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Summary

Contemporary software-defined radio (SDR) is continuously changing and challenging

the way traditional RF systems operate. Having more of a radio system’s operation in

software enables further flexibility through the use of software manipulation. Due to

practical limitations, however, it is not always feasible to have the entire radio system’s

operations performed using software. Practical limitations, therefore, require that a SDR

employs some form of RF front-end in order to interface the antenna signals and the

signals prior to the data converters.

As technology grows in support of SDR development, this hardware interface is becom-

ing increasingly smaller. The problem with the rapid rate at which SDR developments are

occurring is that RF hardware needs to change accordingly. Therefore, the RF hardware

front-end can be seen as a non-standardised piece of equipment. To the designer, this

means having to prototype in hardware in order to experiment with various types of SDR

hardware front-ends.

One of a SDR’s main attractions is the inherent property of software testability. Taking

this fact into account, this thesis investigates the design and operation of a basic software-

driven RF front-end emulator for a SDR. Basic prototype software models are identified

and developed in order to test their performance within the emulator. The focus of the

thesis, however, is geared toward the development of a software architecture that enables

a high degree of interchangeability amongst the underlying modelled components.

In the case of a SDR, the advantage of prototyping in software is in predicting the

behaviour of a system prior to having to perform any physical developments. This prop-

erty of software testability in the emulator can only fully be appreciated if a bench-mark

system is used to evaluate the overall performance of the emulator. Therefore, a physical

hardware setup is performed in order to test the basic aspects of the emulators operation.

This evaluation is not meant as an exhaustive analysis of the emulator, but aims to high-

light the overall performance of the emulated system against a typical physical system

setup.
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Chapter 1

Introduction

1.1 Requirement for a software-defined radio hard-

ware emulator

Radio communications technology has been redefined by digital signal processing.

Tremendous developments within the wireless industry as well as the availability of

high-performance, inexpensive, low-power signal processing and reconfigurable logic de-

vices have led to explosive advances in software-defined radio (SDR). In general, a SDR

is a radio communications platform on which the majority of the signal processing is

performed in the digital domain.

Performing the duties of traditionally analogue hardware in software alleviates mainte-

nance and calibration duties. Another plus is the consistency of performance in reproduc-

ing digital circuitry as apposed to its analogue counterpart. One of the primary advantages

of performing the system functionality in the software domain is the vast flexibility asso-

ciated with software processing. The benefit of software upgrades to a communications

system can now prevent communications systems from becoming outdated by allowing

the system to become easily adaptable to changes. Such changes could include, in the case

of cellular base stations, the introduction of a new wireless standard. This is a possibility

since there are a vast amount of cellular wireless air-interface standards both present and

emerging.

The vision to try and unify these standards on a single communications device with

minimal complexity and cost has caused widespread interest in software-defined radio

technology to grow rapidly, especially in terms of industry awareness. The benefits of

software radio in the context of cellular base stations have also caused it to be a focal

point of a number of technical papers (Arnott et al. 1998, Salkintzis et al. 1999, Turletti &

Tennenhouse 1999, Zangi & Koilpillai 1999). These benefits range from channel reduction

in cellular base stations (Turletti & Tennenhouse 1999), migration to software for system-

specific parameters (rendering more flexibility in the system) as well as “future-proofing”

1
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the design for emerging standards. With a cellular handset using software radio technol-

ogy to enable it to conform to multiple standards across the globe, true seamless global

roaming could become a reality. Cellular base stations should be able to avoid costly

hardware upgrades as more of the functionality is executed in software. This would also

enable over-the-air, on-the-fly reconfiguration of cellular communications infrastructure.

In fact, documents have already been developed detailing specific protocol requirements

for downloading software to a SDR. These documents are available via the SDR Forum

website (SDRF 2002). Continuous SDR developments can be tracked on the website since

the Software Defined Radio Forum is an organization aimed at promoting SDR technology

on a global scale.

SDR overcomes the drawbacks of analogue signal processing — but there are limita-

tions. This limitation lies predominantly in the bridge between the analogue and digital

realm: the analogue-to-digital and digital-to-analogue (ADA) converter. Research has

shown that the ADA is the key enabling component of a SDR (Walden 1999b, Salkintzis

et al. 1999). What this ADA limitation means is that some form of RF front-end will

inevitably be present in order to yield practical SDR designs.

A SDR hardware platform in practice is a non-standardised piece of equipment because

there is no set point at which the digitisation stage should occur. Added to this is

the continuous need to move the software side as close to the antenna as possible to

ensure maximum flexibility. Literature has shown and confirmed that a range of hardware

configurations exist for a SDR setup and this results in the existence of a number of SDR

hardware architectures, each with its own merits (Gunn et al. 1999).

Another key advantage of SDR design is that of software testability. SDR accelerates

the development of new communications systems because much of a system’s functionality

and performance is verifiable in software. Simple software modifications ensure easy

experimentation in the software side of a SDR design. To make similar hardware changes,

however, is not always this easy and could mean physically re-altering the design.

Studies have shown that complete SDR testbeds have been developed specifically to

meet the requirement of end-to-end testing of complete SDR systems — at the cost of

employing COTS (commercial-off-the-shelf) components (Reichhart et al. 1999).

The hardware emulator proposed in this thesis forms part of a greater project that

aims to develop a library of components for a SDR. Computer workstations are used

for initial project development for both SDR and hardware emulation development. The

cost-effective approach of using workstations has been shown to be a very effective means

for SDR design and experimentation (Bose et al. 1999). The library of components, for

both the SDR and the hardware emulator, is developed within a C++ object-oriented

environment — this ensures that integrating the two is simply a matter of software link-

age. The envisaged concept of the hardware emulator and its relationship with the SDR



Chapter 1 — Introduction 3

�

��������	
�����
	��
��	 
��
����	���������	������
	

�������	��


�����	�������	
������

������������

	�������������
���

�����������������

���
����������
���


�����	�������	
������

�������	��

����������

	
����
�

Figure 1.1: Illustration of a connection between the SDR and hardware emulator

architectures

software architecture is shown in figure 1.1 (Witkowsky & Van Rooyen 2002).

Of course, there are advanced computer simulation tools that are available in order to

address the issue of testing and verifying the performance of a system prior to any actual

physical development. These simulations rely on algorithms that specify the behavior

of a particular system. Complex system simulations of complete end-to-end designs are

often used to test systems in their entirety (Rhode & Whitaker 2001). This requires the

designer to develop a simulation model for the entire system. The advantage of a SDR

in this regard is that the actual processing is performed in software already — it is only

the hardware front-end that effectively requires modelling. In this regard, a simulation

can be utilised to analyse and make predictions about a particular RF front-end. One

of the thesis objectives, however, is to have the capability to integrate the SDR software

architecture and modelled RF front-end on the same platform — for this purpose, a

hardware emulator fits the criteria.

The overall objective then of the dissertation is to extend the software-testability of

a SDR to the remaining hardware components (the hardware front-end) of a SDR. This

intention ultimately brought about the requirement for a hardware emulator to facilitate

the overall SDR development process. Emulation is essentially an attempt to mimic the

functionality of a device or system and the benefits of a SDR hardware emulator can be

summarised as follows:

• The complete end-to-end testing of a SDR prior to any hardware construction.

• The testing of a variety of hardware front-end configurations in software.

• The capability to investigate the effectiveness of software compensation algorithms
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used to address the effects of hardware component imperfections.

• Emulating a hardware front-end gives the designer the ability to deliberately intro-

duce hardware component inaccuracies. Intentionally adding inaccuracies could be

used to test the system’s overall performance for worst case scenarios.

• Data analysis and visualisation is made easy in software. Data streams, therefore,

at various points in the emulated front-end can easily be made accessible for inves-

tigation purposes.

It is important to note that the models designed in the emulator need not be exact

replicas of the internal system or component design, but could include different ways of

implementing the functionality. Stated otherwise, the models at a higher level could just

be functional blocks that represent a particular component. The internal functionality,

however, can be implemented using various techniques in order to mimic the operations

of the device.

In general, an emulator would be used as a substitute for a system (in this case, a hard-

ware front-end) such that the software-processing segment of the SDR must be indifferent

to whether it is connected to actual hardware, or to a hardware emulator. In particular,

it must be possible to model specific analogue hardware components, and emulate their

performance in software, before actual hardware development. The hardware emulation

modules should integrate seamlessly with the SDR component modules (but should also

be able to run stand-alone), and allow the system designers to fully test their application

without the requirement for any actual analogue hardware development. By referring

again to Figure 1.1, the user should, at a higher level, have the ability to access both a

library of SDR components as well as a library of hardware-emulated components in order

to perform a complete system analysis. It must also be possible to provide raw waveform

data to applications such as MATLAB, in order to evaluate system performance.

In summary, the objectives of the study are to develop:

1. A collection of abstract base classes that define generic hardware components and

their interfaces.

2. A collection of sample modules descended from these abstract base classes, that

emulate the performance of actual hardware components.

3. A software architecture in which these models can effectively operate and commu-

nicate. The design of the architecture must also facilitate a high degree of inter-

changeability for the components.

4. Physical circuits to assess the performance of the emulator.
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5. A set of tools that provide post-processing and data visualisation capabilities for

the emulated waveforms.

1.2 The scope of the thesis

The following deliverables were identified in order to address the research problem:

1. An in-depth literature study on software-defined radio, its possible applications and

typical architectures.

2. Identification and thorough research on hardware components that are typically used

in the front-end of SDR systems. The research must focus on these components’

expected non-idealities, and how to model them.

3. A study on the modelling and emulation of hardware components when used within

the emulator architecture, including the development of sample models for system

testing.

4. The design and development of the hardware emulators software architecture.

5. The design and study of a physical hardware setup against which the emulator

results will be compared.

6. The capturing of emulation results in order to perform comparisons for a specified

hardware front-end architecture.

7. Conclusions that compare the emulation results to those of the physical hardware

setup, and provide a thorough and scientific assessment of the performance of the

SDR hardware emulator testbed.

1.3 Thesis outline

A thorough literature research is the primary objective of Chapter 2 which starts by

looking over the history of software-defined radio (SDR) and highlights the benefits of the

technology. It is in presenting the challenges within SDR that Chapter 2 illustrates the

problem of non-standardised RF front-ends. This finding states the motivation for the

development of the hardware emulator testbed. Typical architectures are also examined

in order to gain some insight into how a general SDR is composed, both at the block

diagram and component level.

The architectures looked at in Chapter 2 highlight an important section of the study —

the hardware components required for modelling. Chapter 3 aims to provide the theoret-

ical background on the identified components in order to gain a thorough understanding
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of the non-idealities presented by each component. The knowledge of the components’

behaviour is then used to develop appropriate prototype models. These models are devel-

oped in MATLAB in order to assess the performance of the technique or algorithm used

to emulated the non-ideal components’ behaviour.

The effectiveness of the models can only truly be exploited if the architecture used to

house the components is well designed. Chapter 4 illustrates the design considerations

taken in order to implement an architecture that optimally accommodates the modelled

components. Various considerations such as buffer control and the linking of components

are dealt with. The ultimate objective of the architecture is to allow a high degree of

interchangeability amongst components in order to emulate a variety of hardware front-

ends. Chapter 4 takes a detailed look into how this objective is achieved.

For an emulated system to be considered effective and useful, some form of benchmark

is needed to comparatively assess the hardware emulator’s performance. This benchmark

comes in the form of a practical hardware setup, and Chapter 5 takes an in-depth look

at the results presented by both the practical and emulated system. These results are

then scrutinised in order to provide a thorough scientific report on the outcomes. The

outcomes are then used to gauge the overall performance of the emulator.

Lastly, Chapter 6 is used to present the final product of the thesis — to give conclusions

based on the outcomes of the research results. Suggestions for future work, in order to

improve on further developing the hardware front-end emulator, are also included.



Chapter 2

Software-defined radio overview

The hardware emulator presented in this thesis is designed specifically for a SDR and it

is for this reason that an in-depth literate study on SDR will be given. The study will

begin by looking briefly at the history of SDR and by providing a deeper understanding of

what a SDR actually is. In practical software-defined radios, some form of RF front-end

hardware is often used between the antenna and the software processing segment. The

reason for this hardware front-end is mainly due to the requirement for extensive analogue

signal processing. These and other limitations are further presented in Chapter 3.

Chapter 3 also focuses on typical SDR architectures in order to obtain a better un-

derstanding of the various hardware front-end setups that are employed. The SDR archi-

tectures should also reveal what components are used in the various types of hardware

front-ends. This finding is important since it is these very components that will be mod-

elled in the emulator.

2.1 Background

The intermediate phase between where SDR technology began and where it stands today

has showcased a number of developments. The name Joseph Mitola is synonymous with

software radio, a term he coined in 1991 (Mitola III 2000). The term software radio was

used by Mitola (who in fact wrote the first paper on software radio in 1992) to describe

a type of radio that was reconfigurable in software (Mitola III 2000).

Past developments of SDR emerged when the requirement for a flexible (multi-band,

multi-mode) radio system for military purposes was pursued. In 1992, this resulted in the

development of a program entitled SPEAKeasy (Lackey & Upmal 1995), a military-based

program to demonstrate and fully utilise the concept of SDR. The result of the study

was the SPEAKeasy software reprogrammable radio that allows software changes of radio

functionality and operates in the 2 MHz to 2 GHz frequency band. In order to address

such a wide frequency range, the radio set used different interchangeable RF front-ends

7
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for different frequency bands.

The definition of a SDR is not a straightforward one. Much controversy surrounds

the level of reconfigurability needed for a radio set to be labeled as a SDR. In fact,

the Software Defined Radio Form (SDRF) uses a set of tiers to describe a class of radio

with regard to its facilities in order to demystify the SDR semantics (SDRF 2002). The

range begins at tier 0 which is a hardware radio in which physical changes are required to

alter the characteristics of the radio. The range extends up to tier 4 which describes the

ultimate software radio (USR), a fictitious model used merely for comparative reasons, as

a radio that has no operating frequency limits, no external antenna, just a single connector

to interface to the outside world, and also a radio that can rapidly switch between different

interface formats. A software-defined radio (tier 2) describes a class of radio in which some

form of front-end hardware exists between the antenna and the software processing. The

use of software processing in a SDR includes, but is not limited to, modulation scheme

alterations, channel selectivity and communications security functions (SDRF 2002). The

SDRF formally defines a SDR as (SDRF 2002):

A collection of hardware and software technologies that enable reconfigurable

system architectures for wireless networks and user terminals.

SDR is thus an implementation technique that facilitates the software embodiment of

traditional analogue circuit functionality. In a certain sense, SDR could be thought of as

an emulation of the traditional analogue component functionality, since the digital portion

of a SDR is continuously being pushed closer to the antenna.

The direct benefits of moving the digitisation stage as close to the antenna as possible

and having the remaining processing tasks software reconfigurable can be summarised as

follows (Mitola III 1995, Mitola III 1999b, Buracchini 2000, SDRF 2002):

• A flexible architecture is created that has the capacity to support current and evolv-

ing commercial air-interface standards.

• Over-the-air software downloads can be performed to enable system upgrades.

• Advanced error-correction schemes can be employed in software to ensure data in-

tegrity.

• Minimal RF problems are encountered since the analogue section gets smaller and

performs fewer or no waveform-specific tasks

• Cost benefits are gained due to minimal RF hardware expenditure.

• Full advantage can be taken of rapidly improving signal processing and data con-

verter technology.
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2.2 Challenges

In order to take full advantage of the benefits mentioned above, certain restrictions need

to be addressed. One of the primary aims of a SDR is attempting to move the digitisation

stage as close to the antenna as possible and replacing dedicated hardware with flexible

signal processing devices (such as DSPs) (Buracchini 2000). As stated earlier, the primary

advantage associated with the migration of system functionality into the software realm

is the immense flexibility obtainable with SDR technology. This idea of a more software-

driven system opens up a host of possibilities previously too complex to obtain within

traditional hardware-constrained radio systems.

In practice there are several technical challenges facing the designer in order to ex-

ploit the immense flexibility that SDR has to offer (Buracchini 2000). These challenges

arise as a result of the drive toward the capabilities that the ideal SDR (Fig 2.1) has

to offer — a system that digitises directly at the antenna, with all subsequent process-

ing performed in software (Buracchini 2000). Research has shown that ADA converter

technology development is one of the key enabling elements to fully exploit the benefits

that SDR has to offer (Walden 1999b, Salkintzis et al. 1999). Part of this challenge is a

trade-off decision between converter sampling rates and resolution, since in general, an

increase in one results in a decrease of the other (Walden 1999a). Some of the other

more general technical challenges facing designers of a SDR are (Mitola III 1999b, Mi-

tola III 1995, Buracchini 2000, Mitola III 2000):

• Addressing changing data rates across interprocessor interfaces.

• Estimating processing requirements of reprogrammable devices.

• Selecting a suitable flexible implementation platform (software architecture).

• Minimising power consumption (especially in portable devices).

• Selecting suitable RF and IF processing platforms.

2.3 SDR architectures

SDR architecture analysis is a well-documented area of research and contains various

perspectives ranging from COTS implementations (Reichhart et al. 1999) to mathematical

interpretations (Mitola III 1999a). An insight into a basic SDR architecture at the block

diagram level will be given and, for the purpose of this thesis, only three typical RF front-

end architectural configurations for a single channel SDR design will be investigated.
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ADC DSPLNA

Low Noise Amp Anti-aliasing
Filter

Analogue-to-Digital
Converter

Digital Signal
Processing

Data out

Antenna

Figure 2.1: An ideal software-defined radio receiver. The equivalent SDR transmitter

would employ a similar configuration, with a reverse signal path flow.

Figure 2.2 shows a typical block diagram of a SDR architecture and represents both a

transmitter and a receiver (Reed 2002).

For the SDR receiver stages of Figure 2.2, the RF signal is received via the antenna1

and in order to keep the bandwidth to the ADC practical, a hardware front-end (typically

in the form of a superheterodyne receiver) is employed. The hardware front-end usually

performs some form of filtering, amplification and mixing to frequency-translate the RF

to an IF signal. Ultimately, the application in which the radio is used determines the

number of these stages required (variations of these types of stages will be illustrated

later). The next stage is the ADC which digitises at the IF frequency — this sampled IF

creates spectral replicas which can be placed near the baseband and thus combining the

processes of frequency translation and digitisation (Reed 2002). This combined process

of frequency translation and digitisation is performed using a technique called undersam-

pling and the reader is referred to (Kester 1997) for a tutorial on undersampling. In order

to properly interface the output of the ADC to the digital processing hardware, channel-

ization (channel selection using filtering) and sample rate conversion is performed. The

subsequent processing can be performed on a variety of platforms and section 2.5 looks

at the trade-offs of three of the most commonly used hardware processing platforms.

Recall that Figure 2.2 shows both a receiver and a transmitter. Up to now only

the functions of the receiver are explained. A SDR transmitter, according to figure 2.2,

begins it operations at the software processing platform. As with the receiver, the SDR

transmitter’s signal could also require sampling rate conversion. A DAC is then used to

generate the analogue equivalent of the digital input signal. Finally, as with the receiver,

RF hardware stages are used to up-mix the output of the DAC to the desired RF frequency

1Figure 2.2 shows this as a smart antenna, which if used, minimises noise, interference and multipath
signal problems because of the antenna’s high directivity characteristics (Reed 2002)
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before the signal is transmitted by the antenna.
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Figure 2.2: A typical SDR block diagram (adapted from (Reed 2002))

The analogue in-phase and quadrature (I and Q respectively) superheterodyne re-

ceiver, a common RF receiver configuration for a software radio, is presented in figure

2.3 (i) (Gunn et al. 1999). Variations to this configuration include passband alternatives

in which the quadrature demodulation is performed digitally, using a single ADC for IF

sampling, as shown in Figure 2.3 (ii). A second variation (Figure 2.3 (iii)), in which

the RF signal is directly converted into baseband using IQ downconversion, affords addi-

tional flexibility, but is more challenging to practically implement than the previous two

configurations.

2.4 Component identification

Figure 2.3 highlights some of the possible architectures that could be encountered in SDR

hardware front-ends. This by no means includes all possible architectures, but refers to

some configurations that are commonly employed in single-channel SDRs. By observation

of the various hardware architectures in figure 2.3, the following key components of the

RF front-end will be modelled:

• Data converters (both ADCs and DACs)

• Amplifiers

• Mixers (both standard and quadrature)

• Filters

• Antennas and channels

It is important to note that in the software processing block in Figure 2.3, the partitioning

happens according to the functions assigned to a specific software processing task. The
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Figure 2.3: Illustration of three typical SDR hardware receiver front-end configurations.

A typical SDR hardware front-end transmitter (at the block diagram level) would employ

similar components as the receiver. (adapted from (Gunn et al. 1999))



Chapter 2 — Software-defined radio overview 13

�

�

�����

���	
�

��
�	
�

���	
�

����
���
	�

���	
�

���	
�

���
���	
�

���	
�

����

���	
�

����

���	
�

���
�	�

���	
�

������
	�
����

������
�����
	������

��	
�����	�	���
���	���

�������	
�

�������	
�

�� 
�
!����������	����

Figure 2.4: Functional block diagram illustration of the envisaged SDR hardware

emulator

type of software processing function used ultimately depends on the application for which

the radio is required and varies between designs.

Figure 2.4 shows a functional block diagram (a receiver in this case) in order to get

a conceptual idea of the envisaged outcome of this thesis at this stage. Ultimately, the

user should have a library of modelled hardware components at their disposal. These

components could be placed in any sequence in order to model various types of hardware

front-ends, such as those illustrated in Figure 2.3. Conventional hardware systems require

physical interfaces to link components, but in the emulator the component interfaces are

implemented as software links. Chapter 4 focuses on the design of these software links.

The source and sink models represent points where the data samples are accumulated

and distributed respectively. For example, the source model could be a file with samples

that represent data received at the antenna. In a complete end-to-end SDR system, the

sink model of Figure 2.4 represents the software architecture of a SDR. Not having a

SDR software architecture present, however, does not limit the use of the emulator and if

this is the case, the sink module could just represent a software object that receives and

stores incoming samples. The samples could, for example, be used later for analysis in an

application program such as MATLAB.

The actual effects presented by the components in the diagrams of figure 2.3 will be

looked at in detail in Chapter 3 in order to effectively model their component behavior

for the emulated design.
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Figure 2.5: A flexibility and performance summary of ASICs, FPGAs and DSPs

(adapted from (Bose et al. 1999))

2.5 Implementation

The digital portion of a SDR can be implemented on a variety of signal processing plat-

forms with each platform having its own merits.

Some of the these major platforms include digital signal processors (DSPs), application-

specific integrated circuits (ASICs) as well as field programmable gate arrays (FPGAs).

ASICs and FPGAs are normally assigned tasks that rarely require frequent adjustment in

the field (Pucker, L. 2001). To effectively utilise DSP, ASIC and FPGA technology in a

software radio design, the performance vs. flexibility trade-offs for each technology must

be understood, and their relationships are shown in figure 2.5 (Ahlquist 1999). Figure

2.5 indicates that if processor speed is imperative, then an ASIC should be used at the

cost of reduced flexibility. If, on the other hand, flexibility is a much greater concern than

processor speed, then a DSP would more suited to the task. An FPGA lies somewhere in

the middle and would generally be used if an balanced speed-flexibility trade-off is needed.

Aside from the performance-flexibility trade-off, other key selection criteria consider-

ations include addressing

• the level of integration required in order to accommodate several functions on a

single chip

• the amount of development time needed to implement and test a software radio for

a specific signal processing device

• power consumption requirements

The points listed above indicate that selecting a signal processing platform from the

devices mentioned can be quite time consuming. An alternative approach to using ded-

icated devices, such as DSPs, for signal processing requirements, is to make use of a
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general-purpose workstation to perform digital signal processing — such a device is called

a virtual radio2 (Bose et al. 1999).

A virtual radio is defined as a communications platform that performs all the signal

processing in user space on a workstation (Bose et al. 1999). The primary advantage of

this approach is the capability to easily experiment at a higher level with new processing

methods and algorithms. Some of the other advantages of employing the workstation

approach include:

• Fast deployment times (upgrades to software can be done with great efficiency)

• Facilitates integration with other applications (e.g. a software radio and hardware

emulator on the same platform)

• Cost benefits (using a workstation that is already available)

• Use of preferred high-level language and therefore not restricted to (in certain cases)

device specific programming languages.

One of the biggest challenges in implementing such a virtual radio is addressing the various

problems of interfacing to the outside world (Bose et al. 1999). For the purpose of this

thesis, this interfacing dilemma is not an issue, since no connection is needed to external

hardware outside the workstation.

The virtual workstation approach, therefore, will be used in this thesis to facilitate

rapid, low-cost system development.

2.6 Measures of performance for a SDR

Although a SDR is architecturally different from its analogue counterpart, the standard

measures of performance used to evaluate a typical analogue radio still apply. A SDR on

the outside, after all, should function like a normal radio — it is what happens on the

inside of a SDR that gets done in a different manner. The context in which the SDR is used

will determine which performance measurements are most relevant. For example, in the

case of audio, amplitude variations with frequency as well nonlinear distortion effects are

important, but when considering processing a digital data stream, the number of symbols

per second, fraction of errors and the specific waveform symbols are more relevant (Rhode

& Whitaker 2001). For the hardware emulator testbed, data streams at various stages in

the chain of emulation modules can easily be obtained. This allows essential examination

2Considering that this is the approach taken in this thesis (as well as in the software radio group in
general), the reader is referred to the article by Pucker (Pucker, L. 2001) if a further discussion of the
merits of DSPs, FPGAs and ASICs with regard to SDR design is required.
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of the various waveforms by using appropriate workstation application software, such as

MATLAB, for data analysis and visualisation.

2.7 Summary

SDR technology poses many design challenges, but offers significant benefits in return

— the most important of which is unparalleled system flexibility. Because analogue-

digital-analogue (ADA) conversion technology is, for all practical reasons, still limited,

RF front-end hardware is often required in a SDR. Even for the ideal SDR, an ADA is a

piece of hardware that will always be present. Therefore, in order to facilitate the design

and testing of different front-ends, an effective hardware emulation system was proposed.

This Chapter was used to illustrate, as well as to gain a complete understanding of, the

broader context in which the emulator will be used. An important outcome of Chapter

2 was the study of certain hardware front-ends in order to identify the typical front-end

components that could be encountered.

Already at this stage, however, we are able to identify the typical components that

should be generically modelled just by observation of figure 2.3. For both transmitters

and receivers, these components are identified to be analogue-to-digital and digital-to-

analogue converters, filters, amplifiers and mixers.

This outcome is important since it is these very components that need to be modelled

for the emulated system. The study of how these components are modelled based on their

individual behavioral imperfections, is taken up for further investigation in the following

Chapter.



Chapter 3

Component theory and modelling

considerations

3.1 Introduction

In order to develop an emulated system for the components in the configurations identified

in Chapter 2, it is important to have an understanding of the way in which the hardware

components function. The aim of chapter 3 is to present the background theory for

each component of the system identified in chapter 2. The theory will include studying

and identifying the non-idealities of each identified component. Prototype models are

developed in MATLAB in order to fully test and verify the algorithms used to model

the components. This is the preliminary process prior to implementing the final models

in C++. The prototype models developed for the hardware components can be either

complete models or building blocks to form a complete model as shown in figure 3.1.

The outcomes of the models’ operation are presented in this chapter. In summary, the

objectives are:

• Reiterating the identified hardware front-end components required for modelling

• A theoretical study on the components and their non-ideal behaviour

• The modelling consideration taken for each component

• The development of a model prototype for each component

3.2 Components

Recapping from chapter 2, the components identified for modelling were:

• Data converters (both ADCs and DACs)

17
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Figure 3.1: Components can be modelled as complete units or modelled as sub-unit

cascades, as this amplifier example illustrates

• Amplifiers

• Mixers (both standard and quadrature)

• Filters

• Antennas and channels

These components will be studied in this particular order but before this study com-

mences, there is an aspect of all communications system that must be considered —

noise. Even in the most well-designed system, noise is an element that will always ex-

ist in the system. For the emulated system to accurately represented real-world system

behaviour, noise is a concern that must be taken into account.

