
RIGH

Development of an onboard computer (OBC) for a CubeSat

by

LWABANJI TONY LUMBWE

Thesis submitted in fulfilment of the requirements for the degree

Master of Technology: Electrical Engineering

in the Faculty of Engineering
at the Cape Peninsula University of Technology

Supervisor: Prof Richardt Wilkinson
Co-supervisor: Prof Elmarie Biermann

Bellville
May 2013

ii

DECLARATION

I, Lwabanji Tony Lumbwe, declare that the contents of this thesis represent my own unaided

work, and that the thesis has not previously been submitted for academic examination towards

any qualification. Furthermore, it represents my own opinions and not necessarily those of the

Cape Peninsula University of Technology.

Signed Date

Copyright © 2013 Cape Peninsula University of Technology
All rights reserved.

iii

ABSTRACT

Over the past decade, the satellite industry has witnessed the birth and evolution of the

CubeSat standard, not only as a technology demonstrator tool but also as a human capacity

development platform in universities. The use of commercial off the shelf (COTS) hardware

components makes the CubeSat a cost effective and ideal solution to gain access to space in

terms of budget and integration time for experimental science payloads.

Satellite operations are autonomous and are essentially based on the interaction of

interconnected electronic subsystems exchanging data according to the mission requirements

and objectives. The onboard computer (OBC) subsystem is developed around a microcontroller

and plays an essential role in this exchange process as it performs all the computing tasks and

organises the collection of onboard housekeeping and payload data before downlink during an

overpass above the ground station.

The thesis here presented describes the process involved in the development, design and

implementation of a prototype OBC for a CubeSat. An investigation covering previously

developed CubeSat OBCs is conducted with emphasis on the characteristics and features of

the microcontroller to be used in the design and implementation phases. A set of hardware

requirements are defined and according to the current evolution on the microcontroller market,

preference is given to the 32-bit core architecture over both its 8-bit and 16-bit counterparts.

Following a well defined selection process, Atmel’s AT91SAM3U4E microcontroller which

implements a 32-bit Cortex-M3 core is chosen and an OBC architecture is developed around it.

Further, the proposed architecture is implemented as a prototype on a printed circuit board

(PCB), presenting a set of peripherals necessary for the operation of the OBC. Finally, a series

of tests successfully conducted on some of the peripherals are used to evaluate the proposed

architecture.

Keywords: CubeSat, OBC, COTS, Microcontroller.

iv

ACKNOWLEDGEMENTS

The completion of this thesis would not have been feasible without the support, inspiration and

encouragement of the following people and organisations to whom I would like to express my

sincere gratitude:

 My supervisors Prof Richardt Wilkinson and Prof Elmarie Biermann for their patience,

guidance and support;

 The French South African Institute of Technology (F’SATI) in particular Prof Robert Van

Zyl, Prof Elmarie Biermann, Mr Francois Visser and Mr Ian Van Zyl for giving me the

opportunity to complete my Masters degree on a full-time basis;

 The Centre for Instrumentation Research (CIR) staff, store members and students, in

particular Khaleel Jooste for his ongoing assistance;

 My family in particular my brother Sean (Zed) Lumbwe and my sister Lydia (LaDiva)

Lumbwe for their never ending motivation and encouragement;

 Everyone who took interest in my project;

 And most importantly, my Saviour, Lord Jesus Christ, for giving me the strength to

complete this thesis in time.

Special thanks to my colleagues Gavin Mutch and Gary de Villiers.

The financial assistance of the National Research Foundation and F’SATI towards this research

is acknowledged. Opinions expressed in this thesis and the conclusions arrived at, are those of

the author, and are not necessarily to be attributed to the respective mentioned establishments.

v

DEDICATION

This thesis is dedicated to my mother LWABANDJI KINDJA ESTHER, who taught me that the

best kind of knowledge to have is that which is learned for its own sake and even the largest

task can be accomplished if it is done one step at a time.

To my late cousin CHOGO CA LWABANDJI, Rest in Peace.

vi

TABLE OF CONTENTS

DECLARATION .. ii

ABSTRACT .. iiii

ACKNOWLEDGEMENTS ... iv

DEDICATION .. v

GLOSSARY .. x

LIST OF FIGURES .. xiii

LIST OF TABLES ... xv

INTRODUCTION .. 1

1.1. Overview ... 1

1.2. Background .. 1

1.3. Research focus and motivation .. 3

1.4. Objectives of the research .. 5

1.5. Significance and contribution .. 5

1.6. Methodology ... 6

1.7. Research delineation .. 7

1.8. Thesis outline ... 8

1.9. Summary .. 8

LITERATURE REVIEW .. 9

2.1. Introduction ... 9

2.2. The CubeSat platform .. 9

2.2.1. CubeSat architecture and subsystems .. 10

2.2.1.1. Electrical power system ... 10

2.2.1.2. Communications Subsystem ... 11

2.2.1.3. ADCS subsystem .. 12

2.2.1.4. Payload subsystem ... 13

2.2.1.5. OBC and memory module ... 14

2.2.2. Previously deployed CubeSat OBCs ... 18

2.2.3. CubeSat hardware kits .. 19

vii

2.2.4. PC/104 standard ... 21

2.2.5. CubeSat deployment system .. 22

2.3. Space environment effects ... 23

2.3.1. Atmospheric drag and atomic oxygen ... 23

2.3.2. Solar wind and solar flares .. 24

2.3.3. Electromagnetic waves in free space .. 24

2.3.4. Semiconductors in space .. 24

2.3.5. Space debris ... 25

2.4. Summary .. 26

MICROCONTROLLER SELECTION ... 27

3.1. Introduction ... 27

3.2. Analysis of selection criteria ... 27

3.2.1. Power consumption (peak power and stand by) ... 27

3.2.2. Operating temperature range .. 28

3.2.3. Operating voltage .. 28

3.2.4. Packaging .. 28

3.2.5. I/O and serial bus compatibility ... 29

3.3. Selection process ... 30

3.3.1. Migrating from 8-bit and 16-bit to 32-bit .. 30

3.3.2. Previous 32-bit implementations ... 31

3.3.3. Microcontroller selection .. 32

3.4. Summary .. 37

PROPOSED OBC ARCHITECTURE ... 38

4.1. Introduction ... 38

4.2. Presentation of Atmel’s AT91SAM3U4E .. 38

4.2.1. Processing core ... 38

4.2.2. Memory capacity and access .. 40

viii

4.2.3. Peripherals .. 41

4.2.4. Power consumption and operating modes .. 42

4.3. Proposed OBC architecture .. 42

4.4. Summary .. 45

DESIGN AND IMPLEMENTATION .. 46

5.1. Introduction ... 46

5.2. OBC components ... 46

5.2.1. Power system block .. 48

5.2.2. JTAG ... 54

5.2.3. UART and USART .. 55

5.2.4. Universal Serial Bus (USB) ... 58

5.2.5. Two wire interface (TWI) ... 58

5.2.6. Serial peripheral interface (SPI) .. 63

5.2.7. SD/MMC Card ... 64

5.2.8. Analogue to digital converters ... 68

5.2.9. Timer/ counter (TC) ... 69

5.2.10. Pulse width modulation (PWM) ... 70

5.2.11. I/O peripheral set ... 71

5.3. PCB integration .. 71

5.4. Summary .. 73

DESIGN VERIFICATION .. 75

6.1. Introduction ... 75

6.2. Experimental setup ... 75

6.3. IAR EWARM Toolchain .. 78

6.4. Experimental tests and results ... 80

6.4.1. Power considerations .. 80

6.4.2. Peripherals .. 82

ix

6.5. Summary .. 102

CONCLUSIONS AND RECOMMENDATIONS .. 103

7.1. General conclusions ... 103

7.2. Issues encountered .. 104

7.2.1. Hardware ... 104

7.2.2. Software .. 105

7.3. Future work ... 105

BIBLIOGRAPHY .. 107

Appendix A: Previous CubeSat missions .. 112

Appendix B: Calculations and simulations (Overcurrent/voltage protection) 121

Appendix C: Datasheet Information .. 125

Appendix D: OBC Printed Circuit Board ... 138

Appendix E: Circuits schematics .. 144

Appendix F: Test programs source codes ... 151

x

GLOSSARY

ADC Analogue to Digital Converter

ADCS Attitude and Determination Control System

ALU Arithmetic Logic Unit

COTS Commercial-off-the-shelf

CPUT Cape Peninsula University of Technology

CRC Cyclic Redundancy Check

CSLI CubeSat Launch Initiative

C&DH Command and Data Handling

DIP Dual In-line Package

DMA Direct Memory Access

EBI External Bus Interface

EEPROM Electrically Erasable Programmable Read-Only Memory

EPS Electrical Power System

EWARM Embedded Workbench for ARM

FFPI Fast Flash Programming Interface

F’SATI French South African Institute of Technology

FSW Flight Software

FWUP Fast Wake Up

GPIO General Purpose Input/Output

GPS Global Positioning System

HF High Frequency

HSMCI High Speed Multimedia Card Interface

xi

IAC International Astronautical Congress

IC Integrated Circuit

ICE In Circuit Emulator

IDE Integrated Development Environment

I/O Input/Output

JTAG Joint Test Action Group

kSps Kilosamples per second

LEO Low Earth Orbit

LGA Land Grid Array

LSB Least Significant Bit

MMC Multimedia Card

MSps Megasample per second

NASA National Aeronautics and Space Administration

OBC Onboard Computer

PC Personal Computer

PCB Printed Circuit Board

PDC Peripheral DMA Channel

PGA Pin Grid Array

PIO Parallel Input/Output

PLL Phase-Locked Loop

PPM Pluggable Processor Module

PSRAM Pseudo Static Random Access Memory

PWM Pulsewidth Modulation

P-POD Poly Picosatellite Orbital Deployer

xii

QFP Quad Flat Package

RAM Random Access Memory

RISC Reduced Instruction Set Computer

ROM Read Only Memory

RF Radio Frequency

RTOS Real Time Operating System

SAM-BA Smart ARM Microcontroller-Boot Assistant

SCL Serial Clock Line

SDA Serial Data

SMT Surface Mount Technology

SOIC Small-Outline Integrated Circuit

SPI Serial Peripheral Interface

TC Timer Counter

TCCLKS Timer Counter Clock Select

TT&C Telemetry Tracking and Command

TWI Two Wire Interface

UART Universal Asynchronous Receiver Transmitter

USART Universal Synchronous Asynchronous Receiver Transmitter

UTC Unix Time Counter

UTMI USB2.0 Transceiver Macrocell Interface

UV Ultraviolet

WDT Watch Dog Timer

xiii

LIST OF FIGURES

Figure 1.1: Workflow process from concept to delivery ... 7

Figure 2.1: The Norwegian Ncube-2 CubeSat ... 10

Figure 2.2: Basic CubeSat architecture ... 11

Figure 2.3: OBC subsystem model .. 15

Figure 2.4: CubeSat Kit by Pumpkin (Adapted from Pumpkin, 2003) 20

Figure 2.5: 1U CubeSat EPS from Clyde Space (ClydeSpace, 2001) 21

Figure 2.6: PC/104 Standard PCB form factor dimensions (Adapted from PC/104 Embedded

Consortium, 2003) .. 22

Figure 2.7: Side and internal view of P-POD deployment system (Adapted from Lee et al.,

2009) ... 23

Figure 2.8: Space debrits representation around Earth (Adapted from Gunter, 2008) 25

Figure 3.1: Integrated circuits packaging types ... 29

Figure 3.2: Internal conceptual diagram of a microcontroller ... 30

Figure 3.3: 32-bit core architecture classification ... 33

Figure 3.4: Drystone MIPS comparison chart .. 35

Figure 4.1: Internal Block diagram of the SAM3U4E (Atmel Corporation, 2009) 39

Figure 4.2: Basic functional diagram of a CubeSat internal organisation 39

Figure 5.1: Detailed view of bus connections and OBC main components 47

Figure 5.2: Voltage regulation and ADVREF selection .. 50

Figure 5.3: Functional block diagram of Max4374 (Maxim Integrated Products, 2000) 51

Figure 5.4: MAX4373 Overcurrent protection circuit (Maxim Integrated Products, 2000) 52

Figure 5.5: Overcurrent protection circuit schematic ... 53

Figure 5.6: JTAG header connection circuit schematic ... 55

Figure 5.7: Data flow of UART/USART (Catsoulis, 2005) .. 56

Figure 5.8: MAX3232 setup with DB9 interface to AT91SAM3U4E ... 57

Figure 5.9: USB connection schematic diagram .. 59

Figure 5.10: Read operation from MCP9800 to master IC .. 61

Figure 5.11: MCP9800 TWI temperature sensor schematic diagram .. 62

Figure 5.13: SD/MMC Block diagram (Kingmax Digital Inc., 2000) ... 66

Figure 5.14: Multiple block write operation (SANDISK Corporation, 2003)................................ 67

Figure 5.15: SD Card socket schematic diagram .. 68

Figure 5.16: Close up of power/ground and data tracks on PCB ... 73

Figure 6.1: Experimental setup .. 76

xiv

Figure 6.2: IAR EWARM IDE main programming interface ... 78

Figure 6.3: Blink and UART program flowchart ... 83

Figure 6.4: Blink and UART communication program output ... 87

Figure 6.5: ADC program flowchart ... 88

Figure 6.6: UART output of ADC program ... 91

Figure 6.7: MCP9800 temperature register bits (Microchip Technology Inc, 2010) 94

Figure 6.8: UART output of TWI temperature sensor program .. 95

Figure 6.9: USB-to-UART COM port .. 96

Figure 6.10: USB to UART migration (Atmel Corporation, 2008)... 97

Figure 6.11: File transfer initialisation .. 99

Figure 6.12: File transfer progress and completion ... 99

Figure A.1. Simulated overcurrent protection schematic .. 106

Figure A.2. Overcurrent protection simulation results waveforms .. 107

Figure D.1. OBC Top Layer (Altium designer) .. 115

Figure D.2. OBC Bottom Layer (Altium designer) ... 116

Figure D.3. OBC Top Silkscreen Overlay (Altium designer) ... 117

Figure D.4. OBC Bottom Silkscreen Overlay (Altium designer) .. 118

Figure D.5. Top view picture of the OBC .. 119

Figure D.6. Bottom view picture OBC ... 120

xv

LIST OF TABLES

Table 3.1: Microcontrollers requirements criteria .. 34

Table 3.2: Refined microcontrollers comparison ... 36

Table 4.1: General OBC specifications ... 44

Table 5.1: Supply points on the AT91SAM3U4E .. 49

Table 5.2: Jumper arrangement for ADCVREF .. 49

Table 5.3: JTAG signal lines and functions (Catsoulis, 2005). ... 54

Table 5.4: MCP9800 features ... 60

Table 5.5: MCP9800 registers description and functions ... 62

Table 5.6: Signal description on SD card pins in SD mode .. 65

Table 6.1: OBC system power consumption in different operating modes 83

Table 6.2: API variable definitions, field and function ... 90

Table 6.3: MCP9800 configuration register power-up default settings 92

Table A.1: Previous CubeSat missions OBCs features .. 112

xvi

1

CHAPTER ONE

INTRODUCTION

1.1. Overview

The trend presented by the exploration and utilisation of space is growing on a daily

basis and the interest around it has given room for numerous useful applications such as

remote sensing1, global positioning system2 (GPS) and relay telecommunication3. These

applications require carefully planned space missions that are often very expensive and

take years to develop. Satellites that carry out these missions must operate

autonomously for the largest part of their service life, occasionally receiving commands

from the ground operator.

Satellite operations are essentially based on subsystems interacting with one another

and exchanging data according to the mission requirements and objectives. Virtually all

satellites require an onboard computer (OBC) to manage autonomous operations of the

satellite and to interact with the ground operators. The study here presented focuses on

the design and development of the OBC subsystem for a CubeSat.

This introductory chapter covers all relevant background topics relating to the CubeSat

programme and focuses on the CubeSat subsystem architecture, particularly on the

OBC, listing its functions and requirements. Also highlighted are the research objectives

and the motivation towards this study. Finally, the methodology, the research delineation

and the thesis outline are covered.

1.2. Background

The rapid advancement of space technology could not pass unnoticed over the recent

years and in this regard, academic institutions across the world have grown interest in

space science. More focus and attention were specifically given to the CubeSat platform

which was developed and proposed in 1999 by the California Polytechnic State

1See for example http://ciesin.columbia.edu/TG/RS/RS-home.html
2See for example http://hyperphysics.phy-astr.gsu.edu/hbase/gps.html
3See for example http://www.satellites.spacesim.org/english/function/communic/index.html

2

University (CalPoly) and the Stanford University (Heidt et al., 2000). A CubeSat is a

cubic satellite of dimensions 10 cm x 10 cm x 10 cm (also referred to as 1U) which can

be expanded according to given mission specifications and payloads (Lee et al., 2005:8).

In 2009, the Cape Peninsula University of Technology (CPUT) initiated a programme in

Space Science and Technology under the auspices of the French South African Institute

of Technology (F’SATI). The primary focus of this programme is human capacity

development in science and engineering in order to support the national space agenda

(DefenceWeb, 2012). A group of CPUT postgraduate students under the leadership of

several academics and specialists from industry developed the first South African

CubeSat codenamed ZACUBE-1, set to be launched in 2013. Two major payloads are

accommodated on ZACUBE-1, namely a matrix imager and a high frequency (HF)

beacon transmitter (South Africa. Department of Science and Technology, 2010: 3-4).

CubeSats comprise of several subsystems, each performing a dedicated task. According

to Gildeh’s (2003) representation of the CubeSat internal organisation, subsystems

normally include the following:

 An electrical power system (EPS) supplied by solar panels;

 A payload (e.g. beacon transmitter or camera) with its control unit;

 An attitude determination and control system (ADCS);

 A radio frequency (RF) communication subsystem;

 A memory module generally associated with the OBC and

 An OBC which enables the communication between the different subsystems.

With the high price associated with space grade (class S) and radiation hardened

components required for building satellites, it is prohibitively expensive for educational

institutions to build traditional spacecrafts. CubeSats were conceived to make access to

space more affordable by making use of commercial-off-the-shelf (COTS) components.

ZACUBE-1’s OBC is based on the FM430 CubeSat Kit from Pumpkin®. This is a ready

to fly kit comprising of a development board, an aluminium skeleton chassis and a

pluggable processor module (PPM) based OBC to which additional subsystems

designed in-house are stacked on top of each other (Pumpkin Inc., 2008).

3

The OBC is considered the brain of the CubeSat and essentially consists of a

microcontroller connected to subsystems through a serial data bus and additional

peripheral hardware. A real time operating system (RTOS) managing all the software

applications runs on the microcontroller and constitutes the CubeSat’s flight software

(FSW). The surface area of the solar panels is proportional to the CubeSat’s size. This

constraint makes the available onboard power a scarce resource and requires that the

microcontroller primarily has low average power consumption and at the same time

possesses enough processing power to handle all data transfers according to the

mission requirements.

The major functions of the OBC are as follows (Wells et al., 2003):

 Recording and storage of telemetry and satellite payload data for transmission to the

ground station for analysis;

 Encoding and decoding of data packets to and from the ground station;

 Processing of telecommands from the ground station, including time delay

commands received on the uplink channel;

 Monitoring of subsystems, implementing watchdog functions and resetting certain

critical subsystems if necessary.

In some cases, power supply management (checking battery level and shutting down

subsystems when necessary) is attributed to the OBC but generally this is done by an

independent power management system in conjunction with the EPS subsystem

(Hidayat, 2010).

1.3. Research focus and motivation

The satellite programme at F’SATI is focused on growing human capacity and expertise

within the South African space domain. Future strategies include the development and

launch of a CubeSat constellation to be used in specialised applications such as disaster

management. To achieve this, research and development of in-house software and

hardware components, such as the OBC, is essential. The choice of the CubeSat Kit

from Pumpkin® for ZACUBE-1 CubeSat mission was highly motivated by the time frame

4

restriction since the engineering model had to be unveiled at the International

Astronautical Congress (IAC) held in October 2011 in Cape Town, South Africa.

The OBC included in the CubeSat Kit is useful for its flexibility (different processors are

available as PPMs). It has also accumulated space heritage in low earth orbit (LEO)

CubeSat missions such as Delfi-C34, Libertad-15 and RAX6, among others (Pumpkin,

2010). The microcontroller used for these missions as well as for the ZACUBE-1 mission

was Texas Instruments’ MSP430. This microcontroller is known to combine high

performance with low power consumption, making it the ideal choice for developing

embedded systems where power consumption has to be kept at a minimum as is the

case for a CubeSat’s OBC (Albus et al., 2009). Pumpkin’s Salvo RTOS was selected as

the operating system for ZACUBE-1 and is the uniform platform for upcoming F’SATI

CubeSat missions.

In order to make future F’SATI CubeSat missions independent of limitations presented

by development kits in terms of performance, peripherals, data buses and instruction

size, a microcontroller core architecture needs to be investigated for the development of

an in-house OBC. A significant evolvement has occurred in the microcontroller market

and the migration from 8 and 16-bit core to 32-bit core architectures is common in

embedded electronic designs. The trend towards the 32-bit core architecture is driven by

the addition of several interfaces and features associated with the need to deliver more

processing power for better value for money and flexibility in code re-use across projects

using high level languages that lacked in its predecessors (Povey, 2008).

The designer wishing to develop an OBC is spoilt for choice with the wide variety of 32-

bit microcontrollers available on the market. Hence, an adequate selection process has

to be conducted according to a set of requirements and specifications prior to the design.

In addition to the selection process, the design and development of a working OBC

prototype around the selected microcontroller on a printed circuit board (PCB)

conforming to the CubeSat physical standards constitutes a challenge. Furthermore,

4See http://www.delfic3.nl/
5See http://www.usergioarboleda.edu.co/proyecto_espacial/
6See http://rax.engin.umich.edu/

5

peripherals of the developed OBC should be tested for functionality in order to evaluate

the prototype.

1.4. Objectives of the research

The primary objective of this research is to design and develop a prototype OBC

subsystem for CubeSat applications, based on a selected microcontroller architecture.

In order to achieve this, two milestones have to be reached chronologically, which can

also be identified as secondary objectives of this research:

 Defining a set of requirements and specifications for the OBC subsystem which will

lead to the selection of the microcontroller to be used for the design of the

architecture.

 Designing, implementing and testing the OBC architecture around the chosen

microcontroller according to the specifications defined in the first phase.

Additional circuitry should be accommodated alongside the microcontroller for peripheral

support and a PC/104 format PCB of the final OBC architecture should be designed,

populated and functionally tested.

With the main research objective mentioned, the following research questions were

significant to pose:

 Today’s microcontroller market provides three major ranges to choose from

according to the instruction, data and bus sizes, notably 8, 16 and 32-bit. For the

purpose of developing a CubeSat OBC, which option should be considered the best

and why?

 What requirements and specifications can be considered ideal for a particular

microcontroller when compared to others in its range in order to develop the OBC

around it?

 What major improvements will the proposed OBC architecture bring compared to

previously designed OBCs?

6

1.5. Significance and contribution

Satellite engineering is currently emerging in South Africa and the CubeSat platform is

viewed as being a convenient tool for human capacity development in this field.

F’SATI provides an academic platform to develop and train engineers in the domain of

satellite engineering. The study covered in this thesis will contribute to the South African

space programme development by delivering one of the first locally developed, tested

and functional CubeSat OBC prototypes.

In addition, a CubeSat will serve as an inexpensive vehicle to test this technology in

space, hence contributing to the CubeSat programme.

1.6. Methodology

The workflow process illustrated in Figure 1.1 describes the method that will be followed

throughout this research. All the major steps involved in the development of the

prototype OBC are presented in the following points:

 A study will be conducted around the CubeSat platform with the goal of gaining a

deep understanding of the concept behind it. Focus will specifically be directed to

the OBC subsystem and its components. Research comparing previously developed

and deployed OBCs will also be conducted in order to define the set of

specifications and requirements necessary for engaging in the microcontroller

selection process.

 Following the selection, the architectural design will be derived around the

microcontroller. The selected microcontroller will be evaluated by looking at each

one of its peripherals before creating the OBC architecture that will be implemented

around it.

 The developed architecture will be implemented as a hardware prototype and the

design will be verified for some peripherals of the OBC.

7

Creating the OBC architecture

Implement architecture

Testing the final system

Deploy and maintain the system

Literature
review

(CubeSat and
OBC)

Preliminary
analysis of

requirements

Creation of
OBC

architecture
and design

Develop
versions of
architecture

Deliver versions
of architecture
(Hardware &

Software)

Review and
obtain feedback

Implement
corrections

Deliver Final
version

Develop
(implement) the

system

Review &Test
the system

Implement
corrections

Deliver &
Maintain the

system

Figure 1.1: Workflow process from concept to delivery

1.7. Research delineation

This thesis will present the design and development of an OBC for a CubeSat. A

research process is presented which will lead to the selection of the microcontroller.

Further, the OBC architecture is proposed according to the selected microcontroller and

finally, the design, implementation and testing of the proposed architecture around the

selected microcontroller are presented.

It is important to note that the final OBC prototype will be developed with hardware

specifications only since it is not intended for any specific mission. If it had been, a

complete flight software (FSW) model would have to be developed, which would have

8

fallen outside the scope of this project. This research will be regarded as a proof of

concept and will deliver an engineering model of the OBC which can be implemented as

a flight model once a specific mission has been defined.

1.8. Thesis Outline

This document is structured as follows:

 Chapter 2 covers a detailed literature review of the CubeSat platform, subsystems

organisation and space environmental effects on satellite missions.

 Chapter 3 discusses the hardware selection process with a focus on the

microcontroller.

 Chapter 4 discusses the architecture development of the OBC around the selected

microcontroller.

 Chapter 5 presents all the steps involved in the design and implementation of the

OBC prototype.

 Chapter 6 lists all the tests and measurements performed on the prototype.

 Chapter 7 concludes and summarises the study and makes recommendations for

future work.

1.9. Summary

The research objectives were defined and the process involved was broken down into

significant key points essential for the execution of the project. The significance,

contribution and limitations of the study were pointed out and the methodology was

subsequently discussed. Finally, the contents of chapters to follow within this thesis were

outlined in detail.

The upcoming chapter covers a detailed look at the CubeSat platform and each of its

subsystems is presented. Investigations into OBC hardware used for previous CubeSat

missions are conducted and the effects of the space environment on semi-conductive

components are also outlined.

9

CHAPTER TWO

LITERATURE REVIEW

2.1. Introduction

In addition to the cost involved in developing a satellite mission, two more constraints

can be added, notably the size of the satellite and the risks associated when launching

or experimenting with new technologies in space. The introduction of the CubeSat to the

satellite market is primarily regarded as an innovation because it simplifies the

complexity of access to space by using COTS components in the development phase as

opposed to radiation hardened and space qualified components. Governmental

organisations, such as the National Aeronautics and Space Administration (NASA), have

started to develop CubeSats as a test-bed for larger missions by providing launch

opportunities through the CubeSat Launch Initiative 7(CSLI) (NASA, 2010). The CubeSat

also opens doors to new markets specifically focused on CubeSat subsystems

development and related services.

