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ABSTRACT 

A new control strategy for control of the nonlinear process of Dissolved Oxygen (DO) 

concentration in the aerobic tank of wastewater treatment process is proposed. It 

provides means to improve the performance of the Linear Proportional Integration and 

Derivative (LPID) controller by extending it to a Nonlinear Proportional Integration and 

Derivative (NLPID) controller. 

 

The aim of the thesis is to develop methods, algorithms and software for design, 

simulation, and programmable logic controller (PLC) implementation of NLPID controllers 

in order to control the nonlinear process of dissolved oxygen. The thesis investigates the 

possibilities the widely used in theory and industry methods for the design of the LPID 

controllers for linear processes as Ziegler- Nichols and Pole Placement, to be applied to 

the design of NLPID controllers for the nonlinear process of DO concentration. Three 

cases are considered: 

Case 1: Application of the values of the parameters the linear PID controller designed by 

the Ziegler-Niched method for the linearized DO process model to be used as 

parameters of the nonlinear PID controllers to control the DO nonlinear process. 

Case 2: Application of the values of the parameters of the linear PID controller designed 

by the Pole placement method for the linearized DO process model, to be used as 

parameters of the nonlinear PID controller to control the nonlinear DO process. 

Case 3: Novel, proposed in the thesis, method based on the Pole placement method for 

direct design of the parameters of the linear and nonlinear PID controllers to control the 

nonlinear DO process. 

 

Software is developed to simulate in MATLAB environment the behavior of the closed 

loop DO process for the considered cases of controller designs. The results of the 

simulations show that in the Case1 and the Case 2 it is not possible to use the values of 

the LPID controller parameters designed for the linearized DO process, directly to control 

the nonlinear process by the NPID controllers. Additional tuning for some of the 

parameters is needed. The simulation in the Case 3 shows the excellent behaviors of the 

closed loop system for all linear and nonlinear PID controllers which prove that the new 

method is effective and applicable. 

Real-time simulations of the closed loop system are done in a TwinCAT 3 simulation 

environment of the Bechkoff EX5020 PLC. The deliverables of the thesis are applicable 

to many type nonlinear processes in chemical, manufacturing, and other industries. 
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CHAPTER ONE 

INTRODUCTION 

 

1.1  Introduction  

Clean water is a necessity for life of almost all creatures on earth. For example: 

i. Clean water is critical to plants and animals that live in water. 

ii. Human beings, who live, work and play close to water.  

iii. Water birds that use water catchment areas for resting and feedings. 

iv. Groups of fish which use water to habituate, and   

v. Water is used for various applications such as domestic, commercial, public 

supply, industrial production, energy production, mining, agricultural, etc.  

For health concerns and environmental conservation, water has to be treated before it 

enters to a receiver. Installing water treatment equipment not only improves the quality 

of the water but also raises the hygienic standard of the environment. Environmental 

protection is a priority in all countries. 

Wastewater treatment plants are designed to handle a previously designed load and 

flow. These conditions infrequently appear in reality. It is well known that the plant 

operates under dynamic conditions, which is the reason that control is needed. The 

function of the wastewater treatment plants (WWTP) is to speed up the natural process 

by which the water purifies itself. The main objective is to produce an effluent meeting 

the required standards at the lowest possible cost. The problem solution for wastewater 

treatment (WWT) is very important these days, because of fast population increase and 

industrial development. This examination considers new applications of control routines 

that plan to enhance the operation of the activated sludge handle in wastewater 

treatment plants. 

 

The need for control of the Dissolved Oxygen (DO) concentration in a wastewater 

treatment plant (WWTP) is becoming more and more important. Harsh environmental 

and health regulations together with a demand for cost effective ways of wastewater 

treatment have made control technology in Wastewater Treatment Plants (WWTP) an 

important priority (Shijian GE et al., 2012). DO is the amount of oxygen in the wastewater 

aeration tank of the WWTP and it plays a vital role of controlling WWTP. Oxygen 

dissolves in water through mixing the wastewater with the air blown by the aeration 

system. DO concentration in the aerobic part of an activated sludge process should be 
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sufficiently high to supply enough oxygen to the microorganisms in the sludge (Ostace et 

al., 2010). But an excessive high DO leads to high energy consumption and may also 

worsen the sludge quality. Necessities for treated wastewater are getting to be logically 

more and stricter. This, in mix with expanding loads, and restricted accessibility of area, 

calls for more effective techniques for wastewater treatment plants. In this proposition, 

control methods are created keeping in mind the end goal to enhance the proficiency of 

the actuated discharge process by proper control of the DO process.  

 

The measure of oxygen needed by the microorganisms to oxidize the natural materials 

and to keep up remaining broke up oxygen working levels ought to be exchanged to the 

air circulation tank in the Activated Sludge Process (ASP). On the off chance that 

Dissolved Oxygen (DO) focus is not sufficient for the development of micro-living being, 

filamentous organic entity may prevail, and the settling capacity and nature of the 

enacted muck may be poor. 

In practice, the DO concentration in the aeration tank is generally maintained at about 1.5 

to 4 mg/L in all areas of the aeration tank; 2 mg/L is a commonly used value. If the value 

is above 4 mg/L; operations significantly does not improve, but increase the aeration 

costs considerably. Therefore, the DO concentration in the aeration tank of an ASP is 

one of the most important operating parameters to be controlled for the efficient 

operating cost as well as the good effluent water quality. Even though the dissolved 

oxygen dynamics is relatively simple, there are some difficulties to control the DO for the 

disturbances as influent flow and organic loads fluctuation, nonlinearity of the oxygen 

transfer function and a sensor noise, etc.  

Daily variation of the influent loads induces the continuous change in the respiration rate 

and the oxygen transfer rate, which makes the DO dynamics time-varying one. The time-

varying DO dynamics is the main reason for controlling the DO concentration. Moreover, 

the oxygen transfer rate is higher for low DO concentrations and approaches zero 

towards the saturated concentration. This nonlinearity together with the time varying 

oxygen transfer rate makes any conventional controller to perform poorly. A PID 

controller that is well tuned in the afternoon may have poor performance at midnight. This 

has motivated the use of the various advanced control techniques (Vanrolleghem, 2003). 

  

A new control strategy for control of the DO concentration in the aerobic tank of a 

wastewater treatment process is developed. It provides means to improve the 
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performance of the Linear Proportional Integral and Derivative (LPID) controller by 

extending it to a Nonlinear Proportional, Integral and Derivative (NLPID) controller. 

Differential trackers are introduced to obtain a low-noise derivative of the controller input 

signals. The focus of this thesis is to develop methods for design of nonlinear controllers 

for the concentration of the DO in the aeration tank of the WWTP and to implement the 

designed controllers in the frameworks of a Programmable Logic Controller (PLC). 

 

The Chapter describes the awareness of research problem in part 1.2, the research 

problem is given in part 1.3, and its statement in part 1.4, the project aim and objectives 

are given in part 1.5, the hypothesis is formulated in part 1.6.  

 

 1.2  Awareness of the Problem 

Wastewater is the water that the people dispose from their homes, offices and industry. It 

is water that is not appropriate for human or animal consumption. Wastewater Treatment 

Plant speeds up the natural process whereby water purifies itself. In a modern 

wastewater treatment plant the wastewater is generally processed in several steps 

before it is released to the recipient. Lindberg, (1997) gives a survey of the common 

practices. The problem for effective and optimal control of wastewater treatment plants is 

very important lately, because of the increased requirements to the quality of the effluent 

(Shijian et al., 2012). The activated sludge process is a type of wastewater process 

characterized with complex dynamics and proper control design and implementation 

strategies are necessary and important for it to function. Wastewater treatment 

processes (WWTP) is the nonlinear process that has been chosen for the research 

investigations throughout this thesis.  

 

Caraman et al., (2005) claim that WWTP are essentially alterable in light of the huge 

varieties in the influent wastewater stream rate, fixation, and organization. The versatile 

conduct of the WWTP included microorganism’s forces further troubles regarding the 

time-shifting procedure parameters. Scientific models and machine reproductions are 

fundamental to anticipate, depict and control the convoluted conduct of these 

procedures. Sustainable solutions to the problems of wastewater treatment require 

development of adequate information systems for control and supervision of the process. 

DO concentration (DO) control is the mostly used strategy in the Activated Sludge 

Process (ASP) control. 
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1.3  Problem Identification 

Strict environmental and health regulations together with a demand for cost effective 

ways of wastewater treatment have made control technology in Wastewater Treatment 

Plants (WWTP) an important priority. DO concentration in the aerobic part of an activated 

sludge process should be sufficiently high to supply enough oxygen to the 

microorganisms in the sludge. But an extreme high DO level leads to high energy 

consumption and may also deteriorate the sludge quality (Wahab, 2007). Necessities for 

treated wastewater are getting to be progressively more stringent. This, in blend with 

expanding loads, and constrained accessibility of area, calls for more effective strategies 

for wastewater treatment plants. 

 

Nonlinear processes like Wastewater treatment are inherently dynamic because of the 

expansive varieties in the influent wastewater stream rate, focus, and piece. The 

versatile conduct of the included microorganisms forces further troubles as far as the 

time-shifting procedure parameters. Numerical models and machine recreations are 

fundamental to anticipate, describe and control the muddled conduct of these 

techniques. There are various types of nonlinear controllers. Investigations of the thesis 

are based of Nonlinear PID (NLPID) controllers as a counter part of the Linear PID 

(LPID) controllers widely used in industry and WWTPs, and normally implemented by 

Programmable Logic Controllers. The linear PID controllers cannot fully cope with the 

nonlinear behavior of the DO process and the idea is to be substituted by NLPIDs. The 

problem arises how to design the parameters of the Nonlinear PID controllers in such a 

way that they will control the nonlinear processes effectively. In the thesis methods for 

design of two types of NLPID controllers are developed in order to improve the efficiency 

of the activated sludge process; as follows:  

 Different methods that can be used for design of the parameters for NLPID 

controllers are developed for the DO process control. 

 Simulation of the closed loop system is accomplished in Matlab/Simulink software 

environment. 

 Real -Time control implementations and simulation of the developed closed loop 

systems are done using the TwinCat 3 Beckoff Automation software and CX5020 

Beckoff PLC (based on IEC 61499 function block programing).  
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1.4  Statement of the Problem 

The research problem in the thesis is to design nonlinear PID controllers to control the 

activated sludge process (ASP) in the waste water plant (WWP) such that the 

requirements for the effluent concentration of wastewater are satisfied.  

The research problem is solved by using: 

1. COST Benchmark plant structure as a nonlinear process to be controlled (Copp, 

2000). 

2. ASM 1- biological model for description of the DO process model 

3. Ziegler-Nichols method for design of the PID controllers. 

4. Pole-Placement technique for design of linear PID controller 

5. Pole-Placement for design of a NLPID controller using a nonlinear DO model. 

6. Matlab/Simulink software environment simulations 

7. TwinCAT 3 Engineering and Real-Time Environment simulations of the closed 

loop systems 

8. Beckoff CX5020 PLC for real-time simulation. 

1.4.1  Design based sub-problems 

  The research problem is divided in the following sub-problems: 

Sub-problem 1: Activated sludge process study.  

To study, acquire knowledge and understand everything about the activate sludge 

process technology, physiochemical dependencies, mass balances and their description 

by the original ASM1 model. 

Sub-problem 2: Dissolved Oxygen model simulation. 

 Development of MATLAB/Simulink programs for model simulation. Study the process 

behavior for different disturbances. 

Sub-problem 3: Ziegler-Nichols and Pole-placement method investigations 

 Ziegler-Nichols (ZN) tuning method for design of the LPID controller. 

 Pole-Placement method for design of LPID controller based on the linearized 

DO model 

 Pole-Placement method for design of LPID and NLPID controllers based on the 

nonlinear DO model  

 Simulation and Comparison of the closed loop system behavior. 

 

1.4.2  Real time implementation sub-problems 

Sub-problem 4: TwinCAT software study. 
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Develop a model transformation technique in order to transfer the developed models of 

the closed loop systems from Simulink to TwinCAT 3 software environment.  

Sub-problem 5: Uploading the transformed models to Beckhoff PLC.  

After developing model transformation from Simulink to TwinCAT (software to software 

communication), TwinCAT 3 engineering environment is used for upload the transformed 

models into a Beckhoff CX5020 PLC for real-time simulation. 

Sub-problem 6: Real-time simulation of the closed loop system  

The uploaded transformed files are used for real-time simulation of the closed loop DO 

systems. 

 

1.5  Aim and Objectives of the thesis 

Aim:  

The aim of this thesis is to develop methods, algorithms and software for design, and 

Programmable Logic Controller (PLC) implementation of nonlinear Proportional, Integral 

and Derivative (NLPID) controllers in order to control the nonlinear process of Dissolves 

Oxygen (DO) as part of the Activated Sludge Process (ASP) in wastewater treatment  

Objectives: 

 To investigate the operation of the nonlinear process to be controlled.  

 To develop and simulate the nonlinear model of the DO process.  

 To investigate different PID controller structures and to select two nonlinear PID 

controllers for the purpose of the research investigations. 

 To apply the Ziegler-Nichols and the Pole-Placement methods for design of the 

Linear PID (LPID) controller based on the linearized DO model.    

 To develop Pole-Placement method for design of a LPID controller based on the 

nonlinear DO model (for design of the LPID controller parameters) and method 

for design of a NLPID control parameters based on the nonlinear DO model (for 

design of the NLPID controller parameters). 

 To simulate the closed loop system in Matlab/Simulink. Comparison analysis 

between linear and nonlinear PID controllers performance based on the different 

methods of design. 

 Implementation of the two NLPID controllers in PLC (Beckhoff CX5020 which 

supports the IEC 61499 standard) through TwinCAT 3 software environment. 

 To implement the real-time control, Simulation of the designed closed loop in the 

environment of Beckhoff CX5020. 
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1.6 Hypothesis 

This research project also aims to prove that the nonlinear controllers can give better 

performance when they are used to control the nonlinear system than that of the linear 

controllers. The hypothesis is connected with the possibilities of development and 

application of the methods and technologies of the modern control to the WWTP as 

follows: 

 Different model control design method can be applied to design NLPID controller 

parameters in order to control nonlinear processes of DO using modern control 

and computer technologies 

 Software integration of Simulink and TwinCAT 3 gives possibilities of 

implementing the nonlinear controller and DO process in real-time.  

 The application of PC and PLC technologies can produce better real-time results 

from the control of the DO process in comparison with the manual and classical 

control methods. 

1.7  Research approach and Techniques 

Mathematical models and computer simulations are essential to predict, describe and 

control the complicated behavior of WWT processes. Sustainable solutions to the 

problems of nonlinear processes require development of adequate systems for control 

and supervision of the process.  

The research approach has the following phases   

 Literature review and data acquisition.  

 Process model development and simulations 

 Design of the controllers structure and parameters  

 Investigation and verification of the designed systems by simulation in 

Matlab/Simulink. 

 Transformation of the designed closed loop systems to the real-time environment 

of TwinCAT 3.  

 Investigation and verification of the real-time closed loop models through real – 

time simulation 

 Description and comparison of the results. 

 

1.8  Research Assumptions 

The thesis assumptions are based on the different aspects/elements of the research 

work that need to be done. Therefore, the following assumptions are considered: 
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The wastewater process conforms to the present control technology. 

The inflow rate and waste concentrations are the main process disturbances for the 

whole process. 

The oxygen uptake rate (OUR) is the main disturbance for the dissolved oxygen 

concentration process. 

The differential trackers improve the performance of the nonlinear controllers. 

1.9  Research Significance 

Traditionally there has been very little emphasis on wastewater control systems; as a 

result most wastewater treatment plants are only equipped with simple control systems. 

These systems are mainly used for on and off control and for monitoring purpose. 

Dissolved Oxygen (DO) is the most commonly monitored and controlled variable of the 

activated sludge process (ASP). DO sensors are used to monitor and to transfer the 

measurements of DO to a computer. Simultaneously, a programmable logic controller 

(PLC) controls the amount of DO supplied to the aeration tanks. Typically, a PLC is set to 

regulate DO value to 2 mg/l. Lindberg, et. all, (1996). 

 

A high DO concentration in the internally re-circulated water makes the process less 

efficient. If the DO content is too low, the environment is not stable and the sludge will 

not be properly treated. Hence, both for economical and process reasons, it is of interest 

to control the DO process properly Lindberg, (1997). The problem in controlling the DO is 

that the process changing aspects are nonlinear.  This means that high control 

performance for all operating conditions may be hard to achieve with a linear controller, 

because linear controllers are designed for a linear process, but the process of the 

dissolved oxygen in wastewater treatment is a non-linear one. Secondly the parameters 

of the controller are not determined according to the operating conditions of the process 

at the moment of control. Thirdly the set-point is selected according to some normal 

system requirements, not according to the operating conditions of the process at the 

moment of control. Therefore, the nonlinear characteristics of the oxygen transfer 

function need to be taken into account when designing the controller. 

 

Significance of the research findings of the thesis are that: 

1. The specifics of the nonlinear behavior of the DO process are taken into account for the 

design of the controllers of the process 

2. Nonlinear PID controllers are designed and the simulation results show that they 

contribute to better performance of the DO process. 
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3. Transformation procedure is developed for the uploading of the nonlinear controllers 

directly from Matlab environment to the real-time PLC environment which simplifies the 

programming of the PLC 

4. Real-time simulations of the designed closed loop systems brought knowledge that the 

new IEC 61499 PLC technology can be applied to control the DO process.  

 

1.10  Thesis Outline  

This thesis is made up of nine chapters: 

Chapter 2: gives an overview of the methods for modeling, estimation and control of the 

process for dissolving of oxygen in wastewater. Discussion of the use of different linear 

and nonlinear controller and estimation of nonlinear plants is done. In particular, the 

activated sludge process modeling and control is considered. Nonlinear controllers that 

give high performance for all operating conditions of the nonlinear plant are discussed. 

Chapter 3: introduces the structure of the activated sludge process (ASP) and the 

description of the COST Benchmark process based on the ASM1 biological model. The 

mass-balance model of the dissolved oxygen concentration for the Benchmark layout is 

also given together with development of the mathematical model of the oxygen transfer 

function as an exponential model of the air flow rate. 

Chapter 4: shortly describes the general control theory used for the analysis and design 

of nonlinear control systems.  

Chapter 5: apply the Ziegler-Nichols method to design the linear PID controller 

parameters and the designed and tuned linear PID controller parameters are used in the 

nonlinear PID controllers for the nonlinear DO process control. 

Chapter 6: presents the application of the pole placement method to design linear PID 

controller parameters based on the linearized DO process model. The designed LPID 

controller parameters are used for the control of the linear and nonlinear DO process 

model. In this chapter the NLPID controllers are used to control the linear DO model and 

nonlinear DO model through the parameters designed for LPID and tuned for NLPID 

controllers.    

Chapter 7: presents the development of the pole placement procedure for design of a 

LPID controller based on the nonlinear DO model (for design of the LPID controller 
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parameters) and procedure for design of a NLPID control parameters based on the 

nonlinear DO model (for design of the NLPID controller parameters) 

Chapter 8: describes and presents the real-time implementation structures of the closed 

loop systems based on the two NLPID controllers. First a model transformation technique 

is developed to transfer the developed models of the controllers and the corresponding 

closed loop system directly from Matlab/Simulink environment to the TwinCAT3 

environment. Secondly the TwinCAT 3 runtime environment is used for uploading the 

transferred models in Beckhoff CX5020 PLC. The real-time closed loop system results 

are displayed in TwinCAT software environment. 

Chapter 9: provides the thesis deliverables, conclusion, and future recommendations for 

development of nonlinear controllers in industry. 

1.11  Conclusion  

This chapter describes the importance of wastewater treatment and provides a general 

suggestion of control strategy that can be used for control of the DO concentration in the 

aerobic tank. Three different controller design procedure are introduced in this chapter 

through the aim and objective of this thesis.  

The next chapter (Chapter 2) is based on the literature review on the design and 

implementation of nonlinear controllers in industry.  
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CHAPTER TWO: 

LITERATURE REVIEW 

2.1  Introduction 

In the present world the continuous improvement idea is to take care of water, because 

the value of water is relative to the value of life (Ostace et. al, 2010). The objective of a 

Wastewater Treatment Plant (WWTP) is to remove impurity driving forces from the 

wastewater through physical, chemical and bio-chemical processes. Current wastewater 

treatment plants make use of biological nitrogen removal, which relies on using nitrifying 

and denitrifying bacteria so as to remove the nitrogen from the wastewater. Due to the 

strict effluent legislation set by municipalities in various nations, essential innovations are 

becoming necessary for control of Waste Water Treatment Plants (WWTP). Activated 

sludge WWTP is the most common type of the modem Waste Water Treatment (WWT). 

The activated sludge process consists of numerous biochemical reactions behaving 

nonlinearly (Han et al., 2008). The reactions include mechanisms which are useful for 

reduction of carbonaceous materials and other unwanted compounds in wastewater 

(Reemtsma, and Jekel., 1997). 

Rosemount Analytical, (2009) indicates that Seventy-three percent of the populace is 

joined with a district wastewater gathering and treatment framework, at the same time as 

the other 27 percent utilizes on location contaminated frameworks. At the point when 

water has been utilized as a part of any of these ways, it changes its innovation and 

becomes a wastewater which is also called sewage and has to be cleaned up before it 

can come back to the nature for utilization. All types of water are recycled in one way or 

another. Wastewater is one type of disposing of hazards to the environment. Today it is 

necessary to recycle the water to keep up practical supplies of safe drinking water for 

future creation. To clean up or treat wastewater for reuse, it is very much essential to 

know what the chemical hazards present in the wastewater are and analyze the 

problems they may cause, and how the cleaning process will be handled today. 

This Chapter gives an historical overview of the activated sludge process (ASM) and of 

the methods for its control. Then the overview of the process of DO concentration, and of 

the existing benchmark models is done. Literature search and literature review are 

shown in a form of a bar graph and in a table form. Later a discussion of the different 

control methods is done. The following parts are discussed in this Chapter as follows: 
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Section 2.1 gives a general introduction of the Wastewater Treatment Process 

(WWTP), in section 2.2 Literature search to perform an overview of the activated 

sludge WWTP and the methods for design of nonlinear controllers is described, 

section 2.3 delivers  some descriptions of the WWTP, Activated Sludge Models 

(ASM) are described in section 2.4, Literature review of the different techniques 

used for design of the nonlinear controllers for the nonlinear plants is provided in 

section 2.5, and the final section 2.6 is the conclusion 

2.2  Literature search to perform an overview of the Activated Sludge Wastewater 
Treatment Process and the methods for the design of nonlinear controllers 

Wastewater contains many pollutants and is usually referred in terms of chemical 

demand, total suspended solids, and total nitrogen and ammonia. Influent passes 

through an anaerobic tank and an anoxic tank, in which nitrate is decreased to 

nitrogen and organic carbon is expended. Within air circulation tank, additional 

utilization of natural carbon takes place and smelling salts are changed to nitrate. 

The sedimentation gives back an intense stream of activated sludge to the 

anaerobic tank as passing elucidates gushing by the channel to the cleansing tank 

for un-activation of destructive microorganisms (Ye et al., 2009). Dissolved Oxygen 

(DO) concentration control focuses on natural WWTP. Deficient or overload oxygen 

in the air circulation tank will prompt crumbling of enacting slop. The process of 

oxygen exchange is nonlinear and hence it is necessary to design an appropriate 

controller for its operation. 

In general the target of a control framework is to make any operating procedure 

yield act in a required manner by controlling the plant input. The questions that 

arise are which variables should be measured, which inputs should be 

manipulated, and which link should be made between them? It depends on the 

variables that can “optimize the process”. There may be many issues involved, and 

to be trade those off against each other in a systematic manner is necessary to 

develop a good control structure as proposed in (Skogestad and Jacobsen, 1995). 

These days the problem for design of the WWTP cannot give an improved solution 

for the operation of the process, improvements can be done only through 

development of new control strategies. Along these ways, the control issue of the 

process is turned into a control optimization issue, according to the original ideas 

proposed in (Wahab et al., 2007). 
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Wastewater treatment and accumulation has taken after ways of remarkable and 

investigativeactions. From a remarkable point of view, as population growth is high, 

so has the requirement for quality water is expanded. Experimentally, as general 

wellbeing issues and the understanding of the reasons that can flare-up the 

sickness, for example, cholera and diarrhea have been found, the construction of 

foundation and advancement of techniques that can be utilized to end these issues 

by appropriate design of controllers used in the WWTP becomes very important.  

The chapter describes an overview on the Activated sludge wastewater treatment 

process and on the methods for design nonlinear controllers capable to be used to 

control this process. A literature search using the following key words is done, as 

follows: Activated Sludge Process, Dissolved Oxygen, nonlinear controllers and 

nonlinear processes. The Figure 2.1 presents a graph of the number of reviewed 

papers proposing methods and algorithms for design of nonlinear controllers for 

nonlinear plants per year, from 1942 to 2014.  

Figure 2.1: Bar graph showing the number of papers for design of nonlinear controllers for 

nonlinear plants per year 
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2.3  Wastewater Treatment Plant (WWTP) Description 

Wastewater treatment is strictly related to the standards and expectations set for 

the effluent quality of water worldwide (Gaonkar & Kande, 2014). The consideration 

of WWTP aims to reach great developments in the quality of the wastewater. WWT 

is the methodology of expelling the contaminants from wastewater. It incorporates 

physical, concoction and nature methodology. Its target is to create a treated waste 

matter and slop suitable for release. The sludge might likewise be reused. The 

sludge is frequently coincidentally defiled with lethal natural and inorganic 

compounds. Ordinarily, sewage treatment includes three stages, called primary, 

secondary and tertiary treatment.  

2.3.1 Common layout of WWTP 

Many different steps are handled in the wastewater treatment process before the 

water is released to the beneficiary. Lindberg, (1999) and Geo, (2009) provide an 

analysis of the accepted practices. A typical representation of WWTP is presented 

in Figure 2.2. The four section blocks show different stages that are performed in 

the process of the wastewater treatment. 

 

Mechanical 

Treatment 

Biological 

Treatment

Chemical 

Treatment

Sludge 

Treatment

Influent

Effluent

 

Figure 2.2: A common layout of a Waste Water Treatment Plant 

 

Step 1: Mechanical treatment  

Massive substance like scraps are first put together on a framework. Thereafter the 

big fragments like sand are eliminated in the sand filter and small elements are 

eliminated in a primary settler.  

Step 2: Biological treatment 

In the biological treatment process the wastewater treatment plant microorganisms 

have the ability to cast down the organic matter and in some configurations 

nutrients are also eliminated. Although different biological processes are present, 
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the activated sludge process is the most used process in large wastewater 

treatment plants.  

Step 3: Chemical treatment  

To remove Phosphorus from the wastewater in the beginning of pre-precipitation, a 

condensation chemical is added and it deviate phosphate into insoluble fractions. 

These chemicals also activate the formation of flocks. As stated by Rodrigo, (1999) 

the biological process in which microorganisms oxidize and clarity organic matter is 

in the process of activated sludge. As shown in Figure 2.2 microorganisms go into 

the system through the influent wastewater. To maintain the microbiological 

population, sludge from the optional pioneer is re-circulated over to the circulated 

air through (aerated) tank. Large quantity of sludge is evacuated to both maintain a 

strategic distance from sewage because of in-gushing water and to keep up a 

sensible suspended solids concentration (Lindberg et al., 1996).   

Step 4: Sludge Treatment Process  

It is very important that the chlorination for purifying and bad smell elimination is 

integrated before the water is released to the receiver. Sludge treatment is handled 

from the different relative blocks in the ASP. The sludge has organic material which 

needs to be balanced to avoid smell and reduce the pathogenic content. This 

balancing process is usually done in anaerobic digesters (Muga, 2009). 

2.3.2 The process of Activated Sludge 

Spring, (2003) claims that activated sludge was originally developed in England 

prior 1900s, but without the extensive popularity in US up to the 1940s. In these 

days there are numeral innovations that have advanced the process of activated 

sludge.  

A main activated sludge process consists of many co-dependent factors: 

 The biological reaction takes place inside an aeration tank. 

 The aeration tank which has an aeration source with the intention to bring 

oxygen and mixing 

 In the clarifier tank, the rock-solid clear and get disconnected from treated 

wastewater. 

 The process of gathering any solid and putting them back to the aeration 

tank is known as Return Activated Sludge (RAS), or eliminate the solids 
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from the activated sludge known as the process of Waste Activated Sludge 

(WAS). 

Dynamic microorganisms go through the aeration tank and they reproduce rapidly 

with sufficient sustenance and oxygen. The wastewater achieves the end of the 

tank following 4 to 10 hours. The microorganisms utilized a large portion of the 

natural matter for this time to deliver new cells and the living beings settle to the 

base of the clarifier tank to separate from the clean water. This sludge is pumped 

once again to the air circulation tank and is blended with the approaching 

wastewater or expelled from the framework as access, and this procedure is called 

wasting. The moderately clear fluid over the slime is sent for further treatment as 

needed. Typical illustration of the process is shown in Figure 2.3 (Spring, 2003) 

 

 

Figure 2.3: Typical Activated Sludge Process (Spring, 2003) 

 

Essential guideline behind all activated slime techniques is that as microorganisms 

develop they outline some particles that clump together (e.g. Figure 2.3). These 

particles called flocs are permitted settling to the base of the tank, exit from a 

generally clear fluid free of natural substance and suspended solids, (Ito, 2004) 

and (Ostace et al., 2010). Screened wastewater is blended with varying amounts of 

reused fluid containing a high extent of organic form taken from an auxiliary 

illuminating tank, and it turns into an item called blended fluid. This mixture is 

blended and infused with extensive amounts of air, so as to give oxygen and 

maintain solids in suspension. In a while, blended liquid streams to the clarifier and 

is permitted to settle. A segment of the microbes is detached as it settles, and the 

part of the cleaned water streams on for additional treatment. The ensuing settled 

solids are taken back to the initial tank to start the procedure over again. 
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2.3.3   Significant zones of the Activated Sludge Process 

During the activated sludge process the micro-organisms are kept suspended 

either by blowing air in the tank or by use of agitators (Lindberg, 1997). Oxygen is 

used by the microorganisms to oxidize organic matter. Lee, et. al., (2002) proposed 

that the activated sludge process must have three zones as shown in Figure 2.4 in 

order to create conditions that are favorable to the growth of bacteria.  

The zones are: 

Anaerobic Zone: This zone is deficient in nitrate and oxygen. 

Anoxic Zone : This zone is deficient in oxygen only. 

Aerobic Zone : This zone has both oxygen and nitrate present. 

 

 

Figure 2.4: Activated sludge process 

 

The zones are used to remove carbon, nitrogen and phosphorus. 

2.3.3.1 Carbon Removal: 

Carbon in the wastewater is found in an organic form and inorganic compounds, 

which are removed by the redox reaction. Performed by the microorganisms called 

Heterotrophs, this reaction causes carbon dioxide to be released to the 

atmosphere and therefore it removes carbon.  

2.3.3.2 Nitrogen Removal: 

Nitrogen in the wastewater is in the form of ammonia and an organic form which is 

converted into nitrate in the aerobic zone. It has an advantage to have the anoxic 

zone after the aerobic zone in which organisms called Autotrophs are used to 

convert nitrate to nitrogen gas in the anoxic zone, (Ostace et al., 2010). 

2.3.3.3 Phosphorus Removal 

Phosphorus in the wastewater is found in microorganisms called Poly-phosphate. 

The microorganisms can either keep or release phosphorus depending on the 

ANAEROBIC Z1 ANOXIE Z2 AEROBIC Z3 

INFLUENT 

EFFLUENT 



18 
 

favorable conditions (Macnab, 2014). The stored phosphate is released with the 

wasted sludge in the WWT process. 

Activated sludge is a process for treating sewage and industrial wastewater using 

air and a biological matter composed of bacteria and protozoans. This process 

(ASP) is the biological treatment process used in larger or small wastewater plants 

and these plants are capable of producing a high quality effluent (Ye et al., 2010). 

Therefore the use of ASP has the advantage of reasonable operating cost, 

maintenance with low construction cost and the relatively small land requirement 

and is broadly utilized by vast urban communities and groups where extensive 

volumes of wastewater must be profoundly treated financially. 

The common terms used in the activated sludge model developed for the purpose 

of control are:  

i. State variables - State variables include the different fractions of the Chemical 

Oxygen Demand (COD), biomass and diverse sorts of supplements, both natural 

and inorganic. 

ii. Dynamic processes - Dynamic processes list the distinctive organic techniques 

that are demonstrated, 

iii. Parameters - Parameters illustrate the circumstances of the natural framework, 

for example, development and rot rate, half-immersion coefficient for hydrolysis, 

etc. 

 

2.3.4  Dissolved Oxygen Concentration Process Overview 

The microscopic organisms continually require energy so as to develop and to help 

crucial life exercises. Developing cells use substrate and supplements found 

outside the cell film for development and energy in a procedure. Oxygen is used by 

microorganisms called autotrophs to oxidize organic matter. The autotrophs are 

used to grow only with dissolved oxygen and use inorganic carbon as substrate. 

Some bacteria can use or not use dissolved oxygen and are called heterotrophs. 

The major part of bacteria in the activated sludge process use natural carbon as 

little organic molecules. The biomass growth rate depends on many variables, such 

as the amount of biomass, substrate, temperature, potential hydrogen (pH), etc. 

Dissolved Oxygen (DO) concentration is among the principal control parameters in 

the activated sludge systems (Lindberg and Carlsson, 1996). Oxygen plays an 

integral part in activated sludge process. If the associated aeration is done in an 
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optimal way it will lead to substantial reduction of the energy consumption 

(Vanrolleghem, 2003). Continuous and reliable DO monitoring can improve plant 

efficiency, lower the operating costs and decrease the risk of unwanted odor 

events (Ye et al., 2010). Dissolved Oxygen (DO) concentration control is the most 

used control strategy in the control of the activated sludge process and influences 

both the effluent quality and the economical operation of the plant. This research 

work focuses on the controlling DO concentration in the aeration tank of the 

Activated Sludge Process (ASP). 

Dissolved oxygen (DO) is added to the air circulation bowl known as aeration tank, 

so as to improve the oxidation transform by giving oxygen to high-impact 

microorganisms that convert an organic waste into inorganic (Ye et al., 2010). To 

metabolize sustenance and duplicate, every microorganism must have no less than 

0.1 to 0.3 mg/L DO (Copp et al., 1999). Most plants keep up around 2 mg/L of DO 

and the microscopic organisms contained inside the flocs can utilize this oxygen. 

Once the concentration of the DO is excessively low, the environment is not steady 

for the microorganisms. They will die because of the anaerobic zones in the 

aerobic tank and the sludge will not be suitably treated. Nowadays, most of the 

plants remunerate by adding very high measures of DO to their procedure. In the 

event that DO levels get to be excessively high, energy is wasted, excessive air 

circulation gear experiences unnecessary utilization, and unwanted organisms 

called filamentous are promoted. 

2.4 Activated Sludge Models (ASM) 

2.4.1  Benchmark Model of the Activate Sludge Wastewater Treatment Plant 

The Benchmark Simulation Model (BSM) based on the ASM1 biological model has five 

biological reactors connected in series manner as shown in Figure 2.5 (Ostace et al., 

2010). The benchmark wastewater treatment plant model shown in Figure 2.5 is 

proposed by the European Cooperation in the field of Scientific and Technical research, 

and is known as a product of COST action 624 and COST action 682. The action was 

done to evaluate the control strategies in the wastewater treatment plants and is strictly 

in agreement with the benchmark methods, especially from the side of control 

performances (Alex at al., 2008). The first two units are anoxic and the last three units 

are aerated reactors. Each anoxic reactor has a volume of 1000 m3 and each aerated 

reactor has a volume of 1333 m3. The total biological volume is 5999 m3. The reactors 

are followed by a secondary settler, which has an area of 1500 m2 and a depth of 4 m. 
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The organic methods that are occurring in the tanks are displayed utilizing International 

Association on Water Quality Activated Sludge Model no.1 (IAWQ ASM1), a biological 

model proposed in Henze et al., (1987). Copp et al., (1999) state that the Activated 

Sludge Model (ASM1) has thirteen state variables and eight dynamic processes 

represented by a set of normal differential equations which describe the forceful changes 

of the state variables.  

According to Wahab et al., (2007) the procedure of undignified the biodegradable matter 

can be separated in two phases. They are: 

 Nitrification and  

 Denitrification.  

A suitably high concentration of DO is expected to fulfill the nitrification prepare in the 

oxygen consuming tanks, while an excessively high DO content will unfavorably affect 

the de-nitrification process in the anoxic tanks.  

 

Figure 2.5: Lay-out of the benchmark simulation platform plant (Henze et al., 2002) 

 

Sludge recycles flow rate, external carbon dosing, dissolved oxygen concentration and 

internal recycle flow rate are frequently investigated as manipulated variables in WWTP 

by Alex et al., (2008). 

2.4.2 Historical overview of the Activated Sludge Biological Model development 

The universal name Activated Sludge model (ASM) is for a gathering numerical 

methods or procedure to model activated sludge biological framework. The 

investigation here is facilitated by a task gathering of the International Water 

Association (IWA). Activated sludge models are utilized as part of the investigate 

exploration to study organic method in theoretical schemes. They can likewise be 

connected to full scale wastewater treatment plants for optimization, and balanced 

reference information for slop generation and supplements in the effluent. 

http://www.enotes.com/topic/Activated_sludge
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 In 1983, International Water Quality Associations (IWQA) was formed (Henze et al., 

1987). They started to create a generalized framework for mathematical models that 

could be used to model activated sludge for nitrogen removal. Their main goal was to 

develop a models of which the complexity was as low as possible, simple to represent, 

and able to accurately predict the biological processes. Activated Sludge model no.1 

(ASM1) started to be used in activated sludge modeling before IWA was formed, 

although each investigate collection worked on mathematical frameworks of the 

activated sludge and formed their model, these models were ground incompatible. This 

fact therefore catalyzed the joint investigate and had a most important impact on 

activated sludge modeling (Keskitalo and Leiviska, 2010). 

The IWA started working on activated sludge process modeling and developed prosper 

models (ASM1, ASM2, ASM2d, and ASM3) for the WWTP, as given in Table 2.1. 

Table 2.1: Description of Activated Sludge Models 

Abbrevi
ation 

Description Differences Limitations 

ASM1 
(Barbu 
et al., 
2005) 

A simplest model that 
can describe Carbon 
oxidization, 
nitrification and de-
nitrification 
accurately. 

Main difference between the 
ASM1 and ASM3 are the 
piece of limit polymers and 
the altered of improvement rot 
advancement model to 
development endogenous 
breath display in the ASM3. 
ASM1 has less 13 state 
variables, less than the ASM2 
model with 19 state variables. 

The later modification 
which was done to 
correct defects, were 
recognized in ASM1 and 
to improve parameter 
identification. The main 
drawback of ASM1 
model is its complexity. 

ASM2 
(Henze 
et al., 
1999). 

The development of 
this model aims to 
incorporate a report 
of biological 
phosphorus removal.  

Activated Sludge Model2 is 
more difficult than the Asm1 
and has extra segments and 
procedures to represent 
organic phosphorus 
evacuation. Apart from 
heterotrophic and nitrifying 
living beings ASM2 has 
phosphorus-gathering organic 
entities. Finally ASM2 explain 
element or chemical 
precipitation of phosphorus. 

As the frameworks are 
less interconnected, 
identification of the 
model is expected to be 
better. The equations for 
phosphorus removal 
were added to ASM1 
model, the result being a 
more complex model 
called ASM2. 

ASM2d 
(Henze 
et al., 
1999). 

Explanation of 
organic phosphorus 
elimination was not 
finished in ASM2. As 
a result of that 
incompleteness the 
model was enhanced 
in ASM2d. 

In ASM2d there are important 
extensions to ASM2 such as 
adding of the denitrifying 
phosphorus accumulating 
organisms. 

The model is valid for 
municipal wastewater 
only, pH should be near 
neutral, the temperature 
is expected to be in the 
range of 15 -20 

o
C. 

ASM3 This model was 
developed to 
describe a biological 

The decay process of ASM1 
is replaced with the concept 
of endogenous respiration in 

ASM3 has made the 
identification of the 
model better. 
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nitrogen removal. ASM3. 

 

ASM1 was the establishment for various expansions. These augmentations 

incorporate better forecast of nitrogen and phosphorus evacuation and are broadly 

utilized as a part of augmented models including ASM2, ASM2d, and ASM3P. 

ASM1 model is further used in biological phosphorus removal (Sanchez and 

Katebi, 2003). An enhanced version of ASM1 model is selected as a case study in 

this thesis. The version also named as ASM2 was created to incorporate organic 

(and synthetic) phosphorus evacuation. As investigative comprehension developed 

in the late 1990s, ASM2 was stretched out into ASM2d, basically by the expansion 

of anoxic tank and in addition high-impact uptake of phosphorus. Utilization of the 

model outside of these limitations is not recommended (Henze et al., 1999). 

2.5  Literature Review of the methods for the design of nonlinear controllers for 
nonlinear plants  
Control problems of the nonlinear frameworks have particular, specific consideration all 

through the most recent four decades. Many impressive efforts were committed to the 

examination of the structural properties to see better the strategy for  methods to control 

the nonlinear systems. Control of DO is a common problem encountered by the range of 

industrial systems, such as chemical, biochemical industries and wastewater treatment, 

due to its high nonlinearity. In the literature review there are included different methods 

for design of control of nonlinear processes: Input/State linearization, Input/output 

linearization, Lyapunov method, PID controllers, etc. Review of the application of some of 

these methods is done below. 

 2.5.1  Feedback Linearization methods 

The literature investigation has shown that there are cases were versatile direct control 

plans would not perform well when confronted with a very nonlinear procedure. This is on 

the grounds that the versatile instrument may not be sufficiently quick to track changes in 

procedure qualities. A suitably design of nonlinear controller would then be expected to 

perform better.  

The literature reviews different types of model based controllers: Fuzzy, neural network, 

PID, these and other model-based controllers are presented and discussed in Table 2.2 

later. Another rising field is that of nonlinear controller design by the use of differential 

geometric concepts (Slotine and Li, 1991). Furthermore the study of the feedback 

linearization together with continuous-time recurrent neural networks has been 

performed. (Singh et al., 2013)  
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There are two basic important approaches of feedback linearization: Input-Output 

feedback linearization in which case, the input-output relationship of the resulted closed 

loop system has to be linear and Input-State feedback linearization in which the 

relationship between the input and the states of the closed loop system must be linear. 

The schematic representation of the input/output feedback linearization is shown in 

following Figure 2.6 

Controller 

(Linear / Nonlinear)

input

Nonlinear Process

Output

y

x

u
v

Linear system  

Figure 2.6: Input-Output linearization 

In Figure 2.6 the relationship between u and y is nonlinear and between y and v is linear; 

in addition the relationship between u and v, u and x is also nonlinear where v is a 

reference input for the nonlinear controller. In the case of continuous-time framework, 

there exists a number of ways for the design of nonlinear controllers by feedback 

linearization. 

