INTELLIGENT POINT OF SALE TERMINAL

Document Name: T5.DOC
Original: December 1991
Prepared by: H.Keown

Revised ()

S

=

INTELL IGENT

TERMINAL

7

AN\

H

INTELLIGENT POINT OF SALE TERMINAL THESIS

by HARVEY KEOWN

Thesis submitted in part fulfilment of the requirements for

the Masters Diploma in the School of Electrical Engineering

at the Cape Technikon.

Date of submission: December 1991.

DECLARATIONS:

I declare that the contents of this thesis has been entirely
prepared by myself and represents my own work. The opinions

contained herein are my own and not necessarily those of the

Technikon.

Signed: ;iii Date: 0. 0¢ : 92

ACKNOWLEDGMENTS:

I would like to use this opportunity to thank the following

people, all have assisted in shaping my career:

Mr. Gerhard Kopatz (Managing Director of Ankerdata) for
giving me the opportunity to further my studies and mainly

having faith in the projects that I have generated;

Mr. Suliman Harnekar (Electrical Engineer, Hardware and
Software) and Mr. Gary Robas (Electrical Engineer,
Hardware) for unselfishly imparting their Xknowledge and

experience.

Mr. Eric Seiderer (Production Manager) for supporting me

through the various design stages.

To my wife, Gillian, who has always been the main support.

(thanks for doing the dishes)

Finally, I would like to thank those who have proof read

this thesis.

To the above mentioned people, THANK=-YOU for the role each

of you had in moulding my career.

TABLE OF CONTENTS

SUMMARY + « o 2 o o o o« & « o« & =

INTRODUCTION . . . « « « + o « o = +« o« =

Figure 0-1. INTELLIGENT TERMINAL . . .

Figure 0-2. Integrated Terminal ~ MTS2002

Figure 0-3. MTS2002 Configuration

Figure 0-4. POS Terminals and Back Office

CH-APTER 1 - L] - - - L] L] - . L] . - - - . L]

1. COMMUNICATIONS INTRODUCTION

2. TRANSMISSION SPECIFICATION

3. TRANSMISSION CONTROL CODES

4. TRANSMISSTON FORMAT

4.1 TEXT FORMAT « « . . .

5. TRANSMISSION CONTROL PROCEDURES . . .
5.1 CONNECTION PHASE (NO PROCESSING)

5.2 DATA LINK ESTABLISH PHASE . . .

INTELLIGENT FOS TERMINAL PAGE 1

* .

TABLE

Computer

QF CONTENTS

- PAGE

. PAGE

PAGE

PAGE

. PAGE

. PAGE

+ « PAGE

. « PAGE

. - PAGE

. . PAGE

. » PAGE

. « PAGE

. PAGE

. PAGE

. PAGE

12

16

13

18

19

24

10

10

10

5.2.1 DATA LINK ESTABLISH PHASE AT HOST .

5.2.1.1 SELECTING

5,2.1.2 POLLIKG

5.2.2 DATA LINK ESTABLISH PHASE AT TERMINAL

5.3 TEXT TRANSFER PHASE

5.3.1 TEXT TRANSFER PHASE AT THE HOST

. -

5.3.2 TEXT TRANSFER PHASE AT THE TERMINAL

5.4 DATA LINK END PHASE

5.5 DISCONNECTION PHASE « . .

6. ERROR CONTROL . « « & o v & o « o o o o =

7. RETRY COUNTER FUNCTION + « .+ .

7.1 HOST RETRY COUNTER FUNCTION

7.2 TERMINAL RETRY COUNTER FUNCTION . .

8. INTELLIGENT TERMINAL CONTROL CODES

8.1 OUTPUT DEVICE CONTROL CODES

8.1.1 16 X LED'S . + « « « « o -« . .
8.1,2 TWO X LIQUID CRYSTAL DISPLAYS .
8.1.3 SOUND THE BUZZER
8.1.4 OPEN CASH DRAWER #1 OR #2 . . .
8.1.5 ENABLE OR DISABLE MAGNETIC CARD
8.1.6 HOST ENQUIRY . « « « « + o o« .
8.1.7 TWO RS232 SERIAL PORTS
8.2 INPUT DEVICE CONTROL CODES
8.2.1 4 BIT CONTROL LOCK
INTELLIGENT POS TERMINAL PAGE 2

PAGE

PAGE

PAGE

PAGE

 PAGE

PAGE

PAGE

PAGE

PAGE

PAGE

PAGE

PAGE

PAGE

PAGE

PAGE

PAGE

" PAGE

PAGE

PAGE

PAGE

PAGE

PAGE

PAGE

PAGE

TABLE OF CONTENTS

11

11

12

13

15

15

17

19

19

20

21

22

24

24

26

27

28

28

29

30

35

35

TABLE OF CONTENTS

8.2.2 MAGNETIC CARD READER . . . + « « - .
g.2.3 DRAWER STATUS . . . « + & v & « & o«
8.2.4 RECEIPT STATUS . . . + + & & + « o« .
8.2.5 KEYBOARD OR SCANNER DATA
8.2.6 RESPONSE TO HOST ENQUIRY . . ; . e .

8.2.7 TWO X RS232 SERIAL PORTS

9. PROGRAMMING EXAMPLE ¢« ¢ & & & « & « .

Table 1-1. Transmission Specification
Table 1-2. Transmission Control Codes

Table 1-3. Keyboard Matrix,

Figure 1-1. INTELLIGENT TERMINAL-Back Office Computer

CHAPTER 2+ « « o « o o s o o o = o s s s o+ o &

1. SYSTEM DESCRIPTION « « & o o« o o & « o « o
1.1 SYSTEM OVERVIEW ¢ « v & « o + o
1.2 TERMINAL OVERVIEW « « « « + « « .

1.3 DETAILED TERMINAL DESCRIPTION
1.3.1 PROCESSING SECTION + « =+ .
1.3.2 COMMUNICATIONS SECTION

1.3.3 DEVICE SECTION « « .

2. INTELLIGENT TERMINAL SPECIFICATIONS

INTELLIGENT PQOS TERMINAL PAGE 3

PAGE
PAGE
PAGE
PAGE
PAGE

PAGE

PAGE

PAGE
PAGE

PAGE

PAGE

PAGE

PAGE
PAGE
PAGE
PAGE
PAGE
PAGE

PAGE

PAGE

35

36

37

37

39

39

41

4

6

38

3. MICROCONTROLLER DESCRIPTION . .

3.1 DATA AND PROGRAM MEMORY ORGANISATION

3.2 INTERNAL DATA MEMORY ORGANISATION

4. DESIGN IMPLEMENTATION

4.1 PROCESSING SECTION

4.2 COMMUNICATIONS INTERFACE SECTION

4.3 PORT PIN ASSIGNMENT . . .

5. INPUT / OUTPUT DECODE CIRCUITRY

6. ADDRESS MAP AND I/O MAP

6.1 MEMORY I/O EQUATES

6.2 MEMORY MAP

7. BUZZER DESCRIPTION

8. CONTROL LOCK AND TERMINAL NUMBER

9. LED INTERFACE

10. LIQUID CRYSTAL DISPLAY INTERFACE-(LCD)

10.1 GENERAL DESCRIPTION . . .
10.2 LCD SPECIFICATIONS . . .
10.3 CONNECTION POSITIONS . .

10.4 PIN DESCRIPTION

10.5 EXPLANATION OF INTERNAL OPERATION

INTELLIGENT POS TERMINAL PAGE 4

-

-

INTERFACE

TABLE OF CONTENTS

e e e . PAGE
. v e . PAGE

. e e . PAGE

. e . PAGE
- . . PAGE
. e e . PAGE

e - o . PAGE

. e e PAGE

o« e e PAGE
. s e PAGE

o o e . PAGE

. e e PAGE

. v e PAGE

. - . . PAGE

. e e . PAGE
. e e PAGE
o . s . PAGE
e . e s PAGE
“ e v . PAGE

« . . . PAGE

11

11

14

16

16

18

19

22

25

25

26

31

32

33

33

33

35

36

38

TABLE OF CONTENTS

10.5.1 REGISTER . . . « + « ¢ o & o o = + & PAGE 38
10.5.2 BUSY FLAG (BF) . . « . . « « « o« « . PAGE 40
10.5.3 ADDRESS COUNTER (AC) PAGE 40
10.5.4 DISPLAY DATA RaM (DD RAM) PAGE 40
10.5.5 CHARACTER GENERATOR ROM (CG ROM) . . PAGE 41
10.5.6 CHARACTER GENERATOR RAM (CG RAM) . . PAGE 41

10.6 DETAILED EXPLANATION OF INSTRUCTIONS . . . PAGE 41
10.6.1 CLEAR DISPIAY . . . & v & & & » « PAGE 41
10.6.2 RETURN HOME PAGE 42
10.6.3 ENTRY MODE SET . . . &« « « + « « =+ . PAGE 42
10.6.4 DISPLAY ON/OFF CONTROL PAGE 43
10.6.5 CURSOR OR DISPLAY SHIFT PAGE 44
10.6.6 FUNCTION SET . . + « « & « « o o« o« . PAGE 45
10.6.7 INTENSITY CONTROL PAGE 46

10.7 DESIGN IMPLEMENTATION « « « .+ . PAGE 47
11. MAGNETIC CARD READER INTERFACE PAGE 438
11.1 DATA FORMAT . . .+ 4 o ¢ o & o & & o « o o PAGE 48
11.1.1 ABA-CCDED DATA FORMAT PAGE 48
11.1.1.1 CODED CHARACTER SET PAGE 48

11.1.1.2 INFORMATION FORMAT PAGE 50

11.1.1.3 LONGITUDINAL REDUNDANCY CHECK PAGE 51

11.1.2 IATA-CODED DATA FORMAT PAGE 52
11.1.2.1 CODED CHARACTER SET PAGE 52
11.1.2.2 INFORMATION FORMAT PAGE 53

11.1.2.3 LONGITUDINAL REDUNDANCY CHECK PAGE 55

11.2 READER DESCRIPTION . . . « . « + = « « « . PAGE 55

INTELLIGENT POS TERMINAL PAGE 5

TABLE

11.3 DESIGN IMPLEMENTATION

12. KEYBOARD INTERFACE« « + & &« « « .
12.1 FEATURES OF THE 8279
12.2 HARDWARE DESCRIPTION« .
12.3 SOFTWARE DESCRIPTION

12.4 DESIGN IMPLEMENTATION +« +« +

13. SERIAL COMMUNICATIONS INTERFACE

13.1 8530 FUNCTIONAL DESCRIPTION

13.2 HARDWARE DESCRIPTION + + « « o =
13.3 SOFTWARE DESCRIPTION« =«
13.4 DESIGN IMPLEMENTATION « « « =«
14, SCANNER INTERFACE ¢« &+ &+ ¢ v o « « « =

14.1 OPTICALLY COUPLED SERIAL INTERFACE . .
14.2 INTERFACE SIGNALS . . + + o o 2 o = + +

14.2.1 RECEIVE DATA SIGNAL (RDATA)

14.2.2 RECEIVE DATA CLOCK (CLKIN)

14.2.3 RECEIVE RESET SIGNAL (RESETIN) . .
14.3 MESSAGE FORMATS . . . + © v v o o = o + &
14.4 BYTE FORMATS . . + + = & « o o o o o« « =
14.5 SYMBOL MESSAGE FORMATS

14.6 DESIGN IMPLEMENTATION « .« - .

15. DRAWER INTERFACE & « & & « o o o« « + =

INTELLIGENT POS TERMINAL PAGE 6

OF CONTENTS

. PAGE

PAGE
PAGE
. PAGE
PAGE

PAGE

. PAGE
. PAGE

PAGE
. PAGE

. PAGE

. PAGE
. PAGE
. PAGE
. PAGE
. PAGE
. PAGE

PAGE
. PAGE
. PAGE

. PAGE

PAGE

59

63

63

64

66

67

68

68

69

70

71

72

72

72

73

74

75

76

77

78

79

TABLE OF CONTENTS

16. RECEIPT SENSE . - ¢« ¢ o « o o o 4 « o s o =
17. PRESENT AND FUTURE DEVELOPMENT
Table 2-1. Port Pin Assignment
Table 2-2. Memory I/O Equates
Table 2-3. Memory Map
Table 2-4. Pin Connections
Table 2-5. Signal Description
Table 2-6. Register Selection
Table 2-7. ABA~Coded Character Set
Table 2-8. IATA-Coded Character Set
Table 2-9. IATA Information Format
Table 2-10. Reader Specification
Table 2-11. Reader Control Signals
Table 2-12. Byte Format
Figure 2-1. System Configuration
Figure 2-2. Terminal Description
Figure 2-3. Detailed Terminal Description . .

Figure 2-4. INTELLIGENT TERMINAL Specifications
Figure 2-5. Memory Organisation
Figure 2-6. Internal Data Memory

Figure 2-7. Internal RAM Usage . . . «. « « « .
Figure 2-8. Single Board Computer
Figure 2-9. Communication Interfaces
Figure 2-10. Equivalent CCT for 20L10 PAL . . .

INTELLIGENT POS TERMINAL PAGE 7

PAGE

PAGE

PAGE
PAGE
PAGE
PAGE
PAGE
PAGE
PAGE
PAGE
PAGE
PAGE
PAGE

PAGE

80

81

21

26

28

35

37

39

49

52

54

56

58

77

PAGE 2

PAGE 4

PAGE 5

PAGE 9

PAGE
PAGE
PAGE
PAGE
PAGE

PAGE

11

15

16

19

22

Figure
Figure
Figure
Figure
Figure
Figure
Figure
‘Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure

2-13.
2-14.
2-15.
2-16.
2-17.
2-18.
2-19.
2-20.
2-21.
2-22.
2-23.
2-24.
2-25.
2-26.
2=-27.
2-28.
2-29.
2-30.
2-31.
2-32.
2-33.
2-34.
2-35.
2-36.

2=-37.

I/0 Deccder 20L10
20L10 PAL c e 2 s s s e o« s
Buzzer Circuit
Lock & Terminal No. Interface

LED Interface
I.cD Interface
LCD Block Diagram
Intensity Adjust
LCD Interface
Reader Block Diagram

Timing Diagram
Card Data Transfer
I/0 Clock Generation
Expansion Bus
Interconnection between 8032
Data Transfer Timing Diagram
8279 Block Diagram
Keyboard Interface
8530 Block Diagram
Communications Interface . .
Scanner Connection
Byte Transfer From Scanner .
Byte Transfer To Scanner . .
Scanner Interface
Drawer Interface
2006 System (Metro) . . .

2007 System (Restaurant) . .

INTELLIGENT POS TERMINAL PAGE 8

TABLE

OF CONTENTS

. PAGE
. PAGE
. PAGE
. PAGE
. PAGE

PAGE
. PAGE
. PAGE
. PAGE
. PAGE
. PAGE
. PAGE
. PAGE
. PAGE
. PAGE

PAGE

PAGE
. PAGE
. PAGE
. PAGE

PAGE
. PAGE
. PAGE
. PAGE
. PAGE

PAGE

. PAGE

24

25

29

31

32

35

38

46

47

55

56

59

60

61

62

62

63

67

68

71

74

75

75

78

79

82

83

CHAPTER 3 .

ASSEMBLER CODE LISTING

1. KYB.ASHM
2. IC1l.ASM
3. I02.ASM

- -

4, COMMS.ASM .

5. SCAN.ASM . .

6. 82530.A5M .

7. CRD.ASM

8. EQUATES.ASM

CHAPTER 4 .

SCHEMATIC DIAGRAMS

Figure 4-1.
Figure 4-2.

Figure 4-3.

INTELLIGENT

»

-

Single Board Computer

I/O0 Decode

Buzzer & Lock Interface

POS TERMINAL

PAGE

TAELE OF CONTENTS

- - - -

. PAGE 2

. PAGE 2

. PAGE 2

PAGE 35

PAGE 67

PAGE 82

PAGE 112

PAGE 122

PAGE 150

PAGE 158

. PAGE 2

. PAGE 2

- PAGE 2

. PAGE 3

. PAGE 4

Figqure 4-4. LED & LCD Interface . .

Figure 4-5. Card Reader Interface .

Figure 4-6. Keyboard Interface . .

Figure 4-7. RS232 Interface

Figure 4-8. Scanner Interface . . .

Figure 4-9. Draw & Rec. Interface .

Figure 4-10. 20L10 Equiv. Circuit .

Figure 4-11. SBC Silkscreen

Figure 4-12. Terminal I/O Silkscreen

CHAPTER 5

PARTS LIS

e

1. SINGLE BOARD COMPUTER

2. INTELLIGENT TERMINAL (I/O) . . .

2.1

INTELLIGENT TERMINAL (I/O)
BUZZ LOCK TERM# INTERFACE

LED AND LCD INTERFACE . .
CRD READER & CLK SOURCE .
UNIVERSAL KYB INTERFACE .
DUAL RS232 INTERFACE . . .
SCANNER INTERFACE
DRAW AND RCPT SW INTERFACE

EQUIV CCT 20L10 (DECODE) .

INTELLIGENT POS TERMINAL PAGE 10

TABLE

OF CONTENTS

PAGE 5

PAGE 6

PAGE 7

PAGE 8

PAGE 9

PAGE 10

PAGE 11

PAGE 12

PAGE 13

PAGE 2

PAGE 2

PAGE 2

PAGE 3

PAGE 3

PAGE 4

PAGE 5

PAGE 6

PAGE 7

PAGE 8

PAGE 9

PAGE 10

PAGE 11

TABLE OF CONTENTS

CHAPTER 6« & &« 4+ o+ e s+ o &« = « o o s s« 2 « « « PAGE 2

BIBLIOGRAPHY + + o & & ¢« &« « & 4 & o +« « » « « PAGE 2 -

INTELLIGENT POS TERMINAL PAGE 11

SUMMARY

SUMMARY

The main reason for this project was "import replacement", as all
our existing Point of Sale and Electronic Equipment had to be
imported from Japan. After the Goﬁernment‘s steps to curb imports
by placing extremely high levies on imported goods, it was

decided to produce a completely local product.

From past experience it was obvious that customer requirements
varied greatly. This gave rise to the inception of a modular
system, enabling the customer to "mix and match" modules to their

requirements.

The concept is to use a HOST computer controlling a differential
communications line with a maximum of 255 terminals which are all
individually addressable. Each individual terminal would in turn
control an internal differential communications line, called

PNET, which is an acronym for "Peripheral Network".

A decision was made to make all the peripherals intelligent,
thereby alleviating the processor of all menial tasks. All
peripherals local to the terminal would be connected to this
network. The configuration can be seen graphically by refering
to Figure 0-1. The communications protocol used is more
sophisticated than that used for RS232 devices. The protocol has
a POLL - ACKNOWLEDGE structure, where the HOST has complete

control of the loop.

INTELLIGENT POS TERMINAL PAGE 12

SUMMARY

INTELLIGENT

TERMINAL

AN\

e 1-0.DP

Figure 0-1. INTELLIGENT TERMINAL

This thesis is therefore a detailed description of the
INTELLIGENT TERMINAL which forms an integral sub-section of each
terminal. This can be seen graphically, by referring to the

Figure 1-1, Chapter 2, page 2.

INTELLIGENT POS TERMINAL PAGE 13

SUMMARY
The operation of the terminal had to be very similar to that of
the imported POS terminals and had to meet the following

specifications:

Addressable up to a maximum of 255 terminals

Maximum 128 key keyboard

Magnetic card reader

Two, 2 lines X 16 character Ligquid Crystal Displays (LCD's)
Buzzer

Two cash drawers

Sixteen status Light Emitting Diodes (LED's)

4 Bit control lock

Two standard serial RS232 ports

1 ¥ Laser Hand Scanner Interface

1 X Laser Desk Top Scanner Interface

2 Line X 16 character vacuum fluorescent display

2 Line X 20 character vacuum fluorescent display

3 Line X 16 character vacuum fluorescent display

Pin pad for electronic fund transfer (EFT) At the Point of

Sale (EFT POS)

The terminal had to be capable of interfacing to all the above
devices as well as controlling all of them. The INTELLIGENT
TERMINAL essentially handles the interface to the above devices,
and communicates the data to the HOST (XT motherboard) wvia PNET.
The HOST had to be capable of beeping the buzzer, opening the

drawer, displaying messages on the LCD's etc., as well as

INTELLIGENT POS TERMINAL PAGE 14

H
H

¥

SUMMARY

receiving data from any of the input devices. It was decided to
use an Intel 8032 micro contreoller as the '"heart" of the
INTELLIGENT TERMINAL. All the software was written on an IBM AT,

using Intel's Macro Assembler ASM51, and the Relocatable Linker

RL51.

INTELLIGENT POS TERMINAL PAGE 15

INTRODUCTION

INTRODUCTION
CORPORATE PROFILE

Ankerdata, formerly known as Anker Data Systems (ADS) has always
been a market leader in the field of Point Of Sale Equipment
(POS) , Cash Registers (both mechanical and electronic),

Electronic Scales and Mainframe Computing.

The driving force behind this extremely prosperous corporate
power is the Managing Director, Gerhard Kopatz. As a direct
result of his insight and business skills, Ankerdata has
developed since the mid 60's, into a highly competitive company.
At present there are in excess of 50 branches country wide, as

well as branches in foreign countries.

Ankerdata has a long history of local Research and Development.
During the early 70's various niches were found in the 1local
ﬁeceipting, Hotel and Point of Sale markets. There was no
hardware available to satisfy customer requirements, and this was

the basis for the inception of the Ankerdata R&D Department.

The first model was a Receipting machine called the 4900, based
on an Intel 8085 microprocessor. This machine was directed at
customers such as the Post Office, Customs and Excise and Inland
Revenue. A lucrative niche was also apparent in the hotel

industry, where a machine for the Front Desk was required. This

INTELLIGENT POS TERMINAL PAGE 16

INTRODUCTION
led to the development of the second generation of machines for
the Front Desk, calied the 5900. This extremely flexible and
powerful machine satisfied all the requirements, and was still
installed in major hotels such as the Capetonian, Heerengraght
and President Hotels until a few years ago. The final model in
this particular series was the 7900. This was designed to satisfy
the requirements of various universities, with regard to the
student accounts. This system could perform full stock control
and manage the various student accounts. An installation at
Stellenbosch University was upgraded two years ago to our newer
generation of terminals. Valuable design and marketing experience
was gained from this development phase at Ankerdata. This
together with exorbitant import costs, prompted the Managing

Diréctor to start the next generation of Point Of Sale Equipment.

During 1988 the Government revised the tax structure of imported
goods. This meant that all electronic equipment that Ankerdata
was impdrting was subjected to extremely high import costs. A
direct result of this, was an unrealistically high unit cost to
the end user. This prompted the Managing Director to investigate
market requirements, which led to the decision to locally design
and develop a Point 0Of Sale Terminal. This machine would be
geared for the middle to upper market segments, with full
communications to a store controller, enabling full Back Office

control with extensive reporting capabilities.

INTELLIGENT POS TERMINAL PAGE 17

INTRODUCTION

PROJECT INCEPTION

R/J PRINTER /\h Q:ﬁ? ' CUSTOMER

OPERATOR
DISPLAYS

KEYBOARD

CASH
DRAWER MTS2002 soHzeoe

Figure 0-2. Integrated Terminal - MTS2002

The project was started in early 1988 and I was extremely
fortunate to be a member of the initial development team. With
the advent of the IBM PC, design philosophies changed, and
Ankerdata, being in the forefront of technology, noted the swing
toward an open-ended design architecture. This was the starting
point for the MTS2002 Point Of Sale Terminal. The terminal was
based on a standard XT motherboard, with a propriety power
supply, expansion I/0 card and various peripherals. The greatest
advantage of choosing this architecture was that all software
could be developed on a standard PC, and advantage could be taken

of the vast number of debuggers, compilers and utilities that

INTELLIGENT POS TERMINAL PAGE 18

INTRODUCTION
were available. The availability of various expansion cards meant
that standard cards could be used, greatly reducing the design
and debugging phase. This meant that valuable design time could
be more effectively spent, designing specific I/0O cards to

satisfy our hardware requirements.

AD.
POWER L S PROPRIATRY BOARDS ==..__| DUAL CHANNEL

FAILURE COMMUNICATIONS
DETECTION > (RS232, RS485, RS422)

R/J PRINTER DRIVER

SE— SCANNERS

(———)| 64K BYTES BATTERY
CARDS CANSTILLBE | || 1/ DARD BACKED GMOS SRAM
USED, SUCH AS: XT
GRAPHICS CARD MOTHER - REAL TIME CLOCK
FLOPPY CONTROLLER
HARDDISK CONTROLLER
BOARD 10 8US
KEYBOARD
DISPLAYS
CONTROL LOCK
SCH25.0P

Figure 0-3. MTS2002 Configuration

The MTS2002 was an integrated design, having the processing,
keyboard, printer and displays all housed in a single cabinet.
This, unfortunately would prove to be a major stumbling kblock in
the future. Due to the power of the terminal, all software

requirements could be met relatively easily, the converse did not

INTELLIGENT POS TERMINAL PAGE 19

INTRODUCTION
however apply to the hardware. Each customer, having their own
idiosyncrasy, would require slight changes to the existing
terminal base. This led to many versions of the MTS2002, combined
with this was the associated headache of maintaining so many
variations. This was an extremely popular machine, being able to
satisfy customer requirements, but was extremely costly to

maintain.

The obvious solution was to design a modular system, which would
enable the customer to "mix 'n match" the hardware to their
requirements. The standard XT motherboard would still be
retained, enabling the existing software base to be utilised, as
well as the previocusly mentioned advantages. Unknown to us at the
time was that this terminal would eventually be the most
powerful, flexible, popular and greatly exported machine that

Ankerdata has thus far developed.

The communications to the Back Office was maintained, but the
structure of the Input/Output devices was radically changed. The
communications to the Back Office is based on a 7 bit ASCII
protocol using the RS485 bus type electrical connection. This
meant that a maximum of 255 terminals could be connected to the

HOST computer, which could either be a 286 or 386.

This bus type communications structure was now extended one more
level, to the terminal. A second communications bus was designed

for the internal operation of the terminal, and this was called

INTELLIGENT POS TERMINAL PAGE 20

INTRODUCTICN
the Peripheral Network (PNET). The XT motherboard, internal to
the terminal would control this network, which would have the
flexibility of having any type of peripheral device connected to
it. Initially the terminal needed the same functionality as the
MTS2002, with the possibility of upgrading and adding more
devices in future. A minimal system would therefore comprise of
a keyboard, receipt/journal printer, two 2 line X 16 character
vacuum fluorescent displays (operator and customer) and various
support peripherals. Each device would be addressable, enabling
the HOST to have total control of the communications bus. The
following peripherals which are attached to PNET have been in

full production since mid-1990:

Intelligent 2 1line X 16 Character Vacuum Fluorescent

Display

Intelligent 3 line X 16 Character Vacuum Fluorescent

Display

Intelligent 2 1line X 20 Character Vacuum Fluorescent

Display
Intelligent 2 line X 16 Character LCD

RS232 to RS485 Protocol Converter for the SW1 Receipt/

Journal Printer

INTELLIGENT POS TERMINAL PAGE 21

INTRODUCTION
Intelligent Point Of Sale Termianl, which forms the basis

of this thesis..

The first phase was to design a ROM Emulator card. We decided to
design this card to fit into an expansion slot of the PC. This
meant that the binary file could be directly loaded into the
target system, where the code could be tested within seconds. The
only debugging tools available were a digital oscilloscope, LCD,
LED's and the port pins. This made debugging extremely difficult
and tedious, especially when coding at chip level. Ankerdata has
since purchased an In-Circuit Emulator, which greatly speeds up
debugging.

The INTELLIGENT TERMINAL had to interface to the devices, as
specified in Chapter 2, "INTELLIGENT TERMINAL SPECIFICATIONS".
The INTELLIGENT TERMINAL had to transmit any incoming information
to the HOST, and output any information that the HOST might
transmit to it. The INTELLIGENT TERMINAIL had to report any change
in status to the HOST. All software was written in assembler,
which is a lot more tedicus than writing in a high level
language. Intel's Macro Assembler and Relocatable Linker were
used for the generation of the code. The rest of the thesis is
dedicated to the INTELLIGENT TERMINAL, and therefore a brief

description of the various chapters is necessary.

INTELLIGENT POS TERMINAL PAGE 22

INTRODUCTION
CHAPTER 1
The communications protocol is described, as well as the

commands that control the INTELLIGENT TERMINAL.

CHAPTER 2

This contains the hardware description for the INTELLIGENT

TERMINAL and all the Periphery attached to it.

CHAPTER 3

This is the complete Assembler listing for the INTELLIGENT

TERMINAL.

CHAPTER 4

This contains the schematic diagrams and component layout

for the INTELLIGENT TERMINAL.

CHAPTER 5

This is the parts list for the INTELLIGENT TERMINAL.

CHAPTER 6

This is the bibliography for the complete project.

Since full production of the terminal started during the latter
quarter of 1990, more than 1000 units have been installed at the
various Post Offices country wide, as well as installations at
major customer sites. The International market was also

penetrated with the export of a number of terminals to Europe.

INTELLIGENT POS TERMINAL PAGE 23

INTRODUCTION
This must surely be an indication of the degree of
professionalism in the design as well as marketing sections of

Ankerdata.

Due to the constant undertaking of research programs, Ankerdata
is kept at the forefront of technology, ensuring the local Point

of Sale market can compete within world markets.

BB
] i [
| d

TERMINAL #1 SCH23.0P TERMINAL #X

Figure 0-4. POS Terminals and Back Office Computer

INTELLIGENT POS TERMINAL PAGE 24

INTELLIGENT POINT OF SALE TERMINAL

SOFTWARE DESCRIPTION

F]
==
e
=

INTELL FGENT

TERMINAL

~7

A\

il

SOFTWARE DESCRIPTION

CHAPTER 1

1. COMMUNICATIONS INTRODUCTION

RSA86 BUS

TERMINAL #1 SCH20.0P TERMINAL #X

Figure 1-1. INTELLIGENT TERMINAL-Back Office Computer
This specification describes the protocol used on the Peripheral
Network (PNET), which is the internal communications bus of each

terminal.

CHAPTER 1 PAGE 2

SOFTWARE DESCRIPTION

Each terminal could consist of the following devices:

INTELLIGENT TERﬁINAL

SW1 Printer

2 X 16, 3 X 16, 2 X 20 Vacuum Fluorescent Displays

Handscanner and Desktop Scanner

Pin Pad

2 X Cash Drawers

Bi-Directional Magnetic Card Reader

The communications between the HOST and the various devices
should be seen as two independent layers. The lower laver is the
protocol layer, which takes care of the integrity of the data
during data transfers. The upper layer is the command layer,
which is used to control the various operations on the

INTELLIGENT TERMINAL.

CHAPTER 1 PAGE 3

SOFTWARE DESCRIPTION
2. TRANSMISSION SPEC;FICATION
1. Communication System Half Duplex
2. Transmission Rate 19.2 KBaud
3. Connection Control System Poll/Select
4. Response Method ACK and NAK

5. Error Control System BCC Check: LRC Method
Iliegal Response

Address Check

6. Transmission Code ASCII

7. Transmission Mode Transparent Mode

8. Transmission Bit Order 1LSB First

9. Bit configuration DATA: 8
START: 1
STOP: 1

PARITY: NONKE

10. Electrical Connection RS 485

Table 1-1. Transmission Specification

CHAPTER 1 _ PAGE 4

SOFTWARE DESCRIPTION

3. TRANSMISSION CONTROL CODES

SYMBOL ASCII CODE FUNCTION

DLE 10H Data link escape code which
becomes significant in
combination with the

following character.

ENQ 05H Used for requesting line
control (data link establish
phase) or requesting
response (text transfer

phase).

EOT 04H End of transmission character
which makes all the stations
on the line enter the

control state.

ACK 06H Acknowledge character.

CHAPTER 1 PAGE 5

SOFTWARE DESCRIPTION

SYMEBOL ASCII CODE FUNCTION

NAK 15H Negative acknowledge

character which is used

when the preceding block

is not received correctly.

DLE.STX 10H-02H Indicates the start of text

or block, in transparent

mode.

DLE.ETX 10H-03H Indicates the end of text in

transparent mode.

Table 1-2. Transmission Control Codes

CHAPTER 1 PAGE 6

SOFTWARE DESCRIPTION

4. TRANSMISSION FORMAT

Text is transmitted according to the following format.

DLE STX TEXT DLE ETX LRC

1. Text length is 50 characters maximum. (This is due
to the internal receive buffer of the INTELLIGENT

TERMINAL) .

2. The following processing is performed for specific

characters appearing in TEXT transmission.

(a)
The first DLE code in the DLE.DLE sequence in the
received text is deleted from the text and not

included 1in the count of the text length.

(b)
When a DLE is detected in the transmitted text, it is
sent as a DLE.DLE sequence. But the first DLE is not

included in the count of the text length.

(c)
The purpose of the DLE.DLE seguence is to indicate

that the DLE is not a protocol control code, but is part

of the data in the TEXT field.

CHAPTER 1 PAGE 7

SOFTWARE DESCRIPTION

3. BCC (Block Check Character) uses LRC and is represented

by one byte. (Refer to section 6 "Error Control").

4.1 TEXT FORMAT

Text

is composed of the header field and data field.

HEADER DATA

TEXT (50 bytes max)

The header field is composed of the control codes:

BINARY DEVICE NUMBER I/0 I/C DESIGNATOR

HEADER (3 bytes)

Bihary Device Number: (1 Byte)

1/0:

CHAPTER 1

The device number refers to the physical device on the
differential communications 1line. This could be an
INTELLIGENT TERMINAL or an INTELLIGENT PRINTER. It is
possible to have up to 16 devices on the line,

numbered from 1 to 16.

(1 Byte)
As the INTELLIGENT TERMINAL is mainly an INPUT /

OUTPUT device, all messages for output devices, such

PAGE 8

SOFTWARE DESCRIPTION
as the LCD, LED's, drawer solenoids will be preceded
by an '0'. Therefore messages which are generally sent

from the HOST to the INTELLIGENT TERMINAL will be

preceded by an '0'.

All input devices on the INTELLIGENT TERMINAL, such as
the lock, keyboard, scanners will be preceded by an
'I'. Therefore messages which are sent from the
INTELLIGENT TERMINAL to the HOST will be preceded by
an 'I', to indicate that an input device has just been

read.

I/0 DESIGNATOR: (1 Byte)

DATA

This

This refers to a specific I/O device on the
INTELLIGENT TERMINAL,
eg: 'L' lock

'K' keyboarad

'R' drawers

FIELD

will be the data which is either to be sent to the

INTELLIGENT TERMINAL or data which is received from the

INTELLIGENT TERMINAL.

CHAPTER 1

PAGE 9

SOFTWARE DESCRIPTION

5. TRANSMISSION CONTROL PROCEDURES

The following are the five types of states in the

transmission control procedures.

(1) Connection Phase

(2) Data Link Establish Phase
(3) Text Transfer Phase

(4) Data Link End Phase

(5) Disconnection Phase

5.1 CONNECTION PHASE (NO PROCESSING)

Transits to the data 1link establish phase.

5.2 DATA LINK ESTABLISH FHASE
A data link is established through transmission of the

caliing sequence.

CHAPTER 1 PAGE 10

SOFTWARE DESCRIPTION

5.2.1 DATA LINK ESTABLISH PHASE AT HOST

5.2.1.1 SELECTING (HOST HAS DATA TO SEND TO TERMINAL)

(1) Format
EOT AD1 AD2 SEL ENQ
AD1, AD2:
Represents the destination address in unpacked
ASCII format .(Example terminal number 01H =
ASCII 30H 31H)
SEL:

(2}

CHAPTER 1

71H = 'q’

Response Processing for Selecting Sequence at

the HOST.

The following processing is performed for the response

received in reply to the selecting sequence.

(a)

Reception of ACK
A data 1link 1is established and processing
transits to the transfer phase described in

Section 5.3

PAGE 11

(b}

(c)

SOFTWARE DESCRIPTION
Reception of NAK
No déta link 1is established and processing
transits to the selecting sequence for the next

terminal.

Reception of Invalid Response
Response is ignored and processing maintains the

response wait state.

5.2.1.2 POLLING (HOST REQUESTS TERMINAL FOR AVAILABLE DATA)

(1) Format

EQOT AD1 AD2 POL ENQ

AD1, AD2:

POL:

CHAPTER 1

Represents the destination address in unpacked
ASCII format. (Example terminal number O1H =

ASCII 30H 31H)

70H = ‘'p’

PAGE 12

(2)

SOFTWARE DESCRIPTION

Response Processing for Polling Sequence at

the HOST.

The following processing is performed according to the

response received in reply to the polling sequence.

(2)

()

(c)

Reception of Text
A data 1link 1is established and processing
transits to the text transfer phase described in

Section 5.3

Reception of EOT
No data 1link is established and processing
transits to the polling sequence for the next

station.

Reception of Invalid Response
Response is ignored and processing maintains the

response wait state.

5.2.2 DATA LINK ESTABLISH PHASE AT TERMINAL

CHAPTER 1

The following processing is performed according to the

response received while waiting for the polling

sequence from the HOST.

PAGE 13

CHAPTER 1

(1)

(2)

SOFTWARE DESCRIPTION

Reception of Selecting Sequence

(a)

(b)

(c}

Transmission of ACK
When a reguest to receive is issued and the

receive buffer is empty.

Transmission of NAK
When no request to receive is issued or

the receive buffer is full.

No Response
When transmission is impossible or the

addresses do not match.

Reception of Polling Sequence

(a)

(b)

(c)

Transition to Text Transfer Phase

When a valid polling sequence is received.

Transmission of EOT
When a valid polling sequence is received

but no data is available.

No Response
When transmission 1is impossible or the

addresses do not match.

PAGE 14

(3)

SOFTWARE DESCRIPTION
Reception of EOT

Maintains the polling sequence receive state

5.3 TEXT TRANSFER PHASE

When a data 1link is established according to the polling

sequence,

both source and destination stations enter the text

transfer phase. Text is transferred in this phase.

5.3.1 TEXT TRANSFER PHASE AT THE HOST. (HOST TO TERMINAL)

(1)

CHAPTER.I

(a)

(b)

Processing for Response at Source Station

Reception of Positive Acknowledge

For positive acknowledge, an ACK is returned to
acknowledge receipt of the data string.

After an acknowledge in response to text an EOT
is sent, the data link will be released and the

request to send will terminate normally.

Reception of NAK

When the retry counter (L) is L times or less,
text is resent. In the case of L+1 times, an EOT
is sent and the data 1link is released. The

request to send terminates abnormally. (refer to

PAGE 15

SOFTWARE DESCRIPTION

pg 22, RETRY COUNTER)

(c) Reception of Invalid Response
Any response other than the above is ignored and

the response wait state is maintained.

(2) Response Transmission Processing at Destination

Station

(a) Reception of Normal Text

Sends acknowledye ACK.

(b} Reception of ENQ
Immediately re-sends the same text as the

preceding one.

(c) Reception of Error text
Immediately sends a NAK and waits for
re-transmission. Cases where text are regarded as
erroneous are:

(1) Occurrence of BCC error.

(2) Reception of DLE.STX after receiving

DLE.STX.

CHAPTER 1 PAGE 16

(d)

SOFTWARE DESCRIPTION
(3) Reception of ACK after receiving

DLE.STX.

(4) Text length exceeded 50 bytes.

Reception of EOT
The data link is released, processing returns to
the data link establish phase, and the request to

receive terminates normally.

5.3.2 TEXT TRANSFER PHASE AT THE TERMINAL. (TERMINAL TO HOST)

CHAPTER 1

(1)

Processing for response at Source Station.

(a) Reception of ACK

For positive acknowledge, an ACK is returned to

acknowledge receipt of the data string.
After an acknowledge in response to text an EOT

is sent, the data link will be released and the

request to send will terminate normally.

PAGE 17

CHAPTER 1

(b)

(c)

(d)

SOFTWARE DESCRIPTION

Positive Acknowledge

When the retry counter (L") is L" times or
less, a regquest ENQ is sent. In the case of
L"+1 times, the data link is released and
the request to send terminates abnormally.
If, however, this response is received for
the request ENQ send due to a reception
time-out, text will be resent on condition
that the retry counter (L") is L" times or

less

Reception of NAK

when the retry counter (L) is L times or
less, text is resent. In the case of L+1
times, the data 1link is released and the

request to send terminates abnormally

Reception of invalid

response

Any response other than the above is ignored

and the response wait state is maintained.

PAGE 18

SOFTWARE DESCRIPTION
(2) Response Transmission Processing at

Destination Station

See as (2) in Para. 5.3.1.

5.4 DATA LINK END PHASE

The text transfer phase terminates upon the transmission or
reception of the EOT or retry count overflows. (secondary
station only). The transmission control procedures phase
returns to the data link establish phase and the data link is

released.

5.5 DISCONNECTICN PHASE

No processing.

CHAPTER 1 PAGE 19

SOFTWARE DESCRIPTION

6. ERROR CONTROL

Error control for text is done in accordance with the LRC
(Longitudinal Redundancy Check) method. The exclusive OR (XOR)
of the characters following DLE.STX to the ETX is represented

by one byte.

DLE STX DLE.DLE DLE ETX LRC

The DLE for control (including the DLE preceding ETX) is

excluded from the arithmetic operation of LRC.

Calculation of BCC (Block Check Character) 1 byte

Set initial value to 0, now perform the exclusive OR from
DLE.STX to DLE.ETX commands to obtain the BCC. If a DLE.DLE
sequence is present in the TEXT, only the 1 DLE should be

included in the BCC calculation.

Example: 21h 01lh BCC

OCH XOR 21H BCC

21H

20H

21H XOR O1H BCC

CHAPTER 1 PAGE 20

SOFTWARE DESCRIPTION

7. RETRY COUNTER FUNCTION

7.1 HOST RETRY COUNTER FUNCTION

(1) Text send retry count (L)

{(2) Link establish ENQ (polling/selecting) send

retry count (L')

(3) Response request ENQ send retry count (L")

7.2 TERMINAL RETRY COUNTER FUNCTION
{1) Text send retry count (L)

{(2) Response request ENQ send retry count (L")

CHAPTER 1 PAGE 21

SOFTWARE DESCRIPTION

8. INTELLIGENT TERMINAL CONTROL CODES

This section deals with the actual control codes which are sent
to the TERMINAL to control the various output functions, and to

acquire the data from the various input devices.

The control sequence will contain the HEADER FIELD, as well as

the DATA FIELD.

HEADER DATA

TEXT (50 bytes max)

The 3 byte header field is composed of the following

control codes:

BINARY DEVICE NUMBER I/0 I/0 DESIGNATOR

X = Binary Terminal Number

Helpful information:

(a)
A byte 1is divided into 2 nibbles, the LEAST
SIGNIFICANT NIBBLE (LSN) and the MOST SIGNIFICANT
NIBBLE {(MSN). The byte could also be divided into 8
bits. BIT 0 is equal to the LEAST SIGNIFICANT BIT
(LSB} and BIT 7 is equal to the MOST SIGNIFICANT BIT
(MSB) .

CHAPTER 1 PAGE 22

SOFTWARE DESCRIPTION

BYTE

MsSB LSB

MSN LSN

(b)
The following are the declarations which are used
for the programming examples:
txmaster (txmsg, txtermnum, txlen)
/* transmit routine for master * /
/* returns: 0 if successful, */
) 1 if comms error, * /

2 if invalid parameter */

char *txmsg;

/* pointer to message * f

int txtermnum;

/* terminal number */

int txlen;

/* length of message to be transmitted#*/

char msg{270]; [* mesage buffer */

CHAPTER 1 PAGE 23

SOFTWARE DESCRIPTION

g§.1 oUTPUT DEVICE CONTROL CCDES

g.1.1 16 X LED's

O LB 8 BYTE LED Control Field

LED #

BYTE #

CHAPTER 1

8 Byte LED Control Field:

The 8 byte LED field is further divided into a 4 byte
LED ON/OFF field and a 4 byte LED FLASH field. The LSN
of each byte will control 4 LED's. Each of the 8 bytes

must be OR'ed with 30H before transmitting this to the

TERMINAL.

LED ON/OFF LED FLASH

1-4 5-8 9-12}13-16 1-4 5-8 9-12{13-16

1 2 3 4 5 6 7 8

To turn on LED number 1, BITO in BYTE #1, must be set.
Similarly to turn on LED number 4, BIT3 in BYTE #1
must be set. This will switch the LED on permanently.
To flash LED #1, the associated BIT in the LED FLASH
field must also be set. Therefore BITO in BYTE #5 must

be set which will flash LED #1.

PAGE 24

SOFTWARE DESCRIPTION

Programming example #1:

This will flash LED #1.
sprintf (msg,"0L10001000");

txmaster (msg, 1, 10);

Programming example #2:
This will flash LED #1 and switch on LED #8.
sprintf (msg,"0OL18001000");

txmaster (msqg, 1, 10);

CHAPTER 1 PAGE 25

SOFTWARE DESCRIPTION

8.1.2 TWO X LIQUID CRYSTAL DISPLAYS (LCD #1/#2)

!0!

!Dl

6/1/2

32 BYTE DISPLAY STRING

Display options:

(a)

(b)

(c)

(d)

(e)

'0' will display message

'1' will display message

'2' will display message

To clear the display the

display sting.

on both displays.

on LCD #1

on LCD #2

display transmit an empty

For space compression, place a 'HT'

(horizontal tab = 0x09) followed by the

number of spaces, which is OR'ed with 30H.

Programming example #1:

This will display a message on LCD #1.

sprintf (msg,"OD1**INTELLIGENT***P0OS

txmaster (msqg,

Programming example #2

TERMINAL") ;

This will display a message on LCD #1 and LCD #2.

sprintf (msg, "ODO**INTELLIGENT***P0OS

CHAPTER 1

TERMINAL") ;

PAGE 26

SOFTWARE DESCRIPTION

txmaster (msqgq, 1, 35);

Programming example #3:
This will clear LCD #2.
sprintf (msg, "0D2") ;

txmaster (msg, 1, 3);

Programming example #4:

This is to illustrate how the string should be formatted
for space compression. The 'HT' precedes the number of
spaces to be inserted. In the following example 11 spaces

had to be inserted, therefore 30H OR'ed with 11H = 41H.
sprintf (msg, "HELLO%c%cWORLD! ", 0x09,0x41) ;
txmaster (msg, 1, 3};

8.1.3 SOUND THE BUZZER

The buzzer has a fixed frequency and alsc a fixed duration. When

the control code is sent to the TERMINAL it will therefore sound

the buzzer for a fixed duration.

CHAPTER 1 PAGE 27

SOFTWARE DESCRIPTION
Programming example #1:
This will soundrthe buzzer,
sprintf (msg, "OB") ;

txmaster (msg, 1, 2);

8.1.4 OPEN CASH DRAWER #1 OR #2

X | o 3: 1/2

Drawer options:

(a} '1' will open cash drawer #1.

(b) '2'" will open cash drawer #2.

Programming example #1:

This will open cash drawer #2.

txmaster ("OR2", 1, 3);

8.1.5 ENABLE OR DISABLE MAGNETIC CARD READER

X 100 Yo 0/1

Magnetic Card Reader options:

(a) '0' will disable the magnetic card reader.

CHAPTER 1 PAGE 28

SOFTWARE DESCRIPTION

(b) '1' will enable the magnetic card reader.

Programming example #1:
This will enable the magnetic card reader.
sprintf (msg,"0C1") ;

tymaster (msg, 1, 3);

Pregramming example #2:
This will disable the magnetic card reader.
sprintf (msq,"0C0O"} ;

txmaster (msqg, 1, 3);

8.1.6 HOST ENQUIRY FOR LOCK, DRAWER, RECEIPT & SWITCH STATUS

The HOST will send the above message to the TERMINAL to
enquire as to the status of the input devices. This will
normally be executed at power-up, when the application
program will need to know what Key is in the lock, as well
as the status of the various input devices. Please refer to
the section on INPUT DEVICES to¢ see the response message

sent from the TERMINAL to the HOST.

CHAPTER 1 _ PAGE 29

SOFTWARE DESCRIPTION

8.1.7 TWO R5232 SERIAL PORTS

X 0! 'St 172 # Cc/D 40 BYTE STRING

The serial port facility which is provided on the TERMINAL
is meant for very basic interfacing to serial devices, such
as the 2x16 display. The main purpose is to transmit a
string of data or receive a string of data with a certain
amount of handshéking taking place via the RTS and CTS
lines. This interface is not meant for any elaborate
protocols such as that required by the SW1 serial printer.
It is however completely adequate for serial printers that
require the data to be transmitted with a minimum of
handshaking. A typical printer would be the M-23%0 slip

printer, which buffers all the incoming data.

The TERMINAL can receive either a DATA string or a COMMAND
string. The COMMAND string is used to change the bit format
setting of the serial port. The default bit format of both

serial ports is the following:

BAUD RATE: 9600
PARITY: none
DATA BITS: 8
STOP BITS: 1

CHAPTER 1 PAGE 30

SOFTWARE DESCRIPTION

Serial port options:

fa) '1° transmit command or data to COM1.