This chapter introduces the CubeSat by describing its specifications and internal

architecture. Emphasis is placed on the OBC subsystem and associated components

and a study of previously developed OBCs is also presented. Finally, elements of the

space environment that an influence LEO CubeSat space missions are briefly discussed.

2.2. The CubeSat platform

A CubeSat is a standard type of nanosatellite for which a very precise set of

specifications exists. As stated in Section 1.2 of Chapter 1, these specifications were

developed in 1999 and the initial purpose was to provide a standard design for

nanosatellites in order to reduce both the cost and development time and at the same

time increase accessibility to space for small payloads and sustain frequent launches. As

seen in Figure 2.1, the most restrictive aspect of the CubeSat is its size which is of

1000cm³ (10 cm x 10 cm x 10 cm) and also referred to as a 1U. This can be extended to

2U (10 cm x 10 cm x 20 cm) or 3U (10 cm x 10 cm x 30 cm) form factors depending on

7 See http://www.nasa.gov/directorates/heo/home/CubeSats_initiative.html

10

the mission. Associated with the volume is a restricted mass of 1.33 kg for the 1U (Lee

et al., 2009).

Figure 2.1: The Norwegian Ncube-2 CubeSat

(Adapted from Rupprecht, 2011)

2.2.1. CubeSat architecture and subsystems

In its very basic form, a CubeSat’s architecture is similar to what is presented in Figure

2.2. The OBC is at the centre of all communications between other subsystems via a

serial bus interface. The OBC generally includes the memory subsystem because it has

the additional function to record housekeeping parameters and telemetry payload data

collected at given timestamps or coordinates, before initiating the transmission to the

ground station during an overpass (Hardy, 2009).

Each subsystem is assigned a dedicated task. A brief description of each subsystem is

given in the points that follow.

2.2.1.1. Electrical power system

According to Wertz and Larson (2008), the EPS accomplishes the following functions:

 Supplies a continuous source of electrical power to satellite loads during the mission

life;

 Controls and distributes electrical power to the satellite;

 Supports power requirements for average and peak demands from electrical loads;

11

Figure 2.2: Basic CubeSat architecture

(Adapted from Gildeh, 2003)

 Provides command and telemetry capability for EPS health and status as well as

control by ground station or an autonomous system;

 Suppresses transient bus voltages and prevent bus faults.

The source that generates the electrical power is an array of photovoltaic solar cells that

make up one or more solar panels which convert solar radiation into electrical energy.

Satellites orbiting Earth go through a shaded region on the other side of Earth, away

from the sun, defined as eclipse. Depending on the type of orbit, eclipse lasts for a few

minutes up to a few hours and during this time, the solar panels do not produce electrical

power, leaving the satellite unpowered. (Koskienen et al., 1999).

A backup source has to be available in these conditions and electrical energy needs to

be stored during sun exposure in order to be used during eclipse. A common practice is

to use banks of rechargeable batteries. A series of results published in a study

conducted by Clark and Simon (2007) on battery technologies used in small satellite

applications recommends the use of Lithium Ion, Lithium Polymer and Nickel Cadmium

battery cells.

2.2.1.2. Communications Subsystem

Also referred to as the Telemetry Tracking and Command (TT&C) subsystem, the

communications subsystem provides the interface or link between the satellite and the

12

ground segment. According to Louis and Ippolito (2008), the RF link is essentially

defined by two one-way free space or air link channels between the ground segment and

the satellite, namely the uplink and the downlink channel. The uplink channel is the

portion of the link from Earth to the satellite (upload of telecommands) and the downlink

channel the portion from the satellite to the ground station (download of telemetry).

The communications link is made possible by RF transmitters and receivers coupled to

high gain antennas onboard the satellite and on the ground station. Telecommands from

the ground segment to satellite are sent through the uplink channel every time the

orbiting satellite appears at the horizon and becomes visible to the ground station’s

antenna.

In a similar way, onboard telemetry and payload data are downloaded via the downlink

channel to the ground segment. The pass above the ground station only happens for a

limited time during which it is a requirement for the receiving antenna to have a clear

field of view and enough gain to allow proper data transfer (Pierlot, 2009).

2.2.1.3. ADCS subsystem

Once the CubeSat is deployed, it will randomly tumble while orbiting Earth. The ADCS

subsystem is a stabilisation mechanism made of actuators and sensors connected in a

loop in order to keep the satellite’s orientation steady and ensure it operates efficiently

(Hales and Pedersen, 2002).

A closed feedback control loop is used where the attitude of the satellite is first

determined by various data collected by sensors and then compared to the desired

attitude through complex control algorithms. Actuators are then used to perform the

necessary manoeuvres to achieve the required attitude for the satellite and a continuous

loop is maintained. Possible sensors include earth, sun and star sensors, gyroscopes,

magnetometers and directional antennas while actuators could include magnetic

thrusters and wheels which in turn can be reaction wheels, momentum wheels or control

moment gyros (Wertz & Larson, 2008).

It is common for CubeSats to make use of reaction wheels because 3-axis stabilisation

is achievable within the limited physical space offered by the structure and frequently,

13

the payload includes a camera that needs to be continuously pointing down to Earth in

order to take usable images (Oland & Schlanbusch, 2009).

2.2.1.4. Payload subsystem

According to Denier (2010), satellite payloads can include telecommunication systems,

imagers or scientific measurement probes. Satellite missions are therefore classified as

communications, imaging or scientific missions. In order to increase effectiveness in

terms of cost and integration, it is common to combine two or more types of payloads on

a single satellite.

Three types of payload data are associated with communications satellites, namely

voice, video and data (e.g. text files and Morse code). Signals are sent from the ground

station to the satellite and retransmitted either to the ground or to another satellite (relay)

through a channel at a selected frequency band. Applications of communications

satellites range from cellular telecommunication to television transmission. A practical

example will be the communication with airplanes, ships, trains and trucks just to name a

few (Denier, 2010).

The payload onboard imaging satellites consists of a camera which is classified

according to the resolution of the image that can be reproduced. The imager is required

to be capable of capturing images of Earth or other universal bodies over different

spectral bands according to the application. Filtering techniques are then applied to

present the image in the usable frequency range. Applications of imaging satellites can

range from mapping (cartography), disaster management (fire detection), meteorology or

universal observation (Navalgund et al., 2007).

Scientific payloads include measurement instrumentation assisting in collecting specific

scientific data for analysis. They can provide information about sun spot activities, solar

winds and storms, map carbon dioxide concentrations and evaluate the ozone layer in

the atmosphere which can lead to a better understanding of our universe and its

components (Denier, 2010).

14

2.2.1.5. OBC and memory module

Satellite systems are generally engaged in the collection and transfer of information or

commands among all of their subsystems. The OBC is at the heart of this data transfer

and acts as the onboard communications link between all other subsystems. It is an

embedded computer dedicated to command and data handling (C&DH) of the satellite.

The major OBC specifications need to be determined and optimised to ensure secure

and efficient data flow since different transfer rates are used between subsystems

(Hidayat, 2010).

Onboard parameters such as temperature and power consumption in different sections

of the satellite are constantly measured and stored in the OBC’s memory module and

constitute telemetry data to be downloaded to the ground station during an overpass.

From the ground station, newer versions of the FSW can be uploaded via the uplink

channel and new orbital parameters can be defined and implemented. This is also

accomplished by the OBC which decodes these telecommands and executes them by in

turn commanding the other subsystems to achieve the desired action (Polaschegg,

2005).

The OBC also makes use of the data from ADCS sensors to determine the attitude of

the orbiting satellite and controls the ADCS actuators to control the satellite’s attitude.

This is done by loading a pre-defined control algorithm into the microcontroller and

executing manoeuvres whenever necessary (Hales et al., 2001).

As illustrated in Figure 2.3, the OBC is composed of both hardware and software

components. Such a global visualisation is very useful to associate all the OBC elements

with their respective functions and build the OBC architecture based on these elements

(Noergaard, 2005). These two components are presented in more details:

a. Hardware component

Also called the physical layer, the hardware component contains all the physical

electronic components that are located on a PCB. It is the lowest level in the OBC model

and consists essentially of a microcontroller with various peripheral interfaces and

supporting hardware with a memory module to store programs and data.

15

Figure 2.3: OBC subsystem model

(Adapted from Castoulis, 2005)

Castoulis (2005) defines a microcontroller as a central processing unit (CPU), memory

and some Input/Output (I/O) devices all contained within a single integrated circuit (IC)

and interconnected by an internal bus system. The processor is central to the

microcontroller unit and represents the most important part of the system. It manipulates

data in a way specified by a sequence of instructions defined in the software layer and

intended to suit a given application or program. Selecting the ideal microcontroller is

crucial since it constitutes the backbone of the OBC design.

In general, microcontrollers are classified according to their instruction set, memory and

internal bus width. Singh (2004) states that the nature of the arithmetic logic unit (ALU)

determines if the microcontroller is classified as 8-bit, 16-bit or 32-bit depending on

logical and arithmetic operations which will then, respectively, be performed on a byte (8-

bit), a word (16-bit) or a double word (32-bit).

The internal memory (also referred to as on-chip memory) of the microcontroller is

divided into two types which are defined by Botma (2011) as follows:

16

 Flash memory: It is a variation of electrically erasable programmable read-only

memory (EEPROM) which is accessible in blocks of data. It is the non-volatile

portion of the memory, meaning that it retains its value even when power is removed

in the system. It has the advantage of presenting fast access time and has a high

tolerance to radiation effects.

 Static Random Access Memory (SRAM): It is the volatile portion of the memory,

meaning it loses data when power is removed. The read and write operations on

SRAM are very fast; it is thus used to store program data which are temporarily

allocated and constantly changing during the run of the program.

On-chip memory is usually insufficient and in most cases, microcontrollers provide

support for external memory devices in order to expand the memory capacity of the

system. In an OBC subsystem, the selected microcontroller should allow for external

memory expansion since housekeeping and payload data are usually of sizes bigger

than the space available on-chip. The external memory module can also be used to

store program applications that would run on the microcontroller and that may require

additional memory space (Sakoda, Horning & Moseley, 2005). Various components are

available that can be used as memory expansion modules such as secure

digital/multimedia cards (SD/MMC) and memory ICs.

The I/O devices (or peripherals) are integrated in the microcontroller and are used by the

processor to communicate with other external devices (Catsoulis, 2005). In the case of

the CubeSat, these peripherals create an interface between the OBC and the other

subsystems. The CubeSat architecture requires a standard serial data bus protocol to be

used for fast data rate transfers between subsystems. This data transfer is initialised and

monitored by the OBCs’ microcontroller. Common serial interfaces found in

microcontrollers include universal asynchronous receive-transmit (UART), inter-

integrated circuit (I2C) (also known as two wire interface (TWI)) and serial peripheral

interface (SPI).

Additional supporting hardware components to the microcontroller are necessary to

ensure the OBC runs efficiently. According to the work published by Clausen et al.

(2001), it is recommended for the OBC subsystem to include an overcurrent protection

17

circuitry, a battery backed-up real time clock (RTC) and one or more on-board

temperature sensors. The overcurrent protection is needed to monitor the current drawn

by the subsystem and disconnect the supply in case of an overcurrent condition. The

RTC keeps track of the time and helps to synchronise onboard operations. The RTC

also keeps onboard data synchronised with the ground operations. Time is typically

encoded in a timing format known as the Unix Time Counter (UTC8) system and

interrupts are used to synchronise events between subsystems. The RTC’s power is

backed up with a battery so time is not lost when the OBC’s power is removed for any

reason. The on-board temperature sensors are necessary to monitor the variations in

temperature at different points of the CubeSat which are exposed to the harsh space

environment.

b. Software component

The software component commands the processor and controls its operability and

functionality. There are three layers of software that are represented by a common

shade in Figure 2.3, each interacting only with the layer(s) directly above or below it.

When the microcontroller powers up, it is necessary that the processor’s internal

registers be configured to an initial state in order to operate correctly. The piece of

software responsible for this process is known as the firmware and is the lower software

component layer that communicates directly with the hardware component layer and the

operating system. The operating system is the system software component that

manages the use of and access to the memory and other peripherals within the

microcontroller. It acts as a host for applications and is responsible for the management

and coordination of activities and sharing of other resources in the OBC subsystem,

making it easier for the user to write and run applications (Catsoulis, 2005).

Applications within the OBC are organised in tasks to which a priority level and a

deadline are assigned. These tasks are co-ordinated by a real time operating system

(RTOS) which according to Whilmshurst (2007) accomplishes three major functions

when implemented in a system:

 It decides which task should run and for how long;

8See http://www.unixtimestamp.com/

18

 It provides communication and synchronisation between tasks and

 It controls the use of resources shared between tasks, for example memory and

hardware peripherals.

The implementation of several applications (or multi-tasking applications) based on a

RTOS constitutes the CubeSat’s flight software (FSW). Hidayat (2010) defines the FSW

as “the central intelligent system of the modern satellite that can run on a single chip”.

Enright (2002) further summarises the major flight software functions as follows:

 It schedules satellite activities autonomously when the satellite is away from the

ground station radiation coverage, such as scheduling the payload imager to take a

picture of a certain location at a particular time;

 It responds to ground user telecommands during the ground station overpass. The

FSW should be able to interact with the ground user by accepting all the valid

commands and execute commands based on their parameters;

 It performs data logging by taking measurements of the housekeeping parameters

(telemetry) and stores them into the memory device until they can be sent to the

ground station. Data logging also includes the logging of events that took place

during flight ;

 It performs data management, including data structure and protocol.

When the use of a specific RTOS is required, the selected microcontroller needs to be

supported by it. An adequate integrated development environment (IDE) to write and

compile applications or tasks is also needed in order to program the microcontroller or

load the RTOS.

2.2.2. Previously deployed CubeSat OBCs

To date, the number of successful CubeSat missions orbiting Earth amounts to more

than fifty and there are still a large number of them currently under development by

different organisations and universities worldwide such as TechEdSat9, StudSat10 and

EQUiSat11. However, not all CubeSat missions have been successful in the past and a

9 See http://www.amsatuk.me.uk/iaru/finished_detail.php?serialnum=228
10 See http://www.nmit.ac.in/Centerforsmallsatellite.aspx?LinkId=407
11 See http://amsat-uk.org/2012/09/30/equisat-optical-beacon-cubesat

19

number of failures have been recorded. These failures were either associated with a

technical fault from the launch operator or malfunction of a subsystem onboard the

satellite.

Each CubeSat is unique in the mission that it has to perform and the subsequent

payload it has to carry. Depending on the initial mission requirements, the OBC

subsystem needs to be designed around hardware components that fit within the defined

specifications.

In order to illustrate this idea and to facilitate the derivation of the OBC hardware

specifications, information was collected and compiled and as a result, the classification

found in Table A.1 in Appendix A was drawn. In this table, a compilation of CubeSat

missions is presented according to the mission overview, the mission status and the

microcontroller used for the OBC subsystem. It shows that most of the previously

launched CubeSats had their OBCs designed using 8- and 16-bit microcontrollers as

opposed to 32-bit microcontrollers which only started to make their entry recently and

whose CubeSats are due for launch. It is also important to consider the fact that the

complexity associated with CubeSat missions has started to increase and more than one

payload can now be accommodated. This in turn adds to the demand in processing

capabilities and, amongst other, microcontroller specifications.

2.2.3. Hardware kits

The success of the CubeSat as a low-cost solution for space experiments has led to the

commercialisation of subsystems and modules, giving birth to a new emerging market.

Several companies have been established as subsystems and solution providers for

CubeSat missions notably, Tyvak Nano-Satellite Systems, GomSpace, Stras Space,

Space Micro, Blue Canyon Technologies and Sequoia Space, just to name a few. As an

example of services delivered, three of the most successful companies are listed with

their specific products or solutions:

 Pumpkin® is the manufacturer of the CubeSat kit which is the most popular and

user-friendly CubeSat development kit on the market because of its high success

rate in space. It requires the addition and integration of other subsystems around an

MSP430 based OBC from the kit which also includes a modular skeleton chassis, a

development board for prototyping and the Salvo RTOS as shown in Figure 2.4.

20

Figure 2.4: CubeSat Kit by Pumpkin

(Adapted from Pumpkin, 2003)

On several missions, the CubeSat kit has proven to be reliable and is currently a

commercial success (Pumpkin, 2003).

 Clyde Space is a Scottish based company and a world leading CubeSat subsystem

manufacturer and vendor. Their main focus lays in designing and developing high

performance EPS, lithium polymer batteries and high efficiency solar panel arrays.

The company was founded in 2005 with the primary objective of CubeSats power

subsystems development. It has since expanded to small size satellites, larger than

CubeSats. Figure 2.5 illustrates a 1U Clyde Space EPS which includes an

integrated battery charge management system among other features (ClydeSpace,

2011).

 Innovative Solution In Space (ISIS) was established in 2006 and holds its roots from

the Delfi-C3 Dutch CubeSat mission (Delft University of Technology) which was

successfully put into orbit in 2008 and is still operational. The company is renowned

mostly for delivering high quality telecommunication products (RF subsystem and

antennas) and modular CubeSat structures.

21

Figure 2.5: 1U CubeSat EPS from Clyde Space (ClydeSpace, 2011)

One of their most successful product to date is a complete ground station kit which

represents a solution necessary to provide support in terms of tracking, upload and

download exchanges with the CubeSat during a mission (ISIS, 2008).

2.2.4. PC/104 standard

One of the most critical constraints in the CubeSats standards remains its size. The

PC/104 form factor which is illustrated in Figure 2.6 is an embedded computer standard

configuration which was adopted by the California Polytechnic State University and

Stanford University when developing the CubeSat standards. It is restricted by the

following factors defined by the PC/104 Embedded Consortium (2003):

 Each PCB has to be 90.2 ൈ 95.9 mm in size;

 Spacing between stacked modules should not be less than 15mm;

 Power consumption typically has to be of the order of 2W maximum per board with a

reduced bus drive current of not more than 4mA;

 Bus connectors are optionally “stack-through” or “non-stack-through” depending on

the termination and the module the PCB connects to;

 The modules are designed to be stacked, thus not requiring the use of a backplane;

22

Figure 2.6: PC/104 Standard PCB form factor dimensions

(Adapted from PC/104 Embedded Consortium, 2003)

 The data bus should be configurable for 8-bit, 16-bit and 32-bit;

 The bus connectors should be about 11mm high and 5mm wide. They consist of 1

row for an 8-bit bus and 2 rows for 16-bit or 32-bit buses.

2.2.5. CubeSat deployment system

Due to the high costs of rocket launchers, CubeSats are usually launched alongside

commercial satellites as secondary payloads (piggy-back payloads). A standard

deployment system known as the Poly Picosatellite Orbital Deployer, or P-POD, is used

to eject the CubeSat once in space. It is an aluminium box capable of housing three 1U

or, alternatively, one 3U CubeSat.

Figure 2.7 shows a side view and a look inside the P-POD. After the launch, the

CubeSat is released from the P-POD through a door mechanism that opens via

telecommand.

23

Figure 2.7: Side and internal view of P-POD deployment system

(Adapted from Lee et al., 2009)

2.3. Space environment effects

Once a satellite is launched and put into orbit, its operations remain largely autonomous.

During the orbital flight, it will be exposed to a variety of mechanical, thermal and

electromagnetic effects which may have a direct impact on its operations. A summary of

disturbances that CubeSats can be exposed to when orbiting Earth are explained in the

following sections.

2.3.1. Atmospheric drag and atomic oxygen

CubeSats are intended to fly in LEO and are exposed to the upper atmospheric layer

which applies a braking force on the satellite. This atmospheric drag limits the lifespan of

CubeSats. The atmospheric layer heats up and expands during high solar activities,

causing a significant increase in atmospheric density and leading to a higher

atmospheric drag (Gaposchkin and Coster, 1988).

Similarly, solar panels are exposed to atomic oxygen in LEO which can be highly

corrosive to structural materials. At high altitude, the exposure to ultraviolet (UV) rays

causes photodissociation of molecular oxygen, i.e. the molecules are split into single

atoms (O1). The atomic oxygen is very reactive and degrades material properties and

hence, performance. (Pierlot, 2009).

24

2.3.2. Solar wind and solar flares

Han and Kim (2006) define solar wind as a constant flow of electrically charged gasses

(also known as plasma) and magnetic field emanating from the sun, created when gases

in the sun’s atmosphere are heated enough to achieve escape velocity and fly off into

the solar system. This wind can reach speeds in excess of 400km/s and can be

particularly devastating to semi-conductive materials and photovoltaic cells that are

directly exposed to it.

Solar flares are a phenomenon that occurs when magnetic energy that has built up in

the solar atmosphere is suddenly released. This energy causes emission of radiations

that affect the entire electromagnetic spectrum, from radio waves at the long wavelength

end, through optical emission to X-rays and gamma rays at the short wavelength end.

This increases the ionisation of the upper atmosphere causing interference with

telecommunication networks (GPS, GSM, short wave radio), increasing the heat within

the outer atmospheric layer and consequently, increasing the atmospheric drag on

satellites in LEO (Holman & Benedict, 2007).

2.3.3. Electromagnetic waves in free space

During solar storms which can be unpredictable, electromagnetic wave activity is

accelerated within the neighbouring regions of the sun and can get carried away by the

flares and wind. From long wavelengths to gamma, X-rays, UVs and infrared waves,

effects can be devastating (Hardy, 2009).

2.3.4. Semiconductors in space

The exposure of COTS components to radiation and extreme temperature changes in

LEO can have numerous consequences within CubeSats, such as:

 Progressive degradation of components in terms of efficiency;

 Bit errors or bit flips during data transfer (telemetry and telecommands);

 Latchups which could lead to short-circuits (Hardy, 2009).

25

Figure 2.8: Space debris representation around Earth

(Adapted from Gunter, 2008)

In space, the exterior of the spacecraft is cycled between extreme temperatures from

about +150°C on the sun-facing side down to -150°C on the shadow-facing side. Inside

the satellite, the temperature ranges are less severe. A minimum operating temperature

range for each electronic component used in a CubeSat is usually specified between

+85°C and -40°C which is an industrial temperature range (Han & Kim, 2006).

2.3.5. Space debris

A multitude of random materials are orbiting Earth and represent what is known as

space debris or space junk. They are a result of satellites being abandoned at the end of

their useful life or launch vehicles’ upper stages being left in orbit after they have served

their purpose and are no longer serving any function (Mehrholz et al., 2002). Figure 2.8

is an artist’s impression illustrating space debris currently orbiting Earth.

These objects travel at speeds similar to that of orbiting operational satellites, ranging

between 6 and 8 km/s. A major contributor to the orbital debris is and remains object

breakup. These breakups are caused by explosions and collisions with other objects in

space and danger arises when an operating satellite is involved in the collision because

that does not only increase the amount of junk in space, but also represent a loss in

investment for the corporation responsible for design, launch and operations of the

satellite (Senechal, 2007).

26

2.4. Summary

An overview of the CubeSat platform and its specifications were given in this chapter

and its architectural design was covered in more detail. Each subsystem was identified

and defined according to its functions in order to give an overview of the internal

CubeSat organisation. A breakdown of the OBC subsystem was presented, listing all

essential hardware and software components in order to establish basic requirements

and give a global view and orientation to this study. Furthermore, a table of previously

deployed CubeSats’ OBCs was drawn in order to identify the ideal microcontroller for the

upcoming design.

Available services and solutions related to the CubeSat market were discussed and

three industry leading companies were presented according to their specific products.

Finally, environmental constraints and their impact on the CubeSats’ operations in LEO

were discussed and some precautions to be taken in order to avoid malfunction or

failures during operation were presented.

The next chapter covers the hardware requirements for the microcontroller to be used in

the architecture design and implementation of the OBC. These requirements will lead to

a selection process based on a range of available microcontrollers, each with individual

specifications, features and capabilities.

27

CHAPTER THREE
MICROCONTROLLER SELECTION

3.1. Introduction

Establishing a set of requirements for the hardware to be used is of high significance in

the design process of the CubeSat’s OBC. These requirements constitute the basis of

the OBC architecture design. With the microcontroller being the major hardware

component, a specific path to follow has to be defined in order to select the option that

best suits these requirements.

This chapter essentially focuses on the analysis of the hardware requirements and

covers the process involved in the selection of the appropriate microcontroller around

which the OBC architecture will be implemented.

3.2. Analysis of selection criteria

Once a satellite mission has been defined, a set of requirements needs to be established

in order to begin the design process. For this study, the OBC architecture development

was based on a flexible mission context because a specific mission was still to be

proposed; hence, specific mission requirements were not defined. However, it was

possible to identify common attributes for the OBC hardware for upcoming missions

based on the information presented in Table A.1 of Appendix A.

The OBC is an embedded system which means that it combines both hardware and

software and is intended to accomplish a particular function. When designing embedded

systems, Castoulis (2005) and Botma (2011) highlight a series of common constraints

that have to be considered. Each one of these criteria is presented, analysed and

discussed in the following sections.

3.2.1. Power consumption (peak power and stand by)

A low power scheme is the major requirement in satellite systems due to the fact that

electrical power is extremely limited, particularly in CubeSats where a total power budget

28

of 1W is available for a 1U and 5W for a 3U due to the minimal external surface area

covered by solar panels (Lee et al., 2009).

In addition to a low power consumption figure, the microcontroller should accommodate

a feature whereby power can be saved by disabling peripherals which are not in use

during a particular phase of the mission. It is common for microcontrollers to feature

different modes of operation and use more than one clock source, allowing various

operating modes and saving on power consumption.

3.2.2. Operating temperature range

The variations of temperature in LEO are quite significant. When the CubeSat orbits the

sunny side of Earth, the surface of the satellite gets very warm and reaches

temperatures up to 150°C. Similarly, when covering the zone of eclipse, the temperature

can drop as low as -150°C (Koskienen et al., 1999).

These extreme changes in temperature can cause significant damage to electronic

components inside the CubeSat which exclusively uses COTS components and may

cause mission failure. For this reason, all the hardware components of the OBC to be

implemented should be rated for an operating range between -40°C and 85°C which is

the standard for industrial electronic equipment.

3.2.3. Operating voltage

The EPS in a CubeSat normally provides an unregulated bus voltage varying between

6V and 8.3V. In order to avoid the implementation of several voltage regulators (buck or

boost) which may add to the weight, size and complexity of subsystems onboard the

CubeSat, most of the active components including the OBC’s microcontroller, should be

chosen to operate at or below a value of 3.3V.

3.2.4. Packaging

Consideration is also given to the size and weight of the chosen components. The

electronic packaging of ICs and of all other different components, will have a direct

impact on the overall size and weight of the OBC subsystem.

