W
P

‘ Cape Peninsula |
University of Technology

PREDICTION OF THE INFLUENT WASTEWATER VARIABLES USING NEURAL
NETWORK THEOR‘{

by

CARL KRIGER

Thesis submitted in fulfilment of the requii'ements for the degree

Master of Technology: Discipline Electrical Engineering

in the Faculty of Engineering

at the Cape Peninsula University of Technology

Supervisor: Professor Raynitchka Tzoneva

Bellville
December 2007

DECLARATION

|, Carl Kriger, declare that the contents of this thesis represent my own unaided work, and
that the thesis has not previously been submitted for academic examination towards any
qualification. Furthermore, it represents my own opinions and not necessarily those of the
Cape Peninsula University of Technology.

ﬁ/ MARCH 7008

Signed 0 Date

ABSTRACT

‘ln order to develop an effective control strategy for the aclivated sludge process of a
wastewater treatment plant, an understanding of the nature of the influent load disturbances
to the wastewater treatment plant is necessary. Biological systems are among the most
difficult to control and predict. Due to the complex biclogical reaction mechanisms, the highly
time-varying, and multivariable aspects of the wastewater treatment plant (WWTP), the
“diagnosis of the WWTP are still difficult in practice. The application of intelligent techniques,
which can analyse the muiti-dimensional nonlinear process data using a visualisation
technique, can be useful for analysing and diagnosing the activated-sludge process in the
WWTRP. This complex capability for nonlinearity representation combined with the fact that no
model exists for the WWTP influent dynamics o a WWTP, makes neural nelworks an ideal
choice for a solution.

Forecasting the behaviour of complex systems has been a broad application area for neﬁrai
networks. Applications such as economic forecasting, electricity load / demand forecasting,
and forecasting natural and physical phenomena have been extensively studied, hence the
numerous papers presented at annual conferences in this focus area. The cognitive ability of
artificial neural networks to mab'nonlinear complex input-output relationships, which would
allow for better prediction and corrective control of processes, make them particularly
attractive.

The values of the influent disturbances are usually measured off-line in a laboratory, as there
are still no reliable on-line sensors available. This work presents the development of a neural
network model for prediction of the values of the influent disturbances based on historical
plant and weather data, which ultimately affect the activated sludge process. Three different
neural networks including the multilayer perceptron, recurrent and radial basis functions
neural network are developed for the prediction of the influent disturbances of Chemical
Oxygen Demand (COD), Total Kjeldahl Nitrogen (TKN) and influent flow rate respectively.
The application area is the prediction of the influent variables at a local municipal wastewater
treatment plant. The forecast result is used for the determination of the setpoint to a
controller, in order {o optimize plant performance. The results are first applied to a pilot
wastewater treatment plant.

Much hype exists surrounding the subject of neural networks, and they are sometimes
described as ‘computers that think’. This sort of definition creates unrealistic expectations
and is one of the reasons why it is discredited. The results obtained will hopefully present
helpful insights as to the scope and possibilities as to the application for neural networks, but

also present the practical challenges which neural network practitioners and designers of
intelligent systems face.

The solution of the problem for development of the mathematical model for dynamic
behaviour of the influent disturbances according to the influence of the weather conditions
and the season of the year is the first attempt in the scientific and research literature so far.

ACKNOWLEDGEMENTS

1 wish to express my heartfelt thanks to:

» My heavenly Father without whose strength and wisdom | would not have
accomplished anything.

= My wife Linda, Jesse, and Anica my wonderful kids for their tremendous support and
understanding during the extremely long nights and sacrifices they made. (Il
definitely make it up to you guys)

= Professor Raynitchka Tzoneva without whose supervision, guidance, assistance,
commitment, patience, understanding and dedication this work would not have been
possible,

= Mr S. Behardien in the Electrical Engineering Depantment, Cape Peninsula University
of Technology for his insightful comments, guidance, and support.

» Mr T.van Breda and all staff in the Electrical Engineering Department Cape Peninsula
University of Technology for their support.

= Mr J. Brulners and Mr H. Rus of the Athlone Wastewater Plant for the wastewater
plant data supplied.

= Mrs Wendy at the South African Weather Services in Cape Town for the weather data
supplied.

= Mr P. Mapisa for his assistance on the commissioning and testing of the pilot plant.

“It is a good thing to give thanks unto the Lord.” Psaim 92:1

The financial assistance of the National Research Foundation towards this research is
acknowledged. Opinions expressed in this thesis and the conclusions arrived at, are
those of the author, and are not necessarily to be attributed to the National Research
Foundation.

TABLE OF CONTENTS

Declaration

Abstract
Acknowledgements
Glossary
Mathematical Notation

CHAPTER ONE: INTRODUCTION

1.1 Awareness of the problem

1.2 Legisiation and current situation

1.3 Mathematical Modelling and Simulations of Wastewater Treatment
Plants ,

1.31 Simulation of the Wastewater Treatment Process

14 Control of Wastewater Treatment Plants

1.4.1 Reasons why Advanced Control is not implemented at WWT
Plants

1.4.2 Reasons why Automatic Control should be implemented in a
WWTP

Dissolved Oxygen Control

Adaptive Control Strateqy

Problem statement

Neural networks

Training of Neural Networks

Data preparation

Types of Neural Networks

Application areas for Neural Networks
Modelling of the Influent variables model behaviour using Neural
Networks

Neural Networks implementation
Research Aim

Research Objectives

Scientific objectives

Application result objectives
Literature survey

Outline of thesis

List of publications

O PO N, WU S S M. S N
PO ND®

M BN -

[e R e R T N
O e e e O 7 X)
BRSO O

N -

CHAPTER TWO: WASTEWATER TREATMENT PROCESSES AND ITS
DISTURBANCES

2.1 Introduction

2.2 Legislation

2.3 Current process control techniques
24 The Wastewater Treatment Process
2.41 Preliminary Treatment

242 Primary Treatment

243 Secondary Treatment

244 Biochemical Oxygen Demand (BOD)
2.45 Chemical Oxygen Demand (COD)
2.4.6 Total Suspended Sclids (TSS)

247 Fecal and Chlorine Residual

248 The Activated Sludge Process (ASP)

vi

e

XXV
XXvi

< (20 - e

10
12
12
13
14
14
18

16
16
16
16
17
18
18
19

21
22
23
24
24
24
25
25

26
26
26
26

2.4.81 The Aeration Tank 27

2.4.8.2 The Sedimentation Tank 27
2.4.8.3 Mixed Liquor Suspended Solids (MLSS) 27
2.4.8.4 Mixed Liquor Volatile Suspended Solids (MLVSS) 28
2.4.8.5 Food-to-microorganism ratio 23
2488 Hydraulic Retention Time 28
2.4.8.7 Sludge Age 28
24.38.8 Biological Nutrient Removal 28
2.5 Disturbances to the Wastewater Treatment Process 31
2.6 Influent Wastewater Characterization a3
261 Chemical oxygen demand (COD) components in the UCT model 33
2.6.2 Nitrogen components in the UCT model 35
28.3 Influent Wastewater Characterization Summary 37
2.7 Summary of the chapter 37

CHAPTER THREE: NEURAL NETWORKS BACKGROUND

3.1 Introduction 39
3.2 Artificial Neural Networks 40
3.3 A brief history of neural networks 40
34 Network Architecture {Topology) 43
3.5 Activation functions 44
3.6 Neural Network Training / Learning 48
3.7 The Perceptron Learning Rule 48
3.8 The Least Mean Square Algorithm 49
3.8 The Backpropagation Training Algorithm 50
3.8.1 Limitations of the Backpropagation Training Algorithm 51
3.8.2 Heuristic Improvements to the Backpropagation Algorithm 52
3.10 Generalization 53
3.10.1 Overfitting and underfitting 53
3.10.2 Early stopping 58
3.10.3 Regularization 57
3.1 Neural Network Positive Characteristics . 57
3.12 Application Areas of Neural Networks 58
3.13 Neural Networks structures for use in prediction 58
3.14 Summary of the Chapter 58

CHAPTER FOUR: DATA PRE-PROCESSING FOR SUPERVISED LEARNING

41 - Introduction 61
. 4.2 Data description 62
43 - Data selection 66
4.4 Data preprocessing 67
4.41 Missing data 67
4.4.2 The curse of dimensionality . ‘ 69
443 Correlation 70
4.4.4 Principal Component Analysis 73
445 Normalization (scaling) 73
446 Trends 74
4.4.7 Seasonality 74
4.4.8 Circular discontinuity 75
4.4.9 Outliers and data rejection 77
4.5 Data post-processing ‘ 81

4.6 Summary of the chapter 81

vii

CHAPTER FIVE: APPLICATION OF NEURAL NETWORKS FOR INFLUENT
DISTURBANCES PREDICTION

5.1 Introduction 83
5.2 The Multilayer Feed-forward Model 84
5.2.1 Feed-forward Multilayer Neural Network Implementation Criteria 86
5.2.1.1 Input selection 86
5212 Length and selection of training and validation sets of data 87
5.21.3 Activation Function 88
5214 Error criterion 89
5.2.1.5 Number of hidden layers and hidden neurons 20
5.21.6 Number of epochs 92
5.2.1.7 Weight and bias initialisation 92
5.21.8 Training Method 93
5219 Learning rate 93
5.2.1.10 Gradient method 93
5.2.1.11 Training Stopping criterion 96
5.2.1.12 Performance measurement 97
53 The Elman Recurrent Neural Network Model 98
5.3.1 Elman Recurrent Neural Network Implementation Criteria 99
5.3.1.1 Input selection 89
5.3.1.2 Length and selection of training and validation sets 100
5.3.1.3 Activation Function 100
53.1.4 Error criterion v 100
5.3.1.5 Number of hidden layers and hidden neurons 100
5.3.1.6 Number of epochs 100
5.3.1.7 Weight and bias initialisation 100
5.3.1.8 Training Method 100
6.3.1.9 Learning rate 100
5.3.1.10 Gradient method 101
5.3.1.11 Training Stopping criterion 101
8.3.1.12 Performance measurement 101
§.4. The Radial Basis Function Neural Network Model , 10
5.4.1. Radial Basis Function Neural Network Implementation Criteria 103
5411 input selection 103
5.4.1.2 Length and selection of training and validation sets 103
5.4.1.3 Activation Function 103
54.1.4 Error criterion 103
5.4.1.5 Number of hidden layers 103
§.4.1.6 Number of epochs and hidden neurons 104
54.1.7 Weight and bias initialisation 104
5.4.1.8 Error goal 104
54.1.9 Spread constant 104
5.4.1.10 Training Stopping criterion 104
5.4.1.11 Performance measurement 104
55 Comparison of the advantages and disadvantages of the MLP and 104
RBFNN
5.6 Software implementation 105

5.7 Summary of the chapter 105

viii

CHAPTER SIX: RESULTS

6.1
6.2
6.2.1
6.2.2
6.2.3
6.2.4
6.2.5
6.2.6
6.2.7
6.2.8
6.2.9
6.2.10
6.2.11
6.2.12
6.2.13
6.3
6.3.1
6.3.2
6.3.3
6.3.4
6.3.5
6.3.6
6.3.7
6.3.8
6.3.9
6.2.10
6.3.11
6.3.12
6.3.13
6.4
6.4.1
6.4.2
6.4.3
6.4.4
6.4.5
6.4.6
6.4.7
6.4.8
6.4.9

6.4.10

6.4.11
6.4.12
6.4.13
6.5

6.5.1
6.5.2
6.5.3
6.5.4
6.5.5
6.6

6.6.1
6.6.2
6.6.3
6.6.4

Introduction

COD Neural Network Results
COD Neural Network MODEL 1
COD Neural Network MODEL 2
COD Neural Network MODEL 3
COD Neural Network MODEL 4
COD Neural Network MODEL 5
COD Neural Network MODEL 6
COD Neural Network MODEL 7
COD Neural Network MODEL 8
COD Neural Network MODEL 9
COD Neural Network MODEL 10
COD Neural Network MODEL 11
COD Neural Network MODEL 12
COD Neural Network MODEL 13
TKN Neural Network Resuits
TKN Neural Network MODEL 1
THKN Neural Network MODEL 2
TKN Neural Network MODEL 3
TKN Neural Network MODEL 4
TKN Neural Network MODEL 5
TKN Neural Network MODEL 6
TKN Neural Network MODEL 7
TKN Neural Network MODEL 8
TKN Neural Network MODEL 9
TKN Neural Network MODEL 10
TKN Neura!l Network MODEL 11
TKN Neurai Network MODEL 12
TKN Neural Network MODEL 13
FLOW Neural Network Resuits
FLOW Neural Network MODEL 1
FLOW Neural Network MODEL 2
FLOW Neural Network MODEL 3-
FLOW Neural Network MODEL 4
FLOW Neural Network MODEL 5
FLOW Neural Network MODEL §
FLOW Neural Network MODEL 7
FL.OW Neural Network MODEL. 8
FL.OW Neural Network MODEL 8
FLLOW Neural Network MODEL 10
FLOW Neural Network MODEL 11
FLLOW Neural Network MODEL 12
FLOW Neural Network MODEL 13

Investigation of the variation of the structure of the NNs and the |

training process

The effect of increasing the number of hidden neurons
The effect of increasing the number of epochs

The effect of increasing the number of hidden layers

The effect of training to convergence

The training time when using different training algorithms

Discussion of results
COD NN results

TKN NN resulis
FLOW NN results

Variation of the NN structures resuits

ix

106
106
108
117
120
123
126
129
132
135
138
141
144
147
150
153
153
162
165
168
171
174
177
180
183
186
189
192
195
198
198
207
210
213
216
219
222
225
228
231
234
237
240
243

243
244
246
248
248
251
251
252
253
254

8.7 Summary of the chapter 255

CHAPTER SEVEN: REAL-TIME IMPLEMENTATION

7.1 Introduction 2586
7.2 Pilot plant and control system 2586
7.3 Raw plant and weather data conversion : 256
74 SCADA system 258
7.5 Programmabile Logic Controlier (PLC) system 260
7.6 MySQL Database 261
1.7 Neural Network Software algorithms ' 263
7.8 Real-time implementation algorithm 268
7.841 NN retuning and calculation of the new predicted values if COD, 288
TKN, Flow rate :
7.8.2 Calculation of the inflow COD and TKN components 268
7.9 Summary of the chapter 259

CHAPTER EIGHT: CONCLUSION AND FUTURE DIRECTION OF RESEARCH

8.1 Conclusion 270

8.2 Thesis results and application of the resuits 272
8.3 Application of the obtained results 273
8.4 Future research 274
8.4.1 Publications related to the thesis 274

REFERENCES : 321

LIST OF FIGURES

Figure 1.1: A Block Diagram of the Biological Wastewater Treatment Process
Figure 1.2: Three-layer cantral strategy for adaptive optimal control of the
ASP

Figure 1. 1:Feed-forward-feedback control system for DO control

Figure 1. 2: Figure illustrating that the dependence between the weather and
season {month) is a type of dynamic “black box”

Figure 1. 3: Connection between the process model and the mfiuent
disturbances model

Figure 2. 1: A The Activated Sludge Process with Exiended Aeration

Figure 2. 2: The Activated Sludge Process with Pre-Denitrification

Figure 2. 3: The technological structure for the Athlone WWTP based on the
UCT model

Figure 2. 4: Dynamics of the influent disturbances for the Athlone WWT Plant
Figure 2. 5: COD components in the influent for the UCT model

Figure 2. 6: Nitrogen components in the influent for the UCT model

Figure 3. 1: Structure of the brain and the biological neuron

Figure 3. 2: Structure of an artificial neuron

Figure 3. 3: A ciassification problem illustrating linear separable classes
Figure 3. 4: Feed-forward Neural Network

Figure 3. 5: Recurrent Neural Network

Figure 3. 6: Binary (Thresholid) Activation function

Figure 3. 7: Bipolar Binary (Threshold) Activation function

Figure 3. 8: Logistic Sigmoid Activation function

Figure 3. 9: Hyperbolic Tangent Activation function

Figure 3. 10: Pure linear Activation function

Figure 3. 11: Radial Basis Activation function

Figure 3. 12: The Learning algorithm could get stuck in a local minima
Figure 3. 13: An example of overfitting of a noisy sine wave {Demuth, et al,
2004)

Figure 3. 14: Training error and generalization error

Figure 3. 15: Early Stopping Method plofting the training, validation and test
sets

Figure 3. 16: Neural network structure for prediction apphcatnons where the
inputs are time-delayed a number of steps

Figure 4. 1: Block diagram illustration of the use of data pre-processing and
post-processing with a neural network (Adapted from Bishop (1395})

Figure 4. 2: An aerial view of the Athlone Wastewater Treatment Plant
Figure 4. 3: Chemical Oxygen Demand {COD) time series data: 1992- 2005
Figure 4. 4: Total Kjeldahl Nitrogen (TKN) time series data: 1892- 2005
Figure 4. 5: Flow rate time series data: 1992- 2005

Figure 4. 6: Maximum Temperature time series data: 1992- 2005

Figure 4. 7: Minimum Temperature time series data: 1992- 2005

Figure 4. 8: Rainfall time series data: 1992- 2005

Figure 4. 9: Wind Speed time series data: 1992- 2005

Figure 4. 10: Circularity discontinuity: Diagram illustrating the approach
used in presenting data of a circular nature to the neural network

Figure 4. 11: Histogram plots are useful for data rejection rather than
automated outlier rejection algorithms. The above figure shows the
histogram plot of the COD variable

Figure 4. 12: Histogram plot of the TKN

Figure 4. 13: Histogram plot of the Flow rate

Figure 4. 14: Histogram piot of the Minimum temperature

Figure 4. 15: Histogram plot of the Maximum temperature

Figure 4.15: Histogram plot of the Rainfall

Figure 4. 16: Histogram plot of the Wind speed

OCONODNDBWN-2ON

Xi

10
11

11

27
31
31

32
34
36
39
41
42
44
44
45
45
46
46
47
47
52
54

55
56

58
62

63
64
64
65
65
65
66

78

78

78
78
79
78
79
80

Figure 4. 17: A summary of the pre-processing techniques implemented on
the plant and weather data

Figure 5. 1: The Muitilayer Perceptron Neural Network for prediction of an
input disturbance

Figure 5. 2: The model of a neuron for the Multilayer Feed-forward Neural
Network

Figure 5. 3: Neural Network model describing the inflow characteristics on
the basis of environmental factors .

Figure 5. 4: Calculating the number of hidden layer neurons using a pyramid
approach (Masters, 19393}

Figure 5. 5: The Engine benchmark problem illustrating the convergence
speed for the different training algorithms

Figure 5. 6: The Elman Recurrent Neural Network for prediction of an input
disturbance

Figure 5. 7: The model of a neuron for the Elman Recurrent Neural Network
Figure 5. 8: The Radial Basis Neural Network for prediction of an input
disturbance

Figure 5. 9: The model of a neuron for the Radial Basis Neural Network
Figure 6. 1: {a}) MLP Feed-forward NN Model 1 with 1 input, 1 hidden layer, 1
hidden neuron and 1 output neuron; and (b) Block Diagram for the COD
RBFNN Model 1 with 1 input, 4 hidden neurons

Figure 6. 2: Training error versus the number of epochs for COD: (a) MLP
FFNN Model 1 with 1 hidden neuron, 500 epochs; (b) ERNN Model 1 with 1
hidden neuron, 500 epochs; and {c) RBFNN Model 1 with 4 hidden neurons, 4
epochs

Figure 6. 3: A scatter-plot of the training input data and the NN response with
the application of the training set for the COD: {(a) MLP FFNN Modei 1 with 1
hidden neuron, 500 epochs; (b) ERNN Model 1 with 1 hidden neuron, 500
epochs; and {¢) RBFNN Model 1 with 4 hidden neurons, 4 epochs

Figure 6. 4: A scatter-plot of the test (validation) data and the NN response
with the application of the test set for the COD: (a) FFNN Model 1 with 1
hidden neuron, 500 epochs; (b) ERNN Model 1 with 1 hidden neuron, 500
epochs; and {c) RBFNN Model 1 with 4 hidden neurons, 4 epochs |

Figure 6. 5: Network performance showing the linear regression (correlation)
coefficients for training data (normalized) on the left, and the validation data
set {denormalized) on the right for the COD: (a) ML.LP FFNN Mode! 1 with 1
hidden neuron and 500 epochs; (b) ERNN Model 1 with 1 hidden neuron, 560
epochs; and (c) RBFNN Model 1 with 4 hidden neurons, 4 epochs, where A
and T are the NN output and desired target output respectively

Figure 6. 6: The instantaneous error across the entire validation data set for
the COD: (a) MLP FFNN Model 1 with 1 hidden neuron and 500 epochs; (b)
ERNN Model 1 with 1 hidden neuron, 500 epochs; and {¢) RBFNN Model 1
with 4 hidden neurons, 4 epochs

Figure 6. 7: The NN response to the application of the test (validation) data
set for COD: (a) MLP FFNN Model 1 with 1 hidden neuron and 5§00 epochs; (b)
ERNN Model 1 with 1 hidden neuron, 500 epochs; and (c) RBFNN Model 1
with 4 hidden neurons, 4 epochs

Figure 6. 8: {a) A MLP Feed-forward neural network Model 2 with 2 inputs, 1
hidden layer, 1 hidden neuron and 1 output neuron; (b) Block Diagram for the
COD RBFNN Model 2 with 34 hidden neurons

Figure 6. 9: The NN response to the application of the test {validation) data
set for COD: (a) MLP FFNN Model 2 with 1 hidden neuron and 500 epochs; (b)
ERNN Mode! 2 with 10 hidden neurons, 500 epochs; and {¢) RBFNN Model 2
with 34 hidden neurons, 34 epochs

Figure 6. 10: {a) A MLP Feed-forward neural network Model 3 with 3 inputs, 1
hidden layer, 1 hidden neuron and 1 output neuron; and {b) Block Diagram
for the COD RBFNN Mode! 3 with 2 hidden neurons, 2 epochs

xii

81
85
85
87
91
95
89

98
102

102

107

110

111

112

113

114

116

117

118

120

Figure 6. 11: The NN response to the application of the test {validation) data
set for COD: (a) MLLP FFNN Model 3 with 1 hidden neuron and 500 epochs; (b)
ERNN Nodel 3 with 1 hidden neuron, 500 epochs; and {(¢) RBFNN Model 3
with 2 hidden neurons, 2 epochs

Figure 6. 12: {a) A MLP Feed-forward neural network Model 4 with 4 inputs, 1
hidden layer, 1 hidden neuron and 1 output neuron; and (b) Block Diagram
for the COD RBFNN Model 4 with 2 hidden neurons, 2 epochs ‘
Figure 6. 13: The NN response to the application of the test {validation) data
set for COD: {(a) MLP FFNN Model 4 with 1 hidden neuron and 1000 epochs;
{b) ERNN Model 4 with 1 hidden neuron, 500 epochs; and (¢} RBFNN Model 4
with 2 hidden neurons, 2 epochs

Figure 6. 14: {a) A MLP Feed-forward neural network Model 5 with 5 inputs, 1
hidden layer, 1 hidden neuron and 1 output neuron; and (b} Block Diagram
for the COD RBFNN Model 5 with 3 hidden neurons, 3 epochs

Figure 6. 15: The NN response to the application of the test (validation) data
set for COD: (a} MLP FFNN Model 5 with 5 hidden neurons and 500 epochs;
(b} ERNN Model 5 with 1 hidden neuron, 500 epochs; and {¢) RBFNN Model 5
with 3 hidden neurons, 3 epochs

Figure 6. 16: {a) A MLP Feed-forward neural network Model 6 with 6 inputs, 1
hidden layer, 1 hidden neuron and 1 output neuron; and (b) Block Diagram
for the COD RBFNN Model 6 with 4 hidden neurons, 4 epochs

Figure 6. 17: The NN response to the application of the test (validation) data
set for COD: (a) MLLP FFNN Model 6 with 1 hidden neuron and 500 epochs; (b)
ERNN Model 6 with 1 hidden neuron, 500 epochs; and (¢) RBFNN Model 6
with 4 hidden neurons, 4 epochs

Figure 6. 18: {a) A MLP Feed-forward neural network Mode! 7 with 8 inputs, 1
hidden layer, 1 hidden neuron and 1 output neuron; and (b} Block Diagram
for the COD RBFNN Model 7 with 19 hidden neurons, 19 epochs

Figure 6. 19: The NN response to the application of the test (validation) data
set for COD: {a) MLP FFNN Model 7 with 5 hidden neurons and 1000 epochs;
{b) ERNN Model 7 with 5 hidden neurons, 1000 epochs; and (¢} RBFNN Model
7 with 19 hidden neurons, 19 epochs

Figure 6. 20: (a) A MLP Feed-forward neural network Model 8 with 8 inputs, 1
hidden layer, 1 hidden neuron and 1 output neuron; and (b) Block Diagram
for the COD RBFNN Model 8 with 25 hidden neurons, 25 epochs

Figure 6. 21: The NN response to the application of the test {validation) data
set for COD: {a) MLP FFNN Model 8 with 1 hidden neuron and 500 epochs; (b)
ERNN Model 8 with 5 hidden neurons, 500 epochs; and {¢) RBFNN Model 8
with 25 hidden neurons, 25 epochs

Figure 6. 22: (a} A MLP Feed-forward neural network Model 8 with 9 inputs, 1
hidden layer, 1 hidden neuron and 1 output neuron; and (b) Block Diagram
for the COD RBFNN Model 9 with 18 hidden neurons, 18 epochs

Figure 6. 23: The NN response to the application of the test (validation) data
set for COD: {a) MLP FFNN Modei 9 with 1 hidden neuron and 520 epochs; (b)
ERNN Model 9 with 1 hidden neuron, 500 epochs; and (c) RBFNN Model 8
with 18 hidden neurons, 18 epochs

Figure 6. 24: (a) A MLP Feed-forward neural network Model 10 with 9 inputs,
1 hidden layer, 1 hidden neuron and 1 output neuron; and (b) Block Diagram
for the COD RBFNN Model 10 with 20 hidden neurons, 20 epochs

Figure 6. 25: The NN response to the application of the test (validation) data
set for COD: (a) MLP FFNN Model 10 with 5§ hidden neuron and 1000 epochs;
{b) ERNN Model 10 with 1 hidden neuron, 500 epochs; and (c) RBFNN Model
10 with 20 hidden neurons, 20 epochs ,

Figure 6. 26: {a) A MLP Feed-forward neural network Model 11 with 10
inputs, 1 hidden layer, 1 hidden neuron and 1 output neuron; and (b) Block
Diagram for the COD RBFNN Model 11 with 19 hidden neurons, 19 epochs
Figure 6. 27: The NN response to the application of the test (validation) data

xiii

121

123

124

126

127

129

130

132

133

138

136

138

139

141

142

144

145

set for COD: {(a) MLP FFNN Model 11 with 10 hidden neurons and 500
epochs; {(b) ERNN Model 11 with 5 hidden neurons, 500 epochs; and (c)
RBFNN Model 11 with 19 hidden neurons, 19 epochs

Figure 6. 28: (a) A MLP Feed-forward neural network Model 12 with 11
inputs, 1 hidden layer, 1 hidden neuron and 1 output neuron; and (b) Block
Diagram for the COD RBFNN Model 12 with 25 hidden neurons, 25 epochs
Figure 6. 29: The NN response 1o the application of the test (validation) data
set for COD: {(a) MLP FFNN Model 12 with 1 hidden neuron and 500 epochs;
{b) ERNN Model 12 with 1 hidden neuron, 500 epochs; and (c) RBFNN Model
12 with 25 hidden neurons, 25 epochs

Figure 6. 30: {a) A MLP Feed-forward neural network Modei 13 with 9 inputs,
1 hidden layer, 1 hidden neuron and 1 cutput neuron; and {b) Block Diagram
for the COD RBFNN Model 13 with 4 hidden neurons, 4 epochs

Figure 6. 31: The NN response to the application of the test (validation) data
set for COD: (a) MLP FFNN Model 13 with 1 hidden neuron and 1000 epochs;
{b) ERNN Model 13 with 1 hidden neuron, 1000 epochs; and {c) RBFNN Model
13 with 4 hidden neurons, 4 epochs

Figure 6. 32: {(a) MLP Feed-forward NN Model 1 with 1 input, 1 hidden layer, 1
hidden neuron and 1 output neuron; and (b) Block Diagram for the TKN
RBFNN Model 1 with 1 input, 6 hidden neurons

Figure 6. 33: Training error versus the number of epochs for TKN: {a) MLP
FFNN Model 1 with 1 hidden neuron, 500 epochs; {b) ERNN Model 1 with 5§
hidden neuron, 800 epochs; and {¢) RBFNN Model 1 with 6 hidden neurons, 6
epochs

Figure 6. 34: A scatter-plot of the training input data and the NN response
with the application of the training set for the TKN: {a) MLP FFNN Model 1
with 1 hidden neuron, 500 epochs; (b) ERNN Model 1 with 5 hidden neurons,
500 epochs; and (c) RBFNN Model 1 with 6 hidden neurons, 6 epochs

Figure 6. 35: A scatter-plot of the test (validation) data and the NN response
with the application of the test set for the TKN: (a) MLP FFNN Model 1 with 1
hidden neuron, 500 epochs; {b) ERNN Model 1 with 5 hidden neurons, 500
epochs; and {c¢) RBFNN Model 1 with 6 hidden neurons, 6 epochs

Figure 6. 36: Network performance showing the linear regression
(correlation) coefficients for training data (normalized) on the left, and the
validation data set (denormalized) on the right for the TKN: (a) MLP FFNN
Model 1 with 1 hidden neuron and 500 epochs; (b) ERNN Model 1 with 5
hidden neurons, 500 epochs; and {¢) RBFNN Model 1 with 6 hidden neurons,
6 epochs, where A and T are the NN output and desired target output
respectively

Figure 6. 37: The instantaneous error across the entire validation data set for
the TKN: (a) MLP FFNN Model 1 with 1 hidden neuron and 500 epochs; (b)
ERNN Model 1 with 5§ hidden neurons, 500 epochs; and {¢) RBFNN Model 1
with 6 hidden neurons, 6 epochs

Figure 6. 38: The NN response to the application of the test (validation) data
set for TKN: {a) MLP FFNN Mode! 1 with 1 hidden neuron and 500 epochs; (b)
ERNN Mode! 1 with 5 hidden neurons, 500 epochs; and (c) RBFNN Model 1
with 6 hidden neurons, 6 epochs

Figure 6. 39: (a) A MLP Feed-forward neural network Model 2 with 2 inputs, 1
hidden layer, 1 hidden neuron and 1 output neuron; (b) Block Diagram for the
TKN RBFNN Model 2 with 2 hidden neurons

Figure 6. 40: The NN response to the application of the test (validation) data
set for TKN: (a) MLP FFNN Model 2 with 1 hidden neuron and 500 epochs; (b)
ERNN Model 2 with 10 hidden neurons, 500 epochs; and {¢) RBFNN Model 2
with 2 hidden neurons, 2 epochs

Figure 6. 41: {a) A MLP Feed-forward neural network Model 3 with 3 inputs, 1
hidden layer, 1 hidden neuron and 1 output neuron; and (b) Block Diagram
for the TKN RBFNN Modei] 3 with 2 hidden neurons, 2 epochs

Xiv

147

148

150

151

153

155

156

167

158

169

161

162

163

165

Figure 6. 42: The NN response to the application of the test (validation) data
set for TKN: {a) MLP FFNN Model 3 with 5 hidden neurons and 1000 epochs;
{b) ERNN Model 3 with 1 hidden neuron, 500 epochs; and {c) RBFNN Model 3
with 2 hidden neurons, 2 epochs

Figure 6. 43: (2) A MLP Feed-forward neural network Model 4 with 4 inputs, 1
hidden layer, 1 hidden neuron and 1 output neuron; and (b) Block Diagram
for the TKN RBFNN Model 4 with 2 hidden neurons, 2 epochs

Figure 6. 44: The NN response to the application of the test (validation) data
set for TKN: (a) MLP FFNN Model 4 with 10 hidden neurons and 500 epochs;
{b) ERNN Model 4 with 1 hidden neuron, 500 epochs; and {c) RBFNN Model 4
with 2 hidden neurons, 2 epochs

Figure 6. 45: (a) A MLP Feed-forward neural network Model 5 with 5 inputs, 1
hidden layer, 1 hidden neuron and 1 output neuron; and (b) Block Diagram
for the TKN RBFNN Model 5 with 5 hidden neurons, 5 epochs

Figure 6. 46: The NN response to the application of the test (validation) data
set for TKN: (a) MLP FFNN Model 5 with 1 hidden neuron and 500 epochs; (b}
ERNN Model 5 with 1 hidden neuron, 500 epochs; and (¢) RBFNN Model 5
with 5 hidden neurons, 5 epochs

Figure 6. 47: {a) A MLP Feed-forward neural network Model 6 with 6 inputs, 1
hidden layer, 1 hidden neuron and 1 output neuron; and (b) Block Diagram
for the TKN RBFNN Model 6 with § hidden neurons, 9 epochs

Figure 6. 48: The NN response to the application of the test (validation) data
set for TKN: (a) MLP FFNN Model 8 with 1 hidden neuron and 500 epochs; {b)
ERNN Model 6 with 1 hidden neuron, 500 epochs; and {¢) RBFNN Model 6
with 9 hidden neurons, 9 epochs

Figure 6. 49: (a) A MLP Feed-forward neural network Model 7 with 8 inputs, 1
hidden layer, 1 hidden neuron and 1 output neuron; and (b} Block Diagram
for the COD RBFNN Model 7 with 17 hidden neurons, 17 epochs

Figure 6. 50: The NN response to the application of the test (validation) data
set for TKN: (a) MLP FFNN Model 7 with 1 hidden neuron and 500 epochs; (b)
ERNN Model 7 with 5 hidden neurons, 1000 epochs; and (¢} RBFNN Mode! 7
with 17 hidden neurons, 17 epochs

Figure 6. 51: (2) A MLP Feed-forward neural network Model 8 with 9 inputs, 1
hidden layer, 1 hidden neuron and 1 output neuron; and {b) Block Diagram
for the TKN RBFNN Model 8 with 17 hidden neurons, 17 epochs

Figure 6. 52: The NN response to the application of the test {validation) data
set for TKN: (a) MLP FFNN Model 8 with 1 hidden neuron and 500 epochs; (b)
ERNN Model 8 with 5 hidden neurons, 500 epochs; and (¢) RBFNN Model 8
with 17 hidden neurons, 17 epochs

Figure 6. 53: (a) A MLP Feed-forward neural network Model 9 with 9 inputs, 1
hidden layer, 1 hidden neuron and 1 output neuron; and (b} Block Diagram
for the TKN RBFNN Model 8 with 19 hidden neurons, 19 epochs

Figure 6. 54: The NN response to the application of the test (validation) data
set for TKN: (a) MLLP FFNN Model 9 with 1 hidden neuron and 1000 epochs;
{b) ERNN Model 9 with 1 hidden neuron, 500 epochs; and {c) RBFNN Model 9
with 19 hidden neurons, 19 epochs

Figure 6. 55: (a) A MLP Feed-forward neural network Model 10 with 9 inputs,
1 hidden layer, 1 hidden neuron and 1 output neuron; and (b) Block Diagram
for the TKN RBFNN Model 10 with 16 hidden neurons, 16 epochs

Figure 6. 56: The NN response to the application of the test {validation) data
set for TKN: {a) MLP FFNN Model 10 with 1 hidden neuron and 1000 epochs;
{b) ERNN Model 10 with 1 hidden neuron, 500 epochs; and {c) RBFNN Model
10 with 16 hidden neurons, 16 epochs ,

Figure 6. 57: {a) A MLP Feed-forward neural network Model 11 with 10
inputs, 1 hidden layer, 1 hidden neuron and 1 output neuron; and (b) Block
Diagram for the TKN RBFNN Model 11 with 24 hidden neurons, 24 epochs
Figure 6. 58: The NN response to the application of the test (validation) data

XV

166

168

169

171

172

174

175

177

178

180

181

183

184

186

187

189

180

set for TKN: (a) MLP FFNN Model 11 with 1 hidden neuron and 1000 epochs;
193(b) ERNN Model 11 with 5 hidden neurons, 500 epochs; and {c) RBFNN
Model 11 with 24 hidden neurons, 24 epochs

Figure 6. 59: (a) A MLP Feed-forward neural network Model! 12 with 11
inputs, 1 hidden layer, 1 hidden neuron and 1 output neuron; and (b) Biock
Diagram for the TKN RBFNN Model 12 with 18 hidden neurons, 18 epochs
Figure 6. 60: The NN response to the application of the test (validation) data
set for TKN: (a) MLP FFNN Model 12 with 5 hidden neurons and 500 epochs;
(b) ERNN Model 12 with 1 hidden neuron, 500 epochs; and {c) RBFNN Model
12 with 18 hidden neurons, 18 epochs

Figure 6. 61: {a) A MLP Feed-forward neural network Model 13 with 8 inputs,
1 hidden layer, 1 hidden neuron and 1 output neuron; and {b) Block Diagram
for the TKN RBFNN Model 13 with 14 hidden neurons, 14 epochs

Figure 6. 62: The NN response to the application of the test (validation) data
set for TKN: (a) MLP FFNN Model 13 with 1 hidden neuron and 1000 epochs;
{b) ERNN Model 13 with 1 hidden neuron, 1000 epochs; and {(c) RBFNN Model
13 with 14 hidden neurons, 14 epochs

Figure 6. 63: (a) MLP Feed-forward NN Model 1 with 1 input, 1 hidden layer, 1
hidden neuron and 1 output neuron; and (b) Block Diagram for the FLOW
RBFNN Model 1 with 1 input, 6 hidden neurons

Figure 6. 64: Training error versus the number of epochs for FLOW: (a) MLP
FFNN Model 1 with 1 hidden neuron, 309 epochs; {b) ERNN Model 1 with 5
hidden neuron, 500 epochs; and (¢} RBFNN Model 1 with 7 hidden neurons, 7
epochs

Figure 6. 65: A scatter-plot of the training input data and the NN response
with the application of the training set for the FLOW: (a) MLLP FFNN Model 1
with 1 hidden neuron, 309 epochs; (b) ERNN Model 1 with 5 hidden neurons,
500 epochs; and (c} RBFNN Model 1 with 7 hidden neurons, 7 epochs

Figure 6. 66: A scatter-plot of the test (validation) data and the NN response
with the application of the test set for the FLOW: {(a) MLP FFNN Model 1 with
1 hidden neuron, 309 epochs; (b} ERNN Model 1 with 5 hidden neurons, 500
epochs; and {c) RBFNN Model 1 with 7 hidden neurons, 7 epochs

Figure 6. 67: Network performance showing the linear regression
(correlation) coefficients for training data (hormalized) on the left, and the
validation data set {denormalized) on the right for the FLOW: (a) MLP FFNN
Model 1 with 1 hidden neuron and 309 epochs; (b} ERNN Model 1 with 5
hidden neurons, 500 epochs; and (¢) RBFNN Model 1 with 7 hidden neurons,
7 epochs, where A and T are the NN output and desired target output
respectively

Figure 6. 68: The instantaneous error across the entire validation data set for
the FLOW: {a) MLP FFNN Model 1 with 1 hidden neuron and 500 epochs; (b)
ERNN Mode! 1 with 5 hidden neurons, 309 epochs; and {¢) RBFNN Model 1
with 7 hidden neurons, 7 epochs

Figure 6. 69: The NN response to the application of the test {validation) data
set for FLOW: (a) MLP FFNN Model 1 with 1 hidden neuron and 309 epochs;
{b) ERNN Model 1 with 5 hidden neurons, 500 epochs; and (c} RBFNN Model
1 with 7 hidden neurons, 7 epochs

Figure 6. 70: {a) A MLP Feed-forward neural network Model 2 with 2 inputs, 1
hidden layer, 1 hidden neuron and 1 output neuron; (b) Block Diagram for the
FLOW RBFNN Model 2 with 3 hidden neurons

Figure 6. 71: The NN response to the application of the test (validation) data
set for FLOW: (a) MLP FFNN Model 2 with 5 hidden neurons and 1000
epochs; (b) ERNN Model 2 with 10 hidden neurons, 1000 epochs; and (c)
RBFNN Model 2 with 3 hidden neurons, 3 epochs

Figure 6. 72: {(a) A MLP Feed-forward neural network Model 3 with 3 inputs, 1
hidden layer, 1 hidden neuron and 1 output neuron; and (b) Block Diagram
for the FLOW RBFNN Model 3 with 17 hidden neurons, 17 epochs

Xvi

182

193

185

196

188

200

201

202

203

204

206

207

208

210

Figure 6. 73: The NN response to the application of the test {validation) data
set for FLOW: {a) MLP FFNN Model! 3 with 10 hidden neurons and 1000
epochs; {b) ERNN Model 3 with 10 hidden neurons, 1000 epochs; and {c)
RBFNN Model 3 with 17 hidden neurons, 17 epochs

Figure 6. 74: {(a) A MLP Feed-forward neural network Model 4 with 4 inputs, 1
hidden layer, 1 hidden neuron and 1 output neuron; and (b) Block Diagram
for the FLOW RBFNN Model 4 with 35 hidden neurons, 35 epochs

Figure 6. 75: The NN response to the application of the test (validation) data
set for FLOW: (a) MLP FFNN Model 4 with 5 hidden neurons and 500 epochs;
{b) ERNN Model 4 with 5 hidden neurons, 1000 epochs; and {¢) RBFNN Model
4 with 35 hidden neurons, 35 epochs

Figure 6. 76:(a) A MLP Feed-forward neural network Model 5 with 5 inputs, 1
hidden layer, 1 hidden neuron and 1 output neuron; and {b) Block Diagram
for the FLOW RBFNN Model 5 with 22 hidden neurons, 22 epochs

Figure 6. 77: The NN response to the application of the test (validation) data
set for FLOW: (a) MLP FFNN Model 5 with 5 hidden neurons and 1000
epochs; (b) ERNN Model 5 with 5 hidden neurons, 500 epochs; and (c)
RBFNN Model 5 with 22 hidden neurons, 22 epochs

Figure 6. 78: {a) A MLP Feed-forward neural network Model 86 with 8 inputs, 1
hidden layer, 1 hidden neuron and 1 output neuron; and (b) Block Diagram
for the FLOW RBFNN Model 6 with 16 hidden neurons, 16 epochs

Figure 6. 79: The NN response to the application of the test {validation) data
set for FLOW: (a) MLP FFNN Model 6 with 1 hidden neuron and 1000 epochs;
(b) ERNN Model 6 with 1 hidden neuron, 500 epochs; and (c) RBFNN Model 6
with 16 hidden neurons, 16 epochs

Figure 6. 80: {a) A MLP Feed-forward neural network Model 7 with 8 inputs, 1
hidden layer, 1 hidden neuron and 1 output neuron; and (b} Block Diagram
for the FLOW RBFNN Model 7 with 35 hidden neurons, 35 epochs

Figure 6. 81: The NN response to the application of the test (validation) data
set for FLOW: {a) MLP FFNN Model 7 with 1 hidden neuron and 1000 epochs;
() ERNN Model 7 with 1 hidden neuron, 1000 epochs; and {¢} RBFNN Model
7 with 35 hidden neurons, 35 epochs

Figure 6. 82: {a) A MLP Feed-forward neurai network Model 8 with 9 inputs, 1
hidden layer, 1 hidden neuron and 1 output neuron; and {(b) Block Diagram
for the FLOW RBFNN Model 8 with 35 hidden neurons, 35 epochs

Figure 6. 83: The NN response to the application of the test (validation) data
set for FLOW: {(a) MLP FFNN Model 8 with 5 hidden neurons and 500 epochs;
{b) ERNN Model! 8 with 5 hidden neurons, 500 epochs; and (¢} RBFNN Model
8 with 35 hidden neurons, 35 epochs

Figure 6. 84: (a) A MLP Feed-forward neural network Model 8 with 9 inputs, 1
hidden layer, 1 hidden neuron and 1 output neuron; and (b) Block Diagram
for the FLOW RBFNN Nodel 9 with 27 hidden neurons, 27 epochs

Figure 6. 85: The NN response to the application of the test {validation) data
set for FLOW: (a) MLP FFNN Model 8 with 1 hidden neuron and 1000 epochs;
{b) ERNN Model 9 with 1 hidden neuron, 1000 epochs; and {c) RBFNN Model
9 with 27 hidden neurons, 27 epochs

Figure 6. 86: {a) A MLP Feed-forward neural network Model 10 with 9 inputs,
1 hidden layer, 1 hidden neuron and 1 output neuron; and (b) Block Diagram
for the FLOW RBFNN Model 10 with 16 hidden neurons, 16 epochs

Figure 6. 87: The NN response to the application of the test (validation) data
set for FLOW: {(a) MLP FFNN Model 10 with 1 hidden neuron and 500 epochs;
{b) ERNN Model 10 with 1 hidden neuron, 1000 epochs; and (c) RBFNN Model
10 with 27 hidden neurons, 27 epochs ‘

Figure 6. 88: (a) A MLP Feed-forward neural network Model 11 with 10
inputs, 1 hidden layer, 1 hidden neuron and 1 output neuron; and {b) Block
Diagram for the FLOW RBFNN Model 11 with 26 hidden neurons, 26 epochs
Figure 6. 89: The NN response to the application of the test (validation) data

xvii

211

213

214

216

217

219

220

222

223

225

226

228

229

231

232

234

235

set for FLOW: (a) MLP FFNN Model 11 with 1 hidden neuron and 500 epochs;
{b} ERNN Model 11 with 1 hidden neuron, 1000 epochs; and {c} RBFNN Model
11 with 26 hidden neurons, 26 epochs

Figure 6. 90: {a) A MLP Feed-forward neural network Model 12 with 11
inputs, 1 hidden layer, 1 hidden neuron and 1 output neuron; and (b) Block
Diagram for the FLOW RBFNN Mode! 12 with 31 hidden neurons, 31 epochs
Figure 6. 91: The NN response to the application of the test {validation) data
set for FLOW: {a) MLP FFNN Model 12 with 1 hidden neuron and 1000,
epochs; (b) ERNN Model 12 with 1 hidden neuron, 1000 epochs; and {c)

- RBFNN Model 12 with 31 hidden neurons, 31 epochs

Figure 6. 92: (a) A MLP Feed-forward neural network Model 13 with 8 inputs,
1 hidden layer, 1 hidden neuron and 1 output neuron; and {b) Block Diagram
for the FLOW RBFNN Model 13 with 24 hidden neurons, 24 epochs

Figure 6. 93: The NN response to the application of the test (validation) data
set for FLOW: (a) MLP FFNN Model 13 with 1 hidden neuron and 500 epochs;
{b) ERNN Model 13 with 1 hidden neuron, 1000 epochs; and {¢) RBFNN Model
13 with 24 hidden neurons, 24 epochs

Figure 6. 94: The NN response to the application of the test {validation) data
set for TKN ERNN Model 12 with 40 hidden neurons, 1000 epochs, where the
number of neurons is increased: (a) Training phase; (b) Regression
coefficients for training (left) and test phases {right}; and {¢) NN response to
the test set

Figure 6. 95: The NN response to the application of the test {validation) data
set for FLOW MLP FFNN Model 6 with 10 hidden neurons, 5000 epochs,
where the epochs is increased: {(a) Training; (b) Regression coefficients for
training (left) and test phases (right}; and (c) NN response to the test set
Figure 6. 96: The NN response to the application of the test (validation) data
set for COD MLP FFNN Model 12 with 5_5 hidden neurons, 1000 epochs,
where there are 2 hidden layers: {a) Training; (b) Regression coefficients for
training (left) and test phases (right); and {(c¢) NN response to the test set
Figure 6. 97: The NN response to the application of the test (validation) data
set for COD RBFNN Model 7 with 414 hidden neurons, 414 epochs, where the
network is trained to convergence: (a) Training; (b) Performance for training
and test sets; (¢) NN response

Figure 7. 1: The WWT Pilot plant together with the Modicon PLC and
transmitters in the Electrical Engineering Department, CPUT

Figure 7.2: The Dissolved Oxygen transmitter

Figure 7. 3: The structure for the real-time implementation of the influent
disturbances prediction showing the pilot plant, PLC, SCADA system,
MySQL database with plant and weather data, and MATLAB NN algorithms
Figure 7. 4: The SCADA system graphical user interface allows the user to
view real-time plant variables, trend information, enter data in manual mode,
run the neural network software for training and validation, and view and
enter data in the database

Figure 7. 5: The PLC program tc move sensory data from the Conductivity
and DO sensors, from one analogue input register to another holding
register

Figure 7. 6: The MySQL database is shown with the tables with the data for
the Athlone WWTP influent variables and the weather data

Figure 7. 7: The MATLAB GUI for the Neural Network program for prediction
of the influent disturbances

Figure 7. 8: The plots illustrate the training, validation, and NN response to
training validation data, and network performance

Figure 7. 9: The software flow diagram

Figure D. 1: The Modicon PLC l/O Base wiring diagram

Figure D. 1: The Dissolved Oxygen sensor wiring diagram

Figure D. 2: The Dissolved Oxygen transmitter wiring connector

xviii

237

238

240

241

244

245

247

249

257
257
257

259

260

263
264
265
267
307

308
309

Figure D. 3: The pH sensor wiring diagram

Figure D. 5: The Conductivity sensor wiring diagram

Figure E. 1: Load the text file into MS Excel

Figure E. 2: Text Import Wizard step 1

Figure E. 3: Text Import Wizard step 2

Figure E. 4: Weather file in MS Excel format

Figure E. 5: Creating a new database

Figure E. 6: Selecting the menu item for importing the Excel data .
Figure E. 7: Selecting the MS Excel option from the Data Wizard window
Figure E. 8: Selecting the MS Excel file that is to be imported

Figure E. 9: Selecting the database where the MS Excel file is to be imported
Figure E. 10: The Windows Control Panel

Figure E. 11: The Administrative Tools window

Figure E. 12: The ODBC Data Source Administrator Window

Figure E. 13: The Create New Data Source Window

Figure E. 14: The Connector/ODBCAdd Data New Data Source Window
Figure E. 15: The ODBC Data Source Administrator Window showing the new
MySQL driver

LIST OF TABLES (these are numbered according to the chapter in which they appear)

Table 4. 1: The information for the process variables for the Athlone
wastewater treatment plant and weather data

Table 4. 2: The correlation coefficients for the Athlone wastewater treatment
plant data and weather data at the NN input

Table 4. 3: The correlation coefficients for the correlation befween the inputs
and outputs for the three NNs for the different influent variables of COD, TKN
and influent Flow rate

Table 4. 4: The monthly data represented as a 4-bit binary number instead of
a decimal value

Table 4. 5: The monthly data represented as a sine / cosine pair

Table 4. 6: Summary of implemented pre-processing techniques

Table 5. 1: Input variable combinations to the NN with COD as NN output
Table 5. 2: input variable combinations to the NN with TKN as NN output
Table 5. 3: Input variable combinations to the NN with influent FLOW rate as
NN output

Table 5. 4: Training algorithms for use with the MATLAB Neural Network
Toolbox

Table 6. 1: Input variables for COD Model 1

Table 6. 2: Results for the MLP Feed-forward Neural Network Modei 1 with
COD as NN output

Table 6. 3: Results for the EiIman Recurrent Neural Network Model 1 with
COD as NN output

Table 6.4: Results for the Radial Basis Function Neural Network Model 1 with
COD as NN output

Table 6. 5: Input variables for COD Model 2

Table 6. 6: Resuits for the Feed-forward Neural Network Model 2 with COD as
NN output

Table 6. 7: Results for the Elman Recurrent Neural Network Model 2 with
COD as NN output

Table 6. 8: Results for the Radial Basis Function Neural Network Model 2
with COD as NN output

Table 6. 9: input variables for COD Model 3

Table 6. 10: Results for the Feed-forward Neural Network Model 3 with COD
as NN output

Xix

309
310
312
313
313
314
315
315
316
316
317
318
318
319
318
320
320

64
71

72

75
77
80
88
89
80
94

106
109

108
108

117
118

119
119

120
122

Table 6. 11: Results for the Elman Recurrent Neural Network Mode! 3 with
COD as NN output

Table 6. 12: Results for the Radial Basis Function Neural Network Model 3
with COD as NN ocutput

Table 6. 13: Input variables for COD Model 4

Table 6. 14: Results for the Feed-forward Neural Network Model 4 with COD
as output

Table 6. 15: Results for the Eiman Recurrent Neural Network Model 4 with
COD as output

Table 6. 16: Resuits for the Radial Basis Function Neural Network Model 4
with COD as output

Table 6. 17: Input variables for COD Model 5

Table 6. 18; Results for the Feed-forward Neural Network Mode! 5 with COD
as output

Table 6. 19: Results for the Eiman Recurrent Neural Network Model 5 with
COD as output

Table 6. 20: Results for the Radial Basis Function Neural Network Model 5
with COD as output

Table 6. 21: Input variables for COD Model 6

Table 6. 22: Results for the Feed-forward Neural Network Model 8 with COD
as output

Table 6. 23: Results for the Elman Recurrent Neural Network Model 8 with
COD as output

Table 6. 24: Resuits for the Radial Basis Function Neural Network Model &
with COD as output

Table 6. 25: Input variables for COD Model 7

Table 6. 26: Results for the Feed-forward Neural Network Model 7 with COD
as output

Table 6. 27: Results for the Radia! Basis Function Neural Network Model 7
with COD as output

Table 6. 28: Results for the Elman Recurrent Neural Network Model 7 with
COD as output

Table 6. 29: Input variables for COD Model 8

Table 6. 30: Results for the Feed-forward Neural Network Model 8 with COD
as output

Table 6. 31: Results for the Elman Recurrent Neural Network Model 8 with
COD as output

Table 6. 32: : Resuits for the Radial Basis Function Neural Network Model 8
with COD as output

Table 6. 33: input variables for COD Model 9

Table 6. 34: Results for the Feed-forward Neural Network Model 9 with COD
as output

Table 6. 35: Results for the Elman Recurrent Neural Network Model 8 with
COD as output

Table 6. 36: Results for the Radial Basis Function Neural Network Model 9
with COD as output

Table 6. 37: input variables for COD Modei 10

Table 6. 38: Results for the Feed-forward Neural Network Model 10 with COD
as output

Table 6. 39: Resuits for the Elman Recurrent Neural Network Model 10 with
COD as output

Table 6. 40: Results for the Radial Basis Function Neural Network Model 10
with COD as output

Table 6. 41: input variables for COD Model 1

Table 6. 42: Results for the Feed-forward Neural Network Model 11 with COD
as output

Table 6. 43: Results for the Elman Recurrent Neural Network Model 11 with

122
122

123
125

125
125

128
128

128
128

129

131
131
131

132
134

134
134

135
137

137
137

138
140

140
140

141
143

143
143

144
146

146

COD as output

Table 6. 44: Results for the Radial Basis Function Neural Network Model 11
with COD as output

Table 6. 45: Input variables for COD Model 12

Table 6. 46: Results for the Feed-forward Neural Network Mode! 12 with COD
as output

Table 6. 47: Results for the Eiman Recurrent Neural Network Model 12 with
COD as output

Table 6. 48: Results for the Radial Basis Function Neural Network Mode! 12
with COD as output

Table 6. 49: Input variables for COD Model 13

Table 6. 50: Resuits for the Feed-forward Neural Network Model 13 with COD
as output

Table 6. 51: Results for the Elman Recurrent Neural Network Model 13 with
COD as output

Table 6. 52: Results for the Radial Basis Function Neural Network Model 13
with COD as output

Table 6.53: Input variables for TKN Model 1

Table 6.54: Resulis for the Feed-forward Neural Network Model 1 with TKN as
output

Table 6.55: Resuits for the Eiman Recurrent Neural Network Model 1 with
TKN as output

Table 6. 56: Results for the Radial Basis Function Neural Network Modei 1
with TKN as output

Table 6. 57: Input variables for TKN Model 2

Table 6. 58: Resuits for the Feed-forward Neural Network Mode! 2 with TKN
as output

Table 6. 59: Results for the Elman Recurrent Neural Network Model 2 with
TKN as output

Table 6. 60: Results for the Radial Basis Function Neural Network Model 2
with TKN as ouiput

Table 6. 61: Input variables for TKN Model 3

Table 6. 62: Results for the Feed-forward Neural Network Model 3 with TKN
as output

Table 6. 63: Resulits for Elman Recurrent Neural Network Model 3 with TKN
as output

Table 6. 64: Results for the Radial Basis Function Neural Network Mode! 3
with TKN as output

Table 6. 65: input variables for TKN Model 4

Table 6. 66: Results for the Feed-forward Neural Network Model 4 with TKN
as output

Table 6. 67: Results for the Elman Recurrent Neural Network Model 4 with
TKN as output

Table 6. 68: Results for the Radial Basis Function Neural Network Modei 4
with TKN as output

Table 6. 69: Input variables for TKN Model §

Table 6. 70: Results for the Feed-forward Neural Network Mode! 5 with TKN
as output

Table 6. 71: Results for the Elman Recurrent Neural Network Model 5 with
TKN as output

Table 6. 72: Results for the Radial Basis Function Neural Network Modei 5
with TKN as output

Table 6. 73: input variables for TKN Model 8

Table 6. 74: Results for the Feed-forward Neural Network Model 6 with TKN
as output

Table 6. 75: Results for the Elman Recurrent Neural Network Model 6 with
TKN as output

146

147
149

149
149

150
162

182
152

153
154

154
154

162
164

164
164

165
167

167
167

168
170

170
170

171
173

173
173

174
176

176

Table 6. 76: Results for the Radial Basis Function Neural Network Mode! 6
with TKN as output

Table 6. 77: Input variables for TKN Model 7

Table 6. 78: Results for the Feed-forward Neural! Network Model 7 with TKN
as output

Table 6. 79: Resulits for the Eiman Recurrent Neural Network Model 7 with
TKN as output

Table 6. 80: Results for the Radial Basis Function Neural Network Model 7
with TKN as output 8

Table 6. 81: Input variables for TKN Model 8

Table 6. 82: Resuits for the Feed-forward Neural Network Modei 8 with TKN
as output

Table 6. 83: Results for the Eiman Recurrent Neural Network Model 8 with
TKN as output

Table 6. 84: Resuits for the Radial Basis Function Neural Network Model 8
with TKN as output

Table 6. 85: Input variables for TKN Model 8

Table 6. 86: Resuits for the Feed-forward Neural Network Node! 9 with TKN
as ouiput

Table 6. 87: Resuits for the Elman Recurrent Neural Network Model 9 with
TKN as output

Table 6. 88: Results for the Radial Basis Function Neural Network Modeil 8
with TKN as output

Table 6. 89: input variables for TKN Model 10

Table 6. 90: Results for the Feed-forward Neural Network Modei 10 with TKN
as output

Table 6. 91: Results for the EIman Recurrent Neural Network Model 10 with
TKN as output

Table 6. 92: Results for the Radial Basis Function Neural Network Model 10
with TKN as output

Table 6. 93: Input variables for TKN Model 11

Table 6. 94: Results for the Feed-forward Neural Network Model 11 with TKN
as output)
Table 6. 95: Results for the Eiman Recurrent Netiral Network Model 11 with
TKN as output :

Table 6. 96: Resuits for the Radial Basis Function Neural Network Model 11
with TKN as output

Table 6. 97: Input variables for TKN Model 12

Table 6. 98: Results for the Feed-forward Neural Network Model 12 with TKN
as output

Table 6. 99: Results for the Eiman Recurrent Neural Network Model 12 with
TKN as output

Table 6. 100: Results for the Radial Basis Function Neural Network Model 12
with TKN as ouiput

Table 6. 101: Input variables for TKN Model 13

Table 6. 102: Results for the Feed-forward Neural Network NModel 13 with TKN V

as output

Table 6. 103: Results for the Eiman Recurrent Neural Network Model 13 with
TKN as output

Table 6.104: Results for the Radial Basis Function Neural Network Model 13
with TKN as output

Table 6.105: input variables for FLOW Model 1

Table 6.106: Results for the Feed-forward Neural Network Model 1 with FLOW
as output

Table 6.107: Results for the Elman Recurrent Neural Network Model 1 with
FLOW as output

Table 6. 108: Results for the Radial Basis Function Neural Network Model 1

176

177
179

178
179

180
182

182
182

183
185

185
185

186
188

188
188

189
191

181
191

192
184

184
194

185
197

187
197

198
198

188

199

with FLOW as output

Table 6. 109: Input variables for FLOW Mode} 2

Table 6. 110: Results for the Feed-forward Neural Network Model 2 with
FL.OW as output

Table 6. 111: Results for the Elman Recurrent Neural Network Model 2 with
FLOW as output

Table 6. 112: Results for the Radial Basis Function Neural Network Model 2
with FLOW as output

Table 6. 113: input variables for FLOW Model 3

Table 6. 114: Results for the Feed-forward Neural Network Model 3 with
FLOW as output

Table 6. 115: Results for the Elman Recurrent Neural Network Model 3 with
FLOW as output

Table 6. 116: Results for the Radial Basis Function Neural Network Model 3
with FLLOW as output

Table 6. 117: input variables for FLOW Model 4

Table 6. 118: Results for the Feed-forward Neural Network Model 4 with
FLOW as output

Table 6. 119: Results for the Eiman Recurrent Neural Network Model 4 with
FLOW as output

Table 6. 120: Results for the Radial Basis Function Neural Network Model 4
with FLOW as output

Table 6. 121: Input variables for FLOW Model 5§

Table 6. 122: Results for the Feed-forward Neural Network Model 5 with
FLOW as output '

Table 6. 123: Results for the Elman Recurrent Neural Network Model 5 with
FLOW as output

Table 6. 124: Results for the Radial Basis Function Neural Network Model 5
with FLOW as output

Table 6. 125: input variables for FLOW Model 6

Table 6. 126: Results for the Feed-forward Neural Network Model § with
FLOW as output

Table 6. 127: Results for the Elman Recurrent Neural Network Model 6 with
FLOW as output |
Table 6. 128: Results for the Radial Basis Function Neural Network Model §
with FLOW as output

Table 6. 129: input variables for FLOW Model 7

Table 6. 130: Results for the Feed-forward Neural Network Model 7 with
FLOW as output

Table 6. 131: Results for the Elman Recurrent Neural Network Model 7 with
FLOW as output

Table 6. 132: Results for the Radial Basis Function Neural Network Model 7
with FLOW as output 8

Table 6. 133: Input variables for FLOW Model 8

Table 6. 134: Resulis for the Feed-forward Neural Network Model 8 with
FLOW as output

Table 6. 135; Resuits for the Eiman Recurrent Neural Network Model 8 with
FLOW as output

Table 6. 136: Results for the Radial Basis Function Neural Network Model 8
with FLOW as output

Table 6. 137: input variables for FLOW Model 8

Table 6. 138: Results for the Feed-forward Neural Network Model 9 with
FLOW as output ‘

Table 6. 139; Results for the Elman Recurrent Neural Network Model 9 with
FLOW as output

Table 6. 140; Results for the Radial Basis Function Neural Network Model 8
with FLOW as output

xxii

207
209

209
209

210
212

212
212

213
216

215
215

216
218

218
218

218
221

221
221

222
224

224
224

225
227

227
227

228
230

230
230

Table 6. 141: Input variables for FLOW Model 10

Table 6. 142: Results for the Feed-forward Neural Network Model 10 with
FLOW as output

Table 6. 143: Results for the Elman Recurrent Neural Network Model 10 with
FLOW as output

Table 6. 144: Results for the Radial Basis Function Neural Network Model 10
with FLOW as oufput

Table 6. 145: input variables for FLOW Model 11

Table 6. 146: Results for the Feed-forward Neural Network Model 11 With
FLOW as output

Table 6. 147: Results for the Elman Recurrent Neural Network Model 11 with
FLOW as output

Table 6. 148: Results for the Radial Basis Function Neural Network Model 11
with FLOW as output

Table 6. 149: Input variables for FI.OW Model 12

Table 6. 150: Results for the Feed-forward Neural Network Model 12 with
FLOW as output

Table 6. 151: Results for the Elman Recurrent Neural Network Model 12 with
FLOW as output

Table 6. 152: Results for the Radial Basis Function Neural Network Model 12
with FLOW as output

Table 6. 153: Input variables for FLOW Model 13

Table 6. 154: Results for the Feed-forward Neural Network Model 13 with
FLOW as output

Table 6. 155: Results for the Elman Recurrent Neural Network Model 13 with
FLOW as output

Table 6. 156: Results for the Radial Basis Function Neural Network Model 13
with FLOW as output

Table 6. 157: Resuilts for the ERNN Neural Network Model 12 with TKN as
output, and where number of hidden neurons are increased to 40 compared
to1,5and 10

Table 6. 158: Results for the MLP Neural Network Model 6 with FLOW as
output, and where epochs are increased to 5000 compared to 500 and 1000
Table 6. 159: Results for the MLP Neural Network Model 12 with COD as
output, and where the hidden layers are increased to two compared to one
hidden layer

Table 6. 160: Resuits for the Radial Basis Function Neural Network Mode! 7
~ with COD as output, and where the network is trained until the error
converges to a minimum compared with the previous considered case
Table 7. 1: MATLAB script files and the functional description in the
development of the NN program for the prediction of the influent
disturbances of COD, TKN and influent Flow rate

Table B. 1: The initial inputs weights and biases for COD Model 1

Table B. 2: The initial inputs weights and biases for COD Model 2

Table B. 3: The initial inputs weights and biases for COD Modei 3

Table B. 4: The initial inputs weights and biases for COD Model 4

Table B. 5: The initial inputs weights and biases for COD Model §

Table B. 6: The initial inputs weights and biases for COD Model 6

XXiv

231
233

233
233

234
236

236
236

237
239

239
239

246
242

242
242

250

250

250
250
266

280
281
282
283
284
285

APPENDIX/APPENDICES

Appendix A: Types of Neural Networks 275

Appendix B: Selection of results of initial and final weights and biases 278

Appendix C: Software Routines 286

Appendix D: Technical wiring of the PLC and sensors | 306

Appendix E: Database and conversion into MySQL format 3M
GLOSSARY

Terms/Acronyms/Abbreviations Definition/Explanation

ANN Artificial Neural Network
APl Application programming interface
ART ' Adaptive Resonance Theory
ASCll American Standard Code for Information
Interchange
ASP Activated sludge process
BAM Bi-directional Associative Memory
BNR Biological nutrient removal
BOD Biochemical oxygen demand
BP Backpropagation
BPNN Backpropagation neural network
BSB Brain State in a Box
CMAC Cerebellar Model Articulation Controller
COD Chemical oxygen demand
DB Database
DCL Differential Competitive Learning
DO Dissolved Oxygen
DSN Data Source Name
ERNN Elman Recurrent Neural Network
FFNN Feed-forward neural network
-FIR Finite impulse Response
GNN General regression neural network
GTM Generative topographic mapping
LMS Least Mean Square
LvQ - Learning vector quantization
MATLAB Matrix Laboratory
MLP Multi-layer perceptron
MLSS Mixed liquor suspended solids
MLVSS Mixed liquor volatile suspended solids
MS Microsoft
NN Neural network
ODBC Open database connectivity
OoLS Ordinary Least Squares
PC Personal computer
PCA Principal component analysis
PLC Programmable logic controller
PNN Probabilistic neural network
RBF Radial basis function
RBFNN Radial basis function neural network

XXV

RNN
RTRNN
SCADA
SOM
SQL
TDNN
TKN

WWTP

Recurrent Neural Network

Real-time Recurrent Neural Network
Supervisory Control and Data Acquisition
Self-organising map

Structured Query Language

Time delay neural network

Total Kjeldahi nitrogen

Wastewater treatment

Wastewater treatment plant

XXVi

J(k)

Yi

u(k)e R
y(k)e R™
f:R" > R"
F:M

BOD

MLVSS

HRT

SS

A

MATHEMATICAL NOTATION

concentration of the DO

input concentration of the DO

concentration of the saturation of the wastewater with oxygen
input flow rate for the aerobic tank

Output flow rate for the aerobic tank

function for transfer of oxygen to wastewater

aeration tank volume

oxygen uptake rate
output of the neuron

input variables

'synapse weights

bias term

nonlinear activation function
model inputs
model outputs

nonlinear function of inputs and outputs
food-te-microorganism ratio

5 day bio-chemical oxygen demand (mgfl)
mixed liguor volatile suspended solids (mgfl)
volume of aeration tank (litres).

Hydraulic retention time

dilution rate |

suspended solids in wastewater effluent (mgh)

suspended solids in wasted sludge (mg/)

xxvi

S

fbs

flow rate of wasted sludge (m*/day)
ammonium

nitrite

nitrate

total COD

biodegradable COD

non- biodegradable COD {inert mass)
soluble unbiocdegradabie COD
unbiodegradable particulate COD
readily biodegradable COD

slowly biodegradable COD

fraction of the total influent COD which is unbiodegradable
soluble

fraction of the total influent COD which is unbiodegradable
particuiate

fraction of the biodegradable influent COD which-is readily
biodegradable

biodegradable influent COD

COD of active aerobic organisms present in the influent
nitrogen

TKN

saline ammonia

organically bound nitrogen

unbiodegradable organically bound nitrogen
biodegradablé organically bound nitrogen
unbiodegradable soiuble organically bound nitrogen

unbiodegradable particulate organically bound nitrogen

XXViii

f n,obp

N zbi
Ya

Vm

Ji(k+1)

ay,; =la;;,.-a; p]e R?

b, =1b;, --bl,i,m2 Je R™

— m
i =lerigCrim]€ R
bl,i,h

p

m, =3

soluble influent bicdegradable organic nitrogen

particulate influent biodegradable organic nitrogen

fraction of the total influent TKN which is free and saline
ammonia

fraction of the total influent TKN which is organic
unbiodegradable soluble

fraction of the organic biodegradable nitrogen which is
particulate

influent biological (active) mass nitrogen fraction
desired mode! output

actual model output

weight vector

learning rate

error signal

momentum term

performance ratio
covariance matrix of X and Y
standard deviation

output of the neuron

output of the NN

vector of the NN coefficients introducing the delayed values

vector of the NN coefficients introducing all considered weather
conditions

vector of the NN coefficients introducing the inflow disturbances
bias coefficient
number of delays

number of disturbances

XXiX

% cOoD

v TKN

Vs Flowrate

m,=5 number of weather conditions
w, month (sin)

w, month (cos)

W, min temp

w, A rain

W, wind speed

@ output layer activation function
& hidden layer activation function
mse : mean squared error

y(k) desired output

y(k) NN output

r correlation coefficient

r? A coefficient of determination
APE absoiute percentage etror
g,€R” vector of the NN weight which introduces the delayed

output of the first hidden layers

fe R A vector of unit delays

#x;t,) radial basis function

e -] norm of the distance vector between the current vector and the
centre point

t center point of the cluster

variance parameter

XXX

Euclidian distance to the center of the cluster

XXXi

1.1

CHAPTER ONE
INTRODUCTION

Awareness of the problem ,

South Africa’s conventional water resources are rapidly being depleted. During these
times of water restrictions, the country is also faced with deterioraﬁné water quality.
This could be accredited amongst others, to the enormous discharge of treated
effluents into rivers and streams. The effluent when discharged should not pollute the
stream, be a danger fo public health, or cause a local nuisance. Wastewater contains
nutrients that stimulate plant growth and it may contain toxic compounds. Effective
removal of pollutants such as nitrogen, phosphorous and carbon, from wastewater is
of the utmost importance. The removal of fotal dissolved solids is also important.

If untreated wastewater is allowed to accumulate, the decomposition of the organic "
material can lead to the production of large quantities of malodorous gases (Sanchez-
Marré ef al., 1995). Wastewaier treatment (WWT) plants are important to the
economic and social development of any country. They protect the public's health
from disease-causing bacteria and viruses. For these reasons, the immediate and
nuisance-free removal of wastewater from its sources of generation, followed by
treatment and disposal, is not only desirable but is also necessary in an industrialized
society (Metcalf and Eddy, 1991).

The original aim of sewage disposal is the removal of the waterborne waste from
domestic and industrial communities, and the removal of as much of the solids
content as is practical and economical, and then to oxidise {and subsequently
remove) the colloidal and dissolved solids without causing any danger to public
health. The method of treatment chosen for any particular installation depends on the
quality of effluent required.

Wastewater treatment plants are developed in order to remove unwanted nutrients
that are deposited in the water. The nutrients that are prevalent in wastewater include

- Carbon, Nitrogen and Phosphorous. When these nutrients are discharged into water

it leads to what is known as eutrophication. Large blooms of algae are a visible
indication of eutrophication, which cause difficuities when it comes fo water
purification. Nutrients can be removed from wastewater effluents either by chemical
or biological means. '

Wastewater treatment plants (WWTPs) can be divided into two types, biological and
physicallchemical. Bioclogical plants are commonly used io ireat either domestic or
combined domestic and industrial wastewater from a municipality. Wastewater
contains many microorganisms and different bacteria. WWTPs use basically the
same processes that occur naturally in the receiving water, where microorganisms in
the wastewater break down the solids, but provide controlied conditions favourable for
the growth of the bacteria, so that the biological reactions are completed before the
water is discharged back into the environment. Physical/chemical plants are often
used to treat industrial wastewaters directly, because they often contain pollutants
that cannot be removed efficiently by microorganisms. Wastewater freatment plants
that actually disinfect wastewater eliminate many harmful organisms.

Biological treatment processes are where microorganisms convert non-seitieable
solids to settleable solids. Sedimentation typically follows, where the settleable solids -~
are allowed to settle out. There are usually three possible options including:

1. Activated Sludge - The most common option uses microorganisms in the
treatment process {0 break down organic material with aeration and agitation,
and then allows solids to settle out. Activated sludge containing bacteria is
continually recycled back to the aeration basin fo increase the rate of organic
decompaosition.

