2.459 2.96 1.122
3.423 -1.890 -0.106 -2.791 -0.269
1.432 3.579 -3.511 2.60 -3.227 -0.960 -0.054
3.236 -1.993 3.280 2.83 2.778
4.829 0.661 -2.993 -0.36 -3.377

-0.995 2.539 1.611 -4.783 0.817
-0.808 2.943 4.604 -1.91 3.949
3.776 -3.52 -1.334 2.19 -1.923
1.257 -4.408 -3.344 1.481 -2.520
4.200 3.401 -1.322 1.511 -2.271
3.295 -2.722 3.923 0.301 4.220
2.444 -3.733 1.735 3.25 2.160

-0.306 -1.111 2.224 2.07 0.330 -0.097 -0.863
0.228 -4.584 1.869 0.16 1.645 0.604 1.138
3.209 0.414 3.466 -1.03 0.833

-0.535 4.157 -0.455 2.518 -2.112
-2.860 2.602 -2.095 2.06 -2.871
4.222 1.11 1.094 -1.65 3.109
1.757 -4.003 3.903 -0.19 3.433 0.039 0.723
2.891 -2.723 -1.579 -3.83 -1.007
3.109 -2.496 3.293 -2.57 2.959
2.918 3.172 -1.542 -3.49 -2.694
0.441 -0.935 2.875 -4.84 -1.102

-0.191 0.358 -4.647 -3.43 -3.479
-0.514 3.815 -3.169 3.01 -2.018
2.259 -2.243 2.561 4.04 2.040

-3.789 1.295 -3.764 1.74 -3.098
0.453 -3.483 4.543 -1.201 4.546

283



B. 5: Feed-Forward Neural Network for COD· MODEL 5

The inputs for Model 5 are COD(k), COD(k-1), COD(k-2), COD(k-3), TKN(k) and the output is COD(k+1).

Table B. 5: The initial inputs weights and biases for COD Model 5

-0.388
0.616

-1.823
1.557
0.326

-2.708
2.189 -0.423 0.087

-1.509
-3.134
2.677

-4.022
-1.025
-0.119
2.163

-0.768
2.694

-1.239 -0.744 0.065
-2.717 0.470 1.529
4.033
2.056

-0.986
2.590
1.334 0.513 2.598
1.806
0.277

-4.271
-2.431
3.027
2.436

-3.790
-0.091
-0.539
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B. 6: Feed-Forward Neural Network for COD - MODEL 6

The inputs for Model 6 are COD(k), COD(k-1), COD(k-2), COD(k-3), TKN(k), FLOW(k) and the output is COD(k+1).

Table B. 6: The initial inputs weights and biases for COD Model 6

-1.662 1.330 0.221 0.118
-3.177 1.84 0.17 -0.047
-1.983 2.561 1.52 1.830
2.232 1.375 2.90 -1.737

-1.998 -2.659 2.171 1.719
2.630 -0.893 -2.48 1.347
2.400 -1.701 2.08 1.327 -0.165 0.230
2.761 2.855 1.56 2.794
2.189 -2.528 2.56 2.562

-2.451 -0.446 -0.50 2.124
3.511 -2.502 0.77 -0.720
3.044 0.901 -0.522 -0.698

-3.449 1.808 -0.56 -2.862
-1.608 -1.56 -1.38 -2.851
-2.300 0.19 2.73 -0.914
0.834 -1.395 2.43 1.748

-1.804 -0.938 -0.16 -0.085 0.147
2.227 -1.788 -0.151 -1.426 2.135
1.723 0.276 -2.42 -2.366
1.528 -2.704 -3.55 0.440
2.258 -2.032 1.96 0.092

-1.810 -2.072 3.02 -1.260
0.254 0.623 0.27 2.454 0.073
2.518 1.351 2.292 2.796

-2.321 1.444 -4.47 1.434
-2.163 1.531 0.63 -0.303
0.542 -2.663 -1.843 -0.236

-0.246 -0.609 1.851 -2.154
-0.630 -2.441 -2.87 -2.359
-2.584 2.03 -1.41 1.543
-1.233 2.503 3.25 -0.810
3.741 -1.40 1.65 1.186
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APPENDIXC

SOFTWARE ROUTINES

This section from C.1 to C. 11 presents all the implemented MATLAB software algorithms

that are used in the development of the neural network prediction routines for prediction of

the influent variables of COD, TKN and flow rate. The three NN topologies are the

multilayer perceptron feed-forward NN, the Elman recurrent NN, and the radial basis

function NN. The descriptions of the different script files are presented in Chapter 7, Table

7.2.