(b)

'2' transmit command or data to COM2.

(c) # is the number of bytes in the 'DATA

STRING' + 2 bytes for 'l1/2' and 'C/D'. The number of

bytes has to be represented in binary notation.

(4)

(e)

CHAPTER 1

eq

DATA string = 20 bytes + 2 bytes, therefore

= 16H. (16H = 22 decimal)

'D' will inform the TERMINAL that the string is a

DATA string and should be processed appropriately.

This is used to transmit data to COM1 or COM2.

'C' will inform the TERMINAL that the string

is a COMMAND string and should be processed
appropriately. This is used to change the bit format

of COM1 or COM2

PAGE 31

SOFTWARE DESCRIPTION

The COMMAND string has to be in the following format in

order to change the bit format for COM1 or COM2.

lSl

12 | # | ¢/p| B| D] s | P

COMMAND string options:

CHAPTER 1

(a)

(b)

(c)

B is the baud rate, which have to be
represented in binary notation. The baud
rate options are the following:

B

Ii

48H => 4800 Baud
B = 96H => 9600 Baud
B = 19H => 19.2 KBaud
B

= 38H => 38.4 KBaud

D is the number of data bits, which have
to be represented in binary notation. The
number of data bit options are the
following:

D = 07H => 7 data bits.

D = 08H => 8 data bits.

S is the number of stop bits which have
to be represented in binary notation. The
number of stop bit options are the
following:

§ = 01H => 1 stop bit.

S = 02H => 2 stop bits.

PAGE 32

SOFTWARE DESCRIFPTION
(d) P specifies whether parity will be ODD,
EVEN or NO parity. The parity options are as
follows:
P = 'N' => no parity.
P = '0' => odd parity.

P = 'E' => even parity.

Programming example #1:

The following command will change the bit format to suit
the M290 slip printer on COM1.

sprintf (msg,"051%cC%c%c%cE",6,0x96,0x07,0x01);

/* 9600, 7, 1, E %/

- txmaster {msg, 1, 9);

Programming example #2:

The following data string will be transmitted via COM1 to
the M290 slip printer.

sprintf (msqg, "0S1%cDTX FROM HOST TO TERM, TO COMl%c%cic
",634,0x0d4,0x0a,0x1l); /* last 3 bytes = CR, LF

pinch roller up */

txmaster (msg, 1, 37);
Programming example #3:

The following data string will be transmitted via COM2 to

the 2 x 16 character display.

CHAPTER 1 PAGE 33

SOFTWARE DESCRIPTION
sprintf(msqg, "0S2%cD¥cOREMOVE SLIP FROMFLAT BED
pRINTEaz%c",38,dx02,0xo3);

/* 0x02=5TX, 0x03=ETX required by the 2x16 display */

txmaster (msg, 1, 41);

This concludes the commands that can be transmitted from the HOST

to the TERMINAL.

CHAPTER 1 _ PAGE 34

g.2 INPUT DEVICE CONTROL CODES

g.2.1 4 BIT CONTROL LOCK

SOFTWARE DESCRIPTION

III

ILI

1 BYTE LOCK STATUS

The following is a list of some of the binary values for

some of the keys:

8.2.2 MAGNETIC CARD READER

N Kkey
M key
L key
K key

A key

06H

07H

08H

09H

OEH

III

lcl

01H/FFH

37 BYTE CARD DATA

If the card is read successfully an 01H will be returned

followed by 37 bytes of card data. If an error is detected

when the card was read, FFH will be returned without the 37

bytes of card data.

CHAPTER 1

PAGE 35

SOFTWARE DESCRIPTION

Magnetic card reader options:

(a)

(b)

01H signifies that the card was read

successfully.

FFH signifies that an error occurred when the

card was read and that no card data will be

returned.

8.2.3 DRAWER STATUS

!II

|RI

1/2 | 00H/O01H

Drawer status

CHAPTER 1

(a)

(b)

(c)

(d)

options:

'1' specifies drawer #1.

12' specifies drawer #2.

00H specifies that the drawer 1s closed.

01H specifies that the drawer is open.

PAGE 36

SOFTWARE DESCRIPTION

8.2.4 RECEIPT STATUS

X | "1 tp1 OOH/01H

Receipt status options:
(a) OOH specifies that the receipt switch is
closed,

(b) O01H specifies that the receipt switch is open.

8.2.5 KEYBOARD OR SCANNER DATA

X 'T! 'K' 25 BYTE STRING

When entering data from the keyboard or from the scanners,
the sequence in which the data was entered must be
maintained. This is the reason that the keyboard data and
scanner data were placed in the same buffer. The TERMINAL

can buffer 25 key depressions or 2 scanned item numbers.

KEYBOARD ENTRY FORMAT

X 't 'K KEY VALUE

CHAPTER 1 PAGE 37

SOFTWARE DESCRIPTION
The key value will be the binary representation of the

position of the key on the keyboard.

01 02 03 04 05 06 07 08 09
10 11 12 13 14 15 16 17 18
19 20 21 22 23 24 25 26 27
28 29 30 31 32 33 34 35 36
37 38 39 40 41 42 43 44 45
46 47 48 49 50 51 52 53 54
55 56 57 58 59 60 61 62 63
64 65 66 67 68 69 70 71 72

Table 1-3. Keyboard Matrix

SCANNER ENTRY FORMAT

X 1 IR FFH | # | 06H, 13 BYTE NUMBER

Scanner data is identified by FFH. # is the number of bytes
in its binary representation of the number of bytes read
from the scanned label A total of 14 bytes is therefore
read from the label. The first byte is normally the EAN

LABEL ID, and is normally 06H. This is followed by a 13

byte number

CHAPTER 1 PAGE 38

g8.2.6 RESPONSE TO HOST ENQUIRY

SOFTWARE DESCRIFPTION

X |II IEl

IRI

#1

lRl #2 IPI lLl

The above string is the response which the TERMINAL will

return when an ENQUIRY 1s sent from the HOST.

Enquiry options:

(a) 'R' #1 is the status

this could be 00H

(b} 'R' #2 is the status

this could be 00H

of drawer number 1, and

closed, or 01H = open.

of drawer number 2, and

closed, or 01H = open.

(c) 'P!' is the receipt switch status, and this

could be 00H = closed, or 01H = open.

(&) 'L' is the binary representation of the lock

status.

8.2.7 TWO X RS232 SERIAL PORTS

1/2

RX STRING

The incoming serial data is treated on a byte basis, and

CHAPTER 1

PAGE 39

SOFTWARE DESCRIFTION
the TERMINAL does not distinguish between the start of a
message and the-end of a message, but treats each byte as
a received character. This is then transmitted to the HOST
computer. The application programmer should therefore
ensure that complete messages are received, as the TERMINAL

might transmit the message in sections.
Serial port options:

(a) '1' received data on COM1.

(b) '2' received data on COM2.

(c) # 1is the number of bytes in the 'RX STRING'. The

number of bytes is represented in binary notation.

CHAPTER 1 PAGE 40

SOFTWARE DESCRIPTION

9. PROGRAMMING EXAMPLE
/* program to test intelligent terminal 05-90 */
#include <stdioc.h>

#include <defn.h>

long msg_count;

char lock[20] = {

'?'l‘?'! !?l, l?!' l?l, '?'I 'N', IHI’ lLl' IKl’ l?!r l?!r
!?I, I‘?i’ lAl’ | I
i
main()
{
extern long msg_count;
int i, ¢, numch;

char msg[270];

msg_count = 0;
init_comx() ; /* initialize com port variables */
scr_printf("(1)DRAW1 (2)DRAWZ2 (3)BUZZ (4)LCD
(5)CRD_ON (6)CRD_OFF\n\n");
scr_printf("(7)LED 8 (8)LED 1 (9)COM1 (0)COM2
(A) INIT _COM1(96,7,E,1)\n");

if (!initmcomm (1)) {

CHAPTER 1 PAGE 41

SOFTWARE DESCRIPTION
scr_clear();
scr_printf ("COMMS CHANNEL ERROR");

exit(1);

while (TRUE) ({
intkbd(); /* read rx data from intelliigent kyb */
if (scr_poll() != ~1) {
switch (toupper(scr_getc())) {
case Oxlb:
scr_clear();

exit(0); /* ESC %/

case '1': txmaster ("OR1", 1, 3);

break;

case '2': txmaster ("OR2", 1, 3);

break;

case '3': sprintf (msqg, "OB");
txmaster (msg, 1, 2);

break;

case '4': sprintf (msg,"OD1**INTELLIGENT***PQS

TERMINAL") ;
txmaster (msg, 1, 35);

msg_count = 0;

CHAPTER 1 PAGE 42

case

case

case

case

case

l5l:

l6|:

l‘7l:

IBI:

’9’:

SOFTWARE DESCRIPTION

break;

sprintf (msg,"0C1");
txmaster (msg, 1, 3);

break;

sprintf (msg, "oco") ;
txmaster (msg, 1, 3);

break;

sprintf {msg,"OL10001000") ;
txmaster (msg, 1, 10);

break;

sprintf (msg,"0L18001000") ;
txmaster (msg, 1, 10);

break;

sprintf (msg,"0S1%cDTX FROM HOST TO TERM, TO

COM1%c%c%c"™,34,0x04,0x0a,0x11};

txmaster (msg, 1, 37);

sprintf (msqg,"0S2%cD%cOREMOVE SLIP FROMFLAT BED

PRINTER2%c",38,0x02,0x03);

CHAPTER 1

txmaster (msg, 1, 41);

break;

PAGE 43

SOFTWARE DESCRIPTION
case '0':
sprintf(msg,"osz%cn%éo TX FROM HOST TO TERM, TO
coM2%c",37,0x02,0x03);
txmaster (msg, 1, 40);

break;
case 'A':
sprintf (msg,"0S1%cC%c%c¥cE",6,0x96,0%x07,0x01) ;
/* 9600, 7, 1, E M290 slip printer */

txmaster (msg, 1, 9);

break;

CHAPTER 1 PAGE 44

SOFTWARE DESCRIPTION
intkbd () /* check intelligent keyboard. return -1 if no key,

else raw value */

{

int i, ¢, numch;
unsigned char mod([270];

char msg[1003;

c = rxmaster (mod, 1, &numch);

if (¢ == 0) {
scr_curs (12,0);
scr_puts (" R
scr_curs (12,0);

switch (mod{1]) {

case 'C':

if (mod[2] == Oxff)({

sprintf (msg, "OD1PLEASE RE~SWIPE ***YOUR
CARD***“) ;

txmaster (msg, 1, 35);

}

else if (mod(2] == 0x01){
printf (“CARD# ");
for (i = 3; i <= 20; i++)

printf ("%c", mod{i});
sprintf (msg, "OD1YOUR CARD HAS BEEN
READ") ;

txmaster (msg, 1, 35);

CHAPTER 1 PAGE 45

SOFTWARE DESCRIPTION
sprintf (msg, "OB") ;
txmaster (msg, 1, 2);

}

break;

case 'P':
printf ("RECEIPT ");
if (mod[Q] == Dx0)
printf ("OFF");
else if (mod([2] == 0x01)
printf ("ON"};

break;

case 'R':
printf ("DRAW #%c ", ,mod([2]});
if (mod[3] == 0x0)
printf ("CLOSED");
else if (mod[3] == 0x01)
printf ("OPEN");

break;

case 'L':
i = mod[2] >> 4;
printf ("LOCK %c",lock[i]};

break;

CHAPTER 1 PAGE 46

SOFTWARE DESCRIPTION
case 'K':
if (mod[2)]) == Oxff){
printf ("SCANNER DATA ");
for {i = 5; 1 <= mod[3]+3; i++)
printf ("%c", mod[i]);
}
else (printf ("KEY# %d", mod[2]));
break;
case 'S':
printf ("COM%c ", mod[2]);
for (i = 4; 1 <= mod[31+3; i++)
printf ("%c®, mod([i]);

break;

default:
printf ("UNKNOWN RX STRING %s",mod);

break;

}

return (-1);

CHAPTER 1 PAGE 47

INTELLIGENT POINT OF SALE TERMINAL

HARDWARE DESCRIPTION

INTELL IGENT

TERMINAL

AN\

HARDWARE DESCRIPTION

cHAPTER 2

1. SYSTEM DESCRIPTION

1.1 SYSTEM OVERVIEW

TR TR BN U DM
LR |

WA
> MR AN
E AT

-
B

sl et
SN

'
|

MAINFRAME

TERMINAL #1 SCH2%.DP TERMINAL #X

Figure 2-1. System Configuration

The system had to have the capability of communicating to a
maximum of 255 terminals. Each terminal had to be individually
addressable. The HOST computer, which would be situated in the
back office, would have total control of the communications line.
The protocol is based on the Bourroughs 7 bit ASCII protocol,

which has a POLL - ACKNGWLEDGE structure. Each terminal has a

CHAPTER 2 PAGE 2

HARDWARE DESCRIPTION
anique terminal number which prevents conflict on the
communications bus, which might be caused by two terminals

simultaneously transmitting data onto the bus.

The HOST will "POLL" a terminal, if it has any data available,
the data will be transmitted to the HOST. If the HOST has any
data for the terminal, the HOST will "SELECT" a particular
terminal and the data will be transmitted to the terminal. A
differential communications bus, utilising the RS485 electrical
standard is used to inter-connect the terminals to the HOST. This
produces a multi-drop connection, enabling a terminal to be

easily introduce, or removed from the bus.

This external communications bus is called ANET, and has a data
transfer rate of 38.4 KBuad. The communications bus is used to
transmit the latest item data at "store open" to the terminals,
and to consolidate the totals from the various terminals at
"store close". The HOST can now generate all the necessary

reports, and the consolidated data can now be transmitted to a

remote mainframe via a modem.

1.2 TERMINAL OVERVIEW

Each terminal consists of the following hardware devices, which

can be seen graphically by referring to Figure 2-2:

SW1 receipt/journal printer

CHAPTER 2 PAGE 3

HARDWARE DESCRIPTION

Bi-directional magnetic card reader

2 X 16, 3 X 16 and/or 2 x 20 Vacuum Fluorescent Displays
2 X 16 Liquid Crystal Displays

2 x Cash Drawers

Handscanner and/or desktop scanner'

INTELLIGENT TERMINAL, which forms the remainder of this

hardware description

SW1 PRINTER

2 X CASH DRAWERS

2X 16
DISPLAY

MAGNETIC

CARD READER 2
o
% PIN PAD DESK TOP SCANNER

_:- TERMINAL

AN

3X16
DISPLAY

Figure 2-2. Terminal Description

CHAPTER 2 PAGE 4

HARDWARE DESCRIPTION

1.3 DETAILED TERMINAL DESCRIPTION

1.3.1 PROCESSING SECTION

POWER

ANET (RS485) EHI

FAILURE cr M PYERBUARLL
° ON | COMMUNICATIONS ~—
(RS232, RS485) =
64K BYTES BATTERY -
ADS PROPRIETRY BACKED CMOS SRAM EEEEERES
BOARDS
REAL TIME CLOCK
DEVICE #1 PNET (RS485)
Swi PRINTER
PROTOCOL
| e manan Sia Sanasaamm
]
DEVICE #2 DEVIGE #3 DEVICE #4

INTELUGENT TERMINAL 2 X 16 DISPLAY 3 X 16 DISPLAY

Figure 2-3. Detailed Terminal Description

Each terminal requires a main processing section which will
control the various Input / Qutput devices, communications to the
HOST and execute the required application program. This is
achieved by using a standard XT motherboard in addition to two

proprietary Ankerdata cards.

The power failure detection circuitry is situated in the power
supply section. This card monitors the 220 VAC and +5V lines. If
the mains drops below 180 VAC, or the +5V exceeds a certain

predefined window, a Power Failure Interrupt is generated, and

CHAPTER 2 PAGE 5

HARDWARE DESCRIPTION
the CPU will save the current variables to the battery backed
cMoS. This ensures that all totals and current sale status is
paintained when power is returned to the terminal. This feature

is vital for the operation of the terminal.

The Ankerdata DMA card, is an 8 bit expansion card which plugs
directly into any of the XT expansion slots. The card consists
of the following:

64K Bytes battery backed CMOS Static RAM

Dual Channel Communications (RS232/RS485)

Real Time Clock

Programmable Peripheral Interface (PPI)

Selectable Terminal Address

4 Status LED's

One communications port is used for communicating to the HOST,
which would be situated in the back office. This communications
bus is called ANET. The second communications port is used for
the internal operation of the terminal, and is called the
Peripheral Network (PNET). This bus enables the various

intelligent devices to communicate to the terminal.

1.3.2 COMMUNICATIONS SECTION

The communications bus, ANET, which was previously described was

extended one level down, to be incorporated into the internal

CHAPTER 2 PAGE 6

HARDWARE DESCRIPTION
operation of the terminal. This bus was called the Peripheral
Network, or PNET, which has a data transfer rate of 19.2 KBaud.
The protocol is a modified version of the Bourroughs 7 bit ASCII
protocol. The main difference is that a more efficient binary
format 1is wused on PNET, but the basic POLL - ACKNOWLEDGE
structure is still maintained. A more detailed description can

be found in the "SOFTWARE DESCRIPTION" section.

1.3.3 DEVICE SECTION

The long term project goal was to design a completely modular
system. The greatest advantage of a modular system is the ability
to interchange the various modules, thus allowing a customer to
'mix 'n match” to their requirements. The devices should be
transparent to the terminal, which means that the application
software does not have to change to accommodate every system
configquration. Another advantage is that a new cabinet does not
have to be designed to accommodate a new device, which is the

case in an integrated system.

This meant that a distributed processing network had to be
implemented, incorporating a certain amount of intelligence in
each device. The great advantage of wusing a distributed
processing network, is that the main processor 1s not bogged down
with menial input / output tasks, and therefore has more time

available for higher level processing. The XT motherboard, in

CHAPTER 2 PAGE 7

HARDWARE DESCRIPTION
conjunction with the Ankerdata DMA card is therefore the HOST for
all the Peripheral Devices. An important point to remember is
that there are now two HOSTS controlling a single terminal / back
office computer configuration. The main HOST controls ANET, which
connects all the terminals to the back office. The secondary HOST
controls PNET which is internal to the terminal, and connects all

the devices to the terminal.

The vacuun fluorescent displays are controlled via an 8751. The

INTELLIGENT TERMINAL and the protececl converter are controlled

via an 8032.

The main advantage of the protocol converter is that any standard
device can be used. The SW1l is an "off the shelf" printer with
a standard RS232 interface. The converter intercepts the data
from the differential bus, PNET, and then transmits the data via
the protocol converters RS232 port to the printer. The same
converter is used to connect an electronic checkout scale,
thermal printer, kitchen printer and cheque reader to the system.
Due to such a great deal of flexibility, any device with a
standard RS232 serial port can be introduced into the system by

merely changing the application program of the protocol

converter.

CHAPTER 2 PAGE 8

HARDWARE DESCRIPTION
2, INTELLIGENT TERMINAL SPECIFICATIONS

128 KEY KEYBOARD

Bl - DIRECTIONAL
MAGNETIC CARD READER

16 STATUS LED'S
4 BIT CONTROL LOCK

2 STANDARD (RS232) SERIAL
COMMUNICATION PORTS

HANDSCANNER INTERFACE

DESKTOP SCANNER
INTERFACE

BUZZER

2 CASH DRAWERS

2LCD'S

RS485 COMMUNICATIONS PORT
SCH28.0P SELECTABLE DEVICE ADDRESS

Figure 2-~4. INTELLIGENT TERMINAL Specifications

The INTELLIGENT TERMINAL had to have the capability of

interfacing to the following devices:

128 Key keyboard

Two, 2 line by 16 character Liquid Crystal Displays with

LED backlighting

4 Bit contrel lock

CHAPTER 2 PAGE 9

HARDWARE DESCRIPTION

Optically Coupled Serial Interface (OCIA) for a desktop

scarnner

Optically Coupled Serial Interface (OCIA) for a handscanner

Two standard serial ports (RS5232)

One bi-directional magnetic card reader interface

16 Status LED's

Selectable terminal address

Two cash drawer interfaces

Buzzer

Receipt status switch

Communications via a multidrop type system (RS485), or a

point to point system (RS232). This meant that a number of

the INTELLIGENT TERMINALS could be connected to a single

HOST, or that other devices could share the sanme

communications bus.

CHAPTER 2 PAGE 10

HARDWARE DESCRIPTION

3. MICROCONTROLLER DESCRIPTIGON

3.1 DATA AND PROGRAM MEMORY CORGANISATION

PROGRAM MEMORY DATA MEMORY
(READ ONLY) (READ/WRITE)
datbtkati

e T e —

2764 64256
7
28 INTERNAL
H " UPPER
128 SFR's
~ BYTES
LOWER
128
oo | BYTES
PSEN EA=0 SCH21.DP RD WR

Figure 2-5. Menmory Organisation

All MCS-51 devices have separate address spaces for Program and
Data Memory, as shown in Figure 2-5. The logical separation of
Program and Data Memory allows the Data Memory to be accessed by
8-bit addresses, which can be more quickly stored and manipulated

by an 8-bit CPU.

CHAPTER 2 PAGE 11

HARDWARE DESCRIPTION
A major limitation of the 8051, is the limited amount of internal
data memory. The problem is magnified by the rather limited
number of instructions available for external data memory
accesses. Due to this limitation all single byte variables are
placed in the internal data memory section, and all the buffers,

such as the display buffer, is placed in external data memory.

The lower 128 bytes of internal data memory can be directly
accessed, but the upper 128 bytes has to be indirectly accessed.
The upper 128 bytes are insufficient for the INTELLIGENT TERMINAL
requirements, and all the buffers larger than 3 bytes are placed
in external data memory. The problem of external data memory
accesses arises typically when data has to be read from external
data memory, then written to external data memory. This implies
that the Data Pointer (DPTR), which is the only 16 bit register
available, has to be saved each time during the read, write

routine. This makes the routine very stack intensive.

The problem is greatly compounded when accessing the I/0 devices,
which are all memory mapped, and then accessing the external data
memory, where the various buffers are maintained. There is
however a simple method of addressing the first 256 bytes of
external memory, using an 8 bit register, either RO or R1i. To
utilise this method, one has to ensure that PORT 2, which forms
the high order address bus is set to zero, and that the required
low order address is set via RO or Rl. The "RD and "WR signals

are used to address the external data memory.

CHAPTER 2 PAGE 12

HARDWARE DESCRIPTION
pProgram Memory can only be read, not written to. There can be up
to 64K bytes of program memory. The read strobe for external
program Memory is the "PSEN (Program Store Enable). The External
Access Enable (“EA) pin is strapped to Vss, so that all program
fetches are directed to external ROM. The ROMless parts must have

this pin externally strapped to Vss to enable them to execute

properly.

pata Memory occupies a separate address space from Progranm
Memory. Up to 64K bytes of external RAM can be addressed in
external Data Memory space. The CPU generates read and write

signals, "RD and "“WR, as needed during external Data Memory

accesses,
FFH | FFH
i
{ ACCESSIBLE ACCESSIBLE
i
3
UPPER i gy |NDIRECT BY DIREGT
128 BYTES
| ADDRESSING ADDRESSING
80H ONLY soH
7FH]
ACCESSIBLE —_—
LOWER SPEGIAL PORTS
BY DIRECT STATUS AND
128 BYTES FUNCTION |__..
AND INDIRECT CONTROL BITS
REGISTERS
ADDAESSING] TIMER REGISTERS
00H STACK POINTER
ACCUMULATOR

SCH4.DP (ETC)

Figure 2-6. Internal Data Memory

CHAPTER 2 PAGE 13

HARDWARE DESCRIPTION

3.2 INTERNAL DATA MEMORY ORGANISATION

The lowest 32 bytes are grouped into 4 banks of 8 registers.
After a reset the stack pointer is initialized to point above the
first register bank. This is changed via the initialization code
to point above the second register bank. The two register banks
are maintained due to the ease with thch the banks can be
switched. A particular bank is selected by two bits in the
Program Status Word (PSW). The registér banks are extremely
useful when used in conjunction with interrupt routines. Instead
-of saving all the registers, a simple bank switch instruction can

be used.

The next 16 bytes above the register banks form a block of bit-
addressable memory space. The 128 bits in this area can be
directly addressed by specific bit instructions. These
instructions are extremely useful, as there is direct control
over a hardware (port pin} or software (flag) bkit. It is not
necessary first to mask a particular bit, then to perform a test
on the bit, as the instructions are geared specifically for bit
manipulation. A total of 28 bits is defined, which are mainly
used for flags. As mentioned earlier, the stack pointer is
initialized to OFH. When the stack 1is used, the pointer is
firstly incremented, which implies that the stack starts at 10H,
and then grows upwards. A total of 60 bytes has been allocated
to the stack. The remainder of internal memory is allocated to

single byte variables such as counters.

CHAPTER 2 PAGE 14

BANK SELECT
BITS IN PSW

"o

10

0

LOWER 128 BYTES
OF INTERNAL RAM

7FH

20H
18H 1FH

104 17H

08H OFH

07H

T —

|

fem——

BiT- ADDRESSIBLE
SPACE

(B8IT ADDRESSES 0-77H)

4 BANKS OF
8 REGISTERS

=== RO-R7

RESET VALUE
OF STACK
POINTER

Figure 2~7. Internal RAM Usage

CHAPTER 2

PAGE 15

HARDWARE DESCRIPTION

UPFER 128 BYTES
OF INTERNAL RAM

r——m

80H

NO BIT-
ADDRESSIBLE
SPACE

AVAILABLE AS
STACK SPACE
IN DEVICES
WITH 258
BYTES RAM

SCHS.DP

HARDWARE DESCRIPTION

4., DESIGN IMPLEMENTATION

4.1 PROCESSING SECTION

I RY I

f
T_qj;._r e =
= ca I/_h—'f‘ - =
~a P k. |
sIRan Hap= HOAT T (F TIME M T I PFLEXED oy _”_-U'\

TO PACOWLCE DO0-07 amMg Ag-a7 [-~ =3
- [=F | k

o
L= £ - -
N BT S TINGI e BPRIIPH 7 2 (2K
- e Lo C’a D; o+ a b = 3 P
. B Rt = = =
= ea 2 =2 = | 52 a2 RSN R
T YCE L2 S AL
LTI ST e <. 24
'. i s YT i B N/ FEeaed =0
=3 LR \ o3 as A =11
LI T L ===
ec & ™ - e
e e NE TR LY St e =g %
E)
LTI ~ TresraTrar
; a0 . aa-av
=z 1 <
ez = cnuTo T T -
lrenfo AT A T3 K Saavara PENPEE po-oz
/___..—q LT ez 3
ARG Gim a 3
e TS e [
- =3 =
s =1 ol ihEe—=
= . ETarera) A R
CEw I e FTRET S AB-A1S & DoD-D3 o o
/_.._.___.__.__L - Y ac o —— 2
=1 3 3 =) 17 oo IRy
Loy = &5 P22 - o 1
== B fowrdl BEE T N o “a . oF
e+ - s YRy 2 b T Yy
fmr a e D——ﬁ\ ~3 o
[} -] IS A LK)
2L 2. - avmsm FRE—2LE P :NI:::_’ :
= tor & T pt— an o ,
B 3 Axg R ~m g
o °1H__n/

Figure 2-8. Single Board Computer

It was decided to use the 12MHz version of the 8032
microcontroller, because of the following features:

ROMless

256 Bytes Internal RAM

4 I/0 Ports

Three 16-bit timers

UART

8 Interrupt sources / 6 Interrupt vectors

CHAPTER 2 PAGE 16

HARDWARE DESCRIPTION
From the specification it is quite obvious that the controller
would be quite busy communicating with all the devices. It was
also vitally important that there be a minimal delay from the
time that an event, such as the start of a keystroke, till the
time that the HOST processed the keystroke. Due to this fact, as
well as not knowing whether the controller would cope with the
work load, the processing section was sandwiched to the rest of
the I/0 circuitry. This meant that if the capacity of the
controller was reached it would just mean plugging on a more

powerful processing sub-section.

All the code was written in assembler, using Intel's ASMS51 and
RL51. After the first prototype was built, it was found that the
controller was more than adequate, and coped with the tasks it

was allotted.

It was decided to keep the Program Memory and Data Memory apart,
which meant that a maximum of 64K bytes of Program and Data
Memory space was available. The requirements of the INTELLIGENT
TERMINAL meant that an 8K bytes Program space would be
sufficient, however allowance was made for a 16K bytes EPROM just
as a precaution. A 32K byte static RAM was used for the Data
space, where the remaining upper 32K bytes of Data space would

be allocated to I/0. This meant that the I/0 would be Memory

Mapped.

As the 8032 has a multiplexed bus, it was necessary to

CHAPTER 2 PAGE 17

HARDWARE DESCRIPTION
demultiplex the bus. For this purpose the '373 is included. Port
0 of the 8032 emits the lower eight address lines, as well as the
eight data lines. During an external memory access the lower
address is first put out, and latched to the outputs of the '373
with the Address Latch Enable (ALE) signal. On the next cycle the
data is placed on the data bus. Port 2 emits the upper eight

address lines, thus forming a 16 bit address.

4.2 COMMUNICATIONS INTERFACE SECTION

As mentioned in the specification the terminal had to be capable
of a multidrop type communications system. It was decided to use
the RS485 standard. The DS3695 line driver is the ideal chip for
this purpose. The Output Enable (OE) of the chip is driven from
a port pin. A problem however became apparent during power-up of
the controller. During the period that the controller is reset,
the port pins are all high, this meant that the output would be
enabled and that there was a possibility of contention on the
communications line. It was therefore necessary to include an
inverter, in the form of a VN10OKM FET, between the port pin and

the DS3695.

It was also necessary to include the standard RS232 line drivers,
in the event that the terminal had to be connected to the serial
port of a standard Personal Computer (PC). The MAX232 essentially

replaced two chips, namely DS1488 and DS1489 line drivers. The

CHAPTER 2 PAGE 18

HARDWARE DESCRIPTION
peauty of the MAX232 is that it also operates off a +5V supply.
The RS232 standard specifies that the signal swings between +12V
and -12V, this meant that a +12V and -12V supply has to be
generated. The MAX232 takes care of this with its internal charge

pump. JPl1 selects between RS232 and RS485,

us '
| ——— 1 c10
C’f‘*?j__i%: 10uF

4
Voo
gg;—?'—J—]_ ce
s0uF
14

10
12 JP1
3

{ RS20 TTL21

R3S TTL 1O

Rs21 TTL20 i-——~ 2

vCE MAXZ3Z

Voo
LU L
- ag RX o
Ae 10K
RTS
. OE
D Lo —

2
T
DS3695 r?1a

{ ‘t7 <£; 10KM

Figure 2~9. Communication Interfaces

=N WhEUm-dm

4.3 PORT PIN ASSIGNMENT

PORT DESCRIPTION
PG LOWER ADDRESS BUS AND DATA BUS
Pl GENERAL PURPOSE 1/0

CHAPTER 2 PAGE 19

HARDWARE DESCRIPTION

r—— PORT DESCRIPTION
P1.0 SCANNER DATA
Pl1.1 SCANNER CLOCK
P1.2 SCANNER RESET
P1.3 DRAWER #1 OPEN
Pl.4 DRAWER #1 OPEN / CLOSE SENSE
Pl1.5 DRAWER #2 OPEN
Pl.6&6 DRAWER #2 OPEN / CLOSE SENSE
P1.7 RECEIPT SWITCH SENSE
P2 UPPER ADDRESS BUS
P3 SPECIFIC AND GENERAL PURPQSE
P3.0 RX DAT%
P3.1 TX DATA
I
CHAPTER 2 PAGE 20

HARDWARE DESCRIPTION

PORT

DESCRIPTION

P3.2 IRQ OF KEYBOARD CONTROLLER
i

P3.3 CARD DATA

P3.4 CARD CLOCK

P3.5 ENABLE FOR DS3695

P3.6 “WR

P3.7 “RD
Table 2-1. Port Pin Assignment
CHAPTER 2 PAGE 21

HARDWARFE, DESCRIPTION

5. INPUT / OUTPUT DECODE CIRCUITRY

ﬁ_—\—/—’ hi21L3 —Cmz T
r |) CrT>
1)) R
——:_T\r L cere ey G
’L] N 3 _-LEDY CS T -5:
s
g s) -ikROLES . froEmyo,
et
Er> g
Ef’:._‘ !q_D._lﬁum__m
A
TamCTR
= & a 1
b3

8
TACTON ® -9rig eo

Figure 2-10. Equivalent CCT for 20L10 PAL

The Upper 32K bytes of Data Memory has been allocated to I/O
devices. This meant that 32K bytes was available for Memory
Mapped I/0. The 32K byte block is further decode into eight, 4K
byte blocks. This means that each device has a 4K block of
address space assigned to it. Address line Al5 is used to select
the decoder, '138. Address lines Al4, Al13, Al2 are used to select

1 of the eight possible devices.

As can be seen from Figure 2-10, the "RD and “WR 1lines are
logically AND'ed, which means that if either one of these lines
are active, the output will be active 'L'. This signal is used

to ensure that a device will only be selected upon the generation

CHAPTER 2 PAGE 22

HARDWARE DESCRIPTION

of a valid “RD or “WR.

-chip Select 0 (CS0) is generated at address 8000H and is used
to select Liquid Crystal Display #1 (LCD #1). The “RD / “WR
signal is further OR'ed with “CS0 to ensure that LCD #1 is only
selected during a valid RD/WR as well as ~CS0 being valid. Both
the "RD / “WR signal and “CS0O has to be active 'L' before the
display is selected via “LCD1_C§. The same applies for "“LCD2_CS
and for TKYB CS. All these devices can be read as well as

written, therefore the need for the "RD and "WR signals.

The LED's and the buzzer are only written to, therefore the “WR
signal is logically OR'ed with their respective chip selects to
ensure that these devices are only selected during a valid write

and when their respective chip selects are valid.

The 82530 communications chip does not have a reset pin available
on the device, due to this a special function has to be
implemented on the "RD and “WR pins of the 82530. To ensure a
valid reset during power-up, the "RD and "WR pins have to be held
low, this is the only way to ensure a valid hardware reset. The
chip can also be reset via software. The “RD and "WR signals for
the 82530 communications chip are therefore logically AND'ed with
the reset signal. This forces the "82530_RD an& “82530_WR signals
both 'L' at power-up, thus ensuring a valid hardware reset. The

~82530_CS is generated at address OF000H and is logically OR'ed

with the "RD / "WR signals.

CHAPTER 2 PAGE 23

S GND ~=0

o A ST A A
c

[eya]

1 2 e -
/F,,_._.___.—““g ; p_._:.;_._.___\ e
g o S A
u T1 12 i)

o 1 14 ﬂ/ 2 —t
ﬂgz::::§1§m S — Ae—
/5-———~————{ 17 18 P\ :;E]
/ré._—_—___q 19 20 b ———] —

21 22 D—*—z1ﬂ—-“"ﬁ T
i]
e ———d 23 35 BT
SfeT 3132 b

UL TERR)

23 ~LCD1_C5

HARDWARE DESCRIPTICN

BUARD-BOARD

Figure 2-11. I/Q Decoder 20L10

It was decided to use a 20L10 PAL to replace the 4 chips that

would have been used to do the decoding. A great deal a space was

also saved by utilising the PAL. Figure 2-11 shows the PAL and

the various chip selects.

CHAPTER 2

PAGE 24

HARDWARE DESCRIPTION

6. ADDRESS MAP AND I/O MaP

~RD 1 J 2 3
Sn=ae B O
. — | & = —
He o 3 &
— | 3 O3 —
A5 2 < U
- | 4 O 4 ——
AT 4) _ 14
IR [S 05 -
A 3 -] |5 L 06 S
Ale Z . o7 ::z
. [8 08 =
— I 9 g —
, 1 10 010
1
™ 11
P12

2UL 100 TERM)

Figure 2-12. 20L1C PAL

6.1 MEMORY I/0 EQUATES

LCD1_CMD_WR EQU 8000H ; INSTRUCTION WRITE
LCD1_STAT " EQU 8001H ;READ LCD STATUS BIT, D7
LCD1_DAT_WR EQU 8002H ;DATA BUFFER WRITE
LCD1_DAT_RD EQU 8003H ;DATA BUFFER READ
LCD2_CMD_WR EQU 900CH ; INSTRUCTION WRITE
LCD2_STAT EQU 9001H ;READ LCD STATUS BIT, D7
LCD2_DAT_WR EQU 9002H ;DATA BUFFER WRITE
LCD2_DAT RD EQU 9003H ;DATA BUFFER READ
LOCK_JMP EQU OAOOOH ;LOCK AND JUMPERS

CHAPTER 2 PAGE 25

KYB_DAT

KYB_CMD

LED_1

LED_2

BUZZER

COMSCB

CCMDATB

COMSCA

COMDATA

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

OBOGOH

0BOO1H

0CO000H

0DQOOH

0EQOOH

OFO0QO0H

0F001H

OF002H

GF0O03H

HARDWARE DESCRIPTION

;COMMS STATUS/CONTROL REG. CH B

;DATA REG. CH B

;COMMS STATUS/CONTROL REG. CH A

;DATA REG. CH A

Table 2-2. Memory I/0 Eguates

6.2 MEMORY MAP

ADDRESS CONTROL DESCRIPTION

0F003H “82530_CS DATA REG. FOR CH A

OFQ02H ~82530_CS COMMAND REG. FOR CH &

OFCO1H 82530 _CS DATA REG. CH B
CHAPTER 2 PAGE 26

HARDWARE DESCRIPTION

ADDRESS CONTROL DESCRIPTION
0F0GOH ~82530 CS COMMAND REG. CH B
OEOOOH “BUZZ_CS BUZZER
0DOOOH “LED2_CS SECOND BANK OF LED's
0COOOH “LED1_CS FIRST BANK OF LED's
0BOOOH “KYB_CS 8279 DATA REGISTER
0BOO1H “KYB_CS 8279 COMMAND REGISTER
0AGOOH “LOCK_CS CONTROL LOCK
9003H “LCD2_CS READ LCD DATA BUFFER
9002H “LCD2_CS WRITE LCD DATA BUFFER
9001H “LCD2_CS LCD STATUS REGISTER
9000H “LCD2_CS LCD INSTRUCTION REGISTER
CHAPTER 2 PAGE 27

HARDWARE DESCRIPTION

ADDRESS CONTROL DESCRIPTION
8003H “LCD1_cCs READ LCD DATA BUFFER
8002H “LCD1_CS WRITE LCD DATA BUFFER
8001H "LCD1_Cs LCD STATUS REGISTER
8000H “LCD1_CS LCD INSTRUCTION REGISTER
7FFFH “AlS 32K BYTES STATIC RAM
0000H 64256 SRAM

OFFH 256 BYTES OF INTERNAL
00H RAM

1FFFH “Al5 EXTERNAL ROM (8K X 8)
0000H 2764 EPROM

Table 2-3. Memory Map

CHAPTER 2 PAGE 28

HARDWARE DESCRIPTION

7. BUZZER DESCRIPTION

[¥o=1 VH:F VCT VT

ot?
TNd AR
Ri8 ~0ES 23 "4 S.ZIER

e ook —ﬁ: i
I l? 2 4
o R17

a3a

~8uzZ S & | R s 8 A a as
1K
1 13 'l

s =
3 v THA 2 ir cv THA 12 WA GE R TrZe
o cez 'g“— cz3
LTaa Tuf (NN 108 nFE

LMS55 65 LM555

Figure 2-13. Buzzer Circuit

The LM556 is a dual version of the ever popular IMS55 timer. The
timer can be used 1in three modes, Astable, Bistable and
Monostable modes. The one half of the LMS56 is configured in
Astable or free-running mode. The frequency 1is set so as to
generate a pleasing beep each time a key is depressed. The second
half of the ILM556 is used in Monostable or one-shot mode. It
produces a fixed duration pulse each time it is triggered. This
pulse is used to enable the first half of the LM556. There is a
facility to either drive an on-board buzzer or to connect a

speaker which could be off-board.

i

"BUZZ_CS

_rguuyy o5

CHAPTER 2 PAGE 29

HARDWARE DESCRIPTION
1t was decided to use the IM556 so as to reduce the processor
overhead. The processor merely has to generate a “BUZZ CS, as
oppesed to having to continuously toggle a port bit to generate
the buzzing. The one drawback of using the above approach is that
the frequency cannot be changed, which could be useful for

indicating error conditions.

CHAPTER 2 PAGE 30

HARDWARE DESCRIPTION

8. CONTROL LOCK AND TERMINAL, NUMBER INTERFACE

vCT

=1=3
10K

200 f———qy

S swi1
0o 2 a1 B1 2B LR -
A1 3 taz gz L =3 gp— d
o2 E 16 3 5
63 S A3 B3 TS I - S
= A4 B4 -—
2z 2Has 85 25 S—
A5 7 13 SW DIPp-4
A5 B6
A8 B 12
/02 g 147 87 17
Ad B8
;Lﬂﬁﬁ_ﬁi_ﬂ_LiGG NS
3

/

7A4AHCT 245

Figure 2-14. Lock & Terminal No. Interface

The '245 is a bi-directional buffer, but in this configuration
the buffer direction is fixed to read data. The inputs to the
1245 are pulled up via a 10Kl resistor pack. The lower nibble of
the 245 is allocated to the 4 bit dip switch, which is used to
set the terminal number. The upper nibble is allocated to the 4
bit control lock. Whenever a “LOCK _CS is generated, the status

of the lock and terminal number are read.

CHAPTER 2 PAGE 31

HARDWARE DESCRIPTION

9. LED INTERFACE

! S E
£ 1 3 =
/3 o7 o = 3
/g; ; Dz Q2 g q 3
= e 4
/D 14 DS @as 15 Ppa e LED 1-8
/el 2] o5 os = d 7
/00 8107 a7 2 =
/ -] &
. —d =
~EDT S [Td SEK —Qq 10
v
TANCT 37 4
_ L3 [P
DA 3 2 |
S o2 2 EDJ? g? = 5 ;
D35 7 02 a2 6 ds
=L Elo3 g3 b— d
Bk N (o= : I
S04 1410 as 2 4 LED 2-1586
gox: ilps as 2 - 2
;—Dg 18 o7 a7 19 d s
4 ———) O
~l ED2_CS 11c>ng —q 0
TG T 374

Figure 2-15. LED Interface

The '374 is an octal latch. In this configuratioﬁ the output is
permanently enabled. Whenever an LED_CS is generated the data
present on the data bus is latched via the '374 and this is
reflected on the LED's. The LED's are used as status indicators

eg paper empty, offline, validation.

CHAPTER 2 PAGE 32

HARDWARE DESCRIPTION
10. LIQUID CRYSTAL DISPLAY INTERFACE (LCD)

10.1 GENERAL DESCRIPTION

pMC series is the name given to the dot matrix LCD display
modules that have recently been developed by OPTREX CORPORATION.
The modules consist of high contrast-large viewing angle TN type
LC panel, with a CMOS driver and controller, which have a low
power consumption. The controller is equipped with an internal
character generator ROM, RAM and RAM for display data. All
display functions are controllable by instructions making the

interfacing with the CPU easy.

Both display data RAM and character generator RAM can be read,
making it possible to use any part not used for display as

general data RAM.

10.2 LCD SPECIFICATIONS

1. 5 X 7 + Cursor. 5 X 8 dots or 5 X 11 dots. Dot matrix LCD
2. 4 bit or 8 bit interface with CPU is possible

3. Display data RAM 80 x 8 bit (Max 80 characters)

4. Character generator ROM Character font 5 X 7 dots 160

Character font 5 X 10 dots 32

CHAPTER 2 PAGE 33

10.

i1,

HARDWARE DESCRIPTION
Character generator RAM Program write (64 X 8 bit)
Character font § ¥ 7 dots

Character font 5 X 10 dots

Both display data RAM and Character generator RAM can be

read by the CPU

Duty ratio 1 Line Display:
1/8 duty 5 X 7 dots-+ Cursor, 5 X 8 dots
1/11 duty 5 X 11 dots
1/16 duty 5 X 7 dots + Cursor, 5 X 8 dots
2 Line Display:
1/16 duty 5 X 7 dots + Cursor, 5 X 8 dots
4 Line Display:

1/16 duty 5 X 8 dots
Wide variety of operating instructions: Display clear,
Cursor home, Display ON/OFF, Display character blink, Cursor
shift, Display shift
Internal automatic reset circuit when supplied with power

Internal oscillating circuit

CMOS process used

CHAPTER 2 PAGE 34

HARDWARE DESCRIPTION

10.3 CONNECTION POSITIOCNS

O

—

hhill Al

Figure 2-16. LCD Interface

PIN # SYMBOL

1 Vss

2 Vee

3 Vee

4 RS

5 R/W

6 E

7 DBO

8 DB1

9 DB2
10 DB3
11 DB4
12 DBES
13 DB6 .
i4 DB7

Table 2-4. Pin Connections

CHAPTER 2 PAGE 35

HARDWARE DESCRIPTION

10.4 PIN DESCRIPTION

SIGNAL NAME DESCRIPTION

DB4 - DB7 4 LINES OF HIGH ORDER DATA BUS.

TRI - STATE, BI-DIRECTIONAL.
TRANSFER OF DATA BETWEEN CPU AND
MODULE IS PROCESSED VIA THESE LINES.

ALSO DB7 CAN BE USED AS A BUSY FLAG.

DBO - DB3 4 LINES OF LOW ORDER DATA BUS.
TRI-STATE, BI-DIRECTIONAL.

TRANSFER OF DATA BETWEEN CPU AND
MODULE IS PROCESSED VIA THESE LINES.
HOWEVER IN THE CASE OF 4 BIT

OPERATION, THEY ARE NOT USED.

E OPERATION START SIGNAL FOR DATA

READ / WRITE.

R/W SIGNAL TO SELECT READ (R) OR
WRITE (W).
‘d’ : WRITE
*1' ¢ READ

CHAPTER 2 PAGE 36

HARDWARE DESCRIPTION

SIGNAL NAME DESCRIPTION

RS SIGNAL TO SELECT REGISTER.
'0' : INSTRUCTION REGISTER

(WRITE)

'0' : BUSY FLAG; ADDRESS

COUNTER (READ)

'1' : DATA REGISTER (WRITE
READ)
Vee TERMINAL FOR LCD INTENSITY
Veeo +5V
Vss QV (GND)

Table 2-5. Signal Description

CHAPTER 2 PAGE 37

HARDWARE DESCRIPTION

COMMON
SIGNAL
DBO - <;::::j>
pe7 !
] 188 DOT MATRIX LCD
40 40 40 40
CONTROLLER
AS ——————==- AND DRIVER ﬁ TT
_ Ic [::::j]
RIW —_— .
SERIAL DATA | SEGMENT SEGMENT SEGMENT
£ - ‘ DRIVER DRIVER ——— DRIVER
TIMING SIGNAL . > N

Vm —— e e

VEs @ ——— SCH8.0P
VL)

Figure 2-17. LCD Block Diagram

10.5 EXPLANATION OF INTERNAL OPERATION
10.5.1 REGISTER

The Controller has 2 kinds of 8 bit registers, they are the

Instruction register (IR) and the data register (DR).

IR is a register to store instruction codes like Display Clear
or Cursor Shift as well as address information for display data
RAM (DD RAM) or character generator RAM (CG RAM). The IR can be
written from CPU but cannot be read by the CPU. DR is a register
used for storing temporary data to be written into DD RAM or CG
RAM, and data to be read out from DD RAM or CG RAM. Data written

into DR from CPU is automatically written into DD RAM or CG RAM

CHAPTER 2 PAGE 38

HARDWARE DESCRIPTION
py internal operation. Also DR is used to store data when reading
out data from DD RAM or CG RAM. When address information is
written into IR, data is read out from DD RAM or CG RAM to DR by
internal operation. Data transfer to the CPU is then completed
by the CPU reading the DR. After CPU reads DR, data in the DD RAM
or CG RAM at the next address 1s sent to the DR for the next read
from the CPU. Register select (RS) signals make their selection

from these two registers.

RS R/W OPERATION

0 0 IR WRITE, INTERNAL OPERATION

{DISPLAY CLEAR etc)

0 1 BUSY FLAG (DB7) AND ADDRESS COUNTER.

(DBO - DB6) READ

1 0 DR WRITE, INTERNAL OPERATION (DR > DD RAM
CR CG RAM)
1 1 DR READ, INTERNAL OPERATION (DD RAM OR CG RAM)

Table 2-6. Register Selection

CHAPTER 2 PAGE 39

HARDWARE DESCRIPTION

10.5.2 BUSY FLAG (BF)

when the Busy Flag is 'l', the module is busy with an internal
operation and the next instruction will not be accepted. As shown
in Table 2-6, the busy flag outputs to DB7 when RS = 0, R/W = 1.
The next instruction must be written after ensuring that the busy

flag is '0’.

