

VIRTUALIZATION OF A SENSOR NODE TO ENABLE THE SIMUL ATION OF IEC
61850-BASED SAMPLED VALUE MESSAGES

By

EMMANUEL LUWACA

Thesis submitted in fulfilment of the requirements for the degree

Master of Technology: Electrical Engineering

in the Faculty of Engineering

at the Cape Peninsula University of Technology

Supervisor: Prof P. Petev
Co-supervisor: Mr. C. Kriger

Bellville Campus
Date submitted December 2014

CPUT copyright information
The dissertation/thesis may not be published either in part (in scholarly, scientific or technical
journals), or as a whole (as a monograph), unless permission has been obtained from the
University

 ii

Declaration

I, Emmanuel Luwaca, declare that the contents of this dissertation/thesis represent my own
unaided work, and that the dissertation/thesis has not previously been submitted for
academic examination towards any qualification. Furthermore, it represents my own opinions
and not necessarily those of the Cape Peninsula University of Technology.

Signed Date

 iii

Abstract

The IEC 61850 standard, “Communication networks and systems in substations” was

promulgated to accommodate the need for a common communication platform within

substations for devices from different vendors. The IEC 61850 standard proposes a

substation automation architecture that is Ethernet-based, with a “station-bus” for

protection devices within the substation and a “process bus” where raw data from the

voltage and current transformers are published onto the data network using a device

known as a Merging Unit.

To date, most of the standardization efforts were focused at the station bus level

where event-triggered messages are exchanged between the substation automation

devices, commonly referred to as Intelligent Electronic Devices (IEDs). These

messages are known as Generic Object Oriented Substation Event messages.

Equipment from vendors to accommodate the “process bus” paradigm, however is

still limited at present.

The Centre for Substation Automation and Energy Management Systems was

established within the Electrical Engineering Department at the Cape Peninsula

University of Technology with one of its objectives being the development of

equipment either for simulation or real-time purposes in compliance with the IEC

61850 standard. In order to fulfil this long-term objective of the Centre, an in-depth

understanding of the IEC 61850 standard is required.

This document details the efforts at acquiring the requisite knowledge base in support

of the educational objectives of the Centre and the research project implements a

simulation of a merging unit which is compliant with the functional behavior as

stipulated by the standard. This limited functional implementation (i.e. non-real-time)

of the merging unit, is achieved through the development of a virtualized data

acquisition node capable of synthetic generation of waveforms, encoding of the data

and publishing the data in a format compliant with the IEC 61850-9-2 sampled value

message structure.

This functional behavior of the virtual sensor node which was implemented has been

validated against the behavior of a commercial device and the sampled value

message structure is validated against the standard. The temporal behavior of the

proposed device is commented upon. This research project forms the basis for future

real-time implementation of a merging unit.

 iv

Acknowledgements

I wish to thank:

Prof P. Petev, Prof R. Tzoneva, Mr. S. Behardien and Mr. C. Kriger for providing great
technical and administrative support during this Master of Technology thesis.

The financial assistance of the National Research Foundation towards some of the test
equipment used in this research is acknowledged. Opinions expressed in this thesis and the
conclusions arrived at, are those of the author, and are not necessarily to be attributed to the
National Research Foundation.

 v

Dedication

Dedicated to my family

 vi

Table of Contents
Declarationii
Abstractiii

Acknowledgements iv

Dedicationv

CHAPTER 1 ...1

1.1. Introduction to substation automation systems ..2

1.2. The IEC 61850 standard ..4

1.3. IEC 61850-9-2 Process Level ..5

1.4. Motivation for research and problem definition ..7

1.5. Research aim and objectives ...8

1.6. Project Assumptions and delimitation ..9

1.7. Research methodology.. 11

1.8. Organisation of the Thesis .. 11

1.9. Publications ... 12

CHAPTER 2 .. 13

2.1. Introduction .. 13

2.2. Background ... 13

2.3. Literature search .. 23

2.4. Literature review .. 25

2.5. Comparative analysis of the developments in the existing literature 35

2.6. Conclusion ... 36

CHAPTER 3 .. 38

3.1. Introduction .. 38

3.2. Overview of the chronological development of the IEC 61850 standard 39

3.3. Introduction to the IEC 61850 standard ... 40

3.4. Virtualization .. 40

3.4.1 Virtualization – in the standards-based power system industry .. 42

3.4.2 IEC 61850 – Data modelling ... 43

3.5. IEC 61850 – Substation Automation Future Proofing ... 46

3.6. IEC 61850 System Engineering .. 64

3.7. Substation automation network topology .. 67

3.8. Conclusion ... 71

CHAPTER 4 .. 72

4.1. Introduction .. 72

4.2. Project context ... 73

4.3. Research project description and scope ... 83

4.4. Development tools and development platform .. 86

4.5. Datalink layer networking .. 91

4.6. Conclusion ... 99

CHAPTER 5 .. 100

5.1. Introduction .. 100

5.2. Software development for the PC-based sensor node ... 101

5.3. Wireshark .. 121

5.4. Practical experimentation .. 123

5.5. Comparative Analysis and Conclusion .. 129

CHAPTER 6 .. 131

6.1. Introduction .. 131

6.2. Research Aim and objectives .. 131

6.3. Project assumption and Thesis deliverables ... 132

6.4. Challenges Encountered ... 134

6.5. Future research work ... 135

6.6. Publications ... 136

APPENDICES ... 137

REFERENCES .. 165

 vii

LIST OF FIGURES

Figure 1.1: Power system 1

Figure 1.2: Substation architecture using non-standardized IED 3

Figure 1.3: Standardized substation automation system 4

Figure 1.4: IEC 61850 substation architecture (IEC 61850, 2003) 5

Figure 1.5: Simplified structure of merging unit (IEC 60044-8) 6

Figure 2.1: Single line diagram of a substation system 13

Figure 2.2: Migration from hardwired system towards substation automation 14

Figure 2.3: A simplified block diagram of measurements distribution using IEC 60044-8 standard 16

Figure 2.4: Measurements communication system using IEEE 1451 standard 17

Figure 2.5: Interface model of a substation automation system specified within part 1 of the IEC 61850
standard

18

Figure 2.6a: Current implementation of IEC 61850 20

Figure 2.6 b: Future Implementation 20

Figure 2.7: Example of measurements being published from a merging unit. 21

Figure 2.8: Basic architecture of a MU 22

Figure 2.9: Graph with the number of papers found using the keywords 24

Figure 3.1: The migration of the UCA 2.0 standard to the IEC 61850 standard 39

Figure 3.2: IEC 61850 standard parts 40

Figure 3.3: Example of virtualized IT servers 41

Figure 3.4: IEC 61850 modelling approach (IEC 61850-7-1, 2004) 42

Figure 3.5: Logic grouping of substation data according to the IEC61850 standard 43

Figure 3.6: IEC 61850 Device representation 44

Figure 3.7: Conceptual IEC 61850 device and services model 45

Figure 3.8: Example showing the decomposition of the MMXU logical node 46

Figure 3.9: Anatomy of an IEC 61850 Object Name 47

 viii

Figure 3.10: IEC 61850 OSI model 48

Figure 3.11: Substation automation system using the Star Topology 49

Figure 3.12: Overview of functionality and profiles 50

Figure 3.13: An example of the GOOSE Publisher-Subscriber mechanism 52

Figure 3.14: GOOSE message transmission time 53

Figure 3.15: GOOSE Control Block Class 54

Figure 3.16: Merging unit and Sampled Value exchange 54

Figure 3.17: TCTR logical node class 55

Figure 3.18: TVTR logical node class 55

Figure 3.19: Sampled value format 56

Figure 3.20: Sampled value model 56

Figure 3.21: Sampled message transmission time 57

Figure 3.22: An overview of the Sampled Value Control classes and services 57

Figure 3.23: Multicast SV Control Block Model 58

Figure 3.24: Multicast SV services 58

Figure 3.25: ISO/IEC 8802-3 frame format 59

Figure 3.26: ISO/IEC 8802-3 source MAC address format 60

Figure 3.27: Multicast address within IEC 61850 60

Figure 3.28: 802.1Q Headers 61

Figure 3.29: Sampled Value VLAN specification in IEC 61850 61

Figure 3.30: IEC 61850 Ether-types based on ISP/IEC 8802-3 62

Figure 3.31: Example of a Sampled Value Protocol Data Unit 63

Figure 3.32: Format of ANS.1 tags 63

Figure 3.33: Example of Sampled Value’s ANS.1 tags 64

Figure 3.34: SCL Object model 66

 ix

Figure 3.35: IEC 61850 System configuration 67

Figure 3.36: Basic network architectures 68

Figure 3.37: Illustration of ring network topology using RSTP 69

Figure 3.38: Dual homing in a substation automation system (Station bus and Process bus sharing the
same LAN).

70

Figure 4.1a: Hierarchical model of the IEC 61850 73

Figure 4.1b: An implementation architecture for IEC 61850 communications 73

Figure 4.2a: IEC 61850 current deployment architecture 74

Figure 4.2b: IEC 61850 Future deployment communication architecture 74

Figure 4.3: IEC 61850 future deployment architecture 75

Figure 4.4: Process bus concept 76

Figure 4.5: IEC 61850-9 -2 Sampled Values based IED 77

Figure 4.6: Concept of merging unit 78

Figure 4.7: Analogue to Digital conversion in IEC 61850 “MU”

79

Figure 4.8: Multicast sampled value control block 80

Figure 4.9: Definition of the maximum clock jitter and rise time at the merging unit clock input 81

Figure 4.10: processing and computation conversion in IEC 61850 “MU”

82

Figure 4.11: Logical device instance “MU” (IEC 61850-9-2LE) 82

Figure 4.12: PhsMeas1 dataset (IEC 61850-9-2LE) 83

Figure 4.13a: Structure of merging unit 85

Figure 4.13b: PC based sensor capable of sampled value outputting 85

Figure 4.14: Overview of functionality and profiles, with emphasis on SV (IEC 61850-8-1, 2004) 85

Figure 4.15: Low level networking on PC based platforms using MS windows and Linux Ubuntu 86

Figure 4.16: List of supported protocols on Scapy 87

Figure 4.17a: Custom packet generated with Scapy that does not conform to any standard [Linux] 88

Figure 4.17b: Custom packet generated with Scapy that does not conform to any standard [Microsoft
Windows]

88

 x

Figure 4.18: Scapy supported classes for layer 2 networking 89

Figure 4.19: Using Scapy on Microsoft Windows 90

Figure 4.20: Using Scapy on Linux Ubuntu 91

Figure 4.21: Installing Scapy on Linux Ubuntu 91

Figure 4.22: OSI reference model 92

Figure 4.23: interaction between application layer and devices 93

Figure 4.24: Linux kernel 94

Figure 4.25: Socket Functions for TCP Client-Server connection 95

Figure 4.26: Socket Functions for UDP Client-Server connection 96

Figure 4.27: Using raw sockets on Microsoft Windows 97

Figure 4.28: Test setup for using raw sockets on Microsoft Windows 97

Figure 4.29: Using raw sockets on Linux 98

Figure 4.30: Using raw sockets on Linux 98

Figure 5.1: PC based Sensor Node capable of sampled value publishing 101

Figure 5.2: Simplified flow chart of the developed solution 102

Figure 5.3: PC based Sensor Node synthetic data generation 103

Figure 5.4: Sample code of the data generated 104

Figure 5.5: Time synchronization for a full real-time implementation of merging unit 105

Figure 5.6: Sampled Value (SV) application service data unit 107

Figure 5.8: Example of ASN.1 tags used for sampled value messages 110

Figure 5.9: An example of a hard-coded ASN.1 encoding using the Scapy library 111

Figure 5.10: PC based Sensor Node generation of SV frame 112

Figure 5.11: Developed Sampled Value object model 113

Figure 5.12: UML diagram of the development of a layer 2 packet (Biondi, 2009) 114

Figure 5.13: UML diagram of the source and destination classes (Biondi, 2009) 115

 xi

Figure 5.14: Scapy Dot1Q Class with the defaults values 115

Figure 5.15: Instantiating the Dot1Q class and aggregating into the class packet 116

Figure 5.16: Exampled of the sampled value classes developed 116

Figure 5.17: PhsMeas1 frame 117

Figure 5.18: sampled value frame concatenation 117

Figure 5.19: Presentation of the developed sampled value structure 119

Figure 5.20: Binding the various fields of the generated sampled value message 120

Figure 5.21: Winpcap and Netgroup Packet Filter 121

Figure 5.22: The Wireshark supported and enabled protocols 122

Figure 5.23: Setup for the PC-based sensor node sampled values testing 123

Figure 5.24: PC-based sensor Sampled Value (SV) message structure confirmation 123

Figure 5.25: PC-based sensor SV protocol data unit 124

Figure 5.26: PC-based sensor dataset 125

Figure 5.27: Test setup for the Sampled Value message investigation using an Omicron CMC and
Wireshark

126

Figure 5.28: CMC Sampled Value (SV) message structure confirmation 127

Figure 5.29: CMC Sampled Value (SV) Protocol data unit and ASN.1 tagging 128

Figure 5.30: Merging Unit current and voltage scaling factor. 129

Figure 5.31: Comparative analysis of the developed sensor nodes sampled value structure with a
commercial unit from Omicron

129

 xii

LIST OF TABLES

Table 3.1: Comparison between GOOSE and Sampled Values 53

Table 3.2: Table 3.2: SCL File Types and Sections 68

Table 4.1: Analogue to Digital Converter (ADC) resolution for two commercial units 82

Table 4.2: IEC 61850-9-2 time synchronization specification for merging units 83

Table 5.1: Tag indicating the start of the savPdu 107

Table 5.2: Tags commonly used for the encoding of further information in the savPdu tagged
110

Table 5.3: Table representing the time function used 110

Table 5.4: Data types supported in Scapy 114

 xiii

Glossary of Terms

Acronyms

1PPS

AC

ADC

APDU

ASDU

API

ASN.1

CDC

CPU

CT

CVT

DC

DNP

DSP

EMI

FC

GOOSE

GPS

HMI

HV

ICD

IEC

IED

IEEE

IP

LAN

LN

LV

MAC.

MU

MV

NCIT

OSI

PC

PD

RMS

RSTP

RTU

SA

One Pulse Per Second

Alternating Current

Analogue to Digital Converter

Application Protocol Data Unit

Application Service Data Unit

Application Program Interface

Abstract Syntax Notation One

Common Data Class

Central Processing Unit

Current Transformer

Capacitor voltage transformer

Direct Current

Distribution Network Protocol

Digital Signal Processor

Electromagnetic interference

Functional Constraint

Generic Object Oriented Substation Event

Global Positioning system

Human Machine Interface

High Voltage

IED Capability Description

International Electrotechnical Commission

Intelligent Electronic Device

Institute of Electrical and Electronic Engineers

Internet Protocol

Local area network

Logical Node

Low voltage

Media Access Control

Merging Unit

Medium Voltage

Non-Conventional Instrument Transformers

Open Systems Interconnection

Personal Computer

Physical Device

Root Mean Square

Rapid spanning tree protocol

Remote terminal unit

Substation Automation

 xiv

SAS

SCADA

SCD

SCL

SCSM

STP

SV

TCP

TCP/IP

UCA

UDP

VT

XML

Substation Automation System

Supervisory Control and Data Acquisition

Substation Configuration Description

Substation Configuration Language

Specific Communication Services Mappings

Spanning Tree Protocol

Sampled Values.

Transmission Control Protocol

Transmission Control Protocol/Internet Protocol

Utility Communications Architecture

User Datagram Protocol

Voltage Transformer

Extensible Mark-up Language

Terms

Definition

Abstract Communication

Service Interface (ACSI)

Virtual interface to an IED providing abstract

communication services

Current Transformer A current transformer (CT) is a device used for

measurement of alternating electric currents. Current

Transformer. It is also to reduce the current

magnitudes, when current in a circuit is too high to

apply directly to measuring instruments.

Data object

Parts of a logical node object representing specific

information, for example, status or measurement.

From an object-oriented point of view, a data object is

an instance of a data object class. Data objects are

normally used as transaction objects; i.e., they are

data structures.

Device Mechanism or piece of equipment designed to serve a

purpose or perform a function

Intelligent Electronic Device

(IED)

Any device incorporating one or more processors with

the capability of receiving or sending data/control from

or to an external source (for example, electronic

multifunction meters, digital relays, controllers)

Interchangeability Ability to replace a device supplied by one

 xv

 manufacturer with a device supplied by another

manufacturer, without making changes to the other

elements in the system

Interoperability

Ability of two or more IEDs from the same vendor, or

from different vendors, to exchange information and

use that information for correct execution of specified

functions

Logical Node (LN)

.

Smallest part of a function that exchanges data. A LN

is an object defined by its data and methods

Merging Unit Merging Unit is a device used to publish Sampled

Values for currents and or voltages.

Voltage Transformer A voltage transformer (VT) is a device used for

measurement of alternating electric currents. Current

Transformer. It is also to reduce the voltage

magnitudes, when voltage at the measuring point is

too high to apply directly to measuring instruments.

Non-Conventional Instrument

Transformers

 Instrument transformers that are not based on iron

wound cores like conventional Current

Transformers and Voltage Transformers

1

CHAPTER 1

Introduction

The history of electricity dates back to the early 19th century, when an Italian scientist

by the name of Alessandro Volta made a discovery by soaking paper in salt water,

placing zinc and copper on opposite sides of the paper, and observing that the

chemical reaction produces an electric current. In 1831 Michael Faraday discovered

the "induction" or generation of electricity in a wire by moving a wire through a

magnetic field (Online: http://inventors.about.com). The induction ring was the first

electric transformer and both the electric generator and the electric motor are based

on this principle (Online: www.fi.edu/learn/case-files/energy.html). The challenge was

then to use these principles to develop an electrical system that would provide people

with a practical source of energy. Thomas Edison took on this challenge. He

designed and built the first electric power plant that was able to produce electricity,

and distribute it to people’s homes. The Pearl Street power station was put into

service on the 4th September 1882 in New York City (Online:

http://www.pearlstreet.inc.com) and is considered the world's first central electricity

generating station.

Alternating current electrical power systems began developing in the early 20th

century (Nordell, 2008) and are divided into three different entities, Generation,

Transmission and Distribution as depicted in Figure 1.1.

Figure 1.1: Power system

2

Electricity is generated at a generation plant and transmitted using high voltage

power lines. An electrical substation is a subsidiary station of an electricity generation

and transmission system where voltages are transformed from high to low (step

down) or low to high (step up) using transformers. Substations use protective devices

to isolate system failures so that these localised faults do not compromise the power

system network integrity. In substation power protection systems deployed in the

early days there was no automation, and humans were often stationed at key points

in the electrical system to monitor and respond to problems (Nordell, 2008).

One of the main drivers behind the recent developments in power system protection

and control has been to try and minimize system faults, maintain continuity of supply,

minimize human intervention and to implement automated system-solutions for the

protection and control of power networks. A Substation Automation System (SAS)

refers to the creation of a highly reliable substation environment that rapidly responds

to real-time events with appropriate action, ensuring an uninterrupted power service.

1.1. Introduction to substation automation systems

Substation automation systems were introduced in the early 1990’s (Kirkman, 2007).

During this period bay controllers and protection devices with inherent bay control

functionality became available. These bay controllers could provide limited substation

automation capabilities by connecting substation protection devices to the substation

controller, typically a Remote Terminal Unit (RTU) using serial communication.

The early substation automation systems had master/slave architectures and typically

utilised legacy communication protocols to transfer substation data to a remote

location. These legacy protocols in general were simple protocols that were designed

to be byte-efficient. During this period, communications protocols such as Modbus

and Distribution Network Protocol (DNP) became industry standards.

These are tag-based protocols, where users accessed data by specifying a tag

number or index number. The implementation of these protocols resulted in a simple

reliable communication network architecture, however the effort required during

system engineering made the use these protocols unnecessarily complex.

Substation automation and the integration of substation automation systems to

enterprise level have continued to develop since the early 1990’s. Furthermore,

technical advances in microprocessor technology and data networking have meant

that Ethernet-based systems are preferred as opposed to serial communication such

3

as RS232 and RS485, as the communication medium of choice. Ethernet bus-based

substation automation systems can be divided into two categories, non-standardised

and standardised substation automation systems.

1.1.1. Substation automation systems using non-stan dardized intelligent electronic
devices

Since the late 1990’s protection Intelligent Electronic Devices (IEDs) with inherent

bay control functionality and Ethernet communication capabilities have become

readily available. Intelligent Electronic Devices (IEDs) is a name given to protection

and control devices. The term IED in substation automation system refers to

microprocessor based protection, metering and monitoring devices (Kezunovic and

Popovic, 2005). Prior to the introduction of IEDs the protection and control devices

were known as electromechanical relays – as the name suggests, these earlier

devices had no intelligence.

A large number of power utilities have deployed many of these protective devices

(IEDs) in the field without using the communication capabilities of these devices due

to the fact that these relays are non-standardized. The main drawback of using non-

standardized IEDs is that each manufacturer’s device is unique. As a result, utilities is

either locked into using one manufacturer’s product or need to have the resources to

maintain devices from different vendors. Figure 1.2 depicts a solution where non-

standardized Ethernet based IEDs are deployed.

Figure 1.2: Substation architecture using non-standardized IED

The benefits that accompany an Ethernet-based system includes the reduction of

wiring time, the provisioning of network addressability for the IEDs, and a significant

reduction in cabling cost. However, since proprietary data protocols are used in non-

HMI

4

standardized systems, there is no interoperability, and substation integration between

vendor A and vendor B IEDs is impossible without the use of very complex and

expensive protocol convertors (see Figure 1.2 above). As a result, users of non-

standardized IEDs are often bound to a single vendor.

Inadvertently the introduction of non-standardized IEDs resulted in several proprietary

communication protocols being introduced into the market. The large number of

competing proprietary solutions for communication in substation automation and

SCADA systems started becoming too costly for industry. This resulted in a lack of

interoperability, high recurring development costs and lack of support (long term

stability) for a number of protocols. The need for standardization existed. Figure 1.3

below shows a standardized substation automation system.

Figure 1.3: Standardized substation automation system

Figure 1.3 shows that the same advantages as in Figure 1.2 can be achieved with a

standardized substation automation system, with the added advantage of

interoperability and scalability (as is shown between vendor A and vendor B in Figure

1.3 above).

1.2. The IEC 61850 standard

The IEC 61850 standard is a current international standard for substation automation

systems. The IEC 61850 standard defines a substation automation framework that is

future proof, flexible, scalable, maintainable, and provides interoperability between

substation automation devices from multiple vendors.

5

The IEC 61850 standard provides this framework by defining a) the data that has to

be communicated between IEC 61850 compliant devices, b) by defining information

exchange mechanisms, and c) by defining the format and content of files to enable

system engineering for substation automation systems.

The standard recommends a hierarchical Ethernet-based substation automation

architecture, with a station level, bay level and a process level, as depicted in Figure

1.4 below.

Figure 1.4: IEC 61850 substation architecture (IEC 61850, 2003)

At the process level, a data acquisition node that can be used for measurement

distribution from primary plant equipment is defined. This data acquisition node is

referred to as the “Merging Unit”. The merging unit is discussed in detail in chapter 4

section 4.3.

1.3. IEC 61850-9-2 Process Level

The process level is the lowest level of the three tier architecture defined in the IEC

61850 standard (see Figure 1.4 above). The process level is used to distribute

primary plant equipment status and analogue measurements to the bay level devices.

The measurement distribution method utilised in the IEC 61850 standard is referred

to as sampled values. Sampled values are digital measurements published from a

Merging Unit connected to the instrument transformer as shown in Fig. 1.5.

6

Figure 1.5: Simplified structure of merging unit (IEC 60044-8)

Figure 1.5 above shows the simplified structure of merging unit. A Merging unit

receives a time-coherent set of samples of three-phase voltages, three-phase

currents, and neutral voltages and currents from the instrument transformer. The data

collected from the instrument transformer is digitized and stored within the device.

The data is then periodically retrieved from the logical nodes; is encoded into a

dataset; packaged according to the IEC 61850-9-2 message format and transmitted

to the process-bus as sampled values. This will be explained in more detail in chapter

3 section 3.5.2.3.

The IEC 61850 standard has been widely accepted and is slowly being deployed by

power system utilities across the globe. The technology roadmap for most power

system utilities is converging towards the general use of the IEC 61850 standard. The

implementation of the IEC 61850 process bus model is however still limited. There is

a need to train and equip substation automation engineers and students in general

with knowledge of the IEC 61850-9-2 process bus technology.

7

1.4. Motivation for research and problem definition

1.4.1. Motivation for research

Standards-based equipment compliant with the IEC 61850 standard has become

important in modern substation automation systems in order to reduce labour costs,

to ease system scalability, and reduce maintenance costs. This is due to benefits

derived from a combination of reduced cabling, “Plug and Use” capability, ease of

equipment addressability, interoperability of equipment and the availability of software

environments for describing system architecture. Equipment from vendors to

accommodate the “Process bus” paradigm is however limited at present.

The knowledge about the methods to model developed devices that can publish

sampled value messages in a manner compliant with the IEC 61850-9-2 standard

currently resides within the vendor environment.

This proposed project is motivated by the need to build the foundation for the creation

of a virtual sensor node to contribute to, and assist with the understanding of the

process-bus concepts and to develop a pool of expertise with knowledge of the IEC

61850 standard and the engineering tools required for configuration and simulation

within an education environment. This proposed virtualised sensor node would

represent a limited functional implementation of the merging unit that will represent a

virtualised data acquisition node capable of synthetic generation of waveforms

through synthesis data generation, encoding of the data and transmitting the data in a

format compliant with the IEC 61850 protocol.

The role of this project in an academic environment therefore is to build the

knowledge base required to assist with the understanding of the functioning and

implementation of the virtual sensor node, and to lay the groundwork for a future real-

time implementation.

1.4.2. Problem definition

The challenge with IEC 61850-9-2 sampled value message distribution is that it

occurs at the Datalink layer. Messages that occur at the Datalink layer are much

more difficult to program on PC platforms as opposed to the higher-level protocols in

the Open System Interconnect (OSI) model, such as User Datagram Protocol (UDP)

and Transmission Control Protocol (TCP). For this project methods to generate the

sampled value frame structure, encoding of the data and transmission at the Datalink

layer in a format compliant with the IEC 61850-9-2 sampled value message structure,

8

have to be investigated. The operating systems that allow for the generation, binding

and transmission of frames at the Datalink layer also have to be investigated.

1.5. Research aim and objectives

1.5.1. Aim

The aim of this Postgraduate Project is to examine the standardization developments

within the IEC 615850 substation automation environment, to study the substation

automation framework presented in the IEC 61850 standard, and measurement

distribution methods proposed. The knowledge gained would be used to implement

certain aspects of a Merging Unit. This limited functional merging unit represents a

virtualized data acquisition node capable of synthetic generation of waveforms,

encoding of the data and transmitting the data in a format compliant with the IEC

61850-9-2 sampled value message structure.

1.5.2. Research objectives

An initial research objective would be to examine the chronological evolution of

substation automation systems and to examine the IEC 61850 framework for

substation automation systems with emphasis on the measurement distribution

methods proposed.

Another objective would be - through the literature search and literature review to

gain the fundamental understanding of IEC 61850 messaging mechanisms, and to be

able to accurately provide a breakdown of the message structure or data packets that

are used for communication between process level and bay level and to simulate

these messages using a software program.

Specific objectives:

i. To identify current and emerging substation automation trends;

ii. To Investigation whether Microsoft Windows and Linux operating systems

allow for the generation, binding and transmission of packets at the Datalink

layer; and

iii. To thoroughly understand the sampled value messages utilised in the IEC

61850 and to be able to simulate sampled values on a personal computer

(PC).

In order to achieve the stated objectives certain sub-objectives have been identified

and these are listed below:

9

1. A literature review for the identification of current and emerging substation

automation trends will be conducted.

2. A comparative analysis of the developments of measurement distribution

methods utilised in substation automation systems within the literature will

be performed.

3. An overview of the IEC 61850 standard with emphasis on sampled values

and GOOSE messaging will be conducted.

4. The sampled value message structure breakdown will be performed and

the other IEC 61850 related standards will be outlined.

5. The implementation of a low-level network programming Application

Programming Interface (API) on both Microsoft Windows and Linux

operating systems will be investigated.

6. The software development on Linux Ubuntu to simulate the functional

behaviour of sampled value messages will be conducted

7. The development of a test scenario to validate the structure of the

sampled value from the developed sensor node will be performed, and a

comparative analysis with a commercial unit will be performed.

1.6. Project Assumptions and delimitation

1.6.1. Assumptions

The following assumption for this research has been established:

i. Modern computers have a fast enough processing speed and have operating

systems that allow for Datalink message generation and transmission,

enabling accurate emulation of a merging unit.

ii. The use of custom-built networking libraries will not degrade the performance

of the generated program.

1.6.2. Data Acquisition

i. The data acquisition node will be explored on a PC platform only

ii. The verification of sampled values will be performed using software tools only.

iii. The research project will not be integrated into an IEC 61850 system; no

substation configuration language (SCL) files will be produced for the

proposed device (MU); the Publisher/subscriber mechanism will not be

explored; sampled values to be verified using only software tools such as

Wireshark.

10

1.6.3. Simulation

i. The proposed project will not be implemented on a protection network or

interfaced to any current and voltage transformers.

ii. Current and voltage values will be generated internally, packaged and

transmitted as multicast messages - no sensors will be integrated into the

virtual device.

iii. Analogue values published by the sensor node will be monitored using

Wireshark

1.6.4. Implementation

i. The software programs will be developed using the Python programming

language.

ii. Time synchronization and time stamping of the sampled value frames will be

implemented using the computer’s internal clock - no integration of a Global

Positioning System (GPS) clock source.

1.6.5. Significance

Substation protection simulation and validation: the process bus technology

introduced by the IEC 61850 standard has presented a paradigm shift in protection

and control systems within the power system industry. As such test procedures,

commissioning tools and commissioning processes utilised in traditional protection

and control schemes within substations are being reviewed and altered accordingly.

This project is aimed at building an academic framework for a future real-time

implementation of a data acquisition node that can be used for IEC 61850-9-2

substation automation simulation and validation. These simulation tools can be used

in the academic environment for safe testing of IEC 61850 protection schemes. The

future real-time implementation data acquisition node envisioned be used to facilitate

testing and would be capable of integrating to both Conventional Power Transformer

(CPT) and non-conventional power transformers (NCPT). The Merging unit is

fundamental to the integration of the NCPT to SAS.

Financial: The Merging unit implementation will result in significant reduction of the

amount of wiring between the primary and secondary plant equipment in a substation

environment; thus significantly reducing the commissioning costs and reducing the

fault-finding and maintenance time. Less down-time equals more revenue for the

power utilities. However before this stage is realized, a significant amount of revenue

11

has to be invested in order to ensure adequate training for students and substation

automation engineers.

1.7. Research methodology

1.7.1. Literature review

A literature search and review on the substation automation and measurement

distribution framework provided by the IEC 60044-7, IEC 60044-8, IEC 1451 and IEC

61850 standards is conducted in chapter 2 of this document. The literature search

and literature review is used to form the theoretical base, in defining software

algorithms and for the development of software to simulate IEC 61850 sampled value

messages. The literature search and review will also extend to low-level networking

software development in both Microsoft Windows and Linux operating.

1.7.2. Method for simulation

� A Python program running on a personal computer is proposed for the

simulation of the IEC 61850-9-2 sampled value messages.

