|

‘ Cape Peninsula
University of Technology

IMAGE CLASSIFICATION, STORAGE AND RETRIEVAL SYSTEM FOR A 3 U
CUBESAT

By

JEAN MARIE GASHAYIJA

Thesis submitted in fulfillment of the requirements for the degree
Master of Technology: Electrical Engineering

in the Faculty of Engineering

at the Cape Peninsula University of Technology

Supervisor: Prof. E Biermann
Bellville
December 2014

CPUT copyright information
The thesis may not be published either in part (in scholarly, scientific or technical journals), or
as a whole (as a monograph), unless permission has been obtained from the University.

DECLARATION

I, Jean Marie Gashayija, hereby declare that the contents of this dissertation/thesis represent
my own unaided work, and that the dissertation/thesis has not previously been submitted for
academic examination towards any qualification. Furthermore, it represents my own opinions
and not necessarily those of the Cape Peninsula University of Technology.

Signed Date

ABSTRACT

Small satellites, such as CubeSats are mainly utilized for space and earth imaging missions.
Imaging CubeSats are equipped with high resolution cameras for the capturing of digital
images, as well as mass storage devices for storing the images. The captured images are
transmitted to the ground station and subsequently stored in a database.

The main problem with stored images in a large image database, identified by researchers
and developers within the last number of years, is the retrieval of precise, clear images and
overcoming the semantic gap. The semantic gap relates to the lack of correlation between
the semantic categories the user requires and the low level features that a content-based
image retrieval system offers. Clear images are needed to be usable for applications such as

mapping, disaster monitoring and town planning.

The main objective of this thesis is the design and development of an image classification,
storage and retrieval system for a CubeSat. This system enables efficient classification,
storing and retrieval of images that are received on a daily basis from an in-orbit CubeSat. In
order to propose such a system, a specific research methodology was chosen and adopted.
This entails extensive literature reviews on image classification techniques and image feature
extraction techniques, to extract content embedded within an image, and include studies on
image database systems, data mining techniques and image retrieval techniques. The
literature study led to a requirement analysis followed by the analyses of software

development models in order to design the system.

The proposed design entails classifying images using content embedded in the image and
also extracting image metadata such as date and time. Specific features extraction
techniques are needed to extract required content and metadata. In order to achieve
extraction of information embedded in the image, colour feature (colour histogram), shape

feature (Mathematical Morphology) and texture feature (GLCM) techniques were used.

Other major contributions of this project include a graphical user interface which enables
users to search for similar images against those stored in the database. An automatic image
extractor algorithm was also designed to classify images according to date and time, and
colour, texture and shape features extractor techniques were proposed. These ensured that
when a user wishes to query the database, the shape objects, colour quantities and contrast

contained in an image are extracted and compared to those stored in the database.

Implementation and test results concluded that the designed system is able to categorize
images automatically and at the same time provide efficient and accurate results. The

features extracted for each image depend on colour, shape and texture methods. Optimal

values were also incorporated in order to reduce retrieval times. The mathematical
morphological technique was used to compute shape objects using erosion and dilation

operators, and the co-occurrence matrix was used to compute the texture feature of the
image.

Keywords: Image classification, CubeSat, Content based image retrieval system,
Nanosatellite, feature extraction and distance measure.

ACKNOWLEDGEMENTS

| wish to thank:

= My wife, Ruth Francis Gashayija, for the endurance, support, understanding and
encouragement during the time of study. Without her advice and moral support,
things would have not been the same.

= My supervisor, Professor Elmarie Biermann, for her supervision, guidance, advice
and contribution throughout the thesis write up. To her, | say Thank you very much.

= To the Gashayija family for moral support and financial support throughout this thesis.

» The Roger Family for editing my work, advice, financial support and educating me for
all my tertiary education. | say no word can express how much | feel. Thank you so
much for this great opportunity given me.

= My colleague, Paul Bayendang, and others for their support and advice.

= The French South African Institute of Technology for their financial assistance
towards this research. Opinions expressed in this thesis and the conclusions arrived
at, are those of the author, and are not necessarily to be attributed to the French
South African Institute of Technology.

DEDICATION

| wish to dedicate this thesis to late Engineer Michael, my sisters Esther, Janet, Christine and
all brothers Cassien, Safari, Emmanuel and Seth for motivating when times were tough.

\Y

TABLE OF CONTENTS

AB S T R A T e iii
ACKNOWLEDGEMENTS .. \Y
DEDICATION .ttt ettt ettt ettt ettt et ettt ettt ettt ee e et et et e ettt teeeteeseseeeseeeeseaesnsnsnsssnnnnnnes Vi
TABLE OF CONTENTS ... vii
LIST OF FIGURES ..ottt ettt et e e e e ee e e e eeeeseeeeesensnenensnnnnnnnnnnnnnne Xi
LIST OF TABLE. ..o eeeiiiiiiiiitiieit ettt ettt et ettt e e e e e e e e e e eeeeseeesnessnesenesenennnennnennnnnnnnnnes Xiv
LIST OF LISTINGSoieiiiiiiiiiiiiiiiiiie ettt ettt ettt ettt ettt et e e e et eee e e e seeeeeee s e eeenessesnenesenenesennnnnnnnnnnnnnns Xiv
LIST OF ABBREVIATIONS ...ttt ettt XV
L0 o 1 I PP P PP PR PPPRTRPRRRTN 1
INTRODUCTION ...ttt ettt e e e 1
00 R 101 (o T [0 Tox 1o o OO O PP PU P PP PPPPPON 1
1.2 Background t0 the PrOJECEc.ueiiiiiiiiieiieee ettt eb e e e e e e e e aneee 2
1.3 The CubeSat StANAAIGccccueiiiiiiiiii e s e e 3
1.4 CubeSat TranSmMISSION TIMESciiiiurriieiiriireiiiree e e s e s e e s s e e s s e e s s e e e e anreeeeennnes 4
1.5 Problem STAIEMENTcoiiieiie it 6
G O o] 1= o 1Y PP 7
O A I = 1 g To T o] (oo |V O PP PP PP R PUPRP 7
1.8 ReSEarch SIgNIfICANCEeiiiiiiii ettt 8
1.9 TRESIS OULIINE ...ttt ettt e s ekt e e e bt e e e ebb e e e enbeeeeeneee 8
1.10 Delimitations and aSSUMPLIONScocuuiiiiiiriiieiiiiie ettt bttt e s bt e e s anbee e e aebeeeeeaneee 9
CHAPTER 2 ettt s 10
CUBESAT AND IMAGERY ...ttt s 10
P20 R [1 oo VT 1o o FO O OO PPPP ORI 10
2.2 TRE CUDESAL ... ettt et e e bbbt e s bbbt e e s ab et e e s b et e e s n b e e e ane e s 10
2.2.1 On-board COMPULET (OBC)uuiiiiiiiiie ittt ettt et e e bt e e e e 11
2.2.2 Electrical Power SUDSYSIEM (EPS)ocuuuiiiiiiiiieiiiiee ettt 12
2.2.3 Attitude Determination and Control Subsystem (ADCS)......ccueviiiiiiieiiiiiie e 12
2.2.4 CommuUNICAtION SUDSYSTEM......eiiiiiiiiiiiii e e 13
2.2.5 Camera Payload SUDSYSIEM ..o 14

P22 T [= o T= T @0 0¥ 0] =71 o o S 16
2.4 Real-tiMeE aPPlICALIONSuuuuiiiiiiiiriii e 17
2.5 ImMage feature ©XIrACONuuuuuuuiriiiii s 18
2.5.1 COlOUI TRAIUIEtieie ittt et et et e e et e s e e e e e e e enees 18

A. ColoUr NISTOGIAMScviceiiiicececeeee ettt ettt st be et esbeeba e besteenne e 19

B. Color coherence VECIOr (CCV) ..ottt te ettt ra e ae e 20

C. Colour correlograms (CC)ciiiecerieeerieeeiestteteste st ste s e e ae e a e te e esesresseensens 21

D. COlOUr MOMENTS ...ttt 22

2.5.2 TEXIUIE FRAIUIEcee ittt ettt ettt e e e e e e e s e e e e e e e e s e ne s 23

A, WaAVEIET TrANSTOIM ...t 24

B. GaADOr WAVEIET ... e 24

C. TAMUIATEALUIE ..ot 25

D. Gray level co-occurrence matrices (GLCM)......cccoceveirieinieincincincseeeeeeseeee 25

E. Local Binary Pattern (LBP) ..ottt 26

2.5.3 ShAPE FRALUIEceiiii ittt e e e e e e ettt e e e e e e e bbb be e e e e e e e e anbneneeas 27

A. Boundary based deSCIIPLOLc.ccuiiieeereiieeseeeee sttt eas 27

B. Region-based deSCrIPLON ...t 28

2.6 IMAQJE PrE-PrOCESSING ...eeieitreieeititeeeiteete e ittt e e sttt e e sbee e e e s tee e e e aabee et e sbbe e e e ssbe e e e s sbeeeesannreeesanneeeens 31
2.7 DISEANCE IMEASUIESeteiiiiieeiiiiietiiet e e e e e ettt et e e e s s s e bttt e e teeessaaanbeteeeaaeessaannbeeeeaeeeesaaannbanseeaaeeaaannnes 32
2.8 SUMMArY @Nd CONCIUSIONeiiiiiiiiie itttk bttt e st e e e s bbe e e e snnr e e e e anneeee s 33
(O VN = TSP RPSPTP 35
SUPERVISED CLASSIFICATIONciiittitte ittt sttt sttt e et a et e et eesnnbeeaessseeaesnssbeaesanneeeens 35
% A 1 o To (U T o T o PRSPPI 35
3.2 K-Nearest Neighbour (KNIN) ..o s s e e e e s e st e e e e e e s e s anreeeeees 35
IR B B =T ot [T o T I == PRSPPI 36
3.4 Artificial Neural NEtWOrK (ANN)uiiii ettt e e sbreeeeaaes 38
3.4.1 Feedforward NEIWOIKS ...t e et e e e e e e st bee e e e e e e e ennneneaees 39
3.4.2 RECUITENT NEIWOIKSeeiiiiiiiee ittt e e e e e s e e e e e e e ssntareeeeeeeeesanneneeees 40
3.4.3 Self-Organizing Map (SOM) NEWOIKSocuuuiiiiiiiie it 40

3.5 Naive Bayes Classifier (NBC)......cooioii i 42
3.6 Support Vector Maching (SVIM) ... s 42
3.6.1 ONe-AgainSt-All (LAA) ..o 43
3.6.2 0ONe-Against-One (LAL) ... 43

3.7 Supervised classification: Comparison and CONCIUSION........cccooviiiiiiiiiiiie e 43
(O AN e I S 46
UNSUPERVISED CLASSIFICATION ..ottt ettt e eeeeee e seeeeeeeeeeeeseaeseeeeeeeeseesennes 46
St 1 o 1o To 11 T3 1T o RPN 46
4.1.1 Hierarchical MethOc..uuiiiiiie e e e r e e e e s e s eeeaeeeeennnes 46

A. Agglomerative Hierarchical ClUSIEINNGccccerieieriiieereeere et 47

B. DIVISIVE METNOM.ciiieieieiees ettt sttt ene s 47

o I - Vg v (o o T 1Y/ =1 1 T T PP a7

A. K-MEANS MELNOM ...ttt sttt eneeneas 47

B. lIterative Self Organizing Data Analysis (ISODATA)ccccceviiieeeieseeeceeee e 48

4.2 Unsupervised Classification: Comparison and ConcCIUSIONcccoooeiieiiiiiiiiiieiieececeeccecs 49
(O AN e I 52
REQUIREMENTS ANALYSIS & DESIGN ..ottt e et e e e e e e enaa s 52
L T80 A 1o 1 To 13 T3 1T o S 52
L A V1Y - (Y o -1 o Lo = 52
5.2.2 InCremental MOAEL...........ueiiiiiiii e e e e 52
5.2.3 Prototyping MOEIoeeiiiiiiee et 53
I ST o1 = 1Y/ (o To [OO UPTT PO 54

Lo TRC I {=To (U1 =] 0 01=] 0 £ TR UUPTTR PR 55
L B 1T (o | o TP PURPT PO 57
5.4.1 ReCeIVE SALEIIILE IMAGE . .eeiiiiiiiie ittt st s et e e e s e e e e eneees 57
5.4.2 Image pre-processing and eNNaNCEMENT...........ooiiiiiiiiiiie et 57
5.4.3 IMAQGE MELAUALA.eeiiiiiiiie ittt ettt e e s et e e e nbe e e e naes 58
LT B @o (o 10 | G 1= - (U= T 59
545 TEXIUIE FEALUIE ...ttt e ettt e e e et et ettt r e e e e e e e e ababn e e e e e eeeanbaa e as 60
B5.4.6 SHAPE FEAUIEcoiii ittt et e e ettt e e e e e s et bbb e e e e e e e e e aanbneneeas 61
5.4.7 Image Database MOUEIcoooiiiiiiiiiii ettt e e e ee s 62

LT R O T T 1] o o S 63

CHAPTER B ...ttt ettt ettt e e e e e sttt e e e e e s e e s b b e e et e e e e e s e an s b e e et e e e e e aaannbbnnreeaeeeaaannne 64
IMPLEMENTATION «.eiiiiiiiiiiiiieeeeteet ettt ettt ettt et et ettt ettt et e e e ee e e e eeeeeeeeeeeeseeeseeeenessnesenesesennnennnnnnnnnnnnnnes 64
G700 R [1 (e o [[ox 1o] PSPPSR 64
6.2 Hardware setup fOr the SYSIEIM.......cooiiiiiiii e 65
6.3 Graphical User INterfaceS(GUIS)coouiiiiiiiiiie ittt 66
6.3.1 Colour Feature GUI and extraction method Development...........ccccveviiiieiiiiiee e, 66
6.3.2 Shape Feature GUI DeVEIOPMENTco.uiiiiiiiiiie ittt 69
6.3.3 Texture Feature GUI DeVEIOPIMENTiiiiiiiiie ittt 71
6.3.4 Data Classify Panel GUI DeVEIOPMENTouiiiiiiiiiiiiiie e e e e e 75
6.3.5 IntegratedGUI DEVEIOPMENT..........uuiiiiiiee i s e e e e e s e rre e e e e e e e s nnnrnaaees 76

6.4 Database development and DESIGNINGc.uuvuirereeiiiiiiiieie e e e e e sssirr e e e e e s sssrr e e e e e s s snnnrreeeaaeaes 77
6.4.1 DesSigning a Dat@baseccceeiiiiiiiiiiiiie e 78

6.5 Testing and EXperimental RESUILScccuiiiiiii e e e e et e e e e 81
LS T8 R 1= 11 o o [O OO P PP OPPPPP 81
6.5.3 EXPerimental RESUILScooiiiiiiiiiiii ittt 86

6.6 System performance and EVAIUALION ..ottt 89
6.6.1 SYSTEM EVAIUALION ..ottt ittt ettt e s e ab e e e e nbe e e e e nneas 89

A. Color Histogram algorithm evaluationcccecceviiieceneciereceeeseee e 90

B. GLCM algorithm @ValUALtioNcoveiriiiininieeeerieee e 95

C. Mathematical Morphology algorithm evaluationcccceevieeevieniecececeeeseeeen, 99

D. Integrated proposed system evaluation...........c..coceverererieieineneneneseeeseeee e 103

E. Comparison of the proposed system with other systems..........cccocveeeviveeeveneeceenne. 108

F. Evaluation: Additional set groups of the Wang database...........c..ccocevveverveeeennene 109

I A] o [od U1 o] o PO T PP OTPPRTUPPPRN 128
CHAPTER 7 ettt s 129
CONCLUSION. ..ttt s 129
4% R 11 o T [8o 1 o o PP PO PP PP PR PUPPRPPPPPRRN 129
7.2 AIMS QN0 ODJECHVES .. .uuuiiuiiiiiiiiiiiii s 129
7.3 System Testing and EVAIUALIONcocuuiiiiiiiiii ettt sbae e e 132
7.4 FUuture RECOMMENUALIONveiiiiiiiiiee ettt e et e e e st e e e sabb e e e e snbbeeessnbneeeeaaes 132
RETEIEINCES ..ottt ettt oo b bt e o bbb et e s bbbt e e s bbb et e e bbbt e e s annaee s 133
F Y o] 01T 0o 1) PP PRPRTPPPPPNE 158
Listing A.1: ColorFeature@GUILIM COUE..........cviiiiiiieiiiiieieiieeeeeeeeeeeeeeeeeeeeeeeeeesaseseeesssssssesssssssessssesnennnes 158
Listing A.2: ShapeFeatureGUIIM COUB..........oiiiiiiiie it 162
Listing A.3: TextureFeatureGUILIM COUEoooiiiiiieiiiiie ettt e 166
Listing A.4: DataCLaSSIfYGUILIM COURcoiiiiiiiiiiiie ettt e e e e e 170
Listing A.5: IntegratedGUIS.M COOEcoiiiiiiiiiiiie ettt e e s e e e e e e s enaees 174
Listing A.6: DAteClassSify.M COUEuiieiiiiiee ettt e e e e 181
Listing A.7: Image pre-processing SOftWAre 001c..cooiiiiieiiiiiiee e 197
Listing A.8: Testing color NiStOGram @XIraCOriiueiiiiieee et e e e 200
Listing A.9: Testing image metadata extractor (Date and TiMe)cccovriiiiiiiiiie i 206
Listing A.10: Extract shape Feature algorithm...........ooouuiiiiiiiiiii e 209
Listing A.11: Extract Texture Feature algorithimc.ueiiiiiiiii e 212

Appendix B : Excerpt of images used for testing and evaluation.............ccccvveeveeeiniiciiiieeee e 215

Appendix C: Interfacing Matlab With MYSQLcooiiiiiiiiiiie e 219
Appendix D: Install and Setup of MYSQL 5.5 SEIVETcuiiiiii it e et e e e e e e e 223
Appendix E: The MATLAB GUIDE Library COMPONENESccuvvviiiieeeeeiiiiieeeee e e s e ssiineeeeee e e s s snsennees 228

LIST OF FIGURES

FIGURE 1.1: CBIR USER’S SYSTEM ARCHITECTUREveeeitiiiteeeteeireeeeeesireessreesseessseessseessseesseessssessseessssessssensns 2
FIGURE 1.2: CUBESAT IMIODELuttiiieiiiieeeteeeeeiteeeeeeaeeeeeteeeeeteeeeeeateeeeetsaeeestaeeeeasseseeesseeeeatseeeeasseeesassseesansseeeanes
FIGURE 2.1: THE LU CUBESAT ...tttititeteeetet ettt ettt estee e tte e stteeetteestaeeetaeestaaeesseesasaessseesasaesssessasaensseesaseesssessnseenaseess
FIGURE 2.2 : THE 3U CUBESAT ..ot ittt ittt ettt ettt e stte e tte e staeestteestaeeetaeestsaessseesasaensseesasaessseesasaessseesaseesssesssseennseess
FIGURE 2.3 : OBC COMPUTER ARCHITECTURE.......ccceeevueerreennneens

FIGURE 2.4: CPUT BELLVILLE CAMPUS GROUND STATION

FIGURE 2.5 : TYPICAL IMAGE PROCESSING STAGES:iiiiiitiieeiitieeeeeteeeeeitteeeeetaeeeeeiteeeeeissesesesseeeeasseeeeessseeesssseaeens 18
FIGURE 2.6 : THE RGB IMAGE WITH ITS THREE COMPONENTS.....ccciitttiieitteeeeitreeeeeteeeeeitreeeeetreeeesreeeeessseeesnsseseens 19
FIGURE 2.7: THE CATEGORIES OF COLOR FEATUREccooiuiieeitieeeeeteeeeeitteeeeetveeeeeteeeeeiasesesesseeeeasseeeeesseeesnsseeaens 19
FIGURE 2.8 : IMAGE AND ITS HISTOGRAMuuttiiiiieeeeetieeeeitteeeeetteeeeeiteeeeeiaeeeeeetseseeateeeeessseseeetseeeeasseeeeessseeesassesaans 20
FIGURE 2.9: BLOCK DIAGRAM OF TEXTURE CATEGORIES.....cccvteiteeitreeiteestteesteestseesreesseesseesssessssesssesssesssesns 23
FIGURE 2.10: BASIC LBP CALCULATIONutiiitiiiitieecite ettt e stteeeteeestveeetveestaeessseessseessseesaseessseessseessseessessssessnseesseens 27
FIGURE 2.11: CHAIN CODE (A) EIGHT CONNECTIVITY (B) FOUR CONNECTIVITY ...oviivieierieeeieeeiesiesreseeseeesnenenes 28
FIGURE 2.12: DILATION USING RECTANGULAR STRUCTURING ELEMENTc.coiiuiteeiiieeeeireeeeeireeeeeireeeeenveeeenaneeens 30
FIGURE 2.13 : EROSION OPERATION USING RECTANGULAR STRUCTURING ELEMENTocooiuiieeeeirieeceereeeeiveeenns 30

FIGURE 2.14 : MORPHOLOGICAL OPENING
FIGURE 2.15 : MORPHOLOGICAL CLOSING
FIGURE 3.1: IMAGE CLASSIFICATION CATEGORIES.......uttiiiitieeeitteeeeiteeeeeisteeesisseeeesssseessssesessssesessssssesesssssessssesanns
FIGURE 3.2: SUPERVISED CLASSIFICATION METHODS
FIGURE 3.3: TAXONOMY OF FEED-FORWARD AND RECURRENT NETWORK ARCHITECTURE
FIGURE 3.4: STRUCTURE OF THE FEEDFORWARD NETWORKccceiiuiieeiitieeeiitreeeeniteeeeeiareeeeeseeeesseeeeessseeesnsneseens
FIGURE 3.5: FULLY CONNECTED RECURRENT NEURAL NETWORKcccoiiueeiiitreeeeiireeeeeiareeeeereeeesseeeenssseeesnsneseens
FIGURE 3.6: SOM ARCHITECTUREccittteeettteeeeiteeeeeteeeeeeteeeeeetaeeeesiseeeeessaeeesetseseesseseessssessseseeeenssseseessseeesnseeeens
FIGURE 4.1: THE CATEGORIES OF UNSUPERVISED CLASSIFICATION METHOD......cccvvtieeiureeeeeireeeeereeeeeeveeeeenveeeens
FIGURE 5.1: PROPOSED DESIGNcceiiiiiieietieeeiitteeeestteeesaissesessseesasssssesssssssessssssessssssesssssssssssssssssssssesasssssssssssaans
FIGURE 5.2 IMAGE EXIF METADATA ..ottt ettt ett e ettt e sttt e e e stte e e s e atae e e s tbeeeesataeeeeasaaeesasbeaeassaeesassaeesnsseaaans
FIGURE 5.3: BLOCK DIAGRAM OF AN IMAGE METADATA EXTRACTOR.....ccctttiiittieeeiireeeetreeesitveeesssteeesessesessssesaans
FIGURE 5.4: BLOCK DIAGRAM OF PROPOSED COLOR HISTOGRAM METHOD.....ccccciutieieiieeeeireeeenveeeeeseeeesaveeeens
FIGURE 5.5: BLOCK DIAGRAM OF THE PROPOSED GLCM TEXTURE FEATUREcc.vvtieeiveeeeieeeeereee e eeeveeeens
FIGURE 5.6: BLOCK DIAGRAM OF MATHEMATICAL MORPHOLOGY SHAPE FEATURE .
FIGURE 5.7: ENTITY RELATIONSHIP DATA MODEL DIAGRAM FOR THE SYSTEM ...ccccutiiieeeieeireesveesveesveesveesaneens
FIGURE 6.1: BLOCK DIAGRAM OF THE IMPLEMENTATION OF THE ALGORITHMSuttiiiiiiieeeiieeeeeieeeeeveeeeeiveeens
FIGURE 6.2: EXPERIMENTAL SET=UPuttiieeiiieeeeiteeeecteeeeesteeeeestaeeesensaeeessseeens

FIGURE 6.3: THE NEW GUI TEMPLATE
FIGURE 6.4: GENERATED GUI FOR COLOUR FEATUREctiiiitiieeeitieeeeiteeeeeiveeeesteeeeesaeesstseeeenssaeseessaeesnssesasns
FIGURE 6.5: DIALOG BOX TO SELECT SINGLE QUERY IMAGEccttiitiieitieestteesteestreesteesseesseesssessseesssesssessseens
FIGURE 6.6: DEVELOPED GUI FOR SHAPE FEATUREciciieiititeiteeetteestaeessseesseessseessseesssessssessssesssessssesssessssenns
FIGURE 6.7: DEVELOPED GUI FOR TEXTURE FEATUREceeitteitteeitteestteessteesseessseesssesssseesssessssessseesssessnsesssseens
FIGURE 6.8: EXTRACTING IMAGE METADATA.eiitteitteeetttesteestteesteessteessseessseessseessseesssesssseessseesssessssessssessssessssennn
FIGURE 6.9 INTEGRATEDGUISutiiiiie ettt e e ettt e et e e e s tv e e e e eata e e eeataeeesabbeaeastaeesensaaeessaeaaans
FIGURE 6.10: BLOCK DIAGRAM OF CREATING DATABASE AND TABLES OF THE PROJECT .
FIGURE 6.11: CREATING DATABASE FOR THE PROJECTuutiiiiitiieeeitieeeeeiteeeeitveeeesteeeesssesessssesssssssesessssssessssesanns
FIGURE 6.12; COLOR FEATURE VECTOR TABLEeicitiiettieiieeitetestte ettt e stteessseesaseessseessseessseessseesssessssessssessnsesssennn
FIGURE 6.13: CREATED IMAGE FILE DATA TABLE TO STORE ORIGINAL IMAGES.......cccoovueeeeeveeeeeiieeeeeeveeens
FIGURE 6.14: CREATED SHAPE_FEATURE_VECTOR TO STORE ALL IMAGES SHAPE FEATURES
FIGURE 6.15: TEXTURE FEATURE VECTOR TABLEceiitiiiieeitieeite ettt esteessseesseessseessseesssesssseesssessssesssesssessseens
FIGURE 6.16: FORTY TABLES CREATED IN THE DATABASE FOR STORING ALL IMAGES AND METADATA.............. 81
FIGURE 6.17(A): TESTING PRE-PROCESSING MEDIAN FILTER ALGORITHM ...c..coutiiiiesiintenieeieeeeneenieseesiesiesneeneeneas 82
FIGURE 6.17(B): TESTING PRE-PROCESSING WIENER FILTER ALGORITHMccctertiiiereintenieeieeteneenieseesiesieseeeneeneas 82
FIGURE 6.17(C): TESTING PRE-PROCESSING HISTOGRAM EQUALIZATION ALGORITHM ...cc.ceteieieneenieneeneenneeneas 83
FIGURE 6.18: TESTING COLOUR ALGORITHM ...eeiittieitieeitteesiteesteeesseessseesseessseessseessseesssessssesssssessesssessssesssessssesns 83
FIGURE 6.19: TEXTURE FEATURE EXTRACTION ALGORITHMiiiiteitieeitteeetreesreesereesseesseesssessseesseesssesssessnsesss 84
FIGURE 6.20: SHAPE FEATURE EXTRACTION ALGORITHM ...ceiiuiiiitieeitteeiteestreesteessseesseesseesseesssessseesssesssessssenss 85
FIGURE 6.21(A): THE IMAGE METADATA EXTRACTOR ALGORITHMeiutitiriieiieieienieseestesieeaeeteneeseeseessesaessesneeneas 85
FIGURE 6.21(B): THE IMAGE METADATA EXTRACTOR ALGORITHM ...
FIGURE 6.22: COLOUR FEATURE RESULTS
FIGURE 6.23: SHAPE FEATURE RESULTSuutiiiiitiieeeitieeeeitee e ettt e e e sttt e e eetteesstseaaesataseeesssssesasseseanssseesessseesassesanns

FIGURE 6.24: TEXTURE FEATURE RESULT ...ctviiittieitieeetteeste ettt e stteestveesateestseesateessseesnseessseesasaesssessssessssesssesssesns
FIGURE 6.25: COMBINED RESULT FOR ALL FEATURESccvtiitiieitie ettt sttt ettt e steestreesveesaseesvaesssessraesasassnsaesanenan
FIGURE 6.26: DATE CLASSIFY RESULT ..ceccvieiieeciee e eeieeesereeeeneens

FIGURE 6.27: COLOUR HISTOGRAM COLOUR EVALUATION: AFRICAN CLASS

FIGURE 6.28: COLOUR HISTOGRAM COLOUR EVALUATION: BEACH CLASSovtiiiiiiieeeiiee et eeree et eeivee e
FIGURE 6.29: COLOUR HISTOGRAM COLOUR EVALUATION: BUILDING CLASSccoiviieeeiieeeeireeeeereeeeeetveeeesiveeeens
FIGURE 6.30: COLOUR HISTOGRAM COLOUR EVALUATION: BUSES CLASSooiiiiiiieeeiiee et eeveeeeeevvee e
FIGURE 6.31: COLOUR HISTOGRAM COLOUR EVALUATION: DINOSAUR CLASS

FIGURE 6.32: COLOUR HISTOGRAM COLOUR EVALUATION: ELEPHANT CLASS

FIGURE 6.33: COLOUR HISTOGRAM COLOUR EVALUATION: FLOWER CLASS.......ccoteiieeereeireenreesreesreesveesneens
FIGURE 6.34: HORSE QUERY, THE FOURTEEN SIMILAR RETRIEVED IMAGES......

