The design and developement of a microprocesser based

..control system for an electric rail transport system.

by
T M HUMAN

September 1988

A thesis submitted in partial fulfiliment of the
requirements for the Master!s Diploma in Technoloegy in

the School of Electrical Engineering at the Cape Technikon.

Abstract

Radiocactivity and radiocactive radiation are two scientific
phenomena which man has always approached with great caution, if
not fear. Radioactive radiation cannot be sensed by any of the

human senses and experience has proved just how hazardous it can
be to the human body. This <c¢aution is therefore by no means
unfounded and through the years a set of standards has been
derived as to what can be regarded as a safe dose to the human
body.

At the National Accelerator Centre radioisoctopes are being
produced by a chemical recovery process from targets which have
been irradiated by a high energy proton beam. Targets are
prepared by compressing salts, containing the elements to become
radioisaotopes, into tablets., The high energy praotons collide with
particles in the targets which give off radioactive vradiation,
The targets in their turn become radioactive and the isotopes

that are produced from these targets are radioactive. The level
of radioactive radiation is extremely hazardous and it is
therefore impossible for any human being to come into close
contact with any of the targets or isotopes. It is for these
reasons that an electrical rail transport system was instatled at

the National Accelerator Centre to transport highly radiocactive
S0Urces.

The transport system links the two irradiation vaults to the two
rows of hot cells, where the chemical recovery takes place, and
to a well! shielded storage area for storage of isotopes and

radioactive waste. A transport system, performing tasks of this
nature, most be, above all, extremely reliable. Secondly,
commands entered by an operator to control the system, must be
simple and straight forward. This thesis describes the control

of the transpert system at the National Accelerator Centre,
including all of its features, advantages and disadvantages.

SCOPE

To describe the design and development of a control system for
an electric rail transport system to be used by the lsotope—
production facility at the National Accelerator Centre.

iy

CONTENTS

INTRODUCT ION

DESIGN CONSIDERATIONS

HARDWARE DESCRIPTION

3.1 The Z-80 microprocessor, SABUS and power

3.2 Dotmatrix display interface
3.3 Mimic panel
3.3.1 LED driver
3.3.2 Transporter 1D display
3.3.3 Miscellaneous
3.4 Local controller
3.4.1 Local control pch
3.4.2 Front panel switches
3.4.3 Power supplies

3.5 Hardware controller

3.6 Cabling and break out cabinets
ASSEMBLY

4.1 Cabinets

4.2 Printed circuit boards

4.3 Cabling and wiring of transport

SOFTWARE DESCRIPTION
5.1 Specifications
5.2 Bit assignments
5.3 Program design
5.3.1 Start up.
5.3.2 The main polling routine.

system

supplies

5.3.3 The routine to drive the transporters.

5.4 The program

TESTING AND MOD{FICATIONS

6.1 Local controller and mimic panel
6.2 Software

6.3 Complete system

COMMISS IONING

CONCLUS TON

REFERENCES

11
11
13
18
22
22
22
25
25
25
35
35
40

46
46
46
46

47
47
47
53
53
55
57
60

106
106
106
106
107
107

109

LIST OF FIGURES

One of the target magazines in vault 1.
Front view of the hot cells.
Rear view of the hot cells.
Layout of the transpert system.
Photograph of a transporter.
Transporter and track detail.
& 1.8 Shunting of 2 transporter.
Transport system block diagram.
Mimic panel, focal controller and SABUS cardframe.
PE1, PE2 and the power supplies.
SABUS cardframe.
Dotmatrix display interface circuit diagram.
Mimic panel front view.
Mimic panel rear view.
Mimic panel block diagram.
Inside of mimic panel.
LED driver circuit diagram.
Transporter display circuit diagram.
Local controller front view.
Local controller rear view.
Local controller block diagram.
Inside of loca! controller.
tocal controller pcb circuit diagram.
LCD back light PSU circuit diagram,
Local controller front panel design lavout.
Local controllier front panel circuit diagram.
Adapter board circuit diagram.
Transport system track layout.
Hardware control parking loop circuit diagram.
Hardware control tracks circuit diagram.
Hardware control switchers circuit diagram.
Photograph of PET.
Photograph of PE2.
PE1 wiring diagram.
PE2 wiring diagram.
Photograph of PES.
Inside of PES.
PE3, PE4 and PES wiring diagrams.
Local 24V PSU delay control.

L]

O L0 LS LD U LI L LD LD LD DLW L LD LWL LD L L LD L L LD LD L)L L)L et ek ek el ol el
L]

WA D Wb e e oy b b e e B D)WW W W WA =W R sl B)) =
L]

.

. * L]] L] [] - [] * - L] * L] - » [] L L] [] L] L] L] L] * [] L2 L] - » [] L] . » L] L]
[] . L] L] L4 L] L] [] L] L [] L] . L] [] . L] [] . L] [- [] []

,
- A WN=SDERWNS2,O0NONMEWRN SN WNN = -

1. INTRODUCTION

At the National Accelerator Centre a variable-enerpgy separated-
sector «cyclotron (SSC)} and two solid pole injector <cyclotrons
(SPC1 and SPC2) are being constructed. The energy values for SPC1
and SPC2 are B8 MeV and for SSC 200 MeV, The two injectors
produce light~ion and heavy-ion beams respectively. SPC1 was
commissioned during 1984 and $5C during 1986. SPC2 is still
under construction.

The accelerators were designed to accelerate positively <charged
ions. The ions are produced by introducing a gas, for example
hydrogen, into an ion source where the electrons are stripped off
the hydrogen atoms. The ions are then released in the centre of
the injector, from where they are accelerated wup to the
extraction radius. Acceleration is accomplished by applying an
RF-voltage across the two dees (so named because of their shape).
The whole process takes place in a magnetic field which causes
the ifons to spirai out to the extraction radius. At extraction
the beam is peeled off by magnetic and high-voltage components.
From here it travels along the transfer beamliine to the S5SC. In
this beamline quadrupole magnets are used to focus the beam and
various diagnostic equipment produce information on the
properties of the beam. On entering SSC, the beam is bent by
means of magnetic components which steers It into its first
orbit. The beam is then accelerated to the desired energy in a
similar way as in SPC1, Once again magnetic and high voltage
components . are used to extract the beam from SSC into the high
energy beamline. This beamline 2lso uses quadrupole magnets for
focusing and diagnostic components although they are slightly
different to the ones in the transfer beamline because of the

higher energy of the beam. By using switcher magnets the beam
can be directed to several beamlines which serve different
facilities. These include isotope production, radiotherapy and
nuclear physics research. Another subject worth mentioning is
that the whole process takes place in vacuum. This is to limit
the beam tosses due to charge exchange of jons with resijdual gas

molecules.

At nuclear physics research, the beam can be directed to one of
seven beamlines, serving three vaults, and, as the name implies,
are being used for pure research. At radiotherapy the beam s
used to bombard targets which radiate neutrons. The neutron beam
is then directed onto cancerous tumors.

In order to produce radio-jisotopes, targets are being irradiated
by the beam in one of the two vaults at isotope-production.
Vault 1, or the horizontal vault as it is often referred to, has

three beamlines. Vault 2, or the vertical vault, has only one
beamline. Figure 1.1 shows the rotary target magazine that is
used in vault 1. The irradiated targets are transported from

the vaults to the area where the chemical recovery process takes

place. This is done in what is called hot cells. Figures 1.2
and 1.3 show the front and rear views of a row of hot celtls.
Each hot cell consists of a containment box with lead shields of
100mm in front and 50mm on the remaining three sides as well as
on top. After the recovery process, the radioactive waste and
the radioisotopes are transported from the hot cells to a well
shielded storage area. Targets for irradiation are prepared in a
laboratory in the vicinity of the hot cells. These targets are
also transported to the vaults and placed in special magazines at
the end of the beamlines.

An electric rail transport system was installed to transport
targets and sources with high radicactive radiation and to
transport new targets intc dangerous areas like the vaults. The
rail system comprises a continuous aluminium track, with power
and control rails and a gear rack, between reception hot cellis A
and vault 1. Switchers are provided to switch a transporter to
side tracks serving the parking loop, vault 2 and reception hot
cells B. The parking loop forms a2 c¢losed lfoap with the switcher
as the only means of input or output. 1t can hold up to nine
transporters and the unused transporters are parked here. A
schematic layout of the transport system is shown in fig 1.4,

Five transporters, which are in effect motorized trolleys, are
used in the transport system. Each transporter has its own
geared electric motor coperating from a 32V D.C. supply. Power is
transferred via copper power brushes in contact with power rails
built into the aluminium track. The 32V electric motor has an
integral gearbox which turns the drive shaft at approximately 100
rpm, resulting in a2 track speed of 0,4 metres/second. In addition
to the two brushes that transfer the D.C. power, a third brush
is fitted which provides a control signal. Reversal of the
transporter is achieved by reversing the polarity of the power
rails in the track. Irrespective of the polarity of the razils a
positive potential is always present on the third or control
brush of the transporter. This positive control voltage is fed
into a third rail in the track and is used for controlling the
movement of the transporter at switchers and stations. Whilst
moving on the track, this voltage is also used for indicating its
presence at these positions on a mimic panel. Where the
transporter is required to stop on a switcher or in a station in
a2 particular position, the polarity of that section of the rails

is switched so that both are at a positive potential. This
effectively short <c¢ircuits the drive motor of the transporter,
stopping it almost immediately. The drive through the track is

achieved by means of a cog on the drive shaft of the gearbox
engaging with a nylon gear rack in the track. This, together with
the above-mentioned electrical stopping system, ensures a rapid
and repeatable stop. For the purpose of being able to remotely
and electronically identify each transporter in order to Pcall®l
the required transporter from the parking loop, each unit is
fitted with two magnets, the positions of which provide

identification to reed cantacts on a sensing plate from one to

five. One of the transporters is shown in figure 1.5 and figure
1.6 show the transporter on the track.

Figures 1.7 and 1.8 show how a transporter is shunted from the
main track into the parking loop by means of 2 switcher. This is
typical of how all the shunting is donre in the transport system.

Because of the obvious dangers of radiocactive radiation, the
transport system must be remotely controlled from a safe area.
The appropriate place would be the isotope production control

room which s in the white area (the red area is where the
radiation levels can be extremely high and the blue area s a
buffer area between the red and white areas). The singie most

important feature of the control system should be its extreme
reliability. Some of the radiocisotopes to be produced at the NAC
have half lives of several weeks. This means that if the system
malfunctions while a transporter is carrying such an j§isotope, it
would be almost impossible to go anywhere near the transporter to

retrieve it, for a long period.

Fig. 1.2

Fig. 1.3

MITOHER 4

MITCHER 3

YAILT §

Fig. 1.4

Fig. 1.6

Fig. 1.7

Fig. 1.8

DESIGN CONSIDERATIONS

The controller for the target transport system that was installed
originally by a local firm proved to be very unreliable. It was
then decided to design a complete new control system based on a
microprocessor and using input and output modules that are widely
used throughout the NAC. Because of the hazardous nature of
radiocactive radiation such a system should be extremely retiable.
The advantage of using an in-house microprocessor and support
modules is that maintenance and breakdown repairing becomes 2
simple task because this is achieved by module replacement. On
the other hand it becomes a very flexible system because software
¢an be changed fairly easiiy.

‘The Z-80 microprocessor was chosen to do the <control. 1t is
housed in a small module that 'lives! on the SABUS backplane.
The other modules that were chosen included an eighty bit opto-—
isolated ipput module, three thjrty—-two bit relay output moduies,
a GPIB card for communication with another microprocessor and a
bubble memory for software storage. These are all housed in a
nineteen inch cardframe and connected to the SABUS backplane.

Instead of having to eanter commands from a keyboard where typing
errors are likely to occur, a l!ocal controller was opted for.
This instrument was designed so that commands could be entered by
push-buttons froem the front panel. The logic layout of the push-
buttons and the fact that they are well described on the front
panel makes it simple and straight forward to operate. This also
eliminates the need to remember complicated command strings if a
keyboard was used.

A mimic panel was designed to indicate the positions of all the

transporters and the status of the switchers, It also indicates
the progress of a transporter moving along the tracks. A three-
dimensional drawing of the transport system was made and
transferred onto the front panei. Together with the information
from the local controller lamps, the status of the system is

completely displayed.

Instead of having just a fault lamp on the local controller
indicating power supply malfunction, iltegal command entries,
etcetera, it was decided to have an alpha-numeric display. A two
line by forty character dotmatrix display was opted for. This
display would then exactly state any problem teoe the operator. An
interface <card to drive the display was designed to be driven
directly by the microprocessor while living on the SABUS.

In order to switch the currents on the tracks for the
transporters and to power the switchers, a hardware <controller
‘'was designed consisting of relays. This controller is situated

in the vicinity of the tracks to reduce cable length and to
minimize ~voltage drops in the cables. A second cabinet was

10

designed for this areaz to concatenate al!l the various sensing
coutputs from the transport system and control signals from SABUS.

This ensures a neat, orderly and logic cabling system to link the
transport system to the input and output modules on the SABUS.

The software for the system was designed and written after a
thorough study was made of the system's capabilities and the

operator's requirements. Turbo Pascal was used as the software
fanguage.

The inputs to the 80-bit opto-isolator card amount to sixty-nine.
Al these inputs are <contacts from retfays, reed switches,
pushbutton switches, etceteta. Switch debouncing was considered
to provide predictable results but was decided against for the
following reasons. Most of the sensing units in the system
consist of mercury wetted switches which do not bounce. When the
microprocessor is polling the local controller pushbuttons for a
command entry, the operator reaction time is normally slower than
the 20ms settling time for switch bounce. Where switch bounce
can be critical, the software can provide delays to accommodate
for settling times and lastly the debounce circuitry for such an
amount of contacts can be costly.

11

3. HARDWARE DESCRIPTION

A block diagram of the complete control system is shown in figure
3.1. The SABUS cardframe, the mimic panel and the local
controller, shown in figure 3.2, are situated in the control
room. PE1, PE2 and the two power supplies are situated in the
vicinity of the parking loop. Figure 3.3 shows these where they
are mounted on the wall 2bove the parking loap. The hardware
controller is built into PET. Power and signal! cables from the
transport system are terminated in PE1 and PE2. PET and PE2 on
their turn, are connected to the control system by six twelve
pair cables. '

3.1 THE Z-80 MICROPROCESSOR, SABUS AND POWER SUPPLIES

The SABUS is widely used in microprocessor applications at the
NAC. The Z~-80 microprocessor cards, the 32bit relay output
cards, the 80-bit opto-isolator input cards and the 12Bkbyte
bubble memory cards were afl developed at the NAC to be used on
SABUS. 1t was therefore the logical choice to use these in this
particular application. Fig 3.1.1 shows the SABUS <cardframe
¢containing all the modules.

The two power supplies came with the transport system and it was
decided that it were adequate to be used. The 32V supply is used
to power the tracks to drive the transporters. The 24V supply is
used to drive the switchers and relays and is also wused for
information feedback to the 80-bit opto-isolator cards.

SABUS

e NN EN A EN P HP COMPUTER
Al B C; DI E ;z G :‘.J ;f LC:ﬁ =
PH2D1
C XP_ID
MIMIC PANEL -
B (LEDS)
A
PH2D2
LOCAL CONTROL
32V PSU PE3
PE1 PE2 PE4
24y PSU i

PART
NUMBER

DESCRIPTIOﬂl

TRANSPORT SYSTEM CONTROL

BLOCK DIAGRAM

DRAHN TERTIUS HUMAN
DATE JUN 1988
FILENAME SBLOCK.FSH

Fig. 3.1

FAULT/RESET

Fig. 3.3

Fig. 3.11

15

3.2 DOTMATRIX DISPLAY INTERFACE

When it was decided to display micro-processor messages and
system information to the operator, an alpha-numeric display was
purchased. The chosen display is a two line by forty character
LCD dotmatrix display. To be able to drive it directly from
SABUS, an interface card was designed. The pin assignments and
functions for the display are given below.

Signal name Pin no. Function
DBO - DB7 7 - 14 Tristate bidirectional data bus.
E 9 Enable for data read/write.
R/W 5 Select read or write.
RS 4 Register select.
Vee 3 LCD drive power source.
Vee 2 +5V power.
Vss 1 ov
Two types of registers are contained in the LCD internal
controller namely an instructiaon register (1R} and a data
register (DR). The IR stores instruction codes such as clear

display, cursor shift as weltlt as address information for the
display data RAM. The DR is used for storing temporarily data to
be written into the display data RAM. A character generator ROM

can generate 160 different 5*7 dot character patterns including
the ASCI!I| character set., Data bit 7 on the data bus is used as a
busy flag in a2 cpu read operation and when set no instruction

will be accepted.

The interface was designed to fill a sfot in SABUS. This way the

cpu can communicate directly with the display. Figure 3.2.1
shows the circuit diagram of the interface. IC1 is an eight bit
bus transceiver that is directly connected to the data bus. 1C2
acts as a digital comparator. The one side is connected to the
address bus and the other side to anm octal switch block. When
the ocode that is set up on the switch -block matches the code on
the address bus, 1C1 is enabled for data transfer. The card's

bus address is in actual fact set up on the switch biock.

Address lfine A0 is used for register select and A1 for read write
operation. The SABUS read and write lines are used for enable. A
20k variable resistor is used to set the LCD drive voltage which
influences the viewing azngle. The pchd was designed on the
eurocard standard and using the SABUS pin-out on the <card edge
connector.

16

The display also has a back tight source using organic film as a

substrate. The <colour emission is blue green and the driving
voltage <can be selected in 2 range of 600 — 1000Hz at 150V AC
maximum. The power supply to drive the back light is discussed

under the local! controller.

SABUS

2a o0 Bl 1cy Al o3
20 O B2 a2 o 11
3a O B3 5 A3 a o 4
3c B4 m A4 by o 12
4a O s Y as o oS
40 (3 Bé rt A6 = o 13 >
Sa Q-5 B? Az O 6 aT
Se O BS As o 14 i
DIR EN (A
I w
e
ﬁ]_u SHITCH BLOCK a
11a @ P2 [cz @@ —_——
e Q PL Ot N o 9 ﬁ
12a O P2 © Q2 —_— 2
12¢ O P3 & 03 _—_— 2 v
13a O P4 ¥ Q4 — S o5y —
13c -2 ps ™ as —~— an
P& Q6 —— 10 >
P7 @ — —- }—O—-
3 5 4 Poa " Q
= 1
| [v]
1 3 ol
2 8
1 6 12 ‘
‘ 11 |
— | PART
19a O 8 —
200 101 m_;DPJ Rt | ECS18-39S1C1/1
o
DESCRIPTION|
10a (3-0@
tec oA — DOTMATRIX DISPLAY
tre @ ! INTERFACE
SY Tranzorb DRAWN TERTIUS HUMAN
Rare O 1 DATE JAN. 1988
F ILENAME DOTINT.FSH

Fig. 3.2

18

3.3 THE MIMIC PANEL

The function of the mimic panel is to indicate the status of each
switcher, the presence of transporters in the parking toop, the
progress of a transporter on the tracks and the presence and
identification number of a2 transporter in the stations. Figures

3.3.1T and 3.3.2 show the front and rear views of the mimic panel
cardframe.

The switcher status are indicated by means of bi-coloured LED's.
Green indicates the switcher is in the 0 degree position and red
the 180 degree position. The transporter progress and oparking
loop parking positions are indicated by red LED's. At every
station position on the mimic panel, a seven-segment display
indicates transporter presence and l.D. number. I f no
transporter is present, the display is blanked and if an unknown
transporter is parked in it, a seven is displayed. _Figure 3.3.3
shows the block dizgram of the mimic panel control and figure
3.3.4 shows the inside of the instrument. The two major
components are the transporter 1.D. printed circuit board and the
LED driver printed circuit board.

