
The design and developement of a microprocessor based

control system for an electric rail transport system.

by

T M HUMAN

September 1988

A thesis submitted in partial fulfillment of the

requirements for the Master's Diploma in Technology in

the School of Electrical Engineering at the Cape Technikon.

i i

Abstract

Radioactivity and radioactive radiation are two scientific
phenomena which man has always approached with great caution, if
not fear. Radioactive radiation cannot be sensed by any of the
human senses and experience has proved just how hazardous it can
be to the human body. This caution is therefore by no means
unfounded and through the years a set of standards has been
derived as to what can be regarded as a safe dose to the human
body.

At the National Accelerator Centre radioisotopes are being
produced by a chemical recovery process from targets which have
been irradiated by a high energy proton beam. Targets are
prepared by compressing salts, containing the elements to become
radioisotopes, into tablets. The high energy protons collide with
particles in the targets which give off radioactive radiation.
The targets in their turn become radioactive and the isotopes
that are produced from these targets are radioactive. The level
of radioactive radiation is extremely hazardous and it is
therefore impossible for any human being to come into close
contact with any of the targets or isotopes. It is for these
reasons that an electrical rail transport system was installed at
the National Accelerator Centre to transport highly radioactive
sources.

The transport system links the two irradiation vaults to the two
rows of hot cells, where the chemical recovery takes place, and
to a well shielded storage area for storage of isotopes and
radioactive waste. A transport system, performing tasks of this
nature, must be, above all, extremely reliable. Secondly,
commands entered by an operator to control the system, must be
simple and straight forward. This thesis describes the control
of the transport system at the National Accelerator Centre,
including al I of its features, advantages and disadvantages.

i i i

SCOPE

To describe the design and development of a control system for
an electric rai~ transport system to be used by the Isotope
production faci lity at the National Accelerator Centre.

1 •

2.

i v

CONTENTS

INTRODUCTION

DESIGN CONSIDERATIONS

1

9

3.5
3.6

3.

4.

HARDWARE DESCRIPTION
3.1 The Z-SO microprocessor, SABUS
3.2 Dotmatrix display interface
3.3 Mimic panel

3.3.1 LED driver
3.3.2 Transporter ID display
3.3.3 Miscellaneous

3.4 Local controller
3.4.1 Local control pcb
3.4.2 Front panel switches
3.4.3 Po we r sup P lie s
Ha r d wa r e con t r 0 I I e r
Cabling and break out cabinets

ASSEMBLY
4.1 Cabinets
4.2 Printed circuit boards
4.3 Cabl ing and wiring of transport

and power supplies

•

system

1 1
11
1 5
18
22
22
22
25
25
25
35
35
40

46
46
46
46

5.

6.

8.

9.

SOFTWARE DESCRIPTION
5.1 Specifications
5.2 Bi t ass i gnments
5.3 Program design

5.3.1 Start up.
5.3.2 The main polling routine.
5.3.3 The routine to drive the transporters.

5.4 The program

TESTING AND MODIFICATIONS
6.1 Local controller and mimic panel
6.2 Software
6.3 Complete system

COMMISSIONING

CONCLUSION

REFERENCES

47
47
47
53
53
55
57
60

106
106
106
106

107

107

109

v

LI ST OF FIGURES

1 • 1
1.2
1 .3
1.4
1 .5
1 .6
1.7 &
3.1
3.2
3.3
3.1.1
3. 2.1
3.3.1
3.3.2
3.3.3
3.3.4
3.3. 5
3.3.6
3.4. 1
3.4.2
3.4.3
3.4.4
3.4.5
3.4.6
3.4.7
3.4.8
3.4.9
3.5. 1
3.5.2
3.5.3
3.5.4
3. 6. t
3.6.2
3.6.3
3.6.4
3. 6.5
3.6.6
3. 6. 7
6.3.1

One of the target magazines in vault 1.
Front view of the hot cells.
Rear view of the hot cells.
Layout of the transport system.
Photograph of a transporter.
Transporter and track detail.

1.8 Shunting of a transporter.
Transport system block diagram.
Mimic panel, local controller and SABUS cardframe.
PE1, PE2 and the power suppl ies.
SABUS cardframe.
Dotmatrix display interface circuit diagram.
Mimic panel front view.
Mimic panel rear view.
Mimic panel block diagram.
Inside of mimic panel.
LED driver circuit diagram.
T ran s p 0 r t e r d i s p I ay c i r cui t d i a gram.
Local controller front view.
Local controller rear view.
Local controller block diagram.
Inside of local controller.
Local controller pcb circuit diagram.
LeO back light PSU circuit diagram.
Local controller front panel design layout.
Local controller front panel circuit diagram.
Adapter board circuit diagram.
Transport system track layout.
Hardware control parking loop circuit diagram.
Hardware control tracks circuit diagram.
Hardware control switchers circuit diagram.
Photograph of PEt.
Photograph of PE2.
PEl wiring diagram.
PE2 wiring diagram.
Photograph of PES.
Ins i de of PES.
PE3, PE4 and PES wiring diagrams.
Local 24V PSU delay control.

1

1. I NTRODUCT I ON

At the National Accelerator Centre a variable-energy separated
sector cyclotron (SSC) and two solid pole injector cyclotrons
(SPC1 and SPC2) are being constructed. The energy values for SPC1
and SPC2 are 8 MeV and for SSC 200 MeV. The two injectors
produce light-ion and heavy-ion beams respectively. SPCl was
commissioned during 1984 and SSC during 1986. SPC2 is still
under Gonstruction.

The accelerators were designed to accererate positively charged
ions. The ions are produced by introducing a gas, for example
hydrogen, into an ion source where the electrons are stripped off
the hydrogen atoms. The ions are then released in the centre of
the injector, from where they are accelerated up to the
extraction radius. Acceleration is accomplished by applying an
RF-voltage across the two dees (so named because of their shape).
The whole process takes place in a magnetic field which causes
the ions to spiral out to the extraction radius. At extraction
the beam is peeled off by magnetic and high-voltage components.
From here it travels along the transfer beamline to the SSC. In
this beamline quadrupole magnets are used to focus the beam and
various diagnostic equipment produce information on the
properties of the beam. On entering SSC, the beam is bent by
means of magnetic components which steers it into its first
orbit. The beam is then accelerated to the desired energy in a
similar way as in SPC1. Once again magnetic and high voltage
components are used to extract the beam from SSC into the high
energy beamline. This beamline also uses quadrupole magnets for
focusing and diagnostic components although they are slightly
different to the ones in the transfer beamline because of the
higher energy of the beam. By using switcher magnets the beam
can be directed to several beamlines which serve different
facilities. These include isotope production, radiotherapy and
nuclear physics research. Another subject worth mentioning is
that the whole process takes place in vacuum. This is to limit
the beam losses due to charge exchange of ions with residual gas
molecules.

At nuclear physics research, the beam can be directed to one of
5 eve n beam I i n e S J 5 e r y i n g t h r e e y a u Its, and, as the n am e imp lie 5 ,

are being used for pure research. At radiotherapy the beam is
used to bombard targets which radiate neutrons. The neutron beam
is then directed onto cancerous tumors.

In order to produce radio-isotopes, targets are being irradiated
by the beam in one of the two vaults at isotope-production.
Vault 1, or the horizontal vault as it is often referred to, has
three beamlines. Vault 2, or the vertical vault, has only one
beam I in e • F j g u r e 1 • 1 s h 0 ws the rot a r y tar get ma g a z in e t hat i s
use din va u I t 1. The i r r ad i ate d tar get s are t ran s p 0 r t e d from
the vaults to the area where the chemical recovery process takes

,

2

place. This is done in what is called hot cells. Figures 1.2
and 1.3 show the front and rear views of a row of hot cells.
Each hot cell consists of a containment box with lead shields of
100mm in front and 50mm on the remaining three sides as well as
on top. After the recovery process, the radioactive waste and
the radioisotopes are transported from the hot cells to a well
shielded storage area. Targets for irradiation are prepared in a
laboratory in the vicinity of the hot cells. These targets are
also transported to the vaults and placed in special magazines at
the end of the beaml ines.

An electric rail transport system was installed to transport
targets and sources with high radioactive radiation and to
transport new targets into dangerous areas like the vaults. The
rail system (;omprises a continuous aluminium track, with power
and control rails and a gear rack, between reception hot cells A
and vault 1. Switchers are provided to switch a transporter to
side tracks serving the parking loop, vault 2 and reception hot
cells B. The parking loop forms a closed loop with the switcher
as the only means of input or output. It can hold up to nine
transporters and the unused transporters are parked here. A
schemat i c I ayout of the transpor t sys tern is shown in fi g 1.4.

Five transporters, which are in effect motorized trolleys, are
used in the transport system. Each transporter has its own
geared electric motor operating from a 32V D.C. supply. Power is
transferred via copper power brushes in contact with power rails
built into the aluminium track. The 32V electric motor has an
integral gearbox which turns the drive shaft at approximately 100
rpm, resulting in a track speed of 0,4 metres/second. In addition
to the two brushes that transfer the D.C. power, a third brush
is fitted which provides a control signal. Reversal of the
transporter is achieved by reversing the polarity of the power
rails in the track. Irrespective of the polarity of the rails a
positive potential is always present on the third or control
brush of the transporter. This positive control voltage is fed
into a third rail in the track and is used for controlling the
movement of the transporter at switchers and stations. Whilst
mo v i n g 0 nth e t r a c k, t his v 0 I tag e i s a Iso use d for i n d i cat i n g its
presence at these pos itions on a mimic panel. Where the
transporter is required to stop on a switcher or in a station in
a particular position, the polarity of that section of the rai Is
is switched so that both are at a positive potential. This
effectively short circuits the drive motor of the transporter,
stopping it almost immediately. The drive through the track is
achieved by means of a cog on the drive shaft of the gearbox
engaging with a nylon gear rack in the track. This, together with
the above-menti~ned electrical stopping system, ensures a rapid
and repeatable stop. For the purpose of being able to remotely
and electronically identify each transporter in order to 'call"
the required transporter from the parking loop, each unit is
fitted with two magnets, the positions of which provide

3

identification to reed contacts on a sensing plate from one to
f i ve • On e 0 f the t ran spa r t e r s i s s h 0 wn in fig u r e 1. 5 and fig u re
1.6 show the transporter on the track.

Figures 1.7 and 1.8 show how a transporter is
main track into the parking loop by means of a
typical of how all the shunting is done in the

shunted
swi tcher.
transport

from the
Th i s is

system.

Because of the obvious dangers of radioactive radiation, the
transport system must be remotely controlled from a safe area.
The appropriate place would be the isotope production control
room wh i ch is in the wh i te area (the red area is where the
radiation levels can be extremely high and the blue area is a
buffer area between the red and white areas). The single most
important feature of the control system should be its extreme
reliability. Some of the radioisotopes to be produced at the NAC
have half lives of several weeks. This means that if the system
malfunctions while a transporter is carrying such an isotope, it
would be almost impossible to go anywhere near the transporter to
retrieve it, for a long period.

Fig. 1.1

Fig. 1.2

Fig. 1.3

.() .()

.. /;

8 III
i

.. I
~ filii
i

.~...
~ - = 'i''\

-

i~

u

.. 1)1
.() ~ III..

i ill

..-
i ..

- ..
i

u

.E'l
u...

Fig. 1.5

Fig. 1.6

Fig. 1.7

Fig. 18

9

DESIGN CONSIDERATIONS

The controller for the target transport system that was installed
originally by a local firm proved to be very unreliable. It was
then decided to design a complete new control system based on a
microprocessor and using input and output modules that are widely
used throughout the NAC. Because of the hazardous nature of
radioactive radiation such a system should be extremely rei iable.
The advantage of using an in-house microprocessor and support
modules is that maintenance and breakdown repairing becomes a
simple task because this is achieved by module replacement. On
the other hand it becomes a very flexible system because software
can be changed fairly easily.

·The Z-80 microprocessor was chosen to do the control. I t is
housed in a small module that 'lives' on the SABUS backplane.
The other modules that were chosen included an eighty bit opto
isolated input module, three thirty-two bit relay output modules,
a GPIB card for communication with another microprocessor and a
bubble memory for software storage. These are al I housed in a
nineteen inch cardframe and connected to the SABUS backplane.

Instead of having to enter commands from a keyboard where typing
errors are likely to occur, a local controller was opted for.
This instrument was designed so that commands could be entered by
push-buttons from the front panel. The logic layout of the push
buttons and the fact that they are wel I described on the front
panel makes it simple and straight forward to operate. This also
eliminates the need to remember complicated command strings if a
keyboard was used.

A mimic panel was designed to indicate the positions of all the
transporters and the status of the switchers. It also indicates
the progress of a transporter moving along the tracks. A three
dimensional drawing of the transport system was made and
transferred onto the front panel. Together with the information
from the local controller lamps, the status of the system is
completely displayed.

Instead of having just a fault lamp on the local controller
indicating power supply malfunction, illegal command e'ltries,
etcetera, it was decided to have an alpha-numeric display. A two
line by forty character dotmatrix display was opted for. This
display would then exactly state any problem to the operator. An
interface card to dr i ve the di sp lay was des i gned to be dr i ven
directly by the microprocessor while living on the SABUS.

In order to switch the currents on
transporters and to power the switchers,

·was designed consisting of relays. This
in the vicinity of the tracks to reduce
minimize voltage drops in the cables.

the tracks for the
a hardware controller

controller is situated
cable length and to

A second cabinet was

des i gn ed for
outputs from

10

this area to concatenate all the various sensing
the transport system and control signals from SABUS.

This ensures a neat, orderly and logic cabling system to link the
transport system to the input and output modules on the SABUS.

The software for the system was designed and written
thorough study was made of the system's capabi I ities
operator's requirements. Turbo Pascal was used as the
language.

after a
and the
software

The inputs to the BO-bit opto-isolator card amount to sixty-nine.
All these inputs are contacts from relays, reed switches,
pushbutton switches, etcetera. Switch debouncing was considered
to provide predictable results but was decided against for the
following reasons. Most of the sensing units in the system
consist of mercury wetted switches which do not bounce. When the
microprocessor is poll ing the local controller pushbuttons for a
command entry, the operator reaction time is normally slower than
the 20ms settling time for switch bounce. Where switch bounce
can be critiGal, the software can prOVide delays to accommodate
for settling times and lastly the de bounce circuitry for such an
amount of contacts can be costly.

1 1

3. HARDWARE DESCRIPTION

A block di agram of the campi ete con tro I sys tem is shown in fi gure
3.1. The SABUS cardframe, the mimic panel and the local
con t r 0 1 I er, S h 0 wn i n fig u r e 3. 2 , are sit u ate din the con t r 0 I
room. PE1, PE2 and the two power supplies are situated in the
vicinity of the parking loop. Figure 3.3 shows these where they
are mounted on the wal I above the parking loop. The hardware
controller is built into PEl. Power and signal cables from the
transport system are terminated in PE1 and PE2. PE1 and PE2 on
the i r turn, are connected to the contro I sys tem by six twe I ve
pair cables.

3.1 THE Z-80 MICROPROCESSOR, SABUS AND POWER SUPPLIES

The SABUS is widely used in microprocessor applications at the
NAC. The Z-80 microprocessor cards, the 32bit relay output
cards, the 80-bit opto-isolator input cards and the 128kbyte
bubble memory cards were all developed at the NAC to be used on
SABUS. It was therefore the logical choice to use these in this
particular application. Fig 3.1.1 shows the SABUS cardframe
containing al I the modules.

The two power supplies came with the transport system and it was
deci ded that it were adequate to be used. The 32V supply is used
to power the tracks to dr i ve the transporters. The 24V suppl y is
used to drive the switchers and relays and is also used for
information feedback to the 80-bit opto-isolator cards.

SABUS
...J Cl. Cl. Cl. . E

... 5l ... ' ... ' ... ' x ~
~~O ~O ~O et:

PH2D8 ...> - Cl. ..Q)- ..Q)- ..Q)- ... '" ... HP COMPUTER..Q I ,
~ a: ...J

<SO 0 - ",<t ",<t N<t CS>

'" ~ "'d "'d "'d ... L:l '" '"o '" N
0 et: et: et: '" :::>'"A B C D E F' G H J K L PI

PH2D1
C O<P_ID)

MIMIC PANEL -

B (LEnS)

A

PH2D2

LOCAL CONTROL

I
PE332V PSU !'--

PEl - PE2 PE4

24V PSU -
PE5

~I
DESCR I PTIOH

TRANSPORT S'fSTE!'I COHTROL
BLOCK DI AGRAI1

DRAIlI'l TERTIUS HlJfWl

DATE JUN 1988

F' I l.Effi:lIIE SBLOCK.F'SH

Fig. 3.1

VALl.T t
J JAmPTDt

HOT m1.5 e

If

AmPTDt
STORAGE.lilT ml.S A

SW,

SW, --lOOP
VAtl.T 2

SW> Sw]

• •
• TARGET TRANSPMT SYSTIM (X)frffR(l. •..- r.....flll(S[f• ... ro

""'"... aw • """" ""'"
... aw,

v.u.r 1

VIO.u 1

""'" "..'".....
-" ONO"" ""'".-..... G

Fig. 3.2

Fig. 3.3

Fig. 3.1.1

1 5

3.2 DOTMATRIX DISPLAY INTERFACE

When it was decided to display micro-processor messages and
system information to the operator, an alpha-numeric di splay was
purchased. The chosen display is a two line by forty character
LeO dotmatrix display. To be able to drive it directly from
SABUS, an interface card was designed. The pin assignments and
functions for the display are given below.

Signal name

DBO OB7

E

R/W

RS

Vee

Vcc

Vss

Pin no.

7 - 14

9

5

4

3

2

1

Function

Tristate bidirectional data bus.

Enable for data read/write.

Select read or write.

Register select.

LCD drive power source.

+5V power.

OV

Two types of registers are contained in the LCD internal
controller namely an instruction register (IR) and a data
register (OR). The IR stores instruction codes such as clear
display, cursor shift as well as address information for the
display data RAM. The OR is used for storing temporari Iy data to
be written into the display data RAM. A character generator ROM
can generate 160 different 5*7 dot character patterns including
the ASCII character set. Data bi t 1 on the data bus is used as a
busy flag in a cpu read operation and when set no instruction
will be accepted.

The interface was designed to fill a slot in SABUS. This way the
cpu can communicate directly with the display. Figure 3.2.1
shows the circuit diagram of the interface. IC1 is an eight bit
bus transceiver that is directly connected to the data bus. lC2
acts as a digital comparator. The one side is connected to the
address bus and the other side to an octal switch block. When
the code that is set up on the switch block matches the code on
the address bus, ICl is enabled for data transfer. The card's
bus address isin actual fact set up on the switch block.

Address line AO is used for register select and Al for read write
operation. The SABUS read and write lines are used for enable. A
20k variable resistor is used to set the LCD drive voltage which
influences the viewing angle. The pcb was designed on the
eurocard standard and using the SABUS pin-out on the card edge
connector.

1 6

The display also has a back light source using organic film as a
substrate. The colour emission is blue green and the driving
voltage can be selected in a range of 600 - 1000Hz at 150V AC
maximum. The power supply to drive the back light is discussed
under the local controller.

,--
2a ~ D0 BI ICI AI 3
20 ~ B2 1\2 11
3a B3 III A3..J 4
30 ~ B4 ~ A4 Ui 12
4a ;;.... B5 ~ A5 a 5
40 ;;:. B6 ~ A6 ~ 13
5a ~ B7 A7 6
50 ;;.. D7 B8 A8 14

DIR EN

1

:>
<I
-.J
0....
(f)
.......
~

X
.......
0:::
I
<I
:E
I
o
~

I 0 8
-+-

DOTMATRIX DISPLAY
INTERFACE

+5V

~ ~.. 0 I

10

'"(\J

PART
NUMBER

DESCRIPTION

7

'3

I 0 2

-+-

~
11

P)Q

13

12

8

~

~14

'3

10

I LI2
r

___P Q SWITCH BLOCK
~ A2 =

Ila v P0 IC2 Q0 -"--- 1----.
110 PI QI -"---
12a ;: P2 & Q2 _,,--- 1-----1

120 ~ P3 ell Q3 -"--- 1-----1
13a v A7 P4 ,; Q4 -"--- 1---1
130 P5 "" 115 -"--- 1---1

P6 Q6 -"---
P7 Q7 -"---

I '3a OIO/R

20a OIO/W

10a o-ill!
100 ~

la/o 0 +5V
i t

(f)

=>
P=l
<I
(f)

l 5V Tr-anzor-'"

32a/o 0 I =1-
DRAWN

DATE

FlLENAME

TERTIUS HUMAN

JAN. 1'388

DOTlNT.FSH

Fig. 3.2.1

1 8

3.3 THE MIMIC PANEL

The function of the mimic panel is to indicate
switcher, the presence of transporters in the
progress of a transporter on the tracks and
identification number of a transporter in the
3.3.1 and 3.3.2 show the front and rear views
cardframe.

the status of each
parking loop, the
the presence and

stations. Figures
of the mimic panel

The switcher status are indicated by means of bi-coloured LED's.
Green indicates the switcher is in the 0 degree position and red
the 180 degree position. The transporter progress and parking
loop parking positions are indicated by red LED's. At every
station position on the mimic panel. a seven-segment display
indicates transporter presence and 1.0. number. If no
transporter is present, the display is blanked and if an unknown
transporter is parked in it, a seven is displayed. Figure 3.3.3
shows the block diagram of the mimic panel control and figure
3.3.4 shows the inside of the instrument. The two major
components are the transporter 1.0. printed circuit board and the
LED driver printed circuit board.

