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ABSTRACT

Space-borne GPS receivers designed for nano-satellites are faced with various challenges. This
research is undertaken to address the problems of inefficiency and high-costs associated with
space-borne GPS receivers. The problem of inefficiency relates to poor performances of the GPS
receiver in terms of the algorithmic models, execution speed, memory usage and errors proness.
The problem of high-costs relates to the spacegrade hardware cost, implementation complexity,
development time, as well as the manufacturing, production and the testing processes involved.

The research objectives are to i) establish an efficient high-dynamics software-defined GPS
receiver, ii) demonstrate a firmware approach and then iii) postulate a low-cost hardware
implementation roadmap. The research methodology employed to address the problems and to
attain the objectives is based-on using Matlab computing platform to i) implement a software-
defined GPS receiver using free open-source GPS receiver algorithms, ii) further develop the
software GPS receiver and lastly iii) convert the improved GPS receiver algorithms to firmware.
The GPS receiver was successfully implemented in Matlab floating-point algorithms with a
+100kHz Doppler search bins and was used to post-process a pre-captured real GPS L1 C/A
signal dataset. The pre-captured GPS signal was acquired, tracked, decoded and post-processed

to extract the navigation message; use to compute the GPS receiver position, UTC date and time.

Attempt to convert the entire Matlab floating-point GPS receiver algorithms to equivalent VHDL
implementations failed; however, three of the Matlab floating-point algorithms (check t.m,
deg2dms.m and findUtmZone.m), were successfully converted to equivalent fixed-point formats
in Matlab, Simulink and finally VHDL. These three algorithms, now created and optimised to
fixed-point formats (efficient and enable implementation unto a low-cost microcontroller), set
the basis for the firmware implementation. They were simulated and verified in Matlab,
Simulink and VHDL using the Matlab HDL Coder workflow. Altera Quartus Il software was
then used to compile (synthesise, place & route and generate programming files) the three

converted generic VHDL algorithms to embedded firmware, suitable for a FPGA programming.

The Matlab HDL Coder workflow used in this research is feasible and can be used to accurately
design and implement an improved GPS receiver and furthermore achieve it in three equivalent
algorithms. This conclusion was drawn and the proposed recommendations are to address the
conversion issues in the other Matlab floating-point GPS receiver algorithms that failed in the
conversion process and to further develop and implement the GPS receiver as a fully functional

unit, based-on the Xilinx space-grade, radiation hardened and low-cost Virtex 5QV FPGA.
Il
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GLOSSARY

1U CubeSat  Nano-satellite of form-factor; 10 x 10 x 10 cm®, weighs < 1.3 kg and uses < 1W
3U CubeSat  Nano-satellite of dimension; 10 x 10 x 30 cm®, weighs < 4 kg and uses < 5W
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GUI Graphical User Interface

HDOP Horizontal Dilution Of Precision

HOW How-Over Word
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IC Integrated Circuit

IEEE Institutes of Electrical and Electronic Engineers
IF Intermediate Frequency

IFT Inverse Fourier Transform

IFFT Inverse Fast Fourier Transform

IMU Inertial Measurement Unit

INS Inertial Navigation System

IODE Issue Of Date Ephemeris
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LOS Line Of Sight

LSB Least Significant Bit
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MEO Medium Earth Orbit (at an altitude above Earth from ~10000 km to ~20000 km)
MLS Maximum Length Sequence
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MSB Most Significant Bit

MTSAT Multifunctional Transport Satellite
Nanosatellite A very small satellite of mass between 1 and 10 kg
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NCO Numerically Controlled Oscillator
NORAD North American Aerospace Defense Command
OoBC Onboard Computer

[OF] Operating System

P-POD Poly-Picosatellite Orbital Deployer

PDOP Position Dilution Of Precision

PLL Phase Lock Loop

ppm parts per million

PPS Precise Positioning Service

PRN Pseudo Random Noise

PS Power Sub-system

PVT Position, Velocity and Time
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Q Quadrature
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CHAPTER 1

INTRODUCTION

1.1 Thesis Overview

The goal of the Global Navigation Satellite System (GNSS) technology, is to accurately assign
every point (<1m?) on Earth a unique address (coordinates — latitude, longitude and altitude), as
well as to provide accurate timing information (El-Rabbany, 2002: 1). Advances in GNSS
research, enabled the development of space-borne Global Positioning System (GPS) receivers,
for use in nano-satellites in Low Earth Orbit (LEO). Nano-satellites (specifically CubeSats), are
also designed and developed by staff and students at the French South African Institute of
Technology (F’SATI') — a space technology research unit at the Cape Peninsula University of
Technology (CPUT). CubeSats measuring 10x10x10cm® and weighing ~1kg are a popular
affordable platform used by universities and industries worldwide. They boost short development

cycles for satellites systems engineering, in-situ space research and modest resolution imaging.

A GPS receiver onboard a CubeSat serves various purposes, such as autonomous real-time orbit
determination and in-situ ionospheric research. Contrary to terrestrial GPS receivers that are
affordable, readily available and subjected to less challenging environments, a space-borne GPS
receiver for use in CubeSats, must be designed to cope with challenging operational conditions,
such as hazardous space weather and extreme dynamic Doppler’s shifts in excess of 100 kHz
(Gleason and Gebre-Egziabher, 2009: 330; Avansi and Tortora, 2010; Lofgren, n.d.). Faced with
these challenges and high unit cost of ~ R100 000 of available space-borne GPS receiver units
(Montenbruck 2008: 3 & 4), this research demonstrates the design and implementation of an

efficient GPS receiver as well as postulates the implementation of a low-cost space-grade model.

1.2 Nano-satellites Overview

Nano-satellites are any miniature artificial satellites (irrespective of their shapes or form-factors)
of mass between 1 and 10 kg. Nano-satellites are not linked to nanotechnology but are simply a
descriptive attribute to the miniaturisation of satellite technology. The nano-satellite of interest to

this research is the CubeSat and is therefore discussed in detailed in the subsequent sections.

! http://mww.cput.ac.za/fsati
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1.2.1 CubeSats Background

CubeSats are miniature nano-satellites (or spacecrafts) introduced in 1999 by Prof. Jordi Puig-
Suari at California Polytechnic State University in San Luis Obispo and Prof. Bob Twiggs at
Stanford University in Palo Alto (Paluszek et al., 2010: 3; CubeSat, 2014: 5). The primary aim
has been to enable higher institutions around the world to study and implement the features and
functionalities of a larger satellite at a micro level, with minimum costs and shorter development
time. As a result, commercial-off-the-shelf (COTS) components are mostly utilised in the
developments of CubeSats to reduce costs at the expense of life expectancy. CubeSats design
and launch cost varies and it is developed globally at more than 100 institutions (universities,
colleges and industries) worldwide. In AMSAT-UK (2014) and CubeSat (2014), more than 100
CubeSats have been launched? with the first in Russia in 2003. Figure 1.1 depicts CubeSats.

Figure 1.1: Model of a CubeSat (left) and various types of designed CubeSats (right)
(Adapted from Arif, 2010: 300; Sweeting, 2010: 56)

2 https://directory.eoportal.org/web/eoportal/satellite-missions/space-agencies
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1.2.2 CubeSats Specifications

CubeSats are cubical nano-satellites of mass between 1 and 10 kg. Their design and construction
must adhere to strict standard dimensions and there are commonly three CubeSats standard form-
factors, namely 1U, 2U and 3U — where U = Unit = 10cm (NASA, n.d.). It should be noted that,
the width and height of all CubeSats are the same (i.e. 10cm by 10cm) and what differentiate
them are their lengths and masses. Therefore, a 1U CubeSat has a dimension of 10cm x 10cm x
11cm and weighs approximately <1.33 kg (NASA, 2014.); whereas, a 3U CubaSat has a
dimension of 10cm x 10cm x 30cm and weighs approximately < 4 kg (Nelson, 2010: 4 - 7).

The 1U and 3U form-factors of CubeSats are the most common and widely used (use also by
F’SATTI); as such, it will be used throughout in this thesis as a reference to illustrate CubeSats
concept where applicable. These dimensions are standard and were established to enable a
CubeSat to fit in its launch platform known as the Poly-Picosatellite Orbital Deployer (P-POD).

Adhering to this standard means that, multiple CubeSats can be easily and safely placed in a P-
POD and cost-effectively launched as a piggyback (i.e. the P-POD is mounted on-top of a bigger
spacecraft during launch and both combined units are launched as a single entity by the launch
vehicle). Figure 1.2 illustrates a descriptive sketch of the 1U, 3U and P-POD form-factors as
described in Bein (2008: 1 - 5) and California Polytechnic State University (2009: 5).

3U (30cm) length

y

v
A
v
A
v

10cm

1U (10cm) 1U (10cm 1U (10cm) 10cm

P-POD Enclosure

Figure 1.2: lllustration of three 1U CubeSats inside a P-POD
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1.2.3 CubeSats Objectives

CubeSats were developed to assist universities and higher learning institutes worldwide to
perform space science and exploration, by using CubeSat low-cost platform as an opportunity for
students to learn and practice satellite engineering at a simpler micro level (Smalarz, 2011: 1 - 3).

Furthermore, human capacity development skills achieved from CubeSats trainings will enable
graduate students to take-part in larger space missions at national and/or international levels.

Finally, CubeSats programme provides quick access to space by using small payloads; thus, it
allows a research facility to quickly carry out an urgent space experiment (Bein, 2008: 1).

1.2.4 CubeSats Sub-systems

Arif (2010: 297 - 305) indicates that, a typical CubeSat consists of two sections: a payload and a
platform — the payload defines the CubeSat mission and constitutes the sensor(s) while the
platform sustains the mission and constitutes the sub-systems. Figure 1.3 illustrates a simplified

architecture of a typical CubeSat system and is briefly explained in the following paragraphs.

A payload is the most vital part of a CubeSat, as it defines the mission objective (e.g. payload
containing sensor for remote monitoring of Earth) for launching a satellite into space. Due to
CubeSats constraints, a payload needs to be selected such that its power, size and mass
parameters meet the CubeSat specifications. In some cases, a CubeSat contains a single payload

with no redundancy and as a result, it has to be very reliable and fault proof (Munteanu, 2009: 9).

| C"ubesSat ‘-— — = — == {around Station ‘

l ‘ Favioad
Flatform l |

Sensors

Sub-systeins in bus (opoloEy {130

| | | |
| ey ‘ | rs Ccs TCS | Acs |

Figure 1.3: CubeSat architecture showing basic sub-systems
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A platform offers structural supports for the payload, sustains the mission and encompasses the
sub-systems — which includes the followings as highlighted in (Arif, 2010: 298 - 316).

e Structural Sub-system (SS): Provides mechanical support during launch and protects CubeSat
components from space adverse conditions such as radiations and extreme temperatures.

e Power Sub-system (PS): Power is derived from the Sun and is harnessed by solar cells and
stored in Lithium-ion batteries, further regulated and distributed to the various sub-systems.

e Communication Sub-system (CS): Provides 2-way communications between the ground
stations and orbiting CubeSats. CS often constitutes the antenna, transponder and transceiver.

e Thermal Control Sub-system (TCS): Maintains the internal temperature of the CubeSat within
functional limits, using active and passive thermal control means (e.g. via radiation process).

e Attitude Control Sub-system (ACS): Maintains orbiting CubeSats orientation with respect to
Earth and Sun, for communication and power respectively. Spin stabilisations is often used.

e On-board Computer Sub-system (OBC): It is the central processing unit and it executes the
flight software that is responsible for telemetry and tele-commands with the ground-station, as
well as delegation of tasks and coordination of processes to and from the various sub-systems.

The mentioned sub-systems are the most fundamental found in CubeSats and they vary
depending on mission aims. These sub-systems constitute modules and or discrete devices. Other
less common sub-systems include propulsion or thrusters and in NASA Goddard (2014), it can

be used to advance CubeSat to deep space missions by controlling the speed, orbit and altitude.

CubeSats require ground stations for communications and sharing of data, such as commands
and payload data. Communications are usually done via private ground stations using the AX.25
protocol with the amateur radio services or via the global distributed network of ground stations
such as GENSO and INTELSAT (Munteanu, 2009: 10 - 54; Smalarz, 2011: 26; Lee, n.d.: 1).

1.2.5 CubeSats Applications

In NASA Goddard (2013), CubeSats can be used in the following applications: in-situ space
science research, environmental remote sensing of Sun, Earth observation (e.g. fires) or imaging,
technology demonstration / verification, communication if constellated, testing components in
real space conditions, helio-physics, astro-physics, geosciences, satellite servicing, space station
inspection, space debris removal, cosmology, link between lightning and terrestrial gamma ray
flashes, water detection in moon using infrared spectrometry and potential deep space missions.

Koontz et al. (2014) states CubeSats can as well be used to measure Near-Earth Objects (NEOSs).
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1.2.6 CubeSats Past Missions

Since CubeSats inception, they have been some launch successes to space, as well as failures
during launch (Bein, 2008: 4 & 5; Munteanu, 2009: 6 & 7). Amongst the success stories was the
launch of CPUT’s and F’SATI first CubeSat — ZACUBE-01%, launched on November 21, 2013.

1.2.7 CubeSats Constellations

CubeSats constellations is an interconnection network of two or more orbiting CubeSats in space
— configured on a specific orbital plane of Earth and inclined at a certain angle and altitude.
Constellation improves CubeSat mission performance, coverage, continuous data exchange and
mitigates mission failure if a CubeSat in a constellation fails. CubeSats are mostly constellated in
Sun synchronous orbits, typically at 98° inclination angle from ~ 400 — 1000 km altitudes above
Earth. Communications between constellated CubeSats is via RF and Laser links. In Sandau et
al. (2010: 113 - 121), a constellation of small satellites is suitable for measuring near-Earth space
conditions. CubeSats constellations can be simulated using STK tool (Munteanu, 2009: 60 - 75).

There are various theoretical types of CubeSats constellations and the two most common (see
Figure 1.4) are the Polar (requires CubeSats to be longitudinally and inclined at 90°) and Walker
(requires all CubeSats orbits to have the same criss-cross inclination at 98°) orbits constellations.
These two were considered by researchers at University of Washington in their Rapid Terrestrial
Imaging application, in which a minimum of LEO CubeSats were constellated to minimise focal

length and telescope diameter, for adequate image resolution (Bernhardt et al., 2009: 4 - 14).

Figure 1.4: Polar (left) and Walker (right) orbits constellations
(Adapted from Bernhardt et al., 2009: 4 & 5)

3 https://directory.eoportal.org/web/eoportal/satellite-missions/v-w-x-y-z/zacube-1
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1.3 Research Problem Statement

This research is undertaken to address two challenges in Global Navigation Satellite Systems
(GNSS) technologies. These are i) inefficient Global Positioning System (GPS) Link 1 (L1)
Coarse/Acquisition (C/A) processing (acquisition, tracking and decoding) algorithms for use by
GPS L1 C/A receivers on-board an orbiting CubeSat in Low Earth Orbit (LEO) and ii) the high-
costs associated with space-borne or high-dynamics GPS receiver design and implementation.

1.4 Research Problem Background

F’SATI is a space research unit at CPUT that focuses on the design and development of LEO
CubeSats. F’SATI’s first CubeSat (ZACUBE-01 or TshepisoSat or ZA-003) was built and
developed by staff and students and was successfully launched on November, 21 2013. The
design and construction of its first 3U CubeSat (ZACUBE-02) is in progress. ZACUBE-01 relies
on the North American Aerospace Defense Command (NORAD) Two-Line Elements (TLES)
data for position and velocity determinations. As mentioned in Kahr et al. (2010), TLEs is a set
of orbital parameters, used to provide navigation to any satellites or objects orbiting the Earth.

Although the TLEs approach is free (Celestrak, 2013), its usage is however not autonomous and
requires the ground station(s) to continuously access the NORAD or Space-track website to
update the orbiting satellite(s) with its new TLES parameters during over-pass communication
with the ground station(s). A real-time on-board GPS receiver will be a viable autonomous
alternative or supplement to the TLEs approach. However, most GPS receivers that are
commercially available cannot be publicly upgraded and therefore be used in space due to:

o Their inability to handle high-dynamics Doppler frequency shifts — which hampers GPS
signal acquisition, tracking, lock, position, velocity and time accuracies (see Section 1.4.4).
The inability in the GPS algorithms can be attributed to inefficiency due to (i) wrong
mathematical models used and (ii) the computational inability of the implemented
algorithmic models. The mathematical models refer to the different mathematical
techniques or concepts that an algorithm is based-on. The computational inability refers to
the slowness in execution speed and high memory usage of the implemented algorithms.

o GPS ITAR / COCOM limits embedded in commercial GPS receivers — ITAR stands for
International Traffic in Arms Regulations. COCOM - discontinued, was a Coordinating
Committee for Multilateral Export Controls. The GPS ITAR or previously COCOM limits,
restrict operations of commercial GPS receivers to altitudes of <18km and velocities of
<515m/s, (Lu, 2003: 63; Nortier, 2003: 20; CCII, n.d.: 2) by ensuring automatic shut-down
or faulty readings if one or both limits are exceeded. This is to prevent free use of
commercial GPS receivers in ballistic missiles applications. Therefore, only a handful of
vendors (refer to Table 1.1), do design and commercialise space-borne GPS receiver units.
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Table 1.1: Summary of specifications and costs of space-borne GPS receivers

SSTL SSTL CubeSat NovAtel

Vendors/Dealers (SGR-10) (SGR-05U) Shop OEM615-D2S
Unit Price ® R1,055,700 R150,000 R155,000 R95,000
Dimensions (cm®; g) | 19.5x16.2x4.8; 950 7x4.5x1; 20 | 5x2x0.5; 30 6x3x2; 25
Power Rating (W; V) 5.5; 18 to 38 1,5 1,5 <1, +4.5t0 18
Operating temp (°C) -20 to +50 0 to +50 -10 to +50 -40 to +85
Distinct feature 24 channels 12 channels SDR GPS / Glonass
Position accuracy 10m 10m <10m 10m
Velocity accuracy 15cm/s 15cm/s < 25cm/s 20cm/s
Radiation dose 10kRad (Si) 10kRad (Si) Tolerant > 10kRad (Si)
Interface CAN, RS422 RS232 I12C, RS422/485 | CAN b, Serial
Lead time 6 months 3 months 3 months 3 months

Montenbruck (2008: 3 & 4), points out that, GPS receivers for space applications are subjected

to challenges with respect to (i) space design considerations and (ii) space design cost factors:

i) Space design considerations include:

Legal issues (ITAR and export laws).
Signal high-dynamics (excessive Doppler’s frequency shift).
Extreme high and low temperatures.
Vacuum.
o Outgassing / leakage.
o Decreased heat transfer.
Vibration (only during launch).
Radiation.
Total ionization dose.
Single event effects.

i) Space design cost factors include:

e Small market segment.
o ~ 300 satellites in LEO.
o ~ b5 years life expectancy.
o 5 - 10 geodetic annual grade missions.
e Space-grade components.
o ~ R1800k regular receiver cost in addition to numerous R1800k non-regular cost.

e Acceptance tests and qualification.

o R90 — 900k facility usage and R270 — 450k monthly labour cost.
e Software.

o Reliability and performance requirements.

o Software engineering standards.

o Testing.

Hence, these challenges foster the research of F’SATI’s space-borne GPS L1 C/A receiver.

To address these challenges, literature surveys on space-borne GPS receivers and GPS receiver’s

algorithms summarised in Sections 1.5.1 to 1.5.3 and elaborated in Appendix A were conducted.
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1.5 Research Literature Review

The literature survey spans a detailed analyses of GPS satellites signal, correlator and baseband
processing algorithms; orbital mechanics (coordinate systems and Keplerian orbit); GPS Digital
Signal Processing (DSP); GPS errors sources such as multipath, ionospheric and Doppler’s
effect; as well as suitable GPS receiver development platforms such as Matlab and Simulink.

Presented below are brief descriptions of aspects of GPS technology relevant to this research.

GPS satellites refer to the space segment of GPS technology. Although the exact number varies,
in Maini and Agrawal (2011: 516 & 517), it is indicated that, it consists of a constellation of 24
Medium Earth Orbit (MEO) satellites with four spares. The 24 satellites comprise six orbital
planes with each plane constituting of four satellites. All planes are equally spaced 60° apart and
all four satellites in each plane are unequally spaced apart as shown in Figures 1.5 and 2.3. Each
orbital plane is inclined at an angle of 55° from the equatorial plane and each satellite in its plane
is at an altitude of ~20,200 km above Earth with an orbital period of ~12 hours; repeating the
same ground track twice every 1 sidereal day, at a velocity of ~3.888 km/s (approximately half
LEO nano-satellite velocity — see Section 1.4.4). This GPS constellation ensures that, at any
point in time, at least 5 to 8 satellites are visible from anywhere on Earth and a minimum of four

are needed for accurate positioning (Tsui, 2005: 31), especially if the altitude is varying.

GPS signal refers to the invisible part and the transmission bands include L1, L2 and L5. The L2
band is reserved for USA military use and operates at a P(Y)-code signal frequency of 1.2276
GHz. This research will focus on the L1 band which is reserved for civil applications and has a
CI/A carrier signal frequency of 1.57542 GHz with a clock or data rate of 1023 kilo chips/s. The
L1 band is divided into 25 frames that are further sub-divided into five sub-frames consisting of
300 chips (bits) per sub-frame and 1500 chips/per frame (Navstar I1S-GPS-200H, 2013: 75 - 86).
Hence, with a navigation data rate of 50 bps; the transmission rate will be 20ms per bit, 6s per
sub-frame and 30s/frame. These GPS signals are transmitted as Pseudo Random Noise (PRN)
Gold codes, spread by Direct Sequence Spread Spectrum (DSSS) and Code Division Multiple
Access (CDMA) techniques. Modulation is via Binary (Bi) Phase Shift Keying (BPSK) scheme.
PRN codes reach Earth as very weak signals embedded in noise and correlation is the only way
of retrieval. Trilateration is commonly performed to compute pseudo-range (Gleason & Gebre-
Egziabher, 2009: 56) from which; Position, Velocity and Time (PVT) estimates are deduced.

GPS receivers refer to the portable segment and are covered in detailed in Sections 1.5.1 to 1.5.3.
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Figure 1.5: A single orbital plane overview representation of GPS technology (not to scale)
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Research projects focusing on the design and implementation of space-borne receivers, some of
which are highlighted in Table 1.1, have been the focus of a number of institutions (refer to
Table 1.2). Three approaches used were examined and discussed as follows:

e Hardware-defined approach by using Commercial Off The Shelve (COTS) devices.
e Hardware-defined approach by modifying potential commercial GPS receiver units.
o Software-defined / Firmware-defined approaches (designing from first principles using DSP).

1.5.1 Hardware-defined Approach by Using COTS Devices

With this approach, discrete COTS components and open-source codes are utilised to design a
space-borne GPS receiver, in which, a combination of Application Specific Integrated Circuit
(ASIC) and DSP devices are used. These ASIC devices include Radio Frequency (RF)
components such as GPS front-end and GPS correlator. The DSP devices could be any suitable
programmable hardware (GPS baseband processor) that performs GPS data/maths computations.

Table 1.2 summarises satellite missions where space-borne GPS receivers were utilised and also
lists the type of components that were used and the missions aim. From the data in Table 1.2, it
can be seen that most of the GPS front-end and correlator devices in the space-borne GPS
receivers, were implemented using Zarlink GP2015 and GP2021. GPS correlators design and
baseband processing are the core of a GPS receiver; thus, features of the devices presented in
Tables 1.2 and 1.3 were examined. The GP4020 or GP2000 seems suitable but have been

discontinued and no longer supported by Zarlink, though they can still be sourced but unreliable.

1.5.2 Hardware-defined Approach by Modifying Commercial GPS Receiver
In Nortier (2003: 54), this approach used to be the popular and quickest way to design a space-

borne GPS receiver. However, it carries some legal implications if done without the GPS
receiver vendor’s approval. Vendors such as NovAtel, Orion, Sigtec Navigation and Microsemi
(acquired Zarlink* formerly Mitel®) of commercial GPS receiver products, allow their GPS
receivers to be modified for space applications, provided the client is willing to pay an extra fee.
In the modification process, appropriate hardware and software changes including elevation
mask are made and the lines of source-codes that implement the GPS ITAR or COCOM velocity
(speed) and or altitude (height) restrictions (pre-programmed in the GPS baseband processor) are
removed (Lu, 2003: 63 & 64). The amended source-codes are debugged and upgraded on the

baseband processor and the implemented changes executed (Nortier, 2003: 76 & 77).

* http://ulp.zarlink.com/zarlink/hs/about.htm % http://en.wikipedia.org/wiki/Zarlink
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1.5.3 Software-defined / Firmware-defined Approaches

A software-defined GPS receiver unit refers to a unit that is implemented on a computer. This
approach provides a versatile/re-programmable design and development platform (Borre et al.,
2007). With this method, the main GPS receiver functional blocks, namely the GPS correlator
and baseband processor, are implemented based-on DSP or from emulating the internal circuitry
of a known GPS receiver (Greenberg, 2005). Once the software implementation is realised, it is
further fully debugged and optimised (Tsui, 2005: 3 - 5). Firmware is software embedded into
hardware, such as a Field Programmable Gate Array (FPGA). Figure 1.6 depicts this approach.
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Figure 1.6: Software-defined GPS receiver architecture
(Adapted from Plausinaitis, 2009c: 17)

The first functional block of any GPS receiver is the GPS front-end and its purpose is to down-
convert the received GPS signal. Transmitted GPS signals are Right Hand Circularly Polarised
(RHCP) and thus require a RHCP antenna to receive the signal. Although a GPS front-end can
be built using discrete components, it is readily available as ASIC with in-built Low Noise
Amplifier (LNA), Analog to Digital Converters (ADC), filters and mixers (Grewal et al., 2001:

81 & 82). Thus, just an antenna, oscillator, saw-filters and few passive components are required.

The second functional block is the GPS correlator that is used to acquire and track the down-
converted GPS signal — by correlating incoming GPS signal with known replicas. As depicted in
Table 1.2, GPS correlators are available as ASIC and DSP devices, consisting of 12 channels.

The more GPS receiver correlator channels, the better the performance (McNamara, 2004: 54).

The third and final functional block is the GPS baseband processor and its purpose is to decode
and process the GPS signals from the GPS correlator. From Tables 1.2 and 1.3, GPS baseband
processors designs vary amongst vendors. Some GPS baseband processors have built-in GPS
front-end and correlators housed in one package, others contain only GPS correlators, while most

have just the GPS baseband processor for executing the GPS signal processing algorithms.
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Table 1.2: Hardware GPS devices utilised for space-borne GPS receivers

I . GPS GPS GPS Research
Institutions | Mission Front-end Correlator Baseband | Payload or aim Year
Surrey Surrey Mitel GP2000 Orbit i

Space Satellites (GP2015, GP2021, ARM60B processor) Determination
i?wlsiirtlogess ) ) 12 Channel DSP Tracking and i
. u correlator processor | Attitude Control
in Korea
Standford |Space/Earth . . Mitel GPS Spacecraft
/ NASA Science Zarlink GP2010 | Zarlink 2021 chip Formation-flying 1999
Tsinghua / [Tsinghua-1 Mitel Mitel Position and
Surrey MicroSat GP2010 GP2021 ARME0 Velocity 1999
GSOC CHAMP, Mitel GP2000 has built-in: Sounding 2001
BIRD (GP2015, GP2021, ARM60B processor) Rockets and Sat
Virginia |lonosphere . . Mitel GPS GPS Signal
Polytech Research Zarlink GP2015 | Zarlink P2021 Builder Sensor 2003
New South
Colony 11 . . Cyclone Proof of
Wales, CubeSat Zarlink GP2015 | Zarlink P2021 Il EPGA Concept 2004
Sydney
o Orbit
GSOC/SUN |Sunsat 2004 Phoenix (SigTec MG5001 Determination 2004
New South . GP2021 FPGA Open—source
Wales i Zarlink GP2015 FPGA processor | GNSS Receiver 2004
Portland |Unmanned Open-source
State Uni | Satellites GP2010 GP4020 GPS 2005
X-sat, Phoenix-XNS/HD Rx Orbits
GSOC PRISMA GP2015 (Zarlink GP4020) Determination 2006
New_ CASSIOPE NovAtel OEM4-G2L GPS receiver Multi-purpose | 2007
Brunswick
National Experimental
Cheng CKUTEX |Zarlink GP2015 | Zarlink GP2021 ARMI20T Payload for 2010
processor -
Kung LEO Mission

Summarised in Table 1.3 are GPS receiver’s baseband processors with their respective vendors.

Table 1.3: Various GPS baseband processors

GPS baseband

[Processors

Zarlink
GP4020

Mitel
GP2000

Atmel

ATRO0622P

Sony
CXD2932

Prolific
PL-6313

uNav
uN8130

Nemerix
NJ2020

Each of the three mentioned methods of designing a space-borne GPS receiver, has advantages

and disadvantages. The hardware approach is more suitable in high-dynamics applications (in

spacecraft and satellites) because of its continuous GPS satellites tracking architectures. The

mostly used GPS baseband processors (GP2000 / GP4020) are now obsolete and non-

upgradeable, since production has stopped (Zarlink Semiconductor, n.d.). If sourced and used in

new projects, the GP2000 / GP4020 cannot be supported or improved to suit advances in GNSS

technology, contrary to software-to-firmware approach which is thus chosen as the research path.
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1.5.4 GPS Receivers Acquisition and Tracking Algorithms

To utilise an in-coming GPS signal from any orbiting GPS satellite, a GPS receiver must first
acquire and then track it. Acquisition is a highly computational demanding task, as it involved
searching within a three dimensional space of Doppler frequency shifts, GPS satellites PRN or
Gold codes and unknown time delays. Once acquisition is complete, a fine closed-loop
synchronisation known as tracking takes over and tries to keep the signal locked. In LEO, these
processes becomes more challenging as they involved GPS satellites and CubeSats in respective
MEOQO and LEO, at corresponding velocities of ~3.888 km/s and ~7.888 km/s (Nortier, 2003: 23).

As stated in Nortier (2003: 22 & 23), Gleason and Gebre-Egziabher (2009: 330) and Avanzi and
Tortora (2010); Doppler shifts results to tremendous difficulty in GPS signal acquisition,
tracking instability / cycle slips (GPS receiver loses lock) and finally PVT computation in-
accuracies due to high relative motion and high-dynamics which i) enormously limit contact time
between satellites in MEO and LEO — CubeSats will be rapidly changing hemispheres relative to
respective GPS satellites and ii) increased Doppler shift rates and mean Doppler shifts as high as
+55 kHz (~5 to ~11 times that of terrestrial GPS receivers). The quality of a GPS receiver
algorithm is determined by its ability to acquire GPS signals as quickly as possible (especially in
unfavourable conditions, such as high Doppler shift, interference and multipath), to track and
stay locked (without cycle slips) to the acquired GPS signal and to compute PVT solutions as
quickly and accurately as possible (Glennon et al., 2011). In light of this, various low and high-
dynamics GPS receiver algorithms have been proposed and implemented as possible solutions.

Tables 1.4 and 1.5 respectively outline the acquisition and tracking techniques that are examined.

Table 1.4: Summary of low and high-dynamics GPS signal acquisition techniques

Acquisition Algorithms Source
Acousto-optic Technique Bazzi et al. (1993)
Mitel GP2000 Mitel GP2000 (1998: 14 & 15)
Averaging Correlator Acquisition Alageeli et al. (2003)
Parallel Code Phase Search (Delay & Multiply FFT) | Tsui (2005: 139); Borre et al. (2007: 82)
Block (Non-coherent Integration) Acquisition Tsui (2005: 144); Shi et al. (2009)
Multiple Correlators Bank Acquisition Akopian et al. (2006)
Lifting Wavelet Acquisition Djebouri et al. (2006)
Serial or Sequential Search Acquisition Borre et al. (2007: 75 — 78)
Parallel Frequency Space Search Acquisition Borre et al. (2007: 78 — 81)
Wavelet De-noising Acquisition Tian & Yang (2008)
Reconfigurable Instruction Cell Array Acquisition El-Rayis et al. (2010)
Wavelet Transform Acquisition Jianguo et al. (2010)
Extended Multiple Correlators Acquisition Xiaowen et al. (2010)
Bayesian Acquisition Technique O’Mabhony et al. (2012)
Matched Filter Correlator Acquisition Ta et al. (2012)

30



Table 1.5: Summary of low and high-dynamics GPS signal tracking techniques

Tracking Algorithms

Source

Block Adjustment of Synchronising Signals

Tsui (2005: 170 — 175)

Combined Carrier and Robust DLL Code Tracking

Tsui (2005: 168); Borre et al. (2007: 106)

PLL and Costas Loop Carrier Tracking

Borre et al. (2007: 93 — 96)

Basic DLL Early-Late Code Tracking

Borre et al. (2007: 96 — 100)

Robust DLL Early-Late Code Tracking

Borre et al. (2007: 98)

Nonlinear Code Tracking Filter Technique

Gustafon et al. (2009)

Inertial Navigation System Tracking Technique

Rogers (2007); Xiaoyong & Baigi (2011)

Combination of Squared Correlators Tracking

Falletti et al. (2012)

Extended Kalman Filter Tracking Technigque

Peng et al. (2012)

Kalman Filter Tracking Loop Technigque

Song et al. (2012)

In Gerein and Brown (2001), Tsui (2005) and Borre and Strang (2012), a software-defined GPS
receiver approach presents a suitable platform to develop GPS receivers’ algorithms, as well as

to devise new and advanced techniques, as existing GPS receiver algorithms have pros and cons.

For instance, in Borre et al. (2007: 75 - 78), a serial search technique is a very popular “method
of signal acquisition in CDMA systems” — to which GPS belongs; however, it is time consuming
as it involves the algorithms to search through all 1023 PRN code spaces and 41 Doppler’s

frequency shift bins. In high-dynamics situations, this algorithm can be problematic, as the GPS

satellites and GPS receiver will surely lose communication before processing is even completed.

%—‘ Output

Local
oscillator

PR N code

generatlor

Figure 1.7: GPS signal acquisition serial search technique
(Adapted from Borre et al., 2007: 76)

Figure 1.7 illustrates GPS signal serial search acquisition technique. It basically involves first
generating respective GPS PRN codes, followed by an In-phase (I) and Quadrature (Q) 90° phase
shifted carrier frequencies; which are then integrated, squared and finally summed together. The

output is passed to the tracking algorithm section, to ensure the acquired signals are maintained.

From the research problem background and literature review, the following objectives were set.
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1.6 Research Project Objectives

The main objective is to design and implement a software-defined, high-dynamics GPS receiver
to acquire, track, decode and process GPS L1 C/A signals, with main focus on GPS receiver
Position (latitude, longitude and altitude) calculation, as well as the Velocity and Time (PVT).

From this primary objective, the secondary and tertiary sub-objectives are derived as follows:

1.6.1 Secondary Objective: Develop Software Receiver / Address First Research Problem

The secondary objectives are to improve the proposed software-defined GPS receiver and to use
it as a space-borne GPS receiver development platform / tool; to i) address the first research
problem of inefficient GPS receiver algorithms and to ii) realise an improved GPS receiver
algorithm(s) to acquire, track and decode incoming high-dynamics GPS L1 C/A signal in LEO.

1.6.2 Tertiary Objective: Firmware GPS Receiver Design and Implementation

The tertiary objectives are i) to convert (change to a high level embedded language e.g. VHDL)
the improved software GPS receiver algorithm(s) to a firmware GPS receiver algorithm(s),
which can readily be programmed into a suitable FPGA microcontroller and ii) to finally address

the second research problem of high-cost associated with space-borne GPS receivers units.

Illustrated in Figure 1.8 is a brief flowchart and summary of the research project objectives.

Legend

1: Software GPS Receiver

Successful
_*.

Unsuccessful

Repeatedly

2: Improve GPS Receiver
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3: Firmware GPS Receiver Optimisation

Completion
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A
t

Figure 1.8: Concise summary of the research project objectives
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1.7 Research Project Design Methodology

The literature review outlined in Section 1.5 set the basis for the design methodology. From the
relevant literature assessment, the software approach is chosen as the preferred design and
implementation path. A software approach is more flexible and enables rapid developments and
devise of new algorithms. The algorithms summarised in Tables 1.4 and 1.5 were investigated to
select the most suitable in-line with the research objectives, as well as a preferred software path.

Being a complex project, Software or System Development Life Cycle (SDLC) methodologies
were investigated to select a suitable model to efficiently design and implement the project.
From investigating various SDLC models, the Rapid Applications Development (RAD) model in
Figure 1.9 was chosen as the preferred approach. In this model, the project requirements are set,
the design to implementation phases split into sections and time-framed (see Figure 1.9) for

discrete incremental executions, with the requirements revisited until the outcome is satisfactory.

RAD

Time-frame 1

A
Tire Box 1

Design Development Test Implementation

Tlme-fae 2

Figure 1.9: RAD SDCL methodology

(Adapted from PM Solutions Technology, 2003: 5)

Scope:

The research project objectives in Section 1.6 define the scope of the research project.

Requirements Analysis:

The software-defined GPS receiver has no formal requirements since it will mostly serve as the
development platform. However, the improved software-defined GPS receiver algorithms, as
well as the firmware-defined GPS receiver algorithms should have the features stated in Chapter

4. The specifications were identified from the research objectives and are defined as follows:

e Process high-dynamics GPS C/A L1 signals with acceptable accuracy within 10m.
e Low-cost model(s).
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Design:
Here, the requirements are theoretically examined, mathematically modelled and systematically
executed. Doing so eliminates errors, isolates unknowns and eases the design to debug processes.

Development:

The GPS receiver architecture in Figure 1.10 is the model under research that will be designed,
developed and implemented. Hamsa et al. (2009) mentioned that the design, development and
implementation of the GPS receiver software/firmware using Matlab/Simulink, makes the DSP
coding in each part of the GPS receiver architecture very clear, easier to understand, modify and
debug. In Dubey (2013), developing algorithms with MathWorks tools improves the efficiency.

GPS L1 C/A Signals.._‘ sk() — 2P¢ (C*() @ D*(D)) cos (2mf110) ‘

Research Focus Sections _,, ____—

B
T
e R e | ©PS Embedded Section | [ PyvT »

GPS Front-end GPS Correlators
- @ Decoding
- % Processing

Figure 1.10: Internal functional blocks and fundamental tasks of the GPS receiver under research

- Down-conversion
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- Acquisition
- Tracking D

This research project constitutes three main sections: the RF, DSP and software / embedded
sections. The RF section will not be researched in the project, only the DSP and software /
firmware (embedded) sections are researched and developed. The computing platform used is

Matlab. The main processes involved in the software GPS receiver development are as follows:

) Implement a software-defined GPS receiver using open-source Matlab GPS algorithms.
i) Improve these GPS receiver algorithms using Matlab and associated toolboxes.

iii)  Automatically convert the improved Matlab software GPS algorithms to firmware.

The main steps involved in the GPS receiver algorithms development process are as follows:

e Step 1: Create and copy all GPS Matlab functions, scripts and test vectors to a local folder.
e Step 2: Simulate and verify each floating-point Matlab GPS algorithm using its test-bench.
e Step 3: Create a new GPS VHDL coder project to associates all the design files together.
e Step 4: Convert each of the GPS Matlab algorithm(s) from floating-point to fixed-point.
o Step 5: Generate GPS HDL codes (convert fixed-point Matlab GPS algorithms to VHDL).
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Test:

Basically, two main series of simulated tests are performed in the research and these are i) first a
low-dynamics test (terrestrial tests to check functionalities on Earth) and ii) a high-dynamics test
(space-borne tests to check functionalities in LEO). Before integration, both tests types are done
at unit level and then a suitable test path is examined to avoid unnecessary redundant tests.
Figure 1.11 represents a pathway of various possible analyses tests tools that can be utilised. As
stated in DSP-FPGA (2006), the Xilinx test path has been demonstrated before and is feasible.
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Figure 1.11: Various development analyses and simulation tools
(Adapted from MathWorks, 2005)

Once the GPS receiver design and implementation have been completed, a quick terrestrial
functional test to check whether the implemented algorithms are properly operational, will be to
use a physical GPS front-end device (see Figure 1.6) to capture real GPS L1 C/A signals to a
computer and then post-process the captured data. This processed data is further compared with
that acquired by a quality commercial GPS receiver unit operating under the same environmental
conditions. The algorithm is considered valid provided the processed GPS data output from both
the test and control GPS receivers are approximately the same. Once this basic terrestrial
functionality test is successful; high-dynamics Doppler, altitude, velocity and space condition
tests can be performed using a high-dynamics GPS simulator (Tsai et al., 2010: 4). Space-borne
GPS receiver testing is explained in Montenbruck and Holt (2002) and Gold and Brown (2004).

Based-on the test results, further optimisation can be performed until the outcome is acceptable.
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Implementation:

As shown in Figure 1.12, a real incoming GPS L1 C/A signal is captured and the GPS signal
replica is as well generated. These will serve as received GPS signals datasets, to be used as
inputs for initial testing of the GPS receiver functional units; in which, these GPS signal datasets
are acquired, tracked and post-processed in off-line (non real-time) mode. Doing so mitigates
timing challenges and unknown parameters which can bottleneck the first implementation stage.

The first step in the implementation phase will be to execute a preferred acquisition algorithms
listed in Table 1.4. This algorithm of choice should be able to acquire the GPS signal datasets. If
need be, this algorithm will then be modified where applicable, to meet the design specifications.

Similarly, a suitable GPS receiver tracking algorithm listed in Table 1.5 will as well be
implemented to track and lock to the acquired GPS L1 C/A signal. The tracking algorithm should
be able to extract the navigation bits stream. The algorithm will also be tailored if necessary.

Once tracking is successful, the navigation data from the tracking section are decoded and
processed as per the GPS signal specifications datasheet (Navstar IS-GPS-200H, 2013). The GPS
baseband processing algorithms should be able to compute GPS satellites position and pseudo-

ranges, from which the GPS receiver position is computed as well as the velocity and time.

The next step will be to subject the GPS receiver to real-time GPS signal feeds, captured by a
USB GPS front-end connected to a computer. This shall be used to test the Matlab/Simulink
software-based GPS receiver algorithms in real-time. From the test results, more improvements

shall be carried out until the outcome is reasonable, in comparison with a control GPS receiver.

To address the first research problem of inefficient GPS receiver correlator and baseband
processing algorithms, simulated space-borne tests shall be performed and if successful, the

improved algorithms are converted to firmware as well as subjected through the same tests.

Finally, to address the second research problem (the space-borne GPS receiver high-costs issue),
the proposed approach in Winternitz et al. (2004: 9), is to focus on COTS FGPAs that are space-
grade (e.g. Xilinx Virtex-5QV — Eecatalog.com, 2011) for use in the firmware stages 3 to 5; as
depicted in Figure 1.11. The challenges shall be to (i) convert to VHDL (ii) fit / embed the
firmware into a single suitable/available space qualified FPGA / DSP device of tiny form factor
with onboard resources to meet the design specifications and (iii) repeatedly optimise and test the

firmware codes while at the same time trading less and maintaining the receiver functionalities.
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Presented in Figure 1.12 is the software/firmware-defined GPS receiver’s development process.
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Figure 1.12: Summary of the software-to-firmware GPS receiver design methodology
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1.8 Research Project Delineations

This research project has the following demarcations:

As per the primary and secondary objectives, this research will focus mainly on designing and
implementing a space-borne software-defined GPS receiver algorithm(s) — to acquire, track,
decode and process GPS L1 C/A signal for positioning and as well to obtain velocity and time.

- Embedding the firmware onto a suitable physical microcontroller (FPGA) and designing a
hardware low-cost space-borne GPS receiver, do not form part of the present research.

- Avreal-time GPS L1 C/A signal processing will not be performed.

- Only basic simulated high-dynamics test might be conducted but no space performance test.

1.9 Research Project Outcomes

This research is projected to have the following possible outcomes:

1.9.1 GPS Receiver Expected Results

The GPS receiver is expected to yield the following primary parameters:

- GPS Receiver Position

e Latitudes
e Longitudes
e Altitudes

- Velocity

- UTC Time

- UTC Date

Other secondary resultant parameters that could as well emanate as by-products include:

- Dilution Of Precision (DOP)

e Position DOP
e Geometric DOP
e Vertical DOP
e Horizontal DOP
e Time DOP

- Universal Time Mercator (UTM) Zone
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1.9.2 Research Project Significance

This research project will serve as the foundation and development platform for the design,
implementation and potential commercialisation of F’SATI’s low-cost space-borne GPS receiver
and possibly other space-borne GNSS receivers for use in nano-satellites.

The research will enable future F’SATI’s nano-satellites to automatically and autonomously (i)
determine the position(s) of their ground tracking station(s) for tele-commands and telemetry (ii)
provides real-time onboard orbit determination / navigation and (iii) to power-off vital electronic
devices when around the South Atlantic Anomaly (SAA) region — the SAA region is a high risk
radiation area in space (physically above Brazil) that poses ionisation hazard to space objects.

The secondary parameters of Dilution of Precision (DOP: defines GPS satellites geometry in
space) and Universal Time Mercator (UTM) zone shall emanate as the processing by-products.
DOP presents how orbiting GPS satellites are arranged in space with reference to a GPS receiver.
GPS satellites DOPs affect GPS receiver accuracy at the time of position calculation. DOP
estimates as well enable a GPS receiver to predict GPS satellites trajectory. UTM zone can be
used to provide the time zone of the geographical location of where the GPS signal was acquired.

From the research outcomes, various vital applications to nano-satellites and space science which
can also be investigated are respectively CubeSats attitude determination and in-situ space
weather ionospheric or scintillation research using GPS. In Yunck and Melbourne (1995), details
of some potential applications of space-borne GPS receivers are explained. Additional benefits

of software-defined space-borne GPS receivers can as well be found in Gold and Brown (2004).

1.9.3 Research Project Scientific Contributions

There three main research components involved are:

e An improved software-defined GPS receiver.
e A firmware-defined GPS receiver algorithms’.
e A low-cost space-borne GPS receiver implementation approach.

The research resultant scientific contributions to emanate include:

= Discrete Matlab fixed-point GPS receiver algorithms.

= Equivalent Simulink models of the Matlab fixed-point GPS receiver algorithms.

= Equivalent VHDL codes of the Matlab fixed-point GPS receiver algorithms.

= Discrete test benches in Matlab and VHDL for the researched GPS receiver algorithms.

= |mproved Matlab floating-point GPS receiver with comprehensive supporting documentation.

The future goal is to have a fully functional space qualified low-cost GPS receiver for CubeSats.
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1.10 Thesis Strucure

Figure 1.13 depicts the thesis organisation. Chapter 1 discussed the research proposal and nano-
satellite technology with focus on CubeSats. In Chapter 2 is a detailed theoretical background
research on GPS with emphasis on GPS signals structure and GPS receiver types. Covered in
Chapter 3 and Appendix A, are detailed literature reviews on GPS receiver architecture focusing
on GPS correlator algorithms. Appendix B examines the mathematics and algorithms in GPS
technology relevant to this research — from which a detailed software-to-firmware design and
implementation methodology for the nano-satellite GPS receiver is postulated and executed in
Chapter 4. The implemented GPS receiver functional test results (using a simulated real datasets)
as well as interpretations are covered in Chapter 5. Concluding remarks and recommendations,
as well as improvements to the researched GPS receiver, with focus on the research scientific
contributions to the GPS receiver design and implementation are finally drawn in Chapter 6.