3.3 Noise

Noise is an ever-present factor in all practical electronic systems. It is therefore important

to take into account the effect that noise has on the signal for the various front-end

components. There are a variety of internal types of noises generated within electronic

circuitry of which the most predominant include thermal noise, shot noise and flicker noise

(Horowitz & Hill 1989).

Internal noise is the result of the random action of charge carriers within electronic

components (Ziemer & Tranter 1995). In order to keep the noise model in the emulator

as practical as possible, only the effects of a primary source of noise, thermal noise, will

be considered.



Chapter 3 — Component theory and modelling considerations 19

�

����������

�	��


�
����

�
�������

����

���
��

�����

���
������	��
���������	������

�����������

����� ��

��
�����

Figure 3.2: Block diagram showing how noise is modelled in the system

Thermal noise (also known as Johnson and white noise) occurs as the result of the

random motion of charge carriers in a conducting or semiconducting medium (Ziemer &

Tranter 1995). The equation that describes the open-circuit (rms) noise voltage generated

by a resistance is given as (Horowitz & Hill 1989):

VN(rms) =
√

4kTRB (3.1)

where k is Boltzmann’s constant (1.38 · 1023 J/K) and T is the temperature in degrees

Kelvin. R is the resistance of the device and B is the system bandwidth. Equation 3.1

shows the thermal noise voltage’s dependence on resistance, temperature and bandwidth.

In order to keep thermal noise to a minimum, these variables must be kept as low as

possible.

Thermal noise can be considered as an additive white gaussian noise (AWGN) process

since thermal noise has a uniform power spectral density and a gaussian distribution

(Ziemer & Tranter 1995, Horowitz & Hill 1989).

3.3.1 Noise modelling considerations

Noise in the system is modelled as AWGN in order to represent thermal noise. This

concept of modelling noise is illustrated in figure 3.2.

MATLAB’s white gaussian noise function was used in the model prototypes. The

effect of adding 5mW of noise power to an input signal with unity amplitude is shown in

figure 3.3. This basic principle of generating gaussian distributed random numbers was
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Figure 3.3: Illustration of the addition of white gaussian noise to a signal

later adapted and used in the C++ models. The output of the AWGN model can be

described simply as:

y(n) = x(n) + w(n) (3.2)

where y(n) is the output of the model which is the sum of the input, x(n), with the

output of the wgn generator, w(n). In order to have a working noise model in the final

C++ implementation, an equivalent noise model implementation was written in C++.

The actual syntax used in the C++ noise model to execute equation 3.2 is:

y = x + gasdev(&idum)*sqrt(noise_power)

The variable ‘x’ represents the input signal sample. The gasdev() function (Press et al.

1992) generates a gaussian random number that is multiplied with the square root of the

‘noise_power’ (to convert the noise power to a noise voltage) specified by the user. Noise

is specified as a linear power level (in Watts), but the front-end application gives the user

the option to specify this as a dB or a dBm value.

3.4 Data converters

Analogue-to-digital and digital-to-analogue (ADA) converters are fundamental building

blocks in mixed-signal circuits and are seen as the key components in a SDR. It is im-

practical to try and cover every single type of converter architecture that exists today.
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Instead, key fundamental architectures are examined. Some of the more complex archi-

tectures used today employ some, or a combination, of the principles listed below. There

exists a host of theory for the architectures presented here and for this reason it is stated

up-front what the objective of the study is.

The aim of evaluating the various ADAs is to examine and outline how the architec-

tural makeup and operational principles contribute to the non-idealities present in ADA

converters.

3.4.1 DAC/ADC classification and architectures

DAC classification and typical architectures

Typical DACs make use of either the a resistor string, ratioed current source or capac-

itor array architecture (Chen 1995). Their respective architectural compositions will be

studied next in order to get an understanding of their distortion effects. This will in turn

facilitate a better understanding of how to model a generic non-ideal data converter.

Resistor-string DACs: As the name implies, this DAC architecture uses a resistor

string to generate a number of reference voltage levels. The advantage of this type of

DAC is its simplicity. The major drawback of this type of architecture is the output

resistance’s dependency on the digital input code (van Rooyen 2000). White thermal

noise, contributed by the resistors, is the primary noise source of this type of topology.

Current-ratioed DACs: Current-ratioed DACs are quite often used as stand-alone

devices. There are two types of current-ratioed DACs, namely, the weighted-current DAC

and an R-2R DAC . The R-2R DAC will be highlighted because its design addresses the

shortcomings of the weighted-current DAC (Chen 1995).

The R-2R ladder DAC’s resistor divider arrangement overcomes the large resistor

problem presented by the binary-weighted DAC since only two types of resistor values

are required. Figure 3.4 shows an example of a 1-bit R-2R ladder current steering DAC

(van Rooyen 2000) that comprises a series R-valued resistor and shunt 2R resistors. The

advantage of this R-2R ladder configuration is that if more bits are required it is just

a matter of appending additional R-2R networks. The operation is based on the binary

division of current flowing down the ladder. The analogue current source error determines

how linear the DAC will be (Chen 1995). This analogue current source error occurs as

a result of non-ideal switching effects of the transistors used to alternate between the bit

states (van Rooyen 2000). The current noise is the primary source of error for a current-

ratioed DAC and arises as a result of the shot noise in the current sources (Chen 1995).
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Figure 3.4: Illustration of a 1-bit R-2R DAC (adapted from (van Rooyen 2000))

Capacitor-array DACs: The principle of operation for a capacitor-array DAC is es-

sentially based on the substitution of the resistor-string DAC using an accurate binary-

weighted capacitor array (Chen 1995). The primary noise source is that of switching

noise, referred to as kT/C noise.

ADC classification and architectures

ADCs can be classified as either Nyquist rate converters or oversampled converters.

Nyquist rate converters: Nyquist rate converters sample the input signal at just

above the minimum sampling rate (Nyquist frequency). Nyquist converters can be further

categorised according to the number of clock cycles needed to complete an analogue-to-

digital conversion cycle. Thus, high speed, medium speed and high resolution converters

will be classified as 1-clock, n-clock and 2n clock converters respectively (where n is the

number of bits of resolution).

Oversampling delta-sigma data converters: One of the important points to note

about Nyquist converters is that their circuitry requires very accurate components in order

to provide a high overall degree of resolution. This is not the case with oversampling

converters. As the name implies, oversampling converters work on the principle that

roughly sampling (low quantisation) the analogue input several times higher than the

Nyquist rate and then feeding back the error signal in order to average out the quantisation

noise (Candy & Temes 1992). The operational principle of oversampling converters favor

the IC manufacturing processing in that it is cheaper and easier to manufacture a fast



Chapter 3 — Component theory and modelling considerations 23

digital IC than to produce an accurate analogue IC. The theory of oversampled delta-

sigma data converters is covered extensively in a number of texts1 and its complete study

is beyond the scope of this thesis.

3.4.2 Ideal conversion

When developing an ADA model for emulation purposes, the ideal performance should

be considered first in order to have a good reference. It is the various sources of error that

cause the divergence from the ideal characteristics and this will be looked at additionally.

Ideal converter transfer function

The theoretical ideal transfer function for an ADC is a straight line (i.e. disregarding

quantisation). The practical ideal transfer function for an ADC with quantisation, how-

ever, is a regularly-spaced staircase as will be illustrated for an ADC in the following

section. A DAC theoretical ideal transfer function would also be a straight line with an

infinite number of steps. Practically, however, the DAC transfer function is a series of

points that are superimposed on the ideal straight line.

Ideal DAC transfer function: A DAC represents a finite number of discrete dig-

ital input codes by a corresponding number of discrete analogue output values. The

transfer function of a DAC is a range of discrete points as illustrated in figure 3.5 (Texas

Instruments 1995). The step height between consecutive samples in an ideal DAC transfer

function is 1 LSB.

Ideal ADC transfer function: An ideal ADC, as illustrated in figure 3.6 (Texas

Instruments 1995), uniquely represents all analogue input values by a limited number of

digital output codes defined by 2N , where N is the number of bits. Quantisation error is

introduced because the continuous analogue scale is now being represented by a discrete

number of points. This quantisation error will be looked at next in more detail as a

separate entity to show its noise contribution to the converted signal. The width of one

step is defined as 1 LSB.

Quantisation noise

Trying to represent (quantise) an infinite range of values (analogue domain) using a finite

number of bits (digital domain) leads to a rounding off inaccuracy called quantisation

error. This loss of information leads to an error contributing to the overall noise floor

1See the bibliography of (Candy & Temes 1992) for a comprehensive list of relevant references
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Figure 3.5: Ideal DAC transfer function (Texas Instruments 1995)

of the signal. In an ideal ADA, it is the only source of error present. Using a sine

wave input to derive a theoretical maximum signal to quantisation noise error gives (van

Rooyen 2000):

SQNR = 6.02N + 1.76 dB (3.3)

Equation 3.3 shows that, in order to better the SQNR of the system, more bits are required

and that for every one bit added to the system, the SQNR is improved by approximately

6 dB.

Sample-and-hold distortion

The process of sampling is a fundamental requirement for both ADCs and DACs. For an

ideal DAC, the concept of a pulse train of scaled impulses is used to represent the output

of an of an ideal sampler to an arbitrary signal (van Rooyen 2000). In practical DAC’s,

this ideal pulse train is convolved with a normalised rectangular pulse (van Rooyen 2000).

An important artifact of sample-and-hold circuits that must be considered in practical

systems is the resultant gain response curve: a low pass filter response. If the system is

not designed with this effect in mind, the output could experience attenuation near half

the sampling frequency (van Rooyen 2000). However, although this type of effect is not

explicitly taken into account for modelling purposes. If the DACs are modelled to have a

sample-and-hold output, the sample-and-hold distortion will automatically be observed.
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Figure 3.6: Ideal ADC transfer function (Texas Instruments 1995)

3.4.3 Non-ideal converter errors

A converter’s performance can be evaluated according to either its static or dynamic error

performance. The following definitions are often used to describe the performance of a

given data converter (van Rooyen 2000, Texas Instruments 1995).

Static errors

Except for oversampling converters, the linearity of conventional converters are very de-

pendent on the accuracy of the reference voltages and currents used. Internal resistance

imbalances are a main contributor to the static (DC) error of a converter.

Offset error: This can be seen as the difference between the nominal and actual offset

points of a converter. For a ADC, this means that for an analogue input of zero, the

corresponding bit sequences should be zero. Similarly, a DAC output should read zero for

a digital input of zero. Any non-zero values for either converter means that some offset

error is present. Offset error is expressed as a percentage of the reference voltage.

Gain error: With the full-scale input voltage applied to the ADC (resulting in ones

in the digital output code) or a digital code of all ones applied to a DAC, gain error is

defined as the amount of deviation between the ideal transfer function and the measured

transfer function (with the offset error removed). This is, in essence, a measure of the

amount of gain drift of a given device. As with offset error, gain error is expressed as a

percentage of the reference voltage.
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Monotonicity: For a given device to be monotonic, an increase in the input must result

in a corresponding output rise. For some low-performance ADA devices, monotonicity is

not necessarily guaranteed. Inaccuracies in the binary weighting of a DAC causes non-

monotonic errors and this can result in missing codes in an ADA. A monotonicity error

of less than 1 LSB means that the converter is guaranteed to be monotonic.

DNL (Differential nonlinearity error): DNL error is the difference between a single

step width (for an ADC) or step height (for a DAC) and the ideal value of 1 LSB. This

means that there is no DNL error if the step height or width is exactly 1 LSB for a DAC

and ADC respectively — something very desirable in practical data converters.

INL (Integral nonlinearity error): The integral nonlinearity is the divergence of the

values on the actual transfer function from an ideal straight line. This straight line is

usually drawn between the endpoints of the transfer function once the gain and offset

errors have been nullified. For an ADC the deviations are measured at the transitions

for consecutive steps, and for the DAC they are measured at each step. INL is actually

therefore the cumulative effect of all the DNL errors, after the gain and offset errors have

been removed.

Analogue component imbalances can result in the nonlinear INL response curve shown

in Figure 3.7. INL is measured as the maximum positive and negative swing with reference

to the ideal straight line. The shape of the INL curve can have a direct influence on the

order of the harmonic spurs in the output signal (van Rooyen 2000). Some of the more

common curve shapes are shown in figure 3.7 for which a bow shaped and S-shaped curve

produce even-order and odd-order harmonics respectively (van Rooyen 2000).

Total unadjusted error: This is sometimes referred to as the absolute accuracy of an

ADC or DAC. The measurement takes into account the effects of all the above-mentioned

static errors. With reference to the ideal transfer function, the total unadjusted error is

usually specified as a percentage of the full-scale voltage or current.

Dynamic errors

Spurious-free dynamic range (SFDR): SFDR is often used to describe the spectral

quality of a generated signal. SFDR is a measure of the power difference between the

fundamental signal and the magnitude of the largest undesired frequency component as

illustrated in Figure 3.8. SFDR will often be used as a unit of measure for the hardware

emulator to evaluate the quality of the output waveforms in the frequency domain. Other

dynamic error performance measurements not listed here include, but are not limited to,
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Figure 3.7: An example of common DAC INL curves (adapted from (Crook &

Cushing 1998))

signal to noise and distortion ratio (SINAD) and total harmonic distortion (THD). The

reader is referred to Chen (Chen 1995) for more insight into these concepts.

Glitch impulse: The study of glitch impulse relates to a DAC only. High-speed DACs,

such as those used for software radio applications, require very accurate waveform recon-

struction in order to keep the SFDR as low as possible. Glitch impulse, the consequence

of transient switching effects, can have a serious limitation on the overall performance of a

converter if not treated correctly (van Rooyen 2000). One source of glitch error is poorly

synchronized bit switching times — the small switching time differences when the input

bit codes drive the switching transistors (van Rooyen 2000, Garcia & LaJeunesse 1995).

This results in momentary output current error which inturn shows up in the transient

response as glitch impulse as illustrated in figure 3.9. Glitch impulse, expressed in pV/s,

can be seen to be increasingly problematic during the DAC’s major carry transitions. This

is due to the switching of the most significant bit (MSB) and this small switch timing

error can momentarily cause a large error in the current or voltage output. Although

techniques have been employed to make the glitch impulse error constant over the entire

output range (Garcia & LaJeunesse 1995), it is still an ever-present error contributor.

Charge injection from analogue complementary metal-oxide semiconductor (CMOS)
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Figure 3.8: The power difference between the desired signal and the largest unwanted

component is known as the spurious free dynamic range (SFDR) (adapted from (van

Rooyen 2000))

switches (Eichenberger & Guggenbuhl 1991) is a second contributor of glitch impulse

error. Although deglitching techniques exist to combat the effect of glitch impulse error,

it is important to model the glitch impulse phenomena in order to observe the effect it

has on the overall system — the technique used to achieve this is explained next.

3.4.4 Data converter modelling considerations

The ADA is a key component in a SDR system. The various architectures as well as

the parameters that are important in defining the performance of an ADA were outlined

above. In summary, the data converter theory covered indicates that:

• Even in an ideal ADA, there will always be quantisation noise.

• Component imperfections are one of the main reasons for a nonlinear conversion

transfer function.

• Passive components used in most architectures contribute to an increase in thermal

noise.

• Glitch impulse is one of the biggest performance restriction factors in DACs.

Although it would be quite possible to mathematically describe and model most of the

possible sources of specific ADA architectures mentioned earlier (MALOBERTI, F. et al

1992), it goes beyond the scope of the thesis. Instead, the aim of the models presented here
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Figure 3.9: Illustration of a typical DAC glitch on an output transition, taken from the

Analog Devices AD9720 data sheet.

is to try to develop a generic method that emulates the characteristics of the nonidealities

generated by ADAs.

In order to develop a model for representing a generic ADA, the model was broken

down into the following building blocks:

• quantisation

• INL predistortion

• glitch impulse

Quantisation

A quantisation function was developed in order to represent the rounding-off error created

within an ADA. The syntax used in MATLAB to implement quantisation is:

y = sign(x).*(ceil(abs(x)*(q-1)/(2) - 1 + eps) + 0.5)/(q-1)*2;

The code above represents a linear (uniformly spaced) quantisation process. The quanti-

sation code produces output levels symmetrical around, and not including, zero as shown

for a 3-bit quantised sinusoidal waveform in figure 3.10. The quantisation code represents

a normalised function and therefore the (bipolar) input signal must be in the range of ±1

in order for the code to operate correctly. The output swing corresponds to the total input

range, which is also ±1. The output of the DAC can, therefore, be scaled to any desired

level by cascading the DAC output to the input of an ideal amplifier. The quantisation

model will be used to introduce quantisation error in both an ADC and a DAC.
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Figure 3.10: 3-bit quantisation model output

INL predistortion

INL error, the cumulative effect of the deviations from the ideal conversion transfer func-

tion of an ADA occur because of imperfect component behaviour within the various ADA

architectures. A method of describing a non-ideal curve in order to represent a nonlinear

transfer function generally for an ADA could, therefore, be utilised.

One solution would be to use a lookup table. A lookup table would hold distorted

output values that correspond to each ideal input value. Of course, the drawback of this

approach can immediately be noted — a large computational memory requirement that

increases with the resolution of the system. For example, a 16-bit system corresponds to

a lookup table with 65536 entries! Apart from the computational memory considerations,

entering these values by hand could be quite time-consuming.

A more elegant and less memory-intensive approach would be to employ a curve-fitting

algorithm, such as the cubic spline interpolation function used by the INL predistortion

model. This is achieved by specifying the INL curve shape in the form of a few key co-

ordinate markers taken from the ADA transfer function. These points specify the shape

of the nonlinear transfer function as shown in figure 3.11. The cubic spline interpolation

function is used to calculate the intermediate points. This process is implemented by the

inl.m model that can has the following syntax:

INLOut = inl(IN,x1,y1)

where the arrays x1 and x1 specify the x and y marker co-ordinate points respectively.

The output, INLOut, is the distorted output of the input signal, IN, based on the values
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of x1 and y1.

Figure 3.11 illustrates a s-shaped curve, specified using only five curve markers shown

as small circles on the nonlinear output curve. The MATLAB model requires that the

user specifies as many markers (x and y co-ordinate values) as deemed necessary so that

the interpolated INL curve is a good approximation of the measured INL. The two

endpoints of the INL curve are always specified, and if these are the only markers used,

then a straight line (zero INL) results. For a bow-shaped curve (recall figure 3.7), only

one additional marker is required. The exact point at which these markers lie will vary,

depending on the required degree of deviation from a straight line transfer function. More

complex-shaped INL curves might require more than two markers, although this should

be unlikely.
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Figure 3.11: Transfer function of an ideal and pre-distorted conversion

Glitch impulse

Glitch impulse is a deterministic error in that for any given output transition, a fixed

error will be associated with it. Therefore, glitches are code-dependent errors, and to

calculate the exact amount of glitch for every possible code transition based on an actual

DAC circuit model would be prohibitive for the model suitable for this thesis. Instead,

certain assumptions are made in order to yield a simplified basis on with the glitch model

is based, namely:

1. The glitch magnitude depends only on the last and new quantisation level.
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Figure 3.12: Illustration of negative glitch impulse using a rectangular approximation.

2. The underlying mechanism producing glitch (switching effects, charge injection) are

not important if the effect that the glitch has on the signal is the consideration taken

into account

3. Glitches have a characteristic shape that can be described using a small number of

parameters, namely, a glitch width and height value.

These three points warrant further explanation. In reality, practical glitches depend on

the last and new input code. Therefore, because glitches are code-dependent, they are

not directly related to the quantisation level. Therefore, the first point is a reasonable

assumption, that does not compromise the accuracy of the model in any way since the

glitch impulse would appear to be pseudo-random. Since it is a behavioral glitch model

being considered, the second point is a valid assumption. The last point assumes a

very simplistic glitch shape. In reality, glitches have a much more complex shape as

illustrated by figure 3.13. Most data sheets, however, only take the first major transient

into account when specifying the level of glitch. In order to calculate this level, the glitch

is assumed to be triangular in shape, specified only by a width and height value (Garcia

& LaJeunesse 1995) as shown in figure 3.14 (i). Considering that this is the process used

to measure glitch, it is therefore a reasonable assumption that the modelled glitch output

can be specified by a width and height value. This height and width value in the glitch

model therefore describes a rectangular shaped glitch output as illustrated in figure 3.14

(ii). Figure 3.15 shows the output of the glitch model with the assumption that after

the required low pass filtering in a DAC, the transient effects will show, as illustrated by

figure 3.17.

Because of the nature of the switching mechanisms for the generation of various code

transitions in DACs, both positive and negative glitch impulse errors can occur — this

effect is considered and accommodated for in the glitch model algorithm. An illustration

of negative glitch is shown in figure 3.12. The glitch impulse error is therefore modelled

as a square approximation using both positive and negative height values.
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Figure 3.13: DAC output response showing typical glitch characteristics (adapted from

(Garcia & LaJeunesse 1995)).

In order to generate the random values used to specify the height and width of the

glitch, a hashing function is used which takes in three parameters:

1. The last quantisation value

2. The new quantisation value

3. A seed value

The actual syntax for the hashing function used to generate the glitch height and width

values is given as (van Rooyen 2000)

[w(n), h(n)] = hash(last, x(n), seed)

where the variable last, which can be thought of as x(n-1), and x(n) is the previous

and current output values respectively. The result is a uniformally distributed width and

height value of the associated glitch as a number between 0 and 1, with 0 representing

no glitch and 1 representing maximum glitch width or height. The hashing function is a

deterministic function in that given the same values for last, current and seed value, it will

always return the same width and height (i.e. the same glitch shape). This corresponds

to the deterministic nature of DAC glitches in that they are always the same for the same

transitions. The hashing function also has the convenient property that the way glitches

were allocated to these output transitions seem random — this corresponds directly to

the unpredictable glitch shape in a specific DAC.
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Figure 3.14: Glitch area specified by a height and width value as triangular dimensions

(i) and rectangular dimensions (ii).

The seed value is included so that different DACs in an application can give different

responses, and therefore unique results. This might be useful for monitoring the effects

of mis-matched DACs such as those employed in a quadrature signal systems. The seed

value can also be altered to obtain different output glitch values for different emulation

runs.

The level of glitch impulse error that can occur on the output of a real DAC can

vary between devices, depending on factors such as the sampling rate and architectural

makeup of the device. A DAC that suffers glitch has a worst-case glitch of 1 MSB, which

corresponds to half the total output DAC voltage swing in either direction. The glitch

model assumes an input range of ±1 and can, therefore, add a maximum glitch level of

±1. Therefore, different seed values must be specified in order to represent different DACs

in a system.

In practical DACs, glitch impulse is an analogue-observed effect. Therefore, the glitch

impulse will only occur for a fraction of the DAC output. The output glitch effect can

easily be observed in practice using an oscilloscope on the output of a DAC. In the digital

domain, however, glitch impulse translates to a momentary effect that occurs between

consecutive samples. The problem now is that there are no “filler” samples in-between

in order to represent this glitch impulse. In order to address this problem, the input

sampling rate is increased by an integer factor. With the aid of figure 3.18, this concept
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Figure 3.15: Illustration (using a sinusoidal waveform) of the deterministic property of

the modelled glitch impulse effect. The two cycles of the sinusoid were sampled at exactly

the same points causing identical quantisation level transitions and identical glitches.



Chapter 3 — Component theory and modelling considerations 36

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x 10−4

−0.5

0

0.5

Time [s]

A
m

pl
itu

de
 [V

]

(a)

0 2 4 6 8 10 12

x 104

0

500

1000

1500

2000

2500

Frequency [Hz]

Fo
ur

ie
r m

ag
ni

tu
de

(b)

Figure 3.16: Upsampled signal (a) with the resulting harmonics in the frequency

domain (b)

will be further illustrated. Figure 3.18 (i) shows two samples, a and b. Glitch impulse is an

effect that would occur between samples and in order to represent this effect, the number

of samples is increased as shown by figure 3.18 (ii) for an upsampling rate of six. The

glitch model can now use the intermediate samples to represent the glitch impulse effect,

as shown by figure 3.18 (iii). Note that the glitch width is represented by the number of

samples, which is three in the case of figure 3.18 (iii). The glitch impulse model’s hash

function takes the upsampling rate into account and varies the glitch width in relation

to this number. The upsampling process used here is sufficient in that just repeating the

input sample by an integer amount generates the desired upsampling (zero-order-hold)

harmonics.

This effect is illustrated in figure 3.18(a) which shows an example of a 100kHz wave-

form with a five times upsampling rate. The upsampling function generates the usual

zero-order-hold harmonics (see figure 3.18(b)) that can be expected from practical DAC

outputs. These harmonics are normally removed by the reconstruction filter in practical

setups. It is also important to note that the upsampling rate should be high enough

to include all significant frequency components (including the upsampling harmonics of

interest) below half the Nyquist frequency.

In conclusion to the considerations taken for ADA modelling, it was shown that ADA

will be modelled as a cascade of sub-models. These sub-models include a quantisation

model, INL predistortion and a DAC glitch model. If an ideal ADA is therefore needed,
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Figure 3.17: After low pass filtering the glitch transient effects can be observed

only the quantisation module will be used. But if, for example, a high-speed DAC with

some nonlinear distortion and glitch impulse is required, then the combination of the

three models can be cascaded as illustrated in figure 3.19.

3.5 Amplifiers

An ideal memoryless linear amplifier is one that adheres to the superposition theorem

and can be described by the relationship

vout(t) = Kvi(t) (3.4)

where K is the voltage gain of the amplifier. This results in a straight line output-to-input

characteristic curve.

Practical amplifier output values saturate at some input signal level. Fig. 3.20 (from

(Hjorth & Hvittfedt 2002)) illustrates this effect, as well as other fundamental amplifier

parameters which will be explained further on in the text.

The nonlinear output-to-input characteristic can be described by the Taylor series as

(Couch II 1995):

vout = K0 + K1vi + K2vi
2 + · · ·

∞∑
n=0

Knvi
n (3.5)
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Figure 3.18: Illustration of the requirement to increase the number of samples in order

to represent glitch impulse

where

Kn =
1

n!

(
dnvo

dvi
n

)∣∣∣∣∣
vi=0

(3.6)

By comparing Eq. (3.4) and Eq. (3.5) it can be seen that nonlinear effects start to show

if any Kn terms are nonzero for n > 1. K0 is known as the DC term and K1vi and K2vi
2

are known as the first-order (linear) and second-order (square-law) terms respectively

(Couch II 1995).

3.5.1 Saturation and clipping

Supply voltages and physical limitations set the limit on the maximum output swing of

an amplifier. As stated earlier, this limit is called the saturation point of an amplifier,

and when exceeded results in the waveform being clipped. This clipping in turn results
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Figure 3.19: A DAC can be implemented as the cascade of sub-model building blocks
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Figure 3.20: Charateristics of an amplifier output (adapted from (Hjorth &

Hvittfedt 2002))

in harmonics that spread across the frequency spectrum due to the sharp transitions in

the clipped waveform. Harmonics now appear at multiples of the fundamental frequency

because the clipped waveform starts looking like a square wave. This phenomenon is il-

lustrated in Figure 3.21. Practical amplifiers, however, don’t always saturate at perfectly

symmetrical positive and negative thresholds. The amplifier model should therefore in-

clude this option if it is required by the designer.

3.5.2 1-dB compression point

As saturation starts to occur in an amplifier, the gain starts to deviate from the ideal. The

point at which the actual gain is 1 dB lower than the ideal, is called the 1 dB compression

point (Kenington 2000). The 1 dB compression point gives an approximation of when an



Chapter 3 — Component theory and modelling considerations 40

0 1 2 3

x 10−4

−2

−1

0

1

2
(a)

Time [s]

A
m

pl
itu

de

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10−7

0

50

100

150

200

250

300

350
(b)

Frequency [Hz]

Fo
ur

ie
r m

ag
ni

tu
de

Figure 3.21: Time (a) and frequency (b) plot for a saturated sinusoidal waveform

amplifier’s linearity has been lost, as shown in Figure 3.20. The 1 dB compression point

is related to saturation in that it is approximately at 3 dB above the 1-dB compression

point at which clipping of the waveform begins (Couch II 1995).

