
I INTELLIGENT POINT OF SALE TERMINAL I

Document Name: T5.DOC

Original: December 1991

prepared by: H.Keown

Revised , _

•

I ~nEL L IGENT

TERMINAL

INTELLIGENT POINT OF SALE TERMINAL THESIS

by HARVEY KEOWN

Thesis sUbmitted in part fulfilment of the requirements for

the Masters Diploma in the School of Electrical Engineering

at the Cape Technikon.

Date of submission: December 1991.

DECLARATIONS:

I declare that the contents of this thesis has been entirely

prepared by myself and represents my own work. The opinions

contained herein are my own and not necessarily those of the

Technikon.

signed: Date: og.· 0'

ACKNOWLEDGMENTS:

I would like to use this opportunity to thank the following

people, all have assisted in shaping my career:

Mr. Gerhard Kopatz (Managing Director of Ankerdata) for

giving me the opportunity to further my studies and mainly

having faith in the projects that I have generated.

Mr. SUliman Harnekar (Electrical Engineer, Hardware and

Software) and Mr. Gary Robas (Electrical Engineer,

Hardware) for unselfishly imparting their knowledge and

experience.

Mr. Eric Seiderer (Production Manager) for supporting me

through the various design stages.

To my wife, Gillian, who has always been the main support.

(thanks for doing the dishes)

Finally, I would like to thank those who have proof read

this thesis.

To the above mentioned people, THANK-YOU for the role each

of you had in moulding my career.

TABLE OF CONTENTS

TABLE OF CONTENTS

SUMMARY • PAGE 12

INTRODUCTION .. PAGE 16

Figure 0-1. INTELLIGENT TERMINAL

Figure 0-2. Integrated Terminal - MTS2002

Figure 0-3. MTS2002 Configuration

Figure 0-4. POS Terminals and Back Office Computer

CHAPTER 1 .

1. COMMUNICATIONS INTRODUCTION

PAGE 13

PAGE 18

PAGE 19

PAGE 24

PAGE 2

PAGE 2

•

2. TRANSMISSION SPECIFICATION. . • • . . • PAGE 4

3. TRANSMISSION CONTROL CODES•..•. , PAGE' 5

4. TRANSMISSION FORMAT

4. 1 TEXT FORMAT

5. TRANSMISSION CONTROL PROCEDURES ..•

5.1 CONNECTION PHASE (NO PROCESSING)

5.2 DATA LINK ESTABLISH PHASE ...

PAGE 7

PAGE 8

PAGE 10

PAGE 10

PAGE 10

INTELLIGENT POS TERMINAL PAGE 1

TABLE OF CONTENTS

5.2.1 DATA LINK ESTABLISH PHASE AT HOST PAGE 11

5.2.1.1 SELECTING PAGE 11

5.2.1.2 POLLING PAGE 12

5.2.2 DATA LINK ESTABLISH PHASE AT TERMINAL PAGE 13

5.3 TEXT TRANSFER PHASE . . · · · PAGE 15

5.3.1 TEXT TRANSFER PHASE AT THE HOST PAGE 15

5.3.2 TEXT TRANSFER PHASE AT THE TERMINAL PAGE 17

5.4 DATA LINK END PHASE PAGE 19

5.5 DISCONNECTION PHASE PAGE 19

6. ERROR CONTROL PAGE 20

7. RETRY COUNTER FUNCTION.

7.1 HOST RETRY COUNTER FUNCTION

7.2 TERMINAL RETRY COUNTER FUNCTION

PAGE 21

PAGE 21

PAGE 21

8. INTELLIGENT TERMINAL CONTROL CODES PAGE 22

8.1 OUTPUT DEVICE CONTROL CODES PAGE 24

8.1.1 16 X LED's . . . · · PAGE 24

8.1.2 TWO X LIQUID CRYSTAL DISPLAYS PAGE 26

8.1. 3 SOUND THE BUZZER · · . PAGE 27

8.1.4 OPEN CASH DRAWER #1 OR #2 PAGE 28

8.1. 5 ENABLE OR DISABLE MAGNETIC CARD READER PAGE 28

8.1. 6 HOST ENQUIRY · · · PAGE 29

8.1. 7 TWO RS232 SERIAL PORTS PAGE 30

8.2 INPUT DEVICE CONTROL CODES PAGE 35

8.2.1 4 BIT CONTROL LOCK PAGE 35

INTELLIGENT POS TERMINAL PAGE 2

TABLE OF CONTENTS

8.:1. 2 MAGNETIC CARD READER PAGE 35

8.2.3 DRAWER STATUS PAGE 36

8.2.4 RECEIPT STATUS PAGE 37

8.2.5 KEYBOARD OR SCANNER DATA PAGE 37

8.2.6 RESPONSE TO HOST ENQUIRY PAGE 39

8.2.7 TWO X RS232 SERIAL PORTS PAGE 39

9. PROGRAMMING EXAMPLE PAGE 41

Table 1-1. Transmission Specification

Table 1-2. Transmission Control Codes

Table 1-3. Keyboard Matrix

PAGE 4

PAGE 6

PAGE 38

Figure 1-1. INTELLIGENT TERMINAL-Back Office Computer . PAGE 2

CHAPTER 2 • • • • . . • . • . . . • PAGE 2

1. SYSTEM DESCRIPTION • . PAGE 2

1.1 SYSTEM OVERVIEW PAGE 2

1.2 TERMINAL OVERVIEW PAGE 3

1.3 DETAILED TERMINAL DESCRIPTION PAGE 5

1. 3.1 PROCESSING SECTION PAGE 5

1. 3.2 COMMUNICATIONS SECTION PAGE 6

1. 3.3 DEVICE SECTION PAGE 7

2. INTELLIGENT TERMINAL SPECIFICATIONS PAGE 9

INTELLIGENT POS TERMINAL PAGE 3

3. MICROCONTROLLER DESCRIPTION

3.1 DATA AND PROGRAM MEMORY ORGANISATION

3.2 INTERNAL DATA MEMORY ORGANISATION

4. DESIGN IMPLEMENTATION

4.1 PROCESSING SECTION

4.2 COMMUNICATIONS INTERFACE SECTION

4.3 PORT PIN ASSIGNMENT

5. INPUT / OUTPUT DECODE CIRCUITRY

6. ADDRESS MAP AND I/O MAP

6.1 MEMORY I/O EQUATES

6. 2 MEMORY MAP

TABLE OF CONTENTS

PAGE 11

PAGE 11

PAGE 14

PAGE 16

PAGE 16

PAGE 18

PAGE 19

PAGE 22

PAGE 25

PAGE 25

PAGE 26

7. BUZZER DESCRIPTION•.........

8. CONTROL LOCK AND TERMINAL NUMBER INTERFACE

PAGE 29

PAGE 31

9. LED INTERFACE PAGE 32

10. LIQUID CRYSTAL DISPLAY INTERFACE (LCD) PAGE 33

10.1 GENERAL DESCRIPTION PAGE 33

10.2 LCD SPECIFICATIONS PAGE 33

10.3 CONNECTION POSITIONS PAGE 35

10.4 PIN DESCRIPTION . . . PAGE 36

10.5 EXPLANATION OF INTERNAL OPERATION PAGE 38

.
INTELLIGENT POS TERMINAL PAGE 4

TABLE OF CONTENTS

10.5.1 REGISTER . . . PAGE 38

10.5.2 BUSY FLAG (BF) PAGE 40

10.5.3 ADDRESS COUNTER (AC) PAGE 40

10.5.4 DISPLAY DATA RAM (DD RAM) PAGE 40

10.5.5 CHARACTER GENERATOR ROM (CG ROM) PAGE 41

10.5.6 CHARACTER GENERATOR RAM (CG RAM) PAGE 41

10.6 DETAILED EXPLANATION OF INSTRUCTIONS PAGE 41

10.6.1 CLEAR DISPLAY PAGE 41

10.6.2 RETURN HOME PAGE 42

10.6.3 ENTRY MODE SET PAGE 42

10.6.4 DISPLAY ON/OFF CONTROL PAGE 43

10.6.5 CURSOR OR DISPLAY SHIFT PAGE 44

10.6.6 FUNCTION SET . . . PAGE 45

10.6.7 INTENSITY CONTROL PAGE 46

10.7 DESIGN IMPLEMENTATION . . PAGE 47

11. MAGNETIC CARD READER INTERFACE PAGE 48

11.1 DATA FORMAT. PAGE 48

11.1.1 AEA-CODED DATA FORMAT PAGE 48

11.1.1.1 CODED CHARACTER SET - PAGE 48

11.1.1.2 INFORMATION FORMAT PAGE 50

11.1.1.3 LONGITUDINAL REDUNDANCY CHECK PAGE 51

11.1.2 lATA-CODED DATA FORMAT PAGE 52

11.1.2.1 CODED CHARACTER SET PAGE 52

11.1.2.2 INFORMATION FORMAT PAGE 53

11.1.2.3 LONGITUDINAL REDUNDANCY CHECK PAGE 55

11.2 READER DESCRIPTION

INTELLIGENT POS TERMINAL

.

PAGE 5

PAGE 55

11.3 DESIGN IMPLEMENTATION .

12. KEYBOARD INTERFACE

12.1 FEATURES OF THE 8279

12.2 HARDWARE DESCRIPTION

12.3 SOFTWARE DESCRIPTION

12.4 DESIGN IMPLEMENTATION

13. SERIAL COMMUNICATIONS INTERFACE.

13.1 8530 FUNCTIONAL DESCRIPTION

13.2 HARDWARE DESCRIPTION

13.3 SOFTWARE DESCRIPTION

13.4 DESIGN IMPLEMENTATION

TABLE OF CONTENTS

PAGE 59

PAGE 63

PAGE 63

PAGE 64

PAGE 66

PAGE 67

PAGE 68

PAGE 68

PAGE 69

PAGE 70

PAGE 71

14. SCANNER INTERFACE • · PAGE 72

14.1 OPTICALLY COUPLED SERIAL INTERFACE PAGE 72

14.2 INTERFACE SIGNALS · PAGE 72

14.2.1 RECEIVE DATA SIGNAL (RDATA) PAGE 72

14.2.2 RECEIVE DATA CLOCK (CLKIN) · PAGE 73

14.2.3 RECEIVE RESET SIGNAL (RESETIN) PAGE 74

14.3 MESSAGE FORMATS PAGE 75

14.4 BYTE FORMATS PAGE 76

14.5 SYMBOL MESSAGE FORMATS PAGE 77

14.6 DESIGN IMPLEMENTATION . PAGE 78

15. DRAWER INTERFACE

INTELLIGENT POS TERMINAL PAGE 6

PAGE 79

16. RECEIPT SENSE . •

17. PRESENT AND FUTURE DEVELOPMENT

TABLE OF CONTENTS

PAGE 80

PAGE 81

Table 2-1. Port pin Assignment

Table 2-2. Memory I/O Equates

Table 2-4. Pin Connections

Table 2-5. Signal Description

Table 2-6. Register Selection

Table 2-7. ABA-Coded Character Set

Table 2-8. lATA-coded Character Set

Table 2-9. lATA Information Format

Table 2-10. Reader Specification

Table 2-11. Reader Control Signals

Table 2-12. Byte Format .

Table 2-3. Memory Map . . .

PAGE 21

PAGE 26

PAGE 28

PAGE 35

PAGE 37

PAGE 39

PAGE 49

PAGE 52

PAGE 54

PAGE 56

PAGE 58

PAGE 77

Figure 2-1- System Configuration PAGE 2

Figure 2-2. Terminal Description PAGE 4

Figure 2-3. Detailed Terminal Description PAGE 5

Figure 2-4. INTELLIGENT TERMINAL Specifications PAGE 9

Figure 2-5. Memory Organisation . PAGE 11

Figure 2-6. Internal Data Memory PAGE 13

Figure 2-7. Internal RAM Usage PAGE 15

Figure 2-8. Single Board Computer PAGE 16

Figure 2-9. Communication Interfaces PAGE 19

Figure 2-10. Equivalent CCT for 20L10 PAL PAGE 22

INTELLIGENT POS TERMINAL PAGE 7

TABLE OF CONTENTS

Figure 2-1l. I/O Decoder 20L10 PAGE 24

Figure 2-12. 20L10 PAL PAGE 25

Figure 2-13. Buzzer Circuit PAGE 29

Figure 2-14. Lock & Terminal No. Interface PAGE 31

Figure 2-15. LED Interface PAGE 32

Figure 2-16. LCD Interface PAGE 35

Figure 2-17. LCD Block Diagram PAGE 38

'Figure 2-18. Intensity Adjust PAGE 46

Figure 2-19. LCD Interface PAGE 47

Figure 2-20. Reader Block Diagram PAGE 55

Figure 2-2l. Timing Diagram . · PAGE 56

Figure 2-22. Card Data Transfer PAGE 59

Figure 2-23. I/O Clock Generation PAGE 60

Figure 2-24. Expansion Bus . · . PAGE 61

Figure 2-25. Interconnection between 8032 and 8751 PAGE 62

Figure 2-26. Data Transfer Timing Diagram PAGE 62

Figure 2-27. 8279 Block Diagram PAGE 63

Figure 2-28. Keyboard Interface PAGE 67

Figure 2-29. 8530 Block Diagram PAGE 68

Figure 2-30. Communications Interface PAGE 71

Figure 2-3l. Scanner Connection . . . PAGE 74

Figure 2-32. Byte Transfer From Scanner PAGE 75

Figure 2-33. Byte Transfer To Scanner PAGE 75

Figure 2-34. Scanner Interface PAGE 78

Figure 2-35. Drawer Interface · PAGE 79

Figure 2-36. 2006 System (Metro) PAGE 82

Figure 2-37. 2007 system (Restaurant) PAGE 83

INTELLIGENT POS TERMINAL PAGE 8

CHAPTER 3 • • . • • . • • • • • . • • • • • .

TABLE OF CONTENTS

PAGE 2

ASSEMBLER CODE LISTING PAGE 2

1. KYB.ASM

2. IOl.ASM

3. I02.ASM

4. COMMS.ASM

.. ..

.. ..

.. ..

..

PAGE 2

PAGE 35

PAGE 67

PAGE 82

5. SCAN. ASM • • . . • PAGE 112

6. 82530.ASM

7. CRD.ASM

8. EQUATES.ASM

.. PAGE 122

PAGE 150

PAGE 158

CHAPTER .. . • • • . . • • PAGE 2

SCHEMATIC DIAGRAMS PAGE 2

Figure 4-l. Single Board Computer PAGE 2

Figure 4-2. I/O Decode PAGE 3

Figure 4-3. Buzzer & Lock Interface PAGE 4

INTELLIGENT POS TERMINAL PAGE 9

TABLE OF CONTENTS

Figure 4-4. LED & LCD Interface · PAGE 5

Figure 4-5. Card Reader Interface PAGE 6

Figure 4-6. Keyboard Interface PAGE 7

Figure 4-7. RS232 Interface . PAGE 8

Figure 4-8. Scanner Interface PAGE 9

Figure 4-9. Draw & Rec. Interface PAGE 10

Figure 4-10. 20L10 Equiv. Circuit PAGE 11

Figure 4-11. SBC silkscreen . . · PAGE 12

Figure 4-12. Terminal I/O Silkscreen PAGE 13

CHAPTER 5 . PAGE 2

PARTS LIST

1. SINGLE BOARD COMPUTER

PAGE 2

PAGE 2

2. INTELLIGENT TERMINAL (I/0) . · . PAGE 3

2.1 INTELLIGENT TERMINAL (I/O) PAGE 3

2.2 BUZZ LOCK TERM# INTERFACE PAGE 4

2.3 LED AND LCD INTERFACE PAGE 5

2.4 CRD READER & CLK SOURCE PAGE 6

2.5 UNIVERSAL KYB INTERFACE PAGE 7

2.6 DUAL RS232 INTERFACE PAGE 8

2.7 SCANNER INTERFACE PAGE 9

2.8 DRAW AND RCPT SW INTERFACE PAGE 10

2.9 EQUIV CCT 20L10 (DECODE) . PAGE 11

INTELLIGENT POS TERMINAL PAGE 10

TABLE OF CONTENTS

CHAPTER 6 • • • • • • • . • • • . • . . . • • • . • PAGE 2

BIBLIOGRAPHY PAGE 2 -

INTELLIGENT POS TERMINAL PAGE 11

SUMMARY

SUMMARY

The main reason for this project was "import replacement", as all

our existing Point of Sale and Electronic Equipment had to be

imported from Japan. After the Government I s steps to curb imports

by placing extremely high levies on imported goods, it was

decided to produce a completely local product.

From past experience it was obvious that customer requirements

varied greatly. This gave rise to the inception of a modular

system, enabling the customer to "mix and match" modules to their

requirements.

The"concept is to use a HOST computer controlling a differential

communications line with a maximum of 255 terminals which are all

individually addressable. Each individual terminal would in turn

control an internal differential communications line, called

PNET, which is an acronym for "Peripheral Network".

A decision was made to make all the peripherals intelligent,

thereby alleviating the processor of all menial tasks. All

peripherals local to the terminal would be connected to this

network. The configuration can be seen graphically by refering

to Figure 0-1. The communications protocol used is more

sophisticated than that used for RS232 devices. The protocol has

a POLL - ACKNOWLEDGE structure, where the HOST has complete

control of the loop.

INTELLIGENT POS TERMINAL PAGE 12

SUMMARY

TERMINAL

I-C.DP

Figure 0-1. INTELLIGENT TERMINAL

This thesis is therefore a detailed description of the

INTELLIGENT TERMINAL which forms an integral sub-section of each

terminal. This can be seen graphically, by referring to the

Figure 1-1, Chapter 2, page 2.

INTELLIGENT POS TERMINAL PAGE 13

SUMMARY

The operation of the terminal had to be very similar to that of

the imported POS terminals and had to meet the following

specifications:

Addressable up to a maximum of 255 terminals

Maximum 128 key keyboard

Magnetic card reader

Two, 2 lines X 16 character Liquid Crystal Displays (LeO's)

Buzzer

Two cash drawers

sixteen status Light Emitting Diodes (LED's)

4 Bit control lock

Two standard serial RS232 ports

1 X Laser Hand Scanner Interface

1 X Laser Desk Top Scanner Interface

2 Line X 16 character vacuum fluorescent display

2 Line X 20 character vacuum fluorescent display

3 Line X 16 character vacuum fluorescent display

Pin pad for electronic fund transfer (EFT) At the Point of

Sale (EFT POS)

The terminal had to be capable of interfacing to all the above

devices as well as controlling all of them. The INTELLIGENT

TERMINAL essentially handles the interface to the above devices,

and communicates the data to the HOST (XT motherboard) via PNET.

The HOST had to be capable of beeping the buzzer, opening the

drawer, displaying messages on the LCD's etc., as well as

INTELLIGENT POS TERMINAL PAGE 14

SUMMARY

receiving data from any of the input devices. It was decided to

use an Intel 8032 micro controller as the "heart" of the

INTELLIGENT TERMINAL. All the software was written on an IBM AT,

using Intel's Macro Assembler ASM51, and the Relocatable Linker

RL51.

INTELLIGENT POS TERMINAL PAGE 15

INTRODUCTION

INTRODUCTION

CORPORATE PROFILE

Ankerdata, formerly known as Anker Data Systems (ADS) has always

been a market leader in the field of Point Of Sale Equipment

(POS) , Cash Registers (both mechanical and electronic),

Electronic Scales and Mainframe Computing.

The driving force behind this extremely prosperous corporate

power is the Managing Director, Gerhard Kopatz. As a direct

result of his insight and business skills, Ankerdata has

developed since the mid 60'S, into a highly competitive company.

At present there are in excess of 50 branches country wide, as

well as branches in foreign countries.

Ankerdata has a long history of local Research and Development.

During the early 70 I S various niches were found in the local

Receipting, Hotel and Point of Sale markets. There was no

hardware available to satisfy customer requirements, and this was

the basis for the inception of the Ankerdata R&D Department.

The first model was a Receipting machine called the 4900, based

on an Intel 8085 microprocessor. This machine was directed at

customers such as the Post Office, customs and Excise and Inland

Revenue. A lucrative niche was also apparent in the hotel

industry, where a machine for the Front Desk was required. This

INTELLIGENT POS TERMINAL PAGE 16

INTRODUCTION

led to the development of the second generation of machines for

the Front Desk, called the 5900. This extremely flexible and

powerful machine satisfied all the requirements, and was still

installed in major hotels such as the Capetonian, Heerengraght

and President Hotels until a few years ago. The final model in

this particular series was the 7900. This was designed to satisfy

the requirements of various universities, with regard to the

student accounts. This system could perform full stock control

and manage the various student accounts. An installation at

Stellenbosch University was upgraded two years ago to our newer

generation of terminals. Valuable design and marketing experience

was gained from this development phase at Ankerdata. This

together with exorbitant import costs, prompted the Managing

Director to start the next generation of Point Of Sale Equipment.

During 1988 the Government revised the tax structure of imported

goods. This meant that all electronic equipment that Ankerdata

was importing was sUbjected to extremely high import costs. A

direct result of this, was an unrealistically high unit cost to

the end user. This prompted the Managing Director to investigate

market requirements, which led to the decision to locally design

and develop a Point Of Sale Terminal. This machine would be

geared for the middle to upper market segments, with full

communications to a store controller, enabling full Back Office

control with extensive reporting capabilities.

INTELLIGENT POS TERMINAL PAGE 17

INTRODUCTION

PROJECT INCEPTION

CUSTOMER

SCH24.DPMTS2002

R/J PRINTER

CASH~~~====~
DRAWER

Figure 0-2. Integrated Terminal - MTS2002

The project was started in early 1988 and I was extremely

fortunate to be a member of the initial development team. with

the advent of the IBM PC, design philosophies changed, and

Ankerdata, being in the forefront of technology, noted the swing

toward an open-ended design architecture. This was the starting

point for the MTS2002 Point Of Sale Terminal. The terminal was

based on a standard XT motherboard, with a propriety power

supply, expansion I/O card and various peripherals. The greatest

advantage of choosing this architecture was that all software

could be developed on a standard PC, and advantage could be taken

of the vast number of debuggers, compilers and utilities that

INTELLIGENT POS TERMINAL PAGE 18

INTRODUCTION

were available. The availability of various expansion cards meant

that standard cards could be used, greatly reducing the design

and debugging phase. This meant that valuable design time could

be more effectively spent, designing specific I/O cards to

satisfy our hardware requirements.

SCH2S.DPJ
[

POWER
VADS PROPRIATRY BOARDS==

DUAL CHANNEL

FAILURE
, COMMUNICATIONS

DETECTION
v (RS232. RS485. RS422)

RI J PRINTER DRIVER

t~ v SCANNERS
,

64K BYTES BATTERYSTANDARD EXPANSION STANDARD v
BACKED CMOS SRAMCARDS CAN STILL BE

USED, SUCH AS: XT
REAL TIME CLOCK

GRAPHICS CARD MOTHER-
FLOPPY CONTROLLER

I/O BUS <IHARDDlSK CONTROLLER BOARD

-
n '- //

£n1!Q KEYBOARD

!l- "!!JII/"! DISPLAYS

if i/f. CONTROL LOCK

Figure 0-3. MTS2002 Configuration

The MTS2002 was an integrated design, having the processing,

keyboard, printer and displays all housed in a single cabinet.

This, unfortunately would prove to be a major stumbling block in

the future. Due to the power of the terminal, all software

requirements could be met relatively easily, the converse did not

INTELLIGENT POS TERMINAL PAGE 19

INTRODUCTION

however apply to the hardware. Each customer, having their own

idiosyncrasy, would require slight changes to the existing

terminal base. This led to many versions of the MTS2002, combined

with this was the associated headache of maintaining so many

variations. This was an extremely popular machine, being able to

satisfy customer requirements, but was extremely costly to

maintain.

The obvious solution was to design a modular system, which would

enable the customer to "mix 'n match" the hardware to their

requirements. The standard XT motherboard would still be

retained, enabling the existing software base to be utilised, as

well as the previously mentioned advantages. Unknown to us at the

time was that this terminal would eventually be the most

powerful, flexible, popular and greatly exported machine that

Ankerdata has thus far developed.

The communications to the Back Office was maintained, but the

structure of the Input/Output devices was radically changed. The

communications to the Back Office is based on a 7 bit ASCII

protocol using the RS485 bus type electrical connection. This

meant that a maximum of 255 terminals could be connected to the

HOST computer, which could either be a 286 or 386.

This bus type communications structure was now extended one more

level, to the terminal. A second communications bus was designed

for the internal operation of the terminal, and this was called

INTELLIGENT POS TERMINAL PAGE 20

INTRODUCTION

the peripheral Network (PNET). The XT motherboard, internal to

the terminal would control this network, which would have the

flexibility of having any type of peripheral device connected to

it. Initially the terminal needed the same functionality as the

MTS2 002, with the possibility of upgrading and adding more

devices in future. A minimal system would therefore comprise of

a keyboard, receipt/journal printer, two 2 line X 16 character

vacuum fluorescent displays (operator and customer) and various

support peripherals. Each device would be addressable, enabling

the HOST to have total control of the communications bus. The

following peripherals which are attached to PNET have been in

full production since mid-1990:

Intelligent 2 line X 16 Character Vacuum Fluorescent

Display

Intelligent 3 line X 16 Character Vacuum Fluorescent

Display

Intelligent 2 line X 20 Character Vacuum Fluorescent

Display

Intelligent 2 line X 16 Character LCD

RS232 to RS485 Protocol Converter for the SW1 Receipt/

Journal Printer

INTELLIGENT POS TERMINAL PAGE 21

INTRODUCTION

Intelligent Point Of Sale Termianl, which forms the basis

of this thesis.

The first phase was to design a ROM Emulator card. We decided to

design this card to fit into an expansion slot of the PC. This

meant that the binary file could be directly loaded into the

target system, where the code could be tested within seconds. The

only debugging tools available were a digital oscilloscope, LCD,

LED's and the port pins. This made debugging extremely difficult

and tedious, especially when coding at chip level. Ankerdata has

since purchased an In-circuit Emulator, which greatly speeds up

debugging.

The INTELLIGENT TERMINAL had to interface to the devices, as

specified in Chapter 2, "INTELLIGENT TERMINAL SPECIFICATIONS".

The INTELLIGENT TERMINAL had to transmit any incoming information

to the HOST, and output any information that the HOST might

transmit to it. The INTELLIGENT TERMINAL had to report any change

in status to the HOST. All software was written in assembler,

which is a lot more tedious than writing in a high level

language. Intel's Macro Assembler and Relocatable Linker were

used for the generation of the code. The rest of the thesis is

dedicated to the INTELLIGENT TERMINAL, and therefore a brief

description of the various chapters is necessary.

INTELLIGENT POS TERMINAL PAGE 22

INTRODUCTION

CHAPTER 1

The communications protocol is described, as well as the

commands that control the INTELLIGENT TERMINAL.

CHAPTER 2

This contains the hardware description for the INTELLIGENT

TERMINAL and all the Periphery attached to it.

CHAPTER 3

This is the complete Assembler listing for the INTELLIGENT

TERMINAL.

CHAPTER 4

This contains the schematic diagrams and component layout

for the INTELLIGENT TERMINAL.

CHAPTER 5

This is the parts list for the INTELLIGENT TERMINAL.

CHAPTER 6

This is the bibliography for the complete project.

Since full production of the terminal started during the latter

quarter of 1990, more than 1000 units have been installed at the

various Post Offices country wide, as well as installations at

major customer sites. The International market was also

penetrated with the export of a number of terminals to Europe.

INTELLIGENT POS TERMINAL PAGE 23

INTRODUCTION

This must surely be an indication of the degree of

professionalism in the design as well as marketing sections of

Ankerdata.

Due to the constant undertaking of research programs, Ankerdata

is kept at the forefront of technology, ensuring the local Point

of Sale market can compete within world markets.

illl'HII'III'jlll+lillllllll;il'lllll i
11 HiI,HIHil'H.II'lilll'llillfl'"ill 0 I.

~
' __-JI~II;;:;~~.I~~~===='''''~;''''~~~> I ::::::::,::::::::::::::::::::::.

:- IIIIH'HIII:II;U'l:liiilli:'ii,I"~ I
Dj

!

BACK OFFICE COMPUTER MAINFRAME

RS485BUS

TERMINAL" SCH23.0P

Figure 0-4. POS Terminals and Back Office Computer

INTELLIGENT POS TERMINAL PAGE 24

INTELLIGENT POINT OF SALE TERMINAL

SOFTWARE DESCRIPTION

TER~INAL

INTELLIGENT

SOFTWARE DESCRIPTION

cKAPTER 1

1. COMMUNICATIONS INTRODUCTION

o BACK OFFJCE COMPUTER

/

RS486BUS

lERMINALf1 SCH2O.DP TERMINAltX

Figure 1-1. INTELLIGENT TERMINAL-Back Office Computer

This specification describes the protocol used on the Peripheral

Network (PNET). which is the internal communications bus of each

terminal.

CHAPTER 1 PAGE 2

SOFTWARE DESCRIPTION

Each terminal could consist of the following devices:

INTELLIGENT TERMINAL

SW1 Printer

2 X 16, 3 X 16, 2 X 20 Vacuum Fluorescent Displays

Handscanner and Desktop Scanner

Pin Pad

2 X Cash Drawers

Bi-Directional Magnetic Card Reader

The communications between the HOST and the various devices

should be seen as two independent layers. The lower layer is the

protocol layer, which takes care of the integrity of the data

during data transfers. The upper layer is the command layer,

which is used to control the various operations on the

INTELLIGENT TERMINAL.

CHAPTER 1 PAGE 3

SOFTWARE DESCRIPTION

2. TRANSMISSION SPECIFICATION

1. communication System Half Duplex

2. Transmission Rate 19.2 KBaud

3. Connection Control System Poll/Select

4. Response Method ACK and NAK

5. Error Control System BCC Check: LRC Method

Illegal Response

Address Check

6. Transmission Code ASCII

7. Transmission Mode Transparent Mode

8. Transmission Bit Order LSB First

9. Bit Configuration

10. Electrical Connection

DATA:

START:

STOP:

PARITY:

RS 485

8

1

1

NONE

Table 1-1. Transmission Specification

CHAPTER 1 PAGE 4

3. TRANSMISSION CONTROL CODES

SOFTWARE DESCRIPTION

SYMBOL MCH CODE I FUNCTION

I
DLE 10H Data link escape code which

becomes significant in

combination with the

following character.

ENQ 05H Used for requesting line

control (data link establish

phase) or requesting

response (text transfer

phase) .

EOT 04H End of transmission character

which makes all the stations

on the line enter the

control state.

ACK 06H Acknowledge character.

CHAPTER 1 PAGE 5

SOFTWARE DESCRIPTION

SYMBOL MCHCODEI FUNCTION

!

NAK 15H Negative acknowledge

character which is used

when the preceding block

is not received correctly.

DLE.STX 10H-02H Indicates the start of text

or block, in transparent

mode.

DLE.ETX 10H-03H Indicates the end of text in

transparent mode.

Table 1-2. Transmission Control Codes

CHAPTER 1 PAGE 6

SOFTWARE DESCRIPTION

4. TRANSMISSION FORMAT

Text is transmitted according to the following format.

I DLE I STX I T_E_X_T I DLE I ETX I LRC I

1. Text length is 50 characters maximum.

to the internal receive buffer

TERMINAL).

(This is due

of the INTELLIGENT

2. The following processing is performed for specific

characters appearing in TEXT transmission.

(a)

The first DLE code in the DLE.DLE sequence in the

received text is deleted from the text and not

included in the count of the text length.

(b)

When a DLE is detected in the transmitted text, it is

sent as a DLE.DLE sequence. But the first DLE is not

included in the count of the text length.

(c)

The purpose of the DLE.DLE sequence is to indicate

that the DLE is not a protocol control code, but is part

of the data in the TEXT field.

CHAPTER 1 PAGE 7

SOFTWARE DESCRIPTION

3. Bee (Block Check Character) uses LRC and is represented

by one byte. (Refer to section 6 "Error Control").

4.1 TEXT FORMAT

Text is composed of the header field and data field.

HEADER DATA

TEXT (50 bytes max)-----------

The header field is composed of the control codes:

IBINARY DEVICE NUMBER I I/O I I/O DESIGNATOR

HEADER (3 bytes)-------

Binary Device Number: (1 Byte)

The device number refers to the physical device on the

differential communications line. This could be an

INTELLIGENT TERMINAL or an INTELLIGENT PRINTER. It is

possible to have up to 16 devices on the line,

numbered from 1 to 16.

I/O: (1 Byte)

As the INTELLIGENT TERMINAL is mainly an INPUT /

OUTPUT device, all messages for output devices, such

CHAPTER 1 PAGE 8

SOFTWARE DESCRIPTION

as the LCD, LED's, drawer solenoids will be preceded

by an '0'. Therefore messages which are generally sent

from the HOST to the INTELLIGENT TERMINAL will be

preceded by an '0'.

All input devices on the INTELLIGENT TERMINAL, such as

the lock, keyboard, scanners will be preceded by an

'I'. Therefore messages which are sent from the

INTELLIGENT TERMINAL to the HOST will be preceded by

an 'I', to indicate that an input device has just been

read.

I/O DESIGNATOR: (1 Byte)

This refers to a specific I/O device on the

INTELLIGENT TERMINAL.

eg: 'L' lock

'K' keyboard

'R' drawers

DATA FIELD

This will be the data which is either to be sent to the

INTELLIGENT TERMINAL or data which is received from the

INTELLIGENT TERMINAL.

CHAPTER 1 PAGE 9

SOFTWARE DESCRIPTION

5. TRANSMISSION CONTROL PROCEDURES

The following are the five types of states in the

transmission control procedures.

(1) Connection Phase

(2) Data Link Establish Phase

(3) Text Transfer Phase

(4) Data Link End Phase

(5) Disconnection Phase

5.1 CONNECTION PHASE (NO PROCESSING)

Transits to the data link establish phase.

5.2 DATA LINK ESTABLISH PHASE

A data link is established through transmission of the

calling sequence.

CHAPTER 1 PAGE 10

SOFTWARE DESCRIPTION

5.2.1 DATA LINK ESTABLISH PHASE AT HOST

5.2.1.1 SELECTING (HOST HAS DATA TO SEND TO TERMINAL)

(1) Format

I EOT I AD! I AD2 I SEL I ENQ I
ADl, AD2:

Represents the destination address in unpacked

ASCII format • (Example terminal number 01H =

ASCII 30H 31H)

SEL:

71H = 'q'

(2) Response Processing for Selecting Sequence at

the HOST.

The following processing is performed for the response

received in reply to the selecting sequence.

(a) Reception of ACK

A data link is

transits to the

section 5.3

established and processing

transfer phase described in

CHAPTER 1 PAGE 11

SOFTWARE DESCRIPTION

(b) Reception of NAK

No data link is established and processing

transits to the selecting sequence for the next

terminal.

(c) Reception of Invalid Response

Response is ignored and processing maintains the

response wait state.

5.2.1.2 POLLING (HOST REQUESTS TERMINAL FOR AVAILABLE DATA)

(1) Format

I EOT I AD1 I AD2 I POL I ENQ I
AD1, AD2:

Represents the destination address in unpacked

ASCII format. (Example terminal number 01H =

ASCII 3OH 31H)

POL:

70H = 'p'

CHAPTER 1 PAGE 12

SOFTWARE DESCRIPTION

(2) Response Processing for polling Sequence at

the HOST.

The following processing is performed according to the

response received in reply to the polling sequence.

(a) Reception of Text

A data link is established and processing

transits to the text transfer phase described in

section 5.3

(b) Reception of EOT

No data link is established and processing

transits to the polling sequence for the next

station.

(c) Reception of Invalid Response

Response is ignored and processing maintains the

response wait state.

5.2.2 DATA LINK ESTABLISH PHASE AT TERMINAL

The following processing is performed according to the

response received while waiting for the polling

sequence from the HOST.

CHAPTER 1 PAGE 13

CHAPTER 1

SOFTWARE DESCRIPTION

(1) Reception of Selecting Sequence

(a) Transmission of ACK

When a request to receive is issued and the

receive buffer is empty.

(b) Transmission of NAK

When no request to receive is issued or

the receive bUffer is fUll.

(c) No Response

When transmission is impossible or the

addresses do not match.

(2) Reception of Polling sequence

(a) Transition to Text Transfer Phase

When a valid polling sequence is received.

(b) Transmission of EOT

When a valid polling sequence is received

but no data is available.

(c) No Response

When transmission is impossible or the

addresses do not match.

PAGE 14

SOFTWARE DESCRIPTION

(3) Reception of EOT

Maintains the polling sequence receive state

5.3 TEXT TRANSFER PHASE

When a data link is established according to the polling

sequence, both source and destination stations enter the text

transfer phase. Text is transferred in this phase.

5.3.1 TEXT TRANSFER PHASE AT THE HOST. (HOST TO TERMINAL)

(1) Processing for Response at Source station

(a) Reception of positive Acknowledge

For positive acknowledge, an ACK is returned to

acknowledge receipt of the data string.

After an acknowledge in response to text an EOT

is sent, the data link will be released and the

request to send will terminate normally.

(b) Reception of NAK

When the retry counter (L) is L times or less,

text is resent. In the case of L+1 times, an EOT

is sent and the data link is released. The

request to send terminates abnormally. (refer to

.
CHAPTER 1 PAGE 15

SOFTWARE DESCRIPTION

pg 22, RETRY COUNTER)

(c) Reception of Invalid Response

Any response other than the above is ignored and

the response wait state is maintained.

(2) Response Transmission Processing at Destination

Station

(a) Reception of Normal Text

Sends acknowledge ACK.

(b) Reception of ENQ

Immediately re-sends the same text as the

preceding one.

(c) Reception of Error text

Immediately sends a NAK and waits for

re-transmission. Cases where text are regarded as

erroneous are:

(1) Occurrence of BCC error.

(2) Reception of DLE.STX after receiving

DLE.STX.

CHAPTER 1 PAGE 16

SOFTWARE DESCRIPTION

(3) Reception of ACK after receiving

DLE.STX.

(4) Text length exceeded 50 bytes.

(d) Reception of EOT

The data link is released, processing returns to

the data link establish phase, and the request to

receive terminates normally.

5.3.2 TEXT TRANSFER PHASE AT THE TERMINAL. (TERMINAL TO HOST)

(1) Processing for response at Source station.

(a) Reception of ACK

For positive acknowledge, an ACK is returned to

acknowledge receipt of the data string.

After an acknowledge in response to text an EOT

is sent, the data link will be released and the

request to send will terminate normally.

CHAPTER 1 PAGE 17

CHAPTER 1

SOFTWARE DESCRIPTION

Cb) positive Acknowledge

When the retry counter CL") is Lit times or

less, a request ENQ is sent. In the case of

LIt+l times, the data link is released and

the request to send terminates abnormally.

If, however, this response is received for

the request ENQ send due to a reception

time-out, text will be resent on condition

that the retry counter (L") is Lit times or

less

(c) Reception of NAK

When the retry counter (L) is L times or

less, text is resent. In the case of L+l

times, the data link is released and the

request to send terminates abnormally

(d) Reception of invalid

response

Any response other than the above is ignored

and the response wait state is maintained.

PAGE 18

I
SOFTWARE DESCRIPTION

(2) Response Transmission Processing at

Destination station

See as (2) in Para. 5.3.1.

5.4 DATA LINK END PHASE

The text transfer phase terminates upon the transmission or

reception of the EOT or retry count overflows. (secondary

station only). The transmission control procedures phase

returns to the data link establish phase and the data link is

released.

5.5 DISCONNECTION PHASE

No processing.

CHAPTER 1 PAGE 19

SOFTWARE DESCRIPTION

6. ERROR CONTROL

Error control for text is done in accordance with the LRC

(Longitudinal Redundancy Check) method. The exclusive OR (XOR)

of the characters following DLE.STX to the ETX is represented

by one byte.

I DLE I STX I D_L_E_._D_L_E ----'-I_D_L_E----'-I_E_T_X----'-I_L_R_CI

The DLE for control (including the DLE preceding ETX) is

excluded from the arithmetic operation of LRC.

Calculation of BCC (Block Check Character) l byte

Set initial value to 0, now perform the exclusive OR from

DLE.STX to DLE.ETX commands to obtain the BCC. If a DLE.DLE

sequence is present in the TEXT, only the l DLE should be

included in the BCC calculation.

Example: 2lh I Olh I BCC

OOH XOR 2lH BCC = 2lH

CHAPTER l

1_2_l_H__X_O_R__0_l_H_1 BCC = 2OH I
PAGE 20

SOFTWARE DESCRIPTION

7. RETRY COUNTER FUNCTION

7.1 HOST RETRY COUNTER FUNCTION

(1) Text send retry count (L)

(2) Link establish ENQ (polling/selecting) send

retry count (L')

(3) Response request ENQ send retry count (L")

7.2 TERMINAL RETRY COUNTER FUNCTION

(1) Text send retry count (L)

(2) Response request ENQ send retry count (L")

CHAPTER 1 PAGE 21

SOFTWARE DESCRIPTION

8. INTELLIGENT TERMINAL CONTROL CODES

This section deals with the actual control codes which are sent

to the TERMINAL to control the various output functions, and to

acquire the data from the various input devices.

The control sequence will contain the HEADER FIELD, as well as

the DATA FIELD.

HEADER DATA

TEXT (50 bytes max)--------------j

The 3 byte header field is composed of the following

control codes:

IBINARY DEVICE NUMBER I I/O I I/O DESIGNATOR

X = Binary Terminal Number

Helpful information:

(a)

A byte is divided into 2 nibbles, the LEAST

SIGNIFICANT NIBBLE (LSN) and the MOST SIGNIFICANT

NIBBLE (MSN). The byte could also be divided into 8

bits. BIT 0 is equal to the LEAST SIGNIFICANT BIT

(LSB) and BIT 7 is equal to the MOST SIGNIFICANT BIT

(MSB) .

CHAPTER 1 PAGE 22

SOFTWARE DESCRIPTION

BYTE

7 6 I 5 I 4 3 I 2 I 1 0

MSB LSB

MSN LSN

(b)

The following are the declarations which are used

for the programming examples:

txmaster (txmsg, txtermnum, txlen)

/* transmit routine for master */

/* returns: 0 if successful, */

1 if comms error, */

2 if invalid parameter */

char *txmsgi

/* pointer to message

int txtermnumi

/* terminal number */

int txleni

*/

/* length of message to be transmitted*/

char msg(270Ji /* mesage bUffer */

CHAPTER 1 PAGE 23

SOFTWARE DESCRIPTION

8.1 OUTPUT DEVICE CONTROL CODES

8.1. 1 16 X LED's

o '0' I 'L' I I 8 BYTE LED Control Field I

LED #

BYTE #

CHAPTER 1

8 Byte LED Control Field:

The 8 byte LED field is further divided into a 4 byte

LED ON/OFF field and a 4 byte LED FLASH field. The LSN

of each byte will control 4 LED's. Each of the 8 bytes

must be OR'ed with 30H before transmitting this to the

TERMINAL.

LED ON/OFF LED FLASH

1-4 5-8 9-12 13-16 1-4 5-8 9-12 13-16

1 2 3 4 5 6 7 8

To turn on LED number 1, BITO in BYTE #1, must be set.