10.5.3 ADDRESS COQUNTER (AC)

The address counter (AC) assigns addresses to DD RAM and CG RAM.
When the instruction for address is written in IR, the address
information is sent from IR to AC. The selection of either DD or
CG RAM is also determined concurrently by the instruction. After
writing into (reading from) DD RAM or CG RAM display data,
address counter (AC) is automatically incremented by +1 (or
decremented by -1). AC contents are outputted to DBG - DB?7 when

RS = 0 and R/W = 1 as shown in Table 2-6.

10.5.4 DISPLAY DATA RAM (DD RAM)

The display data RAM stores displavy, data represented in 8-bit
character code. Its capacity is 80 X 8 bits or 80 characters.
The display data RAM that is not used for display can be used as

a general data RAM.

CHAPTER 2 PAGE 40

HARDWARE DESCRIPTION

10.5.5 CHARACTER GENERATOR ROM (CG ROM)

The character generator ROM (CG ROM) is a ROM capable of
generating from an 8-bit character code, 5 X 7 dots or 5 X 10
dots of character patterns. The said ROM can generate 160 Kinds
of 5 X 7 dots or 32 kinds of 5 X 10 dots of character patterns.
However caution is required when operating this ROM, as those
character fonts of 5 X 7 dots of the module will not be displayed
after the 8th row of 5 X 10 dots character pattern. Also this ROM
can be modified to generate character patterns generated by the

user.
10.5.6 CHARACTER GENERATOR RAM (CG RAM)

The character generator RAM is the RAM with which the user can
rewrite character patterns via software. With 5 X 7 dots, 8 types

of character patterns can be written. The area not used for the

display can be used as general purpose data RAM.

10.6 DETAILED EXPLANATION OF INSTRUCTIONS

10.6.1 CLEAR DISPLAY

RS R/W D? D6 D5 D4 D3 D2 D1 DO

0 0 0 0 0 0 0 g 0 1

CHAPTER 2 PAGE 41

HARDWARE DESCRIPTION
qjrites the space code "20" (hexadecimal) into all address of DD
rAM. Returns display to its original position if it was shifted.
in other words the display disappears and the cursor or blink
moves to the left edge of the display (the first line if 2 lines
are displayed). The execution of the clear display instruction,

sets entry mode to increment mode.

10.6.2 RETURN HCOME

RS R/W D7 D6 D5 D4 D3 D2 DL DO

0 0 0 0 0 0 0 0 1 X

X = don't care

Sets the DD RAM address to "0" in the address counter. Returns
the display to its original position if it was shifted. DD RAM
contents are not change. The cursor or the blink moves to the

left edge of the display (the first line if 2 lines are

displayed)

10.6.3 ENTRY MODE SET

RS R/W D7 D6 D5 D4 D3 D2 DI DO

0 0 0 0 0 Q 0 1 {I/D} S

I/D:
Increments (I/D = 1) or decrements (ID = 0) the DI RAM

CHAPTER 2 PAGE 42

HARDWARE DESCRIPTION
address by 1 when a character code is written into or
read from the DD RAM. The cursor or blink moves to the
right when incremented by 1. The same applies to writing

and reading of CG RAM.

Shifts the entire display either to the right or to the left
when 8 = 1, shift to the left when I/D = 1 and to the right
when I/D = 0. Thus it looks as if the cursor stands still
and only the display seems to move. The display does not

shift when reading from DD RAM nor when § = 0.

10.6.4 DISPLAY ON/OFF CONTROL

RS R/W D7 D6 D5 D4 D3 D2 D1 DO

0

G 0 0 0 0 1 D C B

The display is ON when D = 1 and OFF when D = 0. When OFF
due to D = 0, display data remains in the DD RAM. It can be

displayed immediately by setting D = 1.

The cursor displays when C = 1 and does not display when
C = 0., Even if the cursor disappears, the function of I/D

etc, does not change during data write. The cursor is

CHAPTER 2 PAGE 43

HARDWARE DESCRIPTION
displayed on the 8th line when a 5 X 7 dot character font

has been selected.

The character indicated by the cursor, blinks when B = 1.
The blinking effect is achieved switching between all blank
characters and the display chafacters at a 0.4 sec
interval. The cursor and the blink can be set to display

simultaneously.

10.6.5 CURSOR OR DISPLAY SHIFT

RS R/W D7 D6 D5 D4 D3I D2 DI DO

0 0 0 0 0 1 1S/CIR/LY} X X

X = don't care

Shifts cursor position or display to the right or left without
writing or reading display data. This function is used to correct
or search the display. In a 2-line display the cursor moves to
the 2nd line when it passes the 40th digit of the 1lst line.
Notice that the 1st and 2nd line display will shift at the same
time. When the displayed data is shifted repeatedly each line
only moves horizontally, but the 2nd display line does not shift
into the 1st line position. The contents of Address Counter (AC)
do not change if the only action performed is shifting the

display.

CHAPTER 2 PAGE 44

HARDWARE DESCRIPTION

s/C | R/L
0 SHIFTS CURSOR POSITION LEFT (AC DEC. BY 1)
1 SHIFTS CURSOR POSITION RIGHT (AC INC. BY 1)
0 SHIFTS THE ENTIRE DISPLAY TO THE LEFT.
1 SHIFTS THE ENTIRE DISPLAY TO THE RIGHT

10.6.6 FUNCTION SET

1-LINE DISPLAY

RS R/W D7 D6

D5 D4

D3

D2

X = don't care

D1 DO

0

0

0

0

1

DL

0

F

X X

2~LINE DISPLAY

X = don't care

RS R/W D7 D6 D5 D4 D3 D2 D1 DO
ol ofoflof1ion b 1fx1{x 3 X
DL:

Sets interface data length. Data is sent or received in 8

CHAPTER 2

PAGE 45

HARDWARE DESCRIPTION
bit lengths. (D7 - DO) when DL = 1, and in bit lengths (D7
- D4) when DL = 0. When the 4 bit length is selected, data

must be sent or received twice.

Sets character font.
F=1:51%X 10 dots

F=01:5X7 dots

10.6.7 INTENSITY CONTROL

Vee
vr Ves

Vss
SCH9.DP

Figure 2-18. Intensity Adjust

The above diagram is the suggested intensity control circuit. The

circuit configuration is identical for the LED backlighting

CHAPTER 2 PAGE 46

HARDWARE DESCRIPTION

10.7 DESIGN IMPLEMENTATION

The external inverters were necessary, as there were no gates
available in the 20L10 PAL. Whenever a valid LCD CS is generated
data is either read or written to LCD number one or two. The

backlighting and intensity controls are mounted off-board, making

these adjustments avallable to the operator.
N\,
N N
Ch13 Cr14
U13E == —3a. NV CC g .
N INTENS (77 P N M TEMSI T T
N~LCOI_CS 11 10_LcD1rs &S [—4 3 N 9 :
\tAD p: s A0 d s
RN a: NG P R
74HCTa4 e d > NEE p« i
NS N >
U13F 52 '_"g g oE] g g
NE3 EE)
— —] 10 - -] 10
NoLcphz2 s 13 12 Lcoz cs INDS 1 N < 1 11
h \EE ~d 12 kDS d 12
NCE ST
74LCToA4 NGE -~ :i NaE ‘g ;'2
NSAgKy VAT dis NEACKL)G T g 15

' LCO #1 ’ LCD w2

Figure 2-19. LCD Interface

CHAPTER 2 PAGE 47

11. MAGNETIC CARD READER INTERFACE

11.1 DATA FORMAT

HARDWARE DESCRIPTION

There are two formats presently available in which the data is

stored on the magnetic card,

they are the International Air

Transport Association (IATA) format and in the American Banking

Association (ABA) format.

11.1.1 ABA-CODED DATA FORMAT

11.1.1.1 CODED CHARACTER SET

BITS
ROW CHARCACTER

P B4 B3 B2 Bl

1 c g 0 0 o 0
0 0 0 0 1 1 1
0 0 0 1 0 2 2
1 0 0 1 1 3 3
0 0 1 0 0 4 4
1 V] 1 0 1 5 5
1 0 1 1 0 6 6
0 0 1 1 1 7 7
0 1 0 0 D 8 8
1 1 0 0 1 9 9

CHAPTER 2 PAGE 48

HARDWARE DESCRIPTION

[BITS
- ROW CHARCACTER
P B4 B3 B2 Bl
1 1 0 1 0 10
o 1 0 11 11 ;%
1 1 10 0 12 <
o 1 1 o 1 P = %
o 1 1 1 o 14 >
1. 1 1 11 15 2 %

Table 2-7. ABA-Coded Character Set

A binary-coded-decimal 4-bit subset with odd parity is used to
encode data on the magnetic stripe of ABA-formatted cards. This
character code is numeric. Refer to Table 2-7 for the coded

character set.

The characters in table 2-7 which are marked with a '*' have

specific meanings when used for this application:

Row 11 ':! represents "start sentinel"
Row 13 '=1' represents "separator"
Row 15 '2' represents "end sentinel"

P = 0dd Parity

CHAPTER 2 PAGE 49

HARDWARE DESCRIPTION

11.1.1.2 INFORMATION FORMAT

The format of the information encoded on the magnetic stripe of

an ABA-formatted card is as follows:

Start sentinel) 1 character

Account number Up to 19 characters
Separator 1 character
Discreticnary data The balance up to the

maximum record length

{ 40 characters)

Stop sentinel 1 character
Longitudinal redundancy check 1 character
Total 40 characters maximum

All the characters are displayable (including the start~ and
stop-sentinel characters) and are part of the maximum 40-

character total.

CHAPTER 2 PAGE 50

HARDWARE DESCRIPTION

11.1.1.3 LONGITUDINAL REDUNDANCY CHECK (LRC)

The magnetic stripe reader runs an LRC test on the ABA 4~bit code

pefore it is converted to the 7-bit ASCII code. The LRC test

contains the following steps.

1. The parity bit of each character code is stripped off.

2. All characters from the start sentinel to and including the

stop sentinel are combined by an exclusive OR function.

3. The result of step 2 is compared to the LRC character (minus ,
the parity bit) that was received from the magnetic stripe

of the card read.

CHAPTER 2 PAGE 51

11.1.2 IATA-~-CODED DATA FORMAT

11.1.2.1 CODED CHARACTER SET

'B6 | 0 o
B5 | 0 1
COL
B4 B3 B2 BlL | ROW| 6 1 2 3
0 0 0 0 0 SP 0 @& P
0 0 0 1§ 1 ! 1 A ¢
0 0 1 0 2 " 2 B R
0 0 1 1 3 # 3 ¢ s
0 1 0 0 4 $ 4 D T
0 1 0 1 5 $ 5 E U
0 1 1 0 6 & 6 F V
0 1 1 1 7 ' 7 6 W
1 0 o 0 8 (& H X
1 0 o 1 9)y 9 I ¥
1 o 1 o 1o * 1 J Z
1 0 b1 1 11 + ; K
1 1 0 0 Jl12 , < L\
1 1 0 1 |13 - = M]
1 1 1 0 (14 . > N -
1 1 1 1 |15 /2 o _
Table 2-8. IATA-Coded Character Set

CHAPTER 2

PAGE 52

HARDWARE DESCRIPTION

HARDWARE DESCRIPTION
A 6-bit-plus-odd-parity character code is used to encode data on
the magnetic stripe of IATA-formatted cards. This character code

is alphanumeric. Refer to Table 2-8 for the coded character set.

11.1.2.2 INFORMATION FORMAT

The information encoded on the magnetic stripe of an IATA-

formatted card can be in either of two formats, format A or B.

The content of each format is as follows:

FORMAT A FORMAT B

Start sentinel 1 character) Start sentinel 1 character

Format code "A" Format code "B" 1 character

1 character

Surname Account number Up to 19 chars
Surname separator "/¥ Separator 1 character
Initials or first name Surname

Separators (when required)} Surname seperator "/"

= "gpace" Initials or first name

CHAPTER 2 PAGE 53

HARDWARE DESCRIFTION

S
FORMAT A FORMAT B
Lo
Title {(when used) Separator (when reqguired) =
"space"
Separator (when required)

= "gpace" Title (when used)
Separator 1 character Separator (when required) =
1] space"
Discretiocnary data Separator 1 character
The balance up to the

maximum record length Discretionary data
(79 characters) The balance up to the
maximum record length

Stop sentinel 1 character (79 characters)

Longitudinal redundancy Stop sentinel 1 character

check, 1 character

Longitudinal redundancy check

Total 79 characters (max)| 1 character

Total 79 characters (max)

Table 2-9. IATA Information Format

CHAPTER 2 PAGE 54

HARDWARE. DESCRIPTION

11.1.2.3 LONGITUDINAL REDUNDANCY CHECK (LRC)

The magnetic stripe reader runs an LRC test on the IATA 6-bit
code before it is converted to the 7-bit ASCII code. The LRC

test contains the following steps.
1. The parity bit of each character code is stripped off.

2. All characters from the start sentinel to and including the

stop sentinel are combined by an Exclusive OR function.

3. The result of step 2 is compared to the LRC character (minus

the parity bit) that was received from the magnetic stripe

of the card read.

11.2 READER DESCRIPTION

_———— RDP (READ DATA PULSE)

RCP (READ CLOCK PULSE)

AMP AND

MAG 2F2 DECODER
HEAD

* L———- LS (CARD LOADING SIGNAL)

SCH10.0P

Figure 2-20. Reader Block Diagram

CHAPTER 2 PAGE 55

HARDWARE DESCRIPTION

READABLE TRACK 1 2 3
RECORDING DENSITY 210 BPI 75 BPI 210 BPI
RECORDING OUT 1.21 ms 3.39 nms 1.21 nms
(@ 10cm/s)
BIT INTERVAL 80.6 usec 225.8 us 80.6 us
(@ 150 cm/s)
TRACK WIDTH 1.5mm 1.5mm 1.5mm
CENTRE POSITION 7.0%.2mm 10.3%.2mm 13.6%2.mm
Table 2-10. Reader Specification
CARD IN CARD OUT
ﬂ

CLS
T U uLT
o m

SCH11.DP

Figure 2-21. Timing Diagram

CHAPTER 2

PAGE 56

HARDWARE DESCRIPTION

PIN # SIGNAL REMARKS
L
1 GND -~ GROUND GROUNRD FOR +5V AND SIGNAL
GROUND
2 “"RDP - READ OUTPUT READ DATA. (NEGATIVE
DATA PULSE LOGIC) THIS SIGNAL IS

DEMODULATED BY 2F2 DECODER,

AND SAMPLING OF THIS SIGNAL IS

PERFORMED BY THE TRAILING EDGE
OF SIGNAL RCP. LEVEL 'H'
INDICATES DATA AS '0', AND

LEVEL 'L' INDICATES DATA aSs '1°

3 "RCP - READ THIS SIGNAL IS USED FOR READ

CLOCK PULSE DATA SAMPLING. (NEGATIVE LOGIC)

THIS SIGNAL PERFORMS SAMPLING
FOR SIGNAL RDP AT THE TRAILING

EDGE.

CHAPTER 2 PAGE 57

HARDWARE DESCRIPTION

PIN # SIGNAL REMARKS
==
4 “CLS - CARD THIS SIGNAL INDICATES THAT
LOADING A CARD IS RUNNING ON MAG. HEAD.

LEVEL IS 'H' WHILE A CARD IS
RUNNING ON MAG. HEAD, AND LEVEL

BECOMES 'L' WHEN A CARD STOPS

OR IS NOT ON MAG. HEAD.

5 +5V POWER SUPPLY

Table 2-11. Reader Control Signals

CHAPTER 2 PAGE 58

HARDWARE DESCRIPTION

11.3 DESIGN IMPLEMENTATION

VCC

CSC
KTAL I Us
R .
7. 3725MHz I EK e PO. 0 §§ 22 ?-
— 13] s 50 s [T BT
g ! I i £g. 3 pSo—2b3
— =) 0.9 2 = i
22pF 1g 34 B3 .5
22pF x2 I o =T
P .5 _3 2 VCC
5o 7 2 Po 7
BES 24 RESET
] p2 o k21 P2 o
s P2 gg 22 T'\ [R
—=d inTo P22 o 1
a i nNTH e2 3 - CHED SWwiee 4
S EPIP Y EEREFRER Vot 2
i3) oz 5 p22 P2.S5 \(r-tao AT A g 3
S FE RN fa = =
CRD _SWiPE ilo1 n ps v L28 B2 7]
S Co0 _CLOCK P '
S CED DATA 3lpt 3 g .
Jamer—an =
- P14 ASEN DE2
/ Elp1 s aLE/ & 2B
| LE/P .
P D I CTxD
[- 10 Ax
P17 AxD -——%‘
5751

Figure 2-22. Card Data Transfer

It was decided to dedicate the 8751 to the magnetic card reader
due to the nature of information being read. If the reader was
connected to the main controller, there is always the possibility
that a communications interrupt would occur while a magnetic card
was being read. The communications interrupt has to have the
highest priority, which prevented the reader from being assigned
the highest priority. The 8751 was chosen to reduce board space,

and the relevant card reader software could fit into the 4K on~

chip EPROM.

The 82530 communications chip required an external clock. The

8751 was chosen so that it would be a multiple of the

CHAPTER 2 PAGE 59

HARDWARE DESCRIPTION
communications fregquency required. The clock output of the 8751
ijs fed into an inverter, whose output is then fed into a '393,
where the frequency is further divided. The communications clock
for the 82530 and the keyboard clack for the 8279 is generated

via the '393.

U130

U9 A
0501 =) 8 ?O>A QA ? COMMS (O K
a8 p———
oc 5 KyB _CL K
T74HCTOS 2 cLR an 5
NE - HAS TO BE HCTO4 74HCTI393
ANYTHING ELSE
WILL LOAD XTAL
QsC . LSg
‘—120>A GA :1
8]
e ls] —
ac b—2—
’_‘—HJiL-CLQ oD 2
74HCT 3G 3

A4

Figure 2-23. I/O Clock Generation

The remaining port pins of the 8751 were routed to an expansion
connector for future use. If another device has to be placed onto

the terminal in the future, only the code in the 8751 has to be

changed. .

CHAPTER 2 PAGE 60

HARDWARE DESCRIPTION

VCC
T

Q
z
]

9
fw}
R (o 191 NN 191 Y] B L]

LR VI]

R e T e N V4 I 2 s B s IV, I R OV [G QY

5% O Y
W@~ mu

JSucm&)an ms&un&nl&l

L8]
e
O] = ol b ot -

0000
SRS
[vy

:7 FLOTURE EXPANS|ON
Figure 2-24. Expansion Bus

The 8751 has been configured so that the various port pins are
used for I/0. This means that there is no data bus available to
transfer data between the 8751 and the main controller, the 8032.
This meant that a system had to be devised to facilitate the
transfer of data between the 8751 and the 8032. A serial

synchronous 1link was established between the two devices.

Two port pins on the 8032 are connected to two port pins on the
8751. These signals are the CRD_DATA and CRD_CLK signals. If card
data is available, the 8751 takes the CRD DATA 1line ‘L',
informing the 8032 that card information is available. The 8032
now responds by supplying the 8751 with the CRD CIK signal. The
8751 in turn responds by placing the serial data on the CRD DATA

line. The 8032 reads the data on the falling edge of the CRD_CLK

CHAPTER 2 PAGE 61

HARDWARE DESCRIPTION
signal. A status byte is also returned to the 8032, if the status
pyte is OFFH, then an invalid swipe has taken place, and the card

has to be re-read.

Bl - DIRECTIONAL MAGNETIC CARD READER

CLS 8032 CRD_CLK
CARD | —-
RCP
READER | — 8751 8032
RDP 8751/8032 CRD_DATA
OWIRE COMMS ————
SCH32.DP
Figure 2-25. Interconnection between 8032 and 8751
8751
CRD_DATA —— J—
8032 7
ST 1
8032
CRD_DATA ,! U"/‘——‘ r '
SCH12.DP

Figure 2-26. Data Transfer Timing Diagram

CHAPTER 2 PAGE 62

HARDWARE DESCRIPTION

12. KEYBOARD INTERFACE

<::(‘HQ —’/1 8
8 RLO-7 K.]
<t::i> DATA
U
EF SHIFT FT= KEY DATA
CNTLf
_— STB
[WR
INTERFACE | ———ru g SLO-3 > SCAN
:‘:;a- 4
S e —
AJ-3
[————cafient Al
4
DISPLAY
out i>> S
| —= | CLK BO-3 DATA
I |
L ‘
SCHz2.DP - J‘>
BD

Figure 2-27. 8279 Block Diagram

12.1 FEATURES CF THE 8279

The Intel 8279 is a general purpose programmable keyboard and
display I/0 interface device capable of simultaneous keyboard /
display operations. The 8279 has the following features:

Scanned Keyboard Mode

Scanned Sensor Mode

Strobed Input Entry Mode

8-Character Keyboard FIFO

2-Key Lockout or N-Key Rollover with Contact Debounce

Dual 8- or 16-Numerical Display

CHAPTER 2 PAGE 63

HARDWARE DESCRIPTION
Single l6-Character Display
Right or Left Entry 16-Byte Display RAM
Maode Programmable CPU
Programmable Scan Timing

Interrupt Qutput on Key Entry

12.2 HARDWARE DESCRIPTION

It was decided to use the 8279 to alleviate the microcontroller‘
of the menial task of scanning a keyboard and performing the
necessary debouncing, which is required when reading mechanical
switches. The microcontroller merely has to read a status
register of the 8729, and if any key depression has been
registered, read the FIFO of the 8279. The display portion
provides a scanned display interface for LED, incandescent, and
other popular display technologies. Due to the fact that Liquid
Crystal Displays were used, the display portion of the 8279 was
not utilised. Although only 50% of the 8279's features are being
utilised, the overhead that will be placed on the microcontroller

to scan a keyboard justifies the wuse of the 82789,

The keyboard portion can provide a scanned interface to a 64-
contact key matrix. The specification for the INTELLIGENT
TERMINAL required a maximum of 128 keys. The 8279 has two extra
inputs, a control and a shift input. A method was devised to

include the shift input in the keyboard interface, so as to

CHAPTER 2 PAGE 64

HARDWARE DESCRIPTION
increase the amount of keys that could be read. The inclusion of
74HCT30 increases the number of return lines, thereby extending
the matrix to 128 keys. If the control input were used, the

patrix could be increased to 192 keys.

when a key on the extended key matrix is depressed, the shift
input is activated and the relevant return line registers the key
depression. When the key value is read, the shift status will be
set, indicating that a key on the extended keyboard has been
depressed. The 10Kl resistor pack is included to pull the inputs.
-to the 74HCT30 'H', when no keys are depressed. Diode D9 - D16
are included to prevent shorting two outputs of the 74HCT139 if

two keys on different scan lines are depressed simultaneously.

SLO

S11

SL2

SL7

CHAPTER 2 PAGE 65

HARDWARE DESCRIPTION

12.3 SOFTWARE DESCRIPTION

when a key is depressed, the debounce logic is set. Other
depressed keys are looked for during the next two scans. If none
are encountered, it 1s a single key depression and the key
depression is entered into the FIFO along with the status of the
CNTL and SHIFT lines. Key entries set the interrupt output line
to the CPU. In the scanned keyboard mode, the character entered
into the FIFO corresponds to the position of the switch in the_
keyboard plus the status of the CNTL and SHIFT lines. CNTL is the
MSB of the character and SHIFT is the next Most Significant Bit.
The next three bits are from the scan counter and indicate the
row the key was found in. The last three bits are from the column

counter and indicate to which return line the key was connected.

CNTL SHIFT 52 S1 50 R2 R1 RO

CHAPTER 2 PAGE 66

HARDWARE DESCRIPTION

12.4 DESIGN IMPLEMENTATION

%5}
Q £ oac ALG I
o1 AL 2
e T be2 Auz 2
po3 - [=l-F] AL 5 12%
o T oo a AL =
£ 51083 ALs =+
/:.'*.___.-——1'—;‘055 ALE El
G oe7 RL? ve eret
1
=23 il % spey (18 z 3
d = ™ CNISY e 2
-~ a2 o I 0
AT BNy Bo B~ . F H
& L
o] FEser suo Ll de
2 1 A SL 4 Tl J =
SN 1AG sL2 kS M
sL3 = 5 I
TamCT -
oag [~ RT3 -ADS AEtuAN LINE 9-1§
OAt pt
0A2 Fo3a o ne
0A3 ,_§ﬂ__ N4 14@ FINTRET]
089 [
08+ 5§
982 i~ cred
0By t
CERES z
3
4
]
L]
ki
3
FEETURAM L IMNE *-8
vee
L7 o9 ALEREY:) =g
hl 1
=1 A ¥o b3 1
T T B 2
c vz 3
T3 = -
5 T4 P 5
G ‘s % 5
= G2A Y6 D3I 2
‘Ju28 Y7 : &
TARETIEE
&
g NeTa| SCAN LIME 1.8

Figure 2-28. Keyboard Interface

CHAPTER 2 PAGE 67

HARDWARE DESCRIPTION

13, SERIAL COMMUNICATIONS INTERFACE (2ILOG 8530)

13.1 8530 FUNCTIONAL DESCRIPTION

@ SERIAL DATA
Cl

HANNEL A CHANNEL CLKS
INTERNAL ISYNC
GONTROL IWAIT | IREQ
LOGIC DISCRETE
ADDRESS/ DATA _—OTE MODEM, DMA
ASTATUS OR OTHER
INTERNAL A CONTROLS
DISCRETE MODEM, DMA
CONTROL OR OTHER
& STATUS
CHANNEL 8 CONTROLS
8
REGISTERS L.
¢ == SERIAL DATA
CHANNEL B == cranNEL CLKS

8AUD /‘J ; ISYNC
RATE IWAIT | IREQ

GEN.B SCH14.0P

Figure 2-29. 8530 Block Diagram

The 28530 Serial Communications Controller (SCC) is a Zilog Z8000
peripheral component, designed to provide multifunction support
for handling the large variety of serial communication protocols

available. The 2-3CC internal structure provides all the

interrupt and control 1logic necessary to interface with

nonmultiplexed buses. Interface logic is also provided to monitor
modem or peripheral control inputs and outputs. All of the
control signals are general purpose and can be applied to various
peripheral devices as well as used for modem control.

CHAPTER 2 PAGE 68

HARDWARE DESCRIPTION
The centre for data activity revolves around the internal read
and write registers. The programming of these registers provides
the Z-SCC with a functional "personality", i.e., register values
can be assigned before or during program sequencing to determine

how the Z-SCC will establish a given communication protocol.

13.2 HARDWARE DESCRIPTION

The 8530 1in conjunction with the two MAX232 line drivers,
constitutes the basis of the dual channel RS232 serial ports. The
8530 does not have a RESET pin available, and the only manner
whereby a hardware reset can be ensured is by simultaneously
pulling the "RD and "WR lines 'L'. The "RD and "WR lines for the
8530 are therefore AND'ed with the RESET line, to ensure a

hardware reset at power-up.

The clock for the 8530 baud rate generator is derived from the
clock output of the 8751, which is used for the magnetic card
reader. The clock signal is further divided by the '393, and then
applied to pin# 20 of the 8530. Address lines A0 and Al select
the command / data registers, and selects between channel A or

channel B. The addresses are as follows:

COMSCB EQU OFQO0OO0OH ;COMMS STATUS/CONTROL REG. CH B
COMDATB EQU OF001H ;DATA REG. CH B
COMSCA EQU OF002H ;COMMS STATUS/CONTROL REG. CH A
COMDATA EQU OFO003H ;DATA REG. CH A

CHAPTER 2 PAGE 69

HARDWARE DESCRIPTION
The serial ports had to have the ability to communicate with any
standard RS232 device. Due to this fact the control lines,
Request to Send (RTS) and Clear to Send (EE§3 had to be provided.
This would facilitate the necessary handshaking which might be
required by certain devices. When these handshaking signals are
not in use, internal resistors present in the MAX232 device pull

the signals so as to hold the outputs in an inactive state.

13.3 SOFTWARE DESCRIPTION

The 8530 is initialised with the following default values:

Baud Rate: 9600
Data Bits: 8
Parity: none
Stop Bits: 1

The software for the 8530 allows a great deal of flexibility, in
that the baud rate, bit length, parity, start and stop bit
formats can be changed via the HOST. This is achieved by
transmitting the required initialization to the INTELLIGENT
TERMINAL, which will in turn re-initialise the 8530 with the new

settings. The various options are as follows:

Baud Rates: 4800, 9600, 19200, 38400
Data Bits: 7, 8

Parity: none, even and odd

Stop Bits: 1, 2

CHAPTER 2 PAGE 70

HARDWARE DESCRIPTION
The 8530 has the capability of being interrupt driven, but this
option was not utilised. It was decided to operate the 8530 in
a polled mode. This means that the command registers for channel
A and channel B have to be continuously interrogated to determine
if any characters have been received. If a character is
available, the data register has to be read to retrieve the
received character. If a character has to be transmitted, the
command register must first be read to ensure that the
transmitter is empty, before the character is written to the
register. If this is not done, the previous character might be

overwritten.

13.4 DESIGN IMPLEMENTATION

vee MB!I BCH LAYOUT ERACR
NEGATIVE RIN OF C18 & C20
ar . S-OULD BE CONNECTED TQ ¥CC
Yoo taK 1K VoL 24V
1 [-}
[ulp c14 C1E
ag t5_TwpA
g? o T*OA =y nng 1= 1ouE 1aeF
EBF =13} AxoA
2 3 "R A
23 baz 12 '
=5 -z 083 BT%Ca Cre c1s
DB+ TRV A [=0
o= o8s STHCA b, c13 v 2 10uF
=5] ces TEa grsa L L *dca. M.
£ *loa7 [Y MCRAEE \ T ce- LN
- 33980 Si8s . STEA S rri1i @sio i ;
= :;“ :’; W Txpg LE3IXDE tE—. BETLY "3l TTi2t RS0 p—=t g, 3
= 3 g?f.' Fepe) P L2l rrii0 msi AR — s
Iy =, | orsa—— T 1T 5 Com
p e ATICa V;_L____ TTL2G BS2L et | '3
Comass _Cie 20 TETe LYk F q:
¥ LK S7iZe Haarse e} @
r' —=q INT ATZA b ==L 9
_— T orse - X}
=1 1 E1 ICe
INTA =
[T — WHEM NOT USED CTS TIED TQ VG j
BvaO0is
EE 24V GHO
¥ Hva/f=a
—g O TasATA
T4
—={ 5T M vCe Z2av
BZ530
cim <20
1QuF taur
TR Ny [P
o '
S N 3 g:' c19
= -~ c17 ° v z 1QuF
1e3 = - 4 2
S| =3 1QuF c2+ V- a1
= 1
=5 b orsa L] o 14 —d 2
2] - TTL1I $10 —
2 HETEE] Sl relzr As2g [I q 2
s
AJ =X 12 13
h == { - exas E
A1 CTSE 5] #:9 gmszr [] 9) COw2
[5 &
2
10
24av GND

Figure 2-30. Communications Interface

CHAPTER 2 PAGE 71

HARDWARE DESCRIPTION

The 8530 has the capability of being interrupt driven, but this

option was not utilised. It was decided to operate the 8530 in

a polled mode. This means that the command registers for channel

A and channel B have to be continuously interrogated to determine

if any characters have been received.
available,

received character.

command

transmitter is enpty,

register. If this is not done,

overwritten.

13.4 DESIGN IMPLEMENTATION

register must first be read to

ensure

If a character
the data register has to be read to retrieve
If a character has to be transmitted,

that

before the character is written to

NE

PC2 LAYDUT ERROA
NEGATIVE 21N OF
SHOULD BE CORNEC

©18 & c20
TED TQ VCC

PNt

VL‘_C hl-14 10k VE‘PC zqﬂv
[WEL:] Cte CtE
+
2 23 Moaa reoa |LE-TIEA 10uF tOuE
[ES —ww O ! Hx0A = Lre
= oE2
g‘ caz e _E._‘ﬁ-’ :‘ Ctw ci1s
ca4 TOXCA 7 ci- 1GuF
e -~ oes STt Frarea c11 e | v i j\ -
El =1 086 STEA P rTea 10uF = c2- v- | o
= oe? [T et = ’r__[— cz- =
a
8739 B2 25 ATSa LR 1s
e) reon [Bpse L = ey g E i
T = L FN
iz csg pxoB Aaxga w2l 3 ;
[% =14 =2 L0 Aast g
= B =] TTL2e RS e | &
COMen _CL 2o, e e WARTTZ b :
|~ FRant v " EE Mo
—=q InT wrEa <= g
—31 €0 Tize ‘g
——{ '€/ fjel”]
T =
15 | = whHEN NOT USED CTS TIED TS VCG
——t TV a1 BaA
EEE B 24v GND
L o
—=—bTa: VEE 24v
CEEELD 7
cre cza
10uF tQurF
% _ELU?Z
1
=L] - l: e c1s
2 ~ c1- tBuF
= c17 R Ve :[‘*
oF 18uF Ce~ V-
: T
[=k] £ hSTs8 11 14 !
3 = TRy =1 TTL11 As10 =+ 2
57 ki PS5 TEle-lz) Rszo a
4
Ex;a ‘: e m ms 3 g s
= 1 #20 ms2] —3——-——1 5
g 7
a3 3d a g
< El
= 1o
24v GNO

Figure 2~30. Communications Interface

CHAPTER 2

PAGE 71

Coman

COma2

is
the
the
the

the

the previous character might be

HARDWARE DESCRIPTION

14. SCANNER INTERFACE

14.1 OPTICALLY COUPLED SERIAL INTERFACE (OCIA)

The interface of the HOST system consists of four signals carried
by a four-pair shielded cable, supplied by the customer,
terminated at the scanner in a circular connector. Two of the
signals provide bit-serial information to and from the scanner.
The HOST interface contreols the speeds of the received. and
transmitted serial data by providing clocking pulses on the
remaining two signals. The signals on the interface are optically
isolated in the scanner on the received end. Electrical _
isolation of the interface can be obtained by providing one

optically isolated receiver in the HOST system.

14.2 INTERFACE SIGNALS

Three signals are inputs to the scanner and one is an output from

the scanner. The signals pass information by controlling current

flow through the pair of wires for each signal. A logical '1' is

indicated when current flows through the pair.

14.2.1 RECEIVE DATA SIGNAL (RDATA)

The RDATA signal is used to serially transmit a byte (8 bits of

CHAPTER 2 PAGE 72

HARDWARE DESCRIPTION
information) from the scanner to the HOST system. The RDATA RTN
line provides a current source at 5 volts with respect to the
scanner ground. The RDATA line normally stays at 5 volts, not
sinking any current (logical '0'). A logical '1' is achieved by
the RDATA line going low, thus sinking current through the signal
pair. When the scanner is ready to transmit a byte (See Figure
2-32 for timing), the RDATA line will be brought low to a logical
11', The HOST system must then provide 9 clock pulses on the
CLKIN signal to receive the data bits. On the leading edge of the
first clock pulse, the scanner will set RDATA to the negative
logic value of the least significant data bit (D0). Bits D1
through D7 are provided after each of the successive seven clock
pulses. The ninth clock pulse will cause RDATA to go back to the
logic '0' state (no data ready). When the next byte is ready for

transmission, the RDATA signal will be brought low again.

14.2.2 RECEIVE DATA CLOCK (CLKIN)

The CLKIN signal is used to serially clock each bit of
information out the scanner as described in 12.2.1. The CLKIN
signal normally is at logic '0' with no current flowing in the
pair. In normal usage, CLKIN RTN is connected to +5 volts and
CLKIN is driven by an open collector TTL gate capable of sinking
at least 48mA. A logic 'l' is the active state of the driver

gate.

CHAPTER 2 PAGE 73

HARDWARE DESCRIPTION

14.2.3 RECEIVE RESET SIGNAL (RESETIN)

The reset signal is used to re-initialize the scanner as on
power-up. The Resetin signal normally is at logic '0' with no
current flowing in the pair. In normal usage, Reset RIN is
connected toc +5 Volts and Resetin is driven by an open collector
TTL gate capable of sinking at least 48mA. A logic 'l' is the

active state of the driver gate.

VSOURCE ___~| 2 | RDATARTN
VIN .| 3 | CLKIN
#VIN .| 4 | CLKINRTN INPUT
_VIN .| 5 | RESETIN NPT
¢«VIN . .| 6 | RESETINRTN
9
SCH18.DP

Figure 2-31. Scanner Connection

CHAPTER 2 PAGE 74

HARDWARE DESCRIPTION

START

Do-D7
RDATA [_< /< >_J— 46V =0
o 0.4V ='Y'
3.8V ~'1"
oo UL T eavew
9 CLOCK PULSES SCH16.DP

Figure 2-32. Byte Transfer From Scanner:

Do-D7
SDATA 3.8V ="1"
/_J—<_><~_>—J 0.2V =0
a‘ev - I1I
ClLKOouUT 4 J_l_(1_[1u_~_7¢zﬂﬁ;{1qy1_ﬂ_. 0.2V ="0'
8 CLOCK PULSES SCH17.0P

Figure 2-33. Byte Transfer To Scanner

14.3 MESSAGE FORMATS

The output of the scanner consists of numeric sequences read from
a coded symbol. These are transmitted over the RDATA signal as
a sequence of bytes. The general format is a version identifier

character followed by the numeric characters from the symbol.

CHAPTER 2 PAGE 75

HARDWARE DESCRIPTION

14.4 BYTE FORMATS

Each character in the label is transmitted in one byte (8 bits).
The byte consists of a 6 bit data field, a bit to indicate the
last byte of message, and a parity bit to achieve odd parity over
the 8 bits. Table 2-12 provides the binary codes for the possible

characters transmitted by the scanner.

D7 (| b6 | D5 | D4 | D3 | D2 §| D1 | DO | INFORMATION

P L 1 1 0 0 0 0 0

P L 1 1 0 0 0 1 0

P L 1 1 0 0 1 0 2

)2 L 1 1 0 0 1 1 3

P L 1 1 0 1 0 0 4

P L 1 1 0 1 0 1 5

P L 1 1 0 1 1 0 6

P L 1 1 0 1 1 1 7

P L 1 1 1 0] 0 8

P L 1 1 1 0 0 1 9

P L 0 0 0 0 0 1 A (NORMAL UPC ID)
P L o] 0 0 1 0 B (RESERVED)

P L 0 0 0 o 1 1 C (RESERVED)

P L 0 0 0 1 0 0 D (RESERVED)

P L 0 0 0 1 0 -1 E (0 SUPPRESS ID)
P L 0 0 0 1 1 0 F (EAN LABEL ID)

CHAPTER 2 PAGE 76

HARDWARE DESCRIPTION

0 X X X X X X NOT LAST BYTE

D7 D6 D5 D4 D3 D2 D1 [_BO INFORMATION
P
P

1 X X X X X X LAST BYTE

D7 D6 D5 D4 D3 D2 D1 DO INFORMATICN

L X X X X X X ODD PARITY

L]

(.
o
»
]
b
>
o]
e

EVEN PARITY

X = don't care

Table 2-12. Byte Format

14.5 SYMBOL MESSAGE FORMATS

These are four different formats for the string sent for each

symbol. These formats correspond tc the regqular UPC symbols

(Version A) the zero-suppressed UPC symbol (Version E) and the

long and short forms of the EAN symbol.

CHAPTER 2 PAGE 77

HARDWARE DESCRIFTION

14.6 DESIGN IMPLEMENTATION

A== veC

Rg R10
2ZR7 . 5w 2R7 . 5w

[=1-] Ra
10K Wil3 120R

NTE

HAMND/ SLOT SCAMNER
INTERFACZE 21

wawmwa |0

Coman

?m .
-
|

1 ™
B2 l 3 DESET

Figure 2-34. Scanner Interface

The 6N136 was found to be a suitable opto-coupler for interface
purposes of receiving information from the scanner. The SN75452
is an open-collector device, which is used to drive the signals
to the scanner. As the output of the 6N136 is an open-~collector
output, it was possible to logically 'OR' the two 6N136;s,
thereby using only one port pin. The same applied to the RESET

and CLK signals.

CHAPTER 2 PAGE 78

HARDWARE DESCRIPTION

15. DRAWER INTERFACE

<
3
9]
o
-3
<
n
b
<

018
1MN4007 Cr1B

e

DRAWER COPEN

Rt

BC307

22« an

MBSUGE DORAwWER &1

R12
= SE0R

(W]
e
|

DRaAWER SENSE

O
AW
.|[I._——

24v GND

Figure 2-35. Drawer Interface

The drawer open signal is generated from a port pin. The signal
is first buffered by a small signal transistor, which in turn
drives the power transistor. The diode is included to prevent any
damaged which might be caused to the power transistor by the baqk
EMF generated by the solenoid. The solenoid has a DC resistance
of 20n. The drawer sense is directly connected to a port pin.
This signal passes through a micro switch, which is located in
the drawer. If the status of the drawer changes, this change in
status is immediately communicated to the HOST. As can be seen

from the above figure, the circuit is identical for both drawers.

CHAPTER 2 PAGE 79

HARDWARE DESCRIPTION

16. RECEIPT SENSE

The receipt sense is directly connected to port pin P1.7. If the
status of the receipt switch changes, this change in status is
immediately communicated to the HOST. This switch is used to

either enable or disable the receipt printing on the printer.

CHAPTER 2 PAGE 80

HARDWARE DESCRIPTION

17. PRESENT AND FUTURE DEVELOPMENT

pue to the constant undertaking of research programs, Ankerdata
is kept at the forefront of technology, the following is a list

of a few of the present projects:

1. INTELLIGENT TERMINAL re-design
Flash Memory - in a PLCC Package
16MHz 8032 - in a PLCC Package
Reduced Board Space

Reduced Connector Count

2. ANKERdata Motherboard
Integrate ANKERdata specific I/0 functions with a SCAT
notherboard

3. Memory Expansion Card
16 Bit Memory Expansion Card with 4 MBytes of Battery
Backed Static RAM, to be used as Expanded memory

4. SDLC Communications

5. Third generation Vacuum Fluorescent Displays

6. Improved power failure detection circuitry

CHAPTER 2 PAGE 81

POWER

HARDWARE DESCRIPTION

: HARD DISK DRIVE
: FLOFPY DISK DRIVE

FAILURE ,
DETECTION DUAL CHANNEL
COMMUNICATIONS
(RS232, RS486)
ADS PROPRIETRY — —-| E2KEYTES BATTERY,
BOARDS
B REAL TIME CLOCK
DEVICE #1 PNET (RS485)
SW1 PRINTER W
DEVICE #2 DEVICE #3 DEVICE #4
INTELLIGENT TERMINAL 2 X 16 DISPLAY 3 X 16 DISPLAY

SCH29.DP

Figure 2-36.

CHAPTER 2

2006 System (Metro)

PAGE 82

2007 RESTAURANT SYSTE

POWER
FAILURE
DETECTION

I]

ADS PROPRIETRY ——— | 84K BYTES BATTERY

BOARDS

DEVICE #1

Figure 2-37. 2007 System (Restaurant)

CHAPTER 2

"DUAL GHANNEL _
COMMUNICATIONS
(RS232, RS485)

BACKED CMQOS SRAM
L REAL TIME CLCCK J

PNET (RS485)

HARDWARE DESCRIPTION

e HARD DISK DRIVE
- MOTHERBOARD FLOPPY DISK DRIVE

PAGE 83

DEVICE #X

INTELLIGENT POINT OF SALE TERMINAL

'ASSEMBLER CODE LISTING

e f
L
=

ENTELL IGENT

TERMINAL

7

AN\

ASSEMBLER CODE LISTING

ER 3

sLER CODE LISTING
B.ASM

MATN MODULE

**
C COUNT, TEMP_BUF, KEY_FLAG, KEY_BUF, LED BUF, LED_ FLAG, LED COUNTI

¢ LED_COUNT2, LOCK_STAT, LOCK FLAG, DRAW1 FLAG, DRAW1 STAT, DRAW2 FLAG
¢ DRAW2_STAT, KEY COUNT, TX BUF, RX_BUF, TX_ BUF_FULL, RX_BUF_FULL,

UF

€ TX_COUNT, RX_COUNT, LCD FLAG, ADDR1, RX MODE, LCD NUM, LCD_COUNT

C ADDR2, TX_DATA, RX_BCC, TX BCC, BCC_FLAG, IS_DATA, RE_TX_FLAG

€ RX_DLE, BIN_ADDR, TMOUT, CRD FLAG, CRD BUF, CRD COUNT, SCAN_BUF

'C SCAN FLAG, SCAN_PARITY, SCAN COUNT, QUE_COUNT, QUE FLAG, KEY QUE

‘C QUE _FULL, CRD ON OFF, REC_FLAG, REC_STAT

{ CODE (INIT HARDWARE, LCD WR, CODE TO LCD, BEEP, TEST, KYB READ)

i CODE (IDATA_TO TEMP, HEX TO ASCII, HEX_TO_DEC, LED ON_OFF, LED_FLASH)
Y CODE (LOCK READ, DRAW1 OPEN, DRAW1 READ, TEST COMMS, CHK TX BUFFS)

N CODE (CLS1, CLS2, CHK_RX BUFFS, TX_STRING, CRD READ, SCAN_ READ)

N CODE (ADD_QUE, CHK QUE, REC_READ, DRAW2 OPEN, DRAW2 READ, ERR BEEP)

*hk ok 82530 COMMS CHIFP

IC TX82 STAT, COUNT82, TXBUF1 FULL, TXBUF2 FULL, RXBUF1_FULL,

TER 3 PAGE 2

ASSEMBLER CODE LISTING

ngULL
- COM1_TXBUF, COM1_RXBUF, COM2_ TXBUF, COM2_RXBUF, RX1 COUNT, RX2 COUNT

- PARITY, ST_BITS, TX_DATA BITS, RX DATA BITS, BAUD

(99]

RTSA,RTSB

CODE (INIT 82530, A82530, B82530, TX_COMX, CODE TO_XDATA)

CODE (INIT 82530VARS, SETUP_TX, SETUP_RX)

kkk HOST ENQUIRY OF TERMINAL STATUS, LOCK, DRAW, RECEIPT

CODE (ENQUIRE)

¢ ENQ FLAG, ENQ BUF, ENQ_FULL

kkkkkhkkkhkkhkhkrkhhhkhkkhkhkhhkhhkhhhhdhhhkhkhkhkhhhdhdkhhhhhdthhhkdkhkhhhkkhhkkhhd

thkkkkkhkkhhkkhkhkhkhhkhhhkhkkkhkhkkhkhhkhkhkhkhhhkkhkkhkkkkhkkhkkkhkhkkkhhhkhkhkkhhkhhkhhkdhhik

JATA SEGMENT *

thkkddk Ak k Ak khkkdkdkdkhkbkkhbdkhkbhbbhibdh bbb bdhhbdbbdbbbibhr bbb hkd bk hik

SEG SEGMENT DATA
RSEG DATA_SEG ;RELOCATABLE INTERNAL DATA

K: DS 60 ;60 BYTES FOR THE STACK

K_END: ;USED TO CHECK FOR STACK OVERFLOW

BUF: DS 01 .

T DS 01 ;BYTE COUNTER

COUNT1: DS 01 ; INDICATES WHEN LED_FLASH SHOULD

;BE CALLED, TO FLASH LEDS

ITER 3 PAGE 3

OoUNT2: DS
UM: DS
OUNT: DS
QOUNT: DS
UNT : DS
JUNT': DS
DE: DS
iAR: DS
\POR: DS
L: DS
) DS
oct Ds
-C DS
COUNT: DS
_COUNT: DS
COUNT: DS

IABLES RELATING TO 82530 COMMS CHIP

DS
B DS
{EFORE
] STAT: DS
)X, 0FFH=BAD
82: DS
_COUNT: DS

PIER 3

i

£

i

01

01

01

01

01

01

01

01

o1

01

01

c1l

01

01l

01

01

01

01

01

01l

01

ASSEMBLER CODE LISTING
;REQUIRE A 16 BIT COUNTER
;0 = BOTH LCD'S, 1 = LCD_1, 2 = LCD 2
;COUNT # OF BYTES WRITTEN TO LCD_BUF
;COUNT # OF BYTES IN KEY BUF
;NUMBER OF BYTES IN TX_ BUFF
;NUMBER OF BYTES IN RX_BUFF
; COMMS MODE
;RECEIVED CHAR
;BINARY VALUE OF TERMINAL ADDR

;DEVICE ADDR IS A 2 BYTE ASCII VALUE

;RX_BUF BCC COUNTER
;TX_BUF BCC COUNTER

;USED TO COUNT BYTES IN CHK_TX_ BUFFS
;COUNT # OF BYTES SCANNED

;COUNT # OF BYTES IN KEYQUE

;TO TOGGLE RTS LINE, HAVE TO WR TO

;BUT THIS REG CAN'T BE READ,

;KEEP IMAGE OF THE VALUE FOR THIS REG

;TRANSMISSION SUCCESSFUL

;# OF BYTES TO WRITE TO 82530 COULD

;# OF BYTES IN COM1_RXBUF

PAGE 4

ASSEMBLER CODE LISTING

UNT: DS 01 ;# OF BYTES IN COM2_RXBUF
DS 01 ; FOLLOWING VARIABLES USED WHEN
5t DS 01 82530 SETUP FROM HOST
DS 01
s BITS: DS o1
A BITS: DS 01
CNT: DS 01 ;COMMS RETRY COUNTER

khkkkkdkkrddhhkhkkrdhkhkkhkthhkhhkkhikkhhkhkhkhhhkhhhkhhkihkkhhkhkhhkhrhkhhkhkhkhkkhikhhkkdk

tkkkhkkhkkhkhkhkAkkhkhkhkhkhktdkdththkdhhrbbiktih bkttt dtdridbidhhrbbrdd bbbt

[T SEGMENT *

kAT EERRER AR AL REAREAER R A IRRARAR AR AR AR R AR TR IR A AR A AR A AR A A A kA ddhAkbak

EG SEGMENT BIT
RSEG BIT_SEG ;RELOCATABLE BIT SPACE, INTERNAL

IAG: DBIT 01 ;HOST HAS DONE ENQUIRY TO TERMINAL

ULL: DBIT 01 ;ENQ BUF IS FULL, TX THIS TO HOST

IAG: DBIT 01 ; INDICATES KET DATA IN KEY_BﬁF

IAG: DBIT 01 ; INDICATES LED DATA AVAILABLE

FLAG: DBIT 01 ;LOCK STATUS HAS CHANGED

_FLAG: DBIT 01 ;THIS INDICATES THAT DRAW1 STATUS
;HAS CHANGED

! FLAG: DBIT 01 ;THIS INDICATES THAT DRAW2 STATUS
;HAS CHANGED

IAG: DBIT o1 ;THIS INDICATES THAT RECEIPT ON/OFF

[ER 3 PAGE 5.

fLAG:

AG?