3.5.3 Harmonic distortion

By applying a single-tone test signal, vi(t) = A0 sin ω0t, the second-order harmonic dis-

tortion components of an amplifier can be observed. Substituting this signal into the

second-order term of equation 3.5 gives:

K2(A0 sin ω0t)
2 =

K2A0
2

2
(1− cos 2w0t) (3.7)

From equation 3.7 it can be seen that a DC level of K2A0
2

2
is created as well as a

frequency component at double the input frequency with an amplitude of K2A0
2

2
as illus-

trated in Figure 3.22 for an amplifier with a second-order nonlinearity. This leads to the

general expression (Couch II 1995) for single-tone input for a nth order nonlinearity (from

Eq. 3.5) as

vout(t) = v0 + v1 cos(ω0t) + v2 cos(2ω0t) + v3 cos(3ω0t) + ... (3.8)

where vn is the peak amplitude at the frequency n·fin. Equation 3.8 shows that harmonics

occur at integer multiples of the fundamental frequency. Harmonics are always present
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Figure 3.22: Frequency response of an amplifier with a second-order nonlinearity to a

single-tone input
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in an amplifier output and are amplified just like the wanted signal. Harmonics occur as

a result of amplifier nonlinearities. The intensity of the second-order one-tone harmonics

depends on the level on the input signal and this measurement is specified by the one-tone

second-order intercept point(IP1).
2 This is illustrated in Figure 3.20 and it can be seen

that the amplitude of the second-order harmonics increases as the square of the input

signal level. This is as opposed to the amplitude of the fundamental signal that increase

in proportion to the input signal level according to the specified gain.

When the input is a two-tone test signal at frequencies, f1 and f2, then the second-

order nonlinearity acts like a mixer in that it not only produces even harmonics of the

input signals, but also the sum (f1 + f2) and difference (f1 − f2) frequencies. This is

illustrated in Figure 3.23 for an amplifier with a second-order nonlinearity with a two-

tone test signal supplied at the frequencies f1 = 180 Hz and f2 = 200 Hz.

3.5.4 Intermodulation distortion

The intermodulation distortion components of an amplifier are specified by applying a

two-tone input test signal. Probably the most significant of the two-tone products are the

third-order components. equation 3.5 will be used to illustrate why this is so.

If the third-order term of equation 3.5 is evaluated by supplying a two-tone test signal

vi(t) = A1 sin ω1t + A2 sin ω2t, as the input so that

K3vi
3 = K3(A1 sin ω1t + A2 sin ω2t)

3 (3.9)

Expanding equation 3.9 will reveal not only the expected harmonic distortion terms

but also cross-product terms. The most important of these cross-product terms are those

with frequencies at the points 2f2−f1 and 2f1−f2. This is because these intermodulation

(IM) terms could pose serious problems in a system, since the closer f1 and f2 are,

the closer these difference IM terms will be to the desired frequencies in the passband.

The spectrum for a two-tone test signal (at the frequencies f1 = 180 Hz and f2 = 200

Hz) passed through an amplifier with only a third-order nonlinearity is illustrated in

Figure 3.24. Here the problematic in-band frequency components at 2f1−f2 and 2f2−f1

as well as the other less significant IM products can be seen.

In practical amplifier design in general, the presence of these IM products are unavoid-

able, and it is therefore important that the level of these third-order products be kept

to a minimum. This can be done by ensuring that the input signal level stays below a

specified level given by the amplifier’s third-order intercept point. Another option is the

use of advanced amplifier linearisation techniques (Kenington 2000).

2The intercept point may be quoted as either an input (for receiver front-ends) or output (for power
amplifiers) and is specified as a power (dBm) (Kenington 2000)
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Figure 3.24: Original signal spectrum (a) with the resulting spectrum when passed

through an amplifier with a third-order nonlinearity (b)

As with the wanted signal, the third-order products are amplified and the third-order

intercept point (IP2) specifies the level of the two-tone third-order harmonics for a given

input signal level.3 This would indicate, for example, what the maximum input should

be (usually specified in dBs) to ensure that the third-order IMD products are to be kept

below a certain desired level. A common measurement of IMD is performed by taking

the ratio of the highest IM product to the amplitude of one of the two (equal valued) test

tones (Kenington 2000).

In general, the distortion terms created for any order two-tone nonlinearity can be

determined by the following relationship (Kenington 2000):

fIMP = m · f1 ± n · f2 (3.10)

where m, n = 1,2,3. . . and fIMP is the frequency of the IM product. The sum of m and n

is the order of distortion. If the above third-order distortion components were taken, for

example, where f1 = 180Hz and f2 = 200Hz, then the IM frequencies can be calculated

according to Table 3.1

3As with the one-tone second order harmonics, the intercept point is actually a fictitious point obtained
by extrapolating the linear regions of the fundamental curve and, in this case, the IMD curve until the
point at which they intersect.
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Table 3.1: Calculation of the third-order IM terms

m·f1 n·f2 m + n Resultant frequencies

0·f1 3·f2 3 3f2

3·f1 0·f2 3 3f1

2·f1 1·f2 3 2f1+f2 and 2f1-f2

1·f1 2·f2 3 f1-2f2 and f1+2f2

The frequency components calculated in Table 3.1 can once again be observed in

Figure 3.24

3.5.5 Amplifier modelling considerations

General considerations

In order for an amplifier model to function in the emulator, certain criteria had to be

set. These include simplicity, computational efficiency and model extensibility (being

able to upgrade the model without completely rebuilding it). Previous amplifier models

studied had the advantage of a buffered set of data points which simplified the modelling

considerably (Hjorth & Hvittfedt 2002). In the case of the emulator, data will arrive on

a sample-by-sample basis, and a review of appropriate amplifier models for this purpose

will be looked at next, based on the work done by Kenington (Kenington 2000).

Unless stated otherwise, the following models are all bandpass memoryless nonlinear

models. This means that only the analysis of the signals in a certain band (first harmonic

region) is considered and that no feedback is taken into account.

The Taylor expansion in equation 3.5 was useful for mathematical modelling, but its

practical value is limited since it only shows the amplitude information of an amplifier’s

nonlinearity.

Both amplitude and phase nonlinearity, respectively called AM-AM and AM-PM con-

version, are a more useful and important measurements of amplifier performance. Linear

modulation schemes such as quadrature amplitude modulation (QAM) and quadrature

phase shift keying (QPSK), in which the data is transmitted using both amplitude and

phase variation in the RF signal, could be employed in a SDR configuration. These

modulation schemes will require a suitable model to represent both amplitude and phase

response and it is for this reason that a modification of the Taylor series in equation 3.5

is used.

This is achieved by using two Taylor series: one representing the I channel informa-

tion and another series for the 90◦ phase-shifted Q channel information. This model is

now called a Quadrature Taylor series amplifier model and is illustrated in figure 3.25



Chapter 3 — Component theory and modelling considerations 45

I Channel
Taylor series

Q Channel
Taylor series90o

RFin RFout

Figure 3.25: Quadrature Taylor series amplifier model (Kenington 2000)

(Kenington 2000).

The I and Q channel Taylor series are respectively (Kenington 2000)

VI = kI + aIVin + bIVin2 + cIVin3 + dIVin4 + · · · (3.11)

VQ = kQ + aQVin + bQVin2 + cQVin3 + dQVin4 + · · · (3.12)

where kI and kQ are DC offset terms. In an amplifier without phase shift error, the Q

coefficients would be zero.

The feature of the quadrature Taylor series amplifier model is the simplicity and

relative accuracy of the analytical functions used to model the nonlinear response of an

amplifier (Kenington 2000). Another advantage of the quadrature Taylor model is that

the relative level of each distortion component can be observed just by looking at the

coefficients of each series. It is the order of these coefficients that determine the accuracy

of the model — the more polynomial coefficients supplied, the more accurate the model.

A drawback of the quadrature Taylor model is its inability to accurately represent the 1

dB compression point (Kenington 2000). This is not to much of a problem in the emulator

since a separate saturation function can be inserted after the amplifier output.

In the pursuit of a suitable amplifier model, more complex models such as polar and

cartesian types can be used at the expense of complexity and the requirement for ac-

curately measured amplifier data (Kenington 2000). Like the Taylor series model, the

Saleh model is an approximate form of the more complex polar and cartesian models

(Kenington 2000). Although the Saleh model is based upon a single equation, this sim-

plification results in its inability to track a highly nonlinear response (such as in a class-C

amplifier response).

The choice of using the quadrature Taylor series model for amplifier modelling in the

emulator was driven mostly by the relative simplicity of implementing the model, since

the only parameters needed are the Taylor coefficients.

A consideration that affects all amplifiers is frequency response. This effect can be

modelled by including feedback in the model. A Volterra series (Kenington 2000) is a
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Figure 3.26: Class-A amplifier I (a) and Q channel (b) response for a 7th order

quadrature Taylor series amplifier

modification of the Taylor series to include memory — this in turn also gives rise to

increasingly complex equations. In order to retain a relative degree of simplicity, the

bandwidth of a given amplifier can be modelled by coupling a filter to the amplifier’s

input.

In order to develop a working prototype model of the quadrature Taylor series am-

plifier, some development work was done in MATLAB. The syntax used to describe the

Taylor model is written as:

Y = Taylor(X,I,Q)

The operation of the model is simply a direct interpretation of equations 3.11 and 3.12.

The I and Q vectors represent the I channel and Q channel Taylor coefficients respectively.

The output, Y, gives the amplitude and phase response of the amplifier for the input vector

X. For the case, however, where only the amplitude response is required, the function only

needs the I channel Taylor coefficients.

The amplifier model was tested using seventh-order I and Q-channel coefficients that

were obtained from (Kenington 2000), which is that of a 900-MHz 40 W class A amplifier.

The I and Q channel response is shown in Fig. 3.26, which clearly shows the nonlinear

transfer function for both channels.

For the Fig. 3.26 plot, there was the convenience of using Taylor coefficients at hand.

The ideal requirement, however, is to find a suitable relationship between the harmonic

data supplied by manufactures amplifier data sheets and the corresponding Taylor coeffi-

cients. For the purpose of this thesis, this rule for converting the data sheet harmonics to
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their Taylor coefficients will be illustrated for a general third-order Taylor series. Recall

from equation 3.5 that a third-order Taylor series can be written as

vout = K0 + K1vi + K2vi
2 + K3vi

3 (3.13)

where vout is the output signal. Kn is the Taylor coefficients and vi is the input signal.

Let the input test tone, vi, be represented by

vi = cos(ωmt) (3.14)

then substituting vi into equation 3.13 yields

vout =

h0︷ ︸︸ ︷
K0 +

K2

2
+

h1︷ ︸︸ ︷
K1 cos(ωmt) +

3K3

4
cos(ωmt) +

h2︷ ︸︸ ︷
K2

2
cos(2ωmt) +

h3︷ ︸︸ ︷
K3

4
cos(3ωmt)(3.15)

From equation 3.15 it can be seen that the relating harmonics are

• h0 = K0 + K2

2

• h1 = K1 + 3K3

4

• h2 = K2

2

• h3 = K3

4

We want to find out how the harmonics are related to the Taylor coefficients which means

that the Taylor coefficients must be made the subject of the formula. Therefore, making

Kn the subject of the formula as a function of the harmonics gives

• K0 = h0 − h2

• K1 = h1 − 3h3

• K2 = 2h2

• K3 = 4h3

In other words, K0, the DC component of the Taylor series, is calculated as the amplitude

of the harmonic h0 (DC) minus the amplitude of the second harmonic, h2. The example

above was illustrated for only a 4th-order harmonics series but typical Taylor amplifiers

harmonics responses could contain lengths much greater than this. Higher-order Taylor

series can, however, be solved in a similar way. This can be achieved by obtaining the

general formula for equation 3.15 and solving the resulting simultaneous equations. An

appropriate method (e.g. Cramer’s method (WEISSTEIN, E.W 2003)) can then be used

to solve the simultaneous equations.
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Saturation

In order to implement a saturation modelling block in an amplifier, a threshold value

is required. At the lower implementation level, the specified saturation value will be

interpreted directly by the model. Stated otherwise, if a saturation level of 0.5 is specified

(recall figure 3.21) then all values exceeding this threshold will be clipped off at the

threshold value. Therefore, although saturation occurs gradually in practical amplifiers,

the threshold values for the saturation model will define hard limits.

A suggestion for specifying saturation at a higher level in amplifiers is by obtaining the

threshold value from the 1-dB compression point (usually found in manufacturing data

sheets). The threshold value can be taken 3 dB above this point since this gives a good

idea as to where saturation occurs (Hjorth & Hvittfedt 2002). This idea for converting

the 1-dB compression point to a threshold value at a higher programming level, as well

as the saturation flow diagram is shown in figure 3.27. The syntax used that describes

the implementation of the saturation model is given as

y = saturate(x,k)

where the output y is the result of the input signal, x, saturated at the threshold limits,

±k. The model proposed here is for a single threshold saturation value. This assumes

that the saturation occuring will always be symmetrical. In practical amplifiers, this is

not always the case, as was stated earlier. Accomodating two separate saturation levels

is simply a matter of a small modification to the amplifier model saturation algorithm.

Therefore, if this property of non-symmetrical saturation is required, the designer can

quite easily accomodate this with a slight modification of the amplifier code.

Noise

The noise contributed by an amplifier can be implemented by summing the amplifiers

output to that of the AWGN noise model as explained in section 3.3 on page 18.

Amplification

The amplifier gain is specified by the coefficient of the first-order (linear) term of the

Taylor series as in equation 3.5. Stated otherwise, only the second term of the I channel

Taylor series would contain a gain constant and all remaining terms are zero. For an ideal

amplifier, therefore, this is the only coefficient required.

3.6 Mixers

The cost of high-sampling data converters in a software radio can become quite prohibitive

if the data converter were to sample directly at the RF signal. Instead, analogue frequency
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Figure 3.27: Flowchart of saturation algorithm

up and downconversion is still used to translate the desired signal to a frequency that

is more suitable for the use of cost-effective data converters. In order to perform this

frequency translation, some type of mixer is used. Mixer theory is a comprehensively

covered and well-understood area documented by a number of texts (Egan 2000, Kroupa

1973, Couch II 1995, Rhode & Whitaker 2001) and it is not the purpose of this thesis to

pursue this area in detail. An ideal mixer is one that performs the mathematical time-

domain multiplication of two input signals (Couch II 1995). A typical downconversion

mixer consists of two input ports (RF, LO) and a single output port (IF). In the ideal

case when two input signals, f1 and f2 are mixed, only sum and difference frequencies

appear on the output according to the trigonometric relationship

cos(ω1t) cos(ω2t) =
1

2
[cos(ω1 + ω2)t + cos(ω1 − ω2)t] (3.16)

In the case of the downconversion mixer, subsequent filtering is performed in order to

select the downconverted (f1 − f2) IF frequency. An interesting point to note is that

unlike the analogue mixing process, digital mixing is near ideal and produces only the

sum and difference frequencies (Hosking 1998).

Although many alternative methods exist (Couch II 1995), the nonlinear transfer

characteristic of a device (e.g. a diode) is often used in mixers to obtain the desired

frequency components in equation 3.16. Practical mixer circuits also generate unwanted

(spurious) frequency components (including the desired signals described by equation

3.16) called intermodulation products. There are two types of intermodulation products

(Faria & Svensen 1995):
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Figure 3.28: A double balanced mixer circuit (adapted from (Hjorth & Hvittfedt 2002))

• Single-tone: where the mixer consists of a single input signal plus the LO.

• Multi-tone: where more than one input signal to the mixer (and the LO) is used.

The single-tone IM components can be described as (Faria & Svensen 1995)

fout = |nfLO ±mfRF | (3.17)

where m and n in Eq. (3.17) are integers (0, 1, 2, 3 . . .). The output signal for the mixer

is fout. The signals fLO and fRF are the LO and RF frequencies respectively. Of course,

for upmixing, the input to a mixer can be either a RF or a IF signal, but without any

loss of generality, the RF signal will be used in this analysis. The output for multi-tone

IM products can be described as (Faria & Svensen 1995)

fout =
∣∣∣(±n1fRF1

± n2fRF2
± n3fRF3

. . .±mfLO
∣∣∣ (3.18)

where n1, n2, n3 and m all are integer values from zero upwards.

Many types of mixers exist on the market today and can be broadly categorised as

either passive or active mixers. Although active mixers have the desired property of gain,

passive mixers are still very popular due to their simplicity and reliability at high and

very high frequencies (Kroupa 1973). In order to gain an understanding of the kind of

non-ideal effects that the practical mixing process yields, this study will fall on passive

mixers and, in particular, the double-balanced diode mixer as shown in figure 3.28 (Hjorth

& Hvittfedt 2002).

The double-balanced mixer is a good example of a general mixer used in practice,

and is both inexpensive and offers excellent performance (Couch II 1995). For modelling

considerations, both standard and quadrature modes will be investigated. After all, a

quadrature mixer is essentially made up of two standard mixing stages. Only the quadra-

ture mixer model will, however, be employed in the final test setup, but, for completeness,

methods of modelling a standard mixer will be presented as well.
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The input RF signal level to the double-balanced mixer is small compared to that of

the input level of the LO signal. The high LO drive signal in fact turns the diodes on and

off so that they act like switches. This, consequently, causes the LO signal to take the

form of a square wave switching function that can be described by the Fourier expansion

of a square wave (with unity amplitude) as (Miller 2001):

VLO =
4

π

∞∑
n=1,3,5,···

1

n
sin(nωLOt) (3.19)

The mixing processes of the double balanced mixer is called bi-phased modulation and

can be mathematically represented by the product of the input RF signal, VRF sin(ωRF t)

and the LO signal described by equation. (3.19) to give the output mixer voltage as

(Hjorth & Hvittfedt 2002)

Vout = VRF sin(ωRF t)
4

π

∞∑
n=1,3,5···

1

n
sin(nωLOt) (3.20)

Equation 3.20 shows that the double-balanced mixer is designed to cancel out the even

harmonics of the RF and LO frequency and, as a result, has very little spurious response

(Rhode & Whitaker 2001). This is because n in equation 3.17 is now of an odd order so

that n = 1, 3, 5, . . .

These unwanted spurious signals must be identified and modelled correctly in order to

accurately represent the response of a practical mixer for the emulator. Key parameters

that classify the performance of a mixer are given next.

3.6.1 Conversion gain and loss

Conversion gain and loss are indications to which degree the frequency-shifted signal is

amplified (in the case of an active device) or attenuated (for a passive device). This study

will focus on passive mixers4 and therefore conversion loss is applicable here since it is

the double-balanced diode that will be looked at. Conversion loss can be defined as the

input power of a mixer divided by its output power such that(Kroupa 1973):

Lmin =
RFin
IFout

(3.21)

In a generalised ideal linear mixer where no IM products (i.e. for equation 3.20 n=1) and

no losses occur, the theoretical IF signal level for a double-balanced diode mixer can be

calculated as

Vout = VRF sin(ωRFt)
4

π
sin(ωLOt) (3.22)

4For a table comparing the merits of passive and active mixers, the reader is referred to p. 358 of
(Rhode & Whitaker 2001).
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= VRF
4

π
[sin(ωRFt) sin(ωLOt)] (3.23)

=
4VRF

π
· 1

2
{cos[(ωLO − ωRF)t]− cos[(ωLO + ωRF)t]} (3.24)

The resulting IF voltage is thus

VIF =
4VRF

π
· 1

2
=

2VRF
π

(3.25)

From Eq. (3.21) the ideal conversion loss (sometimes called single sideband conversion

loss and expressed in dBs) can be written as

Lmin = 20 log
VRF
VIF

= 20 log
π

2
= 3.92dB (3.26)

In practical mixers, however, insertion loss from various loss components (e.g. transform-

ers, diode resistance losses) are accounted for when a given value of conversion loss is

specified for non-ideal mixers (Couch II 1995).

3.6.2 Noise figure

Noise contributed by a practical mixer will always be added to the frequency-shifted

signal. Ideally, the noise figure of a mixer should be equal to the result of equation 3.26

to yield of value of 3.92 dB. In practice, however, this figure of 3.92 dB normally higher

which in-turn results in an increased noise figure (NF). One aspect of mixer noise, that’s

interesting to note, is the noise figure’s dependency on the LO drive level as shown in

figure 3.29 (Rhode & Whitaker 2001).

3.6.3 Conversion compression point

The 1dB compression point, P1dB, for a mixer is an indication of the point at which the

mixer output(IF) amplitude has fallen 1dB below the expect value. This compression

occurs when the mixers amplitude response becomes nonlinear when a certain input level

is exceeded. For a double-balanced mixer, the P1dB point is typically 3dB below the LO

power (Rhode & Whitaker 2001).

3.6.4 Harmonic intermodulation products

The spurious products harmonically related to the input signals fRF and fLO are called

the harmonic intermodulation products (HIP) (Rhode & Whitaker 2001). IM distortion is

the most severe problem associated with mixers, since they can interfere with the desired

signal if they lie in the IF passband.
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Figure 3.29: Noise Figure versus LO power for a generic diode double-balanced mixer

(adapted from (Rhode & Whitaker 2001))

Table 3.2: Typical performance figures for a passive mixer (f = 900MHz)(Rhode &

Whitaker 2001)

Parameter Typical value

Conversion gain −10 dB

IP3 (input) +15 dBm

LO power +10 dBm

P1dB(input) +3 dBm

The IM distortion products appear due to the way mixer input signals interact with

each other, and is defined according to equation 3.17. The associated IM distortion levels

are specified with an (input or output) nth order intercept point. The third and the fifth

order intercept points (i.e. IP3 and IP5 respectively) are commonly used to characterise

these non-ideal effects (Rhode & Whitaker 2001).

Typical values for a passive mixer that take into account conversion gain, IP3, LO

power and P1dB are shown in table 3.2 (Rhode & Whitaker 2001).

3.6.5 Interport isolation

The interport isolation (also known as port-to-port isolation), Rip, is a measure of the

amount of leakage between any two given ports of a mixer. The strongest signal in a

mixer output is normally the LO signal — this can be attributed to the high LO drive
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level as well as the poor Rip between the LO and IF ports (Hjorth & Hvittfedt 2002).

3.6.6 Quadrature mixers

Mixers are conventionally used as single devices and are often cascaded to form n mixing

stages if needed. In some applications there is a requirement to translate two frequencies

by the same frequency shift, simultaneously. A device used to achieve this is called a

quadrature mixer.

A quadrature mixer uses two mixing stages to frequency translate an I (in-phase) and

Q (quadrature-phase) signal to the desired output frequency. A functional block diagram

of a quadrature mixer (within the dashed enclosure) is shown in figure 3.30. Figure 3.30

also shows a DAC and a LPF on the input of each channel to the quadrature mixer.

This would be a typical setup for when the quadrature mixer is employed to up-translate

the input signals to a desired frequency, specified by the LO frequency. The I and Q

signals, in this case, are typically generated from a digital system. The DACs are used

to bring the digital signal over to the analogue domain, after which, the LPFs are used

to filter out the DACs zero-order-hold harmonics. It will be shown later that these two

components, the DAC and LPF, play are major role in ensuring the spectral purity of the

frequency-translated signal.

The I and Q baseband input signals are ideally of equal amplitude and the Q input

channel ideally lags the I input channel by precisely 90◦. The quadrature mixer then

generates the product of I(t) and Q(t) with WI(t) and WQ(t) respectively. Typically, WI(t)

and WQ(t) are sinusoidal waveforms in which WQ(t) has an ideal phase lag of 90◦ with

respect to WI(t). Subsequent to the mixing stages, the baseband signals are translated to

the carrier frequency. The last stage subtracts the Q channel output from the I channel

output to produce, y(t), the desired RF output.

Quadrature mixers can be used for alias-free frequency translation — that is, in an

ideal quadrature mixer, only the single sideband of the translated single is produced. A

typical application of quadrature mixing is in complex-valued modulation and demodu-

lation schemes. For a software radio that employs quadrature mixing, it is important to

study the effects that this type of mixer will have on the signal.

If the input is taken as a cosine waveform on the I channel input as cos ωst and with

an ideal 90◦ phase lag and the input on the Q channel is a sinusoidal waveform, sin ωst,

then the following equation (interpreted directly from figure 3.30) confirms the upmixing

process in figure 3.30 (van Rooyen 2000):

cos ωct · cos ωst− sin ωct · sin ωst = cos(ωc + ωs)t (3.27)

Equation (3.27) represents the ideal output of a quadrature mixer, which in this case is

an upmixed component that lies at the sum of the carrier frequency and the baseband
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Figure 3.30: Illustration of a quadrature mixer block diagram, showing the positions of

the DAC and LPF for each channel

signal frequency. It will be shown later that this setup (that of generating only a single

frequency using a cosine and sinusoidal input) will be used in chapter 5 as a benchmark

signal to compare outputs of a real system and an emulated system.

Of course, in a real system, a quadrature mixer is a practical device that inherently

exhibits non-idealities of its own. In a typical quadrature mixer, the following non-ideal

effects result in distortion of the output signal (van Rooyen 2000):

• I and Q signal amplitude mismatch

• DC offset on I and Q inputs

• Local oscillator leakthrough

• I and Q phase error

These effects can be compensated for in practice (van Rooyen 2000), but in order to ob-

tain a practical model that generates these non-ideal effects, these quadrature inaccuracies

must be taken into account. For this thesis, a quadrature mixer will be modelled that will

represent these non-ideal effects. We will take a brief look at what causes these inaccura-

cies as well as the result of these quadrature imperfections in the frequency domain.5 The

basic quadrature impairment overview presented here will be adequate to use in order to

obtain a good interpretation of the outcomes in the hardware test setup in chapter 5.

5For an in-depth analysis on the effects of quadrature mixing inaccuracies (as well as digital compen-
sation techniques) the reader is referred to Van Rooyen (2000) (van Rooyen 2000).
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Amplitude Imbalance

The incoming I and Q signals to a quadrature mixer should ideally be perfectly matched

in amplitude — this is not always the case and in a practical system, some amplitude

deviation effects could be present. The cause of amplitude imbalance for I and Q sig-

nals can normally be attributed to mismatched DACs, poorly matched LPF amplitude

responses in the passband or, in certain cases, imperfect quadrature mixing stages where

the amplitude of WI(t) and WQ(t) are not equally matched (van Rooyen 2000). The I

and Q amplitude deviations can be represented as

I(t) = (A + β) cos φ(t) (3.28)

Q(t) = A sin φ(t) (3.29)

respectively and regardless of where the amplitude indifferences occur within the system,

the RF output can always be written as (van Rooyen 2000):

y(t) = (A + β) cos φ(t) · cos ωct− A sin φ(t) · sin ωct (3.30)

The actual error signal can be observed when eq. (3.30) is re-written as

y(t) =

wanted RF upmixed signal︷ ︸︸ ︷
A cos φ(t) · cos ωct− A sin φ(t) · sin ωct +

error signal︷ ︸︸ ︷
β cos φ(t) · cos ωct (3.31)

Expanding the error signal yields

β

2
cos[ωct− φ(t)] +

β

2
cos[ωct + φ(t)] (3.32)

which shows two components exist at the frequencies ±ωc with amplitudes of β
2

in the time

domain. In the frequency domain, it can be shown that amplitude deviations therefore

cause a spurious frequency to occur at ωc − φ̇(t) and at ωc + φ̇(t) with an amplitude of
β
4

(van Rooyen 2000). This error signal is symmetrical about the carrier frequency and

the component at ωc + φ̇(t) is added (either constructively or destructively depending on

the sign of β) to the desired component. The spurious free dynamic range, the ratio of

the desired signal to that of the largest spurious component, can be calculated using (van

Rooyen 2000)

SFDRβ = 20 log

(
2A + β

|β|

)
dB (3.33)
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DC offset and LO leakthrough

For an ideal I and Q signal, no DC offset exists, but because real world problems can

come into play, an I and Q channel DC offset could be present. This DC offset could

be the consequence of DAC non-idealities (van Rooyen 2000). In the practical mixing

stages of a quadrature mixer, it is quite possible that LO leakthrough can occur through

imperfections in this mixing stage. Finite interport isolation could also contribute to LO

leakthrough. The mathematical illustration and consequence of DC offset can be illus-

trated as was done for amplitude deviations. However, in order to prevent side-tracking

into too much mathematical derivation theory, the result of DC offset is ultimately what

is required. An important point to note is that DC offset and LO leakthrough produce

the same result (van Rooyen 2000) — a spurious signal of constant amplitude added at

the carrier frequency. If the amount of DC offset is represented by ρ and the amplitude

of the signal is represented by A, then the SFDR can be calculated as (van Rooyen 2000)

SFDRρ = 20 log

(
A

ρ

)
(3.34)

The magnitude of the DC artifact can be shown to be 1
2
ρ (van Rooyen 2000).

