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ABSTRACT 
 
 

Over the past decade, the satellite industry has witnessed the birth and evolution of the 

CubeSat standard, not only as a technology demonstrator tool but also as a human capacity 

development platform in universities. The use of commercial off the shelf (COTS) hardware 

components makes the CubeSat a cost effective and ideal solution to gain access to space in 

terms of budget and integration time for experimental science payloads.  

Satellite operations are autonomous and are essentially based on the interaction of 

interconnected electronic subsystems exchanging data according to the mission requirements 

and objectives. The onboard computer (OBC) subsystem is developed around a microcontroller 

and plays an essential role in this exchange process as it performs all the computing tasks and 

organises the collection of onboard housekeeping and payload data before downlink during an 

overpass above the ground station.  

The thesis here presented describes the process involved in the development, design and 

implementation of a prototype OBC for a CubeSat. An investigation covering previously 

developed CubeSat OBCs is conducted with emphasis on the characteristics and features of 

the microcontroller to be used in the design and implementation phases. A set of hardware 

requirements are defined and according to the current evolution on the microcontroller market, 

preference is given to the 32-bit core architecture over both its 8-bit and 16-bit counterparts. 

Following a well defined selection process, Atmel’s AT91SAM3U4E microcontroller which 

implements a 32-bit Cortex-M3 core is chosen and an OBC architecture is developed around it.  

Further, the proposed architecture is implemented as a prototype on a printed circuit board 

(PCB), presenting a set of peripherals necessary for the operation of the OBC. Finally, a series 

of tests successfully conducted on some of the peripherals are used to evaluate the proposed 

architecture.  
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CHAPTER ONE 

INTRODUCTION 

 

1.1. Overview 

The trend presented by the exploration and utilisation of space is growing on a daily 

basis and the interest around it has given room for numerous useful applications such as 

remote sensing1, global positioning system2 (GPS) and relay telecommunication3. These 

applications require carefully planned space missions that are often very expensive and 

take years to develop. Satellites that carry out these missions must operate 

autonomously for the largest part of their service life, occasionally receiving commands 

from the ground operator.  

Satellite operations are essentially based on subsystems interacting with one another 

and exchanging data according to the mission requirements and objectives. Virtually all 

satellites require an onboard computer (OBC) to manage autonomous operations of the 

satellite and to interact with the ground operators. The study here presented focuses on 

the design and development of the OBC subsystem for a CubeSat.  

 

This introductory chapter covers all relevant background topics relating to the CubeSat 

programme and focuses on the CubeSat subsystem architecture, particularly on the 

OBC, listing its functions and requirements. Also highlighted are the research objectives 

and the motivation towards this study. Finally, the methodology, the research delineation 

and the thesis outline are covered. 

1.2. Background 

The rapid advancement of space technology could not pass unnoticed over the recent 

years and in this regard, academic institutions across the world have grown interest in 

space science. More focus and attention were specifically given to the CubeSat platform 

which was developed and proposed in 1999 by the California Polytechnic State 

                                                 
1See for example http://ciesin.columbia.edu/TG/RS/RS-home.html 
2See for example http://hyperphysics.phy-astr.gsu.edu/hbase/gps.html 
3See for example http://www.satellites.spacesim.org/english/function/communic/index.html 
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University (CalPoly) and the Stanford University (Heidt et al., 2000). A CubeSat is a 

cubic satellite of dimensions 10 cm x 10 cm x 10 cm (also referred to as 1U) which can 

be expanded according to given mission specifications and payloads (Lee et al., 2005:8).  

 

In 2009, the Cape Peninsula University of Technology (CPUT) initiated a programme in 

Space Science and Technology under the auspices of the French South African Institute 

of Technology (F’SATI). The primary focus of this programme is human capacity 

development in science and engineering in order to support the national space agenda 

(DefenceWeb, 2012). A group of CPUT postgraduate students under the leadership of 

several academics and specialists from industry developed the first South African 

CubeSat codenamed ZACUBE-1, set to be launched in 2013. Two major payloads are 

accommodated on ZACUBE-1, namely a matrix imager and a high frequency (HF) 

beacon transmitter (South Africa. Department of Science and Technology, 2010: 3-4).  

 

CubeSats comprise of several subsystems, each performing a dedicated task. According 

to Gildeh’s (2003) representation of the CubeSat internal organisation, subsystems 

normally include the following:  

 

 An electrical power system (EPS) supplied by solar panels; 

 A payload (e.g. beacon transmitter or camera) with its control unit; 

 An attitude determination and control system (ADCS); 

 A radio frequency (RF) communication subsystem; 

 A memory module generally associated with the OBC and  

 An OBC which enables the communication between the different subsystems. 

With the high price associated with space grade (class S) and radiation hardened 

components required for building satellites, it is prohibitively expensive for educational 

institutions to build traditional spacecrafts. CubeSats were conceived to make access to 

space more affordable by making use of commercial-off-the-shelf (COTS) components.  

 

ZACUBE-1’s OBC is based on the FM430 CubeSat Kit from Pumpkin®. This is a ready 

to fly kit comprising of a development board, an aluminium skeleton chassis and a 

pluggable processor module (PPM) based OBC to which additional subsystems 

designed in-house are stacked on top of each other (Pumpkin Inc., 2008).  
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The OBC is considered the brain of the CubeSat and essentially consists of a 

microcontroller connected to subsystems through a serial data bus and additional 

peripheral hardware. A real time operating system (RTOS) managing all the software 

applications runs on the microcontroller and constitutes the CubeSat’s flight software 

(FSW). The surface area of the solar panels is proportional to the CubeSat’s size. This 

constraint makes the available onboard power a scarce resource and requires that the 

microcontroller primarily has low average power consumption and at the same time 

possesses enough processing power to handle all data transfers according to the 

mission requirements.  

 

The major functions of the OBC are as follows (Wells et al., 2003): 

 Recording and storage of telemetry and satellite payload data for transmission to the 

ground station for analysis; 

 Encoding and decoding of data packets to and from the ground station; 

 Processing of telecommands from the ground station, including time delay 

commands received on the uplink channel; 

 Monitoring of subsystems, implementing watchdog functions and resetting certain 

critical subsystems if necessary.  

 
In some cases, power supply management (checking battery level and shutting down 

subsystems when necessary) is attributed to the OBC but generally this is done by an 

independent power management system in conjunction with the EPS subsystem 

(Hidayat, 2010). 

1.3. Research focus and motivation 

The satellite programme at F’SATI is focused on growing human capacity and expertise 

within the South African space domain. Future strategies include the development and 

launch of a CubeSat constellation to be used in specialised applications such as disaster 

management. To achieve this, research and development of in-house software and 

hardware components, such as the OBC, is essential. The choice of the CubeSat Kit 

from Pumpkin® for ZACUBE-1 CubeSat mission was highly motivated by the time frame 
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restriction since the engineering model had to be unveiled at the International 

Astronautical Congress (IAC) held in October 2011 in Cape Town, South Africa.  

 

The OBC included in the CubeSat Kit is useful for its flexibility (different processors are 

available as PPMs). It has also accumulated space heritage in low earth orbit (LEO) 

CubeSat missions such as Delfi-C34, Libertad-15 and RAX6, among others (Pumpkin, 

2010). The microcontroller used for these missions as well as for the ZACUBE-1 mission 

was Texas Instruments’ MSP430. This microcontroller is known to combine high 

performance with low power consumption, making it the ideal choice for developing 

embedded systems where power consumption has to be kept at a minimum as is the 

case for a CubeSat’s OBC (Albus et al., 2009). Pumpkin’s Salvo RTOS was selected as 

the operating system for ZACUBE-1 and is the uniform platform for upcoming F’SATI 

CubeSat missions.  

 

In order to make future F’SATI CubeSat missions independent of limitations presented 

by development kits in terms of performance, peripherals, data buses and instruction 

size, a microcontroller core architecture needs to be investigated for the development of 

an in-house OBC. A significant evolvement has occurred in the microcontroller market 

and the migration from 8 and 16-bit core to 32-bit core architectures is common in 

embedded electronic designs. The trend towards the 32-bit core architecture is driven by 

the addition of several interfaces and features associated with the need to deliver more 

processing power for better value for money and flexibility in code re-use across projects 

using high level languages that lacked in its predecessors (Povey, 2008). 

 

The designer wishing to develop an OBC is spoilt for choice with the wide variety of 32-

bit microcontrollers available on the market. Hence, an adequate selection process has 

to be conducted according to a set of requirements and specifications prior to the design. 

 

In addition to the selection process, the design and development of a working OBC 

prototype around the selected microcontroller on a printed circuit board (PCB) 

conforming to the CubeSat physical standards constitutes a challenge.  Furthermore, 

                                                 
4See http://www.delfic3.nl/ 
5See http://www.usergioarboleda.edu.co/proyecto_espacial/  
6See http://rax.engin.umich.edu/ 
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peripherals of the developed OBC should be tested for functionality in order to evaluate 

the prototype.  

1.4. Objectives of the research 

The primary objective of this research is to design and develop a prototype OBC 

subsystem for CubeSat applications, based on a selected microcontroller architecture.  

 

In order to achieve this, two milestones have to be reached chronologically, which can 

also be identified as secondary objectives of this research: 

 

 Defining a set of requirements and specifications for the OBC subsystem which will 

lead to the selection of the microcontroller to be used for the design of the 

architecture. 

 Designing, implementing and testing the OBC architecture around the chosen 

microcontroller according to the specifications defined in the first phase.  

 

Additional circuitry should be accommodated alongside the microcontroller for peripheral 

support and a PC/104 format PCB of the final OBC architecture should be designed, 

populated and functionally tested. 

 

With the main research objective mentioned, the following research questions were 

significant to pose: 

 Today’s microcontroller market provides three major ranges to choose from 

according to the instruction, data and bus sizes, notably 8, 16 and 32-bit. For the 

purpose of developing a CubeSat OBC, which option should be considered the best 

and why? 

 What requirements and specifications can be considered ideal for a particular 

microcontroller when compared to others in its range in order to develop the OBC 

around it? 

 What major improvements will the proposed OBC architecture bring compared to 

previously designed OBCs? 
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1.5. Significance and contribution 

Satellite engineering is currently emerging in South Africa and the CubeSat platform is 

viewed as being a convenient tool for human capacity development in this field.  

F’SATI provides an academic platform to develop and train engineers in the domain of 

satellite engineering. The study covered in this thesis will contribute to the South African 

space programme development by delivering one of the first locally developed, tested 

and functional CubeSat OBC prototypes.  

 

In addition, a CubeSat will serve as an inexpensive vehicle to test this technology in 

space, hence contributing to the CubeSat programme.  

1.6. Methodology 

The workflow process illustrated in Figure 1.1 describes the method that will be followed 

throughout this research. All the major steps involved in the development of the 

prototype OBC are presented in the following points: 

 

 A study will be conducted around the CubeSat platform with the goal of gaining a 

deep understanding of the concept behind it. Focus will specifically be directed to 

the OBC subsystem and its components. Research comparing previously developed 

and deployed OBCs will also be conducted in order to define the set of 

specifications and requirements necessary for engaging in the microcontroller 

selection process.  

 Following the selection, the architectural design will be derived around the 

microcontroller. The selected microcontroller will be evaluated by looking at each 

one of its peripherals before creating the OBC architecture that will be implemented 

around it.  

 The developed architecture will be implemented as a hardware prototype and the 

design will be verified for some peripherals of the OBC.  
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Deliver & 
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Figure 1.1: Workflow process from concept to delivery 

1.7. Research delineation 

This thesis will present the design and development of an OBC for a CubeSat. A 

research process is presented which will lead to the selection of the microcontroller. 

Further, the OBC architecture is proposed according to the selected microcontroller and 

finally, the design, implementation and testing of the proposed architecture around the 

selected microcontroller are presented. 

 

It is important to note that the final OBC prototype will be developed with hardware 

specifications only since it is not intended for any specific mission. If it had been, a 

complete flight software (FSW) model would have to be developed, which would have 
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fallen outside the scope of this project. This research will be regarded as a proof of 

concept and will deliver an engineering model of the OBC which can be implemented as 

a flight model once a specific mission has been defined. 

1.8. Thesis Outline 

This document is structured as follows: 

 

 Chapter 2 covers a detailed literature review of the CubeSat platform, subsystems 

organisation and space environmental effects on satellite missions.  

 Chapter 3 discusses the hardware selection process with a focus on the 

microcontroller. 

 Chapter 4 discusses the architecture development of the OBC around the selected 

microcontroller. 

 Chapter 5 presents all the steps involved in the design and implementation of the 

OBC prototype. 

 Chapter 6 lists all the tests and measurements performed on the prototype. 

 Chapter 7 concludes and summarises the study and makes recommendations for 

future work.  

1.9. Summary 

The research objectives were defined and the process involved was broken down into 

significant key points essential for the execution of the project. The significance, 

contribution and limitations of the study were pointed out and the methodology was 

subsequently discussed. Finally, the contents of chapters to follow within this thesis were 

outlined in detail.  

 

The upcoming chapter covers a detailed look at the CubeSat platform and each of its 

subsystems is presented. Investigations into OBC hardware used for previous CubeSat 

missions are conducted and the effects of the space environment on semi-conductive 

components are also outlined.   
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CHAPTER TWO 

LITERATURE REVIEW 

2.1. Introduction  

In addition to the cost involved in developing a satellite mission, two more constraints 

can be added, notably the size of the satellite and the risks associated when launching 

or experimenting with new technologies in space. The introduction of the CubeSat to the 

satellite market is primarily regarded as an innovation because it simplifies the 

complexity of access to space by using COTS components in the development phase as 

opposed to radiation hardened and space qualified components. Governmental 

organisations, such as the National Aeronautics and Space Administration (NASA), have 

started to develop CubeSats as a test-bed for larger missions by providing launch 

opportunities through the CubeSat Launch Initiative 7(CSLI) (NASA, 2010). The CubeSat 

also opens doors to new markets specifically focused on CubeSat subsystems 

development and related services. 

 

This chapter introduces the CubeSat by describing its specifications and internal 

architecture. Emphasis is placed on the OBC subsystem and associated components 

and a study of previously developed OBCs is also presented. Finally, elements of the 

space environment that an influence LEO CubeSat space missions are briefly discussed.  

2.2. The CubeSat platform 

A CubeSat is a standard type of nanosatellite for which a very precise set of 

specifications exists. As stated in Section 1.2 of Chapter 1, these specifications were 

developed in 1999 and the initial purpose was to provide a standard design for 

nanosatellites in order to reduce both the cost and development time and at the same 

time increase accessibility to space for small payloads and sustain frequent launches. As 

seen in Figure 2.1, the most restrictive aspect of the CubeSat is its size which is of 

1000cm³ (10 cm x 10 cm x 10 cm) and also referred to as a 1U. This can be extended to 

2U (10 cm x 10 cm x 20 cm) or 3U (10 cm x 10 cm x 30 cm) form factors depending on 

                                                 
7 See http://www.nasa.gov/directorates/heo/home/CubeSats_initiative.html 
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the mission. Associated with the volume is a restricted mass of 1.33 kg for the 1U (Lee 

et al., 2009). 

 

Figure 2.1: The Norwegian Ncube-2 CubeSat  

(Adapted from Rupprecht, 2011) 

2.2.1. CubeSat architecture and subsystems 

In its very basic form, a CubeSat’s architecture is similar to what is presented in Figure 

2.2. The OBC is at the centre of all communications between other subsystems via a 

serial bus interface. The OBC generally includes the memory subsystem because it has 

the additional function to record housekeeping parameters and telemetry payload data 

collected at given timestamps or coordinates, before initiating the transmission to the 

ground station during an overpass (Hardy, 2009).  

 

Each subsystem is assigned a dedicated task. A brief description of each subsystem is 

given in the points that follow. 

2.2.1.1. Electrical power system 

According to Wertz and Larson (2008), the EPS accomplishes the following functions: 

 Supplies a continuous source of electrical power to satellite loads during the mission 

life; 

 Controls and distributes electrical power to the satellite; 

 Supports power requirements for average and peak demands from electrical loads; 
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Figure 2.2: Basic CubeSat architecture  

(Adapted from Gildeh, 2003) 

 

 Provides command and telemetry capability for EPS health and status as well as 

control by ground station or an autonomous system; 

 Suppresses transient bus voltages and prevent bus faults. 

 

The source that generates the electrical power is an array of photovoltaic solar cells that 

make up one or more solar panels which convert solar radiation into electrical energy. 

Satellites orbiting Earth go through a shaded region on the other side of Earth, away 

from the sun, defined as eclipse. Depending on the type of orbit, eclipse lasts for a few 

minutes up to a few hours and during this time, the solar panels do not produce electrical 

power, leaving the satellite unpowered. (Koskienen et al., 1999).  

 

A backup source has to be available in these conditions and electrical energy needs to 

be stored during sun exposure in order to be used during eclipse. A common practice is 

to use banks of rechargeable batteries. A series of results published in a study 

conducted by Clark and Simon (2007) on battery technologies used in small satellite 

applications recommends the use of Lithium Ion, Lithium Polymer and Nickel Cadmium 

battery cells. 

2.2.1.2. Communications Subsystem 

Also referred to as the Telemetry Tracking and Command (TT&C) subsystem, the 

communications subsystem provides the interface or link between the satellite and the 
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ground segment. According to Louis and Ippolito (2008), the RF link is essentially 

defined by two one-way free space or air link channels between the ground segment and 

the satellite, namely the uplink and the downlink channel. The uplink channel is the 

portion of the link from Earth to the satellite (upload of telecommands) and the downlink 

channel the portion from the satellite to the ground station (download of telemetry). 

 

The communications link is made possible by RF transmitters and receivers coupled to 

high gain antennas onboard the satellite and on the ground station. Telecommands from 

the ground segment to satellite are sent through the uplink channel every time the 

orbiting satellite appears at the horizon and becomes visible to the ground station’s 

antenna.  

 

In a similar way, onboard telemetry and payload data are downloaded via the downlink 

channel to the ground segment. The pass above the ground station only happens for a 

limited time during which it is a requirement for the receiving antenna to have a clear 

field of view and enough gain to allow proper data transfer (Pierlot, 2009).  

2.2.1.3. ADCS subsystem 

Once the CubeSat is deployed, it will randomly tumble while orbiting Earth. The ADCS 

subsystem is a stabilisation mechanism made of actuators and sensors connected in a 

loop in order to keep the satellite’s orientation steady and ensure it operates efficiently 

(Hales and Pedersen, 2002).  

 

A closed feedback control loop is used where the attitude of the satellite is first 

determined by various data collected by sensors and then compared to the desired 

attitude through complex control algorithms. Actuators are then used to perform the 

necessary manoeuvres to achieve the required attitude for the satellite and a continuous 

loop is maintained. Possible sensors include earth, sun and star sensors, gyroscopes, 

magnetometers and directional antennas while actuators could include magnetic 

thrusters and wheels which in turn can be reaction wheels, momentum wheels or control 

moment gyros (Wertz & Larson, 2008).  

 

It is common for CubeSats to make use of reaction wheels because 3-axis stabilisation 

is achievable within the limited physical space offered by the structure and frequently, 
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the payload includes a camera that needs to be continuously pointing down to Earth in 

order to take usable images (Oland & Schlanbusch, 2009). 

2.2.1.4. Payload subsystem 

According to Denier (2010), satellite payloads can include telecommunication systems, 

imagers or scientific measurement probes. Satellite missions are therefore classified as 

communications, imaging or scientific missions. In order to increase effectiveness in 

terms of cost and integration, it is common to combine two or more types of payloads on 

a single satellite.  

 

Three types of payload data are associated with communications satellites, namely 

voice, video and data (e.g. text files and Morse code). Signals are sent from the ground 

station to the satellite and retransmitted either to the ground or to another satellite (relay) 

through a channel at a selected frequency band. Applications of communications 

satellites range from cellular telecommunication to television transmission. A practical 

example will be the communication with airplanes, ships, trains and trucks just to name a 

few (Denier, 2010). 

 

The payload onboard imaging satellites consists of a camera which is classified 

according to the resolution of the image that can be reproduced. The imager is required 

to be capable of capturing images of Earth or other universal bodies over different 

spectral bands according to the application. Filtering techniques are then applied to 

present the image in the usable frequency range. Applications of imaging satellites can 

range from mapping (cartography), disaster management (fire detection), meteorology or 

universal observation (Navalgund et al., 2007). 

 

Scientific payloads include measurement instrumentation assisting in collecting specific 

scientific data for analysis. They can provide information about sun spot activities, solar 

winds and storms, map carbon dioxide concentrations and evaluate the ozone layer in 

the atmosphere which can lead to a better understanding of our universe and its 

components (Denier, 2010).  
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2.2.1.5. OBC and memory module 

Satellite systems are generally engaged in the collection and transfer of information or 

commands among all of their subsystems. The OBC is at the heart of this data transfer  

and acts as the onboard communications link between all other subsystems. It is an 

embedded computer dedicated to command and data handling (C&DH) of the satellite. 

The major OBC specifications need to be determined and optimised to ensure secure 

and efficient data flow since different transfer rates are used between subsystems 

(Hidayat, 2010). 

 

Onboard parameters such as temperature and power consumption in different sections 

of the satellite are constantly measured and stored in the OBC’s memory module and 

constitute telemetry data to be downloaded to the ground station during an overpass. 

From the ground station, newer versions of the FSW can be uploaded via the uplink 

channel and new orbital parameters can be defined and implemented. This is also 

accomplished by the OBC which decodes these telecommands and executes them by in 

turn commanding the other subsystems to achieve the desired action (Polaschegg, 

2005). 

 

The OBC also makes use of the data from ADCS sensors to determine the attitude of 

the orbiting satellite and controls the ADCS actuators to control the satellite’s attitude. 

This is done by loading a pre-defined control algorithm into the microcontroller and 

executing manoeuvres whenever necessary (Hales et al., 2001). 

 

As illustrated in Figure 2.3, the OBC is composed of both hardware and software 

components. Such a global visualisation is very useful to associate all the OBC elements 

with their respective functions and build the OBC architecture based on these elements 

(Noergaard, 2005). These two components are presented in more details: 

a. Hardware component 

Also called the physical layer, the hardware component contains all the physical 

electronic components that are located on a PCB. It is the lowest level in the OBC model 

and consists essentially of a microcontroller with various peripheral interfaces and 

supporting hardware with a memory module to store programs and data. 
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Figure 2.3: OBC subsystem model  

(Adapted from Castoulis, 2005) 

Castoulis (2005) defines a microcontroller as a central processing unit (CPU), memory 

and some Input/Output (I/O) devices all contained within a single integrated circuit (IC) 

and interconnected by an internal bus system. The processor is central to the 

microcontroller unit and represents the most important part of the system. It manipulates 

data in a way specified by a sequence of instructions defined in the software layer and 

intended to suit a given application or program. Selecting the ideal microcontroller is 

crucial since it constitutes the backbone of the OBC design. 

 

In general, microcontrollers are classified according to their instruction set, memory and 

internal bus width. Singh (2004) states that the nature of the arithmetic logic unit (ALU) 

determines if the microcontroller is classified as 8-bit, 16-bit or 32-bit depending on 

logical and arithmetic operations which will then, respectively, be performed on a byte (8-

bit), a word (16-bit) or a double word (32-bit).   

 

The internal memory (also referred to as on-chip memory) of the microcontroller is 

divided into two types which are defined by Botma (2011) as follows:  
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 Flash memory: It is a variation of electrically erasable programmable read-only 

memory (EEPROM) which is accessible in blocks of data. It is the non-volatile 

portion of the memory, meaning that it retains its value even when power is removed 

in the system. It has the advantage of presenting fast access time and has a high 

tolerance to radiation effects. 

 

 Static Random Access Memory (SRAM): It is the volatile portion of the memory, 

meaning it loses data when power is removed. The read and write operations on 

SRAM are very fast; it is thus used to store program data which are temporarily 

allocated and constantly changing during the run of the program.  

 

On-chip memory is usually insufficient and in most cases, microcontrollers provide 

support for external memory devices in order to expand the memory capacity of the 

system. In an OBC subsystem, the selected microcontroller should allow for external 

memory expansion since housekeeping and payload data are usually of sizes bigger 

than the space available on-chip. The external memory module can also be used to 

store program applications that would run on the microcontroller and that may require 

additional memory space (Sakoda, Horning & Moseley, 2005). Various components are 

available that can be used as memory expansion modules such as secure 

digital/multimedia cards (SD/MMC) and memory ICs.  

 

The I/O devices (or peripherals) are integrated in the microcontroller and are used by the 

processor to communicate with other external devices (Catsoulis, 2005). In the case of 

the CubeSat, these peripherals create an interface between the OBC and the other 

subsystems. The CubeSat architecture requires a standard serial data bus protocol to be 

used for fast data rate transfers between subsystems. This data transfer is initialised and 

monitored by the OBCs’ microcontroller. Common serial interfaces found in 

microcontrollers include universal asynchronous receive-transmit (UART), inter-

integrated circuit (I2C) (also known as two wire interface (TWI)) and serial peripheral 

interface (SPI). 