� Wireshark is proposed for the capture and analysis of the data packets of the

generated sampled value messages.

1.7.3. Experimental methods

� Practical experiments will be conducted with the Omicron CMC to develop an

in-depth understanding of the IEC 61850 sampled value frame structure.

� A Virtual Local Area Network (VLAN)-enabled switch will be used during the

verification of the developed sensor node

� The published sampled value messages from the developed sensor

measurement will be captured using Wireshark and the structure will be

comparatively analysed to the sampled value messages generated by the

Omicron CMC.

1.8. Organisation of the Thesis

The thesis is divided into six chapters detailing the introduction and background into

substation automation systems, problem definition, literature review into substation

automation trends, an investigation into the IEC 61850 GOOSE and Sampled value

messaging system, and the results of the software development of the simulated

sampled value messages.

12

Chapter 1: presents an overview of the substation automation developments and

highlights the problem definition, project aims and objectives, and research

methodologies.

Chapter 2: presents the literature search and literature review into measurement

distribution developments in the substation automation environment.

Chapter 3: discusses an overview of the IEC 61850 standard with emphasis on

sampled value messaging and GOOSE messaging.

Chapter 4: presents the project theory and context detailing an investigation into the

methods used to achieve low-level networking using the Python programming

language on both Microsoft Windows and Linux Ubuntu operating systems.

Chapter 5: provides the results of the implemented virtual sensor node and describes

the case study using an Omicron CMC. This forms the foundation for the software

development which is presented later in the chapter. The software development

techniques applied in this project to model a virtual device that is used to simulate IEC

61850 sampled value messages is discussed. The published sample value messages

generated by the developed sensor node are compared with those published by the

Omicron CMC.

Chapter 6: presents the conclusion to the research project and provides expansion

prospects such as real-time implementation for future research projects.

1.9. Publications

1. Luwaca. E., Petev P., Kriger C., and Behardien S., 2014. “Virtualization of a

sensor node to enable the simulation of IEC 61850-based sampled value

messages”. Submitted to the International Journal of Computers,

Communications and Control (awaiting confirmation for publication).

2. Kriger C., Retonda J., Luwaca E., and Behardien S., 2011. “Analysis of

GOOSE and Sampled Value Message Structure for Educational Purposes”, PAC

World Conference, Dublin.

13

CHAPTER 2

Literature review

2.1. Introduction

In this chapter a literature search and literature review of standards and papers

discussing measurement distribution in substation automation systems is conducted.

As part of the literature search and literature review the chronological evolution of

substation automation systems is presented. Measurement distribution mechanisms

in substation automation systems are discussed.

The chapter is structured into five sections. Section 2.2 discusses the background

associated with substation automation systems, followed by a literature search in

Section 2.3. A literature review of the papers discovered through the literature search

is conducted in Section 2.4. In Section 2.5 a comparative analysis of measurement

distribution systems in the substation environment is performed and Section 2.6

concludes on what has been done in the chapter and what will be covered in the next

chapter.

2.2. Background

A substation is divided into two sections, primary plant and secondary plant. As

shown in Fig. 2.1, primary plant consists of voltage transformers (VT’s), current

transformers (CT’s), circuit breakers (CB’s) etc. and secondary plant consists of

AC/DC panels, protection relays and remote terminal units (RTUs).

Figure 2.1: Single line diagram of a substation system

The primary plant equipment in Fig. 2.1, receives the incoming supply through the

high voltage busbar, steps the supply down and distributes the supply to the feeders

14

through the medium voltage busbar. The secondary plant equipment monitors and

protects primary plant equipment.

Before the 1990’s the substation system shown in Fig. 2.1 was designed using

protection and control schemes implemented with single-function electromechanical,

relay logic, as depicted in the left-most panel of Fig. 2.2, labelled “Hardwired

Substation” (Leupp and Rytoft, 2011) .

Figure 2.2: Migration from hardwired system towards substation automation

Hardwired substation layouts have been used in industry for decades. One of the

reasons for this form of substation layout was the unavailability of intelligent bay

controllers and smart sensor nodes before the 1990’s. This form of substation layout

suffered from various disadvantages, such as:

� No addressability: the different feeders are hardwired, with labels used at

either end of the cable being the only form of addressing

� There is no data communication between the various feeders.

� The bulk of the cost for setting up such a system is incurred on cable costs

and labour.

� The system is not easily scalable

� No substation automation: the system is hardwired and there is no

communication between devices at the same level in the hierarchy.

15

The equipment associated with monitoring, protection and control functions has in the

recent decade’s undergone evolution from electromechanical devices to

microprocessor-based devices, leading to increased levels of substation automation

(Leupp and Rytoft, 2011). During the 1990’s intelligent electronic devices with

inherent bay control functionality became available (Apostolov, 2006). The main

attraction of these bay controllers was their ability to communicate information to the

user, using point-to-point protocols. RS232 or RS485 provided a means to

communicate to these intelligent electronic devices. In terms of chronological

evolution, the column labelled “Hybrid Substation System” in Fig.2.2 above shows a

typical example of this layout (Leupp and Rytoft, 2011).

The main drawback with Hybrid Substation layouts as shown in Fig.2.2 is that these

systems convey information at slow data rates and cannot be used for protection

functions. In most cases the protocols used in this kind of system layout are non-

standardized. Proprietary communications protocols and mainly protocols that are

limited to a master/slave topology are used for this kind of layout. These protocols are

tag-based protocols, where users access data by specifying a tag number or index

number. The advantages and disadvantages of Hybrid Substation automation

systems are listed below (Flynn, 2007).

Advantages:

� Reduced cabling

� Addressability

Disadvantages:

� Non-standardized communication protocols

� Primary plant and secondary plant hardwired, no addressing in that regard

� Speed limitation, the maximum speed on an RS232 link is ±14.5kbps

� Costs, RS485/RS422 to RS232 converters are often required. Lots of money

still spent on cables between primary and secondary plant.

� Restricted in terms of scalability

� Only processed measurement values are available

� Only physical layer standard: no standardized data communication

Substation automation systems have continued to grow since the 1990s with further

developments in microprocessor-based relays and developments in primary plant

equipment. Transformers with optical interfaces referred to as Non-Conventional

Instrument Transformers (NCIT) were developed in the 1990s. NCITs systems for

high voltage applications provide a series of advantages not obtainable with

16

conventional transformers (Christen et al., 1995). These advantages are (Rahmatian

et al., 2002):

� Safety - optics provides separation between the measuring point at high

voltage (HV) potential and the measuring equipment at ground potential.

� Compactness, reduce the weight of the transformers.

� Better performance than conventional transformers due to the reduced noise

induction and Ferro-resonance.

� Better interface to electronic equipment such as personal computers

With the development of NCITs, the need for a standardized interface to NCITs was

soon identified. In response to this, the Instrument Transformers Standard IEC 60044

was published in December 1999. Part 7: Electronic voltage transformers (IEC

60044-7) and Part 8: Electronic current transformers (IEC 60044-8) define interfaces

to voltage and current instrument transformers respectively.

Part 8 of the IEC 60044 standard goes on to further specify among other things,

(Brunner, 2011):

� The digital output for both electronic current and voltage transformers

� Physical, Data link and Presentation layers of the IEC 60044-8 protocol

� Defines a node for smart sensors to interface to instrument transformers.

The smart sensor interface node introduced through IEC 60044 is referred to as a

merging unit (Brunner, 2011). A merging unit provides the interface from the

electronic current and voltage transformers to the secondary equipment. A typical

method of communicating measurements using a merging unit, as defined in IEC

60044, is shown in Fig. 2.3 (IEC 60044-8, 2002).

Figure 2.3: A simplified block diagram of measurements distribution using IEC 60044-

8 standard (IEC 60044-8, 2002)

17

Current or voltage sensors are connected to the NCIT. The primary measurements

from the sensors are then converted into secondary measurements using a

transducer of sorts. The secondary measurements are then used as inputs to the

merging unit, which then publishes the raw measurement values over a serial link.

The introduction and use of the IEC 60044 standard, lead primary plant

manufacturers to start to incorporate some sort of sensor into their product to

maintain the competitive edge. This allowed other standards such as the Standard for

a Smart Transducer Interface for Sensors and Actuators, i.e. IEEE 1451, first

published in 1997, to get into the power system environment. IEEE 1451 attempted to

alleviate the problems of analogue measurement distribution in power systems. A

Typical system using the IEEE 1451 standard to publish measurements onto a serial

link is depicted in Figure 2.4. (Zheng et al., 2006)

Figure 2.4: Measurements communication system using IEC IEEE 1451 standard

(Zheng et al., 2006)

At first glance Fig 2.3 and Fig 2.4 look very similar, with the only major difference

being the inclusion of Transducer Electronic Datasheets (TEDs) in the published

message in IEEE 1451. Basically the TEDs allow a data system to choose the

correct template for the interpretation of the stored data. By including calibration

information in the TEDs, IEEE 1451 allows intelligent devices to adjust for variations

in transducer sensitivity (Mark and Hufnagel, 2004). This was a major breakthrough in

substation measurement systems as potential measurement errors could now be

compensated for in the IEDs. The network interface specified in the original IEEE

1451 standard, however was still a serial link. Some of the advantages and

disadvantages of serial-linked substation systems as shown in Fig. 2.2 in the panel

labelled “Serial-link Based Substation” are stated below.

 Advantages: serial-linked substation system:

� Reduced cabling

� Addressability

� Raw measurements and not processed measurements are published from a

sensor node.

18

� Calibration information is communicated using IEEE 1451 TEDS

� Provides an interface to NCITs.

Disadvantages: serial-linked substation system:

� Speed limitation: the maximum speed on an RS232 link is ±14.5kbps

� Costs: RS485/RS422 to RS232 converters are often required.

� Restricted in terms of scalability

� Only physical layer standard specified

� Data communication is not standardized

� Only Unicast (Point to point) measurement communication

� No interface to conventional transformers defined.

Due to the disadvantages of serial based substation systems, the goal to define a

communication infrastructure that would allow seamless integration of substation

automation components continued into the middle and late 1990’s. The focus had

now shifted from serial-based substations to Ethernet-based substation systems -

culminating in the publication of the Communication Networks and Systems in

Substations standard in 2003, i.e. the IEC 61850 standard. The objective of the

standard is to specify requirements and to provide a framework to achieve

interoperability between the IEDs supplied from different vendors (IEC 61850-1,

2003). To achieve interoperability, the IEC 61850 specifies logical interfaces between

the various components of a substation automation system (Apostolov, 2005) as

shown in Fig.2.5.

Figure 2.5: Interface model of a substation automation system specified within part 1

of the IEC 61850 standard (IEC 61850, 2003)

19

The description of the interfaces is outlined below:

� IF1: protection-data exchange between bay and station level.

� IF2: protection-data exchange between bay level and remote protection

� IF3: data exchange within bay level.

� IF4: CT and VT instantaneous data exchange (especially samples) between

process and bay level.

� IF5: control-data exchange between process and bay level.

� IF6: control-data exchange between bay and station level.

� IF7: data exchange between substation (level) and a remote engineer’s

workplace.

� IF8: direct data exchange between the bays especially for fast functions such

as interlocking.

� IF9: data exchange within station level.

� IF10: control-data exchange between substation (devices) and a remote

control centre

Fig. 2.5 above shows a hierarchical architecture proposed by the IEC 61850

standard, and the interfaces between the various components of a substation

automation system. In IEC 61850 the functions of a substation automation system

can be distributed across three levels. These levels are:

� The station level,

� The bay level, and

� The process level.

The substation automation components at the same level or at different levels of the

hierarchy are then linked together by the various interfaces. It should be noted that

the interfaces 2 and 10 (greyed out) are mentioned and shown in Fig.2.5 but do not

form part of version 1 of the IEC 61850 standard.

The station level often referred to as “station-bus” connects all of the IEDs to one

another and to the human machine interface (HMI) using interfaces 1,3,6,7 and 8.

The IEDs communicate to the Station level devices using the messaging services

provided by the Manufacture Message Specification (MMS) protocol in a client/server

architecture. Inter-IED communication on interface 3 is achieved by using the

publisher/subscriber communication services. Interfaces 4 and 5 connect Process

level or “process bus “equipment to the Bay level and vice versa. The process level

conveys raw power system information from switchyard source devices to the Bay

Level through publisher/subscriber communication services.

20

Subsequent to the publication of the IEC 61850 standard, equipment compliant with

the standard has become increasingly important in substation automation systems.

This is due to benefits derived from a combination of reduced cabling, “Plug and Use”

capability, ease of equipment addressability, interoperability of equipment and the

availability of software environments for describing system architecture.

Intelligent Electronic Devices (IED’s) compliant with the standard have been

developed, are widely available, and are slowly being deployed in industry but these

IED’s are largely for station bus use only and are hardwired to primary plant.

Equipment from vendors to accommodate the “Process bus” paradigm is however

almost non-existent at present. Fig. 2.6a shows the current implementation and Fig.

2.6b shows the future implementation of the IEC 61850 standard.

 Figure 2.6a: Current implementation Figure 2.6b: Future Implementation

In Fig.2.6a the current transformers (CTs) and voltage transformers (VTs) are

hardwired to the bay controller. The bay controller has to process the measurements

and generate Generic Object Orientated Substation Event (GOOSE) messages

based on some pre-set values.

IEC 61850 however, proposes a system not only based on GOOSE, but on raw

sampled measurement values published from a merging unit. Part 9 of the IEC 61860

standard specifies an interface between the merging unit, process and bay level

equipment using the digital output of the merging unit for distribution to protection or

metering equipment. Fig. 2.7 shows an example of measurements being published

from a merging unit (IEC 61850-9-1, 2004).

21

Figure 2.7: Example of measurements being published from a merging unit (IEC

61850-9-1)

In Fig.2.7, the merging units receive analogue measurements from the plant, digitize

the analogue values, encode, and publish the raw data in a sampled value format

onto the process-bus. Listed below are some of the advantages that can be derived

with the implementation of the process bus. These are:

� Raw, unprocessed measurement values

� Support for both Unicast and Multicast published measurements

� Substation system not only based on substation events, but on actual raw

measurements

� Standardized interface to non-conventional instrument transformers

� Improving the system performance in a conventional transformer system. The

A/D conversion is done close to the source and much of the burden of

processing can be removed from the bay controllers

� Reduced wiring

Based on the advantages and disadvantages itemised for the various standards, IEC

61850 provides greater advantages than IEC 60044 and IEEE 1451 for measurement

distribution in substation automation systems. Compared to IEC 60044 and IEEE

1451, IEC 61850 is not restricted only to the interface between NCITs and bay level

devices. IEC 61850-9 also provides the means to interface conventional transformers

to bay level devices. The original IEC 61850-9-2 standard has, however, proved not

to be detailed enough to allow implementation and to achieve interoperability of

merging units. The IEC 61850-9-2 standard leaves the implementation of certain

parameters as configurable parameters. As an example, the implementation of data

sets and the sampling rate are left as configurable parameters in the IEC 61850-9-2

22

standard. To reduce problems due to differing implementations by manufacturers, the

UCA User Group published the “Implementation Guideline for Digital Interface to

Instrument Transformers” often referred to as IEC 61850-9-2LE. IEC 61850-9-2LE

has recommended values for sampling rate for protection and metering applications,

and proposes a fixed dataset consisting of three phase current and voltage

measurements and neutral current and voltage measurements.

The aim of this project is to gain a fundamental understanding of the IEC 61850

standard, and through this foundation to implement certain aspects of a sensor node

as shown in Fig.2.8.

Figure 2.8: Basic architecture of a Merging Unit (Tholomier and Chatrefou, 2008)

This limited functional implementation of the sensor node would represent a

virtualized sensor node capable of synthetic generation of waveform data, encoding

of the data, and transmitting the data in a format compliant with the IEC 61850

protocol.

For the development of this sensor node, a thorough knowledge and understanding

of IEC 61850 client/server, peer-to-peer communication, device model, process-bus

and sampled value concepts are fundamental. The merging unit device model

sampled value message structure and sampled value control blocks are some of the

key requirements to the development of the sensor node.

23

2.3. Literature search

In order to gain this knowledge a literature search on the trends and methodologies of

measurement distribution systems within the substation environment had to be

conducted and it has been established that the following are some of key papers

discussing measurement distribution in power systems under the following standards:

IEC 60044

• (Sawa et al., 1990)

• (Kezunovic et al., 1990)

• (Anderson and Brand, 2000)

IEEE 1541

• (Lee and Schneeman, 2000)

• (Wiczer, 2001)

• (Lee, 2003)

• (Elmenreich et al., 2005)

IEC 61850

• (Apostolov, 2006)

• (Apostolov, 2010)

• (Pan et al., 2012)

From the papers listed above and references from these papers, key-phrases that

could be utilized in the literature search were identified as:

� “Power system”, “substation automation”, “current transformer”, “voltage

transformer”, “non-conventional current transformer”, “non-conventional

voltage transformer”, “IEEE 60044-7”, “IEC 60044-8”, “IEEE 1451 smart

sensors”, “IEC 61850”, “IEC 61850 process bus”, “IEEE 1588”, “Merging unit”.

The chronological spread of papers discovered using these key-phrases during the

literature search is shown in Fig. 2.9, and a literature review of these papers is

conducted in section 2.4. The main sources for these papers were the Institute of

Electrical and Electronics Engineers (IEEE), Science Direct, Academia, and

CiteSeerx websites.

24

Figure 2.9: Papers per year using key-phrase searches

The literature search reveals that most of the research focus between the years 2000

and 2004 was on NCITs, and interfacing NCITs to the merging unit device defined in

the IEC 60044-7/8 standard. Between the years 2004 and 2006, the research focus

area had shifted slightly onto the integration of the IEEE 1451 standard to power

systems. During the same period, the IEC 61850 standard was introduced and has

since become the international standard for substation automation and control.

Papers between the years 2005 and 2010 focused mainly on substation automation

systems using the IEC 61850 standard. In recent years between 2011 and 2013 most

of the research has been focused on time synchronization techniques for IEC 61850

substation automation systems. In Section 2.4 a sample of the papers found through

the literature search are catalogued, commented upon and the criteria for

comparative analysis decided upon.

25

2.4. Literature review

IEC 60044-7 and IEC 60044-8 NCIT standards

Paper Aim of paper Development

Platform
Advantages and

disadvantages outlined

Summary Results

(Sawa et al.,
1990)

Discusses the design
and assembly
procedure of optical
current transformer
(CT) and voltage
dividing-type voltage
(PD) transformer.

N/A Advantages:
Compact, high
performance and
reliable optical CT and
PD transformer

Designing and
manufacturing of the
optical CT and PD have
been described
together with test
results. New techniques
for current and voltage
measurement using
optical sensors have
been discussed

Test results for the
developed optical CT and
PD showed that their basic
properties conform with
Japanese standard for
electric-power instrument
transformers

(Christensen
et al., 1995),

Describes a voltage
transformer based on
the Pockels effect

N/A

Advantages:
Separation between the
measuring point and
the high voltage
potential.

Compact transformer.

Better interface to
electronic equipment
such as personal
computers (PCs)

An optical voltage
transformer based on
the Pockels effect is
described.

Theoretical description of
an optical voltage
transformer design.

26

(Rahmatian
et al., 2002)

Discusses the design
and testing of
optical voltage
transducers for
metering and
protection
applications in high-
voltage systems

Hardware
using an
optical
voltage
transformer
and sensors

Advantages:
Optical voltage
transducer offer
advantages in terms of
size, weight, and
bandwidth compared to
conventional
transducers

A novel high voltage
system using optical
voltage transducers
suitable for both
metering and protection
is described.

Optical voltage transducer
that measure voltage by
using three optical electric
field sensors, passed the
accuracy and insulation
testing according to IEC

Kezunovic et
al., 2006)

Looks to evaluate and
quantify the influence
of optical current
transducers
characteristics on
protective relay
performance

PC platform
using
PSPICE and
Alternative
Transients
Program
(ATP)
simulation

Advantages:
From the evaluation
results it is expected
that optical transducers
will positively influence
the performance of
protection and control
IED.

Using of simulation
combined with
statistical analysis, it
was shown in this
paper that the influence
of NCIT on powers
systems can be
quantified and the
results show that the
use optical transducers
is expected to positively
influence the
performance of
protection and control
IED.

Educational

(Pan et al.,
2012)

The objective is to
develop a testing
prototype to measure
the ratio error and
phase error of the
transformer under test

PC platform
using
LabVIEW
software

Advantages:
Accurate measurement
of the ratio error and
phase error on
transformers

A device based on the
digital signal processing
technology, that can
test both analogue and
digital outputs of NCIT
is proposed, for the
implementation of NCIT

A device suitable for the
testing transformers with
precision classes up to 0.2
at the
frequency of 50 Hz or 60
Hz, is introduced

27

(Bertolotto et
al., 2007)

Discusses the
evolution transformer
analogue
measurement
systems by deploying
data acquisition nodes
using smart
transducers to
interface to optical
voltage

N/A Advantages:
significant improvement
of transformers
reliability and
maintenance
techniques

The mix of well-known
and reliable
technologies, like HV
capacitor dividers and
Rogowski coils,
together with high
performance electronic
devices and digital
signal processing allow
for the design of a
measurement
transformer compliant
with IEC 60044-8

development of an
electronic
measurement transformer
for high voltage system

IEEE 1451 sensor node

Paper Aim of paper Development
Platform

Advantages and
disadvantages outlined

Summary Results

(Elmenreich
et al., 2005)

Describes the main
concepts of smart
transducer interfaces

Embedded
platform
using
microcontroll
er and
sensor
technology

Advantages:
Reduced system
complexity
using smart transducer
interfaces

Using two case studies,
proof of concept for the
smart transducer
interface standard was
achieved

Reduced system complexity
using smart transducer
interfaces

(Lee and
Schneeman,
2000)

Describes the
framework for
standardized
distributed
measurement and
control system.

System
demonstratio
n performed
using
simulation
network
program

Advantages:
Distributed intelligence.
Raw measurement
values are broadcasted
from the process level
to the various network
devices, allowing

Using existing object
oriented programming
systems and
networking standards, a
multi-level
measurement and
control system has

A framework for distributed
application using open
network communication and
standardized transducer
interfaces is developed

28

(SIMNET) intelligent devices in
the network nodes to
make decisions based
on raw, unprocessed
measurement data

been developed.

(Wiczer,
2001)

Analyses the
strengths and
weaknesses of smart
sensor technology
and strategies for
successful
implementation

N/A Disadvantages:
Implementing smart
sensors can be very
costly. A feasibility
study has to be
conducted for each
project.

Two scenarios one of a
real-world example of
smart sensor
technologies that
suffered from significant
economic and technical
feasibility challenges
and another example of
a smart interface
applied to an
unenhanced sensor to
create a functioning
smart sensor unit are
discussed in this paper

This paper provides a good
base for designers and
system developers to
assess the feasibility of
employing smart sensor
technology in their system.

(Mark, 2004) Looks into the IEEE
1451 modelling
templates, as a set of
properties or values
that describe key
characteristics of the
transducer

N/A Advantages:
P1451.2 TEDs provide
a self-description
mechanism for smart
transducers

A roadmap of
transducer standards
from inception till it was
accepted as a full-use
standard by the IEEE
Standards Association
and the modelling
approach is discussed
in this paper

This paper is mainly
Educational, focusing on
the modelling of smart
transducer nodes and smart
nodes network interfaces

(Lee, 2004) Describes the
development

Software
using UML

Advantages:
A fully executable C++

A UML model that
includes the data model

UML model for the IEEE
1451.1

29

of an UML model for
the IEEE 1451.1
specification

tool in Visual
C++

code can be generated
using UML tools from
the model developed.

and object model of the
IEEE 1451.1 standard
has been developed.
The model developed
captures the attributes,
operations, and
behavioural information
of the IEEE 1451.1
objects.

Standard has been
developed

(Kim et al.,
2006)

Presents definitions of
the basic TEDs of
electronic tongue
system and propose a
new template TEDs
potentiometric devices

Hardware
platform
using an
electronic
tongue as the
sensor

Advantages:
With IEEE 1451
implementation sensors
and actuators become
smaller, intelligent and
provide communication
capabilities

The capabilities of a
sensor are beyond that
of traditional sensors.
These capabilities are
widening the use of
sensors to intelligent in
industries.

Successful organisation of
basic TEDs version letters
and version numbers to
indicate the type of sensor

(Pal and
Rakshit,
2004)

Presents schemes for
the development of
network capable
smart transducers

System
proposed is
an
embedded
system using
AT89S8251
microcontroll
er

Advantages:
cost effective and
flexible in the sense
that the user need not
keep separate
transducer for each
sensor or actuator

A smart transducer with
network interface that
can accommodate
Profibus, Fieldbus and
Modbus as well as
provided the program
loading can be
developed in an
embedded system such
as the AT89S8252

Theoretical paper

(Zheng et al.,
2006)

Look into the
development of an
optical sensor to
measure HV

A hardware
circuit using
optical
sensor

Advantages:
A safe, accurate and
efficient method
measurement of

An optical fiber
measuring technique
for transformer winding
temperature is

An IEEE 1451.2 compliant
temperature sensor of
power transformer winding
temperature was developed

30

transformer winding
temperature based on
IEEE1452.2

analogue to
digital
converters
and 89S52R
MCU

transformer winding
temperature.

developed using smart
IEE1451 transducer,
with each transducer
using a its own port.

IEC 61850

Paper Aim of paper Development
Platform

Advantages and
disadvantages outlined

Summary Results

(Apostolov,
2006)

To describes the
different
communications
related
implementation of the
new IEC 61850
standard.

N/A Advantages of IEC
61850:
Introduction of Ethernet
applications based on
Client/Server and high-
speed Peer-to-Peer
communications in a
substation environment

Different applications
imposing different
requirements that can
be met by proper
selection of the
communications type in
IEC 61850. The
communications in the
substation automation
system can be between
devices at the same
level of the functional
hierarchy or between
bay and process levels
of the system.

Educational. To raise
awareness of the benefits of
the IEC 61850

(Anderson
and Brand,
2000)

discusses the
motivation behind the
development of the
IEC 61850 standard
and the benefits

N/A Advantages:
IEC 61850 is
standardized and future
proof.

IEC 61850 provides a
future proof architecture
that can be easily
integrated to enterprise
systems

Educational. A raised
awareness of the IEC
61850 architecture, IEC
61850 system configuration
and design considerations
when dealing with
substation automation

31

system

(Baigent et
al., 2004)

To provide an
overview of an
overview of the IEC
61850 protocol and
IEC 61850 device
model

N/A IEC 61850 can be
easily interfaced with
existing legacy
protocols OPC and
Relational RDBMS

The paper teaches
about the
standardization data
names, creation of
services and the
implementation of IEC
61850

Educational

(Janssen and
Apostolov,
2008)

Describes the
different components
of IEC 61850
substation systems
and the distribution of
functions between the
devices

N/A Advantages:
Introduction of
distributed functions in
substation systems and
reduced wiring

IEC 61850 allows the
development of new
approaches to
substation design and
maintenance
processes.

The paper is mainly
educational focusing on
new design approach based
on distributed functions

IEC 61850 process bus

Paper Aim of paper Development
Platform

Advantages and
disadvantages outlined

Summary Results

(Apostolov,
2010)

Discusses the
implementation
agreement that
ensures the
interoperability
between merging
units and protection
devices

N/A Advantages: Cost
reduction and
interoperability

The traditional large
number of copper
cables connecting
primary and secondary
plant is replaced by just
a few fiber optic cables.

Educational

(Sonawane
et al., 2007)

Looks at the latency
and deterministic

Real time
digital

Advantages:
The RTDS platform is

The goal of IEC 61850
is to provide a

An IEC 61850 messaging
capable system was

32

performance
appropriate for an IEC
61850 real-time
simulation.

simulator
(RTDS)

capable of providing
binary input and output
as well as sampled
value.

comprehensive set of
functions to replace
proprietary protocols.
This allows the
development of
simulation test product
using only the one
protocol.

successfully developed for
the RTDS Simulator.

(Skendzic
et al., 2007),

Explores the Merging
Unit Concept and
analyses the
reliability of protection
systems based on
sampled values
(SVs).

N/A Network Time Protocol
(NTP) is recommended
in IEC 61850 as the
primary time however
NTP cannot achieve
the µs level time
synchronization
required for SV.
However the standard
allows time to be
distributed by
independent means
(IREGB)

The Process Bus
technology described in
IEC 61850-9-2 offers a
variety of new
possibilities in
designing Ethernet-
based protection and
control systems.

An important property of the
SV-based process bus that
is evident is from the
investigation conducted is
high bandwidth requirement
and high processing speed
required from the process
bus and merging unit
respectively

(Konka et al.,
2012)

Emulation of IEC
61850-9-2 standard.
Outlining the testing
procedure for merging
units

PC platform
using NS3
and
Wireshark

Advantages: Cheap
testing tool for
emulation of sampled
value messages.

In this paper, an
accurate and realistic
model of SV traffic
generator was
described. Packet
traces generated using
the model was shown
to be realistic as they
included the full byte
structure of Sampled
Values APDU and
ASDU.

A SV traffic generator has
been developed.
The generated sampled
values have been verified
using Wireshark

33

(Yang et al.,
2012)

Design and simulation
of the communication
network based IEC
61850

PC platform
using NS2
and
Wireshark

Cost effective tool for
IEC 61850 network
simulation

A topology that satisfies
the timing requirement
of IEC 61850 proposed

Design and simulate the
station bus and process bus
was achieved.

Substation automation time synchron ization
Paper Aim of paper Development

Platform
Advantages and

disadvantages outlined

Summary Results

(Ingram et
al., 2012),

Performance
evaluation of
commercially
available PTP devices
to meet the functional
requirements of a
SAS. PTP Time synch
methods required and
the effect of SV traffic
on PTP performance.

RTDS, PTP
clocks,
Endace
DAG7.5G4
Ethernet
capture
card,
Tektronix
DPO2014
digital
oscilloscope

Advantages:
PTP devices intended
for power system use
are interoperable, as
each grandmaster
and slave clock
combination
successfully
synchronized

Tests conducted with
commercially available
PTPv2 clocks prove
PTPv2
to be a viable method
of providing time synch
for a sampled value
process bus using IEC
61850-9-2

The jitter between the
grandmaster and slave
clock is deterministically
measured in the nano
second range. This proves
PTP time distribution
methods are suitable for
use in synchronizing
sampled values

(Ingram et
al., 2011)

To examine PTPv2
grandmaster holdover
and recovery from
loss of GPS synch.

Hardware
implementati
on using:
PTP clocks,
Endace
DAG7.5G4
Ethernet
capture
card,
Tektronix
DPO2014
digital
oscilloscope

Compensation of
Propagation delays
when using PTPv2 for
time synch of sampled
values, providing
benefits over various
other 1PPS systems.

Propagation delays are
compensated for by
PTPv2, providing
benefits over various
other 1PPS systems.

From the tests conducted
PTPv2 was proved as a
viable source of 1PPS
timing signals.

34

The papers catalogued in section 2.4 are divided into five headings. The headings

represent the various initiatives to address the problem of measurement distribution

in substation systems. General comments on the papers reviewed are discussed in

the paragraphs to follow.

The concepts of Instrument transformers discussed in the papers above sought to

improve on the conventional transformer concepts to achieve higher performance,

compactness and better reliability by having more monitoring systems. Instrument

transformers have standardized sampling rates and interfaces according to IEC

60044-7 and IEC 60044-8 standards. The IEC 60044-8 Instrument transformer

standard also introduced methods to interface to the instrument transformers using

smart sensors.