C.1: MATLAB script - Open_all_data.m

% Establishes a connection to the MYSQL database and
% retrieves ALL plant and weather data.
% The DATABASE toolbox for use with MATLAB is used
%

%
%
%
%
%
%

%
%
%
%

%
%
%
%
%

conn
curs
m
cod
tkn
flow
mintemp
maxtemp
rain
wind
month
database
exec

fetch
ce1l2mat

Returns a database connection object
Returns a cursor object
Returns the data at the cursor position
Chemical oxygen demand - i'1NTP variable
Total khejdahl nitrogen - WWTP variable
Influent flow rate - vrwTP variable
Hinimum temperature - weather variable
Maximum temperature - weather variable
Rainfall - weather variable
Wind speed - weather variable
Month data - weather variable
f>1ATLAB function to connect to an ODBC database
MATLAB function to Execute a SQL statement
and open the Cursor
J'.1ATLAB function to import data into MATLAB
MATLAB function to convert the contents of a
cell array into a single matrix

% Cape Peninsula University of Technology
% C.Kriger
% December 2007

% Establishing the connection with the DB
% Inserting the username and password for the DB

% Using the SQL script to select the COD data from
% a table named 'plant weather data'
conn database(lathlo~el, 'ro;t', 'admin');
curs = exec(conn, 'select COD from plant_weather_data ' );
curs = fetch(curs);
m = curs.Data;
cod = cel12mat(m); % Converting the cell array to a matrix
cod = cod';
clear ID;
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% Retrieve all TKN data from database
curs = exec(conn, 'select TKN from plant_weather data')j
curs = fetch(curs)j -
m = curs.Dataj
tkn = ceI12mat(m)j
tkn = tkn' j

clear mj

% Retrieve all Flowrate data from database
curs = exec(conn, 'select Flow from plant_weather_data')j
curs = fetch(curs);
m = curs.Dataj
flow = ceI12mat(m)j
flow = flow';
clear mj

% Retrieve all min_temp data from database
curs = exec(conn, 'select Mintemp from plant_weather_data');
curs = fetch(curs)j
m = curs.Dataj
mintemp = ceI12mat(m)j
mintemp = mintemp'j
clear mj

% Retrieve all max_temp data from database
curs = exec(conn, 'select Maxtemp from plant_weather_data')j
curs = fetch(curs)j
m = curs.Dataj
maxtemp = ceI12mat(m)j
maxtemp = maxtemp'j
clear mj

% Retrieve all rain data from database
curs = exec(conn, 'select Rain from plant_weather_data')j
curs = fetch(curs)j
m = curs.Dataj
rain = ceI12mat(m)j
rain = rain' j

clear mj

% Retrieve all wind data from database
curs = exec(conn, 'select Wind from plant_weatrler_data')j
curs = fetch(curs)j
m = curs.Dataj
wind = ceI12mat(m)j
wind = wind' j

clear mj

% Retrieve all month of the year data from database
curs = exec(conn, 'select Sin,Cos from plant_weather_data')j
curs = fetch(curs)j
m = curs.Dataj
month = ceI12mat(m)j
month = month'j
clear mj

% Close all open database connections and clear variables
close (conn)j
clear connj

clear curs; % End
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C. 2: MATLAB script - Correlation_Coefficients.m

% Calculation of the Correlation Coefficients between the input
% variables
%
% corrcoef MATLAB function to calculate the correlation
% coefficients
% All variables are nonnalized (scaled). This does not affect
% the
% inherent relationship existing between variables
%
% Cape Peninsula University of Technology
% C.¥..riger
% Dec 2007

%Correlation between COD and TKN
cod_tkn_corr=corrcoef (cod, tkn)

%Correlation between COD and Flow
cod_flow_corr=corrcoef(cod,flow)

%Correlation between COD and maxtemp
cod_maxtemp_corr=corrcoef(cod,maxtemp)

%Correlation between COD and mintemp
COD_mintemp_corr=corrcoef(cod,mintemp)

%Correlation between COD ~nd rain
COD_rain_corr=corrcoef(cod,rain)

%Correlation between COD and wind
COD_wind_corr=corrcoef(cod,wind)

%Correlation between TKN and Flow
tkn_flow_corr=corrcoef(tkn,flow)

