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Abstract  
 

The IEC 61850 standard, “Communication networks and systems in substations” was 

promulgated to accommodate the need for a common communication platform within 

substations for devices from different vendors.  The IEC 61850 standard proposes a 

substation automation architecture that is Ethernet-based, with a “station-bus” for 

protection devices within the substation and a “process bus” where raw data from the 

voltage and current transformers are published onto the data network using a device 

known as a Merging Unit.  

 

To date, most of the standardization efforts were focused at the station bus level 

where event-triggered messages are exchanged between the substation automation 

devices, commonly referred to as Intelligent Electronic Devices (IEDs). These 

messages are known as Generic Object Oriented Substation Event messages. 

Equipment from vendors to accommodate the “process bus” paradigm, however is 

still limited at present.  

 

The Centre for Substation Automation and Energy Management Systems was 

established within the Electrical Engineering Department at the Cape Peninsula 

University of Technology with one of its objectives being the development of 

equipment either for simulation or real-time purposes in compliance with the IEC 

61850 standard. In order to fulfil this long-term objective of the Centre, an in-depth 

understanding of the IEC 61850 standard is required. 

 

This document details the efforts at acquiring the requisite knowledge base in support 

of the educational objectives of the Centre and the research project implements a 

simulation of a merging unit which is compliant with the functional behavior as 

stipulated by the standard. This limited functional implementation (i.e. non-real-time) 

of the merging unit, is achieved through the development of a virtualized data 

acquisition node capable of synthetic generation of waveforms, encoding of the data 

and publishing the data in a format compliant with the IEC 61850-9-2 sampled value 

message structure.  

 

This functional behavior of the virtual sensor node which was implemented has been 

validated against the behavior of a commercial device and the sampled value 

message structure is validated against the standard. The temporal behavior of the 

proposed device is commented upon. This research project forms the basis for future 

real-time implementation of a merging unit.  
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CHAPTER 1  
 

Introduction  
 

The history of electricity dates back to the early 19th century, when an Italian scientist 

by the name of Alessandro Volta made a discovery by soaking paper in salt water, 

placing zinc and copper on opposite sides of the paper, and observing that the 

chemical reaction produces an electric current. In 1831 Michael Faraday discovered 

the "induction" or generation of electricity in a wire by moving a wire through a 

magnetic field (Online: http://inventors.about.com). The induction ring was the first 

electric transformer and both the electric generator and the electric motor are based 

on this principle (Online: www.fi.edu/learn/case-files/energy.html). The challenge was 

then to use these principles to develop an electrical system that would provide people 

with a practical source of energy. Thomas Edison took on this challenge. He 

designed and built the first electric power plant that was able to produce electricity, 

and distribute it to people’s homes. The Pearl Street power station was put into 

service on the 4th September 1882 in New York City (Online: 

http://www.pearlstreet.inc.com) and is considered the world's first central electricity 

generating station.  

 

Alternating current electrical power systems began developing in the early 20th 

century (Nordell, 2008) and are divided into three different entities, Generation, 

Transmission and Distribution as depicted in Figure 1.1.  

 

Figure 1.1: Power system 
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Electricity is generated at a generation plant and transmitted using high voltage 

power lines. An electrical substation is a subsidiary station of an electricity generation 

and transmission system where voltages are transformed from high to low (step 

down) or low to high (step up) using transformers. Substations use protective devices 

to isolate system failures so that these localised faults do not compromise the power 

system network integrity.  In substation power protection systems deployed in the 

early days there was no automation, and humans were often stationed at key points 

in the electrical system to monitor and respond to problems (Nordell, 2008).  

 

One of the main drivers behind the recent developments in power system protection 

and control has been to try and minimize system faults, maintain continuity of supply, 

minimize human intervention and to implement automated system-solutions for the 

protection and control of power networks. A Substation Automation System (SAS) 

refers to the creation of a highly reliable substation environment that rapidly responds 

to real-time events with appropriate action, ensuring an uninterrupted power service. 

 
1.1. Introduction to substation automation systems 
 

Substation automation systems were introduced in the early 1990’s (Kirkman, 2007). 

During this period bay controllers and protection devices with inherent bay control 

functionality became available. These bay controllers could provide limited substation 

automation capabilities by connecting substation protection devices to the substation 

controller, typically a Remote Terminal Unit (RTU) using serial communication.  

 

The early substation automation systems had master/slave architectures and typically 

utilised legacy communication protocols to transfer substation data to a remote 

location. These legacy protocols in general were simple protocols that were designed 

to be byte-efficient. During this period, communications protocols such as Modbus 

and Distribution Network Protocol (DNP) became industry standards.  

 

These are tag-based protocols, where users accessed data by specifying a tag 

number or index number. The implementation of these protocols resulted in a simple 

reliable communication network architecture, however the effort required during 

system engineering made the use these protocols unnecessarily complex.  

 

Substation automation and the integration of substation automation systems to 

enterprise level have continued to develop since the early 1990’s. Furthermore, 

technical advances in microprocessor technology and data networking have meant 

that Ethernet-based systems are preferred as opposed to serial communication such 
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as RS232 and RS485, as the communication medium of choice. Ethernet bus-based 

substation automation systems can be divided into two categories, non-standardised 

and standardised substation automation systems. 

 

1.1.1. Substation automation systems using non-stan dardized intelligent electronic 
devices  
 

Since the late 1990’s protection Intelligent Electronic Devices (IEDs) with inherent 

bay control functionality and Ethernet communication capabilities have become 

readily available. Intelligent Electronic Devices (IEDs) is a name given to protection 

and control devices. The term IED in substation automation system refers to 

microprocessor based protection, metering and monitoring devices (Kezunovic and 

Popovic, 2005). Prior to the introduction of IEDs the protection and control devices 

were known as electromechanical relays – as the name suggests, these earlier 

devices had no intelligence.  

 

A large number of power utilities have deployed many of these protective devices 

(IEDs) in the field without using the communication capabilities of these devices due 

to the fact that these relays are non-standardized. The main drawback of using non-

standardized IEDs is that each manufacturer’s device is unique. As a result, utilities is 

either locked into using one manufacturer’s product or need to have the resources to 

maintain devices from different vendors. Figure 1.2 depicts a solution where non-

standardized Ethernet based IEDs are deployed. 

 

 

Figure 1.2: Substation architecture using non-standardized IED 

 

The benefits that accompany an Ethernet-based system includes the reduction of 

wiring time, the provisioning of network addressability for the IEDs, and a significant 

reduction in cabling cost. However, since proprietary data protocols are used in non-

HMI 
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standardized systems, there is no interoperability, and substation integration between 

vendor A and vendor B IEDs is impossible without the use of very complex and 

expensive protocol convertors (see Figure 1.2 above). As a result, users of non-

standardized IEDs are often bound to a single vendor. 

 

Inadvertently the introduction of non-standardized IEDs resulted in several proprietary 

communication protocols being introduced into the market. The large number of 

competing proprietary solutions for communication in substation automation and 

SCADA systems started becoming too costly for industry. This resulted in a lack of 

interoperability, high recurring development costs and lack of support (long term 

stability) for a number of protocols. The need for standardization existed. Figure 1.3 

below shows a standardized substation automation system.   

 

 

Figure 1.3: Standardized substation automation system 

 

Figure 1.3 shows that the same advantages as in Figure 1.2 can be achieved with a 

standardized substation automation system, with the added advantage of 

interoperability and scalability (as is shown between vendor A and vendor B in Figure 

1.3 above).  

 

1.2. The IEC 61850 standard 
 

The IEC 61850 standard is a current international standard for substation automation 

systems. The IEC 61850 standard defines a substation automation framework that is 

future proof, flexible, scalable, maintainable, and provides interoperability between 

substation automation devices from multiple vendors. 
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The IEC 61850 standard provides this framework by defining a) the data that has to 

be communicated between IEC 61850 compliant devices, b) by defining information 

exchange mechanisms, and c) by defining the format and content of files to enable 

system engineering for substation automation systems.  

 

The standard recommends a hierarchical Ethernet-based substation automation 

architecture, with a station level, bay level and a process level, as depicted in Figure 

1.4 below. 

 

Figure 1.4: IEC 61850 substation architecture (IEC 61850, 2003) 

 

At the process level, a data acquisition node that can be used for measurement 

distribution from primary plant equipment is defined. This data acquisition node is 

referred to as the “Merging Unit”. The merging unit is discussed in detail in chapter 4 

section 4.3.  

 
1.3. IEC 61850-9-2 Process Level 
 

The process level is the lowest level of the three tier architecture defined in the IEC 

61850 standard (see Figure 1.4 above). The process level is used to distribute 

primary plant equipment status and analogue measurements to the bay level devices. 

The measurement distribution method utilised in the IEC 61850 standard is referred 

to as sampled values. Sampled values are digital measurements published from a 

Merging Unit connected to the instrument transformer as shown in Fig. 1.5.  
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Figure 1.5: Simplified structure of merging unit (IEC 60044-8) 

 

Figure 1.5 above shows the simplified structure of merging unit.  A Merging unit 

receives a time-coherent set of samples of three-phase voltages, three-phase 

currents, and neutral voltages and currents from the instrument transformer. The data 

collected from the instrument transformer is digitized and stored within the device. 

The data is then periodically retrieved from the logical nodes; is encoded into a 

dataset; packaged according to the IEC 61850-9-2 message format and transmitted 

to the process-bus as sampled values. This will be explained in more detail in chapter 

3 section 3.5.2.3. 

 

The IEC 61850 standard has been widely accepted and is slowly being deployed by 

power system utilities across the globe. The technology roadmap for most power 

system utilities is converging towards the general use of the IEC 61850 standard. The 

implementation of the IEC 61850 process bus model is however still limited. There is 

a need to train and equip substation automation engineers and students in general 

with knowledge of the IEC 61850-9-2 process bus technology. 
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1.4. Motivation for research and problem definition   

1.4.1. Motivation for research 

 
Standards-based equipment compliant with the IEC 61850 standard has become 

important in modern substation automation systems in order to reduce labour costs, 

to ease system scalability, and reduce maintenance costs. This is due to benefits 

derived from a combination of reduced cabling, “Plug and Use” capability, ease of 

equipment addressability, interoperability of equipment and the availability of software 

environments for describing system architecture. Equipment from vendors to 

accommodate the “Process bus” paradigm is however limited at present. 

 

The knowledge about the methods to model developed devices that can publish 

sampled value messages in a manner compliant with the IEC 61850-9-2 standard 

currently resides within the vendor environment. 

 

This proposed project is motivated by the need to build the foundation for the creation 

of a virtual sensor node to contribute to, and assist with the understanding of the 

process-bus concepts and to develop a pool of expertise with knowledge of the IEC 

61850 standard and the engineering tools required for configuration and simulation 

within an education environment. This proposed virtualised sensor node would 

represent a limited functional implementation of the merging unit that will represent a 

virtualised data acquisition node capable of synthetic generation of waveforms 

through synthesis data generation, encoding of the data and transmitting the data in a 

format compliant with the IEC 61850 protocol. 

 

The role of this project in an academic environment therefore is to build the 

knowledge base required to assist with the understanding of the functioning and 

implementation of the virtual sensor node, and to lay the groundwork for a future real-

time implementation. 

 

1.4.2. Problem definition 

 
The challenge with IEC 61850-9-2 sampled value message distribution is that it 

occurs at the Datalink layer.  Messages that occur at the Datalink layer are much 

more difficult to program on PC platforms as opposed to the higher-level protocols in 

the Open System Interconnect (OSI) model, such as User Datagram Protocol (UDP) 

and Transmission Control Protocol (TCP). For this project methods to generate the 

sampled value frame structure, encoding of the data and transmission at the Datalink 

layer in a format compliant with the IEC 61850-9-2 sampled value message structure, 
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have to be investigated. The operating systems that allow for the generation, binding 

and transmission of frames at the Datalink layer also have to be investigated. 

 

1.5. Research aim and objectives 
 
1.5.1. Aim   
 

The aim of this Postgraduate Project is to examine the standardization developments 

within the IEC 615850 substation automation environment, to study the substation 

automation framework presented in the IEC 61850 standard, and measurement 

distribution methods proposed. The knowledge gained would be used to implement 

certain aspects of a Merging Unit. This limited functional merging unit represents a 

virtualized data acquisition node capable of synthetic generation of waveforms, 

encoding of the data and transmitting the data in a format compliant with the IEC 

61850-9-2 sampled value message structure. 

 

1.5.2. Research objectives 
 

An initial research objective would be to examine the chronological evolution of 

substation automation systems and to examine the IEC 61850 framework for 

substation automation systems with emphasis on the measurement distribution 

methods proposed.  

 

Another objective would be - through the literature search and literature review to 

gain the fundamental understanding of IEC 61850 messaging mechanisms, and to be 

able to accurately provide a breakdown of the message structure or data packets that 

are used for communication between process level and bay level and to simulate 

these messages using a software program. 

Specific objectives:  

i. To identify current and emerging substation automation trends;  

ii. To Investigation whether Microsoft Windows and Linux operating systems 

allow for the generation, binding and transmission of packets at the Datalink 

layer; and 

iii. To thoroughly understand the sampled value messages utilised in the IEC 

61850 and to be able to simulate sampled values on a personal computer 

(PC). 

 

In order to achieve the stated objectives certain sub-objectives have been identified 

and these are listed below:  
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1. A literature review for the identification of current and emerging substation 

automation trends will be conducted. 

2. A comparative analysis of the developments of measurement distribution 

methods utilised in substation automation systems within the literature will 

be performed. 

3. An overview of the IEC 61850 standard with emphasis on sampled values 

and GOOSE messaging will be conducted. 

4. The sampled value message structure breakdown will be performed and 

the other IEC 61850 related standards will be outlined. 

5. The implementation of a low-level network programming Application 

Programming Interface (API) on both Microsoft Windows and Linux 

operating systems will be investigated. 

6. The software development on Linux Ubuntu to simulate the functional 

behaviour of sampled value messages will be conducted 

7. The development of a test scenario to validate the structure of the 

sampled value from the developed sensor node will be performed, and a 

comparative analysis with a commercial unit will be performed.  

 
1.6. Project Assumptions and delimitation 
 
1.6.1. Assumptions  
 

The following assumption for this research has been established:  

i. Modern computers have a fast enough processing speed and have operating 

systems that allow for Datalink message generation and transmission, 

enabling accurate emulation of a merging unit. 

ii. The use of custom-built networking libraries will not degrade the performance 

of the generated program. 

 
1.6.2. Data Acquisition  

 
i. The data acquisition node will be explored on a PC platform only  

ii. The verification of sampled values will be performed using software tools only.  

iii. The research project will not be integrated into an IEC 61850 system; no 

substation configuration language (SCL) files will be produced for the 

proposed device (MU); the Publisher/subscriber mechanism will not be 

explored; sampled values to be verified using only software tools such as 

Wireshark.  
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1.6.3. Simulation 
 

i. The proposed project will not be implemented on a protection network or 

interfaced to any current and voltage transformers. 

ii. Current and voltage values will be generated internally, packaged and 

transmitted as multicast messages - no sensors will be integrated into the 

virtual device.  

iii. Analogue values published by the sensor node will be monitored using 

Wireshark  

 
1.6.4. Implementation  

 

i. The software programs will be developed using the Python programming 

language. 

ii. Time synchronization and time stamping of the sampled value frames will be 

implemented using the computer’s internal clock - no integration of a Global 

Positioning System (GPS) clock source. 

 
1.6.5. Significance 
 

Substation protection simulation and validation:  the process bus technology 

introduced by the IEC 61850 standard has presented a paradigm shift in protection 

and control systems within the power system industry. As such test procedures, 

commissioning tools and commissioning processes utilised in traditional protection 

and control schemes within substations are being reviewed and altered accordingly. 

This project is aimed at building an academic framework for a future real-time 

implementation of a data acquisition node that can be used for IEC 61850-9-2 

substation automation simulation and validation. These simulation tools can be used 

in the academic environment for safe testing of IEC 61850 protection schemes. The 

future real-time implementation data acquisition node envisioned be used to facilitate 

testing and would be capable of integrating to both Conventional Power Transformer 

(CPT) and non-conventional power transformers (NCPT). The Merging unit is 

fundamental to the integration of the NCPT to SAS. 

 

Financial:  The Merging unit implementation will result in significant reduction of the 

amount of wiring between the primary and secondary plant equipment in a substation 

environment; thus significantly reducing the commissioning costs and reducing the 

fault-finding and maintenance time. Less down-time equals more revenue for the 

power utilities. However before this stage is realized, a significant amount of revenue 
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has to be invested in order to ensure adequate training for students and substation 

automation engineers.  

 

1.7. Research methodology 
 
1.7.1. Literature review 
 

A literature search and review on the substation automation and measurement 

distribution framework provided by the IEC 60044-7, IEC 60044-8, IEC 1451 and IEC 

61850 standards is conducted in chapter 2 of this document. The literature search 

and literature review is used to form the theoretical base, in defining software 

algorithms and for the development of software to simulate IEC 61850 sampled value 

messages. The literature search and review will also extend to low-level networking 

software development in both Microsoft Windows and Linux operating.  

 

1.7.2. Method for simulation  
 

� A Python program running on a personal computer is proposed for the 

simulation of the IEC 61850-9-2 sampled value messages. 

� Wireshark is proposed for the capture and analysis of the data packets of the 

generated sampled value messages. 

 

1.7.3. Experimental methods  
 

� Practical experiments will be conducted with the Omicron CMC to develop an 

in-depth understanding of the IEC 61850 sampled value frame structure.  

� A Virtual Local Area Network (VLAN)-enabled switch will be used during the 

verification of the developed sensor node 

� The published sampled value messages from the developed sensor 

measurement will be captured using Wireshark and the structure will be 

comparatively analysed to the sampled value messages generated by the 

Omicron CMC. 

 

1.8. Organisation of the Thesis 
 

The thesis is divided into six chapters detailing the introduction and background into 

substation automation systems, problem definition, literature review into substation 

automation trends, an investigation into the IEC 61850 GOOSE and Sampled value 

messaging system, and the results of the software development of the simulated 

sampled value messages. 
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Chapter 1: presents an overview of the substation automation developments and 

highlights the problem definition, project aims and objectives, and research 

methodologies. 

 

Chapter 2: presents the literature search and literature review into measurement 

distribution developments in the substation automation environment. 

 

Chapter 3: discusses an overview of the IEC 61850 standard with emphasis on 

sampled value messaging and GOOSE messaging.   

 

Chapter 4: presents the project theory and context detailing an investigation into the 

methods used to achieve low-level networking using the Python programming 

language on both Microsoft Windows and Linux Ubuntu operating systems.  

 

Chapter 5: provides the results of the implemented virtual sensor node and describes 

the case study using an Omicron CMC. This forms the foundation for the software 

development which is presented later in the chapter. The software development 

techniques applied in this project to model a virtual device that is used to simulate IEC 

61850 sampled value messages is discussed. The published sample value messages 

generated by the developed sensor node are compared with those published by the 

Omicron CMC. 

 

Chapter 6:  presents the conclusion to the research project and provides expansion 

prospects such as real-time implementation for future research projects.  

 

1.9. Publications 
 

1. Luwaca. E., Petev P., Kriger C., and Behardien S., 2014. “Virtualization of a 

sensor node to enable the simulation of IEC 61850-based sampled value 

messages”. Submitted to the International Journal of Computers, 

Communications and Control (awaiting confirmation for publication). 

2. Kriger C., Retonda J., Luwaca E., and Behardien S., 2011. “Analysis of 

GOOSE and Sampled Value Message Structure for Educational Purposes”, PAC 

World Conference, Dublin. 
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CHAPTER 2  
 

Literature review 
 

2.1. Introduction 
 

In this chapter a literature search and literature review of standards and papers 

discussing measurement distribution in substation automation systems is conducted. 

As part of the literature search and literature review the chronological evolution of 

substation automation systems is presented. Measurement distribution mechanisms 

in substation automation systems are discussed.  

 

The chapter is structured into five sections. Section 2.2 discusses the background 

associated with substation automation systems, followed by a literature search in 

Section 2.3. A literature review of the papers discovered through the literature search 

is conducted in Section 2.4. In Section 2.5 a comparative analysis of measurement 

distribution systems in the substation environment is performed and Section 2.6 

concludes on what has been done in the chapter and what will be covered in the next 

chapter. 

 
2.2. Background 

 
A substation is divided into two sections, primary plant and secondary plant. As 

shown in Fig. 2.1, primary plant consists of voltage transformers (VT’s), current 

transformers (CT’s), circuit breakers (CB’s) etc. and secondary plant consists of 

AC/DC panels, protection relays and remote terminal units (RTUs). 

 

 

Figure 2.1: Single line diagram of a substation system 

 

The primary plant equipment in Fig. 2.1, receives the incoming supply through the 

high voltage busbar, steps the supply down and distributes the supply to the feeders 
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through the medium voltage busbar. The secondary plant equipment monitors and 

protects primary plant equipment. 

 

Before the 1990’s the substation system shown in Fig. 2.1 was designed using 

protection and control schemes implemented with single-function electromechanical, 

relay logic, as depicted in the left-most panel of Fig. 2.2, labelled “Hardwired 

Substation” (Leupp and Rytoft, 2011) .  

 

 

Figure 2.2: Migration from hardwired system towards substation automation 

 

Hardwired substation layouts have been used in industry for decades. One of the 

reasons for this form of substation layout was the unavailability of intelligent bay 

controllers and smart sensor nodes before the 1990’s.  This form of substation layout 

suffered from various disadvantages, such as:  

� No addressability:  the different feeders are hardwired, with labels used at 

either end of the cable being the only form of addressing 

� There is no data communication between the various feeders.   

� The bulk of the cost for setting up such a system is incurred on cable costs 

and labour.    

� The system is not easily scalable 

� No substation automation: the system is hardwired and there is no 

communication between devices at the same level in the hierarchy.   
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The equipment associated with monitoring, protection and control functions has in the 

recent decade’s undergone evolution from electromechanical devices to 

microprocessor-based devices, leading to increased levels of substation automation 

(Leupp and Rytoft, 2011). During the 1990’s intelligent electronic devices with 

inherent bay control functionality became available (Apostolov, 2006). The main 

attraction of these bay controllers was their ability to communicate information to the 

user, using point-to-point protocols. RS232 or RS485 provided a means to 

communicate to these intelligent electronic devices. In terms of chronological 

evolution, the column labelled “Hybrid Substation System” in Fig.2.2 above shows a 

typical example of this layout (Leupp and Rytoft, 2011).  

 

The main drawback with Hybrid Substation layouts as shown in Fig.2.2 is that these 

systems convey information at slow data rates and cannot be used for protection 

functions. In most cases the protocols used in this kind of system layout are non-

standardized. Proprietary communications protocols and mainly protocols that are 

limited to a master/slave topology are used for this kind of layout. These protocols are 

tag-based protocols, where users access data by specifying a tag number or index 

number. The advantages and disadvantages of Hybrid Substation automation 

systems are listed below (Flynn, 2007). 

Advantages:  

� Reduced cabling 

� Addressability 

Disadvantages:  

� Non-standardized communication protocols 

� Primary plant and secondary plant hardwired, no addressing in that regard  

� Speed limitation, the maximum speed on an  RS232 link is ±14.5kbps 

� Costs, RS485/RS422 to RS232 converters are often required. Lots of money 

still spent on cables between primary and secondary plant.     

� Restricted in terms of scalability  

� Only processed measurement values are available 

� Only physical layer standard: no standardized data communication  

 

Substation automation systems have continued to grow since the 1990s with further 

developments in microprocessor-based relays and developments in primary plant 

equipment. Transformers with optical interfaces referred to as Non-Conventional 

Instrument Transformers (NCIT) were developed in the 1990s. NCITs systems for 

high voltage applications provide a series of advantages not obtainable with 
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conventional transformers (Christen et al., 1995).  These advantages are (Rahmatian 

et al., 2002):  

� Safety - optics provides separation between the measuring point at high 

voltage (HV) potential and the measuring equipment at ground potential.  

� Compactness, reduce the weight of the transformers.  

� Better performance than conventional transformers due to the reduced noise 

induction and Ferro-resonance. 

� Better interface to electronic equipment such as personal computers 

 

With the development of NCITs, the need for a standardized interface to NCITs was 

soon identified. In response to this, the Instrument Transformers Standard IEC 60044 

was published in December 1999. Part 7: Electronic voltage transformers (IEC 

60044-7) and Part 8: Electronic current transformers (IEC 60044-8) define interfaces 

to voltage and current instrument transformers respectively.  

 

Part 8 of the IEC 60044 standard goes on to further specify among other things, 

(Brunner, 2011): 

� The digital output for both electronic current and voltage transformers  

� Physical, Data link and Presentation layers of the IEC 60044-8 protocol 

� Defines a node for smart sensors to interface to instrument transformers.  

 

The smart sensor interface node introduced through IEC 60044 is referred to as a 

merging unit (Brunner, 2011). A merging unit provides the interface from the 

electronic current and voltage transformers to the secondary equipment. A typical 

method of communicating measurements using a merging unit, as defined in IEC 

60044, is shown in Fig. 2.3 (IEC 60044-8, 2002). 

 

 

Figure 2.3: A simplified block diagram of measurements distribution using IEC 60044-

8 standard (IEC 60044-8, 2002) 
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Current or voltage sensors are connected to the NCIT. The primary measurements 

from the sensors are then converted into secondary measurements using a 

transducer of sorts. The secondary measurements are then used as inputs to the 

merging unit, which then publishes the raw measurement values over a serial link.  

The introduction and use of the IEC 60044 standard, lead primary plant 

manufacturers to start to incorporate some sort of sensor into their product to 

maintain the competitive edge. This allowed other standards such as the Standard for 

a Smart Transducer Interface for Sensors and Actuators, i.e. IEEE 1451, first 

published in 1997, to get into the power system environment. IEEE 1451 attempted to 

alleviate the problems of analogue measurement distribution in power systems. A 

Typical system using the IEEE 1451 standard to publish measurements onto a serial 

link is depicted in Figure 2.4. (Zheng et al., 2006) 

 

 

Figure 2.4: Measurements communication system using IEC IEEE 1451 standard 

(Zheng et al., 2006) 

 
At first glance Fig 2.3 and Fig 2.4 look very similar, with the only major difference 

being the inclusion of Transducer Electronic Datasheets (TEDs) in the published 

message in IEEE 1451.  Basically the TEDs allow a data system to choose the 

correct template for the interpretation of the stored data. By including calibration 

information in the TEDs, IEEE 1451 allows intelligent devices to adjust for variations 

in transducer sensitivity (Mark and Hufnagel, 2004). This was a major breakthrough in 

substation measurement systems as potential measurement errors could now be 

compensated for in the IEDs. The network interface specified in the original IEEE 

1451 standard, however was still a serial link. Some of the advantages and 

disadvantages of serial-linked substation systems as shown in Fig. 2.2 in the panel 

labelled “Serial-link Based Substation” are stated below.  

 Advantages: serial-linked substation system:  

� Reduced cabling 

� Addressability 

� Raw measurements and not processed measurements are published from a 

sensor node.  
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� Calibration information is communicated using IEEE 1451 TEDS 

� Provides an interface to NCITs. 

Disadvantages: serial-linked substation system:  

� Speed limitation: the maximum speed on an  RS232 link is ±14.5kbps 

� Costs: RS485/RS422 to RS232 converters are often required.  

� Restricted in terms of scalability  

� Only physical layer standard specified 

� Data communication is not standardized 

� Only Unicast (Point to point) measurement communication 

� No interface to conventional transformers defined. 

 
Due to the disadvantages of serial based substation systems, the goal to define a 

communication infrastructure that would allow seamless integration of substation 

automation components continued into the middle and late 1990’s. The focus had 

now shifted from serial-based substations to Ethernet-based substation systems -

culminating in the publication of the Communication Networks and Systems in 

Substations standard in 2003, i.e. the IEC 61850 standard. The objective of the 

standard is to specify requirements and to provide a framework to achieve 

interoperability between the IEDs supplied from different vendors (IEC 61850-1, 

2003). To achieve interoperability, the IEC 61850 specifies logical interfaces between 

the various components of a substation automation system (Apostolov, 2005) as 

shown in Fig.2.5.   

 

Figure 2.5: Interface model of a substation automation system specified within part 1 

of the IEC 61850 standard (IEC 61850, 2003) 
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The description of the interfaces is outlined below: 

� IF1: protection-data exchange between bay and station level. 

� IF2: protection-data exchange between bay level and remote protection  

� IF3: data exchange within bay level. 

� IF4: CT and VT instantaneous data exchange (especially samples) between 

process and bay level. 

� IF5: control-data exchange between process and bay level. 

� IF6: control-data exchange between bay and station level. 

� IF7: data exchange between substation (level) and a remote engineer’s 

workplace. 

� IF8: direct data exchange between the bays especially for fast functions such 

as interlocking. 

� IF9: data exchange within station level. 