LAG:
JLL:

{ OFF:
PARITY:
F FULL:

F_FULL:

ABLES RELATING TO 82530 COMMS CHIP

1 FULL:
2_FULL:
1_FULL:
2_FULL:

ITS

DBIT
DBIT
DBIT
DBIT
DBIT
DBIT
DBIT

DBIT

DBIT

DBIT

DBIT

DBIT

DBIT

DBIT
DBIT

DBIT

DBIT
DBIT
DBIT

DBIT

01

01

0l

0l

01

01

01

01

01

01

o1

01

01

01

01

01

01

01l

01

01

ASSEMBLER CODE LISTING
; STATUS HAS CHANGED
;TX_BUF HAS TO BE RE-TRANSMITTED
;DATA IN LCD BUFFER
;DLE FOUND
;POL = 0, SEL = 1
;0 = ACKO, 1 = ACK1
;DATA IN INPUT BUFFERS
; INDICATES THAT A DLE WAS RECEIVED

;TIMER 0, TIMESOUT BEFORE LCD IS

;1 = CARD DATA AVATLABLE

; INFORMS MAIN LOOP OF SCANNER DATA
;DATA IN KEY QUE TO BE TRANSMITTED
;KEY_QUE IS FULL, PREVENT KEY & SCAN
;0=DON'T TX CRD DATA. 1 = TX CRD DATA
;USED FOR PARITY CHECK

;TX BUFFER IS FULL

;RX BUFFER IS FULL

;DATA FOR COM1 OF 82530
;DATA FOR COM2 OF 82530
;DATA FROM COM1 OF 82530

;DATA FROM COM2 OF 82530

hkkkhhhkhkhkhkkhkhhkhrdkhkkkxhkhkhdhhhdhhkhhhkhhkkkhhhhhkkhhkhrkhhrhhkkkkrikhhkhhdhkhk

ER 3

PAGE 6

ASSEMBLER CODE LISTING

kkhkkkhkkhhkkkkhkRhkhkhkhdhhkdkdkkhkhhhhhkdhhkhkhhhhhkhhhhhhhhhkhkhkkhhhhkhhhkhkdhkhkhhx

TERNAIL, DATA SEGMENT *

kkhkkkhkkhkhkhkhhkkkhkhkhkkhkhkhhhhhhkhkhkkhhkhhkhrhkhhhhhkhkhhkhkkhhkrhkhrhkhkhhkhhkhhrkkhkkthkk

G SEGMENT XDATA
RSEG EXT_SEG ;RELOCATABLE XTERNAL DATA SEGMENT
ORG 0

IF: DS 04 ; LED BUFFER

TAT: DS 01 ;LOCK STATUS

STAT: DS 01 ;DRAW1 STATUS, OPEN = 1, CLOSED = 0

STAT: DS 01 ;DRAW2 STATUS, OPEN = 1, CLOSED = 0

AT: DS 01 ;REC STATUS, OPEN = 1, CLOSED = 0

JF: DS 08 ;8279 INTERNAL BUFFER = 8 BYTES

o DS 50 ;COMMS BUFFER

(A DS 50 ; TRANSMIT DATA BUFFER

JF: DS 40 ;40 CHARS FOR LCD

JF: DS 41 ; STATUS+40 DATA BYTES. 01=OK,

3AD

3UF: DS 24 ;18 BYTES OF DATA + 1 BYTE STATUS

UE: DS 25 ;ADD KEY & SCAN DATA INTO THIS BUFFER

UF: DS 04 ;USED FOR STATUS BYTES FOR HOST

ST

BYTES

ko ek RO/1 CAN ADDRESS MAX OF 255 BYTES EXTERNAL DATA MEMORY

2 DS 255 ;MAX RX BUFFER SIZE

ER 3 PAGE 7

ASSEMBLER CODE LISTING

\BLES RELATING TO 82530 COMMS CHIP

-XBUF: DS 50 ;ALLOW FOR 2X20 DISPLAY STRING
WBUF: DS 40 ;DON'T FORGET STX, ETX, DEV ' #
'XBUF: DS 50
WKBUF: DS 40

khkdkkkhkkhkhkhkhkhkhkhkhhkkhkhkdkhhhhhhkhhkhkhhkrhhkkhrhrhhkdhhkddhhkhrhdhhkhrrhkhhhhkdhhihhh

kkkkkkkhkhkhkhhkkkhhkhkhkhhkkhhhhdkrkhhkhhhkhhdkkhhdkhhhhkhkhhkkhkkhkhkkhhkkhkkkkkkrikhhk

CODE SEGMENT *

dkkkkkkhkrkhkbkrrhibhrrbbrrbhdhbhhhkrhhbhhhbhkhhhhkrhhkhhkthhrhthhrkhkhkkhkhkhhkhkkhkhkkkk

CSEG AT O ;ABSCLUTE SEGMENT FOR MAIN MODULE
ORG 0

USING 1l ;USING RB 0,1

LIMP MAIN

UDE (EQUATES.ASM)

thkkkkkdedkdhhkhkhkhrkhkhkhhkkhhhkhkkhkbhkkhkrhhkkhkhkhhkhkkhhkhhhkhkihhhkhkhhhhhkhhkhkhkhkhkiki

(INTERRUPT VECTORS 3

tkkkkhkkdkhhkhkdkhkkkhkhhhhhhkhkkhkhkkhhhkhhkdhhhhkhkhdhhkhkhdkhkhdhkdhkdkhhhhhdhhihhhhdhid

ORG 03H ;VECTOR ADDR OF EXTERNAL INTO
SIMP EXTO_INT
ORG OBH ; TIMER_0 VECTOR ADDRESS

ER 3 PAGE 8

ASSEMBLER CODE LISTING

STMP TIMERO_INT

ORG 13H ;VECTOR ADDR OF EXTERNAL INT1
STMP EXT1_INT

ORG 1BH ;TIMER 1 VECTOR ADDRESS

SIMP TIMER1_INT

ORG 0023H ;VECTOR ADDR OF SERIAL INT
SIMP COMMS_INT

ORG 2BH ;TIMER_2 VECTOR ADDRESS

SIMP TIMER2_INT

kkkkdkhkhhhkhkkhkhhhhhkdkhhkkhkhhkhhdhdkkhhhhkkrkhhhhhhhkhkhkhkhhkhkhhkhhhhkkhhkkhrkhkkhhkk

NTERRUPT ROUTINES *

IMER INTERRUPT VECTOR ADDR *

kkkkkkhkhkhkkkhkkhkhhhkhkkhkkkkkhkkhhkhkhkkhkkhkhkhkkhkkkhkhkkhkhkhkhkkkkkhkhkkhkhkkhhkhkhhhkkkhkk

0_INT: ;TFO IS RESET BY H/W WHEN VECTORING
CLR TRO ; STOP TIMER O
SETB TMOUT ; TIMER HAS OVERFLOWED
RETI

kkkkkhkhhhkhkkkhdkhkkhkhkkdhhhhhddkkhdhdhhhhkhkhkhkkhkhhhhkdkhhhkhhrhrhhhdhkhhhhkihd

ER 3 PAGE 9

ASSEMBLER CODE LISTING

kg kdAkkhkkhddhk kb bk bk hkhhkhhhhkhkhhkhhhkrhkhkhkhhkhkrkhkhkhhhkkhkkhhhhhkdkrhkikk

}ONG INTERRUPT VECTOR ADDR &

kkkkhkdkhkkhkkkhkkhkhkhkhhkhhkhkhhkhkkhhkkkhkhhkhhhkkhkhkhkhkhkhkhkhhkkhhhkhhkhkhhhkhkhhhhkdkhkkhd

._INT:
! INT:
NT:
NT:
LCALL CLS1
MOV DPTR, #MSG6
LCALL CODE_TO_LCD
MOV DPTR, #LCD1 DAT WR
LCALL LCD WR
MOV COUNT, #15
LCALL ERR BEEP ;SIT IN PERMANENT LOOP
RETT

kkkkkkhhkhhkhhkhkhkdhkhkhkhkhhkdkhhhhhhkhdkhhhhhkhhhhhhhhhhhkhthhhkhhkhhhrhhhhhhhkdhhbhkhkd

Thhkhkhhkhkkkhhkhhhkkhkhhhhkhhkhhkhrhkhkhkhkhkhkkhkhkhkhkhkkkhkkkkkkhkhkhkkkhkkkhkhkkhkhkhkkkkhkikkk

TART COMMS INTERUPT ROUTINE. COMMS INTERRUPT VECTOR ADDR | *
*

X CHAR WILL CAUSE AN INT. CHECK IF STX/ETX. THEN IF BUFFER IS FULL. *
FTER RX 40 BYTES, WAIT FOR EXT, THEN SET FLAG FOR BUFFER FULL. BUFFER *
RANSFER CAN NOW TAKE PLACE. AFTER BUFFER TRANSFER COMPLETE, CAN START *
3 RX MORE CHARS. SET A PB AS A CTS FOR THE HOST. *
40 CHARS ARE / INTO TUBE 1 & TUBE 2, EACH 16 CHARS *

0 IS USED FOR TX. WHEN SETTING UP TX BUF, SET R0 TO START OF BUFFER *

R 3 PAGE 10

ASSEMBLER CODE LISTING

. IS USED FOR *
) IS USED TO COUNT RX CHARS *
} IS USED TO COUNT TX CHARS *
i IS USED FOR RX_MODE STATUS | *
5 IS USED TO SAVE DPL x
5 IS USED TO SAVE DPH *
PTR IS USED FOR RX BUF, EXTERNAL DATA, OUTSIDE OFFH BOUNDRY *
*

X MODE 0 = WAIT FOR STX | x
1 = WAIT FOR DEVICE ADDRESS *
2 = RECEIVE CHARS IN COMBUF - *
sW.5 FLAG 0, IS USED TO INDICATE BUFFER FULL *
X_COUNT IS SETUP WHEN CONSTRUCTING TX BUF *
X_COUNT INDICATES THE # OF BYTES IN RX_BUF *
X BCC IS USED TO STORE THE RX CHARS BCC CALCULATION *

kkdkkdkhkhkkhkhkkkrhhhkhkhkhkkhhkhhkhkhhhhkkkhkkkhkkhkkhhhkkkkhhkhhkkhhkhkkhhkhkhthkikhhkrkkk

' INT:
PUSH Acc
PUSH B
PUSH PSW
PUSH DPL
PUSH DPH
MoV A,P2 ;SAVE MSB OF ADDR
PUSH ACC
SETB PSW.3 ; SELECT REGISTER BANK 1, 8H - FH
MOV DPL,R5 |

TER 3 PAGE 11

ASSEMBLER CODE LISTING

MOV DPH,R6

JNB TI,RX ;CHECK TO SEE IF ITS TI/RI

CLR TI ;PREVIOUSLY TX BYTE

MOV A,R3

LCALL TEST

DJINZ R3,TX_CHAR

CLR TX_BUF_FULL s TX BUfFER NOW EMPTY

SETB P3.5 ;D83695 RX MODE, GOES THRU 7404

LIMP COMMS _EXIT

AR:

MoV P2, #0 ;IN CONJUNCTION WITH MOVX RO/R1l

MOVX A,@RO fREAD TX BUF

MOV SBUF, A ;TX BYTE IN TX BUF

INC RO ;NEXT BYTE TO TRANSMIT

LIMP COMMS_EXIT

MOV A,R3 ;LAST BYTE IN BUFFER WILL STILL
;CAUSE INT
; THEREFORE TEST IF BUFFER EMPTY, VIA
;R3
;DON'T TX A BYTE, & DON'T TX ANOTHER
;BYTE IN MIDDLLE OF STRING

ADD A, #0 sDIRECT ADD DOESN'T AFFECT ANY FLAGS

J2 EXIT ;BUFFER EMPTY, EXIT

[ER 3 PAGE 12

ASSEMBLER CODE LISTING

INC RO ;NEXT BYTE IN DISPBUF, ALREADY TX 1
;BYTE

MOV SBUF, @RO ;TX BYTE AT ADDR OF DISPBUF’

DEC R3 ;48 BYTE COUNT

SIMP COMMS_EXIT

MOV A, SBUF " ;READ RX BUFFER

CLR RI ;WON'T BE ANY DELAY WHEN READING A CHAR

MOV R4,RX MODE ;RX MODE STATUS

JNE R4,#8,CHK_BCC_MOPE ;CHK IF IN BINARY ADDRESS MODE
JMP CHK_MODES

CC_MODE:

:JNE R4,#10,CHK_EOT1 ;CHK IF IN BCC MODE

JMP CHK_MODE10

J0T1:
»INE A, #EOT, CHK_MODEO ; VEOT, CHECK OTHER MODES
INE R4,#9,SET_MODE1 ;IF MODE 0, CHK FOR 'EOT!

LJMP CHK_MODES9

{ODE1l:
MOV RX_ MODE, #01 sMODE = 1, WAIT FOR DEV. ADDR1

LIMP COMMS_EXIT

MODEO :
CJINE R4,#0,CHK_MODE1l ;IF MODE 0, CHK FOR 'EOT'
CINE A,#EOT, INTERMEDIATE EXIT 0 ;!EOT, RESET RX MODE
MOV RX_MODE, #01 ;MODE = 1, WAIT FOR DEV. ADDR1

TER 3 PAGE 13

DEL:

JDE2:

QDE3:

EL:

10DE4 :

TER 3

CINE

CINE

MOV

CJINE

CJINE

MOV

CINE

CJINE

CLR

MoV

CJNE

SETB

MOV

LIMP

CJINE

CJNE

COMMS_EXIT

ASSEMBLER CODE LISTING

R4,#01,CHK_MODE2;IF MODE 1, CHK FOR 'ADDR1‘'

A,ADDR1, INTERMEDIATE EXIT_O ;!ADDR1, RESET RX MODE -

RX_MODE, #02

COMMS_EXIT

fMODE = 2, WAIT FOR DEV. ADDR2

R4,#02,CHK MODE3;IF MODE 2, CHK FOR 'ADDR2'

A,ADDR2, INTERMEDIATE EXIT_ 0O ;!ADDR2, RESET RX MODE

RX_MODE, #03 ;MODE = 3, WAIT FOR POL/SEL

COMMS_EXIT

R4,#03,CHK_MODE4;IF MODE 3, CHK FOR 'POL/SEL'

A,#POL,CHK SEL ;!POL, CHECK IF SEL

POL_SEL ;0 = POL, 1
RX_MODE, #04

COMMS_EXIT

A, #SEL, INTERMEDIATE EXIT_O

SEL

;MODE = 4, WAIT FOR ENQ

; !SEL, RESET RX_ MODE

POL_SEL ;0 = POL, 1 = SEL

RX_MODE, #04

COMMS_EXIT

R4, #04,CHK_MODES;IF MODE 4,
A, #ENQ, INTERMEDIATE EXIT_O

sRECEIVED A

;MODE = 4, WAIT FOR ENQ

CHK FOR 'ENQ'
; 'ENQ, RESET RX_MODE

VALID SEQUENCE

;POL/SEL. READY TO RX/TX

PAGE 14

JB

ASSEMBLER CODE LISTING

POL_SEL,SELECT ;0 = POL, 1 = SEL

pkkdhkkkkhkddkdhkdkrdhkhkhkdkkbhkkhhhkhdbhhdkhkhdhhhkdhhkhhkrhhdrhihkkhhkhhhhkhhhhhihhxk

kkkdkkkdhkhkkhhhkhhhkhhdkhhhhodkhkhkhkhhhhhhhhhhhhhhhhkhhhhhhhhhkhhdkhkhhhddkhkrhkhhrin

{ FINAL:

TER 3

JB
LCALL

LCALL

MOV

MOV

MOV
LCALL

LIMP

MOV

CJINE

CLR

SJMP

MOV

MOV

SETB

CLR

;TX_BUF_FULL, O = EMPTY, 1 = FULL

RE_TX FLAG,RE_TX ;1 = RE_TRANSMIT TX_ BUF
CHK_TX_ BUFFS ;TRANSMIT DATA IN TX BUF
TX_STRING

TX_BUF_FULL,TX_EOT ;NOTHING IN TX BUFF, TX 'EOT'
RX_MODE, #05 ;WAIT FOR ACK/NAK

RETRY CNT, #0

COMMS_EXIT
A, #EOT ;NOTHING IN TX_BUF
TX_BYTE

EXIT 0 ;RESET RX_MODE

A, #05

A,RETRY CNT,RE TX FINAL

;AFTER 5 NAKS, TERMINATE ABﬁORMALLY

RE_TX_FLAG ;0 = NORMAL RX MODE

TX_EOT

RX_MODE, #05 ;WAIT FOR ACK/NAK

R3,TX_COUNT ;DON'T CHANGE TX_COUNT, IN CASE RE-T?

TX_BUF FULL ;CLEARED IN INT ROUTINE

P3.5 ;ENABLE DS3695 TO TX, GOES THRU 7404
PAGE 15

MOV

MOV

MOVX

MOV

MOV

LIMP

P2, #0

RO, #TX_BUF
A, €@RO
SBUF,A

RO, #TX_BUF+1

COMMS _EXIT

ASSEMBLER CODE LISTING
;IN CONJUNCTION WITH MOVX RO/R1

;TX FIRST BYTE IN TX BUF

; START TX PROCESS
;SET RO = START ADDR +1 OF TX BUF
;USED IN COMMS INT ROUTINE. FIRST

sBYTE IS USED TO INITIATE COMMS INT

kkkdkkdekdkhhkdhhdhkhkkhkkhhkkhkhkhdhhthhdhkdkkkhdhkhhkkhkhkhhhkkhhkkkhkhkhkhkhohhkhkkhkhkhhhhrk

MEDIATE EXIT_O:

LIMP

EXIT O

ktkkkhkdkkkdrdihbhbrhrrbidddbhbbbbbdrdhhrr bbbk ihthhhhkhhhhkhrhkhhhihkkhkhhokkhhxki®

T:

JB

MOV

LCALL

MoV

LJMP

MoV

LCALL

LJMP

RX_BUF_FULL,TX_NAK ;NOTHING IN RX_BUFF, TX 'ACK'

A, #ACK
TX_BYTE
RX_MODE, #06

COMMS_EXIT

A, #NAK
TX_BYTE

EXIT O

sREADY TO RECEIVE DATA

sMODE = 6, WAIT FOR DLE,STX

;TX_BUF IS FULL

;RESET RX MODE, WAIT FOR NEXT POLL

thkkkkkkhkkhkhkhkkdhhhkhhkkhkhhhkhkhkhhkhkkkhhkkkhkhkhhhkhkhhhkdhhhhkhkhhkdkhhhddkhkhkhhhhhi

TER 3

PAGE 16

ASSEMBLER CODE LISTING

ghkkkhkkkkhkhhkhdkkhkkkhkhhkhhhhkhkhhhkhkdhhhkdhhhhkhhhhhdhkhhkhhhhkkhkhrhkkkhkhihhkkhhikhkk

JDES:

f0DE6:

MODE7 :

CJINE

CJINE

MOV

LCALL

CLR

SIMP

SETB

SETB

INC

CJINE

MOV

LJIMP

SJMP

CINE

CJINE

MOV

SJMP

CJINE

CINE

R4, #05,CHK MODE& ;IF MODE 5, CHK IF ACK/NAK

A,#ACK,CHK NAK ;!ACK, CHK IF A NAK

A, #EOT
TX_BYTE
RE_TX FLAG

EXIT O

TX_BUF_FULL

RE_TX_FLAG

RETRY_CNT

;IF ACK, TRANSMIT 'EOT' RESET RX MODE

;DATA RECEIVED NORMALLY

; TREAT ALL CHARS, AS A NAK
;MAINTAIN CURRENT CONTETNTS OF BUFFER

;WAIT FOR NEXT POLL TC TX MESAGE

A,#EOT,EXIT O ;EOT, SET RX MODE

RX_MODE, #01
COMMS_EXIT

EXIT_O

;MODE = 1, WAIT FOR DEV. ADDR1

R4, #06,CHK MODE7 7IF MODE 6, CHK IF DLE

A,#DLE,EXIT O ; !DLE, RESET RX MODE

RX_MODE, #07

COMMS_EXIT

sMODE = 7, WAIT FOR STX

R4,#07,CHK_MODES ;IF MODE 7, CHK IF STX

A, #5TX,EXIT 0O ; 1STX, RESET RX MODE

PAGE 17

ODES8:

cT

ODES:

TX

iTX:

TER 3

MOV

MOV

MOV

CLR

MoV

SJMP

CJINE

CJNE

MOV

XCH

SIMP

CINE

JB

CJINE

SETB

SJMP

CJINE

XCH

MOV

SJMP

ASSEMBLER CODE LISTING

RX MODE, #08 ;RX MODE = 8, WAIT FOR BIN TERM ADDR

RX_COUNT, #0
RX_BCC, #0
RX_DLE

DPTR, #RX_BUF

COMMS_EXIT

R4, #08, CHK_MODES
A,BIN_ADDR,EXIT 0O
RX_MODE, #09
A,RX_BcCC
A,RX_BcC
COMMS_EXIT

R4,#09,CHK MODE10

RX_DLE,CHK_ETX

A, #DLE,CALC_RX_BCC

;BCC COUNTER

;IF MODE 8, CHK BINARY ADDR

; !TERM ADDR, RESET RX MODE

;WAIT FOR TEXT

;SAVE BCC INTO RX_BCC

;IF MODE 9, CHK IF DLE.DLE,

;RECEIVED A DLE

RX DLE ;WAIT FOR A DLE/ETX

COMMS_EXIT

A,#ETX,CALC_RX_BCC

;END OF DATA FIELD

A,RX_BCC
A,RX_BcC ;SAVE BCC INTO RX_BCC

RX_MODE, #10 ;MODE = 10 CMP NEXT BYTE TO RX_BCC
COMMS_EXIT

PAGE 18

rRX_BCC:

ODE10:

TER 3

MOV
INC

INC

XCH
CLR

SJIMP

CJINE

CJINE
SETB
MOV
LCALL

SJMP

MOV

POP
MOV
MOV
MOV
POP
POP
POP

POP

@DPTR, A
DPTR
RX_COUNT
A,RX_BCC
A,RX_BCC
RX_DLE

COMMS_EXIT

ASSEMBLER CODE LISTING

;WRITE TO RX_BUF

;SAVE BCC INTO RX_BCC

R4,#010,EXIT 0 ;IF MODE 10, CHK IF RX BCC IS CORRECT

A,RX_BCC,TX NAK ;CHECK IF BCC IS CORRECT

RX_BUF_FULL
A,#ACK
TX_BYTE

EXIT O

RX_MODE, #0

AcC
P2,A
RS, DPL
R6,DPH
DPH
DPL

PSW

;SET RX_MODE = 0, WAIT FOR EOT

;RESTORE MSB OF ADDR

PAGE 19

ASSEMBLER CODE LISTING
POP ACC

RETI

xkkkkhkhkhkhkkhkhhkhkhkhkhhkhhkxXhhhhhkdxhkkhhkkhhhkhkhkkhkdhkhhhhkhdhhkhkhkhhhkkhhhkhkhkhkhhdkhhhhhx

gkkkkhkkhkhhkhkhkhhhkhkikkhhhkhkkkhhkkhkkkkkkhhkhhhhkkhhkhhhhkrhhhhkhhhkhkkhkhkhkdkhdkhkhhhhkkk

NB: *

REGISTER BANK 01 IS SELECTED FOR THIS ROUTINE, WHICH.IS DEDICATED*

TC THE COMMS INTERRUPT ROUTINE.) *

*

TRANSMIT A SINGLE BYTE. BE CAREFUL NOT TO CHANGE TX COUNT *
*

ON ENTRY: *
ACC = BYTE TO BE TRANSMITTED *

kkdkdkkkkhkhkkkkhk kb hkthdhrhhhhhkbhhdhhkhhhhhhdbdtrhbhhdtrbtdbd kbbb dbtbbbdhitdtkid

TE:
MOV TX COUNT, #01 jUSED IN COMMS INT ROUTINE
MOV R3,TX_COUNT {DON'T CHANGE TX_COUNT, IN CASE
;RE-TX
MOV R3,#01 ;DON'T CHANGE TX_COUNT, IN CASE RE-TX
SETB TX_BUF_FULL ; CLEARED IN INT ROUTINE
CLR ‘P3.5 ;ENABLE DS3695 TO TX, GOES THRU 7404
MOV SBUF,A ; START TX PROCESS
RET

kkkkkhkkhhkhkhkhkhhdkkhhkhkhkhkhhkhkhhkhkkhhhkhhhhhhhkhkhhkhhkhhhhkhkhkhkhkhkkhkkihkkhdkhhhhhhkk:

[ER 3 PAGE 20

ASSEMBLER CODE LISTING

shkkkkdhhkhkkhkkkkkhhhhhhkhdkhkhhdkbkdkhdhhkhhhrkhkhhhkhdhhhhhkhhhkhhdhkhhdhhhhkkkhkkkkkk

AIN PROGRAM LOOP

*

kkhkkddkhdhhhkhhhkhhdhhhhkhhhdhkhhhhhdhhhhhhdhhdhhhhhkhhdkbhhkdhhkkdhbhhkdhhhhhhkhhhkd

_COM:MS :

CH_A:

CLR

MOV

LCALL

LCALL

CLR

SETB

LCALL

LCALL

LCALL

MOV

MOV

MOV

MOV

MOV

LCALL

ALIZATION

CH_B:

TER 3

MOV

MoV

Mov

LCALL

EA

SP, #STACK
INIT_ HARDWARE
TEST COMMS
ACKO_1

EA

INIT STACK_CHK

FILL_MEM

INIT 82530VARS

DPTR, #COM1_TXBUF
R6,DPL

R7,DPH

DPTR, #A82530
COUNT82,#22

CODE_TO_XDATA

DPTR, #COM1_TXBUF
R7,#03
COUNT82, #22

INIT 82530

PAGE 21

;ALL INTERRUPTS OFF

;SET SP,DEFAULT 08H, USING RBANK1,

;INITIALLY ACKOQ
;ALL INTERRUPTS ON

;CHK FOR STACK OVERFLOW

; SETUP REGS FOR CODE_TO_XDATA

;COM1_TXBUF CONTAINS

;INIT CHANNEL A OF 82530

MOV

MOV

MOV

MOV

MOV

LCALL

LIZATION

T _STR:

IR:

82530:

TER 3

MoV

MOV

MoV

LCALL

MOV

MOV

MOV

MOV

MOV

LCALL

MOV

MOV

MOV

LCALL

LCALL

LCALL

DPTR, #COM2_TXBUF
R6, DPL

R7,DPH

DPTR, #B82530
COUNTS82, #22

CODE_TO_XDATA

DPTR, #COM2_TXBUF
R7,#01
COUNTS82, #22

INIT 82530

DPTR, #COM2_TXBUF
R6,DPL

R7,DPH

DPTR, #MSG2
COUNTS82, #35

CODE_TO_XDATA

DPTR, #COM2_TXBUF
R7,#02
COUNT82, #35

TX_COMX

SETUP_TX

SETUP_RX

PAGE 22

ASSEMBLER CODE LISTING

;SETUP REGS FOR CODE_TO_XDATA

;COM2 TXBUF CONTAINS

;INIT CHANNEL B OF 82530

; SETUP REGS FOR CODE_TO_XDATA

; TRANSMIT DATA ON COM2

;TX ON CH B

;IF DATA, THEN TX

;IF DATA, THEN RX

NQUIRE:

EC:

LCALL

LCALL

MoV

LCALL

LCALL

MOV

LCALL

CLR

LCALL

MOV

MOV

MOV

LCALL

MOV

LCALL

JNB

CLR

MOV

CJINE

LCALL

MOV

LCALL

ASSEMBLER CODE LISTING

ENQUIRE ;HOST REQUEST DRAW STATUS, LOCK
REC_READ ; STATUS 0=CLOSED, 1=OPEN

A, #'sS!

CHK_QUE

SCAN_READ ;IF QUE FULL, WON'T READ SCANNER
SCAN_FLAG,LCD ;IF 1, DATA AVAILABLE

A, #'s!

ADD QUE

SCAN_FLAG

CLS1

R2,#16 ;SETUP REGS, BEFORE CALLING XDAT

R2,#20 ; SETUP REGS
DPTR, #SCAN_BUF

XDAT_TO_LCD_BUF

DPTR, #1.CD1_DAT WR

LCD_WR

LCD FLAG,LOCK
LCD_FLAG
A,LCD_NUM

A, #30H,CHK_LCD1
CLS1

DPTR, #LCD1_DAT_ WR

LCD_WR

PAGE 23

. BEFORE CALLING XDAT

ASSEMBLER CODE LISTING

LCALL CLS2
MOV DPTR, #L.CD2_ DAT WR
LCALL LCD WR
SIMP LOCK
L£D1:
CINE A,#31H,CHK LCD2
LCALL CLS1
MOV DPTR, #LCD1_DAT WR
LCALL LCD_WR
SJIMP LOCK
CD2:
CJINE A,#32H,LOCK
LCALL CLS2
MOV DPTR, #LCD2_DAT_WR
LCALL LCD_WR
LCALL LOCK_READ ;READ LOCK STATUS
JNB LOCK_FLAG,CHK_CRD ; STATUS HASN'T CHANGED
LCALL CLS1
MOV DPTR, #LOCK_STAT
MOVX A,@DPTR
LCALL HEX TO ASCII
MoV DPTR, #LCD1_DAT WR
LCALL LCD_WR
CRD:
LCALL CRD READ
JNB CRD_FLAG,KYB

TER 3 PAGE 24

ASSEMBLER CODE LISTING

CLR CRD FLAG
LCALL CLS1
MOV R2, #32 ;SETUP REGS, BEFORE CALLING XDAT
MOV DPTR, #CRD_BUF
LCALL XDAT TO_LCD_BUF
MOV DPTR, #LCD1_DAT WR
LCALL LCD WR
MOV A, #'K'
LCALL CHK_QUE
LCALL KYB_READ
JNB KEY_FLAG,CHK_FLASH
MoV A,#'K*
LCALL ADD QUE
LCALL CLS1
MoV RO, #KEY_BUF
Mov P2, #0
MOVX A,@RO
LCALL HEX TO DEC
MOV DPTR, #LCD1_DAT WR
LCALL LCD _WR
FLASH:
DJINZ LED_COUNT1,CHK_DRAW
DJINZ LED COUNT2,CHK_DRAW
LCALL LED FLASH
DRAW:
LCALL DRAW1l_ READ ;READ DRAW STATUS

R 3 PAGE 25

START:

LCALL
MOV
MOVX
CJIJNE
ORL

SJMP

LCALL
LCALL
LCALL

LJIMP

DRAW2 READ
DPTR, #DRAW_STAT
A, @DPTR
A,#01,EXIT1
LED_BUF+1,#01

EXIT START

LED_BUF+1, #0EH

CHK_RX_BUFFS
CHK_RAM
CHK_STACK

START

ASSEMBLER CODE LISTING
;READ DRAW STATUS
;READ DRAW STAT
;DRAW OPEN, LED ON

;LED_ON

;LED OFF

;CHK FOR STACK OVERFLOW

kkkkhkhkkAkhkdhkhkkhkkhkhhhhkhkhhkhkhkhhhkikhkkhbhkhkhhhkhhhkdkhhkhrthhkhohhhhhrhkhdhhdkhhkhidd

thkkfekkhkhdhhkhkhkhkhkhkhkdhhkkhhhkdhhrhkhhkhdhhkrhhdhhhhkhkdhhhhkhhhhhhdhrhthhhhhhrkrhthhhikd

thkkkhkkkhkhkhkhdkkhkkhkhkhkhhkhrhkhhhkhkhkhhkkhhkhrkkhhkhhkhhkhkrhikhkhhhhkhhkhkhkihhrkhkikthhkkhkik

MEM:

_LOOP:

MOV

MOV

MOVX
INC
Mov
CINE
Mov

CINE

DPTR, #300H

A, #55H

@DPTR, A

DPTR

RO, DPH

RO, #1FH, FILL LOOP
RO, DPL

RO, #0FFH, FILL_LOOP

PAGE 26

; START ADDRESS ABOVE ALLOCATED MEM

;WRITE PATTERN TO RAM

ASSEMBLER CODE LISTING

RET

kkkkdkhdhhhkhhhbhkbhhkhkhhhhdhbhhkdhkdhhkhkkhbkhhkhkrhhkkhkhhhkhhhhkhkhrhhkhkhkhkhkhrhhhhkk

I L Ty L g T T T 2 T R R R g
NSURE THAT CMOS ABOVE ALLOCATED MEMORY STILL CONTAINS 55H, AND IS NOT *
'ORRUPTED *

s 3 e e % e e e e de de e e de e de ook o dede ke ok e e e e de ke ok de ke e e e e e de ek g e ke ke ke de ke e de ke ke ok de ke ke e e ke e g ke e e ok e R e ke e

IAM:
MoV DPTR, #300H :START ADDRESS ABOVE ALLOCATED
L0OP2:
MOVX A,@DPTR ;READ PATTERN FROM RAM
CINE A,#55H, RAM_ERR ;PATTERN NOT THE SAME
INC DPTR
MOV RO, DPH
CJINE RO, #1FH,RAM_LOOP2
MOV RO,DPL
CINE RO, #0FFH,RAM_LOOP2
SIMP RAM_EXIT
ERR:
MOV R3,DPL
MoV R4,DPH
MOV A,R4
INC A
LCALL SEND BYTE
MOV A,R3
LCALL SEND BYTE

°TER 3 PAGE 27

EXIT:

LCALL
MoV
MOV

MOVX

MOV
MoV

MOVX

LCALL
MOV
LCALL
MOV

LCALL

MOV

LCALL

RET

SEND
A,R3
DPTR, #LED_1

€DPTR, A

DPTR, #LED_2
A,R4

@DPTR, A

CLS1
DPTR, #MSG4

CODE_TOC_LCD

DPTR, #LCD1_DAT WR

LCD_WR

COUNT, #10

ERR_BEEP

ASSEMBLER CODE LISTING

;SIT IN PERMANENT LOOP

trddkhkh bk ki hrhrhhkhkhkhkkhkhkhkhhkhkhkhhhkhkhhkkkhkhhkhkhhkhkhhkhhhkhhkkhkkkkhkkhkhhkhihk

PTER 3

PAGE 28

ASSEMBLER CODE LISTING

kkkkkkkhkhkhhkhkhkhkkkkkkkdkkkkhhkhhkhhkkkhkkdedkhkhhhhkhkhkhhhkhhhhhkihkhkkhkrrkhkkhkihkkhkhk%

RANSMIT A BYTE *
*

N ENTRY: *
ACC = BYTE TO TRANSMIT *

kkkhkkkhkdhekhkhhhhhkhhkhkhkhhihkhhhkxkhhhkdkdkrdhhkhkhthkdrdtthbhbhkhkbri b drdrdrdiddhrrhdhx

BYTE:
CLR ES ;DISABLE SERIAL INTS
CLR P3.5 ;ENABLE D53695
MoV SBUF, A
LCALL WAIT
SETB P3.5 ;DISABLE D53695
RET

kkkkkkhkkhkrkkikkhhkhhkhhhkdtkdhhhkkhkhkhdkhkhhhkhhkhhrhkrhkhkkhhkhkhkhkhkhhhohhhhkhhkhkhkhkhkhkhhikd

kkkkkhkkhkhkhkkhkkhhkhkhhkhkhkhkkhhkhkkhkkhkhkkhkhhxhkhhkhhkhkhkhkhkkhkkhkkhhhhkhkkhkhhhkkkkikii

TRANSMIT A STRING OF DATA, DISABLE INTERRUPTS :

ON ENTRY:
DPTR POINTS TC SOURCE ADDRESS

kkRhhkkkhdhhkhhkkkkhkhkhkhhkkkhkhkhhhkhkkhkhkhkkhkhkhkhkhkkhkhkhkkhkhkhkkkhkkhhhkikkhhkhixhrkhhkhhhkkd

MOV RO, #50
_Lp1:

MOVX A,@DPTR

LCALL SEND_BYTE

TER 3 PAGE 29

INC

DINZ

RET

DPTR

RO, SEND LP1

ASSEMBLER CODE LISTING

kkkhkkkkkhkkhkkkhhhkhkhhkkhkhkhhhkkhhdhhdkhhkhhkhhkhhkhkhhhkhkhhkhkkhkdhkhkdbhhkkkdhhbhkihhid

kkkkdkhhkhkhkkhkdkhkhkhhhhhkhkhhhkbhkkbhthkdhhkhkhohkdhdhohhkhhhhkhbhhkkhkhhkhhkrrhkhhhkhhhhrhid

3IT FOR A CERTAIN PERIOD OF TIME

N ENTRY:

NOTHING

*

*

*

*

kkkkkhkLtkhkhkhhkhkxdAktthkdbbhkdbdhbdbdhhbbtbbdhbhbdrirbdbrtbhrhbhtrbdrbhrhbhhbhrdhd

PUSH
MOV
PUSH
MoV
PUSH
MOV

MOV

DINZ
MOV
DINZ
POP
MOV

POP

ER 3

ACC
A,RO
acc
A,R1
Acc
RO, #0FFH

R1, #0FH

RO,WAIT1
RO, #0FFH
R1,WAIT1
ACC
R1,A

ACC

PAGE 30

ASSEMBLER CODE LISTING

MOV RO,A
POP ACC
RET

kkdkhkkhkkhkhhhkhkhhkhkhkhkrhhdkdhkhhhhhhkhhhhthhkhhhhhhhkdkdhhhhkhkhhkdhkdhhhhhhkehhihi®

kkkhhkhkkhhkhkhk kb kit hhkhrhkhhhkhhkhkhkhhhkhhdhhhkhkhhkkkhdhhkhkhhkhrhkkthkhhhhkhkhikhkh

RITE A PARTICULAR VALUE ONTQO THE STACK WHICH IS CHECKED EACH TIME *

'HROUGH THE MAIN LOOP, IF THIS VALUE DOES CHANGE THE STACK IS GROWING *

[0 HIGH AND A STACK OVERFLOW IS IMINENT *
*

)N ENTRY: *
NOTHING b

kkkkkhkkhkhkkhkkkkhhhkdkhhkhkhkkrthkkhhkkkikhhhkkdkhhkhkkrhkhthkrdrthddrhddrhberdhddhhhhhh bl

_STACK_CHK:

MOV RO, #STACK_END-10 ;60 - 10 = STACK+50
MOV A,#0AAH

MOV @RO,A

RET

19 d & ke de ke g e g Je g e 2 de e v K e e v o e ok ok ek e e v e ke ke e e sk e e e ok e ke e g e ok gk ke ke e ok ke e e gk e ok ke ok e e ke ok ok ke ke ke kR

AEKRAIKRAKRARXARRAR AR AF R ATk b b rhhh kb kbbb rhhhhhdhhrhhdhhhhhhh ok hthhtdhdhkhhhk
CHECK IF THE STACK HAS GROWN BEYOND A CERTAIN POINT, IE STACK OVERFLOW
MIGHT OCCUR

ON ENTRY:

PTER 3 PAGE 31

ASSEMBLER CODE LISTING

FOTHING *

ik kit kk gk kdkhkkkh hkhhkkhkhkihkhhhrhkhkhthhkhhhkhkhhhkkhkhhkkhrdhkkhrhhkhkhkhhhkhkhkhhk

ICK:
MoV RO, #STACK_END-10 ;60 - 10 = STACK+50
MOV A,@RO
CJINE A, #0AAH,STACK ERR ;STACK OVERFLOW
SJMp STACK_EXIT |
IRR:
LCAILL CLS1
MOV DPTR, #MSG3
LCALL CODE_TO_LCD
MoV DPTR, #LCD1 DAT_WR
LCALL LCD_WR
MoV COUNT, #06
LCALL ERR_BEEP ;SIT IN PERMANENT LOOP
EXIT:
RET

C ke Ahde A kTR ek khk kb gk hkkkhkhhk kb khhhkhdhkhkhkhrhhhkhrhkkdki

ER 3 PAGE 32

ASSEMBLER CODE LISTING

bk kR Rk hkrkhkhkhkhkhhkdhhkhkrrthkhAhkhhkrh bkt Athbitddrbkdbhbbdbhbt bbbk bhdhhrdih

RANSFER DATA FROM EXTERNAL DATA INTQ LCD BUF *
*

N ENTRY: *
DPTR POINTS TO SOURCE BUFFER *

R2 = # OF BYTES TO TRANSFER FROM XDATA TO LCD_ BUF *

MAX BYTES TO TRANSFER == 32 *

khkkhhkkhkhdhkkhkhhkhkhkhkhkdkhkhkhkhkhkhkhhkhkhkhkhkhkhkthhkhkhkhkdxthddkkdddh bbbk hbrdhdhid

TO_LCD_BUF:
MOV RO, #LCD_BUF
LP1:
MOVX A, @DPTR ;READ SOURCE BUFFER
MOV P2, #0 ;IN CONJUNCTION WITH MOVX RO/R1
MOVX @RO,A ;WRITE TO LCD BUF
INC RO
INC DPTR
DINZ R2,XDAT LP1
MoV : A, #EOS
MOV P2,#0 ;IN CONJUNCTION WITH MOVX RO/R1
MOVX 8RO, A
RET

kkkkhhdhkhkhhkdhkhkhkhkrhkrhrhththtddhthdhhdhdhhkhrhhdrrhhdbhhhhbhhhhhkddhihihiddkdk

-

2 DB '*TESTING CARD READER1**%*%%%%%! (
321 DB 2,'0 82530 IS FULLY OPERATIONAL!!! ',3,0

23 DB 2,'0 THE POWER AT POINT OF SALE',3,0

TER 3 PAGE 33

ASSEMBLER CODE LISTING

DB ' STACK OVERFLOW @ STACK + 56 !!!7,0
DB 'MEMORY ERROR!!!',0

DB "PASSED MEM FILL',0

DB ' INTERRUPT ERROR',0

END

TER 3 PAGE 34

ASSEMBLER CODE ILIISTINC

)1.ASM

INPUT_OUTPUT_ MODULE_1

ALL I O ROUTINES IN THIS MODULE

kkkkkAkkhkhkkhkrhkhkhkhkkkhkkhkkhkhkhkhkkhkkhkhtkhkhkhkhkhkhkkkhkhhkkkhhkhkikkkhkkhkdkhkkhkhkhkkhkkhkhkkk

1c INIT HARDWARE, LCD WR, CODE TO LCD, BEEP, TEST, KYB READ

Ic IDATA TO TEMP, HEX TO ASCII, HEX TO DEC, CLS1, CLS2, ERR BEEP’

N DATA (COUNT, TEMP_BUF, KEY COUNT, RX MODE, LED_COUNT1, LED COUNT2)

N DATA (ADDR1l, ADDR2, BIN ADDR, CRD COUNT, QUE COUNT)

N BIT (KEY FLAG, LOCK FLAG, DRAW1 FLAG, TX_BUF FULL, RX_BUF FULL)
N BIT (IS _DATA, RE_TX FLAG, RX DLE, TMOUT, CRD FLAG, SCAN_ FLAG)

BIT (QUE_FLAG, QUE FULL, CRD ON OFF, REC_FLAG, DRAW2_FLAG, ENQ_FLAG)

N BIT (ENQ FULL)

N XDATA (LOCK_STAT, DRAW1l_STAT, KEY_ BUF, LCD_BUF, LED_BUF, REC_STAT)

‘N XDATA (DRAW2 STAT)

N CODE (WAIT, INIT_SCAN)

thkkkdkkhkkkhkhkhhrhkhkhkhkhkhhkhkkkhkhkkikhkhkkhkkkhkkhkhkkhhkkhkhkhhkkkhkhkhkhkhkhkkhhhhkhkkhehhkkhkkhk

1 SEG SEGMENT CODE ;RELOCATABLE CODE SEGMENT

RSEG I_O_ 1 SEG

‘TER 3 PAGE 35

ASSEMBLER CODE LISTING

xhkkkhkhkhkkhkdtkhkdtrhkdkhkdkdhbdhbbhbhkdhhthkbti bbb h itk khkhhkkkhhkhhkhhhkhkkhkik

NITIALIZE HARDWARE *
NITIALIZE VARIABLES IN EXTERNAL DATA MEMORY AFTER THE RAM TEST *
5 THE RAM TEST WILL OBVIOUSLY DESTROY THE VARIABLES *

kkkkkrkxhkhhkhkhhkkhhkhhhkhkhhhkhhkhhhkhkhhkhkikhhkhhhhhkhhhkdhrkhhrihkbrddritthdkbdtbkhiid

HARDWARE:

COMMS:
SETB P1.3 ;DRAWER SOLENOID, GOES THRU 7404
SETB P3.5 ;D53695 RX MODE, GOES THRU 7404
MOV TMOD, #20H ;T1 8 BIT AUTO RELOAD, MGODE 2
MOV TL1,#0 ;RELOAD VALUE FCOR T1
MOV TH1,#0FBH ;BAUD RATE 4800, XTAL=9.216MHz
ORL PCON, #80H sDOUBLE BAUD RATE TO 9600
SETB TR1 ;START COUNTER 1

%% d J e gk ok k 192.2 KBAUD

MOV RCAP2H, #0FFH ;T2 COUNT
MOV RCAP2L, #0F1H
MOV T2CON, #34H ;T2 BAUD RATE GENERATOR

kkkkkdkkkdkhdrhhhkdhkhkkhhhhh

MOV SCON, #50H ; SERIAL CONTRL, MODE 1, 8 BIT UART
;1 START, 8 DATA, 1 STOP BIT
! TIMERO:
;TIMER 0 = MODE 1
;USED FOR TIMEOUT PERIODS

;1 TIMER TICK = 1 M/C CYCLE =

TER 3 PAGE 36

[NT:

_LOOP1:

(ERR:

TER 3

ORL

SETB
SETB
CLR
ORL

CLR

MoV

Mov

MOV

MOVX

MOVX

CINE

INC

DJINZ

SIMP

MoV

TMOD, #01

ETO
ES
IP,#18H

TRO

DPTR, #0
R1,#0FFH

A,#33H

@DPTR, A

A, @DPTR

A,#33H,TEST_ERR

DPTR

R1,TEST_LOOP1L

INIT LEDS

COUNT, #03

ASSEMBLER CODE LISTING

;12 CLOCK CYCLES, = 1/12 CLK FREQ

; XTAL 9,216MHz, TICK = 1.3uSEC

I

;XTAL = 1.8MHz, TICK = 6.7uSEC

;CONTRL BY TRx, 16 BIT, TIMER

;ENABLE ALL INTERRRUPTS
;ENABﬁE TIMER 0 INT

;DISABLE SERIAI, PORT INT

; INT PRIORITY, SERIAL & TO

;STOP TIMER 0

;TEST LOWER 256 BYTES OF XDATA

;AS THE LCD_BUF RESIDES IN THIS AREA
;AS OFFH IN LCD BUFFER, NEVER FINDS
;EOS

;AND SITS IN LCD WR PERMANENTLY

; START ADDR

;TEST PATTERN

; TERMINAL WILL SIT IN PERMANENT LOOP

PAGE 37

ASSEMBLER CODE LISTING

LCALL ERR BEEP
LEDS:
MOV A, #0
MOV DPTR, #LED 1
MOVX @DPTR, A
MOV aA,#0
MOV DPTR, #LED_2
MOVX @DPTR, A
CLR TMOUT
LCD1:
MOV RO, #1FH ;AT POWER UP, LCD IS INTENALLY BUSY
MOV DPTR, #LCD1_STAT ;WAIT UNTIL THEY ARE READY
L:
CLR TRO ;STOP TIMER 0
MOV THO, #0 ;USED FOR TIMEOUT LOOP
MoV TLO, #0
SETB TRO ;START TIMER O
MOVX A, @DPTR ;READ BUSY FLAG, LCD_STAT
JB TMOUT ,WAIT3 ;TIMEQUT HAS OCCURRED
JB ACC.7,WAIT2 ;LCD IS BUSY IF D7 =1
CLR TMOUT
CLR TRO ;5TOP TIMER O
SIMP WAIT_LCD2 ;LCP OPERATING NORMALLY
3
CLR TMOUT
DINZ RO,WAIT1

