
 

 

 

 

DEVELOPMENT OF AN EMBEDDED SYSTEM ACTUATOR NODE FOR 

INTEGRATION INTO AN IEC 61850 BASED SUBSTATION AUTOMATION 

APPLICATION. 

 

 

 

By 
 

 
 

John-Charly Retonda-Modiya  
 
 
 
Thesis submitted in fulfilment of the requirements for the degree 
 
 
 
Master of Technology: Electrical Engineering 
 
 
 
in the Faculty of Engineering 
 
 
 
at the Cape Peninsula University of Technology 
 
 
 
Supervisor: Prof. P. Petev 
Co-Supervisor: Mr. C. Kriger 
 
 
 
Bellville campus 
November 2012   



ii 
 

Declaration 

 

 

I, John-Charly RETONDA-MODIYA, declare that the contents of this thesis represent 

my own unaided work, and that the thesis has not previously been submitted for 

academic examination towards any qualification. Furthermore, it represents my own 

opinions and not necessarily those of the Cape Peninsula University of Technology. 

 

 

 

 

Signed       Date 

 

 

 

  



iii 
 

Abstract 

 

The introduction of the IEC 61850 standard in substations for communication networks and 

systems by the International Electrotechnical Commission (IEC) in 2003 provided the 

possibility for communication between devices of different manufacturers. However, the 

advent of this standard also brought about many challenges associated with it. 

 

The challenges introduced by this fairly recent standard of communications in Substation 

Automation Systems (SAS), and the need for the development of cost effective IEC 61850-

compliant devices, motivated the decision of the Centre for Substation and Energy 

Management Systems within the Electrical Engineering Department of the Cape Peninsula 

University of Technology to focus on the implementation of the IEC 61850 standard using an 

embedded hardware platform. 

 

The development of an IEC 61850 embedded application requires substantial knowledge in 

multiple domains such as data networking, software modelling and development of Intelligent 

Electronic Devices (IEDs), protection of the electrical system, system simulation and testing 

methods, etc. Currently knowledge about the implementation of the IEC 61850 standard 

usually resides with vendors and is not in the public domain.  

 

The IEC 61850 standard allows for two groups of communication services between entities 

within the substation automation system. One group utilizes a client-server model 

accommodating services such as Reporting and Remote Switching. The second group 

utilizes a peer-to-peer model for Generic Substation Event (GSE) services associated with 

time-critical activities such as fast and reliable communication between Intelligent Electronic 

Devices (IEDs) used for protection of the power network.  

 

The messages associated with the GSE services are the Generic Object Oriented Substation 

Event (GOOSE) messages. The use of GOOSE messages for protection of the electrical 

system is very important in modern substations. Detailed knowledge of the structure of these 

messages is important in instances requiring fault diagnosis to determine the cause of mal–

operation or to address interoperability concerns or when developing custom IEC 61850-

compliant devices with limited functionality. 

 

A practical protection application (overcurrent) case study is presented where GOOSE 

messages are exchanged between a commercial IED and an IEC 61850-compliant controller 

based on an embedded platform. The basic data model and software development of an 

actuator node for a circuit breaker is proposed using an IEC 61850 communication stack on 



iv 
 

an embedded platform. The performance of the GOOSE messages is confirmed to be as per 

the functional behaviour specified, and per the IEC 68150 standard in terms of the temporal 

behaviour required. 

 

This thesis document tables the methods, software programs, hardware interfacing and 

system integration techniques that allow for the development and implementation of a low 

cost IEC 61850-compliant controller unit on an embedded systems platform for the 

substation automation system. 

 

The overcurrent case study distributed between a commercial IED (SIEMENS Siprotec 

device) and the actuator application developed on an embedded platform for this project 

(DK60 board) is in compliance with the IEC 61850 standard and utilizing GOOSE messaging 

is successfully completed both in terms of functional and temporal behaviour. 

 

This novel research work contributes not only to the academic community, but to the 

international Power Systems community as a whole. 

 

Keywords: IEC 61850 standard, IEDs, GOOSE message, software modelling, software 

development, substation automation systems, communication stack, embedded systems, 

actuator. 

 

  



v 
 

Acknowledgements 

 

Jeremiah 10: 23: Well know, O Jehovah, that to earthling man his way does not belong.  
It does not belong to man who is walking even to direct his step. 

 

I would like to express my sincere appreciation to Professor R. Tzoneva, (Head of the Centre 

for Substation Automation and Energy Management System- CSAEMS), Professor P. Petev 

(my supervisor), M. Carl Kriger (Co-supervisor) and M. Shaheen Behardien for their constant 

supervision, support, motivation and encouragement throughout this thesis. I have really 

found in you a family for everything I needed. May the blessing of the Most High remain upon 

you. 

 

Special thanks to Dr. Alexander Apostolov (PAC World magazine), M. Karlheinz Schwarz 

(NettedAutomation), both support teams of Beck IPC (Germany) and SystemCorp 

(Australia). Your close cooperation as field experts has made this work possible in spite of 

the distance between us. The equipment support from SIEMENS, ALECTRIX, SEL, 

RuggedCom, ABB, RTDS and others is greatly appreciated. 

 

I must also express my gratitude to my colleagues and the staff at the CSAEMS, namely 

Fessor Mbango (former student at CPUT), Phaphama Panda (Secretary), M. Xolile Bekwa 

(Technician) and many others. You have shown a true friendship and demonstrated to me 

the Spirit of Africa “Ubuntu”. I will keep you in my heart forever. 

 

I would like to further extend my deepest gratitude to my sister Liliane Anguilet (former 

student at CPUT) for her advice and humour, my fiancé Laureith Abika for her affection and 

patience during all these years, my brothers and sisters Stevy, Rudy, Tatiana, Flavia, Grace 

(…) for taking care of my grandmother while I was away from home, my fellow friends of the 

Gabonese Student Association in Cape Town (ADEGAC) for their encouragement, all my 

friends of the Association of International Students  (AIS) of CPUT for their friendship. 

 

The financial assistance received from CPUT towards this research is acknowledged. The 

financial assistance of the Gabonese government is also acknowledged. 

 

May God bless you! 

John-Charly RETONDA- MODIYA 

  



vi 
 

Dedication 

 

This thesis is dedicated to my parents M. Roger Retonda and Manga Jeanne-pierette. 

Further dedication goes to my grand-father Eugène Capito (Akewa mpolo) and to the entire 

family for all their committed support and patience.  

 

May God continue to bless us! 

 
  



vii 
 

Table of Contents 

Declaration .......................................................................................................................................... ii 

Abstract .............................................................................................................................................. iii 

Acknowledgements ............................................................................................................................ v 

Dedication .......................................................................................................................................... vi 

List of Figures .................................................................................................................................... xi 

List of Tables ..................................................................................................................................... xv 

Glossary of Terms .......................................................................................................................... xvii 

CHAPTER ONE:  INTRODUCTION ................................................................................................... 1 

1.1  Motivation for research and problem definition .......................................................................................... 1 

1.1.1  Motivation for research .................................................................................................................... 1 

1.1.2  Problem definition ............................................................................................................................ 2 

1.2  Research aim and objectives ........................................................................................................................ 5 

1.2.1  Research aim .................................................................................................................................... 5 

1.2.2  Research objectives .......................................................................................................................... 6 

1.3  Project assumptions and delimitation .......................................................................................................... 6 

1.3.1  Project assumptions ......................................................................................................................... 6 

1.3.2  Project delimitation .......................................................................................................................... 7 

1.4  Research methodologies and techniques .................................................................................................... 7 

1.5  Originality of the Thesis ...............................................................................................................................  8 

1.6  Organisation of the Thesis ........................................................................................................................... 9 

1.7  Publications ............................................................................................................................................... 10 

CHAPTER TWO:  Literature review ................................................................................................ 11 

2.1  Introduction: .............................................................................................................................................. 11 

2.2  Literature research methodology .............................................................................................................. 11 

2.2.1  Protection technology in substations .............................................................................................. 13 

2.2.2  Project literature background ......................................................................................................... 19 

2.3  Comparative Literature review .................................................................................................................. 31 

2.3.1  Structural design of microprocessor/microcontroller based relays ................................................. 31 

2.3.2  Effort of communication standardisation ....................................................................................... 32 

2.3.3  Analysis of different methods for IEC 61850 implementation on embedded platforms .................. 33 

2.3.4  GOOSE performance evaluation ..................................................................................................... 35 

2.4  Conclusion ................................................................................................................................................. 36 

CHAPTER THREE:  ANALYSIS OF THE IEC 61850 STANDARD .................................................. 39 

3.1  Introduction ............................................................................................................................................... 39 

3.1.1  Brief substation automation evolution review ................................................................................ 39 

3.1.2  Addressing Substation Automation deficiencies ............................................................................. 40 



viii 
 

3.2  IEC 61850 philosophy and objectives ......................................................................................................... 42 

3.3  Conceptual Modelling philosophy .............................................................................................................. 43 

3.3.1  Object‐Oriented constructs for Modelling within IEC 61850 ........................................................... 46 

3.3.2  IEC 61850 Naming convention ........................................................................................................ 50 

3.3.3  Abstract Communication Service Interface ..................................................................................... 51 

3.3.4  Information Models ........................................................................................................................ 52 

3.3.5  Information Exchange ..................................................................................................................... 54 

3.3.6  Client‐Server Architectures ............................................................................................................. 56 

3.3.7  Publisher‐Subscriber Architecture .................................................................................................. 57 

3.4  Data communication philosophy ............................................................................................................... 58 

3.4.1  Specific Communication Service Mapping (SCSM) .......................................................................... 58 

3.4.2  Definition of a GOOSE message ...................................................................................................... 59 

3.4.3  Retransmission strategy for GOOSE message ................................................................................. 61 

3.4.4  Logical Interfaces and Substation Network Topology ...................................................................... 61 

3.5  System configuration philosophy ............................................................................................................... 65 

3.5.1  Substation Configuration Language (SCL) ........................................................................................ 66 

3.5.2  Role played by software tools in the substation configuration process ........................................... 67 

3.6  Other related Standards ............................................................................................................................ 68 

3.6.1  OSI Model ....................................................................................................................................... 68 

3.6.2  ASN 1 standard ............................................................................................................................... 69 

3.6.3  Software Engineering Standards ..................................................................................................... 69 

3.6.4  Unified Modelling Language (UML) ................................................................................................. 70 

3.7  Conclusion ................................................................................................................................................. 71 

CHAPTER FOUR:  CASE STUDY IMPLEMENTATION: CONTEXT AND DEVELOPMENT 

ENVIRONMENT 73 

4.1  Introduction ............................................................................................................................................... 73 

4.2  Project context .......................................................................................................................................... 74 

4.3  Introduction to the DK61development kit ................................................................................................. 78 

4.3.1  Definition of an Intelligent Electronic Device .................................................................................. 78 

4.3.2  General structure of Intelligent Electronic Devices ......................................................................... 79 

4.3.3  DK 61 Development Environment description ................................................................................ 79 

4.3.4  Tools for development of an IEC 61850 application ........................................................................ 82 

4.3.5  The SC143 Embedded Web microcontroller ................................................................................... 83 

4.3.6  IPC@CHIP® RTOS architecture description...................................................................................... 85 

4.3.7  Overview of the PIS‐010 communication stack and its IEC 61850 API ............................................. 86 

4.4  General description of circuit breaker and model development ................................................................ 93 

4.4.1  General description of circuit breaker ............................................................................................. 93 

4.4.2  Definition of an Actuator ................................................................................................................ 96 

4.4.3  Component hierarchy of different IEC 61850 views ...................................................................... 101 



ix 
 

4.4.4  Intelligent circuit breaker node data modelling ............................................................................ 105 

4.5  Conclusion ............................................................................................................................................... 120 

CHAPTER FIVE:  CASE STUDY IMPLEMENTATION: SOFTWARE DEVELOPMENT, 

INTERFACING AND SYSTEM INTEGRATION................................................................................ 122 

5.1  Introduction ............................................................................................................................................. 122 

5.2  Software development ............................................................................................................................ 122 

5.2.1  Engineering the system architecture ............................................................................................ 125 

5.2.2  Application software: planning and design ................................................................................... 125 

5.3  Interfacing and System integration .......................................................................................................... 145 

5.4  Reported issues ....................................................................................................................................... 150 

5.5  Conclusion ............................................................................................................................................... 151 

CHAPTER SIX:  CASE STUDY IMPLEMENTATION: TESTING AND RESULTS ANALYSIS .... 154 

6.1  Introduction ............................................................................................................................................. 154 

6.2  GOOSE message structure investigation .................................................................................................. 155 

6.2.1  ASN.1 Encoding rule for GOOSE Protocol Data Unit (goosePDU) .................................................. 160 

6.2.2  Details for encoding time of Data (t) ............................................................................................. 163 

6.2.3  Details for encoding quality of Data (q) ......................................................................................... 163 

6.2.4  Introduction to IEDScout and Wireshark – for GOOSE simulation and Frame capture respectively

 ................................................................................................................................................ 165 

6.2.5  Simulation: Goose generation utilizing IEDScout, GOOSE capture using Wireshark, and structure 

analysis of the captured GOOSE message ................................................................................ 166 

6.2.6  Experimentation: GOOSE generation using commercial (SIEMENS) Relays, and capture with 

Wireshark ................................................................................................................................ 174 

6.3  Experimentation: Preparation of a Test Bench for an Overcurrent event – Goose messages generated 

between commercial IED and embedded system controller connected to an emulated circuit‐

breaker .................................................................................................................................... 178 

6.3.1  Testing methodology for circuit breaker actuator ......................................................................... 179 

6.3.2  Operational description for the developed circuit breaker actuator ............................................. 180 

6.3.3  Communication set up between the DK60 and other equipment ................................................. 181 

6.4  Results analysis ........................................................................................................................................ 184 

6.4.1  Functional response and GOOSE frame format conformance ....................................................... 184 

6.4.2  GOOSE performance (temporal response) evaluation .................................................................. 188 

6.4.3  Interoperability achievement........................................................................................................ 193 

6.4.4  Cyber security risk evaluation ....................................................................................................... 193 

6.4.5  Breaker control based on MMS over TCP/IP ................................................................................. 196 

6.5  Conclusion ............................................................................................................................................... 197 

CHAPTER SEVEN:  CONCLUSION AND FUTURE WORK .......................................................... 199 

7.1  Introduction ............................................................................................................................................. 199 



x 
 

7.2  Aims and objectives ................................................................................................................................. 200 

7.3  Thesis deliverables ................................................................................................................................... 201 

7.3.1  Literature review: history of IEDs and review of design theory for IED hardware and software .... 201 

7.3.2  Literature review: analysis and comparison of method for IEC 61850 modelling ‐ development and 

implementation aspects .......................................................................................................... 201 

7.3.3  GOOSE frame format analysis utilizing data network utilities ....................................................... 201 

7.3.4  Development of a method for IEC 61850 embedded project development and system integration 

for the DK 60 board ................................................................................................................. 201 

7.3.5  Software development for the process application that is run on the SC143 chip of the DK 60 board

 ................................................................................................................................................ 202 

7.3.6  Development of a method for GOOSE performance evaluation in order to confirm that the 

communication stack used as well as the developed process application meet the temporal 

behaviour requirements specified by the IEC 61850 standard. ................................................ 205 

7.3.7  Development of a test scenario for an aspect of cyber security .................................................... 206 

7.4  Challenges Encountered .......................................................................................................................... 206 

7.5  Application of results ............................................................................................................................... 207 

7.6  Proposed improvements and ongoing work status .................................................................................. 208 

7.7  Future research work ............................................................................................................................... 209 

7.8  Publications ............................................................................................................................................. 209 

APPENDICES .................................................................................................................................. 210 

APPENDIX A .................................................................................................................................... 211 

APPENDIX B .................................................................................................................................... 213 

APPENDIX C .................................................................................................................................... 216 

APPENDIX D .................................................................................................................................... 225 

APPENDIX E .................................................................................................................................... 268 

APPENDIX F .................................................................................................................................... 273 

APPENDIX G.................................................................................................................................... 303 

APPENDIX H .................................................................................................................................... 305 

APPENDIX I ..................................................................................................................................... 307 

APPENDIX J .................................................................................................................................... 309 

APPENDIX K .................................................................................................................................... 320 

APPENDIX L .................................................................................................................................... 323 

APPENDIX M ................................................................................................................................... 328 

REFERENCES ................................................................................................................................. 331 

 

  



xi 
 

List of Figures 

 

Figure 1.1: Limited IEC 61850 implementation (a) vs extended implementation (b) .... 4 

Figure 1.2: Project case study definition ...................................................................... 5 

Figure 2.1: Publication rate for “IEC 61850 Software” topic ....................................... 13 

Figure 3.1: IEC 61850 conceptual modelling approach ............................................. 44 

Figure 3.2: Encapsulation principle of IEC 61850 ...................................................... 47 

Figure 3.3: IEC 61850 Data Model vs real world example ......................................... 48 

Figure 3.4: Position information depicted as a tree .................................................... 48 

Figure 3.5: XCBR Logical Node Class definition ........................................................ 49 

Figure 3.6: IEC 61850 Naming convention ................................................................ 50 

Figure 3.7: ACSI mappings to OSI communication model ......................................... 51 

Figure 3.8: Conceptual model of ACSI ....................................................................... 52 

Figure 3.9: Basic information model of the ACSI ....................................................... 53 

Figure 3.10: ASCI communication methods ............................................................... 54 

Figure 3.11: Conceptual service model for ACSI ....................................................... 55 

Figure 3.12: Client/Server communication model ...................................................... 56 

Figure 3.13: Publish/Subscribe communication model .............................................. 57 

Figure 3.14: Layered structure of the IEC 61850 standard ........................................ 58 

Figure 3.15: Mapping of IEC 61850 specifics layers to OSI model ............................ 59 

Figure 3.16: Protocol mappings profile ...................................................................... 60 

Figure 3.17: Transmission time for GOOSE............................................................... 61 

Figure 3.18: Interface model of a substation automation system ............................... 62 

Figure 3.19: Current use of standardised IEDs .......................................................... 63 

Figure 3.20: SAS architecture compliant IEC 61850 .................................................. 63 

Figure 3.21: Importance of Substation configuration Language ................................ 65 

Figure 3.22: Reference model for information flow in the configuration process ....... 66 

Figure 3.23: UML diagram overview of SCL schema ................................................. 67 

Figure 3.24: Conceptual substation engineering process using SCL ......................... 68 

Figure 3.25: UML 2.2 diagram organisation ............................................................... 71 

Figure 4.1: Interface model of a substation automation system ................................. 74 

Figure 4.2: Architecture of IEC 61850 SAS with Station Bus and Process Bus ......... 75 

Figure 4.3: Current SAS architecture implementation ................................................ 76 

Figure 4.4: Non distributed (a) vs distributed scheme (b) .......................................... 76 

Figure 4.5: Project case study .................................................................................... 77 

Figure 4.6: Internal structure of IEDs ......................................................................... 79 

Figure 4.7: DK61 Development Kit ............................................................................. 81 

Figure 4.8: DK60 board standard configuration ......................................................... 82 



xii 
 

Figure 4.9: SC143 Block diagram .............................................................................. 84 

Figure 4.10: IPC@CHIP® RTOS architecture ........................................................... 85 

Figure 4.11: PIS-010  protocol composition ............................................................... 87 

Figure 4.12: Interaction with the IEC61850 PIS-010 Stack ........................................ 88 

Figure 4.13: Application communication description .................................................. 89 

Figure 4.14: PIS-010 Server Overview ...................................................................... 91 

Figure 4.15: PIS-010 Client Overview ........................................................................ 92 

Figure 4.16: Single line diagram ................................................................................ 93 

Figure 4.17: Live tank versus Dead tank .................................................................... 95 

Figure 4.18:Gas Insulated Switchgear (GIS) ............................................................. 95 

Figure 4.19: Trip module for a compact vacuum circuit breaker system .................... 96 

Figure 4.20: Block diagram of conventionnal Circuit Breaker Actuator (Live Tank) ... 97 

Figure 4.21: Bay protection without process bus (left) and with process bus (right) .. 98 

Figure 4.22: Protection scheme test case .................................................................. 99 

Figure 4.23: Principal type of Actuators ................................................................... 100 

Figure 4.24: Component hierarchy of different views ............................................... 102 

Figure 4.25: Communication scenario for thesis project .......................................... 105 

Figure 4.26: Data Model steps ................................................................................. 106 

Figure 4.27: Logical Node relationships ................................................................... 107 

Figure 4.28: Basic building blocks for LN ................................................................. 107 

Figure 4.29 : Logical Device buiding block ............................................................... 109 

Figure 4.30: Server Logical Block ............................................................................ 110 

Figure 4.31: Full Breaker control functions .............................................................. 110 

Figure 4.32: Encapsulation perspective for DK60SV1.CID ...................................... 112 

Figure 4.33: Overview of Block Data in a CID file .................................................... 112 

Figure 4.34: DK60SV1.ICD functions overview ....................................................... 113 

Figure 4.35: Partial view of DK60SV1.CID file ......................................................... 114 

Figure 4.36: Details composition of IED section of the DK60SV1.CID ..................... 115 

Figure 4.37: Private Generic Value for Data binding to PIS-10 stack ...................... 116 

Figure 4.38: DK60CL1SCD and DK60SV1.ICD functions overview ........................ 117 

Figure 4.39: Development steps for compatible PIS-10 stack SCD file ................... 118 

Figure 4.40: Details composition of the DK60CL1.SCD ........................................... 119 

Figure 4.41: Subscription by means of GPV ............................................................ 120 

Figure 5.1: Software/ Hardware sequence co-development strategy ...................... 124 

Figure 5.2:  System development workflow ............................................................. 125 

Figure 5.3: Project software design procedure ........................................................ 127 

Figure 5.4: Process application state machine for breaker IED ............................... 128 

Figure 5.5: Server State Machine ............................................................................ 129 



xiii 
 

Figure 5.6: Client state machine .............................................................................. 130 

Figure 5.7: hardware connectivity between DK60 board and Emulated Circuit Breaker

 ................................................................................................................................. 131 

Figure 5.8: GPV field description ............................................................................. 132 

Figure 5.9: Software application internal description ............................................... 137 

Figure 5.10: Local Database relationship with the PIS-10 stack .............................. 139 

Figure 5.11: Data type managment for local database ............................................ 142 

Figure 5.12: Monitoring of Input for a change of status ............................................ 142 

Figure 5.13: Saving Status of Input into global variabale ......................................... 143 

Figure 5.14: Conditional affection of container value for circuit breaker position ..... 143 

Figure 5.15: Update of local database ..................................................................... 144 

Figure 5.16: Update of IEC 61850 database ............................................................ 144 

Figure 5.17: Basic hardware connectivity ................................................................ 145 

Figure 5.18: System integration for Actuator Node .................................................. 146 

Figure 5.19: Pulse Control schematic ...................................................................... 147 

Figure 5.20: Prototype Circuit breaker schematic .................................................... 148 

Figure 5.22: Telnet program feedback at start up .................................................... 149 

Figure 5.21: Prefered Sequence for DK 60 file upload ............................................ 149 

Figure 5.23: Developer's page at SystemCorp website ........................................... 151 

Figure 6.1: Simplified topology for case study verification ....................................... 155 

Figure 6.2: ISO/IEC 8802-3 frame format ................................................................ 156 

Figure 6.3: Ethernet frames specification ................................................................. 157 

Figure 6.4: Virtual LAN tag ....................................................................................... 158 

Figure 6.5: GOOSE PDU definition .......................................................................... 159 

Figure 6.6: Field Identifier Octet (Tag definition) ...................................................... 161 

Figure 6.7: Wireshark capture window ..................................................................... 166 

Figure 6.9: Setting parameter for GOOSE simulation .............................................. 167 

Figure 6.8: Configuration of IEDScout ..................................................................... 167 

Figure 6.10: Topology for GOOSE simulation .......................................................... 170 

Figure 6.11: GOOSE simulation result ..................................................................... 170 

Figure 6.12: Identification of dataset used ............................................................... 171 

Figure 6.13: Interpretation of Hexadecimal value .................................................... 172 

Figure 6.14: Logical connection for experimentation with IEDs ............................... 175 

Figure 6.15: Network Topology for experimentation with IEDs ................................ 175 

Figure 6.16: Illustration of input Key into LED .......................................................... 176 

Figure 6.17: Experiment results (a) .......................................................................... 176 

Figure 6.18: Experiment result (b) ............................................................................ 177 

Figure 6.19: GOOSE frame with and without 802.1Q vlan tag................................. 177 



xiv 
 

Figure 6.20: Basic topology for case study verification ............................................ 179 

Figure 6.21: Original inter-trip test setup .................................................................. 181 

Figure 6.22: Overcurent test set up .......................................................................... 182 

Figure 6.23: Complete lab setup of the case study .................................................. 184 

Figure 6.24: Picture of System Actuator and Emulated circuit breaker .................... 184 

Figure 6.25: Emulated Circuit Breaker in Open positionn ........................................ 185 

Figure 6.26: Breaker position before overcurrent event ........................................... 186 

Figure 6.27: IED_1 when overcurrent fault detected ................................................ 186 

Figure 6.28: Breaker position after overcurrent event .............................................. 187 

Figure 6.29: Breaker position after overcurrent event (IEDScout view) ................... 187 

Figure 6.30: Definition of transfer time ..................................................................... 188 

Figure 6.31: GOOSE transfer time evaluation under “relative” network load ........... 189 

Figure 6.32: Transfer time evaluation without “relative”  network load ..................... 189 

Figure 6.33: GOOSE Transfer time statistics ........................................................... 192 

Figure 6.34: First part of the cybert security test ...................................................... 194 

Figure 6.35: Mapping of IEC 61850 specifics layers to OSI model .......................... 196 

 

  



xv 
 

List of Tables 

 

Table 2.1: Comparison of Protection technology epochs in Substation Automation .. 14 

Table 2.2: Relay type vs communication protocol evolution ...................................... 18 

Table 2.3: Structural design of microprocessor/microcontroller based relays, 

simulation and test ..................................................................................................... 21 

Table 2.4: Paper review on substation communication .............................................. 22 

Table 2.5: Basic concept Review of IEC 61850 standard .......................................... 23 

Table 2.6: IEC61850 and modelling ........................................................................... 24 

Table 2.7: Comparison of method for embedded implementation of IEC 61850 

requirements .............................................................................................................. 25 

Table 2.8: Comparison of method for evaluating and testing protection systems based 

on GOOSE messages ................................................................................................ 28 

Table 2.9: Communication standard evolution ........................................................... 33 

Table 3.1: Composition of the IEC 61850 standard (Edition 1) .................................. 41 

Table 3.2: IEC 61850 and different roleplayers .......................................................... 43 

Table 3.3: List of Logical Node Groups ...................................................................... 46 

Table 3.4: IEC 61850 message types and performances .......................................... 60 

Table 3.5: Services associated with the GOOSE communication model ................... 61 

Table 3.6: Project related standards .......................................................................... 64 

Table 3.7: SCL file extension description ................................................................... 66 

Table 3.8: OSI Model and IEC61850 profile .............................................................. 68 

Table 3.9: IEC61850 sections to be considered for the current project ..................... 72 

Table 4.1: SC143 basics characteristics .................................................................... 83 

Table 4.2: API list for the IPC@CHIP® RTOS ........................................................... 86 

Table 4.3: PIS-10 Object Management Functions ..................................................... 90 

Table 4.4: PIS-10 Data Attributes Access Functions ................................................. 90 

Table 4.5: PIS-10 Control Functions .......................................................................... 90 

Table 4.6PIS-10 Support Functions ........................................................................... 90 

Table 4.7: PIS-10 Time Functions .............................................................................. 90 

Table 4.8: XCBR Class definition ............................................................................. 107 

Table 4.9: Project complexity delimitation ................................................................ 121 

Table 5.1: Input/Output matrix .................................................................................. 133 

Table 5.2: Function list identification ........................................................................ 134 

Table 5.3: Container Value for Circuit breaker position............................................ 141 

Table 5.4: Output logic control ................................................................................. 146 

Table 5.5: Project software tools .............................................................................. 152 

Table 6.1: Recommended multicast address range ................................................. 158 



xvi 
 

Table 6.2: Default virtual LAN IDs and priorities ...................................................... 158 

Table 6.3: Assigned Ethertype values ...................................................................... 158 

Table 6.4: GOOSE message definition (APDU) ....................................................... 159 

Table 6.5: Structure encoding in ASN.1 /BER ......................................................... 160 

Table 6.6: Encoding of class of tag .......................................................................... 161 

Table 6.7: Encoding of class of tag and interpretation ............................................. 161 

Table 6.8: Common GOOSE Data Value Encoding ................................................. 162 

Table 6.9: Single point status common data class (SPS) ........................................ 164 

Table 6.10: Quality components attribute definition ................................................. 164 

Table 6.11: Expected experimental GOOSE frame ................................................. 169 

Table 6.12: Interpretation of hexadecimal value for GOOSE PDU .......................... 172 

Table 6.13: Internet link for VLAN tag investigation ................................................. 178 

Table 6.14: IP Addresses ......................................................................................... 183 

Table 6.15: GOOSE Transfer Time results .............................................................. 191 

Table 6.16: Current PIS-010 stack structure vs proposition for future release ......... 198 

Table 7.1: Function list identification ........................................................................ 204 

 

  



xvii 
 

Glossary of Terms 

 

Bay A substation consists of closely connected sub parts with some common functionality. 
The bay level represents an additional control level below the overall station level. 
 

Bus: Communication system connection between Intelligent Electronics Devices (IED) with 
communication facilities.  
 

Class: Description of a set of objects that share the same attributes, services, relationships and 
semantics.  
 

CT Current Transformer. A device that transforms current from one magnitude to another 
magnitude. 
 

data object Part of a logical node object representing specific information for example status or 
measurement. From an object-oriented point of view, a data object is an instance of a 
data class.  
 

FPGA Field-Programmable Gate Array(s) is an integrated circuit designed to be configured by 
the customer or designer after manufacturing. 
 

Function(s) 
 

Task(s) performed by the substation automation system i.e. by application functions. 
Generally, functions exchange data with other functions. Details are dependent on the 
functions involved. Functions are performed by IEDs (physical devices). A function may 
be split into parts residing in different IEDs but communicating with each other (distributed 
function) and with parts of other functions. These communicating parts are called logical 
nodes. 
 

GOOSE Generic Object Oriented Substation Event is a high performance multi-cast messaging 
service for inter-IED communications, and is used for fast transmission of substation 
event. 
 

HMI Human Machine Interface 

IED 
 

Intelligent Electronic Device is any device incorporating one or more processors, with the 
capability to receive or send data/control from, or to, an external source. Device capable 
of executing the behavior of one or more, specified logical nodes in a particular context 
and delimited by its interfaces 
 

Interoperabil
-ity 

Ability of two or more IEDs from the same vendor, or different vendors, to exchange 
information and use that information for correct execution of specified functions. 
 

Line 
diagram 

Schematic representation of a power system line or bus connection near an electrical 
node (mostly electrical substation). 

Logical node Smallest part of a function that exchanges data. A logical node is an object defined by its 
data and methods. 
 

Logical node 
data 

Information contained within a logical node. The term encompasses ACSI data, control 
blocks. 
 

Merging unit 
(MU) 

Interface unit that accepts multiple analogue Current transformer (CT) or Voltage 
Transformer (VT) and binary inputs and produces multiple time synchronized serial 
unidirectional multi-drop digital point to point outputs to provide data communication via 
the logical interfaces  
 

MMS Message Manufacturing Specification protocol 

Model 
 

Representation of some aspects of reality. The purpose of creating a model is to help 
understand, describe, or predict how things work in the real world by exploring a simplified 
representation of a particular entity or phenomenon. 
 

Physical 
node 

Point of connection on a physical device to a communication network. A physical node is 
a multi-functional unit providing both the communication server and the mapping to the 
real substation IED. 
 

Router Networking device used to interconnect multiple network 

SAS Substation Automation System. Provides automation within a substation and includes the 



xviii 
 

 IEDs and communication network infrastructure. An automated substation is a substation, 
where all secondary equipment within a substation is interlinked with communication 
buses. 
 

SCADA Supervisory Control and Data Acquisition 

SCL Substation Configuration description Language is a description language for 
communication in electrical substations related to the IEDs. This implies the use of 
configuration file. 
 

State 
machine 

The functional behaviour of any IED, logical node or object, can be defined and 
delineated by means of a state machine. This describes, normally by means of a state 
diagram, the functionality, responses, actions and re-actions, as a series of discrete, 
linked states, together with the criteria governing the transition from one state to another 
specific state. 
 

Switch Networking device used to interconnect Ethernet cable from different communicator in 
order for them to exchange information. 
 

Unified 
Modelling 
language 

Standardized constructs and semantics for diagrams, including state machines, which are 
used to describe/specify the functionality of an IED, object model or a process. 
 
 

VHDL VHSIC Hardware Description Language (VHSIC: very-high-speed integrated circuit) is a 
hardware description language used in electronic design automation to describe digital 
and mixed-signal systems such as field-programmable gate arrays and integrated circuits. 
 

VT Voltage Transformer. A device that transforms voltage level from one magnitude to 
another magnitude. 

 

 

 



1 
 

CHAPTER ONE:  

INTRODUCTION 

 

1.1 Motivation for research and problem definition 

1.1.1 Motivation for research 

Substations have always played a pivotal role traditionally in the power network for 

the protection of costly equipment and for the switching, routing, and distribution of 

power. 

 

Internationally the power networks have expanded dramatically over the decades: the 

interlinked North American Power Network is now commonly regarded as the largest 

man-made machine in the world. Outside the traditional roles of protection and 

distribution, the automated monitoring, control and knowledge-based decision making 

within these expanded networks in conjunction with the intense interest in the 

“Smarter Grid” has as a consequence also driven a requirement for increased 

Substation Automation Systems (SAS).   

 

Technologies to accommodate the increasing requirements of substation automation 

systems have evolved from the earliest days of hard-wired electromechanical 

systems (with no numerical computational capability) through non-bus-based 

numerical relays with limited computational capability, to standardized multi-functional 

bus-based systems with significant communications, memory, and computational 

capabilities. The consequence of non-standardization has often led to costly single-

vendor proprietary solutions with very limited interoperability prospects. The 

imperatives of cost, maintainability, flexibility, and interoperability largely drove the 

early initiatives in the 1990’s for the promulgation of a standard for Substation 

Automation Systems. The nett result of this was the release of the IEC 61850 

standard in 2003. 

 

The technology needs mentioned above have driven a manufacturing industry to 

cater for it. Due to the fact that not only is costly investment required in 

manufacturing, but also for research, development, and especially the guaranteed 

performance in line with stated specifications to avoid aspects of liability. Due to these 

constraints only a few vendors internationally have become prominent in this market 

(e.g. such as SEL, ABB, Alstom, Siemens, etc.). 



2 
 

 

The expertise of developing equipment in compliance with the IEC 61850 standard 

lies almost solely within the vendor companies mentioned above. Academic 

institutions generally have not yet gained a deeper understanding of the IEC 61850 

standard. Very little has been done in the academic sphere for teaching and 

familiarisation with the new technologies, or research into, or development and the 

adaptation thereof. Currently the situation is that detailed knowledge of 

implementation of the standard is not available in the public domain as industrial 

vendors ensure that their methods and implementation techniques remain confidential 

for economic leverage and also as justification for the high costs of the field devices.  

 

The broad motivation for the project is familiarisation with the IEC 61850 standard to 

create a foundation to the degree that implementation of the IEC 61850 standard can 

be realized to some extent through experimentation. This foundational knowledge-

base is essential for a) the development of further projects within The Centre for 

Substation Automation and Energy Management Systems (CSAEMS) under the 

auspices of which the project is being conducted, but also b) to be able to appreciate 

and respond to the changes made to the standard as it evolves. 

  

The current research project is developed within the CSAEMS at the Electrical 

Engineering Department at the Cape Peninsula University of Technology. The 

CSAEMS is still in an embryonic phase and this project is supportive of the objectives 

of the centre.  

1.1.2 Problem definition 

The international standard - IEC 61850 for communication networks and systems in 

electrical substations is important within power utilities for the purpose of data 

acquisition for operational and management issues, easy reconfiguration, scalability 

and integration within the substation. The push for standardization has been assisted 

by the technological advances in the protection and monitoring devices within 

substations, and the ability for these devices to communicate and distribute field data 

amongst each other. Challenges of interoperability emerged as devices from different 

vendors were unable to share critical information for monitoring, protection and 

control. 

 

The IEC-61850 standard is rapidly gaining popularity around the world for its flexible 

data communication across the IEDs in electrical substations. The model architecture 

for data commutation, which is based on an object-oriented approach, enables 



3 
 

addressability and interoperability among equipment from different vendors. This 

introduces new challenges for software and hardware developers in the interpretation 

of the IEC 61850 standard to develop software for IEDs to ensure interoperability is 

achieved.  

 

Many Intelligent Electronic Devices (IEDs) currently used in substations are 

multifunction devices that are able to perform protection, metering, control and 

monitoring functions. These devices are directly connected to sensors and actuators 

with high voltage copper cables. Since the inception of the IEC 61850 standard the 

“process bus” was proposed in addition to the more common “station bus”. Sensing 

units connected to the “process bus” communicate with other parts of the SAS 

supplying raw sampled value data to the system. This means that the development of 

a new generation of addressable sensing units (merging units) and actuator units is 

required. This provides the opportunity for research and development. 

 

The problem can be sub-divided into the following: 

 Detailed understanding and implementation of the IEC 61850 standard 

As stated previously, academic institutions do not have a detailed 

understanding of the IEC 61850 standard for an embedded system 

implementation. This knowledge of implementation methods usually reside 

with vendors and are generally not available in the public domain. 

 Difficulty to source devices with limited or specific function nodes with IEC 

61850 capabilities on the market. 

Currently, the control of primary equipment such as circuit breakers within the 

Substation Automation Systems (SAS) is achieved using long hardwired cables that 

connect circuit breaker controllers (conventional actuator) to multifunctional and costly 

IEDs. Figure 1.1 shows the current implementation (limited) of the IEC 61850 

standard (a) versus the extended or full implementation of it (b). 



4 
 

 

Figure 1.1: Limited IEC 61850 implementation (a) vs extended implementation (b) 
Adapted from (Brand and Wimmer, 2003) 

These IEDs are able to perform multi-functional (protection, control, metering, data 

acquisition…) roles. As a result, the installation cost of the SAS is relatively high. 

Development of IEC 61850 SAS or refurbishing of conventional SAS to be IEC 61850 

compliant ensures the reduction of installation and maintenance costs. This justifies 

the need to develop new cost effective and reconfigurable IEDs such as merging units 

and actuators. 

 

Case study: Figure 1.2 presents the proposed case study for this project. An 

IEC61850-compliant test injection set is used as a fault generator into an IEC 61850-

compliant IED. The intelligent circuit breaker controller acts as an actuator1  and is 

used to trip an emulated circuit breaker in response to an IEC 61850 based GOOSE 

message. 

 

                                                 

1 The word “actuator” is used here in the sense of the desire functionality and do not refer to 
the process bus device as per IEC 61850. 



5 

 

Figure 1.2: Project case study definition 
 

The numbers in Figure 1.2 represent the communication flow of data between IEDs: 

1: Simulate a fault condition to an IED. 

2: Transmit a GOOSE message in the case of fault detection (over-current). 

3: Receive the GOOSE message and take relevant action if required. 

4: Open circuit breaker. 

5: Read the current state of the circuit breaker. 

6: Send a GOOSE message indicating the status position of the circuit breaker. 

7: Read the incoming GOOSE message to clear the flag for a detected fault 

(Optional). 

 

This research project focuses on the development of a cost effective controller with 

limited capabilities. This controller should be able to generate and respond to an IEC 

61850 message and be integrated into a case study on a protection application 

distributed between a commercial vendor IED and the embedded systems-based 

controller. The project requires the development or adaptation of software, and 

interfacing of hardware to achieve the goal of system integration. 

1.2 Research aim and objectives 

1.2.1 Research aim 

The project aim is to develop methods, software algorithms, hardware interfacing, a 

system integration technique, and a testing methodology that will allow for the 

development of a low cost IEC 61850-compliant actuator with a performance 

methodology to determine its functional and temporal behaviour, on an embedded 

platform interfaced to a circuit breaker emulator.  

 

 



6 
 

1.2.2 Research objectives 

In order to achieve the aforementioned aim, the following project objectives are 

proposed: 

 

 Literature review: history of IEDs and review of design theory for IED 

hardware and software to be conducted. 

 Literature review: analysis and comparison of method for IEC 61850 modelling 

- development and implementation aspects to be undertaken. 

 The frame format of the GOOSE message and its successful transmission 

over the network (as an indicator of functional behaviour) to be analysed 

utilizing data networking software utilities. 

 A method for IEC 61850 embedded project development and system 

integration to be investigated and developed. 

 Identification of a suitable hardware platform and software tools for the 

implementation of the software algorithms for the process application which 

has to be developed. 

 A method for GOOSE performance evaluation in order to confirm that the 

communication stack used as well as the developed process application meet 

the temporal behaviour requirements specified by the IEC 61850 standard is 

to be investigated and developed. 

 A circuit breaker emulator to be designed, implemented and interfaced to the 

actuator (embedded system platform). 

 A test scenario for the aspect of cyber security to be developed. 

1.3 Project assumptions and delimitation 

1.3.1 Project assumptions 

The following assumptions with respect to the scope of the research project are 

made:  

 The IEC 61850 standard is sufficiently well documented to support any 

relevant data modelling or development processes and references to other 

related standard are clearly stated; 

 There are software and hardware tools on the market that allow for the 

development of IEDs with limited IEC 61850 capability; 

 The hardware target that can accommodate the design is available on the 

market and it can be reconfigured according to the implementation method 

and application requirements; 



7 
 

 A Substation Automation System environment can be created using a test-

bench in a lab to simulate and implement the necessary monitoring and 

control functionalities in conformance with the IEC 61850 standard; and 

 Relevant test equipment is available for the research study. 

1.3.2 Project delimitation 

The research project is limited to the development of an IEC 61850-compliant 

intelligent circuit breaker controller with limited functionality.  

The following tasks form part of the project: 

 Development of methods for IEC 61580 standard implementation; 

 Software modelling as well as software development for the intelligent circuit 

breaker controller; 

 Hardware integration; and 

 Testing of the Intelligent Circuit Breaker Controller logical operation. 

 

The following activities fall outside of the scope of the research project: 

 Development and implementation of a complete IEC 61850 control model that 

uses the Select-Before-Operate method; 

 SCADA system development; 

 Design of current transformer (CT) and voltage transformer (VT); 

 Design and implementation of a merging unit; 

 Tripping of a real substation circuit breaker; 

 Development of high voltage and/or high current interface circuitry; 

 Management /or control of network communications within the SAS; 

 Electromagnetic compatibility tests (EMC); 

 Development of an IEC 61850 communication stack; and 

 Mathematical modelling of a circuit breaker. 

1.4 Research methodologies and techniques 

The research focuses on the development of an IEC61850 application based on a 

hardware platform that supports IEC61850 functionality. The application requirement 

is that identification of the problem is accomplished first. Secondly, the investigation of 

a hardware platform that can accommodate the software application has to be 

performed by studying the internal structure of an IED. Next a logical device model of 

the intelligent circuit breaker controller must be developed together with the 

corresponding process application using appropriate software tools. In order to 

address the issues tabled in the brief discussion above the following methodologies 

and techniques are proposed: 



8 
 

a) Literature review – A detailed literature review of the IEC 61850 standard and 

other relevant areas will be conducted. A clear understanding of the IEC61850 

standard philosophy is required as well as other important related standards 

(UML, OSI model, etc.). Existing methods for implementation of the IEC 

61850standard have to be reviewed and researched. A review of the literature 

for the evolution of IEDs and the global structure of the Substation Automation 

Systems will be conducted.  

b) Software development methods – The software tools required for modelling of 

an IEC61850 application will be researched and identified. Understanding of 

UML diagrams, syntax and structure of XML files, and programming within “C” 

environment  

c) Hardware interfacing methods – Empirical investigations will be conducted to 

determine how commercials IEDs function in an IEC61850 environment. It is 

imperative that an understanding of the interaction between the user 

application, the communication stack, the operating system and the hardware 

system interface be developed. 

d) Testing and performance evaluation methods – Test methods or procedures 

will be used to verify the correct implementation or realisation of an IEC61850 

application on the selected hardware target. The notion of interoperability 

defined in the IEC61850 standard will be applied here. The developed device 

will be subjected to performance evaluations to verify its functional and 

temporal behaviour under real-world conditions. 

1.5 Originality of the Thesis 

Most of the work in the area of power network protection is the responsibility of the 

municipalities and national power providers. These organisations use vendor 

equipment and the emphasis is not on developing their own equipment, but in many 

cases they use the vendors to implement the needed solutions. 

 

Within the academic sphere, first and foremost there is no curriculum or even training 

for this technology at the moment. Secondly this research work focuses not on using 

vendor equipment, but on the development of an IEC 61850-compliant custom device 

with limited functionality. 

 

This research will contribute to the establishment of detailed knowledge within the 

field of Substation Automation Systems. This will be accomplished by means of the 

foundational understanding and intimate knowledge of the IEC 61850 standard and 

the practical implementation thereof on an embedded systems platform. 



9 
 

1.6 Organisation of the Thesis 

The thesis consists of seven chapters detailing the background information, problem 

definition, developed methods, software algorithms developed, integration techniques 

applied, challenges encountered and results of the research project. 

 

Chapter 1 presents an overview of the research project highlighting the research 

aims, the research delimitation, the research methodologies, research aims and 

objectives, and a description of the originality of the thesis. 

 

Chapter 2 presents the literature search and analysis methodology including a 

detailed literature review of among others the substation history, the evolution of 

IEDs, current methods of interfacing IEDs, and a review of current actuator solutions. 

A comparative review of structural design of microprocessor/microcontroller based 

relays and other areas are also tabled. 

 

Chapter 3 discusses an overview of the IEC61850 standard with a particular focus on 

the structure of GOOSE messages. A list of hardware/software tools associated with 

IEC61850 development is tabled with a short description of each of them. 

 

Chapter 4 provides detailed information about the target hardware platform that is 

used to implement an IED prototype with limited functionality. This chapter also 

describes the modelling of the selected case study based on the IEC61850 standard. 

The function of each module is specified together with the interactions between them 

using UML.  

 

Chapter 5 details all the algorithms and the software development of the final 

application. A description of the main software tools used to develop the code is 

provided. The software algorithms of each module is explained and also the way the 

developed application interacts with the system interface (network card adapter and 

other input/ output modules). 

 

Chapter 6 introduces the world of IEC61850 communication-based GOOSE 

messaging by means of experimentation. Various software tools for simulation, device 

configuration and network analysis are explored to gain a deeper understanding of 

the IEC61850 standard. This chapter presents the testing procedure to verify the 

correct implementation of the IEC61850 standard onto the target platform in detail. All 

results of this study are tabled and described. 

 



10 
 

Chapter 7 provides the conclusion to this research project. The benefits that this 

research project offers are described and future research prospects for expansion of 

this project and other related relevant projects in this field of study are identified.  

1.7 Publications 

1. Retonda, J., Petev, P., Kriger, C., and Behardien, S., 2012. Software 

development for integration of an embedded system platform into a minimal lab-

scale IEC 61850 application. Submitted to SAIEE Research Journal (awaiting 

confirmation for publication). 

2. Kriger, C., Retonda, J., Luwaca, E. and Behardien, S., 2011. Analysis of GOOSE 

and Sampled Value Message Structure for Educational Purposes. PAC World 

magazine. 

3. Retonda, J. and Behardien, S., 2010. Simulation of an IEC 61850 based GOOSE 

message, and analysis of its structure. South African OMICRON User Conference 

2010. Johannesburg. South Africa, 8-9 November 2010. 

 

  



11 
 

CHAPTER TWO:  

Literature review 

 

2.1 Introduction: 

The Substation Automation System has been the centre of constant innovation over 

time with one of its main aims to deliver electricity continuously with adequate 

protection of field workers, substation equipment, the end user, and stability of the 

network grid. Over the years - as the protection, control, and communication 

technology evolved, this evolution was reflected within substations that are 

characterised by the equipment involved and the philosophy behind it.  

 

Chapter 2 is organised as follows: Section 2.2.1 presents a brief history of protection 

technology in substations; Section 2.2.2 presents aspects of the body of literature 

under review, and Section 2.3 deals with the comparative analysis of the papers 

presented in Section 2.2.2. 

2.2 Literature research methodology 

The project focuses on the development of an actuator node with limited functionality 

for circuit breaker control. The project aim is to develop methods, software programs 

and hardware integration techniques that allow for the development of an actuator 

compliant with the International Electrotechnical Commission- IEC 61850 standard. 

 

In order to successfully achieve the aims of the specified project it is therefore 

important to perform a thorough literature search based on some predefined 

objectives. The literature search done in this chapter is articulated around the 

following goals: 

 

 Establish a clear chronological evolution of device technology in substations; 

 Establish a clear chronological evolution of the main communication methods 

used in substations; 

 Have a good understanding of the internal structure – both hardware and 

software of the modern IEC 61850 standard-based IED; 

 Have a good understanding of the IEC 61850 and other related standards, 

and, 



12 
 

 Understand the technological impact and challenges introduced by the IEC 

61850 standard for substation communications, distributed protection scheme 

deployment and internal hardware and software requirements. 

 

The literature search has been conducted according to four perspectives which are:  

 History of protection devices within the substation; 

 Design of modern Intelligent Electronic Devices (IEDs) which are 

microprocessor-based; 

 History of substation communications; and 

 Development of specific Application Programme Interface (API) for IEC 61850 

development. 

 

Certain search strings or key phrases have been used during the literature search. 

These are presented below: 

 “Substation communication protocol” and “Substation protection device”. A 

selection of documents from the resulting search is shown in Table 2.1. 

 “Design of microprocessor relays”: A selection of documents from the resulting 

search is shown in Table 2.3. 

 “IEC 61850 substation”: A selection of documents from the resulting search for 

general review is shown in Table 2.5 and the modelling aspects are shown in 

Table 2.6. 

 “IEC 61850 software”: A selection of documents from the resulting search is 

shown in Table 2.7. 

 “Protection GOOSE2”: A selection of documents from the resulting search is 

shown in Table 2.8. 

 

Figure 2.1 shows the evolution of the number of papers produced from 2002 to July 

2012 and published by the IEEE (Institute for Electrical and Electronic Engineers) with 

regard to the field of embedded software related to IEC 61850 (Key search : “IEC 

61850 Software”). 

                                                 

2 GOOSE is an acronym for Generic Object-Oriented Substation Event (See Chapter 3) 



13 

 

Figure 2.1: Publication rate for “IEC 61850 Software” topic 
 

From the year 2002 to July 2012, seventy two papers have been published in the field 

of interest, namely IEC 61850 software. The graph clearly shows that there is a peak 

in the number of publications for the year 2011 with 20 papers being published. This 

peak happened eight years after the first part of the IEC 61850 standard was 

published, and one year after the current Master’s thesis commenced. This serves to 

illustrate the importance of this current research work and also shows how relevant 

the current research is for the development of other IEC 61850 projects at the Cape 

Peninsula University of Technology. 

2.2.1 Protection technology in substations 

The developments within the field of electrical protection systems within substations 

are constantly evolving. Table 2.1 illustrates the work of Lundqvist (2003), Nordell 

(2003), Richards (2006) including Olovsson and Lejdeby (2008) on protection devices 

and communication technology evolution within the substation. These papers were 

sourced from the IEEE website using the search strings: “Substation communication 

protocol” and “Substation protection device”. 

  

0

5

10

15

20

25

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 
(n.a)

Number of publications for each year

IEEE: White Paper 
related to "IEC 61850 
Software"

IEC 61850: First 
Official Publication 

Thesis started 



14 
 

Table 2.1: Comparison of Protection technology epochs in Substation Automation 
Paper 3/ Book Emphasis and objectives of paper  
 
Review papers/books published before the publication of the IEC 61850 standard 
 
(Dick, 1996) Review of 
communication standards for 
distribution automation applications 
 

The paper is a review of communication standards with an 
emphasis on the Telecontrol communication protocol used in 
substations. 
 

(IEEE Canadian Region, 
2000)Electricity: The Magic 
Medium 

This Book (available online at IEEE Canadian) is the most 
complete review on the history of Electricity (150 years of 
Electronics and Electrical history). 

(Chaturvedi, 2002) 
Substation IED communications 

The paper presents a review of the substation communication 
IED with respect to the UCA protocol and a brief comparison to 
the DNP protocol. 

 
Review papers published on/or after the publication of the IEC 61850 standard 
 
(Nordell, 2003) 
Substation Communication History 
and Practice 
 

The paper is a review that relates the history of most 
predominant protocols in the substation from the SCADA 
protocol to the IEC 61850 standard. 

(Lundqvist, 2003)100 years of relay 
protection, the Swedish ABB relay 
history 

The paper is a review of Protection device evolution over the 
last 100 years. 

(Richards, 2006) 
Building Very High Reliability into 
the Design and Manufacture of 
Relays 
 

The paper is a review of Protective devices in substations from 
electromechanical relays to modern numerical relays 

(Walter, 2007)Protection history: 
the Start of Protection 

This PAC World Article paints with astonishing clarity the early 
start of protection practices within power stations. 

(Uzair, 2008)Communication 
methods (protocols, format and 
language) for the substation 
automation and control 
 

The paper presents a detailed report on major protocols in use 
in the substation from Modbus to IEC 61850. 

(Olovsson and Lejdeby, 2008) 
Substation evolution: Substation 
design in the 1900s and modern 
substations today 

This paper is a review that analyses the architecture design of 
substation in the 1900’s in comparison to modern substation 
design. 

(Walter, 2009)Protection History: 
Generator Protection, The 
Beginning 

The paper reviews the history and evolution of generator 
protection. 

 

The information extracted from these review papers show the chronological evolution 

of the technologies within the electrical substation and are summarised below: 

 

In 1881, Lucien Gaulard and John Gibbs obtained patents for a “series alternating-

current system of distribution”. The first transformer system to step up the voltage for 

transmission and step it down again for distribution is deployed (IEEE Canadian 

Region, 2000). This system used manual switches that were operated by personnel 

for intervention in emergencies – no significant substation automation. 

                                                 

3Table 2.1 (IEEE/ Key search): “Substation communication protocol” and “Substation 

protection device” 



15 
 

 

In 1882, Weston obtained patents for the first “Fusible Links” as part of primary 

protection. Fusible links are used to protect generators, lines and other equipment 

against short circuits and overload. The disadvantage of this type of protection is that 

when the fuse blows it has to be replaced (Walter, 2007). The combination of knife 

switches in series with fusible links produced the first generation of circuit breakers 

known as a tripping device (Walter, 2009). 

 

Edison, T.A started operating the first central station and first public electric utility in 

New York on September4th1882. He used three 150 kW, 110 VDC, 1200 rpm “Jumbo 

Generators” (Walter, 2009). 

 

In 1886, Hermann Meyer developed one of the first automatic circuit breakers 

combined with an electromagnetic undercurrent relay (Walter, 2009). 

 

In 1898, the current transformer is invented by Benischke (Walter, 2009).  

 

In 1905, the first standalone time-overcurrent relay is developed by ASEA (now ABB) 

(Walter, 2009). Later on, SIEMENS developed their first three-phase overcurrent 

protection "S" in 1936(Walter, 2009). 

 

During the early 1960’s, the time delay within relays is achieved with the introduction 

of mechanical timers, an oil flask or a leather bantling (Walter, 2007). This is the 

beginning of Substation Automation Systems (SAS).  

 

In 1965, the first major step in reducing the footprint of substations is ABB’s launch of 

gas-insulated switchgear (GIS). These smaller and compact switchgear enabled a 

reduction in the area needed to accommodate the substation by up to 70 percent - as 

compared to the conventional air-insulated switchgear (AIS), which in those days 

covered an area the size of a soccer pitch (ABB, 2011). 

 

In 1968, ABB innovation in substation automation replaced conventional protection 

and control systems with numerical ones based on microprocessor technology and 

known as Intelligent Electronic Devices (IEDs). These offer advanced applications 

which enable operators to safely control and monitor the entire substation from a 

central control room (Lundqvist, 2003). At this point in time no communication 

standards were implemented and the issue of interoperability between different 

vendors becomes more and more prominent. 



16 
 

In 1970, the first static ultra-high-speed bus-differential relay is implemented 

(Lundqvist, 2003). 

 

The beginning of the 1970’s saw an increase in the use of integrated electronic 

circuitry based on transistor technology4. This gave an opportunity for extended 

capabilities to be added to SAS. Microcontrollers helped in the development of 

Supervisory Control and Data Acquisition (SCADA) systems, remote terminal units 

(RTUs) and high-speed communications systems. Industrial controllers have found 

their way into the system in the form of programmable logic controllers (PLCs) a few 

years later. PLC plus communications and appropriate transducers, has increased the 

SCADA system's abilities.  

 

Between the 1980’s and 2000’s, desktop computers and appropriate gateways are 

used as the Human Machine Interface (HMI). Subsequently network connections 

within the substation are enhanced with web-based access and expert system 

programs (Wolf, 2009). The computational speed and memory capacity of 

microprocessor-based systems has constantly increased during this period. At the 

same time the size of the hardware platforms have decreased. 

 

In 2004, ABB implements the very first IEC 61850 multi-vendor substation automation 

system that allows for interoperability (Lundqvist, 2003). Electromagnetic effects are 

reduced by the introduction of fibre optics within the substation automation system 

network. The new generation of standardised IEDs started to emerge. 

 

The evolution of field devices within the substation can be divided into four categories 

or ages (AREVA, 2005). This can be condensed as described below: 

 

 Electromechanical relays (1950’s) use a moving armature to implement the 

protection element functionality. They are single-function devices and some of 

them could be interfaced to proprietary Supervisory Control and Data Acquisition 

(SCADA). Communications are based on telephone switching technology from a 

remote location to the substation or from the substation to the remote location. 

SCADA communication could not however allow for device-to-device 

communication within the substation system, and addressability based TCP/IP 

protocols are not supported. 

                                                 

4The progression trend has been from Small-Scale Integration (SSI) to Medium-Scale 
Integration (MSI) before the stage of Large-Scale Integration (LSI) onwards. 



17 
 

 Static relays (1960’s) used discrete elements based on transistor technology to 

implement their protection element functionality. Some of them have multiple 

functions integrated into one device. Communication is however still based on a 

proprietary SCADA system. 

 

 Digital relays (1980’s) used microprocessors/ microcontrollers to implement their 

protection element functionality. These microprocessors/microcontrollers have 

relatively limited computational capability. Analogue to Digital Converters (ADCs) 

are used to sample all inputs, but due to the low processing capabilities of the 

microprocessor it is possible to implement only a few mathematically-based 

protection algorithms. Digital devices however have a higher integration capability 

compared to static relays. Communication is still dominated by proprietary 

SCADA systems. 

 

 Numerical relays5 (1986) relied on the use of specialised Digital Signal Processors 

(DSPs) as the computational hardware. This gave numerical relays a significant 

increase in the computational power capabilities over digital relays. Analogue 

values of current transformers (CTs) and voltage transformers (VTs) are 

translated into number format via powerful Analogue to Digital Converters (ADCs). 

This in combination with significantly increased computational and memory 

capabilities allow for more complex mathematical algorithms to be used (also to 

be multi-functional). These mathematical algorithms are then used to implement 

the protection element functionality. This opens the door to maximum integration 

capability and has reduced the overall costs associated with substation 

installations. This is as a result that the functional elements are reduced to 

software module integration. A few years later, TCP/IP functionality is added to 

the numerical relays and this allowed for addressability over a Local Area Network 

(LAN).  

 

Recent numerical relays based on specialized microprocessor hardware (PowerPC, 

ARM, DSP, and FPGA) and Real-Time Operating System (RTOS) platforms are 

being developed and include built-in capabilities for the IEC 61850 standard 

communication. 

 

Table 2.2 has been constructed based on information provided by Areva T&D on 

device type and their features (AREVA T&D, 2002). The chronology of 

                                                 

5Digital and numerical relays are also known as microprocessor based relays 



18 
 

communication protocols related to the substation has been collected at the Michigan 

Technological University (http://www.mtu.edu/ece/) (Nordell, 2003). 

 

Table 2.2: Relay type vs communication protocol evolution 
Epoch Device 

Main 
Categories 

Sub-device 
Categories 

Main Features Communication 
Protocol 

1950’s Electrome-
chanical 
relays 

- Used an armature to realise 
protection functions. 
Single function Devices. 
Configured by selection and 
manual setting. 
Local indication via Flag. 

Proprietary 
protocols for 
SCADA system 

1960’s Static 
Relays 

1st 
Generation 

No moving parts to create its 
characteristic. 
Use discrete electronic 
components (transistors, diodes, 
resistor, capacitors, inductors, 
etc.) for its operating 
characteristics. 
Configuration via switches. 
Indication via LED. 
Usually implemented as single 
function. 

Proprietary 
protocols for 
SCADA system. 
Modbus (1979/ 
open Protocol) 

2nd 
Generation 

No moving parts to create its 
characteristic. 
Use linear and digital integrated 
circuits for signal processing and 
logic functions. 
Configuration via switches. 
Indication via LED. 
Usually implemented as single 
function. 

1980’s  Micropro-
cessor 
based 
relays 

Digital Relays Uses microprocessors/ 
microcontrollers to implement 
relay functions. Those 
microprocessors have limited 
processing capacity. 
Introduce Analogue/Digital 
conversion. 
Flexible Internal logic using DIP 
switches. 
Use of Keypad/LED interfaces. 

Proprietary 
protocols for 
SCADA system 
(More than 100 
protocols). Ex: 
Profibus (1989) 

Numerical 
Relays 
1986 
(Lundqvist, 
2003) 

Uses microprocessors/micro-
controllers to implement relay 
functions. These microprocessors 
have higher processing capacity. 
Introduce specialised Digital 
Signal Processor (DSP) as the 
computational hardware. 
Sampling of relay inputs using 
A/D converter for use in 
mathematical algorithms. 
Multifunction devices (Protection, 
control, etc.). 
Integrated measurement and 
recording. 
Programmable Logic. 
Advance communication facilities 
for local or remote and possibility 
to interface to legacy protocol. 

Effort for  
communication 
standardisation 
IEC 870 series/ 
1990-1995 
UCA 1.0/ December 
1991 
DNP3/ November 
1993 
UCA 2.0/ December 
1998 (Introduction 
of device to device 
communication 
based GOOSE) 
ICCP /April 2002 
IEC 61850/ 2003 

 



19 
 

This section, Section 2.2.1 presents a brief history of Substation Automation Systems 

with a particular emphasis on protection equipment technologies. It is important to 

understand the evolution of the technology and constant improvements within the 

electrical substation so as to assess the advantages and gains which have been 

made, and problems which have been mitigated. 

 

The previous tables and comments focused on review papers and the chronological 

development of the technologies. The section that follows focuses on recent work 

which has been cited in the literature, and is closely related to the development of the 

current research project. Relevant topics are presented and analysed with respect to 

predefined criteria. A critical analysis of the papers is presented in Section 2.3. 

2.2.2 Project literature background 

The search strings that have been used to gather documentation are:  

 “Design of microprocessor relays” 

(Table 2.3: Structural design of microprocessor/microcontroller based relays, 

simulation and test) 

 “Substation communication” 

(Table 2.4: Paper review on substation communication) 

 “IEC 61850 substation” 

(Table 2.5: Basic concept Review of IEC 61850 standard) 

 “IEC 61850 modelling” 

(Table 2.6: IEC61850 and modelling) 

 “IEC 61850 software” 

(Table 2.7: Comparison of method for embedded implementation of IEC 

61850 requirements) 

 "Protection GOOSE” 

(Table 2.8: Comparison of method for evaluating and testing protection 

systems based on GOOSE messages) 

 

In the tables that follow (except for Table 2.5), the criteria used to effectively analyse 

the papers are: 

 Method: This column refers to the theory promoted by the author of the paper 

in order to achieve its goals. 

 Implementation: This column looks at the type of implementation done from 

the point of view of the Hardware, software and protection scheme. 

 Performance evaluation: This column report results obtained from the system 

performance point of view. 



20 
 

 Achievement in paper: This column put the focus on what the author has 

successfully demonstrated. 

 Drawbacks and Comments: This column creates a parallel between the author 

works and the current thesis. 

 

Points presented above are the basis for comparative analysis and further literature 

review. 

 

For all tables in this section the “N/A” abbreviation means Not Applicable. Note also 

that relay technology epochs have been dealt with in section 2.2.1. 

 



21 
 

 

Table 2.3: Structural design of microprocessor/microcontroller based relays, simulation and test 
Paper6 Emphasis and 

objectives of paper 
Method Implementation Performance 

Evaluation 
Achievement in 
papers 

Draw backs and Comments

       
(Mansour and Swift, 
1986)Design and 
testing of a multi-
microprocessor 
travelling wave 
relay 

Paper emphasis is the 
design and testing of a 
digital ultra-high speed 
(UHS) travelling wave-
based protective relay. 
(Software and 
hardware). 

Dedicated 
Master-Slave 
multi-
microprocessor 
(Parallel 
processing)  

Hardware: Uses 
four (4) 6802 CPU-
based on single 
board 
Software: Not 
specified. 
Protection: 
Algorithm is based 
on method of  
the Karrenbauer 
modal transform 

Results 
demonstrate 
that using multi-
microprocessor 
could increase 
the system 
response; e.g. 
An average 
tripping time of 
3.8 ms have 
been achieved 
for a line-to-line 
fault 

Relay demonstrated 
in paper have 
achieved ultra–high 
speed (UHS) 
operation, phase 
selection and faults 
classification 
capabilities. 

The use of multi-microprocessor 
architecture opens the way to a 
highly integrated algorithm, reliability 
and enhanced performance. 

(Baigent and 
Lebenhaft, 
1991)Microprocess
or-based protection 
relays: Design and 
application 
examples 

Paper emphasis is on 
the design of a 
microprocessor-based 
relay (hardware 
module 
interconnection) and 
technical specification. 

N/A N/A 
 

 

N/A N/A Paper is a design guide line that 
expands general formula used while 
designing a microprocessor-based 
relay application. 

(Zhu et al., 2006) 
 Generating 
Detailed Software 
Models of 
Microprocessor-
Based Relays  
 

The paper describes a 
unified approach for 
computer-based 
simulation of 
microprocessor-based 
relays.  
 

Combined 
computer 
simulation of 
power systems 
and protective 
relay software 
model. 

Hardware: N/A 
Software: The relay 
model code is 
written using 
FORTRAN 77 
Protection: 
Protection 
algorithm and other 
design formula are 
well described. 

Results 
demonstrate the 
efficiency of 
generating 
software models 
for 
microprocessor-
based protective 
relays for 
existing and 
new relays. 

A software relay 
model is developed 
using a detailed 
digital model, which 
closely follows the 
hardware and 
firmware 
architecture module 
of the physical 
relays. 
 

The use of relay models permits 
closed-loop simulations of the relays 
and approximate actual relays' 
characteristics so that their 
performance can be evaluated for a 
variety of situations. 
 
A clear definition of relay pickup time 
and operating time is also provided. 

 

                                                 

6Table 2.3 (IEEE/ Key search): “Design of microprocessor relays” 



22 
 

(Sahai and 
Pandya, 2011)  A 
Novel Design and 
Development of a 
Microprocessor-
based Current 
Protection Relay 

Paper presents a step-
by-step novel design of 
an electrical protection 
relay using a 
microprocessor. 

Single 
microprocessor 

Hardware: 
ATMega32 
microprocessor 
Software: - N/A 
Protection: - N/A 

The developed 
relays have 
been tested for 
various 
conditions, and 
results obtained 
are within 
acceptable limits 
of operation. 

Paper has 
demonstrated the 
design and 
assembling of relay 
modules in order to 
achieve protection 
functions. 

Because the paper presents 
important technical details on 
hardware interconnection, it should 
be considered for future projects 
toward building of complete IEDs. 

 

 

Table 2.4: Paper review on substation communication 
Paper 7 Emphasis and objectives of 

paper  
Recommendations Results Analysis

(Dick, 1996) Review 
of communications 
standards for 
distribution 
automation 
applications  
 

The paper is a review of 
communication standards with an 
emphasis on the Tele-control 
communication protocol used in 
substations. 

N/A N/A N/A 

(Chaturvedi, 2002) 
Substation IED 
communications 

The paper presents a review of the 
substation communication IED-based 
UCA and a brief comparison to the 
DNP protocol. 

N/A N/A N/A 

(Uzair, 
2008)Communication 
methods (protocols, 
format and language) 
for the substation 
automation and 
control 
 

The paper presents a detailed report 
on the major protocols in use in the 
substation from Modbus to IEC 61850. 

N/A N/A N/A 

 

 

                                                 

7Table 2.1 (IEEE/ Key search): Substation communication protocol and Substation protection device 



23 
 

Table 2.5: Basic concept Review of IEC 61850 standard 
Paper8 Emphasis and objectives of paper Recommendations Results Analysis
General review of IEC61850 concept 
     
(ABB review, 
2010) 
Special Report 
IEC 61850 

The paper delivers a report on all aspects 
of IEC 61850 Ed.1 including some 
difficulty for interoperability and device 
test procedures before giving a brief 
overview of IEC 61850 Ed.2. 
 

N/A N/A N/A 

(Apostolov and 
Vandiver, 2010) 
IEC 61850 
process bus - 
principles, 
applications and 
benefits 
 

The paper analyzes the functionality, the 
functional hierarchy and the schemes 
typically available in distance protection 
relays with a particular emphasis on the 
use of the process bus component 
 

N/A N/A N/A 

(Siemens AG, 
2010) 
Aspects on IEC 
61850 Edition 2.0 
and Current 
Activities 
 

The paper presents a general overview of 
IEC 61850 Ed.2 and places the emphasis 
on the difference between Ed.1 and Ed.2 
of the IEC 61850 standard. 

N/A N/A N/A 

(Montignies et al., 
2011) 
IEC 61850 in the 
oil and gas 
industries 

The paper emphasis is on the monitoring 
and control of electrical installations. The 
author also clarifies some 
incomprehension with regards to IEC 
61850. 
 

N/A N/A N/A 

(Apostolov, 2012) 
Impact of IEC 
61850 on the 
engineering of 
protection 
schemes 
 

The paper describes a new methodology 
to adopt when designing a protection 
scheme that takes into account IEC 
61850 communication capabilities. A 
particular emphasis is placed on the 
configuration of SCL files. 
 

N/A N/A  

 

                                                 

8Table 2.5 (IEEE/ Key search): IEC 61850 substation 



24 
 

Table 2.6: IEC61850 and modelling 
Paper9 Emphasis and 

objectives of paper  
Method Implementati

on 
Performanc
e 
Evaluation 

Achievement in 
papers 

Draw backs and Comments

 
(Brand and 
Wimmer, 2003)  
Modelling 
interoperable 
protection and 
control devices for 
substation 
automation 
according to IEC 
61850 
 

The paper discusses 
modelling methods for 
control and protection 
functions. A particular 
emphasis is placed on 
the mapping of some 
protection element to 
the IEC 60870-5-103 
fault indication 
representation. 

Design of a 
protection scheme 
based on the 
process bus. 
 

N/A N/A N/A The paper presents the modelling 
of a protection scheme using 
conventional hard-wired method 
versus the process bus method. 

(Kim and Lee, 
2005) A study on 
IEC 61850 based 
communication for 
intelligent 
electronic devices 
 

The paper presents the 
IEC 61850 basic 
approach to solve 
communication 
problems in substations 
with emphasis on the 
time-critical 
communication 
message- GOOSE 
 

N/A Hardware: PC 
platform (3 
PCs) 
Software: MMS-
EASE Lite 
stack, Ethereal-
Network 
Protocol 
Analyzer 
Protection: N/A 

The author 
has 
demonstrated 
a GOOSE 
transmission 
average of 4 
ms 

An experiment for 
GOOSE transmission 
time is set up using 3 
PCs and results are 
analysed using 
Ethereal. 