FIGURE 6.35: COLOUR HISTOGRAM COLOUR EVALUATION: MOUNTAIN CLASS

FIGURE 6.36: COLOUR HISTOGRAM COLOUR EVALUATION: FOOD QUERYc.ceeieiiiieeeiieeeeitreeeeereeeeeitveeeeeaveeens
FIGURE 6.37: COLOUR HISTOGRAM COLOUR EVALUATION: IKONOS CLASS
FIGURE 6.38: GLCM ALGORITHM EVALUATION: AFRICAN CLASSotiiiiiiieeeeireeeeeteeeeeiareeeeetveeeeereeeeessseeesnsneeeens
FIGURE 6.39: GLCM ALGORITHM EVALUATION: BEACH CLASS.....ccciitiiiieeetteesteeetreesreesreesveestveesreesasesssaesaneess
FIGURE 6.40: GLCM ALGORITHM EVALUATION: BUILDING CLASS.......cciitieetieeireentreesreesreesreesseesveesssessseesseess
FIGURE 6.41: GLCM ALGORITHM EVALUATION: BUS CLASSouiiiiiiiieceiiee e ctee e ettt eeette e s tveeeenire e e seanaaeesaneaaens
FIGURE 6.42: GLCM ALGORITHM EVALUATION: DINOSAUR CLASSccciiuieieiiieeeeiieeeeeireeesitveeesssreeesessesesnssesaans
FIGURE 6.43: GLCM ALGORITHM EVALUATION: ELEPHANT CLASS ...uviiieitieeeietreeeeereeeeeiareeeeeveeeenreeeeensseeesnaneseens
FIGURE 6.44: GLCM ALGORITHM EVALUATION: FLOWER CLASSuvviiiiitteeeeeteeeeeiteeeeeiareeeeeveeeenseeeeessneeesnaneseens
FIGURE 6.45: GLCM ALGORITHM EVALUATION: HORSE CLASSccouttieeetiee e eeteeeeeteeeeeeaeeeeeereeeenveeeeeaneeesnaneneens
FIGURE 6.46: GLCM ALGORITHM EVALUATION: MOUNTAIN CLASS.....ccciiiteeiitieeeeiireeeeereeesitveeesssrseesessesesnssesaens
FIGURE 6.47: GLCM ALGORITHM EVALUATION: FOOD CLASS.....ccccittieieiieeeiireeeesteeeeetteeesstveeessssaeesessaeessssesaans
FIGURE 6.48: GLCM ALGORITHM EVALUATION: MASAT-1 CLASS

FIGURE 6.49: MATHEMATICAL MORPHOLOGY ALGORITHM EVALUATION:

FIGURE 6.50: MATHEMATICAL MORPHOLOGY ALGORITHM EVALUATION: BEACH CLASS.....ccvveeeiveeeecreeeeenen. 100
FIGURE 6.51: MATHEMATICAL MORPHOLOGY ALGORITHM EVALUATION: BUILDING CLASS ..100
FIGURE 6.52: MATHEMATICAL MORPHOLOGY ALGORITHM EVALUATION: BUS CLASScoovvveeeeiveeeeree e 101
FIGURE 6.53: MATHEMATICAL MORPHOLOGY ALGORITHM EVALUATION: DINASAUR CLASScccvveeeireeeennnen.. 101
FIGURE 6.54: MATHEMATICAL MORPHOLOGY ALGORITHM EVALUATION: ELEPHANT CLASS ...cccocvvveeeireee e, 101
FIGURE 6.55: MATHEMATICAL MORPHOLOGY ALGORITHM EVALUATION: FLOWER CLASSccovctveeeeireee e, 102
FIGURE 6.56: MATHEMATICAL MORPHOLOGY ALGORITHM EVALUATION: HORSES CLASScccvctieeeeiieeeeeneen. 102
FIGURE 6.57: MATHEMATICAL MORPHOLOGY ALGORITHM EVALUATION: MOUNTAIN CLASS......cccvveeeevereennen.. 102
FIGURE 6.58: MATHEMATICAL MORPHOLOGY ALGORITHM EVALUATION: FOOD CLASS......ccoveeeetveeeeereeeeenneen. 103
FIGURE 6.59: INTEGRATED PROPOSED SYSTEM EVALUATION: AFRICAN CLASSovviieereeeeereeeeeieeeeeeveeeeeneens 103
FIGURE 6.60: INTEGRATED PROPOSED SYSTEM EVALUATION: BEACH CLASSccoovviiieireeeeeeeee et eevee e 104
FIGURE 6.61: INTEGRATED PROPOSED SYSTEM EVALUATION: BUILDING CLASSoeeeiiiieeiiieeecieeeeeeveee e 104
FIGURE 6.62: INTEGRATED PROPOSED SYSTEM EVALUATION: BUS CLASS.......ccoiiiiieeieeeecreee e ..104
FIGURE 6.63: INTEGRATED PROPOSED SYSTEM EVALUATION: DINOSAUR CLASS 105
FIGURE 6.64: INTEGRATED PROPOSED SYSTEM EVALUATION: ELEPHANT CLASS 105
FIGURE 6.65: INTEGRATED PROPOSED SYSTEM EVALUATION: FLOWER CLASS ...105
FIGURE 6.66: INTEGRATED PROPOSED SYSTEM EVALUATION: HORSE CLASScoitvtiietreeeeereeeeeteee e eeneees 106
FIGURE 6.67: INTEGRATED PROPOSED SYSTEM EVALUATION: MOUNTAIN CLASSccoovvireeireeeeereeeeeenreeeeenneees 106
FIGURE 6.68: INTEGRATED PROPOSED SYSTEM EVALUATION: FOOD CLASSccoiitiieeeiieeeeireeeeeireeeeevee e e 106
FIGURE 6.69: ALGORITHM EFFICIENCY (RETRIEVAL TIME) ...ecvtiieieerteesteesteeeeesesseesseesseessessesssesseessesssesssesssenns 107
FIGURE 6.70: PRECISION OF ALGORITHMS OF THE PROPOSED SYSTEM ...ceiiiiiiieeiiieeeeireeeeeireeeeeteeeeesaveeeeeanenas 107
FIGURE 6.71: COMPARISON: PRECISION.......ciiiiiiieeiiiiieeeitiee e eeiteeeeiteeeeetteeeeeteeeestaeeeeassesessasaeaesssseseenssaesennseeas 109
FIGURE 6.72: BLOCK DIAGRAM GROUPS OF IMAGESeiciieeitteeiteeeteeeseeesteeessaeessseessseessseesssesssssesssessssessssesnsnes 110
FIGURE 6.73: AFRICAN CLASS: 25 IMAGES ..110
FIGURE 6.74: AFRICAN CLASS: 50 IMAGES 111
FIGURE 6.75: AFRICAN CLASS: 100 IMAGESccutieeeetieeeeittee e eeitteeeetteeeeitteeeeeaeeaestaeeaeasteseseasaeaesssseseesseseeenneeas 111
FIGURE 6.76: BEACHES CLASS: 25 IMAGES . 112
FIGURE 6.77: BEACHES CLASS: 50 IMAGES 112
FIGURE 6.78: BEACHES CLASS: 100 IMAGES........uttiiitiieeeiiteeeeeieeeeeteeeeeitteeeeeaeeeestaeeeessteseseasaeeesbseseessseseeenneeas 113
FIGURE 6.79: BUILDING CLASS: 25 IMAGESeiiittieitieeiteeeiteeeieeesteeeteeesteeesteeessaeetseessseensasassseessssesssesnsseesssesssnes 113
FIGURE 6.80: BUILDING CLASS: S5O IMAGESeeiittieiieeeiteeeiteeeieeestteeteeesteeesteeessaeetaeessseensssessseessssesssesssssesssesssnes 114
FIGURE 6.81: BUILDING CLASS: 100 IMAGEScccttteitieeteeeiteeeieeesteeeteeesseeesteeessaeesseessseessssasssesssssesssesssssesssesssnes 114
FIGURE 6.82: BUSSES CLASS: 25 IMAGEScttiiittieitteeteeeiteeeieeesteeeteeessaeastssassaeesseessseessssasssesssssesssssssssesssesssnes 115

Xii

FIGURE 6.83: BUSSES CLASS: 5O IMAGESccuteutiieiiteritetesiteitete st st sttt et testesbe st sbesseeseessensenbeseesbesaeennenens 115

FIGURE 6.84: BUSSES CLASS: 100 IMAGESceeittieiteeeiteeeiteeeiteeesteeestreesteeestseessaeesseessseessssesssesssssessssessssssssesssnes 115
FIGURE 6.85: DINOSAUR CLASS: 25 IMAGEScoittieiueeeiteieiteeeteeesteeesteeesteeesteeessaeesseessseessssesssesssssesssesssssesssesnsnes 116
FIGURE 6.86: DINOSAUR CLASS: 5O IMAGEScccttiiitieeieieiteeeteeectteeteeesteeesteeestasetseessseessseessseessssesssesssssesssesnsnes 116
FIGURE 6.87: DINOSAUR CLASS: 100 IMAGESuutiiiitiieeeeteee e eeeeeeeeiteeeeeettee e eeaeeeeeetaeeeeeaaeseeeasaeeestaeeeeenseeeennneeas 117
FIGURE 6.88: ELEPHANT CLASS: 25 IMAGESutiteiitiieeeitteeeeeteeeeeiteeeeeetteeeeeaeeeeeeteeeeessseseeetsseeestseseensseseennneeas 117
FIGURE 6.89: ELEPHANT CLASS: 5O IMAGESuutiteiiiiieeeiteeeeeeeeeeeetteeeeeetteeeeeaeeeeeetaeeeeesseseeetsseeessseseenaseseennnenas 118
FIGURE 6.90: ELEPHANT CLASS: LOO IMAGESuvttiiitiieeecieee ettt eeteeeeeettee e eeaeeeeeetaeeeeeaveeeeetaaeeestaeeeennseseennneeas 118
FIGURE 6.91: FLOWER CLASS: 25 IMAGES.......ueiiitiieitteeiteeeiteeeeteeesteeesteeesteeesteeessaeetseessseessssessseessssesssssssssessesssnes 119
FIGURE 6.92: FLOWER CLASS: DO IMAGES........eiiittieitieeiteeeiteeeeteeesteeesteeesteeestesessaeesseessssessssessseessssesssssssssessesssnes 119
FIGURE 6.93: FLOWER CLASS: 100 IMAGEScciittieitteeiteeeiteeeteeesteeeteeesteeesteeessaeetseessseessssessseessssesssesssssesssesnsnes 120
FIGURE 6.94: HORSE CLASS: 25 IMAGESuviiiiittieeeeteeeeeettee e eeteeeeeiteeeeeetteeeeeaeeeeeetaeeeeesseseeetsaeeestseeeeassaesennneeas 120
FIGURE 6.95: HORSE CLASS: SO IMAGESuuiiiiittieeeeitieeeeeieee e eeteeeeeteeeeeetteeeeeaeeeeeetaeeeeesseseeetsaeeestseeeenasaeeennneeas 121
FIGURE 6.96: HORSE CLASS: 100 IMAGES......ccciitieeeeitieeeeeiteeeeeeeeeeeiteeeeeetteeeeeaeeeeeetaeeeeesseseeetsaeeesteeseenaseseennneeas 121
FIGURE 6.97: MOUNTAIN CLASS: 25 IMAGESuutiieiitieeeecitee e ettt e eeiteeeeeetteeeeeaeeeeeetaeeeesaseeeeetsaeeestseeeenaseseensneeas 122
FIGURE 6.98: MOUNTAIN CLASS: 50 IMAGEScccttiiiiteeieeecteeeieeecteeeteeesteeesteeestaeetseessseessseessseessssesssesssseesssesnsnes 122
FIGURE 6.99: MOUNTAIN CLASS: 100 IMAGESccciitieiteieiteeeteeesteeestreeseeestreessaeetseessseessseessseessssesssesssssesssesnsnes 123
FIGURE 6.100: FOOD CLASS: 25 IMAGESuttiiiiiieeeciieeeeitteeeseitteeestteeeettaeessaaeaesstsesaeassesesassaeeesssessasssasesansees 123
FIGURE 6.101: FOOD CLASS: S50 IMAGESuttiiiitiieeeitieeeeitteeeeeieeeesteeeeettaeessaseaeastsesaasstesesssssesessssesessssssesnnsees 123
FIGURE 6.102: FOOD CLASS: 100 IMAGES......ciiiitteeeeteeeeeeieee e eeaeeeeeeteeeeeetaeeeeeaeeeeeeseeseessseseeetsseeeetseseensseesenneeas 124
FIGURE 6.103: COMPARISON OF SET GROUP RETRIEVAL TIMEcccoiuviieeitreeeeeiieeeeeetreeeeereeeeeneeeeesseeeesssseseennenas 126
FIGURE 6.104: COMPARISON OF PRECISION VALUES.......ccoittieiiteeeeeteeeeeetreeeeeiaeeeeeeteeeeesaseseestnseeeetseseesssessennneeas 127
(e = O R ©] B] = G USSR 219
FIGURE C. 2: MYSQL ODBC DRIVER......utttittiittiniteesietesitessieessieesbesssseesbessssaessssssssesnsssssssesssesssssesssssssssesssees 219
FIGURE C. 3. TEST WINDOWooiiiitiiieiiieeeeitteeeeitteeeesiteeesesreeesatsesaasatasaeassssesasssseasssssseasssssesssssssssssessanssssesnssees 220
FIGURE C. 4: CONNECTION STATUS ..eiiitttteieitieeeeitteeeeiteeeeessreeesssseseasstasesasssssesssssssssssssssssssssesasssssssssssssssssssssssssees 220
FIGURE C. 5: ODBC DATA SOURCE ADMINISTRATORceotttieiirteeeeteeeeeitreeeeeiseeeeeisseeeesseseenisseesesssesessssessesssnens 221
FIGURE C. 6: MATLAB CONNECTIONvttiiiitieeeieteeeeeteeeeestreeeeeiaeeeeetteeeeessseeeeeseeesassseseessseseessseeessssesesssseesesssees 221
FIGURE C. 7: ACTIVE CONNECTIONcoiitttetettteeeeeireeeeeteeeeesreeeeeseeeeaiseeeeessseeesessseesasssesesassesessssesessssesesssseesesssees 221
FIGURE €. 8. PINGueeiieiteee ettt ettt eete e et e e et e e et e e e e ttae e eetsee e eeaaeeeeeteeeeensseeeentseeeeetreeeensseesennneeas 222
FIGURE C. 9. CURSORutiiiiciteeictite e ettt e eette e e sttt e e ettt e e settaeesaasaeaasataaeeasssaeesaseaaeassaeseanssssessssaeaasteeseassaeesnnsenns 222
FIGURE D. 1: LICENSE AGREEMENT ...ccutttiiiittteeiittteeeitteeeestreeesssseesasstasesasssssesssssssssssssessssssesssssessssssessssssssssnssnes 223
FIGURE D. 2. TYPICAL INSTALLATION .. .utttiieittteeeitteeesteeeeeitreeesstseesassesesassssessssssasssssseanssssessssssesssssssssnssssesssenes 223
FIGURE D. 3: SUBSCRIPTION SERVICES......ccccitttittteitteeiteeenteesteeesssesssesasssesssesasssesssssessesssssasssesssssessssssssessssesssnes 224
FIGURE D. 4: MONITORING SERVICES.......cttteiteiittteieeesteeestessseeasssesssesasssesssssasssssssssessssssssesssesssssessssssssessssesssees 224
FIGURE D. 5: LAUNCH CONFIGURATIONutiiitieiitteeiteeesteeesteeesseeesseessesasseessesassssssssesssssssssesssesssssassssssssesssesssnes 224
FIGURE D. 6: CONFIGURATION WIZARDccciittiitiieiteeeiteeesteeesteeesseessesssseeassessssaessseesssesssssasssesssssesssessssesssesssnes 225
FIGURE D. 7: DETAILED CONFIGURATIONuutiiiiiieeeitieeeeitteeeeeteeeesteeeeesssseessssssesssssssasssssessssssssssssesssssssssssssees 225
FIGURE D. 8: INSTANCE CONFIGURATIONuttitiittieeeitieeeeitteeeesseeaasisseseasssssesasssessssssseasssssesssssssssssessssssssssssssees 225
FIGURE D. 9: SERVER INSTANCEceiiittiteieitteeeiteee e sttt e eeitteeesetaeeeestaeaeassssesaasaaesatasseaassssesasssseesssseseasssesesassenns 226
FIGURE D. 10: SERVER INSTANCE CONFIGURATIONcciiittieiiieeeeiteeeeeitteeessseeesasseseasssesessssssssssssssssssssesssens 226
FIGURE D. 11: TCP/IP AND PORT....utiittiitteitt ettt et et et s aesteesteeebeeeveeavesaseeteeeteebeebeensesasesasesaeesseensesnsenns 226
FIGURE D. 12: STANDARD CHARACTER SET ...oeiittiiiieeitiieiteesiteeestteesteeesseeassssassaeessseesssesssssasssesssssesssssssssssssesssnes 227
FIGURE D. 13: WINDOWS SERVICEccuttittieiteeiitteeiueeestesesstesssesasssessssassessssesasssssssssesssssssssasssesssssessssssssessssesssnes 227
FIGURE D. 14: AUTHENTICATIONuttiiiitieeeeitteeeeitteeeesteeeeessreeesasseaeaataeesasssssesassssesasssseasssssesssssssssssssssenssssesssens 227

Xiii

LIST OF TABLE

TABLE 1.1: COMPRESSION RATE OF TRANSMITTING PICTURE TO A GROUND STATION....ccuuiiitniitieiieeiineennnenanns 5
TABLE 2.1: ADVANTAGES AND DISADVANTAGES OF CCD AND CMOS CAMERAuiiiiiiiiecii e 15
TABLE 2.2: COMPARISON OF FEATURE EXTRACTION ALGORITHMS ...utiiiitieieietiieeeeei e eeeeieeesebaeseeannsessennneesees 34
TABLE 3.1: K-NEAREST NEIGHBOUR (ADVANTAGES AND DISADVANTAGES)uvvvviirereeeieiienrnnneereeesesnnsennenes 36
TABLE 3.2: DECISION TREES (ADVANTAGES AND DISADVANTAGES)....uuutrttieeeisiintrnreeeeesssssssnnnnseseessennnsenseees 38
TABLE 3.3, SHOWS SELF ORGANIZING MAP (SOM)’S ADVANTAGES AND DISADVANTAGESccvvveeeiiiinnvrenenns 42
TABLE 3.4: SUPPORT VECTOR MACHINE (SVM) ..eeiiiiiiii ittt e e e s s st e e e e e e s s snntaae e e e e e e s e nnnnnnnees 43
TABLE 3.5: COMPARISON OF SUPERVISED CLASSIFICATION TECHNIQUEScvuuiiiiiiiciieteeesevieeeeeen e s eenneeeens 45
TABLE 4.1: COMPARISON OF CLUSTERING ALGORITHM ...uuiivutiiitiitiieitisiieettsesanesstsessnssstnsssnsessnesstsesnssssns 51
TABLE 5.1: COMPARISON OF SOFTWARE DEVELOPMENT PROCESS .. .cuuiiitiiiitiiiiiieiiieeiesiieetisessnesstasenanssannns 54
TABLE 6.1: HARDWARE AND SOFTWARE PLATFORMiituitttiittieitiettestieestesanesstasesasesstsssnsessnesstsesnesssnns 65
TABLE 6.2: OCCURRENCE FREQUENCY OF IMAGEuuuiiitteeeiitieeeete e e e etee e e eetia e e e et e e eeataeesstaeeeestnesssnnnaaeees 69
TABLE 6.3: PARAMETERS OF SHAPE FEATURE TO BE STORE IN DATABASEcivuiitiieiieiiieeetiieeieesisennenannas 70
TABLE 6.4: GRAYCOPROPS NORMALIZED PROPERTIES ...uuuitttiittiitiieiteieteettesanesstasesanesstsssnersnesstsesnasssnnns 73
TABLE 6.5: COMPARISON: PRECISIONcuuiiiitttietitieeeeeieeestteeesetesseeata e ssssaesseta s essesassesstseeersrnsessesnaserees 108
TABLE 6.6: RETRIEVAL TIME AND PRECISION FOR LARGER GROUPScivuiiiiiiiiieiiiieeiieeies et se e ssaseaaneeans 124
TABLE 6.7: ERROR RATE OF THE SYSTEM . .uuuiituiiituiittiitteettiettetsteessetsnesstnsessessteesiersesstnresnetseen 128
TABLE E.1: GUIDE LIBRARY COMPONENT ..tutitttttttttetteteteettessessteessesssestasessesstsesnessesstnresnnesseeesieran. 228

LIST OF LISTINGS

LISTING 6.1: COMPUTING HISTOGRAM FEATURES.......cuuiiiiiiiieeeiie e et e e e e s e e et e e s et e e e eat e e e saaa e e s ataneeeeaenns 68
LISTING 6.2: COMPUTING SHAPE FEATURESuutiiuut i eiiiteeeettiaeeeeaisessttnaeeestneesenansesstanaeesstnaesannnaesesnnaeeesnnns 71
LISTING 6.3: COMPUTING TEXTURE FEATURES .. .cuuuiiitieieetiiee ettt sesetae e e e st s e e saann e e s stanaeeestneasannnesetnnaaeesnnns 74
LISTING 6.4: EXTRACTING OF FILENAME AND FILEMODDATE OF THE IMAGEccuuiieiiiieeeeiieeeeeee e et e e eeaenns 76
13 1 N[T Ot R 0 | o =S 222

Xiv

LIST OF ABBREVIATIONS

1U One Unit CubeSat
3U Three Unit CubeSat

ADCS Attitude Determination Control System
ANN Artificial Neural Network

BMP Bitmap File Format

CBIR Content Based Image Retrieval

CPUT Cape Peninsula University of Technology
CCIP Paris Chamber of Commerce and Industry
DT Decision Tree

EM Expectation Maximization

F’SATI French South African Institute of Technology

GCH Global Colour Histograms
GIF Graphics Interchange Format

GLCM Gray level Co-occurrence Matrix

HMO Hermanus Magnetic Observatory
HSB Hue Saturation and Brightness
HSV Hue Saturation and Value

JPEG Joint Photographic Experts Group

KNN K-Nearest Neighbour

LCH Local Colour Histograms
NB Naive Bayesian
NRF National Research Foundation

OAO One against One
ODBC Open Database Connectivity

PPOD Poly Picosat Orbital Deployer

RGB Red Green and Blue

SANSA South Africa National Space Agency

SOM Self Organizing Map

SPIE International Society for optical Photonics and Imaging engine
SVM Support Vector Machine

TUT Tshwane University of Technology

UPEC University of Paris Est Cretell

XVi

CHAPTER 1

INTRODUCTION

1.1 Introduction

“CubeSats are now considered a disruptive technology revolutionizing the way satellites are
built. Most large satellites involve development of custom equipment while CubeSats mostly
rely on Commercial of the shelf components (COTS) due to modest budgets available for

their development.” (Aslan, Sofyali, Umit, Tola, Oz & Gulgonul, 2011).

Low cost and reduced development time of small satellites (and especially CubeSats) have
encouraged academic institutions to participate in space activities. These development
platforms have motivated the establishment of small satellite programs at Universities and
emerging space industries throughout the world. Imaging of Earth is a common mission for
most small satellites, as such images are a means of obtaining and conveying information
regarding the planet. Pictures convey concise information such as position, size, and inter-
relationships of objects, as well as portray spatial information that can be recognized as
objects (Sivakumar, Roy, Harmsen & Saha, 2003).

An imaging CubeSat is equipped with an on-board camera payload for capturing digital
images as well as a mass storage device for storage purposes. The imager forms part of the
imaging payload subsystem onboard the CubeSat and can take pictures of any point on
Earth if the orbit permits. On-board mass memory is required to store the large amounts of
acquired image data. In commercial satellites, hard disk drives are used, while in small
satellites flash memory on Secure Digital (SD) cards are utilized. The captured images are
transmitted to the ground station and usually stored in a database for further processing.
Advanced processing of the images need to be performed in order to identify and extract
precise and clear images to be usable for applications such as mapping, disaster monitoring
and weather (Khurshid, Mahmood & Islam, 2013; Sivakumar et al., 2003).

An image database system is a combination of storage and processing systems that
facilitates the handling of images by structuring them and allowing for easier querying. One
of the challenges for an imaging CubeSat mission is the formulation of an image database
system that enables precise retrieval of specific images for the user at a low cost. The main
focus of this thesis lies within the Content based image retrieval (CBIR) system design to

ease the retrieval, storage and querying of images.

Users

Graphical User Interface (GUI) ‘

Integrated Algorithms

MySaL
DBEMS

Figure 1.1: CBIR User’s system architecture

In Figure 1.1, the overall CBIR User system architecture consists of users, a graphical user
interface, integrated algorithms and a database management system. This architecture is
based on CBIR techniques that allow users to search, store and retrieve images. Typically, a
CBIR system has two phase processes: processing of images and storing images into
database which can be queried. In CBIR, queries are usually issued by giving an image
example or by starting with a random image from a current image database. In most CBIR
systems, the first stage deals with the actual populating database. The relevant image
content is extracted and indices are built in the database. An interface is given to the end
users to allow them to query the image database in a variety of ways. In CBIR end users are
allowed to search or query the database using image contents such as colour, texture and
shape contents, and this is called query by example. This is whereby a reference image is
used as input so that similar image is returned. To compare the database of stored indices, a
query index has to be constructed i.e. a reference image. A distance measure is used to
compute the similarity between the query against stored database images. The calculated
value or measure of similarity is used to rank the validity of a given image. The similarity
ranking is used to select the best group of images that the user is interested in, and the
retrieval is based on the similarities calculated from their indices. In simple terms, when end
users query the database to find similar images using image content, the algorithms take the
given reference image and compares it to those stored images in the database. The other
role of the algorithms is to ensure both query and stored images are extracted before

comparing them.
1.2 Background to the project

The French South Africa Institute of Technology (F’'SATI) is a graduate school focusing on

the training of graduate students in the broad fields of electrical engineering and information
2

and communication technologies. F'SATI was established in 1996, through collaboration
between the French and South African Governments. A number of players, such as the
National Research Foundation (NRF), the Tshwane University of Technology (TUT), the
Paris Chamber of Commerce and Industry (CCIP), and the Cape Peninsula University of
Technology (CPUT), are committed to the establishment of an advanced research unit
(F’'SATI, 2012). F’'SATI has two branches in South Africa, namely the Pretoria branch located
at TUT and the Cape Town branch on the premises of CPUT. They offer graduate
programmes on Master and Doctorate levels in partnership with certain universities in France
such as L’ Ecole De L’ Innovation Technologique (ESIEE) Paris and the University of Paris
Est Creteil (UPEC). F'SATI, in collaboration with the South African National Space Agency
(SANSA) and the Hermanus Magnetic Observatory (HMO), are designing a series of
CubeSats, 1U and 3U respectively. The 1U CubeSat was successfully launched in 2014 and
the 3U CubeSat is set for completion in 2015.

1.3 The CubeSat Standard

As described by Horais and Twiggs (2001), the CubeSat was originally proposed by
Proffessors Jordi Puig-Suari of California Polytechnic State University and Bob Twiggs of
Stanford University. They introduced a general standard CubeSat specification: a 10cm?
shape with mass of no more than 1kg (as illustrated in Figure 1.2). CubeSats are being

utilized for various missions such as military, scientific as well communication purposes.

Figure 1.2: CubeSat Model
(Adapted from Clyde Space, 2012)

The standard 1U CubeSat consists of five subsystems, namely power, communication, on-
board computer (OBC), attitude determination and control system, and camera payload
subsystem. The attitude determination and control system maintains CubeSat stabilization
and orientation of the desired direction and position to enable the camera to take images at
certain positions and locations (Schor, Scowcroft, Nichols & Kinsner, 2009).

According to Schor et al. (2009), satellites are normally classified according to their mass.
For example, small satellites weigh less than 500kg, medium satellites weigh between
500kg-1000kg and large satellites weigh more than 1000kg. Small satellites are further
divided into five subcategories according to their weight. Mini satellites weigh between
100kg-500kg, micro satellites between 10kg-100kg, nano-satellites between 1kg-10kg, Pico
satellites between 0.1kg-1kg and Femto satellite less than 0.1kg. CubeSats fall within the

nano-satellites category and may consist of a number of units, such as 1U or 3U. One unit

constitutes a standard 10cm?, and larger versions are formed by stacking units together. The
maximum number of CubeSats that can be stacked and still fit into the Poly Picosat Orbital
Deployer (P-POD) is the 3U CubeSat (F'SATI, 2012).

A CubeSat ground station is an important entity within the satellite environment. The purpose
of a ground station is to conduct radio frequency propagation experiments, track and
communicate with various orbiting satellites, as well as to commission and operate the
CubeSats in orbit. The 1U and 3U CubeSats developed at F’'SATI are controlled via a ground
station located on the roof of the Electrical Engineering building in Bellville Campus at Cape
Peninsula University of Technology (CPUT) in Cape Town. The CubeSats are launched into
polar orbit at an altitude of between 450km and 650km. The 1U CubeSat (ZACUBEO1)
contains a camera (0.3 megapixels), payload and a beacon transmitter. Its primary mission is
to use a beacon transmitter to characterize ionosphere radar antennas in Antarctica and the
on-board camera is used to capture images of Earth. The 3U CubeSat (ZACUBEO2) includes
a five megapixels (high resolution) camera and will focus on capturing images for specific

applications such as fire warning and control.
1.4 CubeSat Transmission Times

The CubeSat orbits the earth once every 90 minutes in low earth orbit of between 600-
800km.

The satellite is only visible for about ten minutes to transmit data to a specific ground station,
other times it cannot transmit data being received on a ground station due to the satellite
being below the horizon. When having a time window of 600 seconds and data rate of 9600
bits per second (bps), the amount of 9600bps x 600s = 5, 760 000 bits or 730 KiloBytes can

be transmitted once passing by a ground station. A single colour picture with a spatial
4

resolution of 3 Mega-Pixels and a spectral resolution of 3 x 8 bits gives the total of 3 x 1024 x
1024 x 3 x 8 = 9.44MegaBytes. To be able to transmit a full picture in this ten minute period,
the maximum picture size was calculated to not exceed 700KB. In the above example, less
that 10% of the picture could be transmitted. In order for the whole picture to be transmitted,
the raw data needs to be encoded and compressed. Two issues — of poor quality and better
quality — arises when compressing an image. In this instance, a JPEG compression
algorithm with a variable compession rate of upto 20:1 is used. With a high compression rate,
alot of information is taken away and quality is decreased. The JPEG compression algorithm
is a data reduction, real information is reduced for the sake of decreasing the size in order to
allow it to be transmitted. If a high resolution picture is desired, i.e. 3Mega-Pixel or 5Mega-
Pixel picture, a high compression is required however, the resolution of the picture is
reduced. Because of the high compression ratio, alot of information is removed from the

picture leading it to be of poor quality (Polaschegg, 2005).

Table 1.1: Compression Rate of transmitting picture to a ground station

Resolution Raw data (kiloByte) Compression rate needed at
(mega-pixel) 9600 pbs 19200 pbs
1 3072 1:4.39 1:2.19
1.4 4300 1:6.14 1:3.07

2 6144 1:8.78 1:4.39
2.4 7372 1:10.53 1:5.27

3 9216 1:13.17 1:6.58

5 15360 1:21.94 1:10.97

Table 1.1 illustrates the compression rates of various image sizes needed to transmit data to
a ground station within a period of ten minutes. A picture can be transmitted using either
9600 bits per second or 19200 bits per second. It is useful to transmit a picture to a ground
station having enough information for better analyses. However, when a picture is
compressed using a compression rate greater than 1:10, alot of information is removed from
the original picture and the transmitted picture is not useful. It was observed that when
operating at 9600bps, a resolution high than 2 Mega-pixels was not suitable for this cubesat
mission. When operating at 19200 bps, a 4 Mega pixel camera could be used, however,
operating at 19200bps requires higher power consumption for the camera to take such a
high resolution picture. Therefore, the higher the resolution, the higher is the power
consumption of the camera. The camera can be switched on and off only when a picture
need to be taken, which reduces power consumption. It was noted also only one picture

could be taken and transmitted when passing by the ground station (Polaschegg, 2005).

ZACUBE-02 DOWNLINK CALCULATION FOR IMAGES
To transmit data to a ground station using 9600 baud rate and for a 5 Megabyte image, the

quickest downlink reception duration is approximately 4000 seconds.

Given parameters:

Downlink data rate or speed: 9.6Kbps max

Image size: 5 Megabytes

Converting 5 Megabytes to bits: 5x10° x8 = 40x10° =40 000 000 bits.

Assuming ideal conditions:

If a maximum of 9600 bits can be transmitted in 1s. Therefore, 40 000 000 bits will take:

40 000 000/9600 = 4166.77 seconds

This is approximately 69.4444 minutes or (~70 minutes).

Therefore, to receive, classify and retrieve the transmitted image after a minimum delay of
(=70 minutes) will not be in real time. According to Nzeugaing (2013), in order to achieve
real time, CubeSat imagery needed to be compressed to a size of <1.2 KB (which is an
acceptable quality). At this compression size, the real time reception can be achieved on
downlink data rate of 9600 baud rate. According to Kalman and Reif (2008), 3U CubeSats
using thirteen ground stations MISC could provide 196 images per day for a net imaging area

of approximately 137 500 km?.
1.5 Problem Statement

Indexing and categorizing images into semantically meaningful ones using low level feature
is a challenging and important problem in content based image retrieval (CBIR). To organize
large image collections into categories and provide effective indexing is vital for the browsing
and retrieval system. This rather difficult problem has not been adequately addressed in
current image database systems. They need to develop a system for indexing and
categorizing the huge amounts of data. The other challenge is of providing high level
semantic indices for large databases, as users in a CBIR system are typically based on
semantics and not on low level features. A successful indexing and categorization of images
greatly enhances the performance of content based retrieval systems by filtering out
irrelevant classes (Maheswary & Srivastava, 2009; Vailaya, Figueiredo, Jain & Zhang, 2001).

The major problems with stored images in a large image database (an image database is a
combination of storage and processing systems that facilitates the handling of images by
structuring them and allowing easier querying of the database) are retrieval of precisely,
clear images and semantic gap. In context of the CubeSat environment, a large number of
images are transferred from the orbiting CubeSat to the ground station on a daily basis. As
this number increases with the passing of time as well as with additional CubeSats in orbit,
image indexing and categorization becomes vital to ensure applications retrieval are valid
and requested images are accurate. The other challenge for such a CubeSat mission is the
formulation of a computirized image database which will enable fast and precise retrieval of

specific images for the user at low cost.

The motivation for this research is saving on time and cost: in previous years the file system

was used to store and retrieve images, which was very costly and time consuming. There

was a need for a faster and cheaper database management system, and new technology

allows end-users to be able to search, store and retrieve images quickly and at low cost.

1.6 Objectives

The main objective of this thesis is to design and develop an image classification, storage

and retrieval system for a CubeSat. This system will enable efficient classification, storing

and retrieval of images received from an in-orbit CubeSat.

The specific objectives to be addressed are:

To study and analyze space and Earth images and study methods to identify specific
features.

To select and propose appropriate image processing techniques to process and
extract features in an image.

To design and propose an image classification scheme suited for images of Earth as
captured by orbiting CubeSats.