2. Trickling Filters - These are beds of coarse media (often siones or plastic)
Wastewater is sprayed into the air (aeration), and is allowed to trickle through
the media. Microorganisms attached to and growing on the media, break down
organic material in the wastewater. Trickling filters drain at the bottom; the
wastewalter is collected and then undergoes sedimentation.

3. Lagoons - These are slow, cheap, and relatively inefficient, but can be used for
various types of wastewater. They rely on the interaction of sunlight, algae,
microorganisms, and oxygen (sometimes aerated).

Activated sludge is defined as sludge particles produced by the growth of
microorganisms in aerated tanks as a part of the process to treat wastewater. The
activated sludge process is the biclogical process where these organisms oxidize and
mineralise organic waste matter (Nadri, Hammouri and Fick, 2002). A typical
biological wastewater treatment plant process is depicted in Figure 1.1. The biological
WWT process includes preliminary, primary, biological and tertiary (secondary)
treatment. These treatment processes as applied to the activated sludge process are
discussed at fength in Chapter 2 of this thesis.

- Preliminary treatment includes the mechanical screens for removal of all large objects
present in the wastewater influent. The grit chamber allows sand and small organic
material to sink to the bottom. Primary treatment provides a zone where the sludge is
allowed to settle and grease and other floating material is skimmed off the top.

2

1.2

Prefiminary Treatment Primary Treatment Biological Treatment

Tertiary Treatment

Activated Sludge Process
Mechanical @t _ Primay :
Screen Chamberocdimentation + Anaerobic Anoxic
]

=IF PO

>4—>

To rivers, streams,

1
S ocean...)
‘Aeration =~ Secondary ! = . Tertiary
Tank Vsedjmemaﬁon: Disinfection | Treatment

Effluent

To sludge thickener

Figure 1. 1: A Biock Diagram of the Biological Wastewater Treatment Process

The activated sludge process is a widely used system of biological WWT. The
wastewater enters a zone that is aerated where the sludge particles are brought into
contact with the organic matter in the wastewater. The organic matter is converied in
cell tissue and oxidised end products consisting mainly of carbon dioxide, CO,.The l
contents of this aerated zone are referred t0 as mixed liquor. The biological mass
known as either mixed liquor suspended solids (MLSS) or mixed liguor volatile
suspended solids (MLVSS), consists mostly of microorganisms, inert matter and non-
biodegradable suspended matter. The secondary sedimentation (settling) tanks follow
the aeration zone, and the suspended solids (88} are separated from the treated
wastewater. The biological solids are recycied back to the aeration zone in order to
maintain a population of microorganisms to treat the wasltewater. The excess
biological solids are withdrawn from the secondary settling tanks. Some WWTPs
disinfect the treated wastewater effluent before discharging it into streams or rivers or
the ocean.

The activated sludge process is considered in the thesis.

Legislation and current situation

In South Africa legislation regarding pollution control and indirect reuse of treated
wastewater is regulated by the Water Act (54 of 1956). The removal of carbonaceous
material and the transformation of ammonia to nitrate are stipulated in the General
and Special Standards Act of 1962 (Ekama, Marais ef al., 1984). The current situation
in the Cape Town region is that there are 22 municipal wastewater treatment plants in
operation. However it should be noted that not all of them are fully equipped to treat
wastewater using the activated sludge process. Only 14 plants are staffed with
personnel equipped to effectively operate the wastewater treatment plant and
associated equipment. The reality of the situation is that many of the plants are not
operating efficiently and produce effluent standards that are below acceptable levels.

3

13

Thus the need for monitoring and effective control of these wastewater {reatment
plants may remedy this situation. The effluent standards are tabled in Chapter 2 of
this work.

Mathematical Modelling and Simulations of Wastewater Treatment Plants

Many wastewater ireatment processes are analysed and researched in order to
understand their complex dynamic behaviour. This is the reason that mathematical
models are developed describing the reactions between the organisms and the
organic material present in the waslewater. Mathematical models are an important
tool in wastewater treatment (Vargas, Moreno and Zeiltz, 2001) and are used for:

= Design of the process. Modelling is useful in evaluating the impact of changes
in parameters.

= Process control. Efficient control strategies are often model based.

* Forecasting. Predictions can be made of future plant performance through
modelling.

= Education. Simulation models can be used for education and fraining.

= Optimisation. Plant performance can be enhanced.

= Research. Development and testing of hypothesis.

There are a number of commonly used models for the activated sludge process like
the IAWQ (International Association on Water Quality) activated sludge model
number 1 (ASM1) (Henze et al. 1987}, number 2 (ASM2) (Henze et al. 1995), and the
University of Cape Town (UCT) model, to name but a few. These models describe the
removal of organic matter, nitrification and denitrification. Institutions throughout the
world have developed various mathematical models describing the different
wastewater processes. Alex, Ogurek and Jumar (2005) discuss the problems with the
development and standardisation of models. The availability of reliable models is a
fundamental pre-requisite for simulation of the wastewater treatment processes and
systems. The work by Alex, Ogurek and Jumar, (2005) address the formulation of
model representation methods for model development, exchange, and analysis.

1.3.1 Simulation of the Wastewater Treatment Process

Simulations are an additional tool in the study and understanding of the behaviour
of these complex wastewater treatment processes. A simulation is an imitation of
the behaviour of the real plant or system. if the mathematical model has been
fairly well developed and calibrated, it is possible to predict the future behaviour
of the plant using simulations (Yoo, Lee and Lee, 2002). It should be noled that
any conclusions drawn from simulation resufts should be approached with
caution.

14

Simulators are often equipped with a graphical user interface (GUI). The GUI
gives the operator a graphical display of the simulated data together with the data
presentation. A well-designed GUI can increase understanding of the process.
There are many commercial and non-commercial simulation platforms available.
Some of these include Matlab / Simulink and SIMBA.

Control of Wastewater Treatment Plants

The control of the biological process is important to maintain high levels of treatment
performance under a wide range of operating conditions. Successful process control
consists of reviewing present and historical data and laboratfory test resulis to select
the proper operational parameters that provide the best performance at the least cost
(Sanchez-Marre ef al., 1995).

According to surveys conducted in the United States of America, more than 50% of all
newly constructed planis are discharging effluents that do not comply with the
definition of secondary treatment. The leading problem causing poor plant
performance is found 1o be the lack of treatment concepts and iaboratory {esting fo
process control {Arthur, 1982).

The wastewater treatment process is a fairly complex, dynamic process. According fo
Theilliol ef al, (2003), certain factors need to be considered when attempting to
implement advanced real-time control of the process:

» The process is time varying (Carlsson and Lindberg, 1996). Parameters such
as temperature, composition of the influent water, amount of biomass, flows,
pH, efc, vary over a period of time.

= The process is non-linear and dynamic.

= The process has stiff dynamics. The time constants involved in the process,
range from seconds to months.

= The process is multivariable. There are several inputs and outputs.

Sensors available in the plant are not very reliable although much progress
has been made . in the development of sensors. Problems encountered are
often that sensors are very noisy, they have long response times, they require
frequent maintenance and they drifi.

= | arge disturbances affect the process. The influent flow and concentration are
subject to large variations particularly after heavy rains.

The chemical industry has demonstrated that automation improves the cost-
effectiveness of chemical processes while enhancing product quality. 1t is reasonable
therefore to conclude that automation should also improve the performance of
wastewater treatment systems with less cost and less energy consumption (Arthur,
1982).

1.4.1 Reasons why Advanced Control is not implemented at WWT Plants

The major impediment to automating the wastewater treatment process is that many

of the processes have long response times, and it appears as if manual control is

effective. Most operators and engineers at wastewater treatment plants have limited

experience or training when it comes to plant automation that no efforls are made to

automate. In those rare cases when a control automatiqﬂ system is present, most

operators switch from automatic to manual mode (Arthur, 1982).

Listed below are some of the reasons why it is necessary o implement control of the

wastewater treatment process and also why this is not always the case:

Legislation regarding effluent quality has in many cases not been strictly
monitored and enforced.

There is a lack of suitable understanding of engineering of many of the control
processes.

On-line sensors require a lot of maintenance and are not very reliable.

Plant workers do not understand how fo use and maintain plant equipment
properly.

Pumps, valves and actuators are manually swilched on or off by an operator in
many plants.

Processes at wastewater plants are fairly complex and it is not very easy to
implement automatic control of the plant or optimise plant performance.
Traditionally plant managers and staff do not appreciate the benefits of
automatically controlling the plant and thus improving overall plant efficiency.
Operator resistance to learning new technology and resistance to change.

The use of daily average type data, not on-line data to control the process.
The activated sludge process has not been studied completely as an object of
control. It is not clear what models are convenient for realklime control
implementation, what process variables are the most significant and in what
way the quality of the process and its product is affecied, and what the oplimal
combination of settings are for these significant variables.

There is a lack of methods for measuring of important variables, for modelling
and parameter estimation and for optimisation and control calculation.

1.4.2 Reasons why Automatic Control should be implemented in a WWTP

Stricter laws governing the effluent quality.

General public awareness of environmental issues and focusing on
sustainability and energy consumption issues.

Taxes and costs associated with the effluent quality are increasing.

The design reliability of on-line sensors and actuators are improving.

New processes at plants are becoming more and more difficult to control
manually.

Various models for the control of wastewater plants are developed which are
suitable for real-time control of existing plants.

An important step in the design of an automatic control strategy is to determine which

signals to control, which signals to measure or estimate, and which control signals to

use {Garvey, 1997). Some of the variables affecting carbon and nitrogen removal,

which could be controlled, are:

Dissolved Oxygen (DO) concentration;

6

15

the aeration volume;

ammonium concentration by manipulating the DO setpoint;
internal reticulation controf;

the influent and excess sludge flow rates;

the recycle sludge flow rate; and

if necessary the chemical feed rates.

The type of control that the attention is focused on for this work is the control of the
DO concentration.

Dissolved Oxygen Control

The Cape Peninsula University of Technology (CPUT) has initiated a collaborative
partnership with the local municipal wastewater treatment plant authorities. The
Athlone WWTP is a municipal plant in the Cape Town region in South Africa. At the
Athlone wastewater treatment plant one of the parameters being monitored is DO
(dissolved oxygen) in the aerated zone.

Automatic control techniques are successfully applied to control the DO concentration
for many years, with tremendous cost and energy savings, and improved plant
performance (Arthur, 1982). According to Carisson and Lindberg (1996) this could be
due to the fact that:

» On-line DO sensors have existed for several years.

= Energy conservation has {o be considered in the control the DO, since it is
very expensive to blow air into the large tanks.

= The effluent quality and process efficiency depends on a suitable dissolved
oxygen level. '

An excessively high dissolved oxygen concentration resulls in increased energy
consumption, and deterioration in process performance as there is a reduction in
sludge quality and the denitrification process is less efficient. On the other hand low
DO concenirations lead to bad quality sludge and less efficient pollution removal
(Gutierrez and Vega, 2002).

The DO concentration should be high enough to support the growth of adequate
organisms, and low enough to conserve energy. Excessive mixing should be avoided
as the low DO levels contribute to nitrate recirculation in the advanced nutrient
process.

Different controllers are developed in the literature based on the DO mass balance
model (Olssen and Newell, 1999).

S, =;1;[Q,~,.So,,-n (= QousSoe DI+ K 1,185,0 (1) = S, (O]~ T5, (1) 1.1

1.6

where S, is the concentration of the DO, §,, is the concentration of the saturation of

osat

the wastewater with oxygen, Q,, and Q

out

are the input and output flow rates for the

aerobic tank, §,,, is the input concentration of the DO, K|, is the function for transfer

o,in
of oxygen to wastewater ¥ is the aeration tank volume and T, is the oxygen uptake

rate. The oxygen uptake rate is an indicator for the dynamic behaviour of the
microorganisms and the influent load of COD and TKN, because it is function of the
microorganisms’ growth rate and the concentrations of some of the components of

influent COD and TKN. K, is a function of the air flow rate and is used to introduce

the control input into the model.

From the components of the model 1.1, it can be seen that the controlier designed
according to this model will depend on the values of the influent disturbances. But
these disturbances cannot be measured on-line. Then the only possibility to apply
modern control techniques to the DO control is o incorporate in the control strategy a
software sensor for these variables. The prediction of the influent disturbances in real-
fime will make the control strategy adaptive and close to the real operating conditions
of the WWTP.

Adaptive Control Strategy

Research in the area of wastewater freatment systems has focused largely on the
dynamic behaviour of the activated sludge process of the wastewater treatment
plants. The uncertainty in sludge activity and composition are caused by
unpredictable change in the load disturbances represented by the input flow rate and
waste concentrations. The latter consists mainly of carbonaceous and nitrogenous
compositions that are described by the chemical oxygen demand (COD) and the total
Kieldah! nitrogen (TKN} (Olssen and Newell, 1999). The values of these load
disturbances are dependant on the seasonal variations in temperature and rainfall.
The control of the ASP depends strongly on the variations of the load disturbances
because they determine different operating conditions for this process. This means
that the control strategy has to be capable of generating control action according to
the change in the operating conditions. This type of control can be achieved if the
values of the disturbances are known or can be measured on-line. This is not
possible for COD and TKN as these are measured off-line in a laboratory, as there
are no reliable online sensors yet. The available off-line measurements are therefore
not available immediately for real-time control implementation.

Ancther approach is o determine the expected values of the disturbance by
prediction using historical data from lab measurements and soft computing (neural
network) techniques (Kriger and Tzoneva, 2007a and 2007b). This approach is
adopted in this work as a first step in implementation of an adaptive optimal control
strategy for the ASP. This strategy determines the control of the dissolved oxygen
into the aeration tank of the process using hierarchical ¥ayeré of adaptation,
optimization and direct control as depicted by Figure 1.2, and is implemented using a
personal computer (PC), programmable logic controller (PLC) with Adroit SCADA
(Supervisory Control and Data Acquisition) system, MySQL database and MATLAB.

The disturbance prediction is a part of a 3-layer control sirategy developed for
adaptive optimal control of the activated sludge process (ASP) through repetitive
optimisation of the model parameters, controller set points and the controllers’
parameters according to the diurnal variation of the input flow rate and concentrations
of COD and TKN.

Functional control structure

Layer of adaptation —PC* Tasks Py
1) Keeping database -

2) Load disturbances prediction .. .=

3) Simulation in real time, not in real tim

4) Parameter estimation g :

5} Connection in Matlab and MySQL "

1. Model parameters Data for
2. Input disturbances process

Layer of optimization — PC -~ Tasks:

1) Determination of the repetitive horizon for
optimal control problem solutiony ...~ .

2) Solution of the optimal control pmb!em

3) Determination of the set pomts of the local

controllers i - i |
1. Controller set paints Dat.a for process
2. Controller parameters variables

Layer of direct control ~PLC < Tasks:»
1) Receiving data from the process = - srri”
2) Calculating the control signal llmplementauon
3} Self — tuning of the parameters ofthe pEEGE
controllers’o

Controf action Signal from the
sensors

- Activated Sludge Process . o«

Figure 1. 2: Three-layer control strategy for adaptive optimal control of the ASP

This strategy is applied for development of a real-time control of a lab-scale
wastewater treatment plant (WWTP) modelling a real process at the Athlone WWTP
in Cape Town. Realisation of the control strategy for dissolved oxygen {DO) control is
implemented in the Electrical Engineering Department at the Cape Peninsula
University of Technology and is shown in Figure 1.3. The DO concentration should be

9

1.7

high enough to support the growth of adequate organisms, and low enough to
conserve energy. This means that the controller has to send a control signal
according to a set point that corresponds to the responding at the realtime

disturbances.
DO
. Error
semo—lmbé)—h PD PLCL_—_ 3 DO J——b
Controller Of'/ off process
+ air flow
PLC
Rp, Ti, Td Kp, Ti, Td FC.
calculations
Optimal Parameters Disturbances
control g model €—| prediction
estimation
problem
Controller

Figure 1. 3: Feed-forward-feedback control system for DO control

Problem statement

On the basis of the discussion above the problem considered in the thesis can be
stated in the following way — To develop a mathematical model and technology for
prediction of the inflﬁent flow COD and TKN concentrations on the basis of their
dynamic behaviour caused by the weather conditions and the season {(month) of the
year.

There are no known investigations in this field. Different authors emphasize on the
influence of the weather conditions, season, day of the week, time of the day over the
influent waste concenirations and flow rate (Bechmann el al, 1998), but no
mathematical model is proposed. Olsson and Neweli (1999) propose a formula for
diurnal behaviour of the influent concentrations based on their average values for
some period of time and combination of sinusoidal functions with different period. This
formula is not based on the natural laws; it is constructed according to the
observation of the process influent and the expert knowledge.

A more scientific approach to the solution of the problem can be developed (applied)
using the capabilities of the latest developments of the methods of the Arificial
Intelligence and especially of the neural network (NN) theory, based on the
information that is available for the dynamié behaviour of the influent variables:

- the dependence between the weather conditions, season of the year is of the
type of a dynamic “black box” one, (Figure 1.4);

10

knowledge for the relationships between the input and output variables of this
model is not available at all;

it can be assumed that the dependence between the input and output
variables is deterministic;

) . influent flow rate
weather (rain. wind)
) CcOD
month 7
—_— > n TKN

Figure 1. 4: Figure illustrating that the dependence between the weather and season

{month} is a type of dynamic “black box”

there are historical data available for both input and output variables. The data
for the influent are measured once every week in the scientific laboratory by
exact methods and could be accepted as equal o the frue values of the
variables with some small error. .
The black box model is multivariable — it has many inputs and outputs. The
number of outputs can be accepted to be three because the organic waste
material in the influent can be grouped in two main groups, COD and TKN.
The number and the type of the input variables has {o be determined though
the process of research in such a way that the errors between the predicted
and the measured values of the disturbances are minimized.

The black box model is a nonlinear one.

The black box model has to be used as a part of the adaptive control strategy in real

time in order fo act as a software sensor for the influent waste components. The

outputs of this model are the load disturbances input for the considered model for the
control of the DO (Figure 1.5).

weather (rain. wind)

influent flow rate COD effluent

Infl ————p
—_— nfluent DO concentration [TKN effluent
__—__’

variables COD influent)
month predictor Equation1.1
_ TKN influent
ESREEEEE——

load

disturbances air flow rate
control input
u

Figure 1. 5: Connection between the process model and the influent disturbances

model

The structure of the black box model can be obtained in two ways:

- assuming some type of mathematical connection between the input
and output and fitting the parameters of this mathematical
representation to the input-output data;

- using the NN theory approach where the structure could be supposed
at the beginning and adjusted during the training in a more natural way
than in the first approach.

11

1.8

1.8.1

The first approach is noi very applicable because the model is muitivariable and
nonlinear. It is very difficult to judge the type of nonlinearity and the connections
between the variables. That is why many of the difficulties of the mullivariable,
nonlinear fitting {(regression) could be overcome by using the NN as predictors.'”fhe
problem is further what exactly NN type, architecture could be the most convenient for
{the considered deterministic, dynamic, nonlinear muitivariable model. The answer {o
this question determines the objectives of the thesis.

Neural networks

As is described in the previous section, use is made of neural networks for prediction
of the inflow disturbances of COD, TKN and influent flow rate, by using historical data
obtained from the Athlone WWTP and weather data obtained from the South African
Weather Service.

Hecht-Nielsen (1987) defines neural networks as follows:

A neural network (NN} is g parallel, distributed information processing structure
consisting of processing elements (which can possess a local memory and can carry
oul localised information processing operations) interconnected via unidirectional
signal channels called connections. Each processing element has a single output
connection that branches in to as many collateral connections as desired; each
carries to the same signal — the processing element output signal.

Artificial (so called to distinguish it from it biological counterpart) neural networks
(ANN) have developed as a result of man's interest in the working of the human brain
with the aim of achieving human-like performance. Please note that in this work the
term neural network refers to the ANN.

Training of Neural Networks
McCulloch and Pitts proposed the first artificial neuron model in the 1940's. They
described the behaviour of the neuron with the model:

N

JEY=¢ > yw, ”’"J 12

i=0
where y(k)is the output of the neuron, N is the number of inputs, y, are the input
variables, w,are called the synapse weights and b, is a bias term. The function ¢is a
nonlinear activation function. The activation function is typically a saturating function,
which normalizes the input signal to the standard values of the output signal
(Paplinski, 2004). These activations are typical unipalar or bipolar signals. Examples

12

1.8.2

of aclivation functions are the logarithmic sigmoid, hyperbolic tangent, hard fimit
threshold, radial basis function and the linear activation function {o name buf a few.

From the point of view of their active or decoding phase, NNs can be classified into
feed-forward and feedback systems (Papliniski, 2004). Feed-forward (static) NNs are
neural networks where the network is ordered into layers with no feedback paths,
while recurrent (dynamic) networks on the other hand have feedback connections
from the output of one neuron back to the input of a previous layer (Mandic and
Chambers, 2001).

Learning is defined as a dynamic process that modifies the weights of the network in
some desirable manner. Learning can be supervised or unsupervised. For supervised
learning the network is given a training set of data with a corresponding target output.
Unsupervised learning also known as self-organizing is where a network develops its
own classification rules using information present at the inputs presented fo the
network.

Neural networks (NNs) gives one the flexibility of modelling arbitrary input data by
adjusting the internal network connections (weights) in such a way, that for a given
input the difference between the output and the desired response, the error is
minimised (Wang and Hu, 2002). in order to achieve this input-output mapping the
NN has to be “trained” in order for it to model data efficiently. This training usually
takes the form of supervised learning, where the network error is iteratively reduced
over a fraining set of matching input—output vectors. Methods of training include
gradient descent methods such as the very common backpropagation algorithm
{Haykin, 1998).

After the network is trained, the performance has 1o be measured by introducing a set
of data that is used to validate the model. This gives an indication of the
generalisation ability of the NN and determines whether the NN has not just
memorised the {raining data set.

Data preparation

Data preparation is fundamental to the success of a NN {o solve a given problem. if
NN are presented with meaningless data, they usually produce meaningless results.
A careful examination of the input data is required, and usually some knowledge of
the relevance of including or excluding certain input data is advisable. Chapter 4

13

183

1.8.4

discusses the pre-processing techniques applied to the input data presented io the
NN.

Types of Neural Networks _

Broadly speaking NNs can be divided into 2 application categories, namely networks
performing funclion approximation or regression (Masters, 1993) and those
performing classification (Ripley, 1996) tasks.

Feed-forward supervised networks are mostly used for function approximation tasks
and some types include:

+ Linear recursive least mean square (LMS) networks;
» Backpropagation networks; and
+ Radial basis networks

Feed-forward unsupervised networks are used to extract important properties of the
input data and to map it into a “representation” domain. These include: ‘

+ Hebbian networks performing principal component analysis (PCA); and
+ Competitive networks are used to perform learning vector quantization (LVQ).

Feedback dynamic networks are used fo process the temporal features of the input
data evolving over time. These include:

« Recurrent backpropagation networks;

* Associative memories; and

= Adaptive resonance networks.
(Paplinski, 2004).

The feed-forward supervised networks with delayed inputs and the recurrent
backpropagation network capabilities are investigated in the thesis to solve the
dynamic regression problem for prediction of the influent variables.

A description of the different types of neural networks, together with all the relevant
reference information, is presented in Appendix A.

Application areas for Neural Networks

Neural networks are widely applied in various disciplines for solving many real-world

problems. Application areas include:

Misuse detection on computer networks (Cannady, 1898), Flood forecasting (Chang,

et al.,, 2001), River flow forecasting (Danh, Phien and Gupta, 1998), Time series

{Malasri and Malasri, 2002), (Vahed, 2004), Wireless sensor networks (Wu and

Jagannathan, 2007), Prediction of wind speed (Pérez-Llera, et al., 2002), Nonlinear

Control (Cheng, et al., 2007), {Ahmida, Charef and
14

1.8.5

Becerra, 2007), and Short-term load forecasting (Vermaak and Botha, 1998, Khan
and Ondrusek, 2000.

The potential of neural networks for monitoring and control of dynamic systems was
discovered a decade ago (Narendra and Parthasarathy, 19380, Bectroft et al, 1991)
and many applications in industrial processes exist.

The feed-forward networks (Rumelhart et al, 1886) and recurrent networks (Atkeson
et al, 1997) are most commonly used in system identification / model estimation and
for control desigh and implementation.

These are only a few areas where NNs have be utilized to sclve a particular problem.

Modelling of the Influent variables behaviour using Neural Networks

Neural networks offer the advantage of being able to model almost any system. The
real problem results as one tries to apply a NN model to a specific process. The
reasons for this being that considerable expertise is required in determining the
number of processing elements in the network, the number of training Herations
required, and the representation of data in the network

The resultant network model should be able {o generalise for future unseen input
vectors, provided the training set represents the process detailing the relationship
between the input and output, accurately (Sakai, Homma and Abe, 2002).

The considered black box model process can be described as finite dimensional,
discrete time, time invariant process by the equations

(k)= fly(k), y(k = 1)...y(k = 7), u(k), u(k —1)..u(k — 0)] 1.3
where u(k)e R” are the model inputs and y(k)e R” are the model outputs,

f:R" — R™ is a nonlinear function of inputs and outputs, k€0,X .

The problem for modelling and parameter estimation is stated when the function f is

unknown. The problem is to construct a model that displays the same input/output
behaviour as the original system. This problem has to be solved using only input and
output measurements (Potocnik, 2000).

For linear systems the solution of the problem is easier as the structure of the linear
model is assumed previously. For the nonlinear system (ASP) the structure of the

15

1.8.6

1.9

1.10

1.10.1

model cannot be selecied arbitrary. Then some assumptions need to be made fo
make the problem meaningful and tractable. Following Levin and Nerendra, 1995 the
following assumptions can be made:

1) f is a smooth function
2) An upper bound of the order of the system is given.

The existence of the inputioutput model refies on the observabilily of the system
which in this case cannot be checked previously and can be proved by investigation
on the possibilities to make good prediction using the techniques of the NN theory.

Neural Networks implementation

The prediction of the influent variables of COD, TKN and influent flow rate is a
regression or function approximation problem. Three different neural network
{opologies (architectures) are investigated to solve this particular problem, namely the
muttilayer perceptron (MLP), the Elman recurrent neural network (ERNN) and the
radial basis function neural network (RBFNN). The structures best suited for
prediction problems are investigated and based on the finite impulse response (FIR)
and infinite impulse response (lIR) filter concepts from signal processing (Mandic and
Chambers, 2001). This is referred to as the autoregressive (AR}, moving average
(MA) and autoregressive moving average (ARMA) concepts from statistical theory.
The practical issues that the neural network practitioner faces are investigated in this
work, including the number of hidden layers, the number of hidden layer neurons, the
number of training iterations, the choice of architecture, and training algorithm.

Research Aim

The research aim is to develop a model predictor for the dynamic behaviour of the
wastewater treatment plant influent variables (COD, TKN, Flow rate) as a result of
influence of the weather conditions (temperature, wind, rainfall) and the season of the
year (month) using NN theory.

Research Objectives
The research objectives are divided into categories, namely the scientific objectives
and the application results objectives.

Scientific objectives

In order to achieve the aforementioned aim, the following scientific objectives have
been identified:

16

1. The role of the influent variables as the WWTP process main disturbances to
be investigated.

2. The problem for the development of the mathematical model for the dynamic
behaviour of the wastewater treatment plant influent variables to be analysed,
and according to its characteristics a problem for prediction of the influent
variables to be formulated as a problem for development of a neural network
type and its structure.

3. Analysis of the existing types and structures of the NNs to be done according
to the requirements of the formulated problem and 3 types of NN to be
selected to be used:

= Muitilayer perceptron network with delayed inputs
= Elman recurrent network
‘s Radial basis function with delayed inputs
4. A procedure for preprocessing of data for the NN training and validation is to

be developed on the basis of analysis of the existing approaches in the
literature.

5. MLP with delayed data to be developed for one-step ahead prediction of the
influent COD, TKN and Flow rate. Different variants / structures of the network
to be investigated on the basis of variation of the type and the number of
inputs.

6. Elman recurrent network to be developed for one-step ahead prediction of the
influent COD, TKN and Flow rate. Different variants of the network to be
investigated on the basis of the same as in point 5 variants of the input data.

7. Radial basis function network o be developed for one-step ’ahead prediction
of the influent COD, TKN and Flow rate. Different variants of the network to be
investigated on the basis of the same as in point 5 variants of the input data.

8. The generalized conjugate gradient method application to be investigated in
order to improve the convergence and o reduce the time of the training
process.

‘9. Different variants of the above NNs to be built and compared with those
previously developed according to the number of the hidden layers, number of
hidden layer neurons, number of epochs, and training {0 convergence (over-
training).

10. MATLAB software to be written to implement all tasks for pre-processing of
data, training, validation, analysis of the solutions and graphical user interface.

1.10.2 Application result objectives
In order to achieve the aforementioned aim, the following application result objectives
have been identified:

17

1.1

112

1. Data from the Athlone wastewater treatment plant for the influent variables
and from the weather bureau to be gathered and processed.

2. Hardware structure of the control system for pilot wastewater treatment plant
to be developed where the physical connections between the components of
the system (plant, sensors, transmitters, PLC, PC) and their calibration o be
done.

3. Data acquisition system for DO, pH, conductivity, temperature and turbidity to
be developed using the sensors, transmitters, PLC, PC and MySQL database.

4. Adroit SCADA system to be developed for data acquisition, monitoring and
calculation of the predicted values of the influent disturbances.

5. Communication between the software platforms Adroit, MATLAB and MySQL
1o be established in order {o solve the problems for the influent COD, TKN and
Flow rate prediction in real time. An Adroit GUI to be developed to implement
the tasks for communication and prediction.

Literature survey

Judging by the number of publications in journals and at conferénces, there are many
researchers working in the areas of neural networks and wastewater freatment
processes. This information was gleaned from consulting books, journal publications,
the Intermet, and conference proceedings. Many authors have differing views on
many issues and many ‘rules of thumb’ have been proposed to solve different
practical implementation problems. The experience of the author has been to use
these rules as guidelines, but to solve many of the practical probléms with rigorous
experimentation. '

Outline of thesis

The thesis consists of eight chaplers detailing the background information and
developed methods, algorithms, techniques applied, and resulis of the research
project.

Chapter 2 briefly discusses the biological wastewater treatment process, particularly
the activated sludge process for the removal of Nitrogen and Carbon. The importance
of the nature of the influent disturbances of COD, TKN and inflow rate, and the effects
that they have on the activated sludge process are described. The influent
disturbances are characterized and the decomposition of Carbon and Nitrogen into
fractional components is discussed. These fractional components are used in the
mathematical model of the ASP.

18

Chapter 3 provides a background to the theory of neural networks, including a brief
historical overview detailing the developmentis in the field. The process of supervised
training of the neural network and the practical considerations are detailed. Here
factors leading to problems such as over-lraining and overfitting the network are
defined.

Chapter 4 deals with the important aspect of data preparation and pre-processing.
Concepts such as missing data, data rejection, outlier detection, correlation, principal
component analysis, trends, 'the curse of dimensionality’ and circular discontinuity are
addressed and the methods and techniques adopted in this work are tabled.

Chapter 5 discusses the design and practical implementation of the neural networks.
The three architectures considered are the multilayer perceptron, the Eiman recurrent
and the radial basis function neural networks. All these architectures are applied to
the problem of prediction of influent disturbances of COD, TKN and influent flow rate,

one by one.

Chapter 6 presents the results of the implemented neural networks of the muitilayer
perceptron, the Elman recurrent and the radial basis function neural networks.

.
Chapter 7 describes the realtime hardware implementation and describes the
different software algorithms applied throughout the work. The pilot lab scale plant,
sensors and actuators, the Modicon PLC, Adroit SCADA system, MySQL database,
and implemented neural network programs in MATLAB are presented.

Chapter 8 provides detailed conclusions and the future direction for research in the

field of neural networks.

1.13 List of publications

1. Kriger, C., Tzoneva, R. 2005. "Neural Network Structures for Prediction”.
Paper presented at the Postgraduate Control Systems Day,b Pretoria
University, Pretoria.

2. Kriger, C., Tzoneva. R. 2007. * A Neural Network model for control of
wastewater treatment processes, Proc of the Int. Conf. NOLCOS 2007 DVD
ROM.

3. Kriger, C., Tzoneva. R. 2007. “*Neural Networks for Prediction of Wastewater
Treatnient Plant influent Disturbances”, Conference Proceedings of 'lEEE
AFRICON’ Windhoek, Namibia DVD ROM.

19

4. Kriger, C., Tzoneva. R. 2008. “Development of a NN software sensor for
prediction of the wastewater treatment process variables”, IEEE Control
Systems Technology (submitted to journal).

20

21

CHAPTER TWO
WASTEWATER TREATMENT PROCESS AND ITS
DISTURBANCES

Introduction

Clean water plays a crucial role in our daily lives and is an important resource particularly
in Southern Africa where it is also a very scarce resource. Clean water is essential for
plants and animals that live in water. This is important to the fishing industry, sport fishing
enthusiasts, and future generations. Our rivers and ocean waters teem with life that
depends on shoreline, beaches and marshes. They are critical habitats for hundreds of
species of fish and other aquatic life. Migratory water birds use the areas for resting and
feeding.

Wastewater is not just sewage, but used water. lf includes substances such as human
waste, food scraps, oils, soaps and chemicals. In homes, this includes water from sinks,
showers, bathtubs, toilets, washing machines and dishwashers. Businesses and
industries also contribute their share of used water that must be cleaned. Sewage is
therefore created by rééidences, institutions, and commercial and industrial
establishments. In combined municipal sewage systems, wastewater also includes storm
water runoff. Although some people assume that the rain that runs down the street during
a storm is fairly clean, it isn't. Harmful substances that wash off roads, parking lots, and
rooftops can harm our rivers and lakes. If it is not properly cleaned, water can carry
disease. People live, work and play so close to water, therefore harmful bacteria have to
be removed to make water safe (USGS, 2008).

In the past people lived in relatively small population units, often in rura! areas and the
dispbsal of human waste was not a major problem (Lindberg, 1987). As rural populations
expanded the accumulation of human waste became a hygienic problem. Urbanisation
plays a major role in the increased production of large amounts of wastewater. This is
particularly true in the Southem African region where people move from rural areas and
from the northern and central regions of Africa into the major cities.

Wastewater ireatment (WWT) plants are important to the economic and social
development of any country. Municipal wastewater treatment plants provide an important

buffer between the natural environment and the concentrated wastewaters from urban

21

2.2

areas. WWT plants protect the public's health from disease-causing bacteria and viruses.
Treatment plants that actually disinfect wastewater eliminate many harmiful organisms.
WWT plants also protect water quality so that clean oceans, lakes, streams and rivers

can be enjoyed.

The original aim of sewage disposal is the removal of the waterborne waste from
domestic and industrial communities without causing any danger o public health. The
principal aim of sewage treatment is to remove as much of the solids content as is
practical and economical, and then to oxidise (and subsequently remove) the colloidal
and dissolved solids before the remaining water, called effluent, is discharged back to the
environment. Wastewater also contains nutrients, which can stimulate the growth of
aguatic plants, and it may conlain toxic compounds. Excessive amounts of organic
matter in water deplete dissolved oxygen (by micro organic metabolism). This is due tou
the fact that as solid material decays, it uses up oxygen that is needed by the plants,
animais and other aquatic life forms living in the water to survive.

The effluent when discharged should not pollute the receiving body of water, be a danger
to public health, or cause a local nuisance. Nutrients can be removed from wastewater
effluents either by chemical or biclogical means. The latter is more economical and is
suitable for various forms of activated sludge systems (Lilley, Pybus and Power, 1887).
The method of treatment chosen for any particular installation depends on the quality of
effluent required.

This chapter discusses the wastewater treatment processes, the influent disturbances,
and also give information for some of the existing mathematical models describing the
activated sludge processes. Reasons are discussed for the development of an effective
control strategy. Furthermore the motivation for using neural networks as a tool for
devéloping a model to predict the influent disturbances to the wastewater plant is
discussed.

Legislation

The Department of Water Affairs and Forestry is the custodian of South Africa’s water
and forestry resources and is responsible for formulating and implementing policies
governing these sectors. This is the body that establishes effluent limits for all point-
source discharges. Effluents should comply with uniform standards, which are set at
technologically, and economically attainable levels (Lilley, Pybus and Power, 1997).

22

2.3

Since 1973 the Water Research Commission in South Africa has been involved in
coordinating and financing research and development in the field of nutrient removal from
the activated siudge process.

The limits imposed on each instifution are determined by the receiving water's capacity to
assimilate the waste, as well as the use for which the water is intended. Water intended
for drinking requires more protection than water used only for boating. However, all water
quality should be suitable for swimming and fishing.

Legislation regarding pollution control and indirect reuse of treated wastewater is
expressed in the Water Act (54 of 1956). The removal of carbonaceous material and the
transformation of ammaonia to nitrate are stipulated in the General and Special Standards
Act of 1862 (Ekama, Marais et al., 1984). “

Current process control techniques .

Currently the technology available in South Africa to remove pollutants from wastewater
has developed to a level that is in accordance with international standards. However the
construction of facilities is only part of the sclution. Good operation, maintenance and
administrative programs must be in place, or the best of facilities produces unacceptable
effluent (Bartlett, 1971).

The majority of wastewater plants in South Africa, particularly in the Western Cape
region, are however manually controlled. 'This means that pumps and valves are
switched on and off, and opened and closed, manually. Automation then, should improve
the performance of wastewater treatment plants for less cost and with less energy
consumption.

Curréntly there are a few wastewater treatment plants in South Africa that are
automatically controlled to a ceriain degree, and monitored using some form of
supervisory control. These plants are however not optimised for suitable efﬂueht quality,
or for conservation of energy (Vanrolleghem, 2000). There are at present twenty-two
recognized municipal wastewater treatment plants in the Western Cape region. However
of these only 14 plants are manned. The unmanned plants sometimes only have small
oxygenation tanks, but these ‘plants” are also serviced by the Western Cape
Municipality. There are six WWT plants that are known t¢ have SCADA systems to some
degree. Not ali the SCADA systems are utilized throughout the entire plant, but are

23

24

241

2.4.2

sometimes limited to certain reactors only. Another fact to bear in mind is that many of
the SCADA systems are used for mostly monitoring instead of controliing the plant
processes. The plants that the Cape Peninsula University of Technology have been
actively involved in, and that have SCADA systems, include the Cape Flats and Athlone
WWT plants. The Cape Flats plant is one of the first o have a SCADA system for
monitoring plant variables and performance, and to a2 very limited degree, controlling of
certain parameters and processes. The other plants in the Western Cape with SCADA
systems are Wildevoélivieifontein, Kraaifontein, Macassar and Zandvliet WWT plants.
Given this perspective about 43% of plants in the Western Cape region have a SCADA

system of sorts.

The Wastewater Treatment Process

The biological wastewater treatment process depicted in Figure 1.1 in Chapter 1 can be‘
divided into four stages, namely preliminary, primary, biological and secondary treatment.
The importance of these phases in the biological treatment process is briefly discussed
below.

Preliminary Treatment ‘

Preliminary treatment of wastewater is the stage in the process where sticks, bottles,
cans, stone, grit, rags and other large objects are removed to protect the equipment in
the plant from physical damage. This is achieved by the use of mechanical screens.

Grit removal is the next step in the process. Grit is sand and small hard inorganic
material that, much like sand paper wears down expensive equipment if not removed at
the beginning of the plant process. Grit chambers slow down the flow to allow grit to fali

out.

Primary Treatment

The wastewater flows from the preliminary treatment grit chambers to the primary
treatment process that removes floating solid materials from the wastewater. The primary
clarifiers provide a quiescent zone for the sludge to settle and be collected into hoppers
by a travelling flight and chain system. Grease and other floatable material is skimmed
from the surface and collected during the primary clacification process. The grease thatis
coliected from the primary clarifiers is concentrated, and then fed into the incinerators.

24

243

*2.4.4

Secondary Treatment

Pollutants dissolved in the wastewater or that do not settle in the primary clarifiers flow on
in the wastewater to the secondary treatment process. Secondary treatment further
reduces organic matter through the addition of oxygen to the wastewater that provides an
aerobic environment for the microorganisms to biologically break down this remaining

organic matter.

The primary effluent enters the head end of the tanks where it mixes with return activated
sludge that consists of microorganisms "activated” by the organic matter and oxygen.
This combination of primary effluent and return sludge forms a mixture known as "Mixed
Liguor”. The mechanical mixer in each tank continuously stirs and thoroughly mixes the

mixed liquor.

Once the mixed liquor goes through the complete oxygenation process, it flows to the
secondary clarifiers where part of the biclogical solids produced during the oxygenation
process are allowed to settie and be pumped back to the first tank in the process. These
settled solids being pumped, called return activated sludge (RAS), mix with the primary
effluent to become mixed liquor (Yu et al, 2002). Since the population of
microorganisms is growinéisome microorganisms in the return activated sludge are
removed from the system. This solids waste stream is called waste activated sludge
(WAS) and flows to the secondary gravity thickener for solids processing. The cleaned
wastewater flows over the weir of the secondary clarifier and on to the disinfection
{chlorination) process. |

Biochemical Oxygen Demand (BOD)

BOD is defined as the amount of dissolved oxygen {DO) consumed by microorganisms
for the chemical oxidation of organic and inorganic matter (Bitton, 1899). BOD is also
defined as a measure of the organic strength of the wastewater in paris per million or
mg/l. it is determined by a simple laboratory test that measures oxygen depletion on a
series of bottles of buffered distilled water seeded with active bacterial cultures. In
addition, different dilutions of the wastewater being tested are added to the bottles. The
organic content in the wastewater causes a depletion of oxygen that is measured after a
period of five days. This is reported in parts per million or mg/l of BODs.

25

2.4.5

2456

24.7

2.4.8

Chemical Oxygen Demand (COD)

Chemical oxygen demand {COD) is the amount of oxygen required to oxidize the organic
carbon completely to carbon dioxide (CO,), water (H,0) and ammonia. CQD is therefore
a measure of the oxygen equivalent of the organic matter as well as microorganisms in

the wastewater. The discussion for the composition of COD foliows in section 2.6.

Total Suspended Solids (TSS)

Also known as non-filterable solids, this is a measure of the suspended solids content of

the wastewater also in parts per million or mg/l. This test is performed by fittering a

known volume of the wastewater through a pre-weighed filter paper, drying it to remove

the water content and reweighing it to determine the suspended solids content. These

solids include both organic and inorganic matter. To determine the organic portion or

volatite suspended solids (VSS), the filtered solids must be heated in a muffle furnace .
and the remaining portion weighed (Pons and Potier, 2002).

Fecal and Chlorine Residual

The purpose of chlorinating the effluent is to kill potentially pathogenic bacteria during the
summer months when the receiving waters are most susceptible due to recreational use
and assimilative capacity of the waters. Prior to final discharge, effluent chiorine residual
must be reduced to less than 0.06 mg/l.

The Athlone wastewater treatment plant, which supplies the plant data for this project,
does not have any chlorination stage for the treatment of the effluent so this topic is not
discussed further. After secondary sedimentation, the effluent passes to maturation
ponds and is finally discharged into the Liesbeeck River (Athlone plant).

The Activated Sludge Process (ASP)

The activated sludge process is an aerobic, suspended growth, biolagical treatment
method. 1t employs the metabolic reactions of microorganisms to produce a high guality
effluent by oxidation and conversion of organics to carbon dioxide, water and bio solids
(sludge) (Gernaey, 2000).

Refer {o Figure 2.1 for a diagram of the conventionatl activated sludge process using an

extended aeration system. The microorganisms are kept suspended either by blowing air

in the tank or by use of agitators.

26

gcggﬁﬁ%ﬁ& AERATION TANK FINAL CLARIFIER
E
WASTEWATER | o208 o 2o EFFLUENT
‘..;‘o 'ou.n: b- ’
o ®, :'.': :.::
RETURN ACTIVATED SL
UDGE (RAS) EXCESS .

Figure 2. 1: A The Activated Sludge Process with Extended Aeration

A basic description is that the system speeds up nature and supplies oxygen instead of
the aquatic environment. High concentrations of microorganisms (compared to a natural
aquatic environment) in the activated sludge use the pollutants in the primary treated
wastewater as food and remove the dissolved and non-settleable poliutants from the
wastewater. These pollutants are incorporated into the microorganisms’ bodies and then’
settle in the secondary clarifiers. Oxygen needs to be supplied for the microorganisms to
survive and consume the pollutants.

2.4.8.1 The Aeration Tank

In this tank aerobic oxidation of the organic matter is performed. The primary influent is
introduced and mixed with the return activated sludge (RAS) to form the mixed liquor,
containing 1,5 - 2,5 mg/l of suspended solids. Mechanical devices such as blowers
provide aeration. The most important characteristic of the activated sludge process is the
recycling of a large proportion of the biomass. The sludge age (see below) is much
greater than the hydraulic retention time. The time that the organisms remain in this tank
varies from between 4 to 8 hours.

2.4.8.2 The Sedimentation Tank
The tank is used for the sedimentation of sludge (microbial flocs) produced during the
oxidation phase in the aeration tank. Only a portion of the sludge in the sedimentation
tank is recycled back to the aeration basin, the rest is removed as excess sludge in order

to maintain a constant sludge concentration despite the growth of the microorganisms.

2.4.8.3 Mixed liquor Suspended Solids (MLSS)
The mixed liquor suspended solids (MLSS) is the total amount of organic and minerat
suspended solids, including microorganisms, in the mixed liquor. MLSS is calculated by
filtering an aliquot of mixed liquor, drying the filter at 105 °C, and determining the weight
of solids in the sample.

27

2.4.8.4 Mixed liquor Volatile Suspended Solids (MLVSS)
The organic portion of MLSS is represented by mixed liquor volatile suspended solids
{MLVSS), which comprises of non-bacterial organic matter as well as dead and live
microorganisms and cellular debris. MLVSS is determined by heating of dried filtered
samples at 600 -650 °C, and represents approximately 85-75% of MLSS.

2.4.8.5 Food-to-microorganism ratio
One of the strategies used to control the ASP is the food-to-microorganism ratio (F:M}.
This ratio (F:M) indicates the organic load into the activated sludge system. It is
expressed in kilograms BOD per kilogram of MLSS per day. F:M is controlled by the rate
of activated sludge wasting. The higher the wasting rate, the higher the F/M rate.

_ OxBOD 51
MLVSSxV, :

where Qis the flow rate of the influent in litres per day (I/d), BOD is the 5 day bio-

chemical oxygen demand (mg/l), MLVSS are the mixed liquor volatile suspended solids

(mg/l), and ¥, is the volume of aeration tank (litres).

A low F:M ratio indicates that the microorganisms in the aeration tank are starved, thus
\

leading to a more efficient wastewater treatment (Fuente, Sainz Palimero and Pindado,

2002).

The F:M control strategy attempts to maintain a specific balance between the mass
organic contaminant (F) applied to the aeration basin, and the mass of microorganisms
{M) contained within the basin.

2.4.8.6 Hydraulic Retention Time
The'hydréulic retention time (HRT) is the time that the influent spends in the aeration
tank. it is expressed as:
HRT=1/D=V,IQ _ 22
where V, is the volume of aeration tank, Q is the flow rate of the influent into the aeration

tank and D is the dilution rate.

28

2.4.8.7 Sludge Age
Sludge age (alsc known as the sludge retention time) is the mean residence time of
microorganisms in the system. This time could be in the order of days (not hours). it is
expressed as:

MLSSxV,
88, %Q.xS8, %0,

2.3

Sludge _age =

where MLSS is the mixed liquor suspended solids {(mg/l}), V, is the volume of the aeration
tank(L), SS, are the suspended solids in wastewater effluent (mg/l), Q, is the flow rate of
wastewater effluent (m%day), SS, are the suspended solids in wasted sludge (mafl), and
0, is the flow rate of wasted sludge (m%day) (Lubenova, Simeonov and Queinnec,

2002).

Studge age may vary from 5 to 15 days in conventional activated sludge process. It is
usually higher in winter than summer.

The important parameters controlling the operation of an activated sludge process are
organic loading rates, oxygen supply, and control and operation of the final settling tank.
This tank is used for clarification and thickening of the sludge.

2.4.8.8 Biological Nitrogen Removal {BNR)

Nitrogen is an essential nutrient for biological growth, and is one of the main constituents
in all living organisms {Carlsson and Lindberg, 1888). The discharging of nitrogen into
lakes, river, dams and other quiescent bodies of water has seen acceleration in the
growth of algae. This process is known as eutrophication {Lukasse, 2001), and can be
visibly noticed as large blooms of algae. Excessive algae growth is detrimental {o the
aquatic ecosystem. The removal of nitrogen in the wastewater effluent is therefore of the
utmost importance. The biological removal of nitrogen is one of the most important and
most intensely studied topics {Gernaey, 2000). This is due to the more stringent effluent
criteria for nitrogen that have imposed for new and existing treatment plants (Nyberg et
al., 1982).

Nitrogen in wastewater can be subdivided into two main forms: free and saline ammonia

and organicaily bound nitrogen. The organically bound nitrogen can be subdivided further
into non-biodegradable and biodegradable.

29

Nitrogen is characterised by the Total Kjeldahl Nitrogen (TKN) and the free and saline
ammonia tests. Nitrogen is present in several forms, e.g. ammonia (NH;), ammonium
(NH."), nitrate (NOy), nitrite (NO;) and as organic compounds. In rivers, lakes and dams
the presence of nitrogen gives rise to some problems:

a Ammonia is toxic to aquatic organisms especially fish. The dissolved oxygen
concentration may be severely depleted when ammonium is oxidized to nitrate, as
there is a significant oxygen demand from the receiving water,

a Nitrite in drinking water is toxic, especially for infants. The chiorine dosage in
drinking water is increased due to the presence of ammonia.

The biological nitrogen removal is performed in the anoxic and aerobic basins (tanks) of
the ASP. The aerobic zone has dissolved oxygen present, while the anaerobic zone has

neither dissolved oxygen or nitrate. The anoxic zone is characterised by iis lack of

oxygen, but not nitrate (Figure 2.3). The anaerobic zone is required to effect the removal .
of phosphorus, while the anoxic zone is required for the removal of nitrogen (Lilley,

Pybus and Power, 1997).

The ammonium can be removed by oxidizing it to nitrate during aeration (dissolved
oxygen is present). This process is known as nitrification (Fruchard, Bernard and Gouzé,
2002} and is described by the following equations:

NHf +1.50, > NO; + H,0+2H" 24

NO; +0.50, - NO;y 2.5

From the chemical reaction simplified in eqﬂations {24) and {2.5) it can be seen that,
ammonium (NH,") is first oxidized to nitrite (NOy) and then to nitrate (NO3).

After nitrification, the nitrate can now be converted to nitrogen gas by denitrification. This
occurs in anoxic conditions {oxygenation is performed using nitrate).

2NO; +2H" - N, + H,0+2.50, 26

For denitrification, anoxic zones are required in the activated sludge process. These
zones can be either before the aeration zone (pre-denitrification), or after the aeration
zone (post-denitrification). For pre-denitrification, an exira recirculation flow is introduced
to transport the nitrified water back to the first zone (Figure 2.2). Denitrification is limited
by the amount of carbon entering the system (Carlsson and Lindberg, 1996).

30

25

SCREENED
AND FINAL
CLARIFIER

EFFLUENT

0
o

eag
700
S 8600
4 0 Q0 L

2,
()
1
]
=
O

®oo
9
% o

°
ovon

Anaerobic|Anoxic |Aerobic|

>
o

RETURN ACTIVATED SLUDGE (RAS) EXCESS SLUDGE >

Figure 2. 2: The Activated Siudge Process with Pre-Denitrification

Disturbances to the Wastewater Treatment Process

The technological structure of the Athlone plant ASP is based on the UCT physical
wastewater treatment plant (WWTP) mode! structure and has three tanks: anaerobic,
anoxic and aerobic, and one secondary setitling tank as depicted in Figure 2.4
Disturbances can be either internal originating from the plant itself, or external imposed
on the plant by the surrounding environment. One important reason why there is an
interest in dynamics when dealing with wastewater treatment, is the nature of the influent
disturbances, which-are cparacterized by varying values of the influent flow rate and
waste concenirations mainly represented by the chemical oxygen demand (COD) and
total Kieldahl nitrogen (TKN), Figure 2.3, (Olssen and Newell, 1999).

Internal !
Internal recycle S mternal recycle Q

E. J[b L Settler

Anaerobic —» Anoxic Aerobic
effluent

———p
Influent air
(load disturbances) Sludge recycle

Figure 2. 3: The technological structure for the Athlone WWTP based on the UCT mode!

The variations of the inflow characteristics for the Athlone plant are presented in Figure
2.4. The uncertainty in sludge activity and composition caused by unpredictable change
in the external disturbances due to seasonal variations in temperature and rainfall
requires an adaptive control strategy to be developed and applied to the ASP. The
variation of the values of the input disturbances determine different operating conditions
for the process, which means that the control strategy has to be capable of generating
contrel action according to the change in operating conditions. Such type of control can
be achieved if the values of the disturbances are known or can be measured on-line. This

31

is not possible for COD and TKN as there is still a lack of reliable on-line sensors. The
measurement of the load disturbances is done at the influent where the flow rate of the
wastewater is measured by a flow meter and the COD and TKN concenirations are
measured by sampling. The available off-line measurements are calculated in a
laboratory and are not available immediately for real-time control implementation. These
data can be used on the basis of the methods of the Artificial Intelligence to develop
predictors for the future values of the inflow concentrations of the COD and TKN. The
predicted values can then be used for building of the considered adaptive conirol strategy

in Chapter 1.

s M M**ﬁ‘“ | 2
mri % v ‘3
1
: g

& A w 1

Time i weelly izferenls
B e M

Figure 2. 4; Dynamics of the influent disturbances for the Athlone WWT Plant

The problem for prediction of the inflow disturbances is based on the analysis of the
environmental factors that could influence the input flow characteristics. The literature
review and plant operator experience showed that such factors include:

weather conditions - temperature, wind velocity, rainfall, etc.;
season, day of the week, time of day,

human activities; and

industrial activities.

The first two groups of factors are selected as a basis for disturbance prediction as some
pattern in the behaviour of the process can be observed when they are changed. The
weather data was obtained from the South African Weather Service.

Then the problem for input disturbances prediction can be formulated by finding a NN
model describing the behaviour of the inflow characteristics on the basis of variation of

32

2.6

2.6.1

the considered inflow characteristics, the weather conditions and month of the year, in
such a way that the mean squared error between the real data for the inflow
characteristics and the NN prediction is minimum,

Influent Wastewater Characterization

The characteristics of the external disturbances COD and TKN and their influences on
the wastewater composition and microorganisms are discussed. The discussion is based
on the UCT {(Universily of Cape Town) biclogical model Dold ef al,, (1991); and on the
biclogical Activated Sludge Model 1 {ASM1) of the IAWQ (international Association on
Water Quality), (Jeppson 1996 and Henze et al., 1987).

Chemical oxygen demand (COD) components in the UCT model

The carbonaceous material representation in the UCT model is in terms of the chemical
oxygen demand (COD). The total COD (S,) is divided into biodegradable COD(S,,),
non- biodegradable COD (inert mass) (S,,) and biomass (Figure 2.5). The influent

bicdegradable and non- biodegradable COD are further subdivided into:

Unbiodegradable sub-fractions: The influent unbiodegradable COD is divided into two

fractions, namely soluble COD (S,;) and unbiodegradable particulate COD(S,,,) . Both

upi
are assumed to be unaffected by the biological action in the ASP. The (S,,;) passes out

in the secondary settling tank overflow while the (S,) is enmeshed in the sludge mass

upi

and accumulates as inert VSS (volatile suspended solids).

Biodegradable sub-fractions: The influent COD is divided into two fractions, namely
readily biodegradable COD (RBCOD, §,,;) and slowly biodegradable COD

(SBCOD, S,,,,). RBCQOD consists of molecules that can be readily absorbed by the

microorganisms and metabolized for energy and synthesis, while the SBCOD is made up
of particulate organic molecules that require extracellular enzymatic breakdown prior to

absorption and utilisation.

The division of the influent wastewater COD into fractions is defined by the fractional

constants, f, ... f,,,and f,, where, f is the fraction of the total influent COD which is

unbiodegradable soluble; f, , is the fraction of the total influent COD which is

33

unbiodegradable particulate; f,,is the fraction of the biodegradable influent COD which is

readily biodegradable. The division of the influent COD into the various sub-fractions,
using these fractional constants, can be expressed as:

Susi = Fous *Su 2.7
Supi = Jop * S 2.8
The biodegradable influent COD (S,,)is given by the difference of the total influent COD
S, and the sumof §,;andS,, .

Sy =Sy —(Susi +S,upi)

=Sn' —(Sn‘ ‘f;,us +Sti .fr,up)

=Sli(l—f;,u.t —f:f,llp)

=Sbsi +Slzpi 29
where,
Stsi = Jos * S 2.10
pri=(1—fb;)'sbi 2.11
Total COD
(Ss)
v v v
Biodegradable COD Active mass COD Non-biodeg.
(Se) (8. = f:,zbSﬁ) oD (S,,)

v v v v

Readily Slowly Unbiodegradable Unbiodegradable
Biodegradable Biodegradable Soluble Particulate
(Sb;i =fb; .Sbi) (pri =[l_.fb:].sbi) (Syji =f;,m- .Sﬁ) (Supt = s.up .Sri)

Figure 2. 5: COD components in the influent for the UCT model

The IAWQ Task group proposed another influent COD fraction, the COD of active
aerobic organisms present in the influent. In both models (UCT and ASM 1), this COD

fraction (S ;) is with fractional constant f, , where S, =7, , *S,.

2.6.2

For South African municipal wastewaters, it appears that the fractional constant f£, ,,can

be assumed to be zero as the sewers are generally anaerobic.

Nitrogen components in the UCT model

The division of nitrogenous material in the influent wastewater is llustrated in Figure 2.6.
Based on the measurements of total Kieldahl nitfrogen (TKN), the nitrogen (N) is divided
into ammonia nitrogen, organically bound nifrogen and active mass nitrogen, that is, a
fraction of the biomass that is assumed tc be nitrogen.

fFree and saline ammonia and organically bound fractions
The TKN (N,) is divided into free and saline ammonia (N,) and organically bound N
(N,). The influent organically bound nitrogen (N,) is further divided into

unbiodegradable (N,) and bicdegradable (N,).

Unbiodegradable organic nitrogen (N ;)
This hitrogen has two forms, unbiodegradable soluble (N} and unbiodegradable

particulate (N

oupi

).- The unbiodegradable organic nitrogen is unaffected by biclogical

action in the system.

Biodegradable organic nitrogen (N ;)

The influent biodegradable organic nitrogen has itwoc forms, soluble (N,) and

obsi

particulate (N, ;). The division of the influent wastewater TKN into fractions is defined

obpi

by the fractional constants, f,,. f,...andf, ., where, f, ,is the fraction of the total

,0bp
influent TKN which is free and saline ammonia;
Snous 18 the fraction of the total influent TKN which is organic unbiodegradabie soluble;

Jn.osp 18 the fraction of the organic biodegradable N which is particulate. The division of

the influent total TKN (N,) into the various sub-fractions, using these fractional
constanis, can be expressed as:

Ng = oo ® Ny 2.12
N si = Frons * Ny 2.13

is associated with the

The influent unbiodegradable particulate organic nitrogen (N,)

influent unbiodegradable particulate COD (S,

i @nd is expressed as follows:

35

Nowi =Fen®Soap *Su 214
where f,, is the fraction of VSS (COD units) which is N. The influent biodegradable
organic nitrogen (N,) is given by the difference of the total influent TKN (N,,) and the
sumof N, ,N,,,; andN,,, . |

Noln‘ =Ntl‘ —Nai —Nousi —Noupi

=Nli -(fn,a .Nﬁ —fn,mu .Nti —fz,n .f:t,up .St'

=Nn‘(1-fn,a_fn,au3)_fzb,n.f.s,up.Sri 215

The soluble (N,,,;) and particulate (N,,,) influent biodegradable organic nitrogen

obsi obpi
concentrations are:

Nolm’ =(1_fn,obp).Nobi 2?6

Nobpi =fn,abp .Nobi 217

Influent Total Kjeldahl
Nitrogen TKN(N,,)

v_ v v

Free and Saline Organically bound N Active mass N
ammonia (N.,i‘—'[l"f;.a]'N') N,
(N“i-_—f;,,a’N,,) X I zbi
Biodegradable Unbiodegradable
(Nobi =Nﬂ[l_fn,n _f;n,m]—fzb,n .f::,up .Sli: (Noui =N0‘upi +Nmui)

y v v v

Soluble Particulate Soluble Particulate
(Nob:i=[l_fmb,p].Nubi) (N gy =fnab,p. obi) (Nomi=fn,ml:.Nﬁ) (Noupi =fz,n.-fs,up.sﬂ)

Figure 2. 6: Nitrogen components in the influent for the UCT model
The IAWQ Task group recommended that an influent biological (active) mass nitrogen
fraction (N,), is included in both models (UCT and ASM 1), this COD fraction (S,) is

with fractional constant f,, where N, =f, S,

7

and where f,, is the fraction of

biclogical (active) mass which is nitrogen.

36

2.6.3 Influent Wastewater Characterization Summary

2.7

Process variables and influent wastewater variables are correlated as can be seen on the
basis of the above analysis of the components of the influent wastewater and of the state
variables (components) of the ASP models from Figures 2.5 and Figure 2.6 and from the
model equations. The current values of the process variables depend on the current
values of their corresponding influent parts. This means that the influent values of the
wastewater components have to be known by measurement in order to be capable to
properly monitor and control the ASP. As staled previously, there are still not reliable on-
fine sensors {o measure the carbonaceous and nitrogen components, currently only the
flow rate can be measured on-line. One of the solutions is to apply the achievements of
the modern control theory and to predict the values of the inflow compenents on the
basis of the regression or soft computing techniques. The latter approach is applied in
the thesis where only the total COD, TKN and influent flow rate are predicted. The values
of the components of COD and TKN are determined as a second step on the basis of the
obtained predictions using the fractional coefficients described above.

Summary of the chapter

The chapter introduces the wastewater treatment process, and the motivation for WWT is
discussed. Issues such as legislation and effluent requirements and compliance in South
Africa specifically are addressed. The current situation in the Westem Cape region in
terms of municipal WWT plants and automation are tabled. The structure of the WWP is
examined together with the processes such as preliminary, primary, biological, and
secondary treatment that are involved inA ensuring effective removal of nutrients. The
biological treatment of wastewater specifically the activated sludge process is described.
The influent process disturbances chemical oxygen demand (COD), total Kjeldah!
nitrogen (TKN) and influent flow rate, are identified and characterized, and reasons as to
why we need to predict these load disturbances are discussed. The total carbon and

niirogen inflow components and their various fractional compositions with relation to the

UCT model are described.

In order to implement effective control of the ASP by controlling the dissolved oxygen, the
joad disturbances have to be predicted on the basis of past plant behaviour and
environment conditions. This work utilizes this approach using neural networks to predict
the expecied values of the disturbances with historical data from a municipal plant,
together with environmental variables such as temperature, rainfall and wind speed.

37

Chapter 3 provides a background to the theoretical aspects of neural networks and
includes a historical overview of the important developments in this field. Various
important topics such as learning ({training), validation {testing), neural network
architectures, and generalization aspects are also discussed. _

38

3.1

CHAPTER THREE
NEURAL NETWORKS BACKGROUND

introduction

A neural network is an information processing system that simulates the way the
human brain works. The neural network is usually a computer-based software
algorithm and it operates differently to a conventional computer.

Work in the area of artificial neural networks have been motivated by the fascination
of mankind with the complexity of the human brain. The brain is a highly complex,
nonlinear and parallel computer (information processing centre). It can perform

certain computations many times faster than a digital computer in fields such as:

Q

Pattern recognition;
Perception;
Control; and
Vision.

Dendrites

Axon
Cytoplasm
Cell

ra o ""557__/"

-

k‘f f/,} N H.:Mb
Axon ’f i&—’— Buttons

S

Figure 3. 1: Structure of the brain and the biclogical neuron

Biological neurons are the processing elements in the human brain. A neuron
fypically consists of 3 parts, namely the cell body, dendrites and axon (Figure 3.1).
The cell body contains the nucleus and extends to the dendrites and axons. Dendrites
receive nerve impulses from neighbouring neurons, the cell body processes them and
the axon sends the resuiting signals {o other neurons. The point where the signals are

exchanged is called the synapse.

The human brain consists of ten billion neurons and each neuron cén interact with as
few as a thousand or as many as two hundred thousand other neurons. Due to the

39

3.2

3.3

huge number of interconnections, the brain is able to adapt to external signals and
make reasonable reactions (Park, 1996).

The brain is able to react to signals it has never experienced before because of the
massive connections between neurons interacting with each other. The correct
reactions are due to the genetic programming capability and the learning ability of the
brain to respond to the events. This fact is the main focus of the development of an
artificial neural network (ANN), or simply a neural network (NN) (Zupan 1993). The
term “artificial’ is used to differentiate between its biological counterparts. In this
document the term “neural network” simply refers to the artificial NN.

Artificial Neural Networks

A neural network is defined as an information processing system that simulates the
human brain. The work on artificial neural networks has been motivated by the fact:
that the human brain computes entirely differently from the conventional digital
computer (Haykin, 1989).

Haykin defines the neural network as a massively paraliel, distributed processor
which is made up of simple processing units, having the ability 1o store experiential
knowledge and making it-available for use. Neural networks resembile the brain in two
respects:

s Knowledge is acquired from its environment through a learning process.
= Interneuron connection strengths known as synaptic weights-are used to store
the acquired knowledge.

The basic processing element of a neural network is a neuron. Neurons can have
multiple inputs and a single output. Two basic components of neurons are the
summing junction and activation functions (Figure 3.2).

A brief history of neural networks
To provide the background to this particular work, and because there is such a wealth
of material and applications for neural networks, a brief history has been included.

The history of neural networks can be traced back to the work of trying to model the
neuron. The original biological motivation for the feed-forward neural network stems
from McCulloch and Pitts (1943). The model they created had two inputs and a single
output. The weights for the inputs were kept equal and the output was either logic 1 or
logic 0. The output would remain zero until the weighted sum of the inputs reached a
certain threshold. The McCulloch and Pitts neuron became known as a logic circuit,

40

The structure of an artificial neuron is shown in Figure 3.2.

X

X1
Output
Y

Xz
Input
Signals <

Activation

. Function
Summing

Xm Junction

Synaptic
Weights

Figure 3. 2: Structure of an artificial neuron

The output of the neuron is given as:

m
Ve = (WioXo +zwlg"xj) 3.1
=1

where, y, is the neuron output, w,, and x, are the bias weight and magnitude, x; is

the input signal and w,; are the weights. ¢ is the activation function computed at the

summation node.

Donald Hebb was concerned about the adaptation laws involved in neural systems,
and in 1949 devised a learning rule for adapting the connections within artificial
neurons (Hebb, 1949).

The Perceptron was the next neuron model developed by Rosenblatt (1958).
Perceptrons are especially suiled for simple problems in pattern classification.
Rosenblatt randomly interconnected the perceptrons and used trial and error to
randomly change the weights {o achieve “learning”. The McCulloch and Pitts’ neuron
was however a much better model for the electrochemical process that goes on
inside the biological neuron than the perceptron, which is the basis for the modern
day field of neural networks (Anderson and Rosenfeld, 1988). Unfortunately the major
drawback of the perceptron is that it is only capable of classifying problems that are
linearly separable at the output (Masters, 1993 and Demuth et al., 2004).

41

decision boundary

Class 2

X2 1O ogooo

>

Figure 3. 3: A classification problem illustrating linear separable classes

Figure 3.3 shows a hypothetical classification problem with two feature variables X,
and X, The decision boundary, denoted by the solid line, is able to provide good
separation of the two classes.

Around 1954, Minsky introduced reinforcement fearning. (Ng, 1897).

The next major development was the formulation of new learning rules by Widrow
and Hoff in their application to a simple adaptive linear neuron (Adaline) (Widrow and
Hoff, 1960). The rule was also known as the least mean square (LMS) algorithm. The
extension of the ADALINE to multi-layer network is called MADALINE.

A significant breakthrough in neural networks was made in 1967 with the infroduction
of the smooth sigmoid activation function by Cowan. This function has the ability to
approximate any nonlinear function. Instead of switching either on or off like the
perceptron, this activation function turns the output on gradually when activated. For
this and other common activation functions see section 3.5.

In 1969 Minsky and Papert published their book Perceptrons (Minsky and Papert,
1969) in which they showed the deficiencies of the perceptron models. Most neural
network funding was redirected and many researchers left the field. Only a few
researchers continued notably Teuvo Kohonen, Stephen Grossberg, James
Anderson and Kunihiko Fukushima (Krése and van der Smagt, 1996). The interest in
neural networks re-emerged only after some important theoretical results were
attained in the eighties {most notably backpropagation).

42

34

In 1974 Werbos published the backpropagation learning method, but this did not
receive a lot of publicity. This learning method deals with propagation of the
information about the errors back to the hidden layer.

Parker (1985) and Le Cun (1986) rejuvenated the interest in backpropagation. The
error backpropagation method published by Rumelhart, Hinton and Williams {1986),
could train multi-layered neural networks to perform tasks where the perceptron had
failed. It was after this publication that the backpropagation was seen as a
breakthrough in neural network literature with the introduction of the generalised delta
rule. The backpropagation method has been used successfully in numerous
applications such as filtering operations, handwritten digit recognition, control
systems, etc. For a more detailed discussion on the history of NN see Ng (1997) and
Tarassenko (1998).

Network Architecture (Topology)

There are broadly speaking, essentially two types of NN topologies, namely the feed-
forward neufal network (FNN} and the recurrent neural network (RNN). The fully
connected 3-layer FNN and RNN are illustrated in Figure 3.4 and 3.5 respectively.
There are a large number of different neural network topologies. For a more
comprehensive list of the different neural network topologies together with the
sources consulted see Appendix A, This list is by no means the only types of NNs
that are available.

Feed-forward NNs are restricted to finite-dimensional input and output spaces. RNNs
can in theory process arbitrarily long strings of numbers or symbols. But training
recurrent NNs has posed much more serious practical difficulties than training feed-
forward networks.

Fihding an optimal network configuration is one of the most important problems
neural network designers face. The following neural network parameters should be
selected:

= the number of hidden layers;
= the number of neurons in each hidden layer; and
a the type of activation function, which can vary in the same layer.

These parameters must be selected carefully to avoid overfitting and underfitting and,
hopefully, o make the learning phase convergent (Khan and Ondriisek 2000). Due fo
a lack of information about the variables represented in the hidden layer, NNs are
considered by most researchers to be a “black box” model (Kabundi, 2002).

43

3.5

hidden layer

Inputs P, } Outputs

Figure 3. 4: Feed-forward Neural Network

neuron hidden layer

Inputs < > Outputs

Figure 3. 5: Recurrent Neural Network

Activation functions A

The output of the neuron is determined by the activation (or transfer) function of the
neuron. The aim of the activation function is {o introduce nonlinearity into the network.
This nonlinearity combined with the interconnections of the neurons accomplishes
proper mapping from input signails to the corresponding output activities (Zupan
1993). Without this nonlinearily the multilayer perceptron would not be functionally
different from a linear filter and would not be able to perform nonlinear separation and
trajectory learning for nonlinear and non-stationary signals (Mandic and Chambers,
2001).

The fransfer function can be something as simple as a binary function also called a
hard limiter or step function (Figure 3.6). The output depends upon whether the
product is positive or negative (Equation 3.2 and 3.3). The output is ‘1" for a positive
product and ‘0" for a negative product. The output can also be bipolar {between +1 or
-1} as indicated in Figure 3.7.

ey ; “ -
» :
LY 1™ “ ol
OXr + ':“ & ; 5 S -
i i i * 3 3 £ k3
-] & £l = - R 1 3 3 4 3
#®

Figure 3. 6: Binary (Threshold} Activation function

1 ifv20
= - 3.2
) {0 ifv<0 .
Ratdtim
ti- . .‘. i : H i 3 7 ¥ 1

Figure 3. 7: Bipolar Binary (Threshold} Activation function

. 1 ifv>0
a(v)={ 0 ifv=0 3.3
-1 ifv<0O

Another very popular activation function is the sigmoid or 'S'-shaped curve (Figure
3.8). The sigmoid (Equation 3.4) has the ability to approximate to a certain degree of
accuracy any nonlinear function. The sigmoid is also known as a “squashing”
function, since the infinite input range is compressed into a finite output range. Here
the curve asymptotically approaches a minimum and maximum. The difference
between the sigmoid and the binary functions are that the logistic sigmoid turns on
gradually when activated. Sigmoid functions are characterized by the fact that their

45

slope must approach zero, as the input gets large (Demuth et al., 2004). This is also
when the function is almost insensitive to input received from the input layer, and the
ouiput is inactive. Mathematically the function and its derivative are continuous.

b e Burosinave

L] L 3 2z Ri [1 4 3 4 5
¥

Figure 3. 8: Logistic Sigmoid Activation function

3.4

a(v)= oo

e

The hyperbolic tangent activation function (Figure 3.9) is similar to the sigmoid, but
the output is bipolar (Equation 3.5). The tangent tends to yield faster training models
than functions generating only positive values such as the sigmoid.

a(v)=tanh(av) = "%
e +e

3.5

» H 1 : ¢ : 5
& - X 2 1] 1 2 3 £ E
v

Figure 3. 9: Hyperbolic Tangent Activation function
| 3.5
The pure linear function (Equation 3.6} is a linear activation function and does no
compression of the values. The linear transfer function calculates the neuron’s output

.46

by simply returning the value passed to it. The output layer for most function
approximation and regression applications is usually a linear function. If the last layer
of a multi-layer network has sigmoid neurons, then the outputs of the network are
limited to a small range. If linear output neurons are used the network outputs can
take on any value.

a = purelin(v)=v 3.6

N

o ...
T H

1

H

q

i

b

&
4

& i

e
?
i
3
3
i

w

Figure 3. 10: Pure linear Activation function

The radial basis activation function (Equation 3.7) has a different neuron input structure 1o that
of the other activation functions. The net input to the transfer function is the vector distance
between its weight vector w and the input vector muttiplied by the bias.

a=radbas(v)=e™ . 37

Figure 3. 11: Radial Basis Activation function

The radial basis function has a maximum of 1 when its input is zero (Figure 3.11). As
the distance between the weight and input increases, the output decreases.