L
..,f ew.s a

""

sw,

Fig. 3.3.1

VAl.\T J, ,

s....

Fig. 3.3.2

PH2Dl 8 \lAULTl-I

~

8 \lAULTl-2

'-=

8 \lAULTl-3

-=-'-

TRANSPORTER ID 8 \lAULT 2

{
6 DISPLAY
1

c=...;.

C -
16 8 STORAGE

A LT ADAPTER
COl'! BOARD =
V+

{
1 8B - 1 HOT CEllS A

=
16

LED DRIVER =E3 HOT CELLS B

=

I

/HA HB H SH S \I" Vb Ye \Id V2" V2b V2c \lb \lIb Vlc Vld'

TRACK POSITIONS

1 2 3 4

SIlITCI£S

1 2 3 4 ~ 6 7 8 9 18

PARKING lOOP POSITIONS

FRONT PANEL LEDS PART I
NlII'1BER

DESCRIPTION I
MIMIC PANEL

BLOCK DIAGRAM

Fig. 3.3.3

DRAlI1

DATE

F1LENAI'IE

TERTIUS HUI1AN

JUN 1988
MBLOCK.fSH

Fig. 3.3.4

Fig. 3.3.4

3.3.1 LED DRIVER

22

This pcb has three functions namely parking loop positions,
transporter progress and switcher status display. The circuit
diagram is shown in fig. 3.3.5. The bi-coloured LED's that
indicate switcher status are switched by reed relays. The
transporter progress LED's are driven by a 4 to 16 line
decoder{driver and the four data lines are latched by IC4. The
enable line on the decoder{driver is used to switch off any LE
if no transporter is on the tracks while the enable line on the
latch is used as a strobe. One of the 32-bit alp cards on the
SABUS drive all these signals as well as the parking loop
position LED's. All the LED's on the mimic panel are ORed by
diodes to serve as a lamp test which are driven from the local
contrail er.

3.3.2 TRANSPORTER ID DISPLAY

In the transporter system there are seven stations where a
transporter can be parked. They are hot cells A, hot cells B,
storage, vault 2, and three positions in vault 1. Five
transporters are used in the system which means that the numbers
1 to 5 are displayed in the stations. If a station is empty the
display is blanked.

Figure 3.3.6 shows the transporter 1- display circuit diagram.
Display data is first set up on the three lines a, b, and c
connected to IC's 1,2,3 and 4, which are latches. Next the
station code is set up on I ines a, b, c and d on IC28, a BCD to
decimal decoder, followed by a strobe pulse to IC27. The decoded
I ine from IC28 is I atched through IC27 wh i ch then acts as a
strobe on the data latches ICl to IC4. At this stage one of IC20
to IC26 is addressed on its data inputs. These IC's are BCD to
7-segment decoder{drivers which are connected via CNl to CN7 to
the 7-segment displays. The OR-gates connected to IC20 to IC26
blanking inputs ensure that the displays are blanked if the
received codes are 000. A lamp test line is also provided and is
connected to the lamp test button on the local controller.

3.3.3 MISCELLANEOUS

In order to keep wiring of the pcb's and back panel connectors
simple, an adapter pcb was designed. Flat cable are used from
the two main pcb's to the adapter board from where it breaks out
to the back panel connectors. A pcb was also designed to carry
each of the 7-segment displays.

PARKING LOOP....
t TPl ""• ,III R3

~
~fU 0" 0"

! ! ! ! ! ! ! ! ! "'-I
~ ~ ·~II~L- 0'

" DO .. '" 110 D7 DO 119 - 111 Il2

! i ! ' ! ! i , i , ! i i 3-.: .lt14

~ • ~ ~ ~ ;: ;: ~ • • 0-• • • • • • • • • • OM.,. r-,
•• ••• •
.7 RL2• ·~II ~L-•• • 0" c-"'. • 0-., 017 Ul

7

""'" c.::
"" • G.!.- w
•• • :r:.. , OD U,. f-,." .,.\ -"'-.....

·~I'ijL-
- :::I.... Ul.... 1 0-

0"
~nsr ,.

""'"TRACK POSITION •.... a" atI! .. •
t l1'l!T 0

11 11" r • RL3

"""" ·~II ~L- 0"

I
.,

33llIl
1 22 01'

iz1- 0-
ICl la I -
0- 0-

I
..

1 , ..
2JJL~ 2JJl~

..
1

_ D19 '!'- D22_ ~- ,!" ~, ... ,!" D2R '!!-- "!'- D32 ~,
, - "li ,"r ,~~ I-~

li I-~ ~~ ! ~~
% "li , I-~ ~~ li ~!, ~ ,1-. I-r, i ~i 1-. •• • & • & • • & • • • & • • &

-J-.,.
~ ,

I le>

•• ~• .23 , 104111

• .,
• J ..
7 • C .. r• !: • ..

1 • • • 741. ~ I I I I I,. ~

:!!= ' Dl Dl ~
~

~ ~ ~• • • •" .. ,." : iL" G1n 17: ~ ~
RI' R2e Rl!1 R22 It!3

1 "..
..=.1.. - EIP13-1 D1C1/11 ,.

" tltSO t1"TIQ11

LED DRIVER

- TElt'TIUS~

"'TE
AUG ,_

rILn- 1'L.E1IS. f'srI

Fig. 3.3.5

ANSPORTER ID
DISPLAY

TPTt-" M.IlIlIJt

'0'_
l'~l #'.a.'"

,.:d-
----" -..

~

! • ~ lA 1'.
: ; I:: ii: ! i I ~~1 lct.!.~ •

~ 1

• ,!I !, , ~----* 'Il ": l~ +-~- " CL
~r ! ,

,,': ?oF I '0" 111'111 ~ I tl ! ! I

J3 -f
"'- ..

1"

JWr"
I .. 0"... r '~4 i: 0\

• "': ~~
~, c-

~ : Dl•
0

• !-+-
0I~I: : 1.. lCd, '~'\Ll1
0· , 'ut
0~f--

~ let" a •
0

~

'\..-=.c' ·..
~ '<07 0

.~

rtt7.., ~~Ic:.l
'0

r .. ttll, I tC11 ,...." ~: :' .'..J.,
0....

~'11 i 0 ",

~
tel7 • A'J~ :~" 5:, !...

......, Ir 1:11 It " "" I:tc17 I- It g;r WIZ Z 1 11 L.-

!ht'" It ". n 1"
1'-:='

Itv ll.....,~ t-;~ 1"
'"

•
ta, J .A I -- 1I!!....-

,ql: llU oU.
•, : t;J IJC1& tt~ I I ~

~I ~,IC1:g1 It ,' ' '', u:
I ... ,· , '--"'----'I

:~;r~ ~~;
11

U C'
I 11 te1I:tl

~r'"
m

~
~ V' .. !"

~ • i~
" ...-gl ,:1- IIU:;:I~

~f--~~ • ·..'---
!• •

I...
~K9 ~

••
/...---; I ': l_~ rel.., ,U;l~ j lS?....· I• ~;;. ~ ,~_ "\ t!_ I:~

~ ..~~

'L.=..J' ! ..~

~t
! m • •

17i: E~

~F
....

-• L..i!'i• -+-: 1i 1"~1 lCl~ I.,III.tiL.

• .i~ t- r:.~I d U

'L.=..J' ~ ...
11 taJtJ+tl...

...
r=! .=. --;--, '!Io !~C4at

• •i~
II~: I.. ..11;',', ,tC1~ ." o;!!--, '-.1'----'< I"

.~~ '-'~ • ~:':::-J:: ~ t!---"
~~

.. &l QI

I TR
5 ~D, , .. . 1.: .

" ..! I::' .., . -...
iMTt

STORAGE

VAULT 2

VAULTl-2

VAULTl-I

VAULTl-3

HOT CELLS A

HOT CELLS B

25

3.4 THE LOCAL CONTROLLER

All the commands to control the transport system are entered on
the local controller by means of pushbuttons. It also displays
information regarding the system and a piezo-electric buzzer acts
as an audible alarm. Although the dotmatrix display is housed on
the front panel it is driven directly from SABUS as described
previously except for a back light power supply. Figures 3.4.1
and 3.4.2 show the front and back rear of the local controller.

A b I 0 c k d i a g r a m 0 f the I 0 c a I con t r 0 I I e r i s s h 0 wn i n fig u r e 3. 4 • 3 •
The major components are the local pcb, the front panel and the
power supplies. Figure 3.4.4 shows the inside of the instrument
where these components can be seen.

3.4.1 LOCAL CONTROL PCB

The function of this pcb is to drive all the indication lamps
which are integral parts of the pushbutton switches. The circuit
diagram is shown in figure 3.4.5. The indication lamps are
devided into three groups namely FROM lamps, TO lamps and
miscelaneous lamps. The FROM and TO lamps are driven in the
following manner. A BCD-code is set up on ICl which consists of
two f 0 u r bit I ate h e s. On c e the cod e i s set up, a s t rob e p u I s e i s
applied to the enable input. This causes the data on the inputs
to be latched to the outputs which drive IC2 and IC3. These are
BCD to de c i ma I de cod e rId r i ve r s wit hop en col lee tor 0 u t put s
capable of driving the 24V lamps directly. The lamps are
connected via CN1 and CN3 and are once again ORed by diodes to
serve as a lamp test.

The fault lamp signal is ANDed with an astable multivibrator to
enable it to flash. The two power supply status lamps are driven
by retriggerable one-shots. The execute lamp, cancel entry lamp,
the piezo-electric alarm are directly driven by a 32bit olp card
on SABUS.

The back light power supply for the LCD dotmatrix display is
shown in figure 3.4.6. The Schmitt trigger and RC circuit
generates a pulse train at approximately 1kHz. The pulse,
amplified the two transistors, which are driven 180 degrees out
of phase, is fed into a step-up transformer. The output of the
transformer, approximately 160V, is then connected to the LCD
back I ight source.

3.4.2 FRONT PANEL SWITCHES

Figure 3.4.7 shows the layout design and figure 3.4.8 show the
circuit diagram for the front panel. The parking loop is the
only place from where a specific transporter can be called. For

t his
from

26

reason the 'FROM PARKING LOOP r swi tches are
the circuit diagram it can be seen that a

in a
BCD

row and
code is

generated when a pushbutton is pushed. The FROM and TO switches
also generate a BCD code. All these signals are connected to
the 80-bit opto-isolated lIP card on SABUS.

An adapter board was designed
OR them by means of diodes.
strobe lines. Figure 3.4.9
adapter board.

to concatenate all the signals and
The three ORed signals then act as

shows the cl rcui t dl agram for the

Fig. 3.4.1

.-
-- --•

-

•

Fig. 3.4.2

+5V

B O_{_-T
MIMIC PANEL LAMP TEST 1

A
DOTMATRIX

I
I DOTMATRIX DISPLAY l

5V 24V
KEY

SWITCH
~ ...,....

--r-
I

POWER '0 0
I

1 SUPPLIES 0
MAINS IN

0 i

COM -0 MAINS OUT
-0 TO SABUS

COM

D ~C7-------l ADAP TER _~~9_~_~_P_~~~~
80 b ~ t I/P '-' BOARD f-'- SW ITCHES i

'--J ,-----------------,

11 LAMPS I I
32 b ~~ O/p 0------------------

E

LOCAL PCB
BACK LIGHT f----..--J

PSU

F
~

COM

PART I
NUMBER
DESCRIPTION I

LOCAL CONTROLLER
BLOCK DIAGRAM

Fig. 3.4.3

DRAI.lN
DATE
FlLENAME

TERTIUS HUMAN
FEB 1988

LBLOCK.FSH

Fig. 3.4.4

-

~ EIP13-2DICl/1
DDClInI~

FROM

TO
l"~i:"41 ... HOT CELLS A
"~~ Db HOT CELLS B
1"~1:'4 ... VAULTl-l
I~ DD VAULTl-2

~ ., VAULTl-3
I "~':" .11 VAULT 2l '~ '17 STORAGE

1"~1:W ". PARKING LOOP

.... Ut ..1...
IlS EXECUTE

all 1"~ CANCEL ENTRY>IS

'~:," ..• ALARM
~ ..• SPARE

f-- 1"~ ..• FAULT/RESET
1"~1:W ..• 24V
"~:"

"• 32V

-

1"'!..1~ .. HOT CELLS A- ";!:,,

ml DO HOT CELLS B
1"~ .. VAULT 1

H ~ ~ j C!I3
IH"!.l;'M• VAULT 2"... I •I

~ 'ffi" ." let I .. • STORAGE.., • •
IlS .. I •

~.. .. c • •11 1EN .. • •1··"r

=- 7 I "'!~ 2• D7
PARKINGo...-.! 1"~ .. 3 LOOP

"~:" ". 4
l"~ • 5

tooq,n ~...,.. "7 •
••e ,a

• ":--r=-- "
1.1.Y 741231

f-:ll.
~ r

+'_.n· ':'i" ...r

.. I "IS 14 ~
I .'l!J _.

t 1iJlI':::-r--- 13 47M ...

rr-lT1r·-r2::'.......,,,.... lL--------::-_-=-J:__
I I ~~ f-J • Ill< "'"

1:7 ! ~ r ~r--t----'
r ---------::,-TItI9:1C237

'''' "'L-

IM1 ••~

• .-j-------'

:
•
7

I.,
11

•
" l '+
• tt---'

11 l +'
•

I . l
I t
,'-'.,--=-.....

OMI.
-"'--_ IS

••
I...
11

LOCAL CONTROLLER

-..

Fig. 3.4.5

l~9

330R

!r:;;:] 3±..,,:~
74LS132

4 r-::"I. 6...
5.........

1K0

1K0

~C107

-+-

~C107

-+-

CD

~t
~

I

CD

~t
~

+5Y

L 160Y

L..-

PART I
NUMBER
DESCRIPTIONr

--.:J

-
'"'

OUTPUT

Fig. 3.4.6

LCD

DRAWN
DATE
fILENAME

BACK LIGHT PSU
TERT IUS HUMAN
DEC 1987

BLI. fSH

TARGET TRANSPORT SYSTEM CONTROL
ALARM FAULT/RESET

G I
LCD DOTMATRIX DISPLAY

I Gl~X~ _

FROM TO
CANCEL

G HOT CELLS A G EXECUTE ENTRY

G G
G GHOT CELLS B

G YAULT 1 G GG
G YAULT 2 G 241,1 PSU 321,1 PSU

G STORAGE G G G
TRANSPORTER ID LAMP TEST POWER

GGGG G PARKING LOOP G G G
,

ALL TEXT TO BE ENGRAYED
ALL HOLES ARE 16mm FOR SWISTAC SWITCHES

~I EIP13-2FIL1/l
D£ICItI"I,," I

LOCAL CONTROLLER
FRONT PANEL

-.. TDn'Ila~
..n:

..u.. ,_

rILDW£ In.F"Q4

Fig. 3.4.7

TARGET TRANSPORT SYSTEM CONTROL
ALARM FAULT/RESET

G I
LCD DOTMATRIX DISPLAY I G1~ X21 _

FROM TO CANCEL

G HOT CELLS A G EXECUTE ENTRY

G G
G GHOT CELLS B

G VAULT 1 G GG
G VAULT 2 G 241,1 PSU 321,1 PSU

G STORAGE G G G
TRANSPORTER ID LAMP TEST POWER

GGGG G PARKING LOOP G G G
,

ALL TEXT TO BE ENGRAVED
ALL HOLES ARE 16mm FOR SWISTAC SWITCHES

~I EIP13-2FILl/l
II£ICIl~tClt

LOCAL CONTROLLER
FRONT PANEL

-.. TERTIUS tU'WI

Ill"':-
nl.DW£ Lfl".F'SH

Fig. 3.4.7

... FROM PARKING LOOP ... FROM ... TO ...
... OCa oc. • lI<JET

ro-L r-o-L f-o-Lo-J
El

role• • • I El• • ,
• I • I •
• • •

.1. OCI OCI ElEQlT£

ro-L ~I- f-o-L role El

... IIIIlLT • wu..n-l COIUL DmrY

~~ ~~ ro-L ra' e El

t-O r-o

... IIIIlLT • \Ml.LTl-l:
_...

ro-L r--o'- ~~ e--o'e El

re

... ST-..: YAlLTl-3
r-o~ r-o~ -o-L --<f-e El
LO --0 _

......T.

~ Ie--o

~

~1,MPTDT

-L f-O

J~
__ UllP

~~ ..=.1L...Q
IlEICtIlFfttltl

UlCM.~

.-.n' f"lIICL ..nOD- TU1I~ IUWt

..n:
.... 1_

m~ LJX:SI,II. rSH

Fig. 3.4.8

1~48

_I~ ~8 1~1,48

Irtlt'41 1.~1.4
j?t
1~1.4

~ I~~ Irtlt'41

rt>t-I f- VI Vl

'":lo "'"
0

~10

0 f-ci-
15 '""'"

0

I
0

c0 0 0

-...

PARTJ
NUMBER
DESCRIPTION I

ADAPTER BOARD

DRAWN TERTIUS HUMAN
DATE JAN 1988

FILENAME ADPT.FSH

Fig. 3.4.9

35

3.4.3 POWER SUPPLIES

Two power
panel. A
drives the

supplies
5V supply
lamps and

are used for the local controller and
drives the TTL circuitry and LED's and
the 80-bi t liP card.

mimic
a 24V

3.5 THE HARDWARE CONTROLLER

As mentioned previously the transporters pick up the drive power
from two copper rails in the tracks by means of brushes. The
tracks are divided into different sections and figure 3.5.1 shows
the track layout indicating the switchers and track sections.
The sections are HA, HB, H, HS, V, V1, V2 and PL1 to PL10 in the
par kin g I 00 p • The fun c t ion 0 f the ha r d wa re con t r 0 I I e r i s to
switch the drive power to the track sections, the tracks on the
switchers, the switcher motors and the parking loop track
sections by means of relays. These relays are driven by the 24V
power supply and controlled by the 32bit OIP cards on SABUS.
When power is switched off on a section, both rails are at a
positive potential. This serves as a brake for the transporters
because it effectively short circuits the transporter motor. A
third rail in the track is used for position sensing and the
positive potential picked up by the power brushes is fed into
this rail.

Th ere are ten par kin g po sit ion sin the par kin g I 00 p res u I tin g
into ten sections of track. figure 3.5.2 shows the circuit
diagram for the parking loop track power.

In order to drive a transporter in both directions, the power is
applied in either direction to the track rails. This means that
for every section of track two relays are used. figure 3.5.3
shows the circuit diagram for the track power where the pairs of
relays are clearly indicated. The method for 'power off - both
rails at positive potential' can also be seen.

where
An

o

figure 3.5.4 shows the circuit diagram for the switchers
the same configuration is used for the track power.
additional relay powers the switcher motor to drive it to the
degree or the 180 degree position.

The hardware controller is bui It into a cabinet marked PE1 which
is situated near the parking loop. From here the cables carry the
power to the transport system. The wiring diagram and photograph
are shown in section 3.6.

81 PEl
11

PEZ
1VAULT 1

UP SWITCHER 3 SWITCHER 4
Vle1 ~ Vle UP STPlPL4 PL3 PL2 PL1 HS H HA

~ =-- --
= "-./ -- --

= = / -- --
STP7 STP6 STP5 " ~

~
I PE3 I

~
It)
...J -0-

~
PARKING III III '"Vlb w

::t:

LOOP
u

SWITCHER 2
....- S

<JJ :::t
...J

ID
0-

SENSING PLATE

~~(' V2a ~
I I

/

;;?-: --
HE ~ STP2

Vla PL7 PL8 PL9 PL10 '- =STORAGE

~
(f

"-./
'la

V2b

~

"V2e Vel

Vb

V
~

STP4 '(=
VC

VAULT 2

HOT
CELLS A

HOT
CELLS B

F~9. 3.5.1

~ EIP13-000Ll/l

--"'"'"TRANSPORT SYSTEM
LAYOUT

00'P TO TIIlCIC I"'DSITICl'll o.-r to TJIIIlCX POSltlca.