The majority of the feedback linearization methods is based on the input-output 

linearization or input-space linearization. The main objective of input-output (I/O) 

linearization approach is to linearize the system between the transformed inputs ( v ) and 

the actual outputs ( y ), detailed discussion are stated in (Kravaris and Chung, 2011) and 

(Nketoane, 2009) 

In the linearization of the state equations the following nonlinear system can be 

considered:  

))(()(

)())(())(()(

txhty

tutxgtxftx




        (2.1) 

Where x  is the state vector, u is the input vector, y  is output of the system and the 

smooth vector fields are represented by gf , and h . In a general form g  is a 
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mn matrix whose columns are smooth vector fields that can have a required order of 

continuous partial derivatives. The purpose of input-output linearization is to obtain a 

nonlinear control in the form: 

  vxbxau )(          (2.2) 

Where a and b  can represent any variable parameters in such a way that the resulting 

closed loop control system is linear and results in a linear transfer function, and can be 

represented in Laplace domain         

The output derivative of Equation 2.1 is shown in Equation 2.3 also by means of the Lie 

derivative:  

)()())(()]())(())(([)( tuxhLtxhLtutxgtxf
x

h
ty gf 




     (2.3) 

Where ))(())(( txf
x

h
txhL f




  and ))(())(( txg

x

h
txhLg




  are called Lie derivative of h  

along f  and g  functions. Further definitions for the Lie derivatives can be seen in 

Muga, (2009). 

Taking the essential control )(tv , as any suitable linear combination of past outputs in 

addition to the reference empowers a random task of the closed-loop poles of the 

linearized by the nonlinear controller system. Therefore, Feedback linearization is a 

nonlinear counterpart to the pole placement method. (Astrom and Wittenmark, 1995). 

 

2.5.2  Linear and nonlinear PID controllers 

2.5.2.1 Linear PID controllers 

This section talks over the linear PI and PID controllers based on different algorithms 

such as Neural Networks (NN), state space etc (Singh et al., 2013) PI and PID 

controllers remain to be the common methods in industrial applications, because of their 

effortlessness in execution and understanding. It has been noticed that the linear PI and 

PID controllers result from the application of model-based controller design technique to 

direct linear first and second-order systems. In a common way, as can be presumed from 

the names, a PI controller holds proportional and integral action, and a PID controller 

which is proportional, integral, and derivative action. The general linear PI and PID 

controller models are described as follows: 
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 dtteKteKtu ip )()()(         (2.4) 

dtteKdtteKteKtu dip )()()()(


         (2.5) 

Where kp, ki, kd are the PID controller parameters   

The standard PID neural network controller design is shown by a feed forward neural 

network as follows: (Lu et al., 2012) 

SYSTEM

y(k)

u(k)

2

1

D

I O

P

 

Figure 2.7: Structure of the PID NN Controller (Lu et al., 2012) 
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       (2.7) 

According to Liu and Daley, (2001) if there is a requirement to advance the PID 

controller‘s performance, the optimal PID controller design is the option to use. The PID 

controller is assumed to be of the basic form 

dt

tde
KdtteKteKtu d

t

ip

)(
)()(()(

0

        (2.8) 

Where ip KK ,  and dK  are control parameters, )()()( tytrte   is the difference 

between the reference input )(tr and the output )(ty , and )(tu is the control input.  
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GPID
e(t)

GP(s)
y(t)+ u(t)r(t)

-

 

Figure 2.8: Typical structure of the PID 

Consider the plant equation shown in Figure 2.7. (Gp(s)) is controlled by a linear PID 

controller. The Equation (2.8) engages certain requirements based on the specifications 

for a control system design associated with the time response of the system. 
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         (2.9) 

Where the parameter n  is the natural frequencies, and  is the damping ratio. To 

receive a good closed-loop time response, the following performance function 

requirement is to be considered when designing a PID controller (Liu and Daley, 2001): 

dttytyKKKJ
d

stepstepdip

2

0

))()((),,(  


      (2.10) 

Where: )(ty
d

step  is the desired step response produced by the transfer function of the 

system )(sG , and )(tystep  the step response of the process with the PID controller. Ever 

since in industrial processes it is frequently not permitted to attempt diverse PID 

controller parameters on the plant for the purpose of security, )(tystep  is replaced by the 

step reaction of the model with the PID controller. In this way, the optimal PID controller 

configuration may be expressed: 

),,(min ,, dipKKK KKKJ
dip

        (2.11) 

They continue to state that, some statistics considerations demonstrate that the 

execution function J  is the most proper decision for information fitting when lapses in 

the information have a typical distribution. The function J  is frequently favored in light of 

the fact that it is realized that the best fitting count is direct to illuminate. But, the way out 

to the minimisation of equation (2.11) might not give good control results for the system. 

In that case, some other performance functions have to be taken into account (Liu and 

Daley, 2001). 
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2.5.2.2 Nonlinear PID 

The investigation shows that the controllers, resulting from nonlinear model-based 

control theory can be put in a convenient form, more open to industrial implementation. 

As the LPID controllers are more understandable and very much utilizable in many 

process control systems, the addition of nonlinear functions in a LPID controller to form 

NLPID controller can be useful in many nonlinear industrial applications. 

The algorithm of the NLPID controller is based on the introduction of nonlinear functions 

of the control error and an inherent part of the controller. The aim is to achieve a desired 

better output response of the plant in comparison to this using the conventional PID 

controller. The nonlinear PID controller has been reconstructed using a nonlinear 

function proposed by Jiang, et al., (2009), as follows: 









 



),,(),,(
1

),,( dddii

i

ppp efTef
T

efKu       (2.12)  

Where: ip TK ,  and dT  - are the controller gains similar to these of the linear PID (LPID) 

controller. ),,( ppef  ,  ),,( iief   and ),,( ddef 


 
- represent nonlinear functions 

of the PID controller error as given in Equations (2.13) to (2.15). 

))((.)(),,( tesignteef
p

pp


 

           (2.13) 

  ))((.)(),,( dttesigndtteef

i

ii





                                                                        (2.14) 

)
)(

(.
)(

),,(
dt

tde
sign

dt

tde
ef

d

dd



 


       (2.15) 

 

The generalized equation of the nonlinear function is proposed by (Jiang et al., 2009) 

and (Zaidner et al., 2010) and is given by Equation (2.16) 













 








ewhene

ewhenxesign
efy

,.

,).(
),,(

1

      (2.16) 

Where: )()()( tytrte   and r  is the process setpoint and y  is the process output. 

 and  are two parameters of the nonlinear function )(f , is a parameter used to 
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determine the linear range of the function f ,   is the nonlinear degree of the function 

(Jiang, 2009). 

The NLPID controller uses nonlinear functions to replace the linear one in the 

conventional PID controller. The comparison of the linear PID error e  with the nonlinear 

PID controller function ),,( ef  shows that the use of the function ),,( ef  produces 

high control gain for small values of the error e  and small control gain for large values of 

the error e . 

Since the investigation show that a large percent of practical control techniques 

among industrial processes is linked to the PID controllers (Wright, 2001) in the 

case any development of this type of controller could possible result to a positive 

improvement on all associated industrial process. Also, it is known that most of the 

developed industrial processes, i.e. thermal, pressure, PH, and flow are nonlinear 

and can have long time delays. The paper of Zaidner, et al., (2010) reviews one of 

the nonlinear PID methods, and suggests optional tuning rules accompanied by 

simulation results. According to what was mentioned to be delivered in this paper, 

as the design of the Nonlinear PID controllers for stability and control of a noisy 

model, the better noise rejection for a noise model was not successfully achieved, 

but it was suggested to combine a NLPID with a Tracking Differentiator in order to 

control and stabilize systems with noise model in their future work. The PLC 

implementation was not shown, as they claimed. 

To upgrade the execution of a conventional altered addition PID controlled 

framework, an Enhanced Nonlinear-PID (EN-PID) controller is proposed by (Su et 

al., 2005) and is joining a sector-bounded by nonlinear gain function and two 

nonlinear Tracking Differentiators (TDs) into the accessible altered increase PID 

control building design. To accomplish the high strength against noise, these two 

nonlinear following differentiators are utilized to choose high- quality differential flag 

in the surrounding area of estimation commotion. The nonlinear gain is a function 

of the error and follows up on the error to create the scaled error for quick reaction. 

Simulation results performed on a robot controller are introduced to exhibit the 

better execution of the created EN-PID controller in examination with the ordinary 

settled addition PID controller 
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2.5.3  Lyapunov theory of stability 

When having a system to be controlled, the most important question is about its various 

properties, whether it is stable or not-stable, because an unstable control system is 

typically unusable and possibly dangerous. Today, the Lyapunov's linearization method 

has come to represent the theoretical justification of linear control, while the Lyapunov's 

direct method has become the most important tool for nonlinear system analysis and 

design. Together, the linearization method and the direct method form what is known as 

Lyapunov stability theory (Slotine and Li, 1991). A nonlinear dynamic system can usually 

be represented by a set of nonlinear differential equations.  

The Lyapunov theory of stability is based on the construction of a Lyapunov functions for 

the system under study. The Lyapunov function is assumed to be done by a quadratic 

form and for the case of a nonlinear controller design it is selected as follows (Nketoane, 

2009): 

)()()( tPeteeV T          (2.17) 

Where 
nnRP   is a positive definite real symmetrical matrix, )(te is the state system 

error variable in time domain.  

In order to select the nonlinear controller, the first derivative of the function of Lyapunov 

according the trajectory of the error equation has to be negative, as follows 
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 The nonlinear expression of the controller is calculated from the above equation. 

 

Lyapunov theory includes two methods presented by Lyapunov: indirect method 

and the direct method. The indirect method, or linearization method, states that the 

stability properties of a nonlinear system in the close region of a stability point are 

essentially the same as those of its linearized approximation. The direct method is 

a powerful tool for nonlinear system analysis, and is mainly called Lyapunov 

analysis (Slotine and Li, 1991) and (Luo and Si, 2013). In the investigation of 

Lyapunov theory, the Lyapunov second method of stability assessment was found, 

this method is based on power considerations, which does not require solution of 

the systems equations. It involves searching for a function of Lyapunov, which 

satisfies certain requirements of the system. 
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Abdelhadi et al., (2014) use a direct design method to identify a pH model from real 

data by using an application of Local Linear Model Networks (LLMN) and then 

develop a nonlinear control system for the process. The identified LLMN model of 

the pH process is tested as an independent model and used for the control 

simulations. The conventional feedback Proportional Integral (PI) controller 

parameters for different operating points, identified by the LLMN model, are 

designed by using a direct design method. These local controllers are then 

combined into a LLMN controller. Results show the ability of LLMNs for nonlinear 

system identification and the designed nonlinear control structure results in a good 

performance. 

2.5.4  Adaptive control 

Adaptive control is a method used for the control design approach to deal with 

uncertain systems or time-varying systems. Vanrolleghem, (2003) states that 

adaptive control uses on-line identification of the system parameters or adjustment 

of the controller gains, by this means of obtaining strong robustness properties. 

The adaptive algorithms proposed in Li and Zeng, (2008) are rapidly solving the 

system of nonlinear equations. The results show that the approach proposed has 

much higher accuracy than the neural network method and Broyden’s method used 

in this paper. 

Singh et al., (2013) this paper presents an approach for velocity and orientation 

tracking control of a non-holonomic mobile robot based on an adaptive controller. 

The developed PID controller is based on analog neural networks. The feed-

forward neural network controller is trained on-line to find the inverse kinematics 

model, which controls the outputs of the mobile robot system. The proposed 

controller shows a better performance because of its capability of continuous online 

learning. 

 

2.5.5   Optimal control 

Optimal control is a control method in which the control signal optimizes a certain 

cost index. Optimization is one of the outstanding recognized branches of 

mathematics that has an aim of finding the values for variables in order to make the 

most profit or to decrease the costs subject to some constraints, Andrei (2005). 

Ant Colony Optimization (ACO) algorithmic approach has been introduced for 

optimizing the parameters of a nonlinear PID controller (Hai-bin et al., 2006). From 
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the results of simulation, it can be concluded that the nonlinear PID controller using 

the improved ACO algorithm is very effective. The results show a good control and 

robust performance with some overshoots and settlement. The controller can be 

improved and be generally used for real-time control of different types of 

processes.  

An optimal-tuning nonlinear PID controller design strategy is proposed by Liu and 

Daley, (2000) for hydraulic systems. In this paper a nonlinear PID controller which 

includes the inverse of the dead zone is introduced in order to cancel the dead 

zone, since the presence of a dead zone in the hydraulic position control system 

makes difficult to achieve high-precision tracking using only linear controllers. This 

paper addresses a number of design methods such as: nonlinear modelling, 

nonlinear PID control, and optimal-tuning PID design. The nonlinear model for the 

process is estimated using the recursive least-squares method (Liu and Daley, 

2000). But the introduction of the inverse of the dead zone to the controller has 

given unexpected overshoot, long settling time to the closed-loop hydraulic system, 

now to overcome this optimal-tuning PID controller design for industrial process is 

proposed by Liu and Daley, (2001) and Predictive control techniques is proposed 

by (Liu and Daley, 2001).   

 

2.5.6      Model Predictive Control (MPC): 

A nonlinear model predictive control (NMPC) focused around a piecewise direct 

wiener model is exhibited by Shafiee et al, (2006), the nonlinear increase of this 

specific wiener model is approximated utilizing the piecewise straight abilities. This 

methodology holds all the intrigued properties of the traditional straight MPC and 

keeps calculations simple to settle because of the accepted structure of the 

nonlinear increase. The displayed control plan is connected to a pH balance 

methodology and reproduction results are contrasted with straight model predictive 

control. Results from the simulations demonstrate that the nonlinear controller has 

better execution without any overshoot in examination with linear/ direct MPC, 

furthermore less steady-state error in following the set point. 

Yoo et al., (2004) propose a nonlinear control plan to keep up the poor dissolved 

oxygen level of an activated sludge framework. Without any linearization or model 

degeneration, it can straightforwardly fuse the nonlinear DO procedure model with 

on-line estimation of the breath rate ( R ) and the oxygen exchange ( LaK ). 
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Simulation results show that the proposed control scheme is very effective to be 

used. Since it incorporates the process disturbance and nonlinearity in the 

controller design, the suggested method can efficiently deal with the operating 

condition changes that occur frequently in the wastewater treatment process. 

 

2.5.7      Pole Placement method: 

Pole Placement is a method used in feedback control system theory to place the 

closed-loop poles of a plant in pre-determined locations in the s-plane.  

Mathematically once the system transfer function is defined, the desired transfer 

function should be also defined, and then each coefficient in the same order in 

polynomial is compared to be the same. This pole placement control method 

results in the desired system response and is easy to fine the gain mathematically, 

but the accuracy of the system transfer function is significantly important and is 

expensive to implement in the high order system. 

Hasanien et al., (2009) use a digital pole placement controller for permanent 

magnet synchronous motor (PMSM). The advanced pole placement controller in 

this paper is utilized for velocity control of the motor. The dynamic reaction of the 

(PMSM) with the proposed controller is calculated over the beginning process 

under the full load torque and under burden aggravation. The effectiveness of the 

proposed advanced digital pole placement controller is then contrasted with that of 

the traditional PI controller. The proposed controller is utilized as part of request to 

conquer the nonlinearity issue of PMSM and the parameter varieties 

 

2.5.8     Ziegler and Nichols control design method: 

Copeland, (2008) state that, In 1942 Ziegler and Nichols, described simple 

mathematical procedures for tuning PID controllers. These procedures are now 

accepted as standard in control systems practice. Ziegler-Nichols formulae for 

specifying the controllers are based on plant step responses. 

As most of the PID tuning rules were developed many years ago, the direct use of 

Ziegler–Nichols rule in the nonlinear controllers still needs to be investigated. The 

achievement of a direct design for nonlinear control parameters through Ziegler-Nichols 

can help to avoid the tuning process which is time consuming.  
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2.5.9 Review of the existing papers in a Table form 

The following table shows a sample of papers describing controllers design for WWTP, 

dissolved oxygen concentration and other linear and nonlinear processes in industry. 

Different control strategies, methods for design of linear and nonlinear controllers are 

also reviewed in Table 2.2. 



34 
 

Table 2.2: Linear and Nonlinear controllers for nonlinear processes 

Paper 

 

 Problem 
Formulation 

Models Algorithm for 
design of the 
controller  

PLC –
SCADA 
Implementa
tion 

        Applications 

 

Advantages/Disadvantages 

Plant   Controller   PLC SC
AD
A 

Simulation/ 
Industrial 
setup 

Used Controllers & 
Plants 

Advantages Disadvanta
ges 

(Zhao  
et al., 
1994) 
 

Design 
Nonlinear 
optimal control 
of an alternating 
activated sludge 
process. 

Pilot Plant 
model of 
ASM1 

Nonlinear 
optimal control 
techniques 
based on state 
space model 
and a new 
strategy of 
nitrogen 
removal. 

Newton-
Raphson 
optimization. 
Least squares 
algorithm.  

No  No  Simulation was 
done but, the 
platform of 
simulation was 
not mentioned.  

1 nonlinear optimal 
state space controller 
and 1 Plant. 

Optimal nonlinear 
control approach is 
successful and effective 
for improved nitrogen 
removal in the WWTP. 

Results show 
an 
improvement 
still need to be 
made for the 
nitrogen 
removal. 

(Rodrig
o et al., 
1999) 
 

Nonlinear 
control design 
for an activated 
sludge aeration 
process. 

Activated 
sludge 
aeration 
process: 

Aeration fuzzy 
PID controller.  

Fuzzy 
techniques.  
Neural networks 
used to obtain 
fuzzy 
membership 
functions.  fuzzy 
PID controller 
using  fuzzy 
rules. 

No  No  Only simulation 
n 

One process model. 4 
controllers: fuzzy, 
Internal model control 
(IMC), Cohen and 
Coon and ITAE 
(Integral of the Time 
weighted Absolute 
Error) tuned PID 
controllers. 

The nonlinear fuzzy PID 
controller quickly 
improves its response 
and reaches the set-
point, even before the 
IMC and ITAE tuned 
PID controllers 

Trial and error 
procedure is 
time 
consuming. 

(Liu and 
Daley, 
2000) 

An optimal PID 
controller design 
to satisfy some 
desired time-
domain 
performance 
requirements. 

Hydraulic 
positon 
control 
system. 

A nonlinear PID 
(NLPID) control 
scheme with the 
inverse of the 
dead zone.  

Optimal-tuning 
recursive least-
squares. 
Nonlinear 
modelling, 
nonlinear PID 
control, and 
optimal-tuning 
PID control 
design. 

No  No  Simulations 
using Lab-
dSPACE, 
Matlab/ Simulink 
and Real time 
workshop. 

1 Process model and 2 
types of controllers.  

Designed optimal PID 
parameters satisfy the 
desired system 
specifications. 

This strategy 
needs slightly 
more 
computation to 
search for the 
optimal PID 
parameters, 
compared with 
a fixed 
parameter 
controller. 

(Jiang 
and 
Gao, 
2001) 

Design a 
nonlinear PID 
for class of truck 
ABS Problems.  
Tuning method.  
 

Brake 
system 
dynamics 
and Wheel 
velocity 
models 

NLPID, LPID 
and Loop 
shaping 
controllers. 

Nonlinear filter 
approach and 
NLPID 
algorithms for 
on-line tuning. 

No No Industrial 
Simulator, On-
line testing and 
adjustment. 

3 Controllers: LPID, 
NLPID and Loop 
shaping are used 
respectively to control 
Anti-lock Brake 
System (ABS). 

Using NLPID controller 
to truck ABS problem 
gives short stopping 
distance and better 
velocity performance 
than these obtained with 
LPID. 

The tuning of 
the controller 
is done purely 
on trial and 
error basis. 
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(Panag
opoulos 
et al., 
2002) 

Linear problem. 
Design the 
controller 
parameters, so 
that the system 
behaves well 
with respect to 
changes such 
as load 
disturbance or 
set point 
change.  

Name not 
mentioned 
only, it is 
linear, time 
invariant. 

PID design 
formulated as a 
parameter 
optimization 
problem.  

Linear partial 
differential 
algorithm.   

No No Simulation Lab 
setup only. 

1 controller designed 
to capture demands on 
load disturbance 
rejection, set point 
response, and noise 
and model uncertainty. 

Can capture demands 
on load disturbance 
rejection, set-point 
response, measurement 
noise and model 
uncertainty.  

The 
disadvantages 
of the used 
control type, it 
can only work 
successfully to 
linear process. 

(Sanche
z and 
Katebi 
2003) 

Design of 
Predictive 
Control of DO in 
an  Activated 
Sludge 
Wastewater 
Treatment Plant 

ASM1 PI, Model 
Predictive 
Control, and 
Pole-placement 
control, using 
subspace 
identification of 
DO process 
model. 

Composite and 
Augmented 
models 
Predictions. 
Kalman filter 
compared to a 
state observer. 

No  No  Simulation only. 
No real 
implementation 
was done. 

2 Controllers are used 
respectively to control 
dissolved oxygen. 
Comparison is based 
on the disturbance 
estimation, 

The controllers (Model 
Predictive Control and 
Pole-placement) 
perform very well and 
improve the 
performance compared 
to a single PI loop. 

This paper 
assumes a 
constant 
disturbance 
model. 

(Mhask
ar et al., 
2004) 

A two-level, 
optimization-
based method 
for deriving 
tuning 
guidelines for 
PID controllers.  

Nonlinear 
chemical 
reactor 
model.  
ASM1 
model. 

Nonlinear PID 
Controller and 
Optimal-tuning 
linear PID 
Control. 

Classical Tuning 
Methods. 
Linearizing 
controller. 
Internal Model 
Control (IMC)-
based and 
Ziegler-Nichols 
tuning rules 

No No Simulation has 
been performed 
but software is 
not mentioned. 
(It seems as 
Matlab)  

1 nonlinear plant and 2 
controller: linear and 
nonlinear PID 

Proposed tuning 
method can achieve 
closer response of the 
closed loop reactor 
model through nonlinear 
controller. 

The proposed 
method of 
linear PID 
cannot give 
accurate 
results, tuning 
is needed 
which time is 
consuming. 

(Ito, 
2004) 

Design of a 
dissipative 
approach to 
control a 
Biological 
Wastewater 
Treatment 
Plants based on 
entire nonlinear 
process models. 

Biological 
WWTP 
model:  
Activated 
Sludge 
Model N0.1 

Dissipative flow 
controller. 
Attenuating 
targets via 
positive control 

Dissipation 
inequality and 
model-based 
controller design 
dissipation 
property. 
 

No  No  Rigorous 
simulations in  
MATLAB/Simuli
nk 

One Plant. Proposed dissipative 
control is better than the 
proportional flow control 
in various points. 

This method is 
able to control 
the system, 
but didn’t 
consider the 
on-line 
unmeasurable 
variables. 

( 
Oliveira 
et al., 
2004) 

Design of a 
stable adaptive 
controller for 
driving aerobic 
fermentation 
processes near 
maximum 
oxygen transfer 
capacity. 

Aerobic 
fermentation
s near 
maximum 
oxygen 
transfer 
capacity. 

Adaptive control Model reference 
adaptive 
controller 
(MRAC) is 
designed based 
on a 
phenomenologic
al model of the 
process. 

No No Software used 
for simulation is 
not mentioned. 

One Plant and 1 
controller. 

Results show that the 
adaptive controller is 
accurate, stable and 
robust to disturbances.   

Tuning of 
design 
parameters 
and variables 
estimation in 
this method 
can be time 
consuming. 
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(Yoo et 
al., 
2004) 

Propose design 
of a nonlinear 
controller to 
maintain the 
dissolved 
oxygen level of 
an activated 
sludge system.   

Biological 
Wastewater 
Treatment 
Process 
based on 
DO model. 

Generic Model 
Control and PI 
control. 

Kalman filter. 
Nonlinear 
model-based 
control 
algorithm.  

No  No  Lab real time 
simulator. 

Nonlinear Model-
based controller used 
to control DO plant. 

Model-based DO 
controller can cope well 
with the operating 
condition changes that 
occur frequently in the 
WWTP 

The PID 
controller 
shows a large 
offset as it is a 
linear 
controller 
applied in a 
nonlinear 
system. 

(Su, et 
al., 
2005) 

Enhanced 
NLPID controller 
design that 
exhibits 
improved 
performance 
than the 
conventional 
linear PID. 

Nonlinear 
robot 
manipulator 
model. 

Linear and 
Nonlinear PID. 
2 nonlinear 
tracking 
differentiators 
are used to 
select high-
quality 
differential 
signal. 

EN_PID 
Ziegler- Nichols 
criterion 
Popov stability 
criterion 

No No Matlab 
simulation  

Plant model and 1 
NLPID controller. 

It is high robustness 
against noise & superior 
performance over the 
conventional fixed gain 
PID controller. 

No real 
implementatio
n completed 

(Barbu  
et al., 
2005) 

Mathematical 
modeling for 
design of PI 
controller for 
operation of 
biological 
wastewater 
treatment. 

ASM1 model 
of the 
wastewater 
treatment 
process. 

PI type controller 
based on 
decoupling 
procedure for 
unobservable 
and observable 
disturbance. 
 

PI control 
algorithm with 
feed-forward 
control 
structure. Model 
simplified 
through 
linearization 
(state space 
equation). 

No  No  Simulation using 
Matlab/Simulink 

1 Controller and one 
Plant models. 

A robust control method 
is used to benefit in 
variable characterization 
by varying functioning 
systems and 
uncertainties..  

Linear 
controller 
cannot give 
assure 
performances 
for a system 
(rain, normal 
or drought) if 
the functioning 
point changes 
significantly. 

(Peng 
and 
Cheng, 
2005) 

To design 
NLPID controller 
for 
Superconductin
g Magnetic 
Energy Storage 
unit, to improve 
the stability of 
the power 
system 

Generally, 
the 
superconduc
ting 
magnetic 
energy 
storage 
(SMES) unit 
is used as a 
torque 
modulation 
stabilizer. 

NLPID controller 
and Tracking 
Differentiators. 

Nonlinear 
feedback rule 
that can 
understand 
dynamic 
feedback 
compensation. 

No  No  Simulation in 
Matlab 
environment. 

2 NLPID controllers 
with the same 
nonlinear function are 
used in order to reduce 
the parameters design 
for the controller 
nonlinear 
configuration. 1 Plant. 

It can effectively 
enhance both dynamic 
performance of the 
power system power 
angle stability and the 
voltage of the place at 
which the SMES unit is. 

Software 
implementatio
n part is not 
perfectly 
shown. 

(Hai-bin  
et al., 
2006) 

Application of an 
Ant Colony 
Optimization 
method for 
design of the 
NPID controller. 

Quadratic 
Assignment 
Problem 
based on 
how real 
ants find a 
shortest 
path in 

Nonlinear PID 
Parameter 
Optimization 
Using Ant 
Colony 
Optimization 
 

Novel Approach 
to Nonlinear PID 
controller using 
the Ant Colony 
Optimization 
(ACO) 
algorithm. 

No  No Simulated using 
Flight Simulation 
Turntable. 

1 controller tested with 
1 plant model. 

It has good control and 
robust performance, 
and can be widely used 
to control different kinds 
of object and process. 

A good 
NLPID, but 
with complex 
functions to 
understand. 
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nature 
searching 
for food. 

(Qi et 
al., 
2006) 

Design of 
nonlinear 
adaptive PID 
controller. The 
aim is to 
construct and 
optimize NLPID 
controller by 
adopting genetic 
algorithm (GA). 

Name not 
mentioned, 
but it is a 
nonlinear 
system. 

Nonlinear 
adaptive PID 
controller. 

Genetic 
algorithm to 
calculate the 
optimal value of 
the NLPID 
controller. 

No  No 
 

Simulation only 
applied. 

Ziegler-Nichols tuning 
method for PID and 
GA-PID. Nonlinear 
system. 

Using GA makes the 
nonlinear function easy 
to be optimized. 

Steps and 
methodology 
used to 
archive the 
results are not 
perfect shown. 

(Wahab
, et al., 
2007) 

Multivariable 
PID Control 
design for 
Wastewater 
Systems. 

ASM1 
model. 

Linear PID and  
Multivariable 
PID Control 

Davison,Penttin
en-Koivo 
method. 
Maciejowski 
method 

No  No  Simulation 4 Different. Controllers 
tested in 1 Plant. 

Results show that the 
Davison, Penttinen-
Koivo method gives the 
best performance. 

To use tuning 
method 
without any 
calculations 
can be time 
consuming. 

(Holend
a, et al., 
2008) 
 

MPC is 
investigated on 
two examples 
using systematic 
evaluation 
criteria 

State-space 
models of 
the aeration 
process 
based on 
DO model. 

Model Predictive 
Controller 
(MPC). 

Linear state-
space controller 
design.  

No No Simulation 
enviroment only. 

MPC controller 
effectively used to 
control DO in 1 
WWTP. 

Results show that 
model predictive control 
can be effectively 
applied in the control of 
DO concentration of 
WWTP. 

Need to avoid 
imposing 
constraints on 
the 
manipulated 
variable. 

(Kandar
e,  
2008) 

Nonlinear 
processes. 
Control of 
oxygen and 
energy 
optimization in 
the reactors of 
biological phase. 
Quadratic APC  

Biological 
reactor 

PID and  
Adaptive 
Prediction 

Adaptive 
Predictive 
algorithm.  

No  No Lab simulation 2 Controllers for 1 
Plant. 

Using pressure set point 
optimization module 
help to reduce the 
energy consumption (up 
to 27%). 

The final 
results were 
not close 
enough to the 
set-point and 
oscillations 
are not 
eliminated.   

(Han et 
al., 
2008) 

Design of a 
nonlinear PI 
control for 
dissolved 
oxygen tracking 
at WWTP 

DO 
concentratio
n. 

Fuzzy PI 
controller. 

A softy switched 
nonlinear 
Takagi-Sugeno 
fuzzy PI control. 
Predictive 
control 
algorithm.  

No  No Software plant 
simulation. 

PI controllers and DO 
plant. 

The methods show a 
good tracking 
performance in the 
simulation results. 

The control 
system results 
are validated 
by simulation 
only. 

(Li and  
Zeng., 
2008) 

Design method 
for solving 
nonlinear 
equation 
systems. 

Plant name 
is not 
specified, 
but it is a 
system of 
nonlinear 
equations. 

Adaptive 
controller. 

Neural network 
algorithm, 
adaptive 
algorithm.  
Broyden’s 
methods. 

No No Simulation The results show that 
the approach proposed 
(adaptive) has much 
higher accuracy than 
the neural network 
method and Broyden’s 
method. 

Adaptive algorithm 
show that is able to 
compute exactly 
nonlinear equation 
systems. 

Broyden’s 
method 
requires a 
good initial 
guesses. 
Adaptive can 
produce 
desirable 
results from 
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any initial 
approximation. 

(Prakas
h and 
Srinivas
an, 
2009)  

Design of 
nonlinear PID 
controller and 
nonlinear model 
predictive 
controller for a 
continuous 
stirred tank 
reactor ( CSTR) 

Continuous 
Stirred Tank 
Reactor. 
Takagi-
Sugeno 
fuzzy model. 
 

Nonlinear PID 
(NLPID) design 
using local linear 
Nonlinear model 
predictive 
controller using 
local linear 
models (F-
NMPC) and 
nonlinear model 
predictive 
controller using 
first principle 
(analytical) 
model (A-
NMPC). 

Nonlinear Model 
Predictive 
Controller using 
local linear 
model. 

No No Lab Simulation 3 controllers (NLPID, 
F-NMPC & A-NMPC) 
and 1 process (CSTR). 
Through general 
simulation study, it can 
be concluded that the 
proposed F-NMPC 
helps to reduce the 
number of 
computations needed, 
compared to the 
analytical model based 
NMPC. 

The methods has 
displays a significant 
variation in the damping 
factor and undamped 
natural frequency. 

The A-NMPC 
has shows a 
large 
computation 
time than 
others. 

(Zhen-
hong et 
al., 
2009)  

Modeling DO 
effects on 
Biological 
Nutrient 
Removal in a 
Sequencing 
Batch Reactor.  

Activated 
Sludge 
Model 2d 

  No No Simulation is 
carried out in 
C++ Build 
language. 

 The simulated results 
showed that low DO 
concentration <1mg/L 
could seriously 
influence the activation 
and growth of microbes, 
especially nitrifying 
organisms. 

In addition, the 
removal of 
COD and 
phosphorus 
would be also 
affected. 

(Shuhu
a and 
Wei, 
2009) 

To design a 
feed-forward 
NLPID control 
for a Smart Car 

Model of the 
Motor 
system. 

LPID, NLPID 
and Nonlinear 
feed-forward 
PID controllers. 

NLPID algorithm 
for optimization.  
Feed-forward 
control system 
algorithm. 

No No Only simulation 
through  
MATLAB/Simuli
nk 

NLPID and Feed-
forward PID where 
applied to control a 
Motor system. 

Nonlinear feed-forward 
control has enhanced 
the dynamic 
performance and 
stability of the system.  

No real-time 
control 
implementatio
n shown. 

(Kang, 
et al., 
2009) 

Control of the 
PH in an 
Anaerobic 
Wastewater 
Treatment 
system, using 
Fuzzy PID 
control. 

pH control of 
the 
anaerobic 
WWTP. 

Traditional PID, 
Fuzzy control 
and Fuzzy PID. 

PID control 
algorithm and 
Fuzzy PID 
algorithm.  

No No  Matlab 
simulations. 

3 controllers (PID, 
Fuzzy control and 
Fuzzy PID) and 1 
Plant. 
Comparison with the 
methods of traditional 
PID, fuzzy control and 
fuzzy PID, the results 
show that fuzzy PID 
has the optimal 
performance such as 
responsibility, stability 
and antidisturbance. 

Results show that Fuzzy 
PID control has the 
optimal performance 
such as responsibility, 
stability & anti-
disturbance.  

Results show 
much bigger 
delay time in a 
process 
response. 

(Ye et 
al., 
2010) 

Design of 
nonlinear 
controllers for 
nonlinear DO 
wastewater 

Dissolved 
Oxygen 

PI, Generic 
Model Control 
(GMC) based on 
Radial Basis 
Function (RBF) 

GMC algorithm 
based 
Onimmune 
Optimization - 
LS-SVM. 

No  No  Simulation 
software not 
specified, but 
appears as 
Matlab. 

2 controller (PI and 
GMC) methods tested 
on 1 plant. 
GMC based on LS-
SVM has higher 

This method has higher 
control accuracy in 
comparison with the PI 
controller perfomance. 

No indication 
of software 
used. 
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treatment 
process based 
on immune 
optimization.  
 

GMC based on 
Least Squares- 
Support Vector 
Machine (LS-
SVM). 

 control accuracy 
compared with PI 
control and GMC 
based on RBF. 

( 
Zaidner 
et al., 
2010) 

Design of 
nonlinear PID 
control for 
Stability and 
control of noisy 
model.   

Stability and 
control of 
noisy model.  
Model type 
not stated.  

LPID and NLPID Trial and error 
parameter 
optimization of 
NLPID. 
Nonlinear PID 
that suggests an 
optional tuning 
rules and Gain-
scheduling.  

Yes No  Matlab/Simulink 
simulation. 

 Linear and nonlinear 
PID controller used to 
control 1 Plant. 
Results show that 
NLPID work much well 
than the LPID.  

NLPID have unlimited 
robustness to 
uncertainties and delay. 

Trial error 
method is time 
consuming 

(Ren et 
al., 
2010) 

New nonlinear 
PID controller 
and its 
Parameter 
design. 

An inverted 
pendulum 
system. 

LPID and NLPID Lyapunov 
stability 
theorem. Popov 
criterion. 
Absolute 
stability 
theorem. Pole 
placement 
control scheme.                     

No  No  Simulated but, 
software not 
mentioned.  

2 types of controllers 
(LPID and NLPID) 
tested on 1 plant. 

The use of nonlinear 
function (NLPID) is very 
important when 
controlling any nonlinear 
system. 

Finding of the 
optimal set of 
gains based 
on many 
empirical tests 
is time 
consuming.  

( 
Ostace 
et 
al.,2010
) 

Challenging of 
WWTP from the 
modeling and 
control point of 
view. 

Benchmark 
Simulation 
Model No.1 
(BSM1) 

Conventional PI 
and PID 
controllers. 
Model Predictive 
Control (MPC). 

Artificial Neural 
Networks 
algorithms.  
MPC controllers 

No No  Lab/ Real-time 
simulation 

2 Controller (MPC and 
Neural Networks) are 
tested on 1 Plant. 

Controllers proved that 
they are ready to 
undertake the challenge 
of controlling this 
complex process. MPC 
have shown the 
performance above 
others. 

Problematic 
nonlinear to 
control which 
need good 
control 
strategies. 

(Rayma
t et al., 
2011) 

Is to investigate 
various 
strategies 
implemented to 
wastewater 
treatment plants. 

Dissolved 
Oxygen.  

Model predictive 
control. LPID 
controller. 

Artificial neural 
networks for 
modeling & 
prediction 
purposes. 

No  No  No 
implementation 
shown but, 
discussions on 
different control 
strategies like 
PID, MPC for 
BSM1. 

Different control 
strategies (Model 
predictive & LPID 
controller) for BSM1. 

Paper addressed 
control objectives on 
effluent quality standard 
and reduction of plant 
cost operation. 

Is the complex 
nonlinear 
system wich 
has difficults in 
controlling it. 

(Xu et 
al., 
2012) 

PID Controller 
Design Based 
on Neural 
Network. 

MP neuron 
model. 
Nonlinear 
interactions 
function of 
neurons. 

BP Neural 
Network PID 
control and 
Classic PID 
control. 

BP Neural 
Network 
algorithm. 
Levenber-
Marquardt 
algorithm 

No No Simulation 2 Controlles (BP NN 
PID and classic PID).  
In comparison BP 
neural network PID is 
more adaptive, 
robustness, high 
control accuracy, a 
significant 
improvement in quality 
control than ordinary 
PID control quality. 

Then neural networks 
have great capability in 
solving complex 
mathematical problems. 
The advantage of LM is 
that when the network 
weight number is 
insufficient, the 
convergence rate is 
very high. 

Name of the 
software use 
not stated. 
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[Selvab
alan, et 
al., 
2012] 

 Prediction 
based controller 
is required to 
reproduce 
accurate 
hydrograph 
using PID and 
Fuzzy controller. 
Application of 
knowledge 
based 
engineering 
techniques in 
water resources 
development 

River 
discharge 
and Water 
processing 
system. 

Linear PID and 
Fuzzy logic 
control. 

Fuzzy logic 
controlled 
analysis method 

No  Yes 
on 
LAB
VIE
W 

Tried for a river 
discharge, on a 
real -time 
simulation 
system.  

2 controllers and 1 
plant. 

Of the Fuzzy logic are 
the reduction of 
overshoot and stricter 
regulation of steam 
temperature. It has a 
very good result for 
nonlinear process. 

Operation cost 
in the 
activated 
sludge 
process. 

( Yang 
et al., 
2013) 

Fuzzy Modeling 
of Activated 
Sludge WWTP 
and Predictive 
Control of 
Dissolved 
Oxygen 

ASM1 Fuzzy Model-
Based Predictive 
Controller 
Design. Model 
predictive 
control, 
parameter 
identification 
using the 
method of least 
squares. 

Structure 
identification 
algorithm.  
Fuzzy c-means 
cluster 
algorithm. 

No No Simulation. Fuzzy control is used 
to control the ASM1. 
Compared with the 
traditional PID control, 
the proposed fuzzy 
model based predictive 
control paradigm 
achieves satisfactory 
benefits in terms of 
both transient and 
steady performance. 

The recommended 
controller is abe to 
control uncertainties 
and time-delays. 

Uncertainties 
and time-
delays make 
the system to 
be more 
difficult. 

(Luo & 
Si., 
2013) 

Stability of 
Direct Heuristic 
Dynamic 
Programming for 
Nonlinear 
Tracking Control 
Using PID 
Neural Network. 

Nonlinear 
control 
problem is 
formulated 
under a 
general 
condition 
that system 
nonlinearity 
is unknown 

Lyapunov 
stability 
construct, 
provide new 
results of 
uniformly 
ultimately 
boundedness 
(UUB) for 
PIDNN-based 
direct Heuristic 
Dynamic 
Programming 
(HDP) controller. 

Direct HDP 
design 
algorithm.  
PIDNN-based 
direct HDP 
control design 
approach to the 
general 
discrete-time 
nonlinear MIMO 
system tracking 
control problem 

No No No simulation. Direct HDP design 
algorithm is firstly 
derived by 
incorporating the PID 
control rule into neural 
networks (NNs). 
 

Mathematics show new 
results of UUB for the 
proposed PIDNN-based 
direct HDP controller via 
the Lyapunov stability 
method. 

No simulation 
results shown, 
results shown 
are 
mathematical 
proven. 
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(Macna
b, 2014) 

Design a Stable 
Neural-Adaptive 
Control of 
Activated 
Sludge 
Bioreactors. 

Activated 
sludge 
bioreactor 
used for 
WWTP. 

PI controller. 
Feedback 
linearizing 
controller. 
Adaptive neural 
network control 

Adaptive design 
using Cerebellar 
Model 
Arithmetic 
Computer 
(CMAC) neural 
networks 
algorithm. 

No No Simulation 3 controllers (Adaptive, 
Feedback linearizing & 
PI controller) used to 
control 1 plant model. 
The Adaptive method 
outperforms the other 
methods, and steady 
state errors are 
produced entirely by 
the observer error.  
This algorithm takes 
advantage of the 
nature of the CMAC 
local basis functions 

The proposed method 
(Adaptive) self-
evaluates the effect of 
weight updates upon 
the average error in a 
local domain, and stops 
updating the weights 
when updates are 
believed to have no 
beneficial, or 
insignificant, effect on 
the error 

The LPI 
performance 
hasdegrade 
significantly 
away from the 
setpoint as the 
system 
dynamics 
contain major 
nonlinearities. 
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2.6   Discussion on the findings from the literature review 

The review considered the time period between 1942 and 2014 presenting different 

control algorithms designed for various nonlinear processes. 

The literature review shows clearly that the control of the Dissolved Oxygen (DO) 

concentration is the most significant one for proper control of the activated sludge 

process, because its control has a potential to reduce the production cost while 

keeping the oxygen concentration within the standards. This is in support of the 

motivation of choosing DO concentration in the ASP as a case study for this thesis. 

A number of strategies for control of the DO concentration, select constant DO set 

points (usually 2mg/l) while others employ a varying DO set point. There are 

various approaches used to control nonlinear plants similar to DO in the ASP. 