1.11 Summary

Chapter 1 started with the review of nano-satellites with attention on CubeSats. The research
proposal is the main aspect; in which, high-costs in available space-borne GPS receivers and
algorithms efficiency for GPS receivers in high-dynamics environments are briefly discussed. A
thorough literature survey on GPS receiver acquisition and tracking algorithms was conducted to
set the basis for a suitable algorithm of choice, in-line with the research objectives. The chosen
GPS algorithms will be implemented in software based-on Matlab / Simulink platforms. The
established schemes will serve as development platforms for the space-borne or high-dynamics
GPS L1 C/A correlator and baseband processing algorithm(s) for PVT computations. The
designed algorithm(s) will be subjected to simulated low and possibly high-dynamics functional
tests. The completed space-borne GPS receiver is expected to be used in future to autonomously
and automatically determine orbiting LEO nano-satellites spacecraft position (latitude, longitude

and altitude) by acquiring, tracking, decoding and processing transmitted GPS L1 C/A signals.

41



CHAPTER 2

GPS BACKGROUND

2.1 Introduction

This chapter examines GPS receiver research and other studies related to GNSS and GPS in
particular. Various GPS receiver information sources such as textbooks, ebooks, dissertations,
theses, research articles, online publications, seminars, workshops, videos, datasheets, journals
and conference proceedings are consulted to study the GPS receiver design and implementation.

Chapter 2 describes GPS technology background by examining (i) GNSS technologies (ii) GPS
ground stations (iii) GPS satellites and (iv) GPS signal. The first three are discussed in brief
whereas the GPS signal is thoroughly covered. Chapter 3 is dedicated for GPS receivers only.

2.2 Global Navigation Satellite System (GNSS) Technologies

According to Gleason and Gebre-Egziabher (2009: 21), GNSS is a constellation of satellites
designed to provide global and regional positioning, as well as timing information for users on

Earth. However, GNSS technologies such as GPS has been utilised for space-based applications.

GNSS technologies currently consist of full and partial global navigation systems, as well as
regional navigation systems. The full GNSS technologies are GPS (USA) and GLONASS
(Russia) while the partial ones are the GALILEO (Europe) and COMPASS or BeiDou2 (China).

The regional satellites navigation system comprises of the several worldwide regional Satellite
Based Augmentation Systems (SBAS) — which includes Wide Area Augmentation System
(WAAS) in the United States, the European Geostationary Navigation Overlay Service
(EGNOS) in Europe, the Multifunctional Transport Satellite (MTSAT)-Satellite Augmentation
System (MSAS) in Japan; Quasi-Zenith Satellite System (QZSS) in Japan and the Indian
Regional Navigation Satellite System (IRNSS) (Hegarty, 2012: 1 - 5). All GNSS technologies
operate in the L-band (between 1 and 2 GHz) frequency range and although they have evolved
differently (competes and cooperates) over the years (Borre & Strang, 2012: 11 - 14), they share
some unique features. For instance, GPS L1 C/A and Galileo E1 carriers both operate on 1.57542
GHz but respectively use Binary Phase Shift Keying (BPSK) and Binary Offset Carrier (BOC)
modulation techniques. GPS L1 C/A and GLONASS L1 signals both use BPSK but utilise

different carrier frequencies and access techniques. Table 2.1 summaries GNSS technologies.
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Table 2.1: Comparison and summary of GNSS technologies

Comparison Parameter GPS GLONASS GALILEO COMPASS
Owner USA Russia Europe China
First Launched 1978 1982 2005 2000
Fully Operational 1993/1994 1991 then 2011 2019 2020
Main Frequency (GHz) 1.57542 1.602 1.57542 1.57542
Common Signal Name GPSL1C/A GLONASS L1 GALILEO E1 | COMPASS B1
Modulation Type BPSK BPSK CBOC MBOC
Access Techniques CDMA FDMA / CDMA CDMA CDMA
Chipping Rate (MHz) 1.023 0.511 1.023 1.023
Code length (chips) 1023 511 4092 1023
Satellites in Constellation 24 - 32 21-26 27 - 30 27 -35
Orbital Altitude (km) ~20 200 ~19 100 ~23 616 ~20 - ~36000
Orbital Period ~12 hours  |~11 hrsand 15mins| ~14 hours ~12 - 24 hours

As a result, most modern navigation devices use a combination of different GNSS technologies
to complement each other. GNSS technologies are rapidly evolving with the most successful and

widely used worldwide being the GPS and it was therefore selected as the focus of this research.

2.3 GPS Ground Stations

This is the Earth control segment of GPS and consists of four un-manned monitor stations and
one manned master control ground station distributed around Earth (see Figures 2.1 and 2.2).
They have précised positions and are equipped with superior quality GPS receivers and Cesium
oscillators for constant monitoring and control of GPS satellites. Information from these four
monitor stations is remotely sent to a master control station — the Consolidated Space Operations
Center (CSOC) based at Falcon Air Force Base in Colorado, Springs. The data is processed to
obtain the timing bias and ephemeris of each GPS satellite, their positions as a function of time,
the clock parameters, the atmospheric data, as well as the almanac. The master control station
coordinates all commands and constellation control activities, which includes: to i) monitor GPS
satellites performance standards ii) to generate and upload new navigation data needed to uphold
performance standards of the satellites iii) real-time detection and response to satellite health that
is feedback into the navigation message (Tsui, 2005: 31). All data is remotely sent back from

CSOC via three of the four GPS ground monitor stations once and to every GPS satellite daily.
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Figure 2.1: GPS ground control segment
(Adapted from McNamara, 2004: 51)

~
> wra - ?
N e
-~ ’;
rado Springs
O ) *~Cape Kwajalein
Hawaii
QA S

Ascension , Diego Garcia

Island
[0 Master control station A Ground antenna
O  Monitor station /A Backup ground antenna

Figure 2.2: GPS ground control sites
(Adapted from El-Rabbany, 2002: 7)
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2.4 GPS Satellites

This is the space segment of GPS technology and it is basically a transceiver, as it transmits GPS
signals to GPS receivers and transmits and receives signals to and from GPS ground control
stations. Signals transmitted by GPS satellites are Right Hand Circularly Polarised (RHCP) and
as a result, a GPS receiver’s antenna also has to be RHCP to receive incident GPS signals.
Multipath signals are reflected signals and thus induce errors if received. If a multipath RHCP
GPS signal becomes Left Hand Circularly Polarised (LHCP), it will be rejected by a RHCP GPS
antenna. However, if a multipath RHCP GPS signal becomes RHCP, it will not be rejected.

The exact number of GPS satellites — sometimes called Space Vehicles (SV) presently varies.
According to Borre and Strang (2012: 11), a constellation of 32 GPS satellites are in operation.
These 32 satellites constitute six orbital planes with each plane consisting of four satellites. All
planes are equally spaced 60 degrees apart and all four satellites per plane are unequally spaced
apart. Each orbital plane is inclined at an angle of 55° from the equatorial plane and each satellite
in its plane is at an altitude of ~20,200 km above the Earth with an orbital period of ~12hrs and
repeats the same ground track twice, every sidereal day. Each GPS satellite carries its own high
precision atomic clock to maintain very accurate timing. The GPS constellation ensures that, at
any point in time, at least 5 to 8 satellites are visible from anywhere on Earth and a minimum of
three are needed for location determination while a minimum of four for positioning (location
plus altitude) especially if the elevation is varying (Tsui, 2005: 31) as in spacecrafts. Apart from
navigation and timing, GPS satellites are also equipped with NUDET sensors to globally detect

and monitor nuclear activities as they orbit Earth. Figure 2.3 depicts GPS satellites constellation.
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Figure 2.3: GPS satellites constellation
(Adapted from Kemt, n.d.b: 1)
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Dilution Of Precision (DOP) is a very vital aspect of orbiting GPS satellites, as it affects GPS
receiver acquisition and accuracy. DOP is simply how orbiting GPS satellites are arranged or
spaced with reference to a GPS receiver. It is used to describe the geometric strength of GPS
satellites configuration of GPS accuracy, at the time of position calculation. DOP is inversely
proportional to the volume of GPS satellite tetrahedron formed (see Figure 2.4); that is, higher
satellites tetrahedron volume implies lower DOP. A DOP of 1 implies best GPS configuration.
There are five types of DOP, namely; Vertical DOP (VDOP), Horizontal DOP (HDOP), Position
DOP (PDOP), Time DOP (TDOP) and Geometric DOP (GDOP). Figure 2.4 illustrates the DOP.

GPS Satellites |

Tetrahedron

EEEE [ AR

GPS Rx

GPS Receiver

Figure 2.4: GPS DOP (left), Good DOP (middle) and Poor DOP (right)
(Adapted from Lohan, n.d.)

Another important aspect in GPS technology is GPS satellites ground track — which is the trace
of GPS satellites defined course around Earth. Figure 2.5 red dotted line depicts this parameter.

Figure 2.5: GPS ground track as noted by the red dotted line
(Adapted from GPS.Caltech, 2009: 7)
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2.5 GPS Signals

A GPS signal is the invisible part of GPS technology and its properties have a major role in the
principle and accuracy of Position, Velocity and Time (PVT) determination, navigation data
transmission, simultaneous reception of numerous GPS satellites signals, multipath effects,
insusceptibility against interferences and provisions of corrections for ionospheric delay of
signals (Kowoma.de, 2009). In light of this, the GPS signal structure composes of three signal
components; namely the Carrier Frequency, the Pseudo-Random Noise (PRN or Gold) code and
the Navigation Data Message. These three signals are blended together to form a composite
signal, using BPSK modulation and spread by DSSS and CDMA techniques (Tsui, 2005: 71).

This composite GPS signal structure is broken down and discussed in detailed as follows:

2.5.1 GPS Signal Carrier Frequency

The GPS signal carrier frequency ensures GPS navigation data is propagated through free space
to Earth. The following section highlights the selection criteria that were used to choose the
different GPS receiver carrier frequencies when GPS technology was established by its creators.

2.5.1.1 GPS Signal Carrier Frequencies Selection Criteria

Transmission of GPS signals require suitable carrier frequencies and the following five aspects

were considered when GPS signal carrier frequencies choice was selected (Kowoma.de, 2009):

e The carrier frequencies should lie within 100 MHz and 10 GHz because delays caused by the
ionospheres are enormous for frequencies out of this range.

e The carrier frequency must be below 2 GHz, as reception of frequencies greater than 2 GHz
might require a beam antenna, which might not be suitable for portable applications.

e The carrier frequency must be above 1 GHz, because (i) higher frequency supports higher
data rates and (ii) the electromagnetic waves speed of propagation in media such as air,
directly deviates with respect to frequency from the speed of light in media such as vacuum.

e For BPSK modulation with a carrier, the pseudo-random noise codes need a frequency with
high bandwidth; therefore, high bandwidth frequencies were chosen to accommodate this.

e The frequencies chosen should be within a range, where the propagation of GPS signals are
not negatively affected / influenced by bad weather phenomena such as snow, rain and clouds.
Thus, in Kowoma.de (2009), GPS creators chose carrier frequencies to be in the L-band (carrier

frequencies between 1 - 2 GHz) based on these considerations. These carriers are discussed next.
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2.5.1.2 Types of GPS Receiver Carrier Frequencies

GPS signals are often transmitted in three different L-band carrier frequencies, namely: L1, L2
and L5 — until recently in 2009; with respective carrier frequencies of 1.57542 GHz, 1.22760
GHz and 1.17645 GHz. These L1, L2 and L5 carrier frequencies are simply selected harmonics
of the fundamental frequency (f, = 10.23 MHz) generated by the GPS satellites atomic clocks.
The carrier frequencies up-translation process can simply be deduced as follows (Xu, 2007: 2):

L1 carrier frequency = f, x 154 = 10.23 MHz x 154 = 1575.42 MHz = 1.57542 GHz

L2 carrier frequency = f, x 120 = 10.23 MHz x 120 = 1227.60 MHz = 1.22760 GHz

L5 carrier frequency = f, x 115 = 10.23 MHz x 115 = 1176.45 MHz = 1.17645 GHz

However, there exist L1C, L2C (i.e. variants of L1 and L2), L3 and L4 carrier frequencies but

only the GPS L1 and L2 carriers are mostly known and used and will thus, be explained further.

2.5.1.2.1 GPS L1 Signal Carrier Frequency

GPS L1 carrier is the most popular and widely used frequency, with the following properties:

e Carrier frequency is 1.57542 GHz.

e Wavelength is ~19.04 cm (A= c / f); where c is the speed of light and f the carrier frequency.
e Constitutes Coarse Acquisition (C/A) and Precision (P)-codes — both phase shifted by 90°.

e Transmitted L1 signal has an EIRP level of ~ 27 dBW towards Earth.

e L1 signal modulated by C/A-code has a received signal level of approximately -130 dBm.

e L1 signal modulated by P(Y)-code has a received signal level of approximately -132 dBm.

e L1 bandwidth is ~ 20 MHz (i.e. 20.46 MHz to be précised) to accommodate the P(Y)-code.

2.5.1.2.2 GPS L2 Signal Carrier Frequency

GPS L2 carrier frequency is usually reserved for USA military and has the following features:

e Carrier frequency is 1.22760 GHz.
Wavelength is ~24.44 cm (A =c /).

Constitutes Precision P(Y)-code only.

L2 signal modulated by P(Y)-code has a signal level of approximately -135 dBm on Earth.

L2 bandwidth is ~20 MHz (20.46 MHz), since P(Y)-code chipping frequency is 10.23 MHz.
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2.5.2 GPS Signal Pseudo-Random Noise (Gold) Codes

GPS Pseudo-Random Noise (PRN) is a Gold code, randomly generated by Maximum Length
Sequence (MLS) or Linear Feedback Shift Registers (LFSR) using a deterministic sequence. Due
to the varying unique patterns of the random series of 1s and Os, they are often referred to as
noise (Altera, 2003: 1; Borre & Strang, 2012: 16 - 19). GPS PRN codes are principally of two
types, namely the C/A and P(Y) codes. These two PRN codes types are orthogonal with distinct
properties and generation algorithms. The following sections covered both C/A and P(Y) codes.

25.21 GPSC/A -Code

GPS C/A-code is a less precise and less complex code, commonly referred to as the civilian code
since it is a Standard Positioning Service (SPS) which carries free unprotected navigation data,
readily available to the public for civil use. C/A code has the following technical attributes:

e Chipping frequency is 1.023 MHz (i.e. 0.1 x f, = 0.1 x 10.23 MHz).

e Chip length is 977.5 ns (i.e. 1/ 1.023 MHz) or wavelength of ~ 293.255 m (from A = c / f).

e 1023 bits (chips) long as generated by its PRN polynomial: f(x) = 1 + x3+ x™.

e Modulates L1 signal only and at a clock or chipping rate of 1.023 Mega chips/s.

e Repeats every 1ms or has a 1ms duration (i.e. 1023 chips / 1.023 MHz = 1ms per chip).

e Bandwidth is 2.046 MHz (i.e. 2 X L1cr = 2 X 1.023 MHz) — L1 is C/A chipping frequency.
e Has 37 unique Gold codes (practically 36, since Gold codes 34 and 37 are the same).

2522 GPSP(Y) - Code

GPS L2 signal constitutes only the P-code, which is more accurate than the C/A code. P-code is
a complex Precise Positioning Service (PPS) reserved only for US military and authorised users.
Anti-spoofing activation in 1994 led to P-code encryption by a W-code and has been transmitted

as a Y-code and is now often denoted as P(Y)-code. It has the following technical characteristics:

e Clock or chipping frequency is f, = L1yf = 10.23 MHz.

e Chip length is 97.75 ns (i.e. 1 / 10.23 MHz) or wavelength of ~29.3255 m (from A=c / ).

e P(Y) code is 235.4695928 x10™ bits long (i.e. 15,345,037 x 15,345,000 chips).

e Modulates both L1 and L2 signals at a clock or chipping rate of 10.23 Mega chips/s.

e Has a 38 weeks long code (235.4695928 x10*2/ 10.23 MHz = 266 days = ~38 weeks).

e 1 week segment per satellite — reset/repeats weekly (usually every Saturday breaking Sunday).
e Bandwidth is 20.46 MHz (i.e. 2 X L1,yf = 2 X 10.23 MHz) — L1,y¢is P(Y) chipping frequency.
e Has 37 unique codes segment — with each satellite having a unique 1 week long segment.
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2.5.2.3 GPS C/A - Code Generation

The GPS C/A-code has a relatively short length that is randomly generated from 1023 chips,
(known as chip instead of bit because it is just a PRN code containing no data) consisting ideally
of a pseudo-random sequence of 512 ones (1’s) and 511 zeros (0’s). The principle is as follows:

In Johanssen et al. (1998: 6), GPS PRN C/A belongs to the family of Gold codes and are used
because of their distinct cross and auto-correlation properties. Gold codes generators constitute
two shift registers known as G1 and G2, with each having 10 cells consisting of 10 chips. Setting
or resetting G1 and G2 with all 0°’s is an invalid state. G1 and G2 must therefore be initialised or
re-initialise to all 1’s before and after shifting the last chip. By using the formula: 2" - 1 =2%-1,
two sets of 1023 chips long sequence of codes can be generated and modulo-2 added multiple
times to give a unique 37 PRN Gold codes. The process is then re-iterated (Rao, 2009: 31 - 34).

The shift register G1 (G; generator) PRN code polynomial: f(x) = 1 + x® + x'° is tapped at
positions 3 and 10, then modulo-2 added and feedback to its input. That is, if G; generator is
reset to all 1’s, G1 output after 10 clock pulses will be 1000111000. Likewise, G2 PRN generator
polynomial: f(x) = 1 + x* + x>+ x® + x® + x® + x'® is tapped at positions 2, 3, 6, 8, 9 and 10;
modulo-2 summed together and feedback to its input. Figure 2.6 and Table 2.2 respectively
depict GPS C/A PRN Gold codes generation principle and PRN Gold codes phase designations.

G, generator

G,
1.023MHz | |pjtialize :
Clock

G, =...01001111111111

|

1023 1 kbps
>
Decode

G, generator

Figure 2.6: Generation of PRN C/A Gold codes
(Adapted from Misra & Enge, 2006)
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As shown in Figure 2.6; G1 MLS shift register has one output whereas G2 MLS shift register has
two outputs (i.e. G2 and G2i). G2i is the phase select output which is the sum of a modulo-2
adder, produced by tapping at any two positions (e.g. 5 & 7 in the case of Figure 2.6) of G2 shift
register to generate a delayed version of output G2. This G2i output is finally added with the G1
output by an ultimate modulo-2 adder to generate the final pseudo-random 37 unique GPS C/A
Gold codes (Borre et al., 2007: 21 - 25). The tapped position determines the delay time and thus,
the different 36 (ideally 37 but practically 36 since code 34=37) ID codes for each GPS satellites.
As per Gold code algorithm, there will be 37 unique codes of the 1023 code length, from which
32 of the 37 have been currently utilised as C/A codes to designate each of the 32 GPS satellites.
Hence, GPS receivers can identify respective orbiting GPS satellites from the received C/A code.

For example, in order to receive GPS satellite 25 C/A Gold code; tabs 5 and 7 positions of shift
register G2 must be selected (see Figure 2.6 and Table 2.2). With this selection, the G2i output
sequence is delayed 513 chips from the G2 output giving a corresponding octal value of 1743
(i.e. first 10 chips is 1111100011 if expressed in binary form). For good correlation to occur, the
replica code generated for GPS satellite 25 must exactly match C/A code 25 (Tsui, 2005: 77).

Table 2.2 summarises C/A Gold codes phase designations and is briefly explained as follows:
Column 1 represents GPS satellites ID numbers 1 to 32 corresponding to GPS C/A Gold codes 1
to 32 on Column 2. C/A Gold codes 33 to 37 are reserved for other uses — ground transmitters.
Column 3 is a code phase selector and its output G2i is a modulo-2 sum of any two G2 generator
(shift register) tapped positions. Column 4 presents the code delay (difference between outputs
G2i and G2) measured in chips. It simply illustrates an alternative way of expressing column 3
because the delay is automatically determined once the code phase selections are chosen. Finally,
column 5 is the octal number format representation of the first 10 chips (number of chips will be
10 if converted to binary) of the C/A code generated for each satellite and is used to validate the
generated PRN C/A Gold code (Tsui, 2005: 73 - 78; Navstar I1S-GPS-200H, 2013: 2 - 13).

The other four (instead of five GPS C/A codes, since Gold codes 34 and 37 are the same) from
33 to 37 in Table 2.2, are reserved for other uses (e.g. ground transmitters). However, since only
24 and a maximum of 32 GPS satellites are officially known to be in orbit; any of these 32 C/A
Gold codes is usually re-cycled once its respective satellite malfunctioned in orbit. The replaced

satellite C/A Gold code is then re-assigned to it replacement satellite (Borre & Strand, 2012: 19).
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Table 2.2: GPS C/A Gold codes phase designations
(Adapted from Tsui, 2005: 77)

Satellite ID GPS PRIN Code Phase Code Delay First 10 Chips
Number Signal Number Selection Chips C/A Octal

26 5 1440
[+ 1620
7 1710
8 1744
17 1133
18 1455

139 1131

1454
1626
1504
1642
1750
1764
1772
1775
1776
1156
1467
1633
1715
1746
1763
1063
1706
1743
1761

1770
1774
1127
1453
1625
1712
1745
1713
1134
1456
1713
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*34 and 37 have the same C/fA code.
**GPS satellites do not transmit these codes: they are reserved for other uses.

2.5.2.4 GPS P(Y) - Code Generation

Generating the P(Y)-code is similar to the C/A code generation principle, but differs as four shift
registers with 12 cells are rather used. Two registers are combined to produce an X1 output of
length 15,345,000 chips that repeats every 1.5s (15,345,000 chips / 10.23 MHz) and the other
two registers are also combined giving an X2 output of 15,345,037 chips (37chips longer). Akin
to the C/A-code, the X1 and X2 codes can be combined with 37 distinct delays tapped on the X2
shift register to generate 37 different one-week segments of the P(Y)-code, with each of the first
32 segments assigned a corresponding satellite PRN ID and the rest reserved (Rao, 2009: 34 -
38). For instance, GPS satellites with PRN IDs of 10 and 15; respectively refer to GPS satellites
assigned to the 10™ and 15™ week segments of GPS PRN (Gold) P-code. In GPS L1 signal,
acquiring P(Y)-code often first requires C/A-code acquisition that is now mitigated in GPS L5.
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2.5.3 GPS Signal Navigation Data Message

A GPS signal navigation message constitutes time-tagged data bits marking each sub-frame time
of transmission from the respective GPS satellites. The main composition is abridged in Figure
2.7 and Section 2.5.3.1. In Grewal et al. (2001: 33), the following are needed to compute PVT:

o Satellite Almanac Data: Each GPS satellite transmits the same almanac orbital data, which
enables a GPS receiver at any given time to compute the estimated location of every satellite
in the GPS constellation. However, almanac data is inaccurate to determine the exact GPS
receiver position. It is nonetheless stored in the receiver where it remains valid for ~3 months.
It is mostly utilised to (i) obtain the approximate projected Doppler shift signal, to assist in
quick acquisition of the satellites signals and Time To First Fixed (TTFF) and (ii) rapidly
determine and store visible satellites at a specified location, to enable the search for those
satellites when the GPS receiver is later powered-on in a state known as the warm-start mode.

o Satellite Ephemeris Data: Akin to almanac data, ephemeris data is used to compute a GPS
satellite position with more accuracy. This is needed to transform delays in signal propagation
for computing a GPS receiver precise position and velocity. Contrary to almanac data that is
coarse, GPS satellites ephemeris data is fine and always up to date and unique to that satellite
(broadcasted only by it). The data is usually valid for 4 to 6 hours, after which new ephemeris
data must be acquired. Issue Of Date Ephemeris (IODE) keeps track of successive updates.

e Signal Timing Data: The 50 Hz data stream contains time-stamp, which is utilised to institute
the time of transmission of specific points about the GPS signal. This information is vital to
ascertain a GPS satellite-to-receiver propagation delay, used for pseudo-range calculations.

e lonospheric Delay Data: Ranging bias caused by ionospheric effects can be partly cancelled,
using the approximations of the ionospheric delay (often implemented in the algorithm of

position calculations) that are always broadcasted in the GPS navigation data message.

7505 [37500 bits]
30s [ 1200 hits]

0s [300 bits]
«—>

Super-frame
Frame 1 Frame 2 ... Frame 25
Sub-frame 1 | Sub-frame 2 | Sub-frame 3 | Sub-frame 4 | Sub-frame 5 Sub-frame 125

Section 1 _5_ Section 2
Satellite Specific Data o System Data

Figure 2.7: lllustration of a typical GPS navigation data message composition — a super-frame
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2.5.3.1 GPS Signal Navigation Data Message Technical Parameters Summary

Summarised below are the basic theory needed to understand GPS navigation data message;
however, the decoding and processing of GPS messages require an in depth knowledge of the
parameters and orbital mechanics, which are covered in detailed in the Navstar 1S-GPS-200H.

A GPS signal navigation data message has the following properties (see Figures 2.7 to 2.9):

e Very low data rate of 50 bits/s.

e Bit length is 20 ms (i.e. 1/50 Hz).

e A complete GPS navigation data message consist of a super-frame made of 125 sub-frames.
e The transmission duration for this super-frame (constituting of 25 frames) is 750s = 12.5mins.
e Each of the 25 frames (each frame) is divided into 5 sub-frames totaling to 125 sub-frames.
e Each frame consists of 1500 bits while each sub-frame consists of 300 bits.

e Each sub-frame contains 10 words starting with a unique preamble (10001011 or 01110100).
e Each word has 30 bits including parity bits (i.e. Hamming code for each word).

e Each sub-frame begins with a Telemetry (TLM), followed by a Hand-Over Word (HOW).

e TLM is the first word transmitted and contains an 8 bits preamble (10001011 or 01110100).
e HOW is the second word and has 17 bits Time Of Week (TOW) and its sub-frame ID.

e TOW is synchronised to starting of each next sub-frame.

e TOW count is the 19 Least Significant Bit (LSB) of the Z-count.

e Z-count (29 bits) generate HOW data and count epoch (e.g. number of P-code X1 epochs).
e Each frame is transmitted every 30s while each sub-frame is transmitted every 6s.

e Each bit in a frame is transmitted every 20 ms (i.e. 1/50 Hz) with MSB transmitted first.

e Each of the 5 sub-frames in a frame is further partitioned into two sections (see Figure 2.7).
e Section 1 is referred to as Satellite Specific Data while Section 2 is known as System Data.
e Section 1: Satellite Specific Data refers to Ephemeris and Clock corrections parameters.

e Section 2: System Data refers to Almanac and lonospheric parameters.

e Section 1 consists of sub-frames 1 to 3 while section 2 consists of sub-frames 4 and 5.

e Section 1 repeats after every 30s whereas section 2 repeats every 750s (12.5 minutes).

e Section 1 sub-frame 1 contains satellite clock correction terms and GPS week number.

e Section 1 sub-frames 2 and 3 contain precise ephemeris data (SVs orbital parameters).

e Section 2 sub-frame 4 has ionospheric and UTC data and satellites 25 - 32 almanac data.

e Section 2 sub-frame 5 has almanac data for satellites 1 - 24 and almanac reference time.

It is also worth mentioning that, the navigation data in sub-frames 1 to 3 are regular and iterate
with each frame after every 30s besides during occasional updates; whereas, sub-frames 4 and 5
repeats every 750s (at the rate of a super-frame) except when in occasional maintenance / update

by ground stations. Figures 2.8 and 2.9 portray GPS navigation data structure in more detailed.
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Figure 2.8: GPS signal navigation message — frame compositions in 3D
(Adapted from Borre et al., 29: 2007)
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55



2.5.4 GPS L1 Signal Modulation Schemes

This refers to modulation schemes and multiple access techniques implemented in GPS signal
transmission. A GPS signal constitutes a Carrier Frequency, PRN Gold codes and Navigation
Data, which are blended together by BPSK and transmitted as RHCP (Manandhar et al., 2006).

Modulation improves signal to noise ratio and ensures data is efficiently/reliably transmitted,
received and decoded. In GPS, the modulating signals are the Navigation Message, PRN C/A
and P(Y) Gold Codes while the modulated signals are the L1, L2 and L5 carrier frequencies.

The modulation and access techniques that ensure GPS signals is propagated and received are:

e Direct Sequence Spread Spectrum (DSSS).
e Code Division Multiple Access (CDMA).
e Binary Phase Shift Keying (BPSK).

2.5.4.1 Direct Sequence Spread Spectrum (DSSS)

Direct Sequence (DS) is a spread spectrum technique that increases the transmitted signal
bandwidth by combining it with a pseudo-random noise-like signal of higher bits or data rate.
With this approach, just a single carrier frequency is used by all transmitters and the frequency
bandwidth is randomly spread using PRN codes. The PRN codes used in GPS signals are C/A
and P(Y) Gold codes. These Gold codes spread GPS L1 and L2 signals such that, the harmful
effects of unwanted signals are suppressed and the magnitude of the transmitted signal power

level is reduced to essentially hide the GPS signal in background noise as shown in Figure 2.10.

F(Y) - code Bandwidth = 20.46 MHz

C/A - code Bandwidth = 2.046 MHz | Noise Floor = - 110dBm |

A = - 20dBm n Ll [c-‘: 130dBm ]

{ 1.023 MHz

Ml 7

Figure 2.10: GPS C/A and P(Y) codes — spreading the GPS L1 signal
(Adapted from Kemt, n.d.a: 22)
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2.5.4.2 Code Division Multiple Access (CDMA)

CDMA is a multiple access technique which enables multiples GPS satellites and receivers to
utilise the same carrier frequencies with separate PRN codes distributed by DSSS technique.
CDMA nature of GPS signal ensures the following benefits (Altera, 2003: 1 - 2; Tsui, 2005: 71).

e Each satellite is designated a unique PRN code as its ID, thus all can use the same carriers.

¢ Avoidance of accidental synchronism with other interfering signals.

e Makes it more difficult for GPS signals to be intentionally jammed.

e Very little dynamic range is required from the signal when sampled by the GPS receiver.

o Serial search acquisition, where generated PRN codes and carrier signals are wiped-off.

o All the satellites signal power is overlaid and lowered at the resulting IF; therefore, the spread
spectrum bandwidth shows the summation of all visible GPS signals power. See Figure 2.10.

2.5.4.3 Binary Phase Shift Keying (BPSK)

BPSK is a shift keying modulation technique that modulates PRN codes onto the carrier;
whereby, a change in the PRN codes states will cause a 180° phase shift in the carrier frequency.

BPSK technique in GPS signal modulation is analogous to modulus-2 addition; thus, in GPS
DSP, the former is preferred; in which, GPS PRN chips designations of 0’s and 1’s are
respectively designated as 1’s and -1’s; whereby, in-terms of BPSK modulation; “0” means a “no
shift” whereas “1” means a “shift”. During practical implementation, multiplying by “1” un-
affects the carrier (no shift) while multiplying by “-1” inverts the carrier (180 phase-shift).
Therefore, BPSK modulation is equivalent to Modulus-2 addition. Modulus-2 addition is
analogous to an X-OR logic gate; whereby, the output is a high logic (1) provided both inputs are
of opposite logic states and a low logic (0), if both inputs logic states are the same. Likewise,
BPSK output is simply multiplication of input PRN chips; in which, the output will be a high
logic (-1) if both input logic states are opposite and a low logic (1) if both input logic states are
the same, as adapted and illustrated in Table 2.3 (Borre et al., 2007: 19; Tsui, 2005: 88).

In a GPS L1 signal blended by BPSK and DS-CDMA techniques, the in-phase (I) component is
modulated by a P(Y)-code and the quadrature (Q) component is modulated by a C/A-code and
the two Gold codes [C/A & P(Y)] are separated by a 90° phase shift (see Figures 2.12 and 2.13).

Figures 2.11 to 2.13 summarily illustrate the theoretical details and inter-relations in GPS L1 and

L2 signals components and chain of events involved from GPS signal generation to transmission.
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Table 2.3: Modulo-2 addition and equivalent BPSK truth table comparison

(Adapted from Tsui, 2005: 88)

Phase-shift keying Modulo-2 Adder Phase-shift Keying BPSK Output
Modulation 1 Output EB Modulation 2 @
[nput 1 | Input 2 Input 1 [nput 2
0 0 0 1 1 1
0 1 1 1 -1 -1
1 0 1 -1 1 -1
1 1 0 -1 -1 1

i i
GPS C/A & P(Y) Gold codes ! C J
1 1
: i i
: I L
v i i
) !
GPS navigation data message | ! !
1 1
I I A
v | i
1 1
Modulo-2 additionof CandD | ! C @ D ! |
1 1
| I i
- 1 1
’ i i
GPS signal carrier frequency v Carner
1 1
| I i
i i i
t Final
DS-CDMA BPSK modulation 5 = :
' Signal !
1 1
i i

Figure 2.11: Concise summary of GPS signal theory composition

(Adapted from Borre et al., 2007: 21)
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Figure 2.12: Simplified summary of GPS L1 signal structure
(Adapted from Kemt, n.d.a: 20)
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Figure 2.13: Detailed summary of GPS L1 and L2 signals generation
(Adapted from Rao, 2009: 16)

2.6 Summary

This chapter introduced GNSS technologies with the focus on GPS. GPS satellites and ground
stations were discussed in brief, whereas GPS signal composition was covered in-depth.
Understanding the content of GPS signal structure on how the signal is generated, transmitted,

received, decoded and processed; are central to the GPS receiver design and implementation.
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CHAPTER 3

GPS RECEIVER

3.1 Introduction

A GPS receiver is the portable user segment of GPS technology and depending on the
application; its use varies on land (e.g. surveying), sea (e.g. ships navigation), underground (e.g.
mining depth), air (e.g. aircraft formation flying) and space (e.g. satellites tracking). GPS
receivers are the focus of this research and specifically the space-borne type for use in nano-
satellites. However, irrespective of the end applications, the basic architecture is similar and
requires a GPS front-end (for signal reception and down-conversiom), GPS correlator
(acquisition and tracking) and GPS baseband processor (decoding and processing). The
fundamental outcomes of most GPS receivers are position, velocity and time determination
(Braasch & Van Dierendonck, 1999). Position determination is the main parameter of interest.

i
i Traditional \r
"

Rocaiver » front-end Position

(analogue)

» front-end
(analogues)

Position

Figure 3.1: Hardware and software trends of GPS receiver
(Adapted from Plausinaitis, 2009c: 16)

Figure 3.1 depicts that, a GPS receiver constitutes both hardware and software. The level of
hardware and software involvement defines a GPS receiver type and are classified and discussed

under the following three categories. The goal is to choose the most suitable GPS receiver type.

e Hardware-defined GPS receivers.
e Software-defined GPS receivers.
e Firmware-defined GPS receivers.
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3.2 Hardware-defined GPS Receivers

By hardware-defined, it means the GPS receiver is designed and implemented using dedicated
hardware components. This include amongst others, a dedicated chips or Integrated Circuit (1C)
for the GPS front-end, the GPS correlator and the GPS baseband processor (Doberstein, 2012).

Hardware GPS receiver design is often considered as traditional because the internal architecture

or circuitry is fixed. However, the performance and functionalities can be modified as follows:

e Replacing the hardware component(s) with newer or better versions, if footprint(s) is equal.
e Upgrading the firmware of some of the component(s) to fix bugs and to add new features.

e Issuing commands to enable or disable and to fine-tune certain functionalities (e.g. power).
e Re-programming or writing new processing source-codes into the GPS baseband processor.

Besides some of the above modification possibilities, Ledvina et al. (2003: 2) mentioned some
disadvantages and the following drawbacks can be attributed to hardware-defined GPS receivers:

e Their ASIC architecture hinders modification to implement latest trends in GNSS technology.
e Hardware components could become obsolete and hinders replacement and re-production.

e The complete unit could be bulky if many discrete hardware components are used.

e Power consumption could be high as the number and type of hardware components increase.
e Could take longer to prototype / develop if various discrete hardware components are used.

e Could be costly to produce as a result of different types of hardware components used.

e Discrete devices do have diverse operating abilities; thus, unreliable (Renaudie et al., 2007).

e Use of many different hardware components requires specialised knowledge of each involved.

A hardware-defined GPS receiver is suitable in high-dynamics applications, since a dedicated
hardware device (a GPS receiver ASIC correlator) is faster (Yao et al., n.d.: 2). This provides

continuous and reliable GPS satellites tracking with lock architecture technology (Diaz, 2012).

Doberstein (2012) discussed the design of a hardware-defined GPS receiver in detailed. Since the
focus of this research is to design and implement a GPS receiver for space applications (i.e. for
use in Cubesats), various ways of a GPS receiver design and implementation were investigated.
From the investigation (refer to Tables 1.2 and 1.3), the following most common and feasible

approaches for a hardware-defined GPS receiver in this regards, were identified as follows:
1. Using discrete GPS receiver hardware COTS components and devices.

2. Modifying a COTS hardware GPS receiver unit.
3. Porting or emulating the internal architecture or circuitry of the GPS receiver hardware.
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3.2.1 Using Discrete GPS Receiver COTS Components and Devices

This is covered in detailed in Section 1.5.1, Tables 1.2 and 1.3. It was the most popular approach
as most of the devices were based-on ASIC COTS components. However, as a result of
unavailability of the popular open-source Zarlink GP4020 GPS baseband processor from the
manufacturer and reliable suppliers, this approach is now less popular and not recommended for
new designs, due to lack of genuine future replacements, no future technical support and
reliability concerns — especially in space applications. However, there still exists lots of useful
reference design information for understanding GPS receiver architecture (Parkinson, 2006: 71).

3.2.2 Modifying COTS GPS Receiver Unit

This is partly covered in Section 1.5.2. In an effort to establish an open-source GPS development
platform, Kelley et al. (n.d.), alternatively succeeded to capture GPS signals from a Zarlink
GP2021 correlator IC and modify it on a PC ISA 1/O card, instead of a GPS baseband processor.

3.2.3 Porting or Emulating the Internal Architecture of the GPS Receiver Hardware

The internal architecture(s) of most of the discrete GPS hardware devices are fixed but with this
approach, the GPS correlator and baseband processor internal circuitry are migrated and made
re-configurable either by (a) emulation or (b) Real-Time Operating System (RTOS). Thus, the
GPS hardware IC functionalities can only be modified by re-programming or firmware upgrade.
These two porting approaches have evolved differently and have both adopted an open-source

framework to enable future unrestricted developments. Two typical instances are presented:

3.2.3.1 Emulation

According to Engel et al. (2004), porting by emulation enables modification of the GPS receiver
to suit advances in GNSS technologies. Their idea was to strip down and copy the Zarlink
GP2021/GP2015 devices GPS architecture to an Altera Nios Il FPGA processor and to further

create a generic open-source GNSS platform. This approach is feasible but technically involved.

3.2.3.2 RTOS

Contrary to the emulation approach, Greenberg (2005), established an open source General
Public License (GPL)-GPS development platform based-on porting an eCOS RTOS to the built-
in Zarlink GP4020 ARM7TDMI baseband processor. This programmably interact transparently
with the internal GPS correlator. Although there are newer porting plans, this approach requires

multiple softwares and is limited to obselete products, based-on the discontinued GP4020 chip.
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3.3 Software-defined GPS Receivers

This was briefly introduced in Section 1.5.3. In Gerein and Brown (2001), a software-based
receiver has become the most popular approach in designing and implementing a GPS receiver,
as it enables the use of generic hardware that can be tailored with software to suit the end
applications (spaceborne in this regards). According to Tsui (2005: 3 - 4), this method evolved
from software radio concept; whereby, the received signal is digitised as close to the antenna as
possible, by employing DSP techniques. A software-defined approach offers a flexible research
development platform, which is ideal for experimenting novel algorithms (Borre et al., 2007: ix).

3.3.1 Software-defined GPS Receivers Based-on Matlab Only

In Borre et al. (2007), Borre and Strang (2011); software-defined GPS receivers based-on Matlab
have gained tremendous popularity over the years and can be regarded as the de facto approach.
Thus, majority of the GPS research (see Reference list) published on Institute of Electrical and
Electronic Engineers (IEEE) websites, were researched using Matlab software from MathWorks.
This approach basicly requires Matlab software running on a suitable PC and real-time
functionalities can be tested using a connected GPS front-end with ADC. Real GPS signals are
then acquired and process continously. GPS data can as well be captured and stored for post

processing, as well as a simulated or pseudo GPS L1 C/A signal can be generated and utilised.
3.3.2 Software-defined GPS Receivers Based-on Simulink Only

In Hamza et al. (2009), Simulink — a graphical computing software tool in Matlab, was used as a
software development platform to design and implement a GPS receiver unit. Similar to Matlab

approach, GPS signal data is acquired by a GPS front-end with ADC and processed on a PC.

3.3.3 Software-defined GPS Receivers Based-on Both Matlab and Simulink

This approach utilises a combination of both Matlab and Simulink software’s from MathWorks
to design and implement a GPS receiver. This approach seems suitable, especially as Matlab and
Simulink are integrated together as a single package and supports designs inter-conversion. With
this method, both software’s complement each other in scenarios where GPS receiver algorithms

cannot efficiently and / or easily be designed or implemented using either Matlab or Simulink.

In Gleason and Gebre-Egziabher (2009); C/C++, Octave and Python PC languages can be used.

In all, a GPS front-end and any suitable PC software with DSP and maths libraries can be used.
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3.4 Firmware-defined GPS Receivers

Contrary to software-defined GPS receivers that are designed to run on a PC by utilising the
PC’s Central Processing Unit (CPU), Random Access Memory (RAM), Read Only Memory
(ROM), Operating System (OS) and other resources; a firmware-defined GPS receiver is
designed to run on standalone System-On-Chip (SOC) devices such as microcontrollers. Akin to
software GPS receivers, they are easily modifiable although with embedded proprietary toolkits.

The design and implementation often follows a similar procedure as that of software-defined
GPS receivers; however, the final software is transformed to firmware (small tokenised
embedded software for a specific hardware) to run on a particular microcontroller (e.g. Virtex-
5QV) in one of two ways: (i) direct adaptation to firmware for a suitable microcontroller or (ii)
first converted to software in another language and finally to firmware in an embedded language.

3.4.1 Conversion of Software to Firmware in a Similar Language

This approach is applicable in instances where the software development platform and GPS
receiver software have been written in a language that can easily be tailored for direct
programming into a suitable microcontroller, without any conversion from one language to
another. In other words, the same programming language is utilised within the software
development platform and the microcontroller. For instance, a software GPS receiver can be
developed in ANSI-C or HDL which is then easily adapted to firmware for direct programming
to a suitable C or VHDL based ARM or FPGA microcontroller (Ramakrishnan et al., 2008).

3.4.2 Conversion of Software to Firmware in a Different Language

This approach lends itself to scenerios where the software GPS receiver has been written in a
language that cannot directly be used to program a microcontroller but has to be converted to a
suitable embedded langauge using multiple software langauges and toolkits (e.g. Matlab with
Altera or Xilinx) ®. This can be performed in two stages as follows: (i) the final GPS receiver
software (e.g. developed in Matlab / Simulink) is converted to firmware in another language (e.g.
to tokenise code in VHDL or C or C++) using a suitable workflow (e.g. Matlab HDL coder) and
(ii) it is further developed and programmed into a suitable microcontroller (e.g. Altera FPGA).
Contrary to software which is directly modifiable, a firmware (software embedded in hardware)
cannot be directly modified and can only be upgraded and as a whole. The research objectives /

available resources, necessitate the software and firmware approaches to be the preferred choice.

6 http://www.mathworks.com/products/hdl-coder/?s tid=hp fp list
64



http://www.mathworks.com/products/hdl-coder/?s_tid=hp_fp_list

3.5 GPS Receiver Functional Blocks

This refers to the main operational units or internal building blocks of a GPS receiver. Although
the internal architecture of GPS receivers looks similar, literature review from various sources
often categorise these internal blocks differently. As briefly mentioned in Section 1.5.3, GPS
receivers consists of three main sections namely the RF, DSP and Embedded. Outlined below
and illustrated in Figure 3.2 are the three sections which are further split into six sub-sections.
This research focuses only on the DSP and Embedded sections designs and implementation. The
RF section design and implementation is not covered but is briefly discussed for completeness.

1. GPS RF Section (GPS Front-end)
- Down-conversion
- ADC

2. GPS DSP Section (GPS Correlator)
- Acquisition
- Tracking

3.  GPS Embedded Section (GPS Baseband Processor)
- Decoding
- Processing

GPS L1 C/A Signals«—| s¥(6)= /ZP¢ (C*(t) ® D¥(1)) cos (2mfy0)

e

Research Focus Sections_,,_— -

|]E:> GPS Embedded Section | | pyT

GPS RF Section

|‘ GPS DSP Section

GPS Front-end GPS Comrelators

Down-conversion || - # Acquisition gDemdmg
ADC - % Tracking D Processing

Figure 3.2: Summary of a typical software GPS receiver depicting functional blocks
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3.5.1 GPS RF Section (GPS Front-end)

This is the first internal functional block of a GPS receiver and is responsible for converting
weak / noisy high frequency GPS signals to a low Intermediate Frequency (IF) suitable for DSP.
It is readily available from various vendors as a dedicated chip / ASIC of excellent performance.
Since the RF section falls outside the scope of this thesis, the reader is referred to Plausinaitis
(2008); Samper et al. (2009); Qi et al. (2012) for further technical readings. Apart from the
antenna and some passive components (e.g. resistors, capacitors and inductors), a typical GPS
receiver front-end often consists of the following components either discrete or in-built in a chip:

o Filters: extract /filter the desired frequency (1.57542 GHz in this regard) from the aerial input.
o LNAs: amplify with little distortion the desired GPS signal. It is placed after the antenna filter.
e Mixers: up or down converts the received frequencies at various stages in the GPS front-end.
e Frequency Synthesizers/Oscillators: generate reference signals of single/ multiple frequencies.
e ADCs: convert the down-converted analog signal (IF) to digital bits for DSP in the correlator.

The filters, LNAs, mixers, frequency synthesizers and/or oscillators usually interact to compose
the down-converter and together with the ADC, basically constitute a GPS receiver front-end.

At the input, the antenna is usually the first component of any GNSS receiver and it could be
discrete (external active RHCP antenna) and /or built-in (internal passive RHCP antenna). Its
function is to transform electromagnetic waves (GPS signals) to electrical or vice versa and
provides some frequency discrimination, as well as boosts the GPS signal for the GPS front-end.
At the GPS front-end ADC output, the most vital parameters are the Sign (1) and Mag (Q) data.

Figure 3.3 depicts a GPS front-end basic internal functional blocks and Figure 3.4 shows an IC.

Active Antenna
Gain = 30 dB
Noise Figure = 2.5 dB

Amplifier(s Amplifier(s) Ana(l;:g—m—Dig!'m_l
Gain = 50 dB Gain: = 50 dB onverter

Noise Figure ~ 4.0 dB Noise Figure = 4.0 dB Fsawich;ffs-"’s-l: MHz

BPF I @H I BPF ADC

Bandpass Filter Bandpass Filter

Femgrer = 1573.42 MHz F:47.74 MHz
3db BW = 50 MH=z PLL Output 3db BW = 6.0 MHz
1527.68 MHz

@ 7 dBm

TCXO @ ,E. L

F=10.00MHz

Figure 3.3: GPS front-end basic functional blocks
(Adapted from Plausinaitis, 2008: 56)
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Figure 3.4: GPS receiver front-end IC architecture
(Adapted from Zarlink GP2010 / GP2015 chips)

Possible GPS front-end devices were examined to select the most suitable device. The summary
is presented in Tables 3.1 and 3.2. Table 3.2 devices are ideal for software implementation and

the SiGe GN3S Sampler is the most suitable, since it has been used by various research facilities.

Table 3.1: Summary of suitable hardware GPS receiver front-end ICs

Manufacturer Part number Dimension V_Supply Temperature
Atmel ATRO0601, ATR0603 4x4 mm* 2v7 to 3v3 -40 to +85°C
Freescale MRFIC1505 7x7 mm’ 2.71t03.3V -40 to +85°C
Infineon BGM781N11 2.5x2.5x0.7 mm® 1v5 to 3v6 -40 to +85°C
MAXIM MAX2769B, MAX2741/5 7x7 mm? 2v4 to 3v6 -40 to +85°C
Nemerix NJ1006A 5x5 mm® 2.21t0 3.6V -40 to +85°C
PHILIPS UAA1570HL 7x7x1.4 mm® 2.7to 5V -40 to +85°C
SiGe SE4120L 4x4 mm? 2v7 to 3v6 -40 to +85°C
SONY CXA1951AQ 9x7x1.5 mm® 2.7t0 5.5V -40 to +85°C
ST STA5630, STB5610 5x5x1 mm® 1v8, 3v3 -40 to +85°C
uUNAV un8021C / uN1005 4x4x0.9 mm® 2.7t0 3.3V -40 to +85°C
Zarlink GP2010, GP2015 10/7x10/7x2/1.4 mm® 3to 5V -40 to +150°C

Table 3.2: Summary of potential software GPS receiver front-end devices
| Software GPS Front-end | SiGe GN3S Sampler v3 USB Front-end |[NordNav R30 Sampling Receiver |
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3.5.2 GPS DSP Section (GPS Correlator)

Principally, the GPS DSP section comprises the GPS correlator that performs correlation in the
forms of aquistion and then tracking, which according to Shi et al. (2009), these two processes
are key in software-defined GPS receivers. As constrained by GPS signal structure, correlation is
the most reliable and efficient technique that can be used to recovered GPS signal buried in noise
(Zheng, 2008: 6; El-Rayis et al., 2010; Jin, 2012: 5; Ta et al., 2012: 1). The theoretical concept
of correlation and its application in GPS signal acquisition and tracking is briefly covered next.
For details on GPS acquisition and tracking algorithms, refer to Tables 3.4 - 3.6 and Appendix A.

3.5.2.1 Correlation

Theoretically, the principle of correlation is based-on comparing and quantifying the degree of
time, phase, code and frequency alignments in two signals. This could be via cross-correlation
(between signals of different kind) and / or auto-correlation (between signals of the same kind).

Correlation threshold is a set value that determines if the result from correlating two signals can
be considered as good (accepted) or bad (rejected). This threshold value can be fixed or made to
vary autonomously depending on the environmental conditions or the application. However,
setting a high threshold value lowers good acquisition probability but decreases false acquisition.
Attaining or exceeding a high threshold value relates to good correlation, which often requires
that the received signal be powerful with insignificant interferences. This is most likely only
when the GPS satellites and receiver have line of sight and GPS sources of errors are minimal.
Conversely, setting a low threshold value makes acquisition quicker; however, the acquisition

result is unreliable as a low threshold value is susceptible to false triggering (Tsui, 2005: 229).

Correlation value is the number of bits between two GPS PRN codes that have the same value.
In Figure 3.5, PRN code patterns of a received and generated GPS signals are shown. The

correlation value in this example is 13 (the sum of occurrence of the bits highlighted in orange).

1001311101311 010001001101131211313111

LI 00001000101 001110000111001001000

Figure 3.5: Illustration of correlation concept using two 32 bits PRN code patterns

Correlation result is the outcome of correlating two signals. It is considered accepted if it
exceeds the set threshold value and rejected if it is below the set threshold value. For example,
the correlation result of Figure 3.5 is -6, which is the difference between the correlation and un-

correlation value (i.e. 13 - 19). Thus, with a threshold > -6, the correlation result will be rejected.
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3.5.2.1.1 Cross-correlation

Cross-correlation is the correspondence between a PRN code and a phase shifted version of
another PRN code of the same length. Therefore, the correlating process between two or more
PRN codes transmitted by different GPS Space Vehicles (SV) is known as cross-correlation. It is
also the first step in GPS signal acquisition during which the GPS correlator performs a coarse
search of available satellites and compares the correlation result against the cross-correlation
threshold (Ta et al., 2012). If the correlation result exceeds the correlation threshold, acquisition
is completed and that particular GPS signal is then auto-correlated in a process known as
tracking (El-Rayis et al., 2010). During tracking, the GPS correlator performs a fine search and
tries to maintain lock unto the acquired satellite(s). The acquired satellite being tracked can
become unavailable due to reasons such as its poor health status (often notified by the ground
station in the decoded navigation message) and interferences of the satellites signals by sources
of errors (ionosphere, troposphere, excessive Doppler effects, extreme temperatures) especially
in orbiting CubeSats, upon which the GPS correlator could lose lock (Markgraf et al., n.d.: 6).

3.5.2.1.2 Auto-correlation

Correlating two identical signals is known as auto-correlation and in GPS technology; it is a one
to one correspondence between a PRN signal against a phase shifted version (replica) of itself.
For example, SV 21 does transmits Gold code 21 and if this transmitted signal is received and
correlated against itself by the GPS receiver, the process is known as auto-correlation and it is

the principle a GPS correlator employs when refining / locking to an acquired GPS PRN signal.

The incoming GPS signal (PRN 21) and the identical locally generated replica (rPRN 21) are
always practically not aligned in phase and frequency; as a result of clock bias errors,
atmospheric delays and Doppler shift encountered by the transmitted GPS PRN 21 signal. The
locally generated replica by the GPS receiver correlator has to be continuously shifted until both
signals are aligned (Borre et al., 2007: 70). Depending on the correlation result, the degree of
alignment can be considered accepted or rejected. Once the correlation threshold is attained or
exceeded, the correlated result will give a significant rise in amplitude (see Figure 3.8) and this
effect is termed acquisition or the GPS SV 21 signal is acquired. To maintain this acquisition, the
GPS signal coarse code phase and frequency values have to be continuously refined and locked
unto (Borre et al., 2007: 71 & 72). From research, various techniques for acquiring and tracking

GPS signals have been proposed and implemented. These are briefly discussed in Appendix A.

The concept of an ideal auto-correlation process is illustrated as follows in Figures 3.6 and 3.7.
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Figure 3.7: GPS receiver generated replica of GPS L1 C/A signal of SV 21 showing first 50 bits

Since Figures 3.6 and 3.7 each has 50 bits (1023 max) represented by illustating only 26 bits of
1’s and 0’s; the correlation threshold can be set to a value > +25. In this instance, it can be set to
+45; however, since this is an ideal example because both signals are designated to be properly
aligned for illustration sake, the correlation value is 50; hence, the magnitude or peak of the

correlation result is 50 as well, signifying an ideal acquisition result in this illustrative scenario.

Figure 3.8: Auto (left) and cross (right) correlation results
(Adapted from Borre et al., 2007: 26)

Figure 3.8 shows the signal spectrums resulting from auto and cross-correlating two GPS signals.

Thus, the ability of GPS correlator (s) to quickly acquire GPS signals and to track and maintain

lock unto the GPS signals in adverse conditions, determines and defines a GPS receiver quality.
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3.5.2.2 Acquisition

Acquisition is the first of the two correlator tasks performed by a GPS correlator. Practically
there is always more than 1 correlator or channel in a GPS receiver — usually 12, with each
correlator tracking a specific GPS satellite (Greenberg, 2005: 7). For a GPS L1 C/A signal
acquisition to occur, the GPS receiver must perform a rough search for a minimum of four
available satellites. This search is usually termed two dimensional as it involves both the code
phase and carrier frequency of the transmitted GPS L1 C/A signal (Greenberg, 2005: 8). The
CDMA nature of GPS L1 C/A signal enables a GPS receiver to recognise and separate multiple
GPS satellites on the same carrier frequency based on the unique PRN code assigned to each
GPS satellite. As a result, the PRN codes only correspond or correlate, if they are perfectly
aligned. Hence, each GPS satellite transmits a unique PRN code, which at lag 0; cross-correlates
well only with a different GPS satellite's PRN code, as well as, auto-correlates well with only the
same GPS satellite's PRN codes. In other words, different GPS PRN codes are highly mutually
orthogonal with each other, making them very unlikely to be misinterpreted as another. Each of
these unique GPS satellite's PRN codes, range from 1 to 37 and are often refer to as Gold codes
(see Table 2.2, though there are a total of 1025 each of length 1023 bits); from which, only 1 to
32 are assigned to uniquely represent each orbiting GPS satellite (Borre & Strang, 2012: 17 - 21).

Thus, acquisition finds the start of the PRN codes, the carrier frequencies and phase transitions.

In Borre et al. (2007: 69 - 71), the GPS receiver during cold start acquisition process, normally
has outdated or no almanac data in memory. It then enters a coarse search mode and generates
PRN code phases and carrier frequencies replicas to match the incoming code phase and carrier
frequency of the transmitted GPS signal. An offset is computed by the MLS shift registers to
generate the best correlation and during the offset computation, the 1023 bits of the satellite PRN
code are first compared with the generated or stored PRN code. If correlation is not attained, the
1023 bits of the GPS correlator PRN codes are shifted by one bit relative to the GPS satellite's
PRN codes and the signals are iteratively compared until correlation is achieved or all 1023
possible cases have been tried. If no correlation, the process is iterated via the frequency search

bins by offsetting the generated carrier frequency to the next value until acquisition is obtained.

As a result, a GPS receiver’s correlators must continuously shift (slide) the code phases and
carrier frequencies of the generated replicas until it matches or aligns with that of the received
GPS satellites signals. Once correlated, the GPS signal amplitude of the correlation result will

rise significantly, implying acquisition and control is passed to the GPS correlator tracking loop.
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3.5.23 Tracking

Tracking is the second of the two correlator tasks performed by a GPS correlator and it refines
the acquisition process by ensuring a constant lock of the received and generated GPS signals.
Once coarse acquisition is completed, the GPS receiver correlators then perform fine acquisition
to track and lock all available acquired GPS satellites. Once locked, the tracking loops select or
determine the GPS satellites to listen to, for navigation data decoding (Johanssen et al., 1998: 8).

Obtaining and maintaining GPS lock often requires a clear line of sight between GPS receiver
and satellites antennas; however, the received GPS signals code phases and carrier frequencies
are usually affected by GPS sources of errors (atmospheric delays, Doppler and multipath).
Therefore, as stated in Borre et al. (2007: 69 - 72), the incoming GPS signals and the generated
replicas will always be misaligned or different in PRN code phases and carrier frequencies and
thus, will not correlate due to these misalignments. As a result, the GPS receiver correlator
temporally loses lock and has to re-track the acquired GPS signal. Furthermore, should the GPS
signal impairment condition between GPS satellites and receiver exceeds 4 to 6 hours; the
ephemeris data will become outdated and the GPS correlator will revert back to acquisition mode
and performs new GPS satellites search — starting from the supposed warm or hot start states.

Table 3.3 depicts a GPS receiver acquisition states and Figure 3.9 portrays a typical acquisition.

Table 3.3: GPS signal acquisition and tracking states

State Technical meaning Real life analogy
1| Cold | GPS receiver has outdated almanac data Used and powered-off for months
2| Warm | GPS receiver has recent almanac data Used and powered-off for days / weeks
3| Hot | GPS receiver has both almanac/ephemeris data | Briefly powered-off or connection lost

- S00
3 .56 <400

Freqguency [Miriz] Code Phase [chips]

Figure 3.9: lllustration of an acquired GPS signal from satellite 17
(Adapted from Plausinaitis, 2009c: 6)
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Table 3.4: GPS L1 C/A Acquisition Techniques

Acquisition Algorithms

Source

Acousto-optic Technique

Bazzi et al. (1993)

Mitel GP2000

Mitel GP2000 (1998: 14 & 15)

Averaging Correlator Acquisition

Alageeli et al. (2003)

Parallel Code Phase Search (Delay & Multiply FFT)

Tsui (2005: 139); Borre et al. (2007: 82)

Block (Non-coherent Integration) Acquisition

Tsui (2005: 144); Shi et al. (2009)

Multiple Correlators Bank Acquisition

Akopian et al. (2006)

Lifting Wavelet Acquisition

Djebouri et al. (2006)

Serial or Sequential Search Acquisition

Borre et al. (2007: 75 — 78)

Parallel Frequency Space Search Acquisition

Borre et al. (2007: 78 — 81)

Wavelet De-noising Acquisition

Tian and Yang (2008)

Reconfigurable Instruction Cell Array Acquisition

El-Rayis et al. (2010)

Wavelet Transform Acquisition

Jianguo et al. (2010)

Extended Multiple Correlators Acquisition

Xiaowen et al. (2010)

Bayesian Acquisition Technique

O’Mabhony et al. (2012)

Matched Filter Correlator Acquisition

Taetal. (2012)

Fast Satellite Selection Based-on Newtons Identities

Meng et al. (2013)

Sub-Sampled Fast Fourier Transform

Rao and Ratnam (2013)

Improve Fast Fourier Transform

Feng et al. (2013)

Table 3.5: GPS L1 C/A Tracking Techniques

Tracking Algorithms

Source

Block Adjustment of Synchronising Signals

Tsui (2005: 170 — 175)

Combined Carrier and Robust DLL Code Tracking

Tsui (2005: 168); Borre et al. (2007: 106)

PLL and Costas Loop Carrier Tracking

Borre et al. (2007: 93 — 96)

Basic DLL Early-Late Code Tracking

Borre et al. (2007: 96 — 100)

Robust DLL Early-Late Code Tracking

Borre et al. (2007: 98)

Nonlinear Code Tracking Filter Technique

Gustafon et al. (2009)

Inertial Navigation System Tracking Technigue

Rogers (2007); Xiaoyong and Baigi (2011)

Combination of Squared Correlators Tracking

Falletti et al. (2012)

Extended Kalman Filter Tracking Technigue

Peng et al. (2012)

Kalman Filter Tracking Loop Technique

Song et al. (2012)

Wavelet Packet Denoising

Eddine and Mohamed (2013)

Carrier Phase Measurement

Lu et al. (2013)

Table 3.6: Miscellaneous Research on GPS L1 C/A Acquisition and Tracking Techniques

Acquisition

Tracking

Source

Source

Ma et al. (2004)

Kalyanaraman et al. (2004)

Gunawardena and Graas (2006)

Lin et al. (2006)

Lashley (2006)

Sagiraju et al. (2006)

Mao et al. (2006)

Hsu et al. (2008)

Li et al. (2008)

Zhe et al. (2008)

Yao et al. (2009)

Lashley and Bevly (2009)

Diaz et al. (2012)

Miao et al. (2009)

Tang et al. (2012)

Yang-bo et al. (2009)

Borio et al. (2013)

Borio et al. (2010)

Kumar and Paidimarry (2014)

Li et al. (2013)

73




3.5.3 GPS Embedded Section (GPS Baseband Processor)

This is the last functional block of a GPS receiver. It principally serves two purposes: i) to
decode the tracked GPS signals and ii) process the GPS navigation data. Some of the relevant
technical details regarding GPS baseband processing are partly covered in Section 2.5.3. As
described in Tsui (2005: 186 - 223); Borre et al. (2007: 109 - 135); Navstar 1S-GPS-200H (2013)
specification, the decoding and processing follow a standard procedure. The next subsections
briefly highlights the theoretical aspects of the GPS Baseband Processor. Appendix B thoroughly

covers the mathematical analysis (mainly the PVT calculations) applicable to this research.

3.5.3.1 Decoding

In Borre et al. (2007: 109 - 125), decoding means to reliably recover the GPS navigation data
message. For that to successfully happen, the following processes have to be logically followed.

3.5.3.1.1 Bit Synchronisation

According to Borre et al. (2007: 109), this refers to finding the bit transition and bit value, which
basically involves detecting a zero crossing — where the output alternates from 1 to -1 or vice
versa. Locating this zero crossing automatically determines the bit transition time and makes it
possible to find all the other bit transitions, that are usually 20ms (duration of a GPS navigation
data message = 1/50 Hz) from each other. Since the tracking block output sampling rate is often
1000sps (samples per second) which corresponds to a value of 1ms, the output signal must be
converted from 1000sps to 50bps (bits per second). A bit must be represented by 20 samples
since a GPS navigation data message bit duration is 20ms. This conversion procedure is termed

bit synchronisation and is the most crucial step in GPS navigation data message decoding.

3.5.3.1.2 Locating Preamble

After bit synchronisation, a GPS navigation data is identified and the next step is to find the start.
The preamble signifies the start of a GPS navigation message sub-frame and its length is 8-bits.
The transmitted preamble pattern is often 10001011 but it can also appear inverted as 01110100,
due to the Costas loop’s ability to also track a 180° phase shifted signal (Borre et al., 2007: 110).
Usually, these two 8-bits patterns can transpire anywhere in the received data (and in alternating
versions) so a further check must be performed to validate this preamble. The authentication
procedure is often correlation, which checks if the same preamble is iterated every 6s,
corresponding to the transmissions time between two successive sub-frames (see Section 2.5.3;
Figures 2.7-2.9). A correlation result of 8 or -8 signifies a valid preamble, as well as a valid data.
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3.5.3.1.3 Extracting Navigation Message

Realising valid preambles identifications mark the beginning of a navigation data sub-frame. The
preamble is located in the TLM (the first word), followed by the HOW (see Figures 2.8 and 2.9
for details). Parity bits are used to check whether the received transmitted GPS navigation data
has been decoded correctly. The GPS L1 C/A signal parity check procedure often involves a
series of modulus-2 additions of all 30 data bits in a sub-frame. Navstar 1S-GPS-200H (2013:
136 - 138) specification, explains in detailed, the parity encoding and decoding procedure.
Transmission time refers to when the current received GPS sub-frame was transmitted and this is
calculated from the Time Of Week (TOW). The TOW truncated version is termed the Z-count.
Figure 3.10 depicts the TOW and Z-count — the Z-count is the elapsed number of seconds since
the last GPS week rollover in units of 1.5s. The maximum value of the Z-count is 403199 — since
604800s makes a week and dividing this by 1.5 gives 403200. The Z-count value in the HOW is
an abridged version having only the 17 Most Significant Bits (MSB). This reduction makes the
Z-count increment in 6s steps, corresponding to the time between transmissions of two
successive navigation sub-frames. The truncated Z-count value in the HOW, corresponds to the
transmission time of the subsequent navigation data sub-frame. To obtain the transmission time
of the current sub-frame, the truncated Z-count should be multiplied by 6 and 6s should be
deducted from the result (Borre et al., 2007: 113 & 114). Figure 3.10 illustrates the GPS time.

GPS time L | | l \ | | | | | | | | | | | | | | seconds
0O 1 2 3 4 5 6 7 8 9 1011 1213 14 15 16 17 18
Z-count L | | | | | | \ | | | | |
0 1 2 3 4 5 6 7 8 9 10 11 12
Truncated | | | |
Z-count
0 1 2 3

Figure 3.10: GPS time, Z-count and truncated Z-count
(Adapted from Borre et al., 2007: 113)

The ephemeris, almanac, ionosphere and UTC parameters are as well extracted according to the
procedures described in ARINC I1S-GPS-200D (2004) and / or Navstar 1S-GPS-200H (2013).

Summarily, sub-frame 1 is first decoded and the most vital parameter to be extracted is the clock
correction, followed by sub-frames 2 and 3 ephemeris parameters (use to calculate SVs position)

and next is sub-frame 4 UTC/ ionosphere parameters and finally sub-frame 5 almanac parameter.

75



3.5.3.2 Processing

Processing is the interpretation and use of the decoded GPS navigation data. The ultimate use of
the recovered GPS navigation data is to compute the receiver PVT (Borre et al., 2007: 114-135).

Contrary to decoding which follows a strict sequential procedure governed by the GPS
navigation message specifications, GPS data processing depends on the PVT solution used.
Usually, GPS satellites position is first determined, followed by pseudo-range computations and
finally GPS receiver position calculations; from which velocity and time can be further found.

3.5.3.2.1 GPS Satellites Position

GPS satellites positions in space are described by Keplerian parameters and must be transformed
to Earth-Centered Earth-Fixed (ECEF) coordinates on Earth. Determining GPS satellites position
entails using the ephemeris data in sub-frames 2 and 3 recovered from the GPS navigation data
message. Ephemeris data is specific to a particular SV and is valid between 4 to 6 hours after
decoding. Ephemeris data as well constitutes updated history of a GPS satellite orbit (it describes
the orbit a GPS satellite is moving in). This together with Keplerian parameters, are used to
accurately determine or estimate the current position of any GPS satellite. Figure 3.11 depicts the

six Kepler’s orbital elements and for details pertaining to their usage in SV position calculation,
see Tsui (2005: 51 - 67); Borre et al. (2007: 114 - 119); Navstar IS-GPS-200H (2013: 101 - 105).

In Figure 3.11, center of Earth is denoted as C, the ascending node K and the true/mean anomaly

as f/u. Tables 3.7-3.10 show the standard ephemerides (ephemeris plural) and orbital parameters.

Z (Earth spin axis)

SeIni-major axis
S .
a.e ) eccentriclty
P /

orbit plane / .
/ argument of perigee
A > , .
AL AP right ascension of ascending node

inclination

size and shape of orbit

the orbital plane in
the apparen system

/ equator mean anomaly position in the plane
X

(in Greenwich meridian)

Figure 3.11: Kepler’s orbital parameters
(Adapted from Strang & Borre, 1997: 483 & 485)
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Table 3.7: GPS satellites ephemeris parameters definition
(Adapted from Navstar 1S-GPS-200H, 2013: 102)

Ephemeris Data Definitions

M, Mean Anomaly at Reference Time
An Mean Motion Difference From Computed Value
e Eccentricity
VA Square Root of the Semi-Major Axis
Q, Longitude of Ascending Node of Orbit Plane at Weekly Epoch
1y Inclination Angle at Reference Time
® Argument of Perigee
_._ Rate of Right Ascension
IDOT Rate of Inclination Angle
Ce Amplitude of the Cosine Harmonic Correction Term to the Argument of Latitude
Cos Amplitude of the Sine Harmonic Correction Term to the Argument of Latitude
C,. Amplitude of the Cosine Harmonic Correction Term to the Orbit Radius
C. Amplitude of the Sine Harmonic Correction Term to the Orbit Radius
C;. Amplitude of the Cosine Harmonic Correction Term to the Angle of Inclination
C;, Amplitude of the Sine Harmonic Correction Term to the Angle of Inclination
toe Reference Time Ephemeris (reference paragraph 20.3.4.5)
IODE Issue of Data (Ephemeris)
Table 3.8: GPS satellites ephemeris parameters value
(Adapted from Navstar 1S-GPS-200H, 2013: 103)
Ephemeris Parameters
Parameter No. of Bits** Scale Factor (LSB) Effective Range™** Units
IODE 8
(C 16* 2 meters
An 16%* 243 semi-circles/sec
Mg 32% Pt semi-circles
Cuc 16% gt radians
e 2 2733 0.03 dimensionless
Cue l16* 2-2° radians
JA 2 21° fmeters
toe 16 2* 604,784 seconds
Cic 16% gt radians
Qp 32% Pt semi-circles
Cis 16% gt radians
ip 32% Pt semi-circles
C.. l16* 23 meters
o) 32* 273 semi-circles
f.l 24%* 2 semi-circles/sec
IDOT 14%* 2 semi-circles/sec
* Parameters so indicated shall be two's complement, with the sign bit (+ or -) occupying the MSB:
** See citation for complete bit allocation in subframe:
ok & Unless otherwise indicated in this column, effective range is the maximum range attainable with

indicated bit allocation and scale factor.
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Table 3.9: GPS orbital elements parameters definition
(Adapted from Navstar 1S-GPS-200H, 2013: 104)

Elements of Coordinate Systems (sheet 1 of 2)

L= 3.986005 x 10" metersi/sec? WGS 84 value of the earth's gravitational constant for
GPS user
ée = 7.2921151467 x 10~ rad/sec WGS 84 wvalue of the earth's rotation rate
A= { \/K )2 Semi-major axis
ng = ;la Computed mean motion (rad/sec)
T = T = toe™® Time from ephemeris reference epoch
n=nmng + An Corrected mean motion
N = Ny + nty Mean anomaly
My =E; - e sin By Kepler's Equation for Eccentric Anomaly (may be solved by
iteration) (radians)
v = tan~! J’&] True Anomaly

Lcos vy |

(
= tan"!

1—e” sinEy /(1 —ecosE, )|
L
| (cosEyx —e)/(1—ecosEy) J

= t 1s GPS system time at time of transmission. i.e.. GPS time corrected for transit time (range/speed of light).
Furthermore, t; shall be the actual total time difference between the time t and the epoch time t,.. and must
account for beginning or end of week crossovers. That is. if t, is greater than 302.400 seconds. subitract
604,800 seconds from tp. If ty is less than -302.400 seconds. add 604,800 seconds to f.

Table 3.10: GPS orbital elements parameters definition continued
(Adapted from Navstar 1S-GPS-200H, 2013: 105)

Elements of Coordinate Systems (sheet 2 of 2)

[ e+cosv, | .
E, =cos 1-[ =2 Eccentric Anomaly
]\1 +ecosVy
D =v,+® Argument of Latitude
Oy = ¢,.5in2@y + cycos2@y Argument of Latitude Correction
Sry, = ¢,.51in2@y + ¢, .cos2Dy Radius Correction Second Harmonic Perturbations
Sy, = ¢;.sin2 @y + ¢;.c0s2Dy Inclination Correction
u = @ + Sy Corrected Argument of Latitude
1. = A(1 - e cosEy) + Oy, Corrected Radius
iy = 1p + 81 + (IDOT) t;. Corrected Inclination
X = 1.cOo81,; Positions in orbital plane.

Vi = Ipsinuy

Q = Qp + (Q - Q) t - Qe toe Corrected longitude of ascending node.

p— r r - -
X = X3 cosQ) - v cosisinldy, ] 1 i
. -, . Earth-fixed coordinates.
Vi = X' sinfdy + yi'cosigcos(dy,

Zy, = Vi siniy

78




3.5.3.2.2 GPS Satellites to Receiver Pseudo-range

Pseudo-range is the ballpark distance between orbiting GPS satellites and a GPS receiver. The
received GPS signal time will differ from the time it was transmitted, due to error sources. This
difference in time is known as time bias and accounts for all pseudo-range measurements.
However, if there is no time difference (bias error = 0), the pseudo-range equals the range (actual
distance). In Borre and Strang (2012: 9), 1ms timing bias translates to ~300km error in distance.

The pseudo-ranges of each GPS satellite are obtained by multiplying the speed of light with the
time taken for each GPS satellite transmitted signal to reach a GPS receiver. In Borre et al.
(2007: 119 - 121), computing pseudo-range is best achieved in two steps: (i) finding the initial
set of pseudo-ranges and (ii) use the initial set to estimate or keep track of future pseudo-ranges.
Figure 3.12 depicts pseudo-range concept involving GPS sub-frames received from 4 GPS SVs.

-

<+2.=== Incoming GPS L1 C/A Signals

Grssate“ite_1 Sl*"l'al'l'la"‘ Channel 1 Time Ir clock bias l

6PS satellite 2subframe:! channer 2 e — — _74ms L) 220200km Pseudo-range (third GPS signal received|

PS satelite 3 subframe! rnannct s g 1™ 1 024300 kn Pseudoorange fourth GPS signa eceived)

GPS satellite 4 subframed channel 4 ¢ — — — 89ms 4 o0 220,700 km Pseudo-range (second GPS signal received
68 ms %—« = 20,400 km Pseudo-range (reference orfirst GPS signal received)

Time [s]

GPS receiver antenna

Figure 3.12: GPS clock bias and pseudo-range illustration
(Adapted from Borre et al., 2007: 120)

GPS signals travel time from orbiting GPS satellites to Earth varies between 65 and 83ms. It is
use to set the initial pseudo-range. GPS SVs closest to Earth normally have the earliest arriving
sub-frames. From Figure 3.12, GPS satellite 1 (Channel 1) has the earliest travel time of 68ms

and it is use as the reference to compute the travel times of the rest (Borre et al., 2007: 119-121).

The GPS receiver position can be determined from the initial pseudo-ranges and the result is the
GPS receiver position (X, Y, Z) with a clock offset of dt. The clock offset is used to fine-tune the
time of travel of the reference satellite (i.e. 68ms of GPS satellite 1) and with this procedure, the
GPS receiver can determine the actual pseudo-ranges after two calculations by: i) taking note of
the difference in ms between the start of the sub-frame with respect to the reference GPS satellite

and ii) the start of the C/A code that gives the exact pseudo-range for the orbiting GPS satellites.
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3.5.3.2.3 GPS Receiver Position

From SVs positions and pseudo-range measurements, the GPS receiver position is computed as a
set of XYZ coordinates, which are respectively transformed to latitude, longitude and altitude.
Further optimisation is done to reduce error sources. See Sections 3.6, 3.7 and also Appendix B.
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Figure 3.13: Pseudo-ranges, SV, GPS receiver position and clock bias illustration
(Adapted from Misra & Enge, 2006; Jin, 2012)

Figure 3.13 portrays the relationship between pseudo-ranges, SV position, GPS receiver position
and clock (time) bias. See Jin (2012: 107 - 125) for details. Two main methods are used for

calculating GPS receiver position, namely i) least squares and ii) the Kalman filter techniques.

Least Squares:

In Strang and Borre (1997: 448, 458), this approach outputs a basic single point positioning,
whereby a set of linearised equations are solved to get approximate distances using trilateration
and not triangulation (yields angles not distance). The approximated residuals are defined as the
difference between the real observations and the new estimated model for the observations. The
least-squares solution (covered in Appendix B, Section 8.2.7.5.2) is then obtained by changing
the initial position estimate value, until the sum of squares of the approximated residuals are
minimised. If some observations are considered less accurate than others, then the Weighted
Least Squares (WLS) approach is used to address the in-accuracies. Refer to Grewal et al. (2001:
26 & 27); Tsui (2005: 63 - 67); Gleason and Gebre-Egziabher (2009: 56 - 64) for more details.

Kalman Filter:

It is an advanced method, employed in positioning. It uses a recursive algorithm to give optimum
predictions of GPS receiver PVT, based-on current measurements and noise statistics. The filter
algorithm contains dynamic model of the GPS receiver motion and uses it to output a set of GPS

receiver PVT state estimates and related error variances (Gleason & Gebre-Egziabher, 2009: 67).
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3.5.3.2.4 GPS Receiver Velocity

Similar to position, GPS receiver velocity can be estimated from various approaches. In Kaplan
and Hegarty (2006: 58 - 61), these approaches include (i) approximate differentiation of position
(i) use of least-squares on Doppler’s shift data or frequency from the carrier loop (iii) use of
carrier phase measurements or cycles to determine how many cycles had occurred since signal
reception and (iv) Kalman filter state vector. Refer to Grewal et al. (2001: 28); Xu (2007: 212);
Gleason and Gebre-Egziabher (2009: 64 & 65). GPS receiver velocity calculation using method
(i) is analysed in Appendix B, Section 8.2.7.6. Figure 3.14 previews the processes involved.
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Figure 3.14: GPS receiver velocity calculation
(Adapted from Gleason & Gebre-Egziabher, 2009: 65)

3.5.3.25 GPS Receiver Time

With GPS receiver clock bias already deduced from computing the position, what is required is
to determine the absolute time to which this bias value is referenced. This is achieved using data
in the recovered GPS satellite’s navigation message — from which there is a GPS timestamp for
each transmitted sub-frame. This information is primarily used by the GPS receiver to make
pseudo-range measurements, as well as to coarsely set GPS receiver reference clock. The precise
GPS time when the GPS receiver latched the pseudo-range and Doppler measurements can be
expressed as a function of signal reception time and clock bias. GPS time is expressed in the
form of GPS week and by definition, it is exactly 604800s/week, and rolls over to O once per
week (Saturday breaking Sunday). Using suitable formulas, GPS time can be converted to UTC
(GMT) or any local time. GPS time differs from UTC by integer number of seconds which often
drifts with time since 1980 (Borre & Strang, 2012: 260 - 262). Refer to Appendix B for details.
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3.6  GPS Errors Sources

GPS technology is prone to a variety of errors sources which degrades the performance of
various aspects of its operation — manifested at the receiver. These error sources have been the
focus of researchers and several solutions have been proposed and implemented within the last
number of years. This section focuses on GPS sources of errors known to have or currently
affects GPS technology, the details of the error sources, their effects, as well as corresponding
possible mitigation techniques. Due to the size of the study, some of these mitigation techniques,
where applicable, are described in Section 3.7 and mathematically analysed in Appendix B.

The errors sources have been classified according to the GPS technology aspect they affect:

GPS Ground Station Associated Errors / Sources

e Selective Availability (SA) — is permanently disabled since May 2000.
e Human mistakes.
e Equipment and device related.

GPS Satellites Associated Errors / Sources

GPS satellites unavailability.

GPS satellites ephemeris parameter errors.

GPS satellite geometry: Dilution of Precision (DOP) errors.
GPS satellites clock errors.

GPS Signal Associated Errors / Sources

e lonospheric propagation or scintillation effects.
e Tropospheric propagation effect.

e Multipath effect.

e Doppler’s frequency shift effect.

e Jamming and spoofing of signals.

GPS Receiver Associated Errors / Sources

GPS receiver clock errors.

GPS receiver’s noise.

Software errors.

Antenna phase centre offset and variation.
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3.7 GPS Errors Sources Mitigation

This section briefly discussed the GPS error sources in Section 3.6 and proposed likely solutions.
Dana (2000); Grewal et al. (2001: 103 - 130); EI-Rabbany (2002: 27 - 44); Kalyanaraman et al.
(2004); Kaplan and Hegarty (2006: 301 - 321); Xu (2007: 43 - 85); GPS.Caltech (2009: 16 - 50);
Gleason and Gebre-Egziabher (2009: 55 - 115); Jin (2012: 357 - 422), examined all the details.

3.7.1 GPS Ground Station Associated Errors/ Sources

These errors originate at the GPS ground control segments and could affect the entire GPS.

3.7.1.1  Selective Availability

The intentional degrading of GPS satellites clocks and ephemeris data could be performed by the
US Department of Defence for military reasons. This in-turn degrades GPS signals which are
noticeable by the GPS receiver poor performance (e.g. high in-accuracies in PVT calculations).
Although selective availability was permanently stopped in May 2000 and no longer a GPS error
source, several methods including that in Xiong et al. (2000), were researched to mitigate it.

3.7.1.2 Human Mistakes

In Gleason and Gebre-Egziabher (2009: 105 &106), un-intentional blunders such as wrong data
feeds or updates, are caused by staff working at GPS ground control stations. However, current

measures make the probability of such errors happening and going viral or un-noticed minimal.

3.7.1.3 Equipments / Devices Related Errors

This is as a result of machine(s) malfunctions and could either incorrectly performs its functions
or performs no function at all. Contrary to human errors, the possibility of these errors happening

is certain; however, control and backup systems often minimise the propagation of these errors.

Conclusively, errors that might originate from GPS ground control segments are minimal, though

the effect of such errors should they occur, could be huge as they could affect the entire GPS.

3.7.2 GPS Satellites Associated Errors / Sources

These are errors that affect or originate from GPS satellites. Such errors could be intentional or

un-intentional and could directly or in-directly affect GPS signals and therefore GPS receivers.

3.7.2.1 Number of Visible or Available GPS Satellites

The more GPS SVs a GPS receiver can see, the faster the acquisition and better PVT accuracies.
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3.7.2.2 Ephemeris Parameters Errors

In EI-Rabbany (2002: 28 & 29), these are in-accuracies in the ephemeris data from GPS satellites
and as a result, the calculated GPS satellite’s position based on such data might be in-accurate to
<10m. Usually, the four monitoring stations of the ground control segment, estimates the orbital
parameters of all GPS satellites in space and the result is then processed by the GPS master
control station of the GPS ground control segment to determine new ephemeris data. The newly
processed ephemeris parameters, together with other navigation data, are sent back to three of the
four monitoring stations for upload to respective orbiting GPS satellites. Ephemeris errors from
each GPS satellites are transmitted in the navigation message and upon message recovery by the
GPS receiver; these errors are used to correct GPS satellites positions during PVT computations.

3.7.2.3 GPS Satellite Geometry (DOP) Errors

As illustrated in Section 2.4, GPS satellites-receiver geometry does have a considerable impact
on the accuracy of obtained PVT estimates. In other words, some GPS satellites-to-receiver
geometries will result to better PVT solutions than others. Therefore, it is vital to have a way of
comparing different GPS satellites-to-receiver geometries and the metric normally used for
measuring this impact is DOP. It simply represents the degree to which GPS satellites-to-receiver
geometry dilutes the accuracy of the PVT solutions at the time of computation. Computed DOP
values are usually by-products of PVT calculations and their provisions can be used to improve

the computed PVT solutions, if they are extremely in-accurate (Kaplan & Hegarty, 2006: 302).

3.7.2.4 GPS Satellites Clock Errors

In EI-Rabbany (2002: 31 & 32), each GPS satellite is equipped with four on-board ultra-high two
Cesium and two Rubidium precision atomic clocks. These clocks directly control the timing of
GPS signals transmission. Besides their high accuracy, precision, reliability and robustness; they
are still prone to errors (slight timing drifts) which must be corrected to enable easy
synchronisation of the time in all orbiting GPS SVs. GPS SVs clocks are allowed to relatively
drift to some extent, so that they can be estimated by ground control stations to process clock
corrections data coefficients for respective GPS satellites. These clock errors are sent back to the
respective GPS SVs via subsequent navigation data uploads, which are in turn transmitted back
by GPS SVs in the navigation data messages and upon recovery by GPS receivers, the clock
corrections are used when computing PVT. These corrections are good but not perfect and will
result in small errors in the computed PVT. Thus, to improve this GPS SVs clock error estimates,
sophisticated technique like differencing, can be used to mitigate inaccuracies in the PVT result.
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3.7.3 GPS Signal Associated Errors / Sources

In the context of this document, these are any sources of errors or errors that directly or indirectly
negatively affect the propagation of GPS signals from orbiting GPS satellites to GPS receivers.

3.7.3.1 lonospheric Propagation or Scintillation Effect

The ionosphere is the region of Earth atmosphere stretching from 50 to 1000 km above sea level.
The electron density or Total Electrons Content (TEC) in this region of the atmosphere is
unevenly distributed, due to fluctuations depending on the time of the day and space weather
conditions. This random intermittent variation in TEC is known as scintillation effect. TEC
concentration affects the propagation of GPS L1 C/A RF signals via the ionosphere in two ways:
i) group delay which is manifested as a longer pseudo-range and ii) phase advance which is
manifested as a shorter carrier phase. lonospeheric effects are currently one of the main sources
of errors to GPS signals. The amount of GPS signal delays caused by the ionosphere is
transmitted in the GPS navigation message and after navigation message recovery, it is used to
correct timing delays when computing GPS receiver PVT. Figure 3.15 shows maps of worldwide

TEC distribution comparison at night and day and subsequent associated pseudo-range errors.
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Figure 3.15: Global TEC maps and corresponding ionospheric range errors
(Adapted from Jin, 2012: 389)
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3.7.3.2 Tropospheric Propagation Effect

The troposphere is the section of the atmosphere below the ionosphere and it consist of a
hydrostatic (dry) and wet portions accounting for water vapour. The dry portion accounts for
90% of tropospheric refraction, while the wet portion accounts for 10%. The models for the wet
troposphere are less accurate than those for the dry troposphere and as a result, the wet
troposphere errors, though minimal, could have a greater effect on the pseudo-range bias than
those of the dry troposphere. Tropospheric delay errors are proportional to temperature, pressure
and humidity and can be mitigated by assigning an elevation mask for the GPS receiver;
whereby, GPS L1 C/A signals from low elevation GPS satellites could be avoided. With a 15°
elevation mask, 5 to 8 GPS satellites can be simultaneously observed from any location on Earth

at any point in time. Figure 3.16 illustrates the entire Earth atmosphere and the effective sections.
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Figure 3.16: Atmosphere with focus on tropospheric effect
(Adapted from GPS.Caltech, 2009: 20 & 21)
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3.7.3.3 Multipath Effect

Multipath effect is when there is a change in the direction of propagation of a signal as a result of
obstruction in the signal path. The reflected signal(s) from different paths are then mixed with
the original direct signal creating a resultant signal — distorted in phase / amplitude. Multipath
error manifest when this distorted resultant GPS signal, then enters the GPS receiver processing
blocks via the GPS receiver antenna. Multipath is a chief error source for both the carrier-phase
and especially pseudo-range measurements. Multipath errors can be quite significant in severe
multipath surroundings (e.g. in urban areas) especially in static application such as surveying.

Multipath errors are grouped into two types, namely static and dynamic. The static kind is more
serious and could last for minutes since the GPS receiver will be stationery or moving slowly.
Multipath associated with high-dynamics GPS receivers onboard a CubeSat could be less severe,
since such errors could last only fractions of a second, especially in the case of a CubeSat with
small form-factor orbiting in free space at extreme speed. In Grewal et al. (2001: 115 - 125),
various multipath errors mitigation techniques, especially for static GPS receivers have been
researched but this research focuses on high-dynamics GPS receiver and such techniques will not
be discussed. Multipath errors in high-dynamics GPS receivers can be alleviated by GPS receiver
antenna design; whereby, in the case of GPS signals, a RHCP antenna is normally used, since the
transmitted signal is RHCP. If the incoming GPS signal is reflected once or thrice, it becomes
LHCP and is filtered out by a RHCP antenna but if it is reflected twice or in even successions (2,
4, 6, 8... times) it reverts to RHCP signal and is filtered through by a RHCP antenna (Manandhar
et al., 2006). As a result of this weakness, a RHCP antenna approach is complemented by other

multipath mitigation techniques during acquisition and tracking. Figure 3.17 portrays multipath.
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Figure 3.17: Depiction of multipath and its effects on received GPS signal
(Adapted from EI-Rabbany, 2002: 33; Gleason & Gebre-Egziabher, 2009: 298; GPS.Caltech, 2009: 31)
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3.7.3.4 Doppler’s Frequency Shift Effect

Doppler’s effect or simply Doppler, in satellite telecommunication and in this regard GPS, is the
change in carrier frequency and or PRN code phase shift of the GPS signal, as a result of relative
motion between GPS satellites and GPS receiver(s). According to Tsui (2005: 37), Doppler
frequency shift that is caused by orbiting GPS satellites motion, on both the coarse acquisition
C/A code and on the GPS carrier frequency, varies from ~x5 kHz in a stationary /low speed GPS
receiver, to typically ~+10 kHz for a high-speed GPS receiver on-board an aircraft or sports car.
In Gleason and Gebre-Egziabher (2009: 330), GPS Doppler shift could reach up to +40 kHz for a
GPS receiver on-board a LEO satellite. Doppler’s effect affects the acquisition time and lock
state of a GPS receiver; however, it is often mitigated by performing a frequency sweep across
the Doppler value range at a defined rate depending on the value. For instance, for a +50 kHz
Doppler, a carrier frequency sweep from -50 kHz to +50 kHz at a rate or step of usually between
100 Hz to 500 Hz is used during GPS signal acquisition process. For details, see Tsui (2005: 34 -
40); Borre et al. (2007: 77); Borio et al. (2010). Figure 3.18 depicts Doppler’s effect in GPS.
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Figure 3.18: lllustration of Doppler frequency caused by satellite motion
(Adapted from Tsui, 2005: 35)

3.7.3.5 Jamming / Spoofing Signals Effect

According to Xu (2007: 82), a jamming or spoofing signal — from a jammer or spoofer (contrary

to a pseudolite — a false signal from a device use to generate GPS-like signals similar to those

transmitted from actual orbiting GPS satellites), is one that interferes or mimics real GPS signals,

to prevent GPS receivers from acquiring and tracking actual incoming GPS signals. A jamming

signal is more powerful than actual GPS signals and usually come from low elevation angles.

This can be allayed by noting GPS signal strengths and acquiring it from elevation angles >15°.
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3.7.4 GPS Receiver Associated Errors / Sources

These are error sources which internally or externally affect the performance of a GPS receiver.

3.7.4.1 GPS Receiver Clock Errors

In EI-Rabbany (2002: 31), GPS receivers’ built-in clock is not as accurate as the atomic clocks
used in GPS satellites. GPS receivers clocks are usually made of inexpensive quartz crystal with
in-accuracies of <10ppm (ppm: parts per million) which often drift with time and temperature —
causing slight timing errors. As a result, GPS receivers clock errors are much more than those of
GPS SVs. Similar to GPS SVs clock errors, milli-seconds timing in-accuracies often translates to
hundreds of km range errors. GPS receiver clock errors are mitigated by including or treating it
as an extra error (unknown) parameter, when computing the navigation PVT solution; whereby,
it is subtracted with GPS SVs clock error. A better mitigation technique is to formulate a suitable

mathematical model of the crystal clock error and incorporate it in a Kalman filter state vector.

3.7.4.2 GPS Receiver’s Noise

Errors from GPS receiver noise, often arise in the RF front-end and DSP stages but may also be

as a result of poor design. GPS receiver noise errors are easily addressed by refining the design.

3.7.4.3 Software Errors

These occur due to programming bugs in the acquisition, tracking or PVT algorithms, as well as

usage of a wrong reference coordinate system or datum. Debugging usually mitigate such errors.

3.7.4.4 Antenna Phase Center Offset / Variation

As stated in EI-Rabbany (2002: 34), the antenna phase center point is where the GPS signal is
received. The geometric distance between the satellite at time of signal transmission and the
receiver at time of signal reception, is the distance of the phase centers of both the GPS SVs and
GPS receiver antennas. Usually, the antenna phase center does not matches with the physical or
geometrical center of the antenna — as it changes relative to the azimuth and elevation of GPS
satellites, as well as the strength of the incoming GPS signal. GPS receiver antenna phase center
error size varies depending on the antenna type and is typically a few centimeters which are
usually negligible in most practical applications that do not need centimeter position accuracy.
Proper orientation and placement of GPS receiver antenna can alleviate phase center variations.
For mathematical details and modeling of antenna phase centre offset, see Xu (2007: 82 - 86).
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3.7.5 User Equivalent Range Error (UERE) Budget

In Grewal et al. (2001: 129), it is preferable to analyse the effect of each of GPS errors, by
converting it into an equivalent range error experienced by a GPS receiver. Usually, errors from
different sources do not have the same statistical models; however, a total rough error estimate

can be obtained or determined by forming a root-sum-square of the UERE from all error sources.

Figure 3.19 compares a summary of different error budgets from various sources. The dominant
error sources are ionospheric and multipath; however, the UERE for a space-borne GPS receiver

will be different, since some of these errors are negligible or non-applicable. See Section 3.8.
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3.8 Space-borne GPS Receiver Design Considerations

This section discusses various challenges faced by a GPS receiver on-board an orbiting CubeSat.
A space-borne GPS receiver design considerations can be divided into two types, namely i)
physical and ii) non-physical. Both of these are briefly addressed in the following sub-sections.

3.8.1 Design Considerations — Physical Challenges

Physical challenges in design considerations, in the context of this document refer to those
factors or space environmental conditions with a damaging effect on a GPS receiver hardware
(such as electronic devices / materials) and consequently leads to a malfunction or degradation in
the performance of the GPS receiver in space. These factors include space radiation or ionisation,
extreme temperature (very hot and very cold) and vacuum. Physical challenges are concisely
discussed, since this research focus is on software and firmware-defined GPS receivers. For
details regarding physical challenges faced by a space-borne GPS receiver, see Montenbruck et
al. (2001); Montenbruck et al. (2002); Langley et al. (2004); Underwood et al. (2004).

3.8.1.1 Radiation

This poses the most threat, which includes ionisation, single event effects, upsets and latch-ups.

Appropriate hardware radiation shielding and hardening are usually the mitigation methods used.
Two types of checks are usually performed: i) total ionisation dose testing and ii) single effect
event testing, which involves subjecting the GPS receiver hardware to a confined radiation test

chamber and checking the GPS receiver components performances (Underwood et al., 2004).
3.8.1.2 Extreme Temperatures

GPS receivers operating in space are subjected to extreme temperatures of high sun intensity and
extreme coldness (during non-sunlight periods). There is also very sharp thermal cycling from
extreme heat to cold and vice versa. Thus, operating in such conditions could damage or cause
intermittent hardware devices malfunctions. As a result, unpowered and powered temperatures
cycling are performed in a controlled environment (test chamber) at both extreme temperatures
and the GPS receiver operation is monitored. In Glennon et al. (2011), extreme heat condition is
mitigated by radiation heat transfer (space most ideal heat transfer means), heat-sinks and

reflective structural surfaces. Extreme cold conditions can be alleviated by using micro heaters.

3.8.1.3 Vacuum

In vacuum, plastic devices usually out-gassed and the mitigation approach is conformal coating.
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3.8.2 Design Considerations — Non-physical Challenges

This pertains to scenarios in space that do not cause physical damage to a GPS receiver but do
negatively affect the operational performance (intermittent functioning, inefficiency and
unreliability). This basically constitutes some of the sources of error already discussed in Section
3.7. The mitigation techniques are based-on using robust algorithms in the correlator (acquisition
and tracking) and baseband processing (PVT computations) which are covered in Appendix A.

3.8.2.1 Doppler Frequency Shift

Coping with very high Doppler’s shift is one of the most non-physical challenges encountered by
space-borne GPS receivers. In Avansi and Tortora (2010); Lofgren (n.d), Doppler’s shift could
respectively extend in excess of +50kHz and +100kHz. This high Doppler’s shift tremendously
affects GPS signal acquisition, tracking and PVT computations — since a GPS receiver on-board
a LEO satellite (CubeSat) has very limited time to be in contact with a GPS satellite, due to the
high relative motion involved between both satellites. Figure 3.20 illustrates a +40kHz Doppler
on the RADCAL satellite in LEO. Mitigating Doppler’s shifts requires implementing a robust
acquisition, tracking and PVT algorithms — which are thoroughly discussed in Appendix A, as

well as mathematically analysed in Appendix B and finally the implementation in Chapter 4.
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Figure 3.20: RADCAL satellite Doppler shift
(Adapted from Gleason & Gebre-Egziabher, 2009: 330)
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3.8.2.2 GPS Orbital Geometry

The higher the altitude of a GPS receiver (on-board a CubeSat), the poorer its DOP and position
accuracy. This is due to narrow field of view and unavailability of visible orbiting GPS satellites.
Efficient acquisition, tracking and PVT estimates algorithms usually compensates for poor DOP.

3.8.2.3 Multipath Effect

Multipath could have little or no effect on a GPS receiver on-board a CubeSat, due to i) the
relative speed involved between GPS satellites and receiver ii) the size and shape of a CubeSat.
However, space debris and other satellites could reflect GPS signals causing multipath; thus, the
possibility of its occurrence and appropriate mitigation approaches have to be as well considered.

3.8.2.4 GPS Receiver Antenna Orientation

Most CubeSat are not spin stabilised and for reliable communication between GPS satellites and
a GPS receiver, their antennas must have direct Line Of Sight (LOS). A clumsy but effective
mitigation approach is equipping each side of the CubeSat with a micro GPS antenna and linking
them up internally via suitable RF impedance matching network connected to the GPS front-end.

3.8.25 GPS Signal Strength

Although the separation distance between GPS satellites and a GPS receiver on-board a CubeSat
in space is less relative to GPS receivers on Earth, the direct LOS signal strength level of
fluctuations in both cases is similar. Therefore, it is not always imperative to adjust the gain
pattern of a space-borne GPS receiver antenna, since LEO altitude is within the region known as
the terrestrial service volume (Gleason & Gebre-Egziabher, 2009: 333). Although the antenna
gain pattern can be automatically controlled, adjusting it above the normal GPS signal power

level might degrade the GPS receiver operation, if it has anti-jamming /anti-spoofing protections.
3.8.2.6 Atmospheric Effect

A GPS receiver on-board a CubeSat in LEO is subjected to ionospheric sources of error and little
caused by the troposphere. The troposphere is <50km and has little effect on an orbiting CubeSat

(>400 km). Therefore, only the ionosphere error model is relevant in the PVT estimates solution.

For more information on Section 3.8, see Yunck and Melbourne (1995); Willms (1999); Unwin
and Oldfiel (2000); Langley et al. (2004); Montenbruck et al. (2005); Gleason and Gebre-

Egziabher (2009: 329-335); Avanzi and Tortora (2010); Tsai et al. (2010); Glennon et al. (2011).
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3.9 Summary

Chapter 3 presented the theoretical details of GPS receivers and how they can be adapted for
space use. Past studies as highlighted in Section 3.3, revealed that, a software GPS receiver is the
most viable option, due its flexibility and furthermore, most GNSS research and implementations
published on IEEE websites, are based-on Matlab software. As a result, the GPS receiver being
research will be software-defined based-on Matlab and Simulink, as well as the associated
applicable toolboxes, such as HDL coder. A complete analysis of the signal processing chain in
GPS receivers functional blocks, with emphasis on the acquisition and tracking algorithms
(explained in-depth in Appendix A), as well as PVT computations were investigated and detailed
in Appendix B. In Appendix A, the parallel code phase acquisition technique was shortlisted as
the preferred choice, whereas the Costa PLL and DLL tracking algorithms were chosen as well,
since their implementations have already been justified using Matlab software and are publicly
available. Hence, developing a software-defined GPS receiver for space use could be facilitated
using Matlab. Finally, associated GPS error sources, with Doppler’s shift being the most crucial,
as well as possible mitigation techniques were thoroughly examined to conclude Chapter 3.
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CHAPTER 4

GPS RECEIVER DESIGN AND IMPLEMENTATION

4.1 Introduction

This chapter focuses on the design and implementation of the space-borne GPS receiver. The
design specifications are put forward and form the basis of the proposed design. The algorithms
utilised are a result of the technical analyses done in Chapters 3, as well as Appendices A and B.
The algorithms to be implemented are mostly existing open-source GPS codes and will be
modified where applicable (see Table 4.1) to meet the design specifications. The algorithm(s)
will be implemented in three phases: initially as a software-defined GPS receiver based-on
Matlab in Phase 1, as well as corresponding Simulink models, followed by translation to VHDL
in Phase 2, using HDL Coder and Verifier and synthesis to firmware in Phase 3, using Altera
Quartus Il. Pre-testing and verifications of the different implemented algorithms models will be
executed at each phase with relevant test vectors or test benches and the results will be analysed.

4.2 GPS Receivers Design Specifications

The design specifications are based-on the requirement analyses derived from the research
objectives. The design specifications for the software GPS receivers and the firmware algorithms
are different in terms of the implementations and are discussed in the following sections. It

should be noted that, most of the software requirements are non-functional and cannot be tested.

4.2.1 The Software-defined GPS Receiver Design Specifications

The software design specification is based-on the primary objective, in-line with high-dynamics

GPS algorithms. The implemented GPS receiver unit should conform to the following qualities:

e Reliability: it should always work correctly for problems defined within the research project.
e Accuracy: it should produce accurate results as guaranteed by the problem and input datasets.
e Robustness: it should work for hard problems and should provide information when it fails.

e Efficiency: it should execute in less time and consume less system resources such as memory.
e Maintainability: it should be comprehensive and modifiable by anyone with adequate skKills.
e Portability: it should be adaptable with little or no change to new computing environments.

e Usability: it should have a convenient and user friendly interface with some helpful notes.

e Applicability: it should be able to address the research problems as well as similar ones.

e Modularity: it should consist of simple independent modules which can easily be integrated.
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4.2.2 The Firmware-defined GPS Receiver Design Specifications

The firmware-defined GPS receiver design specifications are based-on the research problem
statement and defined in-line with the secondary and tertiary objectives of the research project.
The three main firmware-defined GPS receiver algorithms requirements are defined as follows:

e Should conforms and validate the software-defined GPS receiver algorithms where possible.

e Process high-dynamics GPS C/A L1 signals with acceptable accuracy within 10m.
e Low-cost model(s).

4.3 GPS Receiver Algorithms Design and Implementation

The algorithms utilised are based-on the GPS mathematical equations that are discussed and
analysed in Appendix B. These algorithms are also based-on open-source GPS source-codes,
resources hosted by Danish GPS Centre and GPS algorithms analysed in the following books;
Tsui (2005), Borre et al. (2007), Gleason and Gebre-Egziabher (2009); Borre and Strang (2012).

Due to the size, the codes length and number of algorithms involved (~40 m-files); mostly the
applicable equivalent Simulink models, flowcharts and screenshots are included in this report.
The complete GPS algorithms and the test-benches can be found in the accompanying disc.

Table 4.1 summarises the GPS algorithms, as well as relevant references to the source-codes.

The design and implementation of the GPS receiver (some algorithms only in phase 2 and 3)

occurs in three phases as per the objectives of this research. These phases are outlined as follows:

e Software-defined GPS receiver: Phase 1 based-on Matlab only.
e Software-to-Firmware-defined GPS receiver: Phase 2 based-on Matlab/Simulink and VHDL.
e Firmware-defined GPS receiver algorithm(s): Phase 3 based-on VHDL only.

4.3.1 Software-defined GPS Receiver: Phase 1 Based-on Matlab

This section examines how the GPS receiver algorithms will be implemented in software
utilising a personal computer. The implementation follows the same order as stated in Chapter 3,
commencing with the acquisition section, followed by the tracking loop and lastly the navigation
message decoding and processing to compute PVT estimates. Test vectors (test benches for each

GPS algorithms) and input dataset (the pre-captured GPS L1 signal dataset) are also addressed.

Figures 4.1 to 4.10 portray the various steps in the GPS software signal processing chain,
illustrating the PVT computations. Each of these sections is briefly explained. For more

information, see the relevant reference books listed in Section 4.3 and the applicable algorithms.
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4.3.1.1 GPS Receiver Software Path Initialisation

The directory containing all the GPS software files and pre-captured GPS L1 C/A signal datasets
are placed here. Ensure all the files are bugs or errors free before running init.m file. Processing
starts if 1 is entered and the init.m file is executed. Figure 4.1 depicts the initialisation process.

A\ MATLABE R2013a

iz Mew Wariable L=y Analyze Code

%7 Run and Time

on Ee

Open ||| Compare Import Save
= Data Workspace [ Clear Workspace -~

FILE WARIABLE CODE
. » C » Spaceborne_GPS5_Rx _Dev »

l=rh ED:' i | [ Find Files
Mew  Mew
Script -

(=T
| ==

Liz» open wariable -
2 O Simulink
@ Clear Commands ~ Library

SIMULINK

Command Window

3‘/‘ MNew to MATLABT Watch this Video, see Examples, or read Getting Started.

Updated by Nganvang Paul Bayendang

Main Updates: UTC Date and Time Computations Included —:— Feb 2014

: Developments of some Floating—point Rlgorithms —:— March 2014
: Conversion of the Algorithms to Fixed-point —:- March 2014

: Generation of the Algorithms= to VHDL —-:— March 2014

: Compilation of the Algorithms to Embedded VHDL —:- May 2014

Probing data [ (C:\Spaceborne GP5 Rx Dev\Multipath.bin)... K—Directory and dataset
Raw IF data plotted
(run setSettings or change settings in "initSettings.m" to reconfigure)

Enter "1" to dinitiate GNSS processing or "0" to exit -

Figure 4.1: lllustration of initialising the GPS receiver software directory

4.3.1.2 GPS Receiver Software Settings Initialisation

The settings of all the parameters to be used in the GPS signal processing is defined here. First
ensure settings is correct prior to executing the init.m file. The initSettings.m file (containing the

initialisation settings values) is executed once the appropriate settings in Figure 4.2 are defined.

4\ Command Window
'® Mew to MATLABT Watch this Video, see Examples, or read Getting Started.

settings =

msToProcess:
nunkber0fChannels:
skipNumberCOfBytes:
fileName:
dataType:

IF:

samplingFreq:
codeFregBasis:
codeLength:
skipAcquisition:
acgSatellitelListc:
acgSearchBand:
acgThreshold:
dllDampingRatio:
dllNoiseBandwidth:

dllCorrelatorSpacing:

pllbampingRatio:
pllNoi=zeBandwidth:
navSolPeriod:
elevarionMask:
useTropCorr:
trusPosition:
GPS_Leap_ Sec_Offset:
plotTracking:

c:

startOffsec:

37.0000000000000e+003
10.0000000000000e+000
1.63676000000000e+006

'C:\Spaceborne GPS5_Rx DeviMultipath.bin'

"ints"'
4.13040000000000e+006
16.3676000000000e+006
1.02300000000000e+006
1.02300000000000e+003
0.00000000000000e+000
[1x32 double]
50.0000000000000e+000
2.00000000000000e+000
700.000000000000e—-003
2.00000000000000e+000
500.000000000000e—003
700.000000000000e—-003
25.0000000000000e+000
500.000000000000e+000
1.00000000000000e+000
1.00000000000000e+000
[1x1 struct]
0.00000000000000e+000
1.00000000000000e+000
299.792458000000e+006
68 .8020000000000e+000

Figure 4.2: Preview of the GPS software receiver settings initialisation
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4.3.1.3 GPS L1 C/A Signal Acquisition Flowchart

Figure 4.3 depicts the acquisition process; whereby, the Matlab file acquisition.m is debugged
and saved in the directory illustrated in Section 4.3.1.1. This acquisition.m file is based on
parallel code phase search and executes the processes discussed in Sections 3.5.2 and 8.2.4. The
acquisition.m file is invoked (and calls other files) once the initSettings.m file is executed.

( acquisition.m )

preallocate
arrays

‘v

convert PRIN

is there a
code to the - o
frequency signal

present?

domain (DFT) -1

i yves

generate sine/
cosine local
oscillator signals

find PRN code
phase, carrier
frequency bin., and
magnitude of
maximum peak

remove PRIN code
modulation and
- refine frequency
for baseband . i
- - estimate via DFT
conversion

v v

mix raw data
to baseband &
transtorm to
freqquency
domain

compute
acquisition
metric and
record results

multiple baseband
data and PRIN code All PRNs

domain

i

convert ‘to t!n‘lc return
domain via

inverse DFT and
record result

4equency

Figure 4.3: lllustration of the acquisition algorithm execution process
(Adapted from Borre et al., 2007: 146)
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4.3.1.4 GPS L1 C/A Signal Tracking Flowchart

Figure 4.4 depicts the tracking process; whereby, the Matlab file tracking.m is debugged and
saved in the directory illustrated in Section 4.3.1.1. This tracking.m file is based-on Costa PLL
and DLL tracking techniques and executes the processes discussed in Sections 3.5.2 and 8.2.5.
The tracking.m file is invoked (with other files) once the acquisition.m file completes execution.

tracking.m ‘ f return

' A
v yes
predefine arrays. | ‘
analyse the
acquisition result,
and set PRN to
processed

all channels
processed?

[ A
' yes
\ 4 L
read in one
millisecond of
data to process

all data
processed?

A

gcncruvtc sine ' compute loop
and cosine local discriminators.
oscillator apply filters. and
signals and mix ‘'update code/carrier
to baseband ‘ _ frequencies
v
generate early,
prompt, and
late code
period replicas

correlator PRN
code replicas with

» downconverted
data to obtain: /.
Ip. 1. QF. QOp. O

Figure 4.4: lllustration of the tracking algorithm execution process

(Adapted from Borre et al., 2007: 147)
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4.3.1.5 GPS L1 C/A Signal Positioning Flowchart

Figure 4.5 depicts the positioning process; whereby, the Matlab file postNavigation.m is
debugged and saved in the directory illustrated in Section 4.3.1.1. This postNavigation.m file is
based-on least-squares method and executes the processes explained in Sections 3.5.3 and 8.2.6.

The postNavigation.m file is invoked (and calls other files) once tracking.m is run successfully.

( postNavigation.m )

calculate pseudoranges

v

find satellite position and
clock offsets

!

least squares filter
(az, el, DOP, X, Y, Z, dt)

!

store results

!

end

Figure 4.5: lllustrative summary of the positioning process
(Adapted from Borre & Akos, 2005: 5)

Figure 4.5 summarises the positioning process. The details involved are illustrated in Figures 4.6
and 4.7. Once the postNavigation.m file has successfully executed, control is passed to the
calculatePseudoranges.m file, to compute the acquired satellites positions and pseudo-ranges.

The outcome is passed to the leastSquarePos.m file which calculates the GPS receiver position.
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processed?

Figure 4.6: lllustration of the GPS satellites position and pseudo-ranges algorithms execution
(Adapted from Borre & Akos, 2005: 4)
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( return >

Figure 4.7: lllustration of the GPS receiver least-squares algorithm execution process

(Adapted from Borre et al., 2007: 151)
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4.3.1.6 GPS L1 C/A Receiver Position Computation Summary Flowchart

Figure 4.8 summarises the GPS receiver position calculation processes. The postProcessing.m
file is the main file and sequentially executes the acquisition.m, tracking.m and postNavigation
files. These three files in turn call other applicable sub-files (see Figure 4.11 for the complete
GPS receiver execution process) also placed in the GPS software directory. Some of these files
plot the outcome of successive stages of the processing, while others serves as input or output at
successive and intermediate stages in the processing chain. Some of the files are modified to suit
the research. For details on all the files involved including the modifications made, see Table 4.1.

( pos"tProcessing.m)

¢

ask user for file

. Check parameters,
Y plot raw data and define

readin1msofdata | processing to be done
for acquisition

¢1 ms of data

acquire satellites
(acquisition.m)

essing ¢PRN‘ frequency, and code phase

hed of each acquired satellite

track acquired satellites
(tracking.m)

prompt | and sample number arrays
for each acquired satellite

position solution
(postNavigation.m)

L Data processing finished

end )

Figure 4.8: GPS receiver position computation summary
(Adapted from Borre & Akos, 2005: 3)
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4.3.1.7 GPS L1 C/A Receiver Velocity Computation Flowchart

Figure 4.9 illustrates the process involved in estimating the GPS receiver velocity from the
position estimates. The Matlab algorithm was not implemented, for reasons stated in Chapter 6.

Step 1: !

Normally Performed as Part Build Matrix of Satellite

of the Position Estimation = velocity Vectors
Using MNavigation Data

Determine Satellite 1
Positions From

MNavigation Data . Build Array of Pseudorange
1 - Rate Measurements

1

Line of Sight

U?E"- Ves"—g-‘:)’ . Calculate Least Squares

Q 1 = - Optimization from G
Geometry Soblve for Velocity

MMatrix, G B and Clock Drift Directly
(Eq. 3.9b) (Eq. 3.17)

Figure 4.9: GPS receiver velocity calculation
(Adapted from Gleason & Gebre-Egziabher, 2009: 65)

4.3.1.8 GPS L1 C/A Receiver UTC Date and Time Computations Flowchart

Figure 4.10 illustrates the process involved in computing the GPS receiver’s date and time in
UTC format. The file gps2utc.m does the conversion using GPS week number and seconds as

inputs, to give the output date (year, month and day) and time (hour, minute and second) in UTC.
Scces
Failure l
Request gps2utc.m
(GPS_Week, GPS_Sec)

l— GPS Week e GPS Secs —l

Convert to Date Convert to Time

|—> Convert to Year Convert to Hour
|—> Convert to Month Convert to Minute 4_|
|_, Convert to Day Convert to Second 4_|

Figure 4.10: lllustration of the GPS receiver UTC date and time calculations
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Figure 4.11: Grand and simplified execution summary of the software-defined GPS receiver operation
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Summarised in Table 4.1 are the Matlab GPS receiver floating-point files (functions and scripts).

Table 4.1: Summary of all the applicable Matlab floating-point GPS receiver algorithms

Matlab GPS Receiver
Floating-point Files

Main Modifications / Contributions Made

GPS Receiver Files

Remarks / Purpose

Source-code References
(Authors / Contributors)

1) acquisition.m

Option to choose best FFT

HDL code generation/ TB

Searches GPS satellites

D. Plausinaitis & DM. Akos

2) c2gm.m

None: Ideal and stable for higher altitudes h>100km

Replaces cart2geo.m

Borre & Strang; P. Meissl

3) calcLoopCoef.m

Whn returned in output

HDL code generation/ TB

Calc PLL / DLL coefs

D. Plausinaitis & DM. Akos

4) calculatePseudoranges.m None HDL code generation/ TB | Calc all pseudoranges D. Plausinaitis et al.

5) cart2geo.m None HDL code generation/ TB | Converts cart to geo Kai Borre

6) cart2utm.m None HDL code generation/ TB | Converts cart to utm Kai Borre

7) check_t.m None HDL code generation/ TB | Checks GPS TOW Kai Borre

8) checkPhase.m None HDL code generation/ TB Checks parity D. Plausinaitis & DM. Akos

9) clksin.m None HDL code generation/ TB | Sums i+j arg of sinus Kai Borre
10) clsin.m None HDL code generation/ TB |  Sums sinus of arg Kai Borre
11) deg2dms.m None HDL code generation/ TB | Convers degs to d/m/s |Kai Borre & D. Plausinaitis
12) dms2mat.m None HDL code generation/ TB | Splits dms to mat Kai Borre & D. Plausinaitis
13)e_r_corr.m None HDL code generation/ TB | Gives Earth rot ECEF Kai Borre
14) ephemeris.m None HDL code generation/ TB | Decodes ephemerides |D. Plausinaitis & K. Larson
15) findPreambles.m None HDL code generation / TB | Finds start of 1 frame D. Plausinaitis et al.

16) findUtmZone.m

Display UTM zone

HDL code generation/ TB

Locates UTM zone

Darius Plausinaitis

17) generateCAcode.m

None

HDL code generation/ TB

Generate satellites PRN

D. Plausinaitis et al.

18) gps2utc.m

Entire code re-structured

HDL code generation/ TB

Converts GPST to UTC

M. Evans & J. LaMance

19) gps_time.m

Added to SoftGNSS v3.0

HDL code generation/ TB

Extracts mean GPST

Paul Bayendang

20) init.m

Number format changed to longEng, display settings

Initialises SOftGNSS

D. Plausinaitis & DM. Akos

21) init_tracking.m

Display channels info

HDL code generation/ TB

Initialises tracking

D. Plausinaitis et al.

22) initSettings.m

Define GPS rx parameters, Elapsed GPS sec field added

Initialises settings

Darius Plausinaitis

23) invert.m

None

HDL code generation/ TB

Inverts binary bits

D. Plausinaitis et al.

24) leastSquarePos.m

Disp all DOPs mean values

HDL code generation/ TB

Computes Rx position

Kai Borre et al.

25) makeCaTable.m

None

HDL code generation/ TB

Creates all 32 sats code

D. Plausinaitis et al.

26) navPartyChk.m

None

HDL code generation/ TB

Computes parity status

D. Plausinaitis & K. Larson

27) new_cart2geo.m

None: Ideal for both Earth and Space LEO altitudes

Replaces cart2geo.m

Borre & Strang; Areg H.

28) plotAcquisition.m

Plot all acquired GPS satellites in 3D on the same graph

3D plot of acq result

Darius Plausinaitis

29) plotNavigation.m

Labels / texts renamed | Plot 3D GPS receiver posit

ion, UTM variations

Darius Plausinaitis

30) plotTracking.m

None

Plot tracking results

Darius Plausinaitis

31) postNavigation.m

Displayed texts typos fixed | HDL code generation/ TB

Calc rx nav solution

D. Plausinaitis & K. Larson

32) postProcessing.m

UTC date/time conv. added, date/time stamps, text disp

Post-processes dataset

D. Plausinaitis & DM. Akos

33) probeData.m

None

Plots raw data info

D. Plausinaitis & DM. Akos

34) satpos.m None | HDL code generation/ TB |Calc sats XYZ position Kai Borre et al.

35) setSettings.m None Creates new settings SoftGNSS

36) showChannelStatus.m None | HDL code generation/ TB |Disp all channels status P. Rinder et al.

37) skyPlot.m None Plot satellites skyview |D. Plausinaitis & K. Larson
38) togeod.m None HDL code generation/ TB | Calc geodetic given ref Kai Borre et al.

39) topocent.m None HDL code generation/ TB | Transfroms vector dx Kai Borre

40) tracking.m None HDL code generation/ TB | Code / carrier tracking |  Dennis M. Akos et al.
41) tropo.m None HDL code generation/ TB | Calc tropospheric corr Kai Borre et al.

42) twosComp2dec.m None HDL code generation/ TB | Converts 2-comp bin# Darius Plausinaitis

Matlab test-benches (TB): x 31

31 scripts written to test each GPS functions in Table 5.1

Functions test-bench

Paul Bayendang
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4.3.2 Software-to-Firmware Conversion: Phase 2 Based-on Matlab / Simulink and VHDL

This section explains how the GPS receiver algorithms implemented in floating-point Matlab
(Figure 4.11); are converted to equivalent Simulink models and finally to VHDL. That is, the
implemented GPS receiver algorithms are translated from software based-on floating-point
Matlab to fixed-point Matlab and to firmware based-on VHDL, with equivalent Simulink models
of the same algorithms as by-products. The software-to-firmware conversion process utilises the
Matlab HDL coder - a toolbox in Matlab that converts Matlab / Simulink algorithms to a
Hardware Design Language (HDL). The algorithms converted to HDL, in this regards to VHDL,
are independent of the Matlab files / Simulink models and vendor’s non-specific FPGA. This
means, the converted VHDL codes are standalone and do not need Matlab / Simulink to function
and can be ported, tailored and embedded as firmware into any FPGA. Discrete Matlab test
benches are written for all the applicable GPS functions. They also serve as automatic VHDL

test-benches during the conversion process as well as test vectors during the verification process.

Previously (before Matlab R2012a), directly converting Matlab codes to HDL was impossible
and could only be achieved by first converting, in this regard, the software GPS Matlab files to
Simulink using the Matlab Function Block (formerly called Embedded Matlab Function Block
before Matlab R2011a) — the Matlab Function Block enables porting of Matlab codes to
Simulink and facilitates usage of Matlab codes together with Simulink models in Simulink. The
Simulink models of the Matlab GPS software are not only used to validate the Matlab
implementations but can also serves as improved alternative algorithm models (either discretely

or collectively), for each of the functions of the floating-point Matlab software GPS receiver.

Although MathWorks HDL Coder toolbox was released in Matlab version R2008, the literature
review for converting Matlab codes (especially on GPS) to other forms (C/C++, Simulink and
HDL) have been done using variations of the procedures and tools described in Hamsa (2009).
This was based-on Matlab/Simulink, Real Time Workshop, Target Support Package (TC6) and
Texas Instrument Code Composer Studio using C6713 DSP starter kit. The Danish GPS receiver
research Group 09gr944 (2009), used Matlab/Simulink and Xilinx System Generator ISE Tool
based-on ML507 EK — 5VFX70TFF1136-3 chip. The work in this thesis utilises Matlab R2013a
and integrated tools and toolboxes that include Simulink, HDL Coder, HDL Verifier and the free
Altera Quartus Il and ModelSim-Altera software packages. Since the generated VHDL codes are
generic, the targeted FPGA in the end is the Xilinx space-grade Virtex-5QV (XQR5VFX130).

107



During the conversion process, Simulink is used to test and verify the Simulink models of the
equivalent Matlab floating and fixed-point codes. The HDL Coder uses the Matlab fixed-point
toolbox to convert Matlab floating-point codes to equivalent fixed-point algorithms to (i) Matlab
(i1) Simulink models (iii) HDL (i.e. VHDL). The HDL Verifier with ModelSim-Altera simulates
the generated VHDL codes and verifies the results with the original Matlab codes. The Altera
Quartus Il design suite can be invoked directly within the Matlab HDL conversion workflow to
compile (synthesis, place & route and generate programming files) the generated VHDL codes to
firmware. Alternatively, the Altera Quartus Il software can be indirectly use to post compile the
generated VHDL code, without necessarily being invoked from Matlab. By firmware, it means
the synthesised VHDL codes can readily be embedded into a microcontroller. The processes and
tools involved are described in Olivieri et al. (2011: 12); Kumar (2012: 13 & 36). Figure 4.12
depicts the entire process used in this thesis and each is elaborated in their respective sections.

Matlab R2013a

GPS floating-point algorithms

Matlab / Simulink
Implement a sofiware-defined GPS receiver

Improve the sofiware-defined GPS receiver

Matlab / Simulink / HDL Coder / Verifer
Convert from GPS floating to fixed-point algorithms

Simulate and validate the converted GPS algorithms

Matlab /Simulink /HDL Coder /Verifer /ModelSim-Altera 10.1d

Automatically generate VHDL GPS algorithms

Simulate and verify the generated VHDL algorithms

Matlab / Altera Quartus 11 12.1 SP1

Synthesis the generated VHDL GPS algorithuins
Place and route the synthesized GPS algorithms

Generate programming files as GPS firmware

Figure 4.12: The GPS receiver software-to-firmware conversion methodology
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4.3.2.1 Software-to-Firmware (Matlab to VHDL Algorithms) Conversion Procedure

VHDL code can be generated either from Matlab command line and / or from the Graphical User
Interface (GUI). The following procedure discussed, makes use of both methods where relevant.

4.3.2.1.1 Step 1: Ensure all GPS Matlab Functions, Scripts and Test Vectors are in a Local Folder

The first step to directly convert Matlab floating-point codes to finally VHDL, usually requires a
sequence of steps in Matlab command line to create a design_name (the name of a Matlab
function) and a test-bench_name (either a Matlab script or function with no input), followed by
copying the design_name(s) and test-bench_name(s) to a local temporary directory using Matlab
commands. The simple alternative approach used in this thesis is to create or copy all the Matlab
files (functions, scripts and test vectors) to a local folder different from the same root directory as
the Matlab installation. All the files are placed in the folder named Spaceborne_ GPS_Rx_Dev.

4.3.2.1.2 Step 2: Simulate / Verify the Floating-point Matlab Software GPS Receiver Algorithms

This step simply validates the Matlab codes. In order words, it ensures all the GPS Matlab
functions, scripts and test vectors execute without runtime errors. The outcome of this step
should exactly be the same as the results from Phase 1, when the Software-defined GPS receiver
was executed. That is, the GPS signal processing chain should follow the same order as in
Chapters 3 and 4; where the acquisition section is first processed, followed by the tracking loop
and finally navigation message decoding and processing to compute PVT estimates. After step 1,
the simulation process is initiated by simply typing the name of the test-bench init.m in Matlab

command line. The results obtained are exactly the same as the results of Phase 1, as required.

Next is to verify the floating-point design compliance for fixed-point code generation. If the
verification fails, the coding style is re-structured and syntax supporting fixed-point code
generation is used. These include using System Obijects instead of Functions, ensuring the test
bench files are Matlab scripts or functions without arguments, the designed GPS files are all
Matlab functions, at least one call is made to the designed GPS Matlab functions from the test
bench (as all call sites contributes when determining the proposed fixed-point types), the
#codegen pragma is included in every function, in-lining in functions is controlled for modular
codes generation in multiple files and persistent variables are used instead of global variables.

The algorithm is again re-simulated until successful completion before proceeding to step 3.
Additional information and limitations can be obtained from MathWorks website or Matlab help.
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4.3.2.1.3 Step 3: Create a New GPS VHDL Coder Project

Following step 2 is the creation of a new project in VHDL. This new project is created either
from (i) executing the following Matlab command coder —hdlcoder —new GPS_Receiver; where
GPS_Receiver is the name of the new VHDL project or (ii) by using the Matlab GUI and
navigate to HDL Coder. In the Matlab HDL Coder Project dialog window, the project is named
as GPS_Receiver and maintained as the default location path. In addition, a new file called
GPS_Receiver.prj is created in the current folder GPS_Receiver. This project file holds all the
project selections made in the GUI whereas the project folder simply contains all the Matlab
GPS files. Converting all the GPS files at once is impossible and should definitely fail. The
approach used is to note all the actual GPS function or design files needing conversion, from the
files that simply plot the processed results or are in the form of Matlab scripts. The GPS
functions or design files are then scaled where possible and discrete corresponding Matlab test
benches are created for each. The Matlab test-benches in their simplest form provide the test
vector or basic inputs to their respective functions and as well invoke the Matlab functions. The
Matlab test-benches are further used by Matlab R2013a HDL Coder workflow advisor wizard, to
automatically define the type of the input variable(s) in terms of its class, size and complexity.

Figure 4.13 shows some applicable GPS Matlab function files with their respective test-benches.
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4.3.2.1.4 Step 4: Convert the GPS Matlab Codes from Floating-point to Fixed-point

According to MathWorks, applications in signal processing for reconfigurable platforms need
algorithms that are usually specified based-on floating-point operations but because of power,
cost and performance reasons; they are often implemented based-on fixed-point operations either
as special-purpose hardware in FPGAs or as firmware / software for DSP cores. However, fixed-
point conversion can be very cumbersome and time-consuming, which normally demands most
of the total design and implementation time. As a result, automated tools in Matlab versions

R2012a and above; were developed to simplify, accelerate and optimise the conversion process.

The goal in software implementations is usually to define an optimised fixed-point specification
that minimises the time of execution and the code size for a specified constraint in computational
accuracy. During the GPS software-to-firmware conversion process, the algorithm optimisation
is accomplished through the alteration of the binary point location (for scalability) and choosing
a data word length, according to the various kinds of data that the target processor will support.

Hardware implementation dictates that, the complete architecture be optimised such that an
efficient implementation will minimise both the power consumed and the area used. As a result,

the aim of the conversion process is often focused around minimising the operator word length.

The tool in Matlab that facilitates step 4 conversion process is the Floating-point to Fixed-point
Workflow that is integrated in HDL Coder Workflow Advisor in Matlab version R2012a and
above. This tool is the key (determines the quality) and the most time consuming step in the
software-to-firmware conversion process. It is applicable to all the design files (Matlab GPS

functions) and their test-benches (Matlab GPS scripts) and involves the following sub-steps:

= Sub-step 1: Launch HDL Coder Workflow Advisor from Matlab R2013a by clicking APPS,
and then HDL Coder. Ensure the floating-point design is set for code generation.

= Sub-step 2: Add the design file & test-bench to their respective sections. Click the auto-define
types to compute fixed-point types by simulating the test-bench and word length.

= Sub-step 3: Run the simulation to generate readable and traceable fixed-point Matlab codes,
as well as manually adjust (if necessary) and apply the suggested fix-point types.

= Sub-step 4: Validate and verify the generated fixed-point type or design.

= Sub-step 5: Lastly, test the numerics by comparing the numerical accuracy of the generated
Matlab fixed-point algorithm with the original Matlab floating-point algorithm.

= Sub-step 6: If sub-step 5 results are unsatisfactory, refine and re-iterate from sub-step 2.
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Figure 4.17 depicts the benefits and structure of Matlab floating-point to fixed-point conversion.
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Figure 4.17: Matlab floating-point to fixed-point conversion benefits and structure

(Adapted from Dubey, 2013: 7; MathWorks, 2014)

The following summarises the steps performed during the fixed-point type validation process:

=  The design files are converted to fixed-point to generate fixed-point Matlab algorithms.

= All user-written functions (NB: only one function can be converted at a time) called in the
floating-point design are transformed to fixed-point and added in the generated design file.

= A new design wrapper file is created to convert the floating-point data values provided by
the test-bench to the fixed-point types determined for the design inputs during conversion.

=  The fixed-point values are then input into the converted fixed-point design.
= All the generated fixed-point files are subsequently stored in an output directory.

= The generated fixed-point designs are subsequently utilised for VHDL code generation.
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4.3.2.1.5 Step 5: Generate GPS HDL Codes (Convert Fixed-point Matlab Algorithms to VHDL)

After successful completion of Step 4, the next step is to convert the fixed-point GPS Matlab
codes to VHDL. During this process, the following options in the HDL code generation menu
should be selected or ticked. NB: options shown will vary depending on the Matlab version used.

In Matlab R2013a, select HDL Code Generation / Target tab / Target Selection:
e Select VHDL language.
e Tick the Check HDL conformance, generate HDL and generate EDA scripts check boxes.

In the Coding Style tab:

Select the preserve the Matlab code comments check box.

Tick the include Matlab source code as comment and the generate report check boxes.
Under HDL / Coding Standards, select Industry.

Under Generated Files, ensure the default VHDL file extension is .vhd.

= View the Clocks & Ports tab to ensure settings are relevant for hardware implementation.
= In the Optimisation tab: Tick map persistent array values to RAM. Tick the distribute
pipeline registers, enter 1 for the input and output pipelining options. Select stream loops.

= Inthe Advanced tab:
e Select the RAM with clock enable option under the RAM architecture.
e Tick the generate instantiable code for functions check box.
e Under Simulink integration section, tick the generate Matlab function block check box.

= |nthe Script Option tab, simply review the default settings or skip it.
= Finally, navigate to Verify with HDL Test Bench:

In the Output Settings, tick generate HDL test bench and also Simulate with generated HDL
test bench; with ModelSim as the simulation tool if installed. Tick all in Test Bench options.

Once finished with all the above settings, click the Run button to generate the VHDL codes. The
execution time of the code generation process depends on the number of Matlab files involved
and the size of respective files. Upon successful completion, click on the links to browse the
generated GPS Matlab fixed-point and GPS VHDL algorithms. Otherwise, click and review any

error or warning messages, apply the necessary corrections where applicable and re-run the step.

Next is to examine the generated untitled Matlab function block model(s) from the HDL code
generation process. Open it to view the fixed-point Matlab code from the original floating
Matlab design. Rename the model(s) with their corresponding GPS design names. The generated
Matlab function block(s) can be simulated in Simulink. Optionally, HDL code can be generated
from the Matlab function block by executing the Matlab command makehd! (‘corresponding

design file name’). Figures 4.18 - 4.22 show Step 5 results using the same file calcLoopCoef.m.
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Figure 4.18: Illustration of Step 5 — HDL code generation settings
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4.3.3 Firmware-defined GPS Receiver: Phase 3 Based-on VHDL

This section examines how the converted GPS algorithms in VHDL are simulated and verified. It
also provides a roadmap for synthesis and implementation on a FPGA. Co-simulation can be a
challenging task, especially with automatically generated codes, as sync must be retained across
various aspects of the source model. This includes sample rates, feed-forward and feed-through
systems and other various parameters, as well as settings used during code generation while
setting up the HDL Verifier block and the target EDA Simulator Link (e.g. ModelSim-Altera).

The automated co-simulation model generation takes the guess-work out of the HDL co-
simulation block and simulator setup, by deciphering all the compiled model and code generation
information. In addition, all the automated settings are documented in the generated scripts. The
end result is a co-simulation model ready to verify the generated VHDL code in software.

EDA Simulator Link is a co-simulation interface which presents a bi-directional link between
Matlab, Simulink and HDL simulators from Mentor Graphics, Cadence and Synopsys; thereby
enabling verification of VHDL, Verilog and mixed-language implementations. It enables Matlab
codes or Simulink models to be used as test-benches to generate stimulus for an HDL simulation
and then analyses the response of the simulation. It also enables replacement of several HDL
components with Matlab codes or Simulink models, enabling simulation of the whole system
before all the HDL design elements are available. EDA Simulator Link also facilitates interactive
and batch-mode co-simulation on a single computer, across heterogeneous platforms and

networks. The three workflows that support Matlab codes and HDL simulations are:

" Matlab test-bench.
" Matlab algorithm or design (function or component).
" Simulink co-simulation.

4.3.3.1 Simulation using Matlab Test-bench Workflow

With this approach, Matlab is the server while the HDL simulator is the client. However, timing
is done by the HDL simulator since Matlab algorithms are un-timed. Multiple Matlab test-
benches or designs running on the same machines or different remote servers can be connected
to the HDL simulator. A Matlab server can as well interface to several HDL simulators entities.
Furthermore, the capability of Matlab test-bench permits reuse of the Matlab test-bench that was
created to verify the Matlab algorithm(s) in Step 2, to be used as well to verify the generated
VHDL implementation of the Matlab algorithms. The algorithms can be compared with a golden

reference for the algorithm(s) in the co-simulation. Figure 4.23 depicts this workflow structure.
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Figure 4.23: Matlab test bench stimulating VHDL simulation
(Adapted from MathWorks, n.d.: 2 - 4)

From Figure 4.23, the Matlab test-bench code provides on-the-fly stimulus to drive and analyse

the implementation, while the HDL implementation block runs in the HDL simulator.

4.3.3.2 Simulation using Matlab Algorithms Workflow

With the Matlab algorithm or component capability simulation approach, Matlab is the server
whereas the HDL simulator is the client. The Matlab algorithm or function, substitutes the HDL
algorithm or component in an HDL simulation. That is, the Matlab algorithm is used in place of
entities not yet coded or converted in HDL, enabling simulation of the entire system before all
the HDL design elements are available. The Matlab algorithm or design under test, replaces a
golden reference (either a Matlab function code or a Simulink model that is still unavailable or

being developed) for the algorithm in the co-simulation. Figure 4.24 illustrates this approach.
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Figure 4.24: MATLAB algorithm used in VHDL simulation
(Adapted from MathWorks, n.d.: 2 - 4)

4.3.3.3 Simulation using Simulink Co-simulation Workflow

With Simulink co-simulation capability, a HDL simulator can be connected to a Simulink co-
simulation block, whereby the Simulink model is the client and the HDL Simulator is the server.

In this setup, Simulink is synchronised with the HDL simulator by scaling Simulink time to HDL
simulator time. Furthermore, Simulink model can be connected with one or more co-simulation
blocks, to one or more HDL simulators. System level depictions of communications, signal
processing and other systems can be created with Simulink and related blocksets in this manner.
In this thesis, the Simulink models are Matlab Function Blocks and can be used to create GPS
software test-benches for VHDL implementations or substituted as algorithms in place of VHDL

blocks or subsystems for VHDL debugging and verifications. Figure 4.25 depicts this approach.
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Figure 4.25: Bi-directional Simulink model and HDL simulation
(Adapted from MathWorks, n.d.: 2 & 3)

From Figure 4.25, standalone Simulink co-simulation blocks can be used to instantiate available
HDL implementations into a Simulink model, to create a mixed Simulink system model with a

HDL simulation as a bidirectional test-bench and component. This approach requires a license.
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4.3.3.4 Verification with FPGA-in-the-loop Wizard

Sections 4.3.3.1 to 4.3.3.3 presented three possible methods for simulating, as well as verifying
the generated GPS VHDL codes in software. In addition to the software-to-firmware
implementation and verification workflows described in Sections 4.3.3.1 to 4.3.3.3 and
depending on the Matlab version used, one or a combination of these methods can be achieved
easily with HDL Verification Workflow Wizard, as well as FPGA-in-the-loop (FIL) verification,
if supported. FIL in contrary to the three simulation and verification methods, enables simulating
and verifying the generated GPS VHDL codes as software in hardware, using either a supported
Xilinx or Altera FPGA development kit, to implement a HDL firmware-defined GPS algorithm.

4.3.3.5 Simulating and Verifying the Generated VHDL GPS Receiver Algorithms

The simulation / verification approach utilised in this thesis is the method described in Section
4.3.3.1. The VHDL test-bench used is generated from the original Matlab test-bench. The other
approaches required a paid license software or hardware. The free software used to simulate and
verify these generated VHDL GPS algorithms is the ModelSim-Altera, illustrated in Figure 4.26.
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Figure 4.26: Firmware GPS algorithm simulation and verification with HDL test-bench
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4.3.4 Low-cost Space-borne GPS Receiver Hardware Implementation Roadmap

This section postulates a low-cost hardware implementation of the space-borne GPS receiver.
Once the firmware GPS receiver VHDL algorithm(s) are simulated and verified as outlined in
Section 4.3.3.4, the next step (which is supported by Matlab version R2013a and shown in red in
Figure 4.26), is to synthesis, place & route and finally generate a programming file that can be
downloaded into the targeted FPGA. However, this hardware implementation is not practically
covered in this thesis but a roadmap is proposed. In a Danish GPS receiver research (Group
09gr944, 2009), a GPS receiver algorithm based-on Matlab / Simulink, were ported to Xilinx
Virtex 5 FPGA — 5VFX70TFF1136-3 chip, using Xilinx System Generator ISE Tool and ML507
EK. Similarly, with further development and optimisation, porting this thesis firmware GPS
receiver VHDL algorithm(s) to the Xilinx low-cost space-grade Virtex-5QV (XQR5VFX130)
FPGA is realistic, based-on the presented workflow in Section 4.3 and abridged in Figure 4.27.

DESIGN

MATLAB & Simulink

HDL Coder HDL Verifier

e

IMPLEMENTATION & VERIFICATION

VHDL ., Verilog

Figure 4.27: Research methodology implementation summary
(Adapted from Kumar, 2012: 13 & 36)
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4.4 GPS Receiver Algorithms Test and Validation Procedure

This section presents a harmonised functional test setup for the researched GPS receivers. The
test and validation procedure starts by using a low-dynamics pre-captured real GPS signal (of
filename Multipath.bin, obtained from Danish GPS Centre website) as a test vector to stimulate
(either discretely or as an integrated unit if possible) the researched GPS receiver algorithms (i.e.
software-defined floating-point GPS receiver in Matlab, software-defined fixed-point GPS
receiver codes in Matlab/Simulink and the firmware-defined GPS receiver algorithms in VHDL).

The expected outcome with focus on efficiency and accuracy is to have the same or a result that
correlates and validates the various types of GPS receiver algorithms discretely, as well as

corresponding correlating results of the GPS receivers’ algorithms, if tested as an integrated unit.

Following the low-dynamics test and validation using Danish GPS Centre dataset (which serves
mostly as a control test and validation setup), is to use a real-time software GPS receiver front-
end (see Table 3.2) to capture a live orbiting GPS satellites signal and use it as a stimulus to the
various GPS receivers algorithms — discretely and as an integrated unit. The final navigation
solution outcome, with focus on efficiency and accuracy, should be examined and compared

with a navigation solution from a commercial GPS receiver (use as a control test and validator).

The two low-dynamics tests and validation procedures described thus far, simply serve to qualify

the performance of the implemented GPS algorithms, with focus on their functional correctness.

Finally, the next test and validations procedures are to subject the various GPS receiver
algorithms, with focus on the firmware-defined GPS receiver VHDL algorithms (using the other
algorithms types as control), to a LEO simulated high-dynamics (space-borne) GPS receiver
environment, using a non-real-time and then a real-time test vector (datasets) with extreme
Doppler shifts, LEO altitudes, interferences and ionospheric conditions. This is to test and
validate the navigation solutions (latitude, longitude, altitude, time, date and velocity) of the
researched GPS algorithms in terms of their efficiency, accuracy, precision and robustness.

Figure 4.28 depicts the full harmonised tests and validation setup for the GPS receivers as a unit.

4.5 Summary

This chapter demonstrated the approach for creating four equivalent types of GPS receivers’
algorithms from a single design. The implementations were based-on the Matlab HDL workflow,
with extensive use of the HDL Coder and the HDL Verifier toolboxes. Emphasis was placed on

software-to-firmware conversion of Matlab GPS codes and the simulations and validation setup.
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CHAPTER 5

GPS RECEIVER / ALGORITHMS RESULTS AND INTEPRETATIONS

5.1 Introduction

Chapter 5 examines the researched GPS receiver results and interpretations. That is, the results
and the interpretations of the software GPS receiver algorithms in floating-point Matlab, their
corresponding equivalent fixed-point Matlab and Simulink models, as well as the final VHDL
codes. Since only the floating-point Matlab algorithms work as an integrated GPS receiver unit,
the generated equivalents are evaluated and compared discretely. Section 5.2 only presents and

highlights the various results, whereas Section 5.3 interprets and explains the results in detailed.

5.2 Researched GPS Receiver and the Discrete Generated Algorithms Results

This section only depicts the software-defined GPS receiver results and where possible, the three
generated equivalents GPS algorithms types (i.e. to fixed-point in Matlab, Simulink and VHDL).
5.2.1 Software-defined GPS Receiver Results Based-on Matlab Floating-point Algorithms

The results of each of the processing stages (i.e. acquisition, tracking and navigation) are shown.
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(@) Mew ko MATLAE? Watch this Yideo, ses Demos, or read Getting Started,

Channel =

9.00000000000000e+000 @ @ l

racking: Ch 8 of 10;SatID-14; Completed 34800 of 37000 msec

FENM: 1.00000000000000e+000

acguiredFreqg: 4.0520Z559054105e+006

codePhase: 3.77700000000000=+003
status: 'T!'

£t | ZItatus

-l2e72e+06
.1Z504e+086
-131z21e+006
.l2682e+06
.1Z2903e+06
12957e+06
-A0973e+06 279330
.35172e+05 221318
.O5z203e+06

[ N B L R
[~ Rt R R S R )

-

BERE GPS Signal Processing: Step 2 —— TRACKEING Executing FREE
Tracking started at Z5-ALpr-z2014 06:1Z2:07
Busy tracking acguired results and please be patient, &5 it might take sbout 30 to 90 minutes. ..

Tracking is owver (elapsed time 00:55:14)
Saving Acguisition and Tracking results to file "trackingResults.mat™

J Command Window
File Edit Debug Deskiop SwWindow Help
@ Mews to MATLAE? Wakch this Yideo, see Demos, or read Getting Started.
Tracking is over (elapsed time 0O0:585:14)
Saving Accuisition and Tracking results to file "trackingResults.matc™

Plotting GPS receiwver tracking results. ..
#** Tracking process completed successftully *+%*%

EEE GPS Signal ProcesSsing: Steps 3 and 4 —— NAVIGATION SOLUTION DECODING / PROCESSING Executing BREQE
Nawvigation processing started at 25-4Apr-—-2014 07:11:45

Busy calculating GPS navigation solutions. ..

Could not find vwalid preawbles in channel 7!

Could not find walid preambles in channel 5!

Could not find walid presunhles in channsl 9

GDOP =

S5.2247067 624651 6e+000

4.227813900457 60=+000

3 .63020753551055=+000

2.1655853z05159z4=+000

_f{ 3.06971503156317=e+000

Figure 5.8: Summary of acquisition, tracking and navigation DOP results
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) Command Window
File Edit Debug Deskitop ‘window Help

f?j Fewy bo MATLAEB? Wakch this Wideo, see Demos, or read Getting Starbed,

WDOP =

2.1453079450Z 655=+000

ThopP =

3.068701585263053=+000

utmzone =

32 .0000000000000=4+000

Narrigation processing is owver (elapsed time O00:00:10)
Plotting GFPF3 receiwver navigation results. ..

*ww Nawigation solution decoding 7/ processing processes completed successiully &%

EEE GPS Sign=al Processing: UTC DATE and TIME Computations Executing BRE
TTZ Date and Time conwersion started at Z5-LApr-—-2014 0O7:12:03

Tiwe i=: 02 @ 59 : 57

e e, } UTC Date and Time of when the GPS$ signal dataset used, was captured

UTC Date and Time conversion is over (elapsed time 00:00:00)
*E** UTC Date and Time computation processes completed successfully 5%

H#H#HH#H Postprocessing of the receiwved GPS signal is owver HHSEHH
-

Positions in UTM system (3D plot) Sky plot {Mean PDOP: 4.2535)
e Yol s e Do B o B ) Sl Bl 0 S TR, n
St 4 Measurements.
Mean Position:
Latitude: 57°0°47 967
Longitude; 9°59°21.2792 |
Altitude: -66.2

GFS Recelver Antenna Skyview geometry of the 6 GPS satellites

Position of where GPS signal ‘
dataset used, was captured (PRN- 25 6! 7- 10| 24 & 30] traCked

Figure 5.9: UTC date and time, UTM, GPS receiver position and orbiting satellites sky plot
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5.2.2 Software-defined GPS Receiver Results Based-on 5 Matlab Fixed-point Algorithms

The results presented in this section, do not follow the flow shown in Section 5.2.1 because some

of the functions in the acquisition, tracking and navigation processes; failed one or more of the

floating to fixed-point conversion stages as summarised in Table 5.1. As a result; the acquisition,

tracking and navigation processes could not be integrated as a continuous fixed-point Matlab

software-defined GPS receiver unit. However, the approach employed was to discretely convert

and test each function of the GPS software. Thus, five of the successful fixed-point algorithms

results and a summary of all the results are presented. See Section 9.4 for details on the failures.

Table 5.1: Matlab floating-point GPS receiver software-to-firmware conversion results summary

GPS Receiver Floating-
point Matlab Design Files

Matlab Floating-point GPS Receiver Software-to-Firmware Conversion Stages Results

Define Input Types

Fixed-point Conversion

VHDL Code Generation

VHDL Code Verification

1) acquisition.m Passed Fail Fail Fail
2) calcLoopCoef.m Passed Passed Passed Passed
3) calculatePseudoranges.m Passed Fail Fail Fail
4) cart2utm.m Passed Fail Fail Fail
5) check_t.m Passed Passed Passed Passed
6) checkPhase.m Passed Fail Fail Fail
7) clksin.m Passed Fail Fail Fail
8) clsin.m Passed Passed Passed Fail
9) deg2dms.m Passed Passed Passed Passed
10) dms2mat.m Passed Fail Fail Fail
11)e_r_corr.m Fail Fail Fail Fail
12) ephemeris.m Passed Fail Fail Fail
13) findPreambles.m Passed Fail Fail Fail
14) findUtmZone.m Passed Passed Passed Passed
15) generateCAcode.m Passed Passed Fail Fail
16) gps2utc.m Passed Fail Fail Fail
17) gps_time.m Passed Fail Fail Fail
18) init_tracking.m Passed Fail Fail Fail
19) invert.m Passed Fail Fail Fail
20) leastSquarePos.m Fail Fail Fail Fail
21) makeCaTable.m Passed Fail Fail Fail
22) navPartyChk.m Passed Fail Fail Fail
23) new_cart2geo.m Passed Fail Fail Fail
24) postNavigation.m Fail Fail Fail Fail
25) satpos.m Fail Fail Fail Fail
26) showChannelStatus.m Passed Fail Fail Fail
27) togeod.m Passed Fail Fail Fail
28) topocent.m Passed Fail Fail Fail
29) tracking.m Passed Fail Fail Fail
30) tropo.m Passed Fail Fail Fail
31) twosComp2dec.m Passed Passed Fail Fail
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5.2.2.1 calcLoopCoef.m Equivalent Matlab Fixed-point Algorithm Result

This is used as an example in Chapter 4 (Section 4.3.2.1.4) to describe the Matlab floating-point
GPS receiver software-to-firmware workflow. For illustrative details, consult Figures 4.14 - 4.16.

5.2.2.2 check_t.m Equivalent Matlab Fixed-point Algorithm Result

Figures 5.10 and 5.11 are check_t.m floating to fixed-point algorithms results and error analysis.

4\ HDL Code Generation [E=R|ECE )

=1-{_] HDL Workflow Ad ~
Lo Def:jnre I:::Jt T)\:LS:; EH E:}‘C’J © Propose fraction lengths {g}

2 Fixed-Point Conversion Run Simulation  Compule Derived |~ o7 checkt = Z PRI IS Advanced | VERIFICATICN | HELF
(| HDL Cede Generation - Ranges = e kB = — —
- HDL Verification DATA COLLECTION NAVIGATION TYPE PROFOSAL
Verfy with HDL Test Bench funetion corrTime = check_t (time)
Verify with Cosimulation e K T accounting for beginning or end of week crossover.
Verify with FPGA-in-the-Loop - - B B
- Synthesis and Analysis 3 ime check € (time):
Create Project
Run Legic Synthesis
Run Place and Route

“ariables | Function Replacements  Type Walidation CHEpEs

Test-hench
n t d fl ltl Variable Type Sim Min Sim Max Static Min Static Max ~ Whole Nu... Proposed Type
input definition | |

4

1 1
and validation o Lot s umertype(. %,

4

tirme daouble 120300 120300 numerictypell, 32,

half_week double 302400 302400 numerictype(0, 19,

successful

4\ HDL Code Generation

=] gl;\;fvin;lecfll::j:)\:;:sr DH :LU . (3 Propose fraction lengths
& Fixed-Point Conversion Run Simulation  Compute Derived Fundtion:| fx checkt ~ || Propase word lengths Advanced | VERIFIGATION | HELP
| HDL Code Generation - Ranges ~ B - - - -
HDL Verification DATA COLLECTION NAVIGATION TYPE PROPOSAL
Werify with HDL Test Bench 12 ¥Kai Bo
Werify with Cosimulation 13 $Copyv.
Verify with FPGA-in-the-Loop | |14 %
Synthesis and Analysis
Create Project
Run Legic Synthesis
Run Place and Reute

19 half week = 302400;
20

- (21 corxrTime = time;

|< zz

23 if time > half week

Fixed oint 24 corrTime = time - 2*half week:
- L
p 25 elseif time < -half week

26 corrTime = time + 2*half week;
27 end

conversion

“fariables = Function Replacements | Type Validation Output |~

suc eSSful ### Generating Fixed Point MATLAB Code check t FixPt using Proposed Types

### Generating Fixed Point MATLAB Design Wrapper check t wrapper FixPt
e
### Generating Mex file for ' check t wrapper FixPt '
Code generation successful: View report
S

Figure 5.10: check_t.m variables definition and Matlab floating to fixed-point conversion results
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4\ HDL Code Generation

E-{_] HDL Workflow Advisor
o Define Input Types
o Fixed-Point Cenversion
|| HDL Code Generation
[ HDL Verification
[ Verify with HDL Test Bench
-8 Verify with Cosimulation

(= Synthesis and Analysis
{7 Create Project
-1 Run Logic Synthesis
[ Run Place and Route

[F=5EE >3
’}i Hw @ Propose fraction lengths @

Function: .J;-b. checkt ¥ M ~ Propese word lengths

Run Simulation  Compute Derived Defautt word length: |32

Advanced VERIFICATION | HELP
- Ranges = -

- -

DATA COLLECTION MAVIGATION TYPE PROPOSAL

[ Verify with FRGA-in-the-Loop

1 function corrTime = check t(time)

3%
4 $corrTime = check t(time);
5%

Variables | Function Replacements | Verification Qutput |

|| ### Enalyzing the test bench(es) 'check t _tb'

### Bnalyzing the design 'check t'

Both floating-point
and fixed-point
simulations succassful
and very accurafe

$## Begin Floating Point Simulation

time =

120.2999995460262+003

corrTime =

120.299989546026e+003

$### Floating Point Simulation Completed in 4.7711 sec(s)
### Begin Fixed Point Simmlation : c'neck_t_tb
time =

120.299999546026e+003

corrTime =

120.299999572754e+003

### Beginning fixed point error analysis ####

4\ HDL Code Generation

[={ | HDL Workflow Advisor
>0 Define Input Types
-Q
>0 HDL Code Generation
EJ_I HDL Verification
) Verify with HDL Test Bench
L] Verify with Cosimulation

=1 Synthesis and Analysis
- Create Project
171 Run Logic Synthesis
{1 Run Place and Route

@ Propose fraction lengths
Function: = checkt = ﬁ ™ Propose word lengths

VERIFICATION | HELP
Default word length: | 32 dzrc

-

Run Simulation  Compute Derived

- Ranges « - =
DATA COLLECTION

NAVIGATION TYPE PROPOSAL

{2 Verify with FPGA-in-the-Loop

16 % 5Id: check t.m,v 1.1.1.1.2.4 2006/08/22 13:45: 1E o
17 % W l)

18 Valdate Test
19 half week = 302400; Types Numerics

20

21 corrTime = time;

iz

23 if time > half week

4 corrTime = time - 2*half week;

7|25 elseif time < -half week

28 corrTime = time + 2*half week; omitted
27 end

258 $%%%%%% end check t.m

% semi-colon at the end intenticnally

FEEERRERRR RIS /prey

‘ariables | Function Replacernents | Werification Output  +

Errors analysis
shows very
insignificant

conversion
errors

Output variable : corrTime
Max Positive Error 0

Max Negative Error -2.672B8e-03

Max Absolute Value 120209,9985

Max Percentage Error -2.221Be-08

Generating comparison plot...

##4 Fixed Point Simulation Completed in 14.2231 sec(s)
### Elapsed Time: 22,2561 sec(s)

Figure 5.11: check_t.m Matlab fixed-point algorithm verification and error analysis results
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5.2.2.3 clsin.m Equivalent Matlab Fixed-point Algorithm Result

Figures 5.12 and 5.13 are the clsin.m floating to fixed-point algorithms results and error analysis.

4\ HDL Code Generation

-] HDL Workflow Advisor
@ Define Input Types

0 Fixed-Point Conversion

] HDL Code Generation
=+ HDL Verification
] Verify with HDL Test Bench
] Verify with Cosimulation
1 Verify with FPGA-in-the-Loop
=+ Synthesis and Analysis

4 I
P #9)
Run Simulation  Compute Derived
- Ranges ~
DATA COLLECTION

Function: = clsin = M ™ Propose word lengths

@}

Advanced

-

@ Propose fraction lengths

VERIFICATION | HELP
Default word length: |32

- -

NAVIGATION TYPE PROPOSAL

function

result = clsinf(ar,

degree, argument)

%Clenshaw summation of sinus of argument.
%

degres, argument);
0 Create Project
1 Run Logic Synthesis
- Run Place and Route

Kai

1955

Borre

% Written by
% December

1
Z
sl
4 gresult =
5
[
7

20,

‘Wariahles

Test-hench r
input definition :
and validation

successful | |

Function Replacements | Type Walidation Output

Sim Min Sim Max Static Min StaticMax ~ Whole Nu...  Proposed Type

Type
numerictype(l, 32, 30
argument numerictype(l, 32, 30
degree numerictype(l, 3, 0}
4
result; dauhble numerickype(l, 32, 30
double
double
double

double

numerictype(l, 32, 31)
numerictype(l, 32, 39)
numerictype(l, 32, 48)
numerictype(l, 32, 571
numerictype(l, 3, 1)

4\ HDL Code Generation

L1 HDL Workflow Advisor X i
@ Define Input Types t}} [}U
9 Run Simulation  Compute Derived
; -] HDL Code Generation - Ranges +
8 HDL Verification DATA GOLLECTION
- {8 Verify with HOL Test Bench
{8 Verify with Cosimulation
- {0 Verify with FPGA-in-the-Loop || 5 =
=2 | Synthesis and Analysis 4 3result = clsin(ar, degree,
I Create Project s
] Run Logic Synthesis - -
{2 Run Place and Route Variables

@ Propose fraction lengths
Fundtion: [* clsin v |ﬁ “ Propose word lengths
Default word length: | 32

VERIFICATION | HELF

-

¥ b

Validate
Types

-

NAVIGATION TYPE FROPOSAL

1 function result = clsin(ar, degree, argument)

2 3Clenshaw summation of sinus of argument.

argument) ;

TEST FILES TO RUN

Function Replacements | Verification Output | = «  dsin_tb.m

- [ Addtestfile..
### Analyzing the design 'clsin'

- |### Enalyzing the test bench(es) 'clsin th'
+" Log inputs and outputs for comparison plots

Floating-point
simulation
successful

### Begin Floating Point Simulation
ar =

-3.37077907000000e-003
4.73444768000000e-008
-8.29914570000000e-009
15.8785330000000e-012

degree =

4.00000000000000e+000

argument =

1.99080000000000e+000

result =

-3.08133898371910e-003

##¢ Floating Point Simulation Completed in 7.3454 sec(s)

Figure 5.12: clsin.m variables definition and Matlab floating to fixed-point simulation results

140



4\ HDL Code Generation

-] HDL Workflow Advisor
v] Define Input Types
)
(-] HDL Code Generation
“| HDL Verification
Verify with HDL Test Bench
Verify with Cosimulation
Verify with FPGA-in-the-Loop
EHEE Synthesis and Analysis
i Create Project
Run Logic Synthesis
Run Place and Route

Function: [+ csin = [
Run Simulation Compute Derived .

- Ranges v Defauftword lengifis| 32

DATA COLLECTION NAVIGATION TYPE PROPOSAL

Advanced

VERIFICATION | HELP

-
- -

1 funection result = clsin(ar, degree, argument)
2 3Clenshaw summation of sinus of arqument.

3%

4 $result = clsin(ar,

5

Variables | Function Replacernents | Verification Output | =

### Floating Point Simnlation Completed in 7.3454 sec(s)

### Begin Fixed Point Simulation : clsin tb

ar =
-3.37077907000000e-003
4.73444768000000e-006
-8.28914570000000e-009
15.8785330000000e-012
degree =
4.00000000000000e+000
argqument =

1.99080000000000e+000

result =

-3.081435672356752-003

##4 Beginning fixed point error analysis $####

4\ HDL Code Generation

-] HDL Workflow Advisor

-@ Define Input Types

- 0 Fixed-Point Conversion

-] HOL Code Generation

=) HOL Verffication

- Verify with HDL Test Bench
Verify with Cosimulation
Verify with FPGA-in-the-Loop
B Synthesis and Analysis

Create Project
Run Logic Synthesis
Run Place and Route

%" Validating fixed-point types [ Cancel

~

Fixed-point
simulation
successful
and very accurate

Errors are calculated as follows after simulation for each output wvariable:

© Propose fraction lengths
Fundtion: /= clsin M " Propose word lengths
Default word length: |32

PO
Run Simulation  Compute Derived
- Ranges v

DATA COLLECTION NAVIGATION TYPE PROPOSAL

Advanced VERIFICATION

@
HELP

-
- -

15 cos_arg = 2 * cos(argument);
16 hrl = (5

17 hr 0:

18

18 for t =

degree : -1 : 1

Watiables | Function Replacements | Verification Output =
Errors (E)
Maximum Positive Error (Mpe) --—»> max(E) % (max(E)>0)
Maximum Negative Error (Mne} --—»> min(E) * (min(E)<0)
Top Error (IE)
Maximum Absolute Value (MRE) ---> max(abs(Floating-point values))

Maximum Percentage Error (MPE) -> 100 * (IE / MAE)

Cutput variable :
Max Positive Error 9.668%e-08
Max Negative Error 0
Max Absolute Value 0.0030813
Max Percentage Error 0.0031379

Generating comparison plet...

##4 Fixed Point Simulation Completed in 12.6222 sec(s)
##4 Elapsed Time: 22,8197 sec(s

» Floating-point Values - Fixed-point Values

> Mpe (if Mpe > abs(Mne) ) otherwise Mne)

Errors analysis
shows very
negligible
conversion
errors

Figure 5.13: clsin.m Matlab fixed-point algorithm verification and error analysis results
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5.2.2.4 deg2dms.m Equivalent Matlab Fixed-point Algorithm Result

Figures 5.14 and 5.15 are deg2dms.m floating to fixed-point algorithms result and error analysis.

4\ HDL Code Generation

=L HDL Workflow Advisor

@ Define Input Types D’i -

@ Fixed-Point Conversion Run Simulation  Compute Derived Function: | /= deg2dms. FiPt ~ ] el o Advanced | VERIFICATION | HELP

-] HDL Code Generation - Ranges e o 37

=+ HDL Verification DATA COLLECTION NAVIGATION TYPE FROPOSAL

{8 Verify with HDL Test Bench 2 ¢ ! .1, MATLAB Coder 2.4 and HDL Coder 3.2
Verify with Cosimulation
Verify with FPGA-in-the-Loop
-2 Synthesis and Analysis s¥codegen

Create Project function dmsOutput = deg2dms_FixPt (deg)
Run Logic Synthesis

[} .
O] @ Propose fraction lengths

-
- -

Run Place and Route fm = fimath{'RoundingMethod', 'Nearest', 'OverflowBAction', 'Wrap', 'ProductMode', 'FullPre

4 m +

“ariables | Function Replacements | Type Validation Output  ~
< | variable Type Sim Min Sim Max Static Min Static Max  Whole Nu... Proposed Type

Testbench | | - |
deg double 57.03 57.03 Mo nurnerictype(ll, 32, 26)

4

" ] yn
Input deflnltlon drrsOutput double 570145 5701.45 nurmerictyne(l, 32, 19)

Pl

decimal double 0.03 0.03 nurnerictype(ll, 32, 36)

n |
s dout! 5 5t ictype(t, 5, 1)
and validation i o .

min daouble nurnerictype(l, 1, 0
min_part double . . nurmerictype(l, 32, 31)

successful neg_arg logical nurnerictypedl, 1, 0
seC double numerictype(ll, 32, 26)

sec_patt double nurnerictype(l, 32, 32)

4\ HDL Code Generation

1 :
P fraction length:
o) © Propose fraction lengths

Fundtion: [ degldms FiPt ~ 7/ Propose wordlengths
Default word length: |32

=L 2] HDL Workflow Advisor _
0 Define Input Types m
0 Fixed-Paint Conversion Run Simulation  Compute Derived
J HDL Code Generation ~ Ranges +
=12 HDL Verification DATA COLLECTION NAVIGATION TYFE FROPOSAL
Verify with HDL Test Bench | 45 function v = £i_uminus (a)
Verify with Cosimulation 49 coder.inline( 'always' ):
‘ Verify with FPGA-in-the-Loop | 50 1£ isfi{ a )
L Synthesis and Analysis 51 nt = numerictype( a );
Create Project 52 fm = fimath( a };
Run Logic Synthesis 53 new nt = numerictype( 1, nt.WordlLength + 1, nt.Fractionlength );
Run Place and Route 54 y = -fi{ a, new _nt, fm );
55 else
56 ¥ = -a;
57 end
58 end

Advanced VERIFICATION | HELP

-

4 L1}

Watiahles | Function Replacernents | Type Validation Output | =

### Generating Fized Point MATLAB Code degddms FixPt using Proposed Types

Fixed-point
conversion

successful Warning: Overflow or saturation occurred during constant folding. Value of this expression

### Generating Fixed Point MATLAB Design Wrapper degldms wrapper FixPt
### Generating Mex file for ' degldms wrapper FixPt '

cannot be exactly represented im its type.
with few
. Warning in ==> degddms FixPt Line: 34 Column: 4

Warl‘llngs Code generation successful (with warnings): View report

4 n

Figure 5.14: deg2dms.m variables definition and Matlab floating to fixed-point conversion results
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4\ HDL Code Generation

-] HDL Workflow Advisor
@ Define Input Types
0 Fixed-Point Conversion
.-] HDL Code Generation
EHE HDL Verification
I Verify with HDL Test Bench
T Verify with Cosimulation
{2 Verify with FPGA-in-the-Loop
E}J Synthesis and Analysis
i Create Project
I Run Logic Synthesis
“{& Run Place and Route

[;H HU) @ Propose fraction lengths @

Function.-._,;“:: deg2dms = |7 7 Propose word lengths
Default word length: |32

Run Simulation  Compute Derived VERIFICATION

- Ranges v

-

DATA COLLECTION NAVIGATION TYPE PROPOSAL

1 function dmsCutput = deg2dms (deg) .

2 $DEG2DMS Vi e inutes, and seconds. V P

3 ¥The output format (dms format) is: 100 + minutes + seconds/10( Validate Test

4 Types  Numerics «

5 % Written by Kai Borre

Yariables | Function Replacements | Verification Output | =
### Analyzing the design 'degZdms'

1 1
|| ### Analyzing the test bench(es) 'deg2dms th' Bolh ﬂoalln " olnt
- |### Begin Floating Point Simulation

deg =
57.0292956900000e+000

] 1
i ant ivedsoint
5.70145464484000e+003

##¢ Floating Point Simulation Completed in 34,9663 sec(s)
### Begin Fixed Point Simmlation : deg2dms th

simulations sucoessul

dmsCutput =
5.701454645156B6e+003

### Beginning fixed point error analysis #i## and accurate

4\ HDL Code Generation

-] HDL Workdlow Advisor
-§ Define Input Types
- o Fixed-Point Conversion
-] HOL Code Generation
{50 HDL Verification
i1 Verify with HDL Test Bench
(] Verify with Cosimulation

0 Verify with FPGA-in-the-Loop
B'—.I Synthesis and Analysis

[ Create Project

T Run Logic Synthesis
2] Run Place and Route

Errors are calculated as follows after simulation for each output variable:

’}i HQ) ‘ . E Propose fraction lengths {g}
Function: [ deg2dms ﬁ Propose word lengths
Default word length: | 32

Advanced VERIFICATION | HELP

-

Run Simulation  Compute Derived
- Ranges

DATA COLLECTION NAVIGATION TYPE FROPOSAL

28 sec =0;

29 end

30 if min = 60

31 int deg = int deg + 1;

32 min =0;

33 end

34 ' deg2dms_tb.m
35 %% Construct the output

36 dmzQutput = int deg * 100 + min + gec/100;

TEST FILESTO RUN

3 Add test file.,

137

38 :%% Correct the =ign +" Loginputs and outputs for comparison plots

39 if neg arg = true
40 dmsCutput = -dmsCutput
41 end

Wariables | Function Replacements | Verification Output =

Cutput variable : dmsQutput

__ Errors analysis
Max Positive Error 0

Max Negative Error -3.1686e-07 shows Very
Max Rbsolute Value 5701.4546

Max Percentage Error -5.5575e-09 minimal

Generating comparison plot...

conversion

$##4 Fixed Point Simulation Completed in 15.6307 sec(s)
### Elapsed Time: 66.8809 sec(s) errors

Figure 5.15: deg2dms.m Matlab fixed-point algorithm verification and error analysis results

143




5.2.2.5

Figures 5.16 and 5.17 are fi

4\ HDL Code Generation

E--] HDL Workflow Advisor

V] Define Input Types

0 Fixed-Point Conversion

| HDL Code Generation
HDL Verification

findUtmZone.m Equivalent Matlab Fixed-point Algorithm Result

ndUtmZone.m floating to fixed-point codes results and error analysis.

i e

b o
Run Simulation  Compute Derived
v Ranges v - - -

Fundtion: f> findUtmZone FoPt ¥ [ | 1oz ppceoeu | vemmicanion recs

DATA COLLECTION NAVIGATION

Verify with HDL Test Bench
Verify with Cosimulation
Verify with FPGA-in-the-Loop
EHEE Synthesis and Analysis
; Create Project
Run Logic Synthesis
Run Place and Route

Test-hench

I IR R L E R R R R R AL R R R R R A LR TR AR R LR LR R AR LR RN R R R AR et
nerated by MA .1, MATLAB Coder 2.4 and HDL Coder

I IR R L E R R R R R AL R R R R R A LR TR AR R LR LR R AR LR RN R R R AR et
t#codegen
function utmZone = findUtmZone FixPt(latitude, longitude)

fm = fimath ('RoundingMethod', 'Hearest', 'OverflowAction', 'Wrap', 'ProductMode',

unction finds the UIM zone number for given longitude and latitude.
] ee West) and 180

between -1B0

(80 degree South)

utmZone = findUtmZone (latitude, longitude);
I

input definition
and validation
successful

A\ HDL Code Generation

El--] HDL Workflow Advisor

V] Define Input Types

o
HDL Code Generation
HDL Verification

“atiables | Function Replacernents | Validation Results ~

Variable Type Sim Min Static Min  StaticMax  Whole Nu... Proposed Type

4
latitude double 57.03 Mo numerictype(l, 32, 26)
longitude double 9.95 nurmerictype(l, 32, 28)

utmZone double nurerictype(l, &, 0

5 -]
L8 9]
Run Simulation  Compute Derived
- Ranges « - - )

Fundtion:| - findUtmZone FixPt '.ﬂ TYPE PROPOSAL | VERIFICATION | HELP

DATA COLLECTION NAVIGATION

Verify with HDL Test Bench

Verify with Cosimulation

Verify with FPGA-in-the-Loop
- Synthesis and Analysis

Create Project

Run Logic Synthesis

Run Place and Route

% 8.1, MATLAB Coder 2.4 and HDL Coder 3.2 %
4 % T

B IR LR R R R R R A LR R R R R R AL R R R AR A L R R AR LR RN AR AR R AR RN
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Figure 5.16: findUtmZon

e.m variables definition and Matlab floating to fixed-point conversion results
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4\ HDL Code Generation
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##4 Fixed Point Simulation Completed in 16.3531 sec(s)
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Figure 5.17: findUtmZone.m Matlab fixed-point algorithm verification and error analysis results
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5.2.3 Software-defined GPS Receiver Results Based-on 5 Discrete Simulink Models

As mentioned in Section 5.2.2, only the corresponding GPS receiver Simulink models results,
generated from their respective fixed-point algorithms are presented in this section. Furthermore,
Simulink models based-on the floating-point Matlab GPS algorithms were manually created and
the results are compared alongside with their respective generated fixed-point Simulink models.

5.2.3.1 calcLoopCoef.m Equivalent Simulink Models Results Comparison

This is used as an example in Chapter 4 (Section 4.3.2.1.5) to explain the Matlab floating-point
GPS receiver software-to-firmware workflow. Refer to Figure 4.19 for applicable details.

5.2.3.2 check_t.m Equivalent Simulink Models Results Comparison

Figure 5.18 shows comparison results of check_t.m as floating and fixed-point Simulink models.

PL check t_Fit_n_Fix_Pt_Model
File Edit View Display Diagram Simulation Analysis Code Tools Help

i~ %E@' %‘\f)ﬂb ORI

chedk_t_Flt_n_Fix_Pt_Model

® ||| check_t_Fit_n_Fix Pt Model

time JL corrTime 1.202999995460260e+05
check_t_Floating_Pt

satellite_time Floating-Pt_Result
/] check_t Floating_Pt

The same input dataset Equivalent models |dentical results

ufi ufix32_En14
120.299999546026¢+003 time ol conTime|————| 1.202999995727539e+05

check t FixPt

GPS_satellite 1 Fixed-Pt_Result
atelte_tme_ check_t FixPt_slcfg HearLResy

Figure 5.18: check_t.m Simulink floating and fixed-point models results comparison
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5.2.3.3 clsin.m Equivalent Simulink Models Results Comparison

Figure 5.19 shows comparison results of clsin.m as Simulink floating and fixed-point models

L cin Fit Pt Mot

Fle Edt View Depiay Diagram Simution Anahyss Code Tooks Help
L'F =1V EN

%8 8 EYD U

din At n Fix_Pt Mol

B ajlin P i Pt Mo

B 4k real -3 010801810303
thsin_Floating_Pt

Floating-Pt Resut

tkin Floating Pt

The same input dataset Equivalent models dentical resuls

Mz ‘l it -0 BT
thsin_FixPt

FiesFt Rt

tin Fieft slefy

Figure 5.19: clsin.m Simulink floating and fixed-point models results comparison
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5.2.3.4 deg2dms.m Equivalent Simulink Models Results Comparison

Figure 5.20 shows deg2dms.m Simulink floating and fixed-point models comparison results.

1 deg2dms_Flt_n_Fix_Pt_Model
File Edit View Display Diagram Simulation Analysis Code Tools Help

= e — - Lid
- E EEe-E w® > ® - ® T —— R

deg2dms_Flt_n_Fix_Pt_Model

& |[Faldeg2dms_Flt_n_Fix_Pt_Model

oul double
57.02 6900000e+000 deg . dmsoutput 4>|| 5.?0145464434000:)e+03||
deg2dms_Floating_Pt

- Floating-Pt_Result
deg2dms_Floating_Pt

The same input dataset /)Equivalent models Identical results

ufix32_En19
deg 4l dmsoutput 4ﬁ| 5.701454645156860e+03||
deg2dms_FixPt

degrees_1 = i -
I deg2dms_FixPt_slefg Fixed-Pt_Result

FixedStepDiscrete

Figure 5.20: deg2dms.m Simulink floating and fixed-point models result comparison

5.2.3.5 findUtmZone.m Equivalent Simulink Models Results Comparison

Figure 5.21 shows findUtmZone.m Simulink floating and fixed-point models comparison result.

P4 findUtmZone_Fit_n_Fix_Pt_Model
File Edit View Display Diagram Simulation Analysis Code Teols Help

k-8 He-BE 40P (ORGEY

findUtmZone_Flt_n_Fix_Pt_Model

® |[%a[findUtmZone_Flt_n_Fix_Pt_Model

) LtmZ one
findUtmZone_Floating_Pt

Floating-Pt_Result

P
findUtmZone_Floating_Pt O
TEqulvaIent models The same results

*‘ trnZnnE
findUtmZone_FixPt
naitud leed -Pt_Result

findUtmZone_FixPt_slcfg

Figure 5.21: findUtmZone.m Simulink floating and fixed-point models results comparison
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5.2.4 Firmware-defined GPS Receiver Results Based-on 5 Discrete VHDL Algorithms

For reasons already indicated in Section 5.2.2, only the corresponding GPS receiver VHDL
algorithms results, generated from their respective fixed-point algorithms are presented here.

5.2.4.1 calcLoopCoef.m Equivalent VHDL Algorithm Result

This is used as an example in Chapter 4 (Section 4.3.2.1.5) to describe the Matlab floating-point
GPS receiver software-to-firmware workflow. For descriptive details, see Figures 4.20 - 4.22.

5.2.4.2 check_t.m Equivalent VHDL Algorithm Result

Figures 5.22 and 5.23 show the equivalent generated VHDL algorithm and the verification result.
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Synthesis and Analysis
B Create Project
Run Logic Synthesis
Run Place and Route

‘Generate synthesizable HDL code from the fixed-point MATLAB code.
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Run Logic Synthesis
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Generating test bench package:

Generating test bench data file:
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Simulating the design 'ModelSim' .

'check_t_FixPt' using

Generating Compilation Report check t FixPt wsim log compile.txt

Generating Simulation Report check t FixPt wsim log sim.txt

Simulation successful.

Elapsed Time

Figure 5.22: check_t.m conversion to VHDL and the algorithm verification processes

: 459.2132 secis)
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[=| Code Generation Report

MATLAB code  Call stack HDL Code Function: check_t_FixPt Calls: Selectafunction call:

Filter

= Functions /

¢ check_t_FixPt
& check_t_FixPt= fi_uminus

%fcodegen

function corrTime = check t_ FixPt(time)

fimath ('RoundingMethod', 'Nearest', 'Cverfl i , '"Wrap', 'ProductMode', '
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converted
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code
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Summary All Messages (0) Variables
HOL source code generated on: 28-Apr-2014 01:32:17
Coding target: HOL

Number of errors:

1]
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Number of warnings:

Tell Us What You Think

= Code Generation Report
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HDL Code Lo
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-- File Name: D:\Spaceborne GPS Rx Conversion\codegen\check t\hdlarc\check t FixPt
-- Created: 2014-04-28 01:29:42

-- Generated by MATIAR 8,1, MATLAR Coder 2.4 and HDL Coder 3.2
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LIBRARY IEEE;
USE IEEE.std logic 1164.ALL:
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Figure 5.23: Preview of check_t.m algorithm — converted to VHDL
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4\ HDL Code Generation
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Start of
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MEiii

5.2.4.3 deg2dms.m Equivalent VHDL Algorithm Result

Figures 5.24 and 5.25 show the equivalent generated VHDL algorithm and the verification result.
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Figure 5.24: deg2dms.m conversion to VHDL and the algorithm verification processes
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Figure 5.25: Preview of deg2dms.m algorithm — converted to VHDL
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5.2.4.4 findUtmZone.m

Figures 5.26 and 5.27 show the equivalent generated VHDL algorithm and the verification result.
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Figure 5.26: findUtmZone.m conversion to VHDL and the algorithm verification processes
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Code Generation Report
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Figure 5.27: Preview of findUtmZone.m algorithm — converted to VHDL
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5.2.45 clsin.m Equivalent VHDL Algorithm Result

Figure 5.28 depicts clsin.m conversion to VHDL but the verification process was unsuccessful.
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o HDL Cede Generation
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teSt beHCh ##4 Simulating the design 'clsin_FixPt' using 'ModelSim'.

n r t d ### Generating Compilation Report clsin FixPt wsim log compile.txt
ge e a e ### Generating Simulation Report clsin FixPt vsim log sim.txt

Simulation failed! Please see report!

Simulation
failed

Error in SimulationDriversrunSimulation at 55

Error in SimulationDriver>doIt at 68

Error in Manager>wfa runSimulation at 831

Figure 5.28: clsin.m generation process to VHDL and verification failure

5.2.4.6 Summary of the GPS Receiver Algorithms Results Comparison and Error Analysis

Table 5.2 summarises the output results of each of the equivalent four types of GPS receiver
algorithms (Matlab floating-point — now as reference, Matlab fixed-point, Simulink fixed-point
and VHDL). The same test-bench was applied to all the four equivalent algorithms. The errors in

each GPS algorithm is then analysed to justify the accuracy of the entire conversion process.

Table 5.2: Summary of the GPS receiver algorithms output results comparison and error analysis

Successful GPS Four Equivalent GPS Receiver Algorithms (from each design file) Output Results and Error Analysis

Receiver Algorithms . . . . L . .
. . Matlab Floating-Point Matlab Fixed-point Simulink Fixed-point VHDL Max % Error
Design Files
2) calcLoopCoef tau2 = 0.3700000000 | 3.70247933897190e-1 | 3.70247933897189%-1 | 3.70247933897190e-1 -0.067009
5) check_t 1.202999995460260e5 | 1.202999995727540e5 | 1.202999995727539e5 | 1.202999995727540e5 | -2.2218e-8
8) clsin -3.081338983719103e-3 | -3.081435672356750e-3 |-3.081435672356747¢-3 Fail 0.0031379
9) deg2dms 5.70145464484000e3 5.70145464515686e3 | 5.70145464515686e3 | 5.70145464515686e3 -5.5575e-9
14) findUtmZone 32 32 32 32 0
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5.2.4.7 Firmware Compilation Results of check_t, deg2dms and findUtmZone VHDL Algorithms

This section presents three of the generated VHDL algorithms (check t, deg2dms and
findUtmZone) compiled results using Altera Quartus Il software. The version of Matlab used
(Matlab version R2013a) had problems detecting Altera or Xilinx synthesis tools; therefore, the
synthesis and analysis step in the Matlab HDL Coder workflow could not be done. However, to
complete the research methodology workflow, the workaround employed was to directly execute
this step using preferably Altera Quartus Il Design Suite (ease of use and easily downloadable
with less license hassles and limitations). The three generated VHDL algorithms were analysed
& synthesised, placed & routed and programming files generated, as well as timing analysis.
This enables these files to be now embedded or programmed as firmware into a suitable FPGA.
Figures 5.29 - 5.31 depict the compilation results and for that reason, conclude the workflow.
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Figure 5.29: check_t firmware compilation result — ready now to be programmed into a FPGA
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Figure 5.30: deg2dms firmware compilation result — ready now to be programmed into a FPGA
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5.3 The GPS Receiver and Discrete Generated Algorithms Results Interpretations

This section interprets the results of the researched GPS receiver, that is, the results of the
software-defined Matlab floating-point GPS receiver as a unit, as well as the various discrete
GPS receiver algorithms of the three generated implementations types are explained in-depth.

5.3.1 Software-defined Matlab Floating-point GPS Receiver Results Interpretations

The results of the software-defined Matlab floating-point GPS receiver are explained as follows:

Figure 5.1 simply confirms that the pre-captured real GPS signal is valid and can be processed.
Figures 5.2 - 5.5 demonstrate the effects of Doppler frequency shift to GPS signals. Figure 5.2 is
a plot of the captured GPS L1 C/A signal, subjected to a +5 kHz (-5kHz to + 5kHz on either side
of the pre-captured GPS L1 C/A IF) Doppler search bins based-on parallel code phase
acquisition algorithm implemented in the researched GPS receiver. Figures 5.3 to 5.5 depict the
same scenerio but now, respectively at +10 kHz, £50 kHz and £100 kHz Doppler search bins. It
is observed that, at 5 and +10 kHz Dopplers — which simulate a low-dynamics situation on
Earth, the acquisition process is the fastest and the captured GPS SV signals are more visible, as
shown in Figures 5.2 and 5.3. At £50 and £100 kHz Dopplers — which simulates a high-
dynamics search situation in space (not a typical space-borne case, since the GPS receiver and
the pre-captured GPS signal dataset are static), the acquisition process is the slowest and the GPS
SV signals are less visible, as portrayed in Figures 5.4 and 5.5. Furthermore, at £50 and £100
kHz Doppler search bins, 9 of the 10 GPS satellites (max of ten channels were specified in the
settings and nine satellites acquisition threshold was >2) that were searched in the pre-captured
dateset (Multipath.bin), were acquired as shown in Figures 5.6 to 5.8, as well as in Figure 9.2 of

Appendix C. These results, thus validate a functional high-dynamics Doppler search algorithm.

The tracking result is also successful and it is observed that, the more the number of channels to
be tracked or used, the longer the tracking process. The benefits however, is a more accurate
navigation solution, as justified by the DOP values in Figures 5.8 and 5.9. Furthermore, the
navigation bits preambles of GPS satellites 32, 14 and 1 of channels 7, 8 and 9 respectively (refer
to Figure 5.8 as well as Figures 9.9 to 9.11 of Section 9.2 in Appendix C); could not be deduced
due to the excessive Doppler frequency shift, as shown in Figure 5.8. Thus, only the top six GPS
satellites of PRN 2, 6, 7, 10, 24 and 32 were tracked in that order; becuase of (i) their strongest
signal levels (see Figure 5.6), (ii) less Doppler associated to the GPS L1 C/A IF and code phases

(see Figure 5.8) and (iii) the presence of a valid navigation bit preamble (see Figures 9.3 to 9.8).
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Figure 5.9 bottom right, illustrates a skyview geometry of the tracked top six GPS satellites and
as shown, the GPS satellites DOP is poor, although the mean DOP values of GDOP, VDOP,
HDOP, PDOP and TDOP as shown in Figure 5.8 bottom, were within acceptable limits. GPS
satellite of PRN 2, has the strongest signal level or strength but also the lowest elevation angle.
Using an elevation mask of 10 or lower, this SV signal can be discarded, if it is considered as a
pseudolite — signal from a device (e.g. a ground transmitter / jammer) that mimics GPS satellites.

The navigation solutions from the tracked navigation bits were computed and the outcome is the
GPS receiver position (more correctly the position of the GPS front-end antenna) of where the
processed dataset was captured. As shown in Figure 5.9 bottom left, the mean GPS receiver
position is found in UTM coordinate and the UTM zone of 32 is deduced (see Figure 5.9 top).
Channel 10 as shown in Figures 5.8 top and 9.12, was not acquired because its signal level was
below the acquisition threshold of 2 as defined in the settings. Thus, it was un-tracked (has the
status OFF) and as a result, no navigation data message was decoded and hence emerges blank.

Figure 5.9 top, depicts the computed UTC date and time of when the processed dataset
(Multipath.bin) was acquired. The date (01/15/2007) is correctly computed, as it is the same as
the date of when the Multipath.bin file (Figure 5.32) was named. However, the UTC time
(09:59:57) is incorrect by ~ 25 minutes late; which could be as a result of the renaming of the file

Multipath.bin, ~ 25 minutes later. Figure 9.13 illustrates some relevant GPS orbital parameters.
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Figure 5.32: lllustration of the used pre-captured GPS signal dataset (Multipath.bin) — date and time
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5.3.2 The GPS Receiver Generated Algorithms Results Interpretations

As discussed in Section 5.2, only five of the Matlab floating-point software-defined GPS
receiver algorithms (calcLoopCoef.m, check_t.m, clsin.m, deg2dms.m and findUtmZone.m) were
each successfully converted to equivalent (i) Matlab fixed-point algorithms (ii) Simulink fixed-
point models and finally (iif) VHDL algorithms. Therefore, only the results of these mentioned
algorithms are analysed, validated and explained. Table 5.2 clearly depicts the comparison and
analysis of the conversion errors involved. It is observed that, each of the algorithms generated to
Matlab fixed-point, Simulink fixed-point and VHDL,; produced the same outputs as their
corresponding Matlab-floating point algorithms, with insignificant errors. As a result, all the
three types of generated GPS algorithms (besides the clsin.m that failed VHDL verification) are
functionally equivalent, since they all yield the same results as their corresponding Matlab
floating-point algorithms (see Table 5.2). Figures 5.29 to 5.31 exemplify three of the generated

VVHDL algorithms, successfully compiled in Altera Quartus 11, with some few timing warnings.

The reasons for the failures in the other GPS algorithms, as detailed in Section 9.4 include:

- Some of the Matlab constructs (e.g. while loop) and built-in functins (e.g. asin, atan, rem
etc) in Matlab R2013a, do not currently support Matlab floating to fixed-point
conversions. Some do support floating to fixed-point conversion but not to VHDL.

- Some of the Matlab floating-point algorithms seems poorly written, though they do work.

- The Matlab R2013a package used was at times unstable during the conversion process.

5.4 Summary

This chapter discussed in detailed, the researched GPS receiver results, as well as how the results
were interpreted and validated. Only the Matlab floating-point software-defined GPS receiver
yielded the expected results as a unit (i.e. acquired, tracked, decoded and processed the pre-
captured GPS L1 C/A signal dataset to compute position, UTC date and time). In the researched
workflow, attempts were made to convert the Matlab floating-point software-defined GPS
receiver algorithms to VHDL; from which only 5 out of 31, were successfully converted and four
of the five were verified in VHDL and three compiled in Altera Quartus Il. Equivalent Matlab
fixed-point and Simulink models of the five algorithms were also created and test-benches for all
31 GPS algorithms were written to define and simulate each Matlab floating-point GPS receiver
algorithms prior to conversion. The equivalent GPS algorithms results are exact with few errors.
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CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS

Chapter 6 concludes the research and recommends future work. The conclusions reached, relate
to the research problem, objectives, literature review, methodology, results and the contributions.

6.1 Conclusions

The following sections of the research are evaluated to draw the conclusions in what follows:

The research was undertaken to address the problems of inefficient space-borne GPS
receiver algorithms and the high-cost associated with the design and implementation. The
problems were addressed by developing open-source GPS algorithms, using Matlab HDL
coder workflow and Altera software, with focus on the Xilinx low-cost space-grade FPGA.

- The primary or main objective was to implement a software-defined GPS receiver. This was
achieved using Matlab. The receiver was used to post-process a pre-captured, real GPS L1
C/A signal to acquire, track, decode, process and compute the position, UTC time and date.

- The secondary objective was to improve the primary objective. This was reasonably attained
using the Matlab R2013a HDL Coder workflow. Five of the GPS receiver algorithms
(calcLoopCoef.m, check_t.m, clsin.m, deg2dms.m and findUtmZone.m) were improved from
Matlab floating to fixed-point implementations; making them more compact, efficient and
implementable into a low-cost microcontroller. These five algorithms with the exception of
clsin.m, were further converted to industry standard VHDL, simulated and as well verified.

- The tertiary objective was to implement a firmware and to propose a low-cost space-borne
GPS receiver roadmap. Three of the five generated VHDL algorithms were compiled to
programmable firmware using Altera Quartus Il. Algorithms in fixed-point do enable low-
cost design; thus, the proposed device is the Xilinx low-cost space-grade Virtex-5QV FPGA.

- The literature review was conducted to analyse and select the most suitable acquisition and
tracking techniques; in terms of efficiency, robustness and the ease to implement and
develop, in-line with the research objectives. From the analyses, the parallel code phase
search and the combined carrier and robust code tracking techniques were implemented to
give a high-dynamics Doppler search bin exceeding +100kHz, demonstrating LEO viability.

- The methodology employed was to utilised Matlab R2013a HDL coder workflow and free

development tools from Altera. The rationale was to use the chosen development platform to

improve open-source GPS receiver algorithms and use in high-dynamics LEO GPS receiver.
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- The results substantiated that, if the software-implementation post-processed a real GPS pre-
captured dataset to correctly compute position, time and date; and if some of these
algorithms were as well generated in VHDL and yielded accurate results as their Matlab
floating-point equivalents, then a valid FPGA firmware implementation, in-line with the
research tertiary objective is feasible, as justified by the results in Sections 5.2.3 and 5.2.4.
However, the failures in the conversion processes revealed limitations in the methodology.
Furthermore, the GPS receiver velocity computation was not viable, because a pre-captured
static GPS signal was used. That is, the GPS receiver (i.e. the antenna) has to be dynamic.
Velocity can only be computed (and accurately), provided the receiver’s antenna is moving.

- The research contributions entail a workflow that utilises, tailors and improves free open-
source GPS algorithms, in terms of efficiency for space application, using free and low-cost
tools and devices. The GPS receiver algorithms can be converted to three equivalent types.

6.2 Recommendations

In what follows are recommendations i) to issues encountered and ii) for future research.

6.2.1 Recommendations to issues encountered

Problems were encountered during implementation and the following solutions are suggested:

- Always use the latest and valid software tools and toolboxes to mitigate bugs and in-
compatibility issues. Additional benefits include more features and improved support.

- Ensure Matlab R2013a constructs and functions to be used support HDL code generation.
A list of supported constructs and functions is found in Matlab help. Re-structure the
Matlab algorithms listed in Section 9.4 to coding styles suited for HDL code generations.

- For Matlab built-in functions that do not support HDL code generation and their use is
imperative; examine the Matlab code in great details and implements it as a black-box
approach and try re-coding it in VHDL. The presented Matlab to HDL workflow supports
legacy implementations of VHDL algorithms, alongside those automatically generated.

- If an algorithm cannot be converted due to its size, rescale it to smaller modules and keep
the coding in each as simple as possible. Test each discretely and later integrate. Avoid
using constructs such as while loops and if statements. Preferably use for loops and case
structures respectively. Employ the use of Matlab system objects (instead of Matlab
functions) if possible. Algorithms implemented using Matlab system objects are more

efficient in the coding structure and as a result, executes faster and occupies less memory.
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- If issues persist, consider re-starting Matlab and perhaps re-booting the computer. The
HDL coder of Matlab version R2013a (in my case) had issues of not updating (the added
or new design file fails to replace the previous one and was giving conversion issues).

The work-around was to re-launch it (close and re-open it) prior to any new conversions.

6.2.2 Recommendations for future research
The research accomplished in this thesis, sets the foundation for the following research topics:

- Implement an equivalent Matlab fixed-point software-defined GPS receiver unit.

- Implement an equivalent Simulink fixed-point software-defined GPS receiver unit.

- Implement an equivalent VHDL and or Verilog firmware-defined GPS receiver unit.
- Implement a complete functional space-borne GPS receiver unit — post processing.

- Implement a complete functional space-borne GPS receiver unit — in real-time

- Implement and design a physical space-borne hardware-defined GPS receiver.

- Implement and design a physical low-cost space-borne hardware-defined GPS receiver.

Other areas of research (software/firmware/hardware) which can emanate include the following:

- A complete space-borne GPS receiver unit that do both orbit and attitude determinations:

that is, it should be able to calculate position, velocity and as well determines orientation.

- In-situ ionospheric research: that is, the GPS receiver in real-time, should be able to use

the ionospheric data found in the decoded navigation message to classify the ionosphere.

- An onboard computer which implement the space-borne GPS receiver; either as an
onboard hardware module or as an in-built real-time operating system task, which can be

remotely upgraded (bug fixes /new functionalities) by the ground-station during overpass.

- Alow-cost onboard computer in-cooperating all the above GPS features or research.

Complete in this regard means, the GPS receiver should has the GPS front-end and antenna

integrated as well (as a discrete hardware or software-defined) with the correlator and base-band.

Low-cost in this regard means the GPS receiver is made affordable for research purpose.
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APPENDIX A

GPS SIGNAL L1 C/A ACQUISITION AND TRACKING TECHNIQUES

7.1 Introduction

Acquisition and tracking are the two fundamental tasks performed by any GPS receiver
correlators (be it hardware or software-defined types). Several GPS signal acquisition and
tracking techniques have been researched and implemented over the years, due to challenges
(GPS sources of errors) encountered by GPS receivers and the various fields of applications
involved — especially in high-dynamics applications, geodesy and survey. The techniques make
use of one or more mathematical properties of the GPS signal. Depending on the GPS signal
parameters exploited, a technique can be considered as simple or sophisticated. Each of the GPS
signals acquisition and tracking techniques have advantages and disadvantages that influence the
quality of a GPS receiver. In light of this, GPS receiver correlators acquisition and tracking
algorithms were examined and the theoretical aspects are briefly discussed in what follows. The
first and second sections respectively cover the acquisition and tracking techniques that were

analysed to choose the most viable based-on ease of implementation and performance efficiency.

7.2 GPS L1 C/A Signal Acquisition Techniques

These techniques are used to perform GPS L1 C/A signal acquisition and include the followings.

7.2.1 Mitel GP2000 Acquisition and Tracking Algorithms

The obsolete Mitel GPS correlator chipset was one of the most widely used in most space-borne
GPS receivers as its popularity availed itself to open-source GPS receiver platforms. It employed
the basic traditional technique of acquiring and tracking GPS L1 C/A signal, which is inefficient
in terms of execution speed and memory usage. Its GPS correlator architect performs a search in
both the code phase and carrier frequency planes across all 1023 code phases at a search rate of
0-25 chips/ms to a series of frequency bins in 500Hz steps (for a 10 kHz Doppler) until the GPS
signal is detected. Signal detection occurrence then closes the code and carrier tracking loops.
Code tracking is achieved using a Phase Locked Loop (PLL) since PLLs are good at maintaining
lock, due to their very narrow loop bandwidths. However, these same properties make them poor
at acquiring lock without help from Frequency Locked Loop (FLL). Carrier tracking is achieved
using FLLs. FLL offers superior dynamic performance, robustness and insensitivity to
interference over PLLs; thus, the carrier tracking loop aids the code tracking loop to yield carrier

cycles and phase measurements, which smoothes the code pseudo-ranges (Mitel, 1998: 14 & 15).
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7.2.2 Tong or Serial Search (Time Domain Correlation) Acquisition Technique

This section covers parts of the sequential search technique not addressed earlier. Kaplan and
Hegarty (2006: 223-226) refer to this technique as a Tong search detector, which is based-on
sequential variable dwell time detection. In Borre et al. (2007: 76 - 78), this method is popularly
called serial search. It is common in signal acquisition in CDMA systems to which GPS belongs.

With this approach, the incoming GPS signal is first multiplied by locally generated GPS PRN
code sequences, corresponding to the respective GPS satellites of interest (practically, it is often
advisable to generate replica signals for all 32 GPS satellites, since there is no prior knowledge
of which GPS satellite is operational, except only after acquisition), followed by multiplying the
outcome with a locally generated GPS carrier signal. These processes are respectively called
code and carrier wipe-offs and what remains of the GPS signal is just the GPS navigation
message. Since the GPS In-phase (I) signal generated at the satellites will not necessarily
correspond to the demodulated (I) component (because the phase of the received signal will be
unknown due to GPS error sources), the basis is to have an (1) and Quadrature (Q) components
of the received GPS signal. These two are respectively achieved by multiplying with a locally

generated GPS carrier signal and a 90° phase-shifted version of the locally generated carrier.

The (1) and (Q) signals are then integrated over 1ms, corresponding to the length of a C/A code
(i.e. 1023 chips / 1023 kHz = 1ms), and finally squared and added. Ideally, the GPS signal power
should be located in the (I)-arm of the signal, as the C/A code is only modulated onto that.
However, in practice, it is at times located in the (Q) signal part of the demodulated GPS signal
and to ascertain GPS signal detection, it is imperative to investigate both the (1) and (Q) signals.

In summary, GPS signal acquisition using serial search technique involves first generating
respective GPS PRN codes followed by carrier frequency generation, then integration, squaring

and finally summation of all the (1) and (Q)-arms results. Figure 7.1 summaries this technique.

Figure 7.1: GPS signal acquisition serial search technique
(Adapted from Borre et al., 2007: 76)
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7.2.3 Parallel Frequency Space Search (Delay & Multiply FFT) Acquisition Technique

Accomplishing a complete GPS signal acquisition using serial search algorithm do consumes
time and memory — as it requires sequentially searching through all possible values of both code
phases and carrier frequencies (i.e. 1023 x 41 = 41943 combinations) of all 32 GPS SV.
Therefore, if one of the two parameters (code phase or carrier frequency) could be removed from
the search procedure or if possibly, implemented concurrently, the procedure performance would
increase considerably (Borre et al., 2007: 78 - 81). Hence the name, parallel frequency space
search acquisition technique. This method is briefly discussed next and abridged in Figure 7.2.

As the name suggests, the search of the frequency parameter is parallelised by applying Fourier
transforms to perform a transformation from time domain into frequency domain. Akin to the
serial search technique, a locally generated GPS PRN sequence (with a PRN code corresponding
to each specific GPS satellite and a code phase between 1023 chips i.e. 0 to 1022 chips) is first
multiplied by the incoming GPS signal. The resulting signal is then transformed into frequency
domain by either a Discrete Fourier Transform (DFT) or a Fast Fourier Transform (FFT). FFT is
the faster of the two but requires a radix-2 length input sequence (i.e. 2", where n is a positive
integer value). Conversely, if DFT is utilised instead, the accuracy of the determined frequency
depends on its length and this corresponds to the number of samples in the data analysed.
Contrary to the serial search technique, the parallel frequency space search only steps through
the 1023 different code phases, at the expense of a frequency domain transformation with each
code phase. Therefore, by parallelising the frequency space search, it should be viable to do a

faster GPS signal acquisition technique implementation, compared to the serial search technique.

By aligning the incoming GPS signal and the locally generated PRN codes, the FFT output will
have a significant peak at the IF plus Doppler offset frequency. The possible peak frequency of

all the components is finally found by computing the ahsolute values, as illustrated in Figure 7.2.
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Figure 7.2: Depiction of parallel frequency space search technique
(Adapted from Borre & Strang, 2012: xxix)
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7.2.4 Parallel Code Phase Search (Circular Cross-correlation) Acquisition Technique

While the serial search technique involves correlating both GPS PRN code phases and carrier
frequencies (1023 x 41), the parallel frequency space search technique entails just the GPS PRN
code phase (1023), as it eliminates the necessity to search through all 41 possible frequencies.
Therefore, if the acquisition is parallelised in the code phase dimension, only 41 steps will be
performed compared to the 1023 in the parallel frequency space search algorithm and 41943 in
the serial search algorithm. Hence, this technique is usually referred to as parallel code phase
technique. Instead of multiplying the input signal with a PRN code with 1023 different code
phases as in the other two acquisition techniques, it is more effective to perform a correlation
with the incoming GPS signal and a PRN code, without shifting the code phases. This type of

correlating process is termed circular cross-correlation (Tsui, 2005: 139; Borre et al., 2007: 82).

As summarised in Figure 7.3, the incoming GPS signal is first multiplied by a locally generated
carrier signal and a 90° phase shifted version; to respectively yield the (1) and (Q) components,
that are Fourier transformed to a complex input signal. Next, a generated PRN code is Fourier
transformed into frequency domain and the result is complex conjugated. The Fourier transforms
of the input signal and that of the complex conjugate of the generated PRN code, are then
multiplied and the result of the multiplication is then transformed into time domain by an Inverse
Fourier Transform (IFT). Finally, an absolute value is computed (because DFT / FFT / IFT give
complex outcomes) and the output is the correlation between the input signal and the PRN code.
If a peak is present in the correlation, the index of this peak marks the PRN code phase of the
incoming GPS signal. The Fourier transform of the generated PRN code must only be performed
once for each acquisition — one Fourier transform and one IFT for each of the 41 frequencies.
This technique computational efficiency relies on the implementation of these functions, since
the PRN code phase is more accurate compared to the other techniques, as it gives a correlation
value for each sampled code phase (i.e. for a 10MHz sampler, a sampled PRN code has 10000

samples, which translates to a code phase accuracy of 10000 distinct values rather than 1023).

Figure 7.3: Portray of parallel code phase search algorithm
(Adapted from Borre et al., 2007: 83)
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7.2.5 Block (Non-coherent Integration) Acquisition Technique

The acquisition techniques presented thus far are considered to use coherent integration, which
means the acquisition is performed continuously within a specified duration, usually 1ms period.

Since circular cross-correlation performs acquisition in just 41 steps, it is evident that, it is the
fastest; however, it is based-on acquiring 1ms of data, which at times cannot detect a weak
signal. Hence, longer data records are needed to acquire a weak signal and one way to process
more data is through non-coherent integration. For example, if 5ms of data are used, the data can
be divided into five 1ms blocks. Each 1ms of data are in turn processed separately and the results
are added together in the end; hence, the name blocks acquisition. The cost of using this
technique is simply the extra number of operations involved, apart from the last stage addition.
Non-coherent integration offers improvement compared to the coherent method, which however
uses fewer operations compared to the non-coherent method (Tsui, 2005: 144; Shi et al., 2009).

Additional advantage of this technique is the improvement in signal to noise ratio and its ability
to keep performing acquisition on successive 1ms of data and summing the results. The final
result is compared with a set threshold and whenever the final result exceeds the threshold, the
incoming GPS signal is detected. A maximum data length can be chosen and if an incoming GPS

signal cannot be detected within this data length, the acquisition process will automatically stop.

By using this approach, strong incoming GPS signals can be detected in successive 1ms of
received GPS data, but weak signals will take a longer data length. Furthermore, if phase shift or
bit transition occurs in GPS navigation data during acquisition, only the 1ms of data with the
phase shift will be affected and the other half or successive 1ms of data will not be affected. As a

result, this technique mitigates bit transitions in the middle of a navigation message acquisition.

Bit transition normally signifies the start of a new GPS navigation message and should this occur
in the course of a 1ms navigation data message acquisition, the already acquired data will be
corrupted (since it will be incomplete) and will requires re-acquisition; otherwise, the navigation
solution based-on this corrupted data will be wrong. The benefits of block acquisition technique

often render its deployment in conventional hardware-defined GPS receivers (Tsui, 2005: 144).

Besides being utilised in GPS signal acquisition, the non-coherent integration technique is also
used in GPS signals tracking. However, prior to applying non-coherent integration, coherent

integration must first be implemented and is discussed under tracking techniques in Section 7.3.
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7.2.6  Acousto-optic Acquisition Technique

In Bazzi et al. (1993), a GPS correlator, based-on the acousto-optic technique was proposed and
implemented. The technique utilises a laser wave as a spatial carrier for the GPS signals to be
processed and both GPS signals are confined in an acoustic (bulk or surface) delay-line. The
main challenge being fitting the Ims GPS PRN code period into a 25us aperture acoustic Bragg
cell. This issue was addressed by developing and implementing a technique based-on time
compression. Benefits of this approach include using a single Doppler-frequency search loop that
yields a very rapid (speed of light) GPS signal acquisition without any code phase search needed,
since the time of GPS signal arrival is obtained quasi-instantaneously once Doppler is resolved.
Refer to Figure 7.4 for details regarding this method and Figure 7.5 for the acquisition system.
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Figure 7.4: Space integration acousto-optic correlator principle
(Adapted from Bazzi et al., 1993)
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Figure 7.5: Acousto-optic GPS receiver acquisition system
(Adapted from Bazzi et al., 1993)
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7.2.7 Multiple Correlators Bank Acquisition Technique

According to Akopian et al. (2006), a more efficient way for acquiring GPS signals is to use a
bank of correlators consisting of several stages of coherent and non-coherent integrations blocks
with detection decisions. In this approach, they developed massive correlator structures with
different distributions of initial search and validation tasks. This is depicted in Figure 7.6 and
consists of two sections, namely Massive Correlator Banks (MCB) and Supplementary
Correlator Banks (SCB). This approach requires a conventional massive correlator to check all
possible options, leading to performing unnecessarily computations. However, the rationale to
improve the technique was to exclude unnecessary fractions of search options after short
integration lengths. Once a decision is made for most of the search options, this enables the MCB
architecture to stop at the processing stage and transfers the task to check the remaining options
to a smaller correlator bank (SCB). The MCB is now available to check other sets of feasible
(code phase and frequency) pairs. Furthermore, MCB and SCB may utilise other algorithms with
different integration methods and lengths, due to structural separations (Akopian et al., 2006).
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Figure 7.6: Multiple correlators bank acquisition technique
(Adapted from Akopian et al., 2006)

7.2.8 Extended Multiple Correlators Acquisition Technique

Acquisition can be the most time-consuming operation if using a serial search technique.
Although this is mitigated using faster techniques such as multiple correlators, matched filters
and FFT; their operational complexity tends to consume too much power. To address the
problem of acquisition time and complexity, the Extended Multiple Correlator (XMC) was
postulated by Xiaowen et al. (2010). It simply consists of a cpombination of three variations of the

|
locally generated PRN codes to correlate the incoming GPS gignal, as illustrated in Figure 7.7.
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Figure 7.7: Single arm of the XMC acquisition technique
(Adapted from Xiaowen et al., 2010)
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7.2.9 Matched Filter Correlator Acquisition Technique

The matched filter technique was proposed to improve the GPS signal acquisition time. The
algorithm calculates code phase (1) correlation when the buffer becomes full, from accumulating
successive incoming GPS signal samples in buffers or shift registers. The correlation of (1) + 1 is
calculated by shifting into the buffer new data samples that are received while at the same time,
the oldest stored samples are shifted-out. The correlation outcome of subsequent code phases can
be rapidly determined, requiring 977ns for each code phase, since the majority of the incoming
data samples are saved in memory. However, to save the incoming GPS signal samples, it
requires an additional 1023-register buffer and the buffers must be initially filled before any
correlation results can be determined, so a further 1ms should be added to the total acquisition
period. Since it requires the same number of additions and multiplications to complete the PRN
1023-phase acquisition, its computational complexity is equivalent to the serial search technique
(El-Rayis et al., 2010; Ta et al., 2012). Figure 7.8 portrays the matched filter acquisition method.

The match filter technique presented thus far is known as Conventional Digital Matched Filter
(CDMF) and other variances with improved acquisition time include the Differential Digital
Matched Filter (DDMF) and the Segment Processing Digital Matched Filter (SPDMF).
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Figure 7.8: Portray of matched filter acquisition technique
(Adapted from Ta et al., 2012)

7.2.10 Reconfigurable Instruction Cell Array Acquisition Technique

El-Rayis et al. (2010), introduced a new correlation engine targeting critical GPS positioning
performance. The correlator processor is based-on the Reconfigurable Instruction Cell Array
(RICA) paradigm. The correlator engine inherits various capabilities and advantages that are
characteristic of the architecture of digital match filter correlators. Being a DSP-like correlator, it

offers high level of programmability, bundled with a reconfigurable data-path and parallelism.
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7.2.11 Averaging Correlator Acquisition Technique

The averaging method computes the mean of the incoming 5000 GPS samples to 1023 averaged
samples. The 1023 new samples may signify the original chips of the C/A code, if the initial
point of the averaging operation is selected in the right position. A full C/A code is represented
by 5,000 samples and either four or five samples each are utilised to represent its chips.
Therefore, the correct averaging initialisation point is one of five successive samples, since the
C/A code is circular. As a result, this will generates 5 of the 1023 averaged-samples codes and
one of the generated sequences is regarded as a good estimation of the original C/A code (or the
best recovery). This best recovered averaged sequence will constitutes the strongest peak
amongst the other four and approximates the code phase in chips (i.e. 1/1023 ms). The resultant
five correlation functions are a good ballpark figure of the 5000-points correlation function and
as a result, can be used with a triangle fitting to refine the code phase (Alageeli et al., 2003).

With this technique, the acquisition time should theoretically be reduced, as calculating five
1023-points FFTs and IFFTs requires less time (in software and in hardware) than the 5,000-
point FFTs and IFFTs. However, 1023-points FFT (or IFFT) is not a power of two, which as a
result, makes its implementation difficult. Instead of mitigating this issue with zero-padding-
based solution which is complex, Alageeli et al. (2003) approach is to change the down-sampling
rate from 1023 to 1024, which consequently down-sampled (or averaged) the 5000 samples to
1024 points. Similarly, the local PRN code is up-sampled to 5000 and then down-sampled to
1024 points. Therefore, the averaging correlator uses 1024 averaged samples and 1024-points
modified C/A codes. This modified C/A code is as well considered a unique code relating to the
chosen C/A code, since it cannot be generated from a different C/A code. According to Alageeli
et al. (2003), the outcome of the technique is a rapid and easy way to implement the acquisition

algorithm, which as well has latent real-time acceptable accuracy. Figure 7.9 depicts this method.
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Figure 7.9: lllustration of the acquisition process
(Adapted from Alageeli et al., 2003)
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7.2.12 Bayesian Acquisition Technique

With this appraoch, O’Mahony et al. (2012) explore Bayes’ probability theorem to predict the
Doppler frequency in weak incoming GPS signals, by evaluating the noise distribution at given
correlator outputs at sample points throughout the search space. Tests conducted by O’Mahony
et al. (2012) indicate faster performance compared to other conventional acquisition techniques.

7.2.13 Wavelet De-noising Acquisition Technique

Similar to the Bayesian technique that focused on analysing the noise content of weak incoming
GPS L1 C/A signals and predicting the Doppler frequency, Tian and Yang (2008), applied
wavelets de-noisng to conduct statistical analysis and to estimate the derivation of noise. The
algorithm first made use of correlation and differential correlation methods to acquire very weak
GPS L1 signals, followed by noise derivation estimate and noise model establishment and finally
applying the wavelet de-noising process. This approach has the advantage of increasing the
sensitivity of weak GPS signals (decrease background noise) without increasing integration time.

7.2.14 Lifting Wavelet Acquisition Technique

Faced with the challenges of acquiring weak GPS signals, Djebouri et al. (2006), proposed a
substitute correlation algorithm, by applying lifting wavelet decomposition to develop a robust
GPS signals acquisition system that improved acquisition performance and maintain continuity
of service over noisy transmission channel. Their goal was to realise a robust, accurate and less
complex GPS L1 signals acquisition system and to facilitate its implementation. This technique

outperforms both FFT search and other signal decimation schemes in hostile/noisy environments.

7.2.15 Wavelet Transform Acquisition Technique

According to Jianguo et al. (2010), incoming GPS L1 C/A signals are occasionally very weak
and susceptible to various sources of interference. Multipath and jamming are examples of
interferences which change incoming GPS L1 C/A signals transiently and make it difficult to
correlate. With wavelet transform being an ideal transient analysis tool, Jianguo et al. (2010)
employed it to analyse the correlation power of GPS signals. Using a single reflection multipath
model, wavelet transform is used to analyse the influence of multipath signals on the correlation

function of PRN C/A code and can efficiently extract multipath from received GPS L1 signals.
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7.3 GPS L1 Signal Tracking Techniques

Once a GPS receiver’s acquisition stage has aligned the received and locally generated codes
within less than half a chip period, a fine closed-loop synchronisation known as tracking takes
over and keeps the two codes aligned and locked. If for some reasons the tracked GPS signal
loses lock, the phenomenon is termed cycle slips and the phase measurement has to re-start.
Generally, the tracking system in a conventional GPS receiver consists of a PLL or FLL for
carrier phase tracking and a DLL for code tracking. The PLL and or FLL, generate carrier phase
measurements, which are utilised solely or to smooth the raw pseudo-range measurements from

the DLL. Similar to acquisition, tracking techniques also perform carrier and code wipe-offs.

FLL and PLL are respectively non-coherent and coherent systems (Gleason & Gebre-Egziabher,
2009: 34). A non-coherent FLL delivers a more robust tracking performance in high-dynamics
environments and in very weak signal conditions. However, in order to enable precise pseudo-
range rate, integrated Doppler measurements and carrier phase positioning; a GPS receiver must
as well track the phase of the incoming carrier. Hence, a coherent PLL system is also required.
Common practice is for the PRN code sequence to be acquired and tracked using a DLL. This
can be achieved when implementing either non-coherent FLL or coherent PLL carrier tracking.
However, different correlations and discriminators are required for each system. The dot-product
discriminator is a common mechanism suitable for tracking with both coherent and non-coherent

systems (Gleason & Gebre-Egziabher, 2009: 37). Figure 7.10 depicts tracking of a GPS signal.
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Figure 7.10: Hllustration of a basic GPS receiver tracking loop
(Adapted from Borre et al., 2007: 93)
The damping ratio and noise bandwidth affects a GPS receiver correlator tracking performance.
A large noise bandwidth implies that the tracking loop can quickly lock to the real frequency but
has a fairly vast frequency noise in the locked state and can lose lock easily, especially in high-
dynamics. With a smaller noise bandwidth, it takes some time before the tracking loop is locked

to the frequency but once locked, the frequency remains stable. A trade-off is therefore required.

Tracking techniques are used to perform GPS L1 C/A signal tracking and include the followings.
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7.3.1 PLL and Costas Loop Carrier Tracking Techniques

As mentioned, a GPS signal is a bi-phase PRN coded signal, as a result, changes in carrier and
phase caused by Doppler (relative motion of GPS satellites and receiver), multipath and the
atmosphere; have to be tracked. The tracked outputs are coupled together and are discussed next.

As shown in Figure 7.10, the carrier frequency loop receives an (1) signal modulated only by the
navigation data as the PRN C/A code is wiped-off or stripped from the input signal. To track this
carrier frequency, a PLL ensures an exact carrier frequency replica is generated to successfully
demodulate this navigation data, which is the essential goal. The PLL discriminator block finds
the phase error in the locally generated carrier replica. The output of this discriminator, which is
the phase error or a function of it, is then filtered and fed-back to the Numerically Controlled
Oscillator (NCO), to adjust the locally generated carrier frequency. In this way, the local carrier
frequency could be an almost exact replica of the carrier frequency in the incoming GPS signal.

In Kaplan and Hegarty (2006: 164 - 175), the drawback of ordinary PLL is it sensitivity to 180°
phase shifts, that is affected by GPS navigation bit transitions. Therefore, for a PLL to be used in
GPS receiver correlator, it has to be immune to 180° phase shifts. This limitation is mitigated
with a modified PLL, known as Costas loop, shown in Figure 7.11. It consists of an (I) and a
(Q)-arm. The outputs from these arms are correlated with the received GPS signals which are
then filtered and their phases compared against each other through an arctangent comparator and
feedback to the NCO via a carrier loop filter. A Costas PLL is unaffected by a 180° phase shift,
as well as navigation bit or phase transitions; thus, it is the preferred PLL for use in GPS receiver
correlator. The phase error is minimised when the correlation in the (Q)-arm is zero and the
correlation value in the (I)-arm is maximum. That is, the discriminator outputs are zero when the
real phase error is 0 and £180°; as a result, the Costas loop is in-sensitive to 180° phase shifts. Of
the Costas discriminators, the arctan is the most precise, though the most time consuming. Costas

loop purpose is to conserve if not all, then most of the received GPS signal power in the (1)-arm.
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Figure 7.11: Illustration of a Costas PLL
(Adapted from Plausinaitis, 2009a: 17)
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7.3.2 Basic DLL Early-Late Code Tracking Technique

The purpose of the code tracking loop is to keep track of the code phase of a specific PRN code
in the incoming GPS signal. The code tracking loop output is a perfectly aligned replica of the
PRN code. The code tracking loop in GPS receiver is a DLL, known as an Early-minus-Late
tracking loop. The rationale behind the DLL is to correlate the received GPS signal with three
replicas of the PRN code; designated as the Early (E), the Prompt (P) and the Late (L) codes.
According to Borre et al. (2007: 96 - 100), the DLL can be modeled as a linear PLL and thus, the
performance of the loop can be envisaged based-on this model. In other words, the carrier and
code loop filters design could be similar and just the parameter values are configured differently.
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Figure 7.12: Simple DLL_E-P-L code tracking principle
(Adapted from Plausinaitis, 2009b: 7)

GPS PRN code tracking starts by converting the received C/A code to baseband; whereby, the
incoming GPS signal is multiplied with a perfectly aligned local replica of the carrier frequency,
followed by multiplication with the three (E), (P) and (L) code replicas. These three replicas are
nominally generated with a spacing of < +1/2 chip. After the second multiplication, the three
code replicas outputs are integrated and dumped. The outcome of this process is a numerical
value signifying how much a specific code replica correlates with the code in the incoming GPS
signal. The three correlation outputs: E (), P gy and L ;) are then compared to determine the one
that yields the highest correlation. Figure 7.12 depicts the (E), (P) and (L) concept. Figure 7.13
illustrates the process. In (a) Py is half a chip early (unaligned), so the PRN code phase must be
decreased (i.e. the code sequence must be delayed). In (b) P()is now a quarter chip unaligned, so
the PRN code is decreased again. In (c) P, is perfectly aligned and thus gives peak correlation

indicating the PRN code phase is properly tracked. In (d) Pgyis a quarter chip late - unaligned.

Figure 7.13: DLL_E-P-L code tracking process
(Adapted from Kaplan & Hegarty, 2006: 177)
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7.3.3 Robust DLL Early-Late Code Tracking Technique

In Figure 7.12, the DLL with just the three in-phase E-P-L arms is optimal when the incoming
GPS signal is locked in phase and frequency; however, when there is a phase error on the local
carrier frequency, the signal will be noisier, making it more difficult for the DLL to stay locked
unto the PRN code. Hence, a robust GPS receiver correlator DLL shown in Figure 7.14 is used.

Figure 7.14: Robust DLL_E-P-L code tracking principle
(Adapted from Borre & Strang, 2012: xxxiii)

In this robust approach, the PRN code is tracked on both the (1) and (Q) components of the
incoming GPS signal. In the initial state of the carrier tracking loop, the carrier phase of the
tracked GPS signal is unknown. As a result, the energy from the correlations is likely to be
situated in the Q-arm of the correlator. Once the carrier tracking loop successfully tracks the
carrier phase, most of the energy will be located in the I-arm. The benefits are (i) PRN code
tracking is faster as it provides better conditions to the carrier tracking loop and (ii) it does not
depends on the phase in the local carrier. If the incoming GPS signal is in-phase with the local
carrier, all the energy will be in the I-arm but if the local carrier and incoming phase are drifting,

the signal energy will alternate between the I-arm and Q-arm (Borre & Strang: 2012: XXxv).

Lastly, the outputs from the six correlators (x3 I-arm and x3 Q-arm) are combined via a tracking
code loop discriminator and feedback to the PRN code generator, to properly adjust the code
phase of the generated PRN code. The normalised early-minus-late power discriminator is
suitable because it makes the code tracking loop independent of the carrier tracking loop, as it

estimates correlation in both the (1) and (Q) branches of the code tracking loop (Shi et al., 2009).

It is essential to note that the space between the E-P-L codes determines the noise bandwidth in
the DLL. If the discriminator spacing is >1/2 chip, the DLL can handles wider dynamics and be

more noise robust / vice versa. This is autonomously done in advanced GPS receiver correlator.
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7.3.4 Combination of Carrier and Robust DLL Code Tracking Techniques

Sections 7.3.1 to 7.3.3 depict the details of the carrier and code tracking loops separately.
However, the carrier and code tracking loops are usually combined to reduce computational load.
They are often coupled as one, since the PRN code replica used to wipe-off the PRN code in the
carrier tracking loop, comes from the code tracking loop. Similarly, the two local carrier replicas
used to wipe-off the carrier frequency in the code tracking loop, comes from the carrier tracking
loop. Figures 7.15 and 7.16 depict two different approaches for implementing the GPS signals
carrier and code tracking methods. PLL maths analysis in correlation is covered in Appendix B.

Intcgratc
& dump

Integrate I Ir
& dump |

Integrate
& dump

z;

Code loop
discriminator

Integrate
& dump

— Intcgrate I
& dump I T2

__[ Integrate
£ dump

- - - 1
NCO carrier = - Carrier loop [
gencrator discriminator |

Figure 7.15: Combined carrier and robust DLL code tracking approach 1
(Adapted from Borre & Akos, 2005: 4)

carrier
frequenc
¢ 9 Y

Figure 7.16: Combined carrier and robust DLL code tracking approach 2
(Adapted from Tsui, 2005: 168)

178



7.3.5 Block Adjustment of Synchronising Signals Tracking Technique

The tracking techniques discussed so far are conventional and requires adjusting certain
parameters (phase, frequency and code) of the GPS signal. In the Block Adjustment of
Synchronising Signals (BASS), the locally generated carrier frequency, is updated at most every
10ms, because the carrier frequency changes very slowly for a stationary receiver, contrary to the
update rate of a dynamic GPS receiver, such as that on a CubeSat. The three outputs from the
BASS technique are (i) the phase angle, obtained from the prompt code and is computed every
1ms (ii) the C/A code, which is used all the time once generated and (iii) the fine time resolution,
that is obtained from the early and the late outputs of the code loop (Tsui, 2005: 170 - 175, 181).

The BASS technique uses the three tracking outputs of phase angle, the beginning of the C/A
code and the fine time resolution to calculate the GPS receiver’s position. The C/A code shift
beginning can be checked with an update rate of 10ms, during which, the input data must be
shifted one data point, either to the left or to the right to align the locally generated code, if the
misalignment between the input data and the locally generated C/A code is in excess of 100ns.
The actual starting points, which are referenced for every 10ms to the input data points of the
received GPS C/A code, must be maintained, as these are used to find the beginning of the sub-

frames when decoding the recovered GPS navigation data message (Tsui, 2005: 180 - 182).

The BASS technique discussed, is based-on tracking 1ms of C/A code and is recommended for
tracking strong signals. To track weak GPS signal using BASS, more than 1ms of data must be
tracked to improve sensitivity and the maximum data length that can be tracked coherently
without using complicated processing, is 20ms, since GPS navigation data is 20ms (1/50 Hz) in
length. Tracking of data > 20ms might encounter phase transitions, which will likely corrupt the
already tracked data. This drawback can be mitigated by using multiple 20ms data and finding

successive phase transitions in the process but at the expense of complexity (Tsui, 2005: 183).

7.3.6 Combination of Squared Correlators Tracking Technique

According to Falletti et al. (2012), a Combination of Squared Correlators (CSC) outputs, can be
used as a DLL discrimination function for multiband GNSS receivers, to alleviate multipath
effects in GPS signals tracking. Their approach can be defined in a coherent and non-coherent
formulations and it consists of four correlators per channel plus the prompt correlator. Their

technique can be compared with the double-delta architecture and the StrobeTM discriminator.
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7.3.7 Nonlinear Code Tracking Filter Technique

To alleviate unintentional and intentional jammings, as a result of relatively low signal power at
the GPS receiver antenna, due to sub-optimal code tracking loop designs which do not account
for measurement non-linearities near loss-of-lock; Gustafon et al. (2009), developed a non-linear
code tracking filter. Their architecture is based-on a thorough minimum-variance solution of the
navigation problem, as opposed to using pre-specified tracking loop architectures. Their filter
implementation can be viewed in terms of the classical notions of error detector functions, which
depends on Signal-to-Noise Ratio (SNR) and Root Mean Square (RMS) code tracking error.
Detector functions are defined for both code tracking error and code tracking error variance and
due to a measurement-dependent term in the covariance calculations, their filter responds to
rapidly varying jammer power more quickly than current designs. Extended-range tracking is
utilised to produce linear state vector and error detection functions, with optimal response within

the maximum limit of the correlator range, which as well lessens the need for re-acquisitions.

Pertaining to GPS code tracking, this technique utilised Gaussian moment approximation, in
which, algorithms for approximating estimation of the conditional mean and covariance matrix
of the state vector can be deduced if the measurement history is given. The ultimate goal is to
estimate near loss of code lock and the outcome from implementing the technique. Gustafon et
al. (2009), also predicted significant anti-jamming improvements relative to designs from high-
fidelity simulations and hardware demonstrations. Furthermore, computational requirements in

their technique are comparable to extended Kalman filter and vector tracking loop techniques.

7.3.8 Kalman Filter Tracking Loop Technique

Song et al. (2012), assessed the design of second-order, third-order, second-order IMU-assisted-
based and Kalman tracking loop filters and deduced from the simulated results that, the Kalman
tracking loop filter, is the best to accurately track dynamic signals as well as remove most of the
inteference in the incoming GPS signal. The GPS signal tracking loops can as well be optimised
for corresponding improvement in noise. In Kalman filter, the discriminator output is essentially

the filter observation and the tracking error is the filter state variables. Figure 7.17 illustrates this.
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Figure 7.17: Basic illustration of a Kalman filter tracking loop concept
(Adapted from Song et al., 2012)
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7.3.9 Extended Kalman Filter Tracking Technique

In an effort to mitigate short-comings in conventional DLL, PLL and FLL tracking loops based-
on the Scalar Tracking Loop (STL) principle, Peng et al. (2012), implemented a Vector Tracking
Loop (VTL) based-on Extended Kalman Filter (EKF) with adaptive covariance matrices. The
uniqueness in this approach is that, both the STL and VTL are implemented to utilise the results
from the VTL to assist the STL, once an error in the scalar loop is detected during tracking.

In traditional STL, GPS signals from each satellite are process separately and the different
channels tracking results are then merged to estimate the navigation solutions. The performance
of STLs are limited by the filter coefficients, such as filter orders and noise bandwidths.
Furthermore, STL ignores the inherent relationship between the navigation solutions and the
tracking loop status. In this regard, a STL is more like an open loop system and yields poor
performance when GPS signal outages occur; due to scintillation, interferences and Doppler.
Conversely, a VTL provides a deep level of integration between signal tracking and navigation
solutions in a GPS receiver; with the most prominent benefits being the increased interference
immunity, robust dynamic performance, the ability to operate at low signal power and short
signal outages. As shown in Figure 7.18, the PVT states of the receiver are used as the state
vector for the Kalman filter. The code phase can be guessed by the distance between the SV and
the receiver, while the error in the pseudorange measurement can be modeled as a Gaussian
distribution and the Doppler can be approximated by the GPS receiver and SVs relative motion.
To validate the result, the performance of VTL is compared with the traditional STL on three
different data sets: (i) GPS data with strong scintillation impacts gathered in the previous solar
maximum (ii) raw GPS RF data with short signal outages and (iii) high-dynamics GPS data with
long interval signal outages from a GPS simulator. The results validated the performance
improvement of the VTL over scintillation impacts and showed that, with the availability of GPS
satellites ephemerides, the VTL can maintain signal lock during prolong intervals of GPS signal

unavailabilities and the pseudo-range approximation can be within one PRN code chip accuracy.

Figure 7.18: lllustration of a VTL assisting tracking loop
(Adapted from Peng et al., 2012)
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7.3.10 Inertial Navigation System Tracking Technique

As an alternative approach to the problem of the GPS receiver tracking loop easily loosing lock
in high-dynamics enviroment, Xiaoyong and Baiqgi (2011), demonstrated an Inertial Navigation
System (INS) tracking loop. In this, the velocity of the GPS receiver is used to advance the
tracking loop, improve anti-jamming capability and to elevate performance of the GPS receiver.

This scheme is shown in Figure 7.19. It is similar to the conventional GPS code tracking
technique in that, a DLL is use to track the C/A code and a Costas PLL to track the carrier phase.
PLL is use to aid and reinforce the DLL. As a result, INS velocity aiding will complement and or
rescue the Costas PLL, if it loses lock due to extreme Doppler shifts in high-dynamics condition.

Figure 7.19: INS aided loop architecture illustration
(Adapted from Xiaoyong & Baiqi, 2011)

7.4 Summary

This section briefly examined various techniques on how to design and implement a GPS L1
C/A correlator. The purpose is to analyse and select the most suitable acquisition and tracking
techniques; in terms of efficiency, robustness and the ease to implement and develop, in-line
with the research objectives. From the analysis, the acquisition techniques chosen are the parallel
code phase search and the block or non-coherent integration, while the tracking techniques

selected, are the combined carrier and robust code tracking, as well as the BASS techniques.

To conclude, the GPS signal acquisition and tracking technigques presented and listed in Tables
3.4 - 3.6, are most of the various known distinct ways of designing a reliable GPS receiver
correlator. Additionally, there are other factors such as data size, execution time, performance

estimation, damping ratio and noise bandwidth that must be traded-off or taken into account.
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APPENDIX B

GPS APPLICABLE MATHEMATICAL ANALYSIS

8.1 Introduction

Appendix B focuses on GPS mathematical aspects relevant to the research, as well as the theory
to support the reasoning. It systematically starts with the mathematical analysis of the transmitted
GPS L1 C/A signal, followed by acquisition, then tracking and finally the processing of PVT.

8.2 GPS L1 C/A Signal Analysis

As detailed in Section 2.5, a GPS signal is composed of a carrier frequency, PRN codes and a
navigation data message which are blended together by DSSS - CDMA - BPSK schemes. In
Borre and Strang (2012: xxvii), the transmitted GPS signal is mathematically represented as:

sk(t) = 2P (C*(t) ® DX()) cos (2mfi;t)  GPS L1C/ASignal
+ J2Ppr; (PX() @ DX(Y)) sin (2nfi,t)  GPSL1P(Y)Signal - Equation 8.1
+ 2P, (PK(H) ® DXV sin (2nfi,t)  GPSL2P(Y) Signal

where:

s*(t) is the composite signal from a single GPS satellite k (k = 1 to 32 different GPS satellites)
P., Pp;, and Py, are the respective amplitudes or powers of signals with C/A or P(Y) codes
Ckand P* are respectively the C/A and P(Y) code sequences assigned to satellite number k

D¥ is the navigation data sequence associated with any of the 32 GPS satellites

f11 and f;, are the corresponding carrier frequencies of GPS L1 and L2 signals

t is instant of time

cos and sin are the in-phase and quadrature components associated with respective GPS signals

@ denotes modulus two addition (equivalent to X-OR operation if bits are of type 1 and -1)

Refer to Table 2.3 for details on modulo-2 addition and its application to BPSK in GPS.
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8.2.1 GPS L1 Carrier Frequency Analysis

This research focuses on the GPS L1 carrier frequency. It has the following properties:

e Carrier frequency is 1.57542 GHz (i.e. L1 = f, x 154 = 10.23 MHz x 154 = 1575.42 MHz).

e Wavelength is ~19.04 cm (1 = ¢ / f); where f is the carrier frequency and c the speed of light.
e Constitute Coarse Acquisition (C/A) and Precision (P) Codes — both phase shifted by 90°.

e The transmitted GPS L1 signal has an EIRP level of ~27 dBW towards Earth.

e L1 signal modulated by C/A-code has a received signal level of approximately -130 dBm.

e L1 signal modulated by P(Y)-code has a received signal level of approximately -132 dBm.

e L1 bandwidth is ~20 MHz (20.46 MHz to be exact) to accommodate the P(Y)-code.

8.2.2 GPS C/A — Code Analysis

This research focuses on the GPS C/A code. It has the following technical attributes:

e Chipping frequency is 1.023 MHz (i.e. 0.1f, = 0.1 x 10.23 MHz).

e Chip length is 977.5 ns (i.e. 1/1.023 MHz) or wavelength of ~293.255 m (from A =c/f).

e 1023 bits (chips) in length as generated by its PRN polynomial.

e Modulates L1 signal only and at a clock or chipping rate of 1.023 Mega chips/s.

e Repeats every 1ms or has a 1ms duration (i.e. 1023 chips/1.023 MHz = 1ms).

e Bandwidth is 2.046 MHz (i.e. 2 X L1er = 2 x 1.023 MH2z); L1gris C/A chipping frequency.
e Has 37 unique Gold codes (practically 36, since Gold codes 34 and 37 are the same).

Theoretical details on GPS C/A operation and generation are discussed in Section 2.5.2.3.

GPS C/A 1023 codes lengths are generated based on two 10 bits LFSR polynomials G1 and G2.

G1(X) = 1+ X3+ XY
Equation 8.2

G2(X) = 1+ X% +X3+ X% + X8+ X%+ X

As stated in Borre et al. (2007: 19), the auto-correlation function for the C/A code is given as:

rp(1) = NLTC fONTC p(®)p(t+ 1)dt Equation 8.3

An alternative representation of the auto-correlation function in Johanssen et al. (1998: 6) is:
CA;i(D) = [ CA; (DCA;(t + Dt Equation 8.4

where 7,,(r) = CA;(t) are the auto-correlation functions, p = CA; is the C/A code for the i

satellite and 7 is the phase of the time shift (t).
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In a similar reasoning, the cross-correlation function is given as:

CA;(D) = [ CA; (DCA;(t + Ddt Equation 8.5

where CA; and CA; are the respective C/A codes for the i™ and j™ satellites.

Generally, GPS C/A codes are often referred to as Gold codes and are chosen for GPS signals

because of their unique auto and cross-correlation properties, which are summarised as follows:
- There is nearly no cross-correlation between the same GPS C/A codes (e.g. CA; and CA)).