00'P TO i1tIlCK POSItlClC

pap r·0--(
00'P TO l1ttlCX POSItlClfS

POLARITY FOR CCW MOVEMENT
32V

+

o.-r TO T'IbIlaC P'OII11C1'11 ~ TO TJ!flQ(POIrtt"

TO TRACKS BETWEEN
PARKING POSITIONS

<11 PIECES)

I ALL INPUTS FROM
~ TO 1II'JlJCX P"DI1tICI'II Oo'f' TO TJlIlICX I"CIIrtIlI'tI SABUS 32 BIT RELAY O/P

... ...

0J(~ - r ~,:-g --(
Oo'f' TO TlI!IIlCX P"DIltlCftl Q.I? TO 1JtIJOC P'OSItl" .=.1

1EICt1l'TICltl

HARDWARE CONTROL
PARKING LOOP

-.. TDTtlJ8~

"'l"l: ll<l: ".7
rll.DW£ HCl'l.....

Fig. 3.5.2

~--r---l

• -

• . • - • -
DIRttTIttt DIMrTIOtt

l
H{ ~~ _~~ 1 HS { ~~ __ -' j- - -

l l ~ ! ! ~ ! j-1---1 --1---1 --1---1
"'" TO """" "'" TO """" "'" TO """"

• . • - • -
Du.ECTICIt DtREcTIOtt

L
HA{ ~- _~~ r s{~ - --- !- - -

L l ~ r 7: ~ j j-1- --1 --1- --1 --1- --1
"'" TO """" "'" TO """" "'" TO """"

• - • -
IIJECT'Imt

L
H'{ ~- _~~ 1- - -

L l 1 1

ALL INPUTS FROM
SABUS 32 BIT RELAY O/p

HARDWARE CONTROL
TRACKS

JIWI'I TDrTIlA IUW'l

WlTE Dc: 1M1

n!.DW'f£ HC1'• rSH

Fig. 3.5.3

SWITCHER 2 SWITCHER 3
.--0..•.................---- -- --- -- -- --0 --- -. __.•. __ __.•.._0 - - --- ':'

.... -

9 -', ---' !

~--I-Ll1
L __.__ __ __ __ __ __ _ 1

; ••••__•.••••__ __.. •••••••••••••••••••__••••••__.h•••••••••••••••••••••• _ •••••••••• •••• __••••• __••••• ••••••••••••••__•• • __•• ;

· .· .· .· .· .· .: ~ ~ :
~ • - j
: :

I 9- --_! I

I _.- ~ --IJ -1 1
I

j ~ TO ~ 1
•••••••••••• _ •••__ ••••••••__••••••••••__•••••••••• ••••• ••••__••••__•••••• •••• ••__•••••• •••••__._••••_. __.h•• ••• ••••• _ ••~

SWITCHER 1

"'" TU _

. -

...... - _ _ _ - ,
SWITCHER 4

"" TU IIJTlIIl

.._ .:

..=.1
HARDWARE CONTROL

SWITCHERS

Fig. 3.5.4

40

3.6 CABLING AND BREAK-OUT CABINETS

In order to keep wiring and cabling efficient, orderly and neat,
two break-out cabinets were designed. All the inputs and outputs
to and from the transport system are terminated in these
cabinets. The signals that belong together are then concatenated
and cabled out to the SABUS I/O cards.

Figures 3.6.1 and 3.6.2 show the inside of PE1 and PE2
respectively and figures 3.6.3 and 3.6.4 show the wiring
diagrams. As mentioned previously the hardware controller forms
an integral part of PE1. The position sensing signals come from
every part of the transport system and they were also terminated
in small break-out boxes. These break-out boxes, PE3, PE4 and
PES, are fixed on the tracks. The di fferent signal wires are fed
into the boxes from where it runs in a cable to PE2. Figure
3.6.5 shows PES fixed to the parking loop track. Figure 3.6.6
shows the inside where the incoming signal wires can be seen on
the bottom left and the outgoing cable on the bottom right.
Figure 3.6.1 shows the wiring diagrams for PE3, PE4 and PES.

Fig. 3.6.1

------;

Fig. 3.6.2.

F51/D23

G
91 1

D49 10

@
8

11 7
F45

t-- ""6
Fll

r-!- rs2
D6 31 14

91 I

~@
8

'"7
~ '"6F47 I

Fl2 r-z 5
D7 31 14

91 I

~@
8

'7
F50 4 ~
Fl3 '2 7
D8 31 14

91 1
10

(§
8

t--- '711

F52
t--- '6"~Fl4 2 7

D9 31 14

91 1
10

@
8

t--- 711
F55

t--- '6"
Fl5 r-!- rs,2
D10 31 14 ,

91 I I
10

@
81

t--- ryj
F57

,..!.! f&;
Fl6 r-!- r--s-l2
DII 31 14 i

91 I
10

@
8

t--- t-=-

F60
r-!-l 81 If1Fl7~

DI2 31 14 1

91 I I
10

@
81

r--- ry;
F62

,..!.! f---l
~

6
Fl2 2 ~
D13 31 14 ,

91 I
10

@
8

t--- r-y11
F65

t---
~

Fl9 r-!- ~2
DI4 31 14

91 1 I

*@
81
~

F67 I"" 1--
1

6
F20 ""2 7
D15 31 14

F

26, I E<RI-2)
27 2 E<R2-2)
28 3 E<R3-2)
29 4 E<R4-2)
30 5 E <R5-2)
31 6 ECR6-2)
32 7 E<R7-2)
33 8 ECR8-2)
34 9 E<R9-2)
35 10 E<RI0-2)
36 11 GCRI-2)

'"
37 12 GCR2-2)

C\J 38 13 GCR3-2)...
38 14 G<R4-2)D..
40 15 G<R5-2)
41 16 GCR6-2)
42 17 GCR7-2)
43 18 G<R8-2)
44 19 G<R9-2)
45 20 GCRI0-2)
46 21
47 22
48 23
49 24

"-- 25
26
27
28
29
30
31

HS1._
32 E<R2-l)
33 E<R2-1l)

s-f-
34
35 E<R4-1)
36 E<R4-11)

HA1._
37 E<R6-1)
38 E<R6-1l)

HB-f-
39
40 E<R8-1)
41 E<R8-1l)

H1._
42 E<RI0-1)
43 E <RI0-1l)

TPI-f-
44
45 G<R1-l)
46 G<RI-4)

TP21._
47 G<R2-1)
48 G<R2-4)

TP3-f-
49
50 G<R3-l)
51 GCRI-4)

TP41._
52 G<R4-l)
53 G<R4-4)

TP5-E-
54
55 G<R5-l)
56 GCR5-4)

TP61._
57 G<R6-l)
58 GCR6-4)

TP7-E-
59
60 GCR7-l)
61 G<R7--4)

TP81._
62 G<R8-l)
63 G<R8-4)

TP9-E-
64
65 G<R9-l)
66 G<R9-4)

TPI01._
67 G<RI0-l)
68 G<RI0-4)
69
70

E
DI ...L 91 1
D48 10

@~~DI6
11 ..l..
"1 ~:1

FI '2 5 r-:t-
3 I 14

L 91 1
10

@
8·

F33
~ ~F32 1 ~

F2 r-z 5
31 [4 >-----

D2 ..L 91 I
10

@I ~ trDI7
'Il
~ ~f-

F3 r-z 5
31 14

L 91 l
10

@
8

F36 11 t-?-
F35 '1"" I:F4 '2

31 14 ~

D3...L 91 1
10

@~~D18
11 ..l..'1"" ~ f-

F5 '2 5
31 14

L 91 1
10

@
8

F38 11 ..l..
F37 '1"" ~
F6 r-z 5

31 14 '----

D4..L 91 1
10

@~
tr

DI9
11 ..l..'1"" ~ I-

F7 ~ 5
31 14

L 91 1
10

@
8,

F41 '11 ~t--
F40 r-!- ~
F8 2 5

31 14 ~

D5..L 91 1
10

@~trD20
11 ~t--

r-!- ~ I-
F9 2 5 r-r---

31 14
L 91 L

10

@
8

F43~ ..l..
F42~ ~
Fl0 '"2 5

31 14

D

A<RI-9) I E <RI-9)
A<R4-9) 2 E <R3-9)
A<R7-9) 3 E<R5-9)
C<RI-9) 4 E <R7-9)
C<R4-9) 5 E<R9-9)
C<R6-9) 6 G<RI-3)
C<R8-9) 7 G<R2-3)

+32\1 8 G<R3-3)
B30 9 G<R4-3)

10 G<R5-3)
11 G<R6-3)
12 G<R7-3)
13 G<R8-3)
14 G<R9-3)
IS G<RI0-3)

A<RI-8) 16 E<RI-8)
A<R4-8) 17 E<R3-8)
A<R7-8) 18 E<R5-8)
C<RI-8) 19 E <R7-8)
C<R4-8) 20 E <R9-8)
C<R6-8) 21 G<R1-4)
C<R8-8) 22 G<R2-4)

COM 23 G<R3-4)
B31 24 G<R4-4)

25 G<R5-4)
26 G<R6-4)
27 G<R7-4)
28 G<R8-4)
29 G<R9-4)
30 G<RI0-4)

1141 31 A<R3-3)
32 A<R6-3)
33 A<R9-3)

+24Y 34 C<R3-3)
PE2D69 35

B46 36 A<R3-4)
37 A<R6-4)

COM 38 A<R9-4)
PE2D73 39 C<R3-4)

40
B31 41

42
43
44
45

D36 46 A<RI-10)
47 C<RI-10)
48 E<RI-10)
49 G<RI-10)
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

D39

c
D4...L 91 1
D47- 10

@I ~ ~D19
~ ~f-
~ t-=--

B11 2 5
31 14

L 91 1
10

@
8 r----

1148 '1i ~
1147 r-=t

I :BI2 f-t
31 14 !--

91 1
10

@~
B50
~ ~BI3
~ ~

D34 2 5
31 14 D51/

ns...l.. 9J 1
10

(§~trD20 I .
'11 r2rt 6 I-

BI4 !2 5 f-f--
31 14

L 91 1
10

@
8

B53 '11 ..l..
B52 f-J -fB15 f-t

31 14 r----
D6...L 91 1

10

@ -y~D21
11
f-J ~

B16 "-t 5 C-
3 14 I

L 9 1
10

@
8

B56 .!.!.. ~
B55
~ ~BI7 2

3 14

D7...1.. 9 1
10

@~trD22

~ t-f-
~ t-::

B18 2 5
31 14

L 9 1
10

@
8

B58 '11 t-?-
B57 f-J ~
B19 f-t 5

31 14

9 1

~@~
r-!:!- r-!-
~ ~

B20 2 5
31 14

B

1 A<RI-2)
2 A<R2-2)
3 A<R3-2)
4 A<R4-2)
5 A<R5-2)
6 A<R6-2)
7 A<R7-2)
8 A<R8-2)
9 A<R9-2)
10 A<RI0-2)
11 C<RI-2)
12 C<R2-2)
13 C<R3-2)
14 C<R4-2)
15 C<R5-2)
16 C<R6-2)
17 C<R7-2)
18 C<R8-2)
19 C<R9-2)
20 C<R10-2)
21
22
23
24
25
26
27
28
29
30 D9
31 D24
32 A<R2-l)
33 A<R2-11)
34
35 A<R3-l)
36 A<R3-4)
37 A<R5-l)
38 A<R5-11)
39
40 A<R6-l)
41 A<R6-4)
42 A<R8-l)
43 A<R8-11)
44
45 A<R9-l)
46 A<R9-4)
47 A<R2-l)
48 A<R2-1l)
49
50 C<R3-l)
51 C<R3-4)
52 C<R5-1)
53 C<R5-1l)
54
55 C<R7-l)
56 C<R7-11)
57 C<R9-l)
58 C<R9-1l)
59
60
61
62
63
64
65
66
67
68
69
70

1
2
3
4

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

w
C\J
W
D..

'"C\J
W
D..

36

38

37

A
Dl ...L 91 1 1
~ 10

@~D16

~
I :~r-!-

Bl 2 5Cr---
31 14 1

L 91 1 i
~ 10

@
8 ,..--

c--
~IB33

~
B32 .-.!..

1 :B2 2
31 14 r--
91 1

~ 10

@
8

~
t-y
t---

B35 ,...!.- ~
B3 2 5

31 14 B35/D

.L 91 1
10

(§~p-D17I

i ~ ~
r-!- ~ f-

B4 2 5
31 14

L 91 1
10

@
8

B38 -
.!.!.. ..l..

B37 .-.!.. ~B5 2 5
31 14 ~

91 1
10

@~1140 -
~ 7

B6 ,...!.- 6""
D32 2 5

31 14 B41/D
...L 91 1

..= 10

@
8 ~D18

~ ~
t---

,...!.- 6 -
B7 2 5 I-r---

31 14
L 91 1

10

@
8

1143 ,..!.!

~B42 ,...!.-
B8 2

31 14 ~

91 1

~@
8

,..!.! t-y
B45 ,...!.- ~B9 2
D33 31 14 B46/D

91 1

~@
8

.!.!.. I-y
!--

.-.!..
~B2 2

31 14

Fin ':I" ~

A B c D E F G
D72

9 I
~@~
~ 7

~ 6""
2 ""5

31 4

91
f-~@±2.!.

...!- ~
2 5

31 14

91
f--
~@~
r.!! t2
,...!. ~

2 5
31 4

91
f--

~@~

:t R4 t2
~2;

3 4

9 I
- ~@~
~ ::~

2
3 4

9
- ~@

8

~ ~
f--

~ ,...§...
2 5

3 4

9
f-~@~~
~ ,...§...

2 5
3 4

9
f-~@~~
~ ,...§...

2 5
3 4

9
f----~@~

r.!! r-2-
~ ,...§...

2 5
3 4

9
'--
~(§:~2.!.
...!-

2 '"5
31 4

1 26 1 D1 Cl 1 1 w 30 1 E65 5 1 F9 1 1 ~

2 27 2 D2 C2 2 2 I- 31 2 E64 6 2 F10 2 2 I
3 28 3 D3 3 3 <I: 32 3 E63 7 3 F5 3 3C3 ..J
4 29 4 D4 C4 4 4 Q. 33 4 E62 8 4 F11 4 4
5 30 5 D5 CS 5 5 '" '" 34 5 E61 9 5 G3 F12 5 5
6 31 6 D10 D65 6 e z: w 35 6 E60 10 6 G6 F6 6 6- Q.7 32 7 D12 7 '" 36 7 E50 11 7 G9 F13 7 7z:
8 33 8 D14 8 w 37 8 E49 12 8 G13 F14 8 8
9 34 9 D16 9 '" 38 9 E48 13 9 G1 F7 9 9
10 35 10 D18 C6 10 ~ J-STP 1

40 10 E47 14 10 G2 10 10
11 '" 36 11 D20 11 41 11 E38 :I: 15 11 G4 F15 11 11
12 <D 37 12 D22 12 ~ J-STP 2

42 12 E37 <D 16 12 G5 F16 12 12 '"'" C7 '" -13 (IJ 38 13 D30 13 43 13 E36 (IJ 17 13 G7 F8 13 13 w:I: :I: Q.14 Q. 39 14 D29 CB 14 ~J-STP3 '" 45 14 E35 Q. 18 14 G8 F26 14 14-15 40 15 D28 15 w 46 15 E25 19 15 Gll F27 15 15Q.16 41 16 D27 C9 16 ~ J-STP 4
48 16 E24 20 16 G12 F28 16 16

17 42 17 D26 17 50 17 E23 30 17 F29 17 17
18 43 18 D39 C10 18 46 51 18 E22 31 18 F30 18 18
19 44 19 D40 19 47 19 32 19 F31 19 19
20 45 20 D41 Cll 20 48

'" 20 33 20 20 20
21 1 21

~D73
21 49 - 21 34 21 21 21

22 2 22 C12 22 50 - A 22 El8 35 22 22 22u
23 3 23 D66 23 51 Q. e 23 E17 36 23 23 23
24 4 24 C32 24 52 v E 24 E16 37 24 D65 24 24
25 25 C33 25 53 F 25 E15 - 25 25- 1126 26 26 D42 C17 26 1 '" 2 26 E39 5 26 G14 F32 26w
27 27 27 D43 C16 27 2 :I: 3 27 C59 6 27 G15 F33 27 2u28 28 28 D44 C15 28 3 I- 5 28 C60 7 28 G16 F34 28 3
29 29 29 D45 C14 29 4 - 6 29 C61 8 29 G17 F35 29 4::t
30 30 30 D46 30 5 '" 30 9 30 G18 F36 30 5<I:31 31 31 D47 31 6 C'l 31 10 31 G19 F37 31 6
32 32 32 D24 32 7 w 32 11 32 G26 F38 32 7Q.
33 33 33 D25 33 8 33 12 33 G27 F39 33 8
34 34 34 D51 34 9 34 13 34 G28 F40 34 9
35 35 35 D52 35 10 A 35 E14 14 35 G29 F41 35 10
36 u 36 36 D53 36 11 C 36 E13 -, 15 36 G30 F50 36 11
37 <D 37 37 D54 37 12 E 37 E12 <D 16 37 G31 F51 37 12 "-'" C'l '" -38 (IJ 38 38 D55 38 F 38 Ell (IJ 17 38 G32 F52 38 13 w:I: :I: Q.39 Q. 39 39 D56 C18 39 1 '" 2 39 E51"-E26 Q. 18 39 G33 F53 39 14w
40 40 40 D57 C19 40 2 :I: 3 40 C56 19 40 G34 F54 40 15
41 41 41 D58 C20 41 3 u

5 41 C57 20 41 G35 F55 41 16I-
42 42 42 D59 C26 42 4 ::t 6 42 E58 30 42 F56 42 17
43 43 43 D60 C27 43 5 (fj 43 31 43 F57 43 18
44 44 44 D67 C28 44 6 <I: 44 32 44 F58 44 19v
45 45 45 G56 C29 45 7 w 45 33 45 F59 45 20
46 1 46 C30 46 8

Q.
46 34 46 46 21

47 2 47

~D74
C31 47 9 A 47 E10 35 47 47 22

48 3 48 48 10 C 48 E9 36 48 48 23
49 4 49 49 11 E 49 E8 37 49 D66 49 24
50 26 50 E67 50 12

(IJ
F 50 E7 5 50 G36 F65 50 eo I C!- 24V51 27 51 E68 C34 51 1 '" 2 51 E66"-E39 6 51 G37 F66 51 PSUw _J52 28 52 E69 C35 52 2 :I: 3 52 C53 7 52 G38 52

53 29 53 E52 C36 53 3 u 5 53 C54 8 53 G39 F64 53
-,

I-

COI}32V54 30 54 E53 C37 54 4 - 6 54 C55 9 54 G40 D76 54::t55 31 55 E54 C38 55 5 (fj 55 10 55 G41 D69 55 STAT PSU56 32 56 E40 C39 56 6 <I: 56 11 56 G42 C45 56IC)
57 33 57 E41 C40 57 7 w 57 12 57 G43 5758 34 58 E42 C41 58 8

Q.
58 13 58 G44 5859 35 59 E27 C42 59 9 59 14 59 G45 5960 '" 36 60 E28 C43 60 10 A 60 E6 "- 15 60 6061 <D 37 61 E29 61 11 e 61 E5

(IJ
16 61 61'" '"62 (IJ 38 62 62 12 E 62 E4 (IJ 17 62 62:I: :I:63 Q. 39 63 63 - F 63 E3 Q. 18 63 6364 40 64 64 '" D 64 E2 19 64 G53 6465 41 65 D6

w
65 F24 :I: K 65 El 20 65 G50 6566 42 66 D23 66 F49 u 2 66 D68"-E51 45 66 G51 66I-67 43 67 C44 67 F73 3 67 C50 30 67

L
6768 44 68 68

::t
C51 31 68E66 (fj 5 68 6869 45 69 PE1D35 69 G55 6 69 C52 32 69 6970 1 70

~D75
70 70 33 70 7071 2 71 71 71 34 71 7172 3 72 72 A(RI-10) 72 35 72 7273 4 73 PElD39 73 C24 73 36 73 7374 74 74 C49 74 74 7475 75 75 C73 75 75 7576 76 76 G54 76 76 7677 77 77 77 77 7778 78 78 78 78 78

I pr=- ~
Fig. 3.6.4 ~L- L-

Fig. 3.6.5

Fig. 3.6.6·

PE 3
A

26 1 HS
27 2 5
28 3 H
2'9 4 HA
38 :I HI

PH2D 31 6
32 7
33 8
34 '3
3:l 8
36 1
37 12

PE 4
A

3'3 1 Y~

48 2 Vb
41 3 Ye
42 4 Vd
43 :I Y2a

PH2D 44 6 Y2b
4:1 7 Y2c
46 8 Yla
47 '3 Ylb
48 18
4'3 11
:se 1

PE 5
A

:11 PLl
:52 PL2
:l3 3 PL3
54 4 PL4
:l:5 :I PL:l

PH2D :l6 6 PL6
:l7 7 PL7
:58 8 PL8
:1'3 '3 PL'3
68 18 PL18
61 11
62 12

46

4. ASSEMBLY

4.1 CABINETS

For the mimic panel and local controller two 4UT3 Elma cardframes
were used. The amount of components used in each of these
instruments does not justify such a big cabinet but the size was
determined by the front panel components and layout thereof. On
the local controller front panel and and on both the rear panels
the appropriate information concerning switches and connecters
were engraved. For the mimic display front panel a three
dimensional drawing of the transport system was designed. The
drawing was transferred onto a photosensitive material and fixed
to the front plate.