47

3.6

Therefore the radial basis function is said to act as a detector that preduces 1
whenever the input and weight vectors are identical. The bias allows the sensitivity of
the radial basis neuron to be adjusted.

There are other less popular activation functions such as the satlin (Saturating linear)
function and the poslin (Positive linear) function (Burton, 2008). The success or failure
of the learning process depends on whether the activation function is differentiable or
not. Based on this requirement, the most popular nonlinear functions are the logistic
sigmoid and the hyperbolic tangent.

Neural Network Training / Learning

Training .is the way a NN leams. Learning or training algorithms are procedures for
modifying the weighis on the connections in a neural network structure, There are
normally 3 types of learning algorithms (Ng, 1997):

= Supervised learning
= Unsupervised learning
= Reinforcement leaming

For supervised learning, a set of inputs and correct outputs are used {o train the
network. The network then produces its own outputs. These outputs are compared
with the correct outputs and the difference (error) is used to modify the weighis. This
type of learning is used in the thesis because of the nature of the available data.

Reinforcement learning is a special case of supervised learning where there is no set
of inputs and correct outputs. The network is just told whether a produced output is
‘good’ or ‘bad’, according to a defined criterion.

Unsupervised learning or self-organizing is where a network develops its own
classification rules by extracting information from the inputs presented to the network.

Batch training is where changes to the weights and biases are made based on the
application of the entire input set of data vectors to the network.

Incremental training is where the changes to the weights and biases are made after
the application of each individual input data vector. Incremental fraining is also
referred to as on-line training or adaptive training.

Training algorithms use historical data (training data set) to automatically adjust the
weights and thresholds in order to minimize the prediction error. The method used for

48

3.7

3.8

adjusting the weights on the connections is called a learning rule. There are many

- commonly used learning rules, but there are some that are proven to be efficient in

solving certain types of problems.

The Perceptron Learning Rule
Rosenblatt’s single layer perceptron is trained as follows:

1. Randomly initialise all the network weights.
2. Apply the inputs Xand calculate the sum of each neuron S,-(k):ix,.(k)w,j (k).

i=1

3. The oulputs from each unit are:

4. Oj(k)"—'l S;(k)>threshold
0 otherwise
5. Compute the errors e;(k)=0,;(k)-0;(k) where Oy(k)is the known desired

output value.
6. Update each weight as w(k+1) = wy(k)+mx,(k)e,(k) , where 7 is the gradient

procedure step (learning rate).
7. Repeat steps 2 to 4 until the errors reach a satisfactory level.

The Least Mean Square Algorithm
The Least mean square (LMS) learning algorithm is sometimes known as the delta

rule or Widrow-Hoff learning rule. The correction of the weights is determined by:
4

Aw=BEx 36

where- E =y, —y, and where y, is the desired output and y, is the actual model

output.

The error is based on the sum of the inputs to the unit S
e,(k)=0,(k)-S,k) 3.7

The linear sum of the inputs S is passed through a tangent function that produces
the output ‘+1' or ‘-1’ depending on the polarity of the sum.

The LMS algorithm is based on the instantaneous values for the cost function,
(Haykin, 1999}

49

3.9

g(wy= -;-ez(n) 3.8

where e(n) is the error signal measured at ime 7. Differentiating ¢(w) with respect

to the weight vector wyields,

The Backpropagation Training Algorithm

Backpropagation is an example of supervised learning. In many applications neural
networks are essentially function-mapping networks. The problem with mapping is to
discover the relationship between the network inputs and target outputs. This
relationship is in all likelihood probably noniinear, as is the case with the activated

- sludge process. The backpropagation algorithm has been effectively utilized in many

applications requiring nonlinear input-otitput mapping. With the ability to approximate
any continuous nonlinear function, the backpropagation network has extraordinary
mapping (forecasting) abilities (Rui and El-Keib 1995).

The term backpropagation refers to the manner in which the gradient is compuied for
nonlinear multilayer networks. Generalizing the Widrow-Hoff learning rule to multiple-
layer hetworks and nonlinear differentiable fransfer functions created the
Backpropagation algorithm. -

The algorithm is based on steepest-descent (gradient descent) techniques extended
o each of the layers in the network by the chain rule {(Ng, 1997). The partial derivative
of the error function with respect to the weights is computed as:

dE(k)

?Em: W h—1) 3.10

where W is the vector of the weights.

The error function is defined as:
1 .
E(k)=5Lv,,(k)—y,,<k)]’ 311

where y is the plant output and e, (k) =y, (k)~y, (k) - The constant % is chosen

to facilitate the computation of a derivative for the cost function which is essential in
the estimation of the parameters.

50

3.9.1

The objective is to minimize the error function E(k) by taking the error gradient with

respect to the weight vector, W that is to be adapted. The weights are updated

using:
—W(k-1)+7-SEE)
W(k)=W(k 1)+778W(k—1) 3.12
where 77 is the learning rate and
E® __ oy Wm®) __ . 30,0)
o= O "Oawe-n

It becomes evident that the success of the backpropagation technigue depends on
three factors: the learning rate 7. the distance between the actual output and the

predicted output, and the activation function. The learning rate determines how fast
the network adjusts itself in response to the errors. If the learning rate is too high, the
adjusted weights oscillate between points with similar heights on the error surface
{Park, 1996) and the network does not converge to a minimum at all. If the learning
rate is set too low, training is slow and the network is trapped in a local minimum

(Figure 3.11). The learing rate should lie within the range 0771

The backpropagation aigorﬁhm couid be summarized as follows:

s A set of training inputs and corresponding target outputs are supplied to the
network;

» The nelwork calculates the error signals, and this is used-to adjust the
weights;

= After many forward and backward passes, the network error reaches a
‘minimum on the training data;

= The network is tested on iest data it has not seen before to measure the
generalization ability of the network.

A single pass of the first two steps above is known as an epoch. Training usually lasts
in some cases thousands of epochs until the network error is below a certain
threshold. From this it is evident that modelling with neural networks is extremely
time- consuming.

Limitations of the Backpropagation Training Algorithm
Limitations of the backpropagation training algorithm are given below:

= Long training times, therefore the speed of the convergence is relatively slow;
s Inappropriate training seis and learning strategy causes network paralysis. if
the weights get too large, the changes in the weights become minimal (since
for large weights, the derivative of the sigmoid is very small);
» No guarantee for convergence to a global minimum; sometimes the method
_can get stuck in a focal minima (See Figure 3.12);

51

= There is no exact rule for setting the number of neurons and layers for the
best performance; and
= [nstability if the learning rate is too large.

Regardless of the above limitations o the backpropagation algorithm, it is still a very
popular one especially in the control community. There are however numerous
improvements to the common backpropagation algorithm. One improvement is
adding a momentum term.

1obal . g maxima
giooal maxmum = minima
E highest point
(2 v,v s
Global minimum =
iwest pomt
T ’Weights
E
Start — & Start
here
Engd up
ha
End
: 4 up
$ >

Figure 3. 12: The Learning algorithm could get stuck in a local minima

3.9.2 Heuristic Improvements to the Backpropagation Algorithm

One method to avoid an error trajectory in the weight space being oscillatory is to add
a momentum term (Paplifski, 2004). Momentum is introduced to reduce the chance
for oscillations for a given learning rate. Momentum allows a network to respond not
only 1o the local gradient, but also to trends in the error surface (Demuth ef af., 2004).
Momentum is a modification of the generalized delta rule by including a term in the
weight updating equation (Equation 3.13). including 2 momentum term can reduce
the network training time and speed up the network convergence.

W (k) =W (k 1)+ (—q 5%(’5—%3)+a.AW(k—l) 3.13

The momentum term parameter a is selected between 0<a<1. If the momentum
term is set to 0, the weight change is based only on the gradient. If the momentum
term is set to 1, the new weight change is equal o the last weight change and the
gradient is ignored. The gradient is calculated by summing the gradients calculated
after each training example.

52

3.10

Such modification to the steepest descent learning law acts as a low-pass filter

- smoothing the error trajectory. As a result it is possible to apply a higher learning rate,

n.

Modification to Equation 3.13 such as:

OE(k) Y+ a AW (k—1)+ fAW (k —2) 3.14

was proposed by Nagata et al. (1990) where B is a constant decided by the user. The

claim was that this term reduces the possibility of the network being trapped in a local
minimum. However, this is a repeat of the role of «, and the advantage of adding g

is not very clear (Ng, 1997).

Despite the attempts at improving the traditional backpropagation algorithm by adding
momentum terms and other methods, there are other more efficient gradient methods
such as the scaled conjugate gradient. This method is used in this work and is
discussed in more detail in Chapter 5.

General'iiation

It is rarely useful to have a NN simply memorize a set of data (function
approximation), since nUMerous algorithms for table look-up can do memorization
much more efficiently. Typically, it is required that the NN be able to perform
accurately on new data, that is, {o generalize.

Generalization can be defined as the ability of the network to make a hypothetical
response to an input that has not been seen before, (Park, 1896) and make a
reasonable response.

3.10.1 Overfitting and underfitting

Qverfitting or underfitting is essentially how well the NN make predictions for cases
that are not in the training set. NNs, like other flexible nonlinear estimation methods
such as kernel regression and smoothing splines, can suffer from either underfitting
or overfitting. A network that is not sufficiently complex can fail to detect fully the
signal in a complicated data set, leading to underfitting. A network that is too complex
fits the noise also, not just the signal, leading to overfitting (Figure 3.13). Overfitting is
especially dangerous because it can easily lead to predictions that are far beyond the
range of the training data with many of the common types of NNs. Overfitting can also
produce wild predictions in multilayer perceptrons even with noise-free data (NN
FAQ, 2005).

53

In the following example in Figure 3.13, a NN has been trained to approximate a
‘noisy sine function. The underlying sine function is shown by the dotted line, ’the' noisy
measurements are given by the ‘+’ symbols, and the neural network response is
given by the solid line. Clearly this network has overfit the data and does not
generalize well (Demuth, Beale and Hagan, 2004).

There are generally three typical conditions necessary for good generalization:

The first condition is that the inputs to the network must contain sufficient information
pertaining to the target, so that a mathematical function relating correct outputs to
inputs with the desired degree of accuracy exists. A network cannoct be expected to
learn a non-existent function.

The second condition is that the function that is being approximated should be, in
some sense, smooth. This means that a small change in the inputs should, most of
the time, produce a small change in the outputs. For continuous inputs and targets,
smoothness of the function implies continuity and restrictions on the first derivative
over most of the input space. Some neural networks can learn discontinuities as long
as the function consists of a finite number of continuous pieces. A nonlinear
transformation of the input space can increase the smoothness of the function and
improve generalization. A Boolean network with a small number of hidden units and
small weighis computes a "smoother” input-output function than a network with many
hidden units and large weights.

1.5 T T L T T - ~T ™ Lo

as

-05

'1 s s ‘ 11 1 1 1. 1 2 1 'l
-1 2.8 08 L4 £.2 -] 02 [2] <1 0.8 1

pat
Figure 3. 13: An example of overfitting of a noisy sine wave {Demuth, et al, 2004)

The third requirement for good generalization is that the training cases be a
sufficiently large and a representative subset of the set of all cases. This requirement

54

relates 10 the fact that there are two different types of generalization: interpolation and
-extrapolation. Interpolation applies to cases that are more or less surrounded by
nearby training cases; everything else is extrapolation. in particular, cases that are
outside the range of the training data require extrapolation. Cases inside large "holes”
in the training data also effectively require exirapolation. Interpolation can often be
done reliably, but extrapolation is notoriously unreliable. Therefore it is important to
have sufficient training data to avoid the need for extrapolation. (NN FAQ, 2005).

If there are adequate samples for the training set, every case in the population is
close to a sufficient number of training cases. Under these conditions and with proper
training, a neural network does not generalize reliably well fo the population.

If more information about the function, e.g. that the outputs should be linearly related
to the inputs is available, one can often take advantage of this information by placing
canstraints on the network or by fitting a more specific model, such as a linear model,
to improve generalization. Extrapolation is much more reliable in linear models than in
flexible nonlinear models, although still not nearly as safe as interpolation. This
information can be used to choose the training cases more efficiently. For example,
with a linear model, training cases should be chosen at the outer limits of the input
space instead of evenly distributing them throughout the input space.

Typically, the purpose of training is to make predictions for future cases in which only
the inputs {o the network are known. The resuli of conventional network training is a
single set of weights that can be used to make such predictions. If a single-valued
prediction is needed, one might use the mean of the predictive distribution, but the full
predictive distribution also indicates how uncertain this prediction is.

‘ PN B .
Orertraimng

1 Generalization AN ET BRI
E ., o Omimm\v e

e S, o ; _{,,.w"'v

e R o T

= e, AT

\.V_' ’”“-\-_—_’/ E

Treaining R

Number of neurons
Number of iterations (ephoxs)

Figure 3. 14: Training error and generalization error

55

3.10.2 Early stopping
‘Another method for improving generalization is called early stopping. In this technique
the available data is divided into three subsets. The first subset is the training set,
which is used for computing the gradient and updating the network weights and
biases. The error of this data set is minimized during training.

The second subset is the validation set. This set is used to determine the network
performance on patterns which do not form part of the training set, but which
determine when to terminate training. The error on the validation set is monitored
during the training process. The validation error normally decreases during the initial
phase of training, as does the training set error. However, when the network begins to
overfit the data, the error on the validation set typically begins to rise. When the
validation error increases for a specified number of iterations, the training is stopped,
and the weights and biases at the minimum of the validation error are returned
{Demuth, Beale and Hagan, 2004) (Figure 3.15).

The third subset is the test set which is not used during the training, but is used for
obtaining an estimate of the true error rate of the network. It is also useful to plot the
fest set error during the training process (Figure 3.15). If the error in the test set
reaches a minimum at a significantly different iteration number than the validation set
error, this indicates a poor division of the data set.

11 T 7
3
Tz
25 i TR
1
o .4

K3
%
- . P

[23] Mﬁ" T
e 3 0 ®
s

Figure 3. 15: Early Stopping Method plotting the training, validation and test sets

There are also many other important prcbiems that are so difficult that a neural
network is unable to learn them without memorizing the entire training set, such as:

56

Predicting random or pseudo-random numbers.

Factoring large integers.

Determining whether a large integer is prime or composite.
Decrypting anything encrypted by a good algorithm.

3.10.3 Regularization

3.1

Ancther method for improving the generalization ability of a NN is regularization.
Statisticians use this technique o find the balance between the number of
parameters and goodness of the fit by penalizing large models. The performance
function is modified in such a way that the algorithm prunes the network by driving
irrelevant estimates to zero (Rech, 2002). This involves modifying the performance
function such as the sum of squares (mean square error) of the network error on the
fraining set.

F=mse=-1—i(ei)2

NS

It is possible to improve generalization by modifying the performance function by

adding a term that consists of the mean of the sum of squares of the network weights

and biases (Demuth, Beale and Hagan, 2004),

msereg = jmse + (1—-y)msw 3.16

where y is the performance ratio and msw:—l-z w?.
| n 4
j=t

Using this performance function causes the network to have smaller weights and
biases, and this forces the network response to be smoother and less likely to overfit.
The main advantage of using regularization .is that even if the NN model is over-
parameterized, the irrelevant parameter estimates are likely to be close to zero and
the NN mode! behaves like a small network (Rech, 2002).

' Neuraﬂl Network Positive Characteristics

Neural networks are characterized by the following positive capabilities:

s To solve tasks where it is beneficial o use a machine, but where it is
impractical fo program responses to all possible outcomes (knowledge
engineering bottleneck);

» Learning from limited examples — ‘human-like’ learning behaviour: neural
networks are particularly suited to problems where the solution is complex and
difficult to specify, but provides an abundance of data from which a response
can be learnt (Tarassenko, 1998);

= Ability to generalize, i.e. map similar inputs to similar outputs: neural; networks
are able to interpolate from a previous learning experience. With careful
design, a NN can be trained to give the correct response to data it has not
previously encountered (generalization) (Tarassenko, 1998);

= Ability to map linear and nonlinear functions: nonlinear mapping often give

"~ neural networks the advantage of dealing with complex real-world problems,

57

= Computational efficiency: training a NN can be computationally intensive, but
the computationai requirements of a fully trained NN can be modest
(Tarassenko, 1998). For larger problems speed is gained through parallel
processing (Haykin, 1999);

s Robust in the presence of noise; and

= Multivariable capabilities.

3.12 Application Areas of Neural Networks

3.13

Some neural network application areas are listed in chapter 1, but also include (and
are not limited to):

Recognition and forecasting disturbances;

Performing statistical quality control;

Multiple model control for vehicles (Cavalletti, lppoliti and Longhi, 2007);
Adaptively tuning of process controllers; and

Combining data from redundant sensors.

Neural Networks structures for use in prediction

The structure of a predictor underpins its ability to represent the dynamic properties of
a slatistically non-stationary discrete time input signal and hence its ability to predict
some future value (Mandic and Chambers, 2001). Time whether continuous or
discrete, is an important aspect of the neural network learning process (Eiman, 1999).
The most basic time-series predictions are made using lags from a single time series
of as all predictors (Masters, 1993). For prediction applications a MLP NN can be
compared to the FIR (finite iﬂdpulse response) filter, or in terms of time series, moving
average (MA).

Time series prediction has traditionally been performed by the use of linear
parametric autoregressive (AR), moving average (MA) or autoregressive moving
average (ARMA) models. The multilayer perceptron (MLP) is a static network, as it
has no physical feedback connections. To transform the MLP inio a dynamic network,
fime delays {(memory) in the input data are introduced {Olssen and Newell, 1999),

| (Elman, 1990). The NN structure for prediction is shown in Figure 5.16 where the

variable to be predicted is time delayed by a finite number of steps and used at the
input. There are no physical feedback paths from the output back to the input in this
structure, but it has been successfully applied in many applications such as time
series prediction {Gao and Er, 2005), flood forecasting (Chang, Liang and Chen,
2001), short term load forecasting (Khan and Abraham, 2000), and time series
forecasting (Malasri and Malasri, 2002) among others. It is used in the thesis to
predict the time series data of the inflow disturbances. The other two structures are
the Elman and RBF networks. |

58

3.14

yk) ———p
y(k =1) ———— Neural Network
y(k —=2) ———p —> y(k+1)

yk=n ———p

Figure 3. 16: Neural network structure for prediction applications where the inputs are
time-delayed a number of steps

Summary of the Chapter -

This chapter provides a brief theoretical introduction to neural networks and starts by
examining the differences and similarities between the biological and artificial neuron.
A brief historical background provides some perspective as to the developments and
current research directions in the field of neural networks.

The development of the first perceptron, which ultimately led to the muitilayer
perceptron and many other different types of neural networks, are briefly discussed.
The different types of activation functions such as the logarithmic sigmoid, hyperbolic
fangent, pure linear, and hard limit {threshold binary) activations are investigated and
proposed. {

The manner in which a NN learns either by supervised or unsupervised learning is
discussed. The gradient descent method of the backpropagation "algorithm is
examined and an improved algorithm with momentum is investigated. The use of a
more efficient gradient method, the scaled conjugate gradient method is proposed.
This is discussed in Chapter 5. '

- The next section that is a fundamental issue in the training and testing (validation) of

NNs, is the generalisation ability of the NN. The definitions for overfitting and
underfitting are tabled and two methods to improve generalisation are proposed.
Overfitting occurs when the NN is in effect “over-trained”. Underfitting occurs when
there are insufficient neurons in the hidden layer to solve the given problem.

The first method {o improve generalisation is the early stopping method where the
data is divided in 3 seis, namely the fraining, validation and test sets. The error is
monitored on the training and validation sets to avoid overfitting the data. The second
method for improved generalisation is regularisation, where a modified performance

59

function is infroduced. This ensures that the weights and biases in the network remain
small,

Positive NN characteristics and application areas are described. Finally a brief look is
taken at sfructures used in prediction or forecasting applications, where the output is
delayed a finite number of steps and used at the input without any physical
connections.)

The success of a particular application may lie in the quality and quanﬁty of the data
presented to the neural network. Chapter 4 examines the importance of pre-
processing the input data to a NN. The plant and weather data sets are discussed,
and various techniques for transforming the data are investigated.

60

4.1

CHAPTER FOUR
'DATA PRE-PROCESSING FOR SUPERVISED LEARNING

Introduction

Our world is increasingly becoming more and more data-driven. Dala in various
formats surround us in almost sphere of our daily lives. This data is usually raw and it
must be analyzed, processed, and maybe converted into ancther more meaningful
format in order to inform, instruct and aid in our understanding and décision-making.

Neural networks can sometimes produce startlingly excellent résutts and offer an
attractive paradigm for the design and analysis of adaptive intelligent systems for a
broad range of applications (Garvey, 1997). They also handle seemly impossible
problems. From this point of view, neural network practitioners sometimes think that
they can throw anything at a neural network and it will handle it (Masters, 1983).
Neural networks when used wisely perforrh at least as well if not betler in certain
instances, than traditional methods. Many factors however contribute to the success
of a neural network for a given problem. The representation and quality of the
instance data is first and foremost (Kotsiantis et al., 2006). If data is irrelevant,
redundant, noisy or unreliable, then knowledge discovery and the learning of the
relationships between cause and effect during the training phase are more difficult.

Data preparation and pre-processing afthough it takes a ot of {ime, is of utmost
importance to the success of the neural network performance. Data preprocessing
includes data cleaning, normalization, transformation, feature extraction and
selection, etc. After pre-processing, the data is presented to the neural network, after
which post-processing is performed o return the data in its original form (Figure 4.1).

‘The network performance is then calculated on the post-processed data.

There is no one single recipe of data pre-processing algorithms to follow in order to
guarantee the best performance for each data set. This chapter will present some
well-known pre-processing steps that can be considered and applied so that the best
performance is achieved for a given data set. These steps are applied to the data
used in the thesis where the NNs are built using COD, TKN, flow, weather and month
of the year as input data, and COD, TKN and flow as output data.

61

Output
Data

Post-processing

i
i}

Pre-processing

Input
Data

Figure 4. 1: Block diagram illustration of the use of data pre-processing and post-processing

4.2

with a neural network (Adapted from Bishop {1995})

Data description

The plant data is obtained from the Athlone Wastewater Treatment Plant (Figure 4.2)
in Cape Town, South Africa. The Athlone plant provides treatment of domestic and
industrial waste. The plant has been designed with the following specifications:

Plant capacity: 105 Mi;

COD: 1125 mg/i;

Suspended Solids (S8): 400 ~ 450 mg/l; and
Sludge Age: 13 days

The effluent standards for the plant according to the Department of Water and
Forestry is:

= Suspended solids: 25 mg/l
= NH,;as N: 10 mg/l

= COD: 130 mg/l

= Ecoli: 1000/100 ml

The plant configuration is based on the UCT process model for Nitrogen and
Phosphorous removal.

The influent variables of interest chosen are the Chemical Oxygen Demand (COD),
Total Kjeldahl Nitrogen (TKN), and the influent flow rate. These variables are
measured at the influent (input) of the plant and are off-line measurements except for
the flow rate. These particular external disturbances are selected as they play a vital
role in the activated siudge process (see Chapter 2), and are used in the
mathematical models describing the activated sludge process. The historical data for
the COD, TKN and Flow rate are sampled from July 1992 up until January 2005.
Although data for COD and TKN are available from January 1885, the influent flow

62

rate data is only available from July 1892 onwards. The plant data is converted from
the MS Excel format into the MySQL database format.

Figure 4. 2: An aerial view of the Athlone Wastewater Treatment Piant,

The weather data is obtained from the South African Weather Service Centre based
at the Cape Town International Airport. This is the historical weather data for the
Cape Town region between January 1985 and January 2005. The weather data used
is from the same time pericd as the plant data, July 1992 up to January 2005. The
data is converted from the ASCII text format to MS Excel and then transferred to the
MySQL database. The variables chosen are minimum temperature, maximum
temperature, rainfall, and wind speed.

The number of data points for both plant and weather data used for the training and
test data sets together are 658 points. All the time series data for the specified time
periods are displayed in Figures 4.3 to 4.9. The cyclic trends in the data variables are
fairly evident upon visual examination of the raw plant and weather data. This is the
case for particularly minimum and maximum temperature and the flow rate where
changes occur as the seasons change. The Athlone WWT plant data are sampled
daily but averaged to a weekly value. The daily weather data is also averaged fo a

63

weekly sample value. The description of the variables, units of measure, range of the
data, together with the mean and standard deviation of the plant and weather data
are presented in Table 4.1. The monthly data representing the time aspect is another
input to the NN and is reflected in Table 4.5 below. |

Table 4. 1: The information for the process variables for the Athlone wastewater
treatment plant and weather data)

Chemical Oxygen Demand —mg/l 251.00] 2030.00] 898.68] 245.14

[TKN i Total Kjeldaht Nitrogen - mg/ 17.40] 8560 5145 1122
Flow rate [\nfluent flow rate to plant -~ m™/d 49000 181000 9138l 2238
Maxtemp Maximum ambient temperature - °C 14.29 3264] 2236 3.98
Mintemp {Minimum ambient temperature - °C 3.17 1858 11.7¢] = 3.50
Rain Rainfall - mm/hr 000l 2144 142 2.33
ind [Wind speed — km/hr B 6230 2473 1370 256

COD Time Series data 1992 - 2005

3000 T ¥ T T T

COD concentration in mg/!
I
[~}
[—]
T

oA A A A AL A A A A A A A A A A A

July Mar Dec Oct July Apr Jan Oct Aug May Feb Nov Aug May Feb Dec Sept Jan
1932 1993 1903 1994 1995 1996 1997 1497 1998 1989 2000 2000 2001 2002 2003 2093 2004 2005

Figure 4. 3: Chemical Oxygen Demand {COD]) time series data: 1992- 2005

TKN time series data 1992 - 2005

100 ——————— - . e |-—TKNl

801 .

TKN concentration In mg/l

044;414‘LLA4".$¢4.Q.QL*’«A*n*.ﬁ.L.Aﬁ‘.

Mar Dec Oct July Apr Jan Oct Aug May Feb Mov Aug May Feb Dec Septlan
1997 1993 1993 1994 1995 1996 1957 1997 1958 1999 2000 2000 2001 2002 2003 2003 2004 2005

Figure 4. 4: Total Kjeldahl Nitrogen {TKN) time series data: 1992- 2005

64

Flowrate time serles data 1992 - 2005
200 T T T T T

180}] .
160

140¢

g

Flowrate in Mi/day
8

(=4
=

60} b
P T O O S S S S S D L S S S W S

July Mar Dec Oct July Apr Jan Oct Aug May Feb Nov Aug May Feb Dec Sept Jan
1992 1993 1993 1394 1995 1996 1997 1997 1998 1999 2000 2000 2001 2002 2003 2003 2004 2005

- Figure 4. 5: Flow rate time series data: 1992- 2005

Maximum Temperature Time Serles data 1992 - 2005
35 - —— Y ——

L— Maximum Temp]

N N ©
o 3 (=)

T T
I 1

Temperature In °C

-h
24
T

!

10444A'_44l4l?.?.‘}¢1.f.*.i.iJL.@.*.*QA
July Mar Dec Oct July Apr Jan Oct Aug May Feb Nov Aug May Feb Dec Sept Jan
1592 1993 1593 1994 1995 1936 1997 1997 1998 1999 2000 2000 2001 2002 2003 2003 2004 2005

Figure 4. 6: Maximum Temperature time series data: 1892- 2005

Minimum Temperature time series data 1992 - 2005
20 L v T T T v
——Minimum Tempj

I |
i I5:

" Temperature in °C
- -h
Q 2]
T
L 1

W0
1

) .@.@nA&JA’*i,iiLﬁi:*.@.QAA,AQLQ.‘F.*.#**
July Mar Dec Oct guly Apr Jan Oct Aug May Feb Nov Aug May Feb Dec Sept Jan
1992 1993 1993 1994 1995 1996 1997 1997 1998 1999 2000 2000 2001 2002 2003 2003 2004 200§

Figure 4. 7: Minimum Temperature time series data: 1992- 2005

65

4.3

Rainfall time series data 1992 -2005

' ' i o

-t N N
Lo (=) aal
T T

L 1

Ralnfall inmm
b
[~}
T
L

i

5 ; ‘ .
Y | ' i . ' ‘
| L ‘ix i] ‘JJ i "% ! "t“ [-l

i 1IRL il b i)
o LA] JL'. L ses'b .nl | JU | le .ﬂ. Al m. jl‘J 3w B .L l' R]
July Mar Dec Oct guly Apr Jan Oct Aug May Feb Nov Aug May Feb Dec Sept Jan
1992 1993 1993 1994 4995 1956 1997 1597 1998 1999 2000 2000 2001 2002 2003 2003 2004 2005

Figure 4. 8: Rainfall time series data: 1992- 2005
Windspeed time series data 1992 - 2005

25 T 1 M T I} L\
—Windspeed

|]
I I
15 | li "

Windspeed in m/s

10 . ’ = ; I ‘ i 1

5 .$4$1§L"L.+.+4i4ig"‘.$.Jgi¢iLL.+.+$4

July Mar Dec Oct July Apr Jan Oct Aug May Feb Nov Aug May Feb Dec Sept Jan
1992 1993 1993 1994 1995 1996 1907 4997 1998 1999 2000 2000 2001 2002 2003 2003 2004 2005

Figure 4. 9: Wind Speed time series data: 1992- 2005

Data selection

Neural networks are data-driven and often require large amounts of training data
examples (Barnett 1999). The first step in selecting data is the data specification and
collection, where variables of interest are identified and collected. The next step in the
process would be the analysis and examination of the collected data. These two steps
are usually performed iteratively and in parallel with each other (Casey, 2004).
Finding good inputs for a NN and collecting enough fraining data often {ake far more
time and effort than training the network.

Training data is essential to the success of neural computing applications
development, and the availability and quality of data should be confirmed at the
feasibility stage. The range of data available to train the network should be
representative of the data that the network would have to process after it is trained.

66

4.4

441

There should be examples of extreme input conditions so as to ensure that the
network will perform correctly at these extremes (Tarassenko, 1998).

If data is not available immediately the feasibility of collecting it has to be assessed,
as there are usually practical problems and cost implications associated with
collecting data (Tarassenko, 1998). Some expert knowledge regarding the types of
data variables or different processes involved may assist in the selection of the input
variables to the NN.

The influent wastewater disturbance variables of COD, TKN and flow were selected
as an abundance of reliable data was available and these particular variables play an
impartant role in the activated sludge process. For the other variables of interest there
was not enough data available

Data preprocessing

Neural networks very rarely operate direcily on the raw data, although this is possible.
The disadvantage of using raw data values is that the training timé for the neural
network would be signiﬁbant!y longer as the various variables have very different
ranges. Data has to be pre-processed before it is inputted to a neural network
because: ‘

= Neural networks learn faster and perform better if the input variables are pre-
processed before it is used fo train the network;
* Neural nelworks are able to interpolate well, but perform poorly when
exirapolating data; .
= The network should not be trained on one problem and tested on an entirely
different problem. Here problems with generalization may occur.
Data pre-processing can have a significant effect on the generalization performance
of a supervised neural network. Training a NN until the error converges to a minimum
does not mean that the NN will respond positively o the application of a test data set.
What usually occurs is that the NN has learned the training data set as well as the
underlying noise and is not able {o generalise. The elimination of noise from data is

one of the most difficult problems in machine learning (Teng, 1999).

Missing data

Plant data is most times not very reliable and many problems can occur which can
affect the reliability or integrity of the data. One of the most common problems is that
of missing data. One of the many reasons for this could be as a result of operator
failure to record data, but the more likely expianation could be instrumentation
equipment failure. This is especially true of on-line sensors where all but the very

67

simplest of devices are prone to repeated failure (Arthur, 1982). There are various
methods proposed o deal with the problem of missing data.

The first option should be to find the missing data. This step is almost always
overlooked. If data is truly missing it may be worthwhile to enquire as to why the data
is missing.

A single neuron can also be dedicated to be a “missing value” indicator. The neural
network is given some value in place of the missing data. If the variable is nominal,
the mode (most common value) could be used. If the data is ordinal the median is
appropriate. For interval or ratio data, the mean is probably the best. The important
point to consider is not to give it an oddball value that can be a misguided teacher,
particularly for supervised learning (Masters, 1993).

Tarassenko (1998) proposes three strategies to deal with missing data. The first
method consists of replacing the missing data value by its mean (Olssen and Newell,
1999) or median across the training set. The other method is to estirﬁa‘ze the missing
value for an n-dimensional input vector from knowiedge of the other n-1 input
variables. The last method uses either a linear mode! or a NN network to predict the
nth value given the set (n-1)-dimensional vectors as inputs. Olssen and Newell (1999)
also propose using the previous good value, constant trend (replace using linear
regression of points on either side of the missing data), or more complex relations can
be used to interpolate (polynomials or splines).

The first approach that is used is that the missing data values are replaced by the
average (mean) value for the particular variable for the entire year. The problem with
this approach occurs if there are consecutive missing data values, as is the case with
the Athione piant data set. This means that for the same inpuis the NN will have
different /output values. This can influence the response of the network to an entirely
different data set (test data).

The approach adopted eventually is to use a linear interpolation method to replace
the missing data values in the Athlone plant data set. There is no visible improvement
in the predictive performance of the neural network for the case of using the mean
value or the finear interpolation method in order {o replace the missing data values.
This could indicate that either method would work equally well for this data set.

68

4.4.2

The plant data for COD has 12 missing data points, for TKN there are 28 missing
data values and for the influent flow rate there are 12 missing data points. in a few
instances the missing data points were consecutive, but this did hot extend to more
than 3 consecutive missing points. There were 5 points at which all influent
disturbance variables had missing data at the same moment in time. This could be
due to the fact that no data was available either because of maintenance schedules,
or no readings were captured. These influent data variables {influent disturbances)
are the only ones where the linear interpolation method is applied. Missing data in the
weather data set are replaced by using the monthly mean value for the particular
variable. '

After the problem of the missing data points have been dealt with, careful attention
has {o be paid as to which variables are selected as inputs to the NN. The first aspect
o consider and investigate is referred to as the “curse of dimensionality”.

The curse of dimensionality

The number of inputs to a NN determines the network size. Thereforé, as the number
of inputs increase, the free parameters (weights) within that particular NN will also
increase. Haykin (1999) proposes a “rule of thumb” for determining the number of
data points that is required based on the number of inpuis 7to the NN:

() ' s

where m is the number of training vectors 0 achieve a worst case generalisation

error, £, for the network with W weights and N nodes.

The “curse of dimensionality” (Bellman 1961) refers to the exponential growth of
hyper-volume as a function of the input dimension. Many NNs can be thought of
mapping from an input space to an output space. Every part of the input space needs
{o be represented by the NN in order to know how that part of the space should be
mapped. Covering the input space takes resources, and the amount of resources
needed is proportional to the hyper-volume of the input space, Neural networks with
lots of unnecessary inputs generally perform relatively poorly. This is caused by the
fact that the dimension of the input space is high, and the network uses almost all its
resources to represent irrelevant portions of the input space. The Radial Basis
Function NN is one type of NN that is particularly prone to this problem.

A partial remedy is to pre-process the input in the right way, for example by scaling
the components according to their “importance”. However, even if a network algorithm

69

4.4.3

were able to focus on important portions of the input space, the higher the
dimensionality of the input space, more data would be needed to filter out irrelevant
information.

A priori information can help with the curse of dimensionality. Careful feature
selection and scaling of the inputs affects the severity of the problem, as well as the
selection of the type of neural network model (Mandic and Chambers, 2001). One
method used fo aid in the selection of the inputs and to eliminate unnecessary inputs
to the NN, is correlation.

Correlation

Several statistical methods are available for determining the significance of, and the
relationship between variables. The problem is that many of these methods are linear
fechniques, where neural networks on the other hand are usually based on non-linear
models. However certain linear methods such as correlation can be used {o pre-
process data before it is used as inputs to the NN.

Correlation can assist in determining which variables are closely correlated and
removing any unnecessary inputs. Calculating the correlation coefficients for two
variables will give an indication’ as to the strength of the relationship between them.
Correlation measures the degree to which two variables move together. This is
usually indicated by a value ranging from -1.0 fo +1.0:

+ O indicates no correlation;

+ 1.0 indicates a high degree of positive correlation (when x is high y is high);
and

+ -1.0indicates a high negative correlation (when x is high y is low).

If two variables are highly correlated, they can be combined into one single input
variable, or one can be discarded altogether. This can help reduce the network size. if
we assume that X is the independent variable matrix and Y is the dependent
variable matrix, then the correlation coefficients can be calculated as the covariance
of the two variables divided by the product of their standard deviations: |

- o) 4.2

¥ o,e0,

where Cov(X,Y)is the covariance matrix of X and Y and is given as,

CX ==Y M=) -0-m)0 43
i=1

and o,e0, is the product of the standard deviations. The independent variable’s

standard deviation is denoted by:

70

) R 2
. = j——vo - 4.4
, \/n-—l E (x;, ~X)

i=]

where E:le,. and the dependent variable’s standard deviation is:
n

i=]

1 < _ ,
o, =J———Z(y.- -»? 4.5
n-14

I n
where y=—)
y - 2 Yi

i=1
Two cases of correlation are considered:

- only between the input variables of the NN; and
- between the input and output variable, paying attention that one of the input
variables is an output variable also, but considered at different instances in
time.
The correlation coefficients for the plant process variables and weather data at the

NN inputs are presented in Table 4.2 below where the dependent variable is the row
{d) and the independent variable is the column (i):

Table 4. 2: The correlation coefficients for the Athlone wastewater treatment plant data
and weather data at the NN input

The maximum temperature and minimum temperature have a correlation coeficient of
about 0.85, which is close to 1. One of these two variables can therefore be
eliminated. The maximum temperature correlation coefficient for TKN and COD are
higher than that of the minimum temperature. This could indicate that the maximum
temperature can therefore be discarded as an input.

The method of correlation discussed above is discussed and applied in the work of
Khan and Ondrii$ek (2000), where the input variables are correlated with one another
and those that are highly correlated are eliminated. However another method of
correlation is investigated where calculation of the correlation coefficient of the NN
input with the NN output is done in order {o determine the relationship between the
input and output. The results of these correlation coefficients are displayed in Table
4.3 where three NNs are described with the influent disturbance variables of COD,
TKN and Flow rate as the outputs of the NNs. Different combinations of inputs to

71

these NNs are examined. The type and the number of the inputs form different
structures of the networks, which are called models in this thesis. There are 13
modeis for every one of the network types. Although a model number is presented in
the table, this does not include the complete input set. The entire set ’of inputs for a
specific model number is presented in detail in Chapter 5. The initial idea was to
perform a correlation of the entire input vector with the ouiput vecior, but this is not
possible as correlation can only be performed when the two vectors are of the same
size. Therefore the individual inputs are correlated with the NN output. After a cursory
examination of Table 4.3 it is fairly obvious that the NN with influent flow rate at the
output has the highest correlation coefficients for almost all input variations. The first
case of correlation is employed in this work although the latter is relevant when
looking at the predictive performance of the NN.

Table 4. 3: The correlation coefficients for the correlation between the inputs and

outputs for the three NNs for the different influent variables of COD, TKN and influent
Flow rate

Input Model Input variable Output Correlation

number Coefficient

adel CODK+1)
Model 2 COD(k-1) COD{k+1)
Model 3 COD{k-2) COD{k+1)
Model 4 COD(k-3) CODtk+1)
Model 5 TKN . COD{k+1)
Model 6 FLOW CODk+1}
Model 7 Month {2 input neurons) | COD{k+1)
Model 8 Minimum Temperature COD{k+1)
Model 8 Rain COD(k+1)

Model 10 Wind CODK+1)

Model 1 TKN TKN{k+1) 0.4973
Model 2 TKN(k-1) TKN{k+1) 0.4555
Model 3 TKN{k-2) TKN{k+1)
Model 4 TKN{(k-3} TKN(k+1}
Model 6 COD TKNk+1}
Model 6 FLOW TKNk+1}
Model 7 Month {2 input neurons) TENtk+1)
Model 8 Minimum Temperature TKNtk+1}
Model 8 Rain TKN{k+1)

Model 10 Wind THEN(k+1)

Model 1 FLOW FLOW(k+1) | 0.8587
Modei 2 FLOWIk-1) FLOW(k+1) | 0.7575
Model 3 FLOW(k-2) FLOW(k+1) | 0.6894
Model 4 FLOWI(k-3) FLOW(k+1) | 0.62988
Model 5 cob FLOW(k+1) | 03213
Model 8 TKN FLOW(k+1) | -0.4417
Model 7 Month {2 input neurons) FLOW({k+1} | -0.4980
-0.3774
Model 8 Minimum Temperature FLOW(k+1) | -0.5342
Model 9 Raln FLOW(k+1) 0.4428
Model! 10 Wind FLOWIk+1) | -0.0478

72

444

445

Ancther method to investigate the relationship between input variables and for the
elimination of any unnecessary inputs is principal component analysis (PCA).

Principal Component Analysis

When the input data is high dimensional and no obvicus features can be extracted
from it, the input dimensionality must still be reduced in order to iimit the number of
free parameters in the network. The free parameters are the total number of biases
and weights within the network and are determined mainly by the number of inputs
(Tarassenko, 1898). Sometimes the situation arises that the number of inputs to the
NN is large, but the components of the inputs in the input vector are highly correlated
(redundant). It is useful in this situation to reduce the number of the inpuis to the NN.
A suitable technique for performing this dimensionality reduction is principal
component analysis (PCA). This technique has three effects: it orthogonalizes the
components of the input vector (so that they are uncorrelated with each other), it
orders the resulting orthogonal components (principal components) so that those with
the largest variation come first; and it eliminates those components that contribute the
least to the variation in the data set (Demuth, Beale and Hagan, 2004).

In the initial phases of this study, PCA is performed on the data inputs to the NN
using the plant and weather data, but there is no reduction of the dimensions to the
input vector. The need for PCA in this study is therefore not required.

Normalization (scaling)

Neural networks don't cope very weli with a b%g range of values. If scaled data is
presented to the network, the weights can remain in small, similar predictable ranges.
Neural networks can be trained by using raw data as inputs, but the training time will
be considerably longer.

Some typical normalization methods include the following:

. actual value — min imum value
Normalized value = - — 4.6
max imum value —min imum value

t
Normalized value = actual value . 4.7
sum of the weekly values

(7 It
Normalized value = actual value 4.8
max imum value of the week

actual value — average value

4.9

Normalized value = -
max imum value — average value

One of the main reasons for normalizing is to equalize the importance of variables.
The scaling of the data is done in order to improve interpretability of network weights.

73

446

4.4.7

Also the uniform scaling equalizes initially the importance of variables {Khan and
Ondrisek, 2000).

The normalization method chosen is represented by equation 4.8. This particular
equation in essence scales the data so that the maximum normalized value would be
<1. '

Trends
Statistical and numerical measures of trends in historical data can prove to be fairly
valuable. The most salient information can be extracted from the historical data and
the NN is thus presented with only a summary measure. The elimination of trend and
seasonal variation is a very complex subject, and is discussed practically by Kendall
and Stuart, vol 3 (1978). The reasons, which might be considered before eliminating
large- scale trends, according to Masters (1893) include:
= The NN will assume that the trend is important information and will attempt to
use that information for prediction. By eliminating trends that are easily
predicted and added back in iater, the NN is free to concentrate on finer
details.
= NN are as stated previously inherently nonlinear. This is one of major
advantages of the NN, ‘but much of the activity takes place in fairly linear
regions of the neuron’s activation functions. Thus the large variations are
superimposed on important subtle information. In the leaming process these
smaller variation in the information may be scaled down or even neglected,

Seasonality

Some data sets have a seasonal or time-lagged aspect associated with i, and there
is often a natural cyclical phenomenon present. If a particular variable has this form, it
may not be appropriate to compare values if they are taken from different phases of a
cycle (e.g: summer, winter, autumn or spring).

To solve this problem of seasonality, many analysts compare quarterly data on a
lagged basis (Casey, 2004). This lagging of the data simply compares the current
period’s data with the previous corresponding periods in the cycle. Fast Fourier
transforms or wavelets are used as a more sophisticated curve fitting technique, for
higher frequency time series.

The wastewater variables most definitely have a seasonality aspect associated with it.
This is evident as more people drink moare fluids during the summer months and

74

4438

therefore use the toilet more frequently. Also during public holidays the
concentrations of the variables to the plant are higher than on days without any
holidays. The seasonality and circularity problem (below) is solved using sine and
cosine pairs to represent the month in which the sample is taken, thus taking the
season into account as well.

Circular discontinuity

Certain variables such as dates in the year may be fundamentally circular. With these
types of variables a problem arises when the date passes from 31% December to 1%
January {(day 365 to day 1). The neural network may interpret this to mean that these
days are extremely far apart, and may even classify day 365 as being more important
than day 1.

If the position of a rotating object is defined as being an angle measured from 0 to
360 degrees, a serious problem occurs when the object passes from 360 to 0
degrees. If a single neurcn is used to decode this value, it is found that two extremely
close values, 359 and 1 degrees are represented by two extrémeiy different
activations. Therefore variables with circular discontinuity are very difficult to learn
(Masters, 1993).

The same problem arises if the months of the year are used as inputs to a neural
network (in this particular project). Month 1 may be deemed less important by the
network than say, month 12.

One proposed method to get around this type of problem, is to present the data in a
different form to the network. The monthly data was initially presented as a 4-bit
binary value as an input to the network. This is illustrated in Table 4.3.

Table 4. 4: The monthly data represented as a 4-bit binary number instead of a
decimal value

January 0 (G0 |1
February g {gi11ig0
March g 1041 1
April 01110)]0
May g|1}0 |1
June cl1{11¢0
July g1 i1 i1
August 110106)]0
September 1100 |1
October 1{0f1 1|8
November 11611 1
December 11110)0

75

The above approach was investigated and implemented without muech success in
terms of the network response {o different inputs. This approach does not really
address the circularity problem, but does indeed transform the way that the data is
presented.

Ancther more practical approach to this type of problem is to represent the data as an
angle around the circumference of a circle. The circle is divided into 12 sectors with

angles 0=3:i§i=30°. Month 1 is represented with angle g =30°. Month 2 is

represented with angle 8,equal to 26=60°. Then the sine and cosine of the angle is

representative of the month. This is illustraled in Figure 4.10 énd the result is
presented in Table 4.5. As stated previously, the daily plant and weather data is
averaged to a weekly sample value. The month in which the data is sampled is
presented as the time varying variable.

Month 10 Month 4

Figure 4. 10: Circularity discontinuity: Diagram illustrating the approach used in presenting
data of a circular nature to the neural network

The angle is therefore calculated as being:

6, =359 e =30°m 4.10
12

where m=112. Therefore every month is represented by two inputs to the neural
network. From equation 4.10 the sine and cosine pairs are determined. The values for

the month of year are represented by two inputs and these are indicated in Table 4.5
below.

76

4.4.9

Table 4. 5: The monthly data represented as a sine / cosine pair

January 1 30~ 0.5 0.868
February |2 80° 0866 |05
March 3 80" 1 0

April 4 1207 |o0886 |-05
May 5 150° 05 -0.888
June 6 180° |0 -1

July 7 210" [-03 -0 866
August 8 240" 0866 |-05
September | © 270° -1 0
October 10 | 3007 0866 |05
November | 11 330° 0.5 0.866
Decemper | 12 | 360° a 1

The best way to handle circular variables is to encode them using two or three
neurons. Usually two are sufficient (Masters, 1993).

Outliers and data rejection

Data that appear to be very far away from the normal data distribution may be
classified as being outliers. In certain instances however, this outlying value may be
correct and is a natural product of the variable’s distribution (Masters, 1993).

There are some important considerations fo bear in mind. Firstly, in any given data
set there will be outliers. Also some abnormality in the data is normal. A rule of thumb
to follow is that no data point should be rejected unless it is really far out. Masters
(1993) remarks, “Unless we can satisfy ourselves beyond a reascnable doubt that the
observed value is erroneous, we should endeavour to find an explanation for the
value and perhaps modify our collection procedure so as to include its relatives”.

Another important fact to consider is that when a learning algorithm that minimizes
the mean error across the training set is used, rare outliers will have a comparatively
small impact on the learned weights. This is due to the fact that it is first “tamed” by
the squashing (activation) function, and then swamped out by the mass of correct
data.

Discarding any data from a relevant variable should only be considered as a last
resort. The recommended approach for daia rejection is to plot a histogram of the
data distribution and then carefully scrutinize the data which appear as outliers. An
example of a histogram plot for the Chemical Oxygen Demand (COD) variable is
given in Figure 4.12. Possible outliers could be to the right of the histogram plot (close
to 3000 mg/l) as the rest of the distribution of data is in a similar region. The

77

histogram plots for the rest of the inputs are presented from Figure 4.13 up to and

including Figure 4.19.

COD Histogram

50
U

No. of varlahles
- ~N N [X3
g 8 2 8

g

X
2000 2500 3000

1500
COD in mg/t

500 1000

Figure 4. 11: Histogram plots are useful for data rejection rather than automated outlier
rejection algorithms. The above figure shows the histogram plot of the COD variable

TKN Histogram

No. of variables

20 30 40 50 60 70 80 P 100
TKN in mg

Figure 4. 12: Histogram plot of the TKN

. Flowrate Histogram
250 Ll T T T T T ¥

No. of variables

60 80 100 120 140 160 180 200
Flowrate in Vday

Figure 4. 13: Histogram plot of the Flow rate

78

Minimum Temperature Histogram

1 00 T T T T T — T T
80+ E
"4
2
8 & .
§
L3
° a0 1
[~]
2z
201 E
6 8 10 12 14 16 18 20
Minimum temperature in degrees Celclus
Figure 4. 14: Histogram plot of the Minimum temperature
Maximum Temperature Histogram
1 20 r—_'___\W_* T —T T
100} J

No. of varlables
o ©
@ [~

&

15 20 35

25 30
Maximum Temperature in degrees Celcius

Figure 4. 15: Histogram plot of the Maximum temperature

Rainfall Histogram
LI T e
.
»
4 4
3
K
™
g -
A3
o
[
z —
1
10 15 20 25
Rainfall iInmm

Figure 4.15: Histogram plot of the Rainfall

An examination of the rainfall histogram (Figure 4.15) reveals that the data from about
10rmm up to 22mm cannot be classified as outliers as this could be the jow rainfall

79

periods and therefore this data is then most definitely valid. Therefore it is important
to have some prior knowledge as to the significance, importance and relevance of the
variables. This is the case for tﬁe wind speed variable (Figure 4.16) as well. The data
between 20 - 25 km/hr may be regarded as outliers, if enough knowledge about the

wind conditions in the area is not known.
Windspeed Histogram

200 T

150+

No. of variables
-l
8

S0

15
Windspeed in km/hr

25

Figure 4. 16: Histogram plot of the Wind speed

in the Cape region the wind speed may for the most time be very low, but may be

strong for a limited period of time.

Initially the possible outliers are not discarded and the different networks are trained
and tested on the original raw data with no missing points. For the influent variables
of COD and TKN, the predictive performance of the neural network is quite far from
the desired target test set, therefore the possible outliers are discarded and replaced
with values determined by linear interpolation, and the networks are re-examined.
After extensive experimentation the conclusion is reached that the prediclive
‘ performance results of the neural networks with or without the possible outliers
appeared to be unchanged. The disturbance variables of interest are the only
variables where the outliers are replaced using linear interpolation. The weather data
variables are not changed, as there does not appear {0 be any problems with outliers.

Table 4. 6: Summary of implemented pre-processing techniques

Description of the Implemented
preprocessing technique in this work?
Handling of missing data YES
Outliers and data rejection YES
Correlation of input YES
variables with each other

Normalization 7 scaling YES

Trends NO
Seasconality YES
Circular discontinuity YES

Curse of dimensionality NO
Principat component NO

analysis

80

4.5

4.6

RAW PLANT
DATA

Missing data points are
replaced with the annual MISSING
average (mean) value for DATA
the particular variable >
L Data that appear to be
very far away from the
OUTLIERS AND normal data distribution (in

DATA REJECTION | - the histogram) may be

. classified as being outliers

Correlation is a linear
statistical technique used to CORRELATION
determine the significance of COEFFICIENTS

variables

One of the main reasons
for nommalizing is to

NORMALIZATION equalize the importance
l of variables
Certain variables such as
dates in the year may be CIRCULAR
fundamentally circular DISCONTINUITY

Figure 4.17: A suinmary of the pre-processing techniques implemented on the plant and

weather data

After thé neural network has been trained, the network has to be tested with data it
has not seen before to determine the generalisation ability of the network. This data
is subjected to the same processing techniques as for the training data.

Data post-processing
Post-processing tasks include denormalizing the data back by its original scaled

" value. The maximum value used in denormalizing the data is used {o transform the

data into its original range.

Summary of the chapter

This chapter discusses the importance of careful selection of input data variables toa
neural network. The plant and weather input selection criteria are examined based on
operator experience and the literature survey. The raw plant and weather data are
available as two formats, hamely MS Excel and ASCH text formal. All data variables
are imported into the MySQL database before being processed by the MATLAB NN

algorithms.

Various pre-processing techniques are examined and proposed:
- the handling of missing data;

81

- outliers and data rejection;
- correlation;
- normalization;
- trends;
seasonalily;
- circular discontinuity;
- the curse of dimensionality; and
- principal component analysis.

A few of these techniques are summarised in Figure 4.18. These techniques are then
applied to the raw plant and weather data before being used as inputs to the NN
algorithm. Table 4.6 summarizes the technigues that are implemented in this work.

Chapter 5 discusses the actual development of the three different architectures
{topologies) including the multilayer percepltron, recurrent Elman and radial basis
functions NN. The various input combinations, the effect of varying the number of
neurons and epochs, fraining methods and performance measurements are
considered among other {opics.

82

5.1

CHAPTER FIVE
APPLICATION OF NEURAL NETWORKS FOR INFLUENT
DISTURBANCES PREDICTION

Introduction

Neural networks offer the ability to model arbitrary input data by means of adjusting
the internal network connections, such that for a given input the difference between
the neitwork output and the desired response, the error, is minimized. This is the
process of ‘training’ the network by means of supervised leaming, whereby the
network error is iteratively reduced over a training set of maiching input-output
vectors. Provided the {raining set is representative of the process, the resultant NN
model captures the inherent relationship between input and output and with the ability
to generalise for future unseen inputs (Garvey, 1897).

The main objective of this research is to find a NN model {o predict one by one the
influent disturbances COD, TKN, inflow rate 10 a wastewater treatment plant on the
basis of the predicted and other two influent disturbances and weather conditions.
One of the challenges is to find an optimal network topology by varying the types of
inputs to the network and so solve the particular input-output mapping problem. The
correct network architecture for a given application is highly problem dependent, a
diversity of the training set and the complexily of the underlying function (Garvey,
1997).

Endeavouring to find the correct architecture involves the time-consuming task of
investigating the effect varying certain parameters has on the NN learning,
generalisation, and ullimately prediction capability. This chapter presents the
implementation strategy for the three different NN architectures (fopologies), namely
the Multiiayer Perceptron (MLP), the Elman Recurrent NN (ERNN) and the Radial
Basis Function NN {RBFNN). Each topology is implemented having three neural
networks, one for each influent disturbance namely, COD, TKN and influent flow rate.
The common factor for the three topologies is that the input variations remain the
same for all. Other factors such as the effect of the number of neurons, hidden layers
and epochs are considered. The training algorithms that are investigated and used
are also shown. The training and validation process is presented, and finally the
performance criterion is discussed. '

83

5.2

All the neural network algorithms presented in this work are implemented using the
Neural Network Toolbox for use with MATLAB ®, Version 4.0.6, (R14SP3). The
MATLAB version used is MATLAB Version 7.1.0.246 (R14) Service Pack 3. All
references to the software can be cross-referenced in the work of Demuth, Beale and
Hagan (2004)

The first NN presented is the MLP where different combinations of WWTP influent
disturbances and weather inputs are presented to the NN, the number of hidden
layers and neurons are increased, iraining conditions are changed, and the network
response is observed. The second NN is the ERNN and finafly the RBF NN is
presented.

The Multilayer Feed-forward Model

The limitations of the perceptron presented in Chapter 2, are overcome by arranging
the individual neurons in a multilayer configuration (Figure 5.1). The output of the one
neuron becomes the input of the neuron in the following layer. The network consists
of an input fayer, followed by a hidden layer and lastly, the output layer. The input
layer does no processing on the arbitrary number of input nodes, but supplies the
input signals to the next layer of neurons. The hidden layer is a layer that consists of
an arbitrary number of neurons having a continuous activation function such as the
tangent-sigmoid function. The final oufput layer consists of neuron elements the same
as the hidden layer, however each output of the activation function represents the
network oufput. Therefore the MLP consists of 3 layers:

a an input layer with no weights, summation or activation function;
= 3 hidden layer with weights, summation and a hyberbolic tangent function; and
= output layer with weights, summation and a linear activation.

However it should be noted that certain references refer {o the above MLP network as
a TWO-layer network as the input is not considered because no processing takes
place here.

Three different MLP NNs are implemented, one NN for each influent disturbance
variable, namely COD, TKN and Flow rate respectively. All the outputs are a
prediction of the input disturbance variable at one time interval ahead; in this case the
interval is one week ahead. The time horizon for the predicted output is one week
ahead.

The st;ucture of the MLP for prediction of the " disturbance l=1,—m1 is given in

Figure 5.1 and 5.2.

84

— v, (k)
B0 /.{ N .
; a q; @ j}l (k + 1)

y(k) . vni(k)

wik) l Nynt d; nl

L T

Figure 5. 1: The Muitilayer Perceptron Neural Network for prediction of an input disturbance

The N, ;structure is given as

yl(k) T] a,_i
; vi(k)
wo] e | 9, >
(k) b
1
bk

Figure 5. 2. The model of a neuron for the Multilayer Feed-forward Neural Network

The output of the neuron N, is:

v, (K)=¢,,(a,,y,(k ~7) + ¢, p(k) + b ,w(k) + b, 5, 5.1
where i=1,n, , and the output of the NN is:

Pk + D)=, (dv, (k) + b, ’ 5.2
where q,, =[q,,,..q;, ,]€ R” is a vector of the NN coefficients introducing the delayed
values of the I™ disturbance; b,,i =[by;y--byim J€ R™ is the vector of the NN
coefficients introducing all considered weather conditions; ¢;; =[c;;..¢;;, J€ R™ 18
the vector of the NN coefficients introducing the inflow disturbances; b, ,is the bias
coefﬁcient;A pis the number of delays, m, =3 is the number of disturbances where, y,
= COD, y,= TKN, y,= Flowrate; m, =5 is the number of weather conditions, where
w, = month (sin), w,= month {(cos), w;= min temp, w, = rain, w,= wind speed; ¢ is
the activation function of the output layer; and ¢,; is the activation function of the

hidden layer for the neuron N,,. The estimation of parameters a,;, b, and ¢, is

based on minimising some error function, the most common being the mean squared
error or cost function given as: '
1 & , 1 . a
mse=—">"e(k)’ =—" (y(k) - $(k)) 5.3
N4 N

k=1

85

where y(k)is the NN ouiput and y(k) is the desired output.

5.2.1 Feed-forward Multilayer Neural Network Implementation Criteria
There are a number of factors to consider when attempting finding a solution to the
prediction problem. These factors include:

Input selection;

The length and selection of training and validation sets;
Activation function;

Error criterion;

Number of hidden layers;

Number of neurons in the various hidden layers;
Number of epochs;

Weight and bias initialisation;

Training method;

Learning rate;

Gradient method;

Training stopping criterion; and

Performance measurement.

e 8 &5 & &6 6 o & ¥ e 0 0

5.2.1.1 Input selection

The multilayer perceptron (MLP) is a static network, as it has no physical feedback
connections. To transform the MLP into a dynamic network, time delays {memory) in
the input data are introduced (Olssen and Newell, 1999), (Elman, 1990). These
delays are applied to the influent data of the predicted variable only and the period for
the delay is 3 tapped unit steps. This approach has been successfully applied in
short-term load forecasting (Khan, 2000} and flood forecasting (Chen, ef &/, 2001)
among others.

The problem for prediction of the inflow disturbances is based on the analysis of the
environmental factors that could influence the input flow characteristics. The literature
review and plant operator experience showed that such factors include:

O weather conditions - temperature, wind velocity, rainfall, etc.;
O season, day of the week, time of day;

0O human activities; and

O industrial activities.

The first two groups of factors are selected as a basis for disturbance prediction as
some pattern in the behaviour of the process can be observed when they are
changed. Then the problem for input disturbances prediction can be formulated in the
following way: ‘

- find 8 NN model describing the behaviour of the inflow characteristics on the
basis of the predicted disturbance delayed data, all inflow disturbances dats,
the weather conditions data and month of the year characteristics, as given in
Figure 5.3, in such a way that the mean square error in Equation 5.3 between
the real data for the inflow characteristics and the NN prediction is minimum.

86

weather 3, Inflow,
COD, TK! ASP (effluent
disturbance —jp| NN Model ————r‘ Model |—

predictions
month — 3

TDO control

Figure 5. 3: Neural Network model describing the inflow characteristics on the basis of
environmental factors

The solution to this problem is based on the following steps:

pre-processing of /0 data;

selection of the NN architecture (topology);

selection of the type of the predicting model — static or dynamic;
calculation of the NN weights by training {learning); and
validation of the model.

. & ® & »

The method followed in order to determine the correct combination of disturbance and
weather variables in order to form the predicting NN inputs, is an arduous and
laborious task of empirical testing. The proposed combination of variables consists of
the influent disturbance variables and the environmental variables together with
delayed inputs of the disturbance variable to be predicted. The different combination
of the input variables determines different models of the NN. The model numbers
represent 13 different input variations which are summarized in Tables 5.1, 5.2 and
5.3, where the considered combinations of the NN inputs for the prediction of COD,
TKN and influent FLOW rate, are given respectively.

After the inputls have been selected, various processing techniques are performed on
the data before it is input to the NN. These preprocessing techniques are discussed in
Chapter 4.

5.2.1.2 Length and selection of training and validation sets of data

It is advisable to make the test set representative of the entire period of the training
set. Caution should be exercised however o ensure the test set does not include data
from the training set. If however the NN is trained with a particular set of data, yet
{ested with another completely different data set, the network is not be able to
generalize. The total number of data poinis is 658 as is previously mentioned. One-
third of the data is used for the testing (validation) set (Haykin, 1999). The method
followed is to extract every 3 sample from the entire 658 points as the test set. This
results in a test set of 218 points and a training set of 436 points. This method is
acceptable and is proposed in the literature consulted.

87

One other method considered is the early stopping method where the data is divided
into three subsets, namely a3 fraining, validation and fest set. The early stopping
method is discussed in Chapter 3. This method did not however produce acceplable
resulis and the first approach was adopted where the data is divided into two sels.

Table 5. 1: input variable combinations {o the NN with COD as NN output

o7

isturbance only ODk+1)
Model 2 Disturbance, disturbance COD. COD{k-1) CODK+1)
delayed 1 time intervat
3 todel 3 Disturbance. disturbance COD, CODk-1). CODk-2} COOK+1)
delayed 2 time infervals
4 Modeld Disturbance, disturbance CQOD. CODKk-1). CODBK-2). CODIK-3) COD{k+1)
delayed 3 time intervals
5 Model 5 Disturbance. delayed COD, CODik-1), COD{k-2}, CODK-3}, COD{k+1)
’ disturbance, one other TKN
disturbance
[Model 6 Disturbance, delayed COD. COD{k-1}. CODHK-2}, COOK-3). CODk+1}
disturbance, all other TKN, FLOW
disturbances
8 Model 7 Dislurbance, defayed COD, COD{k-1), CODIK-2), CODKk-3}, CODtk+1)
disturbance, alt other TKN. FLOW, Month
disturbances. month
9 Model 8 Disturbance, delayed COD, CODk-1), COD(k-2), CODk-3), COD{K+1)
disturbance, ali other TKN, FLOW, Month, Minimum
disturbances, month, 1 Temperature
environmental
9 Maodel 9 Disturbance, delayed COD. COD(k-1), COD{k-2), CODK-3). CODk+1)
disturbance, all other TKN, FLOW, Month, Rain
disturbances, month, 1
environmental
[¢] Model 10 Disturbance. delayed COD, CODk-13, COD{K-23, CODK-3), CODK+1)
disturbance, all other TKN, FLOW, Month, Wind
disturbances, month, 1
environmental
16 todel 11 Disturbance, delayed COD, CODtk-1), CODtk-23, CODk-3), CODk+1)
disturbance, all other TKN, FLOW, Month, Minimum |
disturbances, month, 2 Temperature, Rain
environmental :
11 Modei 12 Disturbance, delayed COD, CODB{k-1), COD{k-2), COD{K-3). CODik+1})
disturbance, ail other TKN, FLOW, Month, Minimum
disturbances, month, ail Temperature, Rain, Wind
environmental
9 Model 13 Disturbance. delayed COD, CODLk-1}, COD(k-23, CODK-3), CODk+1)
disturbance, month. all Month, Minimum Temperature, Rain,
envirommental Wind

5.2.1.3 Activation Function
The activation function chosen, is the hyperbolic tangent sigmoid activation function
¢ in Equation 5.4 that states:

qni _ "L

e —e
#(q,,;)=tanh(g, ;) =——77—
I L& eaql,l te aqy i

54
where y is a the output of the neuron and the argument of the activation (transfer)

function. The coefficient a>0is set by the MATLAB initiglisation function (see section

5.2.1.7). The reason that this (hyperbolic tangent) activation function is chosen is that

88

the month data input ranges between +1 and —1. Therefore the much more common
log-sigmoid transfer function cannot suffice. The difference between the two
activation functions being that the Jog-sigmoid compresses data in the range between
0 and 1, and the hyperbolic tangent compresses data between +1 and —1.

The output layer simply has a pure linear activation function, ¢(q,)=*k,q,, where k,is

the coefficient. This type of selection for the activation functions for the hidden and
output layers is fairly common for regression or forecasting applications.

Table 5. 2: input variable combinations to the NN with TKN as NN output
N _bd'l nput descriptio| KA

1 todel 1 Disturbance only TKN TENK+1)

2 Model 2 Disturbance, disturbance TKN. TKN{k-1} TRN{k+1}
delayed 1 time inferval

3 tModel 3 Disturbance, disturbance TKN, TKN{k-1), TKN{k-2} TKN{k+1)
delayed 2 time intervals

4 Modei4 Disturbance, disturbance THN, TKN(k-1}, TKM(k-2), TEN(K-3} TKN(k+1)
delayed 3 time intervals

5 Model § Disturbance, delayed THN, TKN{K-1}, TKN{k-23, TKN{k-3}, COD | TKN{k+1)
‘disturbance, one other :
disturbance

& Model 6 Disturbance, delayed THN, TKN{k-1), TKN(k-2). TKN{k-3}, TKN{k+1}

- disturbance. all other CQOD0. FLOW

disturbances

8 Model 7 Disturbance. delayed TN, TRN(k-1}, TKN(k-2), TKN{-3), TKN{k+1)

- disturbance, afl other COD, FLOW, Month
; disturbances, month

9 Model 8 Disturbance, delayed TKN, TKN{K-1), TKN{k-2), TKN{k-3), TKN{k+1)
disturbance, ali other COD, FLOW, Month, Minimum
disturbances, month, 1 Temperalure
environmentat

9 Model 9 Disturbance, delayed TKN, TKN(k-1), TKN{k-2), TKN{k-3). | TKN{k+1)
disturbance, ali ather COB, FLOW, Month, Rain
disturbances. month, 1
environmental

g Model 10 Disturbance. delayed TKN, TKN{k-1}, TKN{K-2), TKN{k-3}, TKN(k+1)
disturbance, all other COD, FLOW, Month, Wind
disturbances, month, 1
environmental

10 Madel 11 Disturbance, delayed TKN, TKN(k-1}, TKN(k-2), TKN{k-3), TKN{k+1}
disturbance, all other COD, FLOW, Month, Minimum
disturbances, month, 2 Temperature, Rain
environmental

11 Model 12 Disturbance, delayed THN, TKN{k-1), TKN{k-2}, TKN{k-3}, TKN(k+1)

i disturbance, ali other COD, FLOW. Month, Minimum

disturbances. month, alt Temperature, Rain, Wind
environmental .

g Model 13 Disturbance, delayed TN, TKR{K-1). TKN{k-2), TKN(k-3}, TKN{k+1)
disturbance, month, all Month, Minimum Temperature, Rain,
environmental wWind

5.2.1.4 Error criterion
The cost function used during training is the means squared error defined in Equation
5.3. The error is calculated as the difference between the target output and the
network output. We want to minimize the average of the sum of these errors. This is
accomplished by changing the weights and biases within the network. The neural

83

network is trained until either the error is a minimum, or the maximum number of
epochs is reached.

Table 5. 3: Input variable combinations to the NN with influent FLOW rate as NN output
‘No. of | Model nput des ' 8 Inpt ow Output

1 Model 1 Digturbance only FLOW FLOWIk+1)

2 Model 2 Disturbance, disturbance FLOW. FLOW(K-1) FLOW{k+1}
delayed 1 time interval

3 Model 3 Disturbance, disturbance FLOW, FLOW(K-1), FLOW(k-2} FLOW(k+1)
delaved 2 time intervals

4 Model4 Disturbance, disturbance FLOW. FLOW(k-1}, FLOWIk-2), FLOW(k+1)
delayed 3 time intervals FLOW(K-3)

5 Modet 5 Disturbance, delayed FLOW, FLOW({K-1). FLOW(k-2), FLOWIK+1)
disturbance, one other FLOW{K-3). TKN
disturbance

6 Model § Disturbance. delayed FLOW, FLOW(k~1}, FLOW{k-2), FLOWk+1)
disturbance, all other FLOW(k-3), COD, TKN
disturbances

8 Model 7 Disturbance, delayed FLOW. FLOW({k-1}. FLOW{k-2), FLOW(k+1}
disturbance, ail other FLOW(Kk-3). COD, TKN. Month
disturbances. month

g Modei 8 Disturbance, delayed FLOW, FLOW(k-1}, FLOW{(k-2}, FLOW(k+1)
disturbance, all other FLOW(k-3), COD, TKN, Month, Minimum
disturbances, month, 1 Temperature
envircnmental

] Model 9 Disturbance, delayed FLOW, FLOW(k-1}), FLOW{k-2}, FLOW(k+1)
disturbance, aft other FLOWI(k-3}, COD. TKN, Month, Rain
disturbances, moith, 1
environmental

9 Model 10 Disturbance, delayed FLOW, FLOW(k-1). FLOW({k-2). FLOW(K+1)
disturbance. all other FLOW({-3}. COD, TKN, Month, Wind
disturbances. month, 1
environmental

10 Mode! 11 Disturbance. delayed FLOW, FLOW(k-13, FLOW(k-2). FLOW(k+1)
disturbance, afi other FLOW(k-3), COD, TKN, Month, Minimum
disturbances, month, 2 Temperature, Rain
environmentat

11 Model 12 Disturbance, delayed FLOW, FLOW({(k-1), FLOW(k-2}, FLOW(Kk+1)
disturbance, all other FLOW(k-3). COD, TKN, Month, Minimum
disturbances, month, ail Temperature, Rain, Wind
environmental .

9 Modetl 13 Disturbance, delayed FLOW, FLOW(k-1). FLOW(k-2), FLOW(k+1)
disturbance. month, all FLOW({&-3}, Month, Minimum
environmental Temperature. Rain, Wind

5.2.1.5 Number of hidden layers and hidden neurons
The multilayer perceptron is said to be able to approximate any function provided
there are sufficient neurons (Haykin, 1999) to solve a complex problem. A major
problem in designing a neural network is establishing the optimal number of layers
and number of neurons on each of it. For the input and oulput layers, the solution is
very easy, because for the input the number of neurons are equal to the numbers of
weights and biases (Krése,and van der Smagt, 1996), the problem being in
establishing the number of hidden layers and the number of neurons on each layer.
The liferature research indicated that many authors propose rules of thumb fo deal
with specific practical issues. However the experience of the author is that sometimes
these do not hold true as the problem at hand might warrant a different approach.

90

Masters (1993) proposes using the following method (Figure 5.4) to determine the
number of hidden neurons,

Output=m

OO
I

Hidden =/mn OﬂQﬂOﬂO

OOOOO0OOO

Input =n

Figure 5. 4: Calculating the number of hidden layer neurons using a pyramid approach
{Masters, 1993)

Choosing the number of hidden layers and the number of neurons is therefore
difficult, because there are no generally acceptable theories, with solutions in the
literature only for specific cases. At present there are no formal ways of determining
the size of a neural network, according to compilexity of the problem to soive. The
solutions normally are found by means of empirical testing. For real-world problems
with NNs the network tends to be of a large size. One practical consideration is to try
and minimize the size of the network while maintaining good performance. Smaller
NNs are less prone to noise in the training data set and generalize better.

