DEVELOPMENT OF A MONITORING AND DATA LOGGING SYBTEM

FOR A NULTI-LINE TELEPHCNE CONSOLE

By Andras Mathys Zsigmond Molnar

Thesis submitted in partial fulfilment of the
requirements for the Masters Diploma in Technolegy to
the Department of Electrical Engineering (light

current) at the Cape Technikon.

Research and Develcopment Centre

Department of Posts and Telecommunications

CAPE TOWN
SOUTH AFRICA

NOVEMBER, 1591

DECLARATION

I declare that the contents of this thesis represents
my own work and the opinions contained herein are my
own. It has not been submitted before for any

examination at this or any other institute.

A, M. Z. MOLNAR

(8ignature)

ABSTRACT

This thesis descibes the design, development and
implemention of a monitoring and data logging system
for a multi-line telephone conscle as required by the

Account Enquiry section of the Department of Posts and

Telecommunications.

OPSOMMING

Hierdie verhandeling beskryf die ontwerp, ontwikkeling
en uitvoering van ‘n monitering en data versameling
fasiliteit wvir ‘n multi-iyn telefoon Xkonsole soos
benodig deur die Rekening Navrae seksie van die

Departement van Pos en Telekommunikasiewese.

ACENOWLEDGEMENTS

I would sincerely like to extend a special word of
thanks to Mr D Nel for his encouragement and assistance

throughout the duration of this project.

I would especially like to thank Mr J P Calitz for his
patience and friendly advice in helping with the
software development and for his constructive criticism

regarding my design ideas.

I would earnestly like to thank Mr M Amerika for always
being prepared to be of assistance and for his
ingenious ideas regarding hardware design in
particular, which was an enormous help during this

project.

I would like to thank Mr A Herbert and his staff at the
Research and Development Centre of the Department of
Posts and Telecommunications for all the help received

during this project.

I would alsc like to thank Plessey for being prepared
to grant me access to their library and for all their

assistance regarding the BTS 60 system.

TABLE OF CONTENTS

Page

1. INTRODUCTION. 1-1
1.1 The Existing Account Enquiry Section. 1-1
1.2 The Solution. 1-3

2. OBJECTIVE. 2-1
3. INFORMATION SYSTEM DEVELOPMENT. 3-1
3.1 The Feasibility Study. 3-1
3.2 The System Analysis. 3-2
3.2.1 Analysis of the Present System. 3-~2

3.2.2 Analysis of the System Requirements. 3-2

3.3 System Design. 3-3
3.3.1 Logical System Design. 3~-3
3.3.2 Physical System Design. 3-4
3.3.3 System Specifications. 3-5

3.4 Software Development. 3-5

3.5 System Implementation. 3-6
3.5.1 Training. 3-6
3.5.2 Testing. 3-7
3.5.3 Documentation. 3-7

3.6 System Maintenance. 3-8

3.7 Summary. 3-8

4. HARDWARE DESIGN. 4-1

4.1 The Visual Display. 4-1

4.2 The Power Supply. 4-2

4.3 The Ringing Detection Circuits.

4.4 Multiplex and Count the Ringing Calls.

4.5 Latched and Decoder Driven Seven-Segment

Displays.

4.6 Maintenance and Error Checking.

4.7 PC Board Schematic Drawings.

SOFTWARE DEVELOPMENT.

5.1 The Pascal Language.

5.1.1 Why TURBO Pascal?

5.2 Data Capturing,

Systen.

Logging and Monitoring

5.3 Welcome to Monitor!

5.3.1 The Main Menu.

5.3.2 The Set-up Utility.

5.3.2.1
5.3.2.2
5.3.2.3
5.3.2.4
5.3.2.5
5.3.2.6
5.3.2.7
5.3.2.8
5.3.2.9
5.3.,2.10
5.3.3 Print
5.3.3.1

5.3.3.2

The

The

The

The

The

The

The

Communications Port.
Baud Rate.

Parity.

Data Bits.

Stop Bits.

Input Buffer Size.

Output Buffer Size.

Do Xon/Xoff.

Do Clear toc Send.

Do Data Set Ready.

Reports.

Daily Switchboard Statistics.

Individual Extensions.

5.3.3.3 Trunk Line Reports.
5.3.3.4 Average Answering Times.
5.3.3.5 All Reports.
5.3.3.6 Printer Error.
5.3.3.7 Processing Data for Printed
Report.
5.3.4 System Date and Time.
5.3.5 Office Lay-out and Extension Numbers.
5.3.6 Quit.
5.4 Archiving.
5.5 Handshaking.
5.6 Program Flowcharts and Listings.
6. PROBLEMS ENCOUNTERED.
7. FUTURE ENHANCEMENTS.
7.1 Dynamically Changing the Software.
7.2 Monthly and Quarterly Generated Reporting.
7.3 Graphical Representation of Information.
7.4 Dynamic Report Generation.
8. CONCLUSION.

9. BIBLIOGRAPHY.

APPENDIX A. Schematic Drawings.
APPENDIX B. Flowcharts.

APPENDIX . Prograrm Listings.

1 INTRODUCTIOM,

The Department of Posts and Telecommunications
Commercial Account Enquiry section has a
run-of-the-mill management problem. This problem can be
described as the lack of information required by
management for effective decision-making and control.
To emphasize the situation, one should take a look at

an overview of the existing Account Enquiry section.

1.1 The Existing Account Enquiry S8ection.

The Account Enquiry section provides the telephone
using public with an information service. This service
includes information such as telephone account
information, telephone suspension and restcoration
statistics as well as various general queries related

to the national and international telephone networks.

The section consists of managerial, supervisory and
operational staff as well as operational hardware. The
operational hardware consists of a business telephone
system (BTS 60) and various computer terminals that are
utilized to obtain relevant account and subscriber
information. The operational staff comprises a humber

of operators who answer the incoming BTS switchboard.

INTRODUCTION

The control and effective utilization of the operators,
switchboard and section as a whole was an almost
impossible task due to the lack of relevant information
regarding the performance of the operators and the
switchboard. The only information available to
management regarding the performance of the operators
and the switchboard was a logged print-out of all the
calls passing through the BTS 60 and lists of cails
attended to by the individual operators. The calls
passing through the system are logged as they occur and
are not sorted in any specific manner. This
information is of little or no value to management as
the logged print-out offers reams of information that
need to be transformed into a meaningful format. The
list of calls attended to is recorded by the operators
themselves and thus the integrity of this information

is debatable.

Due to the increasing number of complaints received
from the private sector regarding the accessibility of
the Account Enquiry service and the section’s own
desire to improve it’s public image it became apparent
that management information was imperative. With the
aid of such information it would be possible to manage
and control the section in a meore efficient and

organized manner, thus providing an improved service.

1-2

INTRODUCTION

1.2 The Solution.

A possible solution to the Account Enquiry section’s
problem would be to design some sort of management

information system (MIS).

This management information system would be used to
collect, transform and transmit the necessary
information required by the controlling staff. With
the aid of such management information, the Account
Enquiry section would be able to operate more
efficiently as well as provide a better service to the
public sector. Consequently the section’s image and
that of the Department of Posts and Telecommunications

could be improved considerably.

2 OBJEGCTIVE,

The main objective of this project is to design an
effective management information system that will
present the Account Engquiry section with the necessary
information to establish an integrated management

system.

Of course, even the best information cannot guarantee
good decisions if managers do not have the ability to
use it effectively. This is why the information must be
presented in a form which is easy to understand and
use. Managerial and supervisory staff require
information of high quality and not of great quantity.
It must be emphasized that managers cannot possibly
absorb all of the information that can be produced by
information systems. Thus, high-quality information
must possess several major characteristics in order to
effectively support managerial decision-making. For
example, information should generally have the

following qualities:

Timely. Information must be available when needed.

Accurate. Information must be free from errors.

Complete. All information needed must be provided.

Concise. Only information needed must be provided.

2-1

OBJECTIVE

In conjunction with the above information criteria an
effort must be made tc estabkblish the nature of the
required information needed to suit the strategy and
functional plan of the section. These information
requirements will be obtained by means of a feasibility

study.

On completion of the feasibility study a systenm
analysis must be conducted before the system can be
designed. Once the design is complete the software can
be developed to meet the specifications of the design
stage. After this all that remains is the

implementation of the system.

3 INFORMATION SYSTEM DEVELOPMENT.

The development cycle for this management information
system includes various stages viz. a feasibility
study, system analysis, system design, software
development, implementation and maintenance of the
designed system. The activities involved are highly

related and interdependent.

3.1 The Feasibility 8tudy.

2 feasibility study 1is a preliminary study that
determines the information needs of prospective users
and the objectives, constraints, basic resource

requirements and feasibility of a propesed project.

The information needed for such a feasibility study and
for the other stages of the system development was
gathered from various sources, viz. (1) personal
interviews with users, operators and managers, (2)
personal observation of the system in action, (3) the
examination of documents, reports, data media,
procedural manuals and other systems documentation. The
information gathered in this manner was used for the
preliminary specifications of the proposed systen,

including the systenm criteria and constraints.

3-1

INFORMATION SYSTEM DEVELOFMENT

3.2 The System Analysis.

The final product of system analysis is the system
requirements or functional specifications for the

proposed information system.

3.2.1 Analysis of the Present System.

To determine these system requirements and functional
specifications, one has to gain some sort of
knowledge regarding the organizational environment in

which the system 1is to be located.

This entails learning more about the Account Enquiry
section as an organization, its management structure,
its business activities and the information system it
has installed. Once the organizational environment
has been scrutinized, the actual system regquirements

can be dealt with.

3.2.2 Analysis of the 8ystem Requirements.

The focus ©f the system requirements analysis must be
on the infermation requirements of the prospective
users of the new system and the 1logical input/cutput,
Processing, storage and control requirements of the

proposed systen.

INFORMATION SYSTEM DEVELOPMENT

This is the most difficult step of system analysis.
Firstly one must determine what the users specific
information needs are. Secondly one must determine the
information processing capabilities needed for each
system function (input, processing, output, storage and
control) to meet these information requirements.
Finally one should develop the logical system
requirements., This means that one should not tie your
analysis to the physical resources of hardware,
software and people that might be used. That’s a job

for the system design stage.

3.3 system Design.

System design involves developing both a logical and
physical design for an information system that meets
the system requirements developed in the system

analysis stage.

3.3.1 Logical System Design.

Logical system design involves developing general
specifications for how the basic information processing
system functions of input, processing, output, storage

and control can meet the user’s requirements,

INFORMATION SYSTEM DEVELOPMENT

Logical system design should also incilude the
consideration of an ideal system and alternative
realistic systems. Developing general specifications
for an ideal system encourages the users and designer
to be creative and emphasizes the fact that meeting the
information requirements of the section is the primary
goal of the project. The development of an alternative
realistic system encourages the users and designer to
be flexible and realistic and emphasizes the fact that
a solution must be found that meets the requirements ,
while taking into account the limited financial,

personnel and other resources of the section.

3.3.2 Physical Bystem Design.

Physical system design involves the detailed design of
input/output methods and nmedia, data bases and
processing procedures. Users and designers use their
knowledge of the section’s operations, information
praocessing and computer hardware and software to
develop the physical design of the system. They must
relate their design to the input, processing, output,
storage and control functions of the proposed systemn.
They must specify what types of hardware, software and
people resources will be needed to transform the data

resources into an information product.

3-4

INFORMATTION SYSTEM DEVELOPMENT

3.3.3 System Specifications.

The final step of the system design stage is the
development of the system specifications. It includes
specifications for source documents, the database and
output media, procedures for data preparation and
collection and information processing procedures. It
also includes specifications for the hardware and

software that will be used by the new system.

3.4 Boftware Develcopment.

The software development stage involves the programming
process through which computer programs are developed
that meet the specifications of the design stage. It
must be emphasized that the programming stage requires
continual interaction between the users, systen
analyst, system designer and the programmer. The systen
specifications and system design developed may be
continually refined and revised during the programming
; implementation and maintenance stages of the system

development.

INFORMATION SYSTEM DEVEIOPMENT

3.5 Bystem Implementation.

The activities of system implementation involve the
testing, documenting, installing and operation of the
newly designed system and the training of personnel to

operate and use the system.

3.5.1 Training.

Implementation of a new system involves orientation and
training of management, users and operating personnel
and the "selling™™ of the new system to each of these
groups. Users and operating personnel must be trained
in specific skills to operate and use the systenm. If
management and the relevant users have been adequately
invelved in the system development stage, the shock
effect of transferring to a new system should be
minimized. If user representatives participate in the
development of the new system the problems of
installation, conversion and training should be

minimized,

INFORMATION SYSTEM DEVELOPMENT

3.5.2 Testing.

System implementation requires the testing of the newly
designed and programmed system. This involves not only
the testing and debugging of all computer programs, but
the testing of all other data processing procedures,
including the production of test copies of reports and
other output that should be reviewed by the users of
the proposed system for possible errors. Testing not
only occurs during the system’s implementation stage,

but throughout the system’s development process.

3.5.3 Documentation.

System documentation is an important process that uses
the tools and technigques of system analysis and design
to record and communicate the activities and results of
each stage of the system development. Proper
documentation allows management to monitor the progress
of the project and to minimize the problems that arise
when changes are made in the system design. It is also
vital for proper implementation and maintenance since
installing and operating a newly designed system

requires a detailed record of the system design.

INFORMATION SYSTEM DEVELOPMENT

3.6 System Maintenance.

The system maintenance activity requires a periodic
review or audit of the system to ensure that it is
operating properly and meeting its design objectives.
This activity is in addition to the continual
monitoring of the new system. System maintenance also
includes making modifications to the system due to

changes within the section or environment.

3,7 Summary.

Due to the size and nature of +this project the
feasibility study, system analysis, system design,
software development and implementaticn of the designed
management information system was conducted by the
author. The views expressed in this chapter were taken
into consideration and employed in the development of
this project. A description of the hardware and
software development will Dbe pursued in the ensuing

chapters.

4 HARDWARE DESIGN.

In conjunction with the management information
requirements, the Account Enquiry section also requires
a visual display that c¢an indicate the amount of
incoming calls waiting to be answered. The reason for
such a display is to indicate, to the operators and
supervisors, at what rate +the switchboard is being
accessed. This can then be utilized as & motivational
tool to increase the efficiency with which the staff

handle the incoming calls to the switchboard.
4.1 The Visual Display.

The display 1s driven via hardware directly and
interfaced to the incoming telephone lines on a
mini-distribution frame. The incoming 1lines on the
distribution frame are physically connected to ringing
detection circuits. These circuits monitor the lines
for ringing current and 1if detected they output a
particular potential. All the outputs from the
detection circuits are taken via a multiplexer and
counting circuitry to establish how many lines are
ringing. The number of lines ringing are then decoded
and taken via device drivers to the seven-segment

displays.

HARDWARE DESIGN

4.2 The Power Supply.

The power supply, designed to supply the rest of the
hardware circuitry with the necessary power to function
correctly, is a very basic yet efficient supply. It is
a simple transformer-brijge—capacitor-regulator power
supply that converts the 220V ac voltage to a +5V and

+12V dc voltage.

4.3 The Ringing Detection circuits.

In designing these circits, it is of the utmost
importance to abide by the Department of Posts and
Telecommunications requlations (SAPO SPEC 3B24/001)
regarding interfacing o©f external equipment to the

physical telephone lines.

These specifications state, in paragraph 4.3.1, that a
circuit for detecting incoming ringing shall preferably
be connected in parallel across the telephone line. The
circuit shall be capacitively <c¢oupled. The value of
capacitance as seen fror the 1line shall be nominally
1,8 to 2,2 micro—farads. The detecting circuit
impedance, including the capaciter, at 17 Hertz and 25
Hertz shall be between 400 ohms and 10 000 ohms when

tested at 35V and 75V RMS,

HARDWARE DESIGN

The constraints set for the capacitor wvalue and the
impedance is to ensure that the device, during the line
testing frcm an exchange, vyields similar conditions to
a SAPO telephone. This, in turn, ensures uniformity of

line conditions for all installations.

The ringing detection circuits are designed to detect
ringing directly from the incoming telephone lines that
service the switchboard and thus the above
specifications as laid down ky the Department of Posts
and Telecommunications are strictly adhered to in the

design of the ringing detection circuits.

The Account Engquiry switchboard has 24 incoming lines
and thus 24 ringing detection circuits were required.
FEach of these 24 circuits have an output that indicates
whether the attached incoming 1line is ringing. These
outputs are then taken via a multiplexer to counting

circuitry.

4.4 Multiplexing and Counting the Ringing calls.

The multiplexer is used to scan the ringing detection

circuits’ outputs individually and step the relevant

counters when ringing is detected.

HARDWARE DESIGN

The multiplexer’s inputs are comnected to the ringing
detection circuits and its output is connected tc the
various counters’ clocks. Each individual input is
selected cyclically via binary controlled inputs on the
multiplexer. Thus, for each input on the multiplexer
that detects ringing, the relevant counters are
clocked. After all the inputs have been scanned in this
manner the values of the counters are passed to the
seven—-segment displays via latching and decoder driven
circuits. The counters are then reset and the cycle

starts again.