For the break-out cabinets PEl and PE2 two switchboard type, wal I
mounted cabinets were used. These were mounted on standoff
brackets about 200mm away from the wall to allow for cable entry
through the back. For PE3, PE4 and PES smal I vero boxes were used
and these were mounted directly onto the tracks.

4.2 PRINTED CIRCUIT BOARDS

All the printed circuit
CAD system and no serious

boards were designed with the aid of
layout problems were encountered.

a

4.3 CABLING AND WIRING OF THE TRANSPORT SYSTEM

All the cabl ing and wi ring from the transport system to PEl and
PE2 were done by using standard inhouse cables. Once these were
terminated, the six cables connecting PE2 to SABUS were laid over
a route of approximately lOOm.

47

5. SOFTWARE DESCRIPTION

5.1 SPECIFICATIONS

The function of the Z-80 microprocessor is to read the 80-bit
opto-isolator input card and the GPIB interface card and evaluate
this data. Once a decision is made on what action is to be
taken, new data is written to the appropriate output module.
These can be the 32-bit relay output cards, the dotmatrix display
interface, the bubble memory or the GPIB card.
The various inputs and outputs, from and to the transport system,
are ass i g ne d tot h e I 10 mo dui e s. Ea c h mo dui e has a un i que add res s
on the SABUS which makes every bit unique. The bit assignments,
the module addresses and the function of each bit are shown in
section 5.2. In section 5.3 the data evaluation and the actions
to be taken is discussed in the program design.

5.2 BIT ASSIGNMENTS

The 80-bit opto-isolator input card consists out of four banks of
opto-isolators. Each bank of twenty bits has its' own connector.
This results in ten groups of one byte each. The addresses
assigned to these are from $60 to $69 (the $ sign indicates
hexadecimal notation). Tables one and two show the inputs
assigned to the bits and also some connector information.

The three 32-bit relay output cards consist out of two banks of
read relays. Each bank of sixteen relays has its' own connector
resulting in four groups of one byte each. The assigned
addresses are from $30 to $3B and tables three, four and five
show the outputs assigned to the bits and connector information.

48

80-bit OPTO-ISOLATOR ItP CARD PORT $60 - $64

!cONNECTOR PH2D8A (Local control) PH2D8B

PIN No. BIT FUNCTION BIT FUNCTION

26 60.0 FROM PL STROBE 63.0 SEP 1

27 60.1 a 63.1 SEP 2
FROM

28 60.2 b 63. 2 SEP 3
PARKING LOOP

29 60.3 c 63.3 SEP 4

30 60.4 FROM STROBE 63.4 SEP 5

31 60.5 a 63 .5 STP 1
FROM

32 60.6 b 63. 6 STP 2
CODE

33 60.7 c 63. 7 STP 3

34 61 .0 TO STROBE 64.0 STP 4

35 61 .1 a 64.1 STP 5
TO

36 61 .2 b 64.2 STP 6
CODE

37 61 .3 c 64.3 STP 7

38 61 .4 64.4 H2

39 61 .5 RESET 64.5 H1

40 61 .6 EXECUTE 64.6 H

41 61 .7 CANCEL ENTRY 64.7 S

42 62.0 24V ON 62.4 HS

43 62.1 32V ON 62. 5 Va

44 62.2 62.6 Vb

45 62.3 62. 7 Vc

PINS 21-25,46-50 NOT CONNECTED
PINS 1-20 = OV (COM)

table 1

49

80-bit OPTO-ISOLATOR liP CARD PORT $65 - $69

~ONNECTOR PH2D8C PH2D8D

~ BIT FUNCTION BIT FUNCTION

26 65.0 Vd 68.0 STP

27 65.1 V2a 68.1 o DEG. SWl

28 65.2 V2b 68.2 180 DEG.

29 65.3 V2, 68.3 STP

30 65.4 Vla 68.4 o DEG. SW2

31 65.5 Vlb 68.5 180 DEG.

32 65.6 Vl, 68.6 STP

33 65.7 Vld 68.7 o DEG. SW3

34 66.0 PL 1 69.0 180 DEG.

35 66.1 PL2 69.1 STP

36 66.2 PL3 69.2 o DEG. SW4

37 66.3 PL4 69.3 180 DEG.

38 66.4 PL5 69.4

39 66.5 PL6 69.5

40 66.6 PL7 69.6

41 66.7 PL8 69.7

42 67.0 PL9 67.4

43 67.1 PL10 67. 5

44 67. 2 24V PSU 67. 6

45 67. 3 32V PSU 67. 7

PINS 21-25,46-50 NOT CONNECTED
PINS 1-20 = OV (COM)

table 2

32-bit RELAY O/P CARD

50

PORT $30 - $33

CONNECTOR PH2D8E (MLEDS) PH2D8F (MLEDS)

PIN No. BIT FUNCTION BIT FUNCTION

20 30.0 a 32.0 PL 10

19 30.1 b TRACK 32.1 PL 9
POSITION

18 30.2 c CODE 32.2 PL 8

17 30.3 d 32.3 PL 7

16 30.4 T P strobe 32.4 PL 6

15 30.5 T P enable 32.5 PL 5

14 30.6 32.6 PL 4

13 30.7 32.7 PL 3

12 31 .0 a 33.0 PL 2
XP ID

11 31 • 1 b 33.1 PL 1
CODE

10 31 .2 c 33.2 SW 1

9 31 .3 a 33.3 SW 2

8 31 .4 b STATION 33.4 SW 3

7 31 .5 c CODE 33.5 SW 4

6 31 .6 d 33. 6

5 31 .7 STATION STROBE 33. 7

PINS 1-4,26-29 NOT CONNECTED

PINS 30-4S = OV

table 3

32-bit RELAY O/P CARD

51

PORT $34 - $37

bONNECTOR P2D8G (Localcontrol) PH2D8H(Switchers)

PIN No. BIT FUNCTION BIT FUNCTION

20 34.0 a 36.0 T POWER SW 1

19 34.1 b FROM 36.1 DIRECTION SW 1

1 8 34.2 c CODE 36.2 T POWER SW 2

17 34.3 d 36.3 DIRECTION SW 2

16 34.4 a 36.4 T POWER SW 3

1 5 34.5 b TO 36.5 DIRECTION SW 3

14 34.6 c CODE 36.6 T POWER SW 4

13 34.7 d 36.7 DIRECTION SW 4

12 35.0 TO STROBE 37.0 M POWER SW 1

11 35.1 EXECUTE 37.1 M POWER SW 2

10 35.2 CANCEL ENTRY 37. 2 M POWER SW 3

9 35.3 ALARM 37. 3 M POWER SW 4

8 35.4 FROM STROBE 37.4

7 35.5 FAULT/RESET 37. 5

6 35.6 24V ON 37. 6

5 35.7 32V ON 37. 7

PINS 1-4,26-29 NOT CONNECTED

P2D8G PINS 30-33,37-45 = +5V
PINS 34-36 = OV

P2D8H PINS 30-45 = +24V

table 4

32-bit RELAY OIP CARD

52

PORT $38 - $38

CONNECTOR PH 2D8 J (Tracks) PH2D8K (Parking I 0 0 p)

PIN No. 81T FUNCTION
I

81T FUNCTION
I

20 38.0 POWER 3A.0 24V PSU ON
H

19 38.1 DIRECTION 3A.l 32V PSU ON

18 38.2 POWER 3A.2
H2

17 38.3 DIRECTION 3A.3

16 38.4 POWER 3A.4
Hl

1 5 38.5 DIRECTION 3A.5

14 38.6 POWER 3A.6 TP 10
S

13 38.7 DIRECTION 3A.7 TP 9

12 39.0 POWER 38.0 TP 8
HS

11 39.1 DIRECTION 38.1 TP 7

10 39.2 POWER 38.2 TP 6
V2

9 39.3 DIRECTION 38.3 TP 5

8 39.4 POWER 38.4 TP 4
Vl

7 39.5 DIRECTION 38.5 TP 3

6 39.6 POWER 38.6 TP 2
V

5 39.7 DIRECTION 38.7 TP 1

PINS 1-4,26-29 NOT CONNECTED

PH2D8J PINS 30-45 = +24V

PH2D8K PINS 30-44 = +24V,PIN 45 = +24V in Local controller

table 5

53

5.3 PROGRAM DESIGN

5.3.1 START UP
Initialize the dotmatrix display.

8-bit data length
Cursor movement to the right.
Display data RAM address = $80.
Clear display and return cursor to top left.
Set the cursor invisible.

Initialize all the variables.
BI eep once.
Dis P I ay : 'THE TARGET TRANSPORT SYSTEM

Swi tch on the Power Supp lies.'
Poll the inputs from the local controller.

24V on : $62.0 32V on $62.1
When it goes true, switch on the appropriate power supply.

24V : $40.0 32V : $40.1
Read the power supply status $67.2 and $67.3.
Indicate on the local controller lamps $35.6 and $35.7.
Display '24V Power Supply on.

32V Power Supply on.

Read the position status of the switchers.
o degrees SW1:$68.1 SW2:$68.4 SW3:$68.7 SW4:$69.2
If they are not all at 0 degrees then
call the routine to drive it to 0 deg.
Di splay: ' Switchers wi II now be tested

Observe the Mimic LED's. '
Ca I1 the rout i nes to dr i ve the swi tchers to 180 degrees.
Indicate on Mimic panel LED,s.
Call the routine to drive the switchers to 0 degrees.
Indicate on Mimic panel LED's.
If a swi tcher does not respond then di splay:

, Sw i t ch ern 0 • xis fa u I t Y
RESET to continue. '

Bleep three times.
When RESET. dr i ve the swi tcher un t i lit responds.
If all responded then display

I All four switchers are 0 K.

Display: I Parking Loop positions wi I I now be checked.
Ob s e r vet heM i mic Pan e I •

Read the parking loop positions.
$66.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 $67.0 .1

Determine which ones are occupied.
Indicate on mimic panel LED's.

$32.1.2.3.4.5.6.7 $33.0.1
Determine if transporters are positioned from position 10
downwards with no gaps.
If not display:

I Transporters wi I I now be positioned.
Call the positioning routine.

54

Display: 'Stations will now be checked and updated.
Observe the Mimic Panel.

Read from the bubble memory the stations and ID's parked
in that stations.
Check the stations and determine which ones are occupied.

$63.5 .6 .7 $64.0 .1 .2 .3
Compare the station check to the bubbles fi le.
If the bubble shows a station occupied but the station check
did not find one there, discard the information.
If the check shows a station occupied but the bubble does not
then display a 0 in that station.
If the check and the bubble matches, then display the bubble"
ID code in that station.
To display data

Bleep once.

Set up 7-segment data
Set up the station code
Strobe
Set the station code to
Strobe again.

$31.0 .1 .2
$31.3 .4 .5
$31. 7

0000

.6

Di splay: ' Stray transporter check.
Check if a transporter is in any position other than in the
parking loop or in a station by reading all the track positions.

$64.4 .5 .6 .7
$62.4 .5 .6 .7
$65.0 .1 .2 .3 .4 .5 .6 .7

If one is found display:
I A stray transporter was found on the tracks.

RESET to continue. '
Bleep unti I the RESET button is pressed.
Read the RESET button from the local controller.
If pressed stop the bleeper.
Display 'Transporter will now be driven to the parking loop.

Pres 5 EXECUTE. '
Read the EXECUTE button from the local controller.
If pressed call the routine to drive the transporter to the
parking loop.
Display: ' Check the number of transporters in the sys tern == S

(RESET)
Wait for RESET.
Di splay I Make sure one is not jammed on the tracks. (RESET)
Wait for RESET.
Display: ,----------------READY----------------

Enter a FROM and a TO position. '

55

5.3.2 THE MAIN POLLING ROUTINE.

The inputs to be polled are
The stations
The parking loop
The power suppl ies
Th e sw i t ch e r s
The local controller

$63.5 -->
$66.0 -->
$67.2 .3
$68.1 .4
$60.0 .4

$64.3
$67.1

.7 $69.2
$61.0 (3 strobe I in e s)

Read the bytes one by one.
Compare it to its' previous value.
If it is the same read again.
If it changed, call the appropriate service routine.

Stations service routine.
Determine which station.
Determine if a transporter was removed or inserted.
If removed display:

I Transporter was removed from station.
Write a blank to the seven segment display.
Update the bubble memory.
If inserted display:-

ITransporter was inserted into station. 1

Wr i tea se v e n tot h e se vens e gm e n t d i s P I ay.
Update the bubble memory.
Resume poll ing.

Parking loop service routine.
Determine which position.
Determine if transporter was removed or inserted.
Display: 'Transporter was removed/inserted in the parking loop.'
Update the mimic panel LED's.
Call the routine to position the transporters.
Re s ume poll in g.

Power supplies polling routine.
Determine which power supply fai led $67.2 $67.3
Update local controller lamps $35.6 $35.7
Fault lamp on $35.5
Bleep unti I reset.
Display: 'xxV Power Supply off.

RESET to continue.
Check for RESET.
Silence bleeper.
Display: 'First check and then switch on the Power Supply.
Check $62.0 $62.1
Switch the power supply on $40.0 $40.1
Check the status $67.2 $67.3
If still of go back to beginning.
If on fault lamp off

: Update local controller lamps.
Sleep once.

56

Di sp I ay ready.
Resume polling.

Sw i t c her s po sit ion po I I i n g r 0 uti ne.
Determine which switcher is out of position.
Bleep unti I RESET.
Faul t lamp on.
Mimic LED to red.
Display: ' Switcher no.x is out of position.

RESET to continue.
Check for RESET.
Silence bleeper.
Display: 'Check the switcher before you RESET to continue.'
Cal I routine to drive switcher to 0 degrees.
Fault lamp off.
Di sp I ay ready
Resume poll ing.

Local controller polling routine.
Determine which bit changed.

FROM strobe : $60.4
Read FROM strobe: $60.5.6.7
Store the code.
Indicate on local controller lamps.
Resume poll ing.

FROM Parking Loop strobe: $60.0
Read FROM P L code $60.1 .2 .3
Store the code.
Indicate on local controller lamps
Resume poll ing.

TO s t rob e : $ 61 • 0
Read TO code $61.1 .2 .3
Store the code.
Indicate on local controller lamps.
Resume poll ing.

CANCEL ENTRY: $61.7
Switch off all lamps on local controller.
Delete all stored values.
Resume polling.

EXECUTE : $61.7
Check the stored FROM value.
Check the stored FROM Parking Loop value.
If both are 0 then

BI eep once.
Display: 'No FROM entered.
Di sp I ay ready.
Resume poll ing.

Check the stored TO value.
If value is 0 then
Bleep once.
Di splay: 'No TO entered.

57

Resume poll ing.
If FROM and TO values <> 0 then

Check if TO = FROM.
If true then
Bleep once.
Display: 'FROM and TO the same position.
Di sp lay ready.
Resume poll ing.

If FROM <> TO then
Check if FROM position is occupied by a transporter.
If unoccupied then
BI eep once.
Display: 'The FROM position entered is empty.
Di sp lay ready.
Resume poll ing.
Check if TO position is unoccupied.
If occupied then
BI eep once.
Display: 'The TO position entered is occupied.
Di sp lay ready.
Resume poll ing.

If all the above conditions are met then TO and FROM will
have legal values at this stage.
Di splay: ' Transporter now on route ------------------> ,
Call the routine to drive the transporters.

5.3.3 THE ROUTINE TO DRIVE THE TRANSPORTERS

From Hot Cells A.
Set up the track power.
Set up the switcher track power.
Update the bubble memory: Hot cells A is now empty.
Update the Mimic panel.

From Hot Cells B.
Set up the track power.
Set up the switcher track power.
Update the bubble memory: Hot cells B is now empty.
Update the Mimi c pane I.
Drive switcher 2 to 180 degrees.
Indicate progress on Mimic panel.
Poll switcher 2 stopping plate for transporter arrival.
On arrival switcher 2 track power off.
Drive switcher 2 to 0 degrees.
Determine TO code and set up switcher 2 track power accordingly.

From Vault 1
Vault 1 has three stopping positions., so first determine if TO
code is in vault 1.
If so set up track power accordingly.
Else set up track power to drive transporter to Hot cells A.

58

Update the bubble memory.
Update the Mimic panel.

From Vault 2.
Set up the track power.
Set up the switcher track power.
Update the bubble memory: Vault 2 is now empty.
Update the Mimic panel.
Drive switcher 4 to 180 degrees.
Indicate progress on Mimic panel.
Poll switcher 4 stopping plate for transporter arrival.
On arrival switcher 4 track power off.
Drive switcher 4 to 0 degrees.
Determine TO code and set up switcher 4 track power accordingly.

From Storage.
Set up the track power.
Set up the switcher track power.
Update the bubble memory: Storage is now empty.
Update the Mimic panel.
Drive switcher 3 to 180 degrees.
Indicate progress on Mimic panel.
Poll switcher 3 stopping plate for transporter arrival.
On arr ival switcher 3 track power oft.
Drive switcher 3 to 0 degrees.
Determine TO code and set up switcher 3 track power accordingly.

From Parking Loop.
Start the first transporter in the parking loop and read its' ID

on the sensing plate.
If it is not the wanted ID drive it to the back of the loop.
Rearrange the transporters so that the next one is in the fi rst

parking position.
Drive the next one past the sensing plates and read its' ID.
If it is sti 11 not the wanted ID repeat the above.
If the ID is the same as the very first one the rearrange and
display: I The ID entered was not found in the Parking Loop.'

RESET to continue. '
Check for RESET and go to main polling routine.
I f the correct ID is found then
Drive switcher 1 to 180 degrees.
Set up the switcher track power.
Poll switcher 1 stopping plate for arrival.
On arrival switcher 1 track power off.
Drive switcher 1 to 0 degrees.
Set up the track power.
Set up the switchers track power.

To Hot Cells A.
Set up the track power.
Indicate the transporter progress on the Mimic panel.
Pal I hot cells A stopping plate for arrival.

59

On arrival switch off all the track power.
Update the Mimic panel.
Update the bubble memory.

To Hot Cells B.
Set up the track power.
Indicate the transporter progress on the Mimic panel.
Poll switcher 2 stopping plate for arrival.
On arrival switcher 2 track power off.
Drive switcher 2 to 180 degrees.
Set up switcher 2 track power.
When transporter has left the switcher then

drive switcher 2 to 0 degrees.
Indi cate the transporter progress on the Mimi c pane I.
Poll hot cells B stopping plate for arrival.
On arrival switch off all the track power.
Update the Mimic panel.
Update the bubble memory.

To Vault 1-1,2,3.
Set up the track power.
Indicate the transporter progress on the Mimic panel.
Poll the appropriate stopping plate for arrival.
On arrival switch off all the track power.
Update the Mimi c pane I.
Update the bubble memory.

To Vault 2.
Set up the track power.
Indicate transporter progress on the Mimic panel.
Poll switcher 4 stopping plate for arrival.
On arrival switcher 4 track power off.
Drive switcher 4 to 180 degrees.
Set up switcher 4 track power.
When transporter has left the switcher then

drive switcher 4 to 0 degrees.
Indi cate the transporter progress on the Mimi c pane I.
Pal I Vault 2 stopping plate for arrival.
On arrival switch off all the track power.
Update the Mimic panel.
Update the bubble memory.

To Storage.
Set up the track power.
Indicate the transporter progress on the Mimic panel.
Poll switcher 3 stopping plate for arrival.
On arrival switcher 3 track power off.
Drive switcher 3 to 180 degrees.
Set up switcher 3 track power.
When transporter has left the switcher then

drive switcher 3 to 0 degrees.
Indicate the transporter progress on the Mimic panel.

60

Poll Storage stopping plate for arrival.
On ar r i va I swi tch off a 11 the track power.
Update the Mimic panel.
Update the bubble memory.