TER 3 PAGE 38

ASSEMBLER CODE LISTING

MOV COUNT, #02 ;LCD ERROR HAS OCCURRED
LCALL ERR_BEEP ;WAIT IN PERMANENT LOOP
_LCD2 :
MoV RO, #1FH ;AT POWER UP, LCD IS INTENALLY BUSY
MOV DPTR, #LCD2_STAT ;WAIT UNTIL THEY ARE READY
3
CLR TRO ;STOP TIMER 0
MOV THO, #0 ;USED FOR TIMEOUT LOOP
MoV TLO, #0
SETB TRO ;START TIMER 0
5:
MOVX A, @DPTR ;READ BUSY FLAG, LCD STAT
JB TMOUT , WAITG ; TIMEOUT HAS OCCURRED
JB ACC.7,WAITS ;LCD IS BUSY IF D7 = 1
CLR TMOUT
CLR TRO ; STOP TIMER O
SIMP INIT LCD ;LCD OPERATING NORMALLY
'H
CLR TMOUT
DJINZ RO,WAIT4
MOV COUNT, #02 ;LCD ERROR HAS OCCURRED
LCALL ERR_BEEP ;WAIT IN PERMANENT LOOP
*_ LCD:
MoV RO, #LCD_BUF
MoV P2, #0 ;IN CONJUNCTION WITH MOVX RO/R1
Mov A, #FUNCTION ; FUNCTION SET
MOVX €RO,A

TER 3 PAGE 39

TER 3

INC
MOV
MOVX
MOV
LCALL
MOV

LCALL

MOV
MOV
MOV
MOVX
INC
MoV
MOVX
MoV
LCALL
MOV

LCALL

MOV

MoV

MOV

MOVX

INC

MOV

MovX

RO
A, #0

€RO,A

DPTR, #LCD1_CMD_WR

LCD_WR

DPTR, #1CD2_CMD WR

LCD_WR

RO, #LCD_BUF
P2, #0

A, #MODE
€RO,A

RO

A, #0

@RO,A

DPTR, #LCD1_CMD_WR

LCD_WR

DPTR, #LCD2_CMD_WR

LCD_WR

RO, #LCD_BUF
P2,#0

A, #DSP_ON_OFF
@RO,A

RO

A, #0

€RO,A

PAGE

40

ASSEMBLER CODE LISTING

;EOS

7+IN CONJUNCTION WITH MOVX RO/R1

;MODE SET

; EOS

; IN CONJUNCTION WITH MOVX RO/R1

;LCD ON

;EOS

'EST:

TER

3

MOV
LCALL
MOV

LCALL

LCALL

LCALL

MOV
LCALL
MOV

LCALL

MOV
MOV
MOV
MOVX
INC
MOV
MOVX
MOV
LCALL
MOV
LCALL
MOV

LCALL

DPTR, #LCD1_CMD_WR
LCD_WR
DPTR, #1.CD2_CMD WR

LCD_WR

CLS1

CLs2

DPTR, #MSG1
CODE_TO_LCD
DPTR, #LCD2_DAT WR

LCD_WR

RO, #LCD_BUF

P2, #0

A,#CLR DSP

&RO,A

RO

A,#0

€RO,A

DPTR, #LCD1_CMD_WR
LCD _WR

DPTR, #MSG3
CODE_TO _LCD

DPTR, #LCD1_DAT WR

LCD WR

PAGE 41

ASSEMBLER CODE LISTING

;32KBYTES X 8

;IN CONJUNCTION WITH MOVX RO/R1

;CLEAR DISPLAY & RESET CURSOR

;EOS

ASSEMBLER CODE LISTING

MOV DPTR, #0 ; START ADDRESS
MOV RO, #0FFH
MOV R1,#7FH
MOV A,#33H ;WRITE PATTERN TO RAM
JOP1:
MOVX @DPTR, A
INC DPTR
DINZ RO,RAM LOOP1
MoV RO, #0FFH
DINZ R1,RAM LOOP1 ;8000H LOCATIONS
MOV DPTR, #0 ;START ADDRESS
MOV RO, #0FFH
MoV R1,#7FH
ooP2:

MOVX A, 8DPTR ;READ PATTERN FROM RAM
INC DPTR
CJINE A,#33H,RAM ERR ;PATTERN NOT THE SAME
DJINZ RO,RAM_LOOP2

7 MOV RO, #0FFH
DJINZ R1,RAM LOOP2 ;8000H LOCATIONS
LCALL CLS51
MOV DPTR, #MS5G4
LCALL CODE_TO_LCD
MoV DPTR, #LCD1_DAT WR
LCALL LCD WR
SIMP INIT VARIABLES

TER 3 PAGE 42

ASSEMBLER CODE LISTING

RR:
MoV RO, #LCD_BUF
MOV P2, #0 ;IN CONJUNCTION WITH MOVX RO/R1
MoV A,#CLR_DSP ;CLEAR DISPLAY & RESET CURSOR
MOVX @RO,A
INC RO
MoV A, #0 ‘ ; EOS
MOVX @RO,A
MOV DPTR, #LCD1_CMD_WR
LCALL LCD_WR
MOV DPTR, #MSG2
LCALL CODE_TO_LCD
MoV DPTR, #LCD1_DAT WR
LCALL LCD_WR
Mov COUNT, #04
LCALL ERR_BEEP

_VARIABLES:
CLR ENQ_FULL
CLR | ENQ FLAG
CLR REC_FLAG
CLR CRD ON_OFF
CLR QUE_FULL
CLR QUE_FLAG
CLR CRD_FLAG i
CLR TMOUT
CLR RX DLE
CLR RE TX_FLAG

TER 3 PAGE 43

ASSEMBLER CODE LISTING

CLR DRAW1 FLAG
CLR DRAW2 FLAG
CLR IS _DATA
CLR KEY_ FLAG
CLR LOCK_FLAG
CLR TX_BUF_FULL
CLR RX_BUF_FULL
MoV QUE_COUNT, #0
MoV CRD_COUNT, #0
MOV KEY_COUNT, #0
MoV RX_MODE, #0
MOV ADDR1, #0
MOV ADDR2, #0
MOV LED COUNT1, #OFFH
MOV LED COUNTZ, #09H
MOV RO, #LED_BUF ;INIT LED_BUF
MOV R1, #04
MOV A,#0
LO0P1:
MOV P2, #0 ;IN CONJUNCTION WITH MOVk RO/R1
MOVX @RO,A
INC RO
DJINZ R1,INIT LOOP1
{YB:
MOV DPTR, #KYB_CMD ; ENCODED SCAN, 2 KEY LOCKOUT
MoV A,#24H ;F= 333KHz. DIVIDE 1.8MHz CLK BY

;4

.3 PAGE 44

ASSEMBLER CODE LISTING

MOV A,#2EH sF= 1.6MHz. DIV 9.216MHz CLK BY
;15
MOVX @DPTR, A
JK_ADDR_STAT: ;LOCK AND DIP SW ON SAME ‘'LS5245
MOV DPTR, #LOCK_JMP ;READ STATUS
MOVX A, BDPTR
MOV DPTR, #LOCK_STAT ;STORE STATUS
MOVX @DPTR, A
1 ADDR:
ANL A, #0FH ;LS NIBBLE FOR DEVICE ADDR
MOV BIN ADDR,A
LCALL CLS1
MOV A,BIN_ADDR
LCALL HEX TO_DEC ;2 BYTE ASCII EQUIV IN LCD_BUF+3
MoV DPTR, #L.CD_BUF+3 ;COMMS PROTOCOL USES ASCII
MOVX A, 8DPTR ;READ ADDR2
MOV ADDR2 ,A
DEC DPL
MOVX A, @DPTR ; READ ADDR1
MOV ADDR1,A
MOV DPTR, #LCD1_DAT WR
LCALL LCD_WR
C_STAT:
MOV DPTR, #REC_STAT ;CLOSED = 0, OPEN = 1
MOV A,#0 JINIT ACC
MoV c,P1.7 ;READ REC STATUS
RLC A ;ACC CONTAINS 0/1

3 PAGE 45

MOVX
Y1 STAT:
MoV
MOV
MOV
RLC
MOVX
W2 STAT:
MOV
MOV
MOV
RLC
MOVX
T SCAN:
CLR
LCALL
M _NUM:
LCALL
MoV

LCALL

Mov
MOV
MOVX
INC
MOV

MOVX

@DPTR, A

DPTR, #DRAW1_STAT
A, #0

C,P1.4

A

@DPTR, A

DPTR, #DRAW2 STAT"

A, #0
C,P1.6
a

@DPTR, A

SCAN_FLAG

INIT_SCAN

CLSs1
DPTR, #MSG5

CODE_TO_LCD

DPTR, #LCD_BUF+22
A,ADDR1

@DPTR, A

DPTR

A,ADDR2

@DPTR, A

PAGE 46

ASSEMBLER CODE LISTING

; SAVE REC STATUS

;CLOSED = 0, OPEN
;INIT ACC

;READ DRAW STATUS
;ACC CONTAINS 0/1

;SAVE DRAW STATUS

;CLOSED = 0, OPEN
;INIT ACC

;READ DRAW STATUS
;ACC CONTAINS 0/1

; SAVE DRAW STATUS

ASSEMBLER CODE LISTING

MOV DPTR, #LCD1_DAT_WR
LCALL LCD_WR
LCALL BEEP
ﬁXIT:
SETB ES ;ENABLE SERIAL INTERRUPT
RET
) ’ﬁ***
:iﬂ***
; fREAD 8279 FOR KEYBCARD DEPRESSIONS *
B: i} *
‘0OR CASES WHERE A 1 BYTE REGISTER IS USED INSTEAD OF THE DPTR *
JOR EXTRENAL DATA TRANSFERS, THE ADDRESS AREA IS ONLY 256 BYTES *
{?0 IS THE LOWER 8 BIT ADDRESS, P2 IS THE HIGHER 8 BIT ADDR *
.:HRST WRITE 00 TO P2, BEFORE WR/RD FROM EXTERNAL DATA SPACE *

0 IS USED TO ACCESS KEY BUF IN EXTRENAL DATA *
{EY_COUNT MUST BE ADDED TO KEY BUF TO GET CORRECT OFFSET, KEY COUNT *
JusT ONLY BE CLEARED ONCE THE KEY BUF HAS BEEN EMPTIED *
HEN KEY_BUF IS FULL, SET A FLAG ' *

*

. {EY_FLAG INDICATES KEY VALUE IN KEY_ BUF *

D ikkkkkhkkhkkhkhkhkhhkhkhkhhkkhhhkkhhdkhkhhkhkkhkhhhkhhdkhhkkhhkhhkhhhhkhhdhdbkkhdhkdhrkhhkk

: JEAD:
PUSH DPL,

PUSH DPH

: iIR 3 PAGE 47

LOP1:

IRQ

ER

3

JB

MOV

CJNE

SJMP

MOV

MOVX

ANL

JZ

MOV

MOVX

JNZ

MOV

MOVX

MOV

MOVX

MOV

MOVC

MOV

MoV

MoV

ADD

ASSEMBLER CODE LISTING

QUE_FULL, DUMMY READ

A,KEY_ COUNT
A,#08,CHK_IRQ

DUMMY READ

INTO,KYB EXIT
DPTR, #KYB_CMD
A, 8DPTR

A, #0FH
KYB_EXIT
DPTR, #KYB_CMD
A, @DPTR
A,#30H
KYB_ERR

A, #50H
€DPTR,A

DPTR, #KYB_DAT

A, @DPTR

DPTR, #KEY_TAB

A, @A+DPTR

DPTR, #KEY_BUF
B,A
A,DPL

A,KEY_COUNT

PAGE

;CHK IF KEY_ BUF IS FULL

;IF 8279 IRQ 'L', NO KEY DEPRESSED

;READ 8279 STATUS

; NUMBER OF KEYS IN FITYO, BUFFER FULL
sIF ACC = 0, THEN NO KEYS IN FIFO

;READ STATUS

; CHECK OVER/UNDERRUN FLAG
;1 OF THE 2 BITS WAS SET

;WR TO 8279, ALLOWING US TO READ FIFO

;READ FIFO

;READING FIFO

; CONVERT RAW KEY VALUE

;STORE CONTENTS OF ACC
; LOWER ADDR OF KEY_BUF

;EVERY KEY, INCREASE OFFSET TO

48

JUF
MOV
MOV
MOVX
SETB
INC
LCALL
SJIJMP
ERR:
MOV
SJMP
W READ:
JNB
MOV
MoV
MOVX
MCV
MOVX
EXIT:
POP

POP

RET

DPL,A
A,B
@DPTR, A
KEY_FLAG
KEY COUNT
BEEP

KYB_LOOP1

KEY_ COUNT, #0

KYB_EXIT

INTO,KYB_EXIT
DPTR, #KYB_CMD
A, #50H
@DPTR, A

DPTR, #KYB_DAT

A,@DPTR

DPH

DPL

ASSEMBLER CODE LISTING

;OFFSET ADDR OF KEY_ BUF
;RESTORE A

;WRITE KEY_ VAL TO KEY_ BUF
;KEY DATA AVATLABLE

;COUNT # OF KEYS IN BUFFER

;RD NEXT KEY DEPRESSION

;IF 8279 IRQ 'L', NO KEY DEPRESSED
; READ STATUS

;WR TO 8279, ALLOWING US TO READ FIFO

;READ FIFO

;READING FIFO

tdkkkdkkdhkhkhkdrkhkhkhkhkkhkihkhkhkkhkhdkkhdhkhrhrhhkkkhkhkhhhkkhkihhkhhhhkhkhkhhhkhhhrhhkhhh

&R 5

PAGE 49

ASSEMBLER CODE LISTING

phEk Ak Ak hkhkhkhkrbrbhbhibbdbbbbkthbbdibbrbhrdbbrdhdbdidhbbdbhbtdbdbdbrrhdrrhbids

CONVERT HEX VALUE INTO ITS DECIMAL ASCII EQUIVALENT. *
*

oN ENTRY: *
ACC = BYTE TO BE CONVERTED *

Tia 2222 P A e B EEEE RS EEEEREEEELETEELLEESFLTLTERELE FELEETERL TSN

T0_DEC:
MoV R1l,A ; SAVE ACC
MOV RO, #LCD_BUF+3
MOV A, #SPACE
MoV P2, #0 ;IN CONJUNCTION WITH MOVX RO/R1
MOVX €@RO,A
DEC RO
MOV P2, #0 ;IN CONJUNCTION WITH MOVX RO/R1
MOVX €RO,A
DEC RO
MOV P2,#0 ;IN CONJUNCTION WITH MOVX RO/R1
MOVX €RO,A
DEC RO
MOV P2, #0 7IN CONJUNCTION WITH MOVX RO/R1
MOVX @RO,A ;CLEAR OLD DATA FROM LCD BUF
MOV RO, #LCD_BUF+4
MOV A, #EOS
MOV P2, #0 ; IN CONJUNCTION WITH MOVX RO/R1
MOVX €RrRO,A
DEC RO

TER 3 PAGE 50

ASSEMBLER CODE LISTING

Pl:
MOV B, #10 ;DIVIDE ACC BY 10
MoV A,R1 ;RESTORE ACC
DIV AB ;REMAINDER IN B
ORL B, #30H ;ASCII NUMBER
MOV R1,A ;SAVE ACC
MoV A,B
MoV P2, #0 ;IN CONJUNCTION WITH MOVX RO/R1
MOVX €RO, A ;WRITE TO LCD_BUFF |
DEC RO
MOV A,R1 ;RESTORE ACC
SUBB A, #09 ;CHK IF QUOTIENT < 10
MOV A,R1
JNC H_LOOP1
ORL A, #30H
MoV P2,#0 ;IN CONJUNCTION WITH MOVX RO/R1
MoOVX @RO,A
RET

kkkkhkkhkkhkkhkhkhkkkhkhkhhkhhkkhkhkhkkkhkhkkkhhkkhkkkkkhkhhkkkhkkhkkhkkhkkkkhhkhhhkhkhkhhhhkhkhhhik

kkkkkhkkkhkkhkkhhhkhkhkkhkkhhkhkhkhkhkhhhhhhkhrkhkhkhikhhkhhkkkdhkhhkkkhhkhkhkkhhkkhkhkdhkikhkkhkkihkk

THIS ROUTINE CONVERTS A HEX BYTE INTO ITS 2 BYTE ASCII EQUIV + EOS. *
MOVE INTO ACC THE SOURCE BYTE OF THE HEX VALUE TO BE CONVERTED *
THE STRING WILL BE WRITTEN TO LCD_BUF, WITH EOS. *

*
ON ENTRY: | *

TER 3 PAGE 51

ASSEMBLER CODE LISTING

ACC = BYTE TO BE CONVERTED *

pkkkkkkdhkkdhhkhhkhkkhkhhhkhhkdhbhhhkhhkbhkhhkhhkhhhhkhkhkdrhkhhhkdhhkhhhhkokhhbhhdhkkkkk

70_ASCII:
MOV RO,#LCD_BUF+1 ;DESTINATION BUFFER
MOV P2, #0 ;IN CONJUNCTION WITH MOVX RO/R1
MOVX 8RO, A ;WR TO LCD_BUF+1
DEC RO |
SWAP A
ANL A, #0FH
ADD A, #30H
MOV R1,A
CLR c ;CHECK FOR ALPHA CHAR
MoV A, #39H
SUBB A,R1
MOV A,R1 ;A = NUMERIC CHAR
JNC HEX_ LOOP1
ADD ' A, #07 ;A = ALPHA CHAR

LOOP1:
MoV P2, #0 ; IN CONJUNCTION WITH MOVX RO/R1
MOVX @RO,A ;WRITE LCD_BUF |
INC RO ;BACK AT LCD BUF+1
MoV P2, #0 ; IN CONJUNCTION WITH MOVX RO/R1
MOVX A, €RO ;READ LCD_BUF+1
ANL A,#0FH
ADD A, #30H
MOV R1,A ;R1 USED FOR SUBB
CLR C ;CHECK FOR ALPHA CHAR

"ER 3 PAGE 52

MOV
SUBB
MOV
JNC
ADD
}OOP2:
MoV
MOVX
INC
MOV
MOV

MOVX

RET

A,#39H
A,R1
A,R1
HEX_LOOP2

A,#07

P2, #0

@RO,A

RO

P2, #0

A, #EOS

@RO,A

ASSEMBLER CODE LISTING

;ALPHA CHAR

;IN CONJUNCTION WITH MOVX RO/R1

;WRITE LCD_BUF+1

;IN CONJUNCTION WITH MOVX RO/R1

thkkdhkhkhkhkhkhkkkhkhkhkkhkhkkhkhkkhkhkhkhkhkhkkhhkhhkkkhkkhhkhkhkhhkhhhkkhtkkhhhkrthrhhkhkhkrhhkhkkikhhhkkik

thkkdkhkkhkhhkhkkhhkhkkkkhkhkhkhkhkhkhkhkhkhkhkhkkkkhkkhhhhhkhkhhkhhhkhhhkihkhkkhkkhkhkhhkhkkhkkhthRkkhhk

WRITE TO LCD DISPLAY, DISPLAY CONTENTS OF LCD_BUF *

ON ENTRY:

*

*

DPTR = LCD ADDRR IE LCD1 / LCD2 *

hkhkdkkhkkhkhkkdkhkhkhkhkkhkhkhkkhkhkhkhkhhkhkkhkhkhkhkhkkkkhkhkkhhhkkkhkhhkkhkhkhhkhkhkkhkkkhkhkhhhkhkikhhk

WR:
JB
MOV
MOV
-LOOP1:

'ER 3

LCD_ERR,END LCD_WR

RO, #LCD_BUF

COUNT, #1

; INIT COUNTER

PAGE 53

LOOP6 :

LOOP2:

LOOP3:

'ER 3

PUSH

CLR
MOV
MOV
MOV

SETB

MOVX
JB
JB
CLR
PopP
MOV
MOVX
CJINE

SJMP

MOVX

MOV

CJINE

MOV

DJINZ

MOV

DINZ

ASSEMBLER CODE LISTING

DPL

TRO ; STOP TIMER 0

THO, #0 ;USED FOR TIMEOUT LOOP
TLO, #0

DPL, #01 ;READ LCD ADDR X0001H

TRO ; START TIMER 0

A, @DPTR ;READ BUSY FLAG, LCD STAT

TMOUT,1LCD ERR1 ;TIMEOUT HAS OCCURRED

ACC.7,LCD_LOOP2 ;LCD IS BUSY IF D7 =1

TRO ;STOP TIMER O

DPL ;RESTORE ORIGINAL ADDRESS

P2,#0 ; IN CONJUNCTION WITH MOVX RO/R1
A, QRO ;READ LCD BUFFER

A,#EO0S,LCD LOOP3

END_LCD WR {EOS FOUND, THEREFORE EXIT
@DPTR,A ;WRITE TO DISPLAY
A, #16 ;AFTER 16 CHARS, WRITE TO LINE #2

A,COUNT,LCD_LOOFP4

R7,#0FFH
R7,$
R7, #0FFH

R7,$

PAGE 54

LOOP4:

LOOPS5:

ERR1:

TER 3

MOV
PUSH
MOV
MOVX
POP
MOV
DINZ
MOV
DINZ

SJMP

Mov
CIJNE
MOV
PUSH
MOV
MOVX

POP

INC

INC

SIMP

POP

A,#LINE 2
DPL

DPL, #0
@DPTR, A
DPL
R7,#0FFH
R7,$
R7,#0FFH
R7,$

LCD_LOOPS

A,#32

ASSEMBLER CODE LISTING

;WRITE LCD X000H CMD WR

;RESTORE ORIGINAL ADDRESS

;AFTER 32 CHARS, WRITE TO LINE #1

A, COUNT,LCD_LOOPS

A, #LINE 1
DPL

DPL, #0
@DPTR, A

DPL
RO
COUNT

LCD_LOOF1

DPL

PAGE

;WRITE LCD X000H CMD_ WR

sRESTORE ORIGINAL ADDRESS

;NEXT CHARACTER TO DISPLAY

;MUST POP OFF STACK,ELSE THE
;WRONG VALUE IS ON THE STACK

;FOR THE NEXT INSTRUCTION

55

ASSEMBLER CODE LISTING

MOV COUNT, #02

LCALL ERR BEEP
LCD_WR:

RET

T3 222223 b L2322ttt 22 2 222 222 X222 222 2 222 2 2 2 X X2 2 3 2

kkkkhkdkkhkhkhkhkkhkhkhkhkhkkhkhkhkhkhhkhkhkkhkkhkbhihhkhhohkkdhhhhhhbhhkhkdhkhkhkhkdhhhdhddhrhkhrhdnx

'LEAR LCD #1 *

[B: THIS ROUTINE OVERWRITES LCD_BUF %

hkkhhkkhkhkdhkkkkhkhkkdhhrhkkhkhkhkhkkkhkhhkhkhhkhkkhkkkhkhhhhhkhkhkhkhkhhkhkhkhkkhkhkkhhkkkkkkkh

MOV RO, #LCD_BUF

MOV P2, #0 ;IN CONJUNCTION WITH MOVX RO/R1
MOVX A, @RO

PUSH acc ;SAVE FIRST 2 BYTES OF LCD_BUF
INC RO

MOVX A, @RO

PUSH acc

MOV RO, #LCD_BUF

MOV A,#CLR DSP ;CLEAR DISPLAY & RESET CURSOR
MovX €RO,A

INC RO

MOV a,#0 ; EOS

MOVX @RO, A

MOV DPTR, #LCD1_CMD WR

'ER 3 PAGE 56

LCALL

MOV

MOV

FOP

MOVX

DEC

POP

MOVX

RET

LCD _WR

RO, #LCD_BUF+1
P2, #0

ACC

@RO,A

RO

ACC

@RC,A

ASSEMBLER CODE LISTING

;IN CONJUNCTICN WITH MOVX RO/R1

kkkhkkhkhkhkhhkhkhkhkhkrkhkhhhhhkXxAAxARAAIXRhrhkkdkdhrrdhrdhkdhhrhhdkddhihhhkhdhdhhhrhdhhhkhtxk

kkkdkhkkhkhhkdhhhhkhhhhdkdhhhhhhhhkkhkhkhkhhhhhhhhkhkkhhkhhhhhkkdhdhhhhkhdkhhhhhikdhdk

LEAR LCD #2

VB: THIS ROUTINE OVERWRITES LCD_BUF

*

*

kkkkhkhkhkhkkhhkhkhkhkhkkhkhkhkkkhkhkkhhhhkhkhkkkkhhhhkdhhdihkkkhthkhhhkhhkhhhhhkhkdkhdhhkkhkhhkkd

MOV

MOV

MovX

PUSH

INC

MOVX

PUSH

MOV

ER 3

RO, #LCD_BUF
P2, #0

A, @RrRoO

Acc

RO

A, €R0

ACC

RO, #LCD_BUF

PAGE 57

; IN CONJUNCTION WITH MOVX RO/R1

;SAVE FIRST 2 BYTES OF LCD_BUF

MOV

MoV

MOVX

INC

MOV

MOVX

MOV

LCALL

MOV

MOV

POP

MOVX

DEC

POP

MOVX

RET

P2, #0

A,#CLR_DSP

@RO, A

RO

A, #0

@RrRO,A

DPTR, #LCD2_CMD WR

LCD_WR

RO, #LCD_BUF+1
P2,#0

ACC

€RO,A

RO

AcCC

@RO,A

ASSEMBLER CODE LISTING
;IN CONJUNCTION WITH MOVX RO/R1

;CLEAR DISPLAY & RESET CURSOR

; EOS

+IN CONJUNCTION WITH MOVX RO/R1

khkhkhkkhkhkkhkhhkkkkhhkkkkhhhhhhkhkhkkkkhkhkkhhkkhkhkkhkkhkkhkkkkhkkkkkhhkkhkhkkhkkkhkkhkkkkhkhhik

TER 3

PAGE 58

ASSEMBLER CODE LISTING

kkkhkkkhkhkhkhkhkhkkhkkhhkhthhhkhhkhkhkkhkhhkhkkhkkhhkhkhkhkkkhkkkhhkhkhkhkhhkhhkhkhkhkkkhkhkhkikhkhkhkhkkhkhik

TRANSFER DATA FROM CODE AREA TO EXTERNAL DATA INTO LCD BUF *
FIRST SETUP SOURCE REGISTERS = DPTR *
*

ON ENTRY: %
DPTR POINTS TO SQURCE BUFFER *

khkkkkkhkkhkhkhhkkkkhhhhhhdkhhkhhhkkhhkhkhhhhkhkhkkhhthkhhkhhkhkhkhkhhkhkhkhhkkhhhhhkhhkrhkx

_TO_LCD:
MOV RO, #LCD_BUF ;DESTINATION REGISTER

_LOOP1:
MoV A, #0
MOVC A,@A+DPTR ;READ CODE
MoV P2,#0 ;IN CONJUNCTION WITH MOVX RO/R1
MOVX @RO,A ;WRITE TO INTERNAL DATA SPACE
INC RO
INC DPTR
CJINE A, #E0OS,CODE_LOOP1
MOV A, #0 ; ENSURE THAT EOS IS ADDED INTO BUFFER
MoV P2, #0 ; IN CONJUNCTION WITH MOVX RO/R1
MOVX 6RO, A
RET

kkdkhkhkhkhkhkhkhkhkhkdkkkikkhkhhkkhkkhkhkhkhkhkhkrtrkhhkhkhhkhkhhhhkhhkhkhhhhhkhkhkhhhkhhkhhxhkrhiktihk

"ER 3 PAGE 59

ASSEMBLER CODE LISTING

phakdkkdkdkkdkhdkhhkhkhhhhhhkhkdkdhhddhdhhhkrxhkkhkhhrhhhkhhhkkhddkhhthhhrhkhhohhkhkhhkdhkrdhddhihtik

'RANSFER DATA FROM INTENAL DATA AREA TO INTERNAL DATA INTO TEMP BUF *
*

N ENTRY: *
R1 POINTS TO SOURCE ADDRR *

tkkhkdkkdkhkkkhkhkkhhhkhkhhhkhhhhkdkhdhkhkhkixdbhhhrhhhhkkdhhhhhhkhhkrthhkrhhhhkkdrhhhhhhhhhhdi

_TO_TEMP:
MOV RO, #TEMP_BUF ; DESTINATION REGISTER
_LOOP1:
MOV A,@R1 ;READ SOURCE BUFFER
MOV €RO,A ;WRITE TO INTERNAL DATA SPACE
INC RO
INC R1
CINE A,#EOS,IDATA_LOOP1
RET

kkkkkdkkkkkhkhkhkkhhhhhhkkrkhhkkhhkhdhhhkkhhkhhkhkkhkhkhkhkhhhkkkhkkhkkhkhhhhixhohkkkhkkhkrkkk

kkkkdkhkhkhkkhkhkhhhhhhbhkkhhhkhkkhbhkhkhdhkhhkhhhthkhkhkhkhhkhkdirhkhrkhkhkhhkkhkhkhhkhhrrhin

3EEP THE BUZZER *

khkdkkkkhkhkkhkkkbAthrdbbtdhkdhbhdkhbkhkbbhdddbdbbdbrthbdhdbhrrrdbddhbhbbhrkbbtbiddr

PUSH DPL

PUSH DPH

MOV DPTR, #BUZZER
MOVX @DPTR, A

POF DPH

TER 3 PAGE 60

ASSEMBLER CODE LISTING

POP DPL

RET

kkkkdkkkhkhhkhhikhkhhhhkhkhrhkkhkhhhkhkhkhkhkkhkhkrhhhkhkhkhdhkhkdrhirthhddrhhhbkhkdrhkhkdhkhkhdhrhxhik

kkdkhkkhkkhkhkhkhkhkhkhhhkhhhhhhrhrkhhhhbhhhrdhhhkhkhrhkkhrbhbhhdhkhbhhkhdhokhkhbhhhkhhddikihhkx

WRITE A CERTAIN VALUE TO LEDS *
*

ON ENTRY: *
ACC = VALUE TO WRITE TO LEDS *

kkkkhkkkhkhkkhhhkhkdkhkkhkhkhhhkhhkhhkhkhhhrhhkhhhkhkhhkhhhkhhhhhhhkhhhhkhkkhkkhkhkkikkhkhkkhkikhrhki

PUSH DPL
PUSH DPH

MOV B, P2

PUSH B

MOV DPTR, #LED_2

MOVX @DPTR, A

JINB P1.6,$;WAIT FOR 'H'
JB P1.6,$;WAIT FOR 'L
POP B

MoV P2,B

POP DPH

POP DPL

TER 3 PAGE 61

ASSEMBLER CODE LISTING

RET

kkkkkhkhkkhkkdkkkhkhkthkhhhkhhhhhkhkhhbhhkhhkhkhhkhhhhhkhdhhhhhkhhhkkhhhhkhhkhkhrhhthihhikh

kkkkkkkrhhkhhkkhk Ak kkhhkkhrhkhhhkhkhkkhhhhhhkrkhrdkhkhrrr kAR khhhkhrkkhhhkdhrhhk
BEEP THE BUZZER TO INDICATE A PARTICAULAR ERROR. COUNT CONTAINS *
OF TIMES TO BEEP.

LCD ERROR *

2 BEEPS =
3 BEEPS = RAM ERROR, LOWER 256 BYTES *
4 BEEPS = RAM ERROR, SOMEWHERE IN THE 32K ELOCK *
5 BEEPS = ROM ERROR *
6 BEEPS = STACK OVERFLOW *
*
JN ENTRY: *
COUNT = # OF BEEPS *

kkkhkhkkhkhhkhkdkkkhkhhkhhkhbkhkhkhkhkdhhkhkhhhkhkhkkhdhdhkhkthkhkhkhkhhthrdkhkhkhthkhkkhktththhthhhtrthid

3EEP:

JO0P1:
LCALL BEEP
MOV RO, #0FFH
MOV R1, #0FFH

00P2:
DINZ RO, ERR_LOOP2
MoV RO, #0FFH
DINZ R1,ERR _LOOP2
DJINZ COUNT, ERR_LOOP1
JMP $;**%%%%*SIT IN PERMANENT LOOP

ER 3 PAGE 62

RET

TEST LCD1

;T LCD1:
MOV
MOV
MOV
MOV
pooplz
MOVX
INC
INC
DJINZ
LCALL
MOV

LCALL

RET

RO, #LCD_BUF
R1,#20H
A,#41H

P2,#0

@RO,A
RO

A
R1,T_LOOP1

CLS1

ASSEMBLER CODE LISTING

ikEkddkhddkddkdkhhkhdhhhkdkhkhhhhkhkhkhkhhkhhkhkhhkhhhhhhhkhhkdhhddhrhhkrdhhhdhhhdhhhbhhhthkd

ykkkkkhkhhkhkkkhhkhkihhikhhkhhkhkdhkhkkhkhkkhhhhkhkkhkhkhkhkhhkhkhkhkhkhkhkhkhhhkhkhkhkhkhkhkkhkhhkhhkkhkhkkxk

*

kkkhkkdkhdhkhkhkhhkhihkhhkhkhhhkkhkhkkkhkkhkhkhhkhhkhhhhkhkhkhhkkhkhhkkihkkkhkhkhkkhthhkhkhhhkhhrnhkik

;IN CONJUNCTION WITH MOVX RO/R1

DPTR, #LCD1_DAT WR

LCD_WR

thkkkkhkhkhhhkhhkhkrkhhhkhkhhkhhkhkdhhhkhkkhhkhhhkrhrhkkhkhkhkdhhkhhrhkhkhdhhdddhkkhkhkkhhkkhrhkhkkik

l"-PTER 3

PAGE 63

ASSEMBLER CODE LISTING

T2 22222 2222 2R YRR R AR LR RS LR AT S A R T ESTE YT R ET

TEC 72 KEY KEYBOARD, FOR H.KEOWN'S (V1.0) INTELLIGENT TERMINAL *

hkkhkkkkhkhkkhkhkhkhkkhkhhhhhhhkhkhhkhhkhkhkhkhkhkhhkhhkhrhhhhkhkhkhkhhhhhkdkhkhkhhkdbhkhkhkkhkhdrkhhxi

LTAB:
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB

DB

00,04,13,22,31,54,45,27,00,03
12,21,30,53,44,26,00,19,46,65
56,38,47,39,00,00,00,00,00,00
00,00,00,00,00,00,00,00,00,00
00,02,11,20,29,50,41,23,00,10
37,55,66,51,42,24,00,01,28,64
67,52,43,25,36,18,09,63,72,00
00,00,35,17,08,62,71,00,00, 00
40,48,49,58,57,00,00,00,00,00
00,00, 00,00,00,00,00,00,00,00
00,00,00,00,32,14,05,59,68,00
00,00,33,15,06,60,69,00,00,00

34,16,07,61,70,00,00,00

;00 - 09
;10 - 19
;20 - 29
;30 - 39
;40 - 49 -
;50 - 59
;60 - 69
;70 = 79
;80 - 89
;90 - 99
;100 - 109
;110 - 119
;120 ~ 129

tikkkhkkhkhkkhkhhhkkkkhdhkkhrhihkhkrkhkikkhkhkhkhkkhkhkhkihkhhkhhhkhhkhhkkhkhkrhhhkhrkhkhkkkikkik

Fhkkhkkhkkkhhkhkhkhkhhkhkhhkhkkhkhkhhhkhkhkhkhhhkhkhhkhkkkkhkhhkhkhhkhhkhkkhhkhkhkhhhkkhhhkhkkhhhhhkkdh

* TEC 84 KEY KEYBOARD, ITALIAN KEYBOARD

*

Fekdkkkddmkhhbhdbhded bk hkd kbRt hkhhhkhkhkhkhkhkhhhkhkhrhkkhkkhhkhkkhhkhkkhkhkhkkhkkhkkkkkdhik

KEY _TAB:
DB
DB

DB

PTER 3

00,00,00,00,00,00,00,00,84,83
82,81,79,80,78,76,36,35,34,33

31,32,30,28,24,23,22,21,19,20

PAGE 64

;00 - 09
;10 - 19
120 — 29

ASSEMBLER CODE LISTING

DB 18,16,12,11,10,09,07,08,06,04 ;30 - 39
DB 48,47,46,45,43,44,42,40,60,59 ;40 - 49
DB 58,57,55,56,54,52,72,71,70,69 ;50 - 59
DB 67,68,66,64,00,00,00,00,00,00 ;60 - 69
DB 0o0,00,77,75,74,73,00,00,00,00 ;70 - 79
DB 29,27,26,25,00,00,00,00,17,15 ;80 - 89
DB 14,13,00,00,00,00,05,03,02,01 ;90 — 99
DB 00,00,00,00,41,39,38,37,00,00 ;100 - 109
DB 00,00,53,51,50,49,00,00,00,00 ;110 - 119
DB 65,63,62,61,00,00,00,00 ;120 - 129

fapkkkkhkdhhhhkhhkhkhkkdhhkkddhkrhkdhkhkhhrhkhhhhhhdhhhkhkdrhhhhhhkhhhhkhhhhhhhhkhhkkhkkhkhhhhk

1

kkkkkkhkkhkhkhkhkhkkdkhkhkhkixhhkhkhkkhhhkhkkhkhkhkhhhhkhhhhkhhkhhkhkhkkhkhkhkhhkhhhhkhhkkhkkhhkkihkkkx

T T NG Y

XEY_TEMPLATE:

DB 00,00, 00,00,00,00,00,00,00,00 ;00 - 09
DB 00,00,00,00,00,00,00,00,00,00 ;10 — 19
DB 00,00, 00,00,00,00,00,00,00,00 - ;20 ~ 29
DB 00,00,00,00,00,00,00,00,00,00 ;30 - 39
DB 00,00,00,00,00,00,00,00,00,00 ;40 - 49
DB 00,00,00,00,00,00,00,00,00,00 ;50 = 59
DB 00,00,00,00,00,00,00,00,00,00 ;60 — 69
DB 00,00, 00,00,00,00,00,00,00,00 ;70 = 79
DB 00,00,00,00,00,00,00,00,00,00 ;80 - 89
DB 00,00,00,00,00,00,00,00,00,00 ;90 - 99
DB 00,00,00,00,00,00,00,00,00,00 ;100 - 109
DB 00,00,00,00,00,00,00,00,00,00 ;110 - 119

EMQTER 3 PAGE 65

ASSEMBLER CODE LISTING

DB 00,00,00,00,00,00,00,00 ;7120 - 129

;H**

H**

MSGL: DB '*ADS* THE POWER AT POINT OF SALE',O
;5(;1: DB ' THE POWER AT POINT OF GSALE',O0
ilsgz: DB '**%k*x%**RAM ERROR AT POWER-UP***%%' Q
[5G3+ DB ' PERFORMING RAM TEST ',0
iSGLI: DB 'PASSED RAM TEST! ',0
SG5: DB 'PASSED RAM TEST!TERM # vi.2',0

INCLUDE (EQUATES.ASM)

END

\PTER 3 PAGE 66

i ASSEMBLER CODE LISTING

102.ASM

*

AME INPUT_OUTPUT_ MODULE_2

ALL I O ROUTINES IN THIS MODULE

l
**

JUBLIC LED ON_OFF, LED FLASH, LOCK_READ, DRAW1 READ, DRAW1 OPEN, CRD_READ
4BLIC DRAW2 READ, DRAW2 OPEN, WAIT, REC READ
g .

i

JTRN DATA (COUNT, TEMP BUF, LED COUNT1, LED COUNT2, CRD_COUNT)

_.;ﬁmq BIT (LED_FLAG, LOCK FLAG, DRAW1 FLAG, TMOUT, CRD_FLAG, CRD ON_OFF)
XTRN BIT (REC_FLAG, DRAW2_ FLAG)

i

|

IXTRN XDATA (LOCK_STAT, DRAWl STAT, KEY BUF, RX BUF, TX BUF, LED_BUF,
:éD_BUF)

Q_RN XDATA (REC_STAT, DRAW2 STAT, LCD BUF)

4
i

EBTRN ~ CODE (INIT HARDWARE, LCD_WR, CODE TO LCD, BEEP, TEST, KYB_READ)
TRN CODE (IDATA TO TEMP, HEX TO ASCII, HEX TO DEC, CLS1)

ﬁ***

I_;O__Z__S EG SEGMENT CODE sRELOCATABLE CODE SEGMENT
5

RSEG I O 2 SEG

CHAPTER 3 PAGE 67

ASSEMBLER CODE LISTING

e e L L L T T T
%* TRANSFER CARD DATA VIA A PORT PIN. WHEN DATA IS AVAILABLE, DATA *
(#+ LINE IS TAKEN 'L' TO INFORM HOST THAT DATA IA AVAILABLE. DATA I5 THEN *

' CLOCKED OUT ON THE FALLING EDGE OF THE CLCCK. TRANSFER 1 BYTE FOR THE *

i STATUS AND 37 BYTES FOR CARD DATA *
|, 38 BYTES X 8 BITS = 304 CLOCK PULSES. LSB IS TRANSFERED FIRST. *
i* IF THERE'S AN ERROR IN READING THE CARD, THEN ONLY THE STATUS BYTE *
E* IS TRANSFERED TO THE HOST. *
g* P3.3 = SERIAL CARD DATA FROM CARD READER TO HOST. ' *
é* P3.4 = SERIAL DATA CLOCK FROM HOST TO CARD READER. *
i *
4+ ON ENTRY: s
é* NOTHING *
]

 oN EXIT: *
i CRD BUF CONTAINS DATA FROM CARD READER *

E**

3

éRDdREAD:

é JB P3.3,CRD EXIT ;LINE 'H', NO DATA AVAIALBLE
MOV CRD_COUNT,#01 ;DEFAULT TO 1 BYTE IN éRD_BUF
MOV RO, #CRD BUF
LCALL SER DATA ;ACC = BYTE READ FROM PORT
MOV P2, #0 ;IN CONJUNCTION WITH MOVX RO/R1
MOVX €RO,A ;SAVE STATUS BYTE

} INC RO

E CINE A,#01,CRD LP2 ;CHK STATUS BYTE, 01=0K OFFH=BAD

MOV CRD_COUNT,#38 ;USED IN CHK TX_BUFFS

?mPTER 3 PAGE 68

I, earmin s dia

ASSEMBLER CODE LISTING

|
: MOV R1,#37 ;37 DATA BYTES TO TRANSFER

D _LP1:
LCALL SER_DATA ;ACC = BYTE READ FROM PORT .
MOV P2,#0 ;IN CONJUNCTION WITH MOVX RO/R1
MOVX @RrRO,A ;SAVE CARD DATA

{ INC RO

| DINZ R1,CRD_LP1 ;READ 40 BYTES OF CARD DATA

'RD_LPZ:

| JNB CRD_ON_OFF, CRD_EXIT ;0 = OFF, 1 = ON

! SETB CRD_FLAG ;STILL NEED TO TX STATUS BYTE

i'iD_EXIT:

I

I RET

kkkkkkkAhkkrhkhkhhkhkkhkhkhkhkhhkrhhkhhkhhkrhhhhhhhhhkkhkhhhkhhrhkkrhkhkhhhhhkhhhhkhkxhkhkdht kbt tih

FkkkkkkdhkhkhkhkkhhhkhkhkhkhkkhhkhhkhkhbkhkhhkhhhhrhkhhhkFdhdxhhhkhkdhhkhikdbhhhkhhhithkhthkhrtrhkhhkhkh

*+ READ 1 BYTE FROM P3.3, CLOCK ON P3.4 *
* *
E

* 1 M/C CYCLE = 1.3 uSEC. ALLOW FOR 20 M/C CYCLES FOR THE BIT *
' TRANSMISSION LOOP. ALLOW 100 uSEC FROM CLK 'H' TO CLK 'L' AND *
* ALSO 100 uSEC FROM THE TIME THE BIT IS READ TILL THE NEXT CLOCK *
lx TRANSISSION *
I *
'* ON ENTRY: *
;* NOTHING *
Tk *
'* ON EXIT: *

APTER 3 : PAGE 69

[
i
|
T

e ACC =

£

BYTE READ

ASSEMBLER CODE LISTING

*

a***

TR _DATA:

i MoV
f CLR
]

R _LP1:

SETB

o o B

LCALL

CLR

LCALL

SETB

MoV

DINZ

SETB

- RET

HAPTER 3

R2,#08 ;8 BITS

A

P3.4 ;CLK 'H'

WAIT

P3.4 ;CLK 'L', READ DATA ON FALLING EDGE
WAIT

P3.3 ;SET BIT AS AN INPUT
c,P3.3

A

R2,SER_LP1

P3.4 ;SET CLK 'H'

PAGE 70

khkkkhkhhhhhhhkhkhhhkhihkkhhkkhkkkhkhhhkkkhhkhkdhhhhhkdthkkkkhhkkhkhhkhhkhhhhkhhhhkhhkhhkhhkhkkd

ASSEMBLER CODE LISTING

&***

i
1

IT:

“IT LP1:

ki

PUSH

MOV

DJNZ

POP

RET

ACC

ACC, #30

ACC,WAIT LP1

ACC

thkkkkkhkhhkhkhkhkhkhhkrkhikhkhhhhkkkhkhhdkhhkkhkhhhhkhhkdkhkhhkhhkhhhkhkhkhhhhkhkhhhkhhhkhrhhkhhi®

akkkhkkkkhkkdkkkhkkdkhkhkhhkhkkkkhkkkhkkkhkhhkkhkhkkhkhhkkkhkhkkhhkhhhhkhhkhhhhkhkhhkhkkhkkhkkkkkdhdik

vkkkkkkkdkhhkhkkkhkhhkhkkhhkhkhhhhhhkhhkhhhhhhkhkhhkbhhdhhhhkhhhhhhhhhkhhkkkhkhhhhhkkkhkkkik

|
LP1:

“APTER 3

MOV

MOVX
LCALL
INC

DINZ

RET

R1, #8

A, QDPTR
TEST
DPTR

R1,T_LP1

PAGE 71

kkkkkkkkkdkhhkhkkhkkhkkhkhhhkhkhhkhhkhhkhhhkhhhkhhkhkhdhkhhhhhhkhkhhhhhkhhkhkhkhkhkhhkhkhkhkhhkhihkd

ASSEMBLER CODE LISTING

*#**

4/THE ASCIT STRING THAT WE RECEIVE WILL HAVE 8 BYTES FOR LED ON/OFF AND *
ﬂLED FLASH. THESE 8 BYTES ARE COMPRESSED INTO 4 BYTES, AND PLACED IN *
QLED_BUF. .
?THE LED BUFFER HAS 8 BYTES, THE FIRST 4 INDICATES WHETHER THE LED IS *

]
+ ON/OFF, THE NEXT 4 BYTES IS WHETHER THE LED SHOULD FLASH OR NOT. FIRST *

éLOGICALLY AND OFF THE MSNIBEBLE OF EACH BYTE, THEN COMPRESS THE 2 BYTES *

f%INTo 1 BYTE. WE ARE THEREFORE LEFT WITH 2 BYTES FOR LED ON/OFF AND 2 *
& BYTES FOR LED FLASH. *
;Ro WILL BE USED TO READ FROM RX BUF (8 BYTES) - %
;Rl WILL BE USED TO WRITE TO LED BUF (4 BYTES) : *
.
% TRANSFER 8 BYTES FROM RX BUF, COMPRESS THIS INTO 4 BYTES, AND PLACE *
g THE DATA IN LED BUF. SWITCH ON THE RELEVANT LEDS. *
} MESSAGE FORMAT: *
; RX_BUF CONTAINS 8 BYTES, FIRST 4 INDICATES IF THE LEDS WILL *
%ﬁ BE ON/OFF AND THE NEXT 4 IF THE LEDS WILL FLASH. BOTH *
;g LED ON/OFF AND FLASH BITS HAVE TO BE '1' FOR THE ASSOSIATED *
fé LED TO FLASH. LED ON/OFF = '1' MEANS LED IS PERMANENTLY ON *
. .
?; THE LS NIBBLE OF EACH BYTE REPRESENTS 4 LEDS, WE HAVE TO *
' ADD 30H TO THE BYTE SO THAT THE RX ROUTINE DOESN'T CONFFUSE *
* THIS WITH A CONTROL CHAR. AFTER RECIEVING THE MESSAGE 30H *
% IS STRIPPED FROM THE BYTE, AND 2 BYTES CAN BE COMPRESSED *
. INTO 1 BYTE, THEREBY REPRESENTING 8 LEDS. *
* LED BUF THEREFORE ONLY REQUIRES 4 BYTES, 2 = LED ON/OFF *
* AND 2 FOR LED FLASH | *

EAPTER 3 PAGE 72

¢

p ON_OFF:

CLR
MOV
MOV

MOV

MOVX

MOV
MOVX
DEC
INC

MOVX

SWAP

MOV

MoV

MOVX

ORL

MOV

MOVX

INC

INC

DINZ

LED_FLAG

DPTR, #RX_BUF+2

R1,#LED_ BUF

COUNT, #8

A, @DPTR
A,#O0FH
P2, #0
€Rr1,A
COUNT
DPTR
A,@DPTR
A, #OFH
A

B,A

P2, #0
A,@R1
A,B
P2,#0
@R1,A
DPTR

R1

COUNT, LED_LOOP

PAGE

ASSEMBLER CODE LISTING

;'*4.**
P

sREAD RX DATA, EXCLUDE I/O, TYPE #
;BUFFER ADDR

;8 BYTE LED BUFFER COUNTER

;READ RX_BUF

; MASK OFF MS NIBBLE

; IN CONJUNCTION WITH MOVX RO/R1
;LOWER 4 BITS INTO LED BUF
;BYTE COUNTER

;NEXT BYTE IN COMBUF

;READ RX_ BUF

;MASK OFF MS NIBBLE

;SHIFT LEFT BY 4 BITS

; SAVE ACC

;IN CONJUNCTION WITH MOVX RO/R1
;READ LED BUF

;OR NEXT NIBBLE

;IN CONJUNCTION WITH MOVX RO/R1

;RESULT INTO LED_BUF

;WRITE TO NEXT ADDR
;NEXT BYTE
; TRANSFER FROM 8 BYTE RX BUF

;INTO 4 BYTE LED BUF COMPLETE

73

APTER 3

MOV
MOV

MOVX

MOV
Mov

MOVX

MOVX

MOV

MOVX

MOV

MoV

MOVX

MOVX

MOV

MOVX

MOV

MOVX

INC

MOVX

MOV

P2, #0
RO, #LED BUF

A, €RO

B,A
RO, #LED_BUF+2
A, €RO

A,B

@RO,A

RO, #LED_BUF+1
A, @RO

B,A

RO, #LED_BUF+3
A, @RO

A,B

@RO,A

RO, #LED_BUF
A, €RO

DPTR, #LED 1
@DPTR, A

RO

A, €RO

DPTR, #LED_2

ASSEMBLER CODE LISTING

;IN CONJUNCTION WITH MOVX RO/R1
;THERE ARE CASES WHEN LED ON/OFF
;BIT=0

;AND FLASH=1,FIRST AND RELEVANT BYTES
;AND BYTES 1 & 3. THEREFORE ENSURE
;THAT IF LED ON/OFF = 0, LED IS OFF

+ IRRESPECTIVE OF LED FLASH BIT

;STORE RESULT AT BYTE 3 LOCATION

;READ LED BUF, BYTE 2

;READ LED BUF, BYTE 4

i STORE RESULT AT BYTE 4 LOCATION

; IMMEDIATELY AFTER RECEPTION, WRITE

;TO LEDS

;READ LED BUF

;OUTPUT LED STATUS TO PORT

;READ LED BUF+1

PAGE 74

ASSEMBLER CODE LISTING
MOVX @DFPTR,A ;OUTPUT LED STATUS TO PORT
MOV | LED_COUNT1, #0 ;THIS WILL CAUSE MAIN LOOP TO
;CALL LED FLASH

MOV LED_COUNT2, #1

RET

;**

i
khdkhkdkkdddhhhhkhkdddddhdkkhhdhhhhhkhhkhkhhhkhkhkhhkkrhkkkhhhkhhkhhkhkhkkhrhhhkkkdhdd

§ MAIN PROGRAM LOOP WILI, CHECK LED_LOOP BYTE, AND WILL UPDATE THE LEDS *

| AFTER A CERTAIN PERIOD OF TIME. THIS WILL CREATE THE FLASHING EFFECT *

i

;**

E_FLASH:
§ MOV P2, #0 ;IN CONJUNCTION WITH MOVX RO/R1
3 MoV R1,#LED_BUF
% MOVX A,@R1 ;BYTE 1, LED ON/OFF
% MoV B,A
% INC R1
% INC R1 ;BYTE 3, LED FLASH
i MOVX A,@R1 ;READ BYTE 3 FLASH
% XRL A,B ;XOR BYTES 1 AND 3
MoV R1,#LED BUF
; MOVX @R1,A ; SAVE RESULT OF XOR
| MoV DPTR, #LED 1
MOVX @DPTR, A
INC R1 ;BYTE 2, LED ON/OFF
MOV P2, #0 ;IN CONJUNCTION WITH MOVX RO/R1

fPTER 3 PAGE 75

ASSEMBLER CODE LISTING
MOVX A,@R1
E MOV B,A
| INC R1
INC R1 ;BYTE 4, LED FLASH
MOVX A,@R1
: XRL A,B
% MOV R1,#LED BUF+1 ;BYTE 2, LED ON/OFF
% MOVX €RrR1,A ;RESULT OF XOR
g MOV DPTR, #LED_2
§ MOVX @DPTR, A
MOV LED COUNT1,#0FFH;UPDATE LEDS COUNTER
MOV LED_COUNT2, #0FH ;1.8MHzZ XTAL
MoV LED COUNT2, #09H ;9.216MHz XTAL
RET

Mk kR hr kR A Ak kA Ik hR AR I kAR Ak kkdhhhhhhhhkhhhrhkrrkhrkhkrhhhrhhkkhhkkrhhd

PTER 3 PAGE 76

ASSEMBLER CODE LISTING

;**

| READ LOCK STATUS, IF IT CHANGES, SET LOCK FLAG. STORE STATUS OF LOCK IN *
' LOCK_STAT *

h***

éK—READ:
é MOV DPTR,#LOCK_JMP ;READ CURRENT LOCK AND JUMPER STATUS
é MOVX A,@DPTR
{ MoV B,A ;SAVE ACC
| MOV DPTR, #LOCK_STAT ;READ PREVIOUS STATUS
MOVX A, @DPTR
CJINE A,B,LOCK1 ; STATUS HAS CHANGED
SIMP LOCK_EXIT
kl:
MoV A,B
MOV DPTR,#LOCK“STAT
MOVX @DPTR, A ;SAVE NEW STATUS
SETB LOCK_FLAG ;LOCK STATUS HAS CHANGED
LCALL BEEP
‘K_EXIT:
RET

thkkkkhhkhkdkhkikhkhkrkhhkhkrhkhhrkkhkhkhhkhkhkhhkhkhhhkrkkrkrkhkhkkrkhhhkhhbhhkdhikhkrdhdhkhhhdhhdhhkdk

PTER 3 PAGE. 77

|
|

ASSEMBLER CODE LISTING
1

i**

READ RECEIPT STATUS. CLOSED = 0, OPEN = 1. REC_ FLAG ONLY INDICATES THAT*
% THE STATUS OF THE RECEIPT SWITCH HAS CHANGED. THE ACTUAL STATUS IS *

STORED IN REC_ STAT. *

i**

L:_READ:
| MOV A, #0 ;INIT ACC
E MOV C,P1.7 ;READ CURRENT DRAW STATUS
é RLC A |
MOV B,A
MOV DPTR, #REC_STAT ;READ PREVIOQOUS STATUS
MOVX A, @DPTR
CJINE A,B,NEW_REC_STAT ;REC HAS CHANGED
SIMP REC_EXIT
" REC_STAT:
E MOV A,B ;SAVE CURRENT REC STATUS
MOVX @DPTR,A
SETB REC_FLAG ; INDICATES STATUS HAS CHANGED
i'I_EXIT:
RET
bk kdhkhkhhkhhkhhhkkhhkhkrhkhhkhkrhdhhkhhihhkhhkhhhhhhkddtkdkhkhdhkhdhhhhhdhkkhhhkkithodhik
R P Y E R A R R R 22222 X X2 22222 222 R 22 222 X R 2 2 Rt t R X X 2 02 2 %

" READ DRAW #1 STATUS. CLOSED = 0, OPEN = 1, USE DRAW1 FLAG *
3STATUS DICTATED BY EXISTING DRAW MECHANISM. DRAW1 FLAG ONLY INDICATES *
THAT THE STATUS OF THE DRAW HAS CHANGED. THE ACTUAL STATUS IS STORED *

IN DRAW1 STAT. *

'PTER 3 PAGE 78

!
? ASSEMBLER CODE LISTING
}
i

;**
|

qu 1_READ:
% MoV A, #0 ;INIT ACC
% MOV c,Pl.4 ;READ CURRENT DRAW STATUS
'é RLC A
Z MOV B,A
‘ MOV DPTR, #DRAW1_STAT ;READ PREVIOUS STATUS
§ MOVX A, @DPTR
; CINE A,B,NEW1_STAT ;DRAW HAS CHANGED
g STMP DRAW1 EXIT
;l_STAT:
MOV A,B ;SAVE CURRENT DRAW STATUS
MOVX ¢DPTR, A
SETB DRAW1_ FLAG ; INDICATES STATUS HAS CHANGED
W1 _EXIT:
; RET

§
tkAkkkkkhkhkkhkhkhkhkkkkkhkhkhhkkhkhkhhkhkhkhkkhkkkhkkhhkkkhhhhkhkhhkhkhkhkhkkkhkhkhhkkkkkhkikhkktkkkk®

kkkkhkkkhkhkrhhhkhkhhhkhkkhhkhkkhhhhkhkhhhkkhkkhkhkkhkhkhhkhkhkkhkkkkhhkkdhhkhkkhhkhhhxhkikkx

READ DRAW #2 STATUS. CLOSED = 0, OPEN = 1. USE DRAWZ2_FLAG *
STATUS DICTATED BY EXISTING DRAW MECHANISM. DRAW2 FLAG ONLY INDICATES *

THAT THE STATUS OF THE DRAW HAS CHANGED. THE ACTUAL STATUS IS STORED *

~ IN DRAW2_STAT. *

Fkkkhkkhkhhhhkhhkhkhkhkrhhkhdhhhkhkhhhkhhhhkhhhhkdhhkhkhhrhkhhhhkhkhhkhhkrhhkhchkhhrhhkhhhhrhik

‘PTER 3 PAGE 79

ASSEMBLER CODE LISTING

mwz_READ.
_ MoV A, #0 ;INIT ACC
é MOV C,P1.6 ;READ CURRENT DRAW STATUS
é RLC A
% MOV B,A
g MOV DPTR, #DRAW2_ STAT ;READ PREVIQUS STATUS
é MOVX A, @DPTR
CJINE A,B,NEW2 STAT ;DRAW HAS CHANGED
SJMP DRAWZ2 EXIT
ﬁ 2_STAT:
| MOV A,B ; SAVE CURRENT DRAW STATUS
MOVX €DPTR, A
SETB DRAW2_ FLAG ; INDICATES STATUS HAS CHANGED
LNZ_EXIT:
RET

h***
_;

i
H***

OPEN CASH DRAW #1 *

|
}
Fhkkkhkhkhhkkhkhkhkhkhkhhhhkkkhhkhkhkkdhhkhkhkhdkkhhkhkhkhhhhkhkkhhhhdhhhhhhiddhdhdhhhhxhhhkhhhk
H
i

\W1_OPEN:

CLR TRO ;STOP TIMER 0

| MOV THO, #0FAH ;XTAL =1.8MHz FOR TIMEOUT LOOP
MOV THO, #0C3H ;XTAL =9.216MHz FOR TIMEOUT LOOP
MOV TLO, #0
SETB TRO ;START TIMER 0

‘PTER 3 PAGE 80

CLR

JNB

SETB

CLR

RET

P1.3
TFO, S
P1.3

T™OUT

ASSEMBLER CODE LISTING
; SOLENOID ON
;WAIT FOR TIMEOUT
; SOLENOID OFF

;REFRER TIMER 0 INT ROUTINE

*i***

i
i

i

OPEN CASH DRAW #2

kkhkkkkkhdkhkhkdhkhdhkhhhhhhkhkhdhhkhhhhkhhkhkhhkkrhhkhhhkrhhhhhhdhhdhhkhhhhhhkkkkdhkhdhkhkikk

*

tEkkkhkkkhkhkkkhkkhkhhkkhkkhhhhkhkhkkkkkhkhkkhkhkkkkkhkhkhkhkhkhkhkhhhkhhkhhhkhhkhkdhkkrhhkikhhkhixkkk

AW2 OPEN:
CLR
MOV
MoV
SETB

CLR

SETB

CLR

RET

§

i

END

PTER 3

LUDE (EQUATES.ASM)

TRO
THO, #0C3H
TLO, #0
TRO

P1.5
TFO, $
P1.5

TMOUT

PAGE 81

; STOP TIMER 0

;XTAL =9.216MHz FOR TIMEOQOUT LOOP

; START TIMER 0

; SOLENOID ON
;WAIT FOR TIMEOUT
; SOLENOID OFF

;REFRER TIMER 0 INT ROUTINE

ThkkkkkhkkhkhkkhhkhkhkhkhhkhkhkhkhkhkhkhkkkhkhkhkhkrAhkhkhkhkhkhkhkhhkhkkhkkkhhhkkkhkhkhkkkhkkkkhkkhkhhhkkkkhkkk

%***

ASSEMBLER CODE LISTING
i
COMMS . ASM

i

|
!{E COMMS MODULE
: LOW LEVEL AS WELL AS UPPER LEVEL COMMS ROUTINES

i**
BLIC TEST_COMMS, CHK_TX BUFFS, CHK RX BUFFS, TX_STRING

DATA (COUNT, TEMP_BUF, KEY COUNT, TX COUNT, RX_COUNT, LCD NUM)

DATA (BIN_ADDR)

%

RN

&m, DATA (LCD_COUNT, TX_BCC, RX BCC, ADDR1, ADDR2, CRD_COUNT, QUE COUNT)
.

|

FRN

BIT (KEY_FLAG, LOCK FLAG, DRAWl FLAG, TX BUF_FULL, RX BUF_FULL)
BIT (LCD_FLAG, BCC_FLAG, IS DATA, CRD FLAG, QUE_FLAG, QUE FULL)

"N BIT (CRD_ON OFF, REC_FLAG, DRAW2 FLAG)

'RN XDATA (LOCK_STAT, DRAW1_STAT, KEY BUF, LCD_BUF, TX BUF, RX_ BUF,

* BUF)

RN XDATA (TX_DATA, CRD BUF, KEY QUE, REC_STAT, DRAW2 STAT)

CODE (INIT HARDWARE, LCD WR, CODE TO_LCD, BEEP, TEST, KYB_READ)
CODE (IDATA_TO TEMP, HEX TO_ASCII, HEX_TO DEC, LED ON_OFF, LED FLASH)

CODE (LOCK_READ, DRAW1 OPEN, DRAW2 OPEN, CLS1, CLS2)

e B

3**** HOST ENQUIRY OF TERMINAL STATUS, LOCK, DRAW, RECEIPT

"TER 3 PAGE 82

i
i

ASSEMBLER CODE LISTING

ﬁm BIT (ENQ FLAG, ENQ FULL)
~gN XDATA (ENQ_BUF)

aLIC ENQUIRE

.L**** 82530 COMMS CHIP

TRN DATA (TX82_STAT, COUNT82, RX1l COUNT, RX2 COUNT)

ﬁm BIT (TXBUF1_FULL, TXBUF2 FULL, RXBUFI_?ULL, RXBUF2_FULL)
RN

i

XDATA (COM1_TXBUF, COM1_RXBUF, COM2_ TXBUF, COM2 RXBUF)

fhkkkhkkxhkkhhkhkhkdkhkkhthkdthkhkhhkhhkhrhhkhkRrhkhkhkhkhkhkhkkddhhhkhhhhkhhkkhhkhbhthhhhhhhhhkkhhki

!

hS_SEG SEGMENT CODE yRELOCATABLE CODE SEGMENT

RSEG COMMS SEG

BikkkXkXxAxAhhkxhkhkhhkhhkhkhhddhhkhkhhhhhrhhrhhhhhhhhhhhhkkkkikhdhkhkhhhhhhhhkhkhhkhhohkhhhk
| NB: *
REGISTER BANK 01 IS SELECTED FOR THIS ROUTINE, WHICH IS DEDICATED *

TO THE COMMS INTERRUPT ROUTINE. *

|
{ THE STRING TO BE TRANSMITTED IS CONSTRUCTED IN THIS ROUTINE. TX DATA *

| BUFFER MUST BE SCANNED FOR A 'DLE', IF FOUND A 'DLE' MUST BE INSERTED. *

 ALSO CALCULATE BCC *
| STRING FORMAT: DLE, STX, TEXT, DLE, ETX, BCC *
| TEXT = DEVICE #, DATA *

*
| RO USED FOR READING TX_DATA BUFFER *
Rl USED FOR WRITING TO TX BUF *

i
!

i

PTER 3 PAGE 83

ASSEMBLER CODE LISTING

3

.| R3 USED IN INTERRUPT ROUTINE TO COUNT # OF TRANSMITTED CHARS *
. THIS IS USED IN CASE OF A RE-TRANSMIT *
\| R7 USED TO COUNT THE # OF BYTES TRANSFERD FROM TX DATA TO TX_ BUF *
*

{EON ENTRY: *
’; NOTHING *
| ON EXIT: : *
RO POINTS TO START OF TX BUF, USED IN COMMS INT ROUTINE *

TX_COUNT CONTAINS # OF BYTES IN TX BUF | *

TX_BUF CONTAINS TRANSMIT DATA *

dkkdkkhdkdkhkkdkhkkhdhkkhhkkkhkhdkhkkkhhkhhkhkhkdhkhkdkhkhkhddhhkhhkhhhhkhhkhhdhhkhdkhkkhkhkhkhhhkhkrhihk

'%TRING:
% MoV A,R1
é PUSH ACC
JNB IS _DATA, INTERMEDIATE_JMP ;0 = NO DATA IN BUFFERS
MoV TX_COUNT, #0
MOV P2, #0 ;IN CONJUNCTION WITH MOVX RO/R1
MoV R1,#TX BUF ; CREATING TX STRING
E_STX :
MOV A, #DLE ;DLE
MOVX @R1,A
INC TX_COUNT
IRC R1
MoV A, #STX ;i STX
MOVX €R1,A
hTER 3 PAGE 84

INC

INC

MOV

SWAP

MOV
Mov
ANL

ORL

MoV
MOVX
INC

INC

. MOV
MOV
MOVX
MOV
INC
SIMP

ERMEDIATE_JMP:

| LIMP

fLOOPl:

MOV

MOVX

PTER 3

ASSEMBLER CODE LISTING
TX_COUNT

R1

A,ADDR1 ;1 BYTE HEX ADDR
a

A, #0FOH ;MS NIBBLE OF ADDR
B,A

A, ADDR2 ;LS NIBBLE OF ADDR
A, #0FH

A,B ;ACC CONTAINS 1 BYTE ADDR

A,BIN_ADDR
€R1,A
TX_COUNT

R1

RO, #TX_DATA ;READING DATA STRING
P2, #0 ; IN CONJUNCTION WITH MOVX RO/R1
A, @RO ;# OF BYTES IN DATA STRING

R7,A

RO ;NEXT BYTE TO READ FROM TX DATA

TX_LOOP1

TX STRING_EXIT ;JMPS ARE OUT OF RANGE

P2, #0 ;IN CONJUNCTION WITH MOVX RO/R1
A,€RO ;READ DATA BUFFER
PAGE 85

ASSEMBLER CODE LISTING

CINE A, #DLE,WR_TX_ BUF
MOVX €R1,A ;IF DLE FOUND, INSERT A 2ND DLE
INC R1
INC TX_COUNT
2 TX_BUF:
§ MOVX @R1,A ;WR TO TX_ BUF
i INC RO ;NEXT BYTE TO READ
INC R1 ;NEXT BYTE TO WRITE
INC TX_COUNT
E DINZ R7,TX_LOOP1
% CLR IS_DATA
‘i:_ETX :
| MOV A, #DLE ;DLE
MOVX ér1,A
INC TX_COUNT
INC R1
MOV A, #ETX ; ETX
MOVX éR1,A
INC TX_COUNT
INC R1

; START OF BCC CALCULATION

MOV RO, #TX_BUF+2 ;EXCLUDE 'DLE.STX' FROM BCC
MoV R7, #0 ;BCC COUNTER
CLR BCC_FLAG

C:

| MOVX A, @RO ;READ TX BUF

PTER 3 PAGE 86

BYTE:

PTER 3

JB
CJINE
SETB
INC

SJMP

CINE
XRL
XCH

SJIMP

XRL
XCH
CLR
INC

SJMP

! COMPLETE:

MOV
MOVX

INC

MOV

SETB

CLR

MOV

MOV

MOVX

BCC_FLAG,CHK ETX

A, #DLE, CALC_BCC
BCC_FLAG
RO

BCC

A, #ETX,CALC_BCC
A,R7
A,R7

BCC_COMPLETE

A,R7
A,R7
BCC_FLAG
RO

BCC

A,R7
€R1,A

TX_COUNT

R3,TX_COUNT
TX_BUF_FULL
P3.5

P2, #0

RO, #TX_BUF

A, €RO

PAGE

ASSEMBLER CODE LISTING

;READ NEXT BYTE
;END OF DATA FIELD

;SAVE BCC INTO R7

;SAVE BCC INTO R7

;BCC VALUE

iWRITE BCC TO TX_ BUF

;DON'T CHANGE TX_ COUNT, IN CASE RE-TX
;CLEARED IN INT RCUTINE

;ENABLE DS3695 TO TX, GOES THRU 7404
;IN CONJUNCTION WITH MOVX RO/R1

;TX FIRST BYTE IN TX BUF

87

ASSEMBLER CODE LISTING
MOV SBUF,A ;START TX PROCESS
MOV RO, #TX BUF+1 ;SET RGO = START ADDR +1 OF TX BUF
;USED IN COMMS INT ROUTINE. FIRST
;BYTE IS USED TO INITIATE COMMS INT

/STRING_EXIT:

POP Acc
MoV R1,A
RET

3

i**
NB: *
REGISTER BANK 01 IS SELECTED FOR THIS ROUTINE, WHICH IS DEDICATED *

TO THE COMMS INTERRUPT ROUTINE. *

¢ THIS ROUTINE WILL BE CALLED FROM COMMS INT ROUTINE, TO CHECK THE *

%VARIOUS BUFFER FULL FLAGS. IF SET, TRANSFER DATA TO TX DATA BUFFER, AND *

%CLEAR THE CORRESPONDING FLAGS. : ' *
gMAIN TYPE IE I/O (1 BYTE), SUB TYPE (1 BYTE) IE DEVICE TYPE, THIS *
iFOLLOWED BY THE DATA *
! *
§ MESSAGE FORMAT FOR TX DATA: *
é 1 BYTE BINARY TERMINAL # *
| 2 BYTE 'I' = INPUT DEVICE *
3 BYTE 'K' = KEYBOARD AND SCANNERSL, 'L' = LOCK *

'D' = DRAWER, 'P' = RECEIPT ON/OFF *

APTER 3 PAGE 88

ASSEMBLER CODE LISTING

'S' = SERIAL DEVICE (82530) *
4 BYTE IN THE CASE OF THE LOCK INDICATES *
LOCK STATUS ' *

*

4 BYTE IN THE CASE OF THE KEYBOARD INDICATES *
KEY AND SCAN DATA, IN SEQUENTIAL ORDER *

*

4 BYTE IN THE CASE OF THE RECEIPT ON/OFF INDICATES *
RECEIPT STATUS *

*

4 BYTE IN THE CASE OF THE DRAWERS INDICATES %
1 = DRAWER #1 x

2 = DRAWER #2 *

*

4 BYTE IN THE CASE OF SERIAL DEVICE (82530) INDICATES *
1 = RX DATA ON CH A *

2 = RX DATA ON CH B ' *

*

5 BYTE IN THE CASE OF THE DRAWERS INDICATES. x
DRAWER STATUS *

*

5 BYTE IN THE CASE OF SERIAL DEVICE (82530) INDICATES *
BINARY # OF BYTES IN RX STRING (EXCLUDE *

ACTUAL BINARY#) *

*

RO USED FOR READING DATA BUFFERS FROM VARIOUS INPUT DEVICES *

Rl USED FOR WRITING TO TX DATA BUFFER *

‘PTER 3 PAGE 89

ASSEMBLER CODE LISTING

,§R4 AND R5 USED FOR TEMPORY STORAGE OF DPTR *
,éRs USED FOR GENERAL COUNTING *
.§R7 USED AS A COUNTER FOR THE NUMBER OF BYTES IN TX DATA STRING *
,E THIS IS USED IN TX STRING, WHEN CHECKING FOR A 'DLE’ *

E;**

ﬁ;TX_BUFFS:
| MOV a,R1 ;SAVE RO AND R1
PUSH ACC
MOV A,RO
PUSH AcC
JB TX_BUF_FULL,INTER CHK EXIT1 ;TX BUFFER IS FULL
MOV R7, #0
MOV P2, #0 ; CONJUNCTION WITH MOVX RO/R1
MOV R1,#TX_ DATA+1 ;CREATING TX DATA STRING
MOV A, #'T ;MAIN TYPE, INPUT
MOVX €R1,A
INC R1
1 INC R7
LLOCK:
g JNB LOCK_FLAG,CHK_KYB ;LOCK STATUS HASN'T CHANGED
§ JINB LOCK_FLAG,CHK_KEY QUE ;LOCK STATUS HASN'T CHANGED
% CLR LOCK_FLAG
? MOV P2, #0 ; IN CONJUNCTION WITH MOVX RO/R1
MOV A,#'L" ;SUB TYPE, LOCK

PTER 3 PAGE 90

MOVX

INC

INC

MOV

MOVX

MOVX

INC

LIMP

€@R1,A
R1

R7

RO, #LOCK_STAT
A, @RO

€Rr1,A

R7

CHK_EXIT

ASSEMBLER CODE LISTING

;NEXT BYTE TO WRITE

sREAD STATUS

:#***

QREFER TO ADD QUE FOR MORE DETAILS ON KEY DATA *

;**

ﬁ_KYB:

¥_LOOP1:

IDTER 3

CLR

MOV

MOV

MOV

MOVX

IKC

INC

MOVX

MOVX

INC

INC

KEY FLAG,CHK_CRD

KEY FLAG
P2, #0

RO, #KEY_BUF

A,#'K'
@R1,A
R1

R7

A, 8RO
€R1,A
RO

R1

;NO KEYS DEPRESSED

;IN CONJUNCTION WITH MOVX RO/R1

; SOURCE ADDRR
:SUB TYPE, KEY ENTRY
;NEXT BYTE TO WRITE

; TRANSFER FROM KEY BUF TO

;TX DATA BUFFER

PAGE 91

INC
DINZ
MOV
LIMP

K KEY_QUE:

% JNB

5 CLR
CLR
MOV

MoV

MOV
MOVX
INC
INC
{ LOOP1:
; MOVX
v MOVX
INC
INC
% INC
! DJINZ

MoV

LIMP
ER_CHK_EXIT1:
LIMP

_CRD:

"TER 3

R7
KEY_COUNT, CHK_LOOP1
KEY_COUNT, #0

CHK_EXIT

QUE_FLAG,CHK_CRD
QUE_FLAG
QUE_FULL

P2, #0

RO, #KEY_QUE

A,#'K"
@R1,A

R1

" R7

A, 8RO

€R1,A

RO

R1

R7

QUE_COUNT, CHK_LOOP1
QUE_COUNT, #0

CHK_EXIT

CHK_EXIT1

PAGE 92

ASSEMBLER CODE LISTING
;NEXT BYTE TO TRANSFER
;CLEAR COUNTER

;NO KEY/SCAN DATA

; IN CONJUNCTION WITH MOVX RO/R1

; SOURCE ADDRR
;SUB TYPE, KEY/SCAN ENTRY

sNEXT BYTE TO WRITE

; TRANSFER FROM KEY BUF TO

;TX DATA BUFFER

sNEXT BYTE TQ TRANSFER

; CLEAR COUNTER

; INTERMEDIATE JMP

kkkkkhkhkhkkkkk

K CRD10:

i
7iCRD11:

&****************

1

}
:

CRD1:

SPER 3

ik sntint et

JNB

CLR

MOV

) (0)74

MOVX

CINE

MOV

SJMP

MOV

MOV

MoV

MOV

MOVX

INC

INC

MOVX

MOVX

INC

INC

INC

DJINZ

CRD_FLAG,CHK_REC

CRD_FLAG

P2, #0

RO, #CRD_BUF

A, @RO
A,#01,CHK_CRD10
CRD_COUNT, #38

CHK_CRD11

CRD_COUNT, #01

P2, #0

RO, #CRD_BUF

A, #'C!
@RrR1,A
R1

R7

A, @Ro
@R1,A
RO
R1

R7

CRD_COUNT, CHK_CRD1

PAGE 93

ASSEMBLER CODE LISTING

;NO CARD ENTRY

;IN CONJUNCTION WITH MOVX RO/R1
; SOURCE ADDRR

;TRANSFER FROM CRD_BUF TO

; IN CONJUNCTION WITH MOVX RO/R1

; SOURCE ADDRR

;SUB TYPE, MAGNETIC CARD ENTRY

s NEXT BYTE TO WRITE

; TRANSFER FROM CRD BUF TO

; TX_DATA BUFFER

;NEXT BYTE TC TRANSFER

+ REC:

{_DRAW1:

MOV

LIMP

JNB

CLR

MOV

MOV

MOV

MOVX

INC

INC

MOVX

MOVX

INC

LIMP

JNB

CLR

MOV

MOV

MOV

MOVX

INC

INC

CRD_COUNT, #0

CHK_EXIT

REC_FLAG,CHK DRAW1
REC_FLAG
P2, #0

RO, #REC_STAT

A,#'P'
@R1,A
R1

R7

A, @RO
@R1,A
R7

CHK_EXIT

DRAW1_FLAG, CHK_DRAW2
DRAW1 FLAG
P2,#0

RO, #DRAW1_STAT

A,#'R'
eR1,A
R1

R7

PAGE 94

ASSEMBLER CODE LISTING

;CLEAR COUNTER

;RECEIPT STATUS HASN'T CHANGED

;IN CONJUNCTION WITH MOVX RO/R1

;SUB TYPE, REC STATUS

;NEXT BYTE TO WRITE

;READ STATUS

;WRITE TO TX_BUF

;DRAW STATUS HASN'T CHANGED

;IN CONJUNCTION WITH MOVX RO/R1

;SUB TYPE, DRAW STATUS

sNEXT BYTE TO WRITE

e et el e i

MOV

MOVX

INC

INC

MOVX

MOVX

INC

LJMP

CLR

MOV

MOV

MOV

MOVX

INC

INC

MOV

MOVX

INC

INC

MOVX

MOVX

ASSEMBLER CODE LISTING

A, #'1 ;DRAW #1

€R1,A

R1 ;NEXT BYTE TO WRITE
R7

A, @RO ;READ STATUS

@R1,A ;WRITE TO TX_ BUF

R7

CHK_EXIT

DRAW2 FLAG,CHK ENQ BUF ;DRAW STATUS HASN'T CHANGED

DRAW2_ FLAG
P2, #0 ;IN CONJUNCTION WITH MOVX RO/R1
RO, #DRAW2_STAT

A, #'R' ;SUB TYPE, DRAW STATUS

@R1,A

R1 ;NEXT BYTE TO WRITE

R7

A, #r20 ;DRAW #2

@R1,A

R1 ;NEXT BYTE TO WRITE

'R7

A, €RO ;READ STATUS

€Rr1,A ;WRITE TO TX_ BUF

PAGE 95

¢ ENQ_BUF:

/R1

_TX_LOOF2

R RXCOML1:

\PTER 3

INC

LIMP

JNB

MoV

MoV

MOV

MOV

MOVX

INC

INC

MOVX

MOVX

INC

INC

INC

DINZ

CLR

LJMP

JNB

MoV

MOVX

INC

R7

CHK_EXIT

ENQ FULL,CHK RXCOM1
R6, #4

P2, #0

RO, #ENQ_BUF

A,#'E"
€r1,A
R1

R7

A, €RO

6R1,A

RO

R1

R7
R6,CHK TX LOOP2
ENQ FULL

CHK_EXIT

RXBUF1l_FULL, CHK_RXCOM2
A,#'S!
@R1,A

R1

PAGE 96

ASSEMBLER CODE LISTING

;NO HOST ENQUIRY

;IN CONJUNCTION WITH MOVX

s SOURCE ADDRR

;SUB TYPE, ENQUIRY

;NEXT BYTE TO WRITE

; TRANSFER FROM ENQ BUF TO

;TX_DATA BUFFER

;NEXT BYTE TO TRANSFER

;NO DATA FRCM CH A OF 82530

;SUB TYPE, SERIAL DEVICE

;NEXT BYTE TO WRITE

i s i o e A

7 RXCOM2 :

i
1

*PTER 3

INC

MOV

MOVX

INC

INC

MOV

MOV

MOVX

INC

INC

MOV

LCALL

CLR

MOV

SJMP

JNB

MOV

MOVX

INC

INC

MOV

MOVX

ASSEMBLER CODE LISTING

R7
A,#'1! ; COM1

@R1,A

R1 ;NEXT BYTE TO WRITE

R7

A,RX1 COUNT ;# OF BYTES IN DATA FIELD
R6,A ;R6 USED IN TRANSFER LOOP
@R1,A

R1 ;NEXT BYTE TO WRITE

R7

DPTR, #COM1_RXBUF

TRANS DATA ; TRANSFER FROM COMXBUF TO TXBUF

RXBUF1_FULL
RX1_COUNT, #0

CHK_EXIT

RXBUF2 FULL,CHK_EXIT1 ;NO DATA FROM CH B OF 82530

A, #'S!' ;SUB TYPE, SERIAL DEVICE
@R1,A
R1 ;NEXT BYTE TO WRITE
R7
A, #12° ; COM2
€R1,A
PAGE 97

ﬁXIT:

EXIT1:

'TER 3

INC

INC

MOV

MOV

MOVX

INC

INC

MOV

LCALL

CLR

MOV

SJMP

MoV

MOV

MOV

MOVX

SETB

POP

MoV

POP

MoV

R1

R7

A,RX2 COUNT

R6,A
€R1,A
R1
R7

DPTR, #COM2_RXBUF

TRANS_DATA
RXBUF2_FULL
RX2_COUNT, #0

CHK_EXIT

R1,#TX_DATA
P2, #0

A,R7

@R1,A

IS _DATA

ACC
RO,A
ACC

R1,A

PAGE 98

ASSEMBLER CODE LISTING

;NEXT BYTE TO WRITE
:# OF BYTES IN DATA FIELD
;R6 USED IN TRANSFER LOOP

;NEXT BYTE TO WRITE

; TRANSFER FROM COMXBUF TO TXBUF

;THERE IS DATA TO TRANSMIT
;IN CONJUNCTION WITH MOVX RO/R1

;# OF BYTES IN DATA STRING

; INDICATES TO TX STRING THAT

. ASSEMBLER CODE LISTING
é RET
é**
?
;

&**

1

%RANSFER DATA STRING FROM 1 BUFFER TC ANQOTHER IN XDATA MEMORY. *
%PTR POINTS TO SOURCE BUFFER *
;1 POINTS TO TX_DATA BUFFER OF 8032 *
%6 IS USED TO COUNT # OF BYTES TO TRANSFER *
?N ENTRY: %
| DPTR POINTS TO SOURCE BUFFER (COM1/2 RXBUF) *
% R6 = # OF BYTES TO TRANSFER *
E *
BN EXIT: %
i TX_BUF (8032) WILL CONTAIN DATA FROM COM1/2 RXBUF *

i
;

bkkkdkhkdkhhkkkhhkkkhhhhkhkhhhhkhhhdkhkhdhhhhkhhkhhkhkkhhhkhkhhhhkkhkkhkdhhdhhhhhrhhtkik

@_DATA:
| MOVX A, @DPTR READ FROM COM1/2_RXBUF
| INC DPTR
é MOVX @R1,A WRITE TO TX_DATA BUFFER
é INC R1
‘ INC R7

DINZ R6, TRANS_DATA

RET

‘hkkdkhkkhkhkkkkkhkkhkhkkkhkkkhkkhkhkhkkhkhkkhhkhhhdbkhhkhhkhhkrhhhhhhkhhrhhrhdhhkhkkhhkrhkkhik

'TER 3 PAGE 99

ASSEMBLER CODE LISTING

**

TEST COMMS

*

grkkkkhkkkhdhkkkhhkktihhhhdhkhkkkhhhkkkkkhhhthkhkhkhdkhkkhkhkkdhbhhhhhhhdkkdkhdthkkhhk

7 COMMS:

J0P1:

PTER 3

MOV

MOV

MOV

MOV

MOVX

INC

INC

DINZ

SETB

MoV

MOV

MOV

CLR

SETB

CLR

CLR

MOV

RO, #TX_BUF
R1, #20H
A, #30H

P2, #0

€RO,A
RO
A

R1,T_LOOP1

PSW.3
TX_COUNT, #20H
R3,TX_COUNT

RO, #TX_BUF

PSW.3
TX_BUF_FULL
P1.7
P3.5

SBUF, #0FH

;IN CONJUNCTION WITH MOVX RO/R1

;TX BUF NOW CONTAINS STRING

; SELECT REGISTER BANK 1, 8H - FH
;USED IN COMMS INT ROUTINE

:DON'T CHANGE TX_COUNT, IN CASE RE-TX
;SET RO = START ADDR OF TX_BUF

;USED IN COMMS INT ROUTINE

; SELECT REGISTER BANK 0

;CLEARED IN INT ROUTINE

;ENABLE DS3695 TO TX, GOES THRU 7404
;ENABLE DS3695 TO TX, GOES THRU 7404

; START TX PROCESS

PAGE 100

ASSEMBLER CODE LISTING
| RET

Lpkkkd kb kb bk khdkdhdkhhhdhdhdhhdhdhdhhkhkhdodhhhhhdbhhhhhhhhhbhhddhbhtthbrhrdik

prkkkkdhkkkhkdkhkhkhhkhkkkdhdkhhkkdkhhhkdbhkhkhkhhkhkkhkhkhkhhkhhhkhrhkhhhkhkhhkhhkdhhhkhkkhkkhkrhrkkkikd

THIS ROUTINE CHECKS IF RX BUF _FULL FLAG IS SET, INDICATING THAT DATA *
HAS BEEN RECEIVED .
*

MESSAGE FORMAT: ‘ *
1 BYTE '0' = QUTPUT DEVICE : *

*

2 BYTE 'L' = LEDS, 'D' = DISPLAY, 'B' = BUZZER *

'R' = DRAWER, 'C' = CARD READER, 'E' = HOST *

ENQUIRY, 'S' TRANSMIT STRING FOR 82530 *

*

3 BYTE IN THE CASE OF AN LCD STRING INDICATES *

0 = BOTH DISPLAYS *

1 =1LCD 1 *

2 = LCD_2) *

*

3 BYTE IN THE CASE OF THE DRAWERS INDICATES *

1 = DRAWER #1 *

2 = DRAWER #2 *

*

3 BYTE IN THE CASE OF THE CARD READER *

'1' = TRANSMIT CARD DATA, ie READ CARD *

‘o’ DON'T TRANSMIT CARD DATE ie DON'T READ *

'TER 3 PAGE 101

ASSEMBLER CODE LISTING

3 BYTE IN THE CASE OF A HOST ENQUIRY *
'R' = DRAWER STATUS *

'L' = LOCK STATUS *

'P' = RECEIPT STATUS *

%*

3 BYTE IN THE CASE OF TX STRING FOR 82530 *

BINARY # OF DATA BYTES IN DATA FIELD *

+ CMD/DATA BYTE (# OF DATA BYTES +1 FOR C/D) *

*

4 BYTE IN THE CASE OF THE DRAWERS INDICATES *

'1' = DRAWER #1 . *

'2' = DRAWER #2 *

*

4 BYTE IN THE CASE OF TX STRING FOR 82530 *

11' = coMl *

'2' = COM2 *

*

5 BYTE IN THE CASE OF TX STRING FOR 82530 *

'C' = COMMAND STRING : *

'D' = DATA STRING ' *

*

RO USED FOR READING *
Rl USED FOR WRITING TO BUFFER *
COUNT USED TO COUNT # OF BYTES TO TRANSFER FROM RX_BUF TO OUTPUT BUF *

EkkkkdkhhhkhkhkhhkkhhkhdkdkdkkhhhhkhkhbhkhkhkhkhhhhkhkhkhbhhkhkhkkAxhdrhhkddrhkhkkdhkhkhddhkhhhhhhhkk

RX_BUFFS:

JB RX BUF_FULL,CHK BUFS ;DATA AVAIALBALE IN RX BUF

TER 3 PAGE 102

ASSEMBLER CODE LISTING

LJMP _ CHK RX EXIT1
ﬁUFS:
MoV DPTR, #RX_ BUF
MOVX A, @DPTR ;READ RX_BUF
INC DPTR
CJNE A,#'0',INTERMEDIATE RX EXIT ;NOT FOR AN OUTPUT DEVICE
MOVX A, @DPTR ;READ RX BUF
INC DPTR
LEDS:
CJINE A,#'L',CHK_LCD ;LED'S
LCALL LED_ON_OFF ;TRANSFER FROM RX BUF TO LED BUF
LJMP CHK_RX EXIT
LCD:
CJINE A,#'D',CHK BUZ ;LCD'S
SETB LCD_FLAG
MOV LCD_COUNT, #0
MOVX A,@DPTR ;READ LCD #(1/2/BOTH) FROM RX BUF
MoV LCD_NUM,A ;LCD NUMBER
INC DPTR
DEC RX COUNT ;REMOVE 'OD1/2' FROM Rx_CdUNT
DEC RX COUNT
DEC RX_ COUNT
MOV R1,#LCD BUF ; TRANSFER FROM TX_BUF TO LCD_BUF
MOV P2, #0 ;IN CONJUNCTION WITH MOVX RO/R1
LOOP2:
MOV A,RX_COUNT
CJINE A, #0,CHKO ;# OF CHAR IN RX BUF

TER 3 PAGE 103

S

'SPACE:

SJMP

MoV
CINE

SJMP

MOVX

CINE

SJIMP

CJINE
DEC
DEC
INC

MOVX

MOV

INC

MOV

MOV

MOVX

INC

INC

MOV

ADD_EOS
A,LCD_COUNT
A, #32,CHK1

ADD_EOS

A, E@DPTR

A,#DLE,CHK_SPACE

ADD_EOS

ASSEMBLER CODE LISTING

;MAX OF 32 BYTES IN LCD_BUF

;READ RX BUF
;CLEAR THE DISPLAY, BY SENDING AN EMPTY

sMESSAGE TO THE DISPLAY.

;ETX REACHED, PLACE EOS

A,#HT,WR_LCD BUF ;CHK FOR HT, ie SPACES

RX_COUNT
RX_COUNT
DPTR
A, @DPTR
A,#03FH
B,A

DPTR

A, #' !
P2,#0
€R1,A

R1
LCD_COUNT

A, #32

;ELSE 2 EXTRA CHARS ARE TRANSFERED
;TO LCD_BUF

;FIND # OF SPACES TO INSERT

;MASK OFF MS 2 BITS, ACC = # OF ' !

