
COMPUTER NUMERICAL CONTROLLED DRILLING

MACHINE INTERFACED TO A COMPUTER AIDED DESIGN

PACKAGE

A dissertation presented to the Department ofElectrical Engineering

Peninsula Technikon in partial fulfilment of the requirements for

Master's Diploma in Technology: Electrical

by

PIERRE FRANS MOSTERT

FEBRUARY 1996

ABSTRACT

In answer to the needs of the growing number of smaller

manufacturers of Printed Circuit Boards, the "Computer

Numerical Controlled Drill interfaced to a Computer Aided

Design software package" was conceptualised. This development

would considerably improve both productivity and efficiency

and consequently would improve cost effectiveness.

The smaller manufacturer is unable to afford the more

sophisticated Computer Numerical Controlled Drill equipment

and the software packages which drive them. It was necessary

for the Computer Numerical Controlled machine to possess all

the capabilities and versatility of the more sophisticated

and expensive equipment, and yet still be affordable to the

smaller manufacturer. Furthermore, since such equipment would

need to be operated in fairly hostile environments, it would

need to be robust and reliable.

This interdisciplinary development has required the knowledge

and skill from many different engineering fields, and made

them readily available to industry which otherwise would not

have had access to them.

The South African economy at present , has a growing need for

smaller and medium business enterprises, and the needs of

these must be appropriately served. It is envisaged that this

development will make a significant contribution to greater

economic activity.

i

ACKNOWLEDGMENTS

I would like to thank the Director and staff of the

Electrical Engineering Department for affording me the

opportunity to develop the Computer Numerical Controlled

Drilling Machine, and for their support during this

development period.

I would also like to thank my supervisor Nooridien Dhansay

for his patience and guidance especially during the

documentation phase of the development, and to my wife Janet,

for helping me with the proof reading.

A special thanks to Ian Dorrat and Jan Ehlers for their

enthusiasm and for encouraging me to complete the development

on time.

A final belated thanks to the late Dennis Oliver for his

assistance in the mechanical development of the Computer

Numerical Controlled Drilling Machine.

I hereby state that the contents of the dissertation

"Computer Numerical Controlled Drilling Machine Interfaced

To A Computer Aided Design Package" is my own work and that

the opinions contained herein are my own and not necessarily

those of Peninsula Technikon.

ii

TABLE OF CONTENTS

1. INTRODUCTION

1.1 SIGNIFICANCE

1.2 BACKGROUND

2. THE SYSTEMS TOPOLOGY

2.1 HARDWARE TOPOLOGY

2.2 SOFTWARE TOPOLOGY

3 • CNC HARDWARE AND PERIPHERALS

3.1 MOTOR CONTROL UNIT

3.1.1 BIPOLAR DRIVES

3.1.2 SERIAL MICROPROCESSOR INDEX CONTROLLER

3.1.3 CLOCK/DATUM MODULES

3.2 PERIPHERALS

3.2.1 AUTOFEED DRILL AND PNEUMATIC CONTROLLER

3.2.2 X-Y TABLE

4. SERIAL COMMUNICATION INTERFACING

5. INITIALISATION PROCEDURES

5.1. MOTOR CONTROL UNIT INITIALISATION

5.2 INTERRUPT SERVICE ROUTINE

6. CAD FILE TRANSLATION

7. DISPLAY GRAPHICS

7.1 OVERVIEW

iii

Page no

1

3

4

8

8

11

15

15

18

20

22

25

25

29

35

44

44

48

52

55

55

7.2 INTERFACE SPECIFICATION

7.3 FUNCTIONAL SPECIFICATION

7.4 DESIGN CONSIDERATIONS

7.4.l OPERATION

7.4.2 ERROR HANDLING

7.4.3 DATA STRUCTURES

7.5 INTERFACE SOFTWARE DEVELOPMENT

8. ERROR DETECTION

9. RECOMMENDATIONS

10. GLOSSARY OF TERMS

11. BIBLIOGRAPY

11. APPENDIX A

12 . APPENDIX B

13 . APPENDIX C

14. APPENDIX D

iv

56

58

60

60

62

62

63

65

68

73

79

82

83

100

136

TABLE OF ILLUSTRATIONS

1. HARDWARE TOPOLOGY

2 . SOFTWARE TOPOLOGY

3 . MOTOR CONTROL UNIT HARDWARE

4. AUTOFEED DRILL

5. PNEUMATIC CONTROLLER

6. HYDRAULIC CONTROL UNIT

7. X-Y TABLE

8 . BALL BEARING SCREW

9. X-Y TABLE (SIDE VIEW)

10. TABLE AND DISC SWITCH ARRANGEMENT

11. DEFINITION OF A UNIQUE DATUM POINT

12. UNIDIRECTIONAL APPROACH PATTERN

13. IBM PC AND PC-AT INTERRUPT REQUEST LINES

14. SCREEN FORMAT

15. SOFTWARE FLOW DIAGRAM

16. GRAPHICS ERROR MESSAGE TABLE

v

Page no

9

12

16

25

27

28

29

30

31

32

34

34

50

56

58

66

CHAPTER 1

INTRODUCTION

The smaller Printed Circuit Board (PCB) manufacturers need

to increase their productivity and to operate more

effectively. (The Cad/Cam Handbook, 1980:61) A common problem

experienced by these smaller manufacturers is the turnaround

time which is impeded by the time spent drilling the Printed

Circuit Boards. These small industries cannot afford the

expensive and sophisticated Computer Numerical Controlled

(CNC) Drilling machines that the PCB market has to offer.

The idea was conceptualised to develop a low cost reliable

and robust Computer Numerical Controlled Drilling machine

that possessed the capabilities and versatility of the

larger, more expensive CNC Drilling machines. (CULLEY,

1985:75) This CNC Drill had to operate with existing Computer

Aided Design (CAD) software packages, as the smaller

industries cannot afford to purchase the more advanced

CAD/CAM software systems which are normally used with CNC

machines. (TEICHOLZ,1985:16.22)

The design of this CNC Drill required a knowledge which

united many engineering disciplines from C and Assembler

1

programming to Control and Interfacing techniques. Readily

available hardware components had to be sourced from various

suppliers to construct the CNC Drill. To accomplish the

control of the CNC Drill translation, conversion and control

software programmes were developed.

The topic discussed in the various chapters are as follows:

Chapter 1 is an "Introduction ", dealing with the motivation

for and the significance of developing the Computer Numerical

Controlled Drill. It also deals with the historical

developments of the computer numerical systems through the

years.

Chapter 2 describes the topology of the system dealing with

both the hardware and software aspects of the development.

Chapter 3 dissects the development into its various hardware

components, with discussions on each peripheral.

In Chapter 4, the important aspects of "Serial Communication

Interfacing" and its configuration are dealt with.

Chapter 5 covers the "Initialisation Procedures" which

initialise the Motor Control Unit and also the all important

application of the interrupt service routines.

2

The topic in Chapter 6 is "Computer Aided Design File

Translation", and the ability of the software to extract and

translate the data into coordinates for the Motor Control

Unit.

The "Display Graphics" are handled in Chapter 7. The design

considerations and techniques employed to develop the

graphical user interface are discussed.

In any control system, an important aspect is the capability

of the system to handle the error condition. This topic is

reviewed in Chapter 8.

Following the development of the Computer Numerical Drill,

further in depth considerations were made which would enhance

the system performance. This resulted in recommendations

which are described in Chapter 9.

Features incorporated in the design of the CNC Drilling

machine were the following:

(1) Can be interfaced to any CAD system which supports

Houston instruments DMP 51/52 plotters (DM/PL Ill)

(2) Machine has the capability of being controlled

manually.

(3) Automatic homing facilities. (Datum)

(4) Routing facilities.

3

(5) Graphical representation while drilling.

(6) On-line error detection and diagnostics.

(7) Speed variation and interpolation.

This CNC Drilling machine will be beneficial to smaller PCB

manufacturers and will improve productivity by increasing the

speed of production of printed circuit boards.

1.1 SIGNIFICANCE.

In recent years, CAD systems have been developed by various

Software Houses to improve productivity and lower the costs

of manufacturing Printed Circuit Boards. Most of the large

manufacturers are able to afford the enormous cost of

installing a Cad/Cam system, but the smaller industries

cannot afford this capital outlay. These small industries

have to rely on manual labour to drill the P.C. Boards.

Developing a low cost CNC drilling machine with various

options, will allow the smaller industries to operate more

cost effectively. With the implementation of such a system,

the turnaround time will improve by between 30 and 50

percent. A reduction of direct labour costs of 70 percent

and a reduction of work costs of up to 50 percent have

occurred, although labour costs have increased substantially

since CAD/CAM systems were released in 1977. (BESANT,1986:380)

4

By using the above described interactive Numerical Control

(NC) programming as proposed over the old method of entering

coordinates via a paper tape or computer keyboard, a

significant productivity improvement can be ensured.

Research has shown that a productivity gain of 4:1 or better

are not uncommon. (BESANT,1986:380)

1.2 BACKGROUND:

The early ancestor of the NC (NUMERICALLY CONTROLLED) machine

was developed around the turn of the century by Joseph

Jacquard. Jacquard developed a loom that could be programmed

to produce the exact pattern repeatedly. This programming was

accomplished by punching holes into a wide paper tape . The

holes represented instructions that defined the weaving

pattern. (TEICHOLZ.1985:16.5)

In the late 1940's, John T. Parsons recommended a method of

automatic machine control that would guide a milling cutter

for the generation of smooth profiles. The U.S. Air Force

then used the Parsons concept and commissioned the

Massachusetts Institute of Technology (MIT) to develop a

practical implementation of the concept. MIT built a control

system for a two-axis drill press using a perforated paper

tape. The prototype was refined and used throughout the

united States. (TEICHOLZ,1985:16.5)

5

In the late 1950's and 60's, programming languages such as

APT were developed to assist engineers to define the proper

instructions for NC machines. (CHORAFAS,1987:9)

Through the 1960's, NC manufacturers made use of hard-wired

logic to accomplish control functions, due to the fact that

low cost high speed computing facilities were

unavailable. (CHORAS,1987:6)

During the mid-1970's computer based NC machines became

available. NC machines could now be programmed via a keyboard

and an intelligent terminal. (TEICHOLZ,1985:16.5)

The first CAD systems were released in the period from 1977

to 1979 and enabled the designer to develop Printed Circuit

Boards on an interactive Video Display Unit. (VDU).

The early 1980's saw new concepts develop such as Computer

Numerical control (CNC) and Direct Numerical Control (DNC)

which were controlled via mini mainframe computers like the

VAX 11/780, instead of via paper tape like the older NC

machines. Other CNC machines had dedicated microprocessors

with memory installed and coordinates were entered via a

keypad. (CHORAFAS,1987:7).

From 1984 onward, the personal computer CAD software was

developed for the 8 bit, and then later for the 16 bit,

6

microprocessors. The Cad systems developed incorporated high

resolution colour displays, design rule checking and pattern

generating. There was also a growing tendency towards the use

of voice, sight and gesturing devices for operator

interface.

At the end of the 1980's the CNC machines were still being

controlled via CAD/CAM (COMPUTER AIDED DESIGN / COMPUTER

AIDED MANUFACTURE) systems which was controlled by mini and

mainframe computer or dedicated microprocessor.

(CHORAFAS,1987:7). This type of system, while very efficient,

is also costly. Thus in 1990 development had begun on a PC

based Cad/Cam system. Efforts to integrate NC machines into

computer networks like LAN (local area network) and WAN (wide

area network) had already commenced. (TEICHOLZ,1985:16.20)

As certain manufacturers made the Drill Tapes and hardware

components available, a true dedicated CNC Drilling machine

based on a personal computer (PC) could be developed. These

CNC machines could now also be interfaced to a CAD system and

include various options which were previously not available.

An enquiry was made through the CSIR information services to

ascertain if a CNC Drilling machine had been previously

developed in South Africa. According to their databases and

the National Project Register, no such machine has been

developed. Refer to Appendix A.

7

CHAPTER 2

THE SYSTEMS TOPOLOGY

The system topology of the Computer Numerical Controlled

(CNC) Drill embodies both hardware and software components.

These hardware components need to be interfaced together to

form the CNC Drill architecture. The functions of data

manipulation and the controlling of the CNC drill operation,

are performed by various software modules which have been

developed.

2.1 HARDWARE TOPOLOGY

The CNC Drill, when regarded as a control system, consists

of various elements which, when combined, form an effective

automated drilling machine. The Personal Computer (PC) which

requires a standard Intel 286 or 386 processor, performs the

function of a Process Controller. The PC with its serial

input/output (I/O) card is used to pre-process and translate

data which will later be used to control the CNC Drill.

Another function of the PC is to control all the CNC Drill

8

functions and act as a user interface between the operator

and the CNC Drill. All communication between the PC and CNC

Drill are achieved via a RS232c asynchronous 5 wire serial

link to the Motor Control Unit (MCU) .

PERSONEL aJII'lITER IIlTOR CONlROL X - Y TABLE

286.1386 UNIT
SERIAL INTERFACE (lICU) 2 STEPPER MOTORS

(RSiJ2C)

PNElltIY!C DRILL

INTERfACE 17... RP.,

SYSTEM TOPOLOGY

The instructions which are received from the PC are executed

by the MCU 8085 based microprocessor. The MCU processes all

the control signals to and from the X-Y table and Drill. The

feedback signals from the Drill and X-Y table are translated

and sent back to the PC for interpretation. The MCU functions

are that of overall systems control and arithmetic

computation of data received from the process controller.

Another function which the MCU performs is the manual control

function, which allows the operator to position the X-Y table

manually by means of a joystick. The Motor Control Unit

9

controls two main components; these being the X-y table and

the Drill. The X-Y table is driven by two four phase stepper

motors. The stepper motors each drive a single axis, namely

the X or Y axis. Each axis is in turn driven by a lead screw.

The X-Y Table consists ofaX and Y axis which are two moving

beds that run on stainless steel rails. These rails are

mounted to a solid base. Each bed is driven by a lead screw

linear system. These lead screws are propelled by two stepper

motors. Limit switches are fitted to each axis to prevent the

X-Y Table from exceeding its maximum travel. An optical

sensor is also mounted on each stepper motor shaft to assist

the MCU in determining the position of the X-Y Table in

relation to its home position.

The Drill is powered by a 3 phase motor which rotates at

17000 revolutions per minute. The control of the drill is

accomplished by a Pneumatic Controller which converts the

electrical signals from the MCU into pneumatic signals for

the drill.

10

2 . 2 SOFTWARE TOPOLOGY

The software routines and functions for translating,

communicating and controlling the CNC Drill were developed

in the C language. The C source code was compiled under Turbo

C environment creating separate object files and these files

were linked to create a single executable file called

"cnc.exe". When the software is initialised, the main routine

is called, being "cncm.c" and because the C language is a

structured language, the main routine contains all the calls

to the other routines and therefore is the controlling

routine.

The main routine then calls "welcom.c" which is the title

page and introduces the programme. The next routine is

"init.c" which initialises the system. This routine then

accesses another function "setup. c " which first enquires

from the operator if any serial communication parameters need

to be changed. The changing of any of the serial port

parameters is done via a menu.

Once the operator has selected the correct parameters, the

function then configures the Universal Asynchronous Receiver

and Transmitter (DART) of the Personal Computer's serial r/o

card and then returns to the initialisation routine.

11

EXECUTE PROGRAM

(CNCM.C)

TITLE PAGE

(WElCOY.C)

SETUP SERIAL INSTALL INTERRUPT
INITiAlISE SYSTEM

COUYJNICATlON HANDLER
(IN IT .C)

(SETUP.C) (INTUP.C)

INITIALISE

MOTOR CONTROL

UNIT

FILE HANDLER CONVERSION

•
READ FILES + TRANSLATION
RETRIEVE DATA OF X-Y

(FIlLCl (CONYJ.C)

•

DETERYI NE ROUT DATA TRANSMISSION
TO MCU VIA DATA

CG-ORDERNATES STRING HANDLER

(SloIARCROUT .C) (CONY_STRING. C)

+
DISPLAY INTERFACE STATUS + ERROR

ROUT HANDLER
fOR CMC DRILL. DETECTION.