%Correlation between TKN and maxtemp
tkn_maxtemp_corr=corrcoef(tkn,maxtemp)

%Correlation between T~~ and mintemp
tkn_mintemp_corr=corrcoef(tkn,mintemp)

%Correlation between TKN and Rain
tkn_rain_corr=corrcoef(tkn,rain)

%Correlation between TKN and wind
tkn_wind_corr=corrcoef(tkn,wind)

%Correlation between FLOW and maxtemp
flow_maxtemp_corr=corrcoef(flow,maxtemp)

%Correlation between FLOW and mintemp
flow_mintemp_corr=corrcoef(flow,mintemp)

%Correlation between FLOW and Rain
flow_rain_corr=corrcoef(flow,rain)

%Correlation between FLOW and wind
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flow_wind_corr=corrcoef(flow,wind}

%Correlation between maxtemp and rnintemp
maxtemp_mintemp_corr=corrcoef(maxtemp,mintemp}

%Correlaticn between maxtemp and Rain
maxtemp_rain_corr=corrcoef(maxtemp, rain}

%Correlaticn between maxtemp and wind
maxtemp_wind_corr=corrcoef(maxtemp,wind}

%Correlation between mirltemp and Rain
mintemp_rain_corr=corrcoef {mintemp, rain}

%Correlaticn between mintemp and wind
mintemp_wind_corr=corrcoef{mintemp,wind}

%Correlation between rain and wind
rain_wind_corr=corrcoef(rain,wind}

% End
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C. 3: MATLAB script - Preprocess.m

variables ,dth their iv"u-"\XHlliM valueScaling of all input
COD ! 2964
TKN I 116.5
Flow / 200
mintemp / 19.357!

rain / 21. 443
'i.-dnd I 24.729/%

%

%

% Preprocessing of all inputs
% The month data is already processed by means of a sin/cos pair
% The values range from -1 to +1
%
%
%

%
%

%

%
%
%
%
%
%

cod norm
tkn norm
flow norm
mintemp_norm

rain norm
,·;ind norm

COD value scaled by its maximum value
Tn~ value scaled by its maximum value
FLOW value scaled by its maximum value
Minimum temperature value scaled by its
maximum value
Rainfall value scaled by its maximum value
Wind speed value scaled by its maximum
value

%
% Cape Peninsula University of Technology
% C.Kriger
% December 2007

cod norm = cod/max(cod)i \
tkn-norm = tkn/max{tkn)i
flow norm = flow/max(flow)i
mint;mp_norm = mintemp/max{mintemp)i
rain norm rain/max{rain)i
wind=norm = wind/max{wind)i

% End
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c. 4: MATLAB script - raw_normjnputs.m

% Determining the inputs to the NN
%
% 11 - Inputs - (COD, (COD-1), (COD-2), (COD-3), TK1;;, Flew,
% Menth(sinices),
% Mintemp, Rain, Wind1
% 1 - target - (COD + 1]

% C.Kriger
% Cape Peninsula University of Technology
% December 2007

% COD-1 is declared (654)-start at index 3 ->654
9 = 3;
for i =1:654

cod_1 (l,i) cod_norm(g);
i i+1;
9 = g+l;

end

% COD-2 is declared (654)-start at index 2 ->654
j = 2;
for k =1:654

cod_2(1,k) cod_norm(j);
k k+1;
j = j+l;

end

% COD-3 is declared (654)-start at index 1 ->654
1 = 1;
for m =1:654

cod_3(1,m) cod_norm(l);
1 1+1;
m = m+1;

end

% Specifying the raw inputs which are used

rawinput = [cod_norm; tkn_norm; flow_norm; month; mintemp_norm; rain_norm;
wind_norm] ;

% The inputs are declared (654) - Start at index 4 -> 657
for a = 1:8

h=4;
for b = 1:654
p(a,b) = rawinput(a,h) ;
h = h+1;
end
a = a+1;

end

% Adding delayed inputs for COD
o = a;
for q = 1:654

p(o,q) = cod_1(1,q);
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q = q+1;
end
o = a+1;
for q = 1:654

p(o,q) = cod_2(1,q);
q = q+1;

end
o = a+2;
for q = 1:654

p(o,q) = cod_3(1,q);
q = q+1;

end

% The target COD+l is declared (654) - Start at index 5 ->658
d = 5;
for c = 1:654

t(l,c) = rawinput(l,d);
c c+1;
d = d+1;

end

% Clearing all variables not needed
clear a;
clear b;
clear c;
clear d;
clear E;
clear f;
clear g;
clear h;
clear i;
clear j;
clear k;
clear 1;
clear m;
clear n;
clear 0;
clear q;