29

As shown in Figure 3.1, different types of IC packages are available to choose from,

depending on the application. Preference is given to surface mount technology (SMT)

over dual in-line package (DIP) due to volume. Furthermore, on the packaging for ICs,

small-outline integrated circuit (SOIC) and quad flat package (QFP) are preferred over

pin grid array (PGA) and land grid array (LGA) for ease of integration during the

soldering process.

3.2.5. I/O and serial bus compatibility

The variety of I/Os (digital and analogue) available on the microcontroller are necessary

in terms of connectivity. Being able to interface the final OBC prototype with all other

subsystems within the CubeSat is mandatory and is directly related to the microcontroller

chosen to implement the design.

The data transfer between subsystems is made possible by the OBC’s microcontroller’s

integrated serial interfaces (UART, I2C or UART). Selecting a microcontroller which

possesses one or more of each of the serial interfaces is highly recommended since

each of them is constrained by their data transfer rates and data or address bus sizes

(Castoulis, 2005).

Figure 3.1: Integrated circuits packaging types

30

3.3. Selection process

The microcontroller can be viewed as the core of the OBC hardware component since all

processing operations take place in it. It is composed of a CPU, memories, timers and

different sets of interfaces and peripherals allowing interconnections to different modules

externally as shown in Figure 3.2.

Depending on the tasks to be completed and how fast the operations need to be

accomplished, microcontrollers are available from different manufacturers in variants

supporting 8-bit, 16-bit and 32-bit word length.

3.3.1. Migrating from 8-bit and 16-bit to 32-bit

The goal when selecting the microcontroller for the OBC is to be able to implement a

prototype that is able to deliver maximum processing capability while using a minimum of

power and also being capable of accomplishing all of the required OBC functions, mainly

the execution of programs and commands with a minimum response time (Castoulis,

2005).

Figure 3.2: Internal conceptual diagram of a microcontroller

31

In the past, CubeSats have mostly used 8-bit and 16-bit microcontrollers. 32-bit core

based microcontrollers were initially introduced in 1985 by Intel and because of the

complexity they presented they were only adopted by a limited number of system

integrators. 8-bit and 16-bit architectures were still favoured because many of the

embedded and real time applications at the time were not critically dependant on

memory, power or speed and the amount of data to handle was sufficient. With time,

more products and applications started to require increased processing capability. It

became clear that a migration from 8 and 16-bit to 32-bit core architecture was

necessary, although the complexity remained an issue (Khan, 2008).

Today, the 32-bit core architecture’s complexity has been significantly reduced and has

been made efficient and capable of handling 8-bit, 16-bit and 32-bit instructions and

data. In addition to the reduction in complexity, multiple features have been added and

customised by different core manufacturers. On this subject, Povey (2008) states that

the trend of migrating toward the 32-bit is mainly driven by the need to deliver increased

processing power and flexibility in code re-use across projects using high level

languages. These lacked in the 8-bit and 16-bit architectures.

3.3.2. Previous 32-bit implementations

The 32-bit core architecture has been successfully tested on CubeSats for several

missions, such as NCube2 and CanX-1.

NCube2 which is illustrated in Figure 2.1 is a product of the Norwegian University of

Science and Technology. Its payload consisted of an automatic identification system for

the marine industry where the AIS protocol which is a standard for tracking ships, is used

to identify, position and exchange data messages between ships. Its C&DH OBC used a

32-bit ATmega32L from Atmel with an AVR32 core and 4kB of ROM. Although contact

was never established after launch, the flight-model operated properly on the ground

(Eide & Iilstad, 2003).

CanX-1 from the University of Toronto was launched with three experimental payloads

onboard: a low cost CMOS horizon sensor, a star tracker and a GPS receiver. Its C&DH

OBC used the AT91SAM7 microcontroller which is a 32-bit ARM7 core, from Atlmel with

32

512kB of static random access memory (SRAM), 32MB of Flash-RAM and with a

maximum operating frequency of 40MHz (Stras, et al., 2003).

More examples can be found in Table A.1 of Appendix A which gives details in terms of

RAM, ROM and operating frequency of the microcontrollers used for the C&DH OBC of

all listed CubeSat missions. It can be seen from this table that 32-bit microcontrollers

represent a minority as opposed to 8-bit and 16-bit microcontrollers.

3.3.3. Microcontroller selection

The method followed for the selection of the microcontroller consists of four steps.

Because of the large number of core manufacturers in the microcontroller market and

the variety associated with them, a process of elimination is followed by comparing each

device according to a set of criteria.

Step 1

The search engine provided by the embedded developer website (EmbeddedDeveloper)

is used as an initial step to shortlist reputable core design manufacturers. Six

manufacturers have been shortlisted, namely: Atmel, ARM, MIPS, Freescale, Renesas

and Texas Instruments. From the range of core architectures that are produced and

licensed by these manufacturers, only 32-bit ranges were considered.

Figure 3.3 shows a classification of the 32-bit core manufacturers and the architecture

that they implement. As an example, ARM is a 32-bit core manufacturer who developed

the ARM7TDMI architecture which is implemented by STMicroelectronics and by Atmel

(also a core manufacturer). Similarly, Freescale is a 32-bit core manufacturer who

developed the COLDFIRE V1 architecture which is also implemented by them.

Step 2

The second step involves a comparison between each semiconductor manufacturer’s

part numbers. This comparison is done according to three of the previously mentioned

selection criteria:

33

Figure 3.3: 32-bit core architecture classification

 The operating temperature range for the chosen microcontroller should vary

between -40°C and 85°C.

 The IC packaging is also important. The QFP package is preferred since the leads

extend on each of the four sides of the IC, making it practical and easier to solder

unlike its counterparts which do not only require expensive equipment for soldering

reliably but also are not recommended for prototyping.

 The operating voltage should not exceed 3.3 V. Since power consumption is directly

proportional to the operating frequency, the operating frequency will be limited to

100 MHz to keep the maximum power consumption at a suitable level.

A comparison of the microcontrollers according to these criteria is shown in Table 3.1.

This table classifies the semiconductor manufacturer, the core architecture that they

implement and their respective part numbers according to the maximum operating

frequency, the operating voltage and temperature ranges and the packaging options

available for a particular part. The rows highlighted with a light green colour indicate the

34

parts that did not qualify for the next step and the cells highlighted with a darker green

colour indicate the requirement that was not met.

Table 3.1: Microcontrollers requirements criteria

Manufacturer Core Variant Part Number Freq(MHz) V Min V Max T° range Package Options

Texas Instruments ARM Cortex-M3 LM3S1538 50 3 3.3 -40 to 85 LQFP100

NXP ARM Cortex-M3 LPC1343 70 2 3.3 0 to 70
HVQFN33,

LQFP48

Atmel ARM Cortex-M3 AT91SAM3U4E 96 1.6 3.3 -40 to 85
LQFP 144, LFBGA

144

Texas Instruments ARM Cortex-M3 LM3S9B90 80 3 3.3 -40 to 85 LQFP100

Texas Instruments ARM Cortex-M3 LM3S9B95 100 3 3.3 -40 to 85 LQFP100

STMicroelectronics ARM Cortex-M3 STM32F102RB 48 2 3.3 -40 to 85 TQFP 64

STMicroelectronics ARM Cortex-M3 STM32F107VC 72 2 3.3 -40 to 105 TQFP 100

Energy Micro ARM Cortex-M3 EFM32TG840F32 32 1.8 3.8 -40 to 85 QFN 64

Atmel ARM Cortex-M3 ATSAM3S2C 64 1.6 3.3 -40 to 85
LQFP 100, LFBGA

100

NXP ARM Cortex-M3 LPC1769 100 2.4 3.6 -40 to 85 LQFP100

Freescale ARM Cortex-M4 MK20N512V 100 1.7 3.6 -40 to 105 PBGA 144

NXP ARM Cortex-M4 LPC4350 150 2.2 3.3 -40 to 85
LQFP 208, BGA

180

Texas Instruments ARM Cortex-A8 OMAP3530 600 1.8 3 -40 to 105
FCBGA 423,BGA

515

Freescale ARM Cortex-A8 MCIMX537 800 0 3.3 -40 to 85 TEPBGA 529

STMicroelectronics ARM7TDMI STR755FV2 60 3 5.5 -40 to 85
TQFP100,
LFBGA100

Atmel ARM7TDMI AT91SAM7XC512 55 3 3.3 -40 to 85
LQFP 100,
TFBGA100

NXP ARM7TDMI-S LPC2478 72 3 3.3 -40 to 85
LQFP208,
TFBGA208

Freescale ARM926EJ-S MCIMX27 400 1.7 2.8 -20 to 85 MAPBGA404

Atmel ARM926EJ-S AT91SAM9XE512 210 1.6 3.3 -40 to 85
PQFP208,

LBFBGA217

Atmel ARM920T AT91RM9200 180 1.6 3.3 -40 to 85
QFP 208, LFBGA

256

Atmel AVR32 UC AT32UC3A3256 66 3 3.3 -40 to 85
TFBGA 144, LQFP

144

Microchip MIPS32®4KSd™Core PIC32MX460F512L 80 2.3 3.3 -40 to 85 TQFP100

Freescale ColdFire V4 MCF5407 220 2.7 3.3 -40 to 85 FQFP 208

Freescale ColdFire V3 MCF5372 180 2.7 3.3 -40 to 85 QFP 160

Freescale ColdFire V2 MCF52259 80 3 3.3 -40 to 85
LQFP144,

MAPBGA144

Freescale ColdFire V1 MCF51JM128 50 2.7 5.5 -40 to 105
LQFP64,

QFP64,QFP44

Renesas H8SX R5F61668 50 3 3.3 -20 to 75
QFP144,

LFBGA176

Renesas SH2 DF71253 50 4.5 5.5 -20 to 85 LQFP64

Renesas Renesas RX 600 R5F562N8B 100 2.7 3.3 -40 to 85
LFBGA 176,LQFP

144,

Texas Instruments
F28x Fixed-point

Series TMS320R2811 150 3.1 3.3 -40 to 125 LQFP 128

Texas Instruments F28x Piccolo Series TMS320F28027 60 3.1 3.3 -40 to 125 LQFP 48

35

Step 3

The third step involves an additional comparison; according to processing power

referenced to a standard benchmark. The commonly used benchmark is the Dhrystone

MIPS or DMIPS and microcontroller manufacturers always classify their products by

running the DMIPS benchmark test and awarding them with a score which appears on

the IC’s datasheet (Weiss, 2002). This benchmark is directly proportional to the

processing power of the chosen microcontroller which Steinmetz and Wherle (2005)

define as being a representation of the measure of how much computation can be

handled by the microcontroller within a given system.

A chart comparing the twelve short-listed microcontrollers’ DMIPS scores is shown in

Figure 3.4. A value above 90 DMIPS is recommended for designing embedded systems

requiring real-time operations as it is the case for the CubeSat’s OBC. Five out of the

twelve microcontrollers met this criterion, namely: Atmel’s ATSAM3U, Texas

Instruments’ LM3S9B90, Atmel’s AT32UC3A3256, Microchip’s PIC32MX460F512L and

Texas Instruments’ TMS320F28027.

Figure 3.4: Drystone MIPS comparison chart

0

20

40

60

80

100

120

140

Drystone MIPS comparison chart

DMIPS

36

Step 4

The final step in the selection involves an individual comparison of each of the final five

microcontrollers according to the available onboard memory, the presence of internal

and external peripherals and the serial interfaces. Table 3.2 identifies areas of strength

and weaknesses of each microcontroller and presents each one’s characteristics.

Table 3.2: Refined microcontrollers comparison

Part Number
AT91SAM3U4E LM3S9B90 AT32UC3A3256 PIC32MX460F512L TMS320F28027

Manufacturer
Atmel

Texas
Instruments

Atmel Microchip
Texas

Instruments

Core Variant ARM Cortex-M3 ARM Cortex-M3 AVR32 UC MIPS32®4KSd™Core F28x Piccolo

Flash (Bytes) 262144 262144 262144 524288 65536

ROM (Bytes) 16384 0 0 0 2048

RAM (Bytes) 53248 98304 131072 32768 12288

Floating Point
Operation

Χ Χ Χ Χ Χ

Memory
Management Unit

√ Χ √ Χ √

External Bus
Interface

√ √ √ Χ √

A/D resolution 10 10 10 10 12

A/D Ch 16 16 8 10 13

PWM 4x16-bit 8x16-bit N/A N/A 8x16-bit

Timers

16-bit Digital
Programable
Timer/Counter

5xGen. Purp.
Timer Watchdog
Timer SysTick

2x16-bit
Timer/Counter
Real-Time Clock
Watchdog Timer

5x16-bit digital timers 1xWD
3x32-Bit GP

Timer Bits 16 32 16 16 16

Serial Interfaces

4xUSART
1xUART
1xSPI
1xHSMCI

3xUART
2xSSI

2xSPI
4xUSART

2xUART
2xSPI

1xSCI
1xSPI

I2C Interfaces 2 2 2 2 1

USB Interfaces
USB 2.0
480 Mbps

2.0 OTG/Host Full-Speed +
OTG

USB 2.0 OTG + PHY N/A

CAN Interfaces 0 2 0 0 0

CAN Type N/A 2.0 A/B N/A N/A N/A
Ethernet
Interfaces N/A

10/100
MAC/PHY N/A N/A N/A

Encryption N/A AES N/A N/A N/A

DMA Channels 21 32 0 4 0

Maximum GPIO 96 60 110 85 22

37

After evaluation, the AT91SAM3U4E was selected. It is Atmel’s implementation of the

Cortex-M3 core and this choice is motivated by the following reasons:

 The AT91SAM3U from Atmel presents a significant advantage in terms of ROM

(16kB) which is absent or minimal in its counterparts (2kB for Texas Instruments’

TMS320F28027).

 In addition to the ROM, it also has the capability to perform memory management

via a memory management unit (MMU) and offers the possibility to extend the

memory if needed via the external bus interface (EBI) and the high-speed

multimedia card interface (HSMCI).

 The absence of a control area network (CAN) interface, an Ethernet interface and

encryption on Atmel’s AT91SAM3U4E does not represent a handicap when

compared opposed to Texas Instrument’s LM3S9B90 since they are not required in

a CubeSat. The presence of more than one of each of the common serial

peripherals further justifies the choice of the AT91SAM3U4E.

 A total of 96 general purpose I/Os (GPIO) with 16 ADC channels are present.

Additional features of the AT91SAM3U4E are discussed in detail in Chapter 4.

3.4. Summary

Requirements related to the hardware to be used in the OBC design were identified and

listed and the selection process for the microcontroller to be used was explained in detail

in four steps. Comparison tables were drawn, identifying strengths and weaknesses of

each one of the selected microcontrollers. After proceeding by elimination, Atmel’s

implementation of the Cortex M-3 core, the AT91SAM3U4E, was selected as the

microcontroller to design and implement the CubeSat’s OBC.

The upcoming chapter presents the AT91SAM3U4E according to its features, notably

the CPU, memories, peripherals and different modes of operation. The proposed OBC

architecture to be designed around the microcontroller is also presented.

38

CHAPTER FOUR
PROPOSED OBC ARCHITECTURE

4.1. Introduction

In order to proceed with the design and implementation of the OBC hardware around the

microcontroller, the initial phase involves the development of the architecture. The

selected microcontroller provides a number of features which need to be implemented

and used accordingly in order to accomplish the list of services required by the OBC

subsystem.

The first step in defining an OBC architecture consists of defining hardware requirements

and analysing the available resource, which in this case is the microcontroller.

Background regarding Atmel’s AT91SAM3U is provided in this chapter and its features

and onboard peripherals are also presented. The proposed OBC architecture is

introduced as a fairly simple but effective solution since an increase in complexity would

further increase the complexity in implementing the architecture as a hardware

prototype.

4.2. Presentation of Atmel’s AT91SAM3U4E

Features and characteristics of the AT91SAM3U4E are highlighted before the OBC

architecture is developed. The points to be discussed present the processing core, the

internal memory unit, the peripherals and the power consumption of the microcontroller

in different modes of operation.

4.2.1. Processing core

A block diagram of the AT91SAM3U4E microcontroller showing its internal structure is

presented in Figure 4.1. It is an implementation of ARM’s Cortex-M3 core processor

which is a high performance core with a 3-stage pipeline Harvard architecture (using

separate instruction and data buses), making it ideal for demanding embedded systems

applications. It implements a version of the Thumb® instruction set based on the Thumb-

2 technology, ensuring high code density and reduced program memory requirements

39

Figure 4.1: Internal Block diagram of the SAM3U4E (Atmel Corporation, 2009)

meaning that it provides the exceptional performance expected of a modern 32-bit

architecture with the high code density of 8-bit and 16-bit microcontrollers (ARM, 2010).

In real-time applications such as the CubeSat’s OBC, it is crucial to be able to service

interrupts and exceptions within the minimum time (interrupt latency). This time is largely

determined by the interrupt controller circuit and its configuration. The Cortex-M3 core is

closely integrated with a nested vector interrupt controller (NVIC) which facilitates low-

latency in exceptions and interrupt handling and represents a key feature of this core. It

supports nesting (stacking) of interrupts, allowing an interrupt to be serviced earlier by

exerting high priority and it also supports dynamic reprioritisation of interrupts. The

vector table which contains addresses of interrupt service routines is of a re-locatable

type; this means that the address located at address zero can be altered and relocated

by simply programming a register (ARM, 2010).

The main features of the NVIC include:

 A configurable number of external interrupts, from 1 to 240;

40

 A configurable number of bits of priority, from three to eight bits (256 priority levels);

 Eight levels of pre-emption priority for interrupts;

 Level and pulse interrupt support;

 Dynamic reprioritisation of interrupts;

 Priority grouping and

 Support for tail-chaining of interrupts.

A memory protection unit (MPU) is also available. This feature allows memory protection

and restricts access to particular memory locations of the memory map (ARM, 2010).

4.2.2. Memory capacity and access

The implementation of Harvard architecture in the Cortex-M3 represents a major

advantage in that instructions and data fetches can occur concurrently, and the size of

an instruction is not set by the size of the standard unit (word) combined with the

Thumb® instruction support, data can be 8-, 16- or 32-bits wide (Catsoulis, 2005).

A memory-mapped I/O configuration is used, where I/O devices exist within the same

linear space as memory devices and the same instruction is used to access each of

them. The following is provided in terms of internal memory:

 256kB of flash organised in a dual plane configuration with 512 pages;

 48kB of high-speed SRAM (32kB SRAM0 and 16kB SRAM1) and

 16kB of ROM containing the SAM-BA boot and Fast Flash Programming Interface

(FFPI) program (ARM, 2010).

An external bus interface (EBI) is available and allows the microcontroller to interface

with an external memory module via a 16-bit parallel data bus which can also be

adapted for 8-bit devices. The EBI provides for 4 chip selects and up to a 24-bit address

bus.

Also provided is a high speed multimedia card interface (HSMCI) which supports a large

number of memory card formats and is 8-bits wide. It is compatible with the following:

41

 MultiMedia card (MMC);

 SD Memory cards;

 SDIO and CE-ATA cards.

4.2.3. Peripherals

The AT91SAM3U4E embeds a large set of user peripherals distributed on two separate

bridges (high speed and low speed bridges). The advantage of this configuration is that

concurrent accesses can be made on both bridges.

Peripherals include:

 High speed USB 2.0 device up to 480Mbps;

 4 USART (Universal Synchronous Asynchronous Receiver Transmitter);

 1 UART;

 1 HSMCI (8-bit wide);

 2 TWI or I²C;

 1 SPI;

 1 SSC (serial synchronous controller);

 4-channel 16-bit PWM (pulse width modulation) controller;

 8-channel 12-bit ADC (analogue to digital converter) with differential input mode and

programmable gain stage;

 8-channel 10-bit ADC;

 96 I/O lines with external hardware interrupt capability;

 3-channel 16-bit timer/counter (TC) used for capture, compare and PWM;

 32-bit real time timer (RTT) and a real time clock (RTC) with calendar and alarm

features (Atmel Corporation, 2009).

All the peripherals are on the low-speed bridge except the SPI, the SSC and the HSMCI

which are on the high-speed bridge.

Direct memory access (DMA) is an additional feature of the microcontroller. This enables

hardware peripherals linked to its channels to bypass the core processor and access the

system’s memory independently. During this process, the DMA controller takes the place

of the CPU and act as a bridge during data transfer while the CPU can continue with

42

normal operations. This process improves the overall performance of the microcontroller,

making it faster (Catsoulis, 2005). The AT91SAM3U4E has a total of 19 peripheral DMA

channels and an additional 4-channel central DMA.

4.2.4. Power consumption and operating modes

The microcontroller embeds an internal voltage regulator which supplies a stable voltage

to the core processor and which can also be used to supply external circuitry. It can

operate in two modes, namely:

 Normal mode: the regulator draws around 150mA and consumes 700μA of static

current;

 Shutdown mode: The output of the voltage regulator is driven to ground and its

current consumption is of the order of less than 1μA (Atmel Corporation, 2009).

The microcontroller normally operates in active mode, where the core clock is running

from a chosen clock source and peripheral clocks can be enabled or disabled depending

on the application. Alternatively, it also has three low power modes of operation, namely:

 Backup mode: This mode achieves the lowest power consumption by performing

periodic wake-ups to perform tasks (interrupts).

 Wait mode: The purpose of the wait mode is to achieve very low power consumption

while maintaining the device in a powered state for a start-up time of less than 10μs.

In this mode, the clocks of the core, peripherals and memories are stopped.

However, the core, peripherals and memories power supplies are still powered.

From this mode, a fast start-up is available.

 Sleep mode: The purpose of sleep mode is to optimise power consumption of the

device versus response time. In this mode, only the core clock is stopped. The

peripheral clocks can be enabled (Atmel Corporation, 2009).

4.3. Proposed OBC architecture

The OBC architecture is essentially based on the connectivity between subsystems

within the CubeSat. This simply means that the microcontroller’s peripherals are

configured according to the data flow within the CubeSat’s computing scheme. A basic

43

A
D

C
S

Figure 4.2: Basic functional diagram of a CubeSat internal organisation

functional diagram of the CubeSat’s internal organisation is shown in Figure 4.2 where

the direction in which data flows and the power distribution network are clearly shown.

Based on the data flow network, the power distribution network and the characteristics of

the microcontroller, it is possible to establish specifications for the OBC that are

presented in Table 4.1. They can be summarised in the following points:

 The board size should comply with the PC/104 standard;

 An operating temperature between -40°C and 85°C should be assumed and every

component constituting the OBC should be able to operate within this range;

 An onboard temperature sensor must be available to keep track of temperature

changes onboard the OBC;

 A regulated voltage of 3.3V should be available on the local power bus;

 An external storage device should be made available in order to store housekeeping

and telemetry data before transmission to the ground station;

 The presence of a backup battery is essential in order to evaluate the back-up mode

for date and time whenever the main power is removed.

44

Table 4.1: General OBC specifications

Size PC/104 compliant (form factor of 90 x 95 mm)

Operating temperature Between -40°C and 85°C

Programming interface JTAG connector or USB2.0 port (in system programming)

External memory storage media SD/MMC card on 8-bit HSMCI bus

Over voltage & Current protections Implemented using MAX4374F

RTOS compatibility Salvo compatible

Onboard oscillators 12MHz main crystal and 32kHz low-power for RTC or device clock

Maximum operating frequency Operates up to 96MHz

Other peripherals

2 X USART

1 X UART

2 X TWI (I²C)

1 X SPI

8 channel 12-bit ADC and 8 channel 10-bit ADC

1 x Temperature sensor (I²C connected)

1 x Backup battery

96 x GPIOs

1 x USB

Supply line voltage Regulated at 3.3V

Overall power consumption To be determined.

 An over voltage and current protection should be implemented in order to trip the

power and reset the OBC in case of a short circuit or instability in voltage levels;

 A maximumm number of peripherals should be available in order to facilitate serial

data communication between the OBC and the other subsystems, sensors and

possibly actuators. It is important to have serial communication architecture

available since the data transfer rate to and from the OBC changes from one

subsystem to another; hence the increase in flexibility.

The resulting architecture is presented in Figure 4.3 and is a representation of all major

peripherals necessary for operation and communication of the OBC subsystem.

45

Figure 4.3: Proposed OBC architecture

4.4. Summary

The AT91SAM3U4E microcontroller was introduced and presented in terms of its

processing core, memory capacity, memory access, peripherals, power consumption

and operating modes.

Following the detailed characterisation of the microcontroller, the internal connectivity

between the OBC and the different subsystems in terms of data flow and power

distribution was presented.

Finally, a table listing characteristics according to which the OBC hardware will be

implemented was presented.

In the upcoming chapter, a walkthrough of the design and implementation processes of

the OBC hardware will be covered. Details regarding the choice of each major

component and the implementation of each section of the OBC will be covered and a

physical PC/104 board layout will be completed and presented.

46

CHAPTER FIVE
DESIGN AND IMPLEMENTATION

5.1. Introduction

The flow of data between the OBC and the various subsystems onboard the CubeSat is

made possible via the microcontroller’s peripherals which were introduced in section

4.2.3 of Chapter 4. This data flow occurs at various rates depending on the peripheral

used to individually communicate between the OBC and the other subsystems. The

AT91SAM3U4E has the advantage of possessing numerous peripherals from which the

OBC architecture was drawn in Chapter 4.

This chapter covers the detailed design and implementation of the presented OBC

architecture. Each component of the OBC subsystem is analysed individually and

schematic diagrams of each subsection are also included. Finally, the PC/104 format

implementation of the PCB prototype is presented.

5.2. OBC components

It is important to list the services that the OBC will be providing in terms of data transfer

to and from the different CubeSat subsystems. According to Brand (2007), these

services are very common to CubeSats and can be summarised as follows:

 Providing a low-speed redundant communication bus for information exchange

between peripherals;

 Providing a high-speed communication interface for communication to the payload;

 Performing general housekeeping tasks;

 Providing the ability to run user processes (ADCS or image processing).

A block diagram showing all different components of the OBC is represented in

Figure5.1.

47

Figure 5.1: Detailed view of bus connections and OBC main components

This diagram can be broken down into two basic building blocks, notably:

 The power system block: It supplies a regulated voltage to the OBC and provides

circuitry for over voltage and overcurrent protection.

 The peripheral block: It represents all inputs and outputs to and from the

microcontroller. Each peripheral is assigned to one or more registers and to a base

address which are respectively configured and called within the execution of the

program.

The sections to follow cover each block in detail and discuss the hardware

implementation associated with each section of the OBC.

48

5.2.1. Power system block

The CubeSat architecture provides an external regulated DC bus voltage from the EPS

subsystem which supplies all other subsystems including the OBC. This voltage varies

between 8V and 15V depending on how charged the batteries are. It is necessary for

each subsystem to have its own and independent voltage regulation and protection in

order to operate within the required range and to distribute the power according to the

provided power budget.

The power system block of the proposed OBC is divided into two sections, namely the

voltage regulation and the overcurrent protection.