4.5 Latched and Decoder Driven Seven-Segment Displays.

Latch decoder drivers are used to interface the BCD

outputs of the counters to the seven-segment displays.

The latch decoder drivers used for this project have
lamp test, blanking and latch enable or strobe inputs
which are provided to test the displays, shut off or
intensity-modulate it and store or strobe the BCD
codes. These functions are needed to blank the tens
digit on the displays when there are no¢ incoming lines
ringing and to store the BCD codes for latching scas to
prevent the displays from flashing in conjunction with

the incoming ringing tone.

HARDWARE DESIGN

The displays that are used for this project are
high-intensity common-cathode seven-segment displays.
Their physical dimensions are such, that all the
operators and supervisors manning the Account Enquiry
switchboard can comfortably read the information

displayed on them.

4.6 Maintenance and Error Checking.

The manner in which this visual display was designed
and constructed is the culmination of a variety of
factors. Primary factors that contributed to this
design are practical considerations such as the ease of

maintenance and error checking.

The consideration of providing easier maintenance and
error checking go hand in hand. This is accomplished by
having each separate stage, such as the power, ringing
detection circuits, etc. as an individual module. The
physical cabling between such mcdules are not soldered
directly to the PC boards, but are instead connected
via plug-in connectors for easy disconnection when
localizing faults. The integrated circuits and displays
are mounted by means of sockets instead of directly
soldering them to the PC boards which enables them to

be inserted and removed with ease,

4-5

HARDWARE DESIGN

The wvarious PC boards, displays, transformer and
cabling are all housed in a single perspex container.
This container comprises of a base plate with a
box-like 1id. The lid can alsc be slid off the base
plate so as to make access to the PC boards and

accessories as convenient as possible.

4.7 PC Board Schematic Drawings.

The schematic drawings of each individual module used

in the design of this visual display is detailed in

Appendix A.

5 SOFTWARE DEVELOPMENT.

The software development was done with the aid of the
TURBO Pascal language as implemented for the MS-DOS

operating system.
5.1 The Pascal Language.

Pascal is a general-purpose, high level programming
language originally designed by Professor Niklaus Wirth

of the Technical University of Zurich, 8Switzerland and

named in honour of Blaise Pascal, the famous
Seventeenth Century French philosopher and
mathematician.

Professor Wirth’s definition of the Pascal language,
published in 1971, was intended to aid the teaching of
a systematic approach to computer programming,
specifically introducing structured programming. TURBO
Pascal 1is designed to meet the requirements of all
categories of users. It offers the student a friendly
interactive environment which greatly aids the learning
process and in the hands of a programmer it becomes an
extremely effective development tool providing both

compilation and execution times second to none.

SOFTWARE DEVELOPMENT

5.1.1 WwWhy TURBO Pascal?

TURBO Pascal was decided on, due to it’s systematic

approach to computer programming and modular structure.

It is this systematic approach and modular structure
that contributes to an extremely effective development
tocl. This development tool simplifies the writing,
debugging and understanding of the programming
sequence. The execution time of any high 1level
programming language <¢an, however, hardly be compared
to that of a low level language such as assembler,
which is extremely fast. Due to the nature of this
specific application, the execution time of the
specific software is not a major problem. TURBO Pascal,
in conjunction with the above mentiocned facts alsc
presents a friendly interactive environment to the

programmer.

5.2 Dpata Capturing, Logging and Monitoring S8ystem.

The software developed specifically for this
application 1is called Monitor. Monitor consists of a
number of modules that include communication, data
capturing, file management, data processing, screen and

kevboard nandling and reporting.

SOFTWARE DEVELOPMENT

The communication module takes care of initializing the
PC’s RS-232 serial port to match the parameters of the
local BTS 60 system. On completion, the RS8-232 serial
port is then ready to receive data sent to the PC from
the BTS 60 system. Data that is received is then
captured to a disk file on the PC’s hard drive. This
file 1is then manipulated to extract the necessary
information needed for the screen and reporting
facilities. The screen is used, with the aid of various
menu’s, to present to the end user the available
information and facilities. These facilities, such as
setting up various communication parameters,
selecting pre-designed reports, checking or updating
the system time and date or viewing the office layout,

can be selected by means of the keyboard.
5.3 Welcome to Monitor!

Monitor was designed to be user friendly, user tolerant
and to wvalidate data entered by the user from the
keyboard. Special consideration was also given to
making the program simple to operate for both novice
and advanced computer operators., The ease of use will

be indicated when discussing the various menu’s.

SOFTWARE DEVELOPMENT

The benefits of using menu’s in the Monitor application
are as follows:

- displays all the choices available

- reduces the amount of technical knowledge required

- adds structure to the application

- makes it easier to learn, use and maintain

- minimizes typing errors

- reduces training and support costs.
The diagram in Fig. 5.0 1is a menu tree showing the

relationships among the menu’s and menu items of the

Monitor application.

The Monitor Application

| MowIToR |
! [I !]
SET-UP PRINT | | SYSTEM OFFILE uIT
UTILITY REPORTS | | DATE & TIME LAYOUT

] Change Change
I Date Time

T T T T |
Switchboard Individuiel Trunk Line Average Answering ALi

Statistics Extensions Reports Time Reports
— T T T T — T T T !
Communications Bawd Parity Data Stop Input Output Do Do Do
Port Rate Bits Bits Buffer Buffer Xon/Xoff C75 DSR

size Size

Fig 5.0

SOFTWARE DEVELOPMENT

5.3.1 The Main Menu.

227 SET-UP UTILITY -=e----om=m=e-- (1 225
228 226
22¢ PRINY REPORTS --------=v------ {2) 237
230 238
231 SYSTEM DATE AND TIME --------- (3) 239
232 240
233 QUIT -----mmmmmmocomee oo ee {0) 241
54 242
735 L <F1> ---> Office Lay-out and extension rambers. 41 243
236 244
245 +239 08:32 00:00:02 09 246
247 +242 08:32 00:00:01 14 251
248 +253 08:32 00:00:01 15 252
249 231 08:32 00:05:19 03 253

233 08:33 00:01:00 02

+233 G8:33 00:00:06 06

Fig. 5.1

The Main Menu (See Fig. 5.1) was designed to be
visually stimulating as well as informative. The menu
offers the user real-time data, real-time information
and the opportunity to select various other menu’s, To
select any of the menu’s or options, simply press the

related key indicated between brackets.

SOFTWARE DEVEIOPMENT

The main block, or be it the top bleocck on the main
menu, presents the user with the opportunity of
selecting between the 0Office Layout, Set-up Utility,
Print Reports and the System Date and Time menu’s. It
also has an option to Quit the program and return to

the operating system.

The window directly below this block displays to the

user real~time data as it is received from the BTS.

The block at the bottom of the menu displays the
current date and information regarding the amount of
calls answered and unanswered by the switchboard on a

real-time basis,

The two blocks on the 1left and right-hand side of the
menu are a visual indication of the various extension
numbers available on the switchboard. The numbers
pertaining to extensions that are busy, are displayed
in reverse video. When an extension returns to normal
(i.e. the call has been serviced) the corresponding
number is again displayed 1in normal video. This
facility allows the user to monitor the switchboard as
a whole indicating which extensions are busy or dormant

at any specific time.

W
|
]

SOFTWARE DEVELOPMENT

5.3.2 The 8et-up Utility.

wwee SET-UP MENU »»»

COMMUNICATIONS PORT { 1) ~----- Q)
BALD RATE (1200) ----- 2)
PARITY { E) =----- (3)
DATA BITS 7y ===-- (&)
STOP BITS t 2y ----- %)
INPUT BUFFER SIZE (2048) ----- (6)
OUTPUT BUFFER S1ZE (2048) -----]
00 Xon/Xoff ¢ W === 8
DO CLEAR TO SEND { Ny ----- (%
L0 DATA SET READY (M)} ----- o

To return to main menu press <€SC> key.

Fig. 5.2

The Set-up menu was designed as a means for the user to
set up communication parameters. These parameters
include selecting the required communications port,
baud rate, parity, number of data bits, number of stop
bits, size of input buffer, size of output buffer and
whether to do Xon/Xcoff, clear to send or data set ready

checking.

The settings in brackets immediately after the various
menu options, indicate the default parameters for
these options. To change any of these parameters,
simply press the related Xey indicated between the

second set of brackets.

SCFTWARE DEVELOPMENT

$.3.2.1 The Communications Port.

««x SET-UF MENU »»»

COMMMICATIONS PORT (1) ~-~--- (&)

COMMUNTCATIONS BALD RATE (1200) ----- (2
PORT PARITY { E) =----- 3
DATA BITS « D - (4}

coMl --- (1 SI0P BITS « 2y --==-- 5
coM2 --- (2) INPUT BUFFER SIZE (2048) -~---- {6)
coM3 --- (3} OUTPUT BUFFER SIZE (2048) ----- o
COMG --- (4 DO Xon/Xoff « W) ----- (8)
DO CLEAR TO SEND « ¥ ----- 9

DO DATA SET READY (N} ~---- (0}

To return to main menu press <ESC> key.

Fig. 5.2.1

If option (1) of the Set-up Utility is requested a
pop-up menu appears. This allows the user to select
which communications port is to be used to communicate
with the BTS 60. To select, for example, the first
Asynchronous Communications Adapter (ACA) port, option

(1) on the pop-up menu should be selected.

When sending data from the PC to the BTS, the ACA will
translate that data into a form which <can be
interpreted by the BTS 60. Likewise, when data is
transmitted from the BTS 60 to the PC, the ACA
translates the incoming data into a format that can be

understood by the PC.

SOFTWARE DEVELOPMENT

5.3.2.2 The Baud Rate.

wxx SET-UP MENU »an

COMMUNICATIONS PORT (1) ----- o

BALD RATE BALD RATE €1200) ----- 2)
PARTTY (E) =eee- 3)

300 --- (1) DATA BITS (7y ----- (4)
1200 --- (2) STOP BITS ¢ 2y ----- 5)
2400 --- (3) INPUT BUFFER SIZE (2048) ----- (6)
4BO0 --- (4) OUTPUT BUFFER SIZE (2048) ----- N
600 --- (3 DO Xon/Xoff ¢ N} ----- 8)
DO CLEAR TO SEND { N) ----- %)

DO DATA SET READY (N) =--=- ¢0)

Ta return to main menu press <ESC> key.

Fig. 5.2.2

If option (2) of the Set-up Utility is requested a
pop-up Baud Rate menu appears. This parameter specifies
the speed at which the data is transferred between the
PC and the BTS 60. The speed is measured in bits per

second which generally ranges from 300 to 9600 baud.

Because PC’s have a wide range of operating speeds, it
must be ensured that the data transmission speed of the
BTS 60 and the PC are equal. Failure to match the baud

rate will result in garbled data.

SOFTWARE DEVELOFPMENT

5.3.2.3 The Parity.

wux SET-UP HEN! wa»

COMMUNICATIONS PORT (1)} ----- (§ D)

PARITY BAUD RATE (1200 ----- ()
PARITY (E) ----- 1&}]

oo --- (1) DATA EITS ¢« 7y ----- (&)
EVEN --- (2) STOP BITS (¢ 2) ----- (5)
NONE --- (3) INPUT BUFFER SIZE (2048) ----- {6)
HARK --- (&) QUTPUT BUFFER SIZE (2048) ----- ¥p)]
SPACE --- (5) DO Xon/Xoff « W ----- &
DO CLEAR TO SEND (W)} ----- (9

DO DATA SET READY (M) ~----- 1))

To return to main menu press <ESC> key,

fig. 5.2.3

If option (3} of the Set-up Utility is regquested a
pop-up Parity menu appears. This menu allows the user
to specify the character parity to be wused on the

currently selected port.

The parity technique involves adding a bit, called a
parity bit, to a data word. A parity bit may take the
value of 1 or ¢ depending on the number 1’s in the
data word and the employed parity scheme. Parity
checking 1is a commonly used method for checking data

integrity.

SOFTWARE DEVELOPMENT

5.3.2.4 The Data Bits.

wsx SET-UP MEM! »»»

COMMUNTCATIONS PORT (1) ----- o

DATA BITS BAUD RATE €1200) ----- 2)
PARITY t E) ----- 3

5 BITS --- (1)] DATA BITS C 7 - (%)
& BITS --- {2} STOP BITS « 2 ----- (5)
7 811§ -~ (3 INPUT BUFFER SIZE (2048) ----- Y]
8 BITS --- (&) OUTPUT BUFFER SIZE (2048) ----- 7N
DO Xon/Xoff ¢ Ny ----- (8)

DO CLEAR TO SEND { N ----- (9

DO DATA SET READY (N) ----- 03

To return to main menu press <€SC> key.

Fig. 5.2.4

If option (4) of the Set-up Utility is reguested a
pop-up Data Bit’s menu appears. This allows the user to
specify the number of bits that constitutes each

character of data.

While the PC supports word lengths of 5,6,7, or 8 bits,
the most commonly used word 1lengths are 7 and 8 bits.
Parity checking is normally enabled for 7-bit
transmission and disabled for 8-bit. This gives us a
consistent word size of 8 bits for each byte of data

transmitted.

SOFTWARE DEVELOPMENT

5.3.2.5 The Stop Bits.

waa SET-UP MENU »n»

COMMUNICATIONS PORT (1) ----- ah)

S§TOP BITS BALD RATE {1200y ----- (2)
PARITY ¢ EY ==----)

1 BIT --~ (1) DATA BITS (7y ----- (&)
2 BIT --- (2) STOP BITS { 2y -===s 5
INPUT BUFFER SIZE (2048) ----- &)

QUTPUT BUFFER SIZE (2048) ----- s

DO Xon/Xoff { N ----- (8)

DO CLEAR TO SEND ¢ Ny ----- ()

DO DATA SET READY (N} ~----- (41}

To return to main mend press <ESC> key.

Fig. 5.2.5

If option (5) of the Set-up Utility 1is requested a
pop-up Stop Bit’s menu appears. This allows the user to

choose between 1 or 2 stop bit’s.

During transmission, a stop bit 1is sent after a
character’s data bits and parity bit, if there is one,
to signal the end of the transmitted character. Stop
bits serve to ensure that the clocks of the PC and BTS

60 systems are synchronized.

SOFTWARE DEVELOPMENT

5.3.2.6 The Input Buffer Size.

w«ux SET-UP MENU »uw

COMMUNICATIONS PORT {* 1) -=---)

INPUT BUFFER BAUD RATE (1200) ----- 2
Size PARITY (E) ----- 3
DATA BITS (7y ----- 4

512 --- (1) STOP BITS ¢ 2) ----- 5)
1026 --- (D INPUT BUFFER SIZE (2048) ----- (6
2048 --- (3) OUTPUT BUFFER SIZE (2048) ----- N
4094 --- (&) DO Xon/Xoff (M) ====~ 8)
8162 --- (5) DO CLEAR TO SEND (N} ~----- 9
DO DATA SET READY (N) ~----- 0

To return to main meny press <ESC> key.

Fig. 5.2.6

If option (6) of the Set-up Utility 1is reguested a
pop-up Input Buffer Size menu appears. This menu allows
the user to select the appropriate size for the input

buffer,.

The input buffer is a temporary storage buffer for data
after it arrives over the serial port and before it is
read by the communications software. If this buffer is
not large enough, it could lead to the loss of incoming
data. The default setting for this temporary storage

buffer is set at 2048 bits.

=13

wn

SOFTWARE DEVELOPMENT

§.3.2.,7 The output Buffer Sige.

wew SET-UP MENU »ew

COMMUKICATIONS PORT (1) ~----- 1ab

OUTPUT BUFFER BALD RATE (1200) ----- {2)
1€ PARITY t EY ---—- 3
DATA BITS (7 =---- {4)

512 --- (1} STOP 81TS { 2y =e--- 5
1024 --- (D) INPUT BUFFER SIZE (2048) ~----- (6)
2048 --- (D) QUTPUT BUFFER SIZE (2048) ----- 48]
4096 --- (4} DO Xon/Xoff « W) ----- (8)
8192 --- (5) DC CLEAR TO SENO ¢ W) ----- 143}
DO DATA SET READY (W) =----- Q)

To return to main menu press <ESC> key.

Fig. 5.2.7

If option (7) of the Set-up Utility is requested a
pop-up Output Buffer Size menu appears. This menu
allows the user to select the appropriate size for the

output bufier.

The output buffer is a temporary storage buffer for
data after it is written by the communications software
and before it 1is sent to the serial port. If this
buffer is not large enough, it could lead to the loss
of output data. The default setting for this temporary

storage buffer 1is set at 2048 bits.

wm

-14

SOFTWARE DEVELOPMENT

5.3.2.8 Do Xon/Xoff,
waa SET-UP MENU »w»
COMMUNICATIONS PORT (1) ----- 4}
DO Xon/Xoff BAUD RATE (1200y -----)
PARITY ¢ E) ----- &1
YES --- (1) DATA BITS (7 = (4}
NO --- (2) STOP BITS C 2) -we-- (5)
INPUT BUFFER SIZE (2048) -----)
QUTPUT BUFFER SIZE (2048) ----- (€8]
DO Xon/Xoff «C W) ----- (8)
DO CLEAR TO SEND { N} ----- %)
DO DATA SET READY { N} ----- (G}
To return to main menu press <ESC> key.
Fig. 5.2.8
If option (8) of the Set-up Utility 1s requested a

pop-up Do Xon/Xoff menu appears.

user to

required.

The purpose of
complete data
method, the PC
telling the BTS

buffer for data

specify

This menu allows the

whether Xon/Xoff handshaking is

handshaking is to ensure correct and

transfer. With the Xon/Xoff handshake

controls the data exchange seguence by
60 when it has rcom in its logical I/O

and when to shut off the flow.

SOFTWARE DEVELOFMENT

5.3.2.9 Do Clear to Send.

waw SET-UP MEWU »a»»

COMMUNICATIONS PORT (1) ----- H

DQ LTS BAUD RATE 1200y ----- 2}
PARITY « E} ----- 1E})

YES --- (1) DATA BITS ¢ 7 === (4)
N --- (2) STOP BITS C 2 ----- 5y
INPUT BUFFER SIZE {2048} ----- &

OUTPUT BUFFER SIZE (2048) ----- (7)

DO Xon/Xoff « W ----- (8)

DO CLEAR TO SEWD ¢ Ny ----- 14%)]

DO DATA SET READY (W) ----- L4t

Te return to main menu press <ESC> key.

Fig. 5.2.9

If option (9) of the Set-up Utility 1is requested a
pop~up Do Clear to Send menu appears. This menu allows
the user to specify whether or not the Clear to Send

signal is required.

The Clear to Send signal, if needed, would be an
incoming signal to the BTS 60. This signal could be
used to indicate to the BTS 60 whether the PC is ready

to accept data.

5.3.2.10

Do Data Set Ready.

SOFTWARE DEVELOPMENT

DO DSR

YES --- (D)
NO --- (2)

wvs SET-UP MENU »»a

COMMUNICATIONS PORT ¢ 1)

BAUD RATE
PARITY

DATA BITS {

(1200

STOP BITS « 2

INPUT BUFFER SJ2ZE
QUTPUT BUFFER SIZE
DO Xon/Xoff (

DO CLEAR

TO SEND { W

DO DATA SET READY (W)

To return to sain menu press <ESC> key.

Fig. 5.2.1¢

If option (0) of the Set-up Utility is

pop—up Do Data Set Ready menu appears. This menu allows

requested a
the user to specify whether or not the Data Set Ready
signal is required.
The Data Set Ready signal, if needed, would be an
incoming signal to the PC. This signal could be used to

indicate to the PC that the BTS 60 is alive and well.

SOFTWARE DEVELOPMENT

5.3.3 Print Reports.

wix PRINT MENU. »an

SWITCHBOARD STATISTICS ------ (1)
INDIVIDUAL EXTENSIONS ------- (2}
TRUNK LINE REPORTS --«=--+--- (3)
AVERAGE ANSWERING TIMES ----- (&)
ALL REPORTS +-v-co--oser==cces (5)

To return to main meny press <ESC> key.

Fig. 5.3

Various detailed reports and summary reports can be
produced by wusing the Print Menu +to provide useful,
easy to read, tabulated management reports., These
include user defined reports such as Switchboard
Statistics, Individual Extensions, Trunk Line Reports

and Average Answering Times.

Typically, the information provided becomes an
invaluable tool for management to reduce telephone

abuse and optimise business efficiency.

SOFTWARE DEVELOPMENT

5.3.3.1 Daily sSwitchboard statistics.

DAILY SWITCHBOARD STATISTICS. DATE: 18/04/90
Number Amount Amount Average Longest shortest
Time of Ext Answered Unanswered Duration Catl catl
8- 9 17 204 2 02:20 (237) 15:28 (23%) 00:05
-1 17 246 9¢ 02:17 (229) 12:48 (231) 00:01
10 - 1 17 263 10 02:09 {235) 15:27 (252) 00:02
-1 18 243 10 02:19 (244) 10:51 (251) 00:02
12 - 13 18 208 5 02:20 (242) 10:33 (252) 00:03
13 - 14 17 145 52 01:5% {237y 12:37 (234) 00:02
14 - 15 17 223 112 02:13 (235) 10:54 (253) 00:01
15 - 16 16 225 94 02:46 (235) 26354 (238) 00:02
16 - 17 12 32 12 01:40 (239) 05:57 (251) 00:07
1789 393 02:18 26:54 00:01
Fig. 5.3.1

The "Switchboard Statistics™ report was designed to
offer general or glopal information regarding the
switchboard as a whole. This report is aimed
specifically for the use of managerial and supervisory
staff. From this report it becomes possible to pinpoint
congestion times which could result in possible lost
business. The average duration per call answered could
possibly be used as a measure of the switchboard’s
efficiency. It also highlights lengthy and time-wasting
incoming calls as well as which extensions answered

them.

SOFTWARE DEVELOPMENT

5.3.3.2 Individual EBxtensions.

EXTENSION : 228 Date: 18/04/90

Amount Total Average Idle Longest Shortest
Time Answersd Duration puration Time Call call
08:00 - 09:00 43 0:28:12 0:02:10 31:48 0:04:51 0:00:58
09:00 - 10:00 12 - 0:34:41 0:02:53 25:19 0:09:49 0:00:03
10:00 -~ 11:00 19 0:32:53 0:01:44 27:07 0:06:25 0:00:40
11:00 - 12:00 18 0:38:31 0:02:08 21:29 0:04:44 0:00:49
12:00 - 13:00 17 0:29:41 0:01:45 30:;1% 0:03:55 0:00:23
13:00 - 14:00 3 0:16:21 0:05:27 43:39 0:08:30 0:00:03
14:00 - 15:00 20 0:38:17 0:01:55 21:43 0:09:30 0:00:18
15:00 - 16:00 16 0:47:04 0:02:56 12:56 0:07:34 0:00:3¢9
16:00 - 17:00 & D:10:35 0:02:39 49:25 0:05:14 0:01:05
122 4:36:15 0:02:16 0:09:4% 0:00:03
Fig. 5.3.2

The "Individual Extensions" report was designed to
present to the user a report on the hourly and daily
performance of each extension. This allows the
supervisory staff as well as the operators the
opportunity to compare the various extensions. If
utilized correctly, this could form the basis for
healthy competition amongst the operators manning the
switchboard. This in turn would create greater staff
efficiency and productivity which will reduce customer

frustration and improve the company’s image.

SOFTWARE DEVELOPMENT

5.3.3.3 Trunk Line Reports,

TRUNK LIKE = 1 DATE: 18/04/90

Amount Duration Amount buration Total Duration
Time Answered Occupied Unanswered Occupied Geeupied
08:00 - 09:00 27 0:45:59 1 0:00:13 0:46:12
09:00 - 10:00 13 0:50:02 5 0:04:59 0:55:01
40:00 - 11:00 22 0:51:14 1 0:00:47 0:52:01
11:00 - 12:00 19 0:52:28 3 0:01:27 0:53:55
12:00 - 13:00 21 0:46:63 0 0:00:00 0:456:03
13:00 - 14:00 20 0:42:32 4 0:02:37 0:45:09
14:00 - 15:00 17 0:41:53 10 0:11:06 0:52:59
15:00 - 16:00 16 0:47:35 é 0:06:53 0:54:28
16:00 - 17:00 3 0:09:18 0 ¢:00:00 0:09:18
158 6:27:04 30 0:28:02 6:55:06

Fig. 5.3.3

The "Trunk Line"™ reports indicate to what extent the
various trunk lines have been utilized. It offers
information pertaining to the duration for which the
line is occupied, due to both answered as well as
unanswered calls. These figures could be of great
importance when having to decide whether the number of
incoming lines serving the switchboard are sufficient.

This report can also ke used to locate faulty exchange

lines.

SOFTWARE DEVELOPMENT

5.3.3.4 Average Answering Times.

AVERAGE DAILY ANSWERIKG TIMES. DATE: 18/04/90
EXTENSION AMOUNT ANSWERED AVERAGE RINGING TIME AVERAGE SPEECH TIME
228 122 0:00:27 0:02:16
229 130 0:00:21 0:02:33
230 119 ¢:00:19 0:02:36
231 &0 0:00:20 0:02:07
232 112 0:00:29 0:02:01
233 127 0:00:30 0:01:44
234 133 0:00:31 0:01:55
235 98 0:00:21 G:03:06
236 22 0:00:17 0:01:48
237 92 0:00:21 0:03:15
238 73 0:00:32 0:02:01%
239 165 Q:00:22 0:02:20
242 108 Q:00:15 0:01:58
243 106 0:00:18 0:02:24
244 104 0:00:28 0:02:04
51 a5 0:00:16 0:02:24
252 109 ¢:06:17 0:02:34
253 84 0:00:25 0:02:00
Total 1789 0:00:23 0:82:18
Fig. 5.3.4

The PMAverage Answering Times" report was designed to
indicate the efficiency of the switchbecard. It offers
the user information on the average ringing and speech
times per call. This information is useful when trying

to enhance your company’s image to callers.

5.3.3.5 All Reports.

This option combines all the above reports into one

report for possible archiving purposes.

SOFTWARE DEVELOPMENT

5.3.3.6 Printer Error.

«xa PRINT MENU. »w»

To return to main menu press <ESC> key.

Fig. 5.3.5

When a report from the Print Menu is selected by the
user to be printed it is important to establish whether

the connected printer is correctly initialized.

If there is any problem in communicating with the
printer it is pointless to process the relevant data
for the report. Thus, if there is any problem with the
printer, a "Printer Error" window opens over the Print
Menu to 1indicate that there is a problem and the

program returns to the Main Menu.

SOFTWARE DEVELOPMERT

§.3.3.7 Processing Data for Printed Report.

wea PRINT MERU. »»»

SW1TCH BOARD STATISTILS ----- &b

«u« PROCESSING DATA FOR PRINTED REPCRT. »w»
18/04/90 08:04 + 243 00:00:07 00:02:42 12

ALL REPORTS ---====secsnanee (5)

To return to main menu press <ESC> key.

Fig. 5.3.8

On selecting any of the available reports to be printed
from the Print Menu, the d4ata in the database has to be

processed.

While the data is being processed a "Processing Data
for Printed Report”™ window opens over the Print Menu.
This indicates to the user that the system is not
inactive, but is in fact processing data. Once the data
has been processed it is dumped to the printer and the

program returns to the Main Menu.

24

wm
|

SOFTWARE DEVELOPMENT

5.3.4 8ystem Date and Time.

The system date and time 1is obtained from the PC’s
internal clock. This date and time is of the utmost
importance as the program relies on this information
for triggering wvarious procedures. To display the
system date and time, select the "System Date and Time"
option from the Main Menu. On selecting this option the

following menu appears (See Fig. 5.4.1).

w« SYSTEM DATE & TIME. »»

Toedsy is : Tuesday 5/ 771991

Change the date ? (Y/N)

Te return to main menu press <ESC> key.

Fig. 5.4.1

This menu displays the system date and prompts the user
to change the date. If the user decides to change the

date the following menu will appear (See Fig. 5.4.2).

SOFTWARE DEVELOPMENT

«x SYSTEM DATE & TIME. »»

Enter new month (1-12) :
Enter new day (1-31) :

Enter new year {1980-2099) :

Te return to mein menu press <ESC> key.

Fig. 5.4.2

This menu allows the user to change the system date

from the keyboard.

The date should be entered according to the feollowing
criteria:

month -- must be 1 or 2 integers from 1 to 12.

day ---- must be 1 or 2 integers from 1 to 31.

year --- must be 4 digits from 1980 to 2099.
If an improper date is entered, the date will be
ignored and the original date retained. If a valid date
is entered the new date 1is accepted and the following

menu appears (See Fig. 5.4.3).

SOFTWARE DEVELOPMENT

«« SYSTEM DATE & TIMNE, »»

The time is @ 10: 8:54

Change the time 7 (Y/¥)

To return to main menu press <ESC> key.

Fig. 5.4.3

This menu displays the system time and prompts the user
to change the time. The time is displayed as hours,

minutes and seconds in the 24-hour clock format.
If the user decides not to change the system time, the
program will exit the "System Date and Time" menu and

return to the Main Menu.

If the user chooses to change the time, the following

menu will appear (See Fig. 5.4.4).

5-27

SOFTWARE DEVELOPMENT

«« SYSTEM DATE & TIME, »»

Enter new hour (0-23) :
Enter new minute (0-59) :

Enter new second (0-59) :

To return to msin menu press <ESC> key.

Fig. 5.4.4

This menu allows the user to change the system time

from the keyboard.

The time should be entered according to the following
criteria.
hour —---- must be 1 or 2 integers from 0 to 23.
minute -- must be 1 or 2 integers from 0 to 59.
second —- must be 1 or 2 integers from 0 to 59.
If an invalid time is entered the time will be ignored
and the original time retained. If a valid time is
entered the new <time 1is accepted and the program

returns to the Main Msnu.

SOFTWARE DEVELOPMENT

5.3.5 Office Lay-out and Extension Numbers.

2 2 2 2 2 2 2 2

2 2 2 3 3 3 4 4

7 8 9 Q 1 2 7 8

FRONT 2 2 2 2 2 2 2 2
OF 4 4 5 3 3 3 & 3
OFFICE 3 4 3 5 4 3 9 é
2 2 2 2 2 2 2 2

3 3 3 4 & & 5 5

7 B 9 o] 1 2 1 2

To return to main menu press <ESC> key.

Fig. 5.5

The "0ffice Lay-out and Extension Numbers" screen was
designed exclusively for the supervisory staff. The aim
of this screen is to assist the supervisor in locating
a specific extension and operator. This could be
advantageous when analysing, for exanple, the

Individual Extensions report.

SOFTWARE DEVELOPMENT

5.3.6 Quit.

The Quit option simply terminates the program Monitor

and returns the user to the PC’s operating system.
5.4 Archiving.

The BTS 60 system resets its parameters at midnight and
this triggers the Monitor software to take care of the

necessary archiving.

The archiving is done in two ways, viz. to a disk file
that is appended each day and as a hardcopy print-out
of all the reports. Once the daily data has been
archived to its archive disk file, the daily data
captured is cleared and a disk file is prepared for the
next day’s data. The archiving to a disk file has been
designed in such a way as +to handle one years
accumulated data in 1less than 10 Mbytes of disk

space.
5.5 Eandshaking.

"Monitor" utilizes the BTS 60’s internal buffer, of a

100 calls, by means of handshaking signals. This

ensures that incoming data is not lost while the user

is selecting menus, printing reports or processing

data.

5-30

SQFTWARE DEVELOPMENT

5.6 Program Flowcharts and Listing.

The program flowcharts and listings are detailed in

Appendices B and C respectively.

6 PROBLEMS ENCOUNTERED.

The major problem encountered throughout the duration
of this project concerned the lack of computer literacy

experienced amongst the Account Enquiry staff.

Due to this problem it was extremely difficult to
establish exactly what information the section as a
whole required. To overcome this problem one had teo
present them with fictitious information and ideas to
prompt some kind of a reaction from them. This was done

to great effect.

During the feasibility study and system analysis stages
of this project great difficulty was found in acquiring
general information regarding telephone management
information systems. This was due to the lack of
literature available on the subject and the reluctance
of private companies to assist in acgquiring such
information. Most of the private companies that were
approached by means of pre-arranged interviews or
telephonic discussions were extremely willing to assist
until they established that the proposed project was

for the Department of Posts and Telecommunications.

PROBLEMS ENCOUNTERED

On completion of the project a problem was experienced
in trying to persuade the users of the management
information system, be they managerial, supervisory or
operational users,- to see this system as a management

tool rather than as a type of "watch dog".

To achieve this, one had tc promote a new and more
flexible management structure that would make use of
management tools to provide a more efficient and
productive Account Enquiry section. This was done to a
large extent by constantly marketing the system at
every available opportunity as an excellent management
tool without which proper decision making is

impossible.

7. FUTURE ENEANCEMENTS,

Software development by nature is an on—-going process
that is susceptible to future enhancements and the
software written for this project is no different. The
following possible enhancements could be taken care of
in future versions of the system software.

- Dynamically changing the software.

Monthly and quarterly generated reporting.
~ Graphical representation of information.

~ Dynamical report generation.

7.1 Dynamically Changing the Software.

The system software can be expanded to facilitate the
dynamic re-structuring necessary for this program to be
able to interface with future BTS systems, such as the
BTS 128, without having to access the source code of

the progran.

7.2 Monthly and Quarterly Generated Reporting.

At present the software only caters for daily reporting

that indicates the hourly performance of the

switchbeard, operators, trunk lines, etc.

~J
I
[

FUTURE ENHANCEMENTS

Given the necessary time and data, the software could
be updated to produce monthly or even guarterly reports
to assist the Account Engquiry section even further in
their quest to improve the service they are rendering

to the telephone-using public.

7.3 Graphical representation of infermation.

Sometimes, instead of seeing information in a tabular
format, one may want to see information displaved in
ways that will nake the results easier to interpret.
Graphs make it easy to visualize information for the

following reasons.

- One can see trends.
- One can make comparisons,

- One can analyse relationships.

once the telephone management information system
designed in this project has taken off and is being
utilized as a management tool, the software could be

revised to incorporate graphs as well.

FUTURE ENHANCEMENTS

7.4 Dynamic report generation.

All the reports that are created with the aid of the
management information system are created by default. A
future enhancement to the system would be to allow the
users to dynamically change these default settings to

cater for each users personal requirements.

8 CONCLUSION,

The data logging and monitoring system that was
designed, developed and built for this project,
significantly surpasses the original reguirements as
laid down by the Department of Posts and
Communications. This, to a large extent, is due to the
enormous amount of research that went into the
designing and development of management informatiocn

systems in general.

The success of this particular information system is
influenced by a number of factors. The major factor
being that the software 1is designed to be extremely
user friendly and wuser tolerant, without detracting

from its flexibility.

The time and effort spent on designing and developing
this project has lead to the implemention of an
exceptionally effective and practical management tool.
The need for such a management information +tcol in the
Department of Posts and Telecommunications does not end
at the Account Engquiry section as various other

sections have the need for management information.

CONCLUSION

The experience and knowledge gained by undertaking this
project has greatly enriched each and every individual
that took part in it. This experience and knowledge
gained will contribute significantly to the success of

future projects.

There is no doubt that this project will play an
influential part in a more efficient and effective
service being presented by the Account Enquiry section
and the Department of Posts and Telecommunications as a

whole.

9 BIBLICGRAPHY.

Barnes, Ralph M. 1980. Motion and Time Study Design and
Measurement of Work Seventh Edition. John wiley & Scons,

Inc.

Borland International. Turbo Pascal 4.0 IBM Version.

Borland International, Inc.

Borland International. Turbo Pascal Reference Manual.

Borland International, Inc.

Gibson, Ivancevich, Donnelly. 1985. oOrganigzations

Behavior - Structure - Processes Fifth Edition.

Business Publications, Inc.

Hergert, Douglas. Mastering Turbo Pascal 5. Sybex.

Hunt, Gary T. 1%80, Communication 8kills ir the

Oorganigzation. Prentice-Hall, Inc.

Intersil. 1983. Hot Ideas in CMOS. Intersil, Inc.

National Semiconductor Corporation. 1984. CMOS8

Databook. Santa Clara.

BIBLIOGRAPHY

National Semiconductor Corporation. 1988, CMOS Logic

Dxtabook. Santa Clara.

O’Brien. 1985. Computers in Business Management Fourth

Edition. Irwin, Inc.

APPENDIX A

Hardware Version 1.0

Schematic Diagram.

F1
'y 3 Ut . apa
VLY oN\o LM700% 1 Jriav
1 p— 1A VI vD Jqa |[r5v
2 py ' E —] 2 G
PPOV 8o v TA l 1 c2 ca QUTBUT
[MINGE 1000uF 0. 1uF 1O0LF VOL TABES
POWER SUPPY
Memigned hy: A, M. Z. MOLNAR
Sizajdocument Number ALY
A
e (Oatem: Novemher 20, 1981 |5heet 1 of 4

¥ XIGNEddV

ATUF 2BV

BGK
veo o A~ K 14 | cexr
NES CAP
2. puF /850V
2.aK 185 | - i}
+ i PN ’ REXT/CEXT OUTRUT
TE!ﬂ?;”pNE CAP RES — gﬂ A Q .
) 1T aM4140 WK 0PTO 1SOLATOR ——=q tLA a =
H_mn_w___mj‘*m‘u...ﬂb ‘ RES 133
10K
ENER NIBNE el]
vin

RINBING DETECTYION CIRCULT
Duaigned by: A M. Z. MOLNAR

¥ XIaNdddv

Size Documant Number (SEERYS
A
NDAate: Novempber 20, 1'391E-”.I1ee!: 2 of A

APPENDIX A

[F JOTK INEUE TORT O JOdUdAGH — Talw
o

A 3 JuEwny Jusenaog e

HZ T H Y A0 pTusTEed "

SAYIUBIO ANIHDIB-L HOA LINJHLID
MIALHG ONY ONIUDIIN "ONILNADD "OHIXILLL NN

Dﬂ)
AEGY JF e
HOLITYIY
WOATITIVYD HOLLIYAYD .llM— PO
ud =l rd =l _|i! S
" ..li!n:nﬁ_ ﬂv— ._ .,M I
wetl
g
i . Ly Wil A0)bg anur ; u R
—r o wen it K L &3
L1 | v [T} Pe— I L I
Y L 4 " r 0 B ¢
¥ vaL yaarx h— J, wxoit 4 l
| ot} I
=
JrET uﬁum*)
crar aha
~g-{0 W _ \\Tnhnh
g
Wiidy ={_ —-
{e % afg v
J oz
w.mb KTOY m_ SL0F
oba ARy —
! "
] ool n B
p—————— [T5%3
sywera | BE 1: 4 4
awome-t | b a2 4
£] a 4
zovaaine | § = ! o
.14
v ‘ p—
. [31-14 nuar
11
1 v iepE--
A¥IuR L »E s pe - MILRE.
ANIHEAL~-L r 0 ofg ~{ k0 Lovly
ADY AN H H 3% 155 hale
5 v vil oo wind ¥
L +}4 vEAT
TS __uour
T S— T
SRR “EH 2o
g ol et AR LENEEE
HEIT -kt op Wi

HO LT tei¥D)

AR B T 20 L) Lo

-t e

LITIE el D

-
In

LIRS

INDF A -

TN
FIOM
QECONER

]

i)
/ \C
n
>

7407

IS

=
U
>

¥

o

ACTAN

~
A
o
~

Uz2A

[]
[

7-HEGMENT DIBPLAYS

Pue U FESIATOAS

A

12V

7407
U224
2 ,f’// 1 INPUT
FROM
DECODER
7407
u2a
a<<:: 1
7407
U2A
a<::j 1
7407
7-SEAMENT DISPLAY CIRCUIT
peesignRen by A, M, X, MOLNAA
[4ze Documant Numpber FAEV
A
nte: November 20, 10941 Shept 4 of 4

¥ XIANEdd¥

APPENDIX B

Software Versiocon 1.0

Program Flowcharts.

CATURING OF INCOMING DATA FROM THE BTS.

DEFINE
VARIABLES

x

PREPARE
DISK FILE
FOR DATA

!

SET UP
COMMUNICATION
PARAMETERS

l

INITIALIZE
SERIAL FORT

1S SERIAL \NO

s/

YES

MONITOR
SERIAL PORT
FOR DATA

§C IS DATA
AVAILABLE

AT PORT?

TES

MANIPULATE
THE ITRCOMING
DATA

%

=

STORE DATA
TOBIsX
FILE

j

DISPLAY
DATA OM THE
vou

APPENDIX B

APPENDIX B
MAIN MENU INTERFACE TO THE USER.

BEGIN

DISPLAY
HAIN MEMU

MONTTOR
KEYBQARD
FOR INPUTS

HAS A KEY
BEEM
PRESSED?

IS THE
KEY PRESSED
VALID?

DISPLAY
QFFICE
LAY-QUT

COMM ‘S
SET-UP
UTILITY

PRINT
REPORT'S
gricity

DATE ARD
TIME
UTILITY

EXIT TC
OPERAT I NG
| SYSTEM

SET-UP UTILITY FOR COMMUMICATION PORT.

{ BEGIN)

DISPLAY
SET-UP
UTILITY HEMU

o

MONITOR
KEYBOARD FOR
USER INPUT

HAS A KEY

UPDATE
COMM’S
PARAMETERS

INTTIALIZE
COMM‘’S PORT

NO IS SERIAL

BEEN
PRESSED?

YES

PORT READY?

TES

1S THE
KEY PRESSED
YALID?

NO

IS A COMM’S \ NO

DISPLAY
RELEVART

POP-UP MENC

MOM I TOR
KEYBOARD FOR
USER INPUT

PRESSED?

3

IS THE
KEY PRESSED
YALID?

£

RETURN TO
MAIN MENU

APPENDIX B

APPENDIX B
PRINT REPORTS UTILITY.

DISPLAY
PRINT MENU

MON I TOR
KEYBOARD

PRESSED?

iS XEY
PRESSED
VALID?

YES

HAS A
REPORT BEEN
REQUESTED?

NC

CHECK
PRINTER
STATUS

!
i

is PRINTER
PRINTER ERRCR
READY? MESSAGE

1

PROCESE DATA
FOR REPORT
SELECTED

[

=

PRINT
REPORT
SELECTED

RETLURN 7O
MAIN MERY

SYSTEM DATE AND TIME UTILITY.

1 BEGIN ?

DISPLAY
SYSTEM DATE

HONITOR
KEYBOARD FOR
USER INPUT

HAS A KEY
BEEN
PRESSED?

IS THE
KEY PRESSED
VALID?

WUST THE
DATE BE
CHANGED?

DISPLAY THE
MENU TO
CHANGE DATE

!

ON T TOR
KEYBCARE FOR
USER INPUT

!

YALIDATE

USER I[WPUT

YES

DISPLAY
SYSTEM TIME

HMONITOR
KEYBOARD FOR
USER INPUT

HAS A KEY
BEEN
PRESSED?

YES IS THE
1 XEY PRESSED

YAL1D?

MUST THE
TIME BE
CHANGED?

NC

DISPLAY THE
MERU TC
CHANGE TIME

MONTTOR
KEYBCARD FCR
USER INPUT

!

VALIDATE

USER INPUT

RETURN TO
MAIN MENU

APPENDIX B

BTS 60 SYSTEM RESET AT WIDNIGHT.

{ BEGIN ,

MOKITOR FOR
BTS SYSTEM
RESET

l

HAS A BTS
RESET BEEN
DETECTED?

IS THE BTS
RESET AT
MIDNIGHT?

YES

CHECX THE
PRINTER
STATUS

s
PRINTER
READY?

KO

PROCESS DATA
FOR ARCHIVE
REPCRTS

T
}

PRINT DAILY
ARCHIVE
REPORTS

!

APPEND DAILY
DATA 10
YEARLY FILE

[

x

RESET DAILY
FILE FOR
NEW DATA

%

RESET
SYSTEM
YARIABLES

RETURN TO
HA N MENU

APPENDIX B

APPENDIX C

Software Version 1.0

Program Listing.

(* ..
(* THIS PROGRAM 1S DESIGNED TQ CAPTURE DATA FROM THE BTS TELEPHOWE SYSTEM
(* AND MANIPULATE THIS DATA INTO MEANIKGFUL INFORMATION.
(*
{* Mritten by: A. M. Z. Molnar Yersion 1.0
(t
{ Dated: November, 1991
»
o
program MonitorBTS;
(*$] GLOBTYPE.GLO *)
{*$] ASCIL.GLO *)
type str20 = string[201;
strél = string[801;
stré8 = string[8];
str10 = string10]1;
8TSData = record
Date : string(81;
Time : stringlé);
Ext : string(31;
RDur,
COur : stringl81;
Ln : integer;
Rec : char;
end;
AEXt = array{220..270,7..16,1..5] of real;
Aln = array{1..30,7..14,1..3] of real;
Alna = arrayl[1..30,7..16,1..2]1 of real;
Arch = record
Ext : AEXt;
Ln : ALmn;
Una : AUna;
Dat : str8;
end;
const Lightl : array{227..236] of integer = {§,7,8,%,10,1%1,12,13,14,1%);
Light2 : arrayf247..249]1 of integer = (17,18,19);
Light3 : arrayl237..2441 of integer = (8,9,10,11,12,13,14,15);
Light4 : array[251..253] of integer = (17,18,19);
Light5 : array[245..245] of integer = (18);
Lighté : array[{246..240] of integer = (18);
Light? : array[225..226] of integer = (4,7);
Days : array[0..6] of string[9] = (!Sunday’','Monday', 'Tuesday',
‘Wednesday !, ' Thursday!,
PFriday', 'Saturday’);
var
Fil : file of BtsData;
Data : btsData;
Archfril : file of Arch;
ArchDate : Arch;
F : Text;
cf : char;
Cfstr : stridd;
FString : stringl2l;
sstring : stringl2l;
TotROur,2 ¢ real;
Baud_Rete : INTEGER;
Com_Port : INTEGER;
Parity : CHAR;
Data Bits @ INTEGER;
Stop Bits : INTEGER;
Poinz : errayl1..50] of integer;
infoExt 1 AExt;
infoln : ALn;
Infoina : AUna;
CountExt : arrayl7..18) of real;
Fiag : array[1..255] of integer;

APPENDIX C

R,S,T : integer;
Exten,Tim ; integer;
batum : string[83;
Err,I,d : integer;
XY : integer;
Stop : boolean;
Ans,Unans @ integer;
Raat,Noc ; integer;
CP,BR,S8,DB : integer;
185,088 ; integer;
PR, XX, HW : char;
CTS,08R : char;
Yesho,Blank : boolean;

Hour,Min, Sec,Month,Day,Year WeekDay @ integer;
thangeT ime, ChangeDate : char;

InBufSize @ INTEGER;

CutBufSize : INTEGER;

Do_XorXoff < CHAR;

Do_HarcWired: CHAR;

Do_CTS : CHAR;

Do_DSR : CHAR;
{*$! PIBASYNC.GLO *)
(*$! PIBASYN].MCC *)
(*$] PIBASYNZ.MCG *)
(*$] PIBASYNI.MXD *)
{*$1 MENU.MOD ")
{*$] PRINT.WOD *)
{*$] GETTIME.PAS *)
{*$] SETTIME.PAS *)
{*$1 GETDATE.PAS *)
(*$] SETDATE.PAS *)

function Exist : boolean;
{* This function is used to establish the existence of any file. *)

begin (* Exist *)

{$1-3
reset{Archfii); {* Disk fite is prepared for processing. *)
{$1+}
Exist := 10Result = G; (* If fiie exist, the boolean variable *)
(* will be true. *)
erd; (* Exist ™)
{* .. *)

procedure Archive;

(= This procedure is used to print the necessary daiiy reports as well as *)
{* take care of the zrchiving facility.)

begin {* Archive *)
Asyrc_Close(true);
assign{ArchFil, 'Co\TP\DATA\YEAR.DTAY);
(* Assign the file path ard name to the *)

) (* variable name. *3
if f_;nst (* Test to see if file exists. *)
then
reset{Archfit}
eise

rewrite(ArchFil);
getprintinfo;
TestPrinter{YesNc};
if Yeske
then
begin
write(lise #27T#TH#I3);
MarRep;
ExtRep;

APPENDIX C

LrRep;
end;
Archbata.Ext

:= InfoExt; *
ArchbData.lLn := Infoln; * Set archive variables.
ArchData.Una := Infolne; *
ArchData.Dat := Data.Date; (*

geek(ArchFil, filesize(ArchFil));

(* File pointer is set to end of file.
write{Archfit,ArchData); * Mrite data to deta file.
rewrite({Fil}; (* Disk file is prepared for processing.
close(ArchFil); (* The disk file is closed and the disk

(* directory is updated.
if (not Async_Open{Cos Port, Bauxi Rate,Parity,Data Bits,Stop Bits))
(* Try opening the serial port.
then
writeln{'Cannot open serial port.')
(* Serial port can't communicate due to
(* incorrect parameters.
else
writein('Serial port opened.'};
(* Serial port is ready to commnicate.

Datum := Data.Date; &

Ans := 0; * Reset program variables.
Unans = 0; &

SetBottoml ine;

end; (* Archive *}

pr
(t

va

ocedure LightOn;
This procedure is used to indicate which extensions are busy, *)

r M N : integer;

begin (* LightOn *)

window(1,1,80,253; (* Set size of reguired work area to the
{* whole screen.

Reversevyideo{irue);

val{Data. Ext M, Err); (* Make the variasble W equal to the
{* integer value of Data.Ext
{(* (Extension rumber).

case M of

227..236 : begin
N == Light1[M]; (* Determine position of extension
{* to be highlighted.
gotoXY{(3,N);

247..249 : begin
N o:= Light2t]; (* Determine position of extension
(* to be hignlighted.
gotoXY{3,N);
end;
237..244 @ begin
N oz= Light3[M1; (* Determine position of extension
{* tc be highlighted.
gotoXY{75,M);
end;
251..253 : begin
N o= Light4{Ml; (* Determine position of extension
(* to be highlighted.
gotoXY(74,N3;
end;
245..245 : begin
N := Light5[M]; (* [Determine position of extension
(* tc be highlighted.
gotaXY(3 §);
end;
266,246 1 begin
N o= LightsM]; (" Determine position of extension
(* to be highlighted.
gotoXY(TE, N} ;

*)
*)
*)
*)

*3
*})

*3)

"

b
*3

end;
225..226 : begin

APPENDIX C

N == Light7M}; (* Determine position of extension *y
{* to be highlighted. *y
gotoXY(7Té,4);
end;
end; (* case *)
write(M);
ReverseVideo(false);
window({11,16,70,21); (* Set the size of the required work *)
(* erea. *)
end; (* LightOn *)
(* .. f)
procedure LightOff;
(* This procedure is used to indicate which extensions are not busy. *)
var M,N : integer;
begin {* Lightoff *)
window(1,1,80,25); (* Set size of required work srea to the *)
(* whole screen, *)
ReverseVideo{false);
val(Data.Ext M,Err); (* Make the variable M egual to the *)
{* integer value of Data.Ext ")
{* (Extension number).]
case M of
227..236 : begin
N :=Light1M]; (* Determine position of extension *)
(* to be highlighted. *)
gotaXY(3,H);
end;
247..249 : begin
N := LightZM]; (* Determine position of extension *)
(* to be highlighted. ")
gotoXY(3, N);
end;
237, .244 : begin
N :=Light3M]; (* Determine position of extension *}
(* to be highlighted.)
gotoXY{76,N);
end;
251..253 : begin
K ;= Light4MI; (* Determine position of extension)
{* to be highlighted. *}
gotoXY(7&,M);
end;
245 : begin
W o= LightSMI; (* Determine position of extension *)
(* to be highlighted. *)
OLaXY(3,N);
end;
246 : begin
N := Light6[M]; (* Determine position of extension b
{* to be highlighted. *y
goteXY{(T6,N);
end;
225..225 1 begin
N = Light7Ml; (* Determine position of extension *)
(* to be hightighted. *3
FOTeXT (T4, N);
and; {* case *)
write(M):
window({11,16,70,21); (* Set the size of the required work *)
(" area.)
end; (* LightOff ™)
{! .. LAY

APPENDIX C

procedure Get_Comm Params;

(* This procedure is used to obtain all the relevant parameters necessary *)
(* for communications. *)

var Yesho = CHAR;

begin (* Get_Cosm Params *)

Com Port := CP; {* Which port, e.g., 1 for COMi: ")
Baud Rate := BR; (* Baud rate for comnection, e.g., 1200 *)
Parity := PR; (* Parity, e.g., E for even parity *y
bata_Bits := DB; {* How many bits per character, e.g., 8 *)
Stop Bits := SB; (* How marty stop bits -- nearly always 1 *)
InBufSize = 1BS; (* Size of input buffer. *)
OutBufSize := 08S; {* Size of output buffer. *)
bo_xorXoff := XX; {* 'Y' to do XON/XOFF flow control. ")
Do CTS := CTS; {* 'Y' to do CTS checking.)
Do_DSR := DSR; (* 'Y?! to do DSR checking. *)
Po_tardWired := HW; (* 'Y' to do KerdWired flow control. *)

end (* Get_Comm _Paroms *);

(' -- *)

function Initialize Communications : boolean;
{* This function is used to open the serial port for commmication. *)

begin (* Initialize_Communications ¥)

Async_Do_CTS 1= (UpCase{ Do _CTS } = 'Y');

(* set CTS checking. *)
Async_Do_DSR 1= { UpCaset Do DSR) = 'Y!);

{* Set DSR checking.)
Async_Do_XonXoff z= (UpCase(Do Xordoff) = '¥Y!);

(* Set XOM/XOFF to user request, *)

Async_Hard Mired_On := (UpCase(Do_Harddired)} = 'Y! };
{* Set hard-wired as user requests. *}
Async_Break_Length := 500;
(Set half-second break duration. *)
Async_Init{ InBufSize, OutBufSize, 0, G, 0);
{* Let XON/XOFF break points default. *)
if {mpot Async_Cpen{Com_Port,Baud_Rate,Parity,Data Bits,Stop Bits))
& Try cpening the serial port. *)
then
begin
writein{'Cannot open serial port.');
Initialize Communications := false;
(* Seriat port can't commmicate due toc *)
(* incorrect parameters. *)
end
else
begin
writeln{'Serial port opened.');
Initielize Commmnications := true;
erd (* Serial port is ready to commmicate. ¥}
end (* initialize _Communications *);

proceaure GetDats;

{* This procedure is used to manipulate the data received at the serial port =)
{* and to re-crganize it 1o a more suitable format.)

begin (* Getlata *}
if (pes(tCALL LDGGING REPORT®,Cfstr) <> Q)

then
begin
if dour > 23 {* Check if it is midnight.)
then
Archive:
if rour < ¥ (r Check if it is midnight. *)

APPENDIX C

then
Archive;
end;

if (pos('Page’,Cfstr) © Q) then Datum := copy(Cfstr,1,8);
(* Check for the word 'Page!, if found *)
(* then the first eight characters of *)
(* that string will represent the date. *}

if (pos{1:1,Cfstr) < 0) then
(* Chetk each string for a ':', if found ™)
{* then that string contains information *)

{* regarding a telephone enguiry. *)

window(1,1,80,25); (* Set size of required work area to the *)

(* whole screen. *3

GetT ime(Hour Min,Sec); (* Check system time.)

Reverseyideo(true);
gotoXY(70,1);
write{Hour:2,Min:2,Sec:2);(* Update the time at the top of the ¥}
{* screen. *y
Reversavideo(false);
window(11,16,70,21); (* Set the size of the required work *)
(* aresa. *y
begin
wWindow(1,1,80,25); (* Set size of required work area to the ¥)
{* whole screen. *)
gotoXY (20,24);

write(Datum); (* Update the date at the bottom of the *)
(* screen.)
window(11,16,70,21); (* Set the size of the required work =)
{* area. 3
Data.Rec := copy(Cfstr,1,1}; (* Type of record. *)
Data.Ext := copy(Lfstr,2,3); (* Number of extension answering the ™)
{* call or unanswered call. *)

val(copy(CFfstr,51,2),Data.Ln,Err);

{* Wwumber of tine on which call was made.*)
if (Data.Rec <> '+')

(* Check the variable Data.Rec for a +' ¥)

(* , if found that string contains *)
{* informetion about & call being *)
(* answered. =)
then
begin
if Data Rec = ' ¢
then

begin
if Data.Ext = iUna!
{* Check the variable Data.Ext for 'Una‘® ¥)
(* , if found that string contains *)
(* informetion sbout 8 unanswered call. *)
then
begin

Cata.Date := Datum;
(* The date on which the call is made. *)

Data.Time := copy({Cfstr, 33,5);
{* The time at which the cali is made. *)

Data.RDur := copy{Cfstr,40,8);

(* The ringing time of the call. *)
Data.Chur := '00:00:007;

(* Reset the speech time, *)
seek{Fil, filesize(Fil));

(* File pointer is set to end of file. *}
write(Fil,Data);

{ ¥Write data to data file,)
Unans := Unans + 1;

(" Number of unanswered calls. *)
window(1,1,80,25);

(* Set size of required work 2rea to the =)

{* whcle screan, *)
gotoXY (&5,24);

write(Unans:3);
{* Update the nmber of uhanswered calls *}

(* at the bottom of the screen,)
window(11,16,70G,21);

APPENDIX C

{*" Set the size of the required work *)
(* area. *)
end
eise
if (PointiDate.ln) < @)
(* Check if this call correspordis toa ¥)

(* previously answered call. *)
then
begin

seek(Fil PointData.Lnl);
(* File pointer is set to the position *)
(* where the corresponding answered *)
(* date of this call is held.)

read(Fil,bata);
™ Read data from data file.)

Data.Date := Datum;

(* The date on which the call is made, *)
Data.Ext := copy(Cfstr, 2, 3);

(* Number of extension answering the ¥)

(* call, *y
Data.COur := copy(Cfstr,40,8);
(* The speech time of the call. *)

seek(Fil,PointDeta.Lnl);
(* File pointer is set to the position %)
{* wshere the corresponding answered)

(* date of this call is held. *3
write(Fil,Data);
™ Write data to data file. *)

seek(Fil,filesize(Fil));
(* File pointer is set to end of file. *)

LightOff;
end;
end;
end
else
begin
it (Data.Rec = '%') (* Check the variable Dats.Rec for '*', ™)
(* if found that string contains *)
(* information about a transferred call. *)
then
begin

seek(Fil, Point Data.lml};
(* File pointer is set to the position *)
(* where the corresponding answered *y
(* data of this call is held.)y
read{Fil Data); {* Read data from data file.)
Data.Date := Datum;
(* The date on which the call is made. *)
Data.Chur := copy(Cfstr,40,8);
(* The speech time of the call. L)
Data.Rec 1= %'
(* Indicate which extension transferred *)
{* the call.)
seex{Fil, Point(Data.lLnl};
(* File pointer is set to the position *)
{* where the corresponding answered *)
(* data of this call is held. y
write{Fit, Data);
{* Write data to data file, *)
Cata.Rec 3= t-1:

(* Indicate which sxtension received the *)

{* trensferred catl. *)
Dats.Ext := copy{Cfstr,2,3);

(" Number of extension answering the #)

{* cali, *)
Data.RDur := copy(Cfstr,40,8);
(* The ringing time of the call. *)

seek{Fil, filesize(Fil));

(* File pointer is sef to end of file, *)
Point Darte.lnl = filepos(Fil};

{* Pointer that indicates whers the 3

APPENDIX C

(* answered part of the whole record %)
(* is stored within the data file. *)
write(Fil Data); .
{* Write data to data file.)
seek(Fil,filesize(Fil));
(* File pointer is set toc end of file. *)
end
else
begin
Data.Time := copy(Cfstr,33,5);
(* The time at which the call is made. *)
Data.RDur := copy(Cfstr,40,8);
* The ringing time of the call. *)
Data.COur := '00:00:00';
- Reset the speech time. *)
Point[Data.lnl := filepos(Fil);
(* Pointer that indicates where the *)
(* answered part of the whole record %)
(* is stored within the data file. ")
write{Fil, Data);
(* Write data to data file. =)
Ans = Ans + 1;
(* Number of answered calls. *)
window{1,1,80,25); (* Set size of required work area to the *)
(* whole screen, *)
gotoXY(44,24);
write(Ans:4); (* Update the number of unanswered calls *)
(* at the bottom of the screen. *y
window(11,16,79,21);
(* Set the size of the required work *)
(* ares. *)
LightOn;
end;
end;
end;
end; (* GetData *)
(i .. !)

procedure Finish_Communications;
(* This procedurs is used to terminate communication and reset the system. *)

begin (* Finish_Comaunications *)
Async_Close{true);
(t

Close port and drop DTR. *)

Async_Releass Buffers;

(* Reiease space allocated for buffers. *)
erxi (* Finish_Communications *);

procedure RightlustifyNumbers2(X,Y,Z : integer; var Vaiue : integer);

(* This procedure is used tc read rumbers in from the kevboard and to *)
{* display them on the screen right justified. *)

{abel Cutr,outl;

Yar St{ : char;
8t2 : stringl2l;
Pass : boolean;
Code : inreger;
begin {* RightlustifyNumbers2 *)
gotoXY({X,Y};
St2 = '
repeat
oUt:
read(kbd,St1); {* Read keyhoard character pressed. *}
pass := (Stl in(#8..#571); (* Check for numeric keys only.)

APPENDIX C

If not Pass
then
if st1 = #3 {* Check for enter key. *)
then
gato Outl
else
goto Out;
st2 := St2 + Sti;
GotoXY(X-Z,7);
Write{St2:2);
Outi:
until st = #13;
val(St2,Velue,Code);
end; {* RightJustifylumberse *}

procedure Rightlustifyhumberss(X,Y,Z : integer; var Value : integer);

{* This procedure is used to read numbers in from the keyboard and to *)
(* display them on the screen right justified. w3

Label Out,Outi;

Var St1 : char;
St4 1 stringldl;
Pass : boolean;
Code : integer;

begin (* Rightiustifylumbersd *)
gotoXY(X, Y);
st‘ = II;
repeat
out:
read(Kbd,st1}; {* Read keyboerd character pressed.)
pass := (St1 in[&8..#571); (* Check for numeric keys only. *3)
1f not Pass
then
if s5tf = #3 {* Check for enter key. *)
then
goto Dutl
eise
goto Out;
Sté := Sté + Sti;
GotoXY(X-Z,Y);
Write{sté:2);
outl:
untii st1 = #13;
val(St4,value,Code);
end; (* RightlustifyNumberss *)

procedure SysDateTime;
{* This procedure is used to check and change the system date and time. *)
{abel Jumpl, Jump2;

var Ch s char;
vaiue : integer;

begin (* SysDateTime ¥)

Jumpt:

MenOuzl ine;

gotoxXY(28,4);

write{“we SYSTEM DATE 3 TIME. »w');

repeat
window(5,7,75,17); (* Set the size of the required work ¥)

{* &nrea. *)

clrser;
GetDate{Month,Day, Year, veekDay);

APPENDIX

gotaXY(17,3);

Wit L s ———) ;
gotoXY{17,4);

writeln(1f Iy

gotoXY(17,5);

uriteln('i Joday is : ',Days [WeekDay):9,Month:5,?/" Day:2,'/",Year:4,!]');
gotoXY(17,4);

writeln(1} I'n

gotoXY{17.7);

writein(i] Change the date 7 {Y/N) I

gotoXY(17,8);

uriteln(] B F

gotaXY(17,9);

wir- i tie [+ S) .

read(Kbd, ChangeDate); {* Read keyboard character pressed. *)

ChangeDate := upcese(ChangeDate);
{* Make sure variable is in upper case. *)
if (Changebate = 1Y4) (* Check for the character 'Y!. *)
then
begin
clrser;
gataXY(20,4);
writeln{'Enter new month (1-12) : *);
gotoXY(20,6);
writeln{'Enter new day (1-31) @ ');
gotoXxY(20,8);
writeln{*Enter new year {1980-2099) : ");
gotoXY(47,4);
CursorOn{true); & Turn the cursor on. *}
RightlustifyNumbers2(47,4,2, Month);
RightJustifyNusbers2(45,6,2,0ay);
RightJjustifyNumbers4(53,8,4,Year);
Cursoron{ false); (* Turn the cursor off. *)
SetDate{Month,Day, Year);
end;
until (ChangeDate o 1Y!);
if ChangeDate = #27 (* Check for escape sequence. *)
then
gote Jdumpd;
repeat
cirscr;
GetTime(Hour,min, Sec);
gotoXY(Z3 3);
e N e —)
getoXY(23 &);
writeln(] | B H
goteXY(23,5);
writeln('] The time is : !, Hour:d, 'z Min:2,':1,8ec:2,' |');
gotoXY(23,43;

writeln('] I

gotoXY{23,7);

writeln(!] Chenge the time 2 (v/N) |3;

gotoXY(23,8);

writeln('] 'y

gotaXY(23,9);

wri teln(1 S) .

read(Xbd, ChangeTime); (* Read keybcard character pressad. *}

ChangeTime := upcase({ChangeTime);
{* Make sure variable is in upper case. *)
if (ChangeTime = 1Y) (= Check for the character Y4, ")
then
begin

cirser;

gotoxXY(20,4);

write{'Enter new hour (0-24) : b H

goteXY(20,6);

write('Enter pew minute (0-60) & *);

gotaXY(20,83;

wWrite{ ‘Enter new second (0-60) : '3;

SOtoXY(43,4);

CursorOn{true); {* Turn the cursor on. 3

Rightdusti fymambers2(46 4,2, Hour);

APPENDIX C

gightlustifyNumbers2(48,6,2,Min}
RightJustifyNumbers2(48,8,2,5¢ec)

CursorOn(false); o Turn the cursor off. *y
SetTime(Hour,Min, Sec);
end;
until (ChangeTime < 1Y!');
if ChangeTime = ¥#27 (r Check for escape sequence, *)
then
gote Jumpd:
Jumpl:
Get_Comm_Params; o Request serial port parameters. *)
if Initialize Communications (* Initialize serial port. *y
then
begin
window(1,1,80,25); {* Set size of required work area to the *)
{* whole screen. *)
Clrscr;
Mairdenu;
SetBottomline;
window(11,16,70,21); (* Set the size of the required work *)
(* area, "
gotoXY(X,1);
end
eise
goto Jumpi;

end; (* SysDateTime *)

procedure Setup;

(* This procedure makes it possible to set-up the communications parameters. *)
tabel Jumpt;

var Ch : char;

begin (* Setup *)

X := whereX; {* Store the X-coordinate of the current *)
{* cursor position,)
Jumpi:
MenuOutline;
gotoXY(31,4);
write{ fuea SET-UP MENU wa»'};:
repeat
window(22,7,70,18); (* Set the size of the required work *)
(* area. *y
gotoXY(1,2);
writein{ 'COMMUNICATIONS PORT (7,CP:4,') ----- (1)):
writeln{ "BAMEL RATE {*,BR:4, 1) ----- 2)');
writeln{'PARITY (’,Pﬁ:‘,') (3)');
writeln{'DATA BITS (4,0B:4,t) ----- 4)*):
writeln(!STOP BITS {',5814,%) ----- ¢53%);
writeln{'IRPUT BUFFER SI2E (*,18S:4,') ~----- (63):
writeln{*OUTPUT BUFFER $I2ZE (',088:4,') ----- (7y');
writeln{'D0 Xon/Xoff [EN8 + TTNE U 0T
writeln('D0 CLEAR TO SEND e84,y ----- (F31):
writeln{'80 DATA SET READY {!,DSR:4,%) ----- 0YH;
read(Kpd,Chl;
case Ch of
tti : begin
ReverseYideo(true);
wirndow(3,8,20,17); (* Set the size of the required work *)
(* earea. *y
gotoXY{1,1);
writsin? 1y:
writein{ ! |COMMUNICATIONS]) ;
writein(' PORT 13;
wiriteing! 'y;