The author demonstrates the 
transmission of GOOSE messages 
within the accepted range of 4 mS. 

(Ozansoy et al., 
2009) The 
Application-View 
Model of the 
International 
Standard IEC 
61850 
 

The paper describes the  
application-view model 
of the IEC 61850 
standard and presents 
the use of object 
oriented methodology 
and techniques for 
the implementation of 
the Logical Node (LN) 
application-view data 
model of the standard 
 

Object Oriented 
Programming 
techniques based on 
C++ 

Hardware: PC 
platform 
Software: 
Microsoft C++ 
Protection: N/A 

N/A Paper has illustrated 
the implementation of 
the application view 
described in the IEC 
61850 standard 
based on OOP 
techniques 

The ACSI services described by 
means of flow charts enhances 
understanding, since the 
application view is very briefly 
explained in the IEC 61850 series.  

                                                 

9Table 2.3 (IEEE/ Key search): Design of microprocessor relays 



25 
 

(Yongli et al., 
2009) Study on 
interoperable 
exchange of IEC 
61850 data model 
 

The paper describes 
two methodologies to 
exchange 
IEC 61850 data model, 
including the offline 
exchange based on 
SCL configuration tools, 
and the online 
exchange based on 
MMS 
 

Offline exchange 
based on 
SCL configuration 
tools. 
Online exchange 
based on MMS 

Hardware: PC 
platform 
Software: 
Windows OS, 
MMS-EASE 
Lite, Tamarack 
Windows Test 
Server, MMS-
Ethereal 
Protection: N/A 

N/A The paper has 
demonstrated the 
exchange mechanism 
for IEC 61850 data 
model via MMS 
services and SCL file 
transfer 

Enhance the understanding of 
mechanism for data model 
exchange between device and 
configuration tools. 

(Aggarwal, 2011) 
IEC 61850 
prototype design  
 

The paper discusses 
the information model of 
the IEC 61850 protocol. 
A prototype design of 
the information model of 
IEC 61850 and the 
study record accessing 
times is performed with 
a particular emphasis 
on database and 
memory allocation 

Real-time main 
memory database 
model for 
IEC 61850. 
TLSF dynamic 
memory allocator. 
Backup scheme for 
database fast crash 
recovery 

Hardware: PC 
platform 
Software: 
C/C++ 
Protection: N/A 

On-going 
research. 

The paper describes 
an algorithm that 
deals with the 
allocation and 
management of 
system memory to 
data records inside 
the IED. 

The paper enhances the 
importance of giving attention to 
data management and data 
integrity for IEDs. 

 

Table 2.7: Comparison of method for embedded implementation of IEC 61850 requirements 
Paper10 Emphasis and 

objectives of paper 
Method Implementation

 
Performance 
Evaluation 

Achievement in 
papers  

Draw backs and Comments

IEC 61850 Hardware/Software development
 
(CESI RICERCA, 
2006) 
Valutazione delle 
tempistiche 
associate ai 
messaggi di tipo 
GOOSE 
nell’ambito del 
protocollo IEC-
61850. 

The paper describes 
the development on a 
PC platform of a 
GOOSE application 
from the IEC 61850 
standard specification, 
to a very detailed study 
of the GOOSE frame 
structure. 
 

 Development of 
an IEC 61850 
based GOOSE 
application 
using  the 
development 
environment 
SISCO MMS-
EASE Lite for 
Windows 

Hardware: Uses 
two PCs (one 
publisher and one 
subscriber) 
Software: 
Application written 
in C++ , using the 
SISCO MMS-EASE 
Lite; RTOS- 
Windows 2000 

The 
implemented 
solution 
achieves an 
average 
GOOSE 
transfer time of 
4ms.  

An in-depth 
understanding of the 
GOOSE frame 
structure and its 
encoding/decoding 
rule is achieved. 

The predefined stack library could 
reduce the development time of an 
IEC 61850 application. Accurate 
documentation and training for the 
stack library needs to be accessed. 

                                                 

10Table 2.7 (IEEE / Key search): IEC 61850 software” 



26 
 

(Kostic and Frei, 
2007) Modelling 
and using IEC 
61850-7-2 (ACSI) 
as an API  
 

The paper debates the 
use of the Abstract 
Communication 
Services Interface as 
an Application (ACSI) 
Programming Interface 
(API). 

Client/Server 
application 
using an 
Application 
Programme 
Interface based 
on the ACSI 
core. 

Hardware: Use of 
one PC and two 
IEDs 
Software: The API-
based ACSI is 
written in C++. It 
has been tested in 
a high level IEC 
61850 browser 
application. 
Protection: N/A 

The core ACSI 
API only 
defines client-
server services 
currently. 

The proposed ACSI 
API core has been 
implemented in C++ 
and tested in a  high 
level application, an 
IEC 61850 browser 

The use of ACSI as a single API for 
the developer could accelerate the 
development work in order to add 
IEC 61850 functionality to a device 
and with guaranteed interoperability. 

(Nguyen-Dinh et 
al., 2007)A study 
on GOOSE 
communication 
based on IEC 
61850 using MMS 
ease lite 

The paper presents a 
general study of 
communications in 
SAS and supplies a 
detailed analysis of the 
process of transferring 
GOOSE messages 
supported by the 
MMS-EASE Lite tool 
from the user's point of 
view. 

Client/Server 
application 
using MMS-
EASE Lite 

Hardware: PC 
platform 
Software: C 
language, MMS 
EASE Lite; MMS-
Ethereal 
Protection: N/A 
 

N/A Paper has 
demonstrated the use 
of MMS-EASE Lite in 
order to add GOOSE 
functionality to a 
substation 
application. 
 

N/A 

(Zhang et al., 
2008) The design 
of an Object-
Oriented 
Embedded 
Platform for 
Substation Data 
Integration  
 

The Paper presents an 
object-oriented 
embedded platform for 
substation data 
integration. 

Method of 
Embedded 
Platform for 
Substation Data 
Integration 
(EPSDI) based 
on a multi-agent 
system 
architecture  

Hardware: 
Embedded 
platform 
Software: Linux 
OS, UML, C++ 
Protection: N/A 

The system 
build presents 
good system 
performance 
and stability. 

The design of an 
object-oriented 
Embedded 
Platform for 
Substation Data 
Integration (EPSDI) is 
presented. System 
architecture based on 
MAS (Multi-agent 
system) technology 
and a publisher/ 
subscriber 
mechanism is 
proposed. 
 

IEC 61850 software with a multi-
agent system architecture presents 
good system performance and 
stability. 

  



27 
 

(Ting et al., 2011) 
Research of 
Relaying 
Protection System 
of Digital 
Substation 
 

The paper deals with 
design methods for 
software used in 
protective relay 
devices to 
accommodate new 
technology based on 
IEC 61850. 

Software 
development 
based on 
VxWorks and 
real-time 
techniques. 
Programmable 
protective 
function based 
on the 
IEC61131-3 
standard. 

Hardware: 
PowerPC 8247, 
ARM7 LCD, FPGA 
Software: N/A 
Protection: N/A 

N/A The paper 
demonstrates that the 
traditional foreground-
background method 
is no longer suitable 
when the protection 
algorithm and the 
communication 
functions execute on 
the same processor, 
due to limited 
interrupt resources. 

Assuming a single-chip 
microcomputer, the multitasking 
ability of the Real Time Operating 
System, allows for different software 
modules to execute independently. 
This increases stability and the 
overall response of the system. This 
approach is said to be more efficient 
compared to the traditional 
foreground-background method 
(interrupt-driven). 
 

(Yang et al., 2011) 
Programmable 
Logic for IEC 
61850 Logical 
Nodes by means 
of IEC 61499 
 

The paper deals with 
the use of IEC 61499 
(an open standard for 
distributed automation 
and control) in 
conjunction with IEC 
61850 in order to 
enable online 
reconfiguration of a 
systems control 
module as well as 
communication 
parameters.  

- Intelligent 
logical node 
(iLN) 
architecture 
- 52 Blocking  

Hardware: PC 
platform, 3 
controller based 
ARM7 
Software: MATLAB 
and SIMULINK, 
ISaGRAF, 
SystemCorp PS-10 
stack 
 

co-simulation 
environment 
and the 
hardPLC of the 
ISaGRAF have 
demonstrated 
the expected 
result as the 
one for 52 
Blocking 
application 

- single line diagram 
modelled  in 
MATLAB/SIMULINK 
- 3 microprocessors 
used to demonstrate 
execution at 
hardware level. 
- And a virtual device 
on PC to bridge with 
MATLAB /SIMULINK 

- The IEC 61850 standardizes the 
data and communication in 
substation design, but the 
implementation of control has been 
left intentionally out of the scope of 
the standard. 

(In et al., 2011) 
Design of one chip 
communication 
stack processor 
and MMS 
communication 
stack library 
based on IEC 
61850 

The paper deals with 
implementation of a 
MMS communication 
stack library and the 
development of an IEC 
61850 one-chip 
communication stack 
processor of an IED. 
The single chip 
solution is composed 
of two processors with 
an efficient VHDL 
architecture for the 
development of IEC 
61850 compliant 
devices. 

Single chip 
design using 
multi-
microprocessor 

Hardware: PC 
platform, Uses 4 
independent 
processor 
modules:  
IEC 61850 
communication; 
microprocessor for 
logic process 
control; processor 
for CT/VT 
measurement; and 
Protection 
algorithm. 
Software: C++,,  
Protection: N/A 

Supports only 
MMS (no 
support for 
GOOSE). 
Additional 
performance 
tests are 
underway. 

A prototype IED 
board has been built 
that makes use of the 
one-chip solution for 
logic control and IEC 
61850 
communications. 
A method composed 
of two processors 
embedded into one 
single chip is 
described in order to 
increase reliability 
and accuracy of 
signals between the 
communication 
processor and the 
logic processor. 

The use of the specific IEC 61850 
libraries in MMS traffic simulation 
reduces the user’s development 
time. 
The one-chip solution ensures low 
cost, low power consumption and 
helps reduce the size of IEDs.  



28 
 

(Shujian et al., 
2011) The 
research based on 
IEC61850 
intelligent terminal 
of substation 
 

The paper   emphasis 
is on the development 
of an Intelligent 
Terminal Unit. 

Method of 
ARM+ DSP 
dual-CPU 
structure 

Hardware: ARM7 
microprocessor, 
CPLD 
Software: C++ 
Protection: N/A 

N/A Requirement details 
for the design of an 
intelligent electronic 
device are given. 
Structure and function 
of different hardware 
modules are also 
explained. 
 

Hardware- software modularization  
is suitable for IEC 61850 embedded 
development and enhancement 

(Park et al., 2012) 
IEC 61850 
Standard Based 
MMS 
Communication 
Stack Design 
Using OOP 

The paper describes 
the development of an 
MMS communication 
stack library using 
Object Oriented 
programming 
techniques. 
 

Object-oriented 
programming 
(OOP) based on 
C++ language 
for MMS stack 
design. 

Hardware: PC 
platform 
Software: Microsoft 
Windows OS, C++ 
language 
 

N/A Paper shows the 
development of an 
MMS communication 
stack library based on 
IEC 61850 using C++ 
programming 
language 

Using the proposed method, 
developers can understand and deal 
with applications more easily and 
have the advantage of maintenance, 
and module reuse. 

 

Table 2.8: Comparison of method for evaluating and testing protection systems based on GOOSE messages 
Paper11 Emphasis and 

objectives of paper 
Method Implementation Performance 

Evaluation 
Achievement in 
papers 

Draw backs and Comments

Substation protection based Generic Object Oriented Service Event (GOOSE)
(Zhang and Nair, 
2008)Testing 
protective relays 
in IEC 61850 
framework  

The paper reviews the 
conventional protective 
relay testing methods 
and proposes new test 
approaches for testing 
the IEC 61850 
features of relays. 

 GOOSE message 
speed test. 
 Interoperability test 
GOOSE buffer 
managing ability 
test 

Hardware: Real 
IEDs, PC 
Software: Vendor 
specific 
Protection: N/A 

Bad 
performances 
for GOOSE 
transfer time 
(average of 
14.70 ms). The 
author states 
that this could 
have been 
caused by 
poor 
performance of 
the 
communication 
processor 

A test bench is 
proposed to test the 
GOOSE 
communication 
capability via a 
GOOSE speed test, 
and an 
interoperability test 
and buffer managing 
ability test. 

It has been observed that GOOSE 
message performance largely 
depends on the CPU state of art 
and structures of communications 
modules. Also proprietary device 
configuration tools play an 
important role in interoperability. 
 

 

                                                 

11Table 2.8 (IEEE / Key search): “Protection GOOSE” 



29 
 

(Sidhu et al., 
2010)Packet 
scheduling of 
GOOSE 
messages in IEC 
61850 based 
substation 
intelligent 
electronic devices 
(IEDs)  
 

The paper presents 
different packet 
scheduling algorithms 
for SAS IEDs using an 
OPNET simulation 
tool. The effect of the 
different packet 
scheduling schemes in 
IEDs on GOOSE 
message delays is 
analyzed in detail. 
 

FIFO scheme. 
Strict Priority. 
Round Robin. 
Weighted Round 
Robin. 

Hardware: PC 
platform 
Software: OPNET 
simulation tool- 
Protection: N/A 

The simulation 
results show 
that the 
presence of a 
strict priority 
scheme in the 
IEDs causes a 
considerable 
reduction in 
the delay of 
GOOSE 
messages 
from 4.1476 
mS to 
0.50999msec 

Paper has 
demonstrated that 
the use of FIFO 
technology in 
substations for IEDs 
could not allow to 
meet the time 
requirement ranging 
from3 to 4 mS. 

For an IED designer, It is very 
important in order to meet some 
IEC 61850 requirements to consider 
the network card capabilities with 
respect to packet scheduling as this 
has an impact on the average 
system response time. 

(Bonetti and 
Douib, 
2010)Transfer 
time 
measurement for 
protection relay 
applications with 
the IEC 61850 
standard  
 

The paper investigates 
a practical method to 
measure the GOOSE 
transfer time and the 
total operation time of 
the direct inter-trip 
relay application. 

Hardwired trip. 
GOOSE trip (loop 
back transfer time 
and direct inter-trip 
relay application). 

Hardware: 2 
commercial IEDs. 
Software: N/A 
Protection: N/A 

The results 
demonstrate 
that GOOSE 
Trip 
technology is 
typically 3ms 
faster than 
hardwired 
technology. 

The author 
proposed the use of 
the inter-trip test 
instead of round trip 
test for GOOSE 
transfer time 
measurement. 
Corresponding 
model setup is 
explained and 
demonstrated. 

The author has demonstrated that 
the GOOSE trip signal is faster than 
hardwired method (3ms faster). But 
the IED application time has in 
impact on the total inter-trip scheme 
performance. 

(Steinhauser et 
al., 2010) 
Performance 
Measurements for 
IEC 61850 IEDs 
and Systems 

Paper describes 
methodology for 
GOOSE performance 
evaluation and method 
used by OMICRON 
engineers for accurate 
measurement of the 
GOOSE transfer time 
 

Round-Trip Test. 
Rally Test. 
 

N/A N/A The paper describes 
a procedure test 
formula used to 
determine different 
GOOSE 
performance 
evaluation times. 

N/A 

 

 

 

 

 



30 
 

(Ali and Thomas, 
2011)GOOSE 
based protection 
scheme 
implementation 
and testing in 
laboratory 
 

The paper 
demonstrates the 
practical 
implementation and 
testing of protection 
schemes based on 
high-speed peer-to-
peer communication 
using a GOOSE 
message model in a 
laboratory setup. 
 

Distributed 
protection based 
GOOSE. 

Hardware: PC 
platform, Real 
IEDs, CMC 256 
Software: Test 
Universe 
(OMICRON) 
Protection: N/A 

The test set up 
demonstrates 
the use and 
test of GOOSE 
message in the 
range of 4 ms 
for transfer 
time. 

Paper demonstrates 
the realisation of a 
lab setup 
environment for 
GOOSE 
investigation with 
advanced tools from 
OMICRON. 

The lab-test environment setup 
could be used for demonstration of 
GOOSE applications with 
appropriate test equipment 

(Apostolov and 
Vandiver, 2011) 
IEC 61850 
GOOSE 
applications to 
distribution 
protection 
schemes 
 

The paper discusses 
the requirements for 
reduction in the 
duration of different 
short circuit faults with 
a particular emphasis 
on distributed 
protection schemes. 
 

Peer-to-peer 
communication-
based distributed 
bus protection 

Hardware: Real 
IEDs 
Software: Test 
Universe 
Protection:-
Sympathetic trip 
protection, 
Selective backup 
tripping , Breaker 
failure protection 

The application 
of IEC 61850 
GOOSE 
messages 
allows for 
reduction of 
the fault 
clearing times 
and minimizing 
the effect of 
short circuit  

The paper 
demonstrates the 
benefit of using 
distributed protection 
scheme-based 
GOOSE instead of 
conventional 
hardwired 
technology. 

For distributed protection scheme-
based GOOSE, particular attention 
should be paid to test equipment 
and the publishing/subscribing 
mechanism. 

(Sidhu et al., 
2011b) 
Configuration and 
performance 
testing of IEC 
61850 GOOSE 
 

The paper deals with 
the use of GOOSE for 
a time-critical 
application, 
configuration of 
Ethernet switched 
network, and 
configuration of 
GOOSE within IED 
and system 
integration. 

Hardwired trip. 
GOOSE trip. 

Hardware: RTDS 
(GTNET); real 
IEDs 
Software: CACE 
Pilot; Wireshark 
Protection: N/A 

Results 
demonstrate 
the reliability 
when using 
GOOSE under 
different 
background 
traffic. The 
GOOSE 
transfer time 
has remained 
within the 
range of 3 to 4 
mS. 

An experimental lab 
is set up to measure 
the round trip delay 
of GOOSE. The 
GTNET card from an 
RTDS is configured 
in promiscuous 
mode to capture the 
entire network traffic. 
 

The observed trip time of GOOSE is 
almost equivalent to hardwired 
copper based traditional trip signal. 
Also, the use of IEEE 802.1Q frame 
format enhanced the performance 
of GOOSE over the network. 

 

 



31 
 

2.3 Comparative Literature review 

From the diverse groups of papers presented in section 2.2.2, points that emerge 

from the literature review are: 

 distinct device technology epochs (already considered in Section 2.2.1),  

 structural design of microprocessor/microcontroller based relays,  

 basic concepts of IEC 61850,  

 IEC 61850 embedded implementation and performance evaluation of 

protective system based on GOOSE communication.  

The sub-sections below elaborate further on the points mentioned above.  

2.3.1 Structural design of microprocessor/microcontroller based relays 

Technical documentation on the design of microprocessor/microcontroller based 

relays is usually not available in the public domain. Multi-national companies classify 

their manufacturing designs as being ‘Top Secret’. This means that this classified 

information is inaccessible to the general public or researcher. 

 

Notwithstanding this limitation of access to information, the IEEE website has some 

documents that provide clear insight into the structural arrangement of 

microprocessor-based relays. Table reports the work of Mansour and Swift (1986) on 

multi-microprocessor design-based protection relays. They propose a microprocessor 

method arrangement that implements a “two level master-slave hierarchical system 

with only one master and three slaves”. The implemented protection algorithm is 

based on the “Karrenbauer modal transform” method. Their work demonstrates that 

using multi-microprocessor–based relays could increase the performance and system 

response of the protection relays. However, choosing a multi-microprocessor over a 

single microprocessor implementation approach depends on other factors such as 

processing power, system complexity, system integration facilities and final cost.  

 

The work of Baigent and Lebenhaft (1991) on the design of microprocessor based 

relays provides additional information in terms of design specification for a 

microprocessor-based relay system. Zhu et al. (2006), has developed an interesting 

method for computer simulation of characteristics of microprocessor-based relays. 

The relay model is developed using the software language FORTRAN 77. The fact 

that the relay model as a whole can be simulated in advance allows for the detection 

of software design issues at an earlier stage before hardware implementation. 

The work of Sahai and Pandya (2011) demonstrates a complete and more recent 

contribution into the design and assembly of microprocessor-based relays with 



32 
 

functional modules. All stages that need to be considered in the design of a modern 

microprocessor relay are discussed from a modular perspective. 

 

To partially conclude, there are different elements that need to be considered when 

developing an IED (protective relays) such as: 

 Functions to be realized (protection, control measurement and monitoring, 

etc.); 

 Processor structure arrangement and operating frequency (algorithm 

synchronisation, communication, etc.); 

 Input/output (I/O) card design by means of galvanic isolation method (usually 

optical isolation); 

 CTs and VTs interface design according to a pre-determined rated voltage. 

 Integration of peripheral components (memory, ADC, I/O card unit, etc.) to the 

microprocessor core structure is usually done via the use of Complex 

Programmable Logic (CPLD). 

 

The next section deals specifically with the communication aspects related to 

substations. 

2.3.2 Effort of communication standardisation 

After the introduction of what can simply be called microprocessor-based relays 

(digital and numerical relays), the number of open and proprietary protocols for 

communication simply exploded. By the 1980’s, there are more than 100 proprietary 

protocols of communication in use in substations (Nordell, 2003). This makes it 

difficult to achieve interoperable communication between different vendor’s equipment 

within the substation. Thus this requirement for standardisation of a communication 

protocol became the next target for the national and international bodies of 

standardisation (American National Standards Institute (ANSI), National Institute of 

Standards and Technology (NIST), IEEE, International Organization for Standards 

(ISO) and IEC). In 1986, the Electric Power Research Institute (EPRI) started this 

standardisation work that produced the first version of UCA (Utility Communication 

Architecture) six years later. More details on the standardisation effort are presented 

in the following section. 

 

Table 2.4 reports the work of Dick (1996), Chaturvedi (2002) and Uzair (2008) in the 

early efforts at standardisation of substation communication. These efforts resulted in 

different steps toward standardisation. Table 2.9 which does not claim to be 

exhaustive, reports on these different steps. 



33 
 

 

Table 2.9: Communication standard evolution 
Date of publication Protocols or standards Comments
1990-1995 IEC 870 series (Telecontrol 

communication protocol 
standards for Electric Power) 

Harmonisation to some set of specific 
protocols to be used in SCADA 
systems. 

December 1991 UCA 1.0 (Utility 
Communication Architecture) 

Target interoperability based on object-
oriented communication architecture. 

November 1993 DNP3 (Distributed Network 
Protocol) 

Derived from IEC 870-5-3 and 870-5-4 
draft documents. DNP is optimized for 
serial communication. 

December 1998 UCA 2.0 (Utility 
Communication Architecture) 

Refinement of UCA 1.0 

2003-2005 IEC 61850-Ed.1 
(Communication networks and 
systems in substations) 

Derived from UCA. Target 
interoperability, communication 
exchange among field devices, 
substation configuration language and 
much more. Further information is 
provided in CHAPTER One: 

2011-2012 IEC 61850-Ed2 
(Communication networks and 
systems for power utility 
automation) 

Refinement and extension of IEC 
61850-Ed.1 to not only the substations, 
but also the entire power utility system. 

 

The introduction of the IEC 61850 standard has brought about many challenges for 

relay manufacturers as well as to research institutes. Manufacturers develop IEC 

61850 compliant devices, where they have the obligation to ensure backward 

compatibility with previous technologies. Almost no research (or even teaching 

efforts) has been made in the academic sphere. 

 

The next section reviews the references for different IEC 61850 methods of 

implementation by means of embedded systems. The basic concepts within the IEC 

61850 standard are dealt with in Chapter 3. 

2.3.3 Analysis of different methods for IEC 61850 implementation on embedded 

platforms 

Implementation of the IEC 61850 standard onto an embedded platform requires 

detailed knowledge of the target platform, but it also requires a comprehensive 

understanding of the standard itself. The IEC 61850 standard is a multi-faceted 

standard that refers to many other standards (or common practices) depending on the 

considered issue. 

 

Field experts when implementing the IEC 61850 standard on a specific embedded 

platform refer to a communication stack for all communication within the IEC 61850 

standard. Secondly, the Substation Configuration Language (SCL) capabilities of the 

system are assessed to describe the line diagram and provides basic configuration for 

communication purposes. Any other aspect relating to the development of intelligent 

electronics devices is beyond the scope of the IEC 61850 standard series (e.g. 



34 
 

protection algorithm implementation, single or multi-microprocessor implementation, 

programmable logic control, etc.). 

 

Table 2.7 details various projects on the IEC 61850 standard with an embedded 

implementation in terms of the software and hardware arrangement. An embedded 

implementation of the IEC 61850 standard can be approached using either of two 

methods. The first method according to the work of CESI RICERCA (2006)and 

Nguyen-Dinh et al. (2007), is the development of an IEC 61850 software application 

using an off-the-shelf (commercial) communication stack. The second method is the 

development of a personal IEC 61850 communication stack and successful 

integration into a specific embedded platform and is based on the work of Kostic and 

Frei (2007), Zhang et al.(2008), Shujian et al. (2011) and Park et al. (2012). 

 

The computational speed and memory required for the deployment of control and 

protection algorithms of various complexities are also points that need consideration. 

The system integrator or engineer decides whether to use a multi-microprocessor or a 

single microprocessor system based on the complexity of the system.  

 

The work of In et al. (2011) suggests the integration of a multi-microprocessor 

approach into a single chip solution in order to improve system performance. Ting et 

al. (2011) proposes a real time multi-tasking operating system approach. In this 

approach, a single microprocessor can still be used based on its processing speed 

(PowerPC) and on the multi-tasking ability of the RTOS that runs on it. Special 

attention needs to be paid to the software development environment. Usually, the 

programming language is chosen based on its ability to handle the communication 

stack integration process, the protection algorithm deployment process, and any other 

software module that might be considered as being part of the system integration. 

 

The work of Yang et al. (2011) draws attention to the fact that programmable logic 

control is not considered to be within the scope of the IEC 61850 standard. Therefore, 

there is a requirement to refer to other standards such as the IEC 61499 (for 

distributed control systems). This work demonstrates the use of the IEC 61850 

standard in conjunction with the IEC 61499 standard in order to enable the 

development of complete automated devices and system solutions. The choice of a 

single chip that includes a single microprocessor (SC143-chip from Beck-IPC) 

appears to be appropriate for the current research project. It is chosen due to the fact 

that it is one of the first embedded platforms commercially available for 

experimentation outside of vendor companies.  



35 
 

The next section reviews the references associated with the GOOSE communication 

protocol and evaluation of its performance. 

2.3.4 GOOSE performance evaluation 

The IEC 61850 standard has inherited the notion of Generic Object-Oriented 

Substation Event (GOOSE) communication from the Utility Communications 

Architecture (UCA). Most of the distributed protection schemes in use in IEC 61850 

substations are based on the GOOSE communication protocol. GOOSE messages 

are generally used to rapidly exchange time-critical data in order to clear a fault and 

isolate the damaged area. During the implementation of a protection scheme based 

on GOOSE, the system engineer needs to ensure that in the case of an electrical 

fault, the protection scheme functions within a reasonable amount of time. 

 

Different methods exist that evaluate the response time of a protective system when a 

fault occurs. There are also methods to evaluate the precise GOOSE transfer time. It 

is important to ensure that GOOSE transfer time is within the allowed time as this has 

a direct impact on the global system response time. 

 

Table 2.8 cites recent research for various test methodologies to evaluate 

performance of GOOSE messaging in distributed protection schemes. 

 

Zhang and Nair (2008) have demonstrated the importance of having an appropriate 

Central Processing Unit (CPU) processor and well designed software modules as 

these can introduce delays in the system response that in turn degrades the GOOSE 

transfer time. Also, Sidhu et al. (2010) illustrates the importance of the network 

interface card and the Ethernet driver capabilities with respect to packet scheduling 

as this also has an impact on the average system response time. 

 

According to the work of Steinhauser et al. (2010) two methods can be utilized with 

regard to GOOSE transfer time measurement: the roundtrip test (ping-pong or loop-

back test) and the rally test. The roundtrip test is widely used while measuring the 

GOOSE transfer time. A current and voltage signal injection test set can be used for 

this purpose. Using this method requires that some assumptions be made in order to 

reach an accurate result. The rally test on the other hand does not require the use of 

a test set, but it is more difficult to implement since it requires two devices to be under 

test at the same time. This test also requires an accurate mechanism to measure the 

duration of the rally test and has a counter for the number of loops that have 

completed during this time interval.  



36 
 

 

Sidhu et al. (2011) demonstrates via the use of the Real-Time Digital Simulator 

(RTDS) the measurement of the round-trip delay and concludes that the distributed 

protection system based on GOOSE communication is on average 2ms faster than 

the conventional hardwired technology. 

 

Bonetti and Douib (2010) have proposed another test set-up called direct inter-trip 

test. This method is similar to the rally test, but uses a test set in addition to two 

separate relays. This approach takes into consideration the relay protection element 

applications. Also Ali and Thomas (2011) have demonstrated the use of specialised 

tools such as the OMICRON configuration toolbox delivered with the Test Universe 

software. The work developed by Apostolov and Vandiver (2011) extends the 

theoretical use of GOOSE to an implemented case scenario. 

 

As can be seen later in this thesis (Chapter 6), the inter-trip test has been chosen 

over the basic round-trip test. This presents the possibility to observe the overall 

system response time to a simulated fault condition and at the same time provides the 

possibility of deducing the GOOSE transfer time. 

2.4 Conclusion 

Chapter 2 presents the project background and basic knowledge of the current 

situation in substation automation systems. The challenge to locate well-documented 

online literature can be explained by the fact that the IEC 61850 standard is fairly 

novel. Its multidisciplinary aspects (Protection, Data Networking, Embedded Systems, 

etc.) make it especially difficult for electrical engineering departments at universities to 

develop and implement devices which are IEC 61850 compatible.  

 

Today, there are non-standardised IEDs (not IEC 61850 compliant) and standardised 

IEDs currently in use in modern substations. There are also substations that are in 

various stages of evolution. Some substations have limited communication 

capabilities while others employ self-diagnostics and problems can be anticipated and 

corrected before the operators even know a problem exists (Wolf, 2009b).  

 

The following question can be asked: Why is there a trend towards greater substation 

automation? The reasons can be formulated as follows: 

 Requirement for acquisition, distribution, and management (with network security) 

of large amounts of real-time data (non-operational and operational). 



37 
 

 Requirement for standardized, multifunction interoperable devices (to reduce 

installation, maintenance and upgrade capital expenditures). 

 Use fewer devices to wire and configure (reduce cabling cost). 

 To develop systems which are addressable, “Plug and Use” with self description 

capability (reduce initial installation cost), and subsequently reducing the 

reconfiguration, scalability and maintenance costs. 

 Able to integrate the monitoring and protection functions at the SCADA level. 

(Nelson, 2005). 

 

From the literature research conducted it appears that system integration and 

interoperability of an embedded device requires detailed understanding of the IEC 

61850 standard and its technological impact on the modern substation automation 

system as well as the design of the computational platform within modern IEDs. The 

development of the embedded device also requires detailed knowledge of the 

hardware/software target platforms including the Integrated Development 

Environment (IDE) software to be used. An efficient method for the development of an 

IEC 61850 compliant device is to use a communication stack appropriate for the 

hardware target, as this reduces the development complexity and shortens the time-

to-market.  

 

Only a few companies have developed communication stacks that are compliant with 

IEC 61850 and can be deployed on embedded platforms. These software 

communication stacks are said to be hardware independent, however their 

deployment onto a specific hardware platform still requires significant integration work 

and a detailed understanding of the hardware and the Real Time Operating System 

(RTOS) deployed on the hardware target. Due to on-going developments of these 

communication stacks it is vitally important that version revisions and functional 

capabilities are kept track of as deployed on the various platforms. Not doing so may 

lead to interoperability issues. 

 

The main project goals are to successfully deploy a protection scheme based on 

GOOSE messaging by making use of the PIS-010 communication stack. This is 

demonstrated using commercial IEDs from vendors in conjunction with the DK60 

board from Beck-IPC. As stated earlier the deployment of such an embedded 

application requires comprehensive knowledge of the IEC 61850 standard as well as 

the system target platforms. Detailed understanding of the field of real time embedded 

software development, object-oriented programming, networking, system modelling, 

electrical protection and system simulation is also required. 



38 
 

 

Chapter 3 provides more details on the IEC 61850 standard and focuses on the use 

of the GOOSE protocol for protection specifically.  



39 
 

CHAPTER THREE:  

ANALYSIS OF THE IEC 61850 STANDARD 

 

3.1 Introduction 

The integration, adaptation or adding of IEC 61850 functionality to modern substation 

devices requires detailed knowledge of the IEC 61850 standard and other related 

standards. 

 

This chapter provides a practical overview of the IEC 61850 standard (Edition 1). A 

brief history leading to the development of the IEC 61850 standard is presented in 

section 3.1.1 while section 3.1.2 addresses the SAS deficiencies prior to the advent of 

the IEC 61850 standard. The basic IEC 61850 standard philosophy and objectives 

are presented in section 3.2. The IEC 61850 modelling concept is presented in 

Section 3.3 where particular emphasis is placed on object-oriented terminology and 

the IEC 61850 data model. This section also explains the Abstract Communication 

Service Interface (ACSI). Details with regards to communication aspects are 

discussed in Section 3.4. Section 3.5 details the Substation Configuration Language 

(SCL). Section 3.6 provides an overview of the other related standards to consider in 

this research work. Conclusion - section 3.7. 

3.1.1 Brief substation automation evolution review 

As described in Chapter Two, electro-mechanical devices - although having served 

the industry reliably over decades, have the following drawbacks: 

 Require significant cabling; 

 Single function devices only; and 

 Not addressable, etc. 

 

Non-standardized IEDs (not IEC 61850 compliant) have been introduced in 

Substation Automation Systems since the start of the 1980’s (Lundqvist, 2003). The 

consequence of a non-standardized environment is that vendors have adopted 

differing approaches to substation automation systems with diverse and proprietary 

communication protocols and equipment being deployed (Nordel, 2005).  

 

One of the main challenges that electric power facilities are currently facing, is the 

issue of interoperability among Intelligent Electronic Devices (IEDs) supplied by 

different vendors during the expansion of an existing substation. Electrical engineers 



40 
 

initially developed the “Universal Translator” (data concentrator) (Wolf, 2009a) to take 

data from different generations of sensors and devices found in older (legacy) 

substations and convert them into a suitable format.  

 

Another concern in attempting to ensure interoperability among IEDs supplied by 

different vendors and the issues arising as a result of attempts at integration of legacy 

devices is the inability to dynamically address IEDs. In 1995 the IEC (International 

Electrotechnical Commission) after identifying the relevant challenges within 

substations, initiated the development of a communication standard that all vendors of 

substation devices would implement (IEC 61850, 2010). A special working group 

(WG10) was created inside the IEC Technical Committee 57 (TC5712) that consisted 

of 60 members from different countries (IEC 61850, 2010). 

 

Issues in substation automation systems that the WG10 group consider are: a 

common architecture network; common communication protocol; configuration 

support; common method/format for storing complete data; interoperability; 

exchangeability and fast communications among field devices. 

 

Another specific concern that this group addresses is the communication network and 

systems within the electrical substation in order to increase the reliability of the 

European effort (IEC 60870-5) (Digital Bond, 2010). 

 

The following section retraces the efforts directed at standardization that had already 

begun long before the WG10 had been established. 

3.1.2 Addressing Substation Automation deficiencies 

According to the Digital Bond (2010) website, the history of the IEC 61850 standard in 

addressing substation automation deficiencies can be detailed as follows: “In 1988 

EPRI and IEEE initiated the Utility Communications Architecture (UCA) project under 

the Integrated Utility Communication (IUC) program. The objective of the UCA project 

is to make provision for interoperability between control systems employed to monitor 

and control the electric power utilities. Initially the UCA project focused on 

communication between control centres, and communication between substations 

and control centres. EPRI and IEEE carried out the UCA project in collaboration with 

the Pacific Gas and Electric Company and the Houston Light and Power Company. 

The result of this collaboration was a standard communications architecture referred 
                                                 

12 The TC57 is responsible for maintaining the communication standards for the power utilities 
(Montignies et al., 2011a). 



41 
 

to as UCA version 1.0. But this standard did not provide a detailed description of how 

the UCA communication architecture was to be practically implemented and used in 

field devices. In 1997 EPRI and IEEE joined efforts with Working Group 10 (WG10) of 

the IEC Technical Committee 57 (TC57) to build a common international standard for 

electrical utility communications. These efforts lead to UCA version 2.0 in 1998, with 

thorough specifications of object models of field devices”.  

 

The efforts of the Working Group 10 (WG10) of the IEC Technical Committee 57 

(TC57) - based on concepts and definitions of the UCA architecture, lead to the 

creation of a standard for the design of electrical substation automation named IEC 

61850 (Digital Bond, 2010). 

 

The IEC 61850 standard (Edition 1) consists of the following fourteen parts presented 

in Table 3.1 and published between 2003 and 2005 (IEC 61850, 2010): 

 

Table 3.1: Composition of the IEC 61850 standard (Edition 1) 
Part 
number 

Title 

Part 1 Introduction and overview 
Part 2 Glossary 
Part 3 General requirements 
Part 4 System and project management 
Part 5 Communication requirements for functions and device models 
Part 6 Configuration language for communication in electrical substations related to IEDs 
Part 7-1 Basic communication structure for substation and feeder equipment - Principles and 

models. 
 

Part 7-2 Basic communication structure for substation and feeder equipment - Abstract 
communication service interface (ACSI). 
 

Part 7-3 Basic communication structure for substation and feeder equipment  
 - Common Data Classes. 
 

Part 7-4 Basic communication structure for substation and feeder equipment 
 - Compatible logical node classes and data classes. 
 

Part 8-1 Specific communication service mapping (SCSM) - Mappings to MMS (ISO/IEC9506-
1 and ISO/IEC 9506-2) and to ISO/IEC 8802-3. 
 

Part 9-1 Specific communication service mapping (SCSM) - Sampled values over serial 
unidirectional multidrop point to point link. 
 

Part 9-2 Specific communication service mapping (SCSM)  
 - Sampled values over ISO/IEC 8802-3. 
 

Part 10 Conformance testing. 

 

The next section presents the philosophy behind the IEC 61850 standard and its main 

objectives. 

 

 



42 
 

3.2 IEC 61850 philosophy and objectives 

According to the Digital Bond (2010) website: “The IEC 61850 standard was designed 

to provide a robust architecture network, common communication protocol suite, 

common data format and naming convention, interoperability, fast communications 

among field devices, guaranteed data delivery within a pre-defined time, configuration 

support, and defines complete testing requirements for substation equipment”. 

 

It is a standard that encompasses multiple disciplines, and that makes use of existing 

standards as well as commonly accepted communication principles and accepted 

protection methods. The IEC 61850 standard is the primary source of information, for 

this research work and has been used as a guideline for implementation and 

adaptation.  

 

To summarize, the IEC 61850 was driven by three main philosophical concepts which 

are: 

 Virtualisation: Development of a method to create a generic substation 

model of all relevant components and functions (Section 3.3 on 

Conceptual Modelling philosophy, page 43). 

 A method which allows flexibility for future communication needs by 

incorporating service and mapping mechanisms which will accommodate 

this. (Section 3.4 on Data communication philosophy, page 58). 

 Exchange of information through XML files for device capability and 

system architecture needs for engineering the Substation Automation 

System (SAS) (Section 3.5 on System configuration philosophy, page 65). 

 

The points listed above can be viewed as the most pertinent aspects for different 

institutional bodies or individuals interested in the IEC 61850 standard. 

  



43 
 

Table 3.2: IEC 61850 and different roleplayers 
Order 
of 
interest 

Philosophy 
driving keys 

Concerned Person or 
institution 

Comments 

1 Method to create a 
generic model of 
substation 

Main substation equipment 
manufacturer and individual 
field expert (e.g. ABB, 
SIEMENS, SEL…) 
 

 These institutions are qualified to 
propose or suggest new device 
models to be included in future 
releases of the standard. They are 
generally members of the IEC 
Technical Committee 57 (WG10) 

2 Definition of the 
exact form of 
communication to be 
supported. 
 

1- Main communication 
stack developer (e.g. 
SISCO, TRIANGLE 
WORKS, SYSTEMCORP) 
 

1- These institutions are responsible 
for the implementation of the 
standard into a concrete protocols 
suite. 
 

2- Substation Application 
developer 
 

2- These software engineers are 
responsible for the integration of the 
communication stack into a specific 
software application to provide 
devices with IEC 61850 
communication capabilities. 

3 SAS configuration 
reconfiguration and 
Testing 

Protection/ commissioning 
engineer. 
 

Persons responsible for substation 
commissioning and future 
maintenance of the system 

 

The objectives of the IEC 61850 standard can be stated as follows: 

 Interoperability between all communicating equipment; 

 Free Configuration of the system; 

 Long Term Stability with respect to technological evolution. 

 

The following section briefly examines each of the IEC 61850 philosophies introduced 

above. Each philosophy is directly followed by its supporting structure. 

3.3 Conceptual Modelling philosophy 

The IEC 61850 standard allows for a physical substation to be modelled (Section 3.2) 

into a virtual substation (Hammer and Sivertsen, 2008). Figure 3.1 below, illustrates 

the conceptual modelling approach of the IEC 61850 standard which consists of the 

modelling of all components and functions in the substation to clearly define their 

logical structure and behaviour. The modelling within the IEC 61850 standard is 

based on the Unified Modelling Language (UML) standard. The virtualisation of SAS 

components and its functions are the first steps in the IEC 61850 modelling approach 

which produces the Abstract Communication Service Interface (ACSI). The ACSI 

layer is explained in Section 3.3.3. Secondly, the IEC 61850 standard defines the 

communication mapping procedure which is explained in Section 3.4.1. 

 

 

 

 



44 

 

Figure 3.1: IEC 61850 conceptual modelling approach 
(IEC 61850-7-1, 2003, p.15) 

The virtualisation is not only a philosophical concept that represents the modelling 

foundation of the IEC 61850, but it has been an engineering process in which field 

specialists model existing substation automation equipment and functions. Within 

Edition 1 of the IEC 61850 standard most of the functional elements or device 

functions have already been modelled.  

 

The virtualisation is a process executed in order to standardize a SAS device or 

function. Once a particular device or function has been standardised there is no need 

for one to reinvent the wheel. Instead, the considered device or function is clearly 

defined in the IEC 61850 standard and shall be used as such.  However, apart from 

the mandatory data required for the modelling, system engineers still have to go 

through the virtualisation process in line with the IEC 61850 specification in order to 

refine a particular model by the inclusion of appropriate Optional Data that help to 

enhance the device or functional description. 

 

The prescribed specification of Data Models (Logical Node Classes and Data 

Classes), with the specific naming convention of the IEC 61850 standard allow for 

interoperability. Most of the UML diagrams in the IEC 61850 standard define the data 



45 
 

structure with different levels of abstraction in order to specify the IEC 61850 object 

model. 

 

The standard does allow for expansion and addition of any new model if there is a 

need to do so using the same virtualisation process and appropriate procedures to 

include the new model into a future release of the standard. These procedures are 

outside the scope of the current research project. Additional information on the 

development of new IEC 61850 Data models for a device or substation function can 

be found in the IEC 61850 standard. 

 

From Figure 3.1, one can see that the building blocks and main objects of IEC 61850 

are logical nodes (LN). It is the logical node that allows/caters for virtualisation of 

substation components into a suitable data model for software engineering. A logical 

node consists of Data Objects (DO), and each DO has a certain number of Data 

Attributes (DA). 

 

Within an IEC61850 compliant substation, IEDs are considered to be server devices 

that provide certain client services (e.g. reporting, GOOSE), but some IEDs do 

implement client functionality as well. The standard only defines the server role 

(logical nodes, data, control, etc.) located in the server, and the service requests 

exchanged. The client role is complementary 13(IEC 61850-7-1, 2003, p.56) , but not 

fully considered in Edition 1 of the standard.  

 

The Abstract Communication Service Interface (ACSI) defines the data model and 

specific IEC 61850 services delivered by a server-object. As stated earlier, the data 

model and services in IEC 61850 are based on an object-oriented14 approach that 

makes use of the Unified Modelling Language (UML). The ACSI layer is explained in 

greater detail later in Section 3.3.3. 

 

The IEC 61850-7 part of the standard contains some ready-to-use prototypes which 

are organised in terms of Logical Node Classes, Data classes and Common Data 

Classes. This means that the complete virtualisation process is not required for 

                                                 

13Clients and their internal structure and functions are not defined in the IEC 61850 
Ed1.standard. 
14 The fact that IEC 61850 uses an object-oriented modelling approach to define substation 
components does not imply that the IED’s firmware has to be written using object-oriented 
programming languages such as Java or C++. 



46 
 

devices and functions that have already been standardised such as the Circuit 

Breaker.  

 

There are more than 91 Logical node classes that have been defined and grouped 

into 13 logical node groups with respect to their substation functionality. Table 3.3 

gives the list of Logical Node Groups (and Prefixes used in association with them) as 

specified in the IEC 61850 standard (Edition 1):  

Table 3.3: List of Logical Node Groups 
Group 
Indicator 

Logical node groups

A  Automatic Control 
C  Supervisory control 
G  Generic Function References 
I  Interfacing and Archiving 
L  System Logical Nodes 
M  Metering and Measurement 
P  Protection Functions 
R  Protection Related Functions 
S  Sensors, Monitoring 
T  Instrument Transformer 
X  Switchgear 
Y  Power Transformer and Related Functions 
Z  Further (power system) Equipment 
A  Automatic Control 

 

3.3.1 Object-Oriented constructs for Modelling within IEC 61850 

The IEC 61850 standard refers to concepts of object, class, attribute (properties or 

states), inheritance and methods (function) which are common object-oriented 

concepts. Object-oriented concepts are used in the IEC 61850 to model actual 

physical-devices and associated substation functions with respect to the data-view 

and the communication-view.  

 

According to the IEC 61850 series, a substation function is a task performed by the 

substation automation system. The substation functions can be distributed onto many 

devices (IEDs) where the smallest component of the function (logical node) 

communicates with the rest of the function, or the substation functions can be 

deployed onto a single IED, meaning that all logical nodes needed for its realization 

are localized in the same device i.e. the standard has the mechanisms to 

accommodate centralized or distributed system designs and implementation.  

 



47 
 

Most substation devices and basic functions15 have already been modelled within 

Edition 1 of the IEC 61850 standard. However, if a relevant substation function or 

device has not been modelled, there are procedures that clarify how this may be 

accommodated in IEC 61850-7 of the standard. 

 

The building blocks used to define the logical structure of a device within the IEC 

61850 is referred to as a logical node (LN). The logical node is the smallest part of a 

substation function that exchanges data. From an object-oriented programming point 

of view, a logical node is an object defined by its data and methods (IEC 61850, 

2010). Figure 3.2 provides an overview of the logical node and its corresponding data 

elements encapsulated inside the physical device. 

 

The container of the logical model is the Physical Device that contains one or more 

Logical Devices, each of which contains one or more Logical Nodes, each of which 

contains a pre-defined set of Data Classes, each of which contains data (Proudfoot, 

2002). 

 

 
Figure 3.2: Encapsulation principle of IEC 61850 

[Adapted from (Proudfoot, 2002)] 

As a real world example, consider a dealership that sells vehicles. The vehicle is 

considered to be an object. In most dealerships, there is more than one brand of 

vehicle (Mercedes, BMW, Toyota …). Vehicles can be categorised by means of class 

with respect to their brand. Each vehicle has its own engine that can be viewed as an 

                                                 

15 The term “substation function” does not have the same meaning as “object function” which 
refers to methods applied at a higher abstraction level to an abstract object in the software 
code. 



48 
 

object on its own. Each engine has attributes such as engine speed and torque. A 

method to change the speed of the engine is by changing the position of the 

accelerator pedal or the brake. Figure 3.3 describes the analogy between the 

IEC61850 data model and the real world example considered above. 

 

 

Figure 3.3: IEC 61850 Data Model vs real world example 
 

Figure 3.4 provides a hierarchical view of a logical node’s (LN) internal elements 

using the XCBR LN for Circuit Breakers as an example. Note that data information 

(attributes) within a data-object is grouped by means of Functional Constraints (FC). 

 

 
Figure 3.4: Position information depicted as a tree 

(IEC 61850-7-1, 2003, p.19) 

Figure 3.5 displays an example of a Logical Node Class definition (e.g. Circuit 

Breaker - XCBR).  A Logical Node Class is a template for the development of a logical 

node. Parameters specified as Mandatory must be detailed, but those specified as 



49 
 

Optional may be inserted as per the designer’s needs. A logical node class is a 

collection of data objects. Each data object belongs to a particular data class (e.g. 

controllable double point-DPC), and each data class is implemented using a collection 

of basic or composite data. 

 

Adapted from (IEC 61850-7-4, 2003, p.59) 

For example, the Data-Object “Pos” (Position) of the Logical Node Class XCBR 

(Circuit breaker) belongs to the “controllable double point-DPC” Data Class (Attribute 

type). The DPC Data Class is composed of a basic data type such as “Boolean” or a 

complex data type such as “Double Point Position- Dbpos” (Section 4.4.4.1 on page 

106/ IEC 61850 modelling method). 

 

The device data model is used to serve as a basis for the IEC 61850 system 

configuration philosophy - this is explained in Section 3.5. 

 

The next section deals with the naming convention implemented in the IEC 61850 

standard. 

  

Data Name Common 
Data Class 

Description Mandatory/Optional  

Figure 3.5: XCBR Logical Node Class definition 



50 
 

3.3.2 IEC 61850 Naming convention 

When combined with the conceptual philosophy of “virtualisation” the rigorous 

specification of a naming convention in IEC 61850 assists in the goals of 

standardization and interoperability. The IEC 61850 naming convention defines a set 

of rules to properly address an object. 

 

Figure 3.6 provides an example of the naming convention adopted in IEC 61850. The 

logical device name can be adopted independently of the IEC 61850 standard. The 

second part identifies the logical node in which the object (data object) is. The first 

letter in the “logical node” section signifies the group of the node. In this case “X” 

signifies switchgear and the remaining letters (CBR1) - circuit breaker one (SUITTIO, 

2010). [Note: The “logical node” section also may have a prefix (Q0XCBR1) that can 

be used to add a description with respect to what the logical node is related to, and 

may have a suffix call instance number (XCBR1), to signal the difference between 

instances of the same logical node] (IEC 61850, 2010). Generally, Data Objects are 

grouped by means of Functional Constraint (FC) defined in IEC 61850-7-2. In the 

case of Figure 3.6, “ST” refers to the functional constraint - status information.  

 

There needs to be a differentiation between the object name and the object reference 

that is the complete path to reach a specific data attribute. Additional information 

about the naming convention can be found in IEC 61850-1-2 (clause 19). 

 

 

Figure 3.6: IEC 61850 Naming convention 
 



51 

If the MMS command (Read or Write) is used to access a data object, the separation 

delimiter “$” is used instead of the dot point in the naming convention (Adamiak et al., 

2012). 

3.3.3 Abstract Communication Service Interface 

The Abstract Communication Service Interface (ACSI) is explained in greater detail in 

section 7-2 of the IEC 61850 standards (see Figure 3.1). The ACSI is one of the main 

factors to consider for interoperability. 

 

The basic architecture of IEC 61850 ACSI mapping to the Open Systems 

Interconnection (OSI) model is shown in Figure 3.7 with the addition of an Abstract 

Layer of Generalised Communication and Specific Communication Services 

Mappings (SCSM). These two layers are added above the 7 layers of the OSI model 

(Makadam, 2008).  The SCSM is discussed in Section 3.4.1. 

 

The IEC 61850 architecture provides a neutral interface between the application 

object and its related application services. This architecture allows process and user 

applications to be designed independently from the communication theory (Ozansoy, 

2006). 

 

 
Figure 3.7: ACSI mappings to OSI communication model 

(IEC 61850-7-1, 2003, p.66) 

The ACSI provides a number of abstract interfaces. Some of them describe 

communications between a client and a remote server. Other interfaces are provided 

for communication between an application in one device and a remote application in 

another device. The communication between a client and a remote server may be for 

device control, logging of events, publisher/subscriber … (Hammer and Sivertsen, 

2008). 

 



52 
 

With reference to Figure 3.1- the Abstract Communication Service Interface (ACSI) 

has been has been highlighted by a blue/purple block. Figure 3.8 below now presents 

a more detailed model of the ACSI. It is comprised of the information model (basic 

services model) and the information exchange model (specific services model) 

(Hammer and Sivertsen, 2008). 

 
Figure 3.8: Conceptual model of ACSI 

(IEC 61850-7-2, 2003, p.15) 

Please refer to Figure 3.14 to confirm where the ACSI is situated relative to the 7 

layers of the OSI model. 

 

A description of the ACSI information and information exchange models is presented 

in the following section. 

3.3.4 Information Models 

The information model is the first sub-layer of the Abstract Communication Service 

Interface (ACSI) presented earlier in Figure 3.7 and Figure 3.8. 

 

The information model represents the elements by which a physical-device is 

virtualised. It is the direct output result of the virtualisation process. The information 

model is composed of the following (Hammer and Sivertsen, 2008): 

 

 Server: Represents the external visible behaviour of a device - all other ACSI 

models are part of the server. 

 Application association: Allows a client to be associated (connected) with a 

server. 

 Logical Device (LD): Contains the information produced and consumed by a 

group of domain-specific application functions. Functions are defined as 

logical nodes contained in an appropriate LD. This means that the logical 

device contains logical nodes with the same type of functionality, e.g. several 



53 
 

nodes with protection related functionality can be grouped into one logical 

device and nodes with control functionality can be grouped into another. A 

physical device in this way can consist of one or several logical devices 

(Hamrén, 2007). 

 Logical Node (LN): contains the information produced and consumed by a 

domain-specific application function - for example, overvoltage protection or 

circuit-breaker. 

 Data: provide a means to specify typed information - for example, position of a 

switch with quality information and timestamp, contained in LNs. 

 

Figure 3.9 presents the basic structure of the information model.  

 
Figure 3.9: Basic information model of the ACSI 

(IEC 61850-7-2, 2003, p.16) 

A description of each element that comprises the information model can be found in 

part 7-2 of the IEC 61850 standard. 

 

 



54 
 

3.3.5 Information Exchange 

The information exchange is the second sub-layer of the Abstract Communication 

Service Interface (ACSI) presented earlier in Figure 3.7 and Figure 3.8. 

The IEC 61850 standard allows for two groups of communication services between 

entities within the substation automation system. One group utilizes a client-server 

model accommodating services such as Reporting and Remote Switching. The 

second group utilizes a peer-to-peer model based on a Publisher/Subscriber 

mechanism for Generic Substation Event (GSE) services associated with time-critical 

activities such as fast and reliable communication between Intelligent Electronic 

Devices (IEDs) used for protection purposes. Figure 3.10 illustrates interrelationship 

between Client/Server and Publisher/Subscriber services. 

 

 
Figure 3.10: ASCI communication methods 

(IEC 61850-7-1, p50) 

The information exchange represents the elements by which a virtual device is 

configured in order to communicate with the outside world. It is composed of the 

following (Hammer and Sivertsen, 2008): 

 

 DATA-SET - permits the grouping of data and data attributes; 

 Substitution - supports replacement of a process value by another value; 

 SETTING-GROUP-CONTROL-BLOCK - defines how to switch from one set of 

setting values to another one and how to edit setting groups; 



55 
 

 REPORT-CONTROL-BLOCK and LOG-CONTROL-BLOCK - describes the 

conditions for generating reports and logs based on parameters set by the 

client; 

 Control blocks for generic substation events (GSE) - supports a fast and 

reliable system-wide distribution of input and output data values; 

 Control blocks for transmission of sampled values - fast and periodic transfer 

of samples - for example, of instrument transformers; 

 Control - describes the services to control - for example, devices; 

 Time and time synchronization - provides the time base for the device and 

system; 

 File transfer - defines the exchange of large data blocks such as programs. 

 

Please refer to Figure 3.11 below to identify the interrelationship between some of the 

elements mentioned above - as depicted through the use of a UML diagram. 

 
Figure 3.11: Conceptual service model for ACSI 

(IEC 61850-7-2, 2003, p.17) 



56 
 

A good description of each element that comprises the ACSI can be referenced in 

part 7-2 of the IEC 61850 standard or in (Hammer and Sivertsen, 2008). 

 

The next section briefly describes the client/server communication. 

3.3.6 Client-Server Architectures 

The client/server architecture represented in Figure 3.12 exhibits one possible 

relationship between two software applications in which the client requests a service 

from the server. The client/server relationship can apply to two software applications 

running on a single computer or two programs running over a communication network 

(Ozansoy, 2006). 

 

The client/server is generally known as a synchronous type of messaging since the 

client is blocked once it makes the request until the corresponding reply arrives.  But 

the possibility offered by object-oriented technology enables the development of 

asynchronous client/server architecture (Ozansoy, 2006). This means that a client 

can issue a request and process some other task in parallel while waiting for the 

server to reply. This type of architecture allows for distributed applications over the 

network with a greater reliability and service delivery. The asynchronous client/server 

architecture is made possible by the implementation of an Application Programming 

Interface (API) and a mechanism for message queuing with different levels of priority 

(Ozansoy, 2006).  

 

The implementation of a client/server architecture is required in IEC 61850 to enable 

the Abstract Communication Service Interface (ACSI) - which is one of the essential 

mechanisms to ensure interoperability among devices from different manufacturers. A 

detailed structure analysis of the type of server involved in this project is tabled in 

Chapter 4 of this work. 

 

Figure 3.12: Client/Server communication model 
(Ozansoy, 2006) 

The following section describes the publisher/subscriber communication architecture. 



57 
 

3.3.7 Publisher-Subscriber Architecture 

The publisher/subscriber architecture presented in Figure 3.13 shows the relationship 

that exists between a software application known as the publisher and another 

software application known as the subscriber.  

The publisher/subscriber model is an asynchronous type of many-to-many 

communication (Olovsson and Lejdeby, 2008). 

 

 

Figure 3.13: Publish/Subscribe communication model 
(Ozansoy, 2006) 

The publisher/subscriber architecture is an addition to the client/server architecture 

previously defined. In the sense of IEC 61850, a publisher/subscriber mechanism is 

only possible via the logical node zero (LLN016) of a Server. This implies that a 

publish/subscribe communication can occur only if client/server architecture has been 

constructed previously. This makes available ACSI services that are important for IEC 

61850 system interoperability. 

 

Figure 3.11 illustrates the fact that an IEC 61850 publisher/subscriber model can be 

defined between peer devices only if a server exists. If the server is destroyed, all 

elements dependant on that server cease to exist. 

 

For example, a component of the GOOSE control block (GoCBRef, GoEna…) can be 

accessed and manipulated only in the client/server communication architecture 

(Figure 3.11) using the IP address of the considered device.  

 

The next section deals with the data communication philosophy for an understanding 

of how information is exchanged among all devices. 

 

 

                                                 

16 Chapter 5 will provide more information into the role played by Logical node zero within the 
IEC 61850 philosophy. 



58 
 

3.4 Data communication philosophy 

3.4.1 Specific Communication Service Mapping (SCSM) 

There are two groups of information exchange systems that have been defined in the 

IEC 61850 standard. The first one is based on the Client/Server architectural structure 

only and the second one has added features based on the Publisher/ Subscriber 

architectural structure.  

To accommodate these services, the IEC 61850 standard deploys in its specification 

a layered communication structure on top of the traditional OSI model. This structure 

is composed of two layers.  

 

From an embedded point of view, if an application wants to send information to the 

outside world, this information needs to pass through two IEC 61850 layers (ACSI 

and SCSM) before entering the layers contained within the OSI model.  

 

Figure 3.14 illustrates the IEC 61850 layers (layer 9) in the Abstract Communication 

Service Interface (ACSI). This first layer is composed of 2 sub-layers namely the 

information model (a- Data Model and basic service models) and the information 

exchange model (b- specific service models). The second layer (layer8) corresponds 

to the Specific Communication Services Mapping (SCSM). Reference can also be 

made to Figure 3.1. Figure 3.7 and Figure 3.8. 

 

Adapted from (ABB review, 2010) 

Figure 3.14: Layered structure of the IEC 61850 standard 

ACSI- This is 
specified by 

means of SCL 
files 

 (ICD, CID…) 

Information Models (a) 

Information Exchange (b) 

9 

8 



59 
 

[Note: It is also imperative to note that the protocol stack is an implementation of a 

computer networking protocol suite (SV, GOOSE, MMS…). The suite is the definition 

of the protocols, and the stack is the software implementation of them (Adaptive 

Digital, 2012) ].  

 

The Specific Communication Services Mapping (SCSM) is a mapping of the 

information model and Abstract communication Services to a known protocol - such 

as the Message Manufacturing Specification (MMS) protocol, deployed at layers 7 

down-to 5 of the OSI 7-layer stack Figure 3.15. 

 

The SCSM also provides access to lower layers of the OSI model, as can be seen in 

Figure 3.15 where GOOSE and Sampled Value (SV) messages are mapped directly 

to the Data Link Layer after passing through the ACSI and SCSM layers. This 

indicates that the ASN.1 decoding and encoding of GOOSE/SV messages is the 

responsibility of the IEC 61850 communication stack (ASCI and SCSM layer) since 

both of these are not mapped via the Presentation Layer of the OSI model.  

Figure 3.15 gives an overview on the paths followed through the OSI stack by various 

IEC 61850 message types. 

 

 

Adapted from (IEC 61850-7-1, 2003, p.22) 

3.4.2 Definition of a GOOSE message 

The Generic Object Oriented Substation Event (GOOSE) is provided to report any 

change of state of an IED to other peer devices (IEC61850-2_p13).  

Client/Server; GOOSE and 
Sampled Value 

Figure 3.15: Mapping of IEC 61850 specifics layers to OSI model 



60 
 

 

Figure 3.16 below, shows the mapping profile of the IEC 61850 protocol suite. It is 

acknowledged that communication protocols such as GOOSE and Sampled Value 

messages are mapped over two layers of the OSI model which are: the Physical layer 

(layer 1) and the Data-link Layer (layer2). 

 

.  

Figure 3.16: Protocol mappings profile 
(Taken from Seclab, (Zhang and Gunter, 2009)) 

A GOOSE message allows for high speed trip signals to be issued with a maximum 

probability of delivery within a specific time range. Table 3.4 gives information about 

the time requirements for different applications used within the substation. 

Table 3.4: IEC 61850 message types and performances 
Type Applications Performance Class Requirements 

(Transmission Time) 
1A Fast Messages 

(Trip) 
P1 10 ms 

P2/P3 
 

<3 ms 

1B Fast Messages 
(Other) 

P1 100 ms 

P2/P3 20 ms 

2 Medium Speed  100 ms 
3 Low Speed  500 ms 
4 Raw Data P1 10 ms 

P2/P3 3 ms 
5 File Transfer  ≥1000 ms 
6 Time 

Synchronization 
 (Accuracy) 

(Hou and Dolezilek, 2012) 

Services associated with the GOOSE communication model (IEC 61850/ Edition 1) 

are as expressed in Table 3.5. Note that services such as Get GOOSE Control Block 

Values (GetGoCBValues) are mapped to the MMS Client/Server profile. 

  



61 
 

Table 3.5: Services associated with the GOOSE communication model 
IEC 61850-7-2 Model 
(p19/ Edition 1) 

Associated Services

 
 
 
 
 
Generic Substation 
Event GOOSE 

IEC 61850-7-2 Services requiring Client/Server Communication 
Profile (mapped to MMS/ IEC 61850-8-1, p23/ Edition 1) 
 
GetGoCBValues 
 
SetGoCBValues 
 
Services requiring GSE Management and GOOSE 
communication profile ( IEC 61850-8-1, p23/ Edition 1) 
 
GetReference 
 
GetGOOSEElementNumber 
 
SendGOOSEMessage  
 

 

The next section focuses on the GOOSE retransmission strategy. 

3.4.3 Retransmission strategy for GOOSE message 

The GOOSE message is published continuously and repetitively – before, during, and 

after an Event. After the Event is detected, the repetition rate is initially increased, 

then slowed down – back to what it was before the Event occurred (see Figure 3.17). 

According to the (IEC 61850-8-1, 2004, p.68), the first repetition delay value is an 

open value (defined by the manufacturer). The repetition algorithm can be geometric 

or linear. 

 

 
Figure 3.17: Transmission time for GOOSE 

(IEC 61850-8-1, 2004, p.68) 

3.4.4 Logical Interfaces and Substation Network Topology 

Figure 3.18 presents the architecture and system interface between equipment/ or 

logical functions in a modern substation automation system with respect to the IEC 

61850 standard (IEC 61850-5, 2003, p.15). Each number within a circle represents a 

logical interface (not necessarily a physical interface). 



62 
 

 

 
Figure 3.18: Interface model of a substation automation system 

(IEC 61850-5, 2003, p.15) 

The numbered interfaces are presented as follows: 

1: protection - data exchange between bay and station level. 

2: protection - data exchange between bay level and remote protection (greyed out: 

beyond the scope of Edn.1 of the standard). 

3: data exchange within bay level. 

4: CT and VT instantaneous data exchange (especially samples) between process 

and bay level. 

5: control - data exchange between process and bay level. 

6: control - data exchange between bay and station level. 

7: data exchange between substation (level) and a remote engineer’s workplace. 

8: direct data exchange between the bays especially for fast functions such as 

interlocking (GOOSE…). 

9: data exchange within station level. 

10: control - data exchange between substation (devices) and a remote control centre 

(greyed out: beyond the scope of Edn.1 of the IEC 61850 standard). 

 

[Note: activities and interfaces represented by grey dots and lines are not supported 

or specified within IEC 61850 Edition one]. 

 

The substation communication network can be structured either as a bus, ring or star 

topology. Depending on the configuration of the substation the network topology can 

be a combination of the three models. In most cases a common configuration is a ring 

topology with a redundant link at the switch level. 

 



63 
 

The IEC 61850 standard does not impose the use of a particular technology for signal 

interconnection (fibre optic, copper wire or wireless); however fibre optic is generally 

preferred as it presents many advantages in terms of communication speed, 

electromagnetic isolation of the signal and cyber security. 

 

Station Bus refers to an application domain where relays and RTUs would attach to 

the LAN. Figure 3.19 illustrates how IEC 61850 compliant IED’s are currently typically 

connected at the station bus level. Sensors such as VTs and CTs, and actuators such 

as switches and circuit breakers are directly connected to the IEDs using dedicated 

hardwiring. 

 

 
Figure 3.19: Current use of standardised IEDs 

(Ruggedcom Russia, 2010) 

Process Bus refers to devices such as CT/VT Merging Units (MU) providing sampled 

measured values of current and voltage via the LAN. Figure 3.20 represents how the 

IEC 61850 standard would be implemented with merging units at the process bus 

level. This type of architecture uses less hardwired cables.  

 

 

Figure 3.20: SAS architecture compliant IEC 61850 
(Ruggedcom Russia, 2010) 



64 
 

[Note: The merger between compliant IEC 61850 IEDs and legacy devices can be 

achieved through proctocol converter. This topic is not within the scope of this 

project]. 

 

The IEC61850 standard does not define implementation of the concepts and 

protocols inside any device (concept of the Black Box) (Apostolov, 2010). What is 

also not defined is the mapping of internal control signals to a device hardware 

interface, such as a binary output to trip a circuit breaker. The IEC 61850 is a 

communication standard that models the structure of data to be communicated on the 

network and the communication model to be considered depending on the 

application, but it is not a standard for software modelling or software code 

development. Software modelling or development problems are left as local issues for 

IEC 61850 equipment manufacturers. Developers of custom IEC 61850 applications 

therefore require intimate knowledge in the fields of Protection, Networking, Software 

Engineering, Control Systems and Embedded Systems. The development of an IEC 

61850 compliant device or application is implemented according to three main views 

which are (IEC 61850, 2010): 

 Application functional view17 ; 

 Application data modelling or device view (IEC 61850 series); 

 Communication view (IEC 61850 series). 

 

Chapter 4 provides more details regarding each of these views. Table 3.6 provides a 

list of important standards directly related to the current research project. 

 

Table 3.6: Project related standards 
Main Standard Sub standard Comments 
1- IEC 61850 - Standard for communication in 

Substation Automation System  
 

2- OSI Model  
(ISO/IEC 7498-1) 

2.1 ASN.1- BER For Data encoding and decoding 

2.2 IEEE 802.1Q For Priority tagging/ VLAN definition 
2.3 8802-3 For Ethernet frame definition 

 
3- PSS-05-0 
(Software 
Engineering 
standards) 

3.1 ANSI/IEEE 1058.1 Software Management Project 

3.2 ANSI/IEEE 610.12-1990 Software configuration Management  
 

4- UML 2.2 - Unified Modelling Language. For 
definition of project requirement and 
detailed software modelling 

5- IEC 62271 Part 3 Standard for High-voltage switchgear 
and controlgear- Digital interfaces 
based on IEC 61850 

                                                 

17 Include all aspects related to the software application program or application subroutine and 
substation functions or protection scheme. This is beyond the scope of the IEC 61850 series. 



65 

 

The next section provides appropriate details on the system configuration approach 

and the structure supporting it. 

3.5 System configuration philosophy 

The substation configuration philosophy is fundamental for the SAS functional 

specification, IED capability description and SA system description (IEC 61850-6, 

2004). This philosophy is supported by a structured Substation Configuration 

Language (SCL) for the purpose of system design, communication engineering and 

information exchange between engineering tools for the various devices in a 

standardized way (IEC 61850-6, 2004). The SCL files are specified by the IEC 61850 

standard to be written in the Extensible Mark-up Language (XML), and to have a 

specific format in terms of the information it contains.  

 

 

Figure 3.21: Importance of Substation configuration Language 
(Schwarz, 2012) 

Figure 3.21 is a more detailed illustration with respect to the role of the XML-based 

SCL files than that shown in Figure 3.1. 

 

The configuration process requires the system engineer to have adequate and 

reliable software engineering tools to define (Create/Import/Export) an object model 

describing the IEDs, the communication connections, and location in the switchyard. 

The considered tools also have the responsibility to represent this model in a 

standardized way to an output file to be exchanged between engineering tools from 

different vendors. Figure 3.22 depicts the reference model for information flow in the 

configuration process. 



66 
 

 
Figure 3.22: Reference model for information flow in the configuration process 

(IEC 61850-6, 2004, p.11) 

Additional information about the structure that allows for configuration of the SAS is 

detailed later in this chapter. 

 

The next section describes the Substation Configuration Language and its purpose in 

support of the IEC 61850 system configuration philosophy. 

3.5.1 Substation Configuration Language (SCL) 

The IEC 61850 defines an information exchange mechanism via SCL (Substation 

Configuration Language) files that allow for configuration and reconfiguration of a 

substation. The SCL file format is of an XML (Extensible Mark-up Language) type. It 

describes communication-related IED configurations, IED parameters, communication 

system configuration, Abstract Communication Service Interfaces (ACSI), function 

structures and the relation between them (Hammer and Sivertsen, 2008). Table 3.7 

presents all SCL file types used in the substation and their roles (IEC 61850, 2010). 

 

Table 3.7: SCL file extension description 
Extension Name Description 
xxx.icd IED Capability Description Defines complete capability of an IED. 

Vendors are required to deliver a 
commercially available IED with an ICD file.  

xxx.cid Configured IED Description Defines protocols, parameter values and 
data structure used for configuration of the 
IED at start up. Using this file is optional. 

xxx.ssd System Specification Description Complete specification of the SAS with single 
line diagrams, required functions and does 
not include the IED description. 

xxx.scd Substation Configuration Description Complete specification of the SAS including 
the IED description. 

 

Figure 3.23 represents a UML diagram overview of the SCL schema. In other words it 

defines what needs to be considered in the composition of an SCL file with respect to 



67 
 

its purpose. Please refer to APPENDIX A for additional information on the UML 

diagram specification. 