Similarly to turn on LED number 4, BIT3 in BYTE #1

must be set. This will switch the LED on permanently.

To flash LED #1, the associated BIT in the LED FLASH

field must also be set. Therefore BITO in BYTE #5 must

be set which will flash LED #1.

PAGE 24

SOFTWARE DESCRIPTION

programming example #1:

This will flash LED #1.

sprintf (msg, "OL10001000") ;

txmaster (msg, 1, 10);

Programming example #2:

This will flash LED #1 and switch on LED #8.

sprintf (msg,"OL18001000");

txmaster (msg, 1, 10);

.
CHAPTER 1 PAGE 25

SOFTWARE DESCRIPTION

8.1.2 TWO X LIQUID CRYSTAL DISPLAYS (LCD #1/#2)

~I '0' I '0' I I 0/1/2 I 32 BYTE DISPLAY STRING I

Display options:

(a) '0' will display message on both displays.

(b) '1' will display message on LCD #1

(c) '2' will display message on LCD #2

(d) To clear the display the display transmit an em p t y

display sting.

(e) For space compression, place a 'HT'

(horizontal tab = OX09) followed by the

number of spaces, which is OR'ed with 30H.

Programming example #1:

This will display a message on LCD #1.

sprintf(msg, "ODl**INTELLIGENT***POS TERMINAL");

txmaster (msg, 1, 35);

Programming example #2

This will display a message on LCD #1 and LCD #2.

sprintf(msg,"ODO**INTELLIGENT***POS TERMINAL");

CHAPTER 1 PAGE 26

SOFTWARE DESCRIPTION

txmaster (msg, 1, 35);

programming example #3:

This will clear LCD #2.

sprintf(msg,"OD2");

txmaster (msg, 1, 3);

programming example #4:

This is to illustrate how the string should be formatted

for space compression. The 'HT' precedes the number of

spaces to be inserted. In the following example 11 spaces

had to be inserted, therefore 30H OR'ed with 11H = 41H.

sprintf(msg,"HELLO%c%cWORLD!",OX09,OX41);

txmaster (msg, 1, 3);

8.1.3 SOUND THE BUZZER

The buzzer has a fixed frequency and also a fixed duration. When

the control code is sent to the TERMINAL it will therefore sound

the buzzer for a fixed duration.

C=I '0' I 'B' I

CHAPTER 1 PAGE 27

SOFTWARE DESCRIPTION

programming example #1:

This will sound the buzzer.

sprintf(msg,"OB");

txmaster (msg, 1, 2);

8.1.4 OPEN CASH DRAWER #1 OR #2

o '0' I 'R' I

Drawer options:

(a) 'I' will open cash drawer #1.

(b) '2' will open cash drawer #2.

Programming example #1:

This will open cash drawer #2.

txmaster ("OR2", 1, 3)i

8.1.5 ENABLE OR DISABLE MAGNETIC CARD READER

o '0' I 'C' I

Magnetic Card Reader options:

(a) 'Q' will disable the magnetic card reader.

CHAPTER 1 PAGE 28

SOFTWARE DESCRIPTION

(b) 'I' will enable the magnetic card reader.

programming example #1:

This will enable the magnetic card reader.

sprintf(msg,"OC1");

txmaster (msg, 1, 3);

programming example #2:

This will disable the magnetic card reader.

sprintf{msg,"OCO");

txmaster (msg, 1, 3);

8.1.6 HOST ENQUIRY FOR LOCK, DRAWER, RECEIPT & SWITCH STATUS

o '0' I 'E' I

The HOST will send the above message to the TERMINAL to

enquire as to the status of the input devices. This will

normally be executed at power-up, when the application

program will need to know what key is in the lock, as well

as the status of the various input devices. Please refer to

the section on INPUT DEVICES to see the response message

sent from the TERMINAL to the HOST.

CHAPTER 1 PAGE 29

SOFTWARE DESCRIPTION

8.1.7 TWO RS232 SERIAL PORTS

o '0' I '5' I I 1/2 ~I CiD I 40 BYTE STRING I

The serial port facility which is provided on the TERMINAL

is meant for very basic interfacing to serial devices, such

as the 2x16 display. The main purpose is to transmit a

string of data or receive a string of data with a certain

amount of handshaking taking place via the RTS and CTS

lines. This interface is not meant for any elaborate

protocols such as that required by the SW1 serial printer.

It is however completely adequate for serial printers that

require the data to be transmitted with a minimum of

handshaking. A typical printer would be the M-290 slip

printer, which buffers all the incoming data.

The TERMINAL can receive either a DATA string or a COMMAND

string. The COMMAND string is used to change the bit format

setting of the serial port. The default bit format of both

serial ports is the following:

CHAPTER 1

BAUD RATE:

PARITY:

DATA BITS:

STOP BITS:

9600

none

8

1

PAGE 30

SOFTWARE DESCRIPTION

Serial port options:

(a) 'I' transmit command or data to COM1.

(b) '2' transmit command or data to COM2.

(c) # is the number of bytes in the 'DATA

STRING' + 2 bytes for '1/2' and 'CID'. The number of

bytes has to be represented in binary notation.

eg

DATA string = 20 bytes + 2 bytes, therefore

= 16H. (16H = 22 decimal)

(d) '0' will inform the TERMINAL that the string is a

DATA string and should be processed appropriately.

This is used to transmit data to COMl or COM2.

(e) 'c' will inform the TERMINAL that the string

is a COMMAND string and should be processed

appropriately. This is used to change the bit format

of COMl or COM2

CHAPTER 1 PAGE 31

SOFTWARE DESCRIPTION

The COMMAND string has to be in the following format in

order to change the bit format for COM1 or COM2.

~I '0' I 'S' I 11/2 ~I C/D~

COMMAND string options:

(a) B is the baud rate, which have to be

represented in binary notation. The baud

rate options are the following:

B = 48H => 4800 Baud

B = 96H => 9600 Baud

B = 19H => 19.2 KBaud

B = 38H => 38.4 KBaud

(b) D is the number of data bits, which have

to be represented in binary notation. The

number of data bit options are the

following:

D = 07H => 7 data bits.

D = 08H => 8 data bits.

(c) S is the number of stop bits which have

to be represented in binary notation. The

CHAPTER 1

number of stop bit options are the

following:

S = 01H => 1 stop bit.

S = 02H => 2 stop bits.

PAGE 32

SOFTWARE DESCRIPTION

(d) P specifies whether parity will be ODD,

EVEN or NO parity. The parity options are as

follows:

P ; 'N' ;> no parity.

P ; '0' ;> odd parity.

P ; 'E' ;> even parity.

Programming example #1:

The following command will change the bit format to suit

the M290 slip printer on COM1.

sprintf(msg,"OSl%cC%c%c%cE",6,OX96,Ox07,OX01);

/* 9600, 7, 1, E */

txmaster (msg, 1, 9);

Programming example #2:

The following data string will be transmitted via COM1 to

the M290 slip printer.

sprintf(msg,"OSl%cDTX FROM HOST TO TERM, TO COM1%c%c%c

",34,OxOd,oxOa,Ox11); /* last 3 bytes; CR, LF

pinch roller up */

txmaster (msg, 1, 37);

Programming example #3:

The following data string will be transmitted via COM2 to

the 2 x 16 character display.

CHAPTER 1 PAGE 33

SOFTWARE DESCRIPTION

sprintf(msg,"OS2%cD%cOREMOVE SLIP FROMFLAT BED

PRINTER2%c",38,Ox02,Ox03);

/* OX02=STX, OX03=ETX required by the 2x16 display */

txmaster (msg, 1, 41);

This concludes the commands that can be transmitted from the HOST

to the TERMINAL.

CHAPTER 1 PAGE 34

SOFTWARE DESCRIPTION

B.2 INPUT DEVICE CONTROL CODES

B.2.1 4 BIT CONTROL LOCK

o 'I' I 'L' I
The following is a

some of the keys:

N key = 06H

M key = 07H

L key = 08H

K key = 09H

A key = OEH

I 1 BYTE LOCK STATUS I

list of some of the binary values for

8.2.2 MAGNETIC CARD READER

o 'I' I 'c' I I 01H/FFH I 37 BYTE CARD DATA I

If the card is read successfully an 01H will be returned

followed by 37 bytes of card data. If an error is detected

when the card was read, FFH will be returned without the 37

bytes of card data.

CHAPTER 1 PAGE 35

SOFTWARE DESCRIPTION

Magnetic card reader options:

(a) 01H signifies that the card was read

successfully.

(b) FFH signifies that an error occurred when the

card was read and that no card data will be

returned.

8.2.3 DRAWER STATUS

o 'I' I 'R' I I 1/2 I OOH/01H I

Drawer status options:

(a) '1' specifies drawer #1.

(b) '2' specifies drawer #2.

(c) OOH specifies that the drawer is closed.

(d) 01H specifies that the drawer is open.

CHAPTER 1 PAGE 36

SOFTWARE DESCRIPTION

8.2.4 RECEIPT STATUS

o 'I' I 'P' I I OOH/OIH I

Receipt status options:

(a) OOH specifies that the receipt switch is

closed.

(b) OlH specifies that the receipt switch is open.

8.2.5 KEYBOARD OR SCANNER DATA

o 'I' I 'K' I I 25 BYTE STRING I

When entering data from the keyboard or from the scanners,

the sequence in which the data was entered must be

maintained. This is the reason that the keyboard data and

scanner data were placed in the same buffer. The TERMINAL

can buffer 25 key depressions or 2 scanned item numbers.

KEYBOARD ENTRY FORMAT

o 'I' I 'K' I

CHAPTER 1

I KEY VALUE I

PAGE 37

SOFTWARE DESCRIPTION

The key value will be the binary representation of the

position of the key on the keyboard.

01

10

19

28

37

46

55

64

02 03 04

11 12 13

20 21 22

29 30 31

38 39 40

47 48 49

56 57 58

65 66 67

05 06 07 08 09

14 15 16 17 18

23 24 25 26 27

32 33 34 35 36

41 42 43 44 45

50 51 52 53 54

59 60 61 62 63

68 69 70 71 72

Tab~e 1-3. Keyboard Matrix

SCANNER ENTRY FORMAT

o 'I' I 'K' I FFH 0 06H, 13 BYTE NUMBER I
Scanner data is identified by FFH. # is the number of bytes

in its binary representation of the number of bytes read

from the scanned label A total of 14 bytes is therefore

read from the label. The first byte is normally the £AN

LABEL ID, and is normally 06H. This is followed by a 13

byte number

CHAPTER 1 PAGE 38

SOFTWARE DESCRIPTION

8.2.6 RESPONSE TO HOST ENQUIRY

~I 'I' I 'E' I 'R' #1 I 'R' #2 I 'P' I 'L' I

The above string is the response which the TERMINAL will

return when an ENQUIRY is sent from the HOST.

Enquiry options:

(a) 'R' #1 is the status of drawer number 1, and

this could be OOH = closed, or 01H = open.

(b) 'R' #2 is the status of drawer number 2, and

this could be OOH = closed, or 01H = open.

(c) 'P' is the receipt switch status, and this

could be OOH = closed, or OlH = open.

(d) 'L' is the binary representation of the lock

status.

8.2.7 TWO X RS232 SERIAL PORTS

o 'I' I 's' I I 1/2 I~ RX STRING'

The incoming serial data is treated on a byte basis, and

CHAPTER 1 PAGE 39

SOFTWARE DESCRIPTION

the TERMINAL does not distinguish between the start of a

message and the end of a message, but treats each byte as

a received character. This is then transmitted to the HOST

computer. The application programmer should therefore

ensure that complete messages are received, as the TERMINAL

might transmit the message in sections.

Serial port options:

(a) 'I' received data on COM1.

(b) '2' received data on COM2.

(c) # is the number of bytes in the 'RX STRING'. The

number of bytes is represented in binary notation.

CHAPTER 1 PAGE 40

SOFTWARE DESCRIPTION

g. PROGRAMMING EXAMPLE

/* program to test intelligent terminal

#include <stdio.h>

#include <defn.h>

long msg_count;

char lock[20] = {

05-90 */

• .,. • ? I
~ , • I

'? ,. , '? I. , , ? ,. , ,? ,. , 1Nl, 'M', 'L', 'K I , I? I. , I? ,. ,

'?', '?', 'A', , ,

} ;

main()

{

extern long msg_count;

int i, c, numch;

char msg[270];

msg_count = 0;

/* initialize com port variables */

scr_printf(" (l)DRAWl (2)DRAW2 (3)BUZZ (4)LCD

(5)CRD_ON (6)CRD_OFF\n\n");

scr_printf("(7)LED a (a)LED 1 (9)COMl (0)COM2

(A)INIT_COM1(96,7,E,1)\n") ;

if (!initmcomm (1» {

CHAPTER 1 PAGE 41

SOFTWARE DESCRIPTION

scr_clear() ;

scr_printf ("COMMS CHANNEL ERROR");

exit(~);

}

while (TRUE) {

intkbd(); /* read rx data from intelligent kyb */

if (scr_poll() != -~) {

switch (toupper(scr_getc())) {

case Dx~b:

scr_clear () ;

exiteD); /* ESC */

TERMINAL");

CHAPTER 1

case '~I:

case '2':

case '3':

case '4':

txmaster ("OR~", 1, 3);

break;

txmaster ("OR2", 1, 3);

break;

sprintf(msg,"OB");

txmaster (msg, ~, 2);

break;

sprintf(msg,"ODl**INTELLIGENT***POS

txmaster (msg, ~, 35);

msg_count = 0;

PAGE 42

case '5':

case '6':

case '7':

case 'B':

SOFTWARE DESCRIPTION

break;

sprintf(msg,"OC1");

txmaster (msg, 1, 3);

break;

sprintf(msg,"oCO") ;

txmaster (rnsg, 1, 3);

break;

sprintf(rnsg,"OL10001000");

txmaster (rnsg, 1, 10);

break;

sprintf(msg,"OL1B001000");

txmaster (msg, 1, 10);

break;

case '9':

sprintf(rnsg,"OSl%cDTX FROM HOST TO TERM, TO

COM1%c%c%c",34,OxOd,OxOa,Ox11);

txmaster (rnsg, 1, 37);

sprintf(msg,"OS2%cD%COREMOVE SLIP FROMFLAT BED

PRINTER2%c",3B,OX02,Ox03);

txmaster (rnsg, 1, 41);

break;

CHAPTER 1 PAGE 43

SOFTWARE DESCRIPTION

case 10':

sprintf (msg, "OS2%cD%cO

COM2%c",37,Ox02,Ox03);

case I AI:

TX FROM HOST TO TERM, TO

txmaster (msg, 1, 40);

break;

sprintf(msg,"OS1%cC%c%c%cE",6,Ox96,OX07,Ox01);

/* 9600, 7, 1, E M290 slip printer */

txmaster (msg, 1, 9);

break;

}

}

}

}

CHAPTER 1 PAGE 44

SOFTWARE DESCRIPTION

intkbd() /* check intelligent keyboard. return -1 if no key,

else raw value */

{

int i, c, numch;

unsigned char mod[270];

char msg[100];

c = rxmaster (mod, 1, &numch);

if (c == 0) {

scr curs (12,0);

scr_puts (11

scr curs (12,0);

switch (mod[l]) {

case I C':

") ;

if (mod[2] == Oxff) {

sprintf(msg,"OD1PLEASE RE-SWIPE ***YOUR

CARD***");

txmaster (msg, 1, 35);

CHAPTER 1

}

else if (mod[2] == OX01) {

printf ("CARD# ");

for (i = 3; i <= 20; i++)

printf ("tc", mod[i]);

sprintf(msg,"OD1YOUR CARD HAS

READ") ;

txmaster (msg, 1, 35);

PAGE 45

BEEN

CHAPTER 1

SOFTWARE DESCRIPTION

sprintf(msg,"OB") ;

txmaster (msg, 1, 2);

}

break;

case I pI:

printf ("RECEIPT ");

if (mod[2] == OXO)

printf ("OFF");

else if (mod[2] == OXOl)

printf ("ON");

break;

case 'R':

printf ("DRAW #%c ",mod[2]);

if (mod[3] -- OXO)

printf ("CLOSED");

else if (mod[3] == OXOl)

printf ("OPEN");

break;

case 'L':

i = mod[2] » 4;

printf ("LOCK %c", lock[iJ);

break;

PAGE 46

}

SOFTWARE DESCRIPTION

case 'K':

if (mod[2] == Oxff) {

printf ("SCANNER DATA ");

for (i = 5; i <= mOd[3]+3; i++)

printf ("le". mod[i]);

}

else (printr ("KEY# Id", mod[2]»;

break;

case · S' :

printf ("COMic ", mod[2]);

for (i = 4; i <= mOd[3]+3; i++)

printf ("le", mod[i]);

break;

default:

printf ("UNKNOWN RX STRING Is".mod);

break;

}

}

return (-1);

CHAPTER 1 PAGE 47

INTELLIGENT POINT OF SALE TERMINAL

HARDWARE DESCRIPTION

TERMINAL

INTELLIGENT

. --,

HARDWARE DESCRIPTION

CHAPTER 2

1. SYSTEM DESCRIPTION

1.1 SYSTEM OVERVIEW

:>
I

f1111M~11Im"'IIHHIIlI!~1114lI I
IM'IH;IW11~n'lliil'''','~I'I'id 0
111"II~'~:~i1" 'Hili lill'iHI·I!III •
lII'II(~fl(llImllftl'llll~'JfiltfM

m;I'~ljHnll1l1~IIIU'I~:illl!l.ilI

IllIiW!lltill1i{'jjl{ilil'~'ld!S

11l:,:mll!'ll,HiI,'rl'1111MI,WIII 11
1Il;,,~oIilllmdi!ii'IU~I'1iII I
JlI~:JlIIJJIIlIlJJJli!IIIJJJIII

"I;un

BACK OFFICE COMPUTER
RSlBSSUS

MAlNFRAIotE

-
TERMlNALfl TERMINAL,X

Figure 2-1. system Configuration

The system had to have the capability of communicating to a

maximum of 255 terminals. Each terminal had to be individually

addressable. The HOST computer, which would be situated in the

back office, would have total control of the communications line.

The protocol is based on the Bourroughs 7 bit ASCII protocol,

which has a POLL - ACKNOWLEDGE structure. Each terminal has a

CHAPTER 2 PAGE 2

HARDWARE DESCRIPTION

unique terminal number which prevents conflict on the

communications bus, which might be caused by two terminals

simultaneously transmitting data onto the bus.

The HOST will "POLL" a terminal, if it has any data available,

the data will be transmitted to the HOST. If the HOST has any

data for the terminal, the HOST will "SELECT" a particular

terminal and the data will be transmitted to the terminal. A

differential communications bus, utilising the RS485 electrical

standard is used to inter-connect the terminals to the HOST. This

produces a mUlti-drop connection, enabling a terminal to be

easily introduce, or removed from the bus.

This external communications bus is called ANET, and has a data

transfer rate of 38.4 KBuad. The communications bus is used to

transmit the latest item data at "store open" to the terminals,

and to consolidate the totals from the various terminals at

"store close". The HOST can now generate all the necessary

reports, and the consolidated data can now be transmitted to a

remote mainframe via a modem.

1.2 TERMINAL OVERVIEW

Each terminal consists of the following hardware devices, which

can be seen graphically by referring to Figure 2-2:

SWl receipt/journal printer

CHAPTER 2 PAGE 3

HARDWARE DESCRIPTION

Bi-directional magnetic card reader

2 X ~6, 3 X ~6 and/or 2 x 20 Vacuum Fluorescent Displays

2 X ~6 Liquid crystal Displays

2 x Cash Drawers

Handscanner and/or desktop scanner

INTELLIGENT TERMINAL, which forms the remainder of this

hardware description

2 X CASH DRAWERS

••,all/2X 16
DISPLAY

SW1 PRINTER

MAGNETIC
CARD READER

& PIN PAD

INTELLIGENT

,~
P05

TERMINAL

DESK TOP SCANNER

1-01.OP

3X16
DISPLAY

HAND SCANNER

Figure 2-2. Terminal Description

CHAPTER 2 PAGE 4

HARDWARE DESCRIPTION

1.3 DETAILED TERMINAL DESCRIPTION

1.3.1 PROCESSING SECTION

ADS PROPRIETRY ==>1
BOARDS

t---~,STANOAFlC)x+••·
t---v MOTHE;RaoAflO.·

DUAL CHANNEL
COMMUNICATIONS

(RS232. RS485)

64K BYTES BATTERY
BACKED CMOS SRAM

REAL TIME CLOCK

ANEf (R5485)

PNET (R3485)DEVlCE#1

SW1 PRINTER r----~-----._-----,-----___,

DEVICE #2
INTEWGENT TERMINAL

DEVlCE#3
2X 16 DISPLAY

DEVICE #4
3X16 DISPLAY

Figure 2-3. Detailed Terminal Description

Each terminal requires a main processing section which will

control the various Input / Output devices, conununications to the

HOST and execute the required application program. This is

achieved by using a standard XT motherboard in addition to two

proprietary Ankerdata cards.

The power failure detection circuitry is situated in the power

supply section. This card monitors the 220 VAC and +5V lines. If

the mains drops below 180 VAC, or the +5V exceeds a certain

predefined window, a Power Failure Interrupt is generated, and

CHAPTER 2 PAGE 5

HARDWARE DESCRIPTION

the CPU will save the current variables to the battery backed

CMOS. This ensures that all totals and current sale status is

maintained when power is returned to the terminal. This feature

is vital for the operation of the terminal.

The Ankerdata DMA card, is an 8 bit expansion card which plugs

directly into any of the XT expansion slots. The card consists

of the following:

64K Bytes battery backed CMOS static RAM

Dual Channel Communications (RS232/RS485)

Real Time Clock

Programmable Peripheral Interface (PPI)

Selectable Terminal Address

4 Status LED's

One communications port is used for communicating to the HOST,

which would be situated in the back office. This communications

bus is called ANET. The second communications port is used for

the internal operation of the terminal, and is called the

Peripheral Network (PNET). This bus enables the various

intelligent devices to communicate to the terminal.

1.3.2 COMMUNICATIONS SECTION

The communications bus, ANET, which was previously described was

extended one level down, to be incorporated into the internal

CHAPTER 2 PAGE 6

HARDWARE DESCRIPTION

operation of the terminal. This bus was called the Peripheral

Network, or PNET, which has a data transfer rate of 19.2 KBaud.

The protocol is a modified version of the Bourroughs 7 bit ASCII

protocol. The main difference is that a more efficient binary

format is used on PNET, but the basic POLL - ACKNOWLEDGE

structure is still maintained. A more detailed description can

be found in the "SOFTWARE DESCRIPTION" section.

1.3.3 DEVICE SECTION

The long term project goal was to design a completely modular

system. The greatest advantage of a modular system is the ability

to interchange the various modules, thus allowing a customer to

"mix 'n match" to their requirements. The devices should be

transparent to the terminal, which means that the application

software does not have to change to accommodate every system

configuration. Another advantage is that a new cabinet does not

have to be designed to accommodate a new device, which is the

case in an integrated system.

This meant that a distributed processing network had to be

implemented, incorporating a certain amount of intelligence in

each device. The great advantage of using a distributed

processing network, is that the main processor is not bogged down

with menial input / output tasks, and therefore has more time

available for higher level processing. The XT motherboard, in

CHAPTER 2 PAGE 7

HARDWARE DESCRIPTION

conjunction with the Ankerdata DMA card is therefore the HOST for

all the Peripheral Devices. An important point to remember is

that there are now two HOSTS controlling a single terminal I back

office computer configuration. The main HOST controls ANET, which

connects all the terminals to the back office. The secondary HOST

controls PNET which is internal to the terminal, and connects all

the devices to the terminal.

The vacuum fluorescent displays are controlled via an 8751. The

INTELLIGENT TERMINAL and the protocol converter are controlled

via an 8032.

The main advantage of the protocol converter is that any standard

device can be used. The SWl is an "off the shelf" printer with

a standard RS232 interface. The converter intercepts the data

from the differential bus, PNET, and then transmits the data via

the protocol converters RS232 port to the printer. The same

converter is used to connect an electronic checkout scale.

thermal printer, kitchen printer and cheque reader to the system.

Due to such a great deal of flexibility, any device with a

standard RS232 serial port can be introduced into the system by

merely changing the application program of the protocol

converter.

CHAPTER 2 PAGE 8

HARDWARE DESCRIPTION

2. INTELLIGENT TERMINAL SPECIFICATIONS

~I

SCH28.OP

128 KEY KEYBOARD
BI • DIRECTIONAL
MAGNETIC CARD READER
16 STATUS LED'S
4 BIT CONTROL LOCK
2 STANDARD (RS232) SERIAL
COMMUNICATION PORTS
HANDSCANNERINTERFACE
DESKTOP SCANNER
INTERFACE
BUZZER

2 CASH DRAWERS

2 LCD'S

RS485 COMMUNICATIONS PORT

SELECTABLE DEVICE ADDRESS

Figure 2-4. INTELLIGENT TERMINAL Specifications

The INTELLIGENT TERMINAL had to have the capability of

interfacing to the following devices:

128 Key keyboard

Two, 2 line by 16 character Liquid Crystal Displays with

LED backlighting

4 Bit control lock

CHAPTER 2 PAGE 9

HARDWARE DESCRIPTION

optically Coupled Serial Interface (OCIA) for a desktop

scanner

optically Coupled Serial Interface (OCIA) for a handscanner

Two standard serial ports (RS232)

One bi-directional magnetic card reader interface

16 status LED's

Selectable terminal address

Two cash drawer interfaces

Buzzer

Receipt status switch

Communications via a multidrop type system (RS485), or a

point to point system (RS232). This meant that a number of

the INTELLIGENT TERMINALS could be connected to a single

HOST, or that other devices could share the same

communications bus.

CHAPTER 2 PAGE 10

HARDWARE DESCRIPTION

3. MICROCONTROLLER DESCRIPTION

3. 1 DATA AND PROGRAM MEMORY ORGANISATION

PROGRAM MEMORY
{READ ONLY}

DATA MEMORY
(READ/WRITE)

EXTERNAL

2764
27128

ImERNAL

64256

FFH

00

UPPER

128
BYTES

LOWER
128

BYTES

SFR's

PSEN EA-a SCH21.DP RD WR

Figure 2-5. Memory Organisation

All MCS-51 devices have separate address spaces for Program and

Data Memory, as shown in Figure 2-5. The logical separation of

Program and Data Memory allows the Data Memory to be accessed by

a-bit addresses, which can be more quickly stored and manipulated

by an a-bit cpu.

CHAPTER 2 PAGE 11

HARDWARE DESCRIPTION

A major limitation of the 8051, is the limited amount of internal

data memory. The problem is magnified by the rather limited

number of instructions available for external data memory

accesses. Due to this limitation all single byte variables are

placed in the internal data memory section, and all the buffers,

such as the display buffer, is placed in external data memory.

The lower 128 bytes of internal data memory can be directly'

accessed, but the upper 128 bytes has to be indirectly accessed.

The upper 128 bytes are insufficient for the INTELLIGENT TERMINAL

requirements, and all the buffers larger than 3 bytes are placed

in external data memory. The problem of external data memory

accesses arises typically when data has to be read from external

data memory, then written to external data memory. This implies

that the Data Pointer (DPTR), which is the only 16 bit register

available, has to be saved each time during the read, write

routine. This makes the routine very stack intensive.

The problem is greatly compounded when accessing the I/O devices,

which are all memory mapped, and then accessing the external data

memory, where the various buffers are maintained. There is

however a simple method of addressing the first 256 bytes of

external memory, using an 8 bit register, either RO or R1. To

utilise this method, one has to ensure that PORT 2, which forms

the high order address bus is set to zero, and that the required

low order address is set via RO or RI. The -RD and -WR signals

are used to address the external data memory.

CHAPTER 2 PAGE 12

HARDWARE DESCRIPTION

program Memory can only be read, not written to. There can be up

to 64K bytes of program memory. The read strobe for external

Program Memory is the -PSEN (Program Store Enable). The External

Access Enable (-EA) pin is strapped to Vss, so that all program

fetches are directed to external ROM. The ROMless parts must have

this pin externally strapped to Vss to enable them to execute

properly.

Data Memory occupies a separate address space from Program

Memory. Up to 64K bytes of external RAM can be addressed in

external Data Memory space. The CPU generates read and write

signals, -RD and -WR, as needed during external Data Memory

accesses.

FFH

UPPER

128 BYTES

SOH

7FH

LOWER

128 BYTES

OOH

,----.----------_._----.-----.
I
i
i ACCESSIBLE ACCESSIBLEi
j
i
i BY INDIRECT BY DIRECTi
i
i
j ADDRESSING ADDRESSING
i
i
i ONLYi

ACCESSIBLE
SPECIAL

BY DIRECT
FUNCTION ~

AND INDIRECT
REGISTERS

ADDRESSING

FFH

SOH

PORTS

STATUS AND

CONTROL BITS

TIMER REGISTERS

STACK POINTER

ACCUMULATOR

SCH4.DP

Figure 2-6. Internal Data Memory

(ETC)

CHAPTER 2 PAGE 13

HARDWARE DESCRIPTION

3.2 INTERNAL DATA MEMORY ORGANISATION

The lowest 32 bytes are grouped into 4 banks of 8 registers.

After a reset the stack pointer is initialized to point above the

first register bank. This is changed via the initialization code

to point above the second register bank. The two register banks

are maintained due to the ease with which the banks can be

switched. A particular bank is selected by two bits in the

Program Status Word (PSW). The register banks are extremely

useful when used in conjunction with interrupt routines. Instead

of saving all the registers, a simple bank switch instruction can

be used.

The next 16 bytes above the register banks form a block of bit­

addressable memory space. The 128 bits in this area can be

directly addressed by specific bit instructions. These

instructions are extremely useful, as there is direct control

over a hardware (port pin) or software (flag) bit. It is not

necessary first to mask a particular bit, then to perform a test

on the bit, as the instructions are geared specifically for bit

manipulation. A total of 28 bits is defined, which are mainly

used for flags. As mentioned earlier, the stack pointer is

initialized to OFH. When the stack is used, the pointer is

firstly incremented, which implies that the stack starts at 10H,

and then grows upwards. A total of 60 bytes has been allocated

to the stack. The remainder of internal memory is allocated to

single byte variables such as counters.

CHAPTER 2 PAGE 14

LOWER 1211 BYTES

OF INTERNAL RAIoI

7FH

HARDWARE DESCRIPTION

UPPER 1211 BYTES

OF INTERNAL RAM

FFH

L
NO BIT-

2FH BIT- AODRESSIBI.£ ADDRESSIBLE

SPACE SPACE

BANK SElECT J (BIT ADDRESSES 0-7FH)

BITS IN PSW 20H

4 BANKS OF
AVAllABl.£ AS

11 ISH lFH STACK SPACE
8 REGISTERS

IN DEVICES
10 1DH 17H RD-R7

WITH 256

01 08H OFH
BYTESRAAl

RESET VAlUE

00 0 07H
OF STACK

POINTER
eoH SCH5.DP

Figure 2-7. Internal RAM Usage

CHAPTER 2 PAGE 15

HARDWARE DESCRIPTION

4. DESIGN IMPLEMENTATION

4.1 PROCESSING SECTION

.. 0 " , .. "',"'e r' """0"'''0
ro "'ouce 0"_07 ..~c .. " •• ?

.,..

Q.

O.
o •

.."''''''0 <:'-"' ,~r :~

o
o
o

o
o
o

Figure 2-8. Single Board Computer

It was decided to use the 12MHz version of the

microcontroller, because of the following features:

ROMless

256 Bytes Internal RAM

4 I/0 Ports

Three 16-bit timers

UART

8 Interrupt sources / 6 Interrupt vectors

8032

CHAPTER 2 PAGE 16

HARDWARE DESCRIPTION

From the specification it is quite obvious that the controller

would be quite bUsy communicating with all the devices. It was

also vitally important that there be a minimal delay from the

time that an event, such as the start of a keystroke, till the

time that the HOST processed the keystroke. Due to this fact, as

well as not knowing whether the controller would cope with the

work load, the processing section was sandwiched to the rest of

the I/O circuitry. This meant that if the capacity of the

controller was reached it would just mean plugging on a more

powerful processing sub-section.

All the code was written in assembler, using Intel's ASM51 and

RL51. After the first prototype was built, it was found that the

controller was more than adequate, and coped with the tasks it

was allotted.

It was decided to keep the Program Memory and Data Memory apart,

which meant that a maximum of 64K bytes of Program and Data

Memory space was available. The requirements of the INTELLIGENT

TERMINAL meant that an 8K bytes Program space would be

sUfficient, however allowance was made for a 16K bytes EPROM just

as a precaution. A 32K byte static RAM was used for the Data

space, where the remaining upper 32K bytes of Data space would

be allocated to I/O. This meant that the I/O would be Memory

Mapped.

As the 8032 has a mUltiplexed bus, it was necessary to

CHAPTER 2 PAGE 17

HARDWARE DESCRIPTION

demultiplex the bus. For this purpose the '373 is included. Port

o of the 8032 emits the lower eight address lines, as well as the

eight data lines. During an external memory access the lower

address is first put out, and latched to the outputs of the '373

with the Address Latch Enable (ALE) signal. On the next cycle the

data is placed on the data bus. Port 2 emits the upper eight

address lines, thus forming a 16 bit address.

4.2 COMMUNICATIONS INTERFACE SECTION

As mentioned in the specification the terminal had to be capable

of a multidrop type communications system. It was decided to use

the RS485 standard. The DS3695 line driver is the ideal chip for

this purpose. The output Enable (DE) of the chip is driven from

a port pin. A problem however became apparent during power-up of

the controller. During the period that the controller is reset,

the port pins are all high, this meant that the output would be

enabled and that there was a possibility of contention on the

communications line. It was therefore necessary to include an

inverter, in the form of a VN10KM FET, between the port pin and

the DS3695.

It was also necessary to include the standard RS232 line drivers,

in the event that the terminal had to be connected to the serial

port of a standard Personal Computer (PC). The MAX232 essentially

replaced two chips, namely DS1488 and DS1489 line drivers. The

CHAPTER 2 PAGE 18

HARDWARE DESCRIPTION

beauty of the MAX232 is that it also operates off a +5V supply.

The RS232 standard specifies that the signal swings between +12V

and -12V, this meant that a +12V and -12V supply has to be

generated. The MAX232 takes care of this with its internal charge

pump. JP1 selects between RS232 and RS485.

2

CB
10uF

C 1 0
10uF

C9

10uF

U5

C ,.
C7 C 1 -

v.
v- C2.

C2 -

~S10 TTL 1 I
>=lS20 TTL 2 I

O,D 13
PS1 I TTL 10

12
5

PS2 \ TTL20 9

24V vcc MAX232

ox
:>0 -

RE

DE
D1

TX

053695

v c

Figure 2-9. Communication Interfaces

4.3 PORT PIN ASSIGNMENT

I
PORT i DESCRIPTION

I
PO LOWER ADDRESS BUS AND DATA BUS

PI GENERAL PURPOSE I/O

CHAPTER 2 PAGE 19

HARDWARE DESCRIPTION

[PORT I DESCRIPTION

I
PI. 0 SCANNER DATA

PL1 SCANNER CLOCK

PL2 SCANNER RESET

PL3 DRAWER #1 OPEN

PL4 DRAWER #1 OPEN I CLOSE SENSE

PL5 DRAWER #2 OPEN

PL6 DRAWER #2 OPEN I CLOSE SENSE

PI. 7 RECEIPT SWITCH SENSE

P2 UPPER ADDRESS BUS

P3 SPECIFIC AND GENERAL PURPOSE

P3.0 RX DATA.

P3.1 TX DATA

CHAPTER 2 PAGE 20

HARDWARE DESCRIPTION

[PORT I DESCRIPTION

I
P3.2 IRQ OF KEYBOARD CONTROLLER

P3.3 CARD DATA

P3.4 CARD CLOCK

P3.5 ENABLE FOR DS3695

P3.6 -WR

P3.7 -RD

Table 2-1. Port Pin Assignment

CHAPTER 2 PAGE 21

HARDWARE DESCRIPTION

s. INPUT I OUTPUT DECODE CIRCUITRY

~, '" ~~

~~ ~~

• _RC' __

'. ." I
I

, ;,:::.:"
• -' ~ , "

~

.~

~

"
~

,.~

HI " -~'8 'Cs

~

~

.:=
• J

.~a
,.j .- .~ ..~
~

.,
~

Figure 2-10. Equivalent CCT for 20LIO PAL

The Upper 32K bytes of Data Memory has been allocated to I/O

devices. This meant that 32K bytes was available for Memory

Mapped I/O. The 32K byte block is further decode into eight, 4K

byte blocks. This means that each device has a 4K block of

address space assigned to it. Address line A15 is used to select

the decoder, '138. Address lines A14, AI3, A12 are used to select

1 of the eight possible devices.

As can be seen from Figure 2-10, the -RD and -WR lines are

logically AND'ed, which means that if either one of these lines

are active, the output will be active 'L'. This signal is used

to ensure that a device will only be selected upon the generation

CHAPTER 2 PAGE 22

HARDWARE DESCRIPTION

of a valid -RD or -WR.

-ehip Select 0 (-CSO) is generated at address SOOOH and is used

to select Liquid Crystal Display #1 (LCD #1). The -RD / -WR

signal is further OR'ed with -eso to ensure that LCD #1 is only

selected during a valid RD/WR as well as -eso being valid. Both

the -RD / -WR signal and -CSO has to be active 'L' before the

display is selected via -LCD1 CS. The same applies for -LCD2 CS

and for -KYB CS. All these devices can be read as well as

written, therefore the need for the -RD and -WR signals.

The LED's and the buzzer are only written to, therefore the -WR

signal is logically OR'ed with their respective chip selects to

ensure that these devices are only selected during a valid write

and when their respective chip selects are valid.

The 82530 communications chip does not have a reset pin available

on the device, due to this a special function has to be

implemented on the -RD and -WR pins of the 82530. To ensure a

valid reset during power-up, the -RD and -WR pins have to be held

low, this is the only way to ensure a valid hardware reset. The

chip can also be reset via software. The -RD and -WR signals for

the 82530 communications chip are therefore logically AND'ed with

the reset signal. This forces the -S2530_RD and -S2530_WR signals

both 'L' at power-up, thus ensuring a valid hardware reset. The

-82530 CS is generated at address OFOOOH and is logically OR'ed

with the -RD / -WR signals.

CHAPTER 2 PAGE 23

HARDWARE DESCRIPTION

,~ ONO , , " CND _OD

" 0' " -LCD1_C~, 4 /- -
"

0', • " 0', • " 0. =--,
"

,, 0'
" " I 5 u' 0'
n ,.