 

Additional supporting hardware components to the microcontroller are necessary to 

ensure the OBC runs efficiently. According to the work published by Clausen et al. 

(2001), it is recommended for the OBC subsystem to include an overcurrent protection 
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circuitry, a battery backed-up real time clock (RTC) and one or more on-board 

temperature sensors. The overcurrent protection is needed to monitor the current drawn 

by the subsystem and disconnect the supply in case of an overcurrent condition. The 

RTC keeps track of the time and helps to synchronise onboard operations. The RTC 

also keeps onboard data synchronised with the ground operations. Time is typically 

encoded in a timing format known as the Unix Time Counter (UTC8) system and 

interrupts are used to synchronise events between subsystems. The RTC’s power is 

backed up with a battery so time is not lost when the OBC’s power is removed for any 

reason. The on-board temperature sensors are necessary to monitor the variations in 

temperature at different points of the CubeSat which are exposed to the harsh space 

environment. 

 

b. Software component 

The software component commands the processor and controls its operability and 

functionality. There are three layers of software that are represented by a common 

shade in Figure 2.3, each interacting only with the layer(s) directly above or below it.  

 

When the microcontroller powers up, it is necessary that the processor’s internal 

registers be configured to an initial state in order to operate correctly. The piece of 

software responsible for this process is known as the firmware and is the lower software 

component layer that communicates directly with the hardware component layer and the 

operating system. The operating system is the system software component that 

manages the use of and access to the memory and other peripherals within the 

microcontroller. It acts as a host for applications and is responsible for the management 

and coordination of activities and sharing of other resources in the OBC subsystem, 

making it easier for the user to write and run applications (Catsoulis, 2005).  

 

Applications within the OBC are organised in tasks to which a priority level and a 

deadline are assigned. These tasks are co-ordinated by a real time operating system 

(RTOS) which according to Whilmshurst (2007) accomplishes three major functions 

when implemented in a system: 

 It decides which task should run and for how long; 

                                                 
8See http://www.unixtimestamp.com/ 
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 It provides communication and synchronisation between tasks and 

 It controls the use of resources shared between tasks, for example memory and 

hardware peripherals.  

 

The implementation of several applications (or multi-tasking applications) based on a 

RTOS constitutes the CubeSat’s flight software (FSW). Hidayat (2010) defines the FSW 

as “the central intelligent system of the modern satellite that can run on a single chip”. 

Enright (2002) further summarises the major flight software functions as follows: 

 

 It schedules satellite activities autonomously when the satellite is away from the 

ground station radiation coverage, such as scheduling the payload imager to take a 

picture of a certain location at a particular time; 

 It responds to ground user telecommands during the ground station overpass. The 

FSW should be able to interact with the ground user by accepting all the valid 

commands and execute commands based on their parameters; 

 It performs data logging by taking measurements of the housekeeping parameters 

(telemetry) and stores them into the memory device until they can be sent to the 

ground station. Data logging also includes the logging of events that took place 

during flight ; 

 It performs data management, including data structure and protocol. 

 

When the use of a specific RTOS is required, the selected microcontroller needs to be  

supported by it. An adequate integrated development environment (IDE) to write and 

compile applications or tasks is also needed in order to program the microcontroller or 

load the RTOS.  

2.2.2.  Previously deployed CubeSat OBCs 

To date, the number of successful CubeSat missions orbiting Earth amounts to more 

than fifty and there are still a large number of them currently under development by 

different organisations and universities worldwide such as TechEdSat9, StudSat10 and 

EQUiSat11. However, not all CubeSat missions have been successful in the past and a 

                                                 
9 See  http://www.amsatuk.me.uk/iaru/finished_detail.php?serialnum=228 
10 See http://www.nmit.ac.in/Centerforsmallsatellite.aspx?LinkId=407 
11 See http://amsat-uk.org/2012/09/30/equisat-optical-beacon-cubesat  
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number of failures have been recorded. These failures were either associated with a 

technical fault from the launch operator or malfunction of a subsystem onboard the 

satellite.  

Each CubeSat is unique in the mission that it has to perform and the subsequent 

payload it has to carry. Depending on the initial mission requirements, the OBC 

subsystem needs to be designed around hardware components that fit within the defined 

specifications. 

In order to illustrate this idea and to facilitate the derivation of the OBC hardware 

specifications, information was collected and compiled and as a result, the classification 

found in Table A.1 in Appendix A was drawn. In this table, a compilation of CubeSat 

missions is presented according to the mission overview, the mission status and the 

microcontroller used for the OBC subsystem. It shows that most of the previously 

launched CubeSats had their OBCs designed using 8- and 16-bit microcontrollers as 

opposed to 32-bit microcontrollers which only started to make their entry recently and 

whose CubeSats are due for launch. It is also important to consider the fact that the 

complexity associated with CubeSat missions has started to increase and more than one 

payload can now be accommodated. This in turn adds to the demand in processing 

capabilities and, amongst other, microcontroller specifications.  

2.2.3. Hardware kits 

The success of the CubeSat as a low-cost solution for space experiments has led to the 

commercialisation of subsystems and modules, giving birth to a new emerging market. 

Several companies have been established as subsystems and solution providers for 

CubeSat missions notably, Tyvak Nano-Satellite Systems, GomSpace, Stras Space, 

Space Micro, Blue Canyon Technologies and Sequoia Space, just to name a few. As an 

example of services delivered, three of the most successful companies are listed with 

their specific products or solutions:  

 Pumpkin® is the manufacturer of the CubeSat kit which is the most popular and 

user-friendly CubeSat development kit on the market because of its high success 

rate in space. It requires the addition and integration of other subsystems around an 

MSP430 based OBC from the kit which also includes a modular skeleton chassis, a 

development board for prototyping and the Salvo RTOS as shown in Figure 2.4.  
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Figure 2.4: CubeSat Kit by Pumpkin  

(Adapted from Pumpkin, 2003) 

On several missions, the CubeSat kit has proven to be reliable and is currently a 

commercial success (Pumpkin, 2003).  

 

 Clyde Space is a Scottish based company and a world leading CubeSat subsystem 

manufacturer and vendor. Their main focus lays in designing and developing high 

performance EPS, lithium polymer batteries and high efficiency solar panel arrays. 

The company was founded in 2005 with the primary objective of CubeSats power 

subsystems development. It has since expanded to small size satellites, larger than 

CubeSats. Figure 2.5 illustrates a 1U Clyde Space EPS which includes an 

integrated battery charge management system among other features (ClydeSpace, 

2011).  

 

 

 Innovative Solution In Space (ISIS) was established in 2006 and holds its roots from 

the Delfi-C3 Dutch CubeSat mission (Delft University of Technology) which was 

successfully put into orbit in 2008 and is still operational. The company is renowned 

mostly for delivering high quality telecommunication products (RF subsystem and 

antennas) and modular CubeSat structures. 
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Figure 2.5: 1U CubeSat EPS from Clyde Space (ClydeSpace, 2011) 

 

One of their most successful product to date is a complete ground station kit which 

represents a solution necessary to provide support in terms of tracking, upload and 

download exchanges with the CubeSat during a mission (ISIS, 2008).  

2.2.4. PC/104 standard 

One of the most critical constraints in the CubeSats standards remains its size. The 

PC/104 form factor which is illustrated in Figure 2.6 is an embedded computer standard 

configuration which was adopted by the California Polytechnic State University and 

Stanford University when developing the CubeSat standards. It is restricted by the 

following factors defined by the PC/104 Embedded Consortium (2003):  

 

 Each PCB has to be 90.2 ൈ 95.9 mm in size; 

 Spacing between stacked modules should not be less than 15mm; 

 Power consumption typically has to be of the order of 2W maximum per board with a 

reduced bus drive current of not more than 4mA; 

 Bus connectors are optionally “stack-through” or “non-stack-through” depending on 

the termination and the module the PCB connects to; 

 The modules are designed to be stacked, thus not requiring the use of a backplane; 
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Figure 2.6: PC/104 Standard PCB form factor dimensions  

(Adapted from PC/104 Embedded Consortium, 2003) 

 The data bus should be configurable for 8-bit, 16-bit and 32-bit;  

 The bus connectors should be about 11mm high and 5mm wide. They consist of 1 

row for an 8-bit bus and 2 rows for 16-bit or 32-bit buses. 

2.2.5. CubeSat deployment system 

Due to the high costs of rocket launchers, CubeSats are usually launched alongside 

commercial satellites as secondary payloads (piggy-back payloads). A standard 

deployment system known as the Poly Picosatellite Orbital Deployer, or P-POD, is used 

to eject the CubeSat once in space. It is an aluminium box capable of housing three 1U 

or, alternatively, one 3U CubeSat.  

 

Figure 2.7 shows a side view and a look inside the P-POD.  After the launch, the 

CubeSat is released from the P-POD through a door mechanism that opens via 

telecommand.  
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Figure 2.7: Side and internal view of P-POD deployment system  

(Adapted from Lee et al., 2009) 

 

2.3. Space environment effects 

Once a satellite is launched and put into orbit, its operations remain largely autonomous. 

During the orbital flight, it will be exposed to a variety of mechanical, thermal and 

electromagnetic effects which may have a direct impact on its operations. A summary of 

disturbances that CubeSats can be exposed to when orbiting Earth are explained in the 

following sections.  

2.3.1. Atmospheric drag and atomic oxygen 

CubeSats are intended to fly in LEO and are exposed to the upper atmospheric layer 

which applies a braking force on the satellite. This atmospheric drag limits the lifespan of 

CubeSats. The atmospheric layer heats up and expands during high solar activities, 

causing a significant increase in atmospheric density and leading to a higher 

atmospheric drag (Gaposchkin and Coster, 1988).  

 

Similarly, solar panels are exposed to atomic oxygen in LEO which can be highly 

corrosive to structural materials. At high altitude, the exposure to ultraviolet (UV) rays 

causes photodissociation of molecular oxygen, i.e. the molecules are split into single 

atoms (O1). The atomic oxygen is very reactive and degrades material properties and 

hence, performance. (Pierlot, 2009). 
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2.3.2. Solar wind and solar flares 

Han and Kim (2006) define solar wind as a constant flow of electrically charged gasses 

(also known as plasma) and magnetic field emanating from the sun, created when gases 

in the sun’s atmosphere are heated enough to achieve escape velocity and fly off into 

the solar system. This wind can reach speeds in excess of 400km/s and can be 

particularly devastating to semi-conductive materials and photovoltaic cells that are 

directly exposed to it. 

 

Solar flares are a phenomenon that occurs when magnetic energy that has built up in 

the solar atmosphere is suddenly released. This energy causes emission of radiations 

that affect the entire electromagnetic spectrum, from radio waves at the long wavelength 

end, through optical emission to X-rays and gamma rays at the short wavelength end. 

This increases the ionisation of the upper atmosphere causing interference with 

telecommunication networks (GPS, GSM, short wave radio), increasing the heat within 

the outer atmospheric layer and consequently, increasing the atmospheric drag on 

satellites in LEO (Holman & Benedict, 2007).  

2.3.3. Electromagnetic waves in free space 

During solar storms which can be unpredictable, electromagnetic wave activity is 

accelerated within the neighbouring regions of the sun and can get carried away by the 

flares and wind. From long wavelengths to gamma, X-rays, UVs and infrared waves, 

effects can be devastating (Hardy, 2009). 

2.3.4. Semiconductors in space 

The exposure of COTS components to radiation and extreme temperature changes in 

LEO can have numerous consequences within CubeSats, such as: 

 

 Progressive degradation of components in terms of efficiency; 

 Bit errors or bit flips during data transfer (telemetry and telecommands); 

 Latchups which could lead to short-circuits (Hardy, 2009). 
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Figure 2.8: Space debris representation around Earth  

(Adapted from Gunter, 2008) 

In space, the exterior of the spacecraft is cycled between extreme temperatures from 

about +150°C on the sun-facing side down to -150°C on the shadow-facing side. Inside 

the satellite, the temperature ranges are less severe. A minimum operating temperature 

range for each electronic component used in a CubeSat is usually specified between 

+85°C and -40°C which is an industrial temperature range (Han & Kim, 2006).  

2.3.5. Space debris 

A multitude of random materials are orbiting Earth and represent what is known as 

space debris or space junk. They are a result of satellites being abandoned at the end of 

their useful life or launch vehicles’ upper stages being left in orbit after they have served 

their purpose and are no longer serving any function (Mehrholz et al., 2002). Figure 2.8 

is an artist’s impression illustrating space debris currently orbiting Earth. 

 

These objects travel at speeds similar to that of orbiting operational satellites, ranging 

between 6 and 8 km/s. A major contributor to the orbital debris is and remains object 

breakup. These breakups are caused by explosions and collisions with other objects in 

space and danger arises when an operating satellite is involved in the collision because 

that does not only increase the amount of junk in space, but also represent a loss in 

investment for the corporation responsible for design, launch and operations of the 

satellite (Senechal, 2007).  
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2.4. Summary 

An overview of the CubeSat platform and its specifications were given in this chapter 

and its architectural design was covered in more detail. Each subsystem was identified 

and defined according to its functions in order to give an overview of the internal 

CubeSat organisation. A breakdown of the OBC subsystem was presented, listing all 

essential hardware and software components in order to establish basic requirements 

and give a global view and orientation to this study. Furthermore, a table of previously 

deployed CubeSats’ OBCs was drawn in order to identify the ideal microcontroller for the 

upcoming design. 

 

Available services and solutions related to the CubeSat market were discussed and 

three industry leading companies were presented according to their specific products. 

Finally, environmental constraints and their impact on the CubeSats’ operations in LEO 

were discussed and some precautions to be taken in order to avoid malfunction or 

failures during operation were presented.   

 

The next chapter covers the hardware requirements for the microcontroller to be used in 

the architecture design and implementation of the OBC. These requirements will lead to 

a selection process based on a range of available microcontrollers, each with individual 

specifications, features and capabilities.  
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CHAPTER THREE 
MICROCONTROLLER SELECTION 

3.1. Introduction 

Establishing a set of requirements for the hardware to be used is of high significance in 

the design process of the CubeSat’s OBC. These requirements constitute the basis of 

the OBC architecture design. With the microcontroller being the major hardware 

component, a specific path to follow has to be defined in order to select the option that 

best suits these requirements. 

 

This chapter essentially focuses on the analysis of the hardware requirements and 

covers the process involved in the selection of the appropriate microcontroller around 

which the OBC architecture will be implemented.  

3.2. Analysis of selection criteria 

Once a satellite mission has been defined, a set of requirements needs to be established 

in order to begin the design process. For this study, the OBC architecture development 

was based on a flexible mission context because a specific mission was still to be 

proposed; hence, specific mission requirements were not defined. However, it was 

possible to identify common attributes for the OBC hardware for upcoming missions 

based on the information presented in Table A.1 of Appendix A.  

 

The OBC is an embedded system which means that it combines both hardware and 

software and is intended to accomplish a particular function. When designing embedded 

systems, Castoulis (2005) and Botma (2011) highlight a series of common constraints 

that have to be considered. Each one of these criteria is presented, analysed and 

discussed in the following sections. 

3.2.1. Power consumption (peak power and stand by) 

A low power scheme is the major requirement in satellite systems due to the fact that 

electrical power is extremely limited, particularly in CubeSats where a total power budget 
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of 1W is available for a 1U and 5W for a 3U due to the minimal external surface area 

covered by solar panels (Lee et al., 2009).  

 

In addition to a low power consumption figure, the microcontroller should accommodate 

a feature whereby power can be saved by disabling peripherals which are not in use 

during a particular phase of the mission. It is common for microcontrollers to feature 

different modes of operation and use more than one clock source, allowing various 

operating modes and saving on power consumption.  

3.2.2. Operating temperature range 

The variations of temperature in LEO are quite significant. When the CubeSat orbits the 

sunny side of Earth, the surface of the satellite gets very warm and reaches 

temperatures up to 150°C. Similarly, when covering the zone of eclipse, the temperature 

can drop as low as -150°C (Koskienen et al., 1999). 

 

These extreme changes in temperature can cause significant damage to electronic 

components inside the CubeSat which exclusively uses COTS components and may 

cause mission failure. For this reason, all the hardware components of the OBC to be 

implemented should be rated for an operating range between -40°C and 85°C which is 

the standard for industrial electronic equipment.  

3.2.3. Operating voltage 

The EPS in a CubeSat normally provides an unregulated bus voltage varying between 

6V and 8.3V. In order to avoid the implementation of several voltage regulators (buck or 

boost) which may add to the weight, size and complexity of subsystems onboard the 

CubeSat, most of the active components including the OBC’s microcontroller, should be 

chosen to operate at or below a value of 3.3V.  

3.2.4. Packaging 

Consideration is also given to the size and weight of the chosen components. The 

electronic packaging of ICs and of all other different components, will have a direct 

impact on the overall size and weight of the OBC subsystem.  
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As shown in Figure 3.1, different types of IC packages are available to choose from, 

depending on the application. Preference is given to surface mount technology (SMT) 

over dual in-line package (DIP) due to volume. Furthermore, on the packaging for ICs, 

small-outline integrated circuit (SOIC) and quad flat package (QFP) are preferred over 

pin grid array (PGA) and land grid array (LGA) for ease of integration during the 

soldering process.  

3.2.5. I/O and serial bus compatibility 

The variety of I/Os (digital and analogue) available on the microcontroller are necessary 

in terms of connectivity. Being able to interface the final OBC prototype with all other 

subsystems within the CubeSat is mandatory and is directly related to the microcontroller 

chosen to implement the design.  

 

The data transfer between subsystems is made possible by the OBC’s microcontroller’s 

integrated serial interfaces (UART, I2C or UART). Selecting a microcontroller which 

possesses one or more of each of the serial interfaces is highly recommended since 

each of them is constrained by their data transfer rates and data or address bus sizes 

(Castoulis, 2005). 

 

Figure 3.1: Integrated circuits packaging types 
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3.3. Selection process 

The microcontroller can be viewed as the core of the OBC hardware component since all 

processing operations take place in it. It is composed of a CPU, memories, timers and 

different sets of interfaces and peripherals allowing interconnections to different modules 

externally as shown in Figure 3.2. 

 

Depending on the tasks to be completed and how fast the operations need to be 

accomplished, microcontrollers are available from different manufacturers in variants 

supporting 8-bit, 16-bit and 32-bit word length.  

3.3.1. Migrating from 8-bit and 16-bit to 32-bit 

The goal when selecting the microcontroller for the OBC is to be able to implement a 

prototype that is able to deliver maximum processing capability while using a minimum of 

power and also being capable of accomplishing all of the required OBC functions, mainly 

the execution of programs and commands with a minimum response time (Castoulis, 

2005).  

 

Figure 3.2: Internal conceptual diagram of a microcontroller 
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In the past, CubeSats have mostly used 8-bit and 16-bit microcontrollers. 32-bit core 

based microcontrollers were initially introduced in 1985 by Intel and because of the 

complexity they presented they were only adopted by a limited number of system 

integrators. 8-bit and 16-bit architectures were still favoured because many of the 

embedded and real time applications at the time were not critically dependant on 

memory, power or speed and the amount of data to handle was sufficient. With time, 

more products and applications started to require increased processing capability. It 

became clear that a migration from 8 and 16-bit to 32-bit core architecture was 

necessary, although the complexity remained an issue (Khan, 2008). 

 

Today, the 32-bit core architecture’s complexity has been significantly reduced and has 

been made efficient and capable of handling 8-bit, 16-bit and 32-bit instructions and 

data. In addition to the reduction in complexity, multiple features have been added and 

customised by different core manufacturers. On this subject, Povey (2008) states that 

the trend of migrating toward the 32-bit is mainly driven by the need to deliver increased 

processing power and flexibility in code re-use across projects using high level 

languages. These lacked in the 8-bit and 16-bit architectures. 

3.3.2. Previous 32-bit implementations 

The 32-bit core architecture has been successfully tested on CubeSats for several 

missions, such as NCube2 and CanX-1. 

 

NCube2 which is illustrated in Figure 2.1 is a product of the Norwegian University of 

Science and Technology. Its payload consisted of an automatic identification system for 

the marine industry where the AIS protocol which is a standard for tracking ships, is used 

to identify, position and exchange data messages between ships. Its C&DH OBC used a 

32-bit ATmega32L from Atmel with an AVR32 core and 4kB of ROM. Although contact 

was never established after launch, the flight-model operated properly on the ground 

(Eide & Iilstad, 2003). 

 

CanX-1 from the University of Toronto was launched with three experimental payloads 

onboard: a low cost CMOS horizon sensor, a star tracker and a GPS receiver. Its C&DH 

OBC used the AT91SAM7 microcontroller which is a 32-bit ARM7 core, from Atlmel with 
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512kB of static random access memory (SRAM), 32MB of Flash-RAM and with a 

maximum operating frequency of 40MHz (Stras, et al., 2003).  

 

More examples can be found in Table A.1 of Appendix A which gives details in terms of 

RAM, ROM and operating frequency of the microcontrollers used for the C&DH OBC of 

all listed CubeSat missions. It can be seen from this table that 32-bit microcontrollers 

represent a minority as opposed to 8-bit and 16-bit microcontrollers.  

3.3.3. Microcontroller selection 

The method followed for the selection of the microcontroller consists of four steps. 

Because of the large number of core manufacturers in the microcontroller market and 

the variety associated with them, a process of elimination is followed by comparing each 

device according to a set of criteria.  

 

Step 1 

The search engine provided by the embedded developer website (EmbeddedDeveloper) 

is used as an initial step to shortlist reputable core design manufacturers. Six 

manufacturers have been shortlisted, namely: Atmel, ARM, MIPS, Freescale, Renesas 

and Texas Instruments. From the range of core architectures that are produced and 

licensed by these manufacturers, only 32-bit ranges were considered.  

 

Figure 3.3 shows a classification of the 32-bit core manufacturers and the architecture 

that they implement. As an example, ARM is a 32-bit core manufacturer who developed 

the ARM7TDMI architecture which is implemented by STMicroelectronics and by Atmel 

(also a core manufacturer). Similarly, Freescale is a 32-bit core manufacturer who 

developed the COLDFIRE V1 architecture which is also implemented by them. 

 

Step 2 

The second step involves a comparison between each semiconductor manufacturer’s 

part numbers. This comparison is done according to three of the previously mentioned 

selection criteria:  



33 
 

 

Figure 3.3: 32-bit core architecture classification 

 
 The operating temperature range for the chosen microcontroller should vary 

between -40°C and 85°C. 

 The IC packaging is also important. The QFP package is preferred since the leads 

extend on each of the four sides of the IC, making it practical and easier to solder 

unlike its counterparts which do not only require expensive equipment for soldering 

reliably but also are not recommended for prototyping.  

 The operating voltage should not exceed 3.3 V. Since power consumption is directly 

proportional to the operating frequency, the operating frequency will be limited to 

100 MHz to keep the maximum power consumption at a suitable level.  

 

A comparison of the microcontrollers according to these criteria is shown in Table 3.1. 

This table classifies the semiconductor manufacturer, the core architecture that they 

implement and their respective part numbers according to the maximum operating 

frequency, the operating voltage and temperature ranges and the packaging options 

available for a particular part.  The rows highlighted with a light green colour indicate the 
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parts that did not qualify for the next step and the cells highlighted with a darker green 

colour indicate the requirement that was not met. 