The standards discussed above reflect an attempt to meet this challenge of

distributing measurements in substation systems in the 1990s. While the IEEE 1451

standard was very successful in most industries such as gas, oil etc., it still lacked a

lot of the elements that were needed in power systems. In 1996, Technical

Committee 57 of the IEC began work on IEC 61850, with the objective of specifying

the requirements and to provide a framework to achieve interoperability between the

intelligent electronic devices supplied from different vendors

IEC 61850 proposes a digital bus-based architecture comprising of station bus and

process bus. The Process layer of the substation is related to gathering information,

such as voltage and current, from transducers connected to primary power plant

equipment. The quantities are then digitized at the source by the merging unit, and

the resulting sampled values are transmitted onto the process bus in a format

compliant with the IEC 61850-9-2 standard.

A comparative analysis of the various epochs of measurement distribution systems in

the substation environment is performed in section 2.5. Some of the advancements

made in each era are discussed.

35

2.5. Comparative analysis of the developments in th e existing literature

Before the 1990’s, the primary research focus on transformers was on methods to

improve conventional transformer performance by improving grading, stress loads

and mechanical aspects of conventional transformers. One of the major focus areas

was on improving the transient performance of bushings and the reduction of high

voltage breakdowns between the bushing oil end-shielding and the turret (Minker,

2005).

In the early 90’s studies incorporating optical technology in transformers began. Suva

et al., 1990 laid most of the groundwork in his paper that discussed the design and

development of optical instrument transformers based on Faraday and Pockels

effects. Following the publication of this paper, more papers on instrument

transformer design and instrument transformer transducer design that supported the

Sawa et al., 1990 proposal, and also offered an alternative method for instrument

voltage transformer design, were published. The Christen et al., 1995 paper

discusses an alternative for instrument voltage transducers and proposes VT’s

without a capacitive voltage divider, instead using optical voltage transformers.

Results from these studies and various other studies were conclusive as to the

benefits that could be derived from the implementation on optical instrument

transformers. The international bodies responded to the positives outlined in the

various studies on instrument transformers by publishing the instrument transformer

standard IEEE C57.13 in 1993, and a standard to interface instrument transformers to

secondary plant. The IEC 60044 standard was published in December 1999.

The implementation of the IEC 60044 standard for metering and protection

applications is discussed in Rahmatianet al., 2002. Bertolotto et al., 2007 extends on

what is discussed in the Rahmatianet al., 2002 paper and discusses the introduction

of data acquisition nodes using smart transducers to interface to optical voltage and

current measuring systems based on a digital signal processing system compliant

with the IEC 60044-7 and IEC 60044-8 standards for protection and metering, and

the benefits that can be derived from these systems.

Another standard that attempted to meet the challenge of sampled values in the

1990’s was the IEEE 1451. The Lee and Schneeman, 2000 paper presented the

framework for measurement distribution using a bus-based architecture.

The Sal and Rakshit, 2004, and Zeng et al., 2006 papers proved that IEEE 1451

smart transducers could be used in power systems. Sal and Rakshit, 2004 used

36

smart transducers for pressure and temperature monitoring of transformers and Zeng

et al., 2006 discusses the measurement of transformer winding temperature using

smart transducers.

In 2003, the IEC 61850 standard for substation communication networks was

published. Apostolov, 2006, Anderson and Brand, 2000, and Baigent et al, 2004

introduced the concepts and motivation behind IEC 61850 and the device model

approach in IEC 61850. The IEC 61850 incorporated the standards and framework

that had previously existed. IEC 60044-8 standard was incorporated into the IEC

61850-9-1 standard. IEC 61850 standard uses an architecture very similar to the

framework proposed by Lee and Schneeman, 2000.

IEC 61850-9-2 defines the mapping of the abstract sampled value services to an

Ethernet communication network. As discussed in Apostolov, 2010, IEC 61850-9-2

presents a serious challenge when it comes to the actual implementation and

interoperability of merging units. Because of the incompleteness of the IEC 61850-9-2

standard, an implementation guideline “IEC 61850-9-2LE” was published by the UCA

International User Group, to facilitate the implementation and interoperability of

devices utilizing sampled values (SVs). The Apostolov, 2010 paper discusses the

implementation guideline and implementation agreement for sampled values.

Skendzic et al, 2007 discusses the merging unit concepts, sampled value message

structure as outlined in IEC 61850-9-2.

Even with the implementation of IEC 61850-9-2LE, the implementation of the process

bus paradigm is still almost non-existent in industry. As a result several research

investigations have looked into simulation of communication services defined in the

IEC 61850 standard. The Konka et al., 2012 and Yang et al., 2012 papers investigate

the simulation of sampled values using Network Simulator version 3 (NS3) and

Network Simulator version 2 (NS2) respectively. However both the systems

developed are non-real time. While this proposed research project is also non-real

time, the intent is to provide the foundation and framework for a real-time

implementation.

2.6. Conclusion

The idea of sampled values is a very old concept in substation automation systems.

The performance of the communication technologies in the past however was just not

sufficient for real-time measurement distribution. As technology developed and with

37

the introduction of non-conventional instrument transformers, bus-based real-time

measurement systems started becoming a reality. The need for a standardized

protocol interface was soon identified and from this IEC 60044-7 and IEC 60044-8

emerged. IEC 60044-7 and IEC 60044-8 standards reflects an attempt to meet this

challenge of sampled values in the 1990s.

Another standard that attempted to meet the challenge of sampled values in the

1990’s was the IEEE 1451. The IEEE 1451 standard was however never really

accepted in the power system industry as its origins were not in the power industry.

Secondly the IEEE standard is a national standard not an international standard, so it

never took off in certain parts of the world.

A need for an international standard still existed. When the working groups for IEC

61850 were discussing the SV concept, IEC 60044-8 was about to be finalized and

released. The IEC 61850-9-1 became a link between the standards. IEC 61850-9-1

was later superseded by IEC 61850-9-2. IEC 61850-9-2 defines the mapping of the

abstract sampled value services to Ethernet. This document however allowed

developers a lot of freedom as to the actual implementation, for example the sample

rates or the actual content of dataset is not defined. This presented a serious

challenge when it came to the actual implementation of merging units by different

vendors which could be interoperable. An implementation guideline “IEC 61850-9-

2LE” was published by the UCA International User Group, to facilitate the

implementation and interoperability of devices utilizing SVs. IEC 61850-9-2LE

specifies a fixed dataset containing four currents and four voltage measurements.

IEC 61850-9-2LE also specifies fixed sampling rates of 80 samples per cycle for

protection applications and 256 samples per cycle for metering.

Even with the implementation of IEC 61850-9-2LE, the implementation of the process

bus paradigm is still almost non-existent in industry. Devices that publish sampled

values in a format compliant with IEC 61850-9-2LE guideline are still almost non-

existent in industry. This project investigates the development of a sensor node on a

PC platform.

Chapter three of this document discusses the details of the IEC 61850 standard and

various investigations conducted to understand the sampled value device model and

its message structure.

38

CHAPTER 3

An overview of the IEC 61850 standard with emphasis on
GOOSE messaging and Sampled Values

3.1. Introduction

In order to implement a virtual sensor node based on the IEC 61850, an in-depth

investigation into the IEC 61850 standard has to be conducted. The aim of this

chapter is to examine the standardisation developments within the IEC 61850

substation automation environment, to study the substation automation framework

presented in the IEC 61850 standard, and to outline the measurement distribution

methods proposed in the IEC 61850 standard. This requires an in-depth

understanding of the tools, methods and services specified in the IEC 61850

standard. In this chapter the various components that have been found to be

fundamental to the understanding of substation automation systems and the IEC

61850 standard are deliberated upon.

From the literature review in the previous chapter, three main concepts/drivers for the

development of the IEC 61850 standard have been identified as:

a) The provision of a virtualized substation automation framework for all

substation automation devices.

b) The provision of a future-proof substation automation framework that is

flexible, scalable, maintainable, and provides interoperability between

substation automation devices.

c) The specification of the tools and processes for easing the engineering of

substation automation systems.

This chapter examines the aforementioned IEC 61850 concepts in detail. Section 3.2

discusses the chronological development of the IEC 61850 standard. Section 3.3

provides an introductory overview of the IEC 61850 standard. Section 3.4 discusses

the IEC 61850 substation automation virtualization framework (as mentioned in (a)

above), focusing on the modelling philosophy and the abstract object services.

Through the virtualization framework provided, the IEC 61850 standard supports

Object-Oriented (OO) data modelling of all substation automation processes that are

implemented and controlled. Section 3.5 discusses the mechanisms (as mentioned in

(b) above) which aids in allowing flexibility, scalability, and interoperability – such as

the IEC 61850 naming convention, and the process mapping, abstract services and

mapping onto real communication protocols.

39

Section 3.6 discusses the IEC 61850 system engineering tools (as mentioned in (c)

above). Section 3.7 examines network topologies as one of the critical items to be

considered when designing IEC 61850, Ethernet-based substation automation

systems. The network integrity and hence the topology deployed takes additional

importance when dealing with the process level in IEC 61850 - this is due to the

additional network traffic loading imposed by the time synchronization systems

required by the Merging Units. Section 3.8 concludes on what has been discussed in

this chapter and what will be discussed in the next chapter.

3.2. Overview of the chronological development of t he IEC 61850
standard

The IEC 61850 standard is a result of various initiatives aimed at providing seamless

integration of substation automation systems to higher level systems (enterprise

systems), and to provide inter-device communication within the substation. Beginning

in the early 1990s, the European Parliaments Research Initiative (EPRI) and the

Institute of Electrical and Electronic Engineers (IEEE) spear-headed an effort to

define a Utility Communications Architecture (UCA) for substation automation

systems. The focus was on Inter-Control Center communications and Substation-to-

Control-Center communications. These standardization initiatives culminated in the

publication of the Inter-Control Center Communications Protocol (ICCP) specification

which was later adopted by the International Electrotechnical Commission (IEC) as

61850 TASE.2

In 1994, EPRI/IEEE initiated the next phase of the UCA standardization efforts. This

time more emphasis was placed on defining Station Level communication of a

substation automation system. Two years later the Technical Committee 57 of the

IEC began work on IEC 61850 with the similar agreement of defining a Station level.

In 1997, the two groups agreed to work together. The results of the harmonization

efforts are the IEC 61850 standard specification IEC 61850 is a superset of the UCA

2.0 standard. IEC 61850 contains almost all of the original UCA specification and

offers additional features as shown in Fig. 3.1.

Figure 3.1: The migration of the UCA 2.0 standard to the IEC 61850 standard

(Pofoud, 2002)

40

3.3. Introduction to the IEC 61850 standard

The IEC 61850 standard is divided into ten parts as is shown in Fig. 3.2 below. Part 1

of the IEC 61850 standard is the introduction and overview of the standard. Part 2

introduces the terms used within the standard. Parts 3, 4, and 5 of the standard

identify the general and specific functional requirements for communication within the

substation environment (Udren et al., 2000). These requirements are then used in the

identification of the services, data models and protocol requirements for a particular

application (Mackiewicz, 2006).

Figure 3.2: IEC 61850 standard parts (IEC 61850, 2003)

Through these ten parts, the IEC 61850 standard specifies the substation automation

requirements and provides a future-proof substation automation framework that

allows for interoperability, scalability, flexibility, and maintainability of substation

automation systems. This future-proof substation automation framework utilizes, as

some of its mechanisms, virtualization (virtualized SAS device model), interfaces,

services and messaging systems. These will be discussed in detail in sections 3.4

through 3.7 below.

3.4. Virtualization

Overview

The concept of virtualization began in the 1960’s and originates from the Information

Technology (IT) environment. In the IT environment, virtualization refers to the act of

creating a virtual version of devices and its sub-components. Virtualization tools such

as Hypervisor and VMware provide the framework or methodology for dividing a

device’s resource into multiple execution environments, by applying various

technologies.

41

Virtualization is often used in the IT space as a means to fully maximize the potential

use of a specific hardware investment. Virtualization technologies/tools provide a

means to virtualize the hardware platform, Operating System (OS), storage device(s),

network resources, etc. An example of virtualized IT servers is illustrated in Fig. 3.3

below.

Figure 3.3: Example of virtualized IT servers

In Fig. 3.3, multiple physical servers are virtualized within one shared storage device.

Several applications are running within the virtualized servers shown in Fig. 3.3,

essentially sharing the shared storage server’s memory, processing power, network

resources, etc. Some of the advantages of virtualization are:

� Improved System Reliability and Security. Virtualization is used to prevent

system crashes and improve the overall system venerability due to memory

corruption caused by software drivers and provides a means of isolating the

Input/output (I/O) resources.

� That it allows for powerful debugging and performance monitoring.

� That the virtualization framework allows for emulation or simulation of a

complete device.

� Scalability.

� The provision of interoperability with minimal co-dependencies.

The concept of virtualization has in recent years been introduced into the Operation

Technology (OT) environment. The IEC 61850 has leveraged the concept of

virtualization from the IT environment, to provide a representation of the behaviour of

real substation devices (Brunner et al., 2007) through the specification of

42

standardized models representing the actual equipment (Mackiewicz, 2006). This is

expanded upon in more detail in sections 3.4.1 and 3.4.2 below.

3.4.1 Virtualization – in the standards-based power system industry

The main functions of Substation Automation Systems (SASs) are to protect, control

and monitor plant equipment used in the substation and the substation feeders.

These functions are used as the building blocks for the object orientated physical and

logical device information models defined in the IEC 61850 standard. The information

models and the device modelling methods form part of the core of the IEC 61850

standard. The models defined in the IEC 61850 standard enable virtualizing of real

devices as depicted in Fig. 3.4.

Figure 3.4: IEC 61850 modelling approach (IEC 61850-7-1, 2004)

The IEC 61850 standard utilizes abstract models to define information and

information exchange in a manner that is self-determining and independent of

protocol implementation. The standard uses the concept of virtualization to provide a

view of some of the real device aspects that are fundamental for information

exchange with other devices (IEC 61850-7-1).

The IEC 61850 standard further defines an Abstract Communication Service Interface

(ACSI) and a Specific Communication Service Mapping (SCSM) that should be

supported by IEC 61850 compliant devices to provide interoperability. As described in

IEC 61850-5, the approach of the standard is to decompose the application functions

into the smallest entities, which are used to exchange information. The data

43

modelling and object oriented mechanisms utilised within the IEC 61850 standard are

outlined further in section 3.4.2 below.

3.4.2 IEC 61850 – Data modelling

The IEC 61850 standard divides the SAS functions into thirteen different logical

groupings of data as is shown in Fig. 3.5. The IEC 61850 standard attempts to model

all data that could originate in a substation automation system to one of these groups.

The groups are subdivided into 92 different Logical Nodes and each of these logical

nodes is composed of 355 data classes that represent some application-specific

meaning. A complete list of logical nodes is defined in the IEC 61850 standard and is

presented in Appendix 3 of the standard (IEC 61850-7, 2004).

Figure 3.5: Logic grouping of substation data according to IEC 61850 standard.

The data model shown in Fig. 3.5 is hierarchical, with the logical nodes as the key

object in the IEC 61850 data modelling structure. The logical nodes represent

particular functions within a device (Mackiewicz, 2006) and contain data linked to that

specific function.

44

A Logical Device (LD) forms a container for three or more Logical Nodes (LN). A

logical device is always encapsulated within a physical device. In the IEC 61850

standard, the device model begins with the physical device (PD). A physical device

consists of a Logical Device(s) as down in Fig. 3.6 below. In Fig. 3.6, the outermost

shell represents the “Real devices” (Physical devices). Inside the physical device is a

virtual model of the actual physical device.

Figure 3.6: An IEC 61850 device representation (Gers, 2004)

A logical device is a compound of logical nodes that are related to a specific function

inside a substation. At least three logical nodes must be within a logical device. As an

example, a logical device is usually comprised of two LNs related to common

functions within the logical device (such as LLN0 and LPHD), and at least one LN

performing some protection and/or control function.

The architectural model that the IEC 61850 standard adopts is that of “abstracting”

the definition of the data items and the services. As a result, many of the data objects

are made up of elements such as Status, Control, Measurement, etc., thus the

concept of “Common Data Classes” or “CDC” was developed which defined common

building blocks for creating the larger data objects. Fig. 3.7 shows a Unified Modeling

Language (UML) diagram of a conceptual IEC 61850 device.

45

Figure 3.7: Conceptual IEC 61850 device and services model (IEC 61850, 2003)

In Figure 3.7: above, Block 6 which is the physical data server is the top-most

component of the hierarchical model. It serves as an encapsulating entity for logical

devices (block 8) and logical nodes (block 9). The Logical Device (LD) in turn is the

logical correspondence of a physical device. The logical device is a group of logical

nodes performing similar functions. Each logical device contains three or more

Logical Nodes, each of which contains elements of data. Each of the data elements

conforms to the IEC 61850-7-3 specifications of Common Data Class (CDC). The

CDC’s describe the type and structure of the data within a logical node. An example

of the use of the logical node modelling technique using the measurement logical

node MMXU is shown in Fig. 3.8.

46

Figure 3.8: Example showing the decomposition of the MMXU logical node

With reference to this example, the CDC belongs to Function Constraints (FC) that

groups CDC’s into categories, as depicted in Fig. 3.8. The Functional Constraints

(FC) is a property of the “data attribute” that characterizes the specific use of the

“attribute”. The CDC defines the structure for common types that are used to describe

“data objects”.

The major architectural model of IEC 61850 is that of “abstracting” so that the data

objects and services can be mapped to any protocol that can meet the data and

service requirements (Mackiewicz, 2006). By decoupling the data objects and

services from the underlying protocol, the IEC 61850 standard provides a future-proof

architecture that enables all the substation automation servers to behave in an

identical manner from the communication network point of view (Piirainen, 2010).

3.5. IEC 61850 – Substation Automation Future Proof ing

The IEC 61850 proposes a “future-proof” substation architecture that is capable of

providing interoperability between substation automation devices (Mohagheghi et al.,

2007).

Future proofing in the IEC 61850 standard is facilitated by:

i) Decoupling of the data objects and services from the underlying protocol. This

provides a physical separation between the slow growing Substation-Specific

Applications (SSA) from the fast advancing communication network

infrastructure. This separation is provided by the Abstract Communication

Services Interface (ACSI).

47

ii) Using a hierarchical naming convention instead of indexed addressing. The

IEC 61850 standard naming convention provides a more descriptive context

for the data (Mohagheghi et al. 2007).

iii) Defining a system configuration language that can be easily extendable and is

open for future data types and services.

These are discussed in more detail below.

3.5.1. IEC 61850 – Naming Convention

The IEC 61850 standard specifies a method for transforming the virtualized device

models into named variable objects with unique and unambiguous references. Fig.

3.9 below shows an example of the IEC 61850 object naming convention.

Figure 3.9: Anatomy of an IEC 61850 Object Name (Mackiewicz, 2006)

The IEC 61850 standard provides a framework for a hierarchical naming convention.

The naming convention references the named grouping of data and associated

services that are logically related to a substation automation function. In Fig. 3.9

Relay 1 refers to the logical device. The Logical device has a circuit-breaker object

that is linked to it, and is referenced by XCBR in Fig. 3.9. The circuit-breaker object

contains Data that belongs to a certain Functional Constraint and has a certain

Attribute.

By providing the possibility to create a naming hierarchy for functional names, the IEC

61850 standard allows the generic binding of all information in the IEDs to the

application (Brunner et al., 2012). In this way future-proofing for IEC 61850 substation

automation systems is provided, as generic logical nodes can be added. This allows

for extension of the IEC 61850 standard naming convention to other application

domains, the naming convention has already been used to accommodate the hydro-

electric industry, which did not form part of the original IEC 61850 SAS naming

convention. Additionally the IEC 61850 naming convention allows for the addition of a

suffix to Logical Node names, enabling identification of the Logical Node’s purpose.

48

3.5.1.1 Compatibility of the IEC 61850 naming conve ntion with other
International standards

IEC 61850 aligns and integrates well into smart grid philosophy. IEC 61850 is

structured after the Common Information Model (CIM) standards (IEC 61968 and IEC

61970). CIM is the general information model of utility-specific data and underlies the

information structures of most, if not all, IEC utility standards. IEC 61968 defines

standards for information exchanges between electrical distribution systems. The IEC

61970 defines standards for the application program interfaces for Energy

Management Systems (EMS)

3.5.2. Mapping to an actual protocol

The IEC 61850 standard has adopted a layered Open System Interconnect (OSI)

model for all substation automation needs. The adopted model has leveraged the use

of existing standard protocols in all layers up to layer 7 in the OSI reference model.

Fig. 3.10 shows the OSI model adopted by the IEC 61850 standard and the various

standards which were leveraged in the process.

Figure 3.10: IEC 61850 OSI model

The benefit of the model adopted by the IEC 61850 standard is that there is no new

protocol development required. The standard leverages and integrates internationally

recognized and standardized protocols. The layered protocol stack approach adopted

49

by the IEC 61850 standard provides a small set of specific services to the layer below

and the layer above, thus providing independence between the layers. As a result,

the functions of a specific layer can be modified without changing the overall structure

of the model. This is, provided that the services provided by the layer which is

modified, maintains its relationship to the layer above and below. The protocols

defined at each layer establish a peer-to-peer relationship with the corresponding

layer of the receiving device.

3.5.2.1 Interfaces and Services

Fig. 3.11 shows the hierarchical architecture model of the IEC 61850 standard and

the interfaces between the various components of an IEC 61850 substation

automation system. The interface functions have been elaborated on previously in

chapter 2. The hierarchical architecture depicts three levels on which substation

automation devices can be interfaced, namely:

� The station level,

� The bay level and

� The process level

The substation automation components at the same level or at different levels of the

hierarchy are then linked together by the various interfaces, using the communication

services/protocols defined in the standard. The station level, often referred to as the

“station bus” connects all of the Intelligent Electronic Devices (IEDs) communicating

with one another and to the Human Machine Interface (HMI) using interfaces 1,3,6,7

and 8.

Figure 3.11: IEC 61850 substation automation system interfaces (IEC 61850-1, 2004)

50

The IEC 61850 standard defines communication interfaces as shown in Fig. 3.11, to

support:

a) Publisher/Subscriber services, and

b) Client/Server services

These services are used to facilitate communication between IEC 61850 devices

using Manufacturing Messaging Specification (MMS) for client/server applications,

Generic Object Oriented Substation Events (GOOSE) messaging for fast peer-to-peer

communication between the publishing and subscribing device(s), and Sampled

Value (SV) messaging for measurement distribution.

IEDs communicate upstream to the HMI using the messaging services provided by

the Manufacture Message Specification (MMS) protocol through interface (7) in Fig.

3.11 above. Inter-IED communication is achieved through interface (8) using a

publisher/subscriber messaging system referred to as GOOSE. Interfaces 4 and 5

connect Process level or “process bus” equipment to the Bay level and vice versa.

The process level devices distribute power system information from switchyard

source-devices to the Bay Level, utilising a publisher/subscriber mechanism.

The IEC 61850-8-1 standard defines the mapping of the abstract objects and services

of process level, bay level and station level devices to the application layer. In

addition to mapping to the application layer, IEC 61850-8-1 defines profiles for the

data-link, networking, transport, session and the presentation layers of the

communication stack as shown in Fig. 3.12.

Figure 3.12: Overview of communication functionality and profiles (IEC 61850-8-1,

2004)

51

Fig. 3.12 shows the Specific Communication Services Mapping (SCSM) defined in

the IEC 61850 standard. GOOSE and Sampled Values applications map directly into

the Datalink layer (Layer 2) thereby eliminating additional processing of any middle

layers, whereas MMS uses all seven layers of the Open System Interconnect (OSI)

stack. All data maps onto an Ethernet link using either the data type “Ethertype” in the

case of Sampled Values (SV), GOOSE and Time Synchronization (TimeSync), or

using the Carrier Sense Multiple Access with Collision Detection (CSMA/CD) method

defined in “IEEE 802.3” for MMS and Generic Sub-Station Event (GSSE) messages.

Table 3.1 below compares the IEC 61850 layer 2 messaging systems, GOOSE and

Sampled Values.

Table 3-1: Comparison between GOOSE and Sampled Values

Comparison between GOOSE an d Sampled Values

 GOOSE Sampled Values

Reporting Event-based Non-event Based (Periodic)

Detection Loss Yes Yes (through VAR. Counter)

Re-transmission Yes No (Sequential)

Relation 1:n (Layer 2 Multicast) 1:n (Layer 2 Multicast)

Timelessness Yes (few milliseconds) Yes (few milliseconds)

Message

Priority
High High

Priority Tagging Yes Yes

Data Type

Maps on Layer 2

(Datalink) using

Ethertype

Maps on Layer 2 (Datalink) using

Ethertype

Message

content

encoding

ASN.1 BER ASN.1 BER

OSI layers

utilised

1,2 and 7 application

layer
1,2 and 7 application layer

Max. Message

Size
< 1500 octets < 1500 octets

Document IEC 61850-8-1 IEC 61850-9-2

Goose and Sampled value messaging systems are outlined in more detail in Sections

3.5.2.2 and 3.5.2.3 respectively.

52

3.5.2.2 GOOSE Messaging

GOOSE messaging refers to the time-critical messaging, which has been defined for

fast peer-to-peer communication between substation automation Intelligent Electronic

Devices (IEDs). GOOSE messages are generally used to transfer status information

between two or more devices, namely the publisher and the various subscribing

devices. They are transmitted as a multicast over Local Area Network (LAN). An

example of the Publisher/Subscriber mechanism used in the GOOSE message

exchange is illustrated in Fig. 3.13.

Figure 3.13: An example of the GOOSE Publisher-Subscriber mechanism (IEC

61850-7-2, 2004)

Fig. 3.13 gives an overview of the classes and services of the GOOSE model. The

publishing device (Publisher) comprises of logical correspondents of the physical

device. Each of these logical correspondents contains one or more Logical Nodes,

which contain some elements of data. The data is contained within a dataset that

groups various data attributes which belong to a specific functional constraint. A

change in the data contained within the dataset will result in the transmission buffer of

the publisher being updated with the local service “publish” and the values are

transmitted as a GOOSE message.

The GOOSE messages contain information that allows the receiving device to know

that a status has changed and the time of the last status change. The time of the last

status change allows a receiving device to set local timers relating to a given event.

GOOSE is an event-driven, fast, connection-less communication service. GOOSE

security is achieved by the repetition of messages a number of times as shown in Fig.

3.14.

53

Figure 3.14: GOOSE message transmission time (IEC 61850-8-1, 2004)

The Quality of Service (QoS) specified within the IEC 61850 requires the repetition of

GOOSE messages a number of times to achieve higher reliability. A device newly

connected to the network shall send current status values as its initial GOOSE

message. Moreover, all devices sending GOOSE messages shall continue to send

messages between each other with a long cycle time, even if no status value change

has occurred as shown in Fig. 3.14 (T0). This ensures that devices that have been

connected recently will know the current status values of their peer devices.

GOOSE re-transmission may be shortened by an event. A status value change in the

data contained within the dataset will result in an event, and a GOOSE message

being published repeatedly a number of times with a short cycle time Fig. 3.14 (T1).

The duration of the cycle will gradually increase, until the pre-event status has been

reached, as shown in Fig 3.14 (T2, T3 and T0).

From a practical perspective, this means that a specific GOOSE control block

(GOCB) has to be configured for each GOOSE message. The GOOSE control block

includes the information which a dataset needs for transmission and information that

can be used for the GOOSE validation on the subscribing device.

The GOOSE control block specifies information such as the GOOSE control block

name, GOOSE control block reference, GOOSE enable and the various services that

enable the transmission of a GOOSE message, as shown in Figure 3.15: GOOSE

Control Block Class.

54

Figure 3.15: GOOSE Control Block Class (IEC 61850-7-2, 2004)

GOOSE messaging has been discussed above, and sampled value messaging at the

process level is discussed in more detail in the section below.

3.5.2.3 Process Level

The Process level often referred to as the process-bus, is defined in the IEC 61850-9-

2 standard for gathering information, such as Voltage and Current, from the

transducers connected to the primary power system equipment as shown in Fig. 3.11.

The quantities are then digitized at the source by a device referred to as a “Merging

Unit” and the resulting sampled values are generated and published onto the data

network.

The Merging Unit at the process level receives a time-coherent set of samples of

three phase voltages, three phase current and neutral values of both voltage and

current. The values are then converted to digital values as shown in Fig 3.16.

Figure 3.16: Merging unit and Sampled Value exchange (IEC 61850-7-1 2004)

55

The merging unit encodes the digitized values, packages the information into a

“configurable” dataset that can be communicated through a multi-cast/Uni-cast

transmission onto the process level (IEC 61850, 2003).

With reference to Fig. 3.16 above, the logical nodes involved in the acquisition of

measured data are TVTR and TCTR for voltage and current respectively. Four

instances of the TCTR and TVTR logical nodes are shown in Fig. 3.16 because

measurements representing primary equipment is typically done via a single phase

representation, therefore the need for four instances of the logical nodes TCTR or

TVTR representing the three phases and neutral phase are required (Brunner et al.,

2005).

Each of the logical nodes shown in Fig. 3.16 in essence can be thought of as an

object with both attributes and operations. These objects are an instance of a class,

which describes the properties and behaviour of the objects. So for every object type,

there needs to be a defined class model. The IEC 61850-7 standard specifies the

general definition of such a class model, the logical node class model. The detail of

these classes defining the logical nodes is shown in Fig. 3.17 and Fig. 3.18 below.

Figure 3.17: TCTR logical node class (IEC 61850-7-4, 2004)

Figure 3.18: TVTR logical node class (IEC 61850-7-4, 2004)

56

Sampled Values from these logical nodes are then transmitted as primary current

values. This means that the transformer ratio and the correction factors are of no

interest for the transmitted samples, but can be added as optional parameters within

the logical node for maintenance purposes. In addition, status information and

optional parameters/settings can be added to the logical nodes (TCTR and TVTR).

The abstract sampled value format used for the sampled value message defined in

part 7 of the IEC 61850 standard is shown in Fig. 3.19.

Figure 3.19: Sampled value format (IEC 61850-7-2, 2004)

The model for transmitting sampled values is covered in IEC 61850-7-2. The model

applies to the exchange of values of a data set. The data contained within the data

set is of the common data class SAV (IEC 61850-7-3, 2003) and shown in Fig. 3.20.

Figure 3.20: Sampled value model (IEC 61850-7-3, 2004)

3.5.2.3.1 Sampled Value Messaging

Sampled Value (SV) messages are related to measurement distribution as stated in

the IEC 61850 standard. They are transferred between the bay and process levels.

57

The transmission of sampled values is time constraints. The IEC 61850 model

provides transmission of sampled values in an organized and time controlled manner

so that the combined jitter of sampling and transmission is minimized to a degree that

an explicit allocation of the samples, times, and sequence is provided. Figure 3.21:

Sampled message transmission timevalues.

Figure 3.21: Sampled message transmission time

SV messages are time critical messages that are communicated periodically between

two or more devices in a chronological manner as shown in Fig. 3.21. These

messages can be sent as multicast to several receivers. Fig. 3.22 below shows the

Sampled Values Control classes and the services that should be supported by a

device publishing or a device subscribing to sampled values.