" DO
_ 0>

" " ~ " c,
n '" " 0'

" " "a o,a

" " = " ,
" " ,"
" "" "

<cc'o, ,"" ,
" "~" " "S""l " H AC_

A ·80"'''D

.. LCD1 cs

~~~:~-~,~ ~
-g'53': c::s

"<V :::iND" ~ ::>4V r.ND, ,
4\1 , 4

- 4\1
'~A~~ DA'-A , , -'"'=~
C"';;:J Ci..-<: , • "

,, ,
"

c,
" "

0', ,
"

,. 0' 4, ,,
"

0' •
~80ARO

Figure 2-11. I/O Decoder 20L10

0'
o~

~ 0 <..A"O S''''''A
.-",:::

It was decided to use a 20L10 PAL to replace the 4 chips that

would have been used to do the decoding. A great deal a space was

also saved by utilising the PAL. Figure 2-11 shows the PAL and

the various chip selects.

CHAPTER 2 PAGE 24



HARDWARE DESCRIPTION

6. ADDRESS MAP AND I/O MAP

~RD 1
I 1 01 23

~vVH c:::' 12 02
?~

He:::::' ~ 13 03
21

A 1 ~ 4
14 04 c:::'U

A14 ~ [5 05
~l ':::J

A ~1 3 b 16 U1 06 18
A12 /

I 7 07
17

tJ 18 08
'I b

9 19 09
1 ::;,

1 0
I 1 0 010

'[ 4
'1 1

[ 1 1
1 3

I 1 2

20Ll0CTERM)

Figure 2-12. 20L10 PAL

6.1 MEMORY I/O EQUATES

LCD1 CMD WR- -
LCD1 STAT

LCDl OAT WR

LCDl OAT RD

LCD2 CMD WR

LCD2 STAT

LC02 OAT WR- -
LC02 DAT RD- -

LOCK JMP

CHAPTER 2

EQU aOOOH iINSTRUCTION WRITE

EQU aOOlH iREAD LCO STATUS BIT, D7

EQU a002H iDATA BUFFER WRITE

EQU a003H iDATA BUFFER READ

EQU 9000H iINSTRUCTION WRITE

EQU 9001H iREAO LCD STATUS BIT, D7

EQU 9002H iDATA ~UFFER WRITE

EQU 9003H iDATA BUFFER READ

EQU OAOOOR iLOCK AND JUMPERS

PAGE 25



BUZZER

COMSCB

COMDATB

COMSCA

COMDATA

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

OBOOOH

OBOOIH

OCOOOH

ODOOOH

OEOOOH

OFOOOH

OFOOIH

OF002H

OF003H

HARDWARE DESCRIPTION

iCOMMS STATUS/CONTROL REG. CH B

iDATA REG. CH B

iCOMMS STATUS/CONTROL REG. CH A

iDATA REG. CH A

Table 2-2. Memory I/O Equates

6 • 2 MEMORY MAP

I
ADDRESS I CONTROL I DESCRIPTION

i
OFOO3H -82530 CS DATA REG. FOR CH A-

OFOO2H -82530 CS COMMAND REG. FOR CH A-

OFOOIH -82530 CS DATA REG. CH B-

CHAPTER 2 PAGE 26



HARDWARE DESCRIPTION

[ ADDRESS i CONTROL I DESCRIPTION

I
OFOOOH -82530 CS COMMAND REG. CH B-

OEOOOH -BUZZ CS BUZZER-

ODOOOH -LED2 CS SECOND BANK OF LED's-

OCOOOH -LEDl CS FIRST BANK OF LED's-

OBOOOH -KYB CS 8279 DATA REGISTER-

OBOO1R -KYB CS 8279 COMMAND REGISTER-

OAOOOR -LOCK CS CONTROL LOCK-

9003H -LCD2 CS READ LCD DATA BUFFER-

9002H -LCD2 CS WRITE LCD DATA BUFFER

9001H -LCD2 CS LCD STATUS REGISTER-

9000H -LCD2 CS LCD INSTRUCTION REGISTER-

CHAPTER 2 PAGE 27



HARDWARE DESCRIPTION

[ ADDRESS ~ CONTROL I DESCRIPTION

I
8003H -LCDl CS READ LCD DATA BUFFER

8002H -LCDl CS WRITE LCD DATA BUFFER

aOO1H -LCDl CS LCD STATUS REGISTER

aOOOH -LCD1_CS LCD INSTRUCTION REGISTER

7FFFH -A15 32K BYTES STATIC RAM

OOOOH 64256 SRAM

OFFH 256 BYTES OF INTERNAL

OOH RAM

lFFFH -A15 EXTERNAL ROM (8K X 8)

OOOOH 2764 EPROM

Table 2-3. Memory Map

CHAPTER 2 PAGE 28



HARDWARE DESCRIPTION

1. BUZZER DESCRIPTION

",
100l:;

~g'.jZZ cs 5 Hl I:l

L.. T4A

LM55!;

Figure 2-13. Buzzer Circuit

vcc <Oc

0"
1N4' 48

""",

The LM556 is a dual version of the ever popular LM555 timer. The

timer can be used in three modes, Astable, Bistable and

Monostable modes. The one half of the LM556 is configured in

Astable or free-running mode. The frequency is set so as to

generate a pleasing beep each time a key is depressed. The second

half of the LM556 is used in Monostable or one-shot mode. It

produces a fixed duration pulse each time it is triggered. This

pUlse is used to enable the first half of the LM556. There is a

facility to either drive an on-board buzzer or to connect a

speaker which could be off-board.

u -BUZZ CS

QA

QB

CHAPTER 2 PAGE 29



HARDWARE DESCRIPTION

It was decided to use the LM556 so as to reduce the processor

overhead. The processor merely has to generate a -BUZZ_CS, as

opposed to having to continuously toggle a port bit to generate

the buzzing. The one drawback of using the above approach is that

the frequency cannot be changed, which could be useful for

indicating error conditions.

CHAPTER 2 PAGE 30



HARDWARE DESCRIPTION

8. CONTROL LOCX AND TERMINAL NUMBER INTERFACE

vcc

1

ICRRRRRQRRR
RP1

0123 4 55789
10K

M

2 34 557 8 91~

U4 SW1
DO 2 A1 81

18 1 ~ 8

j 3 17 2 -= 71 A2 824 16 -= 52 A3 83 3
:3 5 15 4 -=

~ A4 84 5
4 6 14 -=
S 7 AS 85 13 SW DIP-4; A6 86

~6 8 A7 87
12

7 9 1 1

< AB 88

nr~ r~ 1 9 f',,5
1 G

ry DIP 1

74HCT245 2
3
4

ry 5
-

Figure 2-14. Lock & Terminal No. Interface

The '245 is a bi-directional bUffer, but in this configuration

the buffer direction is fixed to read data. The inputs to the

'245 are pulled up via a 10Kn resistor pack. The lower nibble of

the '245 is allocated to the 4 bit dip switch, which is used to

set the terminal number. The upper nibble is allocated to the 4

bit control lock. Whenever a -LOCK CS is generated, the status

of the lock and terminal number are read.

CHAPTER 2 PAGE 31



HARDWARE DESCRIPTION

9. LED INTERFACE

CN]
01 3 2 ~

--:. 0 2 ~
DO DO 1
01 5

05 7 01 2
02 02 " 306 B 9

/07 13
0] 03 4
04 04 12

/04 14 15 5

/03 17
05 05

16 6
06 06 7

"-:;0 18
07 07 19

8

~
,.......... 9

"'LED1 CS
QC '--< 10

-b
ClK '--
74HCT374

U2

LED 9-15

CN4U3
01 ] ? r-"=

"-:;02 4 DO DO
5

1

--:. 0 5 7 01 01
6 2

02 02 306 B 03 OJ
9

07 1 3 12 4

/,04 14 04 04
IS 5

03 1 7 05 05
16 6

00 18
06 06 19 7
07 Q7 8

~ r--i 9

~LED? CS
QC 10

~
eLK -
74HCT374

Figure 2-15. LED Interface

The '374 is an octal latch. In this configuration the output is

permanently enabled. Whenever an LED CS is generated the data

present on the data bus is latched via the '374 and this is

reflected on the LED's. The LED's are used as status indicators

eg paper empty, offline, validation.

CHAPTER 2 PAGE 32



HARDWARE DESCRIPTION

LO. LIQUID CRYSTAL DISPLAY INTERFACE (LeO)

LO.1 GENERAL DESCRIPTION

DMC series is the name given to the dot matrix LeD display

modules that have recently been developed by OPTREX CORPORATION.

The modules consist of high contrast-large viewing angle TN type

LC panel, with a CMOS driver and controller, which have a low

power consumption. The controller is equipped with an internal

character generator ROM, RAM and RAM for display data. All

display functions are controllable by instructions making the

interfacing with the CPU easy.

Both display data RAM and character generator RAM can be read,

making it possible to use any part not used for display as

general data RAM.

10.2 LCD SPECIFICATIONS

1. 5 X 7 + Cursor. 5 X 8 dots or 5 X 11 dots. Dot matrix LCD

2. 4 bit or 8 bit interface with CPU is possible

3.

4.

Display data RAM

Character generator ROM

80 X 8 bit (Max 80 characters)

character font 5 X 7 dots 160

Character font 5 X 10 dots 32

CHAPTER 2 PAGE 33



5. Character generator RAM

HARDWARE DESCRIPTION

Program write (64 X 8 bit)

Character font 5 X 7 dots

Character font 5 X 10 dots

6. Both display data RAM and Character generator RAM can be

read by the CPU

7. Duty ratio 1 Line Display:

1/8 duty 5 X 7 dots + Cursor, 5 X 8 dots

1/11 duty 5 X 11 dots

1/16 duty 5 X 7 dots + Cursor, 5 X 8 dots

2 Line Display:

1/16 duty 5 X 7 dots + Cursor, 5 X 8 dots

4 Line Display:

1/16 duty 5 X 8 dots

8. Wide variety of operating instructions: Display clear,

Cursor home, Display ON/OFF, Display character blink, Cursor

shift, Display shift

9. Internal automatic reset circuit when supplied with power

10. Internal oscillating circuit

11. CMOS process used

CHAPTER 2 PAGE 34



10.3 CONNECTION POSITIONS

o

HARDWARE DESCRIPTION

o
14

Figure 2-16. LCD Interface

I PIN #
11

SYMBOL I
1 Vss

2 Vcc

3 Vee

4 RS

5 RjW

6 E

7 DBD

a DB1

9 DB2

10 DB3

11 DB4

12 DB5

13 DB6

14 DB7

Table 2-4. Pin connections

CHAPTER 2 PAGE 35

1 SCH7.DP



10.4 PIN DESCRIPTION

SIGNAL NAME

DB4 - DB?

DBO - DB3

E

R/W

CHAPTER 2

HARDWARE DESCRIPTION

DESCRIPTION

4 LINES OF HIGH ORDER DATA BUS.

TRI - STATE, BI-DIRECTIONAL.

TRANSFER OF DATA BETWEEN CPU AND

MODULE IS PROCESSED VIA THESE LINES.

ALSO DB? CAN BE USED AS A BUSY FLAG.

4 LINES OF LOW ORDER DATA BUS.

TRI-STATE, BI-DIRECTIONAL.

TRANSFER OF DATA BETWEEN CPU AND

MODULE IS PROCESSED VIA THESE LINES.

HOWEVER IN THE CASE OF 4 BIT

OPERATION, THEY ARE NOT USED.

OPERATION START SIGNAL FOR DATA

READ / WRITE.

SIGNAL TO SELECT READ (R) OR

WRITE (W).

'0' : WRITE

'1' : READ

PAGE 36



HARDWARE DESCRIPTION

SIGNAL NAME DESCRIPTION

-RS SIGNAL TO SELECT REGISTER.

• 0' : INSTRUCTION REGISTER

(WRITE)

'0 ' : BUSY FLAG; ADDRESS

COUNTER (READ)

'1 ' : DATA REGISTER (WRITE

READ)

Vee TERMINAL FOR LCD INTENSITY

Vcc +5V

Vss QV (GND)

Table 2-5. Signal Description

CHAPTER 2 PAGE 37



HARDWARE DESCRIPTION

COMMON
SIGNAl

DBO·
DB7

E

Voo

V..
Vee

~ ~

~
~ v

16 (8) DOT MAlRlX LCDv

40 40 40 40
CONTROUER

f~AND DRIVER " "- " ~

IC

SERIAl DATA I SEGMENT SEGMENT I SEGMENT

DRIVER DRNER DRIVER

TIMING SIGNAL <~ 0 ,;~
""

SCH8.DP

Figure 2-17. LCD Block Diagram

10.5 EXPLANATION OF INTERNAL OPERATION

10.5.1 REGISTER

The Controller has 2 kinds of 8 bit registers, they are the

Instruction register (IR) and the data register (DR).

IR is a register to store instruction codes like Display Clear

or Cursor Shift as well as address information for display data

RAM (DD RAM) or character generator RAM (CG RAM). The IR can be

written from CPU but cannot be read by the CPU. DR is a register

used for storing temporary data to be written into DD RAM or CG

RAM, and data to be read out from DD RAM or CG RAM. Data written

into DR from CPU is automatically written into DD RAM or CG RAM

CHAPTER 2 PAGE. 38



HARDWARE DESCRIPTION

by internal operation. Also DR is used to store data when reading

out data from DD RAM or CG RAM. When address information is

written into IR, data is read out from DD RAM or CG RAM to DR by

internal operation. Data transfer to the CPU is then completed

by the CPU reading the DR. After CPU reads DR, data in the DD RAM

or CG RAM at the next address is sent to the DR for the next read

from the CPU. Register select (RS) signals make their selection

from these two registers.

- -RS R/W OPERATION

0 0 IR WRITE, INTERNAL OPERATION

(DISPLAY CLEAR etc)

0 1 BUSY FLAG (DB?) AND ADDRESS COUNTER.

(DBO - DB6) READ

1 0 DR WRITE, INTERNAL OPERATION (DR > DD RAM

OR CG RAM)

1 1 DR READ, INTERNAL OPERATION (DD RAM OR CG RAM)

Table 2-6. Register Selection

CHAPTER 2 PAGE 39



HARDWARE DESCRIPTION

10.5.2 BUSY FLAG (BF)

When the Busy Flag is '1', the module is bUsy with an internal

operation and the next instruction will not be accepted. As shown

in Table 2-6, the busy flag outputs to DB? when RS = 0, R/W = 1.

The next instruction must be written after ensuring that the busy

flag is '0'.

10.5.3 ADDRESS COUNTER (AC)

The address counter (AC) assigns addresses to DD RAM and CG RAM.

When the instruction for address is written in IR, the address

information is sent from IR to AC. The selection of either DD or

CG RAM is also determined concurrently by the instruction. After

writing into (reading from) DD RAM or CG RAM display data,

address counter (AC) is automatically incremented by +1 (or

decremented by -1). AC contents are outputted to DBO - DB? when

RS = 0 and R/W = 1 as shown in Table 2-6.

10.5.4 DISPLAY DATA RAM (DD RAM)

The display data RAM stores displa~ d~ta represented in a-bit

character code. Its capacity is 80 X 8 bits or 80 characters.

The display data RAM that is not used for display can be used as

a general data RAM.

CHAPTER 2 PAGE 40



HARDWARE DESCRIPTION

10.5.5 CHARACTER GENERATOR ROM (CG ROM)

The character generator ROM (CG ROM) is a ROM capable of

generating from an a-bit character code, 5 X 7 dots or 5 X 10

dots of character patterns. The said ROM can generate 160 kinds

of 5 X 7 dots or 32 kinds of 5 X 10 dots of character patterns.

However caution is required when operating this ROM, as those

character fonts of 5 X 7 dots of the module will not be displayed

after the 8th row of 5 X 10 dots character pattern. Also this ROM

can be modified to generate character patterns generated by the

user.

10.5.6 CHARACTER GENERATOR RAM (CG RAM)

The character generator RAM is the RAM with which the user can

rewrite character patterns via software. With 5 X 7 dots, 8 types

of character patterns can be written. The area not used for the

display can be used as general purpose data RAM.

10.6 DETAILED EXPLANATION OF INSTRUCTIONS

10.6.1 CLEAR DISPLAY

RS R/W D7 06 D5 04 D3 02 01 00

1010101000101010111

CHAPTER 2 PAGE 41



HARDWARE DESCRIPTION

rlrites the space code "20" (hexadecimal) into all address of DD

~. Returns display to its original position if it was shifted.

In other words the display disappears and the cursor or blink

moves to the left edge of the display (the first line if 2 lines

are displayed). The execution of the clear display instruction,

sets entry mode to increment mode.

10.6.2 RETURN HOME

RS R/W D7 D6 D5 D4 D3 D2 D1 DO

! 0 i 0 i 0 I 0 i 0 i 0 [0] 0 I 1 I X I
X = don't care

Sets the DD RAM address to "0" in the address counter. Returns

the display to its original position if it was shifted. DD RAM

contents are not change. The cursor or the blink moves to the

left edge of the display (the first line if 2 lines are

displayed)

10.6.3 ENTRY MODE SET

RS R/W D7 D6 D5 D4 D3 D2 D1 DO

I 0 I 0 I 0 I 0 I 0 I 0 I 0 [1] I/DI S I

I/D:

Increments (I/D = 1) or decrements (ID = 0) the DD RAM

CHAPTER 2 PAGE 42



address

HARDWARE DESCRIPTION

by 1 when a character code is written into or

read from the DD RAM. The cursor or blink moves to the

right when incremented by 1. The same applies to writing

and reading of CG RAM.

s:

Shifts the entire display either to the right or to the left

when S = 1, shift to the left when I/D = 1 and to the right

when I/O = O. Thus it looks as if the cursor stands still

and only the display seems to move. The display does not

shift when reading from DD RAM nor when S = o.

10.6.4 DISPLAY ON/OFF CONTROL

RS R/W D7 D6 D5 D4 03 D2 D1 DO

i=O=="~=0=dk=0==!,==O=="I=o==!i,==O=="liJ=l=="=D=",,,,[iE]

D:

The display is ON when D = 1 and OFF when D = O. When OFF

due to D = 0, display data remains in the DD RAM. It can be

displayed immediately by setting D = 1.

c:

The cursor displays when C = 1 and does not display when

C = O. Even if the cursor disappears, the function of I/O

etc, does not change during data write. The cursor is

CHAPTER 2 PAGE 43



HARDWARE DESCRIPTION

displayed on the 8th line when a 5 X 7 dot character font

has been selected.

B:

The character indicated by the cursor, blinks when B = 1.

The blinking effect is achieved switching between all blank

characters and the display characters at a 0.4 sec

interval. The cursor and the blink can be set to display

simultaneously.

10.6.5 CURSOR OR DISPLAY SHIFT

RS R/W D7 D6 D5

[iJo[7]olol
D4 D3 D2 Dl

1 ~R/L[X]

DO

x = don't care

Shifts cursor position or display to the right or left without

writing or reading display data. This function is used to correct

or search the display. In a 2-line display the cursor moves to

the 2nd line when it passes the 40th digit of the 1st line.

Notice that the 1st and 2nd line display will shift at the same

time. When the displayed data is shifted repeatedly each line

only moves horizontally, but the 2nd display line does not shift

into the 1st line position. The contents of Address Counter (AC)

do not change if the only action performed is shifting the

display.

CHAPTER 2 PAGE 44



HARDWARE DESCRIPTION

- -
SiC R/L

0 0 SHIFTS CURSOR POSITION LEFT (AC DEC. BY 1)

0 1 SHIFTS CURSOR POSITION RIGHT (AC INC. BY 1)

1 0 SHIFTS THE ENTIRE DISPLAY TO THE LEFT.

1 1 SHIFTS THE ENTIRE DISPLAY TO THE RIGHT

x = don't care

10.6.6 FUNCTION SET

i-LINE DISPLAY

RS R/W D7 D6 D5 D4 D3 D2 Dl DO

I 0 I 0 I 0 I 0 I 1 IDL I 0 0 X 0
x = don't care

2-LINE DISPLAY

RS R/W D7 D6 D5 D4 D3 D2 Dl DO

I 0 I 0 I 0 IONDL 0 X [Xl X I
DL:

Sets interface data length. Data is sent or received in 8

CHAPTER 2 PAGE 45



HARDWARE DESCRIPTION

bit lengths. (07 - DO) when OL = 1, and in bit lengths (07

- 04) when DL = O. When the 4 bit length is selected, data

must be sent or received twice.

F:

Sets character font.

F = 1 : 5 X 10 dots

F = 0 : 5 X 7 dots

10.6.7 INTENSITY CONTROL

Vr

Vcc

~
;> Vea

Vss

SCH9.DP

Figure 2-18. Intensity Adjust

The above diagram is the suggested intensity control circuit. The

circuit configuration is identical for the LED backlighting

CHAPTER 2 PAGE 46



HARDWARE DESCRIPTION

10.7 DESIGN IMPLEMENTATION

The external inverters were necessary, as there were no gates

available in the 20LIO PAL. Whenever a valid LCD_CS is generated

data is either read or written to LCD number one or two. The

operator.thetoadjustments

backlighting and intensity controls are mounted off-board, making

availablethese

S!:i! 3 ~
U13E 'lee .--< , 'lee ,--< ,

2 2

'- "'LC01
INTt::NsrTY

3
I ,..,TE"''=. I Tt

3cs " '0 Le01 cs A' 4 A' 4
AO

5
AD

5,_CO 1 cs 6
l..C02 CS

674HCT04 00 7 DO 7
01

8 D' 8
U13F OL 9

D7
9

'" -L CO2

03
'0

03 , 0
cs n '2 LC02 cs D4 0 ..

"05 " 05, 2 "05
'3

05 n
74f-1CT04 7 ,. 07 , A

~A <' IG....,T
1S

8AC.;(L JG...-,T

L...L.-

LeO " LCD

4

'2

Figure 2-19. LeD Interface

CHAPTER 2 PAGE 47



HARDWARE DESCRIPTION

11. HAGNET:IC CARD READER :INTERFACE

11.1 DATA FORMAT

There are two formats presently available in which the data is

stored on the magnetic card, they are the International Air

Transport Association (lATA) format and in the American Banking

Association (ABA) format.

11.1.1 ABA-CODED DATA FORMAT

11.1.1.1 CODED CHARACTER SET

I
BITS G CHARCACTER I

p B4 B3 B2 Bl

1 0 0 0 0 0 0

0 0 0 0 1 1 1

0 0 0 1 0 2 2

1 0 0 1 1 3 3

0 0 1 0 0 4 4

1 0 1 0 1 5 5

1 0 1 1 0 6 6

0 0 1 1 1 7 7

0 1 0 0 0 8 8

1 1 0 0 1 9 9

CHAPTER 2 PAGE 48



HARDWARE DESCRIPTION

f BITS

II~ CHARCACTER I
P B4 B3 B2 B1

1 1 0 1 0 10 :

0 1 0 1 1 11 . *I

1 1 1 0 0 12 <

0 1 1 0 1 13 = *
0 1 1 1 0 14 >

1. 1 1 1 1 15 ? *

Table 2-7. ABA-Coded Character Set

A binary-coded-decimal 4-bit subset with odd parity is used to

encode data on the magnetic stripe of ABA-formatted cards. This

character code is numeric.

character set.

Refer to Table 2-7 for the coded

The characters in table 2-7 which are marked with a '*' have

specific meanings when used for this application:

Row 11

Row 13

Row 15

, ;' represents "start sentinel"

'=' represents "separator"

'?' represents "end sentinel"

P = Odd parity

CHAPTER 2 PAGE 49



HARDWARE DESCRIPTION

11.1.1.2 INFORMATION FORMAT

The format of the information encoded on the magnetic stripe 'of

an ABA-formatted card is as follows:

Start sentinel

Account number

Separator

Discretionary data

Stop sentinel

Longitudinal redundancy check

Total

1 character

Up to 19 characters

1 character

The balance up to the

maximum record length

( 40 characters)

1 character

1 character

40 characters maximum

All the characters are displayable. (including the start- and

stop-sentinel characters) and are part of the maximum 40­

character total.

CHAPTER 2 PAGE 50



HARDWARE DESCRIPTION

11.1.1.3 LONGITUDINAL REDUNDANCY CHECK (LRC)

The magnetic stripe reader runs an LRC test on the ABA 4-bit code

before it is converted to the 7-bit ASCII code. The LRC test

contains the following steps.

1. The parity bit of each character code is stripped off.

2. All characters from the start sentinel to and inclUding the

stop sentinel are combined by an exclusive OR function.

3. The result of step 2 is compared to the LRC character (minus

the parity bit) that was received from the magnetic stripe

of the card read.

CHAPTER 2 PAGE 51



11.1.2 lATA-CODED DATA FORMAT

11.1.2.1 CODED CHARACTER SET

B6 0 0 1 1

B5 0 1 0 1

Cd I
, B4 B3 B2 B1 , ROW! 0 1 2 3 I

0 0 0 0 0 SP 0 @ P

0 0 0 1 1 ! 1 A Q

0 0 1 0 2 " 2 B R

0 0 1 1 3 # 3 C S

0 1 0 0 4 $ 4 0 T

0 1 0 1 5 % 5 E U

0 1 1 0 6 & 6 F V

0 1 1 1 7 I 7 G W

1 0 0 0 8 ( 8 H X

1 0 0 1 9 ) 9 I y

1 0 1 0 10 * : J Z

1 0 1 1 11 + ; K [

1 1 0 0 12 I < L \

1 1 0 1 13 - = M J

1 1 1 0 14 > N A.
1 1 1 1 15 I ? 0 -

Table 2-8. lATA-Coded Character Set

HARDWARE DESCRIPTION

CHAPTER 2 PAGE 52



HARDWARE DESCRIPTION

A 6-bit-plus-odd-parity character code is used to encode data on

the magnetic stripe of lATA-formatted cards. This character code

is alphanumeric. Refer to Table 2-8 for the coded character set.

11.1.2.2 INFORMATION FORMAT

The information encoded on the magnetic stripe of an IATA­

formatted card can be in either of two formats, format A or B.

The content of each format is as follows:

FORMAT A I FORMAT B

start sentinel 1 character Start sentinel 1 character

Format code "A" Format code "B" 1 character

1 character

Surname

Surname separator "I"

Account number Up to 19 chars

Separator 1 character

Initials or first name Surname

Separators (when required) Surname seperator "/"

= "space" Initials or first name

CHAPTER 2 PAGE 53



[ FORMAT A

Title (when used)

separator (when required)

= "space"

11

HARDWARE DESCRIPTION

FORMAT B

Separator (when required) =

"space"

Title (when used)

separator ~ character Separator (when required) =

"space"

Discretionary data

The balance up to the

maximum record length

(79 characters)

Discretionary data

The balance up to the

maximum record length

(79 characters)

stop sentinel ~ character

Separator ~ character

Longitudinal redundancy

check, ~ character

stop sentinel 1 character

Longitudinal redundancy check

Total 79 characters (max) ~ character

Total 79 characters (max)

Table 2-9. lATA Information Format

CHAPTER 2 PAGE 54



HARDWARE DESCRIPTION

11.1.2.3 LONGITUDINAL REDUNDANCY CHECK (LRC)

The magnetic stripe reader runs an LRC test on the lATA 6-bit

code before it is converted to the 7-bit ASCII code.

test contains the following steps.

The LRC

1. The parity bit of each-character code is stripped off.

2. All characters from the start sentinel to and including the

stop sentinel are combined by an Exclusive OR function.

3. The result of step 2 is compared to the LRC character (minus

the parity bit) that was received from the magnetic stripe

of the card read.

11.2 READER DESCRIPTION

AMP AND

MAG 2F2DECODER

HEAD

.

RDP (READ DATA PULSE)

RCP (READ CLOCK PULSE)

CtS (CARD LOADING SlGNA1.l

SCH10.DP

Figure 2-20. Reader Block Diagram

CHAPTER 2 PAGE 55



HARDWARE DESCRIPTION

[ R""'ABLE TRACK I 1

I
2

I
3

I
RECORDING DENSITY 210 BPI 75 BPI 210 BPI

RECORDING OUT 1.21 ms 3.39 ms 1. 21 ms

(@ 10em/s)

BIT INTERVAL 80.6 /.Isec 225.8 /.Is 80.6 /.Is

(@ 150 em/s)

TRACK WIDTH 1.5mm 1.5mm 1.5mm

CENTRE POSITION 7.0±.2mm 10.3±.2mm 13.6±2.mm

Table 2-10. Reader Specification

CARD IN

CLS

Rep

RDP

CARD OUT

SCH11.DP

Figure 2-21. Timing Diagram

CHAPTER 2 PAGE 56



HARDWARE DESCRIPTION

B:F===IS>G=NAL==l1F==REMARK=S===ll,
1

2

3

CHAPTER 2

GND - GROUND

-RDP - READ

DATA PULSE

-RCP - READ

CLOCK PULSE

GROUND FOR +5V AND SIGNAL

GROUND

OUTPUT READ DATA. (NEGATIVE

LOGIC) THIS SIGNAL IS

DEMODULATED BY 2F2 DECODER,

AND SAMPLING OF THIS SIGNAL IS

PERFORMED BY THE TRAILING EDGE

OF SIGNAL RCP. LEVEL 'H'

INDICATES DATA AS '0', AND

LEVEL 'L' INDICATES DATA AS '1'

THIS SIGNAL IS USED FOR READ

DATA SAMPLING. (NEGATIVE LOGIC)

THIS SIGNAL PERFORMS SAMPLING

FOR SIGNAL RDP AT THE TRAILING

EDGE.

PAGE 57



HARDWARE DESCRIPTION

EJ SIGNAL I REMARKS

I
4 -CLS - CARD THIS SIGNAL INDICATES THAT

LOADING A CARD IS RUNNING ON MAG. HEAD.

LEVEL IS 'H' WHILE A CARD IS

RUNNING ON HAG. HEAD, AND LEVEL

BECOMES 'L' WHEN A CARD STOPS

OR IS NOT ON HAG. HEAD.

5 +5V POWER SUPPLY

Table 2-11. Reader Control Signals

CHAPTER 2 PAGE 58



HARDWARE DESCRIPTION

11.3 DESIGN IMPLEMENTATION

VCC
OSC1

XTAL 1 US

7.3728MHz
31

E'A/VP PO 0
39 PO 0

PO 1
38 :::;0 1

0 1 9 Xl PO 2 37 PG 2
36 PO 3PO ]

~g 35 PC; 4

2;PF~
CB

~
PO 418

X2 PO 5 34 Po 5
22pF

PO 6 33 PO 6 VCc
PO 7 32 PO 7

PES 9 !=lESET
P2 0

21 P2 0

P2 1
22 P2 1 CN10

12
INTO P2 2

23 P2 2

" INT1 P2 3
24 P2 3 CPO SWIPE 1

14 TO P2 .4
25 P2 4 CP:,J Cl ,,_ 2

15 Tl P2 S 26 P2 5 CClD D';"TA 3

P2 6
27 P2 6 4

eRO SWIPE 1 28 P2 7 5
CPD CLOCK 2 Pl 0 P2 7

P 1 1
CHO OATA. 3 P 1 2 RD 17
C.t.>;:;O DATA 4

Pl 3 :;;;:; 16
READE~

C.AO C K 5 P 1 4 PSEN 29
6 P1 5 ALEIP 30
7 Pl 6 TXD 11 TXC)
6 P 1 7 RXO 10 !=IX

8751

Figure 2-22. Card Data Transfer

It was decided to dedicate the 8751 to the magnetic card reader

due to the nature of information being read. If the reader was

connected to the main controller, there is always the possibility

that a communications interrupt would occur while a magnetic card

was being read. The communications interrupt has to have the

highest priority, Which prevented the reader from being assigned

the highest priority. The 8751 was chosen to reduce board space,

and the relevant card reader software could fit into the 4K on-

chip EPROM.

The 82530 communications chip required an external clock. The

8751 was chosen so that it would be a mUltiple of the

CHAPTER 2 PAGE 59



HARDWARE DESCRIPTION

communications frequency required. The clock output of the 8751

is fed into an inverter, whose output is then fed into a '393,

where the frequency is further divided. The communications clock

for the 82530 and the keyboard clock for the 8279 is generated

via the '393.

U 130

~
U9A

osr1 9 B 1 QA 3 CO',1MS CLK

/
A

4QB
5 KYB CLK

74HCT04 2
QC

6CLR QD

HAS TO BE HCT04 74HCT393
ANYTHING ELSE
WILL LOAD XTAL
OSC U98

1 3 QA 1 1
A

1 0
OB 9

1 2
OC

8CLR OD

74HLT393

NB

Figure 2-23. 110 Clock Generation

The remaining port pins of the 8751 were routed to an expansion

connector for future use. If another device has to be placed onto

the terminal in the future, only the code in the 8751 has to be

changed.

CHAPTER 2 PAGE 60



HARDWARE DESCRIPTION

vcc

~

j~~~~~~~~~~~~:7:po 5-
P 6PO 7

'~iPX~D~Ei--<~ ~ ~"TXD 12_,P2 7 13
"\. 02 6

P2 5 14

~~pa2s4EE=E~ ~ ~,P2 17
P2 2 18

"P2 1

'''P~2tJOt:+=+:~ 19" 20
~21

22
'---

~ FUTURE EXPANSION

Figure 2-24. Expansion Bus

The 8751 has been configured so that the various port pins are

used for I/O. This means that there is no data bus available to

transfer data between the 8751 and the main controller, the 8032.

This meant that a system had to be devised to facilitate the

transfer of data between the 8751 and the 8032. A serial

synchronous link was established between the two devices.

Two port pins on the 8032 are connected to two port pins on the

8751. These signals are the CRD_DATA and CRD_CLK signals. If card

data is available, the 8751 takes the CRD DATA line 'L',

informing the 8032 that card information is available. The 8032

now responds by supplying the 8751 with the CRD_CLK signal. The

8751 in turn responds by placing the serial data on the CRD DATA

line. The 8032 reads the data on the falling edge of the CRD CLK

CHAPTER 2 PAGE 61



HARDWARE DESCRIPTION

signal. A status byte is also returned to the 8032, if the status

byte is OFFH, then an invalid swipe has taken place, and the card

has to be re-read.

BI - DIRECTIONAL MAGNETIC CARD READER

--
CLS 8032CRD ClK

CARD --
RCP

8751 8032READER --
8751/8032 CRD DATARDP

~
2 WIRE COMMS

SCH32.DP

Figure 2-25. Interconnection between 8032 and 875~

/
/

SCH12.DP

Figure 2-26. Data Transfer Timing Diagram

CHAPTER 2 PAGE 62



HARDWARE DESCRIPTION

12. KEYBOARD INTERFACE

CPU

INTERFACE

SCH22.DP

IRQ <:
8

~~ 8
RLO-7,

'"
DATA

IBUS
- SHIFT rRD

CNTl{
- STB I

WR I
- 4

:>CS SLO-3
SCAN

AD 4
OUT
AO-3 v

Al
4 ,

OUT

CLK
80-3 v

1
1 4

)

KEY DATA

DISPLAY

DATA

BD

Figure 2-27. 8279 Block Diagram

12.1 FEATURES OF THE 8279

The Intel 8279 is a general purpose programmable keyboard and

display I/O interface device capable of simultaneous keyboard /

display operations. The 8279 has the following features:

Scanned Keyboard Mode

Scanned Sensor Mode

Strobed Input Entry Mode

8-Character Keyboard FIFO

2-Key Lockout or N-Key Rollover with Contact Debounce

Dual 8- or 16-Numerical Display

CHAPTER 2 PAGE 63



HARDWARE DESCRIPTION

Single 16-Character Display

Right or Left Entry 16-Byte Display RAM

Mode programmable CPU

programmable Scan Timing

Interrupt Output on Key Entry

12.2 HARDWARE DESCRIPTION

It was decided to use the 8279 to alleviate the microcontroller

of the menial task of scanning a keyboard and performing the

necessary debouncing, which is required when reading mechanical

switches. The microcontroller merely has to read a status

register of the 8729, and if any key depression has been

registered, read the FIFO of the 8279. The display portion

provides a scanned display interface for LED, incandescent, and

other popular display technologies. Due to the fact that Liquid

Crystal Displays were used, the display portion of the 8279 was

not utilised. Although only 50% of the 8279's features are being

utilised, the overhead that will be placed on the microcontroller

to scan a keyboard justifies the use of the 8279.

The keyboard portion can provide a scanned interface to a 64­

contact key matrix. The specification for the INTELLIGENT

TERMINAL required a maximum of 128 keys. The 8279 has two extra

inputs, a control and a shift input. A method was devised to

include the shift input in the keyboard interface, so as to

CHAPTER 2 PAGE 64



HARDWARE DESCRIPTION

increase the amount of keys that could be read. The inclusion of

74HCTJO increases the number of return lines, thereby extending

the matrix to 128 keys. If the control input were used, the

matriX could be increased to 192 keys.

When a key on the extended key matrix is depressed, the shift

input is activated and the relevant return line registers the key

depression. When the key value is read, the shift status will be

set, indicating that a key on the extended keyboard has been

depressed. The 10Kn resistor pack is included to pUll the inputs

to the 74HCTJO 'H', when no keys are depressed. Diode 09 - 016

are included to prevent shorting two outputs of the 74HCT139 if

two keys on different scan lines are depressed simultaneously.

JlL- _

__nL _
___nL _

_________nL-_

SLO

SLl

SL2

SL7

CHAPTER 2 PAGE 65



HARDWARE DESCRIPTION

12.3 SOFTWARE DESCRIPTION

When a key is depressed, the debounce logic is set. Other

depressed keys are looked for during the next two scans. If none

are encountered, it is a single key depression and the key

depression is entered into the FIFO along with the status of the

CNTL and SHIFT lines. Key entries set the interrupt output line

to the CPU. In the scanned keyboard mode, the character entered

into the FIFO corresponds to the position of the switch in the

keyboard plus the status of the CNTL and SHIFT lines. CNTL is the

MSB of the character and SHIFT is the next Most Significant Bit.

The next three bits are from the scan counter and indicate the

row the key was found in. The last three bits are from the column

counter and indicate to which return line the key was connected.

11 CNTL 11 SHIFT IEII~EII~EII~l

CHAPTER 2 PAGE 66



2 4 DESIGN IMPLEMENTATION1 •

HARDWARE DESCRIPTION

0'
" 0", "C, "" 0", "cc
"

0"' "C,
0", "C'" 0" "c.,
0" "C,

""
0" "C,
0" "CC

'0

~ SH""" "" eNI S1 ;fr:_~T" - " IT '0
~ .. ", c QC' nc- ,

"'esET "0.' , .
'0 'cc ". H,"0 'C, JL.'C,

0'0 :It0'"
0"'00' ::tt,"0
0" it0"0",

eZ1g

0-, :l'

a
O'

o. 0

:::'
Q

~.- "''''5

~~~~ ~~~

T

,,,
.:-

""tu"'''' LINE '-a

Figure 2-28. Keyboard Interface

CHAPTER 2 PAGE 67

HARDWARE DESCRIPTION

13. SERIAL COMMUNICATIONS INTERFACE (ZILOG 8530)

13.1 8530 FUNCTIONAL DESCRIPTION

MODEM.OMA

OR OTHER

CONTROLS

SERIAL DATA

CHANNELCLKS

ISYNC
IWAIT/IREQ

MODEM.OMA

OR OTHER

CONTROLS

SERIAL DATA

CHANNEL CLKS

lSYNC
IWAlTIIREQ

SCHt4.DP

BAUD
RATE

GEN. A

CHANNEL
A

REGISTERS

CHANNEL
B

REGISTERS

BUS

INTERNAL

CONTROL

lOGIC

INTERRUPT

CONTROl.

LOGIC

INTRPT

CONTROL

UNES

CPU

BUS I/O

ADDRESS/DATA
8 ~--~

CONTROL

5V =
IN =
PCU<=

Figure 2-29. 8530 Block Diagram

The Z8530 Serial communications Controller (SCC) is a Zilog Z8000

peripheral component, designed to provide mUltifunction support

for handling the large variety of serial communication protocols

available. The Z-SCC internal structure provides all the

interrupt and control logic necessary to interface with

nonmultiplexed buses. Interface logic is also provided to monitor

modem or peripheral control inputs and outputs. All of the

control signals are general purpose and can be applied to various

peripheral devices as well as used for modem control.

CHAPTER 2 PAGE 68

HARDWARE DESCRIPTION

The centre for data activity revolves around the internal read

and write registers. The programming of these registers provides

the z-SCC with a functional "personality", Le., register values

can be assigned before or during program sequencing to determine

how the Z-SCC will establish a given communication protocol.

13.2 HARDWARE DESCRIPTION

The 8530 in conjunction with the two MAX232 line drivers,

constitutes the basis of the dual channel RS232 serial ports. The

8530 does not have a RESET pin available, and the only manner

whereby a hardware reset can be ensured is by simultaneously

pulling the -RD and -WR lines 'L'. The -RD and -WR lines for the

8530 are therefore AND'ed with the RESET line, to ensure a

hardware reset at power-up.

The clock for the 8530 baud rate generator is derived from the

clock output of the 8751, which is used for the magnetic card

reader. The clock signal is further divided by the '393, and then

applied to pin# 20 of the 8530. Address lines AO and Al select

the command / data registers, and selects between channel A or

channel B. The addresses are as follows:

COMSCB

COMDATB

COMSCA

COMDATA

CHAPTER 2

EQU

EQU

EQU

EQU

OFOOOH

OFOOIH

OF002H

OF003H

iCOMMS STATUS/CONTROL REG. CH B

iDATA REG. CH B

iCOMMS STATUS/CONTROL REG. CH A

iDATA REG. CH A

PAGE 69

HARDWARE DESCRIPTION

The serial ports had to have the ability to communicate with any

standard RS232 device. Due to this fact the control lines,

-- --
Request to Send (RTS) and Clear to Send (CTS) had to be provided.

This would facilitate the necessary handshaking which might be

required by certain devices. When these handshaking signals are

not in use, internal resistors present in the MAX232 device pUll

the signals so as to hold the outputs in an inactive state.

13.3 SOFTWARE DESCRIPTION

The 8530 is initialised with the following default values:

Baud Rate:

Data Bits:

Parity:

Stop Bits:

9600

8

none

1

The software for the 8530 allows a great deal of flexibility, in

that the baud rate, bit length, parity, start and stop bit

formats can be changed via the HOST. This is achieved by

transmitting the required initialization to the INTELLIGENT

TERMINAL, which will in turn re-initialise the 8530 with the new

settings. The various options are as follows:

Baud Rates: 4800, 9600, 19200, 38400

Data Bits: 7, 8

Parity: none, even and odd

Stop Bits: I, 2

CHAPTER 2 PAGE 70

HARDWARE DESCRIPTION

The 8530 has the capability of being interrupt driven, but this

option was not utilised. It was decided to operate the 8530 in

a polled mode. This means that the command registers for channel

A and channel B have to be continuously interrogated to determine

if any characters have been received. If a character is

available, the data register has to be read to retrieve the

received character. If a character has to be transmitted, the

command register must first be read to ensure that the

transmitter is empty, before the character is written to the

register. If this is not done, the previous character might be

overwritten.

13.4 DESIGN IMPLEMENTATION

vcc NB" PClI L"~OUT E"I'lO"
NEGATIVE PIN ()F C1e llo czo
S""OULO BE CONNECTeo TO "CC

""'0
,.

"520
,

"5. , """2 L ,I

"'HeN NOT usEo CTS r'ED ro lice

00
0'
0'

c; 0;,.
0' 0>O.

"
'C

... ..
"$'0

,.
"!f;20

,
..,. 1 E ""52 , " '----

_6S~O "0
_EsJJ .. "
_6 J" Cs

24V (".NO

Figure 2-30. Communications Interface

CHAPTER 2 PAGE 71

HARDWARE DESCRIPTION

The 8530 has the capability of being interrupt driven, but this

option was not utilised. It was decided to operate the 8530 in

a polled mode. This means that the command registers for channel

A and channel B have to be continuously interrogated to determine

if any characters have been received. If a character is

available, the data register has to be read to retrieve the

received character. If a character has to be transmitted, the

command register must first be read to ensure that the

transmitter is empty, before the character is written to the

register. If this is not done, the previous character might be

overwritten.

13.4 DESIGN IMPLEMENTATION

NB" "ca ... AYQuT e""DR
NEG... T,IIE> PI'" OF t;,~ & C20
S..-oULD BE CON.NECTED ,0 lice

"CC 2411

wHEN NOT USED CTS T'EO TO lice
24" GNO

VCC 24"

00

O' 0'
"

"
Cl,.

0> c>
"S

D~ "
"

.,.
_g'5'~ "
_55]: ... '"
_5",: cs

Figure 2-30. Communications Interface

CHAPTER 2 PAGE 71

HARDWARE DESCRIPTION

14. SCANNER INTERFACE

14.1 OPTICALLY COUPLED SERIAL INTERFACE (OCIA)

The interface of the HOST system consists of four signals carried

by a four-pair shielded cable, supplied by the customer,

terminated at the scanner in a circular connector. Two of the

signals provide bit-serial information to and from the scanner.

The HOST interface controls the speeds of the received and

transmitted serial data by providing clocking pulses on the

remaining two signals. The signals on the interface are optically

isolated in the scanner on the received end. Electrical

isolation of the interface can be obtained by providing one

optically isolated receiver in the HOST system.

14.2 INTERFACE SIGNALS

Three signals are inputs to the scanner and one is an output from

the scanner. The signals pass information by controlling current

flow through the pair of wires for each signal. A logical '1' is

indicated when current flows through the pair.

14.2.1 RECEIVE DATA SIGNAL (RDATA)

The RDATA signal is used to serially transmit a byte (8 bits of

CHAPTER 2 PAGE 72

HARDWARE DESCRIPTION

information} from the scanner to the HOST system. The RDATA RTN

line provides a current source at 5 volts with respect to the

scanner ground. The RDATA line normally stays at 5 volts, not

sinking any current (logical 'O'). A logical '1' is achieved by

the RDATA line going low, thus sinking current through the signal

pair. When the scanner is ready to transmit a byte (See Figure

2-32 for timing), the RDATA line will be brought low to a logical

, 1'. The HOST system must then provide 9 clock pUlses on the"

CLKIN signal to receive the data bits. On the leading edge of the

first clock pUlse, the scanner will set RDATA to the negative

logic value of the least significant data bit (DO). Bits 01

through 07 are provided after each of the successive seven clock

pulses. The ninth clock pUlse will cause RDATA to go back to the

logic '0' state (no data ready). When the next byte is ready for

transmission, the RDATA signal will be brought low again.

14.2.2 RECEIVE DATA CLOCK (CLKIN)

The CLKIN signal is used to serially clock each bit of

information out the scanner as described in 12.2.1. The CLKIN

signal normally is at logic '0' with no current flowing in the

pair. In normal usage, CLKIN RTN is connected to +5 volts and

CLKIN is driven by an open collector TTL gate capable of sinking

at least 48mA. A logic '1' is the active state of the driver

gate.

CHAPTER 2 PAGE 73

HARDWARE DESCRIPTION

14.2.3 RECEIVE RESET SIGNAL (RESETIN)

The reset signal is used to re-initialize the scanner as on

power-up. The Resetin signal normally is at logic '0' with no

current flowing in the pair. In normal usage, Reset RTN is

connected to +5 Volts and Resetin is driven by an open collector

TTL gate capable of sinking at least 48mA. A logic '1' is the

active state of the driver gate.