� IF10: control-data exchange between substation (devices) and a remote 

control centre   

 

Fig. 2.5 above shows a hierarchical architecture proposed by the IEC 61850 

standard, and the interfaces between the various components of a substation 

automation system. In IEC 61850 the functions of a substation automation system 

can be distributed across three levels. These levels are: 

� The station level, 

� The bay level, and  

� The process level.  

 
The substation automation components at the same level or at different levels of the 

hierarchy are then linked together by the various interfaces. It should be noted that 

the interfaces 2 and 10 (greyed out) are mentioned and shown in Fig.2.5 but do not 

form part of version 1 of the IEC 61850 standard.  

 

The station level often referred to as “station-bus” connects all of the IEDs to one 

another and to the human machine interface (HMI) using interfaces 1,3,6,7 and 8. 

The IEDs communicate to the Station level devices using the messaging services 

provided by the Manufacture Message Specification (MMS) protocol in a client/server 

architecture. Inter-IED communication on interface 3 is achieved by using the 

publisher/subscriber communication services. Interfaces 4 and 5 connect Process 

level or “process bus “equipment to the Bay level and vice versa. The process level 

conveys raw power system information from switchyard source devices to the Bay 

Level through publisher/subscriber communication services.  
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Subsequent to the publication of the IEC 61850 standard, equipment compliant with 

the standard has become increasingly important in substation automation systems. 

This is due to benefits derived from a combination of reduced cabling, “Plug and Use” 

capability, ease of equipment addressability, interoperability of equipment and the 

availability of software environments for describing system architecture.  

 

Intelligent Electronic Devices (IED’s) compliant with the standard have been 

developed, are widely available, and are slowly being deployed in industry but these 

IED’s are largely for station bus use only and are hardwired to primary plant. 

Equipment from vendors to accommodate the “Process bus” paradigm is however 

almost non-existent at present. Fig. 2.6a shows the current implementation and Fig. 

2.6b shows the future implementation of the IEC 61850 standard.  

 

 

                 Figure 2.6a: Current implementation            Figure 2.6b: Future Implementation  

 
In Fig.2.6a the current transformers (CTs) and voltage transformers (VTs) are 

hardwired to the bay controller. The bay controller has to process the measurements 

and generate Generic Object Orientated Substation Event (GOOSE) messages 

based on some pre-set values.  

 

IEC 61850 however, proposes a system not only based on GOOSE, but on raw 

sampled measurement values published from a merging unit. Part 9 of the IEC 61860 

standard specifies an interface between the merging unit, process and bay level 

equipment using the digital output of the merging unit for distribution to protection or 

metering equipment. Fig. 2.7 shows an example of measurements being published 

from a merging unit (IEC 61850-9-1, 2004). 
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Figure 2.7: Example of measurements being published from a merging unit (IEC 

61850-9-1) 

 
In Fig.2.7, the merging units receive analogue measurements from the plant, digitize 

the analogue values, encode, and publish the raw data in a sampled value format 

onto the process-bus. Listed below are some of the advantages that can be derived 

with the implementation of the process bus. These are: 

� Raw, unprocessed measurement values 

� Support for both Unicast and Multicast published measurements 

� Substation system not only based on substation events, but on actual raw 

measurements 

� Standardized interface to non-conventional instrument transformers 

� Improving the system performance in a conventional transformer system. The 

A/D conversion is done close to the source and much of the burden of 

processing can be removed from the bay controllers 

� Reduced wiring  

 

Based on the advantages and disadvantages itemised for the various standards, IEC 

61850 provides greater advantages than IEC 60044 and IEEE 1451 for measurement 

distribution in substation automation systems. Compared to IEC 60044 and IEEE 

1451, IEC 61850 is not restricted only to the interface between NCITs and bay level 

devices. IEC 61850-9 also provides the means to interface conventional transformers 

to bay level devices. The original IEC 61850-9-2 standard has, however, proved not 

to be detailed enough to allow implementation and to achieve interoperability of 

merging units. The IEC 61850-9-2 standard leaves the implementation of certain 

parameters as configurable parameters. As an example, the implementation of data 

sets and the sampling rate are left as configurable parameters in the IEC 61850-9-2 
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standard. To reduce problems due to differing implementations by manufacturers, the 

UCA User Group published the “Implementation Guideline for Digital Interface to 

Instrument Transformers” often referred to as IEC 61850-9-2LE. IEC 61850-9-2LE 

has recommended values for sampling rate for protection and metering applications, 

and proposes a fixed dataset consisting of three phase current and voltage 

measurements and neutral current and voltage measurements. 

 

The aim of this project is to gain a fundamental understanding of the IEC 61850 

standard, and through this foundation to implement certain aspects of a sensor node 

as shown in Fig.2.8.  

 

 

Figure 2.8: Basic architecture of a Merging Unit (Tholomier and Chatrefou, 2008) 

 
This limited functional implementation of the sensor node would represent a 

virtualized sensor node capable of synthetic generation of waveform data, encoding 

of the data, and transmitting the data in a format compliant with the IEC 61850 

protocol.  

 
For the development of this sensor node, a thorough knowledge and understanding 

of IEC 61850 client/server, peer-to-peer communication, device model, process-bus 

and sampled value concepts are fundamental. The merging unit device model 

sampled value message structure and sampled value control blocks are some of the 

key requirements to the development of the sensor node.  
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2.3. Literature search  
 

In order to gain this knowledge a literature search on the trends and methodologies of 

measurement distribution systems within the substation environment had to be 

conducted and it has been established that the following are some of key papers 

discussing measurement distribution in power systems under the following standards: 

IEC 60044  

• (Sawa et al., 1990) 

• (Kezunovic et al., 1990) 

• (Anderson and Brand, 2000) 

IEEE 1541 

• (Lee and Schneeman, 2000) 

• (Wiczer, 2001) 

• (Lee, 2003) 

• (Elmenreich et al., 2005) 

IEC 61850  

• (Apostolov, 2006) 

• (Apostolov, 2010) 

• (Pan et al., 2012) 

 

From the papers listed above and references from these papers, key-phrases that 

could be utilized in the literature search were identified as:   

� “Power system”, “substation automation”, “current transformer”, “voltage 

transformer”, “non-conventional current transformer”, “non-conventional 

voltage transformer”, “IEEE 60044-7”, “IEC 60044-8”, “IEEE 1451 smart 

sensors”, “IEC 61850”, “IEC 61850 process bus”, “IEEE 1588”, “Merging unit”. 

 

The chronological spread of papers discovered using these key-phrases during the 

literature search is shown in Fig. 2.9, and a literature review of these papers is 

conducted in section 2.4. The main sources for these papers were the Institute of 

Electrical and Electronics Engineers (IEEE), Science Direct, Academia, and 

CiteSeerx websites. 
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Figure 2.9: Papers per year using key-phrase searches  

 

The literature search reveals that most of the research focus between the years 2000 

and 2004 was on NCITs, and interfacing NCITs to the merging unit device defined in 

the IEC 60044-7/8 standard. Between the years 2004 and 2006, the research focus 

area had shifted slightly onto the integration of the IEEE 1451 standard to power 

systems. During the same period, the IEC 61850 standard was introduced and has 

since become the international standard for substation automation and control. 

Papers between the years 2005 and 2010 focused mainly on substation automation 

systems using the IEC 61850 standard. In recent years between 2011 and 2013 most 

of the research has been focused on time synchronization techniques for IEC 61850 

substation automation systems. In Section 2.4 a sample of the papers found through 

the literature search are catalogued, commented upon and the criteria for 

comparative analysis decided upon. 

 

 

 

 

 

 

 

 

 

 

 



25 
 

2.4. Literature review 
 

 
IEC 60044-7 and IEC 60044-8 NCIT standards 

 
Paper Aim of  paper Development 

Platform 
Advantages and 

disadvantages outlined 
 

Summary Results 

(Sawa et al., 
1990) 

Discusses the design 
and assembly 
procedure of optical 
current transformer 
(CT) and voltage 
dividing-type voltage 
(PD) transformer. 

N/A Advantages:  
Compact, high 
performance and 
reliable optical CT and 
PD transformer   
 

Designing and 
manufacturing of the 
optical CT and PD have 
been described 
together with test 
results. New techniques 
for current and voltage 
measurement using 
optical sensors have 
been discussed 
 

Test results for the 
developed optical CT and 
PD showed that their basic 
properties conform with 
Japanese standard for 
electric-power instrument  
transformers 

(Christensen 
et al., 1995),  

Describes a voltage 
transformer  based on 
the Pockels effect 

N/A 
 

Advantages:  
Separation between the 
measuring point and 
the high voltage 
potential.   
 
Compact transformer.  
 
Better interface to 
electronic equipment 
such as personal 
computers (PCs) 
 

An optical voltage 
transformer based on 
the Pockels effect is 
described. 

Theoretical description of 
an optical voltage 
transformer design. 
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(Rahmatian 
et al., 2002) 

Discusses the design 
and testing of  
optical voltage 
transducers for 
metering and 
protection 
applications in high-
voltage systems 

Hardware 
using an 
optical 
voltage 
transformer 
and sensors 

Advantages:  
Optical voltage 
transducer offer 
advantages in terms of 
size, weight, and 
bandwidth compared to 
conventional 
transducers 
 

A novel high voltage 
system using optical 
voltage transducers 
suitable for both 
metering and protection 
is described.   

Optical voltage transducer 
that measure voltage by 
using three optical electric 
field sensors, passed the  
accuracy and insulation 
testing according to IEC  
 

Kezunovic et 
al., 2006) 

Looks to evaluate and 
quantify the influence 
of optical current 
transducers 
characteristics on 
protective relay 
performance 

PC platform 
using 
PSPICE and  
Alternative 
Transients 
Program 
(ATP) 
simulation 

Advantages:  
From the evaluation 
results it is expected 
that optical transducers 
will positively influence 
the performance of 
protection and control 
IED. 

Using of simulation 
combined with 
statistical analysis, it 
was shown in this 
paper that the influence 
of NCIT on powers 
systems can be 
quantified and the 
results show that the 
use optical transducers 
is expected to positively 
influence the 
performance of 
protection and control 
IED. 
 

Educational 

(Pan et al., 
2012) 

The objective is to 
develop a testing 
prototype to measure 
the ratio error and 
phase error of the 
transformer under test 

PC platform 
using 
LabVIEW 
software 

Advantages:  
Accurate measurement 
of the  ratio error and 
phase error on 
transformers  

A device based on the 
digital signal processing 
technology, that can 
test both analogue and 
digital outputs of NCIT 
is proposed, for the 
implementation of NCIT 
 

A device suitable for the 
testing transformers with 
precision classes up to 0.2 
at the 
frequency of 50 Hz or 60 
Hz, is introduced 
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(Bertolotto et 
al., 2007) 

Discusses the 
evolution transformer 
analogue 
measurement 
systems by deploying 
data acquisition nodes 
using smart 
transducers to 
interface to optical 
voltage 

N/A Advantages:  
significant improvement 
of transformers  
reliability and 
maintenance 
techniques 

The mix of well-known 
and reliable 
technologies, like HV 
capacitor dividers and 
Rogowski coils, 
together with high 
performance electronic 
devices and digital 
signal processing allow 
for the design of a 
measurement 
transformer compliant 
with IEC 60044-8 

development of an 
electronic 
measurement transformer 
for high voltage system 

 
IEEE 1451 sensor node  

Paper Aim of  paper Development 
Platform 

Advantages and 
disadvantages outlined 

 

Summary Results 

(Elmenreich 
et al., 2005) 

Describes the main 
concepts of smart 
transducer interfaces 

Embedded 
platform 
using 
microcontroll
er and 
sensor 
technology 
 

Advantages:  
Reduced system 
complexity 
using smart transducer 
interfaces 
 

Using two case studies, 
proof of concept for the 
smart transducer 
interface standard was 
achieved 

Reduced system complexity 
using smart transducer 
interfaces 
 

(Lee and 
Schneeman, 
2000) 
 

Describes the 
framework for 
standardized 
distributed 
measurement and 
control system.  

System 
demonstratio
n performed 
using 
simulation 
network 
program 

Advantages:  
Distributed intelligence.  
Raw measurement 
values are broadcasted 
from the process level 
to the various network 
devices, allowing 

Using existing object 
oriented programming 
systems and 
networking standards, a 
multi-level 
measurement and 
control system has 

A framework for distributed 
application using open 
network communication and 
standardized transducer 
interfaces is developed 
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(SIMNET) intelligent devices in 
the network nodes to 
make decisions based 
on raw, unprocessed 
measurement data  
 

been developed. 

(Wiczer, 
2001) 

Analyses the 
strengths and 
weaknesses of smart 
sensor technology 
and strategies for 
successful 
implementation 

N/A Disadvantages: 
Implementing smart 
sensors can be very 
costly. A feasibility 
study has to be 
conducted for each 
project. 

Two scenarios one of a 
real-world example of 
smart sensor 
technologies that 
suffered from significant 
economic and technical 
feasibility challenges 
and another example of 
a smart interface 
applied to an 
unenhanced sensor to 
create a functioning 
smart sensor unit are 
discussed in this paper 
 

This paper provides a good 
base for designers and 
system developers to 
assess the feasibility of 
employing smart sensor 
technology in their system. 

(Mark, 2004) Looks into the IEEE 
1451 modelling 
templates, as a set of 
properties or values 
that describe key 
characteristics of the 
transducer 

N/A Advantages:  
P1451.2  TEDs provide 
a self-description 
mechanism for smart 
transducers  

A roadmap of 
transducer  standards 
from inception till it was 
accepted as a full-use 
standard by the IEEE 
Standards Association 
and the modelling 
approach is discussed 
in this paper 
  

This paper is mainly 
Educational, focusing on 
the modelling of smart 
transducer nodes and smart 
nodes network interfaces 

(Lee, 2004) Describes the 
development 

Software 
using UML 

Advantages:  
A fully executable C++ 

A UML model that 
includes the data model 

UML model for the IEEE 
1451.1 
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of an UML model for 
the IEEE 1451.1 
specification 

tool in Visual 
C++ 

code can be generated 
using UML tools from 
the model developed.  

and object model of the 
IEEE 1451.1 standard 
has been developed. 
The model developed 
captures the attributes, 
operations, and 
behavioural information 
of the IEEE 1451.1 
objects. 
 

Standard has been 
developed 

(Kim et al., 
2006) 

Presents definitions of 
the basic TEDs of  
electronic tongue 
system and propose a 
new template TEDs 
potentiometric devices 

Hardware 
platform 
using an 
electronic 
tongue as the 
sensor 

Advantages:  
With IEEE 1451 
implementation sensors 
and actuators become 
smaller, intelligent and 
provide communication 
capabilities 

The capabilities of a 
sensor are beyond that 
of traditional sensors. 
These capabilities are 
widening the use of 
sensors to intelligent in 
industries.   
 

Successful organisation of 
basic TEDs version letters 
and version numbers to 
indicate the type of sensor  

(Pal and 
Rakshit,  
2004) 

Presents schemes for 
the development of 
network capable 
smart transducers 

System 
proposed is 
an 
embedded 
system using 
AT89S8251 
microcontroll
er 

Advantages:  
cost effective and 
flexible in the sense 
that the user need not 
keep separate 
transducer for each 
sensor or actuator 

A smart transducer with 
network interface that 
can accommodate 
Profibus, Fieldbus and 
Modbus as well as 
provided the program 
loading can be 
developed in an 
embedded system such 
as the AT89S8252  
 

Theoretical paper 

(Zheng et al., 
2006) 

Look into the 
development of an 
optical sensor to 
measure HV 

A hardware 
circuit using 
optical 
sensor 

Advantages:  
A safe, accurate and 
efficient method 
measurement of 

An optical fiber 
measuring technique 
for transformer winding 
temperature is 

An IEEE 1451.2 compliant  
temperature sensor of 
power transformer winding 
temperature was developed 
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transformer winding 
temperature based on 
IEEE1452.2 

analogue to 
digital 
converters 
and 89S52R 
MCU  

transformer winding 
temperature. 

developed using smart 
IEE1451 transducer, 
with each transducer 
using a its own port.  
 

 

 
IEC 61850  

Paper Aim of  paper Development 
Platform 

Advantages and 
disadvantages outlined 

 

Summary Results 

(Apostolov, 
2006) 
 
 

To describes the 
different 
communications 
related 
implementation of the 
new IEC 61850 
standard. 

N/A Advantages of IEC 
61850:  
Introduction of Ethernet 
applications based on 
Client/Server and high-
speed Peer-to-Peer 
communications in a 
substation environment 

Different applications 
imposing different 
requirements that can 
be met by proper 
selection of the 
communications type in 
IEC 61850. The 
communications in the 
substation automation 
system can be between 
devices at the same 
level of the functional 
hierarchy or between 
bay and process levels 
of the system. 
 

Educational. To  raise 
awareness of the benefits of 
the IEC 61850 

(Anderson 
and Brand, 
2000) 

discusses the 
motivation behind the 
development of the 
IEC 61850 standard 
and the benefits 

N/A Advantages: 
IEC 61850 is 
standardized and future 
proof. 

IEC 61850 provides a 
future proof architecture 
that can be easily 
integrated to enterprise 
systems 

Educational. A raised 
awareness of the IEC 
61850 architecture, IEC 
61850 system configuration 
and design considerations 
when dealing with 
substation automation 
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system 
 

(Baigent et 
al., 2004) 

To provide an 
overview of an 
overview of the IEC 
61850 protocol and 
IEC 61850 device 
model 

N/A IEC 61850 can be 
easily interfaced with 
existing legacy 
protocols OPC and 
Relational RDBMS 

The paper teaches 
about the 
standardization data 
names, creation of 
services and the 
implementation of IEC 
61850 
 

Educational 

(Janssen and 
Apostolov, 
2008) 

Describes the 
different components 
of IEC 61850 
substation systems 
and the distribution of 
functions between the 
devices  

N/A Advantages: 
Introduction of 
distributed functions in 
substation systems and 
reduced wiring 

IEC 61850 allows the 
development of new 
approaches to 
substation design and 
maintenance 
processes. 

The paper is mainly 
educational focusing on 
new design approach based 
on distributed functions 

 
IEC 61850 process bus  

Paper Aim of  paper Development 
Platform 

Advantages and 
disadvantages outlined 

 

Summary Results 

(Apostolov, 
2010) 

Discusses the 
implementation 
agreement that 
ensures the 
interoperability 
between merging 
units and protection 
devices 
  

N/A Advantages: Cost 
reduction and 
interoperability  

The traditional large 
number of copper 
cables connecting 
primary and secondary 
plant is replaced by just 
a few fiber optic cables. 

Educational 
 

(Sonawane 
et al., 2007) 

Looks at the latency 
and deterministic 

Real time 
digital 

Advantages:  
The RTDS platform is 

The goal of IEC 61850 
is to provide a 

An IEC 61850 messaging 
capable system was 
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performance 
appropriate for an IEC 
61850 real-time 
simulation. 

simulator 
(RTDS) 

capable of providing 
binary input and output 
as well as sampled 
value. 

comprehensive set of 
functions to replace 
proprietary protocols. 
This allows the 
development of 
simulation test product 
using only the one 
protocol. 

successfully developed for 
the RTDS Simulator. 

(Skendzic  
et al., 2007), 

Explores the Merging 
Unit Concept and 
analyses the  
reliability of protection 
systems based on 
sampled values 
(SVs).  

N/A Network Time Protocol 
(NTP) is recommended 
in IEC 61850 as the 
primary time however 
NTP cannot achieve 
the µs level time 
synchronization 
required for SV. 
However the standard 
allows time to be 
distributed by 
independent means 
(IREGB) 

The Process Bus 
technology described in 
IEC 61850-9-2 offers a 
variety of new 
possibilities in 
designing Ethernet-
based protection and 
control systems. 

An important property of the 
SV-based process bus that 
is evident is from the 
investigation conducted is 
high bandwidth requirement 
and high processing speed 
required from the process 
bus and merging unit 
respectively 

(Konka et al., 
2012) 

Emulation of IEC 
61850-9-2 standard. 
Outlining the testing 
procedure for merging 
units 
 

PC platform 
using NS3 
and 
Wireshark 

Advantages: Cheap 
testing tool for 
emulation of sampled 
value messages.  

In this paper, an 
accurate and realistic 
model of SV traffic 
generator was 
described. Packet 
traces generated using 
the model was shown 
to be realistic as they 
included the full byte 
structure of Sampled 
Values APDU and 
ASDU. 

A SV traffic generator has 
been developed.  
The generated sampled 
values have been verified 
using Wireshark 
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(Yang et al., 
2012) 

Design and simulation 
of the communication 
network based IEC 
61850 

PC platform 
using NS2 
and 
Wireshark 

Cost effective tool for 
IEC 61850 network 
simulation 
 

A topology that satisfies 
the timing requirement 
of IEC 61850 proposed 

Design and simulate the 
station bus and process bus 
was achieved.  

Substation automation time synchron ization  
Paper Aim of  paper Development 

Platform 
Advantages and 

disadvantages outlined 
 

Summary Results 

(Ingram et 
al., 2012), 

Performance 
evaluation of 
commercially 
available PTP devices 
to meet the functional 
requirements of a 
SAS. PTP Time synch 
methods required and 
the effect of SV traffic 
on PTP performance. 

RTDS, PTP 
clocks,   
Endace 
DAG7.5G4  
Ethernet 
capture 
card,  
Tektronix 
DPO2014 
digital 
oscilloscope 

Advantages: 
PTP devices intended 
for power system use 
are interoperable, as 
each grandmaster 
and slave clock 
combination 
successfully 
synchronized  
 

Tests conducted with 
commercially available 
PTPv2 clocks prove 
PTPv2 
to be a viable method 
of providing time synch 
for a sampled value 
process bus using IEC 
61850-9-2 

The jitter between the 
grandmaster and slave 
clock is deterministically 
measured in the nano 
second range. This proves 
PTP time distribution 
methods are suitable for 
use in synchronizing 
sampled values 

(Ingram et 
al., 2011) 

To examine PTPv2 
grandmaster holdover 
and recovery from 
loss of GPS synch. 

Hardware 
implementati
on using: 
PTP clocks,   
Endace 
DAG7.5G4  
Ethernet 
capture 
card,  
Tektronix 
DPO2014 
digital 
oscilloscope 

Compensation of 
Propagation delays 
when using PTPv2 for 
time synch of sampled 
values, providing 
benefits over various 
other 1PPS systems. 

Propagation delays are 
compensated for by 
PTPv2, providing 
benefits over various 
other 1PPS systems. 

From the tests conducted 
PTPv2 was proved as a 
viable source of 1PPS 
timing signals. 
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The papers catalogued in section 2.4 are divided into five headings. The headings 

represent the various initiatives to address the problem of measurement distribution 

in substation systems.  General comments on the papers reviewed are discussed in 

the paragraphs to follow. 

 

The concepts of Instrument transformers discussed in the papers above sought to 

improve on the conventional transformer concepts to achieve higher performance, 

compactness and better reliability by having more monitoring systems. Instrument 

transformers have standardized sampling rates and interfaces according to IEC 

60044-7 and IEC 60044-8 standards. The IEC 60044-8 Instrument transformer 

standard also introduced methods to interface to the instrument transformers using 

smart sensors.  

 

The standards discussed above reflect an attempt to meet this challenge of 

distributing measurements in substation systems in the 1990s. While the IEEE 1451 

standard was very successful in most industries such as gas, oil etc., it still lacked a 

lot of the elements that were needed in power systems. In 1996, Technical 

Committee 57 of the IEC began work on IEC 61850, with the objective of specifying 

the requirements and to provide a framework to achieve interoperability between the 

intelligent electronic devices supplied from different vendors 

 

IEC 61850 proposes a digital bus-based architecture comprising of station bus and 

process bus. The Process layer of the substation is related to gathering information, 

such as voltage and current, from transducers connected to primary power plant 

equipment. The quantities are then digitized at the source by the merging unit, and 

the resulting sampled values are transmitted onto the process bus in a format 

compliant with the IEC 61850-9-2 standard.  

 

A comparative analysis of the various epochs of measurement distribution systems in 

the substation environment is performed in section 2.5. Some of the advancements 

made in each era are discussed. 
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2.5. Comparative analysis of the developments in th e existing literature 
 

Before the 1990’s, the primary research focus on transformers was on methods to 

improve conventional transformer performance by improving grading, stress loads 

and mechanical aspects of conventional transformers. One of the major focus areas 

was on improving the transient performance of bushings and the reduction of high 

voltage breakdowns between the bushing oil end-shielding and the turret (Minker, 

2005).  

 

In the early 90’s studies incorporating optical technology in transformers began. Suva 

et al., 1990 laid most of the groundwork in his paper that discussed the design and 

development of optical instrument transformers based on Faraday and Pockels 

effects. Following the publication of this paper, more papers on instrument 

transformer design and instrument transformer transducer design that supported the 

Sawa et al., 1990 proposal, and also offered an alternative method for instrument 

voltage transformer design, were published. The Christen et al., 1995 paper 

discusses an alternative for instrument voltage transducers and proposes VT’s 

without a capacitive voltage divider, instead using optical voltage transformers. 

Results from these studies and various other studies were conclusive as to the 

benefits that could be derived from the implementation on optical instrument 

transformers. The international bodies responded to the positives outlined in the 

various studies on instrument transformers by publishing the instrument transformer 

standard IEEE C57.13 in 1993, and a standard to interface instrument transformers to 

secondary plant. The IEC 60044 standard was published in December 1999.  

 

The implementation of the IEC 60044 standard for metering and protection 

applications is discussed in Rahmatianet al., 2002. Bertolotto et al., 2007 extends on 

what is discussed in the Rahmatianet al., 2002 paper and discusses the introduction 

of data acquisition nodes using smart transducers to interface to optical voltage and 

current measuring systems based on a digital signal processing system compliant 

with the IEC 60044-7 and IEC 60044-8 standards for protection and metering, and 

the benefits that can be derived from these systems.  

Another standard that attempted to meet the challenge of sampled values in the 

1990’s was the IEEE 1451. The Lee and Schneeman, 2000 paper presented the 

framework for measurement distribution using a bus-based architecture. 

 

The Sal and Rakshit, 2004, and Zeng et al., 2006 papers proved that IEEE 1451 

smart transducers could be used in power systems. Sal and Rakshit, 2004 used 
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smart transducers for pressure and temperature monitoring of transformers and Zeng 

et al., 2006 discusses the measurement of transformer winding temperature using 

smart transducers.  

 

In 2003, the IEC 61850 standard for substation communication networks was 

published. Apostolov, 2006, Anderson and Brand, 2000, and Baigent et al, 2004 

introduced the concepts and motivation behind IEC 61850 and the device model 

approach in IEC 61850. The IEC 61850 incorporated the standards and framework 

that had previously existed. IEC 60044-8 standard was incorporated into the IEC 

61850-9-1 standard. IEC 61850 standard uses an architecture very similar to the 

framework proposed by Lee and Schneeman, 2000. 

 

IEC 61850-9-2 defines the mapping of the abstract sampled value services to an 

Ethernet communication network. As discussed in Apostolov, 2010, IEC 61850-9-2 

presents a serious challenge when it comes to the actual implementation and 

interoperability of merging units. Because of the incompleteness of the IEC 61850-9-2  

standard, an implementation guideline “IEC 61850-9-2LE” was published by the UCA 

International User Group, to facilitate the implementation and interoperability of 

devices utilizing sampled values (SVs).  The Apostolov, 2010 paper discusses the 

implementation guideline and implementation agreement for sampled values.  

Skendzic et al, 2007 discusses the merging unit concepts, sampled value message 

structure as outlined in IEC 61850-9-2. 

 

Even with the implementation of IEC 61850-9-2LE, the implementation of the process 

bus paradigm is still almost non-existent in industry. As a result several research 

investigations have looked into simulation of communication services defined in the 

IEC 61850 standard. The Konka et al., 2012 and Yang et al., 2012 papers investigate 

the simulation of sampled values using Network Simulator version 3 (NS3) and 

Network Simulator version 2 (NS2) respectively. However both the systems 

developed are non-real time. While this proposed research project is also non-real 

time, the intent is to provide the foundation and framework for a real-time 

implementation. 

 

2.6. Conclusion  
 

The idea of sampled values is a very old concept in substation automation systems. 

The performance of the communication technologies in the past however was just not 

sufficient for real-time measurement distribution. As technology developed and with 
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the introduction of non-conventional instrument transformers, bus-based real-time 

measurement systems started becoming a reality. The need for a standardized 

protocol interface was soon identified and from this IEC 60044-7 and IEC 60044-8 

emerged. IEC 60044-7 and IEC 60044-8 standards reflects an attempt to meet this 

challenge of sampled values in the 1990s. 

 

Another standard that attempted to meet the challenge of sampled values in the 

1990’s was the IEEE 1451. The IEEE 1451 standard was however never really 

accepted in the power system industry as its origins were not in the power industry. 