Thus, there is always cross-correlation between different GPS C/A codes (e.g. CA; and CA)).
CA;i(1) = 21252 CA; (DCA;(t+ ©) =0  forallt Equation 8.6

- There is nearly no auto-correlation (except for zero lag) between different GPS C/A codes (e.g.
CA; and CA;). Meaning, there is always auto-correlation between the same GPS C/A codes (e.g.
CAiand CA)). It should be noted that, any two different GPS C/A codes are nearly orthogonal.

CA;i(t) = X122 CA; (DCA; (t+ ©) =0 forall|t| =1 Equation 8.7

These two properties are very useful during acquiring, tracking and decoding of GPS signals.

Furthermore, the auto-correlation functions for n = 10; will have a peak of magnitude 1023:
CAjipeak = 2" — 1=1023 Equation 8.8

Similarly, the auto-correlation functions for n = 10; will have a magnitude of < 65.
ICA;i] < 2052 4+ 1 <65 Equation 8.9

where n is the maximum number of states in each shift register (G1 and G2 of Equation 8.2).

The cross-correlation function also satisfies Equation 8.9.

As indicated in Johanssen et al. (1998: 7), the cross-correlation properties of C/A codes are not
ideal and may under certain conditions, cause false acquisition, especially in scenarios where

multiple GPS satellites signals are received with different delays and very high Doppler offsets.

185



8.2.3 GPS Navigation Data Message Analysis

This is briefly discussed in detailed in Section 2.5.3. The complete technical and mathematical
details on decoding and processing of GPS L1 C/A signal, is beyond the scope of this thesis. For
further reading, refer to the Navstar IS-GPS-200H (2013) specification.

8.2.4 GPS L1 C/A Signal Acquisition Analysis

Various acquisition techniques were investigated and summarised in Tables 3.4 and 3.5. In serial

search acquisition method, the maximum number of search combinations is deduced as follows:

MDoppler
—pp ] +1)
Search Step

/

] + 1) = 1023 x 41 = 41 943 search combinations or bins

Code phase X (2 X Equation 8.10

‘/
10000
500%

Johanssen et al. (1998: 9), states that, the 500 Hz search step is a trade-off in speed and accuracy.
In parallel frequency space search, only the 1023 different code phases are searched, whereas in
parallel code phase search, only the number of carrier frequencies is searched. From these three
acquisition techniques, the parallel code phase search (circular cross-correlation) is the most
cumbersome but based-on its execution time and number of search bins, it will be used as the
preferred acquisition method for the space-borne GPS receiver. Depending on the Doppler shift,
this technique searches for the number of carrier frequencies in parallel with the 1023 different

code phases. Table 8.1 compares these three techniques according to Borre et al. (2007: 85).

Table 8.1: Performance comparison of three common acquisition techniques
(Adapted from Borre et al., 2007: 85)

Algorithm Execution Repetitions Complexity
time

Serial search 87 41.943 Low
Parallel frequency space search 10 1023 Medium
(Parallel code phase search 1 41 High |

I
These 41 number of repetitions within the par!illel code phase search is based-on a 10 kHz

Doppler shift, which is usually the maximum consideration for a terrestrial GPS receiver. For a
space-borne GPS receiver, the Doppler frequency can be in excess of £25, £50 and £100 kHz;
which respectively translates to repetitions (search bins or combinations) of 101, 201 and 401.

1
That is, for a £25, +50 and £100 kHz Doppler, the number of search bins is: 2 [ opp er] + 1.
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8.2.4.1 Parallel Code Phase Search (Circular Cross-Correlation) Acquisition Technique Analysis

This section examines the mathematical details. In Tsui (2005: 137 - 141), the discrete Fourier

transforms of two finite length sequences x (n) and y (n), both with length N are computed as:

j2mkn _ j2mkn

X(k) =YNtx(m)e and Y(k)=XYNly(n)e  n Equation 8.11

From which the circular cross-correlation (not convolution) sequence between these two finite

length sequences x(n) and y(n) both with length N and with periodic repetition, is computed as:

z(n) = %Zi}ﬂ;% x(m) y(m + n) = %Z%;%X(—m) y(m — n) Equation 8.12

The discrete N-point Fourier transform of z(n) with N™* omitted, can therefore be expressed as:

j2mkn

Z(k) = XN XNt x(—m)y(m—n)e” N Equation 8.13
j2mkm _j2mk(m+n)

Z(kK) = ¥N-Lx(m)e v YNZly(m+n)e” w Equation 8.14

Z(k) = X*(kY((k) Equation 8.15

where X* (k) is the complex conjugate of X (k)

To summarise, the procedure for searching the number of carrier frequencies is as follows:

1) The incoming signal is multiplied with a cosine or sine signal to give the in-phase or
quadrature signal components.

2) The in-phase and quadrature signal components are combined to produce a complex input.

3) The produced complex input signal is transformed by FFT.

4) Local replica of the C/A code for each respective satellite is then generated.

5) FFT is applied to these codes, complex conjugated and multiplied with step 3 output.

6) IFFT is then performed and the absolute values of all the signal components are computed.

7) Maximum value if satellite K is present will be found at code phase z and frequency f - Af.

8) Otherwise, if no distinct maximum value is found, the search procedure is iterated.

The parallel code phase search technique is chosen as the preferred algorithm in researching the

GPS receiver. See the source-code in the Matlab file, acquisition.m, for the full implementation.
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8.2.5 GPS L1 C/A Signal Tracking Analysis

The basic goal of acquisition is to de-spread the incoming signal and pass the carrier frequency
and code phase (usually both have Doppler shifts or offsets) to the tracking section. The tracking
section then continuously tracks both the carrier frequencies and code phases to achieve and to
maintain lock. The carrier frequency is tracked using FLL (which tracks the frequency of the
carrier) and or PLL (which tracks the phase of the carrier). The code phase is tracked using DLL.

The theory behind these techniques is covered in Appendix A and the mathematics is as follows:

8.2.5.1 PLL Analysis

The starting point in this thesis is from a second-order PLL that often contains a first-order filter
and a Voltage Controlled Oscillator (VCO), with transfer functions respectively expressed as:

1t,s+1

F(s) = -2 Equation 8.16
s T,
K

N(s) = ?0 Equation 8.17

kgqF(s)N(s)
H(s) = ——— Equation 8.18
(s) 1+kgF(s)N(s) quation

where F(s) and N(s) are the respective transfer functions of the filter and VCO, K, the VCO gain,
71 and z, the loop filter coefficients, H(s) the transfer function of a linearised analog PLL and k4

the phase discriminator gain. Substituting Equations 8.16 and 8.17 into Equation 8.18 yields:

2{wy, s + w3

H(s) = ot slons + o Equation 8.19
where the natural frequency (w,,): wp = +/(Kokq) /T4 Equation 8.20
and the damping ratio (¢): (=0.51,w, Equation 8.21

According to Chung et al. (1993: 3 & 4), the above transfer functions are analog versions and to
convert these transfer functions to digital forms, the bilinear transformation is used on Equation

8.19 to yield the following equivalent digital transfer function H, (z), for the PLL model as:

Alon T+H(wpT))+2(w, T)22 7 1+ ((wy T)?—4lw, T)z ™2
(4+4%w, TH(w, T)?)+ 2wy T)2-8)z"1+(4—4lw, T+(w, T)?)z~2

H,(z) = Equation 8.22
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In a similar reasoning in Chung et al. (1993: 3 & 4), the linearised digital second-order PLL

transfer functions are deduced as:

C
F(z) =c; + 1_22_1 Equation 8.23
koz™?!
N(z) = 1iz_1 Equation 8.24

where Ko is the discriminator gain, F(z) is the transfer function of the filter and N(z) is the
transfer function of now the Numerically Control Oscillator (NCO), contrary to the analog VCO.

The rationale is to obtain the coefficients C; and C; in the second-order PLL. This is deduced by
comparing the transfer function for the digital and analog PLLs. The transfer function for the

digital version can be found using:

_6p0(@) _ KgF(z)N(z)
H(z) = 0;(z)  1+K4F(z)N(2)

Equation 8.25

Substituting Equations 8.23 and 8.24 into Equation 8.25, gives the new transfer function:

KoKd(C1+C2)Z_1_K0KdC12_2
1+[KoKd(Cl+C2)_2]Z_1+(1_K0chl)z_2

H,(z) = Equation 8.26

As a result, the equations for the two coefficients C; and C, are established by comparing
Equations 8.22 and 8.26 to give:

1 8(w,T .
C, = Equation 8.27
KoKgq 4+4 (o, T+(w, T)?

1 4(w, T)?
T KoKq 4+4 {w,T+(w, T)?

Equation 8.28

where KoKy is the loop gain, { is the damping ratio (controls how fast the filter reaches it settling

point and the degree of overshoot allowed), wy is the natural frequency and T the sampling time.

Lastly, the natural frequency (w;,,) is deduced from:

8(By,

w, = m Equation 8.29

where By is the noise bandwidth (controls the amount of noise allowed) in the filter loop.
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8.2.5.2 Carrier Tracking Analysis

Usually, the phase error or a function of the phase error is the output of the discriminator. This is
filtered and utilised as a feedback to the NCO, to adjust the frequency of the local carrier wave.

In this way, the local carrier frequency could be an almost precise copy of the incoming carrier.

In Kaplan and Hegarty (2006: 164 - 170), an ordinary PLL is sensitive to 180° phase shift which
makes it susceptible to navigation data bits transition after every 50 Hz or 20ms cycle. A robust
PLL, known as Costas loop is therefore used. Its 180° phase shift in-sensitivity, mitigates the
GPS data navigation phase transitions. The goal of Costa loop is to conserve all the energy in the
in-phase (I)-arm of the carrier frequency. Borre and Strang (2012: xxxii) analyse PLL as follows:

If the code replica is perfectly aligned, the multiplication in the I1-arm yields the following:

DX(n) cos(wpn) cos(wpn + @) = 0.5 DX(n)[cos(¢) + cos(2mwpn + @)] Equation 8.30

where ¢ is the phase difference between the phase of the input signal and the phase of the local

replica of the carrier phase. The multiplication in the quadrature (Q)-arm yields the following:

DX(n) cos(wpn) sin(wpn + @) = 0.5 DX(n)[sin(¢) + sin(2wpn + ¢)] Equation 8.31

Low pass filtering the resultant two signals remove the double IF terms to give the followings:

X = 0.5D¥(n) cos(¢) Equation 8.32
Q" = 0.5D%(n) sin(¢p) Equation 8.33

The phase error of the local carrier phase replica is then computed by dividing Equation 8.33

with Equation 8.32 to give Equation 8.34. The result is feedback to the carrier phase oscillator.

Q_k _ 0.5DX(n) sin(¢p)

K = 05Dk costey — AR(P) Equation 8.34
Qk
( = arctan (I_k) Equation 8.35

From Equation 8.35, the phase error (¢) is minimised when the correlation value in the Q-phase
arm is zero and the correlation value in the I-phase arm is maximum. Although this arctan

discriminator is very precise, it is very time consuming and often requires an improved version.
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8.2.56.3 Code Tracking Analysis

Code tracking loop objective is to keep track of the code phase of a specific code in the signal.
The output is usually a perfectly aligned replica of the code. The code tracking loop in the GPS
receiver is a DLL, called an early-late tracking loop and a robust implementation is based-on the
non-coherent diSC{iminator highlighted in red in Table 8.2. The rationale behind the DLL is to
correlate the input:signal with three replicas of the code. Table 8.2 summarises the various types.

|
| Table 8.2: Various types of DLL discriminators
: (Adapted from Borre & Strang, 2012: xxxvi)

Type | Discriminator D Characteristics

Coherentl e — I'r Simplest of all discriminators.
| Does not require the O branch
but requires a good carrier

I tracking loop for optimal
l functionality.
f

(1% —+ QZE) — (IE —+ Q%) Early minus late power. The
discriminator response is nearly
* the same as the coherent dis-
criminator inside i% chip.

IE +OF) — UZ + OF)

Noncoherent = = = =
Tz +CF)+ g + C7)

Normalized early minus late
power. The discriminator has
a great property when the chip
error is larger than a 1 chip:
this will help the DLL to keep
track in noisy signals.
Ip(lg—Ir)D+O0Op( O —Qr) Dot product. This is the only
DLL discriminator that uses all

six correlator outputs.

According to Tsui (2005: 169), the procedure applied to both the carrier and code loops to track
an acquired GPS L1 C/A signal can be abridged as follows:

a) Define the gain of the carrier and code loops, as well as the bandwidths. The loop gain
comprises the gains of the NCO and the phase detector. The bandwidth of the carrier loop is
often wider than the code loop because it tracks the locked GPS signal for a longer duration.

b) Select the carrier loop to be 20 Hz and the noise bandwidth of the code loop to be 1 Hz. The
choice is subjective and takes a set of potentials values suitable for the tracking algorithm.

c) Choose the damping factor ¢ = 0.707. This value of ¢ is usually viewed as close to optimal.

d) Calculate the natural frequency (w,,) from Equation 8.29.

e) The carrier loop gain is chosen to be 4w x 100 and the code loop gain (KoK3) to be 50. The
choice of these values depends on a set of several viable selections. Equations 8.27 and 8.28
are used to compute the filter constants C; and C,. Once all the values are known, the carrier

and code phase loops can be automatically adjusted to follow the input signals every 1ms.
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8.2.6 GPS Navigation Data Message Decoding Analysis

In Borre et al. (2007: 88), the down-converted and filtered signal S¥(n) of a satellite k (where w,z

is the intermediate angular frequency), from a GPS receiver front-end can be represented as:

sk() = [2Pc(CR(ODX(t) cos (wipt) ++/2Ppr1 (PX(D)DX (L) sin (wygt) Equation 8.36

Similarly, this GPS signal from satellite k after the ADC stage can as well be represented as:

s¥(n) = CK(m)DX(n) cos (wn) +e(n) Equation 8.37

where n is a discrete time signal in unit of 1/fs samples and e(n) the distorted P(Y) code or noise.

This down-converted signal S(n), is acquired and tracked to give the navigation signal D¥(n).
Once the tracking loop is locked and aligned, the baseband 50Hz (bps) or 20ms navigation
message can then be recovered and decoded. Usually, the outcome from the tracking loop is the
value of the in-phase arm of the tracking block reduced to the values 1 and -1. Therefore, once
the GPS navigation message data bits transition times are located from the tracking block output,
they can be sampled at 1000sps (corresponding to a value every 1ms). This tracked GPS signal
must then be converted from 1000bps to 50bps before the navigation data can be decoded. That
is, 20 consecutive sampled values must be replaced by 1 only, as a GPS navigation data is 20ms.
This conversion procedure is termed bit synchronisation. See Section 3.5.3 and Navstar 1S-GPS-
200H (2013) for details. Figure 8.1 represents a typical recovered navigation data message, with
the arrows marking the bit transi{ions 20ms apart. This navigation data signal is very strong,

since a weaker signal will have the\dots closer to zero and clustered together without separations.

\
A
\

300
Time [ms]

Figure 8.1: Tracking block output — depicting recovered GPS navigation message
(Adapted from Borre et al., 2007: 110)

192



8.2.7 GPS Navigation Data Message Processing Analysis

From successful decoding, the navigation data is ready for processing. Refer to Section 3.5.3.2.

8.2.7.1 GPS Satellite Position Computation Analysis

Once the GPS navigation message is decoded and the satellites ephemeris orbital data extracted,
the first step is to compute the satellites positions. The equation describing the position vector r,
of the satellites with respect to the centre of the Earth in Borre and Strang (2012: 267 & 268) is:

3
r=Imj|=
¢
a = semi major axis; e = the eccentricity; E = the eccentric anomaly
& = represents the axis pointing to the perigee

1 = represents the axis towards the descending node
¢ = represents the axis perpendicular to the orbital plane

a(cosE — e)

av1l — e?sinE
0

Equation 8.38

The norm of the position vector which is the geometric distance between the orbiting GPS
satellites and the centre of the Earth can be calculated from simple geometry to be:
Ir]l = a(1 — e cosE) Equation 8.39

The mean motion or movement n, which is the mean angular satellite velocity, is computed as:

o _ [e_ [om -
n=-—_— = \/; = | + An Equation 8.40

where T is the period of one revolution of the satellite, An is the mean motion difference
obtained from sub-frame 2 in bits 91 to 106 and the product GM or u is the Earth’s universal
gravitational constant with value 3.986005 x 10** m*/s>. A more accurate value of u is obtained
from the decoded broadcasted ephemeris data and is used in the satellites position calculations.
The true anomaly f, the eccentric anomaly E and the mean anomaly u are related by the equation:

V1-e? sinE

cos E—e

f= arctan% = arctan where E = u+ esinE Equation 8.41

Equation 8.41 is fundamental in performing calculations for the orbiting GPS satellites positions.

In GPS orbital plane, the rectangular or Cartesian coordinates of GPS satellites position is:

k k
7y cosfj

k i k Equation 8.42
i smfj q
0

where ¥ = ||r(¢;)|| are derived from Equation 8.39 with a, e and E evaluated for t = ¢;.
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8.2.7.2 Transformation of GPS Satellites Position Orbital Frame to ECEF Coordinate System

GPS satellites orbit is referenced to the centre of the Earth but in order to find a user position, the
received GPS navigation data must be related to a certain point on or above the surface of the
Earth. From using Direction Cosine Matrix (DCM), the GPS satellites position vector (rj") IS

then rotated into the XYZ (ECEF) coordinate system by the following sequence of 3D rotations:

R; (—Q}‘) Ri(— i]k)R3 (—oo]k) Equation 8.43

For a rotation about the Z-axis:

[ cosgp sing O
R3(@) = | —sing cosp 0 Equation 8.44
L 0 0 1

Similarly for a rotation about the X-axis

[ 1 0 0

R () =10 <cose sing
|0 —sing cos@

Equation 8.45

Finally, the geocentric coordinate [X*(¢;), Y*(t;), Z*(t;)] of satellite k at time ¢; is computed as:

XK (t) rf cos £
Yk(tj) = R3(—Q]k) Ri(— i]k)Rs(—w]k) r].k sin fjk Equation 8.46
Zk(tj) 0

In Strang and Borre (1997: 484), GPS satellites do not adhere to the orbital mechanics justified
thus far, as more accurate time-dependent orbital values that are broadcasted in the ephemerides
of the decoded navigation message should be used. Given GPS satellite signal transmit time t (in

GPS time), the below parameters are used in Equation 8.46 to compute GPS satellites positions.

Time elapsed since tee: t=t— toe
; . _ GM
Mean anomaly at time t;: W=k + | [z +An)t
Iterative solution for E;: Ej = y; + e sin E;
Vi-e? sinE;j . .
True anomaly (f)): f; = arctan ——5 .+ @ isthe mean Earth rotation
-

Longitude of ascending node (£2)): Q; = Qg + (Q — me)t,- — Wetge; W, =7.2921151467e°rad/s

—

Argument of perigee (w;): ®j = o + fj + Cycc052(w + ;) + Cpssin2(w + f))
Radial distance (r;): r; = a(1 — ecosE;) + CrCCOSZ(OJ + f]) + CrssinZ(u) + f]-)
Inclination (ij): ij = ip +it; + CiCCOSZ((D + f]) + CissinZ(oo + f])
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8.2.7.3 Pseudo-range Estimation Analysis

The measured distances between orbiting GPS satellites and the receiver is not the true range
due to a common bias called pseudo-ranges. According to Borre et al. (2007: 119), estimating
pseudo-ranges can be accomplished in two computational steps. Firstly, the initial set of pseudo-
ranges is first computed followed by keeping track of all the pseudo-ranges in the second step.
Refer to Section 3.5.3.2.2 and Navstar I1S-GPS-200H (2013) specification for applicable details.

In its simplest form, the equation describing pseudo-range is represented as:

p%‘ = p%‘ + cAt; + noise Equation 8.47

where p¥ is the pseudo-range of satellite k and cAt; is the bias (error) causing the pseudo-range.
Expanding on Equation 8.47, the pseudo-range on L1 including the known sources of errors is:
pf= RK+ C(Ati - Atk) + Tp%< + Ip%< + Mp%< + Epk Equation 8.48

pF = pseudo-range measured on L1 frequency between satellite k and receiver i
RF = geometric range measured on L1 frequency between satellite k and receiver i
¢  =speed of light

At; = user or receiver clock error

At* = satellite clock error

Tpgc = tropospheric delay, Iplgc = ionospheric delay, Mplgc = multipath delay

ek = combined miscellaneous sources of errors
l

8.2.7.4 GPS Time Correction Analysis

Tsui (2005: 62) indicates that, all GPS satellites transmit signals at the same time but the clock
errors in each satellite and receiver and the associated delays creates pseudo-ranges between time
of transmission t* and arrival time t, at the receiver. The equation describing this relationship is:
P =c(t, —t5 Equation 8.49
To correct t*, the value of t“ must first be known which makes the correction process difficult. To
facilitate the process, t; (obtained from TOW in the decoded navigation message) is considered
to represent the coarse GPS system time at time of transmission, corrected by the transit time.
The actual total time difference between the time t. and the epoch time toe, Will be the time t“ and

should account for the end or beginning of the week crossovers (i.e. Saturday breaking Sunday).

If th=t,— t,, > 302400 then thk =t — 604800 or t.= t.— 604800
If th = t. — t,e < —302400 then thk =tk + 604800 or t.= t,+ 604800

toe IS Usually obtained from ephemeris data found in the decoded navigation message, 604800 is

the time of a week in seconds (i.e. 7x24x3600) and 302400 is the time of half a week in seconds.
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According to Tsui (2005: 62 & 63), the following process can be used to correct GPS time £

Firstly, the mean motion or movement n is computed as:

n = /a + An Equation 8.50

Jas and An are found in the decoded ephemeris data and 4 = GM = 3.986005x10'* m3/s?

S| =

Followed by the mean anomaly M, which is calculated from n or Equation 8.50 as:

M = M, + n(t. — toe) Equation 8.51

where My is in the ephemeris data found in the decoded navigation message.

In Equation 8.51, it is advisable to rather use t. as the initial GPS time since t“is not yet obtained.
From M, the eccentric anomaly E is iteratively found from:
E=M+egsinE Equation 8.52

where es is the eccentricity of the satellite orbit obtained from the decoded ephemeris data.

Next, a constant F is defined as:

-2
F= Tﬁ = 4442807633 x 10 sec / m*? Equation 8.53

From which the relativistic correction term is deduced as:
At, = Feg,/ag sin E Equation 8.54

As a result, the overall time correction term (satellites clock offset At*) is computed as:

AtK = agy + ag (te — toe) + ap(te — toe)? + At + Tgp Equation 8.55

where ag, asy, ag, t, are the individual clock corrections terms and Tgp is to account for the
effect of satellite group delay differentials. All these parameters are found in the ephemeris data
of the decoded GPS navigation data. For GPS to UTC time, see Kaplan and Hegarty (2006: 63).

Finally, the GPS time of transmission t*, corrected for transit time can be obtained from:
= t. — Atk Equation 8.56
Equation 8.56 is the applicable time correction for software GPS receivers, contrary to Equation

8.49 for hardware receivers. t. defines the time, common to all SV pseudo-ranges observations.

It is very crucial to ensure that the corrected GPS time is used in the final position calculations.
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8.2.7.5 GPS Receiver Position Computation Analysis

With the knowledge of GPS satellites position, pseudo-ranges, coordinate system and GPS time
correction; the GPS receiver position can now be calculated. Borre and Strang (2012: xxxvii),
postulated that, the most generally used algorithm for position computation from pseudo-ranges
is based-on the least-squares method, which is employed when the unknowns exceed the
observations. In what follows, is a mathematical analysis for using least-squares to compute GPS

receiver position from pseudo-ranges p¥ (containing clock error) to four or more GPS satellites.
From Equation 8.48, the basic observational equation for the pseudo-range p¥ is therefore:
pi = RY+c(At = AtN) + T+ Ly + Mo + £ x

1

The geometrical (exact) range R¥ between orbiting GPS satellites and receiver is computed as:

R1i< - \/(Xk — X2+ (YK =Y,)2 + (Zk —Z,)2 Equation 8.57

Replacing R¥ in Equation 8.48 with Equation 8.57 gives > 4 equations for X; Y; Z; and cAt; as:

pi = VXK =XD)2+ (YX=Y)? + (ZK=Z)? +c(At; = A) + T+ e + Mk + £ Equation 8.58

From analysing Equation 8.58, the satellite clock offset (error) At* is obtained from the
ephemeris data found in the decoded navigation message, from which the GPS time is corrected
and used to compute the position (X*, Y*, Z¥) of satellite k. The constant c is the speed of light.

The sources of errors which include the tropospheric delay T ke, the multipath effect M i and the
ionospheric delay I are estimated from a priori model with the Lk coefficients obtained from
the broadcasted ephemeris in the decoded navigation message. The error term (Eplc) IS minimised

using the least-square method. Therefore, in Equation 8.58, the unknown parameters to be
computed are the GPS receiver position (X;,Y;, Z;) and the GPS receiver clock offset (At;). The
other parameters are known. Generally, any other significant errors or sources of errors discussed
in Sections 3.6 to 3.8 can be modelled separately if possible and added as term(s) to Equation

8.58. Any other errors or sources of errors which are insignificant can as well be treated as (,5)-

Computing the GPS receiver position requires at least four pseudo-ranges (see Figure 8.2) and

Equation 8.58 is nonlinear with respect to the receiver position (X;,Y;, Z;). Least-squares method

thus, first requires linearisation of \/(X* — X,)2 + (Yk — ¥))2 + (Z* — Z;)? ) in Equation 8.58.
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Figure 8.2: GPS receiver position computation using pseudo-ranges, SV position and clock bias
(Adapted from Misra & Enge, 2006; Jin, 2012)

8.2.7.5.1 Linearisation of the Pseudo-range Observations

From Equation 8.58, the non-linear term is modeled and analysed as:

f(X5, i, Z) = (XX =XD2 + (YR =Y)?2 + (Zk — Z;)? Equation 8.59

In Borre and Strang (2012: xxxix), linearisation begins by first finding an initial position for the
GPS receiver (X;—g, Yi—o,Z;=o), Which for an Earth based receiver, is often chosen as Earth’s

centre (0, 0, 0). The process is then updated with the increment (AX, AY,AZ). This is written as:

Xi=1 = Xj=o + AX
Yi-1 = Yizo +AY Equation 8.60

Zi=1 = Zi=0 + AZ

The approximate GPS receiver position is updated by this increments and the Taylor expansion

of f(Xi=o + AX, Yi—o + AY, Z;_o + AZ) is applied to the linear terms. This is represented as:

8fXi=oYi=oZi=0) Ay

f(Xi=1» Yi—1, Zi=1) = f(Xizo' Yio, Zi:o) + 5Xizg

Equation 8.61

8f(Xi=0,Yi=0.Zi=0) AY +
8Yi=0 SZi=0

8f(Xi=0,Yi=0,Z

+ i=0) A7

Equation 8.61 only incorporates first order terms; hence, the updated function f estimates the

GPS satellites position. The partial derivatives are as a result of the square root in Equation 8.59.
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In Kaplan and Hegarty (2006: 56), the partial derivatives terms of Equation 8.61 is expressed as:

8f(XizoYizoZizo) _ _ X*-Xizg )
8Xi=o RK
8f(Xi=0,Yiz0.Zi= Y-y,
Ki=.Yi=0.Zi=0) = — —kl . > Equation 8.62
8Yi=0 Rl
8f(Xi=oYi=o.Zizo) _ _ Z8~Zi—o
8Zi=o Rf J

Assuming RX_, to be the geometric range found from the approximate receiver position implies:

RK ;= V(XX = Xi0)2 + (YK = YiZ0)? + (ZK — Zi_)? Equation 8.63
As a result, p¥ for the four first-order linearised observation equations can be put acrossed as:

Xk —X._ YK —Y._ 7k —7._
k k 1=0 i=0 i=0
pi = Ri_O - —kAX - —kAY - —kAZ
R! R} R}

+ (A —A%) 4+ Th + Lx o+ M + g Equation 8.64

8.2.7.5.2 Application of Least-squares Method to the Linearised Observations

In Borre and Strang (2012: xxxix), a least-squares problem with no exact solution is stated as:
Ax=Db Equation 8.65
The matrix A has m rows and n columns, where m > n. There are therefore less free parameters
X1,...,Xm than more observations by,...,bn. The length of the error vector (Equation 8.66) is
minimised by the best choice x. If the standard way is used to measure this length, such that
Equation 8.67 is the sum of squares of the m separate errors, then minimising this quadratic gives

the standard equation for X as conveyed in Equation 8.68. NB: the bold face letters mean vectors.

€ =>b—-AX Equation 8.66
l|le?|| = (b — Ax)T(b — Ax) Equation 8.67
ATAX = ATb or £ = (ATA)"1ATb Equation 8.68
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The covariance matrix for the parameter X can be written as:

Ye = 63(ATA)1 Equation 8.69

b4

where 63 =

The linearised pseudo-range (Equation 8.64) can then be expressed in vector form as:

xK_Xi—o
R

K_v. k_7.
+ TVizo 4 Z-Zico ] [AX AY AZ cAt]T

k _ k
pi = Rizo — | RE RE

— cAtf + Tpk + ka + Mpk + gk Equation 8.70
1 1 1 1

Re-arranging Equation 8.70 into a least-squares problem in the matrix form of A x = b, yields:

A X b
N A
/ ~ 0~ ™
AX
xk—x;— yh_y;_ YA A AY .
~ 2 o 2 o 2+ 1] Az |= pr — RY o+ cAtk — Ty — L — Mk — £x Equation 8.71
cAt;

A unique least-squares solution is found provided there are m >4 equations. From Equation 8.71,

b can be written as in Equation 8.72, where the unknowns are the updates to X;, Y;, Z; and At;.

b{<= pF_Rli{=o+ AKX — Tr—Ixk—Mxk— €x Equation 8.72
Pj pj Pi Pj

Finally, by manipulating Equation 8.71, the GPS receiver solution equation can be expressed as:

X1'—Xi—o  Y'-Yizo Z'-Zi-

- _ _ n
R} R} R} +
X2 —Xi= Y2-Yi- 72-Zi=
_ 21 0o _ 21 0o _ 21 0 11
R3 R3 R? AX;-1
X3—Xizo  Y3-Yi—o Z3-Zi- AY:
I — — +1 =11 _ p_ i
Ax = R R3 R3 AZ_, | = b-e Equation 8.73

CAti=1

Xm—Xizo Ym—Yi:O _ Zm—Zi:O

Rg' Rg! Rg!

+1

For m > 4, there is a unique solution 4X;_,, 4Y;_;, AZ;_,. This unique solution is then added to

the approximate GPS receiver position to get the next approximate receiver’s position as follows:

Xi:]_ = Xi=0 + AXizl Yi=1 = Yi:() + AYizl Zi=1 = Zi:() + AZi:]_ Equation 8.74

The next iteration restarts from Equations 8.71 to 8.74 from i =0 incremented to i =1, next i =2

etc (often max of i =3) until the solution 4X;_,, 4Y;-,, AZ;_, converges to meter level accuracy.
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8.2.7.6  GPS Receiver Velocity Computation Analysis

With the GPS receiver position computed, the velocity estimates can be deduced using a similar
least-squares approach to get the first derivative of the position — which is basically velocity.

In Gleason and Gebre-Egziabher (2009: 64), the pseudo-range (Equation 8.48) is usually the
starting point for deriving the velocity equation. Therefore, using a similar rationale to that used
in developing the position solution, this equation can be written in terms of GPS satellite-to-

receiver relative velocities, line of sight unit vector and associated errors which are expressed as:

pk = [Vk — Vi]Llfmit +b+ Tp%< + ip%< + l\'/lp%< + ép%( Equation 8.75
where:
pk s the pseudo-range rate for satellite k measured in m/s (known)
vk s the velocity vector for satellite k (often calculated from navigation data) in m/s.
v; - is the velocity vector for receiver i measured in m/s (unknown)

Lk, .. :is the receiver-to-satellite line-of-sight unit vector (derived from Taylor expansion)
b . 1S the rate of change of the receiver clock or clock drift in m/s (unknown)

T « :is the rate of change of the tropospheric delay
I« :isthe rate of change of the ionospheric delay
M _r :is the rate of change of the multipath delay

& r . isanaccumulation of the unknown pseudo-range rate error terms in m/s

Assuming a simplistic model with the errors terms ignored, the GPS receiver velocity in Grewal

et al. (2001: 28), can be estimated and written as:

pY = [(X* = Xi2o) (XK =X120) + (Y& = Yiso ) (YK —Y,_g) + (2K — Zi_o ) (ZX =7, )] /DK Equation 8.76

where:
p¥ = range rate (known)
p¥ = range (known)
(Xk, Yk, %) = satellite positions (known)
(Xk, Yk, Zk) = satellite position rate (known)
(Xi=0,Yi=0, Zi=o) = receiver position (known from position calculations)
( X=o, Y=o, Z,.o) = receiver velocity (unknown and can therefore be computed)
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Expanding and rearranging Equation 8.76 yields:
pk + p—lk [XK(XE = X;0) + YR(YE = Yieg) + ZK(ZK — Zi_)] Equation 8.77
= LR = Xiso) Xig + (Y = Yig) Yoo + (2% = Zico) Zico

For m >4 equations (i.e. when the number of orbiting satellites > 4), Equations 8.77 translates to:

L . . _
P+ [XTXE = Xico) + YH(Y! = Yino) + 21 (2" — Zi—o))]
on . .

pf + 7 [X2(X? = Xizo) + Y2(Y? = Yio) + Z2(Z% — Zi=o)]

X 1 . . .
p13 + ? [X3(X3 - Xi:O) + Y3(Y3 - Yi:()) + ZS(ZS - Zi:O)]

b + pim [XM(X™ = Xizg) + Y™ = Yig) + ZM(Z™ — Zi)] |

— Equation 8.78
F(X! = Xi=g) Y'=Yizq (Z'=Zj=)]
pi pi pi
(X? =Xij=9) Y?=Yizo (Z*=Zi=)
p} pf pf ;
(X3-Xij=o) Y3-Yizo (Z3-Zj=) X1=0
= p} p} p} Yizo
. Z1=0
(Xm_XI—O) Ym_Yi=0 (Zm_Zl—O)
L pf" pi" pi" -

where Equation 8.78 is in the standard form b = A x.

If m > 4, there is a unique solution [ X,—o, Y=o, Z,—o]. This unique solution is then added
to the approximate GPS receiver velocity to get the next approximate receiver’s velocity and this

iterative optimisation process continues until the GPS receiver velocity solution converges.
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8.2.7.7 GPS Receiver Position Transformation from XYZ (ECEF) to Geodetic Coordinate

Once the GPS receiver position is determined (usually in XYZ rectangular coordinate referenced
to Earth’s centre), it must be transformed to a useful coordinate system (e.g. ENU coordinate)
which suits the intended application, usually to a point at the surface of Earth or above Earth
(See Figure 8.3). Coordinate transformations are means for converting a vector characterised in
one coordinate system to a suitable characterisation in a different coordinate system. In Borre
and Strang (2012: 39), the choice of the preferred coordinate system goes in line with the chosen
Earth model (as a sphere or ellipsoid or geoid). The geoid is the most accurate (mm level) model
because of the considerations of flattening / perturbations corrections but also the most complex.
Geodetic simply refers to geographic plus inclusion of altitude. Borre and Strang (2012: 39 - 49),
covers various methods for changing a GPS receiver’s position on Earth. Netwon’s ellipsoidal
model is chosen, as it is applicable to Earth and space-borne GPS receivers and is thus analysed.

ZECEf
A
North (N)
5
b} up (U)
q, )
= 'A‘ East(E)
E GPS Recedver
o
T Eauatgr | | - e
I A
|
Xecef |
|
|
A0 |
|
|
|

Figure 8.3: Transformation between ECEF to ENU coordinates
(Adapted from Borre and Strang, 2012: 52)

8.2.7.7.1 Newton’s Method for Cartesian (XYZ) to Geodetic (¢ A h) Transformation

Newton’s method is an optimisation technique best use to approximate non-linear programming
problems of quadratic nature. In Borre and Strang (2012: 45), this method is applied as follows:

Q= arctan(ﬁ) A= arctan(g) h=vX2+Y2+72-a Equation 8.79
where ¢, 4, h will be the corresponding latitude, longitude and altitude from the XYZ position.
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Initial values for ¢ A,, hy are chosen for the spherical case; f = 0, f is the flattening of the Earth.

From Equations 8.80 and 8.81, 4 is calculated explicitly from Equation 8.82; therefore (1 = 2,).

X = (N + h) cosg cosA Equation 8.80

Y = (N + h) cose sinA Equation 8.81
—tan-1(Y ;

A=tan (X) Equation 8.82

where N is the distance along the line which passes through the Z-axis and it is represented as:

N=a/\/1—f(2 - fsinZ¢ Equation 8.83

Since 4 is clearly known from Equation 8.82, Newton’s method is applied to find ¢ and h only:

VX2 4+Y2=(N+h) cose Equation 8.84
Z=[(1-)2N + h] sing Equation 8.85

Let Equations 8.86 and 8.87 respectively define the functions g, (¢, h) and g, (¢, h) as:

g.(@,h) = (N+ h)cosp —VvX? +Y2=0 Equation 8.86
g.(@h) =[(1—-H?N+h]sing—Z=0 Equation 8.87

From Equation 8.83, the first partial derivative of N with respective to ¢ becomes:

Z_Z = a(—0.5)(1 — f(2 — f)sin®¢ )~**(—2f(2 — Hsingcosyp)

= j—jf(z — f)sing cosg Equation 8.88
Similarly, the first partial derivatives of g,(¢,h) and g,(¢, h) with respect to ¢ and h are
required as per Newton’s method and these derivatives are simply the Jacobian of Equations 8.86

and 8.87, defined as J:

981 081
j|oe om
|98z O
d¢  oh

The four elements of the Jacobian J are then calculated as follows:
dg, _ ON _ N Lo 2 N e T
20 = 3 COSP (N + h) sing = = f(2 — f) sing cos?@ — N sing — h sing
_ N3, 2 a2 .
= 5 sing [f(Z —f) cos?@ — ﬁ] — hsing

= :—jsin(p [f(2 —f) cos?@ — 1 + f(2 — f) sin®@ ] — h sing

N3 . . N3 .
= —sing (=1 +2f - f2) — hsmcp=—[a—2(1—t)2 +h] sing
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9% _ 1 -02Nno — (1 =2
e 1-9 5 SIN® [(1 —)*N + h]cose
=(1-1)>2 I:—jf(Z —f) sin?¢@ cos@ + (1 —)?N cos@ + h cosg

=(1-1)? i cos@® [f(Z — f) sin?q + f] + h cosg
a2 N

= (1-1)? I:—j cos@[f(2 — f) sin?¢ + 1 — f(2 — ) sin?@] + h cose

3 3
= (1—f)ZI:—2coscp+ h cosp = [1:—2(1 — )2 +h] cos@

The other two partial derivatives are simply:

0g1 _

o = COs@
agz .
— = SIln
on _ SIne

Substituting the Jacobian elements with their respective derivatives and simplifying reduces to:

N3 5 .
,. — [a—z(l —f) +h] sing cos@
[j—z (1-H2+ h] cosg  sing
Replacing the term [Z—j(l -+ h] with D gives:

_[—Dsing cos@
"~ |Dcosg  sing

Furthermore, if the determinant is — D, the inverse is:

J1= 1 sing — COS® ] _ —%sin(p %coscp
“det()) |—Dcosqp —Dsing| ~ COSQ sin

Finally, the solution (¢, h) using Newton’s method is deduced as follows:

1) Firstly, an initial guess as the current solution (@, h) cyrrent 1S Started.

2) Secondly, for each iteration, a new solution and current values of g, and g, are

computed and updated as follows:

1 1

— i = h

[‘ﬂ = [‘ﬂ - [ p>ne DCOS(‘)] 81(@, )] Equation 8.89
new current cos@ sing 82(@ D)) yrrent

current

After approximately four iterations, the optimised values of ¢ and h should converge to zero.
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8.2.7.8 Dilution of Precision (DOP) Analysis

DOP provides a measure of how orbiting GPS satellites are spaced with respect to a GPS
receiver. DOP values are useful when planning observational periods. There are five types of
DOPs, namely GDOP, PDOP, HDOP, VDOP and TDOP. DOPs values are computed as follows:

Geometric DOP: GDOP = \[(0)2( + 0% + 0% + 0241)/OUERE :\/(Gﬁ + of + 0f + 024.)/0uERe

Position DOP: ~ PDOP = /(6% + 0% + 02)/oyre =+ (0% + 0% + 03)/0uere
Horizontal DOP;: HDOP = 2V (0-)2( + G%)/GUERE =4/ (O_é + Gﬁ)/GUERE
Vertical DOP: VDOP = O-Z/GUERE = O-U/GUERE

Time DOP: TDOP = GCdt/GUERE where CO4t = Ocdt

GDOP = (PDOP? + TDOP?)2 = (HDOP? + VDOP? + TDOP?)*?2 Equation 8.90

Strang and Borre (1997: 462 & 463) states, all DOPs value are dimensionless and if multiplied
with range errors, they give approximate position errors. Very good observations are achieved, if

PDOP is < 5 and when at least > 4 orbiting GPS satellites are utilised in the PVT measurements.

From the GPS receiver solution analysed in Section 8.2.7.5, the covariance matrix
Yicer for (X;Y; Z;cdt;) contains information regarding the geometric quality of the GPS
receiver position determination. When the GPS satellites are well spaced in orbit, DOP is smaller
and X more accurate. The ).zcgr trace harmonises this DOP information into a single number as
the sum of the four variances o + o + o7 + 02, (independent of the coordinate system).

Furthermore to the GDOP information, these variances involve the accuracy of the observations.

Instead of relying on up to date (to first acquire GPS satellites signal) ephemerides to compute
satellites position, DOP values enable GPS receivers to use low accuracy almanac coarse values
to predict GPS satellites position with sufficient accuracy. Since the quality of GPS satellites

constellation to receiver geometry varies from time to time, the knowledge of DOPs is essential.

2
[o% Oxy Oxz | OXcdt|
2
) I Oyx Oy Oyz |Oycdt
Therefore, from covariance (dX) = Ygcer =lox ozy 02 |ozed | Equation 8.91

2
Ocdt,X Ocdty Ocdt,z| Ocdt

The propagation law transforms Equation 8.91 to a covariance matrix expressed in ENU frame.
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Letting the top left sub-matrix in Equation 8.91 be represented by S, this sub-matrix S,
transforms to an ENU frame (see Equation 8.93) after applying the DCM FT(see Equation 8.92).

As indicated in Strang and Borre (1997: 462), the matrix F links the ECEF coordinate system

with the Cartesian coordinate differences in the local frame at ¢ (latitude) and A (longitude) as F'

FT = RymRz(p-0.5mR3a-m

0—1 O]fsing 0 cos@][—cosA sinA 0
=11 0 0 0 1 0 sinA\  —coshA O
0 0 1ll—cosp 0 sing 0 0 1
—sinA COSA 0
= |—sing cosA — sing sinA cos@ Equation 8.92
COS( COSA cos sinA sing
2
OF OgN Ofu
Yenu = FISF = [ong 0% onu Equation 8.93

2
OUE Oyn Oy

For detailed mathematically analysis on general coordinate transformations, consult Grewal et al.
(2001: 324 - 369) and for converting GPS coordinates to navigation frame, refer to Drake (2002).

8.2.7.9 Maximum Doppler Shift Computation Analysis

For completeness, this section analyses how maximum Doppler shift is inferred. As emphasised
in Sections 3.7.3.4 and 8.2.4, excessive Doppler shift accounts for most of the challenges in GPS

receiver acquisition and tracking, which are very crucial for a space-borne GPS receiver in LEO.

In Nortier (2003: 22 & 23), Doppler frequency shift in space is in the region of ~ £60 kHz and

can be calculated as follows:

-1
fr=1f [ =f+ £} Equation 8.94

1-vc?

where:
f' = New GPS L1 carrier frequency
fo = GPS L1 carrier frequency
f4 = Doppler frequency shift
v = GPS receiver relative velocity
c = speed of light (299.792458 x 10° m/s)
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From Equation 8.94, f, is computed as:

-1
fg = fo [ ’i:ﬁ_l — 1] Equation 8.95

In orbital mechanics, the velocity of a satellite in circular orbit is:

V = Vgt = % Equation 8.96
where:
u = GM which is Earth’s universal gravitational constant

r = Earth’s orbital radius

In typical LEO, a CubeSat and GPS satellites at respective altitudes of ~700 and ~20200 km,
have corresponding velocities in the order of ~ 8 and ~ 4 km/s. However, the resultant relative
velocity will never reached +12 km/s because of the altitude differences and therefore with a
value of £10 km/s as a rough maximum relative velocity (Nortier, 2003: 22 & 23), the maximum
Doppler shift in the carrier frequency will be ~ +55kHz. Doppler shift also affects the C/A code
frequency (1023 kHz) but at a much lesser degree. In addition to Doppler shift, Doppler shift rate

is also problematic and could cause tracking issues, especially in narrow band PLLSs.

For an in-depth and alternative way for calculating Doppler frequency shift and Doppler rates, as

well as related GPS signal Doppler parameters, consult Zheng (2005: 15 - 18).

8.3 Summary

Appendix B systematically analysed the applicable mathematics involves at each stage of GPS
L1 C/A signal processing; from the point of signal transmission by orbiting GPS satellites to
acquisition, tracking and final processing of the decoded navigation data for PVT computations,
which is the ultimate goal. Sources of GPS errors were not analysed discretely as laid down in
the theoretical section in Chapter 3, since they were already considered as an integral part of the
transmitted GPS signal. Effort was made to portray the complete mathematical design of a GPS
receiver, with emphasis on applications in space where feasible. As seen, a GPS receiver is a
sophisticated maths processor, involving various facets of applied mathematics. As a result,
analysing relevant GPS mathematical aspects and subsequent modelling is imperative, as it sets

the path for better algorithms designs, proper implementations and development in software.
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APPENDIX C

GPS EXTRA MISCELLANEOUS RESULTS

Appendix C contains detailed results of the Matlab floating-point GPS receiver. It includes the

acquired and tracked channels acquisition and tracking results, plus some few orbital parameters.

9.1 Floating-point Matlab GPS Receiver Acquisition Results

Figure 9.2 shows the acquired results of the GPS receiver first 10 channels, defined in Figure 9.1.

A4\ Command Window

1) Mew to MATLAB? Watch this Video, see Examples, or read Getting Started.

settings =

m=ToProcess:
number8fChannels:
skipHNumberOfEvtes:
fileHame:
dataType:

IF:

sanplingFredg:
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codeLength:
skipfhcguisition:
acgSatelliteli=st:
acgSearchBand:
acqgThreshold:
dlllDampingRatio:
dllNoi=seBandwidth:
dllCorrelatorSpacing:
pllDampingRatio:
pllHoi=zeBandwidth:
navSoclPeriod:
elevationMask:
u=seTropCorr:
truePosition:

GPS Leap Sec Offset:
plotTracking:

c:
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4.13040000000000e+006
16.3676000000000=+006
1.02300000000000e+006
1.02300000000000e+003
0.00000000000000e+000
[1x32 double]
50.0000000000000e+000
2.00000000000000e+000
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TOO0.000000000000e-003
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A\
Figure 9.1: Configuration settings of the software GPS receiver before processing
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Figure 9.2: Abridged acquisition results of the Matlab floating-point software GPS receiver
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9.2 Floating-point Matlab GPS Receiver Tracking Results

This section depicts the very detailed tracking results of each tracked GPS satellite or channel.