SCH18.DP

VOUT

VSOURCE

- VIN

+VIN

- VIN

+VIN

1

2

3

4

5

6

7

8

9

RDATA

RDATA RTN

CLKIN

CLKIN RTN

RESETIN

RESETIN RTN

OUTPUT

INPUT

INPUT

Figure 2-31. Scanner Connection

CHAPTER 2 PAGE. 74

HARDWARE DESCRIPTION

START

9 ClOCK PULSES

Figure 2-32. Byte Transfer From Scanner

8 ClOCK PULSES

Figure 2-33. Byte Transfer To Scanner

RDATA

CLKIN

SDATA

CLKOlJT

00-07

~~~X~

'-------7.~

00-07

~~~X~>-J

~7~~r-IUL

4.6V - '0'

O.4V _I"~

3.8V-'"

0.2V -'0'

SCH16.0P

3.8V - '1'

0.2V -'0'

3.8V - '1'

0.2V - '0'

SCH17.DP

14.3 MESSAGE FORMATS

The output of the scanner consists of numeric sequences read from

a coded symbol. These are transmitted over the RDATA signal as

a sequence of bytes. The general format is a version identifier

character followed by the numeric characters from the symbol.

CHAPTER 2 PAGE 75

HARDWARE DESCRIPTION

14.4 BYTE FORMATS

Each character in the label is transmitted in one byte (8 bits).

The byte consists of a 6 bit data field, a bit to indicate the

last byte of message, and a parity bit to achieve odd parity over

the 8 bits. Table 2-12 provides the binary codes for the possible

characters transmitted by the scanner.

~BB~~~~[~]INFORMATION I
P L 1 1 0 0 0 0 0

P L 1 1 0 0 0 1 0

P L 1 1 0 0 1 0 2

P L 1 1 0 0 1 1 3

P L 1 1 0 1 0 0 4

P L 1 1 0 1 0 1 5

P L 1 1 0 1 1 0 6

P L 1 1 0 1 1 1 7

P L 1 1 1 0 0 0 8

P L 1 1 1 0 0 1 9

P L 0 0 0 0 0 1 A (NORMAL UPC ID)

P L 0 0 0 0 1 0 B (RESERVED)

P L 0 0 0 0 1 1 C (RESERVED)

P L 0 0 0 1 0 0 D (RESERVED)

P L 0 0 0 1 0 ·1 E (0 SUPPRESS ID)

P L 0 0 0 1 1 0 F (EAN LABEL ID)

CHAPTER 2 PAGE 76

HARDWARE DESCRIPTION

..
".

~GG8~~~[§]INFORMATION I
i==='

P 0 X X X X X X NOT LAST BYTE

P 1 X X X X X X LAST BYTE

I?:

ElGG8~~~~1 INFORMATION I

I:!~~:~:~:!:~: i: IODD PARITY

IEVEN PARITY

X = don't care

Table 2-12. Byte Format

14.5 SYMBOL MESSAGE FORMATS

These are four different formats for the string sent for each

symbol. These formats correspond to the regular UPC symbols

(Version Al the zero-suppressed UPC symbol (Version El and the

long and short forms of the EAN symbol.

CHAPTER 2 PAGE 77

HARDWARE DESCRIPTION

14.6 DESIGN IMPLEMENTATION

vcc vcc,.f-
0' ""'"'

,. '"' ,w

"' """<
~ , 120P

'"'AT",

0' , ,
~' ==C25 "'2zcr>:l c=-J220pF , ,

<
, , .

""6'N"1j's - ' '~' ,
9 10 P--

'J 1 eo'",
'\"'

, 0" ,
/

SN7S4S2

, '",
C, <"'

, ",
/

5N7';452 '7

Figure 2-34. Scanner Interface

HANDIS~OT SCANNEP
INTEI:;IO"'CE III

The 6N136 was found to be a suitable opto-coupler for interface

purposes of receiving information from the scanner. The SN75452

is an open-collector device, which is used to drive the signals

to the scanner. As the output of the 6N136 is an open-collector

output, it was possible to logically 'OR' the two 6N136's,

thereby using only one port pin. The same applied to the RESET

and CLK signals.

CHAPTER 2 PAGE 78

HARDWARE DESCRIPTION

15. DRAWER INTERFACE

vcc 24V 24V

ER #1

::i
018

~ 1N40D7 ,f.!:l.18
DRAWER OPI"'N --< 1

R" 2

P1 , '" 03 3.- BC307 --< 4

22K I- 01 '--

P12 f:> MPsua6 DRAW

P1 4 S60R DPAW:::P S!::NS:::

(R13

< 10;::::

~
24V GND

Figure 2-35. Drawer Interface

The drawer open signal is generated from a port pin. The signal

is first bUffered by a small signal transistor, which in turn

drives the power transistor. The diode is included to prevent any

damaged which might be caused to the power transistor by the back

EMF generated by the solenoid. The solenoid has a DC resistance

of 200. The drawer sense is directly connected to a port pin.

This signal passes through a micro switch, which is located in

the drawer. If the status of the drawer changes, this change in

status is immediately communicated to the HOST. As can be seen

from the above figure, the circuit is identical for both drawers.

CHAPTER 2 PAGE 79

HARDWARE DESCRIPTION

16. RECEIPT SENSE

The receipt sense is directly connected to port pin Pl.7. If the

status of the receipt switch changes, this change in status is

illlInediately communicated to the HOST. This switch is used to

either enable or disable the receipt printing on the printer.

CHAPTER 2 PAGE 80

HARDWARE DESCRIPTION

11. PRESENT AND FUTURE DEVELOPMENT

Due to the constant undertaking of research programs, Ankerdata

is kept at the forefront of technology, the following is a list

of a few of the present projects:

1. INTELLIGENT TERMINAL re-design

Flash Memory - in a PLCC Package

16MHz 8032 - in a PLCC Package

Reduced Board Space

Reduced Connector Count

2. ANKERdata Motherboard

Integrate ANKERdata specific I/O functions with a SCAT

motherboard

3. Memory Expansion Card

16 Bit Memory Expansion Card with 4 MBytes of Battery

Backed static RAM, to be used as Expanded memory

4. SDLC communications

5. Third generation Vacuum Fluorescent Displays

6. Improved power failure detection circuitry

CHAPTER 2 PAGE 81

HARDWARE DESCRIPTION

2006 SYSTEM

ADS PROPRIETRY ==>1
BOARDS

POWER

FAILURE

DETECTION

1----"" •••• >Sl"ANoARDXT
•• MOTHERBOARD

DUAL CHANNEL
COMMUNICATIONS

(RS232. RS485)

64K BYTES BATTERY
BACKED CMOS SRAM

REAL TIME CLOCK

HARD DISK DRIVE
FLOPPY DISK DRIVE

PNET(RS485)DEVlCE#l

SW1 PRINTER ,----'-----------,----------,------,

PROTOCOl.

CONVERTER

DEVICE #2 DEVICE #3
INTELllGENT TERMINAL 2 X 16 DISPLAY

p<:~ & _~n~g I
I Q _ 99 j

DEVICE #4
3 X 16 DISPLAY

SCH29.DP

Figure 2-36. 2006 System (Metro)

CHAPTER 2 PAGE 82

HARDWARE DESCRIPTION

2007 RESTAURANT SYSTEM

ADS PROPRIETRY ==>1
BOARDS

POWER

FAILURE

DETECTION

f-----''-.I···.·.· ••••~ANoAFlt))<i· .•·..... f------I HARD DISK DRIVE
MOTH~BOARO" FLOPPY DISK DRIVE

DUAL CHANNEL
COMMUNICATIONS

(RS232, RS485)

64K BYTES BAITERY
BACKED CMOS SRAM

REAL TIME CLOCK

PNET(RS485)

DEVlCEjl DEVlCEi12 DEVlCE#X
SCH30.DP

Figure 2-37. 2007 system (Restaurant)

CHAPTER 2 PAGE 83

INTELLIGENT POINT OF SALE TERMINAL

ASSEMBLER CODE LISTING

ASSEMBLER CODE LISTING

~R 3

BLER CODE LISTING

a.ASH

**

e COUNT, TEMP_BUF, KEY_FLAG, KEY_BUF, LED_BUF, LED_FLAG, LED_COUNTl

e LED_COUNT2, LOCK_STAT, LOCK_FLAG, DRAWl_FLAG, DRAWl_STAT, DRAW2_FLAG

e DRAW2_STAT, KEY_COUNT, TX_BUF, RX_BUF, TX_BUF_FULL, RX_BUF_FULL,

UF

e TX_COUNT, RX_COUNT, LCD_FLAG, ADDRl, RX_MODE, LCD_NUM, LCD_COUNT

e ADDR2, TX_DATA, RX_BCC, TX_BCC, BCC_FLAG, IS_DATA, RE_TX_FLAG

:e RX_DLE, BIN_ADDR, TMOUT, CRD_FLAG, CRD_BUF, CRD_COUNT, SCAN_BUF

:e SCAN_FLAG, SCAN_PARITY, SCAN_COUNT, QUE_COUNT, QUE_FLAG, KEY_QUE

-e QUE_FULL, CRD_ON_OFF, REC_FLAG, REC STAT

• CODE (INIT_HARDWARE, LCD WR, CODE TO LCD, BEEP, TEST, KYB_READ)

.~ CODE (IDATA_TO_TEMP, HEX_TO_ASCII, HEX_TO_DEC, LED_ON_OFF, LED_FLASH)

.~ CODE (LOCK_READ, DRAWl_OPEN, DRAWl_READ, TEST_COMMS, CHK_TX_BUFFS)

N CODE (CLSl, CLS2, CHK_RX_BUFFS, TX_STRING, CRD_READ, SCAN_READ)

N CODE (ADD_QUE, CHK_QUE, REC_READ, DRAW2_0PEN, DRAW2_READ, ERR_BEEP)

**** 82530 COMMS CHIP

le TX82_STAT, COUNT82, TXBUFl_FULL, TXBUF2_FULL, RXBUFl_FULL,

'TER 3 PAGE 2

ASSEMBLER CODE LISTING

2JULL

COM1_TXBUF, COM1_RXBUF, COM2_TXBUF, COM2_RXBUF, RX1_COUNT, RX2 COUNT

PARITY, ST_BITS, TX_DATA_BITS, RX_DATA_BITS, BAUD

RTSA,RTSB

CODE (INIT_82530, A82530, B82530, TX_COMX, CODE_TO_XDATA)

CODE (INIT_82530VARS, SETUP_TX, SETUP_RX)

*** HOST ENQUIRY OF TERMINAL STATUS, LOCK, DRAW, RECEIPT

CODE (ENQUIRE)

**

1**

[

lATA SEGMENT *
H***

SEG SEGMENT

RSEG

DATA

DATA SEG iRELOCATABLE INTERNAL DATA

K: DS 60 i60 BYTES FOR THE STACK

KEND: i USED TO CHECK FOR STACK OVERFLOW

-BUF: DS 01

T: DS 01 i BYTE COUNTER

COUNT1 : DS 01 i INDICATES WHEN LED FLASH SHOULD

iBE CALLED, TO FLASH LEDS

!TER 3 PAGE 3

ASSEMBLER CODE LISTING

aUNT:2 : DS 01 ;REQUIRE A 16 BIT COUNTER

(]M: DS 01 iO = BOTH LCO'S, 1 = LCD_1, :2 = LCD :2

aUNT: os 01 ; COUNT # OF BYTES WRITTEN TO LCD BUF

aUNT: OS 01 ; COUNT # OF BYTES IN KEY BUF

,UNT: OS 01 iNUMBER OF BYTES IN TX BUFF

,UNT: DS 01 iNUMBER OF BYTES IN RX BUFF

,DE: OS 01 ;COMMS MODE

IAR: OS 01 iRECEIVED CHAR

,DDR: OS 01 iBINARY VALUE OF TERMINAL ADDR

l: OS 01 iDEVICE ADDR IS A :2 BYTE ASCII VALUE

2: OS 01

:c: OS 01 i RX_ BUF BCC COUNTER

:C: OS 01 ; TX_BUF BCC COUNTER

:aUNT: OS 01 iUSED TO COUNT BYTES IN CHK TX BUFFS

COUNT: OS 01 iCOUNT # OF BYTES SCANNED

COUNT: OS 01 iCOUNT # OF BYTES IN KEYQUE

IABLES RELATING TO 82530 COMMS CHIP

OS 01 iTO TOGGLE RTS LINE, HAVE TO WR TO

I: OS 01 iBUT THIS REG CAN'T BE READ,

lEFORE

iKEEP IMAGE OF THE VALUE FOR THIS REG

I_STAT: OS 01 iTRANSMISSION SUCCESSFUL

lK,OFFH=BAD

5182 : OS 01 ;# OF BYTES TO WRITE TO 82530 COULD

...COUNT: OS 01 i# OF BYTES IN COM1 RXBUF

fTER 3 PAGE 4

liNT: OS

OS

5: OS

OS

'A_BITS: OS

'A BITS: OS

01

01

01

01

01

01

ASSEMBLER CODE LISTING

j# OF BYTES IN COM2 RXBUF

jFOLLOWING VARIABLES USED WHEN

j82530 SETUP FROM HOST

CNT: OS 01 jCOMMS RETRY COUNTER

r***

>***

[T SEGMENT *
k***

EG SEGMENT

RSEG

BIT

BIT SEG jRELOCATABLE BIT SPACE, INTERNAL

LAG: OBIT 01 jHOST HAS DONE ENQUIRY TO TERMINAL

ULL: OBIT 01 jENQ_BUF IS FULL, TX THIS TO HOST

LAG: OBIT 01 jINDICATES KET DATA IN KEY BUF

LAG: OBIT 01 jINDICATES LED DATA AVAILABLE

FLAG: OBIT 01 jLOCK STATUS HAS CHANGED

. FLAG: OBIT 01 jTHIS INDICATES THAT DRAWl STATUS

jHAS CHANGED

!JLAG: OBIT 01 jTHIS INDICATES THAT DRAW2 STATUS

jHAS CHANGED

:LAG: OBIT 01 jTHIS INDICATES THAT RECEIPT ON/OFF

rER 3 PAGE 5

ASSEMBLER CODE LISTING

iSTATUS HAS CHANGED

FLAG: OBIT 01 iTX_BUF HAS TO BE RE-TRANSMITTED

JiG: OBIT 01 iDATA IN LCD_BUFFER

AG: OBIT 01 iDLE FOUND

:L: OBIT 01 iPOL = 0, SEL = 1

.. OBIT 01 i O = ACKO, 1 = ACK1

:A: OBIT 01 iDATA IN INPUT BUFFERS

,. OBIT 01 iINDICATES THAT A DLE WAS RECEIVED".
OBIT 01 iTIMER 0, TIMESOUT BEFORE LCD IS

~G: OBIT 01 i1 = CARD DATA AVAILABLE

JLL: OBIT

~G: OBIT

~ OFF: OBIT

'LAG: OBIT iINFORMS MAIN LOOP OF SCANNER DATA

iDATA IN KEY_QUE TO BE TRANSMITTED

iKEY_QUE IS FULL, PREVENT KEY & SCAN

iO=DON'T TX CRD DATA. 1 = TX CRD DATA

iUSED FOR PARITY CHECK

01

01

01

01

01OBIT?ARITY:

P FULL: OBIT 01 iTX BUFFER IS FULL

P FULL: OBIT 01 iRX BUFFER IS FULL

I\.BLES RELATING TO 82530 COMMS CHIP

1 FULL: OBIT 01 i DATA FOR COM1 OF 82530

2 FULL: DBIT 01 i DATA FOR COM2 OF 82530

i_FULL: DBIT 01 iDATA FROM COM1 OF 82530

2_FULL: OBIT 01 i DATA FROM COM2 OF 82530

ITS

**

'ER 3 PAGE 6

ASSEMBLER CODE LISTING

TERNAL DATA SEGMENT *

:G SEGMENT

RSEG

XDATA

EXT SEG ;RELOCATABLE XTERNAL DATA SEGMENT

ORG 0

IF: OS 04 ;LED BUFFER

;TAT: OS. 01 ;LOCK STATUS

STAT: OS 01 jDRAW1 STATUS, OPEN = 1, CLOSED = 0

STAT: OS 01 jDRAW2 STATUS, OPEN = 1, CLOSED = 0

,AT: DS 01 jREC STATUS, OPEN = 1, CLOSED = 0

iF: DS 08 j8279 INTERNAL BUFFER = 8 BYTES

~: DS 50 jCOMMS BUFFER

rA: DS 50 jTRANSMIT DATA BUFFER

JF: OS 40 ;40 CHARS FOR LCD

JF: OS 41 ;STATUS+40 DATA BYTES. 01=OK,

lAD

BUF: OS 24 ;18 BYTES OF DATA + 1 BYTE STATUS

UE: OS 25 ;ADD KEY & SCAN DATA INTO THIS BUFFER

UF: OS 04 ;USED FOR STATUS BYTES FOR HOST

ST

BYTES

.****** ROil CAN ADDRESS MAX OF 255 BYTES EXTERNAL DATA MEMORY

'F:

'ER 3

OS 255 jMAX RX BUFFER SIZE

PAGE 7

ASSEMBLER CODE LISTING

,BLES RELATING TO 82530 COMMS CHIP

7XBUF: OS 50

(J{BUF: OS 40

cXBUF: OS 50

(J{BUF: OS 40

iALLOW FOR 2X20 DISPLAY STRING

iDON'T FORGET STX, ETX, DEV"#

t***

**

CODE SEGMENT *

**

CSEG

ORG

USING

LJMP

~DE (EQUATES.ASM)

AT 0

o

1

MAIN

iABSOLUTE SEGMENT FOR MAIN MODULE

iUSING RB 0,1

r***~

[NTERRUPT VECTORS

~***~

'ER 3

ORG

SJMP

ORG

03H

EXTO INT

OBH

iVECTOR ADDR OF EXTERNAL INTO

iTIMER_O VECTOR ADDRESS

PAGE 8

SJMP

ORG

SJMP

ORG

SJMP

ORG

SJMP

ORG

SJMP

TIMERO INT

13H

EXTl INT

IBH

TIMERl INT

0023H

COMMS INT

2BH

TIMER2 INT

ASSEMBLER CODE LISTING

;VECTOR ADDR OF EXTERNAL INTl

;TIMER_l VECTOR ADDRESS

;VECTOR ADDR OF SERIAL INT

iTIMER_2 VECTOR ADDRESS

**

NTERRUPT ROUTINES

IMER INTERRUPT VECTOR ADDR

*
*

**

o INT:

CLR

SETB

RETI

TRO

TMOUT

iTFO IS RESET BY H/W WHEN VECTORING

i STOP TIMER_ 0

iTIMER HAS OVERFLOWED

,**

:ER 3 PAGE 9

ASSEMBLER CODE LISTING

r***

lONG INTERRUPT VECTOR ADDR *
.***

, INT:

! INT:

:NT:

:NT:

LCALL

MOV

LCALL

MOV

LCALL

MOV

LCALL

RETI

CLS1

DPTR,#MSG6

CODE TO LCD

DPTR,#LCD1_DAT_WR

LCD WR

COUNT, #15

ERR BEEP iSIT IN PERMANENT LOOP

**

~***

TART COMMS INTERUPT ROUTINE. COMMS INTERRUPT VECTOR ADDR *

*
X CHAR WILL CAUSE AN INT. CHECK IF STX/ETX. THEN IF BUFFER IS FULL. *

FTER RX 40 BYTES, WAIT FOR EXT, THEN SET FLAG FOR BUFFER FULL. BUFFER *

RANSFER CAN NOW TAKE PLACE. AFTER BUFFER TRANSFER COMPLETE, CAN START *

'0 RX MORE CHARS. SET A PB AS A CTS FOR THE HOST. *

40 CHARS ARE / INTO TUBE 1 & TUBE 2, EACH 16 CHARS *

'0 IS USED FOR TX. WHEN SETTING UP TX_BUF, SET RO TO START OF BUFFER *

OR 3 PAGE 10

ASSEMBLER CODE LISTING

IS USED FOR

IS USED TO COUNT RX CHARS

IS USED TO COUNT TX CHARS

IS USED FOR RX MODE STATUS

; IS USED TO SAVE DPL

5 IS USED TO SAVE DPH

PTR IS USED FOR RX_BUF, EXTERNAL DATA, OUTSIDE OFFH BOUNDRY

X_MODE 0 = WAIT FOR STX

1 = WAIT FOR DEVICE ADDRESS

2 = RECEIVE CHARS IN COMBUF

SW.5 FLAG 0, IS USED TO INDICATE BUFFER FULL

X COUNT IS SETUP WHEN CONSTRUCTING TX BUF

X COUNT INDICATES THE # OF BYTES IN RX BUF

.X Bee IS USED TO STORE THE RX CHARS BCC CALCULATION

*
*
*
*
*
*

*
*

*
*

*

*

*
*
*

**

, INT:

PUSH ACC

PUSH B

PUSH PSW

PUSH DPL

PUSH DPH

MOV A,P2 iSAVE MSB OF ADDR

PUSH ACC

TER 3

SETB

MOV

PSW.3

DPL,R5

iSELECT REGISTER BANK 1, 8H - FH

PAGE 11

MOV

JNB

CLR

MOV

LCALL

DPH,R6

TI,RX

TI

A,R3

TEST

ASSEMBLER CODE LISTING

iCHECK TO SEE IF ITS TI/RI

jPREVIOUSLY TX BYTE

DJNZ R3,TX_CHAR

CLR TX BUF FULL jTX BUFFER NOW EMPTY

SETB P3.5 JDS3695 RX MODE, GOES THRU 7404

LJMP COMMS EXIT-
1IR:

MOV P2,#0 jIN CONJUNCTION WITH MOVX RO/Rl

MOVX A,@RO jREAD TX_BUF

MOV SBUF,A iTX BYTE IN TX_BUF

INC RO iNEXT BYTE TO TRANSMIT

LJMP COMMS EXIT

rER 3

MOV

ADD

JZ

A,R3

A,#O

EXIT

jLAST BYTE IN BUFFER WILL STILL

iCAUSE INT

iTHEREFORE TEST IF BUFFER EMPTY, VIA

jR3

iDON'T TX A BYTE, & DON'T TX ANOTHER

iBYTE IN MIDDLLE OF STRING

jDIRECT ADD DOESN'T AFFECT ANY FLAGS

iBUFFER EMPTY, EXIT

PAGE 12

INC

MOV

DEC

SJMP

MOV

CLR

MOV

RO

SBUF,@RO

R3

COMMS EXIT

A,SBUF

RI

R4,RX_MODE

ASSEMBLER CODE LISTING

iNEXT BYTE IN DISPBUF, ALREADY TX 1

iBYTE

iTX BYTE AT ADDR OF DISPBUF

i48 BYTE COUNT

i READ RX BUFFER

iWON'T BE ANY DELAY WHEN READING A CHAR

iRX MODE STATUS

JNE R4,#8,CHK_BCC_MODE .iCHK IF IN BINARY ADDRESS MODE

,JMP CHK MODES

iCC MODE:

:JNE R4,#10,CHK_EOTl iCHK IF IN BCC MODE

,JMP CHK MODE10

:OT1:

:JNE

:JNE

A,#EOT,CHK_MODEO

R4, #9, SET_MODEl

CHK MODE9

i!EOT, CHECK OTHER MODES

iIF MODE 0, CHK FOR 'EOT'

10DEl :

10V RX_MODE,#Ol iMODE = 1, WAIT FOR DEV. ADDRl

WNP COMMS EXIT

MOOEO:

TER 3

CJNE

CJNE

MOV

R4,#0,CHK_MODEl iIF MODE 0, CHK FOR 'EOT'

A,#EOT,INTERMEDIATE_EXIT_O i!EOT, RESET RX MODE

RX_MODE,#Ol iMODE = 1, WAIT FOR DEV. ADDRl

PAGE 13

ASSEMBLER CODE LISTING

COMMS EXIT

A,#SEL,INTERMEDIATE_EXIT_O i!SEL, RESET RX MODE

R4,#01,CHK_MODE2iIF MODE 1, CHK FOR 'ADDRl'

A,ADDRl,INTERMEDIATE_EXIT_O i!ADDRl, RESET RX_MODE

R4,#02,CHK_MODE3iIF MODE 2, CHK FOR 'ADDR2'

A,ADDR2,INTERMEDIATE_EXIT_0 i!ADDR2, RESET RX_MODE

jMODE = 3, WAIT FOR POL/SEL

iMODE = 2, WAIT FOR DEV. ADDR2

iO = POL, 1 = SEL

iMODE = 4, WAIT FOR ENQ

RX_MODE,#02

COMMS EXIT

RX_MODE,#03

COMMS EXIT

R4,#04,CHK_MODE5iIF MODE 4, CHK FOR 'ENQ'

A,#ENQ,INTERMEDIATE_EXIT_O i!ENQ, RESET RX_MODE

jRECEIVED A VALID SEQUENCE

iPOL/SEL. READY TO RX/TX

R4,#03,CHK_MODE4iIF MODE 3, CHK FOR 'POL/SEL'

A,#POL,CHK_SEL i!POL, CHECK IF SEL

POL SEL iO = POL, 1 = SEL

RX_MODE,#04 iMODE = 4, WAIT FOR ENQ

COMMS EXIT

POL SEL

RX_MODE, #04

COMMS EXIT

LJMP

JOEl :

CJNE

CJNE

MOV

LJMP

)OE2 :

CJNE

CJNE

MOV

LJMP

00E3 :

CJNE

CJNE

CLR

MOV

LJMP

:EL:

CJNE

SETB

MOV

LJMP

100E4 :

CJNE

CJNE

rER 3 PAGE 14

JB

ASSEMBLER CODE LISTING

POL_SEL,SELECT iO = POL, 1 = SEL

~***

t***

iTX_BUF_FULL, 0 = EMPTY, 1 = FULL

RE_TX_FLAG,RE_TX i1 = RE_TRANSMIT TX_BUF

CHK TX BUFFS iTRANSMIT DATA IN TX BUF

TX STRING

TX_BUF_FULL,TX_EOT iNOTHING IN TX_BUFF, TX'EOT'

T:

"

JB

LCALL

LCALL

JNB

MOV

MOV

LJMP

MOV

LCALL

LJMP

RX_MODE,#05

RETRY_CNT,#O

COMMS EXIT

A,#EOT

TX BYTE

EXIT 0

iWAIT FOR ACKjNAK

iNOTHING IN TX BUF

iRESET RX MODE

MOV

CJNE

A,#05

A,RETRY_CNT,RE TX FINAL

iAFTER 5 NAKS, TERMINATE ABNORMALLY

CLR

SJMP

{JINAL:

MOV

MOV

SETB

CLR

rER 3

RE TX FLAG

TX EOT

RX_MOOE,#05

R3,TX_COUNT

TX BUF FULL

P3.5

iO = NORMAL RX MODE

iWAIT FOR ACKjNAK

iOON'T CHANGE TX_COUNT, IN CASE RE-T}

jCLEARED IN INT ROUTINE

jENABLE OS3695 TO TX, GOES THRU 7404

PAGE 15

ASSEMBLER CODE LISTING

MOV P2,#O

MOV RO,#TX_BUF

MOVX A,@RO

MOV SBUF,A

MOV RO,#TX_BUF+1

iIN CONJUNCTION WITH MOVX RO/R1

iTX FIRST BYTE IN TX BUF

iSTART TX PROCESS

iSET RO = START ADDR +1 OF TX BUF

iUSED IN COMMS INT ROUTINE. FIRST

iBYTE IS USED TO INITIATE COMMS INT

LJMP COMMS EXIT

k*** ******************

~EDIATE_EXIT_O:

LJMP EXIT 0

**

r:

JB

.1<:

MOV

LCALL

MOV

LJMP

MOV

LCALL

WMP

A,#ACK

TX BYTE

COMMS EXIT

A,#NAK

TX BYTE

EXIT 0

iREADY TO RECEIVE DATA

iMODE = 6, WAIT FOR DLE,STX

iTX_BUF IS FULL

iRESET RX_MODE, WAIT FOR NEXT POLL

t***~

TER 3 PAGE 16

ASSEMBLER CODE LISTING

**

SETB

SETB

INC

TX BUF FULL

RE TX FLAG

RETRY CNT

i TREAT ALL CHARS, AS A NAK

iMAINTAIN CURRENT CONTETNTS OF BUFFER

iWAIT FOR NEXT POLL TO TX MESAGE

CJNE A,#EOT,EXIT_O iEOT, SET RX MODE

MOV RX_MODE,#01 iMODE = 1, WAIT FOR DEV. ADDR1

LJMP COMMS EXIT

SJMP EXIT 0

lODE6 :

CJNE R4,#06,CHK_MODE7 iIF MODE 6, CHK IF DLE

CJNE A,#DLE,EXIT_O i ! DLE, RESET RX MODE

MOV RX_MODE,#07 iMODE = 7, WAIT FOR STX

SJMP COMMS EXIT

MODE7 :

CJNE R4,#07,CHK_MODE8 iIF MODE 7, CHK IF STX

CJNE A,#STX,EXIT_O i! STX, RESET RX MODE

R 3 PAGE 17

A,#ETX,CALC_RX_BCC iEND OF DATA FIELD

A,RX_BCC

RX_DLE, CHK_ETX

A,#DLE,CALC_RX_BCC iRECEIVED A DLE

PAGE 18

iBCC COUNTER

iSAVE BCC INTO RX BCC

i!TERM ADDR, RESET RX MODE

iWAIT FOR TEXT

iIF MODE 8, CHK BINARY ADDR

iIF MODE 9, CHK IF DLE.DLE,

ASSEMBLER CODE LISTING

iRX_MODE = 8, WAIT FOR BIN TERM ADDR

iSAVE BCC INTO RX_BCC

iMODE = 10 CMP NEXT BYTE TO RX BCC

iWAIT FOR A DLE/ETX

RX_MODE,#08

RX_COUNT,#O

RX_BCC,#O

RX DLE

DPTR,#RX_BUF

COMMS_EXIT

R4,#08,CHK_MODE9

A,BIN_ADDR, EXIT_O

RX_MODE,#09

A,RX_BCC

A,RX_BCC

COMMS EXIT

RX DLE

COMMS_EXIT

A,RX_BCC

RX_MODE,#10

COMMS_EXIT

MOV

MOV

MOV

CLR

MOV

SJMP

ODES:

CJNE

eT

CJNE

MOV

XRL

XCH

SJMP

:ODE9 :

CJNE

:TX

JB

CJNE

SETB

SJMP

,TX:

CJNE

XRL

XCH

MOV

SJMP

rER 3

R4,#010,EXIT_0 iIF MODE 10, CHK IF RX BCC IS CORRECT

RJ{_BCC:

MOVX

INC

INC

XRL

XCH

CLR

SJMP

ODE10:

CJNE

@DPTR,A

DPTR

RX COUNT

RX DLE

COMMS_EXIT

ASSEMBLER CODE LISTING

iWRITE TO RX BUF

iSAVE BCC INTO RX BCC

CJNE A, RX_BCC,TX_NAK iCHECK IF BCC IS CORRECT

SETB RX BUF FULL- -
MOV A,#ACK

LCALL TX BYTE

SJMP EXIT 0

0:

MOV RX_MODE,#O iSET RX MODE = 0, WAIT FOR EOT

; EXIT:

POP ACC

MOV P2,A iRESTORE MSB OF ADDR

MOV R5,DPL

MOV R6,DPH

POP DPH

POP DPL

POP PSW

POP B

TER 3 PAGE 19

POP

RETI

ACC

ASSEMBLER CODE LISTING

**

**

NB: *
REGISTER BANK 01 IS SELECTED FOR THIS ROUTINE, WHICH IS DEDICATED*

TO THE COMMS INTERRUPT ROUTINE. *

*
TRANSMIT A SINGLE BYTE. BE CAREFUL NOT TO CHANGE TX COUNT

ON ENTRY:

ACC = BYTE TO BE TRANSMITTED

*
*

*

*
'**

'TE:

MOV

MOV

TX_COUNT,#Ol

R3,TX_COUNT

iUSED IN COMMS INT ROUTINE

iDON'T CHANGE TX_COUNT, IN CASE

iRE-TX

MOV

SETB

CLR

MOV

RET

R3,#01

TX BUF FULL

P3.5

SBUF,A

;DON'T CHANGE TX_COUNT, IN CASE RE-T~

iCLEARED IN INT ROUTINE

iENABLE DS3695 TO TX, GOES THRU 7404

iSTART TX PROCESS

.***,

rER 3 PAGE 20

ASSEMBLER CODE LISTING

**

AIN PROGRAM LOOP *
**

CLR

MOV

LCALL

LCALL

CLR

SETS

LCALL

LCALL

COMMS:

LCALL

CH A:

MOV

MOV

MOV

MOV

MOV

LCALL

~LIZATION

MOV

MOV

MOV

LCALL

CH B:- -
TER 3

;ALL INTERRUPTS OFFEA

;SET SP,DEFAULT 08H, USING RBANK1,SP,#STACK

INIT HARDWARE

TEST COMMS

;INITIALLY ACKOACKO 1

iALL INTERRUPTS ONEA

INIT STACK CHK iCHK FOR STACK OVERFLOW

FILL MEM

INIT 82530VARS

DPTR,#COM1_TXBUF ;SETUP REGS FOR CODE TO XDATA

R6,DPL

R7,DPH

DPTR,#A82530

COUNT82 ,#22

CODE TO XDATA iCOM1_TXBUF CONTAINS

;INIT CHANNEL A OF 82530DPTR,#COM1_TXBUF

R7,#03

COUNT82/#22

INIT 82530

PAGE 21

MOV

MOV

MOV

MOV

MOV

LCALL

LIZATION

MOV

MOV

MOV

LCALL

,T STR:

MOV

MOV

MOV

MOV

MOV

LCALL

rR:

MOV

MOV

MOV

LCALL

T:

82530 :

LCALL

LCALL

'TER 3

DPTR,#COM2_TXBUF

R6,DPL

R7,DPH

DPTR,#B82530

COUNT82,#22

CODE TO XDATA

DPTR,#COM2_TXBUF

R7,#01

COUNT82, #22

INIT 82530

DPTR,#COM2_TXBUF

R6,DPL

R7,DPH

DPTR,#MSG2

COUNT82,#35

CODE TO XDATA

DPTR,#COM2_TXBUF

R7,#02

COUNT82,#35

TX COMX

SETUP TX

SETUP RX

PAGE 22

ASSEMBLER CODE LISTING

iSETUP REGS FOR CODE TO XDATA

iCOM2_TXBUF CONTAINS

iINIT CHANNEL B OF 82530

iSETUP REGS FOR CODE TO XDATA

iTRANSMIT DATA ON COM2

iTX ON CH B

iIF DATA, THEN TX

iIF DATA, THEN RX

NQUIRE:

LCALL

EC:

LCALL

ENQUIRE

REC READ

ASSEMBLER CODE LISTING

jHOST REQUEST DRAW STATUS, LOCK

jSTATUS Q=CLOSED, l=OPEN

MOV A,#'S'

LCALL CHK_QUE

LCALL SCAN READ

JNB SCAN_FLAG,LCD

MOV A,#'S'

LCALL ADD_QUE

CLR SCAN FLAG

LCALL CLS1

MOV R2,#16

MOV R2,#20

MOV DPTR,#SCAN_BUF

LCALL XDAT TO LCD BUF- - -

MOV DPTR,#LCD1_DAT_WR

LCALL LCD WR

JNB LCD_FLAG,LOCK

CLR LCD FLAG

MOV A, LCD_NUM

CJNE A,#30H,CHK_LCD1

LCALL CLS1

MOV DPTR,#LCD1 DAT WR- -
LCALL LCD WR

~R 3 PAGE 23

jIF QUE_FULL, WON'T READ SCANNER

jIF 1, DATA AVAILABLE

jSETUP REGS, BEFORE CALLING XDAT

jSETUP REGS, BEFORE CALLING XDAT

LCALL

MOV

LCALL

SJMP

,CD1:

CJNE

LCALL

MOV

LCALL

SJMP

,CD2 :

CJNE

LCALL

MOV

LCALL

LCALL

JNB

LCALL

MOV

MOVX

LCALL

MOV

LCALL

CRD:

LCALL

JNB

TER 3

CLS2

DPTR,#LCD2 DAT WR

LCD WR

LOCK

A,#31H,CHK_LCD2

CLSl

DPTR,#LCD1_DAT WR

LCD WR

LOCK

A, #32H, LOCK

CLS2

DPTR,#LCD2_DAT WR

LCD WR

LOCK READ

LOCK_FLAG,CHK_CRD

CLSl

DPTR,#LOCK_STAT

A,@DPTR

HEX TO ASCII

DPTR,#LCD1_DAT_WR

LCD WR

CRD READ

CRD_FLAG,KYB

PAGE 24

ASSEMBLER CODE LISTING

;READ LOCK STATUS

;STATUS HASN'T CHANGED

CLR

LCALL

MOV

MOV

LCALL

MOV

LCALL

MOV

LCALL

LCALL

JNB

MOV

LCALL

LCALL

MOV

MOV

MOVX

LCALL

MOV

LCALL

,LASH:

DJNZ

DJNZ

LCALL

DRAW:

LCALL

R 3

CRD FLAG

CLSl

R2,#32

DPTR,#CRD_BUF

XDAT TO LCD BUF

DPTR,#LCD1_DAT_WR

LCD WR

A,#'K'

CHK_QUE

KYB READ

KEY_FLAG,CHK_FLASH

A,#'K'

ADD_QUE

CLSl

RO,#KEY_BUF

P2,#O

A,@RO

HEX TO DEC

DPTR,#LCD1_DAT WR

LCD WR

LED_COUNT1,CHK_DRAW

LED_COUNT2 , CHK_DRAW

LED FLASH

DRAWl READ

PAGE 25

ASSEMBLER CODE LISTING

iSETUP REGS, BEFORE CALLING XDAT

;READ DRAW STATUS

iDRAW OPEN, LED ON

iLED_ON

ASSEMBLER CODE LISTING

iREAD DRAW STATUS

iREAD DRAW STAT

LCALL DRAW2 READ

MOV DPTR,#DRAW_STAT

MOVX A,@DPTR

CJNE A,#Ol,EXITl

ORL LED_BUF+l,#Ol

SJMP EXIT START

ANL LED_BUF+l,#OEH iLED OFF

START:

LCALL

LCALL

LCALL

LJMP

CRK RX BUFFS

CHK RAM

CHK STACK

START

iCRK FOR STACK OVERFLOW

r*** *******************

r**

r**

MEM:

MOV

MOV

LOOP:

MOVX

INC

MOV

CJNE

MOV

CJNE

R 3

DPTR,#300H

A,#55H

@DPTR,A

DPTR

RO,DPH

RO,#lFH,FILL_LOOP

RO,DPL

RO,#OFFH,FILL_LOOP

PAGE 26

iSTART ADDRESS ABOVE ALLOCATED M~

iWRITE PATTERN TO RAM

ASSEMBLER CODE LISTING

RET

**

**

:NSURE THAT CMOS ABOVE ALLOCATED MEMORY STILL CONTAINS 55H, AND IS NOT *

:ORRUPTED *

1**

tl\M:

MOV DPTR,#300H ;START ADDRESS ABOVE ALLOCATED

COOP2 :

MOVX A,@DPTR ;READ PATTERN FROM RAM

CJNE A,#55H,RAM_ERR ;PATTERN NOT THE SAME

INC DPTR

MOV RO,DPH

CJNE RO,#lFH,RAM_LOOP2

MOV RO,DPL

CJNE RO,#OFFH,RAM_LOOP2

SJMP RAM EXIT

ERR:

MOV R3,DPL

MOV R4,DPH

MOV A,R4

INC A

LCALL SEND_BYTE

MOV A,R3

LCALL SEND_BYTE

"TER 3 PAGE 27

EXIT:

LCALL

MOV

MOV

MOVX

MOV

MOV

MOVX

LCALL

MOV

LCALL

MOV

LCALL

MOV

LCALL

RET

SEND

A,R3

DPTR,#LED_l

@DPTR,A

DPTR,#LED_2

A,R4

@DPTR,A

CLSl

DPTR,#MSG4

CODE TO LCD

DPTR,#LCD1_DAT_WR

LCD WR

COUNT,#ID

ERR BEEP

ASSEMBLER CODE LISTING

;SIT IN PERMANENT LOOP

~*** *******************

cPTER 3 PAGE 28

ASSEMBLER CODE LISTING

t***

=<ANSMIT A BYTE

~ ENTRY:

Ace = BYTE TO TRANSMIT

*

*

*
*

**

BYTE:

CLR

CLR

MOV

LCALL

SETB

RET

ES

P3.5

SBUF,A

WAIT

P3.5

jDISABLE SERIAL INTS

jENABLE DS3695

jDISABLE DS3695

k***~

**,

TRANSMIT A STRING OF DATA, DISABLE INTERRUPTS

ON ENTRY:

DPTR POINTS TO SOURCE ADDRESS

,**

,.