APPENDIX C

e H
Read keyboard character pressed. *)

Set the size of the required work *)

Read keyboard character pressed. "

Set the size of the required work *)

keyboard character pressed. *}

Set the size of the required work *)

writeln(t] coMi --- (1) }*);
writeln('| COM2 --~- (2) }*);
writeln('] COM3 --- (3) }');
writeln{*] coMd --- (&) |");
writeln(®
read{Kbd,Ch); (&
case Ch of
" 2 CP = 1;
121 1 CP = 2;
3P = 3;
14 1 CP 1= 4;
end;
ReverseYideo(falise);
Clrscr;
end;
12¢ + begin
ReverseVideo(true);
window(3,8,20,17); (*
(* =mres.
gotoXY{1,1);
writeln{® ');
writaln(' BAUD RATE 'y;
writeln(! '3;
writeln('{ 300 --- (13 [");
writeln{*] 1200 --- (2} vy;
writeln('y 2400 --- (3) LD 34
writeln('| 4800 --- (&) |");
weiteln{'} 960C¢ --- (5) {');
writeln{!® I+
read{Kbd,Ch); (
case Ch of
"1 s BR := 300;
2% 1 BR = 1200;
i3t BR := 25400;
14 1 BR = 4BOO;
15" : BR := 9&00;
end;
Reverse¥ideo({false);
Clescr;
end;
'3' : begin
ReverseVideo({true);
window(3,8,20,17); (*
{* area.
gotoxXY(1,13;
writeln(® D H
writeln{! PARITY Y
writeln{’ 13;
writeln{'] 00D --- (1) §1);
writeln{'] EVEN --- (2) {');
writeln{*| WOME --- (3) [*);
writeln({'| MARK --- (&) }'3;
writelnd®|SPACE --~ (5) {');
writeln{! B H
read(ikbd,Ch); (* Read
case Ch of
YD PR 3= 10t
120 1 PR iz EL;
i3t 2 PR = WY
14t 1 PR 1= 'Mi-
'St : PR := 184;
end;
Reverse¥ideo{faise);
Cirser;
end;
‘4' : begin
ReverseVidec{true);
window{3,8,20,17); ¢(*
{* area.
gotoXY{1,1};
writein(!

writeln{?®

!);
I DATA BITS i');

12

APPENDIX C

writein(! '}:
writeln{']5 BITS --- (1){'y;
writeln('16 BITS --- (2){');
writeln{'{7 BITS --- (3){");
weiteln{'§8 BITS --- (4)f');

writeln(!):
read(Xbd,Ch); {* Read keyboard character pressed. *)
case Ch of
1" : DB = 5;
120 1 DB = 6;
3 DB = T7;
4! : DB := 8&;
end;
ReverseYideo{false);
Cirscr;
end;
15t : begin
ReverseVideo(true);
wincdow(3,8,20,17); (* Set the size of the required work ™)
(* area. ")
gotoXY{1,1);
writein{' i H
sriteln(? STOP BITS ";
writein{? y:

writetn{'] 1 BIT --- (1) 1);
writeln{(*| 2 BIT --- (23 {');

writeln(' 'y;:
read{Kbd,Ch); (* Read keyboard character pressed. *)
case Ch of
11 : 8B := 1;
t21 : S8 := 2;
end;
ReverseVideo({false);
Clrser;
end;
16% @ begi
ReverseVideo{true);
window(3,8,20,18); (* Set the size of the reguired work *)
(* area. *y
gotaXY({1,1);
writein(! ty;
writeln{'] INPUT BUFFER]%);
writeln(® SIZE 13;
wiriteln(* ;

writeln{'{ 512 --- (1) {');
writein{*{ 1024 --- (2) {%);
writein{*] 2048 --- (3) |");
writeln(*] 4096 --- (&) |);
writeln{®}] 81%2 --- (5) }'3;

writeln{? ');
read(kbd,Ch}; {(* Read keyboard charscter pressed. *)
case Ch of
11 = IBS :1= 512;
12¢ = IBS := 1024;
134 : IBS 3= 2048;
4" ¢ 188 := 4096;
51 ¢ IBS 1= 819¢;
end;
ReverseVideo(false);
Cirser;
end;
171 1 begin
ReverssVideg{true};
window(3,8,20,18); (* Set the size of the required work ¥}
{* area. *y
gotoXY{1,1y;
writeind?® y;
writeln{'] OUTPUT BUFFER {%);
writelng? S12E ;
writeln{!* 'Y;
writeln{!! 3512 --- {1) i H
writein{'] 1024 --- (2) 1y;

e
)

12

2048 --- (3)
4096 -+ (4)
8192 --- (5)

writeln{?
uriteln(®
writeln{’

l);

APPENDIX C

Read keyboard charscter pressed. *)

Set the size of the required work ¥)

Read keyboard character pressed. *)

Set the size of the required work ™)

Read keyboard character pressed. *)

writein(t)
read(kbd,Ch}; *
case Ch of
' : pBS := 512:
120 : OBS := 1024;
131 : 0BS := 2048;
147 ; DBS := 40%6;
155 : 0BS := B192;
end;
ReverseVideo{false);
Clrecr;
end;
‘3% : begin
ReverseVideo(true);
window(3,8,20,173; (*
(* area.
gotaXY(1,1);
writein(® M
sriteln{*] DG Xon/Xoff |!);
writeln(s L
writeln{*] YES --- (1) 1);
writetn{! Ng --- (2) y;
writein(? 1):
read(Kbd, Ch); 0
case Ch of
Mo XX iz oty
42l H xx = |“I:
end;
ReverseVideo(false);
Clrser;
end;
90 ; begin
Reverse¥ideo(true);
window(3,8,20,17); (*
(* asarea.
gotoXY(1,1);
writeln(! 1y;
writeln(? DO CT8 '3
writeln{!® b H
writeln{'{ YES --- (1} i H
witeln('| w0 --- (23 ['3;
writeln{® y:
read(Kbd,Ch); (&
case Ch of

"' 1 LTS 1= Y
2 2 LTS = NY;

Set the size of the required work *)

end;
ReverseVideo{false);
Clrscr;
end;

10 - begin
ReverseVideo{true);
window(3,8,20,17); (*

{* area.

gotaXY(1,1);
writaln{? 1y
writeln{’ DC D3R iy;
writein{!® ;
writeln{'§{ YES --- (1} i H
writeln(? NG --- £2) y;
writein{? 1y
read(Xbd,Ch); (* Head
case Ch of

11 : DSR 1= fY;
P2 : DSR i1= N';
end;
Reversevideo({false);
Cirser;
end;

keyboard character pressed.)

APPENDIX C

end;
until Ch = #27;
Get_Comm Params; (& Request serial port perameters. *)
if Initialize_Commnications (* Initialize serial port.)
then
begin
window(1,1,80,25); (* Set size of required work area to the *)
(* whole screen. ")
Clrser;
MainMenu;
SetBottoml ine;
window({11,16,73,21); {* Set the size of the required work =)
{* area. *)
gotoXY(X,1);
end
else
goto Jumpl;

end; (* Setup *)

procedure Emulate_Dumb Terminal;

{* This procedure is used to capture the dats at the serial port. *)

var Kch 1 char;
Ch : char;
begin (* Emulate Dumb Terminal *)
repeat
if KeyPressed {* Monitor keyboard for a user reguests. *)
then
begin
read(kbd,KCh); (* Read keybosrd character pressed. *y
if (KCh = #27) and KeyPressed
(* Check for escape segquences. *)
then
begin
read(kKbd,KCh}; (* Read keybcard character pressed. *y
if KCh = #5& (r Check for <Fi> Kkey. *)
then
begin

Async_Close{true);
port[$3B8] := $29;
(* Turn screen on. *)
Of ficelayOut;
if (not Async_Open{Com_Port,Baud Rate, Parity,Data Bits,Stop Bits))
(* Try opening the serial port.)
then
writeln{'Cannct open serial port.'}
(* Serial port can't commmnicate due to *)
{(* incorrect parameters. *)
eisa
writeln{'Serial port opened.!):
(* Serial port is ready to commmicate. ¥*)

end;
enct
else
case KCh of
|11 H begin
Async_Close(true};
port ($388] := $29;
(* Jurn screen on.)
Setup; (* If character pressed is '1', then *)
(* execute the Setup procedure. *)
tf (not Async_Upen(Com Port,8aud_Rate,Parity,Data_Bits,Stop_Bits))
(* Try opening the serial port. *)

then
writeln{'Cannot open serial pert.®)
(* Serial port can't communicate due to)
{* incorrect perameters, *)

APPENDIX C

eise
writein{'Serial port opened.’);
(* Serial port is resdy to commmnicate. *)

end;
121 : begin
Asyrnc_Close{true);
port{$388] := $29;
(* Turn screen on. *)
Printdenu;
(* 1f character pressed is '2', then *}
{* call the Print Menu procedure. *)
if (not Async_Open{Com Port,Baud Rate Parity,Data_Bits, Stop Bits))
& Try opening the serial port, *)
then

sriteln{!Cannot open serial port.')
(* Serial port can't cosmmnicate due to *}
(* incorrect pearameters. *)
else
writeln{!Serial port opened.'};
(* Serial port is ready to cosmunicate. *)
end;
3¢ : begin
Async_Close(true);
port {33881 := $29;

* Turn screen on. *y
SysDateTime;
(* 1f character pressed is '2', then *)
{* call the Print Menu procedure. *)
if (ot Async_Open(Com_Port, Baud Rate, Parity,Data_Bits,Stop Bits))
(* Try opening the serial port. *)

then
writeln({*Cannot open serial port.')
(* Serial port can't cosmunicate due to *)
{* incorrect parameters. *)
eise
writetn(‘Serial port opened.');
(* Serial port is ready to commmnicare. *)
end;
0! 1 begin
port{3388] := $29;
(* Turn screen on. =)
Stop 1= true;
(* If character pressed is ‘3!, then =}

(* terminate processing. *}
end;
#32 @ begin
if Blank
then
begin
port[$388]1 := $21;
(= Turn screen off.)
Blark := false;
ernd
else
begin
port [$388] := $29;
o Jurn screen on. ry
Bl 1= true;
end;
end;
end;
end;
if ;swacﬁReceive(Ch) * Receive data at serial porr, *}
then
if (Ch < chr(0)) (* Check if character received is valid. *)
then
beqgin

if (Ch < #10) and (Ch < #T)
{(* <Check for {ine feed and carriage ")
(* return. *y
then
Cfstr = Cfstr + Ch;

APPENDIX C

(* Build up a2 string until. *)
write(Ch};
if {Ch = #13) and (length({Cfstr) < 80)
{* Check for carriege return and that *)
(* the strings length is less than 80 *)

(* characters long. *)
then
begin
X := whereX;
{* Store the X-coordinate of the current *)
(* cursor position. *)
Y := uhereY;
(* Store the Y-coordinate of the current *)
{* cursor position. *)
GetData;
Cfstr 2= 1*;
(* Reset string. *})
gotoXY(X,Y);
end;
end;
until Stop;

end (* Emulate Dumb Terminal *);

procedura ReedData;
(* This procedure is used to read data from serial port, *)

begin (* ReadData *)

window(11,16,70,21); {(* Set the size of the required work *)
{* area. *)

clrser;
Get_Comm_Params; (* Request serial port parameters. "}
if Initialize_Commnications (* Initiaslize serial port. *)

then

begin

Emulate_Dumb_Terminal; (* Emilate dumb terminal. *)
Finish_Communications; (* Ciose down serial port. *)

end;

end (* ReadData *);

procedure Setvar;

(* This procedurs is used to set the relevant program variables at the *)

{* begimning of the progras. Y
begin (* SetVar *}

P = 1; - *3
8R := 1200; (* *)
PR 1= VEf; (r bt
$B := 2; & "3
0B := 7; * *)
1BS 1= 2048; & Set commnications paramaters. *)
0BS := 2048; (* *)
b SEC IR L * *)
CTS = 'WY; ¢ 2
DSR = N!'; {* *3
HH .= inl: {' ’)
FString 1= *f; = *)
SString := ‘i, 1l Reset string. *}
Cfstr = +9; o =3
for [:= 1 to 5C do

Point{l} := §; {* Reset file pointers. *3)
Moc := 0; {* "
Raat == (; (" *3)
TotRDur :x 3 (r Reset program variables.)
Z :=0; (* 3
Step := faise; {* *)
Datim 1= :00/00/001; [l Reset program variables. *3

c-17

APPENDIX C

Ans i= 0; (* *)

Unans := 0; & *)

Biank := true; (* *)
end; (* SetVar *)

(* This is the mein pert of the program. *)

begin (* Monitor8TS *)
SetVar;
CursorOn{false); & Turn the cursor off. *)
Cirser;
MainMeny;
assign(Fil, 'C:\TPI\DATA\BTS.DTA');
{* Assign the file path and name to the *)
(* varisble name. *)
rewrite(fil)y; (* Disk file is prepared for processing. *)
assign(F, 'C:\TP3\DATA\BTS_WED.OTA?);
®

(* Assign the fils path and neame to the =)
(* variable name. *)
reset(F); (* Disk file is prepared for processing. *)
seek(Fil, 1); {* File pointer is set to line 1 of file *)
window(11,14,70,21); {* Set the size of the required work =)
{* oarea. *)
ReadData;
close(F); (* The disk file is closed and the disk *)
close(Fil); (* directory is updated. *)
window(1,1,80,25); (* Set size of required work area to the *)
(* whole screen. *y
Clrser;
CurscrOn(true); { Turn the cursor on. *y

end. {* Moniter8TS =)

APPENDIX C

A mEr o m AT Ee s meemm e mmmmawermE————y e ' maem Mo ertmammmaememmarm———- t)
Et THIS IS A% INCLIIDE FILE THAT TAKES CARE C)f THE KENU INTERFACING WITH THE *)
¢* INTERACTIVE USERS. *
L &) . b
(Y Mrittesn by: A, M. 2. Molnar Version 1.0 *)
& =)
P Dated: Novesber, 1991 *)

* *)
S e 3
prcedre cursorOn{TurrON : boolsan);
¢* This Procedure is used to turmn the cursdr N the screen on or off. *)

Tyt reglist = record
A gy, Cx,DX,8pP,S1,D1,D5,ES, FLAGS @ Lntoger;
4
val re; = reglist;
pesin (* CursorDn *)
if Turron then
if men[0:34491 =7 then
reg .o 1= $0CE
eise
reg.x 1= $0&07
sise
reg.Cx ;= 3$2000;

(g A == $0100;

ntr(s10,reg)
ety (Y CursorOn ¥)

(F ~ er T e e cne s e T S Tepstm e mAsmreemm—meam—— *y

pCedire ReverseVideo(Status : boolean);

{* This procedure s used Yo toggle the sCraM display status 1o reverse *)

(' video or to normal, depending on the PMwy|4M argument received. *)
p3in (™ ReverseVideo *)
if Statys
ther
begin
TextColor(0y; (* Set teyt Coioudr agnd text background *)
TextBackGround(15); (* to 'hese,)y
ey
eise
bevgin
TextColor{15); (* Set tygyt ©oelodr pnd text background *)
TextBackGround(0); ¢* back yonomal. *)
e yi:

fd; {* Reversevidec *)

procedire SetBottomine;

" This procedure is used to restore the v iabie information on the bottom *)
{* Line, after returning tc the main meni, *)

HEin {* SetBortomine *)
ForaXY (20,24} ;
jte(Datum);
SOt Y (44, 24);
write(ansid);
FotaX¥(56,24);
ueiteGrans:3)
ed; (* SetBortomiine *)

c-1y

APPENDIX C

procedure NumBlock;
(* This procedure is used as part of the main menu. It shows the various extensions. ")

begin (* ¥umBlock *)

gotaXY{1,5); write(! L H

gotoXY(1,6); write(*{ 227 §¢); (* *3)
gotoXY(1,7); write{?]| 228 |'); o *)
gotoXY(1,8); write{'} 229) & *)
gotoXY(1,9); write{'] 230 {"); (& *y
gotoXY(1,10); write('{ 231 |'); * *)
gotoXY(1,11); write('} 232 {*); {* ")
gotoXY(1,12); write{'] 233 |"); (* Extensions pertaining to *)
gotoX¥(1,13); write{*] 234 |'); (" % - 8880, *)
gotoXY(1,14); write{'| 235 {'); (* *y
gotoXY(1,15); write('} 236 {'); (" *)
gotoxXY(1,36); write('] 245 {v); o *)
gutaXY(1,17); write('| 247 {"); & *y
gotoXY(1,18); write{('| 248 |'); {* *)
gotoXY(1,19); write(*{ 249 |"); (* *)
gotaXY(1,20); write{' i H

gotoXY(74,5); write(' (b H

gotoXY(74,6); write('] 225 |'); (> *)
gotoXY{74,7); write{'| 226 |'); (< =)
gotaXY(74,8); write{'] 237 {"); * *)
gotoXY(74,9); write('] 238 §*); (& *)
goteXY(74,10); write('}] 239 |*); (* =)
gotoXY(T4,11); write('| 250 |'}; (* *3
gotaXY(74,12); write{'] 241 |'); (* Extensions pertaining to *)
gotoXY(74,13); write(*]| 242 |"); {* 22 - 2121.)
gotoXY(74,14); write{'} 243 §%); (*)
gotoXY(74,15); write{'| 244 |'; (* *y
gOtoXY(T4,16); write('[246 ['); (& *y
gotoXY(74,17); write('] 251 }4); * *)
gotaXY(74,18); write{'} 252 {'); &4 *)
gotaXY{74,19); write('} 253 |'); (> *)
gotoXY({74,20); write(® ;

end; (* numBlock *)

procedure Bottomine;