 
Figure 3.23: UML diagram overview of SCL schema 

(IEC 61850-6, 2004, p.21) 

In general, an SCL file is composed of the following sections: 

 Header: contains the “id” and the “nameStructure” of an SCL file. 

 Communication system description: contain all addresses and security 

parameters. 

 Substation description: Layout of the topology of the substation in terms of 

substation name, voltage level and bay unit. 

 IED description: gives the full description of an IED (Services supported …) 

 Data type templates: Instantiate type used for Logical Node, Data Object, 

Data Attribute and Enumerated Data. 

3.5.2 Role played by software tools in the substation configuration process 

Figure 3.24 presents an example of a substation engineering process using SCL files 

and dedicated configuration tools. 

 

The IEC 61850 standard (Edition 1) does not constrain the use of the CID file as the 

device configuration file to be loaded at device start up. Some manufacturers use the 

ICD or SCD file format as the final configuration file for their device. Nevertheless the 

IEC 61850 standard considers the use the CID file type as being the logical choice for 

device configuration. 



68 
 

 
Figure 3.24: Conceptual substation engineering process using SCL 

(Goraj and Herrmann, 2007) 

The following section covers other standards related to the IEC 61850 standard for 

communication, data encoding, software engineering and data modelling. 

3.6 Other related Standards 

3.6.1 OSI Model 

According to OSI model official website: “The OSI model are seven generic vertically 

stacked theoretic layers each providing data transmission functionality to the layer 

above or below. Each layer contains a set of systems, standards or protocols that 

communicate with corresponding entities in higher layers” (OSI Model-org, 2012). The 

OSI model is also known as ISO/IEC 7498-1. The following table provides a functional 

description of each layer. 

Table 3.8: OSI Model and IEC61850 profile 
Data Unit Layer Name Layer Function Technology  involve 

Data 7. Application Network process to 
application 

FTP, HTTP,  
SMTP, SNMP, NTP, DHCP, 
Telnet, MMS, … 

6. Presentation Data representation, 
encryption and 
decryption 

XDR, ASN.1 … 

5. Session Inter-host communication RPC, NetBIOS, ASP… 

Segment 4. Transport End-to-end connections 
and reliability, Flow 
control 

TCP, UDP, SCTP… 

Packet 3. Network Path determination and 
logical addressing 

IP, ICMP, ARP, RARP… 

Frame 2. Data Link Physical addressing Ethernet, Token ring, ISDN, 
IEEE 802.11, PPP… 

Bit 1. Physical Media, signal and binary 
transmission 

100BASE-T, 1000BASE-T, 
T-carrier/E-carrier,  
802.11 physical layers … 

 



69 
 

The IEC 61850 recommends the implementation of the OSI model with respect to 

what is called a profile [IEC 61850-8-1, p19]. There are two groups of profiles which 

are the Application-Profiles (A-Profiles) and Transport Profiles (T-Profiles). A-Profiles 

represent the protocols and agreements in regards to the upper 3 layers (Application, 

Presentation and Session) of the OSI Reference Model (ISO/IEC 7498-1). The T-

Profiles represent the protocols and agreements in regards to the lower 4 layers of 

the OSI reference model. Additional information can be found in the IEC61850 

standard section-8-1 on page 19. 

3.6.2 ASN 1 standard 

The Abstract Syntax Notation ONE (ASN. 1) standard for “Data networks and open 

system communications” is an international standard used to define protocols of 

communication by means of encoding rules. Information on ASN.1 with respect to the 

IEC 61850 standard can be found at IEC 61850-8-1, page111 (see APPENDIX B). 

The GOOSE protocol is defined using the ASN.1 /Basic Encoding Rule (BER) known 

as X.690-0207 (ISO/IEC 8825). Section 3.4.2 provides more detail regarding the 

structure of the GOOSE message and the ASN.1 encoding rule method.  

3.6.3 Software Engineering Standards 

Since the IEC 61850 standard does not specify which software development tools to 

use when developing an IEC 61850 application or even how software modules for 

such applications should be written, reference to the Software Engineering Standards 

is required. This is particularly important to choose a method for the development of 

any software application. Thus, it is important to understand that the IEC61850 

standard is not a method for software application development. 

 

The Software Engineering Standard refers to a list of different standards, procedures 

and rules that a programmer needs to know and follow. These are many standards for 

software engineering development, and the choice of a particular standard requires 

careful consideration. There is also a need to identify what software modelling and 

development tools are required. 

 

The software development process also known as the software development life cycle 

is not to be confused with the IEC 61850 Data modelling. For the current research the 

software design and software algorithm is considered as the first and second step 

respectively within the software development life cycle. When considering the 

customized hardware that is implemented, the software development life cycle is in 



70 
 

reality a subset for the complete development of an embedded intelligent circuit 

breaker node system. 

 

The PSS-05-018standard is developed and maintained by the European Space 

Agency (ESA) via the ESA’s Board for Software Standardisation and Control (BSSC) 

since 1984. The PSS-05-0 is concerned with all software aspects of a system, 

including its interfaces to other software applications or hardware (ESA Board, 

1991).The standard used for data and software modelling is the Unified Modelling 

Language (UML 2.0) and it is also used in the IEC 61850 standard. It should be noted 

that the object-oriented language is not the only software platform required to develop 

a system that complies with the IEC 61850 standard. 

 

At first, the decision to use an Object-Oriented language (like C++) should be 

motivated by the number of subroutines that are required to run at the same time 

(need for concurrency) and not because the IEC 61850 specifies its data model using 

an object-oriented approach. Secondly, most Real Time Operating Systems (RTOS) 

have the ability, when the program is broken into small executable tasks (xx.exe, 

yyy.exe, kkk.exe…), to run each software module concurrently. The language used to 

develop the software application in this research project is based on the “C” language. 

Additional information and justification is presented in Chapters 4 and 5 regarding to 

the software development tools used in this research work. 

3.6.4 Unified Modelling Language (UML) 

The Unified Modelling Language (UML) is a standard mainly used for software 

modelling. It was developed by the Object Management Group (OMG) since 1997 to 

suit the modelling of object-oriented systems in the field of informatics, but it is used 

for other domain as well such as data structure modelling (SourceMaking, 2012). The 

current version of UML is UML 2.2.  

 

The UML 2.2 specifications are composed of fourteen type diagrams depicted in 

Figure 3.25: 

                                                 

18 The BSSC have replaced the PSS-05-0 in 1999 with the European Cooperation for Space 
Standardisation (ECSS-E-40 /Software Engineering standard). The ECSS-E-40 places a 
particular emphasis on earth-space applications. 



71 
 

 
Figure 3.25: UML 2.2 diagram organisation 

(OMG UML, 2012) 

The designer needs to identify which selection of UML diagrams to use in order to 

clearly define the system in terms of technical specifications, architecture and 

behaviour conception. The software modelling portion of this research project using 

UML diagrams is presented in chapters 4 and 5. 

3.7 Conclusion 

The IEC 61850 standard covers not only communication, but also qualitative 

properties of engineering tools, measures for quality management and configuration 

management (Ozansoy, 2006).  

 

More importantly, the IEC 61850 standard specifies a common reference model to 

exchange data configuration of Intelligent Electronics Devices (IEDs). This exchange 

is made possible by the use of the Substation Configuration Language (SCL) files that 

allow for the transfer of IED configuration from one software engineering tool to 

another to integrate an IED within the Substation Automation System (SAS) (Martin 

and Nguyen, 2004). 

 

 The benefits that are derived from the IEC 61850 standard are: 

 Introduction of a standardized substation architecture and communication 

protocol in terms of addressability via a communication bus (reducing cabling 

cost). 



72 
 

 Interoperability of equipment provided by different vendors. 

 Easy maintenance and reconfiguration of the overall architecture of the 

substation and/or functions perform by all associated equipment. 

 Capacity added within the substation to detect faults or inactive IEDs within its 

own architecture. This prevents the substation from mal-operation due to 

faulty IEDS left unattended within the substation architecture, under the 

assumption that they are working properly. 

 

The parts of the IEC 61850 standard that are used within this research work are 

reported in Table 3.9. 

Table 3.9: IEC61850 sections to be considered for the current project 
Considered section of the standard Comments 
IEC 61850-1: Introduction and overview Provide a general overview of the standard 
IEC 61850-2: Glossary Very important to quickly find the meaning of an 

abbreviation or a concept. 
IEC 61850-5: Communication requirements 
for functions and device models 

Provide the basic communication requirements for 
functions and device models 

IEC 61850-6: Configuration language for 
communication in electrical substations 
related to IEDs. 

It is required to have a deeper understanding of the 
SCL to design a custom ICD file. 

IEC 61850-7-1: Basic communication 
structure for substation and feeder 
equipment - Principles and models. 

Show the basic communication structures model and 
principles behind it. 

IEC 61850-7-2:- Abstract communication 
service interface (ACSI). 

Show the hierarchical structure of a logical device to 
implement and the service interface. 

IEC 61850-7-3: …- Common Data Classes. Present all the common Data classes; Data Attributes 
semantics and functional constraints. 

IEC 61850-7-4: ...- Compatible logical node 
classes and data classes. 

Present all existing type of Logical nodes and their Data 
Object semantics. 

IEC 61850-8-1: Specific communication 
service mapping (SCSM)- Mappings to MMS 
(ISO/IEC9506-1 and ISO/IEC 9506-2) and to   
 ISO/IEC 8802-3. 

Present the Mapping to MMS and to ISO/IEC 8802-3. 
(for GOOSE) 

IEC 61850-10: Conformance testing. Detail the design path to verify correct implementation 
of the standard. 

 

It is important to please note that the following are out of the scope of the IEC 61850 

standard: 

 Control logic and other PLC functionality of IEDs; 

 Binding of physical input/output to communication modules of IEDs. 

 Regulations on how a programmer should write the source-code (or 

implement the algorithms) of the software (Proces_Application.exe) that runs 

within an IED.  

 

The next chapter introduces the main hardware target included in the DK61 

embedded development kit. 

  



73 
 

CHAPTER FOUR:  

CASE STUDY IMPLEMENTATION: CONTEXT AND 

DEVELOPMENT ENVIRONMENT 

 

4.1 Introduction 

This chapter presents the DK 61 embedded kit development environment (hardware 

and software) from Beck IPC and the context within which it will be used.  

 

Section 4.2 deals with the project context.  

 

Section 4.3 gives a general description of the common IED structure before 

introducing the DK61 embedded development kit (Hardware and RTOS) that hosts 

the software application for an Intelligent Circuit Breaker Controller. The embedded 

system will perform its role of controller through implementing a limited subset of 

Logical Node functions which a fully fledged IED multi-function IED might contain. An 

overview of the IEC 61850 communication stack used in this work is presented in 

Section 4.3.7 followed by a brief review of different substation hierarchical views in 

Section 4.4.3.  

 

Section 4.4 comments on the general description for industrial circuit breakers as a 

physical device in section 4.4.1, then discusses the virtualization of the physical 

device through the IEC 61850 modelling process, and the tools and method used.  

 

The chapter ends with section 4.5 – the conclusion  



74 

4.2 Project context  

The current research work focuses on the experimental development of an actuator 

for a circuit breaker depicted in Figure 4.1 (highlighted in pink). This is achieved using 

an embedded platform that is presented in Section 4.3.3. The use of GOOSE 

messages to demonstrate the protection characteristics using a protection scheme - 

the functioning of which is distributed between a commercially available IED and the 

application developed on the embedded-systems platform, is of main concern. 

 

 
Figure 4.1: Interface model of a substation automation system 

(IEC 61850-5, 2003, p.15) 

Interfaces eight, four and five have been defined in IEC 61850-5 as follows (For a 

detailed description of all interfaces consult Section 3.4.4): 

IF8: direct data exchange between the bays especially for fast functions such as 

Interlocking; 

IF4: CT and VT instantaneous data exchange (especially samples) between process 

and bay level; and 

IF5: control-data exchange between process and bay level. 

 

The process bus has originally been defined for Sampled Values, but not exclusively 

so. GOOSE messages can also be used at the process bus level for an 

instantaneous trip (from bay to process level) or to send the status position of a circuit 

breaker element for example (Sidhu et al., 2011a). 

 



75 

An industrial implementation of the IEC 61850 standard-specified interfaces in Figure 

4.1 could be of the form given in Figure 4.2 in which the considered actuator has 

been identified as being a breaker-IED. For the definitions with regard to Figure 4.2 

refer to the “Glossary of Terms” at the beginning of this document (page xvii). 

 

 
Figure 4.2: Architecture of IEC 61850 SAS with Station Bus and Process Bus 

(McGhee and Goraj, 2010) 

Note that when GOOSE and SV messages are present on the same communication 

bus it is crucial to segregate the different traffic types since Sampled Values needs to 

have its own bandwidth allocation. This can be achieved at the network switch level 

with the configuration setup of two VLANs. Each of these VLANs (carrying GOOSE 

and SV separately) is required to have its own ID (VID) (IEC 61850-9-2, 2004, p.14). 

 

The current situation in industry is though not as depicted in Figure 4.2, but is as 

depicted in Figure 4.3 (See also Figure 3.19, p63). In such an implementation where 

there is no process bus - the primary equipment (breaker actuators, CTs and VTs) are 

connected to secondary equipment at the bay level (bay controller, protection relays 

etc.) using long lengths of copper cables hardwired in place. 

 

 



76 

 

Figure 4.3: Current SAS architecture implementation 
Modified from (McGhee and Goraj, 2010) 

Figure 4.4 represents the possibility for use of distributed or non-distributed schemes:  

Scenario (a) – only IED_1 used and assumed connected to trip a circuit breaker:  If 

current and voltage transformers are connected to the CTs and VTs elements (TCTR 

and TVTR) of IED-1 at the bay unit, and the circuit breaker logical node is also part of 

the same physical device, a fault detected by the considered device can cause the 

device to issue a Trip command to the circuit breaker (if programmed to do so, and if 

the circuit-breaker is hardwired to IED_1). The protection scheme is then said to be 

non-distributed – all actions and commands under control of IED_1. This operation 

does not require the use of the GOOSE message exchange. 

 

Figure 4.4: Non distributed (a) vs distributed scheme (b) 

Hardwired 

IF8 

IED-1 
(a)- (b) 

IED-2 
(b) 

Distributed information 



77 
 

 

Scenario (b) – IED_1 connected to IED_2 across a communications channel and 

IED_2 assumed connected to trip a circuit breaker:  IED-1 can send critical 

information via GOOSE message to IED-2 that is hardwired to a conventional circuit 

breaker controller for an interlocking or tripping action to be processed. In this case, 

the protection application scheme is then said to be distributed across IEDs (see 

Figure 4.4). 

 

The distributed application mentioned in Figure 4.4 would normally be implemented 

on a peer-to-peer level using communication of information across interface 8 

(between bay-level entities) mentioned in Figure 4.1.  

 

The scope of this research project proposes an embedded-systems based actuator 

deployed at the process level  (highlighted in pink on Figure 4.1), and connected to an 

emulated circuit breaker. Communication with a commercially available IED placed at 

bay-unit level is now assumed to be communicating with the embedded-system 

platform at the Process level (Figure 4.1).   

 

Figure 4.5 ilustrates the topology for the case study that is of concern for this research 

work. 

 

 

 

 

In the sections to follow the Actuator and emulated circuit breaker depicted in Figure 

4.5 above are described.  The structure of a commercially available IED versus the 

embedded system development platform which will be used on the research project is 

discussed in section 4.3, with the data modelling and hardware interfacing of the 

emulated circuit breaker discussed in section 4.4. 

 

 

Test Injection 
(OMICRON 256) 

Protection IED 

Breaker IED 
(Actuator) 

Emulated Breaker 

Hardwired 

Local Area Network 

Feedback for time 
measurement 

Bay Unit level 

Process 
level 

Figure 4.5: Project case study 



78 
 

4.3 Introduction to the DK61development kit 

Sections 4.3.1 through 4.3.2 briefly define and review the basic structure of a 

commercially available station bus IED (protection IED). 

 

Sections 4.3.3 through 4.3.7 elaborate on the DK60 embedded systems development 

kit used on the research project – its description, the microcontroller and its 

development environment, RTOS utilized, and the communication stack. 

4.3.1 Definition of an Intelligent Electronic Device 

The term “Intelligent Electronic device” refers to microprocessor-based relays 

introduced in the substation in the 1980’s. 

 

According to the IEC 61850 standard an Intelligent Electronic Device (IED) is “any 

device incorporating one or more processors, with the capability to receive or send, 

data/control from, or to, an external source, for example electronic multi-function 

meters, digital relays, controllers” (IEC 61850-2, 2003). An IED can also be “a device 

capable of executing the behaviour of one or more, specified logical nodes in a 

particular context and delimited by its interfaces” (IEC 61850-2, 2003). As per these 

definitions and their physical location within substation communication network 

structure, IEDs devices can be grouped into three categories as follows: 

 

 Station level- IEDs: A local or remote Human Machine Interface (HMI) based 

computer is usually available at the top of the hierarchy of the substation. The 

computer where the HMI is installed constitutes a full IED device on its own. 

 

 Bay level- IEDs: Protection relays available at the bay level are multifunctional 

IEDS able to perform protection, measurement (…) and control function. 

 

 Process level- IEDs: The IEC 61850 has introduced new type of IEDs with the 

definition of the process bus communication. Those new IEDs are called 

Merging Unit and Actuator. The “actuator” categories can be divided into two 

sub-types of device: Intelligent Circuit Breaker controller and Intelligent switch 

controller. 

 

The actuator node prototype for the circuit breaker developed in this research work 

falls into the category of Process level- IEDs. It is important to understand how the 

introduction of this new type of device modifies the design structure of the 



79 
 

conventional circuit breaker. A more detailed explanation about the circuit breaker 

IED is in Section 4.4.1. 

4.3.2 General structure of Intelligent Electronic Devices 

Figure 4.6 shows the internal architecture of a typical IED (basic protection relay) that 

could be used at the station bus (assuming no process bus). In this figure, generic 

elements needed to build an embedded system are displayed. Elements that are 

specific to the domain of substations are also detailed (e.g. Trip module CTs and 

VTs). 

 
Figure 4.6: Internal structure of IEDs 

(ABB- KIRRMANN H., 2004) 

Protection of the control motherboard circuit is often achieved through optical 

isolation. 

4.3.3 DK 61 Development Environment description 

For a developer an intuitive way to advance in the development of an IEC 61850 

application is to identify and define the problem clearly. This is very important as the 

IEC 61850 is a standard dealing with multidisciplinary issues. Failing to identify the 

proper implementation issue or solution requirement might result in time wasted on 

investigating information that is not relevant. 

 

Firstly, for the project development - identification of the product platform is crucial 

(SystemCorp_b, 2010): 

 Is the product platform, a hardware-specific application (e.g. ARM, Coldfire or 

Power PC)? 

 Is Linux the defined operating system on the product platform? 



80 
 

 Is Window's PC platform (IEC 61850 DLL) a viable option? 

 Is there a requirement for Linux X86 PC platforms? 

 Is the IEC 61850 single-chip solution (DK61 Kit) viable? 

 What telecommunication hardware technology is required for your product 

(Optic-fibre, wireless, cable…)? 

 

Secondly, the application deployment has to be investigated: 

 Is there a requirement for MMS only (Lite), or MMS with Publisher/Subscriber, 

GOOSE, Reports, Logging and Sample Values (extended)? 

 

Finally, the application communication models require attention: 

 Is there a need for the Server only, Client only, or a Server/Client application? 

 

Answers to these questions justify the identification of a chip with an on-board IEC 

61850 communication stack (see Figure 3.14, page 58). The Beck IPC Embedded 

web controller (SC143-IEC-LF) is included in the DK61 development kit and has been 

identified as a viable option. 

 

The DK61 development kit presented in Figure 4.7 is a development environment that 

allows for the development of different types of software applications that require 

network interfaces and a special communication stack for fast and reliable control 

commands. It has been developed by Beck IPC GmbH19 (http://www.beck-ipc.com).  

 

The IEC 61850 protocol stack delivered with the DK60 board is developed and 

maintained by SystemCorp (http://www.systemcorp.com.au/ ). Online documentation 

of the IEC 61850 Application Programme Interface (API) that allows for fast 

development of process applications using the “C” programming language is available 

at the following address http://www.systemcorp.com.au/PIS10API/index.html.  

 

                                                 

19 BECK was founded in Wetzlar in 1992, and is now based in Pohlheim-Garbenteich near 
Gießen (Germany) (Beck IPC-GmBH, 2010) 



81 
 

 
Figure 4.7: DK61 Development Kit 

(Beck IPC-GmBH, 2010) 

For more details on the composition of the DK61 Kit and the proposed method to start 

using it, please refer to APPENDIX M. 

 

All documentation related to the DK 61 kit can be freely downloaded from Beck IPC 

website at http://www.beck-ipc.com/en/download/index.asp.  

 

There is also online documentation for the Real Time Operating System API at:  

http://www.beck-ipc.com/files/api/scxxx/index.htm?cache=850807617. 

 

The DK60 board is the targeted embedded system platform in this project. It 

represents the basic IED hardware, except that it does not have an Analogue to 

Digital Converter (ADC), and other circuitry to interface to CTs, VTs. The DK60 board 

was first commissioned with the SC123 chip in 2005 (Beck IPC-GmBH, 2010). It is 

now produced with the SC143 chip. Figure 4.8 gives an overview of the internal 

hardware architecture of the DK60 board. 

 



82 

 

Figure 4.8: DK60 board standard configuration 
(Beck IPC-GmBH, 2010) 

Please refer to the manual of the DK60 board for more details. 

4.3.4 Tools for development of an IEC 61850 application 

The IEC61850 application developed in this project is deployed on the DK60 board 

using the following software tools: 

 

 Paradigm C/C++: 

 

The software application code for the intelligent circuit breaker node is written in C 

and compiled with Paradigm. The software development tool called Paradigm C/C++ 

is a tool that allows for code development, executable generation and debugging of 

software applications for embedded systems. With Paradigm C/C++, an executable 

can be made to suite a particular memory model type. A memory model can be Small, 

Medium, Compact, Large or even Huge (especially for IEC61850 application) 

(Paradigm, 2010). Please note: after installation of Paradigm C/C++ for Beck IPC chip 

the latest CLIB version must be installed. 

 

 ICD Designer and XML Marker: 

 

ICD Designer and XML Marker are both software tools used to design files based on 

XML syntax. ICD Designer is the provided for use with the DK60 board, but this 

SC143 
Chip

CPLD

I/O Interface 



83 
 

software is not free. XML Marker is a general XML tool for XML file manipulation and 

is available free of charge. For security reasons, the installation of the full version of 

ICD Designer software is conducted with the online technical assistance of 

SystemCorp and therefore will not be described in this document. Please consult 

http://www.systemcorp.com.au/or the SystemCorp website for documentation on the 

use of ICD Designer.  

 

 Chiptool: 

 

The Chiptool application is the main software configuration tool for communication 

with the SC143 on the DK60 board. It is a Beck IPC specific tools that provides a 

number of services directly related to the DK60 board such as the “ping” function, 

Telnet, FTP, HTTP, IP configuration and much more. 

4.3.5 The SC143 Embedded Web microcontroller 

The IPC@CHIP® SC1X3 family is a combination of hardware and software including 

the pre-installed real time operating system, TCP/IP stack, web server, FTP server 

and Telnet server (Beck IPC-GmBH, 2010). The SC143 microcontroller chip of Beck 

IPC is an advanced web microcontroller used mainly in the telecommunication 

industry. Using the SC143 chip allows for deployment of embedded software in 

C/C++ as well as Programmable Logic Control (PLC based CoDeSys/IEC61131-3) 

within the DK60 project development environment. The SC143 Chip microcontroller is 

an embedded controller that has a 16-bit 186 processor on-board and is suitable for 

automated systems that requires Web-based or LAN communication possibilities. The 

operating frequency is configurable from 25 MHz up to 96 MHz (Beck IPC-GmBH, 

2010). Table 4.1 summarise some of the important characteristic of the SC143 chip.  

 

Table 4.1: SC143 basics characteristics 
Characteristics (SC143) Value 
Processor type 16-bit 186 
Clock frequency Programmable PLL provides up to 96 MHz using one 25MHz 

Clock  
Data Bus 16-bit  
Address Bus 24-bit  
RTOS type Proprietary inspired by DOS  
Software compatibility  80C186 microcontrollers  

SC186/AM186 (x86 instruction set)  
Embedded Ethernet controllers  
 

Two 10/100Mbps Ethernet Controllers with one built-in PHY 
and one MII PHY interface, 32 byte FIFOs 
 

 

  



84 
 

Additional information is available in the SC143 manual on the Beck IPC website. 

Figure 4.9 presents the SC143 block diagram. 

 

 
Figure 4.9: SC143 Block diagram 

(Beck IPC-GmBH, 2010) 

Note that hardware logic functions outside the scope of the SC143 chip are 

implemented on the DK60 board using Complex Programmable Logic (CPLD). The 

CPLD type on the DK60 board is XILINX XC95144XL-5C. The hardware 

reconfiguration of the DK60 board is implemented using the SPI/S37 interface on the 

DK60 board with original VHDL files from Beck IPC and appropriate tools from Xilinx 

(appropriate parallel cable IV and the XILINX ISE WebPACK 6) not included in the 

DK61 Kit. Additional information is provided in a separate application note available 

on the Beck IPC website. The complete VHDL code for this project is available in 

APPENDIX E . 

 



85 
 

In this project, a CPLD address decoder is used to read a certain memory area of the 

SC143 chip and duplicate the corresponding value to the output unit via the 

expansion port header (see Figure 4.8). 

4.3.6 IPC@CHIP® RTOS architecture description 

The IPC@CHIPRTOS is a proprietary Real Time Operating System compatible with 

most basic DOS commands. Figure 4.10 shows the internal software architecture that 

comprises the preloaded RTOS for an SC1x3 chip.  

 
Figure 4.10: IPC@CHIP® RTOS architecture 

(Beck IPC-GmBH, 2010) 

In order to facilitate the development of a software application, different Application 

Program Interfaces (APIs) are available. It should be noted that specific “C” header 

files known as “@CHIP-RTOS CLIB” (see section 4.3.4) first need to be installed to 

make use of these APIs. These header files include standard and Beck-specific 

function definitions. As there are more than fourteen distinctive groups of APIs for the 

IPC@CHIP RTOS, explicit details for each of them cannot be presented here.  

  



86 
 

Table 4.2 provides a list of APIs for the IPC@CHIP RTOS. 

  

Table 4.2: API list for the IPC@CHIP® RTOS 
API Denomination Description
BIOS API Interface definition for the BIOS Interrupts. 
CAN (Controller Area 
Network) API 

The CLIB API definition for sending and receiving data on the CAN 
(Controller Area Network) buses 

CGI (Common Gateway 
Interface) API 

The CGI ("Common Gateway Interface") API provides access to the CGI 
implementation of the IPC@CHIP® Web server. 

External Disk API CLIB API for an external disk B: and D: drive.   This interface allows you 
to add an external B: or D: drive 

Fossil API for Serial Ports API definition for access to the serial ports. 
Helper Functions This API includes Character Output Functions, Memory Allocation 

Functions and Data Type conversion functions. 
Hardware (PFE, HAL) API API functions for access to the IPC@CHIP®'s hardware.  

e.g. pfe_enable_pcs-> Enable programmable chip selects 
I2C Bus Interface API CLIB API for access to the IPC@CHIP®'s I2C bus 
Packet Driver API Packet driver API for direct access to the IPC@CHIP® Ethernet device. 
RTOS API This API provides access function to the RTOS of the IPC@CHIP 

e.g. RTX_Create_Task ->Create and start a task 
SPI API CLIB API for access to the IPC@CHIP®'s SPI bus. 
TCP/IP API This API provides access to the IPC@CHIP® TCP/IP stack's socket 

interface for programming TCP/IP applications. 
USB (Universal Serial Bus) 
API 

CLIB API of the IPC@CHIP® RTOS dual-mode USB-driver. 

 

Additional information regarding the IPC@CHIP RTOS APIs can be obtained from the 

online documentation available athttp://www.beck-ipc.com/files/api/scxxx/.  

Also note that in addition to Beck specific APIs, knowledge of standard C Libraries 

may be used (DOS.H, STDIO.H, etc.). 

4.3.7 Overview of the PIS-010 communication stack and its IEC 61850 API 

The DK61 kit has an IEC 61850 Application Programming Interface (API) and a 

communication stack (PIS-010.lib) developed by SystemCorp. Note that the IEC 

61850 API is not to be mistaken with specific Beck IPC APIs discussed in section 

4.3.6. The function of the IEC61850 API and the PIS-010 stack is to provide any IEC 

61850 application programmer with features that enable them to create, from a 

communication point of view, a functional IEC61850 application within a short period 

of time. The PIS-010 stack is also supported on the following platforms: Ubuntu Linux 

(x86,x86-64), Microsoft Windows XP,2003/2008 and Vista; Other platforms are 

available on request. 

 

The PIS-010 stack library is ANSI-Standard C compatible and can be configured via 

SCL file. It is an event driven stack (Interrupt based), so there is no need to poll for 

data (SystemCorp_b, 2010). 

 

Figure 4.11 presents the communication protocol contained in the PIS-010 stack. The 

MMS view over TCP/IP must be considered first while before the algorithm. The MMS 



87 
 

communication to the GOOSE or sampled value message, or SNTP may then be 

associated. This is because the publisher/subscriber mechanism has been 

implemented within the PIS-010 stack as an added feature. Publisher and subscriber 

functionality are associated respectively with the server (publisher) and the client 

(subscriber). If there is therefore a requirement for thePIS-010 protection relay device 

to subscribe to an incoming GOOSE message, the client functionality in addition to 

the default server functionality has to be implemented. 

 

 
Figure 4.11: PIS010  protocol composition 

(SystemCorp_b, 2010) 

The API provides the programmer with more flexibility when integration of the system 

to the main software core specific protocol of communication (GOOSE, SV, MMS, 

SNTP…) and other specific communication services using the IEC 61850 stack (PIS-

010) is considered. Therefore the software development time is reduced and 

implementation is accelerated since the required application protocol is already 

provided within the PIS-10 stack.  

 

Figure 4.12 demonstrates the interaction between the user applications, the API, the 

communication stack, relevant SCL file, the real-time operating system and the 

network interface card. Version 1.36 of the PIS-010 stack has been used in the 

implementation for the current research project. 



88 
 

 
Figure 4.12: Interaction with the IEC61850 PIS010 Stack 

(SystemCorp_b, 2010) 

Detailed documentation and a description of the IEC61850 API provided with the 

SC143 chip can be downloaded from the Beck website, or retrieved from the supplied 

CDs with the DK61 Kit (Beck_Lite). 

 

The IEC 61850 protocol Integration stack (PIS-10), implements the ASCI layer and 

the SCSM on top of the OSI model. Note that the OSI model is implemented as part 

of the Operating System (OS) basic communication structure.  

 

The PIS-10 stack bypasses the RTOS and creates a connection at the data link layer 

(via a specific driver provided by Beck IPC) to handle GOOSE and SV 

communication. Please refer to section 4.4.4 for a description of SCL files for this 

project using ICD designer. 

 

The only way to access the PIS-010 stack is to make use of the IEC 61850 API 

provided by SystemCorp. The IEC 61850 API is organised in a hierarchy of functions. 

The User Application communicates with the PIS-010 via the IEC 61850 API using 

function calls and call backs. Figure 4.13 has been developed as documentation for 

this project so as to conveniently present the overall system information flow together 

with the internal IEC 61850 API organisation.  



89 
 

 

 

 

 

 

The “PIS-10.lib”, the “IEC61850Types.h”, the “sysctype.h” and the “CLSNTP.C” 

(Client for Simple Network Time Protocol) are SystemCorp intellectual property. 

              Calls and Call-back functions 
                  GOOSE- Alarm & Status Traffic 

                     MMS Traffic 
  Control and Status Signals 

IEC 61850 Client/Server C source code 

PIS-10 Object Management Functions 

PIS-10 Data Attributes 
Access Functions 

PIS-10 Control 
Functions 

PIS-10 Support 
Functions 

PIS-10 Time Functions 

 Calls Call-backs 

 Power Plant Substation Network 

IEC 61850 
API.h  

PIS-010.lib 
stack 

xxx.EXE 

CLSNTP.C

sysctype.h

IEC61850Types.h

Figure 4.13: Application communication description 



90 
 

These files should be included by the software developer as part of the software 

project in Paradigm C/C++ IDE.  

 

Please to gain access to those file you are requested to register on SystemCorp 

website (http://www.systemcorp.com.au/registration/registers.html). 

 

The following tables list all IEC 61850 API functions implemented with the PIS-010 

stack (version 1.36)  

Table 4.3: PIS-10 Object Management Functions 
PIS-10 Object Management Functions 
No IEC 61850 API Purpose 
1 IEC61850_Create API to create a client or server object with call-

backs for reading, writing and 
updating data objects 

2 IEC61850_LoadSCLFile API to read the SCL XML file to get the 
configuration of server or client 

3 IEC61850_Start API to start the server or client 
4 IEC61850_Stop API to stop the server or client 
5 IEC61850_Free API to delete a client or server object created 

 

Table 4.4: PIS-10 Data Attributes Access Functions 
PIS-10 Data Attributes Access Functions 
No IEC 61850 API Purpose 
1 IEC61850_Read Read the value of a specified data attribute 
2 IEC61850_Write Write the value to a specified data attribute 
3 IEC61850_Update Update the value of a specified data attribute 

 

Table 4.5: PIS-10 Control Functions 
PIS-10 Control Functions 
No IEC 61850 API Purpose 
1 EC61850_ControlSelect Indicate intention to perform Operate on identified control 
2 IEC61850_ControlOperate Perform Operate function on selected control/s with 

specified 
value 

3 IEC61850_ControlCancel Cancel existing selection of controls 

 

Table 4.6PIS-10 Support Functions 
PIS-10 Support Functions 
No IEC 61850 API Purpose 
1 IEC61850_GetLibraryVersion Returns the version of the library 
2 IEC61850_GetLibraryBuildTime Returns build time for Library 
3 IEC61850_ErrorString Returns a descriptive string for an error code 
4 IEC61850_PrintDataAttributeID Print specified data attribute identifier to standard 

output 
5 IEC61850_PrintDataAttributeData Print specified data to standard output 

 

Table 4.7: PIS-10 Time Functions 
PIS-10 Time Functions 
No IEC 61850 API Purpose 
1 IEC61850_SetTimeQuality Set time quality information in PIS10 stack 
2 EC61850_GetTimeQuality Retrieve time quality information from PIS10 stack 
3 IEC61850_SetTime Set current time to PIS10 stack 
4 IEC61850_GetTime Retrieve current system time from PIS10 stack 

 

  



91 
 

4.3.7.1 Overview of a PIS010 Server 

In the field of Substation Automation Systems, field devices such as protection relays, 

merging units and actuator nodes are assumed to be the server devices by default. 

The client is usually an HMI (Human Machine Interface) situated at the top of the SAS 

hierarchy (section 3.4.4). Figure 4.14 depicts the state machine of a PIS-010 server. 

For this project, basic exchange functions (Read and Write) are used in order to 

exchange data information. Please refer to the online documentation for other 

available functions on the server side at http://www.systemcorp.com.au/ . 

 

 

Figure 4.14: PIS010 Server Overview 
(SystemCorp_b, 2010) 

The publisher/server is configured using a Configured IED Description file (CID). 

Refer to section 4.4.4.3 for more detail on engineering the system architecture using 

the ICD Designer tool. 

4.3.7.2 Overview of a PIS010 Client 

As stated earlier, the client device is usually an HMI situated at the top of the SAS 

hierarchy (section 3.4.4). Figure 4.15 shows the state machine of a PIS-010 Client. 

 



92 
 

 

Figure 4.15: PIS010 Client Overview 
(SystemCorp_b, 2010) 

Although the focus in this research project is on the GOOSE message (publisher and 

subscriber), there is a need to deploy the server and client modules inside the 

Intelligent circuit breaker controller device in order to access the desired functionality. 

This is due to the internal architecture of the PIS-10 stack from SystemCorp. The 

client/subscriber is configured using a Substation Configuration Description file 

(SCD). Refer to section 4.4.4.4 for more detail on engineering the system architecture 

using the ICD Designer tool. 

 

Particular details which explain the design process of each SCL files type required in 

this project is presented in section 4.4.4. 

 

  



93 
 

The next section describes the circuit breaker as a Physical Device, and the 

virtualization process followed in IEC 61850.  

4.4 General description of circuit breaker and model development 

4.4.1 General description of circuit breaker 

4.4.1.1 Circuit breaker definition 

A circuit breaker is an electromechanical device used to complete, maintain, and 

interrupt in a short amount of time currents flowing in a circuit under normal or faulted 

conditions (US-Department of Labor, 2010). According to ABB breaker application 

guide, a circuit breaker used in an electrical substation should comply with the 

following requirements:  

 In the stationary closed position, the circuit breaker shall conduct its rated 

current without producing impermissible heat rise in any of its components. 

 In its stationary positions, open as well as closed, the circuit breaker must be 

able to withstand any type of overvoltage within its rating. 

 The circuit breaker shall, at its rated voltage, be able to make and break any 

possible current within its rating, without becoming unsuitable for further 

operation (ABB AB, 2010). 

 

 
Figure 4.16: Single line diagram 
(Nuclear Power Training, 2012) 



94 
 

From this definition it can be seen that the circuit breaker can be used for coupling of 

busbars, transformers, capacitor banks, transmission lines, etc. 

4.4.1.2 Circuit breaker function 

The main function of a circuit breaker is to interrupt fault currents and in so doing 

protect electrical and electronic equipment. The circuit breaker may also be used for 

intentional switching such as energizing and de-energizing of shunt reactors and 

capacitor banks, for maintenance of electrical equipment and transmission lines (ABB 

AB, 2010). 

 

According to ABB, a circuit breaker shall operate under the following circumstances: 

 Terminal faults, short-circuits in the vicinity of or near the circuit breaker; 

 Short-line faults, short-circuits to ground along the transmission line within a 

few kilometres of the circuit breaker; 

 Out-of-phase conditions at which different parts of the network are out of 

synchronism; and 

 Intentional switching of capacitor banks, shunt reactor banks, no-load 

transformers, no-load lines and cables (ABB AB, 2010). 

4.4.1.3 Types of circuit breaker 

There are many types of circuit breakers from simple electronics switch based 

transistors via home automation relays to high voltage circuit breakers used in an 

electrical substation. 

 

In general, circuit breakers found in substations are composed of two coils, one is 

used to close and the second one is used to open/trip the circuit breaker. These two 

coils are energised separately by high pulse signals to open or close the circuit 

breaker. Pulse commands to trip or closed the circuit breaker are transmitted from two 

distinct output contacts on a relay device. This ensures that the coils of a high voltage 

circuit breaker are not permanently energized. 

 

The amount of current that substation circuit breakers need to interrupt, induce an 

arcing phenomenon at the separating contact. This arc acts as a close circuit; this 

means that the current will continue to flow even if breaker’s contacts are physically 

separated. To extinguish this arc, manufacture uses different isolating mediums and 

other techniques resulting in different types of circuit breakers within the substation 

(SF6, Vacuum, Compressed Air and Oil circuit breaker, etc.).  

 



95 

Nevertheless, circuit breakers in the substation can still be grouped in three main 

types with respect to their construction philosophy: 

 Live Tank circuit breaker; 

 Dead Tank circuit breaker; and 

 Gas Insulated Switchgear (GIS). 

 

Figure 4.17 illustrates the Live and dead tank circuit breaker. 

 

 
Figure 4.17: Live tank versus Dead tank 

(Nasrallah et al., 2007) 

Figure 4.18 illustrates a compact Gas Insulated Switchgear. 

 

1. Busbar; 

2.Disconnector; 

3.Maintenance 

Earthing Switch; 

4.Current 

Transformer; 

5.Circuit Breaker; 

6.Current 

Transformer; 

7.Maintenance 

Earthing Switch; 

8.Diconnector; 

9.Earthing Switch; 

10.Voltage 

Transformer; 

11.Bushing 

 

(TOSHIBA, 2012) 

There is need to research the advantages and disadvantages of each type of circuit 

breaker and their variants in the substation. The results of this study could then be 

used to make a suitable choice for the extension of the current project to a specific 

Figure 4.18:Gas Insulated Switchgear (GIS) 



96 
 

substation circuit breaker. Relative adjustment of the data model and the software 

developed here is necessary so that this can suit the chosen power plant target 

perfectly. 

 

Figure 4.19 shows only the tripping mechanism for an ABB vacuum circuit breaker 

controller in principle (GIS type).  

 

 

Figure 4.19: Trip module for a compact vacuum circuit breaker system 
(ABB AG, 2005) 

Only now can the development of a Data model for circuit breaker be started. For this 

project only mandatory data is included in the data model. The software (process 

application) design for the circuit breaker controller and other implementation issues 

are dealt with in Chapter five. The ICD Designer software is used to define the 

component of the Logical device view and communication view (Section 4.3.4). 

 

The next section presents the steps to be taken to develop a circuit breaker data 

model. 

4.4.2 Definition of an Actuator 

An actuator in the strict sense of the IEC 61850 standard is an IED that controls a 

circuit breaker or switch element at the process bus level. Before the advent of the 

IEC 61850 standard, the common designation of an actuator for a circuit breaker was 

simply a circuit breaker controller. These actuators are primarily microcontroller-

based. They are connected to protection relays at the bay level using hardwired 

cables (trip, close and status hardwired lines) as illustrated in Figure 4.20  



97 
 

 

Figure 4.20: Block diagram of conventionnal Circuit Breaker Actuator (Live Tank) 
(ABB AB, 2010) 

The components for the circuit breaker actuator in Figure 4.20 are as follows: 

1. Charger unit that converts supply voltage and feeds the capacitors and internal 

electronics. 

2. Capacitor unit stores the energy for operation. 

3. The converter unit transforms DC from the capacitors to AC for the motor. 

4. Servomotor that delivers the force to move the contacts, integrated position sensor 

gives information to the control unit. 

5. The I/O unit takes care of signalling between the station control system and the 

operating mechanism. 

6. Control unit that controls and regulates the motion of the contacts. The interlock 

functions are also handled by this module. 

7. Link gear that transforms rotary movement to linear movement. 

 

There are three main parts in a substation circuit breaker. The first one is the “Circuit 

Breaker Controller” which acts as an actuator. The second is the actuating equipment 

(Circuit breaker Motor). The third part is the circuit breaker body itself which contains 

the contact element and a mechanism to extinguish the electrical arc.  

 

As stated earlier the actuator similar to the one presented in Figure 4.20 is connected 

to the protection relay via hardwired cable. Figure 4.21 provides an illustration of the 

common connection between the protection relay and the primary equipment 

(diagram on the left-hand side). The same figure also shows the evolution introduced 

by the IEC 61850 standard based on process bus connectivity (diagram on the right-

hand side). The process bus ensures less wiring is required to connect to the primary 



98 
 

equipment and to reduce the global substation expenditure costs due to the high price 

of copper wire (assuming fibre optic is used). 

 
Figure 4.21: Bay protection without process bus (left) and with process bus (right) 

(IEC 61850-7-500-DTR_Ed1, 2011) 

With the technology evolution and the introduction of the IEC 61850 process bus, the 

conventional circuit breaker controller (or actuator) presented in Figure 4.20 is now 

provided with IEC 61850 communication capabilities. This has changed its 

designation from a simple circuit breaker controller to an intelligent circuit breaker 

controller (or breaker IED). 

 

The definition of the actuator node in this particular research project refers to the 

logical structure that controls a substation switch element. This structure can be 

localised in a process level- IED (assuming IEC 61850 process bus implementation) 

or within an IEC 61850 compliant protection relay at the bay unit level (assuming IEC 

61850 station bus implementation only). As stated earlier, the considered switch can 

be a circuit breaker (XCBR/ with short circuit breaking capabilities) or a simple power 

switch element (XSWI/ without short circuit breaking capabilities). 

 

For this research work, it is assumed that the actuator node structure is contained 

within the breaker IED which is localised at the process bus. Therefore, the present 

IED is referred to as an Intelligent Circuit Breaker Controller or breaker IED. 

 



99 

The protection test-case is illustrated in Figure 4.22. The SIEMENS protection IED 

used for this project does not support subscription or publishing of sampled value 

messages. A conventional hardwired structure for a CT element is then considered. 

 
Figure 4.22: Protection scheme test case 

 

The SIEMENS protection IED does not have dual ports that are active at the same 

time to handle exchange of information on two distinct communication buses. 

Therefore, a ring topology is then assumed- this means that the Ethernet traffic 

generated by the protection IED (normally at station bus level for a conventional 

protection IED) is assumed to be available also at the process bus. 

 

For additional information please refer to the SIEMENS user guide “Ethernet and 

IEC61850 Start up” at: 

http://siemens.siprotec.de/download_neu/.../IEC61850_STARTUP_A3_EN.pdf 

 

The absence of two distinct and isolated communication buses has no impact on the 

data model and software development of the circuit breaker controller. This 

assumption enables one to focus on the development of the actuator only since the 

IEC 61850 standard allows for GOOSE communication at process bus level and that 

GOOSE communication is not based on IP address, but rather on the MAC address. 

 

As the scope of this research work is reduced to the demonstration of GOOSE 

message operation, the Select-Before-Operate (SBO) method as required by the IEC 

61850 standard is not implemented. Instead of the SBO method, the “Direct with 

Virtualized 
breaker

Physical breaker 
(Emulated)



100 
 

Normal Security” method is used to control the circuit breaker through a MMS 

command. 

 

Process level- IEDs are developed following on some principles of the IEC 61850 

standard. In general, IEC 61850 compliant circuit breaker IEDs are directly 

incorporated in the circuit breaker control unit box and needs to fulfil three main 

requirements which are: 

 

 Backward compatibility with respect to the old hardwired techniques used to 

link the breaker to conventional protection relays.  

 Support for IEC 61850 communication based (MMS and GOOSE). If the 

merging unit is also implemented within the same control unit of the circuit 

breaker, the Sampled Value messages will generally use a distinct Ethernet 

interface. When GOOSE and SV messages are on the same process bus, 

they will each have a distinct V-LAN ID (VID). This is due to the fact that 

Sampled Values need to have its own bandwidth allocation (IEC 61850-2, 

2004, p.14). 

 The circuit breaker IED also allows for manual operation.  

 

These IEDs are able to switch between hardwired signals (as input control), remote 

control signals via the Local Area Network (LAN) based on the IEC 61850 

specification and manual operation. 

 
Figure 4.23: Principal type of Actuators 
Adopted from (IEC 61850-1, 2003, p.13) 

Figure 4.23 is an extension of Figure 3.18 which now shows the principal type of 

actuators used in the substation diagram. The actuator node prototype for the circuit 



101 
 

breaker developed in this research project is a process bus IED type with limited 

functionality. For the developed IED there is no support for hardwired connectivity and 

no mechanism to support manual operation mode. The developed work therefore 

focused on the communication aspects only. 

 

Based on the above discussion it is clear that the developed actuator also known as a 

breaker IED can also be called an intelligent breaker controller. Therefore, every 

reference in this document to the term “breaker IED” or “intelligent circuit breaker 

controller” refers to the “actuator” concept. 

 

Details on circuit breaker technology are presented in Section 4.4.1. The logical 

modelling of the prototype actuator is dealt with in Section 4.4.2. 

4.4.3 Component hierarchy of different IEC 61850 views    

The development of an IEC 61850 application or device starts with the process 

modelling. The concept of modelling includes all steps that contribute to the project 

definition and to its detailed specifications. This implies that the electromechanical 

characteristics including the behavioural response of the physical device to be 

modelled are well known in advance by the protection engineer. The IEC 61850 

modelling for this research project can be segmented into three views which are: 

 

 Application functional view related to the substation automation application, 

the application program and its subroutines (beyond the scope of the IEC 

61850 series); 

 Application data modelling or Device view (IEC 61850 series); 

 Communication view (IEC 61850 series). 

 

Figure 4.24 illustrates those views: 

 



102 
 

 
Figure 4.24: Component hierarchy of different views 

(IEC 61850-7-1, 2003, p.58) 

The data model and the communication parameters of an IEC 61850 application can 

be expressed without knowledge of the final hardware target. However, this is not the 

case when it comes to the software development of the application process. An IEC 

61850 developer will need to know in the early stages of the project what the 

hardware platform of the application being developed is. 

 

Section 4.4 provides a brief operational description of a circuit breaker. Section 4.4.4 

presents the data model (modelling step 1) and the communication service supported 

(modelling step 2) by the intelligent circuit breaker node. Section 5.2.2addresses the 

software modelling component with the SC143 of the DK60 board as the final target. 

 

The following section presents the particulars of each view20 discussed above. 

4.4.3.1 Application functional view 

The application functional view in this work is limited to the modelling of different 

software functions for the intelligent circuit breaker node (section 5.2.2). The 

application functional view is related to the software application subroutines, 

application programme and to some extended to domain-specific substation 

application sub-routine function (e.g. Select-Before-Operate) (see Figure 4.24).  

 

                                                 

20 The Resource view will not be examined because this falls out of the scope of the current 
project. 



103 
 

The application functional view is also related to the interaction that a program on a 

device A can have with another program on device B (IEC 61850, 2010), to achieve 

any substation function (e.g. distributed protection scheme).  

 

The software modelling of an Intelligent Electronic Device to be used in the substation 

is not defined in the IEC 61850 standard. The data model and some state machine 

applicable to the communication stack are the only items defined in this view. 

Developers are at liberty to choose whichever method or technology is required. 

There is however a need to ensure that the data is communicated in the proper 

manner and that the devices provide sufficient functions and network services to 

ensure interoperability. Thus, the software modelling of an IEC 61850 device can be 

implemented using any method that the developer deems suitable for the project.  

 

When the developer considers the detailed software modelling, particular attention 

needs to be paid to the hardware platform where the IEC 61850 application is 

installed. For instance, the developer will need to have a clear idea of the 

microprocessor in use. There is a requirement to determine how the physical 

input/output (I/O) of the plant is accessed and how to manage the communication on 

the data networking side. 

 

Note that the Configured IED Description (CID) file will always be used to configure 

the communication on the server side and other parameters for the application 

programme.  

 

Mapping of data to different OSI layers is the responsibility of the communication 

stack linked to the application program. The binding of data to physical input/output of 

the device is done via the CID file based on memory address location techniques 

(other implementations are possible). 

4.4.3.2 Application data modelling view 

The data model of an IEC 61850 device is obtained using a process known as 

virtualisation from the real world device into a ‘virtual’ environment where some 

hardware constraints are transformed into data objects (mandatory or optional data) 

and others are simply ignored.  

 

There are two main steps to follow when building a data model of a device. The first 

step is the identification of all logical nodes, their data and data attributes. The second 

step is the construction of a logical device with all related controls blocks. The logical 



104 
 

device including its logical node and data should be visible to the other devices on the 

network. 

 

The data model is an integral part of the XML file called the IED Capability Descriptor 

(ICD). Figure 3.1 on page 44 illustrates the virtualisation process. 

 

When performing the data model of a functional element in the substation, this 

functional element will not operate in isolation. The role of a system integration 

engineer is to complete the data model with an oriented view either in terms of 

Protection, Automation or Control model etc. 

4.4.3.3 Communication view 

The communication view defines the network structure in which the device is placed 

together with the other communication services. These definitions should be visible to 

the rest of the device connected to the network. Communication parameters are also 

available from the ICD file. 

 

For a better understanding of the modelling process of the intelligent circuit breaker 

node, please review the operational description of a circuit breaker in section 4.4. For 

the current project, the focus has been placed on the GOOSE message 

communication aspects in the laboratory. A compatible 5 Volt latching relay is used as 

a circuit breaker to emulate different status position of the real substation circuit 

breaker. Figure 4.25 shows an abstract view of the communication flow in this 

research work.  

 



105 
 

 

 

To develop a data model or to perform the detailed software design of a circuit 

breaker controller, it is important to first understand the operating mechanism of a 

power substation circuit breaker. 

4.4.4 Intelligent circuit breaker node data modelling 

With reference to Figure 4.22 (on page 99), the data model of an intelligent circuit 

breaker node is implemented using to the IEC 61850 methodology. Due to the fact 

that a real substation circuit breaker will not being used, the virtualisation process as 

defined in the IEC 61850 standard takes only into account mandatory data in order to 

realize an intelligent circuit breaker controller model. The reader should be aware that 

the 61850 modelling process does not refer to mathematical modelling of the circuit 

breaker nor software modelling. 

 

To start the data model of any functional element in the substation automation 

system, one needs to verify that the functional element has not been modelled 

already in terms a logical node. If the considered functional element has not been 

modelled already in the IEC 61850 series, then there are appropriate procedures 

specified within the standard to develop a new logical node model. The definition of 

new model is independent from the hardware platform, but attention has to be paid so 

that the model is consistent with the data templates currently in use in the ICD file 

(this procedure is out of the scope of the current research work). 

 

Real 
IED 

SAS 
Network 

Circuit breaker 
Position 
Sensor 

Physical 
Circuit breaker 

(Emulated) Fault 
simulator 

DK60 board. Client/Server 
and Publisher/Subscriber 

Send Circuit 
breaker status 

If Alarm = True. 
Then Open Circuit 

breaker 

Open/Close 
Circuit breaker 
Based MMS 

IEDScout/ 
Client-HMI 

GOOSE- Alarm 
 GOOSE- Status 

       MMS Traffic 

Actuator /  
CB Controller

Actuating 
Plant 

Figure 4.25: Communication scenario for thesis project 



106 
 

For the case of the current thesis, there is already a logical node that represents the 

circuit breaker function. This logical node is known as XCBR and is defined in IEC 

61850-7-4. There is no therefore no need to develop a new model from scratch. 

However, for the considered circuit breaker, one needs to include all mandatory data 

and pay particular attention to other optional data that will increase the correctness of 

the XCBR LN model. The complete control model is discussed later. 

 

As indicated in Figure 4.26, the data modelling of the intelligent circuit breaker node is 

implemented in a reverse manner to that presented in sections 7-4 to 7-1 of the IEC 

61850 standard. 

 

 

 

The following lines are an adaptation of the circuit breaker data modelling 

implemented in part 7 of the IEC 61850 standard.  

4.4.4.1 First modelling step: Identification of logical node and Data 

Figure 4.27 represents the logical node relationship. The logical node XCBR for the 

circuit breaker is the starting point of the modelling process if we ignore logical node 

zero (LLN0) and logical node physical device (LPHD) which are part of the second 

modelling step. 

Definition of LN 
IEC 61850-7-4 

Definition of Data 
Object and Data 

Attribute 
 IEC 61850-7-3 

1st step 
modelling

2nd step 
modelling

Definition of LD and 
other services 
 IEC 61850-7-2 

Server definition 
 IEC 61850-7-1 

Figure 4.26: Data Model steps 



107 
 

 
Figure 4.27: Logical Node relationships 

(IEC 61850-7-4, 2003, p.17) 

The basic building blocks of a logical node are depicted in Figure 4.28 below: 

 
Figure 4.28: Basic building blocks for LN 

(IEC 61850-7-1, 2003, p.45) 

From the definition of the circuit breaker logical node XCBR in IEC 61850 section 7-4, 

Table 4.8 is presented: 

 

Table 4.8: XCBR Class definition 

 



108 
 

IEC 618507 MODELING METHODS 
 

 

 

                   7-1                                                              7-2                                                        7-3                                        7-4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Communication 
Architecture Overview 

Logical Nodes 
and Data classes 

Communication Structure 
and Common Data Classes 

Communication Service 
and Control Blocks 



109 
 

Please find the complete IED Capability Description file for the current project in 

APPENDIX C . 

4.4.4.2 Second modelling step: definition of the logical device model 

The logical device is a composition of logical nodes and other services (GOOSE, 

Setting Group …). The grouping of logical nodes within logical devices is based on 

common features of these logical nodes as related to substation functions (IEC 

61850, 2010). Therefore, in ICDs of multifunctional IEDs there can be a logical device 

for protection, another for measurement, another for control, etc. Figure 4.29 

represents the building blocks for the logical device. 

 
Figure 4.29 : Logical Device buiding block 

(IEC 61850-7-1, 2003, p.47) 

The logical node zero (LLN0) and the logical physical node (LPHD) are deployed 

within the logical device itself. It is through the logical node zero that communication 

services such as GOOSE are enabled. The logical node zero represents the common 

data of the logical device and the logical node physical device represents the 

common data of the physical device hosting the logical device (IEC 61850, 2010).  

 

As illustrated in Figure 4.30, the logical device is then encapsulated in a server 

structure together with an additional function block (File transfer, time synchronisation 

and association). 

 



110 

 
Figure 4.30: Server Logical Block 

(IEC 61850-7-1, 2003, p.54) 

In general, the basic data model is extended by the control model that will include 

additional logical nodes. In the case of a circuit breaker, the control model needs to 

include two additional logical nodes which are the switch control LN (CSWI) and the 

interlocking LN (CLIO). Figure 4.31 identifies additional logical nodes required for the 

control model to have a fully implemented circuit breaker control function according to 

common protection practice. 

 

 
Figure 4.31: Full Breaker control functions 

(IEC 61850-5, 2003, p.38) 

  



111 
 

Assuming a control function that is not distributed, the logical device for a circuit 

breaker control model localised at the station bus level is composed of the following 

logical nodes: 

 LLN0 (Logical node zero); 

 LPHD1 (Physical device information); 

 XCBR1 (Circuit breaker); 

 CSWI1 (Switch controller); and 

 CILO1 (Interlocking). 

 

An optional Generic Input/ Output (GGIO) LN can be part of the model. The 

opening/closing control command of the XCBR LN shall be subscribed to from the 

CSWI LN as stated in the IEC61850 standard. The control of the circuit breaker from 

a remote location is based on client/server architecture and uses associated services 

based on MMS communication. 

 

Since the current work is limited to the GOOSE communication aspects, the circuit 

breaker control model is reduced to its minimum model for demonstration of GOOSE 

communication. The XCBR LN is directly controlled from a remote Desktop without 

passing through the CSWI or CILO LN. Thus, the Select-Before-Operate control 

method will not be used. Using IEDScout software as a client HMI, the control method 

used in this project is known as the Direct with Normal Security method. 

 

For a minimal implementation the intelligent circuit breaker controller consisting of the 

following Logical Nodes are part of a single control logical device: 

 LLN0 (Logical node zero); 

 LPHD1 (Physical device information); 

 XCBR1 (Circuit breaker); and 

 GGIO (Generic process I/O). 

 

This minimal logical device composition has been acknowledged as sufficient for 

demonstration of the GOOSE message publishing mechanism and direct control to 

the circuit breaker position. In the following section, this logical device model is part of 

the DK60SV1.CID that is used for the server configuration. Figure 4.32 illustrates 

what is known in object-oriented terminology as “encapsulation” or the “container” 

principle. A review of some important IEC 61850 concepts might be necessary when 

it comes to modelling in section 3.3.  

 



112 
 

 
Figure 4.32: Encapsulation perspective for DK60SV1.CID 

 

As stated in section 4.3.7.2, the subscription mechanism is associated with a client 

deployment from within the IED together with an imported and adapted Substation 

Configuration Description (SCD) file. Additional details with regards to the 

subscription model (DK60CL1.SCD) and its mechanism is discussed in section 5.2.2. 

 

Figure 4.33 provides an overview of the correlation of block data inside a CID file. 

 

 
Figure 4.33: Overview of Block Data in a CID file 

(SystemCorp_a, 2011) 

  



113 
 

4.4.4.3 DK60SV1.CID file creation for Server configuration 

Figure 4.34 is an example of Circuit breaker control function using a direct access 

with normal security method (IEDScout software from OMICRON can be used as a 

universal client HMI). The DK60SV1.ICD file has first to be designed on paper and 

should also include the position of the breaker that is embedded within the GOOSE 

message and published on the network. 

 

 

 

Please refer to the ICD Designer manual on how to develop custom ICD files (Section 

4.3.4). 

  

Close / Open command 
based MMS  

PC side with IEDscout 
as a client-HMI

Breaker Status position 
based GOOSE 

 Network 

LPHD LLN0 

GGIO XCBR 

DK60 Server/ 
Publisher 

IED/ intelligent circuit 
breaker Controller 

   MMS Traffic 
   GOOSE Status 

Figure 4.34: DK60SV1.ICD functions overview 



114 
 

Figure 4.35 displays different details of a CID file (Communication Block section and 

IED block section). The following SCL section composition conforms to that specified 

by the IEC 61850 standard and reported in Figure 3.23: UML diagram overview of 

SCL schema, page 67. 

 

 

  

The data template section is not accessible from within ICD Designer. For the 

development of a new logical node, XML Marker or the Notepad application within 

Windows may be used to modify the data template according what is required.  

 

Please note that it is advisable to make a backup copy of the data template before 

introducing any changes. If the data template is inconsistent after changes have been 

brought about, ICD Designer upon execution displays an error message. The data 

template used by ICD Designer is located in:  

C:\Program Files\ICD Designer\Templates\IEC61850 for the full version. 

 

  

Circuit Breaker 
Logical Node 

Logical Device 

Communication 
Set up Block 

Figure 4.35: Partial view of DK60SV1.CID file 



115 
 

Figure 4.36 presents details of the composition of the IED section.  

 

 

 

 

Please refer to Appendix C for a review of the complete DK60SV1.CID file. 

  

Logical Device 

Data Set for 
GOOSE 

GGIO LN used to read 
Circuit breaker single 

point Position  

Figure 4.36: Details composition of IED section of the DK60SV1.CID 



116 
 

Figure 4.37 illustrates the use of Private Generic Value (GPV) as per PIS-010 

implementation. 

 

 

 

The GPV are used to map user application data to the PIS-010 communication stack. 

GPVs field are also implicitly used in the user application local database function. The 

binding of user application data to the PIS-010 and to physical input/output of the 

DK60 expansion pin header S10 respectively, is discussed in section 5.2. 

 

  

Circuit Breaker Logical 
Node 

Binding of Application 
Data to the PIS-10 stack 

Figure 4.37: Private Generic Value for Data binding to PIS10 stack 



117 
 

4.4.4.4 DK60Cl1.SCD file creation for Client configuration 

 As per the PIS-010 implementation of IEC 61850 functions, the subscription to 

GOOSE message of a field device is implemented through the deployment of a client 

module configured with a Substation Configuration Description (SCD) file 

(DK60CL1.SCD in this document).Please, refer to the ICD Designer manual to 

discover how to develop a custom SCL file (Section 4.3.4). 

 

Figure 4.38 illustrates the internal organisation and communication flow based on the 

DK60SV1.CID and DK60CL1.SCD for the current research project. 

 

 

GOOSE message are used by the substation protection function as a fast alarm 

communication system to generally issue a trip command to a circuit breaker. 

GOOSE messages can also be used to indicate issues within the communication 

DK60 Server/ Publisher DK60 Client/ 
Subscriber 

Trip command based 
GOOSE 

        MMS Traffic 
   GOOSE Status 
   GOOSE Alarm 

IED 

 
Network

Close / Open command 
based MMS  

PC with IEDscout as a 
client-HMI

Breaker Status position 
based GOOSE 

PTOC 

PTRC 

To CTs element 

Via 
DK60CL1.SCD

Breaker IED 

DK60SV1.CID 

GGIO 

LPHD 

XCBR 

LLN0 

Specific I/O   memory   area 

Figure 4.38: DK60CL1SCD and DK60SV1.ICD functions overview 



118 
 

system. These indications might be circuit breaker status position or any data 

included in the dataset associated with the GOOSE control block. 

 

Figure 4.39 presents a diagram that shows the steps to be followed in order to 

develop a client Substation Configuration Description (SCD) file that will work with the 

PIS-10 stack such as the DK60CL1.scd. 

 

 

Please follow these steps strictly; the SystemCorp team may be contacted for 

additional support if particular problem are encountered.  

  

1- From your vendor specific 
environment export the 

complete SCD file. 
(Ex: SIEMENS-” DIGSI 4) 

2- Open the exported SCD 
file with ICD Designer and 

add a New Client IED 

3- Setup Communication 
block in this order: 

1st.  Client/ Subscriber 
2nd. Server/ Publisher 

4- Setup IED section block 
in this order: 

1st. Client/ Subscriber 
2nd. Server/ Publisher

5- Bind required Data to 
PIS-10 stack. Delete 

irrelevant IED you do not 
use for subscription

6- Test for subscription 
capability after software 

review at the DK60 board 

Figure 4.39: Development steps for compatible PIS10 stack SCD file 



119 
 

Figure 4.40 shows how to add a New Client IED section for use with the DK60 board 

and the final view of the DK60CL1.SCD file after rearrangement of the communication 

section block and the IED section block. 

 

 

 

Note that any IED that is not required to implement the subscription needs can be 

deleted from the design. It is recommended to not redefine the SCL “Data Template”. 

This section of the SCL file is normally not visible within ICD-Designer to avoid any 

structural damage. 

Delete irrelevant IED 
then rearrange all 

blocks 

Communication Setting 
for DK60 Client side/ 

Subscriber 

Communication Setting 
for SIPROTEC 7SD5/ 

GOOSE Publisher 

IED representing the 
SIPROTEC 7SD5/ 
GOOSE Publisher 

IED representing the DK60 
Client side/ Subscriber 

Right-click on SCL” 
Icon 

Figure 4.40: Details composition of the DK60CL1.SCD 



120 
 

  

Figure 4.41 shows where the data binding for subscription of an incoming GOOSE 

message has been made for the current project in order to trip the prototype circuit 

breaker. 

 

 

Note that the current data binding (see Figure 4.41) for the circuit breaker trip is 

based on the General Trip signal alarm. The trip subscription is directed to the same 

memory area as the control data for circuit breaker positioning 

(XCBR/Pos/Oper/ctlVal). 

4.5 Conclusion 

Chapter 4 presents an IEC61850 solution that is used to develop an IEC61850 

compliant device. It also presents preliminary work in terms of the data model 

according to the IEC 61850 project specifications. 

 

The choice made with respect to the DK61 development environment to continue this 

research work is justified by the amount of system integration work (especially on the 

communication stack) that was required by the author before a fully functional 

IEC61850 application was operational. 

 

Figure 4.41: Subscription by means of GPV 

Generic Private Value is 
added directly to the Data that 
is considered for subscription 

GPV given to the subscribed Data 
point to the same application entry 

point as XCBR/Pos/Oper/ctlVal 



121 
 

Table 4.9 shows where the work done in this research projects fits in, and what 

studies still need to be performed for future project developments to ensure complete 

IEC 61850 compliant intelligent circuit breaker controller devices. 

 

Table 4.9: Project complexity delimitation 
Moral entity or 
Institutional body 

Task Required knowledge 

SystemCorp Communication stack development 
(PIS-10/ GOOSE, MMS …) 

Embedded Network 
programming 

API for End-User software developer 
in order to add IEC 61850 
communication capabilities to an 
application. 

Beck-IPC Platform Target development and 
specific system integration on the SC 
143 chip. 

Embedded software 
development and hardware 
expertise. 

IEC 61850 System 
Engineer 

[This is where the current 
research work focuses]. 
IEC 61850 software application 
development, homogenous 
integration and interoperability 
achievement. 
 

-Embedded software 
development for Real Time 
Systems 
- Understand substation 
principle for Protection, Control, 
Metering, Monitoring … 

Related to the 
application of other 
substation standard 

[This is where the focus of future 
research work should be]. 
Deployment of substation logic 
control automation and distribution at 
the software level. Final device build 
and verification for correctness of 
execution and compliance to the 
relevant standard 

- Distributed system; 
- IEC 61499 and IEC61131-3 
- Electromechanical  
- Electromagnetic interference 
- Heat transfer,  etc. 

 

Any further developments on this research work are based on the DK61 development 

kit and its embedded SC143 chip. 

  



122 
 

CHAPTER FIVE:  

CASE STUDY IMPLEMENTATION: SOFTWARE 

DEVELOPMENT, INTERFACING AND SYSTEM 

INTEGRATION 

 

5.1 Introduction 

The sections in this chapter detail the following: 

Section 5.1 - the Introduction (current section). Section 5.2 - the Software 

Development steps leading to the creation of the GA61850.exe (process application 

software) which is IEC 61850 compliant. This is not to be confused with the 

communication software stack (PIS-10, already provided by SystemCorp). Particular 

details with regard to the software planning and design are given in Section 5.2.2. 

Details on Data Object mapping procedure from the IEC 61850 communication stack 

(PIS-10) to the process application (GA61850.exe), also from the process application 

to the I/O unit and vice-versa are also described in the same Section. More details 

with respect to specific Database structure are given in Section 0.  Section 5.3 - the 

system Hardware Integration between the emulated circuit breaker and its inter-action 

with the process application which was developed on the embedded system platform. 

5.2 Software development  

The term “software” is used to define a collection of computer programs and related 

data that provides the instructions in order for a computer to know what to do and how 

to do it. In other words, software is the realization of mathematical or logic functions 

as procedures. These functions map a body of input data into body of output data 

(Edward, 2002). 

 

In addition to the above general description of the term “software”, the term 

“Embedded software” refers to the realization of mathematical or logic functions as 

procedural behaviour that uses some input parameter/s to produce output control 

signal/s. Those output signals affect directly the state of some hardware component. 

Therefore, the principal role of “Embedded software” is the interaction with the 

physical world (Edward, 2002). 

 

Embedded systems react in real-time with the surrounding peripherals and 

environment. For the case of this project, this ability is facilitated through the use of a 



123 
 

Real-Time Operating System (RTOS). In general, embedded systems utilize 

peripherals interacting around a central processing unit (microprocessor). In the case 

of the current thesis, the SC143 embedded web microcontroller (from Beck IPC) has 

its processing unit together with its main peripherals integrated in a single-chip 

solution. 

 

For the current project it is to be assumed that the software developed falls into the 

definition of “embedded software” stated above.  

 

[Note: Section 3.6.3 has given a description of a compact approach which may be 

used for the software and product development life cycle. One can decide to choose 

another software life cycle or product development methodology. ] 

 

With reference to the note above: Figure 5.1 shows the proposed project evolution 

flow (Software/ Hardware sequence co-development strategy) which starts by 

requiring a clear identification of the project needs and specification(Step A). It is 

practical to develop different use-case diagrams (UML based) that focuses on 

different aspects of the project (Step B). Different IEC 61850 Data and service models 

(Protection, Control, Monitoring...) have to be clearly understood, decided upon, and 

set down on paper (Step C); before one can start the development of any type of 

System Configuration file - SCL file (ICD, CID, SCD…) (Step E). It is only when the 

Data model construction of all required SCL files has been completed, that you may 

proceed to the Software Design stage (Step F).  

  



124 
 

 
Figure 5.1: Software/ Hardware sequence codevelopment strategy 

 



125 
 

In order to develop properly executing/ functioning, and robust software, different 

verification steps (not described in this thesis) have to be taken according to software 

standards (See Section 3.6.3). The software developer needs to commit to 

incorporating “Error handling” strategies to avoid application crashes or unreliable 

software. When the quality of the software operation and reliability is regarded as 

sufficient, one can move forward to the hardware development stage (Step H: Figure 

5.1). This stage includes the adaptation of some of the CPLD code in order to 

establish a hardware link to specific I/O ports. You also need to re-evaluate your 

timing system (software Timers and hardware delay) more than once before being 

able to reach sufficient stability in your system. 

 

Figure 5.2 shows the sequence of the development (and/or adaptation) of the 

software, and the file types and file names that arise during the system integration 

process.  

 

 

 

Explanation of, or development of the software is discussed below in the sequence 

indicated in Figure 5.2 above.  

5.2.1 Engineering the system architecture 

For this project, the SCL file development has been dealt with in Section 4.4.4.3 for 

the DK60SV1.ICD (Server configuration) and at Section 4.4.4.4 for the 

DK60CL1.SCD (Client configuration). 