These methods are shown in Table 2.2. Most of the controllers implemented 

perform well, but the disadvantage in some is their slow adaptation towards 

disturbances. 

The majority of the control strategies found in the literature is based on simulation. 

Very few of those strategies are tested in real-time. This is an indication of how 

much ground still needs to be covered for real-time implementation of these 

strategies on full scale plants.  

Some linear controller design methods are presented in the literature. 

Panagopoulos et al., (2002), presented a linear PID controller based on 

optimization of load disturbance rejection with constraints on robustness to model 

uncertainties. The design also delivers parameters to deal with measurement noise 

and set point response. The drawbacks of using this type of controller are that it 

can only work successfully with linear processes. When it comes to be used in 

nonlinear processes, any tuning method is needed to be used to calm down the 

nonlinear system under control, which can lead to much time consuming.  

The good thing about using nonlinear control when controlling nonlinear system is 

that, nonlinear controllers have nonlinear functions that are used to handle 

unstable conditions in the nonlinear systems.   

As stated by Wright, (2001) and Copeland, (2008) large percent of the applied control 

technique among industrial processes is related to the PID controllers and is that reason 

that mostly motivated the choice of designing NLPID controllers for the industrial 
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nonlinear processes, because improvement of LPID technique may result to a big impact 

on all related industrial processes.  

The Ziegler-Nichols (Z-N) method remains a popular technique for tuning 

controllers that use proportional, integral, and derivative (PID) movements. This 

method is used because, it is easy to experiment, mostly the need for modification 

is based on P and I actions on the controller, the D action is a small value in most 

cases. The Z-N method also includes dynamics of the whole process, which gives 

a more accurate picture of how the system is behaving. But with this method it is 

noted that the tuning experiment can be time consuming. Capabilities of the Z-N 

method to tune the NLPID controllers are investigated in the thesis. 

Pole placement method is a special method chosen to be used in this thesis. Pole 

placement problems are especially important for disturbance rejection and 

stabilization of dynamical systems. Pole placement method is one of the classic 

control theories and has an advantage in system control to achieve given desired 

performance. As may be stated before, the pole placement theories state that Pole 

placement is to set the desired pole location and to move the pole location of the 

system to the desired pole location - to get the desired system response. This pole 

placement control method results in the desired system response and it is easy to 

fine the controller gains mathematically, but the accuracy of the system transfer 

function is significantly important and is expensive to implement the method for 

high order systems. 

2.7   New International Electro-technical Commission (IEC) 61499 standard and PLC 
controller implementation 
According to literature evaluation, the International Electro-technical Commission 

IEC 61131-3 standard and the Programmable Logic Controllers (PLC’s) are still the 

mainstream re-programmable electronic devices based on the corresponding 

programming standard in industrial automation systems. For PLC applications the 

conventional system verification process is relatively intuitive.  

To defeat the shortcomings of PLC, the International Electro-technical Commission 

(IEC), developed the new international standard IEC 61499 (Pang, et al., 2011), 

which takes over the function block concept from IEC 61131-3 and founds an open, 

modularized, and implementation-independent software development structure to 

fulfill the current industrial needs. 
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This new IEC standard has been developed as an addition to IEC 61131-3. Its 

main focus is based on the method for modeling distributed industrial process, 

measurement, and control systems to obtain vendor independent system 

architecture (Lastra et al., 2005) and (Dai and Vyatkin, 2012). As IEC 61131-3, the 

standard IEC 61499 defines concepts and models to summarize the control 

software in Function Blocks (FB) environment that can be assembled and be newly 

distributed to several devices. The major difference between IEC 61131- 3 and IEC 

61499 is the performance model. IEC 61131-3 has an understood sequential 

execution model with a cyclic activation of execution tasks. This has drawbacks for 

distributed applications where the cyclic execution model makes it hard to 

harmonize distributed applications and gives little control over the execution order 

of the function blocks in a control application. IEC 61499 was introduced to 

overcome these limitations by a special events control (Basile et al. 2010). The 

events control the activation of the application parts in a control application. 

Furthermore, events are intended to actively control the execution sequence of the 

control application components (Hametner and Georg, 2011). 

The challenges and requirements for automation systems have risen extremely 

during the last years. As based on the operation of the activated sludge, these 

days the corresponding models are getting larger and more complex, due to the 

fact that in the course of time more components like engines and control 

components were considered to get new and better features. Additionally, the new 

components are necessary to implement new concepts for control methods, which 

are faster and more efficient than the older ones. The complex plants like WWTP 

have also effected the software development. (Byrak et al., 2012) state that the 

development of software such as controller models and operational software for the 

plants is also getting more complex and more difficult.  

The application of the IEC 61850 standard for implementation of these complex 

control strategies is very promising. Implementation of the designed in the thesis 

closed loop control system is based on the IEC 61499 standard-based Beckhoff 

PLC CX5020. 
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2.8   Conclusion 

This chapter reviews the activated sludge wastewater treatment plant and the 

dissolved oxygen concentration process as a main its part ant the existing methods 

for design of controllers for the wastewater and other industrial processes. It 

concludes that proper and appropriate design of the controller is still the emerging 

issues in the wastewater plant and hence this thesis focuses on improving the 

nonlinear controller’s designs for efficient operation of the DO concentration 

process.  

The next chapter (Chapter 3) is focusing on developing the mathematical model 

and the Simulation of the DO process. 
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CHAPTER THREE 

DISSOLVED OXYGEN CONCENTRATION MODELING AND SIMULATION 

 

3.1  Introduction 

Wastewater is the water disposal from our homes, offices and industrial activities or any 

other activity that leads to degradation to its original state. It is water that is not 

appropriate for human or animal consumption. Wastewater Treatment Plant (WWTP) is a 

plant that speeds up the natural process whereby water purifies itself. In this thesis only 

the Activated Sludge Process (ASP) for wastewater treatment is considered. Activated 

sludge process is the most common type of modern wastewater treatment (Han et al., 

2008). In a wastewater treatment plants the wastewater is generally processed in several 

steps before it is released to the recipient. Lindberg, (1997) gives a survey of the 

common practices. The wastewater treatment is made to reduce the quantities of 

nitrogen, phosphorus, organic matter and solid matters in the suspension (Vanrolleghem, 

2003). This process is a very important component of the environmenta quality. The strict 

environmental and health regulations together with a demand for cost effective ways of 

wastewater treatment have made control technology in Wastewater Treatment Plants 

(WWTP) an important priority. In Chapter 2 (literature review) several models are 

described, these models try to capture as close as possible the development and 

advancement of the wastewater treatment processes based on utilization of the activated 

sludge.  

 

Number of models to define the biological process taking place in the activated sludge 

process exists, but the International Water Association (IWA) models such as Activated 

Sludge Model No.1 (ASM1), ASM2, ASM2d and ASM3 are the internationality 

recognized models. Copp, (2000) states that the plan to create a standardized 

‘simulation benchmark’ was first planned and advanced by the first International 

Association of Water Quality (IAWQ) Task Group on Respirometry-Based control of the 

activate sludge process. This earliest benchmark was then adapted by the European 

Cooperation in the field of Science and Technology, better known as COST action 624 

and 682 in collaboration with the second IWA Respirometry research group (Copp, 2000; 

Sanchez et all, 2003; Wahab et al, 2012). In an attempt to standardize the simulation 

practice and the valuation of the categories of control strategies, these groups have 

together developed a reliable simulation procedure. 
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The COST Simulation Benchmark: Description and Simulator Manual is a complete 

report of a standardized simulation and valuation process as well as plant layout, models 

and parameters, a complete description of disturbances to be applied throughout 

analysis and valuation conditions for testing the comparative efficiency of simulated 

strategies (Copp, 2000). The COST simulation benchmark is intended to provide a 

balanced foundation for comparing past, present and future control strategies without 

reference to a specific facility. All of these models help as a guide for research, and 

valuable tools for better understanding of the natural processes and interactions. Many 

researches considered ASM1 as a reference model, and practical application and have 

been used for developing the simulator platform in this thesis. 

The following are the points that are covered under this chapter: 

 Description of Benchmark Layout Structure, part 3.2 

 Dissolved Oxygen (DO) Process Model, part 3.3 

 Models of the oxygen transfer coefficient, part 3.4 

 Dissolved Oxygen model simulation results, part 3.5 

 Matlab software, part 3.6 

3.2  Description of the Benchmark Process based on the ASM1 biological model 

The Benchmark Simulation Model (BSM1) has five biological reactors linked together in 

series, from which the first two are anoxic and the final three are aerated reactors, Figure 

3.1. These reactors are modeled according to the Activated Sludge Model (ASM) 

proposed by (Ostace et. al, 2010). The ASM has thirteen state variables and eight 

forceful processes and is presented by a set of normal differential equations that define 

the dynamic variations of the state variables. Each anoxic reactor has a volume of 1000 

m3 and each aerated reactor has a volume of 1333 m3, therefore the total biological 

volume is of 5999 m3. The secondary settler has a depth of 4 m and the area of 1500 m2, 

and is placed at the end of the five reactors (Copp, 2000; Ostace et. al, 2010). 

 

Benchmark model is well-defined as a protocol to find a measure of performance of 

control strategies for activated sludge plant based on numerical or realistic simulations of 

the controlled plant. The following diagram (Figure 3.1) shows a representation of the 

simulation benchmark configuration with tanks 1 and 2 mixed and unaerated, and tanks 

3, 4 and 5 aerated. 

 



48 
 

 

Figure 3.1: Benchmark activated sludge process (Henze et al., 2002) 

 

3.3  Dissolved Oxygen Mathematical Model 

The most significant factor in the activated sludge systems is the control of the dissolved 

oxygen concentration as stated by (Lindberg and Carlsson, 1996). If the associated 

aeration is done in an optimal way it will lead to substantial reduction in the process 

energy consumption. The process of aeration occurs in the aerobic reactors, but 

practically, the DO concentration Os  in the activated sludge process is sustained by 

managing the aeration airflow airQ  through the control input )(tu . The mathematical 

model of the biological wastewater treatment processes is used to simulate the dynamic 

characteristics of various organic nutrients and micro-organisms in the treatment 

process. The whole process mainly includes biochemical reaction tank modeling. The 

following equation describes the Dissolved Oxygen (DO) mathematical model: Lindberg, 

(1997). 

 

  )()(
1

,,,,1,

,

, nosatonLasnonon

n

no
ssKrssQ

Vdt

ds
no

      (3.1) 

Where: 

nos ,   -  the Dissolved Oxygen concentration in the nth tank (in mg/l) 

LaK   - the Oxygen Transfer Function 

satos ,   -  the DO concentration at saturation point in (mg/l) 

nsor ,        -  the Oxygen Uptake Rate in (d-1) 

V   - Tank volume in (m3) 

 Q   -  the wastewater flow rate in m3/d 

n   -  Number of the tanks in the process 
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Equation (3.1) shows the DO concentration dynamics in the tanks with 5,4,3n . Since 

the benchmark structure tanks are identical, it can remains accepted that the following 

are equal: 

ono ss , , QQn  , VVn  , inono ss ,1,   

These notations are used further in the thesis 

 

3.3.1  Oxygen Transfer Function and Uptake rate 

There are several models of the Oxygen Transfer Functions (OTF). In the dissolved 

oxygen concentration dynamics, the OTF LaK  describes the dissolving of oxygen on the 

basis of the flow rate of air into the water (Vanrolleghem, 2003). It describes the rate at 

which oxygen is being transferred to the wastewater by the system for the aeration, as a 

function of airflow rate. The oxygen transfer function can be related to the changes in the 

intensity of aeration, which is considered as a control input )t(u . The transfer function 

LaK  as a function of its parameters varies slowly in a matter of hours or even days as 

proposed by (Lindberg, 1997).  The transfer function depends on the aerator type, water 

depth, basin shape and the airflow rate. The oxygen respiration rate is determined in 

both, the primary respiration of the microorganisms in the activated sludge, used in 

mixture and in the endogenous respiration, during their decay. The respiration rate 

changes significantly in a number of hours; while LaK  while differing slightly from day to 

day (Nketoane, 2009). The following Table 3.1 is the summary of the different models of 

LaK  proposed in the existing literature of oxygen transfer function models and is given 

below in Table 3.1. (Lindberg, 1997) 

 

Table 3.1: Different models for oxygen transfer function 

Model Equation 

Step )k,0(K 1La   

Square root ukK 1La   

Linear A ukK 1La   

Linear B 
21 kukKLa   

Exponential )1( 2

1

uk

La ekK


  

Power 2

1

k

La ukK   
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Arctan )(tan 2

1

1 ukkKLa  
 

Cubic spline )(ufKLa   

Second order model ukukKLa 1

2

2 
 

Polynomial 
321La kukukK 

 

Piecewise linear utkkKLa  )( 21  
 

3.3.2 An exponential model of LaK  

An exponential LaK  model may be a suitable choice of the oxygen transfer function 

because it can give a similar shape of the LaK  function as in Figure 3.2, which is natural 

in a physical sense as proposed by (Lindberg, 1997). The oxygen transfer function LaK  

is assumed to depend nonlinearly on the airflow rate. It can also be noted from Figure 3.2 

that the slope of LaK  (gain) changes when the airflow rate changes. 

 
Figure 3.2: Typical shape of the oxygen transfer function (KLa(u)) as a function of the airflow rate 

(u).  

 
Equation (3.2) gives mathematical presentation of the oxygen transfer function, 

represented as a mathematical expression of the air-flow rate; this expression also 

includes the process control input.  

 )(

1
21)(

tuK

La eKtK


         (3.2) 

Where: 

)(tu   -  is the air flow rate,  

1K and 2K  - are model parameters associated with the tanks.  
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Oxygen utilization rate sor  is given by the following equation taken from the ASM1 

biological model (Copp et al., 1998), (Henze et al., 2002), (Tzoneva, 2007) 
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(3.3) 

Where: 

H   - is the maximum heterotrophic growth rate,  

HY   - is the heterotrophic yield,  

A   - is the maximum autotrophic growth rate, 

AY   - is the autotrophic yield,  

)t(s n,S   - is the readily biodegradable substrate,  

)t(s n,NH  - is the 34 NHNH 
 nitrogen,  

BAx     is the autotrophic biomass 

BHx     is the heterotrophic biomass. 

SOHOANH K,K,K,K  are the half-saturation coefficients for heterotrophic growth rate, 

autotrophic growth, and autotrophic decay respectively. An approximation of respiration 

(oxygen uptake rate) is very much essential given the fact that respiration seems to be 

the most critical disturbance signal during the control of the DO concentration and 

therefore may perhaps be used in the development of control efficiency, (Gerksic et. al., 

2006); the whole process can be achieved through on-line approximation of respiration 

from the present values of the DO concentration and airflow signals. Substituting 

Equation (3.2) to Equation (3.1) the following equation is obtained: 

 

     )(1)(
1

,

)(

1,
2

osato

tuK

soino
o sseKrssQ

Vdt

ds



    (3.4)

 

 

 

The Equations (3.3) and (3.4) symbolize the process of the dissolved oxygen model to be 

controlled. The control of this process is the airflow rate, the controlled output is the 

concentration of the dissolved oxygen and uncontrolled disturbance is the oxygen 
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utilization rate. Tzoneva (2007) states that; the disturbance in the system depends upon 

the input flow characteristics and will make an alteration based on the requirements of 

the microorganisms for oxygen. It is also stated that; the result of these alterations makes 

it essential to recalculate the set point and the controller parameters of the closed loop 

system in order to meet the requirements of the system. 

 3.4 Dissolved Oxygen simulation model 

3.4.1  Description 

The equation of the process representing the dissolved oxygen concentration dynamics 

as illustrated in Equation (3.4) is used to develop an open loop block of the model in 

Matlab/Simulink software environment. The objective of simulating the DO concentration 

model is to obtain: 

 The solution of the model differential equation for the given step input of the air 

flow rate and steady state values of the process variables describing the oxygen 

uptake rate. 

 The influence of the internal inos ,  and external sor  disturbances over the dynamics 

of the DO concentration.  

The investigations and simulations are all done in the software environment of 

Matlab/Simulink. 

 

3.4.2  Matrix Laboratory and Simulink 

Matrix Laboratory (MATLAB) and Simulink are the very powerful technical language and 

interactive environments for numerical computation, visualization, and programming. The 

simulation is performed in MATLAB, where all the data’s are analyzed, and algorithms 

are developed. Simulink is used for the creation of models and its applications.  The 

Simulink environment software is made-up of the block diagram for multi-domain 

simulation and model-based diagrams. The Simulink environment supports automatic 

code generation, continuous test and verification of the quality for an architectural 

specification or any embedded systems, (www.mathworks.com). It provides an adapted 

building block libraries, graphical editor and solvers for model configurations.  

Simulink is incorporated with MATLAB, enable the uses to include MATLAB algorithms 

into models and export simulation results to MATLAB for additional analysis when it’s 

required.  
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3.4.3 Simulation Input data and Biological Process Model Parameters 

The file named “DO_last.m” is introduced in MATLAB workspace; this program file has all 

the parameters for the simulation of the Dissolved Oxygen Concentration. The program 

for the input data is given in the Appendix 1 of this thesis. The corresponding block 

diagram Simulink model file called “DO.mdl” is given in Figure 3.3. 

 

The Equations (3.3) and (3.4) are used for simulation of the DO concentration. The input 

variables are the disturbances inos , , and sor , the control signal )(tu , and the model 

parameters are H , A , HY , AY , n,Ss , n,NHs , OANHOHS KKKK ,,, . The output 

variable is the dissolved oxygen concentration os . The parameter values are taken from 

the ASM1 biological model and some are stated in Table 3.2 (Copp, 1998). The values of 

1K  and 2K  are calculated from the value 1

La day240K   by a curve fitting for a given 

value of the airflow rate, daymu 350000 , as proposed by Holenda et al., (2008). 

  

The values of the parameters for constructing the model of the DO concentration process 

in Simulink are taken from the benchmark structure at steady state as illustrated in 

Tables 3.2 below. These parameter values are taken to the Matlab workspace. From 

there they are used by the Matlab/Simulink DO block diagram. 

  

Table 3.2: Process parameters of benchmark structure 

Symbol Values Symbol Values 

satos ,  8 
os  0.491 - 0.05 

1K   240 
2K  1.961e

-04
 

OAK  0.3 or 0.4 
inos ,  0.01 

V  1333 t  0:1:8 

aQ  55338 
BHSx  2559.4  

NHSs  1.733 
SSSs ,  

0.889 

rQ  18446 
oQ  18446 

uH
 

6.0 
uA

 
0.9 

Hy
 

0.67 
Ay

 
0.24 

oHK
 

0.20 
NHK

 
0.2 or 1.0 
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SK
 

 10 
BASx

 
149.8   

 

The Simulink diagram of the dissolved oxygen concentration model is shown below in 

Figure 3.3. This model can be used for simulation of the behavior of the dissolved 

oxygen concentration for different steady state values of variables given in Tables 3.2 

and parameters in Matlab workspace (with a file: DO_last.m which contains all 

parameters used for the open-loop DO simulation). The amplitude of the step signal sent 

to the model is daymu 350000 . The initial condition for the simulation is lmg /05.0 . 

 

Figure 3.3: Dissolved Oxygen Simulink model diagram 

 

3.4.4 Dissolved Oxygen Simulation Results 

The dynamic behavior of the DO concentration for steady state values of the variables 

obtained from the Benchmark process with ASM1 biological model is shown in Figure 

3.4. The dynamic behavior of the DO concentration for different cases of disturbances 

inos ,  and sor  can also be determined, by using different values of both BAx  (autotrophic 

biomass) and BHx  (heterotrophic biomass). These values are varied as follows: first take 

the reference values of: BAx = 149.8 and Bhx  = 2559.4, then from the reference value 

add +- 5%, +-10% and +-50%, in order to receive new values of the biomasses, which by 

Equation 3.3 are used to calculate different values of sor .  The aim of the investigation by 

simulation is to determine the sensitivity of the process dynamic behavior towards the 

process disturbances inos ,  and sor . The value of the oxygen uptake rate depends on the 

concentration of the microorganisms BAx  (autotrophic biomass) and BHx  (heterotrophic 
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biomass). When their concentration is growing the oxygen rate is also growing. In order 

to investigate the influence of the disturbance sor  over the DO process behavior various 

variations in the concentrations of the microorganisms are made and the corresponding 

value of the oxygen uptake rate are calculated, as shown in Table 3.3. The values of 

inos ,  and sor  are used further in the next chapters to evaluate the influence of the 

disturbances to the closed loop DO process behavior under the nonlinear PID controllers. 

 

Table 3.3: Changes of the disturbances in the process 

inos ,  
BAx  Bhx  sor  

0.01 
BAx   149.8 

BHx  2559.4 -294.8954 

BAx  +5% 157.29 
BHx  +5% 2687.37 -309.6402 

BAx  -5% 142.31 
BHx  -5% 2431.43 -280.1506 

BAx  +10% 164.78 
BHx  +10% 2815.34 -324.3849 

BAx  -10% 134.82 
BHx  -10%% 2303.46 -265.4059 

BAx  +50% 224.7 
BHx  +50% 3839.1 -442.3431 

BAx  -50% 74.9 
BHx  -50% 1279.7 -147.4477 

0.8 
BAx  +5% 157.29 

BHx  +5% 2687.37 -309.6402 

BAx  -5% 142.31 
BHx  -5% 2431.43 -280.1506 

BAx  +10% 164.78 
BHx  +10% 2815.34 -324.3849 

BAx  -10% 134.82 
BHx  -10%% 2303.46 -265.4059 

BAx  +50% 224.7 
BHx  +50% 3839.1 -442.3431 

BAx  -50% 74.9 
BHx  -50% 1279.7 -147.4477 

2 
BAx  +5% 157.29 

BHx  +5% 2687.37 -309.6402 

BAx  -5% 142.31 
BHx  -5% 2431.43 -280.1506 

BAx  +10% 164.78 
BHx  +10% 2815.34 -324.3849 

BAx  -10% 134.82 
BHx  -10%% 2303.46 -265.4059 

BAx  +50% 224.7 
BHx  +50% 3839.1 -442.3431 

BAx  -50% 74.9 
BHx  -50% 1279.7 -147.4477 

 

The following diagrams present the DO open loop responses. 
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Figure 3.4a: DO concentration open loop response using Lmgs ino /01.0,   and 

dayLmgrso //8954.294   

 

 

Figure 3.4b: DO concentration open loop response using Lmgs ino /01.0,   

and dayLmgrso //8954.294  

 

 

Figure 3.5: DO concentration open loop response using Lmgs ino /01.0,  and  

dayLmgrso //6402.309  
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Figure 3.6: DO concentration open loop response using Lmgs ino /01.0,  , 

dayLmgrso //1506.280   

 

Figure 3.7: DO concentration open loop response using Lmgs ino /01.0,  and 

dayLmgrso //3849.324  

 

 

Figure 3.8: DO concentration open loop response using Lmgs ino /01.0,  and 

dayLmgrso //4059.264  
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Figure 3.9: DO concentration open loop response using Lmgs ino /01.0,  and 

dayLmgrso //3431.442  

 

 

Figure 3.10: DO concentration open loop response using Lmgs ino /01.0,  and 

dayLmgrso //4477.147  

 

 

Figure 3.11: DO concentration open loop response using Lmgs ino /8.0,  and 

dayLmgrso //6402.309  
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Figure 3.12: DO concentration open loop response using Lmgs ino /8.0,   and 

dayLmgrso //1506.280  

 

Figure 3.13: DO concentration open loop response using Lmgs ino /8.0,  and 

dayLmgrso //3849.324  

 

 

Figure 3.14: DO concentration open loop response using Lmgs ino /8.0,  and 

dayLmgrso //4059.264  
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Figure 3.15: DO concentration open loop response using Lmgs ino /8.0,  and 

dayLmgrso //3431.442  

 

Figure 3.16: DO concentration open loop response using Lmgs ino /8.0,  and 

dayLmgrso //4477.147  

 

 

Figure 3.17: DO concentration open loop response using Lmgs ino /2,  and 

dayLmgrso //6402.309  
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Figure 3.18: DO concentration open loop response using Lmgs ino /2,  and 

dayLmgrso //1506.280  

 

 

Figure 3.19: DO concentration open loop response using Lmgs ino /2,  and 

dayLmgrso //3849.324  

 

 
Figure 3.20: DO concentration open loop response using Lmgs ino /2,  and 

dayLmgrso //4059.264  
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Figure 3.21: DO concentration open loop response using Lmgs ino /2,   and 

dayLmgrso //3431.442  

 
 

 

Figure 3.22: DO concentration open loop response using Lmgs ino /2,  and 

dayLmgrso //4477.147  

 

3.5  Analysis and Discussion of the results 

The behavior of the DO process under the influences of the disturbance inos ,  and  sor  is 

evaluated and analyzed on the basis of their transition behavior characteristics: settling 

time, rise time, time delay and steady state value. The characteristics are calculated and 

shown in Table 3.4: 
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Table 3.4: DO open loop characteristics behavior 

soin 
sor  Time 

delay[day] 
Steady state 
value[mg/L] 

Rise time[day] Settling 
time[day] 

0.01 -294.8954 0.01 5.4 1.4 4.6 

0.01 -309.6402 0.01 5.2 1.4 5 

0.01 -280.1506 0.01 5.5 1.4 4.6 

0.01 -324.3849 0.01 5.2 1.5 5 

0.01 -265.4059 0.01 5.6 1.3 4.5 

0.01 -442.3431 0.01 4.2 1.4 4.2 

0.01 -147.4477 0.01 6.6 1.4 5 

0.8 -309.6402 0.01 5.3 1.4 4.5 

0.8 -280.1506 0.01 5.5 1.4 4.2 

0.8 -324.3849 0.01 5.2 1.4 5 

0.8 -265.4059 0.01 5.6 1.2 5 

0.8 -442.3431 0.01 4.2 1.5 4 

0.8 -147.4477 0.01 6.6 1.4 5 

2 -309.6402 0.01 5.25 1.4 4.5 

2 -280.1506 0.01 5.7 1.5 4.5 

2 -324.3849 0.01 5.2 1.5 4.6 

2 -265.4059 0.01 5.8 1.4 4.8 

2 -442.3431 0.01 4.25 1.2 5 

2 -147.4477 0.01 6.7 1.3 5 

 

The DO process behavior sensitivity towards the disturbances is done for everyone 

disturbance separately in such a way that one is kept constant and the other is changed. 

As Table 3.4 shows the behavior of the DO process under these experiments, when the 

value of sor  being bigger the response of the system in term of the steady state value 

decreases, but when is small the system has a large steady state value. Different value 

of sor  are calculated using different values of both BAx  (autotrophic biomass) and BHx  

(heterotrophic biomass) values. 

3.5.1  Conclusion of the discussion 

Comparisons for different disturbances has been done and the results show that as 

active autotrophic biomass ( BAx ) increases and active heterotrophic biomass ( BHx ) 

decreases, the response of the DO is coming very close to the expected, desired value 

of Lmg /2  and if inos ,  increases the system behavior also increases (see Figure 3.4 - 

Figure 3.19). As the system response shows a behavior which is bigger than the 

accepted level of this process desired response which is Lmg /2 the controller in needed 

to be designed in order to keep the system behavior close to the reference value and still 

to stabilize the whole system, even if the disturbances change.  
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3.6  Conclusion 

The process of dissolved oxygen concentration and its model of the oxygen transfer 

coefficient have been described in this Chapter. Explanation of the benchmark structure 

process based on ASM1 biological model is also provided. Based on the simulation 

results of the open loop DO process model, it can be noted that controller design is 

required to control the system to a better steady state value. Controller design is done in 

the later Chapter 5, 6 and 7.  

The next Chapter (Chapter 4) focuses on the overview of the control theory 

developments. 
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CHAPTER FOUR 

APPLIED LINEAR AND NONLINEAR CONTROL THEORY 

 

4.1  Introduction 

In order to succeed in any process control as a designer it is important to first establish 

an understanding of the process to be controlled. As specified in Chapter 3, the thesis is 

not deeply involved in chemical or process engineering, but concerned about how to 

simplify the representation of the plant needed to be controlled and how to go about  

controlling it. Most systems have the same fundamental characteristics in common. If the 

identification of these features is done, designing an appropriate controller can be made 

easily to follow a well-proven and reliable path. The problem is to learn how to create a 

practical and a correct mathematical model for the complex plant and how to use the 

plant model under test to find the typical control actions that can be brilliant enough to 

control the process to the desired operating conditions. 

The control theory considers two main groups of mathematical models of the process to 

be controlled: linear and nonlinear. On this basis the controllers to be designed for these 

models are also divided in two groups: linear and nonlinear controllers. The subject of 

nonlinear control involves the investigation, analysis and the design of the intended 

nonlinear control systems, which is, of control systems containing a minimum of one 

nonlinear component. The thesis concentrates on design of nonlinear PID controllers for 

control of the nonlinear DO concentration process. For the purpose of design short 

introduction of the control theory and the mathematical models of the linear and nonlinear 

PID controllers is described.   

This Chapter introduces the control theory background. It provides the mathematical 

models for the linear and nonlinear proportional-integral-derivative controllers (LPID and 

NLPID), on the basis of their mathematical expressions. Comparative analysis of the 

characteristics of the closed loop systems under LPID and NLPID control is given. The 

control history is described in section 4.2, section 4.3 talks about the closed loop system, 

in section 4.4 the nonlinear control theory is described shortly; section 4.5 introduces the 

mathematical model of the differential tracker. Mathematical model of the nonlinear PID 

controller is discussed in section 4.6 and the section 4.7 is the conclusion of this chapter.   
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4.2  Control History 

The word control has two primary implications. Essentially, it is seen as the movement of 

testing or watching that a physical or scientific appliance has a suitable conduct. Besides, 

to control is to act, to execute choices that ensure that an appliance acts as fancied. 

Most fundamental to any controller design is the capacity to gauge the yield of the 

framework and to make a restorative move if the framework's quality goes incorrect from 

the required value. There are many books and papers on the history of control 

engineering, (Bennett, 1979), (Burns, 2001), (Bushnell, 1996) that can also be used for 

more information on the control history.  

In spite of the fact that control frameworks of different sorts go once again for long time 

past days, a more formal investigation of the field started with a motion examination of 

the diffusive senator, directed by the physicist James Clerk Maxwell paper in 1868 

entitled “On Governors”, (Burns, 2001). Maxwell thought was to linearize the differential 

mathematical statement of movement so as to discover the trademark comparison of the 

framework. He demonstrated that the framework is steady if the bases of the trademark 

mathematical statement have negative genuine parts, as stated by Bennett, (1979).This 

generated an outbreak of interest in the topic. At that point the issue of recognizing 

security criteria for direct frameworks was examined by Edward John Routh (1905) and 

Adolf Hurwitz (1875). Thereafter, Edward Routh (1831-1907) gave a numerical technique 

to deciding when a polynomial has negative roots, giving a paper on the security of a 

given condition of movement (Routh, 1877). Alexander Lyapunov (1857-1918) made the 

most rich and general hypothesis of solidness. He considered the strength of nonlinear 

differential equations utilizing a summed up thought of vitality (Lyapunov, 1893). He also 

introduced some concepts and techniques which are still in use.  Further improvements 

as indicated by Burns, 2001 where that John R. Ragazzini (1912 -1988) introduced 

advanced control and the z- transform in the 1950s, and the fundamental scientific 

skeleton for hypothetical investigation was created by Laplace (1749-1827) and Fourier 

(1758 – 1830. Taking after the thought of Lyapunov, Yakov Tsypkin (1919- 1997) 

considered the stage plane for stable nonlinear control plan and for nonlinear strength 

examination, Vasile Mihai Popov (1961) provided the circle criterion.  

According to Andrei, (2005); Johann Bernoulli (1667-1748) was the first who 

communicated the rule of optimality. In 1957 Richard Bellman formed the element 

programming rule to the ideal control of discrete-time frameworks (Bellman, 1957), and in 

1958 Lev Pontryagin created the most extreme standard for tackling nonlinear ideal 

control issues (Pontryaginet al., 1962). 
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4.2.1  Control Overview and Theory   

Control is a division of engineering and mathematics, which deals with the performance 

of dynamical processes. As soon as one or more yield variables of the process want to 

track a positive reference in excess of the period, a controller operates the inputs of the 

plant to achieve the desired result on the output of the whole process. The outside 

information of a system is known as the reference. Usually the aim of the control principle 

is to determine the results for the appropriate corrective action from the controller that 

result in the whole framework (any system) stability, which means, the framework 

determination embrace the set point and not oscillate around it. 

Inputs and yields of the control framework are by and large related through differential 

comparisons. The system exchange capacity can now and again be attained by 

 Discover a solution of the linear differential equations, 

 When it is required to find the Laplace Transform of the resulting linear differential 

equations. 

 Linearizing the nonlinear differential equations at the resultant solution. 

 Then resolving for the outputs in terms of the inputs in the Laplace domain. 

The transfer function of any system is a mathematical representation of that system, it 

can be represented as far as spatial or transient recurrence, of the relative enter and 

yield of a straight time-invariant arrangement of the direct differential mathematical 

statements that describes the framework. 

Control Theory deals with manipulating the performance of an unstable system. It is an 

integrative subfield of knowledge\skill, which began in designing and math, and 

developed into utilization by the social sciences, in the same way as brain research, 

humanism, criminology, and in the money related framework. Control frameworks can be 

considered having four capacities; Measure, Calculate, Compare, and Correct. These 

four functions are not complete without adding elements like; Transducer, Detector, 

Transmitter, Controller, and Final Control Element. 

4.2.2  Standard Control Theory  

The standard control theory shows that the problems of the open-loop controller can be 

avoided by the introduction of a feedback. The feedback is used in order to control the 

states or output of a forceful process. As mentioned by (Astrom and Hagglund, 1995) 

feedback makes the process to be adjustable nearby the set-point, over the presence of 
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the disturbances and the process characteristics variation, which is the reason why 

feedback systems are much noticed. The wastewater treatment control investigation 

shows that the feedforward control scheme uses the information on future disturbances 

to advantage the treatment process operation by preparing the process to manage-well 

with the significant hydraulic disturbances or increased biological loading In this set-up, 

the feedforward some piece of the controller focuses to suspect for the impact of 

measured aggravations, while the input part as notice before revises any deviations that 

come about because of the insufficiencies in procedure model, control limits and 

insufficient estimation or expectation of the disturbance(s) 

The name closed-loop originates from the material pathway in the system: system inputs 

(like voltage applied to an electric motor) have a great effect on the system outputs (like 

a speed or torque of the motor), which is measured with devices (like sensors) and 

processed by the controller. The result; which means the control indication is used as 

input to the process, closing the loop. 

A good standard control design method has to think through load disturbances, model 

uncertainty, noise measurement, and set-point reaction, Astrom and Hagglund, (1995). 

The following are possible advantages of using closed-loop control systems (Astrom and 

Hagglund, 1995): 

 Process distraction rejection. 

 Possibilities of balancing unstable processes through feedback control. 

 Use parameter variations to decrease plant sensitivity 

 Reference tracking performance can be improved. 

4.2.3  Controller Specifications 

At the point when tackling a control issue, it is important to comprehend what the 

essential objective of control is. Two normal sorts of issues are: to take over the set-

guide and toward rejecting aggravations. It is additionally vital to have an evaluation of 

the significant confinements, which can be (Slotine and  Li, 1991) 

 System dynamics 

 Nonlinearities 

 Disturbances 

 Process uncertainty 

Classic conditions of a control system may include (Slotine and Li, 1991) 

 Decreases of load disturbances 
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 Sensitivity to measurement noise 

 Robustness to model uncertainty 

 Set-point following 

4.2.4  Control Theory Ending 

A general conclusion for control concept is that, at the present, it is an integral area of 

investigation where many unconventional mathematical concepts, methods and 

techniques work collected to produce a remarkable body of influential used mathematics. 

The approaches in control of framework are coming both from mathematical 

development and from industrial growth. The principle wellspring of strategies and 

methods for tackling the essential issues in Control Theory is given by the numerical 

programming hypothesis and the ideal control hypothesis, Liu and Daley (2001) 

  

4.3  Closed-loop System transfer function 

A closed-loop transfer function in control theory is a scientific expression (algorithm) 

describing the net result of the effects of a feedback loop on the input signal to the 

circuits enclosed by the loop.  

4.3.1 PID Control Description 

A PID controller is a control circle input component broadly utilized as a part of 

mechanical control frameworks. A PID controller computes slide esteem as the contrast 

between a measured methodology variable and a coveted set-point. The controller 

endeavors to minimize the blunder by modifying the methodology control yields. The PID 

controller is by far the most common control algorithm (Mhaskar et al., 2004). Most 

feedback loops are controlled by this algorithm or slight variations of it. It is applied in 

many different forms, as a standalone controller or as a part of a DDC (Direct Digital 

Control) package or ordered appropriate control of the process. Huge numbers of 

instrument and control engineers worldwide are utilizing such controllers as a part of their 

every day work. The PID calculation can be approached from numerous distinctive 

directions. It can be seen as an issue that can be worked with a couple of dependable 

guidelines, it can likewise be approached scientifically (Astrom and Hagglund, 1995). 

PID is a short form for Proportional-Integral-Derivative; this term speaks of the three 

terms functioning on the error signal to produce a control signal. The following section is 

based on the linear PID controller. 
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4.3.1.1 Linear PID Controller 

The usual Linear PID (LPID) controller expression is described as a variety of 

techniques. The controllers come in many different forms. The PID controller has a few 

essential capacities: it gives feedback; it can evacuate determined state balances 

through necessary activity; it can foresee the future through its subsidiary activity. PID 

controllers are appropriate for several control difficulties, mostly when the process 

dynamics are gentle and the performance requests are modest. PID controllers are found 

in large numbers in all industries. The Figure 4.1 below shows a block diagram of the 

LPID controller in time domain acting on the error signal )(te .  PID Controllers attempt to 

correct the error between a measured process variable and a desired set point, using 

calculations and then supplying the correct control response or action that can be 

adjusted according to what is needed in the process.  

e(t)

Kdd/dt

u(t)
∑ Kiʃdt

Kp

 

Figure 4.1: Time domain LPID controller structure 

If )(tu  is the control signal sent to the system, )(ty is the measured output, )(tr  is the 

desired output, and the tracking error is )()()( tytrte  , the PID controller has the 

general model, as follows of: 
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Where: dpd

i

p

ip TKK
T

K
KK  ;;  are the controller gains, based on a linear combination 

between the error, the integral of the error and the derivative of the error, 
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iT  - is the integral time constant,  

dT  - is the derivative time constant  

)(tu  - is the controller output,  

)(ty  - is the output of the process under control and 

)(tr  - is the desired reference trajectory.  

In the PID controller: 

)(te   - is the current error,  

 dtte )(   - is the past error 

dt

tde )(
  - is the future system error.  

The linear combinations between these errors are convenient for linear processes only, 

but approximately all processes in the industry are nonlinear. There are some drawbacks 

in the operation of the closed loop systems caused by the current, past and future errors: 

The input signal to the PID controller )(te is not a smooth signal; it can be of the type of 

step inputs, which can lead to overshoot of the dynamic behavior of the output. 

The integral part of the control action reduces the steady state error, but at the same time 

reduces the stability margins because of its phase lag and can make the closed loop 

system unstable. 

The differential part of the control action is very sensitive to noise. 

The anticipated closed loop influential is achieved by altering the three parameters 

tp KK ,  and dK often prepared by "tuning" process and without particular knowledge of a 

plant model. Solidness can frequently be guaranteed by utilizing just the corresponding 

term. The fundamental term allows the dismissal of a step irritation (regularly a significant 

detail in the procedurar control). The subordinate term is utilized to give damping or 

forming of the reaction.  Applying Laplace transformation results in the transformed PID 

controller equations 

)()(
1

)()( ssEKsE
s

KsEKsU dip        (4.3) 



72 
 









 sK

s

K
KsEsU d

i

p)()(

 

Then the transfer function of the LPID controller in s-domain can be represented as: 
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       (4.4) 

The most recognized classes of controllers are PID controllers; though, they cannot be 

used in several more complicated cases without any modification or some additional 

function, especially in the consideration of MIMO and nonlinear systems (Wahab et al., 

2007). 

4.4 Nonlinear Control Theory 

The linear control topic is a grown-up area under discussion with a long history of 

successful industrial applications. There are different methods that can be used to design 

linear or nonlinear controllers. The control theory evaluation shows that, through the use 

of state space representation of the open-loop scheme and the calculation of a feedback 

matrix which assigns poles of the process to desired locations, this method (pole 

placement method) has been applied in various MIMO linear systems. However, in 

complex systems this needs computer assisted control capabilities, and cannot 

permanently ensure robustness. This has made an extra interest in the development and 

applications of nonlinear control theory, especially from wide-ranging areas such as 

process control, aircraft and spacecraft control, robotics, and biomedical engineering, 

(Slotine and Lie, 1991).  

It is currently very difficult to model and identify general nonlinear systems because of 

their huge diversity and because of their structural complexity. Once the models are 

available, it is very significant to explore how they can be used to find an understanding 

and an effective control of the relevant system. As it is known that there are numerous 

nonlinear systems which must be controlled in the present industrial world. Thus, it is 

important to develop methods to model nonlinear systems and to estimate the model 

parameters. Astrom and Hagglund, (1995), state that another way to overcome this 

problem is to tune the controller for the worst case and accept degraded performance at 

another operating condition. 

4.4.1  Why Nonlinear control: 

 There are many reasons that can be mentioned in this interest: 
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4.4.1.1 Improvement of existing control systems:  

The following discussion is comparing the existing control systems with linear or 

nonlinear control: 

The linear control approaches are based on the important assumption of a slight 

operation range only for the linear model to be valid. The problem for linear method 

comes when the required range of operation is large, a linear controller will mostly 

perform poor or the system will be unstable, because the process nonlinearities cannot 

be properly compensated. On the other hand, nonlinear controllers directly handle the 

nonlinearities even in large operation range. This may be confirmed in control problems 

like robot motion, and water treatment. Slotine and Lie, (1991), state that when linear 

controller is used to control a nonlinear system, it mostly neglects the nonlinear forces 

associated with the operation process. 

4.4.1.2 Investigation analysis of solid nonlinearities:  

An additional hypothesis about linear controllers is that the system under control is really 

linearisable. Despite the fact that, there are several nonlinearities in control systems with 

irregular nature that do not allow linear estimation; examples of such strong nonlinearities 

take account of saturation, coulomb friction, dead-zones, hysteresis and backlash, which 

are found a lot in control engineering (Slotine and Li, 1991). It is not possible to obtain 

the effects of these nonlinearities from application of methods for linear system analysis. 

In such instant development of the nonlinear analysis techniques is needed to predict the 

performance of the system in the presence of the natural nonlinearities. These regularly 

nonlinearities cause unwanted control system’s behavior, such as false limit cycles or 

system instabilities and for that reason their effects need to be predicted and be 

appropriately compensated, (Slotine and Li, 1991). 