To classify images using image classification techniques (i.e. texture classification)
once received at the ground station.

To design a storage and retrieval system.

To study how images are to be ranked and retrieved from a large database.

To study techniques to evaluate the performance of an image retrieval system.

To test, implement and integrate the proposed system for the CubeSat environment.

1.7 Methodology

In order to propose and implement the image classification, storage and retrieval system the

following methodology will be followed:

Literature review on CubeSat imaging missions, whereby information on the CubeSat
environment will be collected from related books, journals and academic studies. This
will assist in understanding integration of subsystems and especially, the imaging
payload.

Literature review on image database systems and data mining techniques.

A detailed study on image retrieval systems and what problems they encounter will be
investigated.

Literature review on feature extraction techniques (image processing toolboxes to
extract features in an image will be considered).

Study Matlab as an object oriented programming language, to assist in designing a

suitable and friendly graphical user interface for users to search or query images will.

e Study will be conducted on Integrated Development Environment (IDE) to assist with
the design and testing of the colour, shape and texture feature extraction algorithms.

e Test and evaluate the accuracy of the proposed design and implementation of the
system.

e They are many software development process models, however this study will focus
on waterfall, incremental, prototype and spiral models, and choice will be selected

based on requirements given in Section 5.3.
1.8 Research significance

CubeSat missions have limited budgets influencing both the design of the space segment
and ground segment. The 3U CubeSat (ZACUBE-02) will be used for an imaging mission,
hence the need for a low cost efficient storage and retrieval system for the ground station
segment of the mission. This research will allow images from ZACUBE-02 to be accessible
to users in applications such as land management and location of natural resources. A
system that meets the challenging requirements will be delivered and at the same time will
provide a simple and less complex image storage and retrieval system for CubeSat missions.
Such a Content Based Image Retrieval (CBIR) system will not only benefit space industries,
but also general and specialized applications and services such as Google, Flicker and
social networks (i.e. Facebook). For example, the proposed system may be useful in
hospitals to record and store patients’ information. Although, a modification will be needed for
entering patients’ details such as names, surnames and addresses, and the Graphical User

Interface will need to be expanded to accommodate entering details.
1.9 Thesis outline

This thesis is organized as follows: Chapter 2 presents the background concepts, such as
CubesSat standards, image compression standards and image feature extraction techniques.
Chapter 3 focuses on categories of image classification techniques and provides more detalil
on supervised classification techniques. Chapter 4 also provides a thorough study of
unsupervised classification technigques. Chapter 5 details the requirement analysis and
design of the proposed system. Chapter 6 provides the implementation, testing, evaluation
and results of the developed system as proposed in Chapter 5. The study is concluded in
Chapter 7. Appendix A discusses and lists all codes, while Appendix B provides the test
images. Appendix C details the procedures to interface MATLAB and a MySQL database.
Appendix D highlights procedures to download and install the database and Appendix E

provides descriptions of the MATLAB library components.

1.10 Delimitations and assumptions

The research project focuses on the design of an image classification, storage and retrieval
system for a 3U CubeSat. Although images are compressed to alleviate size constraints, this
study does not deal with compression techniques and tools. However, a brief elaboration on
compression techniques will be included in this work. The 3U Cubesat will have an on-board
image compression system, and before transmitting data to the ground station, images will
be in a compressed format. Typically, satellite images are captured in 2D or 3D. The
conversion between 2D and 3D images falls outside the scope of this thesis.

CHAPTER 2
CUBESAT AND IMAGERY

2.1 Introduction

This chapter presents information related to CubeSats and imagery. This chapter not only
aims to introduce CubeSats but also to elaborate on image compression, due to it being part

of imagery and image feature extraction techniques.
2.2 The CubeSat

As mentioned in Chapter 1, F’'SATI is developing a series of CubeSats; one unit (ZACUBE-
01) and three unit (ZACUBE-02). As shown in Figure 2.1, ZACUBE-01 is a student and staff
developed satellite, of which development begun in early 2011. Its main payload is a high
frequency beacon transmitter (14.099MHz that transmits up to 200mwW of RF power) and is
used to help characterize the Earth’s ionosphere and to calibrate South Africa National
Space Agency’s (SANSA) Auroral radar installation at the Sanae base in Antarctica. The
main objective of the HF beacon on ZACUBE-01 is to provide a continuous radio signal to
determine the elevation resolving algorithm of the Super Dual Auroral Radar Network
(superDARN). The signal is also used to characterize the beam pattern of this and other HF
radar antennas in the SuperDARN network and to characterize the ionosphere over the Polar
Regions. It's also equipped with a 0.32MP (565 x 565) camera (CPUT, 2013).

Figure 2.1: The 1U CubeSat
(Adapted from F’'SATI, 2012)

10

ZACUBE-02 is a three unit CubeSat (see Figure 2.2) to be equipped with a high resolution
camera of 5MP (2236x2236). A CubeSat consists of a number of subsystems namely
power, on-board computer (OBC), payload, communication, as well as the attitude
determination and control subsystem. These are described in more detail in the following
subsections.

Figure 2.2 : The 3U CubeSat
(Adapted from F'SATI, 2012)

2.2.1 On-board Computer (OBC)

As described by Krishnamurthy (2008), the OBC is the central computing unit of the
CubesSat. It interconnects all subsystems, controls and handles, and transfers data between
various subsystems. It ensures the satellite comes into direct contact with the ground station
for communication purposes. It also monitors the health and status of the satellite, and the
operator on the ground station can issue new commands to the satellite through the OBC. All
commands and information passes through the OBC before being sent to the relevant
subsystem/s. A block diagram detailing the OBC subsystem is shown in Figure 2.3.

11

EPROM EPROM FLAMI

IS !
e — EN

{(R-BOARD COMPUTER

5| COMMAND

|

COMMUNTICATIR

DOWER SUTELY _I\

Figure 2.3 : OBC Computer Architecture
(Adapted from AAU CubeSat, 2012)

2.2.2 Electrical Power Subsystem (EPS)

The Electrical power subsystem generates, stores, controls and distributes power to all of the
subsystems. The EPS gets its power from solar energy (such as silicon, single junction, dual
junction and triple junction), which it stores onto battery. The higher the efficiency of the solar
cells, the more power can be delivered from the cells. EPS regulates voltages of all
subsystems in the satellite. It offers protection of over-current and over-voltage to all
subsystems. The solar cells are configured either in series or parallel using two or three solar
cells (Burt, 2011).

2.2.3 Attitude Determination and Control Subsystem (ADCS)
As stated by Larson and Wertz (1999), the ADCS is responsible for stabilization and
orientation of the satellite during the mission. The ADCS also ensures that the camera is able
to capture images of Earth despite the external disturbance torques (such as gravity gradient
torque, solar radiation torque, magnetic disturbance and aerodynamic torque) acting on the
satellite.
The ADCS is mainly responsible for the following:

e The stability of the satellite after launch separation (Mohammed, Benyettau, Sweeting

& Cooksley, 2005).

e The solar arrays are pointing towards the sun to generate power for the satellite
(Sandau, 2003).

e To point payload/s such as cameras and antennas to the desired direction (Scholz,

2003).
12

e To perform CubeSat attitude maneuver for orbit and payloads operations (Bezold,
2013).

e Itis required that the satellite determines its attitude using sensors (such as gyro, sun
sensor, star sensor, horizon sensor and magnetometer) and controls it using
actuators of the ADCS. The typical actuator that may be used includes reaction
wheel, control moment gyro and magnetic torque (Kaplan, 2006).

2.2.4 Communication Subsystem

As stated by Traussnig (2007), the communication subsystem is responsible for sending and
receiving information between the satellite and the ground station. Therefore, the success of
the satellite mission depends on the ability of the satellite to communicate and exchange

data with the ground station.

As stated by Babuscia, Corbin and Clem (2013) most of current CubeSats use antennae,
such as dipole, monopole or patch antennae, to transmit or receive data from the satellite to
the ground station. Current CubeSat communication systems mostly use Ultra High
Frequency (UHF) and S-Band which is equipped with dipole, monopole and patch antennae
(achieves maximum of 8dB). CubeSats power consumption usually used to transmit data is
approximately 1W.

The communication subsystem of ZACUBE-02 will operate in the 70cm band and will be
commanded from the amateur ground station located on top of the Electrical Engineering
building at the Bellvile Campus of Cape Peninsula University of Technology as shown in
Figure 2.4. This ground station uses frequencies of beacon 11.099MHz and VHF/UHF
transceiver for uplink 145.86MHz and downlink of 437.345MHz. It will use Omni-directional
for the UHF transmitter and the receiver (CPUT, 2013).

13

Figure 2.4: CPUT Bellville campus ground station
(Adapted from F'SATI, 2012)

2.2.5 Camera Payload Subsystem

ZACUBE-02 contains a 5MP camera for capturing and relaying images. Once the images are
captured, it will be stored in volatile memory while awaiting transmission to the ground
station. A number of CubeSat missions include image payloads, such as Masat-1 build by
Technical University of Budapest in Hungary, where the main payload is a visible camera
with a 640x 480pixel image area and ground resolution of 2km to 10km. The AAU CubeSat
series which was built by Aalborg University in Denmark, uses a CMOS sensor in order to

capture the earth’s surface in high resolution (Polaschegg, 2005).

Recent CubeSat image payloads missions include ITupSat CubeSat built by Istanbul
Technical University in Turkey, with the mission goal to capture colour imagery using CMOS
payload (VGA camera based on an OV7620 image sensor) which can be used for better
quality video and still image applications. Similar cameras were implemented in CubeSat XI-
IV built by Tokyo University in Japan, as well as ICUBE-1 built by the Institute of Space
Technology in Pakistan (Khurshid, Mahmood & Islam, 2013). Jugnu CubeSat built by the
Indian Institute of Technology Kanpur in India is a 3U CubeSat that includes an IR camera
and GPS receiver (IITK, 2013). The payload of the CanX-1, built by the University of Toronto
Institute for Aerospace Studies in Canada, includes a CMOS sensor with high resolution and
consumes less power. It also has other payloads, such asstar-trackers, active three axis
magnetic stabilization and GPS based position determination (UTIAS, 2013). The Compass-

1, built by Aachen University of Applied science in Germany, focuses on remote sensing and
14

the payload used is a CMOS sensor (OV7648FB Imaging sensor) to take pictures of Earth
(Scholz, 2003; Khurshid et al., 2013). The Goliat CubeSat built by University of Bucharest
Romania in Romania contains a 3MP optical imager with a 57mm focal length and includes a
radiation detector and a micro-meteoroid detector (Klofas & Leveque, 2013). The mission of
M-Cubed, built by Michigan State University, is to capture and downlink an image of Earth
using a 1.3MP camera (eoportaldirectory, 2013). Almost all designers and developers of
CubeSats in the past have incorporated a CMOS camera for image capturing in their
designs. Generally in space there are two problems that affect cameras used on satellites;
harsh radiation and thermal environments that affect the performance of cameras and
endanger the fulfilment of the mission goal of satellite. The image sensors are mainly two
types: Charge-coupled devices (CCDs) and Complementary Metal-oxide semiconductor
(CMOS) image sensors. The CCDs degrade strongly when exposed to radiation. Yet, CCDs
are built with very high performance characteristics. The CMOS image sensors are more
robust in irradiated environments. However, CMOS image sensors have slightly worse
imaging performance. The CCDs have been used extensively though; they had to add
dedicated protective shielding against radiation. Nowadays, CMOS images have improved
their performance characteristics and become an option for scientific imaging (De Segura,

2013). Table 2.1 below shows advantages and disadvantages of CCD and CMOS camera.

Table 2.1: Advantages and disadvantages of CCD and CMOS Camera

Cameratype Advantages Disadvantages
CCD camera | e Higher sensitivity e Basic function consume several
e Electronic shutter without artifacts, watts (1-5W)
e Lower noise e Cannot be monolithically
e Lower dark current integrated with analog readout
e Smaller pixel size and digital control electronics
e 100% fill Factor e Cannot guarantee their
functionality over the whole
temperature range required,
e It needs short integration time
CMOS e Low power consumption e Less quantum efficiency,
camera e Single power supply e Image sensors suffer from
e High integration capability different noise sources,
e Lower cost e Less image quality than CCD.
e Single master clock and
e Random access

15

2.3 Image Compression

The ZACUBE-02 mission is to capture high resolution images of Earth at an altitude of
approximately 700km. Due to the large image file size (1MB) and transmission rate, image
compression is essential. Image compression decreases image size to allow satellites to
partially store and transmit data to the ground station. Typically, a communication data rate
between a CubeSat and a ground station is about 9.6 kbps. Two main types of image
compression techniques are utilized, namely Lossless compression and Lossy compression.

With Lossless compression, this technique is applied on an original image and the
compressed image usually looks same as the original image, without loss of information in
the converted image or compressed image. Lossy compression reconstructs the image with

a varying degree of information loss (Yu, Vladimirova & Sweeting, 2009: 989).

It is required that images captured by ZACUBE-02 should maintain the same image quality
before and after compression. In order to maintain image quality, the lossless compression
technique will be used on-board the satellite .The mission requirements for ZACUBE-02; it is
important to consider image quality, limited storage memory on-board the ZACUBE-02,
bandwidth and power consumption of the image processing device. Image compression on-
board ZACUBE-02 will be implemented using JPEG 2000 lossless compression. The JPEG
2000 compression is the latest image compression standard to emerge from the Joint
Photographic Expert Group. It offers superior compression performance of two decibels
compared to other image compressions such as Portable Network Graphics (PNG) and Joint
Bi-level Image Expert Group (JBIG) (Syahrul, 2011).

Sparenberg, Bruns and Foessel (2013) proposed using JPEG 2000 compression to
compress texture and shape information in an image. Ismailoglu, Benderli, Yesil, Sever,
Okcan and Oktem (2005) implemented JPEG 2000 compression onboard the RASAT
second small satellite built by Tubitak Space Technologies Research Institute (TUBITAK
UZAY) in Turkey to provide high resolution imagery. Both BILSAT-1 and RASAT
implemented the JPEG 2000 real time on-board image processing subsystem. Multispectral
imaging with spectral bands was compressed and processed simultaneously and the user
was able to issue commands from the ground station for changing the compression ratio for
each mission. As stated by Ismailoglu, Benderli, Korkmaz, Durna, Kolcak and Tekmen
(2002) JPEG 2000 compression uses less memory space and also improves image quality.
According to Achary and Tsai (2005), JPEG 2000 compression is an attractive method which
is able to transmit high amounts of data to/from ground station given availability of bandwidth

in the data links, and this reduces communication costs.

16

Another lossless compression standard is the JPEG lossless compression standard. It is
based on the predictive coding technique. In JPEG lossless compression, two coding
techniques are incorporated, namely Huffman and arithmetic coding. When comparing the
two JPEG compression modes, lossless and lossy, lossless compression is fully independent
of the transform based coding, since it applies differential coding to form the residuals which
are then coded via Huffman or arithmetic coding methods. Advantages of JPEG lossless
compression are that is easy to implement and simple to compute. Though, when comparing
JPEG lossless to JPEG 2000 lossless compression, JPEG 2000 lossless compression
provides a better compression technique that is modifiable in different ways to better suit any
application. As a measure of image quality, peak signal to noise ratio is used. The JPEG
2000 standard has better peak signal to noise ratio (PSNR) than the JPEG standard
(Nzeugaing, 2013).

2.4 Real-time applications

Real-time in context of software engineering perspective, predicts the performance of system
rather than just fast processing (Laplante & Neill, 2003). A real-time system should be able
to do processing, predict, control and give accurate results. The accuracy of processed
results should also consider how much time it takes to complete the task. As stated by Sha,
Ragunathan and Sathaye (1994) a real-time system’s measurements includes:

¢ Predictably fast response: the system to predict and provide response in quick time to
priority events.

e High degree of schedulability: when the system is dealing with a lot of resources,
priority of task to be managed should be properly dealt with and within reasonable
time.

e Stability under transient overload: when the system is dealing with high priority tasks,
it should guarantee and manage accurately all tasks regardless of whether the
system is overloaded.

In processing a lot of images and extracting features in images, real-time image systems are
used. To process such huge amount of images, computation and memory resources are
need to process the images (Bovik, 2005). In a real-time image system, algorithms can be
developed to enhance and extract information contained in each image dimension. The main
challenge faced with real-time image systems, is processing and extracting huge amount of
data, and this requires computation and memory resources. Figure 2.5 highlights the stages

within a real-time image processing system.

17

Image Capture
(a) Sensing

Preprocessing

Noise Reduction

—

Segmentation
Edge Detection

—

Analysis
Feature Extraction

—

Interpretation
Recognition

i

1111 1]

-
-

-

e o

(b)

Ll

oo

..J
=
2

1k

1111l

£

N'p

(a) Typical processing chain (b) Decrease in amount of data processing chain

2.5 Image feature extraction

NP

Figure 2.5 : Typical image processing stages:

L]

N

(Adapted from Kehtarnavaz & Gamadia, 2005)

As stated by Afifi (2011), an image has embedded information, which needs to be extracted.

There is a variety of image features (i.e., colour, texture and shape features) which can be

utilized to describe an image.

2.5.1 Colour feature

The colour feature technique allows the individual’s eyes to recognize or identify objects that

are embedded in an image and it also allows the system such image retrieval to extract

objects from the same image. In order to extract colour features from an image, a colour

system needs to be selected and its properties used. Commonly used colour systems are
Red, Green and Blue (RGB), HIS and Hue, and Saturation and Value (HSV). HSV is
commonly utilized when converting RGB images to other colour systems (Shih, Huang,

Wang, Hung & Kao, 2001). A typical RGB image consists of three components as shown in

Figure 2.6.

18

Original image

Red component¢ Green componentl Blue component l

BE o6& w
BoE B & »

W
)
£y
R

BB BB

Figure 2.6 : The RGB image with its three components
(Adapted from Masat-1, 2012)

Categories of colour feature techniques include colour histograms, colour coherence, colour
correlograms and colour moments. Colour sets are developed and utilized for colour image

representation. Categories of colour feature techniques are illustrated in Figure 2.7.

Colour Feature Technique

v v v v

Colour histogram Colour coherent vector Colour correlograms Colour moment
Technique Technique Technique Technique

Figure 2.7: The categories of color feature

A. Colour histograms
A colour histogram uses a bar graph which depends on a colour space system to represent a

particular colour in an image. The number of pixels embedded in images can be represented
by bars, which are also known as bins. Two categories of colour histograms, namely Global
Colour Histogram (GCH) and Local Colour Histogram (LCH), are identified. GCH takes the
histogram of all images and computes the difference against a set of images using a
similarity distance measure. The disadvantage is that it does not include information

regarding every image region. In a colour histogram, it is hard to distinguish images that
19

have the same quantities of the colour, even if the colour is in one area or extended across

the image (Hussain, Rao & Praveen, 2013).

LCH is concerned with the colour distribution in the area of the image. It computes the colour
histogram for each region separately and splits the image into fixed regions. The sum of
each region’s histogram represents the whole image. To compare two images using LCH, a
distance is computed from one image to another image by computing difference in block of
histogram of the images that are in the same location. When the LCH method is used, the
efficiency of retrieving images is improved. But, this method is limited when the image is
rotated or translated and takes additional time to compute (Fuertes, Lucena, Perez &
Martinez, 2001).

As illustrated in Figure 2.8, the distribution of colour in an image is shown in a colour
histogram. The x-axis of the colour histogram stands for the number of pixels and the y-axis
of the bar stands for the amount of colour used in the image. When the same colours are
found in different bars, the normalization method can be used to reduce the number of bars
by putting them in the same bar. Normalization can decrease the content of information that
may be gained from the image. The computation is efficient in a colour histogram and is
insensitive to small changes in camera position. The limitation of a colour histogram is that it
does not specify which colours are comprised in the image and their quantities (Wang,
2001).

Figure 2.8 : Image and its histogram

B. Color coherence vector (CCV)

The CCV is classified into two groups, one with an incoherent vector and the other a
coherent vector, both coming from a double colour histogram. Typically, a fixed threshold
value of 7 is used to determine whether an image’s region is coherent or incoherent. When
the region size value exceeds the threshold value of 7, the region is coherent whereas if the

20

region size value is below the threshold value ofz, the region is incoherent (Kang, Yoon,
Choi, Kim, Koo & Choi, 2007). The CCV overcomes the limitation of a colour histogram of
identifying two different images containing the same quantity of colours to be the same. Yet,
both images differ in appearance and objects comprised in them. The Colour Coherence
Vector technique eliminates such confusion by determining whether one image’s region
colour is similar to other image’s colour region using coherent and incoherent methods. For
example, if the red pixels in an image are members of large red regions, this colour will have
a high coherence, while if the red pixels are widely scattered it will have a low coherence
(Pass, Zabih & Miller, 1996a). In an image, pixels of colour that are members of a big colour
region are similar in coherence. Different images might contain the same amount of colours
but differ from each other due to their colour coherences. Usually, CCV is used in image
classification and it prevents two images having the same quantities to belong in the same
group, as it ensures that coherence pixels or incoherent pixels of each image are unique.
Thus, this technique allows fine distinction, unlike colour histograms confusing images
having the same amount of colours. It performs much better than colour a histogram.
According to Pass & Zabih (1996b), CCV bases its computation on a colour histogram, after
the image is blurred to ensure that some pixels are changed by their average number in the
region. Thereafter the colour space in an image is discretised in such a way that there are
only n distinct colours in an image. The pixels in the stored array are then classified as either
coherent or incoherent. Two pixels are compared and checked against their eight closest
neighbours. The colour coherence region is obtained through computation of connected
pixels within a given discretised colour array. Thus, an image is segmented according to the
given colour space. Lastly, the largest eight colour coherent regions are chosen, which are
enough to describe an image. Coherent regions are distinguished by counting which are

coherent or incoherent (Hongli, De & Yong, 2004:762).

C. Colour correlograms (CC)

CC is a technigue which enables the system to distinguish two or more objects in the image.
It considers spatial correlation of colour and computes the pixel’s distance value it compares.
Colour Correlogram is widely used in image databases, where image content is used to
query the database (Huang, Kumar, Mitra & Zhu, 2002). Colour correlograms are developed

by quantizing an image’s colour into mvalues c;. . . c,. The ke[d]distance values are

determined, k is a constant and [d] is a set of distances between the pixels and d maxis the
maximum distance value calculated between the pixels. Using a table, each entry from the

table (i, j,k) symbolises the probability of finding a pixel of colourc; at a given distance from
a pixel of colourc;. To identify the image, colour auto correlograms, which considers colour

pairs of the form (i, j), can be computed (Huang et al., 2002).

21

Colour correlograms are widely used in image retrieval systems as it preserves the spatial
correlations of colour information, and gives accurate image retrieval results. When
compared to other techniques, such as colour histogram and colour coherence vector, it
demonstrates high effectiveness (Taranto, Di Mauro & Ferilli, 2010; Zhao, Wang & Khan,
2011; Sirisha, Kumar, Vishnu & Srinivas, 2013; Murali, Raja & Bhanu, 2013; Tungakashthan
& Intarasema, 2009). As stated by Talib, Mahmuddin & Husni (2013), the drawback of this
technique lies in the expensive cost of memory space and computation time.

D. Colour moments

A colour moment depends on the probability distribution of colour in an image, and two or
more images can be distinguished by computing the colour similarity between them. Usually,
probability distributions are characterized by a number of unigue moments, mean and
variance values which distinguish their normal distribution. To identify an image, the
probability distribution of colour should follow certain patterns, and the moment of that
distribution can be used to identify an image based on its colour. As stated by Stricker and
Orengo (1995), the image colour distribution can be computed using three colour moments,

such as mean, standard deviation and skewness. Hence, these colour moments are defined:

Moment 1-Mean is average colour value:

Moment 2-Standard deviation is the square root of the variance of the distribution:

5 =\/{%j2:1(pi,- —Ei)ZJ

Moment 3 — Skewness is the level of assymmetry in the distribution:

5 =s\/[%j%1’,(pi,- _Ei)sj

Two images can be distinguished based on computed similarity between the distribution of

colour and considering sum total of their weightage difference between the moments of their

distributions. Formally this is:

d

;

1_p2 12 1_ .2

mom(H |)=ZWi1‘Ei -E ‘+Wi2‘0i ~ O ‘+Wi3‘si =S ‘
i1

where (H, 1):is the compared value of two image distribution,

i : the channel index,

r : the number of channels,

E' E?: is the mean value of two image distributions,

22

oi,o? is the standard deviation of the two image distributions,

! s?: is the skewness of the two image distributions,

17%1

S
w; :is the weightage of each moment and d,, value rank images, when d_,, value is small,

the images are similar, whereas a larger d.,m Value indicates that the images differ greatly
(Stricker & Orengo, 1995). Colour moment applications includes colour image retrieval
(Feng, Siu & Zhang, 2003).

2.5.2 Texture Feature

Texture is an important feature that represents the characteristic, pattern, composition and
surface of an image. It has information on the structural arrangement of surfaces and their
association to the environment (Srinivasan & Shobha, 2008). As shown in Figure 2.9, the
texture feature is categorised into three categories, namely structural, statistical and spectral
(Long, Zhang and Feng, 2002).

Texture Feature

\4 A 4

Structural Approach Statistical Approach Spectral Approach
A 4
A 4 A 4 A 4 A 4 A 4
Wavelet Gabor Tamura Gray Level Local Binary
Transform Wavelet Approach Co-occurrence Pattern (LBP)
Matrix (GLCM)

Figure 2.9: Block Diagram of texture categories
e Structural approach is texture which represents a micro-texture and macro-texture by
defining the primitive and their placement rules. A particular location primitive and the
probability of the chosen primitive can describe the image. The advantage of structural
approach is that it can extract enough information to represent an object in an image. A
useful tool to compute and analyse structural texture is provided by mathematical

morphology (Hajek, Dezortova, Materka & Lerski, 2006).

e Statistical approach is a texture feature which is computed depending on the statistical
distribution and intensity of a specific location relative to other intensity positions in the
image. This approach includes Gabor wavelet, wavelet transform, gray level co-

occurrence matrix and local binary pattern. The approach can be classified based on a

23

number of pixels compared one pixel, two pixel and three or more pixels (Ojala &
Pietikainen, 1999).

e Spectral Approach uses frequency domain to analyse texture contained in the image. It
requires fourier transform to work on the original image to transform it into frequency
space. Fourier transform does well by showing texture’s strong periodicity and their
performance deteriorates as the periodicity of texture weakens (Kale, Mehrotra & Manza,
2007).

A. Wavelet transform

A wavelet transform is a two dimensional image. By using wavelet coefficiency, useful
texture feature information can be extracted from the image. The wavelet decomposes an
image into four different scale levels or subbands. For example, when wavelet transform is
used in a colour image, the four subbands (i.e., LL, HL, LH and HH) contain information to
describe texture with a low resolution copy of the original image, and the other three regions
are computed with three band pass filters in specific directions (Kumar and Esther, 2011:39).
Each region contains content information which is useful texture features. Latha, Jinaga and
Reddy (2007) proposed to use wavelet transforms for content based colour image retrieval.
To determine retrieval performance of their system, they compared Haar wavelet transform,
D4 wavelet and wavelet histogram schemes. In terms of retrieval rate, D4 wavelet transform

outperformed both Haar wavelet transform and wavelet histogram.

B. Gabor wavelet

As stated by Ahmadian and Mostafa (2003) and Vacha (2010:11), the Gabor wavelet is a
technique which is used to compute texture of an image. It is a simple and flexible method for
capturing scale information and orientation of the image. It is based on function of two

dimensions, having g(x,y) function, which is defined as:

2 2
g(X,y)=2;ex —l[x . }+27Zj\/\/x

0,0y 0,2 Gyz

G(u,v)= exp{— %{(u;—\iv)z + \O/_—Zz}}

u u
where o, =1/(270,)and o, =1/(270,).

A non-orthogonal set can be created using the Gabor function and a signal is enlarged to
give a concentrated frequency description. Gabor wavelets which is a class of self-similar

function is computed by using g(x, y) as the mother Gabor wavelet. A self-similar filter is

found by using dilations and rotation of g(x,y) by using the function:

24

I (X, Y)= aG(x', y') a>1m,n= Integer

x'=a "(xcosé + ysin 0)

y:

a™"(-xsin @+ ycosh)

The a™™ is the scaling factor for energy which is dependant onm. The GznT”and k are

values of orientations. Al-Fayadh, Mohammed & Al-Shimsah (2012) concluded that when

compared to another wavelet such as Haar, the Gabor offered accuracy more accurate

result.

C. Tamura feature

Tamura features are texture features that can be extracted from an image, which include

coarseness, contrast, directionality, line-likeness, regularity and roughness.

Coarseness: This is an important feature for texture analysis. It deals with texture
primitive and their size. It has small and large primitives, large primitives are small in
numbers whereas small primitives are large in number in coarse texture (Lin, Chiu &
Yang, 2002).

Contrast: It is based on finding distinction in intensity between neighbouring pixels. It
is also used as a measure of image quality. From persepective of texture, high
contrast in an image gives a large value in intensity between the neighbouring pixels
whereas low contrast gives a small difference (Lin et al., 2002).

Directionality is the region over which has global property. It gives orientation and
shape to the texture primitive and its placement rule. Its orientation is more
recognizable for primitives (Lin, Chiu & Yang, 2003).

Line-likeness: It is line-like texture which is straight or wavelike primitives. It has only
the shape of texture primitives, and its texture tends to give directionality (Mathur,
2012).

Regularity: It is regular texture which has identical or similar primitives, and variations
in their primitives. Regular texture has identical or similar primitives, and variations in
their primitives, unlike irregular texture, which contains a variety of irregular or
randomly arranged primitives (Chiu,Lin & Yang, 2001).

Roughness: this refers to primitives and variation of physical surface. A rough texture
has angular primitives, whereas a smooth texture has rounded, blurred primitives
(Chiu et al., 2001).

D. Gray level co-occurrence matrices (GLCM)

The GLCM was developed by Haralick et al.,(1973), who defined the following fourteen

equations: Angular Second Moment, Contrast, Correlation, Sum of the Squares of Variance,

25

Inverse Difference Moment, Sum average, Sum Variance, Sum Entropy, Entropy, Difference
Variance, Different Entropy, Information Measures of Correlation 1,Information Measures of
Correlation 2 and Maximum Correlation Coefficient (Haralick et al, 1973: 619; Gotlieb &
Kreyszig, 1990; Partio, et al., 2002; Liu & Liew, 2007; Feng, 2008).

It is a two dimensional, statistical texture feature of the second order which considers the
relationship among two or a group of pixels in an image, and is widely used for feature
extraction in content based retrieval systems. It uses gray level image to compute the
relationship between pairs of pixels in an image, and the spatial relationship between two

neighbouring pixels is determined in many ways by using offset and angles

(i.e.,0°, 45°, 90°and 135). In one application, using a Matlab platform, a default is between

one pixel and its immediate neighbour to the right (Pathak & Barooah, 2013).

E. Local Binary Pattern (LBP)

LBP is a texture technique which computes an image’s pixels by converting binary value to
decimal numbers, uses a centre pixel as a reference together with each neighbouring pixel
and finally sums all binary values into a decimal number (see Figure 2.10). Its assigns a
label to the pixel and compares the 3x3 neighbourhood of each pixel with the reference
center pixel value, and summing the threshold values weighted by powers of two which
results in a binary number. Hence, in this texture feature, a histogram to the value of 256 of
different labels is used (Christiyana & Rajamani, 2012: 224-225; Sorensen, 2010:18). The
value of the reference center pixel (a,b) of the image f(a,b) is computed by Equation 2.1.

,
LBP(a,b)=>"U(f(a,b)- f(a,b))]2" Equation 2.1
i=0

Where U (x) is the threshold function defined by Equation 2.2.

26

1if x=0
ux) =
0 if x<0

Threshold on
Center value

100 | 126 | 124
200 | 185 | 265
212 | 190 [195
3x3 neighborhoods

2.5.3 Shape Feature

Shape method comprises of two categories: boundary based and region based descriptors.
Boundary based deals with the outline of an object contained in an image, while region
based deals with the two dimensions or ‘shape’ of objects within the image. Boundary based
is more widely used due to its simplicity, unlike its counterpart. Examples of boundary

descriptors are chain code (Jahangeer & Baichoo, 2013), curvature and Fourier descriptors

(Zhang & Lu, 2004).

Y

1 185 | 1

.