MOV

_LP1:

MOVX

LCALL

'TER 3

RO,#50

A,@DPTR

SEND BYTE

PAGE 29

INC

DJNZ

RET

DPTR

RO,SEND_LPl

ASSEMBLER CODE LISTING

k***

t***

ArT FOR A CERTAIN PERIOD OF TIME

N" ENTRY:

NOTHING

*
*

*
*

**

PUSH ACC

MOV A,RO

PUSH ACC

MOV A,Rl

PUSH ACC

MOV RO,#OFFH

MOV Rl,#OFH

l:

DJNZ RO,WAITl

MOV RO,#OFFH

DJNZ Rl,WAITl

POP ACC

MOV Rl,A

POP ACC

:ER 3 PAGE 30

MOV

POP

RET

RO,A

ACC

ASSEMBLER CODE LISTING

**

~**

ffiITE A PARTICULAR VALUE ONTO THE STACK WHICH IS CHECKED EACH TIME *

:HROUGH THE MAIN LOOP, IF THIS VALUE DOES CHANGE THE STACK IS GROWING *
ro HIGH AND A STACK OVERFLOW IS IMINENT *

IN ENTRY:

NOTHING

** ******************~

STACK CHK:

MOV

MOV

MOV

RET

RO,#STACK_END-10

A,#OAAH

@RO,A

;60 - 10 = STACK+50

,**

'**

CHECK IF THE STACK HAS GROWN BEYOND A CERTAIN POINT, lE STACK OVERFLOW

MIGHT OCCUR

ON ENTRY:

PTER 3 PAGE 31

NOTHING

ASSEMBLER CODE LISTING

*

_k***

,CK:

MOV

MOV

CJNE

S,JMp

E~:

LCALL

MOV

LCALL

MOV

LCALL

MOV

LCALL

EXIT:-

RET

RO,#STACK_END-IO

A,@RO

A,#OAAH,STACK_ERR

STACK EXIT

CLSl

DPTR,#MSG3

CODE_TO_LCD

DPTR,#LCD1_DAT_WR

LCD_WR

COUNT, #06

ERR_BEEP

;60 - 10 = STACK+50

;STACK OVERFLOW

;SIT IN PERMANENT LOOP

'~** ******************

PAGE 32

ASSEMBLER CODE LISTING

~***

~SFER DATA FROM EXTERNAL DATA INTO LCD BUF

N" ENTRY:

DPTR POINTS TO SOURCE BUFFER

R2 = # OF BYTES TO TRANSFER FROM XDATA TO LCD BUF

MAX BYTES TO TRANSFER == 32

*

*

*

*
*

*
**

TO LCD_BUF:

MOV

LP1:

MOVX

MOV

MOVX

INC

INC

DJNZ

MOV

MOV

MOVX

RET

RO,#LCD_BUF

A,@DPTR

P2,#0

@RO,A

RO

DPTR

R2,XDAT_LPi

A, #EOS

P2,#0

@RO,A

iREAD SOURCE BUFFER

iIN CONJUNCTION WITH MOVX RO/Ri

jWRITE TO LCD BUF

iIN CONJUNCTION WITH MOVX RO/Ri

~**

2,'0 82530 IS FULLY OPERATIONAL!!! ',3,0

2,'0 THE POWER AT POINT OF SALE',3,0

';2 :

2:

DB

DB

DB

'*TESTING CARD READERi*********',O

'TER 3 PAGE 33

TER 3

DB

DB

DB

DB

END

ASSEMBLER CODE LISTING

, STACK OVERFLOW @ STACK + 56 !!!',O

'MEMORY ERROR!!!',O

'PASSED MEM FILL',O

'INTERRUPT ERROR',O

PAGE 34

ASSEMBLER CODE LISTING

)l.ASM

INPUT_OUTPUT_MODULE_l

ALL I ° ROUTINES IN THIS MODULE

~*** *******************

rc INIT_HARDWARE, LCD_WR, CODE_TO_LCD, BEEP, TEST, KYB_READ

rc IDATA_TO_TEMP, HEX_TO_ASCII, HEX_TO_DEC, CLSl, CLS2, ERR BEEP

N DATA (ADDRl, ADDR2, BIN_ADDR, CRD_COUNT, QUE_COUNT)

N BIT (KEY_FLAG, LOCK_FLAG, DRAWl_FLAG, TX_BUF_FULL, RX_BUF_FULL)

N BIT (IS_DATA, RE_TX_FLAG, RX_DLE, TMOUT, CRD_FLAG, SCAN_FLAG)

N BIT (ENQJULL)

~ XDATA (LOCK_STAT, DRAWl_STAT, KEY_BUF, LCD_BUF,LED_BUF, REC_STAT)

'N XDATA (DRAW2_STAT)

m CODE (WAIT, INIT_SCAN)

r**

'TER 3

SEGMENT

RSEG

CODE

I ° 1 SEG

;RELOCATABLE CODE SEGMENT

PAGE 35

ASSEMBLER CODE LISTING

**

NITIALIZE HARDWARE

NITIALIZE VARIABLES IN EXTERNAL DATA MEMORY AFTER THE RAM TEST

B THE RAM TEST WILL OBVIOUSLY DESTROY THE VARIABLES

*
*

*
.**

HARDWARE:

COMMS:

SETB

SETB

MOV

MOV

MOV

ORL

SETB

Plo3

P3.5

TMOD,#20H

TLl,#O

THl,#OFBH

PCON,#80H

TRl

iDRAWER SOLENOID, GOES THRU 7404

;DS3695 RX MODE, GOES THRU 7404

;Tl 8 BIT AUTO RELOAD, MODE 2

iRELOAD VALUE FOR Tl

;BAUD RATE 4800, XTAL=9.216MHz

;DOUBLE BAUD RATE TO 9600

i START COUNTER 1

MOV

MOV

MOV

19.2 KBAUD

RCAP2H,#OFFH

RCAP2L,#OFIH

T2CON,#34H

iT2 COUNT

;T2 BAUD RATE GENERATOR

MOV

~ TIMERO:

'TER 3

SCON,#50H ;SERIAL CONTRL, MODE 1, 8 BIT UART

i1 START, 8 DATA, 1 STOP BIT

;TIMER 0 = MODE 1

iUSED FOR TIMEOUT PERIODS

;1 TIMER TICK = 1 MIC CYCLE =

PAGE 36

PAGE 37

COUNT, #03

@DPTR,A

A,@DPTR

A,#33H,TEST_ERR iTERMINAL WILL SIT IN PERMANENT LOOP

DPTR

R1,TEST_LOOPl

INIT LEDS

ORL

[NT:

SETB

SETB

CLR

ORL

CLR

RAM:

MOV

MOV

MOV

LOOP1:

MOVX

MOVX

CJNE

INC

DJNZ

SJMP

r ERR:

MOV

-TER 3

THOD,#Ol

EA

ETO

ES

IP,#lSH

TRO

DPTR,#O

R1,#OFFH

A,#33H

ASSEMBLER CODE LISTING

j12 CLOCK CYCLES, = 1/12 CLK FREQ

iXTAL = 9.216MHz, TICK = 1.3uSEC

iXTAL = 1.8MHz, TICK = 6.7uSEC

iCONTRL BY TRx, 16 BIT, TIMER

jENABLE ALL INTERRRUPTS

iENABLE TIMER 0 INT

iDISABLE SERIAL PORT INT

iINT PRIORITY, SERIAL & TO

iSTOP TIMER 0

jTEST LOWER 256 BYTES OF XDATA

iAS THE LCD BUF RESIDES IN THIS AREA

JAS OFFH IN LCD_BUFFER, NEVER FINDS

JEOS

iAND SITS IN LCD WR PERMANENTLY

iSTART ADDR

iTEST PATTERN

ASSEMBLER CODE LISTING

LCALL ERR BEEP

LEDS:

MOV A,#O

MOV DPTR,#LED_1

MOVX @DPTR,A

MOV A, #0

MOV DPTR,#LED_2

MOVX @DPTR,A

CLR TMOUT

LCD1:

MOV RO,#lFH iAT POWER UP, LCD IS INTENALLY BUSY

MOV DPTR,#LCD1_STAT iWAIT UNTIL THEY ARE READY

l:

CLR TRO i STOP TIMER 0

MOV THO,#O i USED FOR TIMEOUT LOOP

MOV TLO,#O

SETB TRO iSTART TIMER 0

3 :

'TER 3

MOVX

JB

JB

CLR

CLR

SJMP

CLR

DJNZ

A,@DPTR

TMOUT, WAIT3

ACC.7,WAIT2

TMOUT

TRO

WAIT LCD2

TMOUT

RO,WAITl

iREAD BUSY FLAG, LCD STAT

iTIMEOUT HAS OCCURRED

iLCD IS BUSY IF D7 = 1

iSTOP TIMER_O

iLCD OPERATING NORMALLY

PAGE 38

LCD2:

MOV

LCALL

COUNT, #02

ERR BEEP

ASSEMBLER CODE LISTING

iLCD ERROR HAS OCCURRED

iWAIT IN PERMANENT LOOP

I :

MOV

MOV

RO,#lFH iAT POWER UP, LCD IS INTENALLY BUSY

DPTR,#LCD2 STAT iWAIT UNTIL THEY ARE READY

5:

16 :

~ LCD:

TER 3

CLR

MOV

MOV

SETB

MOVX

JB

JB

CLR

CLR

SJMP

CLR

DJNZ

MOV

LCALL

MOV

MOV

MOV

MOVX

TRO

THO,#O

TLO,#O

TRO

A,@DPTR

TMOUT,WAIT6

ACC.7,WAIT5

TMOUT

TRO

INIT LCD

TMOUT

RO,WAIT4

COUNT, #02

ERR BEEP

RO,#LCD_BUF

P2,#0

A/#FUNCTION

@RO,A

iSTOP TIMER 0

jUSED FOR TIMEOUT LOOP

iSTART TIMER 0

iREAD BUSY FLAG, LCD STAT

iTIMEOUT HAS OCCURRED

iLCD IS BUSY IF D7 = 1

iSTOP TIMER_O

iLCD OPERATING NORMALLY

iLCD ERROR HAS OCCURRED

iWAIT IN PERMANENT LOOP

iIN CONJUNCTION WITH MOVX RO/Rl

iFUNCTION SET

PAGE 39

INC RO

MOV A,#O ;EOS

MOVX @RO,A

MOV DPTR,#LCDI_CMD WR

LCALL LCD WR

MOV DPTR,#LCD2 CMD WR-
LCALL LCD WR

ASSEMBLER CODE LISTING

MOV RO,#LCD_BUF

MOV P2,#O iIN CONJUNCTION WITH MOVX RO/RI

MOV A,#MODE iMODE SET

MOVX @RO,A

INC RO

MOV A,#O iEOS

MOVX @RO,A

MOV DPTR,#LCDI CMD WR-
LCALL LCD WR

MOV DPTR,#LCD2 CMD WR

LCALL LCD WR

MOV RO,#LCD_BUF

MOV P2,#O ;IN CONJUNCTION WITH MOVX RO/RI

MOV A,#DSP_ON OFF ;LCD ON

MOVX @RO,A

INC RO

MOV A,#O iEOS

MOVX @RO,A

TER 3 PAGE 40

MOV

LCALL

MOV

LCALL

LCALL

LCALL

MOV

LCALL

MOV

LCALL

:EST:

MOV

MOV

MOV

MOVX

INC

MOV

MOVX

MOV

LCALL

MOV

LCALL

MOV

LCALL

TER 3

DPTR,#LCD1_CMD_WR

LCD WR

DPTR,#LCD2_CMD WR

LCD WR

CLS1

CLS2

DPTR,#MSG1

CODE TO LCD

DPTR,#LCD2_DAT_WR

LCD WR

RO,#LCD_BUF

P2,#O

A,#CLR_DSP

@RO,A

RO

A,#O

@RO,A

DPTR,#LCD1_CMD WR

LCD WR

DPTR,#MSG3

CODE TO LCD

DPTR,#LCD1_DAT_WR

LCD WR

PAGE: 41

ASSEMBLER CODE LISTING

j32KBYTES X 8

jIN CONJUNCTION WITH MOVX ROjRl

jCLEAR DISPLAY & RESET CURSOR

jEOS

)OP1:

OOP2:

rER 3

MOV

MOV

MOV

MOV

MOVX

INC

DJNZ

MOV

DJNZ

MOV

MOV

MOV

MOVX

INC

CJNE

DJNZ

MOV

DJNZ

LCALL

MOV

LCALL

MOV

LCALL

SJMP

DPTR,#O

RO,#OFFH

Rl,#7FH

A,#33H

@DPTR,A

DPTR

RO,RAM_LOOPl

RO,#OFFH

Rl,RAM_LOOPl

DPTR,#O

RO,#OFFH

Rl,#7FH

A,@DPTR

DPTR

A,#33H,RAM_ERR

RO,RAM_LOOP2

RO,#OFFH

Rl,RAM_LOOP2

CLSl

DPTR,#MSG4

CODE TO LCD

DPTR,#LCD1_DAT_WR

LCD WR

INIT VARIABLES

PAGE 42

ASSEMBLER CODE LISTING

iSTART ADDRESS

iWRITE PATTERN TO RAM

i8000H LOCATIONS

iSTART ADDRESS

iREAD PATTERN FROM RAM

iPATTERN NOT THE SAME

i8000H LOCATIONS

:RR:

MOV

MOV

MOV

MOVX

INC

MOV

MOVX

MOV

LCALL

MOV

LCALL

MOV

LCALL

MOV

LCALL

VARIABLES:

CLR

CLR

CLR

CLR

CLR

CLR

CLR

CLR

CLR

CLR

TER 3

RO,#LCD_BUF

P2,#0

A,#CLR_DSP

@RO,A

RO

A,#O

@RO,A

DPTR,#LCDl_CMD WR

LCD WR

DPTR,#MSG2

CODE TO LCD

DPTR,#LCDl_DAT_WR

LCD WR

COUNT, #04

ERR BEEP

ENQ_FULL

ENQ_FLAG

REC FLAG

CRD ON OFF

QUE_FULL

QUE_FLAG

CRD FLAG

TMOUT

RX DLE

RE TX FLAG

PAGE 43

ASSEMBLER CODE LISTING

iIN CONJUNCTION WITH MOVX RO/Rl

iCLEAR DISPLAY & RESET CURSOR

iEOS

CLR

CLR

CLR

CLR

CLR

CLR

CLR

MOV

MOV

MOV

MOV

MOV

MOV

MOV

MOV

MOV

MOV

MOV

,OOPl:

MOV

MOVX

INC

DJNZ

(YB:

MOV

MOV

3

DRAWl FLAG

DRAW2 FLAG

IS DATA

KEY FLAG

LOCK FLAG

TX BUF FULL

RX BUF FULL

QUE_COUNT, #0

CRD_COUNT,#O

KEY_COUNT, #0

RX_MODE,#O

ADDRl,#O

ADDR2,#0

LED_COUNTl,#OFFH

LED_COUNT2,#09H

RO,#LED_BUF

Rl,#04

A,#O

P2,#O

@RO,A

RO

Rl,INIT_LOOPI

DPTR,#KYB_CMD

A,#24H

PAGE 44

ASSEMBLER CODE LISTING

jINIT LED BUF

jIN CONJUNCTION WITH MOVX RO/RI

jENCODED SCAN, 2 KEY LOCKOUT

jF= 333KHz. DIVIDE 1.8MHz CLK BY

j4

MOV

MOVX

:K ADDR STAT:

MOV

MOVX

MOV

MOVX

1 ADDR:

ANL

MOV

LCALL

MOV

LCALL

MOV

MOVX

MOV

DEC

MOVX

MOV

MOV

LCALL

C STAT:

MOV

MOV

MOV

RLC

3

A,#2EH

@DPTR,A

DPTR,#LOCK_JMP

A,@DPTR

DPTR,#LOCK_STAT

@DPTR,A

A,#OFH

BIN_ADDR,A

CLS1

A,BIN_ADDR

HEX TO DEC

DPTR,#LCD_BUF+3

A,@DPTR

ADDR2,A

DPL

A,@DPTR

ADDR1,A

DPTR,#LCD1_DAT WR

LCD WR

DPTR,#REC_STAT

A,#O

C,P!. 7

A

PAGE 45

ASSEMBLER CODE LISTING

;F= 1.6MHz. DIV 9.216MHz CLK BY

;15

iLOCK AND DIP SW ON SAME 'LS245

iREAD STATUS

iSTORE STATUS

iLS NIBBLE FOR DEVICE ADDR

i2 BYTE ASCII EQUIV IN LCD_BUF+3

iCOMMS PROTOCOL USES ASCII

;READ ADDR2

iREAD ADDR1

iCLOSED = 0, OPEN = 1

iINIT ACC

;READ REC STATUS

iACC CONTAINS 0/1

ASSEMBLER CODE LISTING

MOVX @DPTR,A jSAVE REC STATUS

H STAT:

MOV DPTR,#DRAW1_STAT jCLOSED = 0, OPEN = 1

MOV A,#O jINIT ACC

MOV C,Pl.4 jREAD DRAW STATUS

RLC A jACC CONTAINS 0/1

MOVX @DPTR,A jSAVE DRAW STATUS

~2 STAT:

MOV DPTR,#DRAW2_STAT" jCLOSED = 0, OPEN = 1

MOV A,#O jINIT Ace

MOV C,Pl.6 jREAD DRAW STATUS

RLC A jACC CONTAINS 0/1

MOVX @DPTR,A jSAVE DRAW STATUS

T SCAN:

CLR SCAN FLAG

LCALL INIT SCAN

M NUM:

LCALL CLS1

MOV DPTR,#MSG5

LCALL CODE TO LCD

MOV DPTR,#LCD_BUF+22

MOV A,ADDRl

MOVX @DPTR,A

INC DPTR

MOV A,ADDR2

MOVX @DPTR,A

3 PAGE 46

EXIT:

MOV

LCALL

LCALL

SETB

RET

DPTR,#LCD1_DAT_WR

LCD WR

BEEP

ES

ASSEMBLER CODE LISTING

iENABLE SERIAL INTERRUPT

a***

~**

. lEAD 8279 FOR KEYBOARD DEPRESSIONS *

'la:!!!!! *
'OR CASES WHERE A 1 BYTE REGISTER IS USED INSTEAD OF THE DPTR *
'OR EXTRENAL DATA TRANSFERS, THE ADDRESS AREA IS ONLY 256 BYTES *
,0 IS THE LOWER 8 BIT ADDRESS, P2 IS THE HIGHER 8 BIT ADDR *
,IRST WRITE 00 TO P2, BEFORE WR/RD FROM EXTERNAL DATA SPACE *
lO IS USED TO ACCESS KEY BUF IN EXTRENAL DATA *
lEY COUNT MUST BE ADDED TO KEY BUF TO GET CORRECT OFFSET, KEY COUNT *
IDST ONLY BE CLEARED ONCE THE KEY BUF HAS BEEN EMPTIED *

mEN KEY BUF IS FULL, SET A FLAG *

*
·lEY FLAG INDICATES KEY VALUE IN KEY_BUF *

lEAD:

I:ER 3

PUSH

PUSH

DPL

DPH

PAGE 47

ASSEMBLER CODE LISTING

QUE_FULL, DUMMY_READ

A, KEY_COUNT

,oap1 :

JB

MOV

CJNE

SJMP

IRQ:

JNB

MOV

MOVX

ANL

JZ

MOV

MOVX

ANL

JNZ

MOV

MOVX

MOV

MOVX

MOV

MOVC

MOV

MOV

MOV

ADO

A, #08, CHK_IRQ

DUMMY READ

INTO,KYB_EXIT

DPTR,#KYB_CMD

A,@DPTR

A,#OFH

KYB EXIT

DPTR,#KYB_CMD

A,@DPTR

A,#30H

KYB ERR

A,#50H

@DPTR,A

DPTR,#KYB_DAT

A,@DPTR

DPTR,#KEY_TAB

A,@A+DPTR

DPTR,#KEY_BUF

B,A

A,DPL

A, KEY_COUNT

iCHK IF KEY BUF IS FULL

iIF 8279 IRQ 'L', NO KEY DEPRESSED

iREAD 8279 STATUS

iNUMBER OF KEYS IN FIFO, BUFFER FULL

iIF ACC = 0, THEN NO KEYS IN FIFO

iREAD STATUS

iCHECK OVER/UNDERRUN FLAG

i1 OF THE 2 BITS WAS SET

iWR TO 8279, ALLOWING US TO READ FIFO

iREAD FIFO

iREADING FIFO

iCONVERT RAW KEY VALUE

iSTORE CONTENTS OF ACC

iLOWER ADDR OF KEY BUF

iEVERY KEY, INCREASE OFFSET TO

ER 3 PAGE 48

lUF

ASSEMBLER CODE LISTING

i

I.ERR :

EXIT:

MOV

MOV

MOVX

SETB

INC

LCALL

SJMP

MOV

SJMP

JNB

MOV

MOV

MOVX

MOV

MOVX

POP

POP

RET

DPL,A

A,B

@DPTR,A

KEY FLAG

KEY COUNT

BEEP

KYB LOOPl

KEY_COUNT, #0

KYB EXIT

INTO , KYB_EXIT

DPTR,#KYB_CMD

A,#50R

@DPTR,A

DPTR,#KYB_DAT

A,@OPTR

DPH

DPL

iOFFSET ADDR OF KEY BUF

iRESTORE A

iWRITE KEY_VAL TO KEY BUF

iKEY DATA AVAILABLE

iCOUNT # OF KEYS IN BUFFER

iRD NEXT KEY DEPRESSION

jIF 8279 IRQ 'L', NO KEY DEPRESSED

iREAD STATUS

jWR TO 8279, ALLOWING US TO READ FIFO

jREAD FIFO

iREADING FIFa

H**

ITER 3 PAGE 49

ASSEMBLER CODE LISTING

CONVERT HEX VALUE INTO ITS DECIMAL ASCII EQUIVALENT.

ON ENTRY:

ACC = BYTE TO BE CONVERTED

*

*
*

*

TO_DEC:

MOV Rl,A

MOV RO, #LCD_BUF+3

MOV A,#SPACE

MOV P2,#0

MOVX @RO,A

DEC RO

MOV P2,#0

MOVX @RO,A

DEC RO

MOV P2,#0

MOVX @RO,A

DEC RO

MOV P2,#0

MOVX @RO,A

iSAVE ACC

iIN CONJUNCTION WITH MOVX RO/Rl

iIN CONJUNCTION WITH MOVX RO/Rl

iIN CONJUNCTION WITH MOVX RO/Rl

iIN CONJUNCTION WITH MOVX RO/Rl

iCLEAR OLD DATA FROM LCD BUF

MOV

MOV

MOV

MOVX

DEC

RO, #LCD_BUF+4

A,#EOS

P2,#0

@RO,A

RO

iIN CONJUNCTION WITH MOVX RO/Rl

?TER 3 PAGE 50

JP1 :

ASSEMBLER CODE LISTING

MOV

MOV

DIV

ORL

MOV

MOV

MOV

MOVX

DEC

MOV

SUBB

MOV

JNC

ORL

MOV

MOVX

RET

B,#10

A,R1

AB

B,#30H

R1,A

A,B

P2,#0

@RO,A

RO

A,R1

A,#09

A,R1

H LOOPl

A,#30H

P2,#0

@RO,A

iDIVIDE ACC BY 10

iRESTORE ACC

iREMAINDER IN B

iASCII NUMBER

iSAVE ACC

iIN CONJUNCTION WITH MOVX RO/Rl

iWRITE TO LCD BUFF

iRESTORE ACC

iCHK IF QUOTIENT < 10

iIN CONJUNCTION WITH MOVX RO/Rl

THIS ROUTINE CONVERTS A HEX BYTE INTO ITS 2 BYTE ASCII EQUIV + EOS. *

MOVE INTO ACC THE SOURCE BYTE OF THE HEX VALUE TO BE CONVERTED *

THE STRING WILL BE WRITTEN TO LeD_BUF, WITH E08. *

*
ON ENTRY:

TER 3 PAGE 51

*

ACC = BYTE TO BE CONVERTED

ASSEMBLER CODE LISTING

*

PAGE 52

TO_ASCII:

MOV

MOV

MOVX

DEC

SWAP

ANL

ADD

MOV

CLR

MOV

SUBB

MOV

JNC

ADD

LOOPI:

MOV

MOVX

INC

MOV

MOVX

ANL

ADD

MOV

CLR

..
ER 3

RO,#LCD_BUF+I

P2,#O

@RO,A

RO

A

A,#OFH

A,#30H

RI,A

C

A,#39H

A,RI

A,RI

HEX LOOPI

A,#07

P2,#O

@RO,A

RO

P2,#O

A,@RO

A,#OFH

A,#30H

RI,A

C

iDESTINATION BUFFER

iIN CONJUNCTION WITH MOVX Ra/RI

iWR TO LCD BUF+I

iCHECK FOR ALPHA CHAR

iA = NUMERIC CHAR

iA = ALPHA CHAR

iIN CONJUNCTION WITH MOVX Ra/RI

iWRITE LCD_BUF

iBACK AT LCD_BUF+I

iIN CONJUNCTION WITH MOVX Ra/RI

iREAD LCD BUF+I

iRI USED FOR SUBB

iCHECK FOR ALPHA CHAR

MOV

SUBB

MOV

JNC

ADD

LOOP2 :

MOV

MOVX

INC

MOV

MOV

MOVX

RET

A,#39H

A,RI

A,RI

HEX LOOP2

A,#07

P2,#O

@RO,A

RO

P2,#O

A,#EOS

@RO,A

ASSEMBLER CODE LISTING

iALPHA CHAR

iIN CONJUNCTION WITH MOVX RO/RI

iWRITE LCD BUF+I

iIN CONJUNCTION WITH MOVX RO/RI

**

**

WRITE TO LCD DISPLAY, DISPLAY CONTENTS OF LCD BUF

ON ENTRY:

DPTR = LCD ADDRR lE LCDl / LCD2

*
*
*
*

L'**

WR:

LCD_ERR,END_LCD_WR

RO,#LCD_BUF

'LOOP1:

'ER 3

JB

MOV

MOV COUNT,#1 iINIT COUNTER

PAGE 53

LOOP6 :

PUSH

ASSEMBLER CODE LISTING

DPL

LOOP2 :

CLR

MOV

MOV

MOV

SETB

TRO

THO,#O

TLO,#O

DPL,#01

TRO

iSTOP TIMER 0

iUSED FOR TIMEOUT LOOP

iREAD LCD ADDR X0001H

iSTART TIMER 0

LOOP3 :

'ER 3

MOVX

JB

JB

CLR

POP

MOV

MOVX

CJNE

SJMP

MOVX

MOV

CJNE

MOV

DJNZ

MOV

DJNZ

A,@DPTR iREAD BUSY FLAG, LCD STAT

TMOUT, LCD_ ERR1 i TIMEOUT HAS OCCURRED

ACC.7,LCD_LOOP2 iLCD IS BUSY IF D7 = 1

TRO iSTOP TIMER_O

DPL iRESTORE ORIGINAL ADDRESS

P2,#O iIN CONJUNCTION WITH MOVX RO/R1

A,@RO iREAD LCD BUFFER

A,#EOS,LCD_LOOP3

END LCD WR iEOS FOUND, THEREFORE EXIT

@DPTR,A iWRITE TO DISPLAY

A,#16 iAFTER 16 CHARS, WRITE TO LINE #2

A, COUNT, LCD_LOOP4

R7,#OFFH

R7,$

R7,#OFFH

R7,$

PAGE 54

ASSEMBLER CODE LISTING

MOV A,#LINE_2

PUSH DPL

MOV DPL,#O iWRITE LCD XOOOH CMD WR

MOVX @DPTR,A

POP DPL iRESTORE ORIGINAL ADDRESS

MOV R7,#OFFH

DJNZ R7,$

MOV R7,#OFFH

DJNZ R7,$

SJMP LCD LOOPS

A, COUNT, LCD_LOOP5

A,#LINE_1

DPL

LOOP4 :

MOV

CJNE

MOV

PUSH

MOV

MOVX

POP

LOOPS:

INC

INC

SJMP

-ERR1:

POP

-TER 3

A,#32

DPL,#O

@DPTR,A

DPL

RO

COUNT

LCD LOOP1

DPL

iAFTER 32 CHARS, WRITE TO LINE #1

iWRITE LCD XOOOH CMD WR

iRESTORE ORIGINAL ADDRESS

iNEXT CHARACTER TO DISPLAY

iMUST POP OFF STACK, ELSE THE

iWRONG VALUE IS ON THE STACK

iFOR THE NEXT INSTRUCTION

PAGE 55

,CD_WR:

MOV

LCALL

RET

COUNT,#02

ERR BEEP

ASSEMBLER CODE LISTING

~**

.**

:LEAR LCD #1

18: THIS ROUTINE OVERWRITES LCD BUF

*

*
'**

MOV RO,#LCD_BUF

MOV P2,#O iIN CONJUNCTION WITH MOVX RO/Rl

MOVX A,@RO

PUSH ACC iSAVE FIRST 2 BYTES OF LCD BUF

INC RO

MOVX A,@RO

PUSH ACC

MOV RO,#LCD_BUF

MOV A,#CLR_DSP

MOVX @RO,A

INC RO

MOV A,#O

MOVX @RO,A

MOV DPTR,#LCDl_CMD WR

:ER 3 PAGE 56

iCLEAR DISPLAY & RESET CURSOR

i EOS

LCALL

MOV

MOV

POP

MOVX

DEC

POP

MOVX

RET

LCD WR

RO,#LCD_BUF+I

P2,#O

ACC

@RO,A

RO

ACC

@RO,A

ASSEMBLER CODE LISTING

iIN CONJUNCTION WITH MOVX RO/RI

~**

,**

:LEAR LCD #2

,B: THIS ROUTINE OVERWRITES LCD BUF

*
*

'**

MOV RO,#LCD_BUF

MOV P2,#O iIN CONJUNCTION WITH MOVX RO/RI

MOVX A,@RO

PUSH ACC iSAVE FIRST 2 BYTES OF LCD BUF

INC RO

MOVX A,@RO

PUSH ACC

ER 3

MOV

PAGE 57

;EOS

MOV P2,#O

MOV A,#CLR_DSP

MOVX @RO,A

INC RO

MOV A,#O

MOVX @RO,A

MOV DPTR,#LCD2 CMD WR

LCALL LCD WR

ASSEMBLER CODE LISTING

;IN CONJUNCTION WITH MOVX RO/RI

;CLEAR DISPLAY & RESET CURSOR

MOV

MOV

POP

MOVX

DEC

POP

MOVX

RO,#LCD_BUF+I

P2,#O

ACC

@RO,A

RO

ACC

@RO,A

;IN CONJUNCTION WITH MOVX RO/RI

RET

.**

rER 3 PAGE 58

ASSEMBLER CODE LISTING

rRANSFER DATA FROM CODE AREA TO EXTERNAL DATA INTO LCD BUF

fIRST SETUP SOURCE REGISTERS = DPTR

*

*
*

:IN ENTRY:

DPTR POINTS TO SOURCE BUFFER

*

*

iREAD CODE

iENSURE THAT EOS IS ADDED INTO BUFFER

iIN CONJUNCTION WITH MOVX RO/Rl

iDESTINATION REGISTER

iWRITE TO INTERNAL DATA SPACE

iIN CONJUNCTION WITH MOVX RO/Rl

RO,#LCD_BUF

A,#O

A,@A+DPTR

P2,#O

@RO,A

RO

DPTR

A,#EOS,CODE_LOOPl

A,#O

P2,#O

@RO,A

TO LCD:

MOV

LOOPl:

MOV

MOVC

MOV

MOVX

INC

INC

CJNE

MOV

MOV

MOVX

RET

ER3 PAGE 59

ASSEMBLER CODE LISTING

r**

,RANSFER DATA FROM INTENAL DATA AREA TO INTERNAL DATA INTO TEMP BUF *

*
IN ENTRY:

Rl POINTS TO SOURCE ADDRR

*
*

r**

RO

Rl

A,#EOS,IDATA_LOOPl

\ TO TEMP:

MOV

\ LOOP1:

MOV

MOV

INC

INC

CJNE

RET

RO,#TEMP_BUF

A,@Rl

@RO,A

;DESTINATION REGISTER

;READ SOURCE BUFFER

;WRITE TO INTERNAL DATA SPACE

~*** *******************

t**

3EEP THE BUZZER *
k*** *******************

fER 3

PUSH

PUSH

MOV

MOVX

POP

DPL

DPH

DPTR,#BUZZER

@DPTR,A

DPH

PAGE 60

POP

RET

DPL

ASSEMBLER CODE LISTING

~**************

WRITE A CERTAIN VALUE TO LEDS

ON ENTRY:

ACC = VALUE TO WRITE TO LEDS

*

*
*

*

rER 3

PUSH

PUSH

MOV

PUSH

MOV

MOVX

JNB

JB

POP

MOV

POP

POP

DPL

DPH

B,P2

B

DPTR,#LED_2

@DPTR,A

Plo 6, $

Plo 6, $

B

P2,B

DPH

DPL

iWAIT FOR 'H'

iWAIT FOR 'L'

PAGE 61

ASSEMBLER CODE LISTING

RET

BEEP THE BUZZER TO INDICATE A PARTICAULAR ERROR. COUNT CONTAINS

OF TIMES TO BEEP.

2 BEEPS = LCD ERROR

3 BEEPS = RAM ERROR, LOWER 256 BYTES

4 BEEPS = .RAM ERROR, SOMEWHERE IN THE 32K BLOCK

5 BEEPS = ROM ERROR

6 BEEPS = STACK OVERFLOW

)N ENTRY:

COUNT = # OF BEEPS

*

*

*

*
*

*

*
*
*

~**

JEEP:

,OOP1. :

LCALL

MOV

MOV

,OOP2 :

DJNZ

MOV

DJNZ

DJNZ

JMP

ER 3

BEEP

RO,#OFFH

R1.,#OFFH

RO,ERR_LOOP2

RO,#OFFH

R1.,ERR_LOOP2

COUNT, ERR_LOOP1.

$

PAGE 62

i*******SIT IN PERMANENT LOOP

ASSEMBLER CODE LISTING

RET

TEST LCDl *

@RO,A

RO

A

Rl,T_LOOPl

CLSl

DPTR,#LCD1_DAT WR

LCD WR

IT_LCD1:

MOV

MOV

MOV

MOV

I~OOPl :

MOVX

INC

INC

DJNZ

LCALL

MOV

LCALL

RO,#LCD_BUF

Rl,#20H

A,#41H

P2,#O ;IN CONJUNCTION WITH MOVX RO/Rl

RET

I~** **********************

PAGE 63

ASSEMBLER CODE LISTING

**

TEC 72 KEY KEYBOARD, FOR H.KEOWN'S (V1.0) INTELLIGENT TERMINAL *
'**

: TAB:

DB 00,04,13,22,31,54,45,27,00,03 ;00 09

DB 12,21,30,53,44,26,00,19,46,65 ;10 19

DB 56,38,47,39,00,00,00,00,00,00 ;20 29

DB 00,00,00,00,00,00,00,00,00,00 i30 39

DB 00,02,11,20,29,50,41,23,00,10 ;40 - 49

DB 37,55,66,51,42,24,00,01,28,64 ;50 59

DB 67,52,43,25,36,18,09,63,72,00 ;60 - 69

DB 00,00,35,17,08,62,71,00,00,00 ;70 79

DB 40,48,49,58,57,00,00,00,00,00 ;80 - 89

DB 00,00,00,00,00,00,00,00,00,00 ;90 99

DB 00,00,00,00,32,14,05,59,68,00 ;100 109

DB 00,00,33,15,06,60,69,00,00,00 ;110 119

DB 34,16,07,61,70,00,00,00 i120 129

1***

1***

1 TEC 84 KEY KEYBOARD, ITALIAN KEYBOARD *
.***

KEY TAB:

DB 00,00,00,00,00,00,00,00,84,83 ;00 09

DB 82,81,79,80,78,76,36,35,34,33 i10 19

DB 31,32,30,28,24,23,22,21,19,20 ;20 29

,PTER 3 PAGE 64

ASSEMBLER CODE LISTING

DB 18,16,12,11,10,09,07,08,06,04 ;30 39

DB 48,47,46,45,43,44,42,40,60,59 ;40 49

DB 58,57,55,56,54,52,72,71,70,69 ;50 59

DB 67,68,66,64,00,00,00,00,00,00 ;60 69

DB 00,00,77,75,74,73,00,00,00,00 ;70 79

DB 29,27,26,25,00,00,00,00,17,15 ;80 89

DB 14,13,00,00,00,00,05,03,02,01 ;90 99

DB 00,00,00,00,41,39,38,37,00,00 ;100 - 109

DB 00,00,53,51,50,49,00,00,00,00 ;110 - 119

DB 65,63,62,61,00,00,00,00 ; 120 129

[J** ************************,,
!i
'I
'!
~*** ***********************
~
)

; ;
KEY TEMPLATE:

DB 00,00,00,00,00,00,00,00,00,00 JOO 09

DB 00,00,00,00,00,00,00,00,00,00 j10 19

DB 00,00,00,00,00,00,00,00,00,00 ;20 29

DB 00,00,00,00,00,00,00,00,00,00 ;30 39

DB 00,00,00,00,00,00,00,00,00,00 ;40 49

DB 00,00,00,00,00,00,00,00,00,00 ;50 59

DB 00,00,00,00,00,00,00,00,00,00 ;60 69

DB 00,00,00,00,00,00,00,00,00,00 j70 79

DB 00,00,00,00,00,00,00,00,00,00 ;80 89

DB 00,00,00,00,00,00,00,00,00,00 j90 99

DB 00,00,00,00,00,00,00,00,00,00 j100 109

DB 00,00,00,00,00,00,00,00,00,00 ;110 119

RI!APTER 3 PAGE 65

ASSEMBLER CODE LISTING

DB 00,00,00,00,00,00,00,00 ;120 - 129

a***,
,I

'**

DB '*ADS* THE POWER AT POINT OF SALE',O

DB , THE POWER AT POINT OF SALE' ,0

DB '******RAM ERROR AT POWER-UP*****' ,0

DB , PERFORMING RAM TEST , ,0

DB 'PASSED RAM TEST! , ,0

DB 'PASSED RAM TEST! TERM # Vl.2' ,0

r'!SGl:

ISGl:
J
,\

lSG2 :
I
J

ISG3 :

I
ISG4 :
!
ISG5 :

I
I
!INCLUDE (EQUATES. ASM)

END

IPTER 3 PAGE 66

1
ASSEMBLER CODE LISTING

i. 102.ASM

rhME
,

'j

INPUT OUTPUT MODULE 2- -

ALL I 0 ROUTINES IN THIS MODULE

j
'**
J:

WBLIC LED_ON_OFF, LED_FLASH, LOCK_READ, DRAWl_READ, DRAWl_OPEN, eRD READ

"JBLIC DRAW2_READ, DRAW2_OPEN, WAIT, REC READ

lITRN XDATA (LOCK_STAT, DRAWl_STAT, KEY_BUF, RX_BUF, TX BUF, LED_BUF,
'I

$D_BUF)
~]
--RN XDATA (REC_STAT, DRAW2_STAT, LCD_BUF)

~TRN CODE (INIT_HARDWARE, LCD_WR, CODE_TO_LCD, BEEP, TEST, KYB_READ)

TRN CODE (IDATA_TO_TEMP, HEX_Ta_ASCII, HEX_TO_DEC, CLSl)

;t***

CHAPTER 3,
j

SEGMENT

RSEG

CODE

I 0 2 SEG- --

iRELOCATABLE CODE SEGMENT

PAGE 67

*

I ASSEMBLER CODE LISTING
I
~*** ***********************

L TRANSFER CARD DATA VIA A PORT PIN. WHEN DATA IS AVAILABLE, DATA

i* LINE IS TAKEN 'L' TO INFORM HOST THAT DATA lA AVAILABLE. DATA IS THEN

1* CLOCKED OUT ON THE FALLING EDGE OF THE CLOCK. TRANSFER 1 BYTE FOR THE

I. STATUS AND 37 BYTES FOR CARD DATA

!* 38 BYTES X 8 BITS = 304 CLOCK PULSES. LSB IS TRANSFERED FIRST.

1* IF THERE'S AN ERROR IN READING THE CARD, THEN ONLY THE STATUS BYTE

1* IS TRANSFERED TO THE HOST.
I
1* P3.3 = SERIAL CARD DATA FROM CARD READER TO HOST.
i
1* P3.4 = SERIAL DATA CLOCK FROM HOST TO CARD READER.
1
i*
,I
i* ON ENTRY:

*
*

*
*

*

*
*
*

*

*
i.*,
.*,
)* ON EXIT:

NOTHING *
*
*

CRD BUF CONTAINS DATA FROM CARD READER *
i**
1
':RD READ:

JB

MOV

MOV

LCALL

MOV

MOVX

INC

CJNE

MOV

P3.3,CRD_EXIT

CRD_COUNT, #01

RO,#CRD_BUF

SER DATA

P2,#0

@RO,A

RO

iLINE 'H', NO DATA AVAIALBLE

iDEFAULT TO 1 BYTE IN CRD BUF

iACC = BYTE READ FROM PORT

iIN CONJUNCTION WITH MOVX Ra/Ri

iSAVE STATUS BYTE

iCHK STATUS BYTE, Ol=OK OFFH=BAD

iUSED IN CHK TX BUFFS

::l!APTER 3

j

PAGE 68

MOV

,D LPI:-
LCALL

MOV

MOVX

INC

DJNZ

I
',D LP2 :
1

-
JNB

SETB

l.lD EXIT:
I -

RET

RI,#37

SER DATA

P2,#0

@RO,A

Ra

CRD FLAG

ASSEMBLER CODE LISTING

i37 DATA BYTES TO TRANSFER

iACC = BYTE READ FROM PORT •

iIN CONJUNCTION WITH MOVX Ra/RI

iSAVE CARD DATA

iREAD 40 BYTES OF CARD DATA

iO = OFF, I = ON

iSTILL NEED TO TX STATUS BYTE

**

I
**

* READ I BYTE FROM P3.3, CLOCK ON P3.4

*
I
* 1 M/ C CYCLE = 1. 3 uSEC. ALLOW FOR 20 M/ C CYCLES FOR THE BIT
I* TRANSMISSION LOOP. ALLOW 100 uSEC FROM CLK 'H' TO CLK 'L ' AND

* ALSO 100 uSEC FROM THE TIME THE BIT IS READ TILL THE NEXT CLOCK

1* TRANSISSION

1*

,* ON ENTRY:

NOTHING

i* ON EXIT:

*
*
*
*

*
*

*
*
*

*
*

'!fAPTER 3 PAGE 69

ASSEMBLER CODE LISTING

*Ace = BYTE READj
,*,
i
~**

~R DATA:- -
MOV R2,#08 i8 BITS

CLR A

SETB P3.4 iCLK 'H'

LCALL WAIT

CLR P3.4 iCLK 'L', READ DATA ON FALLING EDGE

LCALL WAIT

SETB P3.3 iSET BIT AS AN INPUT

MOV C,P3.3

RRC A

DJNZ

SETB P3.4 iSET CLK 'H'

RET

,**

RAFTER 3 PAGE 70

ASSEMBLER CODE LISTING

ACC,#30

ACCPUSH

MOV

.~** ***********************
";

~
- IT:

L",,,
DJNZ ACC,WAIT_LP1

I :: ACC

1***

1
~***
~

~***

MOV R1,#8
I

LPl:

MOVX A,@DPTR

LCALL TEST

INC DPTR

DJNZ R1,T_LP1

RET

:**

I

'l!APTER 3 PAGE 71

*

*

I ASSEMBLER CODE LISTING

.1••**

1
'ITHE ASCII STRING THAT WE RECEIVE WILL HAVE 8 BYTES FOR LED ON/OFF AND

i
.jLED FLASH. THESE 8 BYTES ARE COMPRESSED INTO 4 BYTES, AND PLACED IN,
·iLED_BUF.,
, I
.iTHE LED BUFFER HAS 8 BYTES, THE FIRST 4 INDICATES WHETHER THE LED IS,

*
*

I

.i0N/OFF, THE NEXT 4 BYTES IS WHETHER THE LED SHOULD FLASH OR NOT. FIRST *,
*iLOGICALLY AND OFF THE MSNIBBLE OF EACH BYTE, THEN COMPRESS THE 2 BYTES

.1 INTO 1. BYTE. WE ARE THEREFORE LEFT WITH 2 BYTES FOR LED ON/OFF AND 2,

*
*

.' BYTES FOR LED FLASH.

.iRO WILL BE USED TO READ FROM RX BUF (8 BYTES)

*
*

*

RX BUF CONTAINS 8 BYTES, FIRST 4 INDICATES IF THE LEDS WILL *

THE LS NIBBLE OF EACH BYTE REPRESENTS 4 LEDS, WE HAVE TO *

LED ON/OFF AND FLASH BITS HAVE TO BE '1.' FOR THE ASSOSIATED *
LED TO FLASH. LED ON/OFF = '1.' MEANS LED IS PE~ENTLY ON *

*

*
*

*
*

*

BE ON/OFF AND THE NEXT 4 IF THE LEDS WILL FLASH. BOTH

MESSAGE FORMAT:

THE DATA IN LED BUF. SWITCH ON THE RELEVANT LEDS.

, I

.jRl WILL BE USED TO WRITE TO LED BUF (4 BYTES)

~j
1/, ,il TRANSFER 8 BYTES FROM RX_BUF, COMPRESS THIS INTO 4 BYTES, AND PLACE

it;
, J

I
'I.'I~ I

:' \
..1

.I,
i

t,
!,.'I
I

t,

lt:
I

ADD 30H TO THE BYTE SO THAT THE RX ROUTINE DOESN'T CONFFUSE *
THIS WITH A CONTROL CHAR. AFTER RECIEVING THE MESSAGE 30H *

t'

1.'1,
I•I

..I
J

i, ~

I!APTER 3
f 1
j

IS STRIPPED FROM THE BYTE, AND 2 BYTES CAN BE COMPRESSED

INTO 1. BYTE, THEREBY REPRESENTING 8 LEDS.