To Parking Loop.
Set up the track power.
Indi cate the transporter progress on the Mimic panel.
Poll switcher 1 stopping plate for arrival.
On arrival switcher 1 track power off.
Drive switcher 1 to 180 degrees.
Set up switcher 1 track power.
When transporter has left the switcher then

drive switcher 1 to 0 degrees.
Set up track power for parking position 10.
On arrival switch off all the track power.
Rearrange the parking loop transporters.
Update the Mimic panel.

At this stage the transporter would have reached its' destination
and the program can go back to the main polling routine.

5.4 THE PROGRAM

Th e pro gram
files. This
maintain. A
page.

consists of a main program and thirteen include
makes it modular, easy to understand and easy to
printout of the whole program follows on the next

61

PROGRAM MAIN;

{ MAIN is the program to control the isotope production target transport
system. It was written during 1988 by Tertius Human. }

{GLOBAL DECLERATIONS

CONST
dot~atrix = $50;

GLOB-DEC.PAS}

TYPE
string80 =STRING[80];

VAR
dollar30.dollar31,dollar32.dollar33.
dollar34,dollar35.dollar36,dollar37.
dollar38.dollar39.dollar3A,dollar3B BYTE;

test60,test61,test62,test63.test64.
test65.test66.test67.test68,test69 BYTE;

dot~atrix_control.dot~atrix_data BYTE;
mess : string80;

cntr.green_led.n,from_code,to_code : INTEGER;
switcher-no,motor-power,
switcher_destination,switcher-pos_status : BYTE;
switcher_faulty : BOOLEAN;

stations-poll_l,stations-poll_2,stations_store_l.stations_store_2,
parking_loop_store_l,parking_loop-poll_l,
parking_loop_store-2,parking_loop-poll_2 : BYTE;

{PRORAM MISCELLANEOUS MISCEL.PAS

This program does the following:

a)Sounds the alarm
Alarm port := $35 Alarm bit := $F7 1111 0111

b)Checks the RESET from the Local controller
Port $61 reset bit := $20 1101 1111

c)Checks the EXECUTE from the Local controller
Port $61 execute bit := $40 1011 1111

}

CONST
alarm = $F7;

PROCEDURE bleep;
BEGIN
dollar35 := dollar35 AND $F7;
PORT[$35] := dollar35;
DELAY(200);
dollar35 := dollar35 OR 8;
PORT[$35] .- dollar35;

END;

FUNCTION local_reset : BOOLEAN;
BEGIN

IF (PORT[$61] AND $20) = 0 THEN
BEGIN
local_reset := TRUE;
dollar35 := dollar35 AND $DF;
PORT[$35] := dollar35;
DELAY(300) ;
dollar35 := dollar35 OR $20;
PORT[$35] := dollar35;

END
ELSE local-reset := FALSE;

END;

62

{Lamp on}

{Lamp off}

FUNCTION local_execute : BOOLEAN;
BEGIN

local_execute .- (PORT[$61] AND $40) = 0;
END;

PROCEDURE bleep_until_reset;
BEGIN
dollar35 := dollar35 AND alarm;
PORT[$35] := dollar35;
REPEAT
UNTIL local_reset;
dollar35 := dollar35 OR ($FF - alarm);
PORT[$35] := dollar35;

END;

{PROGRAM INITIAL

This program:

INITIAL.PAS

a) Initializes the dotmatrix display.

function_set : sets 8 bit data lenght
entry-mode_set : sets cursor movement to right
DD-ram : sets Display Data RAM address
clear : clears display , returns cursor to top left
curs_off : sets cursor invisible

b) Initializes all the variables when power is switched on.

}

CONST
function_set =$38;
entrY-mode_set = 6;
DD_ram = $80;
clear = 1;
curs_off = 12;

PROCEDURE dotmatrix-init_write (func
BEGIN

PORT[dot-matrix_control] := func;

BYTE) ;

63

DELAY(l);
END;

PROCEDURE dotmatrix_initialize;
BEGIN
dot~atrix_control := dot~atrix;

dotmatrix_init_write(function_set);
dotmatrix_init_write(curs_off);
dotmatrix_init_write(entry~ode_set);

dotmatrix_init_write(clear);
dotmatrix_init_write(DD_ram);
E~;

PROCEDURE variables_initialize;
BEGIN
dollar30 .- $E0;
dollar31 := $00;
dollar32 .- $FF;
dollar33 .- $FF;
dollar34 .- $FF;
dollar35 .- $EE;
dollar36 .- $FF;
dollar37 .- $FF;
dollar38 .- $FF;
dollar39 .- $FF;
dollar3A .- $FB;
dollar3B .- $FF;
PORT[$30] .- dollar30;
PORT[$31] .- dollar31;
PORT[$32] .- dollar32;
PORT[$33] .- dollar33;
PORT[$34] .- dollar34;
PORT[$35] .- dollar35;
PORT[$36] .- dollar36;
PORT[$37] .- dollar37;
PORT[$38] .- dollar38;
PORT[$39] .- dollar39;
PORT[$3A] .- dollar3A;
PORT[$3B] .- dollar3B;

END;

{PROGRAM DOTMATRX DOTMATRX.PAS

This program writes data to the dotmatrix display.
}

FUNCTION ready : BOOLEAN;
{To test the busy flag}

BEGIN
ready := (PORT[dot~atrix_control+ 2] < $80);

END;

PROCEDURE clear_rest (ind : INTEGER);
{Writes blanks • $20 • in the rest of the dotmatrix display}
VAR

index : INTEGER;
BEGIN

64

FOR index := ind TO 79 DO
BEGIN

REPEAT
UNTIL ready;
IF ready THEN
BEGIN

PORT[dot-matrix_data] .- $A0; {space = $A0}
END;

END;
END;

PROCEDURE write_dotmatrix (mess: string80);
{Writes the message , mess , to the dotmatrix}
VAR

index : INTEGER;
BEGIN

PORT[dot-matrix_control] := clear;
dot-matrix_data := dot-matrix + 1;
FOR index := 1 TO Length(mess) DO
BEGIN

REPEAT
UNTIL ready;
IF ready THEN
BEGIN

PORT[dot-matrix_data] :=ORD(mess[index]);
END;

END;
clear-rest(l+Length(mess»;

END;

{PROGRAM POWER SUPPLIES

1111 1011
1111 0111

$67.2
$67.3

This program polls the inputs from the Local Controller concerning
the 24V & 32V Power Supplies. When either of these bits change it
switches the appropriate P S on via the relay outputs. It then checks
the status of the power supplies. If both are not on, it will stay in
the loop untill true. When true it will update the Mimic Panel lamps,
display the message and exit.
The following PORT addresses are used:
Status

24V on status
32V on status

Command from Local
24V on : $62.0
32V on : $62.1

Controller
1111
1111

1110
1101

Output to switch Power SupplY on
24V on : $3A.0 1111 1110
32V on : $3A.1 1111 1101

Output to Local Controller indication lamps
24V on $35.6 1011 1111
32V on : $35.7 0111 1111

}

CONST
ps24V_on_output = $FE;
ps32V_on_output = $FD;
ps24V_on_lamp = $BF;

65

VAR
ps24V_status.ps32V-status,s~itch-ps_on INTEGER;
ps24V_on,ps32V_on : BOOLEAN;

FUNCTION ps_on_command : BOOLEAN;
BEGIN

IF (PORT[$62] AND 1 = 0) OR (PORT[$62] AND 2 = 0) THEN
BEGIN

ps_on_command := TRUE;
'WRITELN('PS_ON_COMMAND = TRUE');
E~;

END;

PROCEDURE ps_on_24V;
BEGIN

WRITELN('24V on out');
ps24V_on := FALSE;
dollar3A := dollar3A AND ps24V_on_output;
PORT[$3A] := dollar3A;
DELAY(100);
ps24V-status := PORT[$67] AND 4;
IF ps24V_status =0 THEN
BEGIN

dollar35 := dollar35 AND ps24V_on_lamp;
PORT[$35] := dollar35;
ps24V_on := TRUE;
WRITELN('24V Po~er supply on.');
E~;

END;

PROCEDURE ps_on_32V;
BEGIN

ps32V_on := FALSE;
dollar3A := dollar3A AND ps32V_on_output;
PORT[$3A] := dollar3A;
DELAY(100);
ps32V_status := PORT[$67] AND 8;
IF ps32V_status = 0 THEN
BEGIN

dollar35 := dollar35 AND ps32V_on_lamp;
PORT[$35] := dollar35;
ps32V_on .- TRUE;

END;
END;

PROCEDURE power-supplies;
BEGIN

WHILE NOT(ps24V_on AND ps32V_on) DO
BEGIN

REPEAT UNTIL ps_on_command;
IF ps_on_command THEN

66

BEGIN
switch-ps_on := PORT[$62] AND 3;
CASE switch-ps_on OF

2 ps_on_24V;
1 ps_on_32V;
o : BEGIN

ps_on-24V;
ps_on_32V;

END;
END;

END;
END;
mess := • 24V Power SupplY on
write_dotmatrix(mess);

END;

{PROGRAM Switcher Driver SWJ)RV.PAS

32V Power Supply on';

This program drives a switcher to 0 deg. or 180 deg. If the switcher does
not respond in a certian time, the variable switcher-faulty is returned
true. It also updates the switcher status on the Mimic Panel leds.

Ports used

Mimic panel switcher LED's = $33

green_led 10 SWl red $FB
11 SWl green 4
20 SW2 red $F7
21 SW2 green 8
30 SW3 red $EF
31 SW3 green $10
40 SW4 red $DF
41 SW4 green $20

switcher-no:Port for motor power motor-power:bit for motor power

SWl $37 $FE 1111 1110
SW2 $37 $FD 1111 1101
SW3 $37 $FB 1111 1011
SW4 $37 $F7 1111 0111

switcher-position_status:Port
SWl $68

SW2 $68

SW3 $68
$69

SW4 $69

}

switcher_destination:bit
o deg 2 0000 0010
180 deg 4 0000 0100
o deg $10 0001 0000
180 deg $20 0010 0000
o deg $80 1000 0000
180 deg 1 0000 0001
o deg 4 0000 0100
180 deg 8 0000 1000

67

PROCEDURE switcher_faulty_redrive;FORWARD;

FUNCTION time_out : BOOLEAN;
BEGIN
cntr := SUCC(cntr);
DELAY(l);
IF cntr >= 5000 THEN
time_out := TRUE

ELSE time_out := FALSE;
END;

{Approximately 5 seconds}

OR 4;
OR 8;
OR $10;
OR $20;
AND $FB;
AND $F7;
AND $EF;
AND $DF;

dollar33
dollar33
dollar33
dollar33
dollar33
dollar33
dollar33
dollar33

PROCEDURE update-mleds_switcher;
BEGIN

CASE green-led OF
10 dollar33.
40 dollar33.
30 dollar33.
20 dollar33.
11 dollar33.
41 dollar33.
31 dollar33.
21 dollar33.-

END;
PORT[$33] .- dollar33;

END;

PROCEDURE drive-switcher;

VAR
degrees : BYTE;
switcher-fin : BOOLEAN;

BEGIN
cntr := 0;
switcher-fin := FALSE;
time_out := FALSE;

dollar37 := motor-power AND dollar37; {Motor Power on}
PORT[$37] := dollar37;

REPEAT
degrees := PORT[switcher-pos_status] AND switcher_destination;
IF degrees =0 THEN
switcher-fin := TRUE;

UNTIL switcher-fin OR time_out; {Check for dest. or time out

dollar37 := dollar37 OR ($FF - motor-power);
PORT[$37] := dollar37;
update-mleds_switcher;

{Motor Power off}

IF time_out THEN
switcher-faulty-redrive;

END;

PROCEDURE switcher_faulty_redrive;

VAR
reset-in : BYTE;
reset : BOOLEAN;

OF
SRitcher
SRltcher
SRitcher
SRitcher

BEGIN
reset := FALSE;
bleep;
DELAY (200) ;
bleep;
DELAY (200) ;
bleep;
CASE motor-poRer

$FE mess.-'
$FD mess.
$FB mess.
$F7 mess:=

END;
Rrlte_dotmatrlx(mess);
REPEAT
UNTIL local_reset;
mess := "'-->"';
Rrlte_dotmatrix(mess);
drive-llRitcher;

END;

no.1
no.2
no.3
no.4

68

is faulty
is faulty
ls faulty
is faulty

RESET
RESET
RESET
RESET

to
to
to
to

continue
continue
continue
continue

PROCEDURE sRitcher1_to_180;
BEGIN

WRITELN('SW 1 TO 180 deg.');
green_led := 10;
motor-poRer := $FE;
sRitcher-pos-lltatus := $68;
sRitcher_destination := 4;
drive-llRitcher;

END;

PROCEDURE sRitcher2_to_180;
BEGIN

WRITELN("SW 2 TO 180 deg.');
green_led := 20;
motor-poRer := $FD;
switcher-pos-lltatus := $68;
switcher_destination .- $20;
drive_sRitcher;

END;

PROCEDURE sRitcher3_to_180;
BEGIN

WRITELN('SW 3 TO 180 deg. ');
green_led := 30;
motor-poRer := $FB;
sRitcher-pos-lltatus := $69;
BRitcher_destination .- 1;
drive-llRitcher;

END;

PROCEDURE sRitcher4_to_180;
BEGIN

WRITELN('SW 4 TO 180 deg.');
green_led := 40;
motor-poRer := $F7;
Bwitcher-pos_status := $69;

69

switcher_destination .- 8;
drive_switcher;

END;

PROCEDURE switcherl_to_zero;
BEGIN

WRITELN{'SW 1 TO 0 deg.');
green_led := 11;
motor-power := $FE;
switcher-pos_status := $68;
switcher_destination .- 2;
drive_switcher;

END;

PROCEDURE switcher2_to_zero;
BEGIN

WRITELN{'SW 2 TO 0 deg.');
green_led := 21;
motor-power := $FD;
switcher-pos-6tatus := $68;
switcher_destination .- $10;
drive_switcher;

END;

PROCEDURE switcher3_to_zero;
BEGIN

WRITELN{'SW 3 TO 0 deg.');
green_led : = 31;
motor-power := $FB;
switcher-pos-6tatus := $68;
switcher_destination .- $80;
drive_switcher;

END;

PROCEDURE switcher4_to-zero;
BEGIN

WRITELN{'SW 4 TO 0 deg.');
greenJed : = 41;
motor-power := $F7;
switcher-pos_status := $69;
switcher_destination .- 4;
drive.J>witcher;

END;-

{PROGRAM Switcher status check & test SW_CHK.PAS
This program reads the switcher status port and updates the Mimic Panel
if all the switcers are at zero degrees. If one or more are not at
zero degrees it will call the routine do drive it to zero degrees.

The second part drives all the Switchers to 180 deg. and back to 0 deg.

SW no. 3 2 1
sW-6tat_l : 1001 0010

4
0000 0100

}

VAR
sw_stat_1,sw_stat-2 BYTE;

70

PROCEDURE switcher-status_check;
BEGIN
mess:= Switcher status check.':
write_dotmatrix(mess);
bleep;
DELAY(1000);
sw_stat_1 := PORT[$68] AND $92:
sw_stat-2 := PORT[$69] AND 4;
IF sw_stat_1 = 0 THEN

BEGIN
dollar33 := dollar33 AND $E3;
PORT[$33] .- dollar33;

END
ELSE

BEGIN
IF sw-stat_1 AND 2 = 2 THEN
switcher1_to~ero;

IF sw-stat_1 AND $10 = $10 THEN
switcher2_to_zero:
IF sw-stat_1 AND $80 = $80 THEN
switcher3_to~ero;

dollar33 := dollar33 AND $E3: {Change these to become ones Green = 1,Red =
PORT[$33] := dollar33;

END;
IF sw-stat-2 = 0 THEN

BEGIN
dollar33 := dollar33 AND $CF; {Same as above}
PORT[$33] .- dollar33;

END
ELSE

BEGIN
If sw-stat_2 AND 4 = 4 THEN
switcher4_to_zero;

END:
END;

PROCEDURE switcher_check:

BEGIN
mess .- 'Switchers will now be tested
write_dotmatrix(mess);
DELAY(4000);
mess := 'Switcher no 1':
write_dotmatrix(mess):
sWitcher1_to_180;
DELAY(500);
switcher1_to_zero:
DELAY(500);

mess := 'Switcher no 2';
write_dotmatrix(mess);
switcher2_to_180;
DELAY(500);
switcher2_to_zero;

Observe the Mimic LEDs';

71

DELAY(500);

mess := 'Switcher no J';
write_dotmatrix(mess);
switcher3_to_180;
DELAY(500);
switcher3_to_zero;
DELAY(500);

mess := 'Switcher no 4';
write_dotmatrix(mess);
switcher4_to_180;
DELAY(500);
switcher4_to~ero;

DELAY(500);

mess := 'All four switchers 0 K';
write_dotmatrix(mess);

END;

{PROGRAM Parking Loop P-LOOP,PAS

a) Parking_Ioop_check will check the occupied positions in the parking loop
and update the Mimic panel LED's accordingly.

b) Parking_Ioop-positioning will position the transporters in the parking
loop 50 that the first one will be in position 10, the next one will be
in position 9 etc,

}

CONST
pl-position : ARRAY[1 .. 10] OF

BYTE = ($66,$66,$66,$66,$66,$66,$66,$66,$67,$67);

test: ARRAY[1 .. 10] OF
BYTE = (1,2,4,8,$10,$20,$40,$80,1,2);

pI_output: ARRAY[1 .. 10] OF
BYTE = ($7F,$BF,$DF,$EF,$F7,$FB,$FD,$FE,$7F,$BF);

VAR
out-put,emptY,emptY-next
I,J,pointer : INTEGER;

BYTE;

PROCEDURE parking_Ioop_check;

VAR
pl-positions1,pl-positions2

BEGIN

BYTE;

pl-positions1 .- PORT[$66];
pl-positions2 .- PORT[$67] AND 3;

IF pl-positions1 AND 1 = 0 THEN
dollar33 := dollar33 AND $FD
ELSE dollar33 := dollar33 OR 2;

72

IF pl-positions1 AND 2 = 0 THEN
dollar33 := dollar33 AND $FE
ELSE dollar33 := dollar33 OR 1;

IF pl-positions1 AND 4 = 0 THEN
dollar32 := dollar32 AND $7F
ELSE dollar32 := dollar32 OR $80;

IF pl-positions1 AND 8 = 0 THEN
dollar32 := dollar32 AND $BF
ELSE dollar32 := dollar32 OR $40;

IF pl-positions1 AND $10 = 0 THEN
dollar32 := dollar32 AND $DF
ELSE dollar32:= dollar32 OR $20;

IF pl-positions1 AND $20 = 0 THEN
dollar32 := dollar32 AND $EF
ELSE dollar32 := dollar32 OR $10;

IF pl-positions1 AND $40 = 0 THEN
dollar32 := dollar32 AND $F7
ELSE dollar32 := dollar32 OR 8;

IF pl-positions1 AND $80 = 0 THEN
dollar32 := dollar32 AND $FB
ELSE dollar32 := dollar32 OR 4;

IF pl-positions2 AND 1 = 0 THEN
dollar32 := dollar32 AND $FD
ELSE dollar32 := dollar32 OR 2;

IF pl-positions2 AND 2 = 0 THEN
dollar32 := dollar32 AND $FE
ELSE dollar32 := dollar32 OR 1;

PORT[$33] .- dollar33;
PORT[$32] .- dollar32;

END;

PROCEDURE move_transporter-pl(pl-pos_destination,pl-pos_origan

BEGIN
FOR pointer := pl-pos_destination DOWNTO pl-pos_origan DO
BEGIN

IF pointer > 8 THEN
BEGIN
dollar3A := dollar3A AND pl_output[pointer];
END

ELSE dollar3B := dollar3B AND pl_output[pointer];
END;

IF pl-pos_destination > 8 THEN
PORT[$3A] := dollar3A

ELSE PORT[$3B] := dollar3B;

IF pl-pos_origan > 8 THEN
PORT[$3A] := dollar3A

INTEGER);

73

ELSE PORT[$3B] .- dollar3B;

END;

PROCEDURE poll-pl-positions(pl-pos,tst,I,J

BEGIN
WRITELN('DEST = ',I,' ORG = ',J);
REPEAT
parking_loop_check;
empty := PORT[pl-pos] AND tst;
UNTIL empty = 0;
DELAY(25);
dollar3A := dollar3A OR $C0;
dollar3B := $FF;
PORT[$3A] .- dollar3A;
PORT[$3B] .- dollar3B;

END;

PROCEDURE parking_loop-positioning;

BYTE);

{To update the Mimic panel
{To end the loop}

BEGIN
mess := 'Transporters will now be positioned in the Parking Loop.';
write_dotmatrix(mess);
FOR I := 10 DOWNTO 1 DO
BEGIN

empty := PORT[pl-position[I]] AND test[I];
IF empty <> 0 THEN
BEGIN

FOR J := (I - 1) DOWNTO 1 DO
BEGIN

empty-next := PORT[pl-position[J]] AND test[J];
IF empty-next = 0 THEN
BEGIN
move_transporter-pl(I,J);
poll-pl-positions(pl-position[I],test[I],I,J);
parking-loop_check:
J := 0;

END:
END;

END:
END;

END;

{PROGRAM STATIONS

This program does the following:

STATIONS.PAS

a) It updates the memory when a transporter reaches it's destination.
The data is stored in a file on A:STATION.DAT.

b) When the system is first powered up it checks which transporters is
parked where by reading the file. It then checks if a transporter is
actually in that station. If no transporter was found in the station
or the file shows the station is empty, it writes a 0 to the Mimic
panel wich blanks the display. If a transporter is parked in a station
the ID number is written to the Mimic panel display. This is done for
every station in sequence.

6

Vault2

54

74

32

Storage

1

HotCellsB

I
IIc) The following codes represent the actual storage positions in memory.
j The ID number of the transporter is stored in the memory position.
,I

I 0iHotCellsA

I}

TYPE
xp_id_type =0 .. 7; {0 = station empty , 1 - 5 = transporter ID in station

{7 = unknown transporter in station

data_type = RECORD
xp_id

END;
VAR
data data_type;
data-file : FILE OF data_type;
mem-pos : INTEGER;
stations : BYTE;

PROCEDURE save_station;

BEGIN
ASSIGNCdata-file,'A:STATION.DAT');
RESETCdata-file);
SEEKCdata_file,mem-pos);
{$I-} WRITECdata_file,data) {$I+};
CLOSECdata_file);

END;

PROCEDURE read~tation;

BEGIN
ASSIGNCdata_file,'A:STATION.DAT');
RESETCdata_file);
SEEK(data-file,mem-pos);
READCdata-file,data);
CLOSECdata-file);

END;

PROCEDURE station~trobe;

BEGIN
DELAY(1) ;
dollar31 := dollar31 OR $80;
PORT[$31] := dollar31;
DELAY (1);
dollar31 := dollar31 AND $7F;
PORT[$31] := dollar31;
dollar31 := dollar31 OR $78;

{Data set up-time for 74LS374}
{strobe high}

{clock pulse width for 74LS374}
{strobe low}

{station code to = 15 X111 1XXX}

PORT[$31] := dollar31;
DELAY(1);
dollar31 := dollar31 OR $80;
PORT[$31] := dollar31;
DELAY(1) ;
dollar31 := dollar31 AND $7F;
PORT[$31] .- dollar31;

END;

75

{Data set-up time}
{strobe high}

{clock pulse witdh}
{strobe low}

PROCEDURE HCA_display;
VAR

I ': INTEGER;

BEGIN
FOR I := 1 TO 2 DO

BEGIN
stations := PORT[$63] AND $20;
IF stations <> 0 THEN

BEGIN
dollar31 := dollar31 AND $F8; {ID code = 0 BLANK}
WRITELNC'Hot cells A is empty');
IF data.xp_id <> 0 THEN

BEGIN
data.xp_id := 0;
save.Jltation:

END;
END
ELSE
BEGIN

WRITELNC'Transporter ',data.xp_id,' parked in Hot cells A');
IF data.xp_id =0 THEN

BEGIN
data.xp_id := 7:
save.Jltation;
dollar31 := dollar31 OR 7;

END;
END;
PORT[$31] := dollar31:
dollar31 := Cdollar31 OR $28) AND $AF; {station code = 5 X010 lXXX}
PORT[$31] := dollar31;
station_strobe;

END;
END;

PROCEDURE HCB_display;

BEGIN
stations := PORT[$63] AND $40;
IF stations <> 0 THEN

BEGIN
dollar31 := dollar31 AND $F8;
WRITELNC'Hot cells B is empty');
IF data.xp_id <> 0 THEN

BEGIN
data.xp_id := 0;
save.Jltation:

END;
END

{ID code = 0 BLANK}

76

ELSE
BEGIN

WRITELN('Transporter ',data.xp_id,' parked in Hot cells B");
IF data.xp_id = 0 THEN

BEGIN
data.xp_id := 7;
save_station;
dollar31 := dollar31 OR 7;

END;
END;

PORT[$31] := dollar31;
dollar31 := (dollar31 OR $30) AND $B7; {station code = 6 X011 0XXX}
PORT[$31] := dollar31;
station~trobe;

END;

PROCEDURE S_display;

parked in Storage");

{ID code = 0

BEGIN
stations := PORT[$63] AND $80;
IF stations <> 0 THEN

BEGIN
dollar31 := dollar31 AND $F8;
WRITELN('Storage is empty");
IF data.xp_id <> 0 THEN

BEGIN
data.xp_id := 0;
save_station;

END;
END

ELSE
BEGIN

WRITELN('Transporter ',data.xp_id,'
IF data.xp_id = 0 THEN

BEGIN
data.xp_id := 7;
save~tation;

dollar31 := dollar31 OR 7;
END;

END;
PORT[$31] := dollar31;
dollar31:= (dollar31 OR $20) AND $A7;
PORT[$31] := dollar31;
station_strobe;

END;

BLANK}

{station code = 4 X010 0XXX}

PROCEDURE Vl_l_display;

BEGIN
DELAY(300) ;
stations := PORT[$64] AND 2;
IF stations <> 0 THEN

BEGIN
dollar31 := dollar31 AND $F8;
WRITELN('Vaultl 1 is empty");
IF data"xp_id <> 0 THEN

BEGIN
data.xp_id := 0;

{ID code = 0 BLANK}

77

save_station;
END;

END
ELSE

BEGIN
WRITELN('Transporter ',data.xp_id,' parked in Vault1 1');
IF data.xp_id = 0 THEN

BEGIN
data.xp_id := 7;
save_station;
dollar31 := dollar31 OR 7;

END;
END;

PORT[$31] := dollar31;
dollar31:= dollar31 AND $87; {station code = 0 X000 0XXX}
PORT[$31] := dollar31;
station~trobe;

END;

PROCEDURE V1-2_display;

BEGIN
DELAY(300) ;
stations := PORT[$64] AND 4;
IF stations <> 0 THEN

BEGIN
dollar31 := dollar31 AND $F8; {ID code = 0 BLANK}
WRITELN('Vault1 2 is empty');
IF data.xp_id <> 0 THEN

BEGIN
data.xpJd := 0;
save~tation;

END;
END

ELSE
BEGIN

WRITELN('Transporter ',data.xp_id,' parked in Vault1 2');
IF data.xp_id = 0 THEN

BEGIN
data.xpJd := 7;
save_station;
dollar31 := dollar31 OR 7;

END;
END;

PORT[$31] := dollar31;
dollar31 := (dollar31 OR 8) AND $8F; {station code = 1 X000 1XXX}
PORT[$31] := dollar31;
station~trobe;

END;

BEGIN
DELAY(300) ;
stations := PORT[$64] AND 8;
IF stations <> 0 THEN

BEGIN
dollar31 := dollar31 AND $F8; {ID code = 0 BLANK}

78

WRITELNC'Vault13 is empty');
IF data.xp_id <> 0 THEN

BEGIN
data.xp_id := 0;
save--6tation;

END;
END

ELSE
BEGIN

WRITELNC'Transporter . ,data.xp_id, , parked in Vaultl 3');
IF data.xP-id = 0 THEN

BEGIN
data.xp_id := 7;
save--6tation;
dollar31 := dollar31 OR 7;

END;
END;

PORT[$31] := dollar31;
dollar31 := (dollar31 OR $10) AND $97; {station code = 2 X001 0XXX}
PORT[$31] := dollar31;
station--6trobe;

END;

parked in Vault2');

{ID code = 0

PROCEDURE V2_display;

BEGIN
stations := PORT[$64] AND 1;
IF stations <> 0 THEN

BEGIN
dollar31 := dollar31 AND $F8;
WRITELNC'Vault2 is empty');
IF data.xp_id <> 0 THEN

BEGIN
data.xp_id := 0;
save--6tation;

END;
END

ELSE
BEGIN

WRITELNC'Transporter ',data.xp_id,'
IF data.xp_id = 0 THEN

BEGIN
data.xp_id := 7;
save_station;
dollar31 := dollar31 OR 7;

END;
END;

PORT[$31] := dollar31;
dollar31:= Cdollar31 OR $18) AND $9F;
PORT[$31] := dollar31;
station--6trobe;

END;

PROCEDURE mimic_update;

BLANK}

{station code = 3 X001 1XXX}

BEGIN
CASE data.xp_id OF

o : dollar31.- dollar31 AND $F8; {transporter ID code =0 BLANK}

79

1 dollar31 .- (dollar31 OR 1) AND $F9;
2 dollar31 ·- (dollar31 OR 2) AND $FA;
3 dollar31 · - (dollar31 OR 3) AND $FB;
4 dollar31 .- (dollar31 OR 4) AND $FC;
5 dollar31 .- (dollar31 OR 5) AND $FD;
7 dollar31 ·- dollar31 OR 7;

END;
CASE mem-pos OF
~ HCA_display;
1 HCB_display;
2 S_display;
3 VL1_display;
4 V1_2_display;
5 V1_3_display;
6 V2_display;

END;
END;

PROCEDURE stations_update;

BEGIN
mess := 'Stations will now be updated
write_dotmatrix(mess);
FOR mem-pos := ~ TO 6 DO

BEGIN
read~tation;

mimic_update;
END;

bleep;
END;

{PROGRAM STRAY CHECK STRAYCHK.PAS

{ transporter }
{ ID }
{ code }
{ from }
{ 1 to 5 }
{Unknown transporter}

Obseve the Mimic Panel';

This program checks for stray transporters on the tracks when the system
is switched on. When it finds one it sets up the codes to drive it to the
Parking loop.

}

PROCEDURE local_commands-poll;FORWARD;

VAR
test1 : BYTE;
stray_routine~erviced,stray_to_station,

V1_off,HCA_off : BOOLEAN;

PROCEDURE strobe_TP;

BEGIN
DELAY(l) ;
dollar3~ := dollar3~ AND $DF;
PORT[$3~] := dollar3~;

DELAY(1);
dollar3~ := dollar3~ OR $10;
PORT[$30] := dollar30;
DELAY(l);
dollar30 := dollar30 AND $EF;
PORT[$30] .- dollar30;

END;

{set-up time}
{enable low}

{strobe high}

{pulse width}
{strobe low}

80

VAR
I : INTEGER;

{0001 0000}

(dollar30 OR 3)
(dollar30 OR 2)
(dollar30 OR 1)
(dollar30 OR 0)

I OF
dollar30 .
dollar30 .
dollar30 .
dollar30 .-

looks at HS,Va,Vb,Vc}
$10;
1 TO 4 DO

= 3
= 2
= 1
= 0

{Display enable high}
{ XX1X XXXX }

AND $F3;
AND $F2;
AND $F1;
AND $F0;

$FF THEN
BEGIN
IF (test62 AND test64 AND test65) =

BEGIN
dollar30 := dollar30 OR $20;
PORT[$30] .- dollar30;

END
ELSE

BEGIN
{PORT 62
test1 .
FOR I .-

BEGIN
IF test62 AND test1 = 0 THEN
BEGIN

CASE
1
2 :
3 :
4 :

END;
PORT[$30] := dollar30;
strobe_TP;

END;
test1 := test1 SHL 1;

END;

looks at HA,HB,H,S}
$10;
1 TO 4 DO

XXXX 011121}
XXXX 0111}
XXXX 121101}
XXXX 01121121}

{HB = 6
{HA = 7
{H = 5
{S = 4

{0001 0000}

AND $F6;
AND $F7;
AND $F5;
AND $F4;

(dollar30 OR 6)
(dollar30 OR 7)
(dollar30 OR 5)
(dollar30 OR 4)

I OF
dollar30 .
dollar30 .
dollar30 .
dollar30 .-

{PORT 64
test1 :=
FOR I :=

BEGIN
IF test64 AND test1 = 0 THEN
BEGIN

CASE
1
2 :
3 :
4 :

END;
PORT[$30] := dollar30;
strobe_TP;

END;
test1 := test1 SHL 1;

END;

looks at Vd,V2a"V2b,V2c,V1a,V1b,V1c,V1d}
$01; {0000 0001}
1 TO 8 DO

(dollar3121
(dollar3121
(dollar3121

{PORT 65
test1 :=
FOR I :=

BEGIN
IF test65 AND test1
BEGIN

CASE I OF
1 dollar30.
2 dollar30.
3 : dollar30 .-

= 0 THEN

OR 1218)
OR $D)
OR $E)

AND $F8;
AND $FD;
AND $FE;

{Bit $2121 is
{Vd = 8
{V2a = 13
{V2b = 14

display enable}
XXXX 112l12l12l}
XXXX 111211}
XXXX 111121}

81

OR $F) AND $FF; {V2c = 15 XXXX 1111}
OR 09) AND $F9; {V1a = 9 XXXX 1001}
OR $A) AND $FA; {V1b = 10 XXXX 1010}
OR $B) AND $FB; {V1c = 11 XXXX 1011}
OR $C) AND $FC; {V1d = 12 XXXX 1100}

.- (dollar30

. - (dollar30

.- (dollar30

.- (dollar30

. - (dollar30

dollar3121
dollar30
dollar30
dollar30
dollar3121

4
5
6
7
8

END;
PORT[$30] := dollar30;
strobe_TP;

END;
test1 .- test1 SHL 1;

END;
END;

END;

PROCEDURE stray_check;

test64 OF
from_code . - 2;
from_code . - 1;

: from_code .- 1;
: from_code .- 5;

test65 OF
from_code . - 3;
from_code . - 4;
from_code . - 4;
from_code . - 4;
from_code .- 3;
from_code . - 3;
from_code . - 3;
from_code . - 3;

BEGIN
mess := 'Stray transporter check';
write_dotmatrix(mess);
DELAY(2000) ;
stray_to_station := FALSE;
test62 := (PORT[$62] AND $F0) OR $0F;
test64 := (PORT[$64] AND $F0) OR $I2IF;
test65 := PORT[$65];
IF (test62 AND test64 AND test65) <> $FF THEN

BEGIN
stray_to-etation := TRUE;
WRITELN('STRAY TRANSPORTER ON TRACKS');
transporter_on_track_display;
meSB := 'A stray transporter was found
write_dotmatrix(mess);
bleep_until_reset;
mess := 'Transporter will now be driven to the
write_dotmatrix(mess);
straY-routine_serviced .- FALSE;
to_code : = 6;
CASE test62 OF

$EF from_code.- 1;
$DF from_code.- 3;
$BF : from_code .- 3;
$7F : from_code .- 3;

END;
CASE

$EF
$DF
$BF
$7F

END;
CASE

$FE
$FD
$FB
$F7
$EF
$DF
$BF
$7F

END;
WRITELN('from_code = ',from_code);
test63 := PORT[$63] AND $20;

on the tracks. RESET to (

Parking Loop. Press EXEl

82

test64 := (PORT[$64] AND $E) OR $F1;
IF (from_code = 1) AND (test63 =0) THEN HCA_off := TRUE

ELSE HCA_off := FALSE;
IF (from_code = 3) AND (test64 <> $FF) THEN V1_off := TRUE

ELSE V1_off := FALSE;
REPEAT
local_commands-poll;
UNTIL stray_routine_serviced;

END;
V1_off := FALSE;
HCA_off := FALSE;
mess := 'Check the number of transporters in the system = 5. (RESET)'
write_dotmatrix(mess);
REPEAT
UNTIL local-reset;
DELAY(500); {Operator time on switch}
mess := 'Make sure it is not jammed on the tracks. (RESET)'
write_dotmatrix(mess);
REPEAT
UNTIL local-reset;

END;

{MOVE TRANSPORTER TR-MOVE.PAS

a) The routine move_transporter-station_to_station sets up the appropriate
path for power and direction and polls the stopping plates, It also
calls the routines to update the bubble memory and the mimic panel.

b) The routine parking_Ioop_ID_search reads the sesnsing plate as a
transporter passes it. If it is the correct one, it calls the routine
to park it on the switcher. If it is not the correct one it calls the
routine to rearange the Parking loop and and sends the next one to the
sensing plate. If the first one passes the sesnsing plate again it rearangl
the Parking loop and then displays a message "The ID entered was not found
in the Parking loop." before it exits to the local polling routine.

c) The track_display routine updates the Mimic panel LED's as the transporter
progresses on the tracks.

}

VAR
data-new : data_type;

first_transporter, destination_arrival,
ID_test INTEGER;

ID-not_found BOOLEAN;

switcher1_track-power,switcher2_track-power,
switcher3_track-power,switcher4_track-power,
store62,store64,store65 BYTE;

PROCEDURE display_ready; FORWARD;

BEGIN
dollar3A := dollar3A AND $BF;
PORT[$3A] .- dollar3A;

REPEAT

{Power to PL 10}

83

test63 := (PORT[$63] AND $lF) OR $E0; {Read the sensing plate}
UNTIL test63 <> $FF;
DELAY(15); {Contact bounce for mercury wetted reed switch}
test63 := (PORT[$63] AND $lF) OR $E0; {Read the sensing plate again}
parking_loop_check;
CASE test63 OF {Check which transporter passed the sensing plate}

$FE ID_test.- 1;
$FD ID_test.- 2;
$FB : ID_test .- 3;
$F7 : ID_test .- 4;
$EF : ID_test .- 5
ELSE ID_test := 10;

END;
END;

PROCEDURE rearange_transporters-parking_loop;

BEGIN
dollar3B := dollar3B AND $7F;
PORT[$3B] := dollar3B;
REPEAT
test66 := PORT[$66] AND 1;

UNTIL test66 = 0;
dollar3A := dollar3A OR $C0;
dollar3B := $FF;
PORT[$3A] := dollar3A;
PORT[$3B] := dollar3B;
parking_loop_check;
parking_loop-positioning;

END;

{Power to PL 1}

{Test for arrival of transporter}

{ Power off for }
{ PL1 to PL10 }
{To update the Mimic panel}
{Rearange the transporters}

PROCEDURE transporter_on_switcher-parking_loop;

BEGIN
dollar36 := dollar36 AND $FE;
PORT[$36] := dollar36;
switcher1_to_180;
REPEAT
test68 := PORT[$68] AND 1;

UNTIL test68 = 0;
dollar36 := dollar36 OR 1;
PORT[$36] := dollar36;
dollar3A := dollar3A OR $40;
PORT[$3A] := dollar3A;
switcher1_to_zero;

END;

{ SW 1 track power <- }

{Read the stopping plate}

{ SW 1 track power off}

{ PL 10 power off }

BEGIN
ID-not_found := FALSE;
next_transporter_in-parking_loop;
first_transporter := ID_test;
IF ID_test = data-new.xp_id THEN

BEGIN
transporter_on_switcher-parking_loop;

84

EXIT: {to 'FROM parking loop' in station_to_station proc.}
END

ELSE rearange_transporters-parking_loop:

REPEAT
next_transporter_in-parking_loop:
IF ID_test =data-new.xp_id THEN

BEGIN
transporter_on_switcher-parking_loop:
EXIT; {to 'FROM parking loop'

END
ELSE rearange_transporters-parking_loop:

UNTIL ID_test = first_transporter:
ID-not-found := TRUE;
parking_Ioop_check;
parking_Ioop-positioning;
mess := 'The ID entered was not found in the
bleep:
DELAY(300) :
bleep;
write_dotmatrix(mess):
REPEAT
UNTIL local-reset;

END:

PROCEDURE track_display;

BEGIN
test62 := (PORT[$62] AND $F0) OR $0F:
IF test62 <> store62 THEN

BEGIN
transporter_on_track_display:
store62 := test62:

END;
test64 := (PORT[$64] AND $F0) OR $0F;
IF test64 <> store64 THEN

BEGIN
transporter_on_track_display:
store64 := test64:

END;
test65 := PORT[$65]:
IF test65 <> store65 THEN

BEGIN
transporter_on_track_display;
store65 .- test65;

END:
END:

PROCEDURE all-power_off;

Parking Loop. RESET to COl

BEGIN
dollar38 := $FF:
PORT[$38] := dollar38;
dollar39 := $FF:
PORT[$39] := dollar39:
dollar36 : = $FF;
PORT[$36] := dollar36:
track_display;

{ Track }
{ Power }
{ off to }
{ all sections }
{Mimic LED's off}

85

END;

PROCEDURE bubble_update;