3x3 Binary patterns

256 | 128

0 64

16 32
Weighs

Figure 2.10: Basic LBP calculation

A. Boundary based descriptor

The boundary based descriptors method requires extraction of boundary information which in

some cases may not be available. The boundary technique includes chain code, moment

(Wang, 2013:18)

invariants, Turning angles and Fourier descriptors.

e Chain code descriptor: Chain code uses four or eight connectivity to determine border
pixels of an object in the image (see Figure 2.11). In each figure the line arrows indicate
the length and direction, which are used to compute the object in the image by relying on
either eight or four connectivity. Orientation of the objects is determined using angles
(i.e., 45°0r 907), the chain code of an object is achieved by placing a grid on top of the

image and the nearest grid nodes and boundary points are used to determine the codes.

Numeration scheme method is used to determine the direction of each segmented code

Equation 2.2

‘00111110"
Binary LBF code

and through clockwise traversal of the boundary, shape descriptors values are collected.
The chain code is sensitive to noise along the figure boundaries. This is overcome by

superimposing another grid with a cell of increased size (Gonzalez & Woods, 2002).

Lad

d
AN

2
A

J,..\
L4
6

Laa

(2} (b))

Figure 2.11: Chain code (a) Eight connectivity (b) Four connectivity

Chain code applications include fingerprint (Jiang, Zhao, Xu & Meng, 2009) and face
recognition (Jahangeer & Baichoo, 2013; Seul,0’'Gorman & Sammon, 2000).

¢ Moment Invariants: A series of properties which define shapes invariant to affine
transformation within the image. They describe the properties of connected regions of
the image (Li,Li, Fu & Yang, 2012).

e Turning angles: Turning angles describe a shape as a series of angles which define
the angle between a tangent to a border pixel on the object and a predefined
reference orientation such as the x-axis (Budd, 2007).

o Fourier Descriptors: Fourier descriptors are taken from the coefficients of the image
represented in the Fourier domain by the Fourier transform (Budd, 2007).

B. Region-based descriptor
The region based method considers an image’s region pixels to describe shapes of objects
found in the image. Examples of region based descriptors are convex hull, moment

descriptors, shape matrix and grid method.

o Moment’s invariant:

Moment invariant was developed by Hu (1962), and he depended on the algebraic
invariants theory and derived seven invariants equations for allowing the rotation of
two dimensional objects (Flusser, 2005). Moment invariants are classified as algebraic
and geometric techniques. Examples of applications of the geometric technique are
temple matching, registration of satellite images and character recognition. A
drawback of the geometric moment’s technique is that those derived from a few
invariants from lower order moments are not enough to precisely describe a shape

28

and high order moments are difficult to come by. Algebraic moments rely on the first
central moment and predefined matrices of the eigenvalue, which are scale factors of
the central moments. This technique works well on objects where the distributions of
the pixels are found in the image and usually the outline of the shape is not important
(Huang & Leng, 2010).

e Grid based method:
This technique uses a grid to cover the entire shape of an object in the image. It starts
computing the objects covered by the grid, starting from left to right and top to bottom.
Each cell covered by a grid is assigned a value of “1” and cells not covered is given a
value of “0”. The 1l-values of the covered cells are binary feature vectors. Distance
measures, such as city block or binary hamming distance, are used to compute
similarity between the two images’ shapes. Typically, the shape of an object is
normalized to allow the shape to be translated, scaled and rotated. A scale of fixed
rectangular size is used and starts computing from the upper left corner of the
rectangle and rotates the shape to a horizontal position. Flipped and mirrored shapes

are usually done separately (Zhang, 2002).

¢ Mathematical Morphology operator

Mathematical morphology was first introduced by Sera in 1982, to deal with digital
image analysis problems. Its purpose is to use geometrical structures to extract
information from an image. Mathematical morphology regards an image as a set and
uses structuring elements to probe an image. It is based on Cantor’s set theory and
was initially used for binary images — improvements were made afterwards for grey
level and colour images. The four basics operators of binary morphology are dilation
(®), erosion (©), open (o) and closed operation (e). The four basics are described
for image Aand its structuring element B. As stated by Benoso and Nazuno (2008:109)
the dilation operation of a set AbyB, represented by A® B as Minkowski addition of
Aand B is more explained below:

A®B={xy)|B, NA=g| Equation 2.3

In Figure 2.12 the dilation process is shown whereby the image uses rectangular

structuring elements in order to extract objects in an image.

29

A& B

| -
B

Figure 2.12: Dilation using rectangular structuring element
(Adapted from Karvonen, 2008:27)

As stated by Hongping and Yanping (2011:2291), and Fang and Yulei (2012), the
erosion operation of a set AbyB, represented by A®GB as Minkowski subtraction
of Aand B is explained below:

A®B ={(x,y)|B,, c A} Equation 2.4
Figure 2.13 details the erosion operation process whereby the image uses rectangular
structuring elements in order to extract objects in an image.

g - -

B

Figure 2.13 : Erosion operation using rectangular structuring element
(Adapted from Karvonen, 2008:28)

As stated by Hongping and Yanping (2011:2291), and Yu, Vladimirova and Sweeting
(2008:1242), the erosion and dilation cause increases in the opening operation. Open
operation is used with a given set and erosion is used after the dilation operation.
Opening of set A and structuring element B are represented by Ao Bwhich is
explained below:

A-B=(AGB)®B Equation 2.5

As illustrated in Figure 2.14, the opening operation eliminates thin protrusions from
objects and creates a gap opening between objects connected by a thin bridge without
reducing the size of the object.

30

ASB

Aol = (ACBYRE

Figure 2.14 : Morphological Opening
(Adapted from Marques, 2011:311)

As stated by Benoso and Nazuno (2008:109), and Zhang, et al., (2010:895), the
erosion and dilation cause increases in closing operation. Closing operation is used
with a given set and erosion is used after dilation operation. The closing operation of
set A and structuring element B are represented by Ae B which is explained below:

AeB=(A®B)@B Equation 2.6

Figure 2.15 uses the closing operation to fill small holes and fuses narrow breaks
where it closes thin gaps in the objects within an image, and the sizes of objects are

maintained.

ABB

AeB = (ADB)SB
Figure 2.15 : Morphological Closing
(Adapted from Marques, 2011:312)

2.6 Image pre-processing

Image pre-processing, also known as filtration resolution enhancement, are techniques
utilised to improve the quality of an image prior to processing into an application (Yong,
Chixi, Bencheng & Zhi-Hao, 2013). Several image pre-processing techniques exist, such as
mean or average filter (Rejeshwari & Sharmila, 2013:392), median filter (Chun-Yu, Shu-Fen
& Ming, 2009), wiener filters (Marques, 2011:286; Bovik, 2000:131), discrete wavelet

31

transforms (Ramdas, Keshav & Pradeep, 2012) and histogram equalization (Zare, Seng &
Mueen, 2013:10).

Rejeshwari and Sharmila (2013) used image pre-processing on Magnetic Resonance
Imaging (MRI) to improve the quality of an image so that the internal structures of the body
tissue could be seen more clearly. They also compared different filters, such as average
filter, median filter, wiener filter and discrete wavelet filter. When an image is denoised, the
noise gets reduced by wiener filters and the resolution of an image is enhanced by
interpolation based on discrete wavelet transform, which preserves the edges and contour
information. To improve image quality, Rejeshwari and Sharmila (2013) remarked that both

denoise and resolution enhancements are important for better performance.

Ahmed (2011) used image pre-processing in a car plate recognition system for Ethiopian
number plates. A median filter was the choice for reducing noise and improving image
quality. Hence, a colour image is changed into gray scale format and a median filter is
utilized to eliminate noise and to improve the image’s quality. To eliminate noise, a window of
3x3 median filters is used and improves the image quality. Other stages depend on this

enhanced image to detect and extract the number plate.
2.7 Distance Measures

Most content-based systems use query by example to search similar images in the database
by relying on distance measures (Castelli, 2001). A number of distance measures are
identified, such as Mahalanobis distance (Chan, 2008:27), Euclidean distance (ElAlami,
2014:411; Sharma & Choudhary, 2013:61; Shan, Gong & McOwan, 2009:809), Chi-Square
distance measure (Xianchuan & Qi, 2009), Histogram intersection distance (He, 2010:15),
Manhattan distance (Lavoie & Merlo, 2012), Cosine distance (Dong-Cheng, Lan & Ling-Yan,
2007), Earth Mover distance (Shekar & Pilar, 2014,:220), Kullback-Leibler divergence (Log-
Likelihood ratio) (Wells, 2007:40-41) and Quadratic distance (Edvardsen, 2006:20).

Qian, Sural and Pramanik (2002) compared two distance measures (Euclidean and Cosine
angle distance) on small colour image databases. To compare the performance of different
distance measures, precision and recall were used. Authors mentioned that selecting a
suitable distance measure for an image retrieval system becomes a challenge. Choosing a
distance measure must comply with how humans would recognize or find a similar image.
When large databases are used, more computing resources are required for select distance
measure. In their experiment, 650 colour images taken from a website were used. They
concluded that both distance measures offered similar results when feature vectors were

normalized by size.

32

As stated by He (2010), distance measures for histograms include Manhattan distance,
Cosine distance, Normalized Histogram Intersection match, Quadratic distance, Earth Mover
distance, Kullback-Leibler (KL) Divergence and Jensen-Shannon Divergence (JSD).
Karthikeyan, Manikandaprabhu & Nithya (2014:512), reviewed distance measures which can
be used for colour, shape and texture features. For the colour feature, their distance
measures include histogram Euclidean distance, Minkowski metric, Manhattan distance and
Canberra distance etc. For the texture feature, distance measures used include Earth
Movers distance, weighted Euclidean distance, Kull Back-Leiber distance and Histogram
Method etc. For the shape feature, the distance measures used are Angular Distance,

Fourier Descriptor method and Polygon approximation method etc.
2.8 Summary and Conclusion

This chapter provided an overview of the CubeSat subsystems and also briefly touched on
image compression: lossless and lossy compression techniques for both JPEG and JPEG
2000. The chapter also touched on feature extraction methods: firstly, colour feature
methods such as colour histograms, colour coherence vector, colour correlograms and
colour moments. Secondly, texture methods, namely wavelet transforms, Gabor wavelet,
Tamura feature, Gray level co-occurence matrix and local binary pattern. Thirdly, shape
features, namely boundary based and region based descriptors. Lastly, image pre-
processing and distance measures were described. It was noted that shape feature
categories included region based and contour based descriptors. Contour based were not
suitable for complex shapes that consist of several disjoint regions i.e. trademark and logos,
and are also generally sensitive to noise. The region based descriptors are more robust
because they use all the shape information available in the image and provide more accurate

retrieval. Table 2.2 compares the algorithms as presented within this chapter.

33

Table 2.2: Comparison of Feature extraction algorithms

Feature Extraction Algorithms

Advantages

Disadvantages

Colour (histogram)

it is simple and the most
often used colour feature
it is compact
representation and low
complexity

Represents the joint
probability of the
intensities of the three
colour-channels (i.e.,
RGB).

It is efficient in retrieval
system.

It is sensitivity to
quantization boundaries.
It is inefficiency in
representing images with
few dominant colours.

It lacks discriminatory
power in retrieval of large
image databases.

Does not match human
perception very well.

Texture Spatial texture Meaningful and easy to Sensitive to noise and
understand. distortions
can be extracted from any
shape without losing
information
Spectral texture Robust, No semantic meaning
It need less computation need square image
regions with sufficient
size
Shape contour-based It is simple method It is sensitive to noise and

method

discriminate shapes
mainly by their contour
features

widely used in many
applications

variations.

It uses small part of
information and in many
cases, the shape contour
is not available

shape content is more
important than the
contour features

region-based
method

more robust as they use
all the shape information
available

provide more accurate
retrieval

applied to general
applications

can cope well with shape
defection

more complex than
contour-based method

34

CHAPTER 3

SUPERVISED CLASSIFICATION

3.1 Introduction

“Image classification is when a number of images are classified into categories based on the
availability of training data” (Dhasal, Shrivastava, Gupta & Kumar, 2012:123). Usually, each
image feature, such as pixels, regions and lines, and edges elements, is considered for
classifying images into categories or classes (Puzicha, Held, Ketterer, Buhmann & Fellner,
2000). Two main categories of image classification are identified, namely supervised
classification and unsupervised classification (see Figure 3.1). The focus of this chapter, is to

analyse and discuss supervised classification methods as put forward in Figure 3.2.

Image classification

v v

Supervised classification Unsupervised classification

Figure 3.1: Image classification categories

According to Puzicha et al.(2000), supervised methods create a classifier that can precisely
predict and assign new objects to certain classes. Although, experts are needed to label and

categorize samples of known classes for a set of training data.

Supervised classification

v l v A 4 v

K-Nearest Decision Avrtificial Neural Naive Support Vector
Neighbour Tree Network Bayesian Machine

Figure 3.2: Supervised classification methods

3.2 K-Nearest Neighbour (kNN)

The kNN is the simplest classifier, and works well where prior knowledge of data is missing.
It retains the entire training data set while learning and assigns new sampled data to the
accurate class. It depends on two stages to function. In the first stage, it determines the
nearest neighbour, often useful to consider more than one neighbour, and secondly
determines the class using those neighbours (Abdelrahaman & Abdallah, 2013; Imandoust &
Bolandraftar, 2013; Jivani, 2013).

When given a training sample and an unknown sample, the kNN classifier uses distance

measures, such as Minkowski (Kurhe, Satonka & Khanale, 2011:2), Manhattan (Marques,
35

2011:486) and Euclidean (Narayana & Kulkani, 2012:57), to find where the unknown sample
belongs. The computed values from a suitably chosen distance measure can determine

which class of training data the unknown sample belongs to.

According to Aldayel (2013); Ramasundaram and Victor (2013); Kaghyan and Sarukhanyan
(2012); Sugana and Thanushkodi (2010); Gejun Changesheng and Feng (2010); Geng, Liu
and Qin(2008); Zhou and Chen (2006); Fuentealba and Charpentier (2004); Baoli, Shiwen
and Qin (2003); Yang and Liu (1999), the kNN algorithm performed extremely well in
experiments of different data sets. Table 3.1 lists the advantages and disadvantages of the k-
nearest neighbour algorithm. When compared to other supervised classifiers, kNN achieves
consistently high performance, without prior assumptions regarding the distribution from

which the training examples are drawn.

Table 3.1: K-Nearest Neighbour (advantages and disadvantages)
(Bhatia &Vandana, 2010:303)

K-Nearest Neighbour
Advantages Disadvantages
Easy to modify for more complicated classification | Choice of k :
problems and can be used for applications in | ¢ When k value is too small, tends to be
which an object can have classes’ labels. affected by noise and confuses the

classes.

e When too large, too many points from
other classes are included, causing
over-generalization. Good value can be
given by cross validation method.

Outperforms other supervised methods such as | If there are two classes, an even number of
Decision Trees, Naive Bayes Classifier, Support | k can cause a tie. Choosing an odd value of

Vector Machine and Neural Network. k prevents the ties.
It is easy to understand, implement and it perform | When dealing with small and large training
well in different situations. samples of classes, most of the time k value

selects large class of samples and tends
dominate small samples of classes.

For a large number of samples it is nearly optimal Large memory storage is required; all the
results need to be stored until the algorithm
completes the classifying.

3.3 Decision Tree

A Decision Tree is a tree structure with branches that represent outcomes of the test
samples and leaf nodes that represent class allocations. It follows procedural rules to divide
training samples by using fixed set of tests which are at each node. The generation of the
Decision Tree depends on the given training sample. Thus, the developed Decision Tree is
used to classify new data.”Thus, developed decision tree is used to classify new data (Shen,
Wu, Sun, Xiong, Fu & Xiao, 2011; Thakur, Markandaiah & Raj, 2010).

36

Examples of Decision Trees are ID3, C4.5 and CART. ID3 is the simplest technique to
construct a decision tree by the principle of top-down approach, and the greedy method is
used to test every node’s given sets. Usually, a decision tree’s nodes are tested from top
node, root node and leaf node. Each node requires some tests to determine the level of
leave nodes. ID3 is used in data mining classification of objects, network security and web
attack detection and decision making purposes (Ming, Wenying & Xu, 2009; Hardikar,
Shrivastava & Choudhary, 2012; Bhardwaj & Vatta, 2013).

The C4.5 originates from the ID3, a partition tree using gain ratio whereas CART uses the
Gini coefficient with smallest values to test an attribute for a given set (Niuniu & Yuxun,
2010). There are broadly two types of decision trees: univariate decision trees and
multivariate decision trees.
¢ Univariate Decision: input data of each node is of single feature. At each node data is
split into two or more subsets from the input data of the single feature. Each test is
required to have a discrete number of outcomes. This method is run by recursively
dividing the input data until an optimal value of leaf node is reached and class value
associated with the leaf node is assigned to the observation.
¢ Multivariate Decision: involves testing more than one attribute and are more accurate
compared to univariate, but is very time consuming to generate and difficult to
interpret (Witten & Frank, 2005). Multivariate trees are similar to univariate trees,
except that each node test uses more than one input. It uses a linear discriminant
function to estimate each node’s attributes, and the coefficients of the linear decision

functions at each node are estimated from the training data (Pal, 2002: 57-58).

Usually, decision trees tend to suffer from too many branches which is over-fitting of training
data. To avoid over-fitting, some pruning methods were proposed, such as pre-pruning and
post-pruning. In the pre-pruning method the growth of the tree is stopped before it reaches
the point where it can perfectly classify the training data set. In post-pruning, decision trees
are allowed to over-fit the data and is pruned after the tree is grown. Post-pruning is the most
widely used method and is relatively simple to compute. An advantage of post-pruning is that
it does not suffer from the horizon effect, which may cause inconsistency in the pre-pruning

process.

The term Horizon effect is a problem that arises when a decision tree has to reach its optimal
size of the final tree. An overly large tree causes over-fitting and gives bad results to new
tested samples, and a small tree is unable to capture all the structural information in the
sample space.The commonly used pruning techniques are Minimal Cost Complexity Pruning
(MCCP) (Zhong, Georgiopoulos & Anagnostopoulos, 2008), Reduced Error Pruning (REP)

(Mohamed, Salleh & Omar, 2012), Minimum Error Pruning (MEP) (Frank, 2000:63), Critical
37

Value Pruning (CVP) (Esposito, Malerba & Semeraro, 1997:480), Pessimistic Error Pruning
(PEP)(Mahmood & Kuppa, 2012) and Error Based Pruning (EBP) (Wei, Wang, Yu, Gu,
Wang & Yuan, 2009: 339; Elomaa and Rausu, 1999; Bruha, 2000). Table 3.2 shows the
advantages and disadvantages of Decision Trees.

Table 3.2: Decision Trees (advantages and disadvantages)

Decision Trees

Advantages

Disadvantages

Decision Trees are good for handling missing
values whether of numerical and categorical
input.

With large data sets, decision trees takes
several hours to vyield results and are
computation-intensive.

Decision Trees’ results are easily interpretable.

It suffers from over-fitting of training data,
although pruning methods solves these
problems

It can handle large data sets and usually give
highly accurate results.

Most Decision Trees spend much time on
growing partitions that will be pruned in the
pruning phases; time wasting in growing of
those partitions.

They outperform other algorithm interms in
providing better accuracy. These other
algorithms are artificial neural networks and
support vector machine. High accuracy is

It only works for small data sets and when used
for larger data sets, the accuracy depends on
selected features.

maintained when data sets are increased.

34 Artificial Neural Network (ANN)

As stated by Junfeng and Leping (2010:186), ANNs are mathematical models commonly
used to predict performance in the systems. Its structure and how it functions is inspired from
human biological neural networks (i.e. the brain). It imitates the human brain by memorizing
and learning each time a task is given. Once trained on a specific task, it remembers it like
the human brain does. It is a reliable technique and is composed of interconnected
processing elements which function together to solve given problems. ANNs are widely used
in many applications, such as the classification of offline handwritten signatures (Patil &
Hegadi, 2014:6); MRI brain cancer classification (Jain, 2013); rainfall prediction (Nayak,
Mahapatra & Mishra, 2013); Foliage-Plant identification (Kadir, Nugroho, Susanto & Santosa,
2011); digital image processing and classification (Siraj, Salahuddin & Yusof, 2010); image
rating and classification of adults as non-adult images (Kim, Lee & Yoon, 2008); fingerprint
Identification and recognition (Jin, Chekima, Dargham & Fan, 2002); face recognition (Jamil,
Igbal & Igbal, 2001); classification of remotely sensed images (Kavzoglu, 2001); and to
distinguish young corn plants from weeds (Yang, Prasher, Landry, Perret & Ramaswamy,
2000).

ANNSs are used in complex situations to extract and predict future events. According to Moral
(2004), neural networks are classified into two categories, namely feed-forward networks and

feedback networks (see Figure 3.3).

38

Meural networks

Z

Feed-forward networks Recurrent/feedback networks
Single-layer Multilayer Radial Basis Competitive Kohonen's Hopfield ART models
perceptron perceptron Function nets networks SOM network

— —

-

Figure 3.3: Taxonomy of feed-forward and recurrent network architecture
(Adapted from Moral, 2004)

vy

3.4.1 Feedforward Networks

The Feedforward network is a fully interconnected layer that maps an n-dimensional input to
an m-dimensional output. Feedforward is commonly used together with an error correction
algorithm such as back propagation (Abdalla, Zakaria, Sulaiman & Ahmad, 2010), gradient
descent (Rehman & Nawi, 2011) or conjugate gradient descent (Xiao-Shuai, Qing-Quan, Pei-
Lin & Zhao-yang, 2010). Figure 3.4 shows a structure of the Feedforward network. Input
layers are sets of circles, and inputs enter the hidden layer through the neuron weights. Each
hidden layer has a sigmoid transfer function, and the output layer receives the hidden layer’s
output by a set of neuron weights. Inside each neuron in the output layer, there is a linear
transfer function shown in the same figure, to provide the final results outputs (Bataineh,
2012).

Input Layer Hidden Layer Output Layer
T —
X
Xy ——

Figure 3.4: Structure of the feedforward network
(Adapted from Abdalla et al., 2010:996)

39

3.4.2 Recurrent Networks

A recurrent network is a feedback fully connected network of closed loops. Each of its inputs
has distinct input layers of nodes and each node can obtain input from every other node.
They are widely used in problems such as learning a string of characters, wind turbine power
estimation (Olaofe & Folly, 2012) and linguistics for language processing predictions (Tani,
Nishimoto, Namikawa & Ito, 2008). The architecture of a fully interconnected recurrent
network is shown in the Figure 3.5.

< >

Figure 3.5: Fully connected recurrent neural network
(Adapted from Madsker & Jain, 2001)

3.4.3 Self-Organizing Map (SOM) Networks

As stated by Makarov (2012), Self Organizing Map networks (also known as the Kohonen
network model) was introduced by Kohonen in 1980s. This technigue requires an input data
set to learn and form its own output representation for a problem. The basic idea behind
SOM network is the formation of a 2-D array of interconnected neurons. When input data is
fed to the network the response of each neuron is evaluated and the one which produces the
maximum response, as well as those adjacent to it in the array, are modified so as to
produce a stronger response to that input. After a number of presentations of each input
pattern the system should ideally reach a state where an “ordered image” of the input is

stored in the network. SOM represents a two layer structure (see Figure 3.6).

The first layer in the figure has a group of sensors which picks up the data passed to the
network. This layer connects to the second layer which is referred to as the competitive layer,
as it represents a regular lattice of neurons set in a specific topology. Competitive layer
topology is determined depending on the number of neighbours that each neuron layer is
directly connected to. The most frequent topology types are hexagonal and rectangular. In

40

hexagonal, each neuron is connected to six neighbours in all directions and in rectangular,
neighbours are only identified in horizontal and vertical directions,thus, resulting in a total of
four neighbours for each of the neurons. SOM is mainly used in visualization of multi-

dimensional data.

Specific applications of SOM network include Robotic mapping environments (Figueiredo,
Botelho, Drews & Haffele, 2012); Fingerprint quality estimation (Makarov, 2012); Object
replication (Soriano & Urano, 2011); Fingerprint classification (Turky & Ahmad, 2010);
Analysis of genome signature strength of SARS coronavirus (Thamburaj & Ganapathy,
2010); Face recognition (Ghorpade & Agarwal, 2011; Deotale, Vaikole & Sawarkar, 2010;
Monteiro, Queiroz, Carneiro, Souza & Barreto, 2006); Intrusion Detection System (
Pachghare, Kulkarni & Nikam, 2009); Parallel Computing clusters (Liping & Wensheng,
2009); Case base reasosing retrieval (Hui, 2009); Urban Change Detection (Xue, Xiaowen &

Jianwen, 2004); Chinese web page classification (Liang, 2003).

Time dependent neighbourhood NT4)
Time dependent neighbouwrhood Nt

- Best Matching Unit (x,y)

Interconnections with
associated weights w)

Input neunons
Figure 3.6: SOM Architecture
(Adapted from Makarov, 2012)

Table 3.3 lists advantages and disadvantages of Self Organizing Map(SOM) networks.

41

Table 3.3, shows Self Organizing Map (SOM)’s advantages and disadvantages

Advantages Disadvantages
SOM networks are simple and easy to The number of clusters needs to be specified
understand. at the beginning.
SOM networks are well suited to parallel In order to classify, it requires necessary and
computation. sufficient data with no noise to provide
accurate clusters.
It is a robust and efficient algorithm. Using SOM requires a lot of time to train and

is difficult in perfecting mapping where
groupings are unigque within the map.

Low computational complexity makes this Its performance relies on the neuron’s
algorithm very attractive for classification. number. The more features in the vectors,
the more inputs are needed. Due to this,
SOM’s behaviour and time of analysis is

longer.
It can be used for classification without any Computation intensive when used in image
preprocessing stage. compression for digital images.
SOM is efficient in handling large datasets and | Requires a number of neurons when data is
robust when data set is noisy increased. Thus, performance of algorithm is

computation intensive and needs a lot of time
to provide results.

3.5 Naive Bayes Classifier (NBC)
The Naive Bayes Classifier is a technique that uses Bayes theorem, which considers every
feature as a class-condition independent. It is used in image classification of an object and

works well with large data sets (Han, Kamber & Pei, 2012; Ferreira, 2010).

As stated by Kotsiantis (2007), When an NBC classifier is compared to a supervised
classifier and Decision Tree, it performs much better than both classifiers. When applied to
large databases, they offer high accuracy and speed. It is an easier classifier to implement
and offers a high level of accurate results (Devi & Murty, 2002).

3.6 Support Vector Machine (SVM)

SVMs are classifiers based on a kernel method, which is useful in solving complex
classification problems in several diverse applications such as image classification (Dhasal et
al.,2012; Prasad, Savitri & Krishna, 2011); content based image retrieval (Rao, Kumar &
Mohan, 2010; Guan, Antani, long & Thoma, 2009; Teng, 2006; Hang, 2004; Hong, Tian &
Huang, 2000); weed/corn seedling recognition (Wu & Wen, 2009); road extraction; and

image segmentation (Song & Civco, 2004).

According to Durak (2011) SVM is currently the best classification technique available and is
also the most widely implemented classification technique. As stated by Gualtieri and Cromp
(1998), SVMs are very efficient classifiers, with high classification precision and good
simplification capability in solving problems. It utilizes a hyperplane to classify or solve a
particular problem. The training sample of an SVM keeps computing the position of the
hyperplane, and approximates the value of the hyperplane to provide an optimal

classification solution. Usually, SVMs are two class classifiers but they can be expanded to
42

solve multiclass classification problems. A number of binary classifiers are combined to solve
multiclass SVM problems. There are broadly two types of Multiclass SVM classifiers, namely
One-Against-One (1A1) and One-Against-All (1AA) (Anthony, Gregg & Tshilidzi, 2007).

3.6.1 One-Against-All (1AA)

One-Against-All is the earliest technique widely used to solve multiclass SVM problems
(Melgani & Bruzzone, 2004). It starts by partitioning a big class into two class cases, for
example, when classifying satellite images containing a variety of classes such as water,
vegetation and built up areas. The class results are affected by what it is compared against,
for example, water class compared to non-water area class, vegetation class against built up

areas and vegetation against non-vegetation areas.

3.6.2 One-Against-One (1A1)

This technique creates a pair from each class, by training it to classify the two classes and
the number of SVMs used as a result of N(N-1)/2. Given a number of large classes, an SVM
leads to a complex classification system. Therefore, max-win or majority voting scheme is
widely used for this type of complex system. When applied to a test point, each
categorization offers one vote to the succeeding group and the point is labelled with the
group having the most votes. In this approach, a modification can be made to give the weight
age value to the voting process (Xu, Yin & Lv, 2009). The drawback of the 1Al approach is
that it is more computationally intensive (Gualtieri and Cromp, 1998). Table 3.4 shows SVM

advantages and disadvantages.

Table 3.4: Support Vector Machine (SVM)

Support Vector Machine

Advantages Disadvantages
Produces very accurate classifiers. SVM are computationally expensive.
Less over-fitting and robust to noise. Selecting a kernel function is vital for the kernel

algorithm’s success.Thus, much time is spent
looking for the best kernel function for a certain

task.

The SVMs are good for larger data sets. Selection of the kernel function parameters and
slack variables can be challenging.

SVMs gives high accuracy and unique It required alot of memory and is difficult to train

solutions when compared to neural networks. | and test when given large data set tasks.

3.7 Supervised classification: Comparison and conclusion

The simplest approach of selecting an appropriate algorithm is to approximate the
correctness of the algorithms on the problem. Combining two or more algorithms, thus
instigating hybrid algorithms, can increase accuracy. Table 3.5 compares the algorithms as

presented within this chapter.

43

The study of supervised classification techniques has shown that the k-nearest neighbour
technique is a labour intensive classifier. It only allows for good performance when working
with small data sets. The k-nearest neighbour outperforms other classifiers given the data
sets are small. Its drawback is that it requires extensive memory and also becomes
computationally impractical when large data sets are used. The Decision Trees classifier
offers better performance on large data sets as compared to k-nearest neighbour classifier. It
uses tree structured graphs of internal and external nodes to classify the data. Its drawback
is that it suffers from over-fitting of the training data, meaning it wastes time growing the tree.
Some techniques have been proposed to eliminate the over fitting problem, such as pre-
pruning and post-pruning methods. The artificial neural networks are mathematical models
which are trained to predict specific behaviour and to remember that behaviour in the future

like a human brain does.

Naive Bayes classifier was compared to other supervised classifiers and it was determined
that the Naive Bayes classifier's performance is better than Decision Trees as well neural
network classifiers. When applied to large databases they also offer high accuracy and
speed. It is a simple technique to implement that obtains good results in most of the cases.
SVMs are classifiers which depend on kernel function and linearly inseparable cases to
classify training data into classes. They two categories of SVMs, One-Against-One and One-

Against-All which are most used for multiclass SVM problems.

44

Table 3.5: Comparison of supervised classification techniques

Techniques Advantages Disadvantages
K—I_learest Simple and easy to learn. Biased by value of K.
Neighbour Training is very fast. Computationally complex.

Robust to noise training data.
Optimal for large number of
samples.

Outperforms support vector
machine, Naive Bayes and
Decision Trees.

Large memory storage is required as
all results need to be stored until the
algorithm completes the classification.
A supervised learning-lazy algorithm.
Easily fooled by irrelevant attributes.

Decision Trees

There is no excess degradation in
the performance, when a smaller
number of features at each internal
node is used.

It provides a high level of accurate
results for large data sets.

Overlap when the number of classes
is large.

For large tree level, there is error
accumulation.

Optimal Decision Trees tend to be
hard when designing.

Avrtificial neural

They learn to recognize the pattern

They have an inability to explain the

Networks which exists in the data set. model. They are built in a useful way,
e Fault tolerance: built in redundancy and get better results but difficult to
or the capability to withstand explain how the results were
component failures without obtained.
crashing Analyst has to spend time
e Associative recall: ability to retrieve understanding the problem and
information instantaneously based outcomes that will be predicted. If the
on content and to make an data is not a good representative of
intelligent guess if there is no exact the problem, the neural network may
match for the required information. not produce good results.
It is time consuming, due to the
learning of the system by an analyst
who specifies the behaviour of the
model.
Naive Bayes e Easytolearn, and implement. e When relying on assumption of
classifier e It mostly provides accurate results. class conditional, does not help in

terms of holding.
e Naive classifier is not reliable in
modelling.