Voltage regulation

The AT91SAM3U4E microcontroller has a total of 8 supply points, each serving a

particular function. These supply points are presented in Table 5.1 which provides a

function and typical voltage levels for each one of them.

The internal voltage regulator has a nominal output voltage of 1.8V that appears at the

VDDOUT pin. This voltage is used uniquely to power the core through the VDDCORE

pin and the phase locked loop (PLL) through the VDDPLL pin. VDDIN is the input to the

internal regulator. The additional supply points have input voltages that fall within the

specified value of 3V. These are VDDUTMI, VDDANA and VDDIO. VDDBU can be

powered by the same line or alternatively, by a backup battery. This supply point is

necessary when running the microcontroller in backup mode (Atmel Corporation, 2009).

The different modes of operation will be covered in the upcoming chapter.

The LM117 series of low dropout voltage regulators from National Semiconductor

Corporation provides a range of fixed voltage outputs including 3.3V and 5V. It was

selected to be implemented in the design as the regulating device due to the multiple

features it presents, notably:

 A maximum output current of 800mA;

 An operating temperature range between -40° C and 125°C;

49

Table 5.1: Supply points on the AT91SAM3U4E

Pin Name Function Typical voltage

VDDCORE Powers the core, embedded
memories and peripherals.

1.62V to 1.95V

VDDIO Powers peripherals I/O lines. 1.62V. to 3.6V

VDDIN Powers internal voltage
regulator.

3V to 5V

VDDOUT Output of internal voltage
regulator.

1.8V(V out)

VDDBU Powers the slow clock
oscillator. Needs to be
supplied at the same time as
VDDIO and VDDCORE.

1.6V to 3.6V

VDDPLL Powers the programmable
PLL and UPLL as well as the
3-20MHz oscillator.

1.62V to 1.95V

VDDUTMI Powers the UTMI. 3.0V to 3.6V

VDDANA Powers the ADC cells. 2.4V to 3.6V

 An optional current limiting and thermal shutdown feature;

 Availability in SOT-223 package;

 0.2% line regulation and 0.4% load regulation (National Semiconductor Corporation,

2006).

An LM117 3.3V regulator placed at the input line is used to supply the voltage needed at

VDDUTMI, VDDANA and VDDIO. In addition, a 5V regulator inserted in parallel with the

bus voltage input is present in order to give the possibility to select the ADC reference

voltage (ADVREF) between 2.5V and 3V. An LM4040 shunt voltage reference which

uses Zeener regulation is used to attenuate and regulate the 5V output down to 2.5V

which can be selected as ADVREF (National Semiconductor Corporation, 2000). The

ADC is discussed in a further section of this chapter.

A schematic of the voltage regulation section and the reference voltage input to the ADC

is shown in Figure 5.2 where U2 and U3 represent the LM117 voltage regulators.

Table 5.2: Jumper arrangement for ADCVREF

Connector ID Pins 1-2 Pins 2-3 Pins 1-3

P6 ADC 10-Bit @ 2.5Vref ADC 10-Bit @ 3.3Vref N/A

P7 ADC 12-Bit @ 2.5Vref ADC 12-Bit @ 3.3Vref N/A

50

IN
1

2

OUT
3

ADJ

U2

LM1117H

IN
1

2
OUT

3

ADJ

U3

LM1117H

+6V

GND

+5VDC

+6V +3V3

GND

+3V3 +5VDC

4.7K

R7

D1

GND

1
2
3

P6

MHDR1X3

1
2
3

P7

MHDR1X3

GND

GND

ADVREF

AD12BVREF

100uF

C3

100nF

C4

100nF

C9

100uF

C8

100nF

C16

100nF

C19

Figure 5.2: Voltage regulation and ADVREF selection

P6 and P7 are selection jumpers that set ADVREF either to 3.3V or to 2.5V for both the

10-bit and the 12-bit ADC channels according to Table 5.2. D1 represents the LM4040

shunt voltage reference forming a voltage divider with resistor R7. The capacitors are

used for decoupling the supply line.

Overcurrent protection

In case of a surge in current which may occur in the event of an onboard short circuit, it

is necessary to implement a protecting circuitry on the OBC. Out of many techniques

used, the high-side current sense principle was decided upon, where a shunt resistor

commonly known as the sense resistor, is connected in series with the supply line and a

voltage measurement is taken across it, which is directly proportional to the current

flowing in the circuit. This choice is highly motivated by the advantages it presents when

compared to its low-side current sense counterpart:

 The load is directly connected to ground;

 The load is directly protected and cannot be activated by an accidental short at

power connection;

 In case of a short-circuit occurrence, the high load current can be detected (Maxim

Integrated Products, 2001).

The MAX4374 from Maxim Integrated Products is chosen to accomplish this task. It is a

low-cost and micro-power high-side current sense IC equipped with an amplifier, an

51

Figure 5.3: Functional block diagram of Max4374
(Maxim Integrated Products, 2000)

internal bandgap voltage reference and a comparator with a latching output to monitor

the rail voltage supply line and shut it down without any oscillation through the

comparator. The functional block diagram setup of the MAX4374 is shown in Figure 5.3.

The maximum current to the load is determined by the value of the sense resistor

RSENSE. The voltage drop across RSENSE represents the differential input to the current

sense amplifier and should not exceed the maximum value of 300mV.

Three variations of the IC are available. Their difference lies in the value of the gain of

the current-sense amplifier: MAX4374T (Gain: 20V/V), MAX4374F (Gain: 50V/V) and

MAX4374H (Gain: 100V/V).

An internal comparator is used to compare the output voltage of the current-sense

amplifier to a 0.6V bandgap reference. R1 and R2 are used as a voltage divider to

ensure an input voltage at CIN1 in the order of 0.6V or less which will give a negative

output at COUT1. This is an open collector output which requires a pull-up resistor (R3 in

this case) in order to raise the output voltage when the internal transistor is turned off. In

case an overcurrent condition occurs, the output

52

Figure 5.4: MAX4373 overcurrent protection circuit
(Maxim Integrated Products, 2000)

voltage of the current-sense amplifier after the voltage divider will exceed the 0.6V limit

at CIN1 and the comparator’s output will toggle from a negative to a positive state.

Figure 5.4 shows the high-side current sense technique implemented around the

MAX4374. The circuit arrangement shows the voltage source connected to the supply

rail and the gate of a p-channel MOSFET connected to the output of the comparator of

the MAX4374. Initially, the MOSFET will be in its ON state which closes the path of the

current flow from the source to the load. In this condition, RSENSE will provide a means of

measuring the current as discussed.

As soon as an overcurrent condition is detected, the following sequence of events will

happen:

 The output of the comparator will switch from a negative to a positive state,

causing the MOSFET to switch to its OFF state and opening the current path;

 The load will be disconnected from the supply until a low signal is applied to the

RESET input which will restore the line by forcing the comparator’s output to a

53

negative state. This will turn the MOSFET back to its ON state and restore the

supply line to the load (Maxim Integrated Products, 2000).

The SHDN (shutdown) output pin which is available on the AT91SAM3U4E will output a

low level signal whenever the microcontroller is configured to run in backup mode. When

running in this mode, the main supply to the processing core is disconnected and only

the backup battery supplies the slow clock oscillators through VDDBU. The high-side

current sense circuitry is placed in series with the output of the 3V regulator and the

SHDN pin is used to reset the supply line. This lets the MAX4374 perform a double

action: current sensing and supply shutdown. The schematic design of the overcurrent

circuit is shown in Figure 5.5. The circuit was simulated using Linear Technology’s

LTspice circuit simulator and values of passive components were based on an estimated

line current of 500mA. The calculations and the simulation results are presented and

discussed in Appendix B.

 Figure 5.5: Overcurrent protection circuit schematic

V
C

C
1

OUT
2

CIN3

CIN2
4

G
N

D
5

RESET
6

COUT2 7

COUT1 8

RS-
9

RS+10

MAX1
Component_1

1
2

7,
 8

4
3

5,
 6 Q2

IRF7309

1
2

7,
 8

4
3

5,
 6 Q3

IRF7309

IN1

2

OUT 3

ADJ

U3

LM117H

+3V3

GND

100nF

C41

100uF

C40

+5VDC

10K

R28
Res3

220

R31
Res3

696.67

R30
Res3

1K

R27

Res3

1K

R26
Res3

10K

R29
Res3

GND

+3V3

GND

GND

1
2

J9

Jumper2

1 2

J8

Jumper1

[PA0..PA31]

PA18

GND

SHDN

PA19

54

5.2.2. JTAG

The JTAG port provides access to the internal core architecture of the microcontroller. Its

major function is to allow real-time debugging of the OBC hardware and software. Once

a program has been written, compiled and downloaded on the AT91SAM3U4E, single or

multi-steps through the code can be performed during runtime.

The boundary scan principle is used where external subsystems and connecting points

(I/Os) can individually be toggled to check the functionality of the microcontroller.

Breakpoints can be set within the code to verify the state or contents of a particular

address and timing can be made accurate in the same way (Catsoulis, 2005). The JTAG

port consists of five signal lines, each performing a dedicated function as indicated in

Table 5.3.

The AT91SAM3U4E microcontroller supports JTAG and a standard 20-pin connector is

used to connect the microcontroller to an emulator (in-circuit emulator or ICE) for

programming and debugging purposes. The schematic diagram showing the connection

from the microcontroller pins to the JTAG connector is presented in Figure 5.6.

Resistors R1 through R5 are used as pull up resistors. They are required to avoid a

floating state on the signal lines since the JTAG input and output pins have an open

collector internal configuration. C1 and C2 are decoupling capacitors.

Table 5.3: JTAG signal lines and functions (Catsoulis, 2005).

Pin ID Name Function

TCK Test
Clock

Synchronises the initial state machine
operations.

TMS Test
Mode
State

Sampled at the rising edge of TCK to
determine the next state.

TDI Test Data
In

Represents the data shifted into the device’s
test or programming logic. Samples occur at
the rising edge of TCK when the internal state
machine is in the correct state.

TDO Test Data
Out

Represents the data shifted out of the
device’s test or programming logic and is
valid on the falling edge of TCK when the
internal state machine is in the correct state.

NRST
or
TRST

Test
Reset

An optional pin which when available, can
reset the TAP controller’s state machine.

55

1 2
3 4
5 6
7 8
9 10
11 12
13 14
15 16
17 18
19 20

P1

JTAG

100K

R5

100K

R4

100K

R3

100K

R2

100K

R1

100nF

C1

10uF

C2

GND

GND

TDI
TMS
TCK

TDO

NRST

+3V3

Figure 5.6: JTAG header connection circuit schematic

5.2.3. UART and USART

The need for serial exchange of data in a CubeSat represents a major requirement. This

type of transmission allows for one bit to be transmitted or received at a time between

two devices and involves the transfer of data over a single wire for each direction. The

general operation of serial interfaces consists of converting parallel data from a

microcontroller to a serial bit stream and vice versa (Catsoulis, 2005).

The UART and USART are both transmissions of a serial type. Asynchronous

transmission implies that both the transmitter and the receiver have individual local clock

signals which are determined before the start of the communication as opposed to

synchronous, where the transmission is synchronised on both receiving and transmitting

ends by means of a common clock.

As their names imply, a USART is capable of both synchronous and asynchronous

communication as opposed to a UART which can only perform asynchronous

communication. They are capable of data transfers at rates in the ranges between 2400

and 115200 bits per second.

56

Figure 5.7: Data flow of UART/USART (Catsoulis, 2005)

In a CubeSat architecture, the UART and USART lines enable the data exchange

between the OBC and the telecommunication subsystem via a set of modems, hence

enabling the downlink and uplink of telemetry or telecommands to or from Earth (Brand,

2007).

The diagram in Figure 5.7 represents the flow of data in a UART/USART interface. Two

sections can be identified:

 The transmitter (TX) which converts parallel data from the microcontroller into a

serial form for transmission. It is a parallel-to-serial converter with a shift-register

loaded in parallel and shifting out each bit sequentially on each pulse of the serial

clock.

 The receiver (RX) which converts a serial bit stream from external subsystems to

parallel data for the microprocessor. It accepts a serial bit stream and loads it into

a shift register which is read out in parallel by the microcontroller (Catsoulis, 2005).

The UART and USART mode of communication transfers data in blocks of bits (usually

8 bits), also called frames, which are user-configurable in terms of contents. The USART

can operate in both synchronous and asynchronous modes, depending on the

application (Eady, 2004).

57

The AT91SAM3U4E has a total of four USARTs and one UART which are incorporated

on-chip. The RS-232 interface standard for serial communication is generally adopted for

UART and USART transmission in microcontrollers. It is an unbalanced interface which

means that the voltage level of a data bit being transmitted is referenced to a local

ground. The interface is negatively active, meaning that a logic high falls in the range of

-5V to -15V (typically -12V), and a logic low falls between +5V and +15V (typically

+12V). These logic voltage levels differ from one system to another and transistor-

transistor-logic (TTL) is often used as a standard. In order to implement the RS-232

interface on the OBC subsystem, level shifters need to be incorporated.

The MAX3232 is an IC from Maxim Integrated Circuit that acts as a charge-pump based

voltage generator in order to reach the -12V and +12V required for bit reading in a

normal RS-232 transmission (Catsoulis, 2005). It is done with no additional external

voltage regulator but only by connecting pump capacitors as shown in Figure 5.8.

A more detailed section of the datasheet of the MAX3232 can be found in Appendix C

where typical values for the charge pump capacitors are given. The serial to parallel and

parallel to serial conversions are done within the microcontroller by the on-chip UART

and USART converters. In order to add flexibility to the OBC architecture being

developed, a total of two USARTs and one UART were implemented in the design in

case more than one serial communication line is required using these protocols.

Figure 5.8: MAX3232 setup with DB9 interface to AT91SAM3U4E

13

10

11

8

12

9

14

7

C1+
1

C2+4

GND15

C1-3 VCC
16

C2-
5

V- 6

V+ 2

U4

MAX3232CSE

+3V3

+3V3 +3V3

[PA0..PA31]

100K

R32

100K

R33

100nF

C45

100nF

C44

100nF
C46

GND

100nF
C42

100nF
C43

PA12

PA11

RD1
RTS1
TD1

CTS1

58

5.2.4. Universal Serial Bus (USB)

The AT91SAM3U4E microcontroller embeds an integrated USB2.0 Transceiver

Macrocell Interface (UTMI) device, allowing faster serial upload and download of data

when needed and, hence, saving space in the implementation. The presence of a high

speed peripheral bridge in the architecture makes it possible to reach serial data transfer

rates up to 480 Mbps which is qualified as high-speed transfer (Universal Serial Bus

Specification Revision 2.0, 2000).

The USB device is associated with a PLL which is used as a frequency synthesiser,

giving the ability to run the UTMI at a frequency multiple of the main oscillator (Chenakin,

2010). Besides the JTAG interface, the AT91SAM3U4E’s internal architecture can be

accessed using in-system programming (ISP) via the USB port. The microcontroller

embeds 16kB of ROM of which half is allocated to the smart Smart ARM Microcontroller-

Boot Assistant (SAM-BA). This method allows for fast and secure memory programming

and can be used as an alternative to JTAG programming. In this instance, the host

computer which should be running the SAMBA graphical user interfaces, can display

memory and peripherals contents but does not include a debugging option available

(Atmel Corporation, 2006).

A type B USB port is used on the OBC board and the schematic diagram is shown in

Figure 5.9. Resistors R16 and R17 form a 90 Ω differential impedance with the 5 Ω

output impedance of the high-speed channel drivers. Plug-in detection is implemented

by the divider bridge made by R18 and R19 from VBUS (5V) which is lowered to the

required value of 3.3V. C37 and C38 are bypass capacitors.

5.2.5. Two wire interface (TWI)

The TWI, also known as I²C, is a half-duplex, synchronous, multi-master bus which was

developed by Philips Semiconductors to provide communications link between multiple

integrated circuits (ICs). An on-chip interface is embedded in every TWI compatible

device, allowing data transfers to occur (Philips Semiconductors, 2003). The bus only

requires two bi-directional signal lines:

59

VBUS
1

D-
2

D+
3

GND
4

J2

440119-1

DHSDM

DHSDP

[PA0..PA31]

47K

R18

68K

R19

10pF

C37

100nF

C38

GND GND GND

PA0
[PA0..PA31]

DFSDM

DFSDP
39R16

39
R17

Figure 5.9: USB connection schematic diagram

 Serial Data (SDA): used to transfer data between the master and the slave(s);

 Serial Clock (SCL): provides a synchronous clock between the master and the

slave(s).

The SDA and SCL lines are pulled to logic high by means of pull-up resistors and are

controlled by the master IC which will normally be the microcontroller, via open-drain

drivers. More than one slave device can be connected to the bus and the master IC

initiates communication and provides the clock signal (SCL) and transfer rates of up to

400kbps can be reached. Each device on the bus including the master is identified by an

individual 7-bit or 10-bit address which enables the line for the specified slave and the

data transfer is based on an 8-bit (1 byte) sequence (Philips Semiconductors, 2003).

Two TWI are provided with the AT91SAM3U4E. In order to prove functionality of the bus,

it was decided to establish communication with a TWI compatible device. The MCP9800

temperature sensor from Microchip® is an integrated TWI sensor which meets the

hardware requirements of the OBC and was chosen to accomplish two functions:

60

Table 5.4: MCP9800 features

Characteristic Value

Operating voltage 2.7V to 5.5V

Operating current 200μA

Accuracy User selectable resolution between 9 and 12-bit

Temperature range -55°C to 125°C

Device slave address 0b100100

 Monitor the OBC onboard temperature;

 Evaluate the TWI on the AT91SAM3U4E microcontroller.

Table 5.4 gives its specifications in more detail (Microchip Technology Inc, 2010). In

addition to the SDA and SCL lines, the MCP9800 has an alert pin which outputs an alert

signal when the ambient temperature goes beyond a user-programmed temperature

limit. As for any TWI communication, a standard process is followed to accomplish a

data transfer:

 The master generates a start condition (S) to initiate data transfer;

 The master sends the 7-bit slave device address with a read or write bit on the bus

to identify which operation will be conducted;

 The addressed slave device sends an acknowledge (ACK) bit to the master to

confirm the reception of the previous byte if a write operation was selected,

otherwise the master sends an ACK signal to the slave in case of a read operation;

 The byte to be transferred is loaded onto the bus and sent or received by the

master or the slave and for each byte transferred, an ACK bit is sent from the slave

to the master or vice versa;

 The communication is terminated by a stop (P) condition generated by the master

(Philips Semiconductors, 2003).

This process is illustrated in Figure 5.10 for a read operation during which the master

must also signal an end of data to the slave by generating a “not ACK” bit (NAK). This

allows the slave device to release the data line in order for the master to generate the

stop condition.

61

Figure 5.10: Read operation from MCP9800 to master IC

(Philips Semiconductors, 2003)

The MCP9800 is made of four registers that can be configured by the user for a specific

operation:

 The ambient temperature register (TA);

 The temperature limit-set register (TSET);

 The temperature hysteresis register (THYST);

 The device configuration register (CONFIG).

Each register is set independently and is accessed by sending an 8-bit register pointer to

the device which has to initially be configured for a write operation. Only the two least

significant bits (LSB) are used to select the register and the other bits have to be

cleared. Each register’s function is elaborated in Table 5.5 and register pointer bits

associated with them are also shown.

One of the two available TWI buses on the AT91SAM3U4E was used to connect the

MCP9800 as illustrated in the schematic diagram shown in Figure 5.11. The alert pin

previously mentioned connects to a GPIO configured as an input to acknowledge the

alert signal in case the ambient temperature drifts from a preset threshold value. The

resolution of the ADC is set in the configuration register. The device is factory calibrated

with a 9-bit resolution.

62

Table 5.5: MCP9800 registers description and functions

Register Attribute Function Pointer
bits

Size

Temperature register (TA) Read only Access the ambient temperature.
ADC data is loaded in parallel in
this register.

0b00 16-bit; only uses 9 to
12-bit data in two’s
compliment.

Temperature limit-set register
(TSET)

Read/Write Provides user-programmable
temperature limit.

0b01 16-bit; only uses the 9
MSBs.

Temperature hysteresis
register (THYST)

Read/Write Provides user-programmable
hysteresis.

0b10 16-bit; only uses the 9
MSBs.

Configuration register
(CONFIG)

Read/Write Provides user- access to the
device’s different features.

0b11 8-bit; each bit sets a
feature.

Figure 5.11: MCP9800 TWI temperature sensor schematic diagram

VDD
1

GND
2

ALERT
3

SCLK
4

SDA
5

MCP1

GND

+3V3

PA17

PA10

PA9

100nF C37

GND

47K

R38

+3V3

[PA0..PA31]

63

At power up, the ambient temperature is set to 0°C, the temperature limit is set to 80°C

and the hysteresis is set to 75°C. Additional settings associated to each one of the

register can be found in the device’s data sheet which is provided in Appendix C.

5.2.6. Serial peripheral interface (SPI)

The AT91SAM3U4E also provides for an SPI data bus which will add to the features and

flexibility of the OBC in terms of serial data transfer. This bus is also known as four wire

interface and can be used to interface the microcontroller with external memory modules

amongst other devices, such as LCD drivers, audio chips sensors, and other processors

(Catsoulis, 2005).

The SPI transmission is a synchronous protocol where all transmissions are referenced

to a common clock generated by the processor which is identified as the master. The

receiving peripheral is known as the slave and makes use of the same clock signal to

synchronise the acquisition of the serial bit stream of data. One master can connect to

several slave devices on the same bus and unlike the TWI, the slave device is not

identified by pointing at its own address but instead an assertion is made to the slave’s

chip select input. Four data lines can be found on an SPI device as shown in Figure

5.12:

 Master in slave out (MISO): This is a serial data stream generated by the master

and received by the slave during a write operation;

 Master out slave in (MOSI): This is a serial data stream generated by the slave and

received by the master during a read operation;

 Serial clock (SCLK or SCK): This signal synchronises data transfer between the

master and the slave devices;

 Chip select (CS): This line is driven by using a spare I/O pin from the master which

makes the selected slave active on the bus (Maxim Integrated Products, 2007).

The operating principle is based on the shift registers exchange principle where the

master starts a byte transfer by writing it to its shift register and as the register transmits

the byte to the slave on the MOSI line, the slave transfers the contents of its shift register

back to the master on the MISO line, making it a simultaneous read and write operation.

64

Figure 5.12: Basic master-slave SPI configuration

In case a read operation is to be performed, a dummy byte is transferred from the

master in order to initiate a slave transmission and similarly, for a write operation, the

master will ignore the bytes it receives and only empty out its register (Catsoulis, 2005).

In previous OBC designs, SPI was mainly used for interfacing the memory module with

the microcontroller. The AT91SAM3U4E provides a 16-bit wide external bus interface

(EBI) as well as an 8-bit wide high speed multimedia card interface (HSMCI) to directly

interface memory modules with the microcontroller. This allows the SPI to be reserved

for other purposes. The SPI lines will run directly from the microcontroller to the header

pins of the OBC to make them available for future use.

A total of four chip select lines equipped with external decoder support permit

communication with a total of 15 peripherals at a time. The interface is reconfigurable

(microcontroller as master or slave) and the bus interface has a data length of 8 to 16-bit

programmable per chip select.

5.2.7. SD/MMC Card

The memory module in the CubeSat architecture is generally associated with the OBC

and according to Hidayat (2010), it serves two major functions:

 Recording and storing housekeeping parameters and payload data for

downlinking;

 Storing flight software updates from the uplink channel.

65

The choice for the SD/MMC solution over a memory chip is highly motivated by the

presence of an EBI on the AT91SAM3U4E microcontroller. The SD/MMC solution is an

integrated flash-based removable memory card with serial and random access

capability. Its reliability in terms of security, performance and capacity has proven to be

efficient in many handheld devices and its bus interface which can easily be integrated in

any design, has been adapted to work with most microcontrollers on the market

(SANDISK Corporation, 2003).

Two alternative protocols can be used for communication at a variable clock rate:

 SPI mode: As described in section 5.2.6 of this chapter, this interface provides a

serial synchronous bus capable of interfacing a host controller (master) with

several selectable slave devices with four data lines (CLK, CS, MOSI and MISO);

 SD mode: This mode is based on command and data bit streams initiated by a

start bit and terminated by a stop bit, and a dynamic configuration of the number of

data lines from 1 to 4 bi-directional parallel data signals (Kingmax Digital Inc.,

2000).

Preference for the transmission mode was given to SD mode which proved to be much

faster (parallel data transmission). In addition to speed, the SD mode allows full support

for wait states, hence eliminating the need for continuous polling which consequently

increases power consumption. A block diagram of the SD/MMC’s internal structure is

shown in Figure 5.13 and each pin is described in Table 5.6 for the SD mode (SANDISK

Corporation, 2003).

Table 5.6: Signal description on SD card pins in SD mode

Pin N° Name Description

1 CD/DAT[3] Data line 3

2 CMD Command line

3 VSS1 Ground

4 VDD Supply voltage

5 CLK Clock

6 VSS2 Ground

7 DAT[0] Data line 0

8 DAT[1] Data line 1 or Interrupt
(optional)

9 DAT[2] Data line 2 or Read Wait
(optional)

66

Figure 5.13: SD/MMC Block diagram (Kingmax Digital Inc., 2000)

Once a card is inserted into an SD/MMC socket, the card powers-up and the initialisation

phase can start. By default, only the DAT[0] line is used for data transfer and after

initialisation, it is possible for the master microcontroller to change the bus width and use

additional data lines according to the user’s choice. The clock starts running and the

initialising sequence can be sent. It consists of a stream of logical ‘1’s on the CMD line

which is responsible for all commands and response tokens when running in SD mode.

This is done in order to avoid all possible power-up synchronisation mismatches that

may occur between the internally generated clock and the host clock. These commands

are typical read and write operations and sent from the host to the card which, in turn,

sends a response on the same line before a read/write operation begins on the data

lines (Kingmax Digital Inc., 2000).

Data transfers to and from the card are always done in multiple blocks to increase

throughput. Each block of data is always appended with cyclic redundancy check (CRC)

bits which helps in detecting errors by means of sending a positive or negative

acknowledgement to the microcontroller whether or not the check bits that were

67

generated on the sending end agree with the data at the receiving end. This way, it is

possible to detect errors and in case of a negative acknowledgement, a re-read of the

block of data is initiated until a positive acknowledgement is received (Peterson, 1961).

A basic multiple block write operation is illustrated in Figure 5.14 showing commands

and response tokens on the CMD line and data blocks and CRC bits on the DAT line. A

start and stop command on the CMD line are necessary to, respectively, initiate or halt

operations on the data bus.

The AT91SAM3U4E is equipped with an MMC/MMCPlus high-speed interface capable

of accommodating a total of 8 data lines (8-bit). For availability reasons, it was decided

to fall back to a regular 4-bit parallel data bus since the MMCPlus socket was scarce and

hard to obtain at the time of the design.

The connection from the SD card socket to the microcontroller is done according to the

schematic diagram shown in Figure 5.15 where two additional pins can be identified:

 Card_Detect (CD): Active-low signal to detect card insertion;

 SD_Write _Protected (SD_WP): Active low signal indicating write-protection on the

card.

Figure 5.14: Multiple block write operation (SANDISK Corporation, 2003)

68

+3V3

GND

CD/DAT31

SD_WP12 CMD
11 CD10 DAT29 DAT18

DAT07 VSS6 CLK5 VDD4
VSS3 CMD2

SD_Card1

[PA0..PA31]

PA25

PA6
PA5

PA3

PA8
PA4

PA7

10K

R25

47K

R24

47K

R23

47K

R22

47K

R21

10K

R20

10K

R19

10uF

C35

100nF

C36
GND

Figure 5.15: SD Card socket schematic diagram

All data lines are active low and require pull-up resistors to avoid floating signals on the

lines. Resistors R19 through R25 accomplish this purpose while C35 and C36 are

decoupling capacitors. The SD/MMC interface is supported by the DMA controller which

minimises the processor intervention for large buffer transfers by enabling a direct

interaction between the memory card and the peripheral associated with it. This makes it

possible to reach data transfer rates of up to 55MHz (Atmel Corporation, 2009).

5.2.8. Analogue to digital converters

In order to convert analogue voltage levels from different transducers onboard the

CubeSat into digital quantities for processing, ADCs are needed. The AT91SAM3U4E

embeds two 8-channel ADCs: ADC0 and ADC1. They feature an automatic sleep mode

after conversion on enabled channels and possess multiple hardware and software

trigger sources to automatically wake up the ADC when a conversion is needed. They

individually have additional characteristics:

 ADC0: It has a 12-bit resolution and a maximum sample rate of 1 MSps and can

be reconfigured to 10-bit and 2 MSps, respectively, if need arises. In addition to the

69

high resolution and data sampling rate, it is possible to select between a single

ended or differential input voltage mode and the reference voltage is externally set

for better accuracy on low input voltages.

 ADC1: It has a 10-bit resolution and a maximum sample rate of 460 KSps, also

reconfigurable to 8-bit at 660 KSps respectively. It only gives ability to perform

single ended voltage measurement and its reference voltage is also set externally

(Atmel Corporation, 2009).

The ADC has a set of 13 registers, each performing a specific function on each channel.

By setting the analogue control register bits, it is possible to configure an ADC channel’s

parameters (gain, operating mode, input offset and bias current control) depending on

the ADC application. There is also a set of registers available which allow to enable or

disable unused ADC channels and to provide interrupt handling (Atmel Corporation,

2009).

5.2.9. Timer/ counter (TC)

In their basic form, timers are counters that increment or decrement based on a clock

cycle and a pre-scaler (clock divider). The advantage of using a timer lies in the fact that

the clock input and the operation of the timer are totally independent of the running

program. The resolution (Res) associated with a timer corresponds to the maximum

value the timer can reach (Max_Val_Cnt) and is calculated by the following formula:

 Max_Val_Cnt =2Res - 1 (1)

When the maximum value is reached, an overflow occurs and the counter is reset to

zero. A flag in the status register is set and can be used to trigger an event or set an

interrupt. It is possible to pre-load the counter with a value in order to reach the overflow

status earlier than the maximum count and hence, shortening the cycle and making it

possible to generate different time intervals. Timers can be configured to count up or

down (Atmel Corporation, 2002).

The AT91SAM3U4E has a total of three timer-counter (TC) channels, each with a

resolution of 16-bit which according to equation (1) makes their maximum count:

70

 Max_Val_Cnt = 216 - 1

 =65535 (2)

Each channel is user-configurable in terms of the pre-scaler value and can be

synchronised to either the internal clock (five inputs available) or the external clock

(three inputs available). The main advantage of having multiple timers is to give flexibility

between applications. These timers can be used in a range of functions including

frequency and interval measurement, pulse width modulation, pulse or signal generation

and delay timing (Atmel Corporation, 2009).

In CubeSat applications, timers are ideal to use since synchronisation between different

subsystems can occur at different times intervals which can be generated by the timers

at different frequencies and with different pre-scaler values.

5.2.10. Pulse width modulation (PWM)

PWM is a technique used in analogue speed control of actuators. It can be defined as a

way of digitally encoding analogue signal levels. This modulation technique generates

variable width pulses which represent the amplitude of an analogue input signal. By

using the timer counters previously discussed to generate triangular signals, it is

possible to alter the duty cycle of the square wave according to a specific analogue

signal (Barr, 2001).

The AT91SAM3U4E embeds an on-chip PWM controller with 4 channels, each using

one of the 16-bit TCs. Each channel is independently programmable and can also run in

synchronous channel mode where the same TC is shared (Atmel Corporation, 2009).

In order to generate a PWM sequence on an output, it is necessary to follow these

general steps:

 Set the period of the timer providing the modulating square wave;

 Set the on-time of the pulse in the control register;

 Select the output (direction) of the PWM;

 Start the timer;

 Enable the PWM controller (Barr, 2001).

71

The main advantage of using the PWM technique to control actuators in CubeSats

applications is that the output signal remains digital, which means that it is either a ‘1’ or

a ‘0’ that is being sent, hence minimising the noise and radiation effects which could be

devastating in case of analogue signal transmission to a load. The PWM signal can be

used to precisely control magnetorquer rods or servo motors in the ADCS subsystem of

a CubeSat (Wertz & Larson, 2008).

5.2.11. I/O peripheral set

Each of the previously mentioned embedded peripherals of the AT91SAM3U4E

microcontroller belong to an I/O set which is controlled by three 32-bit parallel

input/output (PIO) controllers: PIOA, PIOB and PIOC. Each controller is fully

programmable through individual registers and each I/O line is multiplexed for two

peripheral functions (A and B) besides being used as a GPIO.

An internal programmable 100kΩ pull up resistor is present on every I/O line and can be

managed by the PIO controllers. After power-up, all the I/O lines are inputs by default

and pull-up resistors are enabled. Appendix C.3 gives a detailed table of all three PIO

controllers and each I/O line as well as their respective peripheral functions (Atmel

Corporation, 2009).

5.3. PCB integration

The transfer from schematics to PCB was made possible by the electronic computer

aided design (ECAD) software called Altium Designer. This software package works on

a unified approach which allows importing schematic designs directly onto PCB design

and also allows a visualisation in 3D. The components libraries are available per

manufacturers and custom defined component libraries can also be added when

required.

A double sided board with two layers was preferred for the OBC design due to the ease

of access presented to both the power and the ground tracks. This approach also

minimises the overall amount of through-holes on the board and saves a large amount of

space, making it possible to fit all the components on the physical space provided.

72

In addition to the number of layers to be used, it was decided to place all ICs and active

components on the top layer in order to make direct connections to the microcontroller

and use the bottom layer strictly for passive components such as resistors and filtering

capacitors. The AT91SAM3U4E microcontroller which comes in a 144 pin QFP package

represents the main component on the board and was placed in the centre of the top

layer.

As recommended by Schmitz and Wong (2007), it is important to place all bypass

capacitors for the microcontroller on the bottom layer directly under it and as close as

possible to each supply pin. This is done to ensure steadiness of each supply pin which

can easily be driven to an unstable state due to fast switching signals around those pins.

The line inductance and series resistance which are proportional to the length of the

conducting track are reduced and the voltage delivered is cleaner and steady.

The power block is placed at the bottom left corner of the top layer to facilitate the

distribution of the power bus. For power consumption measurement purposes, a number

of removable jumpers are made available to measure the power drawn by the core in

different power mode configurations. An additional jumper is available to bypass the

overcurrent protection circuitry and run the OBC directly from the main power supply.

The SD card socket can be found on the bottom layer of the board at the top right corner

in order to facilitate insertion of the card as well as routing of the data bus from the

microcontroller. Other connectors include the header pins, the USB socket, the JTAG

interface and the battery holder. These are strategically placed on the different sides

around the PCB to facilitate access to their respective peripherals.

The routing of the PCB was done using different track widths for data and address bus

tracks (0.2mm), for interconnecting tracks (0.5mm) and for power and ground tracks

(1mm) as shown in Figure 5.14.

73

Figure 5.16: Close up of power/ground and data tracks on PCB

A solid copper polygon pour was placed over both the top and bottom layer with a net

connection to the ground plane in order to reduce the chances of potential

electromagnetic interference.

The complete schematic of the OBC can be found in Appendix D which also contains

views of the top and bottom layers during the design phase and after the components

were populated on the physical PC/104 board.

5.4. Summary

General specifications of the OBC were highlighted according to the characteristics of

the chosen microcontroller which were presented in Chapter 4. An overview of the OBC

subsystem was presented, showing every component associated to it.

The power system block was presented and analysed. The MAX4374 was selected as

the active device for this section of the OBC and its operations were investigated.

Peripherals and interfaces of the microcontroller to be implemented on the OBC were

presented in terms of performance and possible application on a CubeSat platform.

When applicable, operating procedures were provided in addition to detailed schematic

diagrams.

74

Finally, the PCB implementation of the design was presented and the placement of

components on the PC/104 form factor board was justified.

In the upcoming chapter, a series of tests will be conducted in order to evaluate the

designed prototype. These tests will essentially be based on the functionality of some

peripherals and features of the OBC.

75

CHAPTER SIX
DESIGN VERIFICATION

6.1. Introduction

In order to validate the OBC design, each feature that was implemented in the

architecture needs to be tested for functionality. It is mandatory to provide an

experimental setup to gather data from each test and to be able to evaluate and

troubleshoot the hardware whenever it is necessary. For each test, the microcontroller is

loaded with a program which is written and compiled with the aid of an integrated

development environment (IDE) tool. The program is written in a high level programming

language (C or C++).

This chapter presents the experimental setup and the IDE which was adopted in order to

conduct the tests. The results of each test are also presented.

6.2. Experimental setup

The proposed experimental setup in order to evaluate the OBC is presented in Figure

6.1. A personal computer running Windows® XP provides an interface to the OBC to

simulate the communication with other subsystems. It is also used as a running platform

for the interactive user interface and software necessary to provide the code to program

the microcontroller. IAR’s Embedded Workbench for ARM (EWARM12) was the chosen

IDE to program the microcontroller. This software incorporates chip-specific optimising

capabilities and integrates the necessary tools for embedded hardware and software

development which are:

 A C/C++ compiler and an assembler;

 A linker;

 A text editor;

 A librarian and a project manager;

 A high-level language debugger (C-SPY®) (IAR Systems, 2007).

12 See http://www.iar.com/en/Products/IAR-Embedded-Workbench/ARM/

76

Figure 6.1: Experimental setup

The choice for IAR EWARM was highly motivated by the advantages it presents when

compared to other IDEs. The following attributes justify this choice:

 A modular and extensible IDE with powerful project management component

allowing more than one active project in one session;

 Extensive ARM-core devices technical support;

77

 Support for Thumb®1 and Thumb®2 instructions sets;

 Available C-SPY driver for JTAG target system;

 RTOS support by C-SPY debugger (including Salvo);

 An unlimited number of breakpoints in flash memory with interrupt visualisation

when debugging;

 A powerful macro assembler with built-in C language pre-processor;

 ISO/ANSI C and C++ libraries with full source included with listing of entry points

and symbolic information (IAR Systems, 2007).

The debugging and downloading interfaces between the PC and the OBC are

implemented using the SAM-In circuit emulator (SAM-ICE). This emulator is designed by

Atmel for use exclusively with AT91ARM cores of which the Cortex M3 is a close

implementation. It has a JTAG connector integrated with a 20-pin connection compatible

with the one offered by the OBC’s AT91SAM3U4E microcontroller interface. By

emulating the microcontroller, the ICE allows one to access, examine and change the

contents of the registers, memory and I/Os of the targeted microcontroller after

programming. Similarly, it is possible to stop the program at precise locations or at given

conditions and observe the state of internal registers at that particular point in the code,

hence making the software development less time consuming (Ganssle, 1999).

As stated in section 4.3 of Chapter 4, serial communication is of high importance in a

CubeSat. In order to simulate data transmission from the OBC (CubeSat) to the ground

station, a UART link is established between the OBC and the PC. In a CubeSat, the

UART transmission link is interfaced with a modem which in turn is connected to a

transmitting or receiving antenna via the transceiver subsystem. The transmission and

reception simulations are important in order to validate the functionality of the UART and

USART interfaces by having the board send data packets to the PC and vice-versa. Due

to the absence of a serial DB9 port on modern PCs, a USB-to-RS232 adapter is used

between the OBC and the PC, allowing the connection and data transmission to take

place.

The high-speed USB2.0 device integrated on the AT91SAM3U is capable of serial data

transfer rates up to 480 Mbps and can also be used in conjunction with the internal ROM

78

for in-series-programming (ISP). A USB connection from the OBC to the host PC is

enabled by a USB-to-USB cable.

A regulated bench DC power supply is used to supply power to the OBC board with a

fixed voltage of 8V. Onboard regulators on the OBC regulate this voltage down to

constant values of 3.3V and 5V.

Digital signals from the OBC are analysed by a digital oscilloscope and the power

consumption is measured in different operating modes with the help of a digital bench

multimeter.

6.3. IAR EWARM Toolchain

The EWARM modular IDE presents an interface divided into a series of windows

representing the active workspace as shown in Figure 6.2. A tree representation of the

active project containing organised library folders for all files associated with the running

project is accessible through the workspace navigation window (see Figure 6.2)

Figure 6.2: IAR EWARM IDE main programming interface

Workspace window

Editor window

Tabs

Build window

Toolbar icons

79

The editor window allows for writing or editing of source files or header files found in the

workspace navigation window.

The AT91lib directory found in the active project tree is associated with a folder of the

same name that appends to the project’s working directory path and includes all the

library files called in the main source file. Three sub-directories can be found in the

AT91lib folder: boards, peripherals and utilities. Each of these directories contains files

which accomplish a particular function.

The “boards” sub-directory contains all the header files necessary to configure the

microcontroller in terms of features, software application programming interface (API)

definitions, operating frequency and I/O pins definitions. The header file board.h is

particularly important because it contains all of the definitions and functions for using the

AT91SAM3U4E-dependant I/O pins and external components interfacing with it. It also

contains definitions for the operating frequencies, ADC clock frequencies and I/O pins.

An example of frequency definitions for the main oscillator and the 10-bit ADC are as

follows:

// Frequency of the board main oscillator (in Hz)
#define BOARD_MAINOSC 12000000
// ADC clock frequency, at 10-bit resolution (in Hz)
#define ADC_MAX_CK_10BIT 5000000

The I/O pins definitions follow a different format which associates a pin to a constant

according to the following convention:

 PIN_* for a constant defining a single pin instance;

 PINS_* for a list of pin instances.

An example for the SPI0 MISO pin declaration and the SPI0 pin instances declaration

will be in the following form:

// SPI0 MISO pin definition (Refer to a single pin)
#define PIN_SPI0_MISO {1<<13, AT91C_BASE_PIOA, AT91C_ID_PIOA, PIO_PERIPH_A,
PIO_DEFAULT}

// List of SPI0 pin definitions (MISO, MOSI & SPCK)
#define PINS_SPI0 PIN_SPI0_MISO, PIN_SPI0_MOSI, PIN_SPI0_SPCK

80

In order to re-assign functions to particular pins, these definitions must be changed

accordingly.

The “peripherals” sub-directory contains configuration files for peripherals directly

associated with the running project. The files contained in this location should never be

changed as they define every function that is necessary to run the associated peripheral.

Finally, the “utility” sub-directory contains three files necessary for configuring output

methods for reporting debug information, warnings and errors. These files are in no case

mandatory for the program to be compiled and can be left out but should never be

modified.

The main source file is located in a folder containing the project’s name. The file is

accessible through the workspace navigation window and contains local definitions,

variables and functions to be manipulated through the program.

6.4. Experimental tests and results

The points to follow present the series of tests that were conducted on the OBC

prototyping board. These tests are run on each peripheral that is present on the board.

Measurements are also made in regard to the power consumption in different modes of

operation.

6.4.1. Power considerations

After the integration of the final prototype, it is necessary to verify the functionality of the

overcurrent protection circuit in case a short circuit condition arises. The overall power

consumption figures for the OBC subsystem when running in different power modes

should also be measured.

6.4.1.1. Overcurrent protection circuit

In section 5.2.1 of Chapter 5, details are provided regarding the overcurrent protection

circuit design around the MAX4374 and Appendix B includes related calculations,

simulations and results about this section of the OBC.

81

The circuit was physically tested using two resistors connected in a parallel

configuration, one of which represents the OBC’s load impedance and the other, the

overload. With an assumption of a total drawn current of 500mA and a line voltage of

3.3V, the load resistance was calculated to be:

 ܴௗ =

ூೌೣ

 =
ଷ.ଷ

.ହ

 =6.6Ω (3)

A value of 6.8Ω was used for both the load and the overload resistances. The parallel

resistor configuration implies that a higher current value will be drawn by the load which

is halved to 3.4Ω. This condition causes the sense resistor to have a higher voltage drop

across it and the input to the comparator to be above the recommended value of 0.6V.

Initially, the P-channel MOSFET driven by the output of the comparator is switched on,

allowing power to flow from the power supply to the OBC circuitry through the sense

resistor. The increase in current caused by the addition of the parallel load causes the

output of the comparator to go to a high state, hence switching off the MOSFET and

leaving the power line in an open circuit state. As the output of the comparator changes

its state, the supply line is disconnected. In order to restore the power to the circuit, an

incoming pulse from the OBC which now runs in BACKUP mode must trigger the RESET

input. This is done via the FWUP pin of the AT91SAM3U4E and an N-channel MOSFET

after removing the overload resistor.

During power off the microcontroller automatically enters the BACKUP mode where the

onboard backup battery takes over from the rail supply and leaves only the internal slow

clock oscillator to run. This operation requires a BAT54C Schottky barrier double diode

which can only conduct one of the two voltage sources at the time to power the internal

slow clock oscillator.

82

The RESET input of the MAX4374 is directly connected to the FWUP pin of the

microcontroller which remains active during BACKUP mode. This pin is used to reset

MAX4374 back to its normal operating mode.

6.4.1.2. OBC Power consumption

The different operating modes of the AT91SAM3U4E microcontroller were covered and

explained in Section 4.2.4 of Chapter 4. In order to draw power consumption figures for

the OBC in these operating modes, current measurements were taken by inserting a

digital multimeter in series with the VDDIN input.

During the design phase, an open circuit connection was created by inserting a jumper

(J-Vin) to break the supply line to facilitate these measurements. Knowing that the

operating voltage of the OBC is 3.3V and having measured the current drawn by the

system in different modes, it was possible to draw the overall power consumption figures

for each mode and the results are presented in Table 6.1.

6.4.2. Peripherals

All the peripherals listed in section 5.2 of Chapter 5 had to be tested individually. Test

codes were written, compiled, downloaded and run on the OBC board for each

peripheral. These tests and their results are presented in the following section.

6.4.2.1. Digital I/O, timer and UART configuration

The initial test involves a simple digital control to verify that the board does communicate

with the PC via its JTAG port and the SAM-ICE. Two user LEDs on the OBC allow to

visualise a change of state as one LED which is configured as an output, was

programmed to toggle states at a constant rate.

The UART communication is also enabled and is capable of sending and receiving

commands to and from the PC every time a change of state occurs. The rate at which

the LED toggles is set by configuring one of the three timer counters (TC0) in up-

counting mode in order to generate an interrupt every time its value overflows. A

flowchart of this program is shown in Figure 6.3.

83

Table 6.1: OBC system power consumption in different operating modes

Operating Mode Current Drawn Power Consumption

Active mode 286.36mA 944.98mW

Backup mode 35.97mA (on VDDBU) 118.7mW

Sleep mode
(35.42mA at 8MHz)
Frequency dependant

116.89mW

Wait mode 30.25mA 99.82mW

Figure 6.3: Blink and UART program flowchart

84

In order to set the LED as an output pin, a library function is used. This function belongs

to the led library which is included in the main program and whose functions can be

found in the utility sub-directory. The LED is configured by calling the following function:

LED_Configure(0);

This function assigns a pin instance to an LED constant in the first position (position ‘0’)

in a list of LED pin instances located in the header file board.h.

The configuration of timer TC0 is done in four phases occurring sequentially within a

locally defined function called ConfigureTc:

 The peripheral clock is enabled for TC_0 by using the following statement:

AT91C_BASE_PMC->PMC_PCER = 1 << AT91C_ID_TC0;

The power management controller (PMC) base address points to the peripheral clock

enable register PCER and assigns the timer counter 0 (TC0) to it.

 TC0 is then enabled by shifting its register values one bit to the left. TC0 can now be

configured for a chosen frequency and its value can be compared with Register C of

the timer counter channel interface to release a trigger signal to indicate that the

desired frequency has been reached. The three following statements are used:

 TC_FindMckDivisor(4, BOARD_MCK, &div, &tcclks);

 TC_Configure(AT91C_BASE_TC0, tcclks | AT91C_TC_CPCTRG);

 AT91C_BASE_TC0->TC_RC = (BOARD_MCK / div) / 1;

The function TC_FindMckDivisor takes four arguments: the desired frequency (4Hz

in this case), the master clock frequency (defined in board.h), the divisor value and

the timer counter clock select (TCCLKS)). This function automatically computes the

best value for a divisor (div) for the clock in order to attain the desired frequency.

The chosen divisor is guaranteed to satisfy the equation:

85

ൌݍ݁ݎ݂												 MCK
ሺdiv	ൈ	65536ሻ																																														 (4)

where div represents the highest possible value. The TCCLKS is necessary to

determine the appropriate source for the counter and tell whether it is clocked by an

internal or an external clock source.

The function TC_Configure configures the timer to operate in RC compare mode.

This mode allows the timer to generate a trigger which resets the counter whenever

its count reaches the pre-loaded RC value. The function TC_Configure takes two

arguments: a pointer to a timer instance (AT91C_BASE_TC0 in this case) and the

operating mode (tcclks | AT91C_TC_CPCTRG).

In the third statement of the timer configuration phase, the base address of TC0

points to register C (RC)’s API definition. It is then assigned a value equivalent to the

desired frequency by using the previously computed value of the variable div.

 The interrupt on TC0 needs to be enabled and configured on occurrence of the RC

compare trigger since it is disabled and cleared at power-up. This is done by calling

the following functions:

IRQ_ConfigureIT(AT91C_ID_TC0, 0, TC0_IrqHandler);

AT91C_BASE_TC0->TC_IER = AT91C_TC_CPCS;

IRQ_EnableIT(AT91C_ID_TC0);

The function IRQ_ConfigureIT is located in the nvic.h header file which contains all

the methods and definitions for configuring interrupts by using the NVIC. It

configures an interrupt by taking three arguments into consideration: the interrupt

source to configure (AT91C_ID_TC0), the pre-emption priority (it is set to ‘0’ in this

case in order to disable the interrupt vector) and the interrupt handler function

(TC0_IrqHandler). Next, the timer counter interrupt enable register (TC_IER) is pointed

to TC0’s base address and is assigned to the RC compare bit (AT91C_TC_CPCS) of the

TC Channel status register. The two previous statements were mandatory in order

to enable the incoming interrupt from the unique source of TC0 (AT91C_ID_TC0).

86

 Finally, TC0 can be started, on the condition that the LED is enabled, with the

following if statement:

 if (pLedStates[0])

 {

 TC_Start(AT91C_BASE_TC0);

 }

The function TC_Start enables TC0 and performs a software reset to start the count

in the condition that the if statement is true. Every time this condition occurs, the

interrupt is serviced by resetting the RC value in the counter.

The UART configuration is done by calling the following library function:

 TRACE_CONFIGURE(DBGU_STANDARD, 115200, BOARD_MCK);

This function initialises the UART communication and takes three arguments which

represent, the standard UART operating mode (asynchronous, 8-bit, no parity, 1 stop

bit), the baud rate and the master clock frequency.

The UART is configured to display the frequency at which the LED toggles and to

transmit a text: “Blink at x Hz” via the serial port. The Windows Hyperterminal application

is used to visualise the output on the PC at the rate specified in the UART setup. A

screen shot of the Hyperterminal window is presented in Figure 6.4 showing the

continuous message being transmitted every time the LED toggles.

87

Figure 6.4: Blink and UART communication program output

6.4.2.2. 10-bit and 12-bit ADCs

The two sets of ADCs available on the AT91SAM3U4E are presented in section 5.2.8 of

Chapter 5. In order to validate the functionality of this peripheral, one ADC channel is

tested.

An externally connected potentiometer is used on one of the 12-bit ADC channels of the

OBC (ADC12_CHANNEL_3) and the 3.3V reference is selected in order to vary the input. The

UART communication is once again used to display a menu which allows varying the

ADC gain and displaying the exact value of the voltage being sampled.

Figure 6.5 presents a flowchart of the program which is divided into three sections: the

configuration of the ADC, the configuration of the interrupt with its handler and the

analogue to digital sampling and conversion.

In the first step of the configuration process, the 12-bit ADC is initialised by calling the

following function:

88

Figure 6.5: ADC program flowchart

ADC12_Initialize(AT91C_BASE_ADC, AT91C_ID_ADC, AT91C_ADC12B_MR_TRGEN_DIS,

 0,AT91C_ADC12B_MR_SLEEP_NORMAL, AT91C_ADC12B_MR_LOWRES_12_BIT,

 BOARD_MCK,BOARD_ADC_FREQ, 10, 1200);

This function takes ten arguments which represent the following parameters: a pointer to

the 12-bit ADC instance, the software trigger mode, the sleep mode of operation, a 12

bits resolution, a master clock frequency of 48MHz, a selected ADC frequency, 10us

startup time and 1.2μs sample and hold time. The ADC channel to be used is enabled in

the second step of the configuration process by calling a function which refers to channel

3 of the 12-bit ADC:

89

ADC12_EnableChannel(AT91C_BASE_ADC, ADC12_CHANNEL_3);

A software interrupt is then configured and enabled for channel 3 of the 12-bit ADC. The

interrupt handling function will set a flag variable which will indicate that the analogue to

digital conversion has ended. As for the previous program, the configuration of the

interrupt is done by calling the following function:

IRQ_ConfigureIT(AT91C_ID_ADC, 0, ADCC0_IrqHandler);

The interrupt source to configure is AT91C_ID_ADC and the pre-emption priority is set to ‘0’.

The interrupt handler is the function ADCC0_IrqHandler which is defined as follows:

void ADCC0_IrqHandler (void)

{

 unsigned int status, i=1;

 status = ADC12_GetStatus(AT91C_BASE_ADC);

 if(ADC12_IsChannelInterruptStatusSet(status, channels[i]))

 {

 ADC12_DisableIt(AT91C_BASE_ADC, 1<<channels[i]);

 conversiondone |= 1<<channels[i];

 }

}

This function retrives the value of the status register of the ADC

(ADC12_GetStatus(AT91C_BASE_ADC)), then tests if the interrupt status bit of channel 3’s

register is set (ADC12_IsChannelInterruptStatusSet(status, channels[i])). The status

bit indicates the end of the conversion for this channel. The “end of conversion” flag can

be cleared and disabled for the concerned channel (ADC12_DisableIt(AT91C_BASE_ADC,

1<<channels[i])).

90

The final section of this program displays a menu which allows one to set the gain of the

ADC through the UART and explore the other characteristics of the ADC. Initially, the

analogue control register value is extracted and assigned to a variable:

adc_acr = ADC12_GetAnalogCtrlReg(AT91C_BASE_ADC);

This register is defined in the API list of registers found in the library header file

AT91SAM3U4.h and is found at address 0x400A8064. Table 6.2 presents all the

variables necessary to set the register and indicates the value associated with these

variables as well as their function. The input gain is represented by the three LSBs as

indicated by the field value of 0x3. Other variables can also be changed within the

register as indicated by their field values and functions on the table.

The value of the gain is read by performing a logical AND operation between the entire

register and the three LSBs:

gain = adc_acr & 0x3;

The menu is displayed after configuring the UART. Values for the gain can be selected

and a measurement can be performed by entering a key on the keyboard (G for gain

selection and any other key to perform a measurement). A case statement associated to

the gain value is used to select the desired gain (1, 2 or 4).

The conversion process is initiated on the ADC 12-bit by the following function:

ADC12_StartConversion(AT91C_BASE_ADC);

Table 6.2: API variable definitions, field and function

Analog Control Register variable
(ADC12B_ACR)

Field Value Function

AT91C_ADC12B_ACR_GAIN 0x3 << 0 Input gain

AT91C_ADC12B_ACR_IBCTL 0x3 << 6 Bias current control

AT91C_ADC12B_ACR_DIFF 0x1 << 16 Differential mode

AT91C_ADC12B_ACR_DIFF_SINGLE 0x0 << 16 Single ended mode

AT91C_ADC12B_ACR_DIFF_FULLY 0x1 << 16 Fully differential
mode

AT91C_ADC12B_ACR_OFFSET 0x1 << 17 Input offset

91

The interrupt handler previously defined indicates the end of the conversion on the

channel which is associated with it. In this case channel 3 and the program will

constantly be polling to verify if the conversion is done before displaying the value which

was sampled in mV. This is done in the following while loop:

 while (conversiondone != ((1<<ADC2)));

 {

 id_channel = 1;

 advalue = ADC12_GetConvertedData(AT91C_BASE_ADC, CHANNEL_3);

 printf("\rChannel %u : %u mV", id_channel, convertHex2mv(advalue));

 }

The sampled analogue data value is returned on the selected channel and is assigned to

a local variable called advalue which represents the raw value on the ADC channel. The

UART output is displayed using Hyper Terminal as shown in Figure 6.6.

6.4.2.3. TWI

The reliability of the TWI is vital in the CubeSat architecture since it has often been the

selected serial interface for communication between the OBC and other subsystems. In

section 5.2.5 of chapter 5, a TWI enabled temperature sensor (the MCP9800) is

introduced and its features are presented. The sensor serves its purpose by measuring

the temperature of the OBC and validating the functionality of the TWI communication.

Figure 6.6: UART output of ADC program

92

The AT91SAM3U4E is configured as the master device on TWI0 by calling the following

function:

TWI_ConfigureMaster(AT91C_BASE_TWI0, TWCK, BOARD_MCK);

This function takes three arguments and configures the first peripheral (TWI0) by calling

its API instance (AT91C_BASE_TWI0). The desired clock frequency is also defined as:

TWCK=1000000 Hz.

After configuring the microcontroller as the master, an initialisation of the TWI driver

must take place. The following function accomplishes this task:

TWID_Initialize(&twid, AT91C_BASE_TWI0);

The drivers for TWI communication are called by this specific function which identifies

the driver handler (&twid) as well as its location at base address AT91C_BASE_TWI0.

The temperature is displayed in a Hyper terminal window and data is sent to the PC via

a UART serial communication link. The MCP9800’s pointer bits are defined for each one

of its registers in section 5.3.5 and each register’s function is also given. Two of the four

registers are being used in this particular program: the configuration register and the

temperature register.

The configuration register is an 8-bit read/write register which provides user-access to

the device’s array of features. These features are set by the user but have defaualt

settings at power up as shown in Table 6.3.

Table 6.3: MCP9800 configuration register power-up default settings

Feature Bit number Power-up default setting Register value

One-Shot 7 Disabled 0

ADC Resolution 5-6 9-bit or 0.5°C 00

Fault Queue 3-4 1 00

Alert Polarity 2 Active Low 0

Comp/Int 1 Comparator mode 0

Shutdown 0 Disabled 0

93

In the program, the configuration register bits are arranged in a structure called

Confg_Reg which contains declarations for all six features as structure members:

typedef struct

{

 unsigned char bOneShot;

 unsigned char bRes;

 unsigned char bFaultQueue;

 unsigned char bAlrtPol;

 unsigned char bMode;

 unsigned char bShutdown;

}Confg_Reg;

The first statement in the main function of the program performs a read operation on the

configuration register:

TWID_Read(&twid, MCP9800_ADDRESS, CONF_REG, 0x01, Tdata, 0x01, 0);

The slave address of the MCP9800 is locally defined as MCP9800_ADDRESS = 0x48 or in

binary 0b1001000. The function also indicates that it must perform a read operation on

the configuration register (CONF_REG) and determines the address size of the register in

bytes (0x01). The data that is being read must be stored in a buffer (Tdata) and the

number of bytes to be read is also specified (0x01). The final argument in the function

simply indicates an asynchronous data transfer. The data buffer Tdata is defined at the

beginning of the main function as a one dimensional array of two elements. The stored

buffer data from the configuration register is then used to fill in the register itself with

selected values which in this case will be the default values and will only be using the

first eight bits from the buffer:

FillConfigReg(Tdata[0],& Confg_Reg);

The temperature register on the other hand, is a 16-bit read only register which

depending on the resolution, can contain 9 to 12 bits of temperature data. Bit

assignments and corresponding resolution for this register are shown in Figure 6.7.

Another read operation is performed but, this time on the temperature register

(TEMP_REG):

94

Figure 6.7: MCP9800 temperature register bits (Microchip Technology Inc, 2010)

TWID_Read(&twid, MCP9800_ADDRESS, TEMP_REG, 0x01, Tdata, 0x02, 0);

This function’s arguments are similar to the ones found in the read operation performed

on the configuration register. The only major difference is that the buffer size (Tdata) is

two bytes (16 bits) long as indicated by the size of the temperature register.

The final step is to process the gathered data. The temperature register data is formatted

in two’s complement and is converted into a decimal number depending on the selected

resolution. An operation is performed on the buffer where only the upper byte is filtered

out and assigned to a variable called temp. This variable is then converted into a decimal

value (integer) and displayed with a decimal identifier corresponding to the selected

resolution:

temp = ((Tdata[0]<<8)|(Tdata[1]));

temp = GetRealTemp(temp,confg.bRes);

index = temp%(2<<(confg.bRes-8-1));

index = index <<(4-(confg.bRes-8));

integer = temp/(2<<(confg.bRes-8-1));

printf("%d.%s C\r",integer,sixteenths[index]);

The program output is shown in Figure 6.8 where the ambient temperature is displayed

in a Hyper terminal window via UART.

95

Figure 6.8: UART output of TWI temperature sensor program

6.4.2.4. USB

This section presents a discussion of the functional tests conducted on the OBC’s USB

port. The integrated UTMI device was presented in the previous chapter in section 5.2.4

and its properties and use on the OBC were covered. The test in this case involves the

implementation of a UART to USB bridge using a communication device class (CDC).

The strategic position of the USB port on the OBC board allows access to the port after

integration within the CubeSat structure. The purpose of the CDC application in this case

would be to be able to emulate the UART interface by using the UTMI device.

The OBC appears as a serial device and a new COM port is made available once the

CDC program is downloaded and the OBC is connected to the host PC with a USB cable

as shown in Figure 6.9. A UART-to-USB driver is loaded into the microcontroller to

replace the UART driver and initiate CDC operation which has the advantage of being

unrestricted by hardware changes and independent of the running application on the PC.

All the driver functions are located in a configuration file which is included in the CDC

library subfolder by the following pre-processor directive:

#include <usb/device/cdc-serial/CDCDSerialDriver.h>

96

Figure 6.9: USB-to-UART COM port

Full-duplex communications can then occur between the PC and the OBC via the UTMI

device as it would have been for a UART connection. The application running on the PC

uses the same APIs as for UART communications but the CDC drivers act as a bridge

between these APIs and the USB hardware. On the other hand, the loaded UART-to-

USB driver interfaces the OBC application to the USB hardware and initiates the serial

transmission from the running OBC application (Atmel Corporation, 2008).

Figure 6.10 illustrates the migration changes from USB to UART communication. A full

duplex file transfer application program is downloaded on the microcontroller as part of

the written program. This can be seen as another way to emulate telemetry and

housekeeping data transfers from the OBC to the modems (or vice-versa) during

integration.

The host PC reads or writes data from/to the OBC through the serial COM port (serial

CDC) connected to the UTMI device and this data is either stored in a buffer or read

from it. An example of the read function implementation by the OBC is shown in the

following statement:

97

Figure 6.10: USB to UART migration (Atmel Corporation, 2008)

CDCDSerialDriver_Read(usbBuffer,DATABUFFERSIZE,(TransferCallback)

UsbDataReceived,0);

The argument usbBuffer represents the data buffer to store all the incoming received

data while DATABUFFERSIZE specifies the size of the data buffer in bytes. These two

parameters have previously been defined in the program and an indication of the

transfer being completed triggers an optional call-back function which accommodates

the interrupt handler for the end of data transfer condition ((TransferCallback)

UsbDataReceived).

The received buffered data is in turn transmitted by using a serial transfer through a

regular USART connection to the same host PC by using the following function:

USART_WriteBuffer(BASE_USART, usbBuffer, received);

98

The data content of usbBuffer is sent through the USART peripheral specified by its

particular base address (BASE_USART) and the size of the receiving buffer (received)

which are both pre-defined in the program. These two processes emulate a

housekeeping data packet being transferred from a given subsystem to the OBC and

transmitted to the modems for downlink. By opening two Hyper Terminal windows and

having the PC connected to the OBC using their respective COM port connections

(USART and USB-to-UART), a file transfer can be successfully initiated and

accomplished. An initialisation of the file transfer is illustrated in Figure 6.11 while the file

being transferred to the indicated destination path is shown in Figure 6.12.

6.4.2.5. PWM

The AT91SAM3U4E embeds an on-chip PWM controller with 4 channels; each uses one

of the 16 bit resolution up/down counters and each channel is independently

programmable. The user LED which is incorporated in the OBC design is used to

visualise the output pulse provided by one of the PWM channels. The duty cycle value of

the pulse is automatically updated by the peripheral direct memory access controller

(PDC).

The interface used to configure the PWM controller peripheral is included as a header

file in the peripherals subfolder of the IAR toolchain workspace window by the following

statement:

#include <pwmc/pwmc2.h>

The frequency of the PWM is selected to be 1 kHz and the maximum duty cycle is set to

90% and stored in a buffer of a predefined length. All of the above definitions are

implemented by the following statements:

#define PWM_FREQUENCY 1000

#define MAX_DUTY_CYCLE 90

#define MIN_DUTY_CYCLE 0

#define DUTY_BUFFER_LENGTH (MAX_DUTY_CYCLE - MIN_DUTY_CYCLE + 1)

The PDC buffer is defined as an array of DUTY_BUFFER_LENGTH elements as follows:

 unsigned short dutyBuffer[DUTY_BUFFER_LENGTH];

99

Figure 6.11: File transfer initialisation

Figure 6.12: File transfer progress and completion

Destination path

File to be transferred

Transfer initiated

File transferred

100

The main function of this test program contains a sequence of instructions which

configure the PWM channel and PWM controller before initiating the PDC transfer and

write from the buffer to the PWMC.

The first step is to enable the peripheral clock in the peripheral_clock_enable_register

(PCER) and assigning it to the PWM controller ID:

AT91C_BASE_PMC->PMC_PCER = 1 << AT91C_ID_PWMC;

This operation is necessary since it gives the onboard clock access to the peripherals

which in this case are the PWM controller, the PWM channel and the timers. The next

step involves the configuration of the timer which will be set to run at a frequency equal

to PWM_FREQUENCY * MAX_DUTY_CYCLE and the following function accomplishes this

task by finding the right MCK divisor and prescaler values:

PWMC_ConfigureClocks(PWM_FREQUENCY * MAX_DUTY_CYCLE, 0, BOARD_MCK);

After configuring the timer, the PWM controller channel also needs to be configured and

assigned to LED0. In the same line, the period, the duty cycle and the dead-time values

of the PWM channel have to be set according to the chosen channel. Four functions can

be identified which accomplish the abovementioned tasks:

PWMC_ConfigureChannelExt(CHANNEL_PWM_LED0, AT91C_PWMC_CPRE_MCKA, 0, 0, 0,

AT91C_PWMC_DTE, 0, 0);

PWMC_SetPeriod(CHANNEL_PWM_LED0, MAX_DUTY_CYCLE);

PWMC_SetDutyCycle(CHANNEL_PWM_LED0, MIN_DUTY_CYCLE);

PWMC_SetDeadTime(CHANNEL_PWM_LED0, 5, 5);

This program is essentially based on the execution of an interrupt in the NVIC with a

source address at the PWM controller. The interrupt is enabled and serviced at the end

of data transfer (duty cycle increment) from the duty cycle buffer to the PDC and this

action is repeated according to the pre-defined PWM frequency. The interrupt is first

configured with a priority ‘0’ and then enabled by the following statements:

IRQ_ConfigureIT(AT91C_ID_PWMC, 0, PWM_IrqHandler);

IRQ_EnableIT(AT91C_ID_PWMC);

101

With the interrupt source selected as AT91C_ID_PWMC, the next step is to enable it in a

peripheral and initiate it under the “end of buffer transfer” condition. This is accomplished

by the following function:

PWMC_EnableIt(0, AT91C_PWMC_ENDTX);

where AT91C_PWMC_ENDTX represents the end of the PDC buffer transfer in the interrupt

enable register of the PWM controller interface.

Before beginning the PDC transfer of the buffer contents, it is essential to fill the duty

cycle buffer for the concerned channel (Channel 0) by first enabling it in the PWM

controller interface:

PWMC_EnableChannel(CHANNEL_PWM_LED0);

The duty cycle buffer is filled with values going from MIN_DUTY_CYCLE to MAX_DUTY_CYCLE

by implementing the following for loop:

 for (i = 0; i < DUTY_BUFFER_LENGTH; i++)

 {

 dutyBuffer[i] = (i + MIN_DUTY_CYCLE);

 }

Finally, the transfer can be initiated by sending the contents of the buffer through the

PWM controller peripheral, using the PDC to take care of the transfer. This is

accomplished by the following function:

PWMC_WriteBuffer(AT91C_BASE_PWMC, dutyBuffer, DUTY_BUFFER_LENGTH);

The function takes three arguments: the pointer to the source address of the PWM

controller instance, the data buffer whose contents will be sent and the length of the data

buffer. This function is initiated by the abovementioned statement and perpetuated on in

a loop by the interrupt handler function PWM_IrqHandler which was previously defined. As

a result, LED0 on the OBC will intermittently glow with a duty cycle varying from 0% to

90% at a frequency of 1kHz.

102

6.5. Summary

This chapter covered all the different tests and results conducted on the OBC prototype.

The overcurrent protection circuit was simulated and successfully tested. Power

consumption figures were deduced for all different operating modes by measuring the

current in series at the VDDIN jumper which was included in the design for this purpose.

Additionally, peripherals associated with the OBC were tested for functionality by writing,

compiling and downloading relevant test programs into the microcontroller.

103

CHAPTER SEVEN
CONCLUSIONS AND RECOMMENDATIONS

7.1. General conclusions

In the first chapter, an introduction to the CubeSat concept and architecture was given.

The objectives and significance of the study were defined and overviews of the

methodology and the structure of the thesis were also presented.

A presentation of the CubeSat standard was given and each one of the CubeSat

subsystems was defined in terms of their functions. Being the main focus of this

research, more emphasis was put on the OBC subsystem and a detailed analysis was

conducted in terms of hardware and software, listing all essential components.

The space environment and its effects on electronic equipment were discussed in order

to set environmental constraints for selecting components for the design and

implementation.

Following a thorough literature research which considered previously deployed

CubeSats (Appendix A), it was necessary to select a suitable microcontroller in the 32-bit

core architecture range to carry out all data transfers between the OBC peripherals and

all other CubeSat subsystems. Selection criteria were identified and preference was

given to the AT91SAM3U4E which is Atmel’s implementation of ARM’s Cortex M3 core.

A specific OBC architecture was then designed around the selected microcontroller and

all relevant features of the microcontroller in relation to the CubeSat architecture were

pointed out.

The OBC specifications were presented and upon the completion of the architectural

design, the hardware implementation of the proposed OBC architecture was developed.

A circuit was implemented in series with the supply rail by means of a MAX4374 high-

side current sense IC in order to protect the OBC from short circuits during operations by

shutting down the supply line.

104

Each peripheral was presented and implemented. In the case of the TWI, the MCP9800

from Microchip, which is a TWI driven temperature sensor, was used to prove the

functionality of the TWI bus. Similarly, the ADC, USB, PWM, SD/MMC card, SPI and

UART interfaces were presented. Consequently, a set of schematic diagrams for each

section and peripheral of the OBC was developed and combined in the final design. This

phase was necessary before completing the PCB implementation which was done using

Altium designer CAD software.

A series of hardware and software tests were conducted in the final step after populating

the PCB. Power consumption figures were derived for all different operating modes and

the trip function of the overcurrent protection circuitry which was implemented in series

with the supply rail was verified in short circuit and overcurrent conditions. In addition to

the power supply management, a series of source codes were written, compiled and

downloaded to the microcontroller in order to individually test some of the peripherals for

functionality.

In the end, the research conducted which lead to the final development of the OBC

prototype responded positively to the addressed research questions from the

introductory chapter. This can be summarised as follows:

 The choice of a 32-bit microcontroller, more precisely Atmel’s AT91SAM3U4E, was

justified over 16-bit and 8-bit microcontrollers following a literature study and an

analysis of selection criteria which were explained in detail in Chapter 3.

 The OBC subsystem was analysed and important peripherals were listed. Further,

each one of these peripherals was implemented in the OBC architecture as well as

in the design which were respectively presented in Chapter 4 and Chapter 5.

 The developed OBC prototype possesses multiple peripherals which in the future

can be customised according to a given mission requirements. This represents an

exclusive advantage when compared to previously developed OBCs which all had

mission-specific designs. Future subsystems can be developed for upcoming

F’SATI missions around an OBC for which peripherals and power consumption

figures would have already been successfully tested.

105

7.2. Issues encountered

7.2.1. Hardware

A number of challenges were encountered during the implementation of the OBC

architecture. The final PCB was gradually populated, starting with the voltage regulation

section and the overcurrent protection circuit, followed by all passive components,

connectors, other active devices and the microcontroller.

Soldering of the microcontroller, which is a 144 pin fine pitch component, was particularly

challenging. The overcurrent protection circuit proved its relevance more than once by

detecting short-circuits between a power pin and a GPIO pin of the microcontroller and

shutting down the voltage supply before causing any damage to the microcontroller.

A permanent communication error was detected on the JTAG port when attempting to

program the microcontroller.The SAM-ICE indicated a connection to a non-powered

device. What seemed to be a software problem was in fact hardware related and

research about the topic established that when shipped from factory, the AT91SAM3U4E

among other microcontrollers is always in deep-sleep operating mode by default. This

presents the lowest power figures since only the internal clock of the core is running and

every other peripheral clock as well as the core itself are not being powered. The way

around this was to perform a Forced-Wake-Up (FWUP) to the microcontroller by pulling

the associated FWUP pin to ground for more than 200ms. This was necessary to

awaken the core and the internal peripheral clocks, hence making communication

possible.

7.2.2. Software

A fair amount of time was invested in becoming familiar with the IAR EWARM toolchain.

A particular challenge was to understand the mechanism behind the NVIC as well as the

way libraries are organised.

The documentation provided the available sample programs and the reliable customer

support and the diversity of online forums allowed a good understanding of the IDE

software package and implementation of experimental programs.

106

7.3. Future work

The prototype OBC that was developed had proven to function correctly after running a

series of tests on all necessary and accessible peripherals. An SD/MMC card was

selected as the memory device but the card holder was perceived to be potentially

unreliable in vibration environments (i.e. during launches or P-POD ejection). An

investigation can be conducted in order to select an appropriate SD/MMC card holder

which would be reliable enough and not cause any disconnection when exposed to

mechanical vibrations.

In order to save board space, the mini SD/MMC card may be replaced with a micro

SD/MMC card which is a quarter of the size. Similarly the CR2031 lithium cell can be

replaced with a smaller and lighter CR1225 cell which has similar capacity.

Finally, a file system for data transfer can be implemented with a specific data format for

logged housekeeping parameters as well as telemetry and can be integrated in the

OBC’s flight software.

107

BIBLIOGRAPHY

Albus, Z., Valenzuela, A. & Buccini, M. Ultra-Low Ppower Comparison :MSP430 vs.
Microchip XLP Tech Brief-A Case for Ultra-Low Power Microcontroller Performance.
Available at: http://www.ti.com/lit/wp/slay015/slay015.pdf

ARM. 2010. Cortex-M3 Devices Generic User Guide.
Available at:
http://infocenter.arm.com/help/topic/com.arm.doc.dui0552a/DUI0552A_cortex_m3_dgug.
pdf [6 August 2010]

Atmel Corporation. 2009. AT91ARM M3 Cortex-based processor.
Available at: http://www.atmel.com/images/doc11020.pdf [6 August 2010]

Atmel Corporation. 2002. AVR130: Setup and Use the AVR Timers.
Available at: http://www.atmel.com/images/doc2505.pdf [6 August 2010]

Atmel Corporation. 2008. AVR272: USB CDC Demonstration UART to USB Bridge.
Available at: http://www.atmel.com/dyn/resources/prod_documents/doc7619.pdf [6
August 2010]

Atmel Corporation. 2006. SAM Boot Assistant (SAM-BA) User Guide.
Available at: http://symbrion.eu/tiki-download_file.php?field=19 [6 August 2010]

Atmel Corporation. 2010. SAM3U-EK Development board User Guide.
Available at: http://www.atmel.com/Images/doc6478.pdf [6 August 2010]

Barr, M. 1999. Programming Embedded Systems in C and C++. O’Reilly.

Botma, P. J. 2011. The Design and Development of an ADCS OBC for a CubeSat,
Master's thesis, University of Stellenbosch, Stellenbosch.

Brand, C. J. 2007. The Development of an ARM-based OBC for a Nanosatellite.
Master's thesis, University of Stellenbosch, Stellenbosch.

Catsoulis, J. 2005. Designing Embedded Hardware. Sebastopol: O'Reilly.

Chenakin, A. 2010. Frequency Synthesizers: Concept to Product. Norwood: Artech
House Inc.

Clark, C. S. & Simon, E. 2007. Evaluation of Lithium Polymer Technology for Small
Satellite Applications, Proceedings of The 21st Annual AIAA/USU Conference on small
satellites. 2007 Utah, USA (SSC07-X-9).

ClydeSpace. 2011. 1U CubeSat EPS.
Available at: http://www.clyde-space.com/cubesat_shop/eps/8_1u-cubesat-eps
[7 January 2011]

Dasgupta, R. 2008. Low Power MCU Selection Criteria and Sleep Mode Implementation
Using Hardware/Software CoDesign Technique.
Available at: http://www.eetimes.com/electrical-engineers/education-training/tech-
papers/secure/tata-consultancy-services/4137624?isSurveySuccess=True
[23 June 2011]

108

Davidsen, P. 2008. Satellite Systems and Design: Architecture of On-Board Systems.
Available at:
http://www.space.aau.dk/cubesat/documents/DTU_kursus_Architecture_of_onboard_sys
tems.ppt [21 June 2012]

DefenceWeb. 2012. South Africa's CubeSat promoting space ambitions.
Available at:
http://www.defenceweb.co.za/index.php?option=com_content&view=article&id=23165&c
atid=74&Itemid=30 [19 February 2011]

Delft University of Technology. n.d. Delfi-C3 2 year anniversary.
Available at:
http://www.delfic3.nl/index.php?option=com_content&task=view&id=105&Itemid=71
[4 July 2011]

Denier, W. 2010. Satellite Payload Systems: Satellite Operations and 3D modeling
Available at: http://waynedenier.com/?p=144 [22 June 2011]

South Africa. Department of Science and Technology. 2010. A Journey for Tomorrow,
Watch This Space. DST,3 (2), February.

Eady, F. 2004. Networking and Internetworking with Microcontrollers. Oxford: Elsevier.

Eide, E. & Iilstad, J. 2003. Ncube-1, The First norwegian CubeSat Student Satellite.
Proceedings of The 16th ESA Symposium on European Rocket and Balloon
Programmes and Related Research,pp. 85 - 88. St Gallen, Switzerland.

EmbeddedDeveloper. n.d. Microcontroller selection.
Available at: http://www.embeddeddeveloper.com [5 March 2011]

Enright, J. P. 2002. A Flight Software Development and Simulation Framework for
Advanced Space Systems. PhD thesis, Massachusetts Institute of Technology (MIT),
Cambridge.

Ganssle, J. 1999. ICE Technology Unplugged: EE Times-India , pp. 109-113, November.
Available at:
http://www.eetindia.co.in/STATIC/PDF/199910/EEIOL_19990CT02_EMS_TEST_TA.pdf
?SOURCES=DOWNLOAD [25 March 2011]

Gildeh, D. 2003. Final Report: Design and development of OBC for Pico-Sat PALMSAT.
University of Surrey, Guildford.
http://www.davidgildeh.com/sites/davidgildeh.com/files/projects/Palmsat_Report.pdf
[5 June 2010]

Gunter, P. 2008. Space Junk. Frankfurter Allgemeine Zeitung
Available at:
 http://www.faz.net/aktuell/wissen/weltraum/weltraummuell-schrott-so-weit-das-auge-
reicht-1540458.html [12 February 2011]

 Hales, J.H. & Pedersen, M. 2002. Two-Axis MOEMS Sun Sensor for Pico Satellites.
Proceedings of The 16th Annual AIAA/USU Conference on small satellites. 2002 Utah,
USA (SSC02-VI-6).

109

Han, J.H. & Kim, C.G. 2006. Low earth orbit space environment simulation and its
effects on graphite/epoxy composites. Composie Structures. 72(7): pp. 218-226. Elsevier
Ltd.

Hardy, J. 2009. Implementation du Protocol AX.25 a Bord du Nanosatellite OUFTI-1.
Master's thesis, University of Liege, Liege.

Heidt, H., Suari, J. P., Moore, A. S., Nakasuka, S. & Twiggs, R. J. 2000. CubeSat: A new
Generation of Picosatellite for Industry Low-Cost Space Experimentation. Proceedings of
the 14th Annual Small Satellite Conference, Salt Lake City, Utah, August, 2000.

Hidayat, N. D. 2010. Development of Flight Software for The Nanosatellite Onboard
Computer Based on FM430 and Real-Time Operating System. Master of Technology
thesis, Cape Peninsula University of Technology, Cape Town.

Holman, G.& Benedict, S. 2007. Solar Flare Theory Educational Web Pages.Nasa's
Goddard Space Flight Center
Available at: http://hesperia.gsfc.nasa.gov/sftheory/frame1.htm [6 June 2011]

IAR Systems. 2007. IAR Embedded Workbench IDE User Guide for Advanced RISC
Machines Ltd's ARM Cores.
Available at: http://www.efo.ru/doc/Atmel/pdf/EWARM_UserGuide.pdf [17 June 2011]

ISIS. 2008. Small Satellite Ground Stations.
Available at:
http://www.isispace.nl/media/products/GSKIT/Brochure_ISIS_GroundStation.pdf
[12 March 2011]

Khan, M. (2008). Computer Revolution. BP Network.
Available at: http://bpnetwork.ca/whitepaper_files/Computer-Revolution.pdf [8 April 2011]

Kingmax Digital Inc. (2000). SD Card Specification.
Available at: http://www.kingmax.com/m,k [29 August 2011]

Koskienen, H., Eliasson, L., Holback, B., Anderson, L., Eriksson, A., Malkki, A., Norberg,
O., Oulkkinen, T., Viljanen, A., Wahlund, J. E. & Wu, J. G. 1999.Final Report: Space
Weather and Interactions with Spacecraft. SPEE.
 Available at: http://space.fmi.fi/spee/docs/spee-final1.pdf

Lee, S., Hutputanasin, A., Torrian, A., Lan, W. & Munakata, R. 2009. CubeSat Design
Specification: Technical report. California Polytechnic State University, California.
Available at: http://www.cubesat.org/images/developers/cds_rev12.pdf [12 May 2010]

Louis, J. & Ippolito, J. 2008. Satellite Communications Systems engineering:
Atmospheric Effects, Satellite Link Design and System Performance. Washington DC:
Wiley.

Maxim Integrated Products. 2007. SPI/ I2C Bus Lines Control Multiple Peripherals.
Application note 4024.
Available at: http://pdfserv.maxim-ic.com/en/an/AN4024.pdf

Maxim Integrated Products. 2001. High-Side Current-Sense Measurement: Circuits and
Principles. Application note 746.

110

Available at:http://pdfserv.maxim-ic.com/en/an/AN746.pdf

Maxim Integrated Products. 2000. Low-Cost, Micropower, High-Side Current-Sense
Amplifier +Comparator +Reference ICs: MAX4373/MAX4374/MAX4375.
Available at: http://datasheets.maxim-ic.com/en/ds/MAX4373-MAX4375.pdf

Mehrholz, D., Leushacke, L., Flury, W., Jehn, R., Klinkrad, H. & Landgraf, M. 2002.
Detecting, Tracking and Imaging Space Debris. ESA bulletin 109, 128-134, February
2002.
Available at: http://www.esa.int/esapub/bulletin/bullet109/chapter16_bul109.pdf

Microchip Technology Inc. 2010. MCP98000/1/2/3 2-Wire High-Accuracy Temperature
Sensor
Available at: http://ww1.microchip.com/downloads/en/DeviceDoc/21909d.pdf

Nagi, C. 2003. Embedded Systems Design using the TI MSP430 Series : Newness.
NASA. 2010. Human Exploration and Operations. The CubeSat Launch Initiative.
Available at: http://www.nasa.gov/directorates/heo/home/CubeSats_initiative.html

National Semiconductor Corporation. 2006. LM1117/LM1117I 800mA Low-Dropout
Linear Regulator.
 Available at: http://www.ti.com/lit/ds/symlink/lm1117-n.pdf

National Semiconductor Corporation. 2000. LM4040 Precision Micropower Shunt
Voltage Reference.
 Available at: http://www.ti.com/lit/ds/symlink/lm4040-n.pdf [3 April 2010]

Navalgund, R. R., Jayaraman, V. & Roy, P. S. 2007. Remote sensing applications: An
overview. Current Science, 93 (12), pp. 1747-1766, November.

Noergaard, T. 2005. Embedded Systems Architecture: A Comprehensive Guide for
Engineers and Programmers. Burlington: Newnes.

Oland, E., & Schlanbusch, R. 2009. Reaction wheel design for CubeSats. Proceedings
of The 4th IEEE International Conference on Recent Advances in Space Technology,
pp. 778-83, Istanbul, Turkey.

PC/104 Embedded Consortium. 2003. PC/104 standard and specifications.
Available at: http://versalogic.com/support/pdf/PC/104Specv246.pdf [11 February 2011]

Peterson, W. W. 1961. Cyclic Codes for Error Detection. Proceedings of The IRE pp.
228-235. Gainesville, Florida..

Philips Semiconductors. 2003. I²C Manual. Application note AN10216-01.
Available at: http://www.philips.com/appnotes/ I2C _Manual [3 April 2010]

Pierlot, G. 2009. Oufti-1: Flight System Configuration and Structural Analysis. Master's
thesis, University of Liege, Liege.

Polaschegg, M. 2005. Study of a CubeSat Mission. Master's thesis, University of Graz,
Graz, Australia.

Povey, H. 2008. 32-Bit Microcontrollers in an 8-Bit World. Information Quartely , 28-31.
Available at: http://www.asdjhakjfajk.com [12 November 2010]

111

Pumpkin Inc. 2003. An Overview of the CubeSat Kit
Available at: http://www.cubesatkit.com/content/overview.html [7 January 2011]

Pumpkin Inc. 2008. CubeSat Kit FM430 Flight Module.
Available at: http://www.cubesatkit.com/docs/datasheet/DS_CSK_FM430_710-00252-
C.pdf [7 January 2011]

Pumpkin Inc. 2010. History & Performanceof Pumkin's Products In Space.
Available at: http://www.cubesatkit.com/content/space.html [1 October 2011]

Rupprecht, M. 2011. NCube-2 CubeSat,DK3WN
Available at: http://www.dk3wn.info/sat/afu/sat_ncube.shtml [12 March 2011]

Sakoda, D., Horning, J. A. & Moseley, S. D. 2005. Naval Postgraduate School NPSAT1
Small Satellite. Monterey.
Available at: http://sp.nps.edu/npsat1/technical/371468_NPS.pdf [21 March 2011]

SANDISK Corporation. 2003. Secure Digital Card Product Manual Rev 1.7.
Availabel at: http://www.sandiskcorp.com/cardspec [5 September 2011]

Schmitz, T., & Wong, M. 2007. Choosing and Using bypass Capacitors. Application note
1325.0. Intersil.
Available at: http://www.intersil.com/content/dam/Intersil/documents/an13/an1325.pdf
[24 April 2011]

Senechal, T. 2007. Orbital Debris: Drafting, Negociating, Implementing a Convention.
Massachusetts.

Singh, KB. 2004. Microcontroller and Embedded System. New Delhi: New Age
International.

Steinmetz, R., & Wehrle, K. 2005. Peer-to-Peer Systems and Applications. Berlin:
Springer.

Stras, L., Kekez, D. D., Wells, G. J., Jeans, T., Zee, R. E., Pranajaya, F.& Foisy D. 2003.
Final Report:The Design and Operation of The Canadian Advanced Nanospace
eXperiment (CanX-1).
 Available at: http://www.canx1.ca/ [15 December 2010]

Universal Serial Bus. 2000. Specification Revision 2.0.
Available at: http://www.usb.org/2.0 [14 May 2011]

Weiss, A. R. (2002). Dhrystone Benchmark. Austin.

Wells, G. J., Stras, L.. & Jeans, T. 2003. Canada's Smallest Satellite; The Canadian
Advanced Nanospace eXperiment (Can X-1). University of Toronto Institute for
Aerospace Studies, pp. 4-7. Toronto, Canada.

Wertz, J. R. & Larson, W. J. 2008. Space Mission Analysis And Design. New York:
Microcosm and Springer.

Whilmshurst, T. 2007. Designing Embedded Systems with PIC Microcontrollers
"Principles and Applications". Oxford: Elsevier Ltd.

112

Appendix A: Previous CubeSat missions

Table A.1. Previous CubeSat missions OBCs features

CubeSat University or company Mission overview Status TT&C OBC microcontroller
CUTE-1 Tokyo Institute of Technology Test platform based on COTS

components.
Deployable solar cells,
piezoelectric vibrating gyroscope (4
pcs), dual axis accelerometers (4
pcs) and CMOS camera used as
sun sensor. The camera pictures
could not be transmitted to the
ground.

The satellite is still operating
nominally in early December
2008 (5 years, 5 months
after launch)

H8/300(Renesas Technology)
8-bit operation
32kB ROM
1kB RAM
Operates at 30MHz

XI-IV University of Tokyo Test platform based on COTS
components.
Included a camera to take pictures
of the earth.

Latest telemetry analysis
dated September 20th,
2007. The satellite beacon
was last heard in early
December 2008 (5 years, 5
months after launch).

PIC 16F877 (Microchip)
8-bit microcontroller
32kB ROM
1kB RAM
Operating at 40MHz

CanX-1 University of Toronto Space-testing key technologies for
future missions: Low-cost CMOS
horizon sensor and star-tracker,
GPS receiver.

Radio contact never
established

AT91SAM (ARM7 fromAtmel)
32-bit microcontroller
512kB SRAM
32MB Flash-RAM
Operating at 40MHz

DTUsat Technical University of Denmark MEMS sun sensors and a 600 m
tether used to change the orbit. A
color CCD camera and electron
emitter were not ready on time for
launch.

Radio contact never
established

AT91M40800 (ARM7 from Atmel)
32-bit microcontroller
1MB RAM
16 KB ROM
2MB Flash-RAM
Operating at 16MHz

AAUCubeSat Aalborg University Color CMOS camera Antennas Short Circuited,

resulting in poor comms
performance. Batteries died
after a month due to poor
packaging

C161(Siemens)
4MB RAM
512kB PROM
256kB Flash-ROM
Operating at 10MHz

113

QuakeSat Stanford University and
Quakesat

Detect ELF radio emission of
seismic activity during earthquakes.
Had deployable solar panels, and a
magnetometer mounted on a 60
cm boom. The s/c was designed
using COTS components.

Designed for 6 months, it
worked flawlessly until at
least June 6th, 2004 (more
than 11 months).

ZFx86 (Siemens on a
PrometheusPC/104 board)
32-Bit microcontroller
16MB RAM
1MB Flash-ROM
Operates at 60MHz

NCube2 Norwegian Univesrity of Science
and Technology

Similar to NCube1, the payload
consists of an Automatic
Identification System. AIS is a
mandatory system on all larger
ships, which transmits identification
and position data messages. The
satellite will redirect these
messages along with messages
from Norwegean reindeer collars.

Radio contact never
established

ATmega32L (Atmel AVR)
32-bit microcontroller
32KB Flash
4kB ROM
Operating at 16MHz

UWE-1 University of Wurzburg Testing a communication protocol,
test of GaAs cells in space, running
micro Linux

Nominal operations until
November 17th, 2005, when
it was last heard. Since then
contact has been lost
completely.

Hitachi H8S-2674R (Hitachi)
No Flash/ROM (All external)
Operating at 16MHz

XI-V University of Tokyo Test of CIGS and GaAs solar cells,
increased resolution of camera and
an introduction of rapid shooting
mode for estimating attitude
motion. A morse message
transmission service for radio
amateurs was been added.

Nominal operations, first
image received November
22nd, 2005. From
December 2005, the images
are showing some
problems. The satellite was
still operating 3 years, 2
months after launch.

PIC 16F877 (Microchip)
8-bit microcontroller
32kB ROM
1kB RAM
Operating at 40MHz

Cute 1.7 Tokyo Institute of Technology Test of charged particle detector
(Avalance Photo Diode sensor
module), made by Tokyo Institute
of Technology. Due to low perigee
(about 300 km at launch) expected
lifetime is significantly less than
one year. Experimental 10m tether
and ectron emitter to change orbit

Nominal operations until
early March 2006, it was
since fully recovered, but
since April 2006 no longer
responds to commands
from the ground.

ARMV4I (Onboard PDA)
16-bit microcontroller
32MB RAM
128MB Flash (SD Card)
Operating at 400MHz

114

ION University of Illinios

Features a Photomultiplier Tube
(PMT) to observe airglow
phenomenon in the earth's upper
atmosphere (mesosphere).
Also has a low-thrust, electric
propulsion system and a CMOS
camera for Earth imaging.

Destroyed due to launch
failure.

 SH2 (Hitachi Processor)
16-bit microcontroller
1MB External SDRAM
8MB Flash
256kB EEPROM
Operating at 7MHz

Sacred University of Arizona This is the third CubeSat by the
University of Arizona (the second to
be launched). Produced by
Montpelier University and Alcatel,
the payload will measure the total
amount of high-energy radiation
over a two-year span and will test
the radiation properties of four
commercial integrated circuits.

Destroyed due to launch
failure.

PIC16C77 (Microchip)
8-bit microcontroller
168kB RAM
64kB FRAM
Operating at 20MHz

KUTEsat
Pathfinder

University of Kansas Measure the radiation in LEO and
take photographs with an onboard
camera

Destroyed due to launch
failure.

PIC18F4220 (Microchip)
16-bit microcontroller
32kB Flash
4B SRAM
Operates at 40MHz

SEEDS Nihon University Contains a gyro sensor for
accurate determination of attitude
motion

Destroyed due to launch
failure.

NO MISSION INFORMATION
AVAILABLE

HAUSAT1 Hankuk Aviation University GPS receiver, experiment on
deployment mechanism of solar
panel and space verification of
home made sun sensor

Destroyed due to launch
failure.

AT91LS8535 (Atmel)
32-bit microcontroller
512 B internal SRAM
512 Bytes EEPROM
Operating at 60MHz

NCube1 Norwegian University of Science
and Technology

Similar to NCube2, the payload
consists of an Automatic
Identification System. AIS is a
mandatory system on all larger
ships, which transmits identification
and position data messages. The
satellite will collect these messages
along with messages from
Norwegian reindeer collars.

Destroyed due to launch
failure.

 AVR ATmega640 (Atmel)
 8-bit microcontroller
64KB Flash
8B SRAM
Operates at 8MHz

115

ICE Cube 1 Cornell University Perform GPS scintillation science
by measuring fluctuations in the
signals that the GPS satellites emit
when the signals pass through the
ionosphere. Identical to ICE Cube
2

Destroyed due to launch
failure.

 NO MISSION INFORMATION
AVAILABLE

RINCON 1 University of Arizona This is the second CubeSat by
University of Arizona (the first,
which was just a s/c bus, is not
scheduled for launch)
The payload is a low-power beacon
system, which provides a
redundant means of relaying
sensor data in analogue form if the
primary (digital) transmitter fails.

Destroyed due to launch
failure.

 PIC16C77 (Microchip)
16-bit microcontroller
64KB FRAM
368Bytes of RAM
Operates at 4MHz

MEROPE Montana State University Radiation experiment Destroyed due to launch
failure.

MC68HC812A4 (Motorola)
16-bit microcontroller
4kB EEPROM
1kB RAM
Operating at 2MHz

AeroCube-1 The Aerospace Corporation Short life satellite (10 days), using
Lithium batteries as primary
batteries (no recharging). Mission
is to test a communication system
and the system bus plus a suite of
CMOS cameras done by Harvey
Mudd College. The satellite has no
deployables. Instead an
omnidirectional patch antenna is
used.

Destroyed due to launch
failure.

NO MISSION INFORMATION
AVAILABLE

CP2 California Politechnic Institute Energy Dissipation Experiment.
First mission based on what is
supposed to be a "standardised"
bus (though CP3 features an
updated bus)

Destroyed due to launch
failure.

PIC18LF6720 (Microchip)
16-bit microcontroller
1kB ROM
4kB RAM
128kB Flash
Operating at 4MHz

ICE Cube2 Cornell University Perform GPS scintillation science
by measuring fluctuations in the
signals that the GPS satellites emit
when the signals pass through the
ionosphere. Identical to ICE Cube
1

Destroyed due to launch
failure.

NO MISSION INFORMATION
AVAILABLE

116

MeaHuaka University of Hawaii To test a 5.8-GHz active antenna
(grid oscillator) for high bandwidth
communication (does not require
deployment of antenna)

Destroyed due to launch
failure.

 RCM200 and2300(Rabbit Core)
16-bit microcontroller
256KB Flash
512KB SRAM
Operates at 25.8MHz

CP1 California Politechnic Institute Test of sun sensor developed by
Optical Energy Technologies

Destroyed due to launch
failure.

PIC18LF6720(Microchip)
8-bit microcontroller
128KB Flash (1kB boot ROM)
4KB RAM
Operates at 4MHz

GeneSat-1 Center for Robotic Exploration
and Space Technologies

Perform experiment on E. Coli
bacteria in space, first CubeSat to
carry a biological experiment.

96-hour experiment
completed successfully on
December 22nd, 2006. Last
confirmed telemetry
reception on April 11th,
2008 (2 year, 4 months after
launch)

NO MISSION INFORMATION
AVAILABLE.

Only mention is that the C&DH
subsystem used a PUC-class
microcontroller.

CP4 California Politechnic Institute Second flight unit of CP2, which
was destroyed during the previous
DNEPR launch

CP4 has been heard from
numerous ground stations,
but is not responding to
telecommands. Seems it
never reached full
functionality. It is no longer
operational

 PIC18LF6720 (Microchip)
16-bit microcontroller
1kB ROM
4kB RAM
128kB Flash
Operating at 4MHz

AeroCube-2 The Aerospace Corporation Similar to AeroCube-1, except
added charging system for the
Lithium batteries. Mission is to test
a communication system and the
system bus plus a suite of CMOS
cameras done by Harvey Mudd
College. The satellite has no
deployable. Instead an
omnidirectional patch antenna is
used.

Solar up-converter failed
shortly after launch.
Batteries dead.
Shortly after ejection,
AeroCube-2 also took a
picture of CP4

NO MISSION INFORMATION
AVAILABLE

117

CSTB-1 The Boeing Company Testbed for components for future
Boeing small-sat missions.
Redundant radios, deployable
antenna, various non-disclosed
sensors

NO MISSION INFORMATION AVAILABLE

CAPE-1 University of Louisiana Camera payload (not more
information could be sourced).

Has power system problems
and is semi-operational
(battery appears to be dead;
currently only operates in
the sun).
CW has been received by
several ground stations.
9600 bps TM packets have
not been received by any
station

NO MISSION INFORMATION
AVAILABLE

Libertad-1 University of Sergio Arboleda Camera and transmission of one
stanza of the Colombian national
anthem.
Note: Powered by primary batteries
only. They will last for about 52
days.
This is the first Colombian satellite

Last confirmed telemetry on
May 4th, 2007 (weak,
undecoded until May 7,
2007).
Designed with a 50 day
lifespan.

 Pumpkin Kit based on
MSP430F149 (T. I)
16-bit microcontroller
60KB+256B of Flash
2KB of RAM
Operates up to 10MHz

MAST Theters Unlimited Tether experiment (1 km
Hoytether). ~1 million USD for the
entire program

Only had contact to one of
the two modules. Tether
may have deployed "a little",
but definitely not fully.

 PIC 18F8720 (Microchip)
16-bit microcontroller
1KB of EEPROM
Up to 1MB of Flash
Operates up to 40MHz

CP3 California Polytechnic Institute Three-axis magnetorquer
experiment

Radio never established NO MISSION INFORMATION
AVAILABLE

CanX-2 University of Toronto Will test instrumentation for future
CanX missions including a
propulsion system, momentum
wheel, sun sensors, GPS receiver,
CMOS camera (star tracker), and a
new communication protocol.
Scientific instrumentation and goals
includes: Atmospheric
spectrometer, GPS occultation
experiment, and atomic oxygen
material degradation experiment

TM received 2 x ARM7 (Atmel)
32-bit microcontrollers
2MB of SRAM
16MB of Flash
Operates up to 15MHz

118

AAUsat-2 Alborg University Detect gamma ray bursts by a
gamma ray detector developed by
the Danish National Space Centre

The satellite is tumbling, at
one time up to 85 RPM, but
using the magnetorquers
the tumbling has been
reduced to 35 RPM.
The tumbling is making
communication a challenge,
they are currently using a 1
kW (yes, kilo watt) PA on
the ground station.
The satellite suffers from
spontaneous reboots every
1-4 hours (typically).
The payload has been
powered on briefly, but no
science data has been
downlinked.
They are in the process of
uploading new software to
the satellite.

 AT91SAM7A1 (Atmel)
32-bit microcontroller
4KB of RAM
External Bus Interface
Operates up to 40MHz

Compass One Fachhochschule Aachen Technology demonstration of a
miniature GPS receiver, and a
transceiver for fast RF
communication. A colour camera is
implemented for p/r purposes

Pictures (although
saturated) downlinked.
High speed telemetry (4800
MSK) confirmed working

 C8051F123 (Silicon Laboratory)
8448 Bytes of RAM
128KB of Flash
Operates up to 100MHz

SEEDS (2) Nihon University Rebuild of the SEEDS CubeSat
which was destroyed during June
26th, 2006 DNEPR launch failure.
Contains a gyro sensor for
accurate determination of attitude
motion

Nominal operations,
December 7th, 2008

NO MISSION INFORMATION
AVAILABLE

AeroCube-3 Aerospace Corporation New solar power subsystem to
replace the one failing on
AeroCube-2. Two foot diameter
semi-spherical (8-panel) balloon
that can serve as a de-orbit device
as well as a tracking aid. The
change in orbit life is estimated to
be from 1-3 years (depending on
atmosphere assumptions) without a
balloon to 2-3 months with the
balloon inflated.
A VGA-resolution camera pointing
in the direction of the balloon will
photograph its state of inflation.
200' tether attached to the upper
stage. AeroCube-3 will measure
the dynamics while at the end of
this tether. The tether will be cut
some time into the mission

To be determined NO MISSION INFORMATION
AVAILABLE

119

 Pumpkin Kit based on
MSP430F149 (T. I)
16-bit microcontroller
60KB+256B of Flash
2KB of RAM
Operates up to 10MHz

Hawksat-1 Hawk Institute of Space
Sciences

CubeSat platform demonstrator
mission

To be determined

Pharmasat-1 Santa Clara University Follow on from GeneSat-1, will
study the influence of microgravity
on yeast resistance to an antifungal
agent

To be determined NO MISSION INFORMATION
AVAILABLE

Polysat CP6 California Polytechnic Institute Test attitude determination and
control using magnetometers and
magnetorquers. Also has two
cameras and tether for deorbit
experiment

To be determined NO MISSION INFORMATION
AVAILABLE

KySat Couple of kentucky Universities Build technological interest in

students, much of the satellite is
based on commercially available
parts, including from the Pumpkin
CubeSat kit

Awaiting launch Pumpkin Kit based on
MSP430F149 (T. I)
16-bit microcontroller
60KB+256B of Flash
2KB of RAM
Operates up to 10MHz

AtmoCube university of Trieste Space weather monitoring.
Contains a (supposedly modified
for space use(?)) GPS receiver
(Trimble M-Loc MPM Module), a
radiation sensor, and a chip-based
magnetometer based on
magnetoresistance

Awaiting launch H8/38076R (Renesas)
16-bit microcontroller
48 KB ROM
2KB RAM
Operates up to 60MHz

e-st@r Polytechnico di Torino Demonstration of active 3-axis
attitude control system inertial
measurement unit.

Awaiting launch Pumpkin Kit based on
MSP430F149 (T. I)
16-bit microcontroller
60KB+256B of Flash
2KB of RAM
Operates up to 10MHz

Goliat university of Bucharest Imaging of the Earth surface using
digital camera and in-situ
measurements of radiation dose
and micrometeoroid flux (50x37
mm piezo-film).
Part of the system is based on the
Pumpkin CubeSat kit (2 pcs
MSP430)

Awaiting launch 2xMSP430
16-bit microcontroller
60KB+256B of Flash
2KB of RAM
Operates up to 10MHz

Oufti-1 University of Liege Test use of D-STAR amateur radio
digital communication protocol in
space

Awaiting launch Pumpkin Kit based on
MSP430F149 (T. I)
16-bit microcontroller
60KB+256B of Flash
2KB of RAM
Operates up to 10MHz

120

PW-Sat Warsaw Universty of Technology Test deployable atmospheric drag
de-orbiting device

Awaiting launch AT91SAM7X (Atmel)
16-bit microcontroller
8KB SRAM

Robusta University of Montpelier Test radiation effects on bipolar
transistors

Awaiting launch NO MISSION INFORMATION
AVAILABLE

SwissCube Polytechnical School of
Lausanne

Observe oxygen emission in order
to characterise the airglow intensity

Awaiting launch AT91M55800A (Atmel)
32-bit microcontroller
128KB SRAM
512KB Flash

UNICubeSat University of Rome Performing in-situ measurements
of atmospheric neutral density
using Broglio drag balance
instrument

Awaiting launch Pumpkin Kit based on
MSP430F149 (T. I)
16-bit microcontroller
60KB+256B of Flash
2KB of RAM
Operates up to 10MHz

XaTcobeo University of Vigo and INTA Demonstrate software-defined
radio and solar panel deployment

Awaiting launch Virtex-II FPGA

121

Appendix B: Calculations and simulations

(Overcurrent/voltage protection)

Simulations were conducted using Linear Technology Corporation’s simulation package,

LTSpice. From the available range of MAX4374 available, it was decided to go for the

mid-range which is the MAX4374F with a current-sense amplifier gain of 50V/V and a

maximum voltage drop of 300mV across Rୗୗ.

The first step in the overcurrent protecting circuit design using the MAX4374 is to give a

current limit to the load which in this case is the OBC. When operating at full power, the

microcontroller alone pulls a total of 400mA and assuming all other components average

a total of 100mA, this brings the total to:

 I୫ୟ୶ ൌ 400mA 100mA ൌ 500mA (1)

With the maximum voltage drop Vୖୗୗ_ୟ୶ being 300mV, choosing a value of 0.100Ω

for Rୗୗ shall result in

Vୖୱୣ୬ୱୣ౮
ൌ I୫ୟ୶ ൈ Rୗୗ

																				ൌ 0.500 ൈ 0.100

 						ൌ 0.05V (2)

As mentioned previously, the MAX4374F was selected. With a voltage gain of 50V/V, the

output to the current sense amplifier with Vୖୗୗ౮
 being the differential input voltage is

given by

V୳୲ ൌ Vୖୗୗ౮
ൈ 50

 								ൌ 0.05 ൈ 50

 								ൌ 2.5V (3)

From equation (3), it is possible to determine the values of the voltage divider resistors

Rଵ and Rଶ necessary to give an input voltage value of 0.6V at C୍ଵ. This is done by

choosing an arbitrary value for Rଶ, say 220Ω, and then calculating the value of Rଵ.