BEGIN
read~tation;

data-new.xp_id .
data.xp_id := 0;
save_station;

END;

{Read
{Save
{Save

ID of transporter
this in RAM}
this on bubble}

in bubble mem.}

PROCEDURE Vaultl_update(pointer:INTEGER);

BEGIN
CASE pointer OF

1 : BEGIN {Vaultl l}
mem-pos := 3;
bubble_update;
Vl_l_display;

END;
2 BEGIN {Vaultl 2}

mem-pos : = 4;
bubble_update;
Vl-2_display;

END;
3 BEGIN {Vaultl 3}

mem-pos := 5;
bubble_update;
Vl_3_display;

END;
END;

END;

BEGIN
CASE from_code OF {The arrows indicate the direction of movement

1 : BEGIN {FROM Rot Cells A}
IF RCA_off TREN
dollar38 .- dollar38 AND $FC

ELSE
dollar38 := dollar38 AND $CC;

PORT[$38] := dollar38;
dollar39 := dollar39 AND $3C;
PORT[$39] := dollar39;
dollar36 := dollar36 AND 0;
PORT[$36] := dollar36;
DELAY (500) ;
mem-pos : = 0;
bubble_update;
HCA_display;

END;

2 BEGIN {FROM Rot Cells B}
dollar38 := dollar38 AND $F0;

{ H-> }

{ HA-> H-> }

{ V-> HS-> }

{ SW1-> SW2-> SW3-> SW4-> }

{Update the Mimic panel}

86

PORT[$38] := dollar38; {HB-> H->}
dollar39 := dollar39 AND $3C;
PORT[$39] := $3C; { V-> HS-> }
dollar36 := dollar36 AND 0;
PORT[$36] := dollar36; { SW1-> SW2-> SW3-> SW4-> }
mem-pos : = 1;
bubble_update;
DELAY(500) ;
HCB_display; {Update the Mimic panel}
switcher4_to_180;
IF to_code = 1 THEN
switcher4_track-power := $BF { <- }
ELSE switcher4_track-power .- $3F; {->}

REPEAT
track_display; {Indicate on Mimic panel}
test69 := PORT[$69] AND 2; {Poll SW4 stopping plate}

UNTIL test69 = 0;
dollar36 := dollar36 OR $C0; {Track power SW4 off}
PORT[$36] := dollar36;
switcher4_to_zero;
dollar36 := dollar36 AND switcher4_track-power;
PORT[$36] := dollar36; {Track power SW4 on}

END;

3 BEGIN {FROM Vault l}
CASE to_code OF

31 : BEGIN
dollar39 := dollar39 AND $EF;
PORT[$39] := dollar39; { Vl<- }

END;
33 BEGIN

dollar39 := dollar39 AND $CF;
PORT[$39] := dollar39; { Vl-> }

END;
32 BEGIN

test64 := PORT[$64] AND $0A;
CASE test64 OF

8 : BEGIN
dollar39 := dollar39 AND $CF;
PORT[$39] := dollar39; {V1-> }

END;
2 BEGIN

dollar39 := dollar39 AND $EF;
PORT[$39] .- dOllar39; {V1<- }

END;
END;

END;

{ V1<- HS<- }

{ V<- V1<- HS<-}

ELSE
BEGIN
test64 := PORT[$64] AND $0E;
IF V1_off THEN
dollar39 .- dollar39 AND $BE

ELSE
dollar39 := dollar39 AND $AE;

PORT[$39] := dollar39;
dollar38 := dollar38 AND $FE;
PORT[$38] := dollar38;
DELAY(500) ;
CASE test64 OF

$C Vault1_update(1);
$A Vault1_update(2);

6 : Vaultl_update(3);

{ H<- }

87

{ SW1<- SW2<- SW3<- SW4<- }

END;
dollar36 := dollar36 AND $AA;
PORT[$36] .- dollar36;

END;
END;

END;

4 BEGIN {FROM Vault 2}
dollar39 := dollar39 AND $FB;
PORT[$39] := dollar39; { V2<- }
dollar36 := dollar36 AND $A2;
PORT[$36] := dollar36; { SW1<- SW2-> SW3<- SW4<- }
DELAY(500);
mem-pos := 6;
bubble_update;
V2_display; {Update the Mimic panel}
switcher2_to_180;
IF (to_code DIV 10 = 3) THEN

BEGIN
switcher2_track-power := $F3; { -> }
dollar39 := dollar39 AND $CB;
PORT[$39] .- dollar39; { V1-> V2<- }
E~

ELSE
BEGIN

switcher2_track-power := $FB; { <- }
dollar38 := dollar38 AND $FE;
PORT[$38] := dollar38; { H<- }
dollar39 := dollar39 A~ $BA;
PORT[$39] := dollar39; { V<- V2<- HS<- }

END;
REPEAT
track_display; {Indicate on Mimic panel}
test68 := PORT[$68] AND 8; {Poll SW2 stopping plate}

UNTIL test68 = 0;
dollar36 := dollar36 OR $C; {Track power SW2 off}
PORT[$36] := dollar36;
switcher2_to_zero;
dollar36 := dollar36 AND switcher2_track-power;
PORT[$36] := dollar36; {Track power SW2 on}

END;

{Track power SW3 off}

{Update the Mimic panel}

{Indicate on Mimic panel}
{Poll SW3 stopping plate}

2) THEN
{ <- }

$CF; {->}

H<- }

{ V-> HS->}

{ SW1-> SW2-> SW3-> SW4<- }

{ S->

BEGIN {FROM Storage}
dollar38 := dollar38 AND $3E;
PORT[$38] := dollar38;
dollar39 := dollar39 AND $3C;
PORT[$39] := dollar39;
dollar36 := dollar36 AND $80;
PORT[$36] := dollar36;
DELAY(100);
mem-pos := 2;
bubble_update;
S_display;
switcher3_to_180;
IF (to_code = 1) OR (to_code =
switcher3_track-power := $EF
ELSE switcher3_track-power :=
REPEAT
track_display;
test68 := PORT[$68] AND $40;

UNTIL test68 = 0;
dollar36 := dollar36 OR $30;

5

END;

PORT[$36] := dollar36;
switcher3_to_zero;
dollar36 := dollar36 AND
PORT[$36] .- dollar36;

END;

88

switcher3_track-power;
{Track power SW3 on}

{To main polling routine}

{ H<- }

{ v-> HS<- }
{ SW2-> SW3<- SW4<- }

= 4) THEN
{ SW1-> }
{ SW1<- }

IF (from_code DIV 10) = 6 THEN {FROM Parking Loop}
BEGIN

parking_loop_ID-aearch;
IF ID-not-zound = TRUE THEN

BEGIN
display-ready;
EXIT;

END;
dollar38 := dollar38 AND $FE;
PORT[$38] := dollar38;
dollar39 := dollar39 AND $3E;
PORT[$39] := dollar39;
dollar36 := dollar36 AND $A3;
PORT[$36] := dollar36;
IF (to_code DIV 10 = 3) OR (to_code
switcher1_track-power := $FC
ELSE switcher1_track-power := $FE;

IF to_code <> 6 THEN
BEGIN

dollar36 := dollar36 AND switcher1_track-power;
PORT[$36] .- dollar36; {Transporter enroute}

END;
END;

CASE to_code OF

1 : BEGIN {TO Hot Cells A}
dollar38 := dollar38 AND $EE;
PORT[$38] := dollar38;
dollar38 := $FF;
REPEAT
track_display;
test63 := PORT[$63] AND $20;

UNTIL test63 =0;
PORT[$38] := dollar38;
all-power_off;
track_display;
data.xp_id := data-new.xp_id;
WRITELN('ID = ',data.xp_id);
mem-pos := 121;
mimic_update;
save_station;

END;

2 BEGIN {TO Hot Cells B}
dollar38 := dollar38 AND $FB;
PORT[$38] := dollar38;
REPEAT
track_display;

test69 := PORT[$69] AND 2;
UNTIL test69 = 0;
dollar36 := dollar36 OR $C0;
PORT[$36] := dollar36;
switcher4_to_18121;
dollar36 := dollar36 AND $BF;

{HA<- H<-}

{Poll Hot cells A stopping plate}

{Display on Mimic panel}
{Save on Bubble memory}

{HB<- }

{Poll SW4 stopping plate}

{SW4 track power off}

{SW4 <- }

PORT[$36] := dollar36;
track_display;
dollar38 : = $FF;
REPEAT
track_display;
test63 := PORT[$63] AND $40;

UNTIL test63 =0;
PORT[$38] := dollar38;
aIL.power_off;
track_display;
switcher4_to-zero;
data.xp_id := data-new.xp_id;
mem-pos : = 1;
mimic_update;
save_station;

END;

31: BEGIN {TO Vault1 1}
IF from_code <> 3 THEN
BEGIN
dollar39 := dollar39 AND $CF;
PORT[$39] := dollar39;
REPEAT
track_display;
test68 := PORT[$68] AND 8;

UNTIL test68 =0;
END;

REPEAT
track_display;
test64 := PORT[$64] AND 2;

UNTIL test64 =0;
all-power_off;
track_display;
data.xp_id := data-new.xp_id;
mem-pos := 3;
mimic_update;
save_station;
vault1_update(2);
vault1_update(3);

END;

32: BEGIN {TO Vault1 2}
IF from_code <> 3 THEN
BEGIN
dollar39 := dollar39 AND $CF;
PORT[$39] := dollar39;
REPEAT
track_display;
test68 := PORT[$68] AND 8;

UNTIL test68 =0;
END;
dollar39 := $FF;

REPEAT
track_display;
test64 := PORT[$64] AND 4;

UNTIL test64 =0;
PORT[$39] := dollar39;
all-power_off;
track_display;
data.xp_id := data-new.xp_id;

89

{Poll Hot Cells B stopping plate}

{ V1-> }

{Poll SW2 stopping plate}

{Poll Vault1 1 stopping plate}

{Display on Mimic panel}
{Save on Bubble memory}

{ V1-> }

{Poll SW2 stopping plate}

{Poll Vault1 2 stopping plate}

mem-pos := 4;
mimic_update;
saveJltation;
vaultl_update(l);
vaultl_update(3);

END;

33: BEGIN {TO Vaultl 3}
IF from_code <> 3 THEN
BEGIN
dollar39 := dollar39 AND $CF;
PORT[$39] := dollar39;
REPEAT
track_display;
test68 := PORT[$68] AND 8;

UNTIL test68 = 0;
END;

REPEAT
track_display;
test64 := PORT[$64] AND 8;

UNTIL test64 =0;
all-power_off;
track_display;
data.xp_id := data-new.xp_id;
mem-pos := 5;
mimic_update;
saveJltation;
vaultl_update(l);
vaultl_update(2);

END;

90

{Display on Mimic panel}
{Save on Bubble memory}

{ V1-> }

{Poll SW2 stopping plate}

{Poll Vaultl 3 stopping plate}

{Display on Mimic panel}
{Save on Bubble memory}

4 BEGIN {TO Vault 2}
dollar39 := dollar39 AND $33;
PORT[$39] := dollar39;
REPEAT
track_display;
test68 := PORT[$68] AND 8;

UNTIL test68 =0;
dollar36 := dollar36 OR $C;
PORT[$36] := dollar36;
track_display;
switcher2_to_l80;
dollar36 := dollar36 AND $FB;
PORT[$36] := dollar36;
REPEAT
track_display;
test64 := PORT[$64] AND 1;

UNTIL test64 = 0;
all-power_off;
track_display;
switcher2_to-zero;
data.xp_id := data-new.xp_id;
mem-pos := 6;
mimic_update;
save_station;

END;

{ V2-> V-> }

{Poll SW2 stopping plate}

{SW2 track power off}

{SW2 <- }

{Poll Vault 2 stopping plate}

5 BEGIN {TO Storage}
dollar38 := dollar38 AND $BC;
PORT[$38] := dollar38;
dollar39 := dollar39 AND $BE;

{ H-> S<- }

6

END;

PORT[$39] := dollar39;
REPEAT
track_display;
test68 := PORT[$68] AND $40;

UNTIL test68 = 0;
dollar36 := dollar36 OR $30;
PORT[$36] := dollar36;
switcher3_to_180;
dollar36 := dollar36 AND $EF;
PORT[$36] := dollar36;
track_display;
dollar38 := $FF;
REPEAT
test63 := PORT[$63] AND $80;

UNTIL test63 = 0;
PORT[$38] := dollar38;
aIL.J?ower_off;
track_display;
switcher3_to_zero;
data.xp_id := data-new.xp_id;
mem-pos := 2;
mimic_update;
saveJStation;

END;

BEGIN {TO Parking Loop}
dollar38 := dollar38 AND $FC;
PORT[$38] := dollar38;
dollar39 := dollar39 AND $BC;
PORT[$39] := dollar39;
REPEAT
track_display;
test68 := PORT[$68] AND 1;

UNTIL test68 =0;
dollar36 := dollar36 OR $3;
PORT[$36] := dollar36;
switcherl_to_180;
dollar36 := dollar36 AND $FE;
PORT[$36] := dollar36;
dollar3B := dollar3B AND $7F;
PORT[$3B] := dollar3B;
DELAY(1500) ;
track_display;
switcherl_to-zero;
REPEAT
test66 := PORT[$66] AND 1;

UNTIL test66 =0;
dollar3B := dollar3B OR $80;
PORT[$3B] := dollar3B;
all-power_off;
track_display;
parking_Ioop-positioning;
parking_Ioop_check;

END;

91

{HS<- V<- }

{Poll SW3 stopping plate}

{SW3 track power off}

{SW3 <- }

{Poll Storage stopping plate}

{H-> }

{HS-> V<- }

{Poll SWl stopping plate}

{SWl track power off}

{SWl -> }

{PLl power on}

{Time for transporter to leave SW1

{Poll PLl position sensing}

{PLl power off}

IF (from_code DIV 10) = 6 THEN
parking_Ioop-positioning;
parking_Ioop_check;

END;

{LOCAL POLLING ROOTINE

92

LOCPOLL.PAS

This is the local polling routine which looks at commands entered from
the Local controller.

a) From-parking_loop reads PORT[$60] and checks XXXX cbaX to determine
transporter ID entered. It sets the FROM code to 6 and switches the
appropriate lamp on.

b) From~tation reads PORT[$60] and checks cbaX XXXX to determine which
station was entered. It switches the appropriate lamp on and sets the
FROM code to : 1 Hot Cells A

2 Hot Cells B
3 : Vault 1
4 : Vault 2
5 : Storage

c) To~tations_or-pl reads PORT[$61] and checks XXXX cbaX to determine which
station was entered. It switches the appropriate lamp on and sets the

TO code to : 1 Hot Cells A
2 Hot Cells B

31 Vault_1 1
32 Vault_1 2
33 Vault_1 3

4 Vault 2
5 Storage
6 Parking Loop

d) Cancel_entry reads PORT[$61] bit 0XXX XXXX. The lamp will be switched
on for 300ms. The TO code and FROM code is then set to 0 and the lamps
on the front panel will be switced off.

e) Execute i)Switch on the lamp for 300ms
ii)Check if the FROM code is 0 ,complain if so and EXIT.

iii)Check if the TO code is 0 ,complain if so and EXIT.
iv)Check if the TO code = FROM code ,complain if so and EXIT.

v)Check if a transporter is actually parked in the FROM station
that was entered. If not it will complain and EXIT.

vi)Check if the station is empty to which the TO command wants
it to go. If not it will complain and EXIT.

VAR
from_code,to_code : INTEGER;

}

VAR
valid_commands, station_empty

PROCEDORE from_strobe;

BEGIN
DELAY(20) ;
dollar35 := dollar35 OR $10;
PORT[$35] := dollar35;
DELAY(l) ;
dollar35 := dollar35 AND $EF;
PORT[$35] .- dollar35;

END;

PROCEDORE to~trobe;

BOOLEAN;

{Contact bounce}
{Strobe high}

{Pulse width}
{Strobe low}

93

BEGIN
DELAY(20) ;
dollar35 := dollar35 OR 1;
PORT[$35] := dollar35;
DELAY (1);
dollar35 := dollar35 AND $FE;
PORT[$35] .- dollar35;

END;

PROCEDURE from-parking_loop;

{Contact bounce}

BYTE;

BEGIN
from-pl_code := PORT[$60] AND $F;
from-pl_code := from-pl_code SHR 1;
CASE from-pl_code OF

6 : BEGIN {Parking loop 1}
data-new.xp_id := 1;
dollar34 := (dollar34 OR 5) AND $F5;
from_code := 61;

END;
5 BEGIN {Parking loop 2}

data-new.xp_id := 2;
dollar34 := (dollar34 OR 6) AND $F6;
from_code := 62;

END;
4 BEGIN {Parking loop 3}

data-new.xp_id := 3;
dollar34 := (dollar34 OR 7) AND $F7;
from_code : = 63;

END;
3 BEGIN {Parking loop 4}

data-new.xp_id := 4;
dollar34 := (dollar34 OR 8) AND $F8;
from_code := 64;

END;
2 BEGIN {Parking loop 5}

data-new.xp_id := 5;
dollar34 := (dollar34 OR 9) AND $F9;
from_code .- 65;

END;
END;

PORT[$34] := dollar34;
from_strobe;
WRITELN('from_code = ' ,from_code,

, data-new.xp_id = ',data-new.xp_id);
END;

PROCEDURE from_station;

VAR
from_station_code BYTE;

BEGIN
from_station_code .- PORT[$60] AND $E0;
from_station_code .- from_station_code SHR 5;

94

CASE from_station_code OF
6 : BEGIN {Hot cells A}

dollar34 := (dollar34 OR 0) AND $F0;
from_code : = 1;
END;

5 BEGIN {Hot cells B}
dollar34 := (dollar34 OR 1) AND $F1;
from_code : = 2; .
END;

4 BEGIN {Vault 1}
dollar34 := (dollar34 OR 2) AND $F2;
from_code : = 3;
END;

3 BEGIN {Vault 2}
dollar34 := (dollar34 OR 3) AND $F3;
from_code : = 4;
END;

2 BEGIN {Storage}
dollar34 := (dollar34 OR 4) AND $F4;
from_code := 5;
END;

END;
PORT[$34] := dollar34;
from.Jltrobe;
WRITELN('from_code = ',from_code);

END;

VAR
to.Jltation_code BYTE;

BEGIN
to_station_code := PORT[$61] AND $0E;
to.Jltation_code := to_station_code SHR 1;
CASE to_station_code OF
o : BEGIN {Parking loop}

dollar34 := (dollar34 OR $70) AND $7F;
to_code : = 6;

END;
1 BEGIN {Storage}

dollar34 := (dollar34 OR $60) AND $6F;
to_code : = 5;

END;
2 BEGIN {Vault 2}

dollar34 := (dollar34 OR $50) AND $5F;
to_code : = 4;

END;
3 BEGIN {Vault1 3}

dollar34 := (dollar34 OR $40) AND $4F;
to_code := 33;

END;
4 BEGIN {Vault1 2}

dollar34 := (dollar34 OR $30) AND $3F;
to_code : = 32;

END;
5 BEGIN {Vault1 1}

dollar34 := (dollar34 OR $20) AND $2F;
to_code : = 31;

END;
6 BEGIN {Hot cells B}

95

dollar34 := (dollar34 OR $10) AND $1F;
to_code := 2;

END;
7 BEGIN {Hot cells A}

dollar34 := dollar34 AND $0F;
to_code : = 1;

END;
END;
PORT[$34] := dollar34;
to--6trobe;
WRITELN('to_code = ',to_code);

END;

PROCEDURE cancel_entry;

BEGIN
dollar35 := dollar35 AND $FB; {Indicate on Local lamp}
PORT[$35] := dollar35;
DELAY(300) ;
dollar35 := dollar35 OR $4;
PORT[$35] := dollar35;

{TO code = 15
{FROM code = 15

dollar34 := $FF;
PORT[$34] := dollar34;
to_strobe;
fromJltrobe;
to_code : = 0;
from_code : = 0;
WRITELN('ALL VALUES CANCELLED');

END;

To switch off all the lamps }
on the Local controller }

PROCEDURE invalid_commands;

BEGIN
valid_commands := FALSE;
write_dotmatrix(mess);
bleep;
DELAY(4000) ;
displaYJ"eady;

END;

INTEGER) ;

PORT[$63] AND $20;
<> o THEN station_empty . - TRUE ELSE station_empty .- FALSE;

PORT[$63] AND $40;
<> 0 THEN station_empty . - TRUE ELSE station_empty .- FALSE;

(PORT[$64] AND $E) OR $F1;
= $FF THEN station_empty . - TRUE ELSE station_empty . - FALSI

BEGIN
CASE station_status_check OF

1 : BEGIN
test63 :=
IF test63

END;
2 BEGIN

test63 .
IF test63

END;
3 BEGIN

test64 .
IF test64

END;