5.2.2 Application software: planning and design 

Before the software design stage, one needs to have a minimum knowledge of Beck 

specific APIs and a good knowledge of the IEC 61850 API from SystemCorp (see 

section 4.3.6). The developer needs to identify clearly what functionalities are 

Engineering the system architecture:  
SCL files development (ICD designer) 

dk60sv1.cid and dk60cl1.scd

Application software: 
C/C++ Source code 

development  
(Paradigm for Beck IPC) 

[ga61850.c] 

Hardware interfacing: 
 VHDL code rewrite for CPLD 
(XILINX ISE WebPACK 6) 
[dk60_xcbr .vhdl CODE] 

1

23

Figure 5.2:  System development workflow 



126 
 

implemented within the domain of the IEC 61850 stack, and what other functionalities 

he/she would have to write while developing their own source code. Please refer to 

the online KEMA certificate of the PIS-10 stack at: 

http://www.systemcorp.com.au/images/stories/manuals/KEMA_Certified_61850_Stack_Functions.pdf 

for more information about the capabilities and limitations of the PIS-10 IEC 61850 

stack.  

 

On examining the internal configuration of the PIS-10 IEC 61850 stack (version 

1.36.), the developer realises that the Publisher and Subscriber mechanism for 

GOOSE is considered to be an added feature to the Client/Server functionality (see 

section 3.3.7). The Publisher role is executed through utilization of the IEC 61850 

Server mechanism, while the Subscriber role is performed by an IEC 61850 Client 

(see section 4.3.7). Server and Client roles have been implemented independently 

from one another. This means that both objects can exist on the same hardware 

platform and also within the same executable programme. 

 

The PIS-010 (v1.36) communication stack is event driven. The PIS-010 interacts with 

the software application by means of function calls and call backs. It also interacts 

with the Data-Link layer of the OSI model via the Ethernet Packet driver provided by 

“Beck IPC”. On reception of a GOOSE message (Ethernet based), a hardware 

interrupt (Int 0xC2) is issued to the PS-010 stack by the packet driver. In turn, a call-

back function (interrupt) is issued by the PIS-010 stack to the software application for 

it to process the new GOOSE message. 

  



127 
 

Figure 5.3 below presents the project software design procedure.  

 

 

 

STEP H: 
Refer to 

Figure 5.1 

No 

Yes 

STEP F_1:  
General use case and 
Global state Machine 

definition 

STEP F_2: 
Detailed Input/ Output table 

definition 

General study 
Of the SC143 microcontroller, the 

DK60 board and the IEC 61850 API 

STEP F _3: 
Sub-routine function 

definition 

STEP F _4: 
Multithreads and multitask 

context definition 

STEP F _6: 
Subroutine Revision 

STEP G:  
Code writes up and test for 

correct programme 
initialisation. 

STEP F _5: 
Main routine definition 

 
Success? 

Figure 5.3: Project software design procedure 



128 
 

Note: The Design sub-stages specific to the Software Planning and Design depicted 

in Step F of Figure 5.1, are outlined in more detail in Figure 5.3 (Steps F_1 to F_6) 

above, and expanded upon by explanation below. 

 

 STEP F_1: General use case and Global state Machine definition 

A software architecture design starts by the identification at a high level of abstraction 

of what task the developed software is intended to accomplish, and what the 

resources are (e.g. Input\Output interfaces etc) that the software needs to use in 

order to complete a given task. Figure 4.25 gives the use case definition that 

summarises what the developed software is intended to do. 

 

Without giving much attention to the communication aspect of this thesis, Figure 5.4 

shows the basic state machine for the proposed “Intelligent Circuit Breaker 

Controller”. This state machine has been implemented within the software source 

code developed in this thesis. The transition (condition) label “Pb_Open” and 

“Pb_Close” stands respectively for “Push button open command” and “Push button 

close command” (see APPENDIX F and APPENDIX H). 

 

Figure 5.4: Process application state machine for breaker IED 
 

After examination of the IEC 61850 API, it becomes evident that the software 

application for the current research thesis needs to be a combination of Server 

functionality as well as Client. In other words, the developed software application is 

GA61850.exe

End

entry / Terminate All

Breaker_Close

entry / My_User_Update

Breaker_Open

entry / My_User_Update

Trip_cmd /
  (XCBR.Pos.Oper.ctlVal= False)
  OR
  (Pb_Open= Truth)
  OR
  (System Reset= Truth)

Close_cmd /
  (XCBR.Pos.Oper.ctlVal= Truth)
  OR
  (Pb_Close= Truth)

IF /
  (...ctVal= False) 
  AND 
  (Pb_Close= False)

IF /
  (...ctVal= Truth) 
  AND 
  (Pb_Open= False)

System Reset= Truth



129 

composed of two IEC 61850 object modules (Server and Client). Note that Server and 

Client have been arranged to operate independently from one another. 

 

Figure 5.5 below details the State Machine for the Server module. 

 
Figure 5.5: Server State Machine 

Adapted from (SystemCorp_b, 2010) 

The basic Read and Write function for the server is used together with the Operate 

function. 

  



130 
 

Figure 5.6 below details the State Machine for the Client module.  

 

 

Figure 5.6: Client state machine 
Adapted from (SystemCorp_b, 2010) 

The basic Client Read and Write function parameters are set to “Null” as only the 

GOOSE subscription mechanism is required in this case. 

  



131 
 

 STEP F _2: Detailed Input/ Output table definition 

In this step, the system engineer needs to define the input/output system. Figure 5.7 

shows an overview of the hardware interconnection system. The complete definition 

of input/output system needs to take into account the Data mapping from the IEC 

61850 communication stack to the software application local database. But also from 

the entry point in the local database to a particular I/O (physical point).  

 

The binary information carried within the payload of the transmitted or received IEC 

61850 GOOSE message has to be mapped to the physical pins connecting the DK 60 

Development Board to the Emulated Circuit Breaker – as shown in Figure 5.7 below.   

 

The binary information - before being inserted into, or stripped from the Ethernet 

Frame, resides within a dedicated memory location within the SC143. This memory 

location is referred to as the GPV  

 

The virtual input/output within the IEC61850 environment needs to be mapped to the 

real physical input/output via the CPLD. A VHDL file has been adapted for this 

purpose. (See APPENDIX E) 

 

 

 

 

The Generic Private Value implemented by “SystemCorp” in their IEC61850 schema 

allows the System Engineer to assign an address location (Data ID) to a data point in 

DK 60 Development Board 

CPLD 
 

Network Card 
Adapter 

SC143 

Emulated Circuit 
Breaker 

SAS  
Network 

Application 
software 

Address bus 

Data bus 

XCBR Position  
Control 

Pulse Control 
Logic 

Trip Close 

Internal Memory 

XCBR Position  
Status 

[S10-Header] 

Figure 5.7: hardware connectivity between DK60 board and Emulated Circuit 
Breaker 



132 
 

the SCL configuration file. This allows the System Engineer to access that data point 

via the User application. Data point (or entry point) just defines the specific location in 

the memory of the CPU. Also one needs to distinguish between the binding of the 

Application Data Object to the PIS-10 stack and the binding of the physical input to 

the Application Data Object. 

 

The Local Database is created and initialised with the value {0} from within the 

software application code. The Local Database is configured with the appropriate 

value found in the corresponding SCL file (DK60SV1.CID or DK60CL1.SCD). For the 

current project, the SC143 input/output address Location starts at 0xC00. The 

input/output start address refers to a predefined memory location within the SC143 

which corresponds to the Dip switches and the LEDs on the DK 60 board.  

 

The PIS-10 stack uses 5 fields to implement the Generic Private Value data binding 

(Field 4 and Field 5 are not used). Their description is as depicted in Figure 5.8. 

 

 
Figure 5.8: GPV field description 

(SystemCorp_a, 2011) 

As one can see on the picture above, “Field1” is used to identify the Object number. 

“Field2” identifies the object categories (Input or Output) and “Field3” defines the 

object parameter to look for (Value; Quality or Time). For more information relating to 

the PIS-10 Data binding, refer to the “Getting Started IPC@CHIP Embedded Web 

Controller Family IEC 61850 Basics” document. This document is available at: 

http://www.systemcorp.com.au/images/stories/manuals/Getting_Started_DK61_IEC6

1850.pdf  

 



133 
 

Table 5.1 presents the input/output table matrix. The Generic Private Value (GPV) as 

per “SystemCorp” mapping is shown for each data set. As stated previously, the GPV 

fields 4 and 5 are not used in this thesis. They are assumed to be equal to zero {0}. 

Table 5.1  serves as a guide-line for data binding between application data and the 

IEC 61850 communication stack (PIS-10). The table also serves as a reference for 

the implementation of the logical binding between the Complex Programmable logic 

Device (CPLD) extension pin header [S110] on the DK60 board and the 

corresponding entry point in the SC143 internal memory. 

 

Table 5.1: Input/Output matrix 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For this project, interlocking Data-Object “BlkOpn” and “BlkCls” (highlighted in bold 

font on Table 5.2) are part of the modelling as they are specified as mandatory Data-

Objects within IEC61850 - but, they are not routed to the “Logic Control” stage. They 

shall be routed to the “Logic Control” stage in future projects where there might be a 

particular interest on interlocking functions. The “local database” implemented within 

the software application, is structured to accommodate this Look-Up Table. The next 

System Input From 
Circuit Breaker 
Prototype 
  

Unused_CPLD 
Pin header 

System Output to Local 
Circuit control   
(Close, Trip) 

Unused_CPLD  
Pin header 

IN_1: 1st position bit of 
XCBR/Pos/stVal. 
IN_GGIO1/Ind1/stVal  
 
 
                Field1 = 1 
 GPV       Field2 = 1 
                Field3 =  [1 to 3] 

CPLD_1 
[Real Input] 

Active in the current project  
 
OUT_1: 
XCBR/Pos/Oper/ctlVal  
 
 
                Field1 = 1 
 GPV       Field2 = 2 
                Field3 = 1 
 

CPLD_3 
[Real Output] 

IN_2: 2nd position bit of 
XCBR/Pos/stVal. 
IN_GGIO1/Ind2/stVal 
 
                Field1 = 2 
 GPV       Field2 = 1 
                Field3 =  [1 to 3] 

CPLD_2 
[Real Input] 

Not used. Reserved for future 
development 
Ex: to block ‘Open operation’ 
OUT_2: 
XCBR/BlkOpn/Oper/ctlVal  
 
                Field1 = 2 
 GPV       Field2 = 2 
                Field3 = 1 
 

Not used 
CPLD_4 
[Real Output] 

IN_3 (XCBR/Pos/stVal) as 
a double point position 
status. Container is built in 
software. 
 
                Field1 = 3 
 GPV       Field2 = 1 
                Field3 =  [1 to 3] 

NA 
[Recombined 
Input] 

Not used. Reserved for future 
development. 
Ex:  to block ‘Close operation’ 
OUT_3: 
XCBR/BlkCls/Oper/ctlVal  
 
                Field1 = 3 
 GPV       Field2 = 2  
                Field3 = 1 
 

Not used 
CPLD_5 
[Real Output] 



134 
 

section gives more details on how the local database is structured and how the 

communication flow sequence arises. 

  

 STEP F _3: Function description 

Development of an IEC61850 application requires the integration of key functions into 

the user/developer application. On the DK61 Development Kit some of the functions 

reside within the PIS-010 stack, and the user/developer is allowed access to them 

through the function interfaces – some of which have been opened to the developer. 

Even given that the functions are available for use, identification or determination of 

which sub-routines to include in the code might be difficult at first if the developer is 

not familiar with IEC 61850 application development.   

Table 5.2 below presents the list of functions/methods used in this project - with a 

short description of their role.  

Table 5.2: Function list identification 
Function/ method name Description Use for 

Server 
module 

Use for 
Client 
module 

PIS-010 Object Management- From SystemCorp
IEC61850_Create  create a client/server object  

 
 

 

 

IEC61850_LoadSCLfile Configures the client/server from 
an SCL file 

 

 
 

 

 

IEC61850_Start Starts the services (e.g. GOOSE, 
MMS etc) within the client/server 
object. 

 

 
 

 

 

IEC61850_Stop Stop the services (e.g. GOOSE, 
MMS etc) within the client/server 
Object. 

 

 

 

 
IEC61850_Free  Delete a client/server object  

 
 

 

 

PIS-10 Data Attribute Access.- Adapted from SystemCorp
IEC61850_Update Server Function called from the 

user application indicating a 
change in the hardware to the 
IEC 61850 stack. 

 

 

 

 

My_User_Write 
[MyWriteFunction] 

Function calls backs by the PIS-
10 to handle a Write command 
coming from a client on the 
Network. Changes a value on the 
Server 

 

 

 

 

My_User_Read 
[MyReadFunction] 

Function calls backs by the PIS-
10 to handle a Read command 
coming from a Client on the 
network. Requests a value 
FROM the Server 

 

 

 

 

My_User_Operate 
[MyOperateFunction] 

Function calls backs by the PIS-
10 to handle an Operate 
command on selected control/s 
with specified value 

 

 

 

 

 



135 
 

Function/ method name Description Use for 
Server 
module 

Use for 
Client 
module 

My_User_Update 
[MyUpdateFunction] 

Function calls backs by the PIS-
10 to inform the user application 
of a change of a value on a 
published GOOSE issue by a 
Server on the network 

 

 

 

 

PIS-10 Time Function From SystemCorp
getTime get the NTP time NA NA 
PIS-10 Support functions From SystemCorp
IEC61850_GetLibraryVersion Returns the version of the PIS-10 

library 
NA NA 

IEC61850_GetLibraryBuildTime Returns build time for PIS-10 
Library 

  

Other important function or command (Non exhaustive) – From Beck IPC and 
SystemCorp 
CreateLocalDatabase Create the local data base that 

holds the Application Object 
NA NA 

huge InputHandler This is the function that is 
executed continuously. Other 
function are event driven 

NA NA 

RTX_Create_Task This function is used to create an 
executable task (RTOS task). 

NA NA 

RTX_Sleep_Time This function is used to put the 
execution of the current program 
on hold. This is very important in 
multitasking environment. 

NA NA 

outportb Use to Set the Output port NA NA 
inportb Use to read the Input port NA NA 

 

For more information relating to the arguments passed to, and returned from the PIS-

10 functions, please refer to the online API manual at:  

 http://www.systemcorp.com.au/PIS10API/index.html  

 

Any other PIS-10 related functions/ methods that apply to Server or Client that are not 

listed in this table, are to be considered as “Null” for the current project- (i.e. 

IEC61850_Read = NULL, for a Client) (See APPENDIX F: GA61850 Application 

source code at page 273). 

 

 STEP F _4: Multitasking and  Multithreading context definition 

According to BECK-IPC (2011), “A task provides a thread of execution. Each task has 

its own context, including an instruction pointer and program stack. Each task in the 

@Chip-RTOS has a unique priority of execution, providing a pre-emptive form of 

multitasking”. 

 

Considering that the communication stack used to accommodate the Server/publisher 

and the Client/Subscriber (PIS-10) is event driven and no protection algorithm or 

monitoring function (etc) have been implemented as part of the actuator node itself.  

 



136 
 

There is no multitasking operation required for normal execution of the Server and 

Client module - but if one would like to create an application that executes both the 

Server and Client module in a concurrent manner, it is recommended to read the 

BECK-IPC online documentation for multitasking available at: 

http://www.beck-ipc.com/files/api/scxxx/multitasking.htm 

 

[Note: Development of a concurrent system in the case of the current project is not 

critical]. One can develop a multitasking/multithreading application using the Beck 

RTOS @ Chip if doing so increases the stability, reliability and overall performance of 

the system. 

 

 Thus the developed software (GA61850.C) executes only a single task 

(InHandlerTask). The RTOS command used to create and start the task is as follow: 

            /* Create and Start IO Handler Task */ 
  /* with tasked = -1 */ 
            error = RTX_Create_Task(&taskID , &InHandlerTask);  
  if(error != 0) 
  { 
  printf("\r\n IO Handler task Create Failed : %i", error); 
  } 

 

For more detail please consult the software code in APPENDIX F ]. 

 

 STEP F _5: Main routine definition 

The function “main” is used to create and initialise the IEC 61850 object (Server and 

Client). It is also from the function “main” that the “huge InputHandler” function is put 

to action as a RTOS task. Figure 5.9 below was developed to describe (a) the 

software internal initialisation stage (executed once), (b) the active stage and (c) the 

termination stage. Adapted call-back functions such as “My_User_Write” are 

interrupt-driven (based on specific communication event). Some of the important 

functions have been previously described (Cf. Table 5.2: Function list identification). 

 

 



137 
 

 

Figure 5.9: Software application internal description 



138 
 

For details on Step F_6 (Subroutine revision) and Step G (Code write-up) (Cf. Figure 

5.3), please refer directly to the software application code (see APPENDIX F, page 

273).  

 

The next section gives more details on how the local database is structured and how 

the communication flow sequence happened. 

 

Data communication exchange between PIS-10 stack and process application  

 

The “local database” implemented inside the software application is built up in a way 

to accommodate Table 5.1 presented earlier on page 133.  

 

The E in GOOSE message represents the occurrence of an Event. The question 

therefore becomes - how is this “Event” detected/recognised by the system? The 

manner in which it is achieved in the DK60 environment is that a variable is monitored 

periodically and updated and stored in a database. When there is a deviation 

detected from this reference value, an Event is signalled and responded to 

accordingly.   

 

The details of the interaction between the PIS-10 communication stack and the local 

database via specific IEC 61850 API functions are shown in Figure 5.10 which 

represents an elaboration of Figure 5.9. Also note that the general communication 

scenario has been given at “Figure 4.25: Communication scenario for thesis project 

“on page 105. 

 

 



139 
 

 

Figure 5.10: Local Database relationship with the PIS10 stack 



140 
 

For the scope of the current thesis which focuses on GOOSE application, the 

structural arrangement (multiple relational tables) of the local database is sufficient. 

But the management of the local database can be more refined and more complex 

especially if one considers the possibility of communication with an external client to 

the system using an MMS command. 

 

The application local database has a dynamic structure that links local application 

variables to corresponding variables of the IEC 61850 layer structure. Relevant Data 

of the information model (Cf. Figure 3.14 of Section 3.4) are logically linked to an 

entry point in the local database. Also note that, the local database has been 

arranged in such way to detect change of Data value. This is achieved using an 

historical table holding back previous Data value. 

 

Specific function such as MY_User_Operate and My_User_Update are directly 

translating the value of Data they have received from the network into the local 

database and at the same time they are used to set (based on additional software 

routines) the corresponding physical output to the adequate state.  

[Note: Prior to the PIS-10 version 1.36, the basic write function (My_User_Write) was 

used to write data to the local database and at the same time issue an operate 

command to the corresponding output. With PIS-10 version 1.36, the basic write 

function (My_User_Write) is no longer used to issue an “operate” command to the 

output. There is now a dedicated function (My_User_Operate) that handles this task. 

This has changed the way IEC 61850 programmers have to manage the internal local 

database structure and the Update sequence.] 

 

With respect to the Circuit Breaker case study, any change (representing an Event) in 

the local data base output section (see Table 5.1) is going to be automatically 

reflected at the extension pin header S10 (Unused CPLD pin). The extension pin 

header S10 is the point from where the sub-system B2 that corresponds to the logic 

control (connected to the Circuit Breaker emulator) is connected to the DK60 board 

(See Figure 5.18 and Figure 5.18 on page 145 and 146). 

 

In the same manner the Data value to be passed into the PIS-10 stack (from the 

Circuit Breaker emulator) is directly translated from the physical point to its logical 

location in the “local data base”. This is done inside the “huge InputHandler” 

function. The Circuit Breaker emulator returns a binary two-bit word as its status 

which is to be passed through the IEC 61850 Stack (e.g. Double point position 

status). 



141 
 

 

The binding of the physical input to the application Data Object has been catered for 

as a point-to-point implementation. The default Data that results from such a 

connection is a Single bit binary (generically referred to as “Boolean”). The problem 

now is that there is more than one type of data in use in the substation. The current 

project involves four (4) basic Data types which are: Boolean, Double point position 

status (two-bit binary), quality and time. 

 

Unfortunately within the development environment, only the single-bit binary, quality, 

and time are catered for, and the two-bit binary has to specially be accommodated 

(no array processing available).  To create a data-type such as the “Double point 

status” of a Circuit breaker, you may use what is known as a container structure. In 

this thesis the container structure that holds the position status of the prototyped 

circuit breaker is a variable of type “Double point position status” (Dbpos).  

 

The link between the container and the individual input point that represents the 

position of the circuit breaker (See Figure 5.18) is made by creating a software loop 

that reads the individual position bit signals sequentially from the circuit breaker 

emulator (System C: Figure 5.18) then, based on those values, link a predefined 

value to the container structure. The values to load in the container based on single 

point position entries are as depicted in Table 5.3 below: 

 

Table 5.3: Container Value for Circuit breaker position 
Position 
Bit_2 

Position 
Bit_1 

Container value as per PIS-10 v-
1.36 
(XCBR.Pos.stVal) 

Interpretation

0 0 IEC61850_DB_POS_OFF 
{0x00} 

“Intermediate state” 

0 1 IEC61850_DB_POS_FALSE 
{0x40} 

“Off/ Open state” 

1 0 IEC61850_DB_POS_TRUE 
{0x80} 

“On/ Close state” 

1 1 IEC61850_DB_POS_INVALID 
{0xC0} 

“Invalid state” 

 

After this step has been completed, a call is performed to the IEC61850_Update with 

the corresponding parameters (see APPENDIX F).  

 

The following gives some code samples that illustrate what has previously been 

mentioned above. 

 

 

 



142 
 

A code sample for adapting the link between the database and the GOOSE message 

to accommodate two data types instead of one has been developed and is presented 

below; 

 
Figure 5.11: Data type managment for local database 

 

The real-time updating of two data types instead of one - to track GOOSE events on 

the DK60 platform; a typical scenario is the following - Digital I/O points continuously 

monitored, status of breaker changes; status change detected and compared to value 

in historical field in database (see Figure 5.12) 

 
Figure 5.12: Monitoring of Input for a change of status 

 

 



143 
 

Assignment of value pointed to by database pointer to a variable: Computation for 

new value for double point status – using a loop, store individual bits in separate 

variables then use logic test conditions (see Figure 5.13) 

 

Figure 5.13: Saving Status of Input into global variabale 
 

Determine a value to assign to a structure used to hold the double-point-status value 

(see Figure 5.14). 

 

Figure 5.14: Conditional affection of container value for circuit breaker position 
  



144 

Figure 5.15 shows the update of the individual bit values in the historical table within 

the database is done; 

 

 

Figure 5.15: Update of local database 
 

In Figure 5.16, a call to the “IEC61850_Update” function of the PIS010 stack is 

performed in order to update the GOOSE value; (GOOSE performance affected by 

pause in this polling loop); 

 

Figure 5.16: Update of IEC 61850 database 
 

The procedure above refers to the case when the event is generated from within the 

DK60 environment (GOOSE transmitted). A different mechanism is to be considered 

when the event is generated externally (GOOSE received). 

 

 

Need to be adjusted carefully due 
to its impact on the GOOSE 

performance 

Update the stack database 
with a new value to be 

embedded in a GOOSE 
message 



145 
 

5.3 Interfacing and System integration  

 

Re-direction of binary i/o’s 

The basic hardware connectivity between the DK60 board and the circuit breaker 

emulator is presented in Figure 5.17. The Complex Programmable Logic Device 

(CPLD) is used to send the breaker control value signal to the “Pulse Control Logic” 

stage via the extension pin header [S10] of the Dk60 board (Cf. Section 4.3). The 

CPLD also passes position information of the emulated circuit breaker to the software 

application (GA61850.exe).  

The DK60 board originally came with the binary I/O routed to switches and LEDs. For 

the application developed redirection was required of the binary I/O to different pins. 

The VHDL code required to re-programme the CPLD to achieve the goal stated 

above, is listed in the file dk60_xcbr.vhdl (in Appendix E) 

 

 

Figure 5.18 presents a view of the system integration that takes into account the 

software modularity. The system B is the Actuator Node. It is composed of two (2) 

subsystems. The Subsystem B_1 is the Dk60 board (already presented in section 

4.3). The subsystem B_2 is made of logic gate ICs and RC circuit. The subsystem 

B_2 is used as a pulse control circuit. 

 

The pulse control circuit (Subsystem B_2) takes as input the internal memory state of 

“XCB.Pos.Oper.ctlVal” from which it generates two (2) outputs (SW_Trip and 

SW_Close). With respect to a change of state in the data attribute “ctlVal”, the pulse 

DK 60 

CPLD 
 

Network Card 
Adapter 

SC143 

Emulated Circuit 
Breaker 

SAS  
Network 

Application 
software 

Address bus 

Data bus 

XCBR.Pos.Oper.ctlVal Pulse Control 
Logic 

Trip Close 

Internal Memory 

XCBR Position  
Status 

[S10-Header] 

Figure 5.17: Basic hardware connectivity 



146 

control circuit is going to generate a pulse signal at the suitable output to either close 

or open the breaker. 

 
Figure 5.18: System integration for Actuator Node 

 

With respect to the current thesis, the “Actuator” functionality is then contained within 

the “System B” that constitutes the “Intelligent Circuit Breaker Controller”.  Also note 

there is no power equipment (see Figure 4.20 page 97) to serve as actuating module 

(Circuit breaker Motor) as it has been decided to use a compatible 5 volts latching 

relay that is going to serve as an emulated breaker (System C) for laboratory 

experimentation.  

 

Table 5.4 presents the Sub-system B_2 output signal variation based on its input 

(OUT_1) taken from the Sub-system B_1 (DK60 board). The Output signals 

(SW_TRIP and SW_CLOSE) are then connected to the emulated circuit breaker plant 

which is the System C. 

Table 5.4: Output logic control 
OUT_1 
[XCBR$Pos$Oper$ctlVal  
Sub-system B_1] 

SW_TRIP 
[Pulsed/ Output] 

SW_CLOSE 
[ Pulsed/ Output] 

Initialization of Client/Server application 

0 
1 
0 

1 
0 

On Value change 

1  
0 

1 
0 

1 
0 

1 
0 

1 
0 

1 
0 

 

 



147 
 

The Sub-system B_2 (Pulse control logic) is built up by means of individual Integrated 

Circuits (ICs) that implement logic gates. In order to generate the pulse control 

strategy presented in Table 5.4. The circuit diagram shown in Figure 5.19 has been 

adopted. 

 

Figure 5.19: Pulse Control schematic 
 

The driving input signal of the Pulse control circuit is taken from the memory location 

that corresponds to the first Output LED on the DK60 board (LED_1). The resulting 

output signals (SW_CLOSE and SW_TRIP) are the input signals of the System C 

(Emulated circuit breaker). 

 

The pulse duration is achieved by the RC circuit composed of R2, R3 and C1. Based 

on the characteristics of the type of component used as physical circuit breaker, the 

duration of the pulse to close the breaker is about 50 mS and the duration of the 

pulse to trip the breaker is 100 mS. Note that in commercial IEDs a normal pulse has 

duration of about 1second (user configurable). 

 

The System C represents a circuit breaker emulator prototype (5v compatible) to be 

used for laboratory purposes. It is composed of a two (2) way latching relay (DSP2a/ 

see APPENDIX I). In the case one wants to connect the System B to a circuit breaker 

prototype (System C) using a voltage higher than 5 volt, optical isolation of both 

systems should be considered. The schematic of the System C is shown Figure 5.20. 



148 
 

 
Figure 5.20: Prototype Circuit breaker schematic 

 

Please find the complete diagram for both the Pulse control logic and the prototype 

Circuit breaker in appendices G and H (pp.303-305). 

 

The resulting file for each process can be found in Appendices as listed below: 

 Appendix C: Engineering the system architecture: filename dk60sv1.icd and 

Appendix D: dk60cl1.scd, for SCL file development – XML files; 

 Appendix F: application code software, for “C” source code of the process 

application: filename ga61850.c ; and 

 Appendix E: Hardware interfacing (re-direction of binary i/o’s) for the CPLD on 

the DK60 board: filename dk60_xcbr.vhdl  VHDL code. 

 

Note: Although the software was considered and developed in the sequence shown in 

Figure 5.2, Figure 5.21 below shows the practical sequence order for DK60 file 

upload. This is done in the reverse order as compared to the logical development flow 

steps described in Figure 5.2. 

  



149 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.22 presents the screen result obtained via a Telnet connection to the DK60 

board at start up (Program to be started has been predefined in the Batch file on the 

SC143 Chip).  

 

Figure 5.22: Telnet program feedback at start up 
 

The “Error: 13006” (Figure 5.22) indicates that no Network Time Protocol (NTP-

Server) was present or reachable.  

 

 

 

 

 
Load all required SCL 

(DK60SV1.ICD & DK60CL1.SCD) 
file to the SC143 using the Chiptool 
via FTP session on Eth0. Configure 
the Batch file and reboot the DK60. 

Compile and Post make your process 
application from Paradigm software. The 

executable file is then loaded 
automatically to the SC143 chip via the 

Eth0 port. 

Load the VHDL code (dk60.jed) onto the 
CPLD from XILINX environment using a 
parallel cable IV connected to your PC 
and the SPI/S37 on the DK60 board. 

1

2

3 

Figure 5.21: Prefered Sequence for DK 60 file upload 



150 
 

5.4 Reported issues  

Some of the issues experienced (non exhaustive) during development can be stated 

as follows: 

 Documentation lacking in accuracy or detail on many aspects of the Protocol 

Integration Stack (PIS-10) and associated sample code delivered with it (e.g. 

the target model used for code compilation is of type “huge” and not “large” as 

stated in the original manual delivered with the DK61 Kit). 

 The Protocol Integration Stack (PIS-10) used (early version), did not have the 

level of maturity (of the vastly improved current version) when the research 

project was started. 

 The MAC address of a device publishing GOOSE message (commercial IED) 

should normally be specified in the “DK60CL1.SCD” file (see DK60CL1.SCD). 

Unfortunately, due to some changes in the SC143 Operating System structure 

of the Beck IPC; the use of the subscription functionality of the PIS-010 stack 

(from SystemCorp) was problematic (at the time). The Error reported was as 

follows: <Int 0xC2 AX=0x060A not supported at task 1640!> - meaning that 

the process application software developed could not access the content of 

the GOOSE packet due to some incompatibility between the PIS-010 and the 

interrupt service routine of the Beck IPC packet driver’s. The solution that 

worked in the case of the current research project was to delete the MAC 

address of the commercial IED from the SCL file. This then allowed the PIS-

010 stack to retrieve and process the Ethernet frame. Although this was a 

solution for this project, it is not strictly IEC 61850 compliant, as the MAC 

address is mandatory in the SCL file.   

 

There is ongoing collaborative work being done between SystemCorp and 

Beck IPC in order to resolve outstanding issues such as those described 

above. The fact that the (proprietary) Operating System of Beck IPC is 

changing from time to time as well as periodic changes in the PIS-010 stack 

allow for compatibility issues to take place (developers need to be aware of 

this possibility of mismatch). This has made the development work of the 

process application software very difficult.  

 

As a matter of fact, there is no current demo sample of source code available 

at the SystemCorp website that corresponds to the type of implementation 

described and implemented in this research (Server/Publisher and 

Client/Subscriber example) Figure 5.23. 



151 

 

Figure 5.23: Developer's page at SystemCorp website 
 

5.5 Conclusion 

This chapter has first presented the software development of an IEC 61850 

application based on the PIS-010 stack library from SystemCorp. Secondly, the 

Chapter has presented the system Hardware integration and inter-action of the PIS-

010 stack with the physical input/output (I/O) points on the board. It has shown also 

how to interconnect the DK60 board to a compatible 5v latching relay implemented as 

part of a circuit breaker emulator. 

 

The software code for the prototyped actuator node has been done in ANSI C using 

Paradigm C\C++ for a Beck single chip solution. The VHDL “configware” code for the 

CPLD on the DK 60 board has been re-written to accommodate the particular thesis 

project design using XILINX ISE WebPACK 6. Other software tools have also played 

an important role for the completion of the present thesis. Table 5.5 below details the 

complete list of software tools and the filenames for the code developed and used 

during this project. 

  

This shows that the implemented 
process application software is 

currently relevant 



152 
 

Table 5.5: Project software tools 
Software Tools  Purpose
Management of the DK60 board  
Chiptool (V 6.1.3.6) Chiptool for the management of the SC143 chip at the Dk60 

board  in order to configure basic setting of  the board and 
much more 
http://beck-ipc.com/en/download/index.asp  

Programming  
Parading C\C++ for Beck IPC 
(v7.00.048) 

 Application (GA61850) software code development in C. 
http://beck-ipc.com/en/download/index.asp  
 

XILINX ISE WebPACK (V.6) Application Hardware (dk60_xcbr vhdl) code programming in 
VHDL 
http://www.xilinx.com/webpack/classics/wpclassic/  

Simulation and Testing   
IEDScout (V 2.11) A multipurpose IED Universal client used for GOOSE 

subscription and simulation. Remote control of the actuator 
node and as a Data model browser 

Test Universe (QuickCMC and GOOSE)  
(V 2.40) 

Compact suite of diverse tools that enable testing of 
protective relays. 
http://www.omicron.at/en/products/pro/secondary-testing-
calibration/sw/  

Network analyser  
Wireshark (v 1.8.2) To capture Ethernet packet (GOOSE…) 

http://www.wireshark.org/  
MMS Ethereal (V 1.1.0) To capture MMS packet  

http://www.ethereal.com/  
Packet builder (v 1.0) For advance cyber security investigation 

http://www.colasoft.com/packet_builder/  
Network Switch configuration  
RuggedExplorer (v 1) Specific tools for Rugged switches. Help to discover and 

configure the switch online. 
http://www.ruggedcom.com/products/explorer/  

File comparison and management  
WinMerge (V 2.12.4.0) This is power full windows based tools to compare quickly 

files between then and pick up were differences are. 
http://winmerge.org/  

Notepad++ (V 6.1.6) Help in exporting source code from paradigm to MS word 
2007. You can use this tool if you want to keep a certain 
format of your code especially the colour difference between 
line code and comments. 
http://notepad-plus-plus.org/  

SCL/ XML file design  
ICD Designer (v 1.1.0.12) Proprietary tools from SystemCorp for the development of 

SCL files (dk60sv1.icd and dk60cl1.scd) 
http://www.systemcorp.com.au/component/content/article/23-
software/46-icd-designer.html  

XML Marker (V 1.1) Free tools for the development of XML based type file 
http://symbolclick.com/  

Commercial IED Tools used in the 
project 

 

SEL Architect  SEL tools for IEC61850 communication configuration 
between devices 
https://www.selinc.com/SEL-5032/  

DIGSI 4 (v 4.82.16) SIEMENS tools for device configuration and IEC 61850 
communication configuration between devices 
http://www.energy.siemens.com/co/en/automation/power-
transmission-distribution/protection/software/digsi-4.htm  

Modelling and Algorithm 
diagrams (Graphical) 

 

Eclipse 3.7 (Indigo)/ TOPCASED project UML 2 modelling platform specially designed for embedded 
system hardware and software development 
http://www.topcased.org/index.php/content/view/40/54/  

yEd (v 3.9.2)  Simple tools, easy to use for algorithm development and 
other graphical representation 
http://www.yworks.com/en/products_yed_about.html  



153 
 

 

The next Chapter presents the test-scenario for the system developed, and analyses 

the results obtained from a GOOSE message structure point of view as well as from a 

GOOSE performance point of view. 

 

 

  



154 
 

CHAPTER SIX:  

CASE STUDY IMPLEMENTATION: TESTING AND RESULTS 

ANALYSIS 

 

6.1 Introduction 

One of the messages associated with the GSE services, is the Generic Object 

Oriented Substation Event (GOOSE) message at the station “Station Bus” and also 

at “Process Bus” (Cf. Section 3.4.2 .Definition of a GOOSE message, page 59).  

 

Logical interfaces have been defined in the standard. For the simulation and analysis 

of an IEC 61850 based GOOSE message, the interface 8 at the Bay unit level is of 

primary interest (direct data exchange between the bays especially for fast response 

e.g. protection functions). GOOSE messages can also be used at the process bus as 

explained in Section 4.2 (IF5: Control-data exchange between process and bay level). 

Please refer to section 3.4.4 for a short description of each interface.  

 

To gain insight into the structure of GOOSE messages, a general case study is first 

presented in Section 6.2, in which a GOOSE message is simulated by means of 

OMICRON IEDScout software, captured via network protocol analyzer software - 

Wireshark, and analyzed relative to the structure as defined in the IEC61850 

Standard. Further confirmation of the structure of a GOOSE message and the 

encoding of its data, is obtained through experimentation utilizing commercially 

available IEDs. 

 

In Section 6.3 the experimentation and testing for the case-study for the research 

project utilizing the embedded-system-based controller is outlined. It consists of the 

demonstration of the deployment of an Overcurrent scheme distributed between a 

commercial protective relay (SIEMENS_SIPROTEC 7SD5) and the embedded DK60 

experimental board. Figure 6.1 below illustrates the topology that is used for that 

purpose. A step by step description of the experiment is also provided in Section 6.3. 

 



155 
 

 

 

 

 

In Section 6.4, the frame structure of the GOOSE messages transmitted and received 

between the DK60 embedded platform and vendor IED in the “Overcurrent” case-

study are analysed. The GOOSE messages are captured with the network analyser 

software, Wireshark. The experiment results-analysis is further extended to the 

GOOSE performance evaluation; device interoperability assessment; and an aspect 

of Cyber security. A brief overview of the results obtained for Circuit Breaker control 

using an MMS command sent through the TCP/IP stack is also presented as part of 

the results analysis. 

 

6.2 GOOSE message structure investigation 

Figure 6.2 details the frame structure of a GOOSE message (ISO/IEC 8802-3) as 

specified in the IEC 61850-8-page 114. 

Test Injection 
(OMICRON 256) 

Protection IED 

Breaker IED 
(Actuator) 

Emulated Circuit 
Breaker 

Hardwired 

Local Area 
Network 

PC side- Test 
Universe & 
Wireshark 

Bay Unit level 

Process 
level 

Figure 6.1: Simplified topology for case study verification 



156 
 

 
Figure 6.2: ISO/IEC 88023 frame format  

(IEC 61850-8-1, 2004, p.114) 

 



157 
 

Detailed knowledge of the structure of GOOSE messages could be of importance in 

certain instances requiring fault diagnosis to determine the cause of mal–operation or 

interoperability problems; but this knowledge of message structure may also be a 

prerequisite to develop an IEC 61850 compliant communication stack such as the 

“PIS-10” from SystemCorp.  

 

Figure 6.3 shows derivatives of the Ethernet frame. The original Ethernet frame for 

instance does not have a “start of frame” delimiter or an 802.1Q header. 

 

 
Figure 6.3: Ethernet frames specification 

 

The IEC 61850 standard states the use of the 802.1Q Ethernet frame for VLAN- 

tagged  messages (IEC 61850-8-1, p114), but most IEC 61850 equipment responds 

appropriately to non VLAN-tagged frames e.g. IEEE 802.3 frames. 

 

[Note: for the purpose of this thesis, the term “Ethernet”, where it appears in the text - 

refers generically to the IEEE 802.1Q frame] 

 

They are field within the GOOSE message structure that are standardized. Those 

particular fields are presented in Table 6.1 to Table 6.3 and can be found in: [IEC 

61850-8-1, p 113 to p116.]  

  



158 
 

Table 6.1: Recommended multicast address range 

 

(IEC 61850-8-1, 2004, p.113) 

 

According to IEEE 802.1Q, Priority tagging/Virtual LAN is used to separate time 

critical and high priority bus traffic for protection-relevant applications from low priority 

bus load. The structure of the VLAN tag header is defined in Figure 6.4 [IEC 61850-8, 

Figure C.2]. 

 

Figure 6.4: Virtual LAN tag 
(IEC 61850-8-1, 2004, p.115) 

 The default virtual LAN ID and the Ethertype are presented respectively in Table 6.2 

[IEC 61850-8, table C.1] and Table 6.3 [IEC 61850-8, table C.2]: 

Table 6.2: Default virtual LAN IDs and priorities 

 

(IEC 61850-8-1, 2004, p.115) 

 

Table 6.3: Assigned Ethertype values 

 

(IEC 61850-8-1, 2004, p.116) 

 

The GOOSE frame section that is variable in length is known as the Application 

Protocol Data Unit (APDU) referenced from IEC 61850-7-2-p116, and defined in 

Table 6.4 below. 

 



159 
 

Table 6.4: GOOSE message definition (APDU) 

 

(IEC 61850-7-2, 2003, p.116) 

 

The understanding of the GOOSE message structure reported in Table 6.4 above 

requires a detailed knowledge of the Abstract Syntax Notation ONE (ASN. 1) 

standard for “Data networks and open system communications”. The ASN.1 is an 

international standard used to define a method for encoding Data. As previously 

mentioned in chapter 2, information on ASN.1 with respect to the IEC 61850 standard 

can be found at IEC 61850-8-1, page111. The GOOSE protocol is defined using the 

ASN.1 /BER (X.690-0207). The following (Figure 6.5) is a part of the ASN.1 encoding 

rule-base for GOOSE messages (Full code in APPENDIX B) that shows the order in 

which each element must appear within the GOOSE.PDU (Protocol Data Unit).  

 

Figure 6.5: GOOSE PDU definition 
(IEC 61850-8-1, 2004, p.111) 



160 
 

[Note: In the field of Software Engineering, there are tools such as ASN1C21 used to 

create an ASN.1 encode/decode function that can be called from within an application 

to encode or decode the data for/within a message.] 

 

The Ethernet frame is separated into two (2) sections, which are: 

 Pre-defined fields: These fields carry fixed data for the application for which it 

was designed for (represented directly by their value within the Ethernet frame 

– no encoding needed), and, 

 Application Protocol Data Unit (APDU) fields: These fields carry data of 

variable length and the data is encoded using the ASN.1 encoding rule for 

GOOSE. 

 

In the section to follow, further details with respect to ASN.1 are presented. 

6.2.1 ASN.1 Encoding rule for GOOSE Protocol Data Unit (goosePDU) 

The structure for a goose.PDU [APDU= Application Protocol Data Unit] is defined 

using the ASN.1 /BER encoding rule. Table 6.5 shows the field encoding structure in 

BER (ITU-T, 2002). 

Table 6.5: Structure encoding in ASN.1 /BER 
Tag [Identifier Octet]  
(1 byte) 

Length 
(1 byte) 

CONTENT End of content 
(optional) 

 

 The first byte corresponds to the Tag (Identifier Octet) and has the following 

syntax: 

 {Class of Tag}, {Primitive or Constructed Flag} and {Tag Number} 

 The second byte corresponds to the Length: {length} of the encapsulated 

content. 

 The length is followed by the {content}. The content can represent data of 

various types (e.g. Boolean, Integer etc), or it can be another encapsulated 

field for APDU (Application Data Unit Protocol).  

 

The information to follow examines in greater detail the field encoding structure. 

 

 

 

 

 

                                                 

21 ASN1C is a full-featured ASN.1 compiler capable of generating BER/DER/CER, PER 
(aligned/unaligned), and XML encoders and decoders in C, C++, C#, and Java. 



161 

 TAG definition 

As previously stated, fields contained in the “goosePDU” always start with a Tag 

(Identifier octet) containing the two-bit Class; the Primitive or Constructed Flag, and 

the Tag number. Figure 6.6 illustrates more clearly the situation. 

 

 

Figure 6.6: Field Identifier Octet (Tag definition) 
(ITU-T, 2002) 

For a “goosePDU”, the Class tag is defined as illustrated in the second row (01) of 

Table 6.6 (ITU-T, 2002). 

Table 6.6: Encoding of class of tag 

 

The interpretation of Bit 8, 7 and 6 is given by Table 6.7: 

Table 6.7: Encoding of class of tag and interpretation 
Class of Tag: 
Bit 8,7 

Primitive/ Constructed: 
Bit 6 

Description, key words 

0 0 0 Description: Universal Tag, Primitive 
Example keywords: INTEGER, BITSTRING, 
BOOLEAN 

0 0 1 Description: Universal Tag, Constructed 
Example keyword: SEQUENCE, SEQUENCE OF 

1 0 0 Description: Context Specific, Primitive 
Example Keyword: IMPLICIT 

1 0 1 Description: Context Specific, Constructed 
Example Keywords: IMPLICIT SEQUENCE 
IMPLICIT SEQUENCE OF 

0 1 1 Description: Application, constructed 
Example keywords: (None)  

(SISCO, 1996) 

The remaining 5 least significant Bits correspond to the Tag number that refers to the 

keywords (or type of Data being encapsulated) (CESI RICERCA, 2006). 

 

[Note: The remaining 5 least significant Bits of tag (Tag number) have different 

meanings depending on the type of class.  



162 
 

 - In the case of the “UNIVERSAL” class, those bits represent a tag defined by 

ISO in the following table.  

 - In the case of Class “CONTEXT-SPECIFIC”, those Bits are associated with 

the tag number which expresses the pointer of the “SEQUENCE” or “SET”  

 - While in the case of the “APPLICATION” class, it distinguishes data types 

are which are characterized by a large range of values within a specific 

context. In this case the Tag number value for goosePDU is (00001)b. 

  In the case where the class Tag is “Context Specific” with Primitive (Keyword 

= IMPLICIT), those 5 Bits left out are used in association with the 3 first one to 

define a specific Common GOOSE Data Value Encoding Tag. This one 

derives from the MMS Data Value Encoding.] 

 

Table 6.8 below shows the relationship between the “Data Type” and the associated 

“MMS Tag” column. Note: the GOOSE Value Encoding has been adopted from MMS 

Data Value Encoding (SISCO, 1996).  

Table 6.8: Common GOOSE Data Value Encoding  

 

(SISCO, 1996) 

 

 



163 
 

 Length definition 

The LENGTH has a simple and extended form. If the length is less than 128 bytes, a 

single octet is used with its MSB set to 0. If the length is greater than 128 bytes, the 

MSB is set to 1, and the remaining seven (7) bits represent the {length} (number of 

bytes) of a particular frame section (CESI RICERCA, 2006). 

 

 Content definition 

The value in the field must be interpreted according to the type of field. For example, 

if the field type is “string”, the octets must be decoded as characters, but if it is an 

“integer”, the value is calculated based on the binary content. 

6.2.2 Details for encoding time of Data (t) 

The time stamp for Data represents the moment at which the particular data has been 

published onto the network. This time is of type “Coordinated Universal Time (UTC) 

/ TimeStamp”.  

 

According to the IEC 61850-8-1 (2004, p132), the following specifications are 

acknowledged: “The UTC representation is specified in ISO 8601 as YYYY-MM-DD 

for the date and hh:mm:ss for the time in each day. The UTC Time type shall be an 

OCTET STRING of length eight (8) octets. The value shall be encoded as defined 

in RFC 1305 (Network Time Protocol). The integer part contains: elapsed number of 

whole seconds since GMT midnight January 1, 1970 Sec. The fractional part contains 

the portion of a second elapsed since the last whole second”. 

 

Knowing the number of seconds, one can determine how many years, months, days 

and time (hh: min: ss) have passed since 1st January 1970. 

 

More details can be found in at the following sections of the IEC 61850 standard 

(Edition1): IEC 61850-7-1, p59; IEC 61850-7-2, p24, p154; IEC 61850-8-1, p128-133. 

6.2.3 Details for encoding quality of Data (q) 

It is important to publish the “Quality” of Data when exchanging messages on the 

network. Table 6.9 is taken from the IEC 61850-7-1/Ed1-p74 and details the 

composition of a Single point status common data class.  

  



164 
 

Table 6.9: Single point status common data class (SPS) 

 

(IEC 61850-7-1, 2003, p.74) 

 

The quality is of type Bit-String (Coded Enum). The quality with respect to its 

mandatory subcomponent is coded over two (2) octets. From those two (2) octets 

there are only thirteen (13) bits that are used (Table 6.10). Thus, there is a padding 

of 3 most significant bits. Table 6.10 shows the elements that enter into the 

composition of the quality attribute. The quality is globally GOOD when all 13 bits are 

equal to zeros. 

 

Table 6.10: Quality components attribute definition 

 

(IEC 61850-7-1, 2003, p.74) 

 



165 
 

The Attribute “validity” is coded using two (2) bits, while the rest of the attribute 

contained in the “Quality components attribute definition” are coded using one (1) bit. 

This results in a total of thirteen (13) bits. So, the quality is constituted by three (3) 

groups of four (4) bits plus one more significant bit (i.e. to the left of the 12 bits). 

 

 The “hstring” encoding rule contained in the ASN.1 /BER is used to transmit the 

quality of the data attribute (ITU-T, 2002). More information on the “hstring” encoding 

rule can be found at: http://www.faqs.org/rfcs/rfc3641.html ] 

6.2.4 Introduction to IEDScout and Wireshark – for GOOSE simulation and Frame 

capture respectively 

6.2.4.1 IEDScout 

IEDScout is software produced by the company Omicron - one of the major vendors 

for Test Injection equipment (and associated products) for the power system industry. 

It is a universal client to IEC 61850 servers (such as substation IEDs) and a 

publisher/subscriber for GOOSE messages. A full product suite is provided with the 

Test Universe software package (also produced by Omicron). In this Thesis, 

IEDScout v2.11 (full version) has been used. A demo-version can also be 

downloaded at: https://www.omicron.at/en/content/iedscout/download-iedscout/  

6.2.4.2 Wireshark 

Wireshark is an open-source network protocol analyzer for UNIX and Windows 

systems. The latest version of Wireshark can be downloaded at 

http://www.wireshark.org/download.html. Wireshark uses the “pcap” network library to 

capture packets at the Data Link layer level. 

 

Figure 6.7 shows a screen capture of Wireshark while “sniffing” on the local network.  

  



166 

 

Figure 6.7: Wireshark capture window 
 

A detailed description of the information represented in a Wireshark capture window 

can be found at: http://openmaniak.com/wireshark_use.php  

 

The next section (6.2.5) deals with the analysis of the structure of GOOSE messages. 

6.2.5 Simulation: Goose generation utilizing IEDScout, GOOSE capture using 

Wireshark, and structure analysis of the captured GOOSE message 

In the following Experiment IEDScout software is used to output a GOOSE message 

from a desktop computer. Wireshark software is then used to capture the GOOSE 

message frame on a second computer. The purpose of this experiment is to confirm 

the structure of the GOOSE message frame with respect to the one specified in IEC 

61850-8- page114 and also to identify the content of the GOOSE message with 

respect to the one defined in IEC 61850-7-2 page 116 -Table 29. 

 

The following simulation is described utilizing Wireshark V1.2.8 and IEDScout V2.10 

on a Windows XP station. 

 

 



167 

6.2.5.1 Setting up IEDScout for GOOSE simulation 

Start IEDScout (Figure 6.8) and go to “Configure”, then select the “GOOSE” tab. On 

the GOOSE tab specify which Network Adapter you want to use (for first utilisation it 

is required to restart IEDScout). 
 

Note that in order to generate GOOSE messages through the Ethernet adapter; it 

needs to be ensured that an Ethernet cable is plugged into the RJ45 adapter. 

 

 

On the Menu bar click “Simulations”. Then click Add GOOSE, in window which opens 

up. The “GOOSE Simulations” window now appears (Figure. 6.9 below), wherein 

certain key parameters can be edited. 

 

Figure 6.9: Setting parameter for GOOSE simulation 
 

There are now GOOSE messages being transmitted on the Ethernet bus through the 

Network adapter card.  

Figure 6.8: Configuration of IEDScout 



168 
 

6.2.5.2 Setting up Wireshark 

After successful installation of Wireshark, select a network interface and start a 

capture. GOOSE messages that are being transmitted on the network should be 

observed. 

 

For more details on how to start a capture on Wireshark please consult the online 

manual at: http://openmaniak.com/wireshark.php  

6.2.5.3 GOOSE composition 

Using IEDScout, a specific “DataSet” can be defined for the simulation of the GOOSE 

message to be transmitted onto the network. By knowing the “DataSet” structure 

which had been specified, and the general structure for the GOOSE message as 

defined within the IEC61850 standard, one can predict exactly what the GOOSE 

message is going to be composed of in its different header sections. The expected 

GOOSE content is reported on in Table 6.11 (NB: hexadecimal format applies with 1 

octet = 1 byte = 8 bits). 

  



169 
 

Table 6.11: Expected experimental GOOSE frame 
 SECTION VALUE COMMENT and REF 
Preamble  
 

Preamble  
(7 bytes) 

10101010 The preamble consists 
of 62 bits of alternating 
ones and zeros that 
allows the Ethernet card 
to Synchronize with the 
beginning of a frame.  

Start of Frame 
 

Start of Frame 
(1 byte) 

10101011 The Start Frame 
Delimiter. 
 

Header MAC 
 [0->11] bytes 

Address 
fields 
 

Destination address 
(6 bytes) 

01 0c cd 01 01 ff This is a broadcast/ 
multicast address. IEC 
61850-8-p115-113 

Source address 
(6 bytes) 

00 0f fe 42 45 6c No information within 
the standard. Left as 
local issue for Vendor. 

Priority tagged 
/Virtual LAN 
[12->15] 
bytes 
 

TPID 0x8100 Tag protocol Identifier. 
IEC 61850-8-p115 

TCI User 
Priority 

CFI VID 4 0 0 Tag control information  
IEC 61850-8-p115 

Ethertype and 
other Header 
 
[m+26] bytes 

Ethertype 88-B8 IEC 61850-8-p115 -116 
APPID 0x3fff IEC 61850-8-p116 
Length (m+8) Not visible IEC 61850-8-p116 
Reserved 1 0 IEC 61850-8-p116 
Reserved 2 0 IEC 61850-8-p116 
APDU  
(of length 
m) 

gocbRef IEDScout/LLN0$G
O$Eval 

This is the GOOSE-
PDU (Protocol Data 
unit). Content of the 
GOOSE message. IEC 
61850-8-p116 and  IEC 
61850-7-2-p116 

timeAllowedtoLive (100+200)* (2^ 
sqNum) 

datSet IEDScout/LLN0$Ev
al_DataSet 

goID GOOSEID 
t xx 
stNum 1 
sqNum xx 
test F 
confRev 1 
ndsCom F 
numDatSetEntries 3 
allData {False,0,[1000]} 

[1517] bytes (Pad bytes if necessary ) -  

[1521] bytes Frame check sequence - Generated/ Clear at a 
hardware level 

xx- values which change with time 

6.2.5.4 GOOSE capture and confirmation 

With IEDScout  a GOOSE message is now published onto the Network. The objective 

of this simulation is to allow for verification of the structure and content of the captured 

GOOSE with respect to the one defined earlier in Section 6.2.5.3.  

[Note: The simulation can be generated (by IEDScout) and captured (by Wireshark) 

on a single PC, but it is recommended to do the simulation with two computers 

connected via an Ethernet switch as illustrated in Figure 6.10 below:] 

 

 



170 

 

Figure 6.10: Topology for GOOSE simulation 
 

You may now start the Capture on Wireshark and then activate the simulation with 

IEDScout. Figure 6.11 presents the result obtained. 

 

Figure 6.11: GOOSE simulation result 
 

Result - The observed GOOSE frame is compliant with the specified frame structure 

given in at Figure 6.2, page 156 (IEC 61850-8-1, p 111-114).  



171 
 

 

On the Wireshark “packet detail pane” all expected components are present (Figure 

6.12), with respect to the parameters originally set up in the dialogue box presented in 

Figure 6.9. 

 

Figure 6.12: Identification of dataset used 
 

 [Note: some hexadecimal values that are contained in the frame are defined in 

accordance with the ASN.1 encoding rule previously mentioned in section 6.2.1. The 

following section gives a better understanding of how to read and interpret those 

hexadecimal values.] 

6.2.5.5 Identification and Interpretation of hexadecimal value 

In this sub-section the hexadecimal values obtained by means of the simulation 

conducted with IEDScout and captured with Wireshark (Figure 6.13) are identified 

and interpreted. The result is compared to what was expected as per that specified in 

the IEC61850 standard (see section 6.2.5), and further details regarding the 

goosePDU encoding using ASN.1-BER are explored.  

  



172 

 

Figure 6.13: Interpretation of Hexadecimal value 
With respect to the data displayed in frame in Figure 6.13, Table 6.12 below now 

gives the meaning of each byte of the GOOSE-Protocol Data Unit starting at the first 

tag header (Tag 61 as per Figure 6.13 ) and proceeding octet by octet through the 

data in the payload. 

Table 6.12: Interpretation of hexadecimal value for GOOSE PDU 
Value octet 
(Hexadecimal) 

Value octet 
(Binary) 

Meaning
(Interpretation) 

Decimal 
(bytes) 

61 01100001 Class APPLICATION, Composition of 
data types 
Tag number 1. 
Identifier octet. Fieldname “goosePdu” 

 

68 01101000 Length of “goosePdu” 104 
80 10000000 Class CONTEXT-SPECIFIC, Primitive,  

tag number [0], IMPLICIT VISIBLE-
STRING, 
Identifier octet. Fieldname 
“goose.gocbRef” 

 

15 00010101 Length of  “goose.gocbRef” 21 
49 45 44 53 63 6f 
75 74 2F 4C 4C 
4E 30 24 47 4F 
24 45 76 61 6C 

 Content of  “goose.gocbRef” 
{IEDScout/LLN0$GO$Eval} 

 

81 10000001 Class CONTEXT-SPECIFIC, Primitive,  
tag number [1], IMPLICIT INTEGER, 
Identifier octet. Fieldname 
“goose.timeAllowedtoLive” 

 

02 00000010 Length of  “goose.timeAllowedtoLive” 2 
01 2C 00000001 

00101100 
Content of  “goose.timeAllowedtoLive” 
{ 300 } 

 

82 10000010 Class CONTEXT-SPECIFIC, Primitive,  
tag number [2], IMPLICIT VISIBLE-
STRING, 
Identifier octet. Fieldname “goose.datSet” 

 

1A 00011010 Length of  “goose.datSet” 26 
49 45 44 53 63 6F 
75 74 2F 4c 4c 4e 
30 24 45 76 61 6c 
5f 44 61 74 61 53 
65 74  

 Content of  “goose.datSet”  
{ IEDScout/LLN0$Eval_DataSet } 

 

83  10000011 Class CONTEXT-SPECIFIC, Primitive,  
tag number [3], IMPLICIT VISIBLE-
STRING OPTIONAL, 
Identifier octet. Fieldname “goose.goID” 

 

07 00000111 Length of  “goose.goID” 7 
47 4f 4f 53 45 49 
44 

 Content of  “goose.goID”, { GOOSEID}  

Tag Header 

Length of the 
goosePdu in hex 



173 
 

Value octet 
(Hexadecimal) 

Value octet 
(Binary) 

Meaning
(Interpretation) 

Decimal 
(bytes) 

84 10000100 Class CONTEXT-SPECIFIC, Primitive,  
tag number [4], IMPLICIT UtcTime, 
Identifier octet. Fieldname “goose.t” 

 

08 00001000 Length of  “goose.t” 8 
4c 39 04 ff d0 e6 
26 00 

 Content of  “goose.t”, { 
4c:39:04:ff:d0:e6:26:00 } 

 

85 10000101 Class CONTEXT-SPECIFIC, Primitive,  
tag number [5], IMPLICIT INTEGER, 
Identifier octet. Fieldname “goose.stNum” 

 

01 00000001 Length of  “goose.stNum” 1 
01 00000001 Content of  “goose.stNum”, { 1 }  
86 10000110 Class CONTEXT-SPECIFIC, Primitive,  

tag number [6], IMPLICIT INTEGER, 
Identifier octet. Fieldname “goose.sqNum” 

 

01 00000001 Length of  “goose.sqNum” 1 
00 00000000 Content of  “goose.sqNum”, { 0 }  
87 10000111 Class CONTEXT-SPECIFIC, Primitive,  

tag number [7], IMPLICIT BOOLEAN 
DEFAULT FALSE, 
Identifier octet. Fieldname “goose.test” 

 

01 00000001 Length of  “goose.test” 1 
00 00000000 Content of  “goose.test”, { 0 }  
88 10001000 Class CONTEXT-SPECIFIC, Primitive,  

tag number [8], IMPLICIT INTEGER, 
Identifier octet. Fieldname 
“goose.confRev” 

 

01 00000001 Length of  “goose.confRev” 1 
01 00000001 Content of  “goose.confRev”, { 1 }  
89 10001001 Class CONTEXT-SPECIFIC, Primitive,  

tag number [9], IMPLICIT BOOLEAN 
DEFAULT FALSE, 
Identifier octet. Fieldname 
“goose.ndsCom” 

 

01 00000001 Length of  “goose.ndsCom” 1 
00 00000000 Content of  “goose.ndsCom”, { 0 }  
8a 10001010 Class CONTEXT-SPECIFIC, Primitive,  

tag number [10], IMPLICIT INTEGER, 
Identifier octet. Fieldname 
“goose.numDatSetEntries” 

 

01 00000001 Length of  “goose.numDatSetEntries” 1 
03 00000011 Content of  “goose.numDatSetEntries”, { 3 

} 
3 

Ab 10101011 Class CONTEXT-SPECIFIC, Constructor,  
tag number [11], IMPLICIT SEQUENCE 
OF Data, 
Identifier octet. Fieldname “goose.allData” 

 

0a 00001010 Length of  “goose.allData” 10 
83 10000011 Class CONTEXT-SPECIFIC, Primitive,  

Boolean (3) 
Identifier octet. Fieldname “Data: Boolean” 

 

01 00000001 Length of  “Data: boolean” 1 
00 00000000 Content of   “Data: boolean ”, { 0 }  
85 10000101 Class CONTEXT-SPECIFIC, Primitive,  

Integer (5) 
Identifier octet. Fieldname “Data: integer” 

 

01 00000001 Length of  “Data: integer ” 1 
00 00000000 Content of  “Data: integer ”, {0}  
84 10000100 Class CONTEXT-SPECIFIC, Primitive,  

bit-string (4) 
Identifier octet. Fieldname “Data: bit-string” 
“ber.bitstring.padding” 
“goose.bit_string” 

 

02 00000010 Length of  “Data: bit-string” 2 
04 80 00000100 

10000000 
Content of  “Data.Padding”, {4} 
Content of  “Data: bit-string”, { 80 } 

 



174 
 

After the simulation with IEDScout of a GOOSE message in order to study its 

structure, it was also important to verify that the structure of GOOSE messages 

published by commercial IEDs used in this project conformed to the IEC 61850 

standard. The next section expands on the details of the experiment set up, and the 

results obtained. 

6.2.6 Experimentation: GOOSE generation using commercial (SIEMENS) Relays, and 

capture with Wireshark 

The experiment introduces an example of how to quickly set up a basic 

Publish/Subscribe application for GOOSE messaging. The DIGSI (v4) is a software 

platform that allows for SIEMENS Device configuration and substation communication 

architecture design. It is provided together with the purchase of new SIEMENS relay 

devices. This experiment is derived from the SIEMENS user guide: “Ethernet & IEC 

61850-Start up” (Release: 07.05.09. E50417-F1176-C324-A3). The user guide can 

be downloaded at: 

 http://siemens.siprotec.de/download_neu/.../IEC61850_STARTUP_A3_EN.pdf   

6.2.6.1 Experiment objectives  

The structure and content of a GOOSE message has already been indentified and 

confirmed in a simulated environment using IEDScout and Wireshark (section 6.2.5). 

In this section, the comparison of simulated information to that of a GOOSE message 

generated through experimentation with commercial IEDs is made.  

6.2.6.2 Experiment description 

In this experiment, the state (ON/OFF) of an LED-1 is controlled on 3 separate 

SIEMENS SIPROTEC devices. This is accomplished via the development of a 

Publisher/Subscriber application based on GOOSE messaging. In the case of this 

experiment, the first IED is assumed to be the publisher of a GOOSE message, while 

the two others are subscribing to the GOOSE message. 

 

The logical connections for the experiment are shown in Figure 6.14. 

 



175 
 

 
Figure 6.14: Logical connection for experimentation with IEDs 

(Siemens, 2009) 

Figure 6.15 presents the topology (bus) adopted: 

 

 
Figure 6.15: Network Topology for experimentation with IEDs 

 

Figure 6.16 illustrates the communication test which begins by pressing the F1 key on 

Device 1. The illumination of LED-1 on the same device confirms this key-press. What 

is important is that an indication (via GOOSE) is sent also to the two other subscribing 

devices. LED-1 on each of these two devices is then turned ON to signal that the 

devices have received the indication. 

 

Pressing the F2 Key on Device 1 generates a GOOSE message which carries 

Boolean information which cancels the indication on the publishing device and on the 

LEDs on all the subscribing devices.  

  



176 

        

Figure 6.16: Illustration of input Key into LED 
 

Only the results of the experiment are presented here. For complete details on how to 

set up the Relays, refer to the SIEMENS user guide: “Ethernet & IEC61850 start up” 

at http://siemens.siprotec.de/download_neu/.../IEC61850_STARTUP_A3_EN.pdf   

6.2.6.3  Results analysis 

Figure 6.17 is a Wireshark capture of the GOOSE message published on the network 

when pressing the F1 key (SET LED). The Boolean Data that controls the state of 

LED1 is carried within the GOOSE message with the value True {01} as shown 

below. 

 
Figure 6.17: Experiment results (a) 

 

Figure 6.18 is a Wireshark capture of the GOOSE message published on the network 

when F2 (RESET LED) key is pressed. The Boolean Data that controls the state of 

LED1 is carried within the GOOSE message with the value False {00} as shown 

below. 

F1 key pressed 
(SET LED) 



177 

 

 
Figure 6.18: Experiment result (b) 

 

[Note on VLAN Tags: Being able to visualize the VLAN tag header on a Wireshark 

capture can be helpful especially when doing Network segregation or a debugging 

operation within the Substation Automation System (SAS), but depending on the 

Switch configuration (whether it is VLAN aware or not, or not configured 

appropriately) and also on your Network Card Adapter (NCA) settings, one might not 

see the VLAN tag header. Figure 6.19 illustrates both cases where two Wireshark 

captures represent the same GOOSE message published from one IED. On the right 

hand side the VLAN tag header is present, but missing on the left hand side.   

 

Figure 6.19: GOOSE frame with and without 802.1Q vlan tag 
 

F2 key pressed 
(RESET LED) 



178 
 

The difference while doing the capture is that one capture (right hand side) has been 

done in a peer-to-peer mode (IED- to- Laptop). The laptop used was configured in a 

way that the Network Adapter Card did not strip the 802.1Q VLAN tags from incoming 

GOOSE messages. The second capture (left hand side) has been done through a 

switch in a VLAN-aware mode (Strip 802.1Q VLAN tags at switch level).   

 

As the method to configure the Network devices in order to view an 802.1Q VLAN tag 

from incoming Ethernet frames falls out of the focus of this Thesis and also varies 

according to the equipment (NCA and switch) being considered, internet links 

reported in Table 6.13 are of great help for more information on this topic. 

Table 6.13: Internet link for VLAN tag investigation 
Area of interest Internet links
Know how to set up your NCA 
to allow the VLAN tag header 
of a frame to be accessed at 
the data link layer. 

http://wiki.wireshark.org/CaptureSetup/VLAN?action=raw 
 
http://www.intel.com/support/network/sb/CS-005897.htm  

Know how to configure a 
Rugged Switch with respect to 
VLAN 

http://www.ruggedcom.com  

] 

6.2.6.4 Comments on GOOSE structure analyses 

This series of simulation and experimentation detailed in this section, has presented a 

detailed definition of the GOOSE message which is one of the communication 

protocols associated with the IEC 61850 standard. This section has successfully 

confirmed that the structure of the simulated GOOSE message conformed to the IEC 

61850 standard and to that of a GOOSE message generated by commercially 

available IEDs. 

 

The second set of experimentation results presented in section 6.3 below 

encompasses the testing and results analysis for what was the focus of the research 

project – the integration of the DK60 embedded platform from BECK-IPC and the IEC 

61850 communication stack from SystemCorp into an IEC61850 compliant 

application. 

6.3 Experimentation: Preparation of a Test Bench for an Overcurrent event – Goose 

messages generated between commercial IED and embedded system controller 

connected to an emulated circuit-breaker 

This section describes the test procedure that has been performed on the research 

project in order to verify the functional and temporal operation of the actuator 

developed in compliance with the IEC61850 standard.  

 



179 
 

6.3.1 Testing methodology for circuit breaker actuator 

In order to establish what an industry-standard GOOSE frame format looks like, three 

IEDs have previously been set up as illustrated in Figure 6.14 (page175) and Figure 

6.15 (page 175). This has allowed confirmation in Section 6.2.6.3, that the GOOSE 

frame structure of the commercial IED used (SIPROTEC 7SD5) conformed to the one 

observed using a simulation tool in Section 6.2.5 (i.e. IEDScout), and also that both of 

those conform to the one specified in the IEC 61850 standard (Cf. Figure 6.2, 

page156).     

 

The objectives of the present testing methodology are stated as follow: 

 First, to verify the functional implementation of an overcurrent protection 

scheme distributed between a commercial IED and an embedded 

microcontroller platform (Actuator) connected to an emulated circuit-breaker; 

and, 

 Secondly - to evaluate the temporal response of the system (actuator and 

emulated circuit breaker) when an overcurrent event occurs. 

 

As shown below in Figure 6.20, a test injection set (OMICRON- CMC 256) is used to 

simulate an overcurrent fault that is to be detected by an industry compliant protection 

IED (SIEMENS_SIPROTEC 7SD5). Once a fault condition has been detected, the 

instantaneous Overcurrent element of the SIPROTEC device (IED_1) is going to 

operate and close the output contact. At that instant in time, a GOOSE message is 

published on the network via the Logical Node zero. The Dataset contained in the 

published GOOSE carries information relating to the status of the overcurrent element 

(e.g. IED_1.PROT.PTRC1.Tr.General) 

 

 

 

 

The GOOSE message published by the SIPROTEC device (IED_1) in response to 

the overcurrent event carries information instructing the “Intelligent Circuit Breaker 

Test Injection 
(OMICRON 256) 

Protection 
IED_1 

DK60- Breaker IED 
(Actuator) 

Emulated Circuit 
Breaker 

Hardwired 

Local Area 
Network 

PC side- Test 
Universe & 
Wireshark 

Bay Unit level 

Process 
level 

Figure 6.20: Basic topology for case study verification 



180 
 

Controller” (on the DK60 board) to open the Breaker. The system has been 

engineered so that the “Intelligent Circuit Breaker Controller” is also continuously 

sending the position status of its attached circuit breaker via GOOSE messaging from 

the embedded system to the industrial IED.  

 

[Note: For this thesis and for reasons of simplicity, it is assumed that the “Intelligent 

Circuit Breaker Controller” has control over all three phases of the system (One 

breaker for 3 phases). Since the subscription mechanism is based on the General 

Trip Flag Alarm (IED_1.PROT.PTRC1.Tr.General), the type of Overcurrent (L-L or L-

N etc) test performed is of no importance.  

Considering that for all three (3) phases the current has to be within normal operating 

condition, if any current on any phase has to go beyond the set point limit the “general 

trip flag” of the PTRC1 logical node is going to be set to True {1}. ]    

 

The section to follow details the operational description of the “Intelligent Circuit 

Breaker Controller” developed in this project. 

6.3.2 Operational description for the developed circuit breaker actuator 

The breaker is put into a “close” position state at initialisation of the DK60 board. The 

actuator then checks the status of the GOOSE message being subscribed to. If the 

GOOSE status corresponds to Trip (Fault signalling), the actuator node is going to set 

the Trip signal (SW_TRIP) to high in order for the emulated circuit breaker to move to 

an “open” position (Cf. Figure 5.18). If no fault is signalled to the circuit breaker 

actuator at initialisation the emulated breaker is going to remain in its “close” position 

until a fault is signalled.  

 

The IEC 61850 stack (PIS-10) used is event driven. In case of a fault signalled by the 

subscribed GOOSE a call-back function is going to be issued by the PIS-10 stack for 

the application to process the arrival of new information and take appropriate action 

(Trip the breaker). 

  



181 

6.3.3 Communication set up between the DK60 and other equipment 

Figure 6.21 illustrates the inter-trip test setup method which was proposed originally 

by Bonetti and Douib (2010). 