Figure 3.22: Sampled Value Control classes and services (IEC 61850-7-2, 2004)

The Sample Value information exchange is based on a publisher/subscriber

mechanism. The publisher writes the values in a local buffer at the sending side and

58

the subscriber reads the values from a local buffer at the receiving side. The

sampled value count is added as the time stamp, so that the subscriber can verify the

timeliness of the values.

The Sampled Value Control (SVC) block shown in Fig. 3.23 below and the Sampled

Value services as detailed in Fig. 3.24 are used by the publisher and the subscriber

to control the communication process.

Figure 3.23: Multicast SV Control Block Model (IEC 61850-7-2, 2004)

Figure 3.24: Multicast SV services (IEC 61850-7-2, 2004)

3.5.2.3.2 Sampled value frame format

To provide a better understanding of sampled value messages an examination into

the sampled value message structure is conducted in this section. The IEC 8802-3

sampled value frame structure shown in Fig. 3.25 below and the various fields that

comprise this SV structure are discussed.

59

Figure 3.25: ISO/IEC 8802-3 frame format (IEC 61850-9-2, 2004)

The ISO/IEC 8802-3 frame format shown in Fig. 3.25 consists of a Preamble, which

consists of seven octet streams of alternating 1’s and 0’s that allows the Ethernet

card to synchronize. The preamble is followed by the Start Frame Delimiter which is a

sequence of alternating bits (10101011) (Apostolov, 2006), indicating the start of a

frame. This is followed by the Media Access Control (MAC) source and destination

addresses, the Virtual Local Area Network (VLAN) Identifier, the Application Protocol

Identifier and the Application Protocol Data Unit (APDU). The various fields that

collectively form the ISO/IEC 8802-3 frame are described in detail in the following

sections.

3.5.2.3.2.1 Media Access Control

Media Access Control (MAC) addresses are unique address assigned to network

interface cards for communications on the physical network. The MAC address is

typically assigned by the manufacturer of a Network Interface Card (NIC) and is

shown in Fig. 3.26.

60

Figure 3.26: ISO/IEC 8802-3 source MAC address format

The assigned multicast/unicast address assignment should however be within the

standard range for sampled value messages (Annex C of IEC 61820-9-2, 2003). The

sampled value address range specified in the standard is shown in Fig. 3.27.

Figure 3.27: Multicast address within IEC 61850 (IEC 61850-9-2, 2004)

The first three bytes are assigned by the Institute of Electrical and Electronic

Engineers (IEEE) as 01-0C-CD. The fourth byte defines the publishing mechanism

Multicast or unicast sampled values. The last two octets are individual assigned

addresses.

3.5.2.3.2.2 Virtual local Area Network (VLAN)

The 802.1Q VLAN tag is a 32-bit field added between the destination/source address

and the EtherType fields of the original frame or the IEEE 802.3 frame - allowing

priority tagging and protocol identification as shown in Fig. 3.28.

61

Figure 3.28: Tagged IEEE 802.3 MAC frame format (IEEE802.1Q, 2005)

Two bytes within the VLAN field are used for the Tag Protocol Identifier (TPID), the

other two bytes for tag control information (TCI). The TCI field is further divided into

User priority, Canonical Format Identifier (CFI), and VLAN identifier (ID) as shown in

Fig. 3.29.

Figure 3.29: Sampled Value VLAN specification in the IEC 61850-9-2

The Tag Protocol Identifier (TPID) is a 16 bit field to identify the frame as an IEEE

802.1Q tagged frame. When set to 0x8100 it identifies the frame as an IEEE 802.1Q

frame (IEEE802.1Q, 2005).

Tag Control Identifier (TCI) represents the user assigned priority. TCI is generally

used to separate time critical and high priority bus traffic for protection-relevant

applications from low priority busload. User priority is a 3‐bit field indicating the frame

priority level (IEEE802.1Q, 2005), with 7 representing the highest priority and 1

representing the lowest priority (The default value for SV = 4).

Canonical Format Indicator (CFI) is a 1-bit field. CFI bit specifies the method utilised

for the ordering of bits within a frame. CFI is used for compatibility between Ethernet

62

and Token Ring technologies. If the value of this field is 1, the MAC address is in non-

canonical format. If the value is 0, the MAC address is in canonical format, meaning

the tag does not contain an Embedded Routing Information Field (IEEE 802.1Q,

2005)

The VLAN Identifier (VID) is a 12-bit field specifying the VLAN to which the frame

belongs. The hexadecimal values of 0x000 and 0xFFF are reserved, all other values

may be used as VLAN identifiers, allowing up to 4,094 VLANs.

3.5.2.3.2.3 Ethertype

Ethertype is a two-octet field in an Ethernet frame. It is used to indicate which

protocol is encapsulated in the Payload of an Ethernet Frame. Ethertype numbering

generally starts from 0x0800. Ethertypes based on ISO/IEC 8802-3 MAC address

sub-layer is registered with the IEEE. The IEC 61850 registered Ethertypes are listed

in Fig. 3.30.

Figure 3.30: IEC 61850 Ether-types based on ISP/IEC 8802-3 (IEC 61850-9-2)

3.5.2.3.2.4 Application identifier (APPID)

APPID is a two-octet field in an Ethernet frame that identifies the network information

propagating on a particular network, this is set to 0x4000 for SV messages.

3.5.2.3.2.5 SV Protocol data unit

An example of the SV Protocol Data Unit (PDU) can be found in the IEC 61850-9-2

standard and is shown in Fig. 3.31. The SV PDU consists of one or more Application

Service Data Units (ASDUs), a Sampled Value Identifier (svID), Sample Count

(smpCnt) and a dataset containing the three-phase and neutral value current and

voltage measurements as shown in Fig. 3.31.

63

Figure 3.31: Example of a Sampled Value Protocol Data Unit (IEC 61850-9-2, 2004)

In Fig. 3.31 the Abstract Syntax Notation One (ASN.1) is generally used as padding

for the various fields within the Protocol Data Unit (PDU). ASN.1 is a set of rules for

representing OSI objects as strings of 1’s and 0’s. This allows one to define a variety

of data types, such as integers, sets, bit strings, and sequences. The main encoding

principles for SV messages as discussed in 61850-9-2, is an adapted version of

ANS.1 tags for MMS. An example of the tag structure is shown in Fig. 3.32.

Figure 3.32: Format of ASN.1 tags (Falk, H. and Burns, 1996)

The TAG byte has several sub-fields designated. Bits 7 and 6 define the tag type, bit

5 defines whether the tag is primitive or constructed, and Bits 0-4 represents the tag

value. The LENGTH has a simple and extended form. If the length of the data is less

than 128 bytes, the LENGTH is equal to the number of bytes. However, if the length

of the data is greater than or equal to 128 bytes, the LENGTH is encoded as several

bytes. The DATA portion of the production contains the actual information to be

exchanged. The content is described by the TAG, discussed above, and can consist

of primitive types and constructed types. An example of the SV PDU is shown in Fig.

3.33 below.

64

Figure 3.33: Example of Sampled Value’s ANS.1 tags

The example shows the order in which each element must appear within the SV PDU

according to IEC 61850-9-2 and the implementation guideline IEC 61850-9-2 LE.

This section highlighted the future proofing mechanisms incorporated into the IEC

61850 standard. The specification of the tools and processes for easing the

engineering of substation automation systems are presented in section 3.6 below.

3.6. IEC 61850 System Engineering

In traditional substation systems, IEDs are typically configured using the vendor’s

native IED Configurator. IED Configurators are manufacturer-specific tools that can

be used to import or export files to a specific device, such as IED settings and

generally the device’s configuration file. IED configuration tools are supplied by the

IED vendors.

The IEC 61850 standard differentiates between IED configuration tools and system

engineering/configuration tools. The role of the IED configuration tools has not

changed and is primarily related to everything that is specific for the IED. System

engineering tools are defined in the IEC 61850 standard as tools that “shall be used

to configure everything that is needed to define the interaction between the different

IEDs to fulfil the system functionality” (IEC 61850-6, 2004).

65

The main drivers with IEC 61850 system engineering are (Brunner et al., 2011):

� To reduce engineering time of substation automation systems

� To provide power utilities independence from vendors by introducing the

possibility of vendor-independent engineering tools.

The IEC 61850-6 achieves its objectives by stating that vendor IEDs compliant with

the IEC 61850 series shall, “be accompanied either by a Substation Configuration

description Language (SCL) file describing its capabilities, or by a tool, which can

generate this file from the IED”. This file is referred to as the IED Capability

Description (ICD) file. The ICD file describes the IED’s capabilities i.e. the functions

and data models supported within the IED. ICD files are used for data exchange from

the IED configuration tools to the system configuration (Apostolov, 2010).

The system configuration is assembled based on a System Specification Description

(SSD) and the IED Capability Description files (Brunner et al., 2011). The system

configuration tool is used to configure the entire substation automation system. The

result is the Substation Configuration Description (SCD) file that is then used for the

IED configuration tools to create the configuration download.

IEC 61850-6, 2004 specifies a configuration file format for IEC 61850 substation

automation systems. The configuration file format describes communication

parameters, IED setting, primary plant structures and the relations between these

functions. The specified configuration file format is often referred to as Substation

Configuration description Language (SCL).

The SCL is used in the IEC 61850 standard to model substation automation systems

in Extensible Markup Language (XML) version 1.0, according to IEC 61850-5 and

IEC 61850-7.

The model used in the SCL is based on the Unified Modelling Language

(UML) and was intended to define (IEC 61850-6, 2004):

[1] SAS functional specification

[2] IED capability description

[3] SA system description

The motivation for the development of SCL is to aid/ease the process of SAS

engineering, SAS communication engineering and to provide a means of describing

66

SA engineered systems in a standardised manner. The SCL object model defined in

the IEC 61850-6, 2004 is shown in Fig. 3.34 below.

Figure 3.34: SCL Object model (IEC 61850-6, 2004)

The UML SCL object model that is restricted to the object types that are used within a

SCL instance file is shown in Fig. 3.34. The object model has three basic parts,

namely Substation, Product and Communication that can be described by the four

different SCL file types (IEC SCL summary, 2006). The four SCL file types are:

� System Specification Description (SSD) – power system functions

� Substation Configuration Description (SCD) – complete substation

� IED Capability Description (ICD) – the capability of a specific IED

� Configured IED Description(CID) – the configuration of a specific IED

The four SCL files have five sections per file as shown in Table 3.2.

Table 3-2: SCL File Types and Sections (IEC SCL summary, 2006)

67

Through the four configuration files and the file types catalogued in Table 3.2, the

SCL specifies a hierarchy of configuration files allowing various system engineering

levels. IEC 61850 SCL also allows users the ability to compile engineering files

(online and offline), as well as provide a means for IED configuration to be passed

between Engineering Application systems. Fig. 3.35 shows an example of an IEC

61850 configuration system.

Figure 3.35: IEC 61850 System configuration (IEC SCL summary, 2006)

This section discussed the role of standardized file formats and system engineering

tools as a means to optimize and enhance the design, scalability and maintainability

of IEC 61850-based substation automation systems.

The next section, section 3.7 examines network topologies as one of the critical items

to be considered when designing IEC 61850, Ethernet-based substation automation

systems. The network integrity and hence the topology deployed takes additional

importance when dealing with the process level in IEC 61850 - this is due to the

additional network traffic loading imposed by the time synchronization systems

required by the Merging Unit.

3.7. Substation automation network topology

The networking requirements for substation automation systems to support the

protocols in Fig. 3.10 are also specified in the IEC 61850 standard. To meet the

networking requirements as specified in IEC 61850-3, 2004 and to ensure overall

system integrity, the network topology has to be carefully designed to minimize

system down-time.

The IEC 61850 standard does not define a network topology. The network topology

has to be decided upon by the engineering team to meet the performance and

reliability criteria specified by the IEC 61850 standard - taking into account the

68

operating conditions and high levels of Electromagnetic Interference (EMI) that

characterize the substation environment (Chen, 2008).

A star network topology is often shown when illustrating the implementation of IEC

61850-based systems. However, various other topologies such as ring and dual

networks can be deployed in substation automation systems to provide redundancy

for critical systems. The topology deployment takes additional importance when

dealing with measurement distribution in substation automation systems, due to the

additional network loading. Fig. 3.36 shows basic communication networks.

Figure 3.36: Basic network architectures (Midence, 2009)

It is only the interfaces (see Fig. 3.11) that are specified in the IEC 61850 standard,

but it should be noted that any of the network topologies shown in Fig. 3.36 can be

used for the implementation of IEC 61850 substation automation systems. The trade-

off between building a simple star network and redundant networks is often the

additional cost and complexity associated with building redundant network.

Ring and dual ring network topologies need managed data network switches and

management protocols such as Spanning Tree (STP), Rapid Spanning Tree (RSTP)

or Multi-Spanning Tree (MSTP). The Ring network topology shown in Fig. 3.37 is in

most cases the preferred choice for substation automation systems due to its

flexibility, lower overheads, and ease of installation (Nordell, 2008).

69

Figure 3.37: Illustration of ring network topology using RSTP (Midence, 2009)

A ring topology can be implemented using spanning tree protocol (STP) as per the

IEEE 802.1D specification or rapid spanning tree protocol (RSTP) as per IEEE

802.1W specification.

The main difference between STP and RSTP is that in RSTP the STP ports, where

the listening, blocking or discarding of packets all learn the MAC addresses of the of

the adjacent switch, making recovery time on RTSP slightly faster than on STP -

where the switch will only start to respond when it receives a message from the root

bridge. Generally the network recovery time when using STP or RSTP is between 1

and 60 seconds (Chen, 2008).

A delay of 60 seconds can cause serious problems for complex substation

automation systems and the root bridge is typically a single point of failure in ring

networks. Fig. 3.38 shows dual redundant networks with a redundant link to the

central control room and backup for the root bridge. The IED devices shown in Fig.

3.38 could be protection devices, merging units or any substation automation device.

70

Figure 3.38: Dual homing in a substation automation system (Station bus and

Process bus sharing the same LAN).

In Fig. 3.38 a failure of any connection or switch in the ring will not cause a disruption

in network communication, the redundant ring immediately restores network

communication, and the system runs without interruption. This topology is often

referred to as one of high availability due to the added redundancy in the topology. A

closer look at the topology shows that the topology is comprised of multiple ring

subsets.

There are various other topologies that can be explored, the trade-off is often the fact

that very large rings can be difficult and expensive to manage or install, especially

over great distances. In addition, network recovery times increase with the size of the

ring and it is often more effective to establish a number of smaller rings based on

location and system architecture. These are all key factors that have to be considered

when designing the network architecture of substation automation systems.

71

3.8. Conclusion

In this chapter an overview of the IEC 61850 standard is covered. The various

aspects that have been investigated to facilitate a better understanding of IEC 61850

substation automation systems have been discussed.

The mechanisms and processes in the IEC 61850 standard have all been detailed in

support of the main concepts driving the standard, namely:

a) The provision of a virtualized substation automation framework for all

substation automation devices.

b) The provision of a future-proof substation automation framework that is

flexible, scalable, maintainable, and provides interoperability between

substation automation devices.

c) The specification of the tools and processes for easing the engineering of

substation automation systems.

It is felt that the knowledge-base required has been developed through this chapter

and is sufficient to support the development of the proposed research project, i.e. the

development of a virtual sensor node based on the IEC 61850 standard.

The chapter to follow details the project outline and context.

72

CHAPTER 4

Project outline and context

4.1. Introduction

The technology introduced by the IEC 61850 standard has presented a paradigm

shift in protection and control systems within the electricity delivery industry. IEC

61850 compliant devices are widely available and are slowly being deployed in

industry. These devices however are mainly for station level applications at present.

The knowledge base in the academic environment and the devices to accommodate

the process bus paradigm are still limited (even in the industrial environment). The

limited development of devices to accommodate the process-bus paradigm prompted

the UCA user group to publish an implementation guideline document “IEC 61850-9-

2LE” in 2004 (Schaub and Kenwrick, 2009).

The IEC61850-9-2 standard describes the framework for the general design of

merging units (Weiss et al., 2011). This document, however allows developers

significant leeway which has led to a variety of implementations, with consequent

problems with regards to interoperability between different vendor’s devices. An

implementation guideline “IEC 61850-9-2LE” was published by the UCA International

user Group, to facilitate the uniform implementation and interoperability of devices

utilizing sampled values. The IEC 61850-9-2LE implementation guideline document

specifies a fixed dataset containing four current and four voltage measurements (IEC

61850-9-2LE page 7). The IEC 61850-9-2LE document also specifies fixed sampling

rates of 80 samples per cycle for protection applications and 256 samples per cycle

for metering applications (IEC 61850-9-2LE page 9). The concepts discussed in the

implementation guideline document are further elaborated later on in this chapter.

Since the publication of the implementation guideline document, there has been

several pilot projects implemented that support the proposed IEC 61850-9-2 interface

convention (Schaub and Kenwrick, 2009). However, there are still only a few

substation automation devices available on the market which provides IEC 61850-9-

2LE interface connectivity.

The few devices that are available on the market are vendor based. There is limited

knowledge in the public domain about the devices that can be used to simulate the

process-bus concept of sampled value messaging. This chapter explores the

73

capabilities of personal computer-based platforms as a means to simulate sampled

value messages.

The chapter is structured into seven sections. This section (4.1) is the introduction.

Section 4.2 provides the project context and outlines the hierarchical structure

defined in the IEC 61850 standard. In section 4.3 the merging unit as the device

demarcated for distribution of measurements between the process and the bay levels

in IEC 61850 systems is discussed, and the detailed structure of merging unit devices

is outlined, with comments on its functional and temporal behaviour as per the

standard. In section 4.4 the research project is described and the delimitation and

scope stated. Section 4.5 addresses the issues of development tools and

development platforms which were used. Section 4.6 addresses the challenges that

needed to be overcome with respect to data networking at the datalink layer level.

Section 4.7 concludes on what has been discussed in this chapter and states what

will be discussed in the next chapter.

4.2. Project context

The IEC 61850 standard specifies the use of a hierarchal architecture for data

modelling and for interfacing between substation devices, as depicted in Fig. 4.1

below.

 Figure 4.1a: Hierarchical model as
specified in the IEC 61850 standard
(IEC 61850, 2003)

Figure 4.1b: An implementation
architecture for IEC 61850
communications (Brunner et al.,
2007)

74

The interfaces defined in the IEC 61850 standard when implemented, manifests as

the station and process busses respectively - as shown in Fig. 4.1b. Interfaces four

(IF4) and five (IF5) in Fig. 4.1a are defined in the IEC 61850-5 standard for interfacing

the process level to the bay level. IF4: Current Transformer (CT) and Voltage

Transformer (VT) instantaneous data exchange (including sampled values) between

process and bay level; and IF5: control-data exchange between process and bay

level.

Interface five (IF5) in Fig. 4.1a is used for GOOSE messaging carrying control data

exchange messages between bay level and process level devices (Sidhu et al.,

2008). GOOSE messaging refers to the time-critical messaging, which has been

defined for fast peer-to-peer communication between substation automation

Intelligent Electronic Devices (IEDs). GOOSE messages are generally used to

transfer status information between two or more devices (Sidhu et al., 2008).

GOOSE messaging as discussed earlier in section 3.5.2.2 is event-based. The

current implementation of the IEC 61850 standard in industry is however not through

this interface, i.e. IF5.

Figs. 4.2a and b depicts the current deployment of the IEC 61850 standard in industry

(within South Africa and internationally). Notable in Fig. 4.2 is that the primary plant

equipment is hardwired to the bay level devices. GOOSE message exchange only

occurs at the bay and station levels, through interfaces 1, 3, 6, 8 and 9, as shown in

Fig. 4.1a (All interfaces are discussed in chapter 2). The current deployment of the

IEC 61850 standard does not provide connectivity to primary plant equipment

through interfaces 4 and 5. The disadvantage of this deployment architecture is that

there are no raw measurements distributed from the process level to the bay level.

Figure 4.2a: IEC 61850 current

deployment architecture

(Kezunovic, 2004)

 Figure 4.2b: IEC 61850 current

deployment communication

architecture

75

[Note: The “Bus” in Fig. 4.2a refers to voltage busbar and not a data network]

[Note : The Skaapvlei Wind Farm in the Vredendal (South Africa) is an example of a

current implementation within South Africa. The author of the document was part of

the team (Buffkins, R., Tshisevhe, H. and Luwaca. E), that designed and

commissioned a bus-protection scheme using GOOSE messaging, and the deployed

architecture is as depicted in Fig. 4.2b.]

The Future IEC 61850 deployment architecture is depicted in Fig. 4.3 and IF4 and IF5

is provisioned for. The introduction of the future architecture will introduce a paradigm

shift in the industry, as both GOOSE and raw measurements will be available from

the process level through interfaces 4 and 5 respectively. Note : In Fig. 4.3 the traffic

at the process level is segregated with the use of a Virtual Local Area Network

(VLAN). The blue lines represent the sampled values VLAN and the brown lines

represent the GOOSE VLAN.

Figure 4.3: IEC 61850 future deployment architecture

Interface five (IF5) is defined in the IEC 61850-5 standard for sampled value

measurement distribution from the process level to bay level devices. Sampled value

messaging as discussed in chapter three, section 3.5.2.3.1 is related to periodic

measurements that are distributed between the process level and the bay level. The

current implementation of the IEC 61850 standard in industry does not include the

process bus. In Fig. 4.2a, above the primary plant equipment is hardwired to the

protection devices. The process bus concept is not applied.

76

The previous paragraphs attempted to state what the current status quo is – that

GOOSE messaging is predominant and that the process bus concept has not even

begun to come to fruition. The paragraphs to come outlines examples of how the IEC

61850 process bus concept is to be deployed in future for not only GOOSE

messaging, but also inclusive of measurement distribution through sampled value

messaging. This scenario is depicted in Fig.4.4 below.

Figure 4.4: Process bus concept (Andersson et al., 2003)

In Fig. 4.4 above, the sensor node demarcated for measurement distribution is

highlighted (red dashed line). This sensor node is widely referred to as the Merging

Unit. Merging units are specified in the IEC 61850 standard as a means to interface

to conventional and non-conventional instrument transformers. The advantages of

merging unit deployment are (Kanabar, 2011):

� Raw, unprocessed measurement values: the sampling rate and distribution

rate for the data acquisition node defined in the IEC 61850 standard is

sufficient for power system devices requiring raw measurements.

� Support for both Unicast and Multicast published measurements.

� Substation automation systems are not only based on substation events, but

on actual raw measurements.

� Presents a standardized interface to non-conventional instrument

transformers.

� Improving the performance in systems with conventional transformers: the A/D

conversion is done close to the source and much of the burden of processing

can be removed from the bay level devices.

� Reduced wiring and reduced cabling costs.

77

Merging Units can also be used in other applications within the substation automation

environment. The deployment of IEC 61850-9-2 Merging Units can be used to

replace currently deployed stand-alone Phasor Measurement Units (PMUs)

(Abdolkhalig et al., 2013) and can provide a solution for power quality measurements,

such as harmonic measurements (Tholomier and Chatrefou, 2008).

An example of how measurement distribution can be accomplished using merging

units is shown in Fig. 4.5 – in this example, both a sampled value transmitter and

receiver are shown, accomplishing through processing of the stream of data what

would currently be accomplished through event-driven GOOSE messaging. GOOSE

messaging works exceedingly well for the tasks that it has been designed for, but

there are other tasks over and above those associated with GOOSE messaging

which would be better accomplished through processing of raw data streams.

Figure 4.5: IEC 61850-9 -2 Sampled Values based IED (Apostolov et al., 2006)

.
The function of a Merging Unit is to receive analogue measurements from the plant,

digitize the analogue values, encode, and publish the raw data in a sampled value

format onto the process-bus as shown in Fig. 4.5. The detailed structure of a merging

unit is described in the next section.

4.3.1. Detail and structure of a merging unit

Figure 4.6 below describes the general structure of a merging unit. For a full

implementation, once the three current and voltages together with their associated

neutrals from the instrument transformer are coupled into the merging unit - the main

components for subsequent processing and packaging consists of four major

functional blocks (Weiss et al., 2011), namely:

� Signal conditioning unit and filtering

78

� The Analogue to Digital Converter (ADC)

� Time synchronization module

� Processing and computing unit (shown as Digital Signal Processing Unit in

Fig. 4.6.)

Figure 4.6: Concept of merging unit (Apostolov and Janssen, 2008)

As shown in Fig. 4.6 a Merging Unit receives analogue inputs signals from current

and voltage transformers. The received analogue input signals are then amplified,

filtered using anti-aliasing filters, and passed onto an analogue to digital conversion

system. The received data on the analogue to digital converters is then digitized and

accurately time stamped using the Global Positioning System (GPS) or some other

precision time synchronization mechanism. Finally the digitized values are then

processed, encoded, packaged into an IEEE 802.1Q frame in a manner that is

compliant with the IEC 61850-9-2 part of the standard, with the appropriate VLAN tag,

and ASN.1 tagging and published onto the process bus.

The four major functional blocks mentioned in the paragraph above are further

elaborated upon in the section to follow.

4.3.2. Signal conditioning and filtering

Current and voltage transformers are primary-plant devices. They are typically

installed outdoors in the high voltage yard, and are typically subjected to significant

sources of noise. The 3-phase (3Ɵ) current and voltage + 1 neutral current and

voltage analogue signals received from these devices generally need to be

conditioned and filtered using anti-aliasing filters before being inputted into the

Analogue to Digital Converter (ADC). The aim of the anti-aliasing filters is to limit

certain frequencies and harmonic interference, so that the downstream processing

and computations can take place appropriately. The conditioned and filtered signals

79

are then captured and converted by the analogue-to-digital converters - see Fig. 4.7

below and elaborated upon in the following section.

Figure 4.7: Analogue to Digital conversion in IEC 61850 “MU”

(Apostolov and Janssen, 2008)

4.3.3. Analogue to digital converter

The analogue signal received from the signal conditioning and filtering unit must be

converted into digital data that can be processed to obtain magnitudes of the three

phase currents and voltages + the neutral currents and voltages. The current release

of the IEC 61850-9-2, 2004 does however not define the sampling rate and resolution

of the Analogue to Digital Converter (ADC) with any great detail, nor does it define

the signal conditioning unit discussed above. This has presented a challenge with the

standardized implementation of merging units, and also with ensuring interoperability

between developed merging units and bay-level devices. The UCA user grouper has

since addressed this issue by releasing the IEC 61850-9-2LE implementation

guideline. Appendix C on pages 20 and 21 of the implementation guideline document

(IEC 61850-9-2LE) specifies the accuracy requirement. Table 3 on page 9 of the IEC

61850-9-2LE document defines two sampling rates, one for protection applications

and a second for metering applications. A sampling rate of 80 samples/cycle for

protection applications, and a sampling rate of 256 samples/cycle metering and

quality measurement data is suggested, as depicted in Figure 4.8 (see blue box).

80

Figure 4.8: Multicast sampled value control block (IEC 61850-9-2)

The IEC 61850-9-2LE implementation guideline (pages 22 through 24) requires a

specified resolution for the measurement of the currents and voltages and to

accommodate the dynamic range requirements. This measurement resolution, which

is required translates to the number of bits on the analogue-to-digital converter for the

measurement of a particular rating of current or voltage, i.e. for a particular rated

current or voltage, a particular bit-size is required for the ADC (fault current levels

also need to be taken into account). A manufacturer would then have to produce a

merging unit with a particular rated voltage or current in mind. See Appendices E and

F for further information. The implementation by most vendors that have developed

merging units at the present moment does not cater for all practical cases. Table 4.1

below shows the current implementation by two of the vendors that have commercial

merging unit devices on the market.

Table 4-1: Analogue to Digital Converter (ADC) resolution from two commercial units

SPECIFICATION

ALSTOM

(MU Agile AMU)

VIZIMAX

(AMU)

ADC resolution 24 bit 16 bit

4.3.4. Time Synchronization

The IEC 61850-5 on page 48 specifies that time synchronization used to synchronize

the internal clock of an IED in a substation automation system is dependent on the

application used. The standard IED synchronization and accuracy requirements are

specified in clause 13.7.6.2 as depicted in Table 4.2 below.

81

Table 4-2: IEC 61850-9-2 Time synchronization specification for MU

The IEC 61850-9-2LE implementation guideline document specifies the time

performance class T4 (orange box) on table 4.2 above (IEC 61850-9-2LE). T4 allows

for ± 4 µs error, and of the ± 4 µs, IEC 61850-9-2LE document allocates ± 2 µs jitter

to the merging unit. The merging unit itself has to be synchronized from a time source

with better than ± 1 µs accuracy, as shown in Fig. 4.9

Figure 4.9: Definition of the maximum clock jitter and rise time at the merging unit

clock input (IEC 61850-9-2LE)

The IEC 61850-9-2LE document on page 11 recommends the use of a Global

Positioning System (GPS) clock for time synchronization. The issue of time

synchronization has been an intensive area of research studies of late, as indicated in

the literature search in chapter 2; with the IEEE 1588 Precision Time Protocol version

2 (PTPv2) proposed for time synchronization in substation automation systems and

specifically for merging units (Ingram et al., 2012).

4.3.5. Processing and computing unit

All digitized signals from the merging unit are then processed in the merging unit

logical nodes by the process and computing unit highlighted in green in Fig. 4.10

below.

82

Figure 4.10: Processing and computation, conversion in IEC 61850 “MU”

(Apostolov and Janssen, 2008)

The logical nodes used in the merging unit logical device are defined in the IEC

61850-7-4, 2004 page 61 as TCTR for current transformers and TVTR for voltage

transformers on page 62. The IEC 61850-7-4 standard is referenced in the IEC

61850-9-2LE document, and the Merging Unit logical device instance is defined on

page 7 of the IEC 61850-9-2LE document as depicted in Fig. 4.11 below.

Figure 4.11: Logical device instance “MU” (IEC 61850-9-2LE)

Four instances (3Ɵ + 1 neutral) of each the current (TCTR) and voltage (TVTR)

logical nodes are required (mandatory requirement) within a logical device merging

unit. This is due to the fact that primary equipment is typically done via a single

phase representation. As part of the processing and computation, the data contained

within the logical node has to be packaged into a dataset, encoded and published at

the Datalink layer. The IEC 61850-9-2LE standard defines a fixed data set for the

transmission of sampled values as shown in Fig. 4.12.

83

Figure 4.12: PhsMeas1 dataset (IEC 61850-9-2LE)

The fixed data set is then encoded and packaged into the sample value frame

structure, with the suitable source and destination address, VLAN tag, Application

protocol data unit and Abstract Syntax Notation (ASN.1) tagged Application Protocol

Data Unit (APDU). The sampled value frame structure is discussed in detail in

chapter 5 section 5.3. The generated sampled value message is then published at

the Datalink layer, every 250µs for a 50Hz system.

4.3. Research project description and scope

In section 4.3 the complete merging unit device is discussed and ideally what needs

to be designed and integrated for the full real-time implementation of a merging unit.

The scope of this research project however is a delimited subset of the complete set

of functionalities of a merging unit.

At the present moment there are only a limited number of suppliers who have

successfully implemented devices that publish sampled values in a format compliant

with IEC 61850-9-2LE guideline, and this has been mainly in vendor-based devices.

The limited number of IEC 61850-9-2LE devices in the market has resulted in quite a

few research projects being initiated in research facilities around the globe. This

research project investigates the development of a sensor node on a PC platform that

can be used to simulate the publishing of sampled values. The intent of this project is

to provide the building blocks for a future real-time, with real data implementation of a

sensor node that is compliant with IEC 61850-9-2LE.

This project seeks to build the foundation for the creation of a virtual sensor node, to

contribute to, and assist with the understanding of the process-bus concepts in an

education environment. “Virtual” meaning that a PC based program will be simulating

the sensor node and the sensor node is not actually implemented. The virtualised

sensor node represents a limited functional implementation of the merging unit that

Fixed

dataset

84

will represent a virtualised data acquisition node capable of synthetic generation of

waveforms through synthesis data generation, encoding of the data and transmitting

the data in a format compliant with the IEC 61850 protocol.

The role of this project in an academic environment is to build the knowledge base

required to assist with the understanding of the functioning and implementation and to

lay the groundwork for a future real-time implementation.

Fig. 4.13a below represents a full implementation of a merging unit as specified by

the standard. For a full implementation, once the three current and voltages together

with their associated neutrals from the instrument transformer are coupled into the

merging unit - the main components for subsequent processing and packaging are:

� Signal conditioning unit and anti-aliasing filters

� The Analogue to Digital Converter (ADC)

� Time synchronization module

� Processing and computing unit (shown as Digital signal Processing Unit.)

The full implementation will not be attempted in this proposed project. The research

project will attempt to achieve the required functional behaviour for merging unit

operation, but it is not within the scope of this project to achieve the temporal

behaviour as stated within the standard. The scope and delimitation of the project is

shown on the right-hand side, i.e. Fig. 4.13b below. The aspects of the merging unit

architecture not directly implemented within this project, (Fig. 4.13b red perimeter)

are:

� Interfacing to real-time primary plant devices (current and voltage

transformers).

� The Analogue to Digital Converter (ADC)

� Time synchronization from an external source

The virtual sensor node development (Fig. 4.13b green perimeter) will include:

� Synthetic data generation through computation of a sine wave that is sampled

4000 times per cycle using the PC’s system clock for time synchronization.

� Sample value frame structure generation in an object oriented environment

� Processing and encoding of the data generated into a sampled value frame

structure

� ASN.1 encoding for the sampled value frame

� VLAN tagging of the sampled value message generated

� Time tagging of the sample value message using the PC’s system clock

85

� Publishing of the sampled value frame generated onto the network.

Figure 4.13a: Structure of merging
unit (Apostolov and Janssen, 2008)

 Figure 4.13b: PC based sensor
capable of sampled value
outputting

In the sensor node depicted in Fig. 4.13b the various parts required for a merging unit

are simulated. The inputs from the current and voltage transformer, the signal

conditioning and analogue-to-digital converter outputs are all replaced with the

synthetic data generator. The time synchronization provided by a GPS clock in

merging units is simulated using the PC’s internal clock. The processing and

computing unit is substituted with a PC platform using the object oriented

programming environment provided by Python. A Python program is used for 802.1Q

packet crafting, priority tagging, data modelling, encoding and publishing of sampled

values in a format compliant with IEC 61850-9-2LE.

With reference to Fig. 4.13b, the output of the virtual sensor node, once the data is

encoded and packaged; it is required to publish these sample value messages at the

datalink layer level (Konke et al., 2012) - see Fig. 4.14.

Figure 4.14: Overview of functionality and profiles, with emphasis on SV

(IEC 61850-8-1, 2004)

86

The sampled value frame structure was introduced in chapter 3 in section 3.5.2.3.2

and will be further elaborated upon in chapter 5 section 5.3. In-order to select the

hardware and software platform for the project development, an in-depth investigation

into PC based hardware and software platforms was conducted. These are

elaborated upon in more detail in the following section.

4.4. Development tools and development platform

For the development of the virtual sensor node proposed, an in-depth investigation

into layer 2 networking on PC-based platforms had to be conducted. The two

operating systems investigated are Windows and Linux Ubuntu using Python as the

programming language as is shown in Fig. 4.15.

Figure 4.15: Low level networking on PC based platforms using MS Windows and

Linux Ubuntu

The tools used for the development are Python as the programming language -

initially using raw sockets (discussed later in this chapter), and also using a Python

network library called Scapy. Python as a programming language is briefly introduced

in section 4.5.1 and Scapy as a Python networking library is discussed in section

4.5.2.

4.4.1. Programming language: Python

Python is an object-oriented, programming language that provides built-in data

structures that make Python attractive for Rapid Application Development

(www.Python.org). Python is a relatively simple-to-learn programming language with

easily readable syntax. The Python user website (www.Python.org) provides

examples and tutorials to fast-track Python beginners into intermediate programmers.

Additionally, Python supports modules and packages, which encourages program

modularity and code reuse. The Python interpreter and Python libraries are mostly

87

available in source or binary form without any charge. Python was selected for this

project because:

� It is an open source general-purpose language.

� It provides an object orientated environment

� Python is supported on a wide range on operating systems

� It has an intuitive, interactive environment for developers

� It has excellent data networking libraries such as SCAPY, and TWISTED

Python

� Python has libraries that support the development of Abstract Syntax Notation

(ASN.1) encoding such as PyASN

4.4.2. Networking libraries – Scapy

Scapy is a Python networking library that is capable of encoding and decoding data

for Ethernet frames and Internet protocol packets for a wide number of protocols, and

is capable of transmitting the generated packets on through the network

(www.scapy.org). Scapy uses Python classes to provide a framework for the creation

of packets or frames (Biondi, 2003). Through objected oriented programming, Scapy

provides support for the creation of custom packets by interacting with the operating

system kernel using sockets such as:

� Socket.SOC_STREAM - Socket stream

� Socket.SOCK_DGRAM - Socket Datagram

� Socket.SOCK - Raw sockets

� Socket.SOCK_SEQPACKET - Sequence sockets

The listed of supported protocols can be checked on Scapy by using the list ()

function as shown in Fig. 4.16 below.

Figure 4.16: List of supported protocols on Scapy

88

4.4.3. Crafting of custom packets utilising the Sca py library

Networking tools and libraries are generally built for specific functions and cannot be

extended, or users cannot deviate much from the specific function the author had in

mind when developing the library. Scapy differs from most networking libraries in this

regard as it allows the user to create custom networking protocols by extending the

Scapy library (Biondi, 2003). Chapter 9, page 41 on the Scapy documentation manual

discusses the process of custom development on Scapy.

Figure 4.17a: Custom packet

generated with Scapy that does not

conform to any standard [Linux]

Figure 4.17b: Custom packet

generated with Scapy that does not

conform to any standard [Microsoft

Windows]

Fig. 4.17a shows an example of a custom packet generated with Scapy that does not

conform to any standard. The VLAN tag in the packet generated has been deliberately

tampered with, and as a result, a protocol analyser such as Wireshark (discussed later

in this document) identifies the packet as “Malformed” as it does not conform to any

standard. Scapy provides the framework and allows for the transmission of custom

layer 2 and layer 3 packets (Biondi).

For this project, the IEEE 802.1Q framework provided on Scapy is leveraged, and

expanded upon. On Scapy, the three classes highlighted in red in Fig. 4.18 below, are

already available as a foundation for custom layer 2 packet crafting.

89

Figure 4.18:: Scapy supported classes for layer 2 networking (Biondi, 2009)

What is not available, and what needed to be developed for this project are classes for

the following fields in the sampled value frame (Details about the sampled value frame

structure have been covered in chapter 3):

� Application protocol Identifier (APPID)

� Reserved bytes

� Variable length

� Sampled value Protocol Data Unit (svPDU)

� ASN.1 encoding for the sampled value frame generated

� Sampled value dataset

� Sampled value counter

4.4.4. Using Scapy on Microsoft Windows and Linux O perating Systems

Scapy is supported and can be used in combination with a wide range of operating

systems (Biondi, 2009). In this project Scapy networking was tested on both Microsoft

Windows and Linux operating systems. The software packages required for the use of

Scapy on Microsoft Windows Operating Systems (OS) are catalogued below.

� Python 2.5 or higher

� Pywin32

� WinPcap,

90

Fig. 4.19 below details how low-level networking is achieved on Microsoft Windows

operating systems using Scapy.

Figure 4.19: Using Scapy on Microsoft Windows

Accessing the physical layer on a Microsoft Windows platform involves interfacing with

the Winsock Data Link Library (DLL). The Microsoft Winsock data link library is

discussed later in this chapter. Scapy interfaces to the Winsock DLL on Windows using

the Winpcap library - also detailed later in this document (Biondi, 2009). The challenge

with Scapy on a Microsoft Windows system is that Scapy has been primarily developed

for Unix-like systems and works best on those platforms (Biondi, 2009). Although the

experiment with Scapy on Microsoft Windows was successful, limited functionality on a

Microsoft Windows platform was experienced by the author. Limited functionality in the

sense that Scapy would not work on any of the Integrated Development Platforms

(IDEs) tested - such as PyWin, Not Just Another IDE (NINJA) and ECLIPSE.

The next phase was to test Scapy on a Linux operating system. The software

packages listed below are required for Scapy on a Linux Operating System (OS)

(Biondi, 2003):

� Python 2.5 or higher

� LibPcap

� PyPcap

� Pyreadline

� Libdnet

91

Fig. 4.20 below details how low-level networking is achieved on a Linux operating

system using Scapy. Accessing the physical layer on a Linux Ubuntu platform involves

interfacing with the Berkley Packet Filter (BPF). The Berkeley Packet Filter (BPF), on

UNIX systems such as Linux Ubuntu provides an interface to the data link layer. The

Berkley packet filters are accessed via the LibPcap library. LibPcap is a Linux

equivalent of the WinPcap library discussed later in this document.

Figure 4.20: Using Scapy on Linux Ubuntu

Scapy can be installed on Linux from the terminal window using root user access

credentials. The technique used to gain Root user access level on Linux operating

systems is shown in Appendix B. Installing Scapy on a Linux operating system

generally installs the required packages if they are not already installed on the user’s

PC. Fig. 4.21 shows the installation process followed for installing Scapy on Linux

Ubuntu.

Figure 4.21: Installing Scapy on Linux Ubuntu (Biondi, 2009).

4.5. Datalink layer networking

The Datalink is the layer just above the physical layer as shown in Fig. 4.22 below. The

data link layer (layer 2) uses the services of the physical layer to send and receive data

over the communication network and also provides a service to the network layer

above.

92

Figure 4.22: OSI reference model (Horalek and Sobeslav, 2014)

The Datalink layer is utilised by protocols such as Address Resolution Protocol (ARP),

Point-to-Point protocol (PPP), Ethernet, etc. to provide fast messaging between two

systems. GOOSE and sampled values also map directly to the Datalink layer to

provide fast communication in IEC 61850 substation automation systems.

The major challenge with this project is that Data link layer frames are more difficult to

program as opposed to the higher level protocols such as User Datagram Protocol

(UDP) and Transmission Control Protocol (TCP). Data link layer frames use raw socket

and raw packet structures as opposed to Datagram and Stream sockets utilised for

higher level protocols. Sockets are discussed later in this chapter.

Higher level protocols in this context refer to the protocols using the TCP or UDP as

the transport layer. These protocols are widely used in applications such as the

Internet, and Supervisory Control and Data Acquisition (SCADA) in the substation

environment. As a result, lots of work has already been done to create

libraries/modules for scripting high level networking programs.

Using programming languages such as C, C++, Java, and Python libraries/modules to

easily program transport layer protocols are readily available. A software developer

often has the easy task of defining the data to be transmitted, and attaching it into the

already erected transport mechanism. For this project though, these types of modules

or libraries do not exist and methods to script data link messages using raw sockets

93

had to be investigated and the use of raw sockets on the various operating systems

had to be investigated.

4.5.1. PC-based platform

The publishing of data-link frames is investigated on two platforms, namely Microsoft

Windows and Linux. Most of the initial work was performed on Microsoft Windows as

this is a widely used commercial platform. Later Linux operating systems were

investigated as Linux offers an open-source platform.

The objective of this investigation was to establish which kernel would allow

generation, binding, and outputting of layer 2 frames. Fig. 4.23 below shows an

example of how user applications interact with the physical devices in a PC

environment.

Figure 4.23: interaction between application layer and devices

(Bovet and Cesati, 2000)

As shown in Fig. 4.23 above, the kernel is the main component of a personal

computer’s operating system (Bovet and Cesati, 2000). The kernel provides the bridge

between applications and the actual data processing done at the hardware level. In-

order to implement low-level network programming applications, Microsoft Windows

and Linux kernels and the user Application Programming Interface (API) interfaces to

the network card for the transmission of data link frames has to be thoroughly

understood. Fig. 4.24 below shows an example of a Linux kernel.

Operating System

94

Figure 4.24: Linux kernel (Shuylupin, 2009)

The path of a packet through the kernel is highlighted (dashed blue line) in Fig. 4.24

above. The Application Program Interface (API) interface to the network card is

provided through the use of sockets. Sockets are discussed in section 4.5.1.1 below.

4.5.1.1. Network sockets

The API interface to the network card is generally provided through the use of sockets.

Definition : “A socket is an endpoint of communication to which a name may be bound”

(Leffer et al). The paper by Tiponut, 2001 “Python Network Programming” provides a

good overview of using sockets in Python.

A socket is an Application Programming Interface (API) provided by Microsoft Windows

and Linux operating systems. The socket API is also provided on other operating

systems not covered in this document. The socket API which is sometimes referred to

by its original name - Berkeley Socket API was originally released as the Berkeley-

Based Code in 1983 (Hosmer, 2014), and is a set of standard function calls made by

the application layer to the operating system. These function calls allow networking

programmers to provide communication capabilities in the developed products.

Since the introduction of Berkeley-Based Code, other socket APIs have since been

developed. Winsock (Microsoft Windows Sockets) developed in 1993 for the Microsoft

Windows platform, and TLI (Transport Layer Interface) developed by AT&T, are two of

the most common socket APIs.

95

There are four socket types available to application users and their functions are briefly

discussed in section 4.5.1.2 below. These sockets types are supported on both

Microsoft Windows and Linux environments.

4.5.1.2. Socket Types

There are four types of sockets available to the user. The stream and datagram

sockets described below are the most commonly utilized socket types. Raw sockets

and sequenced packet sockets are the less used sockets. Stream sockets are utilised

when guaranteed delivery of a networked packet is required. This type of socket is

typically used for TCP applications. An example of a TCP communication is shown in

Fig. 4.25 below.

Figure 4.25: Socket Functions for TCP Client-Server connection (Halvorsen, 2005)

In Fig. 4.25 a connection is initiated from the client side using the socket connection

function. A connection is then established with the server side device. The socket write

function is then used to send data and an appropriate acknowledgement is received. If

no acknowledgement is received the packet is retransmitted (Halvorsen, 2005).

When network delivery is required, but not necessarily guaranteed, Datagram sockets

can be utilised. This type of socket is typically used for applications using the User

Datagram protocol (UDP) as the transport. An example of a UDP communication is

shown in Fig. 4.26 below.

96

Figure 4.26: Socket Functions for UDP Client-Server connection (Halvorsen, 2005)

Datagram sockets are connectionless. An open connection does not need to be

established as in Stream Sockets. A packet is crafted and transmitted to the

destination without prior knowledge of whether the receiving device is still connected to

the network and no acknowledgement is required.

Sequence packet sockets are similar to a stream socket, they are connection

orientated, and differ in the sense that record boundaries are preserved. These types

of sockets are only provided as part of the Network Systems (NS) socket abstraction,

and are mentioned in this document simply for completeness.

Another type of socket is the raw socket. “Raw Sockets” provide users access to the

underlying communication protocols (Jorgensen, 2012). Raw sockets are provided

mainly for those interested in developing new communication protocols, or gaining

access to some of the more obscure facilities of an existing protocol.

For the development of custom protocols, e.g. sampled value transmission at the data

link layer, raw sockets have to be utilized. An investigation into data link layer message

transmission on Microsoft Windows and Linux Operating Systems is conducted in

sections 4.6.1.3 and 4.6.1.4 respectively.

4.5.1.3. Using raw sockets on Microsoft Windows

Winsock is an application programming interface for networking applications of

Microsoft Windows systems. It's called Winsock because it's an adaptation of the

Berkeley socket interface which is provided for Unix/Linux systems. The Winsock API

provides the interface between the user application program and network interface

layers 2 or layer 3 protocols on a computer. An illustration of how a user application

such as a Python networking script interfaces to the hardware level through the use of

Winsock API is shown in Fig. 4.27.

97

Figure 4.27: Using raw sockets on Microsoft Windows

As shown in Fig.4.27 above, the user application - in this case being a Python script -

gains access to low-level networking through the use of Winsock API. The Winsock

API can be accessed through the use of another library such as Winpcap (discussed

later in this chapter), or through direct interaction with the Winsock Data Link Library

(DLL). The test setup to examine the use of raw sockets in Microsoft Windows was

implemented and is shown in Fig. 4.28.

Figure 4.28: Test setup for using raw sockets on Microsoft Windows

The test setup shown in Fig. 4.28 above was used for testing the use of raw sockets on

Microsoft Windows 7 was configured and a Python script to initiate/use raw sockets for

data transmission was developed. In this case a Python script is used to gain access to

low-level networking through the use direct socket calls to the Winsock API. As

indicated in Fig. 4.28 this case study implementation was unsuccessful. The reason for

this failure was that the use of raw sockets of the Winsock 2.0 data link library has

been discontinued within the Microsoft Windows operating system (since Windows XP

service pack 1). The System Administrator, Audit, Networking, and Security (SANS)

paper on “The Raw and the Uncooked: The Microsoft Windows XP Raw Sockets Saga,

Final Words” discusses why raw sockets support for security reasons has been

discontinued on Winsock 2.0.

98

4.5.1.4. Using raw sockets on a Linux operating sys tem

Linux is an open-source operating system. It is a platform derived from UNIX to

facilitate research and development. Raw sockets are still supported on Linux

operating systems. The method by which Python applications can use raw sockets on

Linux is illustrated in Fig. 4.29.

Figure 4.29: Using raw sockets on Linux

The Python interface to the UNIX system call and library interface for sockets is a

direct transliteration to Python’s object-oriented style (Online:

https://docs.python.org/2/library/socket.html). Many examples of how this is can be

implemented can be found at www.docs.Python.org.

The socket() function on Linux operating systems returns a socket object whose

methods implement the various socket system calls. On Python, buffer allocation on

receive operations is automatic, and buffer length is implicit on send operations.

The test setup to examine the use of raw sockets in Microsoft Windows was

implemented and is shown in Fig. 4.30.

SUCCESSFUL

Figure 4.30: Using raw sockets on Linux

As shown in Fig. 4.30 this case study implementation was successful. Linux supports

the use of raw sockets. Python on a Linux operating system such as Ubuntu also has

99

extensive support and there is a wide variety of low level networking libraries that can

be utilised to ease the process of low-level network programming on Linux operating

systems.

A number of these libraries were examined in this project so as to fast-track the

development process. The libraries itemised below were examined for different

functions which had to be performed in this project.

i) PyASN1 – for Abstract Syntax Notation One (ASN.1) encoding

ii) Scapy – for packet crafting

iii) Twisted Library – for packet crafting

iv) Scapy ASN – for ASN.1 encoding

From the libraries listed above, Scapy was selected for the sampled value packet

generation and transmission. The Scapy library provides a powerful Python framework

for crafting and transmitting packets. Scapy users are able to assemble and

disassemble arbitrary frames/packets and send them out on to the network.

4.6. Conclusion

In this chapter the project context and the project scope and the delimitation of the

research project undertaken, is outlined. Low-level networking on Microsoft Windows

and Linux operating systems are investigated, for the development of the virtual sensor

node. From the two platforms investigated Linux Ubuntu has been selected as the

development platform. Ubuntu as a Linux operating system allows the use of raw

sockets for custom protocol development. The Python programming language and

Scapy as the networking libraries have been selected as the tools that are used in the

implementation of the sensor node which is discussed in the chapter to follow.

100

CHAPTER 5

Implementation, Testing and Verification

5.1. Introduction

Sampled Value (SV) messages discussed in chapter 3 section 3.5.2.3.2.5 in this

document are associated with the real-time distribution of data in substation

automation systems. The sampled value messages are transmitted on a periodic basis

from a sensor node referred to as a merging unit in substation automation systems.

The sampled value message structure is shown in chapter 3, section 3.5.2.3 and

consists of various fields, starting with the preamble and Start of Frame Delimiter

(SFD) at the hardware level, and ending with the sampled value payload consisting of

a fixed dataset containing the measured values.

In chapter four, the context and outline for the research project is established.

In this chapter, the implementation of the virtualized sensor node that can be used to

publish sampled value messages is described, and two testing scenarios - one using a

commercial Omicron CMC test injection device for power systems, and another using

the Personal Computer (PC) based sensor node are discussed. The sampled value

messages published from the two devices are captured using a commercial protocol

analyser tool called Wireshark and a comparative analysis of the message structure

obtained from both the commercial vendor device (CMC) and PC-based simulation are

compared to each other, and to the sampled value message structure as specified by

the IEC 61850-9-2 standard and the IEC 61850-9-2LE implementation guideline

document. The comparative analysis of message structure will serve as verification of

functional behaviour. Temporal performance will also be commented upon.

The chapter is structured into five sections. Section 5.1 is the introduction. In section

5.2 the implementation in terms of modular structure of the virtualised sensor node that

can be used to simulate and publish sampled value messages is discussed. In section

5.3, Wireshark as the protocol analyser in section 5.4 through to section 5.5 is

discussed. A practical experiment is conducted in section 5.4, first using the

developed PC-based sensor node is performed in section 5.4.1 and using a practical a

commercial unit, an Omicron CMC injection test set in section 5.4.2. In section 5.5 the

structure of the sampled value messages published from both the developed PC-based

101

sensor node and the commercial unit is compared to each other and to the format as

stipulated in the IEC 61850-9-2LE guideline document.

5.2. Software development for the PC-based sensor n ode

In this section the software development for the Personal Computer (PC) based sensor

node is discussed. The PC-based sensor node developed is shown in modular form in

Fig. 5.1 below.

Figure 5.1: PC based Sensor Node capable of sampled value publishing

The PC based sensor node is developed in an Objected Orientated environment

provided by the Python programming language and is capable of synthetic data

generation, time stamping using the PC’s internal clock, ASN.1 tagging of the

generated sampled value frames and outputting of a sampled value at the datalink

layer.

A simplified flowchart of the solution that can be used to simulate the functional

behaviour of the IEC 61850 process level sensor node is shown in Fig. 5.2 below.

102

Figure 5.2: Simplified flow chart of the developed solution

The solution starts by importing the various Python libraries required for the

development and finishes off by publishing a sampled value frame. The various class,

class methods, and attributes that are utilised for synthetic data generation, time

synchronization, ASN.1 encoding and sampled value frame structure - with Virtual

Local Area Network (VLAN) tagging, are discussed in the sections to follow.

103

5.2.1. Synthetic data generation

In chapter 4 section 4.3, the design and integration for a full merging unit

implementation was outlined. In the full implementation, a merging unit receives

analogue inputs from instrument transformers. These analogue inputs are then

conditioned, filtered, and digitized before they are processed. In this project, the

acquisition of analogue input data (typically received from instrument transformers) and

digitised with the use of analogue to digital converters does not fall within the scope,

but is simulated through the programming of a discretised sinusoidal wave for the

synthetic generation of the data. In Fig. 5.3 below the block responsible for the

synthetic data generation is highlighted (pink block).

Figure 5.3: PC based Sensor Node synthetic data generation

The sine wave used to simulate the data for the sampled value transmission is

discretised using the sample count value. The Python time module discussed in

section 5.2.2 below is utilised to return current time in seconds, and this time is stored

in a predefined variable. The “ticks” variable shown in Fig. 5.4 is used to store the “n.t”

(sec) and is used to calculate the current and voltage magnitude values as shown in

equation 5.1 below.

The three-phase voltages and currents are computed from equation 5.1 below, and the

neutral values for voltage and current are computed from the three-phase values.

The IEC 61850-9-2LE guideline specifies a sampling rate of 80 samples per cycle

when operating at 50Hz. This translates to a frequency of 4000 Hz, which is used to

generate a sample count number of 0 – 3999 inclusive. The parameter n in the

equations below, take on these values sequentially.

104

)0(* °+= ntSinVinVa a ω (5.1)

)120(* += ntSinVinVb b ω (5.2)

)240(* °+= ntSinVinVc c ω
 (5.3)

VcVbVaVn ++= (5.4)

)0(* °+= ntSinIinIa a ω
 (5.5)

)120(* °+= ntSinIinIb b ω
 (5.6)

)240(* °+= ntSinIinIc c ω
 (5.7)

IcIbIaIn ++= (5.8)

In this simulated environment, the parameter t is picked up from the built-in time

module in Python (as discussed in section 5.2.2) at each increment of the sample

count. The peak of the three-phase voltages and currents are computed from the Root

Mean Square (RMS) values which the user is initially prompted to input. The neutral

voltage and current values are calculated as the sum of the computed phase voltage or

current values respectively. Note : It is assumed that the system is not faulted.

Figure 5.4: Sample code of the data generated

5.2.2. Time synchronization

In a full real-time implementation of a merging unit, a synchronization signal would be

obtained from a 1 Pulse Per Second (1PPS) global time synchronization source such

as a Global Positioning System (GPS). The reason for this signal is to mitigate against

errors due to drift in the time signal - hence the system is re-synchronized every

second, as illustrated in Fig. 5.5 below.

105

Figure 5.5: Time synchronization for a full real-time implementation of merging unit

Furthermore, the synchronization pulse sets/resets a counter to 0. The sample count is

allowed to count up to 3999. The reason why the values are from 0 - 3999 is given in

section 5.2.1 above.

Note: It is the sample count value (0-3999) that is transmitted within the message data,

as it is assumed that the receiving device is also synchronized to the global 1PPS

pulses. i.e. entire Wide Area Networks (WANs) are synchronized. This allows for

“snapshots” to be taken for the wide area network and data for events within it can be

processed or correlated if required.

The above description, as mentioned, is if a full real-time implementation were to be

built. In this research project however the generation of the sample count values has

been simulated through generating and incrementing an integer “n” (referred to in

section 5.2.1 above) each time the “t” variable increments by a set amount i.e. 1/4000

seconds. The value for the time variable “t” is obtained from in-built Python functions

which are described below.

The Python time and date module provides various functions related to time. An

explanation of the terminology, functions and conversion method utilised in this module

can be found on the Python website (http://docs.Python.org). Some of the functions

and items that have been used during the various phases of the project development

are catalogued in Table 5.1 below with a brief explanation provided for each.

Table 5-1: Example of Python’s supported time functions (http://docs.Python.org).

106

Function Explanation

Time () Returns the time as a floating point

number expressed in seconds since the 1

June 1970.

Clock() Returns the current CPU time as a

floating point number expressed in

seconds. This function is mainly used for

benchmarking Python or timing

algorithms.

Gmtime (secs)

Converts a time expressed in seconds

since the epoch (1 June 1970) to a time

tuple in UTC in which the Daylight

Savings Time (DST) flag is always zero.

Fractions of a second are ignored.

Sleep (secs)

Suspends execution for the given number

of seconds. The argument may be a

floating point number to indicate a more

precise sleep time.

The time module can be imported into any Python code and instantiated whenever it is

required. An example using the sleep function is shown below.

Import time

TimeToSleep = time.sleep (number of seconds)

In this example, the program will go into sleep mode for the predefined number of

seconds. The practical use case is shown in the flowchart in Fig. 5.2, where the

program is paused for a number of seconds before resuming. The sleep function can

be instantiated with both integer and float numbers. For example if the program has to

go to sleep for milliseconds or microseconds this is fractions of a second and has to be

detailed as such.

In the next section the Application Protocol Data Unit (APDU) section of the sampled

value frame structure as specified in the IEC 61850-9-2 standard and IEC 61850-9-2LE

implementation guideline document is discussed, with specific emphasis on the

Abstract Syntax Notation (ASN.1) encoding and its practical implementation for the

simulated environment.

5.2.3. Implementation: Abstract Syntax Notation (AS N.1) tag encoding

107

From the sampled value frame structure previously discussed in chapter 3 section

3.5.2.3.2 and also referred to in Fig. 5.6 below, we are now concentrating on the data

in the Application Protocol Data Unit (APDU) section of the sampled value message

frame, with specific emphasis on the encoding for the data. The various fields within

the sampled value APDU are encoded through the use of ASN.1 as highlighted in Fig.

5.6 below.

Abstract Syntax Notation One (ASN.1) is an international standard used to define

protocols. ASN.1 encoding essentially, refers to the use of tags to convey/indicate

information about how the data is sectionalised, and what type of data and the length

of the data for each section in the frame. This information is especially important so

that the receiving device can decode the data appropriately (Kaliski Jr., 1993). The

ASN.1 standard is introduced in chapter 3. The various fields within the sampled value

protocol data unit are encoded through the use of Abstract Syntax Notation (ASN.1) as

highlighted in Fig. 5.6 below (Maroon box in Fig. 5.6).

Figure 5.6: Sampled Value (SV) application service data unit (IEC 61850-9-2)

A summary table of the commonly utilised encoding values for sampled value

messages is shown in table 5.2 and table 5.3 below.

The ASN.1 tags used to indicate the start of the savPdu is a hexadecimal (Hex) value =

0x60 and the start of the ASDUs is indicated by the value = 0x80 as can be seen on

Table 5.2 below.

Table 5-2: Tag indicating the start of the savPdu

108

Value octet

(Hexadecimal)

Value octet

(Binary)

Meaning

(Interpretation)

60 01100000 Class APPLICATION,

Constructed. Tag no. = [0].

IMPLICIT SavPdu Identifier

octet. Fieldname “savPdu”

80 10000000 Class CONTEXT-SPECIFIC,

Primitive, Tag no = [0].].

IMPLICIT INTEGER. Identifier

octet. Fieldname “sv.noASDU”

Number of ASDUs which will be

concatenated into one APDU.

The start of the ASDU is then followed by an optional field, the security field which is

encoded with the value =0x81 (IEC 61850-9-2LE). The rest of the Hex value tags

commonly used for encoding further information in the savPdu section can be seen on

Table 5.3 (Falk and Burns, 2001).

Table 5-3: Tags commonly used for the encoding of further information in the savPdu

Value octet

(Hexadecimal)

Value octet

(Binary)

Meaning

(Interpretation)

81 10000001 Class CONTEXT-SPECIFIC, Primitive,

Tag no. = [1] Security ANY OPTIONAL

A2 10100010 Class CONTEXT-SPECIFIC.

Constructed Tag no.=[2].

IMPLICIT SEQUENCE OF ASDU.

Identifier octet. Fieldname

“sv.sequence of ASDU”

30 00110000 Class UNIVERSAL. Constructed. Tag

no.=[16]. NOT LISTED IN THE

STANDARD 61850-9-2, according to

SISCO, “MMS and ASN.1 Encoding”.

IA5STRING.

80 10000000 Class CONTEXT-SPECIFIC, Primitive,

Tag no. = [0].

IMPLICIT Visible String Identifier octet.

Fieldname “sv.ID”

109

81 10000001 Class CONTEXT-SPECIFIC, Primitive,

Tag no.=[1]. IMPLICIT Visible String

Comment: Value form the MSVCB or

USVCB

82 10000010 Class CONTEXT-SPECIFIC, Primitive,

Tag no.=[2]. IMPLICIT INTEGER.

Identifier octet. Fieldname “sv.SmpCnt”

83 10000011 Class CONTEXT-SPECIFIC, Primitive,

Tag no.=[3]. IMPLICIT INTEGER.

Identifier octet. Fieldname “sv.conRef”

84 10000100 Class CONTEXT-SPECIFIC, Primitive,

Tag no. = [4]. IMPLICIT UTC TIME.

Comment: RefrTm contains the refresh

time of the SV buffer

85 10000101 Class CONTEXT-SPECIFIC, Primitive,

Tag no. =[5]. IMPLICIT BOOLEAN.

Identifier octet. Fieldname

“sv.smpSynch”

86 10000110 Class CONTEXT-SPECIFIC, Primitive,

Tag no.=[6]. IMPLICIT OCTECT

STRING.

87 10000111 Class CONTEXT-SPECIFIC, Primitive,

Tag no.=[7]. IMPLICIT FLOATING

POINT DATA. Identifier octet.

Fieldname “sv.deqData”

In Table 5.2 and 5.3 above the meaning of the tag values is provided. The type tags

used in the IEC 61850 sampled value protocol data unit enable the receiving device to

accurately decode the received message. The ASN.1 tags consist of three elements

(Cassel et al., 2000):

� Class and class number

� Implicit or explicit class definition

� Type being tagged.

As shown in Table 5.2 and Table 5.3 two class objects are used within most sampled

value messages, a universal class and context-specific class. The universal class is

distinguished from other data types as it defines an application independent data type

(Cassel et al., 2000). The context-specific class denotes members of a sequence

110

class. The class behaviour for the ASN.1 tags is defined by specifying whether the

class is implicitly defined or explicit. The class behaviour defines the means by which

the class can be aggregated. A practical example of ASN.1 encoding for sampled

value messages is shown in Fig. 5.8 below.

Figure 5.7: Example of ASN.1 tags used for sampled value messages

Highlighted in Fig. 5.7 are the ASN.1 tags for the sampled value protocol data unit.

Explanation for each tag highlighted in Fig. 5.7 is provided in Table 5.2 and Table 5.3

above.

During the development of this project various methods were tested to try and encode

the ASN.1 tags onto the sampled value messages. Two libraries that can be used for

sampled value encoding were examined to provide the ASN.1 tagging for the sampled

value messages published from the sensor node. The PyASN library and Scapy ASN.1

tagging module were examined. The challenge with both libraries was the limited

documentation that is provided. The Scapy library, as the library that is utilised for the

sampled value frame construction discussed later in this chapter, was persisted with.

The biggest challenge with ASN.1 tags on the savPdu (see Chapters 3 and 4 for

sampled value frame structure) is that there is encoding for the outer and the inner

The highlighted section
represents the frame
captured, and expanded
upon below

111

fields of the sampled value protocol data unit. As an example, there is the outer ASN.1

tag encoding for the savPdu and an inner ASN.1 tag for the Application Service Data

Unit (ASDU), and possibly another inner ASDU, depending on how many application

services data units are implemented in the sampled value frame. Fig. 5.8 shows an

example of ASN.1 encoding using the Scapy library.

Figure 5.8: An example of the ASN.1 encoding using the Scapy library

As shown in Fig. 5.8, Scapy provides a way to encode and decode ASN.1 tags. Scapy

uses an object oriented programming engine “Scapy ASN.1 engine” to link objects and

their tags. Scapy however is much more lax than what an ASN.1 parser should be

(Biondi, 2009), and leeway is given with respect to certain constraints.

5.2.3.1. Abstract Syntax Notation (ASN.1) encoding: challenges encountered

The main challenge encountered with using the Scapy ASN.1 engine for sampled

value encoding involved the use of ASN1_Sequences within sequences. The

aggregation of one sequence class to another sequence class was not properly

handled by the Scapy library. This problem was escalated by the fact that limited

Scapy ASN.1 engine documentation was available. The alternative was to hard-code

the ASN.1 tags into the various fields that required tagging. This was a possibility open

to us because the dataset recommended in the implementation guideline

documentation is for a fixed dataset. The packet class model used for frame generation

within Scapy provides a good platform for this kind of hard-coding of ASN.1 tags. Fig.

5.9 below shows an example of how the ASN.1 encoding is performed for the

Application Service Data Unit (ASDU) class.

Inner
sequence

Outer
sequence

Fixed
Dataset

112

Highlighted in red in Fig. 5.9 are the ASN.1 tags for the various fields. For this

development the data structure framework provided within Scapy is leveraged.

Highlighted in green (dashed box) in Fig. 5.10 are the field data types.

Figure 5.9: An example of a hard-coded ASN.1 encoding using the Scapy library

Two different data type structures are shown in Fig. 5.9. The difference between the

two types is that one is the standard type and others are hexadecimal representations

e.g. XByteField and XShortField. The length of a ByteField and that of a XByteField are

exactly the same - the representation is simply different. Some of the data types

supported and used in this development are catalogued in table 5.4 below.

Table 5-4: Data types supported in Scapy (Biondi, 2009)

 Simple Type Enumer ations Strings

ByteField

XByteField

ShortField

LEShortField

XShortField

X3BytesField

IntField

SignedIntField

LEIntField

LESignedIntField

XIntField

LongField

XLongField

LELongField

IEEEFloatField

IEEEDoubleField

EnumField

CharEnumField

BitEnumField

ShortEnumField

LEShortEnumField

ByteEnumField

IntEnumField

SignedIntEnumField

LEIntEnumField

XShortEnumField

StrField

StrLenField

StrFixedLenField

StrNullField

StrStopField

Attribute
of ASDU
class

Class name

ASDU class

113

BCDFloatField

BitField

XBitField

The next section will discuss the implementation of the complete sampled value frame

and its transmission.

5.2.4. Implementation of Sampled Value (SV) Frame S tructure and it’s
transmission

The dashed green box highlighted in Fig. 5.10 below, represents the functions required

for the implementation of the sampled value frame and its transmission – inclusive of

the integration of the ASN.1 tags for the various fields within the sampled value

protocol data, and the packaging of the data.

Figure 5.10: PC based Sensor Node generation of SV frame

The structure in the SV Frame is defined in the IEC 61850-9-2 and discussed in

section 5.2.3. The IEC 61850 sampled value sending device has to define the following

fields: [Source and Destination, Virtual Area Network (VLAN), EtherType, Application

protocol data unit (APPID), Length field, reserved fields, APDU]. The object model of

the developed sampled value frame generator is depicted in Fig. 5.11.

Note : The left-hand of Fig. 5.11 represents the theoretical frame structure as dictated

by the IEC 61850-9-2 standard and also the IEC 61850-9-2LE guideline. The right-

hand side of Fig. 5.11 represents the classes that were utilised to implement the

different sections of the frame structure. Certain of the classes are available as part of

114

Scapy (represented as the Ether and the dot1Q classes in Fig. 5.11). The other

classes on the right-hand side of the figure do not exist in Scapy, and had to be

developed specifically for this research project. These classes are those associated

with implementing the following sections of the frame format:

i. Packet

ii. Gen

iii. PDU

iv. Length

v. Reserved Field x2

vi. APPID

Figure 5.11: Developed Sampled Value object model

The Scapy networking libraries on the objected oriented programming platform is used

to model the ISO/IEC 8802-3 sampled value frame structure as defined in the IEC

61850-9-2 standard. The Scapy library provides support for low-level networking and

provides an object oriented framework for layer 2 custom packet crafting using certain

classes. Each layer in a crafted layer 2 frame is a subclass of the Packet class. As

shown in Fig. 5.11 each field in the sampled value frame that is not performed at the

hardware level is represented as a class. These classes have different attributes and

methods.

Scapy provides a hierarchical, layered packet class modelling structure, with the

packet class as the base class. Primarily all the logic behind layer manipulation in a

crafted frame is held by the Packet class as shown in Fig. 5.12 below (Biondi, 2009).

115

Figure 5.12: UML diagram of the development of a layer 2 packet (Biondi, 2009)

A layer 2 Packet class is shown in Fig. 5.12 above. The packet class inherits from the

layer 2 Ethernet class. The layer 2 Ethernet class has a source address, destination

address and a type - all inherited from different subclasses as shown in Fig. 5.13.

Fig.5.13 below shows the Unified Modelling Language (UML) diagram of the source

and destination addresses.

Figure 5.13: UML diagram of the source and destination classes (Biondi, 2009)

The next field in the ISO/IEC 8802-3 sampled value frame is the Virtual Local Area

Network (VLAN) field.

5.2.4.1. Sampled value VLAN tagging

Virtual Local Area Network (VLAN) and VLAN tagging is defined in the IEEE 802.1Q

standard and is used to aid in the process of traffic routing in networks (Zereneh,

2006). VLAN tagging is applied by the sending node in an IEC 61850 sampled value

transmission, so that sampled value traffic can be prioritised over less critical

information in routers and switches. VLAN tagging is supported on Scapy and is

defined in the Dot1Q Packet class as shown in Fig. 5.14.

116

Figure 5.14: Scapy Dot1Q Class with the defaults values (Biondi, 2009)

VLAN tagging is an Ethernet layer function and is specified as such in the class

definition. The VLAN tagging class has to be instantiated with the appropriate priority,

VLAN identifier and VLAN type. An example of how the VLAN tagging class can be

instantiated and aggregated to the packet class is shown in Fig.5.15 below:

Figure 5.15: Instantiating the Dot1Q class and aggregating into the class packet

5.2.4.2. Completing the SV packet structure

The section that follows the source address, destination address and VLAN tagging in

the sampled value structure is the Application Protocol Identifier (APPID), Length, two

reserved fields, and the Application Protocol Data Unit (APDU) of the sampled value

structure. None of these classes are pre-defined in Scapy and had to be scripted with

assistance from the chapter on custom development as referenced in the Scapy

Manual (Biondi, 2009). The data types and data structures supported in Scapy and the

Python programming language are used in the different classes to define the various

fields required in the classes scripted, as shown in Fig. 5.16.

117

Figure 5.16: Example of the sampled value classes developed

The SV PhsMeas1 class (which represents the full dataset inclusive of each

measurement’s quality attribute) is also implemented using object oriented

programming, as is shown in Fig. 5.17 below.

Figure 5.17: PhsMeas1 frame

The classes are then instantiated with the correct values and concatenated with other

classes to implement the complete sampled value frame structure as shown in Fig.

5.18.

Figure 5.18: sampled value frame concatenation

118

The complete sampled value frame developed can be viewed using the show function

in Python and is presented in Fig. 5.19.

SampleValue.show()

###[Ethernet]###

 dst= 01:0C:CD:04:ff:ff

 src= 00:00:00:00:00:00

 type= 0x8100

###[802.1Q]###

 prio= 4

 id= 0

 vlan= 1

 type= 0x88ba

###[Appid]###

 EmAPPID= 0x4000

 Em_LengthPDU= 0x71

 Em_Reserve2= 0x0

 Em_Reserve1= 0x0

###[svPdu]###

 Em_svPdu= 0x6067

 Em_noASDU= 0x8001

 Em_noASDU_value= 0x1

 Em_seqASDU= 0xa262

 Em_seqASDU_value= 0x3060

###[ASDU]###

 svID_pad= 0x800f

 svID= 'Emmanuel_cput_e'

 smpCnt_pad= 0x8202

 smpCnt_value= 0

 confRef_pad= 0x8304

 confRef_value= 0x1

 smpSynch_pad= 0x8501

 smpSynch_value= 0x0

###[PhsMeas1Dataset]###

 Phs1_pad= 0x8740

 Ia_value= 0x0

 Ia_quality= 0x0

 Ib_value= 0x0

119

 Ib_quality= 0x0

 Ic_value= 0x0

 Ic_quality= 0x0

 In_value= 0x0

 In_quality= 0x2000

 Va_value= 0x0

 Va_quality= 0x0

 Vb_value= 0x0

 Vb_quality= 0x0

 Vc_value= 0x0

 Vc_quality= 0x0

 Vn_value= 0x0

 Vn_quality= 0x2000

Figure 5.19: Presentation of the developed sampled value structure

The PhsMeas1Dataset shown in Fig. 5.19 is used to store the measurement values

and is used during the transmission process to publish the measurements. The

PhsMeas1 class is instantiated and populated with the appropriate values as shown

below.

SampleValue=SampleValue_new/MyAppid/MysvPdu/ASDU(smpCnt_value

=smpCnt)/PhsMeas1(Ia_value =Ia, Ib_value = Ib, Ic_value =Ic, In_value = In, va_value

=va, vb_value = vb, vc_value =vc, vn_value = vn)

5.2.4.3. Binding the fields of the generated sample d value frame

After a socket has been created, it is nameless, even if it has been associated to a

descriptor. Before the socket can be utilised, it must be associated with the appropriate

protocol address so that the receiving device can process it accordingly (Tiponut,

2001)

On Scapy, each of the generated classes for the various fields of the sampled value

frame have to be connected together for the generated packet to be communicated

properly and associated with the appropriate protocol as shown in Fig. 5.20. It is worth

mentioning that the Scapy library’s binding function only allows two fields to be passed

to it at a time.

120

Figure 5.20: Binding the various fields of the generated sampled value message

5.2.4.4. Transmitting the sampled value frame

Scapy has two methods of sending packets, depending on whether the packet being

transmitted as a layer 2 or a layer 3 packet (Biondi, 2003). The Send () function is used

for transmitting layer 3 packets and sendp () is used for sending layer 2 packets

(Online__www.secdev.org_projects_scapy_doc_usage) such as those packets for

sampled values. These two functions are used for simplex transmission, but other

functions have to be used when half-duplex and full-duplex is required. The last part of

this process is the transmission of the packet. This is achieved by inserting the

sampled value packet (i.e. the sections that have been bound and concatenated) into

the sendp () function and specifying the interface (iface – see Appendix G) across

which the packet will be sent. At the completion of this insertion, the transmission of the

packet happens automatically. The Python code required to achieve the above is the

following:

Sendp(sampledvalue, iface= “eth0”)

In the sections to follow, practical experimentation is done which necessitates the

capture of frames from the data network. The captures will be used to verify functional

behaviour and to compare the commercial device output and the PC platform output

against each other, and against the frame format as specified in the IEC 61850-9-2 and

IEC 61850-9-2LE. The capturing of the data networking packets will require the use of

Wireshark. Wireshark and the experimentation which was done, is commented on in

the sections to follow.

121

5.3. Wireshark

Wireshark is an open-source data network packet analyser, which was originally

developed by Gerald Combs, a computer science graduate of the University of

Missouri at Kansas City (Sanders, 2000). The first version of Wireshark was released

in 1998, as Ethereal under the GNU Public License (GPL). Wireshark monitors and

identifies network traffic on a specified network interface card and displays the

captured packet data with as much detail as possible.

Wireshark utilises the Winpcap/Libpcap link library to interface the user application

level and the lower level layers such as Network Interface Card (NIC) in a personal

computer, and Winpcap provides its own networking driver that allows connection from

the user application level to the physical layer as shown in Fig. 5.21.

Figure 5.21: Winpcap and Netgroup Packet Filter (Risso and Degioanni, 2005)

5.3.1. Utilising Wireshark

Wireshark supports and is able to dissect a multitude of protocol (Sanders, 2012),

however support for the protocol monitored should always be verified and enabled on

the Wireshark version which is being utilised. If the protocol(s) being monitored are not

supported or enabled on the Wireshark version utilised, Wireshark will not be able to

provide a through decomposition of the captured packets. In Fig. 5.23 below the

Wireshark supported protocols are catalogued, and the fact that the sampled value

protocol is one of those accommodated is highlighted by underlining the entry in Fig.

5.22 below.

122

Figure 5.22: The Wireshark supported and enabled protocols

Wireshark supports, and is capable of providing a complete breakdown of sampled

value message structure, however on new installations it is often required for this

protocol support to be enabled, as it is not enabled by default. For monitoring sampled

values messages, Wireshark version 1.4 or higher is recommended as the various bug

patches to the earlier Wireshark versions would have been applied (Online:

https://wireshark.org). Catalogued below are some of the bugs related to ASN.1

decoding found in earlier versions of Wireshark that have been rectified in the later

versions of Wireshark (Online: https://www.wireshark.org/lists/wireshark-bugs/). The

earlier versions of Wireshark could not decode the ASN.1 tags in the sampled value

messages for the fields listed below, hence causing the bugs mentioned.

� datSet (0x81), - Dataset ASN.1 tag

� refrTm (0x84), - Refresh Time ASN.1 tag

� smpRate (0x86), - Sample rate time ASN.1 tag

� smpMod (0x88) - Sample value modification ASN.1 tag

� Data/Payload (0x87) decoded as PhsMeas as recommended in the IEC61850-

9-2 LE document.

In section 5.4.1 a practical experiment is conducted on the PC-based platform to

simulate the sampled value messages from a merging unit. In section 5.4.2 a practical

experiment is conducted using a commercial device. For the two experiments

conducted, traffic from the data network during the experiments will be captured and

analysed.

Sampled Value
(SV) protocol is
accommodated.

123

5.4. Practical experimentation

5.4.1. Practical experimentation: Using the PC-base d sensor node which was

developed

The test setup used for verification of sampled value message published from the

developed sensor node, over the network is depicted Fig. 5.23 below.

Figure 5.23: Setup for PC-based sensor node sampled values testing

On the test setup shown in Fig. 5.23, two personal computers are used. The first PC

has a Linux Ubuntu operating system with the Python script used to publish sampled

values. The second is a Microsoft Windows 7 and has the Wireshark program

capturing the network packets. This test setup was successful in publishing sampled

values and the frames captured on Wireshark are shown in Fig. 5.24 below.

Figure 5.24: PC-based sensor Sampled Value (SV) message structure confirmation

124

On the left-hand side of Fig. 5.24 is the sampled value frame structure as defined in the

IEC 61850 standard and the IEC 61850-9-2LE guideline document. On the right-hand

side of Fig. 5.24 is the captured packet containing, as can be seen, the data generated,

published and captured from the PC-based sensor node.

The preamble and start of frame delimiter depicted on the left-hand side of Fig. 5.24

occurs at the hardware level and as a result it is not captured in the Wireshark frame

displayed on the right-hand side of Fig. 5.24. The captured frame from the PC-based

sensor node consists of source and destination addresses, VTPID, TCI, APPID, Length

field, two reserved fields and the protocol data unit. These are indicated on Fig. 5.24

and are in accordance with the IEC 61850 standard.

The next section in the sampled value frame is the Application Protocol Data Unit

(APDU) shown in Fig. 5.25.

Figure 5.25: PC-based sensor SV protocol data unit

The published sampled value sampled value Protocol Data Unit is shown in Fig. 5.25

and compared to the IEC 61850-9-2 standard PDU. The protocol data unit consists of

ASN.1 tags for the various fields in the sampled value PDU, the number of application

service data units, sampled value identifier (svID), sampled value counter that

increments from 0 to 3999 and resets back to zero as discussed in section 5.2.2. The

other fields are the configuration revision, sampled value synchronization which is set

to none, and data contained with the dataset as shown in Fig. 5.26 below.

125

Figure 5.26: PC-based sensor dataset

A phase measurement (Phsmeas1) dataset is transmitted with the phase shown in Fig.

5.25. The phase measurement dataset consists of 3 phase currents and voltages, and

1 neutral current and voltage value. The representation of the values within the dataset

is modelled from the practical experiment conducted in the next section and will be

discussed in detail in the next section. The same scaling as applied in the Omicron

CMC, discussed in the next section has been applied. The values contained within the

dataset have the associated quality attribute as indicated in Fig. 5.26. The neutral

values quality attributes indicates that the value is calculated (derived) as shown in Fig.

5.26.

On examination, as illustrated by the text boxes in Fig. 5.25 and Fig. 5.26, and

comparing the sampled value frame structure defined in the IEC 61850-9-2 standard, it

is evident that the frame structure of the transmitted sampled value frame from the PC-

based sensor node has all the subsections of the sampled value frame in place, and is

recognised by a protocol analyser such as Wireshark. As discussed in Chapter 4

section 4.4.2, if the captured frame does not conform to any standard, Wireshark would

indicate that the packet is “Malformed”.

Note : However, the rate at which the sampled values are being published is not

compliant with the IEC 61850-9-2LE specification of SV rate = 80 samples/cycle

required for protection applications. The functional behaviour is being achieved but the

required temporal behaviour is not being achieved, i.e. that the “smpCnt” is not being

updated every 250µS. The maximum speed at which the sampled value counter is

incremented and the sampled values are being published currently is 980µS.

126

5.4.2. Practical experiment: Using Omicron CMC test injection device for power
systems

To be able perform a comparative analysis of the developed sensor node against a

commercial product utilised for sampled value testing; a practical experiment with an

Omicron CMC is conducted in this section. The experiment was conducted using an

Omicron CMC to publish Sampled Value messages and the packet analyser Wireshark

is used to capture and display the published packet with as much detail as possible, as

shown in Fig. 5.27.

Figure 5.27: Test setup for the Sampled Value message investigation using an

Omicron CMC and Wireshark

The test setup is depicted in Fig. 5.27 above with 2 personal computers used for

communicating to the Omicron test set. PC1 in Fig. 5.27 has the Test Universe

software installed and running on it to do the configuration of the Omicron CMC unit.

PC2 is running Wireshark (MMS Ethereal) to capture the messages published from the

Omicron CMC. The Omicron CMC test set is a commissioning and testing tool

traditionally used to perform secondary injection during the commissioning phase of

power system equipment. The newer versions of the Omicron CMC such as CMC 256,

CMC 353, CMC 356, CMC 850, etc. provide support for IEC 61850 GOOSE and

Sampled Values (Online: Omicron - IEC 61850 Testing Tool).

The CMC’s Sampled Values Configuration module can be set up to generate up to

three sampled value streams in the test set (Online: Omicron - IEC 61850 Testing Tool

). It also provides the relevant communication parameters enabling the Sampled

Values communication or outputting. The test set supports generation of sampled

values at a rate of 80 samples per cycle and 256 samples per cycles at nominal

frequencies of 50Hz and 60Hz as specified in the IEC 61850-9-2LE document for

protection and metering applications. The Sampled Values published onto the network,

contain information mirroring and corresponding to the physical analogue voltages and

currents generated at the voltage and current terminals of the test set.

127

The data generated, published, and captured, from an OMICRON CMC device in the

practical experiment is discussed below and is compared to the IEC 61850-9-2LE

implementation guideline document for its functional and temporal behaviour. Fig. 5.28

below shows the sampled value packet captured from the Omicron CMC.

Figure 5.28: CMC Sampled Value (SV) message structure confirmation

On the left hand side of Fig. 5.28 is the sampled value frame structure as defined in the

IEC 61850-9-2 standard, and on the right hand side of the Fig. 5.28 is the captured

packet from the CMC. The preamble and start of frame delimiter depicted in the left

hand side of Fig. 5.28 occurs at the hardware level and as a result it is not captured in

the Wireshark frame displayed on the right hand side of Fig. 5.28.

The captured frame consists of source and destination addresses, TPID, TCI, APPID,

Length field, two reserved fields and the protocol data unit as highlighted in Fig. 5.28

above. The next section in the sampled value frame is the protocol data unit shown in

Fig. 5.29.

128

Figure 5.29: CMC Sampled Value (SV) Protocol data unit and ASN.1 tagging

In Fig. 5.29 above the sampled value protocol data unit of a frame published by the

CMC is depicted. The sampled value protocol data unit is tagged using the abstract

syntax notation to indicate the start of a savPdu. All the other fields within the sampled

value frame protocol data unit are encoded as specified in the IEC 61850-9-2 and IEC

61850-9-2LE implementation guideline document.

The published frame from the Omicron CMC contains data which is packaged within a

dataset. The software environment associated with the CMC was set up to generate

and publish voltages [set to primary RMS values of 63.508 kV (L-N)] in this experiment.

From the values configured on the CMC, the peak value is expected to be as shown in

equation 5.9.

VkV 87.898132*508.63 = (5.9)

Theoretically the sinusoidal waveform varies between + 89813.87V and - 89813.87V.

What is observed through the practical experiment however is that the values in the

captured frames varied between -8980717 and +8980717. To verify that the correct

values were being published from the CMC, the IEC 61850-9-2 standard was utilised.

This at first glance does not seem to relate at all to the value 89813.87V above.

However, these values were confirmed to be correct and compliant with the IEC

61850-9-2LE document, because the IEC 61850-9-2LE document specifies a scaling

factor of 0.01 for voltages and 0.001 for current as shown in Fig. 5.30 below.

129

Figure 5.30: Merging Unit current and voltage scaling factor (IEC 61850-9-2LE).

The theoretical peak value when the voltage scaling factor of 0.01 is taken into

account, as specified in page 8, table 2 of the IEC 61850-9-2LE document is 8980717

x 0.01 = 89807.17. This is close to the theoretical value of 89813.87 calculated above.

5.5. Comparative Analysis and Conclusion

In section 5.4.1 a practical experiment is performed using the developed PC-based

sensor node, and in section 5.4.2 a practical experiment using a commercial unit

(Omicron CMC) is discussed. Fig. 5.31 below shows the sampled value messages

published from these devices side by side.

Figure 5.31: Comparative analysis of the developed sensor nodes sampled value

structure with a commercial unit from Omicron

130

Comparatively the functional behaviour of the messages from these simulation devices

is the same. The two devices can both publish sampled value messages with all the

required subsections of the sampled value message structure as described in the IEC

61850-9-2 and IEC 61850-9-2LE standard.

The temporal behaviour is however vastly different. The Omicron CMC device

publishes real-time sampled value messages that can be used for protection

application testing, whereas the sensor node developed can only achieve functional

behaviour but not the temporal behaviour.

In this chapter the implementation of the PC-based simulation for the merging unit has

been discussed relative to the outputs from a commercial unit, and commentary has

been given on both functional and temporal behaviour. The next chapter is the

conclusion for the research project in its entirety and what future work could be derived

from the foundation laid.

131

CHAPTER 6

Conclusion and Future Work

6.1. Introduction

The deployment of standardized substation automation systems has been steadily

increasing in utilities since the introduction of the IEC 61850 standard for

“Communication networks and systems in substations” in 2004. The deployed

devices however are mainly for station-level applications, as discussed in chapter 4

section 4.2. The current number of devices available in the market to support the

IEC 61850-9-2 process bus is however still very limited, and mainly resides in the

vendor environment. The commercial units that are compliant IEC 61850-9-2LE

generally tend to be expensive and are generally not accessible in an academic

environment.

From an educational point of view, there are very few resources and tools available

to support the establishment of a knowledge base with respect to the process-bus

paradigm. The attempt in this project has been to establish this knowledge base

through the development of a non-real-time simulation environment which would

act as a precursor for future projects on real-time development. Through

experimentation the validation of functional behaviour was observed and

commentary on the temporal behaviour is also given.

The software development is on the Linux Ubuntu operating system version10.04

using the Python programming language. The evaluation of the results of the

developed sensor node show that the virtual sensor node developed is capable of

simulating the functional behaviour of an IEC 61850-9-2 standard device but is not

capable of simulating the temporal behaviour using the Scapy networking library.

6.2. Research Aim and objectives

6.2.1. Aim

From the problem statement articulated in the first chapter, the research aim of this

postgraduate project is to examine the standardization developments within the IEC

615850 substation automation environment, to study the substation automation

framework presented in the IEC61850 standard, and measurement distribution

methods proposed in the IEC 61850 standard. The knowledge gained has been

used to implement certain aspects of a Merging Unit. This limited functional

132

merging unit represents a virtualized data acquisition node capable of synthetic

data generation, encoding of the data and transmitting the data in a format

compliant with the IEC 61850-9-2 sampled value message structure.

6.2.2. Research objectives

The original research objectives as stated in chapter one and which have been
achieved are as follows:

i. To identify current and emerging substation automation trends.

ii. To Investigation whether Microsoft Windows and Linux operating systems

allow for the generation, binding and transmission of packets at the Datalink

layer.

iii. To thoroughly understand the sampled value messages utilised in the IEC

61850 standard and to simulate sampled value messages from a personal

computer (PC) platform.

The project objectives which have been achieved are listed as follows:

1. Literature review: Current and emerging substation automation trends have

been identified

2. Literature review: A comparative analysis of the developments stated in the

literature with respect to measurement distribution methods utilised in

substation automation systems has been successfully undertaken.

3. An overview of the IEC 61850 standard with emphasis on sampled values

and GOOSE messaging has been provided.

4. The sampled values structure breakdown and the other IEC 61850 related

standards are outlined.

5. A low-level network programming Application Programming Interface (API)

on both Microsoft Windows and Linux operating systems is presented.

6. Software development on Linux Ubuntu to simulate the functional behaviour

of sampled value messaging has been implemented.

7. Experimentation via the development of a test scenario to verify the

structure of the sampled value from the developed sensor node is

performed, and a comparative analysis has been performed against a

commercial IEC 61850-9-2 compliant product.

6.3. Project assumption and Thesis deliverables

During the development of the work on this project, the following assumptions and

scope delimitation as in chapter one have been implemented:

133

6.3.1. Assumptions:

i. Modern computers have a fast enough processing speed and modern operating

systems allow message generation and transmission at the Datalink layer,

enabling accurate emulation of a merging unit.

ii. The use of custom-built networking libraries does degrade the performance of

the generated program.

It should be observed that the second assumption does not hold true as stated in

chapter one.

6.3.2. Delimitation:

i. The data acquisition node is explored on a PC platform only

ii. Verification of sampled values is performed using software tools only.

iii. The project is not integrated into the IEC 61850 architecture; no substation

configuration language (SCL) files are produced for the developed device (MU);

the publisher/subscriber mechanism is not be explored; the sampled value

messaging is verified using only software tools such as Wireshark.

iv. The system is not implemented on the medium voltage (MV) network.

v. Current and voltage values are generated internally, packaged and transmitted

as multicast messages - no sensors are integrated into the virtual device.

vi. Analogue values published by the sensor node are monitored using Wireshark.

vii. The software program is developed using the Python programming language.

viii. Time synchronization and time stamping of frames is performed using the

personal computer’s internal clock (No integration of a GPS clock source).

6.3.3. Thesis deliverables:

A literature search and review, on the substation automation framework provided by

the IEC 61850 standard, focusing on measurement distribution using IEC 60044-7,

IEC 60044-8, IEC 1451 and IEC 61850 standards has been presented. The

theoretical base and algorithms for software development has been formalised and

applied to simulate the sampled value concept introduced in the IEC 61850

standard. Some of the achieved outputs are itemised below.

1. Experimentation with an Omicron CMC has been conducted to assist with

the understanding and development of the proposed virtual sensor.

2. Low level networking software development in both Microsoft Windows and

Linux operating systems has been investigated.

134

3. The concepts introduced in the IEC 61850-9-2, IEC 61850-9-2LE, IEC

60044-7 and IEC 60044-8 standards has been used to a model and a

limited function sensor node capable of sampled values functional

behaviour has been simulated.

4. A Python script running on a Linux Ubuntu operating system has been

developed and used to simulate IEC 61850-9-2 sampled values.

5. Wireshark is used to captured the sampled value frames published from the

virtual sensor node and the functional behaviour of the virtual device is

verified.

6. The simulated sampled value message is transmitted through a Virtual Area

Network (VLAN)- enabled switch and is captured on the receiving device

with the correct VLAN tag.

7. The use of the Scapy networking Library even with the use of the fast-send

function has however been found to degrade the performance of virtual

sensor node developed. The 250µS required repetition rate for sending of

packets, i.e. 80 samples per cycle as specified in the IEC 61850 standard

when operating at 50Hz; was not achieved even when running just Scapy in

a loop without even sending a layer 2 packet containing the sampled value

data.

6.4. Challenges Encountered

There have been a substantial number of challenges that have been encountered

during the course of this research project implementation. These include:

a) The IEC 61850 standard resides in the public domain, but that the transition

from the specification within the standard to that of implementation is an

extremely challenging one. This knowledge usually is proprietary and

resides mainly within the vendor environment. Consequently very little

implementation and experimentation knowledge in the public domain

generally, and in the academic environment particularly. The situation has

improved with respect to the knowledge base and equipment for GOOSE

messaging, but there is still very little knowledge with respect to the process

bus environment.

b) Very few platforms, tools and forums for the development or adaptation of

IEC 61850 solutions in the public domain.

c) A multi-disciplinary environment – the IEC 61850 combines a lot of different

disciplines e.g. data networking, Information Technology, protection etc.

Software development to simulate IEC 61850 sampled value messages

135

requires detailed knowledge in multiple fields such as data networking,

electrical protection, software modelling and protection and control testing

methods.

d) Interpretation of the standard – a pre-requisite to development of an IEC

61850-compliant device requires detailed knowledge of various parts of the

standard.

e) Transmission of layer 2 packets on Microsoft Windows and Linux Ubuntu

operating systems

f) Fast network packet outputting using Scapy. Scapy is not designed for fast

networking and as a result the only the functional behaviour of the merging

unit could be simulated in this project and the temporal behaviour could not

be achieved.

6.5. Future research work

This project investigated the development of a sensor node on a PC platform. The

intention was to provide the building blocks for future real time implementation of a

sensor node that is compliant with IEC 61850-9-2LE. The role of this project was to

build and lay a foundation for IEC 61850 sampled value real-time implementation in

the academic sphere. Future directions for research work could include the

following:

1. Investigate the use an embedded development platform to achieve both the

functional and temporal behaviour of a IEC 61850 merging unit.

2. The modelling of the sampled values logical nodes (TCTR and TVTR)

instead of hard-coding the values into the sampled value dataset.

3. On the current development the ASN.1 tags are hard-coded into the various

classes that represent the fields with the sampled value frame structure. An

alternative method would be to implement an ASN.1 encoding algorithm.

4. The virtual sensor node device should be improved and adapted to receive

realistic data from external sources.

5. In the sensor device developed, all the data is generated internally and is

assumed to have good quality. When a real-time system is developed the

data that is used by the unit will be from external sources, so an alternative

method to validate the quality attribute for each measurement in the

published dataset using the common data class enumeration method

defined in the standard should be implemented in future.

6. Time synchronization should be provided by a device capable of providing

accurate 1PPS time synchronization and should be integrated into the rest

of the system functionality.

136

6.6. Publications

1. Luwaca. E., Petev P., Kriger C., and Behardien S., 2014. “Virtualization of a

sensor node to enable the simulation of IEC 61850-based sampled value

messages”. Submitted to the International Journal of Computers, Communications

and Control (awaiting confirmation for publication).

2. Kriger C., Retonda J., Luwaca E., and Behardien S., 2011. “Analysis of GOOSE

and Sampled Value Message Structure for Educational Purposes”, PAC World

Conference, Dublin.

137

APPENDICES

APPENDIX A
Scapy layer 3 source code
This file is part of Scapy
See http://www.secdev.org/projects/scapy for more informations
Copyright (C) Philippe Biondi <phil@secdev.org>
This program is published under a GPLv2 license

138

"""
ASN.1 (Abstract Syntax Notation One)
"""

import random
from scapy.config import conf
from scapy.error import Scapy_Exception,warning
from scapy.volatile import RandField
from scapy.utils import Enum_metaclass, EnumElement

class RandASN1Object(RandField):
 def __init__(self, objlist=None):
 if objlist is None:
 objlist = map(lambda x:x._asn1_obj,
 filter(lambda x:hasattr(x,"_asn1_obj"),
ASN1_Class_UNIVERSAL.__rdict__.values()))
 self.objlist = objlist
 self.chars =
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789"
 def _fix(self, n=0):
 o = random.choice(self.objlist)
 if issubclass(o, ASN1_INTEGER):
 return o(int(random.gauss(0,1000)))
 elif issubclass(o, ASN1_IPADDRESS):
 z = RandIP()._fix()
 return o(z)
 elif issubclass(o, ASN1_STRING):
 z = int(random.expovariate(0.05)+1)
 return o("".join([random.choice(self.chars) for i in range(z)]))
 elif issubclass(o, ASN1_SEQUENCE) and (n < 10):
 z = int(random.expovariate(0.08)+1)
 return o(map(lambda x:x._fix(n+1), [self.__class__(objlist=self.objlist)]*z))
 return ASN1_INTEGER(int(random.gauss(0,1000)))

##############
ASN1 ####
##############

class ASN1_Error(Scapy_Exception):
 pass

class ASN1_Encoding_Error(ASN1_Error):
 pass

class ASN1_Decoding_Error(ASN1_Error):
 pass

class ASN1_BadTag_Decoding_Error(ASN1_Decoding_Error):
 pass

class ASN1Codec(EnumElement):
 def register_stem(cls, stem):
 cls._stem = stem

139

 def dec(cls, s, context=None):
 return cls._stem.dec(s, context=context)
 def safedec(cls, s, context=None):
 return cls._stem.safedec(s, context=context)
 def get_stem(cls):
 return cls.stem

class ASN1_Codecs_metaclass(Enum_metaclass):
 element_class = ASN1Codec

class ASN1_Codecs:
 __metaclass__ = ASN1_Codecs_metaclass
 BER = 1
 DER = 2
 PER = 3
 CER = 4
 LWER = 5
 BACnet = 6
 OER = 7
 SER = 8
 XER = 9

class ASN1Tag(EnumElement):
 def __init__(self, key, value, context=None, codec=None):
 EnumElement.__init__(self, key, value)
 self._context = context
 if codec == None:
 codec = {}
 self._codec = codec
 def clone(self): # /!\ not a real deep copy. self.codec is shared
 return self.__class__(self._key, self._value, self._context, self._codec)
 def register_asn1_object(self, asn1obj):
 self._asn1_obj = asn1obj
 def asn1_object(self, val):
 if hasattr(self,"_asn1_obj"):
 return self._asn1_obj(val)
 raise ASN1_Error("%r does not have any assigned ASN1 object" % self)
 def register(self, codecnum, codec):
 self._codec[codecnum] = codec
 def get_codec(self, codec):
 try:
 c = self._codec[codec]
 except KeyError,msg:
 raise ASN1_Error("Codec %r not found for tag %r" % (codec, self))
 return c

class ASN1_Class_metaclass(Enum_metaclass):
 element_class = ASN1Tag
 def __new__(cls, name, bases, dct): # XXX factorise a bit with Enum_metaclass.__new__()
 for b in bases:
 for k,v in b.__dict__.iteritems():
 if k not in dct and isinstance(v,ASN1Tag):
 dct[k] = v.clone()

 rdict = {}
 for k,v in dct.iteritems():

140

 if type(v) is int:
 v = ASN1Tag(k,v)
 dct[k] = v
 rdict[v] = v
 elif isinstance(v, ASN1Tag):
 rdict[v] = v
 dct["__rdict__"] = rdict

 cls = type.__new__(cls, name, bases, dct)
 for v in cls.__dict__.values():
 if isinstance(v, ASN1Tag):
 v.context = cls # overwrite ASN1Tag contexts, even cloned ones
 return cls

class ASN1_Class:
 __metaclass__ = ASN1_Class_metaclass

class ASN1_Class_UNIVERSAL(ASN1_Class):
 name = "UNIVERSAL"
 ERROR = -3
 RAW = -2
 NONE = -1
 ANY = 0
 BOOLEAN = 1
 INTEGER = 2
 BIT_STRING = 3
 STRING = 4
 NULL = 5
 OID = 6
 OBJECT_DESCRIPTOR = 7
 EXTERNAL = 8
 REAL = 9
 ENUMERATED = 10
 EMBEDDED_PDF = 11
 UTF8_STRING = 12
 RELATIVE_OID = 13
 SEQUENCE = 0x30#XXX 16 ??
 SET = 0x31 #XXX 17 ??
 NUMERIC_STRING = 18
 PRINTABLE_STRING = 19
 T61_STRING = 20
 VIDEOTEX_STRING = 21
 IA5_STRING = 22
 UTC_TIME = 23
 GENERALIZED_TIME = 24
 GRAPHIC_STRING = 25
 ISO646_STRING = 26
 GENERAL_STRING = 27
 UNIVERSAL_STRING = 28
 CHAR_STRING = 29
 BMP_STRING = 30
 IPADDRESS = 0x40
 COUNTER32 = 0x41
 GAUGE32 = 0x42
 TIME_TICKS = 0x43
 SEP = 0x80

141

class ASN1_Object_metaclass(type):
 def __new__(cls, name, bases, dct):
 c = super(ASN1_Object_metaclass, cls).__new__(cls, name, bases, dct)
 try:
 c.tag.register_asn1_object(c)
 except:
 warning("Error registering %r for %r" % (c.tag, c.codec))
 return c

class ASN1_Object:
 __metaclass__ = ASN1_Object_metaclass
 tag = ASN1_Class_UNIVERSAL.ANY
 def __init__(self, val):
 self.val = val
 def enc(self, codec):
 return self.tag.get_codec(codec).enc(self.val)
 def __repr__(self):
 return "<%s[%r]>" % (self.__dict__.get("name", self.__class__.__name__), self.val)
 def __str__(self):
 return self.enc(conf.ASN1_default_codec)
 def strshow(self, lvl=0):
 return (" "*lvl)+repr(self)+"\n"
 def show(self, lvl=0):
 print self.strshow(lvl)
 def __eq__(self, other):
 return self.val == other
 def __cmp__(self, other):
 return cmp(self.val, other)

class ASN1_DECODING_ERROR(ASN1_Object):
 tag = ASN1_Class_UNIVERSAL.ERROR
 def __init__(self, val, exc=None):
 ASN1_Object.__init__(self, val)
 self.exc = exc
 def __repr__(self):
 return "<%s[%r]{{%s}}>" % (self.__dict__.get("name", self.__class__.__name__),
 self.val, self.exc.args[0])
 def enc(self, codec):
 if isinstance(self.val, ASN1_Object):
 return self.val.enc(codec)
 return self.val

class ASN1_force(ASN1_Object):
 tag = ASN1_Class_UNIVERSAL.RAW
 def enc(self, codec):
 if isinstance(self.val, ASN1_Object):
 return self.val.enc(codec)
 return self.val

class ASN1_BADTAG(ASN1_force):
 pass

class ASN1_INTEGER(ASN1_Object):
 tag = ASN1_Class_UNIVERSAL.INTEGER

142

class ASN1_STRING(ASN1_Object):
 tag = ASN1_Class_UNIVERSAL.STRING

class ASN1_BIT_STRING(ASN1_STRING):
 tag = ASN1_Class_UNIVERSAL.BIT_STRING

class ASN1_PRINTABLE_STRING(ASN1_STRING):
 tag = ASN1_Class_UNIVERSAL.PRINTABLE_STRING

class ASN1_T61_STRING(ASN1_STRING):
 tag = ASN1_Class_UNIVERSAL.T61_STRING

class ASN1_IA5_STRING(ASN1_STRING):
 tag = ASN1_Class_UNIVERSAL.IA5_STRING

class ASN1_NUMERIC_STRING(ASN1_STRING):
 tag = ASN1_Class_UNIVERSAL.NUMERIC_STRING

class ASN1_VIDEOTEX_STRING(ASN1_STRING):
 tag = ASN1_Class_UNIVERSAL.VIDEOTEX_STRING

class ASN1_IPADDRESS(ASN1_STRING):
 tag = ASN1_Class_UNIVERSAL.IPADDRESS

class ASN1_UTC_TIME(ASN1_STRING):
 tag = ASN1_Class_UNIVERSAL.UTC_TIME

class ASN1_GENERALIZED_TIME(ASN1_STRING):
 tag = ASN1_Class_UNIVERSAL.GENERALIZED_TIME

class ASN1_TIME_TICKS(ASN1_INTEGER):
 tag = ASN1_Class_UNIVERSAL.TIME_TICKS

class ASN1_BOOLEAN(ASN1_INTEGER):
 tag = ASN1_Class_UNIVERSAL.BOOLEAN

class ASN1_ENUMERATED(ASN1_INTEGER):
 tag = ASN1_Class_UNIVERSAL.ENUMERATED

class ASN1_NULL(ASN1_INTEGER):
 tag = ASN1_Class_UNIVERSAL.NULL

class ASN1_SEP(ASN1_NULL):
 tag = ASN1_Class_UNIVERSAL.SEP

class ASN1_GAUGE32(ASN1_INTEGER):
 tag = ASN1_Class_UNIVERSAL.GAUGE32

class ASN1_COUNTER32(ASN1_INTEGER):
 tag = ASN1_Class_UNIVERSAL.COUNTER32

class ASN1_SEQUENCE(ASN1_Object):
 tag = ASN1_Class_UNIVERSAL.SEQUENCE
 def strshow(self, lvl=0):
 s = (" "*lvl)+("# %s:" % self.__class__.__name__)+"\n"
 for o in self.val:
 s += o.strshow(lvl=lvl+1)

143

 return s

class ASN1_SET(ASN1_SEQUENCE):
 tag = ASN1_Class_UNIVERSAL.SET

class ASN1_OID(ASN1_Object):
 tag = ASN1_Class_UNIVERSAL.OID
 def __init__(self, val):
 val = conf.mib._oid(val)
 ASN1_Object.__init__(self, val)
 def __repr__(self):
 return "<%s[%r]>" % (self.__dict__.get("name", self.__class__.__name__),
conf.mib._oidname(self.val))
 def __oidname__(self):
 return '%s'%conf.mib._oidname(self.val)

conf.ASN1_default_codec = ASN1_Codecs.BER

144

APPENDIX B
Scapy layer 2 source code

This file is part of Scapy
See http://www.secdev.org/projects/scapy for more informations
Copyright (C) Philippe Biondi <phil@secdev.org>
This program is published under a GPLv2 license

"""
Classes and functions for layer 2 protocols.
"""

import os,struct,time
from scapy.base_classes import Net
from scapy.config import conf
from scapy.packet import *
from scapy.ansmachine import *
from scapy.plist import SndRcvList
from scapy.fields import *
from scapy.sendrecv import srp,srp1
from scapy.arch import get_if_hwaddr

#################
Tools ##
#################

class Neighbor:
 def __init__(self):
 self.resolvers = {}

 def register_l3(self, l2, l3, resolve_method):
 self.resolvers[l2,l3]=resolve_method

 def resolve(self, l2inst, l3inst):
 k = l2inst.__class__,l3inst.__class__
 if k in self.resolvers:
 return self.resolvers[k](l2inst,l3inst)

 def __repr__(self):
 return "\n".join("%-15s -> %-15s" % (l2.__name__, l3.__name__) for l2,l3 in
self.resolvers)

conf.neighbor = Neighbor()

conf.netcache.new_cache("arp_cache", 120) # cache entries expire after 120s

@conf.commands.register
def getmacbyip(ip, chainCC=0):
 """Return MAC address corresponding to a given IP address"""
 if isinstance(ip,Net):

145

 ip = iter(ip).next()
 ip = inet_ntoa(inet_aton(ip))
 tmp = map(ord, inet_aton(ip))
 if (tmp[0] & 0xf0) == 0xe0: # mcast @
 return "01:00:5e:%.2x:%.2x:%.2x" % (tmp[1]&0x7f,tmp[2],tmp[3])
 iff,a,gw = conf.route.route(ip)
 if ((iff == "lo") or (ip == conf.route.get_if_bcast(iff))):
 return "ff:ff:ff:ff:ff:ff"
 if gw != "0.0.0.0":
 ip = gw

 mac = conf.netcache.arp_cache.get(ip)
 if mac:
 return mac

 res = srp1(Ether(dst=ETHER_BROADCAST)/ARP(op="who-has", pdst=ip),
 type=ETH_P_ARP,
 iface = iff,
 timeout=2,
 verbose=0,
 chainCC=chainCC,
 nofilter=1)
 if res is not None:
 mac = res.payload.hwsrc
 conf.netcache.arp_cache[ip] = mac
 return mac
 return None

Fields

class DestMACField(MACField):
 def __init__(self, name):
 MACField.__init__(self, name, None)
 def i2h(self, pkt, x):
 if x is None:
 x = conf.neighbor.resolve(pkt,pkt.payload)
 if x is None:
 x = "ff:ff:ff:ff:ff:ff"
 warning("Mac address to reach destination not found. Using broadcast.")
 return MACField.i2h(self, pkt, x)
 def i2m(self, pkt, x):
 return MACField.i2m(self, pkt, self.i2h(pkt, x))

class SourceMACField(MACField):
 def __init__(self, name):
 MACField.__init__(self, name, None)
 def i2h(self, pkt, x):
 if x is None:
 iff,a,gw = pkt.payload.route()
 if iff:
 try:
 x = get_if_hwaddr(iff)
 except:
 pass
 if x is None:

146

 x = "00:00:00:00:00:00"
 return MACField.i2h(self, pkt, x)
 def i2m(self, pkt, x):
 return MACField.i2m(self, pkt, self.i2h(pkt, x))

class ARPSourceMACField(MACField):
 def __init__(self, name):
 MACField.__init__(self, name, None)
 def i2h(self, pkt, x):
 if x is None:
 iff,a,gw = pkt.route()
 if iff:
 try:
 x = get_if_hwaddr(iff)
 except:
 pass
 if x is None:
 x = "00:00:00:00:00:00"
 return MACField.i2h(self, pkt, x)
 def i2m(self, pkt, x):
 return MACField.i2m(self, pkt, self.i2h(pkt, x))

Layers

class Ether(Packet):
 name = "Ethernet"
 fields_desc = [DestMACField("dst"),
 SourceMACField("src"),
 XShortEnumField("type", 0x9000, ETHER_TYPES)]
 def hashret(self):
 return struct.pack("H",self.type)+self.payload.hashret()
 def answers(self, other):
 if isinstance(other,Ether):
 if self.type == other.type:
 return self.payload.answers(other.payload)
 return 0
 def mysummary(self):
 return self.sprintf("%src% > %dst% (%type%)")
 @classmethod
 def dispatch_hook(cls, _pkt=None, *args, **kargs):
 if _pkt and len(_pkt) >= 14:
 if struct.unpack("!H", _pkt[12:14])[0] <= 1500:
 return Dot3
 return cls

class Dot3(Packet):
 name = "802.3"
 fields_desc = [DestMACField("dst"),
 MACField("src", ETHER_ANY),
 LenField("len", None, "H")]
 def extract_padding(self,s):
 l = self.len
 return s[:l],s[l:]

147

 def answers(self, other):
 if isinstance(other,Dot3):
 return self.payload.answers(other.payload)
 return 0
 def mysummary(self):
 return "802.3 %s > %s" % (self.src, self.dst)
 @classmethod
 def dispatch_hook(cls, _pkt=None, *args, **kargs):
 if _pkt and len(_pkt) >= 14:
 if struct.unpack("!H", _pkt[12:14])[0] > 1500:
 return Ether
 return cls

class LLC(Packet):
 name = "LLC"
 fields_desc = [XByteField("dsap", 0x00),
 XByteField("ssap", 0x00),
 ByteField("ctrl", 0)]

conf.neighbor.register_l3(Ether, LLC, lambda l2,l3: conf.neighbor.resolve(l2,l3.payload))
conf.neighbor.register_l3(Dot3, LLC, lambda l2,l3: conf.neighbor.resolve(l2,l3.payload))

class CookedLinux(Packet):
 name = "cooked linux"
 fields_desc = [ShortEnumField("pkttype",0, {0: "unicast",
 4:"sent-by-us"}), #XXX incomplete
 XShortField("lladdrtype",512),
 ShortField("lladdrlen",0),
 StrFixedLenField("src","",8),
 XShortEnumField("proto",0x800,ETHER_TYPES)]

class SNAP(Packet):
 name = "SNAP"
 fields_desc = [X3BytesField("OUI",0x000000),
 XShortEnumField("code", 0x000, ETHER_TYPES)]

conf.neighbor.register_l3(Dot3, SNAP, lambda l2,l3: conf.neighbor.resolve(l2,l3.payload))

class Dot1Q(Packet):
 name = "802.1Q"
 aliastypes = [Ether]
 fields_desc = [BitField("prio", 0, 3),
 BitField("id", 0, 1),
 BitField("vlan", 1, 12),
 XShortEnumField("type", 0x0000, ETHER_TYPES)]
 def answers(self, other):
 if isinstance(other,Dot1Q):
 if ((self.type == other.type) and
 (self.vlan == other.vlan)):
 return self.payload.answers(other.payload)
 else:
 return self.payload.answers(other)

148

 return 0
 def default_payload_class(self, pay):
 if self.type <= 1500:
 return LLC
 return conf.raw_layer
 def extract_padding(self,s):
 if self.type <= 1500:
 return s[:self.type],s[self.type:]
 return s,None
 def mysummary(self):
 if isinstance(self.underlayer, Ether):
 return self.underlayer.sprintf("802.1q %Ether.src% > %Ether.dst% (%Dot1Q.type%)
vlan %Dot1Q.vlan%")
 else:
 return self.sprintf("802.1q (%Dot1Q.type%) vlan %Dot1Q.vlan%")

conf.neighbor.register_l3(Ether, Dot1Q, lambda l2,l3: conf.neighbor.resolve(l2,l3.payload))

class STP(Packet):
 name = "Spanning Tree Protocol"
 fields_desc = [ShortField("proto", 0),
 ByteField("version", 0),
 ByteField("bpdutype", 0),
 ByteField("bpduflags", 0),
 ShortField("rootid", 0),
 MACField("rootmac", ETHER_ANY),
 IntField("pathcost", 0),
 ShortField("bridgeid", 0),
 MACField("bridgemac", ETHER_ANY),
 ShortField("portid", 0),
 BCDFloatField("age", 1),
 BCDFloatField("maxage", 20),
 BCDFloatField("hellotime", 2),
 BCDFloatField("fwddelay", 15)]

class EAPOL(Packet):
 name = "EAPOL"
 fields_desc = [ByteField("version", 1),
 ByteEnumField("type", 0, ["EAP_PACKET", "START", "LOGOFF", "KEY", "ASF"]),
 LenField("len", None, "H")]

 EAP_PACKET= 0
 START = 1
 LOGOFF = 2
 KEY = 3
 ASF = 4
 def extract_padding(self, s):
 l = self.len
 return s[:l],s[l:]
 def hashret(self):
 return chr(self.type)+self.payload.hashret()
 def answers(self, other):
 if isinstance(other,EAPOL):
 if ((self.type == self.EAP_PACKET) and
 (other.type == self.EAP_PACKET)):

149

 return self.payload.answers(other.payload)
 return 0
 def mysummary(self):
 return self.sprintf("EAPOL %EAPOL.type%")

class EAP(Packet):
 name = "EAP"
 fields_desc = [ByteEnumField("code", 4,
{1:"REQUEST",2:"RESPONSE",3:"SUCCESS",4:"FAILURE"}),
 ByteField("id", 0),
 ShortField("len",None),
 ConditionalField(ByteEnumField("type",0, {1:"ID",4:"MD5"}), lambda pkt:pkt.code
not in [EAP.SUCCESS, EAP.FAILURE])

]

 REQUEST = 1
 RESPONSE = 2
 SUCCESS = 3
 FAILURE = 4
 TYPE_ID = 1
 TYPE_MD5 = 4
 def answers(self, other):
 if isinstance(other,EAP):
 if self.code == self.REQUEST:
 return 0
 elif self.code == self.RESPONSE:
 if ((other.code == self.REQUEST) and
 (other.type == self.type)):
 return 1
 elif other.code == self.RESPONSE:
 return 1
 return 0

 def post_build(self, p, pay):
 if self.len is None:
 l = len(p)+len(pay)
 p = p[:2]+chr((l>>8)&0xff)+chr(l&0xff)+p[4:]
 return p+pay

class ARP(Packet):
 name = "ARP"
 fields_desc = [XShortField("hwtype", 0x0001),
 XShortEnumField("ptype", 0x0800, ETHER_TYPES),
 ByteField("hwlen", 6),
 ByteField("plen", 4),
 ShortEnumField("op", 1, {"who-has":1, "is-at":2, "RARP-req":3, "RARP-rep":4,
"Dyn-RARP-req":5, "Dyn-RAR-rep":6, "Dyn-RARP-err":7, "InARP-req":8, "InARP-rep":9}),
 ARPSourceMACField("hwsrc"),
 SourceIPField("psrc","pdst"),
 MACField("hwdst", ETHER_ANY),
 IPField("pdst", "0.0.0.0")]
 who_has = 1
 is_at = 2
 def answers(self, other):

150

 if isinstance(other,ARP):
 if ((self.op == self.is_at) and
 (other.op == self.who_has) and
 (self.psrc == other.pdst)):
 return 1
 return 0
 def route(self):
 dst = self.pdst
 if isinstance(dst,Gen):
 dst = iter(dst).next()
 return conf.route.route(dst)
 def extract_padding(self, s):
 return "",s
 def mysummary(self):
 if self.op == self.is_at:
 return self.sprintf("ARP is at %hwsrc% says %psrc%")
 elif self.op == self.who_has:
 return self.sprintf("ARP who has %pdst% says %psrc%")
 else:
 return self.sprintf("ARP %op% %psrc% > %pdst%")

conf.neighbor.register_l3(Ether, ARP, lambda l2,l3: getmacbyip(l3.pdst))

class GRErouting(Packet):
 name = "GRE routing informations"
 fields_desc = [ShortField("address_family",0),
 ByteField("SRE_offset", 0),
 FieldLenField("SRE_len", None, "routing_info", "B"),
 StrLenField("routing_info", "", "SRE_len"),
]

class GRE(Packet):
 name = "GRE"
 fields_desc = [BitField("chksum_present",0,1),
 BitField("routing_present",0,1),
 BitField("key_present",0,1),
 BitField("seqnum_present",0,1),
 BitField("strict_route_source",0,1),
 BitField("recursion_control",0,3),
 BitField("flags",0,5),
 BitField("version",0,3),
 XShortEnumField("proto", 0x0000, ETHER_TYPES),
 ConditionalField(XShortField("chksum",None), lambda
pkt:pkt.chksum_present==1 or pkt.routing_present==1),
 ConditionalField(XShortField("offset",None), lambda pkt:pkt.chksum_present==1
or pkt.routing_present==1),
 ConditionalField(XIntField("key",None), lambda pkt:pkt.key_present==1),
 ConditionalField(XIntField("seqence_number",None), lambda
pkt:pkt.seqnum_present==1),
]
 def post_build(self, p, pay):
 p += pay
 if self.chksum_present and self.chksum is None:
 c = checksum(p)
 p = p[:4]+chr((c>>8)&0xff)+chr(c&0xff)+p[6:]
 return p

151

bind_layers(Dot3, LLC,)
bind_layers(Ether, LLC, type=122)
bind_layers(Ether, Dot1Q, type=33024)
bind_layers(Ether, Ether, type=1)
bind_layers(Ether, ARP, type=2054)
bind_layers(Ether, EAPOL, type=34958)
bind_layers(Ether, EAPOL, dst='01:80:c2:00:00:03', type=34958)
bind_layers(CookedLinux, LLC, proto=122)
bind_layers(CookedLinux, Dot1Q, proto=33024)
bind_layers(CookedLinux, Ether, proto=1)
bind_layers(CookedLinux, ARP, proto=2054)
bind_layers(CookedLinux, EAPOL, proto=34958)
bind_layers(GRE, LLC, proto=122)
bind_layers(GRE, Dot1Q, proto=33024)
bind_layers(GRE, Ether, proto=1)
bind_layers(GRE, ARP, proto=2054)
bind_layers(GRE, EAPOL, proto=34958)
bind_layers(GRE, GRErouting, { "routing_present" : 1 })
bind_layers(GRErouting, conf.raw_layer,{ "address_family" : 0, "SRE_len" : 0 })
bind_layers(GRErouting, GRErouting, { })
bind_layers(EAPOL, EAP, type=0)
bind_layers(LLC, STP, dsap=66, ssap=66, ctrl=3)
bind_layers(LLC, SNAP, dsap=170, ssap=170, ctrl=3)
bind_layers(SNAP, Dot1Q, code=33024)
bind_layers(SNAP, Ether, code=1)
bind_layers(SNAP, ARP, code=2054)
bind_layers(SNAP, EAPOL, code=34958)
bind_layers(SNAP, STP, code=267)

conf.l2types.register(ARPHDR_ETHER, Ether)
conf.l2types.register_num2layer(ARPHDR_METRICOM, Ether)
conf.l2types.register_num2layer(ARPHDR_LOOPBACK, Ether)
conf.l2types.register_layer2num(ARPHDR_ETHER, Dot3)
conf.l2types.register(144, CookedLinux) # called LINUX_IRDA, similar to CookedLinux
conf.l2types.register(113, CookedLinux)

conf.l3types.register(ETH_P_ARP, ARP)

@conf.commands.register
def arpcachepoison(target, victim, interval=60):
 """Poison target's cache with (your MAC,victim's IP) couple
arpcachepoison(target, victim, [interval=60]) -> None
"""
 tmac = getmacbyip(target)
 p = Ether(dst=tmac)/ARP(op="who-has", psrc=victim, pdst=target)
 try:
 while 1:
 sendp(p, iface_hint=target)
 if conf.verb > 1:
 os.write(1,".")

152

 time.sleep(interval)
 except KeyboardInterrupt:
 pass

class ARPingResult(SndRcvList):
 def __init__(self, res=None, name="ARPing", stats=None):
 SndRcvList.__init__(self, res, name, stats)

 def show(self):
 for s,r in self.res:
 print r.sprintf("%19s,Ether.src% %ARP.psrc%")

@conf.commands.register
def arping(net, timeout=2, cache=0, verbose=None, **kargs):
 """Send ARP who-has requests to determine which hosts are up
arping(net, [cache=0,] [iface=conf.iface,] [verbose=conf.verb]) -> None
Set cache=True if you want arping to modify internal ARP-Cache"""
 if verbose is None:
 verbose = conf.verb
 ans,unans = srp(Ether(dst="ff:ff:ff:ff:ff:ff")/ARP(pdst=net), verbose=verbose,
 filter="arp and arp[7] = 2", timeout=timeout, iface_hint=net, **kargs)
 ans = ARPingResult(ans.res)

 if cache and ans is not None:
 for pair in ans:
 conf.netcache.arp_cache[pair[1].psrc] = (pair[1].hwsrc, time.time())
 if verbose:
 ans.show()
 return ans,unans

@conf.commands.register
def is_promisc(ip, fake_bcast="ff:ff:00:00:00:00",**kargs):
 """Try to guess if target is in Promisc mode. The target is provided by its ip."""

 responses = srp1(Ether(dst=fake_bcast) / ARP(op="who-has", pdst=ip),type=ETH_P_ARP,
iface_hint=ip, timeout=1, verbose=0,**kargs)

 return responses is not None

@conf.commands.register
def promiscping(net, timeout=2, fake_bcast="ff:ff:ff:ff:ff:fe", **kargs):
 """Send ARP who-has requests to determine which hosts are in promiscuous mode
 promiscping(net, iface=conf.iface)"""
 ans,unans = srp(Ether(dst=fake_bcast)/ARP(pdst=net),
 filter="arp and arp[7] = 2", timeout=timeout, iface_hint=net, **kargs)
 ans = ARPingResult(ans.res, name="PROMISCPing")

 ans.display()
 return ans,unans

class ARP_am(AnsweringMachine):
 function_name="farpd"
 filter = "arp"

153

 send_function = staticmethod(sendp)

 def parse_options(self, IP_addr=None, iface=None, ARP_addr=None):
 self.IP_addr=IP_addr
 self.iface=iface
 self.ARP_addr=ARP_addr

 def is_request(self, req):
 return (req.haslayer(ARP) and
 req.getlayer(ARP).op == 1 and
 (self.IP_addr == None or self.IP_addr == req.getlayer(ARP).pdst))

 def make_reply(self, req):
 ether = req.getlayer(Ether)
 arp = req.getlayer(ARP)
 iff,a,gw = conf.route.route(arp.psrc)
 if self.iface != None:
 iff = iface
 ARP_addr = self.ARP_addr
 IP_addr = arp.pdst
 resp = Ether(dst=ether.src,
 src=ARP_addr)/ARP(op="is-at",
 hwsrc=ARP_addr,
 psrc=IP_addr,
 hwdst=arp.hwsrc,
 pdst=arp.pdst)
 return resp

 def sniff(self):
 sniff(iface=self.iface, **self.optsniff)

@conf.commands.register
def etherleak(target, **kargs):
 """Exploit Etherleak flaw"""
 return srpflood(Ether()/ARP(pdst=target),
 prn=lambda (s,r): conf.padding_layer in r and hexstr(r[conf.padding_layer].load),
 filter="arp", **kargs)

154

APPENDIX C

Root user access on Linux Ubuntu 10.04

Linux operating systems have a robust permissions system. This is often a very good

thing, as it enables a clear separation of roles among users. Linux operating systems

have 6 user levels from a single user all the way to a root user. A root user account by

default has access to all commands and files on a Linux or other Unix-like operating

system

Root access is required to perform a lot of administrative actions on Linux Ubuntu,

such as installing software. Root user access is locked by default on Linux Ubuntu.

Commands are however provide temporary administrators access to root commands.

For the installing of the required packages and to run Wireshark on Ubuntu 10.04, root

user access is required. Root user access can be enabled on Linux Ubuntu as shown

below

155

APPENDIX D

Installing Scapy and the required packages on Linux Ubuntu

Installing Scapy on Linux Ubuntu

Installing Scapy on Wireshark

APPENDIX E

156

Nomogram for current

157

APPENDIX F
Nomogram for voltage

158

APPENDIX G

Setting up Omicron CMC for sampled value publishing

The newer versions of the Omicron CMC such as CMC 256, CMC 353, CMC 356,

CMC 850, etc. provide support for IEC 61850 GOOSE and Sampled Values (Yang et

al., 2009).

Omicron CMC Sampled Values support

The procedure followed when setting up the CMC to allow for Sampled Value

outputting is:

i) Associating the PC being used for configuring the CMC with the device

ii) Setting up the communication parameters

iii) Setting up The voltage and current magnitude and phase angles

iv) Setting up some trigger mechanisms, this is optional depending on the test

being performed.

v) Initiating the publishing of sampled values

159

Setting up the magnitude and phase angles on Omicron CMC (phase to neutral values

Omicron CMC device setup (line –line values)

160

APPENDIX H
Code for the sampled value frame structure

NOTE: The code is not complete and represents on the frame structure developed

'' Emmanuel Luwaca Sampled Value frame structure '''

'''---'''

SampleValue_new =

Ether(dst=""01:0C:CD:04:ff:ff"",type=0x8100)/Dot1Q(prio=4,id=0,type=0x88ba)

class Appid(Packet):

 name = "AppidPacket"

 fields_desc = [XShortField ("EmAPPID",0x4000),

 XShortField ("Em_LengthPDU",0x71),

 XShortField ("Em_Reserve2",0x00),

 XShortField ("Em_Reserve1",0x00)]

MyAppid = Appid(EmAPPID=0x4000)

MyLengthPDU = Appid(Em_LengthPDU=0x71)

MyReserve1 = Appid(Em_Reserve1=0x00)

MyReserve2 = Appid(Em_Reserve2=0x00)

class svPdu(Packet):

 name = "svPduPacket"

 fields_desc = [XShortField ("Em_svPdu",0x6067),

 XShortField ("Em_noASDU",0x8001),

 XByteField ("Em_noASDU_value",0x01),

 XShortField ("Em_seqASDU",0xa262),

 XShortField ("Em_seqASDU_value",0x3060)]

MysvPdu = svPdu(Em_svPdu=0x6067)

MynoASDU = svPdu(Em_noASDU=0x8001)

MynoASDU_value = svPdu(Em_noASDU_value =0x01)

MyseqASDU = svPdu(Em_seqASDU=0xa262)

MyseqASDU_value = svPdu(Em_seqASDU_value =0x3060)

class ASDU(Packet):

 name = "ASDUPacket"

161

 fields_desc = [XShortField ("svID_pad",0x800f),

 StrField("svID",'''Emanuel_cput_sa'''),

 XShortField ("smpCnt_pad",0x8202),

 ShortField ("smpCnt_value",0x00),

 XShortField ("confRef_pad",0x8304),

 XIntField ("confRef_value",0x1),

 XShortField ("smpSynch_pad",0x8501),

 XByteField ("smpSynch_value",0x00)]

MysvID_pad = ASDU(svID_pad=0x800f)

MysvID = ASDU(svID = '''Emanuel_cput_sa''')

MysmpCnt_pad = ASDU(smpCnt_pad=0x8202)

MysmpCnt_value = ASDU(smpCnt_value=0x00)

MyconfRef_pad = ASDU(confRef_pad=0x8304)

MyconfRef_value = ASDU(confRef_value=0x1)

MysmpSynch_pad = ASDU(smpSynch_pad=0x8501)

MysmpSynch_value = ASDU(smpSynch_value=0x1)

class PhsMeas1(Packet):

 name = "PhsMeas1Packet"

 fields_desc = [XShortField ("Phs1_pad",0x8740),

 XIntField("Ia_value",0x00),

 XIntField("Ia_quality",0x00),

 XIntField("Ib_value",0x00),

 XIntField("Ib_quality",0x00),

 XIntField("Ic_value",0x00),

 XIntField("Ic_quality",0x00),

 XIntField("In_value",0x00),

 XIntField("In_quality",0x2000),

 XIntField("Va_value",0x00),

 XIntField("Va_quality",0x00),

 XIntField("Vb_value",0x00),

 XIntField("Vb_quality",0x00),

 XIntField("Vc_value",0x00),

 XIntField("Vc_quality",0x00),

 XIntField("Vn_value",0x00),

 XIntField("Vn_quality",0x2000)]

My_Phs1_pad = PhsMeas1(Phs1_pad=0x8740)

162

My_Ia_value = PhsMeas1(Ia_value=0x00)

My_Ib_value = PhsMeas1(Ib_value=0x00)

My_Ic_value = PhsMeas1(Ic_value=0x00)

My_In_value = PhsMeas1(In_value=0x00)

My_Va_value = PhsMeas1(Va_value=0x00)

My_Vb_value = PhsMeas1(Vb_value=0x00)

My_Vc_value = PhsMeas1(Vc_value=0x00)

My_Vn_value = PhsMeas1(Vn_value=0x00)

"""***

Because you can only bind two layers together so this is a laborious process

**"""

bind_layers(MyAppid, MyReserve1)

bind_layers(MyReserve1, MyReserve2)

bind_layers(MyAppid, MyReserve1, proto=0x88ba)

bind_layers(MyReserve1, MyReserve2, proto=0x88ba)

bind_layers(MyReserve2, MyLengthPDU, proto=0x88ba)

bind_layers(MyReserve2, MysvPdu, proto=0x88ba)

bind_layers(MysvPdu, MynoASDU, proto=0x88ba)

bind_layers(MynoASDU, MynoASDU_value, proto=0x88ba)

bind_layers(MynoASDU_value, MyseqASDU, proto=0x88ba)

bind_layers(MyseqASDU, MyseqASDU_value, proto=0x88ba)

bind_layers(MyseqASDU_value, MysvID_pad, proto=0x88ba)

bind_layers(MysvID_pad, MysvID, proto=0x88ba)

bind_layers(MysvID, MysmpCnt_pad, proto=0x88ba)

bind_layers(MysmpCnt_pad, MysmpCnt_value, proto=0x88ba)

bind_layers(MysmpCnt_value, MyconfRef_pad, proto=0x88ba)

bind_layers(MyconfRef_pad, MyconfRef_value, proto=0x88ba)

bind_layers(MyconfRef_value, MysmpSynch_pad, proto=0x88ba)

bind_layers(MysmpSynch_pad, MysmpSynch_value, proto=0x88ba)

bind_layers(MysmpSynch_value, My_Phs1_pad, proto=0x88ba)

"""***

SampleValue = SampleValue_new/MyAppid/MysvPdu/MysvID_pad/My_Phs1_pad

sendp((SampleValue),iface="eth0")

**"""

163

APPENDIX I
Enabling Eth0 on Linux Ubuntu

By default eth0 is not setup automatically on Linux Ubuntu 10.04, and needs to be enabled

and setup to start automatically. There are various ways of setting up the network interface to

start-up automatically. As shown below, root users on Linux Ubuntu can access the network

script and enable the network interface.

auto lo

iface lo inet loopback

auto eth0

iface eth0 inet dhcp

After the script has been edited the network interface needs to be restarted. The script for the

network driver is also shown below. The network driver being utilised is Eth0: Avahi

#!/bin/sh

set -e

Description: Remove routes to allow communication between machines which

only have an IPv4LL address assigned and those which only

have a routable address assigned. These were added by

/etc/network/if-up.d/avahi-autoipd.

See http://developer.apple.com/qa/qa2004/qa1357.html for

more information.

["$IFACE" != "lo"] || exit 0

case "$ADDRFAM" in

 inet|NetworkManager) ;;

 *) exit 0

esac

case "$METHOD" in

 static|dhcp|NetworkManager) ;;

 *) exit 0

esac

164

if [-x /bin/ip]; then

 # route already present?

 ip route show | grep -q '^169.254.0.0/16[[:space:]]' && exit 0

 /bin/ip route del 169.254.0.0/16 dev $IFACE metric 1000 scope link || true

elif [-x /sbin/route]; then

 # route already present?

 /sbin/route -n | grep -q "^169.254.0.0[[:space:]]" && exit 0

 /sbin/route del -net 169.254.0.0 netmask 255.255.0.0 dev $IFACE metric 1000 || true

fi

After the network card has been restarted, the operation of the interface can be verified simple

by typing ifconfig, as shown below

165

REFERENCES

Abdolkhalig, A. and Zivanovic, R., “Performance Evaluation of Phasor Estimator within IEC
61850-9-2 Communication Network”, The International Conference on Electrical and
Electronics Engineering, Clean Energy and Green Computing (EEECEGC 2013), Dubai,
2013, pp. 113-119.

Andersson, L., Brunner, C. & Engler, F., (2003), “Substation Automation based on IEC 61850
with newprocess-close Technologies”, IEEE Power Tech Conference Proceedings, Bologna,
pp.1-6.

Andersson, L., and Brand K.P. (2000) “The benefits of the coming standard IEC 61850 for
communication in substation” Southern African Power System Protection Conference,
Johannesburg, 8-9 November 2000

Andersson, L., Brand, K.P., Wimmer, W., “The Impact of the coming Standard IEC61850 on
the Life-cycle of Open Communication Systems in Substations” Distribution and
Transmission – Brisbane, Australia, Nov 11-14, 2001. pp. 1-9

Apostolov, A., Ziegler, C., DeMicco, E., “Recording power-quality events in IEC 61850-based
systems” , Power-quality 2005 conference, Baltimore, MD, October 2005

Apostolov, A. (2011), “Engineering the distribution system of the future” , CIRED 21st
International Conference on Electricity Distribution, 2011, pp.1-4

Apostolov, A. (2010). “IEC 61850 Substation Configuration Language and Its Impact on the
Engineering of Distribution Substation Systems” CIDAL Argentina 2010 pp.1-6

Apostolov, A. (2011), “Engineering the distribution system of the future” Power Systems
Conference and Exposition, PSCE’06, Atlanta, pp.1053-1058.

Apostolov, A. & Tholomier, D. (2006), “Impact of IEC 61850 on Power System Protection”,
IEEE PES Power Systems Conference and Exposition, PSCE’06, Atlanta, 1053-1058.

Apostolov, A., Auperrin, F., Passet, R., Guenego, M., and Gilles, F. (2006). “IEC 61850
Process Bus based distributed waveform recording.” IEEE Power Engineering Society
General Meeting, June 2006 , pp. 1-6.

Apostolov, A. and Vandiver, B., (2010). "IEC 61850 process bus - principles, applications and
benefits". In Protective Relay Engineers, 2010 63rd Annual Conference. College Station, TX,
2010. IEEE. pp.1 – 6

Baigent, D., Adamiak, M. and R. Mackiewicz. “IEC 61850 Communication Networks and
Systems In Substations” An Overview for Users. SIPSEP, 2004.

Bertolottol, P., Faifer2, M. and R. Ottoboni2., (2007). “High Voltage Multi-Purpose current
and voltage electronic.” Instrumentation and Measurement Technology Conference, 2007.
IEEE. pp.1-5

Biondi, P., and the Scapy community, “Scapy Documentation Release” 2003

Biondi, P. and the Scapy community, “Scapy Documentation Release 2.0.1” 2009

Bovet, D.P. and Cesati, M., “Understanding the Linux Kernel” 2001 pp. 1- 684, O'Reilly &
Associates, Inc.

Brand, K.P. (2004), “The Standard IEC 61850 as Prerequisite for Intelligent Applications in

166

Substations”, IEEE Power Engineering Society General Meeting, 714-718.

Brunner, C., “Will IEEE 1588 Finally Leverage the lEe 61850 Process Bus?” 2011

Brunner, C., “IEC 61850 Process connection – A smart solution to connect the primary
equipment to the substation automation system”, ABB Switzerland, 2005.

Brunner, C., Antonova, G.S., “Smarter Time Sync: Applying the IEEE PC37.238 Standard to
Power System Applications” IEEE. Protective Relay March 2011, pp.91-102

Brunner, C., Cottens, E., Genier, M., Muller, D., Nibbio, N., Reuter, J., "Engineering
approach for the end user in IEC 61850 applications", CIGRE 2010, August 23 – 27, 2010,
Paris, France.

Brunner, C. “IEC 61850 for Power System Communication”. IEEE/PES Transmission and
Distribution Conference and Exposition, 2008. pp.1-6.

Brunner, C. “The Impact of IEC 61850 on Protection”, IET 9th International Conference on
Developments in Power System Protection, DPSP’08, 2008. pp.14-19.

Brunner, C. “IEC 61850 and Smart Grids”, pacworld magazine, UT Innovation, Switzerland.

Cassel, L.N., “Computer Networks and Open Systems: An Application Development
Perspective” Authors: Publication: Book 1st Jones and Bartlett Publishers, Inc. , USA 2000

Chen, A., “Requirements for Ethernet Networks in Substation Automation” Moxa white paper
Released January 2008. pp. 1-12

Chatrefou, D., “Process bus application in NCIT experiments; impact on future architectures”
Proc. 17th Conf. Elec. Pwr Sup. Ind. (CEPSI), Macau, China, 27–31 Oct. 2008

Christensen, L.H. (2005), “Design, construction, and test of a passive optical prototype high
voltage instrument transformer.” IEEE Transactions on Power Delivery, v. 10, No.3, July,
1995.

Elmenreich, W., Haidinger, W., Kopetz, H., Losert, T., Obermaisser, R., Paulitsch, M., Peti,
P., “A standard for real-time smart transducer interface.” 2005. pp.613-624

Falk, H. and Burns, M., “MMS and ASN.1 Encodings Simple Examples and Explanations on
How to Crack an MMS PDU”, Systems Integration Specialists Company, Inc.(SISCO), 1996
pp.1-31

Flynn, B, “Secure Substation Automation for Operations & Maintenance” GE Energy
Whitepaper, 2007. pp. 1-10

Gers, J. M. and Holmes, E. J. “Protection of Electricity Distribution Networks”, 2nd ed.
London: Institution of Engineering and Technology 2004.

Halvorsen, P., “Data Communication:Introduction to Berkeley Sockets” INF1060: Introduction
to Operating Systems and Data Communication, 2005

Hosmer, C., “Python Forensics A Workbench for Inventing and Sharing Digital Forensic
Technology”
Horalek, J. and Sobeslav, V., “Data networking Aspects of Power Substation Automation”
Communication and Management in Technological Innovation and Academic Globalization,
2014. pp. 1-7

167

IEC 60044, “Instrument Transformers Part7: Electronic Voltage transformer” Ed.1., 2002.

IEC 60044, “Instrument Transformers Part8: Electronic Current transformer” Ed.1., 2002.

IEC 61850-1, 2003. Communication networks and systems in substations – Part 1:
Introduction and overview. Standard. IEC.

IEC 61850-2, 2003. Communication networks and systems- Part 2: Glossary. Standard. IEC.

IEC 61850-2, 2004. Communication networks and systems in substations – Part 9-2:Specific
Communication Service Mapping (SCSM) –Sampled values over ISO/IEC 8802-3. Standard.
IEC.

IEC 61850-5, 2003. Communication networks and systems in substations- Part 5:
Communication requirements for functions and device models. Standard. IEC.

IEC 61850-6, 2004. Communication networks and systems in substations – Part 6:
Configuration description language for communication in electrical substations related to
IEDs. Standard. IEC.

IEC 61850-7-1, 2003. Communication networks and systems in substations – Part 7-1: Basic
communication structure for substation and feeder equipment – Principles and models.
Standard. IEC.

IEC 61850-7-2, 2003. Communication networks and systems in substations – Part 7-2: Basic
communication structure for substation and feeder equipment – Abstract communication
service interface (ACSI). Standard. IEC.

IEC 61850-7-4, 2003. Communication networks and systems in substations – Part 7-4: Basic
communication structure for substation and feeder equipment – Compatible logical node
classes and data classes. Standard. IEC.

IEC 61850-8-1, 2004. Communication networks and systems in substations – Part 8-1:
Specific Communication Service Mapping (SCSM) – Mappings to MMS (ISO 9506-1 and ISO
9506-2) and to ISO/IEC 8802-3. Standard. IEC.

IEC 61850-9-1, 2003. Communication networks and systems in substations – Part 9-1:
Specific Communication Service Mapping (SCSM) – Sampled values over serial
unidirectional multidrop point to point link

IEC 61850-9-2, 2004. Communication networks and systems in substations – Part 9-2:
Specific Communication Service Mapping (SCSM) – Sampled values over ISO/IEC 8802-3.
Standard. IEC.

IEC 61970: Energy management system application program interface (EMS-API)-part 301:
Common information model (CIM) base, Aug. 2011. Edition 3.0

IEC 61968: Application integration at electric utilities-system interface for management- part
1: Interface architecture and general requirements, 2011. Edition 2.0 (Draft)

IEC: Substation Configuration Language” Summary August 2006

IEEE Standard for Local and metropolitan area networks - Virtual Bridged Local Area
Networks, IEEE Std 802.1Q - 2005, 31 19 May 2006

IEEE Standard for Local and Metropolitan Area Networks – Part 3: Carrier Sense Multiple
Access with Collision Detection (CSMA/CD) Access Method and Physical Layer

168

Specifications , IEEE Std. 802.3- 2008, 26 Dec. 2008.

IEEE Standard for Local and Metropolitan Area Networks – Media Access Control (MAC)
Bridges and Virtual Bridge Local Area Networks, IEEE Std. 802.1Q-2011, 31 Aug. 2011.

Ingram, D., Schaub, P., and Campbell, D.A., “Multicast Traffic Filtering for Sampled Value
Process Bus Networks” Proceedings of the 37th Annual Conference of the IEEE Industrial
Electronics Society (IECON 2011), IEEE Crown Conference Centre, Melbourne, VIC, pp. 1-6.

Ingram, D., Schaub, P., Campbell, D.A., and Taylor, R.R., “Performance analysis of PTP
components for IEC61850 process bus applications.” 2012. IEEE Transactions on Industrial
Informatics, pp. 1445- 1454.

Janssen, M.C., Apostolov, A., (2008), “IEC 61850 impact on substation design” Transmission
and Distribution Conference and Exposition,2008 T& D IEEE/PES pp. 1-7, 2008.

Jorgensen, B., “Guide to Network Programming - Using Internet Sockets” 2012. pp. 1-109

Kanabar, M. (2011), “Investigating Performance and Reliability of Process Bus Networks for
Digital Protective Relaying”

Kaliski Jr., B.S., “ A layman’s guide to a subset of ASN.1, BER, and DER”, Online:
http://luca.ntop.org/Teaching/Appunti/asn1.html. pp.1-27

Kezunovic, M., Perunicic, B., Levi, S., Soljanin, E., "Digital Signal Processing Algorithms for
Power and Line Parameter Measurements with Low Sensitivity to Frequency Change," IEEE
Transactions on Power Delivery, Vol. 5, April 1990. pp. 1209-1215

Kezunovic, M., Taylor, H. (2004),”New Solutions for Substation Sensing, Signal Processing
and Decision Making” Proceedings of the 37th Hawaii International Conference on System
Sciences – 2004. pp. 1-9

Kezunovic, M., Portillo, L., Karady, G., and Kucuksari, S. (2006) “Impact of Optical Instrument
Transformer Characteristics on the Performance of Protective Relays and Power Quality
Meters” IEEE PES Transmission and Distribution Conference and Exposition Latin America,
Venezuela

Kezunovic, M. and Popovic, T. (2005), “Developing Future Substation Automation Strategies:
Selecting Apprpriate IEDs and Developing New Applications”, International Energy Journal,
Special Issue: Cogeneration, Distributed Generation, Distribution System and Power Quality,
and DSM and Energy Efficiency, Vol. 6, No. 1, Pt. 3, pp 3-151-3-162, June 2005.

Kim, J., Kim, D., Byun, H., Ham, H Jung, W., Han, D., Park, J., Lee, H., “The definition of
basic TEDS of IEEE 1451.4 for sensors for an electronic tongue and the proposal of new
template TEDS for electrochemical devices.” 2006. pp.1642-1645

Kirkman, R. (2007), “Development in Substation Automation Systems,” Proceedings of
International Conference on Intelligent Systems Applications to Power Systems, Toki Messe,
5-8 November 2007, pp. 1-6. doi:10.1109/ISAP.2007.4441690

Kriger, C., Retonda, J., Luwaca, E., Behardien, S., “Analysis of GOOSE and Sampled Value
Message Structure for Educational Purposes” Protection Automation and Control World
conference, Dublin, Ireland, 2011

Konka, W., Authur, C.M., and Atkins, R.C., “Traffic Generator of IEC 61850 sampled values”
IEEE. in Smart Grid Modelingand Simulation (SGMS), 2011 IEEE First International
Workshop on, 17-17 Oct. 2011, pp. 43–48

169

Lee, K. & Schneeman, R., “Distributed Measurement and Control Based on the IEEE 1451
Smart Transducer Interface Standards. IEEE Transactions on Instrumentation and
Measurement. 2000 pp. 621 - 627.

Lee, K. (2003), “UML Model for the IEEE 1451.1 Standard” IMTC 2003 - Instrumentation and
Measurement Technology Conference, 2003. IEEE. pp.1588-1592

Lee, K., Song. E., “Object-Oriented Application Framework for IEEE 1451.1 Standard”
Technology Conference, 2004. IMTC 2004 Instrumentation and Measurement
Technology Conference Como, Italy, May 18-20,2004. pp.1182-1187

Leffler, S. J., Robert S. F., William N.J., Lapsley, P., “An Advanced 4.4BSD Interprocess
Communication Tutorial” Computer Systems Research Group, Department of Electrical
Engineering and Computer Science, University of California, Berkeley.

Leupp, P. and Rytoft, C. (2011), “Special Report IEC 61850” ABB document. 2011 pp.1-64

Liang, Y. and Campbell, R. H., “Understanding and Simulating the IEC61850 Standard,”
2008. [Online]. Available: https://www.ideals.illinois.edu/handle/2142/11457.
Mackiewicz, R.E., “Overview of IEC 61850 and Benefits” 2006. IEEE Power Systems
Conference and Exposition, Atlanta, 29 October-1 November June 2006, pp.623-630

Mark, J. and Hufnagel, P., “The IEEE 1451.4 Standard for Smart Transducers,” IEEE. 2004.
pp.1-13

Minkner, R., “Development Trends in Medium- and High Voltage Technologies for Measuring
Systems, Filters and Bushings” 2005. IEEE. pp.1-8

Midance, R. and Iadonis, D., “Ethernet networks redundancy with focus on IEC 61850
applications. In:20th International Conference and Exhibition on Electricity Distribution.
Prague: Curran, 2009, pp. 1-4.

Mohagheghi, S., Stoupis, J. & Wang, Z. (2009), “Communication Protocols and Networks for
Power Systems- Current Status and Future Trends”, IEEE/PES Power Systems Conference
and Exposition (PSCE), pp.1-9
.
Mohagheghi, S., Tournier, J. C., Stoupis, J., Guise, L., Coste, T., Andersen, C. A. & Dall, J.
(2011), “Applications of IEC 61850 in distribution automation”, IEEE/PES Power Systems
Conference and Exposition (PSCE) , pp.1-9.

Mohagheghi, S., Mousavi, M., Stoupis, J. & Wang, Z. (2009), “Modeling Distribution
Automation System Components Using IEC 61850”, IEEE PES General Meeting (PES
GM’09), Calgary, Alberta, Canada, 1-6.

Nordell, D.E, “Substation Communication History and Practice” 2008 pp.137-173

Pal, S., Rakshit, A. (2004), “Development of network capable smart transducer interface for
traditional sensors and actuators” Online: Science direct - Sensors and Actuators A112
(2004). pp.381-387

PIIRAINEN, J., “Application of horizontal communication in industrial power networks” 2010.
pp1-80

“Pan, F., Chen, R., Xiao,Y., and Sun, W. (2012) “Electronic Voltage and Current
Transformers Testing Device” www.mdpi.com/journal/sensors 2012 pp.1043-1052

170

Pofoud, D., “UCA and IEC 61850 for dummies.” distribuTech conference 2002. pp.1-37

Rahmatian, F., Chavez, P.P. “SF6-Free 550 kV Combined optical voltage and current
transducer system,” IEEE Transmission and Distribution Conference, September 7-
12, 2003, pp. 379-382.

Rahmatian, F., Chavez, P.P., and Jaeger, N.A., “138 kV and 345 kV Wide-Band SF6-Free
Optical Voltage Transducers” Proceedings of 2002 IEEE Power Engineering Society Winter
Meeting, Jan 28 – Feb 1, 2002.)

Risso, H. and Degioanni,L., “An, An Architecture for High Performance Network Analysis.
Proceedings of the 6th IEEE Symposium on Computers and Communications (ISCC 2001),
Hammamet, Tunisia, July 2001.

Risso, H. and Degioanni,L. “An architecture for high performance network analysis.” 2005
pp.1-9

Sawa, T., Kurosawa, K., Kaminishi, T., Yokota,T., “Development of Optical Instrument
Transformers.” IEEE Transactions on Power Delibery, Vol. 5, No. 2, April 1990 pp.884-891

Sanders, C. (2000), “Practical packet analysis.”

Menzies, T., “The Raw And The Uncooked: The Windows XP Raw Sockets Saga, Final
Words (Hopefully)” SANS Institute 2002

Schaub, P. and Kenwrick, A., “An IEC 61850 Process Bus Solution for Powerlink's iPASS
Substation Refurbishment Project”, Cigré Australia Panel B5, SEAPAC Conference -
Powerlink Queensland, March 2009.

Sidhu, T. S., Kanabar, M.G., “Implementation Issues with IEC 61850 Based Substation
Automation Systems” Fifteenth National Power Systems Conference (NPSC), IIT Bombay,
December 2008

Sidhu, T. S., Gangadharan, P. K., “Control and Automation of Power System Substation
using IEC 61850 Communication,” in Proc. IEEE Control and Applications, pp.1331-1336,
Aug. 2005.

Sidhu, T. S., Yin, Y., “Modelling and Simulation for Performance Evaluation of IEC 61850
based Substation Communication Systems,” IEEE Trans. On Power Delivery, vol. 22, no. 3,
pp. 1482-1489, Jul. 2007.

Shuylupin,C., (2009), “Embedded Linux Software, Device Drivers”
Online:http://www.makelinux.net/kernel/diagram

Sonawane, Y., Patil, P., Sonawane, N.D., Sonawane, S. (2007), “Power System Real Time
Simulation Testing Using IEC 61850.”

Skendzic, V., Guzmia, A., “Enhancing Power System Automation Through the use of Real-
Time Ethernet.” pp.480-495

Skendzic, V., Ender, I., and Zweigle, G., “IEC 61850-9-2 Process Bus and Its Impact on
Power System Protection and Control Reliability” Online: Schweitzer Engineering
Laboratories, Inc.
Steinhauser, F., “Technology of the future – Sampled Values provide many benefits for the
power systems of tomorrow” 2012. pp.1-4

171

Tiponut, S.V. (2001), “Python Network Programming.” Version 0.00, 16. July 2001

Tholomier, D. and Chatrefou, D. (2008), “IEC 61850 Process Bus – It is Real” PAC World
Magazine, Winter 2008, pp.48-53

UCA International Users Group, “Implementation Guidance for Digital Interface to Instrument
Transformers Using IEC 61850-9-2" 2004. pp.1-31

Udren, E., Kunsman, S., and Dolezilek, D. “Significant substation communication
standardization development” In 2nd Annual Western Power Delivery Automation Conference
(WPDAC) Proceedings (April 2000). pp.1-27

Weiss, S., Graeve, P., Andersson, A., “Benefits of conventional instrument transformer data
into Smart Grid capable process data utilizing Merging unit” 21st International Conference on
Electricity Distribution. 2011. pp.1-4

Wiczer, J. 2001. “Smart Interfaces for Sensors”. Proceeding Sensor Expo 2001, Chicago, IL.
pp.10-13

Li Yang. "Impact evaluation of IEC 61850 process bus architecture on numerical protection
systems", 2009 International Conference on Sustainable Power Generation and Supply, April
2009

Yang. L., "Performance assessment of a IEC 61850-9-2 based protection scheme for a
transmission substation", 2011 2nd IEEE PES International Conference and Exhibition on
Innovative Smart Grid Technologies, December 2011

Zereneh, W. “Packet crafting using Scapy” 2006. pp.1-56 Bachelor of Science thesis,
Toronto, 2006

Zheng, P., Pan, S., Chen, C., Ren., Y., “Research on A Networked Optical Fiber Temperature
Sensor of Large Power transformer windings” 2006. IEEE International Conference on
Industrial Informatics pp.515-518

Online: Omicron - IEC 61850 Testing Tool
https://www.omicron.at/fileadmin/user_upload/pdf/literature/IEC-61850-Testing-Tools-
ENU.pdf

Online: www.Python.org

Online: http://www.pearlstreet.inc.com

Online: http://inventors.about.com

Online: http://www.fi.edu/learn/case-files/energy.html

Online: http://www.nettedautomation

Online: www.wireshark.org

Online: www.secdev.org

Online: http://en.wikipedia.org/wiki/Berkerly_Packet_Filter