4.4.1.3 Uncertainties of the model:  

The investigation of the model control shows the fact that the assumptions of significant 

known model parameters are generally required when designing linear controllers. 

However, the involvement of the uncertainties in the system model parameters has been 

always a problem in many controls. This is most likely due to a slow time modification of 

parameters, or to an unexpected change/ disturbances in parameters. The linear 

controllers that are based on inaccurate or outmoded values of the model parameters 

can exhibit important performance humiliation or even to lead to the closed loop system 

instability. In the controller system, the nonlinearities can be set-up intentionally so that 

the model uncertainties are tolerated. Slotine and Li, (1991) suggested two classes of 
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nonlinear controllers for the purpose of tolerating model uncertainties, which are robust 

controllers and adaptive controllers. 

Robustness is the low sensitivity to effects which are not considered in the design 

process, such as disturbances, measurement noise, un-modeled dynamics, etc. The 

system should be able to withstand these neglected effects when performing the tasks of 

interest, Slotine and Li, (1991).  In general term the robust control theory deals clearly 

with the uncertainty in its approach to controller design. The used robust control methods 

when designing controllers tend to be able to manage with small differences between the 

true system and the nominal model used for the design, as confirmed through simulation 

by Su et al., 2005. 

Adaptive control is a method used for the control design approach to deal with 

uncertain systems or time-varying systems. Vanrolleghem, (2003) states that adaptive 

control use on-line identification of the system parameters, or adjustment of the controller 

gains, by this means of obtaining strong robustness properties. Keeping up reliable 

performance of the system in the presence of uncertainty, is the key objective of the 

adaptive control, this type of control aims to also react positively towards stabilizing the 

system when unknown variation in the plant parameters occurs, Slotine and Li, (1991). 

Optimal control is a control method in which the control signal optimizes a certain cost 

index. Optimization is one of the outstanding recognized branches of mathematics, that 

have an aim of finding the values for variables in order to make the most profit or to 

decrease the costs subject to some constraints, Andrei (2005).  

4.4.1.4 Design Simplicity and Nonlinear Control Description 

Nonlinear control is the area of control engineering which is specifically involved with the 

systems that are nonlinear, time-variant, or both. The study of the nonlinear control 

concept can be used to acquire knowledge on how to design nonlinear controller and 

additionally apply existing linear methods to more general control systems. Nonlinear 

control theory is responsible for innovative control methods that cannot be analyzed 

using Linear Time Invariant (LTI) system theory. If an LTI system theory can be used for 

investigation and design of a controller, a nonlinear controller can have attractive 

characteristics (example: simpler implementation, increased speed, or decreased control 

energy); even though, nonlinear control concept usually requires more careful scientific 

analysis to justify the conclusion of any situation. 



75 
 

4.5  Mathematical model of the Differential Tracker 

The nonlinear systems have much more affluent and more complex performances than 

linear systems, and their analysis is much harder. Mathematically, this is reflected in two 

aspects. First, nonlinear equations, unlike linear ones, in general, cannot be solved 

analytically, and therefore, a complete understanding of the behavior of a nonlinear 

system is very difficult. Secondly, Slotine and Li (1991) declare that powerful 

mathematical tools like Laplace and Fourier transforms did not apply to nonlinear 

systems. Therefore, there are no systematic tools for predicting the behavior of nonlinear 

systems, or systematic procedures for designing nonlinear control systems. Instead, 

there is an ironic record of influential analysis and design tools, for each best applicable 

to particular classes of nonlinear control problems.  

Su, et al., (2005), mention that, the most general position sensor used in the industry is 

the optical encoder because, it has a high resolution, simple discovery circuit, high 

correctness and relative ease of adaptation in digital control systems when all has to be 

put into practice.  On the other hand, the speed or disturbance measurement, obtained in 

any nonlinear system, is regularly infected by noise. The nonlinear Differentiator Tracking 

(DT) can be used for this purpose. The greatest significant role of the DT is to obtain the 

derivative of a noisy signal with a virtuous signal to noise ratio. The use of the 

differentiator for the reference input allows a smooth reference to be implemented which 

can be used with different controllers.   

The derivative control error in the PID controller is used very rarely in the industry due to 

the sensitivity of the noise (Han et al. 1994). The Differential Tracker (DT) is introduced 

to improve the control quality and can be used as a filter which blocks any part of the 

signal, when the acceleration exceeds the set reference value. The differential tracker is 

very often used together with linear on Nonlinear PID (NLPID) controllers, as shown in 

Figure 4.2 (Su, et al., 2005)  
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Figure 4.2: Closed-loop NLPID controller with a DT 

New dynamic process is introduced to realize the process of differentiation needed for 

the PID controller implementation and is based on integration in the nonlinear 

differentiator model proposed by (Wang et al., 1994), as follows:  
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Where:  

)(t
  - Is the input signal. 

21,( xxf ) - Is the differentiator function. 

M   - Is the selected/ design parameter 

In Equations (4.5) and (4.6) )(1 tx  tracks the reference input )(tv  in minimum time without 

overshoot and )(2 tx converges to the derivative of )(tv . The variable )(2 tx  is obtained 

by integration and is less sensitive to the noises. The selection of a bigger value of 

M influences the )(2 tx


 and the acceleration of )(1 tx  to be high and leads to fast tracking 

of )(tv . It concludes that the differentiator can be used to track down the unwanted noise 

signals. DT has two important roles in the theses. They are: 

 To filter out the noise in the measurement of the DO process output signal )(tso  

 To determine the )(tso  and the set-point signal )(tv through integration process. 
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4.6  Mathematical Model of the nonlinear PID Controller  

Numerous modern methodologies are nonlinear and in this way it is entangled to be 

depicted numerically. On the other hand, it is realized that numerous nonlinear 

techniques can be palatable controlled utilizing PID controllers giving that control 

parameters are tuned well. Useful experience demonstrates that this sort of control has a 

considerable measure of sense since it is straightforward and is focused around 3 

essential conduct sorts: corresponding (P), integrative (I) and subordinate (D). As 

opposed to utilizing a little number of complex controllers, a bigger number of 

straightforward PID controllers are utilized to control easier forms in a mechanical get 

together so as to computerize some certain more perplexing techniques. PID controller 

and its distinctive sorts, for example, P, PI and PD controllers are today essential building 

squares in control of different methodologies. In resentment their straightforwardness; 

they can be utilized to take care of even a complex control issue, particularly when joined 

with diverse utilitarian pieces, channels (compensators or remedy squares), selectors 

and so on. A nonstop improvement of new control calculations safeguard that the time of 

PID controller has not past and that this essential calculation will have its part to play in 

procedure control in unsurprising future. It can be normal that it will be a spine of 

numerous complex control frameworks. 

Nonlinear PID controllers are extension of the conventional well-known LPID by adding 

specific nonlinear functions to the main linear PID equation. The NLPID controller 

equations (4.7) to (4.17) are formulated by (Hai-bin et al., 2006), (Han et al., 1994) and 

(Su at al., 2005) and their typical implementation is shown in Figure 4.2. On the basis of 

this figure the NLPID controller equation can be written as follows: 
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Then the Equation (4.13) can be represented in a general form as: 
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It can be seen from the Equations (4.13) or (4.14) to (4.17) that the nonlinear PID 

controller has the structure of the linear PID controller but the error between the 

reference input and the process output is presented by nonlinear functions.  

The above mathematical representation of the NLPID controller is used in the thesis to 

control the process of Dissolved Oxygen concentration. 

 

4.7  Conclusion 

In this chapter, an introduction to the PID control theory is given. This provides a 

theoretical and mathematical basis which is applied in this thesis to solve the research 
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problem for design of nonlinear control of wastewater treatment process, known as the 

activated sludge process. In the thesis the design control problem is to find the nonlinear 

controller parameters that can be the best for control of the dissolved oxygen 

concentration and that can be implemented on a PLC environment in real-time.  

The next Chapter, (Chapter 5) concentrates more on the development of different 

methods for design and tuning of the NLPID controllers based on Ziegler-Nichols 

method. The closed loop simulation of the DO closed loop system is performed.  
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CHAPTER FIVE 

DEVELOPMENT OF METHODS FOR DESIGN AND TUNING OF NLPID 

CONTROLLERS 

 

5.1  Introduction 

As may be mentioned before, a control system is a device, or set of devices that 

manage, command, direct or regulate the behavior of other devices or processes. The 

controller attempts to minimize the error in the system by adjusting the process control 

inputs. This section is based on the well-known conventional PID control design.  

 

To develop methods for designing controller’s parameters it is necessary to define the 

main purpose of the process needed to be controlled, which is done in Chapters 2 and 3. 

The design methods are not the same, due to the knowledge of the process dynamics 

they require to be capable to produce the required parameter values. This chapter 

discusses the need for nonlinear controller design in a Section 5.2. The traditional 

Ziegler-Nichols (ZN) methods are designed in Section 5.3 for linear and nonlinear PID 

controllers and the subsection 5.3.5 gives the simulation results based on the two 

nonlinear PID controllers designed for the DO concentration. Section 5.5 provides the 

conclusion of this chapter. 

 

5.2  The need for designing the Nonlinear PID Controller 

The process to be controlled is nonlinear and when controlling the Dissolved Oxygen 

(DO), the nonlinear characteristics of the oxygen transfer function must be taken into 

account when designing the controller. The problem in controlling the DO is that the 

process dynamics are nonlinear.  This means that high control performance for all 

operating conditions of the process may be hard to achieve with a linear controllers, 

because:  

 The linear controllers are designed for the linear process, but the process of the 

dissolved oxygen in wastewater treatment is non-linear.  

 Secondly the parameters of the controller are not determined according to the operating 

conditions of the process at the moment of control. The set-point is selected according to 

some normal system requirements, not according to the operating conditions of the 

process at the instant of control.  
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A high DO concentration in the internally re-circulated water makes the de-nitrification 

less efficient. If DO content is too low, the environment is not stable and the activated 

sludge will not be properly treated. Hence, both for economical and process reasons, it is 

of interest to properly control the DO (Lindberg, 1997). On the basis of above to control 

the DO process in a proper manner it is needed to design an appropriate nonlinear 

controller. 

 

The nonlinear PID controller introduced in Chapter 2 is modified to include continuous 

dynamic nonlinear functions of the closed loop system erro instead of the gain-

scheduling approach. Then the nonlinear PID controller model can be presented as a 

combination of nonlinear error functions in order to achieve a better tracking and better 

noise rejection system. The NLPID controller used in the thesis is based on an 

exponential function in the error mathematical formulation as is proposed by (Gao, 2009), 

(Shuhua et al., 2009) and (Hai-bin et al., 2006). The tuning of the NLPID controller can 

be considered to be similar to the tuning of the linear PID controller, and it can be 

implemented on-site to achieve better performance. 

5.2.1  Nonlinear PID Controllers 

There are different types of nonlinear controllers described in the literature (Chapter 2). 

The controllers used to control process can have different structures (Pohjola, M, 2006). 

The choice of the structure determines how well the plant can be controlled. A Linear PID 

(LPID) controller structure is selected to control the system as it is easy and intuitive to 

be tuned. It is also used widely in the industry (Astrom et al, 1995) and there is a benefit 

of using a well-known and trusted controller in future applications. LPID controllers make 

up an important part in industrial control system. Any improvement in LPID controller 

design and implementation methodology has a serious potential to be used in industrial 

engineering application. Aydogdu and Korkmaz, (2011), state that the LPID controllers 

are preferred widely in industrial applications, due to their robust characteristics against 

changes at the system model.  

 

In most industrial situations the precise nonlinear plant model behavior is not obtained 

due to too many nonlinear parts and uncertainties. A lot of methods have been 

developed over the last years for setting the parameters of the NLPID controllers. Some 

of these methods are based on characterizing the dynamic response of the system to be 

controlled with a first-order model or second-order model with a time delay (Hagglund, 

1991). The plan of the following sections is to use the PID structure, nonlinear functions 
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of the errors between the set point and the controlled variable and to form the NLPID 

controller model. Two mathematical models of the NLPID controllers are selected for the 

purpose of the investigations in the thesis 

 

5.2.1.1  The first selected NLPID controller: (NLPID1) 

The algorithm of the NLPID controller is based on introduction of a nonlinear function of 

the error between the reference and the output signal of the process (Jiang, et al., 2009) 
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Where: 

ip TK , , dT       -    are the controller gains similar to these of the LPID controller. 
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    - represent the nonlinear error functions of the NLPID controller. 

   - Constant used to determine the linear range of the error function 

   - Nonlinear degree of the error function  

)(te  -  Is the error signal 

The nonlinear function proposed by Jiang et al., (2009) and Zaidner et al., (2010) can be 

mathematically represented as follows:  
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Where:  

e  - Input signal of the error function 

y  -  Output signal of the nonlinear error function.  
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5.2.1.2 The second selected nonlinear PID controller: (NLPID2)  

It has been discussed before that, the main algorithm of the NLPID controller is based on 

the nonlinear function as inherent part of the controller. The usually LPID has been 

reconstructed using a nonlinear function as follows: proposed by (Hai-bin et al, 2006). 
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 Where:  

   -  is a constant  

pK   - is the proportional gain,   

iK   -  is the integral of the error gain   

dK   -  is the derivative of the error gain, 

u   -  is the combination of error – control signal. 

 

The literature has proposed a nonlinear module (Shuhua and Wei, 2009) whose function 

is shown in the following equations. 
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The two symbols   and   are the two parameters of the nonlinear function. The two 

NLPID controllers (Equations 5.1 – 5.2 and 5.3 - 5.4) are used further in order to achieve 

the research objective. Equations (5.1 – 5.2) and Equations (5.3 – 5.4) are named as 

NLPID1 and NLPID2 respectively in the thesis. 

The NLPID controller uses nonlinear error functions to replace the linear ones in the 

conventional PID controller. Comparison between the linear function )(te  and the 

nonlinear function ),,( ef  shows that the nonlinear one produces high gain for small 

error ( )(te ), and small gain for large value of )(te , Zaidner et al., (2010), Hai-bin et al., 
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(2006). The nonlinear function used in this thesis ),,( ef  is an exponential function. In 

industry, the linear proportional, integral and derivative control is usually scheduled 

according to the Process Value (PV) and the magnitude of the error and is used to 

overcome the nonlinearity of the plant. The considered two nonlinear PID controllers are 

used with differential trackers, Figure 4.2 placed after the reference signal and after the 

output signal measurement. 

 

The Differential Tracker (DT) is used to improve the control quality; it is introduced to 

track the reference and output positions and their differentials. Most of existing 

controllers are designed for linear systems using the methods of the linear control theory. 

A nonlinear controller has interesting characteristics such as increased speed, or 

decreased control energy and it requires more accurate mathematical analysis and 

modeling to justify its design and prototype. There are not proposed methods for design 

of the NLPID controllers. Nonlinear control is the area of control engineering which is 

involved with the systems that are nonlinear, time-variant, or both. Nonlinear control 

theory studies explain how to apply the existing linear methods to the control systems. It 

also provides novel control methods which cannot be analyzed using Linear Time 

Invariant (LTI) system theory.  

The thesis investigates the applicability of the methods for design of the linear PID 

controllers to the design of NLPID controllers and proposes new pole placement method 

for direct design of the parameters of the NLPID controllers. Ziegler-Nichols and Pole 

placement methods are used in the thesis form the basis for development of methods for 

the nonlinear PID controller parameters design. 

5.3  Ziegler-Nichols Design Methods 

There are three unknown parameters of the controller, which are dip TandTK ,,  to be 

determined. This section focuses on designing the controller’s parameters using Ziegler-

Nichols method. The closed loop systems based on the linear and nonlinear PID 

controllers are simulated using the designed parameters. 

  

In generally there are two classical methods for determining the parameters of PID 

controllers presented by Ziegler and Nichols (1942). These methods are still widely used, 

either in their original form or in some modification. They often form the basis for tuning 

procedures used by controller manufacturers and process industry. The methods are 

based on determination of some features of process dynamics. The controller 
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parameters are then expressed in terms of these features by straightforward formulas 

(Astrom and Hugglund, 1995). Both techniques make a priori assumptions on the system 

model, but do not require the model to be specifically known.  

 

Ziegler-Nichols formulas for specifying the controller’s parameters are based on plant 

step responses. This section is based on designing of the parameters for LPID and 

NLPID controllers using Ziegler-Nichols (Z-N) first method as the DO process has 

exponential type of dynamic behavior. The description of the Ziegler-Nichols method, 

requirements for design specifications, and application of Z-N method for design of the 

LPID controller is taken into consideration. The designed parameters through the Z-N 

method in this section are later applied into the NLPID controller and the closed loop 

system responses are simulated. Then comparison of the simulation results between the 

based on the LPID and on the nonlinear PID controller systems is done.  

5.3.1  Ziegler-Nichols (Z-N) tuning method for design of the LPID controller and its 
application to NLPID controllers 

The first design method presented by Ziegler and Nichols is based on a registration of 

the open-loop step response of the process to be controlled (DO in this case) where two 

parameters have to be determined according to (Astrom, 1995). The parameters are 

determined from a unit step response of the process, as exposed in Figure 5.1. The point 

where the slope of the system step response has its maximum is first determined, and 

the tangent line at this point is drawn. The intersections between the tangent line and the 

coordinate axes and between it and the steady state value line give the parameters L  

and T .  

Where: 

L   - is the time delay 

T  - is the time constant of the transition behavior of the plant 

The following Figure (5.1) is the open loop response of the dissolved oxygen (DO) under 

the model Equation 3.1 unit step input. 
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Figure 5.1: DO concentration open loop response using Lmgs ino /01.0,   and 

dayLmgrso //8954.294  

 

The algorithm of the first Ziegler-Nichols method is:  

 Receive the transition behavior of the DO concentration to step input of the air 

flow rate. 

 Draw the tangent line at the inflection point of the graph, then measure the 

amplitude of the output, the time constant and the time delay. 

 Calculate the PID parameters according to the basic Ziegler-Nichols table shown 

below. 

 

Table 5.1: Ziegler-Nichols step response method table 

Controller type Kp Ti=Kp/Ki Td=Kd/Kp 

P T/L ∞ 0 

PI 0.9 T/L L/0.3 0 

PID 1.2* T/L 2L 0.5L 

 

The measurements on the DO step response give the parameters of the delay and 

constant time as 01.0L (days) and 1T (days) respectively. The controller 

parameters can now be determined using the Table 5.1 and the following Equations: 



87 
 

   





















LK

L
K

L

T
K

d

i

p

5.0

2

1

2.1

          (5.5) 

 The results yielded to:  ,50,120  ip KK  and 005.0dK . 

5.3.2  Simulink Block Diagrams  

5.3.2.1 Closed loop DO process model under the LPID controller 

The model of the DO closed loop system has been built in Simulink with the linear PID 

controller. The parameters designed in 5.3.1 above using Ziegler-Nichols method are 

applied on the PID (LPID) controller block to control the process. The diagram of the DO 

process controlled by the LPID controller is shown in Figure 5.2. 

 

 
Figure 5.2: Closed Loop diagram of the DO process with the linear PID controller 

 

5.3.2.2 Simulink Block Diagram of the closed loop system based on the NLPID1 controller 

Figure 5.3 shows the Simulink block diagram of the closed loop system for the NLPID1 

(Equations 5.1 – 5.2) controller and the DO process. The DT is included in the scheme.  

The behavior of the closed loop system under the NLPID1 controller with Ziegler-Nichols   

(Z-N) designed parameters based on the LPID controller is shown in Figure 5.6 and 

Figure 5.7 when the calculated parameters are not tuned. Figure 5.8 to Figure 5.13 

display the system output when the controller parameters are tuned in order to achieve 
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the desired behavior of the plant under the control of the nonlinear PID1, but using the Z-

N tuning method as initial step for further tuning. 

 

Figure 5.3: Closed loop diagram of the DO process with the NLPID1 controller 

 

5.3.2.3 Simulink model of the closed loop DO process under the NLPID2 controller 

Figure 5.4 shows the closed loop Simulink model of the DO process controlled by the 

second selected nonlinear PID (NLPID2) controller, Equation (5.3 – 5.4) including the 

Differential Tracker (DT). The behavior of the closed loop DO process model (Figure 5.4) 

is shown in Figure 5.25 while the calculated parameters are not tuned, Figure 5.26 and 

Figure 5.27 while the calculated parameter are not tuned enough.  Figures 5.28 to 5.43 

show the closed loop system output when the controller’s parameters are tuned in order 

to achieve the desired behavior of the plant and stabilize the system. The corresponding 

Matlab script file “NLPID2zn_DO.m” Appendix B3 and the Simulink block diagram model 

shown in Appendix C4 as given in Figure 5.5. 
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Figure 5.4: Closed loop diagram of the DO process with the NLPID2 controller 

5.3.3  Simulation results 

Control parameters as designed in section 5.3.1 are applied in the linear and the 

nonlinear PID controllers modeled above (Figures 5.2, 5.3, 5.4) to control the process of 

the dissolved oxygen concentration. The designed parameters for ,, pi KK  and dK  are 

applied first in order to control the DO concentration through the linear PID controller. 

The same parameters and the corresponding nonlinear functions are used in the 

nonlinear PID controllers to control the same process. Software is written in 

Matlab/Simulink environment to introduce the DO process parameters, the nonlinear 

function parameters and the control parameters in the Matlab workspace. The model 

parameters are taken from the benchmark structure model No:1 at their steady state at 

20o, (Alex, 2008). 

 

5.3.3.1 Simulation results of the closed loop nonlinear DO process under the LPID 

controller designed by the Ziegler-Nichols Method  

The corresponding Matlab mfile “LPID_DO.m” in Appendix B1 and the Simulink block 

diagram model file “LPIDwithDO.mdl” as given in Figure 5.2 can be seen in Appendix C2. 

The output of the closed loop system is shown in Figure 5.5. 
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Figure 5.5: DO concentration closed loop behavior using a set-point of Lmg /2 and 

dayLmgrso //8954.294  

 

The response shows a fast response time with the overshoot of 25% 

 

5.3.3.2 Simulation results of the closed loop DO process under the NLPID1 controller 

designed by the Ziegler-Nichols Method 

The corresponding Matlab mfile “NLPID1withDOzn.m” and the Simulink block diagram 

model file “NLPID1zn_DOmodel.mdl” as given in Figure 5.3 can be seen in Appendix B 

and C respectively. The output of the closed loop system is shown from Figure 5.6 and 

Figure 5.7. The behavior of the DO process is oscillating and this shows that the control 

parameters designed for the LPID controller cannot directly be used in the NLPID 

controllers to successfully control the nonlinear DO process. The conclusion is that the 

tuning of the parameters calculated for the LPID is necessary to be applied when they 

are used in the NLPID controller in order to improve the system performance. The output 

results of the closed loop system under the NLPID1 with the tuned LPID controller 

parameters are shown in Figures 5.8 to Figure 5.24 for different set-points and 

disturbances. 
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Figure 5.6: Closed loop response of the DO process under the NLPID1 controller using the 

designed parameters, when the set-point is Lmg /2 , Lmgs ino /8.0,  and 

dayLmgrso //8954.294  

 

 

Figure 5.7: Closed loop DO process response under the NLPID1 controller using the designed 

parameters, when the set-point is Lmg /7.2 and dayLmgrso //8954.294   

 
Figures 5.6 and Figure 5.7 show that the closed loop system behavior under the 

designed parameters based on Ziegler-Nichols method for design of the LPID controller 

and used in the NLPID1 controller to control the DO concentration, is not satisfactory. 

The internal disturbance ( inos , ) is changed from a value of Lmg /8.0  to Lmg /01.0  

respectively, but changing it did not improve the response of the system. It can be 

noticed that when the set-point of the system is changed from 2 (Figure 5.6) to 2.7 

(Figure 5.7) the oscillations at the final stability point were reduced.  

The next Figures show the closed loop results when the fine-tuning of the NLPID1 

controller parameters is applied to improve the system behavior.  
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The following Figures 5.8 to 5.24 show the results when the controller’s parameters are 

adjusted:  

 First change is the value of iK  changed from 50 to 5, the values of dK  and pK  

are unchanged, Figure 5.8 

 Second change - the value of iK  is changed from 5 to 0.5, Figure 5.9 

 

Figure 5.8: Closed loop response of the NLPID1 controller, when the set-point is Lmg /2  

and Lmgsoin /8.0 , dayLmgrso //8954.294  

 

 
Figure 5.9: Closed loop DO process response under the NLPID1 controller, when the set-point is 

Lmg /2 , Lmgs ino /8.0,   and  dayLmgrso //8954.294  

The integral term is decreased to better the system behavior. After the first control 

parameters modification in Figure 5.8 the system response is much better, but has 

oscillations at the final equilibrium point. Additional tuning of the controller parameters is 
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applied and the Figure 5.9 shows that the results of the closed loop system behavior is 

completely improved through the tuning process.  

The controller parameters obtained through the process of tuning are shown in Table 5.2 

below: 

Table 5.2: NLPID1 Parameters obtained by tuning 

Parameters LPID designed NLPID1  NLPID1 
variant 1 

NLPID1 variant 2-
selected 

Kp 120 120 120 120 

Ki 50 50 5 0.5 

Kd 0.005 0.005 0.005 0.005 

Process 
characteristic 

Fast response 
time with the 
overshoot of 25% 

System is 
unstable. 

Oscillations 
are reduced. 

System is stable & no 
oscillations. 

 

On the basis of the results from Table 5.2 the second modification (variant 2) is selected 

to be used for further investigations in this section of the thesis, to test the system 

reactions when set-points and disturbances are changed. 

In the next figures (Figure 5.10 to Figure 5.24) the disturbances and the set-point 

variation to different values are performed. This is done in rder to make an examination 

on how well the nonlinear controller (NLPID1) can be able to control the DO system, 

when uses the tuned control parameters of the Z-N method. Table 5.3 shows the 

variations of the DO disturbances to be tested. 

 

Table 5.3: Variation for the DO set point  
and the DO process disturbances 

 

 

 

Set-point 
oins  sor  

2.7 0.01 -294.8954 

2.7 0.01 -309.6402 

2.7 0.01 -280.1506 

2.7 0.01 -442.3431 

2.7 0.01 -147.4477 

2 0.8 -294.8954 

2 0.8 -309.6402 

2 0.8 -280.1506 

2 0.8 -442.3431 

2 0.8 -147.4477 

1.7 0.8 -294.8954 

1.7 0.8 -309.6402 

1.7 0.8 -280.1506 

1.7 0.8 -442.3431 

1.7 0.8 -147.4477 
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Figure 5.10: Closed loop DO process response under the NLPID1 controller,  

when the set-point is Lmg /7.2  and dayLmgrso //8954.294  

 

 
Figure 5.11: Closed loop DO process response under the NLPID1 controller, 

 when the set-point is Lmg /7.2  and dayLmgrso //6402.309  

 
Figure 5.12: Closed loop DO process response under the NLPID1 controller, 

 when the set-point is Lmg /7.2  and dayLmgrso //1506.280  
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Figure 5.13: Closed loop DO process response under the NLPID1 controller, 

 when the set-point is Lmg /7.2  and dayLmgrso //3431.442  

 

 
Figure 5.14: Closed loop DO process response under the NLPID1 controller,  

when the set-point is Lmg /7.2  and dayLmgrso //4477.147  

 

 
Figure 5.15: Closed loop DO process response under the NLPID1 controller, 

 when the set-point is Lmg /2  and dayLmgrso //8954.294  
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Figure 5.16: Closed loop DO process response under the NLPID1 controller, 

 when the set-point is Lmg /2  and dayLmgrso //6402.309  

 
Figure 5.17: Closed loop DO process response under the NLPID1 controller, 

 when the set-point is Lmg /2  and dayLmgrso //1506.280  

 
Figure 5.18: Closed loop DO process response under the NLPID1 controller, 

 when the set-point is Lmg /2  and dayLmgrso //3431.442  
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Figure 5.19: Closed loop DO process response under the NLPID1 controller, 

 when the set-point is Lmg /2  and dayLmgrso //4477.147  

 

 
Figure 5.20: Closed loop DO process response under the NLPID1 controller, 

 when the set-point is Lmg /7.1  and dayLmgrso //8954.294  

 

 
Figure 5.21: Closed loop DO process response under the NLPID1 controller,  

when the set-point is Lmg /7.1  and dayLmgrso //6402.309  
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Figure 5.22: Closed loop DO process response under the NLPID1 controller,  

when the set-point is Lmg /7.1  and dayLmgrso //1506.280  

 
Figure 5.23: Closed loop DO process response under the NLPID1 controller, 

 when the set-point is Lmg /7.1  and dayLmgrso //3431.442  

 
 

 
Figure 5.24: Closed loop DO process response under the NLPID1 controller,  

when the set-point is Lmg /7.1  and dayLmgrso //4477.147  
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5.3.3.2.1 Characteristics analysis and discussion 

 
 

Table 5.4:  Closed loop nonlinear DO process characteristics under the NLPID1 controller 

Parameters Characteristics 

Set point 
oins  

[ Lmg / ] 

sor  

dayLmg //  

Time 
delay 
[days] 

Steady 
state error 

[ Lmg / ] 

Rise time 
[days] 

Settling 
time 
[days] 

2.7 0.01 -294.8954 0.05 0.02 0.35 4.2 

2.7 0.01 -309.6402 0.05 0.025 0.53 4.3 

2.7 0.01 -280.1506 0.05 0.02 0.497 4 

2.7 0.01 -442.3431 0.05 0.05 0.43 4.8 

2.7 0.01 -147.4477 0.05 0.01 0.463 3.8 

2 0.8 -294.8954 0.05 0.02 0.365 3.6 

2 0.8 -309.6402 0.05 0.024 0.366 3.8 

2 0.8 -280.1506 0.05 0.02 0.36 3.5 

2 0.8 -442.3431 0.05 0.05 0.403 4.5 

2 0.8 -147.4477 0.05 0.01 0.33 3.5 

1.7 0.8 -294.8954 0.05 0.02 0.306 3.6 

1.7 0.8 -309.6402 0.05 0.024 0.308 3.8 

1.7 0.8 -280.1506 0.05 0.02 0.303 3.6 

1.7 0.8 -442.3431 0.05 0.05 0.336 4.5 

1.7 0.8 -147.4477 0.05 0.01 0.28 3.6 

 

The closed loop behaviors under different internal disturbances and different set-point 

values are tested. From Figures 5.10 to Figures 5.14 the process reaction was able to 

achieve the set-point value and is not affected by the disturbances and set-point 

changes. The reaction of the DO process under the NLPID1 controller with unchanged 

parameters for the LPID controller obtained by means of the Ziegler-Nichols method 

shows a fast response time with no stability (Figures 5.7 & 5.8). In that case a manual 

tuning of the parameters is done to obtain better result as shows in Figures 5.9 - 5.24, 

but the settling time is much bigger. 

Figure 5.10 to Figure 5.24 show the results of the closed loop system behavior when 

different internal disturbances ( inos , & sor ) and different set-point values are applied. 

Changes in the values of the disturbances did not show negative effect on the process 

operation. The process transition curves begin by showing a fast response time, little 

negative overshoot and long settling time. But the good thing is that the designed 

controller is able to stabilize the system at any set-point value. It has been noticed that 

when the disturbance ( sor ) is low the system is stable with some little oscillations 

between 7th – 8th days (see Figure 5.24). 

The following section applies the control parameter designed through Z-N method into 

the NLPID2 to control DO process in the ASP.  
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5.3.3.3 Simulation results of the closed loop nonlinear DO process under the NLPID2  

The parameters calculated for the LPID are used in the nonlinear PID controller and 

simulation of the closed loop behavior is done according to Figure 4.2.  

The equivalent Simulink block diagram is given in Figure 5.5, where the parameters 

designed through Ziegler-Nichols method and applied in sub-section 5.3.3.1 are used.  

 

The first phase of the investigation of the capability of the values of the controller 

parameters to stabilize the system is done according to the following steps:  

 Original designed value for Ziegler-Nichols 120pK , 50iK  and 005.0dK . The 

system has a big overshoot (see Figure 5.25). 

 First change - the value of iK  is changed from 50 to 5. The system result is unstable, 

Figure 5.26 

 Second change - the value of iK  is changed from 5 to 0.5, and pK from 120 to 200 

and dK remain unchanged, Figure 5.27 

 Accepted values for further investigation iK  = 0.5, pK = 200 and dK = 0.005. (from 

Figure 5.28 – Figure 5.42) 

 

 
Figure 5.25: Closed loop DO process response under the NLPID2 controller,  

when the set-point is Lmg /2 and Lmgsoin /8.0  
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Figure 5.26: Closed loop DO process response under the NLPID1 controller,  

when the set-point is Lmg /7.2 , Lmgsoin /01.0  and Lmgrso /8954.294  

 

 
Figure 5.27: Closed loop DO process response under the NLPID1 controller, 

 when the set-point is Lmg /2 , Lmgsoin /01.0  and Lmgrso /8954.294  

 

Figures 5.25 and 5.26 show that the nonlinear PID (NLPID2) controller cannot be able to 

control the nonlinear DO process if it is using un-tuned the designed before controller 

parameters for the LPID controller based on Ziegler-Nichols (Z-N). Therefore, the second 

tuned values of controller parameters are applied to the NLPID2 controller (Figure 5.5). 

The results are shown in Figure 5.27, which shows an improvement in the system 

behavior; although the trajectories settle below the desired value of Lmg /2 , they show 

to be the best for the DO process under the NLPID2. They can keep the closed loop 

system away from overshoots and oscillation during the trial and the error process.  The 

values used in this figure (Figure 5.27) were accepted for further investigation. 

The obtained values through the process of tuning the parameters and trying to find the 

best values that can control the system are shown in Table 5.5 
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Table 5.5: NLPID2 Parameters obtained by tuning 

Parameters LPID 
designed 

NLPID2 
original 

NLPID2 variant 1 NLPID2 
variant 2 

NLPID2 
variant 2-
selected 

Kp 120 120 120 200 200 

Ki 50 50 5 0.5 0.5 

Kd 0.005 0.005 0.005 0.005 0.005 

Process 
characteristi
c 

Fast 
response 
time with the 
overshoot of 
25% 
 

System 
overshoo
ts by 
440%. 

Unstable, 
overshoot and 
settles at a very 
higher point than 
the required set 
point value. 

Stable 
and over-
damped. 

Good system 
behavior 

 

On the basis of the results from Table 5.5 the selected values of Kp = 200, Ki= 0.5 and Kd 

= 0.005 are preferred to be used for further investigations in this section of the thesis to 

test the system reactions when set-points and disturbances are changed. The different 

disturbances and set point value that are used to investigate further the performance of 

the system are shown in Table 5.3  

As the variations of the DO disturbances and the set-point changes are applied in the 

closed loop system, the next figures (Figure 5.28 to Figure 5.41) show the results. This is 

done in order to make an examination on how well, the nonlinear controller (NLPID2) will 

work with the DO system, when uses the tuned control parameters, in Table 5.3.  

 

 

Figure 5.28: Closed loop DO process response under the NLPID2 controller, 

 when the set-point is Lmg /7.2 , Lmgsoin /01.0  and  dayLmgrso //8954.294  
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Figure 5.29: Closed loop DO process response under the NLPID2 controller,  

when the set-point is Lmg /7.2 , Lmgsoin /01.0  and  dayLmgrso //6402.309  

 
Figure 5.30: Closed loop DO process response under the NLPID2 controller,  

when the set-point is Lmg /7.2 , Lmgsoin /01.0  and  dayLmgrso //1506.280  

 

 
Figure 5.31: Closed loop DO process response under the NLPID2 controller,  

when the set-point is Lmg /7.2 , Lmgsoin /01.0  and  dayLmgrso //3431.442  
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Figure 5.32: Closed loop DO process response under the NLPID2 controller,  

when the set-point is Lmg /7.2 , Lmgsoin /01.0  and  dayLmgrso //4477.147  

 

 
Figure 5.33: Closed loop DO process response under the NLPID2 controller, when the set-point is 

Lmg /2 , Lmgsoin /8.0  and  dayLmgrso //8954.294  

 

 
Figure 5.34: Closed loop DO process response under the NLPID2 controller, 

 when the set-point is Lmg /2 , Lmgsoin /8.0  and  dayLmgrso //6402.309  
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Figure 5.35: Closed loop DO process response under the NLPID2 controller,  

when the set-point is Lmg /2 , Lmgsoin /8.0  and  dayLmgrso //1506.280  

 

 
Figure 5.36: Closed loop DO process response under the NLPID2 controller,  

when the set-point is Lmg /2 , Lmgsoin /8.0  and  dayLmgrso //3431.442  

 

 
Figure 5.37: Closed loop DO process response under the NLPID2 controller,  

when the set-point is Lmg /2 , Lmgsoin /8.0  and  dayLmgrso //4477.147  
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Figure 5.38: Closed loop DO process response under the NLPID2 controller,  

when the set-point is Lmg /7.1 , Lmgsoin /8.0  and  dayLmgrso //8954.294  

 

 
Figure 5.39: Closed loop DO process response under the NLPID2 controller, 

 when the set-point is Lmg /7.1 , Lmgsoin /8.0  and  dayLmgrso //6402.309  

 

 
Figure 5.40: Closed loop DO process response under the NLPID2 controller,  

when the set-point is Lmg /7.1 , Lmgsoin /8.0  and  dayLmgrso //1506.280  
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Figure 5.41: Closed loop DO process response under the NLPID2 controller,  

when the set-point is Lmg /7.1 , Lmgsoin /8.0  and  dayLmgrso //3431.442  

 

 
Figure 5.42: Closed loop DO process response under the NLPID2 controller, when the set-point 

is Lmg /7.1 , Lmgsoin /8.0  and  dayLmgrso //4477.147  

 

 

The results in Figures 5.33 and 5.37 are based on constant set-point value of Lmg /2  

and different internal disturbances shown in Table 5.3. The dissolved oxygen 

concentration process response has followed a right reaction path and no overshoots, 

but the problem with these selected control parameters is that with them the controller 

cannot control the process to the desired set-point value. Extra tuning is needed to solve 

this issue. Figures 5.38 to 5.42 use the set-point of Lmg /7.1  with different disturbance. 

Making the observation of the system behavior in the above figures, it can be said that 

the second designed nonlinear PID (NLPID2) controller through Ziegler-Nichols (Z-N) 

tuning method for design of the LPID controller was not convenient to control the 
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dissolved oxygen concentration process, despite the fact that it has followed a right 

response path, it does not reach the desired value. Table 5.6 shows the characteristics of 

the DO process under the NLPID2 controller. 

  

Table 5.6: Closed loop DO process characteristics under the NLPID2 

Parameters Characteristics 

Set 
point 

oins  sor  Time 
delay 
[days] 

Steady 
state error 
[mg/L] 

Rise time 
[days] 

Settling 
time 
[days] 

2.7 0.01 -294.8954 0.06 0.19 0.5 4.5 

2.7 0.01 -309.6402 0.06 0.2 0.6 4.85 

2.7 0.01 -280.1506 0.06 0.19 0.6 4.5 

2.7 0.01 -442.3431 0.06 0.4 0.9 5 

2.7 0.01 -147.4477 0.06 0.04 0.5 4 

2 0.8 -294.8954 0.06 0.13 0.5 4.5 

2 0.8 -309.6402 0.06 0.13 0.6 4.8 

2 0.8 -280.1506 0.06 0.114 0.5 4.5 

2 0.8 -442.3431 0.06 0.245 0.9 5 

2 0.8 -147.4477 0.06 0.035 0.5 4 

1.7 0.8 -294.8954 0.06 0.115 0.5 4.5 

1.7 0.8 -309.6402 0.06 0.12 0.5 4.7 

1.7 0.8 -280.1506 0.06 0.11 0.5 4.4 

1.7 0.8 -442.3431 0.06 0.216 0.5 5 

1.7 0.8 -147.4477 0.06 0.035 0.5 4 

 

5.3.3.3.1  Discussion 

The behavior of the closed loop DO process has been tested using the designed 

and modified Ziegler-Nichols parameters and the simulation results for linear and 

the two nonlinear PID controllers have been shown above. The system response 

using the NLPID controllers with the parameters for the LPID controller obtained 

by the Ziegler-Nichols method, initially show a good response time, but with 

NLPID2 the system does not arrive at the set point value. It is observed that when 

NLPID controller use parameters for the LPID controller designed through 

Ziegler-Nichols method, it does not achieve good performance of the closed loop 

nonlinear system. In this case, manual tuning of the parameters is done to obtain 

better results.  

Looking to the results of NLPID1 and NLPID2, the first nonlinear controller 

(NLPID1) has performed much better; it has a good steady state response, but 

has a bigger settling time. The second nonlinear controller (NLPID2) has a 

quicker response time, but it always stabilizes the DO process below the set-point 
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values. This conclusion has been drawn from the simulation results as captured 

in the tables (Table 5.4 and Table 5.6).  

 

5.4 Conclusion  

Two nonlinear NLPID controllers have been used in this Chapter to control the nonlinear 

DO process under different operation conditions, different set-point and disturbances. 

The results have shown that the Ziegler-Nichols control parameters designed for the 

LPID controller cannot be directly used for the NLPID controllers to control and nonlinear 

process of the DO concentration. Additional controller parameters tuning is needed to 

achieve the convenient behavior of the controlled nonlinear system.  

The next chapter (Chapter 6) is based on the application of the Pole-Placement method 

for the design of the LPID and NLPID controller based on the linearized DO model. This 

is named as Case study 1 (PP1 controller design method based on the linearized DO 

model). 
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CHAPTER SIX 

APPLICATION OF THE POLE-PLACEMENT METHOD FOR DESIGN OF THE 

PARAMETERS OF THE LPID AND NLPID CONTROLLERS FOR THE CASE OF THE 

LINEARIZED MODEL OF THE DO PROCESS 

 

6.1  Introduction 

Pole placement is a method employed in feedback control system theory to place the 

closed-loop poles of a plant in pre-determined positions in the s-plane. Pole placement 

method is one of the classic control theories and has an advantage in system control to 

achieve a given desired process performance. Theoretically pole placement is to set the 

desired pole location and to move the pole position of the system to that desired pole 

position. Mathematically once the closed loop system transfer function is defined, the 

desired transfer function should be also defined, and then each coefficient of the same 

order in the characteristic polynomials of the two systems is compared to be the same. 

This pole placement control design method results to the desired system response and is 

easy to find the gains mathematically but the accuracy of the closed loop system transfer 

function is significantly important and this method is expensive to implement in the high 

order systems. 

The tasks of the control systems used in WWTP can be divided into two main 

categories:  

 Tracking (servomechanisms) and  

 Regulation or stabilization.  