LED BUF THEREFORE ONLY REQUIRES 4 BYTES, 2 = LED ON/OFF

AND 2 FOR LED FLASH

PAGE ,72

*

*
*
*

1
I

1 ASSEMBLER CODE LISTING
, ~
i.t**
! 1
: I
IEo_ON_OFF:

LED FLAG

DPTR,#RX_BUF+2 iREAD RX DATA, EXCLUDE I/O, TYPE #

; 1
! 1
l J

I :,
! i
; 1

[J
[j
[:i

I j, ~

f. j

i j, ,
r j

I !
Ii

t, !
~ [

CLR

MOV

MOV

MOV

MOVX

ANL

MOV

MOVX

DEC

INC

MOVX

ANL

SWAP

MOV

MOV

MOVX

ORL

MOV

MOVX

INC

INC

Rl,#LED_BUF

COUNT,#8

A,@DPTR

A,#OFH

P2,#O

@Rl,A

COUNT

DPTR

A,@DPTR

A,#OFH

A

B,A

P2,#O

A,@Rl

A,B

P2,#O

@Rl,A

DPTR

Rl

iBUFFER ADDR

i8 BYTE LED BUFFER COUNTER

iREAD RX BUF

iMASK OFF MS NIBBLE

iIN CONJUNCTION WITH MOVX RO/Rl

iLOWER 4 BITS INTO LED BUF

iBYTE COUNTER

iNEXT BYTE IN COMBUF

iREAD RX BUF

iMASK OFF MS NIBBLE

iSHIFT LEFT BY 4 BITS

iSAVE ACC

iIN CONJUNCTION WITH MOVX RO/Rl

iOR NEXT NIBBLE

iIN CONJUNCTION WITH MOVX RO/Rl

iRESULT INTO LED BUF

jWRITE TO NEXT ADDR

i: j
, .J

!, ~
, ,j

1 J

i ~

~PTER 3
~ ;
~ i

ij
11

DJNZ COUNT,LED_LOOP iNEXT BYTE

iTRANSFER FROM 8 BYTE RX BUF

iINTO 4 BYTE LED BUF COMPLETE

PAGE 73

MOV

MOV

MOVX

MOV

MOV

MOVX

ANL

MOVX

P2,#0

RO,#LED_BUF

A,@RO

B,A

RO,#LED_BUF+2

A,@RO

A,B

@RO,A

ASSEMBLER CODE LISTING

iIN CONJUNCTION WITH MOVX RO/Rl

iTHERE ARE CASES WHEN LED ON/OFF

iBIT=O

iAND FLASH=l,FIRST AND RELEVANT BYTES

iAND BYTES 1 & 3. THEREFORE ENSURE

iTHAT IF LED ON/OFF = 0, LED IS OFF

iIRRESPECTIVE OF LED FLASH BIT

iSTORE RESULT AT BYTE 3 LOCATION

MOV RO,#LED_BUF+l

MOVX A,@RO iREAD LED_BUF, BYTE 2

MOV B,A

MOV RO,#LED BUF+3-
MOVX A,@RO iREAD LED_BUF, BYTE 4

ANL A,B

MOVX @RO,A iSTORE RESULT AT BYTE 4 LOCATION

iIMMEDIATELY AFTER RECEPTION, WRITE

iTO LEDS

MOV RO,#LED_BUF

MOVX A,@RO iREAD LED BUF

MOV DPTR,#LED_1

MOVX @DPTR,A iOUTPUT LED STATUS TO PORT.
INC RO

MOVX A,@RO iREAD LED BUF+l

MOV DPTR,#LED_2

'APTER 3 PAGE 74

MOVX

MOV

MOV

RET

@DPTR,A

ASSEMBLER CODE LISTING

iOUTPUT LED STATUS TO PORT

iTHIS WILL CAUSE MAIN LOOP TO

iCALL LED FLASH

**

**

MAIN PROGRAM LOOP WILL CHECK LED_LOOP BYTE, AND WILL UPDATE THE LEDS *
AFTER A CERTAIN PERIOD OF TIME. THIS WILL CREATE THE FLASHING EFFECT *

~**~*****

b FLASH:

MOV P2,#O iIN CONJUNCTION WITH MOVX RO/R1

MOV R1,#LED_BUF

MOVX A,@R1 iBYTE 1, LED ON/OFF

MOV B,A

INC R1

INC R1 iBYTE 3, LED FLASH

MOVX A,@R1 iREAD BYTE 3 FLASH

XRL A,B iXOR BYTES 1 AND 3

MOV R1,#LED_BUF

MOVX @R1,A iSAVE RESULT OF XOR

MOV DPTR,#LED_1

MOVX @DPTR,A

INC R1 iBYTE 2, LED ON/OFF

MOV P2,#O iIN CONJUNCTION WITH MOVX RO/R1

'PTER 3 PAGE 75

ASSEMBLER CODE LISTING

iBYTE 2, LED ON/OFF

iRESULT OF XOR

iBYTE 4, LED FLASH

Rl,#LED_BUF+l

@Rl,A

DPTR,#LED_2

@DPTR,A

LED_COUNT1,#OFFHiUPDATE LEDS COUNTER

LED_COUNT2,#OFH i1.8MHz XTAL

LED_COUNT2,#09H i9.216MHz XTAL

A,@Rl

B,A

Rl

Rl

A,@Rl

A,B

MOVX

MOV

INC

INC

MOVX

XRL

MOV

MOVX

MOV

MOVX

MOV

MOV

MOV

RET

f**

PTER 3 PAGE 76

ASSEMBLER CODE LISTING

**

READ LOCK STATUS, IF IT CHANGES, SET LOCK FLAG. STORE STATUS OF LOCK IN *
LOCK_STAT *

t**

DPTR,#LOCK_STAT iREAD PREVIOUS STATUS

A,@DPTR

DPTR,#LOCK_JMP iREAD CURRENT LOCK AND JUMPER STATUS

A,@DPTR

CK_READ:

MOV

MOVX

MOV

MOV

MOVX

CJNE

SJMP

:K1 :

MOV

MOV

MOVX

SETB

LCALL

OK EXIT:

RET

B,A

A,B,LOCKl

LOCK EXIT

A,B

DPTR,#LOCK_STAT

@DPTR,A

LOCK FLAG

BEEP

iSAVE ACC

i STATUS HAS CHANGED

iSAVE NEW STATUS

iLOCK STATUS HAS CHANGED

i*** *********************

PTER 3 PAGE. 77

ASSEMBLER CODE LISTING

**

READ RECEIPT STATUS. CLOSED = 0, OPEN = 1. REC FLAG ONLY INDICATES THAT*

THE STATUS OF THE RECEIPT SWITCH HAS CHANGED. THE ACTUAL STATUS IS *

STORED IN REC_STAT. *

~**,

': READ:

MOV

MOV

RLC

MOV

MOV

MOVX

CJNE

SJMP

REC STAT:

MOV

MOVX

SETB

A,#O

C,P1.7

A

B,A

DPTR,#REC_STAT

A,@DPTR

A,B,NEW_REC STAT

REC EXIT

A,B

@DPTR,A

REC FLAG

iINIT ACC

iREAD CURRENT DRAW STATUS

iREAD PREVIOUS STATUS

iREC HAS CHANGED

iSAVE CURRENT REC STATUS

iINDICATES STATUS HAS CHANGED

~ EXIT:

RET

**

**

READ DRAW #1 STATUS. CLOSED = 0, OPEN = 1. USE DRAWl FLAG *

STATUS DICTATED BY EXISTING DRAW MECHANISM. DRAWl FLAG ONLY INDICATES *

THAT THE STATUS OF THE DRAW HAS CHANGED. THE ACTUAL STATUS IS STORED *

IN DRAWl STAT. *

PAGE 78

i ASSEMBLER CODE LISTING
j
I

,k**,

"'1 STAT:

r,W1 EXIT:

MOV

MOV

RLC

MOV

MOV

MOVX

CJNE

SJMP

MOV

MOVX

SETB

RET

A,#O

C,P1.4

A

B,A

DPTR,#DRAW1_STAT

A, @DPTR

A,B,NEW1_STAT

DRAWl EXIT

A,B

@DPTR,A

DRAWl FLAG

iINIT ACC

iREAD CURRENT DRAW STATUS

iREAD PREVIOUS STATUS

iDRAW HAS CHANGED

iSAVE CURRENT DRAW STATUS

iINDICATES STATUS HAS CHANGED

READ DRAW #2 STATUS. CLOSED = 0, OPEN = 1. USE DRAW2 FLAG *

STATUS DICTATED BY EXISTING DRAW MECHANISM. DRAW2 FLAG ONLY INDICATES *
THAT THE STATUS OF THE DRAW HAS CHANGED. THE ACTUAL STATUS IS STORED *

IN DRAW2 STAT. *

~**

IPTER 3 PAGE 79

RET

A,#O

C,P1.6

A

B,A

DPTR,#DRAW2_STAT

A,@DPTR

A,B,NEW2 STAT

DRAW2 EXIT

A,B

@DPTR,A

DRAW2 FLAG

ASSEMBLER CODE LISTING

iINIT ACC

iREAD CURRENT DRAW STATUS

iREAD PREVIOUS STATUS

iDRAW HAS CHANGED

iSAVE CURRENT DRAW STATUS

iINDICATES STATUS HAS CHANGED

.***~************

ii OPEN CASH DRAW #~, *
i

t**

\Wl OPEN:

CLR TRO iSTOP TIMER 0

MOV THO,#OFAH iXTAL =~.8MHz FOR TIMEOUT LOOP

MOV THO,#OC3H iXTAL =9.2~6MHz FOR TIMEOUT LOOP

MOV TLO,#O

SETS TRO iSTART TIMER 0

'PTER 3 PAGE 80

ASSEMBLER CODE LISTING

CLR Plo3 iSOLENOID ON

JNB TFO,$ iWAIT FOR TIMEOUT

SETB Plo3 iSOLENOID OFF

CLR TMOUT iREFRER TIMER 0 INT ROUTINE

RET

***,
I
I

*

FOR TIMEOUT LOOPi XTAL =9. 216MHz

iSOLENOID ON

iWAIT FOR TIMEOUT

iSTART TIMER_O

iSTOP TIMER 0

Plo5

TRO

TRO

TFO,$

TLO,#O

THO,#OC3H

CLR

MOV

CLR

JNB

MOV

SETB

IOPEN CASH DRAW #2
i

I
At/2 OPEN:

1-
I
I
i

I
~

SETB Plo5 i SOLENOID OFF

CLR TMOUT iREFRER TIMER 0 INT ROUTINE

RET

,1***

j
,
~~***

i
. :LUDE (EQUATES. ASM)

i
I END
i
1
il'TER 3 PAGE 81

ASSEMBLER CODE LISTING

'COMMS.ASH

'lE COMMS_MODULE

LOW LEVEL AS WELL AS UPPER LEVEL COMMS ROUTINES

~*** *********************

BLIC

l'RN

DATA (COUNT, TEMP BUF, KEY COUNT, TX COUNT, RX COUNT, LCD NUM)- - - - -

DATA (LCD_COUNT, TX_BCC, RX_BCC, ADDR1, ADDR2, CRD_COUNT, QUE_COUNT)

DATA (BIN_ADDR)

BIT (KEY_FLAG, LOCK_FLAG, DRAWl_FLAG, TX_BUF_FULL, RX_BUF_FULL)

BIT (LCD_FLAG, BCC_FLAG, IS_DATA, CRD_FLAG, QUE_FLAG, QUE_FULL)

BIT (CRD_ON_OFF, REC_FLAG, DRAW2_FLAG)

~ XDATA (LOCK_STAT, DRAW1_STAT, KEY_BUF, LeD_BUF, TX_BUF, RX_BUF,

"_BUF)

RN CODE (INIT_HARDWARE, LCD_WR, CODE_TO_LCD, BEEP, TEST, KYB_READ)

~ CODE (IDATA_TO_TEMP, HEX_TO_ASCII, HEX_TO_DEC, LED_ON_OFF, LED_FLASH)

~ CODE (LOCK_READ, DRAWl_OPEN, DRAW2_0PEN, CLS1, CLS2)

~**** HOST ENQUIRY OF TERMINAL STATUS, LOCK, DRAW, RECEIPT

"TER 3 PAGE 82

: ASSEMBLER CODE LISTINGI
·1
TRN BIT (ENQ_FLAG, ENQ_FULL)

"'RN XDATA (ENQ_BUF)

llLIC ENQUIRE

1***** 82530 COMMS CHIP
1
r~ DATA (TX82_STAT, COUNT82, RXl_COUNT, RX2_COUNT)

nm BIT (TXBUFl_FULL, TXBUF2_FULL, RXBUFl_FULL, RXBUF2_FULL)

~ XDATA (COMl_TXBUF, COMl_RXBUF, COM2_TXBUF, COM2_RXBUF)

ji

!
~**

~S SEG SEGMENT

RSEG

CODE

COMMS SEG

iRELOCATABLE CODE SEGMENT

**

NB: *
REGISTER BANK 01 IS SELECTED FOR THIS ROUTINE, WHICH IS DEDICATED *

TO THE COMMS INTERRUPT ROUTINE. *

*
THE STRING TO BE TRANSMITTED IS CONSTRUCTED IN THIS ROUTINE. TX DATA *

BUFFER MUST BE SCANNED FOR A 'DLE', IF FOUND A 'DLE' MUST BE INSERTED. *

ALSO CALCULATE BCC *
STRING FORMAT: DLE, STX, TEXT, DLE, ETX, BCC

TEXT = DEVICE #, DATA

Ra USED FOR READING TX DATA BUFFER

RI USED FOR WRITING TO TX BUF

*
*

*

*
*

'PTER 3 PAGE 83

ASSEMBLER CODE LISTING

, R3 USED IN INTERRUPT ROUTINE TO COUNT # OF TRANSMITTED CHARS

THIS IS USED IN CASE OF A RE-TRANSMIT

, R7 USED TO COUNT THE # OF BYTES TRANSFERD FROM TX DATA TO TX BUF

ON ENTRY:

NOTHING

ON EXIT:

RO POINTS TO START OF TX_BUF, USED IN COMMS INT ROUTINE

TX COUNT CONTAINS # OF BYTES IN TX BUF

TX BUF CONTAINS TRANSMIT DATA

*

*

*
*

*

*

*

*
*
*

, **

STRING:

IS_DATA,INTERMEDIATE_JMP

TX_COUNT,#O

MOV

PUSH

JNB

MOV

MOV

MOV

- STX:

MOV

MOVX

INC

INC

MOV

MOVX

IPTER 3

A,Rl

ACC

P2,#O

Rl,#TX_BUF

A,#DLE

@Rl,A

TX COUNT

Rl

A,#STX

@Rl,A

iO = NO DATA IN BUFFERS

iIN CONJUNCTION WITH MOVX RO/Rl

iCREATING TX STRING

iDLE

iSTX

PAGE 84

ASSEMBLER CODE LISTING

INC TX COUNT

INC R1

Ixr:
MOV A,ADDR1 i1 BYTE HEX ADDR

SWAP A

ANL A,#OFOH iMS NIBBLE OF ADDR

MOV B,A

MOV A,ADDR2 iLS NIBBLE OF ADDR

ANL A,#OFH

ORL A,B iACC CONTAINS 1 BYTE ADDR

MOV

MOVX

INC

INC

A,BIN_ADDR

@R1,A

TX COUNT

R1

MOV

MOV

MOVX

MOV

INC

SJMP

PERMEDIATE JMP:

P2,#O

A,@RO

R7,A

RO

TX LOOP1

iREADING DATA STRING

iIN CONJUNCTION WITH MOVX RO/R1

i# OF BYTES IN DATA STRING

iNEXT BYTE TO READ FROM TX DATA

LJMP

.LOOP1 :

TX STRING EXIT iJMPS ARE OUT OF RANGE

MOV

MOVX

'PTER 3

P2,#O

A,@RO

iIN CONJUNCTION WITH MOVX RO/R1

iREAD DATA BUFFER

PAGE 85

CJNE

MOVX

INC

INC

r TX BUF:"- -
MOVX

INC

INC

INC

DJNZ

CLR

E ETX:

MOV

MOVX

INC

INC

MOV

MOVX

INC

INC

MOV

MOV

CLR

c:

MOVX

@Rl,A

Rl

TX COUNT

@Rl,A

RO

Rl

TX COUNT

IS DATA

A,#DLE

@Rl,A

TX COUNT

Rl

A,#ETX

@Rl,A

TX COUNT

Rl

RO,#TX_BUF+2

R7,#O

BCC FLAG

A,@RO

ASSEMBLER CODE LISTING

iIF DLE FOUND, INSERT A 2ND DLE

iNEXT BYTE TO READ

iNEXT BYTE TO WRITE

iDLE

i ETX

iSTART OF BCC CALCULATION

iEXCLUDE 'DLE.STX' FROM BCC

iBCC COUNTER

iREAD TX BUF

PTER 3 PAGE 86

ASSEMBLER CODE LISTING

PAGE 87

A,#ETX,CALC_BCC iEND OF DATA FIELD

A,R7

BCC_FLAG,CHK_ETX

A,#DLE,CALC_BCC

BCC FLAG

RO

BCC iREAD NEXT BYTE

iSAVE BCC INTO R7

iSAVE BCC INTO R7

iBCC VALUE

iWRITE BCC TO TX BUF

iDON'T CHANGE TX_COUNT, IN CASE RE-TX

iCLEARED IN INT ROUTINE

iENABLE DS3695 TO TX, GOES THRU 7404

iIN CONJUNCTION WITH MOVX RO/RI

iTX FIRST BYTE IN TX BUF

A,R7

A,R7

BCC FLAG

RO

BCC

A,R7

BCC COMPLETE

A,R7

@RI,A

TX COUNT

R3,TX_COUNT

TX BUF FULL

P3.5

P2,#0

RO,#TX_BUF

A,@RO

JB

CJNE

SETB

INC

SJMP

rJ;_ETX:

CJNE

XRL

XCH

SJMP

.C BCC:

XRL

XCH

CLR

INC

SJMP
,
: COMPLETE:

MOV

MOVX

INC

BYTE:

MOV

SETB

CLR

MOV

MOV

MOVX

PTER 3

MOV

MOV

'STRING_EXIT:

POP

MOV

RET

SBUF,A

RO,#TX_BUF+1

ACC

R1,A

ASSEMBLER CODE LISTING

iSTART TX PROCESS

iSET RO = START ADDR +1 OF TX BUF

iUSED IN COMMS INT ROUTINE. FIRST

iBYTE IS USED TO INITIATE COMMS INT

**

**

NB: *
REGISTER BANK 01 IS SELECTED FOR THIS ROUTINE, WHICH IS DEDICATED *

TO THE COMMS INTERRUPT ROUTINE. *

*
THIS ROUTINE WILL BE CALLED FROM COMMS INT ROUTINE, TO CHECK THE *
VARIOUS BUFFER FULL FLAGS. IF SET, TRANSFER DATA TO TX DATA BUFFER, AND *

CLEAR THE CORRESPONDING FLAGS. *
MAIN TYPE lE I/O (1 BYTE), SUB TYPE (1 BYTE) lE DEVICE TYPE, THIS *

FOLLOWED BY THE DATA *

MESSAGE FORMAT FOR TX DATA:

1 BYTE BINARY TERMINAL #

2 BYTE 'I' = INPUT DEVICE

3 BYTE 'K' = KEYBOARD AND SCANNERSL, 'L' = LOCK

'D' = DRAWER, 'P' = RECEIPT ON/OFF

*
*

*
*
*

*

~TER 3 PAGE 88

4 BYTE

ASSEMBLER CODE LISTING

'S' = SERIAL DEVICE (82530) *

IN THE CASE OF THE LOCK INDICATES *

LOCK STATUS *

*
4 BYTE

4 BYTE

4 BYTE

IN THE CASE OF THE KEYBOARD INDICATES

KEY AND SCAN DATA, IN SEQUENTIAL ORDER

IN THE CASE OF THE RECEIPT ON/OFF INDICATES

RECEIPT STATUS

IN THE CASE OF THE DRAWERS INDICATES

1 = DRAWER #1

2 = DRAWER #2

*

*

*

*

*

*

*
*
*
*

4 BYTE IN THE CASE OF SERIAL DEVICE (82530) INDICATES *

1 = RX DATA ON CH A *
2 = RX DATA ON CH B *

*
5 BYTE IN THE CASE OF THE DRAWERS INDICATES.

DRAWER STATUS

*

*
*

5 BYTE IN THE CASE OF SERIAL DEVICE (82530) INDICATES *
BINARY # OF BYTES IN RX STRING (EXCLUDE *

ACTUAL BINARY#) *

*
RO USED FOR READING DATA BUFFERS FROM VARIOUS INPUT DEVICES

RI USED FOR WRITING TO TX DATA BUFFER

*

*

PTER 3 PAGE 89

ASSEMBLER CODE LISTING

" R4 AND R5 USED FOR TEMPORY STORAGE OF DPTR *I

" R6 USED FOR GENERAL COUNTING *
R7 USED AS A COUNTER FOR THE NUMBER OF BYTES IN TX DATA STRING *

~ : THIS IS USED IN TX_STRING, WHEN CHECKING FOR A 'DLE' *
i.**

.; TX BUFFS:- -
MOV

PUSH

MOV

PUSH

A,Rl

ACC

A,RO

ACC

iSAVE RO AND Rl

JB

MOV

TX_BUF_FULL,INTER_CHK_EXITl

R7,#0

iTX_BUFFER IS FULL

MOV

MOV

P2,#0

Rl,#TX_DATA+l

iCONJUNCTION WITH MOVX RO/Rl

iCREATING TX DATA STRING

MOV A,#'I' iMAIN TYPE, INPUT

MOVX @Rl,A

INC Rl

j INC R7
!
I LOCK:

JNB LOCK_FLAG,CHK_KYB i LOCK STATUS HASN'T CHANGED

JNB LOCK_FLAG,CHK_KEY_QUE i LOCK STATUS HASN'T CHANGED

CLR LOCK FLAG

MOV P2,#0 iIN CONJUNCTION WITH MOVX RO/Rl

MOV

PTER 3

A,#'L'

PAGE 90

iSUB TYPE, LOCK

MOVX

INC

INC

MOV

MOVX

MOVX

INC

LJMP

@Rl,A

RI

R7

RO,#LOCK_STAT

A,@RO

@Rl,A

R7

CHK EXIT

ASSEMBLER CODE LISTING

iNEXT BYTE TO WRITE

iREAD STATUS

~j** **********************

REFER TO ADD_QUE FOR MORE DETAILS ON KEY DATA *
,.**

K KYB:

JNB

CLR

MOV

MOV

KEY_FLAG,CHK_CRD

KEY FLAG

P2,#O

RO,#KEY_BUF

iNO KEYS DEPRESSED

iIN CONJUNCTION WITH MOVX RO/Rl

i SOURCE ADDRR

MOV A,#'K' iSUB TYPE, KEY ENTRY

MOVX @Rl,A

INC RI iNEXT BYTE TO WRITE

INC R7

lK LOOPl:

MOVX A,@RO iTRANSFER FROM KEY_BUF TO

MOVX @Rl,A iTX_DATA BUFFER

INC RO

INC RI

I~TER 3 PAGE 91

ASSEMBLER CODE LISTING

INC R7

D.JNZ KEY_COUNT,CHK_LOOPl iNEXT BYTE TO TRANSFER

MOV KEY_COUNT, #0 iCLEAR COUNTER

WMP CHK EXIT

[(]EY_QUE:

JNB QUE_FLAG,CHK_CRD iNO KEY/SCAN DATA

CLR QUE_FLAG

CLR QUE_FULL

MOV P2,#0 iIN CONJUNCTION WITH MOVX RO/Rl

MOV RO,#KEY_QUE i SOURCE ADDRR

MOV

MOVX

INC

INC

, LOOPl:

MOVX

MOVX

INC

INC

INC

DJNZ

MOV

WMP

ER CHK EXITI:

WMP

-CRD:

DTER 3

A,#'K'

@RI,A

RI

R7

A,@RO

@RI,A

Ra

RI

R7

QUE_COUNT,CHK_LOOPI

QUE_COUNT, #0

CHK EXIT

CHK EXITI

PAGE 92

iSUB TYPE, KEY/SCAN ENTRY

iNEXT BYTE TO WRITE

iTRANSFER FROM KEY_BUF TO

iTX_DATA BUFFER

iNEXT BYTE TO TRANSFER

iCLEAR COUNTER

jINTERMEDIATE JMP

JNB

CLR

MOV

MOV

MOVX

CJNE

MOV

SJMP

K CRD10:

MOV

17, CRDll:
,

t*****************

MOV

MOV

CRD_FLAG,CHK_REC

CRD FLAG

P2,#0

RO,#CRD_BUF

A,@RO

A, #01, CHK_CRD10

CRD_COUNT,#38

CHK CRDll

P2,#0

ASSEMBLER CODE LISTING

iNO CARD ENTRY

iIN CONJUNCTION WITH MOVX RO/Rl

i SOURCE ADDRR

iTRANSFER FROM CRD BUF TO

iIN CONJUNCTION WITH MOVX RO/Rl

i SOURCE ADDRR

MOV A,I'C' iSUB TYPE, MAGNETIC CARD ENTRY

MOVX @Rl,A

INC Rl iNEXT BYTE TO WRITE

INC R7

. CRD1:

MOVX A,@RO iTRANSFER FROM CRD_BUF TO

MOVX @Rl,A iTX_DATA BUFFER

INC RO

INC Ri

INC R7

DJNZ CRD COUNT, CHK_ CRDl iNEXT BYTE TO TRANSFER-

'TER 3 PAGE 93

~ DRAWl:

MOV

LJMP

JNB

CLR

MOV

MOV

MOV

MOVX

INC

INC

MOVX

MOVX

INC

LJMP

CRD_COUNT,#O

CHK EXIT

REC_FLAG,CHK_DRAWl

REC FLAG

P2,#O

RO,#REC_STAT

A,#'P'

@Rl,A

Rl

R7

A,@RO

@Rl,A

R7

CHK EXIT

ASSEMBLER CODE LISTING

;CLEAR COUNTER

;RECEIPT STATUS HASN'T CHANGED

iIN CONJUNCTION WITH MOVX RO/Rl

iSUB TYPE, REC STATUS

iNEXT BYTE TO WRITE

iREAD STATUS

iWRITE TO TX BUF

~PTER 3

JNB

CLR

MOV

MOV

MOV

MOVX

INC

INC

DRAWl_FLAG,CHK_DRAW2 iDRAW STATUS HASN'T CHANGED

DRAWl FLAG

P2,#O iIN CONJUNCTION WITH MOVX RO/Rl

RO,#DRAWl_STAT

A,#'R' iSUB TYPE, DRAW STATUS

@Rl,A

R1 iNEXT BYTE TO WRITE

R7

PAGE 94

DRAW2_FLAG,CHK_ENQ_BUF iDRAW STATUS HASN'T CHANGED

DRAW2 FLAG

MOV

MOVX

INC

INC

MOVX

MOVX

INC

LJMP

DRAW2:

JNB

CLR

MOV

MOV

MOV

MOVX

INC

INC

MOV

MOVX

INC

INC

MOVX

MOVX

A,#'l'

@Rl,A

Rl

R7

A,@RO

@Rl,A

R7

CHK EXIT

P2,#O

RO,#DRAW2_STAT

A,#'R'

@Rl,A

Rl

R7

A,#'2'

@Rl,A

Rl

R7

A,@RO

@Rl,A

PAGE 95

ASSEMBLER CODE LISTING

iDRAW #1

iNEXT BYTE TO WRITE

iREAD STATUS

iWRITE TO TX BUF

iIN CONJUNCTION WITH MOVX RO/Rl

iSUB TYPE, DRAW STATUS

iNEXT BYTE TO WRITE

iDRAW #2

iNEXT BYTE TO WRITE

iREAD STATUS

iWRITE TO TX BUF

ASSEMBLER CODE LISTING

RXBUFI_FULL,CHK_RXCOM2 iNO DATA FROM CH A OF 82530

A,#'S' iSUB TYPE, SERIAL DEVICE

@RI,A

INC

LJMP

t ENQ BUF:-

JNB

MOV

MOV

IRi

MOV

MOV

MOVX

INC

INC

TX LOOP2:

MOVX

MOVX

INC

INC

INC

DJNZ

CLR

WMP

JNB

MOV

MOVX

INC

R7

CHR EXIT

ENQ_FULL,CHK_RXCOMI

R6,#4

P2,#O

A,#'E'

@RI,A

RI

R7

A,@RO

@RI,A

RO

RI

R7

R6,CHK_TX_LOOP2

ENQ_FULL

CHK EXIT

RI

PAGE 96

;NO HOST ENQUIRY

;IN CONJUNCTION WITH MOVX

i SOURCE ADDRR

iSUB TYPE, ENQUIRY

iNEXT BYTE TO WRITE

iTRANSFER FROM ENQ_BUF TO

iTX_DATA BUFFER

iNEXT BYTE TO TRANSFER

iNEXT BYTE TO WRITE

INC

MOV

MOVX

INC

INC

MOV

MOV

MOVX

INC

INC

R7

A,#'l'

@Rl,A

Rl

R7

A,RX1_COUNT

R6,A

@Rl,A

Rl

R7

ASSEMBLER CODE LISTING

i COMl

iNEXT BYTE TO WRITE

i# OF BYTES IN DATA FIELD

iR6 USED IN TRANSFER LOOP

iNEXT BYTE TO WRITE

MOV DPTR,#COM1_RXBUF

LCALL TRANS DATA iTRANSFER FROM COMXBUF TO TXBUF

CLR RXBUFl FULL

MOV RX1_COUNT,#0

SJMP CHK EXIT

~ RXCOM2:

JNB RXBUF2_FULL,CHK_EXITl iNO DATA FROM CH B OF 82530

MOV A,#'S' iSUB TYPE, SERIAL DEVICE

MOVX @Rl,A

INC Rl iNEXT BYTE TO WRITE

INC R7

'PTER 3

MOV

MOVX

A,#'2'

@Rl,A

PAGE 97

i COM2

INC

INC

MOV

MOV

MOVX

INC

INC

Rl

R7

A, RX2_COUNT

R6,A

@Rl,A

Rl

R7

ASSEMBLER CODE LISTING

iNEXT BYTE TO WRITE

i# OF BYTES IN DATA FIELD

iR6 USED IN TRANSFER LOOP

iNEXT BYTE TO WRITE

MOV DPTR,#COM2_RXBUF

LCALL TRANS DATA iTRANSFER FROM COMXBUF TO TXBUF

CLR RXBUF2 FULL

MOV RX2_COUNT,#O

SJMP CHK EXIT

EXIT:

MOV Rl,#TX_DATA iTHERE IS DATA TO TRANSMIT

MOV P2,#O iIN CONJUNCTION WITH MOVX RO/Rl

MOV A,R7 i# OF BYTES IN DATA STRING

MOVX @Rl,A

SETB IS DATA iINDICATES TO TX STRING THAT

EXITl:

POP ACC

MOV RO,A

POP ACC

MOV Rl,A

'TER 3 PAGE 98

ASSEMBLER CODE LISTING

RET

~*** ********************

~*** *******************

~RANSFER DATA STRING FROM I BUFFER TO ANOTHER IN XDATA MEMORY.

DPTR POINTS TO SOURCE BUFFER

Rl POINTS TO TX DATA BUFFER OF 8032

R6 IS USED TO COUNT # OF BYTES TO TRANSFER

ON ENTRY:

DPTR POINTS TO SOURCE BUFFER (COMI/2_RXBUF)

R6 = # OF BYTES TO TRANSFER

ON EXIT:

TX BUF (8032) WILL CONTAIN DATA FROM COMl/2_RXBUF

*

*
*
*

*
*
*
*
*

*

*
~*** ********************

IS DATA:

MOVX A,@DPTR

INC DPTR

MOVX @RI,A

INC RI

INC R7

DJNZ R6,TRANS_DATA

iREAD FROM COMI/2_RXBUF

iWRITE TO TX DATA BUFFER

RET

~*** ********************

'TER 3 PAGE 99

ASSEMBLER CODE LISTING

**

TEST COMMS *
**

r_COMMS :

MOV

MOV

MOV

MOV

JOP1:

MOVX

INC

INC

DJNZ

RO, #TX_BUF

R1,#20H

A,#30H

P2,#0

@RO,A

RO

A

R1,T_LOOP1

iIN CONJUNCTION WITH MOVX RO/R1

iTX_BUF NOW CONTAINS STRING

PTER 3

SETB PSW.3 iSELECT REGISTER BANK 1, 8H - FH

MOV TX_COUNT,#20H iUSED IN COMMS INT ROUTINE

MOV R3,TX_COUNT iDON'T CHANGE TX_COUNT, IN CASE RE-TX

MOV RO,#TX_BUF iSET RO = START ADDR OF TX BUF

iUSED IN COMMS INT ROUTINE

CLR PSW.3 iSELECT REGISTER BANK 0

SETB TX BUF FULL iCLEARED IN INT ROUTINE

CLR P1..7 iENABLE 053695 TO TX, GOES THRU 7404

CLR P3.5 iENABLE DS3695 TO TX, GOES THRU 7404

MOV SBUF,#OFH iSTART TX PROCESS

PAGE 100

ASSEMBLER CODE LISTING

RET

L***

t***

THIS ROUTINE CHECKS IF RX_BUF_FULL FLAG IS SET, INDICATING THAT DATA *

HAS BEEN RECEIVED *

*
MESSAGE FORMAT:

1 BYTE

2 BYTE

3 BYTE

3 BYTE

3 BYTE

'TER 3

'0 r = OUTPUT DEVICE

'L' = LEDS, 'D' = DISPLAY, 'B' = BUZZER

'R' = DRAWER, 'C' = CARD READER, 'E' = HOST

ENQUIRY, 's' TRANSMIT STRING FOR 82530

IN THE CASE OF AN LCD STRING INDICATES

o = BOTH DISPLAYS

1 = LCD 1

2 = LCD 2

IN THE CASE OF THE DRAWERS INDICATES

1 = DRAWER #l

2 = DRAWER #2

IN THE CASE OF THE CARD READER

'1' = TRANSMIT CARD DATA, ie READ CARD

'0' = DON'T TRANSMIT CARD DATE ie DON'T READ

PAGE 101

*
*

*
*
*

*

*
*

*

*

*

*

*
*

*
*

*
*

*

*

3 BYTE

ASSEMBLER CODE LISTING

IN THE CASE OF A HOST ENQUIRY *

'R' = DRAWER STATUS *
'L' = LOCK STATUS *

'P' = RECEIPT STATUS *

*
3 BYTE

4 BYTE

4 BYTE

5 BYTE

IN THE CASE OF TX STRING FOR 82530

BINARY # OF DATA BYTES IN DATA FIELD

+ CMDIDATA BYTE (# OF DATA BYTES +1 FOR CID)

IN THE CASE OF THE DRAWERS INDICATES

'I' = DRAWER #1

'2' = DRAWER #2

IN THE CASE OF TX STRING FOR 82530

'I' = COM1

'2' = COM2

IN THE CASE OF TX STRING FOR 82530

'C' = COMMAND STRING

'0' = DATA STRING

*

*

*
*

*

*
*

*

*
*

*

*

*
*
*

*
RO USED FOR READING *

RI USED FOR WRITING TO BUFFER *
COUNT USED TO COUNT # OF BYTES TO TRANSFER FROM RX BUF TO OUTPUT BUF *

~***

,RX BUFFS:

JB

'TER 3 PAGE 102

;DATA AVAIALBALE IN RX BUF

BUFS:

LEDS:

LCD:

LJMP

MOV

MOVX

INC

CJNE

MOVX

INC

CJNE

LCALL

LJMP

ASSEMBLER CODE LISTING

CHK RX EXIT1

DPTR,#RX_BUF

A,@DPTR iREAD RX BUF

DPTR

A,#'O',INTERMEDIATE_RX EXIT iNOT FOR AN OUTPUT DEVICE

A,@DPTR iREAD RX BUF

DPTR

A,#'L',CHK_LCD iLED'S

LED ON OFF iTRANSFER FROM RX BUF TO LED BUF

CHK RX EXIT

LOOP2 :

CJNE

SETB

MOV

MOVX

MOV

INC

DEC

DEC

DEC

MOV

MOV

MOV

CJNE

A,#'D',CHK_BUZ

LCD FLAG

LCD_COUNT,#O

A,@DPTR

LCD_NUM,A

DPTR

RX COUNT

RX COUNT

RX COUNT

R1,#LCD_BUF

P2,#0

A, RX_COUNT

A,#O,CHKO

iLCD'S

iREAD LCD #(1/2/BOTH) FROM RX BUF

iLCD NUMBER

iREMOVE 'OD1/2' FROM RX COUNT

iTRANSFER FROM TX_BUF TO LCD_BUF

iIN CONJUNCTION WITH MOVX RO/R1

i# OF CHAR IN RX BUF

TER 3 PAGE 103

SJMP

ASSEMBLER CODE LISTING

ADD EOS

MOV

CJNE

SJMP

MOVX

A, LCD_COUNT

A,#32,CHK1

ADD EOS

A,@DPTR

iMAX OF 32 BYTES IN LCD BUF

iREAD RX_BUF

iCLEAR THE DISPLAY, BY SENDING AN EMPTY

iMESSAGE TO THE DISPLAY.

SPACE:

CJNE

SJMP

A,#DLE,CHK_SPACE

ADD EOS

iETX REACHED, PLACE EOS

CJNE A,#HT,WR_LCD_BUF iCHK FOR HT, ie SPACES

SPACE:

"TER 3

DEC

DEC

INC

MOVX

ANL

MOV

INC

MOV

MOV

MOVX

INC

INC

MOV

RX COUNT

RX COUNT

DPTR

A,@DPTR

A,#03FH

B,A

DPTR

A, # I ,

P2,#0

@R1,A

R1

LCD COUNT

A,#32

iELSE 2 EXTRA CHARS ARE TRANSFERED

iTO LCD_BUF

iFIND # OF SPACES TO INSERT

iMASK OFF MS 2 BITS, ACC = # OF ' I

iIN CONJUNCTION WITH MOVX RO/R1

jWRITE SPACES TO LCD BUF. -
iINSERT NEXT SPACE

iCOUNT # OF BYTES IN LCD BUF

iENSURE ONLY 32 BYTES IN LCD BUF

PAGE 104

ASSEMBLER CODE LISTING

A,LCD_COUNT,INS_NEXT_SPACEiMAX OF 32 BYTES IN LCD BUF

ADD EOS

CJNE

SJMP

NEXT_SPACE:

DJNZ

SJMP

LCD_BUF:

MOV

MOVX

INC

INC

INC

DJNZ

EOS:

MOV

MOV

MOVX

SJMP

BUZ:

B,INS_SPACE

CHK LOOP2

P2,#0

@R1,A

DPTR

Rl

LCD COUNT

A,#O

P2,#0

@R1,A

CHK RX EXIT

iIN CONJUNCTION WITH MOVX RO/Rl

iWRITE TO OUTPUT BUF

iCOUNT # OF BYTES IN LCD BUF

iEOS

iIN CONJUNCTION WITH MOVX RO/R1

CJNE

LCALL

SJMP

'RMEDIATE RX EXIT:

SJMP

DRAWER1:

A,#'B',CHK_DRAWER1 iBUZZER

BEEP

CHK RX EXIT

CHK RX EXIT

CJNE

MOVX

CJNE

'TER 3

A,#'R',CHK_CARD

A,@DPTR

A,#'l',CHK_DRAWER2

PAGE 105

iNOT A DRAWER OPEN COMMAND

ASSEMBLER CODE LISTING

DRAWl OPEN

CHK RX EXIT

A,#'S',CHK_RX_EXIT iCMD/DATA FOR COMl/2 ON 82530

RXBUF COMXBUF iTRANSFER FROM RXBUF TO

A,#'2',CHK_RX_EXIT

DRAW2 OPEN

CHK RX EXIT

A,#'C',CHK_ENQUIRE iCARD STATUS, ON = 3lH, OFF = 30H

A,@DPTR

A,#'O' ,CARD_ON

iSET IN INT ROUTINE

iDON'T TX CARD DATA

iTX CARD DATA

iSTATUS ENQUIRY FROM HOST

iMAIN LOOP CHKS THIS FLAG

PAGE l06

A,#'l',CHK_RX_EXIT

CRD ON OFF

CHK RX EXIT

CRD ON OFF

CHK RX EXIT

CHK RX EXIT

A,#'E',CHK_COMX

ENQ_FLAG

CHK RX EXIT

RX BUF FULL

LCALL

SJMP

DRAWER2 :

CJNE

LCALL

SJMP

CARD:

CJNE

MOVX

CJNE

CLR

SJMP

DON:

CJNE

SETB

SJMP

ENQUIRE:

CJNE

SETB

SJMP

COMX:-
CJNE

LCALL

/2_BUF

SJMP

-RX EXIT:

CLR

'TER 3

ASSEMBLER CODE LISTING

RET

~*** ********************

~*** ********************

TRANSFER FROM RX_BUF(8032) TO COMX_BUF(82530)

R6 AND R7 IS USED FOR TEMPORY STORAGE OF DPTR

ON ENTRY:

DPTR POINTS TO SOURCE BUFFER (RX_BUF)

ON EXIT:

COMX BUF CONTAINS RELEVANT DATA

TXBUF1/2_FULL IS SET (USED WHEN TRANSMITTING VIA 82530)

*

*

*
*
*

*

*

*

*
r*******************************~***

OF COMXBUF:

MOVX

INC

COM1:

CJNE

MOVX

MOV

MOV

CLR

SUBB

'TER 3

A,@DPTR

DPTR

A,#'1',CHK_COM2

A,@DPTR

B,A

A,#50

C

A,B

PAGE 107

;CHK IF COM1 / COM2

;CMD/DATA FOR COM1

;# OF BYTES TO TRANSFER

;ENSURE NOT > 50 BYTES

JNC

MOV

MOVX

MOV

, LP1:

MOV

MOV

PUSH

PUSH

MOV

MOV

MOV

POP

POP

SJMP

COM2 :

CJNE

MOVX

COMl LPl

A,#50

@DPTR,A

B,A

R5,B

R4,#01

DPL

DPH

DPTR,#COM1_TXBUF

R6,DPL

R7,DPH

DPH

DPL

RXBUF LPl

A,#'2',RXBUF_EXIT

A,@DPTR

ASSEMBLER CODE LISTING

iOVERWRITE # OF BYTES TO TX

i# OF BYTES TO TRANSFER

iUSED TO SET TXBUFl FULL

iSAVE COMl TXBUF

iCMD/DATA FOR COM2

i# OF BYTES TO TRANSFER

MOV B,A

MOV A,#50

CLR C

SUBB A,B

JNC COM2 LPl-
MOV A,#50

MOVX @DPTR,A

MOV B,A

'TER 3 PAGE 108

iENSURE NOT > 50 BYTES

iOVERWRITE # OF BYTES TO TX

ASSEMBLER CODE LISTING

? LP1:

MOV R5,B i# OF BYTES TO TRANSFER

MOV R4,#02 i USED TO SET TXBUF2 FULL

PUSH DPL

PUSH DPH

MOV DPTR,#COM2 TXBUF

MOV R6,DPL iSAVE COM2 TXBUF

MOV R7,DPH

POP DPH

POP DPL

UF LP1:

MOVX A,@DPTR iREAD SOURCE ADDR

INC DPTR

PUSH DPL iSAVE DPTR

PUSH DPH

MOV DPL,R6

MOV DPH,R7

MOVX @DPTR,A iWRITE DESTINATION ADDR

INC DPTR

MOV R6,DPL iSAVE DESTINATION ADDR

MOV R7,DPH

POP DPH iRESTORE SOURCE ADDR

POP DPL

DJNZ R5,RXBUF_LP1

TXBUF FULL:

CJNE R4,#01,CHK_TXBUF2

SETB TXBUF1 FULL

'TER 3 PAGE 109

TXBUF2 :

SJMP

CJNE

SETB

RET

RXBUF EXIT

R4,#02,RXBUF_EXIT

TXBUF2 FULL

ASSEMBLER CODE LISTING

I

.~** *********************

'**

HOST REQUEST VARIOUS INPUT STATUS CONDITIONS lE LOCK, DRAW ETC

iTHE 4 BYTES WILL BE IN FOLLOWING SEQUENCE:

*

*
*,

\.**

'JIRE:

JNB

MOV

MOV

ENQ_FLAG,ENQ_EXIT

DPTR,#ENQ_BUF

RO,#DRAW1_STAT

MOV

MOVX

MOVX

INC

MOV

MOV

MOVX

MOVX

P2,#0

A,@RO

@DPTR,A

DPTR

P2,#0

A,@RO

@DPTR,A

iIN CONJUNCTION WITH MOVX RO/R1

iIN CONJUNCTION WITH MOVX RO/R1

PTER 3 PAGE 110

INC

MOV

MOV

MOVX

MOVX

INC

DPTR

RO,#REC_STAT

P2,#O

A,@RO

@DPTR,A

DPTR

ASSEMBLER CODE LISTING

iRECEIPT ON/OFF

iIN CONJUNCTION WITH MOVX RO/R1

iIN CONJUNCTION WITH MOVX RO/R1

iENQ_BUF IS NOW FULL

~***~* ********************

,

-LUDE (EQUATES. ASM)

END

'TER 3 PAGE 111

ASSEMBLER CODE LISTING

SCAN.ASM

III SCANNER_MODULE

MODULE FOR SLOT SCANNER INTERFACE (OCIA)

**

~ CODE (WAIT, TEST, BEEP)

~*** ********************

'I SEG SEGMENT

RSEG

CODE

SCAN SEG

iRELOCATABLE CODE SEGMENT

"~** ********************

r***

CALL THIS ROUTINE BEFORE POLLING THE SCANNER OR KEYBOARD, ELSE DATA *

WILL BE PLACED IN KEY_BUF OR SCAN_BUF, AND WE WOULD NOT NO WHICH CAME *

FIRST. THIS WOULD THEREFORE DEFEAT THE WHOLE AIM OF THE KEY_QUE, WHICH *

ENSURES THAT THE KEY/SCAN DATA IS IN THE SEQUENCE AS IT WAS INPUT BY *

'TER 3 PAGE 112

THE USER.