Fig. 3.3.1

I

PHED 1 VAULT1-1
VAULTI-2
VAULTL-3
TRANSPORTER 1D s s
j‘i DISPLAY
Ui
STORAGE
LT ADAPTER
coM BOARD
Y+
j | HOT CELLS A
l 16
LED DRIVER
HOT CELLS B
7/ N /s N
HA HB H SH S Ya Vb Yc Yd VZa V2b VY2c Via Yib Vic Vid 1234 12345678910
TRACK POSITIONS SHITCHES PARKING LOOP POSITIONS
FRONT PANEL LEDS PART

NUMBER

| pEScRIPTION]
MIMIC PANEL

BLOCK DIAGRAM

DRAMN TERTIUS HUMAN

DATE JUN 1988

F ILENAME MBLOCK. F SH

Fig. 3.3.3

e

SEEEIEEENERSNERERT (ATLENETER wEEEETATERE

=S

3
v

T

wro s rRTE - sasasTasavngal

e ————

&
—— bl x =~ o .
e e e e O B A

| —— e

22

3.3.1 LED DRIVER

This pcecb has three functions namely parking loop positions,

transporter progress and switcher status display. The circuit
diagram is shown in fig. 3.3.5. The bi-coloured LED's that
indicate switcher status are switched by reed relays. The
transporter progress LED's are driven by a 4 te 16 line
decoder/driver and the four data fines are latched by {C4. The

enable line on the decoder/driver is used to switch off any LE-
if no transporter is on the tracks while the enabfe {ine on the

latch is used as a strobe. One of the 32-bit ofp cards on the
SABUS drive all these signals as well as the parking foop
poesition LED's. All the LED's on the mimic panel are ORed by

diodes to serve as a lamp test which are driven from the local
controller.

3.3.2 TRANSPORTER ID DISPLAY

In the transporter system there are seven stations where a

transporter can be parked. They are hot cells A, het cells B,
storage, vault 2, and three positions in wvault 1. Five
transporters are used in the system which means that the numbers
1 to 5 are displayed in the stations. I1f a station is empty the

display is blanked.

Figure 3.3.6 shows the transporter |- display <c¢ircuit diagram.
Display data is first set up on the three lines a, b, and ¢
connected ta IC's 1,2,3 and 4, which are Jatches, Next the

station code is set up on lines a, b, ¢ and d on IC28, a BCD to
decimal! decoder, followed by a strobe pulse to 1C27. The decoded
line from 1C28 is latched through 1C27 which then acts as a
strobe on the data latches 1C1 to IC4. At this stage one of 1C20
to 1C26 is addressed on its data inputs. These 1C's are BCD to
7-segment decoderfdrivers which are connected via CN1 to CN7 to
the 7-segment displays. The OR-~gates connected to 1C20 to 1C26
blanking inputs ensure that the displays azre blanked if the
received codes are 000, A lamp test line is also provided and is
connected to the famp test button on the {ocal controller.

3.3.3 MISCELLANEOUS

in order to keep wiring of the pcb's z2nd back pane!l ‘connectors
simple, an adapter pcb was designed. Flat cable are used from
the two main pcb'!s to the adapter board from where it breaks out
to the back panel connectors. A pcb was also designed to carry
ezach of the 7-segment displays.

PARKING LOGP

-y
3 ™ o
—as @ryrae 7 .
== .
ke B3 [3 7 (= g |mi1s [Rn1 -
3 b b 4 L 4 .
5 s 3% 8 33 % iR b R SR m 1 .
< -
2| iyl | oF | v3 | vF| vF| vE| oF | o
a a a a a a - a a a o poom
PL1® N
P9 2
2 4
] s = 1L R12
ey s F3an R17
P ’ 3308 R ‘5.’2
PLa . G\E—;a ?Ei
A2 s
Al 19 oo }-(__)
TR) =
R4
i =
s i Z
—— i IR pra
LAY TEST 15 e
TRACK POSITION ; .
wt T o Cne 17 b
m I—-u——
—__[!{ +Fy 19 d _3
—|2a STRODE .
| = T_T - s
] : R18
1 T : 3308
24
_} =
[-— 26
v
D26 R 128 p33 34| 29
i[yi[o HFHE=
AR HEHRE
j
a7em
1
—%—-——T-;m
 E—F .
5 4 23 . 14 Diba-
m 17 At a1
] vie Mg e
T g8 g o Yt
3’ X 74108 Is is ls is is
v — i”if T ellz ol mll— I IS IS
3:: :31‘ = };ﬂ L R19 R2® R2) REE R23
Y2 k1 » xhel
= Zie | ol E1P13-1D1C11
.
- { pescrtrTIon]
LED DRIVER
DRALN TERTIUS HMeH
DRTE ALY; 19698
FILENPE MLEDS. FSH

Fig. 335

YARULTL-1

.
103 B 2 - 11
e 5 T 2 - |2
’ @ D]] L L L;J’
"o 4‘? #! 1 - 4 —-9 i
’1::10;11 L LI } 2 — s
Y _as el] P
";2 oo 12 1 ~e 7
i A4 — i g s
— AP Ty 3
YRULT1-2 i - I o)ll
lg 13
Q|18
1wty 2 3 ! o 13
101> 4 12 end o ::
1 e
xmﬂg qe——4 e :';z —4 e o ‘o :
m’ﬁlqﬂ_—!—: ”'_“___L‘, !':'4 3 : 8
= 18 | % Db 4 EJ roll LR
! . s u: gﬁ—')s_': ¥ o
- = | uad il I
VauLTI-3 e g Wi Wil Aie ‘a3
! -
i i -
”
VaULT 2 ! 12 g ﬁ:cul r -
— e th
Ca 13 -;' iy ﬂr:- radliEt
! Jo,
STORAGE
HOT CELLS A
3 ‘-1:411-.-——‘ |
- st
HOT CELLS B I h‘?—
I i’ m
. ‘?u-in_ ! l
gy oarm AECRLPTION
1 ;
R ram | TRANSPORIER 1D
T . DISPLRY
_qL + TERTIUS M
{naTe YO 198
FIOWK| P IB.IM

25

3.4 THE LOCAL CONTROLLER

Alt the commands to control the transport system are entered on
the local controller by means of pushbuttons. It also displays
information regarding the system and a piezo-electric buzzer acts
as an audible alarm. Although the dotmatrix display is housed on
the front pane! it is driven directly from SABUS as described
previously except for a back light power suppiy. Figures 3.4.1
and 3.4.2 show the front and back rear of the local controller.

A block diagram of the local controller is shown in figure 3.4.3.
The major components are the local pcb, the front pane! and the

power supplies. Figure 3.4.4 shows the inside of the instrument
where these components can he seen.

3.4.1 LOCAL CONTROL PCB

The function of this pchb is to drive all the indication lamps
which are integral parts of the pushbutton switches. The circuit
diagram is shown in figure 3.4.5. The indication lamps are
devided inte three groups namely FROM lamps, TO lamps and
miscelaneous famps. The FROM and TO lamps are driven in the
following manner. A BCD-code is set up on I1C1 which consists of
two four bit latches. ©Once the code is set up, a strobe pulse is
applied to the enable input. This causes the data on the inputs
to be latched to the outputs which drive 1C2 and I1C3. These are
BCD te decimal decoder/drivers with open collector outputs
capable of driving the 24V lamps directly. The lamps are
connected via CN1 and CN3 and are once again ORed by diodes to
serve as a lamp test.

The fault lamp signal is ANDed with an astable multivibrator to
enable it to ftash. The two power supply status lamps are driven
by retriggerable one-shots. The execute lamp, cancel entry lamp,
the piezo-electric alarm are directly driven by a2 32bit ofp card
on SABUS.,

The back 1light power supply for the LCD dotmatrix display is
shown in figure 3.4.6. The Schmitt trigger and RC circuit

generates a pufse train at approximately 1kHz. The pulse,
amplified the two transistors, which are driven 180 degrees out
of phase, is fed into a step—-up transformer. The output of the
transformer, approximately 160V, is then connected to the LCD

back light source.

3.4.2 FRONT PANEL SWITCHES

Figure 3.4.7 shows the layout design and figure 3.4.8 show the
circuit diagram for the front panel. The parking loop is the
only place from where a specific transporter can be cailed. For

26

this reason the 'FROM PARKING LOOP! switches are in a2 row and
from the circuit diagram it can be seen that a BCD <code is

generated when a pushbutton is pushed. The FROM and TO switches
also generate a BCD code. All these signals are connected to
the 80-bit opto-isolated I/P card on SABUS.

An adapter board was designed to concatenate all the signatls and
OR them by means of diodes. The three ORed signals then act as
strobe lines. Figure 3.4.9 shows the circuit diagram for the
adapter board.

1

3.4

ig.

F

Fig. 3.4.2

A

DOTMATRIX &

B

DOTMATRIX DISPLAY

(JL
MIMIC PANEL

{ LAMP TEST

KEY

ADAPTER

BOARD

D o
89 buLt I-/P
C &
32 bt O/P
+3V
E =
i Q;TL

comM

SV 24V SWITCH
P
POWER b O ')
SUPPLIES Ao o MAINS IN
= COM o MAINS OUT
o TO SABUS
o
FRONT PANEL
_S.L:I_IIE:I__I__E_g_,E] LOCQL PCB
é L Q M P S BQCi;SbI GHT
PART
NUMEBER
DESCRIPTICON l

LOCAL CONTROLLER
BLOCK BIAGRAM

DRAWN

TERTIUS HUMAN

BATE

FEB 1988

FILENAME

l

LELOCK.FSH

Fig. 3.4.3

+0
I)

; 18 'i;\"l T
13 .
nEX, o
TRIS IS £ D2
™
o e I
€1
w5 cER T3
{m,,£ - i A7aF 1 E—] b1z
sax | 1c3 w2y
13 1e pos i ™ B4
[N)
1 gl13 o= nis
2 74183
% s e Tii)u:_:p n3
2 17 - N
= & [~ &]
nF 3 f
™y
xE
i =3 1= !
aNF
Cmgl = —
4 . -t
L
. 1c6 Cex.
3 gl3
18 74123
4
3 1§
lF’; 3 oy 1441
3 aR -1
1WFo ¥} i - 1Ha1
r ™
et 1NaL -
FY : -y
iziiipi iitgif s N4
100 7448 1R n
TR e 2pd e
1l i A :5)
ZRipe @ 4 3 “+
flips wbE c sph FLET
<1 mHn Py n
_L 702 nel
. 1yF apil ©
I ’ e
i
Hey
B8
IN4L
e
- UL
hnd ke
1Hat
2 e
] My
o
SRR ; s
- 1 7443 1 M
[T cy 2 3
__" i 2 [-13 .'.—1:. Fl
P =f—
& =
I ik, @ c s
2l apl—iBp N1
_L] s
Ic.zpr : 1 Lot
— nr
1M41
pie

EXECUTE
CANCEL ENTRY
ALARM

SPARE
FAULT/RESET
24y

32y

FROM

HOT CELLS A
HOT CELLS B
VAULT 1
VAULT 2

STORAGE

PARKING
LOCP

an W -

TG

HOT CELLS A
HOT CELLS B
VAULTI-1
VAULT1-2
VAULT1-3
VAULT 2
STORAGE
PARKING LOCP

| EIP13-2D1C1-1

‘m:n::ﬂ[

LOCAL CONTROLLER

Dreed| TENTIUS HeN
DaTE JUL (08
FILEVAME LOCON. FEH

Fig. 3.4.5

ﬂi 73899
- 1K@
7415132 H = 3 —0
»l— t——“t E QUTPUT

&\

=

~
IN4148

ﬁ,;1_-[1,} 6 168V
5 %
Q
L)
AN BC1B? ¥
1K@ Z

PART
NUMBER

[DESCRIPTION]
LCD BACK LIGHT PSU

DRAUN TERTIUS HUMAN

DATE DEC 1987

FILENAME BLI.FSH

Fig. 3.4.6

TRANSPORTER ID

TARGET TRANSPORT SYSTEM CONTROL

LCD DOTMATRIX DISPLAY

FROM T0

+ | HOT CELLS & | +

-+ HOT CELLS B

FAULT/RESET
+

EXECUTE
+

VAULT 1

+

VAULT 2

STORAGE

+

+

+ PARKING LOOP

24V PSU
+

LAMP TEST
+

CANCEL
ENTRY

+

32Y PSU

+

+

ALL TEXT TO BE ENGRAVED
ALL HOLES ARE 16mm FOR SWISTAC SWITCHES

] EIP13-2F1L1/1

PTION

LOCAL CONTROLLER
FRONT PANEL

PRAR TERTILS MMM

DATE AL 1998

LFP.FEY

TARGET TRANSPORT SYSTEM CONTROL

ALARM FAULT/RESET
LCD DOTMATRIX DISPLAY
+ 136 X 21 = +
= L CANCEL
4+ | HOoT cELLs & | —+ EXECUTE ~ ENTRY
+ +

4 | HOT cELLs B | 4

— VAULT 1 + + |+

+ VAULT 2 +
24y PSU 32Y PSU

—+ STORAGE —+ + T

TRANSPORTER ID

LAMP TEST POWER

+ -+ 4+ 4+ | PARKING LOOP | - 4+ -+

ALL TEXT TO BE ENGRAVED
ALL HOLES ARE 16mm FOR SWISTAC SHITCHES

oo | EIP13-2F1L1/1

JESCRIPTION

LOCAL CONTROLLER
FRONT PANEL

DRALN TERTIUS MUMAN
DATE JA 1998
F ILEMANE LFP.FSH

Fig. 3.4.7

- FROM PARKING LOOP

4

31
1 _
—0 &

o It J

!

-
»

)
T

EJH

éljf

FROM

] HC B
L . o
3 O - L5 — 25
b S
——) §
HC B HC B
.
—Q O— —0 Oo——
VAT 1 VAULT1~-1
- 1
—o[6—— - 50—
—0 O—
YMAT 2 VAL TI-2
. .
—0 O— —C | O———
JE S
STORAGE VAlLT1-3
JE -.-_L
S [6— 5 o—
5 o0—— i
YHLT 2
——
—l
STORAGE
——
—_——
PARKING LOOP

v

m!n!mi

FRONT Faril SMITCHER

st TERTIUE HUMEN
DaTE SR 1908
FILETME LocRu I, FeH

Fig. 3.4.8

1N414a 1N4148 1N4148
lj4l4ﬂ 1N4 144 1N414
1N414q 1N4144 iN414 r*——~———
1[&] [:i : m o
|
@ oo
[@ —]
Slo or—-—|3
-
o Yo S
o o 5]
10 o ®
& -
o o
e * oy
t5)e : {l
o @
Fe L
o a
2elo) o
-
PART
NUMBER

DESCRIPTION |

ADAPTER BOARD

DRALIN TERTIUS HUMAN
DATE JAN 1988
F ILENAME ADPT,FSH

Fig. 3.4.9

35

3.4.3 POWER SUPPLIES

Two power supplies are used for the local controller and mimic
panel. A 5V supply drives the TTL circuitry and LED's and a 24V
drives the lamps and the BO-bit | /P card.

3.5 THE HARDWARE CONTROLLER

As mentioned previously the transporters pick up the drive power
from two copper rails in the tracks by means of brushes. The
tracks are divided into different sections and figure 3.5.7 shows
the track layout indicating the switchers and track sections.
The sections are HA, HB, H, HS, v, v1, V2 and PL1 to PL10 in the
parking loop. The function of the hardware cantraller is to
switch the drive power to the track sections, the tracks on the
switchers, the switcher motors and the parking loop track
sections by means of relays. These retays are driven by the 24V
power supply and controlled by the 32bit OfP cards on SABUS.
When power is switched off on a section, both rails are at a
positive potential. This serves as a brake for the transporters
because it effectively short circuits the transporter motor. A
third rall in the track is used for position sensing and the
positive potentiazl picked up by the power brushes is fed into
this rail.

There are ten parking positions in the parking loop resulting
into ten sections of track. Figure 3.5.2 shows the circuit
diagram for the parking loop track power.

In order to drive a transporter in both directions, the power 1is
applied in either direction to the track rails. This means that
for wevery section of track two relays are used. Figure 3.5.3
shows the circuit diagram for the track power where the pairs of
relays are clearly indicated. The method for 'power off - both
rails at positive potential?’ can also be seen.

Figure 3.5.4 shows the circuit diagram for the switchers where
the same configuration is wused for the track power. An
additionatl relay powers the switcher motor to drive it to the O
degree or the 180 degree position.

The. hardware controlter is built into a cabinet marked PE1 which
is situated near the parking loop. From here the cables carry the
power to the transport system. The wiring diagram and photograph
are shown in section 3.6.

PLS

PL6

f(

&

/)

VAULT 1
up
vid "~ Vic
4
= — p— ~— ﬂ
STP? STPs STPS)
Vib
SUITCHER 2
/?EEE: V2a)f}
(713555 Via
) %
Ve JJ vd
STP4 k
Ve
VaULT 2

PSIF 5 PE1 PE2
PL4 PL3 PL2 PL1
%
PARK ING
LOOP
SENSING PLATE
2
PL7 PLB PL9 PL1O
Ya
Yo

SWITCHER 3 SWITCHER 4
HS HA zfgf\\ sTP1
1 Y
T 1
] Lo
”
S
é 5
e
g up sTP2
\ HB
TN —=
STORAGE k i

HOT

CELLS A

HOT

CELLS B

| EIP13-g2L1cl

mm]

TRANSPORT SYSTEM
LAYOUT

TENTION NN

g 13k

T

Fig. 3.5.1

TLIFT.

‘E
‘E

A TR

POLARITY FOR CCW MOVEMENT

SV T

7
Orr TO TRACK POSITIONS Of TO TRALK POSITIONS
N >
. . l‘ * poEr l‘ *
TO TRACKS BETWEEN
3 - T 8 r- PABRKING POSITIONS
1 1 (11 PIECES)
0 TO TRACK POSITIONE OsF TO TRACK POBITIONE
» 3y
PR] I‘ + POER l“ +
e [T /77 s [}/
] T j ALL INPUTS FROM
O TO TIWCK POSITIONS Of TO TRWCK POSITIONS SQBUS 32 BIT RELQY O/P
» »y
o l' v PO l* *
5 - - - 19 - - -
L 4
Cm TO TRACK PORITIONS 0P TO TRACX POSITIONS oY l
HNIMPER
| DESCRIFTION

HARDWARE CONTROL
PARKING LOCP

) TERTIUS HUMaM
DATL hEC 1WP
F 1L HCPL L FSH

Fig. 3.5.2

- f — L - _
Lol N ! 4
A e
L) o) R
= =L] T =
A M s
S 3 SN
mmmmm Lt | 1 !
Sl T
S Sy

Fig. 3.3

SWITCHER 2 SWITCHER 3

WOTOR PGAER l‘ i BIRECTION ’ . ; HOTOR POMER l.) DINECTION "m- .
A e)y a—awl e BN
&* TO NOTOR L = BT_i__llT l E & TO FOTOR L _ S?HL_ _LXT l
T
SWITCHER 4 ' SWUITCHER 1

2w »y P "

nmnnunl l BIRECTION ’ _ MOTOR POMER l’ i DIRECTION l)
L !

or TO TRACX or O TRAK
289 ggﬂﬂrm

mLuxm

ML SIDE OF SMITCM
ﬂﬂl
MR
| ESCRIPY100]

HARDWARE CONTROL
SWITCHERS

Py TERTIUS HUmAN
eTE DT 1%87
FILEw HCS. FSM

Fig. 3.5.4

40

3.6 CTABLING AND BREAK-OUT CABINETS

in order to keep wiring and cabling efficient, orderly and neat,
two break-out cabinets were designed. All the inputs and outputs
to and from the transport system are terminated in these
cabinets. The signals that belong together are then concatenated
and cabled out to the SABUS 1/0O cards.

