A Micro Processor Based A.C. Drive with a Mosfet Inverter

J.M.E. Baird

Thesis submitted in part fulfilment of the requirements for the Master's Diploma in Technology in the School of Electrical Engineering at the Cape Technikon.

Cape Town

November 1991

Declaration

I declare that the contents of this Thesis represent my own work and the opinions contained here are my own. It has not been submitted before for any examination at this or any other institute.

MEBairco

John Malcolm Edward Baird

Dedication

This humble effort is dedicated to the ALMIGHTY GOD who gave me life, health, wisdom, knowledge and guidance to complete this thesis.

Many thanks to my parents (Alex and Joan Baird) for their never ending source of encouragement and interest shown in my work. To my friends for there understanding. To Peter Cloete for all the help and assistance given during the developing and testing of the inverter. To the other Master students at the Cape Technikon for their help. To the Lecturers of the Electrical Engineering department at the Cape Technikon for their help and to the Cape Technikon for making available to me their facilities which made the completion of this thesis possible. Finally full thanks to Siemens (South Africa) for their sponsoring PART of this thesis for myself.

- 3 -

SUMMARY

A detailed study into the development of a three phase motor drive, inverter and microprocessor controller using a scalar control method. No mathematical modelling of the system was done as the drive was built around available technology.

The inverter circuit is of a Voltage source inverter configuration which uses MOSFETs switching at a base frequency of between 1.2 KHz and 2 KHz.

Provision has been made for speed control and dynamic braking for special applications, since the drive is not going to be put into a specific application as yet, it was felt that only a basic control should be implemented and space should be left for special requests from prospective customers.

The pulses for the inverter are generated from the HEF 4752 I.C. under the control of the micro processor thus giving the processor full control over the inverter and allowing it to change almost any parameter at any time.

Although the report might seem to cover a lot of unimportant ground it is imperative that the reader is supplied with the back-ground information in order to understand where A.C. drives failed in the past and where A.C. drives are heading in the future. As well as where this drive seeks to use available technology to the best advantage.

- 4 -

This Thesis covers only a small part of the research presently under way in Europe, the U.S.A, Japan and other countries. It seeks to apply some of this research in one of the best ways with components which are available locally, in a drive developed for the "small", low power, applications in South Africa.

OPSOMMING

'n Indiepte ondersoek van 'n drie-fasige motor aandrywer; omskakelaar en mikro-beheerder, wat gebruik maak van skaalbeheer-metode is gedoen. Geen wiskundige beheer-model is van hierdie stelsel gedoen nie, aangesien die aandrywer deur middel van bestaande tegnologie ontwerp is.

Die omskakelaar stroombaan is 'n spannings-bron in omskakel konfigurasie. Die omskakelaar maak gebruik van 'MOSFETs' wat tussen 'n frekwensie van 1,2kHz tot 2kHz skakel.

Voorsiening is gemaak vir spoed beheer en dinamiese remming, indien omstandighede dit sou verlang. Aangesien die aandrywer nie in spesifieke omstandighede gebruik gaan word nie, is daar gevoel dat slegs 'n basiese stelsel vir hierdie doel ontwerp gaan word. Voorsienning is egter gemaak vir verdere ontwikkiling van hierdie stroombaan in die toekoms, indien 'n klient dit sou verlang.

'n 'HEF4752' ge-intigreerde stroombaan verskaf die omskakelaar pulse. Hierdie vlokkie word deur die mikrobeheerder beheer, wat beteken dat enige parameter ter enige tyd verander kan word.

Dit is belangrik dat die leser van hierdie verslag oor 'n deeglike agtergrond-kennis van wisselstroom aandrywers beskik. Die leser sal moet verstaan wat die tekortkomings was in die verlede; die toekomstige doelwitte en hoe hierdie ontwerp bestaande tegnologie tot maksimum voordeel gebruik.

- 6 -

Hierdie verslag behandel slegs 'n klein gedeelte van die huidige ontwikkeling in Europa; die VSA; Japan en ander nywerheidslande. Dit streef daarna om van hierdie navorsing toe te pas deur plaaslik beskikbare komponente te gebruik in 'n lae-krag wisselstroom aandrywer, geskik vir dir Suid-Afrikaanse mark.

Contents

Chapter	1 Introduction	10
Chapter	2 A.C. Machines	13
2.1	Introduction	13
2.2	Induction Machine	14
2	2.1 Torque Production	15
2.3	Equivalent Circuit	16
2.4	Torque speed curve	19
2.5	Stator Voltage control	22
2.6	Current Control	24
2.7	Rotor Voltage Control	26
2.8	Variable Frequency Operation	28
2.9	Summary	33
Chapter	3 Inverters	34
3.1	Current Fed Versus Voltage Fed	
	Inverters	36
3.2	Voltage Source Inverter	40
3.3	Pulse Width Modulation	42
3.4	Dynamic Braking	45
Chapter	4 Control of Induction Machines	47

.

i

Chapter 5 Power Semiconductors	49
5.1 The Power Mosfet	51
5.1.1 Characteristics	52
Chapter 6 Implementation	54
6.1 The Inverter	54
6.1.1 The Power Circuit	54
6.1.2 The Driver Circuit	55
6.1.3 Protection	58
6.1.3.1 dv/dt	58
6.1.3.2 di/dt	60
6.1.4 PWM	61
6.2 Control	62
6.2.1 Hardware and interfacing	62
6.2.2 Open loop Volts/Herts control	64
Chapter 7 Equipment	67
Chapter 8 Results	69
8.1 Current Wave-form	69
8.2 Torque Curve	71
Chapter 9 Specifications	72
Chapter 10 Discussion of Results and	
Specifications	73
Chapter 11 Conclusion	75

•

.

.

Appendi	x A	81
A.1	Circuit Diagrams	82
A.2	KIB Micro Controller Board Details	83
A.3	Protection Calculations	84
A.4	Thermal Considerations	85
A.5	Software	86
A.6	HEF 4752	87

.

Figures

Figure	1.1:	BASIC A.C. DRIVE SYSTEM
Figure	2.1:	IDEALISED THREE-PHASE TWO POLE INDUCTION
		MOTOR
Figure	2.2:	PER PHASE EQUIVALENT CIRCUIT OF
		INDUCTION MOTOR
Figure	2.3:	APPROXIMATE EQUIVALENT CIRCUIT 18
Figure	2.4:	TORQUE SPEED CHARACTERISTIC AT CONSTANT
		VOLTAGE AND FREQUENCY
Figure	2.5:	TORQUE SPEED CURVES WITH VARIABLE STATOR
		VOLTAGE
Figure	2.6:	TORQUE SPEED CURVES WITH VARIABLE STATOR
		CURRENT
Figure	2.7:	SPEED CONTROL BY ROTOR RESISTANCE26
Figure	2.8:	SPEED CONTROL BY ROTOR RESISTANCE 27
Figure	2.9:	TORQUE SPEED CURVES AT VARIABLE
		FREQUENCY
• Figure	2.10	: TORQUE SPEED CURVES AT CONSTANT
		VOLTS/HERTZ
Figure	2.11	REGIONS OF TORQUE SPEED CURVES 31
Figure	2.12	: VOLTAGE FREQUENCY RELATIONSHIP OF
		INDUCTION MOTOR
Figure	3.1:	CURRENT SOURCE INVERTER

•

Figure	3.2:	VOLTAGE SOURCE INVERTER
Figure	3.3:	PRINCIPLE OF SINUSOIDAL PWM WITH NATURAL
		SAMPLING
Figure	3.4:	DYNAMIC BRACKING
Figure	3.5:	REGENERATIVE BRACKING
Figure	4.1:	METHODS OF CONTROL
Figure	5.1:	THE MOSFET
Figure	5.2:	POWER MOSFET CHARATERISTICS
Figure	5.3:	MOSFET GATE DRIVE CIRCUIT WITH SNUBBER
		(REF.1)
Figure	6.1:	POWER CIRCUIT
Figure	6.2:	DRIVER CIRCUIT
Figure	6.3:	SNUBBER CIRCUITS (REF.4)
Figure	6.4:	SYSTEM BLOCK DIAGRAM
Figure	6.5:	OPEN LOOP VOLTS/HERTS CONTROL65
Figure	6.6:	SOFTWARE FLOW CHART
Figure	8.1:	CURRENT WAVE-FORM AT 10 Hz
Figure	8.2:	CURRENT WAVE-FORM AT 25 Hz
Figure	8.3:	CURRENT WAVE-FORM AT 50 Hz
Figure	8.4:	PLOT OF TORQUE CURVE

•

.

List of Principal Symbols

Lower case letters normally refer to instantaneous quantities and upper-case letters refer to constants, or average, rms, or peak values. Subscripts and superscript relate to particular circuits or systems concerned. Sometimes one symbol represents more than one quantity.

- f Frequency (Hz)
- If Machine field current
- IL Rms load current
- Im Rms magnetising current
- IP Rms active current
- Ig Rms reactive current
- Ir Rms rotor current referred to the stator
- Is Rms stator current
- T Moment of inertia
- V_g Rms air gap
- v Instantaneous supply voltage
- Xc Commutating reactance
- Xr Rotor reactance
- Xs Synchronous reactance
- X1s Stator leakage reactance
- Xir Rotor leakage reactance

- 8 --

- δ duty cycle ratio
- 8 Angle or torque angle
- L₅ Stator inductance
- L_r Rotor inductance
- Lis Stator leakage inductance
- Lir Rotor leakage inductance
- n Turns ratio
- Ne Stator synchronous speed (rpm)
- Nr Rotor electrical speed (rpm)
- P Number of poles (also active power)
- P_g Air gap power
- Pm Mechanical output power
- PsI Slip power
- Q Slip power
- R_r Rotor resistance
- R_s Stator resistance
- S Slip per unit
- Te Developed torque
- T_1 Load torque
- T_s Sampling time
- V Rms supply voltage
- Vf Induced emf
- we Stator frequency (rad/s)
- w_■ Rotor mechanical speed (rad/s)
- wr Rotor electrical speed [(P/2) ws](rad/s)
- ws1 Slip frequency (rad/s)

Chapter 1

Introduction

The control of D.C. motors requires a variable D.C. voltage which can be obtained from D.C. choppers or controlled rectifiers. These voltage controllers are simple, cheap and easy to control. D.C. motors however are relatively expensive and require more maintenance, due to wear in the brushes and commutators. Although D.C. motors are expensive D.C. drives are used in many industrial applications because of their ability to deliver relatively large torque at low speeds.

The A.C. motor has a number of advantages over the D.C. motor. To name but a few:

- * They are lighter
- * Less expensive
- * Of lower maintenance because they have no commutators

The A.C. motor requires a complex control system. This system is an interdisciplinary technology which embraces many areas, including power semiconductor devices, A.C. machines, converter circuits, control theory and signal electronics. Because of the expertise required and due to the fact that component costs have been expensive in the past, A.C. drives had become expensive to develop. More recently with the advent of the microprocessor and VLSI circuits it is possible to develop cheap electronic controllers for A.C. drives.

This thesis will discuss in-depth some of the theory and how it was employed to produce an A.C. drive in the low power range. It should also be noted that although this inverter will not be able to drive large power motors of above 10 KW the control and interface circuitry can be standard throughout a whole range of inverters so that only the power circuit will need to change.

A block diagram of an A.C. drive is shown in figure 1.1 and consists of three main components:

* Motor

* Power Circuit (The Converter and Inverter)

* Controller

Each of these components contributes to the whole system and each will be dealt with separately.

- 11 -

Figure 1.1: BASIC A.C. DRIVE SYSTEM

.

.

Chapter 2

A.C. Machines

2.1 Introduction

The A.C. motor is obviously the heart of any A.C. adjustable speed drive and understanding its characteristics is mandatory in designing any A.C. drive. The dynamic behaviour of the A.C. machine is considerably more complex than that of the D.C. machine.

In this chapter we will be looking at the basic static and dynamic characteristics of the induction motor; also an in-depth look at the performance characteristics with emphasis on variable speed applications. This is to note whether or not it is possible for an A.C. motor with the right control to emulate a D.C. motor.

2.2 Induction Machine

Figure 2.1 shows an idealised three phase two pole induction motor where each phase in the stator and rotor windings has a concentric coil. The stator windings are supplied with balanced three phase A.C. voltage, which induces current in the short circuit rotor winding by induction or transformer action.

Figure 2.1: IDEALISED THREE-PHASE TWO POLE INDUCTION MOTOR

2.2.1 Torque Production

Assuming that there are no harmonics due to non-ideal distribution of windings and non-sinusoidal voltage and current waves , it has been shown that the stator establishes a spatially distributed sinusoidal flux density wave in the air gap at synchronous speed given by [Ref.1]:

$$N_e = \frac{120 f_e}{P}$$

where N_e is the speed in rpm, f_e the stator frequency in hertz, and P is the number of poles. Since the rotor is initially stationary, its conductors are subjected to a sweeping magnetic field, thus inducing a rotor current at the same frequency. It is this interaction of the air gap flux with the rotor magnetomotive force (mmf) which produces torque in the induction machine. At synchronous speed there is no induction and thus no torque can be produced. At any other speed N_r , the speed differential N_e-N_r creates slip, and correspondingly the per unit slip S is defined as [Ref.1]:

$$S = \frac{N_e - N_r}{N_e} = \frac{W_e - W_r}{W_e} = \frac{W_{s1}}{W_e}$$

The exact formula for torque produced can be shown to be [Ref.1]:

$$T_e = \pi (P_2) Ir B_P F_P \sin \delta$$

2.3 Equivalent Circuit

So far the explanation given helps to develop a "transformer like" per phase equivalent circuit as shown in figure 2.2 which is extremely important for the steady state analysis [Ref.7].