(* This procedure is part of the main menu. It lists the on line date as *)
(* well as the total amount of answered and unanswersd catls. *)

begin {(* BottomLine *)
gotex¥(9,23);

g ————

QOtOXT(9,24);

write(‘== Date :
25);

ine *)

procedure Merws lock;

(* This procedure is part of the main Mmenu. 1t gives the user a rumber of *)
{* options to chocse from, "

begin (* MerwBlock *)
garoxY (9, 13;
write{! Y : ' .
gatoxY(9,2);
write(* — B TELEPHONIC ENQUIRIES MONITORING SYSTEM J——3;
gotexY($,3);
Hrite{’i

i1y,
goTekY($,4); ‘
H‘!"‘ite{'l ii);
goteXY(9,5);

APPENDIX C

write(!] {;
gotoXY(9,8);

write(!] SET-UP UTILITY =---sssm-cevnn- M [3;
gotoXY(9,7);

urite(’] BH
gotoXY(9,8);

write('| PRINT REPORTS =-----s--=--nons) O H
gotaXY(9,9);

write(s} |v3;
gotoXY(9,10);

write{*| SYSTEM DATE AND TIME --------- 3 {v;
gotaxyY(e,11);

write(] {73;
gotaXY(9,12);

write(!| QUIT -moememossaoanneemmta. (0) i;
gotoXY(9,13);

write(!] [H
gotoXY(9,14);

urite('t 1 3
gotoXY(10,14);

Reverseyidec(true);

write(! <Fi> ---> Office lay-out and extension mumbers. 'y;
Reversevideo{false);

end; (* MenuBlock *)
(* -- .’)

procedure DataBlock;

(* This procedure is part of the main menu. It is the block where the on *)
(* line data will scroll up and down in.)

var A : integer;

begin {* DataBlock *}
gotoXv(9,15);
write(! e H
for A = 16 to 21 do
begin
gotaXY(9,A);
write('|');
gotoXY(72,A);
write(')');
gotoXY(9,622};
write('! i1y;
end;
erd; (¥ DateBlock *)

procedute MairMeny;

(* This procedure is used to combine a rumber of other procedures to form *)
(* the main menu. -y
begin (¥ Maindenu *)

NumBiock;

MerwBiock;

Datablock;

Bottom ine;
end; (* Mairdenu *)

procedure OfficelayOut;

{* This procedure is used as = reference quide to the user to indicate where *)
{* each extension is situated in the office. *)

var Ch 1 char;

begin (* OfficelLayOut *)

Cc-21

X 1= whereX;
window(1,1,80,25;

Cirser;
write(! -

(*
(t
(‘
(‘.’

APPENDIX C

Store the X-coordinate of the current *)

cursor position.

*3

Set size of required work ares to the *)

whole screen.

*)

for 1 := 2 to 23 do
begin
gotaXY(1,1);
write('{*);
gotaXY(7/9,1};
write('j*);
end;
gotoXY(1,24);
write('L

gotoXY(8,11);
windou(8, 11,16, 14);

writeln('FRONT');
writelp(? OF');

writeln(*QFFICE!);
window(1,1,80,25);

gotoXY(1,25);
Reversevideo(true);
write(*
ReverseVideo({false);
gotoXY(20,3);
window(20,3,75,22);

repeat

(I‘
(t

(t
(i

Set the size of the required work *)

area.

*)

Set size of required work area to the *)

whole screen.

To return to main menu press <ESC> key.

(*
(t

Set the size of the required work)

area,

writeln('
writeln{'
writeind’
writeln(®
writeln(!

~¢ IS

NN

L+ IV]

o WwWN
W

[V LY]

-~ N

o &

writeln;
writeln;
writeln(*

writeln{?
writebn('
writein:®

Ll &

Ll ol

[FRY AN

LW

LC RPN

O N

[P ALV

writein('
writeln;
writeln;
writein(?

writeln{"| 2
writein{*] 3
writeln{'] 7
writelng!

[+ QN N

O W

read({kdd, Ch);
untit ch = #27;
wincow(1,1,80,25);
ClrSer;
Mainmeny;
SetBottom ine;
window(11,16,70,21);

gotoXY(X,1);

end; {* CfficelayCut *}

procedure MernOutiine;

4
1

(=2 o N]

2
4
2

2
5
1

N WS

(Q
(*
(*
(*

(*
(t

*

'y,
1y;
i H
i H
ty;

')
I);
ty;
ty;
I);

")
ty;
'y;
"y
ty;

Read keyboard character pressed. *)

Check for escape sequence.

*)

Set size of required work area to the *)

whole screen.

*3

Set the size of the required work *)

area.

(* This procedure is used to determine which reports are reguited, *)

begin {* MenuOutline *3

X := whereX;

window(1,1,80,25);

{* Store the X-coordinate of the current *)

{(* cursor position.

*)

(" Set sire of required work area to the *)

AJI);

APPENDIX C

(* whole screen. *3
Cirscr;
gotoXr(1,3);
writeln(!' 'y;
writetn(* 2 H
writein(’ "
writeln{? e B H
for 1 :=qto 12 do

writeing!] {3;

writeln? b] £}
writeln{' i H
writebn(? ' H
gotaXy(ad,:20);
ReverseVideo(true);
write(' To return to mein menu press <ESC> key. B H
ReverseVideo({false);

end; (* MenuDutLine *)

c-23

APPENDIX C

(i -- !’)
{* THIS IS AN INCLUDE FILE THAT TAKES CARE OF THE PRINTING INTERFACE WiTH *)
{* THE INTERACTIVE USERS. *3)
(* »y
(* Written by: A. N. Z. Molnar Yersion 1.0 *)
* *)
(r Dated: November, 1991 *)
{ "
t* .. t)

fuxtion Corn{Time : str8) : real;

(* This function is used to convert g string that reprezents time, intc a *)
(* real number that can be used in various manipulations.)

ver Hour Min,Sec : integer;

begin (* Con ™)
val{copy(Time,1,2), hour Err);
val{copy(Time, 4,2) Win Err);
val{copy(Time,7,2),8ec Err);
Con := (Hour ¥ &0) + Win + (Sec / 60);
end; (* ton *)

function ReCon(Time : real) : str8;

(* This function is used to re-convert a real number that represents a time *)
(* into & string for output purposes. *)

var Hour, Min, Sec : stringl2);

begin (* ReCon ™)
striint{Time 7 60):2:0,Hour);
str{int(frac(Time / &0) * 60):2:0,4in};
str{frac(Time} * &0:2:0,S5ec);
if Win[1il = * !
then
Minfil := '0i;
if Sec[1} =1 ¢
then
Sec[1] := 4';
ReCon := Hour + *:7 + Min + ':} + Sec:
end; (* ReCon *)

fution PrinterStatus(WhichPrinter : integer) : integer:

type Registers = record case integer of
1z (AX,Bx,CX,DX,BP,S1,01,bs,ES,Flags : integer);
2 3 (AL,AH,BL,BH,CL,CH,DL,DH : byte);
and;

var Regs : Registers;

pegin
Regs.AH = 2;
Regs.AL = Q;
Regs.0X := WhichPrinzer;
Intr{23,Reas);
PrinterStatus := Regs.AH:
end;
(: __ t)

APPENDIX C

procedurs PrinterError{StatusByte : integer;
var ErrorCode : integer;
var Errorfeturn : str2d);

var X : integer;

const Error : array{0..2] of stringl26] = (? ¥o erroc ' 0Printer not ready!,

* pPrinter off ');

begin {* PrinterError *)
if StatusByte in [14%,146,216,223]
(i

Check for no errors. y
then
ErrorCode := Q;
if StatusByte in [24,80,87] (* Check if printer is on line. *)
then

ErrorCode := 1;
if StatusByte in [120,135,200] (* Check if printer is switched on. *)
then
ErrorCode := 2;
ErrorReturn := Errori{ErrorCodel;
& Set error MESSAgE, *)
end; (* PrinterError =)

procedure TestPrinter{var YesNo : boolean);

var B,X : integer;
Error : stringl[201;

begin (* TestPrinter *)
YesNo 1= true;
8 := PrinterStatus{0);
PrinterError(B,X,Error);
if X <> 8
then
begin
Yes¥o 1= false;
gotaXT(17,11);
ReverseVideo{true);
Hf'ite{!f
gotoXY(17,12);
write('] «e« PRINTER ERROK = !,Error,' we» |');
goteXY{17,13};
write(! e 113
delay(3000);
Reverse¥ideo(false);
end;
end; (* TestPrinter *)

procedure GetPrintinfo;

(* This procedure is used to obtain the necessary data from the disk file *)

{* te be used for the printed reports. *

begin {* GetPrintinfo *3
reset(Fil); {* bisk file is prepered for processing. *)
seek(Fii,1); (* File pointer is set to line 1 of file *)
for R == 226 to 270 do {*)
for § := 7 to % do (* Reset the extension information)
for T =1 10 5 do (* variables,)
infoExt(R,S,T]1 := Q; (* *}
for R 1= 1 to 30 do (* *3
for § 1= 7 to 16 do (* Reset the Line informetion b
for T := 1t 3 (* variables. 3}
InfolniR, 8,71 := g; (* =

for 8 := 1 0o 30 o

for § = 7 to 16 do {* Reset the wnanswered informetion =
for T := 1 tc 2 e (* varighles, *y

C=-25

APPENDIX C

InfounalR,s, T

for § := 1 to 255 do

Flagis} = 0; {* Reset trunk Line and extension flags., *)
gotoXY(15,10);
ReverseVideo({true);
write(’ p— 1');
gotoXy(15,11);
write(?] wex PROCESSING DATA FOR PRINTED REPORT. »am |2
gotaXY(15,12);

= 0; (* *)

urite('} 1

repeat
read(Fil, Data); & Read data from data file. *)
gotaX¥(15,13);

with Data do write(*] ',Date,' * Time,' ! Rec,® ' Ext,' * ROur,' ! Cour,'
gotoXY{(15,14);
write(? b d+y;
val(copy(Data.Time, 1,2}, Tim Err);

(* Hake the variable Tim equal tc the *)

{* integer value of the hour portion *)

(* of Data.Time (Time of day). *y
val(bata.Ext, Exten Err); (* Make the variable Exten equal to the *)
(* integer value of Data.Ext (Extensiom *)
(* number). *)
if Err =0 (* Check if record is snswered (Err = G) ¥)
(* or unanswered (Err = 1). "y
then
begin

InfoExt [Exten,Tim,1] := InfoExt[Exten,Tim, 1] + 1;
{(* Count amount of calls answered per *)
(* extension per hour. *)
InfeExt [Exten,Tim,2] := InfoExt[Exten,Tim,2] + Con{Data.fDur);
{* Total speech time per axtension per *)
(* hour. 3
InfoExt [Exten,Tim, 31 := InfoExt[Exten,Tim, 3] + Con(Dats.ROur});

* Total ringing time per extension *)}
G per hour. *y
if InfoExt[Exten,Tim,4] < Con{Data.lDur}

then
InfoExt [Exten,Tim,4] := Con(Datae.Chur);
{* Longest call per extension per hour. *)
if {infoExt{Exten,Tim,3] < 0) and (InfoExt{Exten, Tim, 3] < Con(Dats cCOur))
then
InfoExt[Exten,Tim,51 := infoExt[Exten, Tim,5]
else
InfoExt[Exten,Tim,51 := Con(Data.CDur);
(* Shortest call per extension per hour. *)
Infoln(Data.Ln,Tik, 1] := InfolniData.Ln,Tim, 13 + 1;

(* Count amount of calls per lipe per
* hour.

InfolniData.Lln,Tin, 21 := Infoln[Data.ln,Tim,2] + Con{Data.lDur);

{* Total speech time per Lime per hour.

InfolnData.Ln,Tim,3] := InfolniData.ln,Tim, 3] + Con(Data.RDur);

(* Totel ringing time per Lime per hour.
end

else
begin
InfoinaData.Ln,Tim, 11 := Infoina(Data.ln,Tim, 1] + 1;
(* Count amount of unanswered calis per
(* line par hour.

*)
*

*:

*)

*3
*3

infdlnaData.tn,Tim,2] = InfolnalData.ln,Tim,2] + Con{Data.ROur);

{* TJotal ringing time of unanswered
) {(* cails per line per hour.
erd;
for § := 225 to 255 de (&
fer R 1= 7 to 16 do (* Set flags to determine which
if InfoExt(S,R,11 < 0 (* extersions answered cails
then {r each day,
Flagis] := H (&4

for 8 := 1 to 30 de
for 8 := 7 20 14 do
if (InfolniS,R,1] < 0} or (InfolralS,k, 11 < 0)
then (* Set flags to Getermine which trunk

*)
*

"
*3
*
*)
*3

"

L2,

[

APPENDIX C

FlaglSl = 1; (* Llines are used each hour. *)
until eaf(Fil);
Reversevideo{fal se);
ClrSer;
end; (* GetPrintinfo *)

‘* --------------------------- Err e ———- P N Y LT - W = s t}
procedure ExtRep;

(* This procedure is used to produce a printed report regarding each *)
(* individual extensions hourly progress. b

var TotAns,Tot{Dur AvgChur,long, Short,Idie : real;

begin {* ExtRep *)
for S 1= 225 to 255 oo

if FlaglS]l = 1 then (* Check which extensions answered calls %)
begin
writeln(lst,? 13:
writein(lst,*]n);
writetlnglst,? EXTENSION : ', 5:3,° DATE: !, DATUM,® LD
writelngist,? };
writeln(lst,?* Amount Total Average ldle Longest Shortest ;
writeln(lst,? Time Answered Duration Duration Time Call cali H
writeln(ist, ' B H
writeln(lst,? 9;
for R :=7 to 8 do
begin
if InfoExt(s,R,21 > 60
then
Idle := 0
else

Idle := (60 - InfoExt(S,R,21);
if InfoExt[5,R,11 < 0
then
begin
write(lst, '} ©0',&,':00 - 01,R+1,5:00°, InfoExt[S,R,1]1:10:0,ReCont InfoExt [S,R,2]1):10);
write(lst,ReCon(InfoExt [S,R,21/InfoExt{S,R,11):10, copy(ReConidle),4,5):7);
writein{lst, ReCon{InfoExt(S,R,4]):10,ReCon(InfoExt {S,R,51):10,F |*);
enc;
end;
(* For the period between 07:00 and 09:00 print on a hourly basis the smount *)
(* of calis arswered, the total speech durstion, the average speech duration ¥)
(* , the idle time, the longest call and the shortest call for the relevant =)
(* extension. *)
if InfoExtiS,9,2]1 > &0
then
Idie:= 0
else
Idle := (&0 - InfoExt[S,9,21);
if InfoExtlS,9,11 < O
then
begin
write{ist, '] 09:00 - 10:00',InfoExt[S,9,11:10:0,ReCon(InfoExt[S,9,21):10);
write(lst, ReCon(InfoExt [S,9,2]/InfoExt[$,9,13):10,copy(ReCon(Idle),4,5):7);
writeln{ist,ReConlInfoExt(S,5,41):10,ReCon(InfoExt1§,9,51):10, |");
end;
{* For the period between 09:00 and 10:00 print on a hourly basis the amount *)
(* of calls answered, the total speech duration, the average speech duration =)
(=, the idle time, the longest call and the shortest call for the relevant *)
(* extension, 3
for R =10 to 16 do
begin
if InfoExtIS,R,21 > &0
then
idie = 0
elsa
fgie = (60 - InfoExt(S,R,23);
if InfoeExtis,R,1] < 0
then
begin

APPENDIX C

writetist, *| :,R,%:00 - ' R+1,':007,InfoExt[S,R,11:10:0,ReCon{InfoExt (s, R,21}:10);
wi-i te(lst,ReCon{ InfoExt[S,R, 21 /InfoExt [S,R, 111210, copy(ReCon{Idle),4,5):7);
writeln(lst,ReCon{ InfoExt[S,R,%1):10,ReCond InfoExt[S,R,51):10,* |");
end;
end;

(* For the period between 10:00 and 17:00 print on a hourly basis the amount *)

(* of calls antwered, the total speech duration, the average speech duration *)

(* , the idle time, the longest call and the shortest call for thes relevent *)

(* extension. *)

swritein{lst,’ ")
writeln{lst,* 9;
TotAns == O; (*)

TotCur == 0; L& *)

AvglDur := 0; (* Reset variables. *)

Long := 0; (*)

Short := 0; (* *)

for R := 7 to 16 do

begin

TotAns := TotAns + InfoExt[S,R,1]1;
(* Total rumber of calls answered for a *)
{* day per relevant extension. -y

TotCDur := TotCDur + InfoExtiS,R,2];
[Total speech time for a day per *3)
* relevant extension. *)

if Long < InfoExt(S,R,4]

then
Long := InfoExt(S,R,41;

(* Longest call for a day per relevant *)

(* extension. *)
if {Short « 0) and (Short < InfokExt[S,R,51)
then
Short := Short
else

Short := InfoExt(S,R,51;

(* Shortest call for a day per relevant *)
{* extension. *)

end;
AvygCDur := TotlDur / TotAns;

{* Average speech time per call for a ™)

(* day per relevant sxtension. "y
write{ist, | *,TotAns:23:0,ReCon{TotChur}:i0, ReCon({AvglDur):10);
writeln(lst, ReCon{long):17,ReCon{Short):10," ')

(* Print the daily totals per relevant extension of the total amount of calls *)

(* answered, the total speech time, the sverage speech time, the longest "

(* call and the shortest cabl. *)
writelr{ist,’ ')
writeln{ist,' 'y;
writein{lst, 't 113,
write(lst,#12); {(* add a form feed after the print-out. *}

end;
and; {* ExtRep *)

procedure HanRep;

(* This procedure is used to produce e printed report regarding the *)
{* switch board as a whole. *)

var CountExt, LExt SExt array(7..16] of integer;
Long, Short, Avglhur, TottDur, Tathns, Totuna : arrayi?..18] of reai;

ToralAns, Totallna, TotaiChur : real;

Tetallong, TotaiShort : real;

TotatlExt, YotalSExt : integer;

begin (* MarRep ¥)

TotalAns := §; & *3
TotalUna := §; (* *)
TotalChur := §: = *)
Totaliong 1= 0; (Reset wvariaples, *)
Totalshert := (; {* *3
Totalifxt := §; * *)

APPENDIX C

TotalSExt := 0; & *)
for R 1= 7 to 16 do
begin
CountExt[R] := 0; (>)
TotAnsIR] 3= O; (* i
TotUna[R] := O; {* *
TotCOur(R] == 0; (* *
AvgCDur R} := 0; * Reset varisbles. *)
tong[R ;= 0; & *)
short[R] := 0; ¢ *)
LExt[R] := 0; * "
SExtiR] := O; [4ol *)

end;
for R := 7 to 16 do
for § := 225 to 255 do
if 1nfoExt[S,R,1]1 © ©
then
begin

CountExt[R] := CountExt(R] + 1;
* Total rumber of extensions that *}
[answered calls per hour. *)

TotAns[R] := TotAns[R] + [nfoExt(5,R,11;
{* Total rmumber of calls answered per)

(* hour. *)
TotDDur [R] := TotCDur[R] + InfoExt([S,R,62];
r Total speech time per hour. *)

AvgChur (R] := TotCDur({R]/TotAnsIR];
(* Average speech time per call per hour.¥*)
if Long[R] < InfoExt[S,R,4]

then
begin
LExt{RI := §;
LongIR] := InfoExt[S,R,41;
end;
(" Longest call per hour and the *)
o extension that made it. *y
if (Short[Rl <> 0) and (ShortiR] < InfoExt[S,R,51)
then
Short[R] := Short[R]
else
Degin

SExtiR] := §;
Short{R] := InfoExt{§,R,51;
end;
(* Shortest call per hour and the *)
(* extension that made 1t. *)y
and;
for R := 7 to 16 do
begin
for $ 121t 3 &
if Infolneis,R,11 < O
then
TotUna[R] := TotUnel[R] + InfounalS,R,11;
{* Total mumber of unanswered cails per *)

{* hour.)
end;
writein{ist, 'y i H
writeln{ist,® l’);
writeln{lst,? DAILY SWITCHBCARD STATISTICS, OATE: ', DATUM,! f‘},‘
writeln{ist,! 1;
writein{lst,* Nugber Amount Amount Average Longest Snortest {');
writein{lst,* Time of Ext Answeraed Unanswered Duration Call Cail '};
writein{ise,?’ I H
writeln{ist,® H

for R := 7 1o 14 do
if ContExt[R] < 0
then

begin
write{ise,'] !,R:2,' ~ ' R+1:2,CountExtIR]:4, TatAns [R] :10:0, Totbna [R] 1 12:0);
write{ist,copy{ReCon{AvglDuriR]},4,53:10, (%, LEXC{R]:3,), copy(ReCon{Long[R]1),4,5):8);
writein{lst,’ {f,SExt(R}:3,*)', copy(ReCon{Short{R]},4,5):6,¢ |'3;

end;

APPENDIX C

(* For the period between 07 7:00 and 17:00 print on & hourly basis the rumber *)

(* of extensions used, the number of calls answered, the number of calls *)

{* unanswered, the avernge speech time per call, the longest call and the *)

{* extension that made it and the shortest call and the extension that mede *)

(* it. "
witeln(tst,'l “);
siritein{ist, * B H
for R :=7 to 16 o

begin
Totalans := TotalAns + TotAnsiR];
{* Totai number of calls answered per *)
(* day. "
TotalUna := Totaluna + TotUnalRl;
{* Total rumber of calls unanswered per *)
(* day.)
TotalCDur := TotalChur + TotQDur([R];
* Average speech time per call per day. *)
it Totallong < Long[R]
then
begin
Totallong := LongiR];
TotallExt := LExt[R];
end;
(> Longest call per day and which *)y
r extension made it. *)
if (TotalShort <) and (YotalShort < Short(R])
then
begin
TotalShort := TotalShort;
TotalSExt := TotalSExt;
end
else
begin
TotalShort := ShortiR];
TotalSExt := SExt{R];
end;
(* Shortest call per day and which *)
(* extension made jt. *y
end;
writetlst, |, ToratAns:24:0,TotalUna:12:0, copy(ReCon{Total COur/TotalAns),4,5):10);
writein(tst, copy(keCon(TotaiLong),&,5):15,copyiReCon{Totaishort),4,53:12,% {');

(* Print the daily totals for the whole switch board of the totali amount of *)

(* calis answered, the total amount of calls unanswered, the average speech *)

(* time per call, the longest call end the shortest call. b
writein(ist,? '3
writeln(lst,’ ty;
writein{lst,' 'y:
write{ist,#12}; (* Add a form feed after the print-out. *)

end; (* MarRep *)

G R i P it i L R bd)

procedure Lrkep;

(* This procedure is used to produce & printed report regarding each *)

(* individual trusk Line's hourly progress. *)

var TotalAns,TotalRCOur,TotalUna,TotalRDur, Totalbur ; real;

begin (* LnRkep *)
for §:= 1 to 30 deo

if flaglsl = 1 {* Check which trunk lines are used. *)

then
begin

TotalAns := (; (* *y
TotalRQur := 0; o *)
Totaluna := g; (* Reset variables.)
TotailRbur := C; (* *y
Totaldur ;= O; {r *y
writein{lse,*
writeln{ist,® |’;?
writeln{ist, s TRUNK LINE : ' §:2,¢ DATE: ', DATLM,!

{'
(-'
(!
("

writeln(lst,'
writeln(lst,? Amount Durstion Amount buration Total Duration
writeln{ist,"' Time Answered Occupied Unanswered Occupied Occupied
writeln(lst,?
writein(lst,!
for R :=7 to 8 do
if (Infoln[s,R,11 < 0) o (InfolnslS,R,1] < O)
then
begin)
write(lst,'] 0',R,':00 - 0f,R+1,0:007, Infoln(s,R,11:7:0);
write(lst,Recon(Infoln{S,R,21+InfoLnis,k,31):13, Infolnals, R, 1] :8:0);
urite{lst,Recor{ Infainals, R,21):14);
writeln(ist,Recon{InfoLns, R, 23 +InfolniS,R,31+Infolna(s,R,21):13," '
end;
For the period between 07:00 and 09:00 print on a hourly besis the amount *)
of calls ansuwered, the ringing and call duration, the unanswered cails, ™)
the ringing durstion and the total duration the relevant trunk lines are :)
busy,)
if (Infoln(8,9,11 © 0) or {Infolnals,9,11 < 0)
then
begin
write(lst,'{ 09:00 - 16:007,Infoln(s,%,13:7:0);
write{ st Recon(Infoeln(S,?,21+Infoln(S,9,31):13, Infolna[s,9,13:8:0);
write(ist,Recon(Infoknals,9,21):14);
writelngtst,Recon(infoln{s,9,2]+Infoln(s,s,31+InfoUnals,,213:13,¢ 1)
end;
For the period between 09:00 and 10:00 print on a hourly basis the amount *)
of calls answered, the ringing and call duration, the unanswered calis, *)
the ringing duration and the total duration the relevant trunk Lines are *)
busy, *)
for R = 10 to 16 do
if (Infolh{S,R, 1] <> 0) or {Infolnal$,R,1] < Q)
then
begin
write(lst,*] ',R,':00 - 1, R+1,7:00¢, InfolniS,R,11:7:0);
write{lst,Recon(Infoln(S, &,21+InfoLn{s,R,31):13, Infobnals,R,11:8:0);
wite(lst,Recon{infoinalS,R,21):14);
writein{lst, Recon(InfoiLni$,R,2]+InfolnlS,R,31+Infolnals, R, 21):13," {;

APPENDIX C

end;
For the period between 10:00 and 17:00 print on a hourly basis the mmount *)
of catls answered, the ringing and call duration, the wnanswered caiis, *)
the ringing duration and the total durstion the relevant truxk lines are %)

busy.
writeln(
writein(
for R :=

begin

*)
lst 1
lst,»

7 1o 16 do

TotalAns := TotalAns + Infolni{s,R,11;

(* Total mmber of calis arswered per *)
(* day per relevant trunk line, =y

ToralR{Dur := TotalRDur + Infoln[S,R,2] + Infoln{S,R,3];

{* Total ringing and call duration for *)
{(* answered calls per day per relevant *)
{* trunk line. *>

TetslUna := Totaluna + InfoUna[S,R,11;

(* Total mumber of unanswered calis per *}
{* day per relevant trunk Line, *)

TotziRDur :~ TotalRDur + InfainalS,R,2];

{* Total ringing duration for unanswered *)
* catls per day per relevant trunk Lipe.™)

Totaidur := TotaiRCOur + TotalRDur;

erud;

{* Total duration per day that relevant *)
{(* trunk line is busy. *3

write({st,*{' TotalAns:2%:0,ReCon{TotalRCDur): 13, Totailng:8:0);
weireln(lst, ReCon(ToralRbur): 14, ReCon{ Totaldur): 13,! 1y

Print the daily

totals per relevant Trumk Line of the total rmber of ™)

calis answered, the total ringing and cali duration, the total rember *)
of uraswered calls, the total ringing duration and the fotal duration *)
the tine s busy. ")

wiritein(isy,

writein{lst ?

APPENDIX C

writeln{lst,'l

write(ist,#12); (* ASd & form feed after the print-out. *)
end;
end; (* LrRkep *)

(i----- ------ marmAErTEaEE T —fr s e m—mwmr - cmsm s remm—— P e L L L LT T P t)

procedure ExtAnsRep;

(* This procedure is used to produce 8 printed report of the average *)
(* daily answering times of both the operators as well as the switch *)
(* board as a whole. ")
var TotRDur,TotAns, AvgRDur, TotCDur AvgCDuUr : real;
TotatAns, TotalRDur, TotalfDur ; real;
begin
writeln{lst,* ty:
writeln{lst, 1')'
writeln(lst, ' AVERAGE DAILY ANSWERING TIMES. DATE: ',DATM,’ B
writein{ist,' O H
writeln{lst,? EXTENSION AMCUNT ANSWERED AVERAGE RINGING TIME AVERAGE SPEECH TIME '):
writeln(list,!)
writeln{ist,* 1)
for 5 := 225 to 255 do
begin
TotRDur := 0; (*)
TotAns ;= Q; {* L3
AvgRDur := 9; (* *)
TotCour := §; ™)
AvgCDur := 03 & Reset variables. *3
TotatAns := 0; (* *)
TotalROur := 0; ™ ")
Totallbur := 0; (* *)
for R == 7 to 16 do
begin
TotRDur := TotRDur + InfoExt{S,R,31;
(* Total ringing duration per extension. *)
TotAns := TotAns + InfeExt(S,R,11;
{* Total amount of calls answered per *)
(* extension. *}
Tot{Dur := TotCDur + InfoExt(S,R,21;
_ (* Total speech duration per extension., ¥}
end;
if TotAns < C
then
begin
AvgROur := TotRDur / TotAns:
{* Average ringing durationm per *}
* extension.)
AvglDur := TotlDur / TotAns;
(* Average speech duration per *)
(* extension. *)
writeln{ist,'|',5:8, TotAns:15:0, ReCon({AvgRDur) : 22, ReCon(AvglDur) : 22, ! {*y;

(* Print the daily totels for esch extention of the amount of calls snswered *)
(* ,the average ringing duration and the average speech time. *)
end;
for R 1= 7 to 14 do
for § 1= 225 to 255 do
begin
Totaldns := TotalAns + InfoExtIS,R,11;
{* Total rumber cf calls answerad by the ¥)
{* switch board as a whole. b
TotaiRDur ;= TotaiRDur + InfoExt[S,R,3];
{(* Total ringing duration as seen oy the *)
{* swWitch board as a whoie. *)
Toralflur := TotalCDur + {nfoEXt(S,R,21;
{* Totel speech duration as Seen Dy the *)
end {* switch board as a whole. 3

. »
writeln{lsy,’| Total’,TotalAns:14:0,ReCon(TotaiRDur/TotalAns):22, ReCon(Total thur/TotalAns): 22,

32

0
|

APPENDIX C

{* Print the daily totals for the whole switch board of the total amount of *)

(* calls answered, the average ringing time per cali and the average speech *)
)

{* time per call.
uritein{lst,!
writeln{lst,?

L

write{lst,#2);
end;

procedure Printheny;

(* Add & form feed after the print-out. ¥}

{* This procedure is used to select the required print-out. *)

label Jumpl,Jumpl;

var Ch : char;
Yesho : boolean;

begin (* Printdenu *)

Jump1:

Menulutl ine;

gotoXY(31,4);

writel wxa PRINT MENU. w»u»l);

window(25,7,85,18); (* set the size of the required work *)

{(* area. *}
gotoXY(1,2);
writeln{'SWITCH BOARD STATISTICS ----- (1)');
writeln;
writeln{ 'INDIVIDUAL EXTENSIONS ------- {2)');
writeln;
writeln{ 'TRUNK LINE REPORTS -----v~v-- 3H;
writetn;
writeln{ "AYERAGE ANSWERIMG TIMES ----- €4)1);
writeln;
writeln(*ALL REPORTS -----------~----- (53');
window{1,1,80,25); (" Set size of required work area to the *)

(* wnole screen,)
read(Kbd,Ch}; (* Read keyboard character pressed. "
if Ch = #27 o Check for escape sequences. *y

then
goto Jumpd
else
begin
case Ch of
'"1* : begin
TestPrinter{YesNa);
if Yesho
then
begin
write(lst, £27#7433);
* Set-up page size on printer. *)
GetPrintinfo;

MarRep; (* If character pressed is *1*, then *}

{* print the management report, "
end;
end;
12" : begin
TestPrinter(YesNo);
it Yesko
then
begin
wWrite{lst, #27#CT#33);
(* Set-up page size on printer. b
GetPrintinfo;

ExtRep; (* [f character pressed is ‘2%, then =)

(* print the axtension report.

and;

enct;
'3 : begin
TestPrinter{YesNo);
if Yesko

(9]
I

33

I):
!):

APPENDIX C

then
begin
write(lst, #2THOT#53);
- Set-up page size on printer.
GetPrintinfo;
LnRkep; (* If character pressed is '3', then
(* print the trunk [ine report.
end;
end;
41 : begin
TestPrinter(Yeslo);
if YesNo
then
begin
write(lst, #27TH6THIZ);
(& Set-up page size on printer.
GetPrintinfo;
ExtAnsRep;
(* If character pressed is '4', then
(* print the answering times report.
end;
end;
151 : begin
TestPrinter(Yesho);
if Yesho
then
begin
write{lst, #27THETH33);
(* Set-up page size on printer.
GetPrintinfo;
MarRep; (* If character pressed is '5', then
ExtRep; (¥ print the management,extension, trunk
LrRep; (* line and answering times reports.
ExtAnsRep;
end;
end;
else
goto Jumpl;
end;
end;
Junped
LlrSer;
MainMeny;
SetBattom ine;
window{11,16,70,21); {* Set the size of the required work
(* area.
gotoXT{X,1);

and; (* PrintMenu *)

"
*)

*

*)
*)

*)

3
*)
*3

	Table of contents
	1. Introduction
	2. Objective
	3. Information system development
	4. Hardware design
	5. Software development
	6. Problems encountered
	7. Future enchancements
	8. Conclusion
	9. Bibliography
	Appendix A. Schematic drawings
	Appendix B. Flowcharts
	Appendix C. Program listings