4

5

6

96

BEGIN
test64 .- PORT[$64] AND 1;
IF test64 <> 0 THEN station_empty · - TRUE ELSE station_empty · - FALSE;

END;
BEGIN
test63 .- PORT[$63] AND $80;
IF test63 <> 0 THEN station_empty · - TRUE ELSE station_empty · - FALSE;

END;
BEGIN
test66 . - PORT[$66] AND 1;
IF test66 <> o THEN station_empty · - TRUE ELSE station_empty · - FALSE;

END;
END;
IF (station-status_check DIV 10) =3 THEN

BEGIN
test64 := (PORT[$64] AND $E) OR $F1;
IF test64 = $FF THEN station_empty := TRUE ELSE station_empty .- FALSE;

END;
END;

INTEGER) ;

BEGIN
CASE station-status_check OF

31 : BEGIN
test64 ·- PORT[$64] AND 2;
IF test64 <> 0 THEN station_empty · - TRUE ELSE station_empty · - FALSE

END;
32 BEGIN

test64 ·- PORT[$64] AND 4;
IF test64 <> 0 THEN station_empty · - TRUE ELSE station_empty ·- FALSE

END;
33 BEGIN

test64 · - PORT[$64] AND 8;
IF test64 <> 0 THEN station_empty · - TRUE ELSE station_empty · - FALSE

END;
END;

END;

PROCEDURE execute;

BEGIN

dollar35 := dollar35 AND $FD; {Indicate on Local lamp}
PORT[$35] := dollar35;
DELAY(500) ;
dollar35 := dollar35 OR 2;
PORT[$35] := dollar35;

IF from_code = 0 THEN
BEGIN

mess := 'No FROM entered
invalid_commands;
EXIT;

END;

IF to_code = 0 THEN
BEGIN

I ' •. ,

mess := 'No TO entered
invalid_commands;
EXIT;

END;

I ' •. ,

97

IF from_code = to_code THEN
BEGIN

mess := 'FROM and TO the same station
invalid_commands;
EXIT;

END;

I ' •. ,

IF from_code <> 0 THEN
'BEGIN

IF (from_code DIV 10) =6 THEN
BEGIN
test67 := PORT[$67] AND 2;
IF test67 <> 0 THEN station_empty .- TRUE ELSE station_empty .- FALSE;

END;
test_station-Btatus(from_code);
IF stray_to_station THEN
station_empty := FALSE;

IF station_empty = TRUE THEN
BEGIN

mess := 'The FROM station entered is empty!';
invalid_commands;
EXIT;

END;
END;

IF to_code <> 0 THEN
BEGIN

IF «to_code DIV 10) = 3) AND (from_code = 3) THEN
test-Btation_status_V1(to_code)

ELSE
test_station_status(to_code);

IF station_empty = FALSE THEN
BEGIN

mess := 'The TO station entered is occupied !';
invalid_commands;
EXIT;

END;
END;

{At this stage the from and to values will be legal and the
appropriate stations occupied and empty }

mess := 'Transporter now on route.
write_dotmatrix(mess);

stations_store_1 := PORT[$63] AND $E0;
stations-Btore_2 := PORT[$64] AND $0F;
parking_loop_store_1 .- PORT[$66];
parking-loop_store-2 := PORT[$67] AND 3;

displaYJeady;

stray_routine_serviced .- TRUE;

END;

----------------->';

{ Store }
{ all }
{ the }
{variables}

98

PROCEDURE local_commands-poll;

BEGIN
test60 := PORT[$60] AND $11;
test61 := PORT[$61];
IF (test60 AND 1) =0 THEN
from-parking-!oop;

IF (test60 AND $10) = 0 THEN
from-station;

IF (test6! AND 1) = 0 THEN
to-stations_or-pl;

IF (test6! AND $80) =0 THEN
cancel_entry;

IF (test6! AND $40) = 0 THEN
execute;

IF (test61 AND $20) =0 THEN
BEGIN

stations_update;
display-ready;

END;
END;

{PROGRAM POLLING ROUTINE

{RESET button}

POLLROUT.PAS

This program contains the main polling routine in the procedure
called 'poll'. The following inputs are polled:

a) Stations
If a transporter is removed or inserted in a station the message
is displayed, the Mimic panel is updated as well as the information
on the bubble memory.

b) Parking Loop
The same as for a) but no bubble updating.

c) Power Supplies
This looks at the two status bits. A message is also diplayed but
here the operator is prompted to switch the power supplies on from
the Local controller panel.

d) Switchers
This checks the 0 degree status of the switchers. If this status
is broken, the Mimic panel LED's is updated, a message is displayed
and the program will try to drive the switcher back to zero degrees.

e)Local Controller comands
In another file.

}

VAR
switcher-poll_1,switcher-poll_2,
p-s-poll : BYTE;

PROCEDURE display_ready;

BEGIN
mess.- ---------------- READY -----------------Enter a FROM and a TO posi1
write_dotmatrix(mess);

END;

99

PROCEDURE HCA_change;

BEGIN
IF stations-poll_l AND $20 = 0 THEN

BEGIN
mess := "Transporter was inserted into
data.xp_id := 7;
dollar31 := dollar31 OR 7;
HCA_display;

END
ELSE

BEGIN
mess := "Transporter was removed from

,data.xp_id := 0;
HCA_display;

END;
bleep;
write_dotmatrix(mess);
DELAY(2121121I21) ;
mem-pos := 0;
save_station;

END;

PROCEDURE HCB_change;

BEGIN
IF stations-poll_1 AND $40 =121 THEN

BEGIN
mess := "Transporter was inserted into
data.xp_id := 7;
dollar31 := dollar31 OR 7;
HCB_display;

END
ELSE

BEGIN
mess := "Transporter was removed from
data.xp_id := 121;
HCB_display;

END;
bleep;
write_dotmatrix(mess);
DELAY(212100) ;
mem-pos : = 1;
save-J;tation;

END;

PROCEDURE S_change;

BEGIN
IF stations-poll_l AND $80 = 121 THEN

BEGIN
mess := "Transporter was inserted into
data.xp_id := 7;
dollar31 := dollar31 OR 7;
S_display;

END
ELSE

BEGIN
mess := "Transporter was removed from
data.xp_id := 121;

Hot Cells A.";

Hot Cells A.";

Hot Cells B.";

Hot Cells B.";

the Storage.";

the Storage.";

100

S_display;
END;

bleep;
write_dotmatrix(mess);
DELAY (20(0) ;
mem-Pos := 2;
save_station;

END;

PROCEDURE V2_change;

BEGIN
IF stations-poll-2 AND 1 = 0 THEN
BEGIN

mess := 'Transporter was inserted into
data.xp_id := 7;
dollar31 := dollar31 OR 7;
V2_display;

END
ELSE·

BEGIN
mess := 'Transporter was removed from
data.xp_id := 0;
V2_display;

END;
bleep;
write_dotmatrix(mess);
DELAY(2000) ;
mem-pos := 6;
saveJ\tation;

END;

PROCEDURE V1_1_change;

BEGIN
IF stations-poll-2 AND 2 = 0 THEN

BEGIN
mess := 'Transporter was inserted into
data.xp_id := 7;
dollar31 := dollar31 OR 7;
Vl_l_display;

END
ELSE

BEGIN
mess := 'Transporter was removed from
data.xP-id := 0;
V1_1_display;

END;
bleep;
write_dotmatrix(mess);
DELAY(2000) ;
mem-pos := 3;
save_station;

END;

PROCEDURE Vl-2_change;

BEGIN
IF stations-poll_2 AND 4 = 0 THEN

Vault 2.';

Vault 2.';

Vaultl 1.';

Vault1 1.';

101

BEGIN
mess := 'Transporter was inserted into
data,xp_id := 7;
dollar31 := dollar31 OR 7;
Vl-2_display;

END
ELSE

BEGIN
mess := 'Transporter was removed from
data.xp-id := 0;
Vl-2_display;

END;
bleep;
write_dotmatrix(mess);
DELAY(2000) ;
mem....J?os := 4;
save-etation;

END;

BEGIN
IF stations....J?oll-2 AND 8 = 0 THEN

BEGIN
mess := 'Transporter was inserted into
data,xp_id := 7;
dollar31 := dollar31 OR 7;
V1_3_display;

END
ELSE

BEGIN
mess := 'Transporter was removed from
data.xp_id := 0;
V1_3_display;

END;
bleep;
write_dotmatrix(mess);
DELAY(2000) ;
mem....J?os := 5;
save-etation;

END;

PROCEDURE stations....J?oll_update;

Vault1 2.';

Vault1 2.';

Vault1 3. ';

Vault1 3,';

VAR
I ,change

BEGIN

INTEGER;

test63 := $20;
FOR I := 1 TO 3 DO

BEGIN
IF (test63 AND stations....J?oll_l) <> (test63 AND stations_store_1) THEN
change . - I;
test63 := test63 SHL 1;

END;

test64 := 1;
FOR I := 4 TO 7 DO

BEGIN

102

IF (test64 AND stations-poll_2) <> (test64 AND stations_store_2) THEN
change .- I;
test64 := test64 SHL 1;

END;

change OF
HCA_change;
HCB_change;
S_change;
V2_change;
Vi_i_change;
Vl-2_change;
V1_3_change;

CASE
1
2
3
4
5
6
7

END;
stations_store_l .
stations-store-2 .
display-ready;

END;

stations-poll_1;
stations-poll-2;

PROCEDURE parking-loop-poll_update;

BEGIN
bleep;
mess := 'Transporter was
write_dotmatrix(mess);
DELAY(2000) ;
parking_loop_check;
parking_loop-store_1 .
parking_loop_store_2 .
display-ready;

END;

removed/inserted

{To update the Mimic
parking_loop-poll_l;
parking_loop-poll_2;

in the Parking loop.';

LED's}

PROCEDURE power_supplies-poll;

BEGIN
p_s-poll := PORT[$67] AND $C;
IF p_s-poll <> 0 THEN

BEGIN
CASE p_s-poll OF

4 : BEGIN
mess := '24V Power Supply OFF
dollar35 .- (dollar35 OR $40) AND $DF;
dollar3A .- dollar3A OR 1;
ps24V_on .- FALSE;

END;
8 BEGIN

mess := '32V Power Supply OFF
dollar35 .- (dollar35 OR $80) AND $DF;
dollar3A .- dollar3A OR 2;
ps32V_on .- FALSE;

END;
$C: BEGIN

mess := 'Both Power Supply OFF
dollar35 .- (dollar35 OR $C0) AND $DF;
dollar3A .- dollar3A OR 3;
ps24V_on .- FALSE;
ps32V_on .- FALSE;

END;
END;
write_dotmatrix(mess);

RESET to continue';
{PS lamp off FAULT lamp or
{PS_on command off}

RESET to continue";
{PS lamp off FAULT lamp or
{PS_on command off}

RESET to continue·;
{PS lamp off FAULT lamp or
{PS_on command off}

103

PORT[$35] := dollar35;
PORT[$3A] := dollar3A;
bleep_until-reset;
mess := "Check the Power Supply before
wr1te_dotmatrix(mess);
pO\ilerJ\upplies;
bleep;
dollar35 := dollar35 OR $20;
PORT[$35] := dollar35;
display-ready;

END;
END;

PROCEDURE switcher-poll_update;

VAR
I,change : INTEGER;

you attempt to switch on";

{Fault lamp off}

BEGIN
test68 := 2;
FOR I := 1 TO 3 DO

BEGIN
IF (switcher-poll_1 AND test68) <> 0 THEN
change := I;
test68 := test68 SHL 3;

END;
test69 := 4;
IF (switcher-poll-2 AND test69) <> 0 THEN
change := 4;

CASE change OF
1 : BEGIN

mess := "Switcher no. lout of position RESET to continue";
green_led := 10; {Mimic panel LED to red}

END;
2 BEGIN

mess := "Switcher no. 2 out of position RESET to continue";
green-led := 20; {Mimic panel LED to red}

END;
3 BEGIN

mess := "Switcher no. 3 out of position RESET to continue";
green_led := 30; {Mimic panel LED to red}

END;
4 BEGIN

mess := "Switcher no. 4 out of position RESET to continue";
green-led := 40; {Mimic panel LED to red}

END;
END;
write_dotmatrix(mess);
dollar35 := dollar35 AND $DF;
PORT[$35] := dollar35;
update-mleds_switcher;
bleep_until-reset;
mess := "Check the Switcher before you
write_dotmatrix(mess);
REPEAT
UNTIL local_reset;
CASE change OF

1 switcherl_to_zero;
2 switcher2_to-zero;
3 6witcher3_to-zero;
4 switcher4_to_zero;

{Fault lamp on}

RESET to continue";

END;
dollar35 := dollar35 OR $20;
PORT[$35] := dollar35;
displaYJeady;

END;

PROCEDURE poll;

BEGIN

104

{Fault lamp off}

stations-poll_1 := PORT[$63] AND $E0;
stations-poll-2 := PORT[$64] AND $0F;
IF (stations-poll_1 <> stations_store_1) OR

(stations-poll_2 <> stations_store_2) THEN
stations-poll_update;

parking_Ioop-poll_1 := PORT[$66];
parking_Ioop-poll_2 := PORT[$67] AND 3;
IF (parking_Ioop-poll_1 <> parking_Ioop_store_1) OR

(parking_Ioop-poll-2 <> parking_Ioop_store_2) THEN
parking_Ioop-poll_update;

power-aupplies-poll;

sWitcher-poll_1 := PORT[$68] AND $92;
switcher-poll-2 := PORT[$69] AND 4;
IF (switcher-poll_1 <> 0) OR (switcher-poll_2 <> 0) THEN
switcher-poll_update;

local_commands-poll;

END;

VAR
sw_end : BOOLEAN;
key_in,switch-in : INTEGER;

PROCEDURE start_up;

BEGIN
dotmatrix_initialize;
variables_initialize;
dollar3A := dollar3A OR 4; {Switch on local controller 24V 0000 0100}
PORT[$3A] := dollar3A;
WRITELN('Local controller 24V psu on.');
ps24V-atatus := 1;
ps24V_status := 1;
ps24V_on := FALSE;
ps32V_on := FALSE;
from_code := 0;
to_code : = f2l;
cancel_entry;
bleep;
mess := ----- THE TARGET TRANSPORT SYSTEM ----Switch on the Power Supplies
write_dotmatrix(mess);
power_supplies;
DELAY(2000) ;
switcher-atatus_check;
switcher_check;

105

and should not be included

18") ;
28") ;
38");
48") ;

180
180
180
180

to
to
to
to

SW1
SW2
SW3
SW4

50") ;

10
20
30
40

{This part helps to test faulty switchers
in the working version of the program.
sw_end := FALSE;
WRITELN("SW1 to 0
WRITELN("SW2 to 0
WRITELN("SW3 to 0
WRITELN("SW4 to 0
WRITELN;
WRITELN("To terminate
REPEAT
READLN(switch_in);
CASE switch_in OF

10 switcher1_to_zero;
18 switcher1_to_180;·
20 switcher2_to_zero;
28 switcher2_to_180;
30 switcher3_to_zero;
38 switcher3_to_180;
40 switcher4_to_zero;
48 switcher4_to_180;
50 sw_end:= TRUE;

END;
UNTIL sw_end;
}

mess := "Parking Loop positions check";
write_dotmatrix(mess);
DELAY(2000) ;
parking_loop_check;
parking-loop-positioning;
stations_update;

{ This part helps to check the tracks for shorts between the sense line
and the power lines. It should not be included in the working version.

WRITELN;
WRITELN;
WRITELN("Track_display until 1 pressed. ");
REPEAT
track_display;
DELAY (100);
READLN(key_in) ;
DELAY(100);

UNTIL key_in = 1;
}

stray_check;

stations_store_1 := PORT[$63] AND $E0;
stations_store_2 := PORT[$64] AND $0F;
parking_loop_store_l .- PORT[$66];
parking_loop_store_2 .- PORT[$67] AND 3;

display_ready;
END;

BEGIN
start_up;
REPEAT
poll;

UNTIL KEYPRESSED;

106

6. TESTING AND MODIFICATIONS

6.1 LOCAL CONTROLLER AND MIMIC PANEL

An instrument, consisting of switches and LED's, was made to
simulate the SABUS I/O cards. This was then used to test the
local controller and mimic panel once they were assembled.
Because of noise problems, a few capacitor filters had to be
added, especially on the strobe inputs.

Initially only one 24V power supply was used. The 5V was
generated by a voltage regulator and bypass transistor, but
after some testing was done, it was found that a separate 5V
supply was needed. This was then added in the local controller
without any problem.

6.2 SOFTWARE

Because the program was divided into include fi les, these could
be tested individually. A panel consisting of 80 miniature toggle
switches and 96 LED's were designed and assembled to assist in
the software testing. The 80 switches were connected to the 80
bit opto-isolated input card and represented the inputs from the
system. The 96 LED's were connected to the three 32-bit relay
output cards and represented the outputs to the system. After
weeks of writing source code, compiling and testing, the final
program emerged containing thirteen include files and using
30kbytes of RAM space.

6.3 COMPLETE SYSTEM

For testing the complete system a close circuit TV camera was
used. By entering commands on the local controller in the
isotope-production control room, the movement of transporters and
switchers could be followed on a monitor. The biggest problem
that occurred was that when power was appl ied for the first time,
all the contacts on the 32-bit relay output cards were closed.
This powered all the relays driving the track sections and
switcher motors resulting in a total chaos of moving transporters
and switchers. This problem was overcome by introducing a small
relay timer card between the local controller 5V and 24V power
supplies. When mains is switched on, only the 5V power supply is
powered. The 24V power supply is only powered via the 32-bit
relay card once the relays are in the correct state. The circuit
d i a gram i s s h 0 wn i n fig u r e 6. 3 • 1 •

A number of wiring and cabling faults were
rect i fi ed wi thout any prob I ems.

encountered an d

The stopping of a transporter is achieved by sensing its presence
at stations and on switchers by means of reed switches activated
by magnets on the transporter chassis. This method of sensing

107

proved to be unreliable and the reed switches were replaced by
limit switches. Limit switch activators were made and fixed onto
the transporters' chass is.

7. COMMISSIONING

The system was commissioned in October 1988
testing. All the possible routes were tested a
and power failures were simulated to observe the
on power restoration.

8. CONCLUSIONS

after extens i ve
numb e r 0 f time 5

systems reaction

To control a system of this nature, two methods can be used
namely a direct hardware control or a combination of software and
hardware control. To control it purely by hardware, a dedicated
hardware con troll er has to be used. On system break down and

malfunction it will require a skilled person to rectify it and
will invariably take some time. Using a hardware/software
combination, as in this case, has a number of advantages. First
of all the Z-80 microprocessor and SABUS I/O cards are standard
NAC in-house modules which can be replaced quickly because of
their availability. Secondly, should the software crash while
running, it can be reloaded from the bubble memory on SABUS, by
simply press ing the reset button on the microprocessor. Thirdly,
al I the commands to the microprocessor are entered on pushbutton
switches which are relatively trouble free. Fourthly the hardware
part consists of straight forward wiring to relays which also
give relatively trouble free operation. Lastly it is a very
flexible system because software can be changed to sui t new
processes and needs as often as required. It is therefore much
more advantageous to use a microprocessor based system in such
applications. If one compares the previously used hardware
system, with its ratsnest of wiring, to this control system, one
can clearly see its supremacy.

Entering commands on the local controller pushbuttons instead of
a keyboard, narrows down the pass ibi I ity of operator typing
errors. It also eliminates the need to remember complicated
command strings.

By using a mimic panel, the entire system status can be seen at a
glance. It also indicates transporter progress on the tracks in
areas where CCTV cameras cannot be used. The use of CCTV cameras
can become quite expens ive.

AI though a hi gh degree of
into the con trol system and
only come wi th time.

rei iabi lity was designed
thoroughly tested, its real

and built
test will

109

9. REFERENCES

1. Borland International,1984,Turbo Pascal reference manual,BI.

2. Borland International,1986,Turbo Pascal Tutor ,BI.

3. General Instruments,1985,Catalog of optoelectronic products,GI.

4. National Accelerator Centre,1985,Annual Report,NAC.

5. National Atcelerator Centre,1986,Annual Report,NAC.

6. National Accelerator Centre,1987,Annual Report,NAC.

7. National Semiconductors,1984,logit data book Volume 2,NS.

8. Qptrex Corporation,1987,Dot matrix lCD module user's manual,QC.

9. Texas Instruments,1981,The TTl data book for design engineers,TI.

	Contents
	1. Introduction
	2. Design considerations
	3. Hardware description
	4. Assembly
	5. Software description
	6. Testing and modifications
	7. Commissioning
	8. Conclusion
	9. References