Phase angle error

Quadrature signals are expected to have a perfect 90◦ (π
2
) phase shift between each other.

The same goes for the I and Q carrier frequencies. Phase error can, however, occur in

practical systems. One of the possible sources of such phase error could be unmatched

phase responses in the passband of the LPFs used after the DACs (van Rooyen 2000).

An interesting finding is that the spectral result of the output (with amplitude A) with

phase angle error (α radians) is similar to the error produced by amplitude deviations —

the only difference being the phase of error signal (van Rooyen 2000). A phase angle error

results in a spurious component symmetrical around the carrier frequency with magnitude
A·α
4

for which the SFDR can be calculated as (van Rooyen 2000):

SFDRα = 20 log

(√
α2 + 4

|α|

)
(3.35)

The individual quadrature impairments have been briefly touched on and the resulting

consequences in the frequency domain were highlighted. In a practical system, the com-

bined effects of these quadrature inaccuracies can occur. This is an important point since

quadrature impairments, individually, are relatively easy to calculate. When the quadra-

ture impairments are combined, however, it becomes difficult to mathematically predict

their effects on the modulated/demodulated signals. In this regard, the emulation of

these effects is a valuable tool for analysis. Therefore, chapter 5 will demonstrate these
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effects by analysing the impairments individually in the test system, in order to gain an

understanding of the error contributed by each impairment.

Modelling consideration will be given next for both standard and quadrature mixers.

Considering that the theory on standard mixers was presented first, the order will begin

with standard mixer modelling considerations, followed by quadrature mixer modelling.

3.6.7 Mixer modelling considerations

General considerations

The mixer theory presented in section 3.6 showed that practical mixers generate a host of

distortions. These unwanted effects include conversion gain errors, the addition of noise

as well the generation of spurious IM frequencies. To obtain the spectral components of

an ideal mixer requires just the multiplication of the RF and LO signal. This would be a

straightforward implementation. What is needed, however, is a method for predicting the

IM terms and its suppression and spectral position with respect to the given input signal

frequency components (RF and LO) and their respective power levels. The remaining

inaccuracies such as noise will be introduced by using the AWGN model illustrated in

section 3.3.1. Conversion gain errors can be represented simply by using an ideal ampli-

fier module with a specified attenuation factor. The generation of the mixer IM terms,

however, calls for some further investigation. It must be stated upfront that a standard

mixer will not be employed in the final emulated test system. A method for obtaining

the necessary mixer modelling data and translating it to something useful to model a

standard mixer is, however, proposed and is presented next.

Essentially, what is required in order to achieve this is a way of predicating the mixer

IM components described by equation 3.17. Studies have shown that a practical and

effective way of representing these IM products in a mixer model is by utilising what

is known as an intermodulation table (IMT) (Faria & Svensen 1995). The IM products

for mixer modelling considerations will only represent that of single-tone IM products

(equation 3.17) since multi-tone intermodulation is beyond the scope of the thesis. IMTs

represent the mixer IM output components. Every mixer has its own unique IMT.

A segment of an IMT is shown in figure 3.31 for illustration. The IMT segment contains

some of the more predominant IM entries from the complete IMT. The remainder of the

entries are relatively insignificant. The IM values in the table were generated with a

signal level of −10 dBm and a LO level of 7 dBm (Faria & Svensen 1995). IMTs can

be obtained from manufacturing product charts, (Hjorth & Hvittfedt 2002) but for best

results it is recommended that the IMT files be constructed from mixer output spectral

measurements (Faria & Svensen 1995).

The IMT in figure 3.31 represents the mixer IM product levels based on given local
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Figure 3.31: Illustration of a typical intermodulation table (values adapted from (Faria

& Svensen 1995))

oscillator and input signal frequencies and powers. The resultant output signals are then

a direct mapping of each input signal with respect to each LO signal. The IMT can

therefore be interpreted as follows (Faria & Svensen 1995):

• Each entry is the amplitude relative to the desired frequency translated mixer out-

put. Amplitude levels are specified in dBc which is relative to the mixer output

power at the fundamental frequency.

• The harmonic number of the LO signal is represented by the horizontal row (n) of

integers.

• The harmonic number of the input signal is represented by the vertical column (m)

of integers.

• The item at position m = n = 1, which in this case is zero, corresponds to the

fundamental signal, which could be either the sum or difference frequency.

For example, if the entry at column n = 2 and row m = 3, is taken (with an input

signal of −10 dBm and a LO signal at 7 dBm), the following interpretations can be made.

Investigation of figure 3.31 shows that there will be (from equation 3.17) an IM product

at the frequency point 2 · fLO ± 3 · fRF with a power level of 67 dB below the sum or

difference signal frequency. In other words, this IM component is suppressed by 67 dB

with respect to the fundamental frequency.

It is important to note that the IMT file only applies for a specific power level for both

the LO signal and the input signal. Interpolation can, however, be performed to determine

the new IMT elements for different input power signal levels (Faria & Svensen 1995).

What is required now is a way to translate this information from the IMT into some-

thing useful that can be modelled to represent the mixer IM components. An interesting
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Figure 3.32: A mixer described by a perfectly singular IMT matrix can be modelled as

only the ideal product of two Taylor amplifiers

observation is made when the entries in figure 3.31 are converted from dBs to absolute

power levels. Close inspection of the IMT in this form reveals that the rows tend to be

multiples of each other. The same trend can be observed for the columns of the IMT. This

indicates that there is large degree of linear dependency between the rows and columns

of the IMT - stated otherwise, the IMT matrix is close to singular.

For the IMT matrix in figure 3.31 to be completely singular, the entire range of rows

and columns must have an exact linear relationship. An IMT matrix that is completely

singular can always be written as the product of two vectors. For the purpose of mixer

modelling, this concept makes it possible to model a practical mixer as the product of

two non-ideal (Taylor) amplifiers as illustrated in figure 3.32. Of course, the series of

harmonics described by the two arrays need to be converted to equivalent Taylor series

coefficients for this type of mixer model to be realised.

In practical cases, however, IMT matrices are rarely perfectly singular and a technique

is needed to address this type of condition. A linear algebraic method known as singular

value decomposition (SVD) can be used to best approximate a non-singular matrix into

the product of two vectors. SVD separates a N × N matrix into N vector products so

that the sum of these vector products result in exactly the original product. If the matrix

is close to singular then some of these vector pairs will dominate and the rest of the

vector pairs will only make subtle differences to the original matrix. In the case where

the matrix is extremely close to being singular, only the product of the first vector pair

could be required to approximate the original matrix.

SVD divides a matrix, B, with N rows and M columns so that

BN ·M = UN ·N · SN ·M · V T
M ·M (3.36)



Chapter 3 — Component theory and modelling considerations 61

where S (with the same dimensions as B) is a matrix that contains eigenvalues along the

diagonal (arranged in descending order) and zero elsewhere. A completely singular matrix

has just a single eigenvalue (at position S(1,1) in the matrix) with the rest of the entries

equal to zero. For matrices that are non-singular, the magnitude of the eigenvalues in

the diagonal gives an indication of how significant the corresponding vector pair is. If the

first eigenvalue is an order larger in magnitude than the rest in the diagonal, then the

matrix can be approximated well by multiplying the first column of U by the dominant

eigenvalue, S(1,1). The result of this product must be further multiplied by the transpose

of the first column of V in order to yield the approximated original matrix. If the first

eigenvalue is not dominant, however, then sums of the vector pairs should be taken in

order to better approximate the original matrix.

In order to further interpret this information for mixer modelling, the values in the

vectors of the U and V matrices of the decomposed IMT can be seen as the output

harmonics of the amplifier which still needs to be converted to equivalent Taylor series

coefficients. Note that it is the convolution of these amplifier harmonics that produces

the intermodulation components. The S matrix eigenvalues gives an indication of the

signification of the columns of U and V . For the case where the first eigenvalue is orders

of magnitude larger than the remaining eigenvalues, the mixer model can be approximated

using two vector pairs converted to equivalent Taylor series coefficients (recall figure 3.32).

The accuracy of the IMT mixer model can be improved by linking remaining vector pairs

as needed as illustrated in figure 3.33. The addition of further vectors pairs improves the

accuracy at the expense of computational speed.

The actual process of converting the harmonics to equivalent Taylor series coefficients

requires finding the relationship between the vector harmonics of the decomposed IMT

and its corresponding Taylor coefficients. Recall that this process was illustrated for a

general third-order Taylor series (which corresponds to a four element IMT vector) in

section 3.13 on amplifier modelling. The example illustrated only a 4th-order harmonic

series, but typical IMT vector pairs could contain lengths much greater than this (typically

15 harmonics per series (Faria & Svensen 1995)).

The obtained Taylor coefficients can now be directly substituted into the Taylor am-

plifier series was shown in figure 3.32. Depending on the respective weighting of the

eigenvalues, additional vector pairs should be added if an increase in accuracy is required

using the technique described by figure 3.33.

In order to verify the operation of the mixer model using an IMT described by the

product of Taylor amplifiers, an experiment was performed. The input signal to the

mixer model used was a single-tone signal at 100 Hz with a power level (specified by the

IMT) of −10 dBm (Faria & Svensen 1995). The LO signal was set at 500 Hz, also with

power specified by the IMT as 7 dBm. A sampling frequency of 3kHz was used. For
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Figure 3.33: Cascaded mixer model to improve the accuracy of IM component

representation

the mixer model, however, only a section of the IMT from figure 3.31 was taken and the

IMT reduced to a four by four matrix as shown in figure 3.35. This was done in order

to simplify the operation of calculating the relationships between higher-order harmonics

and their equivalent Taylor coefficients. This simplification, however, does not interfere

with final mixer model and only means that fewer IM products are represented. Recall

from figure 3.33 that the mixer output level precision could be increased (in the case

where the IMT matrix is not singular) by summing more vector pairs modelled as the

product of Taylor amplifiers. At this point it is important to highlight and distinguish

the two types of approximations presented for the mixer modelling considerations:

1. Firstly, the number of IM mixer harmonics generated by the mixer model is pro-

portional to the size of the IMT used. Therefore, for a reduced IMT there will be

less Taylor terms and therefore fewer IM products will be generated.

2. The output level resolution of the IM harmonics is directly dependent on the number

cascaded Taylor amplifier pairs used (provided that the IMT matrix is non-singular).

The spectral output for the mixer model (described by the IMT in figure 3.35) approx-

imated as the product of a single vector pair (recall from figure 3.32) is shown in figure

3.34.
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Figure 3.34: Output of the mixer model using a single Taylor amplifier pair

From the IMT in figure 3.35 we should expect the fundamental signal to be the largest

component in the frequency plot, which is precisely what we observe. Taking a random

entry, the IMT in figure 3.35 also indicates that a component 39 dB below the fundamental

signal at a frequency of 500 Hz (1 ·FLO) should be present. This is clearly the case looking

at figure 3.34 and was measured at exactly 38.9 dB below the fundamental frequency. This

high degree of accuracy can be attributed to the dominance of the first eigenvalue in the

S matrix of the decomposed IMT.

Therefore, upon adding a second Taylor pair, there should not be a vast improvement

in the spectral output as shown by figure 3.36. The 500 Hz component is now suppressed

at exactly 39 dB below the fundamental signal, as described by the IMT. Once again, this

slight improvement in value can be attributed to the approximation of using two Taylor

amplifier pairs. For all practical reasons, such a slight improvement does not readily

justify the use of an additional Taylor amplifier series pair and in this case, was not really

required in order to model the IM product levels of the IMT.

Although a method for modelling a single mixer has been proposed, it is the quadrature

mixing process that will be used in the sample system to be verified with hardware (chapter

5). For this reason, a basic quadrature mixer model has been developed that takes in an I

and Q signal and causes some of the non-ideal quadrature mixing effects to be generated.
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Figure 3.35: The IMT used to verify the operation of the mixer model

0 500 1000 1500 2000 2500
−80

−70

−60

−50

−40

−30

−20

−10

0

S
pe

ct
ru

m
 [d

B
]

Frequency [Hz]

Figure 3.36: Spectral output of the mixer model using the sum of two Taylor amplifier

pairs
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3.6.8 Quadrature mixer modelling considerations

General considerations

The algorithm used to model the behavior of the quadrature mixer is fairly straightfor-

ward. The model is essentially a direct interpretation of figure 3.30. The core operation

of the quadrature mixer prototype developed in MATLAB can be shown in a singe line

of code as (van Rooyen 2000):

RF = I.*cos(2*pi*Fc*t) - Q.*sin(2*pi*Fc*t) + ...

LTAmp.*cos(2*pi*Fc*t + LTPhase*pi/180);

where I and Q are the in-phase and quadrature input signals respectively. Fc represents

the carrier frequency and was set to 300 kHz for illustrative purposes. A sampling period

of 1 µS was used throughout the system. The third expression describes the quadrature

error signal in the form of LO leakthrough. The LO leakthrough amplitude is specified as a

percentage where, for example, a LTAmp of 0.01 translates to 1% carrier leakthrough. The

LO phase error is specified in degrees (and converted internally to radians). Amplitude

deviations are specified directly by adjusting the input signal level on one of the channels.

Quadrature mixer model validation

The quadrature mixer model was tested using a single-tone input with a frequency of

10 kHz. This meant a cosine waveform and sinusoidal waveform, each with a frequency

of 10 kHz, was used on the I and Q channels respectively. A SFDR simulation algorithm

was used in order to determine the SFDR of the various spectral plots (van Rooyen 2000).

For reference purposes, the output for an ideal quadrature mixer (no quadrature im-

pairments) with a LO frequency of 300 kHz is shown in figure 3.37(b) with the spectrum

of the 10 kHz input shown in figure 3.37(a). The overall gain for the quadrature mixer

model was set at unity.

Carrier leakthrough and DC offset: It was stated in section 3.6.6 that carrier leak-

through and DC offset both cause a carrier frequency component to appear at the LO

frequency. Figure 3.38 shows the output spectrum with a 10% DC offset added to the I

channel of the ideal quadrature mixer model. From equation 3.34, the expected spurious

component should lie at 20 dB below the carrier frequency — this was exactly the result

measured by the simulation algorithm (van Rooyen 2000) .

Amplitude imbalance: In order to simulate the effects of amplitude deviation, a 10%

amplitude difference was imparted on the I input signal (with respect to the Q input

signal). The theoretical studies of amplitude deviation in section 3.6.6 indicated that



Chapter 3 — Component theory and modelling considerations 66

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 105

−30

−20

−10

0

10

S
pe

ct
ru

m
 [d

B
]

Frequency [Hz]

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 105

−30

−20

−10

0

10

S
pe

ct
ru

m
 [d

B
]

Frequency [Hz]

(b)

Figure 3.37: Ideal quadrature mixer output for a 10 kHz input signal (a) upmixed with

a carrier frequency of 300 kHz (b)
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Figure 3.38: Spurious component 20 dB below the desired signal as a result of 10% DC

offset



Chapter 3 — Component theory and modelling considerations 67

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 105

−35

−30

−25

−20

−15

−10

−5

0

5

10

S
pe

ct
ru

m
 [d

B
]

Frequency [Hz]

Figure 3.39: Spectral output showing the spurious signal at 26.8 dB from the desired

signal as a result of a 10% amplitude imbalance

we should observe a spurious component at ±10 kHz around the carrier frequency, as

shown in figure 3.39. Of course, the positive 10 kHz is added to the desired signal at

310 kHz. For a 10% amplitude deviation, the predicted SFDR from equation 3.33 yields

a result of 27 dB, which is precisely the level measured by the simulation algorithm (van

Rooyen 2000).

Phase angle error: Section 3.6.6 stated that the expected spectral response from a

phase angle error is similar to that of amplitude deviation — a spurious component

symmetrical around the LO frequency with a different phase in the error signal. Figure

3.40 illustrates the spectral output for a 3◦ phase error added to the Q channel input

signal. The level measured by the SFDR simulation algorithm was 31.6 dB, which was

precisely the result predicted by equation 3.35.

The effects exhibited by the various quadrature impairments were illustrated in order

to get a better understanding of outputs that can be expected in the hardware emulation

test setup in Chapter 5. In order to convert the quadrature mixer prototype model in

something compatible in C++, certain modification were taken. The details of these

modifications will be given in chapter 4.
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Figure 3.40: Output of the quadrature model showing the effects of 3◦ phase error on

the Q channel

3.7 Filters

3.7.1 Filter classification

A electronic filter can be seen as a device that modifies the frequency spectrum of a signal

(Chen 1995). There are various ways of classifying a filter. Frequency selectivity is one

of the more commonly used classification methods where the class of filter (e.g. lowpass,

highpass, bandpass, bandstop) describes the frequency range that is manipulated. A

further way of classifying these filters is by their frequency selectivity characteristics with

respect to the filters’ amplitude and phase responses (Rhode & Whitaker 2001). Some of

the more common filter responses are Butterworth, Chebyshev and elliptic responses.

Filters can also be classed as either analogue or digital. The RF front-end of SDR

such as those illustrated in figure 2.3 of chapter 2 employ mainly analogue filters and this

must should be taken into account when modelling these type of filters. Such analogue

filters can be characterised by its linear transfer function, H(s), which can generally be

expressed as (Thede 1996):

H(s) =
K (sm + am−1s

m−1 + am−2s
m−2 + · · ·+ a1s + a0)

(sn + bn−1sn−1 + bn−2sn−2 + · · ·+ b1s + b0)
(3.37)

H(s) is the transfer function used to describe a filter in the frequency domain. A filter

can also be described and analysed in the time domain by its impulse response, h(t). The
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Laplace transform of h(t) can be used to determine the system transfer function, H(s).

For the remainder of the thesis, filters will be analysed using their frequency domain

description for both sampled and non-sampled systems.

Eq. (3.37) shows that the general s-domain transfer function of a filter can be described

by the ratio of two polynomials. The order of the numerator and denominator is specified

by m and n respectively. K is the overall gain constant. The rate at which the filter

roll-off occurs is determined by the order, specified by the value of n.

If the polynomials of equation 3.37 are factored into first-order factors, then the poles

(denominator) and zeros (numerator) of the transfer function can be obtained. These

poles and zeros completely describe the characteristics of a filter and also give important

information on the stability of the filter (Rhode & Whitaker 2001). The polynomials of

equation 3.37 can further be factored into different orders and the importance of this will

be shown later when the considerations for filter modelling are taken into account.

The complete coverage of filter theory has a rich history, and its complete study is

beyond the scope of this thesis.

3.7.2 Filter modelling considerations

Previous sections on modelling components such as amplifiers and mixers showed that

there were a number of component non-idealities to consider. Filters, however, behave

pretty much according to the theoretical predications. Of course, when real components

are used such as those in the RF front-end, one would expect slight discrepancies in the

calculated response.6 One of the reasons is due to the addition of thermal noise by passive

components such as resistors — thermal noise will be accounted for with the AWGN model

described in section 3.3.1 of chapter 3.

Analogue filters are defined in the s-domain. Equation 3.37 was used to describe a

s-domain transfer function for an analogue filter — such a filter could occur in the RF

front-end of a SDR. The emulation of the RF front-end components will, however, be

done on a digital platform therefore requiring a digital filter implementation.

Although filter systems can directly be described and designed in the digital domain,

what is basically required is a digital equivalent of the s-domain representation (Kuc 1988).

The z-transform makes this possible. The z-transform is a mathematical tool used to

describe discrete-time signals and systems such as digital filters (Kuc 1988). The s and the

6Sensitivity analysis (Thede 1996) can be performed in order to determine how various component
tolerance levels affect the overall performance of a system. For a filter, these components could include
resistors and capacitors that, due to age and temperature drifts, result in a slight change of value.
Sensitivity analysis, however, does not fit the scope of this thesis and the reader is referred to the work
of Thede (Thede 1996) for further reading in this regard.
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z plane do not correspond directly with each other, and required techniques are available

to enable this transformation process. One way of mapping from the s-domain to the z-

domain is by using a technique known as the bilinear transform (Rhode & Whitaker 2001).

The transformation used by the bilinear transform is given as (Rhode & Whitaker 2001):

s =
2(1− z−1)

T (1 + z−1)
(3.38)

where T is the sampling period of the digital equivalent. Therefore, any analogue filter

can be implemented by its z-domain equivalent. The primary concern of filter modelling

for the hardware emulator is to develop a way to implement digital filters. The next

additional step would be to implement a technique to convert s-domain transfer functions

to the z-domain (for example, by using the bilinear transform). This second step is not

critical for the operation of the emulator, but it would be a useful upgrade and therefor

does not necessarily form part of this thesis. For the purpose of converting from the s to

the z-domain, however, MATLAB’s built-in bilinear transformation function, bilinear,

could meanwhile be employed.

One way of describing a digital filter is by using its difference equation which in general

is written as (Thede 1996)

y(n) =
M∑

k=0

ak · x(n− k)−
N∑

k=1

bk · y(n− k) (3.39)

where the coefficients ak and bk completely describe the system. The transfer function,

H(z), of a digital filter can be obtained by using the z-transform to transform the difference

equation 3.39, which yields the form (Thede 1996)

H(z) =
Y (z)

X(z)
=

∑M
k=0 ak · z−k

1−∑N
k=1 bk · z−k

(3.40)

where ak and bk are the system function coefficients. The z−k components of equation

3.40 represent delays of k sample periods in the time domain and the importance of these

delays in digital filter implementation will be described in the following section.

Digital filter implementation

Digital filters may be implemented in a number of ways obtained directly from either

their difference equation or z-transform. One such implementation is called a direct form

I structure and is shown in figure 3.41 (Rhode & Whitaker 2001). Figure 3.41 also

illustrates the problem with the direct form I structure in that it is not very memory

efficient, since it requires two sets of delays — one for the input and one for the output

sequence. This problem is magnified when large filter orders are required.
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Figure 3.41: Direct form I filter implementation

A modified structure that uses a minimal number of delays, called the direct form II

structure (Kuc 1988), will be used to implement digital filters in the hardware emulator.

A modification of equation 3.40 can be shown to yield the following (Thede 1996)

Y (z) = W (z) ·
M∑

k=0

ak · z−k (3.41)

where

W (z) = X(z) + W (z) ·
N∑

k=1

bk · z−k (3.42)

In the time domain, equation 3.7.2 and equation 3.42 can be written as (Thede 1996)

y(n) =
M∑

k=0

ak · w(n− k) (3.43)

and

w(n) = x(n) +
M∑

k=1

bk · w(n− k) (3.44)

From equation 3.43 and equation 3.44 we can see that only a single delay element array,

w(n), is required. One of the shortcomings of implementing such a design directly is that a

new structure is required for different filter orders (Kuc 1988). One way of getting around

this problem is by cascading second-order (quadratic) sections, achieved by factorising

the transfer function, H(z), into second-order polynomials represented as (Kuc 1988)

H(z) =
Y (z)

X(z)
=

(1 + a1 · z−1 + a2 · z−2)

(1− b1 · z−1 + b2 · z−2)
(3.45)

An example of such a single quadratic structure is illustrated in figure 3.42 (Thede 1996).

The form of the coefficients that will be used in the filter model is represented as illustrated

in figure 3.42. The a0 coefficient, the transfer function gain, will always be factored out

and simply be seen as a gain constant that will get multiplied by the input signal sample.
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Figure 3.42: Example of a second-order polynomial structure
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Figure 3.43: Impulse response of the quadratic filter prototype in the time (a) and

frequency (b) domain compared to the time (c) and frequency (d) impulse response of

MATLAB’s filter function
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The b coefficients in the system will be the negative of their value in the transfer function

because of the manner in which the Direct Transpose II form is derived.

A function written in MATLAB, poly2quads.m, is used to convert the MATLAB

generated filter coefficients (given as a complete nth order polynomial) to second-order

polynomials recognised by the quadratic filter model prototype. The syntax that describes

the function is

[num2,den2,gain] = poly2quads(B,A);

The variables B and A represent the numerator and denominator input coefficient arrays

respectively. The poly2quads.m function extracts the transfer function gain which is

required by the emulator filter model. The MATLAB m-file used to create the filter

prototype model has the following syntax:

y = quadratic_filter(a,b,g,x)

where a and b are the numerator and denominator quadratic coefficient groups respec-

tively, returned by the poly2quads function. The variable g represents the transfer func-

tion gain coefficient and x is the input sample sequence.

Considering that the operation of quadratic_filter should, principally, work the

same as MATLAB’s built-in filter function, the built-in function was used as a bench-

mark to assess the performance of the quadratic_filter function. This is because they

both perform the task of filtering according the specified input filter transfer function. In

order to verify the operation of the quadratic_filter, the poly2quads.m function was

used to group the following coefficients into second-order polynomials — the coefficients

obtained from an order 20 butterworth LPF with a cutoff frequency of 2.5 kHz, designed

using MATLAB’s butter function. An unit impulse was supplied as an input to the

filter models, in order to compare the impulse response of the quadratic filter against

MATLAB’s filter function. As can be expected, the impulse response and frequency

response of both filter outputs should be identical, as shown in figure 3.43.

In summary, it was shown that filters in the emulator will be modelled using second-

order polynomial structures. This technique was shown to be more memory efficient and

the idea of using second order building blocks means that a quadrature filter implemen-

tation is highly flexible — a much desired property of the emulated components.

Recall from chapter 2 that the components identified in typical software-defined radios

included the modelling of antennas and communications channels. Antenna (and channel)

modelling is a vast subject on its own, and goes far beyond the scope of this thesis.

Antennas can be characterised by a linear transfer function, and in its simplest form,

can be viewed as a type of filter for which the ideal antenna would be an all-pass filter

(Witkowsky & Van Rooyen 2002).



Chapter 4

Architecture design and model

implementation

4.1 General design considerations

Chapter 3 was used to identify and expand on some of the theoretical background for

the various models identified for SDR hardware front-ends. MATLAB models were used

to test and verify the algorithms used to describe the components non-ideal behavior.

The objective of chapter 4 is to focus on how the models are best placed together as

software objects in a suitable architecture. In particular, chapter 4 discusses the design

considerations surrounding the development of the emulator architecture using an object-

orientated approach in C++. Additionally, the considerations taken for porting the core

MATLAB model algorithms over to C++ is an aspect which is described in detail in

chapter 4.

Although the modelling of components is important in the emulator system, the man-

ner in which the models integrate collectively in a supporting framework is equally, if not

more, vital. For the emulator, the architecture should be a supporting framework that

allows the evolution of the system for improvements and also enables a high-degree of

interchangeability for the modelled components. A well thought-out architectural design

at the higher-level should foresee, and make provision for, as much expected future change

as possible in order to prevent having to completely redesign the architecture. Also, con-

ventional systems make use of physical interfaces to couple the various components in a

real system. In contrast, the goal of the emulator architecture is to develop an efficient

software linking method that enables the connection and optimal communication between

the various components in the emulator.

Furthermore, in order to facilitate future development for the emulator, the architec-

ture must be designed in such a way as to render the code easily understandable.

74
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4.2 Architecture objectives

Selic (Selic et al. 1998) defines the properties of a good architecture as one that supports

the evolution of a system and goes on to say that this is achieved by carefully examining

the system requirements. With this in mind, the emulator architectural framework can

be summarised with the aim for the following requirements:

• A high degree of interchangeability amongst components

• A high-level architectural design that is not concerned with too much lower-level

model operational details.