Support vector
Machine

Produces accurate results

Less overfitting and robust to noise
In non-regularities of data, the SVM
is a useful tool for insolvency
analysis.

SVM are expensive and run slowly
The inability of SVM to deal with non-
static data (dynamic data) sequences.

45

CHAPTER 4

UNSUPERVISED CLASSIFICATION

4.1 Introduction
Clustering, also called unsupervised classification, is the partitioning of a data set into
clusters. For an object to belong to a cluster it must share the same characteristics as those
in the same cluster as well as dissimilar objects that belong to their their unique cluster (Rai
& Singh, 2010:1).

The similar or dissimilar attributes of clusters are computed using distance measuring
techniques, such as Euclidean measure, proximity matrix and Manhattan distance measures.
Methods of clustering include: hierarchical and partitional clustering methods (Gupta, 2011).
As shown in Figure 4.1, within each category a number of sub-categories exist, which are

discussed within this chapter.

Unsupervised classification methods

v v

Hierarchical Partition

¢ ¢ ¢ \ 4 ¢

Agglomerative Divisive k-Means Isodata Expectation
Maximization

Figure 4.1: The categories of unsupervised classification method
(Adapted from Gupta, 2011)

4.1.1 Hierarchical Method

According to Aggarwal and Reddy (2014), hierarchical clustering produces a tree, also called
a dendrogram, that shows the number of clusters. When the dendogram is constructed, the
right number of clusters can be chosen by splitting the tree at different levels to get different
clustering solutions for the same data, without running the clustering algorithm again.
Hierarchical methods were created to overcome the drawbacks associated with partitional
clustering methods. Two categories of hierarchical clustering, namely agglomerative and
divisive clustering techniques, are identified. The agglomerative method merges clusters that
are generated at the bottom levels, whereas the divisive technique separates clusters into
small clusters. Although the divisive method splits and the agglomerative method merges
clusters, both methods utilizes the dendogram when clustering the data and they differ only

within the criterion used when clustering the data.

46

A. Agglomerative Hierarchical Clustering

This is a bottom-up technique, which starts by considering each object in its own cluster
(relying on similarity or dissimilarity measures among a pair of objects) and then merging
them into big clusters. This process continues until certain stop states are met (Han &
Kamber, 2001; Yan, 2005; Purandare, 2004; Zhou, Zhang & Karypis, 2012). Examples of
agglomerative methods include Single link (Mitsa, 2010; Aggarwal & Reddy, 2014),
Complete link (Kantardzic, 2011; Aggarwal & Reddy, 2014) and Group average (Zheng &
Xue, 2009; Webb & Copsey, 2011).

Applications of agglomerative hierarchical clustering include Fingerprinting (Lalhmingliana,
Bhattacharyya & Sing, 2013), Web mining (Lee & Fu, 2008), Image database search
(Rongijie, Jie, Pingjian, Fengjing & Guanfeng, 2008) and Music information retrieval (Li, et al.,
2012).

B. Divisive Method

According to Clarke, Fokoue and Zhang (2009:422), this method begins with all data being in
one cluster which is then divided using distance measures until each subset remains with a
single element. It works in reverse as that of agglomerative clustering which merges all the
data points into one cluster. Examples of two divisive techniques are monothetic and
polythetic. Monothetic is based on a single variable whereas polythetic is based on all
variables participating in each division (Purandare, 2004). Applications of divisive clustering
include automatic indentification refactoring software (Czibula & Czibula, 2008), Gene
Expression (Kashef & Kamel, 2007) and document classification (Amuthajanaki &
Jayalakshmi, 2013).

4.1.2 Partition Method

The objective of the partitioning method is to achieve a single partitioning group in order to
collect every group existing in the data set. Objects that are similar are grouped together
using distance measuring techniques. This method is commonly applied in remote sensing
applications (i.e., classifying satellite images) and software packages that utilizes partitioning
techniques such as k-Means, Isodata and fuzz k-mean. This is unlike the hierarchical cluster,
which is uncommon in commercial remote sensing softwares due to being impractical when
dealing with large data sets and computation complexity (Wilson, Boots & Millward, 2002;

Larranaga & Lozano, 2002; Simpson, Mclntire & Sienko, 2000).

A. k-Means Method

This is a simple, fast and easy iterative clustering technique that partitions a training data set
into a number of clusters where initially the user provides values of k in advance (Sangita &
Dhanamma, 2011;Wu & Kumar, 2009). According to Dabas and Chaudhary (2013), this

47

method proves to be effective and produces good results. It is also widely used in document

classification problems.

When k-Means is applied to artificial and real data, problems relating to the local minima may
be encountered. In this regard different initial centroids are tried and the best results are
chosen. Usually, its limitation is the difficulty in choosing the optimal value of k when working
with a large data set (Wu & Kumar, 2009).

Examples of applications utilizing k-Means include pattern recognition (Gopi, 2007); image
segmentation (Ng, Ong, Foong, Goh & Nowinski, 2006); text clustering (Xinwu, 2010);
image halftoning (He & Zhan, 2011); data mining and object recognition (Yi & Moon, 2013);

and analyzing recruitment data for hiring of employees (Sivaram & Ramar, 2010).

B. Iterative Self Organizing Data Analysis (ISODATA)

ISODATA is technique applied in clustering algorithms and belongs to unsupervised
classification techniques. This technique splits clusters whereby the standard deviation is
much larger than the given threshold. It follows an iterative procedure and needs the
covariance matrices and class means for each class (Ahmad & Sufahani, 2012). Once the

algorithm selects data, the natural grouping is known (Gu, Su & Du, 2004).

The steps of ISODATA clustering are: (i) enter the number of clusters, (ii) it randomly select
cluster centres and subsequently allocate the pixels among the cluster centres, (iii) average
the values of the pixels that are assigned to the class for the new cluster, (iv) compute new
cluster covariance and mean, and categorize pixels to the closest clusters, (v) find
differences between the original cluster and the new cluster. Steps (iv) and (v) are repeated
when there is no satisfactory outcome in step (i) based on insufficient parameter values, or

else the clustering procedure stops (Ahmad & Sufahani, 2012).

It has been implemented in several applications for example, as described by Liu, Lin, Cui
and Dong (2007:1130), to classify extracted feature vectors of a palm print recognition
system. Other applications include content based image retrieval (Banfi, 2000:94; Fang,
1997:16), VQ codebook design (Pan, 1996:111), land cover classification (Shi, Li, Yin, Fang
& Song, 2010:3), deforestation (Eva, Carboni, Achard, Stach, Durieux & Faure, 2010:195),
classifying land cover change and use in the Brazilian legal Amazon (Carreiras, Pereira,
Campagnolo & Shimabukuro, 2006), infrared guided missiles detector (Rahimi, Shokouchi &
Sadr, 2007), classifying remote sensing images and segmentation (Tarabalka, Benediktsson

& Chanussot, 2009) and 3D segmentation of colour images (Atwan, 2012).

48

It allows cluster merging and splitting, and when a cluster has too many members it unites
them to form a larger cluster. It uses a number of specified parameters to allow its execution
to be adjusted for diverse sets of input feature vectors (Zhang, Fang, Liang, Wen & Wu,
2011). Its limitation is that it is slow in processing and classifying the data, mosty used where
time is not a concern but accuracy of classifying data is an important issue (Wan, Wang &
Song, 2012).

C. Expectation Maximization (EM)

The EM is an iterative technique used to approximate the parameters in the model and to
construct the final combined result. When used where there is a lack of incomplete data it
uses two steps, namely expectation step (E-step) and maximization step (M-step), to find a
solution (Mladenovic, Porrat & Lutovac, 2011). Iterative EM algorithm is the preferred choice
for finding the maximum posterior estimates of the unknown parameter. Every iteration
process starts with searching for the optimal lower bound of the current estimated guess, and
uses the current guess to maximize the bound to get a better estimate. Therefore, the current
estimate and improved estimate depends on two steps, expectation step and maximization
step (Dellaert, 2002). Usually, Expectation Maximization starts by assigning random values
to all the parameters and alternates between the expectation step (current estimate is done)
and maximization step (re-estimate parameters depend on previous estimate of current).
These steps are repeated until the data converges (Dogdas & Akyokus, 2013). To produce
accurate results, a model with estimate parameters is used (Yang & Blum, 2005). An
advantage of the expectation maximization algorithm is that the convergence process is very

smooth and insensitive to disturbances (He & Zhu, 2011).

4.2 Unsupervised Classification: Comparison and Conclusion

This chapter provided an overview of the two main clustering techniques, namely
hierarchical and partition clustering, as well as their applications. In hierarchical clustering
techniques, two categories, hamely agglomerative and divisive, were explored in depth. As
stated by Jin and Xiao (2013), the experiment with the agglomerative algorithm started with a
single cluster at the outset, then successively merged all other pairs of clusters until all were
merged into a single cluster containing all the data. If at the start, two data clusters are
incorrectly merged, there is no way to rectify the error. Thus, errors will gradually accumulate
or affect other pairs of clusters, leading to worse clusters. The divisive algorithm was found to
be more efficient compared to agglomerative, as there is no need to generate a complete
hierarchy all the way to the individual leaves. This algorithm uses big single clusters (of data
objects) and partitions them into small clusters until each cluster has a single object.
Partitioning clustering include k-Means, ISODATA and EM clustering algorithms. These

techniques were found to be more robust and simple to implement as is shown in Table 4.1.
49

The k-Means, the oldest technique, is still used today after a number of improvements were
made in order to make it faster and more robust. k-Means clustering divides a data set into a
small number of clusters using selected k-values. EM clustering was found to be better in
clustering missing data. Data containing noise gives inaccurate results and requires a large
number of iterations to reach adequate convergence. EM clustering also does not take into
account spatial correlation between the pixels in an image. Hierarchical clustering techniques
groups the data objects in a flat partition and also arranges the data into a tree-like structure.
Data objects are assigned to a leaf of the tree, while internal nodes represent groups of
objects. For each pair of elements in a group, their distance is within a certain threshold. In
the review of clustering techniques, it is found that partition techniques are more popular and
more widely used than hierarchical techniques, and are found in a large number of software

packages.

Chapter 5 that follows examines the requirements needed to design the image classification,

storage and retrieval system.

50

Table 4.1: Comparison of clustering algorithm

Good in working
with missing
data.

convergence.

Convergence of
EM algorithm is
guaranteed only
at a local
minimum.

Type of Advantage Disadvantage Applications
clustering
algorithm
Agglomerative It can produce an Vagueness of Classification of high
algorithm ordering of the termination resolution sensing
objects. criteria. images and
= segmentation.
= Smaller clusters Not desirable for
g are generated. large data set Used in many
< applications. biological studies.
8
S
@ Divisive More efficient Computationally Gene expression.
2 algorithm when compared demanding. _
to agglomerative. Document analysis
and classification.
k-Means Very simple to Very sensitive to Pattern recognition
algorithm implement when initial starting and segmentation.
solving practical values.
problems. Image halftoning.
The results
Offer better strongly depend Data mining and
quality results on the initial object recognition.
compared to guess of
hierarchical centroids.
clustering.
ISODATA Faster compared Run slowly, Content based image
algorithm to k-Means particularly with retrieval.
algorithm large data sets.
E Deforestation and land
-‘g More adaptable Has difficulty cover classification.
C_CG” and flexible than adjusting its .
c k-Means parameters 3D segmentation of
2 which control the color images.
§ convergence.
Expectation Decreasing Requires a larger 3D display where it is
Maximization sensitivity to number of used for Isotropically
noise in an iterations to Emissive displays.
image. reach adequate

Used in image
segmentation and
texture image
classification.

51

CHAPTER 5

REQUIREMENTS ANALYSIS & DESIGN

5.1 Introduction
This chapter discusses software development process models such as the waterfall,
incremental, prototype and spiral models. It also covers the requirement analysis and

overview of the proposed design for the project.

5.2 Software Development Process

The image classification, storage and retrieval system for a 3U CubeSat requires the design
and implementation of a software system. In order to build such a software system, an
appropriate software development process model needs to be utilized as the basis for
accomplishing the task of building the project. A number of software development process
models are available in literature that are discussed within this section.

5.2.1 Waterfall model

The waterfall is a model that follows a sequential process for every stage. Within this model,
software development is thought of as a sequence of stages where each stage proceeds
from start to finish before the next stage commences. The output produced in one stage
serves as input to the following stages and each stage is unique and solves different
problems (Westfall, 2010).

Usually, the feasibility analysis is the first stage done and when feasibility of the project is
achievable, gathering of requirement analysis and planning for the project can begin. Once
requirement analyses are completed, design and coding are done, respectively. When
coding is done and integrated in the system then the system testing process begins. When
testing is a success, the system can be installed and users can operate the system (Jalote,
2008). The waterfall is suitable for applications where the software team has the knowledge
to build a certain type of system. For example, when designing a web site and a new contract
is given after to build a similar or same type of product, then the waterfall model can be
utilized to accomplish the task (Futrell, Shafer & Shafer, 2002). The manufacturing and

construction industries utilized the waterfall model extensively (Lehman & Sharma, 2011).

5.2.2 Incremental Model

The incremental is a model having several development stages taking place and can be
termed a multi-waterfall cycle (Mahanti, Neogi & Bhattacherjee, 2012). It combines a module
of the waterfall model in an iterative technique and all linear sequences create a deliverable

increment of the software (Mujumdar, Masiwal & Chawan, 2012). The basic idea of this
52

model is to build an increment by the same software making processes, such as analysis,
coding and testing, according to customer requirements and afterwards increments of this
are delivered to the customer. The first increment is known as the core product. As the
customer uses the core product and is happy, the next development increment is planned
(Sharma, Sharma & Mehta, 2012). It is the most popular model in several commercial
software vendors and used in many prototyping softwares (Marciniak, 2001).

5.2.3 Prototyping Model

Prototyping is a technigue which allows small modules to be created early in the software
development stage (Marciniak, 2001). This model is useful when the requirements are known
and a prototype is required. For example, a prototype model can be used in testing an
incomplete version of the software program (Maheshwari & Jain, 2012). It focuses more on
creating the actual software instead of concentrating on documentation (Sabale & Dani,
2012). The model begins with the requirements gathering, producing a rapid design
according to the requirements. A model is prototyped, a customer evaluates it and a finally a
product is produced (Sharma, Sharma & Mehta, 2012). There are two categories of

prototyping models, namely Throwaway and Evolutionary.

A. Throwaway prototyping model

In the throwaway model method, a rapid and partial implementation of the system at some
stage in or prior to the requirements stage is built. It is helpful in circumstances where
requirements and the user’s wishes are unclear or poorly specified (Mahanti, Neogi &
Bhattacherjee, 2012). It is built rapidly for the purpose of showing it to the customer, to clear
up any misunderstandings of the customer’s needs at the beginning of the project. This
model is for demonstration purposes and for the team to understand much better what
needed to be done, not necessarly to the build overall system, and is discarded rather than
becoming part of the final product. This is typically done quickly to demonstrate a proof of
concept, and also to help a customer have a clear understanding of what the system will look
like when it is complete. It is used to reduce requirement risks in the development stage of
the product (Bidgoll, 2004:136; Kascheck, Kop, Steinberger & Fliedl, 2008: 509).

B. Evolutionary prototyping model

The evolutionary prototyping model is based on an evolving prototype that is not discarded. It
is a prototype which is built based on some known requirements and understanding of the
final solution. It is then refined and evolved instead of being discarded. Unlike the throwaway
prototype which contains aspects of the system that are poorly understood, evolutionary
prototypes are likely to be used with aspects of the system that are well understood and thus

built on the development team’s strengths. These prototypes are also based on prioritizing

53

requirements in applications development (Kan, 2003: 21; Mahanti, Neogi & Bhattacherjee,
2012).

5.2.4 Spiral Model

The spiral model is a model that allows the merging of components of both partial developing
stages and design, and other models use it to reduce risk in their product creations
(Maheshwari & Jain, 2012). The spiral model is similar to the incremental model, but focuses
more on risk analysis. It has four phases: planning, risk analysis, engineering and evaluation
(Munassar & Govardhan, 2010). The spiral model is an iterative model that comprises risk
analysis and risk management. Software is built upon a trial basis and verified if it
accomplishes what the customer needs. If not, it is modified again to suit customer needs
(Pressman, 2005; Sharma, Sharma & Mehta, 2012).

5.2.5 Comparison of software development models

Table 5.1 provides a comparison of the four software models.

Table 5.1: comparison of software development process

Types of Advantages Disadvantages
model
Waterfall = Simple and easy to = No working software is produced until late
understand and use. during life cycle.
» In this model phases are = Not a good model for complex and object
processed and completed oriented projects.

one at a time. Phases do

not overlap.
Incremental = Easier to manage risks. = Each phase of an iteration is rigid and do
= Easier to test and debug not overlap each other.
when developing the = Due to lack of gathering entire
modules requirements of the software life cycle,
problems may rise concering the system
architecture.
Prototyping = Cost effective. = For large projects is not suitable.

- Increases system

development speed.

Spiral » Good for large & mission- = Costly model to use.

critical projects. = Does not work well for smaller projects.

5.2.6 Selection of the model
F’SATI, as the customer, requires that a prototype system be built in a short period of time in
order to ensure the final developed project falls within the developmental period of ZACUBE-

02. In order to build such a system, the system engineers and development managers put

54

forward initial requirement specifications and time-frames. In light of the fast development
process required, a suitable testable prototype needed to be available for evaluation
purposes and a low cost requirement. The software development model to be utilized in this
project is the prototyping model.

The model selected guarantees that an initial prototype version of the system is built and
presented to the customer in order to evaluate system operations and provide a clear view of
what the expected system will look like when completed. This way of prototyping and
showing a partial version at the start eliminates misunderstanding between the developer

and client.

In this project, a prototype model under the category of an evolutionary model is to be used,
reason being that as the customer outlines preliminary specifications, an involving prototype
will be developed, shown and kept for future re-use. As new specifications arise, early
versions will be revisited, re-used and modified in order to satisfy customer requirements in

a very dynamic environment.

5.3 Requirements
The system requirements are the procedures that are followed, of what the system will

accomplish and the services it can offer. In most of the cases, system requirements are
based on what clients and users of the system want to see. There two types of requirements,
namely user requirements and system requirements. User requirements are statements
which detail services the user expects the system to provide and its limits. System
requirements are descriptions which include detailed software functions, services and
operations of the system, and documents are written giving information on how to implement
the system. System requirements have two categories: functional requirements and non-
functional requirements. Functional requirements are procedure details of what services the
system will give, reactions of certain inputs and how the system will behave in certain
conditions, and limitations of the system. Non-functional requirements are not concerned with
aspects of how the system works, but on how to protect the system while is used i.e.
security. After consultation with the F'SATI ZACUBE-02 design and development team, as
well the project manager, the requirements of the system are as follows:
i. The functional requirements:

e Categorize satellite images as taken by the on-board ZACUBE-02 camera.

e Design, develop and maintain a database to be able to store a large number of

images.
e Search the database using either extracted colour, texture or shape technigues.

55

¢ Identify similar stored images within a specifically designed database according

to specified features (i.e. Colour, texture and shape) and criteria.

o Classify and store as well as retrieve images also according to time and date

stamps.
¢ Retrieve image files as per identified qualities and features
o Display queried results for further analysis and use.

e Images received, manipulates and stored within the database will be in JPEG

format.

The non-functional requirements:
e The system developer should provide prototypes developed within a high level
language to guide understanding.

e The system should calculate the features of a single received image in a

reasonable time.

e The user interface should display the sample image used to search the database
as well as the obtained searched results.

e The user interface should be user friendly and reliable.

e Security: Access to the database should be controlled by adequate authentication

mechanisms.

¢ Availability: the system should allow authenticated users to continuously search

for images within the database according to specifc criteria.

e Reliability and performance: the system should provide reliable image extraction

according to user specificed criteria in a reasonable time frame.

e Maintainability: processess shall be in place to guide and ease maintenance and

updates.

o Portability: the modules shall be portable to guide implementation on different

platforms.

e The implemented system should provide accurate search results according to

specified features.

56

54 Design

In this chapter a design for an image classification, storage and retrieval system for a 3U
CubeSat is proposed as per the requirement analysis detailed in Section 5.3. Details
regarding the design include a discussion on selected image classification techniques as well
as feature extraction methods. The proposed design is highlighted in Figure 5.1 and shows

the different components of which each plays a role within the functionality of the project.

Receive satellite images Query by example (QBE)
orkeywords

{Compressed JPEG2000)

] Metadata keyword search
Image preprocessing& QBE =
enhancement
! ‘ l
“ Color Shape Texture
Feature
Feature Feature
v l Y l ¢ ¢
Extract Metadata Color Shape Texture
Feature "
(i.e. Date time) Feature Feature Image similarity
¢ ‘ > comparison
¢ y
L
v | Build Feature Vector | Sortand indexing
technigue
" Classified images

Output Ranked
images

Image Database

Figure 5.1: Proposed design

5.4.1 Receive satellite image

The orbiting satellite is equipped with an image compression system that reduces image size
to allow the image to be downlinked to a ground station. Due to the reduced image file size,
the onboard storage memory will temporarily store the captured images so that they can be

transmitted to a ground station.

5.4.2 Image pre-processing and enhancement

Digital Satellite images are frequently distorted by noise due to errors produced in noisy
sensor and communication channels. These errors either adjust pixel intensity while some of
the pixels remain unchanged (Asubam, 2011). The proposed image pre-processing
technique to be used to eliminate noise and improve quality of image is a median filter. In this
filter, noise is removed in the image and the filter protects boundary information as it
maintains image quality. The filter verifies every pixel against its neighbouring pixel to check
if it represents the surrounding area. Thus, when the pixels are found that represent the
surrounding area,the neighbouring pixels change accccording to median of individual values.

The centre pixel is compared to the sorted pixel values of the surrounding neighbourhood to
57

determine the median filter. Median is easily defined when its entries are odd numbers, and
the brightness of each neighbouring pixel determines their arrangement (Chun-Yu, Shu-Fen
& Ming, 2009).

5.4.3 Image metadata

Digital cameras are built with an internal clock which is used as a default when images are
captured, and is embedded with the metadata of time and date of the internal clock of the
camera (Sandnes, 2009). This image metadata stores information in different image formats
such as Exchangeable Image File Format (EXIF), International Press Telecommunications
Council’s Information Interchange Model and Adobe Extensible Metadata Platform (XMP). As
shown in Figure 5.2, the EXIF format provides useful information such as camera model,
camera make, aperture time, EXIF version, exposure time, weight and height, x and y
resolution, focal length and GPS coordinates including the time and date of when the image
was taken (kakar & Sudha, 2012; Sundby, 2012; Gloe, 2012; Kee, Johnson & Farid, 2011).

Input image

i

Selected EXIF Metadata

Camera model Exif version Weight and Height Encoding method
Camera Make Date and Time x and y resolution Flash used
Aperture Time Exposure Time Focal Length CCD Width

Figure 5.2: Image EXIF Metadata

The proposed image metadata extractor is detailled in Figure 5.3. When ZACUBE-02
satellite images are captured, they are then compressed and transmitted to the ground
station. The received images are enhanced to remove noise and improve the quality of the
images. Metadata information, such as date and time and image file name, are then
extracted. The extraction of the metadata allows the users to retrieve the classified images

according to the year, month and day on which it was captured.

58

Receive satellite images

(Compressed JPEG2000)
Image preprocessing&
enhancement

'

Extract DateTime ‘

. |
2012 2013 2014

\lH lel\ \lHlHl\ lel\———\"l H[’lH’l HFle’*l F
lllllllllllll!

Image Database

Figure 5.3: Block diagram of an image metadata extractor

5.4.3 Colour Feature

The technique used for colour feature extraction is the colour histogram, as it is a simple,
accurate technique that offers better results compared to other techniques as discussed in
Chapter 2. A colour histogram is a relative frequency occurrence of primitive colours in an
image. It is a type of bar graph which represents the colour contained in an image.
Depending on the size of the image, a number of bars are generated. Colour histograms

have two categories, nhamely local colour histogram and global colour histogram.

As stated by Singha and Hemachandran (2012), a colour histogram for a given image is
represented by the vector in equation 5.1:

H ={H[0], H[1], H[2], H[3],... HNT} (5.1)

Equation 5.2, a normalization of the colour histogram, is provided. In order for images to be
compared they must have same size dimension, otherwise the colour histogram has to be
normalized. In the case of the CubeSat environment, only one camera will be used.

Therefore, there will be no need to normalize images.
H'={H'[0],H'[1],H'[2],H"[3].... JH'[n]} (5.2)
H'[i]= HT[I] (5.3)

Equation 5.3 is a colour bar histogram formula. H'[i] represents the integer of pixels of

colour i in the image and n is the total number of bars. In this project, the proposed colour
59

histogram is used as shown in Figure 5.4, where the ZACUBE-02 satellite images are used
as input to the proposed colour histogram algorithm. The algorithm includes a pre-processing
technique to eliminate noise and improve the image quality. The histogram algorithm
converts the original colour image to a gray scale image so that the histogram graph can be
extracted from the image. The histogram is normalized to reduce image retrieval time. A
connection to the database is then ensured so that the extracted histogram values can be
stored in the database.

Input image

A 4

Image pre-processing and
enhancement

A\ 4
Extract Histogram

A\ 4
Normalize Histogram to 16 bars

A 4

Establish a connection
to database

A 4

Store computed histogram
feature vector in the database

Figure 5.4: Block diagram of proposed Color Histogram method

5.4.5 Texture Feature

The technique used for texture feature is Gray level Co-occurrence matrix (GLCM) as it is the
most commonly used choice for large database retrieval systems and it gives a high level of
accuracy. This technique has proven to be popular in different fields, such as computer
vision, pattern recognition and artificial neural network. The GLCM relies on gray scale
images and pixels are manipulated to determine the texture occurrences. Therefore, when a
colour image is transformed into a gray scale image so that GLCM can be computed, as it
only depends on black and white pixels. Figure 5.5, shows a block diagram of the proposed
GLCM texture feature. The input image is received from the satellite and is used as input to
the system. GLCM values, such as Correlation, Homogeneity, Contrast, Mean and Energy,

are computed. To determine the GLCM value, the colour images must be changed to gray

60

scale images (the gray scale levels are distinguished with numbers ranging from 0 (black) to
255 (white).

When a gray scale image contains many gray levels, the more texture information is found,
but also an increase in computational costs. Therefore, colour images are transformed to
gray scale to eliminate the hue and saturation details and preserve the luminance. GLCM
computation is done to provide a way to recognize similar images. These features are
extracted and averaged over the four directions. All sets of features derived from the four
directions are stored in the database to be used for search and retrieval. Contrast values are
computed to enable distinguishing of the objects within the image, homogeneity is used to
determine distribution of elements in diagonal of GLCM and energy gives the amount of
squared elements in the GLCM (Munshi, 2010).

Input Image

4

Conversion of RGB image Into
Gray scale image

'

Image preprocessing and
enhancement

A 4

Compute GLCM texture features
e Contrast

e Correlation
e Energy

¢ Homogeneity

A 4

Establish a connection to
database

\ 4

Store the computed texture
Feature Vectors

Figure 5.5: Block diagram of the proposed GLCM texture Feature

5.4.6 Shape Feature
The technique used for shape feature extraction is Mathematical Morphology. Mathematical
Morphology is a region based shape feature extractor. It has been used for pre and post

processing of images containing shapes of interest in many applications. It depends on the
61

design of structuring elements, their size and shape which is important to the success of the

morphological algorithm/process that uses them (Marques, 2011).

Mathematical morphology works from the objects within an image, using a structuring
element of specific size, and shapes of the objects. The unwanted protruding areas on
objects can be eliminated by using dilation (adding pixels to the boundaries of objects) and
erosion (removes pixels from boundaries of objects). However, the number of pixels removed
or added to the objects depends on the size and shape of the structuring element. Figure 5.6
shows the block diagram of the proposed mathematical morphology shape feature. In the
figure, the input image is transformed from colour to gray scale, and pre-processed to
remove noise and improve the quality of the image. The object's three aspects feature
values, namely area, roundness and perimeter, will be extracted. The database connection is

established to allow the extracted features to be stored within the database.

Input Image

v

Convert RGB image to
Gray scale image

v

Image preprocessing and
enhancement

v

Compute Shape features
e Perimeter

e Area

e Roundness

v

Establish a connection
to database

v

Store the computed texture Feature
Vectors

Figure 5.6: Block diagram of mathematical morphology shape feature

5.4.7 Image Database Model

A database management system is able to create, search, query and retrieve data from a
database, provided a user interface does exist or is developed. A relational model stores
data in the form of a table with rows and columns, and a foreign key can link two different
tables’ information. The database model is designed as shown in the Figure 5.7. It will be
able to store and handle the extracted features. It is important that the developer of the

system creates enough tables with their appropriate data fields, and data stored should be

62

easily retrieved. In this project, features vectors such as colour, texture, shape and metadata

should be stored in the database.

Imzzz Matzdatz

Zatallits Images

Figure 5.7: Entity relationship data model diagram for the system

5.5 Conclusion

This chapter has been concerned with the software development process, requirement
analysis and the proposed design with its components. The software development process
models, namely the waterfall model, incremental model, proptotyping model and spiral, were
discussed. The requirement analysis, including both the functional and non-functional
requirements needed to design and develop the project, was discussed. The proposed
design components for extracting features in an image were image metadata, colour
features, shape features and texture features. In the colour feature, a colour histogram
method was proposed. For the shape feature, mathematical morphology was proposed. For
the texture feature a gray level co-occurrence matrix (GLCM) method was used. An overview
of the design implementation, proof of concept, and hardware and software needed to

implement the system are provided within the next chapter.

63

CHAPTER 6

IMPLEMENTATION

6.1 Introduction

This chapter describes the hardware and software used in the implementation process of the
image classification, storage and retrieval system for the 3U CubeSat. The implementation
focuses on the proposed design methods as well as the testing tools to test functionality of
each extraction method. Figure 6.1 details how the implementation as a proof of concept will
be built. A Wang database containing one thousands images, having ten groups, each group
consisting of one hundred images will be used to verify and test all algorithms proposed. In
the figure group 1 up to group 10 will each contain one hundred images to prove algorithm
effectiveness. The accuracy of each algorithm , will be tested on sets of 14, 25, 50 and 100

images per group.

Input Image
Colour Histogram GLCM Texture Mathematical Metadata
algorithm Algorithm Morphology Algorithm
Algorihhm

Integrated Algorithms

Group 1 Group 2 Group 8 Group 9 Group 10

Group 3 Group 4 Group 6

Group 5 Group 7

Figure 6.1: Block diagram of the implementation of the algorithms

64

6.2 Hardware setup for the system

Table 6.1 provides an overview of the specific hardware and software used as
implementation platform. Software includes Matlab and MySQL on a personal computer
running the Windows 7 operating system. Hardware requirement specifications are an Intel
core i5-520M Processor, 3.33 GHz, 4GB of memory (RAM) and 500GB of hard disk drive.

Table 6.1: Hardware and Software platform

Type of software Version
Matlab platform - R2009b
MySQL Database - 55
Personal Computer and hardware - Running Windows 7

Intel core i5-520M processor
3.33GHz,4GB of Memory(RAM)
500GB of Hard Disk Drive

The MATLAB platform includes toolboxes used to allow the Graphical User Interface (GUI) to
interact with users and also built-in image processing functions which are valuable in

extracting features in an image.

Commands and issuing

Personal Computer (PC) <:’\> Matlab Platform

ODBC Microsoft(Connection)

Database

Figure 6.2: Experimental set-up

The database used is MySQL 5.5 as it is open source and efficient in storing and retrieving
data. It also interfaces with software platforms such as MATLAB (see Figure 6.2).
Communication between MATLAB-MySQL database is achieved using ODBC Microsoft and
a MySQL driver. The installation and interfacing details regarding the MATLAB-MySQL

Database are available in (Appendix C and D).

65

6.3 Graphical User Interfaces(GUIs)

MATLAB has two ways of building graphical user interfaces. In the first method, a GUI is built
using the Graphical User Interface Development Environment (GUIDE) and the second
method is by using programming code. Within GUIDE, a design is being populated with
various GUIDE library components placed onto the graphic layout editor template. The
GUIDE creates associate code files containing call-back functions for each component.
GUIDE saves both the figure (Fig-File) and code file. The code is only generated once a
figure file is saved by default name or changed to a suitable name associated with the
project. In the second method, a GUI is developed using programming code. The codes are
created to provide the look and feel of the GUI. When a code is executed, a file is created
and contains all populated components. Unlike GUIDE, in programming code the developer
doesn’t have to save between sessions when developing the code. The choice of method
depends on the experience of the developer preferences and the kind of application needed

to produce the GUI. In this project, both techniques are utilized.