Secondly the IEEE standard is a national standard not an international standard, so it 

never took off in certain parts of the world. 

 

A need for an international standard still existed. When the working groups for IEC 

61850 were discussing the SV concept, IEC 60044-8 was about to be finalized and 

released. The IEC 61850-9-1 became a link between the standards. IEC 61850-9-1 

was later superseded by IEC 61850-9-2. IEC 61850-9-2 defines the mapping of the 

abstract sampled value services to Ethernet. This document however allowed 

developers a lot of freedom as to the actual implementation, for example the sample 

rates or the actual content of dataset is not defined. This presented a serious 

challenge when it came to the actual implementation of merging units by different 

vendors which could be interoperable. An implementation guideline “IEC 61850-9-

2LE” was published by the UCA International User Group, to facilitate the 

implementation and interoperability of devices utilizing SVs.  IEC 61850-9-2LE 

specifies a fixed dataset containing four currents and four voltage measurements. 

IEC 61850-9-2LE also specifies fixed sampling rates of 80 samples per cycle for 

protection applications and 256 samples per cycle for metering. 

 

Even with the implementation of IEC 61850-9-2LE, the implementation of the process 

bus paradigm is still almost non-existent in industry.  Devices that publish sampled 

values in a format compliant with IEC 61850-9-2LE guideline are still almost non-

existent in industry. This project investigates the development of a sensor node on a 

PC platform. 

 

Chapter three of this document discusses the details of the IEC 61850 standard and 

various investigations conducted to understand the sampled value device model and 

its message structure. 
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CHAPTER 3  

An overview of the IEC 61850 standard with emphasis  on 
GOOSE messaging and Sampled Values  

 
3.1. Introduction 

 
In order to implement a virtual sensor node based on the IEC 61850, an in-depth 

investigation into the IEC 61850 standard has to be conducted. The aim of this 

chapter is to examine the standardisation developments within the IEC 61850 

substation automation environment, to study the substation automation framework 

presented in the IEC 61850 standard, and to outline the measurement distribution 

methods proposed in the IEC 61850 standard. This requires an in-depth 

understanding of the tools, methods and services specified in the IEC 61850 

standard. In this chapter the various components that have been found to be 

fundamental to the understanding of substation automation systems and the IEC 

61850 standard are deliberated upon.  

 

From the literature review in the previous chapter, three main concepts/drivers for the 

development of the IEC 61850 standard have been identified as: 

a) The provision of a virtualized substation automation framework for all 

substation automation devices. 

b) The provision of a future-proof substation automation framework that is 

flexible, scalable, maintainable, and provides interoperability between 

substation automation devices. 

c) The specification of the tools and processes for easing the engineering of 

substation automation systems. 

 

This chapter examines the aforementioned IEC 61850 concepts in detail. Section 3.2 

discusses the chronological development of the IEC 61850 standard.   Section 3.3 

provides an introductory overview of the IEC 61850 standard. Section 3.4 discusses 

the IEC 61850 substation automation virtualization framework (as mentioned in (a) 

above), focusing on the modelling philosophy and the abstract object services. 

Through the virtualization framework provided, the IEC 61850 standard supports 

Object-Oriented (OO) data modelling of all substation automation processes that are 

implemented and controlled. Section 3.5 discusses the mechanisms (as mentioned in 

(b) above) which aids in allowing flexibility, scalability, and interoperability – such as 

the IEC 61850 naming convention, and the process mapping, abstract services and 

mapping onto real communication protocols.  
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Section 3.6 discusses the IEC 61850 system engineering tools (as mentioned in (c) 

above). Section 3.7 examines network topologies as one of the critical items to be 

considered when designing IEC 61850, Ethernet-based substation automation 

systems. The network integrity and hence the topology deployed takes additional 

importance when dealing with the process level in IEC 61850 - this is due to the 

additional network traffic loading imposed by the time synchronization systems 

required by the Merging Units. Section 3.8 concludes on what has been discussed in 

this chapter and what will be discussed in the next chapter. 

 

3.2. Overview of the chronological development of t he IEC 61850 
standard 

 
The IEC 61850 standard is a result of various initiatives aimed at providing seamless 

integration of substation automation systems to higher level systems (enterprise 

systems), and to provide inter-device communication within the substation. Beginning 

in the early 1990s, the European Parliaments Research Initiative (EPRI) and the 

Institute of Electrical and Electronic Engineers (IEEE) spear-headed an effort to 

define a Utility Communications Architecture (UCA) for substation automation 

systems. The focus was on Inter-Control Center communications and Substation-to-

Control-Center communications. These standardization initiatives culminated in the 

publication of the Inter-Control Center Communications Protocol (ICCP) specification 

which was later adopted by the International Electrotechnical Commission (IEC) as 

61850 TASE.2  

 

In 1994, EPRI/IEEE initiated the next phase of the UCA standardization efforts. This 

time more emphasis was placed on defining Station Level communication of a 

substation automation system. Two years later the Technical Committee 57 of the 

IEC began work on IEC 61850 with the similar agreement of defining a Station level. 

In 1997, the two groups agreed to work together. The results of the harmonization 

efforts are the IEC 61850 standard specification IEC 61850 is a superset of the UCA 

2.0 standard. IEC 61850 contains almost all of the original UCA specification and 

offers additional features as shown in Fig. 3.1.  

 

Figure 3.1: The migration of the UCA 2.0 standard to the IEC 61850 standard 

(Pofoud, 2002) 



40 
 

3.3. Introduction to the IEC 61850 standard 

 
The IEC 61850 standard is divided into ten parts as is shown in Fig. 3.2 below. Part 1 

of the IEC 61850 standard is the introduction and overview of the standard. Part 2 

introduces the terms used within the standard. Parts 3, 4, and 5 of the standard 

identify the general and specific functional requirements for communication within the 

substation environment (Udren et al., 2000). These requirements are then used in the 

identification of the services, data models and protocol requirements for a particular 

application (Mackiewicz, 2006). 

 

 

Figure 3.2: IEC 61850 standard parts (IEC 61850, 2003) 

 
Through these ten parts, the IEC 61850 standard specifies the substation automation 

requirements and provides a future-proof substation automation framework that 

allows for interoperability, scalability, flexibility, and maintainability of substation 

automation systems.  This future-proof substation automation framework utilizes, as 

some of its mechanisms, virtualization (virtualized SAS device model), interfaces, 

services and messaging systems. These will be discussed in detail in sections 3.4 

through 3.7 below. 

 

3.4. Virtualization 
 

Overview 
 
The concept of virtualization began in the 1960’s and originates from the Information 

Technology (IT) environment. In the IT environment, virtualization refers to the act of 

creating a virtual version of devices and its sub-components. Virtualization tools such 

as Hypervisor and VMware provide the framework or methodology for dividing a 

device’s resource into multiple execution environments, by applying various 

technologies.  
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Virtualization is often used in the IT space as a means to fully maximize the potential 

use of a specific hardware investment.  Virtualization technologies/tools provide a 

means to virtualize the hardware platform, Operating System (OS), storage device(s), 

network resources, etc. An example of virtualized IT servers is illustrated in Fig. 3.3 

below.  

 

Figure 3.3: Example of virtualized IT servers 

 

In Fig. 3.3, multiple physical servers are virtualized within one shared storage device. 

Several applications are running within the virtualized servers shown in Fig. 3.3, 

essentially sharing the shared storage server’s memory, processing power, network 

resources, etc. Some of the advantages of virtualization are: 

 
� Improved System Reliability and Security. Virtualization is used to prevent 

system crashes and improve the overall system venerability due to memory 

corruption caused by software drivers and provides a means of isolating the 

Input/output (I/O) resources. 

� That it allows for powerful debugging and performance monitoring. 

� That the virtualization framework allows for emulation or simulation of a 

complete device. 

� Scalability. 

� The provision of interoperability with minimal co-dependencies. 

 
The concept of virtualization has in recent years been introduced into the Operation 

Technology (OT) environment. The IEC 61850 has leveraged the concept of 

virtualization from the IT environment, to provide a representation of the behaviour of 

real substation devices (Brunner et al., 2007) through the specification of 
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standardized models representing the actual equipment (Mackiewicz, 2006). This is 

expanded upon in more detail in sections 3.4.1 and 3.4.2 below. 

 

3.4.1 Virtualization – in the standards-based power  system industry 
 

The main functions of Substation Automation Systems (SASs) are to protect, control 

and monitor plant equipment used in the substation and the substation feeders. 

These functions are used as the building blocks for the object orientated physical and 

logical device information models defined in the IEC 61850 standard. The information 

models and the device modelling methods form part of the core of the IEC 61850 

standard. The models defined in the IEC 61850 standard enable virtualizing of real 

devices as depicted in Fig. 3.4. 

 

 

Figure 3.4: IEC 61850 modelling approach (IEC 61850-7-1, 2004) 

 

The IEC 61850 standard utilizes abstract models to define information and 

information exchange in a manner that is self-determining and independent of 

protocol implementation. The standard uses the concept of virtualization to provide a 

view of some of the real device aspects that are fundamental for information 

exchange with other devices (IEC 61850-7-1).  

 

The IEC 61850 standard further defines an Abstract Communication Service Interface 

(ACSI) and a Specific Communication Service Mapping (SCSM) that should be 

supported by IEC 61850 compliant devices to provide interoperability. As described in 

IEC 61850-5, the approach of the standard is to decompose the application functions 

into the smallest entities, which are used to exchange information. The data 
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modelling and object oriented mechanisms utilised within the IEC 61850 standard are 

outlined further in section 3.4.2 below. 

 

3.4.2 IEC 61850 – Data modelling 
 

The IEC 61850 standard divides the SAS functions into thirteen different logical 

groupings of data as is shown in Fig. 3.5.  The IEC 61850 standard attempts to model 

all data that could originate in a substation automation system to one of these groups. 

The groups are subdivided into 92 different Logical Nodes and each of these logical 

nodes is composed of 355 data classes that represent some application-specific 

meaning. A complete list of logical nodes is defined in the IEC 61850 standard and is 

presented in Appendix 3 of the standard (IEC 61850-7, 2004). 

 

Figure 3.5: Logic grouping of substation data according to IEC 61850 standard. 

 

The data model shown in Fig. 3.5 is hierarchical, with the logical nodes as the key 

object in the IEC 61850 data modelling structure. The logical nodes represent 

particular functions within a device (Mackiewicz, 2006) and contain data linked to that 

specific function. 
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A Logical Device (LD) forms a container for three or more Logical Nodes (LN). A 

logical device is always encapsulated within a physical device. In the IEC 61850 

standard, the device model begins with the physical device (PD).  A physical device 

consists of a Logical Device(s) as down in Fig. 3.6 below. In Fig. 3.6, the outermost 

shell represents the “Real devices” (Physical devices). Inside the physical device is a 

virtual model of the actual physical device.  

 

 

Figure 3.6: An IEC 61850 device representation (Gers, 2004) 

 
A logical device is a compound of logical nodes that are related to a specific function 

inside a substation. At least three logical nodes must be within a logical device. As an 

example, a logical device is usually comprised of two LNs related to common 

functions within the logical device (such as LLN0 and LPHD), and at least one LN 

performing some protection and/or control function.  

 

The architectural model that the IEC 61850 standard adopts is that of “abstracting” 

the definition of the data items and the services. As a result, many of the data objects 

are made up of elements such as Status, Control, Measurement, etc., thus the 

concept of “Common Data Classes” or “CDC” was developed which defined common 

building blocks for creating the larger data objects. Fig. 3.7 shows a Unified Modeling 

Language (UML) diagram of a conceptual IEC 61850 device. 
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Figure 3.7: Conceptual IEC 61850 device and services model (IEC 61850, 2003) 

 

In Figure 3.7:  above, Block 6 which is the physical data server is the top-most 

component of the hierarchical model. It serves as an encapsulating entity for logical 

devices (block 8) and logical nodes (block 9). The Logical Device (LD) in turn is the 

logical correspondence of a physical device. The logical device is a group of logical 

nodes performing similar functions. Each logical device contains three or more 

Logical Nodes, each of which contains elements of data. Each of the data elements 

conforms to the IEC 61850-7-3 specifications of Common Data Class (CDC). The 

CDC’s describe the type and structure of the data within a logical node. An example 

of the use of the logical node modelling technique using the measurement logical 

node MMXU is shown in Fig. 3.8. 
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Figure 3.8: Example showing the decomposition of the MMXU logical node 

 

With reference to this example, the CDC belongs to Function Constraints (FC) that 

groups CDC’s into categories, as depicted in Fig. 3.8. The Functional Constraints 

(FC) is a property of the “data attribute” that characterizes the specific use of the 

“attribute”. The CDC defines the structure for common types that are used to describe 

“data objects”. 

 

The major architectural model of IEC 61850 is that of “abstracting” so that the data 

objects and services can be mapped to any protocol that can meet the data and 

service requirements (Mackiewicz, 2006). By decoupling the data objects and 

services from the underlying protocol, the IEC 61850 standard provides a future-proof 

architecture that enables all the substation automation servers to behave in an 

identical manner from the communication network point of view (Piirainen, 2010).  

 

3.5. IEC 61850 – Substation Automation Future Proof ing 
 

The IEC 61850 proposes a “future-proof” substation architecture that is capable of 

providing interoperability between substation automation devices (Mohagheghi et al., 

2007).  

 

Future proofing in the IEC 61850 standard is facilitated by: 

i) Decoupling of the data objects and services from the underlying protocol. This 

provides a physical separation between the slow growing Substation-Specific 

Applications (SSA) from the fast advancing communication network 

infrastructure. This separation is provided by the Abstract Communication 

Services Interface (ACSI). 
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ii) Using a hierarchical naming convention instead of indexed addressing. The 

IEC 61850 standard naming convention provides a more descriptive context 

for the data (Mohagheghi et al. 2007). 

iii) Defining a system configuration language that can be easily extendable and is 

open for future data types and services. 

These are discussed in more detail below. 

 

3.5.1. IEC 61850 – Naming Convention  
 

The IEC 61850 standard specifies a method for transforming the virtualized device 

models into named variable objects with unique and unambiguous references. Fig. 

3.9 below shows an example of the IEC 61850 object naming convention.  

 

 

Figure 3.9: Anatomy of an IEC 61850 Object Name (Mackiewicz, 2006) 

 

The IEC 61850 standard provides a framework for a hierarchical naming convention. 

The naming convention references the named grouping of data and associated 

services that are logically related to a substation automation function. In Fig. 3.9 

Relay 1 refers to the logical device. The Logical device has a circuit-breaker object 

that is linked to it, and is referenced by XCBR in Fig. 3.9. The circuit-breaker object 

contains Data that belongs to a certain Functional Constraint and has a certain 

Attribute.  

  

By providing the possibility to create a naming hierarchy for functional names, the IEC 

61850 standard allows the generic binding of all information in the IEDs to the 

application (Brunner et al., 2012). In this way future-proofing for IEC 61850 substation 

automation systems is provided, as generic logical nodes can be added. This allows 

for extension of the IEC 61850 standard naming convention to other application 

domains, the naming convention has already been used to accommodate the hydro-

electric industry, which did not form part of the original IEC 61850 SAS naming 

convention. Additionally the IEC 61850 naming convention allows for the addition of a 

suffix to Logical Node names, enabling identification of the Logical Node’s purpose.  
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3.5.1.1 Compatibility of the IEC 61850 naming conve ntion with other 
International standards 

 

IEC 61850 aligns and integrates well into smart grid philosophy. IEC 61850 is 

structured after the Common Information Model (CIM) standards (IEC 61968 and IEC 

61970). CIM is the general information model of utility-specific data and underlies the 

information structures of most, if not all, IEC utility standards. IEC 61968 defines 

standards for information exchanges between electrical distribution systems. The IEC 

61970 defines standards for the application program interfaces for Energy 

Management Systems (EMS) 

 

3.5.2. Mapping to an actual protocol 
 

The IEC 61850 standard has adopted a layered Open System Interconnect (OSI) 

model for all substation automation needs. The adopted model has leveraged the use 

of existing standard protocols in all layers up to layer 7 in the OSI reference model. 

Fig. 3.10 shows the OSI model adopted by the IEC 61850 standard and the various 

standards which were leveraged in the process.  

 

 

Figure 3.10: IEC 61850 OSI model 

 
The benefit of the model adopted by the IEC 61850 standard is that there is no new 

protocol development required. The standard leverages and integrates internationally 

recognized and standardized protocols. The layered protocol stack approach adopted 
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by the IEC 61850 standard provides a small set of specific services to the layer below 

and the layer above, thus providing independence between the layers. As a result, 

the functions of a specific layer can be modified without changing the overall structure 

of the model. This is, provided that the services provided by the layer which is 

modified, maintains its relationship to the layer above and below. The protocols 

defined at each layer establish a peer-to-peer relationship with the corresponding 

layer of the receiving device. 

 

3.5.2.1 Interfaces and Services 
 

Fig. 3.11 shows the hierarchical architecture model of the IEC 61850 standard and 

the interfaces between the various components of an IEC 61850 substation 

automation system. The interface functions have been elaborated on previously in 

chapter 2. The hierarchical architecture depicts three levels on which substation 

automation devices can be interfaced, namely: 

� The station level, 

� The bay level and  

� The process level 

 

The substation automation components at the same level or at different levels of the 

hierarchy are then linked together by the various interfaces, using the communication 

services/protocols defined in the standard. The station level, often referred to as the 

“station bus” connects all of the Intelligent Electronic Devices (IEDs) communicating 

with one another and to the Human Machine Interface (HMI) using interfaces 1,3,6,7 

and 8. 

 
Figure 3.11: IEC 61850 substation automation system interfaces (IEC 61850-1, 2004) 



50 
 

The IEC 61850 standard defines communication interfaces as shown in Fig. 3.11, to 

support: 

a) Publisher/Subscriber services, and 

b) Client/Server services 

 

These services are used to facilitate communication between IEC 61850 devices 

using Manufacturing Messaging Specification (MMS) for client/server applications, 

Generic Object Oriented Substation Events (GOOSE) messaging for fast peer-to-peer 

communication between the publishing and subscribing device(s), and Sampled 

Value (SV) messaging for measurement distribution.  

 

IEDs communicate upstream to the HMI using the messaging services provided by 

the Manufacture Message Specification (MMS) protocol through interface (7) in Fig. 

3.11 above. Inter-IED communication is achieved through interface (8) using a 

publisher/subscriber messaging system referred to as GOOSE. Interfaces 4 and 5 

connect Process level or “process bus” equipment to the Bay level and vice versa. 

The process level devices distribute power system information from switchyard 

source-devices to the Bay Level, utilising a publisher/subscriber mechanism. 

 

The IEC 61850-8-1 standard defines the mapping of the abstract objects and services 

of process level, bay level and station level devices to the application layer. In 

addition to mapping to the application layer, IEC 61850-8-1 defines profiles for the 

data-link, networking, transport, session and the presentation layers of the 

communication stack as shown in Fig. 3.12. 

 

Figure 3.12: Overview of communication functionality and profiles (IEC 61850-8-1, 

2004) 
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Fig. 3.12 shows the Specific Communication Services Mapping (SCSM) defined in 

the IEC 61850 standard. GOOSE and Sampled Values applications map directly into 

the Datalink layer (Layer 2) thereby eliminating additional processing of any middle 

layers, whereas MMS uses all seven layers of the Open System Interconnect (OSI) 

stack. All data maps onto an Ethernet link using either the data type “Ethertype” in the 

case of Sampled Values (SV), GOOSE and Time Synchronization (TimeSync), or 

using the Carrier Sense Multiple Access with Collision Detection (CSMA/CD) method 

defined in “IEEE 802.3” for MMS and Generic Sub-Station Event (GSSE) messages. 

Table 3.1 below compares the IEC 61850 layer 2 messaging systems, GOOSE and 

Sampled Values. 

 

Table 3-1: Comparison between GOOSE and Sampled Values 

Comparison between GOOSE an d Sampled Values  

  GOOSE Sampled Values 

Reporting Event-based Non-event Based (Periodic) 

Detection Loss Yes Yes (through VAR. Counter) 

Re-transmission Yes No (Sequential) 

Relation 1:n ( Layer 2 Multicast) 1:n ( Layer 2 Multicast) 

Timelessness Yes (few milliseconds) Yes (few milliseconds) 

Message 

Priority 
High High 

Priority Tagging Yes Yes 

Data Type 

Maps on Layer 2 

(Datalink) using 

Ethertype 

Maps on Layer 2 (Datalink) using 

Ethertype 

Message 

content 

encoding 

ASN.1 BER ASN.1 BER 

OSI layers 

utilised 

1,2 and 7 application 

layer 
1,2 and 7 application layer 

Max. Message 

Size 
< 1500 octets < 1500 octets 

Document IEC 61850-8-1 IEC 61850-9-2 

 

Goose and Sampled value messaging systems are outlined in more detail in Sections 

3.5.2.2 and 3.5.2.3 respectively. 
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3.5.2.2 GOOSE Messaging 
 

GOOSE messaging refers to the time-critical messaging, which has been defined for 

fast peer-to-peer communication between substation automation Intelligent Electronic 

Devices (IEDs). GOOSE messages are generally used to transfer status information 

between two or more devices, namely the publisher and the various subscribing 

devices. They are transmitted as a multicast over Local Area Network (LAN). An 

example of the Publisher/Subscriber mechanism used in the GOOSE message 

exchange is illustrated in Fig. 3.13. 

 

 

Figure 3.13: An example of the GOOSE Publisher-Subscriber mechanism (IEC 

61850-7-2, 2004) 

 
Fig. 3.13 gives an overview of the classes and services of the GOOSE model. The 

publishing device (Publisher) comprises of logical correspondents of the physical 

device. Each of these logical correspondents contains one or more Logical Nodes, 

which contain some elements of data. The data is contained within a dataset that 

groups various data attributes which belong to a specific functional constraint. A 

change in the data contained within the dataset will result in the transmission buffer of 

the publisher being updated with the local service “publish” and the values are 

transmitted as a GOOSE message.  

 

The GOOSE messages contain information that allows the receiving device to know 

that a status has changed and the time of the last status change. The time of the last 

status change allows a receiving device to set local timers relating to a given event. 

GOOSE is an event-driven, fast, connection-less communication service. GOOSE 

security is achieved by the repetition of messages a number of times as shown in Fig. 

3.14.  
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Figure 3.14: GOOSE message transmission time (IEC 61850-8-1, 2004) 

 

The Quality of Service (QoS) specified within the IEC 61850 requires the repetition of 

GOOSE messages a number of times to achieve higher reliability. A device newly 

connected to the network shall send current status values as its initial GOOSE 

message. Moreover, all devices sending GOOSE messages shall continue to send 

messages between each other with a long cycle time, even if no status value change 

has occurred as shown in Fig. 3.14 (T0). This ensures that devices that have been 

connected recently will know the current status values of their peer devices.  

 

GOOSE re-transmission may be shortened by an event. A status value change in the 

data contained within the dataset will result in an event, and a GOOSE message 

being published repeatedly a number of times with a short cycle time Fig. 3.14 (T1). 

The duration of the cycle will gradually increase, until the pre-event status has been 

reached, as shown in Fig 3.14 (T2, T3 and T0).  

 

From a practical perspective, this means that a specific GOOSE control block 

(GOCB) has to be configured for each GOOSE message. The GOOSE control block 

includes the information which a dataset needs for transmission and information that 

can be used for the GOOSE validation on the subscribing device.  

 

The GOOSE control block specifies information such as the GOOSE control block 

name, GOOSE control block reference, GOOSE enable and the various services that 

enable the transmission of a GOOSE message, as shown in Figure 3.15: GOOSE 

Control Block Class.  
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Figure 3.15: GOOSE Control Block Class (IEC 61850-7-2, 2004) 

 

GOOSE messaging has been discussed above, and sampled value messaging at the 

process level is discussed in more detail in the section below. 

 

3.5.2.3 Process Level  
 

The Process level often referred to as the process-bus, is defined in the IEC 61850-9-

2 standard for gathering information, such as Voltage and Current, from the 

transducers connected to the primary power system equipment as shown in Fig. 3.11. 

The quantities are then digitized at the source by a device referred to as a “Merging 

Unit” and the resulting sampled values are generated and published onto the data 

network.  

 

The Merging Unit at the process level receives a time-coherent set of samples of 

three phase voltages, three phase current and neutral values of both voltage and 

current. The values are then converted to digital values as shown in Fig 3.16.  

 
Figure 3.16: Merging unit and Sampled Value exchange (IEC 61850-7-1 2004) 
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The merging unit encodes the digitized values, packages the information into a 

“configurable” dataset that can be communicated through a multi-cast/Uni-cast 

transmission onto the process level (IEC 61850, 2003).  

 

With reference to Fig. 3.16 above, the logical nodes involved in the acquisition of 

measured data are TVTR and TCTR for voltage and current respectively. Four 

instances of the TCTR and TVTR logical nodes are shown in Fig. 3.16 because 

measurements representing primary equipment is typically done via a single phase 

representation, therefore the need for four instances of the logical nodes TCTR or 

TVTR representing the three phases and neutral phase are required (Brunner et al., 

2005).  

 

Each of the logical nodes shown in Fig. 3.16 in essence can be thought of as an 

object with both attributes and operations. These objects are an instance of a class, 

which describes the properties and behaviour of the objects. So for every object type, 

there needs to be a defined class model. The IEC 61850-7 standard specifies the 

general definition of such a class model, the logical node class model. The detail of 

these classes defining the logical nodes is shown in Fig. 3.17 and Fig. 3.18 below.  

 

 

Figure 3.17: TCTR logical node class (IEC 61850-7-4, 2004) 

 

Figure 3.18: TVTR logical node class (IEC 61850-7-4, 2004) 
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Sampled Values from these logical nodes are then transmitted as primary current 

values. This means that the transformer ratio and the correction factors are of no 

interest for the transmitted samples, but can be added as optional parameters within 

the logical node for maintenance purposes. In addition, status information and 

optional parameters/settings can be added to the logical nodes (TCTR and TVTR). 

 

The abstract sampled value format used for the sampled value message defined in 

part 7 of the IEC 61850 standard is shown in Fig. 3.19.  

 

Figure 3.19: Sampled value format (IEC 61850-7-2, 2004) 

 

The model for transmitting sampled values is covered in IEC 61850-7-2. The model 

applies to the exchange of values of a data set. The data contained within the data 

set is of the common data class SAV (IEC 61850-7-3, 2003) and shown in Fig. 3.20.   

 

Figure 3.20: Sampled value model (IEC 61850-7-3, 2004) 

 

3.5.2.3.1 Sampled Value Messaging 
 

Sampled Value (SV) messages are related to measurement distribution as stated in 

the IEC 61850 standard. They are transferred between the bay and process levels. 
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The transmission of sampled values is time constraints. The IEC 61850 model 

provides transmission of sampled values in an organized and time controlled manner 

so that the combined jitter of sampling and transmission is minimized to a degree that 

an explicit allocation of the samples, times, and sequence is provided. Figure 3.21: 

Sampled message transmission timevalues. 

 

 

Figure 3.21: Sampled message transmission time 

 

SV messages are time critical messages that are communicated periodically between 

two or more devices in a chronological manner as shown in Fig. 3.21. These 

messages can be sent as multicast to several receivers. Fig. 3.22 below shows the 

Sampled Values Control classes and the services that should be supported by a 

device publishing or a device subscribing to sampled values.  

 

 

Figure 3.22: Sampled Value Control classes and services (IEC 61850-7-2, 2004) 

 

The Sample Value information exchange is based on a publisher/subscriber 

mechanism. The publisher writes the values in a local buffer at the sending side and 
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the subscriber reads the values from a local buffer at the receiving side.  The 

sampled value count is added as the time stamp, so that the subscriber can verify the 

timeliness of the values. 

 

The Sampled Value Control (SVC) block shown in Fig. 3.23 below and the Sampled 

Value services as detailed in Fig. 3.24 are used by the publisher and the subscriber 

to control the communication process. 

 

 

Figure 3.23: Multicast SV Control Block Model (IEC 61850-7-2, 2004) 

 

 

Figure 3.24: Multicast SV services (IEC 61850-7-2, 2004) 

 
3.5.2.3.2 Sampled value frame format 
 

To provide a better understanding of sampled value messages an examination into 

the sampled value message structure is conducted in this section. The IEC 8802-3 

sampled value frame structure shown in Fig. 3.25 below and the various fields that 

comprise this SV structure are discussed. 
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Figure 3.25: ISO/IEC 8802-3 frame format (IEC 61850-9-2, 2004) 

 

The ISO/IEC 8802-3 frame format shown in Fig. 3.25 consists of a Preamble, which 

consists of seven octet streams of alternating 1’s and 0’s that allows the Ethernet 

card to synchronize. The preamble is followed by the Start Frame Delimiter which is a 

sequence of alternating bits (10101011) (Apostolov, 2006), indicating the start of a 

frame. This is followed by the Media Access Control (MAC) source and destination 

addresses, the Virtual Local Area Network (VLAN) Identifier, the Application Protocol 

Identifier and the Application Protocol Data Unit (APDU).  The various fields that 

collectively form the ISO/IEC 8802-3 frame are described in detail in the following 

sections. 

 

3.5.2.3.2.1 Media Access Control 
 

Media Access Control (MAC) addresses are unique address assigned to network 

interface cards for communications on the physical network. The MAC address is 

typically assigned by the manufacturer of a Network Interface Card (NIC) and is 

shown in Fig. 3.26.  
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Figure 3.26: ISO/IEC 8802-3 source MAC address format  

 
The assigned multicast/unicast address assignment should however be within the 

standard range for sampled value messages (Annex C of IEC 61820-9-2, 2003). The 

sampled value address range specified in the standard is shown in Fig. 3.27. 

 

 

Figure 3.27: Multicast address within IEC 61850 (IEC 61850-9-2, 2004) 

 

The first three bytes are assigned by the Institute of Electrical and Electronic 

Engineers (IEEE) as 01-0C-CD. The fourth byte defines the publishing mechanism 

Multicast or unicast sampled values. The last two octets are individual assigned 

addresses. 

 

3.5.2.3.2.2 Virtual local Area Network (VLAN) 
 

The 802.1Q VLAN tag is a 32-bit field added between the destination/source address 

and the EtherType fields of the original frame or the IEEE 802.3 frame - allowing 

priority tagging and protocol identification as shown in Fig. 3.28. 
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Figure 3.28: Tagged IEEE 802.3 MAC frame format (IEEE802.1Q, 2005) 

 

Two bytes within the VLAN field are used for the Tag Protocol Identifier (TPID), the 

other two bytes for tag control information (TCI). The TCI field is further divided into 

User priority, Canonical Format Identifier (CFI), and VLAN identifier (ID) as shown in 

Fig. 3.29. 

 

 

Figure 3.29: Sampled Value VLAN specification in the IEC 61850-9-2 

 

The Tag Protocol Identifier (TPID) is a 16 bit field to identify the frame as an IEEE 

802.1Q tagged frame. When set to 0x8100 it identifies the frame as an IEEE 802.1Q 

frame (IEEE802.1Q, 2005). 

 

Tag Control Identifier (TCI) represents the user assigned priority. TCI is generally 

used to separate time critical and high priority bus traffic for protection-relevant 

applications from low priority busload. User priority is a 3‐bit field indicating the frame 

priority level (IEEE802.1Q, 2005), with 7 representing the highest priority and 1 

representing the lowest priority (The default value for SV = 4).   

 

Canonical Format Indicator (CFI) is a 1-bit field. CFI bit specifies the method utilised 

for the ordering of bits within a frame. CFI is used for compatibility between Ethernet 
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and Token Ring technologies. If the value of this field is 1, the MAC address is in non-

canonical format. If the value is 0, the MAC address is in canonical format, meaning 

the tag does not contain an Embedded Routing Information Field (IEEE 802.1Q, 

2005) 

 

The VLAN Identifier (VID) is a 12-bit field specifying the VLAN to which the frame 

belongs. The hexadecimal values of 0x000 and 0xFFF are reserved, all other values 

may be used as VLAN identifiers, allowing up to 4,094 VLANs.  

 

3.5.2.3.2.3 Ethertype 
 

Ethertype is a two-octet field in an Ethernet frame. It is used to indicate which 

protocol is encapsulated in the Payload of an Ethernet Frame. Ethertype numbering 

generally starts from 0x0800. Ethertypes based on ISO/IEC 8802-3 MAC address 

sub-layer is registered with the IEEE.  The IEC 61850 registered Ethertypes are listed 

in Fig. 3.30. 

 

 

Figure 3.30: IEC 61850 Ether-types based on ISP/IEC 8802-3 (IEC 61850-9-2) 

 

3.5.2.3.2.4 Application identifier (APPID) 
 

APPID is a two-octet field in an Ethernet frame that identifies the network information 

propagating on a particular network, this is set to 0x4000 for SV messages. 

  

3.5.2.3.2.5 SV Protocol data unit 
 

An example of the SV Protocol Data Unit (PDU) can be found in the IEC 61850-9-2 

standard and is shown in Fig. 3.31. The SV PDU consists of one or more Application 

Service Data Units (ASDUs), a Sampled Value Identifier (svID), Sample Count 

(smpCnt) and a dataset containing the three-phase and neutral value current and 

voltage measurements as shown in Fig. 3.31. 
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Figure 3.31: Example of a Sampled Value Protocol Data Unit (IEC 61850-9-2, 2004) 

 

In Fig. 3.31 the Abstract Syntax Notation One (ASN.1) is generally used as padding 

for the various fields within the Protocol Data Unit (PDU). ASN.1 is a set of rules for 

representing OSI objects as strings of 1’s and 0’s. This allows one to define a variety 

of data types, such as integers, sets, bit strings, and sequences. The main encoding 

principles for SV messages as discussed in 61850-9-2, is an adapted version of 

ANS.1 tags for MMS. An example of the tag structure is shown in Fig. 3.32.  

 

 

Figure 3.32: Format of ASN.1 tags (Falk, H. and Burns, 1996) 

 

The TAG byte has several sub-fields designated. Bits 7 and 6 define the tag type, bit 

5 defines whether the tag is primitive or constructed, and Bits 0-4 represents the tag 

value. The LENGTH has a simple and extended form. If the length of the data is less 

than 128 bytes, the LENGTH is equal to the number of bytes. However, if the length 

of the data is greater than or equal to 128 bytes, the LENGTH is encoded as several 

bytes.  The DATA portion of the production contains the actual information to be 

exchanged. The content is described by the TAG, discussed above, and can consist 

of primitive types and constructed types. An example of the SV PDU is shown in Fig. 

3.33 below. 
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Figure 3.33: Example of Sampled Value’s ANS.1 tags  

 
The example shows the order in which each element must appear within the SV PDU 

according to IEC 61850-9-2 and the implementation guideline IEC 61850-9-2 LE. 

 

This section highlighted the future proofing mechanisms incorporated into the IEC 

61850 standard. The specification of the tools and processes for easing the 

engineering of substation automation systems are presented in section 3.6 below. 

 

3.6. IEC 61850 System Engineering 
 

In traditional substation systems, IEDs are typically configured using the vendor’s 

native IED Configurator. IED Configurators are manufacturer-specific tools that can 

be used to import or export files to a specific device, such as IED settings and 

generally the device’s configuration file. IED configuration tools are supplied by the 

IED vendors. 

 

The IEC 61850 standard differentiates between IED configuration tools and system 

engineering/configuration tools. The role of the IED configuration tools has not 

changed and is primarily related to everything that is specific for the IED. System 

engineering tools are defined in the IEC 61850 standard as tools that “shall be used 

to configure everything that is needed to define the interaction between the different 

IEDs to fulfil the system functionality” (IEC 61850-6, 2004).  
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The main drivers with IEC 61850 system engineering are (Brunner et al., 2011): 

� To reduce engineering time of substation automation systems 

� To provide power utilities independence from vendors by introducing the 

possibility of vendor-independent engineering tools. 

 

The IEC 61850-6 achieves its objectives by stating that vendor IEDs compliant with 

the IEC 61850 series shall, “be accompanied either by a Substation Configuration 

description Language (SCL) file describing its capabilities, or by a tool, which can 

generate this file from the IED”. This file is referred to as the IED Capability 

Description (ICD) file. The ICD file describes the IED’s capabilities i.e. the functions 

and data models supported within the IED. ICD files are used for data exchange from 

the IED configuration tools to the system configuration (Apostolov, 2010).  

 

The system configuration is assembled based on a System Specification Description 

(SSD) and the IED Capability Description files (Brunner et al., 2011). The system 

configuration tool is used to configure the entire substation automation system. The 

result is the Substation Configuration Description (SCD) file that is then used for the 

IED configuration tools to create the configuration download. 

 

IEC 61850-6, 2004 specifies a configuration file format for IEC 61850 substation 

automation systems. The configuration file format describes communication 

parameters, IED setting, primary plant structures and the relations between these 

functions. The specified configuration file format is often referred to as Substation 

Configuration description Language (SCL). 

 

The SCL is used in the IEC 61850 standard to model substation automation systems 

in Extensible Markup Language (XML) version 1.0, according to IEC 61850-5 and 

IEC 61850-7.  

 

The model used in the SCL is based on the Unified Modelling Language 

(UML) and was intended to define (IEC 61850-6, 2004): 

[1] SAS functional specification  

[2] IED capability description  

[3] SA system description  

 

The motivation for the development of SCL is to aid/ease the process of SAS 

engineering, SAS communication engineering and to provide a means of describing 
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SA engineered systems in a standardised manner. The SCL object model defined in 

the IEC 61850-6, 2004 is shown in Fig. 3.34 below. 

 

Figure 3.34: SCL Object model (IEC 61850-6, 2004) 

 

The UML SCL object model that is restricted to the object types that are used within a 

SCL instance file is shown in Fig. 3.34. The object model has three basic parts, 

namely Substation, Product and Communication that can be described by the four 

different SCL file types (IEC SCL summary, 2006). The four SCL file types are: 

� System Specification Description (SSD) – power system functions 

� Substation Configuration Description (SCD) – complete substation 

� IED Capability Description (ICD) – the capability of a specific IED 

� Configured IED Description(CID) – the configuration of a specific IED 

The four SCL files have five sections per file as shown in Table 3.2.  

 

Table 3-2: SCL File Types and Sections (IEC SCL summary, 2006) 
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Through the four configuration files and the file types catalogued in Table 3.2, the 

SCL specifies a hierarchy of configuration files allowing various system engineering 

levels.  IEC 61850 SCL also allows users the ability to compile engineering files 

(online and offline), as well as provide a means for IED configuration to be passed 

between Engineering Application systems. Fig. 3.35 shows an example of an IEC 

61850 configuration system. 

 

Figure 3.35: IEC 61850 System configuration (IEC SCL summary, 2006) 

 

This section discussed the role of standardized file formats and system engineering 

tools as a means to optimize and enhance the design, scalability and maintainability 

of IEC 61850-based substation automation systems. 

 

The next section, section 3.7 examines network topologies as one of the critical items 

to be considered when designing IEC 61850, Ethernet-based substation automation 

systems. The network integrity and hence the topology deployed takes additional 

importance when dealing with the process level in IEC 61850 - this is due to the 

additional network traffic loading imposed by the time synchronization systems 

required by the Merging Unit. 

 

3.7. Substation automation network topology 

 
The networking requirements for substation automation systems to support the 

protocols in Fig. 3.10 are also specified in the IEC 61850 standard. To meet the 

networking requirements as specified in IEC 61850-3, 2004 and to ensure overall 

system integrity, the network topology has to be carefully designed to minimize 

system down-time.  

 

The IEC 61850 standard does not define a network topology. The network topology 

has to be decided upon by the engineering team to meet the performance and 

reliability criteria specified by the IEC 61850 standard - taking into account the 
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operating conditions and high levels of Electromagnetic Interference (EMI) that 

characterize the substation environment (Chen, 2008).  

 

A star network topology is often shown when illustrating the implementation of IEC 

61850-based systems. However, various other topologies such as ring and dual 

networks can be deployed in substation automation systems to provide redundancy 

for critical systems. The topology deployment takes additional importance when 

dealing with measurement distribution in substation automation systems, due to the 

additional network loading. Fig. 3.36 shows basic communication networks. 

 

 

Figure 3.36: Basic network architectures (Midence, 2009) 

 

It is only the interfaces (see Fig. 3.11) that are specified in the IEC 61850 standard, 

but it should be noted that any of the network topologies shown in Fig. 3.36 can be 

used for the implementation of IEC 61850 substation automation systems. The trade-

off between building a simple star network and redundant networks is often the 

additional cost and complexity associated with building redundant network.  

 

Ring and dual ring network topologies need managed data network switches and 

management protocols such as Spanning Tree (STP), Rapid Spanning Tree (RSTP) 

or Multi-Spanning Tree (MSTP). The Ring network topology shown in Fig. 3.37 is in 

most cases the preferred choice for substation automation systems due to its 

flexibility, lower overheads, and ease of installation (Nordell, 2008).  
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Figure 3.37: Illustration of ring network topology using RSTP (Midence, 2009) 

 

A ring topology can be implemented using spanning tree protocol (STP) as per the 

IEEE 802.1D specification or rapid spanning tree protocol (RSTP) as per IEEE 

802.1W specification.  

 

The main difference between STP and RSTP is that in RSTP the STP ports, where 

the listening, blocking or discarding of packets all learn the MAC addresses of the of 

the adjacent switch, making recovery time on RTSP slightly faster than on STP -  

where the switch will only start to respond when it receives a message from the root 

bridge. Generally the network recovery time when using STP or RSTP is between 1 

and 60 seconds (Chen, 2008).  

 

A delay of 60 seconds can cause serious problems for complex substation 

automation systems and the root bridge is typically a single point of failure in ring 

networks. Fig. 3.38 shows dual redundant networks with a redundant link to the 

central control room and backup for the root bridge. The IED devices shown in Fig. 

3.38 could be protection devices, merging units or any substation automation device. 
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Figure 3.38: Dual homing in a substation automation system (Station bus and 

Process bus sharing the same LAN). 

 

In Fig. 3.38 a failure of any connection or switch in the ring will not cause a disruption 

in network communication, the redundant ring immediately restores network 

communication, and the system runs without interruption. This topology is often 

referred to as one of high availability due to the added redundancy in the topology. A 

closer look at the topology shows that the topology is comprised of multiple ring 

subsets.    

 

There are various other topologies that can be explored, the trade-off is often the fact 

that very large rings can be difficult and expensive to manage or install, especially 

over great distances. In addition, network recovery times increase with the size of the 

ring and it is often more effective to establish a number of smaller rings based on 

location and system architecture. These are all key factors that have to be considered 

when designing the network architecture of substation automation systems.  
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3.8. Conclusion 

In this chapter an overview of the IEC 61850 standard is covered. The various 

aspects that have been investigated to facilitate a better understanding of IEC 61850 

substation automation systems have been discussed.  

 

The mechanisms and processes in the IEC 61850 standard have all been detailed in 

support of the main concepts driving the standard, namely: 

a) The provision of a virtualized substation automation framework for all 

substation automation devices. 

b) The provision of a future-proof substation automation framework that is 

flexible, scalable, maintainable, and provides interoperability between 

substation automation devices. 

c) The specification of the tools and processes for easing the engineering of 

substation automation systems. 

 

It is felt that the knowledge-base required has been developed through this chapter 

and is sufficient to support the development of the proposed research project, i.e. the 

development of a virtual sensor node based on the IEC 61850 standard. 

 

The chapter to follow details the project outline and context. 
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CHAPTER 4  

Project outline and context  
 

4.1. Introduction 
 

The technology introduced by the IEC 61850 standard has presented a paradigm 

shift in protection and control systems within the electricity delivery industry. IEC 

61850 compliant devices are widely available and are slowly being deployed in 

industry. These devices however are mainly for station level applications at present. 

The knowledge base in the academic environment and the devices to accommodate 

the process bus paradigm are still limited (even in the industrial environment). The 

limited development of devices to accommodate the process-bus paradigm prompted 

the UCA user group to publish an implementation guideline document “IEC 61850-9-

2LE” in 2004 (Schaub and Kenwrick, 2009).  

 

The IEC61850-9-2 standard describes the framework for the general design of 

merging units (Weiss et al., 2011).  This document, however allows developers 

significant leeway which has led to a variety of implementations, with consequent 

problems with regards to interoperability between different vendor’s devices. An 

implementation guideline “IEC 61850-9-2LE” was published by the UCA International 

user Group, to facilitate the uniform implementation and interoperability of devices 

utilizing sampled values. The IEC 61850-9-2LE implementation guideline document 

specifies a fixed dataset containing four current and four voltage measurements (IEC 

61850-9-2LE page 7). The IEC 61850-9-2LE document also specifies fixed sampling 

rates of 80 samples per cycle for protection applications and 256 samples per cycle 

for metering applications (IEC 61850-9-2LE page 9). The concepts discussed in the 

implementation guideline document are further elaborated later on in this chapter. 

 

Since the publication of the implementation guideline document, there has been 

several pilot projects implemented that support the proposed IEC 61850-9-2 interface 

convention (Schaub and Kenwrick, 2009). However, there are still only a few 

substation automation devices available on the market which provides IEC 61850-9-

2LE interface connectivity.  

 

The few devices that are available on the market are vendor based. There is limited 

knowledge in the public domain about the devices that can be used to simulate the 

process-bus concept of sampled value messaging. This chapter explores the 
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capabilities of personal computer-based platforms as a means to simulate sampled 

value messages.   

 

The chapter is structured into seven sections.  This section (4.1) is the introduction. 

Section 4.2 provides the project context and outlines the hierarchical structure 

defined in the IEC 61850 standard.  In section 4.3 the merging unit as the device 

demarcated for distribution of measurements between the process and the bay levels 

in IEC 61850 systems is discussed, and the detailed structure of merging unit devices 

is outlined, with comments on its functional and temporal behaviour as per the 

standard. In section 4.4 the research project is described and the delimitation and 

scope stated. Section 4.5 addresses the issues of development tools and 

development platforms which were used. Section 4.6 addresses the challenges that 

needed to be overcome with respect to data networking at the datalink layer level. 

Section 4.7 concludes on what has been discussed in this chapter and states what 

will be discussed in the next chapter. 

 

4.2. Project context 
 
 

The IEC 61850 standard specifies the use of a hierarchal architecture for data 

modelling and for interfacing between substation devices, as depicted in Fig. 4.1 

below. 

   

 

 

 

   Figure 4.1a: Hierarchical model as 
specified in the IEC 61850 standard 
(IEC 61850, 2003) 

Figure 4.1b: An implementation 
architecture for IEC 61850 
communications (Brunner et al., 
2007) 
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The interfaces defined in the IEC 61850 standard when implemented, manifests as 

the station and process busses respectively - as shown in Fig. 4.1b. Interfaces four 

(IF4) and five (IF5) in Fig. 4.1a are defined in the IEC 61850-5 standard for interfacing 

the process level to the bay level. IF4: Current Transformer (CT) and Voltage 

Transformer (VT) instantaneous data exchange (including sampled values) between 

process and bay level; and IF5: control-data exchange between process and bay 

level. 

 
Interface five (IF5) in Fig. 4.1a is used for GOOSE messaging carrying control data 

exchange messages between bay level and process level devices (Sidhu et al., 

2008). GOOSE messaging refers to the time-critical messaging, which has been 

defined for fast peer-to-peer communication between substation automation 

Intelligent Electronic Devices (IEDs). GOOSE messages are generally used to 

transfer status information between two or more devices (Sidhu et al., 2008).  

GOOSE messaging as discussed earlier in section 3.5.2.2 is event-based. The 

current implementation of the IEC 61850 standard in industry is however not through 

this interface, i.e. IF5.  

 
Figs. 4.2a and b depicts the current deployment of the IEC 61850 standard in industry 

(within South Africa and internationally). Notable in Fig. 4.2 is that the primary plant 

equipment is hardwired to the bay level devices. GOOSE message exchange only 

occurs at the bay and station levels, through interfaces 1, 3, 6, 8 and 9, as shown in 

Fig. 4.1a (All interfaces are discussed in chapter 2).  The current deployment of the 

IEC 61850 standard does not  provide connectivity to primary plant equipment 

through interfaces 4 and 5. The disadvantage of this deployment architecture is that 

there are no raw measurements  distributed from the process level to the bay level. 

 

Figure 4.2a: IEC 61850 current 

deployment architecture 

(Kezunovic, 2004) 

 Figure 4.2b: IEC 61850 current 

deployment communication 

architecture 
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[Note: The “Bus” in Fig. 4.2a refers to voltage busbar and not a data network] 

[Note : The Skaapvlei Wind Farm in the Vredendal (South Africa) is an example of a 

current implementation within South Africa. The author of the document was part of 

the team (Buffkins, R., Tshisevhe, H. and Luwaca. E), that designed and 

commissioned a bus-protection scheme using GOOSE messaging, and the deployed 

architecture is as depicted in Fig. 4.2b. ] 

 

The Future IEC 61850 deployment architecture is depicted in Fig. 4.3 and IF4 and IF5 

is provisioned for. The introduction of the future architecture will introduce a paradigm 

shift in the industry, as both GOOSE and raw measurements will be available from 

the process level through interfaces 4 and 5 respectively. Note : In Fig. 4.3 the traffic 

at the process level is segregated with the use of a Virtual Local Area Network 

(VLAN). The blue lines represent the sampled values VLAN and the brown lines 

represent the GOOSE VLAN. 

 

 

Figure 4.3: IEC 61850 future deployment architecture  

 
Interface five (IF5) is defined in the IEC 61850-5 standard for sampled value 

measurement distribution from the process level to bay level devices. Sampled value 

messaging as discussed in chapter three, section 3.5.2.3.1 is related to periodic 

measurements that are distributed between the process level and the bay level. The 

current implementation of the IEC 61850 standard in industry does not include the 

process bus. In Fig. 4.2a, above the primary plant equipment is hardwired to the 

protection devices. The process bus concept is not applied.  
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The previous paragraphs attempted to state what the current status quo is – that 

GOOSE messaging is predominant and that the process bus concept has not even 

begun to come to fruition. The paragraphs to come outlines examples of how the IEC 

61850 process bus concept is to be deployed in future for not only GOOSE 

messaging, but also inclusive of measurement distribution through sampled value 

messaging. This scenario is depicted in Fig.4.4 below. 

 

Figure 4.4: Process bus concept (Andersson et al., 2003) 

 

In Fig. 4.4 above, the sensor node demarcated for measurement distribution is 

highlighted (red dashed line).  This sensor node is widely referred to as the Merging 

Unit. Merging units are specified in the IEC 61850 standard as a means to interface 

to conventional and non-conventional instrument transformers. The advantages of 

merging unit deployment are (Kanabar, 2011):  

� Raw, unprocessed measurement values: the sampling rate and distribution 

rate for the data acquisition node defined in the IEC 61850 standard is 

sufficient for power system devices requiring raw measurements. 

� Support for both Unicast and Multicast published measurements. 

� Substation automation systems are not only based on substation events, but 

on actual raw measurements. 

� Presents a standardized interface to non-conventional instrument 

transformers. 

� Improving the performance in systems with conventional transformers: the A/D 

conversion is done close to the source and much of the burden of processing 

can be removed from the bay level devices. 

� Reduced wiring and reduced cabling costs. 
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Merging Units can also be used in other applications within the substation automation 

environment. The deployment of IEC 61850-9-2 Merging Units can be used to 

replace currently deployed stand-alone Phasor Measurement Units (PMUs) 

(Abdolkhalig et al., 2013) and can provide a solution for power quality measurements, 

such as harmonic measurements (Tholomier and Chatrefou, 2008).  

 

An example of how measurement distribution can be accomplished using merging 

units is shown in Fig. 4.5 – in this example, both a sampled value transmitter and 

receiver are shown, accomplishing through processing of the stream of data what 

would currently be accomplished through event-driven GOOSE messaging. GOOSE 

messaging works exceedingly well for the tasks that it has been designed for, but 

there are other tasks over and above those associated with GOOSE messaging 

which would be better accomplished through processing of raw data streams. 

 

Figure 4.5: IEC 61850-9 -2 Sampled Values based IED (Apostolov et al., 2006) 

. 
The function of a Merging Unit is to receive analogue measurements from the plant, 

digitize the analogue values, encode, and publish the raw data in a sampled value 

format onto the process-bus as shown in Fig. 4.5. The detailed structure of a merging 

unit is described in the next section. 

 

4.3.1. Detail and structure of a merging unit 
 

Figure 4.6 below describes the general structure of a merging unit. For a full 

implementation, once the three current and voltages together with their associated 

neutrals from the instrument transformer are coupled into the merging unit - the main 

components for subsequent processing and packaging consists of four major 

functional blocks (Weiss et al., 2011), namely: 

� Signal conditioning unit and filtering 
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� The Analogue to Digital Converter (ADC) 

� Time synchronization module  

� Processing and computing unit (shown as Digital Signal Processing Unit in 

Fig. 4.6.)  

 
Figure 4.6: Concept of merging unit (Apostolov and Janssen, 2008) 

 

As shown in Fig. 4.6 a Merging Unit receives analogue inputs signals from current 

and voltage transformers. The received analogue input signals are then amplified, 

filtered using anti-aliasing filters, and passed onto an analogue to digital conversion 

system. The received data on the analogue to digital converters is then digitized and 

accurately time stamped using the Global Positioning System (GPS) or some other 

precision time synchronization mechanism. Finally the digitized values are then 

processed, encoded, packaged into an IEEE 802.1Q frame in a manner that is 

compliant with the IEC 61850-9-2 part of the standard, with the appropriate VLAN tag, 

and ASN.1 tagging and published onto the process bus.  

 

The four major functional blocks mentioned in the paragraph above are further 

elaborated upon in the section to follow. 

 

4.3.2. Signal conditioning and filtering 
 

Current and voltage transformers are primary-plant devices. They are typically 

installed outdoors in the high voltage yard, and are typically subjected to significant 

sources of noise.  The 3-phase (3Ɵ) current and voltage + 1 neutral current and 

voltage analogue signals received from these devices generally need to be 

conditioned and filtered using anti-aliasing filters before being inputted into the 

Analogue to Digital Converter (ADC). The aim of the anti-aliasing filters is to limit 

certain frequencies and harmonic interference, so that the downstream processing 

and computations can take place appropriately. The conditioned and filtered signals 
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are then captured and converted by the analogue-to-digital converters - see Fig. 4.7 

below and elaborated upon in the following section. 

 

 

Figure 4.7: Analogue to Digital conversion in IEC 61850 “MU” 

(Apostolov and Janssen, 2008) 

 

4.3.3. Analogue to digital converter  
 

The analogue signal received from the signal conditioning and filtering unit must be 

converted into digital data that can be processed to obtain magnitudes of the three 

phase currents and voltages + the neutral currents and voltages. The current release 

of the IEC 61850-9-2, 2004 does however not define the sampling rate and resolution 

of the Analogue to Digital Converter (ADC) with any great detail, nor does it define 

the signal conditioning unit discussed above. This has presented a challenge with the 

standardized implementation of merging units, and also with ensuring interoperability 

between developed merging units and bay-level devices. The UCA user grouper has 

since addressed this issue by releasing the IEC 61850-9-2LE implementation 

guideline. Appendix C on pages 20 and 21 of the implementation guideline document 

(IEC 61850-9-2LE) specifies the accuracy requirement. Table 3 on page 9 of the IEC 

61850-9-2LE document defines two sampling rates, one for protection applications 

and a second for metering applications.  A sampling rate of 80 samples/cycle for 

protection applications, and a sampling rate of 256 samples/cycle metering and 

quality measurement data is suggested, as depicted in Figure 4.8 (see blue box).   
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Figure 4.8: Multicast sampled value control block (IEC 61850-9-2) 

 

The IEC 61850-9-2LE implementation guideline (pages 22 through 24) requires a 

specified resolution for the measurement of the currents and voltages and to 

accommodate the dynamic range requirements. This measurement resolution, which 

is required translates to the number of bits on the analogue-to-digital converter for the 

measurement of a particular rating of current or voltage, i.e. for a particular rated 

current or voltage, a particular bit-size is required for the ADC (fault current levels 

also need to be taken into account). A manufacturer would then have to produce a 

merging unit with a particular rated voltage or current in mind. See Appendices E and 

F for further information.  The implementation by most vendors that have developed 

merging units at the present moment does not cater for all practical cases. Table 4.1 

below shows the current implementation by two of the vendors that have commercial 

merging unit devices on the market. 

 

Table 4-1: Analogue to Digital Converter (ADC) resolution from two commercial units 

 

SPECIFICATION 

ALSTOM 

(MU Agile AMU) 

VIZIMAX 

(AMU) 

ADC resolution 24 bit 16 bit 

 

4.3.4. Time Synchronization 
 

The IEC 61850-5 on page 48 specifies that time synchronization used to synchronize 

the internal clock of an IED in a substation automation system is dependent on the 

application used. The standard IED synchronization and accuracy requirements are 

specified in clause 13.7.6.2 as depicted in Table 4.2 below. 

 

 



81 
 

Table 4-2: IEC 61850-9-2 Time synchronization specification for MU 

 

 

The IEC 61850-9-2LE implementation guideline document specifies the time 

performance class T4 (orange box) on table 4.2 above (IEC 61850-9-2LE).  T4 allows 

for ± 4 µs error, and of the ± 4 µs, IEC 61850-9-2LE document allocates ± 2 µs jitter 

to the merging unit. The merging unit itself has to be synchronized from a time source 

with better than ± 1 µs accuracy, as shown in Fig. 4.9 

 

 

Figure 4.9: Definition of the maximum clock jitter and rise time at the merging unit 

clock input (IEC 61850-9-2LE) 

 

The IEC 61850-9-2LE document on page 11 recommends the use of a Global 

Positioning System (GPS) clock for time synchronization. The issue of time 

synchronization has been an intensive area of research studies of late, as indicated in 

the literature search in chapter 2; with the IEEE 1588 Precision Time Protocol version 

2 (PTPv2) proposed for time synchronization in substation automation systems and 

specifically for merging units (Ingram et al., 2012). 

 

4.3.5. Processing and computing unit 
 

All digitized signals from the merging unit are then processed in the merging unit 

logical nodes by the process and computing unit highlighted in green in Fig. 4.10 

below.  
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Figure 4.10: Processing and computation, conversion in IEC 61850 “MU” 

(Apostolov and Janssen, 2008) 

 
The logical nodes used in the merging unit logical device are defined in the IEC 

61850-7-4, 2004 page 61 as TCTR for current transformers and TVTR for voltage 

transformers on page 62. The IEC 61850-7-4 standard is referenced in the IEC 

61850-9-2LE document, and the Merging Unit logical device instance is defined on 

page 7 of the IEC 61850-9-2LE document as depicted in Fig. 4.11 below. 

 

 

Figure 4.11: Logical device instance “MU” (IEC 61850-9-2LE) 

 

Four instances (3Ɵ + 1 neutral) of each the current (TCTR) and voltage (TVTR) 

logical nodes are required (mandatory requirement) within a logical device merging 

unit.  This is due to the fact that primary equipment is typically done via a single 

phase representation. As part of the processing and computation, the data contained 

within the logical node has to be packaged into a dataset, encoded and published at 

the Datalink layer. The IEC 61850-9-2LE standard defines a fixed data set for the 

transmission of sampled values as shown in Fig. 4.12.  
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Figure 4.12: PhsMeas1 dataset (IEC 61850-9-2LE) 

 

The fixed data set is then encoded and packaged into the sample value frame 

structure, with the suitable source and destination address, VLAN tag, Application 

protocol data unit and Abstract Syntax Notation (ASN.1) tagged Application Protocol 

Data Unit (APDU). The sampled value frame structure is discussed in detail in 

chapter 5 section 5.3. The generated sampled value message is then published at 

the Datalink layer, every 250µs for a 50Hz system. 

 

4.3. Research project description and scope 
 

In section 4.3 the complete merging unit device is discussed and ideally what needs 

to be designed and integrated for the full real-time implementation of a merging unit.  

The scope of this research project however is a delimited subset of the complete set 

of functionalities of a merging unit. 

 

At the present moment there are only a limited number of suppliers who have 

successfully implemented devices that publish sampled values in a format compliant 

with IEC 61850-9-2LE guideline, and this has been mainly in vendor-based devices.  

 

The limited number of IEC 61850-9-2LE devices in the market has resulted in quite a 

few research projects being initiated in research facilities around the globe. This 

research project investigates the development of a sensor node on a PC platform that 

can be used to simulate the publishing of sampled values. The intent of this project is 

to provide the building blocks for a future real-time, with real data implementation of a 

sensor node that is compliant with IEC 61850-9-2LE.  

 

This project seeks to build the foundation for the creation of a virtual sensor node, to 

contribute to, and assist with the understanding of the process-bus concepts in an 

education environment. “Virtual” meaning that a PC based program will be simulating 

the sensor node and the sensor node is not actually implemented. The virtualised 

sensor node represents a limited functional implementation of the merging unit that 

Fixed 

dataset 
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will represent a virtualised data acquisition node capable of synthetic generation of 

waveforms through synthesis data generation, encoding of the data and transmitting 

the data in a format compliant with the IEC 61850 protocol. 

 

The role of this project in an academic environment is to build the knowledge base 

required to assist with the understanding of the functioning and implementation and to 

lay the groundwork for a future real-time implementation.  

 

Fig. 4.13a below represents a full implementation of a merging unit as specified by 

the standard. For a full implementation, once the three current and voltages together 

with their associated neutrals from the instrument transformer are coupled into the 

merging unit - the main components for subsequent processing and packaging are:  

� Signal conditioning unit and anti-aliasing filters 

� The Analogue to Digital Converter (ADC) 

� Time synchronization module  

� Processing and computing unit (shown as Digital signal Processing Unit.) 

 

The full implementation will not be attempted in this proposed project. The research 

project will attempt to achieve the required functional behaviour for merging unit 

operation, but it is not within the scope of this project to achieve the temporal 

behaviour as stated within the standard. The scope and delimitation of the project is 

shown on the right-hand side, i.e. Fig. 4.13b below. The aspects of the merging unit 

architecture not directly implemented within this project, (Fig. 4.13b red perimeter) 

are:  

� Interfacing to real-time primary plant devices (current and voltage 

transformers). 

� The Analogue to Digital Converter (ADC) 

� Time synchronization from an external source 

 

The virtual sensor node development (Fig. 4.13b green perimeter) will include:  

� Synthetic data generation through computation of a sine wave that is sampled 

4000 times per cycle using the PC’s system clock for time synchronization.   

� Sample value frame structure generation in an object oriented environment 

� Processing and encoding of the data generated into a sampled value frame 

structure 

� ASN.1 encoding for the sampled value frame 

� VLAN tagging of the sampled value message generated 

� Time tagging of the sample value message using the PC’s system clock 
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� Publishing of the sampled value frame generated onto the network. 

Figure 4.13a: Structure of merging 
unit (Apostolov and Janssen, 2008)
                 

 Figure 4.13b: PC based sensor 
capable of sampled value 
outputting 

 

In the sensor node depicted in Fig. 4.13b the various parts required for a merging unit 

are simulated. The inputs from the current and voltage transformer, the signal 

conditioning and analogue-to-digital converter outputs are all replaced with the 

synthetic data generator. The time synchronization provided by a GPS clock in 

merging units is simulated using the PC’s internal clock. The processing and 

computing unit is substituted with a PC platform using the object oriented 

programming environment provided by Python. A Python program is used for 802.1Q 

packet crafting, priority tagging, data modelling, encoding and publishing of sampled 

values in a format compliant with IEC 61850-9-2LE. 

 
With reference to Fig. 4.13b, the output of the virtual sensor node, once the data is 

encoded and packaged; it is required to publish these sample value messages at the 

datalink layer level (Konke et al., 2012) - see Fig. 4.14.  

 

Figure 4.14: Overview of functionality and profiles, with emphasis on SV  

(IEC 61850-8-1, 2004) 
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The sampled value frame structure was introduced in chapter 3 in section 3.5.2.3.2 

and will be further elaborated upon in chapter 5 section 5.3. In-order to select the 

hardware and software platform for the project development, an in-depth investigation 

into PC based hardware and software platforms was conducted. These are 

elaborated upon in more detail in the following section. 

 

4.4. Development tools and development platform 
 

For the development of the virtual sensor node proposed, an in-depth investigation 

into layer 2 networking on PC-based platforms had to be conducted. The two 

operating systems investigated are Windows and Linux Ubuntu using Python as the 

programming language as is shown in Fig. 4.15.   

 

Figure 4.15: Low level networking on PC based platforms using MS Windows and 

Linux Ubuntu 

The tools used for the development are Python as the programming language -

initially using raw sockets (discussed later in this chapter), and also using a Python 

network library called Scapy. Python as a programming language is briefly introduced 

in section 4.5.1 and Scapy as a Python networking library is discussed in section 

4.5.2. 

 
4.4.1. Programming language: Python  
 

Python is an object-oriented, programming language that provides built-in data 

structures that make Python attractive for Rapid Application Development 

(www.Python.org). Python is a relatively simple-to-learn programming language with 

easily readable syntax. The Python user website (www.Python.org) provides 

examples and tutorials to fast-track Python beginners into intermediate programmers. 

Additionally, Python supports modules and packages, which encourages program 

modularity and code reuse. The Python interpreter and Python libraries are mostly 
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available in source or binary form without any charge.  Python was selected for this 

project because: 

� It is an open source general-purpose language. 

� It provides an object orientated environment 

� Python is supported on a wide range on operating systems 

� It has an intuitive, interactive environment for developers 

� It has excellent data networking libraries such as SCAPY, and TWISTED 

Python  

� Python has libraries that support the development of Abstract Syntax Notation 

(ASN.1) encoding such as  PyASN 

 

4.4.2. Networking libraries – Scapy 
 

Scapy is a Python networking library that is capable of encoding and decoding data 

for Ethernet frames and Internet protocol packets for a wide number of protocols, and 

is capable of transmitting the generated packets on through the network 

(www.scapy.org). Scapy uses Python classes to provide a framework for the creation 

of packets or frames (Biondi, 2003). Through objected oriented programming, Scapy 

provides support for the creation of custom packets by interacting with the operating 

system kernel using sockets such as: 

� Socket.SOC_STREAM - Socket stream 

� Socket.SOCK_DGRAM  - Socket Datagram 

� Socket.SOCK - Raw sockets 

� Socket.SOCK_SEQPACKET - Sequence sockets 

 
The listed of supported protocols can be checked on Scapy by using the list () 

function as shown in Fig. 4.16 below. 

 
Figure 4.16: List of supported protocols on Scapy 
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4.4.3. Crafting of custom packets utilising the Sca py library 
 

Networking tools and libraries are generally built for specific functions and cannot be 

extended, or users cannot deviate much from the specific function the author had in 

mind when developing the library. Scapy differs from most networking libraries in this 

regard as it allows the user to create custom networking protocols by extending the 

Scapy library (Biondi, 2003). Chapter 9, page 41 on the Scapy documentation manual 

discusses the process of custom development on Scapy. 

 

Figure 4.17a: Custom packet 

generated with Scapy that does not 

conform to any standard [Linux] 

 

Figure 4.17b: Custom packet 

generated with Scapy that does not 

conform to any standard [Microsoft 

Windows] 

Fig. 4.17a shows an example of a custom packet generated with Scapy that does not 

conform to any standard. The VLAN tag in the packet generated has been deliberately 

tampered with, and as a result, a protocol analyser such as Wireshark (discussed later 

in this document) identifies the packet as “Malformed” as it does not conform to any 

standard. Scapy provides the framework and allows for the transmission of custom 

layer 2 and layer 3 packets (Biondi).  

 

For this project, the IEEE 802.1Q framework provided on Scapy is leveraged, and 

expanded upon.  On Scapy, the three classes highlighted in red in Fig. 4.18 below, are 

already available as a foundation for custom layer 2 packet crafting.  
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Figure 4.18:: Scapy supported classes for layer 2 networking (Biondi, 2009) 

 

What is not available, and what needed to be developed for this project are classes for 

the following fields in the sampled value frame (Details about the sampled value frame 

structure have been covered in chapter 3): 

� Application protocol Identifier (APPID) 

� Reserved bytes 

� Variable length  

� Sampled value Protocol Data Unit (svPDU) 

� ASN.1 encoding for the sampled value frame generated 

� Sampled value dataset 

� Sampled value counter 

 
4.4.4. Using Scapy on Microsoft Windows and Linux O perating Systems 
 

Scapy is supported and can be used in combination with a wide range of operating 

systems (Biondi, 2009). In this project Scapy networking was tested on both Microsoft 

Windows and Linux operating systems. The software packages required for the use of 

Scapy on Microsoft Windows Operating Systems (OS) are catalogued below. 

� Python 2.5 or higher  

� Pywin32  

� WinPcap,  
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Fig. 4.19 below details how low-level networking is achieved on Microsoft Windows 

operating systems using Scapy. 

 

 

Figure 4.19: Using Scapy on Microsoft Windows 

 
Accessing the physical layer on a Microsoft Windows platform involves interfacing with 

the Winsock Data Link Library (DLL). The Microsoft Winsock data link library is 

discussed later in this chapter. Scapy interfaces to the Winsock DLL on Windows using 

the Winpcap library - also detailed later in this document (Biondi, 2009). The challenge 

with Scapy on a Microsoft Windows system is that Scapy has been primarily developed 

for Unix-like systems and works best on those platforms (Biondi, 2009). Although the 

experiment with Scapy on Microsoft Windows was successful, limited functionality on a 

Microsoft Windows platform was experienced by the author. Limited functionality in the 

sense that Scapy would not work on any of the Integrated Development Platforms 

(IDEs) tested - such as PyWin, Not Just Another IDE (NINJA) and ECLIPSE. 

 
The next phase was to test Scapy on a Linux operating system. The software 

packages listed below are required for Scapy on a Linux Operating System (OS) 

(Biondi, 2003): 

� Python 2.5 or higher  

� LibPcap 

� PyPcap 

� Pyreadline 

� Libdnet 
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Fig. 4.20 below details how low-level networking is achieved on a Linux operating 

system using Scapy. Accessing the physical layer on a Linux Ubuntu platform involves 

interfacing with the Berkley Packet Filter (BPF). The Berkeley Packet Filter (BPF), on 

UNIX systems such as Linux Ubuntu provides an interface to the data link layer. The 

Berkley packet filters are accessed via the LibPcap library. LibPcap is a Linux 

equivalent of the WinPcap library discussed later in this document.  

 

Figure 4.20: Using Scapy on Linux Ubuntu 

 
Scapy can be installed on Linux from the terminal window using root user access 

credentials. The technique used to gain Root user access level on Linux operating 

systems is shown in Appendix B. Installing Scapy on a Linux operating system 

generally installs the required packages if they are not already installed on the user’s 

PC. Fig. 4.21 shows the installation process followed for installing Scapy on Linux 

Ubuntu.  

 

Figure 4.21: Installing Scapy on Linux Ubuntu (Biondi, 2009). 

 

4.5. Datalink layer networking  
 

The Datalink is the layer just above the physical layer as shown in Fig. 4.22 below. The 

data link layer (layer 2) uses the services of the physical layer to send and receive data 

over the communication network and also provides a service to the network layer 

above.   
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Figure 4.22: OSI reference model (Horalek and Sobeslav, 2014) 

 
The Datalink layer is utilised by protocols such as Address Resolution Protocol (ARP), 

Point-to-Point protocol (PPP), Ethernet, etc. to provide fast messaging between two 

systems. GOOSE and sampled values also map directly to the Datalink layer to 

provide fast communication in IEC 61850 substation automation systems. 

 

The major challenge with this project is that Data link layer frames are more difficult to 

program as opposed to the higher level protocols such as User Datagram Protocol 

(UDP) and Transmission Control Protocol (TCP). Data link layer frames use raw socket 

and raw packet structures as opposed to Datagram and Stream sockets utilised for 

higher level protocols. Sockets are discussed later in this chapter.  

 

Higher level protocols in this context refer to the protocols using the TCP or UDP as 

the transport layer. These protocols are widely used in applications such as the 

Internet, and Supervisory Control and Data Acquisition (SCADA) in the substation 

environment. As a result, lots of work has already been done to create 

libraries/modules for scripting high level networking programs. 

 

Using programming languages such as C, C++, Java, and Python libraries/modules to 

easily program transport layer protocols are readily available. A software developer 

often has the easy task of defining the data to be transmitted, and attaching it into the 

already erected transport mechanism. For this project though, these types of modules 

or libraries do not exist and methods to script data link messages using raw sockets 
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had to be investigated and the use of raw sockets on the various operating systems 

had to be investigated.   

 

4.5.1. PC-based platform 
 

The publishing of data-link frames is investigated on two platforms, namely Microsoft 

Windows and Linux. Most of the initial work was performed on Microsoft Windows as 

this is a widely used commercial platform. Later Linux operating systems were 

investigated as Linux offers an open-source platform.  

 

The objective of this investigation was to establish which kernel would allow 

generation, binding, and outputting of layer 2 frames. Fig. 4.23 below shows an 

example of how user applications interact with the physical devices in a PC 

environment. 

 

Figure 4.23: interaction between application layer and devices  

(Bovet and Cesati, 2000) 

 

As shown in Fig. 4.23 above, the kernel is the main component of a personal 

computer’s operating system (Bovet and Cesati, 2000). The kernel provides the bridge 

between applications and the actual data processing done at the hardware level. In-

order to implement low-level network programming applications, Microsoft Windows 

and Linux kernels and the user Application Programming Interface (API) interfaces to 

the network card for the transmission of data link frames has to be thoroughly 

understood. Fig. 4.24 below shows an example of a Linux kernel. 

 

Operating System 
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Figure 4.24: Linux kernel (Shuylupin, 2009) 

 

The path of a packet through the kernel is highlighted (dashed blue line) in Fig. 4.24 

above. The Application Program Interface (API) interface to the network card is 

provided through the use of sockets. Sockets are discussed in section 4.5.1.1 below.  

 

4.5.1.1. Network sockets 
 
 

The API interface to the network card is generally provided through the use of sockets. 

Definition : “A socket is an endpoint of communication to which a name may be bound” 

(Leffer et al). The paper by Tiponut, 2001 “Python Network Programming” provides a 

good overview of using sockets in Python. 

 

A socket is an Application Programming Interface (API) provided by Microsoft Windows 

and Linux operating systems. The socket API is also provided on other operating 

systems not covered in this document. The socket API which is sometimes referred to 

by its original name - Berkeley Socket API was originally released as the Berkeley-

Based Code in 1983 (Hosmer, 2014), and is a set of standard function calls made by 

the application layer to the operating system. These function calls allow networking 

programmers to provide communication capabilities in the developed products. 

  

Since the introduction of Berkeley-Based Code, other socket APIs have since been 

developed. Winsock (Microsoft Windows Sockets) developed in 1993 for the Microsoft 

Windows platform, and TLI (Transport Layer Interface) developed by AT&T, are two of 

the most common socket APIs. 
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There are four socket types available to application users and their functions are briefly 

discussed in section 4.5.1.2 below. These sockets types are supported on both 

Microsoft Windows and Linux environments. 

 

4.5.1.2. Socket Types 
 

There are four types of sockets available to the user.  The stream and datagram 

sockets described below are the most commonly utilized socket types. Raw sockets 

and sequenced packet sockets are the less used sockets. Stream sockets are utilised 

when guaranteed delivery of a networked packet is required.  This type of socket is 

typically used for TCP applications. An example of a TCP communication is shown in 

Fig. 4.25 below.  

 

Figure 4.25: Socket Functions for TCP Client-Server connection (Halvorsen, 2005) 

 

In Fig. 4.25 a connection is initiated from the client side using the socket connection 

function. A connection is then established with the server side device. The socket write 

function is then used to send data and an appropriate acknowledgement is received. If 

no acknowledgement is received the packet is retransmitted (Halvorsen, 2005). 

 

When network delivery is required, but not necessarily guaranteed, Datagram sockets 

can be utilised. This type of socket is typically used for applications using the User 

Datagram protocol (UDP) as the transport. An example of a UDP communication is 

shown in Fig. 4.26 below.  
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Figure 4.26: Socket Functions for UDP Client-Server connection (Halvorsen, 2005) 

 

Datagram sockets are connectionless.  An open connection does not need to be 

established as in Stream Sockets. A packet is crafted and transmitted to the 

destination without prior knowledge of whether the receiving device is still connected to 

the network and no acknowledgement is required. 

 

Sequence packet sockets are similar to a stream socket, they are connection 

orientated, and differ in the sense that record boundaries are preserved. These types 

of sockets are only provided as part of the Network Systems (NS) socket abstraction, 

and are mentioned in this document simply for completeness. 

 

Another type of socket is the raw socket. “Raw Sockets” provide users access to the 

underlying communication protocols (Jorgensen, 2012). Raw sockets are provided 

mainly for those interested in developing new communication protocols, or gaining 

access to some of the more obscure facilities of an existing protocol. 

 

For the development of custom protocols, e.g. sampled value transmission at the data 

link layer, raw sockets have to be utilized. An investigation into data link layer message 

transmission on Microsoft Windows and Linux Operating Systems is conducted in 

sections 4.6.1.3 and 4.6.1.4 respectively.  

 

4.5.1.3. Using raw sockets on Microsoft Windows  
 

Winsock is an application programming interface for networking applications of 

Microsoft Windows systems. It's called Winsock because it's an adaptation of the 

Berkeley socket interface which is provided for Unix/Linux systems. The Winsock API 

provides the interface between the user application program and network interface 

layers 2 or layer 3 protocols on a computer.  An illustration of how a user application 

such as a Python networking script interfaces to the hardware level through the use of 

Winsock API is shown in Fig.  4.27. 
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Figure 4.27: Using raw sockets on Microsoft Windows 

 
As shown in Fig.4.27 above, the user application - in this case being a Python script - 

gains access to low-level networking through the use of Winsock API. The Winsock 

API can be accessed through the use of another library such as Winpcap (discussed 

later in this chapter), or through direct interaction with the Winsock Data Link Library 

(DLL). The test setup to examine the use of raw sockets in Microsoft Windows was 

implemented and is shown in Fig. 4.28. 

 

Figure 4.28: Test setup for using raw sockets on Microsoft Windows  

 

The test setup shown in Fig. 4.28 above was used for testing the use of raw sockets on 

Microsoft Windows 7 was configured and a Python script to initiate/use raw sockets for 

data transmission was developed. In this case a Python script is used to gain access to 

low-level networking through the use direct socket calls to the Winsock API. As 

indicated in Fig. 4.28 this case study implementation was unsuccessful. The reason for 

this failure was that the use of raw sockets of the Winsock 2.0 data link library has 

been discontinued within the Microsoft Windows operating system (since Windows XP 

service pack 1). The System Administrator, Audit, Networking, and Security (SANS) 

paper on “The Raw and the Uncooked: The Microsoft Windows XP Raw Sockets Saga, 

Final Words” discusses why raw sockets support for security reasons has been 

discontinued on Winsock 2.0.  
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4.5.1.4. Using raw sockets on a Linux operating sys tem 
 

Linux is an open-source operating system. It is a platform derived from UNIX to 

facilitate research and development. Raw sockets are still supported on Linux 

operating systems. The method by which Python applications can use raw sockets on 

Linux is illustrated in Fig. 4.29. 

 

Figure 4.29: Using raw sockets on Linux 

 
The Python interface to the UNIX system call and library interface for sockets is a 

direct transliteration to Python’s object-oriented style (Online: 

https://docs.python.org/2/library/socket.html). Many examples of how this is can be 

implemented can be found at www.docs.Python.org. 

 
The socket() function on Linux operating systems returns a socket object whose 

methods implement the various socket system calls. On Python, buffer allocation on 

receive operations is automatic, and buffer length is implicit on send operations.  

 
The test setup to examine the use of raw sockets in Microsoft Windows was 

implemented and is shown in Fig. 4.30. 

 

SUCCESSFUL
 

Figure 4.30: Using raw sockets on Linux 

 

As shown in Fig. 4.30 this case study implementation was successful. Linux supports 

the use of raw sockets.  Python on a Linux operating system such as Ubuntu also has 
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extensive support and there is a wide variety of low level networking libraries that can 

be utilised to ease the process of low-level network programming on Linux operating 

systems. 

 

A number of these libraries were examined in this project so as to fast-track the 

development process. The libraries itemised below were examined for different 

functions which had to be performed in this project. 

i) PyASN1 – for Abstract Syntax Notation One (ASN.1) encoding 

ii) Scapy – for packet crafting 

iii) Twisted Library – for packet crafting 

iv) Scapy ASN – for ASN.1 encoding 

 

From the libraries listed above, Scapy was selected for the sampled value packet 

generation and transmission. The Scapy library provides a powerful Python framework 

for crafting and transmitting packets. Scapy users are able to assemble and 

disassemble arbitrary frames/packets and send them out on to the network.  

 

4.6. Conclusion 
 

In this chapter the project context and the project scope and the delimitation of the 

research project undertaken, is outlined. Low-level networking on Microsoft Windows 

and Linux operating systems are investigated, for the development of the virtual sensor 

node. From the two platforms investigated Linux Ubuntu has been selected as the 

development platform. Ubuntu as a Linux operating system allows the use of raw 

sockets for custom protocol development. The Python programming language and 

Scapy as the networking libraries have been selected as the tools that are used in the 

implementation of the sensor node which is discussed in the chapter to follow.   
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CHAPTER 5  

Implementation, Testing and Verification 

 

5.1. Introduction 

 

Sampled Value (SV) messages discussed in chapter 3 section 3.5.2.3.2.5 in this 

document are associated with the real-time distribution of data in substation 

automation systems. The sampled value messages are transmitted on a periodic basis 

from a sensor node referred to as a merging unit in substation automation systems. 

The sampled value message structure is shown in chapter 3, section 3.5.2.3 and 

consists of various fields, starting with the preamble and Start of Frame Delimiter 

(SFD) at the hardware level, and ending with the sampled value payload consisting of 

a fixed dataset containing the measured values.  

 

In chapter four, the context and outline for the research project is established. 

 

In this chapter, the implementation of the virtualized sensor node that can be used to 

publish sampled value messages is described, and two testing scenarios - one using a 

commercial Omicron CMC test injection device for power systems, and another using 

the Personal Computer (PC) based sensor node are discussed. The sampled value 

messages published from the two devices are captured using a commercial protocol 

analyser tool called Wireshark and a comparative analysis of the message structure 

obtained from both the commercial vendor device (CMC) and PC-based simulation are 

compared to each other, and to the sampled value message structure as specified by 

the IEC 61850-9-2 standard and the IEC 61850-9-2LE implementation guideline 

document. The comparative analysis of message structure will serve as verification of 

functional behaviour. Temporal performance will also be commented upon. 

 

The chapter is structured into five sections. Section 5.1 is the introduction. In section 

5.2 the implementation in terms of modular structure of the virtualised sensor node that 

can be used to simulate and publish sampled value messages is discussed. In section 

5.3, Wireshark as the protocol analyser in section 5.4 through to section 5.5 is 

discussed.  A practical experiment is conducted in section 5.4, first using the 

developed PC-based sensor node is performed in section 5.4.1 and using a practical a 

commercial unit, an Omicron CMC injection test set in section 5.4.2. In section 5.5 the 

structure of the sampled value messages published from both the developed PC-based 
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sensor node and the commercial unit is compared to each other and to the format as 

stipulated in the IEC 61850-9-2LE guideline document.  

 

5.2. Software development for the PC-based sensor n ode 
 

In this section the software development for the Personal Computer (PC) based sensor 

node is discussed. The PC-based sensor node developed is shown in modular form in 

Fig. 5.1 below.   

 

 

Figure 5.1: PC based Sensor Node capable of sampled value publishing 

 
The PC based sensor node is developed in an Objected Orientated environment 

provided by the Python programming language and is capable of synthetic data 

generation, time stamping using the PC’s internal clock, ASN.1 tagging of the 

generated sampled value frames and outputting of a sampled value at the datalink 

layer.  

 

A simplified flowchart of the solution that can be used to simulate the functional 

behaviour of the IEC 61850 process level sensor node is shown in Fig. 5.2 below. 
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Figure 5.2: Simplified flow chart of the developed solution 

 

The solution starts by importing the various Python libraries required for the 

development and finishes off by publishing a sampled value frame. The various class, 

class methods, and attributes that are utilised for synthetic data generation, time 

synchronization, ASN.1 encoding and sampled value frame structure - with Virtual 

Local Area Network (VLAN) tagging, are discussed in the sections to follow.  
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5.2.1. Synthetic data generation 
 

In chapter 4 section 4.3, the design and integration for a full merging unit 

implementation was outlined.  In the full implementation, a merging unit receives 

analogue inputs from instrument transformers. These analogue inputs are then 

conditioned, filtered, and digitized before they are processed. In this project, the 

acquisition of analogue input data (typically received from instrument transformers) and 

digitised with the use of analogue to digital converters does not fall within the scope, 

but is simulated through the programming of a discretised sinusoidal wave for the 

synthetic generation of the data. In Fig. 5.3 below the block responsible for the 

synthetic data generation is highlighted (pink block).  

 

 

Figure 5.3: PC based Sensor Node synthetic data generation 

 

The sine wave used to simulate the data for the sampled value transmission is 

discretised using the sample count value. The Python time module discussed in 

section 5.2.2 below is utilised to return current time in seconds, and this time is stored 

in a predefined variable. The “ticks” variable shown in Fig. 5.4 is used to store the “n.t” 

(sec) and is used to calculate the current and voltage magnitude values as shown in 

equation 5.1 below.  

 

The three-phase voltages and currents are computed from equation 5.1 below, and the 

neutral values for voltage and current are computed from the three-phase values. 

 

The IEC 61850-9-2LE guideline specifies a sampling rate of 80 samples per cycle 

when operating at 50Hz. This translates to a frequency of 4000 Hz, which is used to 

generate a sample count number of 0 – 3999 inclusive. The parameter n in the 

equations below, take on these values sequentially.  
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)0(* °+= ntSinVinVa a ω   (5.1) 

)120(* += ntSinVinVb b ω   (5.2) 

)240(* °+= ntSinVinVc c ω
   (5.3) 

VcVbVaVn ++=                            (5.4) 

)0(* °+= ntSinIinIa a ω
                     (5.5) 

)120(* °+= ntSinIinIb b ω
               (5.6) 

)240(* °+= ntSinIinIc c ω
             (5.7) 

IcIbIaIn ++=                                  (5.8) 

In this simulated environment, the parameter t is picked up from the built-in time 

module in Python (as discussed in section 5.2.2) at each increment of the sample 

count. The peak of the three-phase voltages and currents are computed from the Root 

Mean Square (RMS) values which the user is initially prompted to input. The neutral 

voltage and current values are calculated as the sum of the computed phase voltage or 

current values respectively. Note : It is assumed that the system is not faulted.   

 

 

Figure 5.4: Sample code of the data generated 

 

5.2.2. Time synchronization 
 

In a full real-time implementation of a merging unit, a synchronization signal would be 

obtained from a 1 Pulse Per Second (1PPS) global time synchronization source such 

as a Global Positioning System (GPS). The reason for this signal is to mitigate against 

errors due to drift in the time signal - hence the system is re-synchronized every 

second, as illustrated in Fig. 5.5 below. 
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Figure 5.5: Time synchronization for a full real-time implementation of merging unit 

 

Furthermore, the synchronization pulse sets/resets a counter to 0. The sample count is 

allowed to count up to 3999. The reason why the values are from 0 - 3999 is given in 

section 5.2.1 above. 

 

Note: It is the sample count value (0-3999) that is transmitted within the message data, 

as it is assumed that the receiving device is also synchronized to the global 1PPS 

pulses. i.e. entire Wide Area Networks (WANs) are synchronized. This allows for 

“snapshots” to be taken for the wide area network and data for events within it can be 

processed or correlated if required.  

 

The above description, as mentioned, is if a full real-time implementation were to be 

built. In this research project however the generation of the sample count values has 

been simulated through generating and incrementing an integer “n” (referred to in 

section 5.2.1 above) each time the “t” variable increments by a set amount i.e. 1/4000 

seconds. The value for the time variable “t” is obtained from in-built Python functions 

which are described below.  

 

The Python time and date module provides various functions related to time. An 

explanation of the terminology, functions and conversion method utilised in this module 

can be found on the Python website (http://docs.Python.org). Some of the functions 

and items that have been used during the various phases of the project development 

are catalogued in Table 5.1 below with a brief explanation provided for each.  

 

 

Table 5-1: Example of Python’s supported time functions (http://docs.Python.org). 
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Function  Explanation  

Time () Returns the time as a floating point 

number expressed in seconds since the 1 

June 1970.  

Clock() Returns the current CPU time as a 

floating point number expressed in 

seconds. This function is mainly used for 

benchmarking Python or timing 

algorithms. 

Gmtime (secs) 

 

Converts a time expressed in seconds 

since the epoch (1 June 1970) to a time 

tuple in UTC in which the Daylight 

Savings Time (DST) flag is always zero. 

Fractions of a second are ignored.  

Sleep (secs) 

 

Suspends execution for the given number 

of seconds. The argument may be a 

floating point number to indicate a more 

precise sleep time. 

 

The time module can be imported into any Python code and instantiated whenever it is 

required. An example using the sleep function is shown below.  

# Import time  

# TimeToSleep = time.sleep (number of seconds) 

 
In this example, the program will go into sleep mode for the predefined number of 

seconds. The practical use case is shown in the flowchart in Fig. 5.2, where the 

program is paused for a number of seconds before resuming. The sleep function can 

be instantiated with both integer and float numbers. For example if the program has to 

go to sleep for milliseconds or microseconds this is fractions of a second and has to be 

detailed as such. 

 

In the next section the Application Protocol Data Unit (APDU) section of the sampled 

value frame structure as specified in the IEC 61850-9-2 standard and IEC 61850-9-2LE 

implementation guideline document is discussed, with specific emphasis on the 

Abstract Syntax Notation (ASN.1) encoding and its practical implementation for the 

simulated environment. 

 

5.2.3. Implementation: Abstract Syntax Notation (AS N.1) tag encoding 
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From the sampled value frame structure previously discussed in chapter 3 section 

3.5.2.3.2 and also referred to in Fig. 5.6 below, we are now concentrating on the data 

in the Application Protocol Data Unit (APDU) section of the sampled value message 

frame, with specific emphasis on the encoding for the data. The various fields within 

the sampled value APDU are encoded through the use of ASN.1 as highlighted in Fig. 

5.6 below. 

 

Abstract Syntax Notation One (ASN.1) is an international standard used to define 

protocols. ASN.1 encoding essentially, refers to the use of tags to convey/indicate 

information about how the data is sectionalised, and what type of data and the length 

of the data for each section in the frame. This information is especially important so 

that the receiving device can decode the data appropriately (Kaliski Jr., 1993). The 

ASN.1 standard is introduced in chapter 3. The various fields within the sampled value 

protocol data unit are encoded through the use of Abstract Syntax Notation (ASN.1) as 

highlighted in Fig. 5.6 below (Maroon box in Fig. 5.6). 

 

 

Figure 5.6: Sampled Value (SV) application service data unit (IEC 61850-9-2) 

 

A summary table of the commonly utilised encoding values for sampled value 

messages is shown in table 5.2 and table 5.3 below.   

 

The ASN.1 tags used to indicate the start of the savPdu is a hexadecimal (Hex) value = 

0x60 and the start of the ASDUs is indicated by the value = 0x80 as can be seen on 

Table 5.2 below. 

 
Table 5-2: Tag indicating the start of the savPdu 
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Value octet  

(Hexadecimal) 

Value octet  

(Binary) 

Meaning  

(Interpretation)  

60 01100000 Class APPLICATION, 

Constructed. Tag no. = [0].  

IMPLICIT SavPdu Identifier 

octet. Fieldname “savPdu” 

80 10000000 Class CONTEXT-SPECIFIC, 

Primitive, Tag no = [0]. ]. 

IMPLICIT INTEGER.  Identifier 

octet. Fieldname “sv.noASDU” 

Number of ASDUs which will be 

concatenated into one APDU. 

 
 

The start of the ASDU is then followed by an optional field, the security field which is 

encoded with the value =0x81 (IEC 61850-9-2LE). The rest of the Hex value tags 

commonly used for encoding further information in the savPdu section can be seen on 

Table 5.3 (Falk and Burns, 2001). 

 

Table 5-3: Tags commonly used for the encoding of further information in the savPdu 

Value octet  

(Hexadecimal)  

Value octet  

(Binary) 

Meaning  

(Interpretation) 

81 10000001 Class CONTEXT-SPECIFIC, Primitive, 

Tag no. = [1] Security ANY OPTIONAL  

A2 10100010 Class CONTEXT-SPECIFIC. 

Constructed Tag no.=[2].  

IMPLICIT SEQUENCE OF ASDU. 

Identifier octet. Fieldname 

“sv.sequence of ASDU”  

30 00110000 Class UNIVERSAL. Constructed. Tag 

no.=[16]. NOT LISTED IN THE 

STANDARD 61850-9-2, according to 

SISCO, “MMS and ASN.1 Encoding”.  

IA5STRING. 

80 10000000 Class CONTEXT-SPECIFIC, Primitive, 

Tag no. = [0].  

IMPLICIT Visible String Identifier octet. 

Fieldname “sv.ID” 
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81 10000001 Class CONTEXT-SPECIFIC, Primitive, 

Tag no.=[1]. IMPLICIT Visible String  

Comment: Value form the MSVCB or 

USVCB 

82 10000010 Class CONTEXT-SPECIFIC, Primitive, 

Tag no.=[2]. IMPLICIT INTEGER. 

Identifier octet. Fieldname “sv.SmpCnt” 

83  10000011 Class CONTEXT-SPECIFIC, Primitive, 

Tag no.=[3]. IMPLICIT INTEGER. 

Identifier octet. Fieldname “sv.conRef” 

84 10000100 Class CONTEXT-SPECIFIC, Primitive, 

Tag no. = [4]. IMPLICIT UTC TIME. 

Comment: RefrTm contains the refresh 

time of the SV buffer 

85 10000101 Class CONTEXT-SPECIFIC, Primitive, 

Tag no. =[5]. IMPLICIT BOOLEAN. 

Identifier octet. Fieldname 

“sv.smpSynch” 

86 10000110 Class CONTEXT-SPECIFIC, Primitive, 

Tag no.=[6]. IMPLICIT OCTECT 

STRING. 

87 10000111 Class CONTEXT-SPECIFIC, Primitive, 

Tag no.=[7]. IMPLICIT FLOATING 

POINT DATA.  Identifier octet. 

Fieldname “sv.deqData” 

 

In Table 5.2 and 5.3 above the meaning of the tag values is provided. The type tags 

used in the IEC 61850 sampled value protocol data unit enable the receiving device to 

accurately decode the received message. The ASN.1 tags consist of three elements 

(Cassel et al., 2000):  

� Class and class number 

� Implicit or explicit class definition 

� Type being tagged. 

 
As shown in Table 5.2 and Table 5.3 two class objects are used within most sampled 

value messages, a universal class and context-specific class.  The universal class is 

distinguished from other data types as it defines an application independent data type 

(Cassel et al., 2000). The context-specific class denotes members of a sequence 
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class. The class behaviour for the ASN.1 tags is defined by specifying whether the 

class is implicitly defined or explicit. The class behaviour defines the means by which 

the class can be aggregated. A practical example of ASN.1 encoding for sampled 

value messages is shown in Fig. 5.8 below. 

 

 

Figure 5.7: Example of ASN.1 tags used for sampled value messages 

 

Highlighted in Fig. 5.7 are the ASN.1 tags for the sampled value protocol data unit. 

Explanation for each tag highlighted in Fig. 5.7 is provided in Table 5.2 and Table 5.3 

above.   

 

During the development of this project various methods were tested to try and encode 

the ASN.1 tags onto the sampled value messages. Two libraries that can be used for 

sampled value encoding were examined to provide the ASN.1 tagging for the sampled 

value messages published from the sensor node. The PyASN library and Scapy ASN.1 

tagging module were examined. The challenge with both libraries was the limited 

documentation that is provided. The Scapy library, as the library that is utilised for the 

sampled value frame construction discussed later in this chapter, was persisted with.  

 

The biggest challenge with ASN.1 tags on the savPdu (see Chapters 3 and 4 for 

sampled value frame structure) is that there is encoding for the outer and the inner 

The highlighted section 
represents the frame 
captured, and expanded 
upon below 
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fields of the sampled value protocol data unit. As an example, there is the outer ASN.1 

tag encoding for the savPdu and an inner ASN.1 tag for the Application Service Data 

Unit (ASDU), and possibly another inner ASDU, depending on how many application 

services data units are implemented in the sampled value frame. Fig. 5.8 shows an 

example of ASN.1 encoding using the Scapy library.  

 

 

 

 
Figure 5.8: An example of the ASN.1 encoding using the Scapy library 

 

As shown in Fig. 5.8, Scapy provides a way to encode and decode ASN.1 tags.  Scapy 

uses an object oriented programming engine “Scapy ASN.1 engine” to link objects and 

their tags. Scapy however is much more lax than what an ASN.1 parser should be 

(Biondi, 2009), and leeway is given with respect to certain constraints.  

 

5.2.3.1. Abstract Syntax Notation (ASN.1) encoding:  challenges encountered 
 
The main challenge encountered with using the Scapy ASN.1 engine for sampled 

value encoding involved the use of ASN1_Sequences within sequences. The 

aggregation of one sequence class to another sequence class was not properly 

handled by the Scapy library. This problem was escalated by the fact that limited 

Scapy ASN.1 engine documentation was available. The alternative was to hard-code 

the ASN.1 tags into the various fields that required tagging. This was a possibility open 

to us because the dataset recommended in the implementation guideline 

documentation is for a fixed dataset. The packet class model used for frame generation 

within Scapy provides a good platform for this kind of hard-coding of ASN.1 tags. Fig. 

5.9 below shows an example of how the ASN.1 encoding is performed for the 

Application Service Data Unit (ASDU) class. 

 

Inner 
sequence 

 

Outer 
sequence 

Fixed 
Dataset 
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Highlighted in red in Fig. 5.9 are the ASN.1 tags for the various fields. For this 

development the data structure framework provided within Scapy is leveraged. 

Highlighted in green (dashed box) in Fig. 5.10 are the field data types.  

 

 

 

Figure 5.9: An example of a hard-coded ASN.1 encoding using the Scapy library 

 

Two different data type structures are shown in Fig. 5.9. The difference between the 

two types is that one is the standard type and others are hexadecimal representations 

e.g. XByteField and XShortField. The length of a ByteField and that of a XByteField are 

exactly the same - the representation is simply different. Some of the data types 

supported and used in this development are catalogued in table 5.4 below. 

 

Table 5-4: Data types supported in Scapy (Biondi, 2009) 

 Simple Type  Enumer ations  Strings  

ByteField 

XByteField 

ShortField 

LEShortField 

XShortField 

X3BytesField 

IntField 

SignedIntField 

LEIntField 

LESignedIntField 

XIntField 

LongField 

XLongField 

LELongField 

IEEEFloatField 

IEEEDoubleField 

EnumField 

CharEnumField 

BitEnumField 

ShortEnumField 

LEShortEnumField 

ByteEnumField 

IntEnumField 

SignedIntEnumField 

LEIntEnumField 

XShortEnumField 

StrField 

StrLenField 

StrFixedLenField 

StrNullField 

StrStopField 

Attribute 
of ASDU 
class 

Class name 

ASDU class 
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BCDFloatField 

BitField 

XBitField 

 

The next section will discuss the implementation of the complete sampled value frame 

and its transmission.  

 

5.2.4. Implementation of Sampled Value (SV) Frame S tructure and it’s 
transmission 

 
The dashed green box highlighted in Fig. 5.10 below, represents the functions required 

for the implementation of the sampled value frame and its transmission – inclusive of 

the integration of the ASN.1 tags for the various fields within the sampled value 

protocol data, and the packaging of the data.  

 

Figure 5.10: PC based Sensor Node generation of SV frame 

 

The structure in the SV Frame is defined in the IEC 61850-9-2 and discussed in 

section 5.2.3. The IEC 61850 sampled value sending device has to define the following 

fields: [Source and Destination, Virtual Area Network (VLAN), EtherType, Application 

protocol data unit (APPID), Length field, reserved fields, APDU]. The object model of 

the developed sampled value frame generator is depicted in Fig. 5.11. 

 

Note : The left-hand of Fig. 5.11 represents the theoretical frame structure as dictated 

by the IEC 61850-9-2 standard and also the IEC 61850-9-2LE guideline. The right-

hand side of Fig. 5.11 represents the classes that were utilised to implement the 

different sections of the frame structure. Certain of the classes are available as part of 
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Scapy (represented as the Ether and the dot1Q classes in Fig. 5.11). The other 

classes on the right-hand side of the figure do not exist in Scapy, and had to be 

developed specifically for this research project. These classes are those associated 

with implementing the following sections of the frame format: 

i. Packet 

ii. Gen 

iii. PDU 

iv. Length 

v. Reserved Field x2 

vi. APPID 

 

Figure 5.11: Developed Sampled Value object model 

 
The Scapy networking libraries on the objected oriented programming platform is used 

to model the ISO/IEC 8802-3 sampled value frame structure as defined in the IEC 

61850-9-2 standard. The Scapy library provides support for low-level networking and 

provides an object oriented framework for layer 2 custom packet crafting using certain 

classes. Each layer in a crafted layer 2 frame is a subclass of the Packet class. As 

shown in Fig. 5.11 each field in the sampled value frame that is not performed at the 

hardware level is represented as a class. These classes have different attributes and 

methods.  

 
Scapy provides a hierarchical, layered packet class modelling structure, with the 

packet class as the base class.  Primarily all the logic behind layer manipulation in a 

crafted frame is held by the Packet class as shown in Fig. 5.12 below (Biondi, 2009).  
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Figure 5.12: UML diagram of the development of a layer 2 packet (Biondi, 2009) 

 

A layer 2 Packet class is shown in Fig. 5.12 above. The packet class inherits from the 

layer 2 Ethernet class. The layer  2 Ethernet class has a source address, destination 

address and a type - all inherited from different subclasses as shown in Fig. 5.13. 

Fig.5.13 below shows the Unified Modelling Language (UML) diagram of the source 

and destination addresses. 

  

Figure 5.13: UML diagram of the source and destination classes (Biondi, 2009) 

 
The next field in the ISO/IEC 8802-3 sampled value frame is the Virtual Local Area 

Network (VLAN) field.  

 

5.2.4.1. Sampled value VLAN tagging 
 

Virtual Local Area Network (VLAN) and VLAN tagging is defined in the IEEE 802.1Q 

standard and is used to aid in the process of traffic routing in networks (Zereneh, 

2006). VLAN tagging is applied by the sending node in an IEC 61850 sampled value 

transmission, so that sampled value traffic can be prioritised over less critical 

information in routers and switches. VLAN tagging is supported on Scapy and is 

defined in the Dot1Q Packet class as shown in Fig. 5.14. 
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Figure 5.14: Scapy Dot1Q Class with the defaults values (Biondi, 2009) 

 

VLAN tagging is an Ethernet layer function and is specified as such in the class 

definition. The VLAN tagging class has to be instantiated with the appropriate priority, 

VLAN identifier and VLAN type. An example of how the VLAN tagging class can be 

instantiated and aggregated to the packet class is shown in Fig.5.15 below: 

 

 

Figure 5.15: Instantiating the Dot1Q class and aggregating into the class packet 

 
5.2.4.2. Completing the SV packet structure  

 

The section that follows the source address, destination address and VLAN tagging in 

the sampled value structure is the Application Protocol Identifier (APPID), Length, two 

reserved fields, and the Application Protocol Data Unit (APDU) of the sampled value 

structure. None of these classes are pre-defined in Scapy and had to be scripted with 

assistance from the chapter on custom development as referenced in the Scapy 

Manual (Biondi, 2009). The data types and data structures supported in Scapy and the 

Python programming language are used in the different classes to define the various 

fields required in the classes scripted, as shown in Fig. 5.16.  
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Figure 5.16: Example of the sampled value classes developed 

 

The SV PhsMeas1 class (which represents the full dataset inclusive of each 

measurement’s quality attribute) is also implemented using object oriented 

programming, as is shown in Fig. 5.17 below.  

 

 

Figure 5.17: PhsMeas1 frame 

 

The classes are then instantiated with the correct values and concatenated with other 

classes to implement the complete sampled value frame structure as shown in Fig. 

5.18.  

 

Figure 5.18: sampled value frame concatenation 
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The complete sampled value frame developed can be viewed using the show function 

in Python and is presented in Fig. 5.19. 

 
SampleValue.show() 

###[ Ethernet ]### 

  dst= 01:0C:CD:04:ff:ff 

  src= 00:00:00:00:00:00 

  type= 0x8100 

###[ 802.1Q ]### 

     prio= 4 

     id= 0 

     vlan= 1 

     type= 0x88ba 

###[ Appid ]### 

        EmAPPID= 0x4000 

        Em_LengthPDU= 0x71 

        Em_Reserve2= 0x0 

        Em_Reserve1= 0x0 

###[ svPdu ]### 

           Em_svPdu= 0x6067 

           Em_noASDU= 0x8001 

           Em_noASDU_value= 0x1 

           Em_seqASDU= 0xa262 

           Em_seqASDU_value= 0x3060 

###[ ASDU ]### 

              svID_pad= 0x800f 

              svID= 'Emmanuel_cput_e' 

              smpCnt_pad= 0x8202 

              smpCnt_value= 0 

              confRef_pad= 0x8304 

              confRef_value= 0x1 

              smpSynch_pad= 0x8501 

              smpSynch_value= 0x0 

###[ PhsMeas1Dataset ]### 

                 Phs1_pad= 0x8740 

                 Ia_value= 0x0 

                 Ia_quality= 0x0 

                 Ib_value= 0x0 
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                 Ib_quality= 0x0 

                 Ic_value= 0x0 

                 Ic_quality= 0x0 

                 In_value= 0x0 

                 In_quality= 0x2000 

                 Va_value= 0x0 

                 Va_quality= 0x0 

                 Vb_value= 0x0 

                 Vb_quality= 0x0 

                 Vc_value= 0x0 

                 Vc_quality= 0x0 

                 Vn_value= 0x0 

                 Vn_quality= 0x2000 

Figure 5.19: Presentation of the developed sampled value structure 

 
The PhsMeas1Dataset shown in Fig. 5.19 is used to store the measurement values 

and is used during the transmission process to publish the measurements. The 

PhsMeas1 class is instantiated and populated with the appropriate values as shown 

below.  

 
SampleValue=SampleValue_new/MyAppid/MysvPdu/ASDU(smpCnt_value 

=smpCnt)/PhsMeas1(Ia_value =Ia, Ib_value = Ib, Ic_value =Ic, In_value = In, va_value 

=va, vb_value = vb, vc_value =vc, vn_value = vn) 

    
5.2.4.3. Binding the fields of the generated sample d value frame 

 
 

After a socket has been created, it is nameless, even if it has been associated to a 

descriptor. Before the socket can be utilised, it must be associated with the appropriate 

protocol address so that the receiving device can process it accordingly (Tiponut, 

2001) 

 

On Scapy, each of the generated classes for the various fields of the sampled value 

frame have to be connected together for the generated packet to be communicated 

properly and associated with the appropriate protocol as shown in Fig. 5.20.  It is worth 

mentioning that the Scapy library’s binding function only allows two fields to be passed 

to it at a time.  
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Figure 5.20: Binding the various fields of the generated sampled value message 

 

5.2.4.4. Transmitting the sampled value frame 
 
 

Scapy has two methods of sending packets, depending on whether the packet being 

transmitted as a layer 2 or a layer 3 packet (Biondi, 2003). The Send () function is used 

for transmitting layer 3 packets and sendp () is used for sending layer 2 packets 

(Online__www.secdev.org_projects_scapy_doc_usage) such as those packets for 

sampled values. These two functions are used for simplex transmission, but other 

functions have to be used when half-duplex and full-duplex is required. The last part of 

this process is the transmission of the packet. This is achieved by inserting the 

sampled value packet (i.e. the sections that have been bound and concatenated) into 

the sendp () function and specifying the interface (iface – see Appendix G) across 

which the packet will be sent. At the completion of this insertion, the transmission of the 

packet happens automatically. The Python code required to achieve the above is the 

following: 

Sendp(sampledvalue, iface= “eth0”) 

 
In the sections to follow, practical experimentation is done which necessitates the 

capture of frames from the data network. The captures will be used to verify functional 

behaviour and to compare the commercial device output and the PC platform output 

against each other, and against the frame format as specified in the IEC 61850-9-2 and 

IEC 61850-9-2LE. The capturing of the data networking packets will require the use of 

Wireshark. Wireshark and the experimentation which was done, is commented on in 

the sections to follow. 
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5.3. Wireshark 
 

Wireshark is an open-source data network packet analyser, which was originally 

developed by Gerald Combs, a computer science graduate of the University of 

Missouri at Kansas City (Sanders, 2000). The first version of Wireshark was released 

in 1998, as Ethereal under the GNU Public License (GPL). Wireshark monitors and 

identifies network traffic on a specified network interface card and displays the 

captured packet data with as much detail as possible.  

 

Wireshark utilises the Winpcap/Libpcap link library to interface the user application 

level and the lower level layers such as Network Interface Card (NIC) in a personal 

computer, and Winpcap provides its own networking driver that allows connection from 

the user application level to the physical layer as shown in Fig. 5.21. 

 

Figure 5.21: Winpcap and Netgroup Packet Filter (Risso and Degioanni, 2005) 

 

5.3.1. Utilising Wireshark 
 

Wireshark supports and is able to dissect a multitude of protocol (Sanders, 2012), 

however support for the protocol monitored should always be verified and enabled on 

the Wireshark version which is being utilised. If the protocol(s) being monitored are not 

supported or enabled on the Wireshark version utilised, Wireshark will not be able to 

provide a through decomposition of the captured packets. In Fig. 5.23 below the 

Wireshark supported protocols are catalogued, and the fact that the sampled value 

protocol is one of those accommodated is highlighted by underlining the entry in Fig. 

5.22 below.  
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Figure 5.22: The Wireshark supported and enabled protocols  

 

Wireshark supports, and is capable of providing a complete breakdown of sampled 

value message structure, however on new installations it is often required for this 

protocol support to be enabled, as it is not enabled by default. For monitoring sampled 

values messages, Wireshark version 1.4 or higher is recommended as the various bug 

patches to the earlier Wireshark versions would have been applied (Online: 

https://wireshark.org). Catalogued below are some of the bugs related to ASN.1 

decoding found in earlier versions of Wireshark that have been rectified in the later 

versions of Wireshark (Online: https://www.wireshark.org/lists/wireshark-bugs/). The 

earlier versions of Wireshark could not decode the ASN.1 tags in the sampled value 

messages for the fields listed below, hence causing the bugs mentioned.  

� datSet    (0x81),  - Dataset ASN.1 tag  

� refrTm    (0x84), - Refresh Time ASN.1 tag 

� smpRate   (0x86), - Sample rate time ASN.1 tag 

� smpMod    (0x88) - Sample value modification ASN.1 tag 

� Data/Payload (0x87) decoded as PhsMeas as recommended in the IEC61850-

9-2 LE document.  

 

In section 5.4.1 a practical experiment is conducted on the PC-based platform to 

simulate the sampled value messages from a merging unit. In section 5.4.2 a practical 

experiment is conducted using a commercial device. For the two experiments 

conducted, traffic from the data network during the experiments will be captured and 

analysed.  

 

 

 

 

Sampled Value 
(SV) protocol is 
accommodated. 
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5.4. Practical experimentation 
 
5.4.1. Practical experimentation: Using the PC-base d sensor node which was 

developed 
 

The test setup used for verification of sampled value message published from the 

developed sensor node, over the network is depicted Fig. 5.23 below.  

 

 

Figure 5.23: Setup for PC-based sensor node sampled values testing 

 
On the test setup shown in Fig. 5.23, two personal computers are used. The first PC 

has a Linux Ubuntu operating system with the Python script used to publish sampled 

values. The second is a Microsoft Windows 7 and has the Wireshark program 

capturing the network packets. This test setup was successful in publishing sampled 

values and the frames captured on Wireshark are shown in Fig. 5.24 below.  

 

Figure 5.24: PC-based sensor Sampled Value (SV) message structure confirmation 



124 
 

On the left-hand side of Fig. 5.24 is the sampled value frame structure as defined in the 

IEC 61850 standard and the IEC 61850-9-2LE guideline document. On the right-hand 

side of Fig. 5.24 is the captured packet containing, as can be seen, the data generated, 

published and captured from the PC-based sensor node. 

 

The preamble and start of frame delimiter depicted on the left-hand side of Fig. 5.24 

occurs at the hardware level and as a result it is not captured in the Wireshark frame 

displayed on the right-hand side of Fig. 5.24. The captured frame from the PC-based 

sensor node consists of source and destination addresses, VTPID, TCI, APPID, Length 

field, two reserved fields and the protocol data unit.  These are indicated on Fig. 5.24 

and are in accordance with the IEC 61850 standard.  

 

The next section in the sampled value frame is the Application Protocol Data Unit 

(APDU) shown in Fig. 5.25. 
 

 

Figure 5.25: PC-based sensor SV protocol data unit 

 
The published sampled value sampled value Protocol Data Unit is shown in Fig. 5.25 

and compared to the IEC 61850-9-2 standard PDU. The protocol data unit consists of 

ASN.1 tags for the various fields in the sampled value PDU, the number of application 

service data units, sampled value identifier (svID), sampled value counter that 

increments from 0 to 3999 and resets back to zero as discussed in section 5.2.2. The 

other fields are the configuration revision, sampled value synchronization which is set 

to none, and data contained with the dataset as shown in Fig. 5.26 below.  
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Figure 5.26: PC-based sensor dataset 

 
A phase measurement (Phsmeas1) dataset is transmitted with the phase shown in Fig. 

5.25. The phase measurement dataset consists of 3 phase currents and voltages, and 

1 neutral current and voltage value. The representation of the values within the dataset 

is modelled from the practical experiment conducted in the next section and will be 

discussed in detail in the next section. The same scaling as applied in the Omicron 

CMC, discussed in the next section has been applied. The values contained within the 

dataset have the associated quality attribute as indicated in Fig. 5.26. The neutral 

values quality attributes indicates that the value is calculated (derived) as shown in Fig. 

5.26. 

 
On examination, as illustrated by the text boxes in Fig. 5.25 and Fig. 5.26, and 

comparing the sampled value frame structure defined in the IEC 61850-9-2 standard, it 

is evident that the frame structure of the transmitted sampled value frame from the PC-

based sensor node has all the subsections of the sampled value frame in place, and is 

recognised by a protocol analyser such as Wireshark. As discussed in Chapter 4 

section 4.4.2, if the captured frame does not conform to any standard, Wireshark would 

indicate that the packet is “Malformed”. 

 
Note : However, the rate at which the sampled values are being published is not 

compliant with the IEC 61850-9-2LE specification of SV rate = 80 samples/cycle 

required for protection applications. The functional behaviour is being achieved but the 

required temporal behaviour is not being achieved, i.e. that the “smpCnt” is not being 

updated every 250µS. The maximum speed at which the sampled value counter is 

incremented and the sampled values are being published currently is 980µS. 
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5.4.2. Practical experiment: Using Omicron CMC test  injection device for power 
systems 

 
 

To be able perform a comparative analysis of the developed sensor node against a 

commercial product utilised for sampled value testing; a practical experiment with an 

Omicron CMC is conducted in this section. The experiment was conducted using an 

Omicron CMC to publish Sampled Value messages and the packet analyser Wireshark 

is used to capture and display the published packet with as much detail as possible, as 

shown in Fig. 5.27. 

 

Figure 5.27: Test setup for the Sampled Value message investigation using an 

Omicron CMC and Wireshark 

 
The test setup is depicted in Fig. 5.27 above with 2 personal computers used for 

communicating to the Omicron test set. PC1 in Fig. 5.27 has the Test Universe 

software installed and running on it to do the configuration of the Omicron CMC unit. 

PC2 is running Wireshark (MMS Ethereal) to capture the messages published from the 

Omicron CMC. The Omicron CMC test set is a commissioning and testing tool 

traditionally used to perform secondary injection during the commissioning phase of 

power system equipment. The newer versions of the Omicron CMC such as CMC 256, 

CMC 353, CMC 356, CMC 850, etc. provide support for IEC 61850 GOOSE and 

Sampled Values (Online: Omicron - IEC 61850 Testing Tool ).   

 

The CMC’s Sampled Values Configuration module can be set up to generate up to 

three sampled value streams in the test set (Online: Omicron - IEC 61850 Testing Tool 

).  It also provides the relevant communication parameters enabling the Sampled 

Values communication or outputting. The test set supports generation of sampled 

values at a rate of 80 samples per cycle and 256 samples per cycles at nominal 

frequencies of 50Hz and 60Hz as specified in the IEC 61850-9-2LE document for 

protection and metering applications. The Sampled Values published onto the network, 

contain information mirroring and corresponding to the physical analogue voltages and 

currents generated at the voltage and current terminals of the test set.  
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The data generated, published, and captured, from an OMICRON CMC device in the 

practical experiment is discussed below and is compared to the IEC 61850-9-2LE 

implementation guideline document for its functional and temporal behaviour. Fig. 5.28 

below shows the sampled value packet captured from the Omicron CMC. 

 

 

Figure 5.28: CMC Sampled Value (SV) message structure confirmation 

 

On the left hand side of Fig. 5.28 is the sampled value frame structure as defined in the 

IEC 61850-9-2 standard, and on the right hand side of the Fig. 5.28 is the captured 

packet from the CMC. The preamble and start of frame delimiter depicted in the left 

hand side of Fig. 5.28 occurs at the hardware level and as a result it is not captured in 

the Wireshark frame displayed on the right hand side of Fig. 5.28. 

 
The captured frame consists of source and destination addresses, TPID, TCI, APPID, 

Length field, two reserved fields and the protocol data unit as highlighted in Fig. 5.28 

above.   The next section in the sampled value frame is the protocol data unit shown in 

Fig. 5.29. 
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Figure 5.29: CMC Sampled Value (SV) Protocol data unit and ASN.1 tagging  

 

In Fig. 5.29 above the sampled value protocol data unit of a frame published by the 

CMC is depicted. The sampled value protocol data unit is tagged using the abstract 

syntax notation to indicate the start of a savPdu. All the other fields within the sampled 

value frame protocol data unit are encoded as specified in the IEC 61850-9-2 and IEC 

61850-9-2LE implementation guideline document. 

 

The published frame from the Omicron CMC contains data which is packaged within a 

dataset. The software environment associated with the CMC was set up to generate 

and publish voltages [set to primary RMS values of 63.508 kV (L-N)] in this experiment. 

From the values configured on the CMC, the peak value is expected to be as shown in 

equation 5.9. 

 

VkV 87.898132*508.63 =                                            (5.9) 

  

Theoretically the sinusoidal waveform varies between + 89813.87V and - 89813.87V. 

What is observed through the practical experiment however is that the values in the 

captured frames varied between -8980717 and +8980717. To verify that the correct 

values were being published from the CMC, the IEC 61850-9-2 standard was utilised.  

 

This at first glance does not seem to relate at all to the value 89813.87V above. 

However, these values were confirmed to be correct and compliant with the IEC 

61850-9-2LE document, because the IEC 61850-9-2LE document specifies a scaling 

factor of 0.01 for voltages and 0.001 for current as shown in Fig. 5.30 below. 
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Figure 5.30: Merging Unit current and voltage scaling factor (IEC 61850-9-2LE).  

 

The theoretical peak value when the voltage scaling factor of 0.01 is taken into 

account, as specified in page 8, table 2 of the IEC 61850-9-2LE document is 8980717 

x 0.01 = 89807.17. This is close to the theoretical value of 89813.87 calculated above.  

 

5.5. Comparative Analysis and Conclusion 
 

In section 5.4.1 a practical experiment is performed using the developed PC-based 

sensor node, and in section 5.4.2 a practical experiment using a commercial unit 

(Omicron CMC) is discussed. Fig. 5.31 below shows the sampled value messages 

published from these devices side by side. 

 

 
Figure 5.31: Comparative analysis of the developed sensor nodes sampled value 

structure with a commercial unit from Omicron 
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Comparatively the functional behaviour of the messages from these simulation devices 

is the same. The two devices can both publish sampled value messages with all the 

required subsections of the sampled value message structure as described in the IEC 

61850-9-2 and IEC 61850-9-2LE standard. 

 
The temporal behaviour is however vastly different. The Omicron CMC device 

publishes real-time sampled value messages that can be used for protection 

application testing, whereas the sensor node developed can only achieve functional 

behaviour but not the temporal behaviour.  

 

In this chapter the implementation of the PC-based simulation for the merging unit has 

been discussed relative to the outputs from a commercial unit, and commentary has 

been given on both functional and temporal behaviour. The next chapter is the 

conclusion for the research project in its entirety and what future work could be derived 

from the foundation laid. 
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CHAPTER 6  

Conclusion and Future Work 
 

6.1. Introduction 

 
The deployment of standardized substation automation systems has been steadily 

increasing in utilities since the introduction of the IEC 61850 standard for 

“Communication networks and systems in substations” in 2004. The deployed 

devices however are mainly for station-level applications, as discussed in chapter 4 

section 4.2. The current number of devices available in the market to support the 

IEC 61850-9-2 process bus is however still very limited, and mainly resides in the 

vendor environment. The commercial units that are compliant IEC 61850-9-2LE 

generally tend to be expensive and are generally not accessible in an academic 

environment. 

 

From an educational point of view, there are very few resources and tools available 

to support the establishment of a knowledge base with respect to the process-bus 

paradigm. The attempt in this project has been to establish this knowledge base 

through the development of a non-real-time simulation environment which would 

act as a precursor for future projects on real-time development. Through 

experimentation the validation of functional behaviour was observed and 

commentary on the temporal behaviour is also given.  

 

The software development is on the Linux Ubuntu operating system version10.04 

using the Python programming language. The evaluation of the results of the 

developed sensor node show that the virtual sensor node developed is capable of 

simulating the functional behaviour of an IEC 61850-9-2 standard device but is not 

capable of simulating the temporal behaviour using the Scapy networking library. 

 

6.2. Research Aim and objectives 
 
6.2.1. Aim 

 

From the problem statement articulated in the first chapter, the research aim of this 

postgraduate project is to examine the standardization developments within the IEC 

615850 substation automation environment, to study the substation automation 

framework presented in the IEC61850 standard, and measurement distribution 

methods proposed in the IEC 61850 standard. The knowledge gained has been 

used to implement certain aspects of a Merging Unit. This limited functional 
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merging unit represents a virtualized data acquisition node capable of synthetic 

data generation, encoding of the data and transmitting the data in a format 

compliant with the IEC 61850-9-2 sampled value message structure.  

 

6.2.2. Research objectives 
 

The original research objectives as stated in chapter one and which have been 
achieved are as follows: 
 

i. To identify current and emerging substation automation trends.  

ii. To Investigation whether Microsoft Windows and Linux operating systems 

allow for the generation, binding and transmission of packets at the Datalink 

layer. 

iii. To thoroughly understand the sampled value messages utilised in the IEC 

61850 standard and to simulate sampled value messages from a personal 

computer (PC) platform. 

 

The project objectives which have been achieved are listed as follows: 

1. Literature review: Current and emerging substation automation trends have 

been identified 

2. Literature review: A comparative analysis of the developments stated in the 

literature with respect to measurement distribution methods utilised in 

substation automation systems has been successfully undertaken. 

3. An overview of the IEC 61850 standard with emphasis on sampled values 

and GOOSE messaging has been provided. 

4. The sampled values structure breakdown and the other IEC 61850 related 

standards are outlined. 

5. A low-level network programming Application Programming Interface (API) 

on both Microsoft Windows and Linux operating systems is presented. 

6. Software development on Linux Ubuntu to simulate the functional behaviour 

of sampled value messaging has been implemented. 

7. Experimentation via the development of a test scenario to verify the 

structure of the sampled value from the developed sensor node is 

performed, and a comparative analysis has been performed against a 

commercial IEC 61850-9-2 compliant product. 

 

6.3. Project assumption and Thesis deliverables 
 

During the development of the work on this project, the following assumptions and 

scope delimitation as in chapter one have been implemented:   
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6.3.1. Assumptions: 
 

i. Modern computers have a fast enough processing speed and modern operating 

systems allow message generation and transmission at the Datalink layer, 

enabling accurate emulation of a merging unit. 

ii. The use of custom-built networking libraries does degrade the performance of 

the generated program. 

 

It should be observed that the second assumption does not hold true as stated in 

chapter one. 

 

6.3.2. Delimitation: 
 

i. The data acquisition node is explored on a PC platform only  

ii. Verification of sampled values is performed using software tools only.  

iii. The project is not integrated into the IEC 61850 architecture; no substation 

configuration language (SCL) files are produced for the developed device (MU); 

the publisher/subscriber mechanism is not be explored; the sampled value 

messaging is verified using only software tools such as Wireshark. 

iv. The system is not implemented on the medium voltage (MV) network. 

v. Current and voltage values are generated internally, packaged and transmitted 

as multicast messages - no sensors are integrated into the virtual device.  

vi. Analogue values published by the sensor node are monitored using Wireshark. 

vii. The software program is developed using the Python programming language. 

viii. Time synchronization and time stamping of frames is performed using the 

personal computer’s internal clock (No integration of a GPS clock source). 

 

6.3.3. Thesis deliverables: 
 

A literature search and review, on the substation automation framework provided by 

the IEC 61850 standard, focusing on measurement distribution using IEC 60044-7, 

IEC 60044-8, IEC 1451 and IEC 61850 standards has been presented. The 

theoretical base and algorithms for software development has been formalised and 

applied to simulate the sampled value concept introduced in the IEC 61850 

standard.   Some of the achieved outputs are itemised below. 

  

1. Experimentation with an Omicron CMC has been conducted to assist with 

the understanding and development of the proposed virtual sensor. 

2. Low level networking software development in both Microsoft Windows and 

Linux operating systems has been investigated. 
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3. The concepts introduced in the IEC 61850-9-2, IEC 61850-9-2LE, IEC 

60044-7 and IEC 60044-8 standards has been used to a model and a 

limited function sensor node capable of sampled values functional 

behaviour has been simulated.  

4. A Python script running on a Linux Ubuntu operating system has been 

developed and used to simulate IEC 61850-9-2 sampled values. 

5. Wireshark is used to captured the sampled value frames published from the 

virtual sensor node and the functional behaviour of the virtual device is 

verified. 

6. The simulated sampled value message is transmitted through a Virtual Area 

Network (VLAN)- enabled switch and is captured on the receiving device 

with the correct VLAN tag. 

7. The use of the Scapy networking Library even with the use of the fast-send 

function has however been found to degrade the performance of virtual 

sensor node developed. The 250µS required repetition rate for sending of 

packets, i.e. 80 samples per cycle as specified in the IEC 61850 standard 

when operating at 50Hz; was not achieved even when running just Scapy in 

a loop without even sending a layer 2 packet containing the sampled value 

data. 

 

6.4. Challenges Encountered  
 

There have been a substantial number of challenges that have been encountered 

during the course of this research project implementation. These include: 

 

a) The IEC 61850 standard resides in the public domain, but that the transition 

from the specification within the standard to that of implementation is an 

extremely challenging one. This knowledge usually is proprietary and 

resides mainly within the vendor environment. Consequently very little 

implementation and experimentation knowledge in the public domain 

generally, and in the academic environment particularly. The situation has 

improved with respect to the knowledge base and equipment for GOOSE 

messaging, but there is still very little knowledge with respect to the process 

bus environment. 

b) Very few platforms, tools and forums for the development or adaptation of 

IEC 61850 solutions in the public domain.  

c) A multi-disciplinary environment – the IEC 61850 combines a lot of different 

disciplines e.g. data networking, Information Technology, protection etc. 

Software development to simulate IEC 61850 sampled value messages 
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requires detailed knowledge in multiple fields such as data networking, 

electrical protection, software modelling and protection and control testing 

methods.  

d) Interpretation of the standard – a pre-requisite to development of an IEC 

61850-compliant device requires detailed knowledge of various parts of the 

standard. 

e) Transmission of layer 2 packets on Microsoft Windows and Linux Ubuntu 

operating systems 

f) Fast network packet outputting using Scapy. Scapy is not designed for fast 

networking and as a result the only the functional behaviour of the merging 

unit could be simulated in this project and the temporal behaviour could not 

be achieved.  

 

6.5. Future research work 
 

This project investigated the development of a sensor node on a PC platform. The 

intention was to provide the building blocks for future real time implementation of a 

sensor node that is compliant with IEC 61850-9-2LE. The role of this project was to 

build and lay a foundation for IEC 61850 sampled value real-time implementation in 

the academic sphere. Future directions for research work could include the 

following: 

1. Investigate the use an embedded development platform to achieve both the 

functional and temporal behaviour of a IEC 61850 merging unit. 

2. The modelling of the sampled values logical nodes (TCTR and TVTR) 

instead of hard-coding the values into the sampled value dataset. 

3. On the current development the ASN.1 tags are hard-coded into the various 

classes that represent the fields with the sampled value frame structure. An 

alternative method would be to implement an ASN.1 encoding algorithm.  

4. The virtual sensor node device should be improved and adapted to receive 

realistic data from external sources. 

5. In the sensor device developed, all the data is generated internally and is 

assumed to have good quality. When a real-time system is developed the 

data that is used by the unit will be from external sources, so an alternative 

method to validate the quality attribute for each measurement in the 

published dataset using the common data class enumeration method 

defined in the standard should be implemented in future.  

6. Time synchronization should be provided by a device capable of providing 

accurate 1PPS time synchronization and should be integrated into the rest 

of the system functionality. 
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APPENDIX A 
Scapy layer 3 source code 
## This file is part of Scapy 
## See http://www.secdev.org/projects/scapy for more informations 
## Copyright (C) Philippe Biondi <phil@secdev.org> 
## This program is published under a GPLv2 license 
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""" 
ASN.1 (Abstract Syntax Notation One) 
""" 
 
import random 
from scapy.config import conf 
from scapy.error import Scapy_Exception,warning 
from scapy.volatile import RandField 
from scapy.utils import Enum_metaclass, EnumElement 
 
class RandASN1Object(RandField): 
    def __init__(self, objlist=None): 
        if objlist is None: 
            objlist = map(lambda x:x._asn1_obj, 
                          filter(lambda x:hasattr(x,"_asn1_obj"), 
ASN1_Class_UNIVERSAL.__rdict__.values())) 
        self.objlist = objlist 
        self.chars = 
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789" 
    def _fix(self, n=0): 
        o = random.choice(self.objlist) 
        if issubclass(o, ASN1_INTEGER): 
            return o(int(random.gauss(0,1000))) 
        elif issubclass(o, ASN1_IPADDRESS): 
            z = RandIP()._fix() 
            return o(z) 
        elif issubclass(o, ASN1_STRING): 
            z = int(random.expovariate(0.05)+1) 
            return o("".join([random.choice(self.chars) for i in range(z)])) 
        elif issubclass(o, ASN1_SEQUENCE) and (n < 10): 
            z = int(random.expovariate(0.08)+1) 
            return o(map(lambda x:x._fix(n+1), [self.__class__(objlist=self.objlist)]*z)) 
        return ASN1_INTEGER(int(random.gauss(0,1000))) 
 
 
############## 
#### ASN1 #### 
############## 
 
class ASN1_Error(Scapy_Exception): 
    pass 
 
class ASN1_Encoding_Error(ASN1_Error): 
    pass 
 
class ASN1_Decoding_Error(ASN1_Error): 
    pass 
 
class ASN1_BadTag_Decoding_Error(ASN1_Decoding_Error): 
    pass 
 
 
 
class ASN1Codec(EnumElement): 
    def register_stem(cls, stem): 
        cls._stem = stem 
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    def dec(cls, s, context=None): 
        return cls._stem.dec(s, context=context) 
    def safedec(cls, s, context=None): 
        return cls._stem.safedec(s, context=context) 
    def get_stem(cls): 
        return cls.stem 
     
 
class ASN1_Codecs_metaclass(Enum_metaclass): 
    element_class = ASN1Codec 
 
class ASN1_Codecs: 
    __metaclass__ = ASN1_Codecs_metaclass 
    BER = 1 
    DER = 2 
    PER = 3 
    CER = 4 
    LWER = 5 
    BACnet = 6 
    OER = 7 
    SER = 8 
    XER = 9 
 
class ASN1Tag(EnumElement): 
    def __init__(self, key, value, context=None, codec=None): 
        EnumElement.__init__(self, key, value) 
        self._context = context 
        if codec == None: 
            codec = {} 
        self._codec = codec 
    def clone(self): # /!\ not a real deep copy. self.codec is shared 
        return self.__class__(self._key, self._value, self._context, self._codec) 
    def register_asn1_object(self, asn1obj): 
        self._asn1_obj = asn1obj 
    def asn1_object(self, val): 
        if hasattr(self,"_asn1_obj"): 
            return self._asn1_obj(val) 
        raise ASN1_Error("%r does not have any assigned ASN1 object" % self) 
    def register(self, codecnum, codec): 
        self._codec[codecnum] = codec 
    def get_codec(self, codec): 
        try: 
            c = self._codec[codec] 
        except KeyError,msg: 
            raise ASN1_Error("Codec %r not found for tag %r" % (codec, self)) 
        return c 
 
class ASN1_Class_metaclass(Enum_metaclass): 
    element_class = ASN1Tag 
    def __new__(cls, name, bases, dct): # XXX factorise a bit with Enum_metaclass.__new__() 
        for b in bases: 
            for k,v in b.__dict__.iteritems(): 
                if k not in dct and isinstance(v,ASN1Tag): 
                    dct[k] = v.clone() 
 
        rdict = {} 
        for k,v in dct.iteritems(): 



140 
 

            if type(v) is int: 
                v = ASN1Tag(k,v)  
                dct[k] = v 
                rdict[v] = v 
            elif isinstance(v, ASN1Tag): 
                rdict[v] = v 
        dct["__rdict__"] = rdict 
 
        cls = type.__new__(cls, name, bases, dct) 
        for v in cls.__dict__.values(): 
            if isinstance(v, ASN1Tag):  
                v.context = cls # overwrite ASN1Tag contexts, even cloned ones 
        return cls 
             
 
class ASN1_Class: 
    __metaclass__ = ASN1_Class_metaclass 
 
class ASN1_Class_UNIVERSAL(ASN1_Class): 
    name = "UNIVERSAL" 
    ERROR = -3 
    RAW = -2 
    NONE = -1 
    ANY = 0 
    BOOLEAN = 1 
    INTEGER = 2 
    BIT_STRING = 3 
    STRING = 4 
    NULL = 5 
    OID = 6 
    OBJECT_DESCRIPTOR = 7 
    EXTERNAL = 8 
    REAL = 9 
    ENUMERATED = 10 
    EMBEDDED_PDF = 11 
    UTF8_STRING = 12 
    RELATIVE_OID = 13 
    SEQUENCE = 0x30#XXX 16 ?? 
    SET = 0x31 #XXX 17 ?? 
    NUMERIC_STRING = 18 
    PRINTABLE_STRING = 19 
    T61_STRING = 20 
    VIDEOTEX_STRING = 21 
    IA5_STRING = 22 
    UTC_TIME = 23 
    GENERALIZED_TIME = 24 
    GRAPHIC_STRING = 25 
    ISO646_STRING = 26 
    GENERAL_STRING = 27 
    UNIVERSAL_STRING = 28 
    CHAR_STRING = 29 
    BMP_STRING = 30 
    IPADDRESS = 0x40 
    COUNTER32 = 0x41 
    GAUGE32 = 0x42 
    TIME_TICKS = 0x43 
    SEP = 0x80 
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class ASN1_Object_metaclass(type): 
    def __new__(cls, name, bases, dct): 
        c = super(ASN1_Object_metaclass, cls).__new__(cls, name, bases, dct) 
        try: 
            c.tag.register_asn1_object(c) 
        except: 
            warning("Error registering %r for %r" % (c.tag, c.codec)) 
        return c 
 
 
class ASN1_Object: 
    __metaclass__ = ASN1_Object_metaclass 
    tag = ASN1_Class_UNIVERSAL.ANY 
    def __init__(self, val): 
        self.val = val 
    def enc(self, codec): 
        return self.tag.get_codec(codec).enc(self.val) 
    def __repr__(self): 
        return "<%s[%r]>" % (self.__dict__.get("name", self.__class__.__name__), self.val) 
    def __str__(self): 
        return self.enc(conf.ASN1_default_codec) 
    def strshow(self, lvl=0): 
        return ("  "*lvl)+repr(self)+"\n" 
    def show(self, lvl=0): 
        print self.strshow(lvl) 
    def __eq__(self, other): 
        return self.val == other 
    def __cmp__(self, other): 
        return cmp(self.val, other) 
 
class ASN1_DECODING_ERROR(ASN1_Object): 
    tag = ASN1_Class_UNIVERSAL.ERROR 
    def __init__(self, val, exc=None): 
        ASN1_Object.__init__(self, val) 
        self.exc = exc 
    def __repr__(self): 
        return "<%s[%r]{{%s}}>" % (self.__dict__.get("name", self.__class__.__name__), 
                                   self.val, self.exc.args[0]) 
    def enc(self, codec): 
        if isinstance(self.val, ASN1_Object): 
            return self.val.enc(codec) 
        return self.val 
 
class ASN1_force(ASN1_Object): 
    tag = ASN1_Class_UNIVERSAL.RAW 
    def enc(self, codec): 
        if isinstance(self.val, ASN1_Object): 
            return self.val.enc(codec) 
        return self.val 
 
class ASN1_BADTAG(ASN1_force): 
    pass 
 
class ASN1_INTEGER(ASN1_Object): 
    tag = ASN1_Class_UNIVERSAL.INTEGER 
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class ASN1_STRING(ASN1_Object): 
    tag = ASN1_Class_UNIVERSAL.STRING 
 
class ASN1_BIT_STRING(ASN1_STRING): 
    tag = ASN1_Class_UNIVERSAL.BIT_STRING 
 
class ASN1_PRINTABLE_STRING(ASN1_STRING): 
    tag = ASN1_Class_UNIVERSAL.PRINTABLE_STRING 
 
class ASN1_T61_STRING(ASN1_STRING): 
    tag = ASN1_Class_UNIVERSAL.T61_STRING 
 
class ASN1_IA5_STRING(ASN1_STRING): 
    tag = ASN1_Class_UNIVERSAL.IA5_STRING 
 
class ASN1_NUMERIC_STRING(ASN1_STRING): 
    tag = ASN1_Class_UNIVERSAL.NUMERIC_STRING 
 
class ASN1_VIDEOTEX_STRING(ASN1_STRING): 
    tag = ASN1_Class_UNIVERSAL.VIDEOTEX_STRING 
 
class ASN1_IPADDRESS(ASN1_STRING): 
    tag = ASN1_Class_UNIVERSAL.IPADDRESS 
 
class ASN1_UTC_TIME(ASN1_STRING): 
    tag = ASN1_Class_UNIVERSAL.UTC_TIME 
 
class ASN1_GENERALIZED_TIME(ASN1_STRING): 
    tag = ASN1_Class_UNIVERSAL.GENERALIZED_TIME 
 
class ASN1_TIME_TICKS(ASN1_INTEGER): 
    tag = ASN1_Class_UNIVERSAL.TIME_TICKS 
 
class ASN1_BOOLEAN(ASN1_INTEGER): 
    tag = ASN1_Class_UNIVERSAL.BOOLEAN 
 
class ASN1_ENUMERATED(ASN1_INTEGER): 
    tag = ASN1_Class_UNIVERSAL.ENUMERATED 
     
class ASN1_NULL(ASN1_INTEGER): 
    tag = ASN1_Class_UNIVERSAL.NULL 
 
class ASN1_SEP(ASN1_NULL): 
    tag = ASN1_Class_UNIVERSAL.SEP 
 
class ASN1_GAUGE32(ASN1_INTEGER): 
    tag = ASN1_Class_UNIVERSAL.GAUGE32 
     
class ASN1_COUNTER32(ASN1_INTEGER): 
    tag = ASN1_Class_UNIVERSAL.COUNTER32 
     
class ASN1_SEQUENCE(ASN1_Object): 
    tag = ASN1_Class_UNIVERSAL.SEQUENCE 
    def strshow(self, lvl=0): 
        s = ("  "*lvl)+("# %s:" % self.__class__.__name__)+"\n" 
        for o in self.val: 
            s += o.strshow(lvl=lvl+1) 
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        return s 
     
class ASN1_SET(ASN1_SEQUENCE): 
    tag = ASN1_Class_UNIVERSAL.SET 
     
class ASN1_OID(ASN1_Object): 
    tag = ASN1_Class_UNIVERSAL.OID 
    def __init__(self, val): 
        val = conf.mib._oid(val) 
        ASN1_Object.__init__(self, val) 
    def __repr__(self): 
        return "<%s[%r]>" % (self.__dict__.get("name", self.__class__.__name__), 
conf.mib._oidname(self.val)) 
    def __oidname__(self): 
        return '%s'%conf.mib._oidname(self.val) 
     
 
 
conf.ASN1_default_codec = ASN1_Codecs.BER 
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APPENDIX B 
Scapy layer 2 source code 
 
 
## This file is part of Scapy 
## See http://www.secdev.org/projects/scapy for more informations 
## Copyright (C) Philippe Biondi <phil@secdev.org> 
## This program is published under a GPLv2 license 
 
""" 
Classes and functions for layer 2 protocols. 
""" 
 
import os,struct,time 
from scapy.base_classes import Net 
from scapy.config import conf 
from scapy.packet import * 
from scapy.ansmachine import * 
from scapy.plist import SndRcvList 
from scapy.fields import * 
from scapy.sendrecv import srp,srp1 
from scapy.arch import get_if_hwaddr 
 
 
 
 
################# 
## Tools       ## 
################# 
 
 
class Neighbor: 
    def __init__(self): 
        self.resolvers = {} 
 
    def register_l3(self, l2, l3, resolve_method): 
        self.resolvers[l2,l3]=resolve_method 
 
    def resolve(self, l2inst, l3inst): 
        k = l2inst.__class__,l3inst.__class__ 
        if k in self.resolvers: 
            return self.resolvers[k](l2inst,l3inst) 
 
    def __repr__(self): 
        return "\n".join("%-15s -> %-15s" % (l2.__name__, l3.__name__) for l2,l3 in 
self.resolvers) 
 
conf.neighbor = Neighbor() 
 
conf.netcache.new_cache("arp_cache", 120) # cache entries expire after 120s 
 
 
@conf.commands.register 
def getmacbyip(ip, chainCC=0): 
    """Return MAC address corresponding to a given IP address""" 
    if isinstance(ip,Net): 
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        ip = iter(ip).next() 
    ip = inet_ntoa(inet_aton(ip)) 
    tmp = map(ord, inet_aton(ip)) 
    if (tmp[0] & 0xf0) == 0xe0: # mcast @ 
        return "01:00:5e:%.2x:%.2x:%.2x" % (tmp[1]&0x7f,tmp[2],tmp[3]) 
    iff,a,gw = conf.route.route(ip) 
    if ( (iff == "lo") or (ip == conf.route.get_if_bcast(iff)) ): 
        return "ff:ff:ff:ff:ff:ff" 
    if gw != "0.0.0.0": 
        ip = gw 
 
    mac = conf.netcache.arp_cache.get(ip) 
    if mac: 
        return mac 
 
    res = srp1(Ether(dst=ETHER_BROADCAST)/ARP(op="who-has", pdst=ip), 
               type=ETH_P_ARP, 
               iface = iff, 
               timeout=2, 
               verbose=0, 
               chainCC=chainCC, 
               nofilter=1) 
    if res is not None: 
        mac = res.payload.hwsrc 
        conf.netcache.arp_cache[ip] = mac 
        return mac 
    return None 
 
 
 
### Fields 
 
class DestMACField(MACField): 
    def __init__(self, name): 
        MACField.__init__(self, name, None) 
    def i2h(self, pkt, x): 
        if x is None: 
            x = conf.neighbor.resolve(pkt,pkt.payload) 
            if x is None: 
                x = "ff:ff:ff:ff:ff:ff" 
                warning("Mac address to reach destination not found. Using broadcast.") 
        return MACField.i2h(self, pkt, x) 
    def i2m(self, pkt, x): 
        return MACField.i2m(self, pkt, self.i2h(pkt, x)) 
         
class SourceMACField(MACField): 
    def __init__(self, name): 
        MACField.__init__(self, name, None) 
    def i2h(self, pkt, x): 
        if x is None: 
            iff,a,gw = pkt.payload.route() 
            if iff: 
                try: 
                    x = get_if_hwaddr(iff) 
                except: 
                    pass 
            if x is None: 
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                x = "00:00:00:00:00:00" 
        return MACField.i2h(self, pkt, x) 
    def i2m(self, pkt, x): 
        return MACField.i2m(self, pkt, self.i2h(pkt, x)) 
         
class ARPSourceMACField(MACField): 
    def __init__(self, name): 
        MACField.__init__(self, name, None) 
    def i2h(self, pkt, x): 
        if x is None: 
            iff,a,gw = pkt.route() 
            if iff: 
                try: 
                    x = get_if_hwaddr(iff) 
                except: 
                    pass 
            if x is None: 
                x = "00:00:00:00:00:00" 
        return MACField.i2h(self, pkt, x) 
    def i2m(self, pkt, x): 
        return MACField.i2m(self, pkt, self.i2h(pkt, x)) 
 
 
 
### Layers 
 
 
class Ether(Packet): 
    name = "Ethernet" 
    fields_desc = [ DestMACField("dst"), 
                    SourceMACField("src"), 
                    XShortEnumField("type", 0x9000, ETHER_TYPES) ] 
    def hashret(self): 
        return struct.pack("H",self.type)+self.payload.hashret() 
    def answers(self, other): 
        if isinstance(other,Ether): 
            if self.type == other.type: 
                return self.payload.answers(other.payload) 
        return 0 
    def mysummary(self): 
        return self.sprintf("%src% > %dst% (%type%)") 
    @classmethod 
    def dispatch_hook(cls, _pkt=None, *args, **kargs): 
        if _pkt and len(_pkt) >= 14: 
            if struct.unpack("!H", _pkt[12:14])[0] <= 1500: 
                return Dot3 
        return cls 
 
 
class Dot3(Packet): 
    name = "802.3" 
    fields_desc = [ DestMACField("dst"), 
                    MACField("src", ETHER_ANY), 
                    LenField("len", None, "H") ] 
    def extract_padding(self,s): 
        l = self.len 
        return s[:l],s[l:] 
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    def answers(self, other): 
        if isinstance(other,Dot3): 
            return self.payload.answers(other.payload) 
        return 0 
    def mysummary(self): 
        return "802.3 %s > %s" % (self.src, self.dst) 
    @classmethod 
    def dispatch_hook(cls, _pkt=None, *args, **kargs): 
        if _pkt and len(_pkt) >= 14: 
            if struct.unpack("!H", _pkt[12:14])[0] > 1500: 
                return Ether 
        return cls 
 
 
class LLC(Packet): 
    name = "LLC" 
    fields_desc = [ XByteField("dsap", 0x00), 
                    XByteField("ssap", 0x00), 
                    ByteField("ctrl", 0) ] 
 
conf.neighbor.register_l3(Ether, LLC, lambda l2,l3: conf.neighbor.resolve(l2,l3.payload)) 
conf.neighbor.register_l3(Dot3, LLC, lambda l2,l3: conf.neighbor.resolve(l2,l3.payload)) 
 
 
class CookedLinux(Packet): 
    name = "cooked linux" 
    fields_desc = [ ShortEnumField("pkttype",0, {0: "unicast", 
                                                 4:"sent-by-us"}), #XXX incomplete 
                    XShortField("lladdrtype",512), 
                    ShortField("lladdrlen",0), 
                    StrFixedLenField("src","",8), 
                    XShortEnumField("proto",0x800,ETHER_TYPES) ] 
                     
                                    
 
class SNAP(Packet): 
    name = "SNAP" 
    fields_desc = [ X3BytesField("OUI",0x000000), 
                    XShortEnumField("code", 0x000, ETHER_TYPES) ] 
 
conf.neighbor.register_l3(Dot3, SNAP, lambda l2,l3: conf.neighbor.resolve(l2,l3.payload)) 
 
 
class Dot1Q(Packet): 
    name = "802.1Q" 
    aliastypes = [ Ether ] 
    fields_desc =  [ BitField("prio", 0, 3), 
                     BitField("id", 0, 1), 
                     BitField("vlan", 1, 12), 
                     XShortEnumField("type", 0x0000, ETHER_TYPES) ] 
    def answers(self, other): 
        if isinstance(other,Dot1Q): 
            if ( (self.type == other.type) and 
                 (self.vlan == other.vlan) ): 
                return self.payload.answers(other.payload) 
        else: 
            return self.payload.answers(other) 
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        return 0 
    def default_payload_class(self, pay): 
        if self.type <= 1500: 
            return LLC 
        return conf.raw_layer 
    def extract_padding(self,s): 
        if self.type <= 1500: 
            return s[:self.type],s[self.type:] 
        return s,None 
    def mysummary(self): 
        if isinstance(self.underlayer, Ether): 
            return self.underlayer.sprintf("802.1q %Ether.src% > %Ether.dst% (%Dot1Q.type%) 
vlan %Dot1Q.vlan%") 
        else: 
            return self.sprintf("802.1q (%Dot1Q.type%) vlan %Dot1Q.vlan%") 
 
             
conf.neighbor.register_l3(Ether, Dot1Q, lambda l2,l3: conf.neighbor.resolve(l2,l3.payload)) 
 
class STP(Packet): 
    name = "Spanning Tree Protocol" 
    fields_desc = [ ShortField("proto", 0), 
                    ByteField("version", 0), 
                    ByteField("bpdutype", 0), 
                    ByteField("bpduflags", 0), 
                    ShortField("rootid", 0), 
                    MACField("rootmac", ETHER_ANY), 
                    IntField("pathcost", 0), 
                    ShortField("bridgeid", 0), 
                    MACField("bridgemac", ETHER_ANY), 
                    ShortField("portid", 0), 
                    BCDFloatField("age", 1), 
                    BCDFloatField("maxage", 20), 
                    BCDFloatField("hellotime", 2), 
                    BCDFloatField("fwddelay", 15) ] 
 
 
class EAPOL(Packet): 
    name = "EAPOL" 
    fields_desc = [ ByteField("version", 1), 
                    ByteEnumField("type", 0, ["EAP_PACKET", "START", "LOGOFF", "KEY", "ASF"]), 
                    LenField("len", None, "H") ] 
     
    EAP_PACKET= 0 
    START = 1 
    LOGOFF = 2 
    KEY = 3 
    ASF = 4 
    def extract_padding(self, s): 
        l = self.len 
        return s[:l],s[l:] 
    def hashret(self): 
        return chr(self.type)+self.payload.hashret() 
    def answers(self, other): 
        if isinstance(other,EAPOL): 
            if ( (self.type == self.EAP_PACKET) and 
                 (other.type == self.EAP_PACKET) ): 
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                return self.payload.answers(other.payload) 
        return 0 
    def mysummary(self): 
        return self.sprintf("EAPOL %EAPOL.type%") 
              
 
class EAP(Packet): 
    name = "EAP" 
    fields_desc = [ ByteEnumField("code", 4, 
{1:"REQUEST",2:"RESPONSE",3:"SUCCESS",4:"FAILURE"}), 
                    ByteField("id", 0), 
                    ShortField("len",None), 
                    ConditionalField(ByteEnumField("type",0, {1:"ID",4:"MD5"}), lambda pkt:pkt.code 
not in [EAP.SUCCESS, EAP.FAILURE]) 
 
                                     ] 
     
    REQUEST = 1 
    RESPONSE = 2 
    SUCCESS = 3 
    FAILURE = 4 
    TYPE_ID = 1 
    TYPE_MD5 = 4 
    def answers(self, other): 
        if isinstance(other,EAP): 
            if self.code == self.REQUEST: 
                return 0 
            elif self.code == self.RESPONSE: 
                if ( (other.code == self.REQUEST) and 
                     (other.type == self.type) ): 
                    return 1 
            elif other.code == self.RESPONSE: 
                return 1 
        return 0 
     
    def post_build(self, p, pay): 
        if self.len is None: 
            l = len(p)+len(pay) 
            p = p[:2]+chr((l>>8)&0xff)+chr(l&0xff)+p[4:] 
        return p+pay 
              
 
class ARP(Packet): 
    name = "ARP" 
    fields_desc = [ XShortField("hwtype", 0x0001), 
                    XShortEnumField("ptype",  0x0800, ETHER_TYPES), 
                    ByteField("hwlen", 6), 
                    ByteField("plen", 4), 
                    ShortEnumField("op", 1, {"who-has":1, "is-at":2, "RARP-req":3, "RARP-rep":4, 
"Dyn-RARP-req":5, "Dyn-RAR-rep":6, "Dyn-RARP-err":7, "InARP-req":8, "InARP-rep":9}), 
                    ARPSourceMACField("hwsrc"), 
                    SourceIPField("psrc","pdst"), 
                    MACField("hwdst", ETHER_ANY), 
                    IPField("pdst", "0.0.0.0") ] 
    who_has = 1 
    is_at = 2 
    def answers(self, other): 
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        if isinstance(other,ARP): 
            if ( (self.op == self.is_at) and 
                 (other.op == self.who_has) and 
                 (self.psrc == other.pdst) ): 
                return 1 
        return 0 
    def route(self): 
        dst = self.pdst 
        if isinstance(dst,Gen): 
            dst = iter(dst).next() 
        return conf.route.route(dst) 
    def extract_padding(self, s): 
        return "",s 
    def mysummary(self): 
        if self.op == self.is_at: 
            return self.sprintf("ARP is at %hwsrc% says %psrc%") 
        elif self.op == self.who_has: 
            return self.sprintf("ARP who has %pdst% says %psrc%") 
        else: 
            return self.sprintf("ARP %op% %psrc% > %pdst%") 
                  
conf.neighbor.register_l3(Ether, ARP, lambda l2,l3: getmacbyip(l3.pdst)) 
 
class GRErouting(Packet): 
    name = "GRE routing informations" 
    fields_desc = [ ShortField("address_family",0), 
                    ByteField("SRE_offset", 0), 
                    FieldLenField("SRE_len", None, "routing_info", "B"), 
                    StrLenField("routing_info", "", "SRE_len"), 
                    ] 
 
 
class GRE(Packet): 
    name = "GRE" 
    fields_desc = [ BitField("chksum_present",0,1), 
                    BitField("routing_present",0,1), 
                    BitField("key_present",0,1), 
                    BitField("seqnum_present",0,1), 
                    BitField("strict_route_source",0,1), 
                    BitField("recursion_control",0,3), 
                    BitField("flags",0,5), 
                    BitField("version",0,3), 
                    XShortEnumField("proto", 0x0000, ETHER_TYPES), 
                    ConditionalField(XShortField("chksum",None), lambda 
pkt:pkt.chksum_present==1 or pkt.routing_present==1), 
                    ConditionalField(XShortField("offset",None), lambda pkt:pkt.chksum_present==1 
or pkt.routing_present==1), 
                    ConditionalField(XIntField("key",None), lambda pkt:pkt.key_present==1), 
                    ConditionalField(XIntField("seqence_number",None), lambda 
pkt:pkt.seqnum_present==1), 
                    ] 
    def post_build(self, p, pay): 
        p += pay 
        if self.chksum_present and self.chksum is None: 
            c = checksum(p) 
            p = p[:4]+chr((c>>8)&0xff)+chr(c&0xff)+p[6:] 
        return p 
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bind_layers( Dot3,          LLC,           ) 
bind_layers( Ether,         LLC,           type=122) 
bind_layers( Ether,         Dot1Q,         type=33024) 
bind_layers( Ether,         Ether,         type=1) 
bind_layers( Ether,         ARP,           type=2054) 
bind_layers( Ether,         EAPOL,         type=34958) 
bind_layers( Ether,         EAPOL,         dst='01:80:c2:00:00:03', type=34958) 
bind_layers( CookedLinux,   LLC,           proto=122) 
bind_layers( CookedLinux,   Dot1Q,         proto=33024) 
bind_layers( CookedLinux,   Ether,         proto=1) 
bind_layers( CookedLinux,   ARP,           proto=2054) 
bind_layers( CookedLinux,   EAPOL,         proto=34958) 
bind_layers( GRE,           LLC,           proto=122) 
bind_layers( GRE,           Dot1Q,         proto=33024) 
bind_layers( GRE,           Ether,         proto=1) 
bind_layers( GRE,           ARP,           proto=2054) 
bind_layers( GRE,           EAPOL,         proto=34958) 
bind_layers( GRE,           GRErouting,    { "routing_present" : 1 } ) 
bind_layers( GRErouting,    conf.raw_layer,{ "address_family" : 0, "SRE_len" : 0 }) 
bind_layers( GRErouting,    GRErouting,    { } ) 
bind_layers( EAPOL,         EAP,           type=0) 
bind_layers( LLC,           STP,           dsap=66, ssap=66, ctrl=3) 
bind_layers( LLC,           SNAP,          dsap=170, ssap=170, ctrl=3) 
bind_layers( SNAP,          Dot1Q,         code=33024) 
bind_layers( SNAP,          Ether,         code=1) 
bind_layers( SNAP,          ARP,           code=2054) 
bind_layers( SNAP,          EAPOL,         code=34958) 
bind_layers( SNAP,          STP,           code=267) 
 
conf.l2types.register(ARPHDR_ETHER, Ether) 
conf.l2types.register_num2layer(ARPHDR_METRICOM, Ether) 
conf.l2types.register_num2layer(ARPHDR_LOOPBACK, Ether) 
conf.l2types.register_layer2num(ARPHDR_ETHER, Dot3) 
conf.l2types.register(144, CookedLinux)  # called LINUX_IRDA, similar to CookedLinux 
conf.l2types.register(113, CookedLinux) 
 
conf.l3types.register(ETH_P_ARP, ARP) 
 
 
 
 
@conf.commands.register 
def arpcachepoison(target, victim, interval=60): 
    """Poison target's cache with (your MAC,victim's IP) couple 
arpcachepoison(target, victim, [interval=60]) -> None 
""" 
    tmac = getmacbyip(target) 
    p = Ether(dst=tmac)/ARP(op="who-has", psrc=victim, pdst=target) 
    try: 
        while 1: 
            sendp(p, iface_hint=target) 
            if conf.verb > 1: 
                os.write(1,".") 
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            time.sleep(interval) 
    except KeyboardInterrupt: 
        pass 
 
 
class ARPingResult(SndRcvList): 
    def __init__(self, res=None, name="ARPing", stats=None): 
        SndRcvList.__init__(self, res, name, stats) 
 
    def show(self): 
        for s,r in self.res: 
            print r.sprintf("%19s,Ether.src% %ARP.psrc%") 
 
 
 
@conf.commands.register 
def arping(net, timeout=2, cache=0, verbose=None, **kargs): 
    """Send ARP who-has requests to determine which hosts are up 
arping(net, [cache=0,] [iface=conf.iface,] [verbose=conf.verb]) -> None 
Set cache=True if you want arping to modify internal ARP-Cache""" 
    if verbose is None: 
        verbose = conf.verb 
    ans,unans = srp(Ether(dst="ff:ff:ff:ff:ff:ff")/ARP(pdst=net), verbose=verbose, 
                    filter="arp and arp[7] = 2", timeout=timeout, iface_hint=net, **kargs) 
    ans = ARPingResult(ans.res) 
 
    if cache and ans is not None: 
        for pair in ans: 
            conf.netcache.arp_cache[pair[1].psrc] = (pair[1].hwsrc, time.time()) 
    if verbose: 
        ans.show() 
    return ans,unans 
 
@conf.commands.register 
def is_promisc(ip, fake_bcast="ff:ff:00:00:00:00",**kargs): 
    """Try to guess if target is in Promisc mode. The target is provided by its ip.""" 
 
    responses = srp1(Ether(dst=fake_bcast) / ARP(op="who-has", pdst=ip),type=ETH_P_ARP, 
iface_hint=ip, timeout=1, verbose=0,**kargs) 
 
    return responses is not None 
 
@conf.commands.register 
def promiscping(net, timeout=2, fake_bcast="ff:ff:ff:ff:ff:fe", **kargs): 
    """Send ARP who-has requests to determine which hosts are in promiscuous mode 
    promiscping(net, iface=conf.iface)""" 
    ans,unans = srp(Ether(dst=fake_bcast)/ARP(pdst=net), 
                    filter="arp and arp[7] = 2", timeout=timeout, iface_hint=net, **kargs) 
    ans = ARPingResult(ans.res, name="PROMISCPing") 
 
    ans.display() 
    return ans,unans 
 
 
class ARP_am(AnsweringMachine): 
    function_name="farpd" 
    filter = "arp" 
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    send_function = staticmethod(sendp) 
 
    def parse_options(self, IP_addr=None, iface=None, ARP_addr=None): 
        self.IP_addr=IP_addr 
        self.iface=iface 
        self.ARP_addr=ARP_addr 
 
    def is_request(self, req): 
        return (req.haslayer(ARP) and 
                req.getlayer(ARP).op == 1 and 
                (self.IP_addr == None or self.IP_addr == req.getlayer(ARP).pdst)) 
     
    def make_reply(self, req): 
        ether = req.getlayer(Ether) 
        arp = req.getlayer(ARP) 
        iff,a,gw = conf.route.route(arp.psrc) 
        if self.iface != None: 
            iff = iface 
        ARP_addr = self.ARP_addr 
        IP_addr = arp.pdst 
        resp = Ether(dst=ether.src, 
                     src=ARP_addr)/ARP(op="is-at", 
                                       hwsrc=ARP_addr, 
                                       psrc=IP_addr, 
                                       hwdst=arp.hwsrc, 
                                       pdst=arp.pdst) 
        return resp 
 
    def sniff(self): 
        sniff(iface=self.iface, **self.optsniff) 
 
@conf.commands.register 
def etherleak(target, **kargs): 
    """Exploit Etherleak flaw""" 
    return srpflood(Ether()/ARP(pdst=target),  
                    prn=lambda (s,r): conf.padding_layer in r and hexstr(r[conf.padding_layer].load), 
                    filter="arp", **kargs) 
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APPENDIX C 

Root user access on Linux Ubuntu 10.04 
 

Linux operating systems have a robust permissions system. This is often a very good 

thing, as it enables a clear separation of roles among users. Linux operating systems 

have 6 user levels from a single user all the way to a root user.  A root user account by 

default has access to all commands and files on a Linux or other Unix-like operating 

system 

 

Root access is required to perform a lot of administrative actions on Linux Ubuntu, 

such as installing software. Root user access is locked by default on Linux Ubuntu. 

Commands are however provide temporary administrators access to root commands. 

For the installing of the required packages and to run Wireshark on Ubuntu 10.04, root 

user access is required. Root user access can be enabled on Linux Ubuntu as shown 

below 

 

 

 
 
 
 
 
 
 
 
 
 



155 
 

APPENDIX D 

Installing Scapy and the required packages on Linux  Ubuntu 
 
 
Installing Scapy on Linux Ubuntu 
 

 
 
Installing Scapy on Wireshark 
 

 
 
 
 
 

APPENDIX E 
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Nomogram for current 
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APPENDIX F  
Nomogram for voltage 
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APPENDIX G 
 
Setting up Omicron CMC for sampled value publishing  
 

The newer versions of the Omicron CMC such as CMC 256, CMC 353, CMC 356, 

CMC 850, etc. provide support for IEC 61850 GOOSE and Sampled Values (Yang et 

al., 2009).   

 

 

Omicron CMC Sampled Values support 

 
 

The procedure followed when setting up the CMC to allow for Sampled Value 

outputting is: 

i) Associating the PC being used for configuring the CMC with the device 

ii) Setting up the communication parameters  

iii) Setting up The voltage and current magnitude and phase angles  

iv) Setting up some trigger mechanisms, this is optional depending on the test 

being performed. 

v) Initiating the publishing of sampled values 
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Setting up the magnitude and phase angles on Omicron CMC (phase to neutral values 

 

 

Omicron CMC device setup (line –line values) 
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APPENDIX H  
Code for the sampled value frame structure 
 

NOTE: The code is not complete and represents on the frame structure developed 

'' Emmanuel Luwaca Sampled Value frame structure ''' 

'''-----------------------------------------------''' 

 

SampleValue_new = 

Ether(dst=""01:0C:CD:04:ff:ff"",type=0x8100)/Dot1Q(prio=4,id=0,type=0x88ba) 

 

class Appid(Packet): 

    name = "AppidPacket"  

    fields_desc = [ XShortField ("EmAPPID",0x4000), 

      XShortField ("Em_LengthPDU",0x71), 

      XShortField ("Em_Reserve2",0x00), 

      XShortField ("Em_Reserve1",0x00)] 

 

 

 

MyAppid = Appid(EmAPPID=0x4000) 

MyLengthPDU = Appid(Em_LengthPDU=0x71) 

MyReserve1 = Appid(Em_Reserve1=0x00) 

MyReserve2 = Appid(Em_Reserve2=0x00) 

 

 

class svPdu(Packet): 

    name = "svPduPacket"  

    fields_desc = [ XShortField ("Em_svPdu",0x6067), 

      XShortField ("Em_noASDU",0x8001), 

      XByteField ("Em_noASDU_value",0x01), 

             XShortField ("Em_seqASDU",0xa262), 

      XShortField ("Em_seqASDU_value",0x3060)] 

 

 

MysvPdu = svPdu(Em_svPdu=0x6067)  

MynoASDU = svPdu(Em_noASDU=0x8001) 

MynoASDU_value = svPdu(Em_noASDU_value =0x01) 

MyseqASDU = svPdu(Em_seqASDU=0xa262) 

MyseqASDU_value = svPdu(Em_seqASDU_value =0x3060) 

 

class ASDU(Packet): 

    name = "ASDUPacket"  
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    fields_desc = [ XShortField ("svID_pad",0x800f), 

  StrField("svID",'''Emanuel_cput_sa'''),      

  XShortField ("smpCnt_pad",0x8202), 

  ShortField ("smpCnt_value",0x00), 

  XShortField ("confRef_pad",0x8304), 

  XIntField ("confRef_value",0x1), 

  XShortField ("smpSynch_pad",0x8501), 

  XByteField ("smpSynch_value",0x00)] 

 

 

MysvID_pad = ASDU(svID_pad=0x800f) 

MysvID = ASDU(svID = '''Emanuel_cput_sa''') 

MysmpCnt_pad = ASDU(smpCnt_pad=0x8202) 

MysmpCnt_value = ASDU(smpCnt_value=0x00)  

MyconfRef_pad = ASDU(confRef_pad=0x8304) 

MyconfRef_value = ASDU(confRef_value=0x1) 

MysmpSynch_pad = ASDU(smpSynch_pad=0x8501) 

MysmpSynch_value = ASDU(smpSynch_value=0x1) 

 

 

class PhsMeas1(Packet): 

    name = "PhsMeas1Packet"  

    fields_desc = [ XShortField ("Phs1_pad",0x8740), 

  XIntField("Ia_value",0x00), 

  XIntField("Ia_quality",0x00),      

  XIntField("Ib_value",0x00), 

  XIntField("Ib_quality",0x00), 

  XIntField("Ic_value",0x00), 

  XIntField("Ic_quality",0x00), 

  XIntField("In_value",0x00), 

  XIntField("In_quality",0x2000), 

  XIntField("Va_value",0x00), 

  XIntField("Va_quality",0x00),       

  XIntField("Vb_value",0x00), 

  XIntField("Vb_quality",0x00), 

  XIntField("Vc_value",0x00), 

  XIntField("Vc_quality",0x00), 

  XIntField("Vn_value",0x00), 

  XIntField("Vn_quality",0x2000)]   

 

 

My_Phs1_pad = PhsMeas1(Phs1_pad=0x8740) 
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My_Ia_value = PhsMeas1(Ia_value=0x00) 

My_Ib_value = PhsMeas1(Ib_value=0x00) 

My_Ic_value = PhsMeas1(Ic_value=0x00) 

My_In_value = PhsMeas1(In_value=0x00) 

My_Va_value = PhsMeas1(Va_value=0x00) 

My_Vb_value = PhsMeas1(Vb_value=0x00) 

My_Vc_value = PhsMeas1(Vc_value=0x00) 

My_Vn_value = PhsMeas1(Vn_value=0x00) 

"""***************************************************************************** 

Because you can only bind two layers together so this is a laborious process 

******************************************************************************""" 

bind_layers(MyAppid, MyReserve1) 

bind_layers(MyReserve1, MyReserve2) 

bind_layers(MyAppid, MyReserve1, proto=0x88ba) 

bind_layers(MyReserve1, MyReserve2, proto=0x88ba) 

bind_layers(MyReserve2, MyLengthPDU, proto=0x88ba) 

bind_layers(MyReserve2, MysvPdu, proto=0x88ba) 

bind_layers(MysvPdu, MynoASDU, proto=0x88ba) 

bind_layers(MynoASDU, MynoASDU_value, proto=0x88ba) 

bind_layers(MynoASDU_value, MyseqASDU, proto=0x88ba) 

bind_layers(MyseqASDU, MyseqASDU_value, proto=0x88ba) 

bind_layers(MyseqASDU_value, MysvID_pad, proto=0x88ba) 

bind_layers(MysvID_pad, MysvID, proto=0x88ba) 

bind_layers(MysvID, MysmpCnt_pad, proto=0x88ba) 

bind_layers(MysmpCnt_pad, MysmpCnt_value, proto=0x88ba) 

bind_layers(MysmpCnt_value, MyconfRef_pad, proto=0x88ba) 

bind_layers(MyconfRef_pad, MyconfRef_value, proto=0x88ba) 

bind_layers(MyconfRef_value, MysmpSynch_pad, proto=0x88ba) 

bind_layers(MysmpSynch_pad, MysmpSynch_value, proto=0x88ba) 

bind_layers(MysmpSynch_value, My_Phs1_pad, proto=0x88ba) 

 

"""***************************************************************************** 

SampleValue = SampleValue_new/MyAppid/MysvPdu/MysvID_pad/My_Phs1_pad 

sendp((SampleValue),iface="eth0") 

******************************************************************************""" 
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APPENDIX I  
Enabling Eth0 on Linux Ubuntu 
 
 
By default eth0 is not setup automatically on Linux Ubuntu 10.04, and needs to be enabled 

and setup to start automatically. There are various ways of setting up the network interface to 

start-up automatically. As shown below, root users on Linux Ubuntu can access the network 

script and enable the network interface.  

 

auto lo 

iface lo inet loopback 

auto eth0 

iface eth0 inet dhcp 

 

After the script has been edited the network interface needs to be restarted. The script for the 

network driver is also shown below. The network driver being utilised is Eth0: Avahi 

 
#!/bin/sh 

 

set -e 

 

# Description:      Remove routes to allow communication between machines which 

#                   only have an IPv4LL address assigned and those which only 

#                   have a routable address assigned. These were added by 

#                   /etc/network/if-up.d/avahi-autoipd. 

# 

#                   See http://developer.apple.com/qa/qa2004/qa1357.html for 

#                   more information. 

 

 

[ "$IFACE" != "lo" ] || exit 0 

case "$ADDRFAM" in 

  inet|NetworkManager) ;; 

  *) exit 0 

esac 

case "$METHOD" in 

 static|dhcp|NetworkManager) ;; 

 *) exit 0 

esac 
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if [ -x /bin/ip ]; then 

 # route already present? 

 ip route show | grep -q '^169.254.0.0/16[[:space:]]' && exit 0 

 

 /bin/ip route del 169.254.0.0/16 dev $IFACE metric 1000 scope link || true 

elif [ -x /sbin/route ]; then 

 # route already present? 

 /sbin/route -n | grep -q "^169.254.0.0[[:space:]]" && exit 0 

 

 /sbin/route del -net 169.254.0.0 netmask 255.255.0.0 dev $IFACE metric 1000 || true 

fi 

 
 
 
After the network card has been restarted, the operation of the interface can be verified simple 

by typing ifconfig, as shown below 
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