• A design that easily facilitates the inclusion of new component models

• A design that allows the collection of processed data in order to enable effective

post-processing analysis

• The emulated system should be designed to facilitate the emulators integration with

a SDR software architecture

• The design should make use of a type of system topology that is easy to use, un-

derstand and modify

4.3 Architecture design

Keeping in mind the requirements listed above, the following sections aim to outline the

approach to addressing the system architecture objectives. It is important to note that

the emulator architecture design would ultimately be identical to that of a normal SDR

architecture — it is only the functionality, which in the case of the emulator is a hardware

specific design, that is different.

4.3.1 High-level design considerations

In order to meet the primary requirement that the components be highly interchangeable,

a high level of abstraction is needed. In an object-oriented context, this high-level design

requirement means that the majority of the functionality should be defined by the abstract

base class (also known as the parent class). In essence, an abstract base class is required

that defines both a general “component” as well as the way it interfaces with other

“components”.

This objective is aided by the fact that the SDR hardware components, at a higher

level, all operate on the same basic principle. This principle is that, in general, all the
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Figure 4.1: Illustration of the commonality between SDR hardware components

components receive, process, and output a stream of samples as illustrated in figure 4.1,

regardless of the number of input and output ports.

In a certain sense, each component can be thought of as a “converter” of samples —

in that the components all convert the samples in some unique way. The only difference

is then the type of processing that gets executed in individual components. The exact

process function of each component is defined by the type of component being modelled.

This means that the abstract base class (now called converter) need not know the exact

details about the components individual processing function. The converter base class just

understands that each component can receive and output a stream of samples. When the

process function for each component (e.g. amplifier) is called, the individual component

knows exactly how to operate on the incoming samples. The processing details, therefore,

of the individual components operations need never be understood at a higher level. This

high level of abstraction is what enables the ease of interchangeability for the various

modelled components in the emulator. This is because, the emulator at a higher-level is

indifferent to which component is being used. The emulator, therefore, does not cater for

specific components. This simple but powerful shallow hierarchy design also allows the

inclusion of improved model designs with relative ease.

Figure 4.2 illustrates this design and shows the declaration of the abstract converter

base class. The generic functionality resides within the converter base class and all descen-

dant classes. This concept is based on the “strategy” design pattern, in which a derived

class implements the functional details of a generic base class within a shallow hierarchy

(Gamma et al. 1995).

The function details shown in figure 4.2, called methods, of the generic converter base

class that can be performed by derived classes (such as DAC and amplifier models) will

now be explained.
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Figure 4.2: Illustration of the strategy-based shallow hierarchy design employed for the

emulator architecture

Converter methods

One of the first elements highlighted was the commonality of receiving, processing and

outputting samples. The functions used to achieve this in the architecture are illustrated

as follows:

• A “read” method that acquires samples from the component’s input buffer

• A virtual “process” function. A virtual function just ensures that the descendant

class specifies what process gets performed

• A “write” method to dispatch samples to a input buffer of a component

These three methods form the nucleus of the emulator architecture. An important func-

tion shown in figure 4.2 is the setup method. The setup method is used by individual

components to initialise the input parameters (e.g. Taylor coefficients for an amplifier) to

a specified state. The components default values (specified in an objects constructor) are

used in the case where the setup function is not called.

The buffering system in the emulator is implemented using a container class called a

vector (Eckel 2000). A vector is a C++ class template, which implies that it can be used

hold different types — in the case of the emulator, the vector will contain data samples

specified by floating point values. A major advantage of vectors is that they automatically

expand to hold incoming data - unlike arrays that require the size of the data array to be

specified upfront.

It is also important to realise that modelled components can contain more than one

input and output channel, such as a mixer which has two input (RF and LO) and a single

output (IF) channel. Accommodating multiple input ports is simply matter of simulating
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Figure 4.3: A generic component illustrating the input and output interfaces

a two-dimensional array - this is done by creating a vector of vectors. The different input

vector buffers can be indexed just as one would index a multidimensional array, which

makes working with vectors in this regard relatively simple. The advantage of using

multidimensional vectors (as apposed to arrays) is that vectors automatically take care of

allocating and deallocating memory. Vectors, therefore, take care of any possible memory

leaks that might accidentally occur.

The output ports of a component is specified by a vector of structures, with one

structure representing one output port. The output ports do not actually buffer the data

but instead directs the data samples to the next input buffer of the desired destination

component. The details of the output ports structure content will be explained later but

for now figure 4.3 gives an overall idea of the basic layout of a modelled component’s

input and output facilities.

The remainder of the abstract base class functions are developed in support of the

three primary converter methods. In summary, these functions just check to ensure that

the input buffer is ready to process samples. There are some other converter methods that

exist, but there importance will be shown later in the application design. The manner

in which the samples are transported between various components depends on how well,

topologically, the architecture is designed and the various consideration in this regard is

illustrated next.

4.3.2 System topology

The manner in which the different modelled components transfer data samples amongst

each other depends strongly on the type of topology used. Data in the emulator is

streamed on a sample-by-sample basis (as apposed to a complete vector of samples) and

a suitable topology must be selected in order to support this. A control-based topology
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Figure 4.4: Illustration of the emulator’s control-based interface which is used to

monitor the status of the buffers

is employed in the emulator so that the emulated components are contained within a

scheduling object as illustrated in figure 4.4. Here each component has its own input

buffer and it is the responsibility of the control object to monitor the buffer’s status. In

an emulated system, the control object polls the various components in a certain order

and the components in turn respond by indicating the status of their buffers.

Alternatively, it would have been possible to design the architecture on a peer-to-peer

based topology. With such a topology, components are stringed together in a domino-

like effect so that one object just points to the next. There is no need for input buffers

since groups of samples are immediately processed and subsequently passed on to the

following component. The obvious advantage of this type of topology is its simplicity since

no buffers, and therefore no buffer control and monitoring, is required. The drawback,

however, is strong pipeline flow of samples. Processing samples one batch at a time

can result in irregularities in the process flow, especially in time-critical applications.

Additionally, complex architectural configurations that include feedback networks, can

be very computationally taxing on a peer-to-peer topology if large numbers of samples

are processed.

Currently, the emulator is designed only for a single execution run, as opposed to

being run continuously. With this in mind, when the control object determines that the

samples in the system have all been processed, the control sends a message to indicate to

the application program that the emulation is complete. The higher-level application can

then decide what action to take once this signal is received.

Linking

The basic model interfaces have been discussed. These include the input buffers and

output ports. The input buffers were examined earlier and were shown to use vector

series to enable multiple inputs. The same principle is applied to the output ports, except

that structures are used instead of buffers. The information in the structure tells the

component the exact destination details in terms of where it is directing the outgoing
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samples. The information specified in the output port structure consists of:

• A destination component

• The corresponding input buffer number of the destination component

These are the only two pieces of information required to effectively link components

together. With the output structure designed in this way, each component knows exactly

where the processed samples are being directed — this information is especially useful

for application design, as will be shown later in section 4.6. The operational principle of

the output port is fairly simple — once a data sample is processed using the output port

information, it immediately gets placed in the input buffer of the destination component.

Using only an input buffering system, as apposed to an additional output buffer, means

greater overall design simplicity.

In order for the output port structure to direct samples to a destination input buffer

means it must direct the samples to a new area of memory. In a programming context,

pointer variables are normally used to hold the address of the specified area of memory

been targeted (i.e. where the buffer resides). Conventional (static) pointers are fairly

simple to implement.

The drawback of using static pointers, in the context of the emulator architecture,

is that when the object being pointed to is destroyed, the pointer will be pointing to

nothing (an unknown area of memory), and this can result in segmentation faults. It is

therefore necessary to explicitly delete pointers when objects (i.e. modelled components)

are removed.

An elegant solution to this problem is to use a modified version of a pointer called a

reference counted pointer1 (RCPtr) (du Preez 2001). A RCPtr is a C++ class which is

similar in use to a static pointer, but is functionally much safer. It is important to realise

that a RCPtr is, therefore, an object and not a static pointer. An example of an output

port structure utilising a RCPtr to point to the next component, is shown in figure 4.5.

A RCPtr basically works by counting the number of pointer references to an object.

The RCPtr has a built-in safety net, in that when the RCPtr detects that all pointer

references to an object no longer exist, it destroys the object that was being pointed to.

In the context of the emulator, this is useful because if components are removed in an

application, there is no chance of accidentally writing to an unknown space in memory

since the component will only be removed from memory once all references to the object

no longer exist. This is because, for example, if we have the following setup: A DAC,

filter and amplifier model all linked in series. Remember that, at a higher-level, the object

processing samples does not need to know anything about the linked object except that

1The RCPtr is part of the patrecII library, used by the DSP group of the University of Stellenbosch.
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Figure 4.5: The RCPtr in the output port structure is used to hold information about

destination of the linked component

it’s a descendant of the converter base class. Suddenly the user decides to remove the

amplifier in the application program. What the RCPtr does now is recognise that there is

still something pointing to the amplifier (the filter) and does not therefore actually destroy

the amplifier object in memory. In other words, the filter is still pointing to something,

which prevents the program from accidentally writing to unknown areas of memory when

the program is executed, which in turn can cause the program to crash. It only destroys

the object once all the references to the object (the amplifier in this case) no longer exist.

In summary, some of the advantages of RCPtr’s over standard pointers are (du Preez

2001):

• No memory leaks, since memory being pointed to does not need to be explicitly

deleted. The RCPtr class automatically applies a type of garbage collection.

• Newly created RCPtr are automatically initialised to point to nothing.

RCPtr’s are extensively used throughout the emulator’s design in order to facilitate the

linking of components. A link method was developed for the converter base class that just

allows the destination component and destination input buffer number to be specified,

and is given by the following syntax:

int link(int output_port_number, RCPtr<Converter> destination_module

,int destination_portnumber);

The link method therefore requires the following parameters in order to successfully set

up a link with a specified component:

• The output port number of the source component.

• The RCPtr to the destination component.
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• The input buffer number of the destination component.

Recall that components can have multiple inputs and outputs, and it is for this reason

that the exact input (buffer) and output port number must be explicitly specified for a

specific destination component.

4.4 Sample rate considerations

In order to avoid aliasing in sampled signal system, Nyquist criterion states that the

sampling frequency must at least be twice the frequency of the highest highest sampled

frequency component (Couch II 1995). Nyquist criterion is therefore an important con-

sideration to bear in mind in order to accurately represent the signals in the sampled data

domain. It is also important to note that signal bandwidths can vary between different

components in SDR front-ends. therefore, in order to observe momentary (analogue) ef-

fects such as glitch impulse, a much higher sampling rate is required at the output of a

DAC as apposed to its input. This is because glitch impulse could last for only fraction

of the sampling period (Witkowsky & Van Rooyen 2002) on the output of a DAC and its

important to be able to represent this in the emulator.

It should be assumed in general that the emulated component’s input and output

sampling rate can be different. The control-based topology used in the emulator allows

samples to be transferred as needed which means that a change in components sampling

rate can be accommodated for. The idea of upsampling a signal was touched on in section

3.4.4 of chapter 3. A function that works on the same principle to increase the sampling

rate is implemented for the C++ models which has the following piece of syntax for the

simple setup function:

int setup(int new_ratio)

The function basically repeats the incoming sample by the amount specified by new_ratio.

Models such as the quadrature mixer, make use of a upsampling process in order to

accurately generate the output signal, as will be illustrated in the following section.

4.5 Model transfer considerations

Recall that MATLAB was used to develop and verify the algorithms designed to model

the hardware front-end components. In order to use the outcomes of the MATLAB

developed prototypes, certain modifications to the models were made. These changes

included modifications to allow the modelling algorithms to effectively operate in C++

since it is not possible to directly port the MATLAB code into C++. This section will

give a description of the modification that needed to be performed.
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One of the biggest considerations that needed to be taken into account was the manner

in which samples are processed. The emulator’s models should process the samples one

at a time but the MATLAB prototypes simply processed a complete array of buffered

samples. Programming loops were used in order for the C++ models to process samples

one at a time.

In the emulated model’s design in general, vectors were used in C++ instead of arrays

because of the high degree of flexibility associated with vector. Something that was also

very important to note was that array indexing in MATLAB starts at one, whereas C++

indexing begins at zero. Another consideration that needed to be taken into account

was to find equivalent C++ functions for the MATLAB built-in function employed by

some of the prototype models. The specific changes required for each model in order to

successfully migrate the MATLAB algorithms into C++ will be given for the remainder

of this section.

4.5.1 Data converter models

Quantisation model

The quantisation model was fairly simple to port over to C++ since the model effectively

is described by a single line of code in C++ as:

double y = sign(x)*(ceil(fabs(x)*(q-1)/(2.0) - 1.0 + EPS)

+ 0.5) / (q-1) * 2.0;

The output, y, is specified as a double floating point precision variable. The sign function

was the only function developed using a separate utility library. The sign function is

principally similar to MATLAB’s equivalent function in that they both just indicate the

sign of the number via there return value. The remainder of the functions are all part of

the standard C++ math library.

INL model

In order to implement the curve fitting algorithm, such as the cubic spline function used

in the MATLAB prototype, an equivalent public-domain C version of the cubic spline

routine, obtained from the Numerical Recipes website (Press et al. 1992), was used. The

function will be used to generate the desired INL curve, such as a S-shaped or bow-shaped

curve. The cubic spline function is made up of two functions, spline and splint. The

spline function has the following syntax:

spline(xx, yy, n, 1.0, 1.0, yy2);
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The spline function, which can be seen as an initialisation function, is used only once to

process an entire tabulated function for the markers specified in the arrays xx and yy.

The two entries of 1.0 each specify the derivatives (a straight line) at the very first and

last point for the given curve — the spline function requires that the gradient of the

end-points of the curve be explicitly given. Given this end-point information, the spline

function is able to calculate the derivative of the remaining points as the gradient between

the surrounding points. Following the calling of the spline function, the splint function

is then used to obtain interpolated values for the function specified by the curve markers.

Stated otherwise, a given input value will produced a distorted output value based on the

shape of the INL curve specified by the markers in the xx and yy input arrays.

Glitch model

The only substantial change made between the MATLAB glitch prototype and the C++

model was the implementation of a different hashing function. Recall that the determinis-

tic hashing function was used to generate a glitch height and width value (in the range of

0 to 1) based on three input parameters: the current quantisation level; the last quantisa-

tion level; and a seed value. The drawback of the simplistic hashing function used in the

MATLAB prototype was that it produced unwanted patterns in the output transitions.

Stated otherwise, the values generated by the hashing function did not seem random

enough. For the C++ implementation, a more advanced hashing algorithm is used called

MD4. The MD4 function is traditionally used as a security algorithm and traditionally

finds its application as an encryption tool.2 The MD4 library was used (with slight mod-

ifications in order to make the overall code size smaller) to implement the function in

the DAC model. The original MD4 function works by taking a string as an input, and

produces a 128-bit message digest. Because of its powerful algorithm, the MD4 function

makes this process appear to be completely random, but the same input string always

produces the same 128-bit digest — this principle is important since it will be used to

adapt the MD4 into a suitable hashing function for the glitch model as follows: The last,

current and seed values are placed in an input data array after which, the MD4 algorithm

is called. The MD4 function then returns a 128-bit result (message digest) which is then

masked to take the first byte as the height and the second byte is taken as the width

value. A subsequent programming routine just conditions the output of the height and

width values (using the modulus operator, ’%’) to fall in their respective ranges — the

height value ranges from ±0.5 and the width value ranges from 0 up to 1, as illustrated

by the following piece of actual syntax used:

2Although the MD5 (MD4’s upgrade), a more complex and secure algorithm, is available, its applica-
tion as a hashing function would be superfluous for use in the DAC model.
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*height = (float)(digest[0] % 100)/100 - 0.5;

*width = (float)(digest[1] % 100)/100;

Both the height and the width values are specified as pointers, and both outputs are

type-casted to ensure floating point output values. The final hashing function, as used by

the DAC glitch model, has the following syntax:

void makehash(unsigned int last, unsigned int current,

unsigned int seed, float *height, float *width)

As explained earlier, the makehash function uses a last, current and seed value to generate

output values for the height and width pointers. The height and width values are then

used directly to specify the shape of the glitch.

4.5.2 Amplifier model

No major changes were required in order to accommodate the MATLAB saturation al-

gorithm into C++, since its principle operation is based on simple techniques — using

programming loops. The implementation of the Taylor amplifier’s core processing al-

gorithm also requires no special functions, and therefore the operations available in the

standard C++ math library could be used. However, the Hilbert transform function used

in the MATLAB models is slightly more challenging to implement in C++. The final

emulated test system used in chapter 5 does not require the phase distortion information

of an amplifier. The implementation of a C++ Hilbert transform, therefore was deemed

superfluous for the purpose of this thesis and could be implemented as further develop-

ment work. For now, the MATLAB prototype is sufficient to illustrate the operation of

the Hilbert transform a quadrature Taylor amplifier model.

4.5.3 Mixer model

Although no actuall C++ mixer model was developed, the mixer modelling consideration

in chapter 3 showed that mixers can simply modelled as the product of Taylor amplifiers

— this makes the implementation of mixers a fairly straightforward operation, since ex-

isting (amplifier) models can be used as the primary building blocks. The mixer model

should also be designed to accommodate various orders of Taylor amplifier pairs. For the

moment, all the preconditioning work for the IMT decomposition is done in MATLAB.

The resulting Taylor coefficients can be used in a C++ mixer model.

4.5.4 Quadrature mixer model

Recall that quadrature mixers use two equal carrier signals (a sinusoidal and cosine wave-

form) in order to perform complex frequency translation. In order to develop a quadrature
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mixer model for the emulator, it is therefore important to understand the concept of gen-

erating sinusoidal signals in the discrete-time domain.

In the sampled data domain, the concept of an absolute frequency does not directly

apply, such as those used to classify frequency in an analogue signal (e.g. 10 kHz). A

discrete-time sinusoidal may be expressed as (Proakis & Manolakis 1996):

x(n) = A · cos(2πfn + θ), − inf < n < inf (4.1)

where:

• n = integer variable

• A = signal amplitude

• f = frequency (now in cycles per second)

• θ = phase (in radians)

The expression 2πf can alternatively be written as ω, which is expressed in radians per

sample. f , is expressed as a relative frequency and can lie in the range (Proakis &

Manolakis 1996):

|f | ≤ 1

2
or |ω| ≤ π (4.2)

The fundamental period, N , is 1
f
. Frequencies in this range (|f | ≤ 1

2
or |ω| ≤ π) are

identical to those frequencies obtained with |f | > 1
2

or |ω| > π and are regarded as alias

frequencies (Proakis & Manolakis 1996). therefore, frequencies in the range specified by

equation 4.2 are all unique, and the highest rate of oscillation would occur at ω = π (or

ω = −π) or f = 1
2

(or f = −1
2
). Figure 4.6 shows the results of four plots for different

relative frequencies for the signal in equation 4.1. Note that an increase in the relative

frequency results in a decrease in the period, and that no oscillation (DC) occurs when

ω = 0 or f = 0. In practice, quadrature mixers take a single input LO signal and performs

a ±45◦ phase shift to produces the sinusoidal and cosine carrier waveforms. The LO input

of the model, however, indicates the input floating point value that specifies the relative

frequency of the carrier waveform, as will be shown later. The actual quadrature mixer

model is implemented with a separate sinusoidal and cosine signal that uses the principle

of phase accumulation to produce the periodic carrier waveforms as shown by the C++

code syntax:

LOPhase = mod(LOPhase + 2*PI*f, 2*PI);

so that the I and Q channel carrier waveforms are generated with the syntax

I_carrier = cos(LOPhase);

Q_carrier = sin(LOPhase);
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Figure 4.6: Output for selected discrete-time frequency values: (a) f = 0; (b) f = 1
8
;

(c) f = 1
4
; (d) f = 1

2

The initial value of LOPhase is zero, and is then increased by the amount of 2*pi*f for ev-

ery further increment. The variable f determines the carrier frequency of the discrete-time

output signal. The mod (modulus) function ensures that the LOPhase value is wrapped

around 2π intervals (i.e. a periodic waveform).

Recall in section 4.4 it was mentioned that the input and output sampling rates of

components need not be the same. This is especially true in the quadrature mixer model

since the frequency translated signal can be much higher (in the case of up-mixing) than

the input signal. Therefore, in order to accurately represent this up-mixed signal, the

output sampling rate must be at least twice that of the highest output frequency — in

accordance with the Nyquist criteria. In order to adhere to the Nyquist criteria, the

output sample rate should be adjustable in quadrature mixer model.

This implementation of oversampling can simply by achieved by repeating each in-

put signal sample (I and Q) by an equal integer amount, N . The upsampling rate, N ,

essentially specifies the number of output samples generated for each input sample.

By the nature of the upsampling process using the method of sample repetition, the

usual sample-and-hold harmonics are generated. This is an undesired effect for quadrature

mixer sample-rate-conversion requirements. Therefore, a LPF is required in order to

remove the sample-and-hold harmonics3.

3A more advanced method of upsampling, such as interpolative upsampling, should be employed in
order to address to problem of the zero-order-hold harmonics — for a text containing in-depth treatment
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Considering that the upsample rate can change, means that the cut-off frequency of

the LPF should change correspondingly. For a C++ implementation, this means having

to recalculate the filter coefficients for different upsampling rates. Recall, however, that

the task of calculating the filter beforehand coefficients in the emulator was performed

using MATLAB. The task calculating high-order filter coefficients in C++ for the filter

model is beyond the scope of this thesis. This is because the filter model also requires

that the calculated filter transfer function to be grouped into second order polynomials

— a task which could become complex in C++. therefore, for the purpose of this thesis,

all upsampling and filtering requirements will be performed prior to the quadrature mixer

model.

The relative frequency, fc, for the quadrature mixer model is calculated relative to the

output sampling rate as the input LO rate divided by the output sampling rate. I.e.

fc =
LO frequency

Output sampling frequency
(4.3)

The result of equation 4.3 must fall in the range 0 ≤ fc ≤ 0.5 in order to generate

a distinct output carrier waveform, where a fc of 0.5 translates to a maximum carrier

frequency that is half the output sampling rate. The best way to illustrate the setup of

the quadrature mixer model is by example — the input conditions (i.e. input sampling

rate) should be known beforehand. If, for example, the following setup exists:

• A 5 kHz single-tone input signal (i.e. a 5 kHz cosine and sinusoidal signal on I and

Q channels respectively)

• An input sampling rate of 5 MHz.

• A desired LO frequency of 1 MHz

These are the only items needed to calculate the variable fc. In order to accurately

represent the frequency-translated signal of 1.005 MHz, the input sampling rate of 5 MHz

will be sufficient. The LO frequency variable, fc is calculated according to equation 4.3

and yields a value of fc = 0.2 for the relative frequency value.

4.5.5 Filter model

The core filter algorithm used in the MATLAB filter models can be transfered directly to

the C++ models — only the indexing was changed to start from zero, and not one. It

would be ideal to have a C++ wrapper that takes in the analogue filter’s specifications

and automatically generate the filter coefficients for the model, but currently all the

of sampling rate conversion and the various implementation techniques, the reader is referred to the
textbook by Proakis (Proakis & Manolakis 1996).
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pre-processing work gets performed in MATLAB. The conditioned output, which is the

numerator and denominator coefficients and well as the transfer function gain gets used

as input parameters to the C++ filter model.

4.6 A front-end application design

One rewarding aspect of a well-designed architectural system (in terms of its resources)

is that it should easily facilitate the development of a front-end application. The extent

to which the emulator’s architectural framework supports the development of a simple

front-end application program will be tested in the section. The main objective for the

development of the front-end application program is to show how easily components can,

from a user-level, be interchanged to form various hardware front-end configurations —

this was one of the primary objectives set out in chapter 1. The operations, and essentially

the user menu, therefore include the following options:

1. Add or remove a component

2. List current component selection

3. Link components

4. List component links

5. Run the emulation

The remainder of this section aims to show how these options were implemented in the

C++ front-end application. The design and ideas presented are for a basic front-end

system, but the intention is to illustrate how, given the design of the architecture, easy it

is to develop a basic front-end application for the architectural framework.

4.6.1 Add and remove components

Components in the emulator are all declared as RCPtrs. This is done in order to enable

the linking of components in the system, as will shown further in section 4.6.3. All

components (e.g. amplifiers, filters, mixers) are contained within a single vector — this

makes adding, removing and indexing components very straightforward. Therefore, all

the powerful additional features associated with the vector class can also be used to work

with the series of components in the vector. The vector methods “push back” and “erase”

are used to add and remove components in the system respectively. These operation are

simply done by indexing to the correct component in the vector (as is done with array

indexing).
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An important aspect of erasing a component in the application, is that if it was linked

to other components, the links will be broken too. Section 4.6.3 on linking will illustrate

how this problem is elegantly dealt with.

4.6.2 List components

Considering that the user should be able to add and remove components at any time,

the option to list the selected components is required. Some additional thought was

required to implement this option. This is because the main application just has a vector

of components to work with — this vector does not directly convey information about

the exact type of object (e.g. an amplifier, filter, mixer). The main application only

knows that each object in the vector is a decent of the converter class. Some type of

identification ‘tag’ is therefore required in order to indicate the type of component in the

vector. The approach taken for the emulator was to include an additional method in the

converter class, given by the following syntax:

virtual const char* isA() const = 0;

The method works simply by returning the name (actually a pointer to a string of charac-

ters) of the descendant class (e.g. filter) to the main application. The virtual keyword

means that the implementation of the method will be defined by the descendant classes

and the syntax will always look exactly like this. The virtual keyword also implies

that when the main application calls a converter’s isA() method, the descendants isA()

method is the one that actually gets executed. The first const keyword is used to ensure

that when the isA() method is called, the contents (the character string) pointed to by

the return value, cannot be changed by the function calling the isA() method. The isA()

method now ensures that it is possible to identify the components in the component vector

simply by indexing the correct component and calling its respective isA() method. The

isA() method also now means that an enumerated list of components can be developed

for the user in order to distinguish items in the case where more than one of the same

type of component is used.

An additional factor that must be taken into account is that components can have

multiple inputs and outputs, such as a quadrature mixer. In this case, it will be useful

to have a method that counts the number of inputs and outputs of a component. To

implement this option is a straight forward operation since all that is needed is the size

vector method — this illustrates once again the benefits of implementing components

within a vector.

If the user request to view all the selected components, both the components, and the

numbers of input and output ports are now indicated.
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4.6.3 Link components

The concepts related to how links for the components will be formed in the architecture

(as well as the method) were illustrated in section 4.3.2. The main point highlighted in

section 4.3.2 was that the models use an output port structure that holds information

about the destination component and the corresponding input buffer number it is being

linked to. A well-designed class should, therefore, provide member function by which the

application program can adjust an object’s properties (e.g. setting up links). The class

should also provide a way for the application to query the current object properties —

section 4.6.4 will highlight why this is important. With this in mind, there are basically

two approaches to handling the linking components:

1. A top-down control approach where the application is responsible for keeping track

of the component links in the system. Here the application also takes control of

collecting output samples and sending them to there correct destinations.

2. The components, themselves, know where they are linked to, and the application

need only request that the object makes or breaks its links. The approach means

that samples are sent directly from one object to another object in the system.

The two points listed above warrant some further explanation. The drawback of the

first point is that a large amount of functional responsibility is placed in the application

program — this is not good for efficiency purposes. Therefore, for reasons of efficiency,

option (2) is the approach used in the emulator since samples are now directly passed on

between components in the system. The linking information (which component is link

where) is contained within the objects themselves and the application need not keep track

at all about the linkages between components.

The method given in section 4.3.2 is the only one used to efficiently link the various

components within the emulated system. Once the components in the system have been

been loaded, the user needs to supply four parameters:

1. the source component and its output port number.

2. the destination component and its input buffer number

The application is designed so that information about the exact input buffer or output

port number is only required if more than one of either exists for a particular component.