ASSEMBLER CODE LISTING

*
*

CHECK IF THE KEY QUE CAN ACCOMAODATE MORE SCAN OR KEY DATA

'ON ENTRY:

ACC = 'K' INDICATES KEY DATA

's' INDICATES SCAN DATA

'ON EXIT:

QUE_FULL FLAG WILL BE SET IF KEY_QUE IS FULL

*

*

*

*

*
*

*
*

~~**

PAGE 113

A,#'S',CHK_QUE_EXIT i! KEY OR SCAN DATA, THEN ERROR

A,#'K',CHK_SCAN iCHK IF KEY OR SCAN DATA

~QUE:

KEY:

CJNE

CLR

MOV

ADD

MOV

MOV

SUBB

JC

SJMP

SCAN:-
CJNE

CLR

MOV

ADD

PTER 3

C

A, QUE_COUNT

A, KEY_COUNT

B,A

A,#24

A,B

CHK_QUE_FULL

CHK_QUE_EXIT

C

A, QUE_COUNT

A, SCAN_COUNT

iCHK IF KEY_QUE IS FULL

iKEY_QUE IS FULL

iCHK IF KEY_QUE IS FULL

MOV

MOV

SUBB

JC

SJMP

[QUE FULL:- -
SETB

QUE EXIT:- -
RET

B,A

A,#24

A,B

CHK_QUE_FULL

CHK_QUE_EXIT

ASSEMBLER CODE LISTING

;KEY_QUE IS FULL

r**

I
r**

!ONE HAS TO ENSURE THAT KEY DATA AND SCAN DATA ARE IN THE CORRECT *
!

ISEQUENCE ENTERED. ONE CAN'T HAVE l KEYSTROKE WHICH WAS ENTERED *
"
'AFTER A SCAN APPEARING BEFORE THE SCAN DATA AT THE HOST COMPUTER. *

'TO OVERCOME THIS PROBLEM, A KEY_QUE IS USED, AND THE DATA FROM THE *
,
iSCANNER AND KEYBOARD IS ENTERED SEQUENTIALLY INTO THIS BUFFER. THIS IS *

'THE BUFFER WHICH WILL NOW BE TRANSMITTED TO THE HOST, CONTAINING BOTH *

! KEY AND SCAN DATA. *

*
ON ENTRY:

ACC = 'K' INDICATES KEY DATA

'S' INDICATES SCAN DATA

ON EXIT:

*
*
*

*

*
**

PTER 3 PAGE H4

1 QUE:

MOV

ASSEMBLER CODE LISTING

B,A

K:

s:

MOV

ADD

MOV

MOV

CJNE

MOV

MOV

MOV

CLR

SJMP

A,#KEY_QUE

A,QUE_COUNT

RI,A

A,B

RO,#KEY_BUF

R7,KEY_COUNT

KEY_COUNT,#O

KEY FLAG

ADD LPI

jCORRECT OFFSET INTO KEY_QUE

jCOMBINATION OF KEY & SCAN DATA

jRESTORE ACC

JCHK IF KEY OR SCAN DATA

j SOURCE ADDRR

CJNE A,#'S',ADD_EXIT j! KEY OR SCAN DATA, THEN ERROR

MOV

MOV

MOV

MOV

MOV

MOVX

INC

INC

MOV

MOVX

INC

INC

RO,#SCAN_BUF

R7,SCAN_COUNT

SCAN_COUNT,#O

P2,#O

A,#OFFH

@RI,A

RI

QUE_COUNT

A,R7

@RI,A

RI

j SOURCE ADDRR

jIN CONJUNCTION WITH MOVX RO/RI

jINDICATES SCAN DATA

jINDICATES # OF BYTES IN SCAN FIELD

DTER 3

I

I

PAGE 115

ASSEMBLER CODE LISTING

CLR SCAN FLAG

f LPl:

MOV P2,#0 iIN CONJUNCTION WITH MOVX RO/Rl

MOVX A,@RO iTRANSFER FROM KEY/SCAN_BUF TO

MOVX @Rl,A iKEY_QUE

INC RO

INC Rl

INC QUE_COUNT

DJNZ R7,ADD_LPl iNEXT BYTE TO TRANSFER

SETB QUE_FLAG iDATA IN KEY QUE-
SJMP ADD EXIT

FULL:

SETB QUE_FULL iPREVENT INPUT FROM KEY & SCAN

EXIT:

RET

**

**

INITIALIZE SLOT SCANNER *
**

r SCAN:

MOV

CLR

CLR

MOV

~ SCAN LP1:

SCAN_COUNT, #0

SCAN FLAG

Plol

R7,#08

i CLK 'L'

'TER 3 PAGE 116

ASSEMBLER CODE LISTING

SETB

LCALL

CLR

LCALL

DJNZ

Plo 2

WAIT

Plo 2

WAIT

R7,INIT_SCAN LPl

iRESET 'H'

iRESET 'L'

RET

~*** *********************

~*** *********************

,READ SLOT SCANNER *
~***

PAGE 117

TIMEOUT

Pl.O,CHK_TMOUT iPl.O = 0, DATA AVAILABLE

READ BYTE

TMOUT,SCAN_ERR

CHK DATA

iSCAN_BUF IS FULL

iKEY_QUE IS FULL

SCAN_FLAG, SCAN_EXIT

QUE_FULL, SCAN_EXIT

Pl.O,SCAN_EXIT iPl.O = 0, DATA AVAILABLE

R6,#20

RO,#SCAN_BUF

SCAN_COUNT, #0

,N READ:

JB

JB

JB

MOV

MOV

MOV

N READ LPl:

LCALL

DATA:

JB

SJMP

_TMOUT:

JB

SJMP

"TER 3

ASSEMBLER CODE LISTING

~_BYTE:

MOV B,#06

LCALL WAIT1

LCALL SCAN

INC SCAN COUNT

LCALL TEST

JNB PI.6,$

JB PI. 6, $

;26 uSEC DELAY BEFORE READING NEXT BYTE

MOV B,A ;SAVE ACC

ANL A,#3FH

MOV P2,#0 ;IN CONJUNCTION WITH MOVX RO/R1

MOVX @RO,A

INC RO

JB B.6,SCAN_EXIT1 ; LAST BYTE WAS READ

DJNZ R6,SCAN_READ_LP1

If EXIT1:

SETB SCAN FLAG ;SCAN DATA AVAILABLE

SJMP SCAN EXIT

ERR:

MOV SCAN_COUNT, #0
i
f EXIT:-

CLR TMOUT

RET

1***

I,
1TER 3 PAGE 118

ASSEMBLER CODE LISTING

.~***

READ 1 BYTE FROM SLOT SCANNER. (1 BYTE = 9 BITS) *

BIT FORMAT: 1 BIT IS THE START BIT, FOLLOWED BY 6 DATA BITS (BO - B5) *

FOLLOWED BY 1 BIT WHICH INDICATES THAT THIS WAS THE LAST BYTE READ *

'(B6 = 1 LAST BYTE READ), FOLLOWED BY A PARITY BIT (B7) *

*
'Pl.O = RETURN DATA

, PI. 1 = CLOCK

'PI. 2 = RESET

,

'ON ENTRY:

NOTHING

iON EXIT:

ACC = BYTE READ FROM SCANNER

*

*

*

*
*

*

*
*
*

t**
:

IN:,

I

1
I
I

IN LP1:

MOV

CLR

CLR

R7,#09

A

C

;9 BITS / BYTE

SETB Pr.1

MOV B,#06,
1 LCALL WAIT1,

I CLR Pr.1,
I

I MOV B,#30I

I LCALL WAIT1i,
I
1

lPTER 3
I

I
I
I

;CLK 'H'

;26 uSEC TIME DELAY

;CLK 'L'

;94 uSEC TIME DELAY

PAGE 119

ASSEMBLER CODE LISTING

RRC A

MOV C,Pl.O

DJNZ R7,SCAN_LP1

CPL A

MOV B,#250

LCALL WAIT1

iREAD DATA BITS

i600 uSEC DELAY BEFORE READING NEXT BYTE

iTHIS LONG DELAY IS TO ACCOMADATE THE

LAST BYTE

RET
,
~**

r,** **************~******

iUSED FOR A TIMEOUT LOOP. DURATION OF TIMING PERIOD IS 170 rnSEC, WITH NO *
i
'INTERUPTS TAKING PLACE.

i
i,

*
*

EXIT:

NOTHING

iON ENTRY:

i,
1
'0N

*
*
*

*
*

NB: ENSURE TO CLEAR THE FLAG.

CHECK 'TMOUT' FLAG IF SET, THEN A TIMEOUT OCCUREEDI
I
!
't***,
I,

[[OUT:

CLR TRO

MOV THO,#O

MOV TLO,#O

SETB TRO
i
I
i,,
I,
~TER 3

I

iSTOP TIMER 0

iUSED FOR TIMEOUT LOOP

iSTART TIMER 0

PAGE 120

ASSEMBLER CODE LISTING

RET

t~** *********************

*,***

,TIME DELAY. FIRST SETUP REG B WITH # OF TIMES TO LOOP

,ON ENTRY:

B = # OF TIMES TO LOOP

!ON EXIT:

NOTHING

*

*

*

*
*

*
t**
I

['fl :

ITl LPl:

DJNZ

RET

It***

~LUDE (EQUATES.ASM),

END

I
rER 3

j

PAGE 121

ASSEMBLER CODE LISTING

82530.ASK

.~***

NOTE1:

NB!!!!!!!!!! A COMMON ERROR WHEN PUSHING A VALUE ONTO THE STACK

INSIDE A LOOP, IS FORGETTING TO RESTORE THE STACK TO

IT'S CORRECT OFFSET WHEN ONE JUMPS OUT OF THE LOOP

WHEN AN ERROR CONDITION OCCURS. NORMALLY INSIDE THE

LOOP THE PUSHES AND POPS TO THE STACK WILL BE FINE,

IT'S ONLY WHEN AN ERROR CONDITION OCCURS AND WE JUMP

OUT OF THE LOOP, AND THE PREVIOUS VALUES WHICH WE

PUSHED ONTO THE STACK IS STILL ON THE STACK. AN

ASSOSIATED 'POP' HAS TO TAKE PLACE INSIDE THE

'ERROR ROUTINE' TO PLACE THE STACK AT THE CORRECT

OFFSET.

*

*
*

*
*
*

*

*
*
*

*
*

'f***

'NOTE2: *

NBB! ! ! ! ! ! ! ! ! ! *
IF THE NUMBER OF TRANSMIT DATA BITS IS CHANGED IN WR5, THEN THE *
VALUE THAT IS WRITTEN TO THIS REGISTER HAS TO BE ENTERED INTO *

'RTSA' AND 'RTSB', IN THE FUNCTION 'INIT82530VARS'. *

THE REASON WHY WE KEEP AN IMAGE OF THIS REGISTER, IS THAT WR5 *
CANNOT BE READ, SO THAT WHEN WE TOGGLE THE RTS LINE WE USE THE *
VALUE STORED IN 'RTSA/B', MODIFY THIS VALUE, AND WRITE IT TO WR5. *

~***

~TER 3 PAGE 122

ASSEMBLER CODE LISTING

COMMS 82530 MODULE

MODULE FOR 82530 COMMS CHIP

rc INIT_82530, B82530, A82530, SETUP_TX, TX_COMX, CODE TO XDATA

rc INIT_82530VARS, SETUP RX

~ BIT (TMOUT, TXBUF1_FULL, TXBUF2_FULL, RXBUF1_FULL, RXBUF2_FULL)

~ DATA (TX82_STAT, COUNT82, PARITY, ST_BITS, TX_DATA_BITS)

~ DATA (RX_DATA_BITS, BAUD, RTSA, RTSB, RX1_COUNT, RX2_COUNT)

~ CODE (WAIT, TEST, BEEP, CLS1, CODE_TO_LCD, LCD WR)

~*** *********************

ms 82530 SEG SEGMENT

RSEG

CODE

COMMS 82530 SEG

iRELOCATABLE CODE SEGMENT

i,
r**

1

i
1
~TER 3
j

PAGE 123

ASSEMBLER CODE LISTING

.SETUP DPTR WITH SOURCE BUFFER, COM1/2_RXBUF. R7 WITH RX1/2_COUNT

iDEBUG 82530 RECIEVE SOFTWARE

*

*

*
1***

t**

!RECIEVE BYTE FROM 82530, PLACE THIS IN COM1/2_RXBUF *

USE R7 IN CONJUNCTION WITH FUNCTION 'CHK CHAN' AS A LOOKUP FOR THE *

ADDRESSES FOR THE 82530. *

ON ENTRY:

DPTR POINTS TO SOURCE BUFFRER (COM1_RXBUF/COM2_RXBUF)

*
*
*
*

R7 = 2

4

COMDATB

COMDATA

iDATA REG. CH B

iDATA REG. CH A

*

*

*
REG 6 = # OF BYTES CURENTLY IN COM1/2_RXBUF SO AS TO PLACE NEW

RX BYTE AT CORRECT OFFSET

ON EXIT:

RX1/2_COUNT = NEW # OF BYTES IN COM1/2_RXBUF (ALSO USED IN ROUTINE

TO TRANSMIT DATA TO THE HOST)

*

*
*
*

*

*
~**

~OMX:,

I

PTER 3

MOV

CLR

A,#40

C

PAGE 124

iENSURE NOT> 40 BYTES

SUBB

JNC

MOV

SJMP

PUSH

PUSH

ASSEMBLER CODE LISTING

A,R6

RX COMX LP1

R6,#40

RX EXIT

DPL

DPH

<D CHAR:

DEC

LCALL

INC

MOV

MOVX

MOVX

MOV

MOVX

POP

POP

JNB

MOV

ANL

CJNE

PUSH

PUSH

R7

CHK CHAN

R7

A,#Ol

@DPTR,A

A,@DPTR

B,A

A,@DPTR

DPH

DPL

ACC.O,RX_EXIT

A,B

A,#70H

A, #0, PAR_ERR

DPL

DPH

iLOAD DPTR WITH CORRECT CMD REG OFFSET

iSELECT RR1

iRR1 FOR ERR CONDITION

iSAVE RR1

iRRO CHECK IF CHAR AVAIL

i1 = CHAR AVAILABLE

iCONTENTS OF RR1, PARITY/OVERUN ERR

iCHECK FOR PARITY/OVERUN/FRAME ERR

i1= 0, THEREFORE ERR CONDITION

j
I

I
PTER 3

I

LCALL

MOVX

CHK CHAN

A,@DPTR iREAD CHAR

PAGE 125

MOV

POP

POP

CLR

MOV

ADDC

MOV

JNC

INC

JMX LP2:

MOV

MOVX

INC

SJMP

I ERR:
~

DEC

'SET

LCALL

INC

B,A

DPH

DPL

C

A,R6

A,DPL

DPL,A

RX COMX LP2

DPH

A,B

@DPTR,A

R6

RX COMX

R7

CHK CHAN

R7

ASSEMBLER CODE LISTING

iSAVE RX CHAR

iCALC CORRECT OFFSET FOR COM1/2_RXBUF

iRESTORE RX CHAR

iWR RX CHAR TO COM1/2 RXBUF

iCHK IF ANOTHER BYTE AVAILABLE

iLOAD DPTR WITH CORRECT CMD REG

,

I
!

.EXIT:

MOV

MOVX

A,#30H

@DPTR,A

iERROR RESET

iWRO

RETI
**,

I
I1TER 3 PAGE 126

ASSEMBLER CODE LISTING

~***

SETUP DPTR WITH SOURCE BUFFER, R7 WITH VALUE TO ADDRESS OF 82530,

COUNT82 FOR # OF BYTES TO TRANSMIT, BEFORE CALLING TX COMX.

*

*
*

FORMAT OF DATA FIELD: *

'C'MD / 'D'ATA *
OF BYTES IN DATA FILED, INCLUDING CiD & # OF *
BYTES IN DATA FIELD *

DATA STRING *

*
i FORMAT OF COMMAND FIELD:

BAUD RATE, BINARY 48, 96, 19, 38 (DEFUALT 9600)

DATA BITS, BINARY 7, 8 (DEFAULT 7)

STOP BITS, BINARY 1, 2 (DEFAULT 2)

PARITY IN' , '0' , 'E' (DEFAULT 'E')

INB: COMMAND STRING MUST BE IN ABOVE SEQUENCE
~

*
*
*
*

*
*
*
*

iON

i
j
j

I

ION
I,
I

ENTRY:

NOTHING

EXIT:

DPTR POINTS TO SOURCE BUFFRER (COM1_TXBUF / COM2_TXBUF)

*

*
*
*
*
*

R7 = 1 COMSCB iCOMMS STATUS/CONTROL REG. CH B

2 COMDATB iDATA REG. CH B

3 COMSCA iCOMMS STATUS/CONTROL REG. CH A

I
(PTER 3 PAGE 127
1

*
*

*

ASSEMBLER CODE LISTING

4 COMDATA iDATA REG. CH A *

*
COUNT82 = # OF BYTES TO WRITE TO 82530 *

iFROM DATA STRING

i# OF BYTES TO TX

iCHECK IF CMD/DATA

iREMOVE # OF BYTES & CMD/DATA BYTEA

A,@DPTR

A,@DPTR

DPTR

DPTR

DPTR,#COM1_TXBUF

COUNT82,A

A

MOVX

MOV

INC

MOV

DEC

JNB

INC

DEC

MOVX

f1**:

~P_TX:
t!

[I

i1
I i
F ~

r ~
r 1
l·,
[i
I!n
H
I'
11
i:
11, I
I,t!

Ii
i i

1I
I'

[CMD1:

CJNE

LCALL

RTSA:

MOV

MOV

MOV

A,#'C',CHK_DAT1 iCHECK IF CMD FOR COM1

COMMS OPTIONS

RO,#RTSA

A, TX_DATA_BITS

@RO,A

MOV DPTR,#COM1_TXBUF iSETUP REGS FOR CODE TO XDATA

MOV R6,DPL

MOV R7,DPH

MOV DPTR,#A82530

'ER 3 PAGE 128

MOV

LCALL

MOV

LCALL

COUNT82,#22

CODE TO XDATA

DPTR,#COM1_TXBUF

SETUP CMD STR

ASSEMBLER CODE LISTING

iCOM1_TXBUF CONTAINS ORIGINAL

iINTIALIZATION CODE

MOV DPTR,#COM1_TXBUF iINIT CHANNEL A OF 82530

MOV R7,#03

MOV COUNT82,#22

LCALL INIT 82530

CLR TXBUF1 FULL

SJMP SETUP EXIT

DAT1:

CJNE A,#'D',SETUP_EXIT iCHECK IF DATA FOR COM1

MOV

CLR

MOV

LCALL

MOV

LCALL

CLR

MOV

SETB

A,RTSA

ACC.2

R7,#03

TOGGLE RTS

R7,#04

TX COMX

TXBUF1 FULL

A,RTSA

ACC.2

iRTS 'H'

iDPTR POINTS TO START OF DATA STRING

iOF COM1 TXBUF

i RTS 'L'

"TER 3 PAGE 129

TXBUF2 :..,

MOV

LCALL

SJMP

JNB

MOV

ASSEMBLER CODE LISTING

R7,#03

TOGGLE RTS

SETUP EXIT

TXBUF2_FULL,SETUP_EXIT

DPTR,#COM2_TXBUF

MOVX

INC

DEC

DEC

MOV

MOVX

A,@DPTR

DPTR

A

A

COUNT82,A

A,@DPTR

i# OF BYTES TO TX

iREMOVE # OF BYTES & CMD/DATA BYTE

iFROM DATA STRING

iCHECK IF CMD/DATA

I i
i!
i i

J CMD2:,-
f j
~. J, ,

! Jr;
t ;1

i ~r j
·1

INC

CJNE

LCALL

DPTR

A,#'C',CHK_DAT2 iCHECK IF CMD FOR COM2

COMMS OPTIONS

iATE RTSB:
: J

i
I MOV

MOV

MOV

MOV

MOV

MOV

RO,#RTSB

A, TX_DATA_BITS

@RO,A

DPTR,#COM2_TXBUF

R6,DPL

R7,DPH

iSETUP REGS FOR CODE TO XDATA

1

I
I

LllTER 3

I

MOV

MOV

LCALL

DPTR,#B82530

COUNT82, #22

CODE TO XDATA iCOM2_TXBUF CONTAINS ORIGINAL

PAGE.130

MOV

LCALL

DPTR,#COM2_TXBUF

SETUP CMD STR

ASSEMBLER CODE LISTING

iINTIALIZATION CODE

MOV DPTR,#COM2_TXBUF iINIT CHANNEL B OF 82530

MOV R7,#01

MOV COUNT82,#22

LCALL INIT 82530

CLR TXBUF2 FULL

SJMP SETUP EXIT

DAT2 :

CJNE A,#'D',SETUP_EXIT iCHECK IF DATA FOR COM2

MOV A,RTSB i RTS 'H'

CLR ACC.2

MOV R7,#01

LCALL TOGGLE RTS

MOV

LCALL

CLR

R7,#02

TX COMX
•

TXBUF2 FULL

iDPTR POINTS TO START OF DATA STRING

iOF COM2 TXBUF

MOV A,RTSB iRTS 'L'

SETB ACC.2

MOV R7,#01

, LCALL TOGGLE RTS
I
I
!
~TER 3 PAGE 131
!

SJMP SETUP EXIT

ASSEMBLER CODE LISTING

t-"''',
: RET

ll***

I:,
t!

~***
t iii TOGGLE THE RTS LINE

1I

i! ON ENTRY:
r i

*

*
*

DPTR POINTS TO SOURCE BUFFRER (COM1_TXBUF/COM2_TXBUF)i i
: i
:;
H

:1
'!
li

R7 = 1

3

COMSCB

COMSCA

iCOMMS STATUS/CONTROL REG. CH B

iCOMMS STATUS/CONTROL REG. CH A

*

*
*
*

i: ACC = MODIFIED RTS BYTE *
*

:
iON EXIT:
I

DPTR POINTS TO SOURCE BUFFRER (COM1_TXBUF/COM2_TXBUF)

*

*
t**

;cLE RTS:

PUSH DPL

PUSH DPH

LCALL CHK CHAN

MOV B,A

MOV A,/05

MOVX @DPTR,A

MOV A,B

~TER 3
j

iSAyE RTS STATUS

iWR 5

iRESTORE RTS STATUS

PAGE 132

MOVX

POP

POP

RET

@DPTR,A

DPH

DPL

ASSEMBLER CODE LISTING

r**

t***~******

SETUP INITIALIZATION STRING TO INITIALIZE 82530

ON ENTRY:

DPTR POINTS TO SOURCE BUFFRER (COM1_TXBUF/COM2_TXBUF)

*
*
*

*
,-_:**

TUP CMD STR:

MOV RO,#RX_DATA_BITS iREAD RX BIT RATE

MOV A,@RO

INC DPTR

INC DPTR

INC DPTR

MOVX @DPTR,A iSET NEW BIT RATE

RO,#TX_DATA_BITS iREAD TX BIT RATE

MOV

MOV

INC

INC

MOVX

MOV

RO,#PARITY

A,@RO

DPTR

DPTR

@DPTR,A

iREAD PARITY BYTE, INCLUDES ST BITS

iSET NEW PARITY AND STOP BITS

3 PAGE 133

MOV

INC

INC

MOVX

A,@RO

DPTR

DPTR

@DPTR,A

ASSEMBLER CODE LISTING

iSET NEW TX BIT RATE

MOV RO,#BAUD iREAD NEW BAUD RATE

MOV A,@RO

INC DPTR

INC DPTR

INC DPTR

INC DPTR

INC DPTR

INC DPTR

MOVX @DPTR,A iSET NEW BAUD RATE

RET

SETUP COMMS OPTIONS TO INITIALIZE 82530 FROM HOST

ON ENTRY:

DPTR POINTS TO SOURCE BUFFRER (COM1_TXBUF/COM2_TXBUF)

OFFSET @ BAUD RATE

*
*

*
*
*

'1I1S OPTIONS:

MOVX

\PTER 3

A,@DPTR iSET BAUD RATE

PAGE 134

ASSEMBLER CODE LISTING

INC DPTR

IK48 : i SET BAUD RATE

CJNE A,#48H,CHK96 i4.8K BAUD

MOV A,#16H

SJMP SET BAUD

--C96 :

CJNE A,#96H,CHK19 i9.6K BAUD

MOV A,#OAH

SJMP SET BAUD

IK19 :

CJNE A,#19H,CHK38 i19.2K BAUD

MOV A,#04

SJMP SET BAUD

lK38 :

CJNE A,#38H,CHK_DATA_BITS i38.4K BAUD

MOV A,#01

-- BAUD:

MOV RO,#BAUD

MOV @RO,A

DATA BITS:

MOVX A,@DPTR iSET # OF DATA BITS

INC DPTR

K7:

CJNE A,#7H,CHK8

MOV A,#41H i# OF RX BITS

MOV B,#28H i# OF TX BITS

APTER 3 PAGE 135

SJMP

"KB:

ASSEMBLER CODE LISTING

SET DATA BITS

RO,#RX_DATA_BITS

@RO,A

RO,#TX_DATA BITS

@RO,B

A,#8H,CHK_ST_BITS

A,#OC1H ;# OF RX BITS

B,#68H ;# OF TX BITS

CJNE

MOV

MOV

oT_DATA_BITS:

MOV

MOV

MOV

MOV

lK_ST_BITS:

MOVX

INC

lJ(1 :

CJNE

MOV

SJMP

"K2 :

A,@DPTR

DPTR

A,#lH,CHK2

A,#47H

SET STOP BITS

;SET # OF STOP BITS

;1 STOP, EVEN PARITY

CJNE

MOV

'T STOP BITS:

MOV

MOV

"K PARITY:

A,#8H,CHK_ST_BITS

A,#4FH ;2 STOP, EVEN PARITY

RO,#ST_BITS

@RO,A

MOVX

INC

A,@DPTR

DPTR

~PTER 3 PAGE 136

ASSEMBLER CODE LISTING

-(_E:

CJNE A,#'E' ,CHK_N

MOV A,#03H ;EVEN PARITY

SJMP SET PARITY

IlK N:

CJNE A,#'N' ,CHK_O

MOV A,#OOH ;NO PARITY

SJMP SET PARITY

0:

CJNE A, # ' 0 ' , CO_EXIT

MOV A,#OlH ;ODD PARITY

fi PARITY:

MOV RO,#PARITY

MOV @RO,A

EXIT:

MOV

MOV

ANL

ORL

RET

RO,#ST_BITS

A,@RO

A,#OFCH

PARITY, A

;REMOVE LOWER 2 BITS

'**

',PTER 3 PAGE 137

ASSEMBLER CODE LISTING

t~**

t: TRANSMIT DATA STRING TO COM1/2.

t: USE R7 IN CONJUNCTION WITH FUNCTION •CHK CHAN' AS A LOOKUP FOR THE

t' ADDRESSES FOR THE 82530.

t, TX82_STAT IS TO INDICATE WETHER TRANSMISSION WAS SUCSESSFUL OR NOT.

t' THIS STATUS BYTE APPLIES TO BOTH COM1 & COM2.

.1 ON ENTRY:

DPTR POINTS TO SOURCE BUFFRER (COM1_TXBUF/COM2_TXBUF)

*

*

*

*

*

*

*

*
~ j,
•I

t!

•
r1
j

•

R7 = 1

2

3

4

COMSCB

COMDATB

COMSCA

COMDATA

;COMMS STATUS/CONTROL REG. CH B

;DATA REG. CH B

;COMMS STATUS/CONTROL REG. CH A

;DATA REG. CH A

*

*
*

*

*

f
d,

COUNT82 = # OF BYTES TO WRITE TO 82530

ON EXIT:

NOTHING

*

*

*

*

*
'.**
I
I'COMX:
i
lLP4 :

I
!PTER 3

I,

MOVX

MOV

INC

PUSH

PUSH

A,@DPTR

B,A

DPTR

DPL

DPH

iREAD SOURCE ADDR, COM1/2_TXBUF

;SAVE ACC

;SAVE DPTR

PAGE 138

DPTR WILL POINT TO COMSCA / COMSCB..
'i

LCALL

MOV

CJNE

SJMP

CHK CTS

A,TX82_STAT

A,#OFFH,TX_LPl

TX ERR

ASSEMBLER CODE LISTING

iCHECK IF DEVICE READY TO ACCEPT DATA

iCHECK IF CTS ROUTINE TIMED OUT

*
CTS ERRORTX82 STAT = OFFH *

COUNT82,TX_LP4 iTX NEXT BYTE

CLR

MOV

MOV

SETB

JLP2:

MOVX

JNB

SJMP

lK TMOUT1:,-

JB

SJMP

(1 LP3:-
j

CLR

LCALL

MOV

MOVX

POP

POP

DJNZ

TRO

THO,#O

TLO,#O

TRO

A,@DPTR

TX LP3

TMOUT, TX_ERR

TX LP2

TRO

CHK CHAN

A,B

@DPTR,A

DPH

DPL

;STOP TIMER 0

iUSED FOR TIMEOUT LOOP

i80 msec DELAY

iSTART TIMER 0

iWAIT FOR TX REG TO BE EMPTY

iSTOP TIMER 0

iLOAD DPTR WITH ADDR OF 82530

iRESTORE ACC

iWRITE TO 82530

iRESTORE DPTR

~PTER 3

I
PAGE 139

EXIT TX COMX

DPTR,#LCD1_DAT_WR

LCD WR

'1

j

·1
SJMP

,.j ERR:

CLR

POP

POP

LCALL

MOV

LCALL

MOV

LCALL

TX COMX:

TMOUT

DPH

DPL

CLS1

DPTR,#MSG3

CODE TO LCD

ASSEMBLER CODE LISTING

;RESTORE STACK TO CORRECT POSITION

RET

t***

~**

I
~ CHECK WHICH CHANNEL IS TO BE USED, SO AS TO CHECK THE CORRECT CTS LINE *

*

*
*
*

;COMMS STATUS/CONTROL REG. CH BCOMSCB

t
i NB: THE DPTR WILL BE CHANGED DEPENDING ON THE CONTENTS OF R7
1

J
j

1 ON ENTRY:

\ R7 = 1

2 COMDATB ;DATA REG. CH B *
3 COMSCA ;COMMS STATUS/CONTROL REG. CH A *
4 COMDATA ;DATA REG. CH A *

*
ON EXIT: *

DPTR WILL POINT TO COMSCA / COMSCB *

i
IAPTER 3 PAGE 140

ASSEMBLER CODE LISTING

TX82 STAT = OFFH CTS ERROR *
1***

CTS LP2

PAGE 141

EXIT CHK CTS- -

i80 msec DELAY

i CLEAR TMOUT FLAG

iSTART TIMER 0

iUSED FOR TIMEOUT LOOP

iWAIT FOR CTS 'L'

iSTOP TIMER 0

TX82_STAT,#0

R7,#02,CTS_LP1 iCH B

DPTR,#COMSCB iRRO FOR CTS STATUS

ACC.5,CHK_CTS TMOUT iBIT =1, THEN CTS = 0 ON 82530

A,@DPTR

R7,#04,EXIT_CHK_CTS iCH A

DPTR,#COMSCA

TLO,#O

TRO

THO,#O

TRO

CTS LP3

TMOUT, CTS_ ERR

TX82_STAT,#OFFH iCT~ ERR

TRO

TMOUT

iK_CTS:

MOV

CJNE

MOV

SJMP

rs LP1:-
CJNE

MOV

rS_LP2 :

CLR

MOV

MOV

SETB

fS LP3:

MOVX

JNB

SJMP

-~

CTS TMOUT:

JB

SJMP
,

ERR:

CLR

MOV

CHK CTS:

CLR
i
1
....PTER 3

ASSEMBLER CODE LISTING

RET

.***

.***

~ CHECK WHICH CHANNEL IS TO BE USED, AS WELL AS IF IT IS A COMMAND OR *

~ DATA STRING. *

~ NB: THE DPTR WILL BE CHANGED DEPENDING ON THE CONTENTS OF R7

.'!
:t~ ON ENTRY:

!

t~ R7 = 1 COMSCB iCOMMS STATUS/CONTROL REG. CH B!

~
t1 2 COMDATB iDATA REG. CH B
I
":.! 3 COMSCA iCOMMS STATUS/CONTROL REG. CH A

.! 4 COMDATA iDATA REG. CH A
!

,,1

~ ON EXIT:

*

*

*

*

*

*

*
*
*

t,, DPTR WILL POINT TO ONE OF THE ABOVE ADDRESSES *
~***

lK CHAN:

CJNE R7,#Ol,CHK_LPl iCH B, COMMAND
i,
I MOV DPTR,#COMSCB,
I
! SJMP EXIT_CHK_CHAN!
I

lK LPl:
i-

I CJNE R7,#02,CHK_LP2 iCH B, DATA

I
MOV DPTR,#COMDATB

SJMP EXIT_CHK_CHAN

I!< LP2:

CJNE R7,#03,CHK_LP3 iCH A, COMMAND

I
!hPTER 3 PAGE 142

I

MOV

SJMP

, LP3:

CJNE

MOV

·~T_ CHK_ CHAN:

RET

DPTR,#COMSCA

EXIT CHK CHAN

R7,#04,EXIT_CHK_CHAN

DPTR,#COMDATA

ASSEMBLER CODE LISTING

;CH A, DATA

t***

i
~*** *********************

~ INITIALIZE VARIABLES FOR 82530 MODULE *
t***

iT 82530VARS:

CLR

CLR

CLR

CLR

MOV

MOV

MOV

MOV

MOV

MOV

MOV

MOV

iAPTER 3

I

TXBUF1 FULL

TXBUF2 FULL

RXBUF1 FULL

RXBUF2 FULL

RX1_COUNT,#0

RX2_COUNT, #0

TX82_STAT,#0

PARITY,#O

ST_BITS, #0

TX_DATA_BITS, #0

RX_DATA_BITS,#O

BAUD,#O

PAGE 143

NB!!!! PLEASE REFER TO NOTES, @ START OF MODULE CONCERNING RTSA/B *

MOV

MOV

RET

RTSA,#6AH

RTSB,#6AH

ASSEMBLER CODE LISTING

t***

**
. r

i
*: INITIALIZE 82530 *
..I

J ON ENTRY:
i
4 DPTR POINTS TO SOURCE BUFFRER (COM1_TXBUF/COM2_TXBUF)
i

tl
i,

*

*

*

*

*
*

*

*

*

*

*

*

*

iCOMMS STATUS/CONTROL REG. CH B

iCOMMS STATUS/CONTROL REG. CH A

iDATA REG. CH B

iDATA REG. CH A

COMSCB

COMSCA

COMDATA

COMDATB

= # OF BYTES TO WRITE TO 82530

2

4

3

R7 = 1

COUNT82

NOTHING

ti

ti
;

i
tr
I
I

ti
I

~1
1

t j
I

·1
.1 ON EXIT:
j

•!
1
~*** **********************
j

rIT 82530:1-
I PUSH DPL

PUSH DPH

PAGE 144

ASSEMBLER CODE LISTING

:_82530 :

LCALL CHK CHAN

MOV A,#OCH

MOVX @DPTR,A

MOV A,#OAH

MOVX @DPTR,A

iCHECK IF 82530 IS WORKING

iSELECT REG C

iWR TO 82530

iDATA FOR REG C

iWR TO 82530

A,#OAH,INIT82 ERR

MOV

MOVX

MOVX

POP

POP

CJNE

lIT 82530 LP1:-

CLR

MOVX

INC

PUSH

PUSH

LCALL

MOVX

POP

POP

A,#OCH

@DPTR,A

A,@DPTR

DPH

DPL

A

A,@DPTR

DPTR

DPL

DPH

CHK CHAN

@DPTR,A

DPH

DPL

iSELECT REG C

iWR TO 82530

iRD 82530

iRESTORE STACK

iREAD INITIALIZATION CODE

iSAVE DPTR

iWRITE TO 82530

iRESTORE STACK TO CORRECT POSITION

DJNZ

I
!APTER 3

I

INC

LCALL

MOVX

R7

CHK CHAN

A,@DPTR

iCLEAR 3 BYTE FIFa

PAGE 145

MOVX

MOVX

SJMP

LCALL

MOV

LCALL

MOV

LCALL

A,@DPTR

A,@DPTR

INIT82 EXIT

CLS1

DPTR,#MSG1

CODE TO LeD

DPTR,#LCD1_DAT_WR

LCD WR

ASSEMBLER CODE LISTING

~IT82 EXIT:

RET

r***

~***

THE SERIAL PORTS HAVE BEEN INITIALIZED FOR THE 2/3X16 INTELLIGENT

DISPLAYS. 96DD,N,8,1

*

*
'***

'**~*************

1
I INITIALIZATION FOR 8253DA, REGISTER #, FOLLOWED BY DATA FOR THAT REG *

*
NB!!!! WHEN CHANGING WR5, PLEASE REFER TO NOTE5, @ START OF MODULE *

t***
1

1253 D:

!APTER 3

DB

DB

D9,

D3,

83H

DC1H

iRESET CH A

iRX MODE = 8 BITS

PAGE 146

DB 04, 44H

DB 05, 6AR

DB OAR, 00

DB OBH, 55H

DB OCH, OAR

DB ODH, 00

DB OEH, 03

DB OFH, 00

DB 01, 00

ASSEMBLER CODE LISTING

i16 CLOCK, 1 STOP, NO PARITY

iTX MODE = 8 BITS, RTS 'L'

i9600 BAUD

;NO INTERRUPTS

1***

~***

_ INITIALIZATION FOR 82530B, REGISTER #, FOLLOWED BY DATA FOR THAT REG *

NB!!!! WHEN CHANGING WR5, PLEASE REFER TO NOTE5, @ START OF MODULE *
,
~******~** *********************

',530:

DB 09, 4BH ;RESET CH B

DB 03, OC1H iRX MODE = 8 BITS

DB 04, 44H i16 CLOCK, 1 STOP, NO PARITY

DB 05, 6AR iTX MODE = 8 BITS, RTS I L I

DB OAR, 00

DB OBH, 55H

DB OCH, OAR i9600 BAUD

DB ODH, 00

DB OEH, 03

DB OFH, 00

APTER 3 PAGE 147
I

1

ASSEMBLER CODE LISTING

iNO INTERRUPTS0001,DB:l
: j

j
~*** **********************

, "

, 'i

~*** **********************
, I

'. TRANSFER DATA FROM CODE AREA TO EXTERNAL DATA.
I·:; *
• FIRST SETUP SOURCE REGISTERS = DPTR

, *

*
.; ON ENTRY:
!