% End
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C. 5: MATLAB script- Train_tsCdata.m

% Partitioning the data into a TRAINING and TEST set
% Training set - 2/3 of total input data set
% Validation set - 1/3 of total input data set
%

Test set generated by every 3rd sample
Training set generated from the
1st and 2nd samples
Input vector for the TRAINING data set
Target vector for the TRAINING data set
Input vector ror the TEST data set
Target vector for the TEST data set

ptr
ttr
tsty
tst t

iitst
Htr

%
%

%
%
%
% The TRAINING set has 436 data points
% The TEST set has 218 data points

% Cape Peninsula University of Technology
% C.Kriger
% December 2007

iitst = 3:3:654;
iitr = '[1:3:654 2:3:654];
samples

% Test set generated from every 3rd sample
% Training set generated from 1st and 2nd

% Training data randomized

ptr p (:, iitr) ; % Input training set
ttr t (:, Htr); % Output target set

tst--p p ( : , Htst) ; ~ Input test set.
tst t t(:,Htst); % Output target set-

% End
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C. 6: MATLAB script - Feedforward.m

% Design a feedforward In~ with 1 input, 1 layer of hidden neurons
% with 3 neurons and 1 target output neuron
% Use a tan-sigmoid transfer function for the input and hidden
% layer and a pure linear transfer function for the output layer
% Train the network using the Scaled Conjugate Gradient algorithm

% C.Krj,ger
% Cape Peninsula University of Technology
% December 2007

neurons = 10 % Number of hidden layer neurons

% Maximum no. of epochs
% No. of epochs to display
% Learning rate
% Momentum term

% Initialization of network

1 ], { 'tansig' , 'purelin' }, 'trainscg' ) ;

= 1000;
50;

0.6;
0.5;

net = newff([minmax(ptr)], [neurons
net.layers{l}.initFcn='initnw'i
net.layers{2}.initFcn='initnw';
net = init(net);
net.performFcn='mse';
net.trainParam.epochs
net. trainParam. show
net.trainParam.lr
net.trainParam.mc

% Determining the initial input bias
% Determining the initial output bias

init_in_weights = net.IW{l,l}; % Determining the initial input weights
init_out_weights = [net.LW{2,1}(:)] i% Determining the initial output
weights
init_in_bias = net.b{l}; \
init_out_bias = net.b{2};

% Training the network with Scaled conjugate gradient algorithm
[net,tr] train (net,ptr,ttr);

% Saving of figure and training data
saveas(gcf, 'trainscg_err', 'fig');
save tr tri

in weights = net.IW{l,l}i
out weights = [net.LW{2,1}(:)];
in bias = net.b{l};
out bias = net.b{2}i

% Determining the final input '."eight.s
% Determining the final hidden weights
% Determining the final input bias
% Determining the final output bias

% Simulating the network with the same inputs used to train the network
ttrsim = sim (net,ptr);

% Plotting input and target
figure (1)
hold on
title('Training inputs (normalized) and target output');
xlabel('Time in weeks');
ylabel('COD normalized');
plot (ttr, '0', 'markersize',3);
plot (ttrsim, '*' 'markersize' ,3) ;
legend ('Training-Data', 'Network-Response');
hold off
saveas(gcf, 'Train_inp_targ', 'fig")
Y=[ttr(:) ,ttrsim(:)];
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% Determining the minimum training error and epochs
min_tr_err=tr.perf(l,size(tr.perf)};
min_tr_err = min_tr_err(1,2}

epoehs=tr.epoeh(l,size(tr.epoeh}};
epoehs=epoehs(1,2}

% Simulating by applying the test set
tstsim = sim (net,tst-p);

% Plotting test set input and test set expected outputs
figure(2}
hold on
title('Test inputs (normalized) and network response'};
xlabel('Time in weeks'};
ylabel('COD normalized'};
plot (tst_t, '0', 'markersize' ,3};
plot (tstsim, '*' .markersize' , 3) ;
legend ('Test-Data', 'Network-Response');
hold off
saveas (gef, 'Test_inp_net_resp', 'fig')
x=[tst_t(:} ,tstsim(:}];