;IN CONJUNCTION WITH MOVX RO/R1l
;WR;TE SPACES TO LCD BUF

; INSERT NEXT SPACE

;COUNT # OF BYTES IN LCD BUF

;ENSURE ONLY 32 BYTES IN LCD_BUF

104

e o e et it

CINE
SJMP
ENEXT_SPACE:
? DJINZ
, SJIMP
ECD__BUF :
i MOV
MOVX
INC
INC
INC
DINZ
EOS:
MOV
MOV
MOVX
SJMP
BUZ:
CINE
LCALL
SJIMP
RMEDIATE_RX_ EXIT:
SJMP
DRAWER1:
CJNE
MOVX

CINE

TER 3

ASSEMBLER CODE LISTING
A,LCD_COUNT, INS NEXT SPACE;MAX OF 32 BYTES IN LCD BUF

ADD_EOS

B, INS SPACE

CHK_LOOP2

P2,#0 ; IN CONJUNCTION WITH MOVX RO/R1
@R1,A ;WRITE TO OUTPUT_BUF

DPTR

R1

LCD_COUNT ;COUNT # OF BYTES IN LCD_BUF

RX_COUNT, CHK_LOOP2

A, #0 ; EOS
P2, #0 ;IN CONJUNCTION WITH MOVX RO/R1
@R1,A

CHK_RX EXIT

A,#'B',CHK DRAWER1 ;BUZZER
BEEP

CHK_RX_EXIT

CHK_RX_EXIT

A,#'R',CHK_CARD ;NOT A DRAWER OPEN COMMAND

A, @DPTR

A,#'1',CHK DRAWER2

PAGE 105

o ok ot A

ASSEMBLER CODE LISTING

LCALL DRAW1_OPEN
| SIMP CHK_RX_EXIT
}pRAWERZ:
| CINE A,#'2',CHK_RX_EXIT
: LCALL DRAW2_OPEN
§ SJMP CHK_RX_EXIT
iCARD :
| CINE A,#'C',CHK_ENQUIRE ;CARD STATUS, ON = 31H, OFF = 30H
E MOVX A, @DPTR
f CINE A,#'0',CARD_ON
§ CLR CRD_ON_OFF ;DON'T TX CARD DATA
% SIMP CHK_RX_EXIT
> ON:
CINE A,#'1',CHK_RX EXIT
SETB CRD_ON_OFF ;TX CARD DATA
SIMP CHK_RX_EXIT
ENQUIRE:
‘ CINE A,#'E',CHK COMX ; STATUS ENQUIRY FROM HOST
| SETB ENQ_FLAG ;MAIN LOOP CHKS THIS FLAG
é SIMP CHK_RX_EXIT '
icomx:
i CJINE A,#'S',CHK_RX EXIT ;CMD/DATA FOR COM1/2 ON 82530
LCALL RXBUF_COMXBUF ; TRANSFER FROM RXBUF TO
jz_BUF
? SIMP CHK_RX_EXIT
RX_EXIT:
; CLR RX_BUF_FULL ;SET IN INT ROUTINE

TER 3 PAGE 106

E—

ASSEMBLER CODE LISTING

'gx_EXIT1:

g RET
ﬂ**

i
i
i

krkkkhkkhkhkhkkkkkdkhhkkhhkhhhhkhkhkhhhhhhkhkhhhhhhhbkhhkhhhhkdhhkhhhhkhhhhhkhhkhkhhhkkkkk

'[RANSFER FROM RX_BUF (8032) TO COMX BUF (82530) *
R6 AND R7 IS USED FOR TEMPORY STORAGE OF DPTR *
*

ON ENTRY: *
DPTR POINTS TO SOURCE BUFFER (RX_ BUF) . *

*

ON EXIT: .
COMX_BUF CONTAINS RELEVANT DATA *
TXBUF1/2_ FULL IS SET (USED WHEN TRANSMITTING VIA 82530) *

tkkkdkkkdhrhhkhhhbhhkkkhkhkhhhhrhddhkhrhkhdkhrhhhrrkhdhkhrtrdhhkhkddhddhrxhhrhhkdhkdhhkhrhhhx

'F_COMXBUF:
MOVX A, @DPTR ;CHK IF COM1 / COM2
INC DPTR
COM1:
CINE A,#'1',CHK_COM2 ;CMD/DATA FOR COM1
MOVX A, @DPTR ;# OF BYTES TO TRANSFER
MOV B,A ;ENSURE NOT > 50 BYTES
MOV A, #50
CLR c
SUBB A,B

'TER 3 PAGE 107

i\LPl:

COoM2:

'TER 3

MoV

MOVX

MOV

MOV

MOV

PUSH

PUSH

MoV

MOV

MOV

POP

POP

SJIMP

CINE

MOVX

MOV

MOV

CLR

SUBB

JNC

MOV

MOVX

MOV

CcoM1 LP1
A, #50
@DPTR, A

B,A

R5,B
R4, #01
DPL

DPH

DPTR, #COM1_TXBUF

R6,DPL
R7,DPH
DPH

DPL

RXBUF_ LFP1

A,#'2' ,RXBUF_EXIT

A, @DPTR

B,A
A, #50

c

A,B
COM2_LP1
A, #50
@DPTR, A

B,A

PAGE 108

ASSEMBLER CODE LISTING

;OVERWRITE # OF BYTES TO TX

;# OF BYTES TO TRANSFER

;USED TO SET TXBUF1 FULL

;SAVE COM1_TXBUF

;CMD/DATA FOR COM2

;# OF BYTES TO TRANSFER

;ENSURE NOT > 50 BYTES

;OVERWRITE # OF BYTES TO TX

'9__LP1 :

MOV

MOV
PUSH
| PUSH
MOV
MOV
MOV
POP
POP
UF_LP1:
| MOVX
INC
PUSH
PUSH
MOV
MOV
MOVX
INC
MOV
MOV
POP
POP
DINZ
TXBUF_FULL:
CINE

SETB

"TER 3

R5,B

R4, #02

DPL

DPH

DPTR, #COM2_TXBUF
R6, DPL

R7,DPH

DPH

DPL

A, @DPTR
DPTR
DPL

DPH
DPL,R6
DPH,R7
@DPTR, A
DPTR
R6,DPL
R7,DPH
DPH

DPL

RS, RXBUF_LP1

R4, #01,CHK_TXBUF2

TXBUF1_FULL

PAGE 109

ASSEMBLER CODE LISTING

;# OF BYTES TO TRANSFER

;USED TO SET TXBUF2_ FULL

;SAVE COM2 TXBUF

;READ SOURCE ADDR

; SAVE DPTR

;WRITE DESTINATION ADDR

;SAVE DESTINATION ADDR

;RESTORE SOURCE ADDR

ASSEMBLER CODE LISTING

E SJMP RXBUF_EXIT

. TXBUF2:
: CINE R4, #02,RXBUF EXIT
| SETB TXBUF2_FULL
wF_EXIT:

RET

|
R R R R L T L T T T TR

;***

| HOST REQUEST VARIOUS INPUT STATUS CONDITIONS IE LOCK, DRAW ETC *
/THE 4 BYTES WILL BE IN FOLLOWING SEQUENCE: . *
| DRAW1_STAT, DRAW2 STAT, RECEIPT STAT, LOCK_STAT *

1

u***

;HRE:
g JNB ENQ_FLAG,ENQ EXIT
? MOV DPTR, #ENQ_BUF
MOV RO, #DRAW1_STAT
MoV P2, #0 ;IN CONJUNCTION WITH MOVX RO/R1
| MOVX A,€RO
MOVX @DPTR, A
INC DPTR
MoV RO, #DRAW2_ STAT
MoV P2, #0 ;IN CONJUNCTION WITH MOVX RO/R1
MOVX A,@RO
MOVX @DPTR,A

PTER 3 PAGE 110

PR ——,

et L e anns S

EXIT:

i
i

INC

MOV
MOV
MOVX
MOVX

INC

MOV
MOV
MOVX
MOVX
CLR

SETB

RET

DPTR

RO, #REC_STAT
P2, #0

A, @RO
@DPTR, A

DPTR

RO, #LOCK_STAT
P2, #0

A, €RO

€DPTR, A

ENQ FLAG

ENQ FULL

ASSEMBLER CODE LISTING

;RECEIPT ON/OFF

;IN CONJUNCTION WITH MOVX RO/R1

;IN CONJUNCTION WITH MCOVX RO/R1

;ENQ BUF IS NOW FULL

3:***

"TER 3

LUDE (EQUATES.ASM)

END

PAGE 111

.;
!
1
1

| ASSEMBLER CODE LISTING
SCAN.ASM
i

i

% SCANNER MODULE

MODULE FOR SLOT SCANNER INTERFACE (OCIA)

;***

i

iIC TIMEOUT, SCAN_READ, INIT SCAN, ADD_QUE, CHK QUE

RN BIT (TMOUT, SCAN_FLAG, QUE FLAG, KEY_FLAG, QUE_FULL)

"N DATA (SCAN_COUNT, QUE _COUNT, KEY COUNT)

RN XDATA (SCAN_BUF, KEY QUE, KEY BUF)

°N CODE (WAIT, TEST, BEEP)

tkkkdkkkkhkhkhkhhkhkkkidkhkrhohhhkhkkkkdkhkdkkhkkhhkhkhkhhkhkkkkhkhhhhkhkdkkhkhhkhhhkhhkkkhdhkd

i_SEG SEGMENT CODE ;RELOCATABLE CODE SEGMENT

RSEG SCAN_ SEG

kA kkkkhkhkAhhkkkhkhkhkhkkhkhkhkhkhkhkhkhkhkhkhkrthhkhkhkhkrthkdkhhkhkhkhohkihtrkhkhhkhkhhahdhhRkrihhhhhrhid

thkkkkhkkhhkhkhhkkkhkhkhkhhhkhkhkkhhkhkkhdkhhhkdkhhdhkhhhokhhkkhkhkhhdhhhhkhhhdhhhbhdhkhkhkrthkhkkkd
CALL THIS ROUTINE BEFORE POLLING THE SCANNER OR KEYBOARD, ELSE DATA *
WILL BE PLACED IN KEY BUF OR SCAN BUF, AND WE WOULD NOT NO WHICH CAME *
FIRST. THIS WOULD THEREFORE DEFEAT THE WHOLE AIM OF THE KEY QUE, WHICH *

ENSURES THAT THE KEY/SCAN DATA IS IN THE SEQUENCE AS IT WAS INPUT BY *

'TER 3 PAGE 112

ASSEMBLER CODE LISTING

ﬁHE USER. x
.
;HECK IF THE KEY QUE CAN ACCOMAODATE MORE SCAN OR KEY DATA *
; *
BN ENTRY: *
'i ACC = 'K' INDICATES KEY DATA *
j 'S' INDICATES SCAN DATA | *
i

é | *
ON EXIT: . - *
§ QUE_FULL FLAG WILL BE SET IF KEY QUE IS FULL *

Lﬁ***

QUE:
iKEY:
g CJINE A,#'K',CHK_SCAN CHK IF KEY OR SCAN DATA
§ CLR c ;CHK IF KEY_QUE IS FULL
% MoV A,QUE_COUNT
% ADD A,KEY COUNT
MOV B,A
: MOV A,#24
| SUBB A,B
JcC CHK_QUE_FULL ;KEY_QUE 1Is FULL
SIMP CHK QUE EXIT
:SCAN:
§ CJINE A,#'S',CHK QUE_EXIT ;! KEY OR SCAN DATA, THEN ERROR
é CLR C ;CHK IF KEY QUE IS FULL
|
§ Mov A,QUE_COUNT
1
% ADD A,SCAN_COUNT
§

PTER 3 PAGE 113

it

ASSEMBLER CODE LISTING

MOV B,A
; MOV A, #24
§ SUBB A,B
g Jc CHK_QUE_FULL ;KEY QUE IS FULL
SIMP CHK_QUE_EXIT

riQUE__FULL :

SETB QUE FULL
f
_ QUE EXIT:

5 RET

&***

%
|
I R R R T R R R e e Y Y S T T Y L

ONE HAS TO ENSURE THAT KEY DATA AND SCAN DATA ARE IN THE CORRECT *
| SEQUENCE ENTERED. ONE CAN'T HAVE 1 KEYSTROKE WHICH WAS ENTERED *
AFTER A SCAN APPEARING BEFORE THE SCAN DATA AT THE HOST COMPUTER. *
jTO OVERCOME THIS PROBLEM, A KEY QUE IS USED, AND THE DATA FROM THE *

i
; SCANNER AND KEYBOARD IS ENTERED SEQUENTIALLY INTO THIS BUFFER. THIS IS *
ETHE BUFFER WHICH WILI, NOW BE TRANSMITTED TO THE HOST, CONTAINING BOTH *

'KEY AND SCAN DATA. *

i ’ *

{ON ENTRY: *

i
i

ACC = 'K' INDICATES KEY DATA *

: 'S' INDICATES SCAN DATA *
*
:
‘ON EXIT: *
%***

!
i
i

PTER 3 PAGE 114

i
§
|
i

§ ASSEMBLER CODE LISTING

iQUE:
ﬁ MOV B,A
; MOV A, #KEY_ QUE ;CORRECT OFFSET INTO KEY QUE
ADD A,QUE COUNT
g MOV R1,A ;COMBINATION OF KEY & SCAN DATA
§ MOV aA,B ;RESTORE ACC
iK:
CJINE A,#'K',CHK_S ;CHK IF KEY OR SCAN DATA
€ MOV RO, #KEY BUF ; SOURCE ADDRR
% MOV R7,KEY_COUNT
| MOV KEY COUNT, #0
CLR KEY FLAG
| SIMP ADD_LP1
s
| CJINE A,#'S',ADD EXIT ;! KEY OR SCAN DATA, THEN ERROR
MOV RO, #SCAN_BUF ; SOURCE ADDRR
MOV R7,SCAN_COUNT
MoV SCAN_COUNT, #0
MOV P2, #0 ;IN CONJUNCTION WITH MOVX RO/R1
MOV A, #0FFH ; INDICATES SCAN DATA
MOVX gR1,A
INC R1
INC QUE_COUNT
MOV A,R7 ; INDICATES # OF BYTES IN SCAN FIELD
MOVX €R1,A
INC R1
INC QUE_COUNT

DTER 3 PAGE 115

§ CLR
éLPl:

' MOV
MOVX
MOVX
INC
INC
] INC
; DINZ
' SETB

SJMP

SETB

RET

SCAN_FLAG

P2, #0

A, @RO
@R1,A

RO

R1
QUE_COUNT
R7,ADD_LP1
QUE_FLAG

ADD_ EXIT

QUE_FULL

ASSEMBLER CODE LISTING

s IN CONJUNCTION WITH MOVX RO/R1
; TRANSFER FROM KEY/SCAN_ BUF TO

;KEY QUE

;NEXT BYTE TO TRANSFER

;DATA IN KEY QUE

; PREVENT INPUT FROM KEY & SCAN

dkkkkhhkkhkkhkkhkhkdkhhkhkhkkhkhkhkhkkhkhkhkhbhbhhkkhkhhkhkhhkhhkhhhhhkhkhkdhhhkhhhkhhhkhkkdkkkhdkk

kkkhkkdkkhkhkhhkkkdkhkdkhhkrkhhkkhkihkkkrhkhkkhkkhkhkkhkkhkhhhkhkhkhkdkkhkhkhkhkhhkkhkhkhhkithhhkdhkhhhkkkhkkkk

INITIALIZE SLOT SCANNER

*

thkkkkkhkhhhhhhkhkhhkhkkkhkhokhkkkhkhkhkhkdkhkhkhkhkhhhhhkhhkdkhkdkhkhkhhkhkhkdhhhhkkhdhdhhkhhrhhdk

T_SCAN:
MOV
CLR
CLR
MOV
T_SCAN_LP1:

"TER 3

SCAN_ COUNT, #0

SCAN_FLAG
P1.1 ;CLK 'L’
R7, #08

PAGE 116

ASSEMBLER CODE LISTING

] SETB P1.2 ;RESET 'H'
é LCALL WAIT
é CLR P1.2 ;RESET 'L’
E LCALL WAIT
é DJINZ R7,INIT_SCAN LP1

RET

ghkkkkkkhkhkhkkkkhkhkkhkhkhkhththkhhhhkkhkhrhhhhkhhhhhhhhkhhkhkhkhkhhkhkkhhhkhhihhrdhhihkhhdtdk
.
ﬁ***

‘READ SLOT SCANNER : %

;***

;I_READ :
% JB SCAN_FLAG,SCAN EXIT ; SCAN_BUF IS FULL
| JB QUE_FULL, SCAN EXIT ;KEY QUE IS FULL
n JB P1.0,SCAN EXIT ;P1.0 = 0, DATA AVAILABLE
f MOV R6,#20
? MOV RO, #SCAN_BUF
% MOV SCAN_COUNT, #0
&_READ_LPl:
| LCALL TIMEOUT
E_DATA :
JB P1.0,CHK_TMOUT ;P1.0 = O, DATA AVAILABLE
* SJIMP READ BYTE
iTMOUT:
§ JB TMOUT, SCAN_ERR
| SJMP CHK_DATA

“TER 3 PAGE 117

b oot i e A 5

s _BYTE:

¥_EXIT1:

TER 3

MOV

LCALL

LCALL

INC

LCALL

JNB

JB

MOV

MOV

MOVX

INC

JB

DINZ

SETB

SJIMP

MOV

CLR

RET

ASSEMBLER CODE LISTING

B, #06 ;26 uSEC DELAY BEFORE READING NEXT BYTE
WAIT1

SCAN

SCAN_COUNT

TEST

P1.6,$

P1.6,$

B,A ; SAVE ACC

A, #3FH

P2, #0 ;IN CONJUNCTION WITH MOVX RO/R1
@RO,A

RO

B.6,SCAN EXIT1 ;LAST BYTE WAS READ

R6,SCAN_READ_LP1

SCAN_FLAG ;SCAN DATA AVAILABLE

SCAN_EXIT

SCAN_COUNT, #0

TMOUT

i***

PAGE 118

;f ASSEMBLER CODE LISTING
Q&**
;gREAD 1 BYTE FROM SLOT SCANNER. (1 BYTE = 9 BITS) *

;EBIT FORMAT: 1 BIT IS THE START BIT, FOLLOWED BY 6 DATA BITS (BO' - B5) *

;foLLOWED BY 1 BIT WHICH INDICATES THAT THIS WAS THE LAST BYTE READ *
;3(86 = 1 LAST BYTE READ), FOLLOWED BY A PARITY BIT (B7) *
gpl.o = RETURN DATA ‘ *
%Pl.l = CLOCK *
§P1.2 = RESET ' *
i *
EON ENTRY: *
% NOTHING *
%ON EXIT: *
| ACC = BYTE READ FROM SCANNER *

&***

i
¥

\N:
MOV ' R7,#09 ;9 BITS / BYTE
CLR A
CLR c
{f LP1:
SETB P1.1 ;CLK 'H!
MOV B, #06 ;26 USEC TIME DELAY
LCALL WAIT1 .
CLR P1.1 ;CLK 'L’
MoV B, #30 ;94 uSEC TIME DELAY
LCALL WAIT1
PTER 3 PAGE 119

ASSEMBLER CODE LISTING

RRC a
| MOV C,P1.0 ;READ DATA BITS
j DINZ R7,SCAN LP1
?g CPL A
i MOV B, #250 ;600 uSEC DELAY BEFORE READING NEXT BYTE
LCALL WAIT1 ; THIS LONG DELAY IS TO ACCOMADATE THE
LAST BYTE
RET

phkkkkdkhhkkhkhhhkhkdhkdhdhkhhrkdhkhhhhhhhhbhkhhhbhhhbhhhbhdhhhkhhbhhhhdhhhhkkhhhkhkhhdkhkik

ﬂ***

USED FOR A TIMEOUT LOOP. DURATION OF TIMING PERIOD IS 170 mSEC, WITH NO *
INTERUPTS TAKING PLACE. *
: *
%ON ENTRY : *
NOTHING *
'ON EXIT: *
CHECK 'TMOUT' FLAG IF SET, THEN A TIMEOUT OCCUREED *
NB: ENSURE TO CLEAR THE FLAG. ' *

kkkdkhhkhhkdkhkhkhkhkhkxdhkhrkkhkhhhkrhhrdhrhddddrdidrhdbhdkdhdhddhrhkrhhkkixkrhkkkkkhiik

[T
(o]
o
+

CLR TRO ; STOP TIMER 0
MOV THO, #0 ;USED FOR TIMEOUT LOOP
MOV TLO, #0

SETB TRO ;START TIMER 0

PTER 3 PAGE 120

ASSEMBLER CODE LISTING

RET

&***

i
B

ﬁ***

éTIME DELAY. FIRST SETUP REG B WITH # OF TIMES TO LOOP *
! .
{ON ENTRY: *

B = # OF TIMES TO LOOP ' *
.ON EXIT: ' *
2 NOTHING .

ﬂ***

|
T1:

T1_LP1:

DJINZ B,WAIT1_LP1

RET

H
i

ik khkhkkdkhhkhkkkkhkhkhhkhthhhkkkhhkhhthohhkhkhkhkhkhhhhhdhhhkhkhhhhhhrhokhkhhhkdhhkhkhkhkhkkkhhkkhk

ICLUDE (EQUATES.ASM)

PTER 3 PAGE 121

¥ ASSEMBLER CODE LISTING

32530.ASM

i
i
i
1

sikdkdkdkkhkkhkhkkhhkdhhdhddkhkhhdk ik hkkkkhbhhkhhhhhkhkhhhhhdhrhhkhddkhhdh bk dkddhhhkhhkhhs

ENOTElz *
éNBl!!!!!!!!! A COMMON ERROR WHEN PUSHING A VALUE ONTO THE STACK *
é INSIDE A LOOP, IS FORGETTING TO RESTORE THE STACK TO *
IT'S CORRECT OFFSET WHEN ONE JUMPS OUT OF THE LOOP *
WHEN AN ERROR CONDITION OCCURS. NORMALLY INSIDE THE *
LOOP THE PUSHES AND POPS TO THE STACK WILL BE FINE, *
IT'S ONLY WHEN AN ERROR CONDITION OCCURS AND WE JUMP *
1 OUT OF THE LOOP, AND THE PREVIOUS VALUES WHICH WE *
;
§ PUSHED ONTO THE STACK IS STILL ON THE STACK. AN *
% ASSOSIATED ‘POP' HAS TO TAKE PLACE INSIDE THE *
; 'ERROR ROUTINE' TO PLACE THE STACK AT THE CORRECT *
i OFFSET. | *

Bikhhkkhkkhk A khkkhkrhrdhkhkhhkrhhkhkhhriktdhdhhkhhrrhrrrhhkhkrkrrrhhkthhhhdhhkhhk

i
!

i***

iNOTE?. : *
WBBLIIUIELLNY | *
j IF THE NUMBER OF TRANSMIT DATA BITS IS CHANGED IN WRS, THEN THE *
f VALUE THAT IS WRITTEN TO THIS REGISTER HAS TO BE ENTERED INTO *
'RTSA' AND 'RTSB', IN THE FUNCTION 'INIT82530VARS'. *
J THE REASON WHY WE KEEP AN IMAGE OF THIS REGISTER, IS THAT WRS *
; CANNOT BE READ, SO THAT WHEN WE TOGGLE THE RTS LINE WE USE THE *
5 VALUE STORED IN 'RTSA/B', MODIFY THIS VALUE, AND WRITE IT TO WRS. *

ﬂ**

BTER 3 PAGE 122

ASSEMBLER CODE LISTING
COMMS _82530_MODULE

MODULE FOR 82530 COMMS CHIP

axkdkkkhkhhkhhhhkhhdkhkhkhhhhhhhhhhhdhhhhkhhdhhkhkhkhhhhhhhkhkhkkhhhkhkhhkhkhhkhkhkhkhhkkhhhkkhhhd

IC

IC

INIT 82530, B82530, A82530, SETUP TX, TX COMX, CODE_TO_ XDATA

INIT 82530VARS, SETUP_RX
BIT (TMOUT, TXBUF1l_FULL, TXBUF2 FULL, RXBUF1_FULL, RXBUF2_FULL)

DATA (TX82_ STAT, COUNT82, PARITY, ST BITS, TX_DATA BITS)

DATA (RX_DATA BITS, BAUD, RTSA, RTSB, RX1_COUNT, RX2 COUNT)
XDATA (COM1 TXBUF, COM2 TXBUF, COM1_RXBUF, COM2_ RXBUF)

CODE (WAIT, TEST, BEEP, CLS1, CODE_TO LCD, LCD WR)

ﬁ***

MS_82530_SEG SEGMENT CODE ;RELOCATABLE CODE SEGMENT

RSEG COMMS 82530_SEG

‘
i
é
thkdkdk ke hkhkhhkhkdhkkhkdkhrhhddhhhkhrhhhhdhhhhhhhkhkhhdkdkkddhhhhdkhihkikdkddddkkdhkkikik

PTER 3 PAGE 123

ASSEMBLER CODE LISTING

;***
-geTUP DPTR WITH SOURCE BUFFER, COM1/2_ RXBUF. R7 WITH RX1/2_ COUNT *
| *

%DEBUG 82530 RECIEVE SOFTWARE *

i***

“***

'RECTEVE BYTE FROM 82530, PLACE THIS IN COM1/2 RXBUF %
?USE R7 IN CONJUNCTION WITH FUNCTION 'CHK CHAN' AS A LOOKUP FOR THE x
EADDRESSES FOR THE 82530. x
*

ON ENTRY: *
DPTR POINTS TO SOURCE BUFFRER (COM1 RXBUF/COM2_ RXBUF) *

*

R7 = 2 COMDATB ;DATA REG. CH B *

4 COMDATA ;DATA REG. CH A %

i *
| REG 6 = # OF BYTES CURENTLY IN COM1/2_RXBUF SO AS TO PLACE NEW *
RX BYTE AT CORRECT OFFSET .

*

{ON EXIT: *
RX1/2_COUNT = NEW # OF BYTES IN COM1/2_RXBUF (ALSO USED IN ROUTINE *

TO TRANSMIT DATA TO THE HOST) *

“hkkkhkhkkhhkhkhhkkhkikhkkkhkkhhkhkhkkhkhkhkhkhkhkhkkhkkhkhkkhkhkhkkthkhkkhkhkhkhkkhhkhkkhthhkhkhkhhkhkhkkkkkhkkk

li?OMX :
‘ MOV A, #40 ; ENSURE NOT > 40 BYTES

CLR C

PTER 3 PAGE 124

i
ki

|

I

OMX LP1:

D_CHAR:

'TER 3

SUBB

JNC

MOV

SJMP

PUSH

PUSH

DEC

LCALL

INC

MOV

MOVX

MOVX

MOV

MOVX

POP

POP

JNB

MoV

CINE

PUSH

PUSH

LCALL

MOVX

ASSEMBLER CODE LISTING
A,R6
RX_COMX_LP1
R6, #40

RX_EXIT

DPL
DPH

R7 ;LOAD DPTR WITH CORRECT CMD REG OFFSET
CHK_CHAN

R7

A, #01

@DPTR, A ; SELECT RR1

A, @DPTR ;RR1 FOR ERR CONDITION

B,A ; SAVE RR1

A, @DPTR ;RRO CHECK IF CHAR AVAIL

DPH

DPL

ACC.0,RX EXIT ;1 = CHAR AVAILABLE
A,B ;CONTENTS OF RR1, PARITY/OVERUN ERR
A,#70H ;CHECK FOR PARITY/OVERUN/FRAME ERR

A,#0,PAR ERR ;!= 0, THEREFORE ERR CONDITION

DPL
DPH
CHK_CHAN

A, @DPTR ;READ CHAR

PAGE 125

MOV
POP

POP

CLR
MOV
ADDC
MOV
JNC
INC

JMX_LP2:
MOV
MOVX
INC

' SIMP
DEC
LCALL
INC
MoV
MOVX

EXIT:

RET

BTER 3

B,A
DPH

DPL

C

A,R6

A,DPL
DPL, A
RX_COMX_ LP2

DPH

A,B
@DPTR, A
R6

RX_COMX

R7

CHK_CHAN
R7
A,#30H

éDPTR, A

ASSEMBLER CODE LISTING

;SAVE RX CHAR

; CALC CORRECT OFFSET FOR COM1/2 RXBUF

;RESTORE RX CHAR

;WR RX CHAR TO COM1/2 RXBUF

;CHK IF ANOTHER BYTE AVAILABLE

;LOAD DPTR WITH CORRECT CMD REG

; ERROR RESET

;WRO

¥hkkdkhkhkhkhhkhhkhkhkhkhkkhhkhkhkhkhkhhkhkhkhkkhhkhhhkkkhkrhkhhkhkkhhkhkhkhkhhkrxhhdhkdhkdhrhkhkidhrkkhhhkhkkhk

PAGE 126

ASSEMBLER CODE LISTING

ikkkdkkhhkdhkhhkhhhhkhkkhhdhdkdrhdhdkkhkhhhhhdkhhhhhkkrhhhkhtrhhkhhdbhhhhhkhhhkhhkhhihd

SETUP DPTR WITH SOURCE BUFFER, R7 WITH VALUE TO ADDRESS OF 82530, *

COUNT82 FOR # OF BYTES TO TRANSMIT, BEFORE CALLING TX_COMX. ' *

*

FORMAT OF DATA FIELD: *

'C'MD / 'D'ATA *

g # OF BYTES IN DATA FILED, INCLUDING C/D & # OF *

'g BYTES IN DATA FIELD *

35 DATA STRING | *

EFORMAT OF COMMAND FIELD: *

'g BAUD RATE, BINARY 48, 96, 19, 38 (DEFUALT 9600) *

é DATA BITS, BINARY 7, 8 (DEFAULT 7) *

E STOP BITS, BINARY 1, 2 (DEFAULT 2) *

L PARITY 'N', 'O', 'E! (DEFAULT 'E') *

*

|NB: COMMAND STRING MUST BE IN ABOVE SEQUENCE *

é .
:

| ON ENTRY: *

NOTHING ' *

*

ON EXIT: *

DPTR POINTS TO SOURCE BUFFRER (COM1 TXBUF / COM2_ TXBUF) *

. *

R7 = 1 COMSCB ;COMMS STATUS/CONTROL REG. CH B *

2 COMDATB ;DATA REG. CH B *

3 COMSCA ;COMMS STATUS/CONTROL REG. CH A *

(PTER 3 PAGE 127

i

ASSEMBLER CODE LISTING
4 COMDATA ;DATA REG. CH A *

*

COUNT82 = # OF BYTES TO WRITE TO 82530 *

*

H***

[&P-TX :
| JNB TXBUF1_FULL,CHK_TXBUF2
: MOV DPTR, #COM1_TXBUF
| MOVX A, @DPTR ;# OF BYTES TO TX
% INC DPTR
| DEC A ;REMOVE # OF BYTES & CMD/DATA BYTE
é DEC A ; FROM DATA STRING
é MOV COUNTS2,A
§ MOVX A, @DPTR ;CHECK IF CMD/DATA
% INC DPTR
Lkmnl:
‘ CINE A,#'C',CHK_DAT1 ;CHECK IF CMD FOR COM1
gi LCALL COMMS_OPTIONS
?TE_RTSA:
MOV RO, #RTSA
MOV A,TX DATA BITS
MOV €RO, A
MOV DPTR, #COM1_TXBUF ;SETUP REGS FOR CODE_TO XDATA
MOV R6,DPL
MOV R7,DPH
MOV DPTR, #A82530

'ER 3 PAGE 128

_DAT1:

PTER 3

MOV

LCALL

MOV

LCALL

MOV

Mov

MOV

LCALL

CLR

SJMP

CJINE

MOV

CLR

MOV

LCALL

MOV,

LCALL

CLR

MOV

SETB

ASSEMBLER CODE LISTING
COUNTS82, #22
CODE_TO_XDATA ;COM1_TXBUF CONTAINS ORIGINAL

;INTIALTZATION CODE

DPTR, #COM1_TXBUF

SETUP_CMD_STR

DPTR, #COM1_TXBUF ;INIT CHANNEL A OF 82530
R7,#03

COUNTS82, #22

INIT 82530

TXBUF1_FULL

SETUP_EXIT

A,#'D',SETUP_EXIT ;CHECK IF DATA FOR COM1

A,RTSA ;RTS 'H'
ACC.2
R7,#03

TOGGLE_RTS

R7,#04

TX_COMX ;DPTR POINTS TO START OF DATA STRING
;OF COM1_TXBUF

TXBUF1_FULL

A,RTSA ;RTS 'L!

ACC.2

PAGE 129

[TXBUF2:

y

 CMD2:

TE_RTSB:

ETER 3

MoV

LCALL

S5JMP

JNB

MOV

MOVX

INC

DEC

DEC

MOV

MOVX

INC

CJINE

LCALL

MOV

MoV

MOV

MOV

MOV

MOV

MOV

MOV

LCALL

ASSEMBLER CODE LISTING

R7,#03
TOGGLE_RTS

SETUP_EXIT

TXBUF2_FULL,SETUP_EXIT

DPTR, #COM2_TXBUF

A, @DPTR ;# OF BYTES TO TX

DPTR

A ;REMOVE # OF BYTES & CMD/DATA BYTE
a ; FROM DATA STRING

COUNTS2,A

A, @DPTR ;CHECK IF CMD/DATA

DPTR

A,#'C',CHK_DAT2 ;CHECK IF CMD FOR COM2

COMMS OPTIONS

RO, #RTSB
A,TX_DATA BITS
@RrRO,A

DPTR, #COM2_TXBUF ;SETUP REGS FOR CODE_TO XDATA
R6,DPL

R7,DPH

DPTR, #B82530

COUNTS2, #22

CODE_TO_XDATA ;COM2 TXBUF CONTAINS ORIGINAL

PAGE 130

ASSEMBLER CODE LISTING

;INTIALIZATION CODE

é MoV DPTR, #COM2_TXBUF
E LCALL SETUP_CMD_STR
-§ MOV DPTR, #COM2_TXBUF ; INIT CHANNEL B OF 82530
é MoV R7,#01
E MOV COUNT82, #22
% LCALL INIT_82530
§ CLR TXBUF2_FULL
| SIMP SETUP_EXIT
[DAT2:
CJINE A,#'D',SETUP_EXIT ;CHECK IF DATA FOR COM2
MOV A,RTSB ;RTS 'H'
CLR ACC.2
| MoV R7,#01
i
| LCALL TOGGLE_RTS
MOV R7,#02
LCALL TX_COMX ;DPTR POINTS TO START OF DATA STRING

-

;OF COM2_TXBUF

CLR TXBUF2_FULL
§ MOV A,RTSB ;RTS 'L!

SETB ACC.2

MOV R7,#01

LCALL TOGGLE_RTS

'TER 3 PAGE 131

ASSEMBLER CODE LISTING

SJMP SETUP_EXIT

qup_EXIT:

§ RET

Cipkkkkdkkdkhhkkkhkhkhhkkhokkkkkkhkhkh ok kk kb h kb bk hhkdkdedhhd bbbk bbddihkd

{
4
i: -
m***

i

|| TOGGLE THE RTS LINE *
zON ENTRY: *
? DPTR POINTS TO SOURCE BUFFRER (COM1 TXBUF/COM2 TXBUF) *
R7 = 1 COMSCB ;COMMS STATUS/CONTROL REG. CH B *

i 3 COMSCA ;COMMS STATUS/CONTROL REG. CH A *
*

ACC = MODIFIED RTS BYTE *

jON EXIT: *
| DPTR POINTS TO SOURCE BUFFRER (COM1_TXBUF/COM2 TXBUF) *

ﬁ***
i

1

*%LE_RTS:
% PUSH DPL
; PUSH DPH
| LCALL CHK_CHAN
MOV B,A ;SAVE RTS STATUS
MOV A,#05 ;WR 5
MOVX €DPTR, A
MoV A,B ;RESTORE RTS STATUS

PTER 3 PAGE 132

ASSEMBLER CODE LISTING

MOVY eDPTR,A
PoP DPH

POP DPL

RET

tkkkkkkkkhkhkhkhkkkdhkhdkkkkhhkhkhkhhhkhkhkhkkhkkhkhkhkhhkhkhhkhhkkkhkkhkhhkhkhkkkhkhkkixhkhhkkhkkkk

rkkdkkhkhdhkhkhkhhhhhhhhhhkhkbkhdkikhhhhhhhbhdthkbhdhhbhhbhdhhhdhdhidkddkddhdddhdhhkidddhiik

SETUP INITIALIZATION STRING TO INITIALIZE 82530 , *
*

ON ENTRY: -
DPTR POINTS TO SOURCE BUFFRER (COM1 TXBUF/COM2_ TXBUF) *

_tkkkkkdkhkhkhkhkhkkkhkhhhkhkhhkhkhhkhkhkhkhkhkhkhkhkkkhhhkhhhkhkhkhhkhkkhhhhkhkhhhkhhkkkhkkkhhhhhdhkhdkhk

1TUP_CMD_STR :

:f MOV RO, #RX_DATA BITS ;READ RX BIT RATE

'% MOV A, @RO

_E INC DPTR

i INC DPTR

1

| INC DPTR

é MOVX @DPTR, A ;SET NEW BIT RATE

é MOV RO, #PARITY ;READ PARITY BYTE, INCLUDES ST BITS
§ MOV A, €RO

é INC DPTR

f INC DPTR

% MOVX @DPTR, A ;SET NEW PARITY AND STOP BITS
| MOV RO, #TX_DATA BITS ;READ TX BIT RATE

IPTER 3 PAGE 133

ASSEMBLER CODE LISTING

MOV A, @RO
g INC DPTR
; INC DPTR
? MOVX @DPTR, A ;SET NEW TX BIT RATE
i
MOV RO, #BAUD ;READ NEW BAUD RATE
MOV A, @RO
INC DPTR
INC DPTR
i INC DPTR
INC DPTR
INC DPTR
INC DPTR
MOVX @DPTR, A ;SET NEW BAUD RATE
RET

kkkkhkr XAk AhhR ATk hhhkdhhhxkdrhhhkhkkhkhk kA hhkhkkhkhrhkhkdhhhkhrhhhhhhhdhhhkhhkhhhhhkhkkkkk

kkkkkhkkdkkddkhkkhhhhkhkhkhkhhkhkhkkhkhkhhhkhkhkhkkhkhkkdkhkkkdhhhkkhkkhkkkkkhhkkkkhkkhhkkhkkhhkhkikik

SETUP COMMS OPTIONS TO INITIALIZE 82530 FROM HOST . *
%

ON ENTRY: *
DPTR POINTS TO SOURCE BUFFRER (COM1 TXBUF/COM2 TXBUF) *
OFFSET € BAUD RATE *

dhkkhkAXhkARREAA Rk Ak hkdkhkkkkhkhkhkkkhkhkhhhkhkhkdhkhkhhkhkhdddhdhkhkkhkkhkhkhkhhkhhihhhkkhkhkhikhkhkkkhk

'MS_OPTIONS:

MOVX A, @DPTR ;SET BAUD RATE

"PTER 3 PAGE 134

ASSEMBLER CODE LISTING

INC DPTR
<48 ;SET BAUD RATE
é CINE A,#48H,CHK96 ;4.8K BAUD
MOV A, #16H
| SIMP SET_BAUD
961
j CINE A,#96H,CHK19 ;9.6K BAUD
é MOV A, #0AH
E SIMP SET_BAUD
jIK19:
; CINE A,#19H,CHK38 ;19.2K BAUD
MOV A, #04
SIMP SET_BAUD
K38
é CINE A,#38H,CHK DATA BITS ;38.4K BAUD
| MOV A, #01
~ BAUD:
MOV RO, #BAUD
MOV @ro,A

'K_DATA_BITS:

MOVX A,BGDPTR ;SET # OF DATA BITS
| INC DPTR
K-

CINE A, #7H,CHKS

MOV A,#41H ;# OF RX BITS

MOV B, #28H ;# OF TX BITS

APTER 3 PAGE 135

SIMP
"K8:
CINE
MoV
MOV
:T DATA_BITS:
MOV
MOV
MOV
MOV
K_ST_BITS:
MOVX
INC
K1z
CINE
MOV
SIMP
K2:
CINE
MOV
T_STOP_BITS:
MOV
MOV
K_PARITY:
MOVX

INC

APTER 3

ASSEMBLER CODE LISTING

SET_DATA_BITS

A,#8H,CHK_ST BITS
A,#0C1H ;# OF RX BITS

B, #68H ;# OF TX BITS

RO, #RX_DATA BITS
€RO,A

RO, #TX_DATA BITS

@RO,B

A, @DPTR ;SET # OF STOP BITS
DPTR

A, #1H,CHK2

A,#47H ;1 STOP, EVEN PARITY

SET_STOP_BITS

A, #8H,CHK_ST BITS

A, #4FH ;2 STOP, EVEN PARITY

RO, #ST_BITS

@RO,A

A, @DPTR ;SET PARITY

DPTR

PAGE 136

o e, b i

§7_PARITY:

"PTER 3

CJINE

MOV

SJMP

CINE

MOV

SJMP

CINE

MOV

MOV

MOV

MoV

MOV

ORL

RET

A,#'E',CHK N
A,#03H

SET_PARITY

A,#'N',CHK O
A, #00H

SET PARITY

A,#'0',CO EXIT

A,#01H

RO, #PARITY

@RrRO,A

RO, #ST_BITS
A, 8RO
A, #0FCH

PARITY,A

ASSEMBLER CODE LISTING

; EVEN PARITY

;NO PARITY

;ODD PARITY

+REMOVE LOWER 2 BITS

ik kA kA hkk Ak hkrk Ak hhkkkkkkhkkkkhkkhkhkhhkhkhkhkhhkhkhkhkrh kA Ik Ak hrhhhhkhrhkhrdhkhkhiidk

PAGE 137

ASSEMBLER CODE LISTING

3
]
i

ﬁ**

§

,%TRANSMIT DATA STRING TC COM1/2. *
é USE R7 IN CONJUNCTION WITH FUNCTION 'CHK_CHAN' AS A LOCKUP FOR THE *
péADDRESSES FOR THE 82530. *
?éTXBZ#STAT IS TO INDICATE WETHER TRANSMISSION WAS SUCSESSFUL OR NOT. *
; THIS STATUS BYTE APPLIES TO BOTH COM1 & COM2. *
@ *
é ON ENTRY: - *
é DPTR POINTS TO SOURCE BUFFRER (COM1 TXBUF/COM2 TXBUF) : *
,5 *
b R7 =1 COMSCB ; COMMS STATUS/CONTROL REG. CH B | *
e 2 COMDATB ;DATA REG. CH B *
f 3 COMSCA ;COMMS STATUS/CCONTROL REG. CH A *
3 4 COMDATA ;DATA REG. CH A *
j %*
r; COUNT82 = # OF BYTES TO WRITE TO 82530 *
t *
é ON EXIT: , *
| NOTHING *

Ak hkkdkkhkkhkhkhkhhkhhhkhhkrhkhdkhkhkhkkhkhkhhhhkhhhkhhdhkkkhhhhhhhkdhkhkhkrhhkhkkhhkhkdhkdbhkkkhhk

{COMX:
ILP4:
| MOVX A, @DPTR ;READ SOURCE ADDR, COM1/2_TXBUF
MoV B,A i SAVE ACC
INC DPTR
PUSH DPL ;SAVE DPTR
PUSH DPH

APTER 3 PAGE 138

ASSEMBLER CODE LISTING

LCALL CHK_CTS ;CHECK IF DEVICE READY TO ACCEPT DATA
@ MOV A,TX82 STAT ;CHECK IF CTS ROUTINE TIMED OUT
1 CINE A, #0FFH, TX_LP1
] SIMP TX_ERR
; DPTR WILL POINT TO COMSCA / COMSCB *
g TX82 STAT = OFFH CTS ERROR *
E__LPI:
; CLR TRO ;STOP TIMER 0
MOV THO, #0 ;USED FOR TIMEOUT LOOP
MOV TLO, #0 ;80 msec DELAY
SETB TRO ; START TIMER 0
éppz:
MOVX A, @DPTR ;WAIT FOR TX REG TO BE EMPTY
JNB ACC.2,CHK_TMOUT1
_ SIMP TX_LP3
%_TMOUTl:
% JB TMOUT, TX_ERR
| SIMP TX_LP2
£ LP3:
CLR TRO ;STOP TIMER 0
LCALL CHK_CHAN ;LOAD DPTR WITH ADDR OF 82530
MOV A,B ;RESTORE ACC
MovX @DPTR, A ;WRITE TO 82530
POP DPH ;RESTORE DPTR
POP DPL
DINZ COUNT82,TX_LP4 ;TX NEXT BYTE

APTER 3

e e i

PAGE 139

P i, Ty ettt P 1. IO

5

SJMP

CLR

POP

FOP

LCALL

MOV

LCALL

MOV

LCALL

fIT_TX_COMX:

RET

EXIT_TX COMX

TMOUT

ASSEMBLER CODE LISTING

DPH ;RESTORE STACK TO CORRECT POSITION

DPL
CLS1

DPTR, #MSG3
CODE_TO_LCD

DPTR, #LCD1_DAT WR

LCD_WR

ﬁ**

bxkkkhkhhkhkhkhhkxhkhkhkhkhkkhhkkhhhhhhkhkhkhhkhkhkhhhhkhkhkkhkkkkkkhkhkhkkkhkhhkkhkhkhkkkhhhhhkhkhkhkhhkhkhk

CHECK WHICH CHANNEL IS TO BE USED, SO AS TO CHECK THE CORRECT CTS LINE *#*

NB: THE DPTR WILL BE CHANGED DEPENDING ON THE CONTENTS OF R7 *
*

ON ENTRY: *
R7 =1 COMSCB ;COMMS STATUS/CONTROL REG. CH B *

2 COMDATB ;DATA REG. CH B *

3 COMSCA ;COMMS STATUS/CONTROL REG. CH A *

4 COMDATA ;DATA REG. CH A %

ON EXIT:

DPTR WILL POINT TO COMSCA / COMSCB

APTER 3

PAGE 140

! ASSEMBLER CODE LISTING

i TX82_STAT = OFFH CTS ERROR *

ikkkdkkkkkhdkhkhhkkhkhhdhhhhhhhhkhkhhhhhhhkhhkhhhddhhkhkkhhkhhkhkhkdhhkdkhdhhhhhrhdhhkhkk

;K’CTS:

! MOV TX82_STAT, #0

% CINE R7,#02,CTS_LP1 ;CH B

é MoV DPTR, #COMSCB ;RRO FOR CTS STATUS

4 SIMP CTS_Lp2

;S__LP 1:

g CINE R7,#04,EXIT_CHK CTS ;CH A

; MOV DPTR, #COMSCA

%_LPz:

% CLR TRO ;STOP TIMER 0

| MoV THO, #0 ;USED FOR TIMEOUT LOOP
MoV TLO, #0 ;80 msec DELAY
SETB TRO ; START TIMER 0

%_Lps:

| MOVX A, @DPTR ;WAIT FOR CTs 'L’
JNB _ ACC.5,CHK_CTS_TMOUT ;BIT =1, THEN CTS = 0 ON 82530
SJMP EXIT_CHK_CTS

~_CTS_TMOUT:

| JB TMOUT, CTS_ERR
SIMP CTS_LP3

E‘_ERR :

| CLR TMOUT ;CLEAR TMOUT FLAG

j MOV TX82 STAT,#0FFH ;Ci5 ERR

~T_CHK_CTS:
CLR TRO ;STOP TIMER O

| -
APTER 3 PAGE 141

i
]
i
H
!

H

i

ASSEMBLER CODE LISTING

RET

&**

ﬁ**

» CHECK WHICH CHANNEL IS TO BE USED, AS WELL AS IF IT IS A COMMAND OR *
; DATA STRING. *
€ NB: THE DPTR WILL BE CHANGED DEPENDING ON THE CONTENTS OF R7 *
{ ON ENTRY: _ *
R R7 = 1 COMSCB ;COMMS STATUS/CONTROL REG. CH B *
it 2 COMDATB ;DATA REG. CH B *
; 3 coMsca ;COMMS STATUS/CONTROL REG. CH A *
% 4 COMDATA ;DATA REG. CH A *
K *
é ON EXIT: *
. DPTR WILL POINT TO ONE OF THE ABOVE ADDRESSES *

Exkkdkddkdkhrdkdkkkbbkkihhbbbbbbbbdtadktddkdkbdhbbbkbbtkbbdttdbdbbbhhkbbkkhkbhbhibiid

K_CHAN:

§ CJIJNE R7,#01,CHK_LP1 ;CH B, COMMAND
| MOV DPTR, #COMSCB
SJMP EXIT CHK CHAN
K LP1:
CJINE R7,#02,CHK_LP2 ;CH B, DATA
MOV DPTR, #COMDATB
STMP EXIT CHK_CHAN
K_LP2:
CJINE R7,#03,CHK_LP3 ;CH A, COMMAND
IRPTER 3 PAGE 142

MOV

SJMP

R~

T LP3:

| CJNE
: MoV
?%T_CHK_CHAN:

4

i

RET

DPTR, #COMSCA

EXIT_ CHK_CHAN

R7,#04,EXIT CHK_CHAN

DPTR, #COMDATA

ASSEMBLER CODE LISTING

;CH A, DATA

&**

!

:
phkkkhhddkdhdddhkdk ki khhhkhhhkrhokhkdkkrhkkdhkkddhkrhrhkkhdhhhkhhhhhkrtrrhhorkkkkihkrrhix

i

% INITIALIZE VARIABLES FOR 82530 MODULE

*

&**

&T_82530VARS:
| CLR
CLR
CLR

CLR

MOV
MOV
MOV
MOV
MOV
MoV
MOV

MOV

RPTER 3

TXBUF1_FULL
TXBUF2_FULL
RXBUF1_FULL

RXBUF2_FULL

RX1_COUNT, #0
RX2_COUNT, #0
TX82_ STAT, #0
PARITY, #0

ST BITS, #0
TX_DATA BITS, #0
RX_DATA BITS,#0

BAUD, #0

PAGE 143

ASSEMBLER CODE LISTING

x NB!!!! PLEASE REFER TO NOTE5, @ START OF MODULE CONCERNING RTSA/B *

% MOV RTSA, #6AH
g MOV RTSB, #6AH
3 RET

g
;H**

F&***
} INITIALIZE 82530 *
; ON ENTRY: *
; DPTR POINTS TO SOURCE BUFFRER (COM1_ TXBUF/COM2_TXBUF) *
k *
g R7 = 1 COMSCB ; COMMS STATUS/CONTROL REG. CH B *
' 2 COMDATB ;DATA REG. CH B *
g 3 CcoMsca ;COMMS STATUS/CONTROL REG. CH A *
é 4 COMDATA ;DATA REG. CH A *
; *
y COUNT82 = # OF BYTES TC WRITE TO 82530 : *
b. *
b ON EXIT: *
y NOTHING *

Mkkkhkhkkkhkhkhkrkhkkhhkhkkhkhkhkhrhhhhtdokkhhkkhkhbhrtkhkbkdhkhhhhkhhkhokhkhhhhhkhhhhhkhrhhhhhhhhkk
1T _82530:
PUSH DPL

PUSH DPH

RPTER 3 PAGE 144

BPTER 3

LCALL
MOV
MOVX
MoV

MOVX

MOV
MOVX
MOVX
POP
POP

CINE

SIT_82530 LP1:

CLR

MOVX

INC

PUSH

PUSH

LCALL

MOVX

PCP

POP

DINZ

INC

LCALL

MOVX

CHK_CHAN
A, #0CH
@DPTR, A
A, #0AH

@DPTR, A

A, #0CH
@DPTR,A
A, @DPTR
DPH

DPL

ASSEMBLER CODE LISTING

;CHECK IF 82530 IS WORKING

; SELECT REG C
;WR TO 82530
;DATA FOR REG C

;WR TO 82530
; SELECT REG C
;WR TO 82530

;RD 82530

;RESTORE STACK

A,#0AH,INIT82 ERR

A
A, @DPTR
DPTR
DPL

DPH
CHK_CHAN
@DPTR, A
DPH

DPL

sREAD INITIALIZATION CODE

; SAVE DPTR

;WRITE TO 82530

;RESTORE STACK TO CORRECT POSITION

COUNT82, INIT_82530_LP1

R7
CHK_CHAN

A, @DPTR

;CLEAR 3 BYTE FIFO

PAGE 145

ASSEMBLER CODE LISTING

MOVX A, @DPTR

MOVX A,@DPTR

STMP INIT82_ EXIT
1T82_ERR:

LCALL cLs1

MOV DPTR, #MSG1

LCALL CODE_TO_LCD
i MOV DPTR, #LCD1_DAT WR
| LCALL LCD_WR
iIT82_EXIT:

RET

ikkkkkkhkkkhkkhkkkhkkhkkhkkhkkkhkkkhkhhkhkhkkhkdkhkhkhhkkhkihhkhkhkhkhkhkkkkkkhkhkhkhhthkhkhkhhkhkkkdhkkk

Lkkkhkkdhkhkhhkhhhhdkkhhhhhhhhhhrkrrhhhrhhkhhrkrk A rhhhhhhhkrhhhhkhkhhhhhkdkkkrhhhhk

+ THE SERTAL PORTS HAVE BEEN INITIALIZED FOR THE 2/3X16 INTELLIGENT *
¢ DISPLAVS. 9600,N,8,1 N
h**

]
]

‘hkhkhkhkhhkhkhkkhhhkkhkhhkkkhkhkhkhhkhkhkhkhkhkhkkhhhhhkdhkhhkrhhhhhhrkhhkhhhhhhhkidrhrhhhhhhiik

S o esiam s

t INITIALIZATION FOR 82530A, REGISTER #, FOLLOWED BY DATA FOR THAT REG *
i *
E

* NB!!!! WHEN CHANGING WR5, PLEASE REFER TO NOTE5, @ START OF MODULE *

L R R R P T Y T Y Y Y Py Y Y T P T T
‘;

12530:
]

i DB 09, 83H ;RESET CH A

i

DB 03, OC1H ;RX MODE = 8 BITS

i

IAPTER 3 PAGE 146

H

DB
DB
; DB
DB
DB
DB
PB
DB

DB

04,
05,

OAH,
OBH,
OCH,
ODH,
OEH,
OFH,

01,

44H

6AH

o

55H

0AH

00

03

00

00

ASSEMBLER CODE LISTING
;16 CLOCK, 1 STOP, NO PARITY

;TX MODE = 8 BITS, RTS 'L’

79600 BAUD

;NO INTERRUPTS

ﬁ**

ikkkhkkhkkkhkhkhkhhhkdkhkhkkhkhhhkhhdkdhhkrthdhhhkkhkhhhhkhhhhbhhdkdhhhhhhhkhhhkhhhhhhdhrhht

+
{
i
i

' NB!!!! WHEN CHANGING WR5,

¢ INITTALTIZATION FQOR 82530B, REGISTER #, FOLLOWED BY DATA FOR THAT REG *

*

PLEASE REFER TO NOTES5, @ START OF MODULE *

&******j***

%530:

DB
DB
DB
DB
DB
DB

DB

DB

DB

APTER 3

09,
03,
04,
05,
OAH,
OBH,
OCH,
ODH,
OEH,

OFH,

4BH

0Cl1lH

44H

6AH

00

55H

0AH

ago

03

00

;RESET CH B
;RX MODE = 8 BITS
;16 CLOCK, 1 STOP, NO PARITY

;TX MODE = 8 BITS, RTS 'L!