6.3.1 Colour Feature GUI and extraction method Development

Figure 6.3 shows the GUI template that contains layout editors which has horizontal and
veritical grid lines to allow users to guide the components to their proper positions. The figure
also shows the GUIDE library components, namely Push buttons, Radio button, Toggle
buttons, Check Box, Edit Text, Table, List Box, Pop-Up Menu, Button Group, ActiveX
Control, Slider, Menu Item, Static Text and Axes, that may be utilized. For more detail
regarding each GUIDE library component, please refer to Appendix E.

Adign Objecis Tots Ordar Eaditor BA-Tiles Echiler CHjrct Brosswmar
Flenu Editor

Toolbar Editor o GLI

Progparly Inspecion *
= 10]
Fis Edt View Lavout Tools Halp
3o > m L]

1 7 . m - o~ & B S = | Tl = = |

L LoD Lsm Tom Tam

I W Select AR -

e T
e

1]

B Sk BT O
B Check Box
wis Ect Text

¥ Shatec Tewk

1w

2 Pop-ug s

M

El vistizox

I Togpke Bution [%
Sl M st Mouss Poinlesd
EXN Tabie =] 'r.,g"ﬁ“"’ ..1,.-] LEe Fciny Selected Object(s) |
o Axes /
L B B ji -
TS Button Grouo]
N Actrens CatErol = ! ! | ! !
/] -
Tag: Fegasrel Currant Poirk: [595. 164] Poskiom: [S20. 437, 450, 3A]

Figure 6.3: The new GUI template

66

Each button component is usually associated with a call-back function, to ensure that when a
button is clicked or toggled, the call-back is triggered. The call-back function is event driven,
that triggers execution on input received. If a call-back is executing and another event is
triggered for a call-back, it will attempt to interrupt the call-back that is already executing.

Figure 6.4 shows the GUI for the colour feature that consists of three main component
panels:

(1) Colour feature panel

(ii) Select query and view panel

(i) Display result panel

The colour feature panel includes edit text, slider and measure weightage buttons. The
purpose of ‘edit text’ is to display the value of the slider, ranging from 0 to 1 of the weightage
of the feature. The measure weightage combines the slider’s value with the extracted value
of the query image so that a search can be done against images in the database. Select
guery and view panel displays the choice of the query image to be used against images in
the database. It contains two buttons, one to select a query and a second to search the
database. The display results panel consists of twelve axes components which are used to
display the retrieved results which are similar to the query image. The associated source
code of the colour feature GUI developed is available in Appendix A: Listing A.1. Sections
6.3.2, 6.3.3, and 6.3.4 follows a similar layout of the components panel discussed above.

¥ ColorFeatureGUl ===

File Edit View Layout Tooks Help
=" 29 dEBEhd EHY P
Color Feature:

|||£| Edit Text

oy |
[l

[Select Query and View ————————————————— -~

QueryDatabaseBin

| g || x| searchBin ‘

Display Resul

axes? axesd axesd axesh axesh axest

axesd axesd axesil axest axesi2 axesl3

< i »

Tag: figurel Current Point: [27,596] Pesition: (520, 197, 1252, 03]

Figure 6.4: Generated GUI for Colour Feature

67

Colour feature extraction method

The colour feature technique implemented to compute the extracted feature vector is the
colour histogram. It computes the frequency occurrence of pixels contained in each image
and are stored in the database. The query image was selected from the Matlab workspace.
Each image contains 255 frequency occurrences, but due to retrieval time is reduced to
fewer frequencies for instance 16, 32, 64 and 128. In listing 6.1, the push button is linked to a
dialog box that lists the image files in the current Matlab workspace (see Figure 6.5). The

user selects a single image to allow for the computation of the image’s features vectors.

function pushbuttonl Callback (hObject, eventdata, handles)
when a button clicked,display a modal dialog box that lists image files
in the current.Matlab workspace and enable the user to select a single

image in order to compute image's histogram features.

o0 o° o° oo

[FileName, folder] = uigetfile({'*.jpg'}, 'Select File');

if FileName ~= 0
fullName = fullfile(folder,FileName);
end

Masat images = imread(fullName);

x axis = 0:16:255;

y axis = Masat images(l:end);

freq = histc(y axis,x_axis);

freq(l);freq(2); freq(3);freq(4)........... freq(l6);
Masat images = reshape (Masat images, [],1);

conn = datatabase('satelliteimageDB', 'root', 'passwordl23");
a = isconnection (conn);
if a ==

disp ('Mysqgl Database is connected....... ")

end

if a == 0;

disp (' Please try again,connection not established!!!!");
end

exdatal = {FileName, freq(l), freq(2), freq(3)................. freq(16);

fastinsert (conn, 'Color Feature Vector', {'filenamedata'; 'firstbin'; 'secondbin';...
'thirdbin'; 'fourthbin'; 'fifthbin';..... 'sixteenthbin'}, exdatal)

exec (conn, 'commit");
close (conn);

end

Listing 6.1: Computing Histogram Features

68

The values of the extracted frequencies are stored in the variables freq (1) up to freq (16).
The connection to the database is established using conn that contains the name of the
created database as well login detail and password, to allow for the computed image
histogram frequency values to be stored into the database. The values are stored in the
created table called Color_Feature_Vector. Its should be noted, that for research and listing
purposes a default login and password is used in Listing 6.1. Proper authentication

mechanisms will come into play within the final implementation.

&
Lookin: | | MATLAE ~| = EF-
M 5012 _03_12__04_13_photo_10 P 5012 04 23 11 56 utc__photo_57
M 5012 03_12_ 05_53_photo_19 P 57354511

™ 2012 _03_16_ 05_17_ utc_ photo_28
™8 2012_03_18_ 00_01_ utc_ photo_38
™ 2012 _03_18_ 01_51_ utc_ photo_50
™ o012 03 28 02 485 utc_ photo_38
™ o012 03 28 02 49 utc_ photo_40
™ 2012 03 29 07 48 utc_ photo_56
™ 2012_03_29_ 07_50__utc_ photo_60
™ 2012_04_02_ 04_42_ utc_ photo_42
™ 2012_04_19_ 13_23_ utc_ photo_D4
™8 o012 _04_19_ 13_25_ utc_ photo_17
™ o012 04 19 13 35 utc_ photo_49
™ 2012 04 1913 37 utc_ photo_51
™ 2012 04 19 13 38 utc_ photo_57

Al |+
File name: IZ'I]-‘I 2 04 15 13 36 utc_ photo_45 LI Open |
Files of type: | Cipg) =l Cancel

o

Figure 6.5: Dialog box to select single query image

Example of the extracted histogram values of an image to be stored in database is shown in
Table 6.2.

Table 6.2: Occurrence frequency of image

Filename Freq Freq | Freq | Freg Freq | Freq | Freq Freq Freq Freq Freq Freq Freq Freq | Freq | Freg
1 2 3 4 5 i 7 8 g 10 i 12 13 14 15 18
1 170 | 2872 | 2872 10003 | 15207 | 108489 | 272945 | 208837 | 96102 78971 | 84798 | 41880 | 14134 | BE78 | 2307

2012_04 1913 _utc_photo 49

OO T 04 T pholo B | 4628 | 3790] 9593 | 12423 | 17319 | 29746 | 46902 | 77457 [93783 | 97608 | 92605 | 90969 | 90522 | 39668 | 8096 | 4455

2012_3_T12_04_T3_pholo_10 2938 | 2882 | 7730 | 16489 | 32350 | B4BBR | 62224 | THBAR | 106425 | 108807 | 87776 | 74132 | 71084 | 73000 | 62145 | 3147

2077 0325 07 B0_uic_phofo 50| 205883 | 0G00 | 22358 | 37673 [4063¢ | 30952 | 29343 [41882 [59822 [57880 [60007 [60139 [67s63 [62291 [70702 [4172

6.3.2 Shape Feature GUI Development

Figure 6.6 shows the shape feature GUI developed using GUIDE and programming code.
The GUI consists of three panels similar to those in Section 6.3.1, namely an edit text, slider
and button. The purpose of edit text is to display the value of the slider ranging from 0 to 1 of

the weightage of the feature. The button takes the value of the slider, combines it with the
69

extracted value of the query image so that the search can be done against images in the
database. The select query and view panel display the choice of the query image to be used
as per images in the database. The panel contains two buttons: one to select the query and
the second to take the query and search the database. The display results panel includes
twelve axes components which are used to display the retrieved results. The associated
source code of the shape feature GUI developed is listed in Appendix A: Listing A.2.

4 ShapeFeatureGUI [E=8 E=RF7)

File Edit View Layout Tools Help

2@ s EhsS UEY b

L
[

HELREIDE)E]
AFEREEET g

Select Query and View————————————————————

Shape Feature————

axesl

searchBtn ‘ ‘ QueryDatabaseBtn

~Display Result

axes? axesd axesd axesh axest axes?

axesd axesd axes10 axes] axes!2 axes13d

Tag: axes2 Current Point: [45,582] Position: [9, 184, 151, 140]

Figure 6.6: Developed GUI for shape feature

Shape feature extraction Method

The shape feature technique (Morphology operator) is used to compute all shape features of
a selected image. Each time an image is chosen, the shape feature is extracted using the
morphology method. Once computation is finished a connection to the database is
established. Table 6.3 shows the shape feature vector stored in the database for each
Masat-1 image selected.

Table 6.3: Parameters of shape feature to be store in database

Filename Ferimeter | Area Roundness
077 03 _127_04_13_photo 10 6431270 | 10681 01506
2012_03_12__ 04 11 _photo_08 249 5391 1663 0.3356
7012 03 2807 50__uic__pholo B0 1266102 | 3608 02601

7012 03 28_07_48__uic__pholo 56 3206812 | 2045 02364

In listing 6.2, an extract shape push button is linked to a dialog box that lists images in the

current Matlab workspace. A choice is selected by the user and the push button is clicked in

70

order to extract shape feature vectors to be stored, once the database connection is

established.

function ExtractShapeBtn Callback (hObject, eventdata, handles)
ExtractShapeBtn,display a modal dialog box that lists image files in the current

% Matlab workspace and enable the user to select a single image in

3 order to compute image's shape features.

[FileName, folder] = uigetfile({'*.Jjpg'}, 'Select File');

if FileName ~= 0
fullName = fullfile(folder,FileName) ;

end

Masat images = imread(fullName);
converted image = im2bw(Masat images,0.94);
se = strel('disk',3); % create a structure element se of type of disk size 3
openedBW = imopen (converted image,se); % performs morphological opening on the binary image
bw = bwareaopen (openedBW, 1500) ;% removes all objects in the fewer than 1500 pixels
bw = imfill (bw, 'holes'); % fills holes in the binary image bw
[B,L] = bwboundaries (bw, 'noholes');% search only for object (parent and child) boundaries
stats = regionprops (L, 'Area', 'Centroid'); % measure properies of image regions
s = 0.94;
for k = 1l:length(B)
boundary = B{k}
delta sg = diff(boundary).”2; % Compute a simple estimate of the object's parimeter
perimeter = sum(sqrt(sum(delta sq,2)));
area = stats(k).Area; % obtain the area calculation corresponding to label k
roundness = 4*pi*area/perimeter”2; % compute the roundness metric
Masat images = reshape (Masat images, [],1);

conn = datatabase('satelliteimageDB', 'root', 'passwordl23");

a = isconnection (conn) ;

if a ==
disp ('Mysgl Database is connected....... ")
end
if a == 0;
disp (' Please try again,connection not established!!!!");
end

exdata3 = {FileName, perimeter,area,roundness};
fastinsert (conn, 'Shape Feature Vector', {'filenamedata';

'perimeter', 'area', 'roundness'},exdata3)

exec (conn, 'commit'") ;
close (conn);

end

Listing 6.2: Computing shape features

6.3.3 Texture Feature GUI Development
Figure 6.7 shows the texture feature GUI developed using GUIDE and programming code.

The GUI has three panels similar to those in Section 6.3.1 and 6.3.2. The texture feature

71

panel includes an edit text, slider and button. The purpose of edit text is to display the value
of slider ranging from 0 to 1 of the weightage of the feature. The value of the slider is
combined it with the extracted value of the query image so that the search can be done
against images in the database. The select query and view panel display the choice of the
query image to be used against images in the database. The panel contains two buttons: one
to select the query and the other to search the database. The display results panel includes
twelve axes components that are used to display the retrieved results. The associated
source code of the texture feature GUI developed can be found in Appendix A: Listing A.3.

Y] TextureFeatureGUI o |[= =
File Edit View Layout Tools Help
=1 | [} s B BB P

Select Query and View —————————————————

[~ Texture Feature:

Edit Text
axes]

EEEEEEEE]
B R EE

‘ searchBin ‘ | QueryDatabaseBin

Dispiay Resutt

axes? axesd axesd axesh axes axes?

axesB axesd axesll axesl axesl2 axes13

< i] v
Tag: figurel Current Point: (55,547 Position: [520, 197, 1252, 603]

Figure 6.7: Developed GUI for Texture feature

Texture feature extraction Method

The texture feature implemented is the gray level co-occurrence matrix (GLCM). To compute
GLCM, the Graycomatrix function is used to extract texture features. This function calculates
intensity contained in the image and can reduce the intensity value using a default scale of 8
and of a single GLCM. However, a single GLCM is not enough to describe all features
contained in an individual image. A multiple GLCM of an array of offset values together with
the Graycomatrix function can be computed, and these offsets are able to determine pixel
relationships of varying direction and distance. As shown in Listing 6.3, the array has offsets
(i.e. Offsets = [01;02; 0 3; 04;-11;-2 2;-3 3;-4 4;-1 0;-2 0;-3 0;-4 0;-1 -1;-2 -2;-3 -3;-4 -4])
that indicate four directions (horizontal, vertical and two diagonals) and four distances. The
input image is now represented by 16 GLCMs. When an image is selected, the image
filename and four parameter values are extracted, namely mean_contrast, mean_correlation,

mean_energy and mean_homogeneity.

72

Table 6.4: Graycoprops normalized properties

Property Description Formula
'Contrast' Returns a measure of the intensity contrast between a pixel and its neighbor over the Z\; _J|?p[,‘ﬂ
whole image. L
Range = [0 (size(GLCM,1)-1)"2]

Contrast is 0 for a constant image.

'Correlation’ Returns a measure of how correlated a pixel is to its neighbor aver the whole image. Z“ —ui) (j—u P,)
-— ;o
i9)
Range = [-1 1] ij

Correlation is 1 or -1 for a perfectly positively or negatively correlated image. Correlation
is NaN for a constant image.

'Energy’ Returns the sum of squared elements in the GLCM. ZP[I,JJ?
Range = [0 1] i

Energy is 1 for a constant image.

'Homogeneity' Returns a value that measures the closeness of the distribution of elements in the GLCM Z pli.j) _
to the GLCM diagonal. ul+\x—;\

Range = [0 1]

Homogeneity is 1 for a diagonal GLCM.

Table 6.4, shows the graycoprops calculation specified in properties such as contrast,
correlation, energy and homogeneity. Graycoprops normalizes the GLCM properties to a
value of 1.

73

function ExtractTextureBtn Callback (hObject, eventdata, handles)

o

% ExtractTextureBtn,display a modal dialog box that lists image files in the current
% Matlab workspace and enable the user to select a single image in
order to compute image's Texture features.
[FileName, folder] = uigetfile({'*.Jjpg'}, 'Select File');
if FileName ~= 0
fullName = fullfile(folder,FileName) ;
end

Masat_images = imread (fullName) ;

GLCMS = graycomatrix (Masat_ images, 'offset', [0 1;0 2;0 3;0 4;-1 1;-2 2;-3 3;-4 4;-1 0;-2 0;-3 0;-4
0;-1 -1;-2 2;-3 =-3;-4 -41);

contrast = graycoprops (GLCMS, 'contrast');

correlation = graycoprops (GLCMS, 'correlation');

energy = graycoprops (GLCMS, 'energy');

homogeneity = graycoprops (GLCMS, "homogeneity') ;

sum_contrast = 0;

for i = 1:16
sum_contrast = sum_contrast + contrast.Contrast(i);
mean_contrast = sum_contrast/16;

end

mean_contrast;

sum_correlation = 0;

for i = 1:16
sum_correlation = sum correlation + correlation.Correlation(i);
mean_correlation = sum_correlation/16;

end

mean_correlation;

sum_homogeneity = 0;

for i = 1:16
sum_homogeneity = sum_homogeneity + homogeneity.Homogeneity (i)
mean_ homogeneity = sum_homogeneity/16;

end

mean_homogeneity;

sum_energy = 0;

for i = 1:16
sum_energy = sum_energy + energy.Energy(i);
mean_energy = sum_energy/l6;

end

mean_energy;

Masat_ images = reshape (Masat_ images, [],1);

conn = datatabase('satelliteimageDB', 'root', 'passwordl23"');
a = isconnection (conn) ;
if a == 1
disp ('Mysqgl Database is connected....... ")
end
if a == 0;
disp (' Please try again,connection not established!!!!");
end

Creates table and store image's computed texture features into Database
exdata2 = {FileName, mean_contrast,mean_correlation,mean_homogeneity,mean_energy};
fastinsert (conn, 'Texture Feature Vector',K {'filenamedata';
'contrast', 'correlation', '"homogeneity', 'energy'},exdata2)
exec (conn, 'commit'") ;
close (conn) ;

end

Listing 6.3: Computing Texture features

6.3.4 Data Classify Panel GUI Development

The obtained images are embedded with information, such as GPS co-ordinates, and
includes the time and date of when the image was taken.The function imfinfo is used to
obtain Exchangeable image file format (EXIF) metadata such as filename, date and time
(see Figure 6.8).

Input image

Extract metadata
(Using Imfinfo function)

FormatSignature

FileName

BitDepth
e \ ColorType
¥

FileSize File Format and version Height and Width

DateTime

FileModDate

Figure 6.8: Extracting image metadata

In listing 6.4, the source code for extracting the metadata is shown. Users select the images
through a standard dialog box containing all images which are loaded in the MATLAB
workspace. The dialog box is generated by the uigetfile function and a default JPEG format
is used (other formats such as GIF, TIFF can also be used depending on the applications).
Two parameters, FileName and Folder, are received from uigetfile function. The fullfile stores
the equivalent input argument strings of the image filename and folder. The the first loop
uses the imfinfo function to extract an image and store it in a variable named valuel. A
structured array is then created with the variable named Ti to store the content of valuel of
the extracted image content. The second loop returns the content of the filename and
FileModDate fields using Fn and Dn respectively. The tf variable structure examines whether
a filename exists of the selected image. A logical value of 1 is given if it does exist and O if
doesn’t exist. When the filename exists, both the filename and FileModDate are stored in the
structure called main. Finally, a filename of the select image, date and time are extracted.
For the complete source code of the project, including storing extracted metadata into the
MySQL database, refer to Appendix A: Listing A.4. The database is designed to store images
according to the months they were captured.

75

function ExtractMetadata Callback (hObject, eventdata, handles)

% Extraction of image metadata using Filename and FileModDate. Initially,
% Dialog box will be displayed to select image to extract metadata.
[FileName, folder] = uigetfile({'*.jpg'}, 'Select File');

if FileName ~= 0
fullName = fullfile(folder,FileName) ;

end
img = imread (fullName) ;
img = reshape(img, [],1);

A = FileName;
B = folder;
[m,n]=size(A);
for i=1l:n
Valuel = imfinfo (A);
S(i) = struct('Ti',Valuel):;
S(1);
end
for i=1l:n
Fn{i}=getfield(S(1,1i).Ti,{1,1}, 'Filename');
Dn{i}=getfield(S(1,i).Ti, {1,1}, 'FileModDate');
tf = isfield(S(1,1).Ti, 'Filename');
if tf==
Fn{i}=getfield(S(1,i).Ti, {1,1}, 'Filename');

else Fn{i}=char('data not available');

end
main = struct('File',Fn{i}, 'DatabaseOfImages',Dn{i});
var = struct2cell (main);

end

Dtime = datenum(Valuel.FileModDate) ;
datestr (Dtime) ;

[y, m, d, h, mn, s] = datevec(Dtime);
sprintf ('Date: %d/%d%d',y,m,d);

Listing 6.4: Extracting of filename and FileModDate of the image

6.3.5 IntegratedGUI Development

Figure 6.9 shows a GUI was developed to combine all the feature extraction methods, such
as colour, shape, texture and date classifier. The GUI has edit texts for all features to allow
the user to view the selected values to sum all values together with the selected image so
that similar images can be retrieved. The associated source code of the integrated GUI is

available in Appendix A: Listing A.5.

76

IntegratedGUIs
1
Search by K
0.8
Color Feature Shape Feature Texture Feature
0.6 Filename filename
Edit Text Edit Text Edit Text
DateSearchii e 2013/08/27)
‘H ,| ‘H ,| ‘H ,| 0.4 Data search
0.2
IntegratedMeasureVVBn B
0 0.2 0.4 0.6 0.8 1
‘ searchBin QueryDatabaseBitn
1 1 1 1 1
0.5 05 05 0.5 05
0 0 0 0 0
0 05 1 05 1 0 05 1 0 05 1 05 1
1 1 1 1 1
05 05 05 0.5 05
0 0 0 0 0
0 05 1 0 05 1 0 05 1 0 05 1 05 1

Figure 6.9: IntegratedGUIs

6.4 Database development and Designing

In this section, the database is developed as shown in Figure 6.10. Initially, the features of

each image are extracted and stored into appropriate tables. In this project, forty tables were

created (i.e., Color_Features_Vector, Shape_Feature_Vector and Texture_Feature_Vector).

Create Table
Color_Feature_Vector

Input Image

Image Extracted Feature Vectors

{i.e., Colour, Shape, Texture and Metadata (Date & Time))

Create Database name
(i.e., satelliteimageDBs)

Create Table
Shape Feature Vector

Create Table
Texture Feature Vector

Create Table
Years (2012-2014)

FilenameFreq(1) Freq(2) Freq(3).......Freq(18)

Filename perimeter Area Ftouﬁdn%\:mamu n FebMar Apr May Jun

Filename Contrast Comelation Homogeneity Energy

Figure 6.10: Block diagram of creating database and tables of the project

77

6.4.1 Designing a Database

In this project, only one database was created to hold the tables to store all original images,
metadata and their feature vectors. MySQL relational database was created called
satelliteimageDBs using standard SQL programming language (see Figure 6.11 creating

database).

] =0l]

mysgl> CREATE DATABASE =zatelliteimageDBs:
Query 0K, 1 row affected (A.A3 sec)

mysgl> USE SatelliteimageDBss
Database changed
mysql>

Figure 6.11: Creating Database for the project

The type of table used in this project is the default table InnoDB of the MySQL 5.5 database
or latest version. It is a table that supports a low level locking, foreign key constraints and
multiversioning. Figure 6.12 details the Color_Feature_Vector table that stores all the colour

histogram values.

78

myuysogl>
myuysgl> CREATE TABLE Color»_Feature_Uector €
—» filename UVARCHAR«<Z255> HWOT HULL.
—» fregl INT HOT HMWULL.
—» freg2 INT HOT MULL.
—>» freg3d INT HWOT MULL.
—» fregd4d INT HOT HMULL.
—» fregh INT HOT HMULL.
—» fregbh INT HOT MWULL.
—» freg? INT HOT MULL.
—>» freg8 INT HWOT MULL.
—» freg? INT HOT HMULL.
—» fregl® INT MWOT HMULL.
—» fregilil INT HWOT HMULL.
—» fregl2 INT MWOT MULL.
—>» fregl3d INT MWOT MULL.
—» fregld INT HWOT HMULL.
—» fregl5 INT HWOT HMULL.
—» freglte INT MWOT HMULL.
—» PRIMARY KEY<filename?
> >3
Query 0K, B rows affected (H_.13 sec>

muysgl> describe Color_ Feature Uector:;
4+

filename varchar{255>
fFregl int<il1>
Freg2 int<idi>
fregd int<i1l>»
fregd int{11>»
fregh int<i1>
fregb int<il1>
Freg? int<idi>
fregB int<i1l>»
freg? int{11>»
fregl@ int<i1>
fregll int<il1>
Fregl2 int<idi>
fregl3 int<i1l>»
fregld int{11>»
freglh int<i1>
freglb int{11>

4 = mm mm e e e e e e
4 = mm mm e e e e e e

4 == mmmm mm e e e mn e e e e mm
S ———
4 = mm mm e e e e e e

Figure 6.12: Color feature vector table
The satellite images captured are stored in the table called image file data (see Figure 6.13)

without extracting any content.

| o o o ot et
VvVvvvvvVVVVYY
/

7]

CREATE TABLE Image_File Data <
filename UARCHARC25%5> NOT NULL.
imageContent MEDIUMBLOB NOT NULL.
imageDate TIMESTAMP NOT NULL.
PRIMARY KEY<{filename>

>3

Query OK, B r»ouws affected <(B.65 sec
mysql?> describe Image_File_Data;

+

A R R e
! Field Type Null] Default Extra
A H
e S T P

filename ' varchar(255> NULL

inageContent | mediumblob H NULL

imageDate timestanmp CURRENT _TIMESTAMP on update CURRE
T_TIMESTAMP

rows in s sec?

Figure 6.13: Created image file data table to store original images

79

The shape feature is called Shape Feature Vector table stores the shape features values
(see Figure 6.14).

]n.n:u' File Datas;
+

I Tyupe] {e | Default

F i lanams varchapr{2hh [1 i HULL
|

imageContent | mediumblob i HULL

timeastamp i CURREHT _TIHESETAHP on update CURRE

|
H
+

3 rows

M O 1

undness

I Hia HY
ey O B rows affected <B0.13 se
mysigl> describe Shape Feature Usctor;
+

* ¥

i
Fie ld HE H Hitll | Key D i 1E

&
] l i lun ame | wi aprd 2553 HO FRI MU L L
H AL i HO MU L1
i MO MU LiL
i RBoundness | intd<id> i HOD h i HULIL
+

i

rows in set (A.BA1 seck

Figure 6.14: Created Shape_Feature_Vector to store all images shape features
In order to store all image texture features, all column names and data types must be chosen
appropriately. In case of storing filename, a character string with variable length is chosen. In
Figure 6.15, a texture feature table is created. The table contains five columns in which all
image names and their corresponding feature vector values are to be stored. The column
names are contrast, correlation, homogeneity and energy of the computed or extracted gray
level co-occurrence matrix (GLCM).

ySQL 5.5 Command Line Client

CREATE TABLE Texture_Feature_ Uector <
filename UARCHAR(255> NOT NULL.
Contrast INT NOT NULL.

Correlation INT NOT NULL.

Homogeneity INT NOT NULL.

Energy INT NOT NULL.,

PRIHﬂRY KEY<{(filename)

VVvVVVVV Y

Query 0}(B rous affected (B.14 sec

nysgql> l‘.(:o(,l‘lbb Tt,xv.uw, F:,at,uu. Uu,tor‘
el ST ¥ A : BBV et

e 4, AWz
Plbld 2 H Defuult H Fxtra
fxlename uaxchdx(25 >
Contrast intd11)
Correlation intd11)
Homogeneity intd11)
Energy intd{11)

P R A=Yl

S rows in set <(B.61 sec

o e ———

e Lk

$ e cnsnene
[P RRR—.
[P RR .

Figure 6.15: Texture feature vector table

80

Figure 6.16 lists the satellite database containing all tables created for this project.

I april2Ailz2

I april2@Aill

I april2Ail-4d

I august2E12

I august2B013

I august2B014

i color_feature_ wvector

i december2ZB812

i decemberZ2813
december26814
Ffebruary2Z@l2
Ffebruary2@l3

i february2@il4
image_file_data

I JanuaryZ2@il2

I January2@il3

I January2@il4d

T July2@Al2

I July2@dl3

I July2@i4

I June2@l2

I June2@l3

I June2fil4d
march2@12
march2@813
march2@l4
may2@l2
may2@i13
may2@Al4
novembe 26812
novembe 26813
novemnber26814
october2812

i octoberZ@l3

i octoberZ@l<d

I september2@l12

i septemberxr2B@13

i september2@l-1

i shape_feature_wvector

I texture_ feature_ vector

Figure 6.16: Forty tables created in the database for storing all images and metadata

6.5 Testing and Experimental Results

To ensure that the algorithms developed for this project are accurate, testing tools are
developed to verify and test the accuracy of extracting and developing GUIs for each of the

four algorithms.

6.5.1 Testing

To test the proposed design in section 5.4, each component and corresponding interface that
was implemented needs to be tested for their functionality. Software testing is a process of
running a software program for the purpose of finding errors. There are two categories of
testing: verification and validation. Verification checks whether the system built is correct
according to specifications, and validation refers to whether the correct specifications were

followed to build the product.

A number of things needs to be considered in this project when testing an input image, such
as format, size and availability of database. The software testing conducted is based on
image classification, feature extraction, as well as storing and retrieving images using a
guery sample. Initially, images are to be received from the satellite. Once images are
received, image noise is removed and the quality of the images is improved. Images are then
allocated into the database. As per each algorithm, tables are populated with feature vector

81

values extracted from the images. A number of software tools were developed in order to
verify and validate functional and non-functional requirements (refer to Section 5.3) and the
proposed design components.

In Figure 6.17 (a), (b) and (c), a testing tool was developed to improve the quality of images
being selected as a query sample. Various image pre-processing techniques such as Median
filter, Wiener Filter and histogram equalization were implemented and compared in terms of
eliminating image noise. The Wiener filter outperformed both median and histogram as it
improved the quality of the image better than the other methods (see Source code Appendix
A: Listing A.7).

(e o] ® ===

Testing of the image Pre-Processing algorithms

— Original Image — Result of filtered Image:

image pre-processing type

) Wiener Filtering

(©) Histogram Equalization

ol oD

EnhanceButton

@Jean-Marie(2014)

Figure 6.17(a): Testing pre-processing median filter algorithm

“ Image_pre_processing_Software @
Testing of the image Pre-Processing algorithms
— Original Image — Result of filtered Image:

image pre-processing type.

(7) Median Filtering

() Histogram Equalization

EnhanceButton

@dJean-Marie(2014)

Figure 6.17(b): Testing pre-processing Wiener filter algorithm

82

n Image_pre_processing_Software = ‘*@v‘@

Testing of the image Pre-Processing algorithms

—Original Image — Result of filtered Image:

— image pre-processing type

() Median Filtering

() Wiener Fittering

EnhanceButton

@Jean-Marie(2014)

Figure 6.17(c): Testing pre-processing Histogram Equalization algorithm

In Figure 6.18, an image histogram extractor tool was developed to allow the user to input an
image and to view the selected image’s histogram. Usually, an image consists of 255 pixels
and each bar in the histogram represents pixel colour content. Thus, each image has a
histogram of 255 bars. Storing all 255 bars will slow retrieval time. Therefore, 255 bars
needed to be reduced to ensure that retrieval time is improved (see source code Appendix A:
Listing A.8).

B Testbtroctimageintogam =] ® ==

Image Color Histogram Extractor Software

i — Image's Normalizsed Histogram and Bins Valu
— Original imag x 10

Masat-1

Browse Image ExtractHistogram

100 150
Birl Bin2 Bin3 Bind Bin3 Bin? Eing
874 1568 5084 11311 23157 26191 31750 52929
Bing Bin1d Binl1 Bin12 Bin13 Binl 4 Eim 5 BinlG
46858 17576 14351 16969 16070 15487 13719 694

Figure 6.18: Testing colour algorithm

83

In Figure 6.19 a software tool was developed to test texture feature extraction using the
GLCM technique. The wuser interface has two buttons: a browse button and
extractglcmfeature button. The function of the browse button is to browse a list of images,
where a user decides which image is to be used. The selected image is then displayed in a
panel for viewing purposes. The second button allows the user to extract four parameter
values such as contrast, correlation, energy and homogeneity. Note, that the four texture
parameter values extracted are stored in created table called Texture_Feature_Vector and
this table is used to compare the texture of the query (image) against of those stored texture

features (see source code Appendix A: Listing A.11).

u TestBxdractGLCMFeatures EIEIE

Texture GLCM Extractor software

— Original image Texture GLCM valu

Cortrast Correlation Energy Homogeneity
0.0620171 0976736 0.199799 0.958082

‘ ExtractGLCMFeatures

& Jean-Marie(2014)

Figure 6.19: Texture Feature extraction algorithm

In Figure 6.20, a shape software tool was developed to extract three parameter values,
namely perimeter, area and roundness of objects in an image. A browse button is used to
open and display an image in the original image panel, and an extract morphology features
button assists with the extraction of the three image features (see source code Appendix A:
Listing A.10).