122

C୍ଵ ൌ ܸ୳୲ ൬
Rଶ

Rଵ Rଶ
൰

 0.6 ൌ 2.5 ቀ
ଶଶ

ୖభାଶଶ
ቁ

 Rଵ 220 ൌ
ହହ

.

	Rଵ ൌ 916.67 െ 220

 ൌ 696.67Ω (4)

This value can be practically implemented with a 680Ω resistor in series with a 15Ω

resistor. These are main components necessary for the simulation.

The state of the output Cை் is determined by the comparison between C୍ଵ and the

internally generated reference of 0.6V. C is an open collector output and necessitates

a pull-up resistor. The state of C varies according to table B.1. This signal is used to

drive the n-channel MOSFET which is placed on the distribution line and which opens or

closes the circuit depending on the value of the current being drawn.

Table B.1. Voltage levels at Cin1 and Cout after RESET

Overload V-Load-after
RESET

CIN1-after RESET COUT-after RESET

Low High ↑ > 0.6V Low

High Low ↓ < 0.6V High

The short circuit condition will need to be simulated by means of two load resistors

representing, respectively, the OBC’s input impedance and the overload (short-circuit)

condition. In order to make the overall current drawn by the OBC equal to 400mA which

does not exceed the limit of 500mA, the total input impedance of the OBC, Rௗ ,was

given a value of

Rௗ ൌ
ௌܸ௨௬

ܣ400݉

 ൌ
ଷ.ଷ

ସ

 	ൌ 7.33Ω (5)

123

The short circuit condition which occurs when ܫெ௫ exceeds 500mA can be reached by

adding a resistor in parallel with Rௗ, making the overall resistance smaller and the

current being drawn bigger. A value of 2.2Ω was chosen (R7) and a P-channel MOSFET

was placed in series with a randomly generated pulse at the gate and the overload

resistor at the drain, overloading the OBC at different intervals.

The resulting circuit schematic is shown in Figure A.1. An active low signal is necessary

at the Reset input in order to pull Cை் to a low state and re-activate the distribution line

via n-channel MOSFET M5. The resulting waveforms are shown in Figure A.2 where

each signal is represented by a different colour as a result of probes being placed at

specific points during the run of the simulation.

It can be observed that for each time interval where the overload (navy blue mark) is in a

high state (active), the value at CIN1 (red mark) drop to a level below 0.6V which

represents the threshold value of the comparator. At this point, Vload (green mark) which

represent the line voltage, will toggle its state from high to low. This will remain the case

until a high pulse on the RESET input (purple mark) is observed. When this pulse occurs,

the line voltage is restored and the comparator value at CIN1 (red mark) will rise back to

0.6V.

Figure B.1. Simulated overcurrent protection schematic

124

Figure B.2. Overcurrent protection simulation results waveforms

125

Appendix C: Datasheet Information
C.1.	 MCP9800	Temperature	sensor	

126

127

128

129

130

131

	

132

C.2.	 MAX3232

133

134

	

135

C.3.	 AT91SAM3U4E	PIO	Controllers	tables	

136

137

138

Appendix D: OBC Printed Circuit Board

Figure D.1: OBC Top Layer (Altium designer)

139

Figure D.2: OBC Bottom Layer (Altium designer)

140

Figure D.3: OBC Top Silkscreen Overlay (Altium designer)

141

Figure D.4: OBC Top Silkscreen Overlay (Altium designer)

142

Figure D.5: Top view picture of the OBC

Power system block

JTAG PWR & RESET Jumpers

MCP9800 Temp

BCKUP Battery holder

USB port

Cortex M3

3 x Max 232 (UART)

143

Figure D.6: Bottom view picture of the OBC

SD Card holder

144

Appendix E: Circuits Schematics

145

146

147

148

149

150

151

Appendix F: Test Programs source codes
1. Blink program and UART communication
//CPUT 2011
//Tony Lumbwe
//204131316
//
/*

 Blink and UART communication program V1.0 (Source file)

*/
//--
// IAR EWARM Toolchain
//--
// Headers
//--

#include <board.h>
#include <pio/pio.h>
#include <pio/pio_it.h>
#if defined(AT91C_BASE_PITC)
#include <pit/pit.h>
#endif
#include <irq/irq.h>
#include <tc/tc.h>
#include <utility/led.h>
#include <utility/trace.h>
#include <stdio.h>
#if defined(cortexm3)
#include <systick/systick.h>
#endif

//--
// Local variables
//--

/// Indicates the current state (on or off) for each LED.
volatile unsigned char pLedStates[2] = {1, 1};

/// Global timestamp in milliseconds since start of application.
volatile unsigned int timestamp = 0;

//--
// Local functions
//--
//--
/// Configures LEDs \#1 and \#2 (cleared by default).
//--
void ConfigureLeds(void)
{
 LED_Configure(0);
 LED_Configure(1);
}

//--
/// Interrupt handler for TC0 interrupt. Toggles the state of LED\#2.
//--
void TC0_IrqHandler(void)
{
 volatile unsigned int dummy;
 // Clear status bit to acknowledge interrupt
 dummy = AT91C_BASE_TC0->TC_SR;

 // Toggle LED state
 LED_Toggle(1);

152

 LED_Toggle(0);
 printf("2");
}

//--
/// Configure Timer Counter 0 to generate an interrupt every 250ms.
//--
void ConfigureTc(void)
{
 unsigned int div;
 unsigned int tcclks;

 // Enable peripheral clock
 AT91C_BASE_PMC->PMC_PCER = 1 << AT91C_ID_TC0;

 // Configure TC for a 4Hz frequency and trigger on RC compare

 TC_FindMckDivisor(8, BOARD_MCK, &div, &tcclks);
 TC_Configure(AT91C_BASE_TC0, tcclks | AT91C_TC_CPCTRG);
 AT91C_BASE_TC0->TC_RC = (BOARD_MCK / div) / 1; // timerFreq / desiredFreq

 // Configure and enable interrupt on RC compare
 IRQ_ConfigureIT(AT91C_ID_TC0, 0, TC0_IrqHandler);
 AT91C_BASE_TC0->TC_IER = AT91C_TC_CPCS;
 IRQ_EnableIT(AT91C_ID_TC0);

 // Start the counter if LED is enabled.
 if (pLedStates[0])
 {

 TC_Start(AT91C_BASE_TC0);
 }
}

//--
// Exported functions
//--

//--
/// Application entry point. Configures the DBGU, PIT for SAM7 & SAM9
/// microcontrollers, UART and System tick for SAM3 microcontrollers.
/// Configures TC0 and LED to loop infinitely.
//--
int main(void)
{
 // UART configuration
 TRACE_CONFIGURE(DBGU_STANDARD, 115200, BOARD_MCK);
 printf("-- Getting Started Project %s --\n\r", SOFTPACK_VERSION);
 printf("-- %s\n\r", BOARD_NAME);
 printf("-- Compiled: %s %s --\n\r", __DATE__, __TIME__);

 ConfigureTc();
 ConfigureLeds();

 // Main loop
 while (1)
 {

 }
}

2. 10-bit and 12-bit ADC
//CPUT 2011
//Tony Lumbwe
//204131316
//
/*

153

 10-bit and 12-bit ADC program V1.0 (Source file)

*/
//--
// IAR EWARM Toolchain
//--
// Headers
//--

//Headers
//-------

#include <board.h>
#include <pio/pio.h>
#include <dbgu/dbgu.h>
#include <irq/irq.h>
#include <utility/led.h>
#include<utility/trace.h>
#include <adc/adc12.h>
#include <adc/adc.h>
#include <stdio.h>

//Local definitions
//-----------------
#define esc 27
#define cls printf("%c[2J",esc)
#define pos(row,col) printf("%c[%d;%dH",esc,row,col)

#define BOARD_ADC_FREQ 6000000 //5MHz ADC Frequency
#define ADC_VREF 3300 //3.3*1000

typedef struct _GainMap

{
 unsigned int diffmode;
 char *gainstring[4];
}GainMap;

//Local variables
//-----------------

//PIOs to configure.

#ifdef PINS_ADC
 static const Pin pinsADC[] = {PINS_ADC}; //implement all ADC pins in a array representing
each channel
#endif

 //Remap SAM3U4 adc 10 bit to be compatible with definition name of others

#undef AT91C_ID_ADC //undefine 10-bit ADC controller
#define AT91C_ID_ADC AT91C_ID_ADC12B //use ID name of 12-bit controller for 10-bit controller
#define AT91C_BASE_ADC AT91C_BASE_ADC12B //Use same base address for both ADC10 and ADC12-bit

//indication that the conversion is finished.

static volatile unsigned char conversiondone;

#define ADC1 ADC12_CHANNEL_2
#define ADC2 ADC12_CHANNEL_3
#define ADC3 ADC12_CHANNEL_6
#define ADC4 ADC12_CHANNEL_7

static unsigned int channels[] = {ADC1, ADC2, ADC3, ADC4};

154

//Local functions
//-----------------
//Converting a digital value in milivolts
//***************************************

static unsigned int convertHex2mv(unsigned int valuetoconvert)
{
 unsigned int mask;
#if defined(at91sam3u4)
 mask = 0xFFF;
#else
 mask = 0xFF;
#endif
 return ((ADC_VREF * valuetoconvert)/mask);

}

//Interupt handler for ADC. Signals that the conversion has been done by setting
//a flag variable.
//**
void ADCC0_IrqHandler (void)
{
 unsigned int status, i=1;

 status = ADC12_GetStatus(AT91C_BASE_ADC);

 TRACE_DEBUG("status =0x%X\n\r", status);

 if (ADC12_IsChannelInterruptStatusSet(status, channels[i]))

 {

 TRACE_DEBUG("channel %d\n\r", channels[i]);

 ADC12_DisableIt(AT91C_BASE_ADC, 1<<channels[i]);//disable EOCx interrupt

 conversiondone |= 1<<channels[i];
 }

}

//Configuration Menu for ADC
//**************************

static void ShowADC12ConfigMenu()
{
 unsigned int adc_acr;
 unsigned int gain, currentcontrol, diffmode, offset;

 GainMap gainmap [2]={{0,"1","1","2","4"},{1,"0.5","1","2","2"}};

 char *inputmode [2]= {"Single Ended","Full Differential"};

 //GainMap

 adc_acr = ADC12_GetAnalogCtrlReg(AT91C_BASE_ADC);
 gain = adc_acr & 0x3;
 currentcontrol = (adc_acr & 0x3)>>6 ;
 diffmode = (adc_acr & 0x10000) >>16;
 offset = (adc_acr & 0x20000) >>17;

printf("\n\r***********ADC 12 bit configuration Menu***************");
printf("\n\r g--Configure 12 bit ADC gain");
printf("\n\r c--Configure 12 bit ADC bias current");
printf("\n\r d--Configure 12 bit ADC Differential mode");
printf("\n\r o--Configure 12 bit ADC Offset");
printf("\n\r m--Show this menu again!\n\r");

155

 printf("\n\r\r Current settings:\n\r [GAIN:%u, gain = %s], [IBCTL: %u], [DIFF: %u, %s],
[OFFSET: %u]\n\r", \
 gain, gainmap[diffmode].gainstring[gain], currentcontrol, diffmode, inputmode[diffmode],
offset);
 printf("\n\rPlease enter a key to configure the ADC or any other key \r\n \
 to perform a measurement with current settings.");

}

//Global functions
//-----------------

//***
//Performing measurement on ADC channel 0 and display results on UART
//***

int main (void)

{
 unsigned int id_channel, advalue;
 char key;

 TRACE_CONFIGURE(DBGU_STANDARD, 115200, BOARD_MCK); //Initializing the standard UART
 //port with 11520 baudrate and using the
board's masterclock frequency of 48MHz

#ifdef PINS_ADC
 PIO_Configure(pinsADC, PIO_LISTSIZE(pinsADC)); //Configuring the list of pin
instances defined by pinsADC and of size determined by PIO_LISTSIZE)
#endif

//Initialize the ADC with software trigger mode, sleep mode, 12 bits resolution,
//48MHz frequency(MCK), ADC frequency, 10us startup time and 1.2us sample and hold time.
ADC12_Initialize(AT91C_BASE_ADC,
 AT91C_ID_ADC, AT91C_ADC12B_MR_TRGEN_DIS,
 0,AT91C_ADC12B_MR_SLEEP_NORMAL,
 AT91C_ADC12B_MR_LOWRES_12_BIT,
 BOARD_MCK,BOARD_ADC_FREQ, 10, 1200);

//Enable ADC channels to be used

ADC12_EnableChannel(AT91C_BASE_ADC, ADC1);
ADC12_EnableChannel(AT91C_BASE_ADC, ADC2);
ADC12_EnableChannel(AT91C_BASE_ADC, ADC3);
ADC12_EnableChannel(AT91C_BASE_ADC, ADC4);

//Configure NVIC interrupt for ADC
IRQ_ConfigureIT(AT91C_ID_ADC, 0, ADCC0_IrqHandler);
//Enable given interrupt source address
IRQ_EnableIT(AT91C_ID_ADC);

//Show ADC Menu

ShowADC12ConfigMenu();

//Infinite loop

 while (1)
 {

 //wait for user input
 key = DBGU_GetChar();

 //set Gain
 if(key == 'g' || key =='G')

156

 {
 cls;
 printf("\n\r************Select Gain option to set GAIN<0:1>**************");
 printf("\n\r 1-- 00b [Single Ended Mode: gain =1, Full Differential Mode: gain =0.5]");
 printf("\n\r 2-- 01b [Single Ended Mode: gain =1, Full Differential Mode: gain =1]");
 printf("\n\r 3-- 10b [Single Ended Mode: gain =2, Full Differential Mode: gain =2]");
 printf("\n\r 4-- 11b [Single Ended Mode: gain =4, Full Differential Mode: gain =2]");

 key == DBGU_GetChar();

 unsigned int gain = 0xff;
 switch (key)

 {
 case '1':
 gain = 0;
 break;

 case '2':
 gain = 0x1;
 break;

 case '3':
 gain = 0x2;
 break;

 case '4':
 gain = 0x3;
 break;

 default:
 printf("\n\r Wrong selection!\n\r");
 break;

 }

 if (gain!=0xff)
 {
 //change Gain field of ADC_ACR of ADC 12 bit
 gain |= (((unsigned int)ADC12_GetAnalogCtrlReg(AT91C_BASE_ADC))& 0x300c0);
 ADC12_CfgAnalogCtrlReg(AT91C_BASE_ADC, gain);

 }

 ShowADC12ConfigMenu();
 continue;

 }
 //Show menu

 if (key == 'm' || key == 'M')
 {
 ShowADC12ConfigMenu();
 continue;

 }

 //set offset

 if (key == 'o'|| key == 'O')
 {
 printf("\n\r************Select input Offset option to set Offset bit field**************");
 printf("\n\r 1-- 0 [DIFF:0, Vrefin/4][DIFF:1, Vrefin/2]");
 printf("\n\r 2-- 1 [Vrefin/2]");
 printf("\n\r ");

 key = DBGU_GetChar();

157

 unsigned int offset = 0xff;
 switch(key)
 {
 case '1':
 offset = 0;
 break;

 case '2':
 offset = 0x20000;
 break;

 default :
 printf("\n\r Wrong selection!\n\r");
 break;

 }
 if (offset !=0xff)
 {
 //Change GAIN field of ADC_ACR of ADC 12bit
 offset |= (((unsigned int) ADC12_GetAnalogCtrlReg(AT91C_BASE_ADC)) &0x100c3);
 ADC12_CfgAnalogCtrlReg(AT91C_BASE_ADC, offset);

 }

 ShowADC12ConfigMenu();
 continue;

 }

 conversiondone = 0;

 ADC12_EnableIt(AT91C_BASE_ADC, 1<<ADC2);

 //Start measurement
 while (1)
 {

ADC12_StartConversion(AT91C_BASE_ADC); //Function to start ADC conversion process
 while (conversiondone != ((1<<ADC2)));
 id_channel = 1;

printf("%c[2J",27);
advalue = ADC12_GetConvertedData(AT91C_BASE_ADC, channels [id_channel]); //Returns the
converted channel's data and assign its value to advalue

printf("\n\rChannel %u : %u mV", id_channel, convertHex2mv(advalue));

 }
 }
}

3. PWM

//CPUT 2011
//Tony Lumbwe
//204131316
//
/*

 PWM program V1.0 (Source file)

*/
//--

158

// IAR EWARM Toolchain
//--
//--
// Headers
//--

#include <board.h>
#include <pio/pio.h>
#include <irq/irq.h>
#include <dbgu/dbgu.h>
#include <pwmc/pwmc2.h>
#include <utility/trace.h>

#include <stdio.h>

//--
// Local definitions
//--

/// PWM frequency in Hz.
#define PWM_FREQUENCY 1000

/// Maximum duty cycle value.
#define MAX_DUTY_CYCLE 90
#define MIN_DUTY_CYCLE 0

/// Duty cycle buffer length for three channels
#define DUTY_BUFFER_LENGTH (MAX_DUTY_CYCLE - MIN_DUTY_CYCLE)

//--
// Local variables
//--

/// Pio pins to configure.
static const Pin pins[] = {
 PINS_DBGU,
 PIN_PWM_LED0,
 PIN_PWM_LED1,
 PIN_PWM_LED2,
 PIN_PWMC_PWML0,
 PIN_PWMC_PWML1,
 PIN_PWMC_PWML2
};

/// duty cycle buffer for PDC transfer
unsigned short dutyBuffer[DUTY_BUFFER_LENGTH];

//--
// Local functions
//--

//--
/// Interrupt handler for the PWM controller.
//--
void PWM_IrqHandler(void)
{
 unsigned int isr2 = AT91C_BASE_PWMC->PWMC_ISR2;

 if ((isr2 & AT91C_PWMC_ENDTX) == AT91C_PWMC_ENDTX)

 {
 PWMC_WriteBuffer(AT91C_BASE_PWMC, dutyBuffer, DUTY_BUFFER_LENGTH);
 }
}

//--
// Global functions
//--

//--
/// Outputs a PWM on LED1to makes it fade in repeatedly.

159

/// Channel #0 is configured to have a source clock, a period and an alignment and
/// The update of the duty cycle values is made
/// automatically by the Peripheral DMA Controller (PDC).
//--
int main(void)
{
 unsigned int i;

 PIO_Configure(pins, PIO_LISTSIZE(pins));

// Enable PWMC peripheral clock
 AT91C_BASE_PMC->PMC_PCER = 1 << AT91C_ID_PWMC;

// Set clock A to run at PWM_FREQUENCY * MAX_DUTY_CYCLE (clock B is not used)
 PWMC_ConfigureClocks(PWM_FREQUENCY * MAX_DUTY_CYCLE, 0, BOARD_MCK); // Configures PWM clocks
A to run at the given frequencies. This function
 // finds the best MCK
divisor and prescaler values automatically.

// Configure PWMC channel for LED0 (left-aligned, enable dead time generator)
 PWMC_ConfigureChannelExt(CHANNEL_PWM_LED0, AT91C_PWMC_CPRE_MCKA, 0, 0, 0, AT91C_PWMC_DTE, 0,
0);
 PWMC_SetPeriod(CHANNEL_PWM_LED0, MAX_DUTY_CYCLE);
 PWMC_SetDutyCycle(CHANNEL_PWM_LED0, MIN_DUTY_CYCLE);
 PWMC_SetDeadTime(CHANNEL_PWM_LED0, 5, 5);

// Set channel #0, #1 and #2 as synchronous channels, update mode = 2
 PWMC_ConfigureSyncChannel(AT91C_PWMC_SYNC0 , AT91C_PWMC_UPDM_MODE2, 0, 0); //
|AT91C_PWMC_SYNC1| AT91C_PWMC_SYNC2

// Set Synchronous channel update period value
 PWMC_SetSyncChannelUpdatePeriod(AT91C_PWMC_UPVUPDAL);

// Configure interrupt for PDC transfer
 IRQ_ConfigureIT(AT91C_ID_PWMC, 0, PWM_IrqHandler);
 IRQ_EnableIT(AT91C_ID_PWMC);
 PWMC_EnableIt(0, AT91C_PWMC_ENDTX);

// Enable syncronous channels by enable channel #0
 PWMC_EnableChannel(CHANNEL_PWM_LED0);

// Fill duty cycle buffer for channel #1, duty cycle from MIN_DUTY_CYCLE to MAX_DUTY_CYCLE
 for (i = 0; i < DUTY_BUFFER_LENGTH/3; i++)

 {
 dutyBuffer[i] = (i + MIN_DUTY_CYCLE);
 }

 // Start PDC transfer
 PWMC_WriteBuffer(AT91C_BASE_PWMC, dutyBuffer, DUTY_BUFFER_LENGTH);

///---
///Infinite loop
///---

while (1)
 {

 }

}

160

4.TWI
//CPUT 2011
//Tony Lumbwe
//204131316
//
/*

 TWI temp sensor program V1.0 (Source file)

*/
//--
// IAR EWARM Toolchain
//--
// Headers
//--

#include <board.h> //defines interfaces and PIOs characteristics (-frequency,
/// -portable PIOs definitions etc...)
#include <pio/pio.h> //Provides API for PIO configuration and usage of user
/// controlled pins.
#include <irq/irq.h> //Configure an interrupt in the NVIC
#include <dbgu/dbgu.h> // This module provides definitions and functions for using
the Debug Unit
// (DBGU).
#include <twi/twi.h> // Interface for configuration the Two Wire Interface (TWI)
peripheral.
#include <utility/math.h> //maths functions exported

#include <utility/assert.h>

#include <utility/trace.h> // Standard output methods for reporting debug information,
warnings and
 // errors, which can be easily be turned on/off.
#include <drivers/async/async.h> // Asynchronous transfer descriptor.
#include <drivers/twi/twid.h> //

#include <stdio.h> //Standard Input and Output header
#include <string.h> //string.h is the header in the C standard library for the
C programming
// language which contains macro definitions, constants, and
declarations
// of functions and types used not only for string handling
but also various
// memory handling functions; the name is thus something of
a misnomer.

//--
// Local definitions
//--

/// TWI clock frequency in Hz.

#define TWCK 100000
///TWI0 ID
#define TWI_TEMP_ID AT91C_ID_TWI0
#define INVALID_TEMP (-110)

/// Slave address of Temperature Sensor.
#define MCP9800_ADDRESS 0x48
/// Internal register within MCP9800
//00 = Temperature register (TA)
//01 = Configuration register (CONFIG)
//10 = Temperature Hysteresis register (THYST)
//11 = Temperature Limit-set register (TSET)

#define TEMP_REG 0x0
#define CONF_REG 0x1
#define HYST_REG 0x2

161

#define LIMT_REG 0x3

typedef struct
{
 unsigned char bOneShot;
 unsigned char bRes;
 unsigned char bFaultQueue;
 unsigned char bAlrtPol;
 unsigned char bMode;
 unsigned char bShutdown;
}Confg_Reg;

//--
// Local variables
//--

/// Pio pins to configure.
static const Pin pins_twi_temp[] = {PINS_TWI0};
/// TWI driver instance.
static Twid twid; //TWI driver structure. Holds the internal state of the driver
/// constant represent float value
const char* sixteenths[]={
"0","0625","125","1875","25","3125","375","4375","5","5625","625","6875","75","8125","875","9375"
};

//**
// Local functions
//**

//--
/// Get the real temperature code regardless of different adc resolutions
//--

short GetRealTemp(unsigned short reg_value,unsigned char res)
{
 if(8 < res && 13 > res) //since the sensor only works within limits of 9 to 12-bit,
resolution
// needs to be set in between these values.
 {
 return (reg_value>>(16-res)); //Shift right the reg_value to return the real temperature code

 }
 return INVALID_TEMP;
}
//--
/// Fill the register value into specific structure
//MCP9800 configuration register:8bits
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//bit 7 ONE-SHOT bits
//bit 5-6 ¦²¦¤ ADC RESOLUTION bit
//bit 3-4 FAULT QUEUE bit
//bit 2 ALERT POLARITY bit
//bit 1 COMP/INT bit
//bit 0 SHUTDOWN bit
//
//--

void FillConfigReg(unsigned char reg_value,Confg_Reg *conf)
{
 unsigned char res_array[]={9,10,11,12};
 unsigned char fault_queue_array[]={1,2,4,6};
 unsigned char temp;
 temp = ((reg_value>>7)&0x1);
 conf->bOneShot = temp;

 temp = ((reg_value>>5)&0x3);
 conf->bRes = res_array[temp];

162

 temp = ((reg_value>>3)&0x3);
 conf->bFaultQueue = fault_queue_array[temp];

 temp = ((reg_value>>2)&0x1);
 conf->bAlrtPol = temp;

 temp = ((reg_value>>1)&0x1);
 conf->bMode = temp;
 conf->bShutdown = (reg_value&0x1);

}

//--
/// Main function
//--
int main()
{
 unsigned char Tdata[2];
 short temp;
 Confg_Reg confg;

 PIO_Configure(pins_twi_temp, PIO_LISTSIZE(pins_twi_temp));
 TRACE_CONFIGURE(DBGU_STANDARD, 115200, BOARD_MCK);
 printf("%c[2J",27);
 printf("\n\r****************TWI temperature sensor***************");
 printf("\n\n\n");
 printf("\r Ambient temperature is:\n ");

 // Configure TWI
 AT91C_BASE_PMC->PMC_PCER = 1 << TWI_TEMP_ID;//AT91C_ID_TWI0;
 TWI_ConfigureMaster(AT91C_BASE_TWI0, TWCK, BOARD_MCK);
 TWID_Initialize(&twid, AT91C_BASE_TWI0); // Initializes a TWI driver instance, using the
given TWI peripheral. The
 // peripheral must have been initialized properly
before calling this function.
 /// \param pTwid Pointer to the Twid instance to
initialize.
 /// \param pTwi Pointer to the TWI peripheral to
use.
 while(1)
 {

 char index;
 short integer;
 TWID_Read(&twid, MCP9800_ADDRESS, CONF_REG, 0x01, Tdata, 0x01, 0);
 FillConfigReg(Tdata[0],&confg);
 TWID_Read(&twid, MCP9800_ADDRESS, TEMP_REG, 0x01, Tdata, 0x02, 0);
 temp = ((Tdata[0]<<8)|(Tdata[1]));
 temp = GetRealTemp(temp,confg.bRes);
 index = temp%(2<<(confg.bRes-8-1));
 index = index <<(4-(confg.bRes-8));
 integer = temp/(2<<(confg.bRes-8-1));
 printf("\r\t\t\t%d.%s C\r",integer,sixteenths[index]);

 }
}