In the tracking control problems, the objective of the design is to construct a controller, so 

that the system output tracks the specified time-varying trajectory. In stabilization 

problems, a control system is designed such that the state of the closed loop system will 

be stabilized around an equilibrium point (Hai-bin, et al., 2006). Most of the controllers 

designed to implement these tasks are linear ones. They can be applied successfully for 

linear systems. Nonlinear control is the area of control engineering involved with systems 

whose behavior is nonlinear, time-variant, or both. Nonlinear control theory studies 

describe how to apply the existing linear methods to non-linear control systems. Linear 

Time Invariant (LTI) system can be used for the analysis and design of a nonlinear 

controller which can have attractive characteristics such as increased speed, or 

decreased control energy. However, nonlinear control theory usually requires more 

rigorous mathematical analysis to justify its conclusions.  
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This Chapter discusses the application of the Pole-Placement method for the design of 

the controller parameters in section 6.2, section 6.3 is based on the simulation of the 

closed loop DO process under LPID controller, section 6.4 gives the closed loop 

simulations of the DO closed loop process based on the two NLPID controllers (NLPID1 

and NLPID2) using the designed tuned the LPID controller parameters. The Conclusion 

of this Chapter is given in section 6.5. 

 

6.2  Application of the Pole-Placement method for design of a Linear PID controller’s 

parameters 

The design of the controller by the pole placement method is based on the desired 

behavior of the closed loop system. The desired behavior is determined by the values of 

the poles of the closed loop transfer function. The calculation of the values of the PID 

controller parameters is through the comparison of the characteristic equation of the 

closed loop system and the desired characteristic of the closed loop system. The Pole 

Placement (P-P) method is used in this Chapter for design of the LPID controller 

parameters for the DO process. Then, the obtained parameters for the LPID controller 

are used in Matlab/ Simulink to examine the closed loop behavior of the DO process 

under the NLPID controllers with the obtained parameters for the LPID controller. 

The steps of the pole placement algorithm are: Hasanien et al., (2009) 

I. Make use of the first order linearized equation of the DO process and take the LPID 

controller equation to form the equation of the closed loop system. The controller 

parameters are unknown. 

II. Form the characteristic equation of the closed loop system in which the controller 

parameters are unknown 

III. Specify the desired poles for the behavior of the closed loop DO system and form the 

desired characteristic equation of the closed loop system 

IV. Compare the two characteristic equations and calculate the value of the unknown 

parameters. 

These steps are described below in detail, as follows: 

 

6.2.1  Linearization of the nonlinear model of the DO Process 

The nonlinear model of the DO process is given by Equation (6.1) 

BuAssseKrss
V

Q
usfs oosats

uK

sooinooo 


)](1[)(),( ,1,
2    (6.1) 
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The nonlinear model of the DO process has to be presented as a linear model in the 

state space as shown by Equation 6.1. The representation can be obtained on the basis 

of Taylor series calculated around the steady state points ssos , and ssu , for the state and 

control variables. The Taylor series is used to represent a function as an infinite sum of 

the function derivatives and the function variables calculated at a single given point. The 

nonlinear model ),( usf o  is differentiated with respect to os  and u . Then the Taylor 

series representation of the Equation 6.1 for only the first order derivatives is: 
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On the basis of the above Equation: 
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And it is accepted that  

0)(
)(

)(
)(

),(

,,,,

,,

,

,

,
 ss

us

o

sso

uso

o

uso u
du

usdf
s

ds

usdf
usf

ssssosssso

sssso

   (6.5) 

 

The calculated value of the coefficients A  and B  for the steady state values 

Lmgs sso /2,   and dayLmguss //50000  are: A = -3, B =200 

The linearized DO process model is a state space model of the kind of: 

BuAss oo 


          (6.6) 

oCsy            (6.7) 

Where: 

os   -  is the state space variable,  

u   - is the control vector for the model,  

A  and B  - are the state space and control coefficients of the model,  

C =1  -  is the output coefficient for the dissolved oxygen concentration. 
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The obtained linearised model (6.6), (6.7) is used to design the PID controller parameters 

through the pole placement method. 

The coefficients A , B and C  are obtained through linearization of the nonlinear DO 

process model for the selected benchmark parameters for the steady state process 

behavior as given in Table 3.2 of Chapter 3 for the benchmark structure model 

parameters.  

The Laplace transform of Equation (6.6) under zero initial conditions has yielded to the 

transfer function of the linearized DO process below;
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B
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6.2.2  Characteristic equation of the closed loop system 

The transfer function of the usual PID controller in s-domain can be represented as 

shown below  


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The transfer function of the PID controller can be represented as: 

s
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The following block diagram is used to obtain a closed loop DO process transfer function.  

 

Figure 6.1: Block diagram of the closed loop system  

 

From the block diagram in Figure 6.1 the closed loop transfer function is 
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       (6.11) 

After substitution of Equation (6.8) and Equation (6.10) in Equation (6.11) the resulting 

closed loop transfer function is represented by Equation (6.12) below: 
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The corresponding characteristic equation from Equation (6.12) is shown below: 

BKsAKsBKs iPdDO  )-B()1()( 2

     (6.13) 

 

6.2.3  The desired poles and desired characteristic equation 

The closed loop characteristic equation (6.13) is of a second order. That is why the 

desired equation has to be also of order two. 

Values of the two desired poles can be selected such that the behavior of the closed loop 

system can be determined with the following desired characteristics: 

 System stability. 

 With small or no-overshoot and quick response. 

 

This type of behavior for a second order system can be obtained by selection of complex 

conjugate poles that guarantees a critical dumping frequency of the closed loop system 

behaviour (Ogata, 2002), as follows: 

222'1 js           (6.14) 

The corresponding desired characteristic equation from the poles in Equation (6.14) is 

shown below: 

64)( 2

,  sssdesDO         (6.15) 

 

6.2.4 Calculation of the Linear PID controller’s parameters  

Using the direct comparison of the closed loop and the desired characteristic equations 

64)-B()1(
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Expressions for the linear PID controller co-efficiencies are obtained as shown below:  
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The designed parameters of the LPID controller for the linearised DO process are 

03.0,005.0  ip KK and 0dK . 

At this point the representations of the Equations for the linear controller parameters (Kp, 

Ki, and Kd) are known.  

The following section is based on the simulation of the closed loop systems (linearized 

and nonlinear model of DO) under the LPID controller. These simulations are performed 

in order to investigate the performance of the closed loop linearized DO process model 

under the LPID controller as well as the performance of the closed loop nonlinear DO 

process under the LPID controller. When the simulations of the closed loop nonlinear DO 

process under the LPID controller is completed, changes on the values of the system 

internal disturbances and the set-point are made in order to investigate how the nonlinear 

DO process reacts under these changes when it is controlled by the LPID controller.  

 

6.3  Simulation of the linearized and nonlinear closed loop DO process under the LPID   

controller  

The Matlab/Simulink simulation of the linear closed loop system and the nonlinear closed 

loop system are performed at this point. The Simulink block diagrams of the linearized 

DO process model under the linear PID and of the nonlinear DO process model under 

the LPID are shown in Figure 6.2 and Figure 6.3 respectively. The response of each 

system under control is observed and the results are shown later in Figure 6.4 - Figure 

6.5 for the linearised DO, and in Figure 6.6 - Figure 6.20 for the nonlinear DO process 

respectively. 
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Figure 6.2: Simulink diagram of the linearized closed loop DO process using the Linear PID 

controller 

 

The controller parameters designed in section 6.2 are used for both closed loop systems, 

with linearized and nonlinear DO process models. 

 
Figure 6.3: Simulink block diagram for the linear PID control of the nonlinear DO process 

 

The nonlinear DO process has its own parameters accepted from Copp et al., (2000). 

Simulation for the nonlinear DO process model are performed for various values of the 

disturbances inos ,  and sor  and for various values of the set-point, as used in Chapter 5. 

The values are shown in Table 6.1 

 

6.3.1  Simulation results of the closed loop linearised DO process under the linear PID 

controller 

The closed loop system of the linearized DO process model under LPID has been 

simulated in Matlab/Simulink, and the simulation results are shown in the following 

figures: (Figure 6.4 – Figure 6.5) 
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Figure 6.4: Linearized DO process response under the LPID controller, when the set-point 

is Lmg /2  

 

 
Figure 6.5: Linearized DO process response under the LPID controller, when the set-point is 

Lmg /7.2  

6.3.2  Simulation results of the closed loop nonlinear DO process behavior under the 

designed LPID controller  

The simulation performed using the designed LPID controller parameters in section 6.2 

did not succeed to control the nonlinear DO process during the simulation tests. 

Therefore, the controller parameters were tuned and the successful parameter values for 

the LPID controller to control the nonlinear DO process are accepted to be Kp =110 and 

Ki = 0.03 after the trial and error process of tuning was performed. Some of the results 

obtained during controller parameters tuning are shown in the following figures (Figure 

6.6 and Figure 6.7). After the final tuned and accepted values of the LPID controller the 

results shown in Figure 6.8 to Figure 6.22 were obtained. These results are obtained 
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under different set-point values and different internal disturbances of oins and sor shown 

in Table 6.1 

 

Table 6.1: Variation of the DO set point  
and the DO process disturbances 

Set-point 
oins Lmg /  sor dayLmg //  

2.7 0.01 -294.8954 

2.7 0.01 -309.6402 

2.7 0.01 -280.1506 

2.7 0.01 -442.3431 

2.7 0.01 -147.4477 

2 0.8 -294.8954 

2 0.8 -309.6402 

2 0.8 -280.1506 

2 0.8 -442.3431 

2 0.8 -147.4477 

1.7 0.8 -294.8954 

1.7 0.8 -309.6402 

1.7 0.8 -280.1506 

1.7 0.8 -442.3431 

1.7 0.8 -147.4477 

 

The following figures (Figure 6.6 and Figure 6.7) give the nonlinear DO process 

behaviors under the original designed LPID values.   

 

Figure 6.6: Closed loop nonlinear DO process response under the un-tuned LPID controller, 

 when the set-point is Lmg /2 , Lmgsoin /01.0  and  dayLmgrso //294.8954-
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In Figure 6.6 the LPID controller directly uses the designed by the pole placement 

method for LPID parameters based on the linearized DO model to control the nonlinear 

DO process.  

In Figure 6.7 below the designed LPID controller parameters were tuned from Kp = 0.005 

to 30, but the process steady state error is 0.08 which is more than the accepted 5 % 

error.  

 

Figure 6.7: Closed loop nonlinear DO process response under the tuned LPID controller, when the 

set-point is Lmg /7.2 , Lmgsoin /01.0  and  dayLmgrso //294.8954-  

Because the steady state error was big, therefore, Kp is tuned again from 30 to 110. The 

transition behaviors of the DO process under the tuned LPID controller parameters and 

different operation conditions (shown in Table 6.1) of the process are given in the 

following figures (Figure 6.8 and Figure 6.22): 

 

Figure 6.8: Closed loop nonlinear DO process response under the tuned LPID controller, 

 when the set-point is Lmg /7.2 , Lmgsoin /01.0  and  dayLmgrso //294.8954-  
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Figure 6.9: Closed loop nonlinear DO process response under the tuned LPID controller, 

when the set-point is Lmg /7.2 , Lmgsoin /01.0  and  dayLmgrso //309.6402  

 

Figure 6.10: Closed loop nonlinear DO process response under the tuned LPID controller, when 

the set-point is Lmg /7.2 , Lmgsoin /01.0  and  dayLmgrso //1506.280  

 

Figure 6.11: Closed loop nonlinear DO process response under the tuned LPID controller, when 

the set-point is Lmg /7.2 , Lmgsoin /01.0  and  dayLmgrso //3431.442  
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Figure 6.12: Closed loop nonlinear DO process response under the tuned LPID controller, when 

the set-point is Lmg /7.2 , Lmgsoin /01.0  and  dayLmgrso //4477.147  

 

Figure 6.13: Closed loop nonlinear DO process response under the tuned LPID controller, when 

the set-point is Lmg /2 , Lmgsoin /8.0  and  Lmgrso /294.8954-  

 
Figure 6.14: Closed loop nonlinear DO process response under the tuned LPID controller, when 

the set-point is Lmg /2 , Lmgsoin /8.0  and  dayLmgrso //309.6402  
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Figure 6.15: Closed loop nonlinear DO process response under the tuned LPID controller, when 

the set-point is Lmg /2 , Lmgsoin /8.0  and  dayLmgrso //1506.280  

 

Figure 6.16: Closed loop nonlinear DO process response under the tuned LPID controller, when 

the set-point is Lmg /2 , Lmgsoin /8.0  and  dayLmgrso //3431.442  

 

Figure 6.17: Closed loop nonlinear DO process response under the tuned LPID controller, when 

the set-point is Lmg /2 , Lmgsoin /8.0  and  dayLmgrso //4477.147  
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Figure 6.18: Closed loop nonlinear DO process response under the tuned LPID controller, when 

the set-point is Lmg /7.1 , Lmgsoin /8.0  and  dayLmgrso //294.8954-  

 

 
 

Figure 6.19: Closed loop nonlinear DO process response under the tuned LPID controller, when 

the set-point is Lmg /7.1 , Lmgsoin /8.0  and  dayLmgrso //309.6402  

 
Figure 6.20: Closed loop nonlinear DO process response under the tuned LPID controller, when 

the set-point is Lmg /7.1 , Lmgsoin /8.0  and  dayLmgrso //1506.280  
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Figure 6.21: Closed loop nonlinear DO process response under the tuned LPID controller, when 

the set-point is Lmg /7.1 , Lmgsoin /8.0  and  dayLmgrso //3431.442  

 
Figure 6.22: Closed loop nonlinear DO process response under the tuned LPID controller, when 

the set-point is Lmg /7.1 , Lmgsoin /8.0  and dayLmgrso //4477.147  

 

The closed loop nonlinear DO process behavior characteristics from the Figures 6.8 – 

6.22 is measured and shown in Table 6.2. 

 

Table 6.2: Results obtained when the tuned LPID controller parameters are  
used to control the nonlinear DO process 

Parameters Characteristics 

Set-point 
oins  

[ Lmg / ] 

sor  

dayLmg //  

Time 
delay 
[days] 

Steady 
state error 

 [ Lmg / ] 

Rise time 
[days] 

Settling time 
[days] 

2.7 0.01 -294.8954 0.001 0.02 0.3 0.5 

2.7 0.01 -309.6402 0.001 0.03 0.3 0.5 
2.7 0.01 -280.1506 0.001 0.025 0.3 0.5 
2.7 0.01 -442.3431 0.001 0.04 0.34 0.5 

2.7 0.01 -147.4477 0.001 0.01 0.28 0.5 
2 0.8 -294.8954 0.001 0.022 0.3 0.4 
2 0.8 -309.6402 0.001 0.03 0.3 0.4 
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2 0.8 -280.1506 0.001 0.02 0.3 0.4 
2 0.8 -442.3431 0.001 0.04 0.34 0.4 

2 0.8 -147.4477 0.001 0.01 0.28 0.4 
1.7 0.8 -294.8954 0.001 0.02 0.3 0.3 
1.7 0.8 -309.6402 0.001 0.02 0.3 0.3 
1.7 0.8 -280.1506 0.001 0.02 0.3 0.3 
1.7 0.8 -442.3431 0.002 0.04 0.34 0.35 
1.7 0.8 -147.4477 0.001 0.01 0.28 0.35 
       

 

6.3.2.1 Discussion 

The parameters designed for the linear PID controller have been used successfully to 

control the linear DO model; this is shown in Figure 6.4 and Figure 6.5. The same 

parameters of the LPID controller were applied to control the nonlinear DO process, 

without success. The tuning of the controller parameters is done and the results for the 

DO process behavior under the tuned LPID controller is shown in Figure 6.8 – Figure 

6.22. 

Based on the characteristics given in Table 6.2 the tuned controller parameters have 

been used successfully to control the nonlinear DO process model. When comparing the 

same values of the disturbance in a process for different set-point conditions, the settling 

time is large for the process with conditions that has a large set-point. This can be seen 

in that data values highlighted light blue in the Table 6.2. In the closed loop DO process 

model result it can be seen that the value for the steady state error increases when the 

rso value is larger (see the for comparison green highlights in Table 6.2) and also the rise 

time increases under the same conditions. The text data typed in red color are the 

conditions in which the tuned controller performed in the best way under different values 

of the set point based on one value of rso , but different values of soin. These disturbances 

did not affect in the DO operation process, now it can be said that when the rso in small 

the DO process has a good performance.  

 

6.4  Simulations of the closed loop nonlinear DO process based on the two NLPID 

controllers 

This section focuses on the simulation of the closed loop system in the Matlab/Simulink 

software environment based on the considered two NLPID controllers. These NLPID 

controllers are used to control the linearized model and the nonlinear model of the DO 

concentration. The Pole Placement (PP) method has been used in section 6.2 for design 

the LPID controller parameters for the linearized DO process model. The parameters of 
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the LPID controller designed in Matlab are transferred to Simulink for closed loop 

simulation of the DO process under the NLPID controllers’ parameters. The following 

diagram (Figure 6.23) displays the typical approach used.  

 

Figure 6.23: Structure for Matlab/Simulink simulation of the closed loop DO process based on the 
NLPID controllers with parameters designed for the LPID controller and the linearized process 

model 

 

The investigation of the performance of the closed loop behaviors under the two NLPID 

controllers is done for the same set-point and disturbance values as in Table 6.1 

6.4.1  Closed loop linearized and nonlinear DO process Simulink Block Diagrams based 

on the NLPID1 and NLPID2 controllers 

The simulation of the DO process with NLPID1 using the pole placement designed 

parameters for the LPID controller based on the linearised DO process as presented in 

section 6.2 is achieved. The designed values of Kp, Ki, and Kd are applied in the nonlinear 

controller in order to control and improve the behavior of the DO process concentration. 

The corresponding block diagram of the Simulink model is given in Figure 6.24 for the 

linearized DO model under the NLPID1 controller, and Figure 6.25 for the nonlinear DO 

system under the NLPID1 controller.  

Figure 6.26 shows the linearised DO model under the NLPID2 controller and Figure 6.27 

shows the Simulink block diagram for the nonlinear model of the DO concentration under 

the NLPID2 controller. The Matlab calculated parameters are sent to Simulink, and then 

the response of each closed loop system is observed and the results are shown in the 

simulation results section later. The controller part of the Figures (6.24 - 6.27) is the 

same as in Figures (5.3 - 5.4) in Chapter 5. The controller parameters used are those 

designed for LPID controller based on the linearized DO model, and are tuned to be used 

in the NLPID controllers to control linear and nonlinear DO process model. 
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Figure 6.24: Simulink diagram of the closed loop linearized DO process  

under the NLPID1 controller 

 

Figure 6.25: Simulink diagram of the closed loop nonlinear DO process 

 under the NLPID1 controller 

 

 

Figure 6.26: Simulink diagram of the closed loop linearized DO process  

using the NLPID2 controller 
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Figure 6.27: Simulink diagram of the closed loop nonlinear DO process under the NLPID2 

controller 

 

6.4.2 Simulation results for the closed loop linear and nonlinear DO process based on the 

NLPID1 and NLPID2 controllers 

6.4.2.1 Simulation results for the linearized DO model under the NLPID1 controller 

The designed LPID controller parameters through the PP1 method were applied in 

NLPID1 controller to control the linearised DO process, Figure 6.28 shows the behavior 

of the closed loop linearized DO model under the NLPID1 controller.   

 

Figure 6.28: Closed loop linear DO process response under the NLPID1 controller, when the set-

point is Lmg /2  

Since the output of the system has a big overshoot (40%) as shown in Figure 6.28, the 

designed LPID controller parameters for the linearized DO process are tuned: Kp from 

0.005 to 0.05 and Ki remains the same. Figure 6.29 shows the effect of the first made 

tuning on the system.    
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Figure 6.29: Closed loop linear DO process response under the NLPID1 controller, when the set-

point is Lmg /2  

 

 

Figure 6.30: Closed loop linear DO process response under the NLPID1 controller, when the set-

point is Lmg /2  

For the reason that the system output is not stable and the steady state error is 0.05, the 

control parameter Kp was additionally tuned to: Kp =0.3, Figure 6.30, and then Ki and Kd 

are accepted as that of the LPID controller designed values in which: Ki =0.03 and Kd=0. 

The proportional control parameter value was increased again to Kp = 0.2 and that 

becomes the accepted value of the proportional control. These accepted values were 



130 
 

used for the NLPID1 controller only to control the linear DO process and were tested if 

they can assure good control to the set-point variations. Some of the results of that 

simulation are shown in Figure 6.31 and Figure 6.33. 

 

Figure 6.31: Closed loop linear DO process response under the NLPID1 controller,  

when the set-point is Lmg /2  

 

Figure 6.32: Closed loop linear DO process response under the NLPID1 controller, 

 when the set-point is Lmg /7.2  
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Figure 6.33: Closed loop linear DO process response under the NLPID1 controller, when the set-

point is Lmg /7.1  

 

Table 6.3: Closed loop linearised DO process characteristics under the NLPID1 controller 

Set-point 
 

Characteristics 

Time delay 
[days] 

Steady state error 
[mg/L] 

Rise time 
[days] 

Settling 
time [days] 

2.7 0.05 0.02 0.26 4.2 

2 0.05 0.02 0.25 4 

1.7 0.05 0.02 0.24 3.8 

  

The simulations in Figure 6.31 to Figure 6.33 are performed in order to investigate how 

the linearized DO process model under the NLPID1 controller responds in terms of rise 

time, settling time and steady state error during the set point changes in the closed loop 

system.  

In the results shown in Table 6.3 above the DO process rise time and settling time can 

be bigger as the process set point changes to a high value. The controller parameters for 

the NLPID1 controller to control the linearized DO process model have been successfully 

tuned and they show a good behavior and the steady state error is less than 5%.  

 

6.4.2.2 Simulation results for the nonlinear DO model behavior under the NLPID1   

controller  

The simulation performed using the designed LPID controller parameters in section 6.2 

did not succeed to control the nonlinear DO process during the simulation tests. 

Therefore, the controller parameters were tuned and the successful parameter values 

during the try and the error process of tuning are Kp =120 and Ki = 0.5. These 
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parameters are tuned for the NLPID1 controller in order to control the nonlinear DO 

process.  

The controller parameter tuning for the closed loop DO process model under the NLPID1 

controller was first performed under one set point value and constant internal 

disturbance, then after the tuning or selection of the controller parameter values the 

following results shown in Figure 6.34 to Figure 6.48 were obtained under the different 

set-point values and different internal disturbances ( oins and sor ) using the variations for 

the DO set point and the DO process disturbances as given in Table 6.1. 

 
Figure 6.34: Closed loop DO process response under the NLPID1 controller, when the set-point 

is Lmg /7.2 , Lmgs ino /01.0,    and dayLmgrso //294.8954-  

 

Figure 6.35: Closed loop DO process response under the NLPID1 controller, when the set-point 

is Lmg /7.2 , Lmgs ino /01.0,    and dayLmgrso //6402.309  
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Figure 6.36: Closed loop linear DO process response under the NLPID1 controller, when the set-

point is Lmg /7.2 , Lmgs ino /01.0,    and dayLmgrso //1506.280  

 

 

Figure 6.37: Closed loop DO process response under the NLPID1 controller, when the set-point is 

Lmg /7.2 , Lmgs ino /01.0,  and  dayLmgrso //3431.442  

 

Figure 6.38: Closed loop DO process response under the NLPID1 controller, when the set-point is 

Lmg /7.2 , Lmgs ino /01.0,   and  dayLmgrso //4477.147  
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Figure 6.39: Closed loop DO process response under the LPID controller, when the set-point is 

Lmg /2 , Lmgs ino /8.0,  and dayLmgrso //294.8954-  

 

Figure 6.40: Closed loop DO process response under the NLPID1 controller, when the set-point is 

Lmg /2 , Lmgs ino /8.0,  and dayLmgrso //309.6402  

 

 

Figure 6.41: Closed loop DO process response under the NLPID1 controller, when the set-point is 

Lmg /2 , Lmgs ino /8.0,  and dayLmgrso //1506.280  
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Figure 6.42: Closed loop DO process response under the NLPID1 controller, when the set-point is 

Lmg /2 , Lmgs ino /8.0,  and dayLmgrso //442.3431  

 
Figure 6.43: Closed loop DO process response under the NLPID1 controller, when the set-point is 

Lmg /2 , Lmgs ino /8.0,  and dayLmgrso //4477.471  

 
Figure 6.44: Closed loop DO process response under the LPID controller, when the set-point is 

Lmg /7.1 , Lmgs ino /8.0,   and dayLmgrso //8954.294 ,   
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Figure 6.45: Closed loop DO process response under the NLPID1 controller, when the set-point is 

Lmg /7.1 , Lmgs ino /8.0,   and dayLmgrso //6402.309  

 

Figure 6.46: Closed loop DO process response under the NLPID1 controller, when the set-point 

is Lmg /7.1 , Lmgs ino /8.0,   and dayLmgrso //1506.280  

 

Figure 6.47: Closed loop DO process response under the NLPID1 controller, when the set-point is 

Lmg /7.1 , Lmgs ino /8.0,   and dayLmgrso //3431.442  
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Figure 6.48: Closed loop DO process response under the LPID controller, when the set-point 

is Lmg /7.1 , Lmgs ino /8.0,   and dayLmgrso //4477.147  

 

Table 6.4:  Closed loop nonlinear DO process characteristics under the NLPID1 controller 

Parameters Characteristics 

Set 
point 

oins  

[ Lmg / ] 

sor  

dayLmg //  

Time 
delay 
[days] 

Steady 
state error 

[ Lmg / ] 

Rise time 
[days] 

Settling time 
[days] 

2.7 0.01 -294.8954 0.05 0.02 0.4 4.4 

2.7 0.01 -309.6402 0.05 0.025 0.46 4.8 

2.7 0.01 -280.1506 0.05 0.02 0.4 4.5 

2.7 0.01 -442.3431 0.05 0.05 0.49 4.9 

2.7 0.01 -147.4477 0.05 0.01 0.4 4 

2 0.8 -294.8954 0.05 0.02 0.4 3.5 

2 0.8 -309.6402 0.05 0.024 0.4 4 

2 0.8 -280.1506 0.05 0.02 0.4 3.8 

2 0.8 -442.3431 0.05 0.05 0.44 4.2 

2 0.8 -147.4477 0.05 0.01 0.4 3.4 

1.7 0.8 -294.8954 0.05 0.02 0.38 3.6 

1.7 0.8 -309.6402 0.05 0.024 0.35 3.6 

1.7 0.8 -280.1506 0.05 0.02 0.33 3.5 

1.7 0.8 -442.3431 0.05 0.05 0.4 4 

1.7 0.8 -147.4477 0.05 0.01 0.3 3 

 

6.4.2.2.1 Discussion 

The closed loop nonlinear DO process behavior under different internal disturbances and 

different set-point values is tested. The NLPID1 controller with parameters obtained for 

the LPID controller and the linearised DO process by the pole placement method which 

is called in short as PP1 method in this thesis failed to control the nonlinear DO process. 

From Figure 6.34 to Figure 6.48 the process reaction under additionally tuned NLPID1 

controller parameters was able to achieve the set-point values and is not strongly 

affected by the disturbances and set-point changes. Closed loop characteristics of the 
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nonlinear DO process behavior are given in Table 6.4. When the set point is not 

changing and the disturbance is changed to a high value, the system settling time 

increases, and the settling time becomes smaller as the disturbance decrease. The 

variation of the set point affects both the rise and settling time just like the process 

disturbance. When the set point is 2.7 mg/L the time that the system takes to settle is 

more than the settling time when the set point is 2 mg/L or 1.7 mg/L. The analysis shows 

that the rise time between the set point changes is small when the set point is low: see in 

Table 6.4 the system response under the set point changing from 2.7 to 1.7 mg/L.  

The following section applies the designed LPID controller parameters through the PP1 

method into the NLPID2 controller to control the linearized DO process.  

 

6.4.2.3 Simulation result for the closed loop linear DO process behavior under the NLPID2 

controller  

The results shown below are for the closed loop linearized DO model under the NLPID2 

controller with the controller parameters equal to those of the designed LPID one based 

on the PP1 method, which is explained in section 6.2. The results show that the use of 

the NLPID2 to control the linearised DO process through the parameters designed for the 

LPID controller can make the system to be unstable and oscillate. The tuning was also 

applied, but the system taken as a whole did not show good improvement. Figure 6.49 

shows the closed loop linear DO process under the NLPID2 controller that uses the 

designed LPID controller parameters without tuning them. After some try and error 

controller parameter tests, Figure 6.50 and Figure 6.51 show the closed loop linear DO 

system under the final accepted new values of the NLPID2 controller parameters for the 

linearised DO process. 

 

Figure 6.49: Closed loop linearized DO process response under the NLPID2 controller, when the 

set-point is Lmg /2  
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Figure 6.50: Closed loop linearised DO process response under the NLPID2 controller, when the 

set-point is Lmg /2  

 

Figure 6.51: Closed loop linearised DO process response under the NLPID2 controller, when the 

set-point is Lmg /7.2  

Table 6.5: Closed loop linearised DO process characteristics under the NLPID2 controller 

Design  Controller 
parameters 

Characteristics 

Set-point Kp Ki DO response  Comment  

Any set point 0.005 0.03 Unstable & oscillate  The use of 
NLPID2 to control 
linear DO process 
is not 
recommended. 

2 0.09 0.008 Over damped  with steady state 
error of 4% at the final point 

2.7 0.09 0.008 Over damped  with steady state 
error of 4% at the final point 

  

The simulations in Figure 6.49 to Figure 6.51 show that the NLPID2 controller cannot 

successfully control the linearized DO process model. Table 6.5 shows the closed loop 

linear DO process behavior characteristics under the NLPID2 controller with the best 

tuned parameters that were establish after tuning. 
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6.4.2.4 Simulation results for the closed loop nonlinear DO process behavior under the 

NLPID2 controller 

The closed loop Simulink model used to obtain these results is illustrated in Figure 6.24. 

First the tuned parameters for the NLPID1 controller for the control of the nonlinear DO 

process were used to show that they are not convenient for the NLPID2 controller. The 

try and error tuning process was performed many times in order to find the controller 

parameters that can be used for the NLPID2 controller to stabilize the DO process and to 

be no-overshoot. Therefore, as the controller parameters were tuned, the selected 

parameter values during the trial and the error process of tuning are Kp =200 and Ki = 

0.005. The simulation results for this section are shown from Figure 6.53 till Figure 6.67 

based on different set-point values and different internal disturbances ( oins and sor ) 

using the variations for the DO set point and the DO process disturbances as given in 

Table 6.1. 

 
Figure 6.52: Closed loop DO process response under the NLPID2 controller, when the set-point 

is Lmg /2 , Lmgs ino /8.0,    and dayLmgrso //294.8954- (Figure 6.52: (a) better tuned 

controller parameters for NLPID2 and (b) nonlinear DO response under the NLPID2 when the tuned 
for NLPID1 parameters are used in NLPID2 controller)  
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Figure 6.53: Closed loop DO process response under the NLPID2 controller, when the set-point is 

Lmg /7.2 , Lmgs ino /01.0,    and dayLmgrso //294.8954-  

 

 
Figure 6.54: Closed loop DO process response under the NLPID2 controller, when the set-point 

is Lmg /7.2 , Lmgs ino /01.0,    and dayLmgrso //6402.309
 

 

 
Figure 6.55: Closed loop DO process response under the NLPID2 controller, when the set-point is 

Lmg /7.2 , Lmgs ino /01.0,    and dayLmgrso //1506.280  
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Figure 6.56: Closed loop DO process response under the NLPID2 controller, when the set-point is 

Lmg /7.2 , Lmgs ino /01.0,    and dayLmgrso //3431.442  

 

 
Figure 6.57: Closed loop DO process response under the NLPID2 controller, when the set-point is 

Lmg /7.2 , Lmgs ino /01.0,    and dayLmgrso //4477.147  

 

 
Figure 6.58: Closed loop DO process response under the NLPID2 controller, when the set-point 

is Lmg /2 , Lmgs ino /8.0,    and daydayLmgrso ///294.8954-  
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Figure 6.59: Closed loop DO process response under the NLPID2 controller, when the set-point 

is Lmg /2 , Lmgs ino /8.0,    and dayLmgrso //6402.309  

 

 
Figure 6.60: Closed loop DO process response under the NLPID2 controller, when the set-point is 

Lmg /2 , Lmgs ino /8.0,    and dayLmgrso //1506.280  

 

 
Figure 6.61: Closed loop DO process response under the NLPID2 controller, when the set-point 

is Lmg /2 , Lmgs ino /8.0,    and dayLmgrso //3431.442  
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Figure 6.62: Closed loop DO process response under the NLPID2 controller, when the set-point 

is Lmg /2 , Lmgs ino /8.0,    and dayLmgrso //4477.147  

 

 
Figure 6.63: Closed loop DO process response under the NLPID2 controller, when the set-point 

is Lmg /7.1 , Lmgs ino /8.0,    and dayLmgrso //294.8954-  

 

 
Figure 6.64: Closed loop DO process response under the NLPID2 controller, when the set-point 

is Lmg /7.1 , Lmgs ino /8.0,    and dayLmgrso //6402.309  
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Figure 6.65: Closed loop DO process response under the NLPID2 controller, when the set-point is 

Lmg /7.1 , Lmgs ino /8.0,    and dayLmgrso //1506.280  

 

 

Figure 6.66: Closed loop DO process response under the NLPID2 controller, when the set-point is 

Lmg /7.1 , Lmgs ino /8.0,    and dayLmgrso //3431.442  

 

Figure 6.67: Closed loop DO process response under the NLPID2 controller, when the set-point is 

Lmg /7.1 , Lmgs ino /8.0,    and dayLmgrso //4477.147  
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The following Table 6.6 gives the characteristics of the closed loop system behavior.  

 

Table 6.6:  Closed loop the nonlinear DO process characteristics under the NLPID2 controller 

Parameters Characteristics 

Set 
point 

oins  

[ Lmg / ] 

sor  

dayLmg //  

Time 
delay 
[days] 

Steady 
state error 

[ Lmg / ] 

Rise time 
[days] 

Settling 
time 
[days] 

2.7 0.01 -294.8954 0.1 0.25 0.5 4.2 

2.7 0.01 -309.6402 0.1 0.27 0.5 4.2 

2.7 0.01 -280.1506 0.1 0.25 0.5 4.2 

2.7 0.01 -442.3431 0.1 0.45 0.5 4.5 

2.7 0.01 -147.4477 0.1 0.1 0.4 4 

2 0.8 -294.8954 0.1 0.2 0.5 4 .1 

2 0.8 -309.6402 0.1 0.21 0.5 4.2  

2 0.8 -280.1506 0.1 0.18 0.5 4.1  

2 0.8 -442.3431 0.1 0.34 0.5 4.3 

2 0.8 -147.4477 0.1 0.1 0.4 4 

1.7 0.8 -294.8954 0.1 0.18 0.5 4 

1.7 0.8 -309.6402 0.1 0.2 0.5 4 

1.7 0.8 -280.1506 0.1 0.18 0.5 4 

1.7 0.8 -442.3431 0.1 0.305 0.5 4.2 

1.7 0.8 -147.4477 0.1 0.08 0.3 3.7 

 

 6.4.2.4.1 Discussion 

Simulation results shown in Figures 6.53 till 6.67 are for different set-point value with 

different inos ,  and sor  disturbances.  Making the observation of the system behavior in the 

above figures, it can be said that the tuned LPID controller parameters designed based 

on the PP1 method and applied in the NLPID2 to control the nonlinear DO process are 

not suitable. In the same way the accepted tuned NLPID1 controller parameters are not 

suitable enough to be used in the NLPID2 to control the nonlinear DO concentration 

process (see Figure 6.52(b)). More tuning was applied to find the controller parameter for 

the NLPID2 controller in order to control the nonlinear DO process model. Although the 

tuned NLPID2 controller parameters have controlled the nonlinear DO process to the 

right response path, they fail to make the process to accomplish the designed set point. 

In the cases like these more tuning is necessary, which is so time consuming and can 

make the system to oscillate. In this case the closed loop system had overshoots and 

started oscillations, that’s is why more tuning is not the option.   

Comparing the same values of the disturbance in a process for different set-point 

conditions (like 2 and 1.7 mg/L), the settling time is less for the process with conditions 

that have a smaller set-point value. This can be seen in that data values highlighted light 

green in the Table 6.6. In the closed loop DO process behavior, it can be seen that the 
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value for the steady state error increases when the sor  value is larger (see the 

comparison Table 6.7)  

 

Table 6.7: Comparison of the obtained closed loop nonlinear DO process specifications of the 
designed LPID and NLPID controllers 

Set-point  Disturbanes Characteristics LPID NLPID1 NLPID2 

2.7 
 

rso= -294. 
soin =0.01 
 

Rise Time  0.3 0.4 0.5 

Settling time 0.5 4.4 4.2 

Steady state error 0.02 0.02 0.25 

Overshoot No No No 

2.7 
 

rso = -442.3231, 
soin =0.01 
 

Rise Time  0.34 0.49 0.5 

Settling time 0.5 4.9 4.5 

Steady state error 0.04 0.05 0.45 

Overshoot No No No 

2 
 

rso= -294. 
soin =0.8 
 

Rise Time  0.3 0.4 0.5 

Settling time 0.4 3.5 4.1 

Steady state error 0.022 0.02 0.2 

Overshoot No No No 

2 rso= -442.3231 
soin =0.8 
 

Rise Time  0.34 0.44 0.5 

Settling time 0.4 4.2 4.3 

Steady state error 0.04 0.05 0.34 

Overshoot No No No 

1.7 rso= -294. 
soin =0.8 

Rise Time  0.3 0.38 0.5 

Settling time 0.35 3.6 4 

Steady state error 0.02 0.02 0.18 

Overshoot No No No 

1.7 rso= -442.3231 
soin =0.8 
 

Rise Time  0.34 0.4 0.5 

Settling time 0.35 4 4.2 

Steady state error 0.04 0.05 0.305 

Overshoot no No No 

 

6.5 Conclusion  

The linear and two nonlinear PID controllers were designed and tuned to control the 

linearised and the nonlinear DO process behavior. The closed loop system has been 

simulated and the responses have been exposed in the related sections. The simulation 

results show that the use of the designed LPID parameters for the case of the linearised 

DO model in the NLPID controllers to control the nonlinear DO process is not successful. 

An additional tuning of the parameters for the NLPID controllers is required.  Comparison 

of the results in Table 6.4 and Table 6.6 shows that the NLPID1 controller performs much 

better that the NLPID2 one.  

The next chapter is based on the design of the LPID and NLPID controllers based on the 

nonlinear DO process model. 
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CHAPTER SEVEN 

APPLICATION OF THE POLE-PLACEMENT METHOD TO DESIGN LPID AND NLPID 

CONTROLLERS FOR THE NONLINEAR DO PROCESS MODEL 

 

7.1  Introduction  

This Chapter carries the application of the Pole-Placement method to design LPID and 

NLPID controllers for the nonlinear DO process model. As in this case the DO process is 

nonlinear, it is not possible to follow the algorithm of the pole placement method used in 

Chapter 6 for the linear systems. The thesis proposes new procedures for design of the 

linear and nonlinear PID controllers based on the nonlinear equation of the closed loop 

system. Section 7.2 describes a novel design procedure based on the Pole-Placement 

method for design of LPID and NLPID controllers for the nonlinear DO process. Section 

7.3 gives the design of the LPID controller parameters for the nonlinear DO process, and 

its simulation results. The design of the NLPID1 controller parameters for the nonlinear 

DO process is given in Section 7.4. Section 7.5 discusses the design of the NLPID2 

controller parameters for the nonlinear DO process. Section 7.6 gives the conclusion of 

this Chapter. 

 

7.2 Procedure for Design of the LPID and NLPID Controllers Parameters for the 

nonlinear DO process based on the Pole-Placement method  

The pole placement method is applied to design the controllers’ parameters for the LPID 

and the two NLPID controllers based on the nonlinear model of the DO process.  

The following steps are proposed for the design process of the linear and nonlinear PID 

controllers for the nonlinear DO process model: 

 Nonlinear DO model is combined with the PID controller through an exponential 

model of the Oxygen Transfer Rate (OTR) in order to find the equation of the 

nonlinear closed loop system. 

 The equation of the closed loop system is a function of the PID parameters dip TTK ,, . 

This equation is a second order equation according the unknown parameters with 

three unknowns which means its solution can be found only for two of them. On this 

basis Td is accepted to be known. 

 The Matlab function fsolve is used to find the values of Kp and Ti parameters. 

This procedure, called Pole placement2 (PP2) method is described below through 
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numerical solution of the differential equation of the closed loop system towards Kp and Ti 

The nonlinear controllers equations (Equation 5.1 - NLPID1) and (Equation 5.3 - NLPID2) 

are used to develop the procedure for the controllers design. Design of the controller 

parameters for the nonlinear DO process in the following sections is divided in three 

ways: design of the LPID controller parameters based on the nonlinear DO process 

model, design of the NLPID1 controller parameters based on the nonlinear DO process 

model, and design of the NLPID2 controller parameters based on the nonlinear DO 

process model.  

7.3  Design of the LPID controller parameters for the nonlinear DO process model 

The representation of the time-domain conventional linear PID controller is  

 

t

dip

t

d

i

p
dt

de
KedtKeK

dt

de
Tedt

T
eKu

00

1
[      (7.1) 

Where: dpd

i

p

ip TKK
T

K
KK  ;;  are the controller gains, iT  is the integral time 

constant, dT  is the derivative time constant and u  is the controller output. In general a 

closed loop system error is yre  , where y  is the output of the process under control 

and r  is the desired reference trajectory. 

 

To design the LPID controller parameters for the nonlinear DO process model; the 

following steps are followed: 

1. The Dissolved Oxygen (DO) concentration process model given by Equation 7.2a is 

combined with the LPID controller model given by Equation 7.1 through the 

exponential model of the Oxygen Transfer Rate (OTR), given by Equation (7.2b). 