84

uTestExtractShapeMorphologyFeatures EII = I@

Shape Morphology Feature Extractor software

Shape Morphaology valu

% R Perimeter Area Roundnes
e]

380.853 2368 0.205044

— Original imag

l ExtractMorphologyFeatures

@lean-harie2014)

Figure 6.20: Shape Feature extraction algorithm

In Figure 6.21 (a) and (b), an Image metadata tool was developed to allow the user to select
an image and extract the date and time of each image selected. Once image metadata is
extracted, the image filename corresponding to the selected image is displayed. The date
and time is extracted and displayed as shown. According to the images selected (see Figure
6.21 (a) and (b) extracted in figures) the date and time shows that both images were taken
the same day at 11:34:32 and 11:36:14 respectively (see source code Appendix A: Listing
A.9).

u TestlmageMetadataExtractor EI =

Image Metadata Extractor software

— Original imag
Filename: 126.jpg
— Date
“ear Marith Day
2012 12 21
— Date
Hour Min Seconds
1 34 22

Extrac‘tMDrphungyFaaturesé

@@ Jean-Marie(2014)

Figure 6.21(a): The image Metadata extractor algorithm
85

uTestImageMetadataE)ctractor EI = @

Image Metadata Extractor software

— Original image

Filenarme: 115.jpg
— Date
Year lonth Dy
202 12 21
— Date
Mangy Win Seconds
11 36 14

l ExtractMorphologyFeatures

E@lean-Marie(20147)

Figure 6.21(b): The image Metadata extractor algorithm

6.5.3 Experimental Results

The input image (Masat-1 Satellite images of high resolution) was used to test the
functionality of each component by extracting all appropriate features. Figure 6.22 shows the
results of the query developed colour feature user interface. It relies on the colour algorithm
features extractor tool discussed in section 6.5.1. The histogram of each image parameter
was extracted and stored into database. A query image feature was compared to stored
images’ features in the database. In the figure below, displayed results of the query against

stored images are shown.

B ColorFeatureGUI [e® =]

— Color Feature Select Query and View

“ »
MeasureWBtn

Misal-1

l searchBtn QueryDatabaseBin }

— Display Resut

Figure 6.22: Colour Feature Results
86

Figure 6.23 shows the experimental results of the shape feature algorithm. The images are

gueried according to extracted feature parameters.

B} ShapeFeatureGUI ol ==

Shape Feature

e |

MeasureWBtn

— Display Result:

Figure 6.23: Shape Feature Results

Experimental results of the texture feature implementation is highlighted in Figure 6.24. The
developed texture extractor tool implemented the texture feature algorithm and displays the
queried results.

B TextureFeatureGUI E‘E‘@

— Select Query and View
e ’

Texture Feature

08
MeasureWBtn

l searchBtn ‘ QueryDatabaseBin

— Display Result:

Figure 6.24: Texture Feature Result

87

An integrated graphical user interface was developed whereby all Colour, Shape, Texture
and image metadata features were integrated into one user interface (Figure 6.25). In the
figure a panel was provided for the user to select the desired weight age value for all three

Bl IntegratedGUI B
—Panel — Search by K
Color Feat Shape Feat Texture Feat
0.1 0.1 04 filename : Edit Text
1 % 4 > 4 »
DateSearch (i.e., 2013/8/27) Edit Text

MeasureWBtn

— Display Resul

Figure 6.25: Combined result for all Features
In Figure 6.26, the date classifier results are provided. A database connection was
established so that a query image’s feature metadata of date and time could be extracted
and compared to the database. The results shows that similar images being taken in the

same year and month can be successfully retrieved.

) Command Window I] 1
File Edit Debug Desktop Window Help ~
MySQL Database is connected...... =
ans =
This image was taken:2012/12/21 11:36:9
LR =

'2012-12-21 11:37:50.
"2012-12-21 11:34:45.
"2012-12-21 11:35:12.
"2012-12-21 11:35:24
"2012-12-21 11:36:09.
'2012-12-21 11:38:16.
"2012-12-21 11:36:09.
"2012-12-21 11:34:06.
'2012-12-21 11:36:09
"2012-12-21 11:36:09
'2012-12-21 11:34:53.
"2012-12-21 11:37:55.
'2012-12-21 11:35:38.
"2012-12-21 11:35:38.
"2012-12-21 11:36:09
'2012-12-21 11:35:24.
"2012-12-21 11:37:50.
'2012-12-21 11:38:16.
"2012-12-21 11:38:16.
"2012-12-21 11:36:03.
'2012-12-21 11:34:06.

000000000000 00D0D00000o0

&

[ovRT] 4
Figure 6.26: Date Classify Result

88

6.6 System performance and Evaluation

In content based image retrieval systems (CBIR), performance efficiency concerns the time it
takes to answer the query, and the effectiveness of retrieval, which is the ability to get
relevant items corresponding to the query. This is still is a major concern in CBIR systems. In
a retrieval based system, queries are done against stored items in the database and distance
measures are used to determine their performances, unlike matching techniques used in

traditional database systems.

The performance of a CBIR system is evaluated by standard measures such as precision
and recall. Precision is the ratio of the number of those relevant items against all retrieved
items. Usually, precision determines the accuracy of the retrieval based system and is
computed using equation 6.1, whereas recall is the ratio of those relevant retrieved items
against of all stored relevant items in the database, and is a measure of robustness of the

retrieval system. It is computed using equation 6.2.

Number of relevant images retrieved

Precision= - - (6.1)
Total number of images retrieved

Number of relevant images retrieved

Recall= . . (6.2)
Total number of relevantimagesinthe database

6.6.1 System evaluation

The system performance is evaluated in terms of retrieval effectiveness and retrieval
efficiency using precision and recall. To evaluate the proposed system against other existing
systems, a commonly available image database (Wang) is used. It is an image database
which is a part of the Corel database of one thousand images that are grouped into ten
classes (African, Beaches, Buildings, Buses, Dinosaurs, Elephants, Flowers, Horses,
Mountains and Foods). Each class contains one hundred images (see Appendix B). It has a
diverse range of images to assist in evaluating classification of the proposed system. This
image database is used for testing purposes by most of the CBIR systems. Although this
project focuses on CubeSat satellite images, there is no standard image database available

to compare the proposed system against other systems.

To test and evaluate the proposed system, four algorithms were designed, namely colour
histogram, texture, shape and date classifier. For each of these algorithms, the retrieval
effectiveness and efficiency were verified. To test the proposed system, thirty images from
each class were randomly selected, thus reducing the available one hundred images from

each class to thirty. A total of three hundred images were used in ten groups of thirty images
89

each. For each class, a sample image (query) were imported into the Matlab workspace to
allow to find similar images in the database and a maximum of fourteen images similar to the
query were retrieved. It should be noted that for testing purposes the maximum of fourteen
images were chosen to adequately show the results on-screen. The algorithms allow for all
similar images to be displayed on-screen.

A. Color Histogram algorithm evaluation

In the first evaluation, from the African class, for each image the features were extracted and
stored within the database. In Figure 6.27 a query image from the African people class was
selected. Fourteen similar images belonging to the same class were subsequently retrieved.
All the images retrieved by the proposed system are relevant, as per the defined feature to
the query image. The colour histogram algorithm used to retrieve images thus ensures that
images consisting of the same content belong to one class. It should be noted that the
purpose of the proposed system is to retract similar images that belong to a specific group
and that contain specific features. The purpose is not merely to retrieve an exact match of
the query against images in the database.

B color_gui feature [=]

Color — —retrieval
o4 color refrieval(n secs)
02
1.24358

;

Browse Image | [queryDatabasein |

— Retrieved Resutt:

Figure 6.27: Colour histogram colour evaluation: African class

The second evaluation focused on the Beaches image class. Thirty random images were
selected and, for each, their features extracted and stored in the database. As seen in Figure
6.28, a query image was selected from the beaches class to serve as input. The fourteen
retrieved images belong to the same class with the requested features as the query image.
Therefore, the precision of the colour histogram algorithm is 1 (14/14), meaning all images

are relevant to the query image.

90

B color_gui_feature E [ﬁ\

Color

color feature.
0.1

‘[I: 5 1.19541

color retrieval(in secs)

[Browse Image] | queryDatabaseBtn |

— Retrieved Result

Figure 6.28: Colour histogram colour evaluation: Beach class

The third evaluation is from the Buildings image class, where thirty random images were also
selected. Image features were extracted and as shown in Figure 6.29, a query image was
selected. The fourteen output images belong to the same class as the query image. The
precision of the colour histogram algorithm is thus 1 (14/14).

B color_gui feature ErEf=]

Color

color feature

color retrieval(in secs)
02

‘[E 5 1.12473

Browse image] [queryDatabaseBtn

— Retrieved Result:

T e
’*----‘i‘.‘ *r. 1)

LA

44 A 0i8A 1
A %

bogefk

Figure 6.29: Colour histogram colour evaluation: Building class

The fourth evaluation focuses on the Buses image class, where thirty random images were
also selected. As shown in the Figure 6.30, all retrieved results belong to the same class as
the query image. The achieved precision of the colour histogram algorithm from this class is
1 (14/14).

91

B color_gui feature

Color = retrieval

color feature

] >

color retrieval(in secs)

768227

[Browse image I [queryomnaseam

— Retrieved Resutt:

Figure 6.30: Colour histogram colour evaluation: Buses class

Figure 6.31 shows the dinosaurs image class that was used within the fifth evaluation. The
thirty random images led to the retrieval of fourteen images. Out of the fourteen one image
from the bus class was also retrieved. In this instance, the bus image has the same

quantity colour as that of images within the dinosaur class. The precision is therefore 0.928.

Bl color_gui feature Bl

Calor — —retrieval
ook lesins color retrieval(in secs)
02
== 603158
RIC &

Browse image I [queryDatabaseBtn

— Retrieved Resut:

Figure 6.31: Colour histogram colour evaluation: Dinosaur class

Figure 6.32 shows the details of the sixth evaluation where images from the Elephant class

were used. The precision of the colour histogram algorithm is 1 (14/14).

92

B color_gui feature

— Color

color feature
0.1
4 ¥

— Retrieved Result

color retrievai(in secs)

1.2603

[Browse image] [queryDalabaseBth

Figure 6.32: Colour histogram colour evaluation: Elephant class

The flowers image class was used within the seventh evaluation and the results retrieved are

shown in Figure 6.33. All retrieved images belonged to the same class as the query image.

Therefore, the precision of the colour histogram algorithm is 1 (14/14) with a recall figure of

0.4667 (14/30). The same results of 1 (14 of 14 images) were obtained when tested on the

Horses class (see Figure 6.34), the Mountains class (see Figure 6.35) and the Food class

(Figure 6.36).

u color_gui_feature

— Color

=lle wEs

color feature
02

4 >

— Retrieved Resutt

— —retrieval

color retrieval(in secs)

1.12006

Browse image | [queryDatabasetn

Figure 6.33: Colour histogram colour evaluation: Flower class

93

B color_gui_feature = e =

C — retrieval

color retrieval(in secs)
1.21058

color feature
0.1

0

[erowseimage | [queryDatabasesin |

— Retrieved Resutt:

Figure 6.34: Horse query, the fourteen similar retrieved images

Color — retrieval ti
color feature
0.1

1.09597
BlL_H]

color retrieval(in secs)

MeasureBtn

— Retrieved Result:

B color_gui feature E=i=]

—
B color_gui_feature

c — [retrieval
cokor-fealire color retrieval(in secs)
01
112484
<« >

— Refrieved Resuts -

Figure 6.36: Colour histogram colour evaluation: Food query

94

Figure 6.37 shows lkonos and Quick bird images used to evaluate the algorithm’s
effectiveness and efficiency. These images are of high resolution unlike tests done on the
previous ten classes. The results achieved indicate an efficiency of 1 (14/14).

B color_gui_feature ol & ===

—Ci =

I retrieval
color feature i
color retrieval(in secs)

02

4 >

6.03701

Browse image | [queryDatabasetn

— Retrieved Result

Figure 6.37: Colour histogram colour evaluation: Ikonos class

B. GLCM algorithm evaluation

The texture GLCM algorithm extracts information embedded in an image and classifies them
into classes in order to estimate the similarity between two images. The four statistical
features, namely energy, contrast, homogeneity and correlation, are used to test the
efficiency and correctness of the proposed design. Using a query image of a building, the

four texture properties are extracted and compared to the images in the database.

The texture feature algorithm (GLCM algorithm) is evaluated based on the Wang database
of randomly selected images from thirty images in each class. Following this same testing
and evaluation process, results of 1 were obtained in all ten test classes, namely the African
class (Figure 6.38), Beach class (Figure 6.39), Building class (Figure 6.40), Busses class
(Figure 6.41), Dinosour class (Figure 6.42), Elephant class (Figure 6.43), Flower class
(Figure 6.44), Horse class (Figure 6.45), Mountain class (Figure 6.46), Food class (Figure
6.47) and Masat-1 (Figure 6.48). Evaluations within all of these classes reflected precision

values of 1.

95

B texture_gui_festure ==

TexturefeaturePanel —
Texture feature
0.1

Al

retrieval time.

Texture retrievai(in secs)

147917
[Browse Image } [queryDatabaseBtn]

— Retrieved Resutt:

Figure 6.38: GLCM algorithm evaluation: African class

B texture_gui_feature

TexturefeaturePanel —
Texture feature

0.2

retrieval time

Texture retrieval(in secs)

7.41527

[— Retrieved Result:

(o]

=)

Figure 6.39: GLCM algorithm evaluation: Beach class

TexturefeaturePanel —
Texture feature
0.0

q»

Texture retrieval(in secs)

6.72942
P] o

— Retrieved Result

B texture_gui feature Ere=]

Figure 6.40: GLCM algorithm evaluation: Building class

96

TexturefeaturePanel—
Texture feature

02

retrieval time.

Texture retrieval(in secs)

13.5292]

Browse Image i_queryDatabaseBin |

— Retrieved Result

| — —_—
B texture_gui_feature =

i

Figure 6.41: GLCM algorithm evaluation: Bus class

B texture_gui_feature =5 ECH|
— TexturefesturePanel —

Texture feature
0.0

qr

Texture retrieval(in secs)

Browse Image

136746 .
] |_queryDatabaseBtn |

— Retrieved Result

o

))

Figure 6.42: GLCM algorithm evaluation: Dinosaur class

TexturefeaturePanel —
Texture feature

e o |

retrieval time

Texture retrieval(in secs)

82747 A
[| queryDatabaseBtn |

Browse image |

[— Retrieved Resut:

B texture_gui_feature ol @ =4

Figure 6.43: GLCM algorithm evaluation: Elephant class

97

B texture_gui feature

TexturefeaturePanel —
Texture feature
02

I >

retrieval time

Texture retrieval(in secs)

6.73983 l

Browse Image [querybatabasesin

— Retrieved Resul:

Figure 6.44: GLCM algorithm evaluation: Flower class

B texcture_gui _feature

TexturefeaturePanel —
Texture feature
03

Tl

retrieval time

Texture retrieval(in secs)

7.50209 I

Browse image [auerypatabasestn

ErEE=]

— Retrieved Result;

Figure 6.45: GLCM algorithm evaluation: Horse class

B texture_gui_feature

TexturefeaturePanel —
Texture feature

03

T

retrieval time

Texture retrieval(in secs)

7.3143

— Retrieved Result

Figure 6.46: GLCM algorithm evaluation: Mountain class

98

B teture guiteature : ==

TexturefeaturePanel —
Texture feature
03

4 »

— retrieval time ———————

Texture retrieval(in secs)

7.37623 ; 2
[Browseimage | ["queryDatabasebtn |

— Retrieved Result

Figure 6.47: GLCM algorithm evaluation: Food class

B texture_gui feature == e |

TexturefeaturePanel —
Texture feature
02

4 »

Texture retrieval(in secs)

560192

=

-

Figure 6.48: GLCM algorithm evaluation: Masat-1 class

[Browse Image J | queryDatabaseBtn |

— Retrieved Result:

C. Mathematical Morphology algorithm evaluation

The shape feature algorithm (Mathematical Morphology algorithm) is evaluated based on the
Wang database of thirty randomly selected images from each class. The images’ features
are extracted and stored into the database. The shape mathematical morphology algorithm is
evaluated through queries within different image classes to find similar images in the
database. To accommodate space restrictions only fourteen relevant images are shown. The
following number of figures shows the results and depicts the fourteen retrieved images from
the African class (Figure 6.49), Beach class (Figure 6.50), Building class (Figure 6.51), Bus
class (Figure 6.52), Dinosaur class (Figure 6.53), Elephant class (Figure 6.54), Flower class

99

(Figure 6.55), Horse class (Figure 6.56), Mountain class (Figure 6.57) and Food class
(Figure 6.58). The results obtained indicate a precision of 1 within all of the queries.

B shape_gui feature e

shape feature panel —
Shape festure
0.1

I >

retrieval time ————
’7 Shape retrieval(in secs)

7.26551

— Retrieved Resutt:

Figure 6.49:

B shape_gui festure fella=s

shape feature panel—
Shape festure
0.2

il

Shape retrieval(in secs)

7.18433

— Retrieved Result:

Figure 6.50: Mathematical Morphology algorithm evaluation: Beach class

B <hape_gui_feature e =

shape feature panel —
Shape feature
02
ST]

— retrieval time

Shape retrievai(in secs) E B
5.83541 =
Browse mage | ["queryDatabasestn |

— Retrieved Result

Figure 6.51: Mathematical Morphology algorithm evaluation: Building class
100

B shape_gui_feature

shape feature panel —
Shape feature
02

i

Shape retrievai(in secs)

6.07427

[— Retrieved Result:

Figure 6.52: Mathematical Morphology algorithm evaluation: Bus class

B Thepe guiTeatare = on ==

— shape feature panel—
Shape feature
03

Al

Shape refrieval(n secs)
6.13487

[Browse Image] \ queryDatabaseBtn |

— Retrieved Resul:

Figure 6.53: Mathematical Morphology algorithm evaluation: Dinasaur class

n shape_gui_feature EE]@

shape feature panel—
Shape feature
02

J[»

retrieval time

Shape refrieval(in secs)

6.63772

| queryDatabaseBtn |

— Retrieved Result:

Figure 6.54: Mathematical Morphology algorithm evaluation: Elephant class
101

B shape_gui feature i
shape feature panel—

Shape feature
03

I

retrievai time ————
’7 Shape refrieval(in secs)

5.94674

[Browseimage | [queryDatabasestn |

— Retrieved Resutt

Figure 6.55: Mathematical Morphology algorithm evaluation: Flower class

Bl shape_gui_feature il

— shape festure panel—
Shape feature
0.1

4 »

retrieval time.

Shape retrieval(in secs)

6.37958

Browse Image] [queryDatabaseBtn J

— Retrieved Resul:

Figure 6.56: Mathematical Morphology algorithm evaluation: Horses class

B shape_gui_feature E= =]
shape feature panel—
Shape feature
02
< >

retrieval time

Shape retrievai(in secs)
6.04956 - -
Browse image | [auerypatabasestn

— Retrieved Results -

Figure 6.57: Mathematical Morphology algorithm evaluation: Mountain class

102

shape_gui_feature S

shape feature panel—
Shape feature
02

< »

6.03206

[Browse image] [queryDa(abaseBtn

retrievaltime
’7 Shape retrieval(in secs)

— Retrieved Result

Figure 6.58: Mathematical Morphology algorithm evaluation: Food class

D. Integrated proposed system evaluation

The Integrated proposed system algorithm is evaluated based on the Wang database of
thirty randomly selected images in each class. For each of the images, the features are
extracted and categorized. For the proposed integrated system, a number of varying classes
of images were used to test and evaluate the integrated algorithm. Different image classes
and queries were selected and a precision of 1 was observed in all of the evaluations. For
specifics please see retrievals from the African class (Figure 6.59), Beach class (Figure
6.60), Building class (Figure 6.61), Bus class (Figure 6.62), Dinosaur class (Figure 6.63),
Elephant class (Figure 6.64), Flower class (Figure 6.65), Horse class (Figure 6.66), Mountain
class (Figure 6.67) and Food class (Figure 6.68).

Bl integrated_gui ==
— Select Query and View — Search by Keyword
Integrated Feat - "
— Color Feature— — Texture Feature Shape Feature—
& i o Filename : Edit Text
< > < » 4 4
Year(ie.2013) Edit Text
Month(i.e.02) Edit Text
— Retrieval Time(in second:
— color retrievaltime— —texture refrieval time shape retrieval time, e ” - o] Daytie. 10y S—
12762 127638 127649 searchilainbane

— Retrieved Result:

Figure 6.59: Integrated proposed system evaluation: African class
103

B Integrated_gui

Select Query and View

— Search by Ki

Integrated Feat
— Color Feature —

0.1

gl

— Texture Feature

Shape Feature —

— Retrieval Time(in

o

color retrieval time —

1.11817

(— texture retrieval time

111828

shape retrieval time

1.11835

— Retrieved Result

Filename :

‘Year(i.e.2013).

Morth(i.e.02)

Day(ie. 10)

Edit Text

Edit Text

Edit Text

Edit Text

searchDatabase

B integrated_gui

— Integrated Feat

Figure 6.60: Integrated proposed system evaluation: Beach class

— Select Query and View

— Color Feature —

0.1

Eims

— Texture Feature

0.1

Ee

Shape Feature—

MeasureWBtn

— Retrieval Time(in

o

(— color retrieval time —

1.12278

(— texture retrieval time

112288

shape retrieval time

1.12293

— Retrieved Result

— Search by K

Filename :

Year(i.e.2013):

Mortth(i.e 02)

Day(i.e. 10y

Edit Text

Edit Text

Edit Text

Edit Text

searchDatabase

Figure 6.61: Integrated proposed system evaluation: Building class

B integrated_qui

Integrated Feat

— Select Query and Vi

— Search by K

d

— Color Feature —

Bl

— Texture Feature —

01

Qim0

Shape Feature —

0.1
< »

MeasureWBtn

— Retrieval Time(in

— color retrieval time—

1.12065

—texture retrieval time

1.12079

shape retrievaltime,

1.12084

queryDatabaseBin

— Retrieved Result:

Filename :

Year(i.e.2013):

Monthi.e.02):

Day(ie.10)

Edit Text

Edit Text

Edit Text

Edit Text

searchDatabase

Figure 6.62: Integrated proposed system evaluation: Bus class

104

[l Integrated_gui

Integrated Feat

3 — Color Feature— — Texture Feature — — Shape Feature —
04 02 04

3 4 » 4 M » “4 »

:

— Retrieval Time(in ds)

(— color retrieval time —

1.00969

— texture retrieval time

1.0088

shape retrieval time

1.00887

— Retrieved Result:

— Select Query and

— Search by Key

o

queryDatabaseBtn

Filename

Vear(i.e.2013)

Monthi.e.02):

Day(ie. 10)

Edit Text

Edit Text

Edit Text

Edit Text

searchDatabase

~

Figure 6.63: Integrated proposed system evaluation: Dinosaur class

B Integrated_gui

Integrated Feat
—Color Feature— — Texture Feature— — Shape Feature—
0.1 01 0.1
< > < > < >
— Retrieval Time(in ol

(— color retrieval time —

1.20061

— texture retrieval time

1.20073

shape retrieval time.

1.20078

Select Query and View

— Search by K

== |F=1)

Browse Image.

queryDatabaseBtn

Filename :

Year(i.e.2013).

Month(i.e 02):

Day(i.e. 10):

Edit Text

Edit Text

Edit Text

Edit Text

searchDatabase

— Retrieved Result

Figure 6.64: Integrated proposed system evaluation: Elephant class

B integrated_gui

(— color retrieval time —

1.07269

(— texture retrieval time

1.0728

Integrated Feat
—Color Feature— [Texture Feature . — Shape Feature —
01 01 0.1
< ® “ » 4 »
— Retrieval Time(in o

shape retrieval time.

1.07285

— Retrieved Results

— Select Query and

— Search by K

Ee =)

queryDatabaseBtn

Filename :

‘Year(i.e.2013).

Morth(i.e.02):

Day(i.e. 10):

Edit Text

Edit Text

Edit Text

Edit Text

searchDatabase

Figure 6.65: Integrated proposed system evaluation: Flower class

105

B integrated_gui

Integrated Featt

— Select Query and Vi

— Search by Key

o

[ell@if=]

— Color Feature —

0.1

BTt

— Texture Feature

0.1

A

Shape Feature —

gl B

MeasureWBtn

— Retrieval Timein :

— color retrieval time —

1.18943

— texture retrieval time

1.18954

shape retrieval time,

1.18961

Filename

Vear(ie.2013)

Month(i..02):

Day(ie. 10)

— Retrieved Resutt

Edit Text

Edit Text

Edit Text

Edit Text

searchDatabase

B Integrated_gui

Integrated Featt

— Color Feature — — Texture Feature - Shape Feature —
0.1 02 0.1 |
< > < > “ >
MeasureWBtn

— Retrieval Time(in ol

9

— color retrieval time —

1.09147

— texture refrieval time

1.09159

— shape retrieval time

1.09164

— Search by K

o

[Ele=]

— Retrieved Result

Filename :

Year(ie 2013):

Month(i.e 02):

Day(ie. 10):

Edit Text

Edit Text

Edit Text

Edit Text

searchDatabase.

Figure 6.67: Integrated proposed system evaluation: Mountain class

B integrated_gui

Integrated Feat:

—Color Feature — —

02

i

Texture Feature

02

i

— Shape Feature—

0.1

I

MeasureWBtn

Select Query and Vi

(— Search by Ke

— Retrieval Time(in ol

— color retrieval time— —

1.14192

texture retrieval time.

1.14204

shape retrieval time -

114209

— Retrieved Resutt

Filename

Year(ie.2013).

Month(i.e.02):

Day(ie. 10).

Edit Text

Edit Text

Edit Text

Edit Text

searchDatabase

Figure 6.68: Integrated proposed system evaluation: Food class

106

Algorithm Evaluation: Efficiency and Precision

Figure 6.69 depicts the retrieval time of the four algorithms that were evaluated. The retrieval
time for the texture GLCM algorithm is significantly longer compared to the other algorithms,
especially in the Bus and Dinosaur classes. The colour histogram also shows significantly
longer retrieval times for the Bus and Dinosaur classes, with the integrated algorithm

conistently measuring retrieval time of below one second.

16

- 14

g |

c 12

S I

g m Colour Histogram

& I !

o 8 1 Algorithm

)

E o = GLCM Algorithm

l—

T 4

-E 2 A = Mathematical Morphology

5 Algorithm

@ 0 - |

'r SIS 5 & & & e e D ® [ntegrated Algorithm
Class

Figure 6.69: Algorithm Efficiency (Retrieval time)

In Figure 6.70 the precision of the algorithms is compared. All of the algorithms except the
colour histogram algorithm, that performed poorly in the dinosaur class, proved to be precise.
The problem with the colour histogram in the dinosaur class is due to the confusion of colour
guantities contained in the image. In order to eliminate this problem, the colour histogram
can be improved by combining it with other techniques such as colour moments, colour

correlogram and colour coherence vector.

0.98
= 0.96
S a4 = Colour Histogram Algorithm
» O
o
@ 092 = GLCM Algorithm
0 g9
0.88 = Mathematical Morphology
0.86 Algorithm

0.84 m [ntegrated Algorithm

Figure 6.70: Precision of algorithms of the proposed system

107

E. Comparison of the proposed system with other systems

Apart from evaluating the proposed system against different image classes contained within

the Wang database, it is also necessary to evaluate against systems currently available in

literature and practice. Implemented systems that also use the Wang image database for a

small set of images were selected and the results are listed in Table 6.5.

Table 6.5 shows the validity of integrating several algorithms in order to improve the

precision of image classification and retrieval systems. Proposed systems consistently

improved as research projects focused on image retrieval problems, especially within the

nano-satellite sphere. The performance of the proposed system within the set boundaries

and constraints showed the ability to retrieve accurate results with a high precision.

Classification of the images to specific groups or classes also improved with the proposed

system.
Table 6.5: Comparison: Precision
Lin et al. Raghupathi Mikharq Proposed
Class (2009) et al. (2010) | Afifi (2011) {2013) System
African 0.68 0.75 0. 1 1
Beaches 0.62 0.6 0.856 0.93 1
Buildings 0.1 0.43 0.8341 0.61 1
Buses 0.92 0.69 0.8571 1 1
Dinosaurs 0.97 1 0.9975 1 1
Elephants 0.86 0.72 0.7143 0.63 1
Flowers 0.76 0.93 0.9374 1 1
Horses 0.87 0.9 0.5714 1 1
Mountains 0.49 0.36 0.4286 0.65 1
Foods 0.77 0.65 0.9752 1 1
Total 0.762 0.704 0.9752 0.882 1

Figure 6.71 reflects on the comparison of the proposed system against existing systems. The

proposed system outperforms other systems in most of the classes.

108

uLin et al (2009)

B Raghupathiet al.(2010)

Precision
L]
(=]

04 -
w Afifi (2011)

0.2 |

. = Mikharg (2013)

& o & 5 S X L N &
& ‘b‘}‘ooe’?} & Q\oﬁ‘e' & & & sintegrated Proposed
v % * < & System
Class

Figure 6.71: Comparison: Precision

F. Evaluation: Additional set groups of the Wang database

Although exceptional results were obtained on small image sets, the proposed system needs
to be evaluated using larger groups. Groups of 25, 50 and 100 images (see Figure 6.72)
were therefore selected from the Wang database and efficiency and precision measured.
These groups were retrieved from the database of 1000 images, that contains ten groups,
100 images per group, to verify the retrieval rate and accuracy of the system. At the start,

each group was reduced to 25, 50 and maintained at 100 images per group.

It has to be noted that evaluation results of similar systems using large sets of images are
not available. Thus the results obtained for sets of 25, 50 and100 images can only be
evaluated in terms of future CubeSat implementations and will serve as basis for future

developments.

109

Set of groups in the Database

Group of 25 Group of 50 Group of 100
images Images Images
African Beaches Buildings Busses Food
Horses Mountains Dinasauruses Elephants Flowers

Figure 6.72: Block Diagram groups of images
Figure 6.73 shows the group of twenty five images from the African class that were selected,
extracted and stored in the database. All retrieved 25 images corresponds to the features

that were specified, resulting in a precision of 1.

B Combined_Algorithm_Interfaces

— Retrieved Result — Select Query and View

— Integrated Feat

— Color Featt - Texture Feat Shape Featt
01 01 0.1
L || I

— Retrieval Rate

‘ 5.95841

Figure 6.73: African class: 25 images

In Figure 6.74 fifty images from the African class are selected, extracted and stored in the
database. From the fifty retrieved results, 42 images are relevant to African class and eight

images from the Beaches class.

110

u Combined_Algorithm_Interfaces

— Retrieved Result

[al@]=]

Select Query and View

Eh

— Integrated Featur

Color Feature — Texture Feature Shape Feature:

04 04 04

q » ‘ > 1 »
MeasureWBTn

— Retrieval Rate

23.265

Figure 6.74: African class: 50 images

Figure 6.75 shows the one hundred images selected, extracted and stored in the database.

A single image (query) was selected to help find similar images in the database. Out of one

hundred images retrieved, 98 images are relevant to the African class and two images

belong to the Beaches class.

B Combined_Algorithm Interfaces

Select Query and View

— Retrieved Result:

QueryDatabaseBtn

— Integrated Feat:
— Color Feat -~ Texture Feat — Shape Featt

MeasureWBTn

Retrieval Rate
’V 46.573

Figure 6.75: African class: 100 images

In Figure 6.76, a query image was selected from the Beaches class of twenty five images

and submitted to the system. The retrieved results were twenty five of which eighteen are

relevant to the queried image and seven are irrelevant. The precision is 0.72 (18/25).

111

n Combined_Algorithm_Interfaces

— Retrieved Resutt

— Select Query and View

— Retrieval Rate.

5.95769

Integrated Feat
Color Festt Texture Fest Shape Feat
01 02 01

Figure 6.76: Beaches class: 25 images

Figure 6.77 shows a group of fifty beach images as well as the query image. The obtained

results are 32 relevant and eighteen images that are not relevant.