Figures 3.6.1 and 3.6.2 show the inside of PE1 and FPE2

respectively and figures 3.6.3 and 3.6.4 show the wiring
diagrams. As mentioned previous!y the hardware controller forms
an integral! part of PE1. The position sensing signals come from
every part of the transport system and they were also terminated
in small break-out boxes. These break-out boxes, PE3, PE4 and
PES, are fixed on the tracks., The different signal wires are fed
into the boxes from where it runs in a c¢able to PEZ2. Figure

3.6.5 shows PES5S fixed to the parking loop track. Figure 3.6.5
shows the ijnside where the incoming signal wires can be seen on
the bottom 1left and the ocutgoing cable on the bottom right.
Figure 3.6.7 shows the wiring diagrams for PE3, PE4 and PES.

Bt o P vl e o

I.'_."-"-‘ -—'.-l!.! ‘Iﬂ..ivl

_l- n:.qu

Fig. 3.6.1

i)' aid'a

AL

ARV RLALAK

L ARLA

:.-i Lol

Fig. 3.6.2

D

pt L7 5]]
D46 — 18) Di&
11 7 il
1 [_T
31 | 2 5
3] [a
L9 | |
10 8!
B33 [11 IE2
B32 | 1 6
B2 | 2 5
3] [Is —
9] |
18 8
11 7
B35 | 1 6
B3 5
3] Ta B35-D35
LT 1
12 B D17
11 7:I
1 &
B4 | 2 5
3] Ja
o | !
1B 8 ——
B38 |11 7
B3 | 1 6
BS 5
31 |4
9] [
10 8
B49 |11 7
B6 | 1 &
p32 | 2 5
3} [a R41-D37
5T [
10 8 l-pis
11 7 i
1 6
B7 5
3l [a4
o1 1
12 8
B43 |11 7
B42 | 1 3
B8 | 2 5
31 14
9 L
12 8
11 (::::::) 7
Ba5 [1 {:3 ?9 6
B9 b 5
D33 3] [a B46-038
9] |
10 8
11 7
1 6
B2 | 2 5
3] Ja

1

PE2G
i
B et et ek b b s s e
NN NN E W - BN

PE2E
]

— B

=9

12
11
12

PEZE

13
14
15

o —

td

mm-uo\m]&wm--

i@

16

17

L 18

uE::
wl

veE__

S8
S9

1%

61

&2

63

| 64 |
£5

€6

67

68

€9

‘e

ACRI~2)
R(R2-2)
RCR3-2)
R(R4-22
R(RS-2>
ARe-2)
AR-2)
ARS8~2>
R{R9-2)
RIR1@-2)
CL{R1-2>
CLR2-2>
C(R3-2>
C<R4-2>
CCRS-2>
C(R6-2>
CCr7-22
C(RB-2>
C(RS-2>
CCRig-2>

i)

D24
ACRE2-13
A(R2-112

RCR3-1D
R (R3-4)
ARL{RS-1)
ACRS~11>

ACRE-1D
ACRE—4)
ACRB-1>

RCRB~11)

AR9-13
R(R9-4>
R(R2-1)
R(R2-113

C{R3-1>
C{R3~4)>
CCRS-1>
CtRS-11>

CCR7-13
CC(R7-11>
CCRO-1>
CIRS-113

)

pa-— o] |
47— B D19
11 7
1 6
B11 [2 5
3l [a
L s 1
18 8
B48 {11 7
= op
Bi2 5
3] Js¢ +—
ol |
10 8
BS@ |11 7
Bi3 | 1 é
D34 5
3] [= DS1-D39
ps-H 9] |
18 8 rpee|
11 7 T
1 6
B14 5
3l [a
T [
12 8
BS3 |11 7
B2 [1 "llllll’ 6
B1S [2 5
3] [«
psLL o] [
18 8 D21
11 7 1]
1 ‘_E-rﬂ
Bl& 2 S |
3] fa |
s
10 8
BS6 (11 7
BSs | 1 6
B1i7 | 2 5
3] [a
A e |
18 8 D22
11 7 il
1] | 6
B18 | 2 5
3] [a
U787 1
19 8
Bss | 11 7
B57 | 1 6
Bi9| 2 S
31 [a
9] L
12 8
11 7
1 6
B2@ | 2 5
3] [a

)

ACR1-9)
A(R4-93
ACR7~9>
CR1-9>
C(R4-92
C(Re-93
CL(R8~92
+32¢
B3@

5

[y

\DW\!U"U‘I-&&JNL

A(R1-8)
ACR4-8)
ALR7-8)
CCR1-8>
C(R4-8>
C<Re-8>
C(R8-8>

CoM

B31

Bai |

+24Y
PE2D&9
B4s

com
PERD73

B31

D36

Fin 363

ER1~-9>
E(R3-92
E(RS5-92
E (R7-9)
E (R9-9)
GC(R1-3)
G(rR2-3)
G(R3-3>
G(R4-3)
GLRS-3>
G{R6~3>
G(R7=-33>
GRE-3
G{R9-3D
G{R18-32
E<R1-8>
E(R3I~-82
E(RS-8>
E{R7-82
E (R9-8>
G(R1-42
G(R2-4)
G(R3-42
G(R4-4)
G(R5-4)
G((R6~4)
G(R7—4)
G(RB8—4)>
G(R9—4)
G(R1E-4>
A(R3~-3>
R(R6-3>
A(R9~3>
C(R3~3>

A (R3-42
R (R6-4>
R{R9-4>
C{R3-9>

AR1~-1>
CtR1-18>
E(R1-18D
G{R1-12>

T

mA{ 9]
D48-—15© 83'1316

11 Fz 1 7

1 6
F1 | 2 5 1

3] fa
]

18 8
F33[11 7
Faz] i 6
F2 | 2 5

3] |4
DR o] |

18 8 D17

11 7 i

1 6]
F3 | 2 5

3] J4
].__ 9i

ie)
F3s|11 ‘lllllll' 7
Fas{ 1 3
Fq | 2 5

3] Ia
03— 5] [

18 8 +-Di8

11 7 j-

1 6 M
FS | 2 5

3] [fa
U 11

10 8
F3g|11 7
F37| 1 6
Fe | 2 5

3l [«
D4 1] ST |

10 8 (D19

11 7 :r

1 6 —

F7 S
3] 4
L o7

19 8
Fa1[11 7
Fa| 1 3
F8 | 2 5

3] [la
ps{ o] |

1e 8 (D20

11 Fd T

IR)4
Fo | 2 5

3] s
UsT [

18 8
Fa3|11 7
Fa2| 1 3
File| 2 5

3] 4

“Tw

PE2G

Loy (WY iy Py S N e e e
ymmmgwmwmmawmwmwmﬂmmhmm4

Hs-ii___

Hn-fizz:
HB-E-

"t
L

TPZ-E.

i

wwwwgmwuwm‘mmm
QOGN | O [P G N (= (0 [0 00| IO

33

48

41

43

44

435

a6

4’

48

49
o8

TPS-{;

S1

o2

TP4 —E

S3

TPS-E;

TPG-{i
TP?-Eh_

TPS-E.
ot |

=L
55

S6

57
o8

S9

€8

61

&2

63

64

635

66

&7

68

TPm-E

69

"

E(R1-2>
ECR2~2>
EC(R3~-2)
E(Ra-2)
E(R3-2>
E(R&-2>
E(R7-2>
E(RB-2>
E (RS-2>
ECR1@~2>
G(R1-2>
G(rR2-2>
GC(R3-2)
G(R4-2>
G(RS-2>
G(Re-2>
G(R7-2)
G(R8-2)
G(RI-2)
G(R1R-2)

ECR2-1>
ECR2-11>

E(R4-1)
E<R4~113
E(RG-1)
E(R&6-11)

E(R8-1)
E(R8-11>
ECR10-1)
EC(R10-11D

G{R1-1>
G(R1-4>
GCR2-13
G(R2-4>

GC(R3-1>
GC(R1-4
G(Ra-1)
G(R4-4>

G(R5~1)
G (RS-4)
G{R6-1D
G(Re-4)

G(R7-1>
G(R7-4)
GC(R8-1>
G(RB-4)

G(R9-1)
G(R9-4>
G(Rle-1D
GIR18-4)

(1

9] |
D49 | 1@ B8
11 7
Fas | 1 6
Fli1| 2 s
Ds 3] Ja Fa6.,D21
s |
18 8
11 7
Faz | 1 3
Fiz[2 5
D7 3] T[4 Fa8.-D22
o] 1
19 8
11 7
Fse | 1 6
Fizl 2 3
8 3] [e F51-D23
o] |
12 8
11 7
Fse | 1 ‘llllll’ 6
Fia| 2 5
DS 3] [a F53-D24
o] |
10 8
11 7
Fi1s5| 2 Ex
D1@ 3] la | FS6-D25
s| |
10 8
11 7|
Fs7 | 1 (:E%{E%§:>q7;"
F16 | 2 5
D11 3] [a F58-B26
sl |
10 B
11 7
Feo | 1 6 |
Fi7 [2 s
D12 3] s F61-D27
o] |
1e 8
11 7]
Fea | 1 s
Fi2| 2 5
D13 31 |a | F63-D28
o]]
18 8
11 7
Fes| 1 6
F19i 2 5
D14 3] ta F66-D29
s| |
18)
11 7
Fe7 | 1 6
Fea | 2 5
D15 3! |4 F68-D32
[PF 1]

/2

D

)

[ATERTIAT R IRV R IS ST (AT AT A L] (Y] ol Lo L Ll Lol o L [y [y
mwmmmummammnmmmummhwmwmmmem*wm“

o L
10 8
11 7
1 6
2 5
3 4
9
10 8
1 3
2 5
3 4
9
12 8
11 7
1 3
2 5
3 4
9
18 8
11 7
1 6
5
3 4
9
12 8
11 7
1 6
2 5
3| 4
9]
18 8
11 ?
1 3
2 5
3 4
9
10 8
11 7
1 3
2 5
3| 4
9]
18 8
11 7
1 3
2 5
3 4
9
e 8
11 7
“(RIE:
2 5
3 4
9
18 8
11 7
i
? 5
3] Je

PH2DEB

PH2D8C

PH2D8D

)

o S o el oo

0

P { P | (P 1 (] 00 G 6 [L | Gl | W [L [[P ra [o e ruro [P nojro [ro
B |G [1D A0 001 | O [N 1A (LI MO = | 0 ND 00| N 0N LB [Lo f P v (D

4

Rl b
(DN LR

. —

-

Dt C1 1 1 - L
nz2 ca el 2 |
D3 c3 3} 3 !
D4 c4 4] 4 | &
ns s 5 5 L}
D12 s [61C | =
D12 7 4
Dl4 2] -
D16 g ——- @
D18 1@} 1
Doe cé 1 s ISP
D22 7 (1231
%gg 131 2 JFste 2
8 [141 1
D28 =1 2 TFsTP 3
D2z co (16} 1
D26 o1 2 FsTP 4
D39 c1e (18] 467
Dag 9 47
D41 C11 [2@] 48| 4
21] 49 | -
ci2 [22] se| o
D66 231 51| &~
173 32 (244 s2
£33 [25] 53-
D42 17 [(26] 1 n
D43 c16 [27] 2
D44 c15 [e8] 3
D45 c14 [25] 4
D46 3@] 5 <
D47 31|l 6 | &
D24 32| 7 u
D2s 33] 8
ps1 34| 9
os2 35] 10
0s3 36| 11
54 37 | 12
Dss 38 |=-—=
Ds6 c18 {39 1
ns? : Ci9 {a4d]| 2
nss cee {41 3
DS9 26 {42]| 4
gl 3] 2”7 [43] 5
D67 ze 441 6 | &
Gs6 29 [45] 7 b
38 [46] 8
£31 [47] 9
48 | 1@
74 43| 11
E&7 5g | 12-
ES8 £3¢4 511 1 A
E69 L35 [52] 2
ES2 €36 [53] 3
£53 37 (54| 4
ES4 38 {55] 5
E42 C39 [56] &6 | &
41 ca@ [57] 7 wl
E42 C41 (58] 8
E27 ca2 [59] 9
Ee8 ca3 [ea] 1@
E29 61 11
62| 124
63 - — -
64
6 65, F24
123 {[66) Fa9
ta4a Je7l FrP3
68| E66
PE1D3S [f6s]l Gss
78
Z1Y
724 ARLI-18)
7S PE1039 [[73]] c24
Hﬁ* C49
73] €73
76| G54
77
78
Fig. 3.6.4

PEIB

SHITCHER 4 PE1EB

SHITCHER 3

SHITCHER 2

SHITCHER 1

[T

r 339

31

32

33

34

35

36

37

- 38

- 48

41

42

43

45

46

48

1%

951

1

W TIMOD

ocumwTmoO

oW mMMOD

1

T 11
cWwXYMMOD])
1

\:\l\i\l\:\l\l\:\xmmmmmmmmmmmwmmmwmmwmn-nAALa-nJX-n-hwmwmmwwwwmmmmmmmmmmm~uv—~n-»-o--n---mm olon]a ol
OO LA (LD PO = | €0 [0 | N [N A) PO = [0 B [N O A L) [N = | R0 | 001 N OV [A (Lo P01 WD {00 TR [L] P | L0 (Mo | €D [OD{ ™ | O | U1 P (L0 4= (CD 4D | 60| I (G (N] [L) [P [|03 N

E6S
Ee4
E63
(A=Y
E61
£69
£Se
E49
E48
E47
E38
E37
E36
E35
£25
E24
E23
Eee

E18
E17
E16
E1S
E39
C59
Ceo
L6l

El4
E13
E12
£11
ES1/E26
C36
cs7
ESS

Fle

£9

£8

g7
E66-E39
£33

CS54

€33

£6

£S

Eq

E3

£2

El
DeB-ESL
Coe

o1

cs2

PH2DEH

PH2DBJ

PH2D2F

aa

L ol
o]
bt (V1 1o o1 AN 8 R TR (ATOV B

G3
Go
G9
G13
Gt
G2
G4
G5
G7
G8
G11
Gi12

DeS

Glg
G15
Gle
G17
Gis
G19
G26
Ga7
Ges
Gae
G3e
G31
G32
G33
G34
G3S

De6
G3e
G37
G38
G39
G48
G41
G42
Ga3
G44
G453

G53
G50
G551

ne”

Fo
Fie
FS
F1l1
Fig2
Fé6
F13
Fig
7

F15
Fle
F8

Faé
Fas
Fas
Fa29
F3e
F31

F3e
F33
F34
£33
F36
F37
F38
F39
Fd40
F41
Foe
FS51
FSe
FS3
Fo54
FS5
FS6
FS7
Fo8
F59

F&es
Feb

Fed
I7e
D&es
Ca5

C

1] 1 -

2] 2

3] 3

4 | 4

5] s

€] 6

71 7

8] 8

5] 9

18] 18

11| 11

12| 12 | =

13] 13| &

14| 14

15] 15

161 16

17] 17

18] 18

19| 19

22| 20

211 21

P2l 22

23] 23

24| 24-

PS5 ==

261 1 -

27| 2

28| 3

29| 4

3@ S

31| 6

32 7

33] 8

34] 9

35| 19

361 11

37| 12 | E

38| 13

39] 14| ©

4@ | 15

41] 16

a2 | 17

23| 18

a4 | 19

345 | 29

46| 21

47 | 22

48| 23

45 | 24-

59 24y

51C01Bs)

52 ::::J
3

33 eo1i

=

=2 STAL

57

58

59

68

€1

62

63

64

65

66

67

68

69

78

71

72

73

iz

75

76

77

78

Fig. 3.65

@
‘e®PCOOPRE RO RO R, .
14 1])
| ___.,,_,://4_ =l 7
[S

SO 1 <« 2ssp88d33 D Féccarlers

Ll a 1334_56?_89m.._lw a 12_34_56?89m..u1 AHI_ 34—56789..I.L2

0 SRATIBSHUBILAD Lol BITYIITILILR L oS B8RRR3TY
_ _ Q| _ Q.| |

PH2D-
PH2D-
PH2D-

Fin 347

46

4. ASSEMBLY
4.1 CABINETS

For the mimic panel and local! controller two 4UT3 Elma cardframes

were used. The amount of components used in each of these
instruments does not justify such a big cabinet but the size was
determined by the front panel components and layout thereof. On

the local controller front panel and and on both the rear panels
the appropriate information concerning switches and connecters
were engraved. For the mimic display front panel a three
dimensional drawing of the transport system was designed. The
drawing was transferred onto a photosensitive material and fixed
to the front plate.

For the break-out cabinets PE1 and PE2 two switchboard type, wall
mounted cabinets were used. These were mounted on standoff
brackets about 200mm away from the wall to allow for cable entry
through the back. For PE3, PE4 and PE5 small vero boxes were used
and these were mounted directly onto the tracks.

4.2 PRINTED CIRCUIT BOARDS

Al the printed circuit boards were designed with the aid of a
CAD system and no serious layout problems were encountered.

4.3 CABLING AND WIRING OF THE TRANSPORT SYSTEM

All the cabling and wiring from the transport system to PE1 and
PE2 were done by using standard inhouse cables. Once these were

terminated, the six cables connecting PEZ to SABUS were laid over
a route of approximately 100m.

47

5. SOFTWARE DESCRIPTION
5.1 SPECIFICATIONS

The function of the Z-80 microprocessor is to read the 80-bit
opto-isolator input card and the GPIB interface card and evaluate
this data. Once a decision is made on what action is to be
taken, new data is written to the appropriate output module.
These can be the 32-bit relay output cards, the dotmatrix display
interface, the bubble memory or the GPIB card.

The various inputs and outputs, from and to the transport system,
are assigned to the /O modules. Each modute has a unique address
on the SABUS which makes every bit unique. The bit assignments,
the module addresses and the function of each bit are shown in
section §5.2. In section 5.3 the data evaluation and the actions
to be taken is discussed in the program design.

5.2 BIT ASSIGNMENTS

The 80-bit opto—isolator input card consists out of four banks of
opto—-isolators. Each bank of twenty bits has its! own connector.

This results in ten groups of one byte each. The addresses
assigned to these are from $60 to $69 (the $ sign indicates
hexadecimal notation). Tables one and two show the inputs

assigned to the bits and afso some connector information.

The three 32-bit relay output cards consist out of two banks of
read relays. Each bank of sixteen relays has its' own connector
resulting in four groups of one byte each. The assigned
addresses are from $30 to $3B and tables three, four and five
show the outputs assigned to the bits and connector information.