(RT_NOW.C)
(DISPLAY.C) (MOTJAULT.C)

REstORE ALL !~ ~GO TO DATUM
REGISTERS PROCESS COMPLETE

I~
(CATUM.C)

~(RETSORCREG. C) (CNCY.C)

SOFTWARE TOPOLOGY

12

All the software that was written for the CNC Drill is

interrupt driven This option was chosen for effective

serial data transfer without wasting the Central Processing

Unit I s (CPU) machine cycles by polling for data, which

reduces the processing time of the PC.

With interrupt driven software the UART is programmed to

generate interrupts if data needs to be transmitted or

received. The DART then requests the CPU to service the

interrupt. This routine is known as the Interrupt Handler

which services the interrupts and is the most efficient

method of dealing with interrupts. The initialisation

routine then installs the interrupt handler "intup.c". Both

the UART and programmable Interrupt Controller (PlC) are

programmed at systems level. Once the routine is installed

the Motor Control Unit is initialised. The interrupt service

routine, PlC configuration and initialisation routine are

discussed in more detail in Chapter 5.

After the communication has been established with the MCU,

the main programme calls conversion and translation routines,

called "convy.c" This routine in turn calls the file handler

"file.c" which reads the data files and retrieves the data.

The data is then converted and translated into coordinates,

both for drilling and routing procedures of the Printed

1.3

Circuit Board. A more exact description of the translation

process is dealt with in Chapter 6.

The coordinates are stored in arrays and then sent via a

string handler "conv_string.c", to both the MCU and a routine

which displays a graphical representation of the Printed

Circuit Board (PCB) that is being drilled. The development

of the graphical representation routine is discussed in

Chapter 7.

While the CNC Drill is drilling the PC board, the operator

can see the progress of the drill procedure displayed on a

monitor. Another routine observes the status of the MCU and

detects any errors that may occur. Any critical errors that

do occur are reported to the operator and in certain cases

the process will be terminated.

On completion of the drilling procedure, the operator has the

option of routing the PC board. This process is controlled

by the Rout handler "rt_now.c" which routs the edges of the

PC board. When this procedure is completed, all the register

values are restored to their original value and the Datum

routine is called to return the X-Y table to the home

position. The process is now completed and the programme is

terminated.

14

CHAPTER 3

CNC HARDWARE AND PERIPHERALS

The CNC Drilling machine consists of a Motor Control Unit

(MCU) which consists of all the electronic control modules

and numerous other hardware peripherals like the Autofeed

Drill, Pneumatic Controller, Hydraulic Control Unit and X-Y

Table.

3.1 MOTOR CONTROL UNIT

The Motor Control Unit (MCU) consists of a number of

electronic modules which, when combined, form a very

effective closed loop control system. These modules are the

following:

(1) Two Datum and Manual control modules

(2) Two Bipolar Drives modules

(3) Serial Microprocessor Index Controller (RS232c)

(4) Power Supply and Output Driver module

15

The MCU communicates with the Personal Computer (PC) via a

RS232C link which employs five wire communication in an

asynchronous mode. The serial link utilises the five wire

communication to facilitate handshaking between the MCU and

the pc. The speed of the serial link ranges from between 300

to 4800 baud. The Motor Control Units processing is

accomplished by a 8085 based microprocessor which needs to

compute start/stop speeds, acceleration, backlash correction

and linear interpolation. It also controls all the signals

both to and from the x-y table and drill.

OATUII AND IlANUAL CONTROl DA11.11 AND IlANUAL CONTROl

IIJDUlE IlOIlULE

X - AXIS Y-AXIS

MICROPROCESSOR I SERIAl
POWER SIl'PLY AJlD OUTPUT

CONTROlLER
DRIVER IlJDULE

(RUn-c)

STEPPER IIJTOR POWER SUPPLY STEPPER IIJTOR !'(MER SUPPLY

(BIPOLAR CHOPPER SUPPL"f) (BIPOLAR CHOPPEIf SUPPLY)

X - AXIS Y-AXIS

MOTOR CONTROL UNIT HARDWARE

16

Its main function can be summarized as follows:

(1) Overall Systems Control. Coordination of all data

transmission and timing for

the CNC.

(2) Input - Output Control. Processing of all input

instructions to the CNC and

output signals to the

(3) Servo Control.

microprocessor.

Processing of CNC

instructions that accomplish

axis control and positioning.

functions. (eg

(4) Arithmetic Operations. Computation

mathematical

of certain

acceleration / deceleration

calculations.)

17

3.1.1 BIPOLAR DRIVES:

The stepper motors are powered by Bipolar Drives. These two

Bipolar Drives are constant current drives which maintain

relatively constant currents to the motor at all speeds, and

therefore, offer good stepping performance at speeds up to

approximately la 000 steps per second.

The Bipolar drives are designed to cater for a wide range of

motors and deliver nominal currents of between 2 Amps and 3

Amps for a voltage range of between 24 Volts to 36 Volts

which are programmed by switch settings or by means of

external resistors. These Bipolar drives which employ chopper

regulation achieve high overall efficiency, eliminating the

need of ballast resistors and minimising power consumption.

The Drives have built in protection against short circuits

across or between motor windings. The two drives are powered

by an la-a-la volt unregulated AC supply from a mains

transformer.

la

Each Bipolar drive supplies one axis of the x-y table and

these drives can be configured in a master or slave

configuration so that the drive can be synchronised. By

synchronising the drives the beat frequencies are eliminated.

The Bipolar drive modules are designed to be fitted in a 19"

3u rack which plugs into a motherboard or backplane enabling

all external connections to be made via screw terminals.

These chopper drives have the facilities to operate in full

step mode and half step mode which allows them to step at 200

steps per revolution or 400 steps per revolution

respectively. This means that during one step in full step

mode the stepper motor will advance l.B degrees and in the

half step mode 0.9 degrees.

The control signals from the microprocessor/serial

controller are fed via the motherboard to the Bipolar

drives. These signals are Direction and clock pulse. The Zero

Phase and Motor Fault signals are sent to the

microprocessor/serial controller via the backplane.

19

The advantage of using Bipolar chopper drives over other

drive methods is that they allow features such as closed loop

control, different step modes, current boost and

stabilisation. In addition, improved motor performance,

especially at high speed where motor torque is required.

3.1.2 SERIAL MICROPROCESSOR INDEX CONTROLLER.

The serial microprocessor index controller which is commonly

known as the Indexer generates step and direction signals and

allows control of up to three axes of stepper motor drives

via a RS232C serial link. The indexer card can communicate

via its serial port with any process controller or user

supplied machine. In the CNC Drill's specific application the

process controller used is a Personal Computer. Any of the

three axes which are designated X, Y and Z, may be run

individually or the same move can be performed on two or

three axes simultaneously.

20

One of the more unique capabilities of the indexer, is linear

interpolation of two axes. This feature allows simultaneous

moves to be programmed on X and Y axes with different

distances. As a result, the operator or programmer can

programme a vector at any angle on the X-Y system.

This 8085 microprocessor based indexer accepts ASCII

characters via the RS232c serial interface and subsequently

controls direction, distance, acceleration/deceleration and

velocity for full, half and micro stepper motor drives.

The Indexer is also capable of monitoring interface status,

drive status, axis status and requesting position of each

drive. The indexer has its own power supply module on which

the input and output transistors are also mounted. Both the

Serial Microprocessor indexer card and power supply I/O board

plug into a motherboard which is fitted in the rack.

In the sequence mode a preset sequence of up to 63 moves can

be loaded into the indexer. The indexer can also be

programmed to wait for specific input conditions, at points

in the sequence allowing an external operation to be

performed before the sequence continues. The asynchronous

control of the indexer will be discussed in a later chapter,

Chapter 5.

21.

3.1.3 CLOCK / DATUM MODULES

The MC2 Clock /Datum card which for convenience purpose will

be referred to as the Datum card is plugged into the Datum

motherboard which is fitted into the rack. This motherboard

accepts a maximum of two Datum cards for applications of both

single and dual axis systems.

These Datum cards permit manual positioning of the X-y table

independently of the controller, as well as the incorporation

of limit switches and enables a datum routine to be performed

with no additional connections to the controller.

Interconnections via two 8 way cables are made between the

motherboards of the Datum, Serial Microprocessor Indexer and

Bipolar drives forming a control bus. This control bus

transfers the individual axis control signals to both the

Indexer and Bipolar drive modules.

A number of manual control functions are provided for on the

Datum cards. These functions allow both for X and Y motors

of the X-Y table to be manually controlled in both the

positive and negative direction. The functions are the

following: Fast +, Fast -, Slow/Jog +, and Slow/ Jog -

22

The Slow/ Jog function allows both single step or multiple

slow step of the X-y table. The speed ranges of slow and fast

functions both have a upper and lower speed limit. The slow

function has a range of between 50 and 1500 steps per second

(or Hertz) with no acceleration / deceleration option , while

the fast range is between 1 and 20 Kilohertz which also

incorporates a ramped acceleration/deceleration function.

For good control of the X-Y table these functions were

co=ected to a joystick and toggle switch. The joystick

determines the direction, while the toggle switch can be

switched between the slow and fast ranges and therefore

determines the speed at which the X-Y table travels. Both the

Fast, Slow and the Acceleration time can be preset by

adjustment of the clocks on the oscillator section of the

Datum cards. One factor which should be remembered is that

if the acceleration is too rapid or the fast speed is set

above the maximum input frequency specification of the

stepper motor, the motor will stall.

Other input functions which are provided by the Datum cards

are the Limit inputs and Emergency Stop. The positive and

negative limit switches which are mounted on the X-Y table

23

are set to prevent the x-y table from exceeding its maximum

travel. When these limit switches are activated the Datum

card removes the step input to the motor but still allows

the Bipolar drives to apply a holding torque to the stepper

motor. The Emergency Stop input permits the operator to halt

the operation of the Motor control Unit in the case of

emergency. When the Emergency Stop button is activated the

Bipolar Drives still apply a holding torque to the. stepper

motor drives to prevent the x-y tables position from being

changed manually.

Another function that the Datum card possesses is the Auto

Datum function which is a complex process which involves

returning the x-y table to a fixed mechanical reference

point. The "Home" position is referred to as the Datum Point.

The Datum function has two modes of operation which are the

Bidirectional and Unidirectional approach to the datum point.

Due to the design of the X-y table the Unidirectional mode

was selected. In the Unidirectional mode, the X-Y table will

always approach the datum point from the same side when the

datum routine is requested, either manually or via the

software. Due to the fact that the X-Y table always

24

approaches datum from the same side, backlash from the system

is eliminated. The auto datum function will be discussed more

comprehensively in the section on the X-Y table.

3.2 PERIPHERALS

Peripherals are those devices which cannot be classed as

purely electronic and are not incorporated in the Motor

Control unit. These devices are the Drill, Pneumatic

Controller, Stepper Motors and X-Y Table.

3.2.1 AUTOFEED DRILL AND PNEUMATIC CONTROLLER

AUTOFEED DRILL

25

The CNC Drilling Machine is fitted with a Desoutter AFDE40

17000 automatic feed drill which is mounted on an overhead

gantry above the x-y table. The Drill is powered by a 250

watt three phase geared electric motor which rotates at 17000

revolutions per minute and controlled by pneumatic

signalling.

The pneumatic signalling control has two options namely

manual control and automatic control via a pneumatic

controller. with manual control the "Start" button which is

a pneumatic valve, when depressed will advance the drill

toward the workpiece. The rate at which the drill advances

is determined by "forward stroke speed adjuster". Similarly

the "Stop" button control inhibits the advance of the drill

and returns the drill to its initial home position . The

return stroke is controlled by a value called the "Return

Stroke Speed Adjustor."

26

PNEUMATIC CONTROL UNIT

The pneumatic controller is the interface unit that allows

the Electrical signals from the motor control unit to be

converted into pneumatic signals to control the drill. The

signals that the pneumatic controller provide are start, stop

and sequencing of the autofeed drill. In addition, signals

for pecking and dwell control are provided. This controller

is powered by a 24 dc power supply which operates the

27

I

solenoids.

Pecking is the procedure when the depth of the hole to be

drilled is five or more times the hole diameter. The drill

advances and then retracts slightly and advances again. This

procedure repeats until the drill has reached its maximum

travel and is fully extended. Pecking helps to clear the

drill chips and avoids excessive overheating of the drill bit

which could cause possible breakage. Dwell control holds the

drill at the bottom of the stroke . This may be necessary

where improved depth control accuracy is required or to

polish the hole.

HYDRAULIC CONTROL UNIT

28

A hydraulic control unit (HCU) is mounted to the drill to act

as a damping unit preventing the drill from advancing into

the workpiece to quickly. The hydraulic control unit is a

fully adjustable constant feed control allowing more

controlled feed of the drill while drilling into the

workpiece. Controlling the feed speed prevents the drill bit

from fragmenting on initial impact on the workpiece and

excessive burring is minimized by eliminating acceleration

on breakthrough.

This automatic feed drill is fitted with a Jacobs key

adjustable chuck which is interchangeable with a precision

collet chuck. The precision collet chuck is used when special

high speed Tungsten Carbide drill bits are used.

3.2.2 X-Y TABLE

X-Y TABLE

29

The X-y table which is manufactured from an aluminium alloy

which has been anodised matt black and is very rugged and

reliable. The X-Y table is driven by a four phase 200 step

per revolution (full step) stepper motor, which gives

repeatability within one motor step and an accuracy of

approximately 10 microns. The table has a travel of 550 mm

and can achieve a peak speed of 150 mm per second. The

stepper motors of both the X and Y axes are driven by ball

bearing lead screws with a pitch of 4 mm per revolution,

giving a movement of 20 microns per motor step (full step)

and 10 microns per half step. The double re-circulating ball

nut with wiper seals runs on hardened and ground steel rails

and are flash chromed for corrosion resistance. The

leadscrews are protected from dust by PVC bellows.

30

The X-Y table has limit switches fitted on the ends of both

axes to prevent the table exceeding its maximum travel. Hand

wheels with graduated dials are fitted to the stepper motor

shafts which enables manual positing of the X-y table when

the stepper motors are de-energised. The stepper motors are

enclosed and are fitted with heat sinks for protection and

accuracy requirements.AII the electrical functions are

enclosed and brought out to two "Jaeger 19 pin" connectors.

X-Y TABLE(side view)

The datum system consists of a dual switch system of

microswitches and a optical sensor which has a open collector

output.When these sensors are combined with the logic from

the Datum modules, this system guarantees an absolute

mechanical reference point (Datum point) to within one motor

step.

31

The auto-datum circuit, which is operated in the

Unidirectional mode returns the x-y table to a fixed

mechanical reference point, is accomplished by monitoring

three signals from the X-Y table. They are the following:

Datum switch, Datum disc (optical sensor) and motor zero

phase. In the Unidirectional mode the table will always

approach Datum from the same side.

The auto-datum circuit which is a more complex process,

involves returning the x-y table to a fixed mechanical

reference point. This point is referred to as the Datum

point. To accomplish this three signals have to be monitored.

They are the following: Datum Switch, Datum Disc and Motor

Zero Phase.

5WOO_ os"'o
~iI?tlll!iil!e:e::Jt ®-~~~~.""lDTH

TABLE AND DISC SWITCH ARRANGEMENT

(SWl-Limit switch l)
(SW2-Limit switch 2)
(sWD-Datum disc)

32

The leadscrew driven linear system is employed to drive the

x-y table. On the coupling connecting the leadscrew to the

stepper motor, a flat reflective surface is machined. This

acts as a mirror to reflex the light source from the optical

switch. The optical switch generates the "Datum Disc"

signal. As the X-Y table approaches datum it activates a

micro-switch which creates the "Datum switch" signal. When

this signal is present the next signal to occur is the "Datum

Disc" signal.

When these two signals are present, the remaining signal

which must be generated is the "Zero Phase" signal which only

occurs every 8 steps, when the stepper motor is running in

the 400 steps per revolution mode. When this signal is

present, the stepper motor will continue to step a few steps

and then reverse until all three signals are present again.

This process of moving past the datum point and then

reversing back toward it, is to eliminate the "backlash" of

the table. At the datum point, the datum card generates three

signals Datum X, Datum Y and then At Datum XY.

33

OATUH
I

SW1 . I :
S'o'O U...------,~...------,U

•
ZERO PHASE

DEFINITION OF UNIQUE DATUM POINT

When Datum X or Datum Y has been generated. the step input

to the stepper motor on the particular axis is terminated.