The number of neurons must be high enough for generating a configuration of the
decision areas and complex encugh for a given problem. However, if the number of
neurons is too big, then the number of connections becomes too big and there is a
risk that the balance of these connections are not be calculated using only the
available examples. In this case it is possible for the network to generate noise
(Hornik; ef al., 1990); hence the phenomenon of overfitling the neural network. On the
other hand if the number of neurons from the hidden layers is too smalil, the neural
network can’t learn the entire input-output mapping relationship, and therefore cannot
solve the given problem. Thus there is a fradeoff between the number of neurons,
fraining time, and problem solving ability (Park, 1986).

One method propdsed for the determination of the optimal architecture of a neural
network for solving the same problem is the choosing of a large number of networks
with different architectures and training them on a set of common database, until the
performance criteria is fulfilled and then selecting the structure with the smallest

91

dimensions. The disadvantage of this is that the results depend on the initial
architecture selection and it takes a very long time to implement (Ostafe, 2005).
Haykin (1999) proposes two techniques to remedy this dilemma, namely network
growing and network pruning. Network growing involves the recommendation to start
with only one hidden layer, and if the results are not good, increase the number of
hidden layers. (Hornik, et al., 1980) (Haykin, 1999). The second method of network
pruning is where a large MLP is used that has adequate performance and is able to
solve the problem at hand, and then prune it by eliminating certain weights in a
selective and orderly manner (Haykin, 1999).

The approach adopted in this work is one of network growing, where a small network
is grown. However it needs to be mentioned that the method of network pruning is
attempied, but a large enough MLP able o generalize could not be successfully
implemented. The number of neurons is varied from 1 to 5 up to 10. The number of
hidden layers is determined experimentally to be one layer. Results for two layers are
included for selected models in Chapter 6.

5.2.1.6 Number of epochs

The number of epochs is determined by experimentation. A low mean squared error
(MSE) during training suggests that the network construction is of a good quality.
However, this is not usually the case as overfitting occurs. The generalization ability
of the network therefore has {o be monitored as the number of epochs is increased.
The number is varied from 500 to 1000 epochs. There are results where the epochs
are varied as low as 100 and the performance of the network is similar to that where
the number of epochs is high.

5.2.1.7 Weight and bias initialisation
The initial weights and bias values are critical to the success of the learning process.
Incorrectly initialised weights cause the activation potentials to be large which
saturates the neurons. In saturation the derivatives of the activation function is equal
to zero and no learning takes place (Paplinski, 2004). |

All weights and biases are initialised randomly in the initial tests performed. Later
initialisation of all the weights and biases was performed' using the Nguyen-Widrow
layer initialisation function (Demuth, Beale and Hagan, 2004). The Nguyen-Widrow
method generates initial weight and bias values for a layer, so that the active regions
of the layer’s neurons are distributed approximately evenly over the input space. The
advantages over purely random weights and biases are:

92

s Few neurons are wasted; and
» Training is faster.

Proper initialisation can significantly speed up the learning process.

5.2.1.8 Training Method

As discussed in Chapter 3, there are broadly speaking two different styles of training,
namely incremental training and batch training. In incremental training the weights
and biases of the network are updated each time an input is presented to the
network. incremental training can be applied to both static and dynamic networks,
although it is more commonly used with dynamic networks, such as adaptive filters.
For batch training the weights and biases are only updated after all the inputs are
presented. The training method used in this work is the baich training method.

5.2.1.9 Learning rate
The least mean square (LMS) algorithm is an example of supervised learning where
the learning rule is provided with a set of inputs and desired target outputs. The LMS
(also referred to as the Widrow-Hoff) leamning algorithm is based on an approximate
steepest descent procedure. Upon application of each input to the network, the
network output is compared to the target. The LMS algorithm minimizes the mean
squared error, i

When the learning rate (see Chapter 3} is large, learning occurs quickly. If the
learning rate is too large, it leads to instability and the errors even increase. To
ensure stable learning, the learning rate must be less than the reciprocal of the
largest eigenvalue of the correlation matrix of the input vectors (Demuth, Beale and
Hagan, 2004). The learning rate for the considered case is set to a value of 0.6; this is
determined by experimentation.

5.21.10 Gradient method
Once the number of layers and the number of neurons in each layer has been
selected, the weighfs and biases must be adjusted so as to minimize the prediction
error made by the network. This is the role of training algorithms. This process is
equivalent to fitting the model represented by the network to the available training
data (Statsoft, 2003). The objective of training is to find the lowest point in the multi-
dimensional error surface. NN error surfaces are complex and are characterized by
local minima. It is not possible to analytically determine where the global minimum of
the error surface is. NN training is thus an exploration of the error surface (Bishop,
1995).‘ Typically the gradient (slope) of the error surface is calculated at the current

93

point, and used to make a downhill move (Statsoft, 2003). The algorithm stops at a
low point, which is hopefully the global minimum.

In selecting a training algorithm the one crucial factor considered is the time taken for
the mean square error {o reach a minimum. This varies depending on factors such as
the complexity of the given problem, the number of data points in the training set, the
number of weights and biases in the network, the error goal, and whether the nefwork
is being used in an application for patiern recognition {(discriminant analysis) or
function approximation (regression). The MATLAB Neural Network Toolbox contains
many training algorithms as summarized in Table 5.4.

Table 5. 4: Training algorithms for use with the MATLAB Neural Network Toolbox

Acronym | Algorithm Description

LM {rainim Levenberg-Marguardt

BFG trainbfg BFGS Quasi- Newton

RP {rainrp Restlient Backpropagation

SCG trainscg Scaled Conjugate Gradient

cGB traincgb Conjugate Gradient with Powell/Beale Restarts
CGF | traincgf Fletcher-Powell Conjugate Gradient

cGP traincgp Polak-Ribiere Conjugate Gradient

08S trainoss One-Btep Secant

GDX traingdx Variable Learning Rate Backpropagation

Of all the algorithms presented in the table, only four are discussed and the
advantages and disadvantages considered. [n order to provide the proper perspective
needed for this discussion, cne of six benchmarks for a real world application (Engine
operation) taken from Demuth, Beale and Hagan (2004), is presented in Figure 5.5.
The results show the convergence time in seconds for the Levenberg-Marquardt,
Scaled Conjugate Gradieni, Resilient Backpropagation and Variable Learning Rate
Propagation are 18.45, 36.02, 65.91 and 188.50 respectively. The discussion below
pertains to the benchmark problem.

Generally speaking, on function approximation problems, for networks that contain up
to a few hundred weights, the Levenberg-Marquardt (LM) algorithm has the fastest
convergence and is especially suited to problems requiring very accurate training.
Compared to the other algorithms, the LM is able to obtain lower mean square errors.
The drawback to the LM algorithm is that an increase in the number of weights in the
network causes the advantage of using this algorithm {o decrease. Another
disadvantage is that algorithm does not perform well for pattern recognition problems.

94

The memory storage requirements of the LM algorithm are larger than the octher
algorithms tested.

The resilient backpropagation (RP) aigorithm is the fastest algorithm on pattern
recognition problems, but performs poorly on function approximation problems.
Reducing the error goal causes this algorithm {o degrade. On advantage is that this
algorithm is not as memory intensive compared to the other considered algorithms.

" Gargarsion of Gitwergenury St on ENGHE
1 i

h A
% S e B
. g
i R)
s N SR o I
N 3
o ‘i
3 ii
1
z
"]
i |
:
H
!
S
]
4 4
2“‘ 3 ,.,ji‘ "3
o
i -~
: o -
§§ .
", R e, ot
Wik . ., 4
‘54 " ’ 1
w” w* ' W 10 14

Ll

Figure 5. 5: The Engine benchmark problem illustrating the convergence speed for the
different training algorithins

The scaled conjugate gradient (SCG) algorithm appears to perform well over a wide
variety of problems, particularly for networks with a large number of weights. This
algorithm is faster than the LM algorithm for large networks for function approximation
problems and almost as fast as the RP algorithm on pattern recognition problems.
The performance of the SCG does not degrade as quickly as the RP algorithm does
when the error is reduced. One major advantage is the conjugate gradient algorithms
have relatively modest memory requirements.

The variable learning rate algorithm {(GDX) is usually much slower than any of the
other algorithms, but it can still be useful for some problems. However when using
early stopping the training algorithm should not converge too quickly otherwise
inconsistent results are obtained. For this benchmark application, the GDX algorithm
is probably the best option to consider. '

95

For the practical implementation of the MLP and ERNN in this work, all four training
algorithms discussed in the previous section are considered. The Levenberg-
Marquardt is the initial algorithm that exhibits promising performance for the given
problem. The LM is an example of a backpropagation algorithm that is optimized
using numerical methods. However for the larger networks, the LM algorithm is slow
and prone to reaching a minimum gradient, thus stopping the training prematurely.
The slowness of the algorithm is altributed to the fact that this aigorithm is memory
intensive. The RP and GDX exhibit similar performance to that of the LM, '

The conclusions reached after the practical implementation of the LM, RP and GDX
training algorithms are:
- that the standard backpropagation method is too siow;
- the faster modified backpropagation algorithm with a momentum term added,
still did not perform satisfactorily in terms of training speed;
- that although the LM, RP and GDX are faster than the standard
backpropagation algorithms, the execution speed was still slower than the
SCG; and '
- for larger networks the LM algorithm ran out of memory.

The scaled conjugate gradient algorithm compared to the above algorithms performs
the best if faster training is required. The scaled conjugate gradient uses a search
along the error surface based on the conjugate direction of the gradient and not the
steepest descent, like the standard backpropagation method. This search in the
conjugate direction gradient results in faster convergence.

Based on all of the above considerations and by extensive experimentation, the
scaled conjugate gradient (SCG) algorithm is eventually selected as being the best
for the given problem. The results for the time required for training the Levenberg-
Marquardt versus the scaled conjugate gradient is reported in Chapter 6.

5.2.1.11 Training Stopping criterion
In order to ensure that the NN is able to generalize, it is sometimes necessary to stop
the training (learning) before the network converges to a global minimum. The
learning or training phase of a NN can be interrupted on three conditions:

¢ The maximum number of epochs has been reached,
s The mean squared error has converged to a minimum; or
+ The learning aigorithm has reached a minimum gradient.

96

The operator can also manually abort the learning algorithm if it is observed that the
error stays constant for a sufficiently long number of training iterations (epochs).

5.21.12 Performance measurement
The prediction performance of the NN can be measured using a number of different
factors. One has to be careful as to what criterion is used when deciding on the
measurement o determine the NN performance. In the thesis three methods are
employed to measure the predictive performance of the NN,

The first method is to determine the regression or correlation coefficient between the
desired target output and the NN output. Regression analysis is used to describe
techniques that help in deciding whether there is a relationship between particular
variables. Correlation on the other hand is defined as the measure of the linear
relationship between variables. The relationship between regression and correlation
is discussed in Bettely, et al. 1994, In order to determine the relationship between the
NN output and the desired target output a regression line is drawn. This can be seen
graphically in Figure 6.5 in Chapter 6. Many of the calculations involved in finding the
correlation coefficient are the same as those used in the calculation of regression line
(Betteley, et al. 1994). Therefore one can use the correlation measurement, r to
determine whether the NN output is close 1o the target output.

ny 5-Q. 0.3 55
J(nZy —QNH (Y -

where y is the target output, and yp is the NN output and » is the number of data

points.

The correlation coefficient always has a positive value between minus one and plus 1,
which is expressed as —1<r<+1.

= - For r=+1, there is perfect positive correlation and all points lie on a straight
line with a positive slope.

s For r=-1, there is perfect negative correlation and all points lie on a stralght
line with a negative slope.

s For r=0, there is no correlation.

Therefore for r=+1, the NN has approximated the function (fitted the data) very well.

The second measure of performance is the coefficient of determination r? x100. This

is stated as a percentage.

The third and final performance measurement used in this work is the absolute
percentage error (APE) and is given by:

97

5.3

APE=100x[| y—)/ 5] 56

where y is the desired target output, and p is the NN output.

The performance is measured during both the training and validation phases. The
results of the NN performance are presented in Chapter 6.

The Elman Recurrent Neural Network Model

Recurrent NNs have feedback connections and are often used to represent dynamic
systems. Two straightforward ways of including recurrent connections in NNs is the
activation feedback, where the feedback connection is from the output of the hidden
neuron back to the input, and output feedback where the feedback is from the output
back to the input (Mandic and Chambers, 2001). These recurrent networks can be
either locally recurrent such as the Elman and Jordan recurrent NN. The Elman
network is also referred to as locally recurrent-globally feed-forward structure. Elman
networks are two-layer (excluding the input) backpropagation networks, with the
addition of a feedback connection from the output of the hidden layer to its input
(Figure. 5.5). This feedback path allows Eiman networks fo learh 10 recognize and
generate temporal patterns, as well as spatial patterns. These recurrent connections
are what give the network memory (Elman, 1990). Every neuron in the hidden layer
receives as input, in addition to the external inputs of the network, the outputs of the
hidden layer neurons. Other recurrent networks such as the Williams-Zipser network
that is a fully connected recurrent NN is presented in Mandic and Chambers (2001).
The inputs to both the feed-forward and recurrent NNs are considered to be exacily
the same, therefore Equations 5.1 and 5.2 caﬁ be modified as follows:

v (K)=¢;(a,,y,(k=T)+c;; y(k)+b,,w(k)+g,;v,(k—0)+b,,),i= ﬁ 5.7
and the output of the RNN is:

5k +1)=g,(dv, (k) +b,) 5.8
where additionally to the previous notation g, e R™ is a vector of the NN weight which

introduces the delayed output of the first hidden layers as an input to the first hidden

layer where @e R™is the vector of unit delays.

98

y(k)

k)

Vi

_ v (k)
| WA —» 4,1 R
/ - y,(k+1)

@

w(k)

d,nl

S -

Figure 5. 6: The Eiman Recurrent Neural Network for prediction of an input disturbance

The N,,structure is given as

yi(k)

(k)

wik)

vi(k)
'

Figure 5. 7. The model of a neuron for the Elman Recurrent Neural Network

5.3.1 Elman Recurrent Neural Network Implementation Criteria

The factors considered for implementation of the ERNN included:

® & & & & & & & & ¢ 0 0

Input selection;

The length and selection of training and validation sets;
Activation function;

Error criterion;

Number of hidden layers;

Number of neurons in the various hidden layers;

“Number of epochs;

Weight and bias initialisation;
Training method,;

Learning rate;

Gradient method;

Training stopping criterion; and
Performance measurement.

5.3.1.1 Input selection

The inputs for the ERNN are the same as for the MLP and are described in Tables
51-53.

99

5.3.1.2 Length and selection of training and validation sets
The partitioning of data into a training and test set for the ERNN are exactly the same
as for the MLP. The training set has 436 data points and the test set has 218 data
points. The test set is representative of the entire data set as every third sample is
extracted.

5.3.1.3 Activation Function
The activation function for the hidden layer for the ERNN is the hyperbolic tangent
(Equation 5.4), and the linear function for the output layer.

5.3.1.4Error criterion
The performance function for the training phase is the minimising of the mean
squared error (Equation 5.3).

5.3.1.5 Number of hidden layers and hidden neurons
The number of hidden layers is found by experimentation to be one. The number
neurons are varied from 1 to 5 to a maximum of 10. However this has been increased
gradually to a maximum of 80.

5.3.1.6 Number of epochs .
The nufnber of epochs is varied from 500 to 1000 epochs. The epochs are also varied
from 100 epochs although these resuits are not included in this document due to
space considerations. '

5.3.1.7 Weight and bias initialisation
All weights and biases are initialised using the Nguyen-Widrow layer initialisation
function.

5.3.1.8 Training Method
The NN is trained using the batch method where the entire input set is applied before
the weights and biases are updated.

5.3.1.9 Learning rate

The learning rate was kept at a value of 0.1. Changing the learning rate from 0.1 to
1.0 did not have a noticeable effect on the NN learning or predictive performance.

100

. 54

5.3.1.10 Gradient method
The error is minimised using the scaled gradient conjugate fraining algorithm for the
considered case. This algorithm is faster than the Levenberg-Marquardt training
algorithm. '

5.3.1.11 Training Stopping criterion
Training stops when the error is at a minimum, or the algorithm encounters a
minimum gradient, or when the operator manually stops the training phase.

5.3.1.12 Performance measurement
There are three performance measurements as indicated in section 5.2.1.12. These
are the correlation or regression coefficient r described by Equation 5.5, the

coefficient of determination r* and the absolute percentage error APE (Equation

5.6). The ideal values for r is as close to 1 as possible, r?should ideally be close to
1 or 100%, the APE should ideally be as small as possible.

The Radial Basis Function Neural Network Model

The final topology considered is that of the Radial basis function NN. The RBFNN has
a form similar to that of the MLP, as it is also a feed-forward network. The RBFNN is
a three-layered feed-forward network (if the input is considered as a layer),
comprising of the input, hidden layer and output layer respectively. The structure is
represented in Figure 5.8 with the neuron structure in Figure 5.9. The difference
between the MLP and the RBFNN is the activation for hidden neuréns. For the
RBFNN it is the radial basis function. The output layer is like the MLP a linear output
which is the best layout for function approximation problems such as this.

Radial basis functions arise as optimal solutions fo problems of interpolation,
approximation and regularisation of functions (Haykin, 1989). Much of the inspiration
for RBF neural networks comes from iraditional statistical pattern classification
techniques (Casey, 2004).

The unique feature of RBFNN is the process performed in the hidden layer. The idea
behind this is that the patterns in the input space form clusters. If the centres of these
clusters are known, then the distance from the cluster centre can be measured. This
distance measurement is made nonlinear, so that if a pattern is in an area that is
close to a cluster centre it gives a value close {o 1 (Casey, 2004).

101

Radial basis functions ¢(x;t;) form a family of functions of a p-dimensional vector,
x, each function being centered at point ¢,. A very common radial basis function is
the Gaussian function that depends only on the distance between the current peint x,

and the center point, ¢;, and the variance parameter o,
b= -
#(x;1,) =G(x -t) =exp(-"—=") 5.9
207
where ||x—t,. || is the norm of the distance vector between the current vector x and the
center point ¢,, of the symmetrical multi-dimensional Gaussian surface. The spread of
the surface is coniroited by the variance parameter g;. The equation 5.9 represents a

Gaussian bell-shaped curve as shown in Figure 3.11 in Chapter 3.

The distance measurement o the center of the cluster is referred to as the Euclidian-
distance and is represented by:

r,= /Z(x'.—-t,.j)z 5.10
i=1

wiky [] [N1 8 d,l .
g - +

»(k) < vnl(k) 2y ¢ -

w(k) [Nynl dnl

T

Figure 5. 8: The Radial Basis Neural Network for prediction of an input disturbance

The N, structure is given as

(k) T T" ai
; V,i(k)
) i M 4, H—*
W(k) b’i
1
b

Figure 5. 9: The model of a neuron for the Radial Basis Neural Network

The equations for the radial basis function are exactly the same as for the MLP, the
only difference being the activation, which is now represented by the radial basis
function in Equation 5.9.

102

5.4.1 Radial Basis Function Neural Network Implementation Criteria
Radial basis networks often require more neurons than the MLP feed-forward NN, but
it can be designed in a fraction of the time it takes to train the MLP NN. The RBFNN
works best when many training vectors are available.
The factors considered for implementation of the ERNN included:

Input selection;

The length and selection of {raining and validation sets;
Activation function;

Error criterion;

Number of hidden layers;

Number of neurons in the various hidden layers;
Number of epochs;

Weight and bias initialisation;

Training method;

Error goal,

Spread constant;

Training stopping criterion; and

Performance measurement.

¢ & & & & &6 6 ¢ ¢ & & s b

5.4.1.1 Input selection
The inputs were selected as per the Tables 5.1 - 5.3,

5.4.1.2 Length and selection of training and validation sets
The partitioning of data into a training and test set for the RBFNN are exactly the
same as for the MLP and ERNN.

5.4.1.3 Activation Function
The activation function for the RBFNN is different to the MLP and ERNN, and is the
radial basis function for the hidden layer, and the linear function for the output layer.
The coefficient ¢, is set by the MATLAB function for the initialisation of the RBF

network.
5.4.1.4 Error criterion
The performance function for the training phase is the minimising of the sum of

squares error {Demuth, Beale and Hagan, 2004).

5.4.1.5 Number of hidden layers
The number of hidden layers is kept at one layer.

103

5.5

5.4.1.6 Number of epochs and hidden neurons
A neuron is added to the hidden layer after each fraining epoch. The number of
neurons is therefore much higher than that of the MLP.

5.4.1.7 Weight and bias initialisation
All weights and biases are initialised using the Nguyen-Widrow layer initialisation
function.

5.4.1.8 Error goal
The NN is trained until the error goal is reached. There is a trade-off that has to be
made between the training to convergence and the generalisation performance of the
network. Therefore the error is not set to a minimum value such as zero.

5.4.1.9 Spread constant
The spread constant denoted by the variance parameter o, is varied together with

the error goal to find the best performance for the given set of inputs. The larger the
spread, the smoother the function approximation is. Too large a spread means a lot of
neurons are required to fit a fast-changing function. Too small a spread means many
neurons are required to fit a smooth function, and the network does not generalize
well. The spread constant is varied between 0.1 to 1.0 and the value giving the best
predictive performance is chosen.

5.4.1.10 Training Stopping criterion
Training stops when the error is at a minimum, or the algorithm encounters a
minimum gradient, or when the operator manually stops the training phase.

5.4.1.11 Performance measurement
There are three performance measurements as indicated in section 5.2.1.12. These
are the correlation or regression coefficient r , the coefficient of determination r? and
the absolute percentage error APE. The ideal values for r is as close to 1 as
possible, r?should ideally be close to 1 or 100%, the APE should ideally be as small
as possible.

Comparison of the advantages and disadvantages of the MLP and RBFNN
Radial basis function neural networks have become very popular and are serious
rivals to the multilayer perceptron. According to Casey (2004):

n RBF NNs train faster than the MLP FFNN;

104

5.6

5.7

» Another advantage that is claimed is that the hidden layer for the RBFNN is
easier to interpret than the hidden layer for a MLP.

» RBF NNs although they are frained much quicker than a MLP, in actual use it
is much slower. Therefore if speed is a consideration, the MLP is faster.

Software implementation

All software algorithms are implemented using code developed by author, together
with the Neural Network Toolbox for use with MATLAB ®, Version 4.0.6, (R14SP3).
The MATLAB™ version used is MATLAB Version 7.1.0.246 (R14) Service Pack 3.

Summary of the chapter

This chapter describes the implementation of the three neural networks, namely the
MLP, ERNN and the RBFNN. The combination of the variable selection to the input of
the NNs are discussed including the conversion of the static properties of a MLP into
a dynamic mode! by introducing time delays at the input. The partitioning of the data
into two sets is discussed. The architecture, including the number of hidden layers
and the number of hidden neurons are investigated and presented. The incorrect
selection of these leads to the problems of overfitting the mode! and over-fraining, in
the case of increasing the number of epochs. The training algorithms used and the
methods for minimizing the mean squared error and the sum of squared error during
training are presented. The validation process and the measurement of the NN
performance using the regression coefficient, the coefficient of determination, and the
absolute percentage error are described for each implemented neural network. The
differences between the various types of NNs are investigated and presented.

Chapter 6 provides the results of the implemented neural networks for the influent
disturbances of COD, TKN and flow rate. The results of all the different types of NNs
are presented together so as to provide the reader with some visual form of
compafing network performance.

105

6.1

6.2

6.2.1

CHAPTER SIX
RESULTS

Introduction

This chapter presents the implementation of the NNs for one step prediction of the
influent disturbances with the influent disturbances, weather, and month of the year
as input data. The resulis are presented for three different NN topologies namely, the
multilayer perceptron neural network (MLPNN), Elman recurrent neural network
(ERNN), and radial basis functions neural network (RBFNN).

There are 13 different input variations to the NNs consisting of the influent variable,
delayed influent variable, weather and month of the year data as presented in
Chapter 5, Table 5.1, Table 5.2 and Table 5.3. These input variations are specified
from Model 1 up to Model 13 with the input variations being the same for the MLP, .
ERNN and the RBFNN.

Due to the sheer magnitude of the number of available results and the space
considerations in this document, only selected results are included in the document.
However it should be noted that all results are available for inspection and can be
viewed on the enclosed CD.

COD Neural Network Results

The NN presented in this section is for the influent variable COD as the predicted
output of the different NNs. The NN model numbers as per the inputs are specified in
tables at the beginning of the resuits for the corresponding model. Aill the models in
{his section have only one hidden layer.

COD Neural Network MODEL 1
The input for model 1 is COD(k) and the output is COD(k+1) one time step ahead.
These are tabled below: - ’

Table 6. 1: Input variables for COD Modei 1

Inputs | Output
COD{k} | CODk+1)

The structure of the MLP and RBF NNs for Mode!l 1 are presented in Figure 6.1
below. The figures are generated using the nnfoo! command in MATLAB. The
practitioner‘ is able to design and view the created NNs using this graphical user

106

interface (GUI) development environment. This {ool is however only used for
visualisation of the created NNs. The only NN that cannot be visualised in this design
environment is the Elman recurrent NN. The structure of the Eiman and all the other
NNs are however described in the previous chapter. |

(b)

Figure 6. 1: (a) MLP Feed-forward NN Model 1 with 1 input, 1 hidden layer, 1 hidden
neuron and 1 output neuron; and {b) Block Diagram for the COD RBFNN Model 1 with 1
input, 4 hidden neurons

The resulis for Model 1 are presented in Table 6.2 up until Table 6.4 for the MLP,
Eiman and RBF NN respectively, where:

Hid layers refer to the number of hidden layers;

Hid neurons are the number of hidden neurons;

Train algorithm is the training algorithm used;

trainscyg is the MATLAB training algorithm used, in this case -'the Scaled
Conjugate Gradient (Demuth et al., 2004);

Hidden activation is the hidden layer activation function;

s fansig is the MATLAB function for the hyperbolic tangent sigmoid activation
function in Equation 5.3;

Output activation is the activation function between the hidden layer and
output layer; ,

purelin is the Linear activation function;

Epochs refer to the number of training iterations;

Performance is the error function used;

MSE is the mean squared error cost function in Equation 5.2;

SSE is the sum of squared error function used for the RBF NN;

Min train err is the minimum error value for the mean squared training error;
Learn rate is the rate that determines the length of each step of weight
change;

Momentum is the momentum factor;

Error goal is the minimum Sum of squares error goal; -

Spread is the constant for Gaussian function used in the RBF NN;

r_train is the training correlation coefficient;

r_test is the correlation coefficient after a test (validation) set of data is
applied; ‘

Ais the NN output;

7 is the desired target output;

= R_sqg_trainis the determination coefficient for the training phase;

107

a R _sq_testis the determination coefficient for the testing phase;

s Avg test err is the instantaneous error between the target output and the
‘ predicted output of the NN; and

= APE is the absolute percentage error

The definitions above pertain o all the other tables described later in this chapter. As
is seen from the tables, for the MLP and the ERNN the number of neurons in the
hidden layer are varied from 1 to 5 and finally to 10 neurons. The number of training
iterations {epochs) is varied from 500 to a maximum of 1000. The activation function
for the hidden layer is the hyperbolic tangent for the MLP and Elman RNN, and for the
RBF NN the Gaussian radial basis function is used. Training for the MLP and ERNN
stops when the mean squared error goal is reached, or when the maximum number
of epochs is reached. For the RBF training stops when the sum of square error
reaches a minimum or when the training iterations equal the maximum number of
input data points.

For the NN having TKN as an output in section 6.3, all tables and abbreviations
remain the same as per the section above for the NN with COD as output. The inpuis
are specified as per Table 5.2. For space considerations only for Model 1 all figures
are included, the rest of the models only have the final NN response to the application
of the test data set. However, please note that all results can be viewed using the
program on the enclosed compact disc {CD).

From Figure 6.2 up to Figure 6.7 the training, the testing (validation), and
performance measurement phases are displayed.

108

1

onEpochs|Performance ferr . {Momentum|r: trair i test
1 1itrainscg jtansig [purelin 500|MSE 0.0129, 0.6 0.5] 0.331] 0.243 0.110] 0.059{ -30.239] 20.292
1 5/trainscg _[tansig _ |purelin 500|MSE 0.0124] 0.6 0.5 0.375] 0.223 0.141 0.050{ -32.589] 20.938,
1 10jtrainscg {tansig {purelin 500MSE 0.0119 0.6 0.5 0.419) 0.249 0.176 0.062] -27.507] 20.752
1 1|trainscg [tansig _ [purelin 993|MSE 0.0129 0.6 0.5 0.331 0.243 0.110 0.059] -30.452] 20.299
1 5|trainscg _[tansig purelin 1000]MSE 0.0123 0.6 0.5 0.389[0.214] 0.151 0.046{ -29.936!21.029
1 10jtrainscg [tansig |purelin 1000MSE 0.0119 0.6 0.5] 0.425 0.248] - 0.181 0.062| -27.081] 20.691

algorithm Jactivation/act Perf ‘ ;
1 1jtrainscg ltansig [purelin 500[MSE 0.0129f 0.01 0.5 0.330[0.242 0.058| -29.475(20.268
1 Sitrainscg |tansig purelin SDO]KASE 0.0126] 0.01 0.5 0.359] 0.246) 0.061| -33.176] 20.430
1 10itrainscg jtansig purelin SOOIMSE 0.0126 0.01 0.5 0.357] 0.246 0.060| -34.451| 20.418
1 1jtrainscg [tansig [purelin 158[MSE 0.0129{ 0.01 0.5] 0.330{ 0.240! 0.057] -28.830] 20.262
1 5itrainscg [tansig |purelin 1000[MSE 0.0126{ 0.01 0.5 0.362[0.246 0.061! -34.307{ 20.554
1 10ltrainscg Jtansig purelin 1000]MSE 0.0127{ 0.01 0.5 0.353[0.245 0.060] -31.400] 20.353

109

Performance is 0.0128959, Goal is 0
1’ T T T T T T 2l T LN

Tralning Error
3
L}
i

(S
1t i 1 1 1 Il 1 1 1 1
0 100 150 200 250 30 350 400 450 500
500 Epochs
(a)
. Performance is 0.0128951, Goalis 0
10 E T T T T T L T T
:]
!]
i
1}
5 E
&]
o]
£]
S
T 3 ‘ 3
L]
107 I 1 I 1 N A 1 1
[} 50 100 150 200 250 300 350 - 400
] 416 Epochs
(b)
Performance is §.4927, Goalis 55
T T T L T]
]
4
]
&]
2]
K
;
: ;
é]
5]
z J
10" [1 1 1 1 1.]
0 05 1 15 2 25 3 35 4
4 Epochs
(c)

Figure 6. 2: Training error versus the number of epochs for COD: (a) MLP FFNN Model 1
with 1 hidden neuron, 500 epochs; (b) ERNN Model 1 with 1 hidden neuron, 500 epochs;
and (¢) RBFNN Model 1 with 4 hidden neurons, 4 epochs

110

Normalized Training Inputs and NN response

1r °
° o Training-Data
09} s + Network-Response
°
[13:15 o °o
-] o o
< o7 ° o o
o o
ﬁ o o ° e ®o 0% °
s 06} ° o o ° ° e ‘; ° . ° o
13 i ° 0 ,%,0 o a
'6 o® o 6 © ° o « o ® :" ° o ° ° ®, °°
80.5—‘.“2 .‘5‘"49":':5“‘;5 ??“."0 RSP .o ?f lon o a
@ 4 L 2 . *

o E{ P opo ol o o UG, S0 GG ot :}’»“:’t‘sg'-.'oﬁff":ée%ﬁm‘ Sxehat
(3] PDADCHE IPL TR REN .n%f *oy 000N Qe ¥ T op $°905+3 7 o Mt o&
0_4-?‘%», A 00" & ¢ LAY X o 040" SR &, o X R

SRR 1 ot o ot . ¢ v 8 Oo @@ DYS0, . 3 So% b °
o o & NG S -3 1 % o ! -0
o ° 6 o “Feo® *% .3 XY S %
03 £° "ge o g o A Y S L A A -
3 o ° o o ° o ° LU
-] ° o ° -] o ry ° (:,0 o
° o °
02¢
o o
0.1 1 1 H 1 1 1 L i]
] 50 100 150 200 250 300 350 400 450
Time in weeks
@
Normalized Training inputs and NN response
1r o®
° o Training-Data
09} oo * Network-Response
-]
08} o N
o o o
° 0.7 r ° : o °
o .
E 06} ° oo ° e ‘; . ° e o °
3 e o % o
00 o ° o -] [- o o 00 o o ° o * o
o o O o ° ° o o o % ° o o
Co5F . X e Bime 3000080 o oo tiwagd o, .
* © . a > e B2 » >
8 R S NLL o v e A g BN TR AS O QR L
- » A > O WP X 2 * v
O 0af3¥iuford soter %0y Lo RS g SR T o S
82 gp 0° > DRSNS *o 80&4“&3"“0.’0,; hd ’O°g° sov0 °FT P
© an o * O -3 o @,
0 | 2, oo°°°o° b @ o s o op an ;%o 0® < 2
3E 3 oo % % v %" 0 o ° oo 03
° o
o [. o ° - . R ° %o o
0.2F
° °
i i 1 1 1 1] 1]
01
0 50 100 150 200 250 300 350 400 450
Time In weeks
Normalized Training inputs and NN response
1 r Oo
° s Training-Data
08} o0 + Network-Responsge
-]
[13:13 o N
° ° o
< 97t ¢ o e i
o
- __"! ° : ° L ° o %o % °
® 06+ ° * e ° o o ° v, P
g 00’8 oo 2 c ° :° oo::‘o ° o ¢ %o °c;
€ 05} ¥ V0o o° ge Cosco °so‘a’ % o %
" 9 o,
8 RISl R R R e O BT e
O 4l e o n o L aE S v ot e RN e 80 ST
LRI D RSO S SRR S R IS KLU RS AR g
of fo @ O % *to g e x#%s 2¢4 v P T o ¥
@B oo ® e ° o @ ° . ¢ 8o o ° oa o ? °
03} % ° 8 e < ° o > s 8o,
e e, 4 A o & ° o © KX
° e o P 00 @
° o 4 ° o o
02}
o ° .
0 1 1 1 I 1 1 L L [} 1]
0 50 100 150 200 250 300 350 400 450
Time In weeks

(©

Figure 6. 3: A scatter-plot of the training input data and the NN response with the
application of the training set for the COD: (a) MLP FFNN Mode! 1 with 1 hidden neuron,
560 epochs; {b) ERNN Model 1 with 1 hidden neuron, 500 epochs; and (¢} RBFNN Model
1 with 4 hidden neurons, 4 epochs

111

COD normallzed

COD normalized

COD normalized

Normalized Test inputs and NN response

ir
° o Test-Data
ook ° * Network-Response
o o0
08 ° °
orf o o o0
o g : o °°°
0.6 - L1] a o ° o
o, o o
° ° L
° o ° o
o © 0 M)
05} o Se T YO :"Q"Oo ° @ oo0 °
oo @2 ‘o‘ oo 5 es0'a - .°° 2 " ep
e A TS TR R e TN 5 S
S e ° Y £ L3 °
OA.:%" C .l 3? : .°:‘° :}” ° "OOQO g o .8
g s So ° e . s b 0o °
i Sad 0%, - uo ; e @ o % s
o
0.3 % o ° ° o © °o : * ° o
F °e
021 °
L]
0‘1 2 L 1 1 ° ui
0 50 100 150 200 250
Time in weeks
(a)
Normalized Test inputs and NN response
ir
° . o TestData
09} * Network-Response
o oo
° e
[13:1 3
L 4 o o0
° e 2 @ oo°
08} o0 ° ° ° °
®o ° ° ° o
° ®
e o LIPS
0,5}.0a PR LTIA .’ L] . . 2°,:0 Fo % - ® 'b»oo°°° °
o > * o 0 o 04 ¢,0 e %
ey e R FUIT T U S S e
DADQ.' o ®oNTS ® ('S . "? "'o o o * Q2 . i
®a,° S, Cos® sdae ° e . o8
o o 0’ &.° "’.ooo‘, * el s o"‘?°°
° o % o ° ®, ° ®
o3l = o ° T e
e o o
o2}
o
0.1 1 L L . ° 5
1] 50 100 150 200 250
Time in weeks
(b)
Normalized Test inputs and NN response
1r
° o Test-Data
o
09} * Network-Response
© 1.3
o °
08}
(13§ S o o
° e % e aoo
L o © L o
06 0o * o, - ° R
° o ¢ o 8 ° e,
a o 0@ o
° © LS o
05 (00 ® @0 Alsts 24y 0 R aon, Booecd s o .,Q..,,‘;;'{ .
K G A iR °:’o o .,0:' L AN .%3;; P P 2 e o ™
04LN s 7 SO P e ’3’:'0 ° Y Solld .
M ;. o -* £ L] .2’ °° * °'Q ° > L *, D. 3 L4 *
‘e o e’ 2o MR I Y S DRSNS I °
] - ° o e &
a3l o o L] °® o o o oo o . ° .
& e
021 °
a
0.1 1 1 I 3 °)
0 50 100 150 200 250
Time in weeks

{©

Figure 6. 4: A scatter-plot of the test (validation) data and the NN response with the
application of the test set for the COD: (a) FFNN Model 1 with 1 hidden neuron, 5060
epochs; (b) ERNN Model 1 with 1 hidden neuron, 500 epochs; and {c) RBFNN Model 1
with 4 hidden neurons, 4 epochs

112

Linear cotrelation coefficient - Training data Linear correlation coefficient - Validation data

1 - — 2000 — — .
© DataPoints o DataPolnts
oS Best Linear Fit o @ ° 1800 BestLinear Fit
03} 1800 {7 A=T .
o 1400 p=0.243 1
06} 1200}]
< < .
05} 1000 r
041 800}
03+ 600} o ;
02} a0} :
0.1 : . . S . .
025 03 035 04 o048 05 299 500 1000 1500 2000
T T
(@)
Linear correlation coefficient - Training data Linear regression coefficient - Validation data
1 = — v + 2000 —— —— v
o DataPoints M) o DataPoints
0st BestLinearFit| o o {1 1800} Best Linear Fit ’
os}t 1600 jL—— A=T
R=0.243
oz 1400}
os! 1200+
< < ’
os} 1000}
04} 800
o3t 600
02¢] ¢ 400+ . 1
[+ o <
0 T T " 209 500 1000 1500 2000
d25 03 035 04 045 05 055 06 T
T
(b) :
Linear cotrelation coefficient - Training data Linear corralation coefficient - Validation data
o ~ — 2000 . . — :
o © DataPoints
09} R=03861 @ 1 1800r Best Linear Fit A
o8} 8] 100} L A=T
o
07} & ° | 1400} R=0248
061 1] 1200} 4
< <
05} o] 1 1000}
04to 800}
03¢ % : o DataPoints soof |
0zl o BestLinear Fit 400l ,
) o | A=T
0.1 I — 1 A 1 1 iz 200 1 I i
035 04 045 05 055 06 065 0 500 1000 1500 2000
T T
(c)

Figure 6. 5: Network performance showing the linear regression ({correlation)
coefficients for training data {normalized) on the left, and the validation data set
{denormalized) on the right for the COD: {a) MLP FFNN Model 1 with 1 hidden neuron
and 500 epochs; {(b) ERNN Model 1 with 1 hidden neuron, 500 epochs; and (c) RBFNN
Model 1 with 4 hidden neurons, 4 epochs, where A and T are the NN output and desired
target output respectively

113

Test Set instantaneous Error Plot

6w T T T T
400 i
200} ﬁ 1
| ([¢ { ‘ :
0 / i ‘ i J]
1 [[| I
% i
E 200 ' -
£ i
fa]
8 -} | i 4
O {
£00} ’ i
800}]]
1000 -
o 1 —l 1 1
12000 50 100 150 200 250
Time in weeks
(@
Instantaneous Test Set Error Plot
600 — v
400} 4
200} A
oil” { Ay F ' 1
e Tl TR
€ 200 A
£ !
8 400} ! 1 E g
3] Il |
00} .
800} 4
+
-1000 B
- L 1 - 1
12000 50 100 150 200 250
Time in weeks
(b)
Test Set Error Plot
600 r T - T -
400 E
200 i
f
0 ‘ T i ! !] ' 1! -
) : i
E 200 . ‘ i
£
8 400 E
° 5
£00 E
800 4
-1000 -
i L 1 1 1
12000 50 100 150 200 250
Time in weeks
(c)

Figure 6. 6: The instantaneous error across the entire validation data set for the COD:
{a) MLP FFNN Model 1 with 1 hidden neuron and 500 epochs; (b} ERNN Model 1 with 1
hidden neuron, 500 epochs; and {¢) RBFNN Model 1 with 4 hidden neurons, 4 epochs

114

Network response to Validation Set

COD denormalized (mgll)

2000 ¥ ¥ T I L]

’ -—+=- Actual Predicted out
1800 —— Target output H
1600 |- -

s
£ _
C
n -
£
E) 4) . ‘ ‘ . “ r 2
-‘U, f{ LT g 4 ‘ - : ’ i } [1 » [X l‘ "
Fihe 3 i J ¥t § P r £y
ol { ? LX) M _ﬂ' HE- HH 1 -
(o] sy Y
© f
400+ 5
1 I 1 i |
20?00 120 140 160 180 200 220
Time in weeks
(@
: Network response to Validation Set
2000 T ; T Y y
-—--- Actual Predicted out
1800} (—— Target output 1
1600} .
1400 4
1200} i .
: i |
1000+ ,’.‘; i } k. &% l } 1 ‘ 4 ii& k.
i | ’t ! 3 ; 4 } K P H AT r "

800 }ifi il ' i“}s" JE N % 7

s00] |]

400+ -

20 1 i N | - 1

QOO 120 140 160 180 200 220
Time in weeks
(b)

115

COD denormalized (mgf!)

Network response to Validation Set

2000 T ¥ T ¥ ¥

‘ ¢ --—--- Actual Predicted out
1800+ —— Target output H
1600+ 4
1400 4
1200 . ‘ .

H
i A { L 1% 1]
800 pigi 1 1 V! 'l:'z! Wil H 2
H l 1 } ‘i ! ’! : 3 1

600 A
400+ .
2 i —1] 1 1

0?00 120 140 160 180 200 220

Time in weeks
{c)

Figure 6. 7: The NN response to the application of the test {validation} data set for COD:
{a) MLP FFNN Model 1 with 1 hidden neuron and 500 epochs; {b) ERNN Model 1 with 1
hidden neuron, 500 epochs; and {c) RBFNN Model 1 with 4 hidden neurons, 4 epochs

An examination of Figure 6.2 (a) and (b), shows the training error for the MLP and
ERNN drops to a value of 0.01. However although the training error has converged to
a minimum, the scatier plots for the training data and target output displayed in Figure
6.3 (a) and (b) reveal that the NN response to the application of the TRAINING data
set is not good, and the regression analysis in Figure 6.5 (a) and (b) shows the
training regression coefficient is only 0.331 for both the MLP and the ERNN. The
same can be said about the RBFNN. The regression coefficient for the RBFNN is only
slightly higher at 0.361. The linear regression coefficient for the TEST phase also
shows that the NN is not able to generalize well, with the coefficients being 0.243,
0.243 and 0.248 for the MLP, ERNN and RBF respectively. The instantaneous error
between the test data and the NN output for each point across the test set are
displayed in Figure 6.6. Finally the plots for the target and NN output are displayed in
Figure 8.7.

The results show that although three different architectures are used, the prediction
performance of all three neural networks is very similar.

116

6.22 COD Neural Network MODEL 2
The inputs for Model 2 are COD(k) and COD(k-1) and the output is COD(k+1) one
time step ahead. These are {abled below:

Table 6. 5: Input variables for COD Model 2

CODK). CO COD(R+ 1)

The structure of the MLP and RBF NNs for Model 2 are presented in Figure 6.8
below.

(b)

figure 6. 8: {a) A MLP Feed-forward neural network Mode! 2 with 2 inputs, 1 hidden
layer, 1 hidden neuron and 1 output neuron; (b} Block Diagram for the COD RBFNN
Model 2 with 34 hidden neurons

Network response to Validation Set

2000 e ¥ | T T -
. -—--- Actual Predicted out
1800} : —— Target output H
1600} 4
= !
[~
£ i
e d
N]
: | 1 |
g ‘J! i i i3 1‘ l 1 ‘ 7
° ' § AN L A 2 BHA A)
] J YR M b, ! ",/ ik ‘ ST
8 g e ' '-f 4y wWE R 147
o ¥
i
400} A
20? L !] [i}
00 120 140 160 . 180 200 220
Time in weeks

(a)

117

Network response to Validation Set

COD denormalized (mgll)

2000 | 4 1] T — T I
’ --—--- Actual Predicted out
1800} —*— Target output 1
1600 -
1400+ A
1200} i l J
%t s l ¥
1000 o J _ 5. ‘ t H H i -
R o Ui R ; £ N N ‘ AN
SORE LY WA AT Y CIRad) WE WY |
600 ’ .
400+ .
20 1 1 [} [} 1 ‘t
900 120 140 160 180 200 220
Time in weeks '
(b)
Network response to Validation Set
2500 T 1 T 1] 1
:) --—~-- Actual Predicted out
3 —»— Target output
2000+ i1 .
[}
= ii
3 H
E i
T 1500+ H .
N
s i
" E ! t
g 5 j : i ; : AL
s 1000 N HAA(S %59 PR i, P4 A .
T " I fr H s f Y [. i AX K 3 A N
8 i 5 2 ¥4 ¢ ? ! Xy Hi H ’ f
(&) Ky K e L
¥
500} - »
i L i 1 1
900 120 140 160 180 200 220
Time in weeks
(c)

Figure 6. 9: The NN response to the application of the test (validation) data set for COD:
{a) MLP FFNN Model 2 with 1 hidden neuron and 500 epochs; {b) ERNN Model 2 with 10
hidden neurons, 500 epochs; and {¢) RBFNN Model 2 with 34 hidden neurons, 34
epochs

118

njactivationiactivation

R.sq fest |

Epochs|Perfo Momentum R sq train 5
1 1itrainscg ltansig |purelin 500[MSE 0.5] 0.376] 0.278 0.141 0.077] -31.271] 19.936)
1 Sltrainscg |tansig [purelin 500MSE 0.5 0.420| 0.253 0.177] 0.064] -28.459) 20.348
1 10[trainscg [tansig [purelin 500[MSE 0.5 0.442 0.219 0.195 0.0482] -26.242| 20.664
1 1ltrainscg |tansig |purelin 1000JMSE 0.5 0.376] 0.278 0.141 0.077{ -31.259| 19.940
1 S|trainscg jtansig [purelin 1000|MSE 0.5] 0.442| 0.250 0.195 0.062] -32.254{20.723
1 10jtrainscg {tansig purelin 1000[MSE 0.5 0.467] 0.253 0.218 0.064] -24.468| 20.853

activation|Epochs|Performancs ler

activation Momentum »
1 1ltrainscg _{tansig [purelin 500|MSE 0.0124 0.01 0.5{ 0.376[0.278 0.141 0.077! -31.269] 19.939
1 Sltrainscg {tansig {purelin SOOIMSE 0.01200 0.01 0.5{ 0.416{ 0.269 0.173 0.072] -25.393|20.281
1 10jtrainscg _jtansig jpurelin S00[MSE 0.0119 0.0t 0.5 0.424] 0.281 0.180| 0.079] -26.551) 20.135
1 1jtrainscg [tansig [purelin 1000|MSE 0.01200 0.04 0.5] 0.376] 0.278 0.141 0.077] -31.244] 19.938
1 Sjtrainscg |tansig__|purelin 1000{MSE 0.01200 _ 0.01 0.5| 0.418] 0.266! 0.175 0.071] -25.5091 20.314
1 10jtrainscg |tansig |purelin 1000{MSE 0.011 0.01 0.5] 0.422] 0.280 0.178) 0.078] -26.039! 20.120

119

6.2.3 COD Neural Network MODEL 3
The inputs for Model 3 are COD(k), COD{k-1), COD(k-2), and the output is COD(k+1)
one time step ahead. These are tabled below:

Table 6. 9: Input variables for COD Modei 3

Figure 6. 10: (a) A MLP Feed-forward neural network NModel 3 with 3 inputs, 1 hidden
layer, 1 hidden neuron and 1 cutput neuron; and (b} Block Diagram for the COD RBFNN
Model 3 with 2 hidden neurons, 2 epochs

&

Network response to Validation Set

2000 - T T T T
-—==-- Actual Predicted out

1800 —»— Target output -

1600 1
£ 1400} .
ke
©
N 1200} A i ‘ 1
2]
o 1 - r P f y - » ' |
E 000 b} , r | “l ‘i Ji, ‘ A ‘ ‘
Y it I O S
8 800 -“ ! ' 1 ‘la é W v YN
o 1.y

400 A

2 L L 1 J__]

0?00 120 140 160 180 200 220

Time in weeks

(@)

120

Network response to Validation Set
2000 T i T L] L]

--——-- Actual Predicted out
—*— Target output 8

1800

1600

1
L

1400

T
—l

1200

1000

T ¥
Aol
s
(™
-~
..
£
- 113
ey
1
-
s T
ey v,
"
g ———
"
TP——
-
W
| 1

1
8001

COD denormalized (mgll)

YTty
-

600 ' ' -

400 .

20? 1 1 _ I t 1 _
00 120 140 160 180 200 220
’ Time in weeks

b

Network response to Validation Set
2000 T T]] 1
--~~--- Actual Predicted out

—»— Target output

1800

+

T

1600

T
]

1400

T
A

1200

‘i
.
oa—
(1

1000

eI

800

COD denormalized (mgll)
T
A
2w
)
e
 The——r—
" ————
T
-
.
P
P d
]

600} -

400

1
i

209 1 (] [1 L
00 120 140 160 180 200 220
Time in weeks

(©

Figure 6. 11: The NN response to the application of the test (validation} data set for
COD: {a) MLP FFNN Model 3 with 1 hidden neuron and 500 epochs; (b) ERNN Model 3
with 1 hidden neuron, 500 epochs; and (c) RBFNN Model 3 with 2 hidden neurons, 2
epochs

121

Table 6. 10: Results for the Feed-forward Neural Network Model 3 with COD as NN output.

algorithm |activationjactivation|Epochs|Performance |

Mamentum

Avg.
e

-26.593| 19.608

1 1jtrainscg _ftansig [purelin 500MSE . 0.5] 0.400

1 Sitrainscg jtansig lpurelin 500/MSE 0.0116] 0.6 0.5] 0.449] 0.303 -29.764| 19.785
1 10jtrainscg ltansig |purelin 500[MSE 0.0110) 0.6 0.5 0.489] 0.211 -20.808| 20.888
1 {itrainscg ltansig {purelin g53[MSE 0.0122 0.6 0.5 0.400; 0.314 -26.587] 19.616
1 Sitrainscg [tansig jpurelin 1000[MSE 0.0114 0.6 0.5 0.463] 0.297 -21.007] 20.000;
1 10{trainscg [tansig |purelin 1000[MSE 0.0104] 0.6] 0.5] 0.528] 0.249 -16.545| 20.506

Table 6. 11: Results for the Elman Recurrent Neural Network Model 3 with COD as NN output.

Hi Hidden |oatput] "Min train [Lea
i lactivationlactivation|Epochs|Performance err: : : .

1 1ltrainscg _[tansig urelin 500MSE 0.0122] 0.01 0.5| 0.400] 0.314 0.160 0.099] -26.606| 19.610
1 Slitrainscg _jtansig _ |purelin 500[MSE 0.0117] 0.01 0.5 0.439] 0.303 0.192 0.092] -25.077]19.814
1 10jtrainscg [tansig |purelin 500|MSE 0.0114] 0.01 0.5! 0.458] 0.245 0.210 0.060| -20.460] 20.391
1 1ltrainscg _[tansig Jpurelin 159MSE 0.0122] 0.01 0.5] 0.400] 0.314 0.160 0.098] -26.603] 19.620
1 Sltrainscg ltansig urelin 1000[MSE 0.0111] 0.01 0.5] 0.484] 0.242 0.234 0.058] -16.592] 20.366
1 10trainscg ftansig [purelin 1000]MSE 0.0111] 0.01 0.5] 0.480] 0.225 0.231 0.050] -19.581] 20.483

122

6.2.4

COD denormalized (mgll)

COD Neural Network MODEL 4
The inputs for Model 4 are COD(k}, COD(k-1), COD(k-2), COD({k-3), and the output is
COD(k+1) one time step ahead. These are {abled below:

Table 6. 13: Input variabies for COD Model 4

QOutput
COD(k+1}

(b)

Figure 6. 12: (a) A MLP Feed-forward neural network Model 4 with 4 inputs, 1 hidden
layer, 1 hidden neuron and 1 output neuron; and (b) Block Diagram for the COD RBFNN
Model 4 with 2 hidden neurons, 2 epochs

Network response to Validation Set
2000 T - —

--—--- Actual Predicted out
—— Target output I

T

1800

T

1600

1400

L)

1200

T

1000

goo bi[i
4

TR—
L%
«Z,
-
™
b1
w
Bt
-
"3
=
-
3
1

600

T
i

400

i 1 1 1 AL
20?00 120 140 160 180 200 220

Time in weeks

(@

123

Network response to Validation Set

COD denormalized (mg/l)

2000] T T i } I
) --—=-- Actual Predicted out
1800 | ——Target output |
1600 - .
E 1400 - -
°
N 1200 =
g ‘ |
R LT | L A P
o A ‘ 3 ji { v . 1 1 s 1Y k_'
BN X EEV TR Pl) {4 r y
1 ¢ H 2 |
8 800 Y ' ! "., I o ‘i i
4 3] & 4 !
600 | , ’ : ' :
400} .
i 1] 1 |
20?00 120 140 160 180 200 220
Time in weeks
(b)
Network response to Validation Set
2000 T 1 L] 1 i
~-——- Actual Predicted out
1800 | = Target output
1600 J
1400+ i
1200} } 1 ‘1 ' -
. 7
1000} '] ‘ Y M i 1
ST l} it LA [
soo by ' ‘? ’ W oA Pl
!] 3 ‘ . i_’ W i‘v ¥ 3 ‘
¥ F
600[' -
400} .
1 I 1 1 [
20?00 120 140 160 180 200 220
Time in weeks
(c)

Figure 6. 13: The NN response to the application of the test (validation) data set for
COD: {a) MLP FFNN Model 4 with 1 hidden neuron and 1000 epochs; (b) ERNN Model 4
with 1 hidden neuron, 500 epochs; and {(c) RBFNN Model 4 with 2 hidden neurons, 2
epochs

124

Table 6. 14: Results for the Feed-forward Neura! Network Model 4 with'COD as output

Hid

“|neurons lalgorithry [activation|activation|EpochsiPerformance : : : i :

1 1ltrainscg ltansig purelin 500]MSE 0.6 0.5 0.414] 0. 358 0.172 0.128] -28.174] 19.361
1 Sltrainscg [tansig Ipurelin 500|MSE 0.6 0.5 0.486] 0.290 0.236 0.084] -27.574| 20.111
1 10jtrainscg _|tansig |purelin 500{MSE 0.6 0.5 0.522 0.285 0.272 0.081] -24.997| 19.835
1 1jtrainscg jtansig |purelin 1000JMSE 0.6 0.5 0.415 0.358 0.172 0.128] -28.169] 19.365
1 Sitrainscg ftansig |purelin 1000[MSE 0.6, 0.5] 0.503] 0.302 0.253 0.091] -32.342| 18.607
1 10jtrainscg _|tansig |purelin 1000JMSE 0.6 0.5 0.525] 0.221 0.276 0.049] -24.614| 20.502

Table 6. 15: Resuits for the Elman Recurrent Neural Network Model 4 with COD as output

r3 Ine . Momentumjr. :
1 1itrainscg Itansig lpurelin 500|MSE 0,01200 0.01 0.5] 0.414] 0.358 0.172 0.128] -28.178] 19.363
1 Sltrainscg [tansig _|purelin 500[MSE 0.0114{ 0.01 0.5| 0.461] 0.328 0.213 0.108] -25.476] 19.674
1 10|trainscg _[tansig |purelin 500|MSE 0.0108 0.01 0.5| 0.502| 0.272 0.252 0.074] -29.024| 20.405
1 tltrainscg ltansig {purelin 100(jMSE 0.0120{ 0.01 0.5] 0.415{ 0.358 0.172 0.128] -28.153| 19.365
1 Sltrainscg [tansig purelin 1000|MSE 0.010 0.01 0.5| 0.510] 0.278 0.261 0.077] -28.513/20.118
1 10[trainscg_[tansig purelin 1000(MSE 0.010 0.01 0.5] 0.519] 0.264 0.270 0.070] -27.675]20.179

Table 6. 16: Results for the Radial Basis Function Neural Network Model 4 with COD as output.

125

6.2.5 COD Neural Network MODEL 5
The inputs for Model 5 are COD(k), COD(k-1), COD(k-2}, COD{k-3), TKN(K) and the
output is COD(k+1) one time step ahead. These are 1abled below:

* Table 6. 17: Input variabies for COD Model 5§

Inputs ol , - Output
COD{k), COD(k-1), COD(k-2), , COD(K+1)

(b)

Figure 6. 14: ' {a) A MLP Feed-forward neural network Model 5 with 5 inputs, 1 hidden
layer, 1 hidden neuron and 1 output neuron; and (b} Block Diagram for the COD RBFNN
Model 5 with 3 hidden neurons, 3 epochs

A}

Network response to Validation Set

2000 T h] -1 T)
=== Actual Predicted out

1800 | , —— Target output

1600 |- .
= b
2 1400} i .
3 :
N 1200} l] -
o (!
2 | k .-y
© 1000+ ¥/ A L s 5 LY]
1 : ! AL o1
s LT A e RV LA N
(=] vt 0y ¥ ? J : ! L
o BOOMR|i 1 3 ‘ i ? j N
) ? ! 1 ¥ i 5

600 | i ' .

400} ' -

201 i i 1 : 1 L

?00 120 140 160 180 200 220
Time in weeks
(@

126

Network response to Validation Set
2000 L] T T 11 T
: ~=--- Actual Predicted out

1800 —*— Target output i

1600

COD denormalized {mgll)

400+ i

20? —1 L 1 (]
00 120 140 160 180 200 220
Time in weeks .

(b)

Network response to Validation Set
2000 T T T T T
=-=~= Actual Predicted out

—*— Target output

¥ f

1800

T

-

1600

1400

1200

1000

W=
ke

gooF i

COD denormalized (mgll)

600

400

2 1 1 1 1 1
OQOO 120 140 160 180 200 220
Time in weeks
(c)

Figure 6. 15: The NN response to the application of the test (validation) data set for
COD: (a) MLP FFNN Model 5 with § hidden neurons and 500 epochs; (b} ERNN Model 5
with 1 hidden neuron, 500 epochs; and {c) RBFNN Model § with 3 hidden neurons, 3
epochs

127

ST
cti eI

1 iftrainscg _jtansig __[purelin 500[MSE -30.832] 19.

1 Sltrainscg {tansig |purelin SOQMSE 0.512f 0.358 0.262 0.128) -30.011} 19.137
1 10jtrainscg jtansig [purelin SOOIMSE 0.526 0.277 0.277 0.077] -32.668] 19.947
1 1ltrainscg jtansig [purelin 1000[MSE 0.421] 0.357 0.177 0.127] -30.636] 18.447
1 Sltrainscg _[tansig |purelin 1000[MSE 0.543] 0.272 0.295 0.074] -20.84820.617
1 10jtrainscg _jtansig [purelin 1000]MSE 0.568{ 0.279 0.322 0.078} -28.624| 20.401

Table 6. 19: Results for the Eiman Recurrent Neural Network Model § with COD as output.
Hid. ral Hidden [Outpu o T

fayers Ineurons lalgorithm {activationactivationiEpochsiPerformance lerr . |Momentum|r train Jr te 5q. test
1 {itrainscg jtansig _ [purelin 500MSE 0.011 0.01] _ 0.5 0.421] 0.356 0.177| 0.127] -30.699] 19.453
1 Sltrainscg Jtansig purelin 500|MSE 0.01100 0.01 0.5] 0.492| 0.289 0.242 0.084] -31.494{ 20.098
1 10Qitrainscg ltansig nurelin 5001MSE 0.0106; 0.01 0.5 0.515] 0.235 0.266] 0.055] -33.228| 20.593
1 1{trainscg {tansig purelin 244|MSE 0.011 0.01 0.5| 0.421 0.357, 0.177 0.127| -30.700] 19.446
1 Sitrainscg {tansig [purelin 1000|MSE 0.0112 0.01 0.5 0.476] 0.306 0.227 0.094] -26.434] 19.715)
1 10{trainscg ltansig purelin 1000JMSE 0.010 0.01 0.5 0.526) 0.235 0.277 0.055) -35.027] 20.869

128

6.2.6

COD denormalized (mgll)

COD Neural Network MODEL 6
The inputs for Model 8 are COD(k), COD(k-1), COD(k-2}, COD{k-3), TKN(k),
FLOW(K) and the output is COD(k+1) one time siep ahead. These are tabled below:

Table 6. 21: Iinput variables for COD Model 8

‘Inputs
COD(kj, COD(k-1), COD(k-2), COD(k-3), TKN(k}), FLOW(K)

(b)

Figure 6. 16: {a) A MLP Feed-forward neural network Model 6 with 6 inputs, 1 hidden
layer, 1 hidden neuron and 1 output neuron; and {b) Block Diagram for the COD RBFNN
Model 6 with 4 hidden neurons, 4 epochs

Network response to Validation Set
2000 — — r

=-=—=-- Actual Predicted out

1800 ——*— Target output

T

1600

1
i

1400

T
1

1200

-8 e , -
1000 5] ' ’ . b A ’ “ \1 " i e -1

800

>
™y
o
-
e
*»,
-
-
-y
e 4
==
o»
T
a
=
palrral
g
¥
oottt
el
A
1

600+ 4 t 4

400] N

20? 1 i 3 A (]]
00 120 140 160 180 200 220
Time inweeks

@)

129

Network response to Validation Set

COD denormalized (mgil)

COD denormaiized {mgll}

2000 T 1 T | -)
) —--—- Actual Predicted out
1800+ —=—Target output
1600 - i
1400} .
1200 l 1 ’ l -
» ' l Y
100014 } 1, {l \ LA W T
! $ 0 fid 1) S b Y]
'!) 1 ! by] ' ‘! Y r \
e) 4 ¥ ¥ G
600} | ¥ .
400 .
0 1 1 1 1 I :
2 QOO 120 140 160 180 200 220
Time in weeks
(b)
Network response to Validation Set
2000 Y Y r T —
. =-=+-= Actual Predicted out
1800 —»-=—Target output
1600} i
1400+ -
1200+ L , .
1000} |1 T ! i o 1
F | Bh [Axh o i x5 A\
; i IR e RR ’ he it
sook |} ‘h ‘ ¢ X ‘ [
" ;]) "‘, y (1 : ki ‘
b " \ r
600 i ‘ :
400+ -
] [} R 1 1
20?00 120 140 160 180 200 220
Time in weeks
(©)

Figure 6. 17: The NN response to the application of the test (validation) data set for
COD: (a) MLP FFNN Model & with 1 hidden neuron and 500 epochs; {b) ERNN Model 6
with 1 hidden neuron, 500 epochs; and {¢) RBFNN Model 6 with 4 hidden neurons, 4
epochs

130

Table 6. 22: Results for the Feed-forward Neural Network Model 6 with COD as‘output.

it v Avg_test |
ithm [activation activation Epochs|Performance nentum e
1 1jtrainscg |tansig |purelin 500[MSE 0.5] 0.427] 0. 358 0.182 0.129] -30.027] 19.370
1 Sltrainscg _itansig ipurelin 500{MSE 0.5] 0.475] 0.330 0.226 0.109] -26.644) 19.458
1 10|trainscg [tansig [purelin 500]MSE 0.5| 0.528 0.301 0.279 0.091] -33.317(19.663
1 1ltrainscg _|tansig _ Ipurelin 1000]MSE 0.5] 0.427| 0.358 0.182 0.129(-30.030{ 19.372
1 Sltrainscg _[tansig |purelin 1000|MSE 0.5] 0.524] 0.299 0.274 0.089| -29.089| 20.160,
1 10jtrainscg _(tansig _ [purelin 1000]MSE 0.5 0.580] 0.290 0.336 0.084] -19.360] 20.100

Table 6. 23: Resuits for the Eiman Recurrent Neural Network Model 6 with COD as output.

U

i activation actiSaticn . lie :

1 1ltrainscg Jtansig purelin 500|MSE 0.011 0.01} - 0427 0.358 0.182 0.129] -30.066] 19.370
1 Sltrainscg [tansig |purelin 500[MSE 0.010 0.01 0.509] 0.317 0.259 0.100} -23.513] 19.977
1 10jtrainscg [tansig _ Ipurelin 500]MSE 0.0107] 0.01 0.514} 0.287 0.264 0.082) -20.797| 20.249,
1 1jtrainscg _jtansig _ |purelin 324|MSE 0.0118] _ 0.01 0.427| 0.359 0.182 0.129] -30.024] 19.372
1 Sltrainscg jtansig jpurelin 1000]MSE 0.0118 0.01 0.507} 0.324 0.257 0.105] -33.078{19.617
1 10jtrainscg |tansig _ |purelin 1000]MSE 0.010 0.01 0.555] 0.244 0.308 0.059] -24.787] 20.223,

Table 6. 24: Results for the Radial Basis Function Neural Network Model 6 with COD as output.

131

6.2.7 COD Neural Network MODEL 7
The inputs for Model 7 are COD(k), COD(k-1}, COD(k-2} COD(k-3}), TKN{K),
FLOW(K), MONTH and the output is COD(k+1) one time step ahead. These are
tabled below: '

Table 6. 25: Input variables for COD Model 7

tCOD{k), COD{k-1), COD(k-2}, COD{k-3}), TKN{k}. FLOW(K),
Month

(b)
Figure 6. 18: (a) A MLP Feed-forward neural network Mode! 7 with 8 inputs, 1 hidden

layer, 1 hidden neuron and 1 output neuron; and {bj Block Diagram for the COD RBFNN
Model 7 with 19 hidden neurons, 19 epochs

Network response to Validation Set

2000 T — T Y T
P : --=—-= Actual Predicted out
1800} —*— Target output 1
1600 | -
=)]
£ 1400
o
N 1200 _
; l
£ | ! i |
g 1000 ,' T KT A
<~ - 11 , : ¥ A i ‘ 1 l‘l
0 3 : 13 it
o 800 t H ¥ .] -
.] Kk -
O $ 2 iH il
600 ! ' i
400 + -
1 g i 1 1
20900 120 140 160 180 200 220

Time in weeks

132

(a)
Network response to Validation Set

2000 T — r r T
-=+—-= Actual Predicted out
1800 —»— Target output H
1600 s
3
£ 14001 -
=
@«
% 1200 H1E ‘ . -
E 4 : ;
s 1000 \FHHA AL W . P, HL A iy
o ! s 1 p : 28 + #1713 "
© i 3 t . b] i . (‘ ! \\ J
Q goof |! LAY %3 fi & ¥ \'hi
e i | '} p kK
O 1 - b ¢
. TH [] p .
600 |1i f i
H
400 4
20 L. I 1 1 1
QOO 120 140 160 180 200 220
Time in weeks
(b)
Network response to Validation Set
2000 T T 1 T]
‘ === Actual Predicted out
1800 ‘ —— Target output !
1600 + =
£ 14001 I i
3 f
N 1200} } =
z s ‘-
& 1000} , kg i “ M o A %! I
S AR L} bor A% PP G Tk ‘ '“ 2
i i WE : . : W0
a sookli § i o o MRS &
gl AL M T W (I
600 ¥ -
400 i
[1] e - !
20900 120 140 160 180 200 220
Time in weeks

(c)

Figure 6. 19: The NN response to the application of the test (validation) data set for
COD: {(a) MLP FFNN Model 7 with 5 hidden neurons and 1000 epochs; (b} ERNN Model 7
with 5 hidden neurons, 1000 epochs; and (c) RBFNN Model 7 with 19 hidden neurons,
19 epochs)

133

Hidden - jOutput , ml Avg._test]

activationfactivation|EpochsiPerformance ler “I{Momentum|r train R..sq-train eff
1 1itrainscg {tansig |purelin 500]MSE 0.5] 0.436] 0.329 0.190, 0,108} -21.388} 19.429
1 5ltrainscg |tansig purelin 500]MSE 0.5 0.502] 0.319 0.252) 0.102 -25.797]| 19.812
1 10ltrainscgltansig _ lpurelin 500[MSE a.50 0.597] 0.314 0.356 0.099] -21.897]20.941
1 1itrainscg |tansig purelin 645WSE 0.5] 0.436] 0.324 0.190 0.105] -20.799] 19.459
1 Sltrainscg (tansig |purelin 1000[MSE 0.5! 0.556] 0.333 0.308 0.111] -19.122{ 19.525
1 10jtrainscg [tansig urelin 1000]MSE 0.5 0.632{ 0.286) 0.399 0,082 -26.473| 21.058

Table 6. 27: Results for the Eiman Recurrent Neural Network Model 7 with COD as output.

Hid ic ral Hidd u .; - Min train [Lea

layers Ineurons [algorithm jactivationlactivation|Epochs|Performance je at r tes 8q R sq . ?
1 1ltrainscg Itansig purelin 500]MSE 0.0117] 0.01 0.5 0.436] 0.325 0.190) 0.106] -20.950] 19.449
1 Sltrainscg ltansig purelin 500]MSE 0.0103 0.01 0.5 0.535] 0.337] 0.286 0.114] -26.419] 19.674
1 10jtrainscg [tansig purelin 500]MSE 0.0095 0.01 0.5] 0.588] 0.273 0.346 0.075] -21.980} 21.045
il 1|tra'|nscg tansig purelin 952]MSE 0.0117 0.01 0.5 0.436] 0.324] 0.180] 0.105| -20.802| 18.459
1 Sltrainscg [tansig [purelin 1000|MSE 0.01000 0.01 0.5 0.555] 0.342 0.308 0.117] -25.175]/19.718
1 10ltrainscg |tansig _|purelin 1000JMSE 0.0084] 0.01 0.5] 0.646] 0.269 0.418 0.072] -10.847] 21.804

134

6.2.8

COD denormalized (mgfl)

COD Neural Network MODEL 8
The inputs for Model 8 are COD(K}, COD(k-1), COD(k-2) COD(k-3), TKN(K),
FLOW(k), MONTH, Minimum Temperature, and the output is COD(k+1) one time step
ahead. These are tabled below:
Table 6. 29: Input variables for COD Model 8
CODtk), CODtk-1), COD(k-2), COD{k-3), TKN(K), COD{k+1)
FLOW(k), Month. Minimum Temperature
(b)
Figure 6. 20: {a) A MLP Feed-forward neural network Model 8 with § inputs, 1 hidden
layer, 1 hidden neuron and 1 ocutput neuron; and (b} Block Diagram for the COD RBFNN
Model 8 with 25 hidden neurons, 25 epochs
Network response to Validation Set
2000 T Y T) T
~-=+--= Actual Predicted out
1800 —*— Target output H
1600 i
1400 .
1200 .
1000 ¢ , l! i M ‘1 g
1 ,’. v qF ..* [y /- R A‘
P Y Mg { : e’ W 2.
800 Iy : H 4
it) iy i 3
600 Y A .
R
400} y
20 [1 L 1 1 ?
?OO 120 . 140 160 180 200 220
Time in weeks
(a)

135

Network response to Validation Set

COD denotmalized (mgll)

2000 — — r T T
‘ % --==- Actual Predicted out
1800 | —»—Target output H
1600 - | i
£ 1400 i
2
___E 1200 N -
]
£ it ;
— et 1.
5 1000 1S j{ “ ob, AL LI I
© ? 3 t it 4yl ! i e
- f ‘ i 1 .] I3 Y “ 2t
0 H H g - -
8 7 I O
o Vi N L
600 if -
3
400} |
20 1 R t 1 .
900 120 140 160 180 200 220
Time in weeks
(b)
-Network response to Validation Set
2000 _— r T T r
X --=s=-- Actual Predicted out
1800 —»— Target output H
1600 - \ i
1400 i
1200 i
4
H ,ta : ! i
1000 ik I TS i
[TT\ .‘L “ 4 ! 'y '1 f"‘ e HE, PN -*' i I!‘
r's H 3 z A
800 : ‘. 3 il .}! ‘ ‘ 3" 1 i 7
- ‘.) .
600 (% .Ii‘!. p I L i
400 -
i 1 1 . A
20QOO 120 140 160 180 200 220
Time in weeks
()

Figure 6. 21: The NN response to the application of the test (validation) data set for
COD: {a) MLP FFNN Mode! 8 with 1 hidden neuron and 500 epochs; {(b) ERNN Model 8
with 5 hidden neurons, 500 epochs; and (¢} RBFNN Model 8 with 25 hidden neurons, 25
epochs

136

Table 6. 30: Results for the Feed-forward Neural Network Model 8 with '‘COD as output

[- lou m train {Learmn
neuirons |algorithm |activation|activation|Epochs Performance Jrate - Momen_t_um ; -test: : o
1ltrainscg [tansig [purelin 500/MSE 0.0117 0.6 0.5] 0.435] 0.385 0.189 0.148] -30.519(19.323
1ltrainscg [tansig |purelin 500MSE 0.010 0.6] 0.5{ 0.518] 0.250, 0.268 0.062{ -17.005) 20.951
10jtrainscg |tansig _ |purelin 500|MSE 0.0099 0.6 0.5/ 0.561] 0.289 0.315 0.084] -33.171/21.328
1jtrainscg [tansig Ipurelin 1000|MSE 0.011 0.6) 0.5] 0.438] 0.336 0.192 0.113| -22.411] 19.331
5ltrainscg_ |tansig |purelin 1000|MSE 0.008 0.6 0.5{ 0.632| 0.211 0.399 0.045] -13.123] 21.731
10ftrainscg _|tansig |purelin 1000|MSE 0.0076 0.6 0.5 0.688] 0.231 0.474 0.054] -35.579] 23.268,

Table 6. 31: Resuits for the Elman Recurrent Neural Network Model 8 with COD as output

lgorithm. 'ome‘ntum olr.
1 1ltrainscg_ltansig__[purelin 0.5 0.192) 0.114] -22.521{19.324
1 Sltrainscg [tansig |purelin i 0.5 0,297 0.151| -21.235] 19.152
1 10jtrainscg ltansig purelin 500[MSE 0.0095, 0.5 0.341 0.051] -28.433{21.592
1 1ltrainscg {tansig _ [purelin 618|MSE 0.0117] 0.5 0.192 0.114] -22.502| 19.325
1 5ltrainscg {tansig |purelin 1000[MSE 0.0097] 0.5 0.332 0.038] -23.752| 21.546
1 10jtrainscg _|tansig purelin 1000]MSE 0.0076] 0.5 0.474 0.042| -6.577]22.959

Table 6. 32: Results for the Radial Basis Function Neural Network Model 8 with COD as output.