% End
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C. 7: MATLAB script - RBF.m

% Design a RBF ~~ with 1 input, 1 layer of hidden neurons
% and 1 target output neuron.
% Use a Guassian transfer function for the input and hidden layer
% and a pure linear transfer function for the output layer.
% Plot the inputs and targets for the TRl.INING and TEST data sets
%
%
%
%
%

%
%
%
%
%
%
%

%
%
%
%
%
%
%
%

goal

spread
net
tr
in_weights

in bias
out bias
ptr
ttr
ttrsim

epochs
min tr err
tsty
tst t
tstsim

Error goal for the SSE performance
function
Spread constant for the Gaussian function
Created Radial basis function ~rr1

Training performance and epochs
weights between the input and hidden layer
after training
v/eights between the hidden and output
layer after training
Bias at the input after training
Bias at the output after training
Input vector for the TRAINING data set
Target vector for the TPAINING data set
NN output after simulating with the
TRAINING inputs
Number of training iterations
t,Hnimum training error
Input vector for the TEST data set
Target vector for the TEST data set
NiJ output after simulating with the TEST
inputs

%
% Cape Peninsula University of Technology
% C.Kriger
% December 2007

goal = 1. 7;
spread = 0.5;

% Error goal for SSE
% Spread constant for Gaussian function

% Creating a new radial basis function network

(net,tr] = newrb(ptr,ttr,goal,spread);
saveas(gcf, 'trainscg_err f , 'fig');
save tr tr;

in weights = net.IW{l,l};
out weights = [net.LW{2,1}(:)];
in_bias = net.b{l};
out_bias = net.b{2};

% Determining the rinal input welgn~s

% Determining the final hidden ",eights
% Determining the final input bias
% Determining the final output bias

% Simulating the network with the same inputs used to train the network
ttrsim = sim (net,ptr);

%Plotting input and target
figure (1)
hold on
title(fTraining inputs (normalized) and target output');
xlabel('Time in weeks');
ylabel('FLOW normalized');
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plot (ttr, '0', 'markersize', 3) ;
plot (ttrsim, '*', 'markersize',3);
legend ('Training-Data', 'Network-Response');
hold off
saveas(gcf, 'Train_inp_targ', 'fig')
Y=[ttr(:) ,ttrsim(:)];

%Determining the minimum training error and epochs
min_tr_err=tr.perf(l,size(tr.perf);
min_tr_err = rnin_tr_err(1,2)

epochs=tr.epoch(l,size(tr.epoch));
epochs=epochs(l,2)

% Simulating by applying the test set
tstsirn = sirn (net,tst-F);

% Plotting test set input and test set expected outputs
figure (2)
hold on
title('Test inputs (normalized) and network response');
xlabel('Time in weeks');
ylabel('FLOW normalized');
plot(tst t, '0', 'markersize',3);
plot <tstsirn, '*' 'markersize' ,3) ;
legend ('Test-Data', 'Network-Response');
hold off
saveas(gcf, 'Test_inp_net_resp', 'fig')
X=[tst_t(:) ,tstsirn(:)];

% End
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C. 8: MATLAB script - Postprocess.m

% Denormalize the inputs and perform a linear regression between
% inputs and expected target output

% C.Kriger
% Cape Peninsula University of Technology
% December 2007

net_out = tstsim*max{cod); % Denormalizing) network output
expected_target_out=tst_t*max(codl; % Denormalizing expected target

%Absolute percentage error
APE=(abs(expected_target_out-net_out)/(expected_target_out) *100)

% Linear regression (Correlation) calculated and plotted
figure{3)
hold on
[m,b,r] = postreg(net_out,expected_target_out);
title('Linear correlation coefficient - Validation data ');
hold off
saveas(gcf, 'postregression', 'fig');

% Calculating the error on the test set and plotting it
err={net_out-expected_target_out);

figure (4)
plot (err)
hold on
title('Test Set Error Plot');
hold off
avg_tst_err=mean(err)
saveas{gef, 'Test_err', 'fig')

%Plotting net output and predicted output
figure (5)
set (gef, 'color', 'whi te' ) ;
plot(net out, 'b.-', 'DisplayName', 'net_out', 'YDataSource', 'net_out');
hold on
title('Network response to Validation Set', 'FontSize', 12, 'FontWeight',
'Bold') ;
xlabel{'Time in weeks', 'FontSize', 12, 'FontWeight', 'Bold');
ylabel{'COD denormalized (mg/l) " 'FontSize', 12, 'FontWeight', 'Bold');
plot (expected_target_out, 'rx-', 'markersize',6, 'DisplayName',
'expected_target_out', 'YDataSource', 'expected_target_out');
legend('Actual Predicted out', 'Target output');
hold off
saveas(gcf, 'Test-Fred_out', 'fig')