 

Figure 6.21: Original intertrip test setup 
(Bonetti and Douib, 2010) 

The communication setup used to interconnect all communication devices is based 

on a star topology (assuming the existence of the Bay Unit and no process bus 

connectivity). As compared to the original inter-trip test setup and due to the fact that 

the DK 60 board does not have any power interface to send its tripping signal back to 

the Test injection; the signal that is sent back to the Test injection in the case of the 

current research thesis is the position status of the emulated breaker via information 

carried in GOOSE messages, rather than physical signals hardwired to the devices. 

 

 Figure 6.22 presents the equipment setup for the realisation of an inter-trip test. Note 

that the acronym “DUT” stands for Device Under Test. 

 

 

Not considered 
for this research 



182 
 

 

Figure 6.22: Overcurent test set up 
 

 



183 
 

A class C IP address range has been used for the network set up (more information 

on IP address classes can be found at: http://www.tcpipguide.com/free/index.htm). 

Table 6.14 gives a description of each communicator used and their associated IP 

Address.  

Table 6.14: IP Addresses 
Device Usage IP Address 
DK 60 board Hosts the Actuator node Application 172.16.10.5 
Siemens Siprotec 7SD5 (IED_1) Commercial IED used to generate 

GOOSE that is subscribed by the 
DK60 board. 

172.16.10.2 

Desktop PC (HMI) Use to configure and/or control 
equipment 

172.16.10.8 

CMC 256  OMICRON test injection equipment 
used to simulate an overcurrent 
condition at IED_1 

172.16.10.11 

Ethernet switch Ethernet switch used to internet 
connect all communicators 

172.16.10.4 

 

Note: for IP addresses of Class C, the network mask is “255.255.255.0”. 

 

For details of the equipment configuration steps required in order to prepare for the 

generation of an Overcurrent event in the laboratory, please refer to APPENDIX J 

(page 309). 

 

The next section presents the results obtained for the Overcurrent Test in terms of 

GOOSE frame structure conformance, performance analysis of GOOSE, and a note 

on interoperability. Additional work has been included on an aspect of a cyber security 

issue with respect to start-up from an initial condition (from the powered-down state), 

and lastly, communication exchange based on MMS. 

 

  



184 

6.4 Results analysis  

6.4.1 Functional response and GOOSE frame format conformance 

Figure 6.23 shows the complete lab setup of the embedded system platform together 

with commercial IED and the test injection set. 

 

Figure 6.23: Complete lab setup of the case study 
 

Figure 6.24 shows the System Actuator which is composed of the DK60 board and 

the logic control circuit for pulse generation (Trip and Close command); and the 

emulated circuit breaker (Red LED indicating “close” position). 

 

 

Figure 6.25 focuses on the emulated circuit breaker (now in open position) 

Breaker position 
status sent back to 

the embedded 
System Actuator 

Signal Control 
(Trip and Close) 

Indication for Emulated 
Breaker in Close 

position 

Figure 6.24: Picture of System Actuator and Emulated circuit breaker 



185 
 

 

 

Detailed frame structure of the GOOSE message has been commented upon in 

section 3.4.2. The observed frame structure of GOOSE messages originating from 

the DK60 board is similar to that of those originating from the SIPROTEC device. 

Both frame formats conform to the IEC 61850 specification.  

 

There are some details of the GOOSE content that are assumed to be variable 

(message specific), such as the GOOSE control block reference name (gocbRef), the 

Dataset name (datset), and its content. 

 

 Figure 6.26 presents a capture of a published GOOSE from the “Intelligent Circuit 

Breaker Controller” which reports on the position status of the breaker before the 

initiation of the simulation of an Overcurrent event condition.   

 Manual Control  
(Pb_Trip and Pb_Close) 

Latching Relay 
(DSP2aE) 

Indication for Emulated 
Breaker in open position 

Figure 6.25: Emulated Circuit Breaker in Open positionn 



186 
 

 

 

Figure 6.27 below shows the capture of the published GOOSE coming from IED_1 

(SIPROTEC device) when an overcurrent condition has been detected (for any of the 

three phases). 

 

 

Figure 6.28 presents a capture of a published GOOSE from the “Intelligent Circuit 

Breaker Controller” which reports on the position of the breaker after the simulation of 

an Overcurrent event condition. 

Indication for Emulated 
Breaker in Close position 

GOOSE control block name 

Data Set name used 

Figure 6.26: Breaker position before overcurrent event 

Indication for active 
overcurrent event 

Figure 6.27: IED_1 when overcurrent fault detected 



187 
 

 

 

Figure 6.29 shows an IEDScout capture of a GOOSE message originating from the 

“Intelligent Circuit Breaker Controller” after the breaker has tripped. This view from 

IEDScout is much more user friendly and meaningful for those who are not familiar 

with “Wireshark” software. 

 

 

 

For any other structural information with regard to the GOOSE message please refer 

to section 6.2 on page 155. 

Indication for Emulated 
Breaker in Open position 

Figure 6.28: Breaker position after overcurrent event 

Indication for Emulated 
Breaker in Open position 

Figure 6.29: Breaker position after overcurrent event (IEDScout view) 



188 
 

 

The results summarized above, have confirmed the functional effectiveness of the 

software design developed, which was based upon the PIS-10 communication stack 

from “SystemCorp”. It was demonstrated also that the structure of the GOOSE 

message from commercial IEDs such as the SIPROTEC 7SD5 device was basically 

the same as the one published by the actuator software application developed for the 

“Intelligent Circuit Breaker Controller”. All the messages were in conformance with 

that specified by the IEC 61850 standard. 

 

The next section evaluates the performance of the overall GOOSE message transfer 

time against the time limit specified in the IEC 61850 standard. 

6.4.2 GOOSE performance (temporal response) evaluation 

In this section the temporal response of the protection scheme based upon GOOSE 

messaging for the research project case-study is evaluated. GOOSE performance is 

evaluated with respect to the notion of transfer time. The IEC 61850 standard defines 

the transfer time of a packet as being the time from “the moment the sender puts the 

data content on top of its transmission stack up to the moment the receiver extracts 

the data from its transmission stack”. This is illustrated in Figure 6.30. 

  
Figure 6.30: Definition of transfer time 

(IEC 61850-5, 2003, p.45) 

For the research project, which is classified as a Protection Application, the GOOSE 

transfer time should not be greater than 3 mS as specified within the IEC 61850 

standard.   (IEC 61850-5, 2003, p.46) 

 

SystemCorp has made available on its site information on the time it takes for a 

GOOSE to be sent from one DK 60 device to another DK 60 device using the 

Client/Server services. Figure 6.31 shows the time transmission definition as 

estimated by SystemCorp. 



189 
 

 
Figure 6.31: GOOSE transfer time evaluation under “relative” network load  

(SystemCorp_c, 2012) 

SystemCorp state that under “relative load” the GOOSE transfer time is about 1.25 

mS (SystemCorp_c, 2012). They however do not state under what condition this load 

was generated. 

 
Figure 6.32: Transfer time evaluation without “relative”  network load  

(SystemCorp_c, 2012) 

It is also claimed by SystemCorp that without any “relative” additional network load 

the GOOSE transfer time is reduced to 0.620 mS. Both claims (with and without 



190 
 

:relative” load) are clearly under the limit of 3 mS as per the requirement of the IEC 

61850 standard. Relevant documents are accessible on: 

https://www.systemcorp.com.au/news/83-iec-6185-beck-dk-61-library-release.html  

 

For the inter-trip test setup realised in this thesis, the following times have been 

defined (please refer to Figure 6.22, page 182): 

 

Tpd: Time delay introduced by the “Pulse control Logic”. 

Txc: Circuit Breaker operating time 

TM1: Application processing time of a received GOOSE (after PIS-10 issues a call-

back to “MyUpdateFunction”) 

TM2: Application processing time for a transmitted GOOSE (after process application 

has issued the call to “IEC61850_Update”) 

Tin,dut2: Time delay introduced by the communication stack at reception 

Tout,dut2: Time delay introduced by the communication stack at transmission 

Tout,dut1: Time stamp reference when subscribed GOOSE is issued 

Tnet: Time delay introduced by the communication network itself. 

 

By neglecting Tpd, TM1, TM2 and considering Txc , “ Tin,dut2: “, “ Tout,dut2”, Tnet, the 

GOOSE Transfer Time (Taprox) is given as a first approximation by: 

 

 , ,          Equation 6.1 

 

Since the value of Tnet and Tout, dut2  cannot easily be determined, Equation 6.2 is 

proposed, as referenced from the work done by Sidhu et al. (2010) and Bonetti and 

Douib (2010). The GOOSE transfer time has been estimated in this thesis using the 

proposed Equation 6.2: 

 

           Equation 6.2 

 

Where: 

DK60GOOSE: is the time it takes for the “Intelligent Circuit Breaker Controller” to issue a 

new GOOSE message that reports the change of breaker position after the fault 

current injection has started. 

 

IED1GOOSE: is the time it takes for the SIPROTEC device to release a GOOSE 

message carrying out a trip order after the fault current injection has started. 



191 
 

 

Txc: Is the time it takes for the prototype breaker to operate (5 mS /Cf.DSP2a/ 

Appendix I). 

 

 Table 6.15 below reports the different times measured during the testing period and 

relevant transfer times that have been computed. All time values are expressed in 

milliseconds. 

 

Table 6.15: GOOSE Transfer Time results 

  
IED_1_Trip 
(mS) 

IED_1_GOOSE 
(mS) 

DK60_GOOSE 
(mS) 

GOOSE Transfer 
Time (mS) 

Number         

1 15.6 15.9 23 1.05 

2 15.6 14.5 21.3 0.9 

3 16.7 14.9 21.9 1 

4 16 16 22.8 0.9 

5 23.2 22 28.8 0.9 

6 23.2 22 28.6 0.8 

7 17.4 16.3 23.4 1.05 

7 16.4 14 20.7 0.85 

8 15.6 15.9 22.9 1 

9 15.9 14.5 21.6 1.05 

10 16.1 16.4 23.3 0.95 

11 16.2 16.4 23.7 1.15 

12 15.9 14.4 21 0.8 

13 16.2 16.6 23.4 0.9 

14 23.9 22.8 29.3 0.75 

15 21.8 21.5 28.1 0.8 

16 15.7 14.3 21.5 1.1 

17 16.2 14.9 21.7 0.9 

18 15.6 16.1 22.9 0.9 

19 15.8 16.1 23 0.95 

20 16.4 14.3 20.9 0.8 
Average 
(mS) 18.27 17.49 24.69 0.975 

 

As it can be seen from the table above the GOOSE message published by IED_1 

(IED_1_GOOSE) is 1 mS faster on average compared to the time taken by the output 

contact to operate (IED_1_Trip). 

  



192 
 

Figure 6.33 below, is a graphical representation of results shown previously in Table 

6.15 above. 

 

Figure 6.33: GOOSE Transfer time statistics 
 

The GOOSE transfer time achieved through experimentation in this project is 

approximately 0.975 mS against 0.62 mS as stated by SystemCorp under the 

condition of no “relative” network load. Nevertheless, this result is clearly under the 

limit of 3 mS as required by the IEC 61850 standard.  

 

The experimental results deviate from what have been announced by SystemCorp for 

the following reasons: 

 The application developed includes a server and a client which do not run 

concurrently, but instead they run in an event driven fashion.  

 The use of a circuit breaker emulator prototype (System C on Figure 6.22, p 

182) which introduces a delay that could only be estimated based upon 

information provided by the manufacturer i.e. the operating time of the latching 

relay used as part of the Circuit breaker emulator prototype is stated as 5 mS, 

but this time might have been a bit different during the execution of the test. 

 

The next section comments on some of the interoperability issues experienced during 

the project development phase. 

 

0

5

10

15

20

25

30

1 2 3 4 5 6 7 7 8 9 10 11 12 13 14 15 16 17 18 19 20

IED_1 GOOSE_Alarm

DK60_GOOSE

GOOSE Transfer Time



193 
 

6.4.3 Interoperability achievement 

For the demonstration of interoperability, the status position of the circuit breaker has 

been successfully mapped from the DK60 (vendor: Beck IPC) board back to the 

SIPROTEC device (vendor: Siemens) and to an SEL-421 (vendor: SEL) - i.e. not an 

operation where ONLY equipment from the SAME vendor is used to exchange 

GOOSE messages. 

 

Some issues were encountered with respect to the manner in which the ICD Designer 

(version 1.1.0.12) builds the XML structure of SCL files. Due to the absence of some 

XML keywords or syntax issue of the DK60SV1.CID file (constructed with ICD 

Designer), the DIGSI 4 and the SEL Architect environment were not able to load the 

SCL file properly (DK60SV1.CID). This challenge needed to be solved to allow the 

interoperability between the devices from the different vendors – i.e. to engineer the 

system architecture.  

 

A solution to the challenge required detailed knowledge of IEC 61850-6 (Ed.1), and 

includes also the use the of the SEL Architect XML file-checker as it is indeed much 

more precise when reporting errors on SCL files as compared to the facilities which 

IEDScout allows. 

 

Normally fixing the error requires examination of part six (6) of the IEC 61850 

standard and looking for specific information on syntax based on keyword errors 

provided  to you by the “SEL Architect” environment. Modify the SCL file manually 

using XML marker or Notepad. Load the file back into the SEL Architect-XML file 

checker.  Repeat until error-free. Subsequent to this labour-intensive iterative 

process, loading the file onto another manufacturer’s, platform such as DIGSI 4 

should be successful. For more details on the procedural steps needed in order to fix 

possible errors please refer to APPENDIX K on page 321. 

6.4.4 Cyber security risk evaluation 

A cyber-security risk evaluation consists of verifying the behaviour of an IED when it 

is exposed to duplicated or corrupted communication messages, since this can be the 

case during a substation threat intrusion into the network. 

 

A cyber-security test threat is simulated by creating an out of sequence legacy 

GOOSE message and then injecting this onto the network to establish the response 

of the DK 60 kit to it. 

 



194 
 

[Note: Using “Colasoft Packet Builder 1.0”, specific packets can be assembled (or 

loaded) that suit the need of the cyber threat to be simulated, then inject them onto 

the network being investigated. For more information on “Colasoft Packet Builder 1.0” 

at:  http://www.colasoft.com/ )] 

 

The steps to generate the test-threat are detailed below: 

1) Capture a GOOSE subscribed to by the actuator with Wireshark while performing 

the overcurrent test with the CMC 256 test injection (see Figure 6.34).  

 

Laptop with Wireshark And 
“Colasoft Packet Builder”

DEVICE 1: Pub.

DEVICE 2: DK60
Pub./SubscriberCurrent 

injector  

Figure 6.34: First part of the cybert security test  
 

2) Import the message captured during the fault test-injection into “Packet Builder”. 

  

3) Run the system with no fault test-injection occurring (test-injection set off). 

GOOSE messages indicating no fault condition are now running on the network. 

Circuit breaker emulator rightfully reflects non-faulted operation. 

 

4) Inject the message which had previously been imported into “Colasoft Packet 

Builder 1.0” onto the network. This now represents the intrusive out-of-sequence 

legacy GOOSE message – which should be discarded if the system has been 

designed against attack. Figure 6.34 and Figure 6.35 show the transmission of 

this packet onto the network.    

An overcurrent event 
GOOSE message is 

published 

GOOSE message with 
a “Trip” order are 

saved  

1

2

Breaker Trip due 
to overcurrent 

condition 



195 
 

 
Figure 6.34: First part of the cybert security test 

 

 
Figure 6.35: Introduction of outdated GOOSE packet back onto the network 

 

5) The response to the intrusive out-of-sequence legacy GOOSE message was that 

the emulated breaker tripped. It should not have done so in response to this 

message - the GOOSE frame should simply have been discarded since the 

sequence number (sqNum) and the time stamp were outdated. Unfortunately for 

the case of the current thesis the aspect of cyber-security tested for is not 

implemented within the IEC 61850 protocol integration stack (PIS-10 version 

1.36). Certainly this will be fixed in future releases of the PIS-10.  

 



196 
 

The same test (Injection of an out of sequence legacy GOOSE message) has been 

performed on an IED commonly used in the substation environment-SIPROTEC 

device from SIEMENS, in order to verify the behaviour of the device with respect to 

the same issue. All outdated GOOSE packets were discarded by the SIPROTEC 

device.  

 

The cyber-security test-case outlined above, which compares the response of a 

commercially available IED to that of a development platform clearly illustrates the 

type of test which could be run to ascertain whether the system has the level of cyber-

security required or specified. 

 

The next section details a brief description of breaker control based MMS over 

TCP/IP. 

6.4.5 Breaker control based on MMS over TCP/IP 

An “Intelligent Circuit Breaker Controller” fully compatible with the IEC 61850 standard 

needs to support the Select-Before-Operate method. This is not the case in this 

project because the focus has primarily been put on GOOSE message 

communication (see Figure 3.15).  

 

 

Adapted from (IEC 61850-7-1, 2003, p.22) 

 

GOOSE application 
was the focus of this 

thesis 

MMS application was not 
originally in the scope of 
this research thesis. And 

his considered as an 
extension of it. 

The developed GA61850.exe 
(See Appendix F for source 

code) 

Figure 6.35: Mapping of IEC 61850 specifics layers to OSI model 



197 
 

Implementation of the Select-Before-Operate method will have required the use of a 

dedicated client HMI that could also support this method. As IEDScout (Universal 

Client) has been used extensively in this thesis, it has been decided to use it in order 

to establish basic MMS connectivity with the DK60 board. 

 

Unfortunately the use of IEDScout as a Client to control the Breaker position has 

been possible only via a communication method call direct-with-normal-security, 

but the Select-Before-Operate method has not been achieved. 

 

To view samples of MMS message capture done with MMS-Ethereal software, please 

refer to APPENDIX L on page 323. 

 

The next section presents a summary of the current chapter. 

6.5 Conclusion 

Chapter 6 has presented the setup used in order to demonstrate the effectiveness of 

the design of an “Intelligent Circuit Breaker Controller” with limited capabilities. The 

Test setup demonstrates that a device has been developed that has a certain level of 

compliance with the IEC 61850 standard. 

 

User friendliness of DK60 environment for engineering the system architecture  

Interoperability has been achieved only through additional hand modification of the 

DK60SV1.CID file. 

 

The inter-trip test developed here has demonstrated an average GOOSE transfer 

time of 0.975 mS which largely satisfies the requirement of the IEC 61850 on GOOSE 

transfer time (3 mS). Note that Sampled Value messages were not present on the 

Network while testing GOOSE transfer time – therefore. It is recommended for future 

development to investigate the performance more fully of an IEC 61850 process bus 

with regard to the concurrent use of GOOSE and SV messages. 

 

On the design of the IEC 61850 communication stack, the following recommendations 

have been proposed to “SystemCorp” to allow users in the next release of the PIS-10 

stack with the following configuration:  

 Client object + Subscriber module (for Client IEDs such as HMI on top of the 

hierarchy). 

 Server object + Publisher + Subscriber module (for field device such as 

Protective relay). 



198 
 

.Table 6.16 show clearly the current structure of the PIS-010 stack versus the 

proposed one for future release. This new proposed structure will allow directly the 

developer of an IEC 61850 compliant application to include subscription capability in 

its application without the need to create a client object within the source code of the 

software application. 

 

Table 6.16: Current PIS-010 stack structure vs proposition for future release 
 Communicator Default 

type 
Communicator 
association type 

 IED Type Server Client Publisher Subscriber
Current PIS-010 

stack 
configuration 

HMI or SCADA 
systems 

N/A OK N/A OK 

Field device 
(Protection relays etc) 

OK - OK N/A 

Proposition for 
future released of 

the PIS-010 

HMI or SCADA 
systems 

N/A OK N/A OK 

Field device 
(Protection relays etc) 

OK - OK OK 

 

Aspects of Cyber security is also an issue that “SystemCorp” IT engineers are 

currently trying to resolve (ongoing work). 

 

In this research thesis, in order to develop an actuator for circuit breaker capable to 

subscribe to a GOOSE message and be able to send back the position status of an 

emulated circuit breaker via GOOSE message, the development of a Server object 

together with a client object was required. 

 

The next chapter offers a general conclusion to the current project, a drawback 

analysis with respect to the thesis deliverables, application of results and future work. 

  



199 
 

CHAPTER SEVEN:  

CONCLUSION AND FUTURE WORK 

 

7.1 Introduction 

The IEC 61850 standard for “Communication networks and systems in substations” 

(Ed.1) has been progressively released between the years 2003 and 2005. Since 

then, vendors of substation equipment had implemented their own interpretation of 

the standard and this has sometimes led to interoperability issues.  

 

Currently there are only three companies that develop an IEC 61850 commercially 

available communication stack with the possibility for use in the public domain. These 

companies are:  

 SISCO;  

 Triangle Microworks and; 

  SystemCorp 

 

These software communication stacks are said to be platform (hardware plus 

operating system) independent, however their deployment onto a specific hardware 

platform still requires significant integration work and a detailed understanding of the 

hardware and the Real Time Operating System (RTOS) deployed on the hardware 

target. Due to on-going developments of these communication stacks it is vitally 

important that version revisions and functional capabilities are kept track of as 

deployed on the various platforms. Not doing so may lead to interoperability issues. 

 

SystemCorp released their first IEC 61850 communication stack (PIS-10) in 2010. 

New features have been added to the PIS-10 stack and ongoing revisions made 

based on the feedback provided by research centres such as the CSAEMS at the 

Cape Peninsula University of Technology and other organisations around the world. 

 

The current thesis with the title “Development of an embedded system actuator 

node for integration into an IEC 61850 based substation automation 

application“, describes the research work that has been done in order to provide a 

framework and knowledge-base sufficient to overcome challenges concerning the 

implementation of the IEC 61850 standard on an embedded platform. Consideration 

has been given to the aspects of IEC 61850 modelling, application software 

development, a protection scheme distributed between a commercially available IED 



200 
 

and the controller developed on the embedded platform, GOOSE frame analysis and 

performance evaluation in terms of functional and temporal behaviour, and an aspect 

of cyber security. 

7.2 Aims and objectives 

From the problem statement expressed in the first chapter, the project aim and 

objectives were developed and investigated based on the IEC 61850 conceptual 

modelling together with the SystemCorp communication stack (PIS-10) 

implementation. 

 

Methods for development of an IEC 61850 compliant software application based on 

an IEC61850 communication stack and API from SystemCorp were explored. The 

GOOSE performance of the developed software for a circuit breaker actuator 

deployed on the DK60 board manufactured by Beck IPC was analysed. The research 

focus was on the development of embedded software which is IEC 61850 compliant 

with particular emphasis placed on an overcurrent protection scheme distributed 

across a commercial IED and an embedded systems platform using GOOSE 

message communication.  

 

The objectives which have been achieved are listed as follows: 

 Literature review: history of IEDs and review of design theory for IED 

hardware and software. 

 Literature review: analysis and comparison of method for IEC 61850 modelling 

- development and implementation aspects. 

 GOOSE frame format analysis utilizing data networking utilities (Wireshark, 

MMS-Ethereal, and IEDScout). 

 Development of a method for IEC 61850 embedded project development and 

system integration. 

 Software development for the process application that is run on the SC143 

chip of the DK 60 board. 

 Development of a method for GOOSE performance evaluation in order to 

confirm that the communication stack used as well as the developed process 

application meet the temporal behaviour requirement specified by the IEC 

61850 standard. 

 Design, implementation and interfacing of a circuit breaker emulator to the 

actuator (DK 60 embedded system platform) successfully completed. 

 Development of a test scenario for an aspect of cyber security. 

 



201 
 

7.3 Thesis deliverables 

In order to achieve the aim and objectives of this research thesis, the following 

deliverables are proposed: 

7.3.1 Literature review: history of IEDs and review of design theory for IED hardware 

and software 

A search and review of the literature has yielded valuable background information on 

the chronological evolution of protection technology and substation automation. This 

was important in order to survey the knowledge-base in the field of Substation 

Automation Systems and appreciate how constant efforts of innovation over a period 

of more than a hundred years have contributed to current practice.IED hardware 

topologies and software algorithms have also been reviewed. 

 

This contextual information was of assistance in delimiting the scope of the current 

research.  

7.3.2 Literature review: analysis and comparison of method for IEC 61850 modelling - 

development and implementation aspects 

A literature review on the analysis and interpretation of UML diagrams relating to a 

general understanding of the IEC 61850 standard was conducted. A method for the 

development of an IEC 61850 Data model and services is reviewed as well as the 

method for the deployment of a distributed protection scheme. 

7.3.3 GOOSE frame format analysis utilizing data network utilities 

A general study of the format of the Ethernet frame structure was conducted and 

details particular to the GOOSE PDU were analysed and interpreted: including the 

ASN.1 encoding and decoding of the hexadecimal data through the use of specialized 

network analyzer tools such as Wireshark and MMS-Ethereal. 

7.3.4 Development of a method for IEC 61850 embedded project development and 

system integration for the DK 60 board 

It was important to develop a step-by-step method showing the development steps 

one has to go through in order to develop a compliant IEC 61850 software application 

on a specific embedded system platform. In this method certain activities are 

proposed, in a certain order, that (a) allows for by-passing the ad-hoc trial and error 

first-time users encounter, (b) identification of project-specific challenges at an early 

stage, and (c) project error diagnosis. (see Figure 5.1) 



202 
 

A method for SCL file creation and manipulation in order to enable integration and 

interoperability between devices from different vendors is explained, based on the use 

of ICD Designer, SEL Architect, and other software tools. (Section 4.4.4) 

7.3.5 Software development for the process application that is run on the SC143 chip 

of the DK 60 board 

Based on experience with other IEC 61850 industrial substation equipment, it 

appears that the server functionality is associated with the publisher and also with the 

subscriber mechanism. This is not the case with the specific implementation by 

SystemCorp on their DK60 embedded platform (as of the time of writing: Oct 2012). 

The PIS-010 stack from SystemCorp implements server functionality which is 

associated only with the publisher and the client is associated with the subscriber 

mechanism. Thus, to have access to full publisher/subscriber functionality a method 

has to be developed in order to merge the server and the client modules into the 

same process application source code and have them interact properly. This was 

successfully achieved, i.e. demonstration of GOOSE communication from a 

commercial IED to the DK 60-based circuit breaker actuator and from the circuit 

breaker actuator to other devices on the network was achieved. 

 

The process application software developed accesses and packages the binary 

information at the boundary between the DK60 board and the emulated circuit 

breaker. GOOSE messages for protection and status position are now exchanged 

between the commercial IED and the DK60 board. In the one direction a protection 

trip signal is sent, and in the other direction breaker position status information is sent 

via GOOSE message. The protection operations dependant on the GOOSE 

messaging (sent at the data-link layer level) is time-critical. The process application 

software developed also allows for the control of the emulated circuit breaker from a 

desktop computer using the MMS protocol (command sent through the TCP/IP stack) 

and the communication method known as “direct-with-normal-security”. 

 

This research project demonstrates the use of SystemCorp’s IEC 61850 

communication stack (PIS-10.lib) and it’s associated Application Program Interface 

(API). The contribution of the software developed for the process application can be 

stated as follows: 

 The PIS010 stack does not support array data types, but does support single-

bit Boolean data types. Unfortunately the breaker position status requires a 

value derived from a two-bit word (double point position status - Dbpos) to be 

inserted into the payload of the GOOSE message.  A method was developed 



203 
 

for concatenation of the individual Boolean bits so as to link to a structure 

which holds a value representative of the two-bit value.  

 The demonstration program which was supplied with the DK60 board, only 

supported one data type (Boolean). In order to accommodate the specific 

design of this project (double point status data and Boolean data), the original 

database program had to be adapted significantly (up to approximately 90%) 

in order to accommodate multiple data types in the database. Some of the 

programming which had to be done related to: 

o Adapting the link between the database and the GOOSE message to 

accommodate two data types instead of one; 

o The real-time updating of two data types instead of one - to track 

GOOSE events on the DK60 platform; a typical scenario is the 

following - Digital I/O points continuously monitored (GOOSE 

performance affected by pause in this polling loop); status of breaker 

changes; status change detected and compared to value in historical 

field in database; computation for new value for double point status; 

update of the current individual bit value into the historical table within 

the database; call the “IEC61850_Update” function in the PIS010 stack 

to update the GOOSE value; 

o The procedure above refers to the case when the event is generated 

from within the DK60 environment (GOOSE transmitted). A different 

mechanism is utilized when the event is generated externally (GOOSE 

received). 

 The relevant source code for the process application (GA61850.c) is available 

in Appendix F, the SCL files (Appendices C and D) and adapted hardware 

configuration (Appendix E). 

 

[Note: that all developed software functions have been written in the “C” language 

within the file (GA61850.c) which is available in Appendix F. Other include files that 

are part of the software development process (e.g. clib.h, stdio.h, mem.h, time.h, 

IEC61850API.h etc.) can be freely downloaded from the Beck IPC and SystemCorp 

websites (upon registration)]. 

 

The functional response of the implemented circuit breaker actuator was verified in 

the CSAEMS laboratory and the GOOSE transmission time of 0.975 mS was within 

the range specified by the IEC 61850 standard (3 mS).  

 



204 
 

Table 7.1 describes some of the main functions that were used for this research 

project. An indication is made on the table for software functions that have been 

adapted or those which have been used as-is. 

 

Table 7.1: Function list identification 
In GA61850.C source code (Appendix F)
Function/ method name Description and comments Use for 

Server 
module 

Use for 
Client 
module 

PIS-010 Object Management (Specific SystemCorp/ No modification added) 
 
IEC61850_Create  create a client/server object  

 

 

IEC61850_LoadSCLfile Configures the client/server from an 
SCL file 
 

 

 

 

 
IEC61850_Start Starts the services (e.g. GOOSE, 

MMS etc) within the client/server 
object. 
 

 

 

 

 

IEC61850_Stop Stop the services (e.g. GOOSE, MMS 
etc) within the client/server Object. 
 

 

 

 

 
IEC61850_Free  Delete a client/server object 

 
 

 

 

 

 
PIS-10 Data Attribute Access. 
(Unless otherwise mentioned, the following functions have been adapted to suit the project 
specification) 
IEC61850_Update Server Function called 

from the user application indicating 
a change in the hardware to the IEC 
61850 stack.  
(Have not been modified) 

 

 

 

 

My_User_Write 
[MyWriteFunction] 

Function calls backs by the PIS-10 to 
handle a Write command coming from 
a client on the Network. Changes a 
value  on the Server 

 

 

 

 

My_User_Read 
[MyReadFunction] 

Function calls backs by the PIS-10 to 
handle a Read command coming from 
a Client on the network. Requests a 
Value from theServer 

 

 

 

 

My_User_Operate 
[MyOperateFunction] 

Function calls backs by the PIS-10 to 
handle an Operate command on 
selected control/s with specified value 

 

 

 

 
My_User_Update 
[MyUpdateFunction] 

Function calls backs by the PIS-10 to 
inform the user application of a change 
of a value on a published GOOSE 
issue by a Server on the network 

 

 

 

 

  



205 
 

Function/ method name Description Use for 
Server 
module 

Use for 
Client 
module 

PIS-10 Time Function(Specific SystemCorp/ No modification added) 
getTime get the NTP time N/A N/A 
PIS-10 Support functions Specific SystemCorp/ No modification added) 
IEC61850_GetLibraryVersion Returns the version of the PIS-10 

library 
N/A N/A 

IEC61850_GetLibraryBuildTime Returns build time for PIS-10 
Library 

N/A N/A 

Other important functions
CreateLocalDatabase Create the process application local 

data base that will hold the 
application Object.  
(Have been adapted) 

N/A N/A 

huge InputHandler This is the function that will be 
executed continuously. This function 
has been entirely rewritten. They 
are different state machines 
implemented inside as well as the 
container for circuit breaker Double 
point position status. Other function 
are event driven 
(Have been adapted) 

 
N/A 

RTX_Create_Task This function is used to create and 
start an executable RTOS task.  
(Beck- IPC No Change) 

N/A N/A 

RTX_Sleep_Time This function is used to put the 
execution of the current program on 
hold. This is very important in 
multitasking environment. 
(Beck IPC- No Change) 

N/A N/A 

 

The development of an IEC 61850 application that uses an off-the-shelf (commercial) 

communication stack helps to reduce the time-to-market for the manufacturing 

process of IEDs. The complexity of the software development is then reduced to the 

only the process application interfaced to an existing communication stack.  

7.3.6 Development of a method for GOOSE performance evaluation in order to 

confirm that the communication stack used as well as the developed process 

application meet the temporal behaviour requirements specified by the IEC 

61850 standard. 

A method for GOOSE performance evaluation derived from the “inter trip test” has 

been tested with success. It was necessary to slightly adapt the original “inter trip test” 

due to the fact that no power interface for hard-wired connection has been developed 

between the circuit breaker actuator and the test injection device. An acceptable 

GOOSE transfer time of about 0.975 mS was achieved as compared to the IEC 

61850 standard which specifies a transfer time average value of 3 mS for GOOSE 

messages used for protection applications. 

 

 



206 
 

7.3.7 Development of a test scenario for an aspect of cyber security 

A test-method to determine the capabilities of an IED to discard a GOOSE packet in 

case of a network intrusion by an out-of-sequence legacy GOOSE message was 

developed. This method required the use of advanced networking tools such as 

“Colasoft Packet Builder”. 

 

The next section presents a summary of the challenges encountered in the 

implementation of the research project and how these were overcome. 

7.4 Challenges Encountered  

There have been significant - almost insurmountable - challenges that have arisen 

during the course of this research project implementation. These include: 

a) Very little detailed implementation knowledge in the public domain – knowledge 

resides with vendors only. Almost no implementation work done in the academic 

sphere that is known of. 

b) Very few platforms, tools and forums for the development or adaptation of IEC 61850 

solutions in the public domain. Deficiency in documentation, functionality not 

corresponding with what was marketed, versions of software not being mature and 

these facts not being communicated to the user community have compounded the 

problems when doing development, and have hampered progress at all stages of the 

project. 

c) A multi-disciplinary environment – the development of an IEC 61850 embedded 

application requires knowledge in multiple fields such as data networking, software 

modelling and development, embedded systems, electrical protection, and system 

simulation and testing methods. Sufficient familiarity with all these environments to 

the extent of being able to develop solutions is quite formidable. 

d) Interpretation of the standard – a pre-requisite to development or adaptation of any 

IEC 61850 compliant device requires detailed knowledge of most parts of the 

standard; of which there are many. 

 

Outside of the main vendor companies which have been mentioned, it has been 

reported that some (but very few) national power utilities and municipalities and 

associated companies (e.g. test injection equipment manufacturing companies, and 

companies manufacturing real-time simulation environments for power systems), 

have implemented their own IEC 61850 devices. Even the details of these solutions 

are not in the public domain. 

 



207 
 

The challenges outlined above clearly show that this project is a unique effort at 

implementing a solution that would normally only be in the domain of vendors, and 

thereby contribute to forming a foundation for the interpretation of standards, and 

determining what is of importance for implementation. 

 

The following has been achieved in this research project: an excellent understanding 

of the IEC 61850 standard, sufficient familiarity with the multi-disciplinary aspects of 

data networking, software development, hardware interfacing and systems 

integration, and, through close dialogue with the developers of the embedded 

systems board (Beck-IPC) and the developers of the Protocol Integration Stack 

(SystemCorp), have addressed many of the considerable challenges which have 

arisen. 

 

The overcurrent case study, the function of which was distributed between a 

commercial IED (SIEMENS Siprotec device) and the actuator-application developed 

on an embedded platform for this project (DK60 board). The system development and 

integration yielded a solution that was in compliance with the IEC 61850 standard and 

utilized GOOSE (Generic Object-Oriented Substation Event) messaging to 

successfully achieve both the functional and temporal behaviour required.  

7.5 Application of results 

The work of this research project includes areas which combine the aspects of data 

networking, embedded software and hardware development, power system protection 

principles and substation automation.  

 

The results present the possibility for future research opportunities for embedded 

development of applications within the IEC 61850 domain.  

 

Specific areas where the results could be applied: 

 Possible software and product development for equipment for non-substation 

environments and potentially new domains e.g.  

 development of logical nodes for new domains e.g. new logical nodes 

for the hydro and wind domains have already been proposed.  

 development of logical nodes for possible Smartgrid applications 

 For further investigation into the understanding and development of process 

bus devices (actuators and merging units). 

 



208 
 

7.6 Proposed improvements and ongoing work status 

Recommendations that flow from this research work can be stated as follows: 

 

 The current research recommends the adoption of a new communication 

stack architecture that will allow field devices (Protection relay, Actuator…) to 

deploy a “Server +Publisher +Subscriber” on one platform under one real-time 

operating system, independently from a client object. The current architecture 

forces the user to first create a client object before being able to subscribe to a 

GOOSE message. It will be recommended that the publisher/subscriber be 

independent from the client/server. Some efforts still need to be made from a 

cyber security point of view. Despite the comments above, this research has 

demonstrated the potential capabilities of the PIS-10 stack from “SystemCorp” 

to meet and achieve critical IEC 61850 standard specifications. 

 

 In the first edition of the IEC 61850 standard, the mechanism by which a 

device publishes a GOOSE message is clearly specified and is well known. 

The subscription mechanism to a GOOSE message is however not specified 

in Edition 1 of the standard. This situation is responsible for the differences 

observed while experimenting with various commercial IEDs (SIEMENS, ABB, 

SEL…) and the embedded platform. The same implementation methodology 

to publish a GOOSE message is used, but every vendor has their own 

implementation for the subscription mechanism. These types of issues with 

respect to the GOOSE subscription mechanism are addressed in IEC 61850 

Edition2.The IEC 61850 standard (Edition 2) has now defined a model for 

subscription by adding the definition of a new Logical Node for GOOSE 

subscription (LN LGOS). The LN LGOS is defined for the monitoring (or 

subscription) of GOOSE messages. It will certainly take a bit of time for 

vendors to adapt their subscription mechanisms to the new IEC 61850 

specifications as per Edition 2 of the standard. More information regarding 

these issues are available at: 

http://www.tissues.iec61850.com/tissue.mspx?issueid=831 

http://www.tissues.iec61850.com/tissue.mspx?issueid=829 

 

The definition list of new logical nodes as per IEC 61850 Ed.2 can be accessed from:  

http://blog.iec61850.com/2012/07/list-of-almost-all-iec-61850-logical.html 

 

Edition 2 of the IEC 61850 standard is now available (published in 2011).Most of the 

issues reported in Edition 1 has been resolved in Edition2 of the standard.  



209 
 

7.7 Future research work 

Future directions for research work include the following: 

 Investigate the use of PowerPC and ARM7 microprocessor chip platform for 

the development of Intelligent Electronic Devices as they can offer higher 

processing capabilities. 

 Explore the possibilities offered by VxWorks Real-Time Operating system as it 

is extensively used by IED vendors and demonstrate clearly how to enable 

multitasking/multithreading execution for the considered Real-Time Operating 

System.  

 Investigate the use of IEC 61131-3 (for PLC) or IEC 61499 (for distributed 

control and automation) together with IEC 61850 (for Communication network 

and systems for power utility automation-Ed.2) in order to explore the synergy 

between distributed factory automation and substation automation. 

 Investigation of the MMS message structure and its application within the IEC 

61850 standard. 

 Investigate the development method for “select-before-operate” for an IEC 

61850 Server Object (code to be written in C language in order to be 

compatible with the PIS-10.lib). 

 Investigate the development method for “select-before-operate” for an IEC 

61850 Client Object for HMI (code to be written in C# language in order to be 

compatible with the PIS-10.DLL). 

 Investigate the performance and system stability of a protection scheme on 

which both GOOSE and Sampled Value are used on the process bus. 

 

7.8 Publications 

1. Retonda, J., Petev, P., Kriger, C., and Behardien, S., 2012. Software 

development for integration of an embedded system platform into a minimal lab-

scale IEC 61850 application. Submitted to SAIEE Research Journal (awaiting 

confirmation for publication). 

2. Kriger, C., Retonda, J., Luwaca, E. and Behardien, S., 2011. Analysis of GOOSE 

and Sampled Value Message Structure for Educational Purposes. PAC World 

Conference, Dublin. 

3. Retonda, J. and Behardien, S., 2010. Simulation of an IEC 61850 based GOOSE 

message, and analysis of its structure. South African OMICRON User Conference 

2010. Johannesburg. South Africa, 8-9 November 2010. 

 



210 
 

APPENDICES 

  



211 
 

APPENDIX A 

  



212 
 

APPENDIX A: UML representative diagram 
 

 
  



213 
 

APPENDIX B 

 

 

  



214 
 

APPENDIX B:  ASN.1 code for GOOSE encoding/decoding 
Taken from IEC 61850-8-1 (2004, p.111). 

----------------------------------------------------------- 

 
IEC61850 DEFINITIONS ::= BEGIN 
IMPORTS Data FROM ISO-IEC-9506-2 
IEC 61850-8-1 Specific Protocol ::= CHOICE { 
gseMngtPdu [APPLICATION 0] IMPLICIT GSEMngtPdu, 
goosePdu [APPLICATION 1] IMPLICIT IECGoosePdu, 
… } 
GSEMngtPdu ::= SEQUENCE { 
StateID   [0] IMPLICIT INTEGER, 
Security  [3] ANY OPTIONAL, -- reserved for future definition 
CHOICE { 
requests  [1] IMPLICIT GSEMngtRequests, 
responses [2] IMPLICIT GSEMngtResponses 
} 
} 
GSEMngtRequests ::= CHOICE { 
getGoReference        [1] IMPLICIT GetReferenceRequestPdu 
getGOOSEElementNumber [2] IMPLICIT GetElementRequestPdu, 
getGsReference        [3] IMPLICIT GetReferenceRequestPdu, 
getGSSEDataOffset     [4] IMPLICIT GetElementRequestPdu, 
… 
} 
GSEMngtResponses ::= CHOICE { 
gseMngtNotSupported   [0] IMPLICIT NULL, 
getGoReference        [1] IMPLICIT GSEMngtResponsePdu, 
getGOOSEElementNumber [2] IMPLICIT GSEMngtResponsePdu, 
getGsReference        [3] IMPLICIT GSEMngtResponsePdu, 
getGSSEDataOffset     [4] IMPLICIT GSEMngtResponsePdu, 
… 
} 
GetReferenceRequestPdu ::= SEQUENCE { 
ident  [0] IMPLICIT VISIBLE-STRING, 
-- size shall support up to 65 octets 
offset [1] IMPLICIT SEQUENCE OF INTEGER, 
… 
} 
GetElementRequestPdu ::= SEQUENCE { 
ident      [0] IMPLICIT VISIBLE-STRING, 
-- size shall support up to 65 octets 
references [1] IMPLICIT SEQUENCE OF VISIBLE-STRING 
… 
} 
GSEMngtResponsePdu ::= SEQUENCE { 
ident   [0] IMPLICIT VISIBLE-STRING, 
-- echos the value of the request 
confRev [1] IMPLICIT INTEGER OPTIONAL, 
CHOICE { 
responsePositive [2] IMPLICIT SEQUENCE { 
datSet           [0] IMPLICIT VISIBLE_STRING OPTIONAL, 
result           [1] IMPLICIT SEQUENCE OF RequestResults 
}, 
responseNegative [3] IMPLICIT GlbErrors 
}, 



215 
 

… 
} 
RequestResults::= CHOICE { 
offset    [0] IMPLICIT INTEGER, 
reference [1] IMPLICIT IA5STRING, 
error     [2] IMPLICIT ErrorReason 
} 
GlbErrors ::= INTEGER { 
other(0), 
unknownControlBlock(1), 
responseTooLarge(2), 
controlBlockConfigurationError (3), 
… 
} 
ErrorReason ::= INTEGER { 
other (0), 
notFound (1), 
… 
} 
IECGoosePdu ::= SEQUENCE { 
gocbRef           [0] IMPLICIT VISIBLE-STRING, 
timeAllowedtoLive [1] IMPLICIT INTEGER, 
datSet            [2] IMPLICIT VISIBLE-STRING, 
goID              [3] IMPLICIT VISIBLE-STRING OPTIONAL, 
t                 [4] IMPLICIT UtcTime, 
stNum             [5] IMPLICIT INTEGER, 
sqNum             [6] IMPLICIT INTEGER, 
test              [7] IMPLICIT BOOLEAN DEFAULT FALSE, 
confRev           [8] IMPLICIT INTEGER, 
ndsCom            [9] IMPLICIT BOOLEAN DEFAULT FALSE, 
numDatSetEntries [10] IMPLICIT INTEGER, 
allData          [11] IMPLICIT SEQUENCE OF Data, 
security         [12] ANY OPTIONAL, 
-- reserved for digital signature 
} 
UtcTime ::= OCTETSTRING –- format and size defined in 8.1.3.6. 
 
END 

  



216 
 

APPENDIX C  

 

  



217 
 

APPENDIX C: DK60SV1.ICD 
 

<?xml version="1.0" encoding="UTF-8"?> 
<SCL xmlns="http://www.iec.ch/61850/2003/SCL"> 
   <Header id="" version="1" nameStructure="IEDName"/> 
   <Communication> 
      <SubNetwork name="SubNetworkName"> 
         <ConnectedAP iedName="DK60" apName="SubstationRing1"> 
            <Address> 
               <P type="OSI-AP-Title">1,1,1,999,1</P> 
               <P type="OSI-AE-Qualifier">12</P> 
               <P type="OSI-PSEL">00000001</P> 
               <P type="OSI-SSEL">0001</P> 
               <P type="OSI-TSEL">0001</P> 
               <P type="IP">172.16.10.5</P> 
               <P type="IP-SUBNET">255.255.255.0</P> 
               <P type="IP-GATEWAY">172.16.10.4</P> 
            </Address> 
            <GSE ldInst="LDevice1" cbName="GSE_CB_GOOSE"> 
               <Address> 
                  <P type="VLAN-ID">0</P> 
                  <P type="VLAN-PRIORITY">4</P> 
                  <P type="MAC-Address">01-0c-cd-01-00-00</P> 
                  <P type="APPID">0</P> 
               </Address> 
            </GSE> 
         </ConnectedAP> 
      </SubNetwork> 
   </Communication> 
   <IED type="Circuit Breaker" manufacturer="CPUT" configVersion="1" 
name="DK60"> 
      <Services> 
         <DynAssociation/> 
         <GetDirectory/> 
         <GetDataObjectDefinition/> 
         <DataObjectDirectory/> 
         <GetDataSetValue/> 
         <SetDataSetValue/> 
         <DataSetDirectory/> 
         <GetCBValues/> 
         <GOOSE client="true" max="10"/> 
         <ConfDataSet modify="true" maxAttributes="0" max="0"/> 
         <ReadWrite/> 
         <TimerActivatedControl/> 
         <ConfReportControl max="0"/> 
         <ConfLogControl max="0"/> 
         <GSEDir/> 
         <GSSE max="0"/> 
         <FileHandling/> 
      </Services> 
      <AccessPoint name="SubstationRing1"> 
         <Server timeout="30"> 
            <Authentication none="true"/> 
            <LDevice inst="LDevice1"> 
               <LN0 lnClass="LLN0" inst="" lnType="LLN0_0"> 
                  <DataSet name="GOOSE_Pos"> 
                     <FCDA ldInst="LDevice1" prefix="DIPS_" lnClass="GGIO" 
lnInst="1" doName="Ind1" daName="stVal" fc="ST"/> 
                     <FCDA ldInst="LDevice1" prefix="DIPS_" lnClass="GGIO" 
lnInst="1" doName="Ind2" daName="stVal" fc="ST"/> 
                     <FCDA ldInst="LDevice1" lnClass="XCBR" lnInst="1" 
doName="Pos" daName="stVal" fc="ST"/> 



218 
 

                     <FCDA ldInst="LDevice1" lnClass="XCBR" lnInst="1" 
doName="Pos" daName="q" fc="ST"/> 
                  </DataSet> 
                  <DataSet name="Alarm_DataSet"> 
                     <FCDA ldInst="LDevice1" lnClass="XCBR" lnInst="1" 
doName="Pos" daName="stVal" fc="ST"/> 
                  </DataSet> 
                  <ReportControl rptID="DK60_RepURCB_ID" confRev="1" 
intgPd="0" datSet="Alarm_DataSet" name="UNBUFFERED_RCB" desc="Unbuf RCB"> 
                     <TrgOps dchg="true" qchg="true" dupd="true"/> 
                     <OptFields/> 
                  </ReportControl> 
                  <DOI name="Mod"> 
                     <DAI name="stVal" valKind="Set"> 
                        <Val sGroup="0">on</Val> 
                     </DAI> 
                     <DAI name="ctlModel" valKind="Set"> 
                        <Val sGroup="0">status-only</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="NamPlt"> 
                     <DAI name="vendor"> 
                        <Val>CPUT</Val> 
                     </DAI> 
                     <DAI name="swRev"> 
                        <Val>0.0</Val> 
                     </DAI> 
                     <DAI name="d"> 
                        <Val>Circuit breaker  Actuator</Val> 
                     </DAI> 
                     <DAI name="configRev"> 
                        <Val></Val> 
                     </DAI> 
                  </DOI> 
                  <GSEControl type="GOOSE" appID="99" confRev="1" 
datSet="GOOSE_Pos" name="GSE_CB_GOOSE"/> 
               </LN0> 
               <LN lnClass="LPHD" inst="1" prefix="" lnType="LPHD_0"> 
                  <DOI name="PhyNam"> 
                     <DAI name="vendor"> 
                        <Val>CPUT</Val> 
                     </DAI> 
                     <DAI name="hwRev"> 
                        <Val></Val> 
                     </DAI> 
                     <DAI name="swRev"> 
                        <Val></Val> 
                     </DAI> 
                     <DAI name="serNum"> 
                        <Val></Val> 
                     </DAI> 
                     <DAI name="model"> 
                        <Val></Val> 
                     </DAI> 
                     <DAI name="location"> 
                        <Val></Val> 
                     </DAI> 
                     <DAI name="cdcNs"> 
                        <Val></Val> 
                     </DAI> 
                     <DAI name="cdcName"> 
                        <Val></Val> 
                     </DAI> 



219 
 

                     <DAI name="dataNs"> 
                        <Val></Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="Proxy"> 
                     <DAI name="d"> 
                        <Val></Val> 
                     </DAI> 
                  </DOI> 
               </LN> 
               <LN lnClass="GGIO" inst="1" prefix="DIPS_" lnType="GGIO_0"> 
                  <DOI name="Mod"> 
                     <DAI name="ctlModel"> 
                        <Val>status-only</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="NamPlt"> 
                     <DAI name="vendor"> 
                        <Val>CPUT</Val> 
                     </DAI> 
                     <DAI name="swRev"> 
                        <Val>0.0</Val> 
                     </DAI> 
                     <DAI name="d"> 
                        <Val>Binary inputs</Val> 
                     </DAI> 
                     <DAI name="configRev"> 
                        <Val></Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="Ind1"> 
                     <DAI name="d" valKind="Set"> 
                        <Val sGroup="0"></Val> 
                     </DAI> 
                     <DAI name="stVal"> 
                        <Private type="SystemCorp_Generic"> 
<SystemCorp_Generic:GenericPrivateObject Field1="1" Field2="1" Field3="1" 
Field4="0" Field5="0" 
xmlns:SystemCorp_Generic="http://www.systemcorp.com.au/61850/SCL/Generic"/>
</Private> 
                     </DAI> 
                     <DAI name="q"> 
                        <Private type="SystemCorp_Generic"> 
<SystemCorp_Generic:GenericPrivateObject Field1="1" Field2="1" Field3="2" 
Field4="0" Field5="0" 
xmlns:SystemCorp_Generic="http://www.systemcorp.com.au/61850/SCL/Generic"/>
</Private> 
                     </DAI> 
                     <DAI name="t"> 
                        <Private type="SystemCorp_Generic"> 
<SystemCorp_Generic:GenericPrivateObject Field1="1" Field2="1" Field3="3" 
Field4="0" Field5="0" 
xmlns:SystemCorp_Generic="http://www.systemcorp.com.au/61850/SCL/Generic"/>
</Private> 
                     </DAI> 
                  </DOI> 
                  <DOI name="Ind2"> 
                     <DAI name="d" valKind="Set"> 
                        <Val sGroup="0">0</Val> 
                     </DAI> 
                     <DAI name="stVal" valKind="Set"> 
                        <Private type="SystemCorp_Generic"> 



220 
 

<SystemCorp_Generic:GenericPrivateObject Field1="2" Field2="1" Field3="1" 
Field4="0" Field5="0" 
xmlns:SystemCorp_Generic="http://www.systemcorp.com.au/61850/SCL/Generic"/>
</Private> 
                     </DAI> 
                     <DAI name="q"> 
                        <Private type="SystemCorp_Generic"> 
<SystemCorp_Generic:GenericPrivateObject Field1="2" Field2="1" Field3="2" 
Field4="0" Field5="0" 
xmlns:SystemCorp_Generic="http://www.systemcorp.com.au/61850/SCL/Generic"/>
</Private> 
                     </DAI> 
                     <DAI name="t"> 
                        <Private type="SystemCorp_Generic"> 
<SystemCorp_Generic:GenericPrivateObject Field1="2" Field2="1" Field3="3" 
Field4="0" Field5="0" 
xmlns:SystemCorp_Generic="http://www.systemcorp.com.au/61850/SCL/Generic"/>
</Private> 
                     </DAI> 
                  </DOI> 
               </LN> 
               <LN lnClass="XCBR" inst="1" prefix="" lnType="XCBR_1"> 
                  <DOI name="Pos"> 
                     <SDI name="Oper"> 
                        <DAI name="ctlVal" valKind="Set"> 
                           <Private type="SystemCorp_Generic"> 
<SystemCorp_Generic:GenericPrivateObject Field1="1" Field2="2" Field3="1" 
Field4="0" Field5="0" 
xmlns:SystemCorp_Generic="http://www.systemcorp.com.au/61850/SCL/Generic"/>
</Private> 
                        </DAI> 
                     </SDI> 
                     <DAI name="stVal" valKind="Set"> 
                        <Private type="SystemCorp_Generic"> 
<SystemCorp_Generic:GenericPrivateObject Field1="3" Field2="1" Field3="1" 
Field4="0" Field5="0" 
xmlns:SystemCorp_Generic="http://www.systemcorp.com.au/61850/SCL/Generic"/>
</Private> 
                     </DAI> 
                     <DAI name="q" valKind="Set"> 
                        <Private type="SystemCorp_Generic"> 
<SystemCorp_Generic:GenericPrivateObject Field1="3" Field2="1" Field3="2" 
Field4="0" Field5="0" 
xmlns:SystemCorp_Generic="http://www.systemcorp.com.au/61850/SCL/Generic"/>
</Private> 
                     </DAI> 
                     <DAI name="t" valKind="Set"> 
                        <Private type="SystemCorp_Generic"> 
<SystemCorp_Generic:GenericPrivateObject Field1="3" Field2="1" Field3="3" 
Field4="0" Field5="0" 
xmlns:SystemCorp_Generic="http://www.systemcorp.com.au/61850/SCL/Generic"/>
</Private> 
                     </DAI> 
                     <DAI name="ctlModel" valKind="Set"> 
                        <Val sGroup="0">direct-with-normal-security</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="Mod"> 
                     <DAI name="stVal" valKind="Set"> 
                        <Val sGroup="0">on</Val> 
                     </DAI> 
                     <DAI name="ctlModel" valKind="Set"> 
                        <Val sGroup="0">status-only</Val> 



221 
 

                     </DAI> 
                  </DOI> 
               </LN> 
            </LDevice> 
         </Server> 
      </AccessPoint> 
   </IED> 
   <DataTypeTemplates> 
      <LNodeType lnClass="LLN0" id="LLN0_0"> 
         <DO name="Mod" type="INC_0"/> 
         <DO name="Beh" type="INS_0"/> 
         <DO name="Health" type="INS_1"/> 
         <DO name="NamPlt" type="LPL_0"/> 
      </LNodeType> 
      <LNodeType lnClass="LPHD" id="LPHD_0"> 
         <DO name="PhyHealth" type="INS_2"/> 
         <DO name="PhyNam" type="DPL_0"/> 
         <DO name="Proxy" type="SPS_0"/> 
      </LNodeType> 
      <LNodeType lnClass="GGIO" id="GGIO_0"> 
         <DO name="Mod" type="INC_0"/> 
         <DO name="Beh" type="INS_0"/> 
         <DO name="Health" type="INS_1"/> 
         <DO name="NamPlt" type="LPL_0"/> 
         <DO name="Ind1" type="SPS_0"/> 
         <DO name="Ind2" type="SPS_1"/> 
      </LNodeType> 
      <LNodeType lnClass="XCBR" id="XCBR_1"> 
         <DO name="Mod" type="ENC_0"/> 
         <DO name="Beh" type="ENS_0"/> 
         <DO name="Health" type="ENS_0"/> 
         <DO name="NamPlt" type="LPL_1"/> 
         <DO name="Loc" type="SPS_2"/> 
         <DO name="OpCnt" type="INS_5"/> 
         <DO name="Pos" type="DPC_1"/> 
         <DO name="BlkOpn" type="SPC_1"/> 
         <DO name="BlkCls" type="SPC_1"/> 
         <DO name="CBOpCap" type="INS_5"/> 
      </LNodeType> 
      <DOType cdc="INC" id="INC_0"> 
         <DA fc="ST" name="stVal" bType="Enum" type="Mod"/> 
         <DA fc="ST" name="q" bType="Quality"/> 
         <DA fc="ST" name="t" bType="Timestamp"/> 
         <DA fc="CF" name="ctlModel" bType="Enum" type="ctlModel"/> 
      </DOType> 
      <DOType cdc="INS" id="INS_0"> 
         <DA fc="ST" name="stVal" bType="Enum" type="Beh"/> 
         <DA fc="ST" name="q" bType="Quality"/> 
         <DA fc="ST" name="t" bType="Timestamp"/> 
      </DOType> 
      <DOType cdc="INS" id="INS_1"> 
         <DA fc="ST" name="stVal" bType="Enum" type="Health"/> 
         <DA fc="ST" name="q" bType="Quality"/> 
         <DA fc="ST" name="t" bType="Timestamp"/> 
      </DOType> 
      <DOType cdc="LPL" id="LPL_0"> 
         <DA fc="DC" name="vendor" bType="VisString255"/> 
         <DA fc="DC" name="swRev" bType="VisString255"/> 
         <DA fc="DC" name="d" bType="VisString255"/> 
         <DA fc="DC" name="configRev" bType="VisString255"/> 
      </DOType> 
      <DOType cdc="SPS" id="SPS_0"> 
         <DA fc="ST" name="stVal" bType="BOOLEAN"/> 



222 
 

         <DA fc="ST" name="q" bType="Quality"/> 
         <DA fc="ST" name="t" bType="Timestamp"/> 
         <DA fc="DC" name="d" bType="VisString255"/> 
      </DOType> 
      <DOType cdc="INS" id="INS_2"> 
         <DA fc="ST" name="stVal" bType="INT8"/> 
         <DA fc="ST" name="q" bType="Quality"/> 
         <DA fc="ST" name="t" bType="Timestamp"/> 
      </DOType> 
      <DOType cdc="DPL" id="DPL_0"> 
         <DA fc="DC" name="vendor" bType="VisString255"/> 
         <DA fc="DC" name="hwRev" bType="VisString255"/> 
         <DA fc="DC" name="swRev" bType="VisString255"/> 
         <DA fc="DC" name="serNum" bType="VisString255"/> 
         <DA fc="DC" name="model" bType="VisString255"/> 
         <DA fc="DC" name="location" bType="VisString255"/> 
         <DA fc="EX" name="cdcNs" bType="VisString255"/> 
         <DA fc="EX" name="cdcName" bType="VisString255"/> 
         <DA fc="EX" name="dataNs" bType="VisString255"/> 
      </DOType> 
      <DOType cdc="SPS" id="SPS_1" desc="Single point status"> 
         <DA dchg="true" fc="ST" name="stVal" bType="BOOLEAN"/> 
         <DA qchg="true" fc="ST" name="q" bType="Quality"/> 
         <DA fc="ST" name="t" bType="Timestamp"/> 
         <DA fc="DC" name="d" bType="VisString255"/> 
      </DOType> 
      <DOType cdc="ENC" id="ENC_0" desc="Controllable integer status"> 
         <DA dchg="true" fc="ST" name="stVal" bType="Enum" type="Mod"/> 
         <DA qchg="true" fc="ST" name="q" bType="Quality"/> 
         <DA fc="ST" name="t" bType="Timestamp"/> 
         <DA dchg="true" fc="CF" name="ctlModel" bType="Enum" 
type="ctlModel"/> 
      </DOType> 
      <DOType cdc="ENS" id="ENS_0" desc="Enumerated status"> 
         <DA dchg="true" fc="ST" name="stVal" bType="Enum" type="Mod"/> 
         <DA qchg="true" fc="ST" name="q" bType="Quality"/> 
         <DA fc="ST" name="t" bType="Timestamp"/> 
      </DOType> 
      <DOType cdc="LPL" id="LPL_1" desc="Logical Node name plate"> 
         <DA fc="DC" name="vendor" bType="VisString255"/> 
         <DA fc="DC" name="swRev" bType="VisString255"/> 
         <DA fc="DC" name="d" bType="VisString255"/> 
      </DOType> 
      <DOType cdc="SPS" id="SPS_2" desc="Single point status"> 
         <DA dchg="true" fc="ST" name="stVal" bType="BOOLEAN"/> 
         <DA qchg="true" fc="ST" name="q" bType="Quality"/> 
         <DA fc="ST" name="t" bType="Timestamp"/> 
      </DOType> 
      <DOType cdc="INS" id="INS_5" desc="Integer status"> 
         <DA dchg="true" fc="ST" name="stVal" bType="INT32"/> 
         <DA qchg="true" fc="ST" name="q" bType="Quality"/> 
         <DA fc="ST" name="t" bType="Timestamp"/> 
      </DOType> 
      <DOType cdc="DPC" id="DPC_1" desc="Controllable double point"> 
         <DA fc="CO" name="Oper" bType="Struct" type="SBOwDbpos_0"/> 
         <DA dchg="true" fc="ST" name="stVal" bType="Dbpos"/> 
         <DA qchg="true" fc="ST" name="q" bType="Quality"/> 
         <DA fc="ST" name="t" bType="Timestamp"/> 
         <DA fc="CF" name="ctlModel" bType="Enum" type="ctlModel"/> 
      </DOType> 
      <DOType cdc="SPC" id="SPC_1" desc="Controllable single point"> 
         <DA fc="CF" name="ctlModel" bType="Enum" type="ctlModel"/> 
      </DOType> 



223 
 

      <DAType id="Originator_0"> 
         <BDA name="orCat" bType="Enum" type="orCat"/> 
         <BDA name="orIdent" bType="Octet64"/> 
      </DAType> 
      <DAType id="SBOwDbpos_0"> 
         <BDA name="ctlVal" bType="BOOLEAN"/> 
         <BDA name="origin" bType="Struct" type="Originator_0"/> 
         <BDA name="ctlNum" bType="INT8U"/> 
         <BDA name="T" bType="Timestamp"/> 
         <BDA name="Test" bType="BOOLEAN"/> 
         <BDA name="Check" bType="Check"/> 
      </DAType> 
      <EnumType id="ctlModel"> 
         <EnumVal ord="0">status-only</EnumVal> 
         <EnumVal ord="1">direct-with-normal-security</EnumVal> 
         <EnumVal ord="2">sbo-with-normal-security</EnumVal> 
         <EnumVal ord="3">direct-with-enhanced-security</EnumVal> 
         <EnumVal ord="4">sbo-with-enhanced-security</EnumVal> 
      </EnumType> 
      <EnumType id="orCat"> 
         <EnumVal ord="0">not-supported</EnumVal> 
         <EnumVal ord="1">bay-control</EnumVal> 
         <EnumVal ord="2">station-control</EnumVal> 
         <EnumVal ord="3">remote-control</EnumVal> 
         <EnumVal ord="4">automatic-bay</EnumVal> 
         <EnumVal ord="5">automatic-station</EnumVal> 
         <EnumVal ord="6">automatic-remote</EnumVal> 
         <EnumVal ord="7">maintenance</EnumVal> 
         <EnumVal ord="8">process</EnumVal> 
      </EnumType> 
      <EnumType id="sboClass"> 
         <EnumVal ord="0">operate-once</EnumVal> 
         <EnumVal ord="1">operate-many</EnumVal> 
      </EnumType> 
      <EnumType id="Beh"> 
         <EnumVal ord="1">on</EnumVal> 
         <EnumVal ord="2">blocked</EnumVal> 
         <EnumVal ord="3">test</EnumVal> 
         <EnumVal ord="4">test/blocked</EnumVal> 
         <EnumVal ord="5">off</EnumVal> 
      </EnumType> 
      <EnumType id="Mod"> 
         <EnumVal ord="1">on</EnumVal> 
         <EnumVal ord="2">blocked</EnumVal> 
         <EnumVal ord="3">test</EnumVal> 
         <EnumVal ord="4">test/blocked</EnumVal> 
         <EnumVal ord="5">off</EnumVal> 
      </EnumType> 
      <EnumType id="CBOpCap"> 
         <EnumVal ord="1">None</EnumVal> 
         <EnumVal ord="2">Open</EnumVal> 
         <EnumVal ord="3">Close-Open</EnumVal> 
         <EnumVal ord="4">Open-Close-Open</EnumVal> 
         <EnumVal ord="5">Close-Open-Close-Open</EnumVal> 
      </EnumType> 
      <EnumType id="Health"> 
         <EnumVal ord="1">Ok</EnumVal> 
         <EnumVal ord="2">Warning</EnumVal> 
         <EnumVal ord="3">Alarm</EnumVal> 
      </EnumType> 
      <EnumType id="Check"> 
         <EnumVal ord="0">no-check</EnumVal> 
         <EnumVal ord="1">synchrocheck</EnumVal> 



224 
 

         <EnumVal ord="2">interlocking-check</EnumVal> 
         <EnumVal ord="3">both</EnumVal> 
      </EnumType> 
      <EnumType id="Dbpos"> 
         <EnumVal ord="0">intermediate-state</EnumVal> 
         <EnumVal ord="1">off</EnumVal> 
         <EnumVal ord="2">on</EnumVal> 
         <EnumVal ord="3">bad-state</EnumVal> 
      </EnumType> 
      <EnumType id="orCategory"> 
         <EnumVal ord="0">not-supported</EnumVal> 
         <EnumVal ord="1">bay-control</EnumVal> 
         <EnumVal ord="2">station-control</EnumVal> 
         <EnumVal ord="3">remote-control</EnumVal> 
         <EnumVal ord="4">automatic-bay</EnumVal> 
         <EnumVal ord="5">automatic-station</EnumVal> 
         <EnumVal ord="6">automatic-remote</EnumVal> 
         <EnumVal ord="7">maintenance</EnumVal> 
         <EnumVal ord="8">process</EnumVal> 
      </EnumType> 
   </DataTypeTemplates> 
</SCL> 
 

  



225 
 

 

APPENDIX D  

  



226 
 

APPENDIX D: DK60CL1.SCD 
 

<?xml version="1.0" encoding="UTF-8"?> 
<SCL xmlns="http://www.iec.ch/61850/2003/SCL" 
xmlns:xsd="http://www.w3.org/2001/XMLSchema"> 
   <Private type="Siemens-SclLib-Version">V02.11.00</Private> 
   <Private type="Siemens-SclLib-EditTime">10.06.2012 15:01:28</Private> 
   <Private type="Siemens-CRC">-1817809451</Private> 
   <Header id="" nameStructure="IEDName"> 
      <Text>IEC61850 station</Text> 
      <History> 
         <Hitem version="1" revision="1" when="Thursday, June 07, 2012 
6:33:42 PM" who="Licenced DIGSI user: cputJohn" what="Icd-
Import:D:\Siemens\Digsi4\D4PROJ\J_Over_1\P7DI\GV\SD\00000001\en100par.icd 
as IED_0002" why="Automatic Digsi IEC61850 Configurator Startup"></Hitem> 
         <Hitem version="1" revision="2" when="Thursday, June 07, 2012 
6:33:42 PM" who="Licenced DIGSI user: cputJohn" what="Icd-
Import:D:\Siemens\Digsi4\D4PROJ\J_Over_1\P7DI\GV\OD\00000001\otherdev.icd 
as DK60" why="Automatic Digsi IEC61850 Configurator Startup"></Hitem> 
         <Hitem version="1" revision="3" when="Thursday, June 07, 2012 
6:33:45 PM" who="Licenced DIGSI user: cputJohn" what="SCD-file saved to 
disk." why="Digsi IEC61850 Configurator User Action"></Hitem> 
         <Hitem version="1" revision="4" when="Thursday, June 07, 2012 
6:35:43 PM" who="Licenced DIGSI user: cputJohn" what="SCD-file saved to 
disk." why="Digsi IEC61850 Configurator User Action"></Hitem> 
         <Hitem version="1" revision="5" when="Thursday, June 07, 2012 
6:38:14 PM" who="Licenced DIGSI user: cputJohn" what="Icd-
Import:D:\Siemens\Digsi4\D4PROJ\J_Over_1\P7DI\GV\OD\00000002\otherdev.icd 
as DK60" why="Automatic Digsi IEC61850 Configurator Startup"></Hitem> 
         <Hitem version="1" revision="6" when="Thursday, June 07, 2012 
6:38:17 PM" who="Licenced DIGSI user: cputJohn" what="SCD-file saved to 
disk." why="Digsi IEC61850 Configurator User Action"></Hitem> 
         <Hitem version="1" revision="7" when="Thursday, June 07, 2012 
6:52:15 PM" who="Licenced DIGSI user: cputJohn" what="SCD-file saved to 
disk." why="Digsi IEC61850 Configurator User Action"></Hitem> 
         <Hitem version="1" revision="8" when="Thursday, June 07, 2012 
7:01:35 PM" who="Licenced DIGSI user: cputJohn" what="SCD-file saved to 
disk." why="Digsi IEC61850 Configurator User Action"></Hitem> 
         <Hitem version="1" revision="9" when="Thursday, June 07, 2012 
7:02:04 PM" who="Licenced DIGSI user: cputJohn" what="SCD-file saved to 
disk." why="Digsi IEC61850 Configurator User Action"></Hitem> 
         <Hitem version="1" revision="10" when="Thursday, June 07, 2012 
7:12:01 PM" who="Licenced DIGSI user: cputJohn" what="SCD-file saved to 
disk." why="Digsi IEC61850 Configurator User Action"></Hitem> 
         <Hitem version="1" revision="11" when="Thursday, June 07, 2012 
7:37:50 PM" who="Licenced DIGSI user: cputJohn" what="SCD-file saved to 
disk." why="Digsi IEC61850 Configurator User Action"></Hitem> 
         <Hitem version="1" revision="12" when="Thursday, June 07, 2012 
7:40:55 PM" who="Licenced DIGSI user: cputJohn" what="Icd-
Import:D:\Siemens\Digsi4\D4PROJ\J_Over_1\P7DI\GV\SD\00000002\en100par.icd 
as IED_0002" why="Automatic Digsi IEC61850 Configurator Startup"></Hitem> 
         <Hitem version="1" revision="13" when="Thursday, June 07, 2012 
7:40:58 PM" who="Licenced DIGSI user: cputJohn" what="SCD-file saved to 
disk." why="Digsi IEC61850 Configurator User Action"></Hitem> 
         <Hitem version="1" revision="14" when="Thursday, June 07, 2012 
7:43:09 PM" who="Licenced DIGSI user: cputJohn" what="SCD-file saved to 
disk." why="Digsi IEC61850 Configurator User Action"></Hitem> 
         <Hitem version="1" revision="15" when="Thursday, June 07, 2012 
7:43:24 PM" who="Licenced DIGSI user: cputJohn" what="SCD-file saved to 
disk." why="Digsi IEC61850 Configurator User Action"></Hitem> 