Hidden|Hidden , Hidden [Performance Min traln Erro
ayers lactivation jactivation |Epochsineurons [Eunclion o .

1lradbas___[purelin 25 25/SSE 4.346 4.4 0.8] 0.558| 0.342 0.312 0.11} -31.523| 20.682

137

6.2.9 COD Neural Network MODEL 9
The inputs for Model 8 are COD(k), COD(k-1), COD(k-2) COD(k-3), TKN(K),
FLOW(k), MONTH, Rain, and the output is COD(k+1) one time step ahead. These
are tabled below:

Table 6. 33: Input variables for COD Model 9

Output
CODk+1)

COD{K). COD{k-1). COD:
FLOW(K). Month, Rain

(b)

Figure 6. 22: {a) A MLP Feed-forward neural network Model 9 with 8 inputs, 1 hidden
layer, 1 hidden neuron and 1 output neuron; and (b} Block Diagram for the COD RBFNN
Model 8 with 18 hidden neurons, 18 epochs

[

Network response to Validation Set

2000 T T T T 3
~--—--- Actual Predicted out
1800 ' —*— Target output
1600} 1
E 1400} , -
°
N 1200} X ‘ i
= .
E ‘
S 1000} { i-l T
c L » "
S 1S 9 L’ YL) nf)
9 800 i i# I T 1
o] : [p v ® i
(&] by ? i‘ + 5
600 ' : .
400} .
L 1 1 i 1
20900 120 140 160 180 200 220

Time in weeks

(@

138

Network response to Validation Set

COD denormalized (mgil)

COD denormalized {(mgll)

2000 7 T T T T
: ~=+--- Actual Predicted out
1800 ~—*— Target output |
1600 | i
1400 4
1200 } .
LR a R ELT R N W S S
] gl ” | : 3 . ! d . “J 9! ’
800 3 i i " 3 it { " e f
600 N 11 4
R
400 .
2 1 X i - 1 '
0?00 120 140 160 180 200 220
Time in weeks :
(b)
Network response to Validation Set
2000 T T T —— —

. -——- Actual Predicted out
1800+ —*— Target output |
1600+ -
1400 i
12001 (il -

[4: } H l ‘ ki F
5 3 it) X i a
1000 AN 7Y . 1 AYEh L AR
PEVE o VR 1 ¥ 1 il &;"‘
H :) A 1] d 5
soplt * {5 C Y hE R
N af e J 2
600 | ‘ |
400+ -
1 i 1 1 i
20900 120 140 160 180 200 220
Time in weeks
(c)

Figure 6. 23: The NN response to the application of the test (validation) data set for
COD: (a) MLP FFNN Mode! 9 with 1 hidden neuron and 520 epochs; {(b) ERNN Model 9
with 1 hidden neuron, 500 epochs; and {¢) RBFNN Model 8 with 18 hidden neurons, 18
epochs

139

- Learn' | °

L Epochs|Performance rate . [Momentum : SR v

1 trainscg |tansig |purelin 500|MSE 0.6 0.5l 0.437| 0.339 0.191 0.115] -21.874{ 19.372
1 trainscg |tansig [purelin 500|MSE 0.01008 0.6 0.5] 0.555] 0.326 0.308 0.106{ -22.368| 20.419
1 trainscg |tansig |purelin 500|MSE 0.0087 0.6 0.5{ 0.575| 0.278 0.331 0.077| -26.739] 20.298
1 1ltrainscg jtansig [purelin 520[MSE 0.0117] 0.6 0.5 0.437] 0.340 0.191 0.115] -21.905] 19.372
1 Sltrainscg |tansig |purelin 1000|MSE 0.0090 0.6 0.5 0.617| 0.241 0.380 0.058{ -20.059{21.486
1 10|trainscg jtansig [purelin 1000|MSE 0.0081 0.6 0.5 0.663] 0.203 0.439 0.041] -21.707| 22.085

Table 6. 35: Results for the ElIman Recurrent Neural Network Model 9 with COD as output.

Hi Hidden ' lOutput’ in trai lLeam

jnet activationjactivationiEpochs

1 1itrainscg {tansig [purelin 500[MSE § .

1 Sltrainscg jtansig purelin 5@WSE 0.010 0.01 0.5] 0.545 0.297| 0.066| -23.875| 20.496
1 10ltrainscg [tansig purelin 500[MSE 0.008 0.01 0.5! 0.601 0.361 0.041{ -21.022}21.829
1 1ltrainscg _{tansig __[purelin 813[MSE 0.0117] 0.01 0.5] 0.437] 0.19% 0.115] -21.868) 19.371
1 Sltrainscg |tansig _ |purelin 1000|MSE 0.0094 0.01 0.5| 0.585 0.354 0.082] -24.913|20.212
1 10ltrainscg_[tansig__|purelin 1000{MSE 0.0083 0.01 0.5] 0.658] 0.429 0.044] -21.373] 22.603

“traln Ir_te

0.554| 0.380

140

6.2.10 COD Neural Network MODEL 10
The inputs for Model 10 are COD(k), COD(k-1), COD(k-2) COD(k-3), TKN(K),
FLOW(k), MONTH, Wind, and the output is COD(k+1) one time step ahead. These
are tabled below:

Table 6. 37: Input variabies for COD Mode! 10

COD(K}, CODk-1), COD(k-2), COD(x-3), TKN(K),
FLOW{K}, Month. Wind

b

Figure 6. 24: (a) A MLP Feed-forward neural network Model 10 with 8 inputs, 1 hidden
layer, 1 hidden neuron and 1 output neuron; and {b) Block Diagram for the COD RBFNN
Model 10 with 20 hidden neurons, 20 epochs ‘

Network response to Validation Set
2000 Y — T T T
---%x--- Actual Predicted out

—*— Target output 1

L

1800

T
|

1600

T
A

1400

1200

1000 ; l : .
- TR s SN T Y
800 ! g ;A ” : ‘ ! ’f: 1 A\l Iy “1 Ll

600 X i :]

T T
R
e
IR
9
-
T,
%
P———
A ————e
PP
>
s
i
—
1

COD denormalized (mg/l)

Mo
Wwiz?,

400+]

20? i - 1 4 1] 1
00 120 140 160 180 200 220
Time in weeks

(a)

141

Network response to Validation Set

COD denormalized {mgll)

COD denormalized (mgll)

2000 r T T — I
: --—--- Actual Predicted out
1800} —»—Target output !
1600 - } i
1400 A
1200 .
l ‘
1000 i ‘ | ‘ A .
. el Ay . 11 ‘ ¢
FITT A ST RPT AT | I
googll 211 {4 Py if i
b 5 3 H | ‘l 'i i
600 MY ¥ \ il
400 -
20 1 ! 1 I 1
QOD 120 140 160 180 200 220
f Time in weeks
(b)
' Network response to Validation Set
2000 Y — T T T
. --—--- Actual Predicted out
1800 —»— Target output H
1600 - .
1400 .
1200+ | l .
1000 3 [y 13 : " ,'," 3 L " }i ~ "\ ,,‘ ’k: K
QL gE ; ‘ X {86 N 4 MR & iy,
1 A1t ¥ . YA it A
800 i | Y ‘ , Tii N U & il
: ¥
AW AL |
600] .
400+ .
1] 1 1 |
209?00 120 140 160 180 200 220
Time in weeks
(©

Figure 6. 25: The NN response to the application of the test (validation) data set for
COD: {(a) MLP FFNN Model 10 with 5 hidden neuron and 1000 epochs; (b} ERNN Model
10 with 41 hidden neuron, 500 epochs; and {c) RBFNN Model 10 with 20 hidden neurons,
20 epochs

142

Table 6. 38: Resuilts for the Feed-forward Neural Network Model 10 with COD aé output.

H Hic Tra Hidden [Outpl rain’ ~ -

ayers Ine lalgarithm activation ‘|Momentum|c_train Jr.test [R_sq train ~»
1 trainscg [tansig _ |purelin 500[MSE . 0.5] 0.437] 0.320 0.191 0.102] -21.254] 19.498)
1 Sltrainscg [tansig |purelin 500[MSE 0.0106 0.6 0.5 0.516{ 0.356 0.266 0.127] -29.691] 19.575
1 10jtrainscg [tansig [purelin 500|MSE 0.009 0.6 0.5 0.596| 0.185 0.355 0.034) -23.349 22.211
1 1ltrainscg [tansig |purelin 943MSE 0.0117] 0.6 0.5 0.437] 0.319 0.191 0.102] -21.234] 19.500
1 Sjtrainscg _|tansig [purelin 1000]MSE 0.0101 0.6 0.5| 0.548/ 0.331 0.300 0.110} -31.542| 19.961
1 10jtrainscg _jtansig |purelin 1000|MSE 0.0080 0.6 0.5| 0.667] 0.216 0.445 0.047] -36.008| 22.105

Epochs|Pe

1 trainscg |[tansig (purelin 475[MSE . 0.5| 0.437] 0.319 0.191 0.102| -21.218

1 trainscg jtansig jpurelin 500[MSE 0.0095 0.01 0.5] 0.584] 0.308 0.342 0.095] -32.925| 21.024
1 trainscg [tansig [purelin 500MSE 0.00900 0.01 0.5 0.618 0.232 0.382 0.054{ -32.669| 22.374
1 trainscg itansig |purelin 756|MSE 0.0117] 0.01 0.5 0.437] 0.318 0.191 0.101] -21.139| 19.505
1 trainscg (tansig [purelin 1000]W;E 0.0096/ 0.01 0.5 0.580[0.254 0.337, 0.065 -27.514] 20.393
1 10ltrainscg _ltansig Ipurelin 1000{MSE 0.009! 0.01 0.5 0.616] 0.217 0.380 0.047] -21.110] 22.249

143

6.2.11 COD Neural Network MODEL 11
The inputs for Model 11 are COD(k), COD(k-1), COD(k-2) COD(k-3), TKN(K),
FLOW(k), MONTH, Minimum Temperature, Rain, and the output is COD(k+1) one
time step ahead. These are tabled below:

Table 6. 41: Input variables for COD Model 11

ul
COD{k+1)

(b

Figure 6. 26: (a) A MLP Feed-forward neural network Model 11 with 10 inputs, 4 hidden
layer, 1 hidden neuron and 1 output neuron; and {b) Block Diagram for the COD RBFNN
Model 11 with 19 hidden neurons, 19 epochs

Network response to Validation Set

2000 r , — - :
_ ~--—--= Actual Predicted out
1800 | —»—Target output H
1600 - A
=1 ;
£ 1400} i
t 1
[. ,
N 12001 [iine . 3 } .
] i S 1 [
E !) l , 4
3 i 3 H 1
g 1ooop (R pdlRe kil IR AN B dWiaT
@ { 4+ + 31 i 1 RR; |. : 3 X J '
S e 1 ." LA R Y b . 2
8 300@. . H ‘ 3‘ 3 'i ‘; :,»1
© ; Y . :
GDOF M [3 -
400} i
2 1 | i 1 i |
0?0('1 120 140 160 180 200 220
Time in weeks
(@

144

Network response to Validation Set

2000 1 T I | S L
. --—--= Actual Predicted out
1800 ~—*—Target output i
1600} .
—_]
k=)
£ 1400 .
'g 3
N 1200 ‘ .
E : |
+1 y
g 1000 b2 nA ik 1 g Ik LW
- ! }f e XA N TH AR N
- 3 3 3 el
Q \ ‘ ! ' 1 [3
Q"- ;| N}
600 3 '
400}
20 1 1 1 1 1
?00 120 140 160 180 200 220
Time in weeks
{b)
Network response to Validation Set
2000 Y T Y — T
‘ -~ Actual Predicted out
1800 ' —— Target output H
1600} | .
g 1400} .
<
N 1200} 51 .
‘G !
£ ¢ R g
=) '+
o 1000} 1, LR) A |
s N ! ‘1 i 1 1y " | it‘ R
S CIVER L VO RYALE iy N 43
a 800%|! % ’ : it M 1% |5 I e
(@) k! _ \ I 1y X
600 -
400]
i i | i 1
20QOO 120 140 160 180 200 220
Time in weeks
(c)

Figure 6. 27: The NN response to the application of the test (validation) data set for
COD: (a) MLP FFNN Model 11 with 10 hidden neurons and 500 epochs; (b} ERNN Model
11 with 5 hidden neurons, 500 epochs; and {c) RBFNN Model 11 with 19 hidden
neurons, 19 epochs '

145

-err

1 tansig |purelin 500[MSE -23.804] 19.282
1 tansig |purelin 500]MSE -27.965| 20.242
1 tansig Ipurelin 500[MSE -18.304] 20.796
1 tansig |purelin 537]MSE -23.742] 19.281
1 tansig [purelin 1000|MSE -26.683] 20.514
1 tansig _ [purelin 1000]MSE -34.433] 24.988

tansig [purelin 500{MSE -27.040)

tansig _ |purelin 500 0.486 -32.939] 19.177|
tansig Ipurelin 500 0.518 -32.689] 20.004]
tansig _ jpurelin 491 0.439 -23.735] 19.282
tansig |purelin 1000 0.569 -30.042| 20.433
tansig _ |purelin 1000|MSE 0.691 -26.579} 23.676,

Table 6. 44: Results for the Radial Basis Function Neural Network Model 11 with COD as output.

i

6.2.12 COD Neural Network MODEL 12
The inputs for Model 12 are COD(k), COD(k-1), COD(k-2) COD(k-3}, TKN(K),
FLOW(k), MONTH, Minimum Temperature, Rain, Wind, and the output is COD(k+1)
one time step ahead. These are tabled below:

Table 6. 45: Input variables for COD Modei 12

! i"i’tputi
CODk+1)

’COD(k). COD{k-1). COD{K-2), COD{K-3). TKN{K),
FLOW(K). Month, Minimum Temperature. Rain, Wind

(b

Figure 6. 28: (a) A MLP Feed-forward neural network Model 12 with 11 inputs, 1 hidden
layer, 1 hidden neuron and 1 output neuron; and (b) Block Diagram for the COD RBFNN
Model 12 with 25 hidden neurons, 25 epochs

Network response to Validation Set

2000 T T T — —
--——-- Actual Predicted out
1800 —»— Target output H
1600+ N
£ 1400} .
e
o
N 1200 } u -
: | I
S 1000} ¥ l | ii
c (4} s R ey AT 2" 3 &
g VTR ST WL Sl] 2
a 800} | % ' ! (e (I i
O : 1 1 { ¢ i
© ‘ i l : t i
600 v '
400F]
2 ! i | S 1 1 £
0?00 120 140 160 180 200 220
Time in weeks
@

147

Network response to Validation Set

COD denormalized (mgli)

2000 T 1 L1 I
' ~-——- Actual Predicted out
1800 = Target output
1600 |- .
1400 |-]
1200 ‘ ‘ .
i
— ! “ -
1000} |} ’ ¥ AL 23 _ N ‘:1
4 g1 U PR Y]
i ket ! ; { i 4
800 i nd, 4 ! T tH ‘ 4! .
) ¥ i ¥
Y] ;]
600 -] 1
400 -
i L 1 1 1
20900 120 140 160 180 200 220
Time inweeks
(b)
Network response to Validation Set
2000 ¥ L)] R — I
‘ --—+—-- Actual Predicted out
1800 —»—Target output H
1600} | ; .
£ 14001 .
3 ;f
% 1200 \; : 7
£ H 4 ‘ H
S = A 'l § - » ‘ -. J
g 1000 il 3 /) { !;;, :
S i HE {ﬁ Vi D [l (RS b o
g s00Rk)i *[{ %A P .n. I W
o ! A i i‘! i i x|31 r‘
600 | i - .
400} 1
] 1 1 | 1
20900 120 140 160 180 200 220
Time in weeks
()

Figure 6. 29: The NN response to the appiication of the test (validation) data set for
COD: (a) MLP FFNN Model 12 with 1 hidden neuron and 500 epochs; {b) ERNN Model 12
with 1 hidden neuron, 500 epochs; and {c) RBFNN Model 12 with 25 hidden neurons, 25

epochs

148

pochs|Performance e : [Momentum|r train. i tra Al ~
1 1ltrainscg ltansig [purelin 500[MSE . 0.5/ 0.439] 0.360 0.193 0.130} -24.696] 19.281
1 Sltrainscg _[tansig [purelin 500[MSE 0.0105 0.6 0.5 0.524] 0.314 0.275 0.098] -36.501] 20.793
1 10jtrainscg_[tansig [purelin 500/MSE 0.0098 0.6 0.5{ 0.566| 0.295 0.320 0.087{ -32.881{20.809
1 1ltrainscg ltansig Ipurelin 1000{MSE 0.0117] 0.6 0.5] 0.439] 0.349 0.193 0.122{ -23.780 18.307|
1 Bltrainscg |tansig |purelin 1000[MSE 0.0098] 0. 0.5 0.568] 0.288 0.322 0.083] -36.529] 20.437
1 10ltrainscg Jtansig |purelin 1000]MSE 0.0085 0.6 0.5] 0.643] 0.172 0.414 0.030] -34.419]22.906

eurons’ jalgorithm jactivation

activationEpochs|Perorm »
1 1itrainscg ltansig purelin SMMSE 0.0117] 0.01 0.5] 0.441| 0.408 0.194 0.166] -30.066} 19.193
1 Sltrainscg tansig |purelin 500/MSE 0.0098] 0.01 0.5 0.566) 0.376) 0.320 0.142| -33.320] 19.992
1 10ltrainscg ltansig purelin 500[MSE 0.0096{ 0.01 0.5 0.5811 0.333 0.337 0.111{ -37.867{ 20.248,
1 1ltrainscg ltansig {purelin 823MSE 0.0117 0.01 0.5] 0.439] 0.350 0.193 0.122] -23.789| 19.306
1 Sltrainscg ftansig |purelin 1000[MSE 0.0096 0.01 0.5 0.578] 0.289 0.334 0.083] -30.547| 20.349
1 10{trainscg ltansig |purelin 1000|MSE 0.0075 0.01 0.5] 0.696] 0.200 0.484 0.040; -42.493] 23.375

149

6.2.13 COD Neural Network MODEL 13
The inputs for Model 13 are COD(k), COD(k-1), COD(k-2) COD(k-3), MONTH,
Minimum Temperature, Rain, Wind, and the output is COD(k+1) one time step ahead.
These are tabled below:

Table 6. 49: Input variables for COD Model 13

-Inpu -
COD(k), CODi{k-1), COD(k-2}, COD(k-3
Month, Minimum Temperature, Rain, Wind

(b)

Figure 6. 30: {a) A MLP Feed-forward neural network Model 13 with 9 inputs, 1 hidden
layer, 1 hidden neuron and 1 output neuron; and (b) Block Diagram for the COD RBFNN
Model 13 with 4 hidden neurons, 4 epochs

Network response to Validation Set
2000 T T T - 1 !
--—-- Actual Predicted out

3
1800+ f —»— Target output

I

1600 -

1400

1200

3

COD denormalized {(mgfl)
[+]
3

g

B
3

2 1 . 1] A |
0?00 120 140 160 180 200 220
Time in weeks

150

(a)

Network response to Validation Set

COD denormalized (mgll)

2000 T T T I T
x —=--- Actual Predicted out
1800} —»*— Targst output i
1600 -
i
1400 A
3
1200]
o i)
(‘ \ " . ," 2 3 “ “ ;
800) i A&l -
A/ ‘ - PO %
600 : ki _.' 4
%
400 i
1 1 ! i |
2D?OO 120 140 160 180 200 220
Time in weeks
(b
Network response to Validation Set
2000 T — 17 T T T
e Actual Predicted out
1800} —*— Target output H
|
1600+ |} .
2 1400} |]
'Uo A
N 1200} ‘ ‘ |
[: 3 +
E At) £ Wi 3 L H
g 1000} '_ ~ 'l \ J : X, i i3l “ , s e 2 N
] t I3 . (| EX X % 4 5 '1 i
D 800 ‘: :: ¥ ‘ 'y + ‘ ' s AT —
8 " 5 ¥ + : Y
600 ¥ g .
4
400 -
20 I . I 1 | I 1
?00 120 140 160 180 200 220
Time in weeks
(©

Figure 6. 31: The NN response to the application of the test (validation) data set for
COD: (a) MLP FFNN Model 13 with 1 hidden neuron and 1000 epochs; (b) ERNN Mode!
43 with 1 hidden neuron, 1000 epochs; and {c) RBFNN Model 13 with 4 hidden neurons,

4 epochs

151

ation

Epochs|Performance ler|

Momentum|r.

1 1ltrainscg jtansig _ |purelin 500(MSE 0.011 0.6 0.5{ 0.435(0.400 0.189 0.160| -28.365| 19.119
1 Sjtrainscg |tansig purelin 500|MSE 0.0105 0.6 0.5| 0.526{ 0.279 0.277, 0.078] -31.638]20.473
1 10jtrainscg (tansig |purelin 500MSE 0.0090 0.6 0.5| 0.615 0.291 0.379 0.085] -31.304{20.778
1 1jtrainscg [tansig _ |purelin 1000[MSE 0.0117] 0.6 0.5| 0.435 0.400 0.180 0.160| -28.544/ 19.121
1 Sltrainscg [tansig |purelin 1000|MSE 0.0098] 0.6 0.5 0.567| 0.285 0.321 0.081] -32.742|21.315
1 10|trainscg [tansig |purelin 1000|MSE 0.0084 0.6 0.5 0.640] 0.274 0.410 0.075| -45.071]22.874

Table 6. §1: Results for the Elman Recurrent Neural Network Model 13 with COD as output.

Fid ™ Hid " TTTrai

o

prony

i T

o

Y

1 1trainscg _{tansig purelin 500IMSE -27.306

1 Sltrainscg _|tansig ipurelin 500[MSE 0.0108 0.01 0.505] 0.362 0.255 0.131] -27.215] 19.835
1 10ltrainscg _[tansig _ |purelin 500MSE 0.00961 0.01 0.582| 0.361 0.339 0.131{ -32.109{ 20.270
1 1ltrainscg _jtansig [purelin 1000[MSE 0.0117 _ 0.01 0.435) 0.400 0,190 0.160] -28.504] 19.123
1 Sltrainscg [tansig (purelin 1000[MSE 0.0098 0.01 0.568| 0.230 0.323 0.053] -24.733| 21.948
1 10ftrainscg (tansig |purelin 1000MSE 0.0081) 0.01 0.662] 0.229 0.438 0.052] -34.236) 22.802

162

6.3

6.3.1

TKN Neural Network Results

The NN presented in this section is for the influent variable TKN as the predicted
output of the different NNs. The NN model numbers as per the inputs are specified in
tables at the beginning of the representation of the results for every model. All the
models have only one hidden layer.

TKN Neural Network MODEL 1
The input for model 1 is TKN(k) and the output is TKN(k+1) one time step ahead.
These are tabled beiow:

Table 6. 53: input variables for TKN Model 1

[InputsT] Output_
[TRNG) | TRN{K+1

The physical structure for the MLP FFNN and the RBF NN are represenied in the
following figure. Due to limitations on the MATLAB program for the visualisation of the
physical NN, the Elman Recurrent NN is not displayed here.

(b)

Figure 6. 32: {3} MLP Feed-forward NN Model 1 with 1 input, 1 hidden layer, 1 hidden
neuron and 1 output neuron; and (b) Block Diagram for the TKN RBFNN Model 1 with 1
input, 6 hidden neurons

For the NN with TKN as an output in this section 6.3, all tables and abbreviations
remain the same as per the section in 6.2 for the NN with COD as output. The inputs
are specified as per Table 5.2. For space considerations only for Model 1 all figures
are included, the rest of the models only have the final NN response to the application
of the test data set. However, please note that all results can be viewed using the

program on the enclosed CD.

153

Table 6.54: Results for the Feed-forward Neural Network Model 1 with TKN as output

1 trainscg ltansig |purelin 500[MSE . .

1 -_bltrainscg [tansig |purelin 500[MSE 0.0112 0.6 0.5] 0.565
1 10jtrainscg jtansig jpurelin 500[MSE 0.0110 0.6 0.5| 0.576
1 1itrainscg |tansig jpurelin 1000|MSE 0.0115 0.6 0.5{ 0.551
1 5itrainscg jtansig jpurelin 1000MSE 0.0112, 0.6 0.5 0.565
1 10jtrainscg [tansig jpurelin 1000[MSE 0.0110 0.6 0.5 0.577

Table 6.55: Results for the Elman Recurrent Neural Network Model 1 with TKN as output.

la /ers [neurons [algorithm actlvation activation|Epochs|Performance orr. - v \
1 1ltrainscg [tansig |purelin 414|MSE 0.0114 0.01 0.5 0.553| 0.421 0.306 0.178{ -0.899| 15.112
1 Sltrainscg _|tansig |purelin ~ 500|MSE 0.0115 0,01 0.5 0.550{ 0.424 0.303 0.180{ -0.850| 15.077
1 10{trainscg [tansig purelin SOOIMSE 0.0115 0.01 0.5| 0.551 0.430 0.304) 0.185| -0.882[15.027|
1 1jtrainscg |tansig purelin 338]MSE 0.0114, 0.01 0.5| 0.553] 0.421 0.306] 0.177{ -0.900] 15.115
1 5ltrainscg |tansig lpurelin 1000]MSE 0.0113 0.01 0.5 0.562] 0.405 0.316 0.164/ -0.955] 15.290
1 10|trainscg _[tansig _ |purelin 1000[MSE 0.011 0.01 0.5 0.549] 0.426 0.302 0.182| -0.845| 15.046

Table 6.56: Resuits for the Radial Basis Function Neural Network Model 1 with TKN as output

154

Performance is 0.0115369, Goal is 0

10 [T T T T T T T T T]
:]
b]
g
o =]
_g 10+ .
f =4
=
-
102 L 1) 1 1 I 1 1 !
50 100 150 200 250 300 350 400 450 500
500 Epochs
(@)
. Pesformance is 0.0115013, Goatis 0
10 T T T f E— T T T T T
g
l‘ﬁ -1
g 10 E i
£
’_ 4
-
f
‘(;
107 t t t 1 1 1 1. 1 1
50 100 150 200 250 300 350 400 450 500
b 500 Epochs .
(b)
s Performance Is 4.92489, Goal is 5
10 T T T T T B
S 1
: 1
=
uw
o =
£]
=]
8 E
’— 4
”» 4
e
g 1
o
»
5 3
I3 3
3
73
10’ 1 1 I ! 1
0 1 2 3 4 5 [}
1 6 Epochs
(0

Figure 6. 33: Training error versus the number of epochs for TKN: (a) MLP FFNN Model
1 with 1 hidden neuron, 500 epochs; {b} ERNN Model 1 with 5 hidden neuron, 500
epochs; and {c} RBFNN Model 1 with 6 hidden neurons, 6 epochs

155

Normalized Tralning inputs and NN response

-

Training-Data
Network-Response
L]

o
.
LY
]

° 4 -woouoo *

' '
300 350 400 450

1
250

1
200

Time In weeks

| B—
150

pezZ|jBULIOU NML

(@
Normalized Training inputs and NN response

Training-Data

°

Network-Response

.

L]

° woﬁso.:o © e

oag 30 A%
°°

1 1 1
250 300 350

200

Time in weeks

1r

09}

o4y °
. 0 gt o °F
1 A OVW;% a_l L
~ @« w) i
[~ o [~ o o
POZIRRWIOU NXLL

0.2o

(b
Normalized Tralning inputs and NN response

» ° D
b se00 s+ o
c 4 OQ.VQQ (3
Qo oo o%uo of
o) %0 o Ld
8 wl® 0 O &% 90 ¢ s, °
© @ ® oo o8 \ ey, * °
Qo o B AL AN
o * 8 %%, 4800 0
£ S, ®e %ono s o °
£ M ° o ¥a'p TN ° °
g5 R TARX YT
=2 ® e 20 &
gt EENEY
o o L4 [woo 4
° o, o e,
o 40 oooo&ooo o
° on cuooow;ooo Quoa
o IS L I

\5‘{3'{ °
R

o

o %
90 o
R

$

o
awo

\!&‘Gg’.
.8
[g\
XA

.

o

% Yesot ¢

°
.o
o
o
) o qQ o
o0
ot
N Sp e
FA
g O%des
g # o0
° %
<
* w
A
° ?
-]

L)
D)
<
©
-
-
o
°

— i) S
200 250 300 350
Time in weeks

L
150

)
100

. 1. A 1
o @ t~ a0
(-3 (=1 o (=] Q o

pozijewou NyL

v

02 M

(¢

input data and the NN response with the

{a) MLP FFNN Model 1 with 1 hidden neuron,

ining

A scatter-plot of the trai
application of the training set for the TKN

Figure 6. 34

and (c) RBFNN

.
3

500 epochs; (b) ERNN Model 1 with 5§ hidden neurons, 500 epochs

Model 1 with 6 hidden neurons, 6 epochs

156

Normalized Testinputs and NN response

ir °
o ° o Test-Data
oslh * Network-Response
°
o ® ° °o
°
[13:14 ° o ' ° ° ° °
° L2 a
eo °° ‘n o o® 8° o
L3 » ©,79 o
.207" Poe . e O . U"‘ e o’o". Poer e mee
N Py s . Se ® 5q40 8% 084 4%
w 8o & °, 00 oe®s 5 s 0¢ o JeTwo o
E 1] P : ‘e e L e %0’ .~ s 3 . .‘0‘: Cy
5 06f TR WRaego TSl Gy e Lt .o, o s
S e, T et ot o v g T e
2 'gt ": .) “’ o M (g ° - . °
Zosh oS Lo WNNSR. S e gl .
°°o°.* d . . LA °.: . & .
o o ® %o % ° ° ° °
04} : ° ® ° M
o
o o oo .
o3} °
- L] L3
0_2 —l] I] ° |
0 50 100 150 200 250
Time in weeks
(a)
Normalized Test inputs and NN response
1 r o
R ° o TestData
ool ¢ Network-Response
o ° o ° o o
°
08 ° ° o° ° ° °°
° ° °
oo % K 0o ©°F 3: o
b L % . ° o
307 J-e‘. ., e .) *:.’ m.;;’:: °a'° :;’b'g....
5 |se &% oq e e TS T AN e Mlene t
EDGE . . ‘s o © " 0%l S°F 3 3 *% “o,
e A FE RCA- R P
- < »
Z .?\;3:? °: * ‘,.f::‘ °'v °¢ OP . : & S e ®o * ¥ *
°
EOSp il J. Sl 8 NNt .
o ° % o © 2. o0 ° °
L) o %o ° °
o4f . > ° °
°
° 3 ° °o °
03} °
° °
02 i 1 1 1 ° N}
0 60 100 150 200 250
Time in weeks
Normalized Test inputs and NN response
1 B °
o o o Test-Data
L * Network-Response
09
(-] ° o ° 9 o
° ° °
osl ¢ o by ° °
° ° ° o
PP o Lo o® 8o
- o %0 ° 0 00 4
SOT) em st et A Ttk RS
= &g w %, ¢ %0 * 5 had Dn' ° e Opgo *°
: £ b R S ofos,02 o 2 35° 0%
L * . d . © . o %%
s 08 by SRR Ste i be gre b L oe °F S
Q © o o - 3 oe o
; q:° ® Ve ot o MR [Ad g ° ﬂvn ®e 0
* . *
Zosp e S W IMSE L@ e e et :
e @ o e s T, ° ° o
% o %0 °o °
0.4[' : °© o° ° ° o
° o co °
0.3[‘ N
o o
°
°2 N i L}

1 1
0 50 100 150 200 250
Time in weeks

(c)

Figure 6. 35: A scatter-plot of the test (validation) data and the NN response with the
application of the fest set for the TKN: {a) MLP FFNN Model 1 with 1 hidden neuron, 500
epochs; (b) ERNN Mode! 1 with 5 hidden neurons, 500 epochs; and {c) RBFNN Model 1
with 6 hidden neurons, 6 epochs

157

Linear correlation coefficient - Training data

Linear correlation coefficient - Validation data

T T v T o—T—6— 20 T T T T
© DataPoints ° o DataPoints ;
osl Best Linear Fit | sol —— Best Linear Fit
....... A=T 0
7 70 R=0.44 d
- 60}
B < 50 -
J dot |
4 30} . .‘
E 20 - K
10 S L . N
Q.75 0 20 40 60 80 100
T
(a)
Linear correlation coefficlent - Training data Linear correlation coefficient - Validation data
1 v , . v o 90 v . v .
¢ DataPoints o 0 DataPoints K
ool BestLinear Fit °© ° (g 8or | —— 2:3; Linear Fit
[L
70l R=0424 . - 1
« 501 1
1 [d 1
10 v + - —
075 0 20 40 60 80 100
T
(b)
Linear regression coefficient - Training data Linear regression coefficient - Validation data
— ~CF LA ™ T T T
e o DataPoints -
09 2 80} | —— BestLinearFit
% v e A=T . g
0s ° 70t e
Q7p E %18]
<« 0 { « 50}
5 o DataPoints L
053 BestLinearFr|] 40 P
&0V, Y odo 0% | A=T
CAES l 30} :,'
R=0562 rd
03 20} g
aat R . R R . . N
%.5 [1X 07 08 09 100 20 40 60 80 100
T T
(c)

Figure 6. 36: Network performance showing the linear regression (correlation)
coefficients for training data (normalized} on the left, and the validation data set
{denormalized) on the right for the TKN: (a) MLP FFNN Model 1 with 1 hidden neuron
and 500 epochs; (b) ERNN Model 1 with 5 hidden neurons, 500 epochs; and {c) RBFNN
Modei 1 with 6 hidden neurons, 6 epochs, where A and T are the NN output and desired
target output respectively

168

Test Set Instantaneous Error Plot

30 T T T T T T T T L

| 1 1 L I 1 1 i L
0 20 40 60 80 100 120 140 160 180 200 220
Time in weeks

(@

Instantanecus Test Set Error Plot
30 T T T T T T T T L3 T

-]

TKNin mgh
3

8

4

. 1 H i 1 1 1]
60 80 100 120 140 160 180 200 220
Time int weeks

(b)

Instantaneous Test Set Error Plot

30 T T T T T T T L Lo T

L 4
Q 20 40

8

-
<
T

o
T

TKN in mgh
=)

8

8

i S H 1 1 1 L 1 1
80 80 100 120 140 160 180 200 220
Time in weeks

(c)

Figure 6. 37: The instantaneous error across the entire validation data set for the TKN:
{a) MLP FFNN Mode! 1 with 1 hidden neuron and 500 epochs; (b} ERNN Model 1 with 5
hidden neurons, 500 epochs; and {c) RBFNN Model 1 with 6 hidden neurons, 6 epochs

1 A
[20 40

159

TKN denormalized (mgll)

TKN denormalized (mgfl)

Network response to Validation Set

90 1 1 T 1 I
¥ --—--- Actual Predicted out
80 —»— Target output
70
60
50 L
40
30
20 .
1] 1 1 1 1
900 120 140 160 180 200 220
Time in weeks
(@
Network response to Validation Set
90 L T L T T
. -—~+-- Actual Predicted out
80| ' —— Target output
70 ‘
60 iy ¥
|I| ' A lf f: 3 “\ q
1 1
af | UF YL
T !
40 ' !
30+
20
1? 1 1 1 1 1
00 120 140 160 180 200 220
' » Time in weeks
(b

160

Network response to Validation Sat
T T i -

--—-:= Actual Predicted out
—*— Target output H

8

-~ @x
- -

(2]
Q
1
omyst ’
3%
-
~¢
-
Vew
Py ”»
-
hhn T
"n-.‘.'
gt
camnom e (5
Foy)
ey

L
Y
ol

&H
(=}
T3%

TKN denormalized (mgll)
(40}
=)

w
o
T

20

1 [1 i ! 1
gfOD 120 140 160 180 200 220
Time in weeks

(©)

Figure 6. 38: The NN response to the application of the test (validation) data set for
TKN: (a) MLP FFNN Model 1 with 1 hidden neuron and 500 epochs; (b) ERNN Model 1
with 5 hidden neurons, 500 epochs; and {c} RBFNN Model 1 with 6 hidden neurons, 8
epachs ¢

161

6.3.2 TKN Neural Network MODEL 2
The inputs for Model 2 are TKN(k) and TKN(k-1) and the output is TKN(k+1) one time
step ahead. These are tabled below:

Table 6. 57: Input variables for TKN Model 2

Finputs
TKN(K). T

(b)

Figure 6. 39: {(a) A MLP Feed-forward neural network Model 2 with 2 inputs, 1 hidden
layer, 1 hidden neuron and 1 output neuron; (b) Block Diagram for the TKN RBFNN
Model 2 with 2 hidden neurons

N
Network response to Validation Set

90 } 1 T — 1 T
¥ --—--- Actual Predicted out
sol} .;. ¥ =-%=-Target output 1
1 5 =
A ¥ ";s‘ x | :{ H
I i
Tor i 3k £ ¥ ¥ il
s | & a8 i My fay | BERE
B lghgt L g wwhoady o nid
~— 60_ H w31 s yiped [H 1] il i _I,.*' Fiks v sl! i XL 4 .
T OLEMAET s I i BhmAR e
N HI RS ; H i B f#g i Ha 13 .ﬁ- l.'k‘i- ?\ 1
T b EFE LR MU WV ATL o o IR YA
£ S0F i % UPARES A S BT P TR (O SRR I
g Bl viy byl axff 4 pRig w88 T CRIE
g Ik e 5 ¥ i uy ¢ §ihe
T 40f i g if 1 ok § -
Z 4 x [§ § iiii
i H § 3 3 X il
. § H ii i
" 30t 1 A A H 0%
g u
i
H
ZOF § -
| 1] 1 L
1?00 120 140 160 180 200 220

Time in weeks

(a

162

Network response to Validation Set

90 I | T — T
% == Actual Predicted out

8oL —*— Target output]
__T0f
E])
3 60 IR
® N T LR
8 tal A
£ 50 i |
s iVl %
£ H
o 40
z |
=

30

201 =

1 1 1 1 I |

QOO 120 140 160 180 200 220
Time in weeks
(b)
Network response to Validation Set
90 ¥ L T 1 1
: --—-—-- Actual Predicted out
80 —— Target output

=

[22]
[=]

8

TKN denormalized (mgil)
[4,]
Q

)
o

20

1] 1 1 1
1?00 120 140 160 180 200 220
Time in weeks
(c)

Figure 6. 40: The NN response to the application of the test (validation) data set for
TKN: {a) MLP FFNN Model 2 with 1 hidden neuron and 500 epochs; (b) ERNN Model 2
with 10 hidden neurons, 500 epochs; and {c} RBFNN Model 2 with 2 hidden neurons, 2
epochs

163

Table 6. 58: Results for the Feed-forward Neural Network Model 2 with TKN as output.

Hig " [Fid = Ttrain [Hidden ~ [Output Cear

ayers: ineurol jorithm activationlactivation|Epachs|Petforman . [.
1ltrainscg [tansig |purelin 359|MSE 0.0109 0.6 0.5/ 0.581] 0.491 0.338 0.241] -0.606{ 14.347
Sitrainscg |tansig _|purelin 500[MSE 0.010 0.6 0.5] 0.595| 0.459 0.354] 0.210] -0.599| 14.776
10ltrainscg ltansig |purelin 500|MSE 0.010 0.6 0.5] 0.609] 0.484 0.371 0.234] -0.702] 14.728
1ltrainscg |tansig [purelin 324IMSE 0.011 0.6 0.5(0.581! 0.491 0.338 0.241 0606} 14.347
Sltrainscg jtansig _|purelin 1000]MSE 0.0104 0.6 0.5] 0.609] 0.482 0.371 0.232] -0.480] 14.577,
10jtrainscg |tansig |purelin 1000[MSE 0.0101 0.6 0.5 0.623{ 0.471 0.388 0.221] -0.472} 14.870;

: ochs|Performance jer

1 trainscg [tansig |purelin 328|MSE . . .

1 5ltrainscg (tansig [purelin 500|MSE 0.0107] 0.01 0.5 0.595] 0.494 0.354] 0.244] -0.507] 14.592
1 10jtrainscg |tansig |purelin 5001MSE 0.0105 0.01 0.5 0.603] 0.486 0.364, 0.236] -0.559] 14.700
1 itrainscg |tansig [purelin 232|MSE 0.0110; 0.01 0.5| 0.581] 0.491 0.338 0.241] -0.606] 14.347|
1 Sitrainscg jtansig Jpurelin 1000{MSE 0.01068! 0.01 0.5] 0.599] 0.481 0.358, 0.232| -0.397| 14.688
1 10jtrainscg |tansig _ [purelin 1000|MSE 0.0105(0.01 0.5 0.603] 0.482 0.364 0.232] -0.529| 14.731

164

6.3.3 TKN Neural Network MODEL 3
The inputs for Model 3 are TKN(k), TKN(k-1), TKN(k-2), and the output is TKN(k+1)
one time step ahead. These are tabled below:

Table 6. 61: Input variables for TKN Model 3
\Inputs Qutput

TRN{K). TKN{K-1). TKN{k-2) TRN(k+1)

Figure 6. 41: {a) A MLP Feed-forward neural network Model 3 with 3 inputs, 1 hidden
layer, 1 hidden neuron and 1 output neuron; and (b) Biock Diagram for the TKN RBFNN
Model 3 with 2 hidden neurons, 2 epochs

Network response to Validation Set

90 - ' ; ‘ ore
--—~- Actual Predicted out
o —»*— Target output |

-~
Q

(=2
[=]

TKN denormalized {mgll)
[4,]
Q

40
30
20}
1 [] k] t] i
?00 120 140 160 180 200 220
Time in weeks
(@)

165

Network response to Validation Set

TKN denormalized (mgfl)

TKN denormalized (mgil)

T T T L
--——-- Actual Predicted out
R —*—Target output
f
L4 3 F ‘ l A
; “; .,!.1‘ v ; :r & T
IR it LY
‘{ ‘q H ! R
| |
30+ |
201 —
1 1 1 1 1 |
?00 120 140 160 180 200 220
Time in weeks
(b)
Network response to Validation Set
90 T 1 T T H
¢ i --——= Actual Predicted out
—*—Target output
¥
1 r-
s ‘ LR i\ 1 : b .
i i] HE
! !
7 i li i
E
9
30} .
20 ~ t
1 [] 1 1 i]
?00 120 140 160 180 200 220
Time in weeks :
(c)

Figure 6. 42: The NN response to the application of the test (validation) data set for
TKN: (a) MLP FFNN Model 3 with 5 hidden neurons and 1000 epochs; (b) ERNN Model 3
with 1 hidden neuron, 500 epochs; and (¢} RBFNN Mode! 3 with 2 hidden neurons, 2
epochs

166

Table 6. 62: Results for the Feed-forward Neural Network Model 3 with. TKN as output.

1 1ltrainscg purelin 271MSE .

1 5ltrainscg purelin 500[MSE 0.0102 0.6 -0.092] 14.508
1 10/trainscg purelin 500|MSE 0.0101 06 -0.294] 14.994
1 1ltrainscg purelin 154/MSE 0.0108] 0.6 0.261] -0.546
1 5ltrainscg purelin 1000[MSE 0.0103 0.6 0.245 -0.418
1 10ltrainscg purelin 1000JMSE 0.0095 0.6l -0.491] 15.118

activation|activation Momentum

. 0.5[0.588| 0.511 0.346 0.261] -0.546/ 14.156

1 trainscg ltansig |purelin

1 trainscg tansig jpurelin 0.5| 0.601] 0.514 0.361 0.264] -0.419| 14.289
1 10jtrainscg jtansig |purelin 0.5 0.610] 0.511 0.372 0.261] -0.416] 14.453
1 1ltrainscg [tansig __|purelin 0.5| 0.588| 0.511 0.346 0.261] -0.547| 14.155
1 5|trainscg tansig |purelin 1000]MSE 0.0105 0.01 0.5] 0.605! 0.517 0.366) 0.267| -0.427] 14.271
1 10jtrainscg |tansig |purelin 1000JMSE 0.0101} 0.01 0.5 0.621] 0.503 0.386 0.253] -0.312[14.579

167

6.3.4 TKN Neural Network MODEL 4
The inputs for Model 4 are TKN(k), TKN(k-1), TKN{k-2), TKN(k-3), and the output is
TKN({k+1) one time step ahead. These are tabled below:

Table 6. 65: Input variables for TKN Model 4

Output.
TKN{k+1)

(b

Figure 6. 43: {a) A MLP Feed-forward neural network Model 4 with 4 inputs, 1 hidden
layer, 1 hidden neuron and 1 output neuron; and (b) Block Diagram for the TKN REBFNN
Model 4 with 2 hidden neurons, 2 epochs

Network response to Validation Set
90 T T T I T
: : =-=--= Actual Predicted out
—*— Target output H

o3
Q

-
o

2]
[=]

1
—— —,
~,
eyt 4
CIT
“."'"0- .
= *
—:—-!'ﬂ'
-
o
=
Ao
- Sy
Pl
)‘-":“3:“
o
e
1

s
1

TKN denormalized (mg/l)
f-3 (44
o [

[}
(=]

Ny

(=
T
1

1 1 1 A1 1]
900 120 140 160 180 200 220
Time in weeks

(@)
168

Network response to Validation Set

8

L T

-=+-- Actual Predicted out
—*— Target output

[2.]
(=]

-J
(=}

D
o

TKN denormalized (mgfl)
(9]
(=]

40
30
20 r
1 1 L i 1 1

900 120 140 160 180 200 220

Time in weeks
(b)
Network response to Validation Set
90 L} T T T T
: --—--=- Actual Predicted out

80l b =% Target output

[=2] -~y
Qo o
Y
Jtwin
A
e
r—

TKN dendrmalized {mgll)
H n
°. ~Q

30
20+
1? i 1 1 1 1
00 120 140 160 180 200 220
Time in weeks
(c)

Figure 6. 44: The NN response to the application of the test (validation) data set for
TKN: (a) MLP FFNN Model 4 with 10 hidden neurons and 500 epochs; (b) ERNN Model 4
with 1 hidden neuron, 500 epochs; and {¢} RBFNN Model 4 with 2 hidden neurons, 2
epochs

169

. siEer

1 trainscg |tansig _ [purelin 102|MSE

1 trainscg [tansig [purelin 500/MSE) . . . -14.884)

1 trainscg [tansig _ |purelin 500[MSE 0.0104 0.6 0.5 0.608[0.531 0.370 0.282] -0.583| 14.153
1 1itrainscg {tansig |purelin 214JMSE 0.0108 0.6 0.5 0.608] 0.531 0.370 0.282} -0.593} 14.153
1 Sitrainscg _|tansig _ [purelin 1000]MSE 0.0101 0.6 0.5(0.624| 0.384 0.390 0.147| -0.900{ 15.314
1 10ltrainscg jtansig (purelin 1(@[MSE 0.0036 0.6/ 0.5] 0.648] 0.488 0.420 0.238) -0.152] 14.503

1 trainscg jtansig |purelin . i .

1 trainscg_ [tansig _ |purelin 500[MSE 0.0107]__ 0.01 0.5 0.593| 0.543 0.351 13.874
1 10jtrainscg _[tansig __|purelin 500[MSE 0.0100 0.01 0.5| 0.629] 0.495 0.395 14.613
1 1jtrainscg {tansig _ |purelin 1000[MSE 0.01100 0.01 0.5| 0.580 0.538 0.336 14.119
1 Sltrainscg |tansig _ |purelin 1000|MSE 0.01000 0.01 0.5 0.628] 0.497 0.395 14.575
1 10ltrainscg _[tansig urelin 1000|MSE 0.010 0.01 0.5 0.629] 0.500 0.396 14.536

170

6.3.5

TKN denormalized (mall)
8

TKN Neural Network MODEL 5
The inputs for Model 5 are TKN(k), TKN(k-1), TKN{k-2), TKN{k-3), COD(k), and the
oufput is TKN({k+1) one time step ahead. These are tabled below:

Table 6. 69: Input variables for TKN Model 5

“TKN{K), TKN(k-1), TKN(K-2), TKN
CODIK)

(

(b)

Figure 6. 45: (a) A MLP Feed-forward neural network Model 5 with 5 inputs, 1 hidden
layer, 1 hidden neuron and 1 output neuron; and {b) Block Diagram for the TKN RBFNN
Model § with 5 hidden neurons, 5 epochs

Network response to Validation Set
90 T T T

-——-- Actual Predicted out
—— Target output

[22]
o

~{
(=

)]
(=]

40
30
20
1 1 A - i | I | I
g?i)l:) 120 140 160 180 200 220
Time in weeks
(&)

171

Network response to Validation Set

8

== Actual Predicted out
—*— Target output

1

0
Q

-4
Q

2]
1=

1Y
(=]

TKN denormalized (mgil)
[4)]
©

@
(=]

T
i

20+ t &
1 1 1 1 S i I
900 120 140 160 180 200 220
Time in weeks
(b)
: Network response to Validation Set
90 H il 1 ¥ T
¥ ~-——-- Actual Predicted out
80} L —*— Target output

)]
(=]

g
Q
1
-~
Gy IV
P 2 e s

TKN denormalized (mgil)
Ia o
o o

(9]
Q
—T

T
b,

20

1 1 1 1 1
1?00 120 140 160 180 200 220
Time in weeks

()

Figure 6. 46: The NN response to the application of the test (validation) data set for
TKN: (a) MLP FFNN Model § with 1 hidden neuron and 500 epochs; {b) ERNN Model 5
with 1 hidden neuron, 500 epochs; and (c) RBFNN Mode! 5 with 5 hidden neurons, 5
epochs

172

Table 6. 70: Results for the Feed-forward Neural Network Model § with TKN as output.

, actwatlon activation

Moi'nentum ‘

R sq train R

T Ava_test]

s [neurons fa EpochsiPerformance e
1 1jtrainscg_|tansig [purelin 308]MSE 0.5 0.593] 0. 524 0.352 0.275| -0.575[13.8993
1 Sltrainscg [tansig |purelin 500[MSE 0.5] 0.611] 0.502 0.373 0.252| -0.388[14.370
1 10jtrainscg _|tansig _[purelin 500[MSE 0.5 0.635] 0.481 0.404] 0.231] -0.259| 14.866)
1 1ltrainscg {tansig _ [purelin 271|MSE 0.5] 0.593] 0.524] 0.352 0.275| -0.575{13.993
1 Sitrainscg |tansig |purelin 1000|MSE 0.5| 0.637| 0.487| 0.405 0.238] -0.371] 14.464
1 10jtrainscg _{tansig _ {purelin 1000[MSE 0.5 0.656| 0.436 0.430 0.190] -0.400] 15.206

Table 6. 71: Results for the Elman Recurrent Neural Network Model 5 with TKN as output.

/|Hidden ' Odtput’

neurons_ falgorithm |activationlactivation|Epochs|Performance lerr in
Ajtrainscg |tansig [purelin 404|MSE 0.0107] 0.01] - 0.5] 0.593] 0.524 0.352 0.275] -0.575 13 993
5ltrainscg |tansig |purelin 500/MSE 0.0106/ 0.01 0.5 0.599(0.532 0.359 0.283] -0.457| 14.051
10itrainscg |tansig urelin 500IMSE 0.0104 0.01 0.5] 0.644] 0.474 0.415 0.224] -0.306] 14.714
1ltrainscg ltansig _ [purelin 303lMSE 0.0107] 0.01 0.5{ 0.593{ 0.524 0.352 0.275] -0.575| 13.993
Sitrainscg _|tansig |purelin 1000|MSE 0.0099 0.01 0.5| 0.634] 0.487 0.403 0.237] -0.488| 14.515
10jtrainscg_|tansig _ |purelin 1000{MSE 0.0098 0.01 0.5] 0.636] 0.468 0.405 0.219] -0.716] 14.795)

Table 6. 72: Results for the Radial Basis Function Neural Network Model 5 with TKN as output.

1]Fadbas

v
purelin

173

6.3.6 TKN Neural Network MODEL 6
The inputs for Model 6 are TKN(k), TKN(k-1), TKN(k-2), TKN(k-3), COD(k), FLOW({k),
and the output is TKN(k+1) one time step ahead. These are tabled below:

Table 6. 73: Input variables for TKN Model 6

_Inputs , , I Output
TKNK). TKN(k-1), TKN(K-2), TKN(k-3), | TKN(k+1)
COD{K). FLOW({K)

(b

Figure 6. 47: (a) A MLP Feed-forward neural network Model 6 with 6 inputs, 1 hidden
layer, 1 hidden neuron and 1 output neuron; and (b) Block Diagram for the TKN RBFNN
Model 6 with 9 hidden neurons, 9epochs

Network response to‘VaIidation Set
90 T 1 | H 1 1

¢ ' -~ Actual Predicted out
| —*—Target output i

[o]
(=)

-]
(=4

[2]
Q

TKN denormalized (mgfl)
on
o

40 F ‘
30
20}
1 . 1 | .] 1
?00 120 140 160 180 200 220

Time in weeks

(a)

174

Network response to Validation Set

T — 1

--—-- Actual Predicted out
—»— Target output

TKN denormalized {(mgfl

20 :L 7]
1 1 | -] 1 1
QOO 120 140 160 180 200 220
Time in weeks
(b
Network response to Validation Set
90 LS ¥ T 1 T
--—--- Actual Predicted out
80 —3— Target output
x

. 70 -
5
g 60 I—
LA
N 3
= 3
. E 50 t -
:
S 40 {7
=
f i 3

30 L ! .

9
20t .
1? 1 1 1 1] !
00 120 140 160 180 200 220
Time in weeks
)

Figure 6. 48: The NN response to the application of the test (validation) data set for
TKN: (a) MLP FFNN Model 6 with 1 hidden neuron and 560 epochs; (b} ERNN Model 6
with 1 hidden neuron, 500 epochs; and (¢} RBFNN Model 6 with 9 hidden neurons, 9
epochs

175

Hidden: [Outpu

Jactivationfactivation|Epochs|Petformance lerr. - R.sq. test e
1 1jtrainscg {tansig purelin 145]MSE 0.0104 0.6 0.5 0.556 0.367| 0.309] -0.503] 13.701
1 Sltrainscg |tansig [purelin 500[MSE 0.0100 0.6 0.5 0.532 0.394 0.283| -0.396(14.190
1 10jtrainscg {tansig Ipurelin 500/MSE 0.0096| 0.6 0.5 0.549 0.420 0.302] -0.427| 14.042
1 Altrainscg itansig |purelin 178|MSE 0.010 0.6 0.5 0.556 0.367 0.309] -0.503!13.701
1 Sitrainscg _[tansig __lpurelin 1000|MSE 0.0091 0.6 0.5 0.514 0.448 0.264] -0.096| 14.415
1 10ltrainscg [tansig |purelin 1000lMSE 0.009 0.6 0.5 0.511 0.457 0.261 0.006] 14.283

. , chs

1 1jtrainscg jtansig ipurelin 147|MSE

1 Sltrainscg _|tansig _|purelin 500|MSE 0.0097] 0.01 0.5] 0.643] 0.505 0.413 0.255| -0.428| 14.364|
1 10ltrainscg _|tansig _ {purelin 500IMSE 0.0097] 0.01 0.5 0.644] 0.494 0.414 0.244] -0.264] 14.743
1 1ltrainscg |tansig ipurelin 234|MSE 0.0104 0.01 0.5 0.606{ 0.556 0.367 0.309] -0.502{13.701
1 Bltrainscg |tansig [purelin 1000[MSE 0.0093 0.01 0.5 0.660] 0.497 0.435 0.247] -0.319| 14.354
1 10jtrainscg |tansig _ [purelin 1000|MSE 0.008 0.01 0.5 0.677] 0.530 0.458 0.281] -0.008| 14.208

176

6.3.7 TKN Neural Network MODEL 7
The inputs for Model 7 are TKN(K), TKN(k-1), TKN(k-2), TKN(k-3), COD({k), FLOW(k),
MONTH, and the output is TKN(k+1) one time step ahead. These are tabled below:

Table 6. 77: Input variables for TKN Model 7

Inputs utput
TKN(K), TRN(K-1), TKN(k-2). TKN(K-3 TKN{k+1)
COD(K), FLOW{K). Month

(b)

Figure 6. 49: {a) A MLP Feed-forward neural network Model 7 with 8 inputs, 1 hidden
layer, 1 hidden neuron and 1 output neuron; and (b) Biock Diagram for the COD RBFNN
Model 7 with 17 hidden neurons, 17 epochs

Network response to Validation Set
90 T 1 Y T T
: --—+=-- Actual Predicted out

—»— Target output

o]
(=

~y
o

h
(=

-3
o

TKN denormalized (mgl)
o
o

(5]
[=]

20+
1 | - 1 [1]
QOO 120 140 160 180 200 220
Time in weeks
(@

177

Network response to Validation Set
90 T T T

--—+~=-- Actual Predicted out
—»— Target output

80
70
60

50¢ (¢

40

TKN denormalized (mgil)

30

T
I

20

1 A1 1 1 4 1
900 120 140 160 180 200 220
Time in weeks

(b
Network response to Validation Set

90 — " i ' ;
e Actual Predicted out

—»— Target output

80

70

60

WL

50

40

TKN denarmalized (mgfl)

30

I

20

1] i | 1 1
?00 120 140 160 180 200 220
Time in weeks
{c)

Figure 6. 50: The NN response to the application of the test {vaiidation} data set for
TKN: {a) MLP FFNN Mode! 7 with 1 hidden neuron and 500 epochs; () ERNN Mode| 7
with 5 hidden neurons, 1000 epochs; and (¢} RBFNMN Model 7 with 17 hidden neurons,
17 epochs

178

Table 6. 78: Results for the Feed-forward Neural Network Model 7 with TKN as output.

1tra|nscg tansig - [purelin 187| MSE . 0.609{ 0.566 0.371 . -0.448| 13.470
Sltrainscg [tansig [purelin 500[MSE 0.6 0.5] 0.647] 0.532 0.419 0.283] -0.346| 14.022
10jtrainscg itansig lpurelin 500{MSE 0.6 0.5 0.654] 0.558 0.428 0.311] -0.345] 13.381
1jtrainscg |tansig _ [purelin 407|MSE 0.6 0.5 0.609 0.566 0.371 0.320] -0.449! 13.471
bltrainscg |tansig _[purelin 1000|MSE 0.6 0.5 0.670] 0.561 0.450 0.314] -0.322] 13.463
10ltrainscg _{tansig _|purelin 1000MSE 0.6! 0.5] 0.697) 0.514 0.486 0.264] -0.007] 14.448

Table 6. 79: Results for the Elman Recurrent Neural Network Model 7 with TKN as output

Outpt
al otithm [activationiactivation

EpochsiPerformance e

15.471

1 1jtrainscg |tansig [purelin 347|MSE 0.0104 0.01 0.5 0.609, 0.371 0.320[-0.448

1 bltrainscg _|tansig __ [purelin 500[MSE 0.00968] 0.01] 0.5 0.647] 0.515 0.419 0.265] -0.688| 14.233
1 10ltrainscg {tansig Ipurelin 500[MSE 0.0088 0.01 0.5 0.682] 0.509 0.466 0.269] -0.550] 14.879
1 1jtrainscg |tansig |purelin 1000|MSE 0.0105 0.01 0.5 0.602| 0.565 0.362 0.318] -0.548/ 13.638
1 Sltrainscg |tansig _|purelin 1000[MSE 0.0089 0.01 0.5 0.677]_0.511 0.458 0.261] -0.196] 14.315
1 10jtrainscg [tansig |purelin 1000]MSE 0.0085 0.01 0.5 0.697] 0.507 0.486 0.257] -0.475] 14.559

Table 6. 80: Resuilts for the Radial Basis Function Neural Network Model 7 with TKN as output.

179

6.3.8 TKN Neural Network MODEL 8
The inputs for Model 8 are TKN(k), TKN(k-1), TKN(k-2}, TKN(k-3), COD(k), FLOW(k),
MONTH, Minimum Temperature, and the output is TKN(k+1) one time step ahead.
These are tabled below:

Table 6. 81: Input variables for TKN Model 8

utput |
TRN(1)

Figure 6. 51: (a) A MLP Feed-forward neural network Model 8 with 9 inputs, 1 hidden
layer, 1 hidden neuron and 1 output neuron; and (b} Block Diagram for the TKN RBFNN
Model 8 with 17 hidden neurons, 17 epochs

Network response to Validation Set
90 L T T 1 T
-+ Actual Predicted out

80 —»— Target output

F S
Q

TKN denormalized (mgil)
[4))
=]

)
=]

[

o
T

|

1 i 1 A 1 1
?00 120 140 160 180 200 220
Time in weeks

(a)

180

Network response to Validation Set
90 q LS L 1] T
¥ ~-=--- Actual Predicted out

—»— Target output I

TKN denormalized (mgll)

20+ -
1 —1 1 1 1 ~L
?00 120 140 160 180 200 220
Time in weeks
(b)
Network response to Validation Set
90 T T T | !
- | =—e—-- Actual Predicted out
80t ‘ ¢ —*— Target output
‘ :
__ 10} -
s)
.‘6 60 ‘l t : -
] r
8 S MR 1P
= %
g sof Wla oy T
N g 1 >' ."
T 40 -
-
< |
301 : { i
R
20 x4
1 i - A 1 L
900 120 140 160 180 200 220
Time in weeks

(©

Figure 6. 52: The NN response to the application of the test (validation) data set for
TKN: (a) MLP FFNN Model 8 with 1 hidden neurcn and 500 epochs; (b) ERNN Model 8
with § hidden neurons, 500 epochs; and (¢} RBFNN Model 8 with 17 hidden neurons, 17
epochs

181

Table 6. 82: Results for the Feed-forward Neural Network Model 8 with TKN as output.

H Hi ‘

layers |neurons {algorithm; jactivationfactivation|Epochs!Performance ‘ |Momentum : :
1jtrainscg jtansig |purelin 322]MSE 0.5 0.609| 0.563 0.371 0.317] -0.425{13.518
litrainscg ltansig |purelin 500[MSE 0.5 0.655] 0.541 0.430 0.292] -0.497] 13.937
10|trainscg ltansig |purelin SOQMSE 0.5 0.679{ 0.564 0.461 0.318] -0.083} 13.533
1ltrainscg _|tansig _ [purelin 287|MSE 0.5| 0.609] 0.563 0.371 0.317| -0.425| 13.518
Sltrainscg |tansig purelin 1000|MSE 0.5] 0.647] 0.477 0.418 0.227] -0.553| 14.807
10jtrainscg _jtansig |purelin 1000]MSE 0.5 0.723| 0.501 0.523 0.251 0.153] 14.683

1 trainscg purelin . .

1 1ltrainscg {tansig |purelin 500[MSE 0.0094 0.01 0.5] 0.655| 0.541 0.430 0.292] -0.497] 13.937
1 10itrainscg [tansig [purelin 500[MSE 0.0089 0.01 0.5] 0.679] 0.564 0.461 0.318] -0.083] 13.533
1 1jtrainscg |tansig [purelin 287|MSE 0.0104 0.01 0.5| 0.609] 0.563 0.371 0.317] -0.425} 13.518!
1 Sltrainscg [tansig _ |purelin 1000|MSE 0.0096(0.01 0.5 0.647| 0.477| 0.418] 0.227] -0.553| 14.807
4 10jtrainscg |tansig |purelin 1000|MSE 0.0079 0.01 0.5 0.723] 0.501 0.523] 0.251 0.163| 14.683

182

6.3.9

TKN denormalized (mgll)'
N
(=)

TKN Neural Network MODEL 9

The inputs for Model 9 are TKN(k), TKN(k-1), TKN(k-2), TKN(k-3), COD{k}, FLOW(k),
MONTH, Rain, and the output is TKN(k+1) one time step ahead. These are tabled
below: |

Table 6. 85: Input variabies for TKN Model 9

TKN{K), TKN{k-1), TKN{K-2J, TKN{k-3). TKN(K+1)
COD(K). FLOW(K}, Menth, Rain

)

Figure 6. 53: (a) A MLP Feed-forward neural network Model 9 with 9 inputs, 1 hidden
layer, 1 hidden neuron and 1 output neuron; and (b) Block Diagram for the TKN RBFNN
Model 9 with 19 hidden neurons, 19 epochs

Network response to Validation Set
90 L T T T T —
g -——-- Actual Predicted out

—»— Target output

2]
Q

-«
o

[e2]
o

40 f] §
30
20+
1 I] 1 - 1 [
900 120 140 160 180 200 220
Time in weeks
(@)

183

Network response to Validation Set

8

T ¥

~---+—-- Actual Predicted out
—»*— Target output

[22]
(=]

3

3

TKN denormalized (mgfl)
3

40 .
30 .
x
201 2
1 L 5 1 1 |
900 120 140 160 180 200 220
Time in weeks

, (b)

Network response to Validation Set
90 T T ' T L]

--—--- Actual Predicted out
——»— Target output

o]
(=]

~3
o

8

TKN denormalized (mgll)
[4,]
Lo

40
30
z

20} 4
1 1 3 1 L d

900 120 140 160 180 200 220

Time in weeks
()

Figure 6. 54: The NN response to the application of the test (validation) data set for
TKN: {a) MLP FFNN Model § with 1 hidden neuron and 1000 epochs; (b} ERNN Model 8
with 1 hidden neuron, 500 epochs; and (¢} RBFNN Model 8 with 19 hidden neurons, 18
epochs

184

EpachsiPe APE |
1 trainscg [tansig lpurelin 443|MSE 13.457
1 trainscg |tansig purelin 500LMSE 0.6 0.5 0.659] 0.557 0.434 0.311] -0.441} 13.721
1 trainscg [tansig [purelin 500]MSE 0.6 0.5 0.676] 0.523 0.457! 0.2731 -0.621} 13.970)
1 1ltrainscg _jtansig |purelin 376]MSE 0.6 0.5 0.609] 0.567 0.371 0.322] -0.448[13.458)
1 5ltrainscg _jtansig [purelin 1000|MSE 0.6 0.5| 0.688 0.318 0.473 0.101 0.129] 16.216
1 10jtrainscg _jtansig [pureiin 1000]MSE 0.6 0.5] 0.730| 0.487| 0.533 0.237] -0.619|14.824/

|activationjactivation i «
1 1ltrainscg |tansig ourelin 284 MSE 0.0104 0.01 0.5| 0.609] 0.567 0.371
1 5]trainscg tansig urelin SOEMSE 0.0098 0.01 0.5] 0.639] 0.547, 0.408
1 10ltrainscg [tansig |purelin SOOIMSE 0.0090y 0.01 0.5| 0.675 0.563 0.456
1 1ltrainscg [(tansig urelin 23WSE 0.0104 0.01 0.5| 0.609| 0.567 0.371
1 5itrainscg {tansig urelin 1000|MSE 0.0092) 0.01 0.5] 0.665] 0.548 0.442
1 10{trainscg _ltansig {purelin 1006LMSE 0.0075 0.01 0.5; 0.738] 0.483 0.544

Table 6. 88: Results for the Radial Basis Function Neural Network Model 9 with TKN as output.

Fidden[Fiddert~JOLL

1lradbas |purelin

de

6.3.10 TKN Neural Network MODEL 10
The inputs for Model 10 are TKN(k), TKN(k-1), TKN(k-2), TKN(k-3), COD(k),
FLOWI(Kk), MONTH, Wind, and the cutput is TKN(k+1) one time step ahead. These
are tabled below:

Table 6. 89: Input variables for TKN Model 10

TRN(S. TRN(k-1). TKN(k-2), TRN(-3).
COD(K), FLOW(K). Month, Wind

(b)
Figure 6. 55: (a) A MLP Feed-forward neural network Model 10 with 9 inputs, 1 hidden

layer, 1 hidden neuron and 1 output neuron; and (b} Block Diagram for the TKN RBFNN
Model 10 with 16 hidden neurons, 16 epochs

Network response to Validation Set

90 . ' T ' .
==—-- Actual Predicted out
% —*— Target output i

-
o

D
Q

i b “s N

Y-
=
=

TKN denormalized (mgil)
o
[=]

; g Al g ;
A ‘g i i
R u Y
A 4 ';' li
40 ‘ T , . {-
3
30 .
20} |
1 i 1] - | i |
?00 120 140 160 180 200 220
Time in weeks
(@

186

Network response to Validation Set

8

- Actual Predicted out
—*— Target cutput

[22]
o

-y
=]

8

TKN denormalized {mgll)
o
(=)

40 -
30 -
20+ -
1 1 1 L [\ 1)
QOO 120 140 160 180 200 220
Time in weeks
(b)
Network response to Validation Set
90 T B T T I
--~--- Actual Predicted out
8ot v —— Target output 1
701
= ; A
£ :
[
= 60 Jf ; : ‘ a4 52
g} 1 IS) 1 H 1
—— 1§ . |}
2 sok |t LT A0 WA
- : 1393 "T
| = % 4
S 40
=z
e
30 =
20+
1 1 1] i 1
900 120 140 160 180 200 220
Time in weeks
(c)

Figure 6. 56: The NN response to the application of the test (validation) data set for
TKN: {a) MLP FFNN Model 10 with 1 hidden neuron and 1000 epochs; (b) ERNN Model
10 with 1 hidden neuron, 500 epochs; and (c) RBFNN Model 10 with 16 hidden neurons,
16 epochs

187

Table 6. 90: Results for the Feed-forward Neural Network Model 10 with- TKN as output.

i [

Epochs

Min'train iL

. al e Momentum .

1 1jtrainscg_[tansig _ |purelin 408|MSE 0.010 . 0.5] 0.610] 0.562 0.372 -0.431] 13.527
1 Sltrainscg |tansig |purelin 500JMSE 0.0085 0.6 0.5] 0.652] 0.527] 0.425 -0.257] 13.819
1 10jtrainscg [tansig_ |purelin 500MSE 0.0089 06 0.5] 0.679] 0.514 0.461 -0.708] 14.818
1 1itrainscg [tansig |purelin 328]MSE 0.0104 0.6, 0.5] 0.610] 0.562 0.372 -0.432 13.527|
1 5ltrainscg |tansig |purelin 1000[MSE 0.0087 0.6 0.5] 0.687] 0.505 0.472 -0.879] 14.670
1 10jtrainscg Jtansig _|purelin 1000|MSE 0.0072] 0.6 0.5] 0.750[0.492 0.563 -0.980] 14.992]

trainscg

1 urelin . . K . . .

1 5|trainscg [tansig urelin 500MSE 0.0092 0.01 0.5 0.664] 0.549 0.441 0.301] -0.642{ 13.762
1 10jtrainscg jtansig urelin 500|MSE 0.0086 _ 0.01 0.5] 0.694] 0.509 0.481 0.259] -1.155] 14.748
1 1{trainscg ltansig lpurelin 324MSE 0.0104 0.01 0.5| 0.610] 0.562 0.372 0.316] -0.431) 13.528
1 Sltrainscg [tansig__|purelin 1000JMSE 0.0089 0.01 0.5 0.681] 0.513 0.464 0.263] -1.001) 14.674
1 10|trainscg tansig |purelin 1000|MSE 0.0070 0.01 0.5 0.759] 0.486 0.576 0.236] -0.926] 15.402

1|radbas

Ipurelin

188

6.3.11 TKN Neural Network MODEL 11
The inputs for Model 11 are TKN(K), TKN(k-1), TKN(k-2), TKN(k-3), COD(k),
FLOW(k), MONTH, Minimum Temperature, Rain, and the output is TKN(k+1) one
fime step ahead. These are tabled below:

Table 6. 93: Input variables for TKN Model 11

Inputs. L Output
TKN(k), TK . TKN{k-2), (K-3). .| TKN{k+T)
FLOW(K), Month, Minimum Temperature. Rain

(b

Figure 6. 57: (a) A MLP Feed-forward neural network Model 11 with 10 inputs, 1 hidden
layer, 1 hidden neuron and 1 output neuron; and (b} Block Diagram for the TKN RBFNN
Model 11 with 24 hidden neurons, 24 epochs

Network response to Validation Set
90 T ¥ T 1 1
3 ~—=-= Actual Predicted out

—»—Target output |

80}

TKN denormalized {(mgil)

20+ -
1 1 1] 1 [
?00 120 140 160 180 200 220
Time in weeks
@

189

Network response to Validation Set

T T

8

--—-- Actual Predicted out
—*— Target output

1

@
(=]
T

-y
o

[22]
(=]

-
(=]

TKN denormalized {(mgfl)
8

[A)
Q

20+
1 1 L [}] 1
?00 120 140 160 180 200 220
) Time in weeks
(b)
Network response to Validation Sat
90 1 1 T 1 1

--~+--- Actual Predicted out
—*— Target output

8

~
=]

b22]
Qo

TKN denormalized (mgll)
£ n
o o

(2
Q

20+ =
1 t I} 1 1 1
?00 120 140 160 180 200 220
Time in weeks
(©)

Figure 6. 58: The NN response o the application of the test (validation) data set for
TKN: (2) MLP FFNN Model 11 with 1 hidden neuron and 1000 epochs; (b) ERNN Model
11 with 5 hidden neurons, 500 epochs; and (¢} RBFNN Mode! 11 with 24 hidden
neurons, 24 epochs

190

Table 6. 94: Results for the Feed-forward Neural Network Model 11 with'TKN as output

1570
m |activationjactivation

Epochs|Performance. Momentum . :
1 ﬂtramscg tansig urelin 479MSE] 0.0104 0.6 0.5| 0.609| 0.564 0.371 0.318
1 Sltrainscg _tansig _{purelin 500/MSE 0.0095 0.6 0.5] 0.649] 0.556 0.422 0.309)
1 10ftrainscg _[tansig__[purelin 500/MSE 0.0085 0.5, 0.5 0.695] 0.502 0.483 0.252
1 1ltrainscg [tansig [purelin 368|MSE 0.0104 0.5 0.5 0.609] 0.564 0.371 0.318
1 Sltrainscg [tansig [purelin 1000{MSE 0.0091] 06 0.5| 0.669] 0.536 0.448 0.288
1 10ltrainscg _{tansig _[purelin 1000|MSE 0.00800 06 0.5] 0.716] 0.485 0.512 0.235)

Table 6. 95: Results for the Feed-forward Neural Network Model 11 with TKN as output

1 tralnscg purelin . . 3

1 5ltrainscg _|tansig _ [purelin 500[MSE 0 0095 0.6 0.5| 0.649] 0.556 0.422 0.309] -0.842| 13.744
1 1Djtrainscg _jtansig _ |purelin 500[MSE 0.0085] 0.6 0.5 0.695| 0.502 0.483 0.252] -0.780{ 14,717
1 1)trainscg Jtansig _ lpurelin 368MSE 0.0104 0.6 0.5] 0.609] 0.564 0.371 0.318] -0.426| 13.503
1 Sitrainscg _Jtansig _ jpurelin 1000]MSE 0.0091 0.6 0.5 0.669] 0.536 0.448 0.288[-0.669(13.906
1 10ftrainscg _[tansig _ {purelin 1000]MSE 0.008 0.6 0.5 0.716] 0.485 0.512 0.235] -0.205] 14.829

Table 6. 96: Results for the Radial Basis Function Neural Network Model 11 with TKN as output.

191

6.3.12 TKN Neural Network MODEL 12
The inputs for Model 12 are TKN(k), TKN(k-1), TKN(k-2), TKN{k-3), COD(k),
FLOW(k), MONTH, Minimum Temperature, Rain, Wind, and the output is TKN(k+1)
one time step ahead. These are tabled below:

Table 6. 97: input variables for TKN Model 12

 Inputs

TKN(K), TKN(k-1}, TKN{k-2). TKN(k-3}, COD(K},

FLOW(k), Month, Minimum Temperature, Rain,
Wind

Figure 6. 59: (a) A MLP Feed-forward neural network Model 12 with 11 inputs, 1 hidden
layer, 1 hidden neuron and 1 output neuron; and (b) Block Diagram for the TKN RBFNN
Model 12 with 18 hidden neurons, 18 epochs

Network response to Validation Set

90 T ¥ T R 1 1
--=—-~ Actual Predicted out
———Target output i
_ 1
g l "! t §
; i ORTa Y i 't ‘ ;‘" N
8 8 NAPY S A {|
= H 1 .4 LA
g F' ¥ I[: R h, .
o) M
g SN
2 H th
£ |
= ~ i
20+ .
1 1 1 I 1 [
900 120 140 160 180 200 220
Time in weeks

(@
192

Network response to Validation Set

90 T T | 1
¥ =-=s~-- Actual Predicted out
g0l —*—Target output |
¥
— 70 -
| |
- 60)) # s 2 .
3 Y M % g S
S iy i Ly i i
g 50 X g 1 r H : I,: : 4 i {7
2 i o f]
| & - 3 ‘1
L]
o 40 ’ 1 -
€
(= sk] 1t
20F -
1 ! i i i 1
?00 120 140 160 180 200 220
Time inweeks
(b)
Network response to Validation Set
90 T T T T T
x =-—~--- Actual Predicted out
80 { —»—Target output : !
_ 70 ‘ A .
) :) H
£ 1% ALEEE
= 60 £ : i
2 ¥ SAE “ § LR - F{ i 1
= P & ! i3 ! i ‘ IR Y
£ 50 g Wl ! 7 7 1 Y |-
P H I A i I 1
c H : 3 H -
'g 40 (Y]] 4 7]
-4 ¥ f ¢
et
30l s
201 T
1 I 1 H I 1
?00 120 140 160 180 200 220
Time in weeks
(c)

Figure 6. 60: The NN response to the application of the test (validation) data set for
TKN: {a) MLP FFNN Modei 12 with 5 hidden neurons and 500 epochs; (b) ERNN Mode!
12 with 1 hidden neuron, 500 epochs; and {¢) RBFNN Model 12 with 18 hidden neurons,

18 epochs

193

Table 6. 98: Results for the Feed-forward Neural Network Model 12 with TKN as output.

H 1 I Output in
‘ activationjactivationlEpochs|Petformanca et
1 1itrainscg jtansig [purelin 500|MSE
1 Sitrainscg |tansig jpurelin 500|MSE
1 10ltrainscg Jtansig Ipurelin 500[MSE
1 1ltrainscg |tansig _|purelin 782IMSE
1 Sitrainscg itansig lpurelin 1000{MSE
1 10jtrainscg Jtansig |purelin 1000|MSE

idde!

. activa
1 1ltrainscg [tansig |purelin 500|MSE
1 Sltrainscg [tansig [purelin 500{MSE
1 10)trainscg [tansig |purelin 500[MSE
1 ltrainscg ltansig _|purelin 904|MSE
1 5ltrainscg [tansig [purelin 1000(MSE
1 10ltrainscg |tansig _|purelin 1000[MSE

194

6.3.13 TKN Neural Network MODEL 13
The inputs for Model 13 are TKN(k), TKN(k-1), TKN{k-2), TKN(k-3), MONTH,
Minimum Temperature, Rain, Wind, and the output is TKN(k+1) one time step ahead.
These are tabled below:

Table 6. 101: Input variables for TKN Model 13

_Inputs Output
TKN(K), TKN(k-1), TKN(k-2), TKN(k-3},
Month, Minimum Temperature, Rain, Wind

(b)

Figure 6. 61: {a) A MLP Feed-forward neural network Model 13 with 9 inputs, 1 hidden
layer, 1 hidden neuron and 1 output neuron; and {b) Block Diagram for the TKN RBFNN
Model 13 with 14 hidden neurons, 14 epochs

Network response to Validation Set

90 T T T | 1
. --—--- Actual Predicted out

—#— Target output

a2
(=]

g
o

2]
(=]

f-8
o

TKN denarmalized (mgit)
on
[=]

(]
(=]

n
(=]
T

|

1 1 i L 1
120 140 160 180 200 220
Time in weeks

(a)
195

37

Network response to Validation Set
T T -~ —I—

--~--- Actual Predicted out

2]
(=]

= Target output

[+3]
[«

“J
o

D
o

]

TKN denormallzed (mgfl)
n
(=]

(93
[=]

20
1 1 A1 1 I 1
QOO 120 140 160 180 200 220
Time in weeks
(b)
Network response to Validation Set
90 § 1] 1 I
--——- Actual Predicted out
80 —»— Target output
X

10 -
5 x - ! ‘ s .
ey 60 ,\ I [4 ‘* 1 2l
N 1 ! t i l 3 ¥ 4 1
%] 4 3 "] I"I ! ¥ {5
£ A ' Aok § ‘.'I i
2 i 14 ! § i
S 40 { {4
g
| 30 i

20} .

1 1 I 1 i i

gIGO 120 140 160 180 200 220

Time in weeks

{c)

Figure 6. 62: The NN response to the application of the test (validation) data set for
TKN: {a) MLP FFNN Model 13 with 1 hidden neuron and 1000 epochs; (b} ERNN Mode!
13 with 1 hidden neuron, 1000 epochs; and (c) RBFNN Model 13 with 14 hidden
neurons, 14 epochs

196

Table 6. 102: Results for the Feed-forward Neural Network Model 13 wfth TKN as output.
id. | /|Traln. |Hidd UtUE R e s Min train [Leam ‘ ‘

algorithm [activationjactiva a r
trainscg [tansig |purelin MSE

Sitrainscg _Jtansig _ |purelin MSE

10jtrainscg _[tansig [purelin 500[MSE

trainscg jtansig [purelin 408[MSE
Sltrainscg |tansig _ lpurelin 1000]MSE
10/trainscg [tansig |purelin 1000|MSE

aalalajala
=y

Table 6. 103: Results for the Elman Recurrent Neural Network Model 13 with TKN as output.

Ha [Hd 0 [dden oG N trai JLe
lavers. (

1 1ltrainscg tansig [purelin 384|MSE

1 Sitrainscg jtansig _jpurelin 500IMSE

1 10Jtrainscg _|tansig [purelin 500|MSE

1 1ltrainscg |tansig _ |purelin 337IMSE

1 Sitrainscg |tansia [purelin 1000{MSE

1 10ltrainscg [tansig [purelin 1000JMSE

197

6.4

6.4.1

Flow Neural Network Results

The final set of NN results presented in this section is for the influent variable input
FLOW rate as the predicted output of the 3 different NN architectures. The NN model
numbers as per the inputs are specified in tables at the beginning of the results for
the corresponding model. All the models have only one hidden layer.

FLOW Neural Network MODEL 1

The input for model 1 is FLOW(k), and the output is FLOW(k+1) one time step ahead.
These are tabled below:

Table 6.105: Input variables for FLOW Model 1

FLOWI(k+1)

FLOW(

The physical structure for the MLP FFNN and the RBF NN are represented in the
following figure. Due to limitations on the MATLAB program for the visualisation of the
physical NN, the Elman Recurrent NN is not displayed here.

(b)

Figure 6. 63: {a) MLP Feed-forward NN Model 1 with 1 input, 1 hidden layer, 1 hidden
neuron and 1 output neuron; and {b) Block Diagram for the FLOW RBFNN Modeli 1 with
1 input, 8 hidden neurons

For the NN with FLOW as an output in this section 6.4, all tables and abbreviations
remain the same as per the section in 6.2 for the NN with COD as output. The inputs
are specified as per Table 5.3. For space considerations only for Model 1 all figures
are included, the rest of the models only have the final NN response to the application
of the test data set. However, please note that all resulis can be viewed using the
program on the enclosed CD.

198

Table 6.106: Results for the Feed-forward Neural Network Model 1 WIth FLOW as output.

1 1|trainscg _|tansig |purelin 309MSE 0.0039, 0.6, 0.5| 0.855| 0.868 0.731 0.753] -0.424] 8.695
1 5ltrainscg [tansig _ |purelin 500|MSE 0.0038 0.6 0.5 0.858 0.859 0.736 0.737] -0.701] 9.031
1 10jtrainscg [tansig _ [purelin SOOWSE 0.003 0.6 0.5 0.863] 0.854] 0.744 0.729] -0.453] 9.190
1 1ltrainscg |tansig |purelin 477|MSE 0.0039 0.6 0.5| 0.855| 0.868 0.731 0.753] -0.424| 8.696
1 Sjtrainscg ftansig _ jpurelin 1000]MSE 0.0038] 0.6, 0.5] 0.858] 0.856 0.737 0.733] -0.702 9.057
1 10ltrainscg |tansig |purelin 1000WISE 0.0037 0.6 0.5 0.863| 0.856 0.745 0.732] -0.452] 9,127

Table 6.107: Results for the Elman Recurrent Neural Network Model 1 with FLOW as output

aldorithm |activation
trainscg [tansig [purelin 11WSE

0,731 0.753] -0.421

trainscg ltansig _ |purelin 500/MSE 0.731 0.752] -0.440/ 8.708
10jtrainscg |tansig __ [purelin 500|MSE 0.732 0.749] -0.457| 8.782
1ltrainscg [tansig _|purelin 279|MSE 0.868 0.731] 0.753] -0.423

Sltrainscg [tansig |purelin 1000MSE
10trainscg ltansig _ |purelin 1000[MSE

0.732 0.746] -0.467| 8.833
0.732 0.746| -0.472| 8.823

alafjalalaia

Table 6.108: Results for the Radial Basis Function Neural Network Model 1 with FLOW as output.

199

Performance is 0.00391333, Goalis 0

10" ¢ —T— Y T T T ™3
1]
I 3
r -
{ 1
10} .
5 3
= R
w -
o
£ 4
£ -
8
[23
107} .
[3
10° ! L 1 1 1 i
0 50 100 150 200 250 300
“ 309 Epochs
(a)
. Performance Is 0.00391187, Goal is 0
10 T T L T T T T T 1]
]
4
10} .
g]
&]
2]
£ J
g
=
107 .
104 1 [| 1 1 1 1 1 1
50 100 150 200 250 300 350 400 450 500
1 500 Epochs .
(b)
3 Performance is 1.69959, Goalis 1.7
10 £ T T T T T T
o l J
©
=
w
2 =
£]
£
g 3
@]
4
s 1
o
»n .
S 4
£ E
=3 p.
73]
» 1 1 1 I 1 L
10 0 1 2 4 5 [7
7 Epochs
(c)

Figure 6. 64: Training error versus the number of epochs for FLOW: (a) MLP FFNN
Model 1 with 1 hidden neuron, 309 epochs; {b) ERNN Model 1 with 5 hidden neuron, 500
epochs; and (¢} RBFNN Model 1 with 7 hidden neurons, 7 epochs

200

Normalized Training inputs and NN response

]
450

|

250 300 350 400

)
200

og © 9
00 L)
s ataeL UL N
o at b t0 e P
o % @+, so0
LP RS N,
e o 4% .0 ooo.$
PR
o . o N -
CR 4 nou.
» o S s
° o Tes e n L.
N I
o . g I
25
e 00s O .
e S o dne o
¢ Q0N aooOb
© . 6%0s %% 9 "o °
m o® oo ¢ 0%, PO
o o ., sogor o.a no °
s 2 By of "I
% “ e oo ®
e 0 o o8 . 5
Q % W%.ohv.o..n
o *]
£ .m wo. 28 %o o
c o0 g .
k- M %%, ‘0o
] ° 0,0 8,00 %°° o
- *? 0480 0" g0 Lo,
=2z ° no.oﬁ“.o .o
LR AL
o o 20008,
° o+ oo B0
. .0“00 o
0% 4, ‘o8 M’ °*
L It PYPIRY il LA i 1
] b ™~ ol o < "
o (=] o (=] (= (=3 o

pszjjeuliou Mo1d

(]
o
o

Time In weeks

(a)
Normalized Training inputs and NN response

Training-Data

Network-Response

.

oe

°

o ee ewghes

® o &

#° o

Og¢ 84s0 Moooo e-%b“' .
. *

. 0t 3, O
+ ¢ Oe ,&

MK AN
o

iﬂwooo
¢ o & ‘Wl .nl“cdof

* *
CTPPERT 3 N

By o ewoo

o.c.}mo
i . ﬁO
'3 &oi %o

ﬁ\&&o&ao %o

°

350 400 450

L
300

250

200

Time in weeks

09}

*
o

~ g Id
o c o

pezjlewiou MOTd

<
o

2
i)
o

(=}
3

(b)
Normalized Training inputs and NN response

Training-Data

Network-Response

-

. ° o Ogmde I °

h %

0e o0 0*

@ on%m.“oﬁo
*,

e Pt e, o

(XN s Y

LY oeW¢3o 'elo#J
. @ 8%%¢ ° o ¢
% 0o P800
80 ¢ o 49 ape WO °
L s
° a3 vy
o g+ Hop0s 000 ¢
ce .9
o 2] L4
% o P s
* 02%.p
.nw.o%o e

so 40P *8

1 1 1 L N .]
150 200 250 300 350 400 450
Time in weeks

1
100

09

8
7
6
.5
4
03

pezjjeuiou Mo7d

0.20

(c)

t data and the NN response with the
{a) MLP FFNN Model 1 with 1 hidden

ining inpu

A scatter-plot of the tra
application of the training set for the FLOW

Figure 6. 65

{b) ERNN Model 1 with § hidden neurons, 500 epochs; and (c)

RBFNN Model 1 with 7 hidden neurons, 7 epochs

=
3

neuron, 309 epochs

201

Network-Response

Test-Data

©
.

Normalized Test inputs and NN response

260

200

Network-Response

Test-Data

°©
.

150

Time in weeks

(a)
Normalized Test inputs and NN response

100

o o o
o ow oovoavon
.
o o +,* v *
o, Ooon -
.0 P
. +0°"% o
40
0o &
%o’ o..ﬂ
1o o235 £7%
~ o “w
o 1= o
peziewLou o4

250

Network-Response

Test-Data

°
.

150

Time In weeks

Normalized Test inputs and NN response

100

03}
CD.2°

pezijewiou MO74

)
° . ooQo.hao
0.Va®
o d®
o o0 0
%’
RS TR
S o
8@. o
-
° te S o8
o B0 %
o ek,
g, &
¢ Lo %
+ Y

°
MRERALY
€48 .0
° 440 I
° . .0
Jo o . e 4.0
.%.s o
vo 2
\O‘Nol °
¢+ %0 o,

03
0.20

e % B.Vwo. o
s0 06 *0®® o °
ooef
044 8 o o
1.
4% °°°
I S
° «o.b‘o
° o o
@ °
L A
"%l
.0 o
., .0 v0°
¢ 0,0 4° 9
o op o .
t ! ! 10 .21, &Y L L
] « ~ b w < “
(=3 (=] -] o o (-3 o

pozIeLLOU MOTd

250

150

()

A scatter-plot of the test (validation} data and the NN response with the
{a) MLP FFNN Model 1 with 1 hidden neuron,

309 epochs; {b}) ERNN Model 1 with 5 hidden neurons, 500 epochs; and (c) RBFNN

Model 1 with 7 hidden neurons, 7 epochs

Time in weeks

.
.

100
202

0.20

application of the test set for the FLOW

Figure 6. 66

Linear regression cosfficient - Training data

Linear regression coefficient - Validation data

1 — T ® v v T 180 T T T y T T
© DataPoints ° © DataPoints
09} |——BestLinearFit o ©] 160} - Best Linear Fit ”,' |
o % o
o8} ° . :)/
° % o 1
07 . /
<« 06 3
05
04)
03 :
02 1 L L i 1 1 40 X A 1 1 ' —_—
0.4 05 06 0.7 08 09 1 40 €0 80 100 120 140 160 180
T T
(a)
Linear regression coefficient - Training data Linear regression coefficlent - Validation data
— r G v v 180 - v v v v
© DataPoints o © Data Points R
oo} Best Linear Fit o © 1ol | ™ Best Linear Fit
o S ‘
| 1 10}
&
0Tt 1
. 120 L
< 06} { «
100}
05} 1
80}
04}
03}] 6or
02 i n A L L i 40 1 —_— —_ L 2 1
04 05 06 07 03 09 1 40 6 80 100 120 140 160 180
T T
(b)
Linear regression coefficient - Training data Linear regression coefficient - Validation data
v TS r 180 T T T — v T
o DataPoints © Data Points
09l |——BestLinearFit °s 0 I | Best Linear Fit
o @
08 140]
077
1201
< 061 i«
100}
(233 1
80 L
o4t 1
03}] sor
1 1 1 40 i 1 (] i L 1
0%2 04 06 038 1 40 60 B8O 100 120 140 160 180
T
(©

Figure 6. 67: Network performance showing the linear regression {(correlation)
coefficients for training data (normalized} on the left, and the validation data set
{denormalized) on the right for the FLOW: {a) MLP FFNN Model 1 with 1 hidden neuron
and 309 epochs; (b) ERNN Model 1 with 5 hidden neurons, 500 epochs; and {¢}) RBFNN
Model 1 with 7 hidden neurons, 7 epochs, where A and T are the NN output and desired
target output respectively

203

Test Set instantaneous Error Plot
40 T T T T T T T T T T

Flowin m3id
&
(=]

_50 1 Jd 1 1 1 1 1 1 1 1
0 20 40 60 80 100 120 140 160 180 200 220

Time in weeks

(@)

instantaneous Test Set Error Plot

T T Y T T T T T

g 8

Flow In m3/d
N
[=]

L 1 L 1 1 1 1 1 :
0 20 40 60 80 100 120 140 160 180 200 220
Time in weeks
{b)

Instantaneous Test Set Error Plot
‘o T T T T T ¥ T T T T

Flowin m3id
&
=

_20 -
30F 4
401 R
S0 4
_50 1 i 1 1 1 i]] 1 i
(] 20 40 60 80 100 120 140 160 180 200 220
Time in Weeks
(c)

Figure 6. 68: The instantaneous error across the entire validation data set for the
FLOW: (a) MLP FFNN Model 1 with 1 hidden neuron and 500 epochs; {b} ERNN Model 1
with 5 hidden neurons, 308 epochs; and {c) RBFNN Model 1 with 7 hidden neurons, 7
epochs

204

FLOW denormalized (mgll)

FLOW denormalized (m3/d)

Network response to Validation Set

180

5

8

T T T I
===+ Actual Predicted out
—— Target output

L L LT

LL LT TPt rprgrn g v,

10 i f ¥k
!! '!! ‘ A AE '+
! i s
i i I ‘ £ X7 i .
3 2 0 7
3 '.t‘ U >
60 | _
40 I 1 1 i 1
100 120 140 160 180 200 220
Time in weeks
(a)
Network response to Validation Set
180 T 1] 1 I
-==-= Actual Predicted out
—»— Target output
160} g H
3
140} ‘ =
120+ 1 .
if 7
i g
100 ; E
i
80 :
60}
4 1 1] [1 |
QOO 120 140 160 180 200 220
Time in weeks
(b)

205

Network response to Validation Set

FLOW denormalized (m3id)

180 T T T T I
=-——- Actual Predicted out
——
160 Target output
140 i
120 3 -
H .]
1000 1 p AT b -
i 41 A T o Al i
[i B A XY
80 I L (I 1] LA | G
e IR A ‘
1 '”.o\,] ;1‘ 3 »
50} i , -
3
4 1 1 1 1]
900 120 140 160 180 200 220
Time in weeks
(c)

Figure 6. 69: The NN response to the application of the test (validation) data set for
FLOW: {a) MLP FFNN Model 1 with 1 hidden neuron and 308 epochs; (b} ERNN Model 1
with 5 hidden neurons, 500 epochs; and (¢) RBFNN Model 1 with 7 hidden neurons, 7
epochs

206

6.4.2 FLOW Neural Network MODEL 2
The inputs for Model 2 are FLOW(k), FLOW(k-1), and the output is FLOW(k+1) one
_ time step ahead. These are fabled below:

Table 6. 109: Input variables for FLOW Model 2

_Inputs
| FLOW{K). FLOW(k-1) | FLOW{K=*1)

(b)

Figure 6. 70: (3) A MLP Feed-forward neural network Model 2 with 2 inputs, 1 hidden
layer, 1 hidden neuron and 1 output neuron; (b} Block Diagram for the FLOW RBFNN
Model 2 with 3 hidden neurons

Network response to Validation Set
180 T T T

--——-- Actual Predicted out
~— Target output

160

140

120

;TP

LTI Ty
T
1

100

U e
b

FLOW denormalized {(mgll)
00
(=]

il

60+

1 1 ! 1
4S300 120 140 160 180 200 220
Time inweeks

(a)

207

FLOW denormalized (m3/d)

Network response to Validation Set

180 T T T T T
~--=—-- Actual Predicted out

—*— Targst output

160

-
u
o
]
J
1

i
!
!
! i
120+ ! 1
H 3 |i
i 2 iy fi
g ik N3
1 . i i :i 3
] : 11!
80 i 1 HER Y &
i ".1! 1 ; : * ‘ #k
Y s A J ‘w' { :
60 - %
4 1 1] 1]
?00 120 140 160 180 200 220
Time in weeks
(b)
Network response to Validation Set
180 T T T I I
--—--- Actual Predicted out
v —»— Target output
160 .

>
S

]

g

FLOW denormalized (m3/d)
(o 4]
[]

ou'-‘é.-.-.-..._...'. "
ﬁ-l-'-'-.-.-.-.-.-
:

i] 1 I 1
4900 120 140 160 180 200 220
Time in weeks

(c)

Figure 6. 71: The NN response to the application of the test (validation) data set for
FLOW: (a) MLP FFNN Model 2 with 5 hidden neurons and 1000 epochs; (b) ERNN Model
2 with 10 hidden neurons, 1000 epochs; and (c) RBFNN Mode! 2 with 3 hidden neurons,

3 epochs

208

v

Table 6. 110: Resuits for the Feed-forward Neural Network Model 2 with FLOW as output.

Hidden: lOutput’
: activation activationlEpo sPe ormance
trainscg ltansig [purelin 269|MSE 0.0038
Sitrainscg |tansig |purelin 500]MSE 0.0039
10jtrainscg |tansig |purelin 500|MSE 0.0038
1ltrainscg |tansig _|purelin 403|MSE 0.0040)
Sltrainscg |tansig _ [purelin 1000[MSE 0.0038
10]1rainscg tansig |purelin 1000‘MSE 0.0037]

Momentum :» i
0.5 0.858] 0.864
0.5] 0.858| 0.859
0.5| 0.861] 0.856
0.5 0.858] 0.864
0.5] 0.860] 0.866
0.5 0.863] 0.859

Table 6. 111: Resuits for the Elman Recurrent Neural Network Model 2 with FLOW as output

1 1ltrainscg [tansig |purelin 206|MSE 0.0038 0.01 .5 0.858] 0.864 0.736 0.746| -0.443| 8.775
1 Sltrainscg_|tansig _ |purelin 500|MSE 0.0038{ 0.01 .5| 0.858] 0.865] 0.737 0.749| -0.324] 8.707
1 10jtrainscg |tansig _|purelin 500|MSE 0.0038 0.01 .5(0.858] 0.864 0.737 0.747) -0.377) 8.753
1 1ltrainscg [tansig _lpurelin 234|MSE 0.0040 _ 0.01 .51 _0.858] 0.864 0.736 0.746[-0.442| 8.775
1 Sltrainscg _|tansig _lpurelin 1000|MSE 0.0038 0.01 .5| 0.858! 0.865 0.737 0.748] -0.380; 8.761
1 10]trainscg _[tansig _[purelin 1000|MSE 0.0038 0.01 .5 0.859| 0.865 0.737 0.749] -0.303[8.700

Table 6. 112: Results for the Radial Basis Function Neural Network Model 2 with FLOW as output.

209

6.4.3 FLOW Neural Network MODEL 3
The inputs for Model 3 are FLOW, FLOW(k-1), FLOW(k-2), and the output is
FLOW(k+1) one time step ahead. These are tabled below:

Table 6. 113: Input variables for FLOW Model 3

Inpu | Output
FLOW, FLOW({k-1), FLOW{k-2) FLOW({(k+1)

(b)

Figure 6. 72: {a) A MLP Feed-forward neural network Model 3 with 3 inputs, 1 hidden
layer, 1 hidden neuron and 1 output neuron; and (b} Block Diagram for the FLOW
RBFNN Model 3 with 17 hidden neurons, 17 epochs

Network response to Validation Set

130 T T T 1 I
--—--- Actual Predicted out
—»— Target output
160 9= oup |
S 140 .
E
.
N 120 . -
[1] H
£ i 3 H1
2 100 is | i
K] 8 i {
H 1 \
: R YAV &
3 80 i H 3 fh _
(T i ! (¥}
3 H a4
% R : 2
3
60} -
4 1 1 1 i) |
g?00 120 140 160 180 200 220
Time in weeks

(@)

210

Network response to Validation Set

FLOW denormalized (m3/d)

180 ¥ 1] 1 I
=-—~--- Actual Predicted out
160 ——*—Target output
140 _
120 ; -
. (]
il fi 4 i
E i
100 i} bat T
i LI 1) !
: i 4 ’. : 1
i e 3
80 i i
ifs X l o
it ll' . f: i
60 -
4 1 1 1 i 1
S?00 120 140 160 180 200 220
Time in weeks
(b)
Network response to Validation Set
180 1 T 1 1 T
~-——= Actual Predicted out
—»— Target output
160k g P
. .
— 3
g 140+ H .
E !
T '
N 120} f
E i
{i RH
] 4 i{:
g E
o i
= i
o {
|]
T8 i
{2
2 »
4 1 1 1 L]
?00 120 140 160 180 200 220
Time in weeks
(c)

Figure 6. 73: The NN response to the application of the test {validation) data set for
FLOW: (a) MLP FFNN Model 3 with 10 hidden neurons and 1000 epochs; {b) ERNN
Mode! 3 with 10 hidden neurons, 1000 epochs; and {c}) RBFNN Model 3 with 17 hidden
neurons, 17 epochs

21

“TAvg_test

lacti £ IMomentum|r R-sq-train [R-sq test |err
1 purelin 330|MSE 0.0038 0.6 0.5] 0.858] 0.864 0.736 0.746| -0.439
1 Sltrainscg [tansig [purelin 500|MSE 0.0038 0.6 0.5| 0.860[0.863 0.739 0.745{ -0.370
1 10ftrainscg jtansig |purelin 500]MSE 0.0038 0.6 0.5| 0.860| 0.868 0.740 0.7563; -0.343
1 1ltrainscg [tansig [purelin 263[MSE 0.0038 0.6 0.5] 0.858] 0.864 0.736 0.746| -0.438
1 Sltrainseg [tansig |purelin 1000[MSE 0.0038, 0.6 0.5{ 0.861] 0.864 0.741 0.747; -0.387!
1

10itrainscg jtansig |purelin 1000]MSE 0.0037] 0.6 0.5] 0.864] 0.872] 0.747 0.760] -0.445

m ation|Epochs(Perdarmance lerr - [Momentum|r- . test A
1 1jtrainscg [tansig purelin 277|MSE 0.0038 0.01 0.5 0.858{ 0.864 0.736 0.746] -0.437 8.767
1 Sltrainscg |tansig jpurelin 500[MSE 0.0038 0.01 0.5| 0.858; 0.862 0.736 0.742| -0.287| 8.750
1 10ftrainscg jtansig Ipurelin 500(MSE 0.0039 0.01 0.5| 0.858| 0.863 0.735 0.745| -0.302| 8.630
1 1|trainscg tansig |purelin 433|MSE 0.0038 0.01 0.5] 0.858]| 0.864 0.736) 0.747} -0.436] 8.763
1 5]trainscg tansig |purelin 1000|MSE 0.0037] 0.01 0.5 0.863] 0.870 0.745 0.756] -0.398| 8.550
1 10|trainscg tansig |purelin 1000[MSE 0.00377 0.01 0.5 0.862] 0.872 0.743 0.761] -0.401; 8.527

212

6.4.4 FLOW Neural Network MODEL 4
The inputs for Model 4 are FLOW(k), FLOW(k-1), FLOW(k-2), FLOW(k-3), and the
output is FLOW(k+1) one time step ahead. These are tabled below:

Table 6. 117: Input variables for FLOW Model 4

“Inpu

Figure 6. 74: (a} A MLP Feed-forward neural network Model 4 with 4 inputs, 1 hidden
layer, 1 hidden neuron and 1 output neuron; and (b) Block Diagram for the FLOW
RBFNN Model 4 with 35 hidden neurons, 35 epochs

Network response to Validation Set

180 1 T T 1} 1
---—-- Actual Predicted out

—»— Target output

160

140

120

-_-n--u-.-._,._. »

100

FLOW denormalized (mgll)
2]
(=]
==

60

1] 1 i
4?00 120 140 160 180 200 220
Time in weeks

(a

213

Network response to Validation Set

180 | 4 1 T 1 T
=-—=-- Actual Predicted out
——Target output
=3 !
3 | B
[32] .
g :
O
(]
N o
= ! i
E i 2 ik
2 vy ;
s Py i -
. L] 4 g B
> i ' JAHRY
g Pl 1 Al
i i : by B A
3 H t 2] >
4 X ¢
4 1 1 ! 1 i
900 120 140 160 180 200 220
Time in weeks
)]
Network response to Validation Set
180 1§] 1 . I
—-—--- Actual Predicted out
—»— Target output
160 . geot® 1
T
FE, 140 { s
s ! il
R 120 _ iff i .
K Y B34
2 100§ i e 33 J
g ; FtH Py R gt
13%A ! i | 210 4
; » H ¢ H l £ M
Q i H i o 3 [\
4 80 e Wi i {951 A s i W
i i ,N H 1 II t . ROt AP
i] 3 ! o
N 39 c 1’\1
60 -
1 1 | I N
4900 120 140 160 180 200 220
Time in weeks
(c)

Figure 6. 75: The NN response to the application of the test (validation) data set for
FLOW: (a) MLP FFNN Model 4 with 5 hidden neurons and 500 epochs; (b) ERNN Model 4
with 5 hidden neurons, 1000 epochs; and (¢} RBFNN Model 4 with 35 hidden neurons,

35 epochs

214

0

Table 6. 118: Results for the Feed-forward Neural Network Model 4 with FLOW as output.

in " iHidden [Output’ . Min train |Leam |
.{neurons: |algorithm |activationjactivation|Epochs|Performance et * - jrate i |Mamentumlr: train |r test -
1 1jtrainscg [tansig |purelin 244|MSE 0.0038 0.6 0.5 0.858| 0.864 0.736 0.747| -0.444] 8.754
1 5ltrainscg [tansig_[purelin 500|MSE 0.0037__ 0.5 0.5{ 0.863] 0.865 0.744 0.748] -0.528] 8.765
1 10]trainscg tansig |purelin 500[MSE 0.0038 0.6 0.5 0.861] 0.861 0.741 0.741] -0.352] 8.744
1 1|trainscg tansig purelin 347]MSE 0.0038} 0.6 0.5 0.858] 0.864 0.736 0.747] -0.444] 8.755
1 Sltrainscg Jtansig _ lpurelin 1000|MSE 0.00364 0.6 0.5| 0.868] 0.854 0.754 0.730] -0.440] 9.058
1 10ftrainscg [tansig [purelin 1000|MSE 0.0035 0.6 0.5] 0.868] 0.854 0.754 0.730] -0.440] 9.059

Table 6. 119: Results for the Elman Recurrent Neural Network Model! 4 with FLOW as output.

; , EpochsiPedformance lerr 2 {Momentumi: : . :
1 tralnscg tansig [purelin 392|MSE 0.0038] 0.01 0.5 0.858| 0.864 0.736 0.747

5ltrainscg |tansig purelin 500]MSE 0.0038 0.01 0.5| 0.859] 0.865 0.737 0.748
10itrainscq {tansig purelin 500[MSE 0.003 0.01 0.5| 0.860{ 0.860 0.740 0.739
1jtrainscg [tansig purelin 344]MSE 0.0038 0.01 0.5/ 0.858| 0.864 0.736 0.747|
Strainscg |tansig |purelin 1000]MSE 0.0037] 0.01 0.5 0.868| 0.864 0.753 0.747|
10Jtrainscg |tansig purelin 1000]MSE 0.0037] 0.01 0.5 0.863] 0.865 0.744, 0.748

Table 6. 120: Resuits for the Radial Basis Function Neural Network Model 4 with FLOW as output.

1lradbas [purelin

215

6.4.5 FLOW Neural Network MODEL 5
The inputs for Model 5 are FLOW(k), FLOW({k-1), FLOW(k-2), FLOW(k-3), COD(K),
and the output is FLOW(k+1) one time step ahead. These are tabled below:

Table 6. 121: Input variables for FLOW Model §

“Inputs.
FLOWI(K), FLOW(k-1), FLOW(k-2), FLOW(k-3)},
COD(k)

FLOW(K+1)

(0

Figure 6. 76:(a) A MLP Feed-forward neural network Model 5§ with 5 inputs, 1 hidden
layer, 1 hidden neuron and 1 output neuron; and (b} Block Diagram for the FLOW

RBFNN Model 5 with 22 hidden neurons, 22 epochs

Network response to Validation Set

180 T T Y T —
--—--- Actual Predicted out

—»— Target output

160 -

a1

140

120

by

SR T,
oty

100

FLOW denormalized (mgll)

[+
(=]
Y

L TE T I I T T o=

60

4q 1 i 1 1 |
00 120 140 160 180 200 220
Time in weeks

@

216

FLOW denormalized (m3/d)

Network response to Validation Set

FLOW denormalized (m3/d)

180 1) 1 f i 1
~-=—-- Actual Predicted out
+
160|- Target output
]
b | 1
140 - t i _
g
)
!
120} L: Al i
] [= t]
¢ il]
100 } 5: " X -
] . L |
P WEY L
H [y 1 5 3 '._
80 ! HYA A 1 b1 y]
! u f\ act 1Y
4 % P J¥ 3
;t. f; 3 Y
60 ‘ -
4 1 I 1] i
S?00 120 140 160 180 200 220
Time in weeks
(b)
Network response to Validation Set
180 T T T I T
--——-- Actual Predicted out
—»— Target output
160 \ g P
i
140 [~ H T
i :
H ;
?
120 |- i i .
? .
i % |
3 iti H d
i _
100 4 : }: .
i i »;]
! in §
80 o ! '! 1 » -
!! ; 4 ‘. i
. it f, ‘ »
60 . _
] 1 L I 1 i
4?00 120 140 160 180 200 220
Time in weeks

(©)

Figure 6. 77: The NN response to the application of the test {validation} data set for
FLOW.: (a) MLP FFNN Model 5 with § hidden neurons and 1000 epochs; (b) ERNN Model
5 with 5 hidden neurons, 500 epochs; and {¢) RBFNN Model 5 with 22 hidden neurons,

22 epochs

217

Table 6. 122: Results for the Feed-forward Neural Network Model 5 with FLOW as output

[H idden " [Oufput™ o in traln Leamn: iz PooipEnt cemers Avg test]

. ,. acuvatlon activation|Epachs| I frate Momentumr traln rtet R sq_traln R'sq_;test @i
1|trainscg]tansig purelin 272|MSE 0.0036 0.6 0.5| 0.859] 0.866 0.738 0.751] -0.411 8653
Sitrainscg [tansig [purelin 500|MSE 0.0037] 0.6 0.5] 0.864] 0.867 0.747, 0.751 -0.750] 8.844
10jtrainscg |tansig ipurelin 500IMSE 0.0035 0.6 0.5| 0.871] 0.847 0.759 0.717{ -0.753] 9.184
1ltrainscg Jtansig |purelin 244|MSE 0.0038 0.8 0.5(0.859] 0.866| 0.738 0.751] -0.412] 8.655
Sltrainscg |tansig |purelin 1000|MSE 0.0038] 0.6 0.5] 0.868] 0.866 0.754 0.751] -0.579] 8.640
10jtrainscy itansig [purefin 1000[MSE 0.0034] 0.6 0.5] 0.877] 0.855 0.769 0.730] -0.809] 9.200

Table 6. 123: Results for the EiIman Recurrent Neural Network Model § with FLOW as output.

activation

EpochsiPerformance

1 1jtrainscg |tansig [purelin 261]MSE 0.0038 0.01 0.5} 0.859] 0.866 0.738
1 Sitrainscg itansig |purelin 500|MSE 0.0037 0.01 0.5] 0.864] 0.868 0.747
1 10jtrainscg [tansig |purelin 500[MSE 0.0035 0.01 0.5 0.870] 0.865 0.757
1 1jtrainscg [tansig [purelin 184/MSE 0.003 0.01 0.5] 0.859| 0.866 0.738
1 Sitrainscg__jtansig [purelin 1000[MSE 0.0036(0.01 0.5 0.866{ 0.861 0.750
1 10jtrainscg Jtansig [purelin 1000|MSE 0.0034] 0.01 0.5| 0.874/ 0.864 0.763

Table 6. 124: Resuits for the Radial Basis Function Neural Network Model 5 with FLOW as output.

layers_ |activation jactivatic

Ep chs neurons

1radbas lpurelin

22

22|SSE 1.486

0.875

0.857

0.

766 0.734

-0.740] 8.766

218

6.4.6 FLOW Neural Network MODEL 6

The inputs for Model 6 are FLOW(K), FLOW({k-1), FLOW(k-2), FLOW(k-3), COD(K),
TKN(K), and the output is FLOW(k+1) one time step ahead. These are tabled below:

Table 6. 125: Input variables for FLOW Model 6

{-Inputs . .
FLOW(K). FLOW(k-1), FLOW({k-2}, FLOW(k-3},
COD(K). TKN(K)

Figure 6. 78: {a) A MLP Feed-forward neural network Model 6 with 6 inputs, 1 hidden
layer, 1 hidden neuron and 1 output neuron; and (b) Block Diagram for the FLOW

RBFNN Mode! 6 with 16 hiddén neurons, 16 epochs

Network response to Validation Set

80 : . T T | -
=-—=-= Actual Predicted out
—*— Target output
160 |
S 140 |
E
3
N 120 ‘ |
8 - i
: :
2
-g 100 \ | |
1
: ALl]
v ¥ Wb
:] L
[1 5 ' ‘ ;
3 B0 h
) i
_ -
4 ' : l l l
oL o 0 180 180 200 220
Time in weeks
(a)

219

Network response to Validation Set

180 | 4 |] 1 1
: --—~~-- Actual Predicted out
+
160k Target output
k
5 §
> 140} i3 R
E H
-] i H
N 120} ! i .
© i '. t
E i i
2 g . H ;
& f P # . i
> 1 F I AR «JYA 1E
3 2 N Y Al
- ~ H ! i [} i g
. X ' [- 3 0 [Y
Y { p 1 :
3 fc‘ “_ f .)
4 i 1 1 1 1
?00 120 140 160 180 200 220
Time in weeks
(o)
Network response to Validation Set
180 T T T R T
--——-- Actual Predicted out
—»— Target output
160 \ g i H
g 140 i“'x' 7
E t
= H
N 120f i 3 -
- 14 2 |-
3 H ;
E i is f
S j i!
% 100 Y .;' i' N J
3 : P ¥ JA
; $ i' !" i -! i 0
9I 80} { l" ; T‘. l" 1
L ‘ 1 ! ¥ 3 : A
g 4
o 7
1 1 1] 1 .
4?00 120 140 160 180 200 220
Time in weeks

(©

Figure 6. 79: The NN response to the application of the test {validation) data set for
FLOW: (a) MLP FFNN Model 6 with 1 hidden neuron and 1000 epochs; (b) ERNN Model 6
with 1 hidden neuron, 500 epochs; and (¢} RBFNN Model 6 with 16 hidden neurons, 16

epochs v

220

l

Table 6. 126: Resuits for the Feed-forward Neural Network Model 6 with FLOW as output.

- ‘ nce Momentum

1 tralnscg purelin N OIMSE 0.5{ 0.859| 0.868 0.738 0.753
1 Sltrainscg |tansig |purelin 500/MSE 0.5| 0.865| 0.859 0.748 0.737,
1 10jtrainscg [tansig |purelin 500[MSE 0.5 0.871| 0.846 0.759 0.716
1 1jtrainscg |tansig _ |purelin 324|MSE 0.5 0.859] 0.868 0.738 0.753
1 Sltrainscg [tansig [purelin 1000MSE 0.5| 0.867| 0.861 0.751 0.742
1 10jtrainscg jtansig lpurelin 1000|MSE 0.5 0.873] 0.854 0.762] - 0.728

Table 6. 127: Results for the Elman Recurrent Neural Network Mode] 6 with FLOW as output.

1 purelin . . §

1 5Itralnscg tansig {purelin 500|MSE 0.0038 0.01 0.5| 0.862| 0.859 0.742 0.739] -0.378} 8.863
1 10ltrainscg |tansig [purelin 500MSE 0.0037] 0.01 0.5{ 0.865| 0.865 0.748 0.748] -0.506| 8.703
1 1ltrainscg [tansig [purelin 240|MSE 0.0038 0.01 0.5 0.859| 0.868 0.738 0.753] -0.353| 8.635
1 Sltrainscg [tansig]purelin 1000[MSE 0.003 0.01 0.5 0.869| 0.863 0.755 0.746| -0.360{ 8.736)
1 10jtrainscg _[tansig __[purelin 1000[MSE ~| 0.0034 0.01 0.5] 0.875 0.850 0.765 0.722 -0.617 9.052

Table 6. 128: Results for the Radial Basis Function Neural Network Model 6 with FLOW as output.

Spreadir train r\test-« R 8 train;R 8q test P&
0.8] 0.865| 0.860 0.749 0.739) -0338 8.807

221

6.4.7 FLOW Neural Network MODEL 7
The inputs for Model 7 are FLOW(k), FLOW{k-1), FLOW(k-2), FLOW(k-3), COD(K),
TKN(k), MONTH, and the output is FLOW(k+1) one time step ahead. These are

tabled below:

Table 6. 129: Input variables for FLOW Model 7

‘Inputs Outpu
FLOW(K). FLOW(k-1), FLOW(
COD(k}, TKN(k). Month

(b)

Figure 6. 80: (a) A MLP Feed-forward neural network Model 7 with 8 inputs, 1 hidden
layer, 1 hidden neuron and 1 output neuron; and (b} Block Diagram for the FLOW
RBFNN Model 7 with 35 hidden neurons, 35 epochs

\ B

Network response to Validation Set

180 T T Y I I
=== Actual Pre_dicted out

160 —— Target output
S 140 .
E ,_
° i
N 120 ; r |
] i8
5 : g
c 100 4 it
] i i i
= i X, ! 4 ‘ H
oS P B P ! |
- 80 ‘i' [} H v AL 2 +
o ¢\ i 1Y B

o 1
60 - {
1] 1 1 L
4900 120 140 160 180 200 220
Time in weeks
(a)

222

Network response to Validation Set

FLOW denormalized (m3id)

FLOW denormalized (m3/d)

180 T T T I
=-=~-- Actual Predicted out
160|- —»—Target output
140} ¥y -
HE
i
i i
120} H 13
! : .|
: i
100) i i
’ (i P
. € K
80 et i i k2
R XA
Sy ! :
60 7
49 1 1 1 1]
00 120 140 160 180 200 220
Time in weeks
(b)
Network response to Validation Set
180 1 i T T |
=== Actual Predicted out
~—»*— Target output
160 - s -
ki
140 I~ t =
f i
?
120} -' i
i
t :
100 - -
ri) ‘ f L
4t ot i
80 T N AT -
d 3 -
5 L A
60} i
4? 1 I i 1 i .
00 120 140 160 180 200 229
Time in weeks

()

Figure 6. 84: The NN response to the application of the test (validation) data set for
FLOW: {a) MLP FFNN Model 7 with 1 hidden neuron and 1000 epochs; (b) ERNN Mode! 7
with 1 hidden neuron, 1000 epochs; and {¢} RBFNN Model 7 with 35 hidden neurons, 35

epochs ‘

223

Network response to Validation Set
180 T T T

=-—--- Actual Predicted out

—*— Target output

160

-
£
o

T

120

B eI =T ey
.

8

FLOW denormalized (m3!/d)
]
<)

4 1 i] | [
900 120 140 160 180 200 220
Time in weeks

(b)

Network response to Validation Set
180 T T T I I
=== Actual Predicted out

= Target output
160"‘ - g P 2

-y
E- 3
(=]
1]
T A

-

%]

(=]
T

-w---..._"_._-_.

100

FLOW denormalized (m3id)

[+2]
(=]

60

4] 1 1 [1 '
?00 120 140 160 180 200 220
Time in weeks

(©)

Figure 6. 81: The NN response to the application of the test (validation) data set for
FLOW: {a) MLP FFNN Model 7 with 1 hidden neuron and 1000 epochs; (b) ERNN Model 7
with 1 hidden neuron, 1000 epochs; and {c) RBFNN Model 7 with 35 hidden neurons, 35

epochs :

223

Table 6. 130: Results for the Feed-forward Neural Network Model 7 with FLOW as output.

tﬂih train
e

i

sq_ traln

tansig

0.0037

purelin 500[MSE 0.6 0.5 0.880 0.749 0.774] -0.412| 8.36
Sltrainscg ltansig [purelin 500[MSE 0.0034 0.6 0.5| 0.872} 0.873 0.761 0.762] -0.423| 8.474
10[trainscg tansig |purelin 500]MSE 0.0032 0.6 0.5] 0.885{ 0.856 0.783 0.734] -0.252] 9.130
1|trainscg tansig |purelin 81 OlMSE 0.0039 0.6 0.5| 0.866f 0.880 0.749 0.774] -0.407} 8.353
5|trainscg tansig lpurelin 10 O|MSE 0.0033 0.6 0.5] 0.878 0.867 0.770 0.751 -0.512| 8.599
10jtrainscg [tansig |purelin 1000]MSE 0.0031 0.6 0.5 0.888| 0.869 0.788 0.755] -0.236! 8.669

1 trainscg |tansig lpurelin 438{MSE . . .

1 5itrainscg {tansig purelin SOO[MSE 0.0034 0.5] 0.877] 0.879 0.770 0.772] -0.105| 8.443
1 10ltrainscg |tansig |purelin 500[MSE 0.0033 0.5 0.881| 0.866 0.775 0.751] -0.497| 8.685
1 1itrainscg [tansig lpurelin 511|MSE 0.0037] 0.5| 0.866{ 0.880 0.749 0.774 -0.410| 8.357
1 Sltrainscg [tansig Ipurelin 1000|MSE 0.0034 0.5 0.876] 0.881 0.767 0.776] -0.171] 8.506
1 10jtrainscg |tansig |purelin 1000|MSE 0.0032 0.5 0.885| 0.865 0.783 0.749] -0.084] 8.652

224

6.4.8 FLOW Neural Network MODEL 8
The inputs for Model 8 are FLOW(k), FLOW(k-1), FLOW(k-2), FLOW(k-3), COD(k),
TKN(k), MONTH, Minimum Temperature, and the output is FLOW(k+1) one time step
ahead. These are tabled below:

Table 6. 133: Input variables for FLOW Mode! 8

FLOW(k), FLOW({k-1). FLOW{k-2). FLOW(k-3}, COD(k),
TKN(k). Month, Minimum Temperature

(b)
Figure 6. 82: (a) A MLP Feed-forward neural network Model 8 with 9 inputs, 1 hidden

layer, 1 hidden neuron and 1 output neuron; and (b) Block Diagram for the FLOW
RBFNN Model 8 with 35 hidden neurons, 35 epochs

Network response to Validation Set

180 T ¥ T | I -
--=--- Agtual Predicted out
—»— Target output

160 get outp
S 140 .
£
° J
N 120 1 -
[+ H H
E : i
o H 1% 1!
S 100 i s
3 ; i i
5 s e %
- 80 IR L H o /) P 3
(18 S f ; 5

(14)
60 ¥
4] i] 1 L
900 120 140 160 180 200 220
Time in weeks
(a)

225

FLOW denormalized (m3/d)

Network response to Validation Set
180 T T Y

===~ Actual Predicted out
—*—Target output

160

5

-5

8

T T

8

T e
- al
1

8

L A e
Y
Ty

-«
-
1

VgL s 4

4 1 i i 1 1
QOO 120 140 160 180 200 220
Time in weeks

(b)

Network response to Validation Set

180 - ' ' ' ;
=== Actual Predicted out

—»— Target output

160
140

120

§-

[]
o

FLOW denormalized (m3/d)

1 % U

60| - Y /-

4 i 1 1 1 I
?00 120 140 160 180 200 220
Time in weeks

()

Figure 6. 83: The NN response to the application of the test (validation) data set for
FLOW: {(a) MLP FFNN Model 8 with 5 hidden neurons and 500 epochs; (b) ERNN Model 8
with 5 hidden neurons, 500 epochs; and {c) RBFNN Model 8 with 35 hidden neurons, 35

epochs :

226

Table 6. 134: Results for the Feed-forward Neural Network Model 8 with FLOW as output.

[Hidden” Joutput” |
;. {activationfactivationlEpochs

Performance

~Min train

T v

1 iltrainscg |tansig |purelin 454|MSE 0.0037]
1 Sltrainscg |tansig lpurelin 500|MSE 0.0035
1 10jtrainscg [tansig |purelin 500|MSE 0.0033
1 1itrainscg |tansig ipurelin 418]MSE 0.0039
1 Sltrainscg [tansig lpurelin 1000|MSE 0.0033
1 10jtrainscg itansig |purelin 1000]MSE 0.0028,

Table 6. 135: Results for the Elman Recurrent Neural Network Mode! 8 with FLOW as output.

-|Learn

r \ hs| :

1 tltrainscg [tansig [purelin 500|MSE 0.0037]
1 Sltrainscg_tansig __[purelin 500|MSE 0.0035
1 10ftrainscg]tansig purelin 500|MSE 0.0031
1 1ltrainscg_[tansig___[purelin 493IMSE 0.0037]
1 Sltrainscg itansig |purelin 1000[MSE 0.0032
1 10ltrainscg [tansig purelin 1000|MSE 0.0030f

Table 6. 136: Results for the Radial Basis Function Neural Network Model 8 with FLOW as output.

ir_test
0.883] 0.889

227

6.4.9

FLOW Neural Network MODEL 9

The inputs for Model 9 are FLOW(k), FLOW(k-1), FLOW(k-2), FLOW(k-3), COD(k),
TKN(k), MONTH, Rain, and the output is FLOW(k+1) one time step ahead. These are
tabled below:

Table 6. 137: Input variables for FLOW Mode! 8

FLOW(K), FLOWIKk-1). FLOW({k-2), FLOW(k-3}.
COD(K), TKN(K), Month, Rain

FLOW{k+1)

(b)

. K
Figure 6. 84: (a) A MLP Feed-forward neural network Model 9 with 9 inputs, 1 hidden
layer, 1 hidden neuron and 1 output neuron; and (b) Block Diagram for the FLOW
RBFNN Model 9 with 27 hidden neurons, 27 epochs

Network response to Validation Set
180 T]] I I
—-=s=-= Actual Predicted out
—— Target output

160

140

8

3

FLOW denormalized (mg/l)
38

4900 120 140 160 180 200 220
Time in weeks

228

(a)

, Network response to Validation Set
180 1 I i H 1
=== Actual Predicted out

—*— Target output

g

-
1-9
o

§-

FLOW denormalized (m3/d)
o
Q

oufk."'"“h
1
-

4 1 1 1 | 1
QOO 120 140 160 180 200 220
Time in weeks

(b)

Network response to Validation Set
180 T T T I r
--——-- Actual Predicted out

—*— Target output

160

140

120

:

FLOW denormalized (m3/d)

[r2]
o

60

i 1 1 [
4?00 120 140 160 180 200 220
Time in weeks

(©)

Figure 6. 85: The NN response to the application of the test (validation) data set for
FLOW: {a) MILP FFNN Model 9 with 1 hidden neuron and 1000 epochs; {b) ERNN Modet 9
with 1 hidden neuron, 1000 epochs; and {c) RBFNN Model 9 with 27 hidden neurons, 27
epochs

229

»

Table 6. 138: Resuilts for the Feed-forward Neural Network Model 9 with FLOW as output.

Hidden = [Output Chon e e e e

. : {activation|activation|Epachs Perfo Momen mlir. ‘ R sq_ train.

1 1jtrainscg |tansig purelin SOOIMSE 0.5 0.873] 0.882] 0.762 0.777 -0.371] 8. 339
1 Sitrainscg |tansig purelin 500|MSE 0.5] 0.885] 0.874 0.783 0.764] -0.407| 8.488
1 10jtrainscg |tansig purelin 500|MSE 0.5 0.897] 0.868 0.805 0.753 0.156{ 8.881
1 1ltrainscg jtansig |purelin 481]MSE 0.5] 0.873] 0.882 0.762, 0,777 -0.373| 8.337
1 Sltrainscg [tansig |purelin 1000]MSE 0.5! 0.886] 0.862 0.786 0.744] -0.372| 8.856
1 10jtrainscg |tansig |purelin 1000MSE 0.5] 0.889] 0.866 0.791 0.751] -0.286] 8.810

Table 6. 139: Results for the Elman Recurrent Neural Network Model 9 with FLOW as output.

1 trainscg purelin . .

1 Sltrainscg |tansig _ |purelin 500|MSE 0.0032] 0.01 0.881 0.777 0.776| -0.504] 8.332
1 10jtrainscg _{tansig _ |purelin 500|MSE 0.0033 0.01 0.878 0.776 0.771] -0.372| 8.429
1 1jtrainscg ltansig [purelin 501|MSE 0.0035 0.01 0.882 0.762 0.777, -0.373] 8.337
1 Sitrainscg |tansig [purelin 1000[MSE 0.0032 0.01 0.881 0.778 0.776] -0.500 8.396
1 10jtrainscg _jtansig _ [purelin 1000|MSE 0.0029 0.01 0.862 0.799 0.743] -0.213] 8.930

Table 6. 140: Resuits for the Radial Basis Function Neural Network Model 9 with FLOW as output

230

6.4.10 FLOW Neural Network MODEL 10
The inputs for Model 10 are FLOW(k), FLOW(k-1), FLOW({k-2), FLOW(k-3), COD(K),
TKN(k), MONTH, Wind and the output is FLOW(k+1) one time step ahead. These are

tabled below:

Table 6. 141: Input variables for FLOW Model 10

‘Inputs Output
FLOWI(K), FLOW({k-1}. FLOW(k-2). FLOW({k-3}, FLOW(K+1)
CODK), TKN(K), Month, Wind

(b)
Figure 6. 86: (a) A MLP Feed-forward neural network Model 10 with 9 inputs, 1 hidden

layer, 1 hidden neuron and 1 output neuron; and (b} Block Diagram for the FLOW
RBFNN Model 10 with 16 hidden neurons, 16 epochs

Network response to Validation Set

180 . ¥ i § L 1
) --—--- Actual Predicted out
—»— Target output
160 - get ot
S 140}] -
£ g
3 .i :
N 1201 F i T
] i . :
E i iy i i
2 t i i ,
& 100 1 i‘ . b |
o j ! Pl A
! i Jg! v 1
3 A S A ok
! ' t .
'1] 80 - l g "I # l‘ ’J hel I
) 4 G :
60]
4 1 1) | |
?00 120 140 160 180 200 220
Time in weeks
(@)

231

Network response to Validation Set
180 ¥) 1] 1 I
=== Actual Predicted out

== Target output

160

140

120

2

FLOW denormalized (m3/d)
(o]
o

4 1 i 1 1 1
QOO 120 140 160 180 200 220
Time in weeks

(b)

Network response to Validation Set

180 r ' ' ' |
--—=-- Actual Predicted out

—»— Target output

160

140

b s o

120

N

100

80

FLOW denormalized (m3/d)

60

1 1 I L 1 X
4?00 120 140 160 180 200 220
Time in weeks

(c)

Figure 6. 87: The NN response to the application of the test (validation) data set for
FLOW: (a) MLP FFNN Model 10 with 1 hidden neuron and 500 epochs; (b) ERNN Model
10 with 1 hidden neuron, 1000 epochs; and {c) RBFNN Model 10 with 27 hidden
neurons, 27 epochs ‘

232

Table 6. 142: Results for the Feed-forward Neural Network Model 10 with FLOW as output.

| activation activation Epo s|Performance lerr. i Momentum ; e
1 1ltrainscg |tansig |purelin 500/MSE 0.0035 0.6] 0.5| 0.870| 0.872 0.757 0.761] -0.164| 8.485
1 5ltrainscg |tansig |purelin 500|MSE 0.0034] 0.6] 0.5] 0.875| 0.865 0.766 0.748] -0.052{ 8.830
1 10jtrainscg [tansig [purelin 500|MSE 0.0031 0.6 0.5{ 0.886] 0.856 0.785 0.733] -0.067| 9.087
1 1trainscg [tansig |purelin 634|MSE 0.0035 0.6 0.5| 0.870{ 0.871 0.758 0.758| -0.263] 8.651
1 Sltrainscg [tansig [purelin 1000|MSE 0.0031 0.6, 0.5 0.886(0.859 0.786 0.739] -0.569 8.715
1 10jtrainscg |tansig |purelin 1000|MSE 0.0028; 0.6 0.5] 0.899] 0.846 0.808 0.716] 0.001] 9.510

Table 6. 143: Results for the Elman Recurrent Neural Network Model 10 with FLOW as output.

activation 3 cajarr . [rate - IMomentum a ! ?
1 1ltrainscg [tansig purelin 436]MSE 0.0035 0.01 0.5 0.870, 0.871 0.758 0.758] -0.263| 8.652
1 Sltrainscg |tansig jpurelin 500|MSE 0.0033 0.01 0.5| 0.878] 0.856 0.770 0.734] -0.117] 9.205
1 10|trainscg [tansig |purelin 500|MSE 0.0032f 0.01 0.5| 0.884] 0.862 0.781 0.744] 0.187| 9.046
1 1ltrainscg [tansig |purelin 544|MSE 0.0035 0.01 0.5/ 0.870 0.871 0.758 0.758] -0.263| 8.651
1 Sltrainscg itansig lpurelin 1000iMSE 0.0030{ 0.01 0.5 0.890| 0.854 0.791 0.730] -0.511] 9.247
1 10jtrainscg |tansig _ [purelin 1000|MSE 0.0030, 0.01 0.5 0.889] 0.854 0.791 0.729] 0.001] 9.363

Table 6. 144: Results for the Radial Basis Function Neural Network Model 10 with FLOW as output.

233

6.4.11 FLOW Neural Network MODEL 11
The inputs for Model 11 are FLOW(k), FLOW(k-1), FLOW(k-2), FLOW(k-3), COD(k),
TKN(k), MONTH, Minimum Temperature, Rain, and the output is FLOW(k+1) one
time step ahead. These are tabled below:

Table 6. 145: Input variables for FLOW Model 11

Inputs ' Ou
FLOW(k), FLOW(k-1), FLOW(k-2}, FLOW(k-3), FLOW(k+1)
COD(K), TKN{k). Month, Minimum Temperature, Rain

Figure 6. 88: {a) A MLP Feed-forward neural network Model 11 with 10 inputs, 1 hidden
layer, 1 hidden neuron and 1 output neuron; and (b) Block Diagram for the FLOW
RBFNN Model 11 with 26 hidden neurons, 26 epochs

Network response to Validation Set

180 T T T I -
--—--- Actual Predicted out
—»— Target output
160 |
S 140
E
°
N 120
© ¢
E
o .
< 100
el
3
2 80
[T
60
4 I 1 1 []
?OO 120 140 160 180 200 220
Time in weeks
(@)

234

: Network response to Validation Set
180 1 ¥ t T 1

FLOW denormalized (m3/d)

FLOW denormalized {m3/d)

--~-- Actual Predicted out
e
160 Target output]
140 _
120 131 .
igh
H i, I}
100 -,, : 1 " =
AL IEREYLT.L
80 ! \-' Il % ~ 8 -]
{y I 4 b « V&,]
LI O | P bk y
i) N ol ¥ W !
60) -
4 1 1 I] 1
?00 120 140 160 180 200 220
Time in weeks
)
Network response to Validation Set
180 T I 1 I 1
=== Actual Predicted out
—»— Target output
160 g tp
140
120
100 fgLe
80
60
1 1 1] 1 '
4QOO 120 140 160 180 200 220
Time in weeks
{c)

Figure 6. 89: The NN response to the application of the test (validation) data set for
FLOW: {(a) MLP FFNN Model 11 with 1 hidden neuron and 500 epochs; (b} ERNN Model
11 with 1 hidden neuron, 1000 epochs; and (c) RBFNN Model 11 with 26 hidden
neurons, 26 epochs

235

Table 6. 146: Results for the Feed-forward Neural Network Model 11 with FLOW as output.

Hidden [Output ‘| «

- | activationactivation|Epochs|P

1 iltrainscg |tansig |purelin 500|MSE
1 Sltrainscg Jtansig [purelin 500|MSE
1 10jtrainscg [tansig [purelin 500[MSE
1 1jtrainscg _|tansig - _|purelin 517|MSE
1 Sltrainscg [tansig |purelin 1000]MSE
1 10jtrainscg tansig |purelin 1000{MSE

1 trainscg [tansig {purelin 432|MSE .

1 Sltrainscg jtansig [purelin 500JMSE 0.0032] 0.01 0.5/ 0.884] 0.877 0.781 0.768 0.061] 8.593
1] 10jtrainscg |tansig [purelin 500|MSE 0.0030¢ 0.01 0.5| 0.890] 0.869 0.792 0.756] -0.466{ B8.496
1 1jtrainscg |tansig [purelin 1000{MSE 0.0035 0.01 0.5 0.872] 0.884 0.761 0.782| -0.296] 8.177
1 Sltrainscg |{tansig |purelin 1000[MSE 0.0030¢ 0.01 0.5 0.891| 0.853 0.793 0.727] -0.402| 8.734
1 10jtrainscg jtansig _ [purelin 1000[MSE 0.0029 0.01 0.5| 0.893] 0.861 0.798 0.741] -0.278| 8.876

236

6.4.12 FLOW Neural Network MODEL 12
The inputs for Model 12 are FLOW(k), FLOW(k-1), FLOW(k-2), FLOW(k-3), COD(k),
TKN(k), MONTH, Minimum Temperature, Rain, Wind, and the output is FLOW(k+1)
one time step ahead. These are tabled below:

Table 6. 149: Input variables for FLOW Model 12

FLOW(K). FLOW(k-1), FLOW(k-2}, FLOW(k-3), COD{K),
TKN({k). Month, Minimum Temperature, Rain, Wind

(b)
Figure 6. 90: {a) A MLP Feed-forward neural network Model 12 with 11 inputs, 1 hidden

layer, 1 hidden neuron and 1 output neuron; and (b) Block Diagram for the FLOW
RBFNN Model 12 with 31 hidden neurons, 31 epochs

Network response to Validation Set

180 T T T T
--—--- Actual Predicted out
—»— Target output
160 g P
S 140 s
£
° i
N 120 _
o 1 '|
: L
€ 100 % i
3 i | i -
i B t 2 Hig
= v i \ & w
e IV (] y 4
- 80 u i H
|18 H H 1 A
i A A\ B4 X
R &
60}
4 1 I 1 L (]
QOO 120 140 160 180 200 220
Time in weeks
(a)

237

Network response to Validation Set
180 T T T I

~==:= Actual Predicted out
—*=Target output

160

140

120

§.

[+2]
Q

FLOW denormalized {(m3/d)

—— A

A U A b

4 [1 1]]
900 120 140 160 180 200 220
Time in weeks

(b)

Network response to Validation Set
180 T T T i T
--—--- Actual Predicted out

—»— Target output

160

140

120

g

FLOW denormalized (m3/d)

[0
(=]

60

4 | 1 1 1 1
900 120 140 160 180 200 220
Time in weeks

©

Figure 6. 91: The NN response to the application of the test (validation) data set for
FLOW: (a) MLP FFNN Model 12 with 1 hidden neuron and 1000 epochs; (b} ERNN Model
12 with 1 hidden neuron, 1000 epochs; and {c) RBFNN Model 12 with 31 hidden
neurons, 31 epochs

238

Table 6. 150: Results for the Feed-forward Neural Network Model 12 wnth FLOW as output.

'IMin train- lLeam

s Epochs|Perform - |Momentumlr.
1 1tramscg tansig |purelin 500|MSE 0.0034 0.6 0.5 0.764] -0.298| 8.566
1 5|tra|nscg tansig purelin 500]MSE 0.0032 0.6 0.5 0.759 0.208 8.895
1 10jtrainscg |tansig Ipurelin 500/MSE 0.0032 06 0.5 0.706] 0.158] 9.128
1 1ltrainscg _[tansig purelin 722|MSE 0.0034 0.6 0.5 0.764] -0.287| 8.542
1 Sltrainscg [tansig Ipurelin 1000|MSE 0.00300 0.6 0.5 0.741] -0.412] 9.035
1 10jtrainscg [tansig [purelin 1000|MSE 0.0026 0.6, 0.5 0.641] -0.601{ 10.791

Table 6. 151: Results for the Elman Recurrent Neural Network Model 12 with FLOW as output.

1 1tra|nscg tansig |purelin .

1 Sltrainscg - [tansig [purelin 500|MSE 0.0032_0.01 0.5| 0.884] 0.860 0.781
1 10trainscg |tansig [purelin 500[MSE 0.00300 _0.01 0.5] 0.890] 0.860 0.791
1 1ltrainscg [tansig [purelin 1000/MSE 0.0034] 0.01 0.5| 0.875] 0.876 0.766
1 Sltrainscg _[tansig |purelin 1000|MSE 0.0031] 0.01 0.5| 0.887] 0.852 0.786
1 10ltrainscg |tansig [purelin 1000|MSE 0.0027] 0.01 0.5] 0.901] 0.828 0.812

Table 6. 152: Results for the Radial Basis Function Neural Network Model 12 with FLOW as output

239

6.4.13 FLOW Neural Network MODEL 13
The inputs for Model 13 are FLOW(k), FLOW(k-1), FLOW(k-2), FLOW(k-3), MONTH,
Minimum Temperature, Rain, Wind, and the output is FLOW(k+1) one time step
ahead. These are tabled below:

Table 6. 153: Input variables for FLOW Model 13

FLOW(K). FLOW(k-1), FLOW(k-2), FLOW(K-3),
Month. Minimum Temperature, Rain. Wind

FLOW(K+ 1)

(b)

Figure 6. 92: (a) A MLP Feed-forward neural network Model 13 with 9 inputs, 1 hidden
layer, 1 hidden neuron and 1 output neuron; and (b) Block Diagram for the FLOW
RBFNN Model 13 with 24 hidden neurons, 24 epochs

Network response to Validation Set
180 T T T T I

--—--- Actual Predicted out
—»— Target output

160

100 i

-—
=
L TP

0
o

COD denormalized (mgll)

.
POeT it
p=

60} | i

4 I I 1 1 1
?00 120 140 160 180 200 220
Time in weeks

(a

240

Network response to Validation Set

FLOW denormalized (m3/d)

FLOW denormalized (m3/d)

180 H ¥ 1 I L
: =-~--- Actual Predicted out
160 —*— Target output
140
120]
100 'J I!l
i '
\! il 1 A
.‘i ! 4 1 k
80 o« Ky b i *
- 18 2 [. '; } £,
A ' ¥ W, !
60
4] 1 1 1 1
QOO 120 © 140 160 180 200 220
Time in weeks
(b
Network response to Validation Set
180 i 1)] i |
-—--- Actual Predicted out
—*— Target output
160 g .
i .
140} 3 : .
13
HEE'
i
120} ; .
: : 3
100 3 _l L .i '- -
i i ! % A
by ¢ N, X!
11 H i ‘ id
80 ¢ My B { 1% %1
R 3 ; g ¢
1YY bead 4 L ¢
60 » _
4 1] 1 1 I
?00 120 140 160 180 200 220
Time in weeks
(c)

Figure 6. 93: The NN response to the application of the test (validation) data set for
FLOW: {a) MLP FFNN Nodel 13 with 1 hidden neuron and 500 epochs; (b} ERNN Model
13 with 1 hidden neuron, 1000 epochs; and {¢c) RBFNN Model 13 with 24 hidden

neurons, 24 epochs

241

Table 6. 154: Resuits for the Feed-forward Neural Network Model 13 with FLOW as output.

Hidden ' joutput - | L ain’ i

activationlactivation|Epoch NG - |Momentum
1 1ltrainscg _[tansig lpurelin 247\MSE 0.0034 0.6 0.5 .
1 5]trainscg tansig purelin S500(MSE 0.0032] 0.6 0.5 0.882] 0.860 0.778 0.740[-0.080| 8.897|
1 10jtrainscg |tansig |purelin 500{MSE 0.0031 0.6 0.5| 0.888] 0.852 0.788 0.726] -0.195| 8.720
1 1jtrainscg |tansig |purelin 688|MSE 0.0034 0.6 0.5 0.875] 0.874 0.766 0.764] -0.304] 8.570
1 Sltrainscg |tansig |purelin 1000|MSE 0.0029 0.6] 0.5] 0.895 0.819 0.801 0.671 0.299(9.867
1 10jtrainscg |tansig jpurelin 1000[MSE 0.0029 0.6 0.5 0.896] 0.833 0.804 0.694] -0.583] 9.777|

layers activation|activation|Epochs|Performance o , . .
1 1ltrainscg jtansig purelin 500(MSE 0.0034 0.01 0.5 0.875] 0.873 0.766 0.763] -0.315] 8.606
1 5ltrainscg |tansig purelin SOOIMSE 0.0031] 0.01 0.5 0.887] 0.849 0.787| 0.721] -0.154] 8.075
1 10[trainscg |tansig purelin 500[MSE 0.0031 0.01 0.5 0.887! 0.866 0.788 0.751 0.058 8.843
1 1ltrainscg |tansig |purelin 625MSE 0.0034 0.01 0.5| 0.875| 0.874 0.766 0.764] -0.305{ 8.570
1 Sltrainscg |tansig [purelin 1000|MSE 0.0030, 0.01 0.5| 0.892 0.840 0.795 0.706| -0.018| 9.064
1 10jtrainscg _{tansig |purelin 1000|MSE 0.0027] 0.01 0.5 0.903| 0.844 0.816) 0.712] -0.279] 9.369

read n -
0.9| 0.883] 0.871

242

6.5

6.5.1

Investigation of the variation of the structure of the NNs and the training
process

The following section investigates the effect that varying the structure of the NN by
increasing the number of hidden layers, neurons and epochs, has on the predictive
and ultimately generalisation performance of the network.