 

Table 3.1: Microcontrollers requirements criteria  

Manufacturer Core Variant Part Number Freq(MHz) V Min V Max T° range Package Options 

Texas Instruments ARM Cortex-M3 LM3S1538 50 3 3.3 -40 to 85 LQFP100 

NXP ARM Cortex-M3 LPC1343 70 2 3.3 0 to 70 
HVQFN33, 

LQFP48 

Atmel ARM Cortex-M3 AT91SAM3U4E 96 1.6 3.3 -40 to 85 
LQFP 144, LFBGA 

144 

Texas Instruments ARM Cortex-M3 LM3S9B90 80 3 3.3 -40 to 85 LQFP100 

Texas Instruments ARM Cortex-M3 LM3S9B95 100 3 3.3 -40 to 85 LQFP100 

STMicroelectronics ARM Cortex-M3 STM32F102RB 48 2 3.3 -40 to 85 TQFP 64 

STMicroelectronics ARM Cortex-M3 STM32F107VC 72 2 3.3 -40 to 105 TQFP 100 

Energy Micro ARM Cortex-M3 EFM32TG840F32 32 1.8 3.8 -40 to 85 QFN 64 

Atmel ARM Cortex-M3 ATSAM3S2C 64 1.6 3.3 -40 to 85 
LQFP 100, LFBGA 

100 

NXP ARM Cortex-M3 LPC1769 100 2.4 3.6 -40 to 85 LQFP100 

Freescale ARM Cortex-M4 MK20N512V 100 1.7 3.6 -40 to 105 PBGA 144 

NXP ARM Cortex-M4 LPC4350 150 2.2 3.3 -40 to 85 
LQFP 208, BGA 

180 

Texas Instruments ARM Cortex-A8 OMAP3530 600 1.8 3 -40 to 105 
FCBGA 423,BGA 

515 

Freescale ARM Cortex-A8 MCIMX537 800 0 3.3 -40 to 85 TEPBGA 529 

STMicroelectronics ARM7TDMI STR755FV2 60 3 5.5 -40 to 85 
TQFP100, 
LFBGA100 

Atmel ARM7TDMI AT91SAM7XC512 55 3 3.3 -40 to 85 
LQFP 100, 
TFBGA100 

NXP ARM7TDMI-S LPC2478 72 3 3.3 -40 to 85 
LQFP208, 
TFBGA208 

Freescale ARM926EJ-S MCIMX27 400 1.7 2.8 -20 to 85 MAPBGA404 

Atmel ARM926EJ-S AT91SAM9XE512 210 1.6 3.3 -40 to 85 
PQFP208, 

LBFBGA217 

Atmel ARM920T AT91RM9200 180 1.6 3.3 -40 to 85 
QFP 208, LFBGA 

256 

Atmel AVR32 UC AT32UC3A3256 66 3 3.3 -40 to 85 
TFBGA 144, LQFP 

144 

Microchip MIPS32®4KSd™Core PIC32MX460F512L 80 2.3 3.3 -40 to 85 TQFP100 

Freescale ColdFire V4 MCF5407 220 2.7 3.3 -40 to 85 FQFP 208 

Freescale ColdFire V3 MCF5372 180 2.7 3.3 -40 to 85 QFP 160 

Freescale ColdFire V2 MCF52259 80 3 3.3 -40 to 85 
LQFP144, 

MAPBGA144 

Freescale ColdFire V1 MCF51JM128 50 2.7 5.5 -40 to 105 
LQFP64, 

QFP64,QFP44 

Renesas H8SX R5F61668 50 3 3.3 -20 to 75 
QFP144, 

LFBGA176 

Renesas SH2 DF71253 50 4.5 5.5 -20 to 85 LQFP64 

Renesas Renesas RX 600 R5F562N8B 100 2.7 3.3 -40 to 85 
LFBGA 176,LQFP 

144, 

Texas Instruments 
F28x Fixed-point 

Series TMS320R2811 150 3.1 3.3 -40 to 125 LQFP 128 

Texas Instruments F28x Piccolo Series TMS320F28027 60 3.1 3.3 -40 to 125 LQFP 48 
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Step 3 

The third step involves an additional comparison; according to processing power 

referenced to a standard benchmark. The commonly used benchmark is the Dhrystone 

MIPS or DMIPS and microcontroller manufacturers always classify their products by 

running the DMIPS benchmark test and awarding them with a score which appears on 

the IC’s datasheet (Weiss, 2002). This benchmark is directly proportional to the 

processing power of the chosen microcontroller which Steinmetz and Wherle (2005) 

define as being a representation of the measure of how much computation can be 

handled by the microcontroller within a given system.  

 

A chart comparing the twelve short-listed microcontrollers’ DMIPS scores is shown in 

Figure 3.4. A value above 90 DMIPS is recommended for designing embedded systems 

requiring real-time operations as it is the case for the CubeSat’s OBC. Five out of the 

twelve microcontrollers met this criterion, namely: Atmel’s ATSAM3U, Texas 

Instruments’ LM3S9B90, Atmel’s AT32UC3A3256, Microchip’s PIC32MX460F512L and 

Texas Instruments’ TMS320F28027.  

 

 

Figure 3.4: Drystone MIPS comparison chart
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Step 4 

The final step in the selection involves an individual comparison of each of the final five 

microcontrollers according to the available onboard memory, the presence of internal 

and external peripherals and the serial interfaces. Table 3.2 identifies areas of strength 

and weaknesses of each microcontroller and presents each one’s characteristics. 

Table 3.2: Refined microcontrollers comparison 

Part Number 
AT91SAM3U4E LM3S9B90 AT32UC3A3256 PIC32MX460F512L TMS320F28027 

Manufacturer 
Atmel 

Texas 
Instruments 

Atmel Microchip 
Texas 

Instruments 

Core Variant ARM Cortex-M3 ARM Cortex-M3 AVR32 UC MIPS32®4KSd™Core F28x Piccolo 

Flash (Bytes) 262144 262144 262144 524288 65536 

ROM (Bytes) 16384 0 0 0 2048 

RAM (Bytes) 53248 98304 131072 32768 12288 

Floating Point 
Operation 

Χ  Χ  Χ  Χ  Χ 

Memory 
Management Unit 

√  Χ  √  Χ  √ 

External Bus 
Interface 

√  √  √  Χ  √ 

A/D resolution 10 10 10 10 12 

A/D Ch 16 16 8 10 13 

PWM 4x16-bit 8x16-bit N/A N/A 8x16-bit 

Timers 

16-bit Digital 
Programable 
Timer/Counter 

5xGen. Purp. 
Timer Watchdog 
Timer SysTick 

2x16-bit 
Timer/Counter       
Real-Time Clock   
Watchdog Timer 

5x16-bit digital timers 1xWD                
3x32-Bit GP 

Timer Bits 16 32 16 16 16 

Serial Interfaces 

4xUSART  
1xUART        
1xSPI           
1xHSMCI 

3xUART          
2xSSI 

2xSPI              
4xUSART 

2xUART                     
2xSPI 

1xSCI                
1xSPI 

I2C Interfaces 2 2 2 2 1 

USB Interfaces 
USB 2.0             
480 Mbps 

2.0 OTG/Host Full-Speed + 
OTG 

USB 2.0 OTG + PHY N/A 

CAN Interfaces 0 2 0 0 0 

CAN Type N/A 2.0 A/B N/A N/A N/A 
Ethernet 
Interfaces N/A 

10/100 
MAC/PHY N/A N/A N/A 

Encryption N/A AES N/A N/A N/A 

DMA Channels 21 32 0 4 0 

Maximum GPIO 96 60 110 85 22 
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After evaluation, the AT91SAM3U4E was selected. It is Atmel’s implementation of the 

Cortex-M3 core and this choice is motivated by the following reasons: 

 

 The AT91SAM3U from Atmel presents a significant advantage in terms of ROM 

(16kB) which is absent or minimal in its counterparts (2kB for Texas Instruments’ 

TMS320F28027).  

 In addition to the ROM, it also has the capability to perform memory management 

via a memory management unit (MMU) and offers the possibility to extend the 

memory if needed via the external bus interface (EBI) and the high-speed 

multimedia card interface (HSMCI).  

 The absence of a control area network (CAN) interface, an Ethernet interface and 

encryption on Atmel’s AT91SAM3U4E does not represent a handicap when 

compared opposed to Texas Instrument’s LM3S9B90 since they are not required in 

a CubeSat. The presence of more than one of each of the common serial 

peripherals further justifies the choice of the AT91SAM3U4E. 

 A total of 96 general purpose I/Os (GPIO) with 16 ADC channels are present.  

Additional features of the AT91SAM3U4E are discussed in detail in Chapter 4. 

 

3.4. Summary 

Requirements related to the hardware to be used in the OBC design were identified and 

listed and the selection process for the microcontroller to be used was explained in detail 

in four steps. Comparison tables were drawn, identifying strengths and weaknesses of 

each one of the selected microcontrollers. After proceeding by elimination, Atmel’s 

implementation of the Cortex M-3 core, the AT91SAM3U4E, was selected as the 

microcontroller to design and implement the CubeSat’s OBC.  

 
The upcoming chapter presents the AT91SAM3U4E according to its features, notably 

the CPU, memories, peripherals and different modes of operation. The proposed OBC 

architecture to be designed around the microcontroller is also presented.   
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CHAPTER FOUR 
PROPOSED OBC ARCHITECTURE 

4.1. Introduction 

In order to proceed with the design and implementation of the OBC hardware around the 

microcontroller, the initial phase involves the development of the architecture. The 

selected microcontroller provides a number of features which need to be implemented 

and used accordingly in order to accomplish the list of services required by the OBC 

subsystem.  

 

The first step in defining an OBC architecture consists of defining hardware requirements 

and analysing the available resource, which in this case is the microcontroller. 

Background regarding Atmel’s AT91SAM3U is provided in this chapter and its features 

and onboard peripherals are also presented. The proposed OBC architecture is 

introduced as a fairly simple but effective solution since an increase in complexity would 

further increase the complexity in implementing the architecture as a hardware 

prototype.  

4.2. Presentation of Atmel’s AT91SAM3U4E 

Features and characteristics of the AT91SAM3U4E are highlighted before the OBC 

architecture is developed. The points to be discussed present the processing core, the 

internal memory unit, the peripherals and the power consumption of the microcontroller 

in different modes of operation.  

4.2.1. Processing core 

A block diagram of the AT91SAM3U4E microcontroller showing its internal structure is 

presented in Figure 4.1. It is an implementation of ARM’s Cortex-M3 core processor 

which is a high performance core with a 3-stage pipeline Harvard architecture (using 

separate instruction and data buses), making it ideal for demanding embedded systems 

applications. It implements a version of the Thumb® instruction set based on the Thumb-

2 technology, ensuring high code density and reduced program memory requirements  
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Figure 4.1: Internal Block diagram of the SAM3U4E (Atmel Corporation, 2009) 

 

meaning that it provides the exceptional performance expected of a modern 32-bit 

architecture with the high code density of 8-bit and 16-bit microcontrollers (ARM, 2010). 

 

In real-time applications such as the CubeSat’s OBC, it is crucial to be able to service 

interrupts and exceptions within the minimum time (interrupt latency). This time is largely 

determined by the interrupt controller circuit and its configuration. The Cortex-M3 core is 

closely integrated with a nested vector interrupt controller (NVIC) which facilitates low-

latency in exceptions and interrupt handling and represents a key feature of this core. It 

supports nesting (stacking) of interrupts, allowing an interrupt to be serviced earlier by 

exerting high priority and it also supports dynamic reprioritisation of interrupts. The 

vector table which contains addresses of interrupt service routines is of a re-locatable 

type; this means that the address located at address zero can be altered and relocated 

by simply programming a register (ARM, 2010).  

 

The main features of the NVIC include: 

 

 A configurable number of external interrupts, from 1 to 240; 
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 A configurable number of bits of priority, from three to eight bits (256 priority levels);  

 Eight levels of pre-emption priority for interrupts;  

 Level and pulse interrupt support;  

 Dynamic reprioritisation of interrupts;  

 Priority grouping and  

 Support for tail-chaining of interrupts. 

 

A memory protection unit (MPU) is also available. This feature allows memory protection 

and restricts access to particular memory locations of the memory map (ARM, 2010). 

4.2.2. Memory capacity and access 

The implementation of Harvard architecture in the Cortex-M3 represents a major 

advantage in that instructions and data fetches can occur concurrently, and the size of 

an instruction is not set by the size of the standard unit (word) combined with the 

Thumb® instruction support, data can be 8-, 16- or 32-bits wide (Catsoulis, 2005).  

 

A memory-mapped I/O configuration is used, where I/O devices exist within the same 

linear space as memory devices and the same instruction is used to access each of 

them. The following is provided in terms of internal memory: 

 

 256kB of flash organised in a dual plane configuration with 512 pages; 

 48kB of high-speed SRAM (32kB SRAM0 and 16kB SRAM1) and 

 16kB of ROM containing the SAM-BA boot and Fast Flash Programming Interface 

(FFPI) program (ARM, 2010). 

 

An external bus interface (EBI) is available and allows the microcontroller to interface 

with an external memory module via a 16-bit parallel data bus which can also be 

adapted for 8-bit devices. The EBI provides for 4 chip selects and up to a 24-bit address 

bus. 

 

Also provided is a high speed multimedia card interface (HSMCI) which supports a large 

number of memory card formats and is 8-bits wide. It is compatible with the following: 
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 MultiMedia card (MMC); 

 SD Memory cards; 

 SDIO and CE-ATA cards. 

4.2.3. Peripherals 

The AT91SAM3U4E embeds a large set of user peripherals distributed on two separate 

bridges (high speed and low speed bridges). The advantage of this configuration is that 

concurrent accesses can be made on both bridges.  

 

Peripherals include: 

 High speed USB 2.0 device up to 480Mbps; 

 4 USART (Universal Synchronous Asynchronous Receiver Transmitter);  

 1 UART; 

 1 HSMCI (8-bit wide); 

 2 TWI or I²C; 

 1 SPI; 

 1 SSC (serial synchronous controller);  

 4-channel 16-bit PWM (pulse width modulation) controller; 

 8-channel 12-bit ADC (analogue to digital converter) with differential input mode and 

programmable gain stage; 

 8-channel 10-bit ADC; 

 96 I/O lines with external hardware interrupt capability; 

 3-channel 16-bit timer/counter (TC) used for capture, compare and PWM; 

 32-bit real time timer (RTT) and a real time clock (RTC) with calendar and alarm 

features (Atmel Corporation, 2009). 

 

All the peripherals are on the low-speed bridge except the SPI, the SSC and the HSMCI 

which are on the high-speed bridge.  

 

Direct memory access (DMA) is an additional feature of the microcontroller. This enables 

hardware peripherals linked to its channels to bypass the core processor and access the 

system’s memory independently. During this process, the DMA controller takes the place 

of the CPU and act as a bridge during data transfer while the CPU can continue with 
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normal operations. This process improves the overall performance of the microcontroller, 

making it faster (Catsoulis, 2005). The AT91SAM3U4E has a total of 19 peripheral DMA 

channels and an additional 4-channel central DMA.  

4.2.4. Power consumption and operating modes 

The microcontroller embeds an internal voltage regulator which supplies a stable voltage 

to the core processor and which can also be used to supply external circuitry. It can 

operate in two modes, namely: 

 

 Normal mode: the regulator draws around 150mA and consumes 700μA of static 

current; 

 Shutdown mode: The output of the voltage regulator is driven to ground and its 

current consumption is of the order of less than 1μA (Atmel Corporation, 2009). 

 

The microcontroller normally operates in active mode, where the core clock is running 

from a chosen clock source and peripheral clocks can be enabled or disabled depending 

on the application. Alternatively, it also has three low power modes of operation, namely: 

 

 Backup mode: This mode achieves the lowest power consumption by performing 

periodic wake-ups to perform tasks (interrupts). 

 Wait mode: The purpose of the wait mode is to achieve very low power consumption 

while maintaining the device in a powered state for a start-up time of less than 10μs. 

In this mode, the clocks of the core, peripherals and memories are stopped. 

However, the core, peripherals and memories power supplies are still powered. 

From this mode, a fast start-up is available. 

 Sleep mode: The purpose of sleep mode is to optimise power consumption of the 

device versus response time. In this mode, only the core clock is stopped. The 

peripheral clocks can be enabled (Atmel Corporation, 2009). 

4.3. Proposed OBC architecture 

The OBC architecture is essentially based on the connectivity between subsystems 

within the CubeSat. This simply means that the microcontroller’s peripherals are 

configured according to the data flow within the CubeSat’s computing scheme. A basic  
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Figure 4.2: Basic functional diagram of a CubeSat internal organisation 

functional diagram of the CubeSat’s internal organisation is shown in Figure 4.2 where 

the direction in which data flows and the power distribution network are clearly shown. 

 

Based on the data flow network, the power distribution network and the characteristics of 

the microcontroller, it is possible to establish specifications for the OBC that are 

presented in Table 4.1. They can be summarised in the following points:   

 
 The board size should comply with the PC/104 standard; 

 An operating temperature between -40°C and 85°C should be assumed and every 

component constituting the OBC should be able to operate within this range; 

 An onboard temperature sensor must be available to keep track of temperature 

changes onboard the OBC; 

 A regulated voltage of 3.3V should be available on the local power bus; 

 An external storage device should be made available in order to store housekeeping 

and telemetry data before transmission to the ground station; 

 The presence of a backup battery is essential in order to evaluate the back-up mode 

for date and time whenever the main power is removed. 
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Table 4.1: General OBC specifications 

Size PC/104 compliant (form factor of 90 x 95 mm) 

Operating temperature Between -40°C and 85°C 

Programming interface JTAG connector or USB2.0 port (in system programming) 

External memory storage media SD/MMC card on 8-bit HSMCI bus 

Over voltage & Current protections  Implemented using MAX4374F 

RTOS compatibility Salvo compatible 

Onboard oscillators 12MHz main crystal and 32kHz low-power for RTC or device clock  

Maximum operating frequency Operates up to 96MHz 

Other peripherals 

2 X USART 

1 X UART 

2 X TWI (I²C) 

1 X SPI 

8 channel 12-bit ADC and 8 channel 10-bit ADC 

1 x Temperature sensor (I²C connected) 

1 x Backup battery 

96 x GPIOs 

 
1 x USB 

Supply line voltage Regulated at 3.3V 

Overall power consumption To be determined.  

 
 An over voltage and current protection should be implemented in order to trip the 

power and reset the OBC in case of a short circuit or instability in voltage levels; 

 A maximumm  number of peripherals should be available in order to facilitate serial 

data communication between the OBC and the other subsystems, sensors and 

possibly actuators. It is important to have serial communication architecture 

available since the data transfer rate to and from the OBC changes from one 

subsystem to another; hence the increase in flexibility. 

The resulting architecture is presented in Figure 4.3 and is a representation of all major 

peripherals necessary for operation and communication of the OBC subsystem.   
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Figure 4.3: Proposed OBC architecture 

4.4. Summary  

The AT91SAM3U4E microcontroller was introduced and presented in terms of its 

processing core, memory capacity, memory access, peripherals, power consumption 

and operating modes.  

 

Following the detailed characterisation of the microcontroller, the internal connectivity 

between the OBC and the different subsystems in terms of data flow and power 

distribution was presented.  

 

Finally, a table listing characteristics according to which the OBC hardware will be 

implemented was presented. 

 

In the upcoming chapter, a walkthrough of the design and implementation processes of 

the OBC hardware will be covered. Details regarding the choice of each major 

component and the implementation of each section of the OBC will be covered and a  

physical PC/104 board layout will be completed and presented.  
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CHAPTER FIVE 
DESIGN AND IMPLEMENTATION 

 

5.1. Introduction 

The flow of data between the OBC and the various subsystems onboard the CubeSat is 

made possible via the microcontroller’s peripherals which were introduced in section 

4.2.3 of Chapter 4. This data flow occurs at various rates depending on the peripheral 

used to individually communicate between the OBC and the other subsystems. The 

AT91SAM3U4E has the advantage of possessing numerous peripherals from which the 

OBC architecture was drawn in Chapter 4.  

 

This chapter covers the detailed design and implementation of the presented OBC 

architecture. Each component of the OBC subsystem is analysed individually and 

schematic diagrams of each subsection are also included. Finally, the PC/104 format 

implementation of the PCB prototype is presented. 

5.2. OBC components 

It is important to list the services that the OBC will be providing in terms of data transfer 

to and from the different CubeSat subsystems. According to Brand (2007), these 

services are very common to CubeSats and can be summarised as follows:  

 

 Providing a low-speed redundant communication bus for information exchange 

between peripherals; 

 Providing a high-speed communication interface for communication to the payload; 

 Performing general housekeeping tasks; 

 Providing the ability to run user processes (ADCS or image processing). 

 

A block diagram showing all different components of the OBC is represented in 

Figure5.1.  
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Figure 5.1: Detailed view of bus connections and OBC main components 

 

This diagram can be broken down into two basic building blocks, notably:  

 The power system block: It supplies a regulated voltage to the OBC and provides 

circuitry for over voltage and overcurrent protection.  

 The peripheral block: It represents all inputs and outputs to and from the 

microcontroller. Each peripheral is assigned to one or more registers and to a base 

address which are respectively configured and called within the execution of the 

program.  

 

The sections to follow cover each block in detail and discuss the hardware 

implementation associated with each section of the OBC. 
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5.2.1. Power system block 

The CubeSat architecture provides an external regulated DC bus voltage from the EPS 

subsystem which supplies all other subsystems including the OBC. This voltage varies 

between 8V and 15V depending on how charged the batteries are. It is necessary for 

each subsystem to have its own and independent voltage regulation and protection in 

order to operate within the required range and to distribute the power according to the 

provided power budget.  

 

The power system block of the proposed OBC is divided into two sections, namely the 

voltage regulation and the overcurrent protection. 

 

Voltage regulation 
 

The AT91SAM3U4E microcontroller has a total of 8 supply points, each serving a 

particular function. These supply points are presented in Table 5.1 which provides a 

function and typical voltage levels for each one of them. 

 

The internal voltage regulator has a nominal output voltage of 1.8V that appears at the 

VDDOUT pin. This voltage is used uniquely to power the core through the VDDCORE 

pin and the phase locked loop (PLL) through the VDDPLL pin. VDDIN is the input to the 

internal regulator. The additional supply points have input voltages that fall within the 

specified value of 3V. These are VDDUTMI, VDDANA and VDDIO. VDDBU can be 

powered by the same line or alternatively, by a backup battery. This supply point is 

necessary when running the microcontroller in backup mode (Atmel Corporation, 2009). 

The different modes of operation will be covered in the upcoming chapter. 

 

The LM117 series of low dropout voltage regulators from National Semiconductor 

Corporation provides a range of fixed voltage outputs including 3.3V and 5V. It was 

selected to be implemented in the design as the regulating device due to the multiple 

features it presents, notably: 

 

 A maximum output current of 800mA;  

 An operating temperature range between -40° C and 125°C;  
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Table 5.1: Supply points on the AT91SAM3U4E 

Pin Name Function Typical voltage 

VDDCORE Powers the core, embedded 
memories and peripherals. 

1.62V to 1.95V 

VDDIO Powers peripherals I/O lines. 1.62V. to 3.6V 

VDDIN Powers internal voltage 
regulator. 

3V to 5V 

VDDOUT Output of internal voltage 
regulator. 

1.8V(V out) 

VDDBU Powers the slow clock 
oscillator. Needs to be 
supplied at the same time as 
VDDIO and VDDCORE. 

1.6V to 3.6V 

VDDPLL Powers the programmable 
PLL and UPLL as well as the 
3-20MHz oscillator. 

1.62V to 1.95V 

VDDUTMI Powers the UTMI. 3.0V to 3.6V 

VDDANA Powers the ADC cells. 2.4V to 3.6V 

 
 

 An optional current limiting and thermal shutdown feature;  

 Availability in SOT-223 package; 

 0.2% line regulation and 0.4% load regulation (National Semiconductor Corporation, 

2006). 

 

An LM117 3.3V regulator placed at the input line is used to supply the voltage needed at 

VDDUTMI, VDDANA and VDDIO. In addition, a 5V regulator inserted in parallel with the 

bus voltage input is present in order to give the possibility to select the ADC reference 

voltage (ADVREF) between 2.5V and 3V. An LM4040 shunt voltage reference which 

uses Zeener regulation is used to attenuate and regulate the 5V output down to 2.5V 

which can be selected as ADVREF (National Semiconductor Corporation, 2000). The 

ADC is discussed in a further section of this chapter. 

  

A schematic of the voltage regulation section and the reference voltage input to the ADC 

is shown in Figure 5.2 where U2 and U3 represent the LM117 voltage regulators. 

Table 5.2: Jumper arrangement for ADCVREF 

Connector ID Pins 1-2 Pins 2-3 Pins 1-3 

P6 ADC 10-Bit @ 2.5Vref ADC 10-Bit @ 3.3Vref N/A 

P7 ADC 12-Bit @ 2.5Vref ADC 12-Bit @ 3.3Vref N/A 

 



50 
 

IN
1

2

OUT
3

ADJ

U2

LM1117H

IN
1

2
OUT

3

ADJ

U3

LM1117H

+6V

GND

+5VDC

+6V +3V3

GND

+3V3 +5VDC

4.7K

R7

D1

GND

1
2
3

P6

MHDR1X3

1
2
3

P7

MHDR1X3

GND

GND

ADVREF

AD12BVREF

100uF

C3

100nF

C4

100nF

C9

100uF

C8

100nF

C16

100nF

C19

 

Figure 5.2: Voltage regulation and ADVREF selection 

 
P6 and P7 are selection jumpers that set ADVREF either to 3.3V or to 2.5V for both the 

10-bit and the 12-bit ADC channels according to Table 5.2. D1 represents the LM4040 

shunt voltage reference forming a voltage divider with resistor R7. The capacitors are 

used for decoupling the supply line. 

 
Overcurrent protection 

 
In case of a surge in current which may occur in the event of an onboard short circuit, it 

is necessary to implement a protecting circuitry on the OBC. Out of many techniques 

used, the high-side current sense principle was decided upon, where a shunt resistor 

commonly known as the sense resistor, is connected in series with the supply line and a 

voltage measurement is taken across it, which is directly proportional to the current 

flowing in the circuit. This choice is highly motivated by the advantages it presents when 

compared to its low-side current sense counterpart: 

 

 The load is directly connected to ground;  

 The load is directly protected and cannot be activated by an accidental short at 

power connection;  

 In case of a short-circuit occurrence, the high load current can be detected (Maxim 

Integrated Products, 2001).  