DPTR POINTS TO SOURCE BUFFER

*

*

COUNT82 = # OF BYTES TO TRANSFER

*

*
i

OJ,
1

~ R7 POINTS TO THE MSB OF THE DESTINATION BUFFER

J R6 POINTS TO THE LSB OF THE DESTINATION BUFFER
j

.J
l

01 ON EXIT:

*
*

*
*

*,
1
~ DESTINATION BUFFER WILL CONTAIN CODE DATA
1 *,

t***
I
I

lDE TO XDATA:

I :,
I INC

A

A,@A+DPTR

DPTR

iREAD SOURCE ADDR

PUSH DPL iSAVE DPTR

PUSH DPH

MOV DPL,R6 iRESTORE DESTINATION ADDR

MOV

I
rAFTER 3

I

DPH,R7

PAGE 148

MOVX

INC

MOV

MOV

POP

POP

@DPTR,A

DPTR

R6,DPL

R7,DPH

DPH

DPL

ASSEMBLER CODE LISTING

iWRITE TO DESTINATION BUFFER

iSAVE DPTR FOR DESTINATION ADDR

iRESTORE DPTR TO SOURCE ADDR

DJNZ

RET

iTRANSFER NEXT BYTE

~*** *********************
j

I
~l: DB '* 82530 IS NOT * OPERATIONAL!!! ',0

iG2:
,

iG3 :

DB

DB

, 82530 IS FULLY OPERATIONAL!!! ',0

'TX REG NOT EMPTYOR CTS NEVER LOW',O

]CLUDE (EQUATES.ASM)

END

~PTER 3

I

PAGE 149

ASSEMBLER CODE LISTING
r .j

i i CRD.ASH
.~,

:)

~~**
i'

~' DATA SEGMENT *
.***
f'

,rA_SEG
i:

SEGMENT

RSEG

DATA

DATA SEG iRELOCATABLE INTERNAL DATA

RC: OS 01,
i

ID BUF: DS 45,-

rACK: DS 40

iRESULT OF XOR OF ALL BYTES

;CARD BUFFER 45 BYTES

;40 BYTES FOR THE STACK

tt**

~t**,

CODE SEGMENT *
ft**

CSEG

ORG

USING

MOV

IJMP

NCLUDE (EQUATES.ASM)
i

M'TER 3

I

AT 0

o

1

SP,#STACK

START

iABSOLUTE SEGMENT FOR MAIN MODULE

iUSING RB 0,1

PAGE 150

ASSEMBLER CODE LISTING

**

MAIN ROUTINE *
**

RT:

LCALL

LCALL

SJMP

CRD READ

TRANS DATA

START

iSWIPE CARD

*

**

**

TRANSFER CARD DATA VIA A PORT PIN. WHEN DATA IS AVAILABLE, DATA *

LINE IS TAKEN 'L' TO INFORM HOST THAT DATA IS AVAILABLE. DATA IS THEN *
CLOCKED OUT ON THE FALLING EDGE OF THE CLOCK. TRANSFER 1 BYTE FOR THE *

STATUS AND 37 BYTES FOR CARD DATA *

fi 38 BYTE X 8 BITS = 304 CLOCK PULSES. LSB IS TRANSFERED FIRST. *
f i IF THERE I S AN ERROR IN READING THE CARD, THEN ONLY THE STATUS BYTE *
1

fj IS TRANSFERED TO THE HOST. *

.! Pl.3 = SERIAL CARD DATA TO HOST.
!

'I Pl.4 = SERIAL DATA CLOCK FROM HOST. *

CRD BUF CONTAINS THE DATA READ FROM THE MAGNETIC CARD

i
, !

!
'I 1 MIC CYCLE = 1.3 uSEC. ALLOW FOR 20 MIC CYCLES FOR THE BIT,
i

'I TRANSMISSION LOOP. ALLOW 100 uSEC FROM CLK 'H' TO CLK 'L' AND
I

'I ALSO 100 uSEC
i

,I TRANSISSION

,1

-IoN ENTRY:

,I
I

iTER 3

FROM THE TIME THE BIT IS READ TILL THE NEXT CLOCK

PAGE 151

*

*
*

*

*
*
*

*

ASSEMBLER CODE LISTING

**

JlS DATA:
~"!' -

i
i
i

p

SETB

MOV

MOV

CLR

CJNE

MOV

SJMP

MOV

MOV

MOV

JNB

JB

RRC

MOV

DJNZ

INC

DJNZ

SETB

Plo4

RO,#CRD_BUP

A,@RO

Plo3

A,#01,TRANS_LP3

R3,#38

TRANS LP1

R3,#01

A,@RO

R2,#08

Plo 4, $

Plo 4, $

A

Plo 3, C

R2,TRANS_LP2

RO

R3,TRANS_LP1

Plo3

iSET BIT AS AN INPUT FOR CLOCK

iCHECK STATUS BYTE

iINFORM HOST DATA AVAILABLE

i38 BYTES TO TRANSFER

iAN ERR IN READING CARD, TRANS 1 BYTE

i8 BITS

iWAIT FOR CLK 'H'

iWAIT FOR CLK 'L'

iSHIFT DATA INTO CARRY FLAG

iSERIALIZE DATA

iNEXT BYTE TO TRANSFER

1 RET
I
~***

1

j
~TER 3 PAGE 152
I

!
j

ASSEMBLER CODE LISTING

.**

P1.0 = SWIPE DURATION

Pl.1 = CLOCK

P1.2 = DATA

CRD FLAG = 1 i VALID SWIPE

*

*

*
*

CARD BYTES MADE OF 5 BITS, 40 BYTES TOTAL. THIS INCLUDES 'START AND *

*i,
*

END ' SENTINEL AND THE LRC (LONGITUDANAL CHARACTER CHECK) AND 37

DATA BYTES.

STATUS BYTE: GOOD SWIPE = 01, BAD SWIPE = OFFH

ONLY STORE THE 37 DATA BYTES IN CRD_BUF, NOT START & END SENTINEL

AND LRC. THE FIRST BYTE IN THE STRING IS THE STATUS BYTE.

SETB 6 SO AS TO READ ASCII CHARS > 30H

*

*

*
*

*
*

*
**

ID READ:

MOV iADDR OF CRD BUFFER, ALLOW FOR STATUS

ID LOOP9:

I
!APTER 3
i

I

MOV

MOV

JB

MOV

JNB

JB

MOV

CPL

RRC

ANL

R3,#38

LRC,#O

Plo 0, $

A,#O

Pl.1, $

P1.1, $

C,P1.2

C

A

A,#OF8H

iREAD 37 DATA BYTES, 1 BYTE END SENTINEL

iXOR OF ALL BYTES

iWAIT FOR SWIPE 'L'

iWAIT FOR CLK 'H'

iWAIT FOR CLK 'L'

iREAD DATA BIT

iINVERT INCOMING DATA

iMASK OFF MS NIBBLEL

PAGE 153

R2,#5 iBITS / BYTE

A,#OFFH

A,#58H,CRD_LOOP9 iSTART SENTINEL

LRC,#11 iSTART SENTINEL

CJNE

MOV

LOOP1:

MOV

MOV

SETB

RD_LOOP2 :

JNB

JB

MOV

CPL

RRC

DJNZ

CLR

RRC

CLR

RRC

CLR

RRC

XRL

MOV

MOV

C

P1.1, $

P1.1,$

C, P1. 2

C

A

R2,CRD_LOOP2

C

A

C

A

C

A

LRC,A

R2,#8

R4,#O

ASSEMBLER CODE LISTING

iINITIALIZE REGS

iWAIT FOR CLK 'H'

iWAIT FOR CLK 'L '

iREAD DATA BIT

iINVERT INCOMING DATA

iMOV DATA BIT INTO A

iNEXT BIT

i

iCLEAR BITS 6, 7 & 8

iSTORE RESULT OF XOR IN LRC

iSTART ODD PARITY CHECK

iCHECK PARITY / BYTE

iCOUNT # OF '1'

LOOP5:

PAGE 154

lb

I
I

I
!APTER 3

1

JNB

INC

ACC.1,CRD_LOOP4

R4 ; 11'

iIF SET, INC R4

FOUND

ASSEMBLER CODE LISTING

-, LOOP4:-
RR A iNEXT BIT TO TEST

DJNZ R2,CRD_LOOP5

CJNE R4,#I,CRD_LOOP6 iODD PARITY ONE ' I'

SJMP CRD LOOP8 iREAD NEXT BYTE

I LOOP6:

CJNE R4,#3,CRD_LOOP7 iTHREE '1 '

SJMP CRD LOOP8 iREAD NEXT BYTE

) LOOP7:

CJNE R4,#5,CRD_ERR iPARITY ERROR

iEND ODD PARITY CHECK

) LOOP8:

ORL A,#30H iDISPALYABLE CHARS

MOV @RO,A

JB PI.O,CRD_ERR iIF SWIPE GOES 'H'

ANL A,#3FH iREQUIRE LS NIBBLE

CJNE A,#'?' ,CRD_LOOP3 iEND SENTINEL

i *** READ LRC BYTE

MOV R2,#5 iBITS / BYTE

MOV A,#OFFH

SETB C iINITIALIZE REGS

I LOOPI0:

JNB PI.l, $ iWAIT FOR CLK 'H'

JB PI.l, $ iWAIT FOR CLK 'L'

MOV C, PI. 2 iREAD DATA BIT

CPL C iINVERT INCOMING DATA

l'TER 3 PAGE 155

i

iCLEAR BITS 6, 7 & 8

iDISPALYABLE CHARS

iSAVE LRC BYTE

ASSEMBLER CODE LISTING

iMOV DATA BIT INTO A

iNEXT BIT

RRC A

DJNZ R2,CRD_LOOP10

CLR C

RRC A

CLR C

RRC A

CLR C

RRC A

ORL A,#30H

MOV @RO,A

ORL LRC,#30H

PAGE 156

ANL

ANL

CJNE

MOV

MOV

MOV

SJMP

- ERR:

MOV

MOV

SJMP

I LOOP3:

INC

DJNZ

I_EXIT:

,PTER 3

LRC,#OFH

A,#OFH

A, LRC, CRD_ERR

@RO,#EOT

RO,#CRD_BUF

@RO,#01

CRD EXIT

RO,#CRD_BUF

@RO,#OFFH

CRD EXIT

i*** LRC CHECK

iUSE LS NIBBLE

iLRC BYTE

iLRC IS INVALID

iFOR LCD STRING, END OF STRING

iSTATUS BYTE 01 = GOOD, OFFH = BAD

iN~XT BYTE IN CRD BUFFER

iNEXT BYTE

RET

ASSEMBLER CODE LISTING

;END CARD READING ROUTINE

~*** *********************

END

,PTER 3 PAGE 157

ASSEMBLER CODE LISTING

EQUATES. ASM

**

MEMORY I/O EQUATES *
**

**

1 CMD_WR

1 STAT

1 DAT_WR

1 DAT_RD

2 CMD WR

2 STAT

2 DAT WR

2 DAT RD

K JMP

DAT

CMD

1

2

ZER

PTER 3

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

8000H

8001H

8002H

8003H

9000H

9001H

9002H

9003H

OAOOOH

OBOOOH

OB001H

OCOOOH

ODOOOH

OEOOOH

iINSTRUCTION WRITE

iREAD LCD STATUS BIT, 07

iOATA BUFFER WRITE

iDATA BUFFER READ

iINSTRUCTION WRITE

iREAD LCD STATUS BIT, 07

iDATA BUFFER WRITE

iOATA BUFFER READ

iLOCK AND JUMPERS

PAGE 158

'sca

!DATB

ISCA

IDATA

EQU

EQU

EQU

EQU

OFOOOH

OF001H

OF002H

OF003H

ASSEMBLER CODE LISTING

iCOMMS STATUS/CONTROL REG. CH B

iDATA REG. CH a

;COMMS STATUS/CONTROL REG. CH A

iDATA REG. CH A

:**

'**

CONSTANT DEFINITION EQUATES *
**

CE

N

ON

P2H

P2L

EQU 09

EQU 20H

EQU 0

EQU 13H

EQU 0

EQU 87H

EQU OC8H

EQU OCBH

EQU oCAR

;SPACE INDICATOR, AI

;BLANK CHAR = •

;INDICATES LED STRING

;END OF STRING

;POWER CONTROL REGISTER

iTIMER2 CONTROL REGISTER

iTIMER2 CAPTURE REG

EQU 70H ;POLLING TERMINAL

EQU 71H ;SELECTING TERMINAL

EQU 02 ;START OF TEXT

EQU 03 ; END OF TEXT

EQU 04 ;

EQU 05 ; ENQUIRE

EQU 06

PTER 3 PAGE 159

o

1

EQU

EQU

EQU

EQU

1SH

10H

30H

31H

ASSEMBLER CODE LISTING

iUSED TO PRECEDE CONTROL CODES

DSP EQU 01 iCLEARS LCD DISPLAYS

E EQU 02 iCURSOR HOME

E EQU 06 iINC

ON OFF EQU OCH iDISPLAY ON/OFF

CTION EQU 38H i8 BIT, 2 LINE, 7XS

E 1 EQU 080H iWRITE TO LINE #1

E 2 EQU OCOH iWRITE TO LINE #2

**

PTER 3 PAGE 160

rNTELLrGENT POrNT OF SALE TERMrNAL

SCHEMATrc DrAGRAMS

INTELLIGENT

TERM INAL

SCHEMATIC DIAGRAMS

;
~;:::::;:~::;;:<;; l:ju~

0-"" "
00000000

~

,
:,.

j
.
:

i

- i4-: .-
11

J •••• o ••~
,~ r.:::~

o,

.
~

IJJl ~.
t11

11

~
•••• o •••• o •••• o ••

~rrrr """,~,,....

_"' .. ~ .. ::'~::;;:;:::;;::;;;: 4

.~ IIJJJJ

I~
•

c_~ a_ r ~~~~
................ • /1

~.1I1111111111 11 •••• 11.. lit

o~.'••

:;!;: 0_ ..
ZZO_ • _
__ ~ .. 11. ..

.,,.
,

,.

Figure 4-1. Single Board Computer

CHAPTER 4 PAGE 2

n "1

~
1-"

~
"l t1

~
ID

",.
",. I

t-l.
H......
0

0
ID
0
0
Q.
ID

~
t>l

w

AD
A'

~J 1 PD2

'"
.,

".- ;> 1 ~ C rs , ", 2 - ,, 0' - ,, • '2 02 C., ,
" 0' '" - , , ,

7 8 ,. O' -, . r• 10 15 05 , - , , en, rs

" , 2 , 15 0' 7 , , , r - -l CO, CS
1 J 1 "I " 0' ~LC02 CSA

" "
A ---t 'B 08

, 5 we ~ DC>:: c:. - DC CC;

" " " 3I '9 09 " , 5:3 D " -n cs
-I<. Y::l c·~A' ., - , . - ,,g 20 ''0 010 - 7 c-s >

A ;2 1 2;2 A ," - , c - cs >A
;2 J 2 "I A , '2 - u' c - u rs >-25 26 2Dl-l0(TERM) - - El<) 111 WO
27 28 - 8530 R
29 3D

, , r
,

:3' 32
,

33 J" ,on
BOARD-BOARD ,

~~I'"
~I ,.~'

-r~ _c

• P' °p, ,
r", p 1 "

"" r.Nn ><v "Nn
p ,, 2 P •v , • P 5 p, ,

CA" ATA , , -0 NB I I PCB I,..A'(OU"T EI'lROt:! P
P' ,

CAR ~ 7 8 P ,
P'

,
P • 10 P P 11'1 7 SHORT~D TO PIN a ON eN2 p p,,

" , 2 P CAI'L A _A

j
CAP J JATA

" ,. OPERATiON NOT AFFECTED 7
C AH (,

15 16 " 5
BOARD· BOARD

NOTES'

r , - SIGNIFIES INVERSION
ANKERd 11 t 11 ADS-ANKER DATA SYSTEMS (PTY) eTO

c' 2 > OUTPUT SIGNAL

~ 100nF Tit le, . INPUT 5' GNAL INTELL IGENT TERMINAL (110 DECOOE) (H KEDWNJ

• .> BI-DIRECTIONAL 5 I GNAL Size r~oc umen t Numoer rEV
A INTELL IQENT TERMINAL (110) TERM1.SCH B

III t e " "
, , 1 Sne~

-, 0' C

Ul

Q

~
H
n
o
H

~
Ul

v c vcc vcc VCfC
83,1

:ii
DD ::=::r~.,ON - 81

R" .PF; P3 R<
~ 1N'l1'la

BUZZER
10. I 1<

'001(

16
".

RD

.Run c, " " c-'l- R a-:7l~
"R

5 R5TR a TR
T'

ors~ D'S •.-J a, T
~

--l.. cv THR :2 " THR " ·lVNlO.M CN:;>~C,

~ C22 ~ C23

,
U1~A luF U14B ''0 of

2

LM556 LMSS6
OFF ·BC

5 D

T ~VN1DI':M BOT'

G

I :/""CRRRRRQRRR 101<
01234\567B9

: " 4 5678'llti
< 8

5
, NUM

<
~

AT 8 T , -=> ,
T , ,

_R1J77 rs 4 A' " " 3 -=>
". u . A3 83 4 -=>. K A< 8< < -=>

; , A' 85 ~IP-4.. 8', ., 8' ", 9
A' 88 "

., nCl
~

~g'R ,
7'U-lCT2"'S

2 <3
<

NOTES
,

.-J-. -

ANKERaata ADS-ANKER DATA SYSTEMS (PTY) LTO

A BUZZ LOCK TERM# INTERFACE TERt.12 SCH B

lite' O~LoPer 17 1991 St1<~et -J of 10

[J)

Q

~
H
n
C
H

~

~
[J)

.t=v

IT LOCIC

T TERMINAL
ER

Ar:lD BUZZE>:l

AI'lD SPEAKER

OM UP

Tit le

INTELLiGENT TERMINAL (110 SECTION) (H /(EOWN)

in .n' "'"n''''''~ I...5 I zelQocum_ ,._".__ .

OUTPUT 5 I GNAL

INPUT SIGNAl

~~ BI -DIRECTIONAL SIGNAL

- SIGNIFIES INVERSION

2

<

C2T
100nF

T
...c-;:~- ...LT 100nF T

;;;

n I'Ij

~
....
~

>-3 t1

~
ID

of>
",. I.....

tJ:l
~
N
N
ID
t1

R> I c"

T"'

t"'
0
n
:-;'

H
::s

." rt
:>- ID
G) t1
t'l H>

III
",. n

ID

n '"~
1-"

'2
~ 11

!:l ID

"""" I

"".
I:"'
t>1
C

R-

I:"'nc
H
::s
rt
ID
11....

"tl III

~
n
ID

t>1

U1

THE FOLLOWING RESISTORS
ARE SITUATED ON THE
DISTRIBUTION BOARD

~

'60R l
rJC

n,
U

T ,, DO 00 5
,

01 01 2
NTr:t-IS I TY ~)6 "

D2 02 , T
7 13

DT aT 12
,

15R r~ D' 0' 5
~, <

D' 0'
5 , CED 1 -,

'T 7
D' 0'

16 7
D7 aT

19

"
Cc ~

.---< ,_ en, QC f-<~CC<

'Rl

l

rrJC

J, "J4\HCT37'l

"7-,
-., '~"T

UT
~

~
T 2

~
, 00 00 , ,

Dl 0' 21 7 D2 02
,

T,
DT OT

, ,
7 13 D< 0'

12 S< " DS OS 19 , LEO 9 - 115

~: " D6 06 16 7

: D7 aT ,
_, Cn, rc ,.."l<

r- 9
DC f----, 10

A - An

J,
cc. '--

A
71HCT374 , 7'_ rn rc- , CS --Leo:? cs - ,- 1 5 -- ,
C 13 C "

Ut 3E "rC .---< ,
c r- ,

2 2

1 10 A
T ,- , •A , A ,.
6 "' 67 .. HCTO" ,
7

,
71

9
) ,

U13F , , ,
I rn::o cs

D 16 16
~LCD" CS 13 12

"
,

",
12

,
12,

13
~ 137"HCT01 7

"
7 1<

15 19
'-- '--

NOTES Leo Itl
, ? CCD .,

vIe , - SIGNIFIES INVERSION ANKEl'ld"ta ADS-ANKER DATA SYSTEMS (PT y 1 CTO

-Le .. l C3 2 "' OUTPUT 5 I GNAL Tit I eT lQOnF T 10(Jnf INTELL IGENT TERMINAL (110) (H KEOWN)
T > INPUT SIGNAL;;; slzeloocumotnl Num~er

r:~, <> BI-DIRECTIONAL 5 I GNAL A LED AND Leo INTERFACE TERM] SC~i

• • tObe , 1991 '3n , 01 1

CJl
g

~
H
n
C
H

~

~
CJl

{Jl

n
:J:

~
H
n
C
H

~

~
{Jl

REV

B

H"i 'Jf

EXPANSION

ETIC CARD
ER

1991 I"oh"reoru"r

CRD READEI'l & ClK SOURCE TEr.<M<\ SCHA

•

VCC

ANKERdala ADS·ANKER DATA SYTEMS (PlY) LlD

r I t I ..

INTELLIGENT TERMINAL (110) (H KEO~N)

)1'\ t

SlzelOocument ("umber

VCC

- SIGNIFIES INVERSION

2 c OUTPUT SIGNAL

3 > INPUT SIGNAL

NOTES

,"I c> 81 -DIRECTIONAL SIGNAL

CP
100nF

,
XTAl1 J8, 3728MH,l' " EAIYP PO,O '9 PO -

o ..L
' 9

PO , " PO , .
rf:/'"' 5WIP':;' ~ ,, PO

C9 ::!=
X. PO ,

P R.J (- , ,
PO ,

"
,

22PF~ C8 ~ '0 PO,4 ,
~~22pF X2 PO.S

13PO 6

~N0 PO , "RESET
P2 0

, READ

P2. 1 "2 P

~
INTO P2.2 " P'

INT1 P2 , W' ,
TO P2 4

5 P' 4

" P2.5

" P
eR"" sw P'" , P2.6

" P ,
co C 2 P' 0 P2 ,

OC"
P, ,

ht~E5
CR A A

P' 2 m5' ,cc

(;ARn nATA
CARD DATA 4

P' , w.-
eAR A A A>

P1. "' PSEU~ ~CAD

:3CAR, , P' 5 ALEIP ~Txn P "
,

.,," e, P' 6 TXD , ,
CDMMS ell<: P' , OXO ,

8751 P 4
5

P A
5PO , ,

" 8

U130 ~
9

U9A R)(~' '"'n,r, 9 8 ,
A QA :3 C

, P

08 I-+~YR r'l<
P , "",

aCt!

p-'

"7""HCTO,,\ elR OD "
NB HAS Ta BE Hero", 7'lHCT393 ' 6

"ANYTHING ELSE P , 8
WiLL LOAD XTAL L.

P ,
"asc U98 p, 0 20

A OA pt ~ "08 ~
"

ac P:: ,elR 00 ~ FU
7"1HCT393,1;7

'CC
T..L .l e ,o :.L

100nf T
~

n "l

~
....
'2

1-3 11

!3 (I)

"""" I
U1.
n
III
11
P-

::0
(I)
III
P-
(I)
11

H
::s
rt
(I)

"C 11

~
HI
III

t'l 0
(I)

0\

n "l

~
....
-g

1-3 11

!3 ID

ol>
ol> I

e-
o

~
ID
'<
C-
O
III
'1
0-

H
::l
rt
ID
'1
.."
III

'tl 0

> ID
G'l
t'l

~

v c
u,

" DBO RLO " ,
"

aa, RC' ,
11AP,"

, aa, AL2 , C Fl,FHHHH:l R I'l R 10K

• De, AL3
5 °123 ... 56789

oa. AC.,
oe, A" S6"JfIH3D5 085 AL5

,
:2 :3 4,

C ,
aa' AL7 us ,

_R , '5
,

Eii: SHFT ,- p

~ I ,- c ""- eN/5T ,
cs ao o I' •, ,
Cl' 5R
RESET SCO

, • S
Aa sc , ,. , ,",
,RO se> • ,

•SL3 r-ll- S -
I-H-- 1"lHCT30"ADS RETURN L I NE 9" 16OAO
t*-o.,

0' A'0.,
~0., 1N<t ''''8 IN'''1,,,a

oao loa,
,.£t!Joa,

0"' ,,
8279 ,

•,
S,

0 ,, , L..-

<; RETURN LINE , ".
H~

v C

, 0' 1N"l'",a ~,
A YO " ,,
B Yl

..
2,

C " " ,
Y3 " •~Aa Y. " ,

S "P R • G' " , S

tB:Q: =WR 5 G2A YS , ,
-wo G,' Y? ,

KYB ClK ~y ~ ,"He '"
~

P3 2 ~ D1ti IN,,,, ... a
SCAN LINE ,"'~K'(B CS

NOTES
vcc

±CS

, - SIGNifiES INVERSION ANKERdatll ADS-ANKER DATA SYSTEMS (PTY) L TD

..L CS ::L C7 , < OUTPUT SIGNAL TitleT 100nF I '000'
T 100nF INTELL IGENT TERM I NAL (110) (H KEOWN), > INPUT 5 I GNAL

sl~alDocumant NumDar r: v

• <> BI-DII'lECTIONAl 5 I GNAL A UNIVEI'lSAL I<YB INTEPFACe: TEI'lM"j SCH

_ 11 t a . , Ql)er "
, , '~ h " 5 , f 10

CJ:l
n:x:

~
H
n
C
H

~

~
CJ:l

2"\V GNP

NB I I PGa LAYOUT ERROR

ANKE~data ADS-ANKER DATA SYSTEMS (PTYj LTD

Title
INTELL IGENT TERMINAL [I lOj (H.KEOWN)

tI:l

g

~
H
o
C
H

~
tI:l

I~EV

8

"

COM'

CDM'

, 0'1991 ISh", .. '

INTERFACE TEPMEi SCHDUAL PS232

O<:;tober 17

A

SizelOocumeot Numl:>er

vcc,.... .,~~" •• T~ .,,~. ~.U ~ ~ .. u

SHOULD BE CONNECTED TO VCC
0' 0'

VCC 'OK "K vce 2<lV

"n Cl' tI ~;:,
1n '0 080 TXDA 15 TxnA 10 u F, 13 I':lXDA

081 ~XOA fl-+ U"08'
""

083 ~A

:#:R
C, • C15, 08' TRXCA C, - f 10uF, - 085 SYHCA SA

C'J••~
V., 08. ~A 18 C SA 1 Ou F C,. v-

08' C.lll..A 02- c='-'
~8S.[] I'ln CDA

1'11<;1\. 11 , ,
- 1>5 'cl WI'I OQ ::>S TxnQ K , TlL 1 I 1'1510 , ,
- c !!E. TX08 , x TTl21 R520 3

cs RXOB , I ,
DIC a TIL 10 1'1511 ,
Ala RTXCB TTL20 R521 '--< •

CO~S C' K '0 TRxes ~ MAX232
,

CC< 5YNCB ~RTSl=l ,
=t 'NT R'i'Sa

F~'EO CTIiJ " c

cl 'E' COB
,

INTA

"7,,-

~
8YA1~A

WHEN NOT USED CTS TIED TO vce
E!.:I.B I U!J.B

24V GND

~I]3,SiA
DTB/ROB vce 2'1V
82530

C'B

~';::,10 uF

~ fl-+ "1 C1 .. C19
Cl -

~~ ~ lCuF
,

C" o~• lDuF C,. r""-' 2< 02 -,
\.I=lT<;A '1 ,. ,

, T)< 1 n TlL 1 I RS 10 , ,, TlL2! 1'1520 3

An x " 13 I <
A

A'
, TlL '0 RS 11 B 5

TTL20 J'.lS:2 I '---< •
MAX;OJ2

,
." - 5 R

7Fi-B'DO WR ·B 0 WO

-B530 CS - 5 C

CONIMS eLK
c K ,

NOTES

VCC , - SIGNIFIES INVERSION

1 C12
, .. ouTPUT SIGNALr'DOn> 3 . INPUT SIGNAL

< <. 81-DIRECTIONAL SIGNAL

5 ACC POL AR I SED CAPS ," TANT

0 '1j

~
....
'2

1-3 Ii

~
(I)

........ I
--J.
:c
tI:l

'"...,
'"
H
:::s
rt
(I)
Ii
H>
III
Cl
(I)

"Cl
~
G'l
t'l

0>

n "'1

~
fo'o

'§
8 1"/

!3 III

01>
01> I

Cl>.
tIl
0
l»
::s::s
III
1"/

H
::s
r1"
III
1"/
H>
l»
0

'tl III

~
i:':I

\0

v c vcc

.-~
", "",", 50 ,", ,.

"' "'"K J:!..1.L 120R
'"'A TA.} A

3

P. 0 ,
cm ;:: c,s "': 220", eN" J, 220pF , ,

K 3 <
f:'N"TI6 5 ,

HI<NOISLOT SCANNER---< , , ;=..,
"

INTERFACE .,
n5A

P' , , PCCCT

J
5N75ol52

U16B,
"\ c,P 5, J

SN75"l52 ,'7
V c

" n .--~
p,

"" ""p ,", s. ,", s.

""r'-'ll- 1201'<
A A

A

+""
,P. n ,

CUT "'" cm J220R

, 220pF , ,
HAND/SLOT SCANNER

K , < INTERFACE .,
'GNn 5 , P--- , , p--, , a
U18A,

\p, 2 3 " T, J
SN75452

U188 '<7
p, \ . c -

NOTES ,
.J ANI<E::RClnta AOS-ANKEA DATA SYSTEMS

1 - SIGNifiES INVERSION SN75452
r I tie, '" OUTPUT SIGNAL tNTELL IGENT TEI=IMINAL (i 10) CH KEOWNJ

J . INPUT SIGNAL slzeFocume"t Numoer r: v
A SCANNER INTERFACE (OCI) TERM7 SCH

<. o. B I -0 I RECT I ONAL SIGNAL
),., t .. F .. br "'

, 1 '0191 Sn t , P' ,

tIl
n
:I:

~
H
n
C
H

~
tIl

~Pl i ~P:": ~ 1
P1 7 P

vcc

BC30"? BOTTOM UP

~
8
!;l
01>0

~
t'l

I-'
o

"'1....
~
~
ID

01>0 I
c E

I ~ID
B

C

~
~
~
I;

Il'>

~
ID E B C
0.
H
::l
rT
ID
'1
,."
~
0
ID

MPS UOS

vcc 24'

p

""
22"

"'4
22K

vcc

a,
BC307

""5601'1

""10K

04
8C307

"'"5601'1

"V
0"
1N"lOD7

RAWI;:R 01"

01
MPSUD6

I"::IAWEfOl

~

24V GNP

2<V

0"
1N-I007

RAWEIOI QPEN

02
MPSU06

24V

2<V

~a,
2,
4

OI'lAWER #1

CN1'3
~,
2,
4

DRAWER 112

1. - SIGNIFIES INVERSION

'" ~> 81 -OIRECTIDNAL SiGNAL

en
Q

~
Hn
C
H

~en

B

"

1'<<::"

9 0'

REeE j PT Sw ITCH

19'211..1:;'''1>8 ,

REeE I PT SfN

OctQb"r ,1

~

RAW AND RCPT sw INTERFACE TERMS SCHA

ANKERdata ADS-AN~ER DATA S~STEMS (PlY) LlD

".

SIZ810oc:umli'nl Numb .. r

Tltl9

INTELLIGENT TERMINAL (1/0) (H ~EOWN)

",.
'OK

2"1V GNO

p, ,sv GND24V GND

I NPU-r 5 ~ GNAl

2. ~ OUTPUT SIGNAL

NOTES

MOLEX POWER
CONNECTOR

n '1j

~
.....
~

1-3 Ii

!":l ID

"""" I...
0
•
tu
0
t"'...
0

t'l.g
.....
<•
n.....

'tl 11

~ 0r::
t'l

r1"......

-R , 7"lHCT32

21 "I ~~O/-WJ=l .~_." .J , 1 , (":1)1 C, , C , CS

_Rn
7"lHCT08

~

_." .-
, ' , -LCD2 CS

"
,

A '1'0 -,'> >coo I
8 VI

1 Q
C Y2

" ace I , - 0-1(csn "I n:1': cs
."

Y< " CU,
G' Y5 " 0

r G>A Y,
, , 0

G2B Y7
, , 0

"'HC 130 ,,1 ./ " -KY C
-KYB cs

<---

,
, I ., _, ",rH ..-: <;

-l EO 1 CS

.-
, 1 , _, cn, C' , C

ltl§ -
:... Al

~"_on , -
~

'0 I ' u C
-WR -W~

R R

7.olHCTOB

rt " , - " WR , , WR
J

R

~7"lHCT004 " Q ,°5°0 Rn 85.30 RD
)

"
"I

' , -8530 CS , 5' CS

NOTES ANI(efhlll.t Il ADS_ANKE~ DATA SYSTEMS (PTY) , TO

, , SIGNIFIES INVE~SION Tit le

INTELLIGENT TERM I NAL (110) (H KE:OWN)

::>lz"'luocument NUJlloer r: v
~ EaUI~ CCT ~al~O (DECODE) TEPoM9 SCH

Ddle F"'brull.r 'B "
, ~~nee(, 0 '" '0

Uln
:>::

~
Hn
C
H

~

~
Ul

SINGLE BOARD COMPUTER V3.00

, DENOTES 100n DECOUPL ING CAP

1I1

Q

~
H
n
o
H

i!)

~
1I1

8

UJ

<276411281256
rr1
r-­
rr1

f­
U
I

"r--

i HM52641250 1U4

C3D

sac V3.00
CN1

C4 0 '" ~ IQ!~;: N \:::.J

If)

u

DI U2

'7

U1

'"er>

~

er>
o
no

m

R1

JP 1
CNJ I I I

I C12 «

- C~:' 00 Cl c
8 R2 0 n RJ Q2

~ 0(; IU6

LJ 0 u 00 ~
cnOn1 C7 01 () le-=!
+00 CH 000

I C1 C6 C201 CN2

n "'.I

~
1-'-

~
1-3 11

~
ID

"""" I.........
tJ)
tll
n
tJ)
1-'-
I-'
;.;-
(Il
0
11
ID
ID::s

::z
G'l
t'l

....
'"

rn
Q

~
H
Cl

o
H

~

~
tIl

(1'1]

ij751 -ij

~

~.
,,~.

TERMINAL

,,,

POSINTELL IGENTADS

• DENOlES lOON DECOUflllNG CAflACI10A

, DEND1ES lOU lfiV lANTAlt.t.l CAPAC1IOR

CI9 C20

.0 0 C1S

cnCD.0.n
m
m

11'b~:"e~:r.r:~
,'ON"<OC~ tLa

on -DD­
OD OD' Hl(J en

CN1B ~O'90n RIB IOK'0 ~ C2 cr iJTI:r:i: !tI ~115{}E]-
018 A16

OD
(1'117 ~ Cl' 0: -t 5

11

6

1

0

2

j..

'0 ~ ~ !tI ~O;lh
:i: Rl~ V V

SQ' s,,~' L-'~IC~N2==~I--:~~~:;:;:-f---:0:;+:--F-IN ~"==::::;;;==:::E":£'";;;-'I0~+I

cos '" ,-GEl- ~ 1 '" '" '" t:~".0 Q) Cl~ 82510CI30.0. UIO CN10

I 1,1..-"232 4U12 I L1AX232 ~U" ~ M I ~ I ,CN5

-- o('" I
I I I I C12'-2 ID CN\~

eN'2 (1'111_ I I
U1S 116 C2~ r=J CND d

r:::::1 8 (1'121 [=:J
L:~.::::H~ ADS I NTEL L I GENT pas TERM I NAl eN1S

(25 Ra R7 l;J CD

9 Qg r-::=J "I ~ 1 ""m<5 1,: C<'0 ~~~G 8279 US
un I 10~ I '---J np

1110 119 C5 RPI ~ ~ "ngg U7 I I Bu
C17 ®® $$ MADE IN SOUTH AFRICA CN6 1.3720111 R'
Q ;;:,;::: I 7~HCT1)8 ~(.) 1 0) r.'l U
(1'23 C> '"' ~ DESIGN H KEOW'N 7~HCT30 't U sw, nAll CB U2.

'DR19 R20$$n=rf¥frnOgOSrrrrrITn°1 U6 :71 7~HCT37~ 1."'1 """',, 1lli',~,
t:"\ t;:J ~16 - -I '"' - 1 ;:e) t:"\
~lIn A21 ' I I I I RI'2 I I C) ~ ~

CN~ (NO eN] (1'14

0-,3
IDg....
::s
III
f-'

H
"­o
tIl....
f-'
:-;'
Ul
n
t1
ID
ID
::s

"Ij....
~
11
ID
..,.
I....
'"

~
t>:l

....
w

~
0-,3

fd
..,.

INTELLIGENT POINT OF SALE TERMINAL

PARTS LIST

I NTELL IGE~~T

TERMINAL

PARTS LIST

CHAPTER 5

PARTS LIST

1. SINGLE BOARD COMPUTER

SBC VER 3.00 SBC.SCH Revision: B

Revised: October 17, 1991

Bill Of Materials October 17, 1991

Item Quantity Reference Part

19:22:29

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

CHAPTER 5

2

7

2

2

1

1

1

2

1

1

1

1

1

1

1

1

1

1

C2,C6

C3,C7,C8,C9,C10,C13,C15

C4,C14

CN1,CN2

CNJ

D1

JP1

Q1,Q2

R1

R2

R3

U1

U2

U3

U4

U5

U6

Xl

PAGE 2

56pF

10uF

100nF

BOARD-BOARD

8 HEADER

1N4148

JP3

VNUKM

4k7

10K

1K

8032

74HCTJ7J

2764/27128

64256

083695

MAX232

9. 216MHz

PARTS LIST

2. INTELLIGENT TERMINAL (I/O)

2.1 INTELLIGENT TERMINAL (I/O) TERM1.SCH

Revised: March 1, 1991 Revision: B

Bill Of Materials October 17, 1991

Item Quantity Reference Part

18:12:53

1

2

3

CHAPTER 5

1

2

1

Cl

CN1,CN2

U1

PAGE 3

100nF

BOARD-BOARD

20L10(TERM)

PARTS LIST

2.2 BUZZ LOCK TERM! INTERFACE TERM2.SCH

Bill Of Materials October 17, 1991 18:34:22

Item Quantity Reference Part

1 1 BZ1 BUZZER

2 2 C4,C21 100nF

3 2 C22,C26 1uF

4 1 C23 100 nF

5 1 CN6 HEADER 5

6 1 CN22 HEADER 2

7 1 D17 1N4148

8 1 Q5 VN10KM

9 1 R3 lOOK

10 3 RP1,R4,R18 10K

11 1 R5 1K

12 1 R17 33R

13 1 SW1 SW DIP-4

14 1 U4 74HCT245

15 1 U14 LM556

CHAPTER 5 PAGE 4

PARTS LIST

2.3 LED AND LCD INTERFACE TERM3.SCH

Bill Of Materials October 17, 1991 18:36:50

Item Quantity Reference Part

1 2 C2,C3 100nF

2 2 CN3,CN4 HEADER 10

3 2 CN13,CN14 HEADER 15

4 2 CN15,CN21 HEADER 3

5 1 RX1 160R

6 2 RX2,RX3 1.5R

7 2 U2,U3 74HCT374

8 1 U13 74HCT04

CHAPTER 5 PAGE 5

PARTS LIST

2.4 CRD READER & CLK SOURCE TERM4.SCH

Bill Of Materials October 17, 1991 18:37:03

Item Quantity Reference Part

1 2 C8,C9 22pF

2 2 ClO,Cl1 100nF

3 1 CN5 HEADER 22

4 1 CN10 HEADER 5

5 1 U8 8751

6 1 U9 74HCT393

7 1 U13 74HCT04

8 1 XTAL1 7.3728MHz

CHAPTER 5 PAGE 6

PARTS LIST

2.5 UNIVERSAL KYB INTERFACE TERM5.SCH

Bill Of Materials October 17, 1991 18:55:45

Item Quantity Reference Part

1 3 C5,C6,C7 100nF

2 3 CN7,CN8,CN9 HEADER 8

3 12 01,04,05,06,07,08,010, OIOOE

011,012,013,014,015

4 4 01,08,09,016 1N4148

5 1 RP2 10K

6 1 U5 8279

7 1 U6 74HCT30-AOS

8 1 U7 74HCT138

CHAPTER 5 PAGE 7

PARTS LIST

2.6 DUAL RS232 INTERFACE TERM6.SCH

Bill Of Materials October 17, 1991 19:15:16

Item Quantity Reference Part

1 1 C12 100nF

2 8 C13,C14,C15,C16,C17,C18, 10uF

C19,C20

3 2 CNll,CN12 HEADER la

4 2 Rl,R2 10K

5 1 U10 82530

6 2 Ull,U12 MAX232

CHAPTER 5 PAGE 8

PARTS LIST

2.7 SCANNER INTERFACE (OCI) TERM7.SCH

Bill Of Materials October 17, 1991 19:08:16

Item Quantity Reference Part

1 2 C25,C27 220pF

2 2 CNI6,CN23 HEADER 5X2

3 1 R6 10K

4 2 R7,R20 220R

5 2 R8,R19 120R

6 4 R9, RIO, R21,R22 2R7 .5W

7 2 U15,U17 6N136

8 2 U16,U18 SN75452

Cl-TER 5 PAGE 9

PARTS LIST

2.8 DRAW AND RCPT SW INTERFACE TERM8.SCH

Bill Of Materials october 17, 1991 19:18:38

Item Quantity Reference Part

1 1 CN17 HEADER 2

2 3 CN18,CN19,CN20 HEADER 4

3 2 D18,D19 1N4007

4 2 Q1,Q2 MPSU06

5 2 Q3,Q4 BC307

6 2 R11,R14 22K

7 2 R12,R15 560R

8 2 R13,R16 10K

CHAPTER 5 PAGE 10

PARTS LIST

2.9 EQUIV CCT 20L10 (DECODE) TERM9.SCH

Bill Of Materials

Item Quantity Reference

October 17, 1991

Part

19:18:50

1

2

3

4

CHAPTER 5

1

1

2

1

U1

U2

U3,U4

U5

PAGE 11

74HCT138

74HCT08

74HCT32

74HCT04

INTELLIGENT POINT OF SALE TERMINAL

BIBLIOGRAPHY

CHAPTER 6

BIBLIOGRAPHY

Advanced Micro Devices (AMD)

Programmable Logic

Boylestad & Nashelsky

Electronic Devices and Circuit Theory

Bourroughs

Series L Technical Manual

Dallas Semiconductor

Data Book

Floyd

Digital Fundamentals

Floyd

Electronic Devices

Intel

8-Bit Embedded Controllers 1989

Microsystems Components Handbook 1989

Microprocessors and Peripherals 1989

Microcommunications Handbook

MCS-51 Users Guide

MCS-52 Users Guide

Micro/C-51

BIBLIOGRAPHY

CHAPTER 6 PAGE 2

BIBLIOGRAPHY

IBM

XT Technical Reference Manual

IBM

AT Technical Reference Manual

Maxim

CMOS Data Acquisition Products 1988

Monolithic Memories

Large Scale Integration (LSI) Data Book

National Semiconductor

Linear Data Book

Logic Data Book

CMOS Data Book

Data Conversion, Interface and Bipolar LSI Data Book

Programmable Logic Data Book

Norton, P

Programmers Guide to the IBM PC

Optrex Corporation

Dot Matrix LCD Module - Users Guide

Scantech

MS7100 Symbol Scanner Publication

Sperry

Programming Considerations for Magnetic stripe Readers

CHAPTER 6 PAGE 3

BIBLIOGRAPHY

Siliconix

Small Signal FET Design

Tokyo Electronic Company (TEC)

PC I/F Transmission Control Procedures for the MA -1190

Zilog

Z8030 / Z8530 SCC Serial communications Controller 1983

Linear Technology

1990 Linear Applications Handbook

Matra-Harris Semiconductors (MHS)

Digital CMOS/HMOS

Memories

SOFTWARE PACKAGES

Orcad SOT, VST, PLD

MSWORD 5.0, MSWORD 4.0

Wordperfect 5.1

Drawperfect 1.1

HP's Drawing Gallery

Intel's Macro Assembler and Linker, ASM51 and RL51

IAR C51

Archemedes C51

ABEL

PCAD

CHAPTER 6 PAGE 4

I

J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J

	Table of contents
	Summary
	Introduction
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6

