
DBVBLOPKEllT OF A XO!ll:TORDiG AliD DATA LOGGING SYSTEX

FOR A XULTI-LIn TBLEPJiOn CONSOLE

By Andras xathys Zsiqaond Xolnar

Thesis submitted in partial fulfilment of the

requirements for the Masters Diploma in Technology to

the Department of Electrical Engineering (light

current) at the Cape Technikon.

Research and Development Centre

Department of Posts and Telecommunications

CAPE TOWN

SOUTH AFRICA

NOVEMBER, 1991

DECLARATION

I declare that the contents of this thesis represents

my own work and the opinions contained herein are my

own. It has not been submitted before for any

examination at this or any other institute.

A. K. Z. KOLIIAR /0;~'
(Signature)

ABSTRAC'r

This thesis descibes the design, development and

implemention of a monitoring and data logging system

for a multi-line telephone console as required by the

Account Enquiry section of the Department of Posts and

Telecommunications.

OPSOHlUIIG

Hierdie verhandeling beskryf die ontwerp, ontwikkeling

en uitvoering van'n monitering en data versameling

fasiliteit vir 'n multi-lyn telefoon konsole soos

benodig deur die Rekening Navrae seksie van die

Departement van Pos en Telekommunikasiewese.

ACDlOWLBDGBHBBTS

I would sincerely like to extend a special word of

thanks to Hr D Nel for his encouragement and assistance

throughout the duration of this project.

I would especially like to thank Hr J P Calitz for his

patience and friendly advice in helping with the

software development and for his constructive criticism

regarding my design ideas.

I would earnestly like to thank Mr M Amerika for always

being prepared to be of assistance and for his

ingenious ideas regarding hardware design in

particular, which was an enormous help during this

project.

I would like to thank Hr A Herbert and his staff at the

Research and Development Centre of the Department of

Posts and Telecommunications for all the help received

during this project.

I would also like to thank Plessey for being prepared

to grant me access to their library and for all their

assistance regarding the BTS 60 system.

'fABLE 01' COB'rBll'fS

1. INTRODUCTION.

1.1 The Existing Account Enquiry section.

1.2 The Solution.

2. OBJECTIVE.

3. INFORMATION SYSTEM DEVELOPMENT.

3.1 The Feasibility Study.

3.2 The System Analysis.

3.2.1 Analysis of the Present System.

3.2.2 Analysis of the System Requirements.

3.3 system Design.

3.3.1 Logical System Design.

3.3.2 Physical System Design.

3.3.3 System Specifications.

3.4 Software Development.

3.5 System Implementation.

3.5.1 Training.

3.5.2 Testing.

3.5.3 Documentation.

3.6 System Maintenance.

3 • 7 Summary.

4. HARDWARE DESIGN.

4.1 The Visual Display.

4.2 The Power Supply.

Page

1-1

1-1

1-3

2-1

3-1

3-1

3-2

3-2

3-2

3-3

3-3

3-4

3-5

3-5

3-6

3-6

3-7

3-7

3-8

3-8

4-1

4-1

4-2

4.3 The Ringing Detection Circuits. 4-2

4.4 Multiplex and Count the Ringing Calls. 4-3

4.5 Latched and Decoder Driven seven-Segment

Displays.

4.6 Maintenance and Error Checking.

4.7 PC Board Schematic Drawings.

5. SOFTWARE DEVELOPMENT.

5.1 The Pascal Language.

5.1.1 Wny TURBO Pascal?

5.2 Data Capturing, Logging and Monitoring

System.

5.3 Welcome to Monitor!

5.3.1 The Main Menu.

5.3.2 The Set-up Utility.

5.3.2.1 The Communications Port.

5.3.2.2 The Baud Rate.

5.3.2.3 The Parity.

5.3.2.4 The Data Bits.

5.3.2.5 The stop Bits.

5.3.2.6 The Input Buffer Size.

5.3.2.7 The output BUffer Size.

5.3.2.8 Do Xon/Xoff.

5.3.2.9 Do Clear to Send.

5.3.2.10 Do Data Set Ready.

5.3.3 Print Reports.

5.3.3.1 Daily switchboard statistics.

5.3.3.2 Individual Extensions.

4-4

4-5

4-6

5-1

5-1

5-2

5-2

5-3

5-5

5-7

5-8

5-9

5-10

5-11

5-12

5-13

5-14

5-15

5-16

5-17

5-18

5-19

5-20

5.3.3.3

5.3.3.4

5.3.3.5

5.3.3.6

5.3.3.7

Trunk Line Reports.

Average Answering Times.

All Reports.

Printer Error.

processing Data for Printed

Report.

5.3.4 System Date and Time.

5.3.5 Office Lay-out and Extension Numbers.

5.3.6 Quit.

5.4 Archiving.

5.5 Handshaking.

5.6 Program Flowcharts and Listings.

6. PROBLEMS ENCOUNTERED.

7. FUTURE ENHANCEMENTS.

7.1 Dynamically Changing the Software.

7.2 Monthly and Quarterly Generated Reporting.

7.3 Graphical Representation of Information.

7.4 Dynamic Report Generation.

8. CONCLUSION.

9. BIBLIOGRAPHY.

5-21

5-22

5-22

5-23

5-24

5-25

5-29

5-30

5-30

5-30

5-31

6-1

7-1

7-1

7-1

7-2

7-3

8-1

9-1

APPENDIX A.

APPENDIX B.

APPENDIX C.

Schematic Drawings.

Flowcharts.

Program Listings.

A-I

B-1

C-l

~ INTRODUCTION.

The Department of Posts and Telecommunications

Commercial Account Enquiry section has a

run-of~the-mill management problem. This problem can be

described as the lack of information required by

management for effective decision-making and control.

To emphasize the situation, one should take a look at

an overview of the existing Account Enquiry section.

~.~ The Existing Account Enquiry Section.

The Account Enquiry section provides the telephone

using public with an information service. This service

includes information such as telephone account

information, telephone suspension and restoration

statistics as well as various general queries related

to the national and international telephone networks.

The section consists of managerial, supervisory and

operational staff as well as operational hardware. The

operational hardware consists of a business telephone

system (BTS 60) and various computer terminals that are

utilized to obtain relevant account and subscriber

information. The operational staff comprises a number

of operators who answer the incoming BTS switchboard.

l-l

INTRODUCTION

The control and effective utilization of the operators,

switchboard and section as a whole was an almost

impossible task due to the lack of relevant information

regarding the performance of the operators and the

switchboard. The only information available to

management regarding the performance of the operators

and the switchboard was a logged print-out of all the

calls passing through the BTS 60 and lists of calls

attended to by the individual operators. The calls

passing through the system are logged as they occur and

are not sorted in any specific manner. This

information is of little or no value to management as

the logged print-out offers reams of information that

need to be transformed into a meaningful format. The

list of calls attended to is recorded by the operators

themselves and thus the integrity of this information

is debatable.

Due to the increasing number of complaints received

from the private sector regarding the accessibility of

the Account Enquiry service and the section's own

desire to improve it's public image it became apparent

that management information was imperative. with the

aid of such information it would be possible to manage

and control the section in a more efficient and

organized manner, thus providing an improved service.

1-2

INTRODUCTION

1.2 The Solution.

A possible solution to the Account

problem would be to design some

information system (MI5).

Enquiry section's

sort of management

This management information system would be used to

collect, transform and transmit the necessary

information required by the controlling staff. With

the aid of such management information, the Account

Enquiry section would be able to operate more

efficiently as well as provide a better service to the

public sector. Consequently the section's image and

that of the Department of Posts and Telecommunications

could be improved considerably.

1-3

2 OBJECTIVE.

The main objective of this project is to design an

effective management information system that will

present the Account Enquiry section with the necessary

information to establish an integrated management

system.

Of course, even the best information cannot guarantee

good decisions if managers do not have the ability to

use it effectively. This is why the information must be

presented in a form which is easy to understand and

use. Managerial and supervisory staff require

information of high quality and not of great quantity.

It must be emphasized that managers cannot possibly

absorb all of the information that can be produced by

information systems. Thus, high-quality information

must possess several major characteristics in order to

effectively support managerial decision-making. For

example, information should generally have the

following qualities:

- Timely. Information must be available when needed.

- Accurate. Information must be free from errors.

- Complete. All information needed must be provided.

- Concise. Only information needed must be provided.

2-1

In conjunction with the above information criteria an

effort must be made to establish the nature of the

required information needed to suit the strategy and

functional plan of the section. These information

requirements will be obtained by means of a feasibility

study.

On completion of the feasibility study a system

analysis must be conducted before the system can be

designed. Once the design is complete the software can

be developed to meet the specifications of the design

stage. After this all that remains is the

implementation of the system.

2-2

3 INfORMATION SYSTEM DEVELOPHEHT.

The development cycle for this management information

system includes various stages viz. a feasibility

study, system analysis, system design, software

development, implementation and maintenance of the

designed system. The activities involved are highly

related and interdependent.

3.1 The Feasibility Study.

A feasibility study is a preliminary study that

determines the information needs of prospective users

and the objectives, constraints, basic resource

requirements and feasibility of a proposed project.

The information needed for such a feasibility study and

for the other stages of the system development was

gathered from various sources, viz. (1) personal

interviews with users, operators and managers, (2)

personal observation of the system in action, (3) the

examination of documents, reports, data media,

procedural manuals and other systems documentation. The

information gathered in this manner was used for the

preliminary specifications of the proposed system,

including the system criteria and constraints.

3-1

INFORMATION SYSTEM DEVELOPMENT

3.2 The systea Analysis.

The final product of system

requirements or functional

proposed information system.

analysis is the system

specifications for the

some

3.2.1 Analysis ot the Present Bystea.

To determine these system requirements

specifications, one has to gain

knowledge regarding the organizational

which the system is to be located.

and functional

sort of

environment in

This entails learning more about the Account Enquiry

section as an organization, its management structure,

its business activities and tha information system it

has installed. Once the organizational environment

has been scrutinized, the actual system requirements

can be dealt with.

3.2.2 Analysis of the Systea Require-ents.

The focus of the system requirements analysis must be

on L~e information requirements of the prospective

users of the new system and the logical input/output,

processing, storage and control requirements of the

proposed system.

3-2

INFORMATION SYSTEM DEVELOPMENT

This is the most difficult step of system analysis.

Firstly one must determine what the users specific

information needs are. Secondly one must determine the

information processing capabilities needed for each

system function (input, processing, output, storage and

control) to meet these information requirements.

Finally one should develop the logical system

requirements. This means that one should not tie your

analysis to the physical resources of hardware,

software and people that might be used. That's a job

for the system design stage.

3.3 systea Design.

System design involves developing both a

physical design for an information system

the system requirements developed in

analysis stage.

3.3.1 Logical systea Design.

logical and

that meets

the system

Logical system design involves developing general

specifications for how the basic information processing

system functions of input, processing, output, storage

and control can meet the user's requirements.

3-3

INFORMATION SYSTEM DEVELOPMENT

Logical system design should also include the

consideration of an ideal system and alternative

realistic systems. Developing general specifications

for an ideal system encourages the users and designer

to be creative and emphasizes the fact that meeting the

information requirements of the section is the primary

goal of the project. The development of an alternative

realistic system encourages the users and designer to

be flexible and realistic and emphasizes the fact that

a solution must be found that meets the requirements ,

while taking into account the limited financial,

personnel and other resources of the section.

3.3.2 Physical Systea Design.

Physical system design involves the detailed design of

input/output methods and media, data bases and

processing procedures. Users and designers use their

knowledge of the section's operations, information

processing and computer hardware and software to

develop the physical design of the system. They must

relate their design to the input, processing, output,

storage and control functions of the proposed system.

They must specify what types of hardware, software and

people resources will be needed to transform the data

resources into an information product.

3-4

INFORMATION SYSTEM DEVELOPMENT

3.3.3 Systea Specifications.

The final step of the system design stage is the

development of the system specifications. It includes

specifications for source documents, the database and

output media, procedures for data preparation and

collection and information processing procedures. It

also includes specifications for the hardware and

software that will be used by the new system.

3.4 Software Development.

The software development stage involves the programming

process through which computer programs are developed

that meet the specifications of the design stage. It

must be emphasized that the programming stage requires

continual interaction between the users, system

analyst, system designer and the programmer. The system

specifications and system design developed may be

continually refined and revised during the programming

implementation and maintenance stages of the system

development.

3-5

INFORMATION SYSTEM DEVELOPMENT

3.5 System rapleaentation.

The activities of system implementation involve the

testing, documenting, installing and operation of the

newly designed system and the training of personnel to

operate and use the system.

3.5.1 Training.

Implementation of a new system involves orientation and

training of management, users and operating personnel

and the "selling" of the new system to each of these

groups. Users and operating personnel must be trained

in specific skills to operate and use the system. If

management and the relevant users have been adequately

involved in the system development stage, the shock

effect of transferring to a new system should be

minimized. If user representatives participate in the

development of the new system the problems of

installation, conversion and training should be

minimized.

3-6

INFORMATION SYSTEM DEVELOPMENT

3.5.2 Testing.

system implementation requires the testing of the newly

designed and programmed system. This involves not only

the testing and debugging of all computer programs, but

the testing of all other data processing procedures,

including the production of test copies of reports and

other output that should be reviewed by the users of

the proposed system for possible errors. Testing not

only occurs during the system's implementation stage,

but throughout the system's development process.

3.5.3 Documentation.

system documentation is an important process that uses

the tools and techniques of system analysis and design

to record and communicate the activities and results of

each stage of the system development. Proper

documentation allows management to monitor the progress

of the project and to minimize the problems that arise

when changes are made in the system design. It is also

vital for proper implementation and maintenance since

installing and operating a newly designed system

requires a detailed record of the system design.

3-7

INFORMATION SYSTEM DEVELOPMENT

3.6 system Hainten&nce.

The system maintenance activity requires a periodic

review or audit of the system to ensure that it is

operating properly and meeting its design objectives.

This activity is in addition to the continual

monitoring of the new system. System maintenance also

includes making modifications to the system due to

changes within the section or environment.

3 • 7 summary •

Due to the size and nature of this project the

feasibility study, system analysis, system design,

software development and implementation of the designed

management information system was conducted by the

author. The views expressed in this chapter were taken

into consideration and employed in the development of

this project. A description of the hardware and

software development will be pursued in the ensuing

chapters.

3-8

4 HARDWARE DESIGN.

In conjunction with the management information

requirements, the Account Enquiry section also requires

a visual display that can indicate the amount of

incoming calls waiting to be answered. The reason for

such a display is to indicate, to the operators and

supervisors, at what rate the switchboard is being

accessed. This can then be utilized as a motivational

tool to increase the efficiency with which the staff

handle the incoming calls to the switchboard.

4.1 The Visual Display.

The display is driven via hardware directly and

interfaced to the incoming telephone lines on a

mini-distribution frame. The incoming lines on the

distribution frame are physically connected to ringing

detection circuits. These circuits monitor the lines

for ringing current and if detected they output a

particular potential. All the outputs from the

detection circuits are taken via a mUltiplexer and

counting circuitry to establish how many lines are

ringing. The number of lines ringing are then decoded

and taken via device drivers to the seven-segment

displays.

4-1

HARDWARE DESIGN

4.2 The Power Supply.

The power supply, designed to supply the rest of the

hardware circuitry with the necessary power to function

correctly, is a very basic yet efficient supply. It is

a simple transformer-bridge-capacitor-regulator power

supply that converts the 220V ac voltage to a +5V and

+l2V dc voltage.

4.3 The Ringing Detection circuits.

In designing these circuits, it is of the utmost

importance to abide by the Department of Posts and

Telecommunications regulations (SAPO SPEC 3B24j001)

regarding interfacing of external equipment to the

physical telephone lines.

These specifications state, in paragraph 4.3.1, that a

circuit for detecting incoming ringing shall preferably

be connected in parallel across the telephone line. The

circuit shall be capacitively coupled. The value of

capacitance as seen from the line shall be nominally

1,8 to 2,2 micro-farads. The detecting circuit

impedance, including the capacitor, at 17 Hertz and 25

Hertz shall be between 4000 olUns and 10 000 ohms when

tested at 35V and 75V RHS.

4-2

HARDWARE DESIGN

The constraints set for the capacitor value and the

illlpedance is to ensure that the device, during the line

testing frOlll an exchange, yields similar conditions to

a SAPO telephone. This, in turn, ensures uniformity of

line conditions for all installations.

The ringing detection circuits are designed to detect

ringing directly from the incoming telephone lines that

service the switchboard and thus the above

specifications as laid down by the Department of Posts

and Telecommunications are strictly adhered to in the

design of the ringing detection circuits.

The Account Enquiry switchboard has 24 incoming lines

and thus 24 ringing detection circuits were required.

Each of these 24 circuits have an output that indicates

whether the attached incoming line is ringing. These

outputs are then taken via a mUltiplexer to counting

circuitry.

4.4 Multiplexing and Counting the Ringing Calls.

The multiplexer is used to scan the

circuits' outputs individually and

counters when ringing is detected.

4-3

ringing detection

step the relevant

HARDWARE DESIGN

The mUltiplexer's inputs are connected to the ringing

detection circuits and its output is connected to the

various counters' clocks. Each individual input is

selected cyclically via binary controlled inputs on the

mUltiplexer. Thus, for each input on the mUltiplexer

that detects ringing, the relevant counters are

clocked. After all the inputs have been scanned in this

manner the values of the counters are passed to the

seven-segment displays via latching and decoder driven

circuits. The counters are then reset and the cycle

starts again.

4.5 Latched and Decoder Driven Seven-Segment Displays.

Latch decoder drivers are used to interface the BeD

outputs of the counters to the seven-segment displays.

The latch decoder drivers used for this project have

lamp test, blanking and latch enable or strobe inputs

which are provided to test the displays, shut off or

intensity-modulate it and store or strobe the BeD

codes. These functions are needed to blank the tens

digit on the displays when ~~ere are no incoming lines

ringing and to store the BeD codes for latching soas to

prevent the displays from flashing in conjunction with

the incoming ringing tone.

4-4

HARDWARE DESIGN

The displays that are used for this project are

high-intensity common-cathode seven-segment displays.

Their physical dimensions are such, that all the

operators and supervisors manning the Account Enquiry

switchboard can comfortably read the information

displayed on them.

4.6 Maintenance and Error Checking.

The manner in which this visual display was designed

and constructed is the culmination of a variety of

factors. Primary factors that contributed to this

design are practical considerations such as the ease of

maintenance and error checking.

The consideration of providing easier maintenance and

error checking go hand in hand. This is accomplished by

having each separate stage, such as the power, ringing

detection circuits, etc. as an individual module. The

physical cabling between such modules are not soldered

directly to the PC boards, but are instead connected

via plug-in connectors for easy disconnection when

localizing faults. The integrated circuits and displays

are mounted by means of sockets instead of directly

soldering ~~em to the PC boards which enables them to

be inserted and removed with ease.

4-5

HARDWARE DESIGN

The various PC boards, displays, transformer and

cabling are all housed in a single perspex container.

This container comprises of a base plate with a

box-like lid. The lid can also be slid off the base

plate so as to make access to the PC boards and

accessories as convenient as possible.

4.7 PC Board Schematic Drawings.

The schematic

in the design

Appendix A.

drawings of each individual module used

of this visual display is detailed in

4-6

5 SOFTWARE DEVELOPMENT.

The software development was done with the aid of the

TURBO Pascal language as implemented for the MS-DOS

operating system.

5.1 The Pascal Language.

Pascal is a general-purpose, high level programming

language originally designed by Professor Niklaus Wirth

of the Technical University of Zurich, Switzerland and

named in honour of Blaise Pascal, the famous

Seventeenth century French philosopher and

mathematician.

Professor Wirth's definition of the Pascal language,

published in 1971, was intended to aid the teaching of

a systematic approach to computer programming,

specifically introducing structured programming. TURBO

Pascal is designed to meet the requirements of all

categories of users. It offers the student a friendly

interactive environment which greatly aids the learning

process and in the hands of a programmer it becomes an

extremely effective development tool providing both

compilation and execution times second to none.

5-1

SOFl'WARE DEVELOPMENT

5.1.1 Why TURBO Pascal?

TURBO Pascal was decided on, due to it's systematic

approach to computer programming and modular structure.

It is this systematic approach and modular structure

that contributes to an extremely effective development

tool. This development tool simplifies the writing,

debugging and understanding of the programming

sequence. The execution time of any high level

progralllllling language can, however, hardly be compared

to that of a low level language such as assembler,

which is extremely fast. Due to the nature of this

specific application, the execution time of the

specific software is not a major problem. TURBO Pascal,

in conjunction with the above mentioned facts also

presents a friendly interactive environment to the

programmer.

5.2 Data Capturing, Logging and Monitoring system.

The software developed specifically for this

application is called Monitor. Monitor consists of a

number of modules that include communication, data

capturing, file management, data processing, screen and

keyboard handling and reporting.

5-2

SOFTWARE DEVELOPMENT

The communication module takes care of initializing the

PC's RS-232 serial port to match the parameters of the

local BTS 60 system. On completion, the RS-232 serial

port is then ready to receive data sent to the PC from

the BTS 60 system. Data that is received is then

captured to a disk file on the PC's hard drive. This

file is then manipulated to extract the necessary

information needed for the screen and reporting

facilities. The screen is used, with the aid of various

menu's, to present to the end user the available

information and facilities. These facilities, such as

setting up various communication parameters,

selecting pre-designed reports, checking or updating

the system time and date or viewing the office layout,

can be selected by means of the keyboard.

5.3 Welcome to Monitor!

Monitor was designed to be user friendly, user tolerant

and to validate data entered by the user from the

keyboard. Special consideration was also given to

making the program simple to operate for both novice

and advanced computer operators. The ease of use will

be indicated when discussing the various menu's.

5-3

SOFTWARE DEVELOPMENT

The benefits of using menu/s in the Monitor application

are as follows:

displays all the choices available

reduces the amount of technical knowledge required

adds structure to the application

makes it easier to learn, use and maintain

minimizes typing errors

- reduces training and support costs.

The diagram in Fig. 5.0 is a menu tree showing the

relationships among the menu/s and menu items of the

Monitor application.

The Man; tor Awl 'catioo

I 0I0Ii! TOIl I

I SYSTEM
: DATE & TIME

P~IWT

REPOIlTS

Change
Date

\
Change

TilDe

OFfICE
LAYOJT

I
switchboard
Statistics

I
Indiviti-ial
Extensions

\
TrlrHc: line
Reports

Average kwering
Ti-.e

I
All

Reports

, ,
COIIIU1ications Baud Parity Data Stop

Port Rate Bits Bits
1rfl<Jt
Buffer
Size

output 00 00 00
Buffer Xon;Xoff eTS DSR
Size

Fig 5.0

5-4

SOFTWARE DEVELOPMENT

5.3.1 The Main Menu.

227 SET-UP UTILITY --.---------.-- (1)
228
229 PRINT REPORTS ------ •••• -----. (2)
230
231 SYSTEM DATE AIlO TIME ---- •• --- (3)
232
233 QUIT -----------------.------- (0)
234
235 <Ft> ---> Office lay-out and extenslOl1 T"f..IIi:)e-rs.
236
245 +239 08:32 00:00:02 09
247 +242 08:32 00:00:01 14
248 +253 08:32 00:00:01 16
249 231 08:32 00:05:19 03

233 08:33 00:01:00 02
+233 08:33 00:00:04 06

Fig. 5.1

Z25
226
237
238
239
240
241
242
243
244
246
251
252
253

The Main Menu (See Fig. 5.1) was designed to be

visually stimulating as well as informative. The menu

offers the user real-time data, real-time information

and the opportunity to select various other menu's. To

select any of the menu's or options, simply press the

related key indicated between brackets.

5-5

SOFTWARE DEVELOPMENT

The main block, or be it the top block on the main

menu, presents the user with the opportunity of

selecting between the Office Layout, Set-up utility,

Print Reports and the System Date and Time menu's. It

also has an option to Quit the program and return to

the operating system.

The window directly below this block displays to the

user real-time data as it is received from the BTS.

The block at the bottom of the menu displays the

current date and information regarding the amount of

calls answered and unanswered by the switchboard on a

real-time basis.

The two blocks on the left and right-hand side of the

menu are a visual indication of the various extension

numbers available on the switchboard. The numbers

pertaining to extensions that are busy, are displayed

in reverse video. When an extension returns to normal

(i.e. the call has been serviced) the corresponding

number is again displayed in normal video. This

facility allows the user to monitor the switchboard as

a whole indicating which extensions are bUSy or dormant

at any specific time.

5-6

SOFTWARE DEVELOPMENT

5.3.2 The set-up utility.

««« SfT·lF MENU •••

CCMUilCATlllllS PORT (1) (1)
BALO RATE (1200) (2)
PARITY (E) (3)
DATA BITS (7) (4)
STOP BITS (2) (5)
INPUT BUFFER SIZE (<!04S) (6)
OJTPUT BUFFER SIZE (<!04S) (7)
DO Xon/Xoff (N) (8)
DO CLEAR TO seND (N) (9)
00 DATA seT READY (N) (0)

To return to _ i n EnJ press <ESC> key.

Fig. 5.2

The Set-up menu was designed as a means for the user to

set up communication parameters. These parameters

include selecting the required communications port,

baud rate, parity, number of data bits, number of stop

bits, size of input bUffer, size of output bUffer and

Whether to do Xon/Xoff, clear to send or data set ready

checking.

The settings in brackets immediately after the various

menu options, indicate the default parameters fer

these options. To change any of these parameters,

simply press the related key indicated between the

second set of brackets.

5-7

SOFTWARE DEVELOPMENT

5.3.2.1 The communications Port.

I «cc SET -UP MENU _._

WMJN ICATIONS
PORT

CCIl1 --- (1)
CQ42 --- (2)
rol3 - -- (3)
C(J44 _ •• (4)

ClMUllCATIONS PORT (1)
BAUD RATE (1200)
PARITT (E)
DATA BITS (7)
STOP BITS (2)
INPUT BUFFER SIZE (2048)
OOTPUT BUFFER SIZE (2048)
DO Xon/Xoff (N)
DO CLEAR TO SEND (N)
DO DATA SET READY (N)

(1)

(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(0)

To return to _in .enu press <ESC> k.ey.

Fig. 5.2.1

If option (1) of the Set-up utility is requested a

pop-up menu appears. This allows the user to select

which communications port is to be used to communicate

with the BTS 60. To select, for example, the first

Asynchronous Communications Adapter (ACA) port, option

(1) on the pop-up menu should be selected.

When sending data from the PC to the BTS, the ACA will

translate that data into a form which can be

interpreted by the BTS 60. Likewise, when data is

transmitted from the BTS 60 to the PC, the ACA

translates the incoming data into a format that can be

understood by the PC.

5-8

SOFTWARE DEVELOPMENT

5.3.2.2 The Baud Rate.

I I

IlAl.Il RATE

300 ••• (1)
1200 ••• (2)
2400 ••• (3)
4800 ••• (4)
9600 ••• (5)

Cl»MJIj ICATlOIlS POllT (1)
IlAl.Il RATE (1200)
PARITY (E)
DATA BITS (7)
STOP BITS (2)
I~PUT BUFFER SIZE (2048)
OJTPUT BUFFER SIZE (2048)
DO XonlXoff (~)

DO CLEAR TO SE~ (N)
DO DATA SET READY (N)

(1)
(2)
(3)
(4)
(5)
(6)
(7)

(8)
(9)
(0)

To retuin to l'IBin IIenU press <ESC> k.ey.

Fig. 5.2.2

If option (2) of the Set-up utility is requested a

pop-up Baud Rate menu appears. This parameter specifies

the speed at which the data is transferred between the

PC and the BTS 60. The speed is measured in bits per

second which generally ranges from 300 to 9600 baud.

Because PC's have a wide range of operating speeds, it

must be ensured that the data transmission speed of the

BTS 60 and the PC are equal. Failure to match the baud

rate will result in garbled data.

5-9

SOFTWARE DEVELOPMENT

5.3.2.3 The Parity.

I I
««« SET-UP MENU

I I
COIMJIHCATlOliS PORT (1) - ---- (1)

PARITY IlAlIl RATE (1200) --_.- (2)
PARITY (E) ----- (3)

CllO --- (1) DATA SITS (7) ----- (4)
EVEN --- (2) STOP SITS (2) .. --- (5)
NONE --- (3) INPUT SUFFER SIZE (2048) --- -- (6)
MARK --- (4) OOTPUT SUFFER SIZE (2048) ._--- (7)

SPACE --- (5) DO XOO/Xoff (N) - ---- (8)
DO CLEAR TO SEND (N) --- -- (9)
DO DATA SET READY (N) ----- (0)

I To return to Iaai n RnU press <ESC> k.ey. I

Fig. 5.2.3

If option (3) of the Set-up utility is requested a

pop-up Parity menu appears. This menu allows the user

to specify the character parity to be used on the

currently selected port.

The parity technique involves adding a bit, called a

parity bit, to a data word. A parity bit may take the

value of 1 or 0 depending on the number l's in the

data word and the employed parity scheme. Parity

checking is a commonly used method for checking data

integrity.

5-10

SOFTWARE DEVELOPMENT

5.3.2.4 The Data Bits.

_c SET-UP MENU »••

DATA SITS

5 SITS --- (1)
6 SITS --- (2)
7 BITS --- (3)
8 SITS --- (4)

ClMUlI CATHJlS PORT (1)
BAUD RATE (1200)
PARITY (E)
DATA SITS (7)
STOP SITS (2)
INPUT Il\lfFER SIZE (2ll48)
OOTPUT Il\lFFER SIZE (2ll48)
DO Xon/Xoff (N)
DO CLEAR TO SEMD (N)
DO DATA SET READY (N)

(1)

(2)
(3)
(4)
(5)
(6)
(1)
(8)
(9)

(0)

To return to .in 8eflU press <ESC> key.

Fig. 5.2.4

If option (4) of the set-up Utility is requested a

pop-up Data Bit's menu appears. This allows the user to

specify the number of bits that constitutes each

character of data.

While the PC supports word lengths of 5,6,7, or a bits,

the most commonly used word lengths are 7 and a bits.

parity checking is normally enabled for 7-bit

transmission and disabled for a-bit. This gives us a

consistent word size of a bits for each byte of data

transmitted.

5-11

SOFTWARE DEVELOPMENT

5.3.2.5 The stop Bits.

«c« SET -UP MENU •••

aMUllCATlOIiS POIlT (1) (T)
STOP BITS BAlIl RATE (1200) (2)

PARITY (E) (3)
T BIT --- eT) DATA BITS (7) (4)
2 BIT --- (2) STOP BITS (2) (5)

INPUT BUffER SIZE (2048) (6)
ClJTPUT BUFFER SIZE (2048) (7)
DO Xon/Xoff (N) (8)
DO ClEAR TO SEND e N) (9)
DO DATA SET READY (N) (0)

To return to _in IIeOlJ press <ESC> key.

Fig. 5.2.5

If option (5) of the set-up utility is requested a

pop-up stop Bit's menu appears. This allows the user to

choose between 1 or 2 stop bit's.

During transmission, a stop bit is sent after a

character's data bits and parity bit, if there is one,

to signal the end of the transmitted character. Stop

bits serve to ensure that the clocks of the PC and BTS

60 systems are synchronized.

5-12

SOFTWARE DEVELOPMENT

5.3.2.6 The Input Buffer size.

I ••« SET~UP MENU »»» I
I

I NPUT SUFFER
SIZE

512 --- (I)
102. --- (2)
2048 --- (3)
1,096 --- (')
S192 --- (5)

CCIMJllI CAll ()lS PORT (,)
BALD RATE (1200)
PARITY (E)
DATA SITS (7)
STOP SITS (2)
INPUT SUFFER SIZE (2048)
OOTPUT SUFFER SIZE (2048)
DO Xon/Xoff (N)
DO CLEAR TO SEIiO (N)
DO DATA SET READY (N)

(1)
(2)
(3)
(<.)
(5)
(6)
(7)
(8)
(9)

(0)

To return to Eln menu press <ESC> key.

Fig. 5.2.6

If option (6) of the set-up utility is requested a

pop-up Input Buffer Size menu appears. This menu allows

the user to select the appropriate size for the input

buffer.

The input buffer is a temporary storage buffer for data

after it arrives over the serial port and before it is

read by the communications software. If this buffer is

not large enough, it could lead to the loss of incoming

data. The default setting for this temporary storage

buffer is set at 2048 bits.

5-13

SOFTWARE DEVELOPMENT

5.3.2.7 The output Buffer Size.

««« SET -\,fl MEliU It>>>>

ClJTPUT BUFFER
SIZE

512 •• - (I)
1024 --- (2)
2048 -.- (3)
4096 --- (4)
8192 --- (5)

taMJNI CATI OIlS PORT
SAlJl RATE
PARITY
DATA BITS
STOP BITS
INPUT BUFFER SIZE
ClJTPUT BUFFER S t ZE
DO xon/Xoff
DO CLEAR TO SEND
DO DATA SET READY

(1)
(1200)
(E)

(7)
(2)
(2048)
(2048)
(N)
(N)

(N)

(1)

(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(0)

To return to IIa i n 8ef'lU press <ESC> k.ey,

Fig. 5.2.7

If option (7) of the Set-up Utility is requested a

pop-up output BUffer Size menu appears. This menu

allows the user to select the appropriate size for the

output buffer.

The output buffer is a temporary storage buffer for

data after it is written by the communications software

and before it is sent to the serial port. If this

buffer is not large enough, it could lead to the loss

of output data. The default setting for this temporary

storage buffer is set at 2048 bits.

5-14

SOFTWARE DEVELOPMENT

5.3.2.8 Do Xon/Xoff.

DO Xon/Xoff

YES --- (1)
NO --- <2l

««« SET·UP MENU .».

COMJlU CATI OIlS pan (1)
BAll) RATE (1200)
PARITY (E)
DATA BITS (7)
STOP BITS (2)
INPUT BUffER SIZE (2D48)
ClJTPUT BUFFER SI ZE (2D48)
DO Xon/Xoff (N)
DO CLEAR TO SEIlll (N)
DO DATA SET READY (N)

I
I

(1)
(2)
(3)
(4)
(5)
(6)
(7)

(8)
(9)
(0)

I To return to _in .enJ press <ESC> key.

Fig. 5.2.8

If option (8) of the set-up Utility is requested a

pop-up Do Xon/Xoff menu appears. This menu allows the

user to specify

required.

whether Xon/Xoff handshaking is

The purpose of handshaking is to ensure correct and

complete data transfer. With the Xon/Xoff handshake

method, the PC controls the data exchange sequence by

telling the BTS 60 when it has room in its logical I/O

buffer for data and when to shut off the flow.

5-15

SOFTWARE DEVELOPMENT

5.3.2.9 Do Clear to Send.

I
I

««4f SET-UP MENU •••
I

DO CTS

YES ••• (1)
110 _•• (2)

a-JIllCATIOllS PalT (1)
BAUD RATE (1200)
PARITY (E)
DATA BITS (7)
STOP BITS (2)
IMPUT BUFFER SIZE (2048)
OJTPUT BUFFER SIZE (2048)
DO Xon/Xoff (N)
DO CLEAR TO SEMD (M)
DO DATA SET READY (M)

(1)
(2)
(3)
(4)
(5)

(6)
(7)
(B)
(9)

(0)

I To return to _in IRef"IJ press <ESC> key.

F;g. 5.2.9

If option (9) of the set-up Utility is requested a

pop-up Do Clear to Send menu appears. This menu allows

the user to specify whether or not the Clear to Send

signal is required.

The Clear to Send signal, if needed, would be an

incoming signal to the BTS 60. This signal could be

used to indicate to the BTS 60 whether the PC is ready

to accept data.

5-16

SOFTWARE DEVELOPMENT

5.3.2.10 Do Data Set Ready •

• ««. SET·UP MEMU •••

DO DSll

YES --- (1)
110 _.- (2)

COIfUj I CATl OIlS POllT (1)
BAUD RATE (1200)
PARITY (E)
DATA BITS (7)
STOP BITS (2)
INPUT BUFFER SI2E (2048)
OUTPUT BUFfER SI2E (2048)
DO Xon/Xoff (N)
DO CLEAR TO SCIill (N)
DO DATA SCT READY (N)

(1)
(2)
(3)
(4)
(5)

(6)
(1)
(8)

(9)
(D)

To return to _in IIeflU press <ESC> key.

fig. 5.2.10

If option (0) of the Set-up utility is requested a

pop-up Do Data Set Ready menu appears. This menu allows

the user to specify whether or not the Data Set Ready

signal is required.

The Data Set Ready signal, if needed, would be an

incoming signal to the PC. This signal could be used to

indicate to the PC that the BTS 60 is alive and well.

5-1.7

SOFTWARE DEVELOPMENT

5.3.3 Print Reports.

««« PRIMT MEMU~ »».

SWITCHBOAAD STATISTICS •...•. (1)

INDIVIDUAl EXTENSIONS •..•.•. (2)

TRUNK LINE REPORTS •.••..•..• (3)

AVERAGE ANSWERING TIMES (4)

ALL REPORTS •.•......•....... (5)

To return to Eln Mef'lJ press <ESC> key.

Fig. 5.3

Various detailed reports and summary reports can be

produced by using the Print Menu to provide useful,

easy to read, tabulated management reports. These

include user defined reports such as Switchboard

Statistics, Individual Extensions, Trunk Line Reports

and Average Answering Times.

Typically, the information provided becomes an

invaluable tool for management to reduce telephone

abuse and optimise business efficiency.

5-18

SOFTWARE DEVELOPMENT

5.3.3.1 Daily switchboard Statistics.

DAILY ~ITCH8OARO STATISTICS. DATE: 18/04/90

NUlber AiIo<.nt Moult Avereoe L""8"St Shortest
fi_ of Ext Answered Unanswered Duration Call Call

8 • 9 17 204 2 02:20 (237) 15:28 (239) 00:05
9 . 10 17 246 96 02:17 (229) 12:48 (231) 00:01

10 . 11 17 263 10 02:09 (235) 15:27 (252) 00:02
11 . 12 18 243 10 02:19 (244) 10:51 (251) 00:02
12 • 13 18 208 5 02:20 (242) 10:33 (252) 00:03
13 . 14 17 145 52 01:59 (237) 12:37 (234) 00:02
14 • 15 17 223 112 02:13 (235) 10:54 (253) 00:01
15 . 16 16 225 94 02:46 (235) 26:54 (238) 00:02
16 . 17 12 32 12 01:40 (239) 05:57 (251) 00:07

1789 393 02:18 26:54 00:01

Fig. 5.3.1

The "Switchboard statistics" report was designed to

offer general or global information regarding the

switchboard as a whole. This report is aimed

specifically for the use of managerial and supervisory

staff. From this report it becomes possible to pinpoint

congestion times which could result in possible lost

business. The average duration per call answered could

possibly be used as a measure of the switchboard's

efficiency. It also highlights lengthy and time-wasting

incoming calls as well as which extensions answered

tb.em.

5-19

SOFTWARE DEVELOPMENT

5.3.3.2 Individual Extensions.

EXTENSIOI/ : 228 Date: 18/04/90

Aiool.nt Total Average Idle Longest Shortest
n_ Answered Duration Duration Ti_ call call

08:00 - 09 00 13 0:211:12 0:02:10 31:48 0:04:51 0:00:58
09:00 - 10 00 12 0:34:41 0:02:53 25:19 0:09:49 0:00:03
10:00 • 11 00 19 0:32:53 0:01:44 27:07 0:06:25 0:00:40
11:00 • 12:00 18 0:38:31 0:02:08 21:29 0:04:44 0:00:49
12:00 - 13:00 17 0:29:41 0:01 :45 30:19 0:03:55 0:00:23
13:00 - 14:00 3 0:16:21 0:05:27 43:39 0:08:50 0:00:03
14:00 - 15:00 20 0:38: 17 0:01:55 21 :43 0:09:30 0:00: 16
15:00 - 16:00 16 0:47:04 0:02:56 12:56 0:07:54 0:00:39
16:00 - 17:00 4 0: 10:35 0:02:39 49:25 0:05:14 0:01:05

122 4:36: 15 0:02: 16 0:09:49 0:00:03

fig. 5.3.2

The "Individual Extensions" report was designed to

present to the user a report on the hourly and daily

performance of each extension. This allows the

supervisory staff as well as the operators the

opportunity to compare the various extensions. If

utilized correctly, this could form the basis for

healthy competition amongst the operators manning the

switchboard. This in turn would create greater staff

efficiency and productivity which will reduce customer

frustration and improve the company's image.

5-20

SOFTWARE DEVELOPMENT

5.3.3.3 Trunk Line Reports.

TRlJNj(LINE : DATE: 18/04/90

Aoltult Duration Aoltult Duration total Duration
Ti.e Answered ~ied unanswered ~;ed ~;ed

08:00 - 09 00 27 0:45:59 1 0:00:13 0:46:12
09:00 • 10 00 13 0:50:02 5 0:04:59 0:55:01
10:00 - 11 00 22 0:51:14 1 0:00:47 0:52:01
11:00 - 1200 19 0:52:28 3 0:01:27 0:53:55
12:00 • 13:00 21 0:46:03 0 0:00:00 0:46:03
13:00 - 14:00 20 0:42:32 4 0:02:37 0:45:09
14:00 • 15:00 17 0:41:53 10 0: 11:06 0:52:59
15:00 - 16:00 16 0:47:35 6 0:06:53 0:54:28
16:00 - 17:00 3 0:09:18 0 0:00:00 0:09: 18

158 6:27:04 30 0:28:02 6:55 :06

Fig. 5.3.3

The "Trunk Line" reports indicate to what extent the

various trunk lines have been utilized. It offers

information pertaining to the duration for which the

line is occupied, due to both answered as well as

unanswered calls. These figures could be of great

importance when having to decide whether the number of

incoming lines serving the switchboard are sufficient.

This report can also be used to locate faulty exchange

lines.

5-21

SOFTWARE DEVELOPMENT

5.3.3.4 Averaqe Answerinq Times.

AVERAGE DAilY AliSWERING TINES. DATE: 18/04/90

EXTENSIllII

228
229
230
231
232
233
234
235
236
237
238
239
242
243
244
251
252
253

l'otal

AMOONT AliSWERED AVERAGE RINGING TINE

122 0:00:27
130 0:00:21
119 0:00:19
60 0:00:20

112 0:00:29
127 0:00:30
133 0:00:31

98 0:00:21
22 0:00:17
92 0:00:21
75 0:00:32
1~ 0:00:22
106 0:00:15
106 0:00:18
104 O:OO:U
85 0:00:16

109 0:00:17
84 0:00:25

1789 0:00:23

Fig. 5.3.4

AVERAGE Sl'EECH TINE

0:02: 16
0:02:33
0:02:36
0:02:07
0:02:01
0:01 :44
0:01 :55
0:03:06
0:01:46
0:03:15
0:02:01
0:02:20
0:01 :58
0:02:24
0:02:01
0:02:24
0:02:34
0:02:00
0:02:18

The "Average Answering Times" report was designed to

indicate the efficiency of the switchboard. It offers

the user information on the average ringing and speech

times per call. This information is useful when trying

to enhance your company's image to callers.

5.3.3.5 All Reports.

This option combines all the above reports into one

report for possible archiving purposes.

5-22

SOFTWARE DEVELOPMENT

5.3.3.6 Printer Error.

««« PR 1NT MENU. »_

SWITCH BOARD STATISTICS ----- (1)

INDIVIDUAl EXTENSIONS ------- (2)

««. PRINTER ERROR = P~inter not ready ...

AVERAGE ANSWERING TIMES ----- (4)

All REPORTS ----------------- (5)

To return to lRai" menu press <ESC>' key.

Fig. 5.3.5

When a report from the Print Menu is selected by the

user to be printed it is important to establish whether

the connected printer is correctly initialized.

If there is any problem in communicating with the

printer it is pointless to process the relevant data

for the report. ThUS, if there is any problem with the

printer, a "Printer Error" window opens over the Print

Menu to indicate that there is a problem and the

program returns to the Main Menu.

5-23

SOFTWARE DEVELOPMENT

5.3.3.7 Processinq Data for Printed Report.

««« PiU NT MENU. • ••

SWITCH BOARD STATISTICS ----- (1)

««« ~OCESSIMG DAtA fOR PRINTED REPORT ••••

18/04/90 08:04 + 243 00:00:07 00:02:42 12

All REPORTS -------- •• ------- (5)

To return to lISin IDE:fl.l press <ESC> key.

Fig. 5.3.6

On selecting any of the available reports to be printed

from the Print Menu, the data in the database has to be

processed.

While the data is being processed a "Processing Data

for Printed Report" window opens over the Print Menu.

This indicates to the user that the system is not

inactive, but is in fact processing data. Once the data

has been processed it is dumped to the printer and the

program returns to the Main Menu.

5-24

SOFTWARE DEVELOPMENT

5.3.4 system Date and Time.

The system date and time is obtained from the PC's

internal clock. This date and time is of the utmost

importance as the program relies on this information

for triggering various procedures. To display the

system date and time, select the "System Date and Time"

option from the Main Menu. On selecting this option the

following menu appears (See Fig. 5.4.1).

«.: SYSTEM DATE &: TIME. »»

Today is: Tuesday 51 7/1991

Change the date? (TIN)

To return to _in IIenll press <Est> k.ey.

Fig. 5.4.1

This menu displays the system date and prompts the user

to change the date. If the user decides to change the

date the following menu will appear (See Fig. 5.4.2).

5-25

SOFTWARE DEVELOPMENT

cc SYSTEM DATE" TIME...

Enter new .-nth (1-12) :

Enter new day (1-31) :

Enter new year (1980-2099) :

To return to _in EBJ press <Est> key.

fig. 5.4.2

This menu allows the user to change the system date

from the keyboard.

The date should be entered according to the following

criteria:

month must be 1 or 2 integers from 1 to 12.

day ---- must be 1 or 2 integers from 1 to 31.

year --- must be 4 digits from 1980 to 2099.

If an improper date is entered, the date will be

ignored and the original date retained. If a valid date

is entered the new date is accepted and the following

menu appears (see Fig. 5.4.3).

5-26

SOFTWARE DEVELOPMENT

_ SYSTEM DATE r. TIME. _

The ti~ is: 10: 8:54

CIlan;e the ti.. ? <rIM)

To return to Ma j n IIef'lU press <Est> key.

Fig. 5.4.3

This menu displays the system time and prompts the user

to change the time. The time is displayed as hours,

minutes and seconds in the 24-hour clock format.

If the user decides not to change the system

program will exit the "System Date and Time"

return to the Main Menu.

time, the

menu and

If the user chooses to change the time, the following

menu will appear (See Fig. 5.4.4).

5-27

SOFTWARE DEVELOPMENT

•• SYSTEM DATE i. TIME..)to»

Enter new hour (0-23) :

Enter new .inute (0-59)

Enter new second (0-59)

To return to ~in ~ press <ESC> key.

Fig. 5.4.4

This menu allows the user to change the system time

from the keyboard.

The time should be entered according to the following

criteria.

hour ---- must be 1 or 2 integers from 0 to 23.

minute must be 1 or 2 integers from 0 to 59.

second must be 1 or 2 integers from 0 to 59.

If an invalid time is entered the time will be ignored

and the original time retained. If a valid time is

entered the new time is accepted and the program

returns to the Main Menu.

5-28

SOFTWARE DEVELOPMENT

5.3.5 Office Lay-out and Extension Numbers.

FROHT
OF

OFFICE

To return to tIain .enJ press <ESC> key.

Fig. 5.5

The "Office Lay-out and Extension Numbers" screen was

designed exclusively for the supervisory staff. The aim

of this screen is to assist the supervisor in locating

a specific extension and operator. This could be

advantageous when analysing, for example, the

Individual Extensions report.

5-29

buffer, of a

signals. This

While the user

or processing

SOFTWARE DEVELOPMENT

5.3.6 Quit.

The Quit option simply terminates the program Monitor

and returns the user to the PC's operating system.

5.4 Archiving.

The BTS 60 system resets its parameters at midnight and

this triggers the Monitor software to take care of the

necessary archiving.

The archiving is done in two ways, viz. to a disk file

that is appended each day and as a hardcopy print-out

of all the reports. Once the daily data has been

archived to its archive disk file, the daily data

captured is cleared and a disk file is prepared for the

next day's data. The archiving to a disk file has been

designed in such a way as to handle one years

accumulated data in less than 10 Mbytes of disk

space.

5.5 Handshaking.

"Monitor" utilizes the BTS 60's internal

100 calls, by means of handshaking

ensures that incoming data is not lost

is selecting menus, printing reports

data.

5-30

SOFTWARE DEVELOPMENT

5.6 Program. Flowcharts and Listinq.

The program flowcharts and listinqs are detailed in

Appendices Band C respectively.

5-31

6 PROBLEMS ENCOUNTERED.

The major problem encountered throughout the duration

of this project concerned the lack of computer literacy

experienced amongst the Account Enquiry staff.

Due to this problem it was extremely difficult to

establish exactly what information the section as a

whole required. To overcome this problem one had to

present them with fictitious information and ideas to

prompt some kind of a reaction from them. This was done

to great effect.

During the feasibility study and system analysis stages

of this project great difficulty was found in acquiring

general information regarding telephone management

information systems. This was due to the lack of

literature available on the subject and the reluctance

of private companies to assist in acquiring such

information. Most of the private companies that were

approached by means of pre-arranged interviews or

telephonic discussions were extremely willing to assist

until they established that the proposed project was

for the Department of Posts and Telecommunications.

6-1

PROBLEMS ENCOUNTERED

On completion of the project a problem was experienced

in trying to persuade the users of the management

information system, be they managerial, supervisory or

operational users, to see this system as a management

tool rather than as a type of "watch dog".

TO achieve this, one had to promote a new and more

flexible management structure that would make use of

management tools to provide a more efficient and

productive Account Enquiry section. This was done to a

large extent by constantly marketing the system at

every available opportunity as an excellent management

tool without which proper decision making is

impossible.

6-2

7. FUTURE ENHANCEMENTS.

Software development by nature is an on-going process

that is susceptible to future enhancements and the

software written for this project is no different. The

following possible enhancements could be taken care of

in future versions of the system software.

- Dynamically changing the software.

- Monthly and quarterly generated reporting.

- Graphical representation of information.

- Dynamical report generation.

7.1 Dynamically Changing the Software.

The system software can be expanded to facilitate the

dynamic re-structuring necessary for this program to be

able to interface with future BTS systems, such as the

BTS 128, without having to access the source code of

the program.

7.2 Monthly and Quarterly Generated Reporting.

At present ~~e software only caters for daily reporting

that indicates the hourly performance of the

switchboard, operators, trunk lines, etc.

7-~

Given the necessary time and data, the software could

be updated to produce monthly or even quarterly reports

to assist the Account Enquiry section even further in

their quest to improve the service they are rendering

to the telephone-using pUblic.

7. 3 Graphical representation of information.

sometimes, instead of seeing information in a tabUlar

format, one may want to see information displ~yed in

ways that will make the results easier to interpret.

Graphs make it easy to visualize information for the

following reasons.

- One can see trends.

- One can make comparisons.

- One can analyse relationships.

Once the telephone management information system

designed in this proj ect has taken off and is being

utilized as a management tool, the software could be

revised to incorporate graphs as well.

7-2

FUTURE ENHANCEMENTS

7.4 Dynamic report generation.

All the reports that are created with the aid of the

management information system are created by default. A

future enhancement to the system would be to allow the

users to dynamically change these default settings to

cater for each users personal requirements.

7-3

8 CONCLUSION.

The data logging and monitoring system that was

designed, developed and built for this project,

significantly surpasses the original requirements as

laid down by the Department of Posts and

Communications. This, to a large extent, is due to the

enormous amount of research that went into the

designing and development of management information

systems in general.

The success of this particular information system is

influenced by a number of factors. The major factor

being that the software is designed to be extremely

user friendly and user tolerant, without detracting

from its flexibility.

The time and effort spent on designing and developing

this project has lead to the implemention of an

exceptionally effective and practical management tool.

The need for such a management information tool in the

Department of Posts and Telecommunications does not end

at the Account Enquiry section as various other

sections have the need for management information.

8-l

CONCLUSION

The experience and knowledge gained by undertaking this

project has greatly enriched each and every individual

that took part in it. This experience and knowledge

gained will contribute significantly to the success of

future projects.

There is no doubt that this project will play an

influential part in a more efficient and effective

service being presented by the Account Enquiry section

and the Department of Posts and Telecommunications as a

whole.

8-2

9 BIBLIOGRAPHY.

Earnes, Ralph M. 1980. Motion and Time study Desiqn and

Measurement of Work Seventh Edition. John Wiley & Sons,

Inc.

Borland International. Turbo Pascal 4.0 IBM Version.

Borland International, Inc.

Borland International. Turbo Pascal Reference Manual.

Borland International. Inc.

Gibson,

Behavior

Ivancevich, Donnelly. 1985. organizations

structure Processes Fifth Edition.

Business Publications, Inc.

Hergert, Douglas. Mastering Turbo Pascal 5. Sybex.

Hunt, Gary T. 1980. Communication skills in the

organization. Prentice-Hall, Inc.

Intersil. 1983. Rot Ideas in eKOS. Intersil, Inc.

National semiconductor Corporation. 1984. eKOS

Databook. Santa Clara.

9-1

BIBLIOGRAPHY

National Semiconductor Corporation. 1988. CHOS Loqic

Databook. Santa Clara.

O'Brien. 1985. computers in Business Kanaqement Fourth

Edition. Irwin, Inc.

9-2

APPENDIX A

Hardware Version 1.0

Schematic Diagram.

I'J--- -------- rHlI f------------
U1F I J'___________________ VD _

JJ'-l-r---~--------- - --' --- ------r- j~~7";~ I C3
D~ '----- M__

n

• lL--L l_"":"1'''::1""'. =I_I '00,.

>
I

I-'

A. M. Z.~
- POWER SUf'PY

~ Dl"lft:1 oned by:

~ ~_C

"'9LN~E_~v

J.
:1 C?J:1 !19U~i!l!"o.!',,-L _

~

~
H
><
>

2.2uF/25QV

4

:r­
I

'"

47uF/2riV

"OK !(L
vcco---~_-1-- -~-

nES CAP

___~J.

-- !(~±-------} --------::,;;" r--:J~-TELrVllt~;~E -- CAP RES _ _ _ DIODE - - ~~ GPTD ISOLATOR RES~-
LI"E ,,,<1.,, 'OK

~
D>_1'/__ ~_______ _ __

- ------. 1-.-~~n rfJ:bor;: .~?
.Ic_ vcc

g

OUTPUT
o I"-~--­
if

t RINGING DETECTION CIRCUIT
_ __Ql!..'lJ..\]D:!!_d 13V· A '1....._L...Ji0LNAB _

S1~]~ncument Number' rLV
_ ~ JfitJ,~..!!lllbp.r ~Q----L'l~!HU~t 2- of 4

~

~
t:I
H
><
:r-

s.=.._ __

I c
~c

>

A-3

i

i!1.--

I

APPENDIX A

:.<
I.'

ell;I! _
2:)'----
;-'1 }-...,.....--.
<4 ,,--'--'---
e)-~"-,..
tl),_._-""
7)-_.

INIJIJl
",nOM
OECI1()EI~

UfA

[>
7407

1[> a
/40"'
IllA

11.'''-- "///-"·---1
7""0"'
U:lA I_. 1 [> .. I--~=------------ ...• -----

Lt> .~ m-=r::~~3~~I~~ a-
'407 I I 1-----IHA . --.

[>

I-SEGMENT

, -~--~---

7.o10l

_11~~ "./ -'"--
"7407

DISPLAYS

r ~-i _

7407

__~-L-
7407
U2A

I ~ I' I

7407

IlIJl,I" tJl) nCtilflTnn8

1-- ---
t 1 ;~v

LLLJJ_L;

7-9EOMENT DISPLAY CII1CUrT
_____.n~~np.r1 hy· At Ht Z ':1.QLNA..H ~=_

hi~~~m~nt Number

_.n~!.J!:__J:ill..'!!tffi9_~.c.......go 901 She.£t .01 Clf

?;;
"d
I:'J
Z
Cl
H
~

:r>

APPENDIX B

Software Version 1.0

Program Flowcharts.

CATURHIG OF INC()I.IING DATA FR(»II THE 81S.

BEGIN

DEFINE
VARIABLES

PREPARE
DISK FILE
FOR DATA

SET UP
CC><>lU'rCATlOH

PAIW4ETERS

INITIALIZE
SERIAL PORT

IS SERIAL?~
PORT R.EADY?

YES

HONITOR
SERIAL PClRT

FOR DATA

NO IS DATA IAVAILABLE
AT PORT'?

I YES

I
, i ~.AN r~L.ATE II I THE INCCl'fIIlIG \
I j OHA
I

.
I STORE DATA II Ta DISK

I
FILE I

~I'----I I
O!SPL.AT I '

::lATA OH THE I
,-__'_~rU l ,

I
r,.-----"\ I
, EltO -......-J
\. i

B-1

APPENDIX B

MAIN MENU INTERFACE TO THE USER.

BEGIN

DISPLAY
MAIN MENU

MlllHTOll
KEYBOARD

FOIl INPUTS

APPENDIX B

DISPLAY
OFFICE
LAY-OUT

CCJ+I/S
SET-UP
UTIL!TY

YES

YES

YESPRINTH REPORT'S

1\ I,....,_UT_IL_IT_Y~
DATE AND

TI ME Io-----{
UTILITY

B-2

\.
EXIT TO

CflERAT! IlIG
SY$TEJIl

SET-UP UTILITY FOR CCH'IUNlCATION PORT.

(BEGIN

DISPLAY UPDATE
SET-UP ca4M'S

UTI LI TY ~ENU PARAMETERS

HONITOIl INITIALIZE
KEYBOARD FOIl CCJIl!'$ PORT

USER INPUT

~~SAKEY~ NO IS SERIAL?~
BEEN PORT READY?

PRESSED?

~ISTHED~ RETURN TO
)(EY PRESSED MAIN ~EHU

VALID?

I
YES IS A CCMI'S NO

PARAl4ETER
SELECTED?

I

1
I DISPLAY I
I RE:.EV),ifr I

POP- UP >!E;;(J

HONITOIl
KEYBOARD FOR

USER lIIPUT

I

APPENDIX B

YES

B-3

PRINT REPORTS UTILITY.

DISPLAY
PRINT MENU

MOIHTOR
lCEYBOAAIl

CHECl(
PROHER:
STATUS

APPENDIX B

YES IS
PRINTER
READY?

PROCESS DATA
FOR REPORT

SELECTED

1
PR!NT

REPORT
SELECTED

PRIIHER
ERROR

MESSAGE

I1-------'
RET'Jli(l,j TO
!'tA rIII "'fNU

B-4

SYSTEM DATE AHO TIME UTILITY.

(BEGIN

DISPLAY DISPLAY
SYSTEH DATE SYSTEH T1HE

HOIiITOll HQIj !TOll
KEYBOARD FOIl I(F(BQAJlD FOIl

USER INPUT USER INPUT

~~SAm~ ~~SAI(F(~BEEN BEEN
PRESSED? PRESSED?

~ IS THE NO A ISTHED~KEY PRESSED KEY PRESSED
VALIO? VALID?

I
1

~ HUST THE NO ~HUSTTHE ~DATE BE TIME BE
CHANGED? CHANGED?

.
I DISPLAY THE I DISPLAY THE! "'EIoiU TO I MENU TO

I CHA)fGC DATE I CHAWGE TIME
I I

1

i HOIi!TOll HQIj !TOllI KEYBOARD FOIl l(EYBQAJlD FOIl
I! USER INPUT USER INPUT

I II ! VALIDATE VALIDATE
USER r/ll?lJi USER INPUT

B-5

APPENDIX B

BTS 60 SYSTE~ RESET AT ~IDNIGHT.

BEGIN

HON!TOll FOll
BTS SYST~

RESET

CHECl(THE
PRINTER
STATUS

PROCESS DATA
FOR ARCHIVE
RE~TS

RESET DAllY
FILE FOll
NEW DATA

1
RESET

S'l"STEJI!
VARIASLES

il:ETJR!rII TO
~IIii MENU

B-6

APPENDIX B

APPENDIX C

Software Version 1.0

Program Listing.

(*----------._----------._------------_ ---_ _----_ -----------*)
(* THIS PROGRAM IS DESIGNED TO CAPTURE DATA FROM THE BTS TELEP~E SYSTEM *)
(* AND MANIPULATE THIS DATA INTO MEANINGFUL INFORIIATIOlI. *)
(* *)
(* Written by: A< M. 2. Molnar Version 1.0 *)
(* *)
(* Dated: Novemer. 1991 *)
(* *)
(*.----------------------------------_ ---_ ~---------._---------*)

prograll Mooi torBTS;

string[8J;
integer;
char;

string[8];
string[6];
string(3] :

=string[201;
= string[B01;
= string [8];
= string[10];
= record

Date
TiE
Ext
ROur,
COur
Ln
Re<:

end;

(*SI GLOBTYPE.GLO *)
(*SI ASCII.GLO *)

type str20
suBO
str8
str10
STSOata

Arcl1

AExt
ALn
ALna

record
Ext
Ln
Una
Oat

end;

= array[22Q ..270,1•. 16,1..5] of real;
= array[1 ..30,7•. 16.1 ••3J of real;
= array[1 ..30.7•. 16,1 .. 2J of real:

AExt;
ALn;
ALna;
str8;

(6,7,8,9,10,11,12,13,14,15);
(17,18,19) ;
(8,9,10,11,12,13,14,15);
(17,18,19);
(16) ;
(16) ;

(6,7>;
('SU'ldayl ,'Monday', 'Tuesdayl,

'w.eei'lesday I , I Thursdayl ,
'Friday',ISaturday');

file of BtsData;
btsOata;
file of Arch;
Arch;
Text;
char;
str80;
string(2J ;
stri rig [2] ;
real;
IWTEGER.;
INTEGER;
CHAR;
INTEGER;
INTEGER;
array[1 ..50J of integer;
AExt;
ALn;
ALna;
arrayf7.. 16J of reat;
array[1..255J of integer;

srrsy(227•• 2361 of integer =
array [247•. 2491 of integer
array[237.. 244] of integer
array[2S1..2S3] of integer
array[245 •• 245] of integer =
array(246•• 246] of integer =
array(225 .. 226] of integer
arrayrO••6] of string[9] =

const U ght1
Light2
Light3
Light4
lightS
Li ght6
Light7
Days

var
Fit
Oata
ArchFil
Arci'IData
F
et
ctstr
FString
SString
TotROui,Z
BaodJ<ate
CaII]ort
Parity
Data Sits
Stop:Sits
Point
InfoExt
Infaln
IntOUna
C.cu1tExt
Flag

C-l

APPENDIX C

R,S,T integer;
Exten,Ti. integer;
Dat~ string[8];
Err,I,J integer;
X,Y integer:
Stop booleen;
,lns,Unans integer;
Raat,Noc integer:
CP ,BR,SB,OB integer;
IBS,oeS integer;
PR.,XX,HW char;
CTS,0S$!: char;
YesNo,Blank. bootean:
Hour ,Min, sec,Month,Day,Year ,weekDay integer;
ChangeTil8e,ChangeDate : char;
InBufSi ze INTEGER;
OUtBufSize INTEGER;
Do XonXoff CHAR;
Do-HarcIJired: CHAR;
00-CT5 CKAR;
Do)SR CHAR;

(*$1 PlBASYNC.GLO *)
(*$1 PlSASYN1.MOD *)
(*$1 PlBASYN2.MOO *)
(*$1 PIBASYN3.MOO *)
(*$1 NEIlU.MOD *)
(*$1 PRINT.MOD *)
(*$1 GHTIME.PAS *)
(*$1 SETTlME.PAS *)
(*SI GETDATE.PAS *)
(*$1 SETDATE.PAS *)

(*----------~--_.)

fll'lCtion Exist: boolean;

('" This fLnCtion is used to establish the existence of any file. *)

begin (* Exist *,
{SI -}
reset(ArcnFi l);
{$I+}
Exist := IOResult = 0;

end; (* Exist *)

(* DiSK file is prepared for processing. *)

(* If file exist, the boolean variable *)
(* will be true. *)

(*--*)

(* This proced..tre is used to print the necessary daily reports as welL as *)
(. take care of the archiving facility. *)

begin (* Archive *)
Async_C lose(true);
ass i gn{ArcnF it •• C:\TP\OATA \ YEAR .OTA I)

(. Ass
(. var

if Exist (*
then

reset(ArchFi t}

else
rewrite(ArchFil);

GetPrintInfo;
TestPri nter('fes.No);
if Yes)lc

ther.
begin

!l5r i te(ls t ,127#67#33);
jlljanRep;
ExtRep;

gn the fi le path and r.-e to
able nate.
Test to see if fi le exists.

the *)
*)
*)

C-2

APPENDIX C

*)

*)
*)
*)
*)

Set archive 'VariabLes.

wd te(ArchFi L,ArchData);
rewriteCFi l);
closeCArchFi l);

lAlep;
end;

ArchData.Ext := InfoExt; C*
ArchOeta.ln := Infoln; (*

ArchOata.una := Inf0Un2; (*
ArchData.Dat := Data.Date; (*
seek(ArchFil.fiLesizeCArchFil»;

(* FiLe pointer is set to end of file••)
(* ~rite data to date fiLe. *)
(* Disk file is prepared for processing. *)
(* The disk file is closed and the disk *)
(* directory is updated. *)

if (not Async_Open(C~_Port,Baud_Rate,Parity,Dat._Bits,Stop_Bits»

(* Try opening the serial port.
th..,

writeLnC'C8nnot open serial port. l
)

(* Serial port can't ~icate due to *)
(* incorrect para.eters. *)

Datu. := Data.Date;
Ans := 0;
Unans := 0;
SetSottOll'L i ne;

end; (W Archive *)

else
writeln(ISerial port opened. I);

(* Serial port is ready to cORRUnicate. *)
(~ *)
(* Reset program variables. *)
(* *)

(W W)

proceO.lre LightOo;

(* This procedure is used to indicate which extensions are b.Jsy. W)

var ",Ill integer;

ReverseVideo(true);
val (Oata. Ex! ,M. Err);

begin (* L ightCln *)

windowC1,1,8O,25); (* set size of required work area to the W)
(* whole screen. *)

begin
N := Light' [Ml; (* Oete~ine position of extensi on *)

(* to be highl ighted. *)
gotoXY<3,N);

end;
begin

N := Light2 [Ml; (* Dete~ine position of exten5 ion *)
(* to be highl ighted. *)

gotoXY(3,1tt);
end;
begin

N := Light300; (" Deter-ioe position of extension *)
(" to be highlighted. *)

gotoXY<76.N);
end;
begin

N := Light40<l; (* Determine position of extensi on *)
(* to be night ighted. ")

gotoXY<76,1IIi);
end;
begin

N := lightS [Ml; (" Deter-ioe position of extensiCKl ")
(" to be highl ighted. *)

gotoX,({3,ill);
end;
oegin

N := Light60<J; (" Cete~ine position of extension *)
(* to be nighl ighted. ")

gotOXY<76,N);

*)
*)
*)

(* Make the variable Mequal to the
CW integer vaLue of Data.E~t

(* (E~tension ~r).

237•• 244

246 .. 246

251. .253

247.• 249

245 .• 245

case M of
227•• 236

C-3

APPENDIX C

end; C* Li ghtOn *)

(* Set the size of the required work *)
(* area. *)

gotCiXY (76, N);
end',

end: (* case .)
write(M);
ReverseVideo(false)i
window(11, 16,70,21);

225 •• 226
end;
begin

N := Light700; (*
(*

Deter-ine position of extension
to be highlighted.

*)
*)

proceciJre LightOffi

(* This procedJre is used to indicate which extensions are not busy. *)

var M, • : integer;

(* Set size of required work area to the *)
(* whole screen. .)

begin (* LightOff *)
window(1,1,8O,25);

ReverseYideo(false);
val(Data.Ext,M,Err); (* Make the variable Mequal to the

(* integer value of Oata.Ext
(* (Extension number).

*)
*)
*)

case" of
227•• 236 begin

N := li ght' [M]; (* Oete~ine position of extension *)
(* to be highl ighted. *)

gotoXY(3,N);
end;

247 .• 249 begin
N := light2[M]; (* Dete~ine position of extension *)

(* to be highlighted. *)
gotoXY(3, N];

end;
237•• 244 begin

N := light3[M]; (* Det~ine position of extension *)
(* to be highlighted. *)

gotoXY(76.N);
end;

251. .253 begin
N := light4[M]; (* Dete~ine position of extension *)

(* to be highlighted. *)
gotoXY(76,N);

end;
245 begin

N := light5[M]; (* Dete~;ne position of extension *)
(* to be highl ighted. *)

gotoXY (3, N);
end;

246 begin
N := light6[M]; (* Oete~;ne position of extension .)

(* to be highl ighted. .)
gotoXY(76,N);

erxi;
225 •• 226 begin

N := light7[M]; (* Oetenaine position of extension *)
(. to be highl ighted. .)

gotCXY(76,W);
en:l;

end; (* case *)
loiri te{M);
.inOow(11,16,7O,21); (* Set the size of the required work .)

(" area. *)
end; (* LightOff .)

C-4

APPENDIX C

(~ This procedure is used to obtain all the reLe't'ar1t per_ters necessary *)
(* for c~icetions. *)

var yestio : CHAR;

begin (* Get_Cc.I_Par_ *)

COlI Port := CP;
Baud Rate := BR;
Parity := PR;
Data Bits := OS;
Stop=Sits :: SS;
J~Size := ISS;
OUtBufSize := OBS;
Do XonXoff := XX;
Oo-CTS := CTS;
Do-OSR := OSR;
Do-HaniHred := !tW;

en:j (* Get_C<:.a_ParaMS *);

(* ...,ich port. e.;., 1 for aJl1: *)
(* Bad rate for COI'W"teCtion. e.g., 1200 *)
(* Parity, e.g., E for eowen parity *)
(* How --.y bits per character, e.g., 8 *)
(* How -.ny stop bits •• nearly always 1 *)
(* Size of if1JUl: buffer. *)
(* Size of output buffer. *)
(* 'Y' to do XONIXOFF flow control. *)
(* IY' to do as checking. *)
(* ·Y' to do DSR checking. *)
(* III to do H8~ired flow control. *)

(*- •••--*)
fLllCtion Initial ize_Cc.I.I'lications : bootean;

('* This tlXlCtior. is used to operl the serial port tor cOBIUlication••)

*)

*)

*)

*)
00_CT5) = IY');

set CTS checking.
Oo_OSR) = 'yl);

Set OSll checking.
00 XonXoff) = Iy').

-Set XON/XOfF to~ req.JeSt.
Do HandWired) = IY')~

set hard-wi red as use; req.JeSts.
:= 500;

:= (UpCase(
(*

:= (UpCase(
(*

:= UpCase(
(*

:= UpCase(
(*

Async_Do_OSR

Async_Do_XonXoff

begin (* Initialize_C~ications*)

(* Set half-second break. duration. *)
AS'yTlC_Init(IrBufSize, CutBufSize, 0, 0, 0);

(* let XOtri/XOFF break points default. *)
if (not Async_0pen(Ca._Port,8aud_Rate,Parity,Data_Bits,Stop_Bits»

(* Try opening the serial port. *)

then
begin

writetn('Cannot open serial port. I);
Initi8lize_C~icatjons:= false;

(* 5eril!t port canlt c~icate
(* incorrect par.eters.

cUe to *)
*)

end
else

begin
writeln('5erial port opened. I);

Initialize_C~ications := true;
(* serial port is ready to c~icate. *)

end;
end (* Initialize_Communications *);

(._-- _------------.. -----------*)
procedure GetData;

(* This procedure is used to .enipulate the data receiVed at the serial port *)
(* and to re-organize it to a .are suitable fo~t. *)

begin (* GetCata *)
if (pos('CALL LOGGING

then
besin

if Hour > 23
then

Archive;
if Hour < 1

REPORT=,Cfstr) <> 0)

(* cneck if it is _idnight.

(* Check if it is .idnight~

*)

*)

C-5

APPENDIX C

then
Archive;

end'
if (pose·paget,etstr) <> 0) then Datu. := copy(Cfstr,1,8)i

(* Check for the wrd IPagel, if fCiUld *)
(* then the ffrat eight characters of *)
(* that string will represent the date. *)

*)
*)

Updete the tie at the top of the
screen.

(* Check. each string for a ': -, if fOU"ld *)
(* then that string cootai,.. inforwltion *)

(* resarding • telOJMne erqJiry. *)
(* set • i ze of req.ai red work area to the *)

(* "'ole screen.. *)
(* Check syate- tiae. *)

windK>w(1,1,80,25);

GetTi.e(Hour,Min,5ec)i
ReverseVi deo(tMJe);
gotoXY(70 ,1);
write(Hour:2,Min:2,Sec:2)i(*

(*

if (pos(': I ,efstr) <> 0) then

ReverseVideoCfalse);
winck>w(11,16,70,21};

begin
window(1,1,80,25);

(* Set the size of the required work *)
(* area. *)

(* Set size of required work area to the *)
(*ole screen. *)

windowC11,16,70.21);

gotoXY(20,24);
wri te(DatU8); (* Update the date at the botte. of the *)

(* screen. *)
(* Set the size of the required work *)
(* area. *)

Oata.Rec := copy(Cfstr,1,1); (* Type of record. *)
Oata.Ext := copy(Cfstr,2,3); (* Number of extension answering the *)

C* call or LnanSwered call. *)

val (copyCCfstr •51, 2) .Data.Ln. Err);
C* lik.llber of line on .., i ch ca II was -.de.*)

if CData.Rec <> 1..,1)

(* Check the variable Data.Rec for a
(* • if found that string contains
C* inf~tion about 8 call being
C* WlSwered.

tnen
begin

if Data.Rec = I I

then
begin

if Data.Ext = 'Una'
C* Check the variable Data.Ext for 'Una' *)

C* • if fOU'1Cl that string contains *)
C* infOf"1Etion about a I.I"IaI'lSwered cat l. *)

then
begin

Oata.Date := Dat~;

(* The date on ii'lich the call is 1Iade. *)

Oata.Ti.e := copyCCfstr.33,5);
C* The ti-e at which the call is 1ISde. *)

Oata.RDur := copyCCfstr,40,8);
C* The ringing ti-e of the call. *)

Oat8.COur .= tOO·OO·OO'·
• (* • • R~et the speech tiE.. *)

seek(Fit, fi losi ze(Fi l»;
C* File pointer is set to end of file. *)

wd tee Fi l ,Data);
C'* Write data to data file. *)

Unans := Unans + 1;
(* liulber of f.Il8I'lSwered calls. *)

lIiindow<1,1,80.25):
(* Set size of reauired work area to tne *)
C'* whole screen. . *)

gotoXY(66,24);
wri te{li'\ans:3);

(* Upiate the rJ.III:::ler of \Z\8t'lSwered calls *)
(* at the bott~ of the screen. *)

wi~(11J16,70,21);

C-6

APPENDIX C

(* set the size of the recpJi red work. *)
(* aree. *)

end
else

if (Point[Data.ln] <> 0)
(* Cheek If th i. caLl corresponds
(* previously ~red call..

to a *)
*)

then
begin

seet(Fi l ,Point mat•• Ln]);
(* file pointer fa set to the position *)
(* iOlere the correspondi"ll onswered *)
(* data of this call il held. *)

read(Fi L,Deta):
(* Reed data frca data file. *)

Data.Date := Datu.;
(* The date a'1 lIi1ich the call is -='e. *)

Data.Ext := copy(Cfstr,2,3);
(* NUIlber of extension ans~ing the *)
(* call. .)

Oata.CCur := copy(Cfstr,40,8);
(* The speech ti~ of the call. *)

seek(Fi l,Point [Dat8.lnJ);
(* File pointer is set to the position *)
(* W1ere the correspon::ii ng answered .)
(* data of this call is held. .)

write(Fil,Data}i
(* Write data to data file. *)

seek(Fil,fitesize(Fil)};
(* file pointer is set to end of file. *)

LiglltOff;
ero;

ero
else

begin
if (Data.Rec 1*1) (* Check the variable Oata.Rec for 1*1, *)

(* if found that string contains *)
(* information about 8 transferred call~ *)

then
begin

seeK(Fi l,Point[Data.Ln);
(* File pointer is set to the position *)

(* where the corresponding answered *)
(* data of this call is held. *)

read(Fil,Oata); (* Read data fro- data file. *)
Oata.Date := Datu.;

(* The date on which the call is Ede. *)
Oata.CDur := copy(Cfstr,40,S);

(* The speech time of the call. *)
Data.Rec := '*1;

(* Indicate iIItlich extension transferred *)

(* the call. *)
seek.(Fi l,Point CData.Ln1);

(* Fi le pointer is set to the position .)
(* ~re the corresponding answered *)
(. data of this call is held. .)

.rite{Fi l,Data);

Da!a.Rec := 1_';
(* Write data to data file. *)

(* Irdicate ..,ich extension received the *)

(* transferred call ~ *)
Oata.Ext := cQpy{Cistr,2,3);

(* MuBber of extension arlSilieriMg tMo .)
,. cal l. *)

Oata.RDur := copy(Cfstr,40,8);
(* The ringing tiMe of the call. *)

seek(Fi l, fi tesize(f"i l»;
(* File pointer is set to end of fiLe. *)

Point(Data.l!U ~= file;»s<F1l).j
(* Pointer that indicates where the *)

C-7

APPENDIX C

file. *)

Write deta to data file.

(* answered part of the whole record *)
(* is stored within the data file. *)

*)
wrhe(Fil,Data);

(*

seek(Fil,filesize{Fil»;
(* Fi le pointer is set to erd of

end
else

begin
Data.Ti.e := copyCCfstr,33,5);

C* The ti_ at Wifch the call is -oe. *)
Data.RDur := copy(Cfstr,40,8);

(* The ringing ti.e of the cell. *)
Data.COUr := '00:00:00';

('* Reset the speech t i -.e. *)

PoinUData.lnJ := filepos<Fil);
(* Pointer that indicates w.ere the *)
c- answered pert of the ..note record *)
(* is stored within the data file. *)

(* Write data to data file. *)

Ans := An:s + 1;

window",1,80,25);
C* NUllber of answered celLs.
(. set size of required ~rk area to
(* ltotlole screen.

*)

the *)
*)

*)
*)

set the size of the required work
area.

gotoXY(44,24);
write(Al'ls:4); C* Update the number of unanswered calls *}

(* at the botta. of the screen. *)
wi~(1',16,70,21);

(*
(*

LightOn;
end;

end;
end;

end; (* GetData *)

(*----------~---*,

procedure Flnish_C~ications;

(* This Pf'ocedure is used to te..inate c~ication and reset the systell.•)

(*

begin (* Finlsh_C~ications *)
AS7"C_Close<true) ;

Close port and drop OTR. *)

end (* Finish_Cc....rlications *);
(* Release space allocated for buffers. *)

(*-----------------------._--------------------- ..._--_.--------------._----*)
proceciJre RightJustifyNl.Illbers2{ X, Y,Z : integer; VBr Value: integer);

(* This proceiJre is used to read f"llIItlers in frc. the keytx>ard and to *)

(* display the. on the screen right justified. *)

Lai::le l Out I 0lJt1;

"isr Sti
St2
Pass
Code

char;
string[2] ;
boolean;
integer;

begin (* RightJustifyNumbers2 *)
gotoXY{X, Y};
St2 := 11;

repeat
out:
read(Kbd.5t1); (.
pass := (St1 in[*"8 .•15n); (*

Read keyboard character pressed.
Check tor l"I.a!r1 c keys onl y.

*)
*)

C-s

If not Pass
then

if St1 = 113 (*
then

gato 0Ut1
else

gato out;
St2 := St2 + St1;
GotoXY(X-Z,Y);
Write<StZ:Z);
0Ut1:

t.rlti l St1 = #13;
val(St2,Value,Code);

end; (* RightJustif....u0bers2 *)

Check for enter key.

APPENDIX C

*)

(*••• _---------_._ ••••• ------------------_ •••••••••••• _••• _••• _-------------*)

procedure RightJustifytrilulbers4(X,Y,Z : integer; var Value: integer);

(* This procedure is used to reed runbers in fro. the keyboard ard to *)

(* display the- on the screen right justified. *)

Label ~t,OUt1;

Var St1
St4
Pass
Code

char;
string[41;
boolean;
integer;

begin (* RightJustifytrh.lli:Jers4 *)

gotoXY(X, Y);
St4 := I I;

repeat
out:
read(Kbd,St1); (*
pass := (St1 in[j48 •• l5n); (*

I f not Pass
then

if St1 = '13 (*
then

goto ~t1

else
goto OUt;

St4 := St4 + St1;
GotoXY(X-Z. Y);
Write(St4:Z);
~t1:

~ti l St1 = .13;
val(St4,Value,Code);

end; (* RightJustifyNUItlers4 *)

Read keyboard character pressed.
Check for I"IUDeric keys only.

Checl(for enter key.

*)

*)

*)

procedure SysOateTi.e;

(* This procedure is used to check and change the syste- dete and tiE. *)

label Juop1,Ju0p2;

var en char;
Value: integer;

begin (11' SysOateTiJRe *)J_,:
MEn£Jut:L i ne;
got~'f(28.4);

write(1.« SYSTEM DATE & THE. :»»1);
repeat

wi ndow(S , 7,75, 17); ('It

(*
clrscr;
GetOate<Month ,Day. Year. WeekDay);

Set the size of the reqJired work
area.

*)
*)

C-9

APPENDIX C

•,Days _ay] :9,Month:5, '/' ,Day:2, '/',Year:4,' I');

*)

*)

*)
*)

*)

*)

*)

*)

I');

I');
I');

I');

rum the cursor M.

Tum the cursor on.

Turn the cursor off.

I) ;

I) ;

Check. for escape seq.JenCe.

I');

I');

I');

(Y/N)

(*

I, Hour:4# I: I ,M1n:2, I: I ,5«:2, I

~ the date 7

if (ChangeTitll! = 'll)
then

begin
clrscr;
gotoXY(20,4)i
write<IEnter new hour (0-24) : f);
getoXY(20,6);
write< I Enter new airAlte (0-60)
getoXY(20,8);
write< 'Enter new second (0-60)
llOtoXY(43,4J;
OJrsorOn(true); c-
RightJusti~(46#4,2,Hour);

llOtoXY(17,3);..riteln('.~ .');

llOtoXY(17j4);
writeLn(1
llOtoXY(175);
writeln< If Today is
llOtoXY(17,6);
writeLn< 'I
llOtoXY(17,7);
writeln(I1
llOtoXY(17,8);
writeln<'1 I');
llOtoXY(17!..,9.)~; _
wri teln(•• I):

reed(Kbd,Chllllll"Oate); (* Read keyboard character pressed.
Changel)ate := upcase<ChangeDate);

(* Make sure VIIrillble is in ~r case. *)
C* Check for the character 'yl. *)if (ChangeDate = Iy')

then
begin

clrscr;
llOtoXY(20,4);
writeln('Enter new .cnth (1-12) : I};
llOtoXY(20,6);
writeln< 'Enter new day (1-31) : I);
llOtoXY(20,8);
writeln('Enter new year (1980-2099) : I);

getoXY(47,4);
Ct.lrsorOn(true): (*
Ri;htJustityNuobers2(47,4,2,Honth);
RightJustifyNu.eers2(45,6,2,Oay);
RightJusti~s4(53,8,4,Year);

CursonDn(false)i (*
5etDate(Month,Day,Year);

end;
tilt; l (ChangeOate <> Iyl);

if ChangeDato = 1127
ther

ge t e JYllp2;
repeat

drscr;
GetTi.e(Hour,Min,5ee);
getoXY<23,3);

writeln('!.l,~----------I);llOtoXY(23,4);
wri teln(1I
getoXY(23,5);
writeln(11 The ti.e is
getoXY(23,6);
writeln(11
getoXY(23,7l;
writeln<'1 Change the ti.. ? (Y/N)
gotoXY(23,S):
writeLn('1 I');
getoXY(23.~,9.).; _
writeln(l. I);

readUbd.,ChangeTi.e); (* Read k.eyboard character pressed.
ChangeTi.. := upcase< ChangeT i..);

(* Make sure variable is in upper case.
(* ChecK for the character Ill.

C-IO

APPENDIX C

(* set size of required work area to the *)
(* lIitole acf"eer1.. *)

*)
*)

*)

*)Turn the cursor off.

Check fOt' escape seqJenCe.

Request serfal port pera-eters.
Initialize serial port.

(*

C*

(*

RightJustifyMUBbers2(48,6,2,Min)i
RightJustifyNu.bers2(48,8,2,5ec);
CurSOrOn< fa lse); (*
setTi-e<Hour,Min,Sec);

end"
U"'Itil (Ch~Ti_ <> 'Y·);
if Chan;eTi.. = 1/27

then
~tQ ...;

•...,z:
Get cc- Para-;;
if Initial ize_~iC8tions

then
begin
wi~1,1,80,25);

Clrscr;
Mairi4enU;
set80ttOlllll. ine;
window(11,16,70,21); (* set the size of the required work *)

(* area. *)

gotoXY(X,1);
end

else
goto JlIllP1;

end; (* SysDateTi-e .)

(*--------------------._---------~--------.. __ .. -------._--------------------*)

procedure Setl.p;

(* This procea.Jre .ekes it possible to set-"",,, the C~iC8tions paralheters. *)

var Ch : char;

begin (* Setup *)
X := whereX; (* Store the X-coordinate of the current *)

(* cursor position. *)._1:
Men.£k.lt line;
gotoXY(31,4)i
write(1««. $CT-UP MENU »»»1);

repeat
window(22,7,70,18); C*

(*
Set the size of the required work
area.

*)
*)

gatClXY(1.2);
writeln('COMMUNICATIONS PORT (',CP:4,') (1)1);
writetn('SAUO RATE (',BR:4. ') (2)1):
writeln('PARITY (',PR:4,') (3)1);
writeln<'OATA SITS (1,08:4,1) (4)');
writeln('STOP BITS (',sa:4,'> (5)1);
writeln('IWPUT BUFFER SIZE (1,185:4,') (6)1);
writeln('OUTPUT BUFFER SIZE (1,06$:4,1) (7)1);
writeln{'DO Xon/Xoff (I,XX:4,') (8)');
writeln{'OO CLEAR TO SEND (',CTS:4,') (9)1);
writeln(IOC DATA SET READY (',DSR:4,') (0)1);
re2ld«(bj,Ch);
case Ch of

", : begin
lieverseV i dea(true) ;
window(3,8,20,17); (* Set the size of the required work *)

(* area. .)
gatClXY(1,1);
writetn(Ir- --,I);
writeln(l COMMUN1CATIONS I);

writeln(' Pa<T I>:
writeln{' I);

C-ll

APPENDIX C

writeln(I can (1) I) ;
writeln(I roI2 (2) ') ;
writeln< I COM3 (3) I);
writeln(I a»l4 (4) I)i
writeln< I I);
read<Kbd, Ch) i (* Reed keyboord charec:ter pressed. *)
case Ch of

" , Cl' := l'0
'2' Cl' := 2-0
'3' CP := 3;
'4' CP := 4:

eOO;
ReverseVideo<false);
Clrscr;

end;
'2' begin

ReverseV;deo(true);
window(3,8,20,17): (* set the size of the reqJi red work *)

(' erea. *)

, ,
, PARITY ,
, ,
,

CllO _. - (1) ,
,

EVEN .-- (2) ,
,

lI()IjE .-- (3) ,
,

MARK --- (4) ,
,

SPACE -- . (5) ,
, ,

) ;
);
);
);
);
);
);
);
);

Read keytx;ard character pressed. *)

set the size of the required work *)
area. *)

set the size of the required wor~ *)
area. *)

I) ;
I) ;
I);

);
J);

I} ;

I) ;
I);

,);

Read keyboard character pressed. .)

,
,

8AlIl RATE,
, 300 --- (')

,
, 1200 -_. (2), 2400 --- (3),

4800 -.. (4j, 9600 --- (5),

gotoXY(1,1);
writeln(
writeln(
writeln(
writeln(
writeln(
writeln(
writetn(
writeln(
writel"(
read(Kbd,Ch); (*
case Ch of

., I BR:= 300;
'2 1 BR:= 1200"
'3' BR:= 2400;
14 1 BR:= 4800;
15' BR:= 9600;

end;
ReverseYideo(false);
Clrscr;

eOO;
begin

ReverseYideo(true);
window(3,8,20,17); (*

('
9OtoX1(1,1);
i1irl teln(
writetn(
writeln(
writeln(
lIH"iteln{
writel"(
lijriteln(
writetn(
writel"(
read(Kbd,Ch}: (.
case Ch of

ql PR.:= IQ';
12 1 Pi:= lE';
'3' PR:= 'liP;
14' PR:= IH';
15 1 PR:= 15 1 ;

eOO­
R~erseVideo(false);

Clrscr;
end;
begin

ReverseVideo<true);
window(3,8,20 1 17}; (*

('

'3'

'4'

gotoXY(1 ,1);

.... iteln('1..------1');
writeln(I DATA. BITS I);

C-12

APPENDIX C

gotoXY(1.1);
wri teln(I, 1);

wri teln< 1 ClJTPUT SUFFER I};
writeln(' SIZE I>;
writeln(1 I);
writeln(1 512 (1) I};
wrlteln{' 1024 (2) I};

*)
*)

*)

*)

*)

*)

*)
*)

*)

area.
Set the size of the required work

Set the size of the required work
area.

Set the size of the required work
area.

:= 512;
:= 1024;
:= 2048;
:= 4096:
:= 8192;

wri teln(1I--------j I);
writeln<' 5 SITS (1) I>;
writeln(' 6 BITS (2) I);
writeln(1 7 SITS (3) I);
writeln(1 8 BITS (4) I>;
writeln(' ;,;
read(ICbd,Chl; C* Read i<e)t>oord character pressed.
case Ch of

11' DB:= 5;
'2 1 DB:= 6;
13 1 OB:= 7;
14' DB:= 8;

end;
ReverseVideo<false)i
Clrscr;

end;
begin

ReverseVideo(true);
window<3.8.20.17); (*

C*

gotoX't'(1.1)i
wri teln(1, ,);

w-ri teln(1 I WPUT BUFFER ');
writeln(' SIZE I);
writeln(' I);

writeln(1 512 (1) I);
writeln(I 1024 (2) I);
wrHeln(1 2048 (3) I};

writeln(' 4096 (4) I):
writeln{' 8192 (5) I);
writeln(' I);

read(Kbd.Ch); (* Read keyboard character pressed.
case en of

q 1 IBS
12' ISS
13 1 ISS
14 1 ISS
15 1 ISS

end;
ReverseYideo(felse);
Clrscr;

end;
begin

Reve;seVideo{true) ;
window(3.8,20,18): (.

C*

gotoXYC1,1);
wri teln(1... ., I> i

writelnC 1 STOP BITS I);
writeln(1 I);

writeln(1 1 BIT (1) I>;
writeln(1 2 BIT (2) I);
writetn(1 I);

readCKbd.Ch); C· Read k.eyboard character pressed.
case Ch of

'11 SS:= 1;
12' : SS := 2;

end;
ReverseVideo(false);
Clrscr;

end;
begin

ReverseVideo{true);
windo.(3.8,20.18); (.

C*

'6'

'5'

'7'

C-13

APPENDIX C

gotoXY(1, 1);
witeln(1,.... ..., I);

wri teln{ 1 DO DS« 1);

writeln(1 I);
IlIriteln(1 YES 0) I);

writeln< I MO (2) I);
writeLn{J I};

read(Kbd,01); (* Read keyboard character pr-essed.
case Ch of

111 DSR:= IYI;
12 1 : DSR := It,,;

end;
ieve~Video{fatse);

Clrscr i
end;

*)

*)
*)

*)
*)

*)

*)

*)

*)
*)

Set the size of the required work
ares.

Set the size of the required work
8r-ea.

set the size of the r~i reel work
area.

:. 512­
:= 1024;
:= 2048;
•• 4C96-
;= 8192~

gctoXY(1,'):
witeln(I ,.... ..., I);

writeln(' 00 CTS I);
writeln(I I);

writeln(' YES (1) I);
writeLn(I MO (2) I);

writeln{' 1);

read«(bd,Ch); (* Read keyboard character pressed.
case Ch of

III CTS:= Ill;
'2' : CTS := I~l;

end;
ReverseVfdeo{false);
Clrscr;

end;
begin

ReverseVfdeo{true);
window(3,8,20,17); (*

(0

writeln(1 2048 (3) '>;
writeln(1 4096 (4) .>;
....iteln(l 8192 (5) I);
w"; teln< I L.);

read(Kbd.Ch); « Read keyboerd oharaeter pressed_
case Ch of

III OBS
12' 08S
'3' OBS
14 1 085
IS' OBS

end­
R~ideo<fatse);
Clrscr;

end­
begin

ReverseVi deo(true);
window(3,8,20,17); (*

C*
5IOtoXYC1.l);
writeln('r-------., .>:
wri tetn(, 00 Xon/Xoff I);

writeln(1 I>;
writeln(' YES (1) I);
writeln(' MO (2) I);
writeln(' I);

read(Kbd,Ch); r* Read k.eyboard character presseci~

case Ch of
'1 1 XX:= ay';
12 1 : XX := IN';

end;
ReverseVideo(false);
Clrscr;

end;
begin

ReverseVideo(true);
window(3,8,20,17); (.

C*

'9'

'8'

'0'

C-14

APPENDIX C

(* set the size of the required work .)
(* area. *)

(* $et .ize of req..aired work eree to the *)
(*ole screen. *)

end-•
LI'Itil Ch = ..-z7:
Get c~ Parsas:
if Initial he ~ications

then -
begin

window(1,1,80,25);

Clrscr:
Mairl4enu;
5etBottOli.. ine;
window(11,16,70,21);

(*
(*

Rec:pJeSt serial port per~ters.

Initialize serial port.
*)
*)

gotoXY(X.');
end

else
goto JlIllp1;

end: (* SetL4=l *)

(*---------------------------------------_.. --------_....-------------------*)
procedure EaJlate_Dl.IItl_Tef'i nat;

(* This procedJre is used to capture the data at the serial port. *)

vsr Kch
Ch

: char;
: char;

(* Monitor keyboard for a user requests. *)

ca Read keytnard character pressed.
and KeyP ressed

(* Check. for escape secpJeflC~.

begin C* EftJtate_Dl.IIC_Tenainal *)

repeat
if KeyPressed

tnen
begin

readCKbct,KCh);
if «(Ch. 1127>

*)

*)

*)

*)
*)

Tum screet1 on.

Read keyboard character pressed.
Check for <F1> key.

tnen
begin

read(Kbd,KCh); (.
if KCh = *59 (­

tnen
begin

Async_Close{true);
portrS3B.81 := $29;

(*
Officela)O.Jt;
if (not Async_Open(Ca._Port,Baud_Rate,Parity,Dats_Bits,Stop_Bits»

(* Try opening the serial port. *)
then

writeln(ICannot open serial port. l)

(* serial port can1t c~iC8te due to .)
(* incorrect par~ters. .)

else
writeln(ISerial port ~~l);

(* serial port is reedy to cQRRUnicate. *)
end;

end
else

case (Ch of
11 1

: beslr!
ASyrlC_Close(true) ;
port [$388J :. 529;

(* Turn screen on. .)
Set~; (* If character pressed is '1 1 , then *)

(* execute the set~ procedure. *)

if (not Async_Open{Ca._Port,Baud_Rate,Parity,Dats_Bits,Stop_Sits»
(- Try opening the s.erial port. *)

tn""
writeln(ICannot open serial pert. l)

(* serial port can't ca..r.icate cI.ie to *)
(* incorrect per.-ete1'S. *)

C-l5

APPENDIX C

else
writelnC'Seriat port opened.I);

(* serial port is reedy to c~icate. *)

end;
12 1 begin

Async Close(true);
port ci3aal :z S29;

(* Turn screen on. *)

Printt4erlJ i
(* If chairacter pressed is 12'. then .)
(* call the Print MenJ procedure. *)

if (not Async_Open(cea_Port.lauc:LRate, Pari ty,Data_Ii ts,Stop_B its»
(* Try opening the aerial port.. *)

then
vriteLn('tannot open serial port. I)

(* serial port c.l1t ~iC8te ciJe
(* incor~t pera.eters.

to *)
*)

else
writeln('SeriaL port opened.I);

(* serial port is ready to cOARUnicate. *)
end"

13' begin
Async Close(tnue);
portrS3sa] := $29;

(* Turn screen on. *)
SysOateTille;

(* If character pressed is 12', then *)
(* call the Print Menu procedure. *)

if (not Async_Open(Ca-_Port,Baud_Rate,Parity,Oata_Bits,Stop_Bits»
(* Try opening the serial port. *)

then
writeln('C8nnot open serial port. l)

(* Serial port can't c~icate due
(* incorrect pera-eters.

to *)
*)

else
writeln('$erial port opened. I);

C* Serial port is ready to c~icate. *)
end;

IQI begin
port [$3a81 := S29;

(* Tum screen on. *)

Stop := true;
(* If character ~essed is '3'1 then *)
(* tenRinate processing. *)

end;
#32 begin

if Blanl<
then

begin
port [S3B8] := $21;

(* Tum screen off.
Btank := false;

en:i
else

begin
portCS3B8] := $29;

(* Tum screen on.
Btank := true;

en:i;
end;

erd;

*)

*)

(* Check if character received is valid. *)

and (Ch <> '13)
(* Check for i. ine feed and carriage *)
(,* return. *)

em;
if Async_Receive(Ch)

then
if (Ch <> chr(O))

the!"l
begin

if (Ch <> #10)

(* R.eceive data at serial port. *)

then
Cfstr := Cfstr + Ch;

C-l6

(* Build up a string until.

APPENDIX C

*)

write<Ch);
if (Ch ='13) and (length(Cfstr) < 80)

(* Check. for carri age return and that *)

(* the strings lenGth is less than 80 *)
(* charactera l~. *)

then
begin

X := lIIiJereX;
(* Store the x-coordinete of
(* cursor position.

y := ~reY'C* Store the Y·coordinate of
(* cursor position.

the current *)
*)

the current *)
*)

GetData;
C1str := 1';

(*

gotoXY(X,Y>;
end;

Reset string. *)

end;
Lrltil Stop;

end (* EaJlate_Dl.IIi:l_Te~inal*);

(*----------.--_.)
procedur2 ReadData;

(* This procedure is used to read data frOlll serial port. *)

begin {* ReadData *)

window(11,16,70,21); (*
(*

clrser;
Get ee- ParaE; (­
if Initialize Ca..unications (.

then -
begin

ERJlate Dl.IIltl Tenwinal; (*
Finish_c~ications; (.

end;
end (* ReadData *);

Set the size of the required work *)
area. *)

Request serial port paraMeters. *)

Initialize serial port. *)

Eallate dl...III" terminal. *)

Close dow1 serial port. *)

procedure SetVar;

(* This procecJ.ire is used to set the rele'olat'lt progralll variables at the *)
(... begiming of tne progr.. *)

begin (* setVar *)

CP := 1;
Bl1 := 1200;
PR := IEI;
SS := 2;
os := 7;
IBS := 2048;
065 := 2048;
XX := 'Ill';
CTS := l~:l;

OSR := 1Nl;
HW := 1N l ;
FString :::c: 11;

SString :::c: 11;

Cfstr := I I;

for I := 1 to 50 do
Point[I) := 0;

Noc := 0;
Rut := 0;
TotROur :::: 0;
Z := 0;
5tcy := false;
Oat... : = 100/00/00 I ;

(*
(*
(*
(*

("
("
("
(*
("
(*
("
("
(*
(*

("
(*
("
("
(*
(*
(*

Set communications paraRaters.

Reset string.

~eset file pointers.

Reset progr. variables.

Reset progrM variables.

C-17

")
*)
*)
")
*)

")
*)
*)

*)

*)
*)
*)
*)

")

*)
.)
")
*)
")
*)
*)

APPENDIX C

AIls := 0;
l.1'lans := 0;
Blank ;= true;

end; C* SetVer *)

C*
C*
C*

*)

*)
*)

(* This i~ the Nin pert of the prOQr_. *)

*)

*)

*)
*)

the *)
*)

Turn the cursor on.

Turn the cursor off.

C*

C* The disk file is closed and the disk
('* directory is ~ted.

(t set s j le of requj red work: area to
(* whole screen.

C*

lil.eadJata;
closeCf);
cLoseHi 1);
window(1,',BO,25>;

reset(F);
seek':CFi t,l):
window<11,16,70,21);

ClrSCr;
CursorOn(true);

end. (* MonitorBTS *)

begin (* Mol'1itorSTS *)

SetVari
Cursonxa(fe 1se) ;

ClrSCr;
Ma i rI4enu'
assi;n(Fi1 1 'C:\TP3\DATA\8TS.bTA');

(* AsaiSJO the fi le path .-d rv.e to the *)
(* variable ne-e. *)

rewrite(FiL); (* Disk file is prepared for processing. *)
assign(F,'C:\TP3\DATA\BTS_WED.OTA')i

Ct Assign the fil~ path and MaRe to the *)
Ct variabLe ~. *)
(* Disk ff le is prepared for processing. *)
C* File pointer is set to tine 1 of file.·)
(t set the size of tne required work *)
(* area. .)

C-18

(* Set t~).l colour a('Id text: backgrClll"d *)

(* to I tly~'s~ . *)

(* Set t '!);, colour arid tex t backgrOl...ni *)
(* ba<' tc ~rEt. *)

APPENDIX C

('*~.- --- - - .. -- - •• - - ----- - - -- --._- •• - ----+. ~ - _. -. ---- - ~--~. -.- - -~- ------- -- -~*)
(* TH IS I S All INCLUlE fiLE THAT TAKES Wf CIf THE IEtIU INTERFACING WITH THE *)

(* I"TW'.CTI~ USERS. *)
(* *)
(.. Writt~ bY: A. M. Z. MaLner Version '.0 *)
(11 *)

(- Dated: N~, 1991 *)
(11 *)
(*'. - .-- - -_.-. _.- - - ----- - - ----•• --- ---_.-. -", -- -- --- - -- •• - ••• - - --_.-. --- - -. - -*)

p<OCedJr" eursorlh<TumClI : booleen);

('* This J:)rocedure is used to turn 'the~ Jf\ the screen on or off~ *)

regl ist = record
AJ(,8X.CX~OX,.BP~SI"DI.DS,ES, FLAGS : l ...t~;

end;

,,~r reg : regl j st;

brii n (* Cursol'i)"l *)
if TUrt"'I:); then
if -.[0:$449] = 7 then

retl.CX := SOCOO
else

retl.CX := S06C7
,t&e

l"'eg.C:X ::: $.2000;
(eg.AX := $0100;
lntr($1 a,reg)

e('i; (* CursorQn *)

procedJ,re ReverseVideo(Status : boo lean);

{" this procedure is used to togsle the ~tt,~ display status to re~erse *)

C' video or to noNllal, depending on the ~l{an ar9Unerlt received. .)

~in (* Re't'erseVideo *)

jf SU!ltl..'S

then
be,jin

TextColor(O};
TvtBad.GrOU'ld< 15);

end
els-e
~if'l

Te.xtCotor(15);
TextSac<GrOlZ'Ci(O) ;

...-..;.
~; {* R~se\jideo *)

lfoceciJre setSottOJli. i ne;

l" This procedJre is used to restore thearia.ble infcMRation 0f1 the bottce *)
," tine .. after returning to the -.,.in ~.. *)

~1r; (-- SetBottOR(ine *)

gotoX)' (20.24);
w-r i re(OatUR);
9OtoXl' (44, 24);
\lirite(Ans:4) ;
lIOtoX"Y (66. 24);
lotf"i te(l,lrans:3);

erd; (* S&!tSottOllli. i;,e ..)

APPENDIX C

procedure Nldlock;

(* This procedure h used as pert of the _in..-w..J. It shows the various extensions. *)

*)
*)

*)
*)
*)
*)

to *)
*)
*)
*)
*)
*)
*)
*)

*)
*)

*)
*)

*)
0)

to *)
*)
*)
*)
*)
*)

*)
*)

(*
(*

(*
C*
(*

(*
(* Extensions pertaining
(* 22 - 2121.
(*
(*
Co
(*
(*
(*

(*
(*
(*
(*

(*
(*
(* Extensions pertaining
(* 23 - 8880.
(*
(*
(*
(*
(*
(*

);
);
);
);
);
);
);
);
);
);
);
);
);
);
);
);
);
);
);
);
);
);
);
);
);
);
);
l;
);
);
);
);

, ,
• Z27 ,
• 22ll ,
, Z29 ,
, 230 ,
, 231 ,
• 232 •, 233 ,
• 234 •, 235 ,
, 236 ,
, 245 ,
• 247 ,
• 248 ,
, 249 ,
, •, ,
• Z25 •, Z26 ,
• 237 ,
, 238 •, 239 ,
• 240 ,
, 241 •, 24Z •, 243 ,
• 244 •
• 246 ,
, 251 ,
• 252 •, 253 ,·'---- •

begin (* NUIiIlock. .)
gotOXY(l,5); write(
gotOXY(1 ,6); write(
gotoXY(1,7}j write(
gotoXY(1,8); write<
gotOXY(1,9); llirite<
gotoXY(1.10); write(
;ataXY(1,11); write<
gotoXl(1,12); write(
gotOXY(1,13); write(
;ctaxYe1,14); wite(
gotoXY(I,15); write<
gcltoXl(1,16); write(
gotOXY(1,17); write(
gotoXY(1,18); write(
gotoXY(l,'9); write(
gotoXY(1,2O); ",rite<
gotoXY(74,S); write(
gotoXY(74.6}; write(
;ataxY(?4,?); write(
gotoXY(74,8)i write{
gotoXY(74,9); write(
gotoXY(74,10); write(
;ataXY(?4,11); write(
gotoXY(74,12); write(
9OtoXY(74,13); write(
gotoXY(74.14); write<
gotoXY(74,lS); write(
gotoXY(74,16); write(
;ataxY(?4,17); write<
gcltoXY(74,18); write(
gotoXY(74,19); write(
gotOXY(74,20); write{

end; C" Nu.Hock *)

(*--*)
procedure 8ottolL. i ne;

(* This procedure is part of the _in.en.J. It lists the on line date as *)
(* welt as the total -eult of answered and lIlaf'lSwered calls. *)

I) ;

I) ;

begin ('it BottOlll tne *)
gotoXY(9,23);
wri te(I

gotoXY(9,24);
write('~ Date
gotoXY(9,25);
write{ I

end; (* BottClli. ine *)

procedure Mentillock.;

(* This proceQjre is part of the Ein RnU. It gives the user a MlJIi::ler of *)
('- options to choose frc.. *)

begin (- Men..iHock *)

'1C t oXY(9,ll;
write(' , 11);
gotoXY(9 , Z);
write<' I • TELEPHOIiIC ElOQUIRIES MOIilTORllKi SYST~ I ,');
gotoXY(9 ,3);
write{' I - , 1 1

);

gotoXY(9,4);
write(11 1

'
);

gotoXY(9.5);

C-20

APPENDIX C

write(11 It);
llOtoXY(9.6);
write('! SET·UP UTILIT! ••-_ ••• -- ••• _-- (1) I');
llOtoXY(9. 7J;
write('! 1');
llOtoXY(9.8);
write('1 PRINT REPORTS ••• --_._-- •••• -- (2) I');
llOtoXY(9.9);
write('I !');
gotoXY(9,10);
write('1 SYSTEM DATE AMD TIME --- ••• --- (3) !');
llOtoXY(9.1l);
write('! 1');
llOtoXY(9.12);
write('I QUIT -- ••••• ---- •••• - •••• - •••• (D) I');
GOtoXY(9,13};
write('! I');
llOtoXY(9.14);
write(,l JI);

llOtoXY(ID,14);
Reversevi deo(true);
write(' <F1> ---> Office lay-out and extension ~rs. I);

ReverseVideo(false);
en:i; (* Mefdlock: *)

(*----------------~---------_._---*)

procedure CataBlod.;

(* This procedure is part of the main menu. It is the block: where the on *)

(* tine data wl Lt scrot 1 14I and doW"I in. *)

var A. integer;

beiin (* D8taBtock *)

llOtoXY(9,IS);
write(I Cl--------------------------'1 I);

tor A := 16 to 21 do
begin

gotoXY(9,A);
write< I I');
gotQXY(72,A) ;
write(l) I);

gotoXY(9,22);write(I ,'--- ---ll I);

end;
en::i; (* DataS 1od: *)

(*--*)
procedure Ma i 1"i4en.l;

(* This procedure is used to cOlllbine a Tll.Jli:ler of other procedJres to fo'" *)
(* the .in .enu. *)

begin (* Mai~ ...)
Nldtoc:k;
I4era.S l ock.;
Databtod;
BottOlli.. ine;

end; (* Mairi4enu *)

(*-------_._---_._------------------------_._-----~-------------------------*)

proceciJre Officela)O..lt;

(* This proceciJre is used as .!! ref'!i"ence c,Jide to the user to indicate ""ere *)
(* each extension is situated in the office. *)

var Ch : char;

begin (* OfficelayOut *)

C-21

APPENDIX C

X := "'erexi

wi~1,1,80,2S);

(* Store the X·coordinate of
(* curs.or' p:)Sit ion ..
(* $et size of ~jred *,n
(* lItJole screen.

the current *)
*)

area to the *)
*)

.)
*)

the *)
*)

,).

m');
4 '):
8 ');

I) ;

(* Set the size of the required work *)
(* ares. *)

rn
:~;

5 I):
2 I);

I) ;

(* Read keyboard character pressed.
(* Check for escape seq.JenCe.
(* set size of required work area to
C* whole screen.

(* set size of required work. area to the .)
(* whole screen. *)

(* set the size of the required work *)
(* area. *)

(* Set the sile of the r~ired work: *)
(* area. *)

To return to .in IIer'IJ press <ESC> k.ey.

repeat

writeln(I rn
writeln(1 2
writetn< I Z
writeloCI 7
write-lne I

Wit tel";
writetn;
writetne I~

writeloCl1 2 I
wrf tetn(I 1lI
writetne I 3
writetnC I

wrjteln;
writetn;
wrf teLn(I rn
writeln(1 2
writeln(' 3
writeln(I 7
writeln(I

read(~,Ch):

LrIt il CtI = '12.7:
window(1,1,80,25):

ClrScr:
Ma i r14en.l;
setBottOlllline;
window(11,16,70,21);

SlOtoXY(l.25);
ReverseVideo(t~);

wd tee I

Reverse-Video< fa!se):
IlOtoXY(20.3);
window(20,3,75,22);

writeln('FRONT');
writeln(' OFI);
writeln('OfFlCE');
window(1,1,ao,25);

tlrScr:
write(.,r---------------------------------"I);
for I :s: 2 to 23 do

begin
SlOtoXY(1.1l;
wite<"');
SlOtoXY(79.1) ;
write('I');

end;
SlOtoXY(l, .•:,.2_4)..:;1
wdte("" '1);
gotoXYC8,11);
window(8.11.16.14);

llOtoXY(X, 1);
end; (. OffrceLa}O.lt *)

proceliJ.re Jl4enu:)utL i ne;

(* This proce<iJre is used to deterwine .,ich reports are req.l1red. *)

begin C· Men..OJtLine *)
)(:= wnerex;

window{1,1,80,25);

(. Store the X*coordinate of the current .)
C· curser position. *)
(* Set size of ~ired ~rk area to the *)

C-22

(* \ItIote screen.

APPENDIX C

*)

I) ;L--,');')i
I) ;

Cir5cr i
gotOXY(1,.3);
writeln(I

....;teln<·d
writeln(,
writeln< I

for 1:= to 12 do
writeln<'\ I');

writeln<', r:,)~writeln< I

writeln(1 ,-,--------------------------
gotoXY(8.20);
ReYerSeV; deo(true);
write(I To retum to .in .nJ press «st> key.
ReYerseYideo(f8lse);

end; (* Ment.D.rt:line .)

C-23

integer);

APPENDIX C

(*_ •• -- •• ---_._-------.---_.--_•••••• _---_ •• -_ •• ---_ ••---.------------------*)
(* THIS IS All INCLl.OE FILE THAT TAlCES CARE Of THE PRINTlIIG INTERFACE WITH *)
(* THE INTERACTIVE USERS. *)
(* *)
(* written bot: A. M. Z. Molner Version 1.0 *)
(* *)
(* Dated: NoYeIlber, 1991 *)
(* *)
(*----------_ ..--------------------- ..._--------------------------------_ .. _*)

fl.n:tion Con<Ti.e : str8) : reel;

(* This flnCtion is used to convert .. std", that represents tiae, into a *)
(* real I'UIi:ler that can be used in various ."iPJlations. *)

begin ('* Con *)

val(copy(Ti~,',2),Hour,Err);

val(copyCTi-e,4,2),Min,Err);
vel(copy(Ti~,7,2),Sec,Err);

Con := (Hour * 60) + Min + (Sec J 60);
end; (* Coo *)

,*--*)
function ReCon(Ti-e : reat) : str8;

(* This function is used to re-conv~rt a real nuRber that represents B ti.e *)
(* into a string for output purposes. *)

var Hour,Min,Sec string[ZJ;

begin C* Re(on *)

str(intCTi.e / 6O):2:0,Hour);
strCint(frsc(Time I 60) ·6O):2:0."in);
str(frac(Ti-e) .. 6O:2:0,Sec);
if "inr1] = ,

then
Mjn[1] := '0';

it 5ecr1] = , I

tnen
See[1] := IQ';

Re(on := Hour + 1:1 + Nin + 1:1 + Sec;
end; C* ReCon *)

(*--._-------------_ .. _--~------------*)
function PrinterStatus(WhichPrinter : integer) : integer;

type Registe-rs = record ease integer of
1 (AX,BX,CX,OX,SP,SI,Ol,OS,ES,Ftags
2 : (AL,AH,BL,Bn,Cl,CH,OL,OH : byte);

eno';

var Regs : Registers;

begin
a_.AH := 2;
Regs.AL := 0;
Regs.OX := ~lchPrinter;

Intr(23,Regs);
PrinterStatus := Regs.AH;

end;

C-24

APPENDIX C

procedure PrinterError(StatusByte : integer:
var ErrorCode : integer:
var Erroril:etum : str20);

var X: integer;

const Error : arraYCO•• 21 of string!20j =", Mo error
Printer off

•• 'Printer not ready',
I):

begin (* PrinterError .)
if StatusSyte in [144,146,216,223J

I· Check for no errors. .)
then

ErrorCode -= O'
if StatusSyte in [24,80,8n (.

then
ErrorCode := 1-

if StatusSyte in r120,135,200J (­
then

ErrarCade := 2;
ErrorReturn := Error[ErrorCodeJ;

I·
end; (* Printerfrror .)

Check if printer is on line.

Check. if printer is switched on.

Set error .essage.

.)

.)

.)

(*--*)
procedure TestPrinter(....ar Yes!rto : boolean);

....ar S,X
Error

integer;
string[201;

i I);

I');I,Error,' ._.

begin (* Testprinter *)

YesNo := true;
B := PrinterStatus(O);
PrinterError(B,X,Error);
it X <> 0

then
begin

YesNo := false;
gotoXH17, 11 J;
ReverseVideo(true);
write(l)
gotoXYC17,12J;
write('1 .c. ~I~TER ERROR
gotoXYC17,13J;
write(I L' ...J,,);

delayC5000J;
ReverseVideo(false);

end·
end; C* T~tPrlnter *)

procedJre GetPrintInfo;

C* This procedure is used to obtain the necessary data frOl the disk. file *)
(* to ~ used for the printed reports. *)

Reset the extension infof"'1lliBtion
¥al"fabl~.

C* Reset the unanswered info~tion *)
(*ariables. *)

R.eset the line infor-.tion
variables.

begin {* GetPrintrnfo *}
reset<F; l);
se6<Fil,1);
for R : = 220 to 27'0 do

for S := 7 to 16 do
tor T := 1 to 5 do

InfoExt[R,S,Tl := 0;
for R := 1 to 30 do

for S := 7 to 16 do
for T := 1 to 3 do

Infoln£R,S,TJ := 0;
for R := 1 to 30 do

for s := 7 to 16 do
for T := 1 to 2 do

C* Disk
(* Ft le
(­

C­
l·
(-

C-
(.
(-

C-

ft le is
pointer

prepared for processing. *)
is set to tine 1 of file.*)

-)
.J
-)
-J
.)
.)
-J
.)

C-25

APPENDIX C

InfoUnerR,S,n := 0; (* .)

for S := 1 to 255 do
Fl8:QCSJ :s: 0; (* Reset tnnk line and extension flags. *)

gotOXY(15,10);
ReverseYideo(true)i
write(' j .'>;
gotOXY(15,11);
.... lte(·1 ccc PROCESSING DATA FOIl PRINTED RfPORT. - I');
gotoXY(15,12);
....ite('/ I');
repeet

read(Fil,Data)i (* Reed data frca deta fHe. *)
gotOXY(15,13);
with Data do write('1 ',Date,' I,Tt.,- ',Ree,' ',Ext,- I,RDur,1 ',COur,' ',In:2. ' 11);
gotOXY(15,14);
write'" ");
val(copy(Oata. fiR, 1,2),Ti_,Er,.);

(* Make the variable Ti. equal to the *)
(* integer value of the hour portion *)
(* of Data.Ti.e (Ti.e of day). *}

val(Data.Ext,Exten,Err); (* Make the variable Exten equal to the .)
C* integer value of Data.Ext (Extension *)
(* nuAber). *)

if Err::: a C* Check if record is answered (Err::: 0) *)
(* or unanswered (Err = 1). *)

*)

*)
*)
*)
*)
.)

*)
*)

*)
*)

Sott t lags to deter-; ne IIi'd ch
extens i 0F'l$ answered ca Lt s

each day.

(*

(*
(*

(*
(*

::: InfoUna[Oata.ln, Ti., 1] ... 1;
('It COU1t ~t of Lnan:swered calls per *)

(* line per hour. *)

::: InfoUna roata.Ln, Ti.,2] + Con(Data.RDur);
(* Total ringing ti-. ef lI"IoV'lSliIered *)

(* calls pe1" line per hour. *)

<> 0) or (lnfd.JnaCS,R.1J <> 0)
(* set flags to detef"*ine Wllch trt.rlk

InfdJna {Data.ln, Tia, 2J

:= InfoExt[Exten,Ti.,l] + 1;
f* CCU'lt -=-sIt of ca Lt s answered per
(* extension per hour.

Infofxt[Exten,Till,ZJ := InfoExt[Exten,Ti.,2] ... Con(Oata.CDur);
(* Total speech ti. per extension ~r *)
(* hour. *)

InfO!fxt Cc}(ten, ri.,31 := InfoExt rexten, Ti.,3] ... Con{OatB.RDur);
(* Total ringin; ti. per extension
(* per hour.

if InfoExt [Exten, Ti.,41 < Con(Dau.CDur)
then

1nfo£xt [Exten, Ti.,41 := Con(Data.COur);
(* Longest call per extension per hour. *)

if (InroExt(Exten, ri_,5J <> 0) and (fnfofxt{Exten,11.,51 < Con(Oat8~COur})

toen
1nfoExt (Exten, ri.,S] := InfoExt (Exten, Ti.,S]

else
JnfoExt tExtefl, ri.,S] := Con(Data.CDur);

(* $hortest call per extension per hour. *)
InfOln[Oata.Ln, Ti., 1) := 1nfolnCData.Ln,ri_,n + 1;

(* Cou'lt -=u'lt of calls per line per *)
(* hour. *)

InfOln [Data. Ln, ri_, 2) := tofoln (Data. Ln,n_,Zl + Con(Oats. COur);
(* Total speech tie per line per hour. *)

lnfoln [Data. Ln, Ti.,3J := Infaln [Data.Ln, Ti.,3] + Con(OaU.ROur);
(* Total rinsing ti.e per line per hour. *)

end
else

begin
Jnfd.lna[Data.Ln, Ti_, 1]

then
begin

InfoExt [Exten, Tilll, 1]

end;
for S := US to 255 de

for R :: 7 to 16 do
if InfoExtrS,R,n <> 0

tnen
F(agCSl := 1;

for S := 1 to 30 do
for R :: 7 to 16 do

jf {Infoln!S,R,1J
then

C-26

APPENDIX C

)(l tnes are used each hour.Fl~[Sl := 1;
Lntil eof(FilJi
ReveraeYideo<falae);
ClrSCr;

end; (* GetPrintInfo *)

{*--*)
pl"oceO.Jre ExtR",,;

(* This proceciJre is used to pr"ClCU:e a printed report regarding each *)
(* individJal extensions hourly pc-ogress.. *)

I')

I
');
I) ;

I) ;

" .
"I) ;

Shortest
Cell

Longest
Cell

DATE: I ,OATLJ4, I

Idle
Ti.e

Average
Duration

1,5:3, I

Total
Duration

EXTENSION

........t
Answered

(* Check which extensions answered calls.*>

Tillle

begin (* ExtRep *)
for S :_ 225 to 255 do
if FlaglSl = 1 then
beginwriteln(lst. I ,1);

writeln<lst,' I>;
writetn(lst, I

wrlteln([st, I

wrt teln(lst, ,
writeln<lst, I

wd teln(lst. I

wri tetn(lst, ,
for R := 7 to B do
begin
if InfoExt [5,Il,21 > 60

then
Idle := 0

else
Idle := (60 InfoExt[S,R,21);

if InfoExt [S,i,13 Co 0
then

begin
write(Lst, 'I 0' ,a, 1:00 - 0 1,IH1,':OO', InfoExt[S,R.11 :10:0.Recon(InfoExtrS,R:,2]):10);
.ri tee lst,ReCon<JnfoExt [5, R, 2J 11 nfoExt [$, R, 1]): 10. copy(ReCon(Idle), 4,5): 7);
\lid teln(lst, ReCono nfoExt [S,R,4J): 10,ReCon(InfoEJit CS, R, 5J): 10, 1 11);

end;
end;

(* For the period bet..een 07:00 M'ld 09:00 print on • hourly basis the -=utt *)
(* of calls afl'wer~, tM total speech ciJntion, t~ average speech ciJration *)

(* , the idle ti_. the longest call and. tM shortest call for the relevant *)
(* extension. *)

if InfoE.xt[S,9,Z] > 60
then

Idle := 0
else

Idle := (60 InfoExt[S,9,2ll;
if InfoE.xtES,9,1] <> 0

then
begin

write(lst, 11 09:00 - 10:00 I ,InfoExt[S,9,1l:10:0,ReCon(lnfoExt[S,9,2]):10);
write(1st, ReCon(InfoExt [5,9,2] I InfoExt [S, 9, 1J): 10, copoy(Reton(Idle),4, 5) : 7);
wri 'eln< lot,ReCan(InfoExt [5,9,4]): 10,ReCen(InfoExt (5,9,5]): 10, ' I');

end;
{* Fer the period between 09:00 ~ 10:00 print on a hoorly basis the MtOU'1t *)
(* of calls answered, the totat speech wration, the average speech uation *)

(* J the idle ti., the lOflgeSt call and the shortest call for the releovant *)
(* extens i on. *)

for R := 10 to 16 de
beg,n
if InfoExtrS,R.2J > 60

to""
Idle := 0

else
Idle := (60 Infout(S,R,2J);

if InfOC:x.t(S,R,1] <> 0
then
~in

C-27

APPENDIX C

I'):I>;

*)

*)

*)
*)
*)
*)
*)

for a day per relevant *)
*)

Reset vadal::tles.

(*

(*
(*

(*
(*

lnfo£xt [5, R, 5J;
(* Shortest cal 1
(* extension.

InfoExttS,A:,1]:
ClI Total nu.ber of calls answered for 8 *)
(* day per relevant extension. *)

:= TotCDur + InfoExttS,R,2J:
e* Tot.l speech tiE for a day per
e* relevant extension.

InfoExt tS,R,4]

if (Short <> 0) and
then

Short := Short
else

Short :=

if Long <
then

long := Infofxt(S,R,4J;
e* longest call for a day per relevant *)
(* extension. *)

(Short < InfoExtCS,R.5])

TotCDur

wr te(lst, 11 I ,R, 1:00 • I ,R+1, I :O()I, InfoExt[S,R,1] :10:0,ReCon<lnfoExt[S,R,2J):10);
wr te<lst,R~InfoExt[S,R,21/1nfoExt[S,R.11}:10,copv(Recon(Idle),4,5):7):

.,,.. teln(1st, Recon< InfoExt CS,R,4]):10,Reton< lrtfo£xt [5,1,,51): 10, I I');
end;

end'
('* For t~ period between 10:00 and 17:00 pt"int on • hourly basis the MCU1t *)
(11 of calla answered. the total speech c1iration, the aYerage speech clIretion *)
('* I the idle ti., the longest call and the shortest call for th~ relevant *)
(* extension. *)

writeln{Lst,'I
writeln(lst,'
TotAns := 0:
TotCDur := 0;
AVVCDur := 0:
LClnSl := 0;
Short := 0:
for R := 7 to 16 do

begin
To~ := TatAns +

end;
AvgCDur := TotCDur I TatAns;

(* Average speech tiE per cal 1 for 8 .)

e· day per relevant extension. *)

write{lst, I I " TotAn:s:23:0,Recon<TotCOun: iO,aeton(AvgCDur): 10);
iIlri teln(1st, ReCon(Long): 17, Recon(Short): 10, I I');

(* Print the daily totals per relevant extension of the total a.ount of calls *)
e* answered, the total speech title, the average speech tie. the long.est .)
e* caU and the shortest call. *)

writeln<tst,11 I':);
writeln(tst,'writetn(lst,1 '-.- _

write(lst,'12); (* Add a fa,.. feed after the print-out.•)
end;

end; (.. Extll:ep *)

(*-------_.. _-------~-----.~_._----_._-------------_.-----------------------*)
procedure MaN(ep;

(* This procedure is used to produce a Pf"inted report regarding the *)
(* switch board as a whole. *)

ver COU"ltExt,LExt.SE.xt
Long,Shcrt,AygCOur,1otCDur, TatAns. TotUna
TotalAns,TctalUna,TotalCOur
TotalLDng,TotalShort
ToUllExt, TotalSExt

array(7•. 161 of integer;
array[7•• 16] of real;
real;
real;
integer;

begin e* ~ep *)

TotalAns := 0;
TotatUna := 0;
TotalCOur := O·
TotalLQ"l; := a;
TOU1Short := 0;
TO"talLExt := 0;

(*
(>
(>

(*
(*
(>

Reset vl!r-i abtes.