Because of the simple manner in which components can be linked, it was possible to

implement an option to automatically link components — here components with a single

input and output are connected serially according to the way they are placed in the vector

of components.
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Lastly, the point made in section 4.6.1 about dealing with broken links will be ad-

dressed. Links are found both to and from components and as soon as a component

is removed, the link from the source component still exists. The safety net built into

a RCPtr ensures that, in memory, the object still exists but to the user it is removed.

This is because if the emulation is run with this broken link, no segmentation faults (or

even worse complete system crashes) can occur since the source object still writes to a

destination object in memory. The object in memory will be destroyed only once the link

to it is changed. However, this method of passing samples to an object that is no longer

part of the emulated system is very memory-inefficient, because nothing gets done with

the written samples. The samples continue to build up without being processed until the

application runs out of memory. A simply and elegant approach used by the emulator

is that when broken links are found, they (the RCPtrs) are just assigned to point to

nothing (NULL). Recall, however, that a RCPtr is actually an object and not a pointer

which makes it impossible to directly assign it to NULL. However, a new RCPtr is always

initialised to NULL by its defaults constructor. therefore, when broken links are found,

the system simply points (links) the components to a new RCPtr (i.e. NULL). Keeping

in mind that a RCPtr is a object and not a pointer, a RCPtr method objPtr can be used

to verify whether a RCPtr points to NULL.

4.6.4 List component links

It is important to provide the user with information on how the various components are

linked in an emulated configuration, in order to keep track of the system’s components

interconnections. Therefore, some supporting methods were developed in the converter

base class in order to facilitate this requirement to query the links in the system. The

syntax of the primary method used to achieve this is given as:

int query_link(int output_port_number, RCPtr<Converter>* ...

destination_module, int* destination_portnumber);

The query_link method works by taking the output port number of a given (source)

component, and the method returns pointers to the linked components name and input

buffer number. The application program has a function called ListLinks that, using the

query_link method, obtains information about linked components. The ListLinks func-

tion works simply by going through the vector of components and uses the query_link

method to retrieve the details of the component’s links. The isA() method, mentioned

earlier, is used in the ListLinks function to obtain the names of the components.

In order to display something useful to the user about linked components, the appli-

cation checks the corresponding input and output ports. For example, if an amplifier and

a filter are linked in a system, the message to the user will be displayed as:
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Amplifier(1) Output Port[1] LINKED TO Filter(2) Input Port[1]

This information indicates to the user that the first component’s output port on the list

(amplifier) is linked to the input port of the next component on the list (filter). Notice

that the indexing, as it appears to the user, starts from one — the actual indexing in the

system starts at zero but the former is more user-friendly.

4.6.5 Run emulation

One would expect the implementation of a “run” function to be a fairly complicated

piece of code. The advantage, however, of having well-designed descendant class member

functions means that minimal complexity is required on the part of the application in

order operate the process function for each component. It is, in fact, so simple, that

all the application is required to do is call the component’s process() function and the

correct operations will happen for a component to process samples — this is exactly

how the run function is implemented in the application. The following piece of syntax

taken from the run function illustrates the simple way in which each component’s process

function is called:

do {

theFlag = 0;

for (int x = 0; x < Components.size(); x++) {

if(Components[x]->process()==1) {

theFlag = 1;

}

}

} while(theFlag != 0);

The run function goes through the objects within the vector of components and calls the

process() function for each component. The integer variable, theFlag, is used to verify

the status of the samples in the system. Once the condition that no samples are being

processed by any component is met, the flag status will be left at zero, and the program

exits the run loop.

Recall that a control-based topology was selected for the emulator architecture for

reasons of efficiency, since processing a complete batch of samples at a time could lead to

processing bottlenecks in the system. The control-based topology, therefore, gives each

component in the system a chance to process one sample at a time. The application

does this by querying the objects input buffer to see whether there are samples available
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Figure 4.7: Illustration of the polling of components in the emulator. The process

function for each component is called if samples are available in its input buffer.

for processing. If no samples exist in the input buffer, then the application moves on

to the next component in the series. Recall that the number of samples in the input

buffers of components can be completely different, since some components make use of

upsampling which increases the number of output samples. The application essentially

works by polling each component in the vector of components as illustrated by figure

4.7. Therefore, regardless of the order in which the components are linked in the system,

the polling system always allows each component to process a single sample at a time.

This process repeats itself along the list of components until all the components have

no remaining samples in there respective input buffers — this is an indication that the

emulation is complete. Once the emulation is complete, an additional method is used to

re-initialise the input buffers of the components. This method is not completely necassary

but is required in order to reset the buffer of the source component — for the emulator,

this is a data source file and reseting it’s buffer ensures that multiple emulation runs can

be performed. The following section outlines the purposes of the source, as well as other

supplementary, supporting modules.

4.7 Generating and monitoring samples

In order for an emulation to render itself useful, pertinent data about the performance of

the emulated system must be made obtainable in order to have a complete understanding

of the modelled systems performance. Fortunately, this is made very easy in a digital

system since samples at key points can simply be written to a file for analysis purposes.

This is exactly the approach taken in the hardware front-end emulator — a monitor

module is used to probe key points in the emulated system. therefore, if six monitor

probes are used, there will be six data files with information about the point in the

system being probed. Essentially, a monitor module is just another component in the

system that can be placed between components. The supplementary functions in the

emulator can be listed as:

• Source component
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• Monitor component

• Sink component

The monitor component was explained earlier but the remaining items deserve further

explanation. Currently, the considerations needed for interfacing the hardware emulator

to the software radio architecture have not been taken yet. therefore, in order to facilitate

the operation of the hardware emulator as a stand-alone application, some form of source

and destination component is needed to initiate the delivery and collection of samples

respectively. Of course, future software developments would include writing the output

samples of the emulator to the input of the software architecture of the SDR. As stated

earlier, the source component is just a file that holds source data information — this

might, for example, be samples of an audio waveform. Once samples in the system (from

the source component) have been completely processed by all the components, the sink

module is used as a means of collection. Here the completely processed samples are

written to a destination file — in this way the sink module is similar to the monitor

module except that the sink module does not have an output port to write samples to

another component.

Once the samples are available in a file, a simple MATLAB post-processing function is

used in order to evaluate the monitored waveforms in the time and frequency domain. The

advantage of using MATLAB as a post-processing tool is that determining parameters

such as the SFDR of signals is made fairly simple. MATLAB also has facilities to develop

a graphical user interface (GUI), and this approach will certainly be considered for future

versions of the post-processing software in order to render it more user-friendly. For now,

however, a simple MATLAB test-based menu is used in order to analyse the output of

the emulator’s waveforms. The application, written in support of the emulator, gives the

user the option to either write data to a file, or to read data from a file. These are the

precise functions that will be used to analyse the data obtained from a sample emulated

system, presented in the next chapter.



Chapter 5

Emulator evaluation — a sample

system

In order to determine the accuracy of the hardware emulator, a comparative analysis of an

emulated system will be performed against an equivalent physical hardware setup. One of

the design goals is to select a hardware setup that inherently generates some of the non-

idealities which the emulator models were designed to produce. This chapter describes the

hardware and emulated setup in detail. The chapter then goes on to analyse the results

generated from each setup and finally concludes by providing a comparative analysis for

the results of the two configurations.

It is for this reason that the following setup was selected, and a description of it will

be given next.

5.1 Hardware system setup

5.1.1 System overview

The choice of hardware setup was based on an existing SDR quadrature modulator, and

therefore no actual physical construction was required. The hardware setup chosen also

reflects a typical setup that could be employed by other parts of the SDR project. The

hardware configuration is illustrated in figure 5.1.

The choice of setup was driven by a need to use components that would show some

strong non-ideal effects. Therefore, the soundcard of a PC was used in order to represent

the DACs and LPFs in the system, with the left and right channel outputs used for the

I and Q signals respectively. The sound card employs a 16-bit DAC, but in order to

emphasise quantisation noise, the data values were pre-quantised to 8 bits prior to being

passed to the DACs, using the following syntax in MATLAB for both channels:

I = round([i(1:1e5)]’*128)/128;

96
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Figure 5.1: Block diagram of the hardware system setup

Q = round([q(1:1e5)]’*128)/128;

The code above indicates that the vector lengths for the I and Q inputs signals were

altered — this was done in order to find an optimal output time window in order to

observe and capture the results on the spectrum analyser.

The exact gain response of the LPF was not known, but later in the chapter it will be

shown how this was measured. The input source file data values for the I and Q channels

are synthesised cosine and sine wave samples respectively — 10 kHz waveforms sampled

at a rate of 44.1 kHz (as is supported by the soundcard). The source files were generated

in MATLAB and MATLAB’s built-in wavplay function was used to write these samples

directly to the soundcard output. The sine and cosine components are used to generate

an up-mixed frequency using the quadrature mixer. Recall that equation 3.27 in chapter

3 was shown to mathematically illustrate this process.

The hardware used to perform the quadrature up-mixing was a Rhode and Schwarz

(model SMIQ 04B) vector signal generator which had the capabilities to not only perform

quadrature mixing, but also to deliberately add quadrature impairments (ROH 2003). A

carrier frequency of 300 kHz was selected for the quadrature mixer, since this was found

to be a relatively quiet part of the spectrum in terms of any noise sources present. All

spectral measurements were made with the Hewlit Packard HP8562A spectrum analyser.

In summary, the hardware was setup as follows:

• A 10 kHz synthesised cosine and sine source files with a sampling frequency of

44.1kHz

• The soundcard’s on-board DACs (effectively 8 bits)
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• The soundcard’s on-board reconstruction LPF filters — the filter specifications will

be measured in section 5.1.2

• A quadrature mixer with center frequency at 300 kHz and gain set at 0.5 dB

5.1.2 Measurements
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Figure 5.2: Quadrature-mixed soundcard output with no input data, clearly indicating a

carrier leakthrough component at −56.7 dBm generated n the soundcard

Initial conditions

Figure 5.2 shows the spectral output of the system with no input data. Ideally, there

should be no spectral components displayed at all. The soundcard is, however, a non-

ideal device and its imperfections can clearly be seen in the form of a strong spur at the

carrier frequency, measured at a level of −56.7 dBm. There is a high probability that this

carrier leakthrough component is caused by a slight DC offset on the soundcard output.

This can be expected, since a soundcard is normally used to drive speakers, and a slight

DC offset usually goes unnoticed. It will be shown later, when the response of the low-

pass filter is determined, that the soundcard does not allow a DC signal to be generated,

but it does have a slight (unchangeable) DC offset on its output.

The two peaks at either end of the spectrum was found to be interference caused by

surrounding components such as monitors and did not cause any significant interference
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Figure 5.3: Quadrature-mixed soundcard output with I and Q data inputs applied

with the measurements.

Addition of data inputs

Figure 5.3 shows the spectral output with the I and Q data inputs applied. Recall that the

source data was restricted to 8 bits — this is indicated by the increase in the quantisation

noise floor between 280khz and 320kHz. This observation confirms the 44.1 kHz sampling

bandwidth used on the input, as indicated in the window between the vertical markers in

figure 5.3. The quantisation noise floor level in the demarcated window in figure 5.3 lies

at approximately −84 dBm. The upmixed component is positioned at 310 kHz (with a

level of −20.33 dBm) as expected, and carrier leakthrough from the DC offset produced

by the soundcard still remains.

There is, however, a new spurious component at 290 kHz with a power of −67.5 dBm

(i.e. 47.5 dB below desired signal). There is a possibility that this spurious frequency is

generated due to phase differences (i.e. not a perfect 90◦) between the I and Q channels,

but this is unlikely. This is because the signals were accurately generated using MATLAB

— analysis later also reveals that a more probable cause of the component at 290 kHz

could be the result of amplitude imbalance between the left and right channel outputs of

the soundcard. An effect of this nature is typically attributed to unmatched DACs, and

poorly matched amplitude responses of the soundcard’s lowpass filters (van Rooyen 2000).

Once again, this is understandable since in normal computer audio applications, this slight
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amplitude discrepancy is not very significant.

Determination of soundcard spurious levels

It is possible to compensate for this imbalance by altering the amplitude level of one of the

channels — this also enables us to determine approximately what percentage of amplitude

imbalance exists between the two channels, by trial and error techniques. Therefore, the

Q channel was arbitrarily selected for adjustment, and trial and error showed that at a

certain amplitude the spurious frequency (caused by amplitude imbalance) at 290 kHz

was at its lowest. This amplitude compensation clearly shows a decrease in the spurious

sideband component as illustrated in figure 5.4 — this minimum was found with the I

channel level set to 1 and the Q channel level set to 1.007 which concludes that there is

an approximate 0.7% amplitude imbalance between the two channels.

This result is, however, just an approximation. A more accurate result can be obtained

using the equation 3.33 in chapter 3 to determine the SFDR for amplitude imbalance.

Using equation 3.33 gives an amplitude deviation of 0.0085 for a SFDR of 47.5 dB for an

input signal with unity amplitude. This result of 0.0085 (or 0.85%) amplitude deviation

is important since it must be taken into account when the development of the emulated

system takes place in order to correctly represent the imperfections of the signals from

the soundcard prior to the input of the quadrature mixer. The output of the desired

component was measured at −20.33 dBm, which will result in a lower amplitude deviation

error level. This effect is taken into account and its exact setup is further explained in

the setup of the emulated system.

Using figure 5.3, we are now also able to measure the difference between the desired

quadrature mixed signal and the carrier leakthrough component. By observation, this was

found to be 35.3 dB. Converting 35.3 dB to an absolute level means that the upmixed

desired component at 310 kHz is 3388 times greater than the carrier leakthrough compo-

nent. Therefor, with respect to the desired signal, the carrier leakthrough component is

relatively small.

Calculation of soundcard LPF frequency response

In order to obtain the frequency response of the soundcard’s LPF, MATLAB’s built-in

randn function was used to produce some white gaussian noise as inputs on the I and Q

channel to the quadrature mixer. The syntax used to generate the white gaussian noise

directly on the output of the soundcard is as follows:

wavplay(randn(1e6,2),fs)

Recall that fs, the sampling frequency, was set at 44.1 kHz. The resulting plot is shown

in figure 5.5 and clearly shows the characteristic LPF response subsequent to frequency
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Figure 5.4: Amplitude compensated output showing a decrease in the adjacent sideband

component

translation. The cut-off frequency was measured to be at approximately 22.05 kHz (which

is half of 44.1 kHz, the sampling frequency) since the power difference at this point was

approximately 3 dB. The notch seen at 300 kHz is as a result of the soundcard’s built-in

filter response — judging by the output of figure 5.5, it can be seen the soundcard’s filter

does not allow very low frequencies to pass (including DC). This means that the filter

actually has a bandpass response with a very low first cut-off frequency. Therefor, after

frequency translation, the notch appears at the carrier frequency (300 kHz). Because the

soundcard is not DC coupled, carrier leakthrough compensation (by using of a DC offset)

is not possible. This technique could have be used to determine, by trial and error, the

level of DC offset required for the emulator. However, this parameter can easily, and very

accurately, be calculated using equation 3.34 in chapter 3. The exact level of DC offset

will be calculated in the section concerning the emulator’s setup.

Addition of quadrature impairments

Now that the characteristics of the soundcard have been determined, the next step is

to deliberately add some quadrature impairments. This facility is conveniently provided

by the vector signal generator and allows the user to add a percentage of the desired

quadrature impairment. The quadrature impairments will first be added independently

for examination purposes, and then the total effects will be combined.
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Figure 5.5: Determination of soundcard’s filter transfer function

The first non-ideal quadrature mixing effect, carrier leakthrough, is investigated by

adding a 1% carrier leakthrough component. The resulting effect can be observed in figure

5.6 which shows a definite increase in the carrier leakthrough component, which now has a

level of −44.3 dBm. Depending on the phase of the carrier leakthrough component caused

from the soundcard, the overall combination of both leakthrough effects (the soundcard

and the quadrature mixer) can either be constructive or destructive. Refering once again

to figure 5.2, the measured difference between the sound cards and quadrature mixers

carrier leakthrough components is 12.83 dB. The difference value of 12.83 dB is important

and it will be shown later in section 5.2.1 how it is used to implement the correct amount

carrier leakthrough in the quadrature mixer model.

Next, the leakthrough impairment is again set to zero and a 1% amplitude imbalance is

introduced using the vector analyser. We would expect the adjacent sideband (at 290 kHz)

level to increase and this is now evident in figure 5.7. Recall that there was already a 0.7%

amplitude imbalance introduced by the soundcard and the 1% of amplitude imbalance

introduced from the quadrature mixer is now being added to this to yield a total output

level of −63 dBm.

The last impairment added is phase imbalance. Recall from chapter 3 that a phase

imbalance leads to the same effect as amplitude imbalance — a sideband spur at 290 kHz.

With all the other quadrature impairments set to zero again, the phase imbalance was

arbitrarily selected as 3◦. Looking at figure 5.8, a difference of 32 dB is now evident
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Figure 5.6: Output with 1% carrier leakthrough added

2.5 2.6 2.7 2.8 2.9 3 3.1 3.2 3.3 3.4 3.5

x 105

−110

−100

−90

−80

−70

−60

−50

−40

−30

−20

Frequency (Hz)

P
ow

er
 (d

B
m

)

Figure 5.7: Output with 1% amplitude imbalance
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Figure 5.8: Output with 3◦ of phase imbalance added

between the desired component and the spurious component at 290 kHz due to the 3◦

phase imbalance — this is exactly the level predicated in equation 3.35 in chapter 3 by

making the SFDR the subject of the formula for phase imbalance.

Careful inspection of figure 5.8, however, reveals that the carrier component has in-

creased as well. Theoretically this is not expected. It is speculated that this change in

carrier leakthrough power could be as a result of the internal operations within SMIQ

signal generator. Therefore, the SMIQ signal generator could be attempting to maintain

a certain total signal power, irrespective of the distortion applied to the signal. In this

case, the signal generator was set up for a signal with an output level of -20 dBm and

then set up with some phase imbalance. The signal generator is therefore still going to

try to control the output power to lie at exactly -20 dBm by internally adjusting both

channels in order to create a modulated signal with a power of -20 dBm.

Stated otherwise, the attempt to maintain a constant output power could be part

of the gain control circuitry of the SMIQ signal generator. It is therefore assumed that

the constant-power theory (van Rooyen 2003) applies to the output of the SMIQ signal

generator.

Figure 5.9 just shows the combination of all three quadrature impairments added to

the signal. The levels observed for the hardware setup’s measurements will be examined

in the following section, when the outcomes of the emulated system are studied.
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Figure 5.9: Combination of the three quadrature mixer impairments

5.2 Emulated system setup

5.2.1 System overview

The primary aim of chapter 5 is to evaluate the accuracy of the emulator relative to the

physical hardware setup. In order to do this correctly, the same test setup conditions, that

were measured in the physical setup, need to be applied to the emulated setup. Recall

that the idea behind emulating a system is not to accurately represent the system in terms

of its precise architectural makeup. Instead, appropriate models should be used in order

to mimic the non-ideal behaviour of the components in the system so that, externally, the

behaviour of the emulated system should correspond with (or at least come close to) an

equivalent physical setup. The complete setup of the emulated system was done using the

front-end application as described in section 4.6 of chapter 4. An image of the opening

screen shot is shown in figure 5.10.

Emulator input parameter calculations

At this stage it might be important to state that the emulator’s use depends highly on

the designers requirements as well as the type of the system required for emulation. Some

of the different types of scenarios might include:

1. The case where a complete and thorough understanding of the hardware system is
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-- SDR Hardware Emulator FrontEnd Application Ver.1.0 --

1. Add a component

2. Remove a component

3. View list of selected components

4. Link components

5. Quick Link

6. View component links

7. Run!

0. Exit

Please select a menu option:

Figure 5.10: A screen shot of the user front-end application showing the various

options.

known. This will obviously lead to the most accurate results in the emulated setup.

2. Only outputs at certain points of the hardware system are known. This will allow

the designer to work backwards from the measurements in order to setup up the

emulator in the best possible way.

3. Where no knowledge of the system is known and its development in the emulator

is designed on paper. This kind of scenario would occur quite often, since it is the

purpose of the emulator to allow the designer to experiment with different design

ideas prior to hardware implementation.

For the hardware setup in this chapter however, option 2 is applicable. This is because

no direct knowledge of the system prior to the output of the soundcard is known. Stated

otherwise, it was made very difficult to determine the outputs of each component in

the soundcard due to restricted accessibility in order to measure the intermediate points

on the soundcard. In order to best address this limitation, the spectral output of the

soundcard was used to determine the soundcard’s performance. Recall that figure 5.3 was

used to illustrate the output of the soundcard (subsequent to being passed through the

quadrature mixer). With the input signal applied, the spurious component and carrier

leakthrough in figure 5.3 indicated that some gain and DC offset error was present on the

output of the soundcard respectively. It was stated earlier that the exact source of these

imperfections were not known but most like cause was due to mismatched components —

particularly the DACs. The quadrature mixer used in the vector analyser is an extremely

high-precision device and its contribution to any quadrature errors being added (with no

quadrature impairments added by the user) was considered negligible.
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In order to adjust the output amplitude from the soundcard, the Windows operating

system’s volume control was used. From figure 5.3, the output power of the source signal

was measured on the spectrum analyser at -20.33 dBm. Taking the 0.5 dB gain on the

vector analyser (for the quadrature mixer output) into account, this translates to a signal

level of 4.1 mV being generated on the output of the soundcard according to the following

calculations: The -20.33 dBm less the 0.5 dB gain of the vector analyser yields an output

of -20.83 dBm. Converting the power level, Ps, to a voltage level, Vi with the equation

Vi =
√

2 · Ps gives a result of 0.0041 or 4.1 mV.

The amplitude of the cosine (I) and sinusoidal (Q) source files used in the emulator

should be set at this level, V i, so that the input to the quadrature mixer sees an input

level of 4.1 mV. The setup parameters for the input waveforms should remain the same

for the emulated setup and in summary are given as:

• Input frequency for cosine and sinusoidal waveforms = 10 kHz

• Input sampling rate = 44.1 kHz

• Input amplitude = 0.0041 V

Sample number considerations

The exact number of samples used for the generation of the source waveforms need not be

exactly equal to the hardware setup’s configuration, but it must at least be large enough

in order to yield accurate Fast Fourier Transform (FFT) results. This is because the

number of points and sampling rate ultimately determine the resolution and frequency

range of the spectral plot on x-axis. Therefore, the number of samples chosen in the

emulator can be taken in such a way as to maximize the frequency resolution. However,

in practical measurements such as those performed in the hardware setup, it is not always

possible to achieve this. Also, with the emulation, the sampling rate can change at any

time. Therefore, the number of samples was arbitrarily chosen as 3000. In the section to

follow, featuring the results of the emulation, the fundamentals of FFT-based analysis are

briefly discussed in order to gain a better understanding of FFT-based measurements.

Representation of soundcard inaccuracies

In order to represent the inaccuracies (gain and DC offset) of the soundcard, there are

essentially two ways of performing this in the emulator:

1. Include these inaccuracies in the (I and Q) source files themselves.

2. Develop a separate model that adds gain and DC offset to the signal at any point

in the system.
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Although both options will ultimately produce the same results, employing option 1 would

not be an very accurate model of the emulated system. As stated earlier, certain DACs

can cause some gain and offset errors to arise due imperfect components that make up

the device. Therefor, in all likelihood, it is the output of the DACs at which the gain and

DC offset errors of the soundcard occur. Therefore, it would be more prudent to insert a

gain and DC offset model directly after the DAC model. Option 2 is therefore the best

solution and is simply implemented as the algorithm:

y = m · x + c (5.1)

where the output, y, is simply a function of the values m and c, the gain and DC offset

error respectively. In order to calculate the exact level of gain and DC offset, we need to

refer to figure 5.3 again. Using the SFDR equations of the section 3.6.6 in chapter 3, we

can make the error the subject of the formula and use the SFDR in order to determine

value of this error. Therefore, in order to calculate the amount of DC offset added by

the sound, figure 5.3 displays a carrier leakthrough component that is 35.3 dB below the

desired signal. Recalling equation 3.34 of chapter 3 and making ρ the subject of the

formula puts the equation into the following form:

ρ =
A

10

(SFDRρ
20

) (5.2)

With the amplitude level, A, set as 0.0041 (4.1 mV) and SFDRρ set to 35.3 dB gives a

DC offset error level of 7.04×10−5. The same process can be used for the calculation of

the gain error level from equation 3.33 of chapter 3 to yield the following form:

β =
2 · A

10

(
SFDRβ

20

)
− 1

(5.3)

Again, with the amplitude level A set to 0.0041, and (from figure 5.3) SFDRβ is set

to 47.5 dB yields gain error of 3.47×10−5. It is not important on which channel the

impairments are added, since the same result is obtained either way. Therefore, only a

single gain and DC offset model can be placed on the output of either channel of the

selected DAC. Another important aspect of figure 5.3 to take into account is the level of

the noise floor at approximately −100 dBm. It will be shown later in the chapter how

the level of AWGN will be added in order to introduce the correct amount of noise to the

emulated system.

Acquisition of emulated waveforms

Figure 5.11 is provided in order to visualise the emulated system setup. So far, only

the synthesised input waveforms setup have been illustrated. The connections in figure
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Figure 5.11: Illustration of the emulated setup indicating the position of the various

monitor files

5.11 marked with a ‘M’ indicate points at which monitor files where placed within the

emulator. The monitor files are used capture the output at desired points in order to

perform post-processing such as data visualisation. Therefore, the monitor at point M1

is used to acquire to output of the synthesised I-channel waveform. It might be thought

of as an unnecessary to place a monitor file at this point considering that the input file

itself can simply be loaded direct into MATLAB. The reason, however, for the inclusion

of this monitor file is to ensure that the synthesised waveform generated in MALTAB and

the captured waveform in the monitor file correspond — this is done to ensure that no

discrepancies lie in the acquisition of the data through the monitor files.

DAC model initialisation

Moving sequentially from the source components, the next component is the DAC — one

for each channel. The DAC, in the emulated system, is made up of a cascade of three

models:

1. A quantisation model

2. An ideal amplifier (gain module)

3. A gain and DC offset model (for the I-channel DAC only)

4. An upsample model
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In the emulated setup, no INL model is included. This is because no measurable INL was

observed. However, the advantage of emulation is that we do not need to represent the

DAC architecture exactly, but only its behaviour. In order to achieve this, the gain and

DC offset model will be used to represent the effects as a result of the possible INL errors.

Recall that the value of these parameters were calculated earlier as:

• DC offset — 7.04×10−5

• Gain error — 3.47×10−5.

For the hardware setup, software techniques were used in order to effectively enable 8-bit

quantisation. The emulator’s quantisation model, with the input parameters set at 8-bits,

was used to achieve this. The quantisation model is a normalised function which means

that the input signal must span ±1 in order for the function to work correctly. An ideal

amplifier is used subsequent to the quantisation model in order to attenuate the quantised

signal to the desired level of 0.0041. This setup is done for both the I and Q channel.

A monitor file, M2, is placed on the output of the amplified quantised signal on the I

channel to probe this output point.

A gain and DC offset model is placed directly on the output of the I channels amplifier.

This was done in order to include the non-ideal effects of the soundcard as was observed

in the hardware setup’s measurements. The syntax used to implement the gain and DC

offset error was given as

y = m · x + c (5.4)

where c would be set at a value of 7.04×10−5. The gain error value requires pre-calculation

before the parameter is entered as a suitable gain factor in the amplifier model. The value

for the gain variable, m, is calculated as

m =
Av + Ge

Av

(5.5)

where Av is the amount of attenuation required, in this case 0.0041 and Ge is the amount

of amplitude deviation error, which in this case is 3.47×10−5. This gives a value of 1.0085

for m, which will be used an the gain input parameter on the gain and DC offset model.