% Linear regression (Correlation) calculated and plotted
figure{6l
hold en
[m1,b1,r_tr] postreg(ttr,ttrsim);
r_tr
r
title{'Linear correlation coefficient - Training data ');
hold off
saveas(gcf, 'postregression_train', 'fig');
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% Saving initial weights
save init_out_weights init_out_weights
save init_in_weights init_in_weights

%Saving initial bias
save init_in_bias init in bias
save init_cut_bias init_cut_bias

% Saving final weights
save in_weights in_weights
save out_weights cut_weights

%Save final bias
save in bias in bias- -
save out bias out bias- -
% Saving all data variables to an Excel spreadsheet
txt=[char('Hid layers', 'Hid neurons', 'Train algorithm', 'Input
activation', 'Output activation', 'Epochs', 'Performance', 'Min train
err', 'Learn rate', 'Momentum', 'r_train',
'r_test', 'R_sq_train','R_s~test','Avg_test_err', 'APE'}];
txt = cellstr(txt} , ;

Data.hid=(net.numlayers-l};
Data.hid_neurons = neurons;
Data.train='trainscg';
Data.activ_in= 'tansig';
Data.activ_out='purelin';
Data.epoch=epochs;
Data.perf='MSE' ;
Data.min_err = min_tr err;
Data.lr=net.trainParam.lr;
Data.mc=net.trainParam.mc;

outp_weights=[init_out_weights,out_weights] ;
Weights=[init_in_weights,in_weights,outp_weights,init_in_bias, in_bias] ;
Out_bias=[init_out_bias,out_bias] ;

txtl=[char('Init inp weights', 'Final inp weight', 'Init out weights','Final
out
weights', 'Init_in_bias', 'Fin_in_bias', 'Init_cut_bias' , 'Fin_out_bias')];
txtl = cellstr(txtl} ';

R_squared_train = (r_tr*r_tr);
R_squared_test = (r*r);

data=struct2cell(Data} ';

SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS

% End

xlswrite('Data.xls',txt, 'Sheetl', 'AI'};
xlswrite('Data.xls',data, 'Sheetl', 'A2'};
xlswrite('Data.xls',Result, 'Sheetl', 'K2'};
xlswrite('Weights.xls' ,Weights, 'Sheetl', 'A2'};
xlswrite ( 'v-leights. xIs' , txtl, 'Sheetl', 'Al');
xlswrite('Weignts.xls' ,Out_bias, 'Sheetl', 'AA2');
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c. 9: MATlAB script - E/man.m

% Design an Elman ?~TN with 1 input, 1 layer of hidden neurons with
% 5 neurons and 1 target output neuron
% Use a tan-sigmoid transfer function for the input and hidden
% layer and a pure linear transfer function for the output layer
% Train the network using the Scaled Conjugate Gradient algorithm

net = newelm( (minmax(ptr) 1, (5
net = init (net) ;
net.performFcn='mse';
net.trainParam.epochs = 450;
net.trainParam.show = 10;
net.trainParam.lr = 0.001;
net.trainParam.lr_inc =1;
net.trainParam.lr_dec = 0.1;
net.trainParam.mc = 0.5;

1] ,{'tansig', 'purelin'}, 'trainscg');
% Initialization of network

% Maximum no. of epochs
% No. of epochs to display

net.IW{l,l}=rand(size(net.IW{l,l}»;
weights
net.LW{2,l}=rand(size(net.LW{2,l}»;
layerl weights

%Random initialisation of input

% Random initialisation of hidden

init_in_weights = net.IW{l,l}; % Determining the initial input weights
init_hid1_weights = net.LW{2,l};% Determining the initial hidden weigl1ts,

% Training the network with
net = train (net,ptr,ttr);
saveas(gcf, 'trainscg_err',
in weights = net.IW{l,l};
hid1 weights = net.LW{2,l};
weights

Scaled conjugate gradient algorithm

, fig' ) ;
% Determining the final input i,1e~gn:::s

% Determining the final hidden

% Simulating the network with the same inputs used to train the network
ttrsim = sim (net,ptr);