(32/50).

The precision is 0.64

B Combined_Algerithm Interfaces

|— Retrieved Result:

lect Query and View

r'

— Integrated Feat:

Color Featt

] » ‘ > 4 »
MeasureWBTn

— Retrieval Rate.

23.3076

Figure 6.77: Beaches class: 50 images

Figure 6.78 shows a group of 100 beach images. with the obtained results of 58 relevant to

the queried image and 42 irrelevant. Precision is 0.58 (58/100).

112

B} Combined_Algorithm Interfaces

— Retrieved Result:

(=8 o |

Select Query and Vi

— Integrated Feat
Color Feat Texture Featl Shape Feat
02 02 01

Retrieval Rate ——————————————————
’7 89.037

Figure 6.78: Beaches class: 100 images

Figure 6.79 shows a group of 25 building images. The retrieved results are all relevant to the

query and therefore precision is 1 or 100%.

B Combined_Algorithm Interfaces

— Retrieved Result:

— Select Query and Vi

— Integrated Feat

Color Featt

] » N i

Refrieval Rate —————————————————
’7 37222

Figure 6.79: Building class: 25 images

In the building class, 50 images were extracted and stored in the database. Figure 6.80

shows the single building image used as the selected query within the view panel. Retrieved

results shows precision of 0.44 (22/50).

113

B Combined_Algorithm Interfaces

[=e=](=]

— Retrieved Result: Select Query and View

QueryDatabaseBtn

— Integrated Feat:

Color Featt Texture Feat

Shape Feat

02 01 01
4 » 5 » “ >

RetrievalRate ———————————————————
’> 327757

Figure 6.80: Building class: 50 images

Figure 6.81 shows the building class containing 100 images, that were extracted and stored

in the database. A single building image was used as query to find similar

images in the

database. Of the retrieved results, 31 were relevant to the query and 69 were irrelevant. The

precision is 0.32 (32/100).

B Combined_Algorithm_Interfaces

— Retrieved Result Select Query and View

— Integrated Feat
Color Feat Texture Featt Shape Featt
02 04 0.1

gy Retrieval Rate
PITIALTE ' i - ! ’7 123244
E Enfy = e (55072

Figure 6.81: Building class: 100 images

Figure 6.82 reflects on a retrieved precision of 1 for 25 images from the Busses class. The

same results were obtained for 50 images (see Figure 6.83).

114

B Combined_Algorithm_Interfaces

— Retrieved Result

[— Select Query and View

Browse image

| QueryDatabasestn |
— Integrated Feat
Color Feature. — Texture Feature Shape Feature
01 01 01

K —

MeasureWBTn

Retrieval Rate.

5.83393

Figure 6.82: Busses class: 25 images

—
B Combined_Algorithm _Interfaces

— Retrieved Result

ke

Select Query and

Browse Image

QueryDatabaseBtn |

[Integrated Feat

Color Featt Texture Feat

— Shape Feat:

ol) et

K[—

MeasureWBTn

— Retrieval Rate

43.4626

Figure 6.83: Busses class: 50 images

Figure 6.84 shows the precision of 37 relevant images from a possible 100.

Combined_Algorithm_Interfaces

— Retrieved Result:

Select Query and View

| Integrated Feat:

— Color Featt Texture Featt

Retrieval Rate

163.694

MeasureWBTn

Figure 6.84: Busses class: 100 images

115

Within the Dinosaurus class, precision of 1 were obtained for 25 images (see Figure 6.85)

and 50 images (Figure 6.86).

n Combined_Algorithm Interfaces E] /,E’

— Retrieved Resut — Select Query and View

L@l . ol N7 2
ek S O =
AT = =
Sl ge. 0o

— Retrieval Rate ——————————
! U
YT 4 3 i TN 819401

Figure 6.85: Dinosaur class: 25 images

B Combined Algorithm_Interfaces ==

— Retrieved Result: Select Query and Vi

L S ek v alh . Nvd ol NIt o N
b Yo Lor sl R, b e - o
Lol S =k e 0 o A AR =

— Integrated Feat

Color Featt Texture Featt Shape Featl
02 04 01
4 » 5 »] »

Retrieval Rate ————————————————
‘7 21.4815

Within the group of 100 images, precision of 0.98 was recorded (see Figure 6.87).

Figure 6.86: Dinosaur class: 50 images

116

B Combined_Algorithm_Interfaces

lect Query and Vi

— Retrieved Result:

SRR T R s R
B AT b b N b, S A sl by N
e A N ok N . o
2 o e T o Y o O
P Sk . A e S S o]
Dol it v te A ot ot 4
R o o 3o o e Ml

| Integrated Feat

0.1

Color Featt Texture Feat
0.1
Rl > . »

|

Retrieval Rate:

197.239

MeasureWBTn

Figure 6.87: Dinosaur class: 100 images

Figure 6.88 shows a precision of 0.8 for 25 images of the Elephant class, 0.76 for 50 images

(see Figure 6.89) and 0.42 for 100 images.

B Combined_Algorithm Interfaces

QueryDatabaseBtn

Shape Feat
01
4 »

Figure 6.88: Elephant class: 25 images

117

B Combined_Algorithm Interfaces [EerE=]

— Retrieved Resul: Select Query and

E—

— Integrated Featt

Color Featt Texture Feat Shape Featt
02 03 01
4 » < » 4 »

RetrievalRate —
’(32138

Figure 6.89: Elephant class: 50 images

Figure 6.90 shows a group of Elephant images, which contains 100 images, that were
extracted and stored. A query image is used to query the database. Out of one hundred
images retrieved, 42 images are relevant to the query and 52 images are irrelevant to the

query. Therefore, precision is 0.42 or 42%.

B Combined_ Algorithm Interfaces) EE=

— Retrieved Result: Select Query and Vi

— Integrated Feat

Color Feat Texture Feat
0.1 01 01
] »] » 4 »

RetrievalRate —————————————————
’7 249144

Figure 6.90: Elephant class: 100 images

The flower class recorded precision values of 0.64 for 25 images (Figure 6.91), 0.6 for 50
images (Figure 6.92) and 0.55 for 100 images (Figure 6.93).

118

B Combined_Algorithm Interfaces

— Retrieved Result

— Select Query and View

Browse image

QueryDatabaseBtn

— Integrated Features:
Color Featt Texture Feat Shape Featt
03 ‘ 04 01
4 » 4 >] »

MeasureWBTn

— Retrieval Rete ——————————————

13.7291

Figure 6.91: Flower class: 25 images

Combined_Algorithm Interfaces

— Retrieved Result:

Select Query and View

e

Browse Image

[

=@ |[=

QueryDatabaseBtn

— Integrated Feat

— Color Feat

— Texture Feat Shape Feat

— Retrieval Rate

416261

Figure 6.92: Flower class: 50 images

119

B Combined_Algorithm Interfaces

lect Query and View

e

— Integrated Feat:

Color Featt

292.783

MeasureWBTn

— Retrieval Rate.

Figure 6.93: Flower class: 100 images

The Horses class shown in Figure 6.94, Figure 6.95 and Figure 6.96 recorded precisions of
0.2 for 25 images, 0.24 for 50 images and 0.42 for 100 images.

B Combined_Algorithm Interfaces

— Retrieved Result:

— Select Query and View

[E=SlcR =)

Browse image

— Integrated Feat

Color Featt

19.2931

MeasureWBTn

— Retrieval Rate

Figure 6.94: Horse class: 25 images

120

B Combined_Algorithm _Interfaces == |[x]

| Retrieved Re Select Query and View-

— Integrated Feat

Color Featt Texture Feat Shape Feat
01 0.1 01
“« > < » “ »

64,1544
Figure 6.95: Horse class: 50 images
(B CombmnaT Rigonthm ItaTaces o) ® e

| Retrieved Resutt: lect Query and

[Integrated Featt

Color Feat Texture Featy Shape Feat
02 02 0.1
< » = 2 Rl »
MeasureWBTn

Retrieval Rate ————————————
’7 367.892

Figure 6.96: Horse class: 100 images
Figure 6.97 shows a group of twenty five images from the Mountain class. From the twenty
five images, seven images are relevant to the query and eighteen images are irrelevant to
the query. Therefore, precision is 0.28 (7/25).

121

Combined_Algorithm Interfaces

— Retrieved Result:

— Select Query and View

Browse Image

| QueryDatabaseBtn |

— Integrated Feat

Color Featt Texture Feat

Shape Feat

MeasureWBTn

Retrieval Rate ——————————————————
{ 22202

Figure 6.97: Mountain class: 25 images

Figure 6.98 shows the 50 images from the Mountains class with a recorded precision of 0.28.

B Combined_Algorithm Interfaces

— Retrieved Result:

Select Query and View

QueryDatabaseBtn

— Integrated Feat:

Color Featt Texture Feat

Shape Feat

— Refrieval Rate
’(752725

Figure 6.99 indicate a precision of 0.09 for 100 images.

Figure 6.98: Mountain class: 50 images

122

B Combined_Algorithm_Interfaces

lect Query and

QueryDatabaseBtn

— Integrated Feat

— Color Featt - Texture Feat

|

— Shape Featt

ST

MeasureWBTn

RetrievalRate ———————————
’7 398783

Figure 6.99: Mountain class: 100 images

Within the Food class, precision results of 0.56 for 25 images (Figure 6.100), 0.5 for 50

images (Figure 6.101) and 0.26 for 100 images (Figure 6.102) were recorded.

B Combined_Algorithm Interfaces

— Retrieved Resutt — Select Query and View-

!.

Browse Image

QueryDatabaseBtn

— Integrated Feat

Color Featt

Shape Feat

— Retrieval Rate

16.7412

MeasureWBTn

Figure 6.100: Food class: 25 images

B Combined_Algorithm _Interfaces

Select Query and View

=R <)

QueryDatabaseBtn |

— Integrated Feat

Color Feat Texture Featt

| I

Shape Feat

Ri__E

[Retrieval Rate

53.0214

Figure 6.101: Food class: 50 images

123

B Combined_Algorithm Interfaces

— Retrieved Result:

Select Query and View

W,-;sv‘ .

— Integrated Feat:

Color Featt
|7 0.1
< »

|

387.093

MeasureWBTn

— Retrieval Rate.

Figure 6.102: Food class: 100 images

Table 6.6 put forward evaluation results for the different groups of images (sets of 25, 50 and

100) within the Wang Database of 1000 images. These sets were used to verify accuracy

and retrieval time for the system, within different groups. Each set contains ten classes,

meaning a set of 25 relates to 250 images.

When selecting a query image to find similar images in the database, always avoid images

which tend to give less similarity to the others in the group. In these cases, low precision (of

0.09 in the mountain class) can be the result of bad choices of query image used to find

similar images in the database. Usually, corel sets contain images of the same subject, but

many groups contain a few images that are visually dissimilar.

Table 6.6: Retrieval time and precision for larger groups

Class Retrieval Precision Retrieval Time | Precision | Retrieval Precision
time (25) in | (25) (50) in (50) Time (100) (100)
seconds seconds in seconds

African 5.95841 1 23.265 0.84 46.573 0.98

Beaches 5.95769 0.72 23.3076 0.64 89.037 0.58

Buildings | 3.7222 1 32.7757 0.44 123.244 0.32

Buses 5.83393 1 42.4626 1 163.694 0.37

Dinosaurs | 8.19401 1 21.4815 1 195.239 0.98

Elephants | 11.4246 0.80 32.138 0.76 249.144 0.42

Flowers 13.7291 0.64 41.6261 0.60 292.783 0.55

Horses 19.2931 0.20 64.1544 0.24 367.892 0.42

Mountains | 22.202 0.28 75.2725 0.28 398.783 0.09

Foods 16.7412 0.56 53.0214 0.50 387.093 0.26

Average 11.306 0.72 40.950 0.63 231.35 0.497

Total

124

Figure 6.103 shows the retrieval time for the different set of groups of 25, 50 and 100
images. As is expected the retrieval time increases as the number of images increases. The
retrieval times also differ within the different image classes, as it is dependent on the different
colour, shape and texture computations. For instance, the Horse, Mountain and Food
classes displayed significantly higher retrieval times than the other classes. This is in part
also due to the infrastructure (processing power and memory) limitations used for
implementation purposes. For example, upon doubling the memory and internal buffers, the
retrieval time decreases by at least 25%. Images to be received from the CubeSat are
estimated to be not more than 100 images per initial class, thus putting the estimated

retrieval time as per the evaluations in usable context.

Takeda, Kise and lwamura (2011) stated that a scaled up database, requires a large amount
of memory, and the accuracy of retrieval decreases because of lack of discriminating power
of the features. To improve such a system, they proposed three methods, hamely memory
reduction by sampling feature points, improvement of discrimination power by increasing the
number of feature dimensions, and stabilizing features by reducing redundancy. They
experimented with a database of 10 million image pages and their system achieved 50% in

memory reduction, accuracy of 99.4% and took processing time of 38ms.

Krishnamachari and Abdel-Mottaleb (1998) stated that search time increases linearly,
depending on the size of the database, when features extracted from a query image are
compared to those features stored in a database. One solution to resolve this problem is to
use binary representation techniques to speed up the feature comparison. The time taken to
compare two images is short, but when a query is compared to all the images in the
database, the time taken increases, and an increase in the size of the database will result in
long search delays, thus not suitable for practical purposes. It is still an open problem when
searching for information in large image databases. Although, common search engines still
compare a query against all images in the database, and retrieved results are ranked and
sorted. This way doesn’t scale up for large databases. To compute the retrieval time for a
query against all images in the database, equation 6.1 can be used and it includes time for

taken for sorting and ranking all the retrieved results.
Tiotal = NTysim +O(nlogn) Equation 6.1

where

nis the number of images stored

T.im IS the time takes for similarity of two images
O(nlogn) s sorting time for n elements.

T.ortIS the time takes to rank images
125

450

400

350

300

250

200

150

100

Retrieval Time(in seconds)

50

__ m Retrieval time(25)

o O~ > N & = @ S & >
S O & NS & > O X
1(\\c.- & \be S . o"’% S a < \o“\ ‘2&-} \}é\ «° <O

Classes

M Retrieval time(50)

Retrieval time(100)

Figure 6.103: Comparison of set group retrieval time

Figure 6.104 shows a comparison of the precision of the sets of groups of images at 25, 50

and 100 images per group. The set of the group of 25 images produced higher results with

an average precision of 0.72, compared to 0.63 within the group of 50 images and 0.497

within the group of 100 images. Specific classes, such as the Horse and Mountain class,

produced below average results. This is, however, in line with research results indicating

significantly lower precision in Horse and Mountain classes (Singha & Hemachandran,

2012). This is classified as a high level classification problem and proposals to counter this

include measuring the saliency of features based on the plot of the inter-class and intra-class

distributions as well as further classifying landscape images (Vailaya, Jain & Zhang, 1998).

Semantic modelling, as proposed by Vogel & Schiele (2007), classifies local image regions

into semantic concept classes, such as water, trees and rocks, to increase results.

126

o
=

=
=N

M Groups of 25 Images

Precision

B Groups of 50 Images

Groups of 100 Images

04 -

02 ~ —

African Beach Building Bus Dinosaur Elephant Flower Horse Mountain Food

Class

Figure 6.104: Comparison of Precision values

The African and Dinosaur classes produced very high precision within all three sets, while
the Buses class performed significantly in the 25 image and 50 image groups but lower in the
100 image group. The overall precision for the 25 image and 50 image groups are 0.72 and

0.63 respectively.

Within the analysis of the results it is vital to include a discussion regarding the error rate of
the chosen Corel Wang database. Deselaers (2003) stated that error rate is also an
evaluation measure that represents the percentage of images that are incorrectly identified

from a class. Therefore, the equation of error rate is defined as follows:

ER=1-P(1) Equation 6.2

Where
P(1) is the average precision for the first results over the performed queries

Table 6.7 shows the tested error rate on the sets of image groups retrieved, and its
computation is based on equation 6.2. As the number of images increases, so does the error
rate. Therefore, the error rate is directly proportional to the number of images within a group.
This system is reliable for a sizable database on a set of groups at 14 images. As the
number of sets of image groups grows, a parallel database will be required to ease the
workload of only one database.Therefore, it is advisable to divide sets of groups into smaller
tasks then store them in different databases to reduce error rate in this proposed work.

127

Table 6.7: Error rate of the system

Category of sets Error rate (ER)
Set of group of 14 images ER 14=1-1=00r0%
Set of group of 25 images ER _25=1-0.72 =0.28 or 28%
Set of group of 50 images ER 50=1-0.63=0.370r 37%
Set of group of 100 images ER_100=1-0.497 =0.503 or 50.3%

6.7 Conclusion

In conclusion, an image classification, storage and retrieval system for 3U CubeSat was
designed and developed using a generated graphical user interface in Matlab. This interface
allowed users to select and view a list of images and search the database, provided that

database images features are extracted.

A database was designed to contain all images feature vectors and different tables were
created to assist in the storing of the feature vectors. Distance measure formulae were used

to compare stored images by retrieving values from the desired tables.

The developed software was subsequently tested, as well as the extracted features and
image metadata. The system performance and evaluation was carried out and the proposed
algorithms were evaluated. Obtained results were also compared to existing systems and

showed increased performance and precision.
Lastly, tests were done to verify the accuracy of sets of groups of 25, 50 and 100 images.

Each set contained ten classes. The total number of images in each set equals 250, 500
and 1000 images.

128

CHAPTER 7
CONCLUSION

7.1 Introduction

The purpose of this project is to design an image classification, storage and retrieval system
for a 3U CubeSat. In Chapter Two, various types of feature extraction methods such as
colour, shape and texture were studied with the main objective to classify and extract image
content. In Chapter Three and Four, the two categories of image classification namely
supervised and unsupervised classification were studied in detail. This chapter reflects on
the aim and objectives of the project in Section 7.2, the system testing and evaluation in
Section 7.3 and provide future work and recommendations in Section 7.4.

7.2 Aims and Objectives

The main focus of this study was to develop and design an image classification, storage and
retrieval system for a CubeSat. This objective was achieved by providing an image
classification, storage and retrieval system for a CubeSat that is able to classify images
according to date and time, colour, shape and texture.

In terms of the stated sub-objectives:

7.2.1 To study and analyze space and Earth images and study methods to identify specific
features.
The literature review on how to extract relevant features from an image were studied
in Chapter Two. Techniques according to colour feature, shape feature and texture
feature were investigated in order to identify features in an image. ldentified Colour
feature techniques included Colour Histograms, Colour Coherence Vector, Colour
Correlograms and Colour Moments, and were studied in detail. Shape feature
techniques such as boundary and region based shapes and texture feature
techniques for instance Wavelet Transform, Gabor Wavelet, Tamura Feature, GLCM

and LBP were studied.

7.2.2 To select and propose appropriate image processing techniques to process and
extract features in an image.
From the detailed literature reviews, a suitable image processing technique to
process and extract feature in an image were put forward. The Colour Histogram was
chosen for colour features as it is a a global statistical feature that symbolizes the
distribution of colours in an image. Colour histogram is robust, fast, require low

storage and is easy to implement.

129

7.2.3

724

For the shape features, the chosen method was Mathematical Morphology, as it is .
used to investigate the interaction between an image and a certain chosen structuring
element by using the basic operations of erosion and dilation. This basic operation
assists to identify objects which can be contained in an image. Shape features are
vital in content based image retrieval, as they satisfy the requirement that two similar
shapes in different images can be compared as they tend to be close or identical to

one another’s values.

Within the texture feature the chosen method is GLCM which computes features such
as Contrast, Energy, Correlation, and Homogeneity of gray level integer values. The
contrast computes a total of local variations present in an image while energy is the
sum of squared elements in GLCM. The homogeneity are diagonal distribution of
elements in GLCM. Lastly, correlation illustrates how associated a pixel is to its
neighbour in the image. Using this features an image can be compared and given a
sample image the system will be able to identify what group/classes it might belong
to. As GLCM rely on distance and direction of pixels in an image and four directions

were used.

To design and propose an image classification scheme suited for CubeSat images.

A design and appropriate image classification techniques suitable for satellite images
was designed in Chapter Five. The proposed design has broadly five stages namely
input image stage, feature extraction stage, compare, rank and display stage and
database storage stage. In the input stage an appropriate image is chosen from a list
of images. Image noise is then removed using median filter method and image quality
is improved. Feature extraction stage is whereby all suitable features are extracted
from the image using Colour, Shape, Texture, Date and Time extraction methods. In
the comparison stage, rank and display stage comparison is made using the distance
measure of a query and stored images within the database. When values from the
feature extraction method are used and are close to one another, images can be
retrieved, ranked and displayed. The database storage stage: this is where all

features extracted from an image are kept.

To classify images using image classification techniques (i.e., texture classification),
once received from 3U CubeSat to ground station.

Upon completion of 3U CubeSat to be launched into the desired orbit, it is satellite
images will be downlinked and received on the built bellville ground station, where
images will be store in the database. However, before images can be stored,

appropriate feature extraction techniques will be used to compute, classify and store
130

7.2.5

7.2.6

7.2.7

7.2.8

features in the database. Image features will be stored according to the date and time
it were taken. The colour histogram and colour occurrence frequency pixels value will
be computed and stored in the table called color-feature-table. Shape mathematical
morphology parameters such as area, perimeter and metric will be computed so that
an object in an image can be compared. Texture techniques parameters for instance
as energy, correlation, homogeneity and contrast values will be computed and used
to classify similar images which may belong in the same group.

To design a storage and retrieval system

The objective of designing a storage and retrieval system was achieved in Chapter
Six. In Section 5.4.7 and Section 6.4 a database was designed and different tables

were created to store various computed features being extracted from the images.

To study how images can be ranked and retrieved from a large database

In the proposed design discussed in Chapter Five, distance measure techniques
were studied in Chapter Two (Section 2.7) and used to compare two images. The
query image are compared against images in the database, and matches was
obtained. To compute the ranking of the retrieved images, the distance measure
values are used to find maximum or minimum values relating to each image. Sorting

algorithms are then used to swap the highest value to lowest value.

To study techniques and evaluate the performance of an image retrieval system

In image retrieval systems, the performance and evaluation are vital for checking
efficiency and effectiveness of the system. In this project, the precision and recall
techniques were studied and used to evaluate the proposed system as discussed in
Chapter Six (Section 6.6). Each proposed algorithm namely colour, shape, texture
and date classifier were tested, evaluated and compared to other systems algorithms.
The integrated proposed system when compared to other systems outperforms with
an average precision of 100%. The proposed system is based on classifying, storing

and retrieving of satellite images and can be used in high resolution applications.

To test, implement and integrate the proposed system for the CubeSat environment

Through experiments carried out in Chapter Six, the proposed design (Section 5.4)
was implemented and tested (see Section 6.1 to Section 6.6). Each unit component
of the proposed design was build and and different software tools were constructed in

order to test functionality of the feature extraction, storing and retrieval of the system.

131

The integrated proposed system was implemented, tested and evaluated in Section
6.6.1(d).

7.3 System Testing and Evaluation

System testing was carried out by interfacing all unit components such as colour feature
extractor tool, shape feature extractor tool, texture feature extractor tool and image metadata
tool. Each component was tested as were discussed in section 6.5.1. The system’s
performance was evaluated using test set of Wang database, Ikonos, Quick Bird and Masat-
1 high resolution images and various cloud images found in Google (see Appendix B for
some of the used images). To evaluate the proposed system with other systems, the Wang
database was used as seen in Section 6.6. Each group was reduced from one hundred
image to thirty images from which feature vectors were extracted and stored. The accuracy

of retrieval depends on selecting one query sample from the 10 groups.
7.4 Future Recommendation

Future research include the following:
e Graphical user interface to include other features such as colour moment, colour
correlograms, local binary pattern and colour coherence vectors. Texture features

such as wavelet transforms and Gabor filtering to be implemented

¢ Image classification should consider an image of geolocation or geotagged using

altitude and longitude of the place where the image was taken.

¢ Design and implement standalone image classification system using other high level

languages such as Python, C++ and Java.

e Extend the designed system to support different database systems.

132

References
AAU CubeSat. 2012. OBC Computer. http://www.space.aau.dk/cubesat [20 August 2012].

Abdalla, O. A., Zakaria, M. N., Sulaiman, S. & Ahmad, W. F. 2010. A comparison of
feedforward back propagation and radial basis artificial neural networks: A Monte Carlo
study. Proceedings of the International Symposium on Information Technology (ITSim),
Kuala Lumpur Convention Centre, Kuala Lumpur, Malaysia, 15-17 June 2010.

Abdelrahaman, A. A. & Abdallah, M. E. 2013. K-nearest neighbor classifier for signature
verification system. Proceedings of the International Conference on Computing, Electrical
and Electronics Engineering (ICCEEE), Khartoum, Sudan, 26-28 August 2013.

Achary, T. & Tsai, P. S. 2005. JPEG 2000 Standard for image compression:

concepts,algorithms and VLSI architectures. New Jersey: Wiley.

Afifi, A. J. 2011. Image retrieval based on content using color feature. M.Tech Thesis, Islamic

University of Gaza, Palestine.
Agarwal, B. B. & Tayal, S. P. 2007. Software Engineering. New Delhi: Laxmi.

Agarwal, B. B., Tayal, S. P. & Gupta, M. 2010. Software Engineering and testing. London:
Jones & Bartlett.

Aggarwal, C. C. & Reddy, C. K. 2014. Data clustering: algorithms and applications. Boca
Raton: CRC Press.

Ahmad, A. & Sufahari, S. F. 2012. Analysis of landsat 5 TM data of Malaysian land covers
using isodata clustering technigue. Proceedings of the IEEE Asia-Pacific Conference on
Applied Electromagnetics (APACE), Malaka, Malaysia,11-13 December 2012.

Ahmadian, A. & Mostafa, A. 2003. An efficient texture classification algorithm using Gabor
wavelet. Proceedings of the 25" Annual International IEEE Conference in Medicine and
Biology Society (EMBS), Cancun, Mexico, 17-21 September 2003.

Ahmed, H. Z. 2011. Design and implementation of car plate recognition system for Ethiopian

car plates. MSc. Thesis, Addis Ababa University, Ethiopia.

Aldayel, M. S. 2013. K-nearest neighbor classification for glass identification problem.
Proceedings of the International Conference on Computer Systems and Industrial Informatics
(ICCsSII), American University of Sharjan, Sharjah, United Arab Emirates, 18-20 December
2012.

133

Al-Fayadh, A. H., Mohammed, H. R. & Al-shimsah, R. S. 2012. Gabor wavelet transform in
image compression. Journal of Kufa for Mathemaics and Computer, 1(6):107-113,

December.

Amlani, R. D. 2013. Comparison of different SDLC models. International Journal of

Computer Application & Information Technology, 2(1): 4-8, January.

Amuthajanaki, B. & Jayalakshmi, K. 2013. A hierarchical divisive clutering based multi-view
point similarity measure for document clustering. International Journal of Advances in

Computer Science and Technology, 2 (8):155-159.

Anthony, G., Gregg, H. & Tshilidzi, M. 2007. Image classification using SVMs: One-Against-
One Vs One-Against-All. Proceedings of the 28" Asian Conference on remote Sensing
(ACRS), Kuala Lumpur, Malaysia, 12-16 November 2007.

Aslan, A. R., Sofyali, A., Umit,E., Tola, C.,0z, |. & Gulgonul, S. 2011. TURKSAT-3USAT: A
3U communication CubeSat with passive magnetic stabilization. Proceedings of fifth
international Conference on Recent Advances in Space Technology (RSAT), Istanbul, 9-11
June 2011.

Asubam, W. B. 2011. Improve median filtering algorithm for the reduction of impulse noise in
corrupted 2D greyscale images. MSc Thesis, Kwame Nkrumah University of Science and

Technology, Ghana.

Atwan, A. 2012. 3D Isodata and region growing technigue for segementation a true color
visible human dataset. Proceedings of the 8" International Conference on Informatics and
Systems and Computational Intelligence and Multimedia Computing Track, Cairo University,
Giza, Egypt, 14 -16 May 2012.

Babuscia, A., Corbin, B. & Clem, R. J. 2013. CommCube 1 and 2: A CubeSat series of
missions to enhance communication capabilities for CubeSat. Proceedings of the 2013 IEEE

Aerospace Conference, Big Sky, Montana, 2-9 March 2013.

Banfi, F. 2000. Content based mage retrieval using hand drawn sketches and local features:

A study on visual dissimilarity. PhD Thesis, University of Fribourg, Switzerland.

Baoli, L., Shiwen, Y. & Qin, L. 2003. An improved k-nearest categorization. Proceedings of
the 20" International Conference on Computer Processing of Oriental Languages.

Shenyang,China.

Bataineh, M. H. 2012. Artificial neural network for studying human performance. M.Tech.

Thesis, University of lowa, United States.

134

http://en.wikipedia.org/wiki/Switzerland
http://en.wikipedia.org/wiki/United_States

Benoso, B.L. & Nazuno, J.F. 2008. Cellular Mathematical Morphology. Proceedings of the 6"

Mexican International on artificial intelligence, Aguascalientes, Mexico, 4-10 November 2004.

Bezold, M. 2013. An attitude determination system with mems gryroscope drift compensation
for small satellites. MSc. Thesis, University of Kentucky, Kentucky.

Bhardwaj, R. & Vatta, S. 2013. Implementation of ID3 algorithm. International Journal of

Advanced Research in Computer Science and Software Engineering, 3(6): 845-851, June.

Bhatia, N. & Vandana. 2010. Survey of nearest neighbor techniques. International Journal of

Computer Science and Information Security, 8 (2): 302-305.
Bidgoll, H. 2004. The Internet Encyclopedia. New Jersey: Wiley.

Bovik, A. 2000. Handbook of image and video processing. San Diego: Academic Press.

Bovik, A. 2005. Handbook of Image and Video Processing.Second Edition. Amsterdam:
Elsevier Academic Press.

Bruha, I. 2000. From machine learning to knowledge discovery: Survey of pre-processing
and post processing. Intelligent data analysis, 4 (3-4): 363-374.

Budd. 2007. Content based image retrieval using sketched input. BSc. Thesis, University of
Bath, United Kingdom.

Burt, R. 2011. Distributed electrical power system in CubeSat applications. MSc. Thesis,
Utaha State University, Logan.

Cape Peninsula University of Technology (CPUT). 2013. Nanosatellite Technology at CPUT.
http://active.cput.ac.za/ [10 November 2013].

Carreiras, J.M.B., Pereira, J.M.C., Campagnolo, M.L. & Shimabukuro, Y.E. 2006. Assessing
the extent of agriculture/pasture and secondary succession forest in the Brazilian legal
Amazon using spot vegetation data. Remote sensing of Environment, 101:283-298,

December.

Castelli, V. 2001. Multidimensional indexing structures for content based retrieval. Computer
Science RC 22208(98723):1-65, February.

Chan, C. H. 2008. Muli-scale local binary pattern histogram for face recognition. PhD Thesis,

University of Surrey, England.

135

Chiu, C.Y., Lin, H.C. & Yang, S.N. 2001. Texture retrieval with linguistic descriptions.
Proceedings of the Second IEEE Pacific Rim Conference on Multimedia, Beijing, China, 24-
26 October 2001.

Chocano, E. M. 2004. A comparative study of iterative prototyping vs waterfall process
applied to small and medium sized software project. Master's Thesis, Massachusetts Institute

of Technology, Massachusetts.

Christiyana, C. C. & Rajamani, V. 2012. Comparison of local binary pattern variants for
ultrasound kidney image retrieval. International Journal of Advanced Research in Computer
Science and Software Engineering, 2(10):224-228.

Chun-Yu, N., Shu-Fen, L. & Ming, Q. 2009. Research on removing nhoise in medical images
based on median filter method. Proceedings of the IEEE symposium on Information
Technology(IT) in Medicine and Education, Ji'nan, China, 14-16 August 2009.

Clarke, B., Fokoue, E. & Zhang, H. H. 2009. Principle and theory for data mining and

machine learning. London: Springer.

Clyde Space. 2012. CubeSat electrical power subsystems. http://www.clyde-space.com/ [11
November 2012].

Cuadra, C.A. 2006. Annual review of information science and technology. Medford, NJ:
Information Today.

Czibula, I. G. & Czibula, G. 2008. Clustering based automatic refactorings identification.
Proceedings of the 10™ International Symposium on Symbolic and numeