
Wireless sensor network monitoring using

the Simple Network Management Protocol

Leon du T. Steenkamp

Supervisor: Richardt H. Wilkinson

Co-supervisor: Shaun Kaplan

Centre for Instrumentation Research

Submitted in fulfillment of the

requirements for the

degree of Magister Technologiae

in the Department of Electrical Engineering

Cape Peninsula University of Technology

Cape Town

August 16, 2012

Declaration

I, Leon du Toit Steenkamp, declare that the contents of this thesis represent my own

unaided work, and that the thesis has not previously been submitted for academic exam-

ination towards any qualification. Furthermore, it represents my own opinions and not

necessarily those of the Cape Peninsula University of Technology.

Signature of author ..

Cape Town

November 2011

Acknowledgments

I would like to acknowledge the following people and groups who in some way or another

contributed towards the completion of this thesis:

� Aan Pa en Ma, vir al die hulp, bystand, aanmoediging en ondersteuning wat julle

my gegee het,

� my supervisors Mr Shaun Kaplan and Dr Richardt Wilkinson for their advice and

support,

� the Centre for Instrumentation Research for its support and equipment and

� the French South African Institute of Technology for its assistance and allowing me

to work on this document while also completing their coursework.

The financial assistance of the National Research Foundation, French South African

Institute of Technology and Cape Peninsula University of Technology towards this research

is acknowledged. Opinions expressed in this thesis and the conclusions arrived at, are

those of the author, and are not necessarily to be attributed to the respective mentioned

establishments.

Synopsis

Wireless sensor networks (WSNs) have long been separate networks using non-standard,

custom and application specific protocols. The arrival of IPv6 over Low power Wireless

Personal Area Network (6LoWPAN) changes this, with the Internet Protocol (IP) being

the common protocol between conventional IP networks and Wireless Sensor Networks.

Through the use of 6LoWPAN implementations like blip, developed for the WSN

operating system TinyOS, it is possible to make use of the advantages that the common

IP layer brings. This includes the reuse of techniques, protocols and software that are

already developed for, and in use on, conventional IP networks.

One such protocol is the Simple Network Management Protocol (SNMP), which is a

User Datagram Protocol (UDP) based protocol used for monitoring and management in

conventional IP networks.

This work describes an implementation of the first version of the SNMP in nesC for

TinyOS using the blip 6LoWPAN implementation. The SNMPv1 software agent imple-

mentation requires no modification to the 6LoWPAN stack and responds to standard

SNMP get and set requests. This means that standard SNMP software can be used to

communicate with the implemented SNMP software agent. Therefore network monitoring

packages like Nagios and Cacti can be used to monitor wireless sensor networks.

Relevant background information is discussed, ranging from the division of commu-

nication between network nodes into logical layers, to similar work done and the Simple

Network Management Protocol. The implementation of the SNMP software agent is ex-

amined, along with the anatomy of an SNMP GetRequest message in aid of understanding

the structure of SNMP messages.

The SNMP agent implementation is then tested against network monitoring tools like

Cacti, Nagios and applications from the Net-SNMP package. The results verify the correct

operation of the SNMP software agent and demonstrate the added functionality that the

software agent provides.

Table of Contents

Table of Contents i

List of Figures v

List of Tables viii

List of Abbreviations x

1 Introduction 1

1.1 Research methodology . 2

1.2 Significance and contributions of the research 3

1.3 Delineation of the research . 3

1.4 Structure of the document . 4

2 Background 6

2.1 An introduction to wireless sensor networks 6

2.2 Wireless sensor network specific network monitoring 7

2.3 Wireless sensor network operating systems 8

2.4 Wireless sensor network hardware . 10

2.4.1 TelosB . 11

i

2.5 OSI layered model . 11

2.6 Internet layered model/protocol suite . 14

2.7 The IEEE 802.15.4 protocol suite . 14

2.8 Internet layer . 17

2.9 Transport layer . 18

2.10 Application layer . 18

2.11 Network monitoring software . 19

2.12 Summary . 20

3 6LoWPAN and SNMP 21

3.1 6LoWPAN . 21

3.1.1 6LoWPAN implementations . 23

3.2 6LoWPAN and SNMP . 24

3.3 SNMP . 25

3.3.1 SNMPv1 . 29

3.3.2 SNMPv2 . 31

3.3.3 SNMPv3 . 32

3.4 Anatomy of an SNMP message . 34

3.5 Summary . 36

4 SNMP agent implementation 37

4.1 SNMP software agent overview . 38

4.2 The snmp block . 39

4.3 The snmpMib block . 43

ii

4.3.1 Management Information Base . 46

4.3.2 Statistics . 49

4.4 Applications . 50

4.4.1 The hopNode application . 50

4.4.2 The windStation application . 52

4.4.3 Memory usage . 53

4.5 Summary . 54

5 Testing and evaluation 55

5.1 Workstation . 55

5.1.1 Preliminary blip tests . 56

5.1.2 SNMP tests . 60

5.2 Testbed . 64

6 Conclusion 79

6.1 Evaluation of work done . 80

6.2 Proposed future work and recommendations 81

References 82

A Testbed 92

A.1 Hardware . 92

A.2 Software . 94

B Set up and configuration of software 96

B.1 Nagios . 96

iii

B.2 Cacti . 98

B.3 PHP graphing . 100

C Code 102

iv

List of Figures

1.1 Structure of the document . 5

2.1 TelosB by Maxfor (TIP700CM) (Left) and Crossbow (Right) 11

2.2 OSI Layered Model (Shay, 2004) . 12

2.3 Internet Layered Model (Braden, 1989) . 14

3.1 The OID tree showing the structure of management information 27

3.2 Colour-coded object identifier for sysDescr object 28

3.3 SNMPv1 packet structure . 29

3.4 SNMPv1 PDU . 30

3.5 SNMPv1 Trap PDU . 31

3.6 SNMP GetRequest message with values shown 34

3.7 Type Length Value encoding of BER . 34

4.1 SNMPv1 software agent general flow diagram 38

4.2 Wiring diagram of snmpP component . 40

4.3 General flow diagram of snmpP component 41

4.4 SNMPv1 Trap PDU . 42

4.5 General flow diagram of snmpMibP component 43

v

4.6 Wiring diagram of snmpMibP component 44

4.7 Diagram of the WSN-MIB . 47

4.8 Wiring diagram of the hopNode application 51

4.9 Wiring diagram of the windStation application 53

5.1 Workstation testing setup . 56

5.2 ICMP echo request and response messages in Wireshark 58

5.3 Wireshark packet analyser in operation . 58

5.4 SNMP GetRequest and GetResponse in Wireshark 62

5.5 SNMP GetResponse with error message . 63

5.6 SNMP SetRequest and GetResponse in Wireshark 63

5.7 SNMP Trap message . 64

5.8 Floor plan of testbed and node location . 65

5.9 Testbed layout . 66

5.10 Edge router PC . 66

5.11 PHP Graphs of temperature and humidity as monitored by node 13 67

5.12 PHP graph of captured data from the Photosynthetically-Active Radiation

(PAR) light sensor on ‘Mote 13’ . 68

5.13 Cacti being used to graph traffic on conventional networks 68

5.14 Cacti graphing sensor values from WSN nodes 69

5.15 Graph of APPsent object data generated by the windStation application . 69

5.16 Temperature data gathered over SNMP with Cacti 71

5.17 Temperature data from application code sent over UDP and graphed using

PHP . 71

vi

5.18 Cacti graph of the APPsent object in MIB 72

5.19 Cacti graph of ICMP messages sent by node 72

5.20 Graph generated by Cacti of SNMP messages sent by WSN node 73

5.21 Graph generated by Cacti of SNMP messages received by WSN node . . . 73

5.22 Cacti graph of UDP packets sent by node 74

5.23 Cacti graph of IP packets sent by the WSN node 74

5.24 Cacti graph of IP packets forwarded by node 1 75

5.25 Cacti graph of IP packets forwarded by node 2 75

5.26 Nagios Service Detail page . 76

5.27 Nagios History for all hosts page . 77

5.28 Nagios Trends report . 77

5.29 Nagios Availability report . 78

A.1 Sentilla Tmote Connect with one WSN node 93

A.2 Testbed network cable adapter box . 93

A.3 Floor plan of testbed and node location . 94

B.1 Adding a device . 98

B.2 Creating the graph . 99

B.3 The new graph created from the device added 100

vii

List of Tables

2.1 Network monitoring systems summary . 20

3.1 A short list of ASN.1 data types used with the BER 35

4.1 Valid values for trapState . 45

4.2 RAM and ROM usage, in bytes, of applications with and without Low

Power Listen (LPL) . 54

viii

List of Abbreviations

6LoWPAN IPv6 over Low power WPAN

ASN.1 Abstract Syntax Notation One

BER Basic Encoding Rules

HTTP Hypertext Transfer Protocol

IAB Internet Architecture Board

ICMP Internet Control Message Protocol

IEEE Institute of Electrical and Electronics Engineers

IETF Internet Engineering Task Force

IP Internet Protocol

IPv6 Internet Protocol Version 6

ISO International Standards Organisation

ITU-T International Telecommunication Union - Telecommunica-

tion Standardisation Sector

LAN Local Area Network

LPL Low Power Listen

MAC Medium Access Control

MIB Management Information Base

MTU Maximum Transmission Unit

NMS Network Monitoring System/Station

OSI Open Systems Interconnection

PDU Protocol Data Unit

ix

PHY Physical Layer

RFC Request for Comments

SMI Structure of Management Information

SNMP Simple Network Management Protocol

TCP Transmission Control Protocol

UDP User Datagram Protocol

WPAN Wireless Personal Area Network

WSN Wireless Sensor Network

x

Chapter 1

Introduction

Wireless sensor networks (WSNs) are networks of low power devices that use their on-

board sensors to cooperatively monitor their surroundings. Even though various real

world and test WSNs have been designed and constructed they are not always easy to

connect to other networks. WSNs are mostly separate, stand-alone networks that use

custom, nonstandard messages. This makes each WSN different from another and dif-

ficult to connect without a complex translation gateway device. It also means that for

each network task a custom protocol or way of dealing with the task is often devised,

where on conventional Internet Protocol (IP) networks standardised protocols and meth-

ods already exist for dealing with these tasks, which can often be reused. One important

task is network monitoring. Network monitoring in WSNs is not a new activity (Yu,

Mokhtar & Merabti, 2006) with various solutions devised to deal with this task. The

conventional IP network solution to network monitoring and management is the Simple

Network Management Protocol (SNMP).

The current state of affairs in WSNs is similar to the early days of networking before

the Internet, where no two networks could easily communicate and were interconnected

with difficulty. For conventional networks things started to change with the advent of

the Internet Protocol with more and more networks adopting IP. With this common

protocol between networks it was possible to find common ground and interconnecting

networks became easier. It might be possible for version six of the Internet Protocol

(IPv6) with the help of the 6LoWPAN (IPv6 over Low power WPAN) specification to

do something similar for WSNs. The 6LoWPAN specification describes a method and

protocol for sending IPv6 messages over WSNs. IPv6, through the use of 6LoWPAN,

becomes the common protocol between the different WSNs. This protocol is not only

common to the WSNs implementing 6LoWPAN, but also to conventional networks using

IPv6. 6LoWPAN enabled WSNs can therefore also be easily connected to conventional

networks, such as wired Local Area Networks (LANs) or Wireless Local Area Networks

1

(WLANs), by using much simpler gateway devices than needed before.

The 6LoWPAN specification does not only bring this common protocol to WSNs but

also the possibility of using protocols, methods and tools already developed for conven-

tional IP networks on WSNs. One of these protocols is the Simple Network Management

Protocol (SNMP). The SNMP is used on conventional IP networks to monitor and manage

network nodes.

The objective of this research is to implement and test an SNMP software agent for

WSNs that can respond with and receive standard SNMP messages. This SNMP software

agent can then be used in the task of network monitoring and management on WSNs.

Some broad research questions that will be considered in the work and answered as

formulated in the research methodology section are as follows: What is the SNMP and

where is it used? What network monitoring exists in WSNs, specifically SNMP like

solutions? What network monitoring packages, for conventional computer networks exist

that can be reused in WSNs? Is an SNMP implementation for WSNs possible?

1.1 Research methodology

A literature study on the Simple Network Management Protocol was done and the dif-

ferent versions and aspects of the SNMP were looked at. Papers on network monitoring

and management in WSNs were investigated with a focus on SNMP and SNMP-like im-

plementations and methods. The different network monitoring software packages that are

generally used on conventional networks, but could also be used to monitor WSNs, were

investigated.

The design of an SNMP software agent for wireless sensor network devices was done.

Design decisions that were made as to what version to implement and what functionality

to include are discussed. The designed SNMP software agent was implemented in nesC

for the TinyOS WSN operating system.

The implemented SNMP software agent was tested during and after development for

correct operation and functionality. For testing purposes a WSN testbed was created

on which some of the testing was done. Testing was done to ensure that the network

stack was functioning correctly. The software agent was tested against command line

SNMP tools and also tested over a longer period on the testbed using the chosen network

monitoring software. The software agent was tested against existing network monitoring

software and tools, which was possible because the agent interpreted and responded with

standard SNMP messages.

2

1.2 Significance and contributions of the research

The research done offers a glimpse into the possibilities that an SNMP enabled 6LoWPAN

WSN hold. It does so without having to do modifications to the 6LoWPAN stack used

and also without the need for a translation gateway. The SNMPv1 software agent using

blip in TinyOS is also one of the first such implementations, if not the only, available

that can operate without the need for an SNMP proxy or translation gateway. blip is

a 6LoWPAN implementation created by researchers at the University of California at

Berkeley for the TinyOS WSN operating system.

This work attempts to show that it is possible, through the use of SNMP and enabled

by 6LoWPAN, to use existing network monitoring software developed for conventional

networks with WSNs.

The implemented SNMP software agent can be used in future WSN deployments by

the Centre for Instrumentation Research (CIR) to facilitate easy network monitoring of

deployed WSNs. It would also be possible to use the SNMP software agent to facilitate

the gathering of the sensor readings. One such proposed WSN deployment is one to

do condition monitoring of high voltage transformers. Through the use of the created

software agent, network monitoring can be done using existing software packages and

additional development of software for this purpose is not necessary. The software agent

therefore has real life application in its use in future deployments to perform the essential

function of network monitoring.

A byproduct of the work done is the constructed WSN testbed. The testbed can

be used by students and staff for testing and developing WSN applications or for class

projects. The testbed can be further extended to include more nodes or improved software.

1.3 Delineation of the research

This work focuses on network monitoring for WSNs using the SNMP without any modi-

fications to the protocol, or need for translation gateways or nodes. It takes into account

the limitations of available wireless sensor network node platforms, especially the TelosB

mote platform, and also the limitations of current software implementations. The research

was done using the TinyOS 2.1.1 operating system for WSN nodes and Ubuntu 9.10 was

used as a desktop operating system.

It was not possible to do a complete SNMP software agent implementation due to lim-

itations of the WSN platform, the WSN environment and the large scope of the SNMP,

3

consisting of three versions. Functionality was implemented according to its suitability in

WSNs. The large number of possible network monitoring and management server configu-

rations could not be fully explored, but proof of concept setups are shown including a few

different software packages. Research did not include aspects of security or optimisation

in terms of software agent code size. In this document the terms LoWPAN and WSN are

used interchangeably, as are the terms network management and network monitoring.

1.4 Structure of the document

The general structure of the document can be seen in Figure 1.1. This chapter contained

a general introduction to the work with methodology and significance being discussed.

The following chapter has an overview and background of the topics and concepts

discussed later in the document. These include a brief description of WSNs, layered

communications models, hardware and network monitoring software.

The 6LoWPAN specification and SNMP is covered in more detail in chapter three and

a closer look is taken at the anatomy of an SNMP message.

The topics shown in Figure 1.1 in the blocks titled Background and 6LoWPAN and

SNMP relate to the conceptual layered communications model and each topic is covered

in the corresponding section.

Chapter four deals with the implementation of the SNMPv1 agent in TinyOS. The

different components and applications created are also explained in more detail.

The second last chapter deals with testing and evaluation of the SNMPv1 agent and

presents data gathered using the SNMP over 6LoWPAN. The last chapter is used to

conclude the work done and mentions closing remarks such as problems encountered and

proposed further work.

Various appendices are included, these contain information and work done that does

not fit within the main body of the thesis. More information is given on the testbed

created and the set up and configuration of the software used. The TinyOS source code

is listed and the PHP graphing scripts are looked at in more detail.

4

1. Introduction

4. SNMP agent
implementation

5. Testing

6. Conclusion

2. Background 3. 6LoWPAN and SNMP

SNMPv1,2,3
TCP/UDP

IPv6 6LoWPAN
IEEE 802.15
Hardware

Figure 1.1: Structure of the document

5

Chapter 2

Background

This chapter discusses background information on topics covered in the work. The follow-

ing sections give a general introduction to WSNs, the WSN operating systems available

and some WSN hardware. The OSI layered communications model is discussed to give

perspective on where other protocols used fit in. Different network monitoring software

options are discussed along with similar work in the form of WSN specific network mon-

itoring.

2.1 An introduction to wireless sensor networks

A wireless sensor network (WSN) can be described as a network of small, low power de-

vices that cooperatively monitor the space throughout which they are distributed. These

devices communicate over a wireless communication medium and typically have a very

limited range. They can be fitted with any number of different sensors. The sensor nodes,

or motes, often operate from a very limited power supply and for this reason spend most

of their time in a sleep state. These sleep intervals can have a duty cycle of as low as five

to ten percent, only running for five to ten percent of the day.

When using WSNs there are some difficulties that need to be overcome. One example is

the limited power (or energy) available to the devices in the network to power themselves.

Another is the radio transceivers used. These are low bit rate, low power, have a limited

communication range and typically conform to the IEEE 802.15.4 standard. WSN devices

are also restricted in terms of the available memory and computational power.

One of the difficulties caused by using low power radio transceivers, with only a limited

communication range, can be solved by employing multihop or mesh routing techniques.

6

With these techniques nodes can relay messages for other nodes. The range of a single

node can be extended using multiple nodes, with messages traversing multiple hops to

their destination.

WSNs are an attractive option because they open sensing possibilities that were not

previously possible. Using WSNs, sensitive or dangerous environments can be easily

monitored and a high spatial density of sensors attained that might not have been possible

previously with conventional monitoring.

One case in point is the well known WSN deployment on Great Duck Island, Maine

(Mainwaring, Culler, Polastre, Szewczyk & Anderson, 2002; Szewczyk, Mainwaring, Po-

lastre, Anderson & Culler, 2004). Researchers were able to gather data in an area sensitive

to human presence due to the nesting birds on the island. Szewczyk et al. (2004) stated

that the long-term and unattended operation of the WSN enabled the gathering of mea-

surements at a spatial and temporal resolution that would have been impractical with

human observers or with sparsely deployed instruments.

A large number of published works are available that show how WSNs can be used in

various applications and used to gather large datasets with millions of points sometimes

spanning months. A WSN was used to monitor the microclimate in and around a coastal

redwood tree, with data being gathered over 44 days and motes placed at two meter

intervals in the tree (Tolle, Polastre, Szewczyk, Culler, Turner, Tu, Burgess, Dawson,

Buonadonna, Gay & Hong, 2005). A WSN was used to monitor the efficiency of water use

in irrigation (McCulloch, McCarthy, Guru, Peng, Hugo & Terhorst, 2008). Researchers

were also able to monitor volcanic activity using a WSN (Werner-Allen, Johnson, Ruiz,

Lees & Welsh, 2005). Having a successful deployment is however not always a trivial task

(Langendoen, Baggio & Visser, 2006).

2.2 Wireless sensor network specific network moni-

toring

Network monitoring in WSNs is not a new activity and numerous attempts have been

made at monitoring the health and performance of a WSN through various means (Yu

et al., 2006; Lee, Datta & Cardell-Oliver, 2007). Most of these works do not however

employ the network monitoring over an IP enabled WSN (Hsin & Liu, 2006; Tolle &

Culler, 2005). The divisions between the different layers in the OSI (Open Systems

Interconnection) model are also not that clear in the stacks used. In TinyOS there is a

dilution of the boundaries of layers that is partly due to the Active Message Layer used in

TinyOS, which promotes the implementation of protocols directly onto Link Layer frames

7

(Hui, 2008). TinyOS is an event based operating system specifically developed for WSNs

and used in this research. This is likely to be true for most WSN operating systems that

do not offer higher layer services by default and only implement a rudimentary framing

of messages.

Some of the solutions proposed for WSN monitoring and management are based on the

SNMP (Simple Network Management Protocol) or implement some concepts found in the

SNMP. Most of these works based on the SNMP also do not make use of 6LoWPAN (Jang,

Jeong & Choi, 2006; Stefanov, 2008). A number of SNMP based solutions take advantage

of the proxy based deployment model, or some form of sub agent. This deployment model

sees a proxy type device deployed between the SNMP agent (managed device) and the

management station (Vancea & Dobrota, 2007; Jacquot, Chanet, Hou, Diao & Li, 2009).

Some SNMP based implementations use this proxy based deployment model to facilitate

protocol translation which makes it possible to perform compression of messages (Choi,

Kim & Cha, 2009).

A paper from mid 2009 by Choi et al. (2009) proposes 6LoWPAN-SNMP. The work

describes a protocol that uses SNMP and b6LoWPAN, the predecessor to the blip 6LoW-

PAN implementation. 6LoWPAN-SNMP also uses a proxy forwarder on the gateway

device. Messages from the gateway device to the WSN nodes are of a compressed SNMP

nature.

LiveNCM is one of the protocols that employ an SNMP sub-agent or proxy type

deployment model. LiveNCM employs its own protocol between the gateway (housing

the SNMP agent and sub-agent) and WSN node (Jacquot et al., 2009). The LiveNCM

management tool does also not make use of 6LoWPAN.

Similar approaches are also used in other works (Jang et al., 2006; Vancea & Dobrota,

2007), where some form of proxy or sub-agent is implemented on the gateway device. A

non-SNMP protocol is normally used over the WSN from the gateway device to the WSN

node.

2.3 Wireless sensor network operating systems

Various operating systems for wireless sensor networks (WSNs) exist, most of these are

open source. The following is a short list of some of the available operating systems. The

characteristics of interest are support for the TelosB platform and the Internet Protocol.

Contiki (Dunkels, 2010): This OS is actively being developed by a group from academia

and industry under the lead of Adam Dunkels from the Swedish Institute of Computer

8

Science and is targeted at microcontrollers with limited resources. Contiki uses an event

driven kernel and is written in the C programming language. It uses ‘protothreads’ to

provide a thread like programming style. It is possible to dynamically load and unload

applications at runtime. Contiki does offer support for IP based communication in the

forms of uIPv6 and SICSlowpan, a 6LoWPAN implementation.

Hardware platforms available for Contiki include the TelosB and ESB platform. The

ESB platform is based around the MSP430 microcontroller from Texas Instruments with

a TR1001 low power radio transceiver from RFM. It also has a few sensors on board:

temperature, sound, passive IR and vibration. The TelosB platform will be covered in

section 2.4.

MANTIS (Han, 2007): The OS developed by the MANTIS group at the University

of Colorado at Boulder is written in the C programming language. It is an open source

OS for WSNs and is multithreaded. Platform support includes Mica2, MicaZ and Telos

nodes. This project does not appear to be very active.

Nano-RK (Nano-RK, 2010): Nano-RK is available under a dual license similar to

what is used by Qt from Qt Development Frameworks (formerly Trolltech). The Open

Source Edition is available under the GNU General Public License (GPL). Nano-RK is a

fully pre-emptive reservation based real-time operating system (RTOS) written in the C

programming language. The OS from Carnegie Mellon University supports the FireFly

and MicaZ platforms and offers multi-hop networking and various link layer protocols.

LiteOS (LiteOS, 2010): LiteOS is an open source OS supporting the MicaZ and Iris

platforms and is written in the C programming language. LiteOS is not event driven and

offers a UNIX like experience.

TinyOS (TinyOS, 2010): TinyOS is an open source OS released under the BSD license

and designed specifically for WSNs. It supports multiple hardware platforms including

the Mica-family, Telos-family and IntelMote2. Development can be done in MS Windows

or Linux. TinyOS is an event driven OS that uses a component-based architecture.

TinyOS uses an extension to the C programming language called nesC. The operating

system makes use of different components that each have their own interfaces through

which it communicates. These different components are wired together to form applica-

tions (Gay, Levis, Culler & Brewer, 2003; WEBS, 2004).

Initially developed at the University of California at Berkeley it is currently being

actively developed by a community of contributors. Various network protocols have been

developed for use with TinyOS, some being: Dissemination, Tymo, Deluge T2 and blip

(TinyOS, 2010).

9

TinyOS was chosen as an OS because it had all the functionality needed and there

was a functional 6LoWPAN stack available. The candidate also had previous experience

with the OS and therefore did not need to spend time learning a new OS. Assistance from

peers was also available for the OS and TinyOS supported the hardware available.

2.4 Wireless sensor network hardware

Several companies manufacture WSN hardware. The hardware ranges from modules to be

used in other products to complete services or solutions making use of WSN technology.

The following is a short list of manufacturers and limited details on their products or

services.

Arch Rock (Cisco, 2010a) offers their PhyNet Wireless Sensor Networking Platform

and Arch Rock Energy Optimizer products. Each of these products is available in different

packages that consist of a varying number of WSN nodes, PhyNet routers and PhyNet

servers. The WSN nodes use the TelosB platform. Arch Rock also supplies the needed

software and do not offer the ability to reprogram the nodes with custom firmware. Arch

Rock was acquired by Cisco in September of 2010 (Cisco, 2010a).

Sensinode (Sensinode Ltd, 2011) also offers complete packaged solutions with no devel-

opment needed. Hardware can be bought in the form of kits containing NanoSensors and

NanoRouters. The NanoRouters come in two variants, one that uses the USB (Universal

Serial Bus) and the other Ethernet. Both variants support the IEEE 802.15.4 wireless

standard. Sensinode also provides the needed software.

Jennic (Jennic, 2011) provides development kits, wireless microcontrollers and mod-

ules. Their product offerings are not the same complete, ready-to-use solutions that Arch

Rock and Sensinode offer. Jennic products can be used to implement solutions for wireless

sensor network applications. Their wireless microcontrollers and modules make use of the

IEEE 802.15.4 standard.

Crossbow (Crossbow, 2011) offers a complete WSN solution for environmental mon-

itoring called eKo. They also manufacture wireless modules, sensor boards and WSN

gateways. Crossbow modules come in various platforms including Iris, MicaZ, Mica2,

Imite2, Cricket and TelosB. MEMSIC (MEMSIC, 2011) acquired most of Crossbow’s

WSN business in January 2010.

Sentilla (Sentilla Corporation, 2011) offers solutions based on wireless sensor network

technology in the form of the Sentilla Energy Manager. Sentilla also offers the ‘Sen-

tilla Perk: Pervasive Computing Kit’. Moteiv, the predecessor of Sentilla, manufactured

10

various modules based on different platforms, one of which was the TelosB.

2.4.1 TelosB

Various WSN platforms exist but due to the choice of WSN OS and the blip stack the

TelosB hardware platform was chosen. The primary target for the blip stack is the Epic

platform, which is based on TelosB. The other supported platforms include TelosB, Iris

and MicaZ. The Texas Instruments MSP430 based IEEE 802.15.4 compliant TelosB hard-

ware platform was available for use and so additional hardware did not have to be pur-

chased.

Various manufacturers offer WSN nodes based on the TelosB platform, two of which

are Crossbow and Maxfor (Figure 2.1). The platform uses a 16-bit MSP430F1611 MCU

(Microcontroller Unit) from Texas Instruments and a CC2420 wireless transceiver from

Chipcon. It has 48 kB of program Flash, 10 kB of RAM and 1 MB of serial flash external to

the MCU. A 12-bit SAR (Successive Approximation Register) ADC (Analogue to Digital

Converter) and 12-bit DAC (Digital to Analogue Converter) are also available. The 2.4

GHz, IEEE 802.15.4 radio transceiver offers a data rate of 250 kbps and selectable RF

output power, from -24 dBm to 0 dBm. Temperature, relative humidity and visible light

sensors are available on the platform. TinyOS offers support for the TelosB platform and

the various sensors available on the platform.

Figure 2.1: TelosB by Maxfor (TIP700CM) (Left) and Crossbow (Right)

2.5 OSI layered model

An abstract and conceptual model called the Open System Interconnection (OSI) reference

model is used to describe how information moves from one application running on a

networked device to another. The OSI reference model divides the process of sending a

message from one networked device to another into seven layers or seven smaller, more

manageable tasks, see Figure 2.2. Grouped together in each layer is a set of similar

11

conceptual network functions. Each layer communicates to the layer immediately above

and below it through Service Access Points (SAPs).

Application layerApplication layer

Presentation layerPresentation layer

Session layerSession layer

Transport layerTransport layer

Network layerNetwork layer

Data link layerData link layer

Physical layerPhysical layer

Figure 2.2: OSI Layered Model (Shay, 2004)

A network protocol stack that is developed in this layered manner is easier to maintain

and continued development is assisted by the layered approach because protocols can be

replaced or improved without affecting the other layers. The stack is also more likely to

be reused because new protocols can be developed implementing new techniques or new

protocol implementations supporting new hardware can be done.

A brief description of each layer follows (Shay, 2004):

- Physical layer: The Physical layer (PHY) specifies the electrical, mechanical and

procedural elements that make communication possible. For example, if a wired medium is

used, the Physical layer would contain specifics on the layout, number of pins and voltages

used between the communicating devices. If a wireless medium is used, the frequency at

which the transceiver operates, channel characteristics and modulation scheme are just

some of the details specified by the Physical layer.

- Data link layer: This layer is responsible for controlling the flow of information

over the link and also for error detection and correction. The Data link layer divides the

incoming and outgoing bits into frames by marking the beginning and end with special bit

patterns. The Data link layer is often divided into two sub layers: Logical Link Control

(LLC) and Medium Access Control (MAC). The LLC sublayer manages communications

of devices over a single link. It also enables multiple higher layer protocols to use the same

physical link. The MAC sublayer manages how the device accesses the physical network

medium. MAC addresses enable devices to be uniquely identified at the Data link layer.

- Network layer: Network routing is performed at this layer along with message frag-

mentation and reassembly. A logical addressing scheme is used at the Network layer,

which differs from the physical address in that it is logically assigned to the device ac-

cording to where it is in the network and it is often used in the act of routing. The

12

Network layer is responsible for establishing end-to-end communication between nodes.

An example of a Network layer protocol is the Internet Protocol (IP).

- Transport layer: The Transport layer provides multiplexing, buffering and connec-

tion management. Flow control often also takes place at this layer. The Transport layer

in general offers two connection modes to the upper layers, connection-orientated or con-

nectionless. When the connection-orientated mode is used, the protocol has to first set

up a logical connection between the two protocol implementations before data is sent.

The connection is terminated after the transfer of the data is completed. With the con-

nectionless mode, the data is sent as it is received by the Transport layer protocol. The

multiplexing service allows several users to use the Transport layer on a single node. Ex-

amples of protocols that operate at this level are TCP (Transmission Control Protocol)

and UDP (User Datagram Protocol). TCP offers a reliable connection-orientated ser-

vice that ensures that data is delivered while UDP offers only a best-effort connectionless

service.

- Session layer: The protocols in the session layer are responsible for establishing,

maintaining and terminating a session between two end users. This layer also provides

simplex, half-duplex or full-duplex communication. The Session layer provides the con-

nection between users while the Transport layer provides a connection between nodes.

- Presentation layer: This layer provides encryption and decryption of data and also

deals with the presentation of data. It enables different syntax and semantics to be used by

higher layers. Data can be converted from a representation understood by the application

layer to a network format. This layer would also provide translation between different

application data representation formats. Data compression can also be done at this layer.

- Application layer: The Application layer is the closest to the user and directly inter-

acts with the software application. This layer typically is responsible for synchronizing

communication, identifying communication partners and determining resource availabil-

ity. Examples of Application layer protocols are HTTP (Hypertext Transfer Protocol)

and SNMP.

A message travels from the application to the top most layer, Application layer, and

then travels down each layer onto the physical medium. On the receiving device the

message moves from the bottom most layer, the Physical layer, upwards until it reaches

the application. Application of this layered approach can be seen in the protocol stack

most commonly used on the Internet.

13

2.6 Internet layered model/protocol suite

The Internet protocol stack, or protocol suite, follows the above-mentioned layered model.

In the Internet protocol stack, shown in Figure 2.3, some of the layers are omitted or

appear with different names from the traditional OSI model. The Internet model consists

of four layers, some texts use three (Padlipsky, 1982) or five (Shay, 2004) but the most

common is four (Braden, 1989).

In this model everything below the Internet layer and above the Physical medium is

combined into a single layer - referred to as the Link layer, with the host required to

implement the communications protocol used to interface with that particular network

(Baker, 1995). RFC 1812, edited by Baker (1995) also states that protocols at the Link

layer, and by inference the Physical layer, generally fall outside the scope of Internet

standardisation.

Application layerApplication layer

Transport layerTransport layer

Internet layerInternet layer

Link layerLink layer

Figure 2.3: Internet Layered Model (Braden, 1989)

Using this layered approach was very successful because it enabled new protocols to

be added to the protocol suite and the original protocols could be updated and improved

without the need to change protocols that exist at the other layers. One example of this

is the development of IPv6 to eventually replace IPv4. Protocols like SNMP could also be

developed and added to the protocol suite and go through the evolution from SNMPv1

to SNMPv3.

2.7 The IEEE 802.15.4 protocol suite

IEEE 802.15.4 describes the Physical and Medium Access Control layers most used in

WSNs and falls within what is specified under the Internet model as the Link layer.

IEEE 802.15 (Heile, 2011) is the denotation for the IEEE’s working group for Wireless

Personal Area Networks (WPAN). The working group has several task groups focusing

on different areas of WPANs. These include Task Group 1 through to 7. IEEE 802.15

14

is a sister working group to IEEE 802.11, which is responsible for Wireless Local Area

Network (WLAN) standards. Both the 802.15 and 802.11 IEEE standards fall under the

IEEE 802 LAN/MAN Standards Committee.

Task Group 1 (Gifford, 2004) was responsible for the IEEE 802.15.1 standard and

subsequent amendments to the standard that was based on the Bluetooth V1.1 Foundation

specifications. The specification details the MAC and PHY layers.

Task Group 2 (IEEE, 2004) addressed the issue of coexistence of WPANs (IEEE

802.15) and Wireless Local Area Networks (WLAN IEEE 802.11) operating in the unli-

censed frequency bands.

Task Group 3 (Barr, 2009) focused on high rate WPANs. The IEEE 802.15.3 standard

document specifies MAC and PHY layers with data rates of between 11 and 55 Mbps.

Task Group 4 (Kinney, 2010) produced IEEE 802.15.4 documents describing MAC

and PHY layers for low rate WPANs.

Task Groups 5, 6 and 7 are responsible for mesh networking of WPANs (Lee, 2011),

short range Body Area Networks (BAN) (Astrin, 2011) and Visible Light Communication

(VLC) (Won, 2011).

Other Interest Groups include the Terahertz Interest Group (IGthz) (Kurner, 2003)

and the Wireless Next Generation Standing Committee (SCwng) (Kinney, 2011).

The IEEE 802.15.4 standard (IEEE, 2006) for Low Rate WPANs (LR-WPANs) is the

set of specifications for MAC and PHY layers most commonly used for communication

in WSNs. WPANs are used to communicate over short distances with little or no infras-

tructure making it possible to implement inexpensive, low power solutions for a range

of devices. The standard defines the use of a contention based Carrier Sense Multiple

Access with Collision Avoidance (CSMA-CA) medium access mechanism with support

for peer-to-peer and star topologies. For time critical messages the optional super frame

structure can be used to allocate guaranteed time slots to those nodes. The 2006 revision

of the standard offers a selection of PHY layers:

- 868/915 MHz Direct Sequence Spread Spectrum (DSSS) with Binary Phase-Shift Key-

ing (BPSK) as modulation scheme,

- 868/915 MHz DSSS PHY with Offset Quadrature Phase-Shift Keying (O-QPSK),

- 868/915 MHz Paralleled Sequence Spread Spectrum (PSSS) PHY with BPSK and Am-

plitude Shift Keying (ASK) and

- 2450 MHz DSSS with O-QPSK.

15

The standard makes provision for 16 channels in the 2450 MHz band, 30 channels in

the 915 MHz band and 3 channels in the 868 MHz band.

The 2450 MHz PHY supports the highest over-the-air data rate at 250k bits per

second. IEEE 802.15.4 allows for 16-bit short or 64-bit extended addresses, fully ac-

knowledged protocols, low power consumption, energy detection in the channel and link

quality indication (LQI). The standard makes provision for two different types of devices

on the network, full-function devices (FFD) and reduced-function devices (RFD). A RFD

is intended for simple tasks and can therefore be implemented with minimal resources. A

RFD can only be connected to a single FFD at any given time. An FFD can however fulfil

three roles in the network. It can serve as a Personal Area Network (PAN) coordinator, a

coordinator or a device. FFDs can connect to other FFDs and RFDs. There is backwards

compatibility between the 2003 and 2006 revision of the IEEE 802.15.4 standard.

IEEE 802.15.4a-2007 is an amendment to IEEE 802.15.4-2006 describing alternate

PHY layers that could be used. The alternative PHY layers provide improved robustness,

communication range and mobility over IEEE 802.15.4-2006. The layers also make provi-

sion for precision ranging with an accuracy of one meter or better. The alternate PHYs

comprise of an Ultra-Wide Band (UWB) PHY with frequencies ranging from 3 - 5 GHz,

6 - 10 GHz and less than 1 GHz; and Chirp Spread Spectrum (CSS) PHY at 2.450 GHz.

Task Group 4b was tasked to add enhancements and clarifications to IEEE 802.15.4

including the consideration of new frequency allocations, reducing complexity, resolving

ambiguities and increasing flexibility in security key usage. The work done by this task

group was published as IEEE 802.15.4-2006, which is the current revision of the IEEE

802.15.4 standard. The revision adds to the market applicability of IEEE 802.15.4 and

adds improvements uncovered by implementations of IEEE 802.15.4.

IEEE 802.15 Task Group 4c is responsible for adding an amendment to the PHY of

the IEEE 802.15.4-2006 standard and the IEEE 802.15.4a-2007 amendment. The PHY

amendment is in response to Chinese regulatory changes, which has opened the 314-316

MHz, 430-434 MHz, and 779-787 MHz bands in that country for use in WPANs. The

task group has decided that the 779-787 MHz band can be utilised for the IEEE 802.15.4

standard and an MPSK (M-ary phase-shift keying) PHY and O-QPSK (Offset quadrature

phase-shift keying) PHY defined. Eight channels were assigned in the 780 MHz band.

Similar to amendments made by Task Group 4c, IEEE Task Group 4d is tasked with

amending the IEEE 802.15.4 standard to define a new PHY and MAC to support a new

frequency allocation in Japan, 950-956 MHz with 22 channels.

Zigbee builds upon the IEEE 802.15.4 standard and defines communication protocols

used in the upper layers of a proprietary WPAN standard. The relationship between

16

the IEEE 802.15.4 standard and Zigbee (Zigbee Foundation, 2010) can be likened to the

relationship between IEEE 802.11 and the Wi-Fi Alliance. The Zigbee alliance is a group

of companies that pay to be part of the alliance.

The Zigbee alliance also defines Public Application Profiles that contain specific in-

formation about the device and information on how the device should interact with the

network. These include Smart Energy and Home Automation. In 2009 the Radio Fre-

quency for Consumer Electronics (RF4CE) consortium decided to work with the Zigbee

alliance on Zigbee RF4CE. Zigbee RF4CE will be used in remotely controlled consumer

electronics, replacing infrared remote controls.

2.8 Internet layer

At the current point in time one of the drivers for adoption of IPv6 (Internet Protocol

version 6) is the diminishing available IPv4 address space. IPv6 was designed as the

replacement for IPv4 and offers various improvements over its predecessor. The most

notable of these is the increase of IP address size from 32 bits in IPv4 to 128 bits in IPv6.

This translates to 3,911,873,538,269,506,102 addresses per square meter of the Earth’s

surface (Hinden, 1996).

IPv6 also offers simplified address auto configuration compared to its predecessor.

The header format in IPv6 has been heavily revised and header fields from IPv4 have

been dropped or moved to optional headers. This makes the base IPv6 header lighter

and reduces the cost of processing the header in the sense that you only ‘pay for what

you use’. Any extra header fields such as fragmentation, routing, hop-by-hop options or

destination options headers are added as needed. This stacked header approach has the

benefit of greater flexibility and introducing new options and headers in future becomes

as simple as defining an extension header (Deering & Hinden, 1998).

IPv6 requires a link capable of a maximum transmission unit (MTU) of 1280 octets or

greater. An octet consists of eight consecutive bits, equivalent to what is today generally

understood by the term byte. If a link cannot carry a 1280 octet packet then a layer

below IPv6 must provide a fragmentation and reassembly service. Fragmentation in IPv6

only occurs at the source node and not at routers along the packet’s path, in contrast to

IPv4. The packet is reassembled only once it has reached its destination.

17

2.9 Transport layer

Two widely used Transport layer protocols currently on the Internet are the Transmission

Control Protocol (TCP) and User Datagram Protocol (UDP). These two protocols offer

widely differing services to the Application layer.

The use of TCP offers a highly reliable host-to-host protocol that is connection oriented

and end-to-end reliable. TCP requires that each packet that is sent be acknowledged

(ACK) by the recipient. Each packet is also assigned a sequence number, along with the

ACK and a checksum. It is used to provide reliable communication between nodes. Lost

packets are retransmitted after a timeout interval, out-of-order received packets can be

reordered, duplicates eliminated and damaged packets handled accordingly. TCP also

provides flow control and congestion control, which along with the reliability offered by

TCP require that certain state information about each data stream be held. Flow control

is implemented through the use of a sliding window protocol where the window size field

in the TCP segment is used to indicate the number of octets a receiver is able to receive.

TCP has to first establish a connection with the other protocol implementation before

data transfer can begin and when complete the connection should be terminated. (Postel,

1981)

The User Datagram Protocol (UDP) on the other hand only offers best effort con-

nectionless packet delivery using a minimalist protocol mechanism. UDP offers packet

delivery with minimal overhead but in doing so offers no guarantee as to delivery or du-

plicate protection. UDP does have a checksum value and together with source address,

destination address and the UDP length gives protection against misrouted datagrams.

UDP is used by protocols such as the Simple Network Management Protocol (SNMP)

and the Domain Name System (DNS). (Postel, 1980)

2.10 Application layer

The protocols found at the Application layer generally are the protocols that interact with

the application running on the host. The Application layer protocol that is covered in

more detail in this work is the Simple Network Management Protocol and will be discussed

further in the next chapter. Some of the applications that make use of this protocol are

listed in the next section — the implemented SNMP software agent also falls under this

category.

18

2.11 Network monitoring software

Several network monitoring software packages for use on conventional networks exist.

Software is available in both closed-source commercially sold and open-source varieties.

Commercial network monitoring systems include HP Openview (HP, 2010b) and HP

Network Node Manager (HP, 2010a). In this section some open source network monitoring

systems and options will be discussed further. The goal is to reuse this software to

facilitate network monitoring on WSNs.

OpenNMS (OpenNMS, 2010b) was the first enterprise-grade network monitoring sys-

tem (NMS) developed using the open source model (OpenNMS, 2010a). Presently Open-

NMS focuses on data collection, service polling and event and notification management.

The software is largely written in Java and various Operating Systems are supported in-

cluding Linux, Solaris, MAC OS X and Windows. OpenNMS supports data collection

using the SNMP. At the time of writing IPv6 was not fully supported. The release of

OpenNMS 1.10 in middle 2011 focuses mainly on IPv6.

Zenoss Core (Zenoss Community, 2010) is another open source network management

solution that was started by Erik Dahl. Sponsored by Zenoss Inc., Zenoss also offers a

commercial product in the form of Zenoss Enterprise. It is available for Linux, Mac OS

X, in source code and as a VMWare Appliance. Zenoss does not currently support IPv6.

The Dude (MikroTik, 2010) is a network monitoring application by MikroTik. The

software is available for Microsoft Windows, installation instructions for Linux, using the

Microsoft Windows emulator Wine, is also available. The Dude is free of charge but not

open-source. It does not appear to have support for IPv6.

Nagios (Nagios, 2010) is another popular network monitoring tool. It can be used

to monitor applications, services, operating systems and more. Nagios has the ability

to send alerts and notifications of network problems. It also has logging and reporting

capabilities. Records of outages, alerts and notifications are kept and can be easily viewed.

Nagios was used as a monitoring tool and will be discussed further in a later section of

this document. Nagios supports Linux, SNMPv1 and IPv6.

Cacti (Cacti, 2010) offers network monitoring with a graphing solution. Cacti is a front

end to RRDTool. It is PHP driven and gathered data is stored in a MySQL database.

RRDTool (Oetiker, 2009) is a open-source, high performance data logging and graphing

system. Cacti can gather and graph data from an assortment of sources including SNMP.

Cacti will also be discussed further later in this document. Cacti supports Linux, SNMPv1

and IPv6.

19

The core functionality of the NMS chosen is that it should support IPv6. A second

requirement, that is particular to this work, is that the NMS be able to run on a Linux

operating system. It is also important that the NMS support version one of the SNMP,

as this is the version that will be implemented in the software agent. A summary of the

network monitoring systems can be seen in Table 2.1.

Table 2.1: Network monitoring systems summary
NMS Linux SNMP IPv6
OpenNMS X X 7

Zenoss Core X X 7

The Dude X(Wine) X 7

Nagios X X X
Cacti X X X

The packages Nagios and Cacti, normally used on conventional networks, were selected

to be used with the implemented SNMPv1 software agent to facilitate network monitoring

on WSNs.

2.12 Summary

This chapter gave a background and overview of the topics and concepts covered in the

research. These included an introduction to WSNs, layered communication models in

which protocols are organised and the relevant protocols encountered in 6LoWPAN WSNs.

Various WSN operating systems, hardware and network monitoring software were also

looked at.

In the following chapter the SNMP and 6LoWPAN are discussed along with the dif-

ferent versions and concepts found in the SNMP. The structure of an SNMP GetRequest

message will also be shown with the relevant fields and their purpose.

20

Chapter 3

6LoWPAN and SNMP

3.1 6LoWPAN

The two documents that the 6LoWPAN (IPv6 over Low power WPAN) IETF Working

group are responsible for, RFC 4919 edited by Kushalnagar, Montenegro & Schumacher

(2007) and RFC 4944 edited by Montenegro, Kushalnagar, Hui & Culler (2007), describe

the transmission of IPv6 packets over IEEE 802.15.4 networks and the problems associated

with it. RFC documents or Request for Comment documents are the official method

or channel of publishing of the Internet Engineering Task Force (IETF). Informational

documents and Internet Standards are both published through this channel as RFCs.

The use of an IP-based network stack in WSNs has various advantages. The ubiquity

of IP networks allow the use of existing infrastructure and tools when connecting WSNs

to other IP networks, for example proxies and firewalls. Connecting IP-based WPANs

should be much easier than connecting WPANs using proprietary network protocols. IP

technology is well known, fairly mature and the specifications and standards regarding IP

networks are open and freely available. Tools and techniques for managing and diagnosing

IP networks are already available. IPv6 provides mechanisms for stateless auto configura-

tion, which is useful when dealing with large numbers of nodes. IPv6 can also more than

meet the need for address space in WPANs, where deployed devices are envisioned to be

in their thousands. (Kushalnagar et al., 2007)

Hui (2008) suggests that the ‘narrow-waist’ of the protocol stack used in WSNs be

placed at the Network layer. The narrow-waist refers to a single common protocol used by

different network stacks. This means that varying upper and lower layer protocols can be

used without much difficulty because of the common protocol on each stack. This can be

done through the use of IPv6 and 6LoWPAN. It makes complex application gateways or

21

proxies unnecessary when connecting IP-based WSN nodes to other IP-based networks.

According to Hui (2008) the introduction of an Active Message Dispatch ID in TinyOS

messages rather than more conventional header formats caused the protocols developed

by the community to operate at the Link layer rather than the Network layer. The

Active message layer provides only minimal services like multiplexed access to the radio

transceiver, an Active Message Type field (similar to the Ethernet frame Type field) and

single hop message delivery by Active Message address. Other functionality is left to the

user to implement. This is in contrast to the traditional IP-based system abstraction. The

serial interface to a ‘basestation’ mote also naturally leads to application level gateways

at the edge of the WSN (Hui, 2008).

As stated in the previous section, IPv6 specifies a minimum MTU (Maximum Trans-

mission Unit) of 1280 octets for the link. This is larger than the IEEE 802.15.4 link

layer MTU of 127 bytes. This situation is made worse by the addition of Network and

Transport layer headers that, in some cases, could leave as little as 33 (Montenegro et al.,

2007) or 22 (Hui, 2008) octets for application data, depending on the scenario.

To comply with IPv6 requirements, a fragmentation and reassembly adaptation layer

needs to be implemented between the Link and Network layer (a layer below IP). The

main function of the adaptation layer is to deal with the problem of the IPv6 minimum

MTU and Physical layer packet size for IEEE 802.15.4 networks by providing a frag-

mentation and reassembly service. Large IP datagrams that do not fit into a single IEEE

802.15.4 frame are divided into smaller fragments that satisfy the MTU for the Link layer.

These fragments are then reassembled at their destination (or as specified by IPv6). This

adaptation layer forms part of 6LoWPAN.

Header compression can be used to reduce the size of headers before transmission.

Header compression also makes the use of IPv6 more practical in WSNs. It is likely that

Application layer protocols will produce messages large enough to cause fragmentation

when the required headers for lower layers are added. Reducing the size of the headers will

make sure that unnecessary fragmentation and reassembly do not occur. It is expected

that the most applications of IP over IEEE 802.15.4 will make use of header compression

(Montenegro et al., 2007). The RFC dealing with transmission of IPv6 packets over IEEE

802.15.4 networks (Montenegro et al., 2007) specifies a basic method of compressing IPv6

and UDP header fields using stateless header compression. UDP header fields can be

compressed using HC UDP encoding as stated in the RFC, while IPv6 header values can

be compressed using HC1. The RFC also summarises some differences between header

compression of IPv6 packets for IEEE 802.15.4 links and other standardised header com-

pression schemes. A draft document (Hui & Thubert, 2009) that still has a ‘work in

progress’ status will, if approved, update the compression format found in RFC 4944

22

adding more effective compression of unique local, global, and multicast IPv6 addresses

as well as commonly used IPv6 Hop Limit values. The draft also specifies an encoding

format for arbitrary next headers.

3.1.1 6LoWPAN implementations

The initial 6LoWPAN implementation for TinyOS was by Matus Harvan. The 6LoWPAN

adaptation layer that was present could handle fragmentation of IPv6 datagrams, mesh

addressing and broadcast headers. 6LoWPAN HC1 header compression and HC UDP

UDP header compression was implemented. No multi hop or mesh networking was im-

plemented however. It appears that development and support ceased after initial release.

(Harvan, 2007)

Blip (Berkeley IP implementation), formerly b6LoWPAN, is the other 6LoWPAN im-

plementation available for TinyOS. This implementation by Stephen Dawson-Haggerty

from UC Berkeley supports 6LoWPAN HC1 header compression, point-to-point routing,

IPv6 neighbour discovery and default route selection. It supports Epic, TelosB, Iris and

MicaZ platforms. The implementation is currently still being actively supported and

developed and has been included into the TinyOS core. Blip also supports Low Power

Listening (LPL) used to duty cycle the use of the radio transceiver to extend battery life.

(Dawson-Haggerty & Tavakoli, 2010)

Various commercial 6LoWPAN stacks are available from manufacturers for use with

their hardware. Jennic (Jennic, 2010) offers a selection of network protocol stacks for

use with their wireless microcontrollers and modules, one of which is a 6LoWPAN stack.

Manufacturers like Sensinode (Sensinode, 2010) and Arch Rock (Archrock, 2010) base

their software and hardware products on 6LoWPAN technology. An industry alliance

around 6LoWPAN and IP based network technology has also been formed called the

IPSO Alliance (IP Smart Objects) (IPSO Alliance, 2010). One of the Alliance’s aims is

to promote and educate users about the use of the IP for connecting Smart Objects.

The blip stack was chosen because it offered the needed functionality and extra features

like multihop routing and LPL support. It was also developed for use with TinyOS and

TelosB, the hardware platform used. The implementation was also still actively being

developed and supported at the time of this work. The interfaces to the components were

clear and relatively easy to use.

23

3.2 6LoWPAN and SNMP

The IETF 6LoWPAN Working Group is not officially working on SNMP for LoWPANs,

but some 6LoWPAN-related draft documents dealing with SNMP optimisations for 6LoW-

PAN (Mukhtar, Joo, Schoenwaelder & Kim, 2009) and a 6LoWPAN Management Infor-

mation Base (Kim, Mukhtar, Joo, Yoo & Park, 2009) has emerged. It is worth noting that

in RFC 4919 (Kushalnagar et al., 2007) one of the goals of 6LoWPAN is Network Man-

agement and that one of the points of transmitting IPv6 packets is the reuse of existing

protocols.

The SNMP is specifically mentioned in RFC 4919 as it is widely used to monitor

data sources on conventional networks. The possibility that SNMP functionality may be

translated ‘as is’ to LoWPANs is also noted, as this would enable the reuse of existing

tools. It is however stated that SNMPv3 might not be a suitable candidate for use on

LoWPANs because of the limitations on resources such as processing, message size and

memory.

The documents mentioned above are, at this stage, only Internet-Drafts and works

in progress. The SNMP optimisations for 6LoWPAN document states the case for use

of SNMP and looks at the third version of the protocol. The documents do not venture

far into security for use with the SNMP. Security is one of the big hurdles in terms of

available resources on the target devices because of the overhead incurred with the use

of the current security and privacy mechanism associated with the SMNPv3. Header

compression for the SNMP is also being looked at.

The now expired draft documents do open the floor for discussion around the SNMP

and its use with 6LoWPAN, but at this stage do not offer any concrete specifications.

The decision was made to use the first version of the Simple Network Management

Protocol for the TinyOS implementation. The first version has none of the security over-

head that version three of the protocol has, which could be problematic for the resource

constrained devices the agent is intended for. As little in terms of security and 6LoWPAN

have been finalised, the issue of SNMP security over 6LoWPAN will not be addressed and

falls outside the scope of this document. This would also simplify the implementation

and limit the amount of resources needed by the implementation of the agent, leaving

resources for the main application running on the WSN. Version one of the SNMP is still

well supported by monitoring and management software. The changes or improvements

to the subsequent versions of the protocol include, but are not limited to, methods for

improved bulk transfer of information and added security. The combination of the small

physical layer packet size of IEEE 802.15.4 and the multiple requests possible in a single

message when bulk transfer is used would most likely cause frequent fragmentation of the

24

IP packet, which is not desirable.

Using the blip 6LoWPAN implementation it is possible to create an SNMP agent

for use on a WSN. This enables the WSN to be monitored and managed using existing

software and applications usually used for conventional IP-based networks. There is

thus no need to create custom software for this purpose. It is possible to integrate the

monitoring of a WSN into existing monitoring infrastructure. It is also possible to use

SNMP for the retrieval of sensor data from WSN nodes with no need for other application

code on the node.

The implementation of an SNMP agent for the TinyOS WSN operating system demon-

strates the basic functionality that using SNMP brings to LoWPANs and also confirm

some of the assumed benefits that IPv6 brings. Existing tools are then tested and evalu-

ated against the implementation.

The implementation of an agent that can interpret and produce SNMP messages

would also mean that no proxies or gateway entities would be necessary. This has the

advantage that no additions or alterations have to be made to the network stack used.

Using 6LoWPAN also brings a common protocol to the network that should ease its

connection to other networks, including WSNs.

3.3 SNMP

The IAB (Internet Architecture Board) initially recommended, in 1988, both a short- and

long-term solution for the development of Internet Network Management Standards. This

involved the use of SNMP in the short-term and a more long-term solution in the use of the

ISO (International Standards Organisation) network management framework that uses

the CMIS/CMIP (Common Management Information Services/Common Management

Information Protocol) or CMOT (Common Management Information Protocol on TCP)

(Cerf, 1988; 1989). It is worth noting that the predecessor to SNMP is known as the

Simple Gateway Monitoring Protocol (SGMP) and is not compatible with the SNMP.

A working group was also established to define the Structure of Management Informa-

tion (SMI) based on the ISO SMI that would guide the naming and abstraction conven-

tions used in the Internet Management Information Base (MIB). The first versions of the

Internet SMI and MIB were specified in RFC 1065 (Rose & McCloghrie, 1988) and RFC

1066 (McCloghrie & Rose, 1988). The SMI and MIB defined in these documents would

be common and compatible to both the SNMP and CMOT, facilitating the anticipated

move from SNMP to CMOT in the future.

25

The expected similarities between the SNMP and OSI network management frame-

works were, however, not as great as anticipated and the requirement for compatibility

between the two frameworks and the SMI/MIB was dropped. This enabled the SNMP to

respond to new needs in the Internet community by defining new MIB items. The IAB

gave the SNMP, SMI and initial Internet MIB a full ‘Standard Protocols’ with ‘Recom-

mended’ status. In doing so the IAB recommended that all IP and TCP implementations

become network manageable using the SMI, MIB and SNMP. (Case, Fedor, Schoffstall &

Davin, 1990)

In 1990, documents defining the network management framework for IP based net-

works using the SNMP were published and are now known as SNMPv1. The documents

were: ‘Structure and identification of management information for TCP/IP-based inter-

nets ’ (Rose & McCloghrie, 1990); ‘Management Information Base for network manage-

ment of TCP/IP-based internets ’ (McCloghrie & Rose, 1990); ‘Simple Network Manage-

ment Protocol (SNMP)’ (Case et al., 1990).

In its most basic form, a network managed using the SNMP consists of three elements

namely: the managed device, agent and network management station. The managed

device is typically a network node that is connected to the managed network, like a

network router or server. On the managed device resides a software agent that gathers

information from the managed device that it is running on. The information that is

gathered and available is defined in the MIB. The agents present on the managed devices

perform network management tasks as requested by network management applications

that run on the network management station. A network management station can, for

example, request information from the managed device. The agent on the managed

device gathers the required information and then responds to the request by sending the

appropriate information using the SNMP. (Cisco, 2010b)

The Management Information Base (MIB) is a virtual information store (Rose &

McCloghrie, 1990) that contains managed objects that describe the information on the

managed device. These managed objects are described using a limited subset of the

ASN.1 (Abstract Syntax Notation One) (ITU-T, 2010). Each managed object has a name,

syntax and encoding. Each managed object in the MIB is assigned an object identifier,

which serves as its name. An object’s syntax refers to the abstract data structure to

which the object type corresponds. For example, an object might have an object type

of integer or octet string. Not all ASN.1 constructs are allowed in the definition of the

syntax of a managed object. The constructs that can be used are limited for simplicity’s

sake. Encoding of the managed object refers to how the object is represented when being

transmitted on the network using the object’s syntax. ASN.1’s Basic Encoding Rules

(BER) are used for encoding (ITU-T, 2008).

26

The first version of the Management Information Base for network management of

TCP/IP-based internets was defined in RFC 1156 (McCloghrie & Rose, 1990) and contains

a list of managed objects. Later, a second version of the MIB, MIB-2 was defined in RFC

1213 (McCloghrie & Rose, 1991). The mechanisms for describing these objects are defined

in RFC 1155: Structure and Identification of Management Information for TCP/IP-based

Internets (Rose & McCloghrie, 1990). The purpose of this RFC document is not to define

managed objects but to specify the format that other RFC documents use to define

managed objects.

An object identifier (OID) is a list of numbers that span a global tree from the root

to the specific object, similar to an address or path. Each object is assigned a string

called an object descriptor for human convenience that can also be used when referring to

an object. The tree starts at an unlabeled root node with multiple children or subtrees.

Figure 3.1 shows that the unlabeled root node has three children. These are administered

by two entities:

� The ITU-T (International Telecommunication Union - Telecommunication Stan-

dardisation Sector – formerly the International Telegraph and Telephone Consulta-

tive Committee), with label ccitt(0) — (object descriptor of ccitt and OID of 0),

� the ISO, with the label iso(1) — (object descriptor of iso and OID of 1) and

� the third is administered by both the ISO and the ITU-T with the label joint-iso-

ccitt(2) — (object descriptor of joint-iso-ccitt and OID of 2).

This tree can be expanded and can continue to an arbitrary depth.

rootroot

ccitt(0)ccitt(0) iso(1)iso(1) joint-iso-ccitt(2)joint-iso-ccitt(2)

org(3)org(3)

dod(6)dod(6)

internet(1)internet(1)

mib(1)mib(1)

system(1)system(1) interfaces(2)interfaces(2) at(3)at(3) ip(4)ip(4) icmp(5)icmp(5) tcp(6)tcp(6) udp(7)udp(7)

directory(1)directory(1) mgmt(2)mgmt(2) experimental(3)experimental(3) private(4)private(4)

enterprises(1)enterprises(1)

Figure 3.1: The OID tree showing the structure of management information

27

Below its node (iso(1)) the ISO assigned a subtree org(3) that can be used by national

and international organisations. Two of the nodes under this subtree have been assigned

to the U.S. National Institute of Standards and Technology. Of those nodes, dod(6), was

then transferred to the U.S. Department of Defence. The IAB has reserved a node under

the dod(6) subtree for use by the Internet community to be administered by the IAB,

internet(1). This means that the Internet subtree can be identified by the object identifier

1.3.6.1 or iso.org.dod.internet. This also forms the start of all identifiers for objects under

the Internet subtree. (Rose & McCloghrie, 1990)

RFC 1155 (Rose & McCloghrie, 1990) specifies the policy under which the Internet

subtree is managed and initially specifies four nodes under this subtree: directory(1),

mgmt(2), experimental(3) and private(4). The first subtree, directory(1), is reserved for

future use. The second mgmt(2) subtree contains the object identifiers that identify dif-

ferent versions of the Internet standard Management Information Base (MIB). The initial

Internet standard MIB is identified by the number 1. This means that the initial Internet

standard MIB can be identified by the object identifier 1.3.6.1.2.1. The experimental(3)

subtree contains identifiers for objects used in Internet experiments. The private(4) sub-

tree, that is assigned the identifier 4 and is administered by the Internet Assigned Numbers

Authority (IANA), was initially declared with one child; enterprises(1). Manufacturers

or enterprises can apply for a subtree under the enterprises(1) subtree. This allows the

manufacturers to define their own managed objects or MIBs. It is also recommended that

manufacturers register their networking subsystems under their assigned subtree. This

means that a manufacturer can request a child under enterprises(1) tree from the IANA,

for example 1.3.6.1.4.1.38 . Network subsystems made by the manufacturer can then

register under that subtree, for example 1.3.6.1.4.1.38.1.1 .

As an example, the sysDescr object that carries a text description of the managed de-

vice can be identified by its object identifier, 1.3.6.1.2.1.1.1.0, or by its object descriptor,

iso.org.dod.internet.mgmt.mib.system.sysDescr. The relation between the object identi-

fier, object descriptor and the tree in which it is organised in is indicated by the colour

coding in Figures 3.1 and 3.2.

..11 3366 11 11 1122 11.. .. 00

Figure 3.2: Colour-coded object identifier for sysDescr object

28

3.3.1 SNMPv1

The Simple Network Management Protocol version one (SNMPv1) was the initial version

of the SNMP and is specified in RFC 1157 (Case et al., 1990). Together with RFC 1155,

which defines the SMI describing how managed objects are defined in the MIB, and RFC

1156, which defines objects present in the MIB, RFC 1157 forms the first incarnation

of the SNMP. The SNMP is used to convey management information between network

management stations and software agents running on the network elements. The SNMP

handles all management as reading or changing of variables. This essentially limits the

number of commands used in the SNMP to two, an operation to obtain a value from a

managed device (get) and an operation to change a given value on a managed device (set).

The management station thus has to poll for the information it requires. A network man-

agement agent is also able to send unsolicited messages to a network management station

(traps). A group consisting of an arbitrary number of network management stations and

SNMP agents is termed an SNMP community. Each community is identified by its given

community string. In SNMPv1 this is used as a very rudimentary authentication method.

The SNMP only requires that an unreliable datagram service, RFC 1157 specifies

UDP (User Datagram Protocol), be used and that an SNMP message fit into a single

transport packet encoded using the Basic Encoding Rules of ASN.1. Each SNMP message

comprises of an SNMP version identifier, SNMP community name and protocol data unit

(PDU), as shown in Figure 3.3. An SNMP message is received at port 161 and SNMP trap

messages are sent to port number 162. The SNMP specifies five PDUs: GetRequest-PDU,

GetNextRequest-PDU, GetResponse-PDU, SetRequest-PDU and Trap-PDU.

SNMPv1 Message

version community PDU

Figure 3.3: SNMPv1 packet structure

The GetRequest-PDU, GetNextRequest-PDU, GetResponse-PDU and SetRequest-

PDU all have the same basic structure and use the same common constructs. The Trap-

PDU differs from these PDUs, as shown later. Figure 3.4 shows the basic structure of

the SNMPv1 protocol data unit (PDU). The RequestID is used to identify individual

messages and detect duplicate messages. ErrorStatus and ErrorIndex provide informa-

tion on errors that might have occurred. ErrorStatus indicates what error occurred while

ErrorIndex can give additional information on which variable in the list of variables in the

PDU caused the error. When no error is present the value of ErrorStatus is zero. Possible

errors and their codes include: tooBig(1), noSuchName(2), badValue(3), readOnly(4) and

genErr(5). A VarBindList, or variable binding list, is a list of variable name and variable

29

value pairings. The word variable is used to refer to an instance of a managed object. A

VarBind or variable binding is used to refer to a variable’s name and its matching value.

Some PDUs however only use the variable name, for example GetRequest-PDU. In these

cases the value part of the variable binding is ignored. Although the value part of the

binding is not used it is recommended that it must still be encoded using the ASN.1

NULL value.

PDU

RequestID ErrorIndex VarBindListErrorStatus

Figure 3.4: SNMPv1 PDU

A GetRequest-PDU is generated when a network management station wants to retrieve

information from a managed device. The GetRequest-PDU contains the variable name, in

the form of an OID, corresponding to the managed object whose value is to be retrieved.

The managed device responds to the request with a GetResponse-PDU that is identical

to the GetRequest-PDU with the value of the variable added. A SetRequest-PDU is

generated when a management station wants to set or change the value of a managed

object on a managed device. The SetRequest-PDU contains the variable name of the

managed object as well as the new value of the variable. After receiving the SetRequest-

PDU the managed device responds with a GetResponse-PDU that contains the variable

name and new value. A managed device responds to a GetNextRequest-PDU with a

GetResponse-PDU that contains the variable name and value of the variable immediately

after the requested one in the tree. One of the uses of the GetNextRequest-PDU is for

traversing conceptual tables containing information on a managed device.

Managed devices are also able to send unsolicited messages to network management

stations. This can be likened to a managed device sending a GetResponse-PDU without

having received a GetRequest-PDU. This type of message is generated by sending a Trap-

PDU. The structure of the Trap-PDU differs from the other PDUs in the SNMPv1 as can

be seen in Figure 3.5. SNMP trap messages are sent to UDP port 162. The enterprise field

contains the OID of the entity or organisation that is generating the trap, for example

1.3.6.1.4.1.26484. The agent-addr field contains the IPv4 address of the SNMP agent

generating the trap message. If an agent does not use IPv4 this field is given the value

0.0.0.0 as pointed out by Thaler (2002). The generic-trap field indicates the type of trap

generated, with the specific-trap field used to indicate enterprise specific traps. The time-

stamp field contains the current uptime of the agent. The VarbindList is used in the

same manner as the previously described PDUs. PDUs used by the SNMPv1 and their

respective fields are documented in the RFC edited by Case et al. (1990).

30

PDU - Trap

enterprise generic-trap specific-trapagent-addr time-stamp VarBindList

Figure 3.5: SNMPv1 Trap PDU

3.3.2 SNMPv2

In 1993 the second version of the SNMP was defined and built on the first version of the

protocol (Case, McCloghrie, Rose & Waldbusser, 1993). A second version of the Structure

of Management Information (SMIv2) document, RFC 2578 (McCloghrie, Perkins, Schoen-

waelder, Case, McCloghrie, Rose & Waldbusser, 1999b), was also published for use with

the SNMPv2. A document describing the Management Information Base for SNMPv2,

RFC 3418 (Presuhn, Case, McCloghrie, Rose & Waldbusser, 2002a), was published and

made use of the SMIv2. A document that described the protocol operation of the SN-

MPv2 was also published (Presuhn, Case, McCloghrie, Rose & Waldbusser, 2002c). As

with SNMPv1, it is preferred that the UDP be used as a Transport Protocol, but other

transport mappings are also possible (Presuhn, Case, McCloghrie, Rose & Waldbusser,

2002b).

The Administrative Model for SNMPv2 (Galvin & McCloghrie, 1993a) describes the

behaviour of an SNMPv2 party. Under the SNMPv2 each party uses a single privacy

protocol and a single authentication protocol as defined by the Security Protocols for

SNMPv2 document (Galvin & McCloghrie, 1993b). These added security features are

some of the differences between the SNMP version one and version two.

The Security Protocols for SNMPv2 document defines one authentication protocol

that ensures that a message sent from a party can be correctly identified as having come

from that party. It also ensures that the message that was received from a party is the

same as the message that was sent. This is done with a Digest Authentication Protocol

and uses the MD5 message digest algorithm with a 128-bit digest (Galvin & McCloghrie,

1993b).

The Security Protocols for SNMPv2 document also specifies a privacy protocol that

ensures that a message sent from one SNMPv2 party to another cannot be read by a

third party. Privacy is ensured by using a Symmetric Privacy Protocol that uses the Data

Encryption Standard (DES) in the Cipher Block Chaining mode (Galvin & McCloghrie,

1993b).

The Security Protocols for SNMPv2 document (Galvin & McCloghrie, 1993b) is how-

ever only present in the first set (RFC 1441 - RFC 1452) of RFCs for SNMPv2. This

31

set is sometimes called SNMPv2p or the Party-based SNMPv2 (Case, Mundy, Partain

& Stewart, 2002). The second set of RFCs (RFC 1902 - RFC 1908), some of which ob-

solete documents from the first set, does not list any documents dealing with security.

The IETF SNMPv3 Working Group page states, in terms of improvements to security,

that ‘...strongly held differences on how to incorporate these improvements into SNMP

prevented the SNMPv2 Working Group from coming to closure on a single approach. As

a result, two different approaches (commonly called V2u and V2*) have emerged’ (SN-

MPv3WG, 2002). Wijnen (1996) presented a comparison between the two approaches.

In contrast to the proposed added security features of the SNMPv2 a memo was

published that describes Community-based SNMPv2, also known as SNMPv2c (Case,

McCloghrie, Rose & Waldbusser, 1996a). The protocol does away with any added security

features implemented in SNMPv2 and uses a community-based administrative framework

that is based on SNMPv1. The SNMPv2c does however use SNMPv2’s new PDU types

and error codes (Presuhn et al., 2002c). This version had the most support within the

IETF but lacked security. (Case et al., 2002)

As mentioned above, two other SNMPv2 variants exist, SNMPv2u (McCloghrie, 1996;

Waters, 1996) and SNMPv2* (SNMPv3WG, 2002; Case et al., 2002). These versions,

in contrast to SNMPv2c, implemented the added security needed but did not have a

consensus of support within the IETF (Case et al., 2002).

SNMPv2 offers some improvements over SNMPv1 but some of the functionality from

version one remains the same in version two. The Set, Get and GetNext request operations

are the same as in version one, but some new operations are added to version two. These

include the GetBulk request and Inform operation. The Trap operation from version one

is still present in version two, but uses a different message format. SNMPv2 also added

expanded data types, for example a 64-bit counter.

The GetBulk operation offers an efficient way to retrieve large blocks of information.

It can also be used in a similar fashion to GetNext to traverse tables. When an SNMPv2

Trap message is sent there is no confirmation of receipt. An SNMPv2 Inform message

does however offer confirmation of delivery (Presuhn et al., 2002c). This can be seen as

a more reliable form of Trap message.

3.3.3 SNMPv3

The third version of the SNMP is derived from, and builds upon, the two previous ver-

sions of the protocol. The SNMPv3 Working Group’s core focus was to define added

security and administration to the SNMP management framework that would enable

32

secure communication of management data. This security includes authentication and

privacy mechanisms. The IETF Working Group (WG) for SNMPv3 was tasked to create

a single standard and set of documents to provide the needed security, something that the

SNMPv2 Working group could not complete. The SNMPv3 WG was chartered to produce

a single set of documents based on elements and concepts of SNMPv2u and SNMPv2*

(Case et al., 2002).

SNMPv3 continued the use of a modular architecture. All three versions of the Internet

Standard Management Framework share the same underlying structure. This enabled

the use of previous SNMPv2 draft standards where possible, making it possible for the

Working Group to focus on the core task at hand, security, while not ‘reinventing the

wheel’ (Case et al., 2002). The modular design also had the benefit that documents could

be upgraded or replaced if necessary without affecting the other documents or modules.

SNMPv3 also uses the Structure of Management Information Version 2 (SMIv2) (Mc-

Cloghrie et al., 1999b; McCloghrie, Perkins, Schoenwaelder, Case, McCloghrie, Rose &

Waldbusser, 1999c;a) from SNMPv2 as a data definition language for describing MIB

modules.

Specifications for the operation of SNMPv3 can be found in RFCs 3410 to 3418. These

documents include a Protocol Operations RFC (Presuhn et al., 2002c) that is based on

and updates the document for Protocol Operations for the SNMPv2 (Case, McCloghrie,

Rose & Waldbusser, 1996b), thus building on and reusing previous Draft Standards. The

Transport Mappings RFC from SNMPv2 is also reused in an updated form, RFC 3417

(Presuhn et al., 2002b). RFC 2576 (Frye, Levi, Routhier & Wijnen, 2000) describes the

coexistence between SNMPv3, SNMPv2 and SNMPv1.

RFC 3414 (Blumenthal & Wijnen, 2002) and RFC 3415 (Wijnen, Presuhn & Mc-

Cloghrie, 2002), individually describe a User-Based Security Model (USM) and View-

based Access Control Model (VCAM) for the SNMPv3. USM provides SNMP message

level security while VCAM controls access to management information. RFC 3414 de-

scribes using HMAC-MD5-96 (MD5 hash-function (Rivest, 1992) in Hash-based Message

Authentication Code (HMAC) mode (Krawczyk, Bellare & Canetti, 1997)) and HMAC-

SHA-96 (SHA hash-function (NIST, 1995) in HMAC mode (Krawczyk et al., 1997)) as

authentication protocols. The memo also describes the use of the CBC-DES (Data En-

cryption Standard (DES) in the Cipher Block Chaining mode) Symmetric Encryption

Protocol as a privacy protocol. The memo notes that it is possible to replace or supple-

ment these protocols in the future.

33

3.4 Anatomy of an SNMP message

Although five different types of SNMPv1 messages exist (GetRequest, GetNextRequest,

GetResponse, SetRequest and Trap), it is possible to look at one of the types and get

a general understanding as to how an SNMP message is structured. In this section an

SNMPv1 GetRequest message will be investigated and the different parts of the message

examined.

The diagram in Figure 3.6 shows an SNMP GetRequest message as generated by a

NMS (Network Monitoring Station). To ensure that common data types and encoding

of values are used across implementations in different languages, ASN.1 and its Basic

Encoding Rules (BER) are used in the SNMP. SNMP messages are generally received at

UDP port 161 of the network node being monitored.

SNMP Message Type - SEQUENCE

Length – 44 (2C)

Version
Type - INTEGER

Length - 1

Community String
Type - OCTET STRING

Length - 6

PDU
Type - GetRequest

Length – 31 (1F)

Request-ID

Type - INTEGER
Length - 4

Error-status

Type - INTEGER
Length - 1

Error-index

Length - 1

VarBindList Type - SEQUENCE

Length – 17 (11)

VarBind Type - SEQUENCE
Length – 15 (0F)

Name Type - OID
Length – 11 (0B)

Value

Type - Null
Length - 0

30 2C 02 01 00 04 06 70 75 62 6C 69 63 A0 1F 02 04 3F 94 D6 2E 02 01 00 02 01 00 30 11 30 0F 06 0B 2B 06 01 04 01 81 CE 74 01 01 05 05 00

Type - INTEGER

Figure 3.6: SNMP GetRequest message with values shown

Each field in the message consists of three parts. The first part indicates the Type

of the data contained in that field. The second part indicates the Length of the next

part of the message that contains the data (Value). The third and last part contains the

data or Value, which is of the type that part one indicates and of length that the second

part specifies. This is as per the type, length, value (TLV) encoding of the Basic Encoding

Rules (BER). Figure 3.7 shows a diagram of the encoding and an example of the encoding

of the SNMP version number from the GetRequest message shown in Figure 3.6. The 02

shows that the Value is an integer, as per Table 3.1. The 01 shows that the Value field

is one octet long, with the 00 indicating version one of the SNMP.

Type Length Value

02 01 00

Figure 3.7: Type Length Value encoding of BER

From left to right the first two values (30 2C) in Figure 3.6 shows the Type (30)

34

and Length (2C) in octets of the SNMP message with the last field containing the

rest of the message as a Value field (with all values in hexadecimal) as per the TLV

encoding. The next part of the message contains the Version number of the SNMP being

used. This is followed by the Community String. The next part contains the Protocol

Data Unit (PDU) of which five are possible: GetRequest-PDU, GetNextRequest-PDU,

GetResponse-PDU, SetRequest-PDU and Trap-PDU. The corresponding Identifier for

some commonly used data types are shown in Table 3.1.

Table 3.1: A short list of ASN.1 data types used with the BER
Data type Identifier
GetRequest 0xA0
GetNextRequest 0xA1
GetResponse 0xA2
SetRequest 0xA3
Trap 0xA4
Integer 0x02
Octet string 0x04
Sequence 0x30
Null 0x05
OID 0x06

The Value field of the PDU contains the rest of the SNMP message. The Request-ID

field contains an identifier unique to that specific message and is used to detect duplicate

messages and to compare outstanding messages with incoming messages.

The Error-status and Error-index fields indicate the error status of the message,

which is typically not used in GetRequest messages. Possible values for the Error-status

field include: noError(0), tooBig(1), noSuchName(2), badValue(3), readOnly(4) and gen-

Err(5). It is possible for the variable bindings list (VarBindList) field to contain more

than one variable binding (VarBind). If this is the case the Error-index field points to the

VarBind that caused the error.

Some examples of error messages: if a GetRequest is sent to a node and the object

name does not exactly match any identifier in the node’s MIB, then the node responds

with a GetResponse message that is identical to the received GetRequest message but

the Error-status field is set to noSuchName(2) and the Error-index field points to the

VarBind involved (Case et al., 1990). If a GetResponse message is generated (after re-

ceiving a request message) that exceeds a size limit on the node, the node replies with a

GetResponse message identical to the request but with Error-status set to tooBig(1) and

Error-index to a zero value. If the contents of the value field in the VarBind does not

match the expected type, length or value, a response is generated with the Error-status

field set to badValue(3). If an error is generated that is not specified by any of the identi-

fiers, then a genErr(5) is signalled and if no error is present the Error-status field contains

35

the noError(0) identifier.

The VarBindList field contains a list of variable bindings, as described in section

3.3.1. The SNMPv1 implementation in this work only makes provision for a single VarBind

in the list. This was done for simplicity and due to the constraints imposed by working on

a WSN platform. The VarBind field contains the Name of the variable being requested

from the managed node and also a Value field (the Name and Value fields make up the

data part of the VarBind field). Some PDUs are only concerned with the Name of the

variable and not its Value and the PDU of the GetRequest message is one of these. In such

a case the SNMP agent on the managed node ignores the Value field, but even though

the Value field is ignored it must still have a valid ASN.1 syntax and encoding. It has

been recommended that the ASN.1 NULL value be used for the Value field of the variable

binding. (Case et al., 1990)

The Value part of the Name field in the variable binding in Figure 3.6 is encoded in a

different format from the other Value fields in the SNMP message. The Type field contains

the identifier for the OID type (06) with the next field indicating the length (0B). The

third field (Value field) contains the OID and is encoded by taking the first value in the

OID multiplying it with 40 and adding the second value, 110 ∗ 4010 + 310 = 4310 = 0x2B.

In this way the first part of the OID 1.3.6.1.4.1 is encoded as 2B 06 01 04 01, which

reduces the encoded length by one octet. This encoding of an object identifier value is

done as described by the ITU-T (2008) using ASN.1’s Basic Encoding Rules (BER).

3.5 Summary

This chapter gave an overview of 6LoWPAN, some implementations of the specification

and the three versions of the Simple Network Management Protocol. It also looked at

the current relationship between 6LoWPAN and SNMP. In section 3.4 the structure of an

SNMP GetRequest message was shown along with the different fields and their purposes.

The following chapter covers the implementation of the SNMPv1 agent and shows

relevant code snippets to aid explanation.

36

Chapter 4

SNMP agent implementation

In this chapter, the implementation of the SNMP software agent in TinyOS will be dis-

cussed. The manner in which the agent implementation is divided and organised will

be shown. The different tasks for which each logical block is responsible will also be

explained.

As stated, the 6LoWPAN implementation used is the blip stack developed at the

University of California. The stack provides a means of sending IP datagrams over a

WSN. blip currently offers UDP and an experimental TCP transport protocol. As the

SNMP uses UDP, blip can be used to facilitate communication over a WSN using the

SNMP.

The blip implementation is written for TinyOS, which is an event based operating

system designed to be used on wireless sensor network devices. Applications in TinyOS

are written using nesC, an extension of the C programming language. A nesC applica-

tion is divided into components that are wired together to form functional applications.

The functionality that a component provides to other components, or uses from another

component, is described through interfaces. An interface may have commands or events

associated with it that should be implemented or handled by the components involved.

Two types of components exist, modules and configurations. Modules provide the im-

plementation of the interfaces, while configurations are used to wire various components

together. Interfaces provided by one component are wired to interfaces of another compo-

nent that uses them. For example, the functions or tasks that a TinyOS application has

to perform can be divided up and then implemented in different modules. These modules

can then be connected or wired together using a configuration file. These modules can

then be reused and combined with other modules using a new configuration to form a

new application.

37

4.1 SNMP software agent overview

The SNMP agent is divided into two separate logical blocks, as can be seen in Figure 4.1.

The first is the snmp block and consists of the snmpC configuration and snmpP module file.

The second block is snmpMib, this block is divided into the snmpMibC configuration and

snmpMibP module.

snmp block

blip

snmpMib block

SNMPv1 software agent

SNMP-MIBSNMP

UDP block

UDP

Figure 4.1: SNMPv1 software agent general flow diagram

The snmp block is responsible for receiving the raw SNMP message through the UDP

interface provided by the UdpSocketC component in blip (this is referred to as the UDP

block in Figure 4.1). The snmp block listens on port number 161 for incoming messages, it

then interprets the messages and extracts the needed information. The message is checked

to ensure that it is an SNMPv1 message and the SNMP community string is determined.

The type of SNMP message and PDU variable name is then extracted. If an SNMP

PDU variable value is present, as for a SetRequest, it is also extracted. The information

that is extracted from the SNMP message is made available through various interfaces

provided by the component. The snmp block also provides interfaces that can be used

to send response messages. The snmp block is responsible for constructing and sending

SNMP Trap messages. The functionality for sending Trap messages is also provided via

a corresponding interface.

The snmpMib block is where the Management Information Base (MIB) segment is

implemented. This block is used to further process the requests received by the snmp

block. The snmpMib block interprets the type of PDU, variable name and value and acts

accordingly. It is also responsible for the initiation of the sending of Trap messages. The

block is responsible for gathering and storing the needed information specified in the MIB.

When a request for information is received the snmpMib block handles the request, gathers

the requested information and sends a reply to the request. This happens via the snmp

38

block. The snmpMib block also provides interfaces for use by the WSN application that

it is wired to.

This division of the SNMP agent into two logical blocks with separate tasks is deliber-

ate. This enables the easy creation of many different MIB modules. MIBs with different

information can be created and easily wired to the snmp block.

Various standard Internet MIBs exist (McCloghrie & Rose, 1990; 1991) and it is ex-

pected that SNMP implementations should support these MIBs. It is also possible for

companies to define their own Enterprise MIBs in order to better support their specific

equipment, these MIBs are housed under the private(4) and enterprise(1) branches. It

was decided not to support the standard Internet MIBs because they contain information

and objects that might not be relevant in LoWPANs. The main reason, however, for the

omission of the standard MIBs is the limitations in terms of resources on the WSN nodes.

A temporary MIB was created and housed under the enterprise branch for testing.

4.2 The snmp block

As described earlier, the SNMPv1 software agent is divided into different distinct logical

blocks. The snmp block consists of the snmpC.nc configuration file and the snmpP.nc

module. This block receives the raw SNMP message from the blip 6LoWPAN stack and

processes it to extract the needed information from the message. It is also responsible for

constructing the SNMP response message that is sent back to blip and on to the NMS.

The snmp block also constructs the SNMP Trap messages that is sent by the node.

Figure 4.2 shows a wiring diagram indicating the other components wired to the snmpP

component and the interfaces used, while Figure 4.3 shows a generalised flow diagram for

the component.

A wiring diagram shows the connections wired between the different components that

make up a specific TinyOS application. It shows the interfaces provided and used by

components. The rectangular blocks represent the components in the diagram, while

the oval blocks indicate provided interfaces. The arrows point towards the component

providing the interface, with the interface involved indicated on the line. If a component

provides more than one instance of the same interface, the different instances of the

interface can be renamed using the as keyword. This can also be done for clarity’s sake.

An example can be seen in Figure 4.2 where the Statistics interface was renamed and

used as SNMPStats. Another example is the SnmpNotify interface in Figure 4.6 that is

used as ReportPeriod1, ReportPeriod2, ReportPeriod3 and LEDSenable. This wiring of

components is described by the nesC configuration files.

39

Boot

UDP

SnmpReceive

SnmpSend

SnmpTrapSend

Statistics

MainC

UDPSocketC
(snmpSocket)

snmpP

SnmpReceive

SnmpSend

SnmpTrapSend

SNMPStats

a.

b.

c.

d.

e.

Figure 4.2: Wiring diagram of snmpP component

The UDP interface provided by the UdpSocketC component (Fig. 4.2(a.)) is used by

the snmpP component, as snmpSocket, to send and receive UDP datagrams. This socket

is not only used to send and receive SNMP get and set messages it is also used to send

SNMP Trap messages. When a UDP datagram is received by the node on port 161, to

which the socket is bound, a recvfrom (receive from) event is generated for the socket

(Fig. 4.3(a.)):

event void snmpSocket.recvfrom(struct sockaddr_in6 *from, void *data1, uint16_t len,

struct ip_metadata *meta)

Where from contains the address of the node sending the message, data1 contains the

raw SNMP message and len the length of the message. The meta variable is not used in

the implementation.

In the recvfrom event handler the received message is checked to see if the first value

corresponds to the SNMP Sequence identifier (Fig. 4.3(.b)) and it is also checked that

the SNMP version number is the expected value.

The SNMP community string received is then verified against the SNMP community

string that the node belongs to (Fig. 4.3(.c)).

If the community string is correct, the statistics kept for the number of SNMP mes-

sages received (stats.rx) is incremented, the lengths (calcLengths) and start and stop

indices (calcStartStopInd) of the different fields within the message are calculated. The

response message is then partially constructed with values that are known and can be as-

signed at this stage in the handling of the request (Fig. 4.3(.d)). This is done in the

structStuffer (structure stuffer) function with values that are typically present in both

request and response messages. A response message is first constructed in a structure

called snmp message with an instance local. It is then later copied to a buffer before

40

Message received Send messages Send Trap

snmp

Message received
through snmpSocket

Check if it is a SNMP
message

Check SNMP
community string

Determine PDU type

Signal SnmpReceive.messageReceived
event - handled by snmpMibP

SnmpSend.sendChar
command called from

snmpMibP

Send message
through snmpSocket

Copy received values
to message

SnmpSend.sendNum
command called from

snmpMibP

Start preparing
message

If successful
increment SNMP.sent

object

Copy received values
to message

Check if error
message should be

sent

Send message
through snmpSocket

If successful
increment SNMP.sent

object

SnmpTrapSend.sendTrap
 command called from

snmpMibP

Start preparing
message

Copy received values
to message

Send message
through snmpSocket

Copy message to
buffer

Copy message to
buffer

Copy message to
buffer

b.

d.

c.

h.

l.

m.

e.

f.

g.

i.

n.

o.

a.

j.

k.

i.

j.

k.

l.

Figure 4.3: General flow diagram of snmpP component

being sent.

The type of PDU received is checked and extracted (Fig. 4.3(e.)) along with the OID

and object value, if a SetRequest was received. The WSN node is expected to receive

only two kinds of SNMP messages, GetRequest and SetRequest. The node only handles

receiving these two types and will ignore any other messages. A messageReceived event

is then signalled through the SnmpReceive interface to indicate to the snmpMibP module

that an SNMP message was received (Fig. 4.3(f.)). This event is handled in the snmpMibP

component or whichever component is wired to the SnmpReceive interface (Fig. 4.2(b.)).

After the message is processed by the component wired to the SnmpReceive interface

(Fig. 4.2(b.)), in this case snmpMibP, the response information compiled by snmpMibP is

sent back to the snmpP component using the SnmpSend interface (Fig. 4.2(c.)) provided

by snmpP. For simplicity’s sake two commands are provided by the SnmpSend interface

for sending response messages, one for sending of values contained in a character array

(sendChar, Fig. 4.3(g.)) and a second for numerical values (sendNum, Fig. 4.3(h.)). These

two interfaces could be combined and values handled according to their type identifier.

Arguments to the commands are the datatype and value of the requested object and any

error messages.

command error_t SnmpSend.sendChar (uint8_t SNMPdataType, char *charData, uint8_t SNMPerrror)

41

command error_t SnmpSend.sendNum (uint8_t SNMPdataType, uint32_t val, uint8_t SNMPerrror)

The sendNum command is also used when the snmpMib block has to respond with an

error and the Error-status and Error-index fields have to be set in the SNMP response

message (Fig. 4.3(m.)).

The handlers for both commands copy the response information into a local structure

(Fig. 4.3(i.)) for storage before being copied to a buffer for transmission. A function,

copyStructToBuffer (copy structure to buffer), is then called to copy the local storage

structure to a buffer (Fig. 4.3(j.)). This buffer is then passed as an argument when

calling the sendto command from the UDP interface provided by UDPSocketC and used as

snmpSocket (Fig. 4.2(a.)). This command is used to send the constructed SNMP message

to the blip stack and on to the network (Fig. 4.3(k.)). The number of transmitted messages

in the statistics for SNMP messages (stats.tx) is then incremented (Fig. 4.3(l.)).

The snmpP component also offers the interface SnmpTrapSend (Fig. 4.2(d.)) with the

command sendTrap for the sending of SNMP trap messages (Fig. 4.3(n.)).

command error_t SnmpTrapSend.sendTrap (uint8_t genericTrapValue,

uint8_t specificTrapValue, uint32_t timestamp,

char *PDUobjectIDValue , uint8_t PDUobjectType,

void *PDUobjectValue, uint8_t needToConvert)

Where genericTrapValue, specificTrapValue and timestamp are the fields shown in

Figure 3.5 (repeated here for convience as Figure 4.4) and described in the text. PDUob-

jectIDValue contains the OID that is sent as part of VarBindList in the message. PDUob-

jectType and PDUobjectValue indicates the type and value of sent in the VarBindList.

needToConvert indicates to the handler function if the value needs to be converted to an

8-bit array before being sent.

PDU - Trap

enterprise generic-trap specific-trapagent-addr time-stamp VarBindList

Figure 4.4: SNMPv1 Trap PDU

The SNMP Trap message is prepared and then sent (Fig. 4.3(o.)) using the sendto

command in the UDP interface (Fig. 4.2(a.)). The UDP interface is renamed, and used as

snmpSocket. The same instance of snmpSocket is used to send Trap messages, GetResponse

messages and for receiving of Get- and SetRequests. The call to the sendto command

can be seen below.

call snmpSocket.sendto(&snmptrap_address, &send_trap_msg, send_trap_msg_cnt);

42

As mentioned in the previous section the agent implementation only supports one

VarBind in the VarBindList. This was done to simplify the implementation and keeping

in mind the limited resources available on WSN platforms, while leaving resources for

application code to run on the node alongside the SNMP agent. For similar reasons the

implementation of the GetNextRequest PDU was also omitted. It was expected that the

node would only receive SNMP requests and not generate them. For these reasons the

implementation responds to SNMP GetRequest, SetRequests and is able to generate Trap

messages and respond with GetResponse messages.

4.3 The snmpMib block

The snmpMib block in the SNMP software agent is the block in which the MIB of the

agent is implemented, see Figure 4.1. The snmpMib block consists of the snmpMibC.nc

configuration file and the snmpMibP.nc module. The snmpMib block receives the requested

PDU extracted from the raw SNMP message by the snmp block. It gathers the requested

information from the node and sends it back to the snmp block, which generates and

sends an SNMP response message with the information. The snmpMib block also controls

the generation of Trap messages, with the snmp block generating the raw SNMP Trap

message.

Figure 4.5 shows a generalised flow diagram for the snmpMibP component, with Figure

4.6 showing a wiring diagram for the component, which indicates the other components

to which it is wired and the interfaces used.

No

Message received Trap generated

snmpMib

SnmpReceive.messageReceived event
signalled by snmpP

Determine if object is
in MIB

Send error message
using

SnmpSend.sendNum

Handle request
(set or get)

Send response message
using SnmpSend.sendNum

or
SnmpSend.sendChar

trapTimer.fired event
signalled

Determine trap to be
sent

Process trap

Send trap using
SnmpTrapSend.sendTrap

b.

d.

c.

h.e.

f.

g.

a.

Figure 4.5: General flow diagram of snmpMibP component

43

When an SNMP message with a valid SNMP community string is received by the

snmpP component, a messageReceived event is signalled (Fig. 4.5(a.)) through the

SnmpReceive interface (Fig. 4.6(a.)). The arguments to the event include the type of

PDU received (GetRequest or SetRequest), OID, length of the OID, datatype of VarBind

value received, VarBind value field and length of the VarBind value.

event void SnmpReceive.messageReceived (uint8_t PDUtypeReceived,

char *objectIdentifier, uint8_t objectIdentifierLen,

uint8_t objectIdentifierPayloadType, char *objectIdentifierPayload,

uint8_t objectIdentifierPayloadLen)

UdpC

MainC

CounterMilli32C

ODemoSensorC
(Sensors)

IPDispatchC

TimerMilliC
(trapTimer)

snmpC

ReportPeriod1

ReportPeriod2

ReportPeriod3

LEDSenable

APPStats

Statistics Timer

SnmpReceive
SnmpSend

SnmpTrapSend
Statistics

Boot

Counter

Read (x5)

Statistics (x3)

snmpMibP

SnmpNotify

SnmpNotify

SnmpNotify

SnmpNotify

Set

b.
d.

c.

a.

e.

f.

g.
h.

i.

k.

k.

k.

j.

k.

Figure 4.6: Wiring diagram of snmpMibP component

The OID identifying the MIB is defined as obj_BASE or the base OID. Each object in

the MIB is then defined thereafter. This reduces duplication when defining the OID of

an object in the snmpMib component. The OIDs are defined as seen below:

char obj_BASE[] = {0x2b,0x6,0x1,0x4,0x1,0x81,0xce,0x74,0x1,’\0’};

char OBJ_STATUS = 0x1;

char obj_sysDescr = 0x1;

char obj_version = 0x2;

...

The above is done instead of defining the full OID for each object, which would be

done in the following manner:

char OBJ_STATUS[] = {0x2b,0x6,0x1,0x4,0x1,0x81,0xce,0x74,0x1,0x1};

char obj_sysDescr[] = {0x2b,0x6,0x1,0x4,0x1,0x81,0xce,0x74,0x1,0x1,0x1};

char obj_version[] = {0x2b,0x6,0x1,0x4,0x1,0x81,0xce,0x74,0x1,0x1,0x2};

...

44

The incoming OID is tested to verify that it is from the MIB maintained by the

component (Fig. 4.5(b.)). If it is not, the component responds with a noSuchName error

message (Fig. 4.5(c.)). If the OID corresponds to the MIB implemented it is checked

against the IDs of the objects maintained in the MIB. If the object is not in the MIB the

component responds with a noSuchName message, but if the object is present the request

is processed.

After the requested information is retrieved from the node (Fig. 4.5(d.)) a response

is sent back to the snmpP component (Fig. 4.5(e.)) containing the requested information

using the SnmpSend interface (Fig. 4.6(b.)). If a SetRequest message was received, the

new value is set in the MIB and a response with the new value is generated and sent

back to the snmpP component. After a response with the needed information is sent back

to the snmpP component, the snmpP component is responsible for generating the SNMP

GetResponse message with the information to be sent back to the querying NMS.

The snmpMibP component generates Trap messages with the firing of a timer (Fig.

4.5(f.)) called trapTimer (Fig. 4.6(c.)). The handler for the timer fired event evaluates

the trapState variable, this variable controls the behaviour of Trap message generation

and what Trap message is generated (Fig. 4.5(g.)). The frequency at which the timer

fires is controlled by the trapReportPeriod variable, both trapState and trapReportPeriod

variables are set to a default value in software but can also be changed with an SNMP

SetRequest message. In this way the generation of SNMP Trap messages can be controlled

remotely by using the SNMP. For testing purposes only two traps were implemented. The

valid values that trapState can be assigned are listed in Table 4.1.

Table 4.1: Valid values for trapState
Enum Value Action
TRAPSTATE OFF 0 Traps are off
TRAPSTATE TEST 1 Send test trap
TRAPSTATE VOLTAGE 2 Send voltage value

The sendTrap command in the SnmpTrapSend interface (Fig. 4.6(d.)) is then used to

send the information gathered for the Trap message to the snmpP component to be sent

over the WSN to the NMS (Fig. 4.5(h.)).

It is possible to set up multiple Trap messages in software and then select what Trap

messages to send using SNMP SetRequest messages.

The Counter interface provided by CounterMilli32C (Fig. 4.6(e.)) is used by

snmpMibP as Uptime. This is used to keep track of the time the node has been run-

ning and is based on a similar section in the UDPEcho application included in blip. The

snmpMibP component also uses a Read interface to obtain various sensor readings from

45

the ODemoSensorC component (Fig. 4.6(f.)). These onboard sensor values are available

in the MIB.

The Statistics interfaces provided by the IPDispatchC component (Fig. 4.6(g.))

are used to retrieve information on the IP and ICMP messages sent and received by

the blip stack and also to gather information from the routing element in blip. Another

Statistics interface provided by the snmpP component (Fig. 4.6(h.)) provides infor-

mation on the SNMP messages sent and received by the snmpP component. The UdpC

component also provides a Statistics interface through which information is made avail-

able about the sent and received UDP messages (Fig. 4.6(i.)). This statistics information

can be retrieved from the node’s MIB using the SNMP.

The snmpMibP component provides a Set interface (Fig. 4.6(j.)) through which the

WSN application code running on the node (for example windStation, discussed later) is

able to indicate to the snmpMibP component how many messages it has sent or received.

The Set interface is used to set the number of sent or received messages in the corre-

sponding object in the MIB. This is used to keep statistics on the number of messages

sent and received by the WSN application.

The snmpMibP component also provides four SnmpNotify interfaces to be used by

the WSN application code (Fig. 4.6(k.)). These interfaces are used to notify the WSN

application code running on the node that the value of the corresponding variable kept

in the node’s MIB has changed. This can be used to control timers or disable or enable

the LEDs on the node through the SNMP.

4.3.1 Management Information Base

The MIB part of the SNMP implementation is housed in the snmpMibP component and

contains all the managed objects that describe information kept on the managed node.

This section describes what happens after the OID has been identified as being in the

MIB and what objects are maintained in snmpMibP. The MIB description file that makes

it possible to translate numeric OIDs to textual object identifiers will also be introduced.

The OIDs are defined with the convention that the part of the OID that identifies

the MIB module is defined as obj_BASE[] and the object in the MIB is then identified

only by its ID within the MIB. This means that for the sysDescr only 0x1 has to de-

fined and not the whole 0x2b,0x6,0x1,0x4,0x1,0x81,0xce,0x74,0x1,0x1,0x1 OID (or

1.3.6.1.4.1.26484.1.1.1). This concept is also described in the previous section.

The MIB is currently divided into five sections dealing with status information on

46

the node, onboard sensors of the TelosB platform, variables for external control, route

information and statistics on the node. Objects can easily be added to the MIB and also

removed to tailor the information available to specific applications. It is also possible to

construct new MIBs, which can be selected and wired in the configuration file for specific

applications. A diagram depicting the structure of the MIB described in this section can

be seen in Figure 4.7

wsn (26484)

mote (1)

enterprise (1)

sysDescr (1)

version (2)

sysUptime (3)

status (1) sensors (2) external (3) route (4) stats (5)

voltage (1)

temperature (2)

humidity (3)

lightTSR (4)

lightPAR (5)

ledsEnable (1)

reportPeriod1 (2)

reportPeriod2 (3)

reportPeriod3 (4)

hoplimit (1)

parent (2)

parentMetric (3)

parentEtx (4)

UDPsent (1)

UDPreceived (2)

UDPchksum (3)

SNMPreceived (4)

SNMPsent (5)

IPsent (6)

IPforwarded (7)

IPreceived (8)

ICMPreceived (9)

ICMPsent (10)

APPreceived (11)

APPsent (12)

nodeReboot (4)

trapPeriod (5)

trapState (6)

Figure 4.7: Diagram of the WSN-MIB

For testing purposes a temporary identifier of 26484 with an object descriptor wsn,

under the enterprise(1) subtree, was chosen. Under this subtree a mote(1) child was

created that houses the MIB implemented in the snmpMibP component.

The first section of the MIB (wsn.mote.status) is loosely used for status informa-

tion on the node. It contains the following objects: sysDescr, version, sysUptime,

nodeReboot, trapPeriod and trapState. The first object is a textual description of the

node/system and its function. A textual field for identifying the version number of the

software running on the node can be found in the version object. The sysUptime object

contains the node’s uptime in milliseconds, the uptime however is only incremented in

minimum steps of one second. nodeReboot is used with SNMP SetRequest messages to re-

boot the node, if a value of 0xFF is written to the object the node is reset. The node replies

with a GetResponse message before it reboots. Both trapPeriod and trapState are used

to control the behaviour of the node’s SNMP Trap message generation. trapPeriod sets

the time between trap messages while trapState controls what trap message is sent, if

any. For demonstration purposes two traps were defined, the first a test trap that sends

a string to the NMS and a second that sends the node’s battery voltage. By setting

trapState to a value of zero, trap generation is turned off.

The next section, wsn.mote.sensors, makes the readings from the TelosB platform’s

sensors available via the SNMP. The onboard sensor levels can be monitored and logged

47

using SNMP GetRequest messages, this also includes the node’s battery voltage. The

TelosB platform is equipped with the following sensors: temperature, humidity, light -

visible, light - visible to IR and supply voltage.

The wsn.mote.external section contains variables that can be changed using SNMP

SetRequest messages. These variables can be accessed from outside of the snmpMibP

component by using the SnmpNotify interfaces provided by the snmpMibP component.

These variables can be used to control functions in the main application code running on

the node. When an SNMP SetRequest is received and one of the objects is changed an

event is signalled that is handled in the WSN application code. An object ledsEnable

is available to control the LEDs on the node. This can be used to turn LEDs on for

debugging and switch them off again for normal operation, using the SNMP. There are

also three reportPeriod objects that can be used to control timers in the main application

code.

Route statistics maintained in the IPDispatchC component of the blip stack can be ac-

cessed using the objects from the wsn.mote.route section of the MIB. The wsn.mote.stats

section provides statistics on traffic to and from the node. Statistics will be discussed fur-

ther in the next section.

For each object, a handler function is created that is called when the received OID is

matched to an object in the MIB. The function performs the necessary actions or gathers

the required information and then replies with an appropriate SNMP GetResponse mes-

sage through the snmp component. The example below shows the function for retrieving

the number of UDP messages sent by the node. The statistics for UDP messages are

retrieved and the number of sent UDP messages is sent to the snmpMib block using the

SnmpSend interface.

void handel_obj_MIB_statsUDP_sent ()

{

udp_statistics_t statsUdp;

call UDPStats.get(&statsUdp);

call SnmpSend.sendNum (SNMP_TYPE_UINT32, statsUdp.sent, SNMP_ERROR_noError);

}

The MIB description file WSN-MIB.txt makes it possible to translate numeric OIDs to

more human readable textual object identifiers. It gives meaning to the string of numbers

used in the OID and also gives an easier way of remembering objects. If the MIB descrip-

tion file is placed in the appropriate location, it is used by the Net-SNMP applications

and either numerical OIDs or textual object descriptors can be used to perform SNMP

queries. This is expanded on in the next chapter. Net-SNMP is a collection of applica-

tions that can be run in a terminal on a computer and is used to send SNMP requests to

SNMP agents.

48

In the WSN-MIB.txt file the five children and mote(1) subtree of the implemented MIB

are defined by:

mote OBJECT IDENTIFIER ::= { wsn 1 }

status OBJECT IDENTIFIER ::= { mote 1 }

sensors OBJECT IDENTIFIER ::= { mote 2 }

external OBJECT IDENTIFIER ::= { mote 3 }

route OBJECT IDENTIFIER ::= { mote 4 }

stats OBJECT IDENTIFIER ::= { mote 5 }

After this, each object is defined separately under its specific section.

version OBJECT-TYPE

SYNTAX DisplayString (SIZE (0..255))

MAX-ACCESS read-only

STATUS current

DESCRIPTION

"Version number for easy software identification."

::= { status 2 }

If objects are removed from, or added to the MIB, then the MIB description file should

be updated to reflect these changes. If multiple MIBs are created and used on different

nodes then each MIB should have a corresponding description file.

4.3.2 Statistics

In the snmpMibP component there are various objects that contain information and statis-

tics about the node and these statistics can be accessed using the SNMP. Statistics such

as the number of sent and received messages are kept and made available by the SNMP

agent. Most of the statistics are provided by the IPDispatchC configuration file in the

blip stack, these include information on routing, IP and ICMP messages. Statistics on the

SNMP messages are kept by the snmpMibP component itself. The snmpMibP component

provides a Set interface through which statistics can be kept on the messages generated

by the main application code running on the node. The needed information is gathered

by the handler function created for each object when a request for the information is

received.

The wsn.mote.route section of the MIB provides access to routing information on the

node. The statistics are provided by the blip stack and are wired through the IPDispatchC

configurations file to IPRoutingP, which provides the Statistics interface for retriev-

ing the information. The values available are hop_limit, parent, parent_metric and

parent_etx. The exact significance of these values had to be deduced from the source code

49

of the stack as it is not clearly documented anywhere. hop_limit points to the number of

hops to the root node through the neighbour currently used for routing. parent gives the

TOS NODE ID of the neighbour being routed through to the root node. TOS NODE ID

is a global constant in TinyOS that is used to identify a node, it can also be seen as

the node’s address. The parent_metric field shows the additive path cost of the top

entry in the routing table and parent_etx the additive path cost of the entry currently

being used as the primary default route. These routing statistics were included to show

that the SNMP agent can provide access to information kept in the stack itself and give

some indication of what is happening with the routing. It is worth noting that it might

be possible to modify the node’s routing behaviour by using the SNMP and making the

needed changes to blip.

The definitions of the structures containing the statistics provided by the blip stack

can be found in the Statistics.h header file. These include ip_statistics_t, route_-

statistics_t, icmp_statistics_t and udp_statistics_t.

In the MIB the wsn.mote.stats section provides information on the number of mes-

sages sent and received by the different protocols used by the node. Statistics on the

number of received and transmitted messages are available for UDP, SNMP, IP, ICMP

and also for the messages generated by the main application running on the node. There

is a counter for the number of IP messages that the node forwards for other nodes. The

number of UDP datagrams dropped due to checksum errors is also kept in the MIB. All

the statistics for messages sent and received, except for the SNMP, are gathered from

blip. Not all the statistics kept by the blip stack were included in the test MIB.

4.4 Applications

To demonstrate the functionality of the SNMPv1 agent implementation a few applications

were created. The applications show how the external variables of the snmpMibP can be

used in the main application on the node to control the LEDs and also timers running in

the application. The applications also show that it is possible to implement an application

on the WSN node alongside the SNMP agent. The applications can be set to use the low

power mode provided by the blip stack and TinyOS.

4.4.1 The hopNode application

The hopNode application is a minimal application that demonstrates the SNMP agent.

The main application code contains the minimum code needed to run the SNMP agent.

50

It also shows the use of the external variables in the MIB to control the LEDs, en-

abling or disabling them and changing the frequency at which they toggle through the

external.reportPeriod objects. The hopNode application can generally be used on

range extending nodes where the node is used to route messages for other nodes. The

main application code does not generate any messages (unlike the windStation applica-

tion discussed next), but it is possible to retrieve sensor readings using SNMP GetRequests

or the SNMP Trap message set up for voltage readings. Figure 4.8 shows a wiring diagram

of the hopNode application.

SnmpNotify (x4)

Timer

Timer

Timer

snmpMibC

MainC

LedsC

IPDispatchC

UdpSocketC
(echo)

TimerMilliC
(arbitraryTimer1)

TimerMilliC
(arbitraryTimer2)

TimerMilliC
(arbitraryTimer3)

Boot

Leds

SplitControl

UDP

hopNodeP b.
a.

c.

Figure 4.8: Wiring diagram of the hopNode application

The application uses the SnmpNotify interfaces (Fig. 4.8(a.)) provided by snmpMibP

to control the LEDs on the node. There are three timers (Fig. 4.8(b.)) in the application

that are started at boot time called abritaryTimer1 to abritaryTimer3. When one of the

external.reportPeriod objects is set to a new value through an SNMP SetRequest,

an snmpNotify event (from the SnmpNotify interface) is signalled from the snmpMibP

component and the corresponding abritaryTimer in the hopNode application is restarted

with the new period value. The rate at which the LEDs on the node blink can therefore

be changed using the SNMP. This is done by controlling variables in the main application

code using the SNMP. An example of a handler function for an SnmpNotify event can be

seen below, with the new period for the timer in the val variable.

event void snmpReportPeriod1.snmpNotify(uint32_t val)

{

globalReportPeriodLocal1 = val;

call arbitraryTimer1.startPeriodic(globalReportPeriodLocal1);

}

When one of the timers fire, a check is done to see if the LEDs are enabled. If the

51

LEDs are enabled, then the LED corresponding to the timer is toggled, and if the LEDs

are disabled, then the function to turn off the specific LED is called.

If the external.ledsEnable object is changed in the MIB (implemented in the

snmpMib block), then an snmpNotify event is generated and the LEDs are turned on

or off according to the new value set.

The hopNode application also implements an echo service similar to that seen in the

UDPEcho application in blip that echoes any message sent to the node back to the sender.

This service uses the UDP interface (Fig. 4.8(c.)) provided by the UdpSocketC component

as echo.

4.4.2 The windStation application

The windStation application contains more functionality than the hopNode application.

This application generates messages containing sensor readings that are sent to the net-

work management station as UDP packets, in addition to the ability to respond to SNMP

messages. It also has the ability to control the period at which the timers in the applica-

tion fire and control of the LEDs as shown in the previous application.

The application uses the Set interface (Fig. 4.9(a.)) provided by the snmpMibC com-

ponent to update the statistics kept in the MIB on the number of messages sent and

received by the application code. Figure 4.9 shows a wiring diagram of the windStation

application.

A timer is used to trigger the gathering of the sensor readings (Fig. 4.9(b.)). Each time

the timer fires a different reading is gathered until all sensor readings are gathered. The

message with the sensor readings is then sent using the UDP interface provided through

the UdpSocketC configuration (Fig. 4.9(c.)). The windStation application uses the

Read interface to gather sensor readings from the TelosB onboard sensors and also from a

connected anemometer through the use of the windMeterC component (Fig. 4.9(d.)). The

windStation application also has the echo service implemented in the hopNode application

(Fig. 4.9(e.))

The windMeterP component was created for an outdoor test deployment. The com-

ponent deals with gathering sensor readings from a anemometer manufactured by Davis

Instruments, which includes wind speed and direction.

The onboard sensors supply readings on supply voltage, temperature, humidity and

light. Readings from the anemometer include wind direction and various speed read-

52

SnmpNotify (x4)
Set (x1)

Read (x5)

Read (x5)

UDP

snmpMibC

MainC

LedsC

IPDispatchC

UDPSocketC
(echo)

TimerMilliC
(LEDTimerTimer)

windMeterC

UdpSocketC
(senseDataSocket)

ODemoSensorC
(Sensor)

windStationP

Boot

Timer

Leds

SplitControl

UDP

b. d.
c.

a.

d.
e.

Figure 4.9: Wiring diagram of the windStation application

ings - minimum, maximum values over the time period measured and instantaneous and

averaged speed values. The sensor readings are sent via UDP packet along with the

TOS NODE ID of the node, software version number, period of the timer and an incre-

menting counter value used for packet identification.

The windStation application shows that it is possible to implement a relatively capa-

ble WSN application along with the SNMP agent on a TelosB WSN node. The application

can also be configured to use the low power communication provided by the blip stack and

TinyOS through the application Makefile, reducing the power consumed by the node.

4.4.3 Memory usage

This section characterises the created applications in terms of memory usage, both ROM

(Flash) and RAM. The size of the applications largely depends on the function of the

application and also on the MIB used. It is possible to implement a lightweight MIB to

reduce the memory usage of an application, or implement a MIB that only contains the

needed objects.

To get an overall impression of the size of the compiled code, Table 4.2 was con-

structed. This table serves as a general indicator of the sizes of compiled applications

using the SNMPv1 agent. The TelosB platform contains a MSP430F1611 microcontroller

from Texas Instruments with 48k bytes flash and 10k bytes RAM. The two created applica-

tions hopNode and windStation along with a demonstration application called UDPEcho,

included with blip, are shown. The Blink application is included in TinyOS and only

53

flashes the node’s LEDs. Blink does not use blip and is arguably one of the simplest

TinyOS applications. It therefore gives an indication of the memory usage of some of the

smallest TinyOS applications, although not very functional. The table gives an indication

of the size of applications using the SNMP software agent relative to other applications.

Table 4.2: RAM and ROM usage, in bytes, of applications with and without Low Power
Listen (LPL)

Application ROM RAM
Blink 2648 54
UDPEcho 29486 5062
UDPEcho (LPL) 31150 5124
hopNode 39712 5960
hopNode(LPL) 41396 6022
windStation 43300 6030
windStation(LPL) 44970 6090

4.5 Summary

This chapter covered the implementation of the SNMPv1 software agent and also the test

applications created. The organisation of the SNMP agent was shown along with relevant

code snippets to aid explanation. The created applications, their use and purpose were

discussed and lastly some characteristics of the applications in the form of memory usage

were also shown. In the following chapter the operation of the SNMP agent is shown and

validated. Results obtained with the packages Cacti and Nagios will also be shown.

54

Chapter 5

Testing and evaluation

The SNMP software agent was tested at two levels. The first being general testing from

a workstation, which also acts as the edge router. The workstation has two WSN nodes

attached, one node serves as the IEEE 802.15.4 interface (programmed with a radio-serial

bridge) of the edge router and a second node running the code under test. This testing

was generally done from the terminal using the commands provided by Net-SNMP. This

was the type of testing that could be done quickly and continuously during development

to test the general functioning of the software agent.

The second level of testing was done using an indoor testbed and multiple nodes, this

facilitated the use of the network monitoring software. This testing shows the functioning

of the software agent over a longer time period. It also shows the functioning of the

software agent with the selected network monitoring packages.

5.1 Workstation

Workstation testing is testing that could be done quickly while busy with the development

of the SNMP agent. In general this consisted of two nodes connected to a PC with one

node acting as the IEEE 802.15.4 interface and the second as the node running the software

under test. The PC was used for testing/debugging and acted as the edge router for the

blip network, seen in Figure 5.1. The blip routing driver uses the IEEE 802.15.4 interface

node to communicate with the node used for testing. The USB connection between the

nodes and the PC is used to power the nodes and for programming one of the nodes with

the software to be tested. This section will mainly consist of tests done using applications

from the Net-SNMP package.

55

A blip 6LoWPAN network consists of a few different elements. The first is the edge

router, which typically consists of a Linux device (the PC in Figure 5.1) with a WSN node

connected to it that acts as its IEEE 802.15.4 interface device. This node is programmed

with a radio-serial bridge application. The edge router runs the blip routing driver pro-

gram. This edge router enables the user to communicate with the blip nodes in the WSN

or, for this test, the one node running the application code under test.

Node address:
fec0::3

IEEE 802.15.4
Interface node

Node with
software

under test

PC

Figure 5.1: Workstation testing setup

Initially the Low Power Listen (LPL) functionality of TinyOS was not used, but later

versions of the agent were tested with the LPL function enabled. Very early on in testing,

the TinyOS printf library was also used to debug code. After initial testing, Wireshark

was used and set up to monitor packets passing through the tun0 interface created by the

routing driver. Test messages were sent using snmpget and snmpset with the responses

being evaluated using Wireshark and through the output of the Net-SNMP commands.

5.1.1 Preliminary blip tests

The first test that can be done is to send an ICMP (Internet Control Message Protocol)

echo request (ping) to the node. This is also a good way to determine if a node is up or

available during normal operation. The time it takes for a request to travel to the node

and back is affected by a number of things, two of which are the path to the node (number

of hops) and whether LPL is used. Below is an echo request sent to a network that does

not use LPL.

$ ping6 -c 4 -i 2 fec0::3

PING fec0::3(fec0::3) 56 data bytes

64 bytes from fec0::3: icmp_seq=1 ttl=65 time=74.9 ms

64 bytes from fec0::3: icmp_seq=2 ttl=65 time=81.6 ms

64 bytes from fec0::3: icmp_seq=3 ttl=65 time=79.9 ms

64 bytes from fec0::3: icmp_seq=4 ttl=65 time=78.9 ms

56

--- fec0::3 ping statistics ---

4 packets transmitted, 4 received, 0% packet loss, time 6004ms

rtt min/avg/max/mdev = 74.906/78.882/81.680/2.499 ms

Of the programs and commands used, the Linux ping6 command for sending ICMP

ECHO REQUESTs was arguably used the most. In its simplest form the command only

takes as an argument the IPv6 node address of the node to be queried. There are options

that can be used to make the command better behaved in networks with longer round

trip times (RTT) by not sending requests quicker than a node can respond. The round

trip times for messages in WSNs are generally higher than on conventional IP networks,

with even longer round trip times if LPL is used. The example below shows the use of

the -c and -i options to control the number of ECHO REQUEST packets sent (-c) and

the interval between packets (-i), four packets are sent at an interval of two seconds to

the address fec0::3.

$ ping6 -c 4 -i 2 fec0::3

A network that uses LPL has considerably higher and more variable round trip times

compared to the non-LPL network, as can be seen from the output below. This is due to

how the LPL MAC layer operates and duty cycles the radio on the node. It is worth noting

the higher times when setting up notifications in software like Nagios, whose defaults are

set according to conventional networks. The increase in round trip time also affects SNMP

messages and should be kept in mind when sending messages.

$ ping6 -c 4 -i 2 fec0::3

PING fec0::3(fec0::3) 56 data bytes

64 bytes from fec0::3: icmp_seq=1 ttl=65 time=251 ms

64 bytes from fec0::3: icmp_seq=2 ttl=65 time=410 ms

64 bytes from fec0::3: icmp_seq=3 ttl=65 time=581 ms

64 bytes from fec0::3: icmp_seq=4 ttl=65 time=236 ms

--- fec0::3 ping statistics ---

4 packets transmitted, 4 received, 0% packet loss, time 6004ms

rtt min/avg/max/mdev = 236.710/369.947/581.579/139.893 ms

Figure 5.2 shows an ICMP echo request and the response from the WSN node as

viewed from and decoded by Wireshark.

Wireshark is a multi-platform, open source (under the GNU General Public License)

packet analyser that can be used for network analysis and troubleshooting and uses the

pcap library to capture network packets. Wireshark was formerly known as Ethereal.

Wireshark, as seen in Figure 5.3, was extensively used to debug the SNMPv1 agent

during development. This could be done with no modifications or additions to Wireshark

57

Figure 5.2: ICMP echo request and response messages in Wireshark

because the packets passing through the tun0 interface created by the blip routing driver

are IPv6 packets. tcpdump was used to monitor traffic from the WSN remotely from a

terminal. Similar to Wireshark, tcpdump is a command line packet analyser released under

the BSD license. The contents of received network packets are printed to the command

line using pcap. The interface that is listened to, in this case tun0, is specified by the -i

option.

Figure 5.3: Wireshark packet analyser in operation

$ sudo tcpdump -i tun0

tcpdump: WARNING: tun0: no IPv4 address assigned

tcpdump: verbose output suppressed, use -v or -vv for full protocol decode

listening on tun0, link-type RAW (Raw IP), capture size 65535 bytes

19:33:40.759057 IP6 fec0::64 > fec0::3: ICMP6, echo request, seq 1, length 64

19:33:40.918137 IP6 fec0::3 > fec0::64: ICMP6, echo reply, seq 1, length 64

19:33:42.761458 IP6 fec0::64 > fec0::3: ICMP6, echo request, seq 2, length 64

19:33:43.088352 IP6 fec0::3 > fec0::64: ICMP6, echo reply, seq 2, length 64

19:33:49.428174 IP6 fe80::3 > ip6-allrouters: ICMP6, router solicitation, length 8

19:33:49.428860 IP6 fe80::64 > ip6-allnodes: ICMP6, router advertisement, length 56

To a lesser extent the tracert6 command was also used. It gives an indication of

58

what path a packet takes through the network to its destination. The tracert6 program

does this by sending ICMP ECHO REQUEST packets while incrementing the hop limit

of each packet until the destination is reached. The -q option can be used to change the

number of probes sent to each hop, which is set to three by default.

$ tracert6 -q 2 fec0::d

The trip times between hops seen in tracert6 will vary according to the network, and

whether LPL is used, because tracert6 makes use of ICMP echo requests to determine

the route to a node. The functioning of the MAC layer on each node can also have an

effect on RTT. This specific test was done on the testbed. Below it can be seen that for

that specific period in time node fec0::d used fec0::8 to communicate with the edge

router fec0::64. The round trip times for each probe sent to every hop can be seen after

the address in the output of the command. For example, the first probe to the first hop

(fec0::8) has a RTT of 276.923 ms.

$ tracert6 fec0::d

traceroute to fec0::d (fec0::d) from fec0::64, 30 hops max, 60 byte packets

1 fec0::8 (fec0::8) 276.923 ms 78.991 ms 182.260 ms

2 fec0::d (fec0::d) 625.612 ms 709.606 ms 184.124 ms

Information on the path a packet takes over multiple hops to its destination can also be

retrieved by using the routes command from the console provided by the blip ip-driver

program (the routing driver). The ip-driver program is part of blip and is the link

between the WSN and conventional LAN (Local Area Network). It is also responsible for

creating the tunnel network interface, routing packets in the WSN and between the WSN

and the LAN. The ip-driver routing driver provides a telnet console server running on

port 6106 through which the driver can be queried or configured. The help command

lists the available commands for use in the console.

A tool that was found to be useful was GNU Screen through Byobu. It is particularly

useful when running the blip routing driver. A number of terminal windows can be set

up in Byobu and the session then detached while the driver is left running. The session

can then be continued remotely to check on the running software and network. Windows

for the driver, programming of nodes, SNMP requests and pinging of nodes were created.

These windows and the command history for each window could quickly be reused to

perform tasks.

GNU Screen can be thought of as a window manager for the terminal that enables

multiple separate terminal sessions from a single terminal window. Each session has a

scrollback history buffer and the user is able to copy text from one session to another.

59

A terminal session can be detached from the current terminal window and then later

attached to another terminal window without interrupting the application running in

that terminal session. Byobu is an enhancement script that launches GNU Screen in the

Byobu configuration, which shows system information and notifications not present in

GNU Screen by default. Byobu, in essence, makes GNU Screen look more user friendly

with more information visible like named tabs.