Upsample model initialisation

The upsample model is used to generate the usual sample-and-hold harmonics that are

characteristic of all DACs. The upsample model increases the effective sampling rate and

therefore makes the upsampling requirements of the quadrature mixer (to be explained

later) slightly easier. In fact, the upsample model in the DAC will be used in order

to completely avoid upsampling in the quadrature mixer. The main advantage of this
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approach is that no filtering of the upsample harmonics are required within the quadrature

mixer. A quadrature mixer would also require the two LPFs to have an adjustable cut-off

frequency that is depended on the upsample rate. Developing a LPF for this purpose, with

a order suitable enough to effectively remove the upsampling sample-and-hold harmonics,

can get very complex and is beyond the scope of this thesis. If it is within the interest of

the designer to pursue the area of suitable methods for sample rate conversion within the

quadrature mixer, the reader is referred an in-depth treatment of the topic in Chapter 10

of Proakis (Proakis & Manolakis 1996).

Generally all practical DACs generate some form of sample-and-hold harmonics due to

the internal operations of the DACs. The DAC used in the soundcard is no exception, and

in order to properly represent the system in the emulator, this effect must be included. The

upsample model will therefore be used to introduce this effect. The input parameter to

the upsample model is the upsampling rate. Because the lowpass filter following the DAC

is used to suppress these sample-and-hold harmonics, it is made impractical to measure

the order of the sample-and-hold harmonic generated by the soundcard’s DAC. The order

of the sample-and-hold harmonics is, however, directly proportional to the upsampling

rate. Because the upsample model will be used to relieve the quadrature mixer of any

upsampling duties, as mention in the previous paragraph, the upsample rate will be set to

30. This is because the input sampling rate of 44.1 kHz, upsampled by a rate of 30, gives

a resulted sampling frequency of 1.323 MHz — this will ensure that the quadrature-mixed

signal with a carrier frequency of 300 kHz can effectively be represented without aliasing.

The monitor file, M3, will be used to observe the output after the upsampling process.

Note that no glitch model is included in the emulation since it was not possible to

measure the amount of glitch directly at the output of the DACs. Attempting to measure

the level of glitch impulse on the output of the soundcard resulted only in the desired

glitch transients being filtered by the soundcard’s lowpass filters.

LPF model initialisation

The LPF, as mentioned earlier, would be used to remove the sample-and-hold harmonics.

From figure 5.5 it could be observed that the LPF in the soundcard has a cutoff frequency

of 22.05 kHz. Careful observation of figure 5.5 actually revealed that the filter has a

bandpass response. However, the system will not be operating with low range frequencies

and it is therefore not critical to model this as a BPF. In order to determine the order of

the filter model in the emulator, some trial and error work was needed. Using MATLAB

as a benchmark, it was determined that a 8th-order LPF filter best approximated the

measured response for the sound cards LPF, using the same input. Therefore, 8-order

butterworth IIR filter coefficients with a cutoff frequency designed at 22.05 kHz will be

used in the emulator’s filter model. The monitor file, M4, will be used to acquire the
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output at the LPF. From figure 5.11 we see that the monitor file at M5 is also placed at

the output of the Q channels LPF. This is done in order to verify that the results (less

the effects of the gain and DC offset on the I-channel) correspond with each other.

Quadrature mixer model initialisation

The next component in the system is the quadrature mixer model. Recall that the I and

Q signals at the input of the quadrature mixer will have a sampling rate of 1.323 MHz.

This ensures that the quadrature mixer does not perform any upsampling. The frequency

parameter for the quadrature mixer was calculated by dividing the desired carrier fre-

quency of 300 kHz by the output sampling frequency of 1.323 MHz. This results in the

quadrature mixer’s frequency parameter value of 0.227 which will be used directly in the

model. A gain of 0.5 dB was set in the vector analyser and this translates to a gain level

of 1.059 for the amplifier in the quadrature mixer.

In order to add the correct amount of WGN to the quadrature-mixed RF signal, the

value of the noise power must be calculated beforehand as follows:

NP = 10
F
10 (5.6)

where NP is the noise power parameter used in the AWGN model. The variable, F , is

the average height (in dBm) of the noise floor. From figure 5.3, the noise floor level can

be observed to lie at approximately -96 dBm. Making D = -96 dBm gives a noise power

of, NP , of 2.51×10−10.

5.2.2 Emulated system outcomes

FFT overview

Before the measurements of the emulator are presented, some background understanding

is required on the way the Fast Fourier Transform (FFT) is used to calculate the spectral

plots. The Fourier transform is a mathematical tool used for establishing the frequency

content of a signal (Rhode & Whitaker 2001). The discrete Fourier transform (and its

computationally faster variant, the FFT) is used to calculate the Fourier transform of

sampled signals. The Fourier transform operates by assuming that the time-domain signal

being operated on is periodic and repeats itself indefinitely (Rhode & Whitaker 2001).

Most real world signals fall short of these properties and at best, the Fourier transform

provides an approximation of the frequency content of the signal. Therefore, in practical

work, a convenient time window is usually chosen and the periodicity and time windowing

assumptions of the Fourier transform are normally not met.

A phenomena known as spectral leakage occurs as a results of taking the FFT of an

signal that does not meet the assumptions of the Fourier transform. In the time domain,



Chapter 5 — Emulator evaluation — a sample system 113

this can be thought of as taking a time window of a signal which has a non-integer

number of cycles. Repeating this time window indefinitely and connecting the end of each

window to the beginning of the next leads to discontinuities. These discontinuities in-turn

represent spurious energy in the frequency domain which causes some of the fundamental

signals energy to leak over into other frequencies, resulting in a lowered main peak and

more energy in adjacent frequencies.

Windowing

The situation can be improved somewhat by taking more samples, but that does not

necessarily address the problem since the discontinuities can actually worsen. This is

because increasing the number of samples could cause the discontinuity error between to

time frame windows to become greater. A technique used to remove (or at least reduce)

these discontinuities, known as windowing (Rhode & Whitaker 2001), can be applied —

but with some trade offs. Incidentally, windowing occurs even when no window is used.

This is because, by the very nature of taking a snapshot of the input signal in time,

the signal is multiplied with a rectangular-shaped window of uniform height – this is

know the Rectangular or Uniform window. Other types of windows include the Hanning,

Hamming, Blackman-Harris, Blackman and Flat top window to name but a few (Cerna &

Harvey 2000). Windows are characterised in the frequency domain by various parameters,

with each window having its own properties. With windows in general, the trade-off is

generally less spectral leakage at the cost of spectral resolution.

Different windows are used for different applications and selecting an appropriate

window is primarily based on the signal’s frequency content (Cerna & Harvey 2000).

Table 5.1 summaries some of the suggested window choices based on the spectral content

of the signal (Cerna & Harvey 2000). The signal content for the emulator consists generally

of a combination of sine waves and therefore, according to table 5.1, the Hanning window

would be most appropriate. Selecting an alternative window, however, can be done fairly

easily in order to find the best window for the application.

Table 5.1: Suggested window choices based on signal frequency content (adapted from

(Cerna & Harvey 2000))

Signal content Window

Sine wave or combination of sine waves Hanning

Sine wave (with preserved amplitude accuracy) Flat top

Closely spaced sine waves Uniform, Hamming

Signal content unknown Hann
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Figure 5.12: Spectrum of the 10 kHz input cosine waveform with a power of 27 dBm.

One of the effects of windowing is that the overall amplitude accuracy of the signal

is altered by the type of window used. In order to compensate for this error, the win-

dowed signal can be re-scaled by dividing the window array by the coherent gain for that

particular window. For a uniform window, the coherent gain would naturally be unity,

but for a Hanning window, the coherent gain is 0.5 (Cerna & Harvey 2000). Unless men-

tioned otherwise, all spectral plots for the output of the emulator were operated on using

a Hanning window as well as scaling it with its coherent gain factor.

Referring again to the the emulation setup in Figure 5.11, the outputs at various points

will now be examined. We would expect to see similar results to those measured in the

hardware setup, since the input parameters to the models were setup based on the outputs

of the hardware measurements. It must be said again, however, that the hardware system

measurements obtained are, at best, approximations of the system setup and this point

must be kept in mind when analysing the results of the emulation.

Source file data measurements

Referring to figure 5.11, the data acquired at the various monitor points from the emula-

tion will now be examined, beginning at the source file, M1, and ending at the monitor

point M7. Figure 5.12 shows the spectrum of the 10 kHz cosine waveform at the monitor

point M1. The reason a monitor file was placed at this point was to ensure that no errors

were introduced from the acquisition of data from the monitor file. The power level of

the fundamental signal is measured at 27 dBm, which corresponds to the level of unity
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Figure 5.13: Scaled output after quantisation

for the synthesised input waveform files.

The quantisation model that follows requires that an input signal level of unity am-

plitude and therefore the power of the component at 10 kHz lies at an expected level of

26.57 dBm. This level will be scaled to the correct level after quantisation using an ideal

amplifier. The spectral components at approximately -100 dBm are there as a result of

the windowing process.

DAC model measurements

The DAC that follows the first monitor file is composed of the following components:

• A 8-bit quantisation model

• An ideal amplifier

• A gain and offset error model

• An up-sample model

The output of the monitor file point, M2, is shown in figure 5.13. The output of

the quantisation model was scaled to the correct level (using an ideal amplifier model),

which now lies at exactly −21.17 dBm. The quantisation noise floor can be seen to lie at

approximately 86 dB below the fundamental signal. This observation correlates well with

the output of the hardware setups level of approximately −84 dB. The time domain signal

was operated on in order to calculate the SQNR of the signal in figure 5.13. Therefore, the
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Figure 5.14: Frequency plot for the monitor file, M3, showing the effects of upsampling

by a rate of 30.

quantised signal used was the unity amplitude signal obtained directly after quantisation,

prior to amplification. From first principles, the SQNR was calculated using the equation:

SQNR = 10 · log
Ps

Pe

(5.7)

where Ps and Pr is the power in the original and (quantised) error signal respectively.

This yields a result of 50.05 dB. This value is extremely close to the expected SQNR

value of 49.92 dB, which was calculated from the formula SQNR = 6.02N + 1.76.

Upsample model measurements

The output plot for the monitor file, M3, shows that the signal was up-sampled by a rate of

30 — this is evident by the observation of the 30 sample-and-hold harmonics. In addition

to this, the DC offset and gain errors were also added to the upsampled signal. The

peak of the desired component was measured at −21.84 dBm which, strangely enough,

indicates that the signal was slightly attenuated. In order to investigate what the cause

of this attenuation was, a monitor file was later placed directly after the gain and offset

model. This was done to ensure that the correct amount of gain was added. Looking at

the results of this monitor file in the frequency domain revealed an spectral peak at a

level of exactly -21.84 dBm which corresponds to a gain of 1.0085 — exactly the level set

by the gain and offset model. This result indicates that the error in signal level obtained

at the output of the I channels upsample model is a result of the upsample model itself.
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(a) 

(b) 

Figure 5.15: Output showing the filtered signal on the (a) I channel and (b) Q channel

output. The cut-off frequency can be observed at 22.05 kHz for both signals.

This minor discrepancies between results could be attributed to the spreading of energies

in FFT in the upsampled signal. In addition to this, there is the possibility that the

windowed FFT might have resulted in a slight loss of amplitude information.

It should be noted, however, that this slight discrepancy in the signal levels should not

be a major cause for concern. This is because the models used in the I and Q channel, up

until the input to the quadrature mixer, are subject to exactly the same signal processing

(less the effects of the gain and offset model, of which no signal processing errors where

found) and therefore the changes in amplitudes should be equal for both channels. Stated

otherwise, we could expect the absolute value of the fundamental signal to be slightly

attenuated after quadrature mixing, but the relative levels of the signals should remain

the same.

LPF model measurements

The data at the monitor points M4 and M5 should be exactly the same except for the

addition of the gain and DC offset errors on the I channel. Figure 5.15 (a) and (b)

shows the outputs of the I and Q channel respectively after being passed through there

respective 8th order low pass filters. From figure 5.15, observing the second harmonic

at approximately 40 dB from the fundamental signal, it is clear that some of the lower

order sample and hold harmonics could be present in the quadrature mixed signal. The

fundamental signal of the I channel and Q channel output in figure 5.15 was measured
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Figure 5.16: Output of the quadrature mixer model, clearly showing the effects of the

low order LPF, resulting in frequency translation of the lower order sample-and-hold

harmonics

at a level of -21.81 dBm and -21.88 dBm respectively. This indicates the expected gain

difference of exactly 0.07 dB between the two signals — the error set by the gain and

offset model.

Quadrature mixer model measurements

The output of the quadrature mixer model is captured in the monitor file, M6, and the

respective frequency plot is shown in figure 5.16. As expected, the effects of upsampling

have shown through — the second order sample-and-hold harmonic at 270 kHz still lies

at a level of −62.43 dBm. This is obviously an undesired effect, but a filter with a

sharper roll-off should address this problem quite easily. In figure 5.16 it can be seen that

no AWGN has been added yet, and this is why the noise floor is still at approximately

−180 dBm.

The desired signal at 310 kHz was measured at a power level of −21.35 dBm, which,

recalling the output of the LPF on the Q channel at −21.88 dBm, indicates this the

quadrature-mixed signal was amplified by a gain of 0.5 dB — exactly the gain set for the

quadrature mixer. If we actually go back and look at the levels observed for the hardware

setup measurements in figure 5.3 and compare this to the emulated setup’s measurements,

we will see that there is a difference of 1.02 dB. This error was however, identified at the

output of the upsampling model, which had approximately 1 dB added to its output.



Chapter 5 — Emulator evaluation — a sample system 119

(a) (b)

2.6 2.8 3 3.2 3.4 3.6

x 105

−120

−110

−100

−90

−80

−70

−60

−50

−40

−30

−20

Frequency [Hz]

P
ow

er
 [d

B
m

]

2.5 2.6 2.7 2.8 2.9 3 3.1 3.2 3.3 3.4 3.5

x 105

−100

−90

−80

−70

−60

−50

−40

−30

−20

Frequency (Hz)

P
ow

er
 (d

B
m

)

Figure 5.17: Spectral plot of the emulated quadrature-mixed output (a) showing the

inclusion of the AWGN against the previous output of the spectrum analyser (b) from

the hardware setup shown earlier. The peaks at either end of the spectrum of the

emulated output is as a result of improper filtering of the sample-and-hold harmonics.

The output of the quadrature mixer illustrates how this error level carried through to the

output of the quadrature mixer.

AWGN level measurements

Before the absolute and relative signal levels are studied further, the addition of AWGN

must first be taken into account. The quadrature-mixed output with the AWGN added

was obtained from the monitor point M7. The AWGN noise floor is shown in figure 5.17

and lies at approximately −105 dBm. This noise level is indifferent to the expected noise

level of −95 dBm as measured in the physical hardware setup. Although attempts were

made to address this noise level discrepancy, these proved unsuccessful. It is assumed,

however, that the error lies somewhere with the usage of the AWGN code and that further

analysis for implementation of the AWGN code could possibly resolve the matter.

Final output measurements

Measuring at the absolute levels in figure 5.17 reveals that the desired up-mixed compo-

nent at 310 kHz lies at −21.35 dBm. Comparing this to the level of -20.3 dBm from the

hardware setups output indicates that the two outputs differ by 1.05 dB. As mentioned

earlier, this discrepancy was already picked up at the output of the emulated soundcard’s

LPFs. Therefore, the absolute level of the output was expected to be slightly less that

expected. This discrepancy in results can also be attributed to the assumptions needed
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by the FFT in order to produce perfect FFT results, of which the signals in the emula-

tor failed to meet. The carrier leakthrough component in figure 5.17 was measured at

-55.7 dBm, which measures close to the hardware setups output of -55.6 dBm. The last

signal of interest is the spurious component at 290 kHz due to amplitude imbalance in the

I and Q signals. The level of the amplitude imbalance spur was measured at -68.77 dBm

— 1.3 dB off from the expected level of 67.5 dBm. These results yield the following SFDR

measurements for each spurious component with respect to the fundamental signal:

• SFDR for the carrier leakthrough component = 34.4 dB

• SFDR for the amplitude imbalance component = 47.4 dB

The carrier leakthrough SFDR measured for the hardware setup was 34.4 dB and the

SFDR for the amplitude imbalance spur was measured at 47.4 dB. Given the possibly of

some error introduced as a result of imperfect FFT measurements, the results displayed

by the emulator are relatively close to the measurements of the hardware setup, for the

same input conditions. Although the additional effects of quadrature impairments need

to be included, it is already possible to obtain an idea of the performance of the emulator

at this stage.

Addition of carrier leakthrough error

The effects of adding the quadrature mixers impairments will now be illustrated in the

emulator. The challenge in this regard was how to determine the values of the input

parameters needed to specify the correct value of quadrature impairments that correlate

with the levels set by the vector analyser. For example, how does the vector analyser

implement 1% of carrier leakthrough?

The only certain way of determining how the vector signal generator interpreted and

added the quadrature errors was to study a detailed schematic of the unit. Unfortunately,

detailed informating regarding the internal operations of the vector analyser was not

available. This point is especially true for the addition of carrier leakthrough error. This

restriction, however, does not limit the possibility of using alternate methods to estimate

the values of the quadrature mixer impairments needed in the emulator. By observing

the spectral output of the hardware setup in figure 5.6, it is possible to use the SFDR

level between the fundamental and carrier component to determine a carrier leakthrough

value. The process of obtaining the value that will represent 1% carrier leakthrough in

the emulator was performed simply as follows: Working with equation 5.2, the SFDR

level of 24.33 dB for the fundamental and carrier leakthrough component was used to

calculate a value of 2.5·10−4 for the leakthrough level. Subtracting this level by the value

obtained from the carrier leakthrough output with no impairments (figure 5.3), yields a

resulting error of 1.81·10−4. This resulting error value was used in the quadrature mixer
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Figure 5.18: Output of the emulator’s quadrature mixer with 1% carrier leakthrough

(a). The original output of the physical hardware system setup with the same

impairment added (b) is included for comparison.

model to represent 1% carrier leakthrough error. Figure 5.18 shows the spectral output

of the quadrature mixer with 1% carrier leakthrough added. The results are figure 5.18

are summaried in table 5.2.

The differences of 1 dB and greater can be attributed to both, the amplitude error

introduced by the upsampling model as well as taking the limitations of the FFT into

account. In general, however, the outcome of adding 1% carrier leakthrough in the emula-

tor matches up closely to the hardware measurents. The measurements for 1% amplitude

imbalance are investigated next.

Table 5.2: Comparison of hardware and emulation measurements with 1% carrier

leakthrough added

Measurement Hardware Emulation Difference

Fundamental −20.34 dBm −21.34 dBm 1 dB

Carrier peak −44.33 dBm −44.55 dBm 0.22 dB

Amp dev spur −66.83 dBm −68.77 dBm 1.94 dB

Carrier SFDR 24.33 dB 23.21 dB 1.12 dB

Amp dev SFDR 46.49 dB 47.43 dB 0.94 dB
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Figure 5.19: Output of the quadrature mixer model (a), showing the effects of 1%

amplitude imbalance by a increase in the power level of the spurious component at

290 kHz. The original output of the physical hardware system setup with the same

impairment added (b) is included for comparison.

Addition of amplitude deviation error

Applying the same method used to obtain the carrier leakthrough level needed, acquiring

the amplitude deviation value from figure 5.7 yielded a result of 0.007, which translates

to 0.7% — approaching the expected value of 1%. This indicates that the vector analyser

utilises a similar method as the quadrature mixer model in order to add amplitude error to

the signal. The emulator simply does this by adjusting the level of the I-channel’s carrier

waveform amplitude by a specified error level. With all other quadrature impairments set

to zero again, figure 5.19 shows the output of the quadrature mixer with 1% amplitude

deviation error added. Table 5.3 summaries the absolute and relative signal power levels

of figure 5.19. Generally, the difference error values in table 5.3 indicate that hardware

and emulated setup measurements show only minor level discrepencies. However, the

cause of a 0.81 dB difference between the SFDR of the amplitude deviation spur and

fundamental component could be as a result of the original level error of the fundamental

component.

Addition of phase error

Using figure 5.20, the final quadrature mixing impairment that will be looked at is the

addition of 3◦ phase error. Again, for the setup of the quadrature mixer, all other impair-

ments were set to zero. Table 5.4 once again summaries the main observations in figure

5.20.
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Figure 5.20: Output of the quadrature mixer model (a), showing the effects of 3◦ of

phase imbalance by an increase in the power level of the spurious component at 290 kHz.

The original output of the physical hardware system setup with the same impairment

added (b) is included for comparison.

The hardware measurement outcomes in table 5.4 was obtained from figure 5.8. Some

of the results from table 5.4 warrant further explanation concerning the difference error

levels of 9.07 dB and 8.08 dB for the carrier leakthrough component. The reason for

this large difference is because vector analyser measurement actually shows that the car-

rier leakthrough component decreased for the addition of 3◦ phase error — theoretically

something that should not happen.

As mentioned earlier, a likely explanation to why this happens is the possibility of

the vector analyser having some type of internal compensation circuitry that attempts

to keep the total power of the output signal constant. This is, however, at best just a

speculation, and a more thorough explanation can only be given if a schematic detailing

Table 5.3: Comparison of hardware and emulation measurements with 1% amplitude

imbalance added

Measurement Hardware Emulation Difference

Fundamental −20.34 dBm −21.32 dBm 0.98 dB

Carrier peak −55.5 dBm −55.67 dBm 0.17 dB

Amp dev spur −63 dBm −63.7 dBm 0.7 dB

Carrier SFDR 35.16 dB 34.35 dB 0.81 dB

Amp dev SFDR 42.66 dB 42.38 dB 0.28 dB
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the internal operations of the vector analyser is used.

The emulator results indicate that the carrier component remained unchanged, which

is what is theoretically expected. This is also a good example of precisely why emulation

is such a valuable tool — the designer has the capabilities to see the effects that individual

quadrature inaccuracies have on a signal without having to worry about interfering signals

affecting the measurements.

Combination of quadrature impairments

The last observation that will be made is for the combination of all three quadrature

impairments as shown in figure 5.21. The results of table 5.5 for figure 5.21 indicate the

expected: an increase in level for the carrier leakthrough and amplitude imbalance spur.

Again, the results for the carrier leakthrough SFDR does not directly correlate with the

measurements of the hardware setup. This effect was observed in figure 5.20 showed up

once again with the combination of all the quadrature impairments.

5.3 Conclusions and summary of results

An interesting aspect of using the particular hardware setup in chapter 5, is that in real

life systems it is not always possible to measure the data at every point in the system.

Therefore, it was necessary to work backwards from results of the spectrum analyser

measurements. Of course, this will at best, only approximate the system since the more

you know about the system, the more accurate the results will be. This is, however, the

very purpose of the emulator — to be able to build and test a system without having to

completely represent the internal makeup of the system.

The results of the comparison between hardware and emulated measurements yielded

interesting results. Apart from the amplitude error generated by the upsampling model,

the levels in the emulation corresponded very closely to the equivalent hardware setup

Table 5.4: Comparison of hardware and emulation measurements with 3◦ phase

imbalance added

Measurement Hardware Emulation Difference

Fundamental −20.34 dBm −21.35 dBm 1.01 dB

Carrier peak −46.66 dBm −55.73 dBm 9.07 dB

Amp dev spur −52.16 dBm −52.87 dBm 0.71 dB

Carrier SFDR 26.32 dB 34.4 dB 8.08 dB

Amp dev SFDR 31.82 dB 31.52 dB 0.3 dB
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Figure 5.21: Output of the quadrature mixer model, showing the combined effects of all

three quadrature impairments. The original output of the physical hardware system setup

with all the same three impairments added (b) is included for comparison.

output levels. Although the output levels are important in terms of assessing the perfor-

mance of the algorithms used in the models, another outcome is even more important.

This is confirmation that the architecture of the emulator is operating correctly in terms

of:

• The setting up and linking of various components.

• The retrieval of waveform data for post-processing.

• The correct streaming and buffer control of samples in the emulated system.

Although the basic operation of the hardware emulator was demonstrated to operate

as expected, there is still much room for improvement. Chapter 6 to follow will look at

Table 5.5: Comparison of hardware and emulation measurements with the combined

effect of all three quadrature impairments

Measurement Hardware Emulation Difference

Fundamental −20.34 dBm −21.32 dBm 0.98 dB

Carrier peak −39.8 dBm −44.53 dBm 4.73 dB

Amp dev spur −52.16 dBm −52.6 dBm 0.44 dB

Carrier SFDR 19.46 dB 22.93 dB 3.47 dB

Amp dev SFDR 31.82 dB 31 dB 0.82 dB
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some of the possibilities.



Chapter 6

Conclusion and recommendations

6.1 Background and Aim

The many advantages of SDR (as highlighted in chapter 2) make SDR technology an

attractive alternative to its hardware-based radio counterpart. The drawback however

mentioned was the ever present non-standardised hardware front-end, since extensive RF

hardware is often needed in the SDR analogue front-end. The power of software testability

is one of the key advantages in a SDR because it allows the designer the freedom to rapidly

implement and test new conceptualised ideas and algorithms. The primary aim of this

thesis is to take this property of software testability over to the hardware front-end of a

SDR. This became the basis for the conception and development of the SDR hardware

front-end emulator testbed for a SDR.

This thesis has focused on both the theoretical design and practical implementation

of a hardware emulator testbed. The focus has been placed on developing a software

architecture that supports a high degree of interchangeability amount the modeled com-

ponents. Only hardware components present in a typical SDR RF front-end were selected

for prototyping and modeling. This was performed by:

• Studying the background theory of the non-ideal behaviours for the selected com-

ponents.

• Considering and selecting the optimal way to model the components and their non-

idealities.

• The development of MATLAB prototype models in order to verify the algorithms

used for the modeled components.

In order for the emulator architecture to be functionally effective, it was designed in

C++ using a technique to allow a high degree of re-use and interchangeability amongst

modeled components. The principle idea behind the technique was to make use of the

idea of a generic “converter” object that can receive, process (in its own well-defined way)

127
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and deliver a stream of samples. These samples can be analysed at various points in the

emulated system using data visualisation software, which was MATLAB in this case.

6.2 Achievements of thesis

Comparative test outcomes from Chapter 5 reveal promising results that indicate a rela-

tively high degree of accuracy for the sample emulated system. The tests are by no means

an exhaustive analysis of the emulator but serve to illustrate the basic functionality of

the hardware emulator testbed for a given sample system. The results of the first version

of the emulator therefore conclude that the modeled components can be easily linked

in order to collectively operate so as to form a basic emulated system. The accuracy

of the resulting emulated waveforms are thus chiefly depended on the precision of the

component models. The development, however, of more elaborate and complex models

are left as a suggestion for further work and investigation. The objective of developing a

hardware emulator testbed for a SDR was further divided into many sub-problems. These

sub-problems formed the objectives set in Chapter 1, and include the following:

6.2.1 The development of an abstract base class

Chapter 4 introduced the concept of the abstract base class called “Converter”. The

Converter base class defines a generic component in that the Converter object works by

receiving samples, processing the samples and then delivering the samples out. The exact

processing that get performed is determined by the descendant classes implementation

of the processing function. This high level design readily facilitates the addition of new

component models.

6.2.2 The development of sample modules

Before the sample modules were developed, the necessary background theory was studied

in order to gain an understanding of the real-world behaviour for the identified hardware

components. Thereafter, MATLAB prototype models were developed in order to verify

the algorithms used in the models. Once the operation of the MATLAB prototype models

were verified, the equivalent C++ models were developed for inclusion in the hardware

emulator architecture.

6.2.3 Software architecture development

Chapter 4 was devoted to meeting this objective. All the components in the emulator

architecture are initialised as a special type of pointer — a reference counted pointer
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(RCPtr). The components are contained within a single common vector. This makes

the components easily interchangeable since standard vector operations can be applied.

The use of the RCPtr object enables the successful linking of components in the emulator

with minimal complexity. A text-based front-end application was developed in order to

facilitate the design and testing of the sample emulated system. It should be noted that

the system architecture developed here is not only applicable to hardware emulation —

this is because the software side of a SDR can be seen as a form of hardware emulation since

traditional analogue signal processing is being performed in software. Therefore, many of

the architectural concepts presented by the emulator can be applied to the software side

of a SDR. An example of this would be the inclusion of a “modulator” or “demodulator”

model as a descendant of the converter base class.

6.2.4 Verification using a physical setup

The physical hardware setup in chapter 5 was used as a bench-mark to determine the per-

formance of the emulator. The setup comprised of equipment that was readily available,

such as the computer’s sound card and a vector signal generator.

6.2.5 Post-processing and visualisation tools

In order to acquire the waveform data in the emulator, data files known as monitor files

were employed. MATLAB was used as the post-processing tool of choice. The data files

were loaded into the MATLAB workspace and a script file was written in order to visualise

the data in frequency domain.

6.3 Application of the results

The results obtained by this research present the following applications:

• The idea of including the front-end hardware into the SDR architecture on the same

software platform is a new paradigm. This promises more rapid and reliable com-

munications system design. It therefore brings the larger part of the development

process into the digital domain, thereby making an entire SDR system software

testable.

• Certain of the basic design principles on which the hardware emulator’s architecture

is based, serve as an important foundation for the development of the one of the

undertakings for the overall SDR project — the development of the primary SDR

architecture.
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• The hardware emulator provides a simple platform on which to design and test

complex model algorithms. This is because, due to the ease in which new models can

be accommodated in the emulator, the designer can concentrate more on algorithm

development and less on compatibility issues.

• One of the primary goals of SDR in general is to bring the software side of a SDR

as close to the antenna as possible, thereby minimising the amount of analogue

hardware used. One of the key features of utilising the software-based hardware

emulator, is that it allows the designer to freely experiment with the position of the

bridge that partitions the digital and analogue domain of a SDR.

6.4 Future work

The development of software-based hardware emulator for a SDR is a fairly novel idea and

therefore still a somewhat unexplored area of research. The possibility of a completed,

fully-functional SDR hardware emulator that readily integrates and forms part of a SDR

software library is a very exciting prospect. The work done in this thesis has formed

the initial developments required to obtaining this goal. There is, therefore, still much

research to be done and some suggestions for potential further work is outlined below:

• The various possibles must be looked at on how best to integrate the hardware

emulator to the remaining SDR. This can be done by either extending the current

emulator’s library to include SDR software components or to look at the required

modifications needed in order to integrate it to existing SDR systems.

• Currently, the interface used for the front-end application is text-based. The de-

velopment of a GUI (graphical user interface) would certainly make operating the

hardware emulator more user-friendly. Similarly, a GUI for MATLAB could also be

made to facilitate the operation of post-processing the waveform data.

• The library of emulated components can be extended and upgraded by studying

current SDR hardware front-end design trends. The current models can also be

improved upon by placing them within a software wrapper in order to make utilising

the models more user-friendly.

The research conducted in this thesis has shown the value of hardware emulation in a

software-defined radio. However, in order for this research to prove more worthwhile, still

much work is needed in this rather untapped area of SDR development. Although the

design and development of a SDR presents many challenges, further research in hardware

emulation can make the hardware emulator an important part of SDR design.
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6.5 Publications in connection with thesis

WITKOWSKY, J. and VAN ROOYEN, G-J., ”‘A hardware emulator testbed for software

defined radio.”’ Proceedings of IEEE Africon 2002, October 2002, Vol. 1, No. 6, pp. 383-

388.
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Appendix A

Source code

A.1 MATLAB simulation models

The prototype models were designed and tested in MATLAB, in order to determine the

models operation prior to developing the C++ models.

A.1.1 Data converter simulation models

• The model quantisation.m is used to quantise a signal according to a specified

number of bits.

• The INL pre-distortion model, inl.m is used in order to produce the typical non-

linear conversion transfer function found in practical data converters.

• The concept of upsampling is important for changing the effective sampling rate

between devices. Upsampling a signal also ensures that momentary effects in a

DAC, such as glitch impulse can be observed. The upsample.m model performs this

function.

• The glitch.m model is used to add glitch impulse to the upsampled signal.

• In order for the glitch impulse effects to seem random, a deterministic function,

hash.m, is employed.

A.1.2 Amplifier simulation models

• The saturation model, saturate.m, clipps the input signal as the specified limits.

• The Taylor amplifier model, Taylor.m, is based of the I and Q channel Taylor

coeffients that describe the nonlinear behaviour of the amplifier.

136
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A.1.3 Mixer simulation models

• The model mixer.m is used to model the nonideal mixing process using Taylor

amplifiers. The coeffients of the Taylor amplifier can be calculated by knowing

what the values of the IMT are that describe a particular mixer.

• I and Q signals can be quadrature mixed in the qmixer.m model which also allows

the user to add quadrature impairments.

A.1.4 Filter simulation models

• The function poly2quads.m is used to break a high order polynomial into second

order polynomials building blocks. These second order polynomials are used directly

in the quadratic filter.

• Using the second order polynomials descibed above, the quadratic_filter.m model

performs filtering on the input signal.

A.1.5 Post-processing routines

• The samples obtained from the monitor files describe the time-domain signal. Vi-

sualisation of this data is simply performed by plotting the samples in MATLAB.

The function freqplot.m is required to observe and analyse the frequency content

of the signal of interest.

• The routine spur.m was employed in order to accuratly measure the level of the

spurious component in frequency plots (van Rooyen 2000).
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function y = quantisation(x,n)

% quantisation Performs n-bit quatisation

% Syntax: y = quantisation(x,n)

% x is the input signal to be quantised according to the

% number of bits, n. The input signal must be in the range

% of -1 <= x <= 1 for the code to work correctly. The

% quantised output is symmetrical around but does not

% include zero.

% See also: inl.m, upsample.m, glitch.m

if (nargin < 2)

error(’At least two parameters are required’);

end;

if (max(x) > 1 | max(-x) < -1)

error(’Input must be equal to or in the range +1 and -1’);

end;

if ((n/round(n)) ~= 1)

error(’Number of bits must be a integer value’);

end;

q = (2^n);

y = sign(x).*(ceil(abs(x)*(q-1)/(2) - 1 + eps) + 0.5) / (q-1) * 2;
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function INLOut = inl(IN,x1,y1)

% INLOut Model to introduce INL predistortion

% Syntax: INLOut = INl(IN,x1,y1)

% x1 and x2 are vectors containing the normalised

% transfer function co-ordinates that specify the

% shape of the INL curve. The vector IN contains

% the input signal that is predistorted using

% MATLAB’s cubic spline function. The function also

% plots the distorted output over the ideal transfer

% function curve.

% See also: quantisation.m, glitch.m, upsample.m

if (nargin < 3)

error(’At least three parameters are required’);

end;

if (length(x1) ~= length(y1))

error(’The length of vectors x1 and x2 must be equal’);

end;

cs = spline(x1,y1);

INLOut = ppval(cs,IN);

xx = linspace(-max(x1),max(x1),200);

value = ppval(cs,xx);

plot(x1,y1,’o’,xx,value,’-’,[-max(x1) max(x1)],[-max(x1) max(x1)]);

title(’INL Predistortion curve vs Ideal output’);

xlabel(’Input signal level’);

ylabel(’Output signal level’);

grid on;
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function [us] = upsample(x, RATE)

% upsample Function used to increase the effective sample rate

% Syntax: us = upsample(x, RATE)

% The upsample function simply takes the input signal

% ’x’ and repeats it by the integer number specfied by

% ’RATE’. The upsampled signal sampling rate, ’us’,

% becomes the product of original sampling rate and

% the value specified by ’RATE’.

% See also: glitch.m

if (ceil(RATE)/RATE ~= 1)

error(’The value of the RATE must be an integer number’);

end;

if (nargin < 2)

error(’At least two parameters are required’);

end;

us = kron(x,ones(1,RATE));
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function [y] = glitch(x, seed, USR, bits, p)

% glitch Part of the DAC model that generates glitch impulse

% Syntax: y = glitch(x, seed, USR, bits, p)

% The input signal x must be an upsampled signal

% specified by the integer value USR. The seed

% parameters can be adjusted to change the values

% generated by the hash function. The value p is a

% parameter that can be used to specifiy the intesisty

% of the glitch impulse so that when p = 100 means that

% there will be 100% glitch impulse on the output.

% See also: upsample.m

h_intensity = p/100;

q = 2^bits - 1;

xx = round(x*q);

last = 0;

width_counter = 1;

for n = 1:length(x)

if width_counter ~= 1;

y(n) = current_out;

width_counter = width_counter - 1;

elseif x(n) ~= last;

[w(n), h(n)] = hash(last, xx(n), seed);

if w(n) == 0

w(n) = 0.1;

end

temp = last;

width = w(n);

width_counter = ceil((width.*USR)/2);

last = x(n);
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y(n) = x(n) + h(n).*(h_intensity);

current_out = y(n);

else

w(n) = 0;

h(n) = 0;

y(n) = x(n);

current_out = y(n);

end

end
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function [w, h] = hash(last, current, seed)

% hash Hashing function used with glitch model

% Syntax: [w, h] = hash(last, current, seed)

% The hashing function generates a height

% and width value for the glitch impulse

% model. The height value ranges from -0.5

% to +0.5. The width value goes from 0 to

% 1. The height and width values depend

% on the values of last and current

% quantisation value, as well as a seed

% value. The hash function is deterministic

% in that it will produce the exact same

% output values for the same values of last,

% current and seed.

% See also: glitch.m

if (nargin < 3)

error(’At least three input parameters are required’);

end;

w = mod(round(last^15 + current^7 + seed^5), 100) / 100;

h = ((mod(round(last^13 + current^5 + seed^3), 100) / 100) - 0.5)*2;
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function [y] = saturate(x,Vsat)

% saturate Saturates the signal x at the level specified by Vsat

% Syntax: y = saturate(x,Vsat)

% The input signal x is saturated corresponding to the

% (equal postive and negative) saturation levels set

% buy the value of Vsat.

% See also: Taylor.m

if (nargin < 2)

error(’At least two parameters are required’);

end;

y = [];

for i = 1:length(x);

if x(i) > Vsat

y(i) = Vsat;

elseif x(i) < -Vsat

y(i) = -Vsat;

else

y(i) = x(i);

end

end
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function Y = Taylor(X,I,Q)

% Taylor Performs quadrature Taylor series amplification

% Syntax: Y = Taylor(X,I,Q)

% The vectors I and Q hold the coefficients for the

% I and Q channel Taylor series respectively. Given

% both the I and Q Taylor coeffiencts, both the

% amplitude and phase response of an amplifier can

% be obtained. The I and Q vectors must be of equal

% length. X is the vector that contains the input

% signal to be amplified.

% Syntax: Y = Taylor(X,I)

% If only the amplitude response of a given amplifier

% is required, then only the I Taylor series coefficeints

% are needed.

% See also: saturation.m

if (nargin < 2)

error(’At least two parameters are required’);

end;

if (nargin < 3)

Q = zeros(1,length(I));

end;

if (nargin == 3)

if (length(I) ~= length(Q))

error(’Parameters I and Q must have the same length’);

end

end

Vin = hilbert(X);

n = length(I);

k = length(X);

V_I = zeros(1,k);

V_Q = zeros(1,k);
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Itemp = 0;

Qtemp = 0;

for i = 1:length(X)

for j = 1:n

Itemp = I(j).*(real(Vin(i)).^(j-1));

V_I(i) = V_I(i) + Itemp;

Qtemp = Q(j).*(imag(Vin(i)).^(j-1));

V_Q(i) = V_Q(i) + Qtemp;

end;

end;

Y = V_I + V_Q;
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% mixer_script.m

% Script used to illustrate how a mixer is modelled from its IMT.

% The IMT is decomposed using SVD and then the remaining matrices

% are modelled as the product of Taylor series pairs. See section

% 3.6.7 in Chapter 3 of the thesis for an in-depth discussion of

% this method.

to model 4th order mixer from IMT

A = [99 39 42 46; 25 0 39 11; 68 67 76 67; 63 58 65 60]; % IMT matrix

AA = 10.^(-A/10); % convert from dBm to absolute value

AA = AA/AA(2,2); % scale values with reference to fundamental signal amplitude

% i.e. values are now a expressed as a ratio of the fundamental

[U,S,V] = svd(AA); % Singular value decomposition

v1 = U(:,1)*S(1,1); % Extract harmonics in first row of U matrix. Multiply by

% first eigenvalue

v2 = V(:,1); % Extract harmonics in first row of V matrix

% Assign harmonic values

h0 = v1(1)/2

h1 = v1(2)

h2 = v1(3)

h3 = v1(4)

m0 = v2(1)/2

m1 = v2(2)

m2 = v2(3)

m3 = v2(4)

% Transform harmonic amplitudes into Taylor coefficients

% These formulas are the resulting relationships obtained

% from the written calculations

a0 = h0 - h2 % dc component

a1 = h1 - 3*h3 % 2nd Taylor coefficient
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a2 = 2*h2 % 3rd Taylor coefficient

a3 = 4*h3 % 4th Taylor coefficient

% transform harmonic amplitudes into second Taylor coefficients

b0 = m0 - m2 % dc component

b1 = m1 - 3*m3 % 2nd Taylor coefficient

b2 = 2*m2 % 3rd Taylor coefficient

b3 = 4*m3 % 4th Taylor coefficient

%-------- Input waveform -----------

% generate input (IF) waveform

f = 25;

fs = 5e3;

Ts = 1/fs;

n = (1:3000)*Ts;

A = -50; % dBm value specified by IMT data

% Convert dBm to a level

Power = 10^((A-30)/10)

x = Power*cos(2*pi*f.*n);

% generate LO waveform

fLO = 500;

B = 7; % dBm value

% Convert dBm to a level

NPower = 10^((B-30)/10)

x2 = NPower*cos(2*pi*fLO.*n);

% --------- Perform mixing ------------

% calculate Taylor 1 output

x = x/Power;

y1 = a0 + a1*x + a2*x.^2 + a3*x.^3;

% calculate Taylor 2 output

x2 = x2/NPower;

y2 = b0 + b1*x2 + b2*x2.^2 + b3*x2.^3;
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% multiple the outputs of the Taylor series

y = y1.*y2;

%==================================

%--- Second mixing segment

v3 = U(:,2)*S(2,2); % harmonics of first vector

v4 = V(:,2); % harmonics of second vector

h0 = v3(1)/2;

h1 = v3(2);

h2 = v3(3);

h3 = v3(4);

m0 = v4(1)/2;

m1 = v4(2);

m2 = v4(3);

m3 = v4(4);

% Transform harmonic amplitudes into Taylor coefficients

a0 = h0 - h2; % dc component

a1 = h1 - 3*h3; % 2nd Taylor coefficient

a2 = 2*h2; % 3rd Taylor coefficient

a3 = 4*h3; % 4th Taylor coefficient

% Transform harmonic amplitudes into Taylor 2 coefficients

b0 = m0 - m2; % dc component

b1 = m1 - 3*m3; % 2nd Taylor coefficient

b2 = 2*m2; % 3rd Taylor coefficient

b3 = 4*m3; % 4th Taylor coefficient

%---------

% Calculate Taylor 1 output

y3 = a0 + a1*x + a2*x.^2 + a3*x.^3;

% Calculate Taylor 2 output

y4 = b0 + b1*x2 + b2*x2.^2 + b3*x2.^3;

yy = y3.*y4; % multiple the outputs
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%============================================================

% 3rd mixing segment

v5 = U(:,3)*S(3,3); % harmonics of first vector

v6 = V(:,3); % harmonics of second vector

h0 = v5(1)/2;

h1 = v5(2);

h2 = v5(3);

h3 = v5(4);

m0 = v6(1)/2;

m1 = v6(2);

m2 = v6(3);

m3 = v6(4);

% Transform harmonic amplitudes into Taylor coefficients

a0 = h0 - h2; % dc component

a1 = h1 - 3*h3; % 2nd Taylor coefficient

a2 = 2*h2; % 3rd Taylor coefficient

a3 = 4*h3; % 4th Taylor coefficient

% Transform harmonic amplitudes into Taylor 2 coefficients

b0 = m0 - m2; % dc component

b1 = m1 - 3*m3; % 2nd Taylor coefficient

b2 = 2*m2; % 3rd Taylor coefficient

b3 = 4*m3; % 4th Taylor coefficient

%---------

% Calculate Taylor 1 output

y5 = a0 + a1*x + a2*x.^2 + a3*x.^3;

% Calculate Taylor 2 output

y6 = b0 + b1*x2 + b2*x2.^2 + b3*x2.^3;

yyy = y5.*y6; % multiple the outputs

%============================================================

%--- 4th (final) mixing segment
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v7 = U(:,4)*S(4,4); % harmonics of first vector

v8 = V(:,4); % harmonics of second vector

h0 = v7(1)/2;

h1 = v7(2);

h2 = v7(3);

h3 = v7(4);

m0 = v8(1)/2;

m1 = v8(2);

m2 = v8(3);

m3 = v8(4);

% Transform harmonic amplitudes into Taylor coefficients

a0 = h0 - h2; % dc component

a1 = h1 - 3*h3; % 2nd Taylor coefficient

a2 = 2*h2; % 3rd Taylor coefficient

a3 = 4*h3; % 4th Taylor coefficient

% Transform harmonic amplitudes into taylor 2 coefficients

b0 = m0 - m2; % dc component

b1 = m1 - 3*m3; % 2nd Taylor coefficient

b2 = 2*m2; % 3rd Taylor coefficient

b3 = 4*m3; % 4th Taylor coefficient

%---------

% Calculate Taylor 1 output

y7 = a0 + a1*x + a2*x.^2 + a3*x.^3;

% Calculate Taylor 2 output

y8 = b0 + b1*x2 + b2*x2.^2 + b3*x2.^3;

yyyy = y7.*y8; % Multiple the outputs

% Sum the outputs of all the Taylor product pairs

y_out = y + yy + yyy + yyyy;

%===============================================
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% Frequency plot of mixed signal

[a,b] = freqplot(y_out, fs, 1);

k = max(b); % set 0dB reference

b = 10*log10(b/k); % dB plot

plot(a,b)

% Condition output figure axis

XMIN = 0;

XMAX = fs/2;

YMIN = -80;

YMAX = 10;

axis([XMIN XMAX YMIN YMAX]);

ylabel(’Spectrum [dB]’)

xlabel(’Frequency [Hz]’)

grid on;
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function [RF] = qmixer(I,Q,Fc,LTAmp,LTPhase)

% qmixer Performs quadrature mixing

% Syntax: RF = qmixer(I,Q,Fc)

% The vectors I and Q contain the quadrature

% signals to be mixed. The carrier frequency

% is specified by Fc in Hz. RF is the vector

% that contains the quadrature mixed signal.

% A 1uS sampling period is used.

% Syntax: RF = qmixer(I,Q,Fc,LTAmp,LTPhase)

% The effects of carrier leathrough is added.

% Both, the leakthrough amplitude and phase,

% can be adjusted.

if (nargin < 3)

error(’At least three parameters are required’);

end

if (nargin < 4)

LTAmp = 0;

end

if (nargin < 5)

LTPhase = 0;

end

N = length(I);

n = 0:1e-6:(N-1)*1e-6;

RF = I.*cos(2*pi*Fc*n) - Q.*sin(2*pi*Fc*n) + ...

LTAmp.*cos(2*pi*Fc*n + LTPhase*pi/180);
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function [num2,den2,gain] = poly2quads(num,den)

% poly2quads Convert n-th order polynomial into 2-nd order quadratics

% Syntax: num2,den2,gain = poly2quads(num,den)

% The vectors num and den are the numerator and

% denominator filter coeffients respectively,

% generated using MATLABs built-in filter designers,

% such as butter.m. The n-th order polynomial is

% partitioned into 2nd-order polynomials as required by

% the quadratic_filter.m function. The gain is also

% extracted.

% See also: quadratic_filter.m

if (nargin < 2)

error(’At least two parameters are required’);

end;

if (length(num) ~= length(den))

error(’The length of the input vectors must be equal’);

end;

gain = num(1);

numL = length(num);

test_sign = rem(numL-1,2);

if (test_sign == 1);

num(numL+1) = 0;

den(numL+1) = 0;

end

num_roots = roots(num);

den_roots = roots(den);

num_pair = cplxpair(num_roots);

den_pair = cplxpair(den_roots);

order = length(num)-1;

num2 = [];
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den2 = [];

k = 1;

for n = 1:(order/2);

x = poly([num_pair(k) num_pair(k+1)]);

y = poly([den_pair(k) den_pair(k+1)]);

num2(k) = x(2);

num2(k+1) = x(3);

den2(k) = y(2);

den2(k+1) = y(3);

k = k+2;

end
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function [y] = quadratic_filter(a,b,g,x)

% quadratic_filter Second-order filter function

% Syntax: y = quadratic_filter(a,b,g,x)

% The quadratic filter functions assumes that

% the filter numerator and denominator coeffients

% supplied are factored as 2nd order polynomials.

% MATLABs roots.m and poly.m function can be used

% to obtain the 2nd order polynomials. Alternatively,

% the function poly2quad.m can be used to automated

% the process of generating the 2nd order terms. The

% variable ’g’, the first term of the numertor, is

% gain factor. The input signal ’x’ is filtered

% according to these parameters to produce the

% filtered signal, ’y’.

% See also: poly2quads.m

gain = g;

number_of_quads = (length(a))/2;

total_w = (length(a)/2)*2;

w = zeros(1,total_w);

for m = 1:length(x)

o = x(m) * gain;

for n = 1:number_of_quads

nn = (n-1).*2;

ww = o + -b(nn+1)*w(nn+1) + -b(nn+2)*w(nn+2);

o = ww + a(nn+1)*w(nn+1) + a(nn+2)*w(nn+2);

w(nn+2) = w(nn+1);

w(nn+1) = ww;

end

y(m) = o;

end
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function [a,b] = freqplot(X, fs, k)

% Freqplot Frequency plot of time domain signal.

% Syntax: [a,b] = freqplot(X, fs, k)

% The function freqplot takes the time signal,

% X, for a specified sampling frequency, fs,

% and generates its FFT. If k is 0, then a

% double-sided FFT is given. For k = 1, a

% single-sided plot is generated. The variables

% ’a’ and ’b’ are the frequency points and FFT

% vector respectively. The units of ’b’ are

% specified as a rms voltage value. To convert

% the output to a dBm value, use the following

% equation: dBm_out = 10*log10((b.^2)/1e-3);

% See also: spur.m

if nargin < 3

k = 1;

end

Nl = length(X);

df = fs/Nl;

XX = abs(fft(X)) / Nl;

N = floor(length(X)/2);

if k == 0

a = (-(N):(N-1))*df;

b = fftshift(XX);

elseif k == 1

a = (0:(N-1))*df;

b = XX(1:N).*2;

b(1) = b(1)/2;

BL = length(b);

b(2:BL) = b(2:BL)./sqrt(2);

else

warning on;
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warning (’Please enter a valid value for k - either 0 ...

or 1. Type help freqplot for help’);

warning off;

end
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function [S,I] = spur(Y)

% SPUR Finds the highest spur in a spectrum

% Syntax: [S,I] = spur(Y)

% SPUR ignores the global maximum of a samples spectrum, and

% finds the next-highest peak in the spectrum. S is the

% amplitude of the highest spur, and I is its index. Y is

% the spectrum to be analysed.

% Author: G-J van Rooyen

[SMax, IMax] = max(Y);

Minim = min(Y);

Last = SMax;

n = IMax;

Y(n) = Minim;

while n < length(Y),

n = n+1;

if Y(n) <= Last

Last = Y(n);

Y(n) = Minim;

else

break;

end;

end;

Last = SMax;

n = IMax;

while n >1,

n = n - 1;

if Y(n) <= Last

Last = Y(n);

Y(n) = Minim;

else

break;

end;

end;
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[S,I] = max(Y);
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A.2 C++ code listing

A.2.1 Architecture source code

• The two listed source files Converter.hpp and Converter.cpp form the main struc-

ture of the emulator architecture. This is known as the base class. All the decendant

classes include the model classes that function within the emulator. All the accom-

paning source files, which include the models as well as utility files, can be found

on the accompaning CD included at the end of the thesis.
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/* Converter.hpp The header file for the Converter base class. */

#ifndef CONVERTER_H

#define CONVERTER_H

#include <vector>

#include "rcptr.hpp"

using namespace std;

class Converter {

protected:

typedef struct OutputPort{

RCPtr<Converter> Module;

int BufferNumber;

} OutputPort;

/* define vector of structures called output_port */

vector <OutputPort> output_port;

vector <vector<float> > input_buffer; /* define input buffers */

int samples_in; /* number of samples in input buffer at a time */

int samples_out; /* the number of samples to deliver at a time */

int output(int port_number, float sample);/* method to write to next object*/

public:

Converter() {samples_in = 1; samples_out = 1; }; /* default values */

virtual ~Converter() {} ; /* destructor */

float read(int buffer_number); /* read samples from an input bufer */

/* write samples to an input buffer */

int write(int buffer_number, float sample);

/* determine the size of an input buffer */

int buffer_size(int buffer_number);

bool ready();/* check to see whether component is ready to process samples*/

/* define a virtual process that is unique to each component */

virtual int process() = 0;

/* ID tag that gets defined by decendant classes */

virtual const char* isA() const = 0;
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virtual void reset() = 0; /* method used to reset input buffers */

int setup(); /* setup the parameters for each decendant class */

/* Method used to setup a link between to objects */

int link(int output_port_number, RCPtr<Converter> destination_module,

int destination_portnumber);

int numInputPorts(); /* returns number of input ports for a component */

int numOutputPorts(); /* returns number of output ports for a component */

/* Method to find out details (type and port number) about

linked destination object */

int query_link(int output_port_number, RCPtr<Converter>* destination_module,

int* destination_portnumber);

};

#endif
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/* Converter.cpp */

#include <iostream>

#include <vector>

#include <assert.h>

#include "Converter.hpp"

using namespace std;

/* Method used to place processed sample into the

linked components specified input buffer */

int Converter::output(int port_number, float sample)

{

/* First check if specified port_number is valid */

if (port_number + 1 <= output_port.size())

{

RCPtr<Converter> DestinationModule = output_port[port_number].Module;

int DestinationBuffer = output_port[port_number].BufferNumber;

if (DestinationModule == 0)

{

return 2;

}

else

{

/* write samples to target input buffer */

DestinationModule->write(DestinationBuffer, sample);

return 1;

}

}

else

{

cout << "Warning - invalid port number! Maximum number of output ports is "

<< output_port.size() << endl;

return 0;

}

}



Appendix A — Source code 165

/* Read from a specified buffer then delete sample from buffer to prevent

overflow */

float Converter::read(int buffer_number)

{

float sample;

/* Check contents of buffer */

if (input_buffer[buffer_number].size() > 0)

{

sample = input_buffer[buffer_number][0];

input_buffer[buffer_number].erase(input_buffer[buffer_number].begin());

return sample;

} else

{

return 0.0;

}

}

/* write samples to a specified input buffer */

int Converter::write(int buffer_number, float sample)

{

input_buffer[buffer_number].push_back(sample);

return 1;

}

/* Ensure that buffer has samples for processing */

bool Converter::ready()

{

return (input_buffer[0].size() >= samples_in);

}

/* determine the size of the buffer */

int Converter::buffer_size(int buffer_number)

{

return input_buffer[buffer_number].size();
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}

/* setup parameters can be defined in decendant classes */

int setup()

{

return 1;

}

/* member function that sets up connection between two components */

int Converter::link(int output_port_number, RCPtr<Converter> destination_module,

int destination_portnumber)

{

assert(output_port_number + 1 <= output_port.size());

output_port[output_port_number].Module = destination_module;

output_port[output_port_number].BufferNumber = destination_portnumber;

return 1;

}

/* Retrieve information about the linked object for a given output port */

int Converter::query_link(int output_port_number,

RCPtr<Converter>* destination_module, int* destination_portnumber)

{

*destination_module = output_port[output_port_number].Module;

*destination_portnumber = output_port[output_port_number].BufferNumber;

return 1;

}

/* return total number of input ports */

int Converter::numInputPorts()

{

return input_buffer.size();

}

/* return total number of output ports */
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int Converter::numOutputPorts()

{

return output_port.size();

}


	Recommended Citation
	Cape Peninsula University of Technology
	Digital Knowledge
	1-1-2003

	A hardware emulator testbed for a software-defined radio
	Jason Witkowsky