 

The MAX4374 from Maxim Integrated Products is chosen to accomplish this task. It is a 

low-cost and micro-power high-side current sense IC equipped with an amplifier, an  
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Figure 5.3: Functional block diagram of Max4374                                               
(Maxim Integrated Products, 2000) 

internal bandgap voltage reference and a comparator with a latching output to monitor 

the rail voltage supply line and shut it down without any oscillation through the 

comparator. The functional block diagram setup of the MAX4374 is shown in Figure 5.3. 

The maximum current to the load is determined by the value of the sense resistor 

RSENSE. The voltage drop across RSENSE represents the differential input to the current 

sense amplifier and should not exceed the maximum value of 300mV. 

 

Three variations of the IC are available. Their difference lies in the value of the gain of 

the current-sense amplifier: MAX4374T (Gain: 20V/V), MAX4374F (Gain: 50V/V) and 

MAX4374H (Gain: 100V/V).  

 

An internal comparator is used to compare the output voltage of the current-sense 

amplifier to a 0.6V bandgap reference. R1 and R2 are used as a voltage divider to 

ensure an input voltage at CIN1 in the order of 0.6V or less which will give a negative 

output at COUT1. This is an open collector output which requires a pull-up resistor (R3 in 

this case) in order to raise the output voltage when the internal transistor is turned off. In 

case an overcurrent condition occurs, the output  
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Figure 5.4: MAX4373 overcurrent protection circuit                                                
(Maxim Integrated Products, 2000) 

 

voltage of the current-sense amplifier after the voltage divider will exceed the 0.6V limit 

at CIN1 and the comparator’s output will toggle from a negative to a positive state. 

 

Figure 5.4 shows the high-side current sense technique implemented around the 

MAX4374. The circuit arrangement shows the voltage source connected to the supply 

rail and the gate of a p-channel MOSFET connected to the output of the comparator of 

the MAX4374. Initially, the MOSFET will be in its ON state which closes the path of the 

current flow from the source to the load. In this condition, RSENSE will provide a means of 

measuring the current as discussed.  

 

As soon as an overcurrent condition is detected, the following sequence of events will 

happen: 

 

 The output of the comparator will switch from a negative to a positive state, 

causing the MOSFET to switch to its OFF state and opening the current path; 

 The load will be disconnected from the supply until a low signal is applied to the 

RESET input which will restore the line by forcing the comparator’s output to a 
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negative state. This will turn the MOSFET back to its ON state and restore the 

supply line to the load (Maxim Integrated Products, 2000).   

 

The SHDN (shutdown) output pin which is available on the AT91SAM3U4E will output a 

low level signal whenever the microcontroller is configured to run in backup mode. When 

running in this mode, the main supply to the processing core is disconnected and only 

the backup battery supplies the slow clock oscillators through VDDBU. The high-side 

current sense circuitry is placed in series with the output of the 3V regulator and the 

SHDN pin is used to reset the supply line. This lets the MAX4374 perform a double 

action: current sensing and supply shutdown. The schematic design of the overcurrent 

circuit is shown in Figure 5.5. The circuit was simulated using Linear Technology’s 

LTspice circuit simulator and values of passive components were based on an estimated 

line current of 500mA. The calculations and the simulation results are presented and 

discussed in Appendix B. 

  

 

 Figure 5.5: Overcurrent protection circuit schematic 
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5.2.2. JTAG  

The JTAG port provides access to the internal core architecture of the microcontroller. Its 

major function is to allow real-time debugging of the OBC hardware and software. Once 

a program has been written, compiled and downloaded on the AT91SAM3U4E, single or 

multi-steps through the code can be performed during runtime. 

 

The boundary scan principle is used where external subsystems and connecting points 

(I/Os) can individually be toggled to check the functionality of the microcontroller. 

Breakpoints can be set within the code to verify the state or contents of a particular 

address and timing can be made accurate in the same way (Catsoulis, 2005). The JTAG 

port consists of five signal lines, each performing a dedicated function as indicated in 

Table 5.3.  

 

The AT91SAM3U4E microcontroller supports JTAG and a standard 20-pin connector is 

used to connect the microcontroller to an emulator (in-circuit emulator or ICE) for 

programming and debugging purposes. The schematic diagram showing the connection 

from the microcontroller pins to the JTAG connector is presented in Figure 5.6. 

 

Resistors R1 through R5 are used as pull up resistors. They are required to avoid a 

floating state on the signal lines since the JTAG input and output pins have an open 

collector internal configuration. C1 and C2 are decoupling capacitors.  

Table 5.3: JTAG signal lines and functions (Catsoulis, 2005). 

Pin ID Name Function 

TCK Test 
Clock 

Synchronises the initial state machine 
operations. 

TMS Test 
Mode 
State 

Sampled at the rising edge of TCK to 
determine the next state. 

TDI Test Data 
In 

Represents the data shifted into the device’s 
test or programming logic. Samples occur at 
the rising edge of TCK when the internal state 
machine is in the correct state. 

TDO Test Data 
Out 

Represents the data shifted out of the 
device’s test or programming logic and is 
valid on the falling edge of TCK when the 
internal state machine is in the correct state. 

NRST 
or 
TRST 

Test 
Reset 

An optional pin which when available, can 
reset the TAP controller’s state machine. 
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Figure 5.6: JTAG header connection circuit schematic 

5.2.3. UART and USART 

The need for serial exchange of data in a CubeSat represents a major requirement. This 

type of transmission allows for one bit to be transmitted or received at a time between 

two devices and involves the transfer of data over a single wire for each direction.  The 

general operation of serial interfaces consists of converting parallel data from a 

microcontroller to a serial bit stream and vice versa (Catsoulis, 2005).  

 

The UART and USART are both transmissions of a serial type. Asynchronous 

transmission implies that both the transmitter and the receiver have individual local clock 

signals which are determined before the start of the communication as opposed to 

synchronous, where the transmission is synchronised on both receiving and transmitting 

ends by means of a common clock. 

 

As their names imply, a USART is capable of both synchronous and asynchronous 

communication as opposed to a UART which can only perform asynchronous 

communication. They are capable of data transfers at rates in the ranges between 2400 

and 115200 bits per second. 
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Figure 5.7: Data flow of UART/USART (Catsoulis, 2005) 

 

In a CubeSat architecture, the UART and USART lines enable the data exchange 

between the OBC and the telecommunication subsystem via a set of modems, hence 

enabling the downlink and uplink of telemetry or telecommands to or from Earth (Brand, 

2007).  

 

The diagram in Figure 5.7 represents the flow of data in a UART/USART interface. Two 

sections can be identified: 

 

 The transmitter (TX) which converts parallel data from the microcontroller into a 

serial form for transmission. It is a parallel-to-serial converter with a shift-register 

loaded in parallel and shifting out each bit sequentially on each pulse of the serial 

clock. 

 

 The receiver (RX) which converts a serial bit stream from external subsystems to 

parallel data for the microprocessor. It accepts a serial bit stream and loads it into 

a shift register which is read out in parallel by the microcontroller (Catsoulis, 2005).  

 

The UART and USART mode of communication transfers data in blocks of bits (usually  

8 bits), also called frames, which are user-configurable in terms of contents. The USART 

can operate in both synchronous and asynchronous modes, depending on the 

application (Eady, 2004).  
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The AT91SAM3U4E has a total of four USARTs and one UART which are incorporated 

on-chip. The RS-232 interface standard for serial communication is generally adopted for 

UART and USART transmission in microcontrollers. It is an unbalanced interface which 

means that the voltage level of a data bit being transmitted is referenced to a local 

ground. The interface is negatively active, meaning that a logic high falls in the range of  

-5V to -15V (typically -12V), and a logic low falls between +5V and +15V (typically 

+12V). These logic voltage levels differ from one system to another and transistor-

transistor-logic (TTL) is often used as a standard. In order to implement the RS-232 

interface on the OBC subsystem, level shifters need to be incorporated.   

 

The MAX3232 is an IC from Maxim Integrated Circuit that acts as a charge-pump based 

voltage generator in order to reach the -12V and +12V required for bit reading in a 

normal RS-232 transmission (Catsoulis, 2005). It is done with no additional external 

voltage regulator but only by connecting pump capacitors as shown in Figure 5.8.  

 

A more detailed section of the datasheet of the MAX3232 can be found in Appendix C 

where typical values for the charge pump capacitors are given.  The serial to parallel and 

parallel to serial conversions are done within the microcontroller by the on-chip UART 

and USART converters. In order to add flexibility to the OBC architecture being 

developed, a total of two USARTs and one UART were implemented in the design in 

case more than one serial communication line is required using these protocols.  

 

 

Figure 5.8: MAX3232 setup with DB9 interface to AT91SAM3U4E 
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5.2.4. Universal Serial Bus (USB) 

The AT91SAM3U4E microcontroller embeds an integrated USB2.0 Transceiver 

Macrocell Interface (UTMI) device, allowing faster serial upload and download of data 

when needed and, hence, saving space in the implementation. The presence of a high 

speed peripheral bridge in the architecture makes it possible to reach serial data transfer 

rates up to 480 Mbps which is qualified as high-speed transfer (Universal Serial Bus 

Specification Revision 2.0, 2000).  

 

The USB device is associated with a PLL which is used as a frequency synthesiser, 

giving the ability to run the UTMI at a frequency multiple of the main oscillator (Chenakin, 

2010). Besides the JTAG interface, the AT91SAM3U4E’s internal architecture can be 

accessed using in-system programming (ISP) via the USB port.  The microcontroller 

embeds 16kB of ROM of which half is allocated to the smart Smart ARM Microcontroller-

Boot Assistant (SAM-BA). This method allows for fast and secure memory programming 

and can be used as an alternative to JTAG programming. In this instance, the host 

computer which should be running the SAMBA graphical user interfaces, can display 

memory and peripherals contents but does not include a debugging option available 

(Atmel Corporation, 2006). 

 

A type B USB port is used on the OBC board and the schematic diagram is shown in 

Figure 5.9. Resistors R16 and R17 form a 90 Ω differential impedance with the 5 Ω 

output impedance of the high-speed channel drivers. Plug-in detection is implemented 

by the divider bridge made by R18 and R19 from VBUS (5V) which is lowered to the 

required value of 3.3V. C37 and C38 are bypass capacitors.  

5.2.5. Two wire interface (TWI) 

The TWI, also known as I²C, is a half-duplex, synchronous, multi-master bus which was 

developed by Philips Semiconductors to provide communications link between multiple 

integrated circuits (ICs). An on-chip interface is embedded in every TWI compatible 

device, allowing data transfers to occur (Philips Semiconductors, 2003). The bus only 

requires two bi-directional signal lines: 
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Figure 5.9: USB connection schematic diagram 

 
 

 Serial Data (SDA): used to transfer data between the master and the slave(s); 

 Serial Clock (SCL): provides a synchronous clock between the master and the 

slave(s). 

 

The SDA and SCL lines are pulled to logic high by means of pull-up resistors and are 

controlled by the master IC which will normally be the microcontroller, via open-drain 

drivers. More than one slave device can be connected to the bus and the master IC 

initiates communication and provides the clock signal (SCL) and transfer rates of up to 

400kbps can be reached. Each device on the bus including the master is identified by an 

individual 7-bit or 10-bit address which enables the line for the specified slave and the 

data transfer is based on an 8-bit (1 byte) sequence (Philips Semiconductors, 2003).  

 

Two TWI are provided with the AT91SAM3U4E. In order to prove functionality of the bus, 

it was decided to establish communication with a TWI compatible device.  The MCP9800 

temperature sensor from Microchip® is an integrated TWI sensor which meets the 

hardware requirements of the OBC and was chosen to accomplish two functions: 
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Table 5.4: MCP9800 features 

Characteristic Value 

Operating voltage 2.7V to 5.5V 

Operating current 200μA 

Accuracy User selectable resolution between 9 and 12-bit 

Temperature range -55°C to 125°C 

Device slave address 0b100100 

 
 Monitor the OBC onboard temperature; 

 Evaluate the TWI on the AT91SAM3U4E microcontroller. 

  

Table 5.4 gives its specifications in more detail (Microchip Technology Inc, 2010).  In 

addition to the SDA and SCL lines, the MCP9800 has an alert pin which outputs an alert 

signal when the ambient temperature goes beyond a user-programmed temperature 

limit. As for any TWI communication, a standard process is followed to accomplish a 

data transfer: 

 
 

 The master generates a start condition (S) to initiate data transfer;  

 The master sends the 7-bit slave device address with a read or write bit on the bus 

to identify which operation will be conducted;  

 The  addressed slave device sends an acknowledge (ACK) bit to the master to 

confirm the reception of the previous byte if a write operation was selected, 

otherwise the master sends an ACK signal to the slave in case of a read operation;  

 The byte to be transferred is loaded onto the bus and sent or received by the 

master or the slave and for each byte transferred, an ACK bit is sent from the slave 

to the master or vice versa;  

 The communication is terminated by a stop (P) condition generated by the master 

(Philips Semiconductors, 2003). 

 

This process is illustrated in Figure 5.10 for a read operation during which the master 

must also signal an end of data to the slave by generating a “not ACK” bit (NAK). This 

allows the slave device to release the data line in order for the master to generate the 

stop condition.   
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Figure 5.10: Read operation from MCP9800 to master IC  

(Philips Semiconductors, 2003) 

 
The MCP9800 is made of four registers that can be configured by the user for a specific 

operation:  

 

 The ambient temperature register (TA); 

 The temperature limit-set register (TSET );  

 The temperature hysteresis register (THYST );  

 The device configuration register (CONFIG). 

 

Each register is set independently and is accessed by sending an 8-bit register pointer to 

the device which has to initially be configured for a write operation. Only the two least 

significant bits (LSB) are used to select the register and the other bits have to be 

cleared. Each register’s function is elaborated in Table 5.5 and register pointer bits 

associated with them are also shown.  

 

One of the two available TWI buses on the AT91SAM3U4E was used to connect the 

MCP9800 as illustrated in the schematic diagram shown in Figure 5.11. The alert pin 

previously mentioned connects to a GPIO configured as an input to acknowledge the 

alert signal in case the ambient temperature drifts from a preset threshold value. The 

resolution of the ADC is set in the configuration register. The device is factory calibrated 

with a 9-bit resolution.  
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Table 5.5: MCP9800 registers description and functions 

Register Attribute Function Pointer 
bits 

Size 

Temperature register (TA) Read only Access the ambient temperature. 
ADC data is loaded in parallel in 
this register. 

0b00 16-bit; only uses 9 to 
12-bit data in two’s 
compliment. 

Temperature limit-set register 
(TSET) 

Read/Write Provides user-programmable 
temperature limit. 

0b01 16-bit; only uses the 9 
MSBs. 

Temperature hysteresis 
register (THYST) 

Read/Write Provides user-programmable 
hysteresis. 

0b10 16-bit; only uses the 9 
MSBs. 

Configuration register 
(CONFIG) 

Read/Write Provides user- access to the 
device’s different features. 

0b11 8-bit; each bit sets a 
feature. 

 
 

 

 

 

 

 

Figure 5.11: MCP9800 TWI temperature sensor schematic diagram 
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At power up, the ambient temperature is set to 0°C, the temperature limit is set to 80°C 

and the hysteresis is set to 75°C. Additional settings associated to each one of the 

register can be found in the device’s data sheet which is provided in Appendix C.  

5.2.6. Serial peripheral interface (SPI) 

The AT91SAM3U4E also provides for an SPI data bus which will add to the features and 

flexibility of the OBC in terms of serial data transfer. This bus is also known as four wire 

interface and can be used to interface the microcontroller with external memory modules 

amongst other devices, such as LCD drivers, audio chips sensors, and other processors 

(Catsoulis, 2005). 

 

The SPI transmission is a synchronous protocol where all transmissions are referenced 

to a common clock generated by the processor which is identified as the master. The 

receiving peripheral is known as the slave and makes use of the same clock signal to 

synchronise the acquisition of the serial bit stream of data. One master can connect to 

several slave devices on the same bus and unlike the TWI, the slave device is not 

identified by pointing at its own address but instead an assertion is made to the slave’s 

chip select input. Four data lines can be found on an SPI device as shown in Figure 

5.12: 

 

 Master in slave out (MISO): This is a serial data stream generated by the master 

and received by the slave during a write operation; 

 Master out slave in (MOSI): This is a serial data stream generated by the slave and 

received by the master during a read operation; 

 Serial clock (SCLK or SCK): This signal synchronises data transfer between the 

master and the slave devices; 

 Chip select (CS): This line is driven by using a spare I/O pin from the master which 

makes the selected slave active on the bus (Maxim Integrated Products, 2007). 

 

The operating principle is based on the shift registers exchange principle where the 

master starts a byte transfer by writing it to its shift register and as the register transmits 

the byte to the slave on the MOSI line, the slave transfers the contents of its shift register 

back to the master on the MISO line, making it a simultaneous read and write operation. 
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Figure 5.12: Basic master-slave SPI configuration 

 

In case a read operation is to be performed, a dummy byte is transferred from the 

master in order to initiate a slave transmission and similarly, for a write operation, the 

master will ignore the bytes it receives and only empty out its register (Catsoulis, 2005).  

 

In previous OBC designs, SPI was mainly used for interfacing the memory module with 

the microcontroller. The AT91SAM3U4E provides a 16-bit wide external bus interface 

(EBI) as well as an 8-bit wide high speed multimedia card interface (HSMCI) to directly 

interface memory modules with the microcontroller. This allows the SPI to be reserved  

for other purposes. The SPI lines will run directly from the microcontroller to the header 

pins of the OBC to make them available for future use.  

 

A total of four chip select lines equipped with external decoder support permit 

communication with a total of 15 peripherals at a time. The interface is reconfigurable 

(microcontroller as master or slave) and the bus interface has a data length of 8 to 16-bit 

programmable per chip select.  

   

5.2.7. SD/MMC Card 

The memory module in the CubeSat architecture is generally associated with the OBC 

and according to Hidayat (2010), it serves two major functions: 

 Recording and storing housekeeping parameters and payload data for 

downlinking; 

 Storing flight software updates from the uplink channel. 
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The choice for the SD/MMC solution over a memory chip is highly motivated by the 

presence of an EBI on the AT91SAM3U4E microcontroller. The SD/MMC solution is an 

integrated flash-based removable memory card with serial and random access 

capability. Its reliability in terms of security, performance and capacity has proven to be 

efficient in many handheld devices and its bus interface which can easily be integrated in 

any design, has been adapted to work with most microcontrollers on the market 

(SANDISK Corporation, 2003).  

 

Two alternative protocols can be used for communication at a variable clock rate:  

 SPI mode: As described in section 5.2.6 of this chapter, this interface provides a 

serial synchronous bus capable of interfacing a host controller (master) with 

several selectable slave devices with four data lines (CLK, CS, MOSI and MISO); 

 SD mode: This mode is based on command and data bit streams initiated by a 

start bit and terminated by a stop bit, and a dynamic configuration of the number of 

data lines from 1 to 4 bi-directional parallel data signals (Kingmax Digital Inc., 

2000). 

 

Preference for the transmission mode was given to SD mode which proved to be much 

faster (parallel data transmission). In addition to speed, the SD mode allows full support 

for wait states, hence eliminating the need for continuous polling which consequently 

increases power consumption. A block diagram of the SD/MMC’s internal structure is 

shown in Figure 5.13 and each pin is described in Table 5.6 for the SD mode (SANDISK 

Corporation, 2003). 

Table 5.6: Signal description on SD card pins in SD mode 

Pin N°  Name Description 

1 CD/DAT[3] Data line 3 

2 CMD Command line 

3 VSS1 Ground 

4 VDD Supply voltage 

5 CLK Clock 

6 VSS2 Ground 

7 DAT[0] Data line 0 

8 DAT[1] Data line 1 or Interrupt 
(optional) 

9 DAT[2] Data line 2 or Read Wait 
(optional) 
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Figure 5.13: SD/MMC Block diagram (Kingmax Digital Inc., 2000) 

 

Once a card is inserted into an SD/MMC socket, the card powers-up and the initialisation 

phase can start. By default, only the DAT[0] line is used for data transfer and after 

initialisation, it is possible for the master microcontroller to change the bus width and use 

additional data lines according to the user’s choice. The clock starts running and the 

initialising sequence can be sent. It consists of a stream of logical ‘1’s on the CMD line 

which is responsible for all commands and response tokens when running in SD mode. 

This is done in order to avoid all possible power-up synchronisation mismatches that 

may occur between the internally generated clock and the host clock. These commands 

are typical read and write operations and sent from the host to the card which, in turn, 

sends a response on the same line before a read/write operation begins on the data 

lines (Kingmax Digital Inc., 2000).  

 

Data transfers to and from the card are always done in multiple blocks to increase 

throughput. Each block of data is always appended with cyclic redundancy check (CRC) 

bits which helps in detecting errors by means of sending a positive or negative 

acknowledgement to the microcontroller whether or not the check bits that were 
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generated on the sending end agree with the data at the receiving end. This way, it is 

possible to detect errors and in case of a negative acknowledgement, a re-read of the 

block of data is initiated until a positive acknowledgement is received (Peterson, 1961).  

 

A basic multiple block write operation is illustrated in Figure 5.14 showing commands 

and response tokens on the CMD line and data blocks and CRC bits on the DAT line. A 

start and stop command on the CMD line are necessary to, respectively, initiate or halt 

operations on the data bus.  

 

The AT91SAM3U4E is equipped with an MMC/MMCPlus high-speed interface capable 

of accommodating a total of 8 data lines (8-bit). For availability reasons, it was decided 

to fall back to a regular 4-bit parallel data bus since the MMCPlus socket was scarce and 

hard to obtain at the time of the design. 

 

The connection from the SD card socket to the microcontroller is done according to the 

schematic diagram shown in Figure 5.15 where two additional pins can be identified:  

 

 Card_Detect (CD): Active-low signal to detect card insertion; 

 SD_Write _Protected (SD_WP): Active low signal indicating write-protection on the 

card. 

 

 

Figure 5.14: Multiple block write operation (SANDISK Corporation, 2003) 
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Figure 5.15: SD Card socket schematic diagram 

 

All data lines are active low and require pull-up resistors to avoid floating signals on the 

lines. Resistors R19 through R25 accomplish this purpose while C35 and C36 are 

decoupling capacitors. The SD/MMC interface is supported by the DMA controller which 

minimises the processor intervention for large buffer transfers by enabling a direct 

interaction between the memory card and the peripheral associated with it. This makes it 

possible to reach data transfer rates of up to 55MHz (Atmel Corporation, 2009).  

5.2.8. Analogue to digital converters 

In order to convert analogue voltage levels from different transducers onboard the 

CubeSat into digital quantities for processing, ADCs are needed. The AT91SAM3U4E 

embeds two 8-channel ADCs: ADC0 and ADC1. They feature an automatic sleep mode 

after conversion on enabled channels and possess multiple hardware and software 

trigger sources to automatically wake up the ADC when a conversion is needed. They 

individually have additional characteristics: 

 

 ADC0: It has a 12-bit resolution and a maximum sample rate of 1 MSps and can 

be reconfigured to 10-bit and 2 MSps, respectively, if need arises. In addition to the 
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high resolution and data sampling rate, it is possible to select between a single 

ended or differential input voltage mode and the reference voltage is externally set 

for better accuracy on low input voltages. 

 ADC1: It has a 10-bit resolution and a maximum sample rate of 460 KSps, also 

reconfigurable to 8-bit at 660 KSps respectively. It only gives ability to perform 

single ended voltage measurement and its reference voltage is also set externally 

(Atmel Corporation, 2009).   

 

The ADC has a set of 13 registers, each performing a specific function on each channel. 

By setting the analogue control register bits, it is possible to configure an ADC channel’s 

parameters (gain, operating mode, input offset and bias current control) depending on 

the ADC application. There is also a set of registers available which allow to enable or 

disable unused ADC channels and to provide interrupt handling (Atmel Corporation, 

2009). 

5.2.9. Timer/ counter (TC)  

In their basic form, timers are counters that increment or decrement based on a clock 

cycle and a pre-scaler (clock divider). The advantage of using a timer lies in the fact that 

the clock input and the operation of the timer are totally independent of the running 

program. The resolution (Res) associated with a timer corresponds to the maximum 

value the timer can reach (Max_Val_Cnt) and is calculated by the following formula: 

 

     Max_Val_Cnt =2Res - 1                                           (1) 
 
 

When the maximum value is reached, an overflow occurs and the counter is reset to 

zero. A flag in the status register is set and can be used to trigger an event or set an 

interrupt. It is possible to pre-load the counter with a value in order to reach the overflow 

status earlier than the maximum count and hence, shortening the cycle and making it 

possible to generate different time intervals. Timers can be configured to count up or 

down (Atmel Corporation, 2002). 