48

80-bit OPTO-1SOLATOR 1/P CARD PORT $60 — $64
CONNECTOR PH2D8A (Local control) PH2D 8B
PIN No. | BIT FUNCT ION [BIT FUNCT I ON

26 60.0 FROM PL STROBE 63.0 SEP 1

27 60.1 a 63.1 SEP 2
FROM

28 60.2 b 63.2 SEP 3

PARKING LOOP

29 60.3 63.3 SEP 4

30 60.4 FROM STROBE 63.4 SEP 5

31 60.5 a 63.5 STP 1
FROM

32 60.6 b 63.6 STP 2
CODE

33 60.7 ¢ 63.7 STP 3

14 61.0 TO STROBE 64.0 STP 4

35 61.1 a 64.1 STP 5
TO

36 61.2 b 64.2 STP 6
CODE

37 61.3 ¢ 64.3 STP 7

38 61.4 64.4 H2

39 61.5 RESET 64.5 HI

40 61.6 EXECUTE 64.6 H

41 61.7 CANCEL ENTRY 64.7 S

42 62.0 24V ON 62.4 HS

43 62.1 32V ON 62.5 Va

44 62.2 62.6 Vb

45 62.3 62.7 Ve

PINS 21-25,46-50

PINS 1-20 = OV (COM)

table 1

NOT CONNECTED

49

80-bit OPTO-ISOLATOR | /P CARD

PORT $65 - $69

FONNECTOR PH2D8C PH2D 8D
PIN No. | BIT] FUNCT 10N BIT FUNCTI1ON

26 65.0 vd 68.0 STP
27 65.1 V2a 68.1 0 DEG. SW1
28 65.2 V2b 68.2 180 DEG.
29 65.3 V2¢ 68.3 STP
30 65.4 Via 68.4 0 DEG. SW2
31 65.5 V1b 68.5 180 DEG.
32 65.6 Vic 68.6 STP
33 65.7 Vvid 68.7 0 DEG. SW3
34 66.0 PL1 69.0 180 DEG.
35 66.1 PL2 69.1 STP
36 66.2 PL3 69.2 0 DEG. SW4
37 66.3 PL4 69.3 180 DEG.
38 66.4 PL5 69.4
39 66.5 PL6 69.5
40 66.6 PL7 69.6
41 66.7 PL8B 69.7
42 67.0 PL9 67.4
43 67.1 PL10O 67.5
44 67.2 24V PSU 67.6
45 67.3 32V PSU 67.7

PINS 21-25,46-50

PINS 1-20 =

oV (COM)

table 2

NOT CONNECTED

50

32-bit RELAY O/P CARD PORT $30 - $33
CONNECTOR PH2ZD8E (MLEDS) PH2D8F (MLEDS)
PIN No. I BIT FUNCTION BIT FUNCTION

20 30.0 a 32.0 PL 10

19 30.1 b TRACK 32.1 FL 9

POSITION

18 30.2 c CODE 32.2 PL 8

17 30.3 d 32.3 PL T

16 30.4 TP strobe 32.4 PL 6

15 30.5 T P enable 32.5 PL 5

14 30.6 32.6 FL 4

13 30.7 32.7 PL 3

12 31.0 a 33.0 PL 2

XP_ 1D
11 31.1 b 33.1 PL 1
CODE

10 31.2 < 33.2 SW 1

9 31.3 a 33.3 SwW 2

8 31.4 b STATION 33.4 SW 3

7 31.5 ¢ CODE 33.5 SW 4

6 31.6 d 33.6

5 31.7 STATION STROBE 33.7

PINS 1-4,26-29 NOT CONNECTED

PINS 30-45 = 0V

table 3

51

32-bit RELAY O/P CARD

PORT $34 - $37

CONNECTOR P2D8G (Localcontrol) PH2D8H({Switchers)
PIN No. BIT FUNCTION BIT FUNCTION
20 34.0 a 36.0 T POWER SW 1
19 34.1 b FROM 36.1 DIRECTION 5W 1
18 34.2 c CODE 36.2 T POWER Sw 2
17 34.3 d 36.3 DIRECTION 5W 2
16 34.4 a 36.4 T POWER SW 3
15 34.5 b TO 36.5 DIRECTION SW 3
14 34.6 c CODE 36.6 T POWER S5W 4
13 34.7 d 36.7 DIRECTION 5SW 4
12 35.0 TO STROBE 37.0 M POWER SW 1
11 35.1 EXECUTE 37.1 M POWER Sw 2
10 35.2 CANCEL ENTRY 37.2 M POWER SW 3
9 35.3 ALARM 37.3 M POWER SW 4
8 35.4 FROM STROBE 37.4
7 35.5 FAULT/RESET 37.5
6 35.6 24V ON 37.6
5 35.7 32v ON 37.7

PINS 1-4,26-29

P2D8G PINS 30-33,37-45 = +5V
PINS 34-36 = 0V
P2D8H PINS 30-45 = +24V

table 4

NOT CONNECTED

32

32-bit RELAY O/P CARD PORT $38 - $3B
CONNECTOR PH2D8) (Tracks) PH2D 8K (Parking loop)
PIN No. BIT FUNCT ION i BIT FUNCTION
20 38.0 POWER 3A.0 24V PSU ON
H
19 38.1 DIRECTION 3A.1 32V PSU ON
18 38.2 POWER 3A.2
H2
17 38.3 DIRECTION 3A.3
16 38.4 POWER 3A.4
H1
15 38.5 DIRECTION 3A.5
14 38.6 POWER 3A.6 TP 10
S
13 38.7 DIRECTION 3A.7 TP 9
12 39.0 POWER 3B.0 TP 8
HS
11 39.1 DIRECTION 3B.1 TP 7
10 39.2 POWER 38.2 TP 6
v2
9 39.3 DIRECTION 3B.3 TP 5
8 39.4 POWER 3B.4 TP 4
V1
7 39.5 DIRECTION 3B.5 TP 3
6 39.6 POWER 3B.6 TP 2
v
5 39.7 DIRECTION 3B.7 TP 1

PINS 1-4,26-29 NOT CONNECTED

PH2DE8] PINS 30-45 +24V

PH2D8K PINS 30-44 +24V,PIN 45 = +24V in Local controller

table 5

53

5.3 PROGRAM DESIGN

5.3.1 START UP
Initialize the dotmatrix display.
8-bit data length
Cursor movement to the right.
Display data RAM address = $§B0.
Clear display and return cursor to top left.
Set the cursor invisible.
Initialize all the variables.
Bleep once.
Display ¢ 'THE TARGET TRANSPORT SYSTEM
Switch on the Power Supplies.!
Poll the inputs from the local controller,

24V on : $62.0 32V on : $62.1
When it goes true, switch on the appropriate power supply.
24V : $40.0 32V @ §40.1

Read the power supply status $67.2 and $67.3.
Indicate on the local controller lamps $35.6 and $35.7.
Display '24V Power Supply on.

32V Power Supply on. !

Read the position status of the switchers.

0 degrees : SW1:468.1 SW2:468.4 SW3:3568.7 SW4:469.2

1f they are not all at 0 degrees then
cal! the routine to drive it to 0 deg.
Display : ! Switchers will now be tested
Observe the Mimic LED's. '

Call the routines to drive the switchers to 180 degrees.
Indicate on Mimic panel LED,s.
Call the routine to drive the switchers to 0 degrees.
Indicate on Mimic panel LED's.
'1f a switcher does not respond then display :

' Switcher no.x is faulty

RESET to continue. !

Bleep three times.
When RESET, drive the switcher until it responds.
If all responded then display :

' All four switchers are O K. !

Display : ' Parking Loop positions will now be checked.
Observe the Mimic Panel. !

Read the parking loop positions.

$66.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 $67.0 .1
Determine which ones are occupied.
Indicate on mimic pane! LED!s.

$32.1 .2 .3 .4 .5 .6 .7 $33.0 .1
Determine if transporters are positioned from position 10
downwards with no gaps. :
If not display :

! Transporters will now be positioned. !

Call the positioning routine.

54

Display : ' Stations will now be checked and updated.
Observe the Mimic Panei, !

Read from the bubble memory the stations and ID's parked

in that stations.

Check the stations and determine which ones
$63.5 .6 .7 $64.0 .1 .2 .3

Compare the station check to the bubbles file.

1f the bubble shows a station occupied but the station check

did not find one there, discard the information.

If the check shows a station occupied but the bubble does not

then display a 0 in that station.

If the check and the bubble matches, then display the bubble fs

ID code in that station.

To display data :

are occupied-.

Set up 7—-segment data $31.0 .1 .2
Set up the station code $31.3 .4 .5 .6
Strobe $31.7 '

Set the station code to 0000
Strobe again.
Bleep ance.

Display : ' Stray transporter check. !
Check if a transporter is in any position other than in the
parking loop or in a station by reading al! the track positions.

$64.4 .5 .6 .7

$62.4 .5 .6 .7

$65.0 .1 .2 .3 .4 .5 .6 .7
If one is found display :

' A stray transporter was found on the tracks.

RESET to continue., !
Bleep until the RESET button is pressed.
Read the RESET button from the local controller.
If pressed stop the bleeper.
Display : ' Transporter will now be driven to the parking loop.
Press EXECUTE. !
Read the EXECUTE button from the local controller.
If pressed call the routine to drive the transporter to the
parking loop.
Disptay : ' Check the number of transporters in the system = 5
{RESET) !
Wait for RESET.
Display : ' Make sure one is not jammed on the tracks. (RESET) '
Wait for RESET.
Display ¢ '=wee——mmmmem e N 1
' Enter a FROM and a2 TO position. !

55

5.3.2 THE MAIN POLLING ROUTINE.

The inputs to be polled are :

The stations $63.5 —=> $64.3
The parking loop $66.0 ——> $67.1
The power supplies $67.2 .3

The switchers $68.1 .4 .7 $69.2

The local controllier $60.0 .4 $61.0 (3 strobe lines)

Read the bytes one by one.

Compare it to jts! previous value.

If it is the same read again.

I1f it changed, call the appropriate service routine.

Stations service routine.

Determine which station.

Determine if a transporter was removed or inserted.
1f removed display :

' Transporter was removed from station. !
Write a blank to the seven segment display.
Update the bubble memory.
tf inserted display : .

‘Transporter was inserted into statjon. !
Write a seven to the seven segment display.
Update the bubble memory.

Resume polling.

Parking loop service routine.

Determine which position.

Determine if transporter was removed or inserted.

Display : 'Transporter was removed/inserted in the parking
Update the mimic panel LED's.

Call the routine to position the transporters.

Resume polling.

Power supplies polling routine.
Determine which power supply failed $67.2 $67.3
Update tocal controller lamps $35.6 $35.7
Fault lamp on $35.5
Bleep until reset.
Display : 'xxV Power Supply off.
RESET to continue. !
Check for RESET.
Silence bleeper.

Display : 'First check and then switch on the Power Supply.

Check $62.0 $62.1
Switch the power supply on $40.0 $40.1
Check the status $67.2 $67.3
If still of go back to beginning.
If on : fault tamp off

Update tocal controller lamps.
Bleep once.

loop.!

56

Display ready.
Resume polling.

Switchers position polling routine.

Determine which switcher is out of position.

Bieep until RESET.

Fault lamp on.

Mimi¢ LED to red.

Display : ' Switcher no.x is out of position.
RESET to continue, !

Check for RESET.

Silence bleeper.

Dispiay : 'Check the switcher before you RESET to continue.'

Catl! routine to drive switcher to 0 degrees. :

Fault lamp off.

Display ready

Resume polling.

Local controller polling routine.
Determine which bit changed.

FROM strobe : $60.4
Read FROM strobe : $60.5 .6 .7
Store the code.

Indicate on Jocal controller lamps.
Resume polling.

FROM Parking Loop strobe : $60.0
Read FROM P L cede $60.1 .2 .3
Store the code.

Indicate on tocal controller lamps
Resume polling.

TO strobe : $681.0
Read TO code $61.1 .2 .3
Store the code.

Indicate on local controller lamps.
Resume polling.

CANCEL ENTRY : $61.7 :
Switch off all lamps on local controlter.
Delete afl stored values.,

Resume polling.

EXECUTE : $61.7
Check the stored FROM value.

Check the stored FROM Parking Loop value.
I1f both are 0O then

Bleep once.

Displtay : 'No FROM entered. !

Display ready.

Resume polling.
Check the stored TO value.

{f value is O then

Bleep once.

Display : 'No TO entered. !

57

Resume potlling.

If FROM and TO values <> 0 then
Check if TO = FROM.
1f true then
Bleep once.
Display : 'FROM and TO the same position. !
Display ready.
Resume polling.

If FROM <> TO then
Check if FROM position is occupied by a transporter.
{f unoccupied then
Bieep once.
Display : 'The FROM position entered is empty. !
Display ready.
Resume polling.
Check if TO position is unoccupied.
1f occupied then
Bieep once.
Display : 'The TO position entered is occupied.
Display ready.
Resume polling.

1f all the above conditions are met then TO and FROM will
have legal values at this stage.
Display : ' Transporter now on rotte ———emeemememe——cece———- > 1

Call the routine to drive the transporters.

5.3.3 THE ROUTINE TO DPRIVE THE TRANSPORTERS

From Hot Cells A.

Set up the track power.

Set up the switcher track power.

Update the bubble memory : Hot cellis A is now empty.
Update the Mimic panel. .

From Hot Cells B.

Set up the track power.

Set up the switcher track power.

Update the bubble memory : Hot cells B is now empty.
Update the Mimic panel.

Drive switcher 2 to 180 degrees.

Indicate progress on Mimic panel.

Poll switcher 2 stopping plate for transporter arrival.
On arrival switcher 2 track power off.

Drive switcher 2 to 0O degrees.

Determine TO code and set up switcher 2 track power accordingly.

From Vault 1

Vault 1 has three stopping positions., so first determine if TO
code is in vault 1.

If so set up track power accordingly.

Else set up track power to drive transporter to Hot cells A.

58

Update the bubble memory.
Update the Mimic panel.

From Vault 2.

Set up the track power,.

Set up the switcher track power.,

Update the bubble memory : Vault 2 is now empty.

Update the Mimic panel,

Drive switcher 4 to 180 degrees.

Indicate progress on Mimic panel.

Poll switcher 4 stopping ptate for transporter arrival.
On arrival switcher 4 track power off.

Drive switcher 4 to O degrees.

Determine TO code and set up switcher 4 track power accordingly.

From Storage.

Set up the track power.

Set up the switcher track power.

Update the bubble memory : Storage is now empty.

Update the Mimic panel.

Drive switcher 3 to 180 degrees.

Indicate progress on Mimic panetl.

Poll switcher 3 stopping plate for transporter arrival.
On arrival switcher 3 track power off.

Drive switcher 3 to 0 degrees.

Determine TO code and set up switcher 3 track power according!ly.

From Parking Loop.

Start the first transpoerter in the parking loop and read its! 1D
on the sensing plate.

If it is not the wanted ID drive it to the back of the loop.

Rearrange the transporters so that the next one is in the first
parking position.

Drive the next one past the sensing plates and read its' ID.

1f it is still not the wanted |D repeat the above.

If the ID is the same as the very first one the rearrange and
display : ! The ID entered was not found in the Parking Loop.!

RESET to continue. !

Check for RESET and go to main polling routine.

1f the correct D is found then :

Drive switcher 1 to 180 degrees.

Set up the switcher track power.

Poll switcher 1 stopping plate for arrival.

On arrival switcher 1 track power off.

Drive switcher 1 to O degrees.

Set up the track power,

Set up the switchers track power.

To Hot Cells A.

Set up the track power.

Indicate the transporter progress on the Mimic panel.
Pol! hot cells A stopping plate for arrival.

59

On arrival switch off all the track power.
Update the Mimic panel.
Update the bubble memory.

To Het Cells B.
Set up the track power.
Indicate the transporter progress on the Mimic panef.
Potl switcher 2 stopping plate for arrival.
On arrival switcher 2 track power off.
Drive switcher 2 to 180 degrees.
Set up switcher 2 track power.
When transporter has left the switcher then
drive switcher 2 to 0 degrees.
Indicate the transporter progress on the Mimic panel.
Poll hot cells B stopping plate for arrival.
On arrival switch off all the track power.
Update the Mimic panel,.
Update the bubble memory.

Te Vault 1-1,2,3.

Set up the track power,

Indicate the transporter progress on the Mimic panel.
Poll the appropriate stopping plate for arrival.

On arrival switch off all the track power.

Update the Mimic panel.

Update the bubble memory.

To Vault 2.
Set up the track power.
Indicate transporter progress on the Mimic panel.
Poll switcher 4 stopping plate for arrival,
On arrival switcher 4 track power off.
Drive switcher 4 to 180 degrees.
Set up switcher 4 track power.
When transporter has left the switcher then
drive switcher 4 to 0 degrees. :
Indicate the transporter progress on the Mimic panetl,
Poll Vault 2 stopping plate for arrivat.
On arrival switch off all the track power.
Update the Mimic panel.
Update the bubble memory.

To Storage.
Set up the track power.
Indicate the transporter progress on the Mimic panel,
Poll switcher 3 stopping plate for arrival.
On arrival switcher 3 track power off.
Drive switcher 3 to 180 degrees.
Set up switcher 3 track power.
When transporter has left the switcher then
drive switcher 3 to 0 degrees.
Indicate the transporter progress on the Mimic panel.

60

Poll Storage stopping plate for arrival.
On arrival switch off all the track power.
Update the Mimic panel.

Update the bubble memory.

To Parking Loop.

Set up the track power.

Indicate the transporter progress on the Mimi¢ panel.
Poll switcher 1 stopping plate for arrival.

On arrival switcher 1 track power off.

Drive switcher 1 to 180 degrees.

Set up switcher 1 track power.

When transporter has left the switcher then
drive switcher 1 to 0 degrees.

Set vp track power for parking position 10.

On arrival switch off all the track power.

Rearrange the parking loop transporters.
Update the Mimic panel.

At this stage the transporter would have reached its! destination
and the program can go back to the main polling routine.

5.4 THE PROGRAM

The program consists of a main program and thirteen include
files. This makes it modular, weasy to understand and easy to
maintain. A printout of the whole program follows on the next
page.

61

PROGRAM MAIN;

{ MAIN 1s the program to control the isotope production target transport

system. It was written during 1988 by Tertius Human. }
{GLOBAL DECLERATIONS GLOB_DEC.PAS}
CONST

dot_matrix = $59;

TYPE
string8@ = STRINGIS8Z];

VAR

dollar3@,dollardl,dollar32,dollar33,
dollar34,dollar3b,dollar36,dollar3?,
dollard8,dollar39,dollar3A,dollar3B : BYTE;

testbd, testbl,test62,test63, testb4,
test65, testb6,test67,test68,test69 : BYTE;

dot_matrix_control,dot_matrix_data : BYTE;
mess : string8d;

entr,green_led,n,from_code,to._code : INTEGER;
switcher_no,motor_power,
switcher_destination,switcher_pos_status : BYTE;
switcher_ faulty : BOOLEAN;

stations_poll_1,stations_poll_2,stations_store_l,stations_store_2,
parking loop_gtore_1,parking loop_poll_ 1,

parking loop_store_2,parking loop_poll_2 : BYTE;

{PRORAM MISCELLANEQUS MISCEL.PAS
This program does the following:

a)Sounds the alarm
Alarm port := $35 Alarm bit := $F7 1111 @111

b)Checks the RESET from the Local controller

Port 361 reset bit := $20 1191 1111
c)}Checks the EXECUTE from the Local controller
Port 61 execute bit := $40 1911 1111
3} _

CONST

alarm = $F7;

PROCEDURE bleep;

BEGIN
dollar3b := dollar35 AND $F7;
PORT[$35] := dollar3s;
DELAY(200);
dollard3b := dollar35 OR 8;

PORT{$35] := dollaris;
END;

62

FONCTION local_reset : BOOLEAN:
BEGIN
IF (PORT[$61] AND $20) = @ THEN
BEGIN
local_reset := TRUE;
dollardd := dollar3% AND 3DF;

PORT[$35] := dollar35: {Lamp on}
DELAY (302} ;
dollar3b := dollar3dd OR $20;
PORT{$35] := dollar35; {Lamp off}
. END
ELSE local_reset := FALSE;
END;

FUNCTION local_execute : BOOLEAN;
BEGIN

local_execute := (PORT[$61] AND $48) = 0;
END;

PROCEDURE bleep_until_reset:
BEGIN
dollar3b := dollar35 AND alarm;
PORT[$35] := dollar3b;
REPEAT
UNTIL local_reset;
dollar3b := dollar3db OR ($FF - alarm);
~ PORT[$35] := dollar3d5;
ERD;

{PROGRAM INITIAL INITIAL.PAS
This program:
a)Initializes the dotmatrix display.

function_set : sets 8 bit data lenght
entry_mode_set : sets cursor movement to right
DD_ram : sete Display Data RAM address

clear : clears display , returns cursor to top left
curs_off : sets cursor invisible

b)Initializes all the variables when power is switched on.
}

CONST
function_set = $38;
entry_mode_set = §;
DD_ram = $88@;
clear = 1;
curs_off = 12;

PROCEDURE dotmatrix_init_write {(func : BYTE};
BEGIN
PORT[dot_matrix controll := func;

63

DELAY(1);
END;

PROCEDURE dotmatrix_initialize;
BEGIN
dot_matrix_control := dot_matrix;
dotmatrix_init_write(function_set);
dotmatrix_init_write(curs_off);
dotmatrix_init_write(entry_mode_set)};
dotmatrix_init_write(clear);
dotmatrix_init _write(DD_ram);
END;

PROCEDURE wvariables_initialize;