  )()(
1

,1, osatoLasonon

n

o ssKrssQ
Vdt

ds
o

        (7.2a) 

Where: 

 uK

La eKK 211


          (7.2b) 

2. Derivations of the closed loop DO process equation. The equation is written for the 

error between the set-point and the current value of the dissolved oxygen as follows:  

    oo
sp sse           (7.3) 
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Then the differential equation of the closed loop DO process is: 
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  (7.4) 

3. Substitute Equation (7.3) in Equation (7.4) to form the final DO process model of the 

closed loop system expressed as a function of os  and the LPID controller 

parameters,  as shown in Equation (7.5)  
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   (7.5) 

4. If the values of the os are known in every moment of time, then the parameters of the 

LPID controller are the only unknown variables of the Equation (7.5). These 

parameters can be found by solution of the Equation (7.5) which includes first and 

second order derivatives of the dissolved oxygen concentration. On this basis, only 

two controller parameters are considered to be unknown: pK  and iT . The parameter 

dT  is considered known and constant. The calculated parameters of the LPID 

controller depend on the selected value of the DO concentration os . The open loop 

DO process behavior trajectory is selected to be known. Then the parameters 

pK and iT  are calculated for every point of this trajectory. As the Equation (7.5) is a 

nonlinear one it cannot be solved analytically. A numeric method is selected. The 

Matlab function ‘fsolve’ is applied. It uses the Leverberg – Marquardt optimization 

algorithm to calculate the best values of the unknown parameters pK  and iT  The 

Equation (7.5) is solved by using some initial guess values of the PID control 

coefficients pK  and iT . The LPID parameters are calculated for all values of the 

open loop trajectory of the dissolved oxygen os , found as a reaction of the process to 

a step input. The following Figure (8.1) shows the flow chart of the calculation 

procedure. 
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Figure 7.1: Flow diagram to solve the Equation (7.5) according Kp and Ti 

 

 A Matlab/Simulink program is developed to calculate the unknown controller parameters 

in Equation (7.5), Appendix.B7. The obtained parameters Kp and Ti, are shown in Table 

7.1. 

7.3.1  FSOLVE function based on the Levenberg-Marquardt Algorithm  

The Levenberg-Marquardt (LM) algorithm is used to solve the non-linear newly formed 

equation (in the above case 7.5).  It is a standard technique and is used to solve the 

nonlinear function..  

The Levenberg-Marquardt curve-fitting method is actually a combination of two 

minimization methods:  

i. The gradient descent method and  

ii. The Gauss-Newton method.  
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Gavin, (2013) says that in the gradient descent method, the sum of the squared errors is 

reduced by updating the parameters in the direction of the greatest reduction of the least 

squares objective. In the Gauss-Newton method, the sum of the squared errors is 

reduced by assuming the least squares function is locally quadratic, and then the 

minimum of this quadratic function is found. The Levenberg-Marquardt algorithm acts 

more like a gradient-descent method when the parameters are far from their optimal 

value, and act more like the Gauss-Newton method when the parameters are close to 

their optimal value (Gavin, 2013).  

The initial guess values selected for the application for the PP2 procedure for the design 

of the LPID controller are as follows: Kp initial = 30, Ti initial =10. Based on the given os  

trajectory the following trajectories of the Kp and Ti variables were obtained as shown in 

Table 7.1. 

Table 7.1: Obtained Kp, Ti for the linear PID controller 

so Kp Ti 

0.05 29.99 2.99 

1.94 29.77 46.34 

1.967 29.878 100.27 

1.97 29.89 83.8 

1.984 29.9 62.27 

2.0 29.99 45.89 

2.044 30.1553 26.054 

2.01 30.0 38.33 

2.03 30.09 30.9 

2.05 30.17 24.6 

2.03 30.11 29.2 

2.024 30.0760 33.92 

2.04 30.5 26.4 

2.05 30.175 24.5 

2.02 30.08 33.01 

2.02 30.0773 33.75 

2.02 30.07 33.9 
 

The optimal control parameters shown above in Table 7.1 are calculated under different 

values of os . Matlab function ‘fsolve’ is used in a program called “findlpidpar_pp2” to call 

a function file called “myfun5” and find different final optimal values of Kp and Ti based on 

the different values of )(tso , 0ot to ft were dayst f 8 . After these control values 

were obtained, many tests were performed to determine with which LPID controller 

parameters the nonlinear DO process behavior is according to the required 

specifications. The programs developed for this process are given in Appendix B7 and 

explained in Chapter 9, Table 9.1. The following Table 7.2 gives the best performing 
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LPID controller parameter for the nonlinear DO process.   

Table 7.2: Selected controller parameters for nonlinear  
DO process under the linear PID controller 

Controller  ki Ti Kp 

LPID 1.1574  26.05 30.1553 

LPID 0.8865 33.92 30.0760 

LPID 0.8910 33.75 30.0773 

 

From the chosen best performing optimized controller parameters Kp and Ti given in 

Table 7.2, the best of the best as they are highlighted in green in the above table are 

used in the LPID controller given in Figure (7.2), to control the closed loop system. Later 

different disturbance and set point values are changed in the DO process in order to 

investigate whether these controller parameters can still handle variations in the system. 

The following section is based on the simulation of the nonlinear DO process under the 

LPID controller.   

7.3.2  Simulink block diagram of the closed loop system under the LPID controller 

The model of the DO closed loop system has been built in Simulink based on the linear 

PID controller as shown in Figure 7.2. The parameters designed for the LPID controller 

as indicated in Table 7.2 above using the Pole Placement 2 method are applied to the 

controller block (LPID) to control the process of DO concentration. 

 

Figure 7.2: Closed Loop diagram of the nonlinear DO process with the linear PID controller 
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7.3.2.1  Simulation results of the closed loop nonlinear DO process based on the 

LPID controller 

Table 7.3 shows the variations of the DO disturbances that are used to 

investigate the closed loop system behavior under the LPID controller. 

 

Table 7.3: Variation for the DO set-point and DO process disturbances 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The values in the above Table 7.3 have been applied in the DO process in order to view 

the changes that may occur on the system behavior under these conditions. The 

following results shown in Figure 7.3 – Figure 7.17 were obtained.  

  

 
Figure 7.3: Closed loop DO process response under the LPID controller, when the set-point is 

Lmg /7.2  and dayLmgrso //294.8954-  

Set-point 
oins  sor  

2.7 0.01 -294.8954 

2.7 0.01 -309.6402 

2.7 0.01 -280.1506 

2.7 0.01 -442.3431 

2.7 0.01 -147.4477 

2 0.8 -294.8954 

2 0.8 -309.6402 

2 0.8 -280.1506 

2 0.8 -442.3431 

2 0.8 -147.4477 

1.7 0.8 -294.8954 

1.7 0.8 -309.6402 

1.7 0.8 -280.1506 

1.7 0.8 -442.3431 

1.7 0.8 -147.4477 
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Figure 7.4: Closed loop DO process response under the LPID controller, when the set-point is 

Lmg /7.2  and dayLmgrso //309.6402  

 

 

Figure 7.5: Closed loop DO process response under the LPID controller, when the set-point is 

Lmg /7.2  and dayLmgrso //1506.280  

 

 
Figure 7.6: Closed loop DO process response under the LPID controller, when the set-point is 

Lmg /7.2  and dayLmgrso //442.3431  
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Figure 7.7: Closed loop DO process response under the LPID controller, when the set-point is 

Lmg /7.2  and dayLmgrso //4477.147  

 
Figure7.8: Closed loop DO process response under the LPID controller, when the set-point is 

Lmg /2  and dayLmgrso //294.8954-  

 
Figure 7.9: Closed loop DO process response under the LPID controller, when the set-point is 

Lmg /2  and dayLmgrso //309.6402  
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Figure 7.10: Closed loop DO process response under the LPID controller, when the set-point is 

Lmg /2  and dayLmgrso //1506.280  

 
Figure 7.11: Closed loop DO process response under the LPID controller, when the set-point is 

Lmg /2  and dayLmgrso //442.3431  

 
Figure 7.12: Closed loop DO process response under the LPID controller, when the set-point is 

Lmg /2  and dayLmgrso //4477.147  
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Figure 7.13: Closed loop DO process response under the LPID controller, when the set-point is 

Lmg /7.1  and dayLmgrso //294.8954-  

 

 
Figure 7.14: Closed loop DO process response under the LPID controller, when the set-point is 

Lmg /7.1  and dayLmgrso //309.6402  

 

 
Figure 7.15: Closed loop DO process response under the LPID controller, when the set-point is 

Lmg /7.1  and dayLmgrso //1506.280  
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Figure 7.16: Closed loop DO process response under the LPID controller, when the set-point is 

Lmg /7.1  and dayLmgrso //442.3431  

 

 
Figure 7.17: Closed loop DO process response under the LPID controller, when the set-point is 

Lmg /7.1  and dayLmgrso //4477.147  

 

7.3.2.2 Discussion on the simulation results based on the LPID controller 

Table 7.4 shows the characteristics of the behavior of the closed loop DO process 

controlled by the LPID controller whose parameters are designed based on the nonlinear 

DO process. 
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Table 7.4:  Nonlinear DO process characteristics under the LPID controller 

Parameters Characteristics 

Set 
point 

oins  

[ Lmg / ] 

sor  

dayLmg //  

Time 
delay 
[days] 

Steady state 

error [ Lmg / ] 

Rise 
time 
[days] 

Settling 
time 
[days] 

2.7 0.01 -294.8954 0.05 0.05 0.5 1 

2.7 0.01 -309.6402 0.05 0.07 0.5 1 

2.7 0.01 -280.1506 0.05 0.05 0.5 1 

2.7 0.01 -442.3431 0.05 0.12 0.7 1.2 

2.7 0.01 -147.4477 0.05 0.01 0.5 1 

2 0.8 -294.8954 0.05 0.05 0.5 0.75 

2 0.8 -309.6402 0.05 0.055 0.5 0.8 

2 0.8 -280.1506 0.05 0.05 0.5 0.8 

2 0.8 -442.3431 0.05 0.12 0.55 1 

2 0.8 -147.4477 0.05 0.05 0.4 0.6 

1.7 0.8 -294.8954 0.2 0.05 0.3 1 

1.7 0.8 -309.6402 0.05 0.07 0.3 0.5 

1.7 0.8 -280.1506 0.05 0.05 0.3 0.5 

1.7 0.8 -442.3431 0.05 0.1 0.4 0.6 

1.7 0.8 -147.4477 0.05 0.05 0.3 0.4 

 

Through the characteristics shown in the above (Table 7.4), it is noted that the use of the 

proposed pole placement procedure can produce the LPID controller parameters capable 

to lead the DO process to good performance. It can be seen that the steady state error 

increases if the variation of the internal disturbances is high; this is shown with the green 

highlight on the table. Considering different set-points conditions high and low (such as 

2.7 and 2 mg/L) with the same values of rso and different values of soin:it can be seen that 

the case with the high set-point value of 2.7 has a big rise time and settling time values 

with the steady state error of 0.1 which is higher than 0.08 in the set point condition of 2 

mg/L. When the internal disturbances in the DO process are the same, but the set-points 

for the process are different; the rise time and settling time are higher in the case of 2.7 

mg/L set point. 

 

7.4  Design of the NLPID1 controller parameters for the nonlinear DO process 

In order to obtain the nonlinear PID controller parameters, the control design steps 

shown and explained in section 7.3 must be followed, but now based on the nonlinear 

PID controller (NLPID1) model: 

1. Models of the NLPID1 controller and the plant. 

The representation of the nonlinear PID1 controller in time-domain is: 


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The above equation (Equation 7.6) is explained in Chapter 5 (as Equation 5.1.), 

where: ip TK ,  and dT  are the controller gains similar to these of the LPID controller,  is 

the constant used to determine the linear range of the error function,   is the nonlinear 

degree of the error function (Jiang, 2009), e  is the error signal. 

The nonlinear function proposed by Jiang et al., (2009) and Zaidner et al., (2010) can be 

mathematically represented as follows:  
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Equation (7.8) describes the considered DO process model: 
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2. Derivation of the equation of the closed loop DO system 

The control action in Equation 7.8 must be substituted by Equation 7.6 and Equation 7.7 

to form the closed loop equation of the system: 
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 (7.9) 

3. Solution of the equation (7.9) by a numeric method   

The Equation 7.9 is numerically solved by using the Matlab function fsolve. The algorithm for 

the solution of the Equation (7.9) is the same as this given in Figure 7.1. A Matlab script file 

named “Findnlpid1par_PP2.m” is developed to calculate the control parameters in Equation 

7.9 based on the variable of )(tso , tft :0  which is the trajectory of the DO process under 

unit step input. In order for this program to give the needed solution of Equation (7.9) it works 

with a function file named as “myfun1”, which is called by an iteration loop in the script file to 

calculate of every point of )(tso , )(8:00 daystt f  , the values of pK  and iT . These two 

files are given in Appendix B8. Table 7.5 gives the obtained optimized parameter 

trajectories.  

 

Table 7.5: Obtained NLPID1 controller parameters designed  
based on the nonlinear DO process 

os  Kp Ti Ki 

0.05 52 10 5.2 

0.99 52 10 5.2 

1.68 0.9 52 0.017 
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1.756 1.0 30.04 0.033 

1.859 1.409 37.577 0.034 

1.940 2.61 69.10 0.03 

1.983 5.05 64.032 0.0789 

2.00 10.9 65.78 0.165 

2.007 24.66 66.66 0.369 

2.010 33.64 61.39 0.54 

2.014 41.3 51.92 0.79 

2.02 48.1 35.48 1.355 

2.0322 49.7 28.22 1.72 

2.04 51.1 19.23 2.65 

2.02 49.75 28.33 1.75 

2.020 48.09 35.71 1.34 

 

The performance of the obtained controller parameters was tested to control the 

nonlinear DO process and the best three selected controller parameters are given in 

Table 7.6. The best performed Kp and Ti value are used for further tests of the closed 

loop system behavior under different set-point and disturbance values. The selected 

controller parameters from the calculated values in Table 7.5 are shown below in Table 

7.6.  

 

Table 7.6: The chosen NLPID1 controller parameters for the nonlinear DO process 

Controller so Kp  Ti  Ki 

NLPID1 2.04 51.1 19.23 2.65 

NLPID1 2.007 24.66 66.66 0.369 

NLPID1 2.010 33.64 61.39 0.54 

NLPID1 2.014 41.3 51.92 0.79 

NLPID1 2.02 48.1 35.48 1.355 

 

 7.4.1  Simulink Block Diagram of the DO closed loop system under the NLPID1 controller 

Figure 7.18 shows the Simulink block diagram of the closed loop system of the DO 

process based on the nonlinear PID controller (NLPID1) described and shown in Chapter 

5.3.3. In this Chapter, the diagram in Figure 7.18 is simulated using the NLPID1 

controller designed based on the nonlinear DO process. 

 

Figure 7.18: Simulink diagram of the closed loop DO process using the NLPID1 controller 
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NLPID1 controller parameters used for the simulation are the best performing controller 

parameters that were tested which are highlighted in Table 7.6. The following section 

gives the simulation results of the closed loop nonlinear DO process under the nonlinear 

PID1 controller parameters designed based on the PP2 method. 

7.4.2  Simulation results of the closed loop nonlinear DO process based on the NLPID1   

controller 

The simulations are performed according to the various set points and DO process 

disturbances as given in the Table 7.3.  The next figures (Figure 19 to Figure 33) show 

the results of the closed loop DO system behavior when the disturbance and the set-

point variations are performed. This is done in order to make an examination of how well 

the system will perform under the NLPID1 controller, when using the designed control 

parameters in Table 7.6.  

 

 
Figure 7.19: Closed loop DO process response under the NLPID1 controller, when the set-point is 

Lmg /7.2  and dayLmgrso //8954.294  

 

 
Figure 7.20: Closed loop DO process response under the NLPID1 controller, when the set-point is 

Lmg /7.2  and dayLmgrso //6402.309  
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Figure 7.21: Closed loop DO process response under the NLPID1 controller, when the set-point is 

Lmg /7.2  and dayLmgrso //1506.280  

 

 
Figure 7.22: Closed loop DO process response under the NLPID1 controller, when the set-point is 

Lmg /7.2  and dayLmgrso //3431.442  

 

 
Figure 7.23: Closed loop DO process response under the NLPID1 controller, when the set-point is 

Lmg /7.2  and dayLmgrso //4477.147  
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Figure 7.24: Closed loop DO process response under the NLPID1 controller, when the set-point is 

Lmg /2  and dayLmgrso //8954.294  

 

 
Figure 7.25: Closed loop DO process response under the NLPID1 controller, when the set-point is 

Lmg /2  and dayLmgrso //6402.309  

 

 
Figure 7.26: Closed loop DO process response under the NLPID1 controller, when the set-point is 

Lmg /2  and dayLmgrso //1506.280  
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Figure 7.27: Closed loop DO process response under the NLPID1 controller, when the set-point is 

Lmg /2  and dayLmgrso //3431.442  

 

 
Figure 7.28: Closed loop DO process response under the NLPID1 controller, when the set-point is 

Lmg /2  and dayLmgrso //4477.147  

 

 
Figure 7.29: Closed loop DO process response under the NLPID1 controller, when the set-point is 

Lmg /7.1  and dayLmgrso //8954.294  
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Figure 7.30: Closed loop DO process response under the NLPID1 controller, when the set-point is 

Lmg /7.1  and dayLmgrso //6402.309  

 

 
Figure 7.31: Closed loop DO process response under the NLPID1 controller, when the set-point is 

Lmg /7.1  and dayLmgrso //1506.280  

 

 
Figure 7.32: Closed loop DO process response under the NLPID1 controller, when the set-point is 

Lmg /7.1  and dayLmgrso //3431.442  
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Figure 7.33: Closed loop DO process response under the NLPID1 controller, when the set-point is 

Lmg /7.1  and dayLmgrso //4477.147  

 

7.4.3  Discussion on the simulation results based on the NLPID1 controller for different 

operation conditions 

Through the simulations completed in section 7.4.2 for the closed loop system under the 

NLPID1 controller, the following characteristics of the DO process behavior are 

calculated in Table 7.7   

Table 7.7:  Closed loop characteristics obtained when the  

NLPID1 is used to control the nonlinear DO process 

Parameters Characteristics 

Set 
point 

oins  

[ Lmg / ] 

sor  

dayLmg //  

Time 
delay 
[days] 

Steady 
state error 

[ Lmg / ] 

Rise time 
[days] 

Settling time 
[days] 

2.7 0.01 -294.8954 0.055 0.02 1 3.5 

2.7 0.01 -309.6402 0.05 0.02 1 3.5 

2.7 0.01 -280.1506 0.05 0.02 1 3.5 

2.7 0.01 -442.3431 0.05 0.04 1 4.5 

2.7 0.01 -147.4477 0.055 0.02 1 3.4 

2 0.8 -294.8954 0.05 0.001 0.9 3 

2 0.8 -309.6402 0.05 0.001 0.9 3 

2 0.8 -280.1506 0.05 0.001 0.9 3 

2 0.8 -442.3431 0.05 0.04 0.9 3 

2 0.8 -147.4477 0.05 0 0.9 2.8 

1.7 0.8 -294.8954 0.2 0.0005 0.9 2.62 

1.7 0.8 -309.6402 0.05 0.0005 0.9 2.5 

1.7 0.8 -280.1506 0.05 0.0005 0.9 2.5 

1.7 0.8 -442.3431 0.05 0.04 0.9 3 

1.7 0.8 -147.4477 0.056 0.0001 0.9 2.6 

 

Figure 7.19 till Figure 7.33 show the result of the closed loop DO process behavior under 

the NLPID1 controller design based on the Pole-Placement (PP2) method. In the process 
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the set-point values were changed from Lmg /7.2 , Lmg /2 and Lmg /7.1 . The system 

response has achieved the desired behavior under the different operating conditions of 

OUR ( sor ) and the internal disturbance, which also varies from Lmgs ino /01.0,  to 

Lmg /8.0  respectively.  In Figure 7.19 to Figure 7.23 one set-point has been used, but 

OUR ( sor ) is alternating between different values. The reason of keeping the set-point 

value is to observe how many changes can be seen in the system when there is a 

disturbance variation every time. It can be noted in the results and in Table 7.7 that the 

steady state error is larger when the value of sor  is high. Figure 7.24 -  Figure 7.28 show 

the results of the closed loop system when the disturbances and the set-point change to 

a different value. Results show that the process has performed successfully under these 

conditions (see results graphs and Table 7.7). 

In Figure 7.29 to Figure 7.33 the set-point has been changed and set aside to a constant 

value of Lmg /7.1  and different internal disturbances are used. As it can be seen the 

process performs well and shows good stability under these conditions.  

 

7.5  Design of the NLPID2 controller parameters for the nonlinear DO process 

In Chapter 5 the second nonlinear PID (NLPID2) to be used in this thesis has been 

discussed. The NLPID2 controller is used in this section firstly for controller parameter 

design based on the nonlinear DO process model, and secondly to control the closed 

loop system of DO process. The NLPID is constructed using a nonlinear error function in 

order to derive the model of the NLPID controller as follows: (Hai-bin et al, 2006). 
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 Where  is the constant, pK is the proportional gain, iK  is the integral gain dK  is the 

derivative gain, e  is the error signal. 

 

The nonlinear error functions are expressed as:  
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The two symbols   and   are the two parameters of the nonlinear functions. 

In order to obtain the nonlinear PID2 controller parameters, the control design steps 

shown and explained in section 7.3 and the algorithm from Figure 7.1 must be followed, 

but now based on the nonlinear PID2 controller (NLPID2) model, which yields to the 

Equation (7.12) of the closed loop system: 
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            (7.12) 

Then, based on the function fsolve the Matlab/Simulation scrip file named as 

“findnlpid2par” is developed for the controller parameter’s calculations and to call a 

function file called “myfun2” as given in Appendix B9. These files are used to determine 

the unknown controller parameters of the NLPID2 controller. The initial guess values 

selected for the application for the PP2 procedure for design of the NLPID2 controller are 

as follows: 30_ initialpK , 10_ initialiK . The following Table 7.8 shows the designed 

controller parameters. 

Table 7.8: Controller Parameter designed based on the nonlinear DO process 

so Kp Ki 

0.05 30 10 

0.54 29.96 9.98 

0.58 3.23 -5.9 

0.83 11.22 -10.47 

0.92 13.98 -10.85 

1.8 28.9 -2.33 

1.99 29.95 0.04 

2.02 30.118 0.522 
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2.03 30.17 0.76 

2.064 30.28 1.151 

2.06 30.28 1.14 

2.04 30.2 0.86 

2.02 30.14 0.6 

2.02 30.1 0.57 

2.02 30.119 0.52 

 

Obtained controller parameters are tested on the closed DO loop system in order to view 

and select the best performing controller parameters, which will then be used further to 

perform the simulations of the closed loop system under different conditions of the 

system disturbances and set-points. The selected ones are given in Table 7.9. 

 

Table 7.9: Selected NLPID2 controller parameter designed  
based for the nonlinear DO process 

Controller  Kp Ki 

NLPID2 29.95 0.04 

NLPID2 30.118 0.522 

NLPID2  30.1  0.57  

 

7.5.1 Simulink Block Diagram of the closed loop system under the NLPID2 controller 

From Table 7.9 the controller parameters displayed in the second row are selected to be 

used for further investigation of the DO process behavior under the NLPID2 controller. 

Figure 7.34 shows the Simulink block diagram of the DO closed loop system with the 

NLPID2 controller. The Simulink block diagram given in Figure 7.34 and the scrip file 

named “NLPID2par_DOpp2” are used for the assignment of the NLPID2 controller 

parameters that are selected from Table 7.9. 

 

Figure 7.34: Simulink diagram of the DO closed loop system using the NLPID2 controller 

7.5.2  Simulation results of the nonlinear DO process under the NLPID2 controller 

The simulation results of the closed loop DO process using the NLPID2 controller are 
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given in Figure 7.35 to Figure 7.49 respectively, for the different set-points and different 

internal disturbances, as shown in Table 7.3. This is done in order to make an 

examination of how well the system will perform under the NLPID2 controller, when using 

the designed controller parameters found and highlighted in section 7.5. 

  

 
Figure 7.35: Closed loop DO process response under the NLPID2 controller, when 

 the set-point is Lmg /7.2  and dayLmgrso //8954.294  

 

 
Figure 7.36: Closed loop DO process response under the NLPID2 controller, when  

the set-point is Lmg /7.2  and dayLmgrso //6402.309  
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Figure 7.37: Closed loop DO process response under the NLPID2 controller, when  

the set-point is Lmg /7.2  and dayLmgrso //1506.280  

 

 
Figure 7.38: Closed loop DO process response under the NLPID2 controller, when  

the set-point is Lmg /7.2  and dayLmgrso //3431.442  

 

 
Figure 7.39: Closed loop DO process response under the NLPID2 controller, when  

the set-point is Lmg /7.2  and dayLmgrso //4477.147  
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Figure 7.40: Closed loop DO process response under the NLPID2 controller, when  

the set-point is Lmg /2  and dayLmgrso //8954.294  

 

 
Figure 7.41: Closed loop DO process response under the NLPID2 controller, when  

the set-point is Lmg /2  and dayLmgrso //6402.309  

 

 
Figure 7.42: Closed loop DO process response under the NLPID2 controller, when 

 the set-point is Lmg /2  and dayLmgrso //1506.280  
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Figure 7.43: Closed loop DO process response under the NLPID2 controller, when  

the set-point is Lmg /2  and dayLmgrso //3431.442  

 

 
Figure 7.44: Closed loop DO process response under the NLPID2 controller, when  

the set-point is Lmg /2  and dayLmgrso //4477.147  

 
Figure 7.45: Closed loop DO process response under the NLPID2 controller, when  

the set-point is Lmg /7.1  and dayLmgrso //8954.294  
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Figure 7.46: Closed loop DO process response under the NLPID2 controller, when  

the set-point is Lmg /7.1  and dayLmgrso //6402.309  

 

 
Figure 7.47: Closed loop DO process response under the NLPID2 controller, when  

the set-point is Lmg /7.1  and dayLmgrso //1506.280  

 

 
Figure 7.48: Closed loop DO process response under the NLPID2 controller, when 

 the set-point is Lmg /7.1  and dayLmgrso //3431.442  
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Figure 7.49: Closed loop DO process response under the LPID controller, when  

the set-point is Lmg /7.1  and dayLmgrso //4477.147  

 

Table 7.10 shows the characteristics of the closed loop DO process behavior. 

  

Table 7.10:  Results obtained when the NLPID2 is used to control the nonlinear DO process 

Parameters Characteristics 

Set 
point 

oins  

[ Lmg / ] 

sor  

dayLmg //  

Time 
delay 
[days] 

Steady 
state error 

[ Lmg / ] 

Rise time 
[days] 

Settling time 
[days] 

2.7 0.01 -294.8954 0.055 0.02 0.6 3.5 

2.7 0.01 -309.6402 0.05 0.02 0.6 3.5 

2.7 0.01 -280.1506 0.05 0.02 0.6 3.5 

2.7 0.01 -442.3431 0.05 0.04 0.6 4.4 

2.7 0.01 -147.4477 0.055 0.02 0.6 3.5 

2 0.8 -294.8954 0.05 0.001 0.5 3 

2 0.8 -309.6402 0.05 0.001 0.5 3 

2 0.8 -280.1506 0.05 0.001 0.5 3 

2 0.8 -442.3431 0.05 0.04 0.5 3 

2 0.8 -147.4477 0.05 0.0005 0.5 2.8 

1.7 0.8 -294.8954 0.05 0.001 0.5 2.8 

1.7 0.8 -309.6402 0.05 0.001 0.5 2.9 

1.7 0.8 -280.1506 0.05 0.001 0.5 2.8 

1.7 0.8 -442.3431 0.05 0.04 0.5 3 

1.7 0.8 -147.4477 0.05 0.0005 0.5 2.7 

 

7.5.3  Discussion on the simulation results obtained under the NLPID2 controller  

The results from Figure 7.35 - Figure 7.49 show some very good closed loop response 

under different internal disturbances ( inos , ) and variation of the OUR ( sor ) in every set-

point of the process.  

In Figure 7.35 to Figure 7.49 different set-points and different internal disturbances are 

used in order to test how good the designed controller parameters work to handle the 
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changes in the systems operation and unexpected variation that may occur. It can be 

seen that the process works successful under these conditions.  

Through these results from the simulations the method used for the design can be 

recommended to be preferred for the nonlinear controller parameter design. 

The following Table 11 shows the comparison of the simulation results based on the 

LPID and the NLPID controllers considered in this Chapter.   

Table7.11: Comparison of the obtained closed loop DO process specifications  
of the designed LPID and NLPID controllers  

Set-
point  

Disturbances Characteristics LPID NLPID1 NLPID2 

2.7 
 

rso= -294. 
soin =0.01 
 

Rise Time  0.5 1 0.6 

Settling time 1 3.5 3.5 

Steady state 
error 

0.05 0.02 0.02 

Overshoot No No No 

2.7 
 

rso = -442.3231,  
soin =0.01 
 

Rise Time  0.7 1 0.6 

Settling time 1.2 4.5 4.4 

Steady state 
error 

0.12 0.04 0.04 

Overshoot No No No 

2 
 

rso= -294. 
soin =0.8 
 

Rise Time  0.5 0.9 0.5 

Settling time 1 3 3 

Steady state 
error 

0.05 0.001 0.001 

Overshoot No No No 

2 rso= -442.3231 
soin =0.8 
 

Rise Time  0.6 0.9 0.5 

Settling time 1 3 3 

Steady state 
error 

0.12 0.04 0.04 

Overshoot No No No 

1.7 rso= -294. 
soin =0.8 

Rise Time  0.3 0.9 0.5 

Settling time 1 2.62 2.8 

Steady state 
error 

0.05 0 0. 

Overshoot No No No 

1.7 rso= -442.3231 
soin =0.8 
 

Rise Time  0.4 0.9 0.5 

Settling time 0.6 3 3 

Steady state 
error 

0.1 0.04 0.04 

Overshoot No  No No 

 

Through the closed loop DO process specifications shown in Table 7.11, between the 

LPID and the NLPID controllers, it can be noted that the DO process under the LPID 

controller has a faster rise time and settling time in comparison with the two NLPID 

controllers, but it cannot be recommended to be used, because it has a larger steady 

state error in comparison with the NLPID1 and NLPID2 controllers. 

The NLPID controllers achieve a very small steady state error which is very important for 
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the proper control of the DO concentration. Software developed to design the NLPID 

controllers produces their parameters in a short time, which allows the design procedure 

to be done in real-time, as shown in Figure 7.50. This possibility will be considered as a 

future work. 

 

NLPID Process

Software to 

calculate Kp,Ti

soSet point 

 

Figure 7.50: Real –time application of the NLPID controller parameters design 

 

7.6  Conclusion 

In this Chapter, pole placement based method for design of the LPID controller 

parameters for the nonlinear DO process, and pole placement based method for design 

of the two NLPID controllers for the nonlinear DO process are developed. The design 

idea in development of these pole placement based methods for the nonlinear processes 

is to substitute the analytical solution of the closed loop system characteristic equation by 

a numeric solution of the equation of the closed loop system. The Matlab function ‘fsolve’ 

and Levenberg-Marquardt algorithm allow solving of the nonlinear closed loop equations 

for more than one unknown controller parameter.  

 Based on the simulation results performed in this chapter for the closed loop DO 

process under the LPID controller (section 7.3), the NLPID1 controller (section 7.4) and 

the NLPID2 controller (section 7.5) respectively, the developed methods for application of 

the Pole-Placement method to design LPID and NLPID controllers for the nonlinear DO 

process model indicate to be the best performing methods throughout this thesis 

investigation, compared with the other two methods used in Chapter 5 and Chapter 6.  

The simulation phase has been done and the results are shown and have been 

discussed in Chapter 5, 6 and 7. To achieve this, the next step is to perform real-time 

simulation of the closed loop DO process environment for real-time simulation as 

described in the next Chapter (Chapter 8). 
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CHAPTER 8: 

REAL–TIME SIMULATIONS OF THE CLOSED LOOP DO SYSTEM IN PLC A USING 

MODEL TRANSFORMATION TECHNIQUE 

8.1  Introduction 

The developed closed loop control system for the nonlinear dissolved oxygen (DO) 

process under the two nonlinear PID controllers (NLPID1 and NLPID2) revealed in 

Chapter 6 and Chapter 7 has been transferred to the Beckhoff CX5020 PLC through the 

Total Windows Control and Automation Technology (TwinCAT) software, based on the 

new model engineering approach used in this Chapter. This is done by linking MATLAB/ 

Simulink with TwinCAT software based on the Function Block Programming adopted 

from the IEC61499 standard, and is achieved through a transformation between the two 

block-diagram languages-Simulink and TwinCAT. The transformation supported by the 

developed tools sets the foundation of the corroboration and validation framework for 

IEC61499 standard (Dai, W.W. & Vyatkin, V. 2010) - based Function Blocks and the real-

time control of the closed-loop system with the models of the plant. This chapter 

discusses the following: PLC history in part 8.2, PLC hardware and Software in part 8.3, 

Beckhoff Cx5020 PLC in part 8.4, TwinCAT 3 software in part 8.5, the model 

transformation discussion and Implementation for real-time simulation of the closed 

system in part 8.6, Section 8.7 gives overall results discussion and Section 8.8 is the 

conclusion of this chapter.  

The main aim of this Chapter is to use a PLC to implement the real-time simulation of the 

closed loop nonlinear DO process under the designed controllers. The designed 

nonlinear controllers to be used for the real-time simulation are discussed in Chapter 6 

and Chapter 7.  

 

8.2 Programmable Logic Controller (PLC) History 

Control algorithms for industrial process technology like WWT plants or manufacturing 

systems are mostly implemented on embedded devices like Programmable Logic 

Controllers (PLC).  

 

In the 1960's PLC were initially created to substitute relays and relays control 

frameworks. Relays were extremely helpful in a few applications. The principle issue is 

the way that they are mechanical devices. This implies that they wear down and must be 

replaced regularly. A relay likewise takes up a considerable amount of space. These 
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alongside with different considerations, encouraged the improvement of PLCs. More 

changes to PLCs happened in the 1970's. In 1973 the capacity to convey between PLCs 

was included. This additionally made it likely to have the controlling circuit far from the 

machine it was controlling. In 1990's they was an increased in collection of ways in which 

a PLC could be programmed adding up to ladder logic, (block diagrams, instruction list, 

C, etc.) which was similar to schematic of the relay logic. Around then PLCs were 

possible to be replaced by PC's at times (http://www.plcs.net/). All PLCs are still used 

that much being in different types of commercial ventures, and it is likely that they will 

stay there for a long while. Shown below in Figure 8.1 is the historical diagram of the 

PLC invention. 

 

 

Figure 8.1: Historical diagram of the PLC development 

(http://www.plcs.net/) 

 

Programmable logic controllers are now the most widely used industrial process control 

technology. A PLC is a mechanical evaluation machine that is fit for being customized to 

perform control capacities. It is intended for numerous input and output plans, expanded 

temperature ranges, assurance to electrical commotion, and imperviousness to vibration 

and effect. The characteristics of the PLCs include interfaces between inputs and 

outputs, which is already inside the controller. They are using understandable 

programming language which primarily deals with logic and switching operations. 

http://www.plcs.net/
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8.3  PLC hardware and Software 

8.3.1  Advantages and disadvantages of using PLC 

As it may have been mentioned before PLC was invented to replace the necessary 

sequential relay circuits for machine control. PLCs are very much used in many real 

world applications. Whenever there is an industry present, there is a high chance that a 

PLC presents.  The industrial use of PLC involves machinery, packaging, material 

handling, automated assembly or countless of other industries were probably already 

using Programmable controllers. There are many advantages of using this technology, 

as mentioned by Dai and Vyatkin, (2010) some of them are as follows: 

 PLCs are more flexible -It is easier to create and change a program in a PLC than 

to wire and rewire a circuit. 

 They are remarkably robust, and able to stand all sorts of difficult conditions, such 

as extreme temperatures or dust in the air. 

 They do not have contacts that attire out, like relays does.  

 Communication ability – A PLC can communicate with other controllers or 

computer equipment to perform such functions as supervisory control, data 

gathering, monitoring devices, process parameters, and download and upload of 

the programs. 

 Easier to troubleshoot -PLCs have diagnostics and override functions that allow 

users to easily trace and correct software and hardware problems. 

 Faster Response Time - PLCs are designed for high-speed and real-time 

applications.  

 Cost effectively - PLCs were originally designed to replace relay control logic, and 

the cost savings have been so significant that relay control is becoming outdated 

excluding for power applications.  

 Improve reliability - Once a program has been written and tested, it can be easily 

downloaded to other PLCs. The program takes the place of much of the external 

wiring that would normally be required for control of a process. 

The following are disadvantages of PLC: 

 PLCs are not very good at handling large amount of data, or complex data.  

 PLCs are also not very good with displaying data and portability which consists of 

making software tools able to accept and properly interpret vendors’ libraries 

elements from different builders. 
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8.3.2  Programmable Logic Controller Hardware 

A classic PLC divided into parts is illustrated in Figure 8.2 (Fall, 2006). It consists of the 

basic components which are: 

 The PLC processor or controller (CPU) 

 I/O (Input /Output) modules 

 Chassis or backplane 

 Power supply 

 Programming software that runs in a PC 

 

Figure 8.2: Classic part of the PLC 

(adapted from MME 486 – Fall 2006) 

 

8.3.2.1 Central Processing Unit (CPU)  

The processor (CPU) is the intelligence of the PLC. A classic processor usually consists 

of a microprocessor for implementing the logic and controlling the communications 

among the modules. The processor requires memory for storing the results of the logical 

operations performed by the microprocessor. Memory is also required for the program 

EPROM (Erasable Programmable Read-Only Memory) or EEPROM (Electrically 

Erasable Programmable Read-Only Memory) plus Random Access Memory (RAM). The 

CPU controls all PLC activity and is designed so that the user can enter the desired 

program in any of the programming language understood by that particular PLC.  

The PLC program is executed as part of a repetitive process referred to as a scan, 

Figure 8.3. A typical PLC scan starts with the CPU reading the internal state of the CPU. 

Then, the CPU reads the status of inputs. All program logic has to be stored and 

executed based on the status of the inputs. Once the program execution is completed, 
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the status of all outputs is updated. This process is repeated continuously as long as the 

PLC is in the run mode. 

 

Figure 8.3: Typical PLC scans cycle (Scan based like IEC 61131-3) 

8.3.2.2 Input/ Output (I/O) Modules 

According to the classic PLC in (Figure 8.2) the I/O modules are linked to the out-side 

world. The I/O framework structures the interface by which field devices are joined with 

the controller. The reason for this interface is to condition the different signs got from or 

sent to outside field devices. Input devices such as limit switches, sensors, and 

pushbuttons are hardwired to the input terminals. Output devices such as small motors, 

solenoid valves, and indicator lights are hardwired to the output terminals. 

 

8.3.2.3 Framework or backplane 

The Everything PLCs need is some system for conveying between the controller, I/O and 

correspondences modules. Here are three courses used to perform this correspondence 

between the different segments that make up the PLC framework (Fall, 2006) 

The modules are installed in the same framework as the PLC and communicate over the 

frame backplane. 

Modules are designed to plug into each other. The interconnecting plugs form a 

backplane. There is no chassis, Figure 8.4. 

Modules are built into the PLC. The modules come together in one physical block. 
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Figure 8.4: Classic PLC framework  

(Adapted from MEL – 334: PLC) 

8.3.2.4 Power Supply  

A power supply is needed to provide power to the PLC and any other modules. The 

power supply, supplies DC power to the internal circuitry of CPU and other modules that 

plug into the framework, see Figure 8.2. If a PLC system is large, this power supply does 

not normally supply power to the field devices. With larger systems, power to field 

devices is provided by external alternating current (AC) or direct current (DC) supplies.  

8.3.2.5 Programming Device  

A programming device is used to enter the desired program into the memory of the 

processor. A personal computer (PC) is the most commonly used programming device. 

Most brands of PLCs have software available so that a PC can be used as the 

programming device. This software allows users to create, edit, document, store, and 

troubleshoot the programs. The PC communicates with the PLC processor via a serial or 

parallel data communications link. 

8.3.3  PLC Software 

According to the PLC developers and referring to the historical diagram shown in Figure 

8.1, PLC programs can be written using any of the five IEC 61131-3 standardized 

programming languages, which are (http://www.plcs.net/) 

 Ladder Diagram (LD),  

 Structured Text (ST),  

 Function Block Diagram (FBD), 

 Instruction List (IL),  

 Sequential Function Chart (SFC). 

Backplane connector 

http://www.plcs.net/
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8.4  Beckhoff CX50x0 Programmable Logic Controllers 

Beckhoff CX50x0 is an embedded device that can or does play an important role in the 

field of industrial automation systems. The flexible and powerful PLCs like Beckhoff 

CX50x0 are needed to cope with the increasing complexity of today’s necessities from 

the automation industry. Figure 8.5 represents several features of the CX50x0 

 

Figure 8.5: General CX50x0 DIN rail Industrial PCs  

(www.beckhoff.com/cx5000/) 

 

The CX device series combines the worlds of Industrial PC and hardware PLC and is 

suitable for medium-performance control tasks.  

8.4.1 CX5020 - Embedded PC series  

 

Figure 8.6: Diagram of the CX5020 

(Adapted from www.beckhoff.com/english.asp?emedded_pc/cx5010_cx5020.htm) 
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The above diagram (Figure 8.6) shows a well-established CX5020 PLC from Beckhoff. 

The CX5020 is Embedded PC from the CX5000 series based on Intel® Atom™ 

processors. The CX5020 has a 1.6 GHz Intel® Atom™ Z530 processor. The Z530 

features hyper threading technology, i.e. it has two virtual CPU cores for more effective 

execution of software. 

The following Table 8.1 is a technical data sheet of the CX5020 Beckhoff PLC. 

 

Table 8.1: CX5020 technical data sheet from (www.beckhoff.com) 

Technical data CX5010-x1xx CX5020-x1xx 

Processor Processor Itel®Atom Z510, 1.1 
GHz clock frequency 

Processor Itel®Atom Z510, 
1.6 GHz clock frequency 

Internal main memory 512 MB RAM (Internal, not 
expandable) 

512 MB RAM (optionally 1 
GB installed ex factory) 

Flash memory 64 MB Compact Flash card (optionally extendable) 

Persistent memory Integrated 1-second UPS (1 MB on Compact Flash card) 

Interfaces 2xRJ 45, 10/100/1000 Mbit/s, DVI-D, 4xUSB 2.0, 1 x optional 
interface 

Diagnostics LED 1 x power, 1 x TC status, 1 x flash access, 2 x bus status 

Clock Internal battery-backed clock for time & data (battery 
exchangeable) 

Operating system  Microsoft Windows CE 6 or Microsoft Windows Embedded 
Standard 2009 

Control software TwinCAT 2 PLC runtime or TwinCAT 2 NC PTP runtime 

Power supply 24 V DC (-15%/ +20%) 

Current supply I/O terminals 2 A 

Dielectric strength 500 V (supply/ internal electronics) 

Max. power loss 12 W (including the system 
interfaces) 

12.5 W (including the system 
interfaces) 

Dimensions (W x H x D) 100 mm x 100 mm x 91 mm 

Operating temperature -25….+60 
o
C/ -25…+85 

o
C 

Relative humidity 95 %, no condensation 

Vibration/shock resistance Conforms to EN 60068-2-6/EN 60068-2-27 

EMC immunity/emission Conforms to EN 61000-6-2/EN 61000-6-4 

 

The integration of closed loop control algorithms into industrial control systems 

represents an important subject in the automation field. Due to its event-based execution 

model, IEC 61499 standard bears advantages concerning the closed loop control 

application implementation. This provides flexibility and allows the implementation of 

various and more complicated feedback algorithms. Beckhoff claims that, regardless of 

the compatible network/fieldbus that EtherCAT is connected to, data from all the 

equipment can be passed to the CX5020 master controller with standard Ethernet media. 

8.5  TwinCAT development software 

The Total Windows Control and Automation Technology also known as TwinCAT is a 

software platform developed by Beckhoff. TwinCAT 3 automation software transforms a 
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CX5000 system into a powerful PLC and motion control system that can be used with or 

without visualization. The greatest motivation behind this software is the integration of 

PLC, Motion Control (MC) and Human Machine Interface (HMI), in one software and on 

one CPU. The advantages are: reduced interface complexity, PC based control 

technology as ‘open’ control concept, one project storage place for hardware and 

software, etc. In combination with the TwinCAT automation software, the CX Embedded 

PC has become a powerful compatible with IEC 61131-3 standard PLC. The following 

section is based on TwinCAT automation software.  

8.5.1  TwinCAT Architecture 

TwinCAT consists of run-time systems that execute control programs in real-time and 

represents development environments for programming, diagnostics and configuration. 

Any Windows programs, for instance visualization programs or Office programs, can 

access TwinCAT data via Microsoft interfaces, or can execute commands. 

Almost every kind of control application is possible with TwinCAT 3. The user can access 

different programming languages to realize these applications. In addition to the classic 

PLC programming languages of the IEC 61131-3 standard, the user can now also 

program with the high-level languages C and C++ as well as Matlab/Simulink. These and 

other attributes show why TwinCAT 3 is also called eXtended Automation: Architecture, 

Engineering and Runtime and this is shown in Figure 8.7 below. 

 

 

Figure 8.7: eXtended Automation Architecture (XAA) 

 

TwinCAT Architecture has two subdivisions: eXtended Automation Engineering (XAE) 

and eXtended Automation Runtime (XAR) as illustrated in Figure 8.8. TwinCAT 3 is 
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divided into two components: eXtended Automation Engineering and eXtended 

Automation Runtime. The TwinCAT 3 engineering components enable the configuration, 

programming and debugging of applications. 

 

 

Figure 8.8: eXtended Automation Architecture (XAA) 

 

The TwinCAT 3 runtime consists of further components: basic components and 

functions. The basic components can be extended by functions. Table 8.2 expresses 

further information about those divisions. 

 

Table 8.2: XAE and XAR 

eXtended Automation Engineering (XAE) eXtended Automation Runtime (XAR) 
 

Visual Studio 2010 for real-time 
programming in IEC 61131-3 and C/C++ 

Execution of the created modules in real-time. 
 

Visual Studio 2010 for system configuration. Support for 64-bit systems and Support for 
multi-core CPUs. 

 

8.5.1.1 eXtended Automation Engineering (XAE): 

One of the key approaches of TwinCAT 3 is to simplify the software engineering. Instead 

of developing own stand-alone tools it is obviously worthwhile to integrate into common 

and existing software development environments. On behalf of TwinCAT 3 the 

development environment is the Microsoft Visual Studio 2010. By integrating TwinCAT 3 

as an extension into the Visual Studio, an expandable and future platform is provided. 

The TwinCAT 3 eXtended Automation Engineering has the following attributes: 
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 TwinCAT 3 Standard, and TwinCAT 3 Integrated 

 System Manager,  

 PLC, and Motion Control,  

 C/C++ programming,  

 Matlab/Simulink Integration 

 C#/ .NET programming 

 

Figure 8.9 shows the overview layout of XAE 

 

Figure 8.9: eXtended Automation Engineering (XAE) 

(www.beckoff.com) 

8.5.1.2 Engineering (XAE) - Matlab/Simulink integration 

MATLAB/Simulink is a tool for the computer-assisted simulation of physical or biological 

systems and has been in widespread use in research and development for many years. 

The models of the systems to be simulated are usually implemented at graphic level in 

the form of block diagrams. In addition to the standard library, toolboxes are available for 

various areas of application, with which the time and effort for modeling can be reduced. 

One of the strengths of Simulink that should be highlighted in conjunction with 

automation technology is the design of controllers at simulation level. The functions of 

the higher-level software environment MATLAB (with appropriate toolboxes) enable the 

informal design of controllers using calculation methods based on the control theory. 

Controllers designed in this way can then be simulated and confirmed together with a 

model of the controlled system in Simulink, (Yang and Vyatkin, 2012). However, entire 
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production plants can also be modeled and tested in simulation instead of simple 

controlled systems. 

The CX5020 from Beckhoff as described in section 8.4 has been used in this research as 

a real-time platform to execute the application developed in Simulink to TwinCAT 3. To 

achieve real-time simulation of the system obtained in TwinCAT 3, the closed loop 

algorithm is downloaded into the Beckhoff PLC CX5020. Ethernet is used as a 

communication driver element to link the PC and the PLC via fast duplex communication. 

Ethernet module scans the PLC continuously for values of the input variables and writes 

them in an appropriate database in TwinCAT 3.  

 

The integration of Matlab/Simulink with TwinCAT enables execution of TwinCAT modules 

that were generated as Simulink models in the Matlab simulation environment. The 

chosen interfacing type between Simulink PC and PLC displays the parameters and 

variables in the graphic interface of TwinCAT 3 and enables viewing and modification in 

the real-time environment at runtime. The integrated motion functionalities simplify the 

engineering as well as the new well-arranged safety applications. These and other 

attributes has proven why TwinCAT 3 is also a high-minded eXtended Automation. 

 

The advantages of Simulink Integration in TwinCAT 3 are: 

 Simulink is well-known in the scientific and measurement environment 

 great variety of toolboxes (e.g. Fuzzy) 

 creation, simulation and optimization of control circuits 

 debug interface between Simulink and TwinCAT 

8.5.2  Code generation algorithm  

Code generation process is done to transform the Simulink model to a real-time 

algorithm set up on the PLC. The closed loop simulation models in Chapter 6 and 

Chapter 7 are transformed from MATLAB/Simulink environment to TwinCAT 3 through 

model transformation process. This procedure is done to achieve real-time simulation of 

the closed loop system in PLC.  To transfer the closed loop algorithm from 

Matlab/Simulink program to TwinCAT 3 for each method used in this thesis the following 

steps are used: 

 design of the closed loop system and building its block diagram in Simulink 

environment 

 automatic generation of C/ C++ code by the Simulink Coder 

 compilation with Visual Studio C Compiler 
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 parameterization in the TwinCAT System Manager 

 download of the transformed block diagram and its execution in the TwinCAT 3 

Runtime environment 

 

Figure 8.10 shows a demonstration process of the code generation from Simulink. 

 

 

Figure 8.10: Typical Code generation Process 

 

The TE1400 TwinCAT Target for MATLAB/ Simulink enable the user to generate real-

time capable modules, which can be executed in the TwinCAT 3 runtime. These modules 

can be instantiated multiple times, parameterized and debugged in the TwinCAT 3 

engineering environment. 

The requirements for transformation of the Simulink model to TwinCAT 3 are: 

 Matlab/Simulink (> Version 2010a) 

 Simulink Coder (Matlab Coder)  

 Target for Matlab Simulink - TE1400 

 Visual Studio 2010 

The following procedure must be followed: 

 Select TwinCAT Target  

 Simulink Coder generates C or C++ Code 

 Microsoft C/C++ Compiler generates Binary Code 
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 TwinCAT Target generates description file.tmc 

 

Figure 8.11 shows the process link from a Simulink to TwinCAT 3 module. 

 

Figure 8.11: From Matlab/Simulink to TwinCAT 

 

The above Figure (8.11) shows the Simulink Coder that generates real-time capable C or 

C++ code from the block diagrams developed in Simulink. The TwinCAT Target for 

MATLAB/Simulink uses the Simulink coder to create a TcCOM module (real-time-

capable TwinCAT module) with the input and output behavior according to the source 

Simulink model. Generated modules can be instantiated in TwinCAT 3 projects, where 

those can be parameterized using the TwinCAT 3 Engineering Environment (XAE), if 

parameter changes are necessary. After starting the TwinCAT 3 runtime, the module is 

executed in real-time and can therefore be integrated into a real machine controller such 

as PLC in this thesis. 

The following Figure 8.12 shows how the signal can be monitored online through 

TwinCAT 3 
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Figure 8.12: Debugging in TwinCAT3 

 

The requirements for TwinCAT 3 XAE (Engineering): 

 Windows XP with Service Pack 3 (x86) or Windows 7 (x86 or x64) 

 processor running at 1.6 GHz or higher 

 2 GB RAM 

 3 GB free hard disk space 

 graphics adapter supporting DirectX9, running at a minimum resolution of 1024x768 

8.5.2.1 eXtended Automation Runtime (XAR): 

The TwinCAT 3 Runtime offers a real-time environment, where TwinCAT modules can 

be loaded, executed and managed. The individual modules need not be created with the 

same compiler and thus can be programmed independently and by different 

manufacturers or designers. (http://infosys.beckhoff.com). Also it is not important if these 

modules are generated using the PLC, Numerical Control (NC), Computer Numerical 

Control (CNC). Numerous tasks can run on one control PC, because the different 

modules (C/C++, MATLAB) can call themselves in the TwinCAT 3 runtime, there are 

much more possibilities for the software architecture of the application. Therefore it is 

possible to combine a number of modules, which have their own functionalities, to one 

complete machine application. The following Figure 8.13 presents the structure of 

TwinCAT 3 XAR modular runtime system.  

Set-point 
monitoring 
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Figure 8.13: Modular structure of the TwinCAT 3 runtime environment 

(ftp://download.beckhoff.com/) 

 

8.6  Model Transformation and Real-time Results 

The model transformation technique is a new model-based engineering approach, which 

is based on the IEC61499 functional block programming standard. This standard allows 

real-time control of complex plants with a new generation of programmable logic 

controllers (PLCs). In this thesis model transformation is presented by bridging 

MATLAB/Simulink with TwinCat 3 Function Block models. This is achieved by a 

transformation between the two block diagram languages. The transformation supported 

by the developed tools sets the cornerstone of the verification and validation framework 

for IEC 61499 Function Blocks in closed-loop with the models of the plant (Yang and 

Vyatkin, 2012). The framework also paves the way to running closed-loop plant-controller 

systems and building complex models using the efficient object instantiation techniques 

of IEC 61499. 

 

MATLAB/ Simulink is selected as simulation environment to test the closed loop system 

because it is a powerful well-known tool in the modeling, simulation domain and it follows 

the principles of functional block programming, and the model transformation method. 

Functional blocks offer a higher level of generalization than the conventional PLC based 
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design language. Model transformation automatically translates each state flow block into 

customized basic IEC 61499 function blocks with, the same inputs, outputs and 

parameters as their Simulink counter parts (Bayrak, 2012). 

 

8.6.1  Generating a TwinCAT module from a Simulink model for the DO closed loop 

system 

The following steps show the basics on how the model transformation is done. Figure 

8.14 is the closed loop Simulink model of the dissolved oxygen under nonlinear PID 

control, in which the Simulink subsystem blocks, contains all necessary files to reproduce 

this model in TwinCat 3 environment. In order to make the Simulink model real-time 

capable, it is also necessary to configure a Fixed-Step solver. 

 

 

Figure 8.14: Simulink model  

8.6.1.1 Generate a TwinCAT module procedure 

 

1. The model file (Figure 8.14) is opened in Simulink and the coder settings are 

accessed via the Model Explorer in the View menu in Simulink. Figure 8.15 shows 

the Model explorer where the configuration is done. Expand in the model name 

“NLPID_DO” then select Configuration, Code Generation, then choose the System 

target file “TwinCAT.tlc”, by using the Browse button. 
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Figure 8.15: Model Explorer browser for System Configuration  

 

2. Then after that, the Model Explorer is closed, and the code generation process is 

started via the Simulink-Menu Tools->Code Generation->Build Model in that pattern 

as highlighted in Figure 8.16. 

 

Figure 8.16: Code Generation  

 

The code generation progress is displayed in the MATLAB command window. If the 

process passes with no error, that indicates the communication between Simulink and 

TwinCat has been successful achieved 
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8.6.1.2 The generated TwinCAT module as a Twincat project 

 

1. Now create the TwinCat project by opening the TwinCAT engineering environment. 

In the environment release the Solution Explorer, expand the node System and 

Select Add new item in the context menu of the node “TcCOM Objects”. After 

following these steps, the dialog Figure 8.17 is obtained. 

 

 

Figure 8.17: Simulink model transformation process to TwinCat representation  

 

2. In the Figure 8.17, selection of the model is done to upload the Simulink model to 

TwinCAT. The module (with its default settings) should automatically have been 

configured to add on to this task. The task must also be arranged to work with 

module “NLPID_DO”. To check this, select the object node Object1 (NLPID_DO) and 

open the tab “Context”. The table results contain the object ID and the object name of 

the task as shown in Figure 8.18, with the priority and cycle time value. Wrong 

mapping of the data type, cycle time and the use of the same priority level, all of this 

can make the computation algorithm to behave incorrectly. 
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Figure 8.18: Setup the priority and a cycle time for the object “NLPID_DO”  

  

3. At this moment the configuration is completed and can be activated on the target 

system which is the CX5020 Beckhoff PLC. The procedure is as follows: 

 Choose the target system; the current configuration shall be activated on. 

 Activate the configuration on the targeted system. Confirm the dialogs, asking 

whether to overwrite the current configuration and start the TwinCAT system. 

 The target status icon changes its color to green (running). 

 If the Block Diagram tab is selected, the block diagram status should change to 

"Online" and its property grid should show some online values (see Figure 8.19). 

 

Figure 8.19: Simulink model transformed to TwinCat module actively working in a PLC CX5020 
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The achievement of the code transformation and evaluation of the structure together with 

the implementation of the closed loop system in real-time simulation prove that the 

TwinCat PLC CX5020 environment has the greatest conformity in structure with the 

simulation model in Simulink.  

The following section is based on the real PLC real-time simulation of the closed loop DO 

system with two NLPID controllers (NLPID1 and NLPID2) considered in the previous 

chapters (Chapter 6 and Chapter 7).  

 

8.6.2  Simulink Model to TwinCat Transformation of the closed loop DO process system 

under the NLPID1 controller  

Figure 8.20 shows a full transformation of the closed loop system from Simulink to 

TwinCAT 3. The block labeled NLPID1 has a nonlinear controller in it and the block 

labeled DO process model has a nonlinear plant in it. The notations in figure 8.20 are: 

In1 – input of the set-point value 

In2 – feedback input 

In3 – is the input into the process 

Out1 – is the output of the control signal 

Out2 – is the output of the process  

 

 

Figure 8.20: Transformed Simulink closed loop model to the TwinCAT closed loop model 

 

Real-time implementation of the control algorithms are tested in a TwinCAT 3 simulation 

environment and then downloaded into a Beckhoff CX 5020 PLC for implementation. 

Vyatkin and Yang, (2012), state that the amount of time for performing model 

transformation depends on the complexity of the model in Simulink. The amount of time 

used for the transformation of the model in this thesis is 10ms. 

Some of the advantages of the TwinCAT 3 solution are: 

 Simulink model is hardware independent 
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 No Beckhoff specific blocks required in Simulink for the module generation 

 Changing of the module cycle time in TwinCAT without a new compilation of the 

Simulink model. 

 Graphical representation in the TwinCAT 3 engineering environment 

 Online monitoring of parameters and signals in TwinCAT 3 run-time. 

 Online editing or change of parameter values 

 Powerful debugging mechanisms (breakpoint) 

 Generation of a PLC function block capturing the model 

 Support of all toolboxes which are supported by the Simulink Coder  

8.6.3  Implementation in Real-Time using the NLPID1 controller 

The implementation of the real time simulation is done in the TwinCAT environment 

using the developed control algorithms in the chapters (Chapter 6 and 7). The PLC 

implementation in real-time simulation environment is performed only for the NLPID 

controllers with the nonlinear DO process using the two methods shown in the thesis - 

Chapter 6 and Chapter 7. 

 

8.6.3.1 Real-time results for the DO closed loop system under the NLPID1 controller 

The real-time simulation is performed in CX5020 PLC and the set-point and internal 

disturbance are changed to different values as shown in Table 8.3. These changes are 

applied to see whether the system can maintain the online stability response or will 

became unstable. The real-time simulation in CX5020 result of the closed loop DO 

process under the nonlinear PID1 controller parameters and different disturbance as in 

Table 8.3  are revealed afterward in  Figure 8.21 to Figure 40.  

Table 8.3: DO process disturbances and set point values to be applied in real-time 

Set-point 
oins  sor  

2.7 0.01 -294.8954 

2.7 0.01 -442.3431 

2.7 0.01 -147.4477 

2 0.8 -294.8954 

2 0.8 -442.3431 

2 0.8 -147.4477 

1.7 0.8 -294.8954 

1.7 0.8 -442.3431 

1.7 0.8 -147.4477 

 

The Real-time simulation results of the closed loop system under the NLPID1 controller 

using the tuned controller parameters designed based on the Pole Placement method for 
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the LPID and tuned to be applied in the NLPID1 controller are shown from Figure 8.21 to 

Figure 8.30. Detailed explanation of this method is given in Chapter 6. 

 

Figure 8.21: Real-time PLC simulation results of the closed loop system with NLPID1 (PP1) 

controller when the set-point is Lmg /7.2 , Lmgs ino /01.0,   and dayLmgrso //8954.294  

 

 
Figure 8.22: Real-time PLC simulation results of the closed loop system with NLPID1 (PP1) 

controller when the set-point is Lmg /7.2 , Lmgs ino /01.0,   and dayLmgrso //3431.442  

 

 
Figure 8.23: Real-time PLC simulation results of the closed loop system with NLPID1 (PP1) 

controller when the set-point is Lmg /7.2 , Lmgs ino /1.0,   and dayLmgrso //4477.147  
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Figure 8.24: Real-time PLC simulation results of the closed loop system with NLPID1 (PP1) 

controller when the set-point is Lmg /2 , Lmgs ino /8.0,   and dayLmgrso //8954.294  

 

 

Figure 8.25: Real-time PLC simulation results of the closed loop system with NLPID1 (PP2) 

controller when the set-point is Lmg /2 , Lmgs ino /8.0,   and dayLmgrso //3431.442  

 

 

Figure 8.26: Real-time PLC simulation results of the closed loop system with NLPID1 (PP1) 

controller when the set-point is Lmg /2 , Lmgs ino /8.0,   and dayLmgrso //4477.147  
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Figure 8.27: Real-time PLC simulation results of the closed loop system with NLPID1 (PP1) 

controller when the set-point is Lmg /7.1 , Lmgs ino /8.0,   and dayLmgrso //8954.294  

 

 
Figure 8.28: Real-time PLC simulation results of the closed loop system with NLPID1 (PP1) 

controller when the set-point is Lmg /7.1 , Lmgs ino /8.0,   and dayLmgrso //3431.442  

 

 
Figure 8.29: Real-time PLC simulation results of the closed loop system with NLPID1 (PP1) 

controller when the set-point is Lmg /7.1 , Lmgs ino /8.0,   and dayLmgrso //4477.147  
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The closed loop DO process behaviors under the different internal disturbances and 

different set-point values are tested in real-time. Process reaction in real-time seems to 

be able to accomplish different set-points conditions and is not badly affected by the 

changes applied in the disturbances. The PLC real-time simulation results are the same 

as in Matlab/Simulink in Chapter 6; this means the model transformation explained in 

section 8.6 is successfully completed.  

To validate the transformation method the correctness two DO closed loop process 

trajectories for the same set point and disturbance are shown in the Figure 8.30 

 

 

Figure 8.30: Comparison of two trajectories of the closed loop DO process response under the 

NLPID1 (PP1) controller, when the set-point is Lmg /7.2 , Lmgs ino /01.0,  and 

dayLmgrso //3431.442 : Figure 8.30A- Simulink results and Figure 8.30B Real-time PLC 

results 

 

It can be seen from Figure 8.30 that the behavior of the closed DO behavior is the two 

platforms. 

The following TwinCAT 3 real-time results are for the closed loop DO process behavior 

under the NLPID1 with parameters designed based the nonlinear DO model (PP2 

method), Figure 8.31 – Figure 8.40  
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Figure 8.31: Real-time simulation of the closed loop system with NLPID1 (PP2) controller 

 when the set-point is Lmg /7.2 , Lmgs ino /01.0,   and dayLmgrso //8954.294  

 

 
Figure 8.32: Real-time simulation of the closed loop DO process response under the NLPID1 (PP2) 

controller, when the set-point is Lmg /7.2  and dayLmgrso //3431.442  

 

 

Figure 8.33: Real-time simulation of the closed loop DO process response under the NLPID1 (PP2) 

controller, when the set-point is Lmg /7.2 , Lmgs ino /01.0,   and dayLmgrso //4477.147  

Blue:    Set point 

Green: DO 
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Figure 8.34: Real-time simulation of the closed loop DO process response under the NLPID1 

controller, when the set-point is Lmg /2  , Lmgs ino /8.0,  and dayLmgrso //8954.294
 

 

 
Figure 8.35: Real-time simulation of the closed loop DO process response under the NLPID1 

controller, when the set-point is Lmg /2  , Lmgs ino /8.0,  and dayLmgrso //3431.442  

 

 
Figure 8.36: Real-time simulation of the closed loop DO process response under the NLPID1 (PP2) 

controller, when the set-point is Lmg /2  , Lmgs ino /8.0,  and dayLmgrso //4477.147  

 

Blue:    Set point 

Green: DO 

Blue:    Set point 

Green: DO 

Blue:    Set point 

Green: DO 
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Figure 8.37: Real-time simulation of the closed loop DO process response under the NLPID1 (PP2) 

controller, when the set-point is Lmg /7.1  , Lmgs ino /8.0,  and dayLmgrso //8954.294  

 

 

Figure 8.38: Real-time simulation of the closed loop DO process response under the NLPID1 (PP2) 

controller, when the set-point is Lmg /7.1 , Lmgs ino /8.0,  and dayLmgrso //3431.442  

 

 

Figure 8.39: Real-time simulation of the closed loop DO process response under the NLPID1 (PP2) 

controller, when the set-point is Lmg /7.1  , Lmgs ino /8.0,  and dayLmgrso //4477.147  

 

In order to validate the correctness of the transformation method the closed loop DO 

process trajectories obtained through simulation in Matlab/Simulink environment and 

Blue:    Set point 

Green: DO 

Blue:    Set point 

Green: DO 

Blue:    Set point 

Green: DO 
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through real-time simulation in the TwinCAT3 environment  are plotted in Figure 8.40 for 

the same values of set point and disturbances. 

 

 

Figure 8.40: Comparison two trajectories of the closed loop DO process response under the 

NLPID1 (PP2) controller, when the set-point is Lmg /2 , Lmgs ino /8.0,  and 

dayLmgrso //4477.147   (Figure 8.40a- Simulink results and Figure 8.40b Real-time PLC 

results) 

 

The comparison shows that the PLC real-time simulation results are the same as 

these in Matlab/Simulink in Chapter 7; this means the model transformation is 

achieved successfully. Table 8.4 discusses the system characteristics of the 

closed loop DO process behavior under the NLPID1 controller designed by 

different methods (PP1 and PP2). 
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Table 8.4: Comparison between the characteristics behavior of the closed loop DO process behavior under the NLPID1 controller 
 parameters designed by the PP1 and PP2 methods 

NLPID1 Set-point Disturbances Simulink Results PLC TwinCat Results 

Method  
inos ,  

sor  Time delay 

[days] 

Rise 

time 

[days] 

Settling 

time 

[days] 

Steady 

state error 

[ Lmg / ] 

Time 

delay 

[days] 

Rise time 

[days] 

Settling 

time 

[days] 

Steady state 

error 

[ Lmg / ] 

PP1 2.7 0.01 -294.8954 0.05 0.4 4.4 0.02 0.05 0.4 4.4 0.01 

 2.7 0.01 -442.3431 0.05 0.49 4.9 0.05 0.05 0.49 4.9 0.04 

 2.7 0.01 -147.4477 0.05 0.4 4 0.01 0.05 0.4 4 0.01 

 2 0.8 -294.8954 0.05 0.4 3.5 0.02 0.05 0.4 3.5 0.01 

 2 0.8 -442.3431 0.05 0.44 4.2 0.05 0.05 0.44 4.2 0.04 

 2 0.8 -147.4477 0.05 0.4 3.4 0.01 0.05 0.4 3.4 0.005 

 1.7 0.8 -294.8954 0.05 0.38 3.6 0.02 0.05 0.38 3.6 0.01 

 1.7 0.8 -442.3431 0.05 0.4 4 0.05 0.05 0.4 4 0.04 

 1.7 0.8 -147.4477 0.05 0.3 3 0.01 0.05 0.3 3 0 

PP2 2.7 0.01 -294.8954 0.05 1 3.5 0.02 0.05 0.4 3.5 0.01 

 2.7 0.01 -442.3431 0.05 1 4.5 0.04 0.05 0.49 4.5 0.04 

 2.7 0.01 -147.4477 0.05 1 3.4 0.02 0.05 0.4 3.4 0 

 2 0.8 -294.8954 0.05 0.9 3 0.001 0.05 0.4 3 0.01 

 2 0.8 -442.3431 0.05 0.9 3 0.04 0.05 0.44 3.2 0.04 

 2 0.8 -147.4477 0.05 0.9 2.8 0.0001 0.05 0.4 2.8 0 

 1.7 0.8 -294.8954 0.05 0.9 2.62 0.0005 0.05 0.38 2.6 0.01 

 1.7 0.8 -442.3431 0.05 0.9 3 0.04 0.05 0.4 3.2 0.04 

 1.7 0.8 -147.4477 0.05 0.9 2.6 0.001 0.05 0.3 2.6 0 
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The comparison demonstrates that the best real-time control is achieved when the 

design of the nonlinear controller is done on the bases of the nonlinear model of the 

process for both simulation environments. 

 

8.6.3.2  Discussion on the real-time simulation results of the closed loop system with the 

NLPID1 controller when using different set points 

The real-time simulation of the closed loop system is done in the Beckhoff CX5020 PLC 

physical platform with NLPID1 controller designed by two methods: PP1 (Pole placement 

method for LPID controller design based on the linearized DO model) and PP2 (Pole 

placement method for NLPID1 controller design based on the nonlinear DO model). 

Observing from Figure 8.21 up to Figure 8.40, it can be seen that, the PP2 method 

shows good behavior in a PLC as it did in Matlab/ Simulink environment. The set-point 

values altered from 2.7, to 2 and to 1.7, but the system response has successfully 

achieved all the desired behavior under the different process internal disturbances ( sor  

and inos , ) in real-time. Therefore, the model transformation is achieved successfully.  

8.6.4  Implementation in Real-Time using the NLPID2 controller  

The closed loop control system with the nonlinear PID controller (NLPID2) has been 

successfully transformed to TwinCAT 3 environment through model transformation 

method, see Figure 8.41. To achieve model transformation of the closed loop system, it 

is very important to ensure the correctness of the model developed in Simulink 

environment. In Figure 8.41 the notations are: 

In1 – input of the set-point value 

In2 – feedback input 

In3 – is the input into the process 

Out1 – is the output of the control signal 

Out2 – is the output of the process  

 
Figure 8.41 Model Transformations for the closed loop system with the NLPID2 controller 
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The real-time simulation of the closed loop system is performed in CX5020 PLC with 

different set-point and internal disturbances as shown in Table 8.3. 

The real-time simulation results of the closed loop DO process performed in CX5020 

PLC under the nonlinear PID2 (NLPID2) designed by different methods are shown in 

following part.  

8.6.4.1  Results from the real-time simulation of the closed loop system with NLPID2 

controller 

Figure 8.42 to Figure 8.50 show the real-time results of the closed loop DO process 

behavior under the NLPID2 using the tuned controller parameters obtained by the Pole-

Placement (PP1) method for the design of the LPID controller based on the linearized 

DO model.  

 
Figure 8.42: PLC Real-time simulation of the closed loop system with the NLPID2 (PP1) controller 

when the set-point is Lmg /7.2 , Lmgs ino /01.0,   and dayLmgrso //8954.294
 

 

 
Figure 8.43: PLC Real-time simulation of the closed loop system with the NLPID2 (PP1) controller 

when the set-point is Lmg /7.2 , Lmgs ino /01.0,   and dayLmgrso //3431.442  
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Figure 8.44: PLC Real-time simulation of the closed loop system with the NLPID2 (PP1) controller 

when the set-point is Lmg /7.2 , Lmgs ino /1.0,   and dayLmgrso //4477.147  

 
Figure 8.45: PLC Real-time simulation of the closed loop system with the NLPID2 (PP1) controller 

when the set-point is Lmg /2 , Lmgs ino /8.0,   and dayLmgrso //8954.294  

 
Figure 8.46: PLC Real-time simulation of the closed loop system with the NLPID2 (PP1) controller 

when the set-point is Lmg /2 , Lmgs ino /8.0,   and dayLmgrso //3431.442  
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Figure 8.47: PLC Real-time simulation of the closed loop system with the NLPID2 (PP1) controller 

when the set-point is Lmg /2 , Lmgs ino /8.0,   and dayLmgrso //4477.147  

 

 
Figure 8.48: PLC Real-time simulation of the closed loop system with the NLPID2 (PP1) controller 

when the set-point is Lmg /7.1 , Lmgs ino /8.0,   and dayLmgrso //8954.294  

 

 

Figure 8.49: PLC Real-time simulation of the closed loop system with the NLPID2 (PP1) controller 

when the set-point is Lmg /7.1 , Lmgs ino /8.0,   and dayLmgrso //3431.442  
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Figure 8.50: PLC Real-time simulation of the closed loop system with the NLPID2 (PP1) controller 

when the set-point is Lmg /7.1 , Lmgs ino /8.0,   and dayLmgrso //4477.147  

 
 

Comparison of the DO process closed loops behavior for thsame set point and 

disturbances bween the Matlab/Simulink and TwinCAT 3 plattforms is done in Figure 

8.51. 

 

Figure 8.51: Comparison of two trajectories for comparison of the closed loop DO process 

response under the NLPID2 (PP1) controller, when the set-point is Lmg /2 , Lmgs ino /8.0,  and 

dayLmgrso //4477.147   (Figure 8.51a- Simulink results and Figure 8.51b Real-time PLC 

results) 

 

The comparison of the result from Simulink transformed to TwinCAT 3 environment 

shows the same behavior in the two platforms.  

The real-time results of the DO process under the NLPID2 controller designed by the 

PP2 method (Pole-Placement method for the design of the NLPID2 controller based on 

the nonlinear DO model) are shown below, Figure 8.52 up to Figure 8.61 as follows: 
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Figure 8.52: Real-time PLC simulation results of the closed loop system with NLPID2 (PP2) 

controller when the set-point is Lmg /7.2 , Lmgs ino /01.0,   and dayLmgrso //8954.294  

 

 

Figure 8.53: Real-time PLC simulation results of the closed loop system with NLPID2 (PP2) 

controller when the set-point is Lmg /7.2 , Lmgs ino /01.0,   and dayLmgrso //3431.442  

 

 

Figure 8.54: Real-time PLC simulation results of the closed loop system with NLPID2 (PP2) 

controller when the set-point is Lmg /7.2 , Lmgs ino /01.0,   and dayLmgrso //4477.147  

Red: Set point 

Green: DO 

Red: Set point 

Green: DO 
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Figure 8.55: Real-time PLC simulation results of the closed loop system with NLPID2 (PP2) 

controller when the set-point is Lmg /2 , Lmgs ino /8.0,   and dayLmgrso //8954.294  

 
Figure 8.56: Real-time PLC simulation results of the closed loop system with NLPID2 (PP2) 

controller when the set-point is Lmg /2 , Lmgs ino /8.0,   and dayLmgrso //3431.442  

 
Figure 8.57: TwinCat 3 Real-time simulation of the closed loop DO process response under the 

NLPID2 controller, when the set-point is Lmg /2  and Lmgrso /4477.147  

 

Red: Set point 

Green:  DO 

Red: Set point 

Green:  DO 
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Figure 8.58: Real-time PLC simulation results of the closed loop system with NLPID2 (PP2) 

controller when the set-point is Lmg /7.1 , Lmgs ino /8.0,   and dayLmgrso //8954.294  

 

 
Figure 8.59: Real-time PLC simulation results of the closed loop system with NLPID2 (PP2) 

controller when the set-point is Lmg /7.1 , Lmgs ino /8.0,   and dayLmgrso //3431.442  

 

 
Figure 8.60: Real-time PLC simulation results of the closed loop system with NLPID2 (PP2) 

controller when the set-point is Lmg /7.1 , Lmgs ino /8.0,   and dayLmgrso //4477.147  
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Figure 8.61 shows the comparison between the closed loop DO process trajectories for the 

same set point and disturbance. Again the behavior is the same on both platforms. 

 

 
Figure 8.61: Comparison of two trajectories of the closed loop DO process response under the 

NLPID2 (PP2) controller, when the set-point is Lmg /7.1 , Lmgs ino /8.0,  and 

dayLmgrso //8954.294 (Figure 8.61a- Simulink and Figure 8.61b- Real-time PLC) 

 

 

The following Table 8.5 shows the real-time comparison based on the NLPID2 designed 

by the two different methods. 
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Table 8.5: Comparison between the DO processes characteristics behaviour obtained under the NLPID2 controller parameters designed by the 
PP1 and PP2 methods 

NLPID2 Set-point Disturbances Simulink Results TwinCat Results 

Method  
 

inos ,  

]/[ Lmg  

sor  

]//[ dayLmg

 

Time 
delay 
[days] 

Rise time 
[days] 

Settling 
time 
[days] 

Steady 
state error 

[ Lmg / ] 

Time 
delay 
[days] 

Rise 
time 
[days] 

Settling 
time 
[days] 

Steady state 
error 

[ Lmg / ] 

PP1 2.7 0.01 -294.8954 0.1 0.5 4.2 0.25 0.05 0.4 4.4 0.26 

2.7 0.01 -442.3431 0.1 0.5 4.5 0.45 0.05 0.49 4.9 0.45 

2.7 0.01 -147.4477 0.1 0.4 4 0.1 0.05 0.4 4 0.1 

2 0.8 -294.8954 0.1 0.5 4.1 0.2 0.05 0.4 3.5 0.2 

2 0.8 -442.3431 0.1 0.5 4.3 0.34 0.05 0.44 4.2 0.34 

2 0.8 -147.4477 0.1 0.4 4 0.1 0.05 0.4 3.4 0.1 

1.7 0.8 -294.8954 0.1 0.5 4 0.18 0.05 0.38 3.6 0.18 

1.7 0.8 -442.3431 0.1 0.5 4.2 0.305 0.05 0.4 4 0.3 

1.7 0.8 -147.4477 0.1 0.4 3.7 0.08 0.05 0.3 3 0.08 

PP2 2.7 0.01 -294.8954 0.05 0.5 3.5 0.02 0.05 0.5 3.6 0.02 

2.7 0.01 -442.3431 0.05 0.5 4.4 0.04 0.05 0.5 4.4 0.04 

2.7 0.01 -147.4477 0.05 0.5 3.5 0.02 0.05 0.5 3.5 0.01 

2 0.8 -294.8954 0.05 0.5 3 0.001 0.05 0.5 3 0.001 

2 0.8 -442.3431 0.05 0.5 3 0.04 0.05 0.5 3 0.04 

2 0.8 -147.4477 0.05 0.5 2.8 0.0005 0.05 0.5 2.8 0.001 

1.7 0.8 -294.8954 0.05 0.5 2.8 0.001 0.05 0.5 2.8 0.001 

1.7 0.8 -442.3431 0.05 0.5 3 0.04 0.05 0.5 3 0.04 

1.7 0.8 -147.4477 0.05 0.5 2.7 0.0005 0.05 0.5 2.7 0 
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8.6.4.2 Discussion on the real-time simulation results of the closed loop system using the 
NLPID2 controller designed by the two design methods for different set point values 

The real-time performance of the closed loop DO system is found to be the same as in 

Simulink, and then the conclusion can be drawn that the model implementation of the 

CX5020 PLC and its real-time simulation can be achieved successfully through the 

model transformation technique. 

Figure 8.42 up to Figure 8.61 show PLC real-time simulation results of how the system 

responds in the CX 5020 Beckhoff PLC, under the same NLPID2 controller designed by 

the two design methods. On the basis of these methods the conclusion can be taken that 

the best real-time control is achieved when the design of the nonlinear controller is done 

on the basis of the nonlinear model of the process, this means PP2 control design 

performs very well in controlling the nonlinear DO process model. The steady state error 

when using the PP1 method is much bigger than the one when using the PP2 method.  

 

8.7  Complete Result Discussion  

The closed loop systems that are controlled by the controllers designed by the two (PP1 

and PP2) methods are deployed on the Beckhoff PLC CX5020 physical platform and 

TwinCAT 3 real-time implementation software. As the different controller design methods 

are used, the results show that the best DO process control is achieved when the design 

of the nonlinear controller is done on the bases of the nonlinear model of the process, 

since it does not require any flexible and influential tuning in order to obtain good results 

for the plant. The Beckhoff PLC CX5020 platform is needed to cope with the increasing 

complexity of the industrial systems and it is built according to the new industrial 

standard. 

The PLC CX5020 implementation results obtained in TwinCat 3 real-time environment 

are the same as the results obtained in Matlab/Simulink, this has let us come to 

conclusion that the Beckoff PLC CX5020 which supports the IEC 61499 standard, has 

been the best platform in this thesis to accommodate the real-time simulation of the 

nonlinear control algorithms with the nonlinear plant. 
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8.8 Conclusion 

The Beckhoff CX5020 PLC is used for the real-time simulation and comparison of the 

findings of the thesis. The CX5020 is used in conjunction with the TwinCAT 3 software 

from Beckhoff and offers the same functionalities as large industrial personal computers 

(PCs). This chapter has discussed a basic introduction of PLCs, TwinCAT 3 software; 

Beckhoff CX50x0 PLC and the model transformation technique to achieve real-time 

implementation of the closed loop Dissolved Oxygen (DO) system. As the nonlinear PID 

controllers and the DO system are implemented in the Beckhoff PLC (CX5020), the real-

time implementation results are picked up, and plotted in TwinCAT 3 software. The real-

time closed loop implementation results with both controllers (NLPID1 and NLPID2) show 

that the output of the DO process can be controlled to a desired value through a NLPID 

controller design based on the nonlinear model of the process to be controlled.  

In the next chapter (Chapter 9) the findings of the thesis are outlined.  
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CHAPTER NINE 

CONCLUSION AND FUTURE RECOMMENDATION 

 

9.1  Introduction 

 
This research project is motivated by the shortage of the existing controller design 

methods for general nonlinear processes and the difficulty of designing and implementing 

nonlinear model-based controller design. Investigation in nonlinear control is also 

motivated by the naturally nonlinear characteristics of the dynamic systems to be 

controlled. The reality says; many practical systems are significantly nonlinear in nature, 

so the important features of their performance may be completely overlooked if they are 

analyzed and designed through linear control techniques.  

 

Effective control of nonlinear systems requires robust methods to accommodate system 

uncertainties and harsh environments. Wastewater Treatment Plants (WWTPs) are such 

nonlinear systems with complex multivariable processes which require effective control 

because of the increased requirements on the quality of the effluent concentrations 

imposed on the plants. There is a rising interest in research activities relating to finding 

better ways of controlling the WWTPs. The process of the Dissolved Oxygen (DO) 

concentration is chosen in the thesis to be controlled, because it has the potential to 

influence the behavior of the Activated Sludge Processes (ASP) as well as to ensure that 

the operational cost can be minimized.  

 

Methods for the design of nonlinear PID controllers for the DO process concentration in 

the ASP are developed in the thesis. This Chapter describes the deliverables of the 

thesis, their applications and the future research in the field, as follows: Part 9.2 states 

the aim and objectives of the thesis, part 9.3 describes thesis deliverables, discussion of 

the importance of the thesis deliverables is given in part 9.4, part 9.5 describes the 

possible applications of the thesis results, the recommendation for future research are 

given in part 9.6, the publications on the thesis development are listed in part 9.7 and the 

conclusion is done in part 9.8. 

9.2  Aims and Objectives: 

Based on the statement of the problem, the thesis aim and objectives have been 

developed. The thesis aim is to develop methods for design of linear and nonlinear 
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controllers of the concentration of the DO process in the aeration tank of the ASP and to 

implement the designed controllers in the frameworks of Beckhoff CX5020 PLC, 

TwinCAT software environment and MATLAB/SIMULINK software. The objectives are as 

follows: 

1. Evaluation of the literature for modeling and control of DO concentration. 

2. Development of a model of the DO concentration process in the ASP and its 

simulation in Matlab/Simulink environment.  

3. Investigation and development of the structure of nonlinear PID controllers for the 

purpose of the research study. 

4. Development of a method for design of a linear PID (LPID) controller of the DO 

concentration process based on Ziegler-Nichols approach and applied to the 

nonlinear model of the DO process 

5. Development of a method for design of Nonlinear PID (NLPID) controller of the 

DO process using Pole-Placement (PP1) method for design of LPID controller 

based on the linearized DO process model. 

6. Development of a method for design of the LPID controller of the DO process 

using Pole-Placement method for design of LPID controller based on the 

nonlinear DO process model. 

7. Development of a method for design of the NLPID controllers of the DO process 

using Pole-Placement (PP2) method for design of NLPID controller based on the 

nonlinear DO process model. 

8. Development of the simulation models of the closed loop systems consisting of 

the developed controllers and nonlinear DO process model in Matlab/Simulink.  

9. Implementation of the NLPID controllers in Beckhoff PLC (using IEC61499 

standard approach) using a model transformation technique. 

10. Real-time simulation of the closed loop system.  

 

9.3  Thesis deliverables  

The need for controlling and monitoring of the ASP has been emphasized in Chapter 

One. Therefore, the deliverables of this project are based on the aim and objectives as 

highlighted above. The initial step involved a review of the activated sludge process as 

an object of control. The different control approaches with different control variables were 

investigated and compared to each other. 

The different control strategies available in the literature are discussed in Chapter two. 

MATLAB/Simulink is selected as a simulation environment to test the closed loop system 
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under the selected controllers, because it follows the principles of functional block 

programming, and the model transformation method. Model transformation automatically 

translates each state flow block into customized basic IEC 61499 function blocks with 

exactly, the same inputs, outputs and parameters as their Simulink counterparts. 

9.3.1  Modeling and Simulation 

The nonlinear mathematical model of the DO concentration process has been developed 

in Chapter 3. The oxygen transfer function is represented as a function of the control 

input to the process. The process open loop response of the DO concentration is 

simulated in Matlab/Simulink software environment in order to obtain the DO process 

trajectories; this is done in order to obtain the data for the controller design and 

development. The developed model is documented in Chapter 3. 

 

9.3.2  Review of control theory for the design of nonlinear controllers 

Chapter 4 gives a short overview of the linear and nonlinear control theory background. 

This chapter provides also the background for the design of the nonlinear PID controllers. 

9.3.3  Controller Design and Implementation  

As a practical, accurate mathematical model of the process has been tested through 

simulation and the problem now was how to make use of this model to find out what 

typical control actions, can be used to make the process of DO to operate according to 

the desired requirements. Chapter 5, 6 and 7 describe the design methods developed 

and used to control the DO process concentration. The type of control that is convenient 

for nonlinear systems is the nonlinear control; three methods were used and developed 

to design the nonlinear controllers in the thesis. The deliverables are: 

9.3.3.1 The Ziegler-Nichols method for design of the LPID controller 

The Ziegler-Nichols step response method is used to design the controller parameter of 

the LPID controller. The obtained values of the LPID controller parameters are used 

directly as the values of the parameters on the NLPID controllers and simulations of the 

closed loop system are performed. The results show that additional tuning is necessary 

to be performed for the NLPID controllers. The closed loop system with the tuned NLPID 

parameters is simulated under various values of the process set point and the process 

internal disturbances.  
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9.3.3.2 Pole Placement method for the design of the LPID controller based on the 

linearized DO model.  

This method is named as a PP1 controller design method based on the linearized DO 

process model. The pole placement method is applied to the linearized DO model of the 

DO process to design the parameters of the linear PID controller. The obtained values of 

the LPID controller parameters are directly used as the value of the parameters of the 

NLPID controllers and simulations of the closed loop system are performed. The results 

show that additional tuning is necessary to be performed for the NLPID controllers. The 

closed loop system with the tuned NLPID parameters is simulated under various values 

of the process set point and the process internal disturbances.  

  

9.3.3.3 Novel Pole Placement based method for direct design of the parameters of the 

LPID and NLPID parameters are unknown  

This is called as a PP2 controller design method. The approach of the Pole Placement is 

applied directly to the nonlinear equation of the closed loop system. Then solution of this 

nonlinear differential equation according to the controller parameters in the case of 

known values of the process state determines the solution of the controller design 

problem. The controller parameters are obtained for every value of the DO concentration 

open loop trajectory and after some simulations of the closed loop system with the 

obtained parameters, the best one are selected. They are used to investigate the 

behavior of the closed loop DO process under different set point and internal process 

disturbances.  

The new method determines the optimal values of the linear and nonlinear PID 

controllers. No additional tuning is needed.  

 

9.3.4  Matlab codes for Simulation 

The methods developed for simulation of the DO model as well as for the controller 

parameters design are implemented in the Matlab simulation environment. The software 

programs developed in MATLAB for the above-mentioned thesis deliverables are shown 

in Table 9.1. The corresponding Simulink models are shown in Table 9.2. 

Table 9.1: Matlab script file developed 

Matlab script 
file name 

Function Simulink model 
developed 

DO_last.m Script file for simulation of the DO process using DO_model.mdl 
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ASM1 biological model parameters 

LPID_DO.m Script file for simulation of the closed loop DO 
process under the LPID controller. 

LPIDwithDO.mdl 

NLPID1withD
Ozn.m 
 

Script file for simulation of the closed loop DO 
process using ASM1 biological model parameters 
under the NLPID1 controller based on Ziegler-
Nichols tuning method. 

nlpid1_DOmodelzn
.mdl 
 

NLPID1pp1wit
hDOpar.m 
 

Script file for simulation of the DO closed loop 
process using ASM1 biological model parameters 
with the NLPID1 controller based on Pole-Placement 
(PP1) method for design of LPID controller based on 
the linearized DO model. 

“nlpid1_DOmodelp
p1.mdl” 
 

“myfun1”. This file is used to solve for unknown control 
parameters in Equation 7.9, following the design 
procedure in Figure 7.1. 

 

“Findnlpid1par
_PP2.m” 

This is a script file used to call myfun1, which will 
work with the DO process to find suitable controller 
parameters for the NLPID1 controller to control the 
DO process. 

 

nlpid1_DOmod
elpp2.m 
 

Script file for simulation of the DO closed loop system 
with NLPID1 based on PP2 method. 

“nlpid1_DOmodelp
p2.mdl” 

NLPID2znwith
DO.m 
 

This program contains parameters for simulation of 
the DO process closed loop behavior under the 
NLPID2 controller. The model “NLPID2zn_DO.mdl” 
has been built in Simulink. The plant parameters are 
those one of the DO process as taken from ASM1 
biological model no.1 

“NLPID2zn_DO.md
l” 

“NLPID2pp1wit
hDO.m” 
 

Script file for simulation of the closed loop DO 
process behavior under the NLPID2 controller based 
on Pole-Placement method for design of the LPID 
controller for the linearized model of the DO process 
(PP1 method). 

“NLPID2pp1_DO.m
dl” 

“myfun2”. This file is used to solve for unknown control 
parameters in Equation 7.12, following the design 
procedure in Figure 7.1. 

 

“findnlpid2par.
m” 

This is a script file used to call myfun1, which will 
work with the DO process to find suitable controller 
parameters for the NLPID1 controller to control the 
DO process. 

 

“NLPID2DOpp
2.m” 
 
 

Script file for simulation of the closed loop DO 
process behavior under the NLPID2 controller built 
on Pole-Placement method for design of the NLPID 
for the nonlinear DO model (PP2 method). 

“NLPID2pp2DO.md
l” 
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Table 9.2: Simulink Models  

Simulink model developed Description  

DO_model.mdl This Simulink model is the open loop nonlinear DO 
process. 

LPIDwithDO.mdl This is the closed loop Simulink model of the nonlinear 
DO process under the LPID controller. 

nlpid1_DOmodelzn.mdl 
This is the closed loop Simulink model of the nonlinear 
DO process under the NLPID1 controller that uses the 
tuned control parameters from Ziegler-Nichols method 
design for LPID controller. 

“nlpid1_DOmodelpp1.mdl” 
Simulink model that contains the NLPID1 controller, which 
is applied to control the process model of dissolved 
oxygen.  

“nlpid1_DOmodelpp2.mdl” 
Closed loop Simulink model of the nonlinear DO process 
under the NLPID1 controller design based on the PP2 
method 

“NLPID2zn_DO.mdl” This is the closed loop Simulink model of the nonlinear 
DO process under the NLPID2 controller. 

“NLPID2pp1_DO.mdl” This is the closed loop Simulink model of the nonlinear 
DO process under the NLPID2 controller design based on 
the PP1 method. 

“NLPID2pp2_DO.mdl” This is the closed loop Simulink model of the nonlinear 
DO process under the NLPID2 controller design based on 
the PP2 method. 

 

9.3.5  Real-Time simulation of the closed loop system models  

Models of the closed loop system were developed in the MATLAB/Simulink software 

environment based on the control algorithms and the Simulation block diagram 

developed and shown in Chapter 5, Chapter 6, and Chapter 7. Then these models are 

transformed using model transformation technique from Simulink to TwinCAT 3 software 

environment of the Beckhoff PLC CX5020. Model transformation technique keeps the 

same data and parameter connections in order for Simulink and TwinCAT 3 to produce 

the same output data; the wrong mapping of the data type will make the algorithm 

computation to perform incorrectly. These two software environments (Simulink and 

TwinCAT 3) have their own basic data type defined. The transformed models to 

TwinCAT 3 environment are illustrated in the following Table 9.3: 

 

Table 9.3: TwinCAT 3 Environment Models 

Models in TwinCAT 3 Description  

nlpid1_DOpp1 This model was transformed to TwinCAT for the 
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real-time simulation of the DO model under the 
NLPID1 controller designed based on the PP1 
method. 

nlpid1_DOpp2 This model is deployed into a PLC for a real-time 
simulation. This is done in order to view the 
performances of the closed loop system 
implemented in a framework of the PLC, the result 
are viewed in TwinCAT software environment. 

NLPID2pp1_DO This model is transformed to TwinCAT for the real-
time simulation of the DO model under the NLPID2 
controller designed based on the PP1 method. 
Through TwinCAT the system was varied between 
different set point and disturbance values. 

NLPID2pp2DO This is the closed loop DO model under NLPID2. It 
was deployed into a PLC for a real-time simulation. 
This was performed in order to make an 
examination of how is the nonlinear process would 
perform under the framework of the PLC, the result 
are shown in TwinCAT 3 software environment. 

 

9.4  Importance of the deliverables 

Linear PID and the two nonlinear PID controllers were designed and investigated by off-

line and real–time simulation. The two nonlinear controllers designed are also compared, 

in order to achieve a system that can have a reliable control performance.  

Through Matlab/Simulink it is also proven that the parameters as designed for the linear 

PID controller cannot be directly used in the nonlinear PID controllers to control the DO 

process, and adjustments are needed to be made in order to succeed in controlling the 

DO process.  

Simulation results confirm that the NLPID control algorithm can enhance the damping 

features and stabilize the system under different set-points, and disturbances.  

The advantage of using a controller that can control the plant under different operation 

conditions and changing set-points is that only the needed energy is used. A controller 

that works well only under one operating condition and one DO set point and cannot 

handle changed disturbances can lead to energy loss, because the process can be 

supplied with control action which is not required. 

The Beckhoff PLC CX5020 is a reliable platform and it is built according to the new 

industrial standard IEC 61499. The Real-Time implementation results also show that the 

Dissolved Oxygen is controlled very well under the developed two NLPID control 

algorithms which are capable to control the dissolved oxygen concentration for different 

operating conditions with almost zero steady state error. 
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9.5  Application of the nonlinear PID controllers 

The following applications are considered: 

 In nonlinear frameworks, where NLPID control is utilized for accommodation of 

any system nonlinearity and is used to accomplish steady reaction over a some 

different scope of conditions  

 In linear systems, where nonlinear PID control is utilized to attain execution not 

achievable by a direct PID control, for example, expanded damping, reduced rise 

time for step or quick inputs, enhanced tracking accuracy, and contact 

remuneration. 

 The main algorithm of the NLPID controller is formed based on a nonlinear 

function and is an inherent part of the controller. The fundamental objective is to 

accomplish a desired reaction in the output of the plant when traditional PID could 

not achieve it.  

 

9.6  Application of the thesis results 

The developed models, nonlinear PID algorithms and PLC software serve for the 

following: 

 Understanding: Gives insight into the wastewater treatment processes and how 

suitable mathematical models are derived. 

 Industrial applications: This investigation presents a solution to the problem of tuning 

NLPID controllers for a nonlinear system. Many systems in industrial applications use 

LPID controllers. A conventional PID controller works in linear systems and is less 

effective when the plant is nonlinear because the linear PID controllers cannot adapt 

the gain parameters as needed.  

Education and training: Operators are not continuously sufficiently trained to operate 

advanced control equipment and many environmental engineers would require more 

basic understanding of the system dynamics and control so as to appreciate the 

potential of instrumentation, control and automation. 

 PLC and visualization: The CX5020 offers the same functionality as the large 

Industrial PCs. In terms of PLC, up to four virtual IEC 61131 CPUs can be 

programmed with up to four tasks each, with a minimum cycle time of 50 us. All IEC 

61131-3 languages can be used. In addition to real-time execution of control the 

tasks, the TwinCAT real-time seed ensures that enough time remains for the user 
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interface (HMI), to communicate with the real-time components via software 

interfaces.  

 

9.7  Future recommendation 

The next study is to apply the developed methods to a pilot plant. This will involve online 

estimation of the parameters. It will be interesting to see how quickly the system keeps 

up with the delays, disturbances and set point changes on a real ASP plant. The topic for 

future research can be on real-time implementation of NLPID controllers to control the 

DO process using any of the software that can support IEC 61499 standard, TwinCAT 3, 

NXT, FBDK or ISaGRAF and with Beckhoff PLC CX5020 to control the nonlinear 

process. 

 

9.8  Publication 

Tshemese, N., and Tzoneva, R. 2014. Design and real-time PLC simulation of the linear 

and nonlinear PID controllers for nonlinear dissolved oxygen process. The paper is sent 

to the European Journal of Control.  

9.9  Conclusion 

This chapter describes the aim and objectives of the thesis and gives the direction for the 

thesis deliverables for the methods and algorithms developed, together with software 

programs written. The application of the thesis results and the future research direction 

are outlined. 
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APPENDICES 

APPENDIX A: MATLAB PROGRAM  

Appendix A: present the Matlab program for simulation of the DO open loop process using 

ASM1 parameters, the Matlab script file for this program is named as - DO_last.m  

  

%==============================2014============================================ 
%       Nomzamo Tshemese 
%     Cape Peninsula University of Technology 
%======================================================================= 
%---Parameters for simulation of the Dissolved Oxygen Concentration 
%======================================================================== 
clear all 
clc 
%======================================================================== 
%                       System Variables 
%======================================================================== 
Sosat=8;            % Dissolved oxygen saturation 
K1=240;             % Constant calculated from KLa=240 metres cubed per day 
K2=1.0961e-004;     % Constant calculated from KLa=240 metres cubed per day 
Soo=005;%0.49;      % Oxygen  
V=1333;             %Volume of Tanks 3,4&5 
soin=0.01;%0.8;%2   % Internal disturbance 
t=0:1:8;            %time 
u=50000.0*ones(1,9);% Air flow rate 
Qq=55338;           % Internal recycle flow rate  
Qr=18446;           % Influent flow rate 
Qo=18446;           % Recycle flow rate  
Q=Qq+Qr+Qo;         % Total flow rate 
D=Q/V;              % 
%======================================================================== 
%       State variables and kinetic values for ASM1 
%======================================================================== 
muA=0.9; %0.5;  %The maximum autotrophic growth rate 
muH=6;   %4;    %The maximum heterotrophic growth rate 
Koh=0.20;       %Half-saturation heterotrphic oxygen growth rate 
Yh=0.67;        %Heterotrophic yield 
Ya=0.24;        %Is the autotrophic yield 
Ks=10;   %20    %Half-saturation heterotrphic growth rate 
Knh=1.0; %0.2;  %Half-saturation autotrophic growth rate 
Koa =0.4;%0.3;  %Half-saturation autotrophic oxygen growth rate 
%------------------------------------------------------------ 
Xbhs=2559.4; %3839.166; % Active heterotrophic biomass 
Xbas=149.8;   %78.8985; % Active autotrophic biomass 
Snhs=1.73;              % Ammonia and ammonium nitrogen 
Sss=0.89;               % Readily biodegradable substrate 
Snh=Snhs*ones(1,9);     % 
Ss=Sss*ones(1,9);       % 
Xba=Xbas*ones(1,9);     % 
Xbh=Xbhs*ones(1,9);     % 
T=t';                   % 
U=u';                   % 
Ass=Ss';                % 
Asnh=Snh';              % 
Axba=Xba';              % 
Axbh=Xbh';              %   
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rso=(-muH*((1-Yh)/Yh)*(Ss/(Ks+Ss))*(Soo/(Koh+Soo))*Xbhs-muA*((4.57-

Ya)/Ya)*(Snhs/(Knh+Snhs))*(Soo/(Koa+Soo))*Xbas); 
DO_M     %call DO 

%========================================================================= 
 

 

 

APPENDIX B: MATLAB/SIMULINK SOFTWARE SCHEDULE 

The appendix B presents some Simulink models and MATLAB script files that are used in the 

development of the mathematical algorithms of the linear and nonlinear PID for control of the 

dissolved oxygen concentration trajectories. The description of these script files is contained in 

Chapter 5, Chapter 6 and Chapter 7, as well as the Table 9.1 in Chapter 9. The script files 

supply data to the Simulink environment. 

Appendix B1: Matlab script - LPID_DO.m 

The following program file shows the designed controller parameters of the linear PID controller 

through Ziegler-Nichols (ZN) method. These parameters are used to control the nonlinear 

process of the Dissolved Oxygen (DO) concentration.  

%======================================================================== 

%the script file for the LPID controller based on Z-N method to control  

%DO process; 

clc  %clear the command window  
%========================================================================= 
%Parameters for simulation of the NLPID controller with DO 
%========================================================================= 
kp = 120;    %calculated proportional gain;     
ki = 50;    %designed integral gain;  
kd = 0.005;  %calculated derivation part;  
%========================================================================= 
plot(time,DO); %plotting the output of the nonlinear DO process under LPID 
grid on 
xlabel('Time [days]','FontSize',11); 
ylabel('DO[mg/L]', 'FontSize',11); 
title(' Closed loop DO process response under the LPID 

controller','FontSize',11'); 
gtext({'Kp= 120','Ki= 50','Kd= 0.005'}); 
legend('DO'); 

 

Appendix B2: Matlab script - NLPID1withDOzn.m  

This program is for simulation of the Nonlinear PID controller using the final adjusted parameters 

based on the Ziegler-Nichols method, this controller is used to control the nonlinear process of 

DO that has the system parameters shown in Appendix A. 

 %======================================================================== 

%the script file for the NLPID1 controller based on Z-N method; 
%========================================================================= 
%Parameters for simulation of the DO process under NLPID1 controller 
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%========================================================================= 
kp = 120;     %120 %calculated proportional gain;     
ki = 0.5;     % 50   %designed integral gain;  
kd = 0.005;   %calculated derivation part;  
%========================================================================= 
%   Nonlinear Function parameter values  
%========================================================================= 
ap= 0.9; 
ai= 0.9; 
ad= 1.9; 
dp= 0.005; 
di= 0.05; 
dd= 0.05; 
%=========== Nonlinear Differentiator Parameters 
alfa1 = 0.5; 
alfa2 = 0.5; 
M1= 100; % 
M2= 100; % 
%======================================================================= 
%   Copy and use the DO parameters in Appendix A  
%======================================================================= 
NLPID1zn_DOmodel %simulate the closed loop model in Simulink; 
%======================================================================== 

 

 

 

Appendix B3: NLPID2zn_DO.m 

This program is for simulation of Nonlinear PID2 controller. It uses the final adjusted parameters 

based on Ziegler-Nichols method. These parameters are used in the controller to control the 

nonlinear process of DO. 

%-----------------------Mfile: Description-------------------% 
%---------------Test NLPID2 Ziegler-Nichols with DO-----------% 
% this program is for simulation of Nonlinear PID2 uses the used final  
% adjusted parameters based on Ziegler-Nichols method 
clear all 
clc 
%========================================================================= 
%Parameters for simulation of the NLPID2 controller only 
%========================================================================= 
kp    = 200; %120   %100;   
ki    = 0.5; %50;  %0.5; 
kd    = 0.005; 
%========================================================================= 
%   Nonlinear Function and Nonlinear Differentiator values  
%========================================================================= 
ap= 0.9; 
ai=0.9; 
ad=1.9; 
dp=0.005; 
di=0.05; 
dd= 0.05; 
%=== 

alfa1 = 0.5; 
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alfa2 = 0.5; 
M1= 100; % 
M2= 100; % 
%======================================================================= 
%   Copy and use the DO parameters in Appendix A  
%======================================================================= 
nlpid2_DOmodel.mdl %simulate the closed loop model in Simulink; 
%======================================================================== 

 

Appendix B4: LPIDpp1.m  

This program uses the calculated values of the matrices A and B through the Taylor series to 

find the controller parameters.  

A=-3;      
B=200; % 
kp= (4+A)/B 
ki= (6/B) 
(1+Bkd) =1;  
Kd=(1-1)/B; kd=0 
%======================================================================= 
%   Copy and use the DO parameters in Appendix A  
%======================================================================= 
LPID_DO.mdl %simulate the closed loop model in Simulink; 
%======================================================================== 

 

Appendix  B5: - NLPID1pp1withDOpar.m 

%----------------------- Matlab script file: Description-------------------% 
%Test DO closed loop under NLPID1 based on Pole-Placement ------% 
% this program is for simulation of the DO process under the Nonlinear PID controller (NLPID1) uses  
% the designed control parameters of Pole-Placement method for the 
% LPID controller based on the linearized DO model.    
  
clear all % clear the workspace 
clc 
%========================================================================= 
%Parameters designed for LPID controller and were later tuned for NLPID1 to control DO 
%========================================================================= 
A=-3;      
B=200; % 
kp= (4+A)/B 
ki= (6/B) 
(1+Bkd) =1;  
Kd=(1-1)/B; kd=0 
%------------------------------------------------------------------------ 
%   Nonlinear Function parameter values  
%========================================================================= 
ap= 0.9; 
ai=0.9; 
ad=1.9; 
dp=0.005; 
di=0.05; 
dd= 0.05; 
%=========== Nonlinear Differentiator Parameters 
alfa1 = 0.5; 
alfa2 = 0.5; 
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M1= 100;  
M2= 100; 
%soin = 0.01;% 0.8;% Internal disturbance 
%==================================================================== 
% Copy and use the DO model parameters in Appendix A  
%======================================================================= 

Appendix  B6: - NLPID2pp1_DOpar.m 

%----------------------- Matlab script file: Description-------------------% 
%Test DO closed loop process under the NLPID2 based on the Pole-Placement method (PP1)------% 
clear all % clear the workspace 
clc 
%========================================================================= 
%Parameters designed for LPID controller and were later tuned for NLPID1 to control DO 
%========================================================================= 
A=-3;     %-0.8; 
B=200; %0.03;% 15000; 
kp= (4+A)/B 
ki= (6/B) 
(1+Bkd) =1;  
Kd=(1-1)/B; kd=0 
%------------------------------------------------------------------------ 
%   Nonlinear Function parameter values  
%========================================================================= 
ap= 0.9; 
ai=0.9; 
ad=1.9; 
dp=0.005; 
di=0.05; 
dd= 0.05; 
%=========== Nonlinear Differentiator Parameters 
alfa1 = 0.5; 
alfa2 = 0.5; 
M1= 100;  
M2= 100; 
%soin = 0.01;% 0.8;% Internal disturbance 
%==================================================================== 
% Copy and use the DO model parameters in Appendix A  
%======================================================================= 

 

%%%%%%%%%================================= 

Appendix  B7: - findLPIDpar.m 

This section is used to find the controller parameters of the LPID controller through the PP2 method 

clear all 
clc 
%===================================================================== 
%       System Variables from ASM1 
%===================================================================== 
setpoint=2;     %Set point value 
Sosat=8;        %Dissolved oxygen saturation 
K1=240;         %Constant calculated from KLa=240 metres cubed per day 
K2=1.0961e-004; % Constant calculated from KLa=240 metres cubed per day 
Soo=0.05;%0.49; % Oxygen  
V=1333;         % Volume of Tanks 3,4&5 
soin=0.01;            %Internal disturbance 
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%e=setpoint-So;     %error 
Qq=55338;          %Internal recycle flow rate. 
Qr=18446;          %Influent flow rate 
Qo=18446;          %Recycle flow rate 
%ratios used in the equations 
Q=Qq+Qr+Qo;        %Total flow rate 
D=Q/V;% 
t=0:1:8; % 
So= 4.3203;      %Oxygen 
u=50000.0*ones(1,9);% Air flow rate 
%======================================================================== 
      %----------------- FOR rso --------------% 
muA = 0.9; %0.5     %the maximum autotrophic growth rate 
muH = 6;  %4        %the maximum heterotrophic growth rate 
Koh = 0.20;         %Half-saturation heterotrphic oxygen growth rate 
Yh = 0.67;          %Heterotrophic yeild 
Ya = 0.24;          %the autotrophic yield 
Ks = 10;            %Half-saturation heterotrphic growth rate 
Knh = 1.0;          %Half-saturation autotrophic growth rate 
Koa = 0.4;          %Half-saturation autotrophic oxygen growth rate 
%------------------------------------------------------------------------ 
%=====Active heterotrophic biomass and Active autotrophic biomass=====% 
%---------------------------Ezi right------% 
   %------------------------------------------------------------ 

Xbhs=2559.4; %3839.166; % Active heterotrophic biomass 

Xbas=149.8;   %78.8985; % Active autotrophic biomass 

 
%    Xbhs=2.68737;Xbas=0.15729; % -186.4457 
%    Xbhs=2.43143;Xbas=0.14231; % -168.6890 
%    Xbhs=3.8391;Xbas=0.2247;  % -266.3510 
%    Xbhs=1.2797;Xbas=0.0749; % -88.7837 

  
Snhs=1.73;          %Ammonia and ammonium nitrogen 
Sss=0.89;             %Readily biodegradable substrate 
Snh=Snhs*ones(1,9);% 
Ss=Sss*ones(1,9);% 
Xba=Xbas*ones(1,9);% 
Xbh=Xbhs*ones(1,9);% 
T=t';% 
U=u';% 
Ass=Ss';% 
Asnh=Snh';% 
Axba=Xba';% 
Axbh=Xbh';%  
V=1333;      % Volume of Tanks 3,4&5 
rso=(-muH*((1-Yh)/Yh)*(Ss/(Ks+Ss))*(Soo/(Koh+Soo))*Xbhs-muA*((4.57-

Ya)/Ya)*(Snhs/(Knh+Snhs))*(Soo/(Koa+Soo))*Xbas); 
 x  = [1,1];     %Make a starting guess at the solution 
kp = x(1); 
ki = x(2); 
%ki=(kp/Ti);%; %x(2); Ti = 0.5; 
kd=0.01; 
%kd = kp*Td; 
SimOut= sim('closedloop', 'ReturnWorkspaceOutputs', 'on'); % Return all 

Simulink SimulationOutputs 
So=SimOut.get('Ao');      % Output of So and the setpoit 
Time=SimOut.get('time');  
So1=So(:,1);            % So alone 
So2=SimOut.get('Ao1'); 
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L=[Time So1 So2]; % Take time, So1, So2 and store them to L 
integral = 0; 
previous_error = 0; 
error=0; 
 r=2; %set-point 
dt = 0.01; 
n=801; 
for i=1:n 
    S01=So1(i); 
    S02=So2(i); 
    previous_error = error; 
    integral     = integral + error*dt;     % integral term 
    error = r-S01; 
    [x,FVAL,EXITFLAG] = fsolve(@(x) 

myfun5(S01,S02,D,soin,rso,K1,K2,Sosat,x,integral,error,previous_error),[30,10]

,optimset('Display','iter')); % initial guess values: Kp=30,Ti=10; 
KpI=x(1); 
TiI=x(2); 
Kp2(1,i)= KpI; 
Ti2(1,i)= TiI; 
 

% Ki2(1,i)= KpI/TiI;  

%SS1(i,1)=S01; SS2(i,1)=S02; 

end 
 Kp2=Kp2'; 
 Ti2 = Ti2'; 

% Ki2=Ki2';  
plot(Time,Kp2,'r',Time,Ti2,'b') 
ff=[Kp2 Ti2]; 

%ff=[Kp2 Ki2 Ti2]; 

 

The function file used/called above “myfun5” is: 

function F = 

myfun5(S01,S02,D,soin,rso,K1,K2,Sosat,x,integral,error,previous_error) 
Kd = 0.01; %0;    % derivative term is not necessary in this problem 
% previous_error = 0; 
%  integral = 0; 
dt = 0.01; 
derivative = (error-previous_error)/dt; % derivative term 
F=S02-(D)*(soin-S01)-rso-K1*(1-exp(-

K2*(x(1)*error+x(2)*integral+Kd*derivative)))*(Sosat-S01); 
 end 

   

 

 
Appendix  B8: Findnlpid1par_PP2.m 

%-----------------Mfile: Description---------------% 
%-----------Test fsolve control parameter with DO-----------% 
% this program tries to find the Nonlinear PID controller (NLPID1) parameters 

% designed based on the nonlinear DO model.  

%-------------------------------------------------------------------------   
clear all % clear the workspace 
clc 
%========================================================================= 
%Find Optimal value through fsolve function simulation  
%========================================================================= 
%=========== Nonlinear Differentiator Parameters 
alfa1 = 0.5; 



247 
 

alfa2 = 0.5; 
M1= 100;  
M2= 100; 
%==================================================================== 
Sosat=8; 
K1=240;% Constant calculated from KLa=240 metres cubed per day 

K2=1.0961e-04;% Constant calculated from KLa=240 metres cubed per day %  
Soo=0.05; %0.491;%0.05;   %Oxygen 
V=1333; 
soin=0.01;%2;%0.01; Internal disturbance 
t=0:1:8;  %time interval or range. 
u=50000.0*ones(1,9); %Air flow rate 
Qq=55338; %555338; 
Qr=18446; 
Qo=18446; 
Q=Qq+Qr+Qo; 
 D=Q/V; 
%========================================================================== 
%       State variables and kinetic values for ASM 
%========================================================================== 
muA=0.9; %0.5 
muH=6; %4; 
Koh=0.20; 
Yh=0.67; 
Ya=0.24; 
Ks=10; %20; 
Knh=1.0; 
Koa =0.4;   %Half-saturation autotrophic oxygen growth rate 
Xbhs=2559.4;Xbas=149.8;    %  
Snhs=1.73;%  Ammonia and ammonium nitrogen 
Sss=0.89; 
Snh=Snhs*ones(1,9); 
Ss=Sss*ones(1,9); 
Xba=Xbas*ones(1,9); 
Xbh=Xbhs*ones(1,9); 
T=t'; 
U=u'; 
Ass=Ss'; 
Asnh=Snh'; 
Axba=Xba'; 
Axbh=Xbh'; 
rso=(-muH*((1-Yh)/Yh)*(Ss/(Ks+Ss))*(Soo/(Koh+Soo))*Xbhs-muA*((4.57-

Ya)/Ya)*(Snhs/(Knh+Snhs))*(Soo/(Koa+Soo))*Xbas); 
% NLPID1_NLDO2 
%------------------------------------------------------------------------ 
%   Nonlinear Function parameter values  
%========================================================================= 
ap= 0.9; 
ai=0.9; 
ad=1.9; % 1.9 
dp=0.005; 
di=0.05; 
dd= 0.05; 
x  = [1,1];     %Make a starting guess at the solution 
kp = x(1); 
Ti = x(2); 
ki = kp/Ti;  

Td = 0.01; 
kd=kp*Td; 
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SimOut= sim('closedloop2', 'ReturnWorkspaceOutputs', 'on'); % Return all 

Simulink SimulationOutputs 
So=SimOut.get('Ao');      % Output of So and the setpoint 
Time=SimOut.get('time');  
So1=So(:,1);            % So alone 
So2=SimOut.get('Ao1'); 
L=[Time So1 So2]; % Take time, So1, So2 and in store them to L 

 
integral = 0; 
previous_error = 0; 
error=0; 
r=2; %setpoint 
dt = 0.01; 
n=801; 
% delta_x=0.01; 
for i=1:n 
    S01=So1(i); 
    S02=So2(i); 
    previous_error = error; 
    error2=(sign(error)*(abs(error))^ap);%Kp 
    integral=integral+(sign(error)*(abs(error))^ai)*dt; % integral term 
    error = r-S01; 
 [x,FVAL,EXITFLAG] = 

fsolve(@(x)myfun1(S01,S02,D,soin,rso,K1,K2,Sosat,x,integral,error,error2,previ

ous_error),[52,10],optimset('Display','iter'))% % initial guess values: 

Kp=52,Ti=10; 
KpI=x(1); 
  TiI=x(2); 
  Kp2(1,i)= KpI; 
  Ti2(1,i)= TiI; 
end 
  Kp2=Kp2'; 
  Ti2=Ti2'; 
  plot(Time,Kp2,'r',Time,Ti2,'b'); 
   FF=[Kp2 Ti2]; %store the outcome of the needed value in FF  

 

Appendix  B8b: - Myfun1.m 
Matlab function file for the nonlinear PID equation used for the controller parameters design 
through fsolve Matlab function 
 

function F = 

myfun1(S01,S02,D,soin,rso,K1,K2,Sosat,x,integral,error,error2,previous_error) 
 Td = 0.01; 
 %Kd = 0.01;%0;    % derivative term is not necessary in this problem 
 dt = 0.01; 
 ad=0.9; 
%derivative = (error-previous_error)/dt; % derivative term 
derivative = (((sign(error))*(abs(error))^ad)-((sign(error-

previous_error)*abs(error-previous_error)^ad)))/dt; % derivative term 
  

F=S02-(D)*(soin-S01)-rso-(K1*(1-exp(-

K2*((x(1)*error2)+((x(1)/x(2))*integral)+(x(1)*Td*derivative)))))*(Sosat-S01); 
%F=S02-(D)*(soin-S01)-rso-(K1*(1-exp(-

K2*((x(1)*error2)+((x(2))*integral)+(Kd*derivative)))))*(Sosat-S01); 
%F=S02-(D)*(soin-S01)-rso-K1*(1-exp(-

K2*(x(1)*error+x(2)*integral+Kd*derivative))).*(Sosat-S01);  
 end 
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Appendix  B8c: - nlpid1_DOmodelpp2.m 

Matlab script file to simulate the closed loop DO process under the NLPID1 (PP2)  
%========================================================================== 
%--Description: Test NLPID1 controller of fsolve parameter with DO --% 
% This program is for closed loop system simulation of the NLPID1 controller 
% with DO plant. The control parameters are design using Pole Placement  
% method (PP2) based on the nonlinear DO plant. 
%=======================================================================% 
clear all % clear the workspase 
clc 
%========================================================================= 
%Controller Parameters for simulation of the NLPID1 to control  DO process 
%========================================================================= 
kp  = 24.66;   %  
Ti = 66.66; %iki=0.5 
ki=kp/Ti;  %ki=0.369 
kd  =0.01; % 0.005 
%========================================================================= 
%   Nonlinear Function parameter values  
%========================================================================= 
ap= 0.9;  % 
ai=0.9;   % 
ad=1.9;   % 
dp=0.005; % 
di=0.05;  % 
dd= 0.05; % 
%============== Nonlinear Differentiator Parameters 
alfa1 = 0.5; % 
alfa2 = 0.5; % 
M1= 100;     % 
M2= 100;     % 
%========================================================================= 
 
% copy and use ASM1 parameters in Appendix A  
%========================================================================== 
%            System Variables 
%========================================================================== 
  
Sosat=8;            % Dissolved oxygen saturation 
K1=240;% Constant calculated from KLa=240 metres cubed per day 
K2=1.0961e-04;% Constant calculated from KLa=240 metres cubed per day 
Soo=0.05;            % Oxygen initial condition 
V=1333;              % volume of the aeration tanks (3,4&5) 
Soin=0.01;              % Internal disturbance 
t=0:1:8; 
u=50000.0*ones(1,9); % Air flow rate 
Qq=55338;            % Internal recycle flow rate 
Qr=18446;            % Influent flow rate 
Qo=18446;            % Recycle flow rate  
Q=Qq+Qr+Qo; 
D=Q/V; 
%========================================================================== 
%       State variables and kinetic values for ASM 
%========================================================================== 
muA=0.9;    % Maximum autotrophic growth rate 
muH=6;      % Maximum heterotrophic growth rate 
Koh=0.20;   % Half-saturation heterotrphic oxygen growth rate 
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Yh=0.67;    % Heterotrophic yeild 
Ya=0.24;    % Autotrophic yield 
Ks=10;      % Half-saturation heterotrphic growth rate 
Knh=1.0;    % Half-saturation autotrophic growth rate 
Koa =0.4;   % Half-saturation autotrophic oxygen growth rate 
Xbhs=2559.4;Xbas=149.8; % % heterotrophic biomass% autotrophic biomass 

 
Snhs=1.73;%  Ammonia and ammonium nitrogen 

Sss=0.89;  % Readily biodegradable substrate 
Snh=Snhs*ones(1,9); 
Ss=Sss*ones(1,9); 
Xba=Xbas*ones(1,9); 
Xbh=Xbhs*ones(1,9); 
T=t'; 
U=u'; 
Ass=Ss'; 
Asnh=Snh'; 
Axba=Xba'; 
Axbh=Xbh'; 
%===========================================================================% 
==============plotting graphs================================% 

 

Appendix B9: Matlab script – findnlpid2par 

%-----------------------Mfile:Description-------------------% 
%---------------Test fsolve control parameter with DO-----------% 
% This program is for the simulation of the Nonlinear PID controller (NLPID2). 

% It uses the designed control parameters of optimal (fsolve) method for a 
% NLPID controller based on the nonlinear DO model.    

  
clear all % clear the workspace 
clc 
%========================================================================= 
%Parameters for simulation of the NLPID1 controller only 
%========================================================================= 
%=========== Nonlinear Differentiator Parameters 
alfa1 = 0.5; 
alfa2 = 0.5; 
M1= 100;  
M2= 100; 
%==================================================================== 
Sosat=8; 
K1=240;% Constant calculated from KLa=240 metres cubed per day 
K2=1.0961e-04;% Constant calculated from KLa=240 metres cubed per day 
%rSo=0.5 
Soo=0.05; %0.491;%0.05;   %Oxygen 
V=1333; 
soin=0.01;%2;%0.01; Internal disturbance 
t=0:1:8;  %time interval or range. 
u=50000.0*ones(1,9); %Air flow rate 
%u=82.000000*ones(1,9); 
Qq=55338; %555338; 
Qr=18446; 
Qo=18446; 
Q=Qq+Qr+Qo; 
 D=Q/V; 
%  D=Q/V; 
%========================================================================== 
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%       State variables and kinetic values for ASM 
%========================================================================== 
muA=0.9; %0.5 
muH=6; %4; 
Koh=0.20; 
Yh=0.67; 
Ya=0.24; 
Ks=10; %20; 
Knh=1.0; 
Koa =0.4;   %Half-saturation autotrophic oxygen growth rate 
Xbhs=2559.4; %3839.166;% Active heterotrophic biomass 
Xbas=149.8;  %78.8985;% Active autotrophic biomass 
Snhs=1.73;%  Ammonia and ammonium nitrogen 
Sss=0.89; 
Snh=Snhs*ones(1,9); 
Ss=Sss*ones(1,9); 
Xba=Xbas*ones(1,9); 
Xbh=Xbhs*ones(1,9); 
T=t'; 
U=u'; 
Ass=Ss'; 
Asnh=Snh'; 
Axba=Xba'; 
Axbh=Xbh'; 
rso=(-muH*((1-Yh)/Yh)*(Ss/(Ks+Ss))*(Soo/(Koh+Soo))*Xbhs-muA*((4.57-

Ya)/Ya)*(Snhs/(Knh+Snhs))*(Soo/(Koa+Soo))*Xbas); 
% NLPID1_NLDO2 
%------------------------------------------------------------------------ 
%   Nonlinear Function parameter values  
%========================================================================= 
ap= 0.9; 
ai=0.9; 
ad=0.9; 
dp=0.005; 
di=0.05; 
dd= 0.05; 
 x  = [1,1];  %Make a starting guess at the solution for closed loop model 
kp = x(1); 
ki = x(2); 
% ki = 1/Ti; %x(2); Ti = 0.5; 
kd = 0.01; 
SimOut= sim('closedloop3', 'ReturnWorkspaceOutputs', 'on'); % Return all 

Simulink SimulationOutputs 
So=SimOut.get('Ao');      % Output of So and the setpoit 
Time=SimOut.get('time2');  
So1=So(:,1);            % So alone 
So2=SimOut.get('Ao1'); 
L=[Time So1 So2]; % Take time, So1, So2 and instore them to L 
integral = 0; 
previous_error = 0; 
error=0; 
 r=2; %setpoint 
dt = 0.01; 
n=801; 
% delta_x=0.01; 
for i=1:n 
    S01=So1(i); 
    S02=So2(i); 
    previous_error = error; 
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    % integral     = integral + error*dt;     % integral term 
    errorp=(sign(error)*(abs(error))^ap);%Kp 
    integral=integral+(sign(error)*(abs(error))^ai)*dt; % integral term 
    error = r-S01; 
    [x,FVAL,EXITFLAG] = fsolve(@(x) 

myfun2(S01,S02,D,soin,rso,K1,K2,Sosat,x,integral,error,errorp,previous_error),

[30,10],optimset('Display','iter'))%inial Kp=30;Ki=10 
 

 KpI=x(1); 
 KiI=x(2); 
 Kp2(1,i)= KpI; 
 Ki2(1,i)= KiI; 
% SS1(i,1)=S01;  
% SS2(i,1)=S02; 
 end 
  Kp2=Kp2'; 
  Ki2=Ki2'; 
  plot(Time,Kp2,'r',Time,Ki2,'b'); 
  FF=[Kp2 Ki2]; 

 

 

Appendix B9b: “myfun2”  

function F = 

myfun2(S01,S02,D,soin,rso,K1,K2,Sosat,x,integral,error,errorp,previous_error) 
 Kd = 0.01; %0;    % derivative term is not necessary in this problem 
 dt = 0.01; 
 lamda=0.5; %ap= 0.9; 
   %ai=0.9; 
   %ad=0.9; 
 %derivative = (((sign(error))*(abs(error))^ad)-(sign(previous_error)^ad))/dt; 

% derivative term 
            %derivative = (error-previous_error)/dt; % derivative term 
derivative = (((sign(error))*(abs(error))^ad)-((sign(error-

previous_error)*abs(error-previous_error)^ad)))/dt; % derivative term 
F=S02-(D)*(soin-S01)-rso-(K1*(1-exp(-

K2*((x(1)*errorp)+(x(2)*integral)+(Kd*derivative)))))*(Sosat-S01); 
end 

 

Appendix B9c: “NLPID2PP2par_DO”  

Matlab script file to simulate the closed loop DO process under the NLPID2 (PP2)  
%========================================================================== 
%--Description: This program is for the closed loop system simulation of the closed loop system of the 
NLPID2 controller the with DO plant. The control parameters are design using Pole Placement  
% method (PP2) based on the nonlinear DO plant. 
%=======================================================================% 
clear all % clear the workspase 
clc 
%========================================================================= 
%Controller Parameters for simulation of the NLPID2 to control  DO process 
%========================================================================= 
kp  = 30.118;   %  
ki = 0.52; % 
Ti=kp/ki;  % 
kd  =0.01; %  
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%========================================================================= 
%   Nonlinear Function parameter values  
%========================================================================= 
Lamda=0.05 
 % ap= 0.9; ai=0.9; ad=1.9;   
dp=0.005; % 
di=0.005;  % 
dd= 0.005; % 
%============== Nonlinear Differentiator Parameters 
alfa1 = 0.5; % 
alfa2 = 0.5; % 
M1= 100;     % 
M2= 100;     % 
%========================================================================= 
 
% copy and use ASM1 parameters in Appendix A  

 

 

APPENDIX C: THIS PRESENTS THE SIMULINK MODELS USED WITH THE MATLAB 

SCRIPT FILES PRESENTED IN APPENDIX B 

Appendix C1: DO model.mdl 

 

 

Appendix C2: LPIDwithDO.mdl 

Simulink model of the LPID with DO process 
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Appendix C3: NLPID1zn_DOmodel 

 Simulink model of the NLPID1 controller with the DO process closed loop system 
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Appendix C4: nlpid2_DOmodel.mdl 

Simulink model of the NLPID2 controller with the DO process closed loop system 

 

 

APPENDIX D: PLC HARDWARE  

 

 

 

 
 