 

The AT91SAM3U4E has a total of three timer-counter (TC) channels, each with a 

resolution of 16-bit which according to equation (1) makes their maximum count: 

 



70 
 

      Max_Val_Cnt = 216 - 1  

           =65535                                           (2) 

Each channel is user-configurable in terms of the pre-scaler value and can be 

synchronised to either the internal clock (five inputs available) or the external clock 

(three inputs available). The main advantage of having multiple timers is to give flexibility 

between applications. These timers can be used in a range of functions including 

frequency and interval measurement, pulse width modulation, pulse or signal generation 

and delay timing (Atmel Corporation, 2009).  

 

In CubeSat applications, timers are ideal to use since synchronisation between different 

subsystems can occur at different times intervals which can be generated by the timers 

at different frequencies and with different pre-scaler values.   

5.2.10. Pulse width modulation (PWM)  

PWM is a technique used in analogue speed control of actuators. It can be defined as  a 

way of digitally encoding analogue signal levels. This modulation technique generates 

variable width pulses which represent the amplitude of an analogue input signal. By 

using the timer counters previously discussed to generate triangular signals, it is 

possible to alter the duty cycle of the square wave according to a specific analogue 

signal (Barr, 2001).  

 

The AT91SAM3U4E embeds an on-chip PWM controller with 4 channels, each using 

one of the 16-bit TCs. Each channel is independently programmable and can also run in 

synchronous channel mode where the same TC is shared (Atmel Corporation, 2009).  

 

In order to generate a PWM sequence on an output, it is necessary to follow these 

general steps: 

 

 Set the period of the timer providing the modulating square wave;  

 Set the on-time of the pulse in the control register; 

 Select the output (direction) of the PWM; 

 Start the timer; 

 Enable the PWM controller (Barr, 2001). 
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The main advantage of using the PWM technique to control actuators in CubeSats 

applications is that the output signal remains digital, which means that it is either a ‘1’ or 

a ‘0’ that is being sent, hence  minimising the noise and radiation effects which could be 

devastating in case of analogue signal transmission to a load. The PWM signal can be 

used to precisely control magnetorquer rods or servo motors in the ADCS subsystem of 

a CubeSat (Wertz & Larson, 2008).  

5.2.11. I/O peripheral set 

Each of the previously mentioned embedded peripherals of the AT91SAM3U4E 

microcontroller belong to an I/O set which is controlled by three 32-bit parallel 

input/output (PIO) controllers: PIOA, PIOB and PIOC. Each controller is fully 

programmable through individual registers and each I/O line is multiplexed for two 

peripheral functions (A and B) besides being used as a GPIO.  

 

An internal programmable 100kΩ pull up resistor is present on every I/O line and can be 

managed by the PIO controllers. After power-up, all the I/O lines are inputs by default 

and pull-up resistors are enabled. Appendix C.3 gives a detailed table of all three PIO 

controllers and each I/O line as well as their respective peripheral functions (Atmel 

Corporation, 2009).  

5.3. PCB integration 

The transfer from schematics to PCB was made possible by the electronic computer 

aided design (ECAD) software called Altium Designer. This software package works on 

a unified approach which allows importing schematic designs directly onto PCB design 

and also allows a visualisation in 3D. The components libraries are available per 

manufacturers and custom defined component libraries can also be added when 

required.  

 

A double sided board with two layers was preferred for the OBC design due to the ease 

of access presented to both the power and the ground tracks. This approach also 

minimises the overall amount of through-holes on the board and saves a large amount of 

space, making it possible to fit all the components on the physical space provided.  
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In addition to the number of layers to be used, it was decided to place all ICs and active 

components on the top layer in order to make direct connections to the microcontroller 

and use the bottom layer strictly for passive components such as resistors and filtering 

capacitors. The AT91SAM3U4E microcontroller which comes in a 144 pin QFP package 

represents the main component on the board and was placed in the centre of the top 

layer.  

 

As recommended by Schmitz and Wong (2007), it is important to place all bypass 

capacitors for the microcontroller on the bottom layer directly under it and as close as 

possible to each supply pin. This is done to ensure steadiness of each supply pin which 

can easily be driven to an unstable state due to fast switching signals around those pins. 

The line inductance and series resistance which are proportional to the length of the 

conducting track are reduced and the voltage delivered is cleaner and steady.  

 

The power block is placed at the bottom left corner of the top layer to facilitate the 

distribution of the power bus. For power consumption measurement purposes, a number 

of removable jumpers are made available to measure the power drawn by the core in 

different power mode configurations. An additional jumper is available to bypass the 

overcurrent protection circuitry and run the OBC directly from the main power supply.  

 

The SD card socket can be found on the bottom layer of the board at the top right corner 

in order to facilitate insertion of the card as well as routing of the data bus from the 

microcontroller. Other connectors include the header pins, the USB socket, the JTAG 

interface and the battery holder. These are strategically placed on the different sides 

around the PCB to facilitate access to their respective peripherals.  

 

The routing of the PCB was done using different track widths for data and address bus 

tracks (0.2mm), for interconnecting tracks (0.5mm) and for power and ground tracks 

(1mm) as shown in Figure 5.14.  
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Figure 5.16: Close up of power/ground and data tracks on PCB 

 

A solid copper polygon pour was placed over both the top and bottom layer with a net 

connection to the ground plane in order to reduce the chances of potential 

electromagnetic interference. 

 

The complete schematic of the OBC can be found in Appendix D which also contains 

views of the top and bottom layers during the design phase and after the components 

were populated on the physical PC/104 board.  

5.4. Summary 

General specifications of the OBC were highlighted according to the characteristics of 

the chosen microcontroller which were presented in Chapter 4. An overview of the OBC 

subsystem was presented, showing every component associated to it.  

 

The power system block was presented and analysed. The MAX4374 was selected as 

the active device for this section of the OBC and its operations were investigated.  

 

Peripherals and interfaces of the microcontroller to be implemented on the OBC were 

presented in terms of performance and possible application on a CubeSat platform. 

When applicable, operating procedures were provided in addition to detailed schematic 

diagrams. 
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Finally, the PCB implementation of the design was presented and the placement of 

components on the PC/104 form factor board was justified.  

 

In the upcoming chapter, a series of tests will be conducted in order to evaluate the 

designed prototype. These tests will essentially be based on the functionality of some 

peripherals and features of the OBC. 
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CHAPTER SIX 
DESIGN VERIFICATION 

6.1. Introduction 

In order to validate the OBC design, each feature that was implemented in the 

architecture needs to be tested for functionality. It is mandatory to provide an 

experimental setup to gather data from each test and to be able to evaluate and 

troubleshoot the hardware whenever it is necessary. For each test, the microcontroller is 

loaded with a program which is written and compiled with the aid of an integrated 

development environment (IDE) tool. The program is written in a high level programming 

language (C or C++).  

 

This chapter presents the experimental setup and the IDE which was adopted in order to 

conduct the tests. The results of each test are also presented. 

6.2. Experimental setup 

The proposed experimental setup in order to evaluate the OBC is presented in Figure 

6.1. A personal computer running Windows® XP provides an interface to the OBC to 

simulate the communication with other subsystems. It is also used as a running platform 

for the interactive user interface and software necessary to provide the code to program 

the microcontroller. IAR’s Embedded Workbench for ARM (EWARM12) was the chosen 

IDE to program the microcontroller. This software incorporates chip-specific optimising 

capabilities and integrates the necessary tools for embedded hardware and software 

development which are:  

 

 A C/C++ compiler and an assembler;  

 A linker;  

 A text editor;  

 A librarian and a project manager; 

 A high-level language debugger (C-SPY®) (IAR Systems, 2007).  

                                                 
12 See http://www.iar.com/en/Products/IAR-Embedded-Workbench/ARM/ 
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Figure 6.1: Experimental setup 

 

The choice for IAR EWARM was highly motivated by the advantages it presents when 

compared to other IDEs. The following attributes justify this choice: 

 

 A modular and extensible IDE with powerful project management component 

allowing more than one active project in one session; 

 Extensive ARM-core devices technical support; 
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 Support for Thumb®1 and Thumb®2 instructions sets; 

 Available C-SPY driver for JTAG target system; 

 RTOS support by C-SPY debugger (including Salvo); 

 An unlimited number of breakpoints in flash memory with interrupt visualisation 

when debugging; 

 A powerful macro assembler with built-in C language pre-processor; 

 ISO/ANSI C and C++ libraries with full source included with listing of entry points 

and symbolic information (IAR Systems, 2007).  

 

The debugging and downloading interfaces between the PC and the OBC are 

implemented using the SAM-In circuit emulator (SAM-ICE). This emulator is designed by 

Atmel for use exclusively with AT91ARM cores of which the Cortex M3 is a close 

implementation. It has a JTAG connector integrated with a 20-pin connection compatible 

with the one offered by the OBC’s AT91SAM3U4E microcontroller interface. By 

emulating the microcontroller, the ICE allows one to access, examine and change the 

contents of the registers, memory and I/Os of the targeted microcontroller after 

programming. Similarly, it is possible to stop the program at precise locations or at given 

conditions and observe the state of internal registers at that particular point in the code, 

hence making the software development less time consuming (Ganssle, 1999).  

 

As stated in section 4.3 of Chapter 4, serial communication is of high importance in a 

CubeSat. In order to simulate data transmission from the OBC (CubeSat) to the ground 

station, a UART link is established between the OBC and the PC. In a CubeSat, the 

UART transmission link is interfaced with a modem which in turn is connected to a 

transmitting or receiving antenna via the transceiver subsystem. The transmission and 

reception simulations are important in order to validate the functionality of the UART and 

USART interfaces by having the board send data packets to the PC and vice-versa. Due 

to the absence of a serial DB9 port on modern PCs, a USB-to-RS232 adapter is used 

between the OBC and the PC, allowing the connection and data transmission to take 

place.  

 

The high-speed USB2.0 device integrated on the AT91SAM3U is capable of serial data 

transfer rates up to 480 Mbps and can also be used in conjunction with the internal ROM 
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for in-series-programming (ISP). A USB connection from the OBC to the host PC is 

enabled by a USB-to-USB cable.  

 

A regulated bench DC power supply is used to supply power to the OBC board with a 

fixed voltage of 8V. Onboard regulators on the OBC regulate this voltage down to 

constant values of 3.3V and 5V.  

 

Digital signals from the OBC are analysed by a digital oscilloscope and the power 

consumption is measured in different operating modes with the help of a digital bench 

multimeter.  

6.3. IAR EWARM Toolchain 

The EWARM modular IDE presents an interface divided into a series of windows 

representing the active workspace as shown in Figure 6.2. A tree representation of the 

active project containing organised library folders for all files associated with the running 

project is accessible through the workspace navigation window (see Figure 6.2)  

 

 

 

Figure 6.2: IAR EWARM IDE main programming interface 

Workspace window 

Editor window 

Tabs

Build window 

Toolbar icons 
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The editor window allows for writing or editing of source files or header files found in the 

workspace navigation window.   

 

The AT91lib directory found in the active project tree is associated with a folder of the 

same name that appends to the project’s working directory path and includes all the 

library files called in the main source file. Three sub-directories can be found in the 

AT91lib folder: boards, peripherals and utilities. Each of these directories contains files 

which accomplish a particular function. 

 

The “boards” sub-directory contains all the header files necessary to configure the 

microcontroller in terms of features, software application programming interface (API) 

definitions, operating frequency and I/O pins definitions. The header file board.h is 

particularly important because it contains all of the definitions and functions for using the 

AT91SAM3U4E-dependant I/O pins and external components interfacing with it. It also 

contains definitions for the operating frequencies, ADC clock frequencies and I/O pins. 

 

An example of frequency definitions for the main oscillator and the 10-bit ADC are as 

follows: 

 
// Frequency of the board main oscillator (in Hz) 
#define BOARD_MAINOSC  12000000 
// ADC clock frequency, at 10-bit resolution (in Hz) 
#define ADC_MAX_CK_10BIT 5000000 

 
The I/O pins definitions follow a different format which associates a pin to a constant 

according to the following convention:  

 PIN_* for a constant defining a single pin instance;  

 PINS_* for a list of pin instances.  

 

An example for the SPI0 MISO pin declaration and the SPI0 pin instances declaration 

will be in the following form: 

 

// SPI0 MISO pin definition (Refer to a single pin) 
#define PIN_SPI0_MISO {1<<13, AT91C_BASE_PIOA, AT91C_ID_PIOA, PIO_PERIPH_A, 
PIO_DEFAULT} 
 
// List of SPI0 pin definitions (MISO, MOSI & SPCK) 
#define PINS_SPI0 PIN_SPI0_MISO, PIN_SPI0_MOSI, PIN_SPI0_SPCK 
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In order to re-assign functions to particular pins, these definitions must be changed 

accordingly.  

 

The “peripherals” sub-directory contains configuration files for peripherals directly 

associated with the running project. The files contained in this location should never be 

changed as they define every function that is necessary to run the associated peripheral.  

 

Finally, the “utility” sub-directory contains three files necessary for configuring output 

methods for reporting debug information, warnings and errors. These files are in no case 

mandatory for the program to be compiled and can be left out but should never be 

modified.  

 

The main source file is located in a folder containing the project’s name. The file is 

accessible through the workspace navigation window and contains local definitions, 

variables and functions to be manipulated through the program.  

6.4. Experimental tests and results 

The points to follow present the series of tests that were conducted on the OBC 

prototyping board. These tests are run on each peripheral that is present on the board. 

Measurements are also made in regard to the power consumption in different modes of 

operation.  

6.4.1. Power considerations 

After the integration of the final prototype, it is necessary to verify the functionality of the 

overcurrent protection circuit in case a short circuit condition arises. The overall power 

consumption figures for the OBC subsystem when running in different power modes 

should also be measured. 

6.4.1.1. Overcurrent protection circuit  

In section 5.2.1 of Chapter 5, details are provided regarding the overcurrent protection 

circuit design around the MAX4374 and Appendix B includes related calculations, 

simulations and results about this section of the OBC.  
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The circuit was physically tested using two resistors connected in a parallel 

configuration, one of which represents the OBC’s load impedance and the other, the 

overload. With an assumption of a total drawn current of 500mA and a line voltage of 

3.3V, the load resistance was calculated to be: 

 

                                                       ܴௗ = 

ூೌೣ

   

                                                                   = 
ଷ.ଷ

.ହ
 

                    =6.6Ω            (3) 

 

A value of 6.8Ω was used for both the load and the overload resistances. The parallel 

resistor configuration implies that a higher current value will be drawn by the load which 

is halved to 3.4Ω. This condition causes the sense resistor to have a higher voltage drop 

across it and the input to the comparator to be above the recommended value of 0.6V.   

 

Initially, the P-channel MOSFET driven by the output of the comparator is switched on, 

allowing power to flow from the power supply to the OBC circuitry through the sense 

resistor. The increase in current caused by the addition of the parallel load causes the 

output of the comparator to go to a high state, hence switching off the MOSFET and 

leaving the power line in an open circuit state. As the output of the comparator changes 

its state, the supply line is disconnected. In order to restore the power to the circuit, an 

incoming pulse from the OBC which now runs in BACKUP mode must trigger the RESET 

input. This is done via the FWUP pin of the AT91SAM3U4E and an N-channel MOSFET 

after removing the overload resistor.  

 

During power off the microcontroller automatically enters the BACKUP mode where the 

onboard backup battery takes over from the rail supply and leaves only the internal slow 

clock oscillator to run. This operation requires a BAT54C Schottky barrier double diode 

which can only conduct one of the two voltage sources at the time to power the internal 

slow clock oscillator.  
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The RESET input of the MAX4374 is directly connected to the FWUP pin of the 

microcontroller which remains active during BACKUP mode. This pin is used to reset 

MAX4374 back to its normal operating mode. 

6.4.1.2. OBC Power consumption 

The different operating modes of the AT91SAM3U4E microcontroller were covered and 

explained in Section 4.2.4 of Chapter 4. In order to draw power consumption figures for 

the OBC in these operating modes, current measurements were taken by inserting a 

digital multimeter in series with the VDDIN input.  

 

During the design phase, an open circuit connection was created by inserting a jumper 

(J-Vin) to break the supply line to facilitate these measurements. Knowing that the 

operating voltage of the OBC is 3.3V and having measured the current drawn by the 

system in different modes, it was possible to draw the overall power consumption figures 

for each mode and the results are presented in Table 6.1. 

6.4.2. Peripherals 

All the peripherals listed in section 5.2 of Chapter 5 had to be tested individually. Test 

codes were written, compiled, downloaded and run on the OBC board for each 

peripheral. These tests and their results are presented in the following section.  

 

6.4.2.1. Digital I/O, timer and UART configuration 

The initial test involves a simple digital control to verify that the board does communicate 

with the PC via its JTAG port and the SAM-ICE. Two user LEDs on the OBC allow to 

visualise a change of state as one LED which is configured as an output, was 

programmed to toggle states at a constant rate.  

 

The UART communication is also enabled and is capable of sending and receiving 

commands to and from the PC every time a change of state occurs. The rate at which 

the LED toggles is set by configuring one of the three timer counters (TC0) in up-

counting mode in order to generate an interrupt every time its value overflows. A 

flowchart of this program is shown in Figure 6.3. 
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Table 6.1: OBC system power consumption in different operating modes 

Operating Mode Current Drawn Power Consumption 

Active mode 286.36mA 944.98mW 

Backup mode 35.97mA (on VDDBU) 118.7mW 

Sleep mode 
(35.42mA at 8MHz) 
Frequency dependant 

116.89mW 

Wait mode 30.25mA 99.82mW 

 
 

 

 

 

 

 

Figure 6.3: Blink and UART program flowchart 
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In order to set the LED as an output pin, a library function is used. This function belongs 

to the led library which is included in the main program and whose functions can be 

found in the utility sub-directory. The LED is configured by calling the following function: 

   

LED_Configure(0); 

 

This function assigns a pin instance to an LED constant in the first position (position ‘0’) 

in a list of LED pin instances located in the header file board.h. 

 

The configuration of timer TC0 is done in four phases occurring sequentially within a 

locally defined function called ConfigureTc: 

 

 The peripheral clock is enabled for TC_0 by using the following statement:  

AT91C_BASE_PMC->PMC_PCER = 1 << AT91C_ID_TC0; 

 

The power management controller (PMC) base address points to the peripheral clock 

enable register PCER and assigns the timer counter 0 (TC0) to it.  

 

 TC0 is then enabled by shifting its register values one bit to the left. TC0 can now be 

configured for a chosen frequency and its value can be compared with Register C of 

the timer counter channel interface to release a trigger signal to indicate that the 

desired frequency has been reached. The three following statements are used: 

  

    TC_FindMckDivisor(4, BOARD_MCK, &div, &tcclks); 

    TC_Configure(AT91C_BASE_TC0, tcclks | AT91C_TC_CPCTRG); 

    AT91C_BASE_TC0->TC_RC = (BOARD_MCK / div) / 1;  

 

The function TC_FindMckDivisor takes four arguments: the desired frequency (4Hz 

in this case), the master clock frequency (defined in board.h), the divisor value and 

the timer counter clock select (TCCLKS)). This function automatically computes the 

best value for a divisor (div) for the clock in order to attain the desired frequency. 

The chosen divisor is guaranteed to satisfy the equation: 
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ൌݍ݁ݎ݂												                                  MCK
ሺdiv	ൈ	65536ሻ																																														  (4) 

where div represents the highest possible value. The TCCLKS is necessary to 

determine the appropriate source for the counter and tell whether it is clocked by an 

internal or an external clock source. 

 

The function TC_Configure configures the timer to operate in RC compare mode. 

This mode allows the timer to generate a trigger which resets the counter whenever 

its count reaches the pre-loaded RC value. The function TC_Configure takes two 

arguments: a pointer to a timer instance (AT91C_BASE_TC0 in this case) and the 

operating mode (tcclks | AT91C_TC_CPCTRG). 

 

In the third statement of the timer configuration phase, the base address of TC0 

points to register C (RC)’s API definition. It is then assigned a value equivalent to the 

desired frequency by using the previously computed value of the variable div.  

 

 The interrupt on TC0 needs to be enabled and configured on occurrence of the RC 

compare trigger since it is disabled and cleared at power-up. This is done by calling 

the following functions: 

IRQ_ConfigureIT(AT91C_ID_TC0, 0, TC0_IrqHandler); 

AT91C_BASE_TC0->TC_IER = AT91C_TC_CPCS; 

IRQ_EnableIT(AT91C_ID_TC0); 

The function IRQ_ConfigureIT is located in the nvic.h header file which contains all 

the methods and definitions for configuring interrupts by using the NVIC. It 

configures an interrupt by taking three arguments into consideration: the interrupt 

source to configure (AT91C_ID_TC0), the pre-emption priority (it is set to ‘0’ in this 

case in order to disable the interrupt vector) and the interrupt handler function 

(TC0_IrqHandler). Next, the timer counter interrupt enable register (TC_IER) is pointed 

to TC0’s base address and is assigned to the RC compare bit (AT91C_TC_CPCS) of the 

TC Channel status register. The two previous statements were mandatory in order 

to enable the incoming interrupt from the unique source of TC0 (AT91C_ID_TC0). 
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 Finally, TC0 can be started, on the condition that the LED is enabled, with the 

following if statement: 

    if (pLedStates[0]) 

    { 

        TC_Start(AT91C_BASE_TC0); 

    } 

 

The function TC_Start enables TC0 and performs a software reset to start the count 

in the condition that the if statement is true. Every time this condition occurs, the 

interrupt is serviced by resetting the RC value in the counter.  

 

The UART configuration is done by calling the following library function: 

 

 TRACE_CONFIGURE(DBGU_STANDARD, 115200, BOARD_MCK);  

 

This function initialises the UART communication and takes three arguments which 

represent, the standard UART operating mode (asynchronous, 8-bit, no parity, 1 stop 

bit), the baud rate and the master clock frequency.  

 

The UART is configured to display the frequency at which the LED toggles and to 

transmit a text: “Blink at x Hz” via the serial port. The Windows Hyperterminal application 

is used to visualise the output on the PC at the rate specified in the UART setup. A 

screen shot of the Hyperterminal window is presented in Figure 6.4 showing the 

continuous message being transmitted every time the LED toggles. 
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Figure 6.4: Blink and UART communication program output 

 

6.4.2.2. 10-bit and 12-bit ADCs 

The two sets of ADCs available on the AT91SAM3U4E are presented in section 5.2.8 of 

Chapter 5. In order to validate the functionality of this peripheral, one ADC channel is 

tested.  

 

An externally connected potentiometer is used on one of the 12-bit ADC channels of the 

OBC (ADC12_CHANNEL_3) and the 3.3V reference is selected in order to vary the input. The 

UART communication is once again used to display a menu which allows varying the 

ADC gain and displaying the exact value of the voltage being sampled. 

 

Figure 6.5 presents a flowchart of the program which is divided into three sections: the 

configuration of the ADC, the configuration of the interrupt with its handler and the 

analogue to digital sampling and conversion. 

 

In the first step of the configuration process, the 12-bit ADC is initialised by calling the 

following function:  
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Figure 6.5: ADC program flowchart 

 

ADC12_Initialize(AT91C_BASE_ADC, AT91C_ID_ADC, AT91C_ADC12B_MR_TRGEN_DIS, 

                 0,AT91C_ADC12B_MR_SLEEP_NORMAL, AT91C_ADC12B_MR_LOWRES_12_BIT, 

                 BOARD_MCK,BOARD_ADC_FREQ, 10, 1200); 

 
This function takes ten arguments which represent the following parameters: a pointer to 

the 12-bit ADC  instance, the software trigger mode, the sleep mode of operation, a 12 

bits resolution, a master clock frequency of 48MHz, a selected ADC frequency, 10us 

startup time and 1.2μs sample and hold time. The ADC channel to be used is enabled in 

the second step of the configuration process by calling a function which refers to channel 

3 of the 12-bit ADC: 
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ADC12_EnableChannel(AT91C_BASE_ADC, ADC12_CHANNEL_3); 

 

A software interrupt is then configured and enabled for channel 3 of the 12-bit ADC. The 

interrupt handling function will set a flag variable which will indicate that the analogue to 

digital conversion has ended. As for the previous program, the configuration of the 

interrupt is done by calling the following function: 

 

IRQ_ConfigureIT(AT91C_ID_ADC, 0, ADCC0_IrqHandler); 

 

The interrupt source to configure is AT91C_ID_ADC and the pre-emption priority is set to ‘0’. 

The interrupt handler is the function ADCC0_IrqHandler which is defined as follows: 

 

void ADCC0_IrqHandler (void) 

{ 

  unsigned int status, i=1; 

  status = ADC12_GetStatus(AT91C_BASE_ADC); 

 

     if(ADC12_IsChannelInterruptStatusSet(status, channels[i])) 

 

        { 

            ADC12_DisableIt(AT91C_BASE_ADC, 1<<channels[i]);  

            conversiondone |= 1<<channels[i]; 

        } 

}  

 

This function retrives the value of the status register of the ADC 

(ADC12_GetStatus(AT91C_BASE_ADC)), then tests if the interrupt status bit of channel 3’s 

register is set (ADC12_IsChannelInterruptStatusSet(status, channels[i])).  The status 

bit indicates the end of the conversion for this channel. The “end of conversion” flag can 

be cleared and disabled for the concerned channel (ADC12_DisableIt(AT91C_BASE_ADC, 

1<<channels[i])). 
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The final section of this program displays a menu which allows one to set the gain of the 

ADC through the UART and explore the other characteristics of the ADC. Initially, the 

analogue control register value is extracted and assigned to a variable: 

adc_acr = ADC12_GetAnalogCtrlReg(AT91C_BASE_ADC);  

This register is defined in the API list of registers found in the library header file 

AT91SAM3U4.h and is found at address 0x400A8064. Table 6.2 presents all the 

variables necessary to set the register and indicates the value associated with these 

variables as well as their function. The input gain is represented by the three LSBs as 

indicated by the field value of 0x3. Other variables can also be changed within the 

register as indicated by their field values and functions on the table.  

 

The value of the gain is read by performing a logical AND operation between the entire 

register and the three LSBs: 

gain = adc_acr & 0x3; 

The menu is displayed after configuring the UART. Values for the gain can be selected 

and a measurement can be performed by entering a key on the keyboard (G for gain 

selection and any other key to perform a measurement). A case statement associated to 

the gain value is used to select the desired gain (1, 2 or 4).  

 

The conversion process is initiated on the ADC 12-bit by the following function:  

ADC12_StartConversion(AT91C_BASE_ADC);          

 

Table 6.2: API variable definitions, field and function 

Analog Control Register variable 
(ADC12B_ACR) 

Field Value Function

AT91C_ADC12B_ACR_GAIN 0x3 << 0 Input gain 

AT91C_ADC12B_ACR_IBCTL 0x3 << 6 Bias current control 

AT91C_ADC12B_ACR_DIFF 0x1 << 16 Differential mode 

AT91C_ADC12B_ACR_DIFF_SINGLE 0x0 << 16 Single ended mode 

AT91C_ADC12B_ACR_DIFF_FULLY 0x1 << 16 Fully differential 
mode 

AT91C_ADC12B_ACR_OFFSET 0x1 << 17 Input offset 
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The interrupt handler previously defined indicates the end of the conversion on the 

channel which is associated with it. In this case channel 3 and the program will 

constantly be polling to verify if the conversion is done before displaying the value which 

was sampled in mV. This is done in the following while loop: 

    

 while (conversiondone != ((1<<ADC2))); 

 { 

    id_channel = 1; 

    advalue = ADC12_GetConvertedData(AT91C_BASE_ADC, CHANNEL_3);     

    printf("\rChannel %u : %u mV", id_channel, convertHex2mv(advalue)); 

 } 

The sampled analogue data value is returned on the selected channel and is assigned to 

a local variable called advalue which represents the raw value on the ADC channel. The 

UART output is displayed using Hyper Terminal as shown in Figure 6.6. 

6.4.2.3. TWI 

The reliability of the TWI is vital in the CubeSat architecture since it has often been the 

selected serial interface for communication between the OBC and other subsystems.  In 

section 5.2.5 of chapter 5, a TWI enabled temperature sensor (the MCP9800) is 

introduced and its features are presented. The sensor serves its purpose by measuring 

the temperature of the OBC and validating the functionality of the TWI communication.  

 

 

Figure 6.6: UART output of ADC program 
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The AT91SAM3U4E is configured as the master device on TWI0 by calling the following 

function: 

 

TWI_ConfigureMaster(AT91C_BASE_TWI0, TWCK, BOARD_MCK); 

This function takes three arguments and configures the first peripheral (TWI0) by calling 

its API instance (AT91C_BASE_TWI0). The desired clock frequency is also defined as: 

TWCK=1000000 Hz. 

After configuring the microcontroller as the master, an initialisation of the TWI driver 

must take place. The following function accomplishes this task: 

 

TWID_Initialize(&twid, AT91C_BASE_TWI0); 

 

The drivers for TWI communication are called by this specific function which identifies 

the driver handler (&twid) as well as its location at base address AT91C_BASE_TWI0. 

 

The temperature is displayed in a Hyper terminal window and data is sent to the PC via 

a UART serial communication link. The MCP9800’s pointer bits are defined for each one 

of its registers in section 5.3.5 and each register’s function is also given. Two of the four 

registers are being used in this particular program: the configuration register and the 

temperature register.  

 

The configuration register is an 8-bit read/write register which provides user-access to 

the device’s array of features. These features are set by the user but have defaualt 

settings at power up as shown in Table 6.3.  

Table 6.3: MCP9800 configuration register power-up default settings 

Feature Bit number Power-up default setting Register value 

One-Shot 7 Disabled 0 

ADC Resolution 5-6 9-bit or 0.5°C 00 

Fault Queue 3-4 1 00 

Alert Polarity 2 Active Low 0 

Comp/Int 1 Comparator mode 0 

Shutdown 0 Disabled 0 
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In the program, the configuration register bits are arranged in a structure called 

Confg_Reg which contains declarations for all six features as structure members: 

  

typedef struct 

{ 

  unsigned char bOneShot; 

  unsigned char bRes; 

  unsigned char bFaultQueue; 

  unsigned char bAlrtPol; 

  unsigned char bMode; 

  unsigned char bShutdown; 

}Confg_Reg; 

 

The first statement in the main function of the program performs a read operation on the 

configuration register: 

 

TWID_Read(&twid, MCP9800_ADDRESS, CONF_REG, 0x01, Tdata, 0x01, 0);  

 

The slave address of the MCP9800 is locally defined as MCP9800_ADDRESS = 0x48 or in 

binary 0b1001000. The function also indicates that it must perform a read operation on 

the configuration register (CONF_REG) and determines the address size of the register in 

bytes (0x01). The data that is being read must be stored in a buffer (Tdata) and the 

number of bytes to be read is also specified (0x01). The final argument in the function 

simply indicates an asynchronous data transfer. The data buffer Tdata is defined at the 

beginning of the main function as a one dimensional array of two elements. The stored 

buffer data from the configuration register is then used to fill in the register itself with 

selected values which in this case will be the default values and will only be using the 

first eight bits from the buffer: 

 

FillConfigReg(Tdata[0],& Confg_Reg);   

 

The temperature register on the other hand, is a 16-bit read only register which 

depending on the resolution, can contain 9 to 12 bits of temperature data. Bit 

assignments and corresponding resolution for this register are shown in Figure 6.7. 

Another read operation is performed but, this time on the temperature register 

(TEMP_REG):  
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Figure 6.7: MCP9800 temperature register bits (Microchip Technology Inc, 2010) 

 

TWID_Read(&twid, MCP9800_ADDRESS, TEMP_REG, 0x01, Tdata, 0x02, 0); 

 

This function’s arguments are similar to the ones found in the read operation performed 

on the configuration register. The only major difference is that the buffer size (Tdata) is 

two bytes (16 bits) long as indicated by the size of the temperature register.  

 

The final step is to process the gathered data. The temperature register data is formatted 

in two’s complement and is converted into a decimal number depending on the selected 

resolution. An operation is performed on the buffer where only the upper byte is filtered 

out and assigned to a variable called temp. This variable is then converted into a decimal 

value (integer) and displayed with a decimal identifier corresponding to the selected 

resolution: 

 

temp = ((Tdata[0]<<8)|(Tdata[1])); 

temp = GetRealTemp(temp,confg.bRes); 

index = temp%(2<<(confg.bRes-8-1)); 

index =  index <<(4-(confg.bRes-8)); 

integer =   temp/(2<<(confg.bRes-8-1)); 

printf("%d.%s C\r",integer,sixteenths[index]); 

 

The program output is shown in Figure 6.8 where the ambient temperature is displayed 

in a Hyper terminal window via UART.  
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Figure 6.8: UART output of TWI temperature sensor program 

6.4.2.4. USB 

This section presents a discussion of the functional tests conducted on the OBC’s USB 

port. The integrated UTMI device was presented in the previous chapter in section 5.2.4 

and its properties and use on the OBC were covered. The test in this case involves the 

implementation of a UART to USB bridge using a communication device class (CDC). 

 

The strategic position of the USB port on the OBC board allows access to the port after 

integration within the CubeSat structure. The purpose of the CDC application in this case 

would be to be able to emulate the UART interface by using the UTMI device.  

 

The OBC appears as a serial device and a new COM port is made available once the 

CDC program is downloaded and the OBC is connected to the host PC with a USB cable 

as shown in Figure 6.9. A UART-to-USB driver is loaded into the microcontroller to 

replace the UART driver and initiate CDC operation which has the advantage of being 

unrestricted by hardware changes and independent of the running application on the PC. 

All the driver functions are located in a configuration file which is included in the CDC 

library subfolder by the following pre-processor directive: 

 

#include <usb/device/cdc-serial/CDCDSerialDriver.h> 
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Figure 6.9: USB-to-UART COM port 

 

Full-duplex communications can then occur between the PC and the OBC via the UTMI 

device as it would have been for a UART connection. The application running on the PC 

uses the same APIs as for UART communications but the CDC drivers act as a bridge 

between these APIs and the USB hardware. On the other hand, the loaded UART-to-

USB driver interfaces the OBC application to the USB hardware and initiates the serial 

transmission from the running OBC application (Atmel Corporation, 2008).  

 

Figure 6.10 illustrates the migration changes from USB to UART communication. A full 

duplex file transfer application program is downloaded on the microcontroller as part of 

the written program. This can be seen as another way to emulate telemetry and 

housekeeping data transfers from the OBC to the modems (or vice-versa) during 

integration.  

 

The host PC reads or writes data from/to the OBC through the serial COM port (serial 

CDC) connected to the UTMI device and this data is either stored in a buffer or read 

from it. An example of the read function implementation by the OBC is shown in the 

following statement: 
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Figure 6.10: USB to UART migration (Atmel Corporation, 2008) 

 

CDCDSerialDriver_Read(usbBuffer,DATABUFFERSIZE,(TransferCallback) 

UsbDataReceived,0); 

 

The argument usbBuffer represents the data buffer to store all the incoming received 

data while DATABUFFERSIZE specifies the size of the data buffer in bytes. These two 

parameters have previously been defined in the program and an indication of the 

transfer being completed triggers an optional call-back function which accommodates 

the interrupt handler for the end of data transfer condition ((TransferCallback) 

UsbDataReceived).  

 

The received buffered data is in turn transmitted by using a serial transfer through a 

regular USART connection to the same host PC by using the following function: 

 

USART_WriteBuffer(BASE_USART, usbBuffer, received); 
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The data content of usbBuffer is sent through the USART peripheral specified by its 

particular base address (BASE_USART) and the size of the receiving buffer (received) 

which are both pre-defined in the program. These two processes emulate a 

housekeeping data packet being transferred from a given subsystem to the OBC and 

transmitted to the modems for downlink. By opening two Hyper Terminal windows and 

having the PC connected to the OBC using their respective COM port connections 

(USART and USB-to-UART), a file transfer can be successfully initiated and 

accomplished. An initialisation of the file transfer is illustrated in Figure 6.11 while the file 

being transferred to the indicated destination path is shown in Figure 6.12.  

6.4.2.5. PWM 

The AT91SAM3U4E embeds an on-chip PWM controller with 4 channels; each uses one 

of the 16 bit resolution up/down counters and each channel is independently 

programmable. The user LED which is incorporated in the OBC design is used to 

visualise the output pulse provided by one of the PWM channels. The duty cycle value of 

the pulse is automatically updated by the peripheral direct memory access controller 

(PDC).  

 

The interface used to configure the PWM controller peripheral is included as a header 

file in the peripherals subfolder of the IAR toolchain workspace window by the following 

statement: 

#include <pwmc/pwmc2.h>  

The frequency of the PWM is selected to be 1 kHz and the maximum duty cycle is set to 

90% and stored in a buffer of a predefined length. All of the above definitions are 

implemented by the following statements:  

 

#define PWM_FREQUENCY        1000 

#define MAX_DUTY_CYCLE       90 

#define MIN_DUTY_CYCLE       0 

#define DUTY_BUFFER_LENGTH   (MAX_DUTY_CYCLE - MIN_DUTY_CYCLE + 1) 

 

The PDC buffer is defined as an array of DUTY_BUFFER_LENGTH elements as follows: 

 

 unsigned short dutyBuffer[DUTY_BUFFER_LENGTH]; 
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Figure 6.11: File transfer initialisation 

 
 

 

Figure 6.12: File transfer progress and completion 
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The main function of this test program contains a sequence of instructions which 

configure the PWM channel and PWM controller before initiating the PDC transfer and 

write from the buffer to the PWMC.  

 

The first step is to enable the peripheral clock in the peripheral_clock_enable_register 

(PCER) and assigning it to the PWM controller ID: 

 

AT91C_BASE_PMC->PMC_PCER = 1 << AT91C_ID_PWMC; 

 

This operation is necessary since it gives the onboard clock access to the peripherals 

which in this case are the PWM controller, the PWM channel and the timers. The next 

step involves the configuration of the timer which will be set to run at a frequency equal 

to PWM_FREQUENCY * MAX_DUTY_CYCLE and the following function accomplishes this 

task by finding the right MCK divisor and prescaler values: 

 

PWMC_ConfigureClocks(PWM_FREQUENCY * MAX_DUTY_CYCLE, 0, BOARD_MCK); 

 

After configuring the timer, the PWM controller channel also needs to be configured and 

assigned to LED0. In the same line, the period, the duty cycle and the dead-time values 

of the PWM channel have to be set according to the chosen channel. Four functions can 

be identified which accomplish the abovementioned tasks: 

 

PWMC_ConfigureChannelExt(CHANNEL_PWM_LED0, AT91C_PWMC_CPRE_MCKA, 0, 0, 0,                    

AT91C_PWMC_DTE, 0, 0);                      

PWMC_SetPeriod(CHANNEL_PWM_LED0, MAX_DUTY_CYCLE); 

PWMC_SetDutyCycle(CHANNEL_PWM_LED0, MIN_DUTY_CYCLE); 

PWMC_SetDeadTime(CHANNEL_PWM_LED0, 5, 5);   

This program is essentially based on the execution of an interrupt in the NVIC with a 

source address at the PWM controller. The interrupt is enabled and serviced at the end 

of data transfer (duty cycle increment) from the duty cycle buffer to the PDC and this 

action is repeated according to the pre-defined PWM frequency. The interrupt is first 

configured with a priority ‘0’ and then enabled by the following statements:  

IRQ_ConfigureIT(AT91C_ID_PWMC, 0, PWM_IrqHandler); 

IRQ_EnableIT(AT91C_ID_PWMC); 
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With the interrupt source selected as AT91C_ID_PWMC, the next step is to enable it in a 

peripheral and initiate it under the “end of buffer transfer” condition. This is accomplished 

by the following function:    

 

PWMC_EnableIt(0, AT91C_PWMC_ENDTX);   

 

where AT91C_PWMC_ENDTX represents the end of the PDC buffer transfer in the interrupt 

enable register of the PWM controller interface. 

 

Before beginning the PDC transfer of the buffer contents, it is essential to fill the duty 

cycle buffer for the concerned channel (Channel 0) by first enabling it in the PWM 

controller interface: 

 

PWMC_EnableChannel(CHANNEL_PWM_LED0); 

 

The duty cycle buffer is filled with values going from MIN_DUTY_CYCLE to MAX_DUTY_CYCLE 

by implementing the following for loop: 

 

 for (i = 0; i < DUTY_BUFFER_LENGTH; i++) 

 

      { 

          dutyBuffer[i] = (i + MIN_DUTY_CYCLE); 

      } 

 

Finally, the transfer can be initiated by sending the contents of the buffer through the 

PWM controller peripheral, using the PDC to take care of the transfer. This is 

accomplished by the following function: 

 

PWMC_WriteBuffer(AT91C_BASE_PWMC, dutyBuffer, DUTY_BUFFER_LENGTH); 

 

The function takes three arguments: the pointer to the source address of the PWM 

controller instance, the data buffer whose contents will be sent and the length of the data 

buffer. This function is initiated by the abovementioned statement and perpetuated on in 

a loop by the interrupt handler function PWM_IrqHandler which was previously defined. As 

a result, LED0 on the OBC will intermittently glow with a duty cycle varying from 0% to 

90% at a frequency of 1kHz.  



102 
 

6.5. Summary 

This chapter covered all the different tests and results conducted on the OBC prototype. 

The overcurrent protection circuit was simulated and successfully tested. Power 

consumption figures were deduced for all different operating modes by measuring the 

current in series at the VDDIN jumper which was included in the design for this purpose. 

Additionally, peripherals associated with the OBC were tested for functionality by writing, 

compiling and downloading relevant test programs into the microcontroller.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



103 
 

CHAPTER SEVEN 
CONCLUSIONS AND RECOMMENDATIONS 

 

7.1. General conclusions 

In the first chapter, an introduction to the CubeSat concept and architecture was given. 

The objectives and significance of the study were defined and overviews of the 

methodology and the structure of the thesis were also presented.  

 

A presentation of the CubeSat standard was given and each one of the CubeSat 

subsystems was defined in terms of their functions. Being the main focus of this 

research, more emphasis was put on the OBC subsystem and a detailed analysis was 

conducted in terms of hardware and software, listing all essential components. 

 

The space environment and its effects on electronic equipment were discussed in order 

to set environmental constraints for selecting components for the design and 

implementation.  

 

Following a thorough literature research which considered previously deployed 

CubeSats (Appendix A), it was necessary to select a suitable microcontroller in the 32-bit 

core architecture range to carry out all data transfers between the OBC peripherals and 

all other CubeSat subsystems. Selection criteria were identified and preference was 

given to the AT91SAM3U4E which is Atmel’s implementation of ARM’s Cortex M3 core. 

 

A specific OBC architecture was then designed around the selected microcontroller and 

all relevant features of the microcontroller in relation to the CubeSat architecture were 

pointed out.  

 

The OBC specifications were presented and upon the completion of the architectural 

design, the hardware implementation of the proposed OBC architecture was developed. 

A circuit was implemented in series with the supply rail by means of a MAX4374 high-

side current sense IC in order to protect the OBC from short circuits during operations by 

shutting down the supply line.  
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Each peripheral was presented and implemented. In the case of the TWI, the MCP9800 

from Microchip, which is a TWI driven temperature sensor, was used to prove the 

functionality of the TWI bus. Similarly, the ADC, USB, PWM, SD/MMC card, SPI and 

UART interfaces were presented. Consequently, a set of schematic diagrams for each 

section and peripheral of the OBC was developed and combined in the final design. This 

phase was necessary before completing the PCB implementation which was done using 

Altium designer CAD software. 

 

A series of hardware and software tests were conducted in the final step after populating 

the PCB. Power consumption figures were derived for all different operating modes and 

the trip function of the overcurrent protection circuitry which was implemented in series 

with the supply rail was verified in short circuit and overcurrent conditions. In addition to 

the power supply management, a series of source codes were written, compiled and 

downloaded to the microcontroller in order to individually test some of the peripherals for 

functionality.  

 

In the end, the research conducted which lead to the final development of the OBC 

prototype responded positively to the addressed research questions from the 

introductory chapter. This can be summarised as follows: 

 The choice of a 32-bit microcontroller, more precisely Atmel’s AT91SAM3U4E, was 

justified over 16-bit and 8-bit microcontrollers following a literature study and an 

analysis of selection criteria which were explained in detail in Chapter 3. 

 The OBC subsystem was analysed and important peripherals were listed. Further, 

each one of these peripherals was implemented in the OBC architecture as well as 

in the design which were respectively presented in Chapter 4 and Chapter 5.  

 The developed OBC prototype possesses multiple peripherals which in the future 

can be customised according to a given mission requirements. This represents an 

exclusive advantage when compared to previously developed OBCs which all had 

mission-specific designs. Future subsystems can be developed for upcoming 

F’SATI missions around an OBC for which peripherals and power consumption 

figures would have already been successfully tested.  
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7.2. Issues encountered 

7.2.1. Hardware 

A number of challenges were encountered during the implementation of the OBC 

architecture. The final PCB was gradually populated, starting with the voltage regulation 

section and the overcurrent protection circuit, followed by all passive components, 

connectors, other active devices and the microcontroller.  

 

Soldering of the microcontroller, which is a 144 pin fine pitch component, was particularly 

challenging. The overcurrent protection circuit proved its relevance more than once by 

detecting short-circuits between a power pin and a GPIO pin of the microcontroller and 

shutting down the voltage supply before causing any damage to the microcontroller.  

 

A permanent communication error was detected on the JTAG port when attempting to 

program the microcontroller.The SAM-ICE indicated a connection to a non-powered 

device. What seemed to be a software problem was in fact hardware related and 

research about the topic established that when shipped from factory, the AT91SAM3U4E 

among other microcontrollers is always in deep-sleep operating mode by default. This 

presents the lowest power figures since only the internal clock of the core is running and 

every other peripheral clock as well as the core itself are not being powered. The way 

around this was to perform a Forced-Wake-Up (FWUP) to the microcontroller by pulling  

the associated FWUP pin to ground for more than 200ms. This was necessary to 

awaken the core and the internal peripheral clocks, hence making communication 

possible.  

7.2.2. Software 

A fair amount of time was invested in becoming familiar with the IAR EWARM toolchain. 

A particular challenge was to understand the mechanism behind the NVIC as well as the 

way libraries are organised.  

 

The documentation provided the available sample programs and the reliable customer 

support and the diversity of online forums allowed a good understanding of the IDE 

software package and implementation of experimental programs.  
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7.3. Future work 

The prototype OBC that was developed had proven to function correctly after running a 

series of tests on all necessary and accessible peripherals. An SD/MMC card was 

selected as the memory device but the card holder was perceived to be potentially 

unreliable in vibration environments (i.e. during launches or P-POD ejection). An 

investigation can be conducted in order to select an appropriate SD/MMC card holder 

which would be reliable enough and not cause any disconnection when exposed to 

mechanical vibrations.  

 

In order to save board space, the mini SD/MMC card may be replaced with a micro 

SD/MMC card which is a quarter of the size. Similarly the CR2031 lithium cell can be 

replaced with a smaller and lighter CR1225 cell which has similar capacity.  

 

Finally, a file system for data transfer can be implemented with a specific data format for 

logged housekeeping parameters as well as telemetry and can be integrated in the 

OBC’s flight software. 
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Appendix A: Previous CubeSat missions 

Table A.1. Previous CubeSat missions OBCs features 

CubeSat University or company Mission overview Status TT&C OBC microcontroller 
CUTE-1 Tokyo Institute of Technology Test platform based on COTS 

components. 
Deployable solar cells, 
piezoelectric vibrating gyroscope (4 
pcs), dual axis accelerometers (4 
pcs) and CMOS camera used as 
sun sensor. The camera pictures 
could not be transmitted to the 
ground. 

The satellite is still operating 
nominally in early December 
2008 (5 years, 5 months 
after launch) 

H8/300(Renesas Technology)         
8-bit operation                              
32kB ROM                                       
1kB RAM                                      
Operates at 30MHz 

    

    

    

    

XI-IV University of Tokyo Test platform based on COTS 
components. 
Included a camera to take pictures 
of the earth. 

Latest telemetry analysis 
dated September 20th, 
2007. The satellite beacon 
was last heard in early 
December 2008 (5 years, 5 
months after launch). 

PIC 16F877 (Microchip)                  
8-bit microcontroller                       
32kB ROM                                       
1kB RAM                                        
Operating at 40MHz 

    

    

    

    

CanX-1 University of Toronto Space-testing key technologies for 
future missions: Low-cost CMOS 
horizon sensor and star-tracker, 
GPS receiver. 

Radio contact never 
established 

AT91SAM (ARM7 fromAtmel)         
32-bit microcontroller                     
512kB SRAM                                   
32MB Flash-RAM                            
Operating at 40MHz 

    

    

    

DTUsat Technical University of Denmark MEMS sun sensors and a 600 m 
tether used to change the orbit. A 
color CCD camera and electron 
emitter were not ready on time for 
launch. 

Radio contact never 
established 

AT91M40800 (ARM7 from Atmel)   
32-bit microcontroller                      
1MB RAM                                        
16 KB ROM                                     
2MB Flash-RAM                              
Operating at 16MHz 

    

    

    

      
AAUCubeSat Aalborg University Color CMOS camera Antennas Short Circuited, 

resulting in poor comms 
performance. Batteries died 
after a month due to poor 
packaging 

C161(Siemens)                               
4MB RAM                                        
512kB PROM                                  
256kB Flash-ROM                           
Operating at 10MHz                        
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QuakeSat Stanford University and 
Quakesat 

Detect ELF radio emission of 
seismic activity during earthquakes. 
Had deployable solar panels, and a 
magnetometer mounted on a 60 
cm boom. The s/c was designed 
using COTS components. 

Designed for 6 months, it 
worked flawlessly until at 
least June 6th, 2004 (more 
than 11 months). 

ZFx86 (Siemens on a 
PrometheusPC/104 board)              
32-Bit microcontroller                      
16MB RAM                                      
1MB Flash-ROM                           
Operates at 60MHz 

    

    

    

    

NCube2 Norwegian Univesrity of Science 
and Technology 

Similar to NCube1, the payload 
consists of an Automatic 
Identification System. AIS is a 
mandatory system on all larger 
ships, which transmits identification 
and position data messages. The 
satellite will redirect these 
messages along with messages 
from Norwegean reindeer collars. 

Radio contact never 
established 

ATmega32L (Atmel AVR)                
32-bit microcontroller                    
32KB Flash                                
4kB ROM                                      
Operating at 16MHz 

  

    

    

    

    

UWE-1 University of Wurzburg Testing a communication protocol, 
test of GaAs cells in space, running 
micro Linux 

Nominal operations until 
November 17th, 2005, when 
it was last heard. Since then 
contact has been lost 
completely. 

Hitachi H8S-2674R (Hitachi)         
No Flash/ROM (All external)          
Operating at 16MHz     

    

    

XI-V University of Tokyo  Test of CIGS and GaAs solar cells, 
increased resolution of camera and 
an introduction of rapid shooting 
mode for estimating attitude 
motion. A morse message 
transmission service for radio 
amateurs was been added. 

Nominal operations, first 
image received November 
22nd, 2005. From 
December 2005, the images 
are showing some 
problems. The satellite was 
still operating 3 years, 2 
months after launch. 

PIC 16F877 (Microchip)                  
8-bit microcontroller                      
32kB ROM                                      
1kB RAM                                         
Operating at 40MHz 

    

    

    

    

    

Cute 1.7 Tokyo Institute of Technology Test of charged particle detector 
(Avalance Photo Diode sensor 
module), made by Tokyo Institute 
of Technology. Due to low perigee 
(about 300 km at launch) expected 
lifetime is significantly less than 
one year. Experimental 10m tether 
and ectron emitter to change orbit  

Nominal operations until 
early March 2006, it was 
since fully recovered, but 
since April 2006 no longer 
responds to commands 
from the ground. 

ARMV4I (Onboard PDA)                 
16-bit microcontroller                    
32MB RAM                                     
128MB Flash (SD Card)                  
Operating at 400MHz         
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ION University of Illinios 
  

Features a Photomultiplier Tube 
(PMT) to observe airglow 
phenomenon in the earth's upper 
atmosphere (mesosphere). 
Also has a low-thrust, electric 
propulsion system and a CMOS 
camera for Earth imaging. 

Destroyed due to launch 
failure. 

 SH2 (Hitachi Processor)                 
16-bit microcontroller                     
1MB External SDRAM                    
8MB Flash                                       
256kB EEPROM                             
Operating at 7MHz 

  

    

    

    

Sacred University of Arizona This is the third CubeSat by the 
University of Arizona (the second to 
be launched). Produced by 
Montpelier University and Alcatel, 
the payload will measure the total 
amount of high-energy radiation 
over a two-year span and will test 
the radiation properties of four 
commercial integrated circuits.  

Destroyed due to launch 
failure. 

PIC16C77 (Microchip)                     
8-bit microcontroller                        
168kB RAM                                     
64kB FRAM                                  
Operating at 20MHz 

    

    

    

    

KUTEsat 
Pathfinder 

University of Kansas Measure the radiation in LEO and 
take photographs with an onboard 
camera 

Destroyed due to launch 
failure. 

PIC18F4220 (Microchip)               
16-bit microcontroller                    
32kB Flash                                     
4B SRAM                                       
Operates at 40MHz               

  

SEEDS Nihon University Contains a gyro sensor for 
accurate determination of attitude 
motion 

Destroyed due to launch 
failure. 

NO MISSION INFORMATION 
AVAILABLE 

HAUSAT1 Hankuk Aviation University  GPS receiver, experiment on 
deployment mechanism of solar 
panel and space verification of 
home made sun sensor 

Destroyed due to launch 
failure. 

AT91LS8535 (Atmel)                       
32-bit microcontroller                       
512 B internal SRAM                       
512 Bytes EEPROM                     
Operating at 60MHz 

    

NCube1 Norwegian University of Science 
and Technology 
  

Similar to NCube2, the payload 
consists of an Automatic 
Identification System. AIS is a 
mandatory system on all larger 
ships, which transmits identification 
and position data messages. The 
satellite will collect these messages 
along with messages from 
Norwegian reindeer collars. 

Destroyed due to launch 
failure. 

 AVR ATmega640 (Atmel) 
 8-bit  microcontroller 
64KB Flash 
8B SRAM 
Operates at  8MHz 
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ICE Cube 1 Cornell University Perform GPS scintillation science 
by measuring fluctuations in the 
signals that the GPS satellites emit 
when the signals pass through the 
ionosphere. Identical to ICE Cube 
2 

Destroyed due to launch 
failure. 

 NO MISSION INFORMATION 
AVAILABLE 

    

    

    

RINCON 1 University of Arizona This is the second CubeSat by 
University of Arizona (the first, 
which was just a s/c bus, is not 
scheduled for launch) 
The payload is a low-power beacon 
system, which provides a 
redundant means of relaying 
sensor data in analogue form if the 
primary (digital) transmitter fails. 

Destroyed due to launch 
failure. 

 PIC16C77 (Microchip) 
16-bit microcontroller 
64KB FRAM 
368Bytes of RAM 
Operates at 4MHz 
 

MEROPE Montana State University Radiation experiment Destroyed due to launch 
failure. 

MC68HC812A4 (Motorola )    
16-bit microcontroller                     
4kB EEPROM                                  
1kB RAM                                         
Operating at 2MHz 

      

      

      

AeroCube-1 The Aerospace Corporation Short life satellite (10 days), using 
Lithium batteries as primary 
batteries (no recharging). Mission 
is to test a communication system 
and the system bus plus a suite of 
CMOS cameras done by Harvey 
Mudd College. The satellite has no 
deployables. Instead an 
omnidirectional patch antenna is 
used. 

Destroyed due to launch 
failure. 

 
NO MISSION INFORMATION 
AVAILABLE     

    

    

    

    

CP2 California Politechnic Institute Energy Dissipation Experiment. 
First mission based on what is 
supposed to be a "standardised" 
bus (though CP3 features an 
updated bus)  

Destroyed due to launch 
failure. 

PIC18LF6720 (Microchip)               
16-bit microcontroller                       
1kB ROM                                         
4kB RAM                                        
128kB Flash                                    
Operating at 4MHz 

    

    

ICE Cube2 Cornell University Perform GPS scintillation science 
by measuring fluctuations in the 
signals that the GPS satellites emit 
when the signals pass through the 
ionosphere. Identical to ICE Cube 
1 

Destroyed due to launch 
failure. 

  
NO MISSION INFORMATION 
AVAILABLE     
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MeaHuaka University of Hawaii To test a 5.8-GHz active antenna 
(grid oscillator) for high bandwidth 
communication (does not require 
deployment of antenna) 

Destroyed due to launch 
failure. 

 RCM200 and2300(Rabbit Core) 
16-bit microcontroller 
256KB Flash 
512KB SRAM 
Operates at 25.8MHz 

    

    

    

CP1 California Politechnic Institute Test of sun sensor developed by 
Optical Energy Technologies 

Destroyed due to launch 
failure. 

PIC18LF6720(Microchip) 
8-bit microcontroller 
128KB Flash (1kB boot ROM) 
4KB RAM 
Operates at 4MHz 

    

GeneSat-1 Center for Robotic Exploration 
and Space Technologies 

Perform experiment on E. Coli 
bacteria in space, first CubeSat to 
carry a biological experiment. 

96-hour experiment 
completed successfully on 
December 22nd, 2006. Last 
confirmed telemetry 
reception on April 11th, 
2008 (2 year, 4 months after 
launch)  

  
NO MISSION INFORMATION 
AVAILABLE.  
 
Only mention is that the C&DH 
subsystem used a PUC-class 
microcontroller.  

  

    

      

      

      

CP4 California Politechnic Institute Second flight unit of CP2, which 
was destroyed during the previous 
DNEPR launch 

CP4 has been heard from 
numerous ground stations, 
but is not responding to 
telecommands. Seems it 
never reached full 
functionality. It is no longer 
operational 

 PIC18LF6720 (Microchip)              
16-bit microcontroller                      
1kB ROM                                         
4kB RAM                                         
128kB Flash                                    
Operating at 4MHz 

    

    

      

      

      

AeroCube-2 The Aerospace Corporation Similar to AeroCube-1, except 
added charging system for the 
Lithium batteries. Mission is to test 
a communication system and the 
system bus plus a suite of CMOS 
cameras done by Harvey Mudd 
College. The satellite has no 
deployable. Instead an 
omnidirectional patch antenna is 
used. 

Solar up-converter failed 
shortly after launch. 
Batteries dead. 
Shortly after ejection, 
AeroCube-2 also took a 
picture of CP4 

NO MISSION INFORMATION 
AVAILABLE 
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CSTB-1 The Boeing Company Testbed for components for future 
Boeing small-sat missions. 
Redundant radios, deployable 
antenna, various non-disclosed 
sensors 

NO MISSION INFORMATION AVAILABLE 

    

    

    

    

CAPE-1 University of Louisiana Camera payload (not more 
information could be sourced). 

Has power system problems 
and is semi-operational 
(battery appears to be dead; 
currently only operates in 
the sun). 
CW has been received by 
several ground stations. 
9600 bps TM packets have 
not been received by any 
station 

NO MISSION INFORMATION 
AVAILABLE 

    

    

      

      

      

Libertad-1 University of Sergio Arboleda Camera and transmission of one 
stanza of the Colombian national 
anthem. 
Note: Powered by primary batteries 
only. They will last for about 52 
days. 
This is the first Colombian satellite 

Last confirmed telemetry on 
May 4th, 2007 (weak, 
undecoded until May 7, 
2007). 
Designed with a 50 day 
lifespan. 

 Pumpkin Kit based on  
MSP430F149 (T. I) 
16-bit microcontroller 
60KB+256B of Flash 
2KB of RAM 
Operates up to 10MHz 
 

    

    

    

MAST Theters Unlimited Tether experiment (1 km 
Hoytether). ~1 million USD for the 
entire program  

Only had contact to one of 
the two modules. Tether 
may have deployed "a little", 
but definitely not fully.  

 PIC 18F8720 (Microchip) 
16-bit microcontroller 
1KB of EEPROM 
Up to 1MB of Flash 
Operates up to 40MHz 

    

    

      

CP3 California Polytechnic Institute Three-axis magnetorquer 
experiment  

Radio never established   NO MISSION INFORMATION 
AVAILABLE 

      

CanX-2 University of Toronto Will test instrumentation for future 
CanX missions including a 
propulsion system, momentum 
wheel, sun sensors, GPS receiver, 
CMOS camera (star tracker), and a 
new communication protocol. 
Scientific instrumentation and goals 
includes: Atmospheric 
spectrometer, GPS occultation 
experiment, and atomic oxygen 
material degradation experiment 
 

TM received   2 x ARM7 (Atmel) 
32-bit microcontrollers 
2MB of SRAM 
16MB of Flash 
Operates up to 15MHz 
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AAUsat-2 Alborg University Detect gamma ray bursts by a 
gamma ray detector developed by 
the Danish National Space Centre 

The satellite is tumbling, at 
one time up to 85 RPM, but 
using the magnetorquers 
the tumbling has been 
reduced to 35 RPM. 
The tumbling is making 
communication a challenge, 
they are currently using a 1 
kW (yes, kilo watt) PA on 
the ground station. 
The satellite suffers from 
spontaneous reboots every 
1-4 hours (typically). 
The payload has been 
powered on briefly, but no 
science data has been 
downlinked. 
They are in the process of 
uploading new software to 
the satellite.  

 AT91SAM7A1 (Atmel) 
32-bit microcontroller 
4KB of RAM 
External Bus Interface 
Operates up to 40MHz 

    

    

    

      

      

      

      

      

      

      

Compass One Fachhochschule Aachen Technology demonstration of a 
miniature GPS receiver, and a 
transceiver for fast RF 
communication. A colour camera is 
implemented for p/r purposes 

Pictures (although 
saturated) downlinked. 
High speed telemetry (4800 
MSK) confirmed working  

 C8051F123 (Silicon Laboratory) 
8448 Bytes of RAM 
128KB of Flash 
Operates up to 100MHz 
 

    

    

SEEDS (2) Nihon University Rebuild of the SEEDS CubeSat 
which was destroyed during June 
26th, 2006 DNEPR launch failure. 
Contains a gyro sensor for 
accurate determination of attitude 
motion  

Nominal operations, 
December 7th, 2008  

NO MISSION INFORMATION 
AVAILABLE 

    

      

AeroCube-3 Aerospace Corporation New solar power subsystem to 
replace the one failing on 
AeroCube-2. Two foot diameter 
semi-spherical (8-panel) balloon 
that can serve as a de-orbit device 
as well as a tracking aid. The 
change in orbit life is estimated to 
be from 1-3 years (depending on 
atmosphere assumptions) without a 
balloon to 2-3 months with the 
balloon inflated. 
A VGA-resolution camera pointing 
in the direction of the balloon will 
photograph its state of inflation. 
200' tether attached to the upper 
stage. AeroCube-3 will measure 
the dynamics while at the end of 
this tether. The tether will be cut 
some time into the mission  

To be determined NO MISSION INFORMATION 
AVAILABLE 
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      Pumpkin Kit based on  
MSP430F149 (T. I) 
16-bit microcontroller 
60KB+256B of Flash 
2KB of RAM 
Operates up to 10MHz 

Hawksat-1 Hawk Institute of Space 
Sciences 

CubeSat platform demonstrator 
mission 

To be determined 

      

Pharmasat-1 Santa Clara University Follow on from GeneSat-1, will 
study the influence of microgravity 
on yeast resistance to an antifungal 
agent 

To be determined  NO MISSION INFORMATION 
AVAILABLE       

      
      

Polysat CP6 California Polytechnic Institute Test attitude determination and 
control using magnetometers and 
magnetorquers. Also has two 
cameras and tether for deorbit 
experiment  

To be determined  NO MISSION INFORMATION 
AVAILABLE       

      
      
     
KySat Couple of kentucky Universities Build technological interest in 

students, much of the satellite is 
based on commercially available 
parts, including from the Pumpkin 
CubeSat kit  

Awaiting launch  Pumpkin Kit based on  
MSP430F149 (T. I) 
16-bit microcontroller 
60KB+256B of Flash 
2KB of RAM 
Operates up to 10MHz 

AtmoCube university of Trieste Space weather monitoring. 
Contains a (supposedly modified 
for space use(?)) GPS receiver 
(Trimble M-Loc MPM Module), a 
radiation sensor, and a chip-based 
magnetometer based on 
magnetoresistance 

Awaiting launch  H8/38076R (Renesas) 
16-bit microcontroller 
48 KB ROM 
2KB RAM 
Operates up to 60MHz 

      

      

      

e-st@r Polytechnico di Torino Demonstration of active 3-axis 
attitude control system inertial 
measurement unit. 

Awaiting launch  Pumpkin Kit based on  
MSP430F149 (T. I) 
16-bit microcontroller 
60KB+256B of Flash 
2KB of RAM 
Operates up to 10MHz 

      

Goliat university of Bucharest Imaging of the Earth surface using 
digital camera and in-situ 
measurements of radiation dose 
and micrometeoroid flux (50x37 
mm piezo-film). 
Part of the system is based on the 
Pumpkin CubeSat kit (2 pcs 
MSP430)  

Awaiting launch  2xMSP430 
16-bit microcontroller 
60KB+256B of Flash 
2KB of RAM 
Operates up to 10MHz 

      

      

      

Oufti-1 University of Liege Test use of D-STAR amateur radio 
digital communication protocol in 
space  

Awaiting launch Pumpkin Kit based on  
MSP430F149 (T. I) 
16-bit microcontroller 
60KB+256B of Flash 
2KB of RAM 
Operates up to 10MHz 
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PW-Sat  Warsaw Universty of Technology Test deployable atmospheric drag 
de-orbiting device 

Awaiting launch  AT91SAM7X  (Atmel) 
16-bit microcontroller 
8KB SRAM 
 

    

Robusta University of Montpelier Test radiation effects on bipolar 
transistors 

Awaiting launch NO MISSION INFORMATION 
AVAILABLE 

      

SwissCube Polytechnical School of 
Lausanne 

Observe oxygen emission in order 
to characterise the airglow intensity 

Awaiting launch  AT91M55800A (Atmel) 
32-bit microcontroller 
128KB SRAM 
512KB Flash 
 

      

      

UNICubeSat University of Rome Performing in-situ measurements 
of atmospheric neutral density 
using Broglio drag balance 
instrument 

Awaiting launch  Pumpkin Kit based on  
MSP430F149 (T. I) 
16-bit microcontroller 
60KB+256B of Flash 
2KB of RAM 
Operates up to 10MHz 

      

      

XaTcobeo University of Vigo and INTA Demonstrate software-defined 
radio and solar panel deployment 

Awaiting launch  Virtex-II FPGA 
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Appendix B: Calculations and simulations 

(Overcurrent/voltage protection) 

 
Simulations were conducted using Linear Technology Corporation’s simulation package, 

LTSpice. From the available range of MAX4374 available, it was decided to go for the 

mid-range which is the MAX4374F with a current-sense amplifier gain of 50V/V and a 

maximum voltage drop of 300mV across Rୗୗ. 

 

The first step in the overcurrent protecting circuit design using the MAX4374 is to give a 

current limit to the load which in this case is the OBC. When operating at full power, the 

microcontroller alone pulls a total of 400mA and assuming all other components average 

a total of 100mA, this brings the total to:  

 

                          I୫ୟ୶ ൌ 400mA  100mA ൌ 500mA                                       (1) 

 

With the maximum voltage drop Vୖୗୗ_ୟ୶ being 300mV, choosing a value of 0.100Ω  

for Rୗୗ shall result in  

Vୖୱୣ୬ୱୣ౮
ൌ I୫ୟ୶ ൈ Rୗୗ 

																				ൌ 0.500 ൈ 0.100 

                                                                  						ൌ 0.05V                                                          (2) 

 

As mentioned previously, the MAX4374F was selected. With a voltage gain of 50V/V, the 

output to the current sense amplifier with Vୖୗୗ౮
 being the differential input voltage is 

given by 

V୳୲ ൌ Vୖୗୗ౮
ൈ 50 

                                                       								ൌ 0.05 ൈ 50                                                               

                                                       								ൌ 2.5V                                                                 (3) 

 

From equation (3), it is possible to determine the values of the voltage divider resistors 

Rଵ and Rଶ necessary to give an input voltage value of 0.6V at C୍ଵ. This is done by 

choosing an arbitrary value for Rଶ, say 220Ω, and then calculating the value of Rଵ. 
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C୍ଵ ൌ ܸ୳୲ ൬
Rଶ

Rଵ  Rଶ
൰ 

                                                        0.6 ൌ 2.5 ቀ
ଶଶ

ୖభାଶଶ
ቁ 

                                              Rଵ  220 ൌ
ହହ

.
 

	Rଵ ൌ 916.67 െ 220 

                                                             ൌ 696.67Ω                                                           (4) 

 

This value can be practically implemented with a 680Ω resistor in series with a 15Ω 

resistor. These are main components necessary for the simulation.  

 

The state of the output Cை் is determined by the comparison between  C୍ଵ and the 

internally generated reference of 0.6V. C is an open collector output and necessitates 

a pull-up resistor. The state of   C varies according to table B.1. This signal is used to 

drive the n-channel MOSFET which is placed on the distribution line and which opens or 

closes the circuit depending on the value of the current being drawn.  

 

Table B.1. Voltage levels at Cin1 and Cout  after RESET 

Overload V-Load-after 
RESET 

CIN1-after RESET COUT-after RESET 

Low High ↑ > 0.6V Low 

High Low ↓ < 0.6V High 

 
The short circuit condition will need to be simulated by means of two load resistors 

representing, respectively, the OBC’s input impedance and the overload (short-circuit) 

condition. In order to make the overall current drawn by the OBC equal to 400mA which 

does not exceed the limit of 500mA, the total input impedance of the OBC, Rௗ ,was 

given a value of  

Rௗ ൌ
ௌܸ௨௬

ܣ400݉
 

                                                                     ൌ
ଷ.ଷ

ସ
 

                                                                     	ൌ 7.33Ω           (5) 
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The short circuit condition which occurs when ܫெ௫ exceeds 500mA can be reached by 

adding a resistor in parallel with Rௗ, making the overall resistance smaller and the 

current being drawn bigger. A value of 2.2Ω was chosen (R7) and a P-channel MOSFET 

was placed in series with a randomly generated pulse at the gate and the overload 

resistor at the drain, overloading the OBC at different intervals.  

 

The resulting circuit schematic is shown in Figure A.1. An active low signal is necessary 

at the Reset input in order to pull Cை் to a low state and re-activate the distribution line 

via n-channel MOSFET M5. The resulting waveforms are shown in Figure A.2 where 

each signal is represented by a different colour as a result of probes being placed at 

specific points during the run of the simulation.  

 

It can be observed that for each time interval where the overload (navy blue mark) is in a 

high state (active), the value at CIN1 (red mark) drop to a level below 0.6V which 

represents the threshold value of the comparator. At this point, Vload (green mark) which 

represent the line voltage, will toggle its state from high to low. This will remain the case 

until a high pulse on the RESET input (purple mark) is observed. When this pulse occurs, 

the line voltage is restored and the comparator value at CIN1 (red mark) will rise back to 

0.6V.  

 

 

 

Figure B.1. Simulated overcurrent protection schematic 
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Figure B.2. Overcurrent protection simulation results waveforms 
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Appendix C: Datasheet Information 
C.1.	 MCP9800	Temperature	sensor	
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C.2.	 MAX3232 
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C.3.	 AT91SAM3U4E	PIO	Controllers	tables	
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Appendix D: OBC Printed Circuit Board  
 

 

Figure D.1: OBC Top Layer (Altium designer) 
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Figure D.2: OBC Bottom Layer (Altium designer) 
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Figure D.3: OBC Top Silkscreen Overlay (Altium designer) 
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Figure D.4: OBC Top Silkscreen Overlay (Altium designer) 
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Figure D.5: Top view picture of the OBC 

 
 
 
 
 
 

Power system block

JTAG PWR  & RESET Jumpers

MCP9800 Temp 

BCKUP Battery holder

USB port

Cortex M3

3 x Max 232 (UART)
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Figure D.6: Bottom view picture of the OBC 
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Appendix E: Circuits Schematics 
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Appendix F: Test Programs source codes 
1. Blink program and UART communication 
//CPUT 2011 
//Tony Lumbwe 
//204131316 
// 
/* 
 
 
 Blink and UART communication program V1.0 (Source file) 
 
 
*/ 
//------------------------------------------------------------------------------ 
// IAR EWARM Toolchain 
//------------------------------------------------------------------------------ 
//         Headers 
//------------------------------------------------------------------------------ 
 
#include <board.h> 
#include <pio/pio.h> 
#include <pio/pio_it.h> 
#if defined(AT91C_BASE_PITC) 
#include <pit/pit.h> 
#endif 
#include <irq/irq.h> 
#include <tc/tc.h> 
#include <utility/led.h> 
#include <utility/trace.h> 
#include <stdio.h> 
#if defined(cortexm3) 
#include <systick/systick.h> 
#endif 
 
 
//------------------------------------------------------------------------------ 
//         Local variables 
//------------------------------------------------------------------------------ 
 
 
/// Indicates the current state (on or off) for each LED. 
volatile unsigned char pLedStates[2] = {1, 1}; 
 
/// Global timestamp in milliseconds since start of application. 
volatile unsigned int timestamp = 0; 
 
//------------------------------------------------------------------------------ 
//         Local functions 
//------------------------------------------------------------------------------ 
//------------------------------------------------------------------------------ 
/// Configures LEDs \#1 and \#2 (cleared by default). 
//------------------------------------------------------------------------------ 
void ConfigureLeds(void) 
{ 
   LED_Configure(0); 
   LED_Configure(1); 
} 
 
//------------------------------------------------------------------------------ 
/// Interrupt handler for TC0 interrupt. Toggles the state of LED\#2. 
//------------------------------------------------------------------------------ 
void TC0_IrqHandler(void) 
{ 
    volatile unsigned int dummy; 
    // Clear status bit to acknowledge interrupt 
    dummy = AT91C_BASE_TC0->TC_SR; 
 
    // Toggle LED state 
    LED_Toggle(1); 
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    LED_Toggle(0); 
    printf("2"); 
} 
 
//------------------------------------------------------------------------------ 
/// Configure Timer Counter 0 to generate an interrupt every 250ms. 
//------------------------------------------------------------------------------ 
void ConfigureTc(void) 
{ 
    unsigned int div; 
    unsigned int tcclks; 
 
    // Enable peripheral clock 
    AT91C_BASE_PMC->PMC_PCER = 1 << AT91C_ID_TC0; 
 
    // Configure TC for a 4Hz frequency and trigger on RC compare 
 
    TC_FindMckDivisor(8, BOARD_MCK, &div, &tcclks); 
    TC_Configure(AT91C_BASE_TC0, tcclks | AT91C_TC_CPCTRG); 
    AT91C_BASE_TC0->TC_RC = (BOARD_MCK / div) / 1; // timerFreq / desiredFreq 
 
    // Configure and enable interrupt on RC compare 
    IRQ_ConfigureIT(AT91C_ID_TC0, 0, TC0_IrqHandler); 
    AT91C_BASE_TC0->TC_IER = AT91C_TC_CPCS; 
    IRQ_EnableIT(AT91C_ID_TC0); 
 
    // Start the counter if LED is enabled. 
    if (pLedStates[0]) 
    { 
 
        TC_Start(AT91C_BASE_TC0); 
    } 
} 
 
//------------------------------------------------------------------------------ 
//         Exported functions 
//------------------------------------------------------------------------------ 
 
//------------------------------------------------------------------------------ 
/// Application entry point. Configures the DBGU, PIT for SAM7 & SAM9 
/// microcontrollers, UART and System tick for SAM3 microcontrollers. 
/// Configures TC0 and LED to loop infinitely. 
//------------------------------------------------------------------------------ 
int main(void) 
{ 
    // UART configuration 
    TRACE_CONFIGURE(DBGU_STANDARD, 115200, BOARD_MCK); 
    printf("-- Getting Started Project %s --\n\r", SOFTPACK_VERSION); 
    printf("-- %s\n\r", BOARD_NAME); 
    printf("-- Compiled: %s %s --\n\r", __DATE__, __TIME__); 
 
 
    ConfigureTc(); 
    ConfigureLeds(); 
 
    // Main loop 
    while (1) 
    { 
 
    } 
} 

 
2. 10-bit and 12-bit ADC 
//CPUT 2011 
//Tony Lumbwe 
//204131316 
// 
/* 
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 10-bit and 12-bit ADC program V1.0 (Source file) 
 
 
*/ 
//------------------------------------------------------------------------------ 
// IAR EWARM Toolchain 
//------------------------------------------------------------------------------ 
//         Headers 
//------------------------------------------------------------------------------ 
 
//Headers 
//------- 
 
#include <board.h>  
#include <pio/pio.h>  
#include <dbgu/dbgu.h>   
#include <irq/irq.h>  
#include <utility/led.h> 
#include<utility/trace.h> 
#include <adc/adc12.h>  
#include <adc/adc.h>    
#include <stdio.h> 
    
//Local definitions 
//----------------- 
#define esc 27 
#define cls printf("%c[2J",esc) 
#define pos(row,col) printf("%c[%d;%dH",esc,row,col) 
 
#define BOARD_ADC_FREQ 6000000 //5MHz ADC Frequency 
#define ADC_VREF 3300 //3.3*1000 
 
typedef struct _GainMap 
 
{ 
  unsigned int diffmode; 
    char *gainstring[4]; 
}GainMap; 
 
//Local variables 
//----------------- 
 
 
//PIOs to configure. 
 
#ifdef PINS_ADC 
  static const Pin pinsADC[] = {PINS_ADC}; //implement all ADC pins in a array representing 
each channel 
#endif 
 
 
 //Remap SAM3U4 adc 10 bit to be compatible with definition name of others 
 
#undef AT91C_ID_ADC   //undefine 10-bit ADC controller 
#define AT91C_ID_ADC AT91C_ID_ADC12B //use ID name of 12-bit controller for 10-bit controller 
#define AT91C_BASE_ADC AT91C_BASE_ADC12B //Use same base address for both ADC10 and ADC12-bit 
 
//indication that the conversion is finished. 
 
static volatile unsigned char conversiondone; 
 
 
#define ADC1 ADC12_CHANNEL_2 
#define ADC2 ADC12_CHANNEL_3 
#define ADC3 ADC12_CHANNEL_6 
#define ADC4 ADC12_CHANNEL_7 
 
 
static unsigned int channels[] = {ADC1, ADC2, ADC3, ADC4}; 
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//Local functions 
//----------------- 
//Converting a digital value in milivolts 
//*************************************** 
 
static unsigned int convertHex2mv( unsigned int valuetoconvert ) 
{ 
  unsigned int mask; 
#if defined(at91sam3u4)   
  mask = 0xFFF; 
#else 
  mask = 0xFF; 
#endif   
  return ((ADC_VREF * valuetoconvert)/mask); 
 
} 
 
 
 
//Interupt handler for ADC. Signals that the conversion has been done by setting 
//a flag variable. 
//****************************************************************************** 
void ADCC0_IrqHandler (void) 
{ 
  unsigned int status, i=1; 
   
    status = ADC12_GetStatus(AT91C_BASE_ADC); 
     
    TRACE_DEBUG("status =0x%X\n\r", status); 
     
           if (ADC12_IsChannelInterruptStatusSet(status, channels[i]))  
         
        { 
 
            TRACE_DEBUG("channel %d\n\r", channels[i]); 
            
            ADC12_DisableIt(AT91C_BASE_ADC, 1<<channels[i]);//disable EOCx interrupt 
 
            conversiondone |= 1<<channels[i]; 
        } 
     
} 
 
 
//Configuration Menu for ADC 
//************************** 
 
static void ShowADC12ConfigMenu() 
{ 
   unsigned int adc_acr; 
   unsigned int gain, currentcontrol, diffmode, offset; 
    
   GainMap gainmap [2]={{0,"1","1","2","4"},{1,"0.5","1","2","2"}}; 
    
   char *inputmode [2]= {"Single Ended","Full Differential"}; 
    
   //GainMap 
   
   adc_acr = ADC12_GetAnalogCtrlReg(AT91C_BASE_ADC); 
   gain = adc_acr & 0x3; 
   currentcontrol = (adc_acr & 0x3)>>6 ; 
   diffmode = (adc_acr & 0x10000) >>16; 
   offset = (adc_acr & 0x20000) >>17; 
    
printf("\n\r***********ADC 12 bit configuration Menu***************"); 
printf("\n\r g--Configure 12 bit ADC gain"); 
printf("\n\r c--Configure 12 bit ADC bias current");    
printf("\n\r d--Configure 12 bit ADC Differential mode"); 
printf("\n\r o--Configure 12 bit ADC Offset"); 
printf("\n\r m--Show this menu again!\n\r"); 
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  printf("\n\r\r Current settings:\n\r [GAIN:%u, gain = %s], [IBCTL: %u], [DIFF: %u, %s], 
[OFFSET: %u]\n\r", \ 
      gain, gainmap[diffmode].gainstring[gain], currentcontrol, diffmode, inputmode[diffmode], 
offset); 
      printf("\n\rPlease enter a key to configure the ADC or any other key \r\n \ 
      to perform a measurement with current settings."); 
       
} 
 
 
//Global functions 
//----------------- 
 
 
//******************************************************************* 
//Performing measurement on ADC channel 0 and display results on UART 
//******************************************************************* 
 
int main (void) 
 
{ 
  unsigned int id_channel, advalue; 
  char key; 
  
  TRACE_CONFIGURE(DBGU_STANDARD, 115200, BOARD_MCK); //Initializing the standard UART  
                                                     //port with 11520 baudrate and using the 
board's masterclock frequency of 48MHz 
   
 
#ifdef PINS_ADC 
 PIO_Configure(pinsADC, PIO_LISTSIZE(pinsADC)); //Configuring the list of pin 
instances defined by pinsADC and of size determined by PIO_LISTSIZE) 
#endif 
 
 
 
//Initialize the ADC with software trigger mode, sleep mode, 12 bits resolution, 
//48MHz frequency(MCK), ADC frequency, 10us startup time and 1.2us sample and hold time. 
ADC12_Initialize( AT91C_BASE_ADC, 
                  AT91C_ID_ADC, AT91C_ADC12B_MR_TRGEN_DIS, 
                 0,AT91C_ADC12B_MR_SLEEP_NORMAL, 
                 AT91C_ADC12B_MR_LOWRES_12_BIT, 
                 BOARD_MCK,BOARD_ADC_FREQ, 10, 1200); 
 
//Enable ADC channels to be used 
 
ADC12_EnableChannel(AT91C_BASE_ADC, ADC1); 
ADC12_EnableChannel(AT91C_BASE_ADC, ADC2); 
ADC12_EnableChannel(AT91C_BASE_ADC, ADC3); 
ADC12_EnableChannel(AT91C_BASE_ADC, ADC4); 
 
//Configure NVIC interrupt for ADC 
IRQ_ConfigureIT(AT91C_ID_ADC, 0, ADCC0_IrqHandler); 
//Enable given interrupt source address 
IRQ_EnableIT(AT91C_ID_ADC); 
 
 
//Show ADC Menu 
 
ShowADC12ConfigMenu(); 
 
//Infinite loop 
  
 while (1) 
 { 
       
   //wait for user input 
   key = DBGU_GetChar(); 
    
   //set Gain 
   if(key == 'g' || key =='G') 
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   { 
     cls; 
       printf("\n\r************Select Gain option to set GAIN<0:1>**************"); 
       printf("\n\r 1-- 00b [Single Ended Mode: gain =1, Full Differential Mode: gain =0.5]"); 
       printf("\n\r 2-- 01b [Single Ended Mode: gain =1, Full Differential Mode: gain =1]"); 
       printf("\n\r 3-- 10b [Single Ended Mode: gain =2, Full Differential Mode: gain =2]"); 
       printf("\n\r 4-- 11b [Single Ended Mode: gain =4, Full Differential Mode: gain =2]"); 
  
  
       key == DBGU_GetChar(); 
  
       unsigned int gain = 0xff; 
       switch (key) 
  
            { 
                case '1': 
                gain = 0; 
                break; 
 
                case '2': 
                gain = 0x1; 
                break; 
             
                case '3': 
                gain = 0x2; 
                break; 
             
                case '4': 
                gain = 0x3; 
                break; 
             
                default: 
                printf("\n\r Wrong selection!\n\r"); 
                break; 
  
             } 
   
         if (gain!=0xff) 
             { 
                //change Gain field of ADC_ACR of ADC 12 bit 
                gain |= (((unsigned int)ADC12_GetAnalogCtrlReg(AT91C_BASE_ADC))& 0x300c0); 
                ADC12_CfgAnalogCtrlReg(AT91C_BASE_ADC, gain); 
         
              } 
     
        ShowADC12ConfigMenu(); 
        continue; 
     
     
   } 
    //Show menu 
  
    if (key == 'm' || key == 'M') 
        { 
          ShowADC12ConfigMenu(); 
          continue; 
  
        }  
    
     //set offset 
    
   if (key == 'o'|| key == 'O') 
   { 
      printf("\n\r************Select input Offset option to set Offset bit field**************"); 
      printf("\n\r 1-- 0 [DIFF:0, Vrefin/4][DIFF:1, Vrefin/2]"); 
      printf("\n\r 2-- 1 [Vrefin/2]"); 
      printf("\n\r "); 
 
      
    key = DBGU_GetChar(); 
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    unsigned int offset = 0xff; 
    switch(key)  
      { 
      case '1': 
        offset = 0; 
        break; 
 
      case '2': 
        offset = 0x20000; 
        break; 
       
      default : 
        printf("\n\r Wrong selection!\n\r"); 
        break; 
     
      } 
    if (offset !=0xff) 
      { 
        //Change GAIN field of ADC_ACR of ADC 12bit 
        offset |= (((unsigned int) ADC12_GetAnalogCtrlReg(AT91C_BASE_ADC)) &0x100c3); 
        ADC12_CfgAnalogCtrlReg(AT91C_BASE_ADC, offset); 
              
      } 
     
      ShowADC12ConfigMenu(); 
      continue; 
     
   } 
     
 conversiondone = 0; 
  
 ADC12_EnableIt(AT91C_BASE_ADC, 1<<ADC2); 
  
 //Start measurement 
 while (1) 
 { 
  
ADC12_StartConversion(AT91C_BASE_ADC);         //Function to start ADC conversion process 
 while (conversiondone != ((1<<ADC2))); 
 id_channel = 1;        
              
printf("%c[2J",27); 
advalue = ADC12_GetConvertedData(AT91C_BASE_ADC, channels [id_channel]);    //Returns the 
converted channel's data and assign its value to advalue 
 
printf("\n\rChannel %u : %u mV", id_channel, convertHex2mv(advalue)); 
            
 } 
 } 
} 

 

 

3. PWM  

 
//CPUT 2011 
//Tony Lumbwe 
//204131316 
// 
/* 
 
 
 PWM program V1.0 (Source file) 
 
 
*/ 
//------------------------------------------------------------------------------ 
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// IAR EWARM Toolchain 
//------------------------------------------------------------------------------ 
//------------------------------------------------------------------------------ 
//         Headers 
//------------------------------------------------------------------------------ 
 
#include <board.h> 
#include <pio/pio.h> 
#include <irq/irq.h> 
#include <dbgu/dbgu.h> 
#include <pwmc/pwmc2.h> 
#include <utility/trace.h> 
 
#include <stdio.h> 
 
//------------------------------------------------------------------------------ 
//         Local definitions 
//------------------------------------------------------------------------------ 
 
/// PWM frequency in Hz. 
#define PWM_FREQUENCY               1000 
 
/// Maximum duty cycle value. 
#define MAX_DUTY_CYCLE              90 
#define MIN_DUTY_CYCLE              0 
 
/// Duty cycle buffer length for three channels 
#define DUTY_BUFFER_LENGTH          (MAX_DUTY_CYCLE - MIN_DUTY_CYCLE) 
 
//------------------------------------------------------------------------------ 
//         Local variables 
//------------------------------------------------------------------------------ 
 
/// Pio pins to configure. 
static const Pin pins[] = { 
    PINS_DBGU, 
    PIN_PWM_LED0, 
    PIN_PWM_LED1, 
    PIN_PWM_LED2, 
    PIN_PWMC_PWML0, 
    PIN_PWMC_PWML1, 
    PIN_PWMC_PWML2 
}; 
 
/// duty cycle buffer for PDC transfer 
unsigned short dutyBuffer[DUTY_BUFFER_LENGTH]; 
 
//------------------------------------------------------------------------------ 
//         Local functions 
//------------------------------------------------------------------------------ 
 
//------------------------------------------------------------------------------ 
/// Interrupt handler for the PWM controller. 
//------------------------------------------------------------------------------ 
void PWM_IrqHandler(void) 
{ 
    unsigned int isr2 = AT91C_BASE_PWMC->PWMC_ISR2; 
 
    if ((isr2 & AT91C_PWMC_ENDTX) == AT91C_PWMC_ENDTX)  
     
    { 
      PWMC_WriteBuffer(AT91C_BASE_PWMC, dutyBuffer, DUTY_BUFFER_LENGTH); 
    } 
} 
 
//------------------------------------------------------------------------------ 
//         Global functions 
//------------------------------------------------------------------------------ 
 
//------------------------------------------------------------------------------ 
/// Outputs a PWM on LED1to makes it fade in repeatedly. 
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/// Channel #0 is configured to have a source clock, a period and an alignment and 
/// The update of the duty cycle values is made 
/// automatically by the Peripheral DMA Controller (PDC). 
//------------------------------------------------------------------------------ 
int main(void) 
{ 
    unsigned int i; 
 
    PIO_Configure(pins, PIO_LISTSIZE(pins)); 
 
// Enable PWMC peripheral clock 
    AT91C_BASE_PMC->PMC_PCER = 1 << AT91C_ID_PWMC; 
 
// Set clock A to run at PWM_FREQUENCY * MAX_DUTY_CYCLE (clock B is not used) 
    PWMC_ConfigureClocks(PWM_FREQUENCY * MAX_DUTY_CYCLE, 0, BOARD_MCK); // Configures PWM clocks 
A to run at the given frequencies. This function 
                                                                        // finds the best MCK 
divisor and prescaler values automatically. 
 
// Configure PWMC channel for LED0 (left-aligned, enable dead time generator) 
    PWMC_ConfigureChannelExt(CHANNEL_PWM_LED0, AT91C_PWMC_CPRE_MCKA, 0, 0, 0, AT91C_PWMC_DTE, 0, 
0); 
    PWMC_SetPeriod(CHANNEL_PWM_LED0, MAX_DUTY_CYCLE); 
    PWMC_SetDutyCycle(CHANNEL_PWM_LED0, MIN_DUTY_CYCLE); 
    PWMC_SetDeadTime(CHANNEL_PWM_LED0, 5, 5); 
 
// Set channel #0, #1 and #2 as synchronous channels, update mode = 2 
    PWMC_ConfigureSyncChannel(AT91C_PWMC_SYNC0 , AT91C_PWMC_UPDM_MODE2, 0, 0); // 
|AT91C_PWMC_SYNC1| AT91C_PWMC_SYNC2 
 
// Set Synchronous channel update period value 
    PWMC_SetSyncChannelUpdatePeriod(AT91C_PWMC_UPVUPDAL); 
 
// Configure interrupt for PDC transfer 
    IRQ_ConfigureIT(AT91C_ID_PWMC, 0, PWM_IrqHandler); 
    IRQ_EnableIT(AT91C_ID_PWMC); 
    PWMC_EnableIt(0, AT91C_PWMC_ENDTX); 
 
// Enable syncronous channels by enable channel #0 
    PWMC_EnableChannel(CHANNEL_PWM_LED0); 
 
// Fill duty cycle buffer for channel #1, duty cycle from MIN_DUTY_CYCLE to MAX_DUTY_CYCLE 
    for (i = 0; i < DUTY_BUFFER_LENGTH/3; i++) 
 
    { 
        dutyBuffer[i] = (i + MIN_DUTY_CYCLE); 
    } 
 
    // Start PDC transfer 
    PWMC_WriteBuffer(AT91C_BASE_PWMC, dutyBuffer, DUTY_BUFFER_LENGTH); 
     
///--------------------------------------------------------------- 
///Infinite loop 
///--------------------------------------------------------------- 
     
while (1) 
    { 
 
    } 
 
} 
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4.TWI  
//CPUT 2011 
//Tony Lumbwe 
//204131316 
// 
/* 
 
 
 TWI temp sensor program V1.0 (Source file) 
 
 
*/ 
//------------------------------------------------------------------------------ 
// IAR EWARM Toolchain 
//------------------------------------------------------------------------------ 
//         Headers 
//------------------------------------------------------------------------------ 
 
#include <board.h>     //defines interfaces and PIOs characteristics (-frequency, 
///                               -portable PIOs definitions etc...) 
#include <pio/pio.h>              //Provides API for PIO configuration and usage of user 
///                               controlled pins. 
#include <irq/irq.h>              //Configure an interrupt in the NVIC 
#include <dbgu/dbgu.h>             // This module provides definitions and functions for using 
the Debug Unit 
//                                 (DBGU). 
#include <twi/twi.h>               // Interface for configuration the Two Wire Interface (TWI) 
peripheral. 
#include <utility/math.h>          //maths functions exported 
 
#include <utility/assert.h> 
 
#include <utility/trace.h>         // Standard output methods for reporting debug information, 
warnings and 
                                   // errors, which can be easily be turned on/off. 
#include <drivers/async/async.h>    // Asynchronous transfer descriptor. 
#include <drivers/twi/twid.h>        // 
 
#include <stdio.h>                    //Standard Input and Output header 
#include <string.h>                   //string.h is the header in the C standard library for the 
C programming 
//                                      language which contains macro definitions, constants, and 
declarations 
//                                      of functions and types used not only for string handling 
but also various 
//                                      memory handling functions; the name is thus something of 
a misnomer. 
 
//------------------------------------------------------------------------------ 
//         Local definitions 
//------------------------------------------------------------------------------ 
 
/// TWI clock frequency in Hz. 
 
#define TWCK            100000 
///TWI0 ID 
#define TWI_TEMP_ID    AT91C_ID_TWI0 
#define INVALID_TEMP (-110) 
 
/// Slave address of Temperature Sensor. 
#define MCP9800_ADDRESS   0x48 
/// Internal register within MCP9800 
//00 = Temperature register (TA) 
//01 = Configuration register (CONFIG) 
//10 = Temperature Hysteresis register (THYST) 
//11 = Temperature Limit-set register (TSET) 
 
#define TEMP_REG       0x0 
#define CONF_REG       0x1 
#define HYST_REG       0x2 
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#define LIMT_REG       0x3 
 
 
typedef struct 
{ 
  unsigned char bOneShot; 
  unsigned char bRes; 
  unsigned char bFaultQueue; 
  unsigned char bAlrtPol; 
  unsigned char bMode; 
  unsigned char bShutdown; 
}Confg_Reg; 
 
 
 
//------------------------------------------------------------------------------ 
//         Local variables 
//------------------------------------------------------------------------------ 
 
/// Pio pins to configure. 
static const Pin pins_twi_temp[] = {PINS_TWI0}; 
/// TWI driver instance. 
static Twid twid;          //TWI driver structure. Holds the internal state of the driver 
/// constant represent float value 
const char* sixteenths[]={ 
"0","0625","125","1875","25","3125","375","4375","5","5625","625","6875","75","8125","875","9375"
}; 
 
//****************************************************************************** 
//         Local functions 
//****************************************************************************** 
 
//------------------------------------------------------------------------------ 
/// Get the real temperature code regardless of different adc resolutions 
//------------------------------------------------------------------------------ 
 
short GetRealTemp(unsigned short reg_value,unsigned char res) 
{ 
  if( 8 < res && 13 > res)  //since the sensor only works within limits of 9 to 12-bit, 
resolution 
//                            needs to be set in between these values. 
  { 
    return (reg_value>>(16-res)); //Shift right the reg_value to return the real temperature code 
 
  } 
  return INVALID_TEMP; 
} 
//------------------------------------------------------------------------------ 
///  Fill the register value into specific structure 
//MCP9800 configuration register:8bits 
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
//bit 7 ONE-SHOT bits 
//bit 5-6 ¦²¦¤ ADC RESOLUTION bit 
//bit 3-4 FAULT QUEUE bit 
//bit 2 ALERT POLARITY bit 
//bit 1 COMP/INT bit 
//bit 0 SHUTDOWN bit 
// 
//------------------------------------------------------------------------------ 
 
void FillConfigReg(unsigned char reg_value,Confg_Reg *conf) 
{ 
  unsigned char res_array[]={9,10,11,12}; 
  unsigned char fault_queue_array[]={1,2,4,6}; 
  unsigned char temp; 
  temp = ((reg_value>>7)&0x1); 
  conf->bOneShot = temp; 
 
  temp = ((reg_value>>5)&0x3); 
  conf->bRes = res_array[temp]; 
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  temp = ((reg_value>>3)&0x3); 
  conf->bFaultQueue = fault_queue_array[temp]; 
 
  temp = ((reg_value>>2)&0x1); 
  conf->bAlrtPol = temp; 
 
  temp = ((reg_value>>1)&0x1); 
  conf->bMode = temp; 
  conf->bShutdown = (reg_value&0x1); 
 
} 
 
//------------------------------------------------------------------------------ 
/// Main function 
//------------------------------------------------------------------------------ 
int main() 
{ 
    unsigned char Tdata[2]; 
    short temp; 
    Confg_Reg confg; 
 
    PIO_Configure(pins_twi_temp, PIO_LISTSIZE(pins_twi_temp)); 
    TRACE_CONFIGURE(DBGU_STANDARD, 115200, BOARD_MCK); 
    printf("%c[2J",27); 
    printf("\n\r****************TWI temperature sensor***************"); 
    printf("\n\n\n"); 
    printf("\r Ambient temperature is:\n "); 
 
    // Configure TWI 
    AT91C_BASE_PMC->PMC_PCER = 1 << TWI_TEMP_ID;//AT91C_ID_TWI0; 
    TWI_ConfigureMaster(AT91C_BASE_TWI0, TWCK, BOARD_MCK); 
    TWID_Initialize(&twid, AT91C_BASE_TWI0); // Initializes a TWI driver instance, using the 
given TWI peripheral. The 
                                             // peripheral must have been initialized properly 
before calling this function. 
                                             /// \param pTwid  Pointer to the Twid instance to 
initialize. 
                                             /// \param pTwi  Pointer to the TWI peripheral to 
use. 
    while(1) 
    { 
 
 
        char index; 
        short integer; 
        TWID_Read(&twid, MCP9800_ADDRESS, CONF_REG, 0x01, Tdata, 0x01, 0); 
        FillConfigReg(Tdata[0],&confg); 
        TWID_Read(&twid, MCP9800_ADDRESS, TEMP_REG, 0x01, Tdata, 0x02, 0); 
        temp = ((Tdata[0]<<8)|(Tdata[1])); 
        temp = GetRealTemp(temp,confg.bRes); 
        index = temp%(2<<(confg.bRes-8-1)); 
        index =  index <<(4-(confg.bRes-8)); 
        integer =   temp/(2<<(confg.bRes-8-1)); 
        printf("\r\t\t\t%d.%s C\r",integer,sixteenths[index]); 
 
    } 
} 

 
 
 
 
 