BEGIN
dollar39 := $E&;
dollar3dl := $029;
dollar32 := $FF;
dollar33 := $FF;
dollar34 := $FF;
dollar3d := $EE;
dollard6 := $FF;
dollar3dT := $FF;
dollar38 := §FF;
dollar3g := $FF;
dollar3A := $FB;
dollar3B := $FF;
PORT[$38] := dollar3d;
PORT[$31] := dollar3i;
PORT[$32] := dollar32;
PORT[$33] := dollard3;
PORT{$34] := dollar34;
PORT[$35] := dollar3b;
PORT[$36] := dollar36;
PORT{3$37] := dollar37;
PORT[$38] := dollar38;
PORT{$38] := dollar39g;
PORT{$3A] := dollar3A;
PORT[$3B] := dollar3dB;
END;

{PROGRAM DOTHMATRX DOTHMATRY .PAS

This program writes data to the dotmatrix display.
}

FUNCTION ready : BOCOLEAN;
{To test the busy flag}
BEGIN

ready := (PORT[dot_matrix_contrel + 2] < $89),;
END;

PROCEDURE clear_rest (ind : INTEGER);

{Writes blanks , $2¢ , in the rest of the dotmatrix display}
VAR

index : INTEGER;
BEGIN

64

FOR index := ind TO 78 DO
BEGIN
REPEAT
UNTIL ready;
IF ready THEN
BEGIN
PORT[{dot_matrix_data] := $AQ; {space = $A0}
END;
END;
END;

PROCEDURE write_dotmatrix (mess : string8@);
{Writes the message , mess , to the dotmatrix}

VAR
index : INTEGER;
BEGIN
PORT[dot_matrix_control] := clear;
dot_matrix_data := dot_matrix + 1;
FOR index := 1 TO Length(mess) DO
BEGIN
REPEAT

UNTIL ready;
IF ready THEN
BEGIN
PORT[dot_matrix_data] :=ORD(mess{index]);
END;
END;
clear rest(l+Length{mess));
END;

{PROGRAM POWER SUPPLIES POW_SUP.PAS

This program pells the inputs from the Local Controller concerning
the 24V & 32V Power Supplies. When either of these bits change it
switches the appropriate P S on via the relay outputs. It then checks
the status of the power supplies. If both are not on, it will stay in
the loop untill true. When true it will update the Mimic Panel lamps,
display the message and exit.
The following PORT addresses are used:
Status
24V on status : $67.2 1111 1911
32V on status : $67.3 1111 2111

Command from Local Controller

24V on : $62.0 1111 1119
32V on : $62.1 1111 1191

Cutput to switch Power Supply on
24V on : $3A.0 1111 1119
32V on : $3A.1 1111 1181

Cutput to Local Controller indication lamps
24V on : $35.6 111 1111
32V on : $35.7 P111 1111

1

CONST

psZ24¥_on_output = $FE;

Ps32V_on_output = $FD;

P824V_on_lamp = $BF;

€5

ps32V_on_lamp = $7F;

VAR

pe24V_status,ps3ZV_status,switch_ps_on : INTEGER;
ps24V_on,ps32V_on : BOOLEAN;

FUNCTION ps_on_command : BOOLEAN;
BEGIN

IF (PORT[$62] AND 1 = @) OR (PORT[$62] AND 2 = @) THEN
BEGIN

ps_on_command := TRUE;

*WRITELN("PS_ON_COMMAND = TRUE");
END;
END;

PROCEDURE pe_on_24V;
BEGIN
WRITELN(“24V on out”);
ps24V_on := FALSE;
dollar3A := dollar3dA AND ps24V_on_output;
PORT[$3A] := dollar3A;
DELAY(192);
pe24V_status := PORT{$67] AND 4;
IF pa24V_status = @ THEN
BEGIN
dollar3d5 := dollar3d5 AND ps24V_on_lamp;
PORT[$35] := dollaris;
ps24V_on := TRUE:
WRITELN("24V Power supply on.);
END;
END;

PROCEDURE ps_on_32V;

BEGIN
ps32V_on := FALSE;
dollar3A := dollar3A AND psdZ2V_on_output;

PORT[$3A] := dollar3i;
DELAY(19@);
ps32V_status := PORT[$67] AND §;
IF ps32V_status = @ THEN)
BEGIN
dollar35 := dollar3dd AND ps32V_on_lamp;
PORT[$35] := dollaris:
ps32V_on := TRUE:
ERD;
ERD;

PROCEDURE power_supplies;
BEGIN

WHILE NOT(ps24V_on AND ps32V_on) DO
BEGIN

REPEAT UNTIL ps_on_command;

IF ps_on_command THEN

66

BEGIR
switch_ps_on := PORT{$62] AND 3;
CASE switch_ps_on OF
2 pe_on_24V;
1 : pe_on_32V;

@ : BEGIRN
ps_on_24V;
ps_on_32V;
END;
END;
END;
END; -
mess := ~ 24V Power Supply on 32V Power Supply on’;
write_dotmatrix(mess);
END;
{PROGRAM Switcher Driver SW_DRV .PAS

This program drives a switcher to @ deg. or 18¢ deg. If the switcher does
not respond in a certian time, the variable switcher_faulty is returned
true. It also updates the switcher status on the Mimic Panel leds.

Ports used

Mimic panel switcher LED's = $33

green_led 1@ SWl1 red $FB
11 SW1 green 4
20 SWZ red $F7
21 B8SW2 green 8
30 SW3 red $EF
31 SW3 green $12
43 SW4 red $DF

41 5W4 green $20

switcher_no:Port for motor power motor_power:bit for motor power

SW1 $37 $FE 1111 1119
SW2 $37 $FD 1111 1181
SH3 $37 $FB 1111 1211
SH4 $37 $E7 1111 @111
switcher_position_status:Port switcher_destination:bit
SH1 $68 0 deg 2 P28 2010
180 deg 4 2003 0120

SW2 368 2 deg $19 0021 0090
180 deg $20 Q010 2099

SW3 $68 2 deg $8@ 1000 QRO
$69 180 deg 1 PO G0a1

Sk4 $69 @ deg 4 2093 2103

180 deg 8 0o00 1000

67

PROCEDURE switcher_faulty_redrive;FORWARD;

FUNCTION time_out : BOOLEAN;
BEGIN
cntr := SUCC{cntr);
DELAY(1);
IF cntr >= 5200 THEN {Approximately 5 seconds}
time_out := TRUE
ELSE time_out := FALSE;
END;

PROCEDURE update_mleds_switcher;
BEGIN
CASE green_led O
17 : dollar3d3 := dollar33 OR 4;
43 : dollar33 := dollar33 OR 8;
30 : dollar33 := dollar33 OR $1@;
28 : dollar33 := dollar33 OR $29;
11 : dollar3d3 := dollar33 AND $FB;
41 : dollar33 := dollar33 AND $F7;
31 : dollar33 dollar33 AND 3$EF;
21 : dollar33d := dollar33 AND $DF;
ERD;
PORT[$33] := dollar33;
END;

s nan

PROCEDURE drive_gswitcher;

VAR
degrees : BYTE;
ewitcher_fin : BOOLEAN;

BEGIR
cntr = O;
switcher_fin := FALSE;
time_out := FALSE;

dollar37 := motor_power ARD dollar37; {Hotor Power on}
PORT[$37] := dollar37;

REPEAT

degrees := PORT[switcher_pos_status] AND switcher_destination;
IF degrees = @ THEN
switcher_fin := TRUE;
UNTIL switcher_fin OR time_out; {Check for dest. or time out

dollar37 := dollar37 OR ($FF - motor_power);
PORTI[$37] := dollar3T7; {MHotor Power off}
update_mleds_switcher;

IF time_out THEN

switcher_ faulty_redrive;
END;

PROCEDURE switcher_faulty_redrive;

VAR
reset_in @ BYTE;
reset : BOOLEAN;

68

BEGIN
reget 1= FALSE;
bleep;
DELAY (208) ;
bleep;
DELAY(20@) ;
bleep:;
CASE motor_power OF
$FE : mess := ~ Switcher no.l1 1s faulty RESET to continue
$FD : mess " Switcher ne.2 is faulty RESET to continue
$FB : mess ° Switcher no.3 is faulty RESET to continue
$F7T : mess " Switcher no.4 is faulty RESET to continue
END;
write_dotmatrix(mess);
REPEAT
UNTIL local_reset;
mess 1= "—->";
write_dotmatrix(mess);
drive_switcher;
END;

oo il

FPROCEDURE switcherl_to_180;

BEGIN
WRITELN("SW 1 TO 1892 deg.):
green_led := 19;

motor_power := $FE;
switcher_pos_status := $68;
switcher_destination := 4;
drive_switcher;

END;

PROCEDURE switcherZ_to_1388;

BEGIN
WRITELN("SW 2 TO 180 deg.);
green_led := 20;
motor_power := $FD;
switcher _pos_status := $68;
switcher_destination := $£28;
drive_switcher;

END;

PROCEDURE switcher3d_to_180;
BEGIN .
WRITELN("SW 3 TO 18Q deg.");
green_led := 3@;

motor_power := 3FB;
ewitcher_pos_status := $69;
switcher_destination := }1;
drive_switcher;

END;

PROCEDURE switcher4_to_18@;
BEGIN
WRITELN(SW 4 TO 180 deg.)
green_led := 4@;
motor_power := 3F7:
ewitcher_pos_status := $69;

€9

sewitcher_destination := 8;
drive_switcher;
ERD;

PROCEDURE switcherli_to_zero;
BEGIN
WRITELN({ "SW 1 TO @ deg. ");
green_led := 11;
motor_power := 3FE;

switcher_vpos_sgtatus := $68;
switcher_destination := 2;
drive_switcher;

END;

PROCEDURE switcher2_to_zero;

BEGIN
WRITELN("SW 2 TO @ deg. ");
green_led := 21;
motor_power := $FD;
switcher_pos_status := $68;
switcher_destination := $19;
drive_switcher;

END;

PROCEDURE switcher3_to_zero;
BEGIN
WRITELN("SW 3 TO @ deg. ");
green_led := 31;
motor_power := $FB;
swltcher_pos_status := $68;
switcher_destination := $88;
drive_switcher;
END;

PROCEDURE switcher4_to_zero;
BEGIN

WRITELN("SW 4 TO @ deg. ");
green_led := 41;

motor_power := $F7;
switcher_pos_status := $69;
switcher_destination := 4;
drive_switcher;
END;-
{PROGRAM Switcher status check & test SW_CHEK .PAS

This program reads the switcher status port and updates the Mimic Panel
if 811l the switcers are at zero degrees. If one or more are not at
zero degrees 1t will call the routine do drive it to zero degrees.

The second part drives all the Switchers to 188 deg. and back to @ deg.

BW no. 3 2 1
sw_stat_1 : 1031 2919

EW no. 4
sw_stat_2 : QOO0Q02 Q100

7¢

VAR
sw_stat_1,sw_stat_2 : BYTE;

PROCEDURE switcher_status_check;
BEGIHN

mese = ~ Switcher status check. " ;
write_dotmatrix(mess);

bleep;

DELAY(1@029) ;

sw_stat_1 := PORT[$68] AND $92;

sw_stat_2 := PORT[$69] AND 4;
IF sw_stat_1 = @ THEN
BEGIN

dollar33 := dollar33 AND $E3;
PORT[$33] := dollar33;

END
ELSE
BEGIN
IF sw_gstat_1 AND 2 = 2 THEN
sWwitcherl_to_zero;
IF sw_stat_1 AND $18 = $18 THERN
ewitcher2_to_zero;
IF sw_stat_1 AND $83 = $89 THEN

switcher3_to_zero;

dollar33 := dollar33 AND $E3; {Change these to become cones Green = 1,Red
PORT[$33]1 := dollar33d;

END;
IF sw_stat_2 = @ THEN
BEGIN
dollard3 := dollar3d3 AND $CF; {Same as abovel}
PORT[$33] := dollar33:
END
ELSE
BEGIN
If sw_stat_2 ARD 4 = 4 THEN
switcherd_to_zero;
ERD;
ERD;

PROCEDURE switcher_check;

BEGIN :

mesgs := "Switchers will now be tested Observe the Mimic LEDs";
write_dotmatrix{(mess); '

DELAY (400@) ;

mess := “Switcher no 17;

write_dotmatrix(mess);

switcherl_to_180;

DELAY(5@00) ;

ewitcherl_to_zero;

DELAY(50@) ;

mess := “Switcher no 27;
write_dotmatrix(mess);
switcher2_to_180;
DELAY(580);
switcher2_to_zero;

71

DELAY(508);

mesg := Switcher no 37;
write_dotmatrix(mess};
switcher3_to_18@;

DELAY (5@2@) ;
switcher3d_to_zero;
DELAY(509) ;

meas = "Switcher no 47;
write_dotmatrix(mess);
switcherd_to_180;

DELAY (5098} ;
switcher4_to_zero;
DELAY(529);

mess = "All four switchers 0 X' ;
write_dotmatrix({mess);
END;

{PROGRAM Parking Loop P_LOOP.PAS

a) Parking_loop_check will check the occupied positione in the parking loop
and update the Mimic panel LED & accordingly.

b) Parking_loop_positioning will position the transporters in the parking
loop so that the first one will be in position 19, the next one will be
in position 9 etc.

CONST
pl_position : ARRAY[1..18] OF
BYTE = ($66,$66,366,366,366,$66,$66,366,3$67,8%67);

test : ARRAY[1..1@] OF
BYTE = (1,2,4,8,%10,%$20,$40,%$80,1,2);

pl_output : ARRAY[1l..1@] OF
BYTE = ($7F,$BF,$DF,$EF,$F7,$FB,$FD,$FE,$7F,$BF);

VAR
out_put,empty,empty_next : BYTE;
I,J,pointer : INTEGER;

PROCEDURE parking_ loop_check;

VAR

Pl_positionsl,pl_positionsZ : BYTE;
BEGIN

Pl_vpositionsl := PORT[$661];
Pl_vositions2 := PORT[$67] AND 3;

IF pl_positionsl AND 1 = @ THEN
dollar33 := dollar33 AND $FD
ELSE dollar33 := dollar33 OR 2:

72

IF pl_positionsl AND 2 = @ THEN
dollar33 := dollar33 AND $FE
ELSE dollar33 := dollar33 OR 1;

IF pl_positionsl AND 4 = @ THEN
dollar32 := dollar32 AND $7F
ELSE dollar3d2 := dollar32 OR $80;

IF pl_positionsl AND 8 = & THEN
dollar32 := dollar32 AND $BF
ELSE dollar32 := dollar32 OR $40;

IF pl_positionsl AND $12 = & THERN
dollar3d2 := dollard2 AND $DF
ELSE dollar32:= dollar3d2 OR $28;

IF pl_positionsl AND $2€2 = @ THEN
dollar32 := dollar32 AND $EF
ELSE dollar32 := dollar32 OR $10;

IF pl_positionsl AND $40 = @ THEN
dollar32 := dollar32 AND %F7
ELSE dollar32 := dollar32 OR 8;

IF pl_positionsl AND $80 = © THEN
dollar32 := dollar3d2 AND $FB
ELSE dollar32 := dollar32 OR 4;

IF pl_positions2 AND 1 = @ THEN
dollar32 := dollar32 AND $FD
ELSE dollar32 := dollar32 OR 2;

IF pl_positions2 AND Z = @ THEN
dollar3d2 := dollar3Z AND $FE
ELSE dollar32 := dollar32 OR 1;

PORT[$33] := dollar33;
PORT{$32] := dollar3z;
END;

PROCEDURE move_transporter_pl(pl_pos_destination,pl_pos_origan : INTEGER);

BEGIN

FOR pointer := pl_pos_destination DOWNTO pl_pos_origan DO
BEGIN

IF pointer > 8 THEN

BEGIN
dollar3A := dollar3A AND pl_output{pointer];
END
ELSE dollar3B := dollar3B AND pl_output{pointer];
END;

IF pl_pos_destination > 8 THEN
PORT{$3A] := dollar3A
ELSE PORT[$3B] := dollar3dB;

IF pl_pos_origan > 8 THEN
PORT[$3A]1 := dollar3A

73

ELSE PORT{$3B] := dollar3B;

END;

FROCEDURE poll_pl_positions(pl_pos,tst,I,J : BYTE);

BEGIN

WRITELN("DEST = ",I,” ORG = °,J);
REPEAT

parking loop_check;

empty := PORTI[pl_pos] AND tst;
UNTIL empty = @;

DELAY(25);

dollar3A := dollar3A OR $CO@;
dollar3B := $FF;

PORT[$3A] := dollar3Ai;
PORT[{$3B] := dollar3B;
END;

PROCEDURE parking_loop_positioning;

BEGIN

mess := "Transporterse will now be positicned in +the Parking Loop.";

write_dotmatrix(mess);
FOR I := 12 DOWNTO 1 DO
BEGIN
empty := PORT[pl_position[I]] AND test[I];
IF empty <> @ THEN
BEGIN
FOR J := (I - 1) DOWNTO 1 DO
BEGIN
empty_next := PORT[pl_position[J]] ARD test[J];
IF empty_next = & THEN
BEGIN
move_transporter_pl(I,Jd)};
poll_pl_positionse(pl_position[I],test{I],I,J)};

parking_loop_check; {To
J = 0 {To
END;
END;
ERD;
END;
END;
{PROGRAM STATIONS STATIONS.PAS

Thie program does the following:

update the Mimic panel
end the loop}

a) It updates the memory when a transporter reaches it's destination.

The data is stored in a file on A:STATION.DAT.

b) When the system is first powered up it checks which transporters is
parked where by reading the file. It then checks if a transporter is
actually in that station. If no transporter was found in the station
or the file shows the station is empty, it writes a © to the Mimic
ranel wich blanks the display. If a transporter is parked in a station

the ID number is written to the Mimic panel display.
every station in sequence.

This is done for

74

c¢) The following codes represent the actual storage positions in memory.
The ID number of the transporter is stored in the memory position.