Stator

Rotor

(a)

(b)

Figure 2.2: PER PHASE EQUIVALENT CIRCUIT OF INDUCTION MOTOR

From this model it can be proved that the following formulas apply [Ref.1]:

Input power $P_{in} = 3 V_s I_s \cos \theta$

Stator copper loss $P_{1s} = 3I_{s}R_{s}$

Core loss
$$P_{1c} = 3 \frac{V_{2m}}{R_{m}}$$

Power across air gap $P_g = 3I^2_r(R_r/S)$

Rotor copper loss $P_{1r} = 3I_r^2 R_r$

Output power $P_0 = P_g - P_{1r} = 3I^2 rR_r \frac{1-S}{S}$

Shaft Power $P_{sh} = P_0 - P_{FW}$

Where P_{FW} is friction and windage loss. Since the power is the product of developed torque T_e and speed, T_e can be expressed as [Ref.1]:

$$T_e = \frac{P_0}{w_m} = \frac{3}{w_m} I^2 r R_r \frac{1-S}{S} = 3 \frac{P}{2} I^2 r \frac{R_r}{Sw_e}$$

where $w_{\mathbf{x}} = (2/P)w_r$ is the rotor mechanical speed (rad/s). By substitution [Ref.1]

$$T_e = \frac{P}{2} \frac{P_e}{w_e}$$

This indicates that torque can be calculated from the air gap power by knowing the stator frequency. The power P_g is often defined as torque in synchronous watts. The equivalent circuit of Fig 2.2 can be simplified to that of fig 2.3 where the core loss resistor has been dropped out of the magnetising inductance L_m and it has been transferred to the input. The approximation is only valid for integral horse power machines [1] where $|(R_s + jw_e L_{1s})| << w_e L_m$. From figure 2.3 the current can be found as [Ref.1]:

$$I_{r} = \frac{V_{s}}{((R_{s} + R_{r}/S)^{2} + w^{2}e(L_{1s} + L_{1r})^{2}}$$

And again by substitution:

$$T_{e} = 3 \frac{P}{2} \frac{R_{r}}{Sw_{e}} \frac{V_{s}}{(R_{s} + R_{r}/S)^{2} + w^{2}e(L_{1s} + L_{1r})^{2}}$$

Figure 2.3: APPROXIMATE EQUIVALENT CIRCUIT

2.4 Torque speed curve

If the motor is supplied from a fixed voltage at a constant frequency, the developed torque is a function of the slip and the torque speed characteristic can be determined from the equation:

$$T_{e} = 3 \frac{P}{2} \frac{R_{r}}{Sw_{e}} \frac{V_{s}}{(R_{s} + R_{r}/S)^{2} + w^{2}e(L_{1s} + L_{1r})^{2}}$$

Figure 2.4: TORQUE SPEED CHARACTERISTIC AT CONSTANT VOLTAGE AND FREQUENCY

A typical plot of the developed torque as a function of the slip or speed is shown in figure 2.4. There are three regions of operation:

1. Motoring:

In motoring, the motor rotates in the same direction as the field; and as the slip increases, torque also increases, the torque also increases while the air gap flux remains constant. Once the torque reaches its maximum value, T_n at $s = s_n$, the torque decreases, with the increase in slip due to reduction of the air gap flux.

2. Regeneration:

In regeneration, the speed is greater than the synchronous speed, with w_s being in the same direction, and the slip is negative. Therefore R_r/s is negative. This means that power is being fedback from the shaft into the rotor circuit and the motor operates as a generator. The torque speed curve is similar to that of motoring, but having negative torque value.

3. Plugging:

In plugging, the rotational speed is opposed to the direction of the field rotation therefore the slip is greater than unity. This may happen if the sequence of the supply is reversed, while motoring, so that the direction of the field is also reversed. The developed torque, which is in the same direction as the field, opposes the motion and acts as a braking torque. Because s>1, the motor currents will be high, but torque low.

If s < 1, $s^2 < < s^2_{\pi}$ we can derive an equation which gives torque as a function of speed [Ref.4]:

 $w_r = w_s (1 - (S_m T_e / 2T_{em}))$

It can be shown that if the motor operates with small slip, the developed torque is proportional to slip and the speed decreases with torque, therefore speed and torque can be varied by one of the following means:

1. Stator voltage control (Section 2.5)

2. Current control (Section 2.4)

3. Rotor voltage control (Section 2.7)

4. Frequency control (Section 2.8)

2.5 Stator Voltage control

The following equation derived from the torque equation where $S \leq 1$ [Ref.1]:

$$T_{e} = \frac{R_{r}(bV_{s})^{2}}{Sw_{e} (R_{s} + R_{r}/S)^{2} + w^{2}e(L_{1s} + L_{1r})^{2}}$$

indicates that the torque is proportional to the square of the stator supply voltage and a reduction in stator voltage will produce a reduction in speed.

Figure 2.5 shows the typical torque speed characteristic for various values of *b*. The points of intersection define the stable operation points. This type of voltage control is NOT suitable for a CONSTANT torque load and is normally applied to situations requiring low starting torque and a NARROW range of speed at a relatively low slip.

Figure 2.5: TORQUE SPEED CURVES WITH VARIABLE STATOR VOLTAGE

2.6 Current Control

Instead of controlling the stator voltage, the stator current can be controlled directly so as to control the developed torque. With current control, the torque characteristic depends on the relative distribution of magnetising current and rotor current for a fixed stator current magnitude but is independent of stator parameters R_s and L_{1s} . The distribution is affected by the inverse ratio of parallel impedances, which in turn are dependent on frequency and slip [Ref.1].

It can be shown that the maximum torque depends on the square of the current and is approximately independent of the frequency. The typical torque speed characteristics are shown in figure 2.6. As the speed increases the stator voltage rises and torque increases. The torque can be controlled by the stator current and slip. If saturation of the machine is neglected, the torque rises to a high value and then decreases to zero with a steep slope at synchronous speed. In a practical machine the saturation will limit the developed torque as shown. A torque curve with the rated voltage can be intersected at two different points (point A or B) for the same torque demand. Because of lower slip at point "B", the rotor currents will be lower and the air gap flux will be somewhat higher, causing partial saturation. This will result in higher core loss and harmonic torque pulsation (common in Current Source Inverters). Overall operation at "A" is more desirable, but point "A" is on the unstable region of the torque curve. Close loop control is therefore mandatory [Ref.1].

2.7 Rotor Voltage Control

In a wound rotor motor, an external three phase resistor may be connected to its slip rings as shown in figure 2.7. The developed torque may be varied by varying the resistance, R_x . If R_x is referred to the stator winding and added to R_r , the equation [Ref.4]:

$$T_{e} = \frac{R_{r}(bV_{s})^{2}}{Sw_{e} (R_{s} + R_{r}/S)^{2} + w^{2}e(L_{1s} + L_{1r})^{2}}$$

may be applied to determine the developed torque. The typical torque speed characteristics for variations in rotor resistance are shown in Fig 2.8.

Figure 2.7: SPEED CONTROL BY ROTOR RESISTANCE

Figure 2.8: SPEED CONTROL BY ROTOR RESISTANCE

This method has been and still is in wide use, since it increases starting torque and decreases starting current; however the system is very inefficient. There would be an inbalance in the stator voltage and current if the resistors in the rotor circuit were not equal.

Two famous drive circuits use this principal namely the "Static Kramer" and "Static Scherbius" drives. These are normally used on large drive systems, due to their bulkiness. 2.8 Variable Frequency Operation

If the stator frequency is increased beyond the rated value, the torque-speed curves, derived from the equation [Ref.1]:

$$T_{e} = 3 \frac{P}{2} \frac{R_{r}}{Sw_{e}} \frac{V_{s}}{(R_{s} + R_{r}/S)^{2} + w^{2}e(L_{1s} + L_{1r})^{2}}$$

can be plotted as shown in figure 2.9 [Ref.1].

The air gap flux and stator current decrease as frequency increases, and the maximum torque developed $(T_{e\,a})$ decreases. The maximum torque as a function of slip can be derived from the torque (T_e) equation [Ref.1].

$$T_{en} = \frac{3}{4} \frac{P}{w_e} \frac{V_{s}^2}{\sqrt{(R_s^2 + w_e^2(L_{1s} + L_{1r})^2 + R_s)}}$$

Where $w_{slm} = R_r/L_{lr}$ is the slip frequency at maximum torque. The equation shows $T_{em}w^2{}_{lr}$ to be a constant, thus the machine behaves like a D.C. series motor in variable frequency operation.

If an attempt is made to decrease the supply frequency at rated voltage, the air gap flux will saturate, causing excessive stator current. Therefore, the region below the base frequency w_b should be accompanied by a corresponding reduction of stator voltage so as to maintain constant air gap flux. Figure 2.10 shows the plot of torque speed curves where the V_s/w_e (Volts/herts) ratio remains constant. The maximum torque remains approximately valid except in the low frequency region where the air gap flux is reduced by the stator impedance drop and therefore it has to be compensated for by an additional voltage boost so as to produce maximum torque.

Since the motor is operated at constant air gap flux in constant torque region, the torque sensitivity per ampere of stator current is high, permitting fast transient response of the drive system. In spite of low inherent starting torque for base frequency operation, the machine can always be started at maximum torque, as indicated in figure 2.10.

Figure 2.10: TORQUE SPEED CURVES AT CONSTANT VOLTS/HERTZ

The different regions of torque speed curves of a practical drive system with a variable voltage, variable frequency supply are shown in figure 2.11 and the corresponding voltage frequency relationship in figure 2.12.

Figure 2.11: REGIONS OF TORQUE SPEED CURVES

Figure 2.12: VOLTAGE FREQUENCY RELATIONSHIP OF INDUCTION MOTOR

At the right edge of the constant torque region, the stator will reach the rated voltage-value before the machine can enter the constant power region. In the constant power region, the air gap flux decreases, but the stator current is maintained constant by increasing slip. This is equivalent to the field weakening mode done in a separately excited D.C. motor. At the edge of the constant power region, the breakdown torque T_{ex} is reached and then the machine speed can be increased by increasing the frequency as shown in figure 2.12 with a reduction of stator current.

2.9 Summary

From the information supplied thus far, one method stands out above the rest, that is the method of the constant volts/herts relationship. Not only does it operate similarly to a separately excited D.C. motor over its full operational range, but because the motor is operating at a constant air gap flux in the constant torque region it permits a fast transient response of the drive system.

Chapter 3

Inverters

With advances in Technology three types of Converter circuits have come to the fore:

- * The Cycloconverter
- * The voltage source inverter
- * The current source inverter

The Cycloconverter is a well known method of controlling induction motors. With advancing technology it has become well established in the larger motor drive range where torque and not speed is the criterion. Normally used in low speed drives larger than 500 KW.

Between the latter two techniques a decision had to be made as to which should be implemented in this project.

A Current Fed Inverter (CFI) requires a stiff D.C. current source at the input, which is in contrast to the stiff voltage source desirable in a Voltage Fed Inverter (VFI). For a basic diagram of the Current Fed Inverter refer to figure 3.1 and for a Voltage Source Inverter refer to figure 3.2.

•

Figure 3.1: CURRENT SOURCE INVERTER

Figure 3.2: VOLTAGE SOURCE INVERTER

3.1 Current Fed Versus Voltage Fed Inverters

Note that a voltage fed inverter can operate in the current control mode by adding a current feedback loop. Similarly, a current fed inverter can operate in voltage control mode, if desired, by adding a voltage control loop. The definition of the voltage fed and current fed inverters is the basis of the question as to whether the D.C. supply is a voltage source or current source. The two classes of inverters have duality in many aspects. A summary comparison of the two classes of inverters can be given as follows (This comparison helped in the design of the inverter):

In a current fed inverter, the inverter 1. is more interactive with the load, and therefore a close match between the inverter and machine is desirable. For inverter requires low leakage example, the а inductance, unlike that of the voltage fed inverter, because this parameter directly influences the inverter commutation process. A large leakage inductance of machine filters out harmonics in a voltage fed inverter, but in a current fed inverter it lengthens the current transfer interval and worsens the voltage The thyristors and diodes of spike problem. the inverter may require series connection to combat the spike voltage, which may be several times the peak counter emf.

- 36 -

- 2. In a current fed inverter because the motor forms part of the commutation circuit, commutation is load dependent thus it is time consuming. As a result, the commutation-angle of "force-commutated inverters" becomes large at light load and high frequency, thereby restricting the highest frequency of operation.
- 3. The current fed inverter has inherent four quadrant operation capability and does not require extra power components. On the other hand a voltage fed inverter line commutated inverter connected requires a in inverse parallel with the rectifier for regeneration or a pulsed resistor across the D.C. link for dynamic In case of а mains power failure, the braking. regenerated power in the current fed inverter cannot be absorbed in the line and therefore the machine speed can only be reduced mechanically. For a voltage fed inverter, however, dynamic braking is applicable in line power failure conditions.
- 4. A current fed inverter is more rugged and reliable and problems such as shoot-through fault do not exist. A momentary short circuit in the load and misfiring of the thyristors are acceptable, as the inverter is current limited by the controlled input rectifier (see figure 3.1). Fault interruption by gate circuit suppression is simple and straight forward.

- 5. In the current fed inverter thyristors have to withstand reverse voltage during part of the cycle and therefore such devices GTOs. as power MOSFETs, transistors and IGBTs cannot be used. Due to large turn off time, the thyristors can be of the inexpensive rectifier grade instead of expensive inverter grade thyristors required for voltage fed inverters.
- 6. The control of current fed inverters, especially for commonly used auto sequential commutated inverters and load commutated inverters, is simple and similar to the phase controlled line commutated converters.
- 7. Multi-machine load on a single inverter or multiinverter load on a single rectifier is very difficult with current fed inverters. An industrial drive usually consists of one rectifier, one inverter and one machine system. In applications where multi-machine or multiinverter capability is required, a voltage fed inverter may prove economical.
- 8. Current fed inverters have a sluggish dynamic performance compared to Pulse Width Modulator (PWM) voltage source inverters. The stability problem is more severe at light loads and high frequency conditions. On the other hand, stability problems are minimal in voltage fed inverters and the drive can operate in open loop.

- 9. The torque pulsations in the current inverter cause harmonic heating problems which are more severe at low frequency operation.
- 10. The successful operation of the current fed inverters requires that a minimum load should always remain connected. The inability to operate at no load invalidates their application in general purpose power supply application such as in a UPS system.

After considering the above conditions it was decided to develop a Voltage Source Inverter for the following reasons:

- 1. It has greater stability
- 2. It has a wider range of operating frequency
- 3. The ease with which the constant volts/herts control method can be implemented.
- 4. It is more efficient.

3.2 Voltage Source Inverter

A voltage source inverter is characterised by a stiff D.C. voltage supply at the input. The D.C. supply may be fixed or variable. The inverter application may include adjustable speed A.C. drives, regulated voltages and frequency power supplies, UPS and induction heating.

In a voltage fed inverter, the power semiconductor devices always show constant forward bias due to the D.C. supply voltage, therefore some type of forced commutation is mandatory when using thyristors. Alternatively self commutating with base or gate drive is possible when using GTOS, MOSFETS, transistors or IGBTS.

Voltage source inverters can be divided into two major types:

1. Square-wave type

2. Voltage and frequency controlled type

The latter was chosen as it is the better method of control when using the constant volts/herts relationship. It can be implemented by the following two methods:

1. A Pulse Width Modulation (FWM) method

2. A Pulse Amplitude Modulation (PAM) method

For the voltage control of a PAM method, only the former method is applicable. If the A.C. supply is rectified to D.C., there are two possible schemes, using

1. a phase controlled rectifier with filter

2. a diode rectifier chopper with filters.

With a phase controlled rectifier, the A.C. line side harmonics are high and power factor deteriorates at reduced voltage. In the latter case the power has to be converted twice but high line side power factor with near unity displacement factor is possible. The PWM method is used, since it does not convert the energy twice.

The variation of D.C. link voltage will not cause any problems in self commutated inverter operation using GTOs, MOSFETs or transistor devices.

3.3 Pulse Width Modulation

In the past, sinusoidal Pulse Width Modulation (PWM) speed control systems for three phase A.C. motors have been produced in a number of different forms and by as many methods. Figure 3.3 shows the general principle of PWM where an isosceles triangle carrier wave is compared with a fundamental frequency modulating sine wave, and the natural points of intersection determine the switching points of the power devices on the output bridge.

Figure 3.3: PRINCIPLE OF SINUSOIDAL PWM WITH NATURAL SAMPLING

Advanced Technology has allowed the generation of the PWM signal for inverters in using basically three methods:

- 1. A large scale integration device such as the HEF 4752
- A peripheral component which has to be continually serviced by a micro processor to provide for the waveform generation. Such is the SLE 4520.
- 3. A software intensive use of the port pins, timers and other peripheral devices of a micro processor to generate the wave-forms.

The generation of the PWM signal, although a small section of an inverter, has been the subject of extensive research in the recent past. It is quite understandable as it is here that the efficiency of the INVERTER is consummated and matched to its load.

Although very interesting, it is not necessary to enter into great studies in this section, in an inverter design, since there are Integrated Circuits (ICs) available on the market which incorporate this technology in an affordable package. One such device available in South Africa is the HEF 4752 manufactured by Philips.

The IC provides all three complementary pairs of output drive wave-forms for the six element inverter. All lock out times are also taken care of. By defining certain inputs into the IC the output parameters such as lock out time, output voltage

- 43 -

and frequency can be changed. The device is completely digital so that repetition frequency of the PWM signal is always an exact multiple of the inverter output frequency and therefore results in excellent phase and voltage balance, thus giving low motor losses.

For the harmonic content of the wave-forms produced and current wave-form obtained by the use of this IC refer to the section on results and to the appendix.

To save calculation time to establish the inputs, a simulation of the IC was performed on "Lotus" to obtain the necessary clock inputs and make sure that the range of performance was still in the range of the device's specifications. See appendix.

The HEF 4752 is a complex IC and is dealt with in-depth by references one, two and three of the periodicals (a part copy appears in the Appendix).

3.4 Dynamic Braking

In adjustable speed A.C. drives, the machine may be subject to electrical braking for reduction of speed. In electrical braking, the motor is operated in the generating mode. The energy stored in the system inertia is converted to electrical energy. The energy is then either dissipated in a resistor, used in parallel drive systems, or recovered in the power supply. The former is known as dynamic braking, see figure 3.4, and the latter is known as regenerative braking, see figure 3.5.

For small power drive applications dynamic braking is adequate.

Figure 3.4: DYNAMIC BRACKING

.

4

Figure 3.5: REGENERATIVE BRACKING

Chapter 4

Control of Induction Machines

There has arisen two basic methods of controlling the Induction machine

- 1. Scalar Method
- 2. Vector Method

Scalar control relates to the magnitude control of a variable only. The command and feedback signals are D.C. quantities which are proportional to the respective variables. This is in contrast to vector control or field orientation control (FOD), where both magnitude and phase of vector variables are controlled.

A break down of the methods of both scalar and Vector control methods is given in figure 4.1. Since the drive which was designed falls into the general purpose range it is quite adequate to use a scalar control method. Vector control needs expensive sensing and fast computation thus making it even more expensive.

- 47 -

An open loop scalar control is implemented on the system mainly because of cost and also because the drive is for limited applications only.

Control of an Induction Motor

1		
→1.	<u>Scalar</u>	Control Method
	1.1.	Open Loop Constant Volts/herts Method
	1.2.	Closed Loop Current Control Volts/herts Method
	1.3.	Constant Volts/herts Speed Control with Slip Regulation
	1.4.	Torque Flux Control
	1.5.	Current Controlled PWM Inverter
	1.6.	Constant Flux operation with Programmable Current Control
→ 2.	Vector	Control Methods
	2.1.	Direct Vector Control Method
	2.2.	Indirect Vector Control Method
	2.3.	Space Vector Modulation Method

Figure 4.1: METHODS OF CONTROL

.

Chapter 5

Power Semiconductors

There are three main groups of "Switching" Power Semiconductors

- 1. Thyristors
- 2. Transistors
- 3. MOSFETs

The Transistors and MOSFETs can be considered to be part of the same family. In recent years new components have been added to these families. For the thyristor the GTO, and for the most resent combination of the Transistor and the MOSFET there is the Insulated Gate Bipolar transistor (IGBT), which shows great promise for the medium power high frequency switch inverter range.

- 49 -

It is impossible to do a complete comparison of the devices and show the reason for choosing MOSFETs for the inverter. However, briefly it can be said that:

- * Thyristors were not chosen. When used in a voltage source inverter they need to be force commutated, thus resulting in a bulky power circuit.
- * Transistors require a high current drive on the base, leading to difficulty in switching.
- * IGBT although very well suited are quite expensive and hard to obtain in South Africa at present.
- MOSFETs being quite easy to switch result in a compact power circuit design and are well suited to small power applications.

5.1 The Power Mosfet

The MOSFET is a voltage controlled majority - carrier device. With a positive voltage applied to the gate with respect to the source terminal, it induces an N-channel and permits electrons to flow from source terminal to the drain terminal. Because of SiO₂ layer isolation, the gate circuit impedance is extremely high typically in the range $10^{9}\Omega$. This feature permits power MOSFET to be driven directly from CMOS or TTL logic. The devices have an integrated reverse rectifier which permits free - wheeling current of the same magnitude as that of the main device.

(A) D-MOB BTRUCTURE

Figure 5.1: THE MOSFET

5.1.1 Characteristics

The fundamental drain source characteristics of a power MOSFET are shown in figure 5.1. The gate has a threshold voltage of between 2 and 4 volts below which the drain current is very small. The conduction loss of a High voltage MOSFET is very high. However its switching loss is almost negligible.

Figure 5.2: POWER MOSFET CHARATERISTICS

Although MOSFETs can be controlled statically by the voltage source, it is normal practice to drive it by a current source dynamically followed by a voltage source to minimise switching delays. Figure 5.2 shows a typical gate drive circuit of a MOSFET with R.C. snubber across the device.

Figure 5.3: MOSFET GATE DRIVE CIRCUIT WITH SNUBBER (REF.1)

.

Chapter 6

Implementation

6.1 The Inverter

All calculations for this section appear in the appendix under their appropriate appendix-sections.

6.1.1 The Power Circuit

The configuration of the inverter is shown in figure 6.1. As stated before, the inverter circuit employs MOSFETs as its main switching component. The safe operation of these devices is solely determined by thermal considerations, the approximate calculations are shown in the appendix.

The devices are all N-channel type, thus the top side of each of the inverter legs have to be driven by isolated power supplies.

- 54 -

Figure 6.1: POWER CIRCUIT

The D.C. link contains two large capacitors so as to provide as smooth a D.C. supply as possible to the switching components. To the input is a mains filter which stops Radio Frequencies from the inverter radiating on to the mains supply and also limits the current during the charging of the capacitors and prevents spikes in either direction.

6.1.2 The Driver Circuit

In the section "The Power MOSFET" a driver circuit is shown in figure $5.\overset{3}{,2}$. It was used in the first prototype inverter and proved to be unsuccessful. A low, zeo volts, on the base of the two transistors causes the NPN to turn off and the PNP to turn on thus discharging the gate of the power MOSFET, but not completely. For as the gate voltage approached one volt the

transistor starts to turn off, because it requires a 0.7 volt drop across its base emitter to remain on, allowing a leakage current to flow.

The driver circuit, now used, is shown in the figure 6.2. The change being the use of the N and P channel signal FETs which provide a fast and clean switch from the positive rail to zero. Both devices have an extremely low "on" resistance and charge and discharge the gate of the power MOSFET easily.

Figure 6.2: DRIVER CIRCUIT

With an inductive load, the drain source voltage transient is coupled to the gate via the drain-to-gate capacitance. To protect the gate from damaging overvoltage a Zener diode protection is necessary, since the drive circuit impedance is low.

The Opto couple circuit presented the largest problem as it is here that the turn on and turn off delay had to be compensated for. Although fast opto couple circuits are available their drive currents are quite high. While the ones used have a low drive current but slower switching speed. To compensate for the delay caused by the opto couple was no problem for the HEF4752 chip.

6.1.3 Protection

It is in this section where the greatest amount of experimentation took place as very little literature is available on this section. Most corporations that produce drives do not divulge information concerning protection and even place this section's components entirely in epoxy to prevent any investigation and copying.

Protection is divided into two sections. Firstly dv/dt protection then di/dt protection. Comprehensive derivation of the formulas will not be shown and it must be noted that during the derivation certain things were assumed thus rendering them applicable to this application only (See appendix for calculations).

6.1.3.1 dv/dt

dv/dt protection is normally in the form of a snubber network, which comes in many different forms see figure 6.2. In this application the unpolarised snubber was used, which provides protection during switching on and switching off of the device, as well as protection during the switching of the other half of the phase leg. The main reason for using a snubber is that when switching an inductive load a destructive voltage spike is produced, although this spike is bypassed by a fast recovery diode, the stray inductance, in the circuit which is not bypassed by the diode, may cause destructive over-voltage. This over-voltage is attenuated by the R.C. snubber.

Figure 6.3: SNUBBER CIRCUITS (REF.4)

•

6.1.3.2 di/dt

Although not a serious problem, di/dt will destroy the power components in the inverter on occurrence. This problem arises when the output is shorted or the motor coils saturate. This problem is overcome by including three air gap coils on the output to prevent saturation. An overall current sensing circuit is included which when triggered shuts down the inverter thus protecting it against any damage. The response time for the shut down is approximately 3uS.

6.1.4 PWM

As already stated the HEF 4752 was used in the generation of the pulses and "Lotus" was used to derive the best input parameters.

The HEF 4752 has three clock frequency inputs (OCT and RCT were joined). Two clock frequency were generated using a counter chip, the reference clock (RCT) input and the voltage clock (VCT)input. The frequency clock (FCT) was generated using a phase lock loop as a multiplier so that a linear adjustment of the clock frequency was possible.

The HEF 4752 generates a PWM wave-form which corresponds to the constant volts/herts method of control. Voltage boosting is possible by adjusting the Voltage control clock (VCT). Since all signals are controlled by a counter chip which is controlled by the micro processor any parameter can be changed during operation with ease.

The reference clock sets the base switching speed in combination with the lock out time. "Lock out time" is a term which refers to the time between the switch off of the top half (top MOSFET) and the switching on of the bottom half of the same leg (and visa versa).

6.1.4 PWM

As already stated the HEF 4752 was used in the generation of the pulses and "Lotus" was used to derive the best input parameters.

The HEF 4752 has three clock frequency inputs (OCT and RCT were joined). Two clock frequency were generated using a counter chip, the reference clock (RCT) input and the voltage clock (VCT)input. The frequency clock (FCT) was generated using a phase lock loop as a multiplier so that a linear adjustment of the clock frequency was possible.

The HEF 4752 generates a PWM wave-form which corresponds to the constant volts/herts method of control. Voltage boosting is possible by adjusting the Voltage control clock (VCT). Since all signals are controlled by a counter chip which is controlled by the micro processor any parameter can be changed during operation with ease.

The reference clock sets the base switching speed in combination with the lock out time. "Lock out time" is a term which refers to the time between the switch off of the top half (top MOSFET) and the switching on of the bottom half of the same leg (and visa versa).

- 61 -

6.2 Control

6.2.1 Hardware and interfacing

The control circuitry of the inverter is based around the 8051 micro controller chip. The micro controller provides for all monitoring and controlling routines. For specific details of the micro chip refer to reference [17].

One counter "chip" (8254), a "phase lock loop" (CD4046) and a parallel port interface "chip" (8255) are used in the interfacing. See block diagram figure 6.4. The drive which was developed is only a prototype. An 8051 microprocessor board from Kiberlab in Pretoria with a sub-rack card is being used, with the input commands coming from two push buttons and two switches. It is purposed to replace this system with a developed dedicated micro processor/interface board resulting in compact design.

Figure 6.4: SYSTEM BLOCK DIAGRAM

· ·

6.2.2 Open loop Volts/Herts control

A block diagram of the control system is shown in figure 6.5. The frequency we is the command variable and it is close to the motor speed, neglecting the slip frequency. From the section on the induction motor it can be shown that the machine flux is approximately related to the ratio vs/we. Therefore maintaining the rated air gap flux will provide maximum torque sensitivity with current which is similar to that of the D.C. machine. As the frequency approaches zero near zero speed, the stator voltage will tend to be zero and will essentially be absorbed by the stator resistance. Thus it is necessary to boost the voltages at lower speeds.

Figure 6.5: OPEN LOOP VOLTS/HERTS CONTROL

This configuration is adequate to drive a constant load. It is essential to ramp the speed up or down over a certain time seeing that the motor is bound by its mechanical time response and ramping too fast would cause the slip to become too large and trip on over current.

A flow chart of the software implemented is shown in figure 6.6. The actual software listing is presented in the appendix.

MAIN ROUTINE

INTERRUPT OVER CURRENT ROUTINE

.

Figure 6.6: SOFTWARE FLOW CHART
Equipment

The following equipment was used in the development of the drive and the testing thereof:

•

- Digital Storage Adapter
 DSA 511
 Thrulby
- 2. 20 MHz Oscilloscope OS-7020 Goldstar
- 3. 10 Mhz Frequency Counter
- EV 80C51 FX Microcontroller Evaluation Board Intel
- 5. PC Based Eprom Programmer EW-901 Sunshine
- 6. ASM 51

Intel

•

7. 286 IBM PC With VGA Monitor

.

3-Phase Motor
 380 Volts
 2 amps per phase

9. Digital Multimeter 175

Testmate

10. Analog Multimeter YF-303

YUFUNG

Results

8.1 Current Wave-form

Figure 8.1: CURRENT WAVE-FORM AT 10 Hz

Figure 8.2: CURRENT WAVE-FORM AT 25 Hz

Figure 8.3: CURRENT WAVE-FORM AT 50 Hz

8.2 Torque Curve

Figure 8.4: PLOT OF TORQUE CURVE

Specifications

Supply Voltage	220 Volts A.C. Single Phase
Input Frequency	50/60 Hz
System Power Factor	≈1
Output Voltage	0 to 210 Volts Phase to Phase
Output Frequency	5 to 100 Hz
Output Current	Maximum Continuous Current 10 Amps
Power Factor	≤ 0.9
Efficency	90% Into a resistive Load

Discussion of Results and Specifications

All results and specification were determined either experimentally or by computation of measurements taken.

The current wave-form output is of the same standard as any other drive equipment as it uses an integrated circuit to generate the Pulse Width Modulated signal (see page 68 and 69 for current wave-forms).

The current wave-form compared favourably with the current waveforms given in the Data sheets of most manufactures of A.C. drives.

The Plot of the torque curve (figure 8.9) verses the input frequency, at first might seem strange as the inverter never allows the motor to reach its maximum torque. The input to the inverter is 220 Volts A.C. single phase allowing a maximum of 311 Volts D.C across the D.C. link. Consequently this in turn allows a maximum of 210 Volts A.C phase to phase out of the inverter. Therefore when using a standard three phase 380 Volt A.C. motor it is not possible to generate the maximum motor torque. There are two graphical plots (figure 8.9) of the motor torque verses input frequency:

- 1. With no voltage boosting at the lower frequency levels. The resistance of the motor inhibits the reactive current (I_r) from flowing thus there is very little torque at low speeds.
- With half voltage boosting. Boosting the voltage at low input frequency compensates for the "I R" loss in the motor (See Chapter Two).

Maximum torque can be achieved throughout the operating range by boosting the voltage at low speeds to maximum. This tends to cause heating in the motor and forced cooling may become necessary if the drive is to be used continually at low output frequencies from 0 Hz to 20 Hz.

The specification given for the drive are standard for most similar A.C. drives and needs no real explanation.

5

Conclusion

The Development of the drive appears to be a success in both its development and operation. Pending the following points:

- The Drive was demonstrated to Mr P.H. Kleinhans (Mentor) and other Lecturing Staff members of the School of Electrical Engineering at the Cape Technikon during October 1991.
- 2. A Dissertation pertaining to the development and performance of the drive was held at the Technikon during November 1991 for the Lecturing Staff and interested Parties.
- 3. The contents of this Thesis.

The prior stated objectives have been reached i.e.:

- 1. To build a "Low Power" Micro Processor based A.C. Drive for an Induction Motor with locally available components.
- 2. To obtain the necessary knowledge for designing and the construction of an A.C. drive.

- 75 -

11.1 Drive Conclusion

. -

- This drive enabled the A.C. Motor to operate in the constant torque region between 0 Hz to 50 Hz and from 50 Hz to 100 Hz in the constant Power region.
- The drive construction and components are relatively inexpensive.
- 3. No negative performance results were recorded during tests as compared to other similar A.C. drives.
- 4. Cognisance must be taken that this drive will be further enhanced according to field application requirements.

References

Books

- Power Electronics and A.C. Drives
 B.K. Bose
 Prentice Hall Englewood Cliffs New Jersey
- 2. Control of Electrical Drive

W. Leonhard

Springer-Verlag

Berlin Heidelberg New York Tokyo 1985

Power Semiconductor Controlled Drives
 G.K. Dubey

Prentice Hall International Editions

- Power Electronics Circuits, Devices and Applications
 M.H. Rashid
 Prentice Hall International Editions
- 5. Microcomputer Control of Power Electronics and Drives Edited by B.K. Bose IEEE Press

- Electrical Machines and Drive systems
 C.B. Gray
 Longman Scientific and Technical
- 7. Electrical Machinery Fourth Edition Fitzgerald Kingsley Umans Mc Graw-Hill Book Company
- Electrical Technology Fifth Edition
 Edward Hughes
 Longman London and New York
- 9. The Art of Electronics Second Edition P. Horowitz W.Hill Cambridge University Press
- 10. SIPMOS Semiconductor Data Book Siemens
- 11. KIB 54 Micro controller Users Manual Kiberlab (Halfway House Johannesburg)
- 12. Adjustable Speed A.C. Drive Systems Edited by B.K. Bose IEEE Press
- 13. Applied Digital Control J.R. Leigh Prentice Hall International
- 14. Mospower Applications Hand Book

Edited by R.Severns Siliconics

- 15. MCS-51 Macro Assembler User Guide for DOS Systems Intel
- 16. Embedded Application 1990 Data Book Intel
- 17. 8 Bit Embedded Controllers 1990 Data Book Intel
- 18. Peripheral Components 1991 Data Book Intel
- 19. Opto Electronics Designer's Catalogue 1988-1989 Hewlett Packard

Publications

- 20. Electronic Components and Applications Vol 2 No 2 February 1980
- 21. Electronic Components and Applications Vol 2 No 3 May 1980
- 22. Electronic Components and Applications Vol 2 No 3 August 1980
- 23. Energy and Automation Volume X October 88 Siemens

- 24. DataWeek Volume 14 No 21 October 25,1991
- 25. Elebtor Electronics October 1990

Papers

- 26. Microcomputer Based Control Signal Generation for a Three Phase Switching Power Inverter Marlen Varnovitsky IEEE Transactions on Industrial Applications Vol 1A-19 No 2 1983
- 27. Simulation of Symmetrical Induction Machinery P.C. Krause and C.H. Thomas IEEE Transactions on Power Apparatus and Systems Nov 1965
- 28. Development of a Three Phase Variable Speed Drive System for Battery Fed Underground Mining Locomotive P.B. Prest, J.D. van Wyk, J.Schults and C.F. Landy The Transaction of the S.A. Institute of Electrical Engineering March 1990

Appendix A

.

.

.

A.1 Circuit Diagrams

•

.

. .

.

.

A.2 KIB Micro Controller Board Details

• 1

B2 CONNECTOR PINOUTS

B2.1 J1 - DIN 41612 EDGE CONNECTOR

GND	AIC	GND
+5V	2	+5V
+12V/21,5V	3	-12V/21.5V
CS-EF00H/LCD	4	TTL SERIAL IN (CONSOLE) P3 0
CS-EE00H	5	PRGM ENABLE (P1.5)
CS-ED00H	6	PRGM PULSE (P1.4)
RASS CS-ECOOH	7	TIMER 1 IN (P3.5)
8254 CS-EBOOH	. 8	TIMER O IN (P3.4)
CS-EA00H	9	INT1 (P3.3)
IP/ 8255 CS-E900H	10	PWM (P1.2)
INTO/DMA-REQ	11	DMA-ACK (P1.6)
P1.1/TIMER 2 TRIG/WD-RST	12	RESET
GND	13	GND
ALE	14	PSEN
AD7	15	AO
AD6	16	A1
AD5	17	A2
AD4	18	A3
AD3	19	A4
AD2	20	A5
AD1	21	A6
AD0	22	A7
PL-4 TTL PRINTER OUT	23	A8
P3 I TTL-SERIAL-OUT (CONSOLE)	24	A9
TIMER2-IN /P1.0	25	A10
NO CONNECTION	26	A11
ÕĒ	27	A12
RD	28	A13
WR	29	A14
DO NOT USE	30	A15
+ 5V	31	+ 5V
GND	A 32 C	GND

B2.2 J2 - 26 PIN DIL CONNECTOR (3 X 8 BIT PORTS)

+5V	1	2	GND
P83	3	4	PB4
PB2	5	6	PB5
PB1	7	8	PB6
P80	9	10	PA7
PC7	11	12	PA7
PC6	13	14	PA6
PC5	15	16	PA5
PC4	17	18	PA4
PC3	19	20	РАЗ
PC2	21	22	PA2
PC1	23	24	PA1
PC0	25	26	PAO
	I		

PAX	-	PORT A
PBX	-	PORT B
PCX	-	PORT C

B2.3 J3 - 10 PIN DIL CONNECTOR

2	+12V	-	EXTERNAL INPUT: +12,5V 21,5V EPR	IOM PROGRAMMING VOLTAGE
6 4 7	GND RST CTX	- -	GROUND (OV) EXTERNAL RESET SIGNAL (INPUT) CONSOLE PORT OUTPUT (RS 232)	- OR "B" LINE FOR RS485 (HDLC) - - OR RX "B" LINE FOR RS422
9	CRX	-	CONSOLE PORT - INPUT (RS 232)	- OR "A" LINE FOR RS485 (HDLC) - - OR RX "A" LINE FOR RS422
8	ΡΤΧ	-	PRINTER PORT (RS 232 - BASIC)	
10	CTS	-	RS 232 STATUS INPUT LINE	
3	A LINE	-	R\$ 422 TX	
1	BLINE	-	RS 422 TX	
5		-	HIGH IMPEDANCE GROUND FOR RS	485

A.3 Protection Calculations

.

.

k . 1

.

.

<u>di/dt</u>

For full derivation of formulas see ref. [1] and [4]. Snubber current

L di/dt + Ri +
$$1/c$$
 idt + Vc = Vs
Input voltage Vs = 311 Volts
L \approx 50µH (motor inductance)
Let R = .47 Ω
C = 0,047µF
From Ref [4] W0 = $\sqrt{50 \times 0.047}$ = 652 rad/s
S = $\frac{47}{2} \times \sqrt{\frac{0.047}{50}}$ = 0,288 rad/s
W = 652 $\sqrt{1-0.288^2}$ = 597 rad/s
Vpeak across the device
Vp = 311 (1 + e<sup>- α t₁) α t₁ = $\sqrt{1 - 3^2}$ tan⁻¹ $\frac{-2}{1 - 2} \frac{8\sqrt{1-8^2}}{1 - 2} \frac{1}{8^2}$
Vp = 335 Volts
but power dissipated is given by ref [1]
Ps $\approx \frac{1}{2} C_x Vd^2 f$
Maximum switching = 2KMz
C = 0,047µF
Vd = 335
Ps $\approx \frac{1}{2} 0,047\mu$ F . 335² . 2KHz
 \approx 5,25 Watts</sup>

A.4 Thermal Considerations

.

•

Max current 10 Amps

Max on time 1mSec

Ref specifications

$$P = \frac{\text{Tj max} - 25}{\text{Oeff (tp D)}} [1]$$

= $\frac{150^{\circ}\text{C} - 25}{0,8}$
: = 156 Watts 0.K.

.

Without heat sink device can handle 6 Amps pulsed at 1m-second pulses.

The heat sink used has a high efficiency rate and is more than adequate for the design.

A.5 Software

,

;

IRFP450

10-5

TYPICAL CHARACTERISTICS (Cont'd)

•

Siliconix

Ŷ 3

10-3 107 SOUARE WAVE PULSE DURATION (sec) 10

005 3.30 (038-N) MCS-S1 MACRO ASSEMBLER, VZ.2 OBJECT NODULE PLACED IN 8:\PLL4752.08J ASSEMBLER INVOKED BY: C:\8051\51ASM\ASN51.EXE 8:\PLL4752.A51

LOC 081	LINE	SOURCE
	1	\$TITLE (8051 CONTROL OF THE HEF 4752 USING THE 8254 COUNTER CHIP AND A PLL NO FEEDBACK)
	2	\$ \$ 10300 5 1
	3	SHUL ISI
	152	;
	153	
	134	USEG
	155	
	157	
	158	RE SET FOR 4752 OH 8255 PORT 8-1 AT LOCATION OFFBXX
	159	CH. FOR 4752 ON 8255 PORT B-2 AT LOCATION OFFBXX
	160	S_S FOR 4752 ON 8255 PORT B-0 AT LOCATION OFFBXX
	161	
	162	;
	153	; PORT OUTPUT BIT ALLOCATION
	164	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	100	
	100	; U_DKAKE BII PILO ; PWH USED IU PULSE KESIUK FUR UINAMIL BKAKE NU IN USE UNIIL
	167	L HE DATE ALLO FURELU BRANIAU
	167	
	169	•
	170	INPUT BIT ALLOCATION FOR PROGRAMING SCRATCH PAICH
	171	
	172	;
0009	173	FW_SP 81T 21H.1 ;FASTER FORWARD/REVERSE
A000	174	RE_SP BIT 21H.2 ;SLOHER FORHARO/REVERSE
8000	175	FW_RE BIT ZIN.O :FORWARD / REVERSE
0008	175	SI_60 BIT 21H.3 ;STOP / 60
	1//	
	1/0	; INPUT PORT ALLOCATION ;
0005	113	SPEEN RIT P1 6 -SPEEN INPUT FROM SHAFT FACORED
0030	181	DC I INK BIT P1 7 OC I INK FFFDBACX
	187	· · · · · · · · · · · · · · · · · · ·
	183	OTHER BIT ALLOCATIONS
	184	
	185	;
0000	185	C_ONT BIT 20H.0 ;CONTINUE IF SET FORM TIMER
0001	187	R_LEASE BIT 20H.1 ;HAS ORIVE BEEN RELASED
	188	;
	189	
	190	CSEG
0000 191 OSG COOCH		
UUUU 82004U	192	JAK AKIA
6003	101	; 006 0003H
0003 0002 020175	134 105	UND - 2005H IND CHOREWI - IF CHOREKI FYCEFOS NIYIMIN THEN SHIT DOWN
VVVJ V2VI/L	195	· · · · · · · · · · · · · · · · · · ·
0008	197	0rg 005h

٠

.

.

:

LOC	06 J	LINE	SOURCE	
0008	020184	198	JRP	WALT
		199	;	
0033		200	ORG	0033H
0033	020138	201	JKA	PAC_INT SERVICE THE PAC: 1) RAMP UP TIME
		202	- r	<u> </u>
0040		203	086	0040H
		204	8818:	
		205		
		206	· · · · · · · · · · · · · · · · · · ·	•
		207	;; MAIN PROGR.	AN :
		208	;	···
		209	;	
0040	C290	210	CLR	P1.0
0042	1200F7	211	CALL	P_SET ;SET UP AND CLEAR 8255 PORTS
0045	7820	212	HOV	RO. #20H ;LOW BYTE OF PLL
0047	1900	213	YOX	R1, FOOH ;HIGH BYTE OF PLL
0049	120120	214	CALL	L_OAD ;LOADS THE 8255
004C	10E7	215	CALL	COUNT_O ;SET UP REF CLOCK
004F	120007	215	CALL	COUNT_2 ;SET UP YCT CLOCK - CHANGE LOAD VALUE IF BOAST IS REQUIRED
0052	120007	217	CALL	COUNT_1 ;SET UP FCT
0055	120177	218	CALL	I_SET ;INPUT SETUP FROM SECOND 8255
0058	120104	219	CALL	S_TIMER '
005B	885 D	220	SEIB	ITO ;EDGE TRIGGER INTO
0050	DZA8	221	SETS	EXO ;ENABLE INTERSUPT
005F	D290	222	SETB	P1.0
0061	120180	223	CALL	TIMER
		224	R:	
0064	300905	225	. JK8	FH_SP,CO_NT2
0067	300403	226	JNS	RE_SP,CO_NT2
006Å	020181	221	JMP	SHUT_DOWN
		228	CO_NT2:	
0060	90F800	229	HOV	OPTR, #OF800H
0070	EO	230	HOYX	f A, QOPTR
0071	F521	231	MOY	21H, A
0073	300BEE	232	8 <i>H</i> L	ST_GO,R ;IF PORT PIN NOT SET THEN OD NOT RELASE
0076	300808	233	JNB	FH_RE,REYERSE
0079	1	234	NOV	A, \$01H
0078	12012F	235	,CALL	L_0A02
007E	020086	235	JK.P	RUH
		237	REVERSE:	
0081	7405	238	HOY	A, 205
0083	12012F	239	CALL	L_0A02
		240	RUN:	
0086	DZAF	241	SEIB	EA
0088	DZAE	242	SETB	EC ;ENABLE PAC
008X	C293	243	CLR	CEXO ;ENABLE PAC
		244	RUN2:	
008C	120120	245	CALL	L_OAD
008F	300906	246	ЛЯВ	FW_SP,CO_NT
0092	300,03	247	J118	RE_SP,CO_HT
0095	02018A	248	JKb	SHUI_DOWN
		249	CO_NT:	
8600	90F800	250	НОУ	OPTR. 10F800H
0098	EO	251	HOVX	A, EOPTR
009C	F522	252	HOV	22H, A
۰.

L0C	08 J	LINE	SOURCE	•		
009E	6521	253		YCI	1 714	
0010	302003	254		148	0,110 0604 0 CONTINUE	
6613	070081	255		110	n cc	
00/10		255	COVII90	- JIAF 6.	<u> </u>	
0.016	105 101	757	CONTINU	L: 120	4544 3 6647 MUS	
0100	070081	259		JAD		
0073		250	6697 mm	JAP	0_20	
0010		233	CONT_NO	t:		
UUAL	032221	200		XOY	218,228	
0011	6008	201		JKP	RUHZ	
		- 262	0_80:			
0081	152104	263		KOY 21H	,104H	
0084	120120	264		CALL L	040	
1800	BAAGE 1	285		3XL D	R1,100H,0_EC	
0087	832014	265		3%LO	RO, FZOH, D_EC	
0080	/52100	251		коч	218,1008	
0000	7400	288		YOY	X, £00H	
COC Z	1.0151	259		CYLL	L_0402	
0002	-30	270		JHP	R	•
		271	i			
		212	;			
		273	_1KUOJ	2:	SET REF CLOCK	
		274	;		•••••	
		275				
0907	90F803	275		KOY	OPTR, LOFBO3H	;CONTROL WORD
0001	7487	271		KOY	A,1687H	
096C	FO	278		XYCK	20PTR,A	
0000	90F802	279		KOY	OPTR, JOFBOZH	;COUNT VALUE
0000	7419	280		HOY _	A, E19H	
000 Z	£0	281		HOYX	EDPIR, A	
0003	7400	282		коү	X,100H	
00D S	FO	283		XYOK	QOPTR, A	
J 306	22	284	RET			
		285	;			
		286	i			
		287	COUNT 1	:	SET YCT :	
		288	;			
		289	;			
0007	90F803	290		KOY	OPIR, FOFBO3H	CONTROL WORD
00D X	7477	291		KOY	A, £778	
0000	FO	292		KOYX	eopir, A	
0000	90F801	293		KOY	OPTR, #OF801H	COUNT VALUE
0300	7424	294		XOY	k, \$24H	CHANGE THIS VALUE TO BOOST VOLTAGE AT LOW SPEEDS
0082	FO	295		KOYX	EDPIR,A	•
00E3	7400	295		XOY	A. 100H	
0085	FO	297		KOYX	EOPIR, A	
0026	22	298	RET		• •	
		299	:			
		300	•			
		301	COUNT O		SET NIN STEP F	TOR PLL FOR YCT !
		307	· · · · · · · · ·			
		303	•			
00F7	905803	304	•	коу	OPIR TOFROSH	-COXIROL W080
0.051	1437	105		KOY	1 10378	free free hour
OOFC	FO	305		X0YY	ROPIR 1	
DUED	90FR.00	203		XOV	Corterand DDID FUERNAN	-COUNT VILUE
	201000	741		NVT	NC 1V' & AC 0 A AU	, COURT TALVE

LOC OBJ	LINE	SOURCE			
ONFO 74FF	308		MOV	A ROFFH	
00F7 F0	309		NOVY	609TD 1	
AGES 74ER	310		NOV	1 1010H	
00F5 F0	311		HOVY	90970 J	
001510	317	DET	1014	euria,A	•
	312	-			
	314	•		•	
	315	,	.957 10	CONTROL 1 10 92	5C 1
	315				- · · · · · · · · · · · · · · · · · · ·
	317	:			
JOF7 90FC03	318	•	NOV	OPTR. #OFC03H	-CONTROL WORD
00FA 7480	319		HOV	A \$80H	,
OOFC FO	320		HOVX	BOPTR.A	
OOFD 90FC01	321		HOV	OPTR, #OFC01H	:4752 CONTROLL
0100 7400	322		NOV	A,400H	
0102 FO	323		HOVX	edptr, A	
0103 22	324	RET			,
	325	;			
	328	;			
	327	S_TIMER	:	;SET TIMER O Å	ND TIMER 1 TO 16 BIT TIMER
	328	•			
	329	;			
0104 /58922	330		NOV	INOD,#ZZH	SET TIMER O TO AUTO LOAD AND TIMER 1 TO 16 BIT TIMER
0107 750CU1	331		NUY	LHB, \$01H	LOAD HIGH BYTE TIMER
UIUA /30849	332		NOV	CUAPAU, EU49A	
UIUU /JEAEG 0110 755159	333		HOV	CCIDON #232	
UTIU JJCALO 0112 7508/0	JJ4 235		NUA	CCON #0484	
0115 750040	336		HOV HOV	CCON, 20500 CVAN 2050	
0110 155500 0110 75F000	330		HOV HOV	CN09,4000 CN #809	
0113 13130V 0116 755000	338		NOV NOV	CI #4000	
A11F 22	330	R FT	101	00,4000	
	333	•			
	341				
	347	L DAD:	-		
	343		-		
0120 .E	344	,	CLR	23	
0122 90FC02	345		NOV	OPTR, #OFCO2H	HIGH BYTE PLL
0125 E9	346		ИОУ	A;R1	
0126 F0	347		HOVX	QOPTR,A	
0127 90FC00	348		HOY	OPTR,#OFCOOH	LOW BYTE PLL
012A E8	349		HOY	A,R0	
0128 F0	350		ноух	QDPTR.A	
012C DZAE	351		SET8	EC	
012E 22	352	RET			
	353	·			
	354	L_OADZ:	;;		
	355	;	-		
UTZE CZAE	356		ULR		
0131 90FC01	357		KUY	OPER, ROFCOTH	HIGH BTIL PLL
0134 20	358		NUYX	UPIR,A	ų
UIS5 UZAP	359	067	5E18	C.A.	
0121 55	300	KEI			
	301				
	202	i			

LOC	08 J	LINE	SOURCE	
		363	PAC_INT:	;PAC INT ROUTINE
		364	•	
		365	;	
0138	100601	366	JBC	CCF0, JUHP_PACO ;NOOULE ZERO RAMP UP TIMER
0138	32	367	RETI	
		368	;	
		369	JUMP_PACO:	•
013C	CZAF	370	CLR	EX
013E	COED	371	PUSH	ACC
0140	7460	312	HOY	A, #LOH(60000)
0142	25EX	373	ADO	A,CCAPOL
0144	74EA	374	YOK	A, #H16H(60000)
0146	35FA	375	ADDC	A , CC AP OH
		376	;	
0148	300912	377	JNB	FW_SP,F_NNISH
0148	890106	378	CJNE	R1,#01H,CON_T
014E	880003	379	CJNE	RO, #ODH, CON_T
0157	615D	380	JKP	FNNISH
		381	CON T:	-
0154	88FF05	382	– CJNE	RO, BOFFH, N CARRY
0157	80	383	INC	RO
0158	09	384	INC R	1
0159	020150	385	JNP	E NNTSH
		386	H CARRY.	
0150	0.8	387	INC.	80
••••		38R	F WWISH-	3
0150	300412	180	I _AALSA.	DE SD E WHISHEN
0160	RONANE	305 301	010 C 19F	NC_57,1_RAISHED
0163	897003	330	C 112	00 ±204 CONT
0165	002003	307		F SUICHEN
0100	020172	303	001.	I_datshed
0160	890005	304	CUNT:	20 - 4084 N 200001
0103	20 DQUUUJ	205	050	KU, HUUN, N_OUKKUN
0100	10	29C	UEG 050 D	KU 1
0100	13	202		
010C	424172	18C	JAK N RODDON	I_NATOACA
6171		300	R_DUKKUN:	C 0
0171		333		KU
רלות	0.210	400	r_nnioncu:	51
0112		401	5218	
0174		402	PUP	ALL
VI/0	2(483	KCII	
		484	;	•
		405		
		406	1_5E1: ;8255 1	RESPONSIBLE FOR INPUIS
		407	•	
		408	:	
0177	90F803	409	HOV	DPIR, #DF803H ; CONTROL WORD
017A	7498	410	KOA	A,#100110008
017C	FO	411	KOVX	QDPIR, A
0170	22	412	RET	
		413	;	
		414	;	
		415	CURRENT:	;SHUT DOWN;
		416		····•
		417	:	

10/30/31 6406 0	10	/30/91	PAGE	6
-----------------	----	--------	------	---

LOC	C8 J	LINE	SOURCE				•	
017E	CZAF	418		CLR -	Ελ			
0180	C290	419		CLR	P1.0		:DISA8LE	POWER
0182	7400	420		NOV	A. 100H	:DISABL	E PULSES	
0184	90FC01	421		HOY	OPTR #OF	COTH	:HIGH BY	TE PLL
0187	FO	422		NOVX	OPTR.A		•	
		423	L00P :					
0188	80FE	424		JHP LO	02	WALL F	OR RESET	
		425	;			-		
		426	:					_
		427	SHUT_DO	WN:	;DISABLE	POWER	TO INVERT	ER
		428	;				•••••	•
A810	C290	429		CLR P1	.0	;DISABL	E POWER	
		430	D_EC2:					
018C	752104	431		HOY 21	H,‡04H			
018F	3120	432		CALL L	_070			
0191	8900F8	433		CJNE	R1,#00H,	D_EC2		
0194	8820F5	434		C JXE	R0,#20H,	D_EC2	•	
0197	100	435		HOV	21H,‡00H	ł		
0198	7400	436		KOY	X, ‡00H			
019C	312F	437		CALL	L_OAD2			
		438	LOOP2:					
019E	BOFE	439		JHP LO	10P Z			
		440	;					
		441	;					
		442	TINER:	;SETTL	ING TIME C	DAL !		
		443	;					
		444	;					
0140	DZBC	445		SE 18	TRO		RUN TIN	ER
OIAZ	DZAF	446		SE18	٤X			
0184	DZAS	447		SETB	ETO			
0146	7DF0	448		NOK	R5,‡OFO	í		
		449	START:					
0148	ICFF	450		KOY	R4,10FF			
		451	DELAY:		•			
O1AA	BCOOFO	452		CJNE	R4,100H,	DELAY		
01AU	DUE 9	453		DJNZ	R5,STAR	[
OIAF	.F	454		CLR	EX.			
0181		455		CLR	F10			
0103	11	450	KE I		•			
		457	;					
A 1 P \$	10	458	WALE:	050	n #			
V104 1195	16 21	409	0571	VCL	K4			
0103	32	40U 424	KCIL					
		401	; E 110					
		4 D Z	CNU					

2. **•**

.

.

SYNBOL TABLE LISTING

.

NANE	I	YP	£	¥	¥	L	U	ε		¥	T	Ţ	R	I	8	U	Ţ	8	S
AC	B	ADO	R	01	00	OH.	6	Å											
ACC	D	ADD	R	01	DEI	ÔH		Å											
8	0	AD 0	R	00	DFI	0H		Å											
C ONT	8	ADD	R	01	02	OH.	. 0	Å											
C_12	8	AD0	R	Ō	OC	8H.	.1	Å											
CCAPOH	D	ADD	8	G	OF,	AH		A											
CCAPOL	D	ADD	R	Qi	DE.	AH		A											
CCAP1H	D	ADD	R	ŪI	OFI	8 H		Å											
CCAPIL	0	ADD	R	QI	DEI	8 H		Å											
CCAPZH	D	ADD	R	01	OFI	CH		Å											
CCAPZL	0	ADD	R	01	DEI	CH		Å											
CCAP3H	D	ADD	R	01	DFI	DH		Å											
CCAP3L	D	ADD	R	0	DEI	DH		A											
CCAF .	D	ADD	R	Û	ØFI	EH		Å											
CCAP4L	0	ADD	R	0	130	EH		X											
CCAPNO	D	AD0	R -	01	00,	AH		A											
CCAPH1	Ð	ADD	R	00	DD	8 H		X											
CCAPH2	0	AD0	R	00	BDI	CH		X											
CCAPN3	0	ADD	R	QI	DDI	DX		Å											
CCAPH4	D	YOD	R	Q	00	EH		Å											
CCF0	8	YDD	R	0(00	8H.	. 8	Å											
CCF1	8	XDD	R	¢1	00	8H.	. 1	Å											
CCF2	B	ADD	R	0 (00	8H.	. 2	¥											
CCF3	B	YOD	R	0 I	90	8H.	. 3	K											
CCF4	B	ADD	R	0 (00	8H.	.4	A											
CCON	0	XD0	R	0 (00	8H		A											
CEX0	8	YOD	R	8	9	ÔH.	. 3	¥											
CEX1	8	ADD	Ŕ	0 i	091	OH.	. 4	Å											
CEX2	8	ADD	R	0	091	OH.	. 5	Y											
CEX3	8	YOD	R	0(091	OH .	. 6	¥											
CEX4	8	YDD	R	0(9	OH.	.7	Å											
CF	8	¥D0	R	0(00	8H.	.7	¥											
CH	D	ADD.	R	0()F!	9H		¥											
CL	D	ADD:	R	0(15	9 H		¥											
CHOD	D	YDD	R	Q	OD:	98		¥											
CO_NT	C	ADD	R	G	09	8H		Å											
CO_NTZ	C	YOD	R	QI	061	DH		Å											
CON_1	0	100	R	0	15	48		Å											
CONT_NUE .	C	ADD	R	01	DÅ	CH		Å											
CONI	C	ADD	R	0	16	9H		¥											
CONTINUE.	C	ADD	R	01	01	6H		Å											
COUNT_O	C	ADD	K	01	DE	78		Å											
COUNT_1.	C	ADD	X	9(00	11		Å											
COUNT_2.	C	ADD	X	0	DC	11		Å											
CP_RL2	8	ADD	X	01	DC	8X.	. 0	Å											
CR	8	ADD	ĸ	0	00	8H.	. Ó	Å											
CURRENT	C	ADD	R	0	17	EH		X											
α	8	ADD	Ŕ	01	00	OH.	.1	Å											
D_EC	C	YOD	R	01	80	Ħ		Å											

018CH A 0090H.7 A

.

D_ECZ. . C ADDR DC_LINK. B ADDR

٠

NAHE	ΤΥΡΕ	VALUE	ATTRIBUTES		
	C 4000	A****			
UCLAI	C AUDK	U 1 A A A A A A A A A A A A A A A A A A			-
Urn	U AUUK D 1000	A NC000			
UPL 51	S TUDY S TUDY				
	0 AUUX 8 ADDO	UUAODII A			
501	D AUUK B 1000	99800.0 A			
EUI	8 100K	NATOR Y N			
£3	8 1000 8 1000	NUNCH.4 A		•	
ET1	R JOOR	ANARNA A			
ETT	B 1000	AUTON 2 Y			
ETC	R ADDR	AUTONIO K			
FX1	R ADAR	004011.0 A			
EXFN2	R ADDR	00C8H 3 A			
FYF7	B ADDR	ODCOHIS A			
FNNISH	C ADDQ	4150H A			
F NNISHED	C ADDR	0130H A			
F0	8 ADDR	00008 5 4			
FUR	R ANNO	0000H.0 A		,	
FH SP	R ADDR	0021H 1 A			
I SET	C AODR	0177H A			•
IF	B AODR	AOASH A			
IEQ	B ADDR	8088H.1 A			
IE1	8 ADOR	0088H_3 A			
INTO	8 ADDR	0080H.2 A			
INT1	8 ADDR	DOBOH.3 A			
IP	D ADDR	OOB8H A			
ITO	8 ADDR	0088H.0 A			
III	8 ADDR	0088H.Z A			
JUHP PACO.	C ADDR	013CH A			
L 0XD	C ADDR	0120H A			
L_0AD2	C ADDR	012FH A			
LOOP	C ADDR	0188H A			
L00P2	C ADDR	019EH A			
HAIN	C ADDR	0040H A			
N_BORRON .	C ADDR	0171H A			
N_CARRY	C ADDR	015CH A			
ΟΥ	B AODR	0000H.2 A			
P_SET	C ADDR	OOF7H A			
Ρ	B ADDR	OODOH.O A			
P0	D ADOR	0080H A			
P1	D ADDR	0090H A			
P2	D ADDR	0040H A		. •	
P3	D ADDR	0080H A			
PAC_INT	C ADDR	0138H A			
PCON	D ADDR	0087H A			
PPC	B ADDR	00B8H.6 A			
PS	B ADDR	0088H.4 A			
PSW	U AUUR	CODUK A			
PI0	8 AUBR	UUBBH.1 A			
PH	8 AUDR	0088H.3 A			
Υ1ζ DV4	6 AUUR	00B8H.5 Å			
PX1	8 AUDR	UUBBH.U A			
YXI	o AUOR	UUBON.Z A			
K_LEASE	6 AUUK	UUZUN.IA			
к	C AUDR	uudan A			

. •

•

ч

+

NAME	T	ΥΡΕ	¥	Y	L	U	E		X	I	I	R	l	8	U	I	٤	5
081	2	1000	6.0	1 A G	20	2	,											
001020	0	1000	00	130	אנ. זע	1	^											
. 001021	Δ	1000	00	166	a Lu		л 1											
NUAPEL	0	AUUK	00	167 163	и 10	ę	A .											
- KULK	0	AUUR	00		38. Su	.) 7	Å,											
XU	B	AUUR	00	80	JЯ.	1	A .											
RE_SP	B	AUUR	00	Z	Ш.	2	Å											
REN	В	ADUR	00	198	3H .	4	¥											
REVERSE.	C	ADDR	00	81	IH		X											
RI	B	ADDR	00	98	H.	0	Å											
RS0	B	ADDR	00	00	DH.	3	¥.											
RS1	8	ADDR	00	0()H.	4	Å											
RUN	C	ADDR	00	86	iΗ		k											
RUN2	C	ADOR	80	80	: H		K											
RXD	8	AOOR	00	8()X.	0	A											
S_TIMER	C	AODR	01	0	H		¥											
SADDR	D	ADOR	00	١Å.	H		¥											
SADEN	Ð	ADDR	00	89	H		Å											
S8UR	0	AODR	90	9	H		¥											
SCON	0	ADDR	00	91	BH		X											
SHUT DOWN.	C	ADDR	01	8/	KH.		Å											
SHO.	8	ADOR	80	191	BH.	7	¥											
SN1	8	ADDR	00	9	8H .	6	k											
SH2.	8	ADDR	00	191	BH .	5	Å											
SP	D	ADDR	00	8	IH	•	Ä											
SPEED	8	ADDR	រារ	Qr	 1Н	6	Â											
ST 60	R	INDR	80	21	нж Н Ж	1	Å											
START	c	ANNR	61	1	Н		1											
Tň	R	1008	00	181	ля 1 Я	Ł	1											
T1	R	1008	00	IR f	าน 14	5	â											
TT	8	ADDA	00		าก. 114		î											
T2CON	n	ADDR	40 40	101	RH.		ì											
T 25 Y	8	IUUD	00		54	1	î											
T2N00	n	1000	00	1 11		. 1	Î											
12000	Q Q	1000	01	10:	201 1211	1												
TCI K	9	1000	00	121 101	911. 914	. J . J												
TCCN	0	1000	00	141	911. 917		ĩ											
TEA	8	1000	00		911 813	5												
110	0	1000	00	101	១៧. ១៧	. J 7												
11 1 TF2	о р	1000	ีย (กก	101	911. 912	. f 7	A .											
166 Tua	0	100K	99	146 187	วก. าม	. 1	л 4											
100 Tui	ν n	1000	00	101 181	ะถ าน													
101 Tur	ບ ຄ	ADDA	មម ភព	101	חנ ער		A											
184	U D	AUUK	100	161. 1 A 1		,	A .											
11	0	LOOD	01	196	57. 	. 1	X I											
11ACK	L N	AUUK	01				Ā											
ILV TI 1	U	AUUK	10	١ŏ.	M		A 1											
1L1 71 1	U N	YOOY	00		11		X	•										
IL(U A	YOOK	UU Ar		. 11		A											
	0	ADOK	00	10.	11		Å											
IRU	8	ADUR	90	181	SH.	4	¥											
1Kl	8	ADUR	00	181	6H.	. b	A											
IR2	B	ADDR	0(Ш.	2	Å											
TXD	8	ADDR	00	8	DH.	1	Å											
WAIT	C	ADDR	01	8	4H	~	Å											
WR	8	ADDR	0(8	OX.	6	٨											

:

۰.

REGISTER BANK(S) USED: 0

ASSEMBLY COMPLETE, NO ERRORS FOUND

,

A.6 HEF 4752

•

:

-

LSI circuit for AC motor speed control

2.

B.G. STARR and J.C.F. van LOON

In the past, sinusoidal Pulse-Width Modulation (PWM) speed control systems for three-phase a.c. motors have been produced in a number of different forms. However, no single system has been completely satisfactory. High costs, circuit complexity, output variation with temperature, etc. have all prevented the widespread application of this potentially attractive method of a.c. motor speed control. This article describes a purpose-designed LSI circuit, type HEF4752V, which has been developed specifically for signal generation in such systems, and overcomes all the previous disadvantages. The IC is manufactured using locally-oxidised complementary MOS technology (LOCMOS) and is mounted in a standard 28-pin dual-in-line package.

This is the third in a series of articles all devoted to our a.c. motor speed control system. A general introduction to this subject is given in Refs.1 and 2, and a description of an inverter circuit developed specifically for the system is given in Ref.3.

PWM CONTROL OF A.C. MOTORS

A block diagram of our PWM speed control system is shown in Fig.1. In this system, the output waveforms from the three phases Red (R), Yellow (Y), and Blue (B) of a six-element inverter consist of sinusoidally modulated trains of carrier pulses, both edges of each pulse being modulated to give an average voltage difference between any two of the output phases which varies sinusoidally. This is illustrated in Fig.2 for a carrier wave having 15 pulses for each cycle of the inverter output.

Figure 2a shows the 15-fold carrier, Fig.2b the double-

edge modulated R-phase, and Figs.2c and 2d show the double-edge modulated Y and B phases. The line-to-line voltage obtained by subtracting the Y-phase from the R-phase is shown in Fig.2e.

A detail of the double-edge modulation of a carrier wave is shown in Fig.3. Each edge of the carrier wave is modulated by a variable time δ , where δ is proportional to sina, and a is the angular displacement of the unmodulated edge. The modulation of a 15-fold carrier requires a total of 30 δ values.

The modulation of the output waveforms is achieved by opening and closing the upper and lower switching elements (transistors or thyristors) in each phase of the inverter. Closing the upper element gives a high output voltage, and closing the lower element gives a low output voltage. The basic function of the PWM IC is to provide three complementary pairs of output drive waveforms which, when applied to the six-element inverter, open and close the switching elements in the appropriate sequence to produce a symmetrical three-phase output. The drive waveforms are supplied to the inverter via buffer amplifiers with isolation where necessary. The integrated circuit is completely digital, so that the repetition frequency of the PWM signal (switching frequency) is always an exact multiple of the inverter output frequency. This results in excellent phase and voltage balance and consequent low motor losses.

A 15-fold carrier multiple is used only for the highest motor speed range. To improve the pulse distribution at lower motor speeds the switching frequency is derived from higher multiples of the inverter output frequency. A hysteresis between the switching points is included to avoid jitter when operating in these regions. Typical

219

Fig.1 PWM motor control system using HEF4752V

Fig.2 15-pulse sinusoidal PWM waveforms

-

...

LSI CIRCUIT FOR AC MOTOR SPEED CONTROL

values of the carrier multiple and the output frequency are given in Table 1. It should be noted that this table applies only for a particular set of input conditions. The selection of input conditions is discussed later in this article.

For the values shown in Table 1, the IC has full control of the inverter switching frequency for output frequencies in the range 4.0 to 71.3 Hz. For output frequencies greater than 71.3 Hz, the switching frequency will increase beyond 1070 Hz until over-modulation is reached. Over-modulation implies a merging of adjacent pulses, with a corresponding reduction in switching frequency, until eventually a quasi-square output waveform is obtained. The point at which over-modulation occurs is determined by two of the clock inputs of the IC: VCT and FCT. This is covered in detail under the discussion of the VCT clock input. The practical upper limit on the output frequency is determined by the rating of the motor under control, the design of the inverter, and the performance of the IC. Detailed advice on the recommended maximum output frequency is also given under the discussion of the VCT clock input.

Output frequency range Hz ,	Carrier multiple	Switching frequenc Hz			
0 to 4.0	168	0 to 675			
4.0 to 6.4	168	675 to 1070			
5.7 to 8.9	120	675 to 1070			
8.1 to 12.8	84	675 to 1070			
11.2 to 17.9	60	6 7 5 to 1070			
16.3 to 25.5	42	675 to 1070			
22.3 to 35.7	30	675 to 1070			
32.5 to 51	21	675 to 1070			
44.6 to 71.3	15	675 to 1070			
71.3 +	15	See text			

TABLE 1 Variation of carrier multiple with output frequency

HEF4752V INTERNAL ORGANISATION

A block diagram indicating the internal organisation of the IC is shown in Fig.4. The circuit comprises three counters, one decoder, three output stages, and a test circuit. The test circuit is used primarily for testing the IC during manufacture, and is not discussed in this article. The operation of the IC is now considered in outline, and this is followed by a detailed discussion of the various input/output functions.

The three output stages (Fig.4) correspond to the R, Y, and B phases of the inverter. Each output stage has four outputs: two main outputs which control the upper and lower switching elements in each phase of the inverter, and two auxiliary outputs used to trigger commutation thyristors in 12-thyristor inverter systems. As explained above, the essential function of the IC is to provide the output waveforms which open and close the upper and lower inverter switching elements in the appropriate sequence. This is achieved by alternately switching between the upper and lower main outputs in each output stage. To ensure that the main outputs cannot be on simultaneously, an interlock delay period is used to separate the on condition of the upper and lower outputs. The interlock delay period is determined by inputs OCT and K, while the switch between the main outputs is controlled by an internally-generated control signal. A change in the level of this control signal causes the HIGH main drive output to switch off, and then after the interlock delay period, causes the LOW main drive output to switch on. With the interlock delay period fixed, variations in motor speed are produced hy changes in the control signal, and a description of the production of this signal provides a basic understanding of the operation of the IC.

The control signal is derived from the carrier wave modulated by the appropriate δ values. Production of the control signal therefore requires the determination of the correct carrier frequency, and the corresponding δ modulations. The carrier frequency, which is equal to the product of the output frequency and the carrier multiple, is set by the FCT counter and the RCT counter. Dividing the clock input of the FCT counter by 3360 gives the output frequency, while the correct carrier multiple is determined by gating RCT clock pulses into the RCT counter, with a gating time equal to a fixed number of FCT clock pulses. For a given frequency of the RCT clock, the number of pulses counted in the gating time will fall as the frequency of the FCT clock increases, and this is used to derive a correspondingly lower value of the carrier multiple.

For each value of the carrier multiple, the decoder holds a corresponding set of δ values. Each δ value is

Fig.4 Block diagram of HEF4752V

stored as a number, and the width of the corresponding modulation is determined by the rate at which this number is counted. The counting frequency used is the VCT clock input, and the modulation depth is therefore inversely proportional to the frequency of the VCT clock input.

From the carrier frequency, and the δ modulations, the decoder finally assembles the control signal. A total of three control signals is produced by the decoder, one for each output stage, with a phase difference of 120° between each signal.

INPUT/OUTPUT FUNCTIONS OF THE HEF4752V

A pinning diagram of the HEF4752V IC is shown in Fig.5. The IC has 12 inverter drive outputs, three control outputs, four clock inputs, and seven data inputs.

Inverter drive signals

There are six main drive outputs which are arranged in complementary pairs. The pins are coded as follows.

First letter	O (output)
Second letter	R, Y, or B (phase indication)
Third letter	M (main)
Number	I for output of upper switching element, or 2 for lower switching element

For example, ORM2 is the main drive waveform for the Red phase lower switching element.

Associated with each main output is the auxiliary output used to trigger the commutation thyristor in 12thyristor inverter systems. These outputs are identified by a C as the third letter of the pin code, so that ORC2 is the commutation trigger pulse output associated with ORM2.

The inverter drive signals can be obtained in two

PINNING	3
---------	---

Inverter dr.	ive signals	
8	ORM1	R-phase main
9	ORM2	R-phase main
10	ORC1	R-phase commutation
11	ORC2	R-phase commutation
22	OYM1	Y-phase main
21	OYM2	Y-phase main
20	OYC1	Y-phase commutation
19	OYC2	Y-phase commutation
3	OBM1	B-phase main
2	OBM2	B-phase main
1	OBC1	B-phase commutation
27	OBC2	B-phase commutation
Data input	2	
24	L	data
25	ł	data
7	ĸ	data
5.	CW	data
13 '	A	data
15	B	data
16	С	datə
Clock inn	un la	
17	ЕСТ	frequency clock
17	VCT	voltage clock
4	RCT	reference clock
6	ост	output delay clock
÷		
Control o	νφυα	
23	RSYN	R-phase synchronisation
26	VAV	average voltage
18	CSP	current sampling pulses

Fig.5 Pinning diagram

forms, one mode for driving transistor inverters, the other for thyristor inverters. The form produced by the IC is determined by the logic level applied to the data input I.

Data inputs

Data inputs I. K. and L

As explained above, input I determines whether the inverter drive signals are in the thyristor or transistor mode. Input I LOW corresponds to the transistor mode; input I HIGH corresponds to the thyristor mode. In the transistor mode the main upper and lower switching elements in the inverter are switched HIGH alternately, with an interlock delay period (both switches LOW) at each changeover. During the delay period the commutation output associated with the off-going main output is set HIGH. The data input K, in association with the clock input OCT, is used to adjust the length of the interlock delay period. The details of this adjustment are described under the discussion of clock input OCT.

Input L provides a stop/start facility. In the transistor mode, with L LOW, all main and commutation signals are inhibited, and with L HIGH, the normal modulated block pulses continue. The action of L inhibits the actual output circuits only, so that while L is LOW the internal circuits generating the output signals continue to operate. Typical output waveforms for the transistor mode are shown in Fig.6. Figures 6a to 6d show the normal inverter drive outputs, and Fig.6e shows the internallygenerated control signal which effects the transition between the upper and lower main drive outputs. Figures 6g to 6j illustrate the influence of changes in the level of input L (Fig.6f) on the inverter drive outputs.

With input I HIGH, thyristor mode, the main outputs

become pulse trains with a mark-space ratio of 1:3, and the commutation outputs become a single pulse lasting for the first quarter of the interlock delay period. This is used to facilitiate the use of trigger transformers for isolation purposes. The interlock delay period is set in the same way as that used in the transistor mode, but in this case the logic level at input K and the frequency of OCT also control the frequency of the main output pulse trains, which in turn will affect the choice of trigger transformer. The delay period is selected to allow time for the commutation circuit to operate and reset in the 12-thyristor circuit, or to set the minimum pulse width for the six-thyristor self-commutated circuit. In this mode, with L LOW, the three lower switching elements in the inverter are triggered continuously, the upper elements being inhibited. Typical output waveforms for the thyristor mode are shown in Fig.7.

Data input CW

The phase sequence input CW is used to control the direction of rotation of the motor by altering the phase sequence. This is illustrated in Table 2. The phase sequences shown in Table 2 represent the order in which the phases pass through zero voltage in a positive direction.

TABLE 2

Phase sequence input CW

Input CW	Phase sequence
LOW	R, B, Y
HIGH	R, Y, B
mon	K, 1, D

Fig.6 Typical output waveforms for transistor mode

LSECIRCUIT FOR AC MOTOR SPEED CONTROL

Fig.7 Typical output waveforms for thyristor mode

Data inputs A, B, and C

The three inputs A, B, and C are provided for use during production testing. They are not used during normal operation, when they must be connected to V_{ss} (0 V). Input A HIGH initiallises all the 1C circuits, and can be used for reset. The use of input A is considered in detail below under the discussion of switch-on conditions.

Clock inputs

There are four clock inputs which are used to control the output waveforms. The following sections give a guide to selecting the frequency, or range of frequencies, for each clock.

Frequency control clock FCT

The clock input FCT controls the inverter output frequency f_{out} , and therefore the motor speed. The clock frequency f_{FCT} is related to f_{out} by the following equation:

$$f_{FCT} = 3360 X f_{out}$$

It is permissible to stop the FCT clock during system operation, the effect being to switch the outputs to either all M1 or all M2 outputs, and this occurs irrespective of the state of input I.

Voltage control clock VCT

An induction motor is governed by the general expression:

$$V = N \frac{d\Phi}{dt}$$

so that to maintain constant motor flux, the voltage-time product V_L must be kept constant. The IC automatically

satisfies this requirement by making the output voltage directly proportional to the output frequency. The level of the average inverter output voltage, at a given output frequency, is controlled by the VCT clock input, changes in output voltage being achieved by varying the modulation depth of the carrier. Increasing f_{VCT} reduces the modulation depth, and hence the output voltage, while decreasing f_{VCT} has the opposite effect.

The maximum undistorted sinusoidal output voltage, which is obtainable in a given system, is determined by the voltage of the d.c. link, V_{link} ; the maximum r.m.s. value of the fundamental component is given by 0.624 X V_{link} . This voltage occurs at 100% modulation of the carrier; that is, when some adjacent pulses are just about to merge. The output frequency at which this condition can apply in a given system is determined by the Vt product of the motor. The frequency at 100% modulation, $f_{out(m)}$, can be determined by relating the maximum r.m.s. inverter output voltage to the motor ratings as follows:

$$f_{out(m)} = f_N \times \frac{0.624 V_{link}}{V_N},$$

where f_N is the motor rated frequency and V_N the motor rated r.m.s. voltage.

Once $f_{out(m)}$ has been established, a value of f_{VCT} can be determined which will set the Vt product correctly throughout the frequency range of the motor to be controlled. This nominal value of f_{VCT} is denoted by $f_{VCT(nom)}$, and is related to $f_{out(m)}$ by:

$$f_{VCT(noin)} = 6720 \times f_{out(ni)}$$

With f_{VCT} fixed at $f_{VCT(nom)}$, the output voltage will be a linear function of the output frequency up to $f_{out(m)}$. Any required variation in this linear relationship is obtained by changing f_{VCT} . For example, to double the output voltage at low frequencies, as a possible compensation for 'IR' losses, f_{VCT} is made equal to 0.5 $f_{VCT(nom)}$.

The frequency ratio f_{FCT}/f_{VCT} is important in system design. At 100% modulation it will have a value given by:

$$\frac{f_{FCT}}{f_{VCT(nom)}} = \frac{3360 \times f_{out(m)}}{6720 \times f_{out(m)}}$$
$$= 0.5.$$

Below 0.5 the modulation is sinusoidal, while above 0.5 the phase waveform approaches a squarewave, giving a quasi-squarewave line-to-line voltage. At approximately 2.5, the full squarewave is obtained. Above 3.0, the waveform becomes unstable as the internal synchronising circuits cannot function correctly, and 3.0 is therefore the recommended limit.

Reference clock RCT

RCT is a fixed clock which is used to set the maximum inverter switching frequency $f_{s(max)}$. The clock frequency, f_{RCT} , is related to $f_{s(max)}$ by the following equation:

$$f_{RCT} = 280 \times f_{s(max)}$$

The absolute minimum value of the inverter switching frequency, $f_{s(min)}$, is set by the IC at 0.6 $f_{s(max)}$. These figures apply provided f_{FCT} is within the range 0.043 f_{RCT} to 0.8 f_{RCT} , and f_{FCT}/f_{VCT} is less than 0.5.

Figures 8 and 9 show the variation of inverter switching frequency plotted against output frequency with $f_{RCT} = 280$ kHz, and $f_{s(max)} = 1$ kHz. To obtain the equivalent figures for different values of $f_{s(max)}$, both scales and f_{RCT} should be multiplied by the required value of $f_{s(max)}$ in kHz. For example, with $f_{s(max)} =$ 2 kHz, $f_{RCT} = 2 \times 280 = 560$ kHz, and referring to Fig.9, the value of f_s for $f_{out} = 50$ Hz (2 × 25) will be 1.5 kHz (2 × 0.75) at a pulse rate of 30 pulses per output cycle. Referring to Figs.8 and 9, it can be seen that the range of f_{out} that will keep f_s in the band 2 to 1.2 kHz will be 7.1 Hz (2 × 3.55) to 133 Hz (2 × 66.5), provided the ratio f_{FCT}/f_{VCT} is less than 0.5.

Output delay clock OCT

The OCT clock input, operating in conjunction with the data input K, is used to set the interlock delay period which is required at the changeover between the complementary outputs of each phase. For a thyristor inverter, where the output thyristors are triggered by a train of pulses (mark-space ratio 1:3), OCT and K have the additional function of determining the frequency of the pulse train.

The operation of OCT and K is shown in Table 3. Whenever possible input K should be HIGH as this keeps the jitter caused by lack of synchronisation between FCT and OCT to a minimum. In many cases a design economy can be obtained by using the same clock for both RCT and OCT.

Control outputs

Oscilloscope synchronisation RSYN

This is a pulse output of frequency f_{out} and pulse width identical to the VCT clock pulse. It is timed to occur just before the positive-going zero transition of the R-phase voltage. It therefore provides a stable reference for triggering an oscilloscope.

Output voltage simulation VAV

VAV is a digital waveform which simulates the average value of the expected line-to-line voltage of the inverter output; however, it excludes the effect of the interlock

к	Interlock delay period ms	Trigger pulse frequency kHz	Trigger pulse width ms	
LOW	8/f _{oct}	f _{OCT} /8	2/f _{OCT}	
HIGH	16/f _{OCT}	f _{OCT} /16	4/foct	

TABLE 3 Operation of clock input OCT* and data input K

• fOCT in kHz

Fig.8 Inverter switching trequency against output frequency (full range)

Fig.9 Inverter switching frequency against output frequency (expanded scale for low frequencies)

ELECTRONIC COMPONENTS AND APPLICATIONS, VOL. 2 NO. 4, AUGUST 1980

.

227

LSI CIRCUIT FOR AC MOTOR SPEED CONTROL

delay set by the K and OCT inputs, and is present irrespective of the L input state. The VAV signal has a frequency equal to the inverter switching frequency f_{out} , and a modulation given by $6f_{out}$.

VAV is useful for closed-loop control of f_{VCT} to obtain some improvement in the linearity of voltage with frequency when the frequency ratio $f_{I:CT}/f_{VCT}$ is greater than 0.5. The variation of VAV with frequency ratio is shown in Fig.10.

Inverter switching output CSP

The output CSP is a pulse train at twice the inverter switching frequency. The falling edge of each pulse occurs at the point of zero modulation of the main outputs. When f_{FCT}/f_{VCT} exceeds 0.5, CSP represents the theoretical inverter frequency; however, because of the merging of pulses from over-modulation, the actual switching frequency will be less. As with the VAV output, CSP is unaffected by the state of input L.

APPLICATION ADVICE

Proper operation of the IC requires limitations on the frequency ratio f_{FCT}/f_{VCT} , and on the range of f_{FCT} . These limitations have already been described under the discussion of the clock inputs VCT and RCT. Three additional conditions for ensuring satisfactory performance are now considered.

Start/stop input L

If input L is used in the thyristor mode, care must be taken to ensure that the switching edges are clean. For example, if some switch bounce occurs when switching to the LOW condition, then this can result in one or more of the M1 outputs being on instead of all the M2 outputs. A simple circuit to overcome this problem, together with the corresponding output waveform, is shown in Fig.11.

Switch-on conditions

For safe operation an initial switch-on period is required, during which the thyristor trigger circuits or transistor drive circuits are inhibited, and the correct clock and input conditions are established. During the first half of the switch-on period, the internal IC circuit should be reset. This can be done by either applying a HIGH signal to input A, or running the FCT clock for at least 3360 FCT pulses.

The required input states on all inputs must be established during the second half of this period. If FCT is to

LSI CIRCUIT FOR AC MOTOR SPEED CONTROL

Fig.12 Circuit for producing a full length trigger pulse under minimum pulse width conditions. Pinning corresponds to IC type HEF4071

be started from zero during normal operation, it is advisable to run the FCT clock at about 0.04 $f_{\rm RCT}$ during the second half of the switch-on period for at least 3360 pulses, otherwise the output circuits will be set at 15 pulses per cycle for the first few pulses, instead of 168, which could result in damage to the inverter.

Minimum pulse width

From Figs.6 and 7 it can be seen that once the control signal (waveforms 6e and 7e) produces a pulse width equal to, or less than, the interlock delay, the appropriate main output is reduced to a narrow pulse. The width of this pulse is $1/f_{OCT}$ and it is always followed by a full-width commutation pulse. In the transistor mode, this narrow pulse will normally have little or no effect on the inverter. However, in the thyristor mode the correct triggering of the main thyristor may require the connection of the commutation pulse to the main pulse via an OR-function. A circuit to achieve this result is shown in Fig.12.

The next article in this series will describe the analogue control section.

REFERENCES

- HOULDSWORTH, J.A. and ROSINK, W.B., 'Introduction to PWM speed control system for 3-phase AC motors', Electronic Components and Applications, Vol.2, No.2, February 1980, pp.66 to 79.
- HOULDSWORTH, J.A. and BURGUM, F.J., 'Induction motor drive using new digital sinewave PWM system', IEE Conference on Electrical Variable-Speed Drives, London, September 1979.
- BURGUM, F. and NIJHOF, E.B.G., 'Inverter circuit for PWM motor speed control system', Electronic Components and Applications, Vol.2, No.3, May 1980, pp.130 to 142.

ERRATA

E.C. and A., Vol. 2 No. 3, May 1980. The article 'Electret microphone for telephony' should have included the following acknowledgement:

The author gratefully acknowledge the research and cooperation of Dr. Ir. J. van Turnhout and his associates at the TNO Central Laboratory in Delft, many of whose publications are pertinent to the topic of this article.

_{equired} output frequency _{nput}	Frequency Control Clock Input	For normal operation Below 0.5 sine wave above 0.5 a Quasi - Square wave. 3 is the Limit	For Boosting outpu Voltage
2 Hz	6720 Hz		
3 Hz	10080 Hz		
4 Hz	13440 Hz		
5 Hz	16800 Hz	0.051270	0.102541
6Hz -	20160 Hz	0.061524	0.123049
7 Hz	23520 Hz		
8 Hz	26880 Hz		
9 Hz	30240 Hz		
10 Hz	33600 Hz		
11 Hz	36960 Hz		
12 Hz	40310 Hz	0.123049	0.246099
	43680 Hz	0.133304	0.266608
14 22	47040 Hz	. 0.143558	0.287116
	50400 HZ	0.153812	0.307624
11 Z V -	53/6U HZ	0.164066	0.328133
17 BZ		0.174320	0.348641
10 02 10 U-	00400 HZ 62010 H-	0.1845/4	0.369149
13 84 30 Wz	03010 84 (7300 84	0.1948/9	0.389658
15 HZ 15 Hz	81000 HZ	0.103083	0.410166
36 Hz	87350 HZ -	V.130334 A 1666AD	0.512/08
77 Hz	9730 HZ 9777 H-	0.20000 0.175023	
28 Hz	94080 Hz	U.270402 A 327116	
79 Hz	97440 Hz	V.X0/110 A 10737A	
30 Hz	100800 Hz	0.131310	
31 Hz	104160 Hz	0 317879	0 535750
32 Hz	107520 Hz		A*A73110
33 Hz	110880 Hz		
34 Hz	114240 Hz		
35 Hz	117600 Hz		
36 Hz	120960 Hz		
37 Hz	124320 Hz		
38 Hz	127680 Hz		
"Iz	131040 Hz		
4u Hz	134400 Hz	0.410166	0.820333
50 Hz	168000 Hz	0.512708	1.025416
51 Hz	171350 Hz		
51 Hz	174720 HZ		
31 HZ	1/8080 HZ		
J1 82 55 V-	101010 8- 191440 87-		
	199160 Hz		
57 Hz	191520 Hz		
58 Hz	194880 Hz		
59 Hz	198240 Hz		
60 Hz	201600 Hz		
61 Hz	204960 Hz	0.625504	1 251009
61 Hz	208320 Hz		7 - 7 - 7 - 4 0
63 Hz	211680 Hz		
64 Hz	215040 Hz	·	
65 Hz	218400 Hz		

•

66 Hz	221760 Hz		
67 Hz	225120 Hz		
68 Hz	228480 Bz		
69 Hz	33194A B7		
70 87	3353AA U~	4 31 334	
71 87	ХЈЈХОО ПА 338560 П-	4.717791	1.435583
77 84	2J6J6U <u>A</u> 2		
72 04	241920 HZ		
	245280 HZ		
/4 HZ	248640 Hz		
75 Hz	252000 Hz		
76 Hz	255360 Hz		
77 Hz	258720 Hz		
78 Hz	262080 Hz		
79 Hz	265440 Hz		
80 Hz	268800 Hz	0.870333	1 610656
81 Hz	272160 Hz		1.010000
82 Hz	275520 82		-
83 Hz	37899A H-		
84 87	10000 H2 303310 U-		
75 H-	39550A W-		
- H4	2000CO H-		
10 UL	188960 HZ		
	191310 Hz		
88 HZ	295680 Hz		
89 Hz	299040 Hz		
90 Hz	302400 Hz	0.922874	1.845749
91 Hz	305760 Hz		
92 Hz	309120 Hz		
93 Hz	312480 Hz		
94 Bz	315840 Hz		
95 Hz	319200 Hz		
96 Hz	322560 Hz		
97 Hz	325920 Hz		
98 Hz	379386 87		
99 87	133640 WT		
100 Hz	3360A0 H-	1 035416	
	240404 12	1.013210	1.020833
-			
Vaine annut			
ID C Link Waltage	- 210 10103 A.C.		
Neter ated from and			
Notor rated frequency		•	
NOCOT KALEG T.M.S. VOITAGE	= 380 Yolts A.C.		
The Frequency at 100% Nodu	lation = 48.76067 Hz		
Voltage control clock VCT	= 327671.7 Hz		
To double the voltage at 1	over Frequencies		
multiply F (VCT norm) by Q	.5 = 163835.8 Hz		
Reference clock (RCT)	= 567000 Hz		
1	•		

Maximum switching	frequency =	2025 Hz	
Minigun switching	frequency =	1215 HZ	

For	ainikua	2438)	l Hz	FCT	•
For	Haximun	45360() Hz	FCT	

• · · · ·

.

۲. ۲.

.

.

.

. .

•