5.1.2 SNMP tests

The snmpget and snmpset Net-SNMP applications from the snmp package in Ubuntu can

be used to manually interrogate SNMP software agents. The use of these applications

is relatively straightforward, although there are some options that can be used that are

better suited to use over a WSN.

The snmpget application generates an SNMP GetRequest message for the wanted

object at the address specified when the application is run. The software agent on

the network node processes the message and then responds with an appropriate SNMP

GetResponse message. The response is then displayed by the application.

$ snmpget -v 1 -c public UDP6:[fec0::2] 1.3.6.1.4.1.26484.1.1.1

The SNMP version number is specified using the -v 1 option, while -c public spec-

ifies the community string being used. The location of the MIB descriptor file can be

indicated using the -m option as shown:

-m <PATH TO>/components/snmpMib/WSN-MIB.txt

This enables the translation of the OIDs from numeric form to textual object identifiers

using the MIB description file specified. This can however be cumbersome, another option

is to create an snmp.conf file. A .snmp directory is created in the user’s home directory

and the snmp.conf and MIB files placed in the directory. The snmp.conf file contains

the following line:

mibs +/home/<user>/.snmp/WSN-MIB.txt

It should be noted that the destination of the request is specified as UDP6:[fec0::2]

with the last argument to the snmpget application being the OID 1.3.6.1.4.1.26484.1.1.1.

The UDP6:[] specifies the transport protocol to be used, followed by the fec0::2 IPv6

address, where the final 2 from the address relates to the TOS NODE ID given to the

node when programmed. The example shows the arguments used to gather the sysDescr

object from a node with the TOS NODE ID of 2. TOS NODE ID is a global constant in

60

TinyOS that is used to identify a node. The assigned IPv6 address is based on the node’s

TOS NODE ID.

Using the above snmpget application, information can be retrieved from a network

node. To change information on a node the snmpset application is used. The snmpset

application generates an SNMP SetRequest message that is sent to the network node, the

node processes the message and responds with an SNMP GetResponse message.

The options used are similar to that of the snmpget application with the -v, -c and

-m options present. The address and OID arguments are also similar. The value to which

the variable, indicated by the OID, should be set and its type is specified as the last two

arguments to the application.

$ snmpset -v 1 -c public UDP6:[fec0::2] 1.3.6.1.4.1.26484.1.3.1 u "0"

In the above example the type u indicates an unsigned integer with the value being

set to zero. In this case the variable ledsEnable is set to zero, disabling any LEDs on

the node.

For both the applications it is possible to set the number of retries (-r) to be used

in a request and also the timeout (-t) between retries. This is useful when low power

strategies, like TinyOS’s low power listening feature is used, which can cause the message

latency to become considerably higher than what is normally expected on a conventional

network. Setting a higher timeout between requests gives the network enough time to

propagate the message and the node enough time to respond, without flooding the network

with multiple unnecessary messages.

It is possible to specify the required object in a number of different ways when using

snmpget and snmpset. As shown above, the numerical OID can be used to specify the

particular object, but it is also possible to use the textual object descriptor of the object

or combinations of both numerical and textual. Using the following as an argument to

snmpget or snmpset will yield the same results:

1.3.6.1.4.1.26484.1.1.3

1.3.6.1.4.1.wsn.mote.status.sysUpTime

iso.org.dod.internet.private.enterprises.wsn.mote.status.sysUpTime

WSN-MIB::mote.status.sysUpTime

WSN-MIB::mote.status.3

wsn.mote.status.sysUpTime

wsn.mote.status.3

An example of requesting the node’s uptime using snmpget is shown below. If the

OID is correct, the node supports the MIB and no errors occurred, then the command

exits with the retrieved value. As output the raw timeticks value is given, 146500, and

61

the interpreted value in the form hours:minutes:seconds.fractions of a second. The node’s

uptime was verified by monitoring uptime returned by SNMP against an external clock.

$ snmpget -v 1 -c public UDP6:[fec0::3] mote.status.sysUpTime

WSN-MIB::sysUpTime = Timeticks: (146500) 0:24:25.00

Figure 5.4 shows the SNMP GetRequest generated by the snmpget command and the

reply from the WSN node as seen in Wireshark.

Figure 5.4: SNMP GetRequest and GetResponse in Wireshark

If the node is queried with an OID that it does not have in its MIB, then it replies

with an error message. This can be seen below when the node is queried with an OID

that does not exist in the status section of the MIB. The GetRequest that is sent to the

node is similar to the GetRequest seen above with the exception of the OID. The output

from the snmpget command states that an error has occurred and also the reason for the

error.

$ snmpget -v 1 -c public UDP6:[fec0::3] mote.status.7

Error in packet

Reason: (noSuchName) There is no such variable name in this MIB.

Failed object: WSN-MIB::status.7

Figure 5.5 shows the GetResponse message containing the error message as it was sent

from the WSN node and captured in Wireshark. The error-status field is set to 0x02 to

indicate noSuchName and the error-index set to 0x01 to indicate that it is the first item

in the VarBindList that created the error.

62

Figure 5.5: SNMP GetResponse with error message

Some variables in the MIB on the node can be changed by using the snmpset command.

The node responds with an SNMP GetResponse message. The structure this message is

identical to the previously shown messages and contains the value that the variable was

set to, as can be seen below.

$ snmpset -v 1 -c public UDP6:[fec0::3] mote.external.ledsEnable u "1"

WSN-MIB::ledsEnable = Gauge32: 1

The contents, as viewed in Wireshark, of the SetRequest and the GetResponse from

the WSN node can be seen in Figure 5.6. In this example the LEDs on the node can be

turned on by writing the value one to the ledsEnable variable in the MIB.

Figure 5.6: SNMP SetRequest and GetResponse in Wireshark

It is possible to configure the WSN node to send SNMP Trap messages. This is done

with the trapState object in the MIB. The frequency at which these messages are sent is

controlled by the trapPeriod object. Table 4.1 in the previous chapter shows the values

to which the trapState object can be set. Below, the trapState object is set to two and

the WSN node responds with an SNMP GetResponse message, as was seen earlier.

$ snmpset -v 1 -c public UDP6:[fec0::3] mote.status.trapState u "2"

WSN-MIB::trapState = Gauge32: 2

63

The WSN node then starts generating SNMP Trap messages at intervals that are

determined by the trapPeriod object. An SNMP Trap message sent by the WSN node

can be seen in Figure 5.7, as captured by Wireshark.

Figure 5.7: SNMP Trap message

The trapPeriod object has a default value of 10 000 milliseconds (10 seconds). This

can be verified from the output of tcpdump.

22:06:34.825263 IP6 fec0::3.snmp > fec0::64.snmp-trap: Trap(49) E:26484.45 0.0.0.0 enterpriseSpecific

s=1 172800 E:26484.1.2.1=4095

22:06:44.593062 IP6 fec0::3.snmp > fec0::64.snmp-trap: Trap(49) E:26484.45 0.0.0.0 enterpriseSpecific

s=1 173800 E:26484.1.2.1=4095

22:06:54.357963 IP6 fec0::3.snmp > fec0::64.snmp-trap: Trap(49) E:26484.45 0.0.0.0 enterpriseSpecific

s=1 174800 E:26484.1.2.1=4095

The workstation testing verifies that the SNMPv1 software agent and the node it is

running on behaves as expected. The agent was verified using the Net-SNMP package with

the agent being able to interpret SNMP messages sent to it and replying with messages

that could be translated by the Net-SNMP applications.

5.2 Testbed

After the SNMPv1 agent was validated and tested under the ‘workstation’ tests, the code

was deployed on the constructed testbed for further testing. This type of testing was

typically done over a longer period of time and the software Cacti and Nagios could be

used. The data gathered using the software tools and the SNMPv1 agent also became

more interesting once multiple nodes were involved.

The testbed that was constructed and used is described in more detail in Appendix

A. It consists of a PC and thirteen Tmote Connects from Sentilla (previously Moteiv)

64

each with at least one TelosB platform wireless sensor node. The Tmote Connect is a

Linksys NSLU2 with custom firmware. The NSLU2 is a network attached storage device

with ethernet and two USB ports. The PC is used to program the nodes, often remotely,

through the Tmote Connects using netbsl. netbsl is a script that can be used to

remotely program a wireless sensor node connected to a Tmote Connect using Netcat, a

networking utility that is able to read and write data over network connections.

Initially, Harvard’s Motelab software was to be used on the testbed, but the installation

and setup of the software was problematic. The Motelab software was abandoned and

custom scripts were created to program the testbed using netbsl.

A method to log messages to a MySQL database was created to log the UDP messages,

containing physical sensor readings, generated by the windStation application. In order

to visualise the logged data, graphing scripts were created using PHP.

The testbed hardware and PC were only used to program and supply power to the

nodes. A second PC, in addition to the testbed PC, acted as the edge router with an

IEEE 802.15.4 interface node and the blip routing driver. This PC was also home to the

network monitoring software (NMS), MySQL database and PHP graphing scripts. Figure

5.8 shows the physical layout of the testbed with each node’s TOS NODE ID shown and

the edge router and interface node shown with the designator IF. Figure 5.9 shows a

diagram of the logical layout of the testbed hardware. Figure 5.10 shows a diagram of

the PC acting as the edge router and also used for testing. This setup keeps the testbed

hardware separate from the 6LoWPAN edge router. The programming of the nodes is

covered in detail in Appendix A.

Work area

8 9 10
1

2

3

4

11 12 13

5

7

6

IF

Figure 5.8: Floor plan of testbed and node location

Not all the nodes in the testbed were used. Node 13 was selected to demonstrate the

PHP graphing and Cacti. This node had the IPv6 address fec0::d and was referred

65

Testbed
PC

Tmote
Connect

fec0::1

Tmote
Connect

fec0::2

Tmote
Connect

fec0::3

Tmote
Connect

fec0::4

Tmote
Connect

fec0::5

Tmote
Connect

fec0::6

Tmote
Connect

fec0::7

Tmote
Connect

fec0::8

Tmote
Connect

fec0::9

Tmote
Connect

fec0::a

Tmote
Connect

fec0::b

Tmote
Connect

fec0::c
Tmote

Connect

fec0::d

Network
switch

Institutional
LAN

Figure 5.9: Testbed layout

to in Cacti as ‘Mote13’. All the PHP generated graphs in this chapter were generated

from sensor data from this node. Node 13 was not monitored by Nagios. This was

done to minimise the number of ICMP messages sent to the node in order to compare

graphs of traffic to and from the node as seen later. Node 13 was programmed with

the SNMP enabled windStation application which generated UDP messages containing

sensor readings. Nodes 1 to 7 were monitored by Nagios and also Cacti but with the

focus mainly on Nagios. Nodes 1 to 7 and the remaining nodes were programmed with

the hopNode application. These nodes would help with routing messages in the network

while not generating their own application layer messages.

PC
blip edge router

NMS
MySQL

PHP

IEEE 802.15.4
Interface node

Institutional
LAN

Figure 5.10: Edge router PC

The graphs in Figure 5.11 show data logged from the onboard sensors on WSN node 13

(graphs were from uncalibrated sensor data and values). UDP packets were sent from the

windStation application to the network monitoring station that used a Python script to

log the values to a MySQL database. It was also possible to log SNMP trap messages sent

to the network monitoring station in a similar fashion, but this was not fully explored.

The graphs were then created from the data in the database using the JpGraph library

66

Figure 5.11: PHP Graphs of temperature and humidity as monitored by node 13

and PHP. More information on the graphing and Python logging can be found in the

appendices. The sending of sensor data over UDP and graphing of the data was to

show that it was still possible to run a sensor network application alongside the SNMPv1

software agent and have the WSN monitored by the SNMP. It also served as a source

of traffic to show the functioning of the statistics kept by the snmpMibP component on

the amount of packets that the main application code sent and received. These statistics

were in the form of the mote.stats.APPsent and mote.stats.APPreceived objects in

the MIB.

Figure 5.12 shows another example of sensor data that is graphed using the graphing

solution developed. The graph shows readings from one of the light sensors on a node

over approximately 36 hours. The first period of daylight (marked a.) shows overcast

conditions with an increase in the visible light level in the afternoon as more light entered

through the west facing windows. The small period of light (marked b.) in the evening

is due to the lights being switched on in the laboratory for that period. The next day

(marked c.) shows considerably higher light levels indicating a sunny day with light levels

increasing towards the afternoon.

The software package Cacti was used to gather, log and graph data from the WSN. This

was done entirely using the SNMPv1 and the software agent implementation described

and implemented in this document. Cacti was used to log and graph data from MIB

objects over a period of time. This included sensor readings and data describing the flow

of messages to and from nodes, i.e. traffic graphs. This also validates the operation of

the SNMPv1 agent with other software packages and over a period of time.

Cacti is a PHP driven front end to RRDtool that uses RRDtool to store and graph

data. It offers easy templating of graphs and data sources, user management and handles

the gathering of data through a poller. Cacti was used to gather data using the SNMP,

this data could then be graphed in a variety of different ways. As with Nagios, Cacti is

usually used to graph traffic through routers and other network devices on conventional

IP networks, as seen in Figure 5.13. With the use of 6LoWPAN and the SNMPv1 software

67

Figure 5.12: PHP graph of captured data from the Photosynthetically-Active Radiation
(PAR) light sensor on ‘Mote 13’

agent it was possible to use Cacti to graph values that were gathered from the WSN nodes

including parameters like temperature and battery voltage, shown in Figure 5.14. It was

also possible to graph message traffic through nodes, as will be shown next.

Figure 5.13: Cacti being used to graph traffic on conventional networks

‘RRDtool is the open source industry standard, high performance data logging and

graphing system for time series data’ (Oetiker, 2009). The Round Robin Database Tool

(RRDtool) keeps data at a constant time interval but lets the user update the log file at

any moment in time. RRDtool is able to interpolate the value of the data-source at the

latest interval and write this value to the log file. RRDtool can store data in several Round

Robin Archives (RRA) within a single Round Robin Database (RRD), each archive with

its own resolution and consolidation function. Data is written to the RRA in a round

robin fashion, as the name suggests, which means that the archive always stays a constant

size. (Oetiker, 2011)

68

Figure 5.14: Cacti graphing sensor values from WSN nodes

With the use of Cacti and the SNMPv1 software agent it is possible to set up and use

a WSN to graph physical sensor readings in a very short period of time with no additional

code or software creation needed. If Cacti is already being used to graph other SNMP

enabled devices it should be relatively easy to add WSN nodes to the setup.

The traffic generated by the windStation WSN application code can be seen in Figure

5.15. The traffic is in the form of UDP messages generated by the node that contains

physical sensor readings. The statistic on the number of UDP messages with sensor

readings sent by the application (can be seen as application layer messages) is gathered

and graphed by Cacti from the mote.stats.APPsent object. In this instance the WSN

node transmits a packet with sensor readings approximately once every ten minutes. This

can be seen in Figure 5.15 with activity at a period of ten minutes.

Figure 5.15: Graph of APPsent object data generated by the windStation application

It should be noted that Cacti is currently configured to retrieve information at five

69

minute intervals and also graphs the data five minute intervals at a time. This translates to

one message per five minute interval, which is converted to 1
5

or 0.2 messages per minute,

for the periods where there is activity. The Y-axis of the graph has units of messages per

minute with the m indicating milli, for example 200 milli messages per minute. Because

the node transmits at intervals of ten minutes, there is a five minute gap between the five

minute periods of activity. Because the sending of the data packets does not happen at

precisely ten minute intervals the point in the five minute interval at which the packet

is sent changes with each interval. This causes a gap every few intervals on the graph.

This verifies that it is possible to monitor the number of messages a node sends using the

developed SNMPv1 agent, with the agent behaving as expected.

Figure 5.16 shows data gathered from the a WSN node’s temperature sensor using

SNMP and graphed with Cacti. Figure 5.17 shows data from the same sensor over the

same time period, but this graph is generated by the created PHP graphing script from

data that was sent by the windStation application code on the node over UDP and stored

in a MySQL database.

From Figure 5.16 the consequences of an unanswered SNMP request from Cacti can

be seen. This presents itself as a gap in the graph at approximately 19:45. As can be seen

the two graphs created through two different means correlate well and are quite similar.

This further indicates the correct operation of the SNMPv1 software agent and its ability

to be used with network monitoring software like Cacti.

It is also possible to graph objects from the stats section of the MIB, thereby creating

traffic graphs of messages sent and received by the WSN node. Figures 5.18, 5.19, 5.20,

5.22 and 5.23 show graphs for the various types of messages that are sent by the WSN

node.

Figure 5.18 shows the messages that the application code running on the WSN node

generates. These messages contain the sensor readings that are stored and graphed using

the PHP graphing scripts. From Figure 5.18 the effects of changing the timer that dictates

the generation of the messages can be seen, starting at a high rate the period is increased

with another increase at approximately 15:00 on Tuesday. Figure 5.15 shows the area

after 15:00 in greater detail. The gap at approximately 10:00 Tuesday is most likely due

to unanswered SNMP requests. The ICMP messages that the WSN node sends can be

seen in Figure 5.19. As can be seen from both these graphs the amount of traffic generated

is relatively low for the period shown.

The SNMP messages sent by the WSN node can be seen in Figure 5.20, while Figure

5.21 shows the data gathered for the SNMPreceived object. The graphs for sent and

received SNMP messages should be similar because the SNMP messages are sent only

70

when requested, provided no errors occurred in the requesting of the data via SNMP.

Errors are possible because the SNMP makes use of the unreliable UDP transport service.

Figure 5.16: Temperature data gathered over SNMP with Cacti

Figure 5.17: Temperature data from application code sent over UDP and graphed using
PHP

The UDP messages sent from the WSN node can be seen in Figure 5.22. UDP is the

only transport layer protocol that is used on the WSN node. The graphs for sent UDP

and IP messages should therefore be similar. It should however be noted that the sent

ICMP messages are not counted under UDP sent messages but are counted under IP sent

messages. The sent UDP messages in Figure 5.22 are a combination of the sent SNMP

messages (Figure 5.20) and the messages sent by the WSN application code running on

the node (Figure 5.18). This can be seen on early Tuesday morning at around 01:00 when

the graphs are steady with no big spikes. The ripple from the APPsent graph (Figure

71

Figure 5.18: Cacti graph of the APPsent object in MIB

Figure 5.19: Cacti graph of ICMP messages sent by node

5.18) can be seen in the UDPsent graph (Figure 5.22) including an increase of about 0.2

messages a minute in the average level.

Figure 5.23 shows the IP messages sent by the node. This graph indicates all the

messages sent by the node because IP is the only network layer protocol being used. The

IP sent messages graph (Fig. 5.23) is therefore a combination of ICMP (Fig. 5.19) and

UDP (Fig. 5.22) sent messages. Because the amount of ICMP messages sent is low it is

difficult to see their effect on the IP sent messages graph.

The cause for the increase in traffic between Tuesday 23:00 and Wednesday 09:00

is unknown (Figures 5.20, 5.21, 5.22, 5.23). It is unlikely that it is caused by manual

sending of SNMP requests as it happened during the night and early morning. But as

72

Figure 5.20: Graph generated by Cacti of SNMP messages sent by WSN node

Figure 5.21: Graph generated by Cacti of SNMP messages received by WSN node

can be seen from the graphs it is most likely requests coming from Cacti as it is also

present in the received SNMP messages graph. This can be caused by Cacti not receiving

replies from the node and then re-sending requests with both the original request and

additional requests being logged in the statistics of the node.

The messages that a WSN node forwards for other nodes can also be monitored using

the stats.IPforwarded object. Figures 5.24 and 5.25 shows the messages that two nodes

forwarded for their neighbours.

The routing of messages through the network changes regularly and also changes

according to nodes joining and leaving the network. The amount of messages a node

forwards for other nodes is relevant because this affects the amount of battery power a

73

Figure 5.22: Cacti graph of UDP packets sent by node

Figure 5.23: Cacti graph of IP packets sent by the WSN node

node consumes.

The second network monitoring software package used was Nagios. Nagios does not

offer graphing of the data it captures and by default monitors nodes using ICMP echo

requests. It is possible to extend the functionality of Nagios with the addition of plugins

and addons. Adding monitoring of nodes by using the SNMP to Nagios is possible and

two examples can be seen in the following paragraphs. Nagios can generate availability

reports for hosts and services and it is also possible to view event logs. This can be helpful

when diagnosing problems or to determine the time at which a specific node failed.

Monitoring of various services can be set up in Nagios. When the Nagios package is

installed the default monitoring is that of the PING (ICMP ECHO REQUEST) service.

74

Figure 5.24: Cacti graph of IP packets forwarded by node 1

Figure 5.25: Cacti graph of IP packets forwarded by node 2

In addition to this, two other parameters were added and monitored using the SNMP.

The services SNMP-UPTIME and SNMP-VOLTAGE were created. These monitored a node’s

battery voltage and uptime counter. The battery voltage is given as a raw uncalibrated

ADC value of 4095.

For each service a level can be set at which a warning is given or a critical warning is

given. Nagios can then be configured to send notifications when these states occur. An

appropriate value for the node battery voltage can be set and a warning is then generated

when the returned node voltage falls below the specified value. No such warning values

were set for the monitoring of the node uptime. The monitoring of node uptime was done

to check nodes for unexpected resets.

75

Figure 5.26 shows the ‘Service Detail’ page that contains the current network status.

From this page the status of each service being monitored on each node can be seen.

The page shows the state of the service and the duration of that current state. It also

shows information on the status of each service. For the PING service the packet loss and

round trip average (RTA) is shown and the value for the uptime and voltage is shown for

SNMP-UPTIME and SNMP-VOLTAGE.

Figure 5.26: Nagios Service Detail page

An alert history for all hosts can also be viewed. The alert history page can be seen in

Figure 5.27. This is a log of all events and status changes of services. At 11:00 the history

indicates that Nagios was restarted. At 16:00 an indication is given that an unknown

problem occurred with checking the SNMP-UPTIME service for mote1. This is followed

by an alert that the host is down because of a 100% packet loss checking the PING service.

After a short period of time the checks are run again, this time the node replies with an

uptime and also responds to a PING service check.

Nagios is also able to generate reports of trends, and availability reports for each node

and service. Figure 5.28 shows a report on trends for the ‘SNMP-VOLTAGE’ on ‘mote6’

while Figure 5.29 shows an availability report for the same node and service.

Both Cacti and Nagios have endless configuration options and to master and utilise

these packages to their full extent would take a considerable amount of time. The config-

urations shown for these packages show what is possible with a limited amount of time

available. It is, for example, possible to graph multiple values on a single graph with

Cacti and to then add other statistics like 95th percentile and total values to the graph.

76

Figure 5.27: Nagios History for all hosts page

Figure 5.28: Nagios Trends report

77

Figure 5.29: Nagios Availability report

From this chapter it can be seen that the SNMPv1 software implementation behaves as

expected with each of the software packages it was tested with. It is also possible to gather

information relevant to the operation of the node the agent is running on. The correctness

of operation was illustrated with commands available in the Net-SNMP package, Nagios

and Cacti. Nagios and Cacti also show the reliable operation of the SNMP software agent

over an extended period of time using standard network monitoring tools.

78

Chapter 6

Conclusion

In the introductory chapter the methodology and significance was stated along with an

introduction to - and the objectives of the research.

A general introduction to wireless sensor networks was given and also a general back-

ground on the different areas of the research. This included the way in which communica-

tion between networked nodes is divided into different layers, information on the relevant

lower network layers and also the Simple Network Management Protocol. Version six of

the Internet Protocol was briefly discussed along with 6LoWPAN and the IEEE 802.15.4

standard. The three versions of the SNMP were examined along with common concepts

used in the protocol. The philosophy and thinking behind the implementation of the

SNMP agent was discussed and also WSN specific monitoring and similar work.

The arrival of 6LoWPAN and 6LoWPAN implementations have made it easier to start

looking at existing protocols, techniques and software and apply them as is to WSNs. One

of these protocols is the Simple Network Management Protocol (SNMP) and was further

explored in this work. After some consideration the decision was made to implement as

much of the first version of the SNMP as possible. This implementation can then be used

to evaluate the basic functionality that using SNMP would bring to LoWPANs.

The structure of an SNMP GetRequest message was examined and discussed in more

detail giving a better understanding of the structure of SNMP messages in general. The

implementation of the SNMPv1 software agent was discussed with some code snippets,

wiring diagrams and general flow diagrams for each component shown. The division

of the SNMP software agent into different components was discussed and each of the

TinyOS components created were examined in more detail. The demonstration WSN

applications created were also discussed with the aid of wiring diagrams showing the

connected components and interfaces used.

79

The agent implementation was then tested and evaluated to show correctness of op-

eration and usability. Testing was divided into ‘workstation’ and ‘testbed’ testing. For

the workstation testing the agent was queried using Net-SNMP and the output from the

commands was used to check for correctness. The responses were also evaluated at packet

level using Wireshark. In the testbed section the SNMP agent was installed on a WSN

testbed with multiple nodes and it was possible to show its reliable operation over time

using standard network monitoring tools.