2 1 2 3 4 5 6
{ HotCellsA HotCellsB Storage Vaultl_ 1 Vaulti_2 Vaultl1_ 3 Vault2

TYPE
xp_3id_type = 8..7; {@
{7

station empty , 1 - 5 = transporter ID in station
unknown transporter in station

data_type = RECORD

xp_id : xp_id_type;
END;

VAR

data : data_type;

data_file : FILE OF data_type;
mem_pos : INTEGER;

stations : BYTE;

PROCEDURE save_station;

BEGIN
ASSIGN(data_file, "A:STATION.DAT);
RESET(data_file);
SEEEK(data_file,mem_pos);
{$I-} WRITE(data_file,data) {$I+};
CLOSE{data_file);
END;

PROCEDURE read_station;

BEGIN
ASSIGN(data_file, "A:STATION.DAT);
RESET(data_file);
SEEK{(data_file,mem_pos);
READ(data_£file,data);
CLOSE(data_file);
END;

PROCEDURE station_strobe;

BEGIN
DELAY(1); {Data set up-time for T4LS374}
dollar3dl := dollar31 CR $89; {strobe high}
PORT[$31] := dollar31;
DELAY{1); {clock pulse width for 74LS374}
dollar3d3l := dollar31 AND $7F; {strobe low}

PORT[$31}1 := dollar3l;
dollar3t := dollar3l OR $78; {station code to = 15 X111 1XXX}

PORTI$31] := dollar3l;
DELAY(1);

dollar31l := dollar3t OR $8g;
PORT[$31] := dollar3i;
DELAY(1);

dollar3l := dollar31l AND $7F;
PORT[$31] := doll=ar3i;

END;

PROCEDURE HCA_display;
VAR
I : INTEGER;

BEGIN
FOR I :=
BEGIN

stations := PORT[$63] AND $23;
IF stations <> © THENK
BEGIN
dollar3l := dollar3l ANRD $F8;
WRITELR("Hot cells A is empty”);
IF data.xp_id <> @ THEN
BEGIN
data.xp_id :=
save_station;
END;
ERD
ELSE
BEGIN

1 T0 2 DO

a;

WRITELN({ "Transporter “,data.xp_id,’

IF data.xp_id = @ THEN

BEGIN
data.xp_id := 7;
save_station:
dollar3l := dollar3i1 OR 7;
END;
END;
PORT[$31] := dollar3i;
dollar3l := (dollar3l OR $28)
PORT[$31] := dollar3l;
sgtation_strobe;
END;

END;

PROCEDURE HCB_display;

BEGIN
stations := PORT[$63]1 AND $40;
IF stations <> @ THEN
BEGIN
dollar3l := dollar3l1 AND $F8;
WRITELN("Hot cells B is empty’);
IF data.xp_1d <> & THEN
BEGIN
data.xp_3id := @;
save_station;
END;
END

AND $AF;

75

{Data set-up time}
{strobe high}

{clock pulse witdh}
{etrocbhe low}

{ID code = @ :

{station code

{ID code = @ :

BLANK?}

BLAKK}

parked in Hot cells A");

5 X010 1XXX}

76

ELSE
BEGIN
WRITELN("Transporter “,data.xp_id,” parked in Hot cells B’);
IF data.xp_1id = @ THEN
BEGIN
data.xp_1id := 7;
save_station;
dollardl := dollardl OR 7;

ENRD;
END;
PORT[$31] := dollardil;
dollar3l := (dollar3dl OR $30) AND $B7; {station code = 6 X©P11 GXXX}
PORT[$31] := dollar3i;
station_setrobe;

END;

PROCEDURE S_display;

BEGIN
stations := PORT[$63] AND $802;
IF stations <> @ THEN
BEGIN
dollar3l := dollar3l AND $F8; {ID code = € : BLANK}
WRITELN(Storage is empty };
IF data.xp_id <> @ THEN
BEGIN
data.xp_id := @&;
save_station;

END;
END
ELSE
BEGIN
WRITELR(Transporter °“,data.xp_id,” parked in Storage’);
IF data.xp_id = @ THEN
BEGIN
data.xp_id := 7;
save_sgtation;
dollar3l := dollar3l OR 7;
END;
END;
PORTI$31] := dollar3l;
dollar3l := (dollar3l OR $2@) AND $AT7; {station code = 4 X012 @XXX}

PORT[$31] := dollar3l;
station_strobe;
END;

PROCEDURE V1_1_display;

BEGIN
DELAY(303);
etations := PORT[$684]1 AND 2;
IF stations <> @ THEN
BEGIN
dollar31l := dollar3l AND $F8; {ID code = @ : BLANK}
WRITELN("Vaultl 1 is empty);
IF data.xp_id <> @& THERN
BEGIN
data.xp_id := @;

gave_station;
END;
ERD
ELSE
BEGIN
WRITELN("Transporter ",data.xp_iqd,”
IF data.xp_id = & THEN
BEGIN
data.xp_3id := 7;
gave_station;
dollar31l := dollar3l OR 7;

END;
END; ,
PORT[$31] := dollaridil;
dollar3]l := dollar31 AND $87;
PORT[$31] := dollar3dl;
station_strobe;

END;

PROCEDURE V1_2_display;

BEGIN
DELAY{(30Q) ;
stations := PORT[$64] AND 4;
iF stations <> @ THEN
BEGIN
dollar3l := dollar31 AND $F8;
WRITELN("Vaultl 2 is empty)};
IF data.xp_id <> @ THEN
BEGIN
data.xp_id := &;
save_station;
END;
END
ELSE
BEGIN
WRITELN("Transporter ~,data.xp_id,’
IF data.xp_id = @ THEN
BEGIN
data.xp_id := 7;
save_station;
dollar3l := dollar3l OR 7;
END; .
END;
PORT[$31] := dollar3l; --
dollar3dl := (dollar31 OR 8)} AND $8F;
PORT[$31} := dollar3l;
station_strobe;
END;

PROCEDURE V1_3_display;

BEGIN
DELAY(392);
stations := PORTI$64] AND 8:
IF stations <> @ THEN
BEGIN
dollari3l := dollar31 ARD 3F8;

77

{ID

parked in Vaultl 17);

{station code = B X220 XXX}

code

g :

BLANK}

parked in Vaultl 27);

{iD

code

g :

{etation code = 1 X200 1XXX}

BLANK}

WRITELN("Vaulti 3 is empty’);
IF data.xp_id <> @& THEN
BEGIN
data.xp_id
save_gtation;
END;
END
ELSE
BEGIN
WRITELN("Transporter ~,data.xp_id,”
IF data.xp_id = @ THEN

a;

BEGIN
data.xp_id := T;
save_station;
dollar3l := dollar3l OR 7;
END;
END;
PORT[$31] := dollar3l:
dollardl := (dollar3i OR $10) AND $87;
PORT{$31] := dollar3i;
station_strobe;

END;

PROCEDURE VZ_display;

BEGIN
stations := PORT{$64] ARD 1;
IF stations <> @ THEN
BEGIN ,
dollar3dil dollar3l AND $F8;
WRITELN("Vault2 is empty);
IF data.xp_id <> @ THEN
BEGIN
data.xp_id :
save_station;
END;
END
ELSE
BEGIN
WRITELN("Transporter °",data.xp_id,”
IF data.xp_id = & THEN

2;

BEGIN
data.xp_id := T7;
save_station;
dollar3l := dollar3l OR 7;
ERD;
END;
PORT[$31] := dollar3l;
dollar3l := (dollar31i1 OR $18) AND $9F;
PORT[$31] := dollaril;
station_strobe;

END;

PROCEDURE mimic_update;

BEGIN
CASE data.xp_id OF
@ : dollar3l := dollar3l AND $F8;

78

parked in Vaultl 37);

{station code 2

X021 XXX}

{ID code = & : BLANK}

parked in Vault27);

{station code

3 X@21 1XXX}

{transporter ID code @ : BLANEK}

79

1 : dellar3l := {(dollar3l QR 1) AND $F39; { transpeorter }
2 : dollar3dl := {(dollar31l OR 2) AND 3$FA; { ID }
3 @ dollar3dl := (dollar3l OR 3) AND $FB; { code 1
4 : dollar3l := (dollar3l OR 4) AND $FC; { from }
5 : dollar3dl := (dollar3l OR 5) AND &FD; { 1 te 5 }
7 : dollar3t := dollar31l OR 7; {Unknown transporter}
END;
CASE mem_pos (F
© : HCA_display;
1 : HCB_display;
2 : B_display;
Jd @ V1_1_display;
4 : V1_2 display;
5 : V1_3_display;
6 : VZ2_display;
END;
END;

PROCEDURE stations_update;

BEGIN
mess := “Stations will now be updated Obseve the Mimic Panel”;
write_dotratrix(mess);
FOR mem_pos := @ TO 6 DO
BEGIN
read_station;
mimic_update;
END;
bleep;
END;

{PROGRAM STRAY CHECK STRAYCHK .PAS

This program checks for stray transporters on the tracks when the system

is switched on. When it finds one it sets up the codes to drive it to the
Parking loop.

1
PROCEDURE local_commands_poll; FORWARD;

VAR
testl : BYTE;

stray_routine_serviced,stray_to_station,
Vi_off HCA off : BOQCLEAN;

PROCEDURE strobe_TP;

BEGIN

DELAY(1); {set-up time}
dollar3@ := dollar39@ AND $DF; {enable low}

PORT{$32] := dollar3@;

DELAY(1);

dollar3d@ := dollar3@ OR $10; {strobe high}
PORT{$3@] := dollardd;

DELAY(1); {pulse width}
dollar3d@ := dollar3@ AND 3$EF; {strobe low}

PORT[$390] := dollar3@;
END;

80

PROCEDURE transporter_on_track_display;

VAR
I : INTEGER;

BEGIN
IF (test62 AND test64 AND test€5)
BEGIHN
dollar3@ :
PORT[$32]
END
ELSE
BEGIN
{PORT 62
testl :
FOR I :
BEGIN
IF test62 AND testl
BEGIN
CASE I OF
1 : dollar3d@ :
2 : dollar3@ :
3 : dollar3@ :
4 : dollar3@ :
END;
PORT{$39@]
strobe_TP;
END;
testl
END;

dollsar3@ OR $20;
:= dollari3@;

looks at HS,Va,Vb,Ve}
$19;
1 TO 4 DO

I

= @ THEN

:= dollar3dd;
:= testl SHL 1;

{PORT B4 looks at HA,HB,H,S}
testl := $10;
FOR I := 1 TO 4 DO
BEGIN
IF test64 AND testl
BEGIN
CASE I OF
1 : dollar3@ :
2 : dollar3@ :
3 : dollari@ :
4 : dollar3@ :
END;
PORT[$30]
strobe_TP;
END;
testl :=
END;

= © THEN

(I I L

:= dollar3@d;

testl SHL 1;

{PORT 65

testl :=

FOR I :

BEGIN

IF test65 AND testl =

BEGIN

CASE I CF

1 : dellar3g :

2 : dollar3@ :

3 : dollari@ :

$21;
1 TO 8 DO

g THEN

(dollar3@ OR
(dollar3@ OR
{dollar3@ OR
{dollar3@ OR

{(dollar3@ OR
{dollar3@ OR
(dollar3@ OR
(dollar3@ OR

= $FF THEN

3)
2)
1)
a)

6)
7)
5)
4)

AND
AND
AND
AND

AND
AND
AND
AND

$F3;
$F2;
$F1;
$FQ;

$F6;
$F7;
$F5;
$F4;

(dollar3@ OR @8) AND $F8;
(dollar3@ OR $D) AND $FD;
{dollar3@ OR $E) AND $FE;

{Display enable high}
{ XX1X XXXX }

{0001 OvPB}

{HS
{Va
{Vb
{Ve

XXXX
XXXX
XXXX
XXXX

2011}
2oia}
22a1}
PR3}

QoW

{0001 2R3}

{HB XXXX
XXXX
XXXX
XXXX

2110}
@111}
2101}
2100}

{H
{5

=1 M

looks at Vd,V¥2a,,V2b,V2¢,V12,V1b,V1c,V1d}

{0220 0231}

{Bit $28 is display enable}
{vd 8 XXX 19000}
{VZ2a 13 XXXX 1191}
{V2b 14 XXX 1112}

81

4 : dollard@ := (dollar3@ OR $F) AND $FF;
5 : dollar3®9 := (dellar3? OR ©29) AND $F9;
6 : dollar3d9 := (dollar3@ OR $A) AND $FA;
T : dollar3@ := (dollar3@ OR $B) AND $FB;
8 : dollar3d@ := (dollar3@ OR $C) AND $FC;
END;
PORT[$30] := dollar3gd;
strobe_TP;
END;
testl := testl SHL 1;
END;
END;
END;

PROCEDURE stray_check;

BEGIN
mess := “Stray transporter check’;
write_dotmatrix(mess)};
DELAY(200@) ;
stray_to_station := FALSE;

test62 := (PORT[$62] AND $F@) OR $9F;
test64 := (PORT[$641 AND 3$F@) OR 3$0F;
testE6d := PORT{$65];

IF (testB82 AND test64 AND test65) <> $FF THEN
BEGIRN
stray_to_station := TRUE;
WRITELN({ "STRAY TRANSPORTER ON TRACKS"};
transporter_on_track_display;
mess = "A stray transporter was found
write_dotmatrix(mess);

bleep_until_reset;

mess = ‘Transporter will now be driven to the

write_dotmatrix(mess);
stray_routine_serviced := FALSE;
to_code := B;

CASE test62 OF

$EF : from_code := 1;
$DF : from_code := 3;
$BF : from_code := 3;
$7F : from_code := 3;
END;

CASE test64 OF

$EF : from_code := 2;
$DF : from_code := 1;
$¢BF : from_code := 1;
$7F : from_code := 5;
END;

CASE test65 OF

$FE from_code := 3;
$FD : from_code := 4;
$FB : from_code := 4;
$F7 : from_code := 4;
$EF : from_code := 3;
$DF : from_code := 3;
$BF : from_code := 3;
$7F : from_code := 3;

END;
WRITELN("from_code = 7,from_code);
test83 := PORT[$63] AND $20;

{Vae
{Via
{V1ib
{Vic
{vVid

on the tracks.

nwinnun

15

19
11
12

XXXX
XXXX
XXXX
XXXX
XXXX

Parking Loop.

1111}
1001}
1810}
1211}
1102}

RESET to «

Press EXEl

82

test64 := (PORT{$64] AND $E) OR $F1;
IF (from_code = 1)} AND (test63 = @) THEN HCA_off := TRUE
ELSE HCA_off := FALSE;
IF (from_code = 3) AND (test64 <> $FF) THEN Vi_off := TRUE
ELSE V1_off := FALSE;
REPEAT
local_commands_poll;
UONTIL stray_routine_serviced;
END;
V1l _off := FALSE;
HCA_off := FALSE;
mese := "Check the number of transporters in the system = 5. (RESET)”
write_dotmatrix(mess);
REPEAT
ONTIL local_reset;
DELAY(529) ; {Operator time on switch}

mess := "Make sure it is not jammed on the tracks. (RESET) "
write_dotmatrix(mess); ,

REPEAT

UONTIL local_reset;
END;

{MOVE TRANSPORTER TR_MOVE.PAS

a) The routine move_transporter_station_to_station sets up the appropriate
path for power and direction and polls the stopping plates. It also
calls the routines to update the bubble memory and the mimic panel.

b) The routine parking loop_ID_search reade the sesnsing plate as a
transporter passes it. If it is the correct one, it calls the routine
to park it on the switcher. If it 1s not the correct one it calls the
routine to rearange the Parking loop and and sends the next one to the
sensing plate. If the first one passes the sesneing plate agaln it rearang:
the Parking loop and then displaye a message "The ID entered was not found
in the Parking loop." before it exits to the local polling routine.

c) The track_display routine updates the Mimic panel LED s as the transporter
progresses on the tracks.

VAR
data_new : data_type;

first_transporter,destination_arrival,
ID_test : INTEGER;

ID_not_found _ : BOOLEAN;

sWwitcherl_ track_power,switcherZ_track_power,
switcher3d_track_power,switcher4_track_power,
store62,storefd,storebd : BYTE;

PROCEDURE display_ready;FORWARD;

PROCEDURE next_transpcorter_in_parking_ loop;

BEGIN
dollar3A := dollar3A AND $BF;
PORT[$3A] := dollar3A; {Power to PL 1@}

REPEAT

83

testB3 := (PORT{$63] AND $1F) OR $E@; {Read the sensing plate}
UNTIL test63 <> $FF;
DELAY(15); {Contact bounce for mercury wetted reed switch}
test63 := (PORT[$63] AND $1F) OR $E@; {Read the sensing plate again}
parking_loop_check;
CASE test83 OF {Check which transporter passed the sensing plate}

$FE : ID_test := 1;

$FD : ID test := 2;

$FB : ID_test := 3;

$F7 : ID_test := 4;

$EF : ID_test := 5

ELSE ID_test := 10;
END;
END;

PROCEDURE rearange_transporters_parking_loop;

BEGIN
dollar3B := dollar3B AND §7F;
PORT{$3B] := dollari3B; {Power to PL 1}
REPEAT
test66 := PORT[$66] AND 1; {Test for arrival of transporter}
UNTIL test66 = @;
dollar3A := dollar3A OR $C9;
dollar3B := §FF;
PORT[$3A] := dollar3A; { Power off for 1}
PORT[$3B] := dollar3B; { PL1 to PL1O }
parking loop_check; {To update the Mimic panel}
parking loop_positioning; {Rearange the transporters}
END;

PROCEDURE transporter_on_switcher_parking_ loop;

BEGIN

dollard6 := dollar3g ARD 3$FE;

PORT[$36] := dollar3s; { 8" 1 track power <- }
switcherl_to_188;

REPEAT
test68 := PORT[$68] AND 1; {Read the stopping plate}

UNTIL test€68 = @;
dollar36 := dollar36 OR 1;

PORT[$361 := dollar36; { 8W 1 track power off}
dollar3A := dollar3A OR $40;

PORT{$3A] := dollar3A; { PL 1@ power off }
switcherl_to_zero;

END;

PROCEDURE parking_loop_ID_search;

BEGIN
ID_not_found := FALSE:
next_transporter_in_parking_ loop;

first_transporter := ID_test;
IF ID_test = data_new.xp_id THEN
BEGIN

transporter_on_switcher_parking locop;

84

EXIT; {to "FROM parking locop~

END
ELSE rearange_transporters_parking loop;

REPEAT
next_transporter_in_parking loop;
IF ID_test = data_new.xp_id THEN

BEGIR

transporter_on_switcher_parking.loop;

EXIT; {to "FROM parking loop~

END

ELSE rearange_transporters_parking loop:
UONTIL ID_test = first_transporter;
ID_not_found := TRUE;
parking_loop_check;
parking loop_positioning;

mess := “The ID entered was not found in the
bleep;

DELAY (309) ;

bleep;

write_dotmatrix(mess);

REPEAT

UNTIL locazal_reset;

END;

PROCEDURE track_display;

BEGIN
test62 := (PORTI[$62] AND $F@2) QR 30F;
IF test62 <> store6?2 THEN
BEGIN
transporter_on_track_display;
store62 := testE2;
END;
testB4 := (PORT[$64] AND $F@) OR $0F;
IF test64 <> storef4 THEN
BEGIN
transporter_on_track_display;
store6d4 := testt4;
END;
test65 := PORT[$65];
IF test65 <> storeBd THEN
BEGIN
transporter_on_track_display:
storeBb := test6d;
END;
END;

PROCEDURE all_power_off;

in station_to_station proc.}

in station_to_station proc.}

Parking Loop.

BEGIN

dollard8 := @$FF;

PORT[$38] := dollar38;

dollar39 := 3$FF; { Track }
PORT[$39] := dollar3y; { Power }
dollar3s := $FF; { off to ¥
PORT{$36] := dollar3s; { all sections }

track_display; {Mimic LED s off}

RESET to cor

85

END;

PROCEDURE bubble_update;

BEGIN

read_station; {Read 1D of transporter in bubble mem.}
data_new.xp_id := data.xp_id; {Save this in RAM}

data.xp_id := 9; {Save this on bubblel}

save_station;
END;

PROCEDURE Vaultl_update(pointer:INTEGER);

BEGIN
CASE pointer OF
1 : BEGIN {Vaultl 1}
mem_pos := 3;
bubble_update;
YVi_1_display;

ERD;
2 : BEGIN {Vaultli 2}
mem_Ppos = 4;

bubble_update;
Vi_2 display;

END:
3 : BEGIN {Vaultl 3}
mem_pos := 5;

bubble_update;
Vi_3_display;
END;
ERND;
END;

PROCEDURE move_transporter_station_to_station;

BEGIN
CASE from_code OF {The arrows indicate the direction of movement

1 : BEGIN {FROM Hot Cells A}
IF HCA_off THEN

dollar38 := dollar38 AND $FC { H—> }
ELSE
dollar38 := dollar3B8 AND $CC; { HA-> H-> }
PORT{$38] := dollar38;
dollar39 := dollar39 AND $3C;
PORT{$38] := dollar39; { V-> HS5-> }
dollar36 := dollar3s AND @;
PORT[$36] := dollar36; { SH1l-> SW2-> SW3-> 5W4-> }
DELAY(50@);
mem_pos = @;
bubble_update;
HCA_display; {Update the Mimic panel}
END;

2 : BEGIN {FROM Hot Cells R}
dollar3B := dollar38 AND $F@;

86

PORT[$38] := dollar38;
dollar3d8 := dollar39 AND %$3C;
PORT[$39] := 3$3C;

dollar3d36 := dollar36 AND @;
PORT[$36] := dollar3s;
mem_pos = 1;

bubble_update;

DELAY(500);

HCB_display;

swiltcher4_to__188;

IF to_code = 1 THEN
switcherd4_track_power := $BF
ELSE switcher4_track_power := $3F;

REPEAT :
track_display;
test69 := PORTI$69] AND 2Z;

ONTIL test69 = @;

{ HB-> H-> }

{ V-> HS-> }

{ SW1-> SW2-> SW3-> SW4-> }

{Update the Mimic panel}
{ <=}
{ ->1

{Indicate on HMimic panel}
{Poll SW4 stopping plate}

dollar36 := dollar36 OR $CO;
PORT[$36] := dollar3s;
switcher4_to_zero;

dollar36 := dollar36 AND switcherd_track_power;

PORT[$36] := dollar3s; {Track power S5W4 on}
END;

{Track power SH4 off}

3 : BEGIN {FROM Vault 1}
CASE to_code OF

31 : BEGIN
dollar3d9 := dollar3S AND $EF;
PORTI$39] := dcllar3g; { Vi<- }
END;
33 : BEGIN
dollar39 := dollar39 AND $CF;
PORT[$39] := dollar39; { Vi-> }
END;
32 : BEGIN
test64 := PORT[$64] AND $04A;
CASE test64 OF
8 : BEGIN
dollarld9 := dollar39 AND 3CF;
PORT{$39] := dollar39; { Vi-»> 3}
END;
2 : BEGIN
dollar39 := dollar39 ANRD 3EF;
PORT[$39] := dollar39; { Vi<- }
. END;
END;
END;
ELSE
BEGIN
testb4 := PORTI[$64] AND $9E;
IF V1_off THEN
dollar3g9 := dollar389 AND $BE { V1<~ HS5<¢- }
ELSE
dollar3d9 := dollar39 AND $AE; { V<- V1¢<- HS<«<-}
PORT[$39] := dollar33;
dollar38 := dollar38 AND 3FE;
PORT[$38] := dollar3s; { H<- }
DELAY(529) ;

CASE test64 OF

$C : Vaulti_update(l};

$A : Vaultl_update(2)};
6 : Vaultl_update(3);

87

END;
dollar3t := dollar36 AND $AA;
PORT[$36] := dollards; { SW1l<- SW2<- SW3<- SW4<- 1}
END;
END;

END;

4 : BEGIN {FROM Vault 2}
dellar3d := deollar39 AND $FB;
PORT[$39] := dollarigs; { V2<- }
dollar36 := dollar36 AND $AZ;

PORT[$36] := dollar36; { SW1<- SWZ-> SW3<- SW4<- }
DELAY(592@) ;

mem_pos := B;

bubble_update;

V2_display; {Update the Mimic panel}
switcher2_to_18d;

IF {(to_code DIV 18 = 3) THEN

BEGIN
switcher2_track_power := $F3; { -}
dollar39 := dollar39 AND $CB;
PORT[$39] := dollar3g; { Vi-» V2<- 1}
ERD
ELSE
BEGIN
switcher2_track_power := $FB; { <- 1}
dollard8 := dollar38 AND $FE;
PORT[$38] := dollar38; { H<- }
dollar389 := dollar39 AND $BA;
PORT{$381 := dollar3dg; { V<- VZ2<- HS«<«- }
END;
REPEAT ,
track_display; {Indicate on Mimic panel}
test68 := PORT($68] AND §; {Poll SWZ stopping plate}
UNTIL test68 = @;
dollar36 := dollar36 OR $C; {Track power SW2 off}

PORT[$36] := dollariét;
switcher2_ to_zero;
dollar36 := dollar3ds AND switcherZ2_track_power;

PORT[$36] := dollar36; {Track power SWZ on}
END;

5 : BEGIN {FROM Storage}
dollar38 := dollar38 AND $3E;

PORT[$38] := dollar38; { &-> H<- 1}

dollar38 := dollar3g9 AND $3C;

PORT[$39] := dollar3g; { V-> HS->» }

dollar3d6 := dollar36 AND $80;

PORT[%$36] := dollari36; { SW1-> 8WZ-> SW3-> SW4<- }
DELAY(192);

mem_pos = 2;

bubble_update;

S_display; {Update the Mimic panel}

switcherd_to_188;
IF (to_cede = 1) OR (to_code = 2) THEN

switcher3_track_power := 3EF { <- 1}

ELSE switcher3_track_power := 3CF; { -» }

REPEAT

track_display; {Indicate on Mimic panel}
test68 := PORT[$68] AND 3$44; {Poll SW3 stopping plate}

UNTIL test68 = @;
dollar36 := dollar3é OR $39; {Track power SW3 off}

88

PORT[$36] := dollar3s;
switcher3_to_zero;
dollar36 := dollar3t AND switcher3d_track_power;

PORT[$36] := dollar3s; {Track power SW3 on}
END;
END;

IF (from_code DIV 1@) = 6 THEN {FROM Parking Loop}
BEGIN

parking_ loop_ID_search;
IF ID_not_found = TRUE THEN

BEGIN
display_ready;
EXIT; {To main polling routine}
END;
dollar38 := dollar38 AND $FE;
PORT[$38] := dollar38; { H<- }
doliard8 := dollar3d9 AND $3E;
PORT[$39] := dollar39; { V-»> HS<- "}
dollar36 := dollar36 AND $A3; { SW2-> SW3<- SW4<- }

PORT[$36] := dollar3s;
IF (to_code DIV 180 = 3) OR (to_code = 4) THEN

switcherl_track_power := $FC { SW1-> }
ELSE switcherl_ track_vower := $FE; { SWi<- }
IF to.code <> & THEN
BEGIN
dollar36 := dollar36 AND switcherl_track_power;
PORT[$36] := dollar3b; {Transporter enroute}
END; '
END;

CASE to_code OF

1 : BEGIN {TO Hot Cells A}
dollar38 := dollar38 AND $EE;

PORT[$38] := dollar38; { HA<- H<- }
dollar38 := 3$FF;
REPEAT

track_dieplay;

test63 := PORT[$63]1 AND $20; {Poll Hot cells A stopping plate}

UNTIL testgld = d;

PORT[$38] := dollar38;

all _power_off;

track_display;

data.xp_id := data_new.xp_id;

WRITELN("ID = " ,data.xp_id);

mem_pos := B;

mimic_update; {Display on Mimic panel}

save_station; {Save on Bubble memory}
END;

2 : BEGIN {TO Hot Cells B}
dollar3B := dollar38 AND $FB;

PORTE$38] := dollar38; { HB<- }
REPEAT
track_display;
testB89 := PORT[3$69]1 AND 2; {Poll SW4 stopping plate}
UNTIL test69 = @;

PORT[$36] := dollar36;
switcher4_to_180;
dollar36 := dollar36 AND $BF; {SW4 <«- 1}

dollar3ds := dollar36 OR 3CO3; {SW4 track power off}

31:

32:

PORT[$36] := dollar36:
track_display;
dollar3d8 := $FF;
REPEAT

track_display;

test63 := PORT[$63] AND $44;

ONTIL testB3 = @;
PORT[$38] := dollar3s;
all_power_off;
track_display;
switcherd4_to_zero;

data.xp_id := data_new.xp_id;

mer_posg := 1;
mimic_update;
save_station;
END;

BEGIN {TO Vaultl 1}
IF from_code <> 3 THEN
BEGIN

dollar39 := dollar38 AND $CF;

PORT[$39] := dollar39;
REPEAT
track_display;
testB68 := PORT[$68] AND 8;
UNTIL test68 = O;
END;

REPEAT

track_display;

testb64 := PORT[$64] AND 2;
UNTIL test64 = @;
all_power_ off:
track_display;

data.xp_id := data_new.xp_id;

mem_Ppos = 3J;
mimic_update;
save_station;
vaultl_update(2);
vaultl_update(3);
END;

BEGIN {TO Vaultl 2}
IF from_code <> 3 THEN
BEGIN

dollar39 := dollar39 AND CF;

PORT{$39] := dollar3d9;
REPEAT
track_display;
test68 := PORT[$68] AND 8§;
UNTIL test68 = O9;
END;
dollar38 := $FF;

REPEAT

track_display;

test64 := PORT[$64] AND 4;
UNTIL test64 = @;

PORT{%$39] := dollar3g;
all_power_off;
track_display;

data.xp_1id := data_new.xp_id:

89

{Poll Hot Cells B stopping plate}

{ Vi—»> }

{Poll 5WZ stopping plate}

{Poll Vaultl 1 stopping plate}

{Display on Mimic panel}
{Save on Bubble memory}

{ V1-> }

{Poll SHZ stopping plate}

{Poll Vaultl 2 stopping plate}

9@

nem_pos := 4;
mimic_update;
save_station;
vaurltl_update(l);
vaultl_update(3);
END;

{Display on Mimic panel}
{Save on Bubble memory}

33: BEGIRN {T0 Vaulti 3}
IF from_code <> 3 THEN

BEGIN
dollar39 := dollar38 AND $CF;
PORT{$38] := dollard9g; {f Vi-> }
REPEAT
track_display;
testE&8 := PORT[$68] AND 8; {Poll SH2 stopping plate}
UNTIL test68 = O;
END;
REPEAT
track_display;
test64 := PORT[$647] AND 8; {Poll Vaultl 3 stopping plate}

UNTIL test64 = @;
all_power_off;
track_display;

data.xp_id := data_new.xp_id;

mem_pos := 5;

mimic_update; {Display on Mimic panel}
save_station; {Save on Bubble memory}

vaultl_update(l);
vaultl_update{2);
END;

4 : BEGIN {TO Vault 2}
dollar38 := dollar3d9 AND $33;

PORT[$39] := dollar3?; { V2-> V-> }
REFPEAT

track_display;

test68 := PORT[$68] AND 8; {Poll SK2 stoprping plate}
UNTIL test68 = O;

dollardf6 := dollar36 OR $C; {SW2 track power off}

PORT[$36] := deollar3g;
track_display;
switcherZ_to_188;

dollar36 := dollar36 AND $FB; {SW2 <- }

PORT[$36] := dollarldf;

REPEAT

track_display; o

test64 := PORT[$64] AND 1; {Poll Vault 2 stoprping plate}

UNTIL test64 = @;
a2ll_power_off;

track_display;
switcher2_to_zero;

data.xp_id := data_new.xp_1d;
mem_pos := 6;

mimic_update;

save_gtation;
END;

5 : BEGIN {TO Storage}
dollar3B8 := dollar38 AND 3$BC;
PORT[$38] := dollar3d8; { H-> B5«<- }
dollar39 := dollar39 AND $BE;

91

PORT[$39] := dollar39; { HS<- V«<- }
REPEAT
track_dieplay;
testB68 := PORT{$68] AND $4@; {Poll SW3 stopping plate}
UNTIL test68 = @;
dollar36 := dollar38 OR $30; {SW3 track power off}

PORT{$361 := dollar3s;
switcherd_to_183;
dollardt := dollar36 AND 3EF; {SHW3 <«- }
PORT[$36] := dollar36;
track_display;
dollar38 := 3FF;
REPEAT
test63 := PORT[$63] AND 3$80; {Poll Storage stopping plate}
UNTIL testé3d = 9;
PORT[$38] := dollar3s;
all power_off;
track_display;
switcherd_to_zero;
data.xp_id := data_new.xp_id;
mem_pos := 2
mimic_update;
save_station;
END;

6 : BEGIN {TO Parking Loop}
dollar38 := dollar38 AND $FC;

PORT[$38] := dollar38; { B-» }

dollar39 := dollar39 AND $BC;

PORT{$39] := dollar39; { HS-> V<- }

REPEAT

track_display;

test68 := PORT[$68] AND 1; {Poll SW1 stopping platel}
UNTIL test€8 = @;

dollar38 := dollar36 OR $3; {SW1 track power off}

PORT[$36] := dollar3é;
switcherl_to_18@;

dollar36 := dollar3t AND $FE; {SH1 -> 3}

PORT{$36] := dollar3s;

dollar3B := dollar3B AND $7F; {PL1 power on}

PORT[$3B] := dollar3B;

DELAY(150@); {Time for transporter to leave SW1

track_display;
switcheri_to_zero;

REPEAT

testB6 := PORT[$66] AND 1; {Poll PL1 position sensing}
UNTIL testB6 = O;
dollar3dB := dollar3B OR $89: {PL1 power off}

PORTE$3B] := dollar3B;
all_power_off;
track_display;
parking_loop_positioning;
parking_ loop_check;

END;

END;

IF (from_code DIV 18) = 6 THEN
parking_ loop_positioning;
parking_ loop_check;

END;

{LOCAL POLLING ROUTINE

92

LOCPOLL.PAS

This is the local polling routine which loocks at commands entered from

the Local controller.

a)

From_parking loop reads PORT[$68] and checks XXXX cbaX to determine

transporter ID entered. It sets the FROM code to 6 and switches the
appropriate lamp on.

b) From_station reads

PORT{3$62] and checks cbaX XXXX to determine which

station was entered. It switches the appropriate lamp on and sets the

FROM code to : 1 : Hot Cells A
2 : Hot Cells B
3 : Vault 1
4 : Vault 2
5 : Storage

c)

To_stations_or_pl reads PORT[$61] and checks XXXX cbaX to determine which

station was entered. It switches the appropriate lamp on and sets the

TO code to : 1 : Hot Cells A
2 : Bot Cells B
31 : Vault_1 1
32 : Vault_1 2
33 : Vault_1 3
4 : Vault 2
5 : Storage
6 : Parking Loop
d) Cancel_entry reads PORT[$61] bit XXX XXXX. The lamp will be switched

on for 30@me.

The TO code and FROM code is then set to @ and the lamps

on the front panel will be switced off.

e} Execute
11}Check if

111)Check if
iv)Check if

v)Check if

that was

vi)Check if

it to go.

VAR
from_code,to_code

VAR
valld_commands,station

PROCEDURE from_gtrobe;

BEGIN

DELAY (20);

dollar3d3bs := dollar3b OR 3$1@;
PORT[$35] := dollar35;
DELAY(1);

dollar35 := dollar3b AND $EF:
PORT[$35] := dollarids;
END;

PROCEDURE to_strobe;

_empty

i}S8witch on the lamp for 329ms

the FROM code is @ ,complain if so and EXIT.

the TO code is @ ,complain if so and EXIT.

the TO code = FROM code ,complain if so and EXIT.

a transporter is actually parked in the FROM station
entered. If not it will complain and EXIT.

the station is empty to which the TO command wants
If not it will complain and EXIT.

INTEGER;

: BOOLEAN;

{Contact bounée}
{Strobe high}

{Pulse width}
{Strobe liow}

BEGIR

DELAY(20};

dollardd := dellar35 OR 1;
PORT[$35] := dollar3s;
DELAY(1);

dollar3b := dollar35 AND $FE;
PORT[$35] := dollaridb;
END;

PROCEDURE from_parking loop;

VAR

from_pl_code : BYTE;

BEGIN

93

from_pl_code :
from_pl_code :

PORT[$6@] AND $F;
from_pl_code SHR 1;

CASE from_pl_code OF

6 : BEGIN {Parking loop 1}
data_new.xp_id := 1;
dollar34 := (dollar34 OR 5) AND gF5;
from_code := 61;
END;
5 : BEGIN {Parking loop 2}
data_new.xp_id := 2;
dollar34 := (dollar3d4 QR 6} AND 3$F6;
from_code := 62;
END;
4 : BEGIN {Parking loop 3}
data_new.xp_id := 3:;
dollar34 := {dollar34 OR 7) AND $FT7;
from_code := 63;
ERND;
3 : BEGIN {Parking loop 4}
data_new.xp_id := 4;
dollar34 := (dollar34 OR 8) AND $F8;
from_code := 64;
END;
2 : BEGIN {Parking loop 5}
data_new.xp_id := b;
dollar34 := (dollar34 OR 9) AND 3$F3;
from_code := 65;
END;
END;
PORT[$343 := dollar34;

from_strohe;
WRITELN{ from_code

-

END;

data_new.xp_id =

*,from_code,
",data_new.xp_1id);

PROCEDURE from_station;

VAR
from_station_code

BEGIN

from_station_code :
from_station_code :

: BYTE;

PORT[$6@1 AND $E@:
from_station_code SHR

{Contact bouncel}

CASE from_station_code OF

94

6 : BEGIN {Hot cells A}
dollar34 := (dollar34 OR @) AND $F@;
from_code := 1;
END;
5 : BEGIN {Hot cells B}
dollar34 := {dollar34 OR 1) AND $F1;
from_code := 2; -
END;
4 : BEGIN {Vault 1}
dollar34 := (dollar34 OR 2) AND $F2;
from_code := 3;
END;
3 : BEGIN {Vault 2}
dollar34 := {dollar34 OR 3) AND $F3;
from_code := 4;
ERD;
2 : BEGIN {Storage}
dollar34 := (dollar34 OR 4) ARD $F4;
from_code := 5;
END;
END;
PORT[$34] := dollar34;
from_strobe;
WRITELN("from_code = °,from_code)};
END;

PROCEDURE to_stations_or_pl;

VAR

to_station_code : BYTE;

BEGIN
to_station_code :=
to_station_code :=
CASE to_gtation_code OF

@ : BEGIN {Parking loop}
dollar34 := (dellar34 OR $7Q@) AND 37F;
to_code := 6;
END;
1 : BEGIN {Storage}
dollar34 := (dollar3d4 OR 3$6@) AND $6F;
to_code := 5;
END;
2 : BEGIN {Vault 2}
B dollar3d4 := (dollar3d4 OR $50) AND $5F;
to_code := 4;
END;
3 : BEGIN {Vaultl 3}
dollar34 := (dollar34 OR $40) AND $4F;
to_code := 33;
END;
4 : BEGIN {Vaultl 2}
dellard4 := (dollar34 OR $30) AND 33F;
to_code := 32;
END;
5 : BEGIN {Vaultt 1}
dollar34 := (dollar34 OR $2@) AND $2F;
to_code := 31;
END;
6 : BEGIN {Hot cells B}

PORT[$61] AND $09E;
:= to_station_code SHR 1;

95

dollar34 := (dollar34 OR $10) AND $1F;
to_code := 2;
END;
7 : BEGIN {Hot celle A}
dollar34 := dollar34 AND 38F;
to_code := 1;

END;
END;
PORT[$34] := dollar34;
to_strobe;
WRITELN(to_code = ",to_code);
END;

PROCEDURE cancel_entry;

BEGIN

dollar3dd := dollar3db AND $FB; {Indicate on Local lamp}
PORT{$35] := dollar35;

DELAY(322);

dollar3d := dollar3d OR $4;

PORT[$35] := dollard5b;

dollar34 := $FF; {TO code = 15 To switch off all the lamps }
PORT[$341 := dollar3d4; {FROM code = 15 on the Local controller }
to_strobe;

from_strobe;

to_code = ©;

from_code := 8;

WRITELR("ALL VALUES CANCELLED };
END;

PROCEDURE invalid_commands;

BEGIN
valid_commands := FALSE;
write_dotmatrix(mess);
bleep;
DELAY (4220) ;

display_ready;
END;

PROCEDURE test_station_status(station_status_check : INTEGER);

BEGIN
CASE station_status_check OF
i1 : BEGIN
test63 := PORT[$63] AND 3$2@;
IF test63 <> @ THEN station_empty := TRUE ELSE station_empty := FALSE;
END;
2 : BEGIN
test63 := PORT[$63]1 AND $40;
IF test63 <> @ THEN station_empty := TRUE ELSE station_empty := FALSE;
END;
3 : BEGIN

test64 := (PORT[$64] AND ¢E) CR $F1;

IF test64 = $FF THEN station_empty := TRUE ELSE station_empty := FALS}
END;

96

4 : BEGIR
testb4 := PORT[$64] AND 1;
IF test64 <> © THEN station_empty :

= TRUE ELSE station_empty := FALSE;
END;
5 : BEGIN
test63 := PORT[$63] AND $80;
* IF test63 <> @ THEN station_empty := TRUE ELSE station_empty := FALSE;
END;
6 : BEGIN
test66 := PORT[$66] AND 1;
IF test66 <> @ THEN station_empty := TRUE ELSE station_empty := FALSE;
END;
END;
IF (station_status_check DIV 1@) = 3 THEN
BEGIN

test64 := (PORT[$64] ARD $E) OR $F1;

IF test64 = $FF THEN station_empty := TRUE ELSE station_empty := FALSE;
END;

END;

PROCEDURE test_station_status_V1(station_status_check : INTEGER);

BEGIN
CASE station_status_check OF
31 : BEGIN
test64 = PORT[$64] AND 2;
IF testb4 <> @ THEN station_empty := TRUE ELSE station_empty := FALSE
END;
32 : BEGIN
test64 := PORT[$641 AND 4;
IF testf64 <> @ THEN station_empty := TRUE ELSE station_empty := FALSE
END;
33 : BEGIN
test64 := PORT[$64] ARD 8;
IF test64 <> @ THEN station_empty := TRUE ELSE station_empty := FALSE
END;
END;
END;

PROCEDURE execute;

BEGIN

dollar3ds := dollar35 AND $FD; {Indicate on Local lamp}
PORT[$35] := dollar35;

DELAY (5020} ;

dollar3b := dollar3d OR 2;

PORT{$35] := dollar35s;

IF from_code = @ THEN

BEGIN

mess := "No FROM entered !7;
invalid_commands;

EXIT;

END;

IF to_code = & THEN
BEGIN

87

mess = "No TO entered !~°;
invalid_commands:
EXIT;
END;
IF from_code = to_code THEN
BEGIN
mess := "FROM and TO the same station ! ;
invalid_commands;
EXIT;
END;
IF from_code <> @ THEN
‘BEGIN
IF {from_code DIV 1@) = 6 THEN
BEGIN

test67 := PORT[$871 AND 2;
IF test67 <> @ THEN station_empty := TRUE ELSE station_empty := FALSE;
END;
test_station_status(from_code);
IF stray_to_station THEN
station_empty := FALSE;
IF station_empty = TRUE THEN
BEGIN
mess := "The FROM station entered is empty !°;
invalid_commands;
EXIT;
END;
ERD;

IF to_code <> @ THEN
BEGIN
IF ((to_code DIV 1@) = 3) AND (from_code = 3) THEN
test_station_status_Vi1{to_code)
ELSE
test_station_status(to_code);
IF station_empty = FALSE THEN
BEGIN
mess := "The TO station entered is occcupied !7;
invalid_commands;
EXIT;
END;
EXD;

{At this stage the from and to values will be legal and the
appropriate stations occupied and empty }

mese := "Transporter now on route. === meeemmmmemmc—e——— >
write_dotmatrix(mess);

move_transporter_station_to_station;

stations_store_1 := PORTI[$63] AND $E@; { Store 1}
stations_store_2 := PORT{$64] AND 3$@F; { all }

parking_loop_store_1 := PORT[$66]; { the }
parking_loop_store_2 := PORT[$67] AND 3; {variables}
display_ready;

stray._routine_serviced := TRUE;

END;

88

PROCEDURE local_commands_poll;

BEGIN
test6d := PORT[$627 AND $11;
test6l PORT[$6113;
IF (test6@ AND 1) = @ THEN
from_parking_loop;
IF {(test60@ AND 318)
from_station;
IF (test61 AND 1) = @ THEN
to_stations_or_pl;
IF (test61 ANRD $80)
cancel_entry;
IF (test61 AND $4@)
execute;
IF¥F (test61 AND $20)
BEGIN
stations_update;
display_ready;
ERD;
END;

"

2 THEN

@ THEN

1}

@ THEN

@ THEN {RESET button}

{PROGRAM POLLING ROUTINE POLLROUT.PAS

This program contains the main polling routine in the procedure
called "poll”. The following inputs are polled:

a) Stations
If a transporter is removed or inserted in a station the message

is displayed, the Mimic panel is updated as well as the information
on the bubble memory.

b) Parking Loop
The same as for a) but no bubble updating.
c) Power Supplies
This looks at the two status bits. A message is also diplayed but
here the operator is prompted tec switch the power supprlies on from
the Local controller panel.
d) Switchers
This checks the @ degree status of the switchers. If this status
iz broken, the Mimic panel LED's is updated, a message is displayed
and the program will try to drive the switcher back to zero degrees.
e)Local Controller comands
In another file.

VAR
switcher_poll_1,switcher_poll_ 2,
p_s_poll : BYTE;

PROCEDURE display_ready;

BEGIN

MEES T ~-mmemmmm— e ———— READY ---———mmmme e Enter a FROM and a TO posif
write_dotmatrix(mess};

END;

29

PROCEDURE HCA_change;

BEGIN
IF stations_poll_1 AND $20 = @ THEN
BEGIN
mess = “Transporter was inserted into Hot Cells A.";

data.xp_id := T7;
dollar3l := dollar3l OR 7;
HCA_display;
END
ELSE
BEGIN
megss := "Transporter was removed from Hot Cells A.";
. data.xp_id := @;
HCA_display;
END;
bleep;
write_dotmatrix{mees);
DELAY(2008) ;
mem_pos := @;
save_station;
END;

PROCEDURE HCB_change;

BEGIN
IF stations_poll_1 AND 342 = @ THEN
BEGIN
mess := “Transporter was inserted into Hot Cells B.

data.xp_id := 7;
dollar3i := dollar3l OR 7;
HCB_display;
ERD
ELSE
BEGIN
mess := “Transporter was removed from Hot Cells B.";
data.xp_1id := ©;
HCB_display;
END;
bleep;
write_dotmatrix(mess};
DELAY(2029) ;
mem_pos = 1;
save_station;
END;

PROCEDURE S_change;

BEGIN
IF stations_poll_1 ARD $82 = @ THEN
BEGIN
megs := “Transporter was inserted into the Storage. " ;

data.xp_id := 7;

dollar3dl := dollar3l OR 7;

S_display;
END

ELSE

BEGIN

mess := ‘Transporter was removed from the Storage. ;
data.xp_id := @;

103

S_display;

END;

bleep;
write_dotmatrix(mess);
DELAY(2009) ;

mem_Pos = 2;
save_station;
END;

PROCEDURE V2_change;

BEGIR
IF stations_poll_2 AND 1 = @ THEN
BEGIN
mess := “Transporter was inserted into
data.xp_3id := 7;
dollar3dl := dollar3l OR 7;
V2_display;
END
ELSE -
BEGIN
mess := "‘Transporter was removed from
data.xp_id := @&;
V2_display;
END;
bleep;
write_dotmatrix(mess);
DELAY(2000);
mem_Ppos := 6;
save_sgtation;
END;

PROCEDURE V1_1_change;

BEGIN

IF stations_poll_2 AND 2 = @ THER

BEGIN
mess := ‘Transporter was inserted into
data.xp_id := 7;
dollar3l := dollar3l OR 7;
Vi_1_display;

END

ELSE

BEGIN o
mess := "Transporter was removed from
data.xp_id := @;
Vi_1 display;

END;

bleep;

write_dotmatrix(mess);

DELAY(2000);

memn_pos = 3;

save_station;

END;

PROCEDURE V1_Z_change;

BEGIN
IF stations_poll_2 AND 4 = & THEN

Vault 2.7 ;

Vault 2. ;

Vaultl

Vaultl

1.

1.7;

BEGIN
mess =
data.xp_id = 7;
dollar3l := dollar3l QR 7;
V1l_2_display;

END

ELSE

BEGIN
mees =
data.xp_id :=
V1_2_display;

END;

bleep;

write_dotmatrix(mess);

DELAY(2000);

mem_pos := 4;

save_station;

END;

2;

PROCEDURE Vi_3_change;

BEGIR

IF stations_pocll_2 AND
BEGIN
mesg := ‘Transporter
data.xp_id = 7;
dollar3l := dollar3il
Vi_3_display;

END

ELSE

BEGIN
mess := "‘Transporter
data.xp_id := @;
Vi_3_display;

END;

bleep;

write_dotmatrix(mess);

DELAY(2002);

mem_pos := 5;

save_station;

END;

8 = @& THEN

OR 7;

PROCEDURE stations_poll_update;

I,change : INTEGER;
BEGIN
test6d := $20;
FOR I := 1 TO 3 DO
BEGIN
IF (test63 AND stations_poll_1)
change := I;
test63 := test63 SHL 1;
END;
testb4d = 1;
FOCR I := 4 TQ T DO

BEGIN

"Transporter was inserted into

‘“Transporter was removed from

wag inserted into

was removed from

191

Vaultl 2.7

Vaultl 2.7 ;

Vaultl 3.°7;

Vaultl 3.7;

<> (testB3 AND stations_store_1) THEN

IF (test64 AND stations_poll_2) <>
change := 1;
testb4 := test64 SHL 1;

ERD;

CASE change OF

: HCA_change;

: HCB_change;

: S_change;

: VZ_change;

: V1_1_change;

: Y1_2_change;

: V1_3_change;
END;
stations_store_1
stations_store_2
display_ready;

END;

~1 NN

stations_poll_1;
stations_poll_2;

PROCEDURE parking loop_poll_update:

BEGIN
bleep;

192

(test64 AND stations_store_2) THEN

meegg := ‘Transporter was removed/inserted in the Parking loop. " ;

write_dotmatrix(mess);
DELAY(202@) ;

parking loop_check; {To update the Mimic LED s}

parking_lcoop_store_1
parking_ loop_store_2 :
display_ready;

END;

PROCEDURE power_supplies_poll;

BEGIN
p_s8_poll := PORT[$67] AND $C:
IF p_s_poll <> @ THEN

parking loop_poll_1;
parking_loop_voll_2;

BEGIN
CASE p_s_poll OF
4 : BEGIN
mess := 24V Power Supply OFF RESET to continue’;
dollar3d5 := (dollar35 OR $40) AND g$DF; {P5 lamp off FAULT lamp or
dollar3A := dollar3A OR 1; {PS_on command off}
ps24¥_on := FALSE;
END;
8 : BEGIHN
mesg := "32V Power Supply OFF RESET to continue’;
dollar3b := (dollar35 OR $8@) AND $DF; {PS lamp off FAULT lamp or
dollar3A := dollar3A OR 2; {PS_on command off}
ps32V_on := FALSE;
END;
$C: BEGIN
mess := "Both Power Supply OFF RESET to continue’;
dollar3b := (dollar35 OR $C@) AND $DF; {PS lamp off FAULT lamp or
dollar3A := dollar3A OR 3; {P5_on command off}
ps24V_on := FALSE; -
ps3d2V_on := FALGSE;
ERD;
END;

write_dotmatrix(mess);

PORT{$35] := dollar3b;
PORT[$3A} := dollar3a;
bleep_until_reset;
megs 1=
write_dotmatrix(mess);
power_supplies;

bleep;
dollar3s :=
PORT[$35] := dollar3s;
display_ready;
END;

END;

PROCEDURE switcher_poll_update;

VAR
I,change : INTEGER;
BEGIN
testg8 := 2;
FOR I =170 3 D0
BEGIN

dollar35 OR $20;

"Check the Power Supply

IF (switcher_poll_1 AND test68)

change := I;
test68 := test68 SHL 3;
END;

testBY := 4;

IF (switcher_poll_2 AND test68) <> @

change := 4;
CASE change OF
1 BEGIN
mess := “Switcher
green_led := 10;
END;
2 : BEGIN
mess := ~Switcher
green_led := 20;
ERD;
3 : BEGIN
mess = ~Switcher
green_led := 39;
END;
4 : BEGIR
mess := “Switcher
green_led := 48;
END;
END;
write_dotmatrix(mess);
dollards := dollar35 AND $DF;
PORT[$35] := dollari3d5;
update_mleds_switcher;
bleep_until_reset;

no. 1

no. 2

no. 3

no. 4

out

out

out

out

123

before

<>

of

of

mesgs := “Check the Switcher before you
write_ dotmatrix(mess);
REPEAT

UNTIL local_reset;

CASE change OF
switcherl_to_zero;
: gwitcher2_to_zero;
: switcher3_to_zero;
switcherd4_to_zero;

I =

© THEN

THEN

position

position

position

position

vou attempt to switch on’;

{Fault lamp off}

RESET to continue”;
{Mimic panel LED to red}

RESET to continue”;
{Mimic panel LED to red}

RESET to continue”;
{Mimic panel LED to red}

RESET to continue’;
{Mimic panel LED to red}

{Fault lamp on}

RESET to continue”;

124

END;

dollar35 := dollar35 OR $22; {Fault lamp off}
PORT[$35] := dollar35:

display_ready;

END;

PROCEDURE poll;
BEGIN

stations_poll_1 := PORT[$63] AND $E@;

stations_poll_2 := PORT{$64] AND $0F;

IF (stations_poll_1 <> stations_store_1) OR
(stations_poll_2 <> stations_store_2) THEN
stations_poll_update;

parking_loop_poll_1 PORT{$661];

parking loop_poll_2 PORT[$67] AND 3:

IF (parking_loop_poll_1 <> parking loop_store_1) OR
(parking_loop_poll_2 <> parking. loop_store_2) THEN

parking loop_poll_update;

power_supplies_poll;

switcher_poll_1 := PORT[$68] AND $92;
switcher_poll_ 2 := PORT{$69] ANRD 4;

IF (switcher_poll_1 <> @) OR (switcher_poll_2 <> &) THEN
switcher_poll_update;

local_commands_poll;
END;

VAR
sw_end : BOOLEAN;
key_in,switch_in : INTEGER;

PROCEDURE start_up;

BEGIN
dotmatrix _initialize;
variables_initialize;

dollar3A := dollar3A OR 4; {Switch on local controller 24V 9029 212}
PORT[$3A] := dollar3A;

WRITELN("Local controller 24V psu on.);

ps24V_status := 1;

psZ4V_status := 1;

ps24V_on := FALSE;

ps32V_on := FALSE;

from_code := @;

to_code := @;

cancel_entry;

bleep;

megs = T-———- THE TARGET TRANSPORT SYSTEM ----Switch on the Power Supplies

write_dotmatrix(mess);
power_supplies;

DELAY (209@};
switcher_status_check;
switcher_check;

185

{This part helps to test faulty switchers and should not be included
in the working verseion of the program.
sw_end := FALSE;

WRITELN("SW1 to @ : 19 SWH1 to 1890 : 187);
WRITELN("SW2 to @ : 20 SWZ to 182 : 287);
WRITELN("SW3 to @ : 3@ SW3 to 182 : 387);
WRITELN("SW4 to £ : 40 SW4 to 180 : 487);
WRITELN; :

WRITELN("To terminate : 5@87);

REPEAT

READLN(switch_in});
CASE switch_in OF
: switcherl_to_zero;

18 : switcherl_to_189;.
20 : switcher2_to_zero;
28 : switcherZ_to_180;
30 : switcher3_to_zero;
38 : switcher3_to_182;
49 : switcherd4_to_zero;
48 : switcherd_to_188:;
5@ : sw_end := TRUE;

END;

URTIL sw_end;

}

mess := “Parking Loop positions check”;
"write_dotmatrix(mess);

DELAY (2022} ;

parking loop_check;

. parking_locop_positioning;
stations_update;

{ This part helps to check the tracks for shorts between the sense line

and the power lines. It should not be included in the working version.
WRITELN;

WRITELN;
WRITELN(Track_display until 1 pressed.”};
REPEAT
track_display;
DELAY(129);
READLN(key_in);
DELAY(199);
UNTIL key_in = 1;
}

stray_check;

stationse_store_1 := PORT[$63] AND 3$EJ;
stations_store_2 := PORT[364] AND $@F;
parking_loop_store_1 := PORT[$66];
parking loop_store_2 := PORT[$67] AND 3;

display_ready;
END;

BEGIN
start_up;
REPEAT
poll;
UNTIL EEYPRESSED;

106

6. TESTING AND MODIFICATIONS

6.1 LOCAL CONTROLLER AND MIMIC PANEL

An instrument, consisting of switches and LED's, was made to
simulate the SABUS 1/0O cards. This was then used to test the
local controller and mimic panel! once they were assembled.

Because of noise problems, a few capacitor filters had to be
added, especially on the strobe inputs.

Initially only one 24V power supply was wused. The 5V was
generated by a voltage regulator and bypass transistor, but
after some testing was done, it was found that a separate 5V
supply was needed. This was then added in the local controller
without any problem.

6.2 SOFTWARE

Because the program was divided into include files, these could
be tested individually. A panel consisting of 80 miniature toggile
switches and 96 LED's were designed and assembled to assist in
the software testing. The 80 switches were connected to the 30-
bit opto-isolated input card and represented the inputs froem the
system. The 96 LED's were connected to the three 32-bit relay
output cards and represented the outputs to the system. After
weeks of writing source code, compiling and testing, the final
program emerged containing thirteen inctude files and wusing
30kbytes of RAM space.

6.3 COMPLETE SYSTEM

For testing the complete system a close circuit TV camera was
used. By entering commands on the local <controller in the
isotope-production control room, the movement of transporters and
switchers could be followed on a monitor. The biggest problem
that occurred was that when power was applied for the first time,
all the contacts on the 32-bit refay output cards were <closed.
This powered all the relays driving the track sections and
switcher motors resulting in a total chaos of moving transporters
and switchers. This problem was overcome by introducing a small
relay timer card between the local controller 5V and 24V power
supplies, When mains is switched on, only the 5V power supply is
powered. The 24V power supply is only powered via the 32-bit
relay card once the relays are Iin the correct state. The circuit
diagram is shown in figure 6.3.1.

A number of wiring and cabling faults were &encountered and
rectified without any problems.

The stopping of a transporter is achieved by sensing its presence
at stations and on switchers by means of reed switches activated
by wmagnets on the transporter chassis. This method of sensing

107

proved to be unreliable and the reed switches were replaced by
timit switches. Limit switch activators were made and fixed onteo
the transporters! chassis.

7. COMMISSIONING

The system was commissioned in October 1988 after extensive
testing. All the possible routes were tested a number of times
and power fajlures were simulated to observe the systems reaction
on power restoratjon.

8. CONCLUSIONS

To <control a system of this nature, two methods can be used
namely a direct hardware control or a combination of software and
hardware control, To control it purely by hardware, a dedicated
hardware controller has to be used. On system break down and

malfunction it will require a skilled person to rectify it and
will invariably take some time. Using a hardware/software
combination, as in this case, has a pumber of advantages. First
of all the Z-80 microprocessor and SABUS !t /O cards are standard
NAC in-house modules which can be replaced quickly because of
their availability. Secondly, should the software crash while
running, it can be reloaded from the bubble memory on SABUS, by
simply pressing the reset button on the microprocessor. Thirdly,
atl the commands to the microprocessor are entered on pushbutton
switches which are relatively trouble free. Fourthly the hardware
part consists of straight forward wiring to relays which also
give relatively trouble free operation. Lastly it is a very
flexible system because software can be changed to suit new
processes and needs as oftenm as required. It is therefore much
more advantageous to use a microprocessor based system in such
applications . 1f one compares the previously wused hardware
system, with jts ratsnest of wiring, to this control system, one
can clearly see its supremacy.

Entering commands on the local controller pushbuttons instead of
a2 keyboard, narrows down the possibility of operator typing
errors. It also eliminates the need to remember complicated
command strings.

By using a mimic panel, the entire system status can be seen at a
glance. 1t also indicates transporter progress on the tracks in
areas where CCTV cameras cannot be used. The use of CCTV cameras
can become quite expensive.

Although a high degree of reliability was designed and bu
into the control system and thoroughly tested, its real test w
only come with time.

9.

1.

109

REFERENCES

-Borland International 1984, Turbo Pascal reference manual Bl.
Borland International 1986,Turbo Pascal Tutor,Bl.

Genera! Instruments,1985,Catalog of optoelectronic products,Gl.
National Accelerator Centre,1985,Annual Report,NAC.

Nationa! Accelerator Centre,1986,Annual Report,NAC.

National Accelerator Centre,1987,Annual Report,NAC.

National Semiconductors,1984,logic data book Vo lume 2,NS.
Optrex Corporation,1987,Dot matrix'LCD modufe user's manual ,OC.

Texas Instruments,1981,The TTL data book for design engineers,Tl.

	Contents
	1. Introduction
	2. Design considerations
	3. Hardware description
	4. Assembly
	5. Software description
	6. Testing and modifications
	7. Commissioning
	8. Conclusion
	9. References