*)

*)
*)
*)
*)
*)

C-28

APPENDIX C

TotalSExt := 0; (* .)

for R := 7 to 16 do
begin

Cou1tfxtl1lJ := 0; (* *)
TotAnsrR] := 0: C* .)
Totuna[RJ := 0; (* *)
TotCOurOO := D; C* .)
Av;cDur[R] := 0: (* Reset wrisbles_ .)
LonsJ [R.] := 0: (. *)
Short lRl := 0; (* *)
LExt[R] := 0: (* *)
SUt lRl := 0; (* *)

end;
for R := 7 to 16 do

for S := 225 to 255 do
if InfoExtCS,R,ll <> 0

then
begin

COU'ltExt (RJ := COlI'ltExt (R] + 1;
(lit Total ~r of extensions that *)
(lit answered call s per hour. *)

TotAns[Rl := TotAns(Rl + InfoExtCS,R,11;
(lit Tota l n.IIber of ca II 5 answered per lit)
(lit hour. .)

TotCDur[R] := TotCOur[lU + InfoExt [S,R,21;
(lit Total speech ti.e per hour. *)

AvgCOurCR] := TotCOur(lU/TotAns[lin;
(* "..-erage speech time per eaU per hour. lit)

if longlR] < Infol'xtlS,R,41
then

begin
lExt(R] := S;
lOf1gCRJ .- Intci.xtCS,R,4J;

end;
(* Longest call per hour ard tne *)
(lit extension that .ade it. *)

if (ShortER] <> 0) and (ShortCR] < InfoExt[S,R,SJ>
then

Short [R] : = snort (R]
else

begin
SExtUn := s;
Short[R] := InfoExtCS,R,51;

end;
(0

(0
Shortest call per hour and the
extension that made it.

0)
0)

end;
for R := 7 to 16 do

begin
fer S := 1 to 30 do

if InfoiJna[S,R,1] <> 0
then

TotUna[R] := TotUne[Rl • InfoUnaCS,R,11;
(.. Total f"lUItler of LnanSwered cat ts per .)
(.. hour. .)

end;writeln< lst, I r------ ...,I);

writeln<lst,1 I);

.riteln(lst,' OAILY SWITCHBOARD STATISTICS. OATE: ',OA.TLJIf,' IJJ;
writeln(tst,' I);

writeln< lst.' Nl.IIi:ler- AaJiSit A.IA::u"1t Average lClOgf!St Shortest')j
wf'iteln(lst, I Ti., of Ext Answered Unanswered Ouration Gall Calli);
writeln{lst.1 I);
wrireln(ist.l I);

for R := 7 to 16 do
if CCU"ltExt (R} <> 0

then
begin

wri te{ tSt, I I I .. R: 2. 1 ~ I ,if+1 :2 .. COU1tExt CR] :6, TotAns ~J : 10: 0, Tot1,.ina nu: 12:0) i
wf'i tee i.st, copy(Recar<AvgCOur [R]) ,4, 5): 10, I (1 , LEx! CR] :3. I) I , copy(ReCon(Lons; (R] L4, 5) :6) i
writeln< lst, I (I ,SExt un :3, I) I ,copy(RecOO(Short [1\]) ,4. 5} :6, I 11);

end;

C-29

APPENDIX C

(* For the period between 07:00 end 17:00 print on. hourly _is the rui>er *)
(* of extensions used, the I'UIIIber' of c.tla anawend, the~ of calls *)
(*red. the aver_ speech ti. per CIIl!. the lontjeSt call end the *)
(* extension that Mde it wd the shortest call and the extension that Mde *)

(* it. *)

wdtetn(lst,11
writetn<tst, ,
for R := 7 to 16 do

begin
TotatAns :z TotatAns + TotAnsOO;

(* Total I'UIi:Jer of cells enswered per .)
(* day. *)

TotatUna := Tot.tUna + TotlJneOO;
(* Total I"ILIIIber of calls U"li!I06l11ered per *)
(* day. *)

TotalCOUr :,., TotalQ)ur + TotCDut'[R];
(* AYer_ speech ti. per CIIll per day. *)

I,);____ I);

'it Totallong < long[R]
then

begin
TotalLong := LongtRl;
TotallExt := LExt [R]:

end;
(* Longest call per day and il1hich *)

(* extension Ede it. *)
if (Total Short <> 0) and (TotalShort < Short [R])

then
begin

TotalShort := TotalShort;
TotatSExt := TotalSExt;

end
else

begin
TotalShort := Short[R];
TotalSExt := SExt[R];

end;
(* Shortest call per day and Ioilich *)

(* extension IliBICie it. *)

end­
write<lst,III,TotalAns:24:0,TotalUna:12:0,copy(Recon(TotalCOur/TotalAns),4,5):10);
wri te!n(15 t ,Copo;(KeoCon(1otai. Long),4,5): 15 , cop')'tiilecon(TotalShort) ,4,5): 12, I 1');

(* Print the daily totals for the ,""ale switch board of the total aIIOU'lt of *)
(* calls answered, the total -=u'lt of calls ISIoIIf'lSwered, the a-..erage speech *)
(* ti.e per call, the longest call and the shortest call. *)

writeln(lst,ll I':);
writeln(lst,'wdteln(lst, I ~ _

write(lst,.12); (* Add a fo'" feed after the print-out .. *)
end; (* ManRep *)

(*------------------._-------_.---~---*)

proced.ire Lriilep;

(* This pt'oceci..lre is used to produce a printed repJrt regarding each *)
(* indi~iduat t~ l ;ne's hourly progress. *)

~8r TotalAns,TotalRCOur,TotalUna,TotalRDur,TotalOur real;

*)
*)
*)
*)
*)

.)

Reset ~8riables.

Check iItlich trtrtk lines are used.

(.
(0

(0
(0
(0

begin (* LnRep *)

for S := 1 to 30 do
if Flag[Sl = 1

then
begin

TotalAns := 0;
TotalRCOur := 0;
TotalUna := 0;
TotallIDur := 0;
ToteL-OtJr := 0;writeln< lst, I 1 ". '
writeln{lst,l 11);

iiriteLn(lst,1 TRUttJ: LINE ',S:2,' CATE: 1 ,OATtJIt, I

C-30

Aau1t Duration Aault Duration Total Duration
Answered Cl=4>ied Unanswered OC~ied OCcupiedTi_

APPENDIX C

writeln(tst,11
writeln(lst, I

writeln<lst, I

writeln(lst, I

writeln(Lst, I

for R := 7 to 8 do
ff (InfoLnrS.R,1] <> 0) or (/nfolk1arS.R.ll <> 0)

then
begin
write{l.t~·J O',R,':OO - O·,R+1,·:OOt,JnfoLntS,R,1l:7:0);
wri te(lst,Recon(InfolntS,R,21+1ntoLn[$,R,31) :13, Infol.inerS, R, 1] :8:0);
wri te(lst,Recon(Infollnll [$,1,2]):");
wri teln(lst,Recon< InfoLntS,R,2J +InfoLnCS, R,3) +lnfoUna [5. R, 2]): 13, I

end;
(* For tile period bet>oeen 07:00 and 09:00 print on • hourly basis the,t *)
(* of calls answered, the rifllilin; and call c:iJretian, the,....;,wered calls, *)
l* the ring ins ciJr8tion and the totll ciJraticn the reLeYWJt tr"U'W. lines are *)
(* busy. *)

if (InfoLn[S,9.1l <> 0) or (lnfolJna[S,9,1J <> 0)
then

begin
write(lst,'1 09:00· 10:00',Infoln(S,9,1]:7:0);
write(lst ,Recon< InfOln [5, 9 ,2]+lnfOl..n [5,9,3]): 13, InfoUna [5, 9 ,1) :8:0);
Wf"j tee tst ,Recon(InfOikwJ [519, 2J }: 14);
wri tetn(lst,Recon(InfoLn [S,9,2] + Infoln[S, 9 .. 3] +lnfoUna [5,9,2]): 13, 1

end;
(* For the period between 09:00 and 10:00 print on a hourly basis the i8CU1t *)
(* of calls answered, the ringing and call duration, the l.nBl"l:Swered c8tls, *)

(* the ringing duration and the total duration th~ relevant tM.J"lk lines are *)
(* bus.,.. .)

for R := 10 to 16 do
if (InfolntS,R,1l <> O) or (InfoUna[S,R.,1J <> 0)

then
begin

write(lst,11 1,R.,I:OO - I,R+1,I:OO',Infoln[S,R,1]:7:0);
wri tee lst,Recon<Infoln (S, R.,Zl + I nfoln [S, R. ,3]): 13, I nfoUna [S, R, 1) :8:0);
liri tee Lst, Recon(InfoUne CS, R,2l): 14);
wri teln< lst .. ReconC InfoLn [5, R,2] +InfoLn CS, Si ,3] "'Infol.lna [5, Si ,2]): 13, I

end;
(* For the period betl.leef1 10:00 and 17:00 print on • hcurly basis the ~t .)
(* of calls answered, the r1flging Bird eaU duration, the t..naI'lS~red caHs, *)
C* the ringing duration an::I the total duration the relevant trt.l"lk lines are *}
(* busy. *)

writeln(lst,11
wri teln(lst, I

for R := 7 to 16 do
begin

TotaiAns :::: TotetAns ... Infoln{S,R:, 1];
(* Total ruri:;ler of calls answered per *)
(* day per relevant tru'lk line. *)

Tota!RCOur ;= TotalRCDur + InfolnCS,R,2J + InfoLnfS,R,3J;
(* Tot:al ringing and call ciJration for *)

C* answered calls per day per relevant *)
C* tn.nk. line. *)

TotslUna := TotalUna + Inf0Un8(5,R,ll;
(* Total I'Ulber of LI"I8I'lSwered cat ls per *)

C* day per rele..ant tf'Ulic: l iore. .)
Tota,,wur := TotaLRDur InfoUnafS .. R,2J;

C* Total ringing duration for \S'l&nS\iiered *)
C* calls per day per relevant trt.r1k line.*)

TctalDur := TotaUlCOur + TotatRDur;
(* Total duration pe:r day that relevant *)
C* ti1...rllk. line is bJsy. *)

end·
IIIr i te< 1St, , I 1 ~ TotalAns :22;0, ReCon(Tota l RCOu.r): 13. rotaWna:8: O};
wri teln(lst. Recon(Tot:alRDur): 14, ReCon(TotalOur) : 13, I 11);

(... Prin: the daily totals per rele-.oant tM.rlk l'ine of the total I"UIlber of *)

(* calls ans.wered, the total r;1lQil)g and call duration, 'the total TUIi:ler *)
(of :r.aswered calls, the total ringit'lQ c:l.lr8tion and the total ciJration .)
(the line is busy. *)

wri tetn{lst, 11
writetn(lst, I

C-31

I');

I');

I');

(* Add a fonl feed aftCM'" the print·out. *)

APPENDIX C

writeln{tst, I L''.

wri te< lst,j:12);
end;

end; ('lit l~ep *)

procedure Ex'tAnsRepi

(* This proceOJre ia used to prociJc:e • printed re,»rt of me aYer8ge *)
(* dBHy answering ti-. of both the operators .. well ea the switch *)
(* b;)ard as 8 IIitote. *)

var TotRDur, TQtAns,AYgROur r TotCDur ,AvgCOur : reel;
TotalAns,TotalRDur,TotalCDur : reel;

~inwriteln(lst.' -, I);

writeln<lst,' I);
writeln<lst,' AVERAGE DAILY ANS\.IERtNG TIMES. DATE: I,OA11.I4,1 11).

writeln(lst,' \');'
writeln<tst, I EXTENSION AMCl.INT ANSWERED AVERAGE RINGIMG TIME AVERAGE SPEECH TIME I);

writeln(lst, I I);
writeln(lst,' I};

for S := 225 to 255 do
be;in

TatROur ;= 0: (a *)
TatAns :;: 0; (* *)

AvgRDur := 0; (* *)
TotCOur := 0; ('lit .)

AvgCDur :: 0: (* Reset variables. *)
TotalAns := 0; (* *)
TotalRDur := 0; (* *)
TotalCDur := 0; ('lit *)
for R := 7 to 16 do

begin
TotROur := TatROur + JnfoExt[S,R:,3l;

(* Total ringing duration per extension••)
TotAns := TotAns + InfoExt[S,R,1l;

(* Total ~t of calls answered per .)
(lIr extension. .)

TotCOur := TotCDur + InfoExt(S,R,2J;
(* Total speech duration per extension. *)

end;
if TotAns <> 0

then
begin

AvgROur := TotROur I TatAns;
(* A'Ierage ringing cllration per .)
(.... extension. *)

AvgCDur := TotCOur I ratAns;
(* Average speech duration per .)
('ir extenslon. *)

wrlteln(lst, I 11 ,5:8, TotAns:15:0,ReCon(Av;RDur) :22,A:econ(AvgCDur):22, I

(* Print the daily totals for eech extention of the ~t of calls answered *)
(* l the everage rif'liing cilretion end the average speech ti.e. *)

end;
erri;
for R: : = 7 to 16 do

for S := 225 to 2SS do
begin

TotatAns := TotalAns + InfoExt[S,R:,1l;
r* TotaL rJL.IIt)er of calls answered by the *)
(* switch board as a ..note. .)

TotalROur := TotalRDur + InfoExtrS,R,3J;
(* Total ringing a.u-ation as seen by the .)
(* switch board as a wtlote. ,*)

TotaLCDur ::; TatalCDt.:r + InfoExt!S,R,2J;
(. Total speech duration as Seen by the *)
(ft switch board as a whole. '*)

I ');

em-,
writeln(lst,ll Total 1 ,TotalAns:14:0,aecon(TotaliOur/TotalAns):22,ReCon<TotalCOur/TotalAn6):22,1

C-32

APPENDIX C

(* Print the daily totals for the whole switch board of the total 8IIOlI"\t of *)
(* calls answered, the ever8Qe ringing tiae per call and the aver&Qe speech .)
(* tia per call. .)
~riteln<lst"1 11

);wdteln<lst, I , , I);

write<tst,'12); (* Add. fOAl feed after the print·out. *)

end;

procedure Prin't:MeNJ;

(* Tt,;s procedure is used to select the required print·out .. *)

label Juopl,JuopZ;

ver Ch -: char;
YesNo: bootean;

besin (* Prin~ *)

J~1:

Men.£lutLine;
gotoXY(31 ,4);
.rite('««« PRHH MENU••It.');
window(25,7,65,18}; (* Set the size of the requited work *)

(- area.. .)

*)

*)

*)

area to the *)
*)
*)

*)

size on printer.

If character pressed is 1'1, then
pri nt the IAanagefDent rep:lrt.

----------------- (5)1);
(* Set size of required work.
C* whole screen.
C* Read keyboard character pressed.
(* Check. for escape sequences.

of
begin

TestPri nterCYesMo);
if YesMo

tnen
begin

wr i te(lst .127167#(3);
(* Set-~ page

GetPrintInfo;
ManRep; ('..

(*

read(Kbd,Ch);
if Ch • 127

tnen
9Oto J~

else
begin

case Ch
11 1 :

gotoXY(1,2);
writeln('~ITCH BOARD STATISTICS ._--- (1)1);
writeln;
writeln(IINOI'WIDUAl. EXTENSIONS ------- (2) I);

writeln;
wrlteln('TRUNK LIME REPORTS -.-------- (3)1);
writeln:
writeln('AVERAGf ANSWERING TIMES ----- (4}');
writetn;
writelr,('ALl REPORTS
window(1,1,80,25);

end;
end;

/2' begin
~estPrinter(Yes)jo) ;
1f YesNo

then
begin

.rite{lst,127*67#33);
C" Set-~ page size on printer. *)

GetPrintInfo;
ExtRep; (* If character pressed is 12 1 • then -)

C- print the extension report. *)
end;

end;
13 1 be9in

:estPrinter(YesNo);
11 'fesMo

C-33

APPENDIX C

then
begin

write(lst.127167133);
(* set-l4J paQe size an printer. *)

GetPrintlnfoi
~ep; (* If charKter" pi !lIed is '3', then *)

(* print the tn.nk. line report. *)

end;
end;

14 1 begin
TestPrinter(YesNo);
H YesMo

then
begin

write(lst,I27J67«33);
(* Set-up page .ize on printer. *)

GetPrintInfo;
ExtAnsRep;

(* If character pressed is 14', then *)
(* print the answering tiES report. *)

end;
end;

'5' besin
TestPrinter(YesNo);
if Yes)lo

then
begin

write{lst,127*67f33);
(* Set-up page size on printer. *)

GetPrintlnfo;
MarRep; (* If character pressed is '5', then *)
ExtRep; (* print the -.nage.ent,extension, trU'lk *)
LnRep; (* line at"'Id answering ties reports. *)
ExtAnsRep;

end;
end;

else
gote J~l;

end;
end;
J~:

ClrScr;
JIIlairi4enu;
5etBottOALine;
window(11,16,70,21);

gotoXY(X, n;
end; (* PrintMenu *)

(* Set the size of the required work *)
(* area. *)

(*-------------_._--*)

C-34

	Table of contents
	1. Introduction
	2. Objective
	3. Information system development
	4. Hardware design
	5. Software development
	6. Problems encountered
	7. Future enchancements
	8. Conclusion
	9. Bibliography
	Appendix A. Schematic drawings
	Appendix B. Flowcharts
	Appendix C. Program listings