%Plotting input and target
figure (1)
hold on
title('Training inputs (normalized) and target output');
xlabel('Epochs');
plot (ttr, '0', 'markersize',3);
plot (ttrsim, ,*, 'markersize' ,3);
hold off
saveas(gcf, 'Train_inp_targ', 'fig')
Y=(ttr(:),ttrsim(:)];

R train = corrcoef(ttr,ttrsim) % Linear regression (correlation)on
input set
(m,b,r_tr1 = postreg(ttr,ttrsim);

% Simulating by applying the test set
tstsim = sim (net,tst-p);
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% Plotting test set input and test set expected outputs
figure (2)
hold on
title('Test inputs (normalized) and network response');
xlabel('Data points');
plot (tst_t, '0', 'markersize' ,3);
plot (tstsim, '*' 'markersize',3)i
hold off
saveas(gcf, 'Test_inp_net_resp', 'fig')
x== [tst_t (:), tstsim(:)] ;

R test == corrcoef(tst_t,tstsim) % Linear regression on test set

% End of Elman Recurrent Neural Network program
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C. 10: MATLAB script - Activation.m

% The various activation functions are listed below
% together with a graphical plot.
%
% The functions "tansig, logsig, hardlim, hardlims and purelin"
% are ~~TLAB functions
%
% C.Kriger
% Cape Peninsula University of Technology
% Decerr~er 2007

% Plot of the hyperbolic tangent function
figure (I)
x=linspace{-S,S,SOl)i
y=tansig{x)i
plot (x,y)
title (f tansig' )
xlabel ('v')
ylabel ( , a ' )

% Plot of the logarithmic sigmoidal function
figure (2)
x=linspace(-S,S,SOl) ;
y=logsig{X)i
plot (x,y)
title ( f logsig' )
xlabel ('v')
ylabel ( , a ' )

% Plot of the positive threshold or hard limit function
figure (3)
x=linspace(-S,S,SOl)i
y=hardlim (x) i
plot (x,y)
title ( 'hardlim' )
xlabel ( , v f )

ylabel ( , a ' )

% Plot of the s}~nletrical or bipolar threshold or hard limit function
figure (4)
x=linspace(-S,S,SOl)i
y=hardlims (x) ;
plot (x,y)
title('hardlims')
xlabel ( 'Y , )
ylabel ( , a f )

% Plot of the linear function
figure (S)
x=linspace{-S,S,SOl)i
y=purelin (x) i

plot (x,y)
title( 'purelin')
xlabel{'Y')
ylabel ( •a ' )
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% Plot of the radial basis function
figure (6)
x= ( - 5 : 0 . 1 : 5) i

y=radbas (x) ;
plot (x,y)
title ( 'radbas I)
xlabel ('v' )
ylabel ( · a')

% End
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C.11: MATLAB script - std_min_max.m

MATLAB function to calculate the minimum and
maximum values from the rows of a matrix
MATLAB function for calculation of the average or
mean value
V~TLAB function to calculate the standard
deviation

mean

minmax

std%

%
%

% Calculation of standard deviation, min and max values
%
%

% Cape Peninsula University of Technology
% C.K.riger
% Dec 2007

% Minimum and maximum value calculations
cod_minmax=minmax(cod)
tkn_minmax=minmax(tkn)
flow_minmax=minmax(flow)
maxtemp_minmax=minmax(maxtemp)
mintemp minmax=minmax(mintemp)
rain_minmax=minmax(rain)
wind_minmax=minmax(wind)

% Mean calculations
cod mean=mean(cod)
tkn=mean=mean(tkn)
flow mean=mean(flow)
maxt~mp mean=mean(maxtemp)
mintemp=mean=mean(mintemp)
rain mean=mean(rain)
wind=mean=mean(wind)

% Standard Deviation Calculations
cod_std=std(cod)
tkn std=std(tkn)
fIo; std=std(fIow)
maxt~mp std=std(maxtemp)
mintemp=std=std(mintemp)
rain std=std(rain)
wind-std=std(wind)

% End
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APPENDIX D

TECHNICAL WIRING OF THE PLC AND SENSORS
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Figure D. 1: The Modicon PLy 110 Base wiring diagram