The SNMPv1 agent implementation also offers an easy way to set up a WSN without

the need to do extensive coding. If the user is familiar with packages like Cacti and

Nagios it is easy to do monitoring and set up fairly complex graphs of parameters within

the network and also of node sensor values. It also now becomes easy to integrate a WSN

into existing network monitoring infrastructure.

This starts to touch on the assumed benefits that Kushalnagar et al. (2007) mentions

in RFC 4919, one of which is the reuse of existing infrastructure. This is done by using

existing networks to connect the WSN and also incorporating the WSN into existing

management and monitoring infrastructure. The SNMP agent implementation also shows

that it is possible to reuse existing protocols and software on WSNs by making use of

6LoWPAN.

The objective of implementing and testing an SNMPv1 agent in TinyOS was achieved

along with showing the basic functionality it brings to LoWPANs. The SNMP could be

used without the use of translation gateways or proxies for the SNMP.

Existing software and tools like Cacti and Wireshark could also be reused. With

the use of the SNMP, WSNs can be easily integrated into existing network monitoring

activities.

This also starts to confirm some of the assumed benefits of 6LoWPAN, like tool reuse.

The created software agent can easily be used in future WSN deployments by the Centre

for Instrumentation Research (CIR), while the constructed WSN testbed can be used in

future research. Wireless sensor network monitoring using the Simple Network Manage-

ment Protocol was also achieved.

6.1 Evaluation of work done

One of the texts examined for this research stated that although the protocol is called

the ‘Simple’ Network Management Protocol, there is nothing trivial about it. Even the

first version of the protocol presents a steep learning curve with multiple concepts to be

80

grasped and having ASN.1 and BER to contend with.

As can be seen from the last subsection in section 4.4, code size and its link to com-

plexity is an issue. Even the much lighter weight first version of the SNMP along with

the 6LoWPAN stack consumes most of the resources available on the node. Therefore,

there is not much hope that a full-featured implementation of the third version would be

feasible on the platform used.

The use of request and response type information gathering on WSNs may not be

the most energy efficient way of gathering information. Trap messages could therefore be

used to greater effect.

6.2 Proposed future work and recommendations

Although it was shown that it is possible to use the SNMP as is on WSNs, a more efficient

solution would be to optimise the protocol for use on LoWPANs. It would be possible to

compress some of the SNMP headers or remove headers and features that might not be

needed in WSNs. An example is the error-status and error-index fields which could

be compressed because most of the time these fields indicate a no error state. The security

needs for the SNMP should also be evaluated, this evaluation should take into account

all the network layers including the 6LoWPAN adaptation layer. It might be possible to

consolidate security into a single security layer, which is used by other protocols and not

just the SNMP, possibly below the Application layer.

It might also be advantageous to start looking at more able WSN hardware platforms

with more resources available to power the next generation of IP enabled WSN nodes.

Greater use of SNMP Trap messages should be considered, where the generation of the

Trap messages could be controlled with SNMP SetRequests. This would almost certainly

halve the number of messages generated by the current configuration and reduce energy

consumption. The current agent implementation and the network monitoring software

configuration can be optimised for greater energy efficiency. Optimisations can be done

to reduce the size of the application code generated, this could depend largely on the

specific application.

81

References

Archrock, 2010, Arch Rock, URL http://www.archrock.com/, Last visited [April 2010].

Astrin, A., 2011, IEEE 802.15 WPAN Task Group 6 (TG6) Body Area Networks, URL

http://www.ieee802.org/15/pub/TG6.html, Last visited [10 August 2011].

Baker, F., 1995, Requirements for IP Version 4 Routers, RFC 1812, Internet Engineering

Task Force, URL http://www.rfc-editor.org/rfc/rfc1812.txt, Last visited [6 July

2011].

Barr, J., 2009, IEEE 802.15 WPAN Task Group 3 (TG3), URL http://www.ieee802.

org/15/pub/TG3.html, Last visited [10 August 2011].

Blumenthal, U. & Wijnen, B., 2002, User-based Security Model (USM) for version 3 of

the Simple Network Management Protocol (SNMPv3), RFC 3414, Internet Engineer-

ing Task Force, URL http://www.rfc-editor.org/rfc/rfc3414.txt, Last visited [7

November 2010].

Braden, R., 1989, Requirements for Internet Hosts – Communication Layers, RFC 1122,

Internet Engineering Task Force, URL http://www.rfc-editor.org/rfc/rfc1122.

txt, Last visited [7 November 2010].

Cacti, 2010, The Complete RRDTool-based Graphing Solution, URL http://www.cacti.

net/, Last visited [6 November 2010].

Case, J., Fedor, M., Schoffstall, M. & Davin, J., 1990, A Simple Network Manage-

ment Protocol (SNMP), RFC 1157, Internet Engineering Task Force, URL http:

//www.rfc-editor.org/rfc/rfc1157.txt, Last visited [7 November 2010].

Case, J., McCloghrie, K., Rose, M. & Waldbusser, S., 1993, Introduction to version 2 of

the Internet-standard Network Management Framework, RFC 1441, Internet Engineer-

ing Task Force, URL http://www.rfc-editor.org/rfc/rfc1441.txt, Last visited [7

November 2010].

Case, J., McCloghrie, K., Rose, M. & Waldbusser, S., 1996a, Introduction to Community-

based SNMPv2, RFC 1901, Internet Engineering Task Force, URL http://www.

rfc-editor.org/rfc/rfc1901.txt, Last visited [7 November 2010].

82

http://www.archrock.com/
http://www.ieee802.org/15/pub/TG6.html
http://www.rfc-editor.org/rfc/rfc1812.txt
http://www.ieee802.org/15/pub/TG3.html
http://www.ieee802.org/15/pub/TG3.html
http://www.rfc-editor.org/rfc/rfc3414.txt
http://www.rfc-editor.org/rfc/rfc1122.txt
http://www.rfc-editor.org/rfc/rfc1122.txt
http://www.cacti.net/
http://www.cacti.net/
http://www.rfc-editor.org/rfc/rfc1157.txt
http://www.rfc-editor.org/rfc/rfc1157.txt
http://www.rfc-editor.org/rfc/rfc1441.txt
http://www.rfc-editor.org/rfc/rfc1901.txt
http://www.rfc-editor.org/rfc/rfc1901.txt

Case, J., McCloghrie, K., Rose, M. & Waldbusser, S., 1996b, Protocol Operations for

Version 2 of the Simple Network Management Protocol (SNMPv2), RFC 1905, Internet

Engineering Task Force, URL http://www.rfc-editor.org/rfc/rfc1905.txt, Last

visited [7 November 2010].

Case, J., Mundy, R., Partain, D. & Stewart, B., 2002, Introduction and Applicability State-

ments for Internet Standard Management Framework, RFC 3410, Internet Engineer-

ing Task Force, URL http://www.rfc-editor.org/rfc/rfc3410.txt, Last visited [7

November 2010].

Cerf, V., 1988, IAB Recommendations for the Development of Internet Network Man-

agement Standards, RFC 1052, Internet Engineering Task Force, URL http://www.

rfc-editor.org/rfc/rfc1052.txt, Last visited [7 November 2010].

Cerf, V., 1989, Report of the Second Ad Hoc Network Management Review Group,

RFC 1109, Internet Engineering Task Force, URL http://www.rfc-editor.org/rfc/

rfc1109.txt, Last visited [7 November 2010].

Choi, H., Kim, N. & Cha, H., 2009, 6LoWPAN-SNMP: Simple Network Management Pro-

tocol for 6LoWPAN, in High Performance Computing and Communications, 10th IEEE

International Conference on, 305–313, URL http://www.computer.org/portal/web/

csdl/doi/10.1109/HPCC.2009.49, Last visited [6 November 2010].

Cisco, 2010a, Cisco Has Acquired Arch Rock, URL http://www.archrock.com/, Last

visited [12 October 2011].

Cisco, 2010b, Internetworking Technology Handbook - Simple Network Manage-

ment Protocol (SNMP) - Cisco Systems, URL http://www.cisco.com/en/US/docs/

internetworking/technology/handbook/SNMP.html, Last visited [6 November 2010].

Crossbow, 2011, Moob Crossbow, URL http://www.xbow.com, Last visited [12 October

2011].

Dawson-Haggerty, S. & Tavakoli, A., 2010, Berkeley IP Information, URL http://smote.

cs.berkeley.edu:8000/tracenv/wiki/blip, Last visited [31 October 2010].

Deering, S. & Hinden, R., 1998, Internet Protocol, Version 6 (IPv6) Specification,

RFC 2460, Internet Engineering Task Force, URL http://www.rfc-editor.org/rfc/

rfc2460.txt, Last visited [7 November 2010].

Dunkels, A., 2010, The Contiki Operating System, URL http://www.sics.se/contiki/,

Last visited [6 November 2010].

Frye, R., Levi, D., Routhier, S. & Wijnen, B., 2000, Coexistence between Version 1,

Version 2, and Version 3 of the Internet-standard Network Management Framework,

83

http://www.rfc-editor.org/rfc/rfc1905.txt
http://www.rfc-editor.org/rfc/rfc3410.txt
http://www.rfc-editor.org/rfc/rfc1052.txt
http://www.rfc-editor.org/rfc/rfc1052.txt
http://www.rfc-editor.org/rfc/rfc1109.txt
http://www.rfc-editor.org/rfc/rfc1109.txt
http://www.computer.org/portal/web/csdl/doi/10.1109/HPCC.2009.49
http://www.computer.org/portal/web/csdl/doi/10.1109/HPCC.2009.49
http://www.archrock.com/
http://www.cisco.com/en/US/docs/internetworking/technology/handbook/SNMP.html
http://www.cisco.com/en/US/docs/internetworking/technology/handbook/SNMP.html
http://www.xbow.com
http://smote.cs.berkeley.edu:8000/tracenv/wiki/blip
http://smote.cs.berkeley.edu:8000/tracenv/wiki/blip
http://www.rfc-editor.org/rfc/rfc2460.txt
http://www.rfc-editor.org/rfc/rfc2460.txt
http://www.sics.se/contiki/

RFC 2576, Internet Engineering Task Force, URL http://www.rfc-editor.org/rfc/

rfc2576.txt, Last visited [7 November 2010].

Galvin, J. & McCloghrie, K., 1993a, Administrative Model for version 2 of the Sim-

ple Network Management Protocol (SNMPv2), RFC 1445, Internet Engineering Task

Force, URL http://www.rfc-editor.org/rfc/rfc1445.txt, Last visited [7 Novem-

ber 2010].

Galvin, J. & McCloghrie, K., 1993b, Security Protocols for version 2 of the Simple Network

Management Protocol (SNMPv2), RFC 1446, Internet Engineering Task Force, URL

http://www.rfc-editor.org/rfc/rfc1446.txt, Last visited [7 November 2010].

Gay, D., Levis, P., Culler, D. & Brewer, E., 2003, nesC 1.1 Language Reference Manual,

URL http://nescc.sourceforge.net/papers/nesc-ref.pdf, Last visited [6 Novem-

ber 2010].

Gifford, I., 2004, IEEE 802.15 WPAN Task Group 1 (TG1), URL http://www.ieee802.

org/15/pub/TG1.html, Last visited [10 August 2011].

Han, R., 2007, MANTIS : HomePage, URL http://mantisos.org/index/tiki-index.

php.html, Last visited [12 October 2011].

Harvan, M., 2007, A 6LoWPAN implementation for TinyOS 2.x, URL

http://tinyos.cvs.sourceforge.net/viewvc/tinyos/tinyos-2.x/tos/lib/

net/6lowpan/README?view=markup, Last visited [6 November 2010], can also be found

at $TOSROOT/tos/lib/net/6lowpan/README.

Heile, B., 2011, IEEE 802.15 Working Group for WPAN, URL http://www.ieee802.

org/15/, Last visited [10 August 2011].

Hinden, R.M., 1996, IP next generation overview, Communications of the ACM, 39:61–71,

URL http://doi.acm.org/10.1145/228503.228517, Last visited [6 November 2010].

HP, 2010a, HP Network Node Manager (NNM) Advanced Edition software,

URL https://h10078.www1.hp.com/cda/hpms/display/main/hpms_content.jsp?

zn=bto&cp=1-11-15-119^1155_4000_100__, Last visited [24 February 2010].

HP, 2010b, Looking for HP OpenView?, URL https://h10078.www1.hp.com/cda/hpms/

display/main/hpms_content.jsp?zn=bto&cp=1-10^36657_4000_100, Last visited

[24 February 2010].

Hsin, C. & Liu, M., 2006, Self-monitoring of wireless sensor networks, Computer Commu-

nications, 29(4):462 – 476, URL http://www.sciencedirect.com/science/article/

B6TYP-4FGX42D-1/2/5b540f4d631b53aebed3fa76279a28a0, Last visited [6 November

2010].

84

http://www.rfc-editor.org/rfc/rfc2576.txt
http://www.rfc-editor.org/rfc/rfc2576.txt
http://www.rfc-editor.org/rfc/rfc1445.txt
http://www.rfc-editor.org/rfc/rfc1446.txt
http://nescc.sourceforge.net/papers/nesc-ref.pdf
http://www.ieee802.org/15/pub/TG1.html
http://www.ieee802.org/15/pub/TG1.html
http://mantisos.org/index/tiki-index.php.html
http://mantisos.org/index/tiki-index.php.html
http://tinyos.cvs.sourceforge.net/viewvc/tinyos/tinyos-2.x/tos/lib/net/6lowpan/README?view=markup
http://tinyos.cvs.sourceforge.net/viewvc/tinyos/tinyos-2.x/tos/lib/net/6lowpan/README?view=markup
http://www.ieee802.org/15/
http://www.ieee802.org/15/
http://doi.acm.org/10.1145/228503.228517
https://h10078.www1.hp.com/cda/hpms/display/main/hpms_content.jsp?zn=bto&cp=1-11-15-119^1155_4000_100__
https://h10078.www1.hp.com/cda/hpms/display/main/hpms_content.jsp?zn=bto&cp=1-11-15-119^1155_4000_100__
https://h10078.www1.hp.com/cda/hpms/display/main/hpms_content.jsp?zn=bto&cp=1-10^36657_4000_100
https://h10078.www1.hp.com/cda/hpms/display/main/hpms_content.jsp?zn=bto&cp=1-10^36657_4000_100
http://www.sciencedirect.com/science/article/B6TYP-4FGX42D-1/2/5b540f4d631b53aebed3fa76279a28a0
http://www.sciencedirect.com/science/article/B6TYP-4FGX42D-1/2/5b540f4d631b53aebed3fa76279a28a0

Hui, J. & Thubert, P., 2009, Compression Format for IPv6 Datagrams in 6LoWPAN

Networks, draft -ietf-6lowpan-hc-06, Internet Engineering Task Force, URL http://

tools.ietf.org/html/draft-ietf-6lowpan-hc-06, Last visited [7 November 2010].

Hui, J.W., 2008, An Extended Internet Architecture for Low-Power Wireless Net-

works - Design and Implementation, Ph.D. thesis, EECS Department, University

of California, Berkeley, URL http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/

EECS-2008-116.html, Last visited [6 November 2010].

IEEE, 2004, IEEE 802.15 WPAN Task Group 2 (TG2), URL http://www.ieee802.org/

15/pub/TG2.html, Last visited [10 August 2011].

IEEE, 2006, IEEE Standard for Information technology – Telecommunication and infor-

mation exchange between systems – Local and metropolitan area networks – Specific

requirements. Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer

(PHY) Specifications for Low-Rate Wireless Personal Area Networks (LR-WPANs),

IEEE Computer Society, URL http://www.ieee802.org/15/pub/TG4.html.

IPSO Alliance, 2010, IPSO Alliance: Enabling the Internet of Things, URL http://www.

ipso-alliance.org, Last visited [6 November 2010].

ITU-T, 2008, Information technology - ASN.1 encoding rules: Specification of Ba-

sic Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished En-

coding Rules (DER) - Recommendation X.690, URL http://www.itu.int/itu-t/

recommendations/rec.aspx?rec=x.690, Last visited [6 November 2010], Identical

standard: ISO/IEC 8825-1:2008 (Common).

ITU-T, 2010, Introduction to ASN.1, URL http://www.itu.int/ITU-T/asn1/

introduction/index.htm, Last visited [6 November 2010].

Jacquot, A., Chanet, J.P., Hou, K.M., Diao, X. & Li, J.J., 2009, LiveNCM : A new

wireless management tool, in AFRICON, 2009. AFRICON ’09., 1–6, IEEE.

Jang, H., Jeong, K. & Choi, D., 2006, Delivery and Storage Architecture for sensing infor-

mation using SNMP, International Journal of Computer Science and Network Security,

6(4):130–134, URL http://paper.ijcsns.org/07_book/html/200604/200604108.

html, Last visited [6 November 2010].

Jennic, 2010, Choosing a network protocol stack, URL http://www.jennic.com/

products/protocol_stacks/, Last visited [6 November 2010].

Jennic, 2011, Jennic Wireless Microcontrollers, URL http://www.jennic.com/, Last

visited [12 October 2011].

Kim, K., Mukhtar, H., Joo, S., Yoo, S. & Park, S.D., 2009, 6LoWPAN Management

Information Base, draft -daniel-6lowpan-mib-01, Internet Engineering Task Force,

85

http://tools.ietf.org/html/draft-ietf-6lowpan-hc-06
http://tools.ietf.org/html/draft-ietf-6lowpan-hc-06
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-116.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-116.html
http://www.ieee802.org/15/pub/TG2.html
http://www.ieee802.org/15/pub/TG2.html
http://www.ieee802.org/15/pub/TG4.html
http://www.ipso-alliance.org
http://www.ipso-alliance.org
http://www.itu.int/itu-t/recommendations/rec.aspx?rec=x.690
http://www.itu.int/itu-t/recommendations/rec.aspx?rec=x.690
http://www.itu.int/ITU-T/asn1/introduction/index.htm
http://www.itu.int/ITU-T/asn1/introduction/index.htm
http://paper.ijcsns.org/07_book/html/200604/200604108.html
http://paper.ijcsns.org/07_book/html/200604/200604108.html
http://www.jennic.com/products/protocol_stacks/
http://www.jennic.com/products/protocol_stacks/
http://www.jennic.com/

URL http://tools.ietf.org/html/draft-daniel-6lowpan-mib-01, Last visited [7

November 2010].

Kinney, P., 2010, IEEE 802.15 WPAN Task Group 4 (TG4), URL http://www.ieee802.

org/15/pub/TG4.html, Last visited [10 August 2011].

Kinney, P., 2011, IEEE 802.15 WPAN SCwng Wireless Next Generation Standing Com-

mittee, URL http://www.ieee802.org/15/pub/SCwng.html, Last visited [10 August

2011].

Krawczyk, H., Bellare, M. & Canetti, R., 1997, HMAC: Keyed-Hashing for Mes-

sage Authentication, RFC 2104, Internet Engineering Task Force, URL http://www.

rfc-editor.org/rfc/rfc2104.txt, Last visited [7 November 2010].

Kurner, T., 2003, IEEE 802.15 WPAN Terahertz Interest Group (IGthz), URL http:

//www.ieee802.org/15/pub/IGthz.html, Last visited [10 August 2011].

Kushalnagar, N., Montenegro, G. & Schumacher, C., 2007, IPv6 over Low-Power Wire-

less Personal Area Networks (6LoWPANs): Overview, Assumptions, Problem State-

ment, and Goals, RFC 4919, Internet Engineering Task Force, URL http://www.

rfc-editor.org/rfc/rfc4919.txt, Last visited [7 November 2010].

Langendoen, K., Baggio, A. & Visser, O., 2006, Murphy Loves Potatoes: Experiences from

a Pilot Sensor Network Deployment in Precision Agriculture, in Parallel and Distributed

Processing Symposium, International, 155, Los Alamitos, CA, USA: IEEE Com-

puter Society, URL http://doi.ieeecomputersociety.org/10.1109/IPDPS.2006.

1639412, Last visited [6 November 2010].

Lee, M., 2011, IEEE 802.15 WPAN Task Group 5 (TG5) Mesh Networking, URL http:

//www.ieee802.org/15/pub/TG5.html, Last visited [10 August 2011].

Lee, W.L., Datta, A. & Cardell-Oliver, R., 2007, Network Management in Wireless Sen-

sor Networks, in M.K. Denko & L.T. Yang, editors, Handbook of Mobile Ad Hoc and

Pervasive Communication, School of Computer Science & Software Engineering, The

University of Western Australia, American Scientific Publishers, USA, URL http:

//www.csse.uwa.edu.au/~winnie/Network_Management_in_WSNs_.pdf, Last visited

[6 November 2010].

LiteOS, 2010, LiteOS Home, URL http://www.liteos.net/, Last visited [6 November

2010].

Mainwaring, A., Culler, D., Polastre, J., Szewczyk, R. & Anderson, J., 2002, Wireless

sensor networks for habitat monitoring, in Proceedings of the 1st ACM international

workshop on Wireless sensor networks and applications, WSNA ’02, 88–97, New York,

NY, USA: ACM, URL http://doi.acm.org/10.1145/570738.570751, Last visited [6

November 2010].

86

http://tools.ietf.org/html/draft-daniel-6lowpan-mib-01
http://www.ieee802.org/15/pub/TG4.html
http://www.ieee802.org/15/pub/TG4.html
http://www.ieee802.org/15/pub/SCwng.html
http://www.rfc-editor.org/rfc/rfc2104.txt
http://www.rfc-editor.org/rfc/rfc2104.txt
http://www.ieee802.org/15/pub/IGthz.html
http://www.ieee802.org/15/pub/IGthz.html
http://www.rfc-editor.org/rfc/rfc4919.txt
http://www.rfc-editor.org/rfc/rfc4919.txt
http://doi.ieeecomputersociety.org/10.1109/IPDPS.2006.1639412
http://doi.ieeecomputersociety.org/10.1109/IPDPS.2006.1639412
http://www.ieee802.org/15/pub/TG5.html
http://www.ieee802.org/15/pub/TG5.html
http://www.csse.uwa.edu.au/~winnie/Network_Management_in_WSNs_.pdf
http://www.csse.uwa.edu.au/~winnie/Network_Management_in_WSNs_.pdf
http://www.liteos.net/
http://doi.acm.org/10.1145/570738.570751

McCloghrie, K., 1996, An Administrative Infrastructure for SNMPv2, RFC 1909, Internet

Engineering Task Force, URL http://www.rfc-editor.org/rfc/rfc1909.txt, Last

visited [7 November 2010].

McCloghrie, K., Perkins, D., Schoenwaelder, J., Case, J., McCloghrie, K., Rose, M. &

Waldbusser, S., 1999a, Conformance Statements for SMIv2, RFC 2580, Internet Engi-

neering Task Force, URL http://www.rfc-editor.org/rfc/rfc2580.txt, Last vis-

ited [7 November 2010].

McCloghrie, K., Perkins, D., Schoenwaelder, J., Case, J., McCloghrie, K., Rose, M.

& Waldbusser, S., 1999b, Structure of Management Information Version 2 (SMIv2),

RFC 2578, Internet Engineering Task Force, URL http://www.rfc-editor.org/rfc/

rfc2578.txt, Last visited [7 November 2010].

McCloghrie, K., Perkins, D., Schoenwaelder, J., Case, J., McCloghrie, K., Rose, M. &

Waldbusser, S., 1999c, Textual Conventions for SMIv2, RFC 2579, Internet Engineer-

ing Task Force, URL http://www.rfc-editor.org/rfc/rfc2579.txt, Last visited [7

November 2010].

McCloghrie, K. & Rose, M., 1988, Management Information Base for Network Manage-

ment of TCP/IP-based internets, RFC 1066, Internet Engineering Task Force, URL

http://www.rfc-editor.org/rfc/rfc1066.txt, Last visited [7 November 2010].

McCloghrie, K. & Rose, M., 1990, Management Information Base for Network Manage-

ment of TCP/IP-based internets, RFC 1156, Internet Engineering Task Force, URL

http://www.rfc-editor.org/rfc/rfc1156.txt, Last visited [7 November 2010].

McCloghrie, K. & Rose, M., 1991, Management Information Base for Network Man-

agement of TCP/IP-based internets: MIB-II, RFC 1213, Internet Engineering Task

Force, URL http://www.rfc-editor.org/rfc/rfc1213.txt, Last visited [7 Novem-

ber 2010].

McCulloch, J., McCarthy, P., Guru, S.M., Peng, W., Hugo, D. & Terhorst, A., 2008,

Wireless sensor network deployment for water use efficiency in irrigation, in Proceedings

of the workshop on Real-world wireless sensor networks, REALWSN ’08, 46–50, New

York, NY, USA: ACM, URL http://doi.acm.org/10.1145/1435473.1435487, Last

visited [6 November 2010].

MEMSIC, 2011, MEMSIC, URL http://www.memsic.com/, Last visited [12 October

2011].

MikroTik, 2010, MikroTik Routers and Wireless: The Dude, URL http://www.

mikrotik.com/thedude.php, Last visited [6 November 2010].

87

http://www.rfc-editor.org/rfc/rfc1909.txt
http://www.rfc-editor.org/rfc/rfc2580.txt
http://www.rfc-editor.org/rfc/rfc2578.txt
http://www.rfc-editor.org/rfc/rfc2578.txt
http://www.rfc-editor.org/rfc/rfc2579.txt
http://www.rfc-editor.org/rfc/rfc1066.txt
http://www.rfc-editor.org/rfc/rfc1156.txt
http://www.rfc-editor.org/rfc/rfc1213.txt
http://doi.acm.org/10.1145/1435473.1435487
http://www.memsic.com/
http://www.mikrotik.com/thedude.php
http://www.mikrotik.com/thedude.php

Montenegro, G., Kushalnagar, N., Hui, J. & Culler, D., 2007, Transmission of IPv6 Pack-

ets over IEEE 802.15.4 Networks, RFC 4944, Internet Engineering Task Force, URL

http://www.rfc-editor.org/rfc/rfc4944.txt, Last visited [7 November 2010].

Mukhtar, H., Joo, S., Schoenwaelder, J. & Kim, K., 2009, SNMP op-

timizations for 6LoWPAN, draft -hamid-6lowpan-snmp-optimizations-02,

Internet Engineering Task Force, URL http://tools.ietf.org/html/

draft-hamid-6lowpan-snmp-optimizations-02, Last visited [7 November 2010].

Nagios, 2010, The Industry Standard in IT Infrastructure Monitoring, URL http://www.

nagios.org/, Last visited [6 November 2010].

Nano-RK, 2010, Nano-RK: A Wireless Sensor Networking Real-Time Operating System,

URL http://www.nanork.org/, Last visited [6 November 2010].

NIST, 1995, Secure Hash standard, URL http://www.itl.nist.gov/fipspubs/

fip180-1.htm, Last visited [6 November 2010], Federal Information Processing Stan-

dards Publication 180-1.

Oetiker, T., 2009, RRDtool - About RRDtool, URL http://oss.oetiker.ch/rrdtool/,

Last visited [6 November 2010].

Oetiker, T., 2011, RRDTool - rrdtool, URL http://oss.oetiker.ch/rrdtool/doc/

rrdtool.en.html, Last visited [9 January 2011].

OpenNMS, 2010a, FAQ-About, URL http://www.opennms.org/wiki/FAQ-About, Last

visited [6 November 2010].

OpenNMS, 2010b, The OpenNMS Project, URL http://www.opennms.org, Last visited

[6 November 2010].

Padlipsky, M., 1982, A perspective on the ARPANET reference model, RFC 871, Internet

Engineering Task Force, URL http://www.rfc-editor.org/rfc/rfc871.txt, Last

visited [7 November 2010].

Postel, J., 1980, User Datagram Protocol, RFC 768, Internet Engineering Task Force,

URL http://www.rfc-editor.org/rfc/rfc768.txt, Last visited [7 November 2010].

Postel, J., 1981, Transmission control protocol darpa internet program protocol specifica-

tion, RFC 793, Internet Engineering Task Force, URL http://www.rfc-editor.org/

rfc/rfc793.txt, Last visited [7 November 2010].

Presuhn, R., Case, J., McCloghrie, K., Rose, M. & Waldbusser, S., 2002a, Manage-

ment Information Base (MIB) for the Simple Network Management Protocol (SNMP),

RFC 3418, Internet Engineering Task Force, URL http://www.rfc-editor.org/rfc/

rfc3418.txt, Last visited [7 November 2010].

88

http://www.rfc-editor.org/rfc/rfc4944.txt
http://tools.ietf.org/html/draft-hamid-6lowpan-snmp-optimizations-02
http://tools.ietf.org/html/draft-hamid-6lowpan-snmp-optimizations-02
http://www.nagios.org/
http://www.nagios.org/
http://www.nanork.org/
http://www.itl.nist.gov/fipspubs/fip180-1.htm
http://www.itl.nist.gov/fipspubs/fip180-1.htm
http://oss.oetiker.ch/rrdtool/
http://oss.oetiker.ch/rrdtool/doc/rrdtool.en.html
http://oss.oetiker.ch/rrdtool/doc/rrdtool.en.html
http://www.opennms.org/wiki/FAQ-About
http://www.opennms.org
http://www.rfc-editor.org/rfc/rfc871.txt
http://www.rfc-editor.org/rfc/rfc768.txt
http://www.rfc-editor.org/rfc/rfc793.txt
http://www.rfc-editor.org/rfc/rfc793.txt
http://www.rfc-editor.org/rfc/rfc3418.txt
http://www.rfc-editor.org/rfc/rfc3418.txt

Presuhn, R., Case, J., McCloghrie, K., Rose, M. & Waldbusser, S., 2002b, Transport

Mappings for the Simple Network Management Protocol (SNMP), RFC 3417, Internet

Engineering Task Force, URL http://www.rfc-editor.org/rfc/rfc3417.txt, Last

visited [7 November 2010].

Presuhn, R., Case, J., McCloghrie, K., Rose, M. & Waldbusser, S., 2002c, Version 2 of the

Protocol Operations for the Simple Network Management Protocol (SNMP), RFC 3416,

Internet Engineering Task Force, URL http://www.rfc-editor.org/rfc/rfc3416.

txt, Last visited [7 November 2010].

Rivest, R., 1992, The MD5 Message-Digest Algorithm, RFC 1321, Internet Engineer-

ing Task Force, URL http://www.rfc-editor.org/rfc/rfc1321.txt, Last visited [7

November 2010].

Rose, M. & McCloghrie, K., 1988, Structure and Identification of Management Informa-

tion for TCP/IP-based internets, RFC 1065, Internet Engineering Task Force, URL

http://www.rfc-editor.org/rfc/rfc1065.txt, Last visited [7 November 2010].

Rose, M. & McCloghrie, K., 1990, Structure and Identification of Management Informa-

tion for TCP/IP-based Internets, RFC 1155, Internet Engineering Task Force, URL

http://www.rfc-editor.org/rfc/rfc1155.txt, Last visited [7 November 2010].

Sensinode, 2010, Products - Sensinode, URL http://www.sensinode.com/EN/products.

html, Last visited [6 November 2010].

Sensinode Ltd, 2011, Sensinode Home - Sensinode Ltd, URL http://www.sensinode.

com/, Last visited [12 October 2011].

Sentilla Corporation, 2011, Data Center Analytics Software - Sentilla, URL http://www.

sentilla.com/, Last visited [12 October 2011].

Shay, W.A., 2004, Understanding data communications and networks - Third Edition, Bill

Stenquist - Thomson Brooks/Cole.

SNMPv3WG, 2002, SNMP Version 3 (SNMPv3), URL http://www.ietf.org/wg/

concluded/snmpv3.html, Last visited [6 November 2010], SNMP Version 3 Working

Group.

Stefanov, I., 2008, FS20 / SNMP Gateway on TinyOS, Guided research final paper, Ja-

cobs University Bremen, URL http://www.eecs.jacobs-university.de/archive/

bsc-2008/stefanovIvan.pdf, Last visited [6 November 2010].

Szewczyk, R., Mainwaring, A., Polastre, J., Anderson, J. & Culler, D., 2004, An analysis

of a large scale habitat monitoring application, in Proceedings of the 2nd international

conference on Embedded networked sensor systems, SenSys ’04, 214–226, New York,

89

http://www.rfc-editor.org/rfc/rfc3417.txt
http://www.rfc-editor.org/rfc/rfc3416.txt
http://www.rfc-editor.org/rfc/rfc3416.txt
http://www.rfc-editor.org/rfc/rfc1321.txt
http://www.rfc-editor.org/rfc/rfc1065.txt
http://www.rfc-editor.org/rfc/rfc1155.txt
http://www.sensinode.com/EN/products.html
http://www.sensinode.com/EN/products.html
http://www.sensinode.com/
http://www.sensinode.com/
http://www.sentilla.com/
http://www.sentilla.com/
http://www.ietf.org/wg/concluded/snmpv3.html
http://www.ietf.org/wg/concluded/snmpv3.html
http://www.eecs.jacobs-university.de/archive/bsc-2008/stefanovIvan.pdf
http://www.eecs.jacobs-university.de/archive/bsc-2008/stefanovIvan.pdf

NY, USA: ACM, URL http://doi.acm.org/10.1145/1031495.1031521, Last visited

[6 November 2010].

Thaler, D., 2002, FW: ipv6IfStateChange traps in RFC2465, Mailing list, URL http://

www.ops.ietf.org/lists/v6ops/v6ops.2002/msg00269.html, Last visited [10 Au-

gust 2011].

TinyOS, 2010, TinyOS Home Page, URL http://www.tinyos.net/, Last visited [6

November 2010].

Tolle, G. & Culler, D., 2005, Design of an Application-Cooperative Management System

for Wireless Sensor Networks, in Proceeedings of the Second European Workshop on

Wireless Sensor Networks, 121 – 132.

Tolle, G., Polastre, J., Szewczyk, R., Culler, D., Turner, N., Tu, K., Burgess, S., Dawson,

T., Buonadonna, P., Gay, D. & Hong, W., 2005, A macroscope in the redwoods, in

Proceedings of the 3rd international conference on Embedded networked sensor systems,

SenSys ’05, 51–63, New York, NY, USA: ACM, URL http://doi.acm.org/10.1145/

1098918.1098925, Last visited [6 November 2010].

Vancea, C.M. & Dobrota, V., 2007, Enabling SNMP for IEEE 802.15.4: A Practi-

cal Architecture, in 6th RoEduNet International Conference “Networking in Educa-

tion and Research”, 49–53, URL http://www.csfnau.kiev.ua/kipz/ua/ROMANIA/

papers/049%20-%20053%20-%20Vancea.pdf, Last visited [6 November 2010].

Waters, G., 1996, User-based Security Model for SNMPv2, RFC 1910, Internet Engineer-

ing Task Force, URL http://www.rfc-editor.org/rfc/rfc1910.txt, Last visited [7

November 2010].

WEBS, 2004, nesC: A Programming Language for Deeply Networked Systems, URL http:

//nescc.sourceforge.net/, Last visited [6 November 2010].

Werner-Allen, G., Johnson, J., Ruiz, M., Lees, J. & Welsh, M., 2005, Monitoring Vol-

canic Eruptions with a Wireless Sensor Network, in Proceedings of the Second European

Workshop on Wireless Sensor Networks, EWSN05, 108 – 120.

Wijnen, B., Presuhn, R. & McCloghrie, K., 2002, View-based Access Control Model

(VACM) for the Simple Network Management Protocol (SNMP), RFC 3415, Internet

Engineering Task Force, URL http://www.rfc-editor.org/rfc/rfc3415.txt, Last

visited [7 November 2010].

Wijnen, B., 1996, SNMPv2* compared to SNMPv2u, URL http://www.simple-times.

org/pub/simple-times/usec/v2compare.html, Last visited [18 October 2011].

Won, E.T., 2011, IEEE 802.15 WPAN Task Group 7 (TG7) Visible Light Communication,

URL http://www.ieee802.org/15/pub/TG7.html, Last visited [12 October 2011].

90

http://doi.acm.org/10.1145/1031495.1031521
http://www.ops.ietf.org/lists/v6ops/v6ops.2002/msg00269.html
http://www.ops.ietf.org/lists/v6ops/v6ops.2002/msg00269.html
http://www.tinyos.net/
http://doi.acm.org/10.1145/1098918.1098925
http://doi.acm.org/10.1145/1098918.1098925
http://www.csfnau.kiev.ua/kipz/ua/ROMANIA/papers/049%20-%20053%20-%20Vancea.pdf
http://www.csfnau.kiev.ua/kipz/ua/ROMANIA/papers/049%20-%20053%20-%20Vancea.pdf
http://www.rfc-editor.org/rfc/rfc1910.txt
http://nescc.sourceforge.net/
http://nescc.sourceforge.net/
http://www.rfc-editor.org/rfc/rfc3415.txt
http://www.simple-times.org/pub/simple-times/usec/v2compare.html
http://www.simple-times.org/pub/simple-times/usec/v2compare.html
http://www.ieee802.org/15/pub/TG7.html

Yu, M., Mokhtar, H. & Merabti, M., 2006, A Survey of Network Management Archi-

tecture in Wireless Sensor Network, in Proceedings of the Sixth Annual PostGraduate

Symposium on The Convergence of Telecommunications, Networking and Broadcasting,

URL http://www.cms.livjm.ac.uk/pgnet2006/Programme/Papers/2006-093.pdf,

Last visited [6 November 2010].

Zenoss Community, 2010, Open Source Network Monitoring and Systems Management,

URL http://community.zenoss.org, Last visited [6 November 2010].

Zigbee Foundation, 2010, Zigbee Foundation Website, URL http://www.zigbee.org,

Last visited [6 November 2010].

91

http://www.cms.livjm.ac.uk/pgnet2006/Programme/Papers/2006-093.pdf
http://community.zenoss.org
http://www.zigbee.org

Appendix A

Testbed

An indoor WSN testbed was constructed as part of this research to aid in testing the

SNMPv1 software agent implementation. The main aim of the testbed was to provide a

means to power the nodes and also to provide the ability to remotely reprogram the nodes

used on the testbed. The programming of the nodes should be made as easy as possible.

A separate PC from the one running the blip routing driver and network monitoring

software was used to control the testbed. This was done to facilitate the use of the testbed

by other users after the completion of this research.

A.1 Hardware

The testbed uses Sentilla (previously Moteiv) Tmote Connect gateway appliances to con-

nect the WSN nodes used to a wired ethernet, Figure A.1. The testbed wired ethernet

is separate from the institutional LAN to eliminate any interference of one network on

the other. The testbed PC has two network interface cards, one connected to the testbed

LAN and the other to the institutional LAN. In this way the PC can be accessed remotely

to reprogram the testbed while also keeping the two LANs separate.

92

Figure A.1: Sentilla Tmote Connect with one WSN node

Each Connect has one TelosB platform WSN node attached to it, this can be adjusted

as needed. At present some of the Connects house two nodes to compensate for two

Connects that have failed, in order to keep the total amount of nodes the same.

Figure A.2: Testbed network cable adapter box

Separate cabling was done for the testbed LAN and was placed in the trunking used

by the institutional LAN and connector boxes used to terminate the cables, Figure A.2.

An unmanaged network switch was used to connect the various network elements. A list

of the current installed nodes and Connects can be found in the script that is used to

reprogram the whole testbed. The location of each testbed LAN cable adapter box can

be seen on Figure A.3, this corresponds to the IP address of the Connect and the ID of

the node attached to it.

93

Work area

8 9 10
1

2

3

4

11 12 13

5

7

6

IF

Figure A.3: Floor plan of testbed and node location

A.2 Software

Initially it was attempted to use the Motelab testbed software developed by Harvard. But

this was abandoned after a considerable amount of time was spent to install and set up

the software with only limited success. The solution developed is not as full featured as

the Motelab software but it includes the needed features as mentioned above.

The core of the testbed software is the netbsl script used to program nodes connected

to the Tmote Connect appliances. A script, runNetbsl, was created that uses the netbsl

script to program a specific node on the testbed. A second script, progLab, was created

that uses the runNetbsl script to reprogram the whole testbed. The runNetbsl script

takes as arguments the host IP address of the Tmote Connect the node is connected to,

the port the node is connected to and the TOS NODE ID to be assigned to the node.

$./runNetbsl 10.0.0.13 10001 13

The output from the script of a successful programming can be seen below:

------------>START_ID-13@10.0.0.13:10001

----->Mon Nov 8 16:51:21 SAST 2010

94

Using mote on port /dev/ttyUSB0.

Mass erase.

Invoking BSL.

BSL version 1.61, MCU device id f16c.

Changing to 38400 baud.

Program image /tmp/_dev_ttyUSB0, 45294 bytes.

Invoking BSL.

BSL version 1.61, MCU device id f16c.

Changing to 38400 baud.

Program.

Programmed 45326 bytes.

Reset

------------>END_ID-13@10.0.0.13:10001

The progLab script takes a dummy argument to start programming the testbed. The

nodes to be programmed is specified within the progLab script.

./progLab now

The progLab script is not very intelligent and will not attempt to reprogram a node

that has not been successfully programmed. The output from the script should therefore

be examined to verify that all nodes programmed successfully.

After successful compilation the build directory of the application to be programmed

should be copied into the same directory as both scripts. The scripts can then be invoked

to program the nodes.

The Tmote Connects also respond to commands directly. An example is retrieving

status information on the node connected to a Connect. More commands can be found in

the datasheet for the Sentilla Tmote Connect. It is possible to reset a node or to reboot

the Connect if needed.

echo status | nc 10.0.0.1 10001

The netbsl and netbsl.extra scripts should be copied to the following directory of

the TinyOS install: $TOSROOT/support/make/msp/.

95

Appendix B

Set up and configuration of software

This appendix chapter contains more details on the set up, configuration and use of the

software mentioned in the main body of work. The configuration files for Nagios will be

examined in more detail. The addition of devices and creation of new graphs in Cacti will

be covered. The setup used for PHP graphing will also be covered in more detail.

B.1 Nagios

Unlike Cacti, all configuration for Nagios is done in the configuration files found under

\etc\nagios3\. The whole nagios3 directory with the configuration files used can be

found on the accompanying DVD.

Hosts can be defined by placing a host definition in the hosts.cgf file. An example

of a host definition can be seen below:

define host{

host_name mote1

alias TelosB node 1

address fec0::1

parents WSNrouter

use generic-host

hostgroups all

}

When a host is added it should also be added to one or more host groups in the

hostgroups.cgf file.

define hostgroup {

96

hostgroup_name snmp-voltage

alias Nodes to check for voltage

members mote1, mote2, mote3, mote4, mote5, mote6, mote7

}

The services.cfg file contains definitions on the services to be checked and what host

group the service check is associated with. Two new commands used in the services.cfg

file were defined in the commands.cfg file, these include the snmp_node_voltage and

snmp_node_uptime commands. These commands retrieve the corresponding information

using the SNMP. The levels at which warnings and critical warnings are given in Nagios

are set in the services.cfg file, this can be seen as arguments given when the command

is invoked. This can be seen below:

check_ping!5000.0,50%!7500.0,70%!1!7000!-6

snmp_node_voltage!public!2500!3500

snmp_node_uptime!public

The first argument of the check_ping command is the values for RTA and percentage

packet loss at which a warning is given. The second is the values at which a critical

warning is given. The third argument is the number of packets to send while the fourth

specifies the timeout between packets (if more than one is sent). The last argument

indicates that IPv6 is to be used. The levels for warnings from this service check should

be adjusted to values more suitable for WSNs, which is typically longer timeout values

and longer RTAs and slightly higher packet loss should be tolerated.

For both SNMP commands the first argument is the community string of the com-

munity that the nodes belongs to. For the snmp_node_voltage command it is possible

to specify warning levels, with the first indicating a warning and the second indicating a

critical warning.

Once configuration is complete a ‘pre-flight’ check can be done on the configuration

data to ensure that it is correct:

$ sudo nagios3 -v /etc/nagios3/nagios.cfg

...

Total Warnings: 0

Total Errors: 0

Things look okay - No serious problems were detected during the pre-flight check

If all is well Nagios can be restarted for the changes to take effect:

$ sudo /etc/init.d/nagios3 restart

97

B.2 Cacti

The setup and configuration of Cacti is done completely through the web interface, under

the console tab. Before graphs can be created devices need to be added to Cacti. This is

done under the Devices page under the Management heading on the left hand panel. To

add a device the user needs to select Add from the top right corner of the Devices page.

On this page the details of the node can be entered.

A Description of the node should be entered in the first box with the nodes IPv6

address in the second. The SNMP options should be changed to accommodate the WSN

setting the software is used in. The SNMP Timeout is increased to 1500 and the Maximum

OID’s Per Request set to one. The completed page can be seen in Figure B.1. The create

button can then be selected to continue. On the next page under Associated Data Queries

the red cross should be clicked to remove the SNMP - Interface Statistics item. The

changes can then be saved to by selecting the save button.

Figure B.1: Adding a device

Graphs for this device can now be created. The graph templates created and used in

the research can be found on the accompanying DVD and imported to Cacti for use. It

also possible to edit and change templates to better suite the intended application. These

graph templates will we used to create graphs for the node that was created. This done

by selecting New Graphs from the left hand panel under the heading Create.

Select the device for which a graph should be created from the drop down menu for

Host: and select the create button. After the device is selected a graph template can be

98

selected from the drop down menu under Graph Templates, Graph Template Name and

Create:. For demonstration the SNMP - WSN Voltage OID graph template will be used.

After the graph template is selected the create button should be selected.

Figure B.2 shows the next completed page. On this page the title of the graph and

name of data source should be entered and also details on the SNMP query. The Maximum

Value [snmp oid] field should contain a value that is higher than the maximum value that

is expected to be returned by the node, otherwise the values will be ignored and not

graphed. The OID for the object that contains the voltage reading should be entered into

the OID field. Select the create button.

Figure B.2: Creating the graph

The created graph should now be placed on one of the trees so that it can be viewed.

This is done under Graph Management under the Management heading on the left hand

panel. The graph to placed on the graph tree should be selected and at the bottom of the

page from the Choose an action drop down menu the Place on a Tree option corresponding

to the wanted tree should be selected and the go button pressed. If the tree has multiple

branches the Destination Branch can be selected and the yes button selected. The graph

can then be viewed from the graphs tab and by selecting the appropriate tree and branch

from the left hand panel.

99

Figure B.3: The new graph created from the device added

Keep in mind that it can take up to ten minutes for the graph to be populated with

data, depending on the settings used in Cacti. The graph created from the device that

was added can be seen in Figure B.3.

B.3 PHP graphing

The graphing was done using PHP and the JpGraph graphing library. The installation

under Ubuntu is straightforward and the Synaptic Package Manager can be used to install

the needed packages. The extra packages needed are: python-mysqldb, libphp-jpgraph

and libphp-jpgraph-examples. After the packages are installed it is needed to restart

Apache:

$ sudo /etc/init.d/apache2 restart

Before looking at the graphing scripts it should be noted how the back-end to the

graphing operates. The data is stored in a MySQL database by a Python script. The

Python script is a slightly modified version of the script included in the UDPEcho demo

application of blip and can be found in $TOSROOT/apps/UDPEcho/util. The actual script

used is included with the SNMPv1 Agent code under apps/windStation/scripts. A

user and database with the correct permissions should be added to the MySQL database.

The MySQLListenerV2.py script can be used to log incoming messages to the database

or the senseListener.py can be used to only display the received data to the screen.

The scripts should be run using the following syntax:

$ python scriptName.py

The following line should be added to the tinyos.sh file under $TOSROOT if it is not

already present:

100

export PYTHONPATH="$PYTHONPATH:$TOSROOT/support/sdk/python"

The PHP scripts created are included on the accompanying DVD, with the whole

/var/www folder included on the disc. Care should be taken that the files and di-

rectories have the appropriate permissions. The index.htm file contains links to the

Nagios, Cacti and PHP graph pages. The PHP graph scripts can be found under

blip_deployment_graphs. This directory contains an index.php and include.php

script and also a directory with the graph scripts for the different sensor values to be

graphed.

The include.php script contains information on the database that is used by the

graphing scripts including the tablename, username, password, host address and database

name. The index.php script has links to graphs for different time periods, 24 hours and

three days. The ID of the node to be graphed is also set within this script. The script

makes use of the landing.php script in the genericGraphs directory to create a single

page with all the graphs for the node. The various graph scripts and landing.php accept

the same mandatory arguments. This means that the landing.php script can be used to

show all graphs or the script for a single sensor can be used.

http://<host>/blip_deployment_graphs/genericGraphs/landing.php?nodeID=13&period=1

http://<host>/blip_deployment_graphs/genericGraphs/voltage.php?nodeID=13&period=1

The index.php script passes the appropriate arguments to the graphing scripts, these

include nodeID to indicate the ID of the node to be graphed and period for the time

period to be graphed.

101

Appendix C

Code

All source code, scripts, Nagios configuration files and Cacti templates can be found on

the accompanying DVD.

Document prepared using LATEX

102

	Table of Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Research methodology
	Significance and contributions of the research
	Delineation of the research
	Structure of the document

	Background
	An introduction to wireless sensor networks
	Wireless sensor network specific network monitoring
	Wireless sensor network operating systems
	Wireless sensor network hardware
	TelosB

	OSI layered model
	Internet layered model/protocol suite
	The IEEE 802.15.4 protocol suite
	Internet layer
	Transport layer
	Application layer
	Network monitoring software
	Summary

	6LoWPAN and SNMP
	6LoWPAN
	6LoWPAN implementations

	6LoWPAN and SNMP
	SNMP
	SNMPv1
	SNMPv2
	SNMPv3

	Anatomy of an SNMP message
	Summary

	SNMP agent implementation
	SNMP software agent overview
	The snmp block
	The snmpMib block
	Management Information Base
	Statistics

	Applications
	The hopNode application
	The windStation application
	Memory usage

	Summary

	Testing and evaluation
	Workstation
	Preliminary blip tests
	SNMP tests

	Testbed

	Conclusion
	Evaluation of work done
	Proposed future work and recommendations

	References
	Testbed
	Hardware
	Software

	Set up and configuration of software
	Nagios
	Cacti
	PHP graphing

	Code