The effect of increasing the number of hidden neurons

The first set of results in section 6.5.1 examines effect of increasing the number of
hidden neurons. The type of NN is the ERNN for prediction of TKN. The inputs are
TKN(K), TKN(k-1), TKN(k-2), TKN(k-3), COD(k), FLOW(k), MONTH, Minimum
Temperature, Rain, Wind, and the output is TKN(k+1) one time step ahead. The
epochs are kept at 1000 while the neurons are increased to 40. Figure 6.94 displays
the: (a) training error versus the epochs, (b) regression analysis with the linear
correlation coefficients for the training (left) and test (right) phases, and (¢} NN
response to the application of the test (validation) set. Table 6.157 summarises the
results by comparing it to the previous case where the neurons are varied from 110 5
to 10 (lower part of the table).

B Performance is 0.00622581, Goal is 0
10 ¢ T T T T T T T T T

10" L .

10"} .

Training Error

10 F =

1 1 1 1 L I 1 1 1
10 (] 100 200 300 400 500 600 700 800 900 1000
1000 Epochs

(@

243

6.5.2

Linear correlation cosfficient - Training data

Linear correlation coefficient - Validation data

120
© DataPoints °, o DataPoints o]
038} : —— BestLinear Fit 100} | — BestLinearFit
80.
60.
<
40}
20+
(1] 3
o
1 % 20 20 0 80 100
T
(b)
Network response to Validation Set
120 T T T T
—— Actual Predicted out
—=—Target output
100 b
=3
E 8or 1
y ‘ 4 ‘
= 1§] i
g ool B | ’1 L‘ri {‘i i
E l)ii ';‘ " 1 Y ﬁ) ;' LA
g | 1Y i \[AR \ I
o 8 % . 3 il
z ‘i' 9 ‘% f 4
[2
20 E
A
1 1] L] L]
900 120 140 160 180 200 220
Time in weeks
(c)

Figure 6. 94: The NN response to the application of the test (validation) data set for TKN
ERNN Model 12 with 40 hidden neurons, 1000 epochs, where the number of neurons is
increased: {a) Training phase; (b) Regression coefficients for training (left} and test
phases (right); and (¢) NN response to the test set

The effect of increasing the number of epochs

This section examines the effect that increasing the number of training iterations
(epochs) has on the network performance. The neural network is the MLP with
FLOW(K), FLOW(k-1), FLOW(k-2), FLOW(k-3}, COD(k), TKN(k), as inputs and the
output is FLOW(k+1) one time step ahead. The hidden neurons are kept at 10 while
the epochs are increased to 5000. Figure 6.95 displays the: (a) fraining error versus
the epochs, (b) regression analysis with the linear correlation coefficients for the
training (left) and test (right) phases, and (c) NN response to the application of the
test (validation) set. The results are summarised in Table 6.158 that provides a
comparison of the previously obtained results for this same model.

244

B Performance is 0.00305004, Goal is O
10 3 T T T T T T T T T

RN

'}

Tralning Error
3
o,
N
oy

pa el

b
o,

%
T

aaaanl

10° 1 1 1 ! L L 1 1 1
4] 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
i 6000 Epochs
(@)
Linear correlation coefficient - Training data
r , Linear correlation coefficient - Validation data
© DataPoints o 180 - M i B
0.9} | —BestLinearFit| © e] © DataPoints o
160 —— BestLinear Fit i
0.8} o
o
07} °©
<« 06}
Q [}

05

04}

03F

055 06 o7 08 08 1 4 e 80 100 120 140 160 180

T . T
(b)
Network response to Validation Set
180 T T T I N E—
’ —— Actual Predicted out
~———Target ut

160} get outp!
il
= 140} R
£
-u i
51201 (] 1 .
a '

)
g 100 ‘ 4 4
5 \, ‘ i 1’
E3 i Y
o | A o) X 4L]
d 80 f }Vf ’ { f \ \ /1 T
\ k] ;
wof e J
t
4 L 1 1 L L
QOO 120 140 160 180 200 220
Time in weeks
(¢}

Figure 6. 95: The NN response to the application of the test (validation) data set for
FLOW MLP FFNN Model 6 with 10 hidden neurons, 5000 epochs, where the epochs is
increased: (a) Training; {b) Regression coefficients for training (left) and test phases
{right); and {c) NN response to the test set

245

6.5.3

- The effect of increasing the number of hidden layers

This section examines what effect increasing the number of hidden layers to two has
on the network performance. The considered network is the MLP with inputs COD(k},
COD(k-1), COD(k-1) COD(k1), TKN(k), FLOW(k), MONTH, Minimum Temperature,
Rain, Wind, and the output is COD(k+1) one time step ahead. The hidden neurons for
the first and second hidden layers are set to 5. The network is trained for 1000
epochs, Figure 6.96 displays the: (a) training error versus the epochs, (b) regression
analysis with the linear correlation coefficients for the training (left) and test (right)
phases, and (c) NN response to the application of the test (validation) set. The results
are tabled in Table 6.159 where the networks with one hidden layer are compared
with the network having two hidden layers.

B Performancse is 0.00850457, Goalis 0
10 ¢ T T T T T T T T T
10" 3
H
[
w -1
E 10 . E
£ E
s
.- L
107 4
3 t 3
1 o—) i 1 ! I L 1 ! 1 !
0 100 200 300 400 500 600 700 800 900 1000
1000 Epochs
(@)
Linsar correlation coefficient - Training data Linear correlation coefficient - Validation data
1 . . .
61
05 R=0.643 //] °
24 ° 0o © 3500}
© DataPoints
! o |
08 ° 30001 BestLinear Fit °
co o | T A=T
o}t X o 1
$ [} 2500} R=0238
[« IS (o]
06t o o 1
< 2 <« 2000}
(1113 o
1500} ° o ©
04t o
o DataPoints 1000} ‘
03t o Best Linear Fit
------- A=T
02t 500
[¢] [e]
o L Y
b2 04 086 038 1 0
T
(b)

246

Network response to Validation Set
3000 4 r— T

=== Actual Predicted out
—Target output

e

g

COD denormalized (mgfl)

1000
500
1 1 1 1 1
?00 120 140 160 180 200 220
Time In weeks
(c)

Figure 6. 96: The NN response to the application of the test {vaiidation) data set for COD
MLP FFNN Model 12 with 5_5 hidden neurons, 1000 epochs, where there are 2 hidden
layers: (a) Training; (b) Regression coefficients for fraining {left) and test phases {(right);
and (c) NN response to the test set

247

6.5.4

The effect of training to convergence

This section examines what the effect is when the network is trained until the error
converges to a minimum. The considered network is the RBF with inputs COD(K),
COD(k-1), COD(k-2) COD(k-3), TKN(k), FLOW(k), MONTH, and the output is
COD(k+1) one time step ahead. The spread constant is set to a value of 0.6 and the
error goal is set at 0.01. Figure 6.97 displays the: () training error versus the epochs,
(b) regression analysis with the linear correlation coefficients for the training (left) and
test (right) phases, and (c) NN response to the application of the test (valigation) set.
The results are tabled in Table 6.160 where it is compared to the previously
considered case.

Performance is 0.0189057, Goal is 0.01

Sum of Squares Training Error

104 Il 1 [l 1 1 ! 1 !
'] 50 100 150 200 250 300 350 400
410 Epochs
(a)
Linear ragression coefficient - Training data Linear regression coefficient - Validationdata
14 5000 T T
° °
1t R=0999 1 0 DataPoints o)
1000 Best Linear Fit
09 o DataPoilts | & 4 |eeeeen A=T %
Best Linear Fit 3000/ 5 o
08} |---e-er A=T o o0 o
o7] 200f R=0015 o
< 06 1 =« 1000}
0§ ol
04
1000+ o
03
o o
o2} 20001 o
01922 o4 08 08 1 12 14 00 500 1000 1500 2000
T T

(b)

248

6.5.5

Network response to Validation Set

5000 T T T | T
==~ Actual Predicted out

4000 - —»— Target output
£ 3000(l i .
° it
2 2000f i}
a i
E
2 1000
<
o
8
o Of

1000 |- .

_zmq 1 L 1 1 1

00 120 140 160 180 200 220
Time in weeks
(©

Figure 6. 97: The NN response to the application of the test (validation) data set for COD
RBFNN Model! 7 with 414 hidden neurons, 414 epochs, where the network is trained to
convergence: {(a) Training; (b) Performance for training and test sets; {c) NN response

The training time when using different training algorithms

The different training algorithms execute at different speeds as presented in Chapter
5. The training algorithms are changed from initially the Levenberg-Marquardt to the
scaled conjugate gradien‘(algorithm. The NN is the MLP for COD with inputs COD(k),
COD(k-1), COD(k-2) COD(k-3), MONTH, Minimum Temperature, Rain, Wind, and
the output is COD(k+1) one time step ahead. The times are measured with the tic
and toc MATLAB functions. The number of hidden neurons is 10 and the network is
trained for 1000 epochs. '

The training execution time result for the scaled gradient is 8.9755 seconds. The time
taken using the Levenberg-Marquardt is 25.5834 seconds. This shows the

considerable difference in training speeds.

249

Table 6. 157: Results for the ERNN Neural Network Model 12 with TKN as output, and where number of hidden neurons are increased to 40
compared to 1,5 and 10

“[Hid ain. [Hidden' JOutpt ’Emn train Jleam [~ 1T T 1 T A st
‘Ineurons_[algorithm activatlon actlvatio Epo s|Pert . odrater d rtrain: orr.
40[trainscg [tansi urelin 0. 0062 0.01 0.5 0 789 0.391 -1.321
1jtrainscg |tansig |purelin 0.0106 0.01 0.5 0 597 0.504 -0.578| 14.195
Sitrainscg jtansig purelin 1000|MSE 0.0087] 0.01 0.5 0.686] 0.465 -1.092] 15.058
1 10jtrainscg |tansig purelin 1000]MSE 0.0086 0.01 0.5{ 0.680| 0.502] -0.703] 14.445

Table 6. 158: Results for the MLP Neural Network Model 6 with FLOW as output, and where epochs are increased to 5000 compared to 500 and
1000

0.889] 0.810

1 10jtrainscg jtansig [purelin 500|MSE 0.0035 0.6 0.5] 0.871] 0.846 0.759 0.716/ -0.803| 9.285
1 10ltrainscg _itansig purefin 1000|MSE 0.0035 0.6 0.5] 0.873] 0.854 0.762 0.728] -0.204] 8.955

Table 6. 159: Results for the MLP Neural Network Model 12 with COD as output, and where the hidden layers are increased to two compared to
one hidden layer

Hid

. lalgorithm |activationt lactivation2
Sltrainscg [tansi tansi

urelin 1000|MSE

-27.912 21 857

tansig 1000|MSE . . 23,780
trainscg |tansig N/A purelin 1000[MSE 0.0098] 0.6 0.5 0.568] 0.288] _ 0.322] _ 0.083] -36.529] 20.437]
1 10|N/A___ ltrainscg |tansig N/A purelin 1000[MSE 0.0085 0.6 0.5 0.643 0.172] 0414 0.030] -34.419]22.906

Table 6. 160: Results for the Radial Basis Function Neural Network Model 7 with COD as output, and where the network is trained until the error
converges to a minimum compared with the previous considered case

ca IMin train rr
rror

< on 4 error. . |AP
-ms-ﬁ--:mnxamma

250

6.6

Discussion of results

The three topologies examined included the MLP, ERNN and the RBFNN. Generally
speaking the results for particularly the multilayer perceptron and the recurrent NN
were very close, with the radial basis function NN not very far off. Thirteen models are
presented where the inputs are varied to include combinations of the influent variable,
delayed influent variable, other influent variables, environmental variables of
temperature, rainfall and wind speed, and the month of the year. The physical
structure for all the considered NNs in this section only has ONE hidden layer. The
hidden activation functions for both the MLP and the ERNN are the hyperbolic
tangent, and the output has a linear activation function. The RBF NN has a Gaussian
radial basis function for the hidden layer activation function and a linear activation at
the output. The epochs are increased for the MLP and the ERNN from 500 to 1000
epochs. The number of neurons in the hidden layer are increased from 1, 5 up to 10
neurons for the both the MLP and ERNN. The parameters for the RBF that are varied
are the sum of squares error goal and the spread of the Gaussian function. The only
model where the entire set of figures are presented is the case for Model 1. However
the plots and all software algorithms for all other models are available for examination
on the enclosed CD. The plots for the instantaneous error indicate the difference
between the NN output and the desired target output for the entire test data set.

4

6.6.1 COD NN results

The first set of results is for the COD NN and is presented in section 6.2, The input
combinations for COD are presented in Table 5.1. The figures for COD Model 1 are:

m Figure 6.2 - the training versus number of epochs plots for the, (@) MLP FFNN,
(b) ERNN and the (c}) RBFNN.

» Figure 8.3 — the scatterplot for the NN response to the training data set for the,
(a) MLP FFNN, (b) ERNN and the (c) RBFNN. »

n Figure 6.4 - the scatterplot for the NN response to the test (validation) data set
for teh, (a) MLP FFNN, (b) ERNN and the (¢) RBFNN.

m Figure 6.5 - the network performance showing the linear correlation coefficient
during the training phase (left) and the test phase (right) for the (a) MLP
FFNN, (b) ERNN and the (c) RBFNN.

» Figure 6.6 — the instantaneous error showing the difference between the NN
output and the desired target output for the, (@) MLP FFNN, (b) ERNN and the
(c) RBFNN. '

» Figure 8.7 — the NN response 10 the application of the test (validation) data set
for the, (a) MLP FFNN, (b) ERNN and the (¢) RBFNN.

The results for the COD neural networks show that although the training error {mean
squared error) is a minimum (0.01 on average), the NNs are not able to respond well
to the input training data. Hence the generalisation performance of the networks are

not vey good. The regression coefficient r for the validation phase upon application

of the test set, ranges from 0.2 till 0.4 on average. The coefficient of determination r2

251

for the COD NN ranges from 0.5% to 0.19% on average. The absolute percentage
. error for the difference between the desired target output and the NN output range

between 19% and 22% on average. These figures indicate that the NN for COD at the

output is therefore not able to solve this particular input-output mapping problem.

The results could not be improved despite investigating additional networks where the
neurons are gradually increased up to a maximum of 80, and the epochs are
increased to a maximum of 10 000. The problem when the number of hidden neurons
is increased is that the training error is minimised, and the correlation coefficients for
the training phase increase, while the test phase correlation coefficient decreases.
The problem with increasing the number of epochs, is that the network eventually
converges, but this does not mean that the NN has learned the training data. This is
what is meant by the trade-off between generalization (performance) and training to
convergence. This is best illustrated in Figure 6.97 where a RBF NN having 414
neurons is able to approximate the training data, but is unable to generalize. The
correlation coefficient for the test phase is -0.015 and the coefficient of determination
is 0. This indicates that the network has memorized the training data but cannot make
any accurate predictions with the test data. The APE is unacceptably high at a value
of 41.327%.
. i

The best result of the 13 models considered for COD is the MLP FFNN, Model 13
with inputs COD(k), COD(k-1), COD(k-2) COD(k-3), MONTH, Minimum Temperature,
Rain, Wind, and the output is COD(k+1) one time step ahead. The resuits are tabled
in Table 6.50. The number of hidden neurons is 1, the training error 0.0117, the linear
correlation coefficient is 0.4 for the test phase, and the APE is 19.119%. This result
shows that the NNs are unable to solve this particular input-output mapping problem.

6.6.2 TKN NN results
The second set of results is for the TKN NN and is presented in section 6.3. The
figures for TKN Model 1 are:

» Figure 6.33 - the training versus number of epochs plots for the, (a) MLP
FFNN, (b) ERNN and the (c) RBFNN.

s Figure 6.34 — the scatterplot for the NN response to the training data set for
the, (@) MLP FFNN, (b) ERNN and the (c) RBFNN.

= Figure 6.35 - the scatterplot for the NN response to the test (validation) data
set for teh, (@) MLP FFNN, (b) ERNN and the (c) RBFNN.

n Figure 6.36 — the network performance showing the linear correlation
coefficient during the training phase (left) and the test phase (right) for the (a)
MLP FFNN, (b) ERNN and the (c) RBFNN.

s Figure 8.37 — the instantaneous error showing the difference between the NN
output and the desired target output for the, (a) MLP FFNN, (b) ERNN and the
(c) RBFNN.

252

= Figure 6.38 — the NN response to the application of the test (validation) data
set for the, (a) MLP FFNN, (b) ERNN and the (c) RBFNN.

The results for Model 3 in Table 6.62 are interesting as the APE falls for the MLP is —
0.547 and the regression coefficient is 0.588 for the test phase. This indicates that
this model has the best result throughout. However all other results are not too far off.
The regression coefficient ranges from 0.38 up to a maximum of 0.588. The
determination coefficient ranges from 0.241 to 0.346. The APE ranges from 15.290%
in Model 1 to 13.457% in Model 9. For many of the models the results for the MLP
and the ERNN were very similar.

The NNs for TKN performed better than the one for COD when comparing the
performance figures. However the NNs for TKN could not learn the training data
either although the training error reached an average value of 0.01, therefore the
generalization performance of the networks are not very good either.

6.6.3 FLOW NN results
The third set of results examined the NNs with the flow rate as the influent
disturbance at the NN output. These results are presented in section 6.4. The figures
for FLOW Model 1 are: !

» Figure 6.64 - the training versus number of epochs plots for the, (a) MLP
FFNN, (b) ERNN and the (c) RBFNN.

= Figure 6.65 — the scatterplot for the NN response to the training data set for
the, (a) MLP FFNN, (b) ERNN and the (¢) RBFNN. '

» Figure 6.66 - the scatlerpiot for the NN response to the test (validation) data
set for teh, (a) MLP FFNN, (b) ERNN and the (c) RBFNN.

» Figure 6.67 — the network performance showing the linear correlation
coefficient during the training phase (left) and the test phase {right) for the (a)
MLP FFNN, (b) ERNN and the (¢) RBFNN.

= Figure 6.68 — the instantaneous error showing the difference between the NN
output and the desired target output for the, (a) MLP FFNN, (b) ERNN and the
(c) RBFNN.

= Figure 6.69 — the NN response to the application of the test (validation) data
set for the, (@) MLP FFNN, (b) ERNN and the (c) RBFNN.

These set of results are by far the best. In general all the types of NNs are able to
solve this problem to a certain degree. The generalisation ability of the FLOW NN has
increased considerably when compared to that of COD and TKN. The regression
coefficients for Model 8 in Table 6.138, for the RBF are 0.889 and the APE at 8.150
and the determination coefficient is at 0.790. This result is the best of all the results
for the flow rate NNs. However additional experimentation could not improve this
result significantly. The range for the regression coefficient is between 0.846 and
0.889 for the test phase. The APE ranged from 8.150% in Model 8, to 10.791 in

253

Model 12. As is seen from the table, the training regression coefficient has increased
drastically to an average value of 0.9. The coefficient for the t{est phase on average is
also around 0.9. Aithough the results are not ideal, they are good, as the
generalization performance of the network has improved considerably compared to
that of the neural networks for COD and TKN.

6.6.4 Variation of the NN structures results
For the first case in section 6.5.1 the hidden neurons are increased to a value of 40.
When compared to that of the previous cases where the the neurons are varied from
110 5 to 10, it is cbvious that increasing the number of hidden neurons:

= does not guarantee that the network will converge;
= does not guarantee that the generalisation ability of the network will improve;
in fact it deteriorates.
The results in Table 6.157 for regression value for the training phase has increased

from about 0.66 for the previous case to 0.789. However the regression value for the
test (validation) phase has now decreased from an average value of 0.490 for the
previous case, to 0.391. The APE has increased from an average value of about
14.566 for the previous case to 17.687. Therefore the neurons have fo be increased
gradually and a trade-off in terms of the number of hidden neurons versus the
generalisation ability of the network, has to be established.
. i

in the next case in section 6.5.2, the number of training iterations are increased
dramatically to a value of 5000. When the graph in Figure 6.95 (a) is examined, it is
obvious that the error has not changed drastically from around 500 epochs. The
results in Table 6.158 show that the training error has decreased from 0.0035 for the
previously considered case, to 0.0031. There is therefore not much difference
between the error for these two cases presented. The regression coefficient has
increased slightly from 0.872 for the training phase of the previous case, to 0.889
once the epochs are increase. The regression value for the test phase shows a
decrease from 0.85 for the previous case to 0.810 when the epochs is increased.
The APE has increased to value of 9.405% when the training iterations are increased.

In section 6.5.3 the number of hidden layers are increase to two. The number of
hidden neurons are selected to be 5 for both the first and second hidden layers.
Although the training error has decreased to a value (0.0088) that is lower than the
previous considered cases, the generalisation ability of the network is compromised.
This is seen from the low value 0.208 for the regression coefficient in the test

(validation) phase.

254

6.7

The variation considered in section 6.5.4 is where the NN is trained until the error
converges to a minimum. The number of neurons in the hidden layer for the RBF has
increased from a modest 19 to 414 neurons. The regression analysis value in Figure
6.97 (b) on the left shows a perfect fit for the training phase, but not good at all for the
validation phase in the figure on the right. Figure 6.97 (c) shows the network is unable
to generalise and the predicted values are pretty ‘wild’ with the APE at 41.327%.

Summary of the chapter

The chapter presents the results of the NNs for COD, TKN and flow rate for the MLP
FFNN, ERNN and the RBFNN. The models presented are variations on the input data
combinations to the NNs. Thirteen models are presented for each considered case.

Overall the results show that NNs are a promising alternative to traditional linear
prediction methods. However additional improvements to the NN structures have to
be investigated.

Chapter 7 presents the practical implementation of this work as part of the control
system for a lab-scale pilot plant at the University. All SCADA and PLC programs are
presented and the NN GUI for the operation of the NN programs for the influent

disturbances are shown.

255

71

7.2

73

CHAPTER SEVEN
REAL-TIME IMPLEMENTATION

Introduction

The project under study is practically implemented using a pilot plant located in the
Electrical Engineering Department at the Cape Peninsula University of Technology
(CPUT) (Figure 7.1). This chapter presents the real-time implementation and
describes the hardware configuration of the various components in the project
together with a description of all software used. All software algorithms are presented
in Appendix B. The technical information pertaining to the sensor connections,
transmitters, calibration procedures, wiring and the PLC are presented in Appendix C.

Pilot plant and control system

The pilot plant is a lab-scale version of an actual wastewater treatment plant. The
plant is used to simulate conditions on a smaller scale to that of an actual WWTP.
There are tanks (zones) that can be connected for various plant configurations such
as those used for the UCT, Johannesburg and the Phoredox process structures,
among others (Lilley, Pybus and Power, 1997). There are sensors placed inside the
tanks and they measure pH, urbidity, conductivity, temperature and dissolved oxygen
(DO). These sensors are connected to transmitters (Figure 7.2), which in tum are
connected to the PLC. The PLC is in turn connected to the personal computer (PC)
via the serial (R5232) port. The entire plant structure fogether with the software
requirements for real-time implementation is displayed in Figure 7.3. The data
acquisition was implemented with the assistance of a student whose document
describes the technical aspects of the acquisition system (Mapisa, 2004) and can be
viewed in Appendix C as is previously stated. A detailed description of all facets of the

system foliows.

Raw plant and weather data conversion
The raw weather data received from the South African Weather Service
(www.weathersa.co.za) as described in Chapter 4, is in the ASCH (American

Standard Code for Information Interchange) text format. The data is converted from
this format into the MS (Microsoft) Excel format. The data is then converted once
more from MS Excel into the format used by the MySQL database. Similarly the plant
data received from the Athlone Municipal Wastewater Treatment Plant is converted
from MS Excel into the MySQL database format. This conversion procedure for the
raw data is illustrated in a step-by-step procedure in Appendix E.

256

Figure 7. 1: The WWT Pilot plant together with the Modicon PLC and transmitters in the
Electrical Engineering Department, CPUT

' WEATHER Historical Plant
Data Data
{Raw data) (Raw data)

“Conversion from -
- Excel to MySQL
Format

‘Conversion from
ASCII Text to
Excel Format

A

Actuators
to the plant

oDpsc
CONMNECTION

[ttt e e

Figure 7. 3: The structure for the real-time implementation of the influent disturbances
prediction showing the pilot plant, PL.C, SCADA system, MySQL database with plant
and weather data, and MATLAB NN algorithms

257

7.4

SCADA system

The plant sensory information is displayed on a graphical user interface (GUI) known
as a SCADA (Supervisory Control and Data Acquisition) system. The SCADA system
software utilised for the project is Adroit Version 5.0. The sensor data is transmitted to
the PLC and then io the PC via an RS232 cable, where Adroit can retrieve data sent
from the PLC on certain specified channels. The SCADA system is linked using the
ODBC (open database connectivity) protocol, to the MySQL database that is the
repository for all data utilized in this work. The database is at the heart of the
communication between all the different software platforms used.

Adroit is an acronym for Advanced, Distributed, Real-fime, Object-oriented,
Intelligent, Toolkit. Not only does Adroit compete successfully, it has become the
product of choice for users in mainstream as well as lesser-known industrial sectors.
Adroit is an example of what is known as a client-server architecture, or model. in
this model, the "client" portion, which is typically the part of the application that
interacts with the user, communicates with the "server” portion, which is usually a
data repository.

In Adroit, the server part of the client-server architecture is called an Agent Server.
This contains a collection of intelligent objects known as Agents. Adroit agents are
intelligent objects because, in addition 1o containing “state" information, as do
conventional database records, they also embedy "behavior”, The definition of an
object in object-oriented terms is precisely the same as an agent: namely, an entity
that has identity, state, and behavior.

Adroit's User Interface, consisting of several different types of windows, makes up the
client portion of the client-server architecture. The pictorial display windows within the
user interface are themselves made up of objects, in this case graphical objects
known as picture elements. In addition to state information, such as the properties of
size, location, color, etfc., In Adroit graphical objects may alsc be configured to have a
wide variety of animation behaviors. By connecting these behaviors to data values
within agents, many different animated display effects can be configured which, in

real-time.

Adroit's two main componenis, the user-interface and the agent server are, therefore,
founded onh sound object-oriented principles. 1t is now widely recognized that such
use of object-oriented principles is the most effective way of designing and
implementing software that is robust and flexible enough to meet future, as yet

258

unforeseen, requirements. Exploitation of the object-oriented paradigm is,
furthermore, fully carried through into Adroit's implementation, by use of C++, the
programming language that is increasingly becoming recognized as the most
effective way of delivering production grade object-oriented applications.

Typical Adroit configurations will in fact involve many of these object-oriented agent
servers and user-interfaces running on several different physical computers
connected in a local - or even wide-area network - with client-server communications
happening transparently and seamlessly across the network. Adroit may therefore be
succinctly described as an open, portable, object-oriented, industrial application
toolkit, structured around a distributed client-server architecture, and hosted on
operating systems from the industry standard Microsoft® 32 bit Windows™ family
(Adroit User Manual, 1980-2000).

The developed Adroit SCADA GUI (Figure 7.4) allows the operator:

to view all current variables of pH, turbidity, conductivity, and DO;
to view current and historical trend data for these variables;
to manually enter off-line laboratory variables manually in the database
to execute the neural network program for training and validation of the NN
for prediction of the influent disturbances of COD, TKN and flow rate;
. to use the predicted values for the program for the optimal contro! strategy;
» to implement the algorithm for real-time prediction of the inflow

-~ CPUTPilot Wastewater Treatment Plant Program.

Figure 7. 4: The SCADA system graphical user interface allows the user to view real-
time plant variables, trend information, enter data in manual mode, run the neural
network software for training and validation, and view and enter data in the database

259

7.5

Programmable Logic Controller (PLC) system

The Modicon Momentum PLC is programmed using software called Concept version
2.2. Concept is designed for use in any system configuration and it can be interfaced
to powerful operators and monitoring systems. In this project it is used to acquire data
from the wastewater {reatment pilot plant in order to monitor and contro! process
variables through the use of corresponding sensors and actuators and it is interfaced
with the SCADA software package, Adroit. The type of programming language is
ladder logic. It consists of schematic block diagram functions with unique functionality.

The PLC program below consists of relays, coils and a function block.

Figure 7. 5: The PLC program to move sensory data from the Conductivity and DO
sensors, from one analogue input register to another holding register

This PLC program is used to acquire data from the sensors (Figure 7.5). The BLKM
or block move function is used to move the data from the analogue input 300001 to
the holding register 400200. The address 000100 is for the output coil, which is also
used to latch the normally closed contact, which is the input to the BLKM. The
analogue input 300001 is used to acquire data from the Conductivity sensor. The
Conductivity sensor signal is physically connected to this input 300001.

The second BLKM is also configured in the same way as the first one except that it is
used to acquire data from the DO sensor, which is physically connected to the PLC

analogue input 300002. The BLKM moves this data to the holding register 400201.

For additional PLC programs and connection information please consuit Appendix D.

260

7.6

MySQL Database

-A database is a structured, searchable collection of data or records. Databases are

designed to offer an organized mechanism for storing, managing and retrieving
information (Chapple 2005). Databases are actually much more powerful than
spreadsheets in the way they are able to manipulate data. Databases could be used
for:

Retrieval of all records that match certain criteria
Updating records in bulk

Cross-referencing records in different tables
Performing complex aggregate calculations

[]

]
There are several types of databases in use today, with some of the most common in
order of popularity, being:

1. Relétionai databases;
2. Object databases; and
3. Flat file databases.

The latier two types are not considered, however some popular relational databases
include MySQL, Oracle and Microsoft SQL Server. Relational databases use tables to
store information. The fields are represented as columns and records are represented
as rows in a table, and they have a specific relationship between them; hence the
term, ‘relational database".‘ The relational database stores and tracks data by
establishing relationships between different pieces of information. It is therefore
possible to find specific information very easily, and sort this information based on
any field or record.

Data is requested from the database by sending it a query. This is usually
accomplished by using a special programming language called SQL (Structured
Query Language), which has been designed for the retrieval and management of data
in databases. Queries allow one to select, insert, update, and locate data, elc in a
database. For a particular query, the database returns a result set listing the rows
with the requested information. The resulting rows can also be filtered to return the
exact information required. SQL is the foundation for all popular database
applications available today. For an introductory tutorial on SQL, please consult
http://lwww.w3schools.com/sdgl/default.asp. An example of the SQL script for
extracting data from the database into the MATLAB workspace is found in the
Open_all_data.m script file (Appendix C).

As is stated previously the database is at the core of the entire research project. The
database forms the interface between the plant with the PLC and SCADA system on
one hand, and the neural network processing software, MATLAB (Matrix Laboratory)

261

on the other (Figure 7.3). The database contains the historical plant data from the
Athlone wastewater treatment plant and the weather data from the Cape Town
Weather Service. The outputs of the neural network are also stored in the database.
The software used for the database is MySQL® version 5.0.4.

The MySQL® database software falls into the category of those programs that are
regarded as freeware. This means that one is able to operate and use the software
freely without the need of a license. The MySQL® database software has become
one of the most popular open source databases due to its consistent fast
performance, high reliability and ease of use. The MySQL database suite of products

consists of ;
*« MySQL Query Browser 1.1.10
= MySQL Administrator 1.0.21
= MySQL Server4.1.11

DB Manager Professional 3.0.3a

The DB Manager Professional is one of the most powerful applications for data
management and is used to set up and manage the database functions.

The connection between the MySQL database, MATLAB and the Adroit SCADA
system, is made using the ODBC protocol. ODBC is a2 standard Application
Programming Interface (APE) éeveloped by the Microsoft Corporation that allows one
{o connect to a data source (logical name for a data repository}, for example, a
MySQL database. This APl allows databases created by various database
management programs {o be accessed using a common interface independent of the
database file format. With an ODBC connection, one is able {o connect to any ODBC
compliant database from any ODBC compliant software platform. ODBC defines a set
of function calls, error codes and data types that can be used to develop database
independent applications. ODBC is usually used when database independence or
simultaneous access to different data sources is required. Please refer to Appendix
E.3 for the procedure to set up the ODBC connection.

The MySQL database window displayed in Figure 7.7 is the DBManager Professional
application that allows the operator to inspect the various databases and tables that
are configured here. The user is able to extract certain information from the fields
within the different tables, or import or export data, or perform other management

functions, should it be required.

262

7.7

f He fdt. Vew Fomet Management Tods Window Help
FUB& X P HY-DOP 6K

/%3 Workspace | BB MySQUElocahost (wastewaker.plart_weather_data) 1

Figure 7. 6: The MySQL database is shown with the tables with the data for the Athlone
WWTP influent variables and the weather data

Neural Network Software algorithms

As stated previously all neural network algorithms presented in this work are
implemented using the Neural Network Toolbox for use with MATLAB ®, Version
4.0.6, (R14SP3). The MATLAB™ version used is MATLAB Version 7.1.0.246 (R14)
Service Pack 3. (Demuth et al., 2004). A standard deskiop computer with Windows
XP as an operating system is used to implement the programs.

MATLAB™/SimulinkTM is a general high-level language for technical computing that
includes a large library of predefined mathematical functions. There are
approximately 40 toolboxes for use with MATLAB available that extend the MATLAB
environment to solve particular classes of problems.

Simulink is an add-on software product to Matlab for modelling, simulating and
analyzing any type of dynamic system. Matlab and Simulink are fully integrated,
meaning that all functionalities of the MATLAB toolboxes are available in the Simulink
environment as well. Simulink provides a graphical user interface for building models
as block diagrams and manipulating these blocks dynamically. A large number of
predefined building blocks are included and it is easy to extend the functionality by

creating custom blocks or new ones,

The Neural Network Toolbox facilitates the implementation of neural networks in
MATLAB. The toolbox consists of a set of functions and structures that handle neural

263

networks, so it is not necessary to write programs for all activation functions, training
algorithms, etc. that we want to use. The nntoo/ command shows a graphical
representation of the neural network structure. This interface is similar to the Simulink
interface.

The neural network program is executed when the operator clicks on the NN program
button in the Adroit SCADA GUI, or types the ‘NN_GUI' command in the MATLAB
workspace. The user can select the type of NN required and the influent disturbance
that needs to be predicted (Figure 7).

fluent Disturbances:

Eiman Recurrent Neural Netwo ke Radial Basis Function NN
Modei 2 M Select Neural Ketwork Model - NN B B Sclect Neural Network Model -
Salect Neural Network Model : : i o o
Modal 1 £ e i = et % -
Select Neural Network Model g i Select Neural Network Model M
Select Neural Network Model -/ % Select Neural Network Model ~

:

Figure 7. 7: The MATLAB GUI for the Neural Network program for prediction of the
influent disturbances

Upon execution of the program, 7 figures are displayed (Figure 7.8). These include:

the training phase showing the error being minimized;

the scatter-plot of the network response o the training data;

the scatter-plot of the network response to the test (validation) data;

the instantaneous error between the desired target and the network response;
the plot of the desired target and the NN response;

regression plot for the training phase; and

regression plot for the validation phase.

264

[Dot P
o 6k S KR
&n T

;:msui LRReR e QuYg
nmimmm.mmw

N Y Y

Figure 7. 8: The plots illustrate the training, validation, and NN response 1o training
validation data, and network performance

When executing the script files in the MATLAB editor or workspace, the order of
execution for the files is:

Open_all_data.m
Preprocess.m
raw_norm_inputs.m
Train_{st_data.m
Feedforward.m
Elman.m

RBF.m
Postprocess

XN E W

The descriptions of the MATLAB script files for use in the implementation of the
neural network prediction algorithms are summarized in Table 7.1. A selection of the
implemented MATLAB software algorithms together with a description of variables
used is presented in Appendix C. The flow chart describing the neural network
software algorithm development is given in Figure 7.9.

265

Table 7. 1: MATLAB script files and the functional description in the development of the
NN program for the prediction of the influent disturbances of COD, TKN and influent

Flow rate
Filename Description
Open_all_data.m This file establishes communication between MATLAB and the

MySQL database. All raw wastewater freatment influent plant and
environmental weather variables are loaded info the MATLAB
workspace. These include COD, TKN, flow rate, minimum and
maximum temperature, rainfall, and wind speed.

Correlation_Coefficients.m | This file caiculates the correlation coefficients between the
different input variables of influent disturbances, COD, TKN, flow
rate, minimum and maximum {emperature, rainfall, and wind
speed. This measure gives an indication of the relationships
between the variables and aid in eliminating redundant variables.

Preprocess.m in this file the raw data variables are normalized using a scaling
method of dividing them by the maximum value. This ensures that
all variables remain in more or less the same range so that and no
one variable appears to be more important than another. This also
ensures that all input variables io the NN are normalized to a
value not greater than +1.

raw_norm_inputs.m In this file the normalized data is divided into an input and target
output set. Alsg the time-delayed inputs for influent variables are
set up here.

Train_ist_data.m The data is divided into two sets, & training and test (validation)

set. Two thirds of the entire data set is used for training and one-
third for validation. Every third sample is exiracted for validation.

Feedforward.m Here a feed-forward NN is designed with a specified number of
parameters such as the number of hidden layers, neurons, and
epochs, training algorithm, mean square error goal, and the
activation functions for the hidden and ouiput layers. The NN is
trainad and simulated with the training data. The validation phase
follows and the NN is simulated with the test data.

Eiman.m The design of an Elman recurrent NN is implemented with a
specified number of parameters such as the number of hidden
layers, neurons, and epochs, training algorithm, mean square
error goal, and the activation functions for the hidden and ouiput
layers. The NN is trained and simulated with the training data. The
validation phase follows and the NN is simulated with the test
data.

RBF.m A radial basis function NN is designed where the sum of square
error goal and the spread constant of the Gaussian activation
function, is specified. The NN is trained and simulated with the
training data. The validation phase follows and the NN is
simuiated with the test data.

Postprocess.m All data variables are denormalized and the NN performance is
calculaied. The regression coeeficient, determination coefficient,
and absolute percentage error are calculated

Activation.m This script file plots the various activation functions such as the
hard limit, bipolar hard limit threshold, logarithmic sigmoid
function, hyperbolic tangent function, radial basis function and the
pure lingar function.

Std_min_max.m In this file the calculations for the minimum, maximum and
standard deviation values, are performed.

Components.m Calculates the COD and TKN influent components using the UCT
model special coefficients

NN_GULfig The GUI for the NN program. Three different NNs topologies are

developed: MLP, ERNN and the RBFNN. Three NNs, one for each
influent disturbance of COD, TKN and flow rate is also developed.

266

L.oad wastewater Select number of Measure NN
plant influent.and hidden layer Predictive
. -weather variables .- > “ o'neurons and Performance
i l epochs .
Normalize all data l 4
Retry Connection to variables Select the Save all variables
Database : activation functions : to.an Excel
, and training: .~ - Spreadsheet
+.algofithm . .

Select the Inputs o
-the Neural Network \ 4

Train the Neural
- Network .. Calculates the COD

e — and TKN
- components

Partition the data . A 4

Check ODBC setup
DNS in Control
Pane

into.Training and Simulate the NN
Test sets .. response to the
B - “applicationofthe

Test XYa'id?EFQh): set

Initialize. all weight
- and biase:

Denormalize all
variables

Figure 7. 9: The software flow diagram

267

78

Real-time implementation algorithm

7.8.1 NN retuning and calculation of the new predicted values if COD, TKN, Flow rate

The following procedure is implemented weekly:

1. The operator checks the database every Monday morning at 8h00 to ensure
that the input data for the inflow COD, TKN and flow is saved.

2. Theoperator acquires the weather data and sends it to the database.

3. Ifthe data is saved properly, the operator starts the GUI for prediction of the
COD, TKN and flow for the next week.

4. Thetype of NN is selected.

5. The MATLAB program for training the NN is started.

6. The resulting weights are checked; if they differ +/- 10% more than the oid
weights, the old weights are selected from the database.

7. The prediction of the COD, TKN and flow rate is calculated using the selected
weights.

8. The operator checks the results for predicted COD, TKN and flow. If they differ
by more than +/- 10% from the corresponding measured values for the last 2
weeks, the old values are used.

9. The resuits are sent to the database and displayed on the Adroit window.

10. The procedure is repeated every week.

7.8.2 Calculation of the inflow COD and TKN components

When the operator accepts the new predictions, the program for calculation of the
COD and TKN is started. The obtained values of the concentrations of all
biodegradable and non-biodegradable components are sent to the MySQL database.
With this step the tasks for prediction of the influent disturbances are completed. The
software for process simulation, state and parameter estimation, optimization and
controller design then reads the obtained values.

In this way the repetitive calculation of the influent disturbances every week forms the
basis for the adaptive optimal conirol strategy of the activated sludge process. -

The period for prediction is one week, but it could very easily be made a couple of
hours if the special model of the hourly, daily and weekly change of the inflow
concentraiions around the measured weekly average value is accepted (Olssen and
Newell, 1999). Then the contro!l strategy could be adjusted also according to the

diurnal vanations of the influent variables.

268

7.9

The real-time implementation algorithm is based on the old historical data with new
values for the influent disturbances from the laboratory measurements and from the
flow sensors, weather data from the weather bureau and the current month of the
year, added every week. The new data is added to the training data set first and then
to the test (validation) set. In this way the number of data points in the sets is growing
which leads to better results from the prediction and better generalization when the
number of data points reaches some limit (10 000). Some of the oldest data points
are removed from both sets.

Summary of the chapter

The chapter provides an overview of the real-time implementation strategy for the
project. The pilot plant at CPUT is presented together with the PLC program for
acquiring data from the process sensors. The SCADA system implemented in Adroit
is coupled to the MySQL database using the ODBC protocol. The complete software
algorithms are presented in Appendix C, while the connection and wiring diagrams
are presented in Appendix D. Appendix E presentis the conversion of the formats into
the MySQL database format.

Chapter 8 provides the conclusion to this work and provides future direction to the

project. \

269

8.1

CHAPTER EIGHT

CONCLUSIONS AND FUTURE DIRECTION OF RESEARCH

Conclusion

The problem statement spells out quite clearly the need for effective control of
wastewater treatment plant processes particularly the activated sludge process. The
effect that the influent disturbances of COD, TKN and influent flow rate have on
effectively controlling the ASP is highlighted.

The problem that the implemented neural networks are required to solve is the
prediction one step ahead of the influent disturbances of COD, TKN and influent flow
rate on the' basis of historical measurement of these disturbances, weather conditions
and the month of the year. The data inputs are represented as time series in order to
incorporate the dynamic character of the environment and influent behaviour. Three
NN architectures are investigated to solve this problem, namely the multilayer
perceptron with delayed inputs, the Elman recurrent NN and the radial basis function
NN. The resuits of the performance of the neural networks are provided in Chapter 6.

The resuits show all three lypes of neural networks exhibited very similar {orecasting
behaviour, although the impression is obtained from the literature survey that one
type of architecture is better than the other. One of the definite differences between
the three types of neural networks is the speed at which the different networks are
trained. Some types of neural networks are however suited to particular types of
problems (Haykin, 1999) and perform better than others. The differences between the
multilayer perceptron and the radial basis functions are noted in Chapter 5.

The inputs to all three types of NN are varied to include combinations of the influent
disturbance, delayed influent disturbance, other influent disturbances, environmental
variables of temperature, rainfall and wind speed, and month of the year data. The
input combinations are reflected in Chapter 5, Table 5.1, Table 5.2 and Table 5.3 as
Model 1 till Model 13.

The first set of results in section 6.2 pertains to those for the COD influent disturbance
variable as the output. The results for the COD neural networks show that all three

.types of neural network are unable to respond well to the input training data, and the

generalisation performance of the networks are also compromised. Upon application

of the test set, the regression coefficient r, the coefficient of determination r? and

270

the absolute percentage error for the difference between the desired target output
and the NN output, indicate that the NN for COD at the cutput is not able to solve the
given input-output mapping problem well. Despite rigorous experimentation by
increasing the number of neurons gradually up to a maximum of 80, and the number
of epochs up to a maximum of 10 000, the NN did not perform any better.

The second set of results in section 6.3 pertains to those for the TKN influent
disturbance variable at the output. The results for the TKN neural networks show that
all three types of neural network are again unable to respond well to the input training
data, although the results are an improvement to that obtained for the CCD neural
networks. Once more the generalisation performance of the networks are poor as the
NN gives a poor representation of the underlying training data.

The third set of results pertains to that of the influent flow rate variable at the output
and is presented in section 6.3. This time there is a marked improvement in terms of
the predictive performance of all three types of NN. The regression coefficients for the
fest or validation phase are on average throughout all the various input combinations
at a value of approximately 0.85. Similarly the coefficient of determination has
increased to a value of approximately 0.72. Although these figures are not too bad,
the absolute percentage error is above 8%. This indicates that the neural network’s
generalisation ability although not poor when compared with the fraining regression
figures, is still not acceptable. Additional experimentation on all three different
architectures did not yield an improvement on performance for the neural networks for
the influent flow rate variable.

The final set of results in section 6.4 is a comparison of the effect that increasing or
decreasing the number of epochs and number of neurons in the hidden layer, has on
the network performance. Also the effect that training a NN to convergence has on
the generalisation ability of the network are presented here. Networks that are over-
frained tend to learn the noise patterns in the training data set as well.

The fact that the neural networks could not solve the problem well indicates that:

= the problem is non-deterministic and the NN will never solve it; or

» the input data is not representative enough of the process.
These two reasons according to Masters (1993) are the only fwo in his opinion why
neural networks are not successful. The first reason is the most likely option and is
the experience of many NN practitioners whom the author has spoken to has been
that the real-world applications are the most difficult to solve.

271

8.2

Additionally the quality of the wastewater treatment plant data may be another factor

1o consider. The experience of many plant operators and engineers has been that

often plant equipment fails, and at times data is then erroneously reported,
sometimes unknowingly. The problems encountered at wastewater treatment plants
are reported in Chapter 1. The current situation in Cape Town, South Africa is that
there are around 43% of the “manned” plants that have some sort of SCADA system
as reported in Chapter 2. This advent of monitoring and control by introduction of an
automation system might positively contribute to earlier fault detection and may
decrease the incidence of faulty equipment and a lack of reliable reported data.

Thesis results and application of the results

Scientific and application resuits are obtained as a result of the research done on the
problem for development of a model for the dynamic behaviour of the wastewater
treatment plant influent variables (COD, TKN, Flow rate) as a result of influence of the
weather conditions (temperature, wind, rainfall) and the season of the year (month).

The scientific resulis can be stated as follows:

1. The wastewater treatment monitoring and control is considered and the role of
the influent variables as the treatment process main disturbances is stated.

2. The problem for the development of the mathematical model for the dynamic
behaviour of the wastewater treatment plant influent variables is analysed,
and according to its characteristics a probiem for prediction of the influent
variables is formulated as a problem for development of a neural network type
and its structure.

3. Analysis of the existing types and structures of the NNs is done according to
the requirements of the formulated problem and 3 types of NN are proposed
to be used:

= Multilayer perceptron network with delayed inpuis
= Elman recurrent network
» Radial basis function with delayed inputs

4. A procedure for preprocessing of data for the NN training and validation is
developed on the basis of analysis of the existing approaches in the literature.

5. MLP with delayed data is developed for one-step ahead prediction of the
influent COD, TKN and Flow rate. Thirteen (13) different variants / structures
of the network are created on the basis of variation of the type and the number
of inputs (Model 1 — Model 13).

6. Elman recurrent network is developed for on-step ahead prediction of the
influent COD, TKN and Flow rate. Thirteen (13) different variants of the

272

network are created on the basis of the same as in point 5 variants of the input
data (Model 1 - Model 13).

7. Radial basis function network is developed for on-step ahead prediction of the
influent COD, TKN and Flow rate. Thirteen (13) different variants of the
network are created on the basis of the same as in point 5 variants of the input
data (Model 1 - Model 13).

8. The generalized conjugate gradient method is applied in an innovative way to
organize the training process in all variants of the developed NNs.

9. Different variants of the NNs are developed and compared with those
previously developed according to the number of the hidden layers, number of
hidden layer neurons, number of epochs, and training to convergence (over-
training).

10. MATLAB software is written to implement ali tasks for pre-processing of data,
training, validation, analysis of the solutions and graphical user interface.

The application results can be stated as follows:

1. Data from the Athlone wastewater treatment plant for the influent variables
and from the weather bureau is gathered and processed.

2. Hardware structure of the control system for pilot wastewater treatment plant

~is developed where, the physical connections between the components of the
system (plant, sensors, transmitters, PLC, PC) and their calibration is done.

3. Data acquisition system for DO, pH, conductivity, temperature and turbidity is
developed using the sensors, transmitters, PLC, PC and MySQL: database.

4. Adroit SCADA system is developed for data acquisition, monitoring and
calculation of the predicted values of the influent disturbances.

5. Communication between the software platforms Adroit, MATLAB and MySQL
is established in order to solve the problems for the influent COD, TKN and
Flow rate prediction in real time. A GUI is developed to implement the tasks
for communication and prediction.

8.3 Application of the obtained results
The developed NN models for prediction of the influent disturbances have the
following positive characteristics:

the structures of the NN are simple, with one hidden layer and do not require
complex calculation;

the time for the training of the networks is short;

the scaled conjugate gradient method application leads to test and stable
convergence to the minimum of the least squares error; and

it is able to solve nonlinear real-world problems.

273

8.4

8.5

On the basis of the above the applicability of the results could be considered in the

-following directions:

as a basis for further development of the theory for prediction of the influent
variables for WWTP;
- as an expert system for the advice of the operator in the municipality WWTP;
- as areal-time toolbox of the existing SCADA systems in the WWTPs; and
- as a tool for future postgraduate student’s projects at university.
Implementation of the developed software in the municipality SCADA systems can be
done very easily because these SCADA systems are built using Adroit sofiware and
Modicon PLCs. Then the operation of the process done according to the predicted
values of the influent disturbances will lead to adaptive control of the aeration,
corresponding to these disturbances and as a result will reduce the power needed for

control.

The solution of the problem for development of the mathematical model for dynamic
behaviour of the influent disturbances according to the influence of the weather
conditions and the season of the year is the first attempt in the scientific and research
literature so far. The results give knowledge for the connection of these groups of
variables and the methods and software for its acquisition.

Future research \

The research has shown that neural networks are a viable option to consider for
prediction of the influent disturbance variables to a wastewater treatment plant.
However the effective implementation may warrant additional research. The literature
research and the opinion of other more experienced neural network practitioners have
indicated that a hybrid network might be the solution. This might include other soft
computing options such as a fuzzy-neural network, or a neural network combined with

a genetic algorithm.

Publications related to the thesis

1. Kriger, C., Tzoneva, R. 2005. *Neural Network Structures for Prediction’.

~ Postgraduate Control Systems Day, Pretoria.

2. Kriger, C., Tzoneva. R. 2007. “ A Neural Network model for contfo! of
wastewater treatment processes, NOLCOS 2007, DVD ROM.

3. Kriger, C., Tzoneva. R. 2007. “Neural Networks for Prediction of Wastewater
Treatment Plant Influent Disturbances”, Conference Proceedings of ‘IEEE
AFRICON' Windhoek, Namibia, DVD ROM.

4. Kriger, C., Tzoneva. R. 2008. “Development of a NN software sensor for
prediction of the wastewater treatment process variables”, [EEE Control
Systems Technology (submitted to journal).

274

APPENDIX A

275

WITH

SUPERVISED
LEARNING

v

Feedforward

Feedback!”

Competitive

¢ Linear
= Hebbian'
* Perceptron’
Adaline®

= Higher order*
* Functional link’

* MLP®
= Backprop’
® (Cascade
* Quikprop’
= RPROP"
» OLS"
CMAC"”
e Classification
» LVQ"
« PNN
¢ Regression
. GNN]G

—

APPENDIX A
TYPES OF NEURAL NETWORKS

¢ BAM'"
¢ Boltzman Machine'®
e Recurrent time series
= Elman®
= FIRY
* RTRNN%.
* TDNN®

ARTMAP*

Fuzzy ARTMAP?
Gaussian ARTMAP?
Counterpropagation®’
Neocognitron®

WITH
UNSUPERVISED? \:&I}{{g&z
LEARNING
Competitive Dimension Autoassociation
Reduction®!
- * Hebbian®
L Oja43 h 4
- Se}nger‘“ » Hopfield*”
» Differential * Various networks for
i ® Hebbian optimization®

s Vector Quantization

Grossberg™®
Kohonen®!
Conscience’?

A4

Kohonen*
GTM*
Local Linear®

ART1

= Linear
Autoassociation®

= BSBY

» Hopfield®

ART2Y
ART3%®
Fuzzy ART®

Figure A. 1: Well-known types of Neural Networks

276

OENDIO A WN -

N wd b d D d wd ok ad o wd
DWONO K WN O

NN
W N -~

WN NN MNNN
QWO D

W W W
W N -

L I
~N O b

3 W
«

(4 I A o o N
QOO NDOWN - O

Hebb (1949), Fausett (1994)
Rosenblatt (1958), Minsky and Papert (1969/1988), Fausett (1994)

"Widrow and Hoff (1960), Fausett {1994)

Bishop (1995)

Pao (1989)

Bishop (1995), Reed and Marks (1999), Fausett (1994)
Rumelhart, Hinton, and Williams (1986)

Fahlman and Lebiere (1990), Fausett (1994)

Fahlman (1989)

. Riedmiller and Braun (1993)

. Bishop (1995}, Moody and Darken (1989), Orr (1996)

. Chen, Cowan and Grant (1991)

. Albus (1975), Brown and Harris {1994)

. Kohonen (1988), Fausett (1994)

. Specht (1990}, Masters (1993), Hand (1982), Fausett (1994)
. Specht (1991), Nadaraya (1964), Watson (1964)

. Hertz, Krogh, and Paimer (1991), Medsker and Jain (2000)

. Kosko (1992), Fausett (19894)

. Ackley et al. (1985), Fausett (1994)

. Elman (1990)

. Wan (1980)

. Williams and Zipser (1989)

. Lang, Waibel and Hinton (1890)

. Carpenter, Grossberg and Reynolds (1991)

. Carpenter, Grossberg, Markuzon, Reynolds and Rosen (1992), Kasuba (1993)
. Williamson (1995)

. Hecht-Nielsen (1987; 1988; 1990), Fausett (1994)
. Fukushima, Miyake, and lto (1883), Fukushima, (1988), Fausett (1994)
. Hertz, Krogh, and Palmer (1991)

. Grossberg (1976) ;

. Kohonen (1984)

. Desieno (1988)

. Kohonen (1995), Fausett (1994)

. Bishop, Svensén and Williams (1997)

. Mulier and Cherkassky (1995) v

. Carpenter and Grossberg (1987a), Moore (1988), Fausett (1594)
. Carpenter and Grossberg (1987b), Fausett (1994)

. Carpenter and Grossberg (1990)

. Carpenter, Grossberg and Rosen (1991b)

. Kosko (1982)

. Diamantaras and Kung (19986)

. Hebb (1949), Fausett (1994)

. Oja (1989)

. Sanger (1989)

. Kosko (1992)

. Anderson et al. (1977), Fausett (1994)

. Anderson et al. (1977), Fausett (1994)

. Hopfield (1982), Fausett (1994)

. Hertz, Krogh, and Palmer (1991)

. Cichocki and Unbehauen {(1993)

277

APPENDIX B

278

APPENDIX B
SELECTED RESULTS OF INITIAL AND FINAL WEIGHTS AND
BIASES

This section provides the initial and final conditions for the weights in the neural
network for selected models. All weights are saved in Excel and are also imported
into the database. For the real-time implementation, the current weights are examined
for newly trained networks and the previous weights are considered before selecting
a new predicted resulit.

The tables below all have the following abbreviations:

init inp weights initial input weights

init out weights - initial output weights

Initial inp bias - initial input bias

Initial out bias - initial ouput bias

Final inp weights - final input weights (after training)
Final out weights - final output weights (after fraining)
Final inp bias ~ . final input bias

Final out bias - final output bias

b(1) - input bias

b(2) - output bias

279

B. 1: Feed-Forward Neural Network for COD - MODEL 1

- The input for model 1 is COD(k) and the output is COD(k+1).

Table B. 1: The initial inputs weights and biases for COD Model 1

peurons.

Initinp Jinit ot [Finatinp

- weightsjweights weights Meigl
3.195] 5.251 0.165) . K R
159751 16.579] -0.003] -1.004{ -15.975 -15.729 0.332 0.343
-15.748] -0.419] -0.9821 12475 14.580
-15.741 0.346 0.02 8.97 9.755
15.310) 0.916) 0.044 -547 -6.302
-15.520 0.533] -0.044] 1.97 3.97
33.003 0.828| -0.585 -31.951 -30.833 0.004 0.628
31.917} -0.543 0.659 -28.839 -28.974
-31.809 0.724) 0.166¢ 25.728 25.899
-31.233] 0.313] -0.149 22.617] 23.586
-32.379, 0.782 0.16. 19.506 18.968]
-31.245, -0.024] -0.13 16.395 17.756
-32.184] 0.985] -0.034] 13.284] 12.941
32.246f -0.253 0.0200 -10.17 -9.201
-31.766 0.063] -0.028 7.062] 7.749
-32.043] -0.637 0.213 3.951 3.286
-5.689 0.317f -0.106 1.795 1.840 0.727] 0.389
-16.740; 0.027! 1244 1597 15.752 -0.18. 0.337}
16.993| -0.574] 1.212] -12.475 -15.66
-15.946{ -0.793 0.026 8.975 9.84
-15.446] -0.685] -0.044 5.475 6.354]
15.735; -0.185] 0.043 -1.975 -4.030
33.199 0.122] -0.964 -31.951] -30.907 0.644 0.667]
-31.828| 0.232] -1.02 28.839 29.14
-32.007] 0.324, 0.251] 25.728 25.640
-30.986 0.233] -0.2321 22617 23.93
-32.959 0.370, 1.314 19.506 19.642
30.403 0.020 1.305 -16.395 -18.09
32.350 0.428| 0.035 -13.284] -12.974
-32.221 0.030) 0.025 10.173 9.28
31.558 0.212 0.0700 -7.062 -8.565
-32.098, 0.933 0.247] 3.951 3.13

280

B. 2: Feed-Forward Neural Network for COD - MODEL 2
The inputs for Model 2 are COD(k) and COD(k-1) and the output is COD(k+1).

Table B. 2: The initial inputs weights and biases for COD Model 2

ey

J lcona1) lcony

Hid

Hid _InitinplFinal inp Fina
neuron: ~weightsiweights wei
1.614] -0.763 .] I . .
4310 6.325| -1.7200 0688 0.161 -4.048] -4.257] -0.320 0.424
-6.382] -3.530] -6.263 -0.65 00400 7.096] 7.37
-6.016{ 3.659] -6.263] -0.658 -0.153 0.929f -0.063
2420 62500 2097] 0989 0217 -3.549] -2.667
-5608 -4.191| -5.881] -0.12 0.157 2558 2.98§
6.051] -9.206] 5571 -0052 -0.341| 5766 5282 -0.943 -0.189
8.027] -6.973(7421 0818 0349 2725 2748
-10.499(-0.051] -10.676] 0.1920 -0.687 8.217] 8.404
-10.087] -2.354] -10.04% 0342 0.849 8.55 9.250)
9410 4.860] 8.891] -0044] 0.028 -8.141 -8.20
3.463] 9636] 3161 0194 0023 -65646 -6.65
-7.890] -7.429] -7.922 0677 -0.058 6.572] 5.475
-7.540] 6.016] -7.66 0659 0.131 2621 3.167]
-7.017] 7644] 6543 0.9 0678 3.047] 3.872
-3.1430] 9679] 2942 0491 -0.133 0.716] 1.013
2939 0688 0529 0531 1323 -2437] 0673 0.098 -0.665
-0.154f 8.161] -0.342 0371 0.415 -7.080] -6.5271 0175 0.460
-4037] 6.227] 4678 0217 -0.258 -2.732] -1.609
-1.061] -7684] -1.879 -06500 -0.028 4551 3.001
4466 -5.891] 4408 0242 02400 -0.795 1.092]
-6.002| -0.567] -6.8200 -0.508 -0.073 2.505] 3.322
10.466{ 0.697] 10.9000 0.866] 0.762] -10.587] -10.170 -0.428 -0.278
9447 3145 10603 0427 -1.118 -11.072 -10.62
6.741] 8753] 6.0290 -0.544] 0.127] -10.487] -10.606
-10.465] -0330| -10494 -0.101] -06974 7639 8.028
9.127] -4618] 8353 -0.656) 0.223 -1.679 -1.487
6.390] -8.121] 9.47 0938 -0.194 0.528] -0.623
10.426] -0.001] 10465 0289 -0.254] -6.494] -7.022
9462 -2482] 9718 09020 -0.053 5.160{ 6.359
7538 -7610] 7.396 0511 -0.861 -3.603] -4.082]
0.657] 10.077] 0875 0790 0.086] -1.596{ -0.768

281

B. 3: Feed-Forward Neural Network for COD - MODEL 3

The inputs for Model 3 are COD(k), COD(k-1), COD(k-2), and the output is COD(k+1)

Table B. 3: The initial inputs weights and biases for COD Mode! 3

k2) [COD(K) [COBlk-A) IcOB(ke2) ICOD(eH) CODkH) B(T
piFinalinp iFinal Inp Finalinp linitout = Final out initial inp 1
elghts \weights * weights - weights - weights . bias . . ,
-0.966) -0.661] -0.705 -0.091] -0.654 0.893] -0.058 0.810
-3.76 4.451 1,999 0475 0.132 -0.018] -0.212 0.585
-2.183 -0.148 2554 0.733 -0.2200 1.315 0.645
0.6171 3.424 3.481 09821 0.721] -4.344 -6.949
1.158 0.850 5.749 0.008 0.120; -2.245 -2.218
3.165 -3.907, 1.681 0.258 0.059 0.787] -0.082
4.3900 -3.776) 3.735] -0.027] -0.488] -4.752] -4.959 0.891 0.121
-3.271] -2.823| 5.300 0.501 -0.137] 3.179) 3.783
-1.646) 4.515 5.269 -0.748) 0.085] -2.178) -1.793
-4.453 -0.191] -4.738(-0.914 -0.456] 6.233] _ 6.797
5457 -4.121 1,798 -0.258] 0.066] -1.277] -0.575
1.391 4.351 4.953 0.387] -0.265 -5.601] -6.618
-1.187] -6.392] -2.995 0.872) -0.084 5.03 5.120
6.5900 2.614 0.698] -0.045 0.00 -3.548 -3.128
-1.533 6.745 2.616] -0.742 0.154 -6.131] -5.82
6.506 -1.731] -1.723] -0.032] 0.243 1.266 1.523
0.842 0.572 0.604] -0.914 1.266) -0.891 0.506) -0.042 -0.675
-5.670 -2.177 2.432 0.694] -0.347, 4.810 5.759) 0.096 1.602
-0.271 4.368 4.260 0.284 2.212] 6472 -7.605
2.018/ 4.057 3.207| -0.643 -0.312] -3.811 -6.45
0.320 2.330 2.152 0.059 0.185 -4.165 -2.075
3.656/ -2.011] -2.577] -0.56 1.114 4.279 2.800;
-6.442 1694 2.145) -0.07 -0.553) 3.409] 4.264 -0.695 1.757
-4.878 3.768 1.646] 0.600 0.273 0.634 1.340
1.61 -4.844 4.362| -0.421 0.093] -2.936] -3.945
-0.181] -5.137] -5.209 0.390| -2.542 6.693 9.276
-3.675 3.789 4.814] -0.481] -0.047| -2.202] -1.610f
-3.699 4.336] -3.37 0.426 0.093 2.374 3.602
65389 1.420(3.980] 0.441 0.098] -5.049] -4.303
-1.790] 4.331 3.297, 0.467] -1.403 -4.799 -5.60
-4.639 5.626| -0.207] 0.245 0.128] -2.809 -2.481
-4.954 0.821] -5.100 0.980] -0.263 2.285) 1.309)

282

B. 4: Feed-Forward Neural Network for COD - MODEL 4
The inputs for Model 4 are COD(k), COD(k-1), COD(k-2), COD(k-3), and the output is COD(k+1).

Table B. 4: The initial inputs weights and biases for COD Model 4

(k) COD(k1) [cO JICOD(K) . IcOD(k-1) [COD(k-2) ICOD(k-3] [COPK*1) COD(KH) 1)
Initing piFial inp [Final inp. [Final inp. Final inp: [init-out: Final‘out:initial inp
_ Weig eights’ weights® ﬂ‘w;vélghts“i. weights . weights | weights blas -
1 500 -1.110[-2.269 -0.668 -0.43 -0.364) -0.351 0.2311 -0.867] 0.686
1.679] -3.462 2.369 -3.91 1.346) 3.257) -0.728] -1.028] -3.407
4.056 1.165 3.691 -0.81§ 1.479 3.565 0.510 0.765 -5.587]
2.373 2.986 3.089] 2.886] 1.369 1.687 -0.374, 0129 -1.85
-0.089 -3.001 -0.394f -3.891 1.122 2.471] -0.073 1478 -2.440
3.423] -1.890 3,253 -1.708 -0.269] -1.305 -0.321 0.521 2.830, .
1.432 3.579 2.033] 4.085 -3.227 1.56 0.561] -0.377] -4.689 -5.211] -0.960, -0.054
3.236] -1.993 3.5931 -2.385 2.778 1.631] -0.347] -0.566] -6.145| -6.838
4.829 0.661 4.572 1.206) -3.377] -0.514] 0.477] 0.424 -2.529] -3.667
-0.995 2.539 0.126] 2.203 0.817| -4.257} -0.125 -0.382 1.765| 3.351
-0.808, 2.943 -2.082 3.305 3.949] -1.260] 0.184 0.150 -2.445 -0.732
3.776] -3.527 4.452| -2.836] -1.923 2.668 -0.771 0.09 -0.389 -0.332
1.257] -4.408 2.016] -4.485 -2.520 1.052] -0.362| -0.073 3.619 3.473
4.200 3.401 3.347 3.838(-2.271 1.618] 0.244 0.03 -2.920{ -2.886)
3.295| -2.722 3.829, -1.668 4.220 0.328] 0.789 0.329 -0.856 0.038
2444 -3.733 2.960] -2.668] 2.160 3.623 0.927] -0.061 0.327 1.753
-0.306] -1.111 0.601 0.390(0.330 0.316 0.897] 1.506(-1.670 0.602) -0.097] -0.863
0.228] -4.584 -0.218] -4.146 1.645 1.118, 0.192 0.75 -0.890 -1.151 0.604 1.138
3.209 0.414 5.328 0.236 0.833] -2.184 0.564] 0.176] -4.486] -4.477
-0.535 4.157 -1.636} 5374 -2.112| -0.148 -0.933 0.57 -3.119 -0.591
-2.860 2.602 ~2.930) 6.513 -2.871| -0.27Y 0.714 -0.412] -0.813 -0.375
4.222 1.114; 3.506 0.316 3.108 0.397| 0.365] 0.111 -0.588] -1.705
1.757| -4.003 2.78 -4.110] 3.433] -0.65 -0.040, -0.003] -3.428 -3.19 0.039 0.723
2.891} -2.723 4.464 -3.587] -1.007| -2.638 0.934 -0.24 0.988| -0.362
3.109] -2.496 3.715 -2.11 2.959] -2.872 0.567] 0.13 -2.214 -2.676)
2.918 3.172] 4.813 0.027] -2.694| -3.16 -0.181 0.274 -1.348] -1.941
0.441] -0.835 2.445 -0.57 -1.102] -4.314 0.915 -0.668 1.056 4.395
-0.191 0.358 -0.463] 0.425 -3.479] -3.755 -0.606 0.13 4.240f 4.369
-0.514 3.815 0.970, 4.87 -2.018 2.382 0.059) 0.086] -2.493] -2.873
2.259] -2.243 2.124] -4.208; 2.040 3.190] 0.008, 0.090] -2.408 -1.314
-3.789 1.295 -3.039 0.51 -3.098 3.10 -0.033 -0.131 0.66 0.143
0.453] -3.483 0.008 -3.12 4.546| -0.037] -0.245 0.362 2.197| 2.818

283

B. 5: Feed-Forward Neural Network for COD - MODEL 5
The inputs for Model 5 are COD(k), COD(k-1), COD(k-2), COD(k-3), TKN(k) and the output is COD(k+1).

Table B. 5: The initial inputs weights and biases for COD Model 5

COD(1) ICOD(K-2)" [COD(K-3): [TKN(K) - [COD(k#1) ICOD(Kk+1)-[b(1)
.InitinpFinalinp: IFinalinp: [Final inp: [Final inp Final inp {Initout . Final out.
- weightsweights weights - weights . [welghts . welights - weights ' weights': bias: . .
-0.83 0.154 0.102] 0.138 0.098 0.114 0.827] 1.229; 1.042, 0.130 -0.680]
2.484] -3.080 -0.530 3.647] 0.560] 1.438 -0.241 0.740] 1.184] 1.441 0.640
-1.660§ 3.359 1.439) -0.809 -0.515 -2.117 0.806 1.045 -2.783 -3.373
-3.182 1919 0.148{ -0.259] 2.677| -3.029 0.887] -0.086] -1.191 -1.911
1.224 -3.036) 1393} -3.863] 0.244 2.135 -0.052 0.418 0.672] -1.002
-0.756(-4.215 0.569) -1.0600 -1.969 0.416(-0.964 -0.166 2.882 1.827|
-3.20 -2.392) -0.050) -D.474 2.627] -2.526 0.904 0.542 5.418 6.238] -0.423] 0.087
3.233] 0.742 1.160] -3.472] -1.926 2527 -0.819 -0.364 -2.611 -3.208
2.568] -0.147 0.062 -3.016) -3.112 2.564 0.643 0.374 4.234 3.950)
2.94 0.355 -2.506 1.92 2.234 3.005 -0.553 0.673] -4.481 -5.04
-2.91 -0.637 1.180) 0.094] -4.120] -2.661 0.999 0.068 3.915 4.18
-0.154 -2.959 2,750 -3.259, -1.513| -0.646 -0.479 -0.063 1.633 1.883
-1.445 -3.788 2.607] -0.233 -0.842] -2.797] -0.539 -0.19 0.40 0.240
-2.986) 0.199 2.628] 1.578] 1.021] -2.249 0.05 0.181 -1.756] -2.929
-1.650] 1.024 3.760] -3.086{ -0.249| -1.645 0.121 0.263, 1.703 2.081
1.559(-2.810 2.347] -1.566) 1.681 2.150] 0.65 0.617 -3.720] -3.553
2.261 -0.128] -0.088] -0.115] -0.081] -0.095 -0.5311 -1.341] -0.313] -0.047] -0.744 0.065
-3.123] -0.835 1.835(-0.356] -3.464] -1.461] -0.589 -0.449 0.007] 0.773 0.470 1.629
0.670 0.246] -1.755 -0.735 2.753 1.436) 0.721 -0.419 -0.307 0.088
1.947] -0.163 4.031] -0.839 0.5085 2.446] -0.485 0.019] 4.222 -4.111
-2.213| -2.42 -0.432 4.359] 0.460 -1.653 -0.445 -0.080 1.181 -1.190
0.607] -2.735 0.495] 0.582 2.594 5.294 -0.424 1.1891 -5.724 -7.369
2.00 -1.716} 2.244) 3.5635 2.860 3.02 -0.648 0.753| -8.405_ -8.958 0.513 2.598
-0.169| -4.846 -0.637| 1.552] 1.927] -0.5100 -0.864 -1.078 1.848] 4.209
0.497] -5.120] 1.919 4.305 0.919] -2.239 -0.381 0.35 -1.389 1.432
2.353 -2.291] -1.564] -0.062] -3.770 2,729 -0.330% 0.154 3.521 3.541
0.787] -2.131 1.648, -3.022] -1.576 0.33 -0.248) -0.291 1.706) 1.478
-2.292 1.388 0.469 2,492 3.203] -2.597] 0.904 0.103] -3.022] -3.032
-2.55 -0.221 2.224) 4.310 2,324 -2.191 0.43 -0.113[-2.429 -2.610
1.233 0.333 0.121] -3.482] -2.671] -0.868| 0.559 0.160 3.960 4.564
3.091 1.764) 3.283(-3.279 -0.048 0.916] 0.23 0.136 -2.291] -1.709
-0.962 2.859] -2.756) 3.771 -0.873] -1.664 0.298 -0.901 1.853] 2.214

b

*initial out

284

B. 6: Feed-Forward Neural Network for COD - MODEL 6
The inputs for Model 6 are COD(k), COD(k-1), COD(k-2), COD(k-3), TKN(k), FLOW(k) and the output is COD(k+1).