Description Address Ranqe
DiQital input 10001 - 10016
Diqital Output 00001 - 0016
Analoque Input 30001 - 30016
Ana!oque Output 40001 - 40016
Internal Coils 'Status Bits' 00017-01536
Internal Holding Registers 40017-41980
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SHIElD WIRES (TWO PER CAStE)
TWISTED TOGETHER AND PlASTIC
WRAPPED TO PREVENT SHOOTING

o 1 While (-5 VDC)

(2) 2 Blue (+5 VDC)

eJ 3 ShieldIBlack

o 4 Yellow (Temp)
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o 6
o 7 Red (Signal)
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Figure D. 2: The Dissolved Oxygen sensor wiring diagram
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Figure D. 3: The Dissolved Oxygen transmitter wiring connector

SENSOR

o 1 White (Drive)

12) 2 Blue (Drive)
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o 4 Red (Temp)
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o 7 Green (Signal)

1!:::=:::::!:=::!b:==:J

~=,....::OU~t:::.:.@r..:::S:.:::hiel:.:;:d~--i'" To Earth Ground

Figure D. 4: The pH sensor wiring diagram
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Figure D. 5: The Conductivity sensor wiring diagram
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APPENDIX E

DATABASE AND CONVERSION INTO MySQL FORMAT

This section presents the conversion of the ASCII text files and MS Excel files into the

MySQL database format. The procedure for setting up of the MySQL database is also

described.

1 Conversion of the ASCII text files into MS Excel

The procedure describes how the conversion from ASCII text into MS Excel is done.

• Open MS Excel
• Click File, Open
• To display the text files select All Files at the bottom of Figure E.1.
• Select Open

Figure E. 1: Load the text file into MS Excel

The Text Import Wizard window - Step 1 of 3 appears (Figure E.2)
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• Select the Delimited radio tab
• Click Next
• Select the Otl1er option and enter the T character in the space provided (Figure

E.3)
• Click Finish

Figure E. 2: Text Import Wizard step 1

Figure E. 3: Text Import Wizard step 2

The text file is now converted and loaded in MS Excel (Figure EA). Save the file with an

appropriate filename.
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Figure E. 4: Weather file in MS Excel format

2 Conversion of the MS Excel into the MySQL database format

Open the MySQL DBManager by clicking on the icon on the desktop.

• Right-click on the Databases folder and select Create Database (Figure E.5)
• Create an appropriate name.
• Click on the plus sign next to the Databases folder and select the newly created

database.
• Click on the Tools menu item and select Data Management, then select Import Data

(DAO) in Figure E.6.
• Select the Microsoft Excel option from the Data Wizard window (Figure E.7).
• Click Next.
• Browse to the MS Excel file that is to be imported and select Open (Figure E.8).
• Click Next.
• Select Sheet1$ and click Next.
• Click Next.
• Select the correct database and click Next.
• Click Finish
• Click OK.
• Click OK.

The MS Excel file is now imported and can be seen by selecting the database and viewing

the table with the exported data.
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Figure E. 6: Selecting the menu item for importing the Excel data
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Figure E. 9: Selecting the database where the MS Excel file is to be imported

3 ODSC and Database setup

The ODBC properties are set up in the control panel. Please note that the following

procedure will not work if the MySQL database software with all relevant components are

not properly installed. The assumption is therefore made that the MySQL software is

already installed. The following section presents a step-by step guide to setting up the

ODBC connection to the MySQL database.

The first step is configuring the ODBC database connection

• In the Windows Control Panel window double click on the Administrative Tools icon
(Figure E.1 0)

• Double click on the Data Sources (ODBC) icon in the Administrative Tools window.
(Figure E.11)

• Click the Add button in the ODBC Data Source Administrator window (Figure E 12).
• Scroll down in the Create New Data Source window and select the MySQL ODBC

3.51 Driver (Figure E.13).
• The user can enter a unique Data Source Name (DSN), Server, Username,

Password and Database name in the following dialogue box. The successful
connection to the database can be confirmed by clicking on the Test button in the
ConnectorlODBC Add Data New Data Source window (Figure E.14).

• Click OK.
• The unique DSN (athlone) should now appear together with the appropriate driver

(MySQL OOBC 3.51 Driver) under the User DSN tab (Figure E.15).
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318



Figure E. 12: The ODBC Data Source Administrator Window

Figure E. 13: The Create New Data Source Window
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Connector/OOBC

Figure E. 14: The Connector/ODBCAdd Data New Data Source Window

Figure E. 15: The ODSC Data Source Administrator Window showing the new MySQL driver
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