;9600 BAUD

PAGE 147

ASSEMBLER CODE LISTING

DB 01, 00 ;NO INTERRUPTS

éu**

;&**

; TRANSFER DATA FROM CODE AREA TO EXTERNAL DATA. *
fg FIRST SETUP SOURCE REGISTERS = DPTR *
] .
ON ENTRY: : *
R DPTR POINTS TO SOURCE BUFFER , *
. .
) COUNT82 = # OF BYTES TO TRANSFER s
. x
f R7 POINTS TO THE MSB OF THE DESTINATION BUFFER *
¥ R6 POINTS TO THE LSB OF THE DESTINATION BUFFER *
B *
¥ ON EXIT: *
i DESTINATION BUFFER WILL CONTAIN CODE DATA *

Pkkkkkhkhkkkhkithkhkhkkhkhkhkhkkdkkkhhdhhkhhkhkihhkhkhkkhkhkhkkhkkkhkhkhkhthkhkkkhkthkhkkhkhkkhkhkhthkhkkhid
J -
i

JDE_TO_XDATA:

CLR A

MOVC A, 8A+DPTR +READ SOURCE ADDR

INC DPTR

PUSH -DPL ;SAVE DPTR

PUSH DPH

MOV DPL,R6 ;RESTORE DESTINATION ADDR
MOV DPH,R7

APTER 3 PAGE 148

ASSEMBLER CODE LISTING

| MOVX @DPTR, A ;WRITE TO DESTINATION BUFFER
INC DPTR
MOV R6, DPL ; SAVE DPTR FOR DESTINATION ADDR
MOV R7,DPH

1
POP DPH ;RESTORE DPTR TO SOURCE ADDR
POP DPL
DINZ COUNT82,CODE_TO XDATA ;TRANSFER NEXT BYTE

| RET

e T R L L R i R R R T L T T T T
E -

E
!
|
él: DB '** 82530 IS NOT * OPERATIONAL!!! ',Q

@2: DB ' 82530 IS FULLY OPERATIONAL!!! ',0
%3: DB 'TX REG NOT EMPTYOR CTS NEVER LOW',O

ﬁCLUDE {EQUATES . ASM)

END

PTER 3 PAGE 149

ASSEMBLER CODE LISTING
.| CRD.ASM

B**

£ DATA SEGMENT .

gikkkkhkRhhkkk Rk hhhkrhkkhkkkhhhkhrh kR krhhhhkkkhhhhhkhrhhhhhhhhhhhhhhrhkkkhkkkkhx*x
P

A SEG SEGMENT DATA

RSEG DATA_SEG ;RELOCATABLE INTERNAL DATA
RC: DS 01 ;RESULT OF XOR OF ALL BYTES
@_BUF: DS 45 ;CARD BUFFER 45 BYTES

[ACK: DS 40 ;40 BYTES FOR THE STACK

i
H

&**

]

ﬁ**
H
! CODE SEGMENT *

ﬁ**

i

; CSEG AT © ;ABSOLUTE SEGMENT FOR MAIN MODULE
ORG 0
USING 1 ;USING RB 0,1
MOV SP, #STACK
LIMP START

NCLUDE (EQUATES.ASM)

APTER 3 PAGE 150

ASSEMBLER CODE LISTING

gkhdkkkkkkkhkkhhkhdkhdhhkhhhhhhdhhhhhhhrkhkkhkkhkhhhhhkhdhkhkhhkhhhkhkhkkkhhhhhhxk
MAIN ROUTINE *

;*******

RT:
LCALL CRD READ ;SWIPE CARD
LCALL TRANS DATA
SJMP START

khkkkkkhdkkkkdkhkkhkkhhkhhkhkhkhkkhkkrkhkkkkkhkhhkkkkkdkhkkhkkhhkhkkhkhkkhkidkdedkhkhhkhhkkkkkkkhkkk

kkkkkhhhhkhkhkhkhkkhhkhhhkhhkhhhkhhkhkkkkkhkkhkhkhhkhhhhkhhkkhhhkhhhkhkkkkhkkkhkikkhkkxdhkhkhhkkhikk

TRANSFER CARD DATA VIA A PORT PIN. WHEN DATA IS AVAILABLE, DATA *
LINE IS TAKEN 'L' TO INFORM HOST THAT DATA IS AVAILABLE. DATA IS THEN *

CLOCKED OUT ON THE FALLING EDGE OF THE CLOCK. TRANSFER 1 BYTE FOR THE *

STATUS AND 37 BYTES FOR CARD DATA *
§f38 BYTE X 8 BITS = 304 CLOCK PULSES. LSB IS TRANSFERED FIRST. *
}| IF THERE'S AN ERROR IN READING THE CARD, THEN ONLY THE STATUS BYTE *
t IS TRANSFERED TO THE HOST. *
i P1.3 = SERIAL CARD DATA TO HOST. *
' P1.4 = SERTAL DATA CLOCK FROM HOST. *
t *
'{ 1 M/C CYCLE = 1.3 uSEC. ALLOW FOR 20 M/C CYCLES FOR THE BIT *
] TRANSMISSION LOOP. ALLOW 100 uSEC FROM CLK 'H' TO CLK 'L' AND *
| ALSO 100 wuSEC FROM THE TIME THE BIT IS READ TILL THE NEXT CLOCK *
'| TRANSISSION *
- *
| o ENTRY: *
CRD_BUF CONTAINS THE DATA READ FROM THE MAGNETIC CARD *

APTER 3 PAGE 151

ASSEMBLER CODE LISTING

skkkhkkhkhkhkhhkdkdkdhhhddhhkhhhkhkhkhhhrhkhhrdArhkhkhhkrhrhhhkkhkkrakhrkrhkkhkhkhhkhdhhkkkhhihk

- NS_DATA:
f SETB P1.4 ;SET BIT AS AN INPUT FOR CLOCK
| MOV RO, #CRD_BUF
; MOV A,@RO ;CHECK STATUS BYTE
CLR P1.3 ; INFORM HOST DATA AVAILABLE
CINE A,#01,TRANS LP3
é MOV R3, #38 ;38 BYTES TO TRANSFER
ﬁ STMP TRANS LP1
RNS_LP3:
% MOV R3,#01 ;AN ERR IN READING CARD, TRANS 1 BYTE
éms_Lplz
é MOV A,€RO
% MOV R2, #08 ;8 BITS
@Ns_Lpz:
é JNB P1.4,$;WAIT FOR CLK 'H'
§ JB P1.4,$;WAIT FOR CLK 'L!
g RRC A ;SHIFT DATA INTO CARRY FLAG
% MOV P1.3,C
% DINZ R2, TRANS_LP2 ; SERIALIZE DATA
‘ INC RO
DINZ R3, TRANS_LP1 ;NEXT BYTE TO TRANSFER
SETB P1.3
RET

Fkkkhkhkhkhkhkhkhkhkhkhkhkkhkhkhkhrrthhkhhkkkhkrhdhhhhhhhkkhkhkhkhkhhhkkhhkhkhkhhhkhkhhhhkkhkhhkkhhkhkhkhhki

IAPTER 3 PAGE 152

ASSEMBLER CODE LISTING

kkdkkdkdhdhdkdkhkkhkhhhkhkhhkhhhhhdkhhkhkkhkbhhkhhkhkhhkkhhhkhhkhhhkhhkhhhhhhkkhhhhhhhhhikkhix

P1.0 = SWIPE DURATION *
Pl1l.1 = CLOCK *
P1.2 = DATA *
CRD_FLAG = 1; VALID SWIPE *

CARD BYTES MADE OF 5 BITS, 40 BYTES TOTAL. THIS INCLUDES 'START AND *

. END ' SENTINEL AND THE LRC (LONGITUDANAL CHARACTER CHECK) AND 37 +*
f DATA BYTES. : *
; STATUS BYTE: GOOD SWIPE = 01, BAD SWIPE = OFFH _ *
i %
é ONLY STORE THE 37 DATA BYTES IN CRD BUF, NOT START & END SENTINEL *
'

E AND LRC. THE FIRST BYTE IN THE STRING IS THE STATUS BYTE. *
. SETB 6 SO AS TO READ ASCII CHARS > 30H *

i
E
ghekkhkhkhkhkhhhhkikkhkhhkhhkhkkhhkkhhhhhhkhhkhkkhhkhkkhhkhkhhhhhhhhhrhkhhrhkhkhhkhhkkkhkhkkrhhdhkhdhk

®_READ:
| MOV RO, #CRD BUF+1 ;ADDR OF CRD BUFFER, ALLOW FOR STATUS
§ MOV R3,#38 ;READ 37 DATA BYTES, 1 BYTE END SENTINEL
| MOV LRC, #0 ;XOR OF ALL BYTES

JB P1.0,$;WAIT FOR SWIPE 'L’
% MOV a,#0
@_Loopgz

JNB P1.1,% ;WAIT FOR CLK 'H'

JB P1.1,$;WAIT FOR CLK 'L

MOV c,P1.2 ;READ DATA BIT

CPL c ; INVERT INCOMING DATA

RRC A

ANL A, #0F8H ;MASK OFF MS NIBBLEL

IAPTER 3 PAGE 153

ASSEMBLER CODE LISTING

CINE A,#58H,CRD_LOOP9 ; START SENTINEL
MOV LRC, #11 ; START SENTINEL
gD‘LOOPlz
%f MOV R2, #5 ;BITS / BYTE
% MOV A, #OFFH
é% SETB c ;INITIALIZE REGS
éLLOOPZ:
é JNB P1.1,$;WAIT FOR CLK 'H'
E JB P1.1,$% ;WAIT FOR CLK 'L
;
_E MOV C,P1.2 ;READ DATA BIT
é CPL C ; INVERT INCOMING DATA
i RRC A ;MOV DATA BIT INTO A
DJINZ R2,CRD_LOOP2 ;NEXT BIT
CLR c ;
RRC A
CLR C ;CLEAR BITS 6, 7 & 8
RRC A
CLR o
i RRC A
| XRL LRC,A ;STORE RESULT OF XOR IN LRC
;START ODD PARITY CHECK
MOV R2,#8 ;CHECK PARITY / BYTE
MOV R4, #0 ;COUNT # OF '1‘
D _LOOPS:
JNB ACC.1,CRD LOOP4 ;IF SET, INC R4
INC R4 ;'1' FOUND
mpTER 3 PAGE 154

1 LOOP4:

DINZ
CINE
SIMP
) LOOP6:
CINE
SIMP
) LOOP7:

CJNE

)_LOOPB:
ORL
MOV

JB

ANL

CJINE

MOV

MOV

SETB
) 1.OOP10Q:

JNB

JB

MoV

CPL

PTER 3

ASSEMBLER CODE LISTING

A ;NEXT BIT TO TEST
R2,CRD_LOOPS
R4,#1,CRD_LOOP6 ;ODD PARITY ONE '1'

CRD_LOOPS8 ;READ NEXT BYTE

R4,#3,CRD_LOOP7 ;THREE '1°

CRD_LOOP8 ;READ NEXT BYTE

R4,#5,CRD_ERR ;PARITY ERROR

;END ODD PARITY CHECK

A, #30H ;DISPALYABLE CHARS
€RO,A

P1.0,CRD_ERR ;IF SWIPE GOES 'H®
A,#3FH ;REQUIRE LS NIBBLE
A,#'?'",CRD_LOOP3 ; END SENTINEL

;**% READ LRC BYTE

R2, #5 ;BITS / BYTE

A, #OFFH

c ; INITIALIZE REGS

P1.1,$;WAIT FOR CLK 'H'

P1.1,$;WAIT FOR CLK 'L’

c,P1.2 ;READ DATA BIT

o ; INVERT INCOMING DATA
PAGE 155

ASSEMBLER CODE LISTING

RRC A ;MOV DATA BIT INTO A
DJINZ R2,CRD_LOOP10 ;NEXT BIT
CLR C ;
RRC A
CLR C ;CLEAR BITS 6, 7 & 8
RRC A
CIR C
RRC A
ORL A,#30H ;DISPALYABLE CHARS
MoV @RO,A ;SAVE LRC BYTE
ORL LRC, #30H
;*%*% LRC CHECK
ANL LRC, #0FH ;USE LS NIBBLE
ANL A, #0FH sLRC BYTE
CINE A,LRC,CRD _ERR ;LRC IS INVALID
MoV €Rro, #EOT ;sFOR LCD STRING, END OF STRING
MOV RO, #CRD_BUF
MoV €@RrRo, #01 ;STATUS BYTE 01 = GOOD, OFFH = BAD
SIMP CRD_EXIT
_ERR:
MoV RO, #CRD_BUF
MOV @RO, #0FFH
SIMP CRD_EXIT
| LOOP3:
INC RO ;NEXT BYTE IN CRD_BUFFER
DJINZ R3,CRD_LOOP1 ;NEXT BYTE
| EXIT:

PTER 3 PAGE 156

ASSEMBLER CODE LISTING

RET ;END CARD READING ROQUTINE

phdkkkhkdehhhkhhkkhhhhkhhhkhkhkhhhdkhhkhhhhhkhhhkhhhhkhkkhthhhhrkhhkhkhhhhhhrhkhhkhhkhhhhk

END

\PTER 3 PAGE 157

EQUATES . ASM

ASSEMBLER CODE LISTING

xkkkdkkhhkkhhkhhkhkkdkdkkhkhhkhhhkdkkhkhhhhhkhhkhkkhkhhkhhhkhkhkkhkhhhhhhkkhthkkhhkhrrhkkik

MEMORY I/C EQUATES

*

kkkkdkhhkkdkdhkdkhkhkkhkhkhhkhhhkhhkhkhkhkkhkhkkhkhhhkhhhhkhhkkkhhhrkkkdehdhbrhkhkdhhhhhddkkkrhk

khkkhkdhhdhhkkkhkhkhhkhkhkkhhkdkhkhkhkhhhkhhhhhhhdhdrhkhkhkkdkkdkkhrhhhkkhkhhhhkhkhkhkhrhhhkhhhhidkhhii

1_CMD_WR
1_STAT
1_DAT_WR

1_DAT_RD

2_CMD_WR
2_STAT
2_DAT_WR

2 _DAT RD

K _JMP

DAT

CMD

2ER

PTER 3

EQU
EQU
EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

8000H
8001H
8002H

8003H

900CH

9001H

9002H

9003H

0AQOOH

0BOOOH

0BOO1H

0COO0OH

ODOOOH

OEOOOH

;INSTRUCTION WRITE
;READ LCD STATUS BIT, D7
;DATA BUFFER WRITE

;DATA BUFFER READ

;s INSTRUCTION WRITE

;READ LCD STATUS BIT, D7
+DATA BUFFER WRITE

;DATA BUFFER READ

; LOCK AND JUMPERS

PAGE 158

'SCB
(DATB
1SCA

[DATA

EQU
EQU
EQU

EQU

OFO0O0O0OH

OF001H

OF002H

QF003H

ASSEMBLER CODE LISTING
;COMMS STATUS/CONTROL REG. CH B
;DATA REG. CH B
;COMMS STATUS/CONTRCOL REG. CH A

;DATA REG. CH A

hkkkdkhdhkhkhhkhhhkhkhhkhdkhhhhhdkhhkhhkhkhkhhkhhkhrhhhhkhhhkhkhkkArhkhkhkkhrhhhkdkdhkkhkkhhhdkk

kkdkkdkddedd kb kb hkhhdhkhkhhdkhkhhbdkdhkhkhhhhhhhkkhhhhhkhihhhkhrhkhkhhhkhkhkhhrhhhkrakihik

CONSTANT DEFINITION EQUATES

*

kkkkkhkkkhkkhkhkkhkhkhhhkhhhhhhhhhhhhhhhhdhhkhhrhhhhkhkkhhhkhihkhkhhkhhhhhohhrddhkkkkhkhhokk

CE

ON
P2H

P2L

PTER 3

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

EQU

EQU
EQU
EQU
EQU
EQU
EQU

EQU

)=

20H

13H

87H

O0C8H

0CBH

0CAH

70H

71H

02

03

04

05

06

;SPACE INDICATOR, ~I

;BLANK CHAR = ' !

;INDICATES LED STRING
;END OF STRING

;PCWER CONTROL REGISTER
;TIMER2 CONTROL REGISTER

; TIMER2 CAPTURE REG

;POLLING TERMINAL
;SELECTING TERMINAL
;START OF TEXT

;END OF TEXT

H

; ENQUIRE

PAGE 159

ASSEMBLER CODE LISTING

EQU 15H
EQU 10H ;USED TO PRECEDE CONTROL CODES

0 EQU 30H

1 EQU 31H

_DSP EQU 01 ;CLEARS LCD DISPLAYS

E EQU 02 ;CURSOR HOME

E EQU 06 ; INC

_ON_OFF EQU OCH ;DISPLAY ON/OFF

CTION EQU 38H ;8 BIT, 2 LINE, 7X5

E 1 EQU 080H ;WRITE TO LINE #1

E 2 EQU 0COH ;WRITE TO LINE #2

kkkkhkkhkhkhdhhkhkhkhkhhdkhkhkdkhkhkhhhhkhkhhdkhhhkhkhkhkhkkkhhhhhhkhkkkkhhhdhhkhkkhhkhhhhhhbhhhik

PTER 3 PAGE 160

INTELLIGENT POINT OF SALE TERMINAL

SCHEMATIC DIAGRAMS

INTELL IGENT

TERMINAL

7

AN\

SCHEMATIC DIAGRAMS

(L) [0 TITUR[TTE 7T ToaeTss el
[} WIS OWE 08 € Haa OuY [}
3 Sedwniy 3uswnzocfer i
(NROIA 44 BILNOWOT OHYOR §TONIS LMWL ASE ARE 3BOMOT Ludowi
LY AMYL ASE Sdw3 035 dwiod 1Y *
T17 (Ald] SWHILEAS vivd nAdNY-SO9 BL9DHIANY M SHTAN] JRIAINDI(R - & QD R
CObSH = 1 £ Lur 2
BRien = CoF bur b aunoL
»2 €3
‘SILON
ELN
ano Are
FELTY
»L3 L 1%-1
A2
OHvOR - Glivol
" £ .a L59¥ ol A
o e {9 . .« id » Vo N UTTITN
L~ = 7 o] Fi L1 t a] oxL o C i
- L woe va —ry— ERL T “ sa
— L 1] 1P v bd
[—vrermme—4 & - g N Al £ v a 1w
; [5 %] bl “mu zld : ETTY Tl
r L3 1} oa bore r ™ on
I (0-00 ¥ si¥-EY b H wu 0 td . L
N & Td ¥ ST ELI v
X v Ed [
co-a0 sbv-ow [y HE e
EEExY™
E) ¥ VoEd
Le-av E ot DEILiL IEm
T o o L 1399d ty L o111l 1iny
P el A + w o } [I - 12111 orsd
1) a 4 s EX Im..—l (IR I Y asan
4 a3 Hva valig - » 0a b -
P ta g I T e -2
——F =4 viv o :a a £ 00 X fyp s£3 A
TV kv va o Ve '
v Fiv ao na = o' na n!kmi not L]
N T Liv = e +13
IS L4al T gLa
. ki v L L
hd »y
ki o cv
ki ”w v
11
L vo v A
4] o4 o LY 0¥ aNv ;Q-00 3OMA0Hd OL 2a
4l o - OIxATWILIM IRTL B1 D LHOS
Vo iv oy =
=iz 90 or 82 3G Hid 341 LvOIN
R <7 - 1 E T n HOWMI APOAY Y @Dd 10
Lia} (3]

&l

i MOLLON FAOSNA D

aQ ®

Figure 4-1. Single Board Computer

PAGE 2

CHAPTER 4

¥ 43I4dYHO

apooaqg 0/I °‘z-¥ @2anbig

£ d9¥d

Cri1 [ox
sy GND ~BD 3 -
R = 1 oy ped—lepics
T MR - —T rrcumrS PR I FMETHA AN
1 EE— 1 s p—i 13 03 _L.TLME\
e 33 SB— '3 B4 [EE—EIEC5
e ds 1o b 15 os LG
DO i) 11 12 Pomsmnd B 08 i Brmle 2 /—"J-‘;w—-w'_co'a [
1 q b LA™ IR TSR] /;L.‘:_.QZ.C-.E_~
mmem— - 6 On [1B =220 #H N COCK G5 briRte s
e 17 18 P 19 o3 2. =8830 RO N e rl Ch YL L5
o] 19 200 [11e oip p4—=8530 09 N PN TLEL L=
e 21 22 P RE N ;"“&32 = Lo Cs
[A————q 23 24 112 o TEuZ TS
rirE—— IR T - /——E-M-—mﬁm Wit
/ﬁiﬁ__———_—{ 27 28 20L 10 TERM) : : = ~H5 30 Ft
g ———; T = D
—n 11 32
331 314
BOARD - BOARD
Va4
Pe e
oM
hedv gnp I . pb—24v GNp /]
NCARD_DATA E :] g ~BL G /] NE} PCH LAYDUT ERROR
- CLE - > 8 b P3.¢2 Wy
: ds 10 b Pt .0 5 PiN 7 SHORTEDR TO PIN 8 ON CHN2
b
4 n :i 2 El /] OPERAT IOM NOT AFFECTED
g b
d 15 18 D._......E.La.ﬁ_/

80ARD -BOARD

NOTES -
1~ SIGNIFIES INVERSION
ANKERdata ADS-ANKER DATA SYSTEMS [(PTY) LTD
2 > OUTPLT SIGNAL
Title
3« INPUT SIGNAL INTELL IGENT TERMINAL (1/0 DECODE)} (M.KEDWN)
<4 «>» BI-DIRECT IONAL S 1GHNAYL Sizellocument MNumber RE v
. A [INTELLIGENT TERMINAL (1/0) TERM4Y.SCH | B
iate Maren 1. 1991 |3neet 2 of 10

SWYYOVYIg DILVWHEHOS

¥ ¥3LdVHD

¥ 39v¥4

8oeJIsjul JooT ¥ Iazzng -¢-F 3aAnbTd

vEC veoe VCC vCeC
8z
Or-BOARD BUZZEA
R18 ~ R3 R4 BUZZER
10K 100k , 10K
0
4]
~BUZZ C3 6 1n Py - (£ . a p—a RS
1K
ois :1}_ oIS -k
cas —dcv THR =2 oy The |2 YHTOKM Lhi2 2
1uF I T~ caz —_— ce23]
U1 4A 1uf U148 100 nF
LMSSE LMS556
OFF - BOARD SPEAKER
5 [
v
VN1OEM BOTTOM LP
W 1 [
RP ¢
8pnnunnnnn 10K
(123456789
oKl N 1
e - § 2]3|4|sy6] 7|e]aj0
oy N 4 BIT TERAMINAL
AL N NUMEIER
g W T N
D7 N U4 5w
—
a1 a1 14 =l
_ s b = ~2 B2 = o s |—=
(R z Co ok : A3 B3 =3 FR [povel S
IR BT s A4 B4 b
L4 61 as @5 [
AN V5 ; AE BE 112 Sw OiP-4
3 A? B?
Elan pe - v
- a [+]
DR 1
FAMCT245% g 4 BIT LOCK
-] 4
5
NOTES | 9
veo
1~ SIGNIFIES (NVERSION
ca cai 2. = QUTPUT SIGNAL ANKERGQata ADS-ANKEA DATA SYSTEMS (RTY) L TD
100nF 100nF

3 > INPUT SIGMNAL

<4 <= B1-DIRECTIONAL SIGHAL

Titi

L:4

INTELL JGENT TERMINAL (1¢Q SECTION] (H KECOWN]

SizejDocumant Numpber HE v
A JBUZZ LOCK TERMA INTERFACE TERr2 SCH =]
Dlate: Qetaper 17, 1991]5heet 3 of [7)

SHY¥OVIAQ DOILVWHAHOS

¥ YILJAVHO

S do¥d

80BIIVUI DT 3 QAT *¥-v 2Inbtd

THE FOLLOWING RESISTORS
ARE SITUATED ON THE

DISTRIBUTION BOARD

vCC up CHN3
3 2 A
160A CN1S | o e [q3
W) 3 J
-] : E INTERSITY e A g; gg 9 p :
b - G
- 1 \jgz H s aa e ds
Ds Qs d s LED 1-B
1.5R L3 OB GB& [d -
PgTa) i Dr a? 19 A B
4 pu q
1
oc 10
- 1c i o
vEe TAHCT 374
L 1. Chg1
] B BACKL IGHT
= L3 Cr4
[
D3 3 2 4
| = =4 0o oo = q 1
EIS] [ht {01 @ = qd =
1 D2 Qa2 2 q 3
Dg o 8103 o3| d 4
o5 22 ‘\\\ /37 104 aa -d s
opi—<ol N /] a15s o= d: LED 9-16
05 o] 06 Qb = q 7
— N oo T B
E 3
g ™~ _ 14 oc 10
E=i—— ' pe-
XD TAHCTI 74
MY C5 >_.|-£“‘ ;’J—Qﬁ_\
TLiDZ C&).:L_L%Mé._\\ \\ N
T EpiTCy ormRl b
N AR ld_Qﬁ....\ CN13 R4
U13E _V_E;'_C_c ;_ N] ’-—C_c ;
\.I.I:LI..ELLE..LI_L.._._....C \..LH.I.E.I:LﬁJ_D'__._..c
N=LCD1 C5 13 10 Lcpl os Iaa c: \A_L._._....._..._.____ci
A N M i g \ﬂ__r_,__“_c s
Nl 1l A6 TR A I
74HCTO 4 N\ d 5 \\ K] B
Nl g 8 1 d &
UY3IF \Bg d s '_jg da
" 2 13 12 cs t)g q 10 N4 q 10
53 free} 11 NDS q 11
N g 12 Lb q 12
74HCTO4 e - o7 q 13
\BACEL GT 1 ACEL TG %
, —g 15 d 15
NOTES: <7 LCO =1 —\.? LCD #2
vge
1. ~ SIGHIFIES INVERSION ANKERdata ADS-AMKER DATA SYSTEMS (BTY] LTD
cz c3 2 = QUTPUT SIGNAL Titie
100nF 100nf 3 » INPUT S1GNAL INTELL IGENT TERMINAL ([1/0) (H.KEQWN)
Stze|Oocument Numbar RE v
4 <> BI-DIRECTIONAL SIGNAL A LED AND LCD INTERFACE TEAM3I.SCH c]
Date: Dctoner 17, 1991 5neet 4 of 10

SHYEDVIQ OILVHWAHOS

¥ 43LdYHO

9 Iovd

aoeyaejul lepeay paed °G-p =Inbrd

(=5}

EeT>BES

CARD _DaTA
CAR ATA

vee veo
o9C)
XTAL 1 ug
7.3728MH2 AR ve FO. O -%%—%%—%¥\ chipo
| 13] ., O T BTV BL_SWIRE M
l l J _I_ PO 3 5 PO .3 BR it K 3
' 35 " i
ca a0 . 4 ___wiﬂl.i,\ /SBL_E&I&_.___C 4
22pF 22pF 181, PO S _11_EQ*2_\ 5
N SEREIEN
FO. 7 ___Jilhl,\
RES 9] cEseT MAGNET IC CARD
mm—— oz. 0 pEL-E2.Q READER
pa.+ poE el
—_ INTO p2.2 P22 P2.2 N
—34 N7 CPREY FEEEREENN,
To B2, 4 [Ee-Be dN
et Pg 5 N
T p2.5% -
F2. & JLL_EE_Q;Q
CAD_SWIP 1o @ pa 5 |2B Fg. 7
TR CLOCE 21 0y 3
L/ oD _DaTa T [P g vee
SV CAaRD QAT A EH PSR e
. 5
N 21 P4 PsELy p3i— SN2
— P1.5 ALEIF =] 1
N:N o AxO HXD® N NV A R -
El.2 | ——q
CREX w EQ 3] g
N PD 4 - &
Nl 5 d -
NEQ B b:
NEL. 72 d s
U130
u3a h AxD g :?
\DSC1 9 <] b A Ga 3 _COMMS CLE NIxD d 12
of [t LT dq 13
oc [——SIR LK N d 14
FAHCTO4 2l ecin ao <] Zg 3. d 1s
NB HAS TO BE HCTD4 74RC1393 NEQ 3 q 18
ANTTHING ELSE NP2 :
WILL LOAD XTAL NEL T d 1
asc usH NEL d 23
DLcha oA :‘ —d 21
aB = q 22
12 oc 4
CLR Qb FUTURE EXPANS |QN
74HCT353
4
NOTES
1. ~ SIGNIFIES {NVERSION ANKERdatas ADS-ANKER DATA SYTEMS (RTY) LTD
2 « DUTPUT SI1GNAL Title
. INTELL (GENT TERMINAL {1/0) {H.KEQWN]
3. > INPUT SiGNAL
Slze|Document Number REV
.4 <= BI-DIAECTIONAL SIGNAL A CAD READER & CLK SOURCE TEMM4 SCH B

Pate

Februmery £8

1931 [fiheet

S of

10

SHYIDYIA JILVHAHOS

¥ YdILdVYHO

L Fo¥d

aoe3jaalul paeoqlhay "9-v aanbtyg

Us
. 121 bao aLo |28
(2 2] 0B 1 AL |22
¢ 2 pe2 AL2 —
=1 D83 AL 3
;j: [=]=E] RL 4 2
- ©0As RLS
;BE g DAE RLE ;
[~] i RL7?
=5k ED SHFT gg
Wit CNIST |radem
~KYE Cg z
e TR _CLK cs Ao pd-
i afELE iz
[t — RESET SLD p2i
% — AD sLe
/Ej+&————-__dm | R S 2 s
ano 2
aay £
Qaz P2
ca3y (&3
oao |51
OB 1
% BE
op3 [-£8
CFRE]

veo
!
CRARARARARRA i
) 10K
09123456789
ha
) 1
a :
z|34|s]6]7|a]aln C 7
U 1 a 1
g dq 2
q 3
12 O 4
8 ————q:s
q &
T3] qd 7
5 | a
B]
?74HCT30 - ADS RETUAMN LINE %-186
[=3] [s]5}
M4 148 1N4+48
CNA
g 1
0 2
3
4
v
q &6
q 7
] a
ARETUAN L INE 1-8
vee
W2 Nel] N4 148 oY
; A Yo P : g 1
= e Y1 - g 2
c v2 2 g 3
Y31 p— G 4
¥4 g3
e Bl vs b g &
=g G2a e b— =
G2B Y7 P G 8
7AHCT 138 O16 1N4148

NOTES

1. ~ SIGNIFIES INVERSION

2 <« QUTRLT 51GHNAL

SCAN L INE 1 -

AMKERaata ADS-AMNKER DATA SYSTEMS

(RPTY) LTD

Titie

INTELL IGENT TERMINAL

(1/0) {H KEOWN)

3 > INPUT SIGNAL
Siza|Documant Numbar REV
4 <> B)-DIRECTIONAL SIGNAL a UNIVERSAL KYB INTERFACE TEAMS SCH B
) Date Oclober 17. 1991 [sneet & of 10

SWYYOVIAQ DILVHIHOS

¥ Y9IdVYHO

8 d9vd

@oejIa@juI z£ZSd “L-¥ 2anbTd

vce NBI{ RCB LAYOUT ERAOR
NEGATIVE FIN OF C16 & C20
SHOULD BE CONNECTED TO vCE
R ra
vee 10K 10K vee 2av
YWigQ ci4 c1e
n) 4 1 15 TxDA 10ufF
oad bl N F 3T 10uF
,/U_ EEN e X N __]: I (LR
[—£{ pa3 CRETL N o s c1s
DS DB4 I8xCA [cH- 5 - SOuF
L5 £ DBS SEYRCA T aTSA c13 -__L..4_ v+ u
' DRS BI5A Y0uF T3 c2 . v- 4
e 3 pe7 CIiga pii—klas N T ca- YRR
/~BS3D ap 26 e Eoa 1 h Area 1 Rsio P24 d:
iS40 Wi 2] wa Txna 21208 BEARLY Ll tyi2r ms2o |2 I d 3
P ~8530 C35 i) == AXOE |l B N 4 l d 4
A0 ied o/ N 12l rve1a msa P2 qd s
= il aiE Aixce |HEE e 4] TTL20 AS2 I [e 5 | TOM
COMMS _CLK 20 NICETSg oy MARZIE q 7
v e STHEB [Sipren da
—2q INT BETop | 2 ——d o
£l o) 22 CTg8 N 10
2 el tha |5t Y
L—2Z2d |NTA < =
10 | mee WHEN NOT USED CTS TIED TO vee .
30 g.l“'i@.‘\ 24v GHND
16 OTa han
=4
OTB /PGB vge 24v
2530
c1g =L czo
10uF 10uF
;; . i1z
-~ 1y, b cia
&1 L
c17 ve |2 T 10uF
10uF 9= L C2« V-
Y > ca. N2
q 1
et L rriq Rsio 4 [—d 2
TTL2) RS20 I q 3
)"
d 4
X 1o msa P qd s Comz
MANZS2 I
-“n.l—c 9
ey 10
NOTES 24V GND
vee 1. =~ SIGNIFIES INVERSION
ANKERdata ADS-ANKER DATA SYSTEMS (FTY)] LTO
2. < DUTPUT SIGNAL
c12 Title
1oOnF 3. = INPUT SIGNAL INTELL FGENT TERMINAL {1 /D) (H.KEOWN)
4. «» BI-DIRECTIONAL SIGNAL Siza|Decumant Numpar HE WV
A DUAL. RS232 INTERFACE TERMB SCH a
5. ALL POLARISED CAPS 1Bv TANT
Date: October 17 1991 [Sheet 7 ot 10

SHVYOVIA DILVHAHOS

¥ 93LdVHO

6 IO¥d

aoell93Ul J9uueds °*g-F 3InbTd

v

vge
1) R1D
2R7 5w aR7 5w
RE RB
1aK ui1s 120/
A 2 —AAA RATA,
I R?
ouT cas 2208 CN1E
,] 22DpF d, -
K + + d 3 1 p—————
,
ENT36 5 &Bp HAND/SLDT SCANNER
q- 8 p INTERFACE &%
9 10 }-——
J:‘.l.ﬁﬁ
fﬁa_z_u_ﬂ_{::t' PESEI
SN7S 452
U1ER
& ~
P LK
2 _,__/
ENTS 452 w4
vEge
fan age
287 sw 2A7 . 5w
y
R1g
Wi7 12DR
A A DATA
NE1.D B _L R20
ouT ca7 2z0R GM2a
| 220pF d5 2
© Z + + J d3 4+ p— T:r;gég;g; EgANNEQ
|] 5 Fo3 o ey
BN13b d > 8
] 9 10 ;
U1EA
. ____u_h\\
=X BESET
2 _/
EN75452
Jilﬂﬂ_\\
P CLEK
NOTES ki J
ANKEHanta ADS-ANKER DATA STSTEMS
1. =~ SIGNIFIES (NVERSION SN7SA52
Tivtla
2 =« QUTPUT SIGNAL (NTELL (GENT TEAMINAL (1 /G3 (H KEOWN)
3. » INPUT SIGNAL StzelDocument Numper REV
A SCANNER INTERFACE (OC1) TERAM?.SCH B8
4. <= BI-DIRECTIONAL SIGNAL -
Date February 28, 1991 [|Sheet H_of 10

SHYYOVYIa OILVWIHOS

¥ Y4LdVHO

0T FDVd

aoevIIejul 09y 83 meig “e6~-F =anbtd

MO EX POWER
CONNECTOR

c E

4
1%

MPS U

i

E B C

06

BC3IA? |8QATTOM UP

EAE

ra
o

{9 |

Y] = 15N W]

2d4v G

NOTES -

1.

2.

3

4

ol A - 4

L

ND

~

SV GND

~ SIGNIFIES (NVERSION

< OUTPUYT 5IGHNAL

= (NPUT SIGHAL

<» BI-PIRECT IONAL

S {GNAL

p oIV

vee 24V 24v
oi1e T
iNqpD? cn1E
RDRAWER DPEN A ;
XN .
[e}] —q 3
BC307 y 4
22K A o1
R12 Ty MPSUDS DRAWER #1
P1_4 S60R DRAWER SEMSE
s
R13
10K
24v GNR
vee 2av 24v
] {
D19
AN400 7 CN1g
DRAWER OPEN "51 ;
R14 e
3
Ga 2
BC307 y
22« Q2
;q: — [MPSU0E DRAWER #2
KP1 & 560R ORAWER SENSE
R1B
10K
=/ 47-
24V GND
ChN17
NP1 2 BECE BT _SENSE]

RECEIPT SWITCH

ANKERdatas ADS-ANKER DATA SYSTEMS (RTY) LTD

Tivie

INTELL IGENT TERM|MAL

(1/0] (H. KEOWN)

Size|PDocument Numoer
A ORAw AND RCPT Sw

INTERFACE TERMB . SCH

IRE v

oot e

Ootober 17

1933 Poreen

9 of

SHYYDVYIAQ DILVWAHOS

¥ ¥IILdYHO

11 Fovd

q4 01102 °“0I-% 2anbtd

ATnb

3TNDaTD

5] _\ 74HCT 32
| 3 _~RDi~WH 1
2 Y .
X / L) A ~LCDI_CS TS
4HCTOB8 L._-/
~Ap
/-va A r-\
CIEmEss>
5_—] LCpa_cs
h13 38000
g :? bt 9000
Add3]c ve plE—3A200 CIY “~
s 2] B ~LOCK G5 - =
3 Biscupn 10) {ZLocF T5 >
PR LN vs pri. 2004
id Gza ve p-S—SELOO
fa:e v7? p—L-RELOC
1
FANC) 136 | S ™\ Al ~KYA_C§ -
13 Y {-£78_c5 >
1 S ™,
2) i hhulcs Creeies™>
4N .
1n <) B ~LEDZ S - T
A2 > e
A1')A-1-3——-—‘j
L4 A1
= S N
1AL 2.5
— o a_~BuUzz o9
TS 14 > HUTZ
[E]
7AHCTOE
4 _\
. }—&—-8530 40 b EETE
NRES 1 Z
3 ™
F4HCTO4 . 8 _~Bs30 _Rh m
23
) 11_~B530, .S YRS
NAOTES ANMKEHRaata AQ0S-aANKER DATA SYSTEMS (YY) LTOD
1.~ SIGNIFIES INVERS ON Title
INTELL IGENT TERMINAL (1 /D) [H KEOWN)
Sze Uocumen{ Number HE Vv
S EQUIY CCT 20L 40 (DECODBE) TERMG . SCH B
Lig1e february 26 1994 [Sheet 10 of 10

SHYEOVIQ JILVHAHOS

¥ MdLAVHO

2T dD¥d

> INGLE BOARD COMPUTER V3,00

u9aIDSYITS 248 °‘TI-¥ 2anb1d

Ub

JP1
[—
W)

|

ny W2

8031732

X1

D
OO

Ce Ce

[] U2 U3
L
O 27644128/ 256
m
™~
m
- ®
[
I
V‘
™~
U4
HMB 264/ 256
cy [| .
SBC v3.00
ca [] CN1

—

10

]
oJ

30

* DENOTES 100n DECOUPL ING CAP

SHWYJdOVYIa DILVWAHOS

¥ d3LdVYHD

£ET dFO¥d

usaI0SYITS 0/I TeuTwIal °*ZI-¥ 2anbrd

t 4
CN1Y c2?
; ADS INTELL IGENT POS TERMINAL
G 8 * DENGTES 100N DECOUPL ING CAPACITOR
DENDTES 10U 16V TAMTALUM CAPACTIOR
CN1B 5015 ™ nis
' € a2 U‘”s'-'
o m -_
D18 Ate
2 - R12
oy 2ol e
1 3 R STE
g (XE]
S A
cnzn
1 04 Q3 Chz R1 ~ 2 ~ T
T Tt ®
Ri1 2
- - *)C1
cig cal '
@ @ cig cis c16 | PAL 2010 401
1
@D . D @ o)
ute Cl]@v @w uso CNID
3 Juirt ~7 1
3 . - .
i = - OO] H
uie [AFI m ATE f:
< Ch12 (e [) brd
3 u1s aF _G24 TRiE = b
& CH21 k= T
1 ADS INTELLIGENT POS TERMINAL <
cas RE R? 5 f";")a 13 . It
:
e J4HCT245 e é 8751-8
' g279 ﬁus R a
un [10K] 20
s L5 B
27 . MADE IN S0UTH AFRICA CNB I I I 1.3728M
== B
cnzl ” " DESIGH H KECWN m E) i MTALT ch e
1 IN4148 o [TRET 7.0
[tV e Vs oo e Vom VoV Vo Vo WY
] B I 74HCTI74 vl 24HCT 174 4 e
~ [D4 — -'I _ c2
3 =
D16 - — — =l
L. [TF) <3 @
®,,22 I] 0 &] .
cNY cNE cN? [T | } cna

SHVYEDVIA 2ILVHWEHOS

INTELLIGENT POINT OF SALE TERMINAL

PARTS LIST

INTELL IGENT

TERMINAL

N\

AN

Hl

PARTS LIST

CHAPTER 5

PARTS LIST

1. SINGLE BCARD COMPUTER

SBC VER 3.00 SBC.SCH Revision: B
Revised: October 17, 1991
Bill Of Materials October 17, 1991 19:22:29
Item Quantity Reference Part
1 2 c2,C6 56pF
2 7 c3,c7,c8,c9,C10,C13,C015 10uF
3 2 C4,Cl4 : 100nF
4 2 CN1,CN2 BOARD-BOARD
5 1 CN3 8 HEADER
6 1 D1 184148
7 1 JP1 JE3
8 2 Q1,Q2 VN1 OKM
o9 1 Rl 4k7
10 1 R2 10K
11 1 R3 1K
12 1 Ul 8032
13 1 u2 74HCT373
14 1l U3 2764727128
15 i U4 64256
16 1 U5 DS3695
17 1 [84:] MAX232
18 1 X1 9.216MHz

CHAPTER 5 PAGE 2

PARTS LIST

2. INTELLIGENT TERMINAL (I/0)

2.1 INTELLIGENT TERMINAL (I/0) TERM1.SCH

Revised: March 1, 1991 Revision: B
Bill Oof Materials October 17, 1991 18:12:53
Item Quantity Reference Part
1 1 Cl 100nF
2 2 CN1l,CN2 BOARD-BOARD
3 1 Ul 20L10 (TERM)

CHAPTER 5 PAGE 3

PARTS LIST

2.2 BUZZ LOCK TERM# INTERFACE TERM2.SCH

Bill of Materials October 17, 1991 18:34:22
Item Quantity Reference Part
1 1 BZ1 BUZZER
2 2 C4,C21 100nF
3 2 c22,C26 1uF
4 1 c23 100 nF
5 1 CN6 HEADER 5
6 1 CN22 HEADER 2
7 1 D17 1N4148
8 1 Q5 VN1OKM
9 1 R3 ’ 100K
10 3 RP1,R4,R18 10K
11 1 R5 1K
12 1 R17 33R
13 1 SW1 SW DIP-4
14 1 U4 74HCT245
15 1 Ul4 ILM556

CHAPTER 5 PAGE 4

2.3 LED AND LCD INTERFACE TERM3.SCH

PARTS LIST

Bill of Materials October 17, 1991 18:36:50
Item Quantity Reference Part
1 c2,C3 100nF
2 CN3,CN4 HEADER 10
3 CN13,CN14 HEADER 15
4 CN15,CN21 HEADER 3
5_ RX1 160R
6 RX2,RX3 1.5R
7 uz2,03 7J4HCT374
8 U1l3 74HCTO4

CHAPTER 5

PAGE 5

PARTS LIST

2.4 CRD READER & CLK SOURCE TERM4.SCH

Bill Of Materials October 17, 1991 18:37:03
Item Quantity Reference Part
1 2 c8,C9 22pF
2 2 Ci0,C11 160nF
3 1 CNS HEADER 22
4 1 CN1l0O | HEADER 5
5 1 us 8751
6 1 U9 74HCT393
7 1 U13 74HCTO4
8 1 XTALl1 7.3728MHz

CHAPTER 5 PAGE 6

PARTS LIST

2.5 UNIVERSAL KYB INTERFACE TERMS5.SCH

Bill Of Materials October 17, 1991 18:55:45
Item Quantity Reference Part
1 3 c5,C6,C7 100nF
2 3 CN7,CN8,CN9 HEADER 8
3 12 D1,D4,D5,D6,D7,D8,D10, DIODE
p11,D12,D13,D14,D15
4 4 D1,D8,D9,D16 1N4148
5 1 RP2 10K
6 1 Us 8279
7 1 ue6 7J4HCT30-ADS
8 1 u7 74HCT138

CHAPTER 5 PAGE 7

2.6 DUAL RS232 INTERFACE TERM6.SCH

PARTS LIST

Bill of Materials October 17, 1991 19:15:16
Item Quantity Reference Part
1 1 c12 100nF
2 8 C13,C14,C15,C16,C17,C18, 10uF
C19,C20
3 2 CN11,CN12 HEADER 10
4 2 R1,R2 10K
5 1 U10 82530
6 2 U1l,U12 MAX232

CHAPTER 5

PAGE 8

PARTS LIST

2.7 SCANNER INTERFACE (OCI) TERM7.SCH

Bill of Materials October 17, 1991 19:08:16
Item Quantity Reference Part

1 2 C25,C27 220pF

2 2 CN16,CN23 HEADER 5X2

3 1 R6 10K

4 S2 R7,R20 220R

5 2 R8,R19 120R

6 4 R9,R10,R21,R22 2R7 .5W

7 2 U15,U17 6N136

8 2 U16,U18 SN75452

PARTS LIST

2.8 DRAW AND RCPT SW INTERFACE TERMS8.SCH

Bill of Materials October 17, 1991 19:18:38
Item Quantity Reference Part
1 1 CN17 HEADER 2
2 3 CN18,CN19,CN20 HEADER 4
3 2 D18,D19 | 1N4007
4 2 Q1,Q2 MPSUO6
5 2 Q3,04 ' BC307
6 2 R11,R14 22K
7 2 R12,R15 560R
8 2 R13,R16 10K

CHAPTER 5 PAGE 10

PARTS LIST

2.9 EQUIV CCT 20L10 (DECODE) TERMS9.SCH

Bill Of Materials October 17, 1991 19:18:50
Item Quantity Reference Part
1 1 Ul 74HCT138
2 1 [0)4 . 74HCTOS8
3 2 U3,U4 : 74HCT32
4 1 us 74HCTO4

CHAPTER 5 PAGE 11

INTELLIGENT POINT OF SALE TERMINAL

BIBLIOGRAFHY

INTELL IGENT

TERMINAL

74

AN\

il

BIBLIOGRAPHY

CHAPTER 6
BIBLIOGRAPHY

Advanced Micro Devices (AMD)

Programmable Logic

Boylestad & Nashelsky

Electronic Devices and Circuit Theory

Bourroughs

Series L Technical Manual

Dallas Semiconductor

Data Book

Floyd

Digital Fundamentals

Floyd

Electronic Devices

Intel
8-Bit Embedded Controllers 1989
Microsystems Components Handbook 1989
Microprocessors and Peripherals 1989
Microcommunications Handbook
MCS-51 Users Guide
MCS-52 Users Guide

Micro/Cc-51

CHAPTER & PAGE 2

BIBLIOGRAPHY

IBM

XT Technical Reference Manual
IBM

AT Technical Reference Manual
Maxim

CMOS Data Acgquisition Products 1988

Monolithic Memories

Large Scale Integration (L.SI) Data Book

National Semiconductor
Linear Data Book
Logic Data Book
CMOS Data Book
Data Conversion, Interface and Bipolar LSI Data Book

Programmable Logic Data Book

Norton, P

Programmers Guide to the IBM PC

Optrex Corporation

Dot Matrix LCD Module - Users Guide

Scantech

MS7100 Symbol Scanner Publication

Sperry

Programming Considerations for Magnetic Stripe Readers

CHAPTER 6 PAGE 3

BIBLIOGRAPHY
Siliconix

Small Signal FET Design

Tokyo Electronic Company (TEC)

PC I/F Transmission Control Procedures for the MA -1190

Zilog

Z8030 / 28530 SCC Serial Communications Controller 1983

Linear Technology

1990 Linear Applications Handbook

Matra-Harris Semiconductors (MHS)
Digital CMOS/HMOS

Memories

BOFTWARE PACKAGES

Oorcad SDT, VST, PLD

MSWORD 5.0, MSWORD 4.0

Wordperfect 5.1

Drawperfect 1.1

HP's Drawing Gallery

Intel's Macro Assembler and Linker, ASM51 and RL51
IAR C51

Archemedes C51

ABEL

PCAD

CHAPTER 6 PAGE 4

	Table of contents
	Summary
	Introduction
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6