When both signals are present, the AT Datum XY signal is

generated. The X-Y table has now reached the Datum Point

(home) .

SW\

u

sw,

UNIDIRECTIONAL APPROACH PATTERN

34

CHAPTER 4

SERIAL COMMUNICATION INTERFACING

The communication between the Personal computer which acts

as the process controller and the Motor Control Unit is

achieved by asynchronous RS232C serial communication as

specified by the Electronic Industries Association (EIA).

(CAMPBELL,1989:9) This RS232C standard is commonly used as

a serial interface standard and is used by industry to avoid

both signal and physical incompatibilities. The RS232c

standard specifies the following areas:

(1) The mechanical characteristics for the interface, etc.,

connects configuration and connector types.

(2) The electrical signal characteristics and voltage

levels.

(3) The specification of the function of each electrical

signal across the interface.

(4) The procedures that need to be followed for certain

communication applications.

35

The standard specifies that the maximum cable length should

not exceed l5 meters with a maximum signal rate of 20 Kilo

bits per second. They also specify the maximum signal voltage

of +/- l2 volts with minimum voltage of +/- 3 volts. Negative

voltage above 3 volts are interpreted as binary "l" while

positive 3 volts are binary "0". The standard connector is

a 25 pin and most commonly used is a DB25 way connector. The

standard supports bidirectional communication, therefore full

duplex communication is possible.

Normally Data Terminal Equipment (DTE) is connected to Data

Communication Equipment (DCE) directly, but there are

occasions when DTE are connected to DTE. This scenario

presents a problem as the transmit pins and receive pins of

the two DTE's are connected together. To solve this problem

a device called a "Null Modem" is used. This null modem swaps

the transmit and receive pin on the null modem side so that

the transmit of the one DTE is connected to .the others

receive pin and vice versa. The other control or handshaking

signals that are also cross connected are RTS to CTS and DSR

to DTR. Instead of a null modem, cross connections can also

be hard-wired on the cable to suit specific applications.

(GROFTON,l986:l3)

36

writing the communication interface routines for the serial

port in the C language is quite a complex task, especially

if handshaking is required. As the C language has no

facilities or fixed routines available to communicate with

the UART (Universal Asynchronous Receiver and Transmitter) .

Therefore all asynchronous serial communication must be

programmed at systems level and in order to accomplish this,

a good understanding must be gained of the functions of the

8250 UART.

The main functions of the UART are:

(1) To convert parallel data from the Central Processing

Unit (CPU) into serial data for transmission. And to

convert the serial data which is received from an

external source into parallel information.

(2) When transmitting a character, the necessary start,

stop and parity bits are added to the information and

when the information is received these bits are removed

from the received character.

37

(3) The UART detects errors in parity and baud rate and

reports these faults.

(4) Transmits characters at the appropriate baud rate which

has been preset and calculates the parity bit on

transmission.

(5) The UART sets up the relevant hardware handshaking

signals and reports status of the incoming handshaking

signals.

The UART has several registers which are internal memory

locations. These registers hold information on the next

character to be transmitted or the last character that was

received, current status information of handshaking signals

and any errors detected on transmission or reception of a

character.

The UART registers are divided into three categories, namely

control registers, status registers and buffer registers.

The four control registers are: Line Control Register, Modem

Control Register, Interrupt Enable Register and Baud Rate

Divisor Latches.

38

The Line Control Register is used to set up the communication

parameters. These parameters are Character Length, Stop Bit

Length, Parity and Divisor Latch Access Bit.

The Modem Control Register controls the handshaking signals

sent by the UART. These signals are Data Terminal Ready (DTR)

and Request To Send (RTS).

The Interrupt Enable Register (IER) enables four types of

interrupts which independently activate the INT pin of the

CPU whenever an event occurs. The four types of interrupts

which can be enabled or disabled are Receive Data Interrupt

Enable (RXDA) , Transmit Data Empty Enable (TXDA) , Receive

Interrupt Enable (RXIE) and Modem Interrupt Enable (MIE).

The Baud Rate Divisor Latch is a set of two registers which

contain the number by which the clock input (1.8432 Mhz) must

be divided to obtain the required Baud Rate.

{Microcornrnunications, 1990:2-28)

The Status Registers are Line Status Register, Modem Status

Register and Interrupt Identification Register. These

registers report the internal status in the UART.

39

The Line Status Register (LSR) reports the information

concerning receipt and transmission of data. Each individual

bit has a different meaning. These bits are Data Ready,

Parity Error, Overrun Error, Framing Error, Break Interrupt,

Transmitter Holding Register Empty and Transmit Shift

Register Empty.

The Modem Status Register reports the conditions present on

the handshaking lines. These handshaking lines are Clear To

Send (CTS) , Data Set Ready (DSR) , Ring Indicator (RI) and

Received Line Signals Detect (RLSD).

The interrupt identification register holds the enabled

active interrupt with the highest priority and the interrupt

pending signal. The source of the interrupt request can be

determined by evaluating bit 2 and bit 1. These two bits

reflect the highest priority interrupt requested. The four

interrupts are Line Status, received Data available,

Transmitter holding register and Modem Status.

The third category of register are the buffer registers.

These two buffer registers are namely, Transmitting and

Receiving registers. The Receiver Buffer Register holds the

40

last character received and Transmitter Holding Register

holds the next character to be transmitted by the DART.

Through the knowledge gained and a considerable amount of

experimentation, a routine was developed to initialise the

computer hardware for serial communication. For effective

five wire communication, it was found that a strict procedure

had to be followed to initialise the DART's various

registers. Failing to follow this procedure caused numerous

errors to occur, sometimes with disastrous effect to the

entire system.

The developed procedure below is divided into a number of

steps:

(1) First, all the registers need to be saved so that on

completion of the program, these registers can be

restored to their original values.

(2) Then the Interrupt Enable Register (IER) must be set to

zero. This causes the DART to disable all interrupts

and therefore inhibit all interrupt requests.

41

(3) The Modem Control Register (MCR) is also set to zero

disabling the hardware buffer and all the handshaking

signals.

(4) The UART is now ready to be re-configured according to

the user's specifications. The first register to be set

is the Line Control Register (LCR). By setting this

register the Stop Bit Length, Character Length and

Parity parameters are set.

(S) The Baud Rate is set by determining the Baud Rate

Generator (BRG) Divisor. The formulae for this

calculation is:

Baud Rate Divisor = BRG / Baud Rate / 16 bits.

The frequency of the BRG is equal to 1.8432 Mhz. This

Baud Rate Divisor is 16 Bits which is then divided into

a High Byte and a Low Byte. The LSR is then again

accessed and Bit 7 is set. This is the Divisor Latch

Access Bit (DLAB) which allows access to the Divisor

Counter Register. The High Byte and Low Byte are

loaded into their respective registers and the DLAB Bit

is reset. (Microcommunications, 1990:2-29) .

42

(6) The Modem Control Register is set to the users

specifications and the hardware buffer are enabled.

For effective serial data transfer without the waste of the

Central Processing Unit's (CPU) machine cycles by polling for

interrupts, an interrupt input / output routine was written.

This routine is known as an interrupt handler and is the most

prod~ctive way of servicing interrupts. This routine only

services an interrupt on request from the UART.

(GROFTON,1990:132)

43

CHAPTER 5

INITIALISATION PROCEDURES

5.1 MOTOR CONTROL UNIT INITIALISATION

The process controller or PC needs to set up a communication

link with the Motor Control Unit (MCU). To establish this

communication link with MCD certain procedures need to be

followed. When the power is first applied to the MCU, the

green light emitting diode (led) on the power supply module

comes on and will stay on as long as the system is powered

up. The red led on the microprocessor serial index lights up

for approximately 1 second . During this time the Indexer

runs through its internal initialisation routine.

(Electronic motion control and automation,1990:DS-7)

Once the indexer has initialised itself, the process

controller which is a Personal Computer (PC) should transmit

a parenthesis character n (n, at the baud rate which the

44

operator has selected, while configuring the serial

communication parameters. This topic is discussed in Chapter

2. When the indexer receives this character, it can determine

the rate at which the character was sent, and therefore the

baud rate. The indexer responds by flashing the red led twice

per second and then transmitting a "U" character at the new

baud rate. The PC should receive the character that was sent

correctly. If the character was not received correctly, the

parenthesis character must be retransmitted repeatedly until

the "U" character is received. All the alpha characters are

transmitted in upper case. The "U" character is followed by

a carriage return which is designated <CR>. Although the

parenthesis can be transmitted as often as necessary, the

indexer only detects the baud rate on the first "(" received.

After the baud rate has been established, the PC controller

must send information to set up the data format. There are

two alternative formats available to suit the requirements

of different controllers. The "U" format is terminated only

by a carriage return <CR>, whilst the "V" format is

terminated by a carriage return plus a line feed which is

designated by <CR><LF>. If the "U" format is used, the

indexer expects only a carriage return to terminate all the

45

instructions and it will similarly terminate all status and

position data with <CR>. When the "V" format is selected, all

the following instructions must be terminated by a line feed

and the indexer will terminate all the returned data with a

line feed plus a carriage return <CR><LF>.

(Electronic motion control and automation,1990:5-7)

For the CNC Drill software design, the "U" format option was

chosen. The "U" format control instruction is in the form of

"UX1X2<CR>". The "U" in the instruction string specifies the

format being used. The Xl represents a table from which the

programmer can select the number of stop bits, number of data

bits and the significance of the eighth bit to suit the

particular controller being employed. The X2 represents a

table of options which can be selected to determine the

parity and echo back. This table can also determine whether

hardware or software flow control (handshaking) is used. Both

involve signals returning from the receiving device to the

transmitting device. With hardware flow control, the

receiving device sends a positive voltage along a dedicated

handshaking line as long as it is ready to send. When the

transmitting computer receives a negative voltage the

computer will stop sending data. With software flow control,

46

the handshaking signals consist of special characters

transmitted along the data line,

handshaking lines. (GROFTON,1986:8)

rather than using

The character string transmitted for setting up the data

configuration must be sent in the ordered sequence as

discussed above. If an error occurs while transmitting any

of the characters in the string, the whole string must be

retransmitted. After the format instruction has been

transmitted, a delay of approximately 5 mS must be allowed

for the indexer to re-initialise.

When the indexer receives the correct data format

instruction, the red led will cease flashing and the indexer

is ready to receive move instructions. If the led comes on

again it means that a communication error or critical fault

condition has occurred, which must be cleared. An instruction

of up to 64 characters in length can be received by the

indexer and stored in its input buffer. The communication

parameters that were chosen for the "U" format are: 8 data

bits, 2 stop bits, no parity and no echo back.

47

5.2 INTERRUPT SERVICE ROUTINE

There are two methods of handling data to and from the

Universal Asynchronous Receiver and Transmitter (UART) ,

namely polling and Interrupt Handlers. The cycle of examining

status, reading, examining status and so on, is known as

Polling.

Interrupt service routine is the most effective method of

transferring serial data via the UART without retarding the

Central Processing Unit (CPU). If the polling method is used

the CPU is required to examine the UART continuously,

normally in a loop in the program, until either the UART is

ready to transmit or receive the expected data.

Interrupts are typically generated when a character has been

received or transmitted or when the handshaking signals

change. (GROFTON,1990:130) To implement interrupt- driven I/O

a section of code must be installed at systems level in the

interrupt vector table. This section of code is called the

Interrupt Handler. Whenever a interrupt is received from the

UART the computer branches to the interrupt handler. The

address to which it must branch resides in the interrupt

vector table.

48

There may be different interrupts for different events, or

just one interrupt. In the latter case it is necessary for

the computer to examine a special register to find out what

caused the latest interrupt. Sometimes the UART can be

programmed to generate interrupts on certain events and not

others. (GROFTON,l986:l83). The Interrupt Enable Register

bits must be set to determine which events should cause an

interrupt. The interrupt handler first examines the Interrupt

Identification Register to determine the cause of the

interrupt. The four interrupts which can be generated by the

UART are Data available, Transmitter holding register empty,

Line status and Modem status. The interrupt handler then

stores the information in a buffer which will be examined

by the interrupt service routine, which is part of the main

program. The main program, which also contains the interrupt

service routine and the interrupt handler, run simultaneously

on the computer. They communicate with each other by leaving

data in a designated buffer.

Programming, at systems level involves configuring the

hardware which generates the various interrupt signals. These

interrupts are prioritised by a Programmable Interrupt

Controller (PlC). The IBM PC has eight IRQ (interrupt

request) lines, while IBM PC-AT has sixteen IRQ lines. These

IRQ line designations are shown in the table below.

49

IBM PC AND PC-AT IRQ LINES.

IRQ IBM PC IRQ DEVICE IBM PC-AT IRQ DEVICE

LINE

NMI Nonmaskable interrupt Nonmaskable interrupt

0 Timer Timer

1. Keyboard Keyboard

2 Reserved Gate from controller 1. to 2

3 Serial port 2 Serial port 2

4 Serial port 1. Serial port 1.

5 Hard Disk Parallel port 2

6 Floppy disk Floppy disk

7 Parallel port 1. Parallel port 1.

a N/A Clock

9 N/A Redirection from IRQ 2

1.0 N/A Reserved

1.1. N/A Reserved

1.2 N/A Reserved

1.3 N/A Coprocessor

1.4 N/A Hard Disk

1.5 N/A Reserved

The IRQ lines are not directly connected to the CPU, but via

the dedicated Programmable Interrupt Controller chip (PlC).

The IBM XT has one PlC controller chip while the IBM AT

contains two controllers. The PlC prioritises the interrupts

and assigns the highest priority to IRQ 0 and lowest priority

to IRQ 7. The setting up of the priorities is done when the

Power On Self Test (POST) routine is executed, from the bios

when the computer boots up.

50

The PlC has a register which enables the various interrupts.

By default IRQ 3 and IRQ 4 are not enabled. When

implementing Interrupt Driven I/O, an instruction must be

passed to the PlC to enable the appropriate interrupt lines.

First the value of the PlC register must be read at port

address 21H. The IRQ3 and IRQ4 are enabled by setting bit 3

or 4 of the binary value obtained from the PlC, depending on

which IRQ line is required. This new value is then sent back

to the port address. PlC is now enabled and the selected UART

interrupts can be set.

When the pic receives an interrupt, assuming that the

appropriate interrupt has been enabled and no other interrupt

is pending, it asserts a positive voltage on the INT line to

the CPU. The CPU then acknowledges the interrupt by means of

a signal to the PlC, and requests the PlC to indicate which

interrupt occurred. The PlC sends a number (via the data

bus) to the CPU (this number is 8 plus the IRQ number). The

CPU then executes the appropriate section of code by saving

the current program address on the stack and executing a far

call to memory location pointed to by the interrupt vector

for that interrupt. The code that causes the jump through the

interrupt vector table is called the interrupt handler, and

points to the code that reads the interrupt and acts upon it,

which is known as the interrupt service routine.

51

CHAPTER 6

CAD FILE TRANSLATION

One of the major design considerations was which Computer

Aided Design (CAD) software packages should be used to

interface to the Computer Numerically Controlled (CNC) Drill,

and how to translate the CAD packages into a code that would

be compatible with the hardware which was selected for the

design.

Some of the software packages on the market produce a Drill

Tape while others can only produce a plotter file output.

From the investigation it was established that the Drill

Tapes did not conform to any partiCUlar standard and that

they were specific to the software manufacturer. Similarly

all the CAD software packages supported three main plotters

output file formats. These being DMP51, HPGL and DFX formats.

The DMP51 and HPGL plotter languages were the most common and

supported by the two largest plotter manufacturers namely

Houston Instruments and Hewlett Packard. After careful

consideration it was decided that the Houston Instruments

plotter language DMP51 would be the easier plotter language

to translate for the CNC Drill.

52

For many other CNC machines such as Lathes and Milling

machines the defacto standard is the Gerber format which is

used to input data into the machines, but none of the Printed

Circuit Board (PCB) CAD packages supported this language

format.

To extract the coordinates for the printed circuit board and

the pad layouts, the CAD package had to be configured so that

it would generate a DMP51 ASCII file. (Smartwork,1986:D-1).

The translation software that was written would then read

this file at a rate 512 bytes per file access into memory.

This data would be systematically examined byte for byte and

if any coordinate data was detected, this information would

then be stored in an array containing either X or Y data.

This process would continue until the whole plotter output

file had been read.

The information contained in the X and Y arrays which was in

string format, is then converted into integer format. Each

coordinate is then checked to ascertain if any of the

coordinate pairs appeared twice in the arrays.

53

A routine was developed to detect the offset coordinate of

the drill relative to the edge of the Printed Circuit board

which is at coordinates (0,0). To determine the distance

between each pad the offset coordinate is then subtracted

from the first set of values in the arrays. The resultant

values are the first set of coordinates which will be sent

to the Motor Control Unit, which will cause the X-Y table to

move. The next value is determined by last computed value

which is subtracted from the next new value read. Each time

a set of X and Y coordinates is computed, the CNC drill's X-Y

table will move the exact number of machine steps and the

drill operation will be activated. This process will continue

until the entire Printed Circuit Board has been drilled.

Once the last hole has been drilled, the CNC drill will

return to its original start position and wait for the next

set of instructions from the Motor Control Unit.

The operator can view the entire drilling operation on the

Personal computer's monitor and can also instruct the drill

to rout the printed circuit board on completion of the

drilling operation. The operator also has the facility

available to terminate the operation at any stage.

54

CHAPTER 7

DISPLAY GRAPHICS

7.1 OVERVIEW:

The Display Interface software package is required by the

operator of the CNC machine, to show information pertaining

to the job being executed.

While the CNC Drilling Machine is executing a particular

drill pattern, the screen will display the specific

information relating to the job in progress. This makes it

much easier for the operator to determine the status of a

specific job. As the CNC drill moves from one location to

another, the graphical representation of the Printed Circuit

Board (PCBl will indicate to the user which hole is being

drilled. Data on the PCB parameters will also be displayed

on the screen. These parameters being board size and total

number of holes.

Other information which should appear on the display is

status information. Status information being X and Y

coordinates and the hole number which is being drilled, and

55

the status of the Motor Control Unit (MCU)

If errors occur in the system while executing a specific

task, these error messages should then be displayed.

Provision has also been made for user intervention.

7.2 INTERFACE SPECIFICATION

!:Jtlalfl PIKICiIUoII

(UiOl.CJ

HILl PAIli:

IIELCOII.()

SfTUr ~"I"'L IIISTId.L 1I1TEJUlI'T

~
UlITlt.UU USlUl

+---->CCIIWUIlICATlCWl IlAIlDLI!:Il
CI/IIT.C)

(SEWP.C) (1IlTUP.C)

UlITU.UU

IIIDTOll tOMTIICII.

~"

FILE It.......LER Ol....UIUOlll

READ fiLES--. lllUSl..Anoa
IIEUIEn DATA Of .-,

IFILE.O lCootvy.C)

.

gEtUllOl"" IlWT Il,t.U TlU.lISOUUIOll
TO OI(U Via llAU

CO-OllDUIIJI,TE5 SllU.... _LUI

(SOI......T_RClUT .Cl ICOIlT.SUIIlG.C)

t
I l

E11SP1. ...T 1.'£llf••U nAJuS + 1[_
ROUT IIAIlDUII

0---> <------>FOIl CIlC NILL. !lETEelIOll
(RCliO•• C)

WISl'LAI.CJ <"OT_FAIILT .Cl

IIE'iTOItE ALL c-.I\ GO TO ElAn. .---l\
n-tUSJUI5 PJlIXE"SS CQIIf'Ulfe,; (OJol'''''LC) e,;(IinSCRLREG.Cl (CIIOI.Cl

SOFTWARE FLOW DIAGRAM

56

The Display Interface software will obtain data from various

existing routines. The coordinates for the graphical

representation of the PC board will be obtained from two

integer buffers which are generated by a module called

FILE. C. The data for these arrays are read from the CAD

layout file into a file buffer. The coordinates are then

extracted from this file buffer, translated into X and Y

coordinates and stored in the coordinate arrays. This file

read process is repeated until the complete file has been

read.

A counter is employed to determine the total amount of

coordinates stored in these coordinate arrays. This counter

value will provide the display interface with the total

number of holes detected on the PCB.

The rout coordinates which determine the size and coordinates

for the border of the PCB, are stored in a separate two

dimensional array which is a function of the SMART ROUT

routine. The display interface must be activated whenever the

drilling or routing process commences. This is initiated when

the program calls the modules CONV_P.C, CONY STRING.C or

RT NOW. The Error Messages for the MCU are generated by a

routine called MOT_FAULT. C This routine also produces

Status Messages of the state on the MCU.

57

. *..

GRAPHICAL REPRESENTATION

7.3 FUNCTIONAL SPECIFICATION

Specific areas need to be assigned to the screen for various

functions. These areas are the following:

(a) Graphical representation field

(b) System information field

(c) Error message field

: SYSTEM INFORMATION.
1========1
1
IBOARD SIZE: 180mm X 100mm
1
1
1
1
(TOTAL NUWBER OF HOLE5:120
I
1
I
I
IX COORDINATE: 50
I
I
I
I
IV COORDINATE: 234
I
I
I
I
IHOLE NUMBER: le
I
I
I
IWCU STATUS: BUSY
I

--~- ------------------------

ERROR WESSAGE: CO~MUNICATION fAULT - PRESS ENTER TO CONTINUE: ?

SCREEN FORMAT

58

The information that appears in these fields are the

following:

(1) A graphical representation of the PCB being drilled.

(2) Total number of holes detected on PCB.

(3) The size of the PCB.

(4) The number of holes completed by CNC Machine.

(5) Status of MCU.

(6) Error messages when errors occur.

(7) X and Y coordinates of CNC Machine.

The method that has been employed to represent all the

information on the display interface is that all the fields

are displayed on the screen simultaneously.

A procedure has been developed to scale the PC boards to

ensure that the entire board is displayed. Another function

that is available for the operator is a facility for user

intervention either to input data or abort the system.

If graphic errors are detected the program notifies the

operator and then aborts. On completion of the drilling and

routing process, the screen is restored to its original

operation mode.

59

7.4 DESIGN CONSIDERATIONS:

7.4. l OPERATION:

The Display Interface is a set of routines designed to

interface with various existing routines in the CNC program.

These routines are divided into three separate categories

namely Display Set-up, Display Implementation and Operation

routines. The Operation routines are the existing routines

which control the CNC Machine and which pass various types

of data to the display routines.

The Display Set-up routines create a screen image which is

later called by the main program. This routine is called as

soon as the PC Board to be drilled is identified. These

routines are Set Image_Screen, Scale Pcb and Display-pcb.

Initially Set Image_screen is called which is configured to

monitor and initialise the graphics mode. This routine then

calls Scale-pcb which determines the size of the PC board

from information gained from the Operation routines. The PC

board is then scaled to fit into a particular area on the

screen. The Display-pcb is then called, which first plots the

outline of the scaled down version of PC board. The pads

60

(holes) are then generated. The screen cursor's position is

monitored by a counter which remembers the cursor last

position.

The system information headings are generated by the

system_info routine and the error message headings by

Error_message.

This complete screen image is saved in memory to be used

later by the main routine,i.e Call Graphics.

The principle on which the Call Graphics works is to recall

the screen image which was created by Set Image_Screen. This

is done to increase the speed at which the screen can be

updated. Once the image is displayed the cursor is moved to

a new pad which is being operated upon. The systems

information is displayed next to the relevant headings. An

operation routine, Mot_fault is called, which monitors the

status of the Motor Control Unit (MCU) and any errors that

may occur during MCU operation. This routine also checks to

see if there was any user intervention and if so, the

program is aborted.

6l

7 .4 . 2 ERROR HANDLING:

There are two sources of errors and these can be generated

by either the graphic mode or the MCU. The graphic mode will

only generate a fault if the hardware doesn't support the

graphics or the graphical functions used are not present.

The other type of errors which are generated by the MCU are

detected by the MOT_FAULT routine. These errors are machine

and communication errors. Most of these errors are critical

errors and therefore when they are detected the program is

aborted.

The errors and the ability of the control system to handle

the error

Chapter 8.

condition are discussed in more detail in

7.4.3 DATA STRUCTURES:

There are a number of different data structures called from

the Display Interface routine. The first routine is the

RT buf which is a two dimensional integer buffer containing

the X and Y coordinates for the border of the PC board. These

62

values are also used to determine the size of the PC board.

This buffer can be found in smart rout.c routine.

The next important structure is that of coxbuf and coybuf,

which are two one dimensional floating point arrays of 512

elements, which store the coordinates of the pad positions.

These two data structures are found in the file handler.

(file.c) .

The graph_buffer which is a two dimensional integer buffer

with 512 elements, is used by Scale-pcb to store the scaled

down version of the PC board. The rest of the data is of the

integer type.

7 .5 INTERFACE SOFTWARE DEVELOPMENT:

The Display Interface Routines were developed using a

software development tool called "PROGRAM DESIGN LANGUAGE"

(PDL) which performs the similar role to design tools like

flow charts and structure charts. This PC based development

tool is simple to use, with the added advantage over the

other development tools that it allows the programmer to

read, review and refine their designs quickly. The detailed

63

design can readily be translated into code and remains as

useful documentation for debugging, testing and

maintenance. (Dinkelacker, 1991: 1.1) This language which is

written in "Pseudo English" allows the routines and data to

be presented in a readable format with useful references and

indexes. Typical features of this tool include comments ,

written descriptions, procedure and data structures. With all

these utilities available, error checking is simplified and

the effect of modification to procedure can be easily

monitored. The Display Interface Routine using PDL is shown

in Appendix B.

64

CHAPTER 8

ERROR DETECTION

For a control system to operate efficiently, it must have

good error detection and error management procedures. Errors

in the CNC Drill are generated by two main sources: namely,

software and hardware.

The software errors that are generated occur mainly due to

problems when the Personal Computer (PC) is in the graphic

mode. The errors that arise, vary from "not enough memory to

load the graphics driver" to "not being able to detect the

graphics hardware". Most of these errors are critical errors

and therefore when they are detected the programme is

aborted. These errors are the following:

65

Graphics Error Message Table

DECIMAL ERROR MESSAGE
VALUE

0 No Error

1 (BGI) Graphics not installed (Use initgraph)

2 Graphics hardware not detected

3 Device driver file not found

4 Invalid device driver file

5 Not enough memory to load driver

6 Out of memory in scan fill

7 Out of memory in flood fill

8 Font file not found

9 Not enough memory to load font

10 Invalid graphics mode for selected driver

11 Graphics error

12 Graphics I/O error

13 Invalid font file

14 Invalid font number

15 Invalid device number

16 Reserved for Turbo C

17 Reserved for Turbo C

18 Invalid version number of Turbo C

The hardware errors are generated by the Motor Control Unit

(MCU) and PC. These errors relate more to communication or

motion status problems between MCU, PC and the other hardware

peripherals. The errors are detected by the "MOT FAULT"

66

routine which decides on the severity of the error, and then

makes a decision whether or not to terminate the process or

to take corrective action.

The MOTOR FAULT routine also monitors the motion status and

reports the status of the CNC Drill back to the process

controller at the time of the request.

If the MOTOR_FAULT routine detects a problem, the process

controller then interrogates the MCU to clarify if the error

is a communication or input related fault ie. limit switches.

Typical communication faults are Parity errors, Overrun

errors, Framing errors, Data faults and Out-of-range errors.

The input status errors are concerned with X and Y motor

faults, Emergency stop and limit switches which have been

activated. The input status interrogation is also interested

in input from the other peripherals which need to be serviced

by the MCU.

All these faults are reported to the operator before the

process controller terminates the program.

67

CHAPTER 9

RECOMMENDATIONS

The development of the Computer Numerical Controlled (CNC)

Drill was a resounding success and many objectives set

forward in the proposal were achieved. In reviewing the

design, enhancements have been conceptualised which would

further improve the system and increase both the versatility

and capabilities of the CNC machine. It is suggested that

these options should be investigated and implemented at a

later stage

below:

The conceptual improvements are discussed

with the present CNC Drill development the Printed

Circuit Board (PCB) has been aligned manually on the

table. This method of squaring each PCB to be drilled,

to the edge of the table, is a tedious task. If an

Optical Targeting System is used to align the PeB, this

process would be much quicker and simpler. To implement

an optical targeting system, a Closed Circuit

Television (CCTV) camera with a close-up lens set can

68

be used. On the close-up lens set a cross hash and

centre can be imprinted. If the CCTV is mounted

perpendicular to the table, on the drill gantry which

is parallel to the table, then using the target, the

PCB can be aligned with ease. The PCB can be aligned

either on the X or Y axis, depending which side of the

PCB is square with the PCB layout. For example, if the

PCB is square on the X axis, then the X-Y table could

be moved to the left hand side of the X axis, and the

cross hash positioned on the edge of the PCB. The X-Y

table is then moved to the right hand side of the X

axis. If the cross hash is not precisely on the edge of

the PCB, it means the X axis is not parallel to the

table. The PCB can then be adjusted accordingly and

clamped down on the table before a final alignment

inspection is made.

Another alignment method which can be employed is that

of using two reference points on the PCB. With this

method the operator will view the PCB on the graphic

user interface. The first and last pad to be drilled

will be highlighted. The operator will then use the

CCTV targeting system to move the X-Y table, so that

69

the centre of the cross hash is positioned directly on

top of the first pad of the PCB. The process controller

will then store the coordinates of this position. The

operator will then move to the last pad to be drilled,

and this position will also be stored. The process

controller will then, by means of Pythagoras's Theorem,

mathematically adjust all the X and Y coordinates which

are stored in the coordinate buffers.

The CCTV camera can also be used to digitise the PCB

layout, so that the PCB's with the incorrect CAD file

formats can be drilled using the digitised image of the

PCB. Another alternative is using the CCTV camera to

target and store the position of each pad on the PCB.

This teaching of the process controller can be done by

moving from one pad to the next and storing coordinates

of the pad in a two dimensional array. Once the process

controller has learnt the drill pattern of all the X-Y

coordinates, it can write these coordinates to a file

and drill the PCB.

In the present design, the drilling head of the CNC

Drill is controlled by a pneumatic controller which the

70

Motor Control Unit (MCU) cannot control precisely. If

the drilling head which is the Z axis, could be

controlled by a stepper motor in the micro step mode,

the drilling head could be precisely controlled. With

this modification, the drill would acquire a number of

new features. The CNC Drill could be used as a Milling

Machine which could be interfaced to a mechanical

engineering type of Computer Aided Design (CAD)

package, for example, Autocad. If this feature is

combined with the teach/learn option, the CNC Drill

could become a versatile engraver.

A further improvement which could possibly be

developed, is that of the user interface and graphics

being in colour as opposed to monochrome. The error

messages could then be displayed in, for example red

text, while the PCB information could be in blue text,

and the PCB layout in green with the white background.

Although this improvement is not essential, it would

make the user interface more aesthetically pleasing and

user friendly.

71

An enhancement which could increase production speed is that

of developing a chuck changing mechanism and routine to

facilitate bit! tool changes. At present this process, is

being done manually by the operator.

In conclusion, the success of the CNC Drill development is

highlighted by the recognition received from the South

African Institute of Electrical Engineers (SAIEE) for the

best student paper delivered for 1994, refer to Appendix D.

If the recommendations which are proposed above are

implemented, the CNC Drill will be transformed into an

extremely versatile machine, which would out class most of

its competitors. This CNC Drill will be beneficial to the

small PCB manufacturers who chose to incorporate this

development in their production line.

72

CHAPTER 10

GLOSSARY OF TERMS

Acceleration

The change in velocity as a function of time. Acceleration

usually refers to the increasing velocity and deceleration

describes decreasing velocity.

Accuracy

A measure of the difference between expected position and

actual position of a motor or mechanical system. Stepper

Motor accuracy is usually specified as an angle representing

the maximum deviation from the expected position.

Autofeed Drill

The type of drill used in the CNC design which is driven by

a 3 phase electric motor and controlled by pneumatic signals.

ASCII

American Standard Code for information Interchange. This code

assigns a number to each numeral and letter of the alphabet.

In this manner, information can be transmitted between

machines as a series of binary numbers.

73

Backlash

This refers to the mechanical play which is in X-y table.

Baud rate

Number of bits transmitted per second.

Bidirectional Approach

The X-Y table can approach the datum point from both

directions.

Closed loop

A broadly applied term relating to any system where the

output is measured and compared to the input. The output is

then adjusted to reach the desired condition. In motion

control the term is used to describe a system wherein a

velocity or position (or both) transducer is used to generate

correction signals by comparison to desired parameters.

Datum (Home)

A reference position in a motion control system, usually

derived form a mechanical datum. This reference point is

determined by limit switches and optical discs on the x-y

table. often designated as the "zero" position.

74

Feed Speed

The rate at which the drill advances into the workpiece.

Handshaking Signals (Flow Control Signals)

RTS: Request To Send

CTS: Clear To Send

DSR: Data Set Ready

DTR: Data Terminal Ready

Hydraulic Control Unit (HCU)

Controls the feed speed of the Autofeed drill by hydraulic

damping which can be adjusted.

Limits

Properly designed motion control systems have sensors called

limits that alert the control electronics that the physical

end of travel is being approached and that motion should

stop.

Micro Stepping

An electronic control technique that proportions the current

in a stepper motor windings to provide additional

intermediate positions between poles. Produces smooth

75

rotation over a wide speed range and high positional

resolution.

Motor Control Unit (MCU)

This unit consists of a number of electronic modules which

are used to control the CNC Drill.

Parity

An error detection scheme which can detect transmission

errors.

Pneumatic Control unit

A module which is attached to the Autofeed Drill and converts

pneumatic signals into electrical signals for drill control

by the MCU.

Process Controller

The name given to an intelligent controller that processes

data and controls the CNC drilling operation.

76

Ramping

The acceleration and deceleration of a motor. May also refer

to the change in frequency of the applied step pulse train.

Repeatability

The degree to which the positioning accuracy for a given move

performed repetitively can be duplicated.

Resolution

The smallest positioning increments that can be achieved.

Frequently defined as the number of steps required for the

motor's shaft to rotate one complete revolution.

RS-232C

A data communication standard that encodes a string of

information on a single line in a time sequential format. The

standard specifies the proper voltage timing requirements so

that different manufacturers devices are compatible.

Speed

Used to describe the linear and rotational velocity of a

motor or other object in motion.

77

Start Bits

Serial Character transmissions begin with a bit which signals

the receiver that the data is now being transmitted.

Step Angle

The angle the shaft rotates at upon receipt of a single step

command.

Stop Bits

When transmitting serial characters, one or two bits are

added to every character to signal the end of the character.

Unidirectional Approach

The X-Y table is only permitted for approaching the Datum

point from one direction. The approach pattern prevents

"backlash".

78

CHAPTER 11

BIBLIOGRAPHY

l. BESANT, C.B. & LUI, C.W.K. 1986; Computer Aided

Design and

Manufacture: Ellis

Horwood Limited

2. CAMPBELL, J. 1986; Crafting C tools for the IBM PCS:

Prentice Hall

3. CAMPBELL, J. 1988; C Programmer's guide to serial

communications: Prentice Hall

4. CAMPBELL, J. 1989; The RS-232 solution: Sybex

5. CHORAFAS, D.N. 1987; Engineering productivity

through CAD/CAM: Great

Britain: Butherworth

6. COOMBS, C.F. 1979; Printed circuits handbook: New

York: McGraw-Hill

79

7. CULLEY, S.J. 1985: "Justifying CAD/CAM -the steps."

Effective CAD\CAM: IMechE

Conference publications 1985-7

8. DINKELACKER, AM & WALKER, AJ 1991; PDLPROC - User and

reference

Seal,

manual:

Dept.

E 1 e c t r i c a 1

Engineering - Wits

University

9. Electronic motion control and automation 1990:Microdyne

10. EZZELL, B. 1989; Graphics programming in Turbo C

~: Addison-Wesley Publishing

11. GOFTON, P.W. 1986; Mastering serial communication:

Sybex

12. LAFORE, R. 1990; C Programming using Turbo c++: The

Waite Group inc: Mc Millian

Computer Publishing

80

13. Microcommunications 1990; Volume 1: I n t e 1

Corporation

14'. SCHILDT, H. 1987; Turbo THE Complete Reference:

Orland-Osborne / McGraw-Hill

15. STARK,J. 1988; Managing CAD/CAM: McGraw-Hill

16. TEICHOLZ,E. 1985; CAD/CAM Handbook: New York:

17. The CAD/CAM Handbook 1980;

McGraw-Hill

Computervision

Corporation: Bedford,

Massachusetts. (eds)

MACHOVER, C & BLAUTH, R. E

18 Turbo C User guide version 2.0 1988; Borland

19. Turbo C Reference guide version 2.0 1988; Borland

20. Smartwork 1986; Wintek Corporation

81

APPENDIX A

5 Juna lS91

~A'l'roNjlf. PIIGJKl::T RI~GIE,TER (Ni'lll

re'lUE,st of 4 June 1991. concerning computer n=ic
ar,cu:1.Z!&" mac'lUll"" combined lIith CAD l5oft1lare interface.

Th" foHolling keYl'0!"rls(lIith Afrikaans eqnivaleIlts) "ere used in the
search~ •

Computa$ numeric$ control drilling machine
CAD softwre interface

($ is the truncation symbol)

No . projects on the above subject are listed OIl our database. The
. database inoludes all' iniormtioIl processed ~o date, but since the
iofor""tion for .the ·.National Register is supplied en a voluntary
basis, Our records are not ne=sarilY complete. The database is
updated till Apri11991. This lIas the last uIXiat.<.

If you need allY further Wormation please contact ~ at (012)
841;-2291.

Yours sincerely

.~•. V _ .J,~~

!lien Vim der \la1t

PROJECT REGISTER:
TECllli010GY ~.All!GEHElIT !!I!}
BUSIJ;1!SS lllFORMA'l'ION PROGRAJ!M!l

82

APPENDIX B

PROGRAM DESIGN LANGUAGE GRAPHICS SOURCE CODE

%TITLE ***** DISPLAY INTERFACE *****

%REVISION 1.02-TURBO C VER 2.0

%G MAINPROG

%D GLOBAL DATA (ALL VARIABLES ARE GLOBAL)

rt buf
(smart_rout)
cursor counter
scale factor
scale size
coxbuf
coybuf_
max screen
displayed (X-Y)
graphics_rep
displayed
system_info_size
information
MCU status
PCB size

border coordinates stored in buffer

stores x-y position of screen cursor
scaling factor of pcb
scale size of pcb
X coordinate buffer in file-F.c for hole
Y coordinate buffer in file-F.c for hole
total number of characters which can be

max. size of the area in which PCB can be

size area designated for systems

condition of the motor control unit
actual size of PCB

graph_buffer [dot-Fl stores scaled X-Y coordinates of holes
dot-F pointer in graph_buffer

%P MAINPROC .. Call graphics which is called from conv_string

if (dot-F == 0)
set cursor counter to offset value
endif
if user intervention then read input

83

then read
and coybuf_

restore screen to normal text mode
abort program
endif
if (dot-p not equal holes)
read graph_buffer[dot-p1
cursor_counter = graph_buffer[dot-pl
increment dot-p
display cursor on hole
call mot fault
endif

%P SET IMAGE SCREEN....Creates image screen
clear screen
initialise graphics mode
if (error in initialising)
print ERROR MESSAGE
abort program
endif
set screen resolution
determine max screen
display system_info headings
display error_messages headings
SCALE PCB
DISPLAY PCB

%P SCALE PCB ... Procedure to determine scale of PCB
scale factor = 1.

dot-p = 0
graphics_rep = max_screen - system_info_size
read PCB_size from rt_buf (Largest and smallest X-Y value)
scale_size = PCB_size
if scale_size < graphics_rep
X-Y coordinates from coxbuf
copy to graph_buffer
elseif scale_size > graphics
while scale_size > graphics_rep
if scale_size > graphics_rep then scale factor + 1.

scale_size = PCB_size / scale_factor
save scale factor
else
repeat
read X-Y coordinates from coxbuf and coybuf_

84

divide X-Y coordinates by scale_factor
save X-Y coordinates in graph_buffer[dot-pl
increment dot-p
until all X-Y coordinates from coxbuf and coybuf_
endif
endwhile
endif
PRINT XY PCB size

~P DISPLAY_PCB Display the border and holes
dot-p =0
repeat
read boarder coordinates from rt buf
plot border of pcb
until border is complete
while graph_buffer still full
read graph_buffer [dot-pl
if graph_buffer not empty
cursor_counter = graph_buffer[dot-pl
increment dot-p
PRINT_XY (symbol to indicate hole)
elseif empty
reset cursor counter to [I,ll (return cursor to home)
endif
endwhile

~P MOT_FAULT ..Existing routine developed to monitor motor
status!

while MCU status is busy
PRINT XY MCU status- -
if (systems error)
PRINT_XY(Error Message)
abort program
endif
endwhile

~P SYSTEM _INFO ...Displays system and status information
headings

PRINT XY "BOARD SIZE:"
PRINT XY "TOTAL NUMBER OF HOLES:"

85

PRINT XY "X COORDINATE:"
PRINT XY "Y COORDINATE:"
PRINT XY "HOLE NUMBER:"
PRINT XY "MCU STSATUS:"
~P ERROR_MESSAGE ...Displays error message headings

PRINT XY "ERROR MESSAGE:"

~P PRINT XY... Prints all data / strings in graphics mode

get format (character or string)
get data / string
move screen cursor to XY position
erase data area according to string length at XY position
write data string to allocated area

***** DISPLAY INTERFACE *****

1.02-TURBO C VER 2.0

Time 19 12

Date 1 3 1993

86

1993
***** DISPLAY INTERFACE *****

PAGE 0 - 1
TABLE OF CONTENTS

1 3

TAB LEO F
CONTENTS .
0-1
MAINPROG .
· 1 - 1

GLOBAL DATA (ALL VARIABLES ARE

GLOBAL) .. 1 - 2A
MAINPROC.. Call graphics which is called from

conv string 1 - 2B
SET IMAGE SCREEN....Creates image

screen. .. 1 - 3A
SCALE PCB ... Procedure to determine scale of

PCB. 1 - 3B
DISPLAy_PCB Display the border and

holes. 1 - 4A
MOT_FAULT ..Existing routine developed to monitor motor

status!. 1 - 4B
SYSTEM _INFO ... Displays system and status information

headings. 1 - 4C
ERROR MESSAGE ...Displays error message

headings. 1 - SA
PRINT_XY ••• Prints all data / strings in graphics

mode. 1 - SB
C ALL I N
TREE ••••.••.•.••..•••••..•••••••••.••••.••••.••.••.•••..•..••

2 - 1
PRO C E D U R E
INDEX .
3 - 1
D A T
INDEX .
· 4 - 1
L A S

PAGE .
· S - 1

87

1993
***** DISPLAY INTERFACE *****

PAGE 1 - 1
1 3

MAINPROG

1993
***** DISPLAY INTERFACE *****

PAGE 1 - 2
MAINPROG

1 3

GLOBAL DATA (ALL VARIABLES ARE GLOBAL)

D

-D--
2 A

D 1
(smart_rout)

D 2

cursor
D 3

D 4
D 5

hole
D 6

hole

rt buf border coordinates stored in buffer

cursor_counter stores x-y position of screen

scale_factor scaling factor of pcb
scale_size scale size of pcb

coxbuf X coordinate buffer in file-F.c for

coybuf Y coordinate buffer in file-F.c for

D 7 max screen total number of characters which can
be displayed(X+++

D 8 graphics_rep max. size of the area in which PCB
can be display+++

88

D 9 system_info_size size area designated for
systems information

D la MCU status condition of the motor control unit
D 11 PCB size actual size of PCB

D 12 graph_buffer [dotyl stores scaled X-Y
coordinates of holes

D 13 doty pointer in graph_buffer

MAINPROC.. Call graphics which is called from conv_string

P -
-P---

2 B

P 1
P 2

P 3
P 4

P 5
P 6

P 7
P 8
P 9
P la
PH
P 12
P13
PH

if (doty == 0)
set cursor counter to offset value

endif
if user intervention then read input

restore screen to normal text mode
abort program

endif
if (doty not equal holes)

read graph_buffer[dotyl
cursor_counter = graph_buffer[dotyl
increment doty
display cursor on hole
call mot fault

endif

1993
***** DISPLAY INTERFACE *****

PAGE 1 - 3
MAINPROG

1 3

SET IMAGE SCREEN....Creates image screen

P -

-P---
3 A

P 1
P 2

P 3

clear screen
initialise graphics mode
if (error in initialising)

89

P 4
P 5
P 6
P 7

P 8

P 9
P ~O

P ~~

P ~2

print ERROR MESSAGE
abort program

endif
set screen resolution
determine max screen
display system_info headings
display error_messages headings
SCALE PCB
DISPLAY PCB

SCALE PCB ... Procedure to determine scale of PCB

- P -

-P---
3 B

PCB size /

save X-Y coordinates in

scale size =

divide X-Y coordinates by

read X-Y coordinates from

increment dot-p
until all X-Y coordinates from

= max_screen - system_info_size
from rt_buf (Largest and smallest

save scale factor
else

repeat

endif
endwhile

scale size = PCB size- -
if scale_size < graphics_rep then read

X-Y coordinates from coxbuf and coybuf_
copy to graph_buffer

elseif scale_size > graphics
while scale_size > graphics_rep

if scale_size > graphics_rep then

scale factor = ~

dot-p = 0
graphics_rep

read PCB size

P ~

P 2
P 3
P 4

X-Y value)
P 5
P 6
P 7

P 8
P 9
P ~O

P ~~

scale factor + ~

P 12
scale factor

PU
P ~4

P ~5

P ~6

coxbuf and coybuf_
P 17

scale factor
P ~8

graph_buffer [dot-p]
P ~9

P 20
coxbuf and coybuf_

P 2~

P 22

90

P 23 endif
P 24 PRINT XY PCB size

***** DISPLAY INTERFACE *****
1993 PAGE 1 - 4

MAINPROG

DISPLAY_PCBDisplay the border and holes

P -
-P---

1 3

4 A

P 1
P 2

P 3
P 4
P 5
P 6

P 7

P 8

P 9

P 10

PH
P 12

P13
cursor to

P 14
P 15

dotJl =0
repeat

read boarder coordinates from rt buf
plot border of pcb

until border is complete
while graph_buffer still full

read graph_buffer [dotJl]
if graph_buffer not empty

cursor_counter = graph_buffer[dotJl]
increment dotJl
PRINT_XY (symbol to indicate hole)

elseif empty
reset cursor counter to [1,1] (return

home)
endif

endwhile

MOT_FAULT .. Existing routine developed to monitor motor
status!

P -
-P---

4 B

P 1
P 2

P 3
P 4
P 5
P 6

P 7

while MCU_status is busy
PRINT XY MCU status- -
if (systems error)

PRINT XY(Error Message)
abort program

endif
endwhile

91

SYSTEM _INFO ...Displays system and status information
headings

P -
-P---

P 1 PRINT XY "BOARD SIZE:"
P 2 PRINT XY "TOTAL NUMBER OF HOLES:"
P 3 PRINT XY "X COORDINATE:"
P 4 PRINT XY "Y COORDINATE:"
P 5 PRINT XY "HOLE NUMBER:"
P 6 PRINT XY "MCU STSATUS:"

4 C

1993
***** DISPLAY INTERFACE *****

PAGE 1 - 5
MAINPROG

1 3

ERROR_MESSAGE ...Displays error message headings

P -
-P---

5 A

P 1 PRINT XY "ERROR MESSAGE:"

PRINT XY... Prints all data / strings in graphics mode

P -
-P---

5 B

P 1
P 2

P 3
P 4

XY position
P 5

get format (character or string)
get data / string
move screen cursor to XY position
erase data area according to string length at

write data string to allocated area

92

1993
***** DISPLAY INTERFACE *****

PAGE 2 - l
CALLING TREES

l 3

PROCEDURES

SYSTEM _INFO ... Displays system and

MOT_FAULT .. Existing routine developed

DISPLAY_PCBDisplay the border and

PRINT XY... Prints all data / strings in

MAINPROC .. Call graphics which is called

SET IMAGE_SCREEN.... Creates image screen
SCALE PCB ... Procedure to determine scale

4

8

2

3

2B l

from conv stri+++
3A

3B

of PCB
4A

holes
4B S

to monitor motor +++
4C 6

status information h+++
SA 7 ERROR_MESSAGE ...Displays error message

headings
SB

graphics mode

1993
***** DISPLAY INTERFACE *****

PAGE 3 - l
PROCEDURE INDEX

l 3

PROCEDURE DEFINED
REFERENCED IN PROCEDURE

LINES
4A DISPLAY_PCB Display the border and holes
SA ERROR_MESSAGE Displays error message headings

2B MAINPROC.. Call graphics which is called from
conv_string

4B MOT_FAULT ..Existing routine developed to monitor motor

93

status!
SB PRINT_XY Prints all data / strings in graphics mode
3B SCALE_PCB Procedure to determine scale of PCB
3A SET IMAGE_SCREEN....Creates image screen
4C SYSTEM _INFO ...Displays system and status information

headings

1993
***** DISPLAY INTERFACE *****

PAGE 4 - l
DATA INDEX

DATA ITEM
REFERENCED IN SEGMENT

LINES

l 3

conY_string
2B MAINPROC.. Call graphics which is called from

cony_string
o

coxbuf_
2A GLOBAL DATA (ALL VARIABLES ARE GLOBAL)

S
3B SCALE PCB ... Procedure to determine scale of

PCB
7 l6 20

coybuf_
2A GLOBAL DATA (ALL VARIABLES ARE GLOBAL)

6
3B SCALE PCB ... Procedure to determine scale of

PCB
7 l6 20

cursor_counter
2A GLOBAL DATA (ALL VARIABLES ARE GLOBAL)

2

2B MAINPROC.. Call graphics which is called from
conY_string

2 lO
4A DISPLAY_PCBDisplay the border and holes

9 l3
DISPLAY_PCB

3A SET IMAGE SCREEN.... Creates image screen

94

12
4A DISPLAy_PCBDisplay the border and holes

o
doty

2A

2B
cony_string

3B
PCB

GLOBAL DATA (ALL VARIABLES ARE GLOBAL)
13

MAINPROC.. Call graphics which is called from

1 8 9 10 11
SCALE PCB ... Procedure to determine scale of

2 18 19
4A DISPLAy_PCBDisplay the border and holes

1 7 9 10
ERROR MESSAGE

5A ERROR_MESSAGE ...Displays error message
headings

o
error_messages

3A SET IMAGE_SCREEN....Creates image screen
10

graphics_rep
2A GLOBAL DATA (ALL VARIABLES ARE GLOBAL)

8
3B SCALE PCB ... Procedure to determine scale of

PCB
3

1993

***** DISPLAY INTERFACE *****
PAGE 4 - 2

DATA INDEX

DATA ITEM

1 3

PCB

REFERENCED IN SEGMENT
LINES

3B SCALE PCB ... Procedure to determine scale of

6 10 11

graph_buffer
2A GLOBAL DATA (ALL VARIABLES ARE GLOBAL)

95

2B
conv_string

3B
PCB

12
MAINPROC.. Call graphics which is called from

9 10
SCALE PCB ... Procedure to determine scale of

8 18
4A DISPLAy_PCB Display the border and holes

6 7 8 9

IMAGE SCREEN
3A SET IMAGE SCREEN....Creates image screen

o
max screen

2A GLOBAL DATA (ALL VARIABLES ARE GLOBAL)
7

3A SET IMAGE_SCREEN: ...Creates image screen
8

3B SCALE PCB ...Procedure to determine scale of
PCB

3

MCU status
2A GLOBAL DATA (ALL VARIABLES ARE GLOBAL)

10
4B MOT_FAULT .. Existing routine developed to

monitor motor statu+++
1 2

mot fault
2B MAINPROC.. Call graphics which is called from

conv_string
13

4B MOT_FAULT.. Existing routine developed to
monitor motor statu+++

o

PCB

PCB size
2A

3B

GLOBAL DATA (ALL VARIABLES ARE GLOBAL)
11

SCALE PCB ...Procedure to determine scale of

4 5 12 24

PCB

PRINT_XY
3B SCALE PCB ...Procedure to determine scale of

24
4A DISPLAy_PCBDisplay the border and holes

11
4B MOT_FAULT .. Existing routine developed to

96

monitor motor statu+++
2 4

4C SYSTEM _INFO ...Displays system and status
information headin+++

1

1993
***** DISPLAY INTERFACE *****

PAGE 4 - 3
DATA INDEX

DATA ITEM

1 3

REFERENCED IN SEGMENT
LINES

4C SYSTEM _INFO ...Displays system and status
information headin+++

2 3 4 S 6
SA ERROR_MESSAGE ...Displays error message

headings
1

SB PRINT XY... Prints all data / strings in
graphics mode

o
rt buf

2A GLOBAL DATA (ALL VARIABLES ARE GLOBAL)
1

3B SCALE_PCB... Procedure to determine scale of
PCB

4

4A DISPLAY_PCB Display the border and holes
3

scale factor
2A GLOBAL DATA (ALL VARIABLES ARE GLOBAL)

3
3B SCALE_PCB ... Procedure to determine scale of

PCB
1 11 12 13 17

SCALE PCB
3A SET IMAGE SCREEN....Creates image screen

11

3B SCALE_PCB ... Procedure to determine scale of

97

PCB

PCB

PCB

o
scale size

2A GLOBAL DATA (ALL VARIABLES ARE GLOBAL)
4

3B SCALE PCB ... Procedure to determine scale of

5 6 9 10 11 12

system_info
3A SET IMAGE SCREEN.... Creates image screen

9
system_info_size

2A GLOBAL DATA (ALL VARIABLES ARE GLOBAL)
9

3B SCALE PCB ... Procedure to determine scale of

3

1993

***** DISPLAY INTERFACE *****
PAGE 5 - 1

1 3

END OF DESIGN DOCUMENT

98

STATISTICS

PROCEDURE COUNT 8

PROCEDURE LINE COUNT 84

DATA ITEM COUNT 22

DATA ITEM USAGE COUNT 92

ERROR COUNT 0

99

APPENDIX C

CNC TURBO C SOURCE CODE

CNCM.C

/* Main Program call various functions */

#include <stdio.h>
#include "cnc.h"
#include<graphics.h>
#include "display.h"

main() {
welcom() ;
init () ;
convJl ();
closegraph();
rt_now () ;
datum_ask() ;
restore_registers();
printf ("\n\n\n\t\t* TASK COMPLETED
}

INIT.C

/* Initialise MCU */

*\n") ;

#include <stdio.h>
#include <stdlib.h>
#include <dos. h>
#include "cnc.h"
extern k,co~buf[],pt;

void init () {
clrscr() ;
printf("\n\h\n\n\n\n\a\t");
printf ("Warning: PLEASE RESET MCU BEFORE INITIALIZING STEPPER
DRIVES !");
sleep(3);
setup() ; /* set corn port parameters */

100

/* read pie */
/* reset IRQ4 bit */
/* new format to pie */
/* set b rx & modem int */

/* reset pie */

elrser();
inall(); /* install interrupt handler */
outportb(Ox3f8,Ox28);
while (eom_buf[O] != 'UI){
pt=O;
}
sleep(l);
dsout ("U61") ;
printf("\n\n\n\n\n\n\n\n\n\t\t\t");
printf ("COMMUNICATION PORT IS OPEN \n\a") ;
sleep(2);
elrser();
dsout(">l c15 A g @4000 "); /* Range
speed,Start/Stop,Aeeeleration,Final speed */
sleep(l);
elrser() ;
}

INTUP.C

#inelude cdos.h>
#inelude cstdio.h>
void interrupt inhand(void);
/*Set-up routine for interrupt handler */

int pt = 0;
void inall (void)
{
int pie;
setveet(OxOe,inhand);
pie =inportb(Ox21);
pie = (pie & Oxef);
outportb(Ox21,pie);
outportb(Ox3f9,Oxb) ;
enable () ;
outportb(Ox20,Ox20);
sleep(l);
}

#inelude "ene.h"
exte= flg;
int intnr;

void interrupt inhand(void)

101

/*interupt handler */

{

intnr = inportb(Ox3fa};

switch (intnr){

case (O) :
mod_ serv () ;
break;

case(2}:
flag_re} ;
break;

case(4} :
inserv(} ;
break;

case (6) :
ca1l6 () ;
break;

default:
fIg =1;
break;

}

outportb(Ox20,Ox20};
}

extern fIg;
flag_r(} {
int op;
fIg = 1;
op = inportb(Ox3fd);
}

extern fIg;
ca1l6 () {
int s;
fIg =1;
s =inportb(Ox3fd};
printf ("*6", s);
}

102

#include "cnc.h"
#include <stdlib.h>
extern flg;
int k;
char com_buf [6] ;

void inserv(void) {

int d=O;
d =inportb(Ox3f8);

/* Interupt Service Routine */

if (d==OxOd) {
com_buf[pt] = '\0';
if«pt-1.) !=O)
k = atoi(com_buf); /* convert string to integer */
else k = com_buf[pt-1.];

pt = 0;
}

else {
com_buf[pt++] = k = d;

buffer */

if(pt >= 6)
pt =0;

}
return(k) ;

}

#include <dos.h>
void mod_serv(void) {
int mstat = 0;

mstat = inportb(Ox3fe);

if «mstat && 1.) == 1.) {
outportb(Ox3fc,OxO) ;

while ((mstat & 48) != 48) {
mstat = inportb(Ox3fe);

}
}

outportb(Ox3fc,Oxb) ;
return;

/* reset pointer to zero */

/*load received char into

1.03

}

FILE.C

/* FILE IS A PROGRAM DESIGNED TO READ BLOCKS OF 512 BYTES OF
DATA FROM A SPECIFIED FILE AND EXTRACT X-Y COORDINATES, WHICH
ARE THEN STORED IN A BUFFER. THESE COORDINATES ARE ACCESSED
BY VARIOUS OTHER ROUTINES. */

#include <stdio.h>
#include <stdlib.h>
#include <io.h>
#include <string.h>
#include "cnc.h"

FILE *fp;
unsigned long int ip,end_file;
int xcheck = O,ycheck = 0;

void conv_f(void) {
char pathname[13],*path;
clrscr();
printf("\n\t\t\t\t\t\t(Example: A:\\Filename)\n");
printf ("\n\ t * WARNING: Filename must be a Plot File

*\n") ;
printf("\n\n\a PLEASE ENTER FILENAME:

____\b\b\b\b\b\b\b\b\b");

s canf (" %9s" ,pathname) ; / * ENTER FlLENAME */
path = ".plt";
strncat(pathname,path, (13 - strlen(path»);

/* ADD FILE EXTENSION */

strlwr(pathname);

if «fp=fopen(pathname, "rb"»

/*OPEN FILE TO READ*/

NULL) {

printf("\a\n\n\t\t\t\tCANNOT OPEN FILE !\n\a");
exit(l);

104

}
printf("\n\n\n\n\t\tFILE WAS OPENED SUCESSFULLY\n");
printf("\n\n\n\n\n\t\tPLEASE WAIT FOR COORDINATE

TRANSLATION ! \n") ;
end file = (filelength(fileno(fp»);

/ * DETERMINE FILE LENGTH */

start_coord() ;
smart_route () ;
unpack_buf() ;

while(ip < end_file) {

}

fclose (fp) ;

}

char fbuf [512] ;
int bufp;
long ip_count;

/* READ UNTIL EOF */

/* FILE READ BUFFER */
/ * BYTE READ COUNTER */

file_read()
{
bufp=O;
ip_count = ip;

if(fread(fbuf,sizeof(char),512,fp) !=512){

/* READ BLOCK OF DATA */

if (feof (fp» printf (l\nEnd\n") ;
else printf(ll\nError ll);}

if «ip = ftell (fp» == -lL) {
printf (11 \aRead Error 11) ; }

ip_count = ip -ip_count;
}

105

/* BYTE TOTAL COUNT */

/* A ROurINE TO EXRACT X AND Y COORDINATES FROM Sl2 BYTE FILE
BUFFER. */

char xbuf[6] ,ybuf[6];
coxbuf[SOO],coybuf[SOO];
int xp,yp,cy,cx,xb,yb;

int xact=O,yact=O ;
bufp = 0;

while(bufp <= ip_count)
{
xp = yp = 0;

while(! « xact -- 'C')&&(yact -- 'A'»)
/* SEARCH FOR "CA" * /

{
if (bufp == ip_count) {
break; }
xact = fbuf[bufp ++];
yact = fbuf[bufp];

}

++ bufp;

if (xact == 'C') {
while ((fbuf [bufp]) ! = " 1) {

if(bufp > ip_count)
break;
if«fbuf[bufp]) != 32l{
xbuf[xp ++] = fbuf[bufp];

}
++ bufp;
if (fbuf[bufp] -- ','){
xbuf[xp ++] = '\O';}

}
}

/*READ X COORDINATE*/

/* TERMINATE X STRING */

if (yact == 1 A') {
while ((fbuf[bufp]) != 32) {

l06

if(bufp > ip_count)
break;
if (fbuf[bufp] != ','){ /* READ Y COORDINATE */
ybuf[yp ++ 1 = fbuf[bufpl;

}

++ bufp;
if (fbuf [bufpl == 32) {
ybuf[yp ++1 = '\O';}

}
}

if (bufp <=ip_count){

/ * TERMINATE Y STRING * /

xact = atoi(xbuf);
yact = atoi(ybuf);

/* CONVERT TO INTERGER */

if «xact ! = xcheck) 11 (yact! = ycheck»
{

/*CHECK COORDINATE HAS BEEN REPEATED */
xcheck = xact;
ycheck = yact;

coxbuf[cx ++1 = (xb - xact);
coybuf[cy ++1 = (yb - yact);

}
}

}
}

/* A PROCEDURE TO DETERMINE OFFSET COORDINATES FOR DRILL
COORDINATES */

start_ coord () {
xb=O,yb=O;
bufp = xp = yp =0;

whilel! «xb == 'C')&&(yb=='A'»)
{ /* SEARCH FOR FIRST C A */
xb=fbuf[bufp ++1;

1.07

yb ; fbuf[bufp];
}
++ bufp;

if(xb;;'C') {
while«fbuf[bufp])!; ',')
{ /* READ X OFFSET COORDINATE */
if (fbuf [bufp] !; 32)

{
xbuf[xp++];fbuf[bufp];
}

++bufp;
}

}

/* READ Y OFFSET COORDINATE */
; fbuf[bufp];ybuf [ypH]

}
++bufp;
}

if (yb;;'A') {
while «fbuf [bufp]) !; 32)

{
if (fbuf [bufp] !; ',')
{

}

xb ; atoi<xbuf); /* CONVERT TO INTERGER * /
yb ; atoi (ybuf) ;
/*printf("\n xb "od yb "od",xb,yb);*/

}

CONV P.C

/* A TRANSLATION ROUTINE TO CONVERT DISTANCE IN INCHES
INTO MACHINE STEPS. */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <graphics.h>
#include "cnc.h"
#include "display.h"
extern cx,cy,coxbuf[] ,coybuf[];
extern system_info_X,MaxY;
float xstep,ystep,ycount,xcount;

108

convy() {
int ceb,xact,yact;
float xlast=O,ylast = 0;
ycount=O;

/*conv_f() ;*/
initialise_graph();

ceb = cx;
cx=cy=xstep=ystep =0;

while(cx 1= ceb)
{

dsout("R1 $");

gprintf«system_info_X + 109),(MaxY * .68),"%d",cx);
xact = coxbuf[cx ++1;
yact = coybuf[cy ++1;

xstep = « (xact - xlast) * 25.4)/10);

/*Conversion to machine steps */

ystep = « (yact - ylast) * 25.4)/10);

xlast = xact;
ylast = yact;
xcount = xcount + xstep;
ycount = ycount + ystep;

dsout ("@5000");

/* Last x step executed */
/* Last y step executed */;

conv_string();
gprintf«system_info_X + 103), (MaxY * .34),"%6.0f",xstep);
gprintf«system_info_X + 103), (MaxY * .51),"%6.0f",ystep);
drill();
}
xlast =xact;
ylast = yact;
xstep = « (O-xlast) * 25.4)/10);
/*Conversion to machine steps */
ystep = « (O-ylast) * 25.4)/10); /* Move to HOME position*/
conv_string();
}

#include <string.h>

conv_string () {
char xstring[101,ystring[101,gh;

109

itoa(xstep,xstring,lO);
itoa(ystep,ystring,lO};

if«xstep != 0) && (ystep != O)}{

if (xstep < O)
xstep = xstep * -l;

if (ystep < O)
ystep = ystep

if(xstep >= ystep){
datout(IX"};
datout(xstring);
datout(" / y "};
datout(ystring);
dsout("@ 2500 $");

}

* -1;
/*LINEAR INTERPOLATION X/Y MODE */

else if(ystep >= xstep}{ /* LINEAR INTERPOLATION Y/X MODE */
datout(IY"};
datout(ystring};
datout(" / X");
datout(xstring);
dsout(1I @2500 $"};
}

/*mot fault();*/Call Graphics(};- -
}

else {if(xstep != O}{
datout("X 11);

datout(xstring);
dsout(" $"};

Call_Graphics(};
}

if(ystep != O}{
datout("Y "};
datout(ystring};
dsout(" $"};

/* LINEAR X MODE */

/* LINEAR Y MODE */

/*mot_fault();*/Call_Graphics(};
}
/*gh=getche(};*/
}
}

llO

/* MOTION AND FAULT ROUTINE * /

extern k,MaxY;
extern system_info_X;

void mot fault(void)
{
char *m_s;
k = IEI;

dsout ("E") ;

while(k != 'C'){
dsout ("E") ;

if(k == 'E')
m s ="BUSY ";

else if(k== 'C')
m s = "CLEAR";

else if(k== 'F')
ID S = 11 FAULT 11 ;

/* Check Busy Status */

/* Check for Clear Status */

gprintf«system_info_X + 110), (MaxY * .85),"%s",m_s);
if(k == 'F') { /* Check Fault Status */
dsout("Q") ;
gprintf(125,(MaxY-10)," Interface Fault! %d",k);

if (k == 32)
gprintf(125, (MaxY-10)," - Emergency Stop Activated");

else if(k == 16)
gprintf(125, (MaxY-10)," - Drive Fault ");

else if(k == 128)
gprintf(125, (MaxY-I0)," - Communication Fault");

else if (k == 64)
gprintf (125, (MaxY-10)," Limit Switch

Activated ,,);

else {gprintf(125, (MaxY-I0)," - Error Code: Q:

%d",k)j
dsout("K") ;
sleep(l);
gprintf (125, (MaxY-I0), "Motion: %d", k) ;}

sleep(5);
closegraph();
exit(O) ;

111

-

}

}
}

#include "cnc.h"

void drill (void)
{
dsout("Pl.lO $");
dsout ("RI $");

}

if(k != 72) {
dsout("P2.55 $");

}
initiate datum routine

while «k & 72) != 72) {

dsout (" I") ; check status
printf ("\n\t\tRX CODES: %d" .k) ;
if «k & 1) == 1) {
printf("\n\n\t\tEMERGENCY STOP ACTIVATED !\a\n");
exit(l); }

}
printf("\n\n\n\n\n\n\n\t\tX AND Y AXIS ARE AT DATUM.\a

\n") ;

DISPLAY.C

/* INITIALISE: Initialises the graphics system and reports
any errors which occur. */

#include
#include
#include
#include
#include
#include

<graphics.h>
<stdio.h>
<stdlib.h>
"display.h"
<dos.h>
<conio.h>

112

-

unsigned int MaxX,MaxY;
int ErrorCode,GraphMode,GraphDriver;
double AspectRatio;

void initialise_graph(void)
{
int xasp,yasp;
conv_f () ;

GraphDriver = DETECT;
initgraph(&GraphDriver, &GraphMode, "");
/*Set graphics mode */

ErrorCode = graphresult(); /* Detect graphic errors */
if(ErrorCode != grOk){

printf("\nGraphics System
Error:%s\n",grapherrormsg(ErrorCode»;

exit(l);
}

/* Set screen resolution /*

if(GraphDriver == 9)
setgraphmode(2);
else if(GraphDriver == 1)
setgraphmode(4);

else if(GraphDriver == 3)
setgraphmode(l);

else if(GraphDriver -- 2)
setgraphmode(S) ;

MaxX = getmaxx();
MaxY = getmaxy();

/* Maximum number of pixels */

getaspectratio(&xasp,&yasp); /* Get Aspect ratio */
AspectRatio = (double)xasp / (double)yasp;

setactivepage(O);
setvisualpage(O);
settextjustify(CENTER_TEXT,CENTER_TEXT);
settextstyle(TRIPLEX_FONT,HORIZ_DIR,4);
gprintf (MaxX/2) I (MaxY/2) , "PLEASE WAIT !");

settextstyle(DEFAULT_FONT,HORIZ_DIR,O);
settextjustify(LEFT_TEXT,TOP_TEXT);

sleep (2) ;
cleardevice() ;

113

frame () ; /* Generate border * /

system_info(); /* Write system headings to screen */

error_message(); /* Write error heading to screen */

user_int() ; /* Check for user intervention */

scale-pcb() ; /* Scale PCB to fit allocated area */

display_PCB(); /* Display select pcb on screen */

}

/* FRAME - Generates the screen border and determines the
graphics area used to display the PC Board */

#include <graphics.h>
#include "display.h ll

int graphic_rep_X,graphic_rep_Y;

void frame (void) {
setlinestyle(0,0,3);
line(O,O,MaxX,O) ;
line(MaxX,O,MaxX,MaxY);
line(MaxX,MaxY,O,MaxY);
line(O,MaxY,O,O) ;
setlinestyle(O,O,l);
graphic_rep_X = MaxX - 189; /*Calculate graphics area*/
graphic_rep_Y = MaxY - 20;
line(graphic_rep_X ,0,graphic_rep_X,graphic_rep_Y);
line(MaxX,graphic_rep_Y,o,graphic_rep_Y);
}

/* SYSTEM_INfO - writes all information headings to the
active page */

#include Ildisplay.h ll

extern cx,ErrorCode;
extern unsigned int MaxX,MaxY;
int system_info_X ;

void system_info(void)
{

114

system_info_X ; MaxX - l87;
gprintf(system_info_X, (abs«(MaxY * 2.6)/lOO»,"Board Size:
o X 0 mm");
gprintf(system_info_X,(abs«(MaxY * l7)/lOO»,"Number of
Holes: 0");
gprintf (system_info_X, (abs «(MaxY * 34) /lOO)) ,"X Coordinate:
0") ;

gprintf (system_info_X, (abs «MaxY * 5l) /lOO)) ,"Y Coordinate:
0") ;

gprintf (system_info_X, (abs «MaxY * 68) /lOO», "Hole Number:
0") ;
gprintf (system_info_X, (abs «(MaxY * 85) /lOO)) ,"MCU Status
BUSY") ;

}

/*Error_message - Writes the Error Message heading to the
screen */

#include "display.h"
void error_message(void)

{
gprintf (4, (MaxY - l 0) , "ERROR MESSAGE ") ;
}

/* Scale-pcb - Determines the correct scale_factor
and scales all the X-Y coordinates according
calculated scale_Factor */

#include <stdio.h>
#include <ctype.h>
#include "display.h"

float scale_factor;
extern signed int rt_buf[2] [4];
extern coxbuf[];
extern coybuf[];
extern ex;
extern double AspeetRatio;
extern system_info_X;
int graph_buffer[2] [500];
int temp_X,temp_Y,small_X,small_Y;

ll5

for PCB
to the

void scale-pcb(void)
{
int rt-p,rt_x,rt_y,large_X,large_Y,sx,sy;
scale_factor = 1;
temp_X = temp_Y = large_X = large_Y = rt-p = rt x
sx =sy = 0;
small X = small Y = 10000;

while(rt-p < 4){

rt x = rt_buf[Ol [rt-pl;
rt_y = rt_buf[ll [rt-pl;

if (rt_x < 0)
rt x = rt x * -1;

if (rt_y < 0)
rt_y = rt_y * -1;

if(rt_x < small_X)
small X = rt_x;

/*Read rout buffer */

/* Convert to positive value */

/* Determine smallest X value */

if(rt_x > temp_X) { /*Determine largest X value */
large_X = temp_X;
temp_X = rt_x;

}
if(rt_x < temp_X) & (rt_x > large_X»

large_X = rt_x; /* Find second largest X value */

if(rt y < small Y)- -
small_Y = rt_y;

/* Determine smallest Y value */

if(rt-y> temp_Y){ /* Determine largest Y value */
large_Y = temp_Y;
temp_Y = rt_y;
}

if«rt-y < temp_Y) &
large_Y = rt_y;

(rt_y> large_Y»)
/* Find second largest Y value */

rt-p++;
}

small Y = small Y * AspectRatio;

116

/* Correct aspectratio for small_Y*/

large_Y ~ large_Y *AspectRatio;
temp_X ~ large_X + small_X ;
temp_Y ~ large_Y + small_Y ;

sx = temp_X;
sy = temp_Y;

/*Determine correct scaling factor for particular PC board
size */

while(l«sx < (graphic_rep_X - 7))&&(graphic_rep_Y > sy)))
{
scale factor = scale factor + 0.1;
sx ~temp_X / scale_factor;
sy ~temp_Y / scale_factor;
}

temp_X ~ (temp_X / scale_factor);
temp_Y ~ (temp_Y / scale factor) ;

/* Scale all PC Board X-Y coordinates and store in graphics
buffer */

rty ~ 0;
while(rty < cx){
graph_buffer [0] [rty] (coxbuf[rt-p]) / scale_factor;
graph_buffer [1] [rty] ~ «coybuf [rt-p]) / scale factor) *
AspectRatio;
if (graph_buffer [0] [rt-p] < 0)

graph_buffer[O] [rt-p] ~ (graph_buffer[O] [rty)) * -1;

if (graph_buffer [1] [rt-p] < 0)

graph_buffer[lJ [rt-p] ~ (graph_buffer[lJ [rt-p]) * -1;

rt-p ++;

}
/* Approximate board size calculation in mm */
sx ~sy ~O;

sx=(large_X * 25.4)/1000;
sy = (large_Y * 25.4)/1000;
gprintf «system_info_X + 86), (MaxY * .026), "%d x %d

mrnlt,sx,sy};

117

}

/*Display-pcb - Generates the graphical representation of the
PC Board on the active screen. This routine creates both PCB
border as well as the pads.*/

#include <graphics.h>
#include "display.h"

extern temp_X,temp_Y,cx,small_X,small_Y;
extern float scale_factor;
extern graph_buffer[] [];
int last_x,last_y,dot-p,count_x,count_y ;

void display_PCB(void)
{

count_x; count_y ; last_x; last_y ; 0;

gprintf «MaxX - 56), (MaxY * 0.17), "%d", cx);

/* Print max. holes */

small_X; small_X / scale_factor;
small_Y ; small_Y / scale factor;
setlinestyle(3,O,l) ;
rectangle(7,7,temp_X,temp_Y); /* Draw PCB outline */
setlinestyle(O,O,l) ;

/* Set cursor counter to screen offset */

count_y ; small_Y + 7;
circle(count x,count-y,3); /* Indicate reference hole/pad */

/*Draw all the pads in their respective positions in solid
white */

while(dot-p !; ex) {
count_x = count_x + (graph_buffer[O] [dot-p] - last x);
count_y = count_y + (graph_buffer[l] [dot-p] - last_y);
last_x; graph_buffer[O] [dot-p];
last_y ; graph_buffer[l] [dot-p++];

setfillstyle(SOLID_FILL,WHITE);

118

circle(count_x,count_y,2);
floodfill(count x,count y,15);
} --

1ast_x = last_y = dot-p = 0; /* Reset values */
setfillstyle(EMPTY_FILL,WHITE);
}

/* A function called to indicate the drill movement and
position */

#include "display.h"
#include <graphics.h>
extern count_x,count_y,last_x,last_y;

void Call_Graphics(void)
{

if(dot-p == O){
count_x = small_X + 7;
count_y small Y + 7;

}

/* Check for user intervention */

if (dot-p != cx){
count_x = count_x + (graph_buffer [0] [dot-p] - last_x);
count_y = count_y + (graph_buffer [1] [dot-p] - last_y);
last_x = graph_buffer[O] [dot-p];
last_y = graph_buffer[lJ [dot-p++J;
floodfill(count_x,count_y,O);

circle (count_x,count_y, 2) ;
}

}

/* A routine to check for user intervention in a program */

#include <graphics.h>
#include "display.h"

void user int(void)
{

119

int u_int =0;
if (kbhit ()) /*Check if keyboard ahs been hit */

{
u_int = getch();
if (u_int == 27)

{
gprintf(12S, (MaxY
! 11) i

sleep{S);
closegraph Cl ;
exit{O);
}

}
}

DSOUT.C

/* Retrieve character */
/* If Escape key */

-10), "USER TERMINATED PROGRAM

/* Time delay */
/* Terminate graphics mode */

/*Abort program */

/*STRING HANDLER A ROUTINE TO TX A STRING VIA SERIAL PORT * /

#include<stdio.h>
#include<string.h>
#include <dos.h>
#include "cnc.h"
extern flg,k;

unsigned char f[20];

datout (d)
char *d;

{
int yt = 0;
strcpy{f,d) ;
/*printf ("\n\t\tTX

while {f [yt] 1='\0')
{
for (; ;) {
if (flg == 1)
break;
}

/* STRING TO BE PROCESSED* /

/* COPY STRING TO BUFFER */
CODES: "); */

/* READ BUFFER AND OIECK FOR NULL*/

while{{f[yt] !='\O')&&{flg -- 1»

/* CHECK BUFFER AND TX FLAG */

120

{
flg = 0;
outportb(Ox3f8,f[yt]);
/*printf("%c",f[yt]);*/
++yt;

}
}

return;
}

dsout(d) {
datout(d);

for (; ;) {
if (flg == 1)

break; }

flg = 0;
outportb(Ox3f8,OxOd);

if(flg !=1)
sleep(l);

return;
}

GPRINTF.C

/* SEND <CR>*/

/* 1 SECOND DELAY*/

/* argument list pointer */
/* buffer to build string into */

textinfo;

/* GPRINTF: Used like printf except the output is sent to the
screen in graphics mode at specified co-ordinates.*/

#include <stdio.h>
#include <stdio.h>
#include <graphics.h>
#include <stdarg.h>
#include "display.h"

void gprintf(long int xloc,long int yloc,char *fmt, ...)
{
va_list argptr;
char str[140];
struct textsettingstype

121

va_start(argptr,format); /* initialise va_functions */
vsprintf(str,fmt,argptr);/* add element to str buffer */
gettextsettings(&textinfo);
erasestr(xloc,yloc,str); /* erase the area first */
outtextxy(xloc,yloc,str);

/* write string in graphics mode */

yloc +: textheight ("H") + 2;
va_end (argptr);
}

/* Advance to next line */
/* close va functions */

/*ERASESTR: Used to erase a portion of the screen before a
new string is written to the screen or simply to remove a
string from the screen.*/

#include <stdlib.h>
#include <graphics.h>
#include <stdio.h>
#include "display.h"

void erasestr(long int xloc,long int yloc,char *str)
{
struct textsettingstype textinfo;

/*text setting information*/

int xdim,ydim;
unsigned long int *hi;
void *textimage;
char *p;
gettextsettings(&textinfo);
switch (textinfo.direction)
{

/*image pointer*/
/*check graphic text setting*/

/*get dimension of area */

case HORIZ DIR: xdim: textwidth(str) + 4;
ydim = textheight (str) ;
xloc --;
break;

case VERT_DIR: ydim = textwidth(str);
xdim = textheight{str);
yloc++;
break;

}
switch (textinfo.horiz) /*adjust horizontal position */

222

{
case LEFT TEXT:
break;
case CENTER TEXT:xloc-= xdim/2;
break;
case RIGHT TEXT: xloc-= xdim;
break;

}
switch (textinfo.vert) /*adjust vertical position */

{
case BOTTOM_TEXT:yloc - ydim;
break;
case CENTER_TEXT:yloc-= ydim/2;
break;
case TOP TEXT:
break;

}
while(xloc < 0) {xloc++;xdim--;}

/*if position is off screen */

while(yloc < 0) {yloc++;ydim--;} /*move back to valid area*/
hi = imagesize(xloc,yloc,xdim,ydim);
outtextxy(lOO,yloc,*hi);
text image = (char *) malloc(*hi);
if(textimage == '\O'){
closegraph();
}
text image = malloc(imagesize(xloc,yloc,xdim,ydim»;
getimage (xloc,yloc, (xloc+xdim), (yloc+ydim),textimage);
putimage(xloc,yloc,textimage,XOR_PUT) ;
free(textimage); /*release the memory allocated */

}

WELCOM.C

#include "graphics.h"
#include "conio.h"
#include "stdlib.h"
void box(int,int,int,int,int);

void welcom(void) {

123

int driver,mode,monitor,s,maxx,maxy,ErrorCode;
unsigned size;
driver = DETECT;
mode = 0;
initgraph{&driver,&mode,);
ErrorCode = graphresult();
if(ErrorCode != grOk)

{
p r i n t f (.. \ n G rap h i c s S y s t e m
Error:%s\n" ,grapherrormsg(ErrorCode);

}

maxx = getmaxx();
maxy = getmaxy();

box ((maxx *.01), (maxy * .03), (maxx * .97), (maxy * .89),15);
box{(maxx * .02), (maxy * .04), (maxx * .96), (maxy * .87) ,15);
settextstyle{TRIPLEX_FONT,HORIZ_DIR,5);
outtextxy{ (maxx * .13), (maxy * .29),"* C.N.C Drill Software
*") i

settextstyle(SMALL_FONT,HORIZ_DIR,4);
outtextxy{(maxx * .65),(maxy * .76) ,"Copyright P.Mostert. ..);
settextstyle(SMALL_FO~~,HORIZ_DIR,2);
outtextxy{ (maxx * .72), (maxy * .80), "1994");
settextstyle(DEFAULT_FONT,HORIZ_DIR,l);
outtextxy((maxx * .03),(maxy * .72) ,"Press ENTER to
continue");
s=getch() ;

cleardevice();
restorecrtmode{);
if (s != OXOD) {
exit (1) ;}
}

void box(int startx,int starty,int endx,int endy,int color) {
setcolor(color);
line (startx, starty, startx,endy) ;
line(startx,starty,endx,starty);
line(endx,starty,endx,endy) ;
line(endx,endy,startx,endy);
}

LOCBOD.C

124

#include "cnc.h"
#include <stdio.h>
#include <conio.h>
extern cx,cy,eoxbuf[],eoybuf[];
ref_hole () {

char j,gh;

elrscr();

if(cx==cy) & «ey==ey) l= 0»
printf (lI\n\n\n\n\n\t\tTOTAL NUMBER OF HOLES: %d\n", ex) ;
printf (lI\n\n\n\n\n\t\aTHE REFERENCE HOLE IS LOCATED: 11);

if (eoybuf[O] < coybuf[l]l
printf (" In the LEFT HAND BOTTOM CORNER ! \n11) ;

else if(coybuf[O] > coybuf[l]l
printf (11 In the RIGHT HAND BOTTOM CORNER ! \n 11) ;

printf("\n\n\n\t\tPLEASE MOVE THE DRILL TO THE REFERENCE HOLE
AND ALIGN ! \n" l ;
printf ("\n\n\t\t\t\tWHEN READY\n");
printf ("\n\n\t\tEnter: _ \bR to CONTINUE or _ \bA to ABORT") ;

j = (tolower(getch());
if(j == 'a'l{

restore_registers() ;
exit (O);}

}

/* A PROCEDURE TO DETERMINE COORDINATES FOR ROUTING. */

/*The coordinates for the border of the layout are located
in the first 512 bytes of data. The coordinates are located
between two pointers namely L6 and LO. To route only the X-Y
DA coordinates are required. These are stored in rt buf
buffer for later use by rt_now routine */

#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>
extern xb,yb,x_Iarge,y_Iarge,bufp,xp,yp;
extern char xbuf[6];
extern char ybuf[6];
extern char fbuf[512];
signed int rt_buf[2] [4];

125

smart_route ()
{

int rty =0;
unsigned char xr,yr;
bufp = xp = yp = xr = yr = 0;

while (! ((xr ==
(
xr=fbuf [bufpJ ;

'L')&&(yr=='6'»)
/* SEARCH FOR FIRST L 6 */

yr = fbuf [++bufp J ;
if (bufp == 512)
continue;
}
++bufp;

while(! ((xr == 'L')&&(yr=='O'»){

if(xr=='D')&&(yr == 'A')J{
xp = yP = 0;

while {(fbuf [bufpJ) ! = ',') {

/* READ X COORDINATE */

while (! (isdigit (fbuf [bufpJ »)
++bufp;

if (fbuf [bufpJ != 32)
xbuf [xp++J = fbuf [bufpJ ;

++bufp;
if (fbuf [bufpJ == ',')

xbuf [xp++J = '\0';
}

++bufp;
while ((fbuf [bufpJ) != 32) {

if (fbuf [bufpJ != ',') /* READ Y OFFSET COORDINATE */
ybuf[yp++J = fbuf[bufpJ;

++bufp;

if (fbuf [bufpJ == 32)
ybuf [yp++] = '\0';

}

126

if(rt-p >4) rt-p =0;
rt_buf [0] [rt-p] xb - atoi(xbuf);

/ * CONVERT TO INTERGER * /
rt_buf [1] [rt-p++] = yb - atoi (ybuf) ;

}
xr=fbuf [bufp++] ;

yr = fbuf[bufp];
if (bufp == 512)
continue;

if (xr == 'D')
yr =fbuf[++bufp];

}

#include <dos .h>
extern float xstep;
extern float ystep;

rt now() {

int xact,yact,rt-p,xrout,yrout;
char gh;
float xlast=O,ylast=O;

rty 0;
xact = rt_buf [0] [rt-p] ;
yact = rt buf [1] [rty++] ;
xstep = {({xact - xlast)*25.4)/10);
ystep = {((yact - ylast) *25.4) /10);
xlast = xact;
ylast = yact;
conv_string () ;
/*Reduce speed for routing.*/
dsout{">l <2 A 4 @600");

/* MOVE TO START */

/*Range speed,Start/Stop,Acceleration,Final speed*/

127

sleep(l);

while (rty < 5) {
if (rty == 4) {

xact =rt_buf[OJ [DJ;
yact = rt_buf [1] [0] ;

}
else {xact =rt_buf[OJ [rtyJ;

yact = rt_buf[l] [rty];
}

++ rt_p;
xstep = «(xact - xlast)*25.4)/10);
ystep = «(yact - ylast)*25.4)/10);

xlast xact;
ylast = yact;
xrout = xstep;
yrout = ystep;

if (xstep < 0)
xstep = xstep * -1;

/*Convert X-Y step positive integer*/

if (ystep < 0)
ystep = ystep * -1;

if (xstep > ystep){ /*Move Y first*/
xstep = 0;

ystep = yrout;
printf("\n\tUP\a\n") ;

conv_string();
xstep = xrout/2; /*Route half X * /
ystep = 0;
printf ("\n\a\tDOWN\a\n") ;

conv_string () ;
printf("\n\tUP\a") ;

if (xrout > 0)
xstep = 100; /* Leave nipple */
else xstep = -100;

conv_string () ;
if (xrout > 0)
xstep = (xrout/2) - 100;
else xstep = (xrout/2) + 100;
printf("\n\t\aDOWN\a\n"); /* Route remainig X */

conv_string();
}

128

else {
xstep = xrout;
ystep =0; /* Move X */
printf(n\n\tUP\a\nn) ;

conv_string();
xstep = 0; /* Route half Y */
ystep = yrout / 2;
printf (n\n\a\tDOWN\a\nn) ;

conv_string() ;
printf(n\n\tUP\a n);
if (yrout < 0)
ystep = -100; /* Leave nipple */
else ystep = 100;

conv_string();
if (yrout > 0)
ystep = (yrout/2) - 100; /*Route remaining y*/
else ystep = (yrout/2) + 100;
printf(n\n\t\aDOWN\a\nn);

conv_string();
}

}
/*Reset speed to original speed range*/
dsout(n>l <15 Aa @4000 n) ;

/*Range speed,Start/Stop,Acceleration,Final speed*/

sleep (1) ;
printf(n\n\tUP\a n) ;
xstep = «(0-xlast)*25.4)/10);

/*Return to 0,0 coordernate */

ystep = « (O-ylast) *25.4) /10) ;
conv_string();

}

SETUP.C

/* DART STANDARD INITIALISATION PROCEDURE FOR 5 WIRE
COMMUNICATION * /

#include <dos.h>
#include <stdio.h>
#include <stdlib.h>

129

#include <conio.h>
#include <graphics.h>
#include <ctype.h>
#include "cnc.h"
#define caml Ox3f8
#define com2 Ox2f8
unsigned int fIg;
void interrupt (*old_vector) ();

setup(){
int baud_rate,data_bits,stop_bits,port,comparm,
BaudRate_Divisor,lp;
char parity,*com-Fort,menu_select;

baud_rate = 2400;
data_bits = 8;
parity = 'n';
stop_bits = 2;
menu_select = '\0';
com-Fort = "coml";
port = coml;
comparm = 7;
fIg = 1;

save_registers() ;
disable();
outportb(Ox3fe,OxO);
outportb(Ox3f9,0);
autportb(Ox3fc,0) ;

/* save some uart registers */

/* disable interrupts */
/* disable hardware buffer */

while(menu_select != 'x'){
clrscr () ;
printf("\n\t\t\t Serial Port Parameter");
printf("\n\t\t*---------------------------------------*\n");
printf("\t\tl A Baud Rate
%d\t\t\tl\n\t\t:\t\t\t\t\tl\n",baud_rate);
printf("\t\tl B Data Bits
%d\t\t\tl\n\t\tl\t\t\t\t\tl\n",data_bits);
printf("\t\tl C Parity
%c\t\t\tl\n\t\tl\t\t\t\t\tl\n",parity);
printf("\t\tl D Stop Bits
%d\t\t\tl\n\t\tl\t\t\t\t\tl\n",stop_bits);
printf("\t\tl E Serial Port
%s\t\t\t\\n\t\tl\t\t\t\t\tl\n",com-Fort);
printf (,,\t\t I X Exit Setup
Run\t\t\tl\n\t\tl\t\t\t\t\tl\n");

130

printf("\t\tl Q Quit : Abort\t\tl\n");
printf("\t\t*---------------------------------------*\n\n");
printf("\t\tPlease Enter Selection to change item value\n\n
") ;

printf("\t\t\t Selection: \a");

menu select = (tolower(getche(»);

switch(menu select) {

case 1 a l :

printf("\n\n\t\t\t [Options: 4800 2400 1200 600 300
] ") ;

printf("\n\n\t\t\t Baud Rate: \a");
scanf ("%4d", &baud_rate) ;

switch (baud_rate) {

case 4800:
break;

case 2400:
break;

case 1200:
break;

case 600:
break;

case 300:
break;

!\a\a\a");

default:
baud_rate = 2400;
printf("\n\t\t\t\a

break;
}

break;

An Illegal Option

case 'b':
printf("\n\n\t\t\t [Options
printf("\n\n\t\t\t Data Bits
scanf("%1d",&data_bits);

78]");

\a") ;

switch (data_bits) {

case 7:
comparm = ((comparm & 252) A 2);
break;

case 8:
comparm = «comparm & 252) A 3);

break;

default:
data bits = 8;
comparm = «comparm & 252) A 3);
printf("\n\t\t\t\a An Illegal Option

break;
}

break;

\a\a\a");

case I Cl:

printf("\n\n\t\t\t
printf("\n\n\t\t\t
scanf("%c",&parity);

switch (parity) {

[Options
Parity

EN 0 l");
\a") ;

case le l :
comparm = (comparm & 199) A 40);
break;

case In':
comparm = (comparm & 199);
break;

case '0':
comparm = «comparm & 199) A 32);
break;

default:
parity = 'n';
comparm = (comparm & 199);
printf("\n\t\t\t\a An Illegal Option !\a\a\a"};
break;

}
break;

132

case 'd':
printf("\n\n\t\t\t [Options
printf("\n\n\t\t\t Stop Bits
scanf ("%ld", &stop_bits) ;

switch (stop_bits) {

case 1:
comparm = (comparm & 251) ;
break;

1 2 l");

\a") ;

Coml Com2 l");
Com\a");

case 2:
comparm = «comparm & 251) ~ 4);
break;

default:
stop_bits = 2;
comparm = «comparm & 251) ~ 4);
printf("\n\t\t\t\a An Illegal Option !\a\a\a");

break;
}

break;

case I e I:

printf("\n\n\t\t\t [Options
printf("\n\n\t\t\tSerial Port
scanf (" %ld" , &port) ;

if (port ==2) {
comyort = "com2";
port =com2; }

else { comyort ="coml";
port=coml; }
break;

case 'x':
printf ("\n\n\t\t\t EXIT\n");
break;

case 'q':
exit(l);

default:
printf{"\n\t\t\t\aAn Illegal option !\a\a");

}

133

}
outportb(Ox3fb,comparm);
comparm 1= Ox80; /* set
outportb(Ox3fb,comparm);

/* update uart hardware */
dlab bit for baud rate access */

BaudRate_Divisor = 1.8432E06 /baud_rate/16;
outportb(Ox3f8, (BaudRate_Divisor & 255 »;
outportb(Ox3f9, «BaudRate_Divisor »8) & 1»;
comparm = (comparm & -Ox80); /* reset dlab bit */
outportb(Ox3fb,comparm);
old_vector = getvect (OxOc); /* save old vector */

outportb(Ox3fc,OXB);
}

SERVREG.C

/* DTR & RTS & OUT2 */

/* uart_restore() .Restore COM1 interrupt vectors and internal
registers prior to exit.*/

#include <dos.h>
void uart restore (void)

{
outportb (Ox3fc, 0) ; /*inhibit 8250 interrupts*/

setvect (OxOc, old_vector); /* restore entry vector */
restore_registers() ; /*restore entry register set */

} /* END: uart_restore() */

/*save_registers(). This function save the 8250 registers
prior to setting up an interrupt driven environment. These
registers should be restored using the restore_registers()
function before the program terminates.*/

int reg_save[6l;
void save_registers (void)

{
int x ; /* work space */
int port_base ;

for (x = 0, port_base = OX3f9 ; x < 4 ; x++, port_base ++)
reg_save [xl = inportb (port_base) ;

134

outportb (Ox3fb, (reg_save[2] I Ox80)l ;/* set DLAB bit */
reg save[4] = inportb (Ox3f8)

/* get low divisor latch */
reg_save[5] = inportb (Ox3f9) ;/*then high divisor */
outportb (Ox3fb, 0) ; /* remove DLAB bit */

} /* END: save_registers(). */

/* restore_registers(). restore 8250 registers before exiting
from program.*/
#include <dos.h>

restore_registers (void)

{
int x, port_base ; /* workspace */

outportb
outportb
outportb
outportb

(Ox3fb, Ox80l ;
(Ox3f8, reg_save[4]);
(Ox3f9, reg_save[5])
(Ox3fb, 0) ;

/* set DLAB bit */
/*restore low divisor */
;/*then high divisor */
/* remove DLAB bit */

for (x = 0, port_base = Ox3f9 ; x < 4 ; X++, port_base++)
outportb (port_base, reg_save[x]) ; /*restore 4 registers */

} /* END: restore_registers() */

135

APPENDIXD

Bott .:i.JR:::-J j 'l 'is"

on
Thursday 8th September 1994

,<~~~~'A'T:~~~

, ~'>:'~;}:!~~

. for tuepaper titleil", .
Development of a CNC Drilling Machine

For PGa Production

beliuerell at
The Peninsula Technikon

,. '. l? ~ -1-~-
QCuntrmnn .•...••......~..•..l -

;~ '" };":;,:~~/~ :~;'~<,:~',:: ':~~:?':_~-,-- ~--<

',' j13est' ~tull£llt ~9aper%lhmrll .ffor 1994' '
- --'.';q.:-::::..-::... ,:_-

, ' QConfetteb on
;---.n- •

, 'Mr P Mostert

136

	Abstract
	Acknowledgments
	Table of contents
	Table of illustrations
	Chapter 1. Introduction
	Chapter 2. The systems topology
	Chapter 3. CNC Hardware and pheripherals
	Chapter 4. Serial communication interfacing
	Chapter 5. Initialisation procedures
	Chapter 6. CAD File translation
	Chapter 7. Display graphics
	Chapter 8. Error detection
	Chapter 9. Recommendations
	Chapter 10. Glossary of terms
	Chapter 11. Bibliography
	Appendix A
	Appendix B
	Appendix C
	Appendix D