Table B. 6: The initial inputs weights and biases for COD Model 6

) FLOW(K) lcOD(K) _ IcOD(k-1) ICOD(k-2) ICOD(k-3). [TKN(Kk].- FLOW(K). [cOD(k*1) ICOD(K+1) ()
. InitinpFinal inp [Final inp [Final inp: Final inp_ [Final inp_ Final inp_ [init out - Final out: linitial inp. Initial.out
i eights ' weights' Wwelghts: welghts . jweights . weights - welghts' waights. - plas. - oblas
1 5001 -1.902 -1.662 1.330) 0.221 0.118(-0.115] 0.186) 0.123 0.149 0.437 0.729 0.722] -0.143 0.741 0.316
5 0.928 -3.177| 1.842| 0.172) -0.047| -0.525{ -1.648 -3.287 0.502 0.088 -0.303] 0.419) 0.527] -0.292 0.145
-0.172 -1.983 2.561 1.52 1.830] -2.003 1.833 -2.470 0.154 -0.387| 0.069] 0.387] -0.768
2.232 1.375| 2.904 -1.737 0.270 -1.340 2.399 1.494 0.345] 0.293, 0.069 0.334
-1.998| -2.659 2.171 1.719) 2.424 -0.176{ -3.029] -4.471 -0.309 -1.001 0.631 4.214)
2.630] -0.893] -2.486| 1.347] 2.431 0.230] 2.501} -0.759 0.961 -0.763] -4.531] -4.552
2400 -1.701 2.087] 1.327] -2.243] -2.317 2.020 0.317] -0.637] -1.202| -2.714 -2.896| -0.165 0.230
2.761 2.855] 1.562 2.794, -0.998 -1.259 2.578 2.373 0.559) 0.552] -5.019 -5.717
2.189] -2.528] 2.569 2.562 -1.266f -0.622 1.957] -2.826 0.619; 0.729] -3.508] -4.225
-2.451] -0.446) -0.502 2124 0.107] -3.451] -2.865| -0.691 0.44 0.116] 3.250 3.815
3.511] -2.502) 0.774f -0.720] -1.563] 0.587] 3.798] -2.134 -0.909] 0.094 0.773 1.070
3.044(0901 -0.522] -0D.698] 4.050 0.25 2693 0.812] 0.227] 0.028) -4.781| -5.077
-3.449 1.808] -0.560) -2.862] -1.526] 1.416] -3.266 1.704 -0.330) 0.044 2.30 1.916)
-1.608] -1.569] -1.382 -2.851 2.824] -0.335 -2.226| -1.906{ 0.168 -0.052] 1.518] 1.933
-2.300 0.194 2.7370 -0.914 3.619 1.321] -1.937 0.587] 0.826 0.135 -0.990f -0.312
0.834] -1.395] 24371 1.748 -3.12 1.968 1271 -1.1590 0.003] 0.031] -0.34 -1.079
-1.804| -0.938] -0.162] -0.085 0.083] -0.136 -0.090] -0.109 -0.753 -1.050] 0.381 -0.0568 0.762f 0.147
2.227| -1.788 -0.151 -1.426 2416 -1.311 0.903] -2.289 0.525 0.242] -2.854 -1.872| -0.057] 2.135
1.723 0.276] -2.428(-2.366 0.738] 0.052 -0.120| 1.90 -0.857] -0.451] -0.068 3.742]
1.528] -2.704] -3.554 0.440! 3.797, -1.762] -4.091] -0.752 0.436(-0.101] -0.389 1.118]
2.258| -2.032 1.963 0.092] -3.006] -2.387 0.806| -2.81 -0.719] -0.140 1.813 1.057|
-1.810f -2.072] 3.022 -1.260 1.465] -0.651 -2.493] -5.74 0.231] -1.2095 4.855] 7.397!
0.254] 0.623 0.273 2.454, -2.287| 3.344 0.238 1.021 0.796] -0.467| -4.804 -5.017] 0.974 0.073
2.518 1.351 2.292 2.796) 3.136 0.182] 2.457, 1.664 0.506| -0.078 -8.072] -7.686
-2.321 1.444] -4.478 1.434] 1.295 2,425 -1.270] 0.570| -0.695 0.164] -0.226 0.854]
-2.163 1.531 0.6377 -0.303 5.029] -0.333] -1.238 3.177 0.431 -0.298] -5.191] -4.242
0.542| -2.663] -1.843] -0.236 0.030, -1.125 -1.710{ -2.068 0.683] 0.450; 3.165 4.519
-0.246| -0.609| 1.851 -2.154 3.792] -1.302] -0.149 0.231 0.567] -0.342| -0.757] -0.547
-0.630] -2.441 -2.87 -2.359] -1.427] -0.594 -1.502| -4.015 0.996] -0.665) 5.833 8.529
-2.584] 2.037 -1.415 1.543[-2.567] -1.172] -3.196 2.182 0.172] -0.205 1.186) 1.335
-1.233, 2.503] 3.252 -0.810 4.073] -0.447 0.076 2.123] -0.278 0.442] -2.606| -3.908
3.741 -1.40 1.656 1.186) 2.136) 1.921 3.140] -2.041 -0.252] -0.222} -2.681} -2.804

285

APPENDIX C

286

APPENDIX C
SOFTWARE ROUTINES

This section from C.1 to C.11 presents all the implemented MATLAB software algorithms
that are used in the development of the neural network prediction routines for prediction of
the influent variables of COD, TKN and flow rate. The three NN topologies are the
muttilayer perceptron feed-forward NN, the Elman recurrent NN, and the radial basis
function NN. The descriptions of the different script files are presented in Chapter 7, Table
7.2.

C. 1: MATLAB script — Open_all_data.m

% Establishes a connecticn to the MYSQL database and

% retrieves ALL plant and weather data.

% The DATABASE toolbox for use with MATLAR is used

%

% conn - Returns a database connectiocn object

% curs - Returns a cursor object

% m - Returns the data at the cursor position

% ced - Chemical oxygen demand - WWTP variable

% tkn - Total khejdahl nitrogen - WWHTP variable

% flow - Influeht flow rate - WWTP variable

% mintemp - Minimum temperature - weather variable

% maxtemp - Maximum femperature - weathexr variable

% rain - Rainfall - weather variable

% wind - Wind speed - weather variable

% menth - Month data - weather variable

% database - MATLAB function to connect to an ODBC database
% exec - MATLAB function to Execute a SQL statement
% and cpen the Cursor

% fetch - MATLAB function to import data into MATLAB
% cellZmat - MATLAB function to convert the contents of a
% cell array intc a single matrix

%

% Cape Peninsula University of Technelogy

% C.Kriger

%

December 2007

o

Establishing the connection with the DB
Inserting the username and password for the DB

o

%
% Using the 3QL script to select the COD data from
% a table named ‘plant_weather_data’

conn = database('athlone', 'root','admin’);

curs = exec{conn, ‘select COD from plant_weather data');
curs = fetch(curs):

m = curs.Data;

cod = cell2mat(m); % Converting the cell array tc a matrix
cod = cod';

clear m;

287

% Retrieve all TKN data from database
curs = exec(conn, 'select TKN from plant_weather data');

curs = fetch(curs);
m = curs.Data;

tkn = cell2mat (m);
tkn = tkn';
clear m;

% Retrieve all Flowrate data from

database

curs = exec(conn, 'select Flow from plant_weather data');

curs = fetch(curs);
m = curs.Data;

flow = cell2mat (m);
flow = flow';

clear m;

% Retrieve all min_tewp data from
curs = exec(conn, ‘select Mintemp
curs = fetch(curs);

m = curs.Data;

mintemp = cell2mat (m);

mintemp = mintemp®;

clear m;

% Retrieve all max_temp data from
curs = exec(conn, 'select Maxtemp
curs = fetch(curs);

m = curs.bData;

maxtemp = cell2mat (m);
maxtemp = maxtemp';
clear m;

database
from plant weather data');

database
from plant_weather_data');

% Retrieve all rain data from database
curs = exec(conn, 'select Rain from plant weather data');

curs = fetch(curs);
m = curs.Data;

rain = cell2mat(m);
rain = rain';

clear m;

% Retrieve all wind data from database
curs = exec{conn, ‘'select Wind from plant_weather data');

curs = fetch(curs);
m = curs.Data;

wind = cell2mat(m);
wind = wind';
clear m;

% Retrieve all month of &
curs = exec(conn, 'select §
curs = fetch(curs);

m = curs.Data;

month = cell2mat (m);

month = month';

clear m;

Cos

he year data from database
4
in,

from plant weather data');

% Close all open database connections and clear variables

close (conn);
clear conn;

clear curs; ¥ End

288

C. 2: MATLAB script — Correlation_Coefficients.m

o

Calculation cf the Correlation Coefficients between the input
variables

o

corrcoef - MATLAB function to calculate the correlation
coefficients

all variables are normalized {gscaled}. This does not affect

the

inherent relaticnship existing between variables

oF o° o° a°

o

o® o

Cape Peninsula University of Technology
C.Krigex
Dec 2007

N A e

%$Correlation between COD and TKN
cod_tkn_corr=corrcoef (cod, tkn)

$Correlation between COD and Flow
cod_flow_corr=corrcoef (cod, flow)

%¥Correlation between COD and maxtemp
cod_maxtemp_corr=corrcoef (cod, maxtemp)

$Correlation between COD and mintemp
COD_mintemp_corr=corrcoef (cod, mintemp)

$Correlaticn between COD dnd rain
COD_rain_corr=corrcoef (cod, rain)

$Correlation between COD and wind
COP_wind_corr=corrcoef (cod, wind)

$Correlation between TKN and Flow
tkn_flow_corr=corrcoef (tkn, flow)

%Correlation between TKN and maxtemp
tkn_maxtemp_corr=corrcoef (tkn, maxtemp)

$Correlation between TKN and mintemp
tkn_mintemp_corr=corrcoef (tkn, mintemp)

$Correlation between TKN and Rain
tkn_rain_corr=corrcoef (tkn,rain)

%Correlation between TKN and wind
tkn_wind_corr:corrcoef(tkn,wind)

$Correlation between FLOW and maxtewmp
flow_maxtemp_corr=corrcoef (flow, maxtemp)

%Correlation betwsen FLOW and mintemp
flow_mintemp_corr=corrcoef (flow, mintemp)

$Correlaticn between FLOW and Rain
flow_rain corr=corrcoef (flow,rain)

$Correlaticon between FLOW and wind

289

fldw_wind_corr:corrcoef(flow,wind)

%Correlation between maxtemp and mintemp
maxtemp mintemp corr=corrcoef (maxtemp,mintemp)

%$Correlation between maxtemp and Rain
maxtemp_rain_corr=corrcoef (maxtemp, rain)

%Correlation between waxtemp and wind
maxtemp_wind_corr=corrcoef (maxtemp, wind)

%Correlation between mintemp and Rain
mintemp rain corr=corrcoef (mintemp, rain)

$Correlation between mintemp and wind
mintemp_wind_ corr=corrcoef (mintemp, wind)

¥Correlation between rain and wind
rain_wind_corr=corrcoef (rain,wind)

% End

290

C. 3: MATLAB script —- Preprocess.m

% Preprocessing of all inputs

% The month data is already processed by wmeans of a sin/cos pairx
% The values range from -1 to +1

%

% Scaling of all input variables with their MAXIMUM value

% CoD / 2954

% TKN / 116.5

% Flow / 200

% mintemp / 19.357

% rain / 21.443

% wind / 24.728

%

% cod niorm - COD value scaled by its maximum value

% tkn_norm - TKN value scaled by its maxXimum value

% flow_norm - FLOW value scaled by its maximum value
% mintemp norm - Minimum temperature value scaled by its
% maximum value

% rain_norm - Rainfall value scaled by its maximum value
% wind_norm - Wind speed value scaled by its maximum
% value

%

% Cape Peninsula University of Technology

% C.Kriger

% Decewmber 2007

cod_norm = cod/max(cod);

tkn_norm = tkn/max(tkn);

flow_norm = flow/max(flow);
mintemp_norm = mintemp/max (mintemp) ;
rain_norm = rain/max(rain);
wind_norm wind/max (wind) ;

% End

291

C. 4: MATLAB script — raw_norm_inputs.m

o

Determining the inputs te the NN

%

% 11 - Inputs - [COD, (COD-1}, (COD-2}, {COD-3), TN, Flow,
% Month({sin/cos},

% Mintemp, Rain, Wind]

% 1 - target - {[COD + 1}

% C.Kriger

% Cape Peninsula University of Technclegy

% December 2007

% COD-1 is declared (654)-start at index 3 ->654
g = 3; '
for i1 =1:654

cod_1(1,1i) = cod_norm(g);

i=1i+1;
g = g+1;
end
% COD-2 is declared {654) -start at index 2 ->654
j=2;
for k =1:654
cod 2(1,k) = cod norm(j);
k = k+1;
J o= 3+1;
end !

% COD-3 is declared (654} -start at index 1 ->6354
1=1;
for m =1:654
cod_3(1,m) = cod_norm(l);
1 = 1+1;
m = m+l;
end

% Specifying the raw inputs which are used

rawinput = [cod_norm; tkn norm; flow norm; month; mintemp_norm; rain norm;

wind_ norm] ;
% The inputs are declared (654} - Start at index 4 -> 657
for a = 1:8

h=4;

for b = 1:654

pla,b) = rawinput(a,h);

h = h+1;

end

a = a+l;
end

% Aadding delayed inputs for COD
o = a;
for q = 1:654

plo,q) = cod_1(1,q);

292

q = g+l;
end
o = a+l;
for q = 1:654
p(o,q) = cod 2(1,q);
q = g+l;
end
o = a+2;
for g = 1:654
plo,q) = cod_3(1,q);

qa = q+l;
end
% The target COD+1 is declared (654} - Start at index 5 -»658
d = 5;
for ¢ = 1:654
t(l,c) = rawinput(l,d);
C = C+1;
d = d+1;
end

% Clearing all variables not needed
clear a;
clear b;
clear c;
clear 4;
clear e;
clear f;
clear g;
clear h;
clear i;
clear j;
clear k;
clear
clear
clear
clear
clear

Q0B F e

% End

293

C. 5: MATLAB script — Train_tst_data.m

o

Partitioning the data into a TRAINING and TEST set

% Training set - 2/3 of total input data set

% Validation set - 1/3 of total input data set

%

% iitst - Test set generated by every 3rd sample
% iitr - Training set generated from the

% lst and 2nd samples

% pLy - Input vector for the TRAINING data set
% ttr - Target vector for the TRAINING data set
% tst_p - Input vector for the TEST data set

% tst_t - Target vector for the TEST data set

%

% The TRAINING set has 436 data points

% The TEST set has 218 data points

%

% Cape Peninsula University of Technclogy

% C.Kriger

% December 2007

iitst = 3:3:654; % Test set generated from every 3rd sample
iitr = [1:3:654 2:3:654}; % Training set generated from ist and 2nd

o

Training data randomized

ptr = p(:,iitr); % Input training set
ttr = t(:,iitr); Yoy Cutput target set
tst_p = p(:,iitst); % Input test set

a0

tst_t = t{(:,iitst); Output target set

% End

294

C. 6: MATLAB script — Feedforward.m

o

Design a feedforward NN with 1 input, ! layer of hidden neurons

% with 3 neurons and 1 target output neuron

% Use a tan-sigmoid transfer function for the input and hidden

% layer and a pure linear transfer function for the cutput laver -
% Train the network using the Scaled Cocnjugate Gradient algorithm
% C.Kriger

% Cape Peninsula University of Technology

% December 2007

neurons = 10 % Number of hidden layer neurons

net = newff ([minmax(ptr)], [neurons 1],{'tansig’, ‘purelin'}, 'trainscg');
net.layers{1l}.initFcn="'initnw';
net.layers{2}.initFen='initnw';
net = init(net);
net.performFcn='mse’;

Initialization of network

ae

net.trainParam.epochs = 1000; % Maximum no. of epochs
net.trainParam.show = 50; % No. of epochs to display
net.trainParam.lr = 0.6; % Learning rate
net.trainParam.mc = 0.5; % Momentum term

init_in weights = net.IW{1,1}; % Determining the initial input weights

init_out_weights = [net.LW{2,1}(:)];% Determining the initial output
weights

init_in bias = net.b{1}; ' % Determining the initial input bias
init_out_bias = net.b{2}; % Determining the initial output bias

% Training the network with Scaled conijugare gradient algorithm
[net,tr] = train (net,ptr,ttr);

% Saving of figure and training data
saveas (gcf, 'trainscg err', 'fig');
save txr tr;

in_weights = net.IW{1,1};
out_weights = [net.LW{2,1}(:)];
in_bias = net.b{1l};

out_bias = net.b{2};

Determining the final input weights
Determining the final hidden weights
Determining the final input bias
Determining the f£inal output bias

A% o0 a° o

% Simulating the network with the same inputs used to train the network
ttrsim = sim (net,ptr);

% Plotting input and target

figure(1)

hold cn

title('Training inputs (normalized)} and target output’);
xlabel ('Time in weeks');

ylabel (*COD normalized!);

plot(ttr, ‘o', 'markersize',K3);

plot (ttrsim, **', 'markersize',3);

legend ('Training-Data', 'Network-Response');

hold off

saveas (gcf, 'Train_inp targ', 'fi
Y=[{ttr(:),ttrsim(:)];

f‘)

Lo

295

% Determining the minimum training errcr and epcchs
min_tr_err=tr.perf(1,size(tr.perf));
min_tr err = min_tr_err(1,2)

epochs=tr.epoch(l,size(tr.epoch));
epochs=epochs (1, 2)

% Simulating by applying the test set
tstsim = sim (net,tst_p);

% Plotting test set input and test set expected outputs
figure (2)

hold on

title('Test inputs {(normalized} and network response');
xlabel ('Time in weeks');

ylabel ('COD normalized');

plot(tst_t, 'o', 'markersize',3);

plot (tstsim, '*', ‘markersize',3);

legend ('Test-Data', ‘'Network-Response');

hold off

saveas (gcf, 'Test _inp net_resp', 'fig')
X=[tst_t(:),tstsim(:)];

% End

296

C. 7: MATLAB script — RBF.m

o

Design a RBF NN with 1 input, 1 layer of hidden neuronsg

% and 1 target output neuron.

% Use a Guassian transfer function for the input and hidden layer
% and a pure linear transfer function for the output layer.

% Plot the inputs and targets for the TRAINING and TEST data sets
%

%

% geal Brror goal for the SSE performance

% functio:

% spread Spread constant for the Gaussian function
% net Created Radial basis function NN

% tr Training performance and epochs

% in_weights weights between the input and hidden laver
% after training

% cut_weights Weights between the hidden and output

% layer after training

% in_bias Bias at the input after training

% out_bias Bias at the output after training

% tr Input vector for the TRAINING data set

% ttr Target vector for the TRAINING data set

% ttrsim NN output after simulating with the

% TRAINING inputs

% epochs Number of training iterations

% min_tr_err Minimum training errox

% tst_p Input vector for the TEST data set

% tst_t Target vector for the TEST data set

$ tstsim NK output after simulating with the TEST
% inputs

%

% Cape Peninsula University of Technology

% C.Kriger

% December 2007

goal 1 % Error goal for SSE

= .7
spread = 0.5;

e

K3

% Spread coastant for Gaussian function

Creating a new radial basis function network

[net,tr] = newrb(ptr,ttr,goal, spread);

saveas (gcf, 'trainscg_err', ‘fig');
save tr tr;

N

Determining the

final input weigh
Determining the £

i ts
inal hidden weights
inal input bias
final output bias

_ in_weights = net.IW{1,1};
out_weights = [net.LW{2,1}(:)];

in bias = net.b{1};

out_bias = net.b{2};

o

o°

Determining the
Determining Lhe

i

% Simulating the network with the same inputs used to train the network
ttrsim = sim (net,ptr);

%¥Plotting input and target

figure (1)

hold on

title('Training inputs (normalized} ané target output');
xlabel ('Time in weeks');

ylabel ('FLOW normalized')};

297

plot(ttr, ‘'o', 'markersize’,3);

plot{ttrsim, '*’', 'markersize',3);

legend ('Training-Data', 'Network-Respcnse');
hold off

saveas (gef, 'Train_inp targ', 'fig')
Y=[ttr(:),ttrsim(:)];

%Determining the minimum training error and epochs
min_tr err=tr.perf(l,sizel(tr.perf));
min_tr_err = min tr_err(1,2)

epochs=tr.epoch(l,size{tr.epoch));
epochs=epochs (1, 2}

% Simulating by applying the test set
tstsim = sim (net,tst_p);

% Plotting test set input and test set expected outputs
figure (2)

hold on

title('Test inputs {(normalized} and network response');
xlabel ('Time in weeks');

ylabel ('FLOW nocrmalized’);

plot(tst_t, 'o', 'markersize',3);

plot (tstsim, '*', 'markersize',b3);

legend ('Test-Data', ‘'Network-Response');

hold off

saveas (gef, 'Test inp net resp', ‘fig')
X=[tst_t(:),tstsim(:)];

%

% End

298

C. 8: MATLAB script — Postprocess.m

e

Denormalize the inputs and perform a linear regression between
inputs and expected target output

4

oL

C.Krigexr
Cape Peninsula University of Technology
December 2007

&0 o¢

[

net out = tstsim*max{cod); Denormalizing) network ouiput
expected_target_out=tst_t*max(cod); % Denormalizing expected target

%Absolute percentage error
APE= (abs (expected_target_out-net_out)/(expected_target_out)*100)

% Linear regression {Correlation) calculated and plotted
figure(3)

hold on

Im,b,r] = postreg(net_out,expected target out);
title('Linear correlation coefficient - Validation data ');
hold off

saveas (gcf, ‘'postregression', ‘*fig');

% Calculating the error on the test set and plotting it
err=(net_out-expected_target_out);

figure (4)
plot{err)
hold ¢n
title('Test Set Erxrcr Plot');
hold off

avg_tst_err=mean(err)

saveas (gcf, ‘'Test_err', *fig')

i

¥Plotting net cutput and predicted ocutput

figure (5)

set (gcf, ‘'color', 'white');

plot (net_out, 'b.-', ‘DisplayName', 'net out', ‘'YDataScurce’, 'net_out');
hold on

title('Network response to Validacion Set!, 'FoniSize', 12, 'FontWeight',
‘Bold');

xlabel ('Time in weeks', ‘FontSize', 12, 'FontWeight', ‘'Bold‘');

ylabel ('COD denormalized {mg/l}', ‘'FontSize’, 12, 'FontWeight', 'Bold');

plot (expected target_out, 'rx-', ‘markersize',6, 'DisplayName’,
rexpected _target out', 'YDataSource', ‘expected_target_out');
legend('Actual Predicted out',’'Target outpub');

hold off

saveas{gcf, ‘Test_pred ocut', 'fig')

% Linear regression (Correlation) calculated and plotted
figure(6)

hold on

[ml,bl,r_tr] = postreg(ttr,ttrsim);

r tr

r .

title('Linear correlation coefficient - Training data ');
hold off

saveas (gcf, 'postregression train', 'fig');

299

<

% Saving initial weights
save init_out_weights init_out weights
save init_in weights init_in weights

%Saving initial bias

save init_in _bias init in bias
save init_cut_bias init_out_bias
% Saving final weights

save in_weights in_ weights

save out_weights out_weights

%$Save f£inal bias

save in_bias in bias

save ocut_bias out bias

% SBaving all data variables to an Excel spreadsheet

txt={char('Hid layers', 'Hid neurons', 'Train algorithm', 'Input
activation', ‘'Output activation', 'Epochs', 'Performance', 'Min train
err','Learn rate', 'Momentum’, 'r_ train',

'r_test','R_sqg train','R_sq test',‘'Avg test_err','APE')];

txt = cellstr(txt)'; :

Data.hid= (net.numlayers-1) ;
Data.hid neurons = neurons;
Data.train='trainscg';
Data.activ_in= ‘'tansig’;
Data.activ_out='purelin’;
Data.epoch=epochs;
Data.perf='MSE*; .
Data.min_err = min_tr_err;
Data.lr=net.trainParam.lr;
Data.mc=net.trainParam.mc;

outp_weights=[init_out_weights, out_weights];

Weights=[init_in weights, in_weights,outp _weights, init_in_bias,in_bias];
Out_bias={init_out_bias, out_bias];

txtl=[char('Init inp weights', 'Final inp weight', 'Init out weights', 'Final
out

weights’, 'Init_in bias','Fin_in bias', 'Init_out_bias', 'Fin_out _bias')];
txtl = cellstr (txtl)';

R_squared train = (r_tr*r_tr);
R _squared test = (r*r);

Result = [r_tr; r; R_squared_train; R_squared_test; avg tst_err;APE]';
data=struct2cell (Data)';

SUCCESS = xlswrite('Data.xls',txt, 'Sheetl', 'Al‘);
SUCCESS = xlswrite('Data.xls’,data, 'Sheetl', 'a2');

SUCCESS = xlswrite(!Data.xls',Result, ‘'Sheetl’, 'K2');
SUCCESS = xlswrite('Weights.xls',Weights, f‘Shest1:', *A2');
SUCCESS = xlswrite('Weights.xls',txtl, 'Sheetl’', 'Ai‘');

SUCCESS = xlswrite('Weights.xls',Out_bias, ‘Sheetl?!, 'AA2');

300

C. 9: MATLAB script - Elman.m

N

Design an Elman RNN with 1 input, 1 layer of hidden neurons with
5 neurcons and 1 targe: outpuft rneuron

Use a tan-sigmoid transfer function for the input and hidden
layer and a pure linear transfer function for the cutput layer

m

Train the network using the Scaled Conjugate Gradient algorithm

a0

o0 o o

net = newelm((minmax(ptr}l,[5 11, {'tansig’, 'purelin'}, ‘trainscg’

net = init(net); % Initialization of network
net .performFcn='mse’;

net.trainParam.epochs = 450; % Maximum no. cf epochs
net.trainParam.show = 10; % No. of epochs te display

net.trainParam.lr = 0.001;
net.trainParam.lr_inc =1;

net.trainParam.lr dec = 0.1;

net.trainParam.mc = 0.5;

net.IW{1,1}=rand(size(net.IW{1,1})); $Random initialisation of input
weights

net.LW{2,1}=rand(size (net.LW{2,1})); % Random initialisation of hidden

layerl weights

init_in weights = net.IW{1,1}; % Determining the initial input weights
init_hidl_weights = net.pw{z,l};% Determining the initial hidden weights

% Tralning the netwcork with Scaled conjugate gradient algorithm
net = train (net,ptr,ttr);
saveas (gcf, ‘'trainscg err', ‘'fig');

in_weights = net.IW{l,1}; % Determining the final input weights
hidl weights = net.Lw{2,1}; % Determining the final hidden
weights '

% Sirmulating the network with the same inputs used to train the network
ttrsim = sim (net,ptr);

$Plotting input and target

figure (1)

hold on

title('Training inputs {(normalized} and target outpui');
xlabel ('Epochs');

plot(ttr, 'o', 'markersize',3);

plot(ttrsim, '#', ‘'markersize', 3);

hold c£f

saveas (gcf, 'Train_inp targ', ‘fig‘)
Y=[ttr(:),ttrsim(:}];

R_train = corrcoef (ttr,ttrsim) % Linear regression (correlation)on
input set

[m,b,r_tr] = postreg(ttr,ttrsim);

% Simulating by applying the test set
tstsim = sim (net,tst_p):

30

©,

k3

Plocting test set input and test set expected outputs

figure (2)

hold on

title('Test inputs {(normalized) and network response');
xlabel (‘Data points®);

plot(tst_t, 'ot!', 'warkersize',3);

plot (tstsim, '*', *‘markersize?,3);

hold off

saveas (gcf, 'Test_inp net resp', 'fig')
X=[tst_t(:),tstsim(:}];

R_test = corrcoef(tst_t,tstsim) % Linear regression ©

%

End of Elman Recurrent Neural Network program

302

C. 10: MATLAB script ~ Activation.m

% The various activation functions are listed below

% together with a graphical plot.

%

% The functions "tansig, logsig, hardlim, hardlims and purelin®
% are MATLAB functions

%

% C.Krigex

% Cape Peninsula University of Technology

% December 2007

% Plot of the hyperbolic tangent function
figure (1)

x=1linspace(-5,5,501);

y=tansig(x);

plot (x,y)

title('tansig')

xlabel('v*)

ylabel('a')

% Plot of the logarithmic sigmoidal functicn
figure (2)
x=linspace(-5,5,501);
y=logsig(x) ;
plot(x,y)
title('logsig')
xlabel(‘v')
ylabel('a')

% Plot of the positive threshold or hard liwmit function
figure (3)

x=linspace(-5,5,501);

y=hardlim(x) ;

plot (x,y)

title(*hardlim')

xlabel ('v')

ylabel('a')

% Plot of the symmetrical or bipolar threshold or hard limit functicn
figure (4) -

x=linspace(-5,5,501);

y=hardlims (x) ;

plot (x,y)

title('hardlims’)

xlabel ('v')

ylabel{'a’)

% Plot of the linear function
figure (5)
x=linspace(-5,5,501);
y=purelin(x) ;

plot (x,y)

title('purelin')

xlabel ('v')

ylabel('a’)

303

$ Plot of the radial basis function
figure (6)

%x=(-5:0.1:5);

y=radbas (x) ;

plot(x,y)

title(*radbas')

xlabel('v')

ylabel('a')

% End

304

C. 11: MATLAB script — std_min_max.m

o

e

Calculation cf standard deviation, min and max values

% minmax - MATLAB function teo calculate the minimum and

% maximum values from the rows of a matriz

% mean - MATLAB function for calculation of the average
% mean value

% std - MATLAB function to calculate the standard

deviation

A & o o

C.Kriger
Dec 2007

o0

[

cod_minmax=minmax (cod)
tkn_minmax=minmax (tkn)
flow_minmax=minmax (£f1low)
maxtemp_minmax=minmax (maxtemp)
mintemp minmax=minmax (mintemp)
rain_minmax=minmax(rain)
wind_minmax=minmax (wind)

% Mean calculations
cod_mean=mean (cod)
tkn_mean=mean {tkn)
flow_mean=mean{flow)
maxtemp_mean=mean (maxtemp)
mintemp_mean=mean (mintemp)
rain_mean=mean(rain)
wind_mean=mean{wind)

% Standard Deviation Calculations
cod_std=std (cod)

tkn_std=std(tkn)
flow_std=std(flow)
maxtemp_std=std(maxtemp)

mintemp std=std(mintemp)
rain_std=std(rain)
wind_std=std(wind)

% End

Cape Peninsula University of Technology

% Minimum and maximum value calculations

305

or

APPENDIX D

306

APPENDIX D
TECHNICAL WIRING OF THE PLC AND SENSORS

N2 N3 N¢ OUTY OuT? 4 discr. IN

/\/\/\/\/\/\

U4 IS1 U2e 182 U3s 15 Uks IS4 QVT QI QY2 Qe it 12 M ML 325 mA

—
9 W¥_w 0O & /-) nnnn[rj, f2stblow
2d,'ﬂjf:UT
UIf- e U2~ 124 US- B k- s Ag Ag Ag Ag 01 02 M- M- - fLs 54
Q.o s om lgDUll[l—E-l' tast-blow
11

> . =
External jumper

Current 3ensorto IN1 Voltage sensorto IN 4

24 VDC
24 VDC
Return

Figure D. 1: The Modicon PLC I/O Base wiring diagram

Description Address Range
Digital input 10001 - 10016
Digital Output 00001 - 0016
Analogue Input 30001 - 30016
Analogue Output 40001 - 40016
internal Coils ‘Status Bits’ 00017-015386
Internal Holding Registers 40017-41880

307

INTERCONNECT CABLE

JUNCTION BOX WITH
QUICK-DISCONNECT
RECEPTACLE

MEMBRANE D.0. SENSOR ::EZII

White ?

Shields ardBi ;:dx @

f B Yeliow e

@

Green @

Ol @

Red Q

SHIELD WIRES (TWO PER CABLE)

TWISTED TOGETHER AMD PLASTIC
WRAPPED TO PREVENT SHORTING

Figure D. 2: The Dissolved Oxygen sensor wiring diagram

308

1 White (-5 VDC)

2 Blue (+5 VDC)

3 Shield/Black

4 Yellow (Temp}

5 Green {Diagnostic)
6

7 Red (Signal)

T81

@

7)

PHRO-D-ESP: Dissolved 02

Y
&
S
Y
o
Y
S

OOooodgoo

White

) {-5VDC)

Blus
{(+5VDE)

) —

Shiald
Black

2-Wire Connaction

QSYEZLOV -4 (eHBS

Y ellow
emp)

Graen
Grourgd)

NG

14-30 VDC (lass 2 20mA max

Njojo|salwn]=
{506 manwal for 3, 4 Wire Comacions)}

N O[O AW N e

Red
{Signal}

B2
Ol |@
O] (@
Ol @
Ol @
O @
Of @
O @

@)

S)/

Figure D. 3: The Dissolved Oxygen transmitter wiring connector

i

White

|

Blue

|

Teinas Shiekt

[N}

1]

Yallow

SENSOR

ooooag
6000000

Graeh

1 White (Drive)

2 Blue (Drive)

3 Shield (Groubd)
4 Red (Temp)

5 Yellow (Ground)
6

7 Green (Signal)

Qutar Shield

To Earth Ground

Figure D. 4: The pH sensor wiring diagram

309

While

| |@] 1 White (-5 VDC)

Inner) 1@} 2

Shield and Black } | 1o 3 shicld/Black

[Yellow D |@1 4 Yellow (Temp)

 Green L] |@] 5 Green (Ref)
Ol (@] 6

| Red | |@] 7 Red (Signal)

__Outer Shield

> TO EAHTH GROUND

Figure D. 5: The Conductivity sensor wiring diagram

310

APPENDIX E

311

APPENDIX E
DATABASE AND CONVERSION INTO MySQL FORMAT

This section presents the conversion of the ASCIl text files and MS Excel files into the
MySQL database format. The procedure for setting up of the MySQL database is also
described.

1 Conversion of the ASCH text files into MS Excel
The procedure describes how the conversion from ASCIHI text into MS Excel is done.

s Open MS Excel

n Click File, Open

To display the text files select Al Files at the bottom of Figure E.1.
» Select Open

TR s T A
BRAVIIREOS - T AU B G L

Dela
Al _'j =}

G SN G - TR L] e T E OF oG HO 3 T T
i \ '

EN :

2 —

‘,: "’t* &

- e ans S e m QX .-
7. ey dry

B Jeape bover 2y

a. A s ol

g [Hiacenss Torom s PRGSO of

Fieirnas Turpwdars POTO4XM uds
& e all 1908 5508, 5

Figure E. 1: Load the text file into MS Excel

The Text Import Wizard window — Step 1 of 3 appears (Figure E.2)

312

Select the Defimited radio tab

Click Next

Select the Other option and enter the
E.3)

Click Finish

‘I character in the space provided (Figure

Ewi crviA Fadn Baadpr : s
%}w&wmwmwmw
DNl BAT Al

Bk B E

5., ﬁ % !li i]v;i»’, 1o §§};E;zgm

Food B LM

B

ot iegen Wiasd g T3 T

M%W“%”‘W%
Tre Toot Wswd N (Vs nwend i yisek SCa 0 Flond whids, '
¥ thia W oo, s burires m,vmn- mmhmm mnls
Wdﬂﬂm §) i
mm*mpm St Tl P Sy :

;: BB :au;u?w?m%\m, L Fafe
}'f
E
P

%": A ey e e e 15 tke "
g'*"mw Mnnﬁg&nMAtmﬂmmiﬂ
mmrptg-ou F T3 g jammm E
1§ mwscmmmmmnwwm e

z.

L ASHA
Parianm Laapasanies ui theb Avy jra YL

WHEBHN YT s aR

4

g

Figure E. 2: Text Import Wizard step 1

B s Ve Badd .

B B e tm,wm .

Nelg BRY FBOT
) e

b}

swwf

35 0 M e M

Th

i R

Raisaa oepiivss of e dm Lic MEd

i (T}
T e

Lo

Figure E. 3: Text import Wizard step 2

The text file is now converted and loaded in MS Excel (Figure E.4). Save the file with an

appropriate filename.

313

A Ux e bt bana fom Qua e
DEEe SRT AWBL
b

A kel

Aoy B R m B F T T T W
8 Taty Waarsar Serpmeoas (53 Sy b gk MU, Lo e ad il e m b
g L A1NY0E Loy BRI g Al o Eanated BLAL HTR ; ’
g Lray AW 23] MAR MR WY N A AE £ES T W M
o ' 43 #1 me ko3 - S ¥ i3] "y 1 14 531
L1 2 F T - ¥ 1953 LT =4 w2 3 a3 B
& Kl it £33 %% 4% 174 Y b 124 4 3 1 et
|2 & A% ki1 2% K 57 17y uy 13% a 239 P
(29 s) 34 ¥ PN 493 W i3 %48 &Y Ea BE
% |4 bl HE FE 123 (L] w51 %1 b e B U2
[T brf pei 4 mE Es 3 [M T 2 13 7y 4]
4 & ny sy oy me wr iy [N S Y s
e] A jd g x4 S (S Fd e 3 7 &
2] 1t ps] 2 B Mt s 3% (k] 16§ 5 [T 5
o i ng pt = H i 151 e EC N X e e
n: 7 bl We o pE W % 33 ¥ Y 4pd & 8
” 1 24 % =3 Wy BT T i i1 i) 2 -3
e) " xe E3 ne P I T - 3 | CEA- X) o3 F
M ™ wy on FES 22w i g wE EE 1 kif
ki 1 22 211 EIIC T A 163 Wy R g we &
75, &) B3 %3 B3 b g] %5 25 g s & Fag)
7. L) A7 M% %7 By s 15) 152 w3 aE .
™ [&] ™y HE X3 patd 177 WA g TEN HE: xR &7
m X k<14 nx Fol N 1 R 3 4 532 14 (7§] 14 w1 4
-1 by 2k Fal) 5 =y 12 (K 33] L TE I ¥ hi ¥} b1 %
Bt P o D 19 % 165 2y b wi HY X ny
B2 il 27 ¥ 2R b1 (L F 1 X} 124 HiA, My 3]
i P R4 25 kR dE Y pit] e Pt f 185 ik 3%
Bt x me Fal- k13 32 RS “ e oy me: ? T
=Y x 17 T3] 3y 1 £ ins (L ¥ mr bl ny
- g X5 X 4% wm? LR 5 LS T - i3 2% b3
ar r] oy Né 4y mE ity [E3 133 RT3] s F- 13
o8 = JEe - F233 e b 153 15y & wE X2 SE
® n e = k¥4 pek 7? LK w2 S P § fid e
. u T nE o~ mE o] e -~ D
nt i N [T .
4 W etter W7 ” St il . a5

Figure E. 4: Weather file in MS Excel format

2 Conversion of the MS Excel into the MySQL database format
Open the MySQL DBManager by clicking on the icon on the desktop.

= Right-click on the Databases folder and select Create Database (Figure E.5)

= Create an appropriate name.

» Click on the plus sign next to the Databases folder and select the newly created
database.

» Click on the Tools menu item and select Dafa Management, then select Import Data

(DAOQ) in Figure E.6.

Select the Microsoft Excel option from the Data Wizard window (Figure E.7).

Click Next.

Browse to the MS Excel file that is to be imported and select Open (Figure E.8).

Click Next.

Select Sheef1$ and click Next.

Click Next.

Select the correct database and click Next.

Click Finish

Click OK.

Click OK.

The MS Excel file is now imported and can be seen by selecting the database and viewing

the table with the exported data.

314

%

HENETE SR oh

mmi i

it

R T Bl Cigrdose: fiels
,A'&?Lii!.m‘ o4 B M- TICI e
T \LSRTSE oS S S T

N AR
Wos e .

o TP I sy

st

» Bt veespionsiod ariaa | tiress
= AN | K naismiiie
» i@ i
§3 sremms
% {3 Wiww
P Tre

Figure E. 5: Creating a new database

ﬁwm; e :y* SN

3 BAnoper Drates: emp&é

Mnmm
s S e
m”n‘ St e
mmrqmwm, ix mmm
Hiavse v Mg ?&xﬁ ’
Fimrewng oo f chimy » . . d
o i

Lo ;{',m‘ .}

Hg

ﬁeﬂem*“w |
wui*w“”m@ 2
IR ¥LE e e X B
Ch g

WL »
- B Wi

= @ Lo sk Sirsimes
= ;‘ﬁ me M)

& (7] Databasas L
; i?nm £} e
@ il waiberntar - Harre
S [| chusaesm
o Colation
| Fenene
| Defaithena

Figure E. 6: Selecting the menu item for importing the Excel data

315

Vheuds Maager)

o Coewrsrzian

Dutahisse D

— s

;g«rt m;«;mm
ot Daa{ran) T
gl Irmort Teat Worerd

Dupshess Docrrenter #hone
24 Dabsbiass Drsipee late3

Lot d

By bkt Pt kg 16

"mawrmmmww

m3*1g3~3g

e TANTE 5 R]

| patabase fath

$

Srrprnt Data Wicard
¥t 8 idpsmpen, Do yomeons MO mns,

ol A s PR WAALER,

rw
LRSS

& Dakakais Piekik
s Lrwiks Vil
© Lewae Ve Dk

o o S A e

O 2D S e 1t ik S A vk B aam—
a3 e agted
Smw Mmmtxféral i

ik i
i ‘ﬁ \dﬂuﬂ?s&*ﬂ

f 2 % oas
Vgised Fedn ok

{5 B WY ¥

ik e (R LT SET0

e Fads g

i prom Ty 3
ry $ilde
Brpewd
Boackaig
S

(R) e

a AL Irmprnt
d & ALY Fupird
% [gl g

Figure E. 7: Selecting the MS Excel option from the Data Wizard window

e s o
SRIEEFTE S B TRt RR TRY SE

i Lt

Trmpewt Dakts Wrewrd
gt Mrusdurs wed ks U MCrnl 00 dirivers, o vusreen: vz.sm
msz Rbwe, Tgurkr: Mm

o e .,m.;.mfﬁi\;:& o Dk :
5 O et Svews 1| Database [athi
P g’{\mmiriyﬂff\’&li - i
- »_gum»
+ §d ateaum dnd
e Trn Charadm 2n
Lk
Lt
Tadndk Shaus
e itk M
& Dk akess: Henide,
* Corade Ttk
* Crasie User Dusks

316

DAL G

Figure E. 8: Selecting the MS Excel file that ié to be imported

‘3;’
. R TR R 3 4
AU e e B BB I e e

ERRTE: '? e (3 eEes

PR W R WOERR R e
Wu.
W n——— 3 ey o S o
- W s e DBatabase [ath mmmmwm
- U wresi e WA e . % TR0 oo T 92 0w PR §
&« Liwdem ”“!%M Fawlin WAoo,
% £ sy
o R e _
. i3 - Py Uit il Gkt
N T 4ol mXEE B At sl S b
Cudaton - T
o £ s Vit DG utip
Flassoin
olpd Sfmm
TRMABIPAANE s
* Dububums Fiauks iaey
Loy Tohle ey F
* Losate Uiy ki Fib gt
Dbl
wak
ey
#* ha
o LI Loyt
T il Wik i il

Figure E. 9: Selecting the database where the MS Excel file is to be imported

' 3 ODBC and Database setup |

The ODBC properties are set up in the control panel. Please note that the following
procedure will not work if the MySQL database software with all relevant components are
not properly installed. The assumption is therefore made that the MySQL software is
already installed. The following section presents a step-by step guide to setting up the
ODBC connection to the MySQL database.

The first step is configuring the ODBC database connection

in the Windows Control Panel window double click on the Administrative Tools icon
(Figure E.10)

Double click on the Data Sotirces (ODBC) icon in the Administrative Tools window,
(Figure E.11)

Click the Add button in the ODBC Data Source Administrator window (Figure E 12).
Scroll down in the Create New Data Source window and select the MySQL ODBC
3.51 Driver (Figure E.13).

The user can enter a unique Dafa Source Name {DSN), Server, Username,
Password and Database name in the foliowing dialogue box. The successful
connection to the database can be confirmed by clicking on the Test button in the
Connector/ODBC Add Data New Data Source window (Figure E.14).

Click OK.

The unique DSN (athlone) should now appear together with the appropriate driver
(MySQL ODBC 3.51 Driver) under the User DSN tab (Figure E.15).

317

'@ RURPICTPREEVE E- . LY ree
B o g

((l-)) S Do, Mgz @¢ oo a0 et ey
a!muhtm g%uﬁkm

Figure E. 10: The Windows Control Panel

Figure E. 11: The Administrative Tools window

318

3 ODBC Data Source Adminkstiator
Uses DSN | Syatous 05N | Fils DSN | Divars | Tiacwg | Corrnotin Pooing | About
Uzer Daba Sooscar: : L

Maw | Brver * , i

BATE Fier Mr-toitt ellage Cver T

Evcel Fies Microsoft Exoel Ditves [* 42}

| M5 Access Datsbare Miciosor Access Daver [midh]

1
, 0 ODBC User doy 300 thores ifaomation sbadt how o corvnct to-
@ i ieicatend duy proaie Awaawxuumv&mm
Mcmc@kwedmhmm&m ;
S B e
i

Figure E. 12: The ODBC Data Source Administrator Window

Sct 8 v by which o ward b 21 0 4 das ot

Maew : v
Micresok DBG for Oracle :
Morouok Paadox Dvet i §
Moo Peadkia ?i@m% o1
1 phercsok Test Dt 7 1 m‘ﬁ
thorocok Teat Trmbey “ 1 * v
Morosnd Visual Fodi Dresr

g A
A ML OOBC 381 Diwer

SGL Swrvm

AR OB RN

ci [] Dt

Figure E. 13: The Create New Data Source Window

319

JODBC - Add Data Souncs b

Connector/DDBC

Ton | Comai s | A |

Dats Sousce Karse sthioos

Dancrghon :
Server locahax 4
Lo rook
Poiywond venn :
wdomaln L

Oatbuais

Figure E. 14: The Connector/ODBCAdd Data New Data Source Window

User DSN | system DSN | Fil DSN | Drvers | Tracing | Connection Pooing | About |

User Data Sources: e
i | Diiver [omda
MySQL ODBC 3 51 Driver v et
E Files Microsoft dBase Driver (*.dbf] = Remove: l
Excel Files Microsoft Excel Driver (*.xIs)
MS Access Database Microsoft Access Driver [".mdb} - Configure... i

An DDBC User data sotrce stores information about how to connect to
the indicated data provider.. A User data source is only visible to you
and can only be used on the curtent machine,

s
T
g

Cancel | oy Help . |

Figure E. 15: The ODBC Data Source Administrator Window showing the new MySQL driver

320

REFERENCES

Ackley, D.H., Hinton, G.F., and Sejnowski, T.J. 1985, "A learning algorithm for
Boltzman machines," Cognitive Science, 9: 147-169.

Adya, M., Collopy F. 1998. How effective are Neural Networks at Forecasting and
Prediction? A Review and Evaluation. Journal of Forecasting pp 481-495.

Ahmida, Z., Charef, A., Becerra, V. 2007. “Stable Nonlinear Receding Horizon
Regulator using RBF Neural Network Models”, Proc 14" Mediterranean Conference
on Control and Automation.

Albus, J.S 1975. "New Approach to Manipulator Control: The Cerebelia Model
Articulation Controller (CMAC),” Transactions of the ASME Journal of Dynamic
Systems, Measurement, and Control, September 1875, 220-27.

Alex, J., Ogurek, M., Jumar, U. 2005. Formalised Model Representation for
Wastewater Systems. Proceedings of 16" IFAC World Congress in Prague DVD
ROM.

Anderson, J.A., Silverstein, JW., Ritz, S.A., and Jones, R.8. 1977. "Distinctive
features, categorical perception, and probability learning: Some applications of a
neural model," Psychological Review, 84, 413-451. Reprinted in Anderson and
Rosenfeld 1988.

Anderson, J.A., and Rosenfeld, E., eds. (1988), Neurocomputing: Foundations of
Research, Cambridge, MA: The MIT Press.

Antognetti, P., Milutinovi¢. 1991. Neural Networks: Concepts, Applications, and
Implementations, Volume 1, Prentice Hall, Englewood Cliffs, New Jersey.

Arthur, R.M. 1982. “Application of On-line Analytical Instrumentation to Process
Control”. Proceedings of the First Annual Conference on Activated Sludge Process
Control. Ann Arbor Science Publishers, Michigan.

Barnett, M\W. 1989. Neural nets take on a dirty job, Gensym Corp. Cambridge,
Massachusetts.

Bartlett, R.E.1971. Design in metric wastewater treatment, pp 24-37

Bechmann, H., Nielsen, M., Madsen, H., Poulsen, N. 1988 “Control of sewer systems
and wastewater treatment plants using pollutant concentration profiles”, Water
Science Technology, Vol 37 No.12, pp 87-93.

Bellman, R. (1861), Adaptive Control Processes: A Guided Tour, Princeton University
Press.

Betteley, G., Mettrick, N., Sweeney, E., Wilson, D. 1824. Using Statistics in Industry,
Quality Improvement Through Total Process Control, Prentice Hall international (UK)

Lid.

321

Bishop, C.M. 1895. Neural Networks for Pattern Recognition, Oxford: Oxford
University Press.

Bishop, C.M., Svensén, M., and Williams, C.K.| 1897. "GTM: A principled alternative
to the self-organizing map,” in Mozer, M.C., Jordan, M.l., and Petsche, T., (eds.)
Advances in Neural Information Processing Systems 9, Cambridge, MA: The MIT
Press, pp. 354-360. Also see http:.//iwww.ncrg.aston.ac.uk/iGTM/

Bitton, G.1999. Wastewater Microbiology, Second Edition. pp 56

Brown, M., and Harris, C. 1994. Neurofuzzy Adaptive Modelling and Control, NY:
Prentice Hall.

Burton, M. 2008. “Neural Networks®, Course Notes. Rhodes University Department of
Mathematics.

Cannady J. 1998, "Artificial Neural Networks for Misuse Detection”. National
Infarmation Systems Security Conference.

Carlsson, B., Lindberg C.F. 1996. “Some control strategies for the activated siudge
process,” Systems and Control Group Uppsala University. Revised 1897, 1898.

Carpenter, G.A., Grossberg, S. 1987a. "A massively paralle! architecture for a self-
organizing neural pattern recognition machine,” Computer Vision, Graphics, and
Image Processing, 37, 54-115.

Carpenter, G.A., Grossberg, S. 1887b. "ART 2: Self-organization of stable category
recognition codes for analog input patterns,” Applied Optics, 26, 4918-4930.

Carpenter, G.A., Grossberg, S. 1980. "ART 3: Hierarchical search using chemical
transmitters in self-organizing pattern recognition architectures. Neural Networks, 3,
129-152.

Carpenter, G.A., Grossberg, S., Markuzon, N., Reynolds, J.H., and Rosen, D.B. 1982.
"Fuzzy ARTMAP: A neural network architecture for incremental supervised learning
of analog multidimensional maps,” IEEE Transactions on Neural Networks, 3, 698-
713

Carpenter, G.A., Grossberg, S., Reynolds, J.H. 1991. "ARTMAP: Supervised real-
time learning and classification of nonstationary data by a self-organizing neural
network," Neural Networks, 4, 565-588.

Carpenter, G.A., Grossberg, S., Rosen, D.B. 1991a. "ART 2-A: An adaptive
resonance algorithm for rapid category learning and recognition,” Neural Networks, 4,

493-504.

Carpenter, G.A., Grossberg, S., Rosen, D.B. 1991b. "Fuzzy ART: Fast stable learning
and categorization of analog patterns by an adaptive rescnance system,” Neural
Networks, 4, 759-771.

322

Casey, M. 2004. Neural Networks CS365 Course - University of Surrey, Guildford.
{see also

hitp://portal. surrey.ac.uk/pls/portal/docs/PAGE/COMPUTING/RESOURCES/L3ICS36
5/CS365%20INTRODUCTION.PDF)

Cavalletti, M., Ippoliti, G., Longhi, S. 2007. “Multiple Mode! Control Using Neural
Networks for a Remotely Operated Vehicle”, Proc 14" Mediterranean Conference on
Control and Automation.

Chapple, M., Database Fundamentals.
http://databases. about.com/od/administration/a/databasefund.htm {July 2004].

Chang, F., Liang, J., Chen, Y. 2001. “Fiood forecasting using Radial Basis Function
Neural Networks®, IEEE Transactions on Systems, Man and Cybernetics, Part C
Applications and Reviews, Volume 31 No. 4.

Chen, S., Cowan, C.F.N,, and Grant, P.M. 1891. "Orthogonal least squares learning
for radial basis function networks,” IEEE Transactions on Neural Networks, 2, 302~
309.

Cheng, T., Lewis, F., Abu-Khalaf, M. 2007. A Neural Network Solution for Fixed-Final
Time Optimal Control of Nonlinear Systems”, Proc 14" Mediterranean Conference on
Control and Automation.

Cichocki, A. and Unbehauen, R. 1993. Neuwral Networks for Optimization and Signial
Processing. NY: John Wiley & Sons, ISBN 0-471-93010-5.

Cowan, J. (1967). “A Mathematical Theory of Central Nervous Activity”, unpublished
PhD. Dissertation, University of London.

Danh N.T., Phien H.N., Gupta A.D. 1998. Neural Network models for river flow
forecasting, Water SA, Vol 25(1), pp 33 - 39.

Demuth, H., Beale, M., Hagan, M. 2004. Neural Network Toolbox For Use with
MATLAB, Users Guide Version 4.

Desieno, D. 1988. "Adding a conscience to competitive learning,” Proc. Int. Conf. on
Neural Networks, |, 117-124, IEEE Press.

Dold, P., Wentzek, M., Billing, A., Ekama, G., Marais, R 1891. Activated Sludge
Simulation Programs, Water Research Commission, South Africa.

Diamantaras, K.I., and Kung, S.Y. 1996. Principal Component Neural Networks:
Theory and Applications, NY: Wiley.

Ekama, G.A. Marais, G.1984. “Theory, design and operation of nutrient removal
Activated Sludge Processes”. Co-ordinating Research and Development Committee
for Sewage Purification. South Africa. pp 9-34, pp 46-55.

Elman, J.L. 1990. "Finding structure in time." Cognitive Science, 14, 178-211.

323

Fahiman, S.E. 1989. "Faster-Learning Variations on Back-Propagation: An Empirical
Study”, in Touretzky, D., Hinton, G, and Sejnowski, T., eds., Proceedings of the 1988
Connectionist Models Summer School, Morgan Kaufmann, 38-51.

Fahiman, S.E., and Lebiere, C. 1990. "The Cascade-Correlation Learning
Architecture"”, in Touretzky, D. 8. (ed.), Advances in Neural information Processing
- Systems 2,, Los Altos, CA:

Fausett, L. 1994. Fundamentals of Neural Networks, Englewood Cliffs, NJ: Prentice
Hall.

Fruchard, M. Bernard, O. Gouze, J. 2002. Interval Observers with Guaranteed
Confidence Levels Application to the Activated Sludge Process. Proceedings of IFAC
World Congress, Barcelona, Spain. pp 1

Fuente, M.J. Sainz Palmero, G.1. Pindado, D. 2002. Automatic Fuzzy Rule
Generation in a Bictechnological Process. Proceedings of IFAC World Congress,
Barcelona, Spain. pp 2

Fukushima, K., Mivake, S., and ito, T. 1983. "Neocognitron: A neural network model
for a mechanism of visual pattern recognition,” IEEE Transactions on Systems, Man,
and Cybernetics, 13, 826-834.

Fukushima, K. 1888, "Neocognitron: A hierarchical neural network capable of visual
pattern recognition,” Neural Networks, 1, 119-130.

Gao, Y., Er, M. 2005.”Soft Coimputing Approach For Time-Series Prediction”,
Proceedings of 16" IFAC World Congress in Prague DVD ROM.

Garcia-Bartual R. 2002. Short term river flood forecasting with neural networks In the
proceedings of IEMSs 2002. Switzerland.

Garvey, E.B. 1897. On-line Quality Control of Injection Molding Using Neural
Networks. Minor Thesis Department of Computer Science, Royal Melbourme institute
of Technology. Melbourne Australia.

Gernaey, K.2000. Sensors for nitrogen removal monitoring in wastewater treatment.
Laboratory for Microbial Ecology. University of Gent. Department of Applied
Mathematics, Biometrics and Process Controf (BIOMATH). University of Gent. pp 2

Grossberg, S. 1976. "Adaptive pattern classification and universal recoding: |. Parallel
development and coding of neural feature detectors,” Biological Cybernetics, 23, 121-
134

Gutierrez, G. Vega, P. 2002. Integrated Design of Biological Processes and their
Control System Including Closed Loop Properties for Disturbances Rejection.
Proceedings of IFAC World Congress, Barcelona, Spain. pp 1

Hand, D.J. 1982. Kernel Discriminant Analysis, Research Studies Press.

324

Haykin, S. 1899. Neural Networks, A Comprehensive Foundation. Second Edition,
Prentice-Hall, Inc, Ontario, Canada.
Hebb, D.O. 1949. The Organization of Behavior, NY: John Wiley & Sons.

Hecht-Nielsen, R. 1987. "Counterpropagation networks," Applied Optics, 26, 4879-
4984,

Hecht-Nielsen, R. 1888. "Applications of counterpropagation networks," Neural
Networks, 1, 131-139,

Hecht-Nielsen, R. 1990. Neurocomputing, Reading, MA: Addison-Wesley.

Henze, M., Grady Jr. C.P.L., Gujer W., Marais G.R., and Matsuo, T. 1887. Activated
Sludge Model No. 1.1AWQ Scientific and Technical Report No. 1, IAWQ , London, UK.

Henze, M., Gujer W., Takahasi, M., Matsuo, T., Wentzel, M.C., and Marais G.R.
1995. Activated Sludge Mode!l No.2|1AWQ Scientific and Technical Report No. 3,
IAWQ | London, UK.

Hertz, J., Krogh, A., and Palmer, R. 1891. introduction to the Theory of Neural
Computation. Addison-Wesley. Redwood City, California.

Hong ,Y .-8., Rosen, M.R., and Bhamidimarri, R. 2003. Analysis of a municipal
wastewater treatment plant using a neural network-based pattern analysis. Water
Research, 37, 1608-1618.

Hopfield, J.J. 1982. "Neural networks and physical systems with emergent collective
computational abilities," Proceedings of the National Acaderny of Sciences, 79, 2554-
2558. Reprinted in Anderson and Rosenfeld 1988,

Hornik, K., Stinchombe, M., White, H. 1980. Neural Networks, pp2, 358,

Husmeier, D. 1998. Neural Networks for Conditional Probability Estimation,
Forecasting Beyond Point Predictions, Springer-Verlag London, Lid.

Jeppson, U. 1996. “A General Description of the Activated Sludge Model No. 1
(ASM1)” taken from the PhD thesis: “ Modelling aspects of wastewater treatment
processes. Lund Institute of Technology, ISBN 91-88834-00-4

Kabundi, A.N. 2002. “Macroeconomic Forecasting: A Comparison between Artificial
Neural Networks and Economic Models”, Dissertation submitted for degree of Master
of Commerce at Rand Afrikaans University, South Africa.

Kasuba, T. 1993. “Simplified Fuzzy ARTMAP," Al Expert, 8, 18-25.

Kendall, M., and Stuart, A. 1976. The Advanced Theory of Statistics, Volume Ill.
Hafner Publishing Co., New York.

Khan, R and Ondrisek, C. 2000. “Peak electric load forecasting using an artificial

neural network”, submitied for publishing in Engineering Mechanics - international
Journal of Theoretical and Applied Mechanics, Technical University of Brno, Czech

325

Republic, 5™ October 2000.

KiSl, ©. 2005. Daily River Flow Forecasting Using Artificial Neural Networks and
Auto-Regressive Mcdels. Turkish Journal of Engineering Environmental Science pp8-
20.

Kriger, C., Tzoneva. R. 2007a. * A Neural Network Model for Control of Wastewater
Treatment Processes, Proceedings of International Conference NOLCOS 2007, DVD
ROM.

Kriger, C., Tzoneva. R. 2007b. *Neural Networks for Prediction of Wastewater
Treatment Plant Influent Disturbances”, Proceedings of ‘IEEE AFRICON’ Conference,
Windhoek, Namibia DVD ROM.

Kohonen, T. 1084, Self-Organization and Associative Memory, Berlin: Springer.
Kohonen, T. 1988. "Learning Vector Quantization,” Neural Networks, 1 (suppl 1}, 303.

Kohonen, T. 1995/1997. Self-Organizing Maps, Berlin: Springer-Verlag. First edition
was 1995, second edition 1997.

Kosko, B. 1992. Neural Networks and Fuzzy Systems, Englewood Cliffs, N.J..
Prentice-Hall.

Kotsiantis, S.B., Kanellopoulos, D., Pintelas, P.E. 2008. "Data Preprocessing for
Supervised Learning,” Interngtional Journal of Computer Science Volume 1 Number 2
ISSN 1306-4428.

Krose, B., van der Smagt. P. 1996. An Iniroduction to Neural Networks, Eighth
edition, The University of Amsterdam.

Lang, K J., Waibel, A. H., and Hinton, G. 1990. "A time-delay neural network
architecture for isolated word recognition,” Neural Networks, 3, 23-44.

Le Cun, Y. (1986). “Learning Processes in an Asymmetric Threshold Network”, In
Bienenstock, E., Fogelman-Souli, F and Weisbuch, G., eds. Disordered Systems and
Biological Organization. NATO ASI Series, F20, Berlin: Springer-Verlag.

Levin, A Narendra, K. 1985: “Recursive identification using feedforward neural
networks”. International Control, Vol. 61, No.3, pp 533

Lilley, 1.D., Pybus,P.J., Power, S.P.B. 1997. "Operating Manual for Biological Nutrient
Removal Wastewater Treatment Works” Prepared for the Water Research
Commission. WRC Report No. TT 83/97.

Lubenova, V. Simeonovy, |. Queinnec, |. 2002. Two-Step Parameter And Estimation of
the Anaerobic Digestion. Proceedings of IFAC World Congress, Barcelona, Spain. pp
1-6.

Lukasse, L.J.8. 2001. Control and Identification in Activated Sludge Processes. PhD
Thesis. ,

326

Malasri, K., Malasri, S. 2002. Backpropagation Networks for Time Series Forecasting:
Case Studies in Data Modelling. Christian Brothers University. Mid-South Annual
Engineering and Sciences Conference. Proceedings of the MAEDC 2002 Conference

Mandic, D.P., Chambers, J.A. 2001. Recurrent Neural Networks for Prediction, John
Wiley & Sons, Lid.

Mapisa, P. 2004. “Data acquisition system for monitoring of process varigbles in a
biological nutrient removal of wastewater treatment plant”, unpublished B-Tech
Thesis, Cape Peninsula University of Technology

Masters, T. 1893. Practical Neural Network Recipes in C++, San Diego: Academic
Press. ’

McCord, N.M., illingworth W.T. 1891. A Practical Guide to Neural Nets, Addison-
Wesley Publishing Company.

McCulloch, W.S. & Piits, W. 1943, A logical calculus of ideas immanent in nervous
activity. Bulletin of Mathematical Biophysics 5, 115-133. Reprinted in Anderson &
Rosenfeld (1988).

Medsker, L.R., and Jain, L.C., eds. 2000. Recurrent Neural Networks: Design and
Applications. Boca Raton, FL: CRC Press, ISBN 0-8423-7181-3.

Metcalf and Eddy. 1991. Wastewater Engineering, 3rd ed., McGraw-Hill, New York.

Mihai,G. 2002. Neural Network-based forecasting for electricity markets. Telmark
Discussion Forum 1: Technology (2-4 Sep 2002).

Minsky, M.L., and Papert, S.A. 1969/1988. Perceptrons, Cambridge, MA: The MIT
Press (first edition, 1969; expanded edition, 1988}.

Moody, J. and Darken, C.J. 1989. “Fast learning in networks of locally-tuned
processing units,” Neural Computation, 1, 281-284.

Moore, B. 1988. "ART 1 and Pattemn Clustering,” in Touretzky, D., Hinton, G. and
Sejnowski, T., eds., Proceedings of the 1988 Connectionist Models Summer School,
174-185, San Mateo, CA: Morgan Kaufmann.

Morabito F.C. 1997. Advances in Intelligent Systems, 108 Press.

Muhammad R K., Cestmir O. 2000. “Peak electric load forecasting using an artificial
neural network”, submitted for publishing in Engineering Mechanics - International
Journal of theoretical and applied mechanics, Technical University of Brno, Czech
Republic.

Mulier, F. and Cherkassky, V. 1995. "Self-Organization as an Iterative Kernel
Smoothing Process,” Neural Computation, 7, 1165-1177.

327

MySQL AB. Why MySQL?, (hitp://iwww.mysgl.com/why-mysgl)

Nadaraya, £.A. 1864. "On estimating regression”, Theory Probability. Application. 10,
186-90.

Nadri, M. Hammouri, H. Fick, M.2002. Nonlinear Observers for State and Parameter
Estimation in Biochemical Processes. Proceedings of IFAC World Congress,
Barcelona, Spain. pp 2

Narendra, K.8,, Parthasarathy, K. 1990. [dentification and Control of Dynamical
Systems using Neural Networks. IEEE Transactions on Neural Networks. Vol.1, pp 7-
27.

Ng G.W. 1997. Application of Neural Networks to Adaptive Control of Nonlinear
Systems, Research Studies Press Ltd, John Wiley and Sons Inc.Singapore

Neural Networks FAQ. 2005. fip://ftp.sas.com/pub/neural/FAQ.himi.

Nguyen, D., and B. Widrow. 1990 *Improving the learning speed of 2-layer Neural
Networks by chogsing initial values of the adaplive weights,” Proceedings of the
International Joint Conference on Neural Networks, Vol. 3, pp. 21-26.

Nyberg, U. Aspegren, H. Andersson, B. Jansen, J.la C. Villadsen, 1.5, 1882, Fuli-
scale application of nitrogen removal with methanaol as carbon source. Water Science
Technology, 26(5-8) pp 1077 — 1086.

Oja, E. 1988. "Neural networks, principal components, and subspaces,” International
Journal of Neural Systems, 1, 61-68.

Olssen, G., and Newell, B. 1999. Wastewater Treatment Systems, Modelling,
Diagnosis and Control. WA Publishing, London, UK.

Orr, M.J.L. 1988, “Introduction to radial basis function networks,”
hitp://lwww.anc.ed.ac.uk/~mjo/papers/intro.ps or
hitp:/iwww.anc.ed.ac.uk/~mjo/papers/intro.ps.gz

Ostafe, D. 2005. “Neural Network Hidden Layer Number Determination Using Pattern
Recognition Techniques”. 2™ Romanian-Hungarian Joint Symposium on Applied
Computational Intelligence SACI 2005.

Pao, Y. H. 1989. Adaptive Pattern Recognition and Neural Networks, Reading, MA:
Addison-Wesley Publishing Company, ISBN 0-201-12584-6.

Paplinski, A.P. 2004. Lecture notes for Course 5301 “Neural Networks and Fuzzy
Systems (Neuro-Fuzzy Computing)’, Clayton School of infermation Technology
Monash University, Australia.

Park, M.H. 1986. Neural Network Control of a Chlorine Basin, University of California
pp 20-52.

328

Parker, D. 1985. “Learning Logic:, Technical Report TR-87, Cambridge, MA: Center
for Computational Resesarch in Economics and Management Science MIT.

Pérez-Llera, C., Fernandez-Baizan M.C., Feito J.L., Gonzélez del Valle V. 2002.
Local Short-Term Prediction of Wind Speed: A Neural Network Analysis. The
International Environmental Modelling and Software Society.

Pons, M. Potier., O. 2002. Control Strategy Robustness With Respect To Hydraulic
Model Sophistication. Proceedings of IFAC World Congress, Barcelona, Spain. pp 1

Potocnik, P.2000: Adaptive self-tuning neurocontrol. Faculty of Mechanical
Engineering. University of Ljubljana, Slovenia. pp 1-11.

Rech, G. 2002. Forecasting with artificial neural networks. SSE/EFI Working Paper
Series in Economics and Finance, No 491,

Ripley B.D. 1996. Pattern Recognition and Neura!‘Networks‘ Cambridge University
Press.

Reed, R.D., and Marks, R.J, il 1999. Neural Smithing: Supervised Learning in
Feedforward Artificial Neural Networks, Cambridge, MA: The MIT Press, ISBN 0-262-
18190-8.

Riedmiller, M. and Braun, H. 1893. "A Direct Adaptive Method for Faster
Backpropagation Learning: The RPROP Algorithm”, Proceedings of the IEEE
International Conference on Neural Networks 1993, San Francisco: IEEE.

Rosenblatt, F. 1958, "The perceptron: A probabilistic model for information storage
and organization in the brain., Psychological Review, 65, 388-408. ,

Rui, Y., Ei-Keib, A.A. 1895. A Review of ANN-Based Short-Term Load Forecasting
Models, Proc of 27th IEEE Southeastern Symposium on System Theory, MSU,
Mississippi.

Rumethart, D.E., Hinton, G.E., and Williams, R.J. 1986. "Leaming internal
representations by error propagation”, in Rumelhart, D.E. and McClelland, J. L., eds.
(1986), Parallel Distributed Processing: Explorations in the Microstructure of
Cognition, Volume 1, 318-362, Cambridge, MA: The MIT Press.

Sakai, M. Homma, N. Abe, K. 2002: A Siatistical Approximation Learning Meathod for
Simultaneous Recurrent Networks. Proceedings of IFAC World Congress, Barcelona,
Spain. pp 1-5.

Samuelsson, P. 2001. “Modeliing and Conirol of Activated Sludge Processes with
Nitrogen Removal’.

Sanchez-Marre, M., Cortés, U., Lafuente, J., Roda, | R,, Poch, M. 1995,
“Knowledge-Based Techniques in Wastewater Treatment Plants Management”.
Submitted to Encyclopedia of Life Support Systems (EOLSS). September,.

329

Sanger, T.D. 1988. "Optimal unsupervised learning in a single-layer linear
feedforward neural network,” Neural Networks, 2, 458-473.

Specht, D.F. 1990. “Probabilistic neural networks,” Neural Networks, 3, 110-118.

Specht, D.F. 1991. "A Generalized Regression Neural Network”, IEEE Transactions
on Neural Networks, 2, Nov. 1991, 568-576.

StatSoft. 2003. Neural Networks, http://www.statsoft. comfextbock/stneunet. htmi.

Tarassenko, L. 1998. “A Guide To Neural Computing Applications”, John Wiley and
Sons, New York.

Teng, C.M. 1999. “Correcting Noisy Data” Proceedings of 16" International
Conference on Machine Learning, pp 238-248. San Francisco.

Terasvirta, T.. van Dijk, D. 2004. Linear modeis, smooth transition autoregressions,
and neural networks for forecasting macroeconomic time series: A re-examination.

Theilliol, D., Ponsart, JC., Harmand, J., Join, C., Gras, P. 2003.°One-line estimation
of unmeasured inputs for anaerobic wastewater treatment processes.” Control
Engineering Practice, vol. 11, pp. 1007-1018,

Vahed, A. 2004. “Knowledge-Driven Training of Recurrent Neural Networks with
Application to Time Series Modelling”, PhD Thesis presented at the University of the
Western Cape, South Africa

(-
Vanrolleghem, P.A. 2000. Sensors for Anaerobic Digestion: An overview. BIOMATH,
University of Gent. pp 1-9.

USGS, June 2008. Wastewater Treatment Water Use.
http://ga.water.usgs.gov/edu/wuww.htmi

VARGAS, A. MORENO, J. ZEITZ, M. 2002. Order Extension of Nonlinear Systems
for Observer Design Under Reduced Observability. Procsedings of IFAC Worid
Congress, Barcelona, Spain. pp 1

Vermaak J, Botha E.C. 1998, Recurrent Neural Networks for Short-Term Load
Forecasting.

Waibel A, Hanazawa T, Hinton G, Shikano K and Lang K. 1989. Phoneme
recognition using time-delay neural networks. IEEE Transactions Acoustics, Speech
and Signal Processing 37, 328-339.

Wan, E.A. 1990. "Temporal backpropagation: An efficient algorithm for finite impulse
response neural networks,” in Proceedings of the 1990 Connectionist Models
Summer School, Touretzky, D.S., Elman, J.L., Sejnowski, T.J., and Hinton, G.E,,
eds., San Mateo, CA: Morgan Kaufmann, pp. 131-140.

WANG, J., HU, S. 2002. “A Multilayer Recurrent Neural Network For Real-Time
Robust Pole Assignment in Synthesizing Output Feedback Control Systems”,

330

Proceedings of IFAC Worid Congress, Barcelona, Spain. pp 2-4.

Watson, G.S. 1964. "Smooth regression analysis”, Sankhya - The indian Journal of
Statistics, Series A, 26, 359-72.

Werbos, P.J. (1974/1894), The Roots of Backpropagation, NY: John Wiley and Sons.

Widrow, B., and Hoff, M.E., Jr. 1960. "Adaptive switching circuits," IRE WESCON
Convention Record. part 4, pp. 96-104. Reprinted in Anderson and Rosenfeld (1988).

Williams, R.J., and Zipser, D. 1889. "A Learning Algorithm for Continually Running
Fully Recurrent Neural Networks," Neural Computation, 1, 270-280.

Williamson, J.R. 1895. "Gaussian ARTMAP: A neural network for fast incremental
learning of noisy multidimensional maps,” Technical Report

Wu, H., Jagannathan, 8. 2007. "Adaptive Neural Network Controf and Wireless
Sensor Network-based Localization for UAV Formation”, Proc 14" Mediterranean
Conference on Control and Automation.

Wu S-1 1985 Mirroring our thought processes. |EEE Potentials 14, 36-41.

Yoo, C. Lee, H. Lee, 1. 2002. Comparisons of Process dentification methods and
Supervisory DO Control in the Full -Scale Wastewater Treatment Plant. Proceedings
of IFAC World Congress, Barcelona, Spain. pp 2-8.

\,
Yu, D.L Yu, D.W. Gomm, J.B. Williams, D.2002. Mode! Predictive Control Of a

Chemical Process Based on an Adaptive Neural Network. Proceedings of IFAC World
Congress, Barcelona, Spain. pp 1-6.

Zivéak Dalibor, Electricity load forecasting using Artificial Neural Networks.
hitp://neuron.tuke.sk/competition/reports/DaliborZivcak. pdf, 08-2004.

Zupan, J., Gasteiger, J. 1993. Neural Network for Chemists, VCH Publishers, New
York, NY

331

	Declaration
	Abstract
	Acknowledgements
	Table of contents
	Glossary
	Mathematical notation
	Chapter 1: Introduction
	Chapter 2: Wastewater treatment processes and its disturbances
	Chapter 3: Neutral networks background
	Chapter 4: Data pre-processing for supervised learning
	Chapter 5: Application of neutral networks for influent disturbances prediction
	Chapter 6: Results
	Chapter 7: Real-time implementation
	Chapter 8: Conclusion and future direction of research
	References