227 
 

         <Hitem version="1" revision="16" when="Thursday, June 07, 2012 
8:20:31 PM" who="Licenced DIGSI user: cputJohn" what="SCD-file saved to 
disk." why="Digsi IEC61850 Configurator User Action"></Hitem> 
         <Hitem version="1" revision="17" when="Thursday, June 07, 2012 
8:29:18 PM" who="Licenced DIGSI user: cputJohn" what="SCD-file saved to 
disk." why="Digsi IEC61850 Configurator User Action"></Hitem> 
         <Hitem version="1" revision="18" when="Friday, June 08, 2012 
4:53:36 PM" who="Licenced DIGSI user: cputJohn" what="SCD-file saved to 
disk." why="Digsi IEC61850 Configurator User Action"></Hitem> 
         <Hitem version="1" revision="19" when="Sunday, June 10, 2012 
1:52:55 PM" who="Licenced DIGSI user: cputJohn" what="SCD-file saved to 
disk." why="Digsi IEC61850 Configurator User Action"></Hitem> 
         <Hitem version="1" revision="20" when="Sunday, June 10, 2012 
3:01:14 PM" who="Licenced DIGSI user: cputJohn" what="Icd-
Update:D:\Siemens\Digsi4\D4PROJ\J_Over_1\P7DI\GV\SD\00000002\en100par.icd 
as IED_1" why="Automatic Digsi IEC61850 Configurator Startup"></Hitem> 
         <Hitem version="1" revision="21" when="Sunday, June 10, 2012 
3:01:28 PM" who="Licenced DIGSI user: cputJohn" what="SCD-file saved to 
disk." why="Digsi IEC61850 Configurator User Action"></Hitem> 
      </History> 
   </Header> 
   <Substation name="IEC61850 station"> 
      <VoltageLevel name="Voltage level1"> 
         <Bay name="Field1"/> 
      </VoltageLevel> 
   </Substation> 
   <Communication> 
      <Private type="Siemens-AppId-Correction_Fully">true</Private> 
      <SubNetwork name="SubNetworkName"> 
         <Text></Text> 
         <Private type="Siemens-Start-Address">172.16.0.1</Private> 
         <Private type="Siemens-Default-Subnet-
Mask">255.255.255.0</Private> 
         <Private type="Siemens-Application">GOOSE 
application1||0001||PriorityLow||10|2000|000|4</Private> 
         <ConnectedAP iedName="MyClient" apName="P1"> 
            <Address> 
               <P type="OSI-AP-Title">1,1,1,999,1</P> 
               <P type="OSI-AE-Qualifier">12</P> 
               <P type="OSI-PSEL">00000001</P> 
               <P type="OSI-SSEL">0001</P> 
               <P type="OSI-TSEL">0001</P> 
               <P type="IP">172.16.10.5</P> 
               <P type="IP-SUBNET">255.255.255.0</P> 
               <P type="IP-GATEWAY">172.16.10.4</P> 
            </Address> 
         </ConnectedAP> 
         <ConnectedAP iedName="IED_1" apName="P1"> 
            <Private type="Siemens-Application-GSEControl">GOOSE 
application1|Control_DataSet1</Private> 
            <Address> 
               <P type="IP">172.16.10.2</P> 
               <P type="IP-SUBNET">255.255.255.0</P> 
               <P type="OSI-AP-Title">1,3,9999,23</P> 
               <P type="OSI-AE-Qualifier">23</P> 
               <P type="OSI-PSEL">00000001</P> 
               <P type="OSI-SSEL">0001</P> 
               <P type="OSI-TSEL">0001</P> 
               <P type="IP-GATEWAY">172.16.0.254</P> 
               <P type="S-Profile">1</P> 
            </Address> 
            <GSE ldInst="PROT" cbName="Control_DataSet1"> 
               <Address> 



228 
 

                  <P type="VLAN-ID">000</P> 
                  <P type="VLAN-PRIORITY">4</P> 
                  <P type="MAC-Address">01-0C-CD-01-00-00</P> 
                  <P type="APPID">0001</P> 
               </Address> 
               <MinTime unit="s" multiplier="m">10</MinTime> 
               <MaxTime unit="s" multiplier="m">2000</MaxTime> 
            </GSE> 
         </ConnectedAP> 
      </SubNetwork> 
   </Communication> 
   <IED name="MyClient"> 
      <AccessPoint name="P1"> 
         <LN lnClass="GGIO" inst="1" prefix="" lnType="not_needed"/> 
      </AccessPoint> 
   </IED> 
   <IED type="Siprotec-7SDx" manufacturer="SIEMENS" configVersion="1.0" 
name="IED_1" desc="7SD533 V4.6"> 
      <Private type="Siemens-Increment">2</Private> 
      <Private type="Siemens-BRCB-
StoragePercentageMemoryForBuffer">PROT\LLN0\brcbA|0</Private> 
      <Private type="Siemens-BRCB-
StoragePercentageMemoryForBuffer">PROT\LLN0\brcbB|0</Private> 
      <Private type="Siemens-BRCB-
StoragePercentageMemoryForBuffer">MEAS\LLN0\brcbA|0</Private> 
      <Private type="Siemens-BRCB-
StoragePercentageMemoryForBuffer">MEAS\LLN0\brcbB|0</Private> 
      <Private type="Siemens-BRCB-
StoragePercentageMemoryForBuffer">DR\LLN0\brcbA|0</Private> 
      <Private type="Siemens-BRCB-
StoragePercentageMemoryForBuffer">DR\LLN0\brcbB|0</Private> 
      <Private type="Siemens-BRCB-
StoragePercentageMemoryForBuffer">CTRL\LLN0\brcbA|100</Private> 
      <Private type="Siemens-BRCB-
StoragePercentageMemoryForBuffer">CTRL\LLN0\brcbB|0</Private> 
      <Private type="Siemens-NetworkFrequency">50 Hz</Private> 
      <Private type="Siemens-s7ManagerName">7SD533 V4.6</Private> 
      <Private type="Siemens-ICD-Language">en-GB</Private> 
      <Private type="Siemens-IED-Id">IED_3</Private> 
      <Services> 
         <DynAssociation/> 
         <GetDirectory/> 
         <GetDataObjectDefinition/> 
         <DataObjectDirectory/> 
         <GetDataSetValue/> 
         <DataSetDirectory/> 
         <ConfDataSet modify="true" maxAttributes="60" max="15"/> 
         <DynDataSet maxAttributes="60" max="15"/> 
         <ReadWrite/> 
         <ConfReportControl max="10"/> 
         <GetCBValues/> 
         <ReportSettings rptID="Dyn" optFields="Dyn" bufTime="Dyn" 
trgOps="Dyn" intgPd="Dyn" cbName="Fix" datSet="Dyn"/> 
         <GOOSE client="true" max="16"/> 
         <FileHandling/> 
         <ConfLNs fixPrefix="true" fixLnInst="true"/> 
      </Services> 
      <AccessPoint name="P1"> 
         <Server timeout="30"> 
            <Authentication none="true"/> 
            <LDevice inst="PROT" desc="Protection"> 
               <LN0 lnClass="LLN0" inst="" lnType="IED_1/PROT/LLN0" 
desc="General"> 



229 
 

                  <DataSet name="DataSet1"> 
                     <FCDA ldInst="PROT" prefix="" lnClass="PTRC" 
lnInst="1" doName="Tr" daName="q" fc="ST"/> 
                     <FCDA ldInst="PROT" prefix="" lnClass="PTRC" 
lnInst="1" doName="Tr" daName="general" fc="ST"/> 
                  </DataSet> 
                  <DOI name="Mod" desc="Mode"> 
                     <DAI name="ctlModel" valKind="Set"> 
                        <Val sGroup="0">status-only</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="Beh" desc="Behaviour"/> 
                  <DOI name="Health" desc="State"/> 
                  <DOI name="NamPlt" desc="Info"> 
                     <DAI name="configRev"> 
                        <Val>160412115234078</Val> 
                     </DAI> 
                     <DAI name="ldNs"> 
                        <Val>IEC 61850-7-4:2003(E)</Val> 
                     </DAI> 
                  </DOI> 
                  <GSEControl type="GOOSE" appID="0" confRev="1" 
datSet="DataSet1" name="Control_DataSet1"/> 
               </LN0> 
               <LN lnClass="LPHD" inst="1" lnType="IED_1/PROT/LPHD1" 
desc="Device"> 
                  <DOI name="PhyNam" desc="Info"> 
                     <DAI name="cdcNs"> 
                        <Val>7SDx IED Configuration Description File 
scdConfigRev same Revision as the Station Configuration Description</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="PhyHealth" desc="State"/> 
                  <DOI name="Proxy" desc="Proxy"/> 
               </LN> 
               <LN lnClass="PDIS" inst="1" lnType="IED_1/PROT/PDIS1" 
desc="Dist Zone Z1"> 
                  <DOI name="Mod" desc="Mode"> 
                     <DAI name="ctlModel"> 
                        <Val>status-only</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="Beh" desc="Behaviour"/> 
                  <DOI name="Health" desc="State"/> 
                  <DOI name="NamPlt" desc="Info"> 
                     <DAI name="configRev"> 
                        <Val>210404153620012</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="Str" desc="Pickup"/> 
                  <DOI name="StrAG" desc="Pickup L1-E"> 
                     <DAI name="dataNs"> 
                        <Val>7SDx IED Configuration Description File</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="StrBG" desc="Pickup L2-E"> 
                     <DAI name="dataNs"> 
                        <Val>7SDx IED Configuration Description File</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="StrCG" desc="Pickup L3-E"> 
                     <DAI name="dataNs"> 
                        <Val>7SDx IED Configuration Description File</Val> 



230 
 

                     </DAI> 
                  </DOI> 
                  <DOI name="StrAB" desc="Pickup L12"> 
                     <DAI name="dataNs"> 
                        <Val>7SDx IED Configuration Description File</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="StrBC" desc="Pickup L23"> 
                     <DAI name="dataNs"> 
                        <Val>7SDx IED Configuration Description File</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="StrCA" desc="Pickup L31"> 
                     <DAI name="dataNs"> 
                        <Val>7SDx IED Configuration Description File</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="Op" desc="TRIP"/> 
               </LN> 
               <LN lnClass="PDIS" inst="2" lnType="IED_1/PROT/PDIS2" 
desc="Dist Zone Z2"> 
                  <DOI name="Mod" desc="Mode"> 
                     <DAI name="ctlModel"> 
                        <Val>status-only</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="Beh" desc="Behaviour"/> 
                  <DOI name="Health" desc="State"/> 
                  <DOI name="NamPlt" desc="Info"> 
                     <DAI name="configRev"> 
                        <Val>210404153620012</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="Str" desc="Pickup"/> 
                  <DOI name="Op" desc="TRIP"/> 
               </LN> 
               <LN lnClass="PDIS" inst="3" prefix="" 
lnType="IED_1/PROT/PDIS2" desc="Dist Zone Z3"> 
                  <DOI name="Mod" desc="Mode"> 
                     <DAI name="ctlModel"> 
                        <Val>status-only</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="Beh" desc="Behaviour"/> 
                  <DOI name="Health" desc="State"/> 
                  <DOI name="NamPlt" desc="Info"> 
                     <DAI name="configRev"> 
                        <Val>210404153620012</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="Str" desc="Pickup"/> 
                  <DOI name="Op" desc="TRIP"/> 
               </LN> 
               <LN lnClass="PDIS" inst="4" prefix="" 
lnType="IED_1/PROT/PDIS2" desc="Dist Zone Z4"> 
                  <DOI name="Mod" desc="Mode"> 
                     <DAI name="ctlModel"> 
                        <Val>status-only</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="Beh" desc="Behaviour"/> 
                  <DOI name="Health" desc="State"/> 
                  <DOI name="NamPlt" desc="Info"> 



231 
 

                     <DAI name="configRev"> 
                        <Val>210404153620012</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="Str" desc="Pickup"/> 
                  <DOI name="Op" desc="TRIP"/> 
               </LN> 
               <LN lnClass="PDIS" inst="5" lnType="IED_1/PROT/PDIS2" 
desc="Dist Zone Z5"> 
                  <DOI name="Mod" desc="Mode"> 
                     <DAI name="ctlModel"> 
                        <Val>status-only</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="Beh" desc="Behaviour"/> 
                  <DOI name="Health" desc="State"/> 
                  <DOI name="NamPlt" desc="Info"> 
                     <DAI name="configRev"> 
                        <Val>210404153620012</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="Str" desc="Pickup"/> 
                  <DOI name="Op" desc="TRIP"/> 
               </LN> 
               <LN lnClass="PDIS" inst="10" lnType="IED_1/PROT/PDIS1" 
desc="Dist Zone Z1B"> 
                  <DOI name="Mod" desc="Mode"> 
                     <DAI name="ctlModel"> 
                        <Val>status-only</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="Beh" desc="Behaviour"/> 
                  <DOI name="Health" desc="State"/> 
                  <DOI name="NamPlt" desc="Info"> 
                     <DAI name="configRev"> 
                        <Val>210404153620012</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="Str" desc="Pickup"/> 
                  <DOI name="StrAG" desc="Pickup L1-E"> 
                     <DAI name="dataNs"> 
                        <Val>7SDx IED Configuration Description File</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="StrBG" desc="Pickup L2-E"> 
                     <DAI name="dataNs"> 
                        <Val>7SDx IED Configuration Description File</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="StrCG" desc="Pickup L3-E"> 
                     <DAI name="dataNs"> 
                        <Val>7SDx IED Configuration Description File</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="StrAB" desc="Pickup L12"> 
                     <DAI name="dataNs"> 
                        <Val>7SDx IED Configuration Description File</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="StrBC" desc="Pickup L23"> 
                     <DAI name="dataNs"> 
                        <Val>7SDx IED Configuration Description File</Val> 
                     </DAI> 



232 
 

                  </DOI> 
                  <DOI name="StrCA" desc="Pickup L31"> 
                     <DAI name="dataNs"> 
                        <Val>7SDx IED Configuration Description File</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="Op" desc="TRIP"/> 
               </LN> 
               <LN lnClass="PTOC" inst="1" prefix="" 
lnType="IED_1/PROT/PTOC1" desc="IDMT Ip"> 
                  <DOI name="Mod" desc="Mode"> 
                     <DAI name="ctlModel"> 
                        <Val>status-only</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="Beh" desc="Behaviour"/> 
                  <DOI name="Health" desc="State"/> 
                  <DOI name="NamPlt" desc="Info"> 
                     <DAI name="configRev"> 
                        <Val>210404153620012</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="Str" desc="Pickup"/> 
                  <DOI name="Op" desc="TRIP"/> 
               </LN> 
               <LN lnClass="PTOC" inst="2" prefix="" 
lnType="IED_1/PROT/PTOC1" desc="DMT I&gt;"> 
                  <DOI name="Mod" desc="Mode"> 
                     <DAI name="ctlModel"> 
                        <Val>status-only</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="Beh" desc="Behaviour"/> 
                  <DOI name="Health" desc="State"/> 
                  <DOI name="NamPlt" desc="Info"> 
                     <DAI name="configRev"> 
                        <Val>210404153620012</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="Str" desc="Pickup"/> 
                  <DOI name="Op" desc="TRIP"/> 
               </LN> 
               <LN lnClass="PTOC" inst="3" prefix="" 
lnType="IED_1/PROT/PTOC1" desc="DMT I&gt;&gt;"> 
                  <DOI name="Mod" desc="Mode"> 
                     <DAI name="ctlModel"> 
                        <Val>status-only</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="Beh" desc="Behaviour"/> 
                  <DOI name="Health" desc="State"/> 
                  <DOI name="NamPlt" desc="Info"> 
                     <DAI name="configRev"> 
                        <Val>210404153620012</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="Str" desc="Pickup"/> 
                  <DOI name="Op" desc="TRIP"/> 
               </LN> 
               <LN lnClass="PTOC" inst="4" lnType="IED_1/PROT/PTOC1" 
desc="DMT I&gt;&gt;&gt;"> 
                  <DOI name="Mod" desc="Mode"> 
                     <DAI name="ctlModel"> 



233 
 

                        <Val>status-only</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="Beh" desc="Behaviour"/> 
                  <DOI name="Health" desc="State"/> 
                  <DOI name="NamPlt" desc="Info"> 
                     <DAI name="configRev"> 
                        <Val>210404153620012</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="Str" desc="Pickup"/> 
                  <DOI name="Op" desc="TRIP"/> 
               </LN> 
               <LN lnClass="PTRC" inst="1" prefix="" 
lnType="IED_1/PROT/PTRC1" desc="Total"> 
                  <DOI name="Beh" desc="Behaviour"/> 
                  <DOI name="Health" desc="State"/> 
                  <DOI name="NamPlt" desc="Info"> 
                     <DAI name="configRev"> 
                        <Val>210404153620012</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="Tr" desc="TRIP"> 
                     <DAI name="general" valKind="Set"> 
                        <Private type="SystemCorp_Generic"> 
<SystemCorp_Generic:GenericPrivateObject Field1="1" Field2="2" Field3="1" 
Field4="0" Field5="0" 
xmlns:SystemCorp_Generic="http://www.systemcorp.com.au/61850/SCL/Generic"/>
</Private> 
                     </DAI> 
                     <DAI name="q" valKind="Set"> 
                        <Private type="SystemCorp_Generic"> 
<SystemCorp_Generic:GenericPrivateObject Field1="1" Field2="2" Field3="2" 
Field4="0" Field5="0" 
xmlns:SystemCorp_Generic="http://www.systemcorp.com.au/61850/SCL/Generic"/>
</Private> 
                     </DAI> 
                  </DOI> 
                  <DOI name="Str" desc="Pickup"/> 
                  <DOI name="FinTr" desc="AR fin OFF"> 
                     <DAI name="d"> 
                        <Val>FinTr stands for Auto reclose Lockout</Val> 
                     </DAI> 
                     <DAI name="dataNs"> 
                        <Val>7SDx IED Configuration Description File</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="Mod"> 
                     <DAI name="ctlModel" valKind="Set"> 
                        <Val sGroup="0">status-only</Val> 
                     </DAI> 
                     <DAI name="stVal" valKind="Set"> 
                        <Val sGroup="0">on</Val> 
                     </DAI> 
                  </DOI> 
               </LN> 
               <LN lnClass="PTRC" inst="2" lnType="IED_1/PROT/PTRC2" 
desc="Dist general"> 
                  <DOI name="Mod" desc="Mode"> 
                     <DAI name="ctlModel"> 
                        <Val>status-only</Val> 
                     </DAI> 
                  </DOI> 



234 
 

                  <DOI name="Beh" desc="Behaviour"/> 
                  <DOI name="Health" desc="State"/> 
                  <DOI name="NamPlt" desc="Info"> 
                     <DAI name="configRev"> 
                        <Val>210404153620012</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="Op" desc="TRIP"/> 
                  <DOI name="Str" desc="Pickup"/> 
               </LN> 
               <LN lnClass="XCBR" inst="2" lnType="IED_1/PROT/XCBR2" 
desc="CB L1"> 
                  <DOI name="Mod" desc="Mode"> 
                     <DAI name="ctlModel"> 
                        <Val>status-only</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="Beh" desc="Behaviour"/> 
                  <DOI name="Health" desc="State"/> 
                  <DOI name="NamPlt" desc="Info"> 
                     <DAI name="configRev"> 
                        <Val>210404153620012</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="Loc" desc="Control Auth"/> 
                  <DOI name="OpCnt" desc="TripComdCounter"> 
                     <DAI name="dataNs"> 
                        <Val>7SDx IED Configuration Description File</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="Pos" desc="Position"> 
                     <DAI name="ctlModel"> 
                        <Val>status-only</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="BlkOpn" desc="Open block"> 
                     <DAI name="ctlModel"> 
                        <Val>status-only</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="BlkCls" desc="Close block"> 
                     <DAI name="ctlModel"> 
                        <Val>status-only</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="SumSwARs" desc="Sum I"> 
                     <DAI name="d"> 
                        <Val>SumSwARs stands for Accumulation of 
interrupted current L1</Val> 
                     </DAI> 
                     <DAI name="dataNs"> 
                        <Val>7SDx IED Configuration Description File</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="CBOpCap" desc="Switch capablty"> 
                     <DAI name="stVal"> 
                        <Val>None</Val> 
                     </DAI> 
                  </DOI> 
               </LN> 
               <LN lnClass="XCBR" inst="3" lnType="IED_1/PROT/XCBR2" 
desc="CB L2"> 
                  <DOI name="Mod" desc="Mode"> 



235 
 

                     <DAI name="ctlModel"> 
                        <Val>status-only</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="Beh" desc="Behaviour"/> 
                  <DOI name="Health" desc="State"/> 
                  <DOI name="NamPlt" desc="Info"> 
                     <DAI name="configRev"> 
                        <Val>210404153620012</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="Loc" desc="Control Auth"/> 
                  <DOI name="OpCnt" desc="TripComdCounter"> 
                     <DAI name="dataNs"> 
                        <Val>7SDx IED Configuration Description File</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="Pos" desc="Position"> 
                     <DAI name="ctlModel"> 
                        <Val>status-only</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="BlkOpn" desc="Open block"> 
                     <DAI name="ctlModel"> 
                        <Val>status-only</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="BlkCls" desc="Close block"> 
                     <DAI name="ctlModel"> 
                        <Val>status-only</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="SumSwARs" desc="Sum I"> 
                     <DAI name="d"> 
                        <Val>SumSwARs1 stands for Accumulation of 
interrupted current L2</Val> 
                     </DAI> 
                     <DAI name="dataNs"> 
                        <Val>7SDx IED Configuration Description File</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="CBOpCap" desc="Switch capablty"> 
                     <DAI name="stVal"> 
                        <Val>None</Val> 
                     </DAI> 
                  </DOI> 
               </LN> 
               <LN lnClass="XCBR" inst="4" lnType="IED_1/PROT/XCBR2" 
desc="CB L3"> 
                  <DOI name="Mod" desc="Mode"> 
                     <DAI name="ctlModel"> 
                        <Val>status-only</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="Beh" desc="Behaviour"/> 
                  <DOI name="Health" desc="State"/> 
                  <DOI name="NamPlt" desc="Info"> 
                     <DAI name="configRev"> 
                        <Val>210404153620012</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="Loc" desc="Control Auth"/> 
                  <DOI name="OpCnt" desc="TripComdCounter"> 



236 
 

                     <DAI name="dataNs"> 
                        <Val>7SDx IED Configuration Description File</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="Pos" desc="Position"> 
                     <DAI name="ctlModel"> 
                        <Val>status-only</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="BlkOpn" desc="Open block"> 
                     <DAI name="ctlModel"> 
                        <Val>status-only</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="BlkCls" desc="Close block"> 
                     <DAI name="ctlModel"> 
                        <Val>status-only</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="SumSwARs" desc="Sum I"> 
                     <DAI name="d"> 
                        <Val>SumSwARs2 stands for Accumulation of 
interrupted current L3</Val> 
                     </DAI> 
                     <DAI name="dataNs"> 
                        <Val>7SDx IED Configuration Description File</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="CBOpCap" desc="Switch capablty"> 
                     <DAI name="stVal"> 
                        <Val>None</Val> 
                     </DAI> 
                  </DOI> 
               </LN> 
               <LN lnClass="PDIF" inst="1" lnType="IED_1/PROT/PDIF1" 
desc="DIFF I&gt;"> 
                  <DOI name="Mod" desc="Mode"> 
                     <DAI name="ctlModel"> 
                        <Val>status-only</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="Beh" desc="Behaviour"/> 
                  <DOI name="Health" desc="State"/> 
                  <DOI name="NamPlt" desc="Info"> 
                     <DAI name="configRev"> 
                        <Val>210404153620012</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="Str" desc="Pickup"/> 
                  <DOI name="Op" desc="TRIP"/> 
               </LN> 
               <LN lnClass="PDIF" inst="2" lnType="IED_1/PROT/PDIF1" 
desc="DIFF I&gt;&gt;"> 
                  <DOI name="Mod" desc="Mode"> 
                     <DAI name="ctlModel"> 
                        <Val>status-only</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="Beh" desc="Behaviour"/> 
                  <DOI name="Health" desc="State"/> 
                  <DOI name="NamPlt" desc="Info"> 
                     <DAI name="configRev"> 
                        <Val>210404153620012</Val> 



237 
 

                     </DAI> 
                  </DOI> 
                  <DOI name="Str" desc="Pickup"/> 
                  <DOI name="Op" desc="TRIP"/> 
               </LN> 
               <LN lnClass="PTRC" inst="3" lnType="IED_1/PROT/PTRC3" 
desc="DIFF general"> 
                  <DOI name="Mod" desc="Mode"> 
                     <DAI name="ctlModel"> 
                        <Val>status-only</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="Beh" desc="Behaviour"/> 
                  <DOI name="Health" desc="State"/> 
                  <DOI name="NamPlt" desc="Info"> 
                     <DAI name="configRev"> 
                        <Val>210404153620012</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="Op" desc="TRIP"/> 
                  <DOI name="Str" desc="Pickup"/> 
                  <DOI name="StrA" desc="Pickup L1"> 
                     <DAI name="d"> 
                        <Val>StrA stands for Start Phase A</Val> 
                     </DAI> 
                     <DAI name="dataNs"> 
                        <Val>7SDx IED Configuration Description File</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="StrAG" desc="Pickup L1E"> 
                     <DAI name="d"> 
                        <Val>StrAG stands for Start Phase AG</Val> 
                     </DAI> 
                     <DAI name="dataNs"> 
                        <Val>7SDx IED Configuration Description File</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="StrB" desc="Pickup L2"> 
                     <DAI name="d"> 
                        <Val>StrB stands for Start Phase B</Val> 
                     </DAI> 
                     <DAI name="dataNs"> 
                        <Val>7SDx IED Configuration Description File</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="StrBG" desc="Pickup L2E"> 
                     <DAI name="d"> 
                        <Val>StrBG stands for Start Phase BG</Val> 
                     </DAI> 
                     <DAI name="dataNs"> 
                        <Val>7SDx IED Configuration Description File</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="StrC" desc="Pickup L3"> 
                     <DAI name="d"> 
                        <Val>StrC stands for Start Phase C</Val> 
                     </DAI> 
                     <DAI name="dataNs"> 
                        <Val>7SDx IED Configuration Description File</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="StrCG" desc="Pickup L3E"> 
                     <DAI name="d"> 



238 
 

                        <Val>StrCG stands for Start Phase CG</Val> 
                     </DAI> 
                     <DAI name="dataNs"> 
                        <Val>7SDx IED Configuration Description File</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="StrAB" desc="Pickup L12"> 
                     <DAI name="d"> 
                        <Val>StrAB stands for Start Phase AB</Val> 
                     </DAI> 
                     <DAI name="dataNs"> 
                        <Val>7SDx IED Configuration Description File</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="StrBC" desc="Pickup L23"> 
                     <DAI name="d"> 
                        <Val>StrBC stands for Start Phase BC</Val> 
                     </DAI> 
                     <DAI name="dataNs"> 
                        <Val>7SDx IED Configuration Description File</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="StrCA" desc="Pickup L31"> 
                     <DAI name="d"> 
                        <Val>StrCA stands for Start Phase CA</Val> 
                     </DAI> 
                     <DAI name="dataNs"> 
                        <Val>7SDx IED Configuration Description File</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="StrABC" desc="Pickup L123"> 
                     <DAI name="d"> 
                        <Val>StrABC stands for Start Phase ABC</Val> 
                     </DAI> 
                     <DAI name="dataNs"> 
                        <Val>7SDx IED Configuration Description File</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="StrABG" desc="Pickup L12E"> 
                     <DAI name="d"> 
                        <Val>StrABG stands for Start Phase ABG</Val> 
                     </DAI> 
                     <DAI name="dataNs"> 
                        <Val>7SDx IED Configuration Description File</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="StrBCG" desc="Pickup L23E"> 
                     <DAI name="d"> 
                        <Val>StrBCG stands for Start Phase BCG</Val> 
                     </DAI> 
                     <DAI name="dataNs"> 
                        <Val>7SDx IED Configuration Description File</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="StrCAG" desc="Pickup L31E"> 
                     <DAI name="d"> 
                        <Val>StrCAG stands for Start Phase CAG</Val> 
                     </DAI> 
                     <DAI name="dataNs"> 
                        <Val>7SDx IED Configuration Description File</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="StrABCG" desc="Pickup L123E"> 



239 
 

                     <DAI name="d"> 
                        <Val>StrABCG stands for Start Phase ABCG</Val> 
                     </DAI> 
                     <DAI name="dataNs"> 
                        <Val>7SDx IED Configuration Description File</Val> 
                     </DAI> 
                  </DOI> 
               </LN> 
            </LDevice> 
            <LDevice inst="MEAS" desc="Measurement"> 
               <LN0 lnClass="LLN0" inst="" lnType="IED_1/MEAS/LLN0" 
desc="General"> 
                  <DOI name="Mod" desc="Mode"> 
                     <DAI name="ctlModel"> 
                        <Val>status-only</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="Beh" desc="Behaviour"/> 
                  <DOI name="Health" desc="State"/> 
                  <DOI name="NamPlt" desc="Info"> 
                     <DAI name="configRev"> 
                        <Val>160412115234078</Val> 
                     </DAI> 
                     <DAI name="ldNs"> 
                        <Val>IEC 61850-7-4:2003(E)</Val> 
                     </DAI> 
                  </DOI> 
               </LN0> 
               <LN lnClass="LPHD" inst="1" lnType="IED_1/PROT/LPHD1" 
desc="Device"> 
                  <DOI name="PhyNam" desc="Info"> 
                     <DAI name="cdcNs"> 
                        <Val>7SDx IED Configuration Description File 
scdConfigRev same Revision as the Station Configuration Description</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="PhyHealth" desc="State"/> 
                  <DOI name="Proxy" desc="Proxy"/> 
               </LN> 
               <LN lnClass="MMTR" inst="1" lnType="IED_1/MEAS/MMTR1" 
desc="Energy counter"> 
                  <DOI name="Mod" desc="Mode"> 
                     <DAI name="ctlModel"> 
                        <Val>status-only</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="Beh" desc="Behaviour"/> 
                  <DOI name="Health" desc="State"/> 
                  <DOI name="NamPlt" desc="Info"> 
                     <DAI name="configRev"> 
                        <Val>210404153620012</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="SupWh" desc="Wp output"/> 
                  <DOI name="SupVArh" desc="Wq output"/> 
                  <DOI name="DmdWh" desc="Wp Input"/> 
                  <DOI name="DmdVArh" desc="Wq Input"/> 
               </LN> 
               <LN lnClass="MMXU" inst="1" lnType="IED_1/MEAS/MMXU1" 
desc="Op meas value"> 
                  <DOI name="Mod" desc="Mode"> 
                     <DAI name="ctlModel"> 
                        <Val>status-only</Val> 



240 
 

                     </DAI> 
                  </DOI> 
                  <DOI name="Beh" desc="Behaviour"/> 
                  <DOI name="Health" desc="State"/> 
                  <DOI name="NamPlt" desc="Info"> 
                     <DAI name="configRev"> 
                        <Val>210404153620012</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="TotW" desc="P"> 
                     <DAI name="db"> 
                        <Val>10000</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="TotVAr" desc="Q"> 
                     <DAI name="db"> 
                        <Val>10000</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="TotVA" desc="S"> 
                     <DAI name="db"> 
                        <Val>10000</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="TotPF" desc="cos"> 
                     <DAI name="db"> 
                        <Val>10000</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="Hz" desc="f"> 
                     <DAI name="db"> 
                        <Val>100</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="PPV" desc="U"> 
                     <SDI name="phsAB"> 
                        <DAI name="db"> 
                           <Val>2000</Val> 
                        </DAI> 
                     </SDI> 
                     <SDI name="phsBC"> 
                        <DAI name="db"> 
                           <Val>2000</Val> 
                        </DAI> 
                     </SDI> 
                     <SDI name="phsCA"> 
                        <DAI name="db"> 
                           <Val>2000</Val> 
                        </DAI> 
                     </SDI> 
                  </DOI> 
                  <DOI name="PhV" desc="UE"> 
                     <SDI name="phsA"> 
                        <DAI name="db"> 
                           <Val>2000</Val> 
                        </DAI> 
                     </SDI> 
                     <SDI name="phsB"> 
                        <DAI name="db"> 
                           <Val>2000</Val> 
                        </DAI> 
                     </SDI> 
                     <SDI name="phsC"> 



241 
 

                        <DAI name="db"> 
                           <Val>2000</Val> 
                        </DAI> 
                     </SDI> 
                  </DOI> 
                  <DOI name="A" desc="I"> 
                     <SDI name="phsA"> 
                        <DAI name="db"> 
                           <Val>10000</Val> 
                        </DAI> 
                     </SDI> 
                     <SDI name="phsB"> 
                        <DAI name="db"> 
                           <Val>10000</Val> 
                        </DAI> 
                     </SDI> 
                     <SDI name="phsC"> 
                        <DAI name="db"> 
                           <Val>10000</Val> 
                        </DAI> 
                     </SDI> 
                     <SDI name="neut"> 
                        <DAI name="db"> 
                           <Val>10000</Val> 
                        </DAI> 
                     </SDI> 
                  </DOI> 
               </LN> 
               <LN lnClass="MMXU" inst="2" lnType="IED_1/MEAS/MMXU2" 
desc="Measure relay1"> 
                  <DOI name="Mod" desc="Mode"> 
                     <DAI name="ctlModel"> 
                        <Val>status-only</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="Beh" desc="Behaviour"/> 
                  <DOI name="Health" desc="State"/> 
                  <DOI name="NamPlt" desc="Info"> 
                     <DAI name="configRev"> 
                        <Val>210404153620012</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="RelId" desc="Relay ID"> 
                     <DAI name="d"> 
                        <Val>RelId stands for id of a relay in a protection 
constellation</Val> 
                     </DAI> 
                     <DAI name="dataNs"> 
                        <Val>7SDx IED Configuration Description File</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="PhV" desc="UE"> 
                     <SDI name="phsA"> 
                        <DAI name="db"> 
                           <Val>2000</Val> 
                        </DAI> 
                     </SDI> 
                     <SDI name="phsB"> 
                        <DAI name="db"> 
                           <Val>2000</Val> 
                        </DAI> 
                     </SDI> 
                     <SDI name="phsC"> 



242 
 

                        <DAI name="db"> 
                           <Val>2000</Val> 
                        </DAI> 
                     </SDI> 
                     <DAI name="angRef"> 
                        <Val>Va</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="A" desc="I"> 
                     <SDI name="phsA"> 
                        <DAI name="db"> 
                           <Val>10000</Val> 
                        </DAI> 
                     </SDI> 
                     <SDI name="phsB"> 
                        <DAI name="db"> 
                           <Val>10000</Val> 
                        </DAI> 
                     </SDI> 
                     <SDI name="phsC"> 
                        <DAI name="db"> 
                           <Val>10000</Val> 
                        </DAI> 
                     </SDI> 
                     <DAI name="angRef"> 
                        <Val>Va</Val> 
                     </DAI> 
                  </DOI> 
               </LN> 
               <LN lnClass="MMXU" inst="3" lnType="IED_1/MEAS/MMXU2" 
desc="Measure relay2"> 
                  <DOI name="Mod" desc="Mode"> 
                     <DAI name="ctlModel"> 
                        <Val>status-only</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="Beh" desc="Behaviour"/> 
                  <DOI name="Health" desc="State"/> 
                  <DOI name="NamPlt" desc="Info"> 
                     <DAI name="configRev"> 
                        <Val>210404153620012</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="RelId" desc="Relay ID"> 
                     <DAI name="d"> 
                        <Val>RelId stands for id of a relay in a protection 
constellation</Val> 
                     </DAI> 
                     <DAI name="dataNs"> 
                        <Val>7SDx IED Configuration Description File</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="PhV" desc="UE"> 
                     <SDI name="phsA"> 
                        <DAI name="db"> 
                           <Val>2000</Val> 
                        </DAI> 
                     </SDI> 
                     <SDI name="phsB"> 
                        <DAI name="db"> 
                           <Val>2000</Val> 
                        </DAI> 
                     </SDI> 



243 
 

                     <SDI name="phsC"> 
                        <DAI name="db"> 
                           <Val>2000</Val> 
                        </DAI> 
                     </SDI> 
                     <DAI name="angRef"> 
                        <Val>Va</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="A" desc="I"> 
                     <SDI name="phsA"> 
                        <DAI name="db"> 
                           <Val>10000</Val> 
                        </DAI> 
                     </SDI> 
                     <SDI name="phsB"> 
                        <DAI name="db"> 
                           <Val>10000</Val> 
                        </DAI> 
                     </SDI> 
                     <SDI name="phsC"> 
                        <DAI name="db"> 
                           <Val>10000</Val> 
                        </DAI> 
                     </SDI> 
                     <DAI name="angRef"> 
                        <Val>Va</Val> 
                     </DAI> 
                  </DOI> 
               </LN> 
               <LN lnClass="MSQI" inst="1" lnType="IED_1/MEAS/MSQI1" 
desc="Sym comp value"> 
                  <DOI name="Mod" desc="Mode"> 
                     <DAI name="ctlModel"> 
                        <Val>status-only</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="Beh" desc="Behaviour"/> 
                  <DOI name="Health" desc="State"/> 
                  <DOI name="NamPlt" desc="Info"> 
                     <DAI name="configRev"> 
                        <Val>210404153620012</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="SeqA" desc="Current"> 
                     <SDI name="c1"> 
                        <DAI name="db"> 
                           <Val>10000</Val> 
                        </DAI> 
                     </SDI> 
                     <SDI name="c2"> 
                        <DAI name="db"> 
                           <Val>10000</Val> 
                        </DAI> 
                     </SDI> 
                     <SDI name="c3"> 
                        <DAI name="db"> 
                           <Val>10000</Val> 
                        </DAI> 
                     </SDI> 
                     <DAI name="seqT"> 
                        <Val>pos-neg-zero</Val> 
                     </DAI> 



244 
 

                  </DOI> 
                  <DOI name="SeqV" desc="Voltage"> 
                     <SDI name="c1"> 
                        <DAI name="db"> 
                           <Val>2000</Val> 
                        </DAI> 
                     </SDI> 
                     <SDI name="c2"> 
                        <DAI name="db"> 
                           <Val>2000</Val> 
                        </DAI> 
                     </SDI> 
                     <SDI name="c3"> 
                        <DAI name="db"> 
                           <Val>2000</Val> 
                        </DAI> 
                     </SDI> 
                     <DAI name="seqT"> 
                        <Val>pos-neg-zero</Val> 
                     </DAI> 
                  </DOI> 
               </LN> 
            </LDevice> 
            <LDevice inst="DR" desc="Disturb Rec"> 
               <LN0 lnClass="LLN0" inst="" lnType="IED_1/MEAS/LLN0" 
desc="General"> 
                  <DOI name="Mod" desc="Mode"> 
                     <DAI name="ctlModel"> 
                        <Val>status-only</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="Beh" desc="Behaviour"/> 
                  <DOI name="Health" desc="State"/> 
                  <DOI name="NamPlt" desc="Info"> 
                     <DAI name="configRev"> 
                        <Val>160412115234078</Val> 
                     </DAI> 
                     <DAI name="ldNs"> 
                        <Val>IEC 61850-7-4:2003(E)</Val> 
                     </DAI> 
                  </DOI> 
               </LN0> 
               <LN lnClass="LPHD" inst="1" lnType="IED_1/PROT/LPHD1" 
desc="Device"> 
                  <DOI name="PhyNam" desc="Info"> 
                     <DAI name="cdcNs"> 
                        <Val>7SDx IED Configuration Description File 
scdConfigRev same Revision as the Station Configuration Description</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="PhyHealth" desc="State"/> 
                  <DOI name="Proxy" desc="Proxy"/> 
               </LN> 
               <LN lnClass="RDRE" inst="1" lnType="IED_1/DR/RDRE1" 
desc="Recording"> 
                  <DOI name="Mod" desc="Mode"> 
                     <DAI name="ctlModel"> 
                        <Val>status-only</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="Beh" desc="Behaviour"/> 
                  <DOI name="Health" desc="State"/> 
                  <DOI name="NamPlt" desc="Info"> 



245 
 

                     <DAI name="configRev"> 
                        <Val>210404153620012</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="RcdMade" desc="Made"/> 
                  <DOI name="FltNum" desc="Fault number"/> 
                  <DOI name="GriFltNum" desc="Grid fault num"/> 
                  <DOI name="RcdStr" desc="Start"/> 
               </LN> 
            </LDevice> 
            <LDevice inst="CTRL" desc="Control"> 
               <LN0 lnClass="LLN0" inst="" lnType="IED_1/CTRL/LLN0" 
desc="General"> 
                  <DOI name="Mod" desc="Mode"> 
                     <DAI name="ctlModel"> 
                        <Val>status-only</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="Beh" desc="Behaviour"/> 
                  <DOI name="Health" desc="State"/> 
                  <DOI name="NamPlt" desc="Info"> 
                     <DAI name="configRev"> 
                        <Val>160412115234078</Val> 
                     </DAI> 
                     <DAI name="ldNs"> 
                        <Val>IEC 61850-7-4:2003(E)</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="Loc" desc="Control Auth"/> 
                  <DOI name="LEDRs" desc="LED acknwldgmnt"> 
                     <DAI name="ctlModel"> 
                        <Val>direct-with-normal-security</Val> 
                     </DAI> 
                  </DOI> 
               </LN0> 
               <LN lnClass="LPHD" inst="1" lnType="IED_1/CTRL/LPHD1" 
desc="Device"> 
                  <DOI name="PhyNam" desc="Info"> 
                     <DAI name="cdcNs"> 
                        <Val>7SDx IED Configuration Description File 
scdConfigRev same Revision as the Station Configuration Description</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="PhyHealth" desc="State"/> 
                  <DOI name="Proxy" desc="Proxy"/> 
                  <DOI name="DevStr" desc="Startup"> 
                     <DAI name="d"> 
                        <Val>DevStr stands for either InitialStart or 
Resume</Val> 
                     </DAI> 
                     <DAI name="dataNs"> 
                        <Val>7SDx IED Configuration Description File</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="CtlNum" desc="Test oper Nr"> 
                     <DAI name="d"> 
                        <Val>CtlNum stands for number of Test 
Operations</Val> 
                     </DAI> 
                     <DAI name="dataNs"> 
                        <Val>7SDx IED Configuration Description File</Val> 
                     </DAI> 
                  </DOI> 



246 
 

               </LN> 
               <LN lnClass="CALH" inst="1" lnType="IED_1/CTRL/CALH1" 
desc="Fault"> 
                  <DOI name="Mod" desc="Mode"> 
                     <DAI name="ctlModel"> 
                        <Val>status-only</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="Beh" desc="Behaviour"/> 
                  <DOI name="Health" desc="State"/> 
                  <DOI name="NamPlt" desc="Info"> 
                     <DAI name="configRev"> 
                        <Val>210404153620012</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="GrAlm" desc="Group alarms"/> 
                  <DOI name="GrWrn" desc="Group Warning"/> 
                  <DOI name="ErrBoard1" desc="Error Board 1"> 
                     <DAI name="d"> 
                        <Val>ErrBoard1 stands for Error on board 1</Val> 
                     </DAI> 
                     <DAI name="dataNs"> 
                        <Val>7SDx IED Configuration Description File</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="ErrBoard2" desc="Error Board 2"> 
                     <DAI name="d"> 
                        <Val>ErrBoard2 stands for Error on board 2</Val> 
                     </DAI> 
                     <DAI name="dataNs"> 
                        <Val>7SDx IED Configuration Description File</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="ErrBoard3" desc="Error Board 3"> 
                     <DAI name="d"> 
                        <Val>ErrBoard3 stands for Error on board 3</Val> 
                     </DAI> 
                     <DAI name="dataNs"> 
                        <Val>7SDx IED Configuration Description File</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="ErrBoard4" desc="Error Board 4"> 
                     <DAI name="d"> 
                        <Val>ErrBoard4 stands for Error on board 4</Val> 
                     </DAI> 
                     <DAI name="dataNs"> 
                        <Val>7SDx IED Configuration Description File</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="ErrBoard5" desc="Error Board 5"> 
                     <DAI name="d"> 
                        <Val>ErrBoard5 stands for Error on board 5</Val> 
                     </DAI> 
                     <DAI name="dataNs"> 
                        <Val>7SDx IED Configuration Description File</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="ErrBoard6" desc="Error Board 6"> 
                     <DAI name="d"> 
                        <Val>ErrBoard6 stands for Error on board 6</Val> 
                     </DAI> 
                     <DAI name="dataNs"> 
                        <Val>7SDx IED Configuration Description File</Val> 



247 
 

                     </DAI> 
                  </DOI> 
                  <DOI name="ErrBoard7" desc="Error Board 7"> 
                     <DAI name="d"> 
                        <Val>ErrBoard7 stands for Error on board 7</Val> 
                     </DAI> 
                     <DAI name="dataNs"> 
                        <Val>7SDx IED Configuration Description File</Val> 
                     </DAI> 
                  </DOI> 
               </LN> 
               <LN lnClass="XCBR" inst="1" prefix="Q0" 
lnType="IED_1/CTRL/Q0XCBR1" desc="BreakerXCBR"> 
                  <DOI name="Mod" desc="Mode"> 
                     <DAI name="ctlModel"> 
                        <Val>status-only</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="Beh" desc="Behaviour"/> 
                  <DOI name="Health" desc="State"/> 
                  <DOI name="NamPlt" desc="Info"> 
                     <DAI name="configRev"> 
                        <Val>210404153620012</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="Loc" desc="Control Auth"/> 
                  <DOI name="OpCnt" desc="TripComdCounter"/> 
                  <DOI name="Pos" desc="Position"> 
                     <DAI name="ctlModel"> 
                        <Val>status-only</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="BlkOpn" desc="Open block"> 
                     <DAI name="ctlModel"> 
                        <Val>status-only</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="BlkCls" desc="Close block"> 
                     <DAI name="ctlModel"> 
                        <Val>status-only</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="CBOpCap" desc="Switch capablty"> 
                     <DAI name="stVal"> 
                        <Val>None</Val> 
                     </DAI> 
                  </DOI> 
               </LN> 
               <LN lnClass="CSWI" inst="1" prefix="Q0" 
lnType="IED_1/CTRL/Q0CSWI1" desc="BreakerCSWI"> 
                  <DOI name="Mod" desc="Mode"> 
                     <DAI name="ctlModel"> 
                        <Val>status-only</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="Beh" desc="Behaviour"/> 
                  <DOI name="Health" desc="State"/> 
                  <DOI name="NamPlt" desc="Info"> 
                     <DAI name="configRev"> 
                        <Val>210404153620012</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="Loc" desc="Control Auth"/> 



248 
 

                  <DOI name="Pos" desc="Position"> 
                     <DAI name="ctlModel"> 
                        <Val>sbo-with-enhanced-security</Val> 
                     </DAI> 
                     <DAI name="sboTimeout"> 
                        <Val>300000</Val> 
                     </DAI> 
                     <DAI name="sboClass"> 
                        <Val>operate-once</Val> 
                     </DAI> 
                  </DOI> 
               </LN> 
               <LN lnClass="CILO" inst="1" prefix="Q0" 
lnType="IED_1/CTRL/Q0CILO1" desc="BreakerCILO"> 
                  <DOI name="Mod" desc="Mode"> 
                     <DAI name="ctlModel"> 
                        <Val>status-only</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="Beh" desc="Behaviour"/> 
                  <DOI name="Health" desc="State"/> 
                  <DOI name="NamPlt" desc="Info"> 
                     <DAI name="configRev"> 
                        <Val>210404153620012</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="EnaOpn" desc="Enable Open"/> 
                  <DOI name="EnaCls" desc="Enable Close"/> 
               </LN> 
               <LN lnClass="XSWI" inst="1" prefix="Q1" 
lnType="IED_1/CTRL/Q1XSWI1" desc="Disc.Swit.XSWI"> 
                  <DOI name="Mod" desc="Mode"> 
                     <DAI name="ctlModel"> 
                        <Val>status-only</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="Beh" desc="Behaviour"/> 
                  <DOI name="Health" desc="State"/> 
                  <DOI name="NamPlt" desc="Info"> 
                     <DAI name="configRev"> 
                        <Val>210404153620012</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="Loc" desc="Control Auth"/> 
                  <DOI name="OpCnt" desc="TripComdCounter"/> 
                  <DOI name="Pos" desc="Position"> 
                     <DAI name="ctlModel"> 
                        <Val>status-only</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="BlkOpn" desc="Open block"> 
                     <DAI name="ctlModel"> 
                        <Val>status-only</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="BlkCls" desc="Close block"> 
                     <DAI name="ctlModel"> 
                        <Val>status-only</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="SwTyp" desc="Switch type"> 
                     <DAI name="stVal"> 
                        <Val>Disconnector</Val> 



249 
 

                     </DAI> 
                  </DOI> 
                  <DOI name="SwOpCap" desc="Switch capablty"> 
                     <DAI name="stVal"> 
                        <Val>None</Val> 
                     </DAI> 
                  </DOI> 
               </LN> 
               <LN lnClass="CSWI" inst="1" prefix="Q1" 
lnType="IED_1/CTRL/Q0CSWI1" desc="Disc.Swit.CSWI"> 
                  <DOI name="Mod" desc="Mode"> 
                     <DAI name="ctlModel"> 
                        <Val>status-only</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="Beh" desc="Behaviour"/> 
                  <DOI name="Health" desc="State"/> 
                  <DOI name="NamPlt" desc="Info"> 
                     <DAI name="configRev"> 
                        <Val>210404153620012</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="Loc" desc="Control Auth"/> 
                  <DOI name="Pos" desc="Position"> 
                     <DAI name="ctlModel"> 
                        <Val>sbo-with-enhanced-security</Val> 
                     </DAI> 
                     <DAI name="sboTimeout"> 
                        <Val>300000</Val> 
                     </DAI> 
                     <DAI name="sboClass"> 
                        <Val>operate-once</Val> 
                     </DAI> 
                  </DOI> 
               </LN> 
               <LN lnClass="CILO" inst="1" prefix="Q1" 
lnType="IED_1/CTRL/Q0CILO1" desc="Disc.Swit.CILO"> 
                  <DOI name="Mod" desc="Mode"> 
                     <DAI name="ctlModel"> 
                        <Val>status-only</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="Beh" desc="Behaviour"/> 
                  <DOI name="Health" desc="State"/> 
                  <DOI name="NamPlt" desc="Info"> 
                     <DAI name="configRev"> 
                        <Val>210404153620012</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="EnaOpn" desc="Enable Open"/> 
                  <DOI name="EnaCls" desc="Enable Close"/> 
               </LN> 
               <LN lnClass="XSWI" inst="1" prefix="Q2" 
lnType="IED_1/CTRL/Q1XSWI1" desc="Q2 Op/ClXSWI"> 
                  <DOI name="Mod" desc="Mode"> 
                     <DAI name="ctlModel"> 
                        <Val>status-only</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="Beh" desc="Behaviour"/> 
                  <DOI name="Health" desc="State"/> 
                  <DOI name="NamPlt" desc="Info"> 
                     <DAI name="configRev"> 



250 
 

                        <Val>210404153620012</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="Loc" desc="Control Auth"/> 
                  <DOI name="OpCnt" desc="TripComdCounter"/> 
                  <DOI name="Pos" desc="Position"> 
                     <DAI name="ctlModel"> 
                        <Val>status-only</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="BlkOpn" desc="Open block"> 
                     <DAI name="ctlModel"> 
                        <Val>status-only</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="BlkCls" desc="Close block"> 
                     <DAI name="ctlModel"> 
                        <Val>status-only</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="SwTyp" desc="Switch type"> 
                     <DAI name="stVal"> 
                        <Val>Disconnector</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="SwOpCap" desc="Switch capablty"> 
                     <DAI name="stVal"> 
                        <Val>None</Val> 
                     </DAI> 
                  </DOI> 
               </LN> 
               <LN lnClass="CSWI" inst="1" prefix="Q2" 
lnType="IED_1/CTRL/Q0CSWI1" desc="Q2 Op/ClCSWI"> 
                  <DOI name="Mod" desc="Mode"> 
                     <DAI name="ctlModel"> 
                        <Val>status-only</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="Beh" desc="Behaviour"/> 
                  <DOI name="Health" desc="State"/> 
                  <DOI name="NamPlt" desc="Info"> 
                     <DAI name="configRev"> 
                        <Val>210404153620012</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="Loc" desc="Control Auth"/> 
                  <DOI name="Pos" desc="Position"> 
                     <DAI name="ctlModel"> 
                        <Val>sbo-with-enhanced-security</Val> 
                     </DAI> 
                     <DAI name="sboTimeout"> 
                        <Val>300000</Val> 
                     </DAI> 
                     <DAI name="sboClass"> 
                        <Val>operate-once</Val> 
                     </DAI> 
                  </DOI> 
               </LN> 
               <LN lnClass="CILO" inst="1" prefix="Q2" 
lnType="IED_1/CTRL/Q0CILO1" desc="Q2 Op/ClCILO"> 
                  <DOI name="Mod" desc="Mode"> 
                     <DAI name="ctlModel"> 
                        <Val>status-only</Val> 



251 
 

                     </DAI> 
                  </DOI> 
                  <DOI name="Beh" desc="Behaviour"/> 
                  <DOI name="Health" desc="State"/> 
                  <DOI name="NamPlt" desc="Info"> 
                     <DAI name="configRev"> 
                        <Val>210404153620012</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="EnaOpn" desc="Enable Open"/> 
                  <DOI name="EnaCls" desc="Enable Close"/> 
               </LN> 
               <LN lnClass="XSWI" inst="1" prefix="Q8" 
lnType="IED_1/CTRL/Q1XSWI1" desc="EarthSwitXSWI"> 
                  <DOI name="Mod" desc="Mode"> 
                     <DAI name="ctlModel"> 
                        <Val>status-only</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="Beh" desc="Behaviour"/> 
                  <DOI name="Health" desc="State"/> 
                  <DOI name="NamPlt" desc="Info"> 
                     <DAI name="configRev"> 
                        <Val>210404153620012</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="Loc" desc="Control Auth"/> 
                  <DOI name="OpCnt" desc="TripComdCounter"/> 
                  <DOI name="Pos" desc="Position"> 
                     <DAI name="ctlModel"> 
                        <Val>status-only</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="BlkOpn" desc="Open block"> 
                     <DAI name="ctlModel"> 
                        <Val>status-only</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="BlkCls" desc="Close block"> 
                     <DAI name="ctlModel"> 
                        <Val>status-only</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="SwTyp" desc="Switch type"> 
                     <DAI name="stVal"> 
                        <Val>Earthing Switch</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="SwOpCap" desc="Switch capablty"> 
                     <DAI name="stVal"> 
                        <Val>None</Val> 
                     </DAI> 
                  </DOI> 
               </LN> 
               <LN lnClass="CSWI" inst="1" prefix="Q8" 
lnType="IED_1/CTRL/Q0CSWI1" desc="EarthSwitCSWI"> 
                  <DOI name="Mod" desc="Mode"> 
                     <DAI name="ctlModel"> 
                        <Val>status-only</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="Beh" desc="Behaviour"/> 
                  <DOI name="Health" desc="State"/> 



252 
 

                  <DOI name="NamPlt" desc="Info"> 
                     <DAI name="configRev"> 
                        <Val>210404153620012</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="Loc" desc="Control Auth"/> 
                  <DOI name="Pos" desc="Position"> 
                     <DAI name="ctlModel"> 
                        <Val>sbo-with-enhanced-security</Val> 
                     </DAI> 
                     <DAI name="sboTimeout"> 
                        <Val>300000</Val> 
                     </DAI> 
                     <DAI name="sboClass"> 
                        <Val>operate-once</Val> 
                     </DAI> 
                  </DOI> 
               </LN> 
               <LN lnClass="CILO" inst="1" prefix="Q8" 
lnType="IED_1/CTRL/Q0CILO1" desc="EarthSwitCILO"> 
                  <DOI name="Mod" desc="Mode"> 
                     <DAI name="ctlModel"> 
                        <Val>status-only</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="Beh" desc="Behaviour"/> 
                  <DOI name="Health" desc="State"/> 
                  <DOI name="NamPlt" desc="Info"> 
                     <DAI name="configRev"> 
                        <Val>210404153620012</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="EnaOpn" desc="Enable Open"/> 
                  <DOI name="EnaCls" desc="Enable Close"/> 
               </LN> 
               <LN lnClass="XSWI" inst="1" prefix="Q9" 
lnType="IED_1/CTRL/Q1XSWI1" desc="Q9 Op/ClXSWI"> 
                  <DOI name="Mod" desc="Mode"> 
                     <DAI name="ctlModel"> 
                        <Val>status-only</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="Beh" desc="Behaviour"/> 
                  <DOI name="Health" desc="State"/> 
                  <DOI name="NamPlt" desc="Info"> 
                     <DAI name="configRev"> 
                        <Val>210404153620012</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="Loc" desc="Control Auth"/> 
                  <DOI name="OpCnt" desc="TripComdCounter"/> 
                  <DOI name="Pos" desc="Position"> 
                     <DAI name="ctlModel"> 
                        <Val>status-only</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="BlkOpn" desc="Open block"> 
                     <DAI name="ctlModel"> 
                        <Val>status-only</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="BlkCls" desc="Close block"> 
                     <DAI name="ctlModel"> 



253 
 

                        <Val>status-only</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="SwTyp" desc="Switch type"> 
                     <DAI name="stVal"> 
                        <Val>Disconnector</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="SwOpCap" desc="Switch capablty"> 
                     <DAI name="stVal"> 
                        <Val>None</Val> 
                     </DAI> 
                  </DOI> 
               </LN> 
               <LN lnClass="CSWI" inst="1" prefix="Q9" 
lnType="IED_1/CTRL/Q0CSWI1" desc="Q9 Op/ClCSWI"> 
                  <DOI name="Mod" desc="Mode"> 
                     <DAI name="ctlModel"> 
                        <Val>status-only</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="Beh" desc="Behaviour"/> 
                  <DOI name="Health" desc="State"/> 
                  <DOI name="NamPlt" desc="Info"> 
                     <DAI name="configRev"> 
                        <Val>210404153620012</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="Loc" desc="Control Auth"/> 
                  <DOI name="Pos" desc="Position"> 
                     <DAI name="ctlModel"> 
                        <Val>sbo-with-enhanced-security</Val> 
                     </DAI> 
                     <DAI name="sboTimeout"> 
                        <Val>300000</Val> 
                     </DAI> 
                     <DAI name="sboClass"> 
                        <Val>operate-once</Val> 
                     </DAI> 
                  </DOI> 
               </LN> 
               <LN lnClass="CILO" inst="1" prefix="Q9" 
lnType="IED_1/CTRL/Q0CILO1" desc="Q9 Op/ClCILO"> 
                  <DOI name="Mod" desc="Mode"> 
                     <DAI name="ctlModel"> 
                        <Val>status-only</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="Beh" desc="Behaviour"/> 
                  <DOI name="Health" desc="State"/> 
                  <DOI name="NamPlt" desc="Info"> 
                     <DAI name="configRev"> 
                        <Val>210404153620012</Val> 
                     </DAI> 
                  </DOI> 
                  <DOI name="EnaOpn" desc="Enable Open"/> 
                  <DOI name="EnaCls" desc="Enable Close"/> 
               </LN> 
            </LDevice> 
         </Server> 
      </AccessPoint> 
   </IED> 
   <DataTypeTemplates> 



254 
 

      <LNodeType lnClass="LLN0" id="IED_1/PROT/LLN0"> 
         <DO name="Mod" type="myMod_0"/> 
         <DO name="Beh" type="ENS_0"/> 
         <DO name="Health" type="myHealth_5"/> 
         <DO name="NamPlt" type="myNamPlt_6"/> 
      </LNodeType> 
      <LNodeType lnClass="LPHD" id="IED_1/PROT/LPHD1"> 
         <DO name="PhyNam" type="myPhyNam_8"/> 
         <DO name="PhyHealth" type="myHealth_5"/> 
         <DO name="Proxy" type="SPS_2"/> 
      </LNodeType> 
      <LNodeType lnClass="PDIS" id="IED_1/PROT/PDIS1"> 
         <DO name="Mod" type="myMod_11"/> 
         <DO name="Beh" type="ENS_0"/> 
         <DO name="Health" type="myHealth_5"/> 
         <DO name="NamPlt" type="myNamPlt_14"/> 
         <DO name="Str" type="myStr_15"/> 
         <DO name="StrAG" type="myStrAG_16"/> 
         <DO name="StrBG" type="myStrAG_16"/> 
         <DO name="StrCG" type="myStrAG_16"/> 
         <DO name="StrAB" type="myStrAG_16"/> 
         <DO name="StrBC" type="myStrAG_16"/> 
         <DO name="StrCA" type="myStrAG_16"/> 
         <DO name="Op" type="myOp_22"/> 
      </LNodeType> 
      <LNodeType lnClass="PDIS" id="IED_1/PROT/PDIS2"> 
         <DO name="Mod" type="myMod_11"/> 
         <DO name="Beh" type="ENS_0"/> 
         <DO name="Health" type="myHealth_5"/> 
         <DO name="NamPlt" type="myNamPlt_14"/> 
         <DO name="Str" type="myStr_15"/> 
         <DO name="Op" type="myOp_22"/> 
      </LNodeType> 
      <LNodeType lnClass="PTOC" id="IED_1/PROT/PTOC1"> 
         <DO name="Mod" type="myMod_11"/> 
         <DO name="Beh" type="ENS_0"/> 
         <DO name="Health" type="myHealth_5"/> 
         <DO name="NamPlt" type="myNamPlt_14"/> 
         <DO name="Str" type="myStr_15"/> 
         <DO name="Op" type="myOp_64"/> 
      </LNodeType> 
      <LNodeType lnClass="PTRC" id="IED_1/PROT/PTRC1"> 
         <DO name="Mod" type="myMod_11"/> 
         <DO name="Beh" type="ENS_0"/> 
         <DO name="Health" type="myHealth_5"/> 
         <DO name="NamPlt" type="myNamPlt_14"/> 
         <DO name="Tr" type="myOp_22"/> 
         <DO name="Str" type="myStr_88"/> 
         <DO name="FinTr" type="myFinTr_89"/> 
      </LNodeType> 
      <LNodeType lnClass="PTRC" id="IED_1/PROT/PTRC2"> 
         <DO name="Mod" type="myMod_11"/> 
         <DO name="Beh" type="ENS_0"/> 
         <DO name="Health" type="myHealth_5"/> 
         <DO name="NamPlt" type="myNamPlt_14"/> 
         <DO name="Op" type="myOp_22"/> 
         <DO name="Str" type="myStr_88"/> 
      </LNodeType> 
      <LNodeType lnClass="XCBR" id="IED_1/PROT/XCBR2"> 
         <DO name="Mod" type="myMod_11"/> 
         <DO name="Beh" type="ENS_0"/> 
         <DO name="Health" type="myHealth_5"/> 
         <DO name="NamPlt" type="myNamPlt_14"/> 



255 
 

         <DO name="Loc" type="SPS_2"/> 
         <DO name="OpCnt" type="myOpCnt_101"/> 
         <DO name="Pos" type="myPos_102"/> 
         <DO name="BlkOpn" type="myBlkOpn_103"/> 
         <DO name="BlkCls" type="myBlkOpn_103"/> 
         <DO name="SumSwARs" type="mySumSwARs_105"/> 
         <DO name="CBOpCap" type="myCBOpCap_107"/> 
      </LNodeType> 
      <LNodeType lnClass="PDIF" id="IED_1/PROT/PDIF1"> 
         <DO name="Mod" type="myMod_11"/> 
         <DO name="Beh" type="ENS_0"/> 
         <DO name="Health" type="myHealth_5"/> 
         <DO name="NamPlt" type="myNamPlt_14"/> 
         <DO name="Str" type="myStr_15"/> 
         <DO name="Op" type="myOp_64"/> 
      </LNodeType> 
      <LNodeType lnClass="PTRC" id="IED_1/PROT/PTRC3"> 
         <DO name="Mod" type="myMod_11"/> 
         <DO name="Beh" type="ENS_0"/> 
         <DO name="Health" type="myHealth_5"/> 
         <DO name="NamPlt" type="myNamPlt_14"/> 
         <DO name="Op" type="myOp_22"/> 
         <DO name="Str" type="myStr_88"/> 
         <DO name="StrA" type="myFinTr_89"/> 
         <DO name="StrAG" type="myFinTr_89"/> 
         <DO name="StrB" type="myFinTr_89"/> 
         <DO name="StrBG" type="myFinTr_89"/> 
         <DO name="StrC" type="myFinTr_89"/> 
         <DO name="StrCG" type="myFinTr_89"/> 
         <DO name="StrAB" type="myFinTr_89"/> 
         <DO name="StrBC" type="myFinTr_89"/> 
         <DO name="StrCA" type="myFinTr_89"/> 
         <DO name="StrABC" type="myFinTr_89"/> 
         <DO name="StrABG" type="myFinTr_89"/> 
         <DO name="StrBCG" type="myFinTr_89"/> 
         <DO name="StrCAG" type="myFinTr_89"/> 
         <DO name="StrABCG" type="myFinTr_89"/> 
      </LNodeType> 
      <LNodeType lnClass="LLN0" id="IED_1/MEAS/LLN0"> 
         <DO name="Mod" type="myMod_11"/> 
         <DO name="Beh" type="ENS_0"/> 
         <DO name="Health" type="myHealth_5"/> 
         <DO name="NamPlt" type="myNamPlt_6"/> 
      </LNodeType> 
      <LNodeType lnClass="MMTR" id="IED_1/MEAS/MMTR1"> 
         <DO name="Mod" type="myMod_11"/> 
         <DO name="Beh" type="ENS_0"/> 
         <DO name="Health" type="myHealth_5"/> 
         <DO name="NamPlt" type="myNamPlt_14"/> 
         <DO name="SupWh" type="mySupWh_175"/> 
         <DO name="SupVArh" type="mySupWh_175"/> 
         <DO name="DmdWh" type="mySupWh_175"/> 
         <DO name="DmdVArh" type="mySupWh_175"/> 
      </LNodeType> 
      <LNodeType lnClass="MMXU" id="IED_1/MEAS/MMXU1"> 
         <DO name="Mod" type="myMod_11"/> 
         <DO name="Beh" type="ENS_0"/> 
         <DO name="Health" type="myHealth_5"/> 
         <DO name="NamPlt" type="myNamPlt_14"/> 
         <DO name="TotW" type="myTotW_187"/> 
         <DO name="TotVAr" type="myTotW_187"/> 
         <DO name="TotVA" type="myTotW_187"/> 
         <DO name="TotPF" type="myTotW_187"/> 



256 
 

         <DO name="Hz" type="myTotW_187"/> 
         <DO name="PPV" type="myPPV_207"/> 
         <DO name="PhV" type="myPhV_226"/> 
         <DO name="A" type="myA_245"/> 
      </LNodeType> 
      <LNodeType lnClass="MMXU" id="IED_1/MEAS/MMXU2"> 
         <DO name="Mod" type="myMod_11"/> 
         <DO name="Beh" type="ENS_0"/> 
         <DO name="Health" type="myHealth_5"/> 
         <DO name="NamPlt" type="myNamPlt_14"/> 
         <DO name="RelId" type="myRelId_274"/> 
         <DO name="PhV" type="myPhV_275"/> 
         <DO name="A" type="myPhV_275"/> 
      </LNodeType> 
      <LNodeType lnClass="MSQI" id="IED_1/MEAS/MSQI1"> 
         <DO name="Mod" type="myMod_11"/> 
         <DO name="Beh" type="ENS_0"/> 
         <DO name="Health" type="myHealth_5"/> 
         <DO name="NamPlt" type="myNamPlt_14"/> 
         <DO name="SeqA" type="mySeqA_372"/> 
         <DO name="SeqV" type="mySeqA_372"/> 
      </LNodeType> 
      <LNodeType lnClass="RDRE" id="IED_1/DR/RDRE1"> 
         <DO name="Mod" type="myMod_11"/> 
         <DO name="Beh" type="ENS_0"/> 
         <DO name="Health" type="myHealth_5"/> 
         <DO name="NamPlt" type="myNamPlt_14"/> 
         <DO name="RcdMade" type="SPS_2"/> 
         <DO name="FltNum" type="INS_5"/> 
         <DO name="GriFltNum" type="INS_5"/> 
         <DO name="RcdStr" type="SPS_2"/> 
      </LNodeType> 
      <LNodeType lnClass="LLN0" id="IED_1/CTRL/LLN0"> 
         <DO name="Mod" type="myMod_11"/> 
         <DO name="Beh" type="ENS_0"/> 
         <DO name="Health" type="myHealth_5"/> 
         <DO name="NamPlt" type="myNamPlt_6"/> 
         <DO name="Loc" type="SPS_2"/> 
         <DO name="LEDRs" type="myLEDRs_430"/> 
      </LNodeType> 
      <LNodeType lnClass="LPHD" id="IED_1/CTRL/LPHD1"> 
         <DO name="PhyNam" type="myPhyNam_8"/> 
         <DO name="PhyHealth" type="myHealth_5"/> 
         <DO name="Proxy" type="SPS_2"/> 
         <DO name="DevStr" type="myRelId_274"/> 
         <DO name="CtlNum" type="myRelId_274"/> 
      </LNodeType> 
      <LNodeType lnClass="CALH" id="IED_1/CTRL/CALH1"> 
         <DO name="Mod" type="myMod_11"/> 
         <DO name="Beh" type="ENS_0"/> 
         <DO name="Health" type="myHealth_5"/> 
         <DO name="NamPlt" type="myNamPlt_14"/> 
         <DO name="GrAlm" type="SPS_2"/> 
         <DO name="GrWrn" type="SPS_2"/> 
         <DO name="ErrBoard1" type="myFinTr_89"/> 
         <DO name="ErrBoard2" type="myFinTr_89"/> 
         <DO name="ErrBoard3" type="myFinTr_89"/> 
         <DO name="ErrBoard4" type="myFinTr_89"/> 
         <DO name="ErrBoard5" type="myFinTr_89"/> 
         <DO name="ErrBoard6" type="myFinTr_89"/> 
         <DO name="ErrBoard7" type="myFinTr_89"/> 
      </LNodeType> 
      <LNodeType lnClass="XCBR" id="IED_1/CTRL/Q0XCBR1"> 