Figure 7: Channel 1 (PRM 2 results
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Figure 9.3: Channel 1 illustration of tracked GPS satellite #2, showing fully decoded navigation message

Figure 8: Channel 2 (PRN 24) results
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Figure 9.4: Channel 2 illustration of tracked GPS satellite #24, showing fully decoded navigation message
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Figure 9 Channel 3 (PRM 10) results
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Figure 10: Channel 4 (PRN 30) results
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Figure11: Channel 5 (PRM &) results
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Figure 12: Channel 6 (PRN 7] results
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Figure 9.8: Channel 6 illustration of tracked GPS satellite #7, showing fully decoded navigation message
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Figure 13: Channel 7 (PRN 32) results
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Figure 9.9: Channel 7 illustration of tracked GPS satellite #32, showing poor decoded navigation data

Figure 14: Channel 8 (PRN 14) results
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Figure 9.10: Channel 8 illustration of tracked GPS satellite #14, showing poor decoded navigation data
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Figure15: Channel 9 (PRN 1) results
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9.3 First 4 GPS Satellites Orbital Parameters Preview

This section simply shows some vital details of the computed GPS satellites orbital parameters;
such as the transmit time of the satellites signals, their travel times, pseudo-ranges, satellites
positions, satellites clocks corrections, the GPS receiver position, the time bias, DOPs and UTM.

Nj Processing_results 2 - Notepad
File Edit Format View Help
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32
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travelTime =
columns 1 through 3
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120310.499926527
satPositions =
Columns 1 through 3
-14237224.9134546
13300911. 2689854
17704414, 6805625
column 4
0
0
0
satClkcorr =
columns 1 through 3
7.34738495015329e-05
column 4
0
time =
120310.499931201
satPositions =
columns 1 through 3
-14237224,9134546 -550965.175708401
13300911. 2689854 15383286. 3109627
7704414, 6805625 21B862661.4555584
column 4
4]

Nj Processing_results_2 - Notepad
File Edit Format VYiew Help
satClkCorr =

columns 1 through 3

7.34738603842355e-05 6.87845936912457e-05 9.592298784098862-05
column 4

0
time =
120335.999977401
satPositions =
columns 1 through 3
-14296175.7552491 -620497.402176107 -3031370.72951761
13298136. 9795797 15382519.414943 19006009. 4638696
17658904, 3120931 21862085, 6166128 18055833. 00712
column 4
18027983, 2353065
18456513.2937491
6242584.72900386
satClkcorr =
Columns 1 through 3
7.34738603842355e-05 6.87845936912457e-05 9.59229878409886e-05
Column 4
2.25771476968877e-05
pos =
columns 1 through 3
3427958.42376531 603727.275334636 5326678, 83400409
column 4
-1608693.55445933
GDOP
§.400223475997
PDOP
.13911661296331
HDOP
. 52597634467637

.80458438505653
.42682374092333

TransmitTime =
2

Figure 9.13: Preview of the first four acquired GPS satellites orbital parameters
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9.4 Researched GPS Receiver Algorithms with Problems during the Conversion Process

This section presents the failures encountered in the software-to-firmware conversion processes.

9.4.1 acquisition.m: performs cold start searching for available GPS satellites signals

4\ HDL Code Generation
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Variables | Build Errors |~ [_Retry Build |
Line
127
121
132
135
126
140
141
143
198
206
209
213
215
216

Type Function Description
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Q
Q
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acquisition Undefined function arwvariable TQfreqDom2’, The first assignment to a local wariable determines its class,
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acquisition Undefined function or wariable 'acgRes1’, The first assignment to a local variable determines its class,
acquisition Undefined function arwvariable 'acqRes1'. The first assignment to a local variable deterrmines its class.
acquisition Undefined function orwvariable 'acqRes2". The first assignment to a local variable deterrmines its class.
acquisition Expected either a logical, char, int, fi, single, or double. Found an retrray, Marrays are returned from calls to ..
acquisition Undefined function arvariable 'longCaCode’. The first assignment to a local wariable determines its class,
acquisition Undefined function arwvariable xCarrier’. The first assignment to a local wariable determines its class,
acquisition Undefined function orwvariable ‘xCarrier’. The first assignment to a local wariable determines its class,

acquisition Undefined function arvariable 'fitMurmPts’, The first assignment to a local wvariable determines its class,

000000000000

acquisition Undefined function arwvariable 'fftc’, The first assignment to a local variable deterrmines its class,

Figure 9.14: Illustration of some conversion issues in the acquisition.m algorithm

9.4.2 calculatePseudoranges.m: computes the range error between satellites and receiver
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Figure 9.15: Illustration of some conversion issues in the calculatePseudoranges.m algorithm
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9.4.3 cart2geo.m: transforms rectangular (ECEF) coordinates to geographic

4\ HDL Code Generation

4 : e

H :@) ) ) 2 Propose fraction lengths @

Function: [* cart?2geo = @ Propose word lengths
Default word length: 32

E-{_] HDL Workflow Advisor -~
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T Verify with FPGA-in-the-Loop| | 3 GEO Conversion of Cartesian coordinates (X,¥,Z) to geographical
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I Create Project
{0 Run Logic Synthesis
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“ariables Function Replacements | Walidation Results =

Validation failed. The project cannot be built with these fixed-point types unless these problems are resolved.

Type Function Line Description

cart?geo_FixPt Function call failed.

cart?geo_FixPt Function call failed.

cart?geo_FixPt Undefined function orvariable 'c1'. The first assignment to a local variable determines its class,
cart2geo_FixPt Function call failed.

cart2geo_FixPt Undefined function orvatiable 'ex2’, The first assignment to a local variable determines its class,
cart?geo_FixPt Function ‘atan’ is not defined forvalues of class ‘embedded fi',

cart2gea_FixPt Function call failed.

cart?geo_FixPt Undefined function orvariable 'c". The first assignment to a local variable determines its class,
cart2geo_FixPt Undefined function or wvariable 'N', The first assignment to a local variable determines its class,
cart2geo_FixPt Undefined function orvatiable 'phi', The first assignment to a local variable determines its class,

cart?geo_FixPt Orwverflowr or saturation occurred during constant folding, Walue of this expression cannot be exa..,

IFO0000000000

Figure 9.16: Illustration of some conversion issues in the cart2geo.m algorithm

9.4.4 cart2utm.m: converts Cartesian (XYZ) coordinates to ENU in UTM

4\ HDL Code Generation

=] HDL Workflow Advisor
0 Define Input Types Ll g
9 Fixed-Point Conversion Run Simulation  Compute Derived
[ HDL Code Generation - Ranges ¥
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1 Verify with FPGA-in-the-Loop 3 function [E, N, U] = cartZutm(X, ¥, Z, zone)
(=[] Synthesis and Analysis 4 3CART2UTH
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o
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-
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-
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cartZutm Undefined function orvariable 'Ep’. The first assignment to a local variable determines its class,

cartlutim Undefined function or variable 'Np', The first assignment to a local variable determines its class,

OO00000LOOOOOOO

cart?utm Undefined function or variable 'Ep'. The first assignment to a local wariable determines its class,

Figure 9.17: Illustration of some conversion issues in the cart2utm.m algorithm
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9.4.5 checkPhase.m: checks the phase of the decoded navigation data message

4\ HDL Code Generation
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Figure 9.18: Illustration of some conversion issues in the checkPhase.m algorithm

9.4.6 clksin.m: provides real and imaginary output for use by cart2utm.m

4\ HDL Code Generation

(=] HDL Workflow Advisor
o Define Input Types
o Fixed-Point Conversion
] HDL Code Generation
(=[] HDL Verification
{1 Verify with HDL Test Bench
{2 Verify with Cosimulation
: {0 Verify with FPGA-in-the-Loop
= [ Synthesis and Analysis
il Create Project
{71 Run Legic Synthesis
{71 Run Place and Route

[E=1 Bl 53

@ Propose fraction lengths {9}

[ Ho

Function: /= clksin @
Run Simulation Compute Derived - ]

- Ranges «

DATA COLLECTION NAVIGATION

™ Propose word lengths
Default word length: |32 MTM

TYFE PROFOSAL

VERIFICATIOM | HELP

1 function [re, im] = clksin(ar, degree, arg real, arg imag)

5 % Written by Kai Borre

fariables | Function Replacements | Validation Results =

Validation failed. The project cannot be built with these fixed-point types unless these problems are resolved.

Function Line Description

=
5
E

clksin_FixPt Function 'sinh" is not defined forwalues of class 'embedded.fi',
clksin_FixPt
clksin_FixPt
clksin_FixPt
clksin_FixPt
clksin_FixPt
clksin_FixPt
clksin_FixPt
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Function 'cosh’ is not defined for values of class 'embedded fi',

Function call failed,
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Figure 9.19: Illustration of some conversion issues in the clksin.m algorithm
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A\ HDL Code Generation
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TYPE PROPOSAL

9.4.7 dms2mat.m: splits deg2dms.m output to hours, minutes, seconds and milli-seconds
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E.qg. f ar t i=s 2

the cutput will be 23.823.

Updated by Darius Plausinaitis

1d be used

'sprintf')
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3476

ariables  Build Errors =

Type Function Line Description

0 dms2mat 30
o dmsimat 47
o dms2mat 45

o dms2mat 46

Subscripting into an rrodray is not supported.

Retry Build

Expected either a logical, char, int, fi, single, or double, Found an rreferay, Wxlrrays are returned from calls to the ..

Undefined function or variable 'matOutput’, The first assignment to a local variable determines its class,

Undefined function orvariable 'matCutput’, The first assignment to a local wariable determines its class,

Figure 9.20: Illlustration of some conversion issues in the dms2mat.m algorithm

4\ MATLABR2013a
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9.4.8 e_r_corr.m: corrects errors in GPS satellites orbital positions
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ﬂ dms2mat_tb.m
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fﬂ ephemeris.m
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Autodefine Input Types
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function and te

use the Workflow

generate code.

Figure 9.21: lllustration of some conversion issues in the e_r_corr.m algorithm
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9.4.9 ephemeris.m: decodes ephemeris data and time of week from the navigation data

4\ HDL Code Generation

-] HDL Workflow Advisor
o Define Input Types
o Fixed-Point Conversion
I HDL Code Generation
=+ HDL Verification
¢ i Verify with HDL Test Bench
I Verify with Cosimulation
i bl Verify with FPGA-in-the-Loop
& Synthesis and Analysis
-0 Create Project
-8 Run Logic Synthesis
[l Run Place and Route

Compute Derived
Ranges ~

Run Simulation

DATA COLLECTION

Function: - ephemeris = | ﬂ

=S =R

VERIFICATION | HELF
Defauttword lengths | 32 Adv?ced

- -

HAVIGATION TYPE PROPOSAL

function [eph, TOW]

%Function decodes ephemerides and TOW from the
the parameter BITS
be the first bit of a subframe.

Ffirst subframe
%
$Function does not

[eph, TCW] =

G P P W W R P o

= ephemeris (bits,

D30Star)
ven bit stream. The stream
must contain 15 firac in

The subframe ID of the

in the array is not important.

eck pari

ephemeris (bits,

- bits of the naviga

D305tar)

messages (5 subframes).

it must con
last bit of the previous nav-word
for
Parameter type

nterface control docum » (I )

is -

Wariables | Build Errors
Type Function
invert
invert
checkPhase

ephermetis

Retry Build

Description

First argurment must be a signed or unsigned integer,
Function call failed.

Function call failed.

Function call failed.

Figure 9.22: lllustration of some conversion issues in the ephemeris.m algorithm

9.4.10 findPreambles.m: deduces first sub-frame or the start of the navigation message

4\ HDL Code Generation

=-{ ] HDL Workflow Advisor
9 Define Input Types
9 Fived- nversion
] HDL Code Generation
& HOL Verification
T Verify with HDL Test Bench
T Verify with Cosimulation
{8 Verify with FPGA-in-the-Loop
EHE Synthesis and Analysis
] Create Project
{0 Run Logic Synthesis
I Run Place and Route

Run Simulation  Compute Derived
- Ranges «

DATA COLLECTION

Function: = findPreambles ~ |ﬁ

Advanced | VERIFICATION | HELP

Defautt word leqath: | 32 -

- -

NAVIGATION TYPE PROPOSAL

1 function [firstSubFrame,

2
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each chanr
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findPreambles finds the first
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(6sec) and parity ct

activeChnList] = findPreambles (trackResults,
settings)

in the bit stream of

‘ariahles | Build Errors ™

Type Function

findPreambles
findPreambles
findPreambles
findPreambles
findPreambles
findPreambles
findPreambles
findPreambles
findPreambles
findPreambles
findPreambles
findPreambles

findPreambles

0000000000000 0

findPreambles

Line

Retry Build

Description

Referencing a companent from array of non-scalar values is not supported for code generation,
Undefined function orvariable ‘activeChnList', The first assignment to a local variable determine..,
Undefined function or variable ‘channelMy', The first assigniment to a local variable deterrnines it.,
Undefined function arvariable 'hits', The first assignment to a local variahle determines its class,

Undefined function orvariable 'hits', The first assignment to a local variable determines its class,

Undefined function arvariable 'bits', The first assignment to a local variable determines its class,

Function 'clear’ is not supported for code generation, Consider adding coderextrinsic('clear at..,
Function ‘clear’ is not supported for code generation, Consider adding coder.extrinsici'clear’) at .,
Undefined function arvariable ‘mXcorResult’. The first assignment to a local variable determi..,
Undefined function orvariable ‘mXcorResult’, The first assignment to a local variable determi..,
Undefined function or variable index', The first assignment to a local variable deterrines its class,
Undefined function arvariable 'index’. The first assignment to a local variable deterrmines its class,
Undefined function ar variable 'index?', The first assignment to a local variable determines its cl..,

Undefined function or variable ‘channelM', The first assigniment to a local variable determines it., =

Figure 9.23: Illustration of some conversion issues in the findPreambles.m algorithm
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9.4.11 generateCAcode.m: creates the 1023 C/A code phases for any 32 GPS PRN code

-d\ HDL Code Generation

=[] HDL Workflow Advisor "
@ Define Input Types o) . .
& Fixed-Point Conversion Run Simulation  Compute Derived Function: fi generateCAcode ~ |[Z] | v crorosa | verimicanion
€ HDL Code Generation - Ranges ~
[+ HDL Verification DATA COLLEGTION MNAVIGATION
[ Verify with HDL Test Bench
[ Verify with Cosimulation
I Verify with FPGA-in-the-Loop
= Synthesis and Analysis
[ Create Project
[ Run Logic Synthesis
7 Run Place and Route

unction CRcode = generateChcode (PRN)

rateCAcode.m generates one of the

ode (PRN)

— PRN number

£
=
%
%
=
=
=
%
%
%
=

o
[ = - O R

— a vector conta
hips) .

Wariables | Function Replacements | Yerification Output | =
—1.00000000000000e+000
Column 1022
1.00000000000000e+000
Column 1023
—1.00000000000000e+000
### Floating Point Simulation Completed in 14.809& sec(s)
##4# Begin Fixed Point Simulation : generateChcode_tb
FEN =
5.00000000000000e+000
using generateChoode FixPt (1li
exceeds matrix dimensions.

-\ HDL Code Generation

=L HDL Workflow Advisor Generate synthesizable HDL code from the fixed-point MATLAB code.
sy pol

Define Input Types

@ Fixed-Point Conversion Target | Coding Style | Clocks & Ports | Optimizations | Advanced | Script Options

|2 % JHDL Code Generation
[ HDL Verification Target Selection

I Verify with HDL Test Bench Languags: |VHDL =~

[ Verify with Cosimulation

I Verify with FPGA-in-the-Loop Output Settings

[ Synthesis and Analysis

I Create Project [¥] Check HDL conformance

B9 Run Logic Synthesis

9 Run Place and Route

Generate HOL

Generate EDA scripts

### Generating HDL Conformance Report generateChcode FixPt hdl conformance report.html

The MATLAS design contains constructs that are unsupported for HDL code generation.

Use help codegen for more information on using this command.

& Web Browser - HDL Check Report for generateCAcode_FixPt
+

@ oo 2 @) | 2 | @ | Location: [filew///D:/Spacebome_GPS_Rx_Conversion/codegen/generateCAcode/hdlsrc/generateCAcode_FixPt_hdl_conformance_report.html
HDL Code Generation Check Report for 'generateCAcode_FixPt'
Generated on 2014-04-28 23:21:28

The following table describes lines for which errors, warnings or messages were reported.
Function Location Level | Description
generateCAcode FixPt83 'g2' : Error: variable-size matrix type is not supported for HDL code generation.

‘varargin_1' : Error: variable-size matrix type is not supported for HDL code
generation.

‘varargin_1': Error: variable-size matrix type is not supported for HDL code
generation.

varargin_1' : Error: variable-size matrix type is not supported for HDL code
generation.

‘wvarargin_1' : Error: variable-size matrix type is not supported for HDL code
generation.

‘var1' : Error: variable-size matrix type is not supported for HDL code
generation.

generateCAcode FixPE81 ‘g2’ . Error: variable-size maltrix type is not supported for HDL code generation.

generateCAcode FixPta1 g:':;rggcr,rﬂort variable-size matrix type is not supported for HDL code

generateCAcode FixPt83 'b0" : Error: variable-size matrix type is not supported for HDL code generation.
generateCAcode FixPi83 'b0Q" : Error: variable-size maltrix type is not supported for HDL code generation.
generateCAcode FixPt83 'b' - Error: variable-size matrix type is not supported for HDL code generation.

generateCAcode FixPtg1

generateCAcode FixPt-81

generateCAcode FixPta1

generateCAcode FixPt81

agenerateCAcode FixPt81

Figure 9.24: Illustration of some conversion issues in the generateCAcode.m algorithm
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9.4.12 gps_time.m: extracts mean GPS week number and second from ephemeris data

4\ HDL Code Generation

=] HDL Workflow Advisor
o Define Input Types |5t k . .
- = Fundtion: [ i .
23 Fixed-Point Conversion Run Simulation  Compute Derived undtion: [ gps time = [ TR Advanced | VERIFICATION | HELP
[ HDL Code Generation - Ranges ¥ efautt vrard iength: | 32
=+ HDL Verification DATA COLLECTION NAVIGATION TYFE FROPOSAL
7 Verify with HDL Test Bench aWritten by X - — B TiETE
I Verify with Cosimulation %December,
{8 Verify with FPGA-in-the-Loop || 3 22-pacqen
= [ Synthesis and Analysis function [EP5 time, GPS Leap Sec Offset] = gps time(eph , settings)
I Create Project $Extract mean GPS week number and GPS second from ephemeris data
1 Run Logic Synthesis %to calculate UTC date and time
{7 Run Place and Route

-
- -

coder.extrinsic ('disp")
if (~isempty(eph))

GP5_Leap Sec Offset = settings.GP5_Leap Sec Offset;

GP5_Week Num = [eph.weekNumber]; -
“fatiahles | Build Errars = Retry Build

Function Line  Description

gps_time 14 Referencing a component from array of non-scalar values is not supported for code generation,

gps_time 15 Referencing a camponent from array of non-scalar values is not supported for code generation,

gps_time 18 Undefined function or variable 'GP3_Week_Murm', The first assignment to a local wariable determines its class,
gps_time 13 Undefined function or variable 'GPS_toc', The first assignment to a local variable determines its class,

gps_time 23 Undefined function or variable 'GP3_Week_Murm_tean', The first assignment to 3 local variable determines its cl..,

gps_time 24 Undefined function or variable 'GPS_time', The first assignment to a local variable determines its class,

Figure 9.25: Illustration of some conversion issues in the gps_time.m algorithm

9.4.13 gps2utc.m: computes UTC date and time from the extracted GPS time

4\ HDL Code Generation

-] HOL Workflow Advisor .
@ Define Input Types DJ
@ Fixed-Point Conversion Run Simulation  Compute Derived
[ HDL Code Generation - Ranges +
(=2 HDL Verification DATA COLLECTION NAVIGATION TYPE PROFOSAL
{2 Verify with HDL Test Bench 5
1 Verify with Cosimulation 7
{2 Verify with FPGA-in-the-Loop| | 5 £ = fimach ('RoundingMechod', 'Nearest', 'Overflowhction', 'Wrap', 'ProductMode', 'FullPre
=1 Synthesis and Analysis o s#codegen
{1 Create Project 10 = 'J?-’:_\:'_rr.e,
7 Run Logic Synthesis 11 2 - -

E p @ Propose fraction lengths
Function: > gpsdutc FixPt = | ﬁ ™ Propose word lengths

VERIFICATION HELP
Defautt word length: |32 heepced

-
- -

function [Hour,Minute, S5econd,Day,Month,Year] = gp32utc_ FixPt (GP5_time,GPS_Leap Sec_Off:

8 Run Place and Route 1z ¥ Converts a ime into an equivalent UTC time (matrices).

13 3
<

Variables | Function Replacerments | Validation Results | =

Bl Validation failed. The project cannot be built with these fixed-point types unless these problems are resolved.

Type Function Line Description

gps2ute_FixPt 131 Infi * non-fi, or non-fi > fi, the non-fi must be a constant,

gpsutc_FixPt 131 Function call failed.

gpsute_FizPt 137 Infi *non-fi, or non-fi .*fi, the non-fi must be a constant.

gps2utec_FixPt 137 Function call failed,

gps2ute_wrapper_FixPt 10 Function call failed,

gps2ute_wrapper_FixPt 10 Undefined function or+ariable 'Hour_out!, The first assignrment to a local varizble determines its,., —
gpsutc_wrapper_FixPt 10 Undefined function orwvariable 'Minute_out’. The first assignrent to a local variable determines .
gps2utc_wrapper_FixPt 10 Undefined function orwariable 'Second_out'. The first assignment to a local variable determines ..

gps2ute_wrapper_FixPt 10 Undefined function orwariable 'Day_out', The first assignment to a local variable determines its ..

0000000000

gps2utec_wrapper_FixPt 10 Undefined function orwariable 'Month_out', The first assignment to a local variable determines i, =

Figure 9.26: Illustration of some conversion issues in the gps2utc.m algorithm
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9.4.14 init_tracking.m: prepares the acquired GPS data for tracking

4\ HDL Code Generation EI @

=] HDL Workflow Advisor
@ Define Input Types Lk

i 0 Fixed-Point Conversion Run Simulation Compute Derived
. Defauliwordiengtis | 32
{2l HDL Code Generation - Ranges - - -

- HDL Verification DATA COLLECTION NAVIGATICN TYPE PROPOSAL

o

Advanced VERIFICATION | HELP

Function: = init_tracking - |ﬁ

5 Verify with HDL Test Bench function [channel] = init tracking(acgResults, settings)
8 Verify with Cosimulation $Function initializes tracking channels from acquisition
1 Verify with FPGA-in-the-Loop $signals are sorted accord ignal str h. tion can be
=12 Synthesis and Analysis 2modified to use other satellite selection alg introduce
{71 Create Project facqguired signal properties offsets for testing purposes.
{1 Run Logic Synthesis
{2 Run Place and Route . 1 = ing (acqResults, sett

Inputs:
acqResults results from acquisition.

11 settings eceiver sectings B

Wariables | Build Errors = Retry Build

Type Function Description

init_tracking Referencing a cornponent from array of non-scalarvalues is not supported for code generation,

00

init_tracking Referencing a component from array of non-scalar values is not supported for code generation,
init_tracking Referencing a component from array of non-scalarvalues is not supported for code generation,
init_tracking Referencing a cornponent from array of non-scalarvalues is not supported for code generation,
init_tracking Subscripting into an empty matrix is not supported,
init_tracking Subscripting into an empty matrix is not supported,
init_tracking Subscripting into an empty ratrixis not supported,

init_tracking Subscripting into an empty fnatrix is not supported,

0000000

init_tracking Subscripting into an empty matriz is not supported,

Figure 9.27: lllustration of some conversion issues in the init_tracking.m algorithm

9.4.15 invert.m: inverts applicable navigation bits for use by checkPhase.m

4\ HDL Code Generation EI

Bl ] HDL Workflow Adviser
: o Define Input Types (I A
(D Fixed-Point Conversion Run Simulation  Compute Derived
7] HDL Code Generation - Ranges v
0 HDL Verification DATA COLLECTION NAVIGATION TYPE PROPOSAL
I Verify with HDL Test Bench
I Verify with Cosimulation
8 Verify with FPGA-in-the-Loop
= Synthesis and Analysis
7 Create Project
7 Run Logic Synthesis
- Run Place and Route

Funetion: 7= invert '_Iﬁ Advanced | VERIFICATION | HELP
Defauttwordlength: | 32

-
- -

function result = invert (data)
% Inverts the binary input-string so that 0 becomes 1 and 1 becomes 0.

ckphase function for usage: data = (word(l:24))

) {alternatin O0s and 1= for example)

y Darius Plausinaitis, Kristin Larson and

redistribute

=
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EMERCHA s 3 I R 4 R PURPOSE. h =

Wariables | Build Errars Retry Build

Type Function Line Description

-
o

0 invert 7 First argument must be a signed or unsigned integer,
0 inwert 37 Function call failed.

Figure 9.28: Illustration of some conversion issues in the invert.m algorithm
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9.4.16 leastSquarePos.m: computes GPS receiver position using least-squares approach

4\ MATLAB R2013a (=& |[=]
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RS - . me
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i 8.2 ®
) makeCaTable_th.m PDOP = T - ; 2707 MATLAB Test Bench (2}
fﬂ navPartyChk.m 3 ) - —=F . 310 &
’ 7.01962871721411e+000 [ - ) leastSquarePos._ th.m
) navPartyChk_th.m < “ ¢ 1-4.7344476900000C q

P HDOF =
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Y S
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e - . )
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Figure 9.29: Illustration of some conversion issues in the leastSquarePos.m algorithm

9.4.17 makeCaTable.m: pre-computes / creates a lookup table for all 32 GPS PRN codes

4\ HDL Code Generation

E-{_] HDL Workflow Advisor - .
@ Define Input Types - [.}U) e .
o Run Simulafion | Compute Desived | Lo oS> makeCaTable | A | rvreerorosac | vemiricamon | vee
"] HDL Code Generation - Ranges + - -
-+ HDL Verification DATA COLLECTION NAVIGATION

5 Verify with HDL Test Bench function caCodesTable = makeCaTable (settings)
{5 Verify with Cosimulation ion ge ates CA codes for all e e e n sett
{8 Verify with FPGA-in-the-Loop e . structure "sett c e e re itized at the
E}J Synthesis and Analysis pling v specified in .
: [0 Create Project row in the "caCodesTable" is B row number is the PRN
£ Run Logic Synthesis $number of the C/A code.
{7 Run Place and Route %

IcaCodesTable = makeCaTable (settings)

=

% Inputs:
= sett
% Outputs:
%

=

caCodesTable n array rrays (matrixz) contain
1 te PRN-s

Wariables | Function Replacements

C:\Program Files\MATLAB\R2013a'toolbox\coder\float2fixed\+coder)

:\Program

TLEE\RZ013a'\toolbox'\coder\ floatZfixed\+coder
1 b

Figure 9.30: Illustration of some conversion issues in the makeCaTable.m algorithm
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9.4.18 navPartyChk.m: checks the parity of the decoded navigation data sub-frames

4\ HDL Code Generation

=-{_] HDL Workflow Advisor
9
- 0 Fixed-Point Conversion
J HOL Code Generaticn
-0 HDL Verification
- Verify with HDL Test Bench
1 Verify with Cosimulation
- 1 Verify with FPGA-in-the-Loop
EJ Synthesis and Analysis
{8 Create Project
"] Run Logic Synthesis
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Warning: Cut of range or non-integer values truncated during conversion to character.

Define MATLAB function input types

MATLAB Function:  navPartyChlk.m

) navPartyChk_th.m ': .B
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char(1x32)

Test Bench:

ndat

ndat = -
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> In tp972bE923_pf5&_£ccl_a4EE_ﬁhESalT695c0 at 57

In C:\Spaceborne_GP5_Rx Dev\navPartyChk.p>navPartyChk at 10
In navPartyChk tb at 2

In C:\Program

Files\MATLAB\R2013a\toolbox\coder\coder +eoder\+internal\TestBenchManager . p>TestBenchManager|
at 472

In C:\Program Files\MATLAB\R2Z013a\toolbox\coder\coder\+coder\+internal\inferTestBench.prexec
49

In C:\Program Files\MATLAB\R2Z013a\toolbox\coder\coder\+coder\+internal\inferTestBench.p>infe

status =

A\ HDL Code Generation

=] HDL Workflow Advisor
; 0 Define Input Types
0
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-1 HDL Verification
- o[ Verify with HDL Test Bench
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1 Verify with FPGA-in-the-Loop
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] Run Logic Synthesis
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Run Simulation VERIFICATION | HELP

-

Compute Derived
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-

- -

DATA COLLECTION NAVIGATION TYPE PROPOSAL

ndat (1)
ndat (8)
ndat (16)

ndat (3)
ndat (12)
ndat (13)

* ndat (2)
* ndat (13)
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ndat (5)
ndat (14)
ndat (22)

ndat(7) * ...
ndat (15) * ...
ndat (25) ;

68 parity(1) =
L]
70
71
72 parity(2) =
73
74
75
76 parity(3) =
77
78
79

80 parity(4) =

ndat (2)
ndat (9)
ndat (17)

ndat (4)
ndat (13)
ndat (20)

ndat (5)
ndat (14)
ndat (21)

ndat (&)
ndat (15)
ndat (23)

ndat(8) * ...
ndat (16) * ...
ndat (26) ;

ndat (1)
ndat (9)
ndat (17)

ndat (3)
ndat (10)
ndat (18)

ndat (5)
ndat (14)
ndat (21)

ndat (&)
ndat (15)
ndat (22)

ndat (7} * ...
ndat (16) * ...
ndat (24) ;
ndat (2) ndat (4) ndat (&) ndat (7) ndat(8) * ...
81 ndat (10} * ndat(11) * ndat(15) * ndat(16) * ndat(17) * ...
8z ndat (18) * ndat(19) * ndat(22) * ndat(23) * ndat(25);:

83 o

Retry Build

Watiables | Build Errars | =

Type Function Line Description

Q

navPartyChk
o navPartyChk
Q navPartyChk
Q navPartyChk
o navPartyChk

Undefined function or varizble 'parity’. The first assignment to a local variable determines its class,

Undefined function or variable 'parity’, The first assignment to a local variable determines its class,

Undefined function or vatiable ‘parity’. The first assighment to a local variable deterrnines its class.|

Undefined function or varizble ‘parity’, The first assignment to a local variable determines its class,

Undefined function or varizble 'parity’. The first assignment to a local variable determines its class,

Figure 9.31: lllustration of some conversion issues in the navPartyChk.m algorithm
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9.4.19 postNavigation.m: performs post-processing of the decoded GPS data

4\ MATLAB R2013a
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=2 - [ Find Files g’ E = lj 1] E U e
= [ Open Variable ~ {7 Run and Time [l set Path =} Request Support

Mew New Open |1=] Compare: Import Save Simulink  Layout Help

Script ~ Data Workspace ; ClearWorkspace v  [* Clear Commands ~  Library ~ i Parallel = ~  COAddOns v

FILE VARIAELE GODE SIMULINK ENVIRONMENT RESOURGES
< = = ﬁ . » Dt » Spaceborne_GPS_Rx_Conversion »
Current Folder @ | Command Window ® Workspace @ | HDL Code Generation

Name @ Mewto M e "L —
—=m— | Autodefine Input Types |£|

Vah | =] GPS_Receiver.pri hd

= codegen I
ap_Sec_Off.. 0 | [l View code generation readiness

32.

@ W fisccel by = | Selecta test file for automatically inferring the input types.
& hdlsre B e

Misc Files o i :
Misc_Doc Br " Test file ‘jpostNavigat\onitb.m -

slpr) == F>
£ th tion.
fﬂ acquisition.m - j postMavigation.m
ﬂ acquisition_tb.m = Remove MATLAB function

M calcLoopCoef.m g Autodefine types

= calcLoopCoef_tb.m Help I

@ calculatePseudoranges.m
B postMavigation_th.m

= Issues

ﬂ calculatePseudoranges_th.m .48508228000000e-012
fﬂ cartZgeo.m

) cart2geo_th.m 4\ Autodefine Input Types @
) cart2utm.
ﬂ carteutm.-m Error evaluating the test file 'postMavigation_th'.

cart2utm_tb.m Bt

)5
j check_t.m . An error was thrown by entry-point ‘pestNavigation:5calar index required for this type of multi-level indexing.
% check_t_Flt_n_Fix

| check_t_Flt_n_Fix use the Workflow A orto

ﬂ check_t_Flt_n_Fix generate code.
=

- [« &k Worlkflow Advisor

Add files

Figure 9.32: Illustration of some conversion issues in the postNavigation.m algorithm

9.4.20 satpos.m: compute GPS satellites position (crashes Matlab R2013a)

4\ MATLAB R2013a (=& =]

HOME ¢ x

ﬁ E 4\ MATLAB System Error

Get More  Install HOL Coder  MATLAB Coder MATLAB
Ci les
T Amp Q MATLAE has encountered an internal problem and needs to close. e

FILE

&P @ET
Current Folder
Mame Click Send to send this infermation to The MathWorks. Vali

The unsaved information you were working on may be lost. We are serry for the inconvenience,

Click Never Send to disable sending information to The MathWorks (saved in preference). ®  HDL Code Generation
— [l GPS_Receiver.prj - @-
ﬂ invert_tb. Click End Now to close MATLAB now. 195, ~

7 [l View code generation readiness
é :::ZE::E:: Click Attempt to Continue to try to return briefly to MATLAB. You might be able to save your work. 1-5?8|_| issues

Do not continue your MATLAB session after trying to save your work. Further operations are unrelioble.

fﬂ makeCaTa 387
You must close and restart MATLAE in order for the program to operate correctly. .
¥ makeCaTa preg P Y MATLAB Function (7}

)2] navPartyC Click Details to see what will be sent to The MathWaorks if the Send button is clicked. ,\‘ﬂ satpos.m
ﬂ navPartyC|
b plotAcquis [ Send ] [ End Now ] [ Attempt to Continue I [ Details » > ]
= plotAcquis
@ plotNaviga

@ plotTracking.m 6.35049057128239¢ Autodefine Input Types 02 MATLAB Test Bench (2]

Remove MATLAB function
Autodefine types

@ postMavigation.m satClkCorr =

# .
j postNavigation_tb.m Column 1 Select a test file for automatically inferring the input types.
ﬂ postProcessing.m 73.47384501818524

& probeData.m Column 2
= probeData_tb.m 68.78440313445884 lestfile = satpos_th.m + (=
Ba Processing_results_in_workspace_1.... Column 3
’;ﬁ satpos.m 95.9230454874683¢ Running... £ S
dﬁ o Column & cémerate“-'ctle .
) satpos thm 22.57711411047914 ’ —

tropo_tb.m (MATLA t) Workflow Advisor

ﬂ satpos_th.m

Add files

After specifying your design
function and tes

Figure 9.33: Illlustration of some conversion issues in the satpos.m algorithm
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9.4.21 showChannelStatus.m: display the acquisition and tracking results in a table

-d\ HDL Code Generation

=-=] HDL Workflow Advisor
@ Define Input Types L 4
) Fixed-Point Conversion Run Simulation Compute Derived
-~ HOL Code Generation - Ranges -
= HDL Verification DATA COLLECTION NAVIGATION

Function: / showChannelStatus

'.M TYPE PROPOSAL | VERIFICATION | HELP

- - -

¢ Verify with HDL Test Bench function showChannelStatus (chennel, settings)
5 Verify with Cosimulation %Prints the status of all in a cable.
[ Verify with FPGA-in-the-Loop 5
£-[ Synthesis and Analysis
[ Create Project
I Run Logic Synthesis
“J Run Place and Route

EshowCt nelS5tatus (chann

Inputs:
channel nnel is used to initialize and
(tracking part).
sectings

Bertelsen

nd Darius Plausinaitis

»

“Wariables | Build Errors Retry Build

Type Function Line Description

@ showChannelStatus 1 “ariable 'channel'. &rray of structures is not supported.

Figure 9.34: Illustration of some conversion issues in the showChannelStatus.m algorithm

9.4.22 togeod.m: calculates geodetic coordinates from Cartesian coordinates

4\ HDL Code Generation

=-£2] HDL Workflow Advisor
IS 0 Define Input Types [

(D Fixed-Peint Conversion Run Simulation  Compute Derived
[ HDL Code Generation - Ranges «

=+ HDL Verification DATA COLLECTION NAVIGATION TYPE FROPOSAL

{2 Verify with HDL Test Bench D IR TR R T T I R R R R R R R R R Rt e e R R LR LR R LRI LRI LRI R R IR R R TIELILILSY
{8 Verify with Cosimulation 6 codeg

@ Propose fraction lengths {gf
Function: [~ togeod FixPt v [#{ ° Propose word kengths

VERIFICATION | HELF
Default word length: |32 ddvanced

-
-

{8 Verify with FPGA-inthe-Loop || 7 function [dphi,dlambda,h] = togeod FixPt(a,finv,X,¥,Z)
=+ Synthesis and Analysis B

{8 Create Project 9 fm = fimath ('RoundingMethod', 'Nearest', 'OverflowlAction', 'Wrap', 'ProductMode',
12 Run Logic Synthesis 10 $TOGEOD  Subr ne to calculate geodetic coordinates latitude, longitude,
{2 Run Place and Route 11% h ven Cartesian coordinates X,¥,Z, and reference ipsoid
12 % values semi-major axis (a) and the inverse of flattening (finwv).
1n e

4 | .

Yariables | Function Replacements | Type Validation Qutput =

### Generating Fixed Point MATLAB Code togeod FixPt using Proposed Types

### Generating Fixed Point MATLAB Design Wrapper togeod wrapper FixPt

Error: File: togeod.m Line: 74 Column: £

Function 'asin' i= not supported in float to fixed point conversion
Found some unsupported constructs during float to fixed point conversion. Please zee the

above error messages for details.

##¢ Generating Mex file for ' togeod wrapper FixPt

?2?? Function 'asin' is not defined for values of class 'embedded.fi'.

Error in ==> togeod FixPt Line: 70 Column: 11

Code generation failed: Open error report.
4 ]

Figure 9.35: Illustration of some conversion issues in the togeod.m algorithm
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9.4.23 topocent.m: transforms changing position coordinates to topocentric coordinates

4\ HDL Code Generation EI@
-] HDL Workflow Advisor g ’ : -
>--° Define Input Types D: {}U) s okt {9}

& 7 5 fx i | 7 Propose word lengths
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=+ Synthesis and Analysis 5
{0 Create Project 9 fm = fimath('RoundingMethod', 'Nearest', 'OverflowhAction', 'Wrap', 'ProductMode', 'FullPre
{2 Run Legic Synthesis W0 $TOPOCENT
{1 Run Place and Route 11 =

- -

Transformation of vector dx into topocentric coordinate
n at X.
12 = Both parameters are 3 by 1 vectors.

4 | 1

* | Wariables Function Replacements | Type Validation Output =

### Generating Fixed Point MATLAB Code topocent FixPt using Proposed Types
### Generating Fixed Point MATLAB Design Wrapper topocent wrapper FixPt

Error: File: togeod.m Line: 74 Column: 8

Function 'asin' is not supported in float to fized point conversion

Found some unsupported constructs during float to fixed point conversion. Please see the
above error messages for details.

### Generating Mex file for ' topocent wrapper FixPt '

??? Function 'asin' is not defined for values of class 'embedded.fi'.

Error in ==> topocent FixPt Line: 121 Column: 11
Code generation failed: Open error report.

nr

4\ HDL Code Generation

=-E] HDL Workflow Advisor Er ; _
) + © Propose fraction lengths
@ Define Input Types i & p oE ———
- - ion: ropase word len
- () Fixed-Paint Conversion TrE S Crrreiec Fundtion: /- topocent Faft v (/] Advanced | VEFIFICATION | HELP
-] HDL Code Generation - Ranges + Defaul word length: |32 =

=[] HDL Verification DATA COLLECTION NAVIGATION TYPE PROPOSAL

{8 Verify with HDL Test Bench
-1 Verify with Cosimulation
‘ {2 Verify with FPGA-in-the-Loop
=+[ Synthesis and Analysis
{0 Create Project
- Run Logic Synthesis
{1 Run Place and Route

121 dphi = fi(asin( sinphi ), 0, 32, 26, fm);

122 $£ initial value of height = diatance from origin minus
123 ¥ approximate distance from origin to surface of ellipsoid
124 if r<l.e-20

125 h=fi{0, 0, 32, 26, fm);

126 return

127 end

126h = fi(r - a*(fi(l, 0, 1, 0) - fi div{sinphi*sinphi, finv)), 0, 32, 26, fm);
129 % iterate

130 for i iter = 1:fi toint (maxit)

131 i =fi(i iter, 0, 3, 0, fm);

132 sinphi = fi(zin( dphi ), 0, 32, 32, fm):

L}

Wariahles | Function Replacements | Validation Results | =

Type Function Line Description

n topocent_FixPt
0 topocent_FixPt 121 Function call failed.
times 118 eml_const: Errorwhile evaluating call to MATLAR: The computed word length of the resulkis 13,
rtirnes 62 Function call failed,

topocent_FixPt 128 Function call failed.

topocent_FixPt 132 Undefined function or variable ‘dphi', The first assignrment to a local variable determines its class, »

Figure 9.36: Illustration of some conversion issues in the topocent.m algorithm
229



9.4.24 tracking.m: tracks the acquired GPS data to extract navigation bit streams

4\ HDL Code Generation

L] HDL Workflow Advisor
@ Define Input Types Let —
= = 5 Function: - tracking = I I
=l Run Simulstion  Compute Derived = d A e ——— Advanced | YERIFIGATION | HELR
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'; Completed ',int2stcr(loopCnt),
" of ', int2str(codePeriods), ' msec']):
168 catch
169 % The progress bar was closed. It is used as a signal
170 % to stop, processi . it.
171 disp('Progress bar closed, ex ccco 8
17z return
173
<

3

“ariables | Build Errors | ™ Retry Build

Type Function Line Description

Q tracking 160 Tryand catch are not supported for code generation,

0 tracking 1 Unable to continue due to prewvious errors,

Figure 9.37: Illlustration of some conversion issues in the tracking.m algorithm

9.4.25 tropo.m: corrects tropospheric errors in pseudo-ranges and carrier phases

4\ HDL Code Generation E

=] HDL Workflow Advisor

@ Define Input Types P / : .
Fixed-Point Conversion Run Simulation  Compute Derived | oo J* trope T F . Advanced | VERIFICATION | HELP
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i Verify with HDL Test Bench
i Verify with Cosimulation
i I Verify with FPGA-in-the-Loop
&l Synthesis and Analysis
I Create Project
£ Run Logic Synthesis
{1 Run Place and Route

This view shows the code as it was when the errors were found. It will update when you retry.

function ddr = tropo(sinel, hsta, p, tkel, hum, hp, htkel, hhum)
3TROPO Calculation of tropospheric correction.
range correction ddr in m is to be subtracted from
pseudo-ranges and carr phases

hsta, p, tkel, hum, hp, htkel,

o
[ == I S (- A A

PR
R X}

-
n
o P o o P o o o

ht of tempera e mea

16

\fariables | Build Errors | = Retry Build

Type Function Line Description

ht of humidity measurement in 1 <

tropo 51 The function "tropo’ was found on the left-hand side of an assignment, Varizbles alone are allowe..,
tropo 51 Parse error: unrecognized form of assignment.

tropo 86 Parse error: unrecognized form of assignment.

tropo 1 Unable to continue due to previous errars,

Figure 9.38: Illustration of some conversion issues in the tropo.m algorithm
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4\ HDL Code Generation

[=-{-] HDL Workflow Advisor
o Define Input Types
9
0 HDL Code Generation
(=I5 HOL Verification
- I Verify with HDL Test Bench
{1 Verify with Cosimulation

=R Synthesis and Analysis
" Create Project
1 Run Logic Synthesis
{8 Run Place and Route

9.4.26 twosComp2dec.m: converts a two-complement binary number

=1 =8 =
w {kﬂ @ Propose fraction lengths @

—r | ~ Propose word lengths
Fundion: + twosComp2dec v /] pose o Advanced | VERIFICATION | HELP

Run Simulation ~ Compute Derived )
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DATA COLLECTION NAVIGATION

{2 Verify with FPGA-in-the-Loop

1 function intNumber = twozCompZdec (binaryNumber)

2 % TWOSCOMP2ZDEC (binaryNumber) Converts a two's-complement binary number

3 % BINNUMBER (in Matlab it iz a string type), represented as a row vector of
4 % zeros and ones, to an

5%

6 $intNumber = twosCompZdec (bir

7
g
9%

(10 %

11 % Copyright (C) Darius Plausinaitis

4\ HDL Code Generation

=L HDL Workflow Advisor
o Define Input Types
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; 0 HDL Code Generation
EJ HDL Verification
- =J8 Verify with HDL Test Bench
T Verify with Cosimulation

=M Synthesis and Analysis
i Create Project
] Run Logic Synthesis
"] Run Place and Route

Wariables | Function Replacements | Type Validation Output =

Warning: Type not found for 'binaryNumber'.
### Generating Fixed Point MATLAB Code twosCompddec FixPt using Proposed Types
##4 Generating Fixed Point MATLAB Design Wrapper twosCompZdec wrapper FixPt

Error: File: twosCompldec.m Line: 43 Column: 30

Fanction 'mpower' is not supported in float to fixed point conversion

Found some unsupported constructs during fleoat to fixed point conversion. Please see the
above error messages for details.

### Generating Mex file for ' twosComp2dec wrapper FixPt '

Code generation sucecessful: View report

In

@ Propose fraction lengths @
Fundtion: /- twosComp2dec ¥ [/ 7 Propose word lengths
Default word length: |32

L
Run Simulation  Compute Derived

Advanced VERIFICATION | HELP
- Ranges + -

-

DATA COLLECTION NAVIGATION TYPE PROPOSAL

{1 Verify with FPGA-in-the-Loop

1 function intNumber = twosComp2dec (binaryNumber)

2 % TWOSCOMP2DEC (binaryNumber) Converts a two's-complement binary number

3 % BINNUMBER (in Matlab it is a string type), represented as a row vector of
4 % zeros and ones, to an integer.

5%

Wariables | Function Replacements | Verification Output  ~

##4 Rnalyzing the design 'twosComp2dec'

| |### Enalyzing the test bench(es) 'twosComp2dec th'

##¢ Begin Floating Point Simulation

binaryNumber =

110101011010110111010101

intNumber =

-2.77354700000000e+006

##¢ Floating Point Simulation Completed in 9.1319 sec(s)
##¢ Begin Fixed Point Simulation :
binaryNumber =
110101011010110111010101
intNumber =
-2.77354700000000e+006

### Beginning fixed point error analysis ####

twosComp2dec_tb

Figure 9.39: Illustration of some conversion issues in the twosComp2dec.m algorithm
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