257 
 

         <DO name="Mod" type="myMod_11"/> 
         <DO name="Beh" type="ENS_0"/> 
         <DO name="Health" type="myHealth_5"/> 
         <DO name="NamPlt" type="myNamPlt_14"/> 
         <DO name="Loc" type="SPS_2"/> 
         <DO name="OpCnt" type="INS_5"/> 
         <DO name="Pos" type="myPos_102"/> 
         <DO name="BlkOpn" type="myBlkOpn_103"/> 
         <DO name="BlkCls" type="myBlkOpn_103"/> 
         <DO name="CBOpCap" type="myCBOpCap_107"/> 
      </LNodeType> 
      <LNodeType lnClass="CSWI" id="IED_1/CTRL/Q0CSWI1"> 
         <DO name="Mod" type="myMod_11"/> 
         <DO name="Beh" type="ENS_0"/> 
         <DO name="Health" type="myHealth_5"/> 
         <DO name="NamPlt" type="myNamPlt_14"/> 
         <DO name="Loc" type="SPS_2"/> 
         <DO name="Pos" type="myPos_467"/> 
      </LNodeType> 
      <LNodeType lnClass="CILO" id="IED_1/CTRL/Q0CILO1"> 
         <DO name="Mod" type="myMod_11"/> 
         <DO name="Beh" type="ENS_0"/> 
         <DO name="Health" type="myHealth_5"/> 
         <DO name="NamPlt" type="myNamPlt_14"/> 
         <DO name="EnaOpn" type="SPS_2"/> 
         <DO name="EnaCls" type="SPS_2"/> 
      </LNodeType> 
      <LNodeType lnClass="XSWI" id="IED_1/CTRL/Q1XSWI1"> 
         <DO name="Mod" type="myMod_11"/> 
         <DO name="Beh" type="ENS_0"/> 
         <DO name="Health" type="myHealth_5"/> 
         <DO name="NamPlt" type="myNamPlt_14"/> 
         <DO name="Loc" type="SPS_2"/> 
         <DO name="OpCnt" type="INS_5"/> 
         <DO name="Pos" type="myPos_102"/> 
         <DO name="BlkOpn" type="myBlkOpn_103"/> 
         <DO name="BlkCls" type="myBlkOpn_103"/> 
         <DO name="SwTyp" type="mySwTyp_490"/> 
         <DO name="SwOpCap" type="mySwOpCap_491"/> 
      </LNodeType> 
      <DOType cdc="LPL" id="myNamPlt_14"> 
         <DA fc="DC" name="vendor" bType="VisString255"/> 
         <DA fc="DC" name="swRev" bType="VisString255"/> 
         <DA fc="DC" name="d" bType="VisString255"/> 
         <DA fc="DC" name="configRev" bType="VisString255"/> 
      </DOType> 
      <DOType cdc="ENS" id="ENS_0" desc="Enumerated status"> 
         <DA dchg="true" fc="ST" name="stVal" bType="Enum" type="Beh"/> 
         <DA qchg="true" fc="ST" name="q" bType="Quality"/> 
         <DA fc="ST" name="t" bType="Timestamp"/> 
      </DOType> 
      <DOType cdc="SPS" id="SPS_2" desc="Single point status"> 
         <DA dchg="true" fc="ST" name="stVal" bType="BOOLEAN"/> 
         <DA qchg="true" fc="ST" name="q" bType="Quality"/> 
         <DA fc="ST" name="t" bType="Timestamp"/> 
      </DOType> 
      <DOType cdc="INS" id="INS_5" desc="Integer status"> 
         <DA dchg="true" fc="ST" name="stVal" bType="INT32"/> 
         <DA qchg="true" fc="ST" name="q" bType="Quality"/> 
         <DA fc="ST" name="t" bType="Timestamp"/> 
      </DOType> 
      <DOType cdc="INC" id="myMod_0"> 
         <DA fc="ST" name="origin" bType="Struct" type="myorigin_1"/> 



258 
 

         <DA fc="ST" name="ctlNum" bType="INT8U"/> 
         <DA dchg="true" fc="ST" name="stVal" bType="Enum" type="Beh"/> 
         <DA qchg="true" fc="ST" name="q" bType="Quality"/> 
         <DA fc="ST" name="t" bType="Timestamp"/> 
         <DA fc="CF" name="ctlModel" bType="Enum" type="ctlModel"/> 
         <DA fc="EX" name="cdcNs" bType="VisString255"/> 
         <DA fc="CO" name="Oper" bType="Struct" type="myOper_2"/> 
      </DOType> 
      <DOType cdc="INS" id="myHealth_5"> 
         <DA dchg="true" fc="ST" name="stVal" bType="Enum" type="Health"/> 
         <DA qchg="true" fc="ST" name="q" bType="Quality"/> 
         <DA fc="ST" name="t" bType="Timestamp"/> 
      </DOType> 
      <DOType cdc="LPL" id="myNamPlt_6"> 
         <DA fc="DC" name="vendor" bType="VisString255"/> 
         <DA fc="DC" name="swRev" bType="VisString255"/> 
         <DA fc="DC" name="d" bType="VisString255"/> 
         <DA fc="DC" name="configRev" bType="VisString255"/> 
         <DA fc="EX" name="ldNs" bType="VisString255"/> 
      </DOType> 
      <DOType cdc="DPL" id="myPhyNam_8"> 
         <DA fc="DC" name="vendor" bType="VisString255"/> 
         <DA fc="DC" name="hwRev" bType="VisString255"/> 
         <DA fc="DC" name="swRev" bType="VisString255"/> 
         <DA fc="DC" name="serNum" bType="VisString255"/> 
         <DA fc="DC" name="model" bType="VisString255"/> 
         <DA fc="DC" name="location" bType="VisString255"/> 
         <DA fc="EX" name="cdcNs" bType="VisString255"/> 
         <DA fc="DC" name="scdConfigRev" bType="VisString255"/> 
      </DOType> 
      <DOType cdc="INC" id="myMod_11"> 
         <DA dchg="true" fc="ST" name="stVal" bType="Enum" type="Beh"/> 
         <DA qchg="true" fc="ST" name="q" bType="Quality"/> 
         <DA fc="ST" name="t" bType="Timestamp"/> 
         <DA fc="CF" name="ctlModel" bType="Enum" type="ctlModel"/> 
      </DOType> 
      <DOType cdc="ACD" id="myStr_15"> 
         <DA dchg="true" fc="ST" name="general" bType="BOOLEAN"/> 
         <DA dchg="true" fc="ST" name="dirGeneral" bType="Enum" 
type="dir"/> 
         <DA qchg="true" fc="ST" name="q" bType="Quality"/> 
         <DA fc="ST" name="t" bType="Timestamp"/> 
      </DOType> 
      <DOType cdc="SPS" id="myStrAG_16"> 
         <DA dchg="true" fc="ST" name="stVal" bType="BOOLEAN"/> 
         <DA qchg="true" fc="ST" name="q" bType="Quality"/> 
         <DA fc="ST" name="t" bType="Timestamp"/> 
         <DA fc="EX" name="dataNs" bType="VisString255"/> 
      </DOType> 
      <DOType cdc="ACT" id="myOp_22"> 
         <DA dchg="true" fc="ST" name="general" bType="BOOLEAN"/> 
         <DA dchg="true" fc="ST" name="phsA" bType="BOOLEAN"/> 
         <DA dchg="true" fc="ST" name="phsB" bType="BOOLEAN"/> 
         <DA dchg="true" fc="ST" name="phsC" bType="BOOLEAN"/> 
         <DA qchg="true" fc="ST" name="q" bType="Quality"/> 
         <DA fc="ST" name="t" bType="Timestamp"/> 
      </DOType> 
      <DOType cdc="ACT" id="myOp_64"> 
         <DA dchg="true" fc="ST" name="general" bType="BOOLEAN"/> 
         <DA qchg="true" fc="ST" name="q" bType="Quality"/> 
         <DA fc="ST" name="t" bType="Timestamp"/> 
      </DOType> 
      <DOType cdc="ACD" id="myStr_88"> 



259 
 

         <DA dchg="true" fc="ST" name="general" bType="BOOLEAN"/> 
         <DA dchg="true" fc="ST" name="dirGeneral" bType="Enum" 
type="dir"/> 
         <DA dchg="true" fc="ST" name="phsA" bType="BOOLEAN"/> 
         <DA dchg="true" fc="ST" name="dirPhsA" bType="Enum" 
type="dirPhs"/> 
         <DA dchg="true" fc="ST" name="phsB" bType="BOOLEAN"/> 
         <DA dchg="true" fc="ST" name="dirPhsB" bType="Enum" 
type="dirPhs"/> 
         <DA dchg="true" fc="ST" name="phsC" bType="BOOLEAN"/> 
         <DA dchg="true" fc="ST" name="dirPhsC" bType="Enum" 
type="dirPhs"/> 
         <DA dchg="true" fc="ST" name="neut" bType="BOOLEAN"/> 
         <DA dchg="true" fc="ST" name="dirNeut" bType="Enum" 
type="dirPhs"/> 
         <DA qchg="true" fc="ST" name="q" bType="Quality"/> 
         <DA fc="ST" name="t" bType="Timestamp"/> 
      </DOType> 
      <DOType cdc="SPS" id="myFinTr_89"> 
         <DA dchg="true" fc="ST" name="stVal" bType="BOOLEAN"/> 
         <DA qchg="true" fc="ST" name="q" bType="Quality"/> 
         <DA fc="ST" name="t" bType="Timestamp"/> 
         <DA fc="DC" name="d" bType="VisString255"/> 
         <DA fc="EX" name="dataNs" bType="VisString255"/> 
      </DOType> 
      <DOType cdc="INS" id="myOpCnt_101"> 
         <DA dchg="true" fc="ST" name="stVal" bType="INT32"/> 
         <DA qchg="true" fc="ST" name="q" bType="Quality"/> 
         <DA fc="ST" name="t" bType="Timestamp"/> 
         <DA fc="EX" name="dataNs" bType="VisString255"/> 
      </DOType> 
      <DOType cdc="DPC" id="myPos_102"> 
         <DA dchg="true" fc="ST" name="stVal" bType="Dbpos" type="Dbpos"/> 
         <DA qchg="true" fc="ST" name="q" bType="Quality"/> 
         <DA fc="ST" name="t" bType="Timestamp"/> 
         <DA fc="CF" name="ctlModel" bType="Enum" type="ctlModel"/> 
      </DOType> 
      <DOType cdc="SPC" id="myBlkOpn_103"> 
         <DA dchg="true" fc="ST" name="stVal" bType="BOOLEAN"/> 
         <DA qchg="true" fc="ST" name="q" bType="Quality"/> 
         <DA fc="ST" name="t" bType="Timestamp"/> 
         <DA fc="CF" name="ctlModel" bType="Enum" type="ctlModel"/> 
      </DOType> 
      <DOType cdc="BCR" id="mySumSwARs_105"> 
         <DA dchg="true" fc="ST" name="actVal" bType="INT32"/> 
         <DA qchg="true" fc="ST" name="q" bType="Quality"/> 
         <DA fc="ST" name="t" bType="Timestamp"/> 
         <DA fc="CF" name="units" bType="Struct" type="myunits_106"/> 
         <DA fc="CF" name="pulsQty" bType="FLOAT32"/> 
         <DA fc="DC" name="d" bType="VisString255"/> 
         <DA fc="EX" name="dataNs" bType="VisString255"/> 
      </DOType> 
      <DOType cdc="INS" id="myCBOpCap_107"> 
         <DA dchg="true" fc="ST" name="stVal" bType="Enum" type="CBOpCap"/> 
         <DA qchg="true" fc="ST" name="q" bType="Quality"/> 
         <DA fc="ST" name="t" bType="Timestamp"/> 
      </DOType> 
      <DOType cdc="BCR" id="mySupWh_175"> 
         <DA dchg="true" fc="ST" name="actVal" bType="INT32"/> 
         <DA qchg="true" fc="ST" name="q" bType="Quality"/> 
         <DA fc="ST" name="t" bType="Timestamp"/> 
         <DA fc="CF" name="units" bType="Struct" type="myunits_106"/> 
         <DA fc="CF" name="pulsQty" bType="FLOAT32"/> 



260 
 

      </DOType> 
      <DOType cdc="MV" id="myTotW_187"> 
         <DA fc="MX" name="instMag" bType="Struct" type="myinstMag_188"/> 
         <DA fc="MX" name="mag" bType="Struct" type="myinstMag_188"/> 
         <DA qchg="true" fc="MX" name="q" bType="Quality"/> 
         <DA fc="MX" name="t" bType="Timestamp"/> 
         <DA fc="CF" name="units" bType="Struct" type="myunits_106"/> 
         <DA fc="CF" name="db" bType="INT32U"/> 
      </DOType> 
      <DOType cdc="DEL" id="myPPV_207"> 
         <SDO type="myphsAB_208" name="phsAB"/> 
         <SDO type="myphsAB_208" name="phsBC"/> 
         <SDO type="myphsAB_208" name="phsCA"/> 
      </DOType> 
      <DOType cdc="CMV" id="myphsAB_208"> 
         <DA fc="MX" name="instCVal" bType="Struct" type="myinstCVal_209"/> 
         <DA fc="MX" name="cVal" bType="Struct" type="myinstCVal_209"/> 
         <DA fc="CF" name="units" bType="Struct" type="myunits_106"/> 
         <DA qchg="true" fc="MX" name="q" bType="Quality"/> 
         <DA fc="MX" name="t" bType="Timestamp"/> 
         <DA fc="CF" name="db" bType="INT32U"/> 
      </DOType> 
      <DOType cdc="WYE" id="myPhV_226"> 
         <SDO type="myphsAB_208" name="phsA"/> 
         <SDO type="myphsAB_208" name="phsB"/> 
         <SDO type="myphsAB_208" name="phsC"/> 
      </DOType> 
      <DOType cdc="WYE" id="myA_245"> 
         <SDO type="myphsAB_208" name="phsA"/> 
         <SDO type="myphsAB_208" name="phsB"/> 
         <SDO type="myphsAB_208" name="phsC"/> 
         <SDO type="myphsAB_208" name="neut"/> 
      </DOType> 
      <DOType cdc="INS" id="myRelId_274"> 
         <DA dchg="true" fc="ST" name="stVal" bType="INT32"/> 
         <DA qchg="true" fc="ST" name="q" bType="Quality"/> 
         <DA fc="ST" name="t" bType="Timestamp"/> 
         <DA fc="DC" name="d" bType="VisString255"/> 
         <DA fc="EX" name="dataNs" bType="VisString255"/> 
      </DOType> 
      <DOType cdc="WYE" id="myPhV_275"> 
         <SDO type="myphsA_276" name="phsA"/> 
         <SDO type="myphsA_276" name="phsB"/> 
         <SDO type="myphsA_276" name="phsC"/> 
         <DA fc="CF" name="angRef" bType="Enum" type="angid"/> 
      </DOType> 
      <DOType cdc="CMV" id="myphsA_276"> 
         <DA fc="MX" name="instCVal" bType="Struct" type="myinstCVal_209"/> 
         <DA fc="MX" name="cVal" bType="Struct" type="mycVal_279"/> 
         <DA fc="CF" name="units" bType="Struct" type="myunits_106"/> 
         <DA qchg="true" fc="MX" name="q" bType="Quality"/> 
         <DA fc="MX" name="t" bType="Timestamp"/> 
         <DA fc="CF" name="db" bType="INT32U"/> 
      </DOType> 
      <DOType cdc="SEQ" id="mySeqA_372"> 
         <SDO type="myphsAB_208" name="c1"/> 
         <SDO type="myphsAB_208" name="c2"/> 
         <SDO type="myphsAB_208" name="c3"/> 
         <DA fc="MX" name="seqT" bType="Enum" type="seqT"/> 
      </DOType> 
      <DOType cdc="SPC" id="myLEDRs_430"> 
         <DA fc="ST" name="origin" bType="Struct" type="myorigin_1"/> 
         <DA fc="ST" name="ctlNum" bType="INT8U"/> 



261 
 

         <DA dchg="true" fc="ST" name="stVal" bType="BOOLEAN"/> 
         <DA qchg="true" fc="ST" name="q" bType="Quality"/> 
         <DA fc="ST" name="t" bType="Timestamp"/> 
         <DA fc="CF" name="ctlModel" bType="Enum" type="ctlModel"/> 
         <DA fc="EX" name="cdcNs" bType="VisString255"/> 
         <DA fc="CO" name="Oper" bType="Struct" type="SBOwDbpos_0"/> 
      </DOType> 
      <DOType cdc="DPC" id="myPos_467"> 
         <DA fc="ST" name="origin" bType="Struct" type="myorigin_1"/> 
         <DA fc="ST" name="ctlNum" bType="INT8U"/> 
         <DA dchg="true" fc="ST" name="stVal" bType="Dbpos" type="Dbpos"/> 
         <DA qchg="true" fc="ST" name="q" bType="Quality"/> 
         <DA fc="ST" name="t" bType="Timestamp"/> 
         <DA dchg="true" fc="ST" name="stSeld" bType="BOOLEAN"/> 
         <DA fc="CF" name="ctlModel" bType="Enum" type="ctlModel"/> 
         <DA fc="CF" name="sboTimeout" bType="INT32U"/> 
         <DA fc="CF" name="sboClass" bType="Enum" type="sboClass"/> 
         <DA fc="EX" name="cdcNs" bType="VisString255"/> 
         <DA fc="CO" name="SBOw" bType="Struct" type="SBOwDbpos_0"/> 
         <DA fc="CO" name="Oper" bType="Struct" type="SBOwDbpos_0"/> 
         <DA fc="CO" name="Cancel" bType="Struct" type="myCancel_473"/> 
      </DOType> 
      <DOType cdc="INS" id="mySwTyp_490"> 
         <DA dchg="true" fc="ST" name="stVal" bType="Enum" type="SwTyp"/> 
         <DA qchg="true" fc="ST" name="q" bType="Quality"/> 
         <DA fc="ST" name="t" bType="Timestamp"/> 
      </DOType> 
      <DOType cdc="INS" id="mySwOpCap_491"> 
         <DA dchg="true" fc="ST" name="stVal" bType="Enum" type="ShOpCap"/> 
         <DA qchg="true" fc="ST" name="q" bType="Quality"/> 
         <DA fc="ST" name="t" bType="Timestamp"/> 
      </DOType> 
      <DAType id="myorigin_1"> 
         <BDA name="orCat" bType="Enum" type="orCategory"/> 
         <BDA name="orIdent" bType="Octet64"/> 
      </DAType> 
      <DAType id="SBOwDbpos_0"> 
         <BDA name="ctlVal" bType="BOOLEAN"/> 
         <BDA name="origin" bType="Struct" type="myorigin_1"/> 
         <BDA name="ctlNum" bType="INT8U"/> 
         <BDA name="T" bType="Timestamp"/> 
         <BDA name="Test" bType="BOOLEAN"/> 
         <BDA name="Check" bType="Check"/> 
      </DAType> 
      <DAType id="myOper_2"> 
         <BDA name="ctlVal" bType="Enum" type="Beh"/> 
         <BDA name="origin" bType="Struct" type="myorigin_1"/> 
         <BDA name="ctlNum" bType="INT8U"/> 
         <BDA name="T" bType="Timestamp"/> 
         <BDA name="Test" bType="BOOLEAN"/> 
         <BDA name="Check" bType="Check" type="Check"/> 
      </DAType> 
      <DAType id="myunits_106"> 
         <BDA name="SIUnit" bType="Enum" type="SIUnit"/> 
         <BDA name="multiplier" bType="Enum" type="multiplier"/> 
      </DAType> 
      <DAType id="myinstMag_188"> 
         <BDA name="f" bType="FLOAT32"/> 
      </DAType> 
      <DAType id="myinstCVal_209"> 
         <BDA name="mag" bType="Struct" type="myinstMag_188"/> 
      </DAType> 
      <DAType id="mycVal_279"> 



262 
 

         <BDA name="mag" bType="Struct" type="myinstMag_188"/> 
         <BDA name="ang" bType="Struct" type="myinstMag_188"/> 
      </DAType> 
      <DAType id="myCancel_473"> 
         <BDA name="ctlVal" bType="BOOLEAN"/> 
         <BDA name="origin" bType="Struct" type="myorigin_1"/> 
         <BDA name="ctlNum" bType="INT8U"/> 
         <BDA name="T" bType="Timestamp"/> 
         <BDA name="Test" bType="BOOLEAN"/> 
      </DAType> 
      <EnumType id="orCategory"> 
         <EnumVal ord="0">not-supported</EnumVal> 
         <EnumVal ord="1">bay-control</EnumVal> 
         <EnumVal ord="2">station-control</EnumVal> 
         <EnumVal ord="3">remote-control</EnumVal> 
         <EnumVal ord="4">automatic-bay</EnumVal> 
         <EnumVal ord="5">automatic-station</EnumVal> 
         <EnumVal ord="6">automatic-remote</EnumVal> 
         <EnumVal ord="7">maintenance</EnumVal> 
         <EnumVal ord="8">process</EnumVal> 
      </EnumType> 
      <EnumType id="ctlModel"> 
         <EnumVal ord="0">status-only</EnumVal> 
         <EnumVal ord="1">direct-with-normal-security</EnumVal> 
         <EnumVal ord="2">sbo-with-normal-security</EnumVal> 
         <EnumVal ord="3">direct-with-enhanced-security</EnumVal> 
         <EnumVal ord="4">sbo-with-enhanced-security</EnumVal> 
      </EnumType> 
      <EnumType id="Beh"> 
         <EnumVal ord="1">on</EnumVal> 
         <EnumVal ord="2">blocked</EnumVal> 
         <EnumVal ord="3">test</EnumVal> 
         <EnumVal ord="4">test/blocked</EnumVal> 
         <EnumVal ord="5">off</EnumVal> 
      </EnumType> 
      <EnumType id="Health"> 
         <EnumVal ord="1">Ok</EnumVal> 
         <EnumVal ord="2">Warning</EnumVal> 
         <EnumVal ord="3">Alarm</EnumVal> 
      </EnumType> 
      <EnumType id="PulseConfigCmdQual"> 
         <EnumVal ord="0">pulse</EnumVal> 
         <EnumVal ord="1">persistent</EnumVal> 
      </EnumType> 
      <EnumType id="SIUnit"> 
         <EnumVal ord="1">none</EnumVal> 
         <EnumVal ord="2">m</EnumVal> 
         <EnumVal ord="3">kg</EnumVal> 
         <EnumVal ord="4">s</EnumVal> 
         <EnumVal ord="5">A</EnumVal> 
         <EnumVal ord="6">K</EnumVal> 
         <EnumVal ord="7">mol</EnumVal> 
         <EnumVal ord="8">cd</EnumVal> 
         <EnumVal ord="9">deg</EnumVal> 
         <EnumVal ord="10">rad</EnumVal> 
         <EnumVal ord="11">sr</EnumVal> 
         <EnumVal ord="21">Gy</EnumVal> 
         <EnumVal ord="22">q</EnumVal> 
         <EnumVal ord="23">°C</EnumVal> 
         <EnumVal ord="24">Sv</EnumVal> 
         <EnumVal ord="25">F</EnumVal> 
         <EnumVal ord="26">C</EnumVal> 
         <EnumVal ord="27">S</EnumVal> 



263 
 

         <EnumVal ord="28">H</EnumVal> 
         <EnumVal ord="29">V</EnumVal> 
         <EnumVal ord="30">ohm</EnumVal> 
         <EnumVal ord="31">J</EnumVal> 
         <EnumVal ord="32">N</EnumVal> 
         <EnumVal ord="33">Hz</EnumVal> 
         <EnumVal ord="34">lx</EnumVal> 
         <EnumVal ord="35">Lm</EnumVal> 
         <EnumVal ord="36">Wb</EnumVal> 
         <EnumVal ord="37">T</EnumVal> 
         <EnumVal ord="38">W</EnumVal> 
         <EnumVal ord="39">Pa</EnumVal> 
         <EnumVal ord="41">m²</EnumVal> 
         <EnumVal ord="42">m³</EnumVal> 
         <EnumVal ord="43">m/s</EnumVal> 
         <EnumVal ord="44">m/s²</EnumVal> 
         <EnumVal ord="45">m³/s</EnumVal> 
         <EnumVal ord="46">m/m³</EnumVal> 
         <EnumVal ord="47">M</EnumVal> 
         <EnumVal ord="48">kg/m³</EnumVal> 
         <EnumVal ord="49">m²/s</EnumVal> 
         <EnumVal ord="50">W/m K</EnumVal> 
         <EnumVal ord="51">J/K</EnumVal> 
         <EnumVal ord="52">ppm</EnumVal> 
         <EnumVal ord="53">1/s</EnumVal> 
         <EnumVal ord="54">rad/s</EnumVal> 
         <EnumVal ord="61">VA</EnumVal> 
         <EnumVal ord="62">Watts</EnumVal> 
         <EnumVal ord="63">VAr</EnumVal> 
         <EnumVal ord="64">phi</EnumVal> 
         <EnumVal ord="65">cos_phi</EnumVal> 
         <EnumVal ord="66">Vs</EnumVal> 
         <EnumVal ord="67">V²</EnumVal> 
         <EnumVal ord="68">As</EnumVal> 
         <EnumVal ord="69">A²</EnumVal> 
         <EnumVal ord="70">A²t</EnumVal> 
         <EnumVal ord="71">VAh</EnumVal> 
         <EnumVal ord="72">Wh</EnumVal> 
         <EnumVal ord="73">VArh</EnumVal> 
         <EnumVal ord="74">V/Hz</EnumVal> 
      </EnumType> 
      <EnumType id="multiplier"> 
         <EnumVal ord="-24">y</EnumVal> 
         <EnumVal ord="-21">z</EnumVal> 
         <EnumVal ord="-18">a</EnumVal> 
         <EnumVal ord="-15">f</EnumVal> 
         <EnumVal ord="-12">p</EnumVal> 
         <EnumVal ord="-9">n</EnumVal> 
         <EnumVal ord="-6">µ</EnumVal> 
         <EnumVal ord="-3">m</EnumVal> 
         <EnumVal ord="-2">c</EnumVal> 
         <EnumVal ord="-1">d</EnumVal> 
         <EnumVal ord="0"></EnumVal> 
         <EnumVal ord="1">da</EnumVal> 
         <EnumVal ord="2">h</EnumVal> 
         <EnumVal ord="3">k</EnumVal> 
         <EnumVal ord="6">M</EnumVal> 
         <EnumVal ord="9">G</EnumVal> 
         <EnumVal ord="12">T</EnumVal> 
         <EnumVal ord="15">P</EnumVal> 
         <EnumVal ord="18">E</EnumVal> 
         <EnumVal ord="21">Z</EnumVal> 
         <EnumVal ord="24">Y</EnumVal> 



264 
 

      </EnumType> 
      <EnumType id="Boolean"> 
         <EnumVal ord="0">FALSE</EnumVal> 
         <EnumVal ord="1">TRUE</EnumVal> 
      </EnumType> 
      <EnumType id="sboClass"> 
         <EnumVal ord="0">operate-once</EnumVal> 
         <EnumVal ord="1">operate-many</EnumVal> 
      </EnumType> 
      <EnumType id="dir"> 
         <EnumVal ord="0">unknown</EnumVal> 
         <EnumVal ord="1">forward</EnumVal> 
         <EnumVal ord="2">backward</EnumVal> 
         <EnumVal ord="3">both</EnumVal> 
      </EnumType> 
      <EnumType id="dirPhs"> 
         <EnumVal ord="0">unknown</EnumVal> 
         <EnumVal ord="1">forward</EnumVal> 
         <EnumVal ord="2">backward</EnumVal> 
      </EnumType> 
      <EnumType id="Check"> 
         <EnumVal ord="0">no-check</EnumVal> 
         <EnumVal ord="1">synchrocheck</EnumVal> 
         <EnumVal ord="2">interlocking-check</EnumVal> 
         <EnumVal ord="3">both</EnumVal> 
      </EnumType> 
      <EnumType id="Dbpos"> 
         <EnumVal ord="0">intermediate</EnumVal> 
         <EnumVal ord="1">off</EnumVal> 
         <EnumVal ord="2">on</EnumVal> 
         <EnumVal ord="3">bad</EnumVal> 
      </EnumType> 
      <EnumType id="seqT"> 
         <EnumVal ord="0">pos-neg-zero</EnumVal> 
         <EnumVal ord="1">dir-quad-zero</EnumVal> 
      </EnumType> 
      <EnumType id="Tcmd"> 
         <EnumVal ord="0">stop</EnumVal> 
         <EnumVal ord="1">lower</EnumVal> 
         <EnumVal ord="2">higher</EnumVal> 
         <EnumVal ord="3">reserved</EnumVal> 
      </EnumType> 
      <EnumType id="sev"> 
         <EnumVal ord="0">unknown</EnumVal> 
         <EnumVal ord="1">critical</EnumVal> 
         <EnumVal ord="2">major</EnumVal> 
         <EnumVal ord="3">minor</EnumVal> 
         <EnumVal ord="4">warning</EnumVal> 
      </EnumType> 
      <EnumType id="range"> 
         <EnumVal ord="0">normal</EnumVal> 
         <EnumVal ord="1">high</EnumVal> 
         <EnumVal ord="2">low</EnumVal> 
         <EnumVal ord="3">high-high</EnumVal> 
         <EnumVal ord="4">low-low</EnumVal> 
      </EnumType> 
      <EnumType id="angidCMV"> 
         <EnumVal ord="0">V</EnumVal> 
         <EnumVal ord="1">A</EnumVal> 
         <EnumVal ord="2">other</EnumVal> 
      </EnumType> 
      <EnumType id="angid"> 
         <EnumVal ord="0">Va</EnumVal> 



265 
 

         <EnumVal ord="1">Vb</EnumVal> 
         <EnumVal ord="2">Vc</EnumVal> 
         <EnumVal ord="3">Aa</EnumVal> 
         <EnumVal ord="4">Ab</EnumVal> 
         <EnumVal ord="5">Ac</EnumVal> 
         <EnumVal ord="6">Vab</EnumVal> 
         <EnumVal ord="7">Vbc</EnumVal> 
         <EnumVal ord="8">Vca</EnumVal> 
         <EnumVal ord="9">Vother</EnumVal> 
         <EnumVal ord="10">Aother</EnumVal> 
      </EnumType> 
      <EnumType id="phsid"> 
         <EnumVal ord="0">A</EnumVal> 
         <EnumVal ord="1">B</EnumVal> 
         <EnumVal ord="2">C</EnumVal> 
      </EnumType> 
      <EnumType id="hvid"> 
         <EnumVal ord="0">fundamental</EnumVal> 
         <EnumVal ord="1">rms</EnumVal> 
         <EnumVal ord="2">absolute</EnumVal> 
      </EnumType> 
      <EnumType id="SetCharact"> 
         <EnumVal ord="1"></EnumVal> 
         <EnumVal ord="2"></EnumVal> 
         <EnumVal ord="3"></EnumVal> 
         <EnumVal ord="4"></EnumVal> 
         <EnumVal ord="5"></EnumVal> 
         <EnumVal ord="6"></EnumVal> 
         <EnumVal ord="7"></EnumVal> 
         <EnumVal ord="8"></EnumVal> 
         <EnumVal ord="9"></EnumVal> 
         <EnumVal ord="10"></EnumVal> 
         <EnumVal ord="11"></EnumVal> 
         <EnumVal ord="12"></EnumVal> 
         <EnumVal ord="13"></EnumVal> 
         <EnumVal ord="14"></EnumVal> 
         <EnumVal ord="15"></EnumVal> 
         <EnumVal ord="16"></EnumVal> 
         <EnumVal ord="17"></EnumVal> 
         <EnumVal ord="18"></EnumVal> 
         <EnumVal ord="19"></EnumVal> 
         <EnumVal ord="20"></EnumVal> 
         <EnumVal ord="21"></EnumVal> 
         <EnumVal ord="22"></EnumVal> 
         <EnumVal ord="23"></EnumVal> 
         <EnumVal ord="24"></EnumVal> 
         <EnumVal ord="25"></EnumVal> 
         <EnumVal ord="26"></EnumVal> 
         <EnumVal ord="27"></EnumVal> 
         <EnumVal ord="28"></EnumVal> 
         <EnumVal ord="29"></EnumVal> 
         <EnumVal ord="30"></EnumVal> 
         <EnumVal ord="31"></EnumVal> 
         <EnumVal ord="32"></EnumVal> 
         <EnumVal ord="33"></EnumVal> 
         <EnumVal ord="34"></EnumVal> 
         <EnumVal ord="35"></EnumVal> 
         <EnumVal ord="36"></EnumVal> 
         <EnumVal ord="37"></EnumVal> 
         <EnumVal ord="38"></EnumVal> 
         <EnumVal ord="39"></EnumVal> 
         <EnumVal ord="40"></EnumVal> 
         <EnumVal ord="41"></EnumVal> 



266 
 

         <EnumVal ord="42"></EnumVal> 
         <EnumVal ord="43"></EnumVal> 
         <EnumVal ord="44"></EnumVal> 
         <EnumVal ord="45"></EnumVal> 
         <EnumVal ord="46"></EnumVal> 
         <EnumVal ord="47"></EnumVal> 
         <EnumVal ord="48"></EnumVal> 
      </EnumType> 
      <EnumType id="AutoRecSt"> 
         <EnumVal ord="1">Ready</EnumVal> 
         <EnumVal ord="2">InProgress</EnumVal> 
         <EnumVal ord="3">Successful</EnumVal> 
      </EnumType> 
      <EnumType id="CBOpCap"> 
         <EnumVal ord="1">None</EnumVal> 
         <EnumVal ord="2">Open</EnumVal> 
         <EnumVal ord="3">Close-Open</EnumVal> 
         <EnumVal ord="4">Open-Close-Open</EnumVal> 
         <EnumVal ord="5">Close-Open-Close-Open</EnumVal> 
      </EnumType> 
      <EnumType id="DirMod"> 
         <EnumVal ord="1">NonDirectional</EnumVal> 
         <EnumVal ord="2">Forward</EnumVal> 
         <EnumVal ord="3">Inverse</EnumVal> 
      </EnumType> 
      <EnumType id="FanCtl"> 
         <EnumVal ord="1">Inactive</EnumVal> 
         <EnumVal ord="2">Stage1</EnumVal> 
         <EnumVal ord="3">Stage2</EnumVal> 
         <EnumVal ord="4">Stage3</EnumVal> 
      </EnumType> 
      <EnumType id="FltLoop"> 
         <EnumVal ord="1">PhaseAtoGround</EnumVal> 
         <EnumVal ord="2">PhaseBtoGround</EnumVal> 
         <EnumVal ord="3">PhaseCtoGround</EnumVal> 
         <EnumVal ord="4">PhaseAtoB</EnumVal> 
         <EnumVal ord="5">PhaseBtoC</EnumVal> 
         <EnumVal ord="6">PhaseCtoA</EnumVal> 
         <EnumVal ord="7">Others</EnumVal> 
      </EnumType> 
      <EnumType id="GnSt"> 
         <EnumVal ord="1">Stopped</EnumVal> 
         <EnumVal ord="2">Stopping</EnumVal> 
         <EnumVal ord="3">Started</EnumVal> 
         <EnumVal ord="4">Starting</EnumVal> 
         <EnumVal ord="5">Disabled</EnumVal> 
      </EnumType> 
      <EnumType id="POWCap"> 
         <EnumVal ord="1">None</EnumVal> 
         <EnumVal ord="2">Close</EnumVal> 
         <EnumVal ord="3">Open</EnumVal> 
         <EnumVal ord="4">Close and Open</EnumVal> 
      </EnumType> 
      <EnumType id="ShOpCap"> 
         <EnumVal ord="1">None</EnumVal> 
         <EnumVal ord="2">Open</EnumVal> 
         <EnumVal ord="3">Close</EnumVal> 
         <EnumVal ord="4">Open and Close</EnumVal> 
      </EnumType> 
      <EnumType id="SwTyp"> 
         <EnumVal ord="1">Load Break</EnumVal> 
         <EnumVal ord="2">Disconnector</EnumVal> 
         <EnumVal ord="3">Earthing Switch</EnumVal> 



267 
 

         <EnumVal ord="4">High Speed Earthing Switch</EnumVal> 
      </EnumType> 
   </DataTypeTemplates> 
</SCL> 

 

 

 

 

  



268 
 

APPENDIX E  

 

 

  



269 
 

APPENDIX E: DK60_XCBR VHDL CODE 
 

-- ------------------------------------------------------------------------
-------- 
-- Project: Actuator Node/ DK60-CPLD  
-- File:    Actuator Node/ DK60_V101.VHD 
-- Version: 1.01 
-- Date:   15.March.2012 
-- 
-- The CPLD supports the flexibly to adapt the DK60 evaluation board to the 
desired hardware base.  
-- Unused CPLD pins and logic functions can be used freely. 
-- Hardware logic functions outside of the SC143 are implemented on the 
DK60 board with a CPLD: 
--  external SRAM chip select logic (FLSSEL, UCSIN#, UCSOUT#) 
--  Compact Flash interface 
--  8-Bit I/O port 
-- 
-- Project Requirements: 
-- Family:  XC9500XL CPLDs 
-- Device:   XC95144XL 
-- Package:   TQ144 
-- Speed Grade: -5 
-- Process Properties: Fitting: I/O Termination: Float  
-- 
-- Fitter requirements 
-- Set in the "Fit-Properties" the "I/O Pin Termination" entry to "Float" 
-- Set in the "Output Slew Rate" entry to "Fast" 
-- 
-- History:      v1.00   - initial implementation S. Perzborn 
-- Addaptation: Prof. P. Petev and John Retonda (CPUT- 2011) 
--               v1.01   - prevent a bus crash, if PIO2(PCS6) and UCSOUT is 
seleced 
--               v1.02   - corrected CS_SRAM generation 
-- 
-- ------------------------------------------------------------------------
-------- 
 
library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
 
entity DK60 is 
    Port ( IO_IN : in std_logic_vector(7 downto 0);    -- 8 Bit in Port 
   IO_OUT : out std_logic_vector(7 downto 0);  -- 8 Bit out Port 
   unused_CPLD_LED : out std_logic_vector(7 downto 0); --8 bits  
LED  routed to the expension header 
   PCS6 : in std_logic;         -- Used I/O-
Chipselect 
   A : in std_logic_vector(8 downto 0);      -- SC143 Adress 
Bus 
   D : inout std_logic_vector(15 downto 0);    -- SC143 Data Bus 
   RD : in std_logic;      -- SC143 
RD# signal 
   WR : in std_logic;          -- SC143 
WR# signal 
   RESET : in std_logic;      -- external 
reset signal (Power On Reset, Reset Button) 
   FLSSEL : in std_logic;     -- SC143 FLSSEL 
signal (int. Flash / ext. Memory) 



270 
 

   UCSIN : out std_logic;   -- generated signal for the SC143 
UCSIN  
   UCSOUT : in std_logic;    -- SC143 UCSOUT signal 
   CS_SRAM : out std_logic;    -- generated chip-select signal 
for external SRAM 
   CSX10 : out std_logic;  -- generated chip-select signal 
for external I/O (C10h..C1Fh) 
   CSX40 : out std_logic;  -- generated chip-select signal 
for external I/O (C40h..C4Fh) 
   CSX50 : out std_logic;  -- generated chip-select signal 
for external I/O (C50h..C5Fh) 
   CSX60 : out std_logic;  -- generated chip-select signal 
for external I/O (C60h..C6Fh) 
   CSX70 : out std_logic;  -- generated chip-select signal 
for external I/O (C70h..C7Fh) 
   IDE_RES : out std_logic; -- generated Reset Signal for 
Compact Flash (low-active) 
   IDE_D : inout std_logic_vector(15 downto 0); -- generated data 
bus for Compact Flash 
   IDE_A : out std_logic_vector(2 downto 0);  -- generated 
data bus for Compact Flash 
   IDE_CS0 : out std_logic; -- generated Chip-Select signal 
for Compact Flash (low active) C20h..C2Fh 
   IDE_CS1 : out std_logic; -- generated Chip-Select signal 
for Compact Flash (low active) C30h..C3Fh 
   IDE_IOWR : out std_logic;    -- generated IOWR# signal for 
Compact Flash (low active) 
   IDE_IORD : out std_logic -- generated IORD# signal for 
Compact Flash (low active) 
  ); 
end DK60; 
 
architecture Behavioral of DK60 is 
 signal out_latch : std_logic_vector (7 downto 0); -- LED port latch 
 signal IDE_CS : std_logic;            -- access to 
C20h..C3Fh 
 signal IO_CS : std_logic_vector (7 downto 0);  -- I/O chip selects 
0xC00, 0xC10,0xC20 ... 
begin 
 
-- Chip Selects  
process (PCS6,A,RESET,IO_CS) 
 variable cmp_tmp : std_logic_vector (6 downto 0); 
 variable tmp_IOCS : std_logic_vector (7 downto 0); 
 variable tmp_IDE_CS : std_logic; 
begin   
 tmp_IDE_CS := '0'; 
 tmp_IOCS := "11111111"; 
 cmp_tmp := A(8 downto 4) & PCS6 & RESET; 
 case cmp_tmp is 
   when "0000001" => tmp_IOCS(0) := '0'; -- 0xC00 & PCS6 & NOT RESET 
   when "0000101" => tmp_IOCS(1) := '0'; -- 0xC10 & PCS6 & NOT RESET 
   when "0001001" => tmp_IOCS(2) := '0'; -- CF 0xC20 & PCS6 & NOT 
RESET 
     tmp_IDE_CS := '1'; 
   when "0001101" => tmp_IOCS(3) := '0'; -- CF 0xC30 & PCS6 & NOT 
RESET 
     tmp_IDE_CS := '1'; 
   when "0010001" => tmp_IOCS(4) := '0'; -- 0xC40 & PCS6 & NOT RESET 
   when "0010101" => tmp_IOCS(5) := '0'; -- 0xC50 & PCS6 & NOT RESET 
   when "0011001" => tmp_IOCS(6) := '0'; -- 0xC60 & PCS6 & NOT RESET 
   when "0011101" => tmp_IOCS(7) := '0'; -- 0xC70 & PCS6 & NOT RESET 
   when others => NULL;  



271 
 

 end case; 
  
 -- CF adress 
 if tmp_IDE_CS = '1' then 
  IDE_A (2 downto 0) <= A(2 downto 0); 
 else  
  IDE_A (2 downto 0) <= "000"; 
 end if; 
 IO_CS <= tmp_IOCS; 
 IDE_CS <= tmp_IDE_CS; 
end process; -- Chip Selects 
 
-- write logic  
process (A,PCS6,RESET,WR,IDE_CS,D,IO_CS) 
 variable tmp_cmp : std_logic_vector (9 downto 0); 
 variable tmp_IDE_D : std_logic_vector (15 downto 0);  
 variable tmp_IOWR : std_logic; 
begin   
  tmp_IDE_D := "ZZZZZZZZZZZZZZZZ"; 
  tmp_cmp := A(8 downto 0) & PCS6; 
  tmp_IOWR :='1'; 
 
  -- LED port output 
  if rising_edge(WR) then   
    if IO_CS(0) = '0' then 
  if A(3 downto 0) = "0000" then 
   out_latch(7 downto 0) <= D (7 downto 0); 
  end if;  
 end if; 
  end if;  
 
  -- CF output 
  if WR = '0' then   
 if IDE_CS = '1' then 
  tmp_IOWR := '0'; 
  if A(0) = '0' then 
   tmp_IDE_D := D; 
  else 
   tmp_IDE_D(7 downto 0) := D(15 downto 8);  
  end if; 
 end if; 
  end if; 
  IDE_IOWR <= tmp_IOWR; 
  if RESET = '0' then 
    out_latch <= "00000000"; 
  end if; 
  IDE_D <= tmp_IDE_D; 
end process; 
 
 
-- Flashselect logic 
-- NOTE: Without this function, the SC143 on the DK60 is not able to Boot,  
--       because the internal SC143 Flash-Memory needs a low signal on 
UCSIN#  
--       when the SC143 performs an internal flash access. 
process (FLSSEL, UCSOUT, RESET, PCS6) 
begin   
 if PCS6 = '1' and RESET = '1' then 
  if FLSSEL = '1' then  
   UCSIN <= UCSOUT; 
   CS_SRAM <= '1'; 
  else -- FLSSEL = '0' 
   UCSIN <= '1'; 



272 
 

   CS_SRAM <= UCSOUT; 
  end if; 
 else   
  UCSIN <= '1'; 
  CS_SRAM <= '1';   
 end if; 
end process; 
 
-- read logic 
process (RD,A,IDE_CS, IO_CS,IO_IN,out_latch,IDE_D,RESET) 
  variable tmp_d : std_logic_vector (15 downto 0); 
  variable tmp_IORD : std_logic; 
begin   
  tmp_d := "ZZZZZZZZZZZZZZZZ"; 
  tmp_IORD := '1'; 
  -- read I/O port  
  if RD = '0' then 
    if IO_CS(0) = '0' then 
    case A(1 downto 0) is 
        when "00" =>  
         tmp_d(15 downto 8) := out_latch(7 downto 0); -- read out port 
(high byte) 
       tmp_d(7 downto 0) := IO_IN(7 downto 0); -- read DIP SW 
(low byte) 
  -- tmp_d(7 downto 0) := unused_CPLD_DIP(7 downto 0); 
        when "01" =>  
          tmp_d(15 downto 8) := out_latch(7 downto 0); -- read out port 
        when others =>  
          tmp_d(15 downto 0) :=  X"0003"; -- CPLD Code Version 
      end case; 
    end if; 
 
    -- read IDE 
    if IDE_CS = '1' then 
      tmp_IORD := '0'; 
      if A(0) = '0' then 
    tmp_d := IDE_D; 
  else 
    tmp_d(15 downto 8) := IDE_D(7 downto 0); 
  end if; 
    end if; 
  end if; 
  D <= tmp_d; 
  IDE_IORD <= tmp_IORD; 
end process; 
 
  IDE_RES <= RESET; 
  IO_OUT <= out_latch; 
  unused_CPLD_LED <= out_latch; -- affectation of internal Latch signal to 
the 
          -- Unsed CPLD are at header [S10] 
  IDE_CS0 <= IO_CS(2); 
  IDE_CS1 <= IO_CS(3); 
  CSX10 <= IO_CS(1); 
  CSX40 <= IO_CS(4); 
  CSX50 <= IO_CS(5); 
  CSX60 <= IO_CS(6); 
  CSX70 <= IO_CS(7); 
end Behavioral; 

 

  



273 
 

APPENDIX F 

 

 

 



274 
 

APPENDIX F: GA61850 Software Application code 
 
/*****************************************************************************/ 
/*! \file           ga61850.c 
 *  \brief      Source code for an IEC 61850 Circuit Breaker Actuator  
 *  \author     John-Charly Retonda-Modiya 
 *  \version    2.0 
 *  \date       29 June 2012 
 *  \bug         
 *  \warning    None 
 *  \to do      None 
 *  \par        2012. Cape Peninsula University of Technology 
 *                (With the cooperation of Systemcorp and Beck IPC) 
 * 
 *              Phone   : +27 762 755 393 (RSA) 
 *              Email   : retonda7@hotmail.com 
 */ 
/*****************************************************************************/ 
 
/****************************************************** 
 This is the Source code for an IEC 61850 Circuit Breaker Actuator developed 
 at CPUT by John-Charly Retonda-Modiya. An emulated breaker is used. The CPLD 
 have been reprogrammed to use the I/O interface [S10]on the DK 60 board 
 All I/O are routed to extension header S10 (Unused CPLD pins). The Position 
 Control of the Circuit breaker is issued via unused CPLD_3 (LED_1/Output_1). 
 The Position status of the circuit breaker is read/feedback via unused CPLD_1 
 and CPLD_2. Please refer to VHDL code section and the present thesis for more details. 
 CB=> Circuit breaker. 
 
PIS10 Version Used:  V1.36 (http://www.systemcorp.com.au/) 
To run 
 
GA61850.EXE <FILENAME_Server.CID> <FILENAME_Client.SCD> [NTP Server] 
 
e.g GA61850 DK60SV1.CID  DK60CL1.SCD 
******************************************************/ 
 



275 
 

/****************************************************************************** 
* Includes 
******************************************************************************/ 
#include <clib.h> 
#include <stdio.h> 
#include <mem.h> 
#include <stdlib.h> 
#include <string.h> 
#include <dos.h> 
#include <time.h> 
 
 
/* Include IEC 61850 API */ 
#include "IEC61850API.h" 
 
/****************************************************************************** 
* Constants 
******************************************************************************/ 
//#define DEBUG_SV61850 1 
/* Maximum Object types */ 
#define OBJECT_TYPES    2 
/* Total Objects in each object type */ 
#define OBJECTS             3 
/* SC143 Input Output Address Location */ 
#define IO_ADDR             0xC00 
 
/* Input Output Handler Task Priority */ 
#define IOHANDLER_PRIO  120 
/* Input Output Handler Task Stack Size */ 
#define TASK_STACKSIZE  2048 
 
#define UPDATEMAX       32 
#define BECK_TIMEZONE_FUDGE_FACTOR      18000 
#define UPDATELIMIT     10 
 
#define STRING_ITEM     1 
 



276 
 

/* Object Types */ 
enum 
{ 
    DIGITAL_INPUT       = 1,        // Digital Input (CB Position status ) 
    DIGITAL_OUTPUT  = 2,        // Digital Output (LED/ CB control ) 
    STRING_VALUE        = 3,        // String Read and Write 
}eObjectTypes; 
 
enum 
{ 
    DIGINPUT_INDEX  = 0,        // Digital Input 
    DIGOUTPUT_INDEX     = 1,        // Digital Output 
}eObjectIndex; 
 
/* Object Information Index */ 
enum 
{ 
    VALUE_INDEX         = 1,        // Value Index 
    QUALITY_INDEX       = 2,        // Quality Index 
    TIME_STAMP_INDEX    = 3,        // Time Stamp Index 
}eObjectInfoIndex; 
 
#define DFLTTIMEZONEHOUR    0 
#define DFLTTIMEZONEMIN 0 
 
#ifndef BOOL 
    #define BOOL   unsigned char 
#endif 
 
/*Double point status added in PIS10 V1.36 */ 
#ifndef DBPOS 
    #define DBPOS   IEC61850_DATATYPE_INT8U 
#endif 
/* Define fALSE/TRUE  for INPUT switches */ 
#ifndef FALSE 
  #define FALSE  0 
  #define TRUE   1 



277 
 

#endif 
 
/*! \typedef enum eErrorCodes 
     *  \brief Error Codes 
     */ 
    typedef enum  
    { 
        SNTP_TIMEZONE_INVALID                           =   -25000, 
        SNTP_SOCKET_OPEN_ERROR, 
        SNTP_REQUEST_SEND_ERROR, 
        SNTP_RESPONSE_RECEIVE_ERROR, 
        SNTP_CLOCK_SYNC_ERROR, 
    } eErrorCodes; 
 
/****************************************************************************** 
* Function Prototypes 
******************************************************************************/ 
/* Read Callback function */ 
int MyReadFunction(void * ptUserData, struct IEC61850_DataAttributeID * ptObjectID, struct IEC61850_DataAttributeData * 
ptReturnedValue); 
/* Write Callback function */ 
int MyWriteFunction(void * ptUserData, struct IEC61850_DataAttributeID * ptObjectID, const struct 
IEC61850_DataAttributeData * ptNewValue); 
/*! Operate Callback function */ 
int MyOperateFunction(void * ptUserData, struct IEC61850_DataAttributeID * ptControlID, const struct 
IEC61850_DataAttributeData * ptOperateValue, int iSyncroCheck, int iInterlockCheck); 
/* Update callback function for GOOSE */ 
int MyUpdateFunction(void * ptUserData, struct IEC61850_DataAttributeID * ptObjectID, const struct 
IEC61850_DataAttributeData * ptNewValue); 
 
/* Create Local Database */ 
void CreateLocalDatabase(void); 
/* Get NTP Time */ 
extern int getTime(char *remoteIp,  signed int iTimeZoneHour,  unsigned int iTimeZoneMinutes, 
              struct IEC61850_TimeStamp *ptIEC61850TimeStamp, int *errVal); 
/* Input Handler Function */ 
void huge InputHandler(void); 



278 
 

 
/****************************************************************************** 
* Type definitions 
******************************************************************************/ 
 
/* Input Handler Task Stack */ 
static unsigned int InHandler_stack[TASK_STACKSIZE]; 
 
/* Input Handler Task Definition Block */ 
static TaskDefBlock  InHandlerTask = 
{ 
    InputHandler,                           // Task Function 
    {'I','P','H','L'},                                  // a name: 4 chars 
    &InHandler_stack[TASK_STACKSIZE],       // top of stack 
    TASK_STACKSIZE*sizeof(int),             // size of stack 
    0,                                      // attributes, not supported now 
    IOHANDLER_PRIO,                         // priority 20(high) ... 127(low) 
    0,                                      // time slice (if any), not supported now 
    0,0,0,0                                 // mailbox depth, not supported now 
}; 
 
/* Objects */ 
typedef struct tag_DK61Object 
{ 
    unsigned char               ucObjectNo;         /* Object Number */ 
    unsigned char               ucObjectType;       /* Object Type */ 
    unsigned char               ucObjectValue;      /* Object Value */ 
    unsigned short int              usiObjectQuality;   /* Object Quality */ 
    struct IEC61850_TimeStamp   tObjectTime;        /* Obect Time */ 
}tDK61Object; 
 
/* Full Quality */ 
typedef struct tag_FullQuality 
{ 
    unsigned char               ucvalidity;         /* validity  */ 
    unsigned char               ucdetailQual;       /* detail quality */ 
    unsigned char               ucsource;           /* source */ 



279 
 

    unsigned char               uctest;             /* testing ? */ 
    unsigned char               ucoperatorBlocked;  /* operator blocked */ 
}tFullQuality; 
 
 
/* Local Database */ 
tDK61Object atObj[OBJECT_TYPES][OBJECTS]; 
 
/* IEC61850 Server */ 
IEC61850    myServer                            = 0; 
 
/* IEC61850 Client */ 
IEC61850 myClient      = 1; 
 
/* Remote NTP Server IP address */ 
char acRemoteIP[255] = {0}; 
 
char acDescString[255] = {0}; 
 
/* Flag for local Condition on Close after Trip*/ 
unsigned char    ucCDCLOSE; 
 
/* Global variable to store specific field number for "local database" */ 
unsigned    int                             uiField; 
unsigned    int                             uiFieldN; 
/* Global INPUT variable */ 
unsigned    int                             uiDip_1; 
unsigned    int                             uiDip_2; 
 
 
/****************************************************************************** 
*   Functions Definitions 
******************************************************************************/ 
/** 
 * @brief Main Function 
 * 
 * @param argc - Argument Count 



280 
 

 * @param argv - Argument Vector 
 * 
 * @return 0 
 */ 
 int main(int argc, char *argv[]) 
{ 
    struct IEC61850_Parameters  tServerParam    = {0};          // Server Parameters 
    int                         taskID          = -1;                   // Task ID 
    char                        *month[]        = { "---", "Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", 
"Sep", "Oct", "Nov", "Dec" }; 
    struct date                     date            = {0}; 
    struct time                     time            = {0}; 
    struct IEC61850_TimeStamp       tIEC61850Time   = {0}; 
    int                             errorval            = 0; 
    enum IEC61850_ErrorCodes        error           = IEC61850_ERROR_NONE; 
 
 
  printf("Library Version number: %d Build : %s", IEC61850_GetLibraryVersion(), IEC61850_GetLibraryBuildTime()); 
     
    /* Enable Programmable Chip Select for SC143 */ 
    pfe_enable_pcs( 6 ); 
 
    /* ICD file as parameter */ 
    if(argc < 3) 
    { 
        printf("\r\n Usage : GA61850 <FILENAME_Server.CID> <FILENAME_Client.SCD> [NTP Server]"); 
        return 0; 
    } 
 
    if(argc > 3) 
    { 
        strcpy(acRemoteIP, argv[3]); 
    } 
    else 
    { 
        strcpy(acRemoteIP, "203.161.12.165"); 
 



281 
 

    } 
 
 
             
    printf("\r\n NTP Remote IP : %s", acRemoteIP); 
 
    // Set timezone environment variable to UTC 
    putenv("TZ=UTC0"); 
   // putenv("TZ=UTC+2");   // can be tasted later if direct access to a time server is provided 
    tzset(); 
 
 
    printf("\r\n Set Time Quality");     
    error = IEC61850_SetTimeQuality(1, 0, 1, -1); 
    if(error != IEC61850_ERROR_NONE) 
    { 
        printf("Failed %i : %s", error, IEC61850_ErrorString(error)); 
    } 
 
    // Get NTP time 
  error = getTime( acRemoteIP, DFLTTIMEZONEHOUR, DFLTTIMEZONEMIN,  &tIEC61850Time, &errorval); 
 
    if( error != API_ENOERROR) 
    { 
        printf("\r\n Get Time error : %i", error); 
        /* If NTP Time failed Than Start Time is 1/1/2011 00:00:00 Hours */ 
        date.da_year = 11; 
        date.da_mon = 1; 
        date.da_day = 1; 
        time.ti_hour = 00; 
        time.ti_min = 00; 
        time.ti_sec= 00; 
        time.ti_hund = 00; 
        tIEC61850Time.u32Seconds = dostounix(&date, &time); // Calculate Number of second 
        tIEC61850Time.u32FractionsOfSecond = 0; 
        printf("\r\n Set Time is 1/1/2011 00:00:00"); 
        error = IEC61850_SetTime(&tIEC61850Time); 



282 
 

        if(error != IEC61850_ERROR_NONE) 
        { 
            printf("Failed %i : %s", error, IEC61850_ErrorString(error)); 
        } 
    } 
    else 
    { 
        unixtodos( tIEC61850Time.u32Seconds, &date, &time ); 
        /* NTP time get successful Set System Clock */ 
        printf( "\r\nDate: %s %u. %u", month[date.da_mon], date.da_day, date.da_year ); 
        printf( "\r\nTime: %u:%02u:%02u", time.ti_hour, time.ti_min, time.ti_sec); 
        // Set system clock 
        printf("\r\n Set Time");     
        IEC61850_SetTime(&tIEC61850Time); 
        if(error != IEC61850_ERROR_NONE) 
        { 
            printf("Failed %i : %s", error, IEC61850_ErrorString(error)); 
        } 
        printf("\r\n Set Time Quality");     
        IEC61850_SetTimeQuality(1, 0, 0, 10); 
        if(error != IEC61850_ERROR_NONE) 
        { 
            printf("Failed %i : %s", error, IEC61850_ErrorString(error)); 
        } 
 
    } 
 
    /* Set all outputs to Off */ 
    outportb(IO_ADDR, 0); 
 
    do 
    { 
 
        tServerParam.ClientServerFlag   = IEC61850_SERVER;   // This is a Server 
        tServerParam.uiOptions          = IEC61850_OPTION_NONE;  // Reserved for future use 
        tServerParam.ptReadCallback     = MyReadFunction;        // Assign Read Callback function 
        tServerParam.ptWriteCallback    = MyWriteFunction;       // Assign Write Callback function 



283 
 

        tServerParam.ptUpdateCallback   = NULL;              // No Update callback for Server 
        tServerParam.ptSelectCallback   = NULL;                      // Ignoring Select commands 
        tServerParam.ptOperateCallback  = MyOperateFunction; // Assign Operate Callback function (to work with 
IEDScout) 
        tServerParam.ptCancelCallback   = NULL;                  // Ignoring Cancel commands 
 
        printf("\r\n Server Create"); 
 
        myServer = IEC61850_Create(&tServerParam,&error);  //Create a server 
        if(myServer == NULL) 
        { 
            printf(" Failed : %i : %s", error, IEC61850_ErrorString(error)); 
            break; 
        } 
 
        printf("\r\n Server Load SCL"); 
        error = IEC61850_LoadSCLFile(myServer,argv[1]); // Load in ICD file 
        if(error != IEC61850_ERROR_NONE) 
        { 
            printf(" Failed : %i : %s", error, IEC61850_ErrorString(error)); 
            break; 
        } 
 
        /* Create Local Database */ 
        CreateLocalDatabase(); 
 
        printf("\r\n Server Start"); 
        error = IEC61850_Start(myServer); // Starts myServer 
        if(error != IEC61850_ERROR_NONE) 
        { 
            printf(" Failed : %i : %s", error, IEC61850_ErrorString(error)); 
            break; 
        } 
 
      //code client start here 
 
      else 



284 
 

      { 
       enum IEC61850_ErrorCodes error = 0;   //Integer for error checking     (eErrorCodeClient) 
       IEC61850 myClient;           //IEC61850 object 
       struct IEC61850_Parameters tClientParam = {0};  //IEC61850 object parameters. This includes server/client type 
and links to any callbacks to use 
 
      tClientParam.ClientServerFlag     = IEC61850_CLIENT;  // This is a client 
        tClientParam.uiOptions          = IEC61850_OPTION_NONE; // Reserved for future use 
        tClientParam.ptReadCallback     = NULL;                 // Ignoring Read Callback function 
        tClientParam.ptWriteCallback    = NULL;                      // Ignoring Write Callback function 
        tClientParam.ptUpdateCallback = MyUpdateFunction;  // Update callback for Client/Subscriber 
        tClientParam.ptSelectCallback   = NULL;                     // Ignoring Select commands 
        tClientParam.ptOperateCallback  = NULL;                  // Ignoring Operate Callback function 
        tClientParam.ptCancelCallback   = NULL;                 // Ignoring Cancel commands 
 
        printf("\r\n Client Create"); 
 
        myClient = IEC61850_Create(&tClientParam,&error);  //Create a client 
        if(myClient == NULL) 
        { 
            printf(" Failed : %i : %s", error, IEC61850_ErrorString(error)); 
            break; 
        } 
 
        printf("\r\n Client Load SCL"); 
        error = IEC61850_LoadSCLFile(myClient,argv[2]); // Load in CID file 
        if(error != IEC61850_ERROR_NONE) 
        { 
            printf(" Failed : %i : %s", error, IEC61850_ErrorString(error)); 
            break; 
        } 
        else 
        { 
            outportb(IO_ADDR,1);   // set LED_1 to ON 
            RTX_Sleep_Time(100);   // wait Breaker_settling time 
        } 
 



285 
 

        printf("\r\n Client Start"); 
        error = IEC61850_Start(myClient); // Starts myServer 
        if(error != IEC61850_ERROR_NONE) 
        { 
            printf(" Failed : %i : %s", error, IEC61850_ErrorString(error)); 
            break; 
        } 
 
      }  //End Else for Client start 
 
    }while(0); /* Dummy while loop to avoid nested If's */ 
 
 
    /* Check for Any Error */ 
    if(error == IEC61850_ERROR_NONE) 
    { 
        /* Create and Start IO Handler Task */ 
        error = RTX_Create_Task(&taskID , &InHandlerTask); 
        if(error != 0) 
        { 
            printf("\r\n IO Handler task Create Failed : %i", error); 
        } 
 
        /* Do not Exit */ 
        while(1) 
        { 
            RTX_Sleep_Time(30000); 
        } 
    } 
    else 
    { 
        /* If any errors in Create and Starting the Server or client */ 
        /* Stop the Server */ 
        printf("\r\n  Server and Client Stop"); 
        error = IEC61850_Stop(myServer); 
        if(error != IEC61850_ERROR_NONE) 
        { 



286 
 

            printf(" Failed : %i : %s", error, IEC61850_ErrorString(error)); 
        } 
 
        /* Free all Memory */ 
        printf("\r\n  Server  Free"); 
        IEC61850_Free(myServer); 
 
      /*  If any errors in Create and Starting the Client */ 
        /* Stop the Client */ 
      error = IEC61850_Stop(myClient); 
        if(error != IEC61850_ERROR_NONE) 
        { 
            printf(" Failed : %i : %s", error, IEC61850_ErrorString(error)); 
        } 
 
        /* Free all Memory */ 
        printf("\r\n  Client  Free"); 
        IEC61850_Free(myClient); 
     } 
 
    return 0; 
} // End of main 
 
 
/** 
 * @brief Function to create local database 
 * 
 */ 
void CreateLocalDatabase(void) 
{ 
    unsigned char                           ucObjTypeCnt                    = 0; 
    unsigned char                           ucObjects                       = 0; 
    struct IEC61850_DataAttributeData           atUpdateValue[UPDATEMAX];               // Value to send on Change 
    struct IEC61850_DataAttributeID_Generic     atObject[UPDATEMAX];                    // ID of the Object 
    unsigned char                               nucUpdateCnt                    = 0; 
    enum IEC61850_ErrorCodes                    error           = IEC61850_ERROR_NONE; 
 



287 
 

    /* Initalise memory */ 
    memset(&atUpdateValue[0], 0, (sizeof(struct IEC61850_DataAttributeData) * UPDATEMAX)); 
    memset(&atObject[0], 0, (sizeof(struct IEC61850_DataAttributeID_Generic) * UPDATEMAX)); 
 
 
    /* For all Object Types */ 
    for(ucObjTypeCnt = 0; ucObjTypeCnt < OBJECT_TYPES; ucObjTypeCnt++) 
    { 
         
        /* Each Object within Object Type */ 
        for(ucObjects = 0; ucObjects < OBJECTS;  ucObjects++) 
        { 
            /* Assign Object Number */ 
            atObj[ucObjTypeCnt][ucObjects].ucObjectNo   = ucObjects + 1; 
            /* Assign Object Type DIP Switch (Input): 1 , LED (Output) : 2 */ 
            atObj[ucObjTypeCnt][ucObjects].ucObjectType     = ucObjTypeCnt + 1; 
 
            /* Initialise Value to 0 */ 
            atObj[ucObjTypeCnt][ucObjects].ucObjectValue = 0; 
             
            atObject[nucUpdateCnt].Generic_type = IEC61850_DAID_GENERIC; // Set Object Type to Generic  
            atObject[nucUpdateCnt].uiField1 = ucObjects + 1;                // Object Number 
            atObject[nucUpdateCnt].uiField2 = ucObjTypeCnt + 1;             // Object Type 
            atObject[nucUpdateCnt].uiField3 = VALUE_INDEX; 
         atUpdateValue[nucUpdateCnt].pvData = &atObj[ucObjTypeCnt][ucObjects].ucObjectValue;   /*Set the value to 
update*/ 
 
         /* uiField and uiFieldN to store Field 2 and 1 content*/ 
         uiField = atObject[nucUpdateCnt].uiField2; 
         uiFieldN = atObject[nucUpdateCnt].uiField1; 
 
          /* Handling of type: Make the 3rd entry point a double point status */ 
         if ((uiField == DIGITAL_INPUT)&&(uiFieldN == 3)) 
         { 
         atUpdateValue[nucUpdateCnt].ucType = IEC61850_DATATYPE_DBPOS; 
 
         } 



288 
 

         else 
         { 
           atUpdateValue[nucUpdateCnt].ucType = IEC61850_DATATYPE_BOOLEAN; 
         } // End of type handleling section 
 
            atUpdateValue[nucUpdateCnt].uiBitLength = 8; 
 
            nucUpdateCnt++; 
 
            if(uiField == DIGITAL_INPUT) 
            { 
                /* Initialise Quality */ 
                atObj[ucObjTypeCnt][ucObjects].usiObjectQuality = (IEC61850_QUALITY_FAILURE | IEC61850_QUALITY_INVALID 
| 
                                                                                  IEC61850_QUALITY_OLDDATA | 
IEC61850_QUALITY_QUESTIONABLE ); 
                atObject[nucUpdateCnt].Generic_type = IEC61850_DAID_GENERIC; // Set Object Type to Generic  
                atObject[nucUpdateCnt].uiField1 = ucObjects + 1;                // Object Number 
                atObject[nucUpdateCnt].uiField2 = ucObjTypeCnt + 1;             // Object Type 
                atObject[nucUpdateCnt].uiField3 = QUALITY_INDEX; 
                atUpdateValue[nucUpdateCnt].pvData = &atObj[ucObjTypeCnt][ucObjects].usiObjectQuality; 
                atUpdateValue[nucUpdateCnt].ucType = IEC61850_DATATYPE_QUALITY; 
                atUpdateValue[nucUpdateCnt].uiBitLength = IEC61850_QUALITY_BITSIZE; 
                nucUpdateCnt++; 
                /* Initialise Time */ 
                IEC61850_GetTime(&atObj[ucObjTypeCnt][ucObjects].tObjectTime); 
                atObject[nucUpdateCnt].Generic_type = IEC61850_DAID_GENERIC; // Set Object Type to Generic  
                atObject[nucUpdateCnt].uiField1 = ucObjects + 1;                // Object Number 
                atObject[nucUpdateCnt].uiField2 = ucObjTypeCnt + 1;             // Object Type 
                atObject[nucUpdateCnt].uiField3 = TIME_STAMP_INDEX; 
                atUpdateValue[nucUpdateCnt].pvData = &atObj[ucObjTypeCnt][ucObjects].tObjectTime; 
                atUpdateValue[nucUpdateCnt].ucType = IEC61850_DATATYPE_TIMESTAMP; 
                atUpdateValue[nucUpdateCnt].uiBitLength = IEC61850_TIMESTAMP_BITSIZE; 
                nucUpdateCnt++; 
 
            } 
        } 



289 
 

    } 
 
    if(nucUpdateCnt != 0) 
    { 
        /* Send Local Value to IEC 61850 Stack */ 
        printf("\r\n Server Update"); 
        error = IEC61850_Update(myServer, (struct IEC61850_DataAttributeID *)&atObject[0], &atUpdateValue[0], 
nucUpdateCnt); 
        if(error == -10) 
        { 
        printf("\r\nWarning : %i : %s\r\n John has reserved 2 Objects ID for future use.", error, 
IEC61850_ErrorString(error)); 
        } 
        if((error != IEC61850_ERROR_NONE)& (error != -10)) 
        { 
            printf(" Failed : %i : %s", error, IEC61850_ErrorString(error)); 
 
        } 
        nucUpdateCnt = 0; 
    } 
 
 
} 
 
} 
 
/** 
 * @brief Write callback  
 * 
 * @return 0 
 */ 
int MyWriteFunction(void * ptUserData, struct IEC61850_DataAttributeID * ptObjectID, const struct 
IEC61850_DataAttributeData * ptNewValue) 
{ 
    struct IEC61850_DataAttributeID_Generic     *ptGenObjID     = NULL; 
    enum IEC61850_ErrorCodes                error           = IEC61850_ERROR_NONE; 
    // Nothing to write  



290 
 

    (void)ptUserData;   // If not used avoid compiler warning 
     
 
    if(ptObjectID->daid_type == IEC61850_DAID_GENERIC) 
    { 
 
        /* Each Object within Object type */ 
        /* Check if the Field matches */ 
        if((ptGenObjID->uiField1 == STRING_ITEM) && 
            (ptGenObjID->uiField2 == STRING_VALUE)) 
        { 
 
            if(ptGenObjID->uiField3 == VALUE_INDEX) 
            { 
                /* Return Value */ 
                memset(acDescString, 0, 255); 
            } 
        } 
    } 
   return error; 
} 
 
/** 
 * @brief Operate callback  
 * 
 * @return 0 
 */ 
int MyOperateFunction(void * ptUserData, struct IEC61850_DataAttributeID * ptControlID, const struct 
IEC61850_DataAttributeData * ptOperateValue, int iSyncroCheck, int iInterlockCheck) 
{ 
    unsigned char                           ucLED           = 0; 
    unsigned char                       ucObjects       = 0; 
    unsigned char                           blLEDChange     = 0; 
    unsigned char                           ucFound         = 0; 
    struct IEC61850_DataAttributeID_Generic     *ptGenObjID     = NULL; 
     
    (void)ptUserData;   // If not used avoid compiler warning    



291 
 

    (void)iSyncroCheck;     // If not used avoid compiler warning 
    (void)iInterlockCheck;      // If not used avoid compiler warning 
     
    if(ptControlID->daid_type == IEC61850_DAID_GENERIC) 
    { 
        ptGenObjID = (struct IEC61850_DataAttributeID_Generic   *)ptControlID; 
 
        /* Each Object within Object type */ 
        for(ucObjects = 0; ucObjects < OBJECTS;  ucObjects++) 
        { 
            /* Check if the Field matches */ 
            if((ptGenObjID->uiField1 == atObj[DIGOUTPUT_INDEX][ucObjects].ucObjectNo) && 
            ((ptGenObjID->uiField2 == atObj[DIGOUTPUT_INDEX][ucObjects].ucObjectType))) 
            { 
 
                if(ptGenObjID->uiField3 == VALUE_INDEX) 
                { 
                    /* Get the Value of the */ 
                    memcpy(&ucLED, ptOperateValue->pvData, sizeof(unsigned char)); 
                    if(ucLED != 0) 
                    { 
                        ucLED = 1; 
 
                    } 
                    /* Check if the LED has changed */ 
                    if(atObj[DIGOUTPUT_INDEX][ucObjects].ucObjectValue != ucLED) 
                    { 
                        /* Set the Value */ 
                        atObj[DIGOUTPUT_INDEX][ucObjects].ucObjectValue = ucLED; 
                        blLEDChange = 1; 
                        ucFound = 1; 
                  ucCDCLOSE = 0; /* Ready to trip flag*/ 
            //    printf("\r\n GOOSE recieved -->"); 
                    } 
                } 
            } 
 



292 
 

            if(ucFound) break; 
        } 
 
        /* LED Changed */ 
        if(blLEDChange) 
        { 
            ucLED = 0; 
            /* Get all the values of the LED */ 
            for(ucObjects = 0; ucObjects < OBJECTS;  ucObjects++) 
            { 
                /* Form Byte to Output */ 
                ucLED = (ucLED | (atObj[DIGOUTPUT_INDEX][ucObjects].ucObjectValue << ucObjects)); 
            } 
#ifdef DEBUG_SV61850 
            printf("\r\n Write LED : %X ", ucLED); 
#endif 
            /* Output the LED */ 
            outportb(IO_ADDR,ucLED); 
        } 
    } 
    return IEC61850_COMMAND_ERROR_NONE; 
} 
 
/** 
 * Brief Update function call back by the stack when a GOOSE 
 * is recieved 
 */ 
 
  int MyUpdateFunction(void * ptUserData, struct IEC61850_DataAttributeID * ptObjectID, const struct 
IEC61850_DataAttributeData * ptNewValue) 
{ 
   unsigned char                            ucLED           = 0; 
    unsigned char                       ucObjects       = 0; 
    unsigned char                           blLEDChange     = 0; 
    unsigned char                           ucFound         = 0; 
 
   struct IEC61850_DataAttributeID_Generic  *ptGenObjID     = NULL; 



293 
 

   int returnvalue = IEC61850_CB_ERROR_NONE; 
 
 
   IEC61850 myClient = (IEC61850)ptUserData; 
 
        if(ptObjectID->daid_type == IEC61850_DAID_GENERIC) 
    { 
 
        ptGenObjID = (struct IEC61850_DataAttributeID_Generic   *)ptObjectID; 
 
        /* Each Object within Object type */ 
        for(ucObjects = 0; ucObjects < OBJECTS;  ucObjects++) 
        { 
            /* Check if the Field matches */ 
            if((ptGenObjID->uiField1 == atObj[DIGOUTPUT_INDEX][ucObjects].ucObjectNo) && 
            ((ptGenObjID->uiField2 == atObj[DIGOUTPUT_INDEX][ucObjects].ucObjectType))) 
            { 
 
                if(ptGenObjID->uiField3 == VALUE_INDEX) 
                { 
                    /* Get the Value of the */ 
                    memcpy(&ucLED, ptNewValue->pvData, sizeof(unsigned char)); 
                    if(ucLED != 0) 
                    { 
                        ucLED = 1; 
                    } 
 
                  if (ucCDCLOSE == 0)    /* test the Ready to trip flag*/ 
                   { 
 
                    /* Check if the LED has changed */ 
                     if(atObj[DIGOUTPUT_INDEX][ucObjects].ucObjectValue == ucLED) //  verify if the GOOSE value is true 
                     { 
                        /* Set the Value */ 
                        atObj[DIGOUTPUT_INDEX][ucObjects].ucObjectValue = !ucLED; // If GOOSE=1 then swith off 
correspondind LED 
                        blLEDChange = 1; 



294 
 

                        ucFound = 1; 
                     } 
 
               } 
 
                } 
            } 
 
            if(ucFound) break; 
        } 
 
        /* LED Changed */ 
        if(blLEDChange) 
        { 
            ucLED = 0; 
            /* Get all the values of the LED */ 
            for(ucObjects = 0; ucObjects < OBJECTS;  ucObjects++) 
            { 
                /* Form Byte to Output */ 
                ucLED = (ucLED | (atObj[DIGOUTPUT_INDEX][ucObjects].ucObjectValue << ucObjects)); 
            } 
 
            /* Output the LED */ 
            outportb(IO_ADDR,ucLED); 
 
        } 
 
      /*If breaker has been closed by hand operation*/ 
      if((blLEDChange == 0) && (ucCDCLOSE == 0)) 
      { 
        /*Force breaker to trip */ 
            outportb(IO_ADDR,0); 
      } 
 
    } 
 
    return(returnvalue); 



295 
 

} 
 
/** 
 * @brief Input Handler Task. 
 * 
 */ 
void huge InputHandler(void) 
{ 
    unsigned char                               ucDIPValue                      = 0;        // DIP Switch Value 
    unsigned char                               ucPrevDIPValue                  = 0;        // Previous DIP Switch 
Value 
    unsigned char                               nucObjects                      = 0;        // Total Objects 
    struct IEC61850_DataAttributeData           atUpdateValue[UPDATEMAX];       // Value to send on Change 
    struct IEC61850_DataAttributeID_Generic     atObject[UPDATEMAX];            // ID of the Object 
    unsigned char                           ucObjectVal                         = 0;        // Local Object Value 
    unsigned short int                          usiQuality                      = 0;    // Local Quality 
    unsigned char                           nucUpdateCnt                    = 0; 
    int                                     iReturnErrCode                  = API_ENOERROR; 
    int                                         errorval                            = 0; 
    struct IEC61850_TimeStamp                   tIEC61850Time                   = {0}; 
    enum IEC61850_ErrorCodes                    error                           = IEC61850_ERROR_NONE; 
 
 
    while(1)    // Indefinite Loop 
    { 
        iReturnErrCode = getTime( acRemoteIP, DFLTTIMEZONEHOUR, DFLTTIMEZONEMIN,  &tIEC61850Time, &errorval); 
        if(iReturnErrCode  == API_ENOERROR) 
        { 
            if(errorval == SNTP_CLOCK_SYNC_ERROR) 
            { 
                error = IEC61850_SetTimeQuality(0, 0, 1, 10 ); 
                if(error != IEC61850_ERROR_NONE) 
                { 
                    printf(" Set Time Quality Failed : %i : %s ",error,  IEC61850_ErrorString(error)); 
                } 
 
            } 



296 
 

            else 
            { 
                error = IEC61850_SetTimeQuality(0, 0, 0, 10 ); 
                if(error != IEC61850_ERROR_NONE) 
                { 
                    printf(" Set Time Quality Failed : %i : %s ",error,  IEC61850_ErrorString(error)); 
                } 
                error = IEC61850_SetTime(&tIEC61850Time); 
                if(error != IEC61850_ERROR_NONE) 
                { 
                    printf(" Set Time Failed : %i : %s ",error,  IEC61850_ErrorString(error)); 
                } 
            } 
             
        } 
        else 
        { 
 
        // printf("\r\n NTP Time Error : %i : %i", iReturnErrCode, errorval); 
            error = IEC61850_SetTimeQuality(0, 0, 1, 10); 
            if(error != IEC61850_ERROR_NONE) 
            { 
                printf(" Set Time Quality Failed : %i : %s ",error,  IEC61850_ErrorString(error)); 
            } 
        } 
 
        /* Read INPUT Switch Value */ 
        ucDIPValue = inportb(IO_ADDR); 
 
        /* If previous value does not match current value */ 
        if(ucPrevDIPValue != ucDIPValue) 
        { 
            nucUpdateCnt = 0; 
            memset(&atUpdateValue[0], 0, (sizeof(struct IEC61850_DataAttributeData) * UPDATEMAX)); 
            memset(&atObject[0], 0, (sizeof(struct IEC61850_DataAttributeID_Generic) * UPDATEMAX)); 
         
#ifdef DEBUG_SV61850 



297 
 

            printf("\r\n DIP Value : %X", ucDIPValue); 
#endif 
 
            /* Check which INPUT  has changed (Dip_1 or Dip_2?) */ 
         //for(nucObjects = 0; nucObjects < OBJECTS; nucObjects++) 
        for(nucObjects = 0; nucObjects < 2; nucObjects++) 
            { 
                /* Get the Values which have changed */ 
                ucObjectVal = ((ucDIPValue & (1 << nucObjects)) >> nucObjects); 
                if(ucObjectVal != atObj[0][nucObjects].ucObjectValue) 
                { 
#ifdef DEBUG_SV61850 
                    printf("\r\n  %u : %X",  atObj[0][nucObjects].ucObjectNo, ucObjectVal); 
#endif 
 
                    /* Object Value */ 
                    /* Object Value Index */ 
                    atObject[nucUpdateCnt].Generic_type = IEC61850_DAID_GENERIC; // Set Object Type to Generic 
                    atObject[nucUpdateCnt].uiField1 = nucObjects + 1; // Object Number 
                    atObject[nucUpdateCnt].uiField2 = DIGITAL_INPUT;  // Object Type 
                    atObject[nucUpdateCnt].uiField3 = VALUE_INDEX; 
                    /* Update Value in the database */ 
                    atObj[0][nucObjects].ucObjectValue       = ucObjectVal; 
                    atUpdateValue[nucUpdateCnt].pvData = &atObj[0][nucObjects].ucObjectValue; 
                   atUpdateValue[nucUpdateCnt].ucType = IEC61850_DATATYPE_BOOLEAN; 
 
                   /* uiField and uiFieldN to store Field 2 and 1 content*/ 
                   uiField = atObject[nucUpdateCnt].uiField2; 
                   uiFieldN = atObject[nucUpdateCnt].uiField1; 
 
                    atUpdateValue[nucUpdateCnt].uiBitLength = 8; 
 
                    /* Send Update for Value */ 
                    nucUpdateCnt++; 
 
                  /* Object Quality  */ 
                    usiQuality = 0; 



298 
 

 
                    /* No way to determine if DIP Switch failed so */ 
                    atObject[nucUpdateCnt].Generic_type = IEC61850_DAID_GENERIC; // Set Object Type to Generic  
                    atObject[nucUpdateCnt].uiField1 = nucObjects + 1; // Object Number 
                    atObject[nucUpdateCnt].uiField2 = DIGITAL_INPUT;  // Object Type 
                    atObject[nucUpdateCnt].uiField3 = QUALITY_INDEX; 
                    /* Update Quality in the database */ 
                    atObj[0][nucObjects].usiObjectQuality    = usiQuality; 
                    atUpdateValue[nucUpdateCnt].pvData = &atObj[0][nucObjects].usiObjectQuality; 
                    atUpdateValue[nucUpdateCnt].ucType = IEC61850_DATATYPE_QUALITY; 
                    atUpdateValue[nucUpdateCnt].uiBitLength = IEC61850_QUALITY_BITSIZE; 
 
                    /* Send Update for Quality */ 
                    nucUpdateCnt++; 
 
                    /* Send Time */ 
                    /* Convert to 61850 Time */ 
 
                    IEC61850_GetTime(&tIEC61850Time); 
                    atObject[nucUpdateCnt].Generic_type = IEC61850_DAID_GENERIC; // Set Object Type to Generic  
                    atObject[nucUpdateCnt].uiField1 = nucObjects + 1; // Object Number 
                    atObject[nucUpdateCnt].uiField2 = DIGITAL_INPUT;  // Object Type 
                    atObject[nucUpdateCnt].uiField3 = TIME_STAMP_INDEX; 
                    /* Update Time in the database */ 
                    memcpy(&atObj[0][nucObjects].tObjectTime, &tIEC61850Time, sizeof(struct IEC61850_TimeStamp)); 
                    atUpdateValue[nucUpdateCnt].pvData = &atObj[0][nucObjects].tObjectTime; 
                    atUpdateValue[nucUpdateCnt].ucType = IEC61850_DATATYPE_TIMESTAMP; 
                    atUpdateValue[nucUpdateCnt].uiBitLength = IEC61850_TIMESTAMP_BITSIZE; 
 
                    /* Send Update for Time Stamp */ 
                    nucUpdateCnt++; 
 
                  /* Conditional  affectation of a new value for Dip_1 */ 
                    if ((uiField == DIGITAL_INPUT)&&(uiFieldN == 1)) 
                    { 
                    uiDip_1 = atObj[0][nucObjects].ucObjectValue; 
                    } 



299 
 

                    /* Conditional  affectation of a new value for Dip_2 */ 
                    else if ((uiField == DIGITAL_INPUT)&&(uiFieldN == 2)) 
                    { 
                    uiDip_2 = atObj[0][nucObjects].ucObjectValue; 
                    } 
 
                    else    //do no thing 
                    { 
                    } 
                    /*End conditional  affectation of new value for Dip_1 and Dip_2 */ 
 
                }  //End IF 
 
            }  //End For  loop to read dip_1 and Dip_2 
 
         /* For Loop to Update XCBR/Pos/stVal in the local Data base */ 
         for(nucObjects = 2; nucObjects < 3; nucObjects++) 
         { 
           /* Get the Values which have changed */ 
            /* Conditional Biding of Dip_1 and Dip_2 */ 
            / * to load new value for XCBR/Pos/stVal */ 
                     if((uiDip_2 == FALSE) && (uiDip_1 == FALSE)) 
                    { 
                   ucObjectVal = IEC61850_DB_POS_OFF;   // Double Position is in transitionnal state 
                    } 
 
                    else if((uiDip_2 == FALSE) && (uiDip_1 == TRUE)) 
                    { 
                   ucObjectVal = IEC61850_DB_POS_FALSE; // Double Position is false/open 
                   outportb(IO_ADDR,0);      /*As per hand operation*/ 
                   ucCDCLOSE = 1; /* Prevent from a direct reclosur after fault*/ 
 
                    } 
 
                    else if((uiDip_2 == TRUE) && (uiDip_1 == FALSE)) 
                    { 
                   ucObjectVal = IEC61850_DB_POS_TRUE;  // Double Position is close/true 



300 
 

                   outportb(IO_ADDR,1);      /*As per hand operation*/ 
                   ucCDCLOSE = 0; /* Reset the ready to  trip flag */ 
                    } 
 
                    else 
                    { 
                   ucObjectVal = IEC61850_DB_POS_INVALID;   // Double Position is in a invalid state 
 
                    } 
                    //End IF selector based on change Dip_1 or Dip_2 
 
                if(ucObjectVal != atObj[0][nucObjects].ucObjectValue) 
                    { 
 
                    /* Object Value */ 
                    /* Object Value Index */ 
                    atObject[nucUpdateCnt].Generic_type = IEC61850_DAID_GENERIC; // Set Object Type to Generic 
                    atObject[nucUpdateCnt].uiField1 = nucObjects + 1; // Object Number 
                    atObject[nucUpdateCnt].uiField2 = DIGITAL_INPUT;  // Object Type 
                    atObject[nucUpdateCnt].uiField3 = VALUE_INDEX; 
                    /* Update Value in the database */ 
                    atObj[0][nucObjects].ucObjectValue       = ucObjectVal; 
                    atUpdateValue[nucUpdateCnt].pvData = &atObj[0][nucObjects].ucObjectValue; 
                   atUpdateValue[nucUpdateCnt].ucType = IEC61850_DATATYPE_DBPOS; 
 
                    atUpdateValue[nucUpdateCnt].uiBitLength = 8; 
 
                    /* Send Update for Value */ 
                    nucUpdateCnt++; 
 
                 /* Object Quality  */ 
                    usiQuality = 0; 
 
                    /* No way to determine if DIP Switch failed so */ 
                    atObject[nucUpdateCnt].Generic_type = IEC61850_DAID_GENERIC; // Set Object Type to Generic  
                    atObject[nucUpdateCnt].uiField1 = nucObjects + 1; // Object Number 
                    atObject[nucUpdateCnt].uiField2 = DIGITAL_INPUT;  // Object Type 



301 
 

                    atObject[nucUpdateCnt].uiField3 = QUALITY_INDEX; 
                    /* Update Quality in the database */ 
                    atObj[0][nucObjects].usiObjectQuality    = usiQuality; 
                    atUpdateValue[nucUpdateCnt].pvData = &atObj[0][nucObjects].usiObjectQuality; 
                    atUpdateValue[nucUpdateCnt].ucType = IEC61850_DATATYPE_QUALITY; 
                    atUpdateValue[nucUpdateCnt].uiBitLength = IEC61850_QUALITY_BITSIZE; 
 
                    /* Send Update for Quality */ 
                    nucUpdateCnt++; 
 
                    /* Send Time */ 
                    /* Convert to 61850 Time */ 
                     
                    IEC61850_GetTime(&tIEC61850Time); 
                    atObject[nucUpdateCnt].Generic_type = IEC61850_DAID_GENERIC; // Set Object Type to Generic  
                    atObject[nucUpdateCnt].uiField1 = nucObjects + 1; // Object Number 
                    atObject[nucUpdateCnt].uiField2 = DIGITAL_INPUT;  // Object Type 
                    atObject[nucUpdateCnt].uiField3 = TIME_STAMP_INDEX; 
                    /* Update Time in the database */ 
                    atUpdateValue[nucUpdateCnt].pvData = &atObj[0][nucObjects].tObjectTime; 
                    atUpdateValue[nucUpdateCnt].ucType = IEC61850_DATATYPE_TIMESTAMP; 
                    atUpdateValue[nucUpdateCnt].uiBitLength = IEC61850_TIMESTAMP_BITSIZE; 
 
                    /* Send Update for Time Stamp */ 
                    nucUpdateCnt++; 
 
                    }  //End IF 
 
        } // ENd for loop to update XCBR/Pos/stVal in the data base 
 
          /*General update */ 
            if(nucUpdateCnt != 0) 
            { 
                error = IEC61850_Update(myServer, (struct IEC61850_DataAttributeID *)&atObject[0], &atUpdateValue[0], 
nucUpdateCnt); 
                 if(error == -10) 
                {// Do nothing 



302 
 

                } 
                if((error != IEC61850_ERROR_NONE)& (error != -10)) 
                { 
                    printf(" Update Failed : %i : %s ",error,  IEC61850_ErrorString(error)); 
                } 
                nucUpdateCnt = 0; 
            } //end General Update 
 
            ucPrevDIPValue =   ucDIPValue; 
        } //end If 
    //  RTX_Sleep_Time((unsigned int)50); /* Increase the GOOSE Transfer time*/ 
 
    
    }  // End While 
}     // End huge InputHandler 



303 
 

APPENDIX G  

 

 



304 
 

APPENDIX G: Pulse Control Logic Diagram 

 



305 
 

 

APPENDIX H  

 

 



306 
 

APPENDIX H: Emulated Circuit Breaker Diagram 

 

 



307 
 

 

APPENDIX I  

 



308 
 

APPENDIX I: DSP2aPSL2 Data Sheet (use for emulated Circuit Breaker) 

Full Datasheet available at:  

http://www.rlocman.ru/i/File/dat/Panasonic/Power_General_Purpose/DSP1_DC24V_F.pdf  

  



309 
 

APPENDIX J  

  



310 
 

APPENDIX J: Equipment and environment set up for an Overcurrent test 

J1: SIEMENS relay set up 

Preparing a SIPROTEC device for a current injection test in order to simulate a fault is 

straight forward. Due to the number of configuration steps and to not lose the focus of 

what this chapter is about, the configuration description has been reduced to a 

minimum. Figure_A J.1 outlines the steps required for the configuration of a 

SIPROTEC device. 

 

 
Figure_A J.1: Configuration device steps in DIGSI 4 

(Siemens, 2009) 

SIEMENS has developed a unique platform that serves as both for configuration of 

device settings and also for communication parameter definition. This platform is the 

DGISI Manager as illustrated in Figure_A J.2. 

 



311 
 

 
Figure_A J.2: Main project view of devices in DIGSI Manager 

 

In order to configure the device, one needs to connect to it in an offline mode via 

Ethernet or RS-232 connection. From the device library add the specific device to the 

project. To connect, double-click on the desired SIPROTEC device. On the screen 

that appears, select the mode of connection that is appropriate, and continues until 

the windows as illustrated in Figure_A J.3 appears. 

 

 

 

 
Figure_A J.3: Offline connection to IED_1 

 

To view the diverse functions that are available, double-click on “Device 

Configuration” (see Figure_A J.3). The Functional Scope window Figure_A J.4 below 

appears as shown. Please make sure that the “Instantaneous HighSpeedSOTF 

Overcurrent” function is enabled as by default it is usually disabled.  

 



312 
 

 
Figure_A J.4: Device configuration Panel view 

 

From Figure_A J.3, the Input/ Output Configuration Matrix (Figure_A J.5 below) can 

also be accessed. To proceed, double-click on the “Masking I/O” menu. Figure_A J.5 

shows the destination routing of the “Relay PICKUP” which has been routed to the 

system interface in order to be available for the GOOSE mapping procedure. 

 
Figure_A J.5: Input/ Output configuration matrix for Relay Pickup 

 

From Figure_A J.3, you may also review the Power System Data settings by a double 

click on “Power System Data 1”. A window as depicted in Figure_A J.6 appears. 



313 
 

 
Figure_A J.6: Configuration of Power system Data 1 

 

From the main menu of the device setting (see Figure_A J.3), double click on “Setting 

Group A” then select the “Instantaneous HighSpeed SOTF Overcurrent” and 

customise the relevant settings to the requirements.  

 

 
Figure_A J.7: Main view of the Setting Group A 

 

For the current project, the “Inst. High Speed/SOTF O/C” has been set to ON as 

illustrated in Figure_A J.8. 



314 
 

 

 
Figure_A J.8: Configuration for HighSpeed Overcurrent module 

 

After the configuration of the basic functions of the device, proceed to the “IEC61850 

substation” communication design. From the DIGSI Manager main view, double click 

on “IEC 61850 station”. The screen presented at Figure_A J.9 appears. 

 

 
Figure_A J.9: Network topology for the IEC 61850 station 

 

To access the GOOSE mapping area click on “Link” as illustrated in Figure_A J.10 

below. 

 



315 
 

 
Figure_A J.10: Trip configuration via GOOSE 

 

As, it is observed, the general trip data information “IED_1.PROT.PTRC1.Tr.General”, 

is mapped to the “ctVal” of the XCBR1 Logical Node. This is important to do in order 

to allow the SIPROTEC device to publish a GOOSE message with the required 

Dataset. 

 

Figure_A J.11 below shows the mapping of a Generic Input Output (GGIO) Data from 

the Dk60 board (DK60SV1.CID) back to the SIPROTECT device. This was necessary 

in order to ensure that not only could the Dk60 board with the PIS-10 stack subscribe 

to a GOOSE message generated by a commercial IED, but also be capable of 

publishing a GOOSE message that can be subscribed to by a commercial IED for 

interoperability purposes. Please review section 6.4.3 for further comment on 

interoperability issues in this project. 

 



316 
 

 
Figure_A J.11: Mapping of Breaker status back to IED1 

 

J2: CMC 256 configuration set up 

The CMC 256 is a device used by protection engineers to inject test signals into/onto 

the protection device (DUT – Device Under Test) so as to assess its ability to respond 

appropriately should such a fault condition occur on a “live” power system.  

 

In this thesis, the OMICRON test injection (CMC 256) is used as a fault emulator to a 

commercial protective relay. This is done not to test the protection characteristics of 

the considered relay (System A) but to induce protection behaviour in a second 

device (System B) by stimulating the generation of a GOOSE message in response to 

the “fault” event.  

 

The detection of a fault condition by the “System A” generates an alarm. This alarm is 

published on the network by means of a GOOSE message. The “System B” which is 

subscribing to the “System A” GOOSE message is playing the role of an “Intelligent 

Circuit Breaker Controller”.  The “System C” serves as the emulated Circuit Breaker. 

 

Below, are the basics steps needed to prepare the test set once proper hardwired 

connections have been made between the SIPROTEC device and the CMC 256. 

 



317 
 

Figure_A J.12, below shows the Test Universe modules that have been used in order 

to configure the Test Set. 

 

 

 

 

 

First, with reference to step 1 Figure_A J.12 above, associate the computer to the 

“Test set” during the set up procedure. The GOOSE configuration module (2) is used 

to allow the “Test set” to subscribe to specific GOOSE messages on the network. 

Those GOOSE messages are mapped into dedicated virtual inputs as shown in 

Figure_A J.13. 

 

1

2

3

Figure_A J.12: Test Universe main window 



318 
 

 
Figure_A J.13: GOOSE mapping into virtual Input of the CMC 256 

 

After the GOOSE configuration step, open the QuickCMC (step 3 on Figure_A J.12). 

Figure_A J.14 presents the main view of the QuickCMC. 

 

 
Figure_A J.14: Quick CMC main view 

 



319 
 

Configure now the hardware according to the GOOSE message subscription done 

previously within the “GOOSE Configuration” module. Figure_A J.15 shows the 

hardware configuration used for this test. 

 

 
Figure_A J.15: Quick CMC hardware configuration 

 

As can be seen, the GOOSE signal published by the SIPROTEC device (IED_1) 

which contains the information for a Trip is mapped to the binary input 3. The GOOSE 

message containing the information of the Circuit Breaker (the adjacent bit) is 

mapped to the binary input 4. 

  



320 
 

APPENDIX K  

  



321 
 

APPENDIX K: SEL file error verification and correction method 
 

To check any SCL file for consistency with “SEL Architect” when it has been 

previously opened, proceed to the File menu and click on “Import SCL into Palette” as 

illustrated in Figure_A K.1 below. 

 

 
Figure_A K.1: Import of SCL file for structure verification 

 

If there is an error in the file, you will get the screen presented at Figure_A K.2 with a 

clear warning. 

 



322 
 

 
Figure_A K.2: Message alert for error in SCL importation 

 

Information on what causes the error to occur will be displayed in the output section of 

the “SEL Architect” main view with precise information on line and column where the 

error is located and the syntax that causes the problem. 

 

Normally fixing the error requires examination of part six (6) of the IEC 61850 

standard and looking for specific information on syntax based on keyword errors 

provided to you by “SEL Architect”. Modify the SCL file manually using XML marker or 

Notepad. Load the file back into the SEL Architect-XML file checker. Repeat until 

error-free. Subsequent to this labour-intensive iterative process, loading the file onto 

another manufacturer’s, platform such as DIGSI 4 was normally successful. 

  



323 
 

APPENDIX L 

  



324

APPENDIX L: Breaker control based MMS over TCP/IP 
 

The MMS captures in this section have been realized using “MMS-Ethereal” network 

analyser. Be aware that this is not a detailed study of the MMS message structure like 

the one performed earlier for the structure of GOOSE message (see section). 

 

Figure_A L.1 show the main view of MMS-Ethereal with a specific set of packet just 

being captured (you may also use Wireshark, but you will have to do some work 

around). The rest of pictures that will be shown depict the communication exchange 

between the universal Client (IEDScout) and the Server object created by the 

“GA61850.exe” (Cf. Figure 4.34, and Application code on page 273).  

 
Figure_A L.1: Partial view of captured MMS transaction with MMSEthereal 

 

Figure_A L.2 shows the MMS transaction corresponding to a “Close” command (of 

type Write) sent from IEDScout. 

 
 

 
Figure_A L.2: Transmission of MMS “Close” command 



325

Figure_A L.3, show the acknowledgement message sends back by the Server object 

of the “GA6185.exe”. 

 
Figure_A L.3: Close command acknowledged 

 

Figure_A L.4 shows the MMS transaction corresponding to an “Open” command (of 

type Write) sent from IEDScout. 

 

 

Figure_A L.5 shows the acknowledgement message send back by the Server object 

of the “GA6185.exe”. 

 

Figure_A L.4: Transmission of MMS “Open” command 



326 
 

 
Figure_A L.5: Open command acknowledged 

 

Figure_A L.6 shows the MMS transaction corresponding to a “Read” command issue 

from IEDScout. 

 

 
Figure_A L.6: Transmission of MMS “Read” command 

 

Figure_A L.7 shows the acknowledgement message send back by the Server object 

of the “GA6185.exe” after a read request. 



327 
 

 
Figure_A L.7: Read command acknowledged 

 

More information on MMS can be found on internet. A recommend link is the 

following: http://www.nettedautomation.com/qanda/mms/  

 

  



328 
 

APPENDIX M 

  



329 
 

APPENDIX M: DK61 Kit additional description  
 

Figure_A M.1 shows the DK61 kit accessories. 

 
Figure_A M.1: DK61 Development Kit 

(Beck IPC-GmBH, 2010) 

The DK61 Kit is a composition of the following hardware and software component: 

 DK60* project board (with adapters for international use); 

 Paradigm C/C++ Compiler* (Beck IPC edition for IPC@CHIP®); 

  RTOS Remote Debugger and other tools; 

 CoDeSys IEC61131-3 SDK for SC123/SC143; 

 IEC 61850 stack* (Client/Server, GOOSE) and a configuration Tool based on 

SCL; 

 

The following section provides more information about specific components of the 

DK61 kit. 

 

There are normally three CDs delivered with the DK61 Kit (CD1: Paradigm 

C/C++_For Beck IPC, CD2: IEC61850_BECK_Li and CD3: CoDeSys). It is strongly 

recommended that the latest updates be downloaded from the Beck IPC website. The 

steps to follow for using the DK61 kit for this project have been chronologically 

organised in Figure_A M.2: 

 



330 
 

 

 

All documentation related to the DK 61 kit can be freely downloaded from Beck IPC 

website at http://www.beck-ipc.com/en/download/index.asp.  

 

 

  

1- From CD1: 
Read and execute all instructions in 

the Getting_Started_DK61.pdf 

2- From CD2: 
Read and execute all instructions in the 
Getting_Started_DK61_IEC61850.pdf 

3- From Beck website: 
Download and read the dk60_manual.pdf 

4- From Beck website: 
Download and read the 

SC1X3_manual.pdf 

5- From Beck website: 
Download and read the 

ICDDesigner_manual.pdf 

6- From Beck website: 
Download and read the IEC61850 

Protocol_API_UserManual.pdf 

7-Start the custom application 8- From Beck website: 
Always update all documentations and 

software tools for your project 

Figure_A M.2: Proposed work flow organisation to start using the DK61 Kit 



331 
 

REFERENCES 

ABB AB, 2010. Live Tank Circuit Breakers. Application Guide. LUDVIKA (SWEDEN): 
ABB Marketing & Seles Department. 

ABB AG, 2005. Vacuum circuit-breaker with magnetic actuator mechanism. User 
guide. Ratingen-Germany: ABB AG Calor Emag Medium Voltage Products. 

ABB- KIRRMANN H., 2004. Introduction to IEC 61850 Substation communication 
standard. User guide. ABBCH-RD. 

ABB review, 2010. Special Report IEC 61850. Technical journal. Zürich: ABB Group 
R&D and ABB. 

ABB, 2011. The evolution of substations. [Online] Available at: 
http://www.mena.abb.com/ [Accessed 4 October 2011]. 

Adamiak, M., Baigent, D. and Mackiewicz, R., 2012. IEC 61850 Communication 
Networks and Systems In Substations: An Overview for Users. [Online] GE Digital 
Energy & SISCO Available at: 
http://www.gedigitalenergy.com/multilin/journals/issues/spring09/iec61850.pdf 
[Accessed 28 August 2012]. 

Adaptive Digital, 2012. Adaptive Digital Protocol Stack Algorithm Index. [Online] 
Available at: 
http://www.adaptivedigital.com/product/protocol_stacks/protocol_stk_index.htm 
[Accessed 21 October 2012]. 

Admiak, M. and Baigent, D., 2000. "Practical consideration in application of UCA 
GOOSE". In Gb, ed. Georgia Tech Relay Conference. Prague, 2000. GE. pp.1-2. 

Aggarwal, S., 2011. "IEC 61850 prototype design". In Innovative Smart Grid 
Technologies (ISGT). Hilton Anaheim, CA, 2011. IEEE PES. p.1. 

Aggarwal, S., 2011. "IEC 61850 prototype design". In Innovative Smart Grid 
Technologies (ISGT), 2011 IEEE PES. Hilton Anaheim, CA, 2011. IEEE. pp.1 - 4. 

Ali, I. and Thomas, M.S., 2011. "GOOSE based protection scheme implementation & 
testing in laboratory". In Innovative Smart Grid Technologies (ISGT), 2011 IEEE PES. 
Hilton Anaheim, CA, 2011. IEEE. pp.1 - 7. 

Ankatross, J.O., 2007. IEC 61850 testing. [Online] OMICRON electronics GmbH: 
OMICRON Available at: http://www.omicron.at/en/products/pro/communication-
protocols/ [Accessed 20 july 2010]. 

Apostolov, A., 2010. IEC 61850 Fundamentals, Application and Benefits. Training 
Course. Cape Town: CPUT. 

Apostolov, A.P., 2012. "Impact of IEC 61850 on the engineering of protection 
schemes". In OMICRON electronics, U., ed. Developments in Power Systems 
Protection, 2012. DPSP 2012. 11th International Conference. Birmingham, UK, 2012. 
IEEE. pp.1 - 6. 



332 
 

Apostolov, A. and Vandiver, B., 2010. "IEC 61850 process bus - principles, 
applications and benefits". In Protective Relay Engineers, 2010 63rd Annual 
Conference. College Station, TX, 2010. IEEE. pp.1 - 6. 

Apostolov, A. and Vandiver, B., 2011. "IEC 61850 GOOSE applications to distribution 
protection schemes". In Protective Relay Engineers, 2011 64th Annual Conference. 
College Station, TX, 2011. IEEE. pp.178 - 184. 

Appostolov, A., 2011. IEC 61850 Systems and their Components. Seminar Note. 
CAPE TOWN: CPUT CPUT. 

AREVA T&D, 2002. R e l a y T e c h n o l o g y. In F. Espace, ed. Network Protection 
& Automation Guide. Fisrt Edition ed. Paris: AREVA T&D. pp.99-110. 

AREVA, 2005. Fundamentals of Protection Practice. In F. Espace, ed. Network 
Protection and Automation Guide. First Edition ed. Paris, France: AREVA T&D. Ch. 2. 
p.7. 

Baigent, D. and Lebenhaft, E., 1991. "Microprocessor-based protection relays: Design 
and application examples". In Petroleum and Chemical Industry Conference, 1991, 
Record of Conference Papers., Industry Applications Society 38th Annual. Toronto, 
Ont, 1991. IEEE. pp.237- 244. 

Beck IPC-GmBH, 2010. beck-ipc. [Online] Available at: http://www.beck-ipc.com. 

BECK-IPC, 2011. Multitasking with @Chip-RTOS. [Online] (07.11.2011) Available at: 
http://www.beck-ipc.com/files/api/scxxx/multitasking.htm [Accessed 15 December 
2011]. 

Bonetti, A. and Douib, R., 2010. "Transfer time measurement for protection relay 
applications with the IEC 61850 standard". In Electrical Insulation (ISEI), Conference 
Record of the 2010 IEEE International Symposium. San Diego, CA, 2010. IEEE. pp.1 
- 5. 

Brand, K. and Wimmer, W., 2003. Modeling interoperable protection and control 
devices for substation automation according to IEC 61850. Technichal repport. 
Bruggerstr: Utility Automation Systems ABB Switzerland Ltd. 

CESI RICERCA, 2006. Valutazione delle tempistche associate ai messaggi di tipo 
GOOSE nell'ambito del protocol IEC 61850. Project repport. Milano: TTD Tecnologie 
T&D. 

Chaturvedi, M., 2002. "Substation IED communications". In Power Engineering 
Society Winter Meeting., 2002. IEEE. p.509 Vol.1. 

Dick, A.J., 1996. "Review of communications standards for distribution automation 
applications". In Methods of Substation Automation, Half Day Colloquium. 
Manchester, 1996. IEEE. pp.1/1 - 1/5. 

Digital Bond, 2010. IEC 61850. [Online] Available at: 
http://www.digitalbond.com/wiki/index.php/IEC_61850 [Accessed 26 July 2010]. 

Edward, A.L., 2002. Embedded Software. In M. Zelkowitz, ed. Advances in 
Computers. 56th ed. London: Academic Press. p.1. 



333 
 

ESA Board, 1991. ESA PSS-05-0 Issue 2 Software Engineering Standard Software 
Standardisation and Control. Standars. PARIS: ESA Board for Software 
Standardisation and Control (BSSC). 

Goraj, M. and Herrmann, J., 2007. Experience in IEC 61850: And possible 
improvements of SCL Language. [Online] sisconet Available at: 
http://www.sisconet.com/downloads/GE_E_2007.pdf [Accessed 20 October 2012]. 

Hammer, E. and Sivertsen, E., 2008. Analysis and implementation of the IEC 61850 
standard. Thesis. Technical University of Denmark. 

Hamrén, R., 2007. Using IEC 61850 for remote disturbance analysis. Master Thesis. 
Östersund, Sweden: Mälardalen University. 

Hou, D. and Dolezilek, D., 2012. IEC 61850 – What It Can and Cannot Offer to 
Traditional Protection Schemes. [Online] Schweitzer Engineering Laboratories, Inc 
Available at: http://www.selinc.com/WorkArea/DownloadAsset.aspx?id=3546 
[Accessed 20 October 2012]. 

IEC 61850-1, 2003. Communication networks and systems in substations – Part 1: 
Introduction and overview. Standard. IEC. 

IEC 61850, 2010. IEC Main web page. [Online] Available at: http://www.iec.ch/. 

IEC 61850-2, 2003. Communication networks and systems- Part 2: Glossary. 
Standard. IEC. 

IEC 61850-2, 2004. Communication networks and systems in substations – Part 9-
2:Specific Communication Service Mapping (SCSM) –Sampled values over ISO/IEC 
8802-3. Standard. IEC. 

IEC 61850-5, 2003. Communication networks and systems in substations- Part 5: 
Communication requirements for functions and device models. Standard. IEC. 

IEC 61850-6, 2004. Communication networks and systems in substations – Part 6: 
Configuration description language for communication in electrical substations related 
to IEDs. Standard. IEC. 

IEC 61850-7-1, 2003. Communication networks and systems in substations – Part 7-
1: Basic communication structure for substation and feeder equipment – Principles 
and models. Standard. IEC. 

IEC 61850-7-2, 2003. Communication networks and systems in substations – Part 7-
2: Basic communication structure for substation and feeder equipment – Abstract 
communication service interface (ACSI). Standard. IEC. 

IEC 61850-7-4, 2003. Communication networks and systems in substations – Part 7-
4: Basic communication structure for substation and feeder equipment – Compatible 
logical node classes and data classes. Standard. IEC. 

IEC 61850-7-500-DTR_Ed1, 2011. Basic information and communication structure - 
Use of logical nodes for modelling applications and related concepts and guidelines 
for Substations. Standard. IEC. 



334 
 

IEC 61850-8-1, 2004. Communication networks and systems in substations – Part 8-
1: Specific Communication Service Mapping (SCSM) – Mappings to MMS (ISO 9506-
1 and ISO 9506-2) and to ISO/IEC 8802-3. Standard. IEC. 

IEC 61850-9-2, 2004. Communication networks and systems in substations – Part 9-
2: Specific Communication Service Mapping (SCSM) – Sampled values over ISO/IEC 
8802-3. Standard. IEC. 

IEEE Canadian Region, 2000. Links With the World. In W.H. Prevey, ed. Electricity: 
The Magic Medium. 2nd ed. IEEE Canadian Region. 

In, E. et al., 2011. "Design of one chip communication stack processor and MMS 
communication stack library based on IEC 61850". In Networked Embedded Systems 
for Enterprise Applications (NESEA), 2011 IEEE 2nd International Conference on. 
Fremantle, WA, 2011. IEEE. pp.1 - 6. 

ITU-T, 2002. ISO/IEC 8825-1; X.690-027 Abstract Syntax Notation One (ASN.1): 
Specification of Basic Encoding Rules (BER). Standard. Geneva: International 
Telecommunication Union. 

Kim, G.-S. and Lee, H.-H., 2005. "A study on IEC 61850 based communication for 
intelligent electronic devices". In Science and Technology, 2005. KORUS 2005. 
Proceedings. The 9th Russian-Korean International Symposium. Ulsan, 2005. IEEE. 
pp.765 - 770. 

Kostic, T. and Frei, C., 2007. "Modelling and using IEC 61850-7-2 (ACSI) as an API". 
In Power Tech, 2007 IEEE Lausanne. Lausanne, 2007. pp.713 - 719. 

Lundqvist, B., 2003. 100 years of relay protection, the Swedish ABB relay history. 
White paper. Sweden: ABB Automation Products. 

Makadam, M.A., 2008. Case study and evaluation of an IEC 61850. Unpublished 
Project repport. Cape Town: Cape Peninsula University of Technology. 

Mansour, M.M. and Swift, G.W., 1986. Design and testing of a multi-microprocessor 
travelling wave relay. Power Delivery, IEEE Transactions on, 1(4), pp.74- 82. 

Martin, P. and Nguyen, V.T., 2004. SEG001 Système ALCID. Standard 
implementation guideline. Hydro Québec. 

McGhee, J. and Goraj, M., 2010. "Smart High Voltage Substation based on IEC 
61850 Process Bus and IEEE 1588 Time Synchronization". In International 
Conference on Smart Grid Communications (SmartGridComm). Gaithersburg, MD, 
2010. IEEE. pp.490-94. 

Montignies, P., Angays, P. and Guise, L., 2011a. IEC 61850 in the oil and gas 
industries. IEEE Industry Applications Magazine, 17(1), pp.36 - 46. 

Montignies, P., Angays, P. and Guise, L., 2011. IEC 61850 in the oil and gas 
industries. IEEE Industry Applications Magazine, p.37. 

Nasrallah, E., Brikci, F. and Perron, S., 2007. Zensol. [Online] Available at: 
http://www.zensol.com/en/make-break-contacts-in-power-circuit-breakers [Accessed 
20 January 2012]. 



335 
 

National Instruments, 2011. NI Developer Zone: Differences Between Multithreading 
and Multitasking for Programmers. [Online] Available at: http://www.ni.com/white-
paper/6424/en [Accessed 15 March 2012]. 

Nelson, J., 2005. Automation solution: Why automate. White paper. General Electric 
Company. 

NETGEAR, 2012. Netgear corporation website. [Online] Available at: 
http://support.netgear.com/app/answers/detail/a_id/1070/~/defining-the-terms-driver,-
firmware,-hardware,-software,-and-utility. 

Nguyen-Dinh, N., Kim, G.-S. and Lee, H.-H., 2007. "A study on GOOSE 
communication based on IEC 61850 using MMS ease lite". In Control, Automation 
and Systems, 2007. ICCAS '07. International Conference. Seoul, 2007. IEEE. 
pp.1873 - 1877. 

Nordel, D.E., 2005. Substation Communication History and Pratice. IT course. 
Minneapolis: Xcel Energy. 

Nordell, D.E., 2003. Substation Communication History and Practice. [Online] 
Michigan Technological University: Michigan Tech. University Available at: 
http://www.ece.mtu.edu/faculty/bamork/EE5223/proceedi.pdf [Accessed 11 July 
2012]. 

Nuclear Power Training, 2012. Integrated Publishing. [Online] Available at: 
http://nuclearpowertraining.tpub.com/h1011v1/css/h1011v1_110.htm [Accessed 08 
October 2012]. 

Olovsson, H.-E. and Lejdeby, S.-A., 2008. Substation evolution: Substation design in 
the 1900s and modern substations today. White paper. ABB Power Systems. 

OMG UML, 2012. UML 2.2 Diagrams Overview. [Online] Available at: http://www.uml-
diagrams.org/uml-22-diagrams.html [Accessed 15 January 2012]. 

OMICRON-IEDScout, 2012. OMICRON IEDScout 2.1. [Online] Available at: 
http://omicron-iedscout.software.informer.com/2.1/ [Accessed 10 October 2012]. 

Oracle, 2012. The Java Tutorials. [Online] Available at: 
http://docs.oracle.com/javase/tutorial/java/concepts/index.html. 

OSI Model-org, 2012. OSI Model. [Online] Available at: http://www.osimodel.org/ 
[Accessed 15 January 2012]. 

Ozansoy, C.R., 2006. Design & Implementation of a Universal Communications 
Processor for Substation Integration, Automation and Protection. Unpublished Phd 
Thesis. Australia: Victoria University. 

Ozansoy, C.R., Zeyegh, A. and Akhtar, K., 2009. The Application-View Model of the 
International Standard IEC 61850. Power Delivery, IEEE Transactions , 24(3), 
pp.1132 - 1139. 

Paradigm, 2010. PARADIGM C++ PROFESSIONAL IDE. [Online] Available at: 
http://www.devtools.com/default.htm. 



336 
 

Park, J. et al., 2012. "IEC 61850 Standard Based MMS Communication Stack Design 
Using OOP". In Advanced Information Networking and Applications Workshops 
(WAINA), 2012 26th International Conference on. Fukuoka, 2012. IEEE. pp.329 - 
332. 

Proudfoot, D., 2002. UCA and 61850 For DUMMIES. Technichal repport. Siemens 
Power Transmission & Distribution. 

Richards, S., 2006. "Building Very High Reliability into the Design and Manufacture of 
Relays". In T&D, A., ed. Advances in Power Protection: Learning the Lessons from 
Major Disturbances. The IEE Seminar on (Ref. No. 2006/11426)., 2006. IEEE 
Conference Publications. pp.94-104. 

Ruggedcom Russia, 2010. [Online] Available at: http://www.ruggedcom.ru. 

Sahai, A. and Pandya, D.J., 2011. "A Novel Design and Development of a 
Microprocessor-based Current Protection Relay". In Recent Advancements in 
Electrical, Electronics and Control Engineering (ICONRAEeCE), 2011 International 
Conference on. Sivakasi, 2011. IEEE. pp.309- 313. 

Schwarz, K., 2012. IEC 61850 in the U.S. – A Personal View of IEC 61850. [Online] 
NettedAutomation Available at: http://blog.iec61850.com/2012/01/iec-61850-in-us-
personal-view-of-iec.html [Accessed 15 November 2012]. 

Schwarz, K., 2012. IEC 61850-5 Edition 2 FDIS Published for Ballot. [Online] 
NettedAutomation Available at: http://blog.iec61850.com/2012/10/iec-61850-5-edition-
2-fdis-published.html [Accessed 15 November 2012]. 

Shujian, Z., Ming, S. and Gaofei, G., 2011. "The research based on IEC61850 
intelligent terminal of substation". In Communication Software and Networks (ICCSN), 
2011 IEEE 3rd International Conference. Xi'an, 2011. IEEE. pp.304 - 307. 

Sidhu, T.S., Injeti, S., Kanabar, M.G. and Parikh, P.P., 2010. "Packet scheduling of 
GOOSE messages in IEC 61850 based substation intelligent electronic devices 
(IEDs)". In Power and Energy Society General Meeting, 2010 IEEE. Minneapolis, MN, 
2010. IEEE. pp.1 - 8. 

Sidhu, T.S., Kanabar, M.G. and Dadash Zadeh, M.R., 2011a. IEC 61850-9-2 Based 
Process Bus. [Online] University of Western Ontario Available at: 
http://www.pacw.org/issue/december_2010_issue/process_bus.html [Accessed 27 
October 2012]. 

Sidhu, T., Kanabar, M. and Parikh, P., 2011b. "Configuration and performance testing 
of IEC 61850 GOOSE". In Advanced Power System Automation and Protection 
(APAP), 2011 International Conference. Beijing IEEE. pp.1384 - 1389. 

Siemens AG, 2010. "Aspects on IEC 61850 Edition 2.0 & Current Activities". In 
IEEE/PES Transmission & Distribution- Latin America, 9th IEEE/IAS International 
Conference on Industry Applications - INDUSCON. São Paulo, 2010. IEEE/PES. 
pp.1-23. 

Siemens PLM Software, 2010. Role of PLM in the software lifecycle. White paper. 
Granite Parkway (USA): Siemens PLM Software Siemens PLM Software. 



337 
 

Siemens, 2009. Ethernet & IEC 61850: Start Up. [Online] Siemens Available at: 
http://siemens.siprotec.de/download_neu/software/DIGSI_4/Manual/IEC61850_STAR
TUP_A3_EN.pdf [Accessed 15 September 2010]. 

SISCO, 1996. MMS and ASN.1 Encodings. Project repport. Sterling Heights: Systems 
Integration Specialists Company (SISCO). 

SourceMaking, 2012. History of UML: Methods and Notations. [Online] Available at: 
http://sourcemaking.com/uml/basic-principles-and-background/history-of-uml-
methods-and-notations [Accessed 15 January 2012]. 

Steinhauser, F., Schossig, T., Klien, A. and Geiger, S., 2010. Performance 
Measurements for IEC 61850 IEDs and Systems. [Online] OMICRON electronics 
Available at: http://www.omicron.at/fileadmin/user_upload/files/pdf/en/2010-PotM-
Performance-Measurement-IEC61850.pdf [Accessed 20 July 2012]. 

SUITTIO, A., 2010. TESTING IEC 61850 IN MULTI-VENDOR SUBSTATION 
AUTOMATION SYSTEM. Master Thesis. TAMPERE UNIVERSITY OF 
TECHNOLOGY. 

SystemCorp_a, 2011. Getting Started IPC@CHIP Embedded Web Controller Family 
IEC 61850 Basics. [Online] Systemcorp Embedded Technology (1.01) Available at: 
http://www.systemcorp.com.au/images/stories/manuals/Getting_Started_DK61_IEC6
1850.pdf [Accessed 08 May 2011]. 

SystemCorp_b, 2010. PIS10 API User Manual. [Online] Available at: 
http://www.systemcorp.com.au/news/42-iec-61850-protocol-stack-pis-10-.html 
[Accessed 15 January 2011]. 

SystemCorp_c, 2012. New IEC 61850 Beck DK-61 Library Release. [Online] 
Systemcorp Available at: https://www.systemcorp.com.au/news/83-iec-6185-beck-dk-
61-library-release.html [Accessed 15 August 2012]. 

Ting, W., Xuejin, G., Ping, W. and Juan, L., 2011. "Research of Relaying Protection 
System of Digital Substation". In Intelligent Computation Technology and Automation 
(ICICTA), 2011 International Conference. Shenzhen, Guangdong, 2011. IEEE. 
pp.684 - 688. 

TOSHIBA, 2012. TOSHIBA: Leading Innovation. [Online] Available at: 
http://www.toshiba.co.jp/sis/en/tands/switch/gis4.htm [Accessed 19 May 2012]. 

US-Department of Labor, 2010. Substation Equipment and function. [Online] 
Available at: 
http://www.osha.gov/SLTC/etools/electric_power/illustrated_glossary/substation.html 
[Accessed 22 February 2010]. 

Uzair, M., 2008. COMMUNICATION METHODS (PROTOCOLS, FORMAT & 
LANGUAGE) FOR THE SUBSTATION AUTOMATION & CONTROL. [Online] 
Western Engineering Available at: 
http://www.eng.uwo.ca/people/tsidhu/Documents/project%20report%20Uzair.pdf 
[Accessed 15 July 2012]. 

Walter, S., 2007. Protection history: the Start of Protection. PAC World Magazine, 
AUTUMN. p.69. 



338 
 

Walter, S., 2009. Protection History: Generator Protection, The Beginning. PAC World 
Magazine, SPRING. p.71. 

Wolf, G., 2009b. Penton Media. n.d Digital Substation: Evolution or Revolution. 
[Online] Available at: 
http://tdworld.com/distribution_management_systems/upgrading-electrical-
substations-digital-200901/index.html [Accessed 15 september 2009]. 

Wolf, G., 2009a. Penton Media. n.d Digital Substation: Evolution or Revolution. 
[Online] Available at: 
http://tdworld.com/distribution_management_systems/upgrading-electrical-
substations-digital-200901/index1.html [Accessed 15 september 2009]. 

Yang, C., Vyatkin, V., Nair, N.-K.C. and Chouinard, J., 2011. "Programmable Logic for 
IEC 61850 Logical Nodes by means of IEC 61499". In IECON 2011 - 37th Annual 
Conference on IEEE Industrial Electronics Society. Melbourne, VIC, 2011. IEEE. 
pp.2717 - 2723. 

Yongli, Z., Dewen, W., Yan, W. and Wenquing, Z., 2009. "Study on interoperable 
exchange of IEC 61850 data model". In Industrial Electronics and Applications, 2009. 
ICIEA 2009. 4th IEEE Conference. Xi'an, 2009. IEEE. pp.2724 - 2728. 

Zhang, J. and Gunter, C.A., 2009. IEC 61850- Communication Networks and 
Systems in Substation: An Overview of Computer Science. IT course. Urbana-
Champaign: University of Illinois. 

Zhang, J., Guo, C., Xu, L. and Cao, Y., 2008. "The design of an Object-Oriented 
Embedded Platform for Substation Data Integration". In Power and Energy Society 
General Meeting - Conversion and Delivery of Electrical Energy in the 21st Century, 
2008 IEEE. Pittsburgh, PA, 2008. IEEE. pp.1 - 6. 

Zhang, L.X. and Nair, N.-K., 2008. "Testing protective relays in IEC 61850 
framework". In Power Engineering Conference, 2008. AUPEC '08.. Sydney, NSW, 
2008. Australasian Universities. pp.1 - 6. 

Zhu, T., Xie, X., Zhu, D. and Cui, W., 2006. "Generating Detailed Software Models of 
Microprocessor-Based Relays". In Power System Technology, 2006. PowerCon 
2006. International Conference on. Chongqing, 2006. IEEE. pp.1 - 6. 

 

  



339 
 

Reference evidence 

Related to Figure 2.1: Publication rate for “IEC 61850 Software” topic, page 13 of this 

thesis 

 

Apostolov, A., Brunner, C. & Clinard, K. 2003, "Use of IEC 61850 object models for power 
system quality/security data exchange", Quality and Security of Electric Power Delivery 
Systems, 2003. CIGRE/PES 2003. CIGRE/IEEE PES International Symposium, pp. 155.  

Apostolov, A. & Ingleson, J. 2004, "Verification of models in protection related analysis 
programs", Protective Relay Engineers, 2004 57th Annual Conference for, pp. 339.  

Barron, D.A. & Holliday, P. 2010, "Implementation of IEC 61850 process bus. A Utility view 
on design, installation, testing and commissioning, and lifetime issues.” Developments in 
Power System Protection (DPSP 2010). Managing the Change, 10th IET International 
Conference on, pp. 1.  

Bin Duan, Nian Liu and Shenglong Huang 2006, "Study on Substation Control Interlocking 
Combined with PKI/PMI Based Access Security Method", Power System Technology, 2006. 
PowerCon 2006. International Conference on, pp. 1.  

Bose, S., Liu, Y., Bahei-Eldin, K., de Bedout, J. and Adamiak, M. 2007, "Tieline controls in 
microgrid applications", Bulk Power System Dynamics and Control - VII. Revitalizing 
Operational Reliability, 2007 iREP Symposium, pp. 1.  

Brédillet, P., Lambert, E. & Schultz, E. 2010, "CIM, 61850, COSEM Standards Used in a 
Model Driven Integration Approach to Build the Smart Grid Service Oriented Architecture", 
Smart Grid Communications (SmartGridComm), 2010 First IEEE International Conference 
on, pp. 467.  

Brent, D. & Self, H. 2006, ""Applications and Advantages for Protection schemes using IEC 
61850 Standard"", Power Systems Conference: Advanced Metering, Protection, Control, 
Communication, and Distributed Resources, 2006. PS '06, pp. 63.  

Chen Ailin, Dai Zemei, Ding Jie, Huang Haifeng, Wang Yan & He Ming-yi 2010, 
"Application of IEC 61850 proxy in seamless communication between digital substation and 
control centre", Electricity Distribution (CICED), 2010 China International Conference on, 
pp. 1.  

Davidson, E.M., McArthur, S., Dolan, M.J. & McDonald, J.R. 2009, "Exploiting intelligent 
systems techniques within an autonomous regional active network management system", 
Power & Energy Society General Meeting, 2009. PES '09. IEEE, pp. 1.  

Dewen Wang, Yongli Zhu, Peipei Liu, Jiancai Huang & Wenqing Zhao 2008, "Research on 
distributed transmission of power telecontrol information based on ACSI/MMS", Industrial 
Electronics and Applications, 2008. ICIEA 2008. 3rd IEEE Conference on, pp. 670.  



340 
 

Ferrari, P., Flammini, A., Rinaldi, S. & Prytz, G. 2011, "Applying PTP-to-SNTP time-
gateway to IEC61850 systems", Emerging Technologies & Factory Automation (ETFA), 2011 
IEEE 16th Conference on, pp. 1.  

Ferrari, P., Flammini, A., Rinaldi, S. & Prytz, G. 2011, "Time synchronization concerns in 
substation automation system", Applied Measurements for Power Systems (AMPS), 2011 
IEEE International Workshop on, pp. 112.  

Gao Cong, Zhou Hong, Deng Qijun & Zhang Ziyang 2010, "The research and implementation 
of IEC 61850 communication protocol for smart grid", Information Science and Engineering 
(ICISE), 2010 2nd International Conference on, pp. 2463.  

Hadeli, H., Schierholz, R., Braendle, M. & Tuduce, C. 2009, "Generating configuration for 
missing traffic detector and security measures in industrial control systems based on the 
system description files", Technologies for Homeland Security, 2009. HST '09. IEEE 
Conference on, pp. 503.  

Haffar, M., Thiriet, J.M. & El-Nachar, M. 2010, "Software and hardware in the loop 
component for an IEC 61850 co-simulation platform", Computer Science and Information 
Technology (IMCSIT), Proceedings of the 2010 International Multiconference on, pp. 817.  

Hui Hou, Tianqi Xu, Dahai You, Xianggen Yin, Wei Chen, Bo Wang & Xiongkai He 2007, 
"Research on Protection Equipment with Digital Interface Based on IEC-61850", Power 
Engineering Society General Meeting, 2007. IEEE, pp. 1.  

Hyo-Sik Yang, Hyuk-Soo Jang, Yong-Won Kim, Un-Sig Song, Sang-Sig Kim, Byung-Tae 
Jang & Byung-Seok Park 2007, "Communication Networks for Interoperability and Reliable 
Service in Substation Automation System", Software Engineering Research, Management & 
Applications, 2007. SERA 2007. 5th ACIS International Conference on, pp. 160.  

Ingram, M. & Ehlers, R. 2007. Toward effective substation automation. Power and Energy 
Magazine, IEEE, 5(3):67-73.  

Jaloudi, S., Ortjohann, E., Schmelter, A., Sinsukthavorn, W., Wirasanti, P., Alamin, N. & 
Morton, D. 2011, "Integration of distributed energy resources in the grid by applying 
international standards to the inverter as a multifunctional grid interface", PowerTech, 2011 
IEEE Trondheim, pp. 1.  

Jinjiang Zhang, Chuangxin Guo, Lizhong Xu & Yijia Cao 2008, "The design of an Object-
Oriented Embedded Platform for Substation Data Integration", Power and Energy Society 
General Meeting - Conversion and Delivery of Electrical Energy in the 21st Century, 2008 
IEEE, pp. 1.  

Jo YongHwan, Kim TaeWan, Choi MyeonSong, Lee SeungJae, Lee ByeongHo, Kim 
HyusSung & Cho ChulHee 2011, "A software engine for HMI of IED based on IEC 61850", 
Advanced Power System Automation and Protection (APAP), 2011 International Conference 
on, pp. 1312.  



341 
 

Johnsson, A., Söderstro ̈m, J.E., Norberg, P. & Fogelberg, A. 2010, "Standard platform for 
integrated soft protection and control", Innovative Smart Grid Technologies Conference 
Europe (ISGT Europe), 2010 IEEE PES, pp. 1.  

Kanabar, P.M., Kanabar, M.G., El-Khattam, W., Sidhu, T.S. & Shami, A. 2009, "Evaluation 
of communication technologies for IEC 61850 based distribution automation system with 
distributed energy resources", Power & Energy Society General Meeting, 2009. PES '09. 
IEEE, pp. 1.  

Kasztenny, B., Whatley, J., Urden, E.A., Burger, J., Finney, D. & Adamiak, M. 2006, "JEC 
61850 - A Practical Application Primer for Protection Engineers", Power Systems 
Conference: Advanced Metering, Protection, Control, Communication, and Distributed 
Resources, 2006. PS '06, pp. 18.  

Kezunovic, M., Guo, C., Guan, Y. & Ghavami, M. 2010, "New concept and solution for 
monitoring and control system for the 21st century substation", Power System Technology 
(POWERCON), 2010 International Conference on, pp. 1.  

Klein, S.A. 2009, "A Secure IEC-61850 Toolkit for Utility Automation", Conference For 
Homeland Security, 2009. CATCH '09. Cybersecurity Applications & Technology, pp. 245.  

Klein, S.A. 2008, "An open source IEC-61850 Toolkit for utility automation and wind power 
applications", Transmission and Distribution Conference and Exposition, 2008. T&D. 
IEEE/PES, pp. 1.  

Klein, S.A. 2006, "An open source SCADA toolkit", Power Engineering Society General 
Meeting, 2006. IEEE, pp. 2 pp.  

König, J., Nordström, L. & Ekstedt, M. 2010, "Probabilistic Relational Models for assessment 
of reliability of active distribution management systems", Probabilistic Methods Applied to 
Power Systems (PMAPS), 2010 IEEE 11th International Conference on, pp. 454.  

Kostic, T. & Frei, C. 2007, "Modelling and using IEC 61850-7-2 (ACSI) as an API", Power 
Tech, 2007 IEEE Lausanne, pp. 713.  

Kuffel, R., Ouellette, D. & Forsyth, P. 2010, "Real time simulation and testing using IEC 
61850", Modern Electric Power Systems (MEPS), 2010 Proceedings of the International 
Symposium, pp. 1.  

Kwon, S., Chu, C., Cho, J. & Yoon, S. 2012, "Development of IEC 61850 based Feeder IEDs 
for self-healing operation in distribution network", Integration of Renewables into the 
Distribution Grid, CIRED 2012 Workshop, pp. 1.  

Laaksonen, H.J. 2010. Protection Principles for Future Microgrids. Power Electronics, IEEE 
Transactions on, 25(12):2910-2918.  

Lehnhoff, S., Rohjans, S., Uslar, M. & Mahnke, W. 2012, "OPC Unified Architecture: A 
Service-oriented Architecture for Smart Grids", Software Engineering for the Smart Grid 
(SE4SG), 2012 International Workshop on, pp. 1.  



342 
 

Liang Du & Qun-ying Liu 2012, "The Design of Communication System on the Real-Time 
Relay Protection Based on GOOSE", Power and Energy Engineering Conference (APPEEC), 
2012 Asia-Pacific, pp. 1.  

Lima, C., Gomes, V., Lima, J., Martins, J.F., Barata, J., Ribeiro, L. & Candido, G. 2011, "A 
standard-based software infrastructure to support energy efficiency using renewable energy 
sources", Industrial Electronics (ISIE), 2011 IEEE International Symposium on, pp. 1175.  

Lima, J., Lima, C., Gomes, V., Martins, J.F., Barata, J., Ribeiro, L. & Candido, G. 2011, 
"DPWS as Specific Communication Service Mapping for IEC 61850", Industrial Informatics 
(INDIN), 2011 9th IEEE International Conference on, pp. 193.  

Lin Zhu, Dongyuan Shi & Xianzhong Duan 2011. Standard Function Blocks for Flexible IED 
in IEC 61850-Based Substation Automation. Power Delivery, IEEE Transactions on, 
26(2):1101-1110.  

Liuhong Wei, Wenxin Guo, Fushuan Wen, Ledwich, G., Zhiwei Liao & Jianbo Xin 2011. An 
Online Intelligent Alarm-Processing System for Digital Substations. Power Delivery, IEEE 
Transactions on, 26(3):1615-1624.  

Lorimer, M. & Zhang, R. 2008, "A Software Substation Interlocking Design Based on IEC 
61850", Developments in Power System Protection, 2008. DPSP 2008. IET 9th International 
Conference on, pp. 35.  

Ma WenJun, Mu LongHua, Ao Pei & Zhang Xin 2011, "New type merging unit for digital 
substation", Advanced Power System Automation and Protection (APAP), 2011 International 
Conference on, pp. 1598.  

Maffezzini, I. & Premiana, A. 2006, "E-Learning whilst eliciting and working IEC 61850 
Substation, a case study", E-Learning in Industrial Electronics, 2006 1ST IEEE International 
Conference on, pp. 135.  

Manassero Junior, G., Pellini, E., Senger, E. & Nakagomi, R. 2012. IEC61850 based systems 
-- Functional testing and interoperability issues. Industrial Informatics, IEEE Transactions 
on, PP(99):1-1.  

McDonald, J.D. 2003. Substation automation. IED integration and availability of information. 
Power and Energy Magazine, IEEE, 1(2):22-31.  

Meliopoulos, A.P.S., Cokkinides, G.J., Mohagheghi, S., Dam, Q.B., Alaileh, R.H. & 
Stefopoulos, G.K. 2009, "A laboratory setup of a power system scaled model for testing and 
validation of EMS applications", PowerTech, 2009 IEEE Bucharest, pp. 1.  

Mercurio, A., Di Giorgio, A. & Cioci, P. 2009. Open-Source Implementation of Monitoring 
and Controlling Services for EMS/SCADA Systems by Means of Web Services— IEC 61850 
and IEC 61970 Standards. Power Delivery, IEEE Transactions on, 24(3):1148-1153.  

Min Huang, Jianqing Xi, Yongli Zhu & Bo Sun 2008, "Research on the Application of Multi-
Agent to the Telecontrol Communication for Power System", Computational Intelligence and 
Industrial Application, 2008. PACIIA '08. Pacific-Asia Workshop on, pp. 743.  



343 
 

Nair, S.A., Hourtoule, J., Gascon, J.C., Gulati, H.K., De La Calle, R., Lescure, C. & Singh, 
M. 2012. IEC-61850-Based Control System for Power Distribution at ITER. Plasma Science, 
IEEE Transactions on, 40(3):596-600.  

Nian Liu, Bin Duan, Jian Wang & Shenglong Huang 2006, "Study on PMI based access 
control of substation automation system", Power Engineering Society General Meeting, 2006. 
IEEE, pp. 7 pp.  

Nieves, J.C., de Mues, M.O., Espinoza, A. & Rodriguez-Alvarez, D. 2011, "Harmonization of 
semantic data models of electric data standards", Industrial Informatics (INDIN), 2011 9th 
IEEE International Conference on, pp. 733.  

Pan Yun 2011, "Research on IED Configurator Based on IEC 61850", Control, Automation 
and Systems Engineering (CASE), 2011 International Conference on, pp. 1.  

Paulo, R. & Carvalho, A. 2004, "Design oriented architecture for integration tools case study 
of substation automation systems", Industrial Technology, 2004. IEEE ICIT '04. 2004 IEEE 
International Conference on, pp. 874.  

Peichao Zhang, Portillo, L. & Kezunovic, M. 2006, "Compatibility and interoperability 
evaluation for all-digital protection system through automatic application test", Power 
Engineering Society General Meeting, 2006. IEEE, pp. 7 pp.  

Price, E. 2010, "The next step in the evolution of protection and control impelementation", 
Protective Relay Engineers, 2010 63rd Annual Conference for, pp. 1.  

Qureshi, M., Raza, A., Kumar, D., Sang-Sig Kim, Un-Sig Song, Min-Woo Park, Hyuk-Soo 
Jang & Hyo-Sik Yang 2008, "A Communication Architecture for Inter-substation 
Communication", Computer and Information Technology Workshops, 2008. CIT Workshops 
2008. IEEE 8th International Conference on, pp. 577.  

Renhui Dou, Jie Ding & Yefei Zhou 2006, "The Data-View Model of IEC 61850 Server", 
Power System Technology, 2006. PowerCon 2006. International Conference on, pp. 1.  

Santodomingo, R., Rodríguez-Mondéjar, J.A. & Sanz-Bobi, M.A. 2010, "Ontology Matching 
Approach to the Harmonization of CIM and IEC 61850 Standards", Smart Grid 
Communications (SmartGridComm), 2010 First IEEE International Conference on, pp. 55.  

Santodomingo, R., Rodriguez-Mondejar, J.A., Sanz-Bobi, M.A., Rohjans, S. & Uslar, M. 
2011, "Towards the automatic alignment of CIM and SCL ontologies", Smart Grid 
Communications (SmartGridComm), 2011 IEEE International Conference on, pp. 422.  

Sanz, R. 2002, "Embedding interoperable objects in automation systems", IECON 02 
[Industrial Electronics Society, IEEE 2002 28th Annual Conference of the], pp. 2261.  

Shi-Jaw Chen, Yi-Hsiang Wang, Chia-Hung Lin, Tung-Sheng Zhan, Rung-Fang Chang & 
Ya-Chin Chang 2012, "Using Multi-vendor IEDs for IEC 61850 Interoperability and HMI-
SCADA Applications", Computer, Consumer and Control (IS3C), 2012 International 
Symposium on, pp. 745.  



344 
 

Song Yu, Wang Qian & Wang De Wen 2011, "Mapping method of SCL and CIM model 
based on the semantic network of knowledge representation", Communication Software and 
Networks (ICCSN), 2011 IEEE 3rd International Conference on, pp. 289.  

Strasser, T., Stifter, M., Andren, F., Burnier de Castro, D. & Hribernik, W. 2011, "Applying 
open standards and open source software for smart grid applications: Simulation of distributed 
intelligent control of power systems", Power and Energy Society General Meeting, 2011 
IEEE, pp. 1.  

Sucic, S., Martinic, A. & Kekelj, A. 2012, "Utilizing standarDS-based semantic services for 
modeling novel Smart Grid supervision and remote control frameworks", Industrial 
Technology (ICIT), 2012 IEEE International Conference on, pp. 409.  

Sugwon Hong, Dae-Yong Shin & Myongho Lee 2009, "Evaluating Security Algorithms in the 
Substation Communication Architecture", Scalable Computing and Communications; Eighth 
International Conference on Embedded Computing, 2009. SCALCOM-
EMBEDDEDCOM'09. International Conference on, pp. 314.  

Sugwon Hong, Myongho Lee & Dae-Yong Shin 2010, "Experiments for Embedded 
Protection Device for Secure SCADA Communication", Power and Energy Engineering 
Conference (APPEEC), 2010 Asia-Pacific, pp. 1.  

Thomas, M.S., Kothari, D.P. & Prakash, A. 2011. Design, Development, and Commissioning 
of a Substation Automation Laboratory to Enhance Learning. Education, IEEE Transactions 
on, 54(2):286-293.  

Wang Haizhu, Cai Zexiang, Su Zhongyang & Zhu Zhihan 2011, "Analysis of realtime 
performances of process-level networks based on IEC61850 SCSM Model", Electric Utility 
Deregulation and Restructuring and Power Technologies (DRPT), 2011 4th International 
Conference on, pp. 1820.  

Weifeng Xin, Guogang Zhang, Yuchen Wang, Yingsan Geng & Bo Liu 2011, "Design of 
intelligent component for high voltage GIS based on IEC61850", Electric Power Equipment - 
Switching Technology (ICEPE-ST), 2011 1st International Conference on, pp. 262.  

Xyngi, I. & Popov, M. 2010, "Smart protection in Dutch Medium Voltage distributed 
generation systems", Innovative Smart Grid Technologies Conference Europe (ISGT Europe), 
2010 IEEE PES, pp. 1.  

Yang, L., Crossley, P.A., Wen, A., Chatfield, R. & Wright, J. 2011, "Performance assessment 
of a IEC 61850-9-2 based protection scheme for a transmission substation", Innovative Smart 
Grid Technologies (ISGT Europe), 2011 2nd IEEE PES International Conference and 
Exhibition on, pp. 1.  

Yi, Y.H., Zhang, J.J., Liu, B., Xu, L.Z., Cao, Y.J. & Guo, C.X. 2008, "A new-style centralized 
IED based on IEC 61850", Power and Energy Society General Meeting - Conversion and 
Delivery of Electrical Energy in the 21st Century, 2008 IEEE, pp. 1.  

Yiqing Liu, Houlei Gao, Mingjiang Xiang, Xin Wei, Peng Wei & Chunsheng Zhou 2011, 
"Performance testing of complete digital relays based on ATP-EMTP and IEC61850-9-2", 



345 
 

Electric Utility Deregulation and Restructuring and Power Technologies (DRPT), 2011 4th 
International Conference on, pp. 83.  

Zhabelova, G., Vyatkin, V. & Nair, N.C. 2011, "Standard-based engineering and distributed 
execution framework for intelligent fault management for FREEDM system", IECON 2011 - 
37th Annual Conference on IEEE Industrial Electronics Society, pp. 2724.  

Zhang, L.X. & Nair, N.-.C. 2008, "Testing protective relays in IEC 61850 framework", Power 
Engineering Conference, 2008. AUPEC '08. Australasian Universities, pp. 1.  

Zhaojie Sun & Bin Duan 2012, "The design of function block in IED with digital substation 
operation", Innovative Smart Grid Technologies - Asia (ISGT Asia), 2012 IEEE, pp. 1.  

Zhu Yongli, Wang Dewen, Wang Yan & Zhao Wenqing 2009, "Study on interoperable 
exchange of IEC 61850 data model", Industrial Electronics and Applications, 2009. ICIEA 
2009. 4th IEEE Conference on, pp. 2724.  

 

 

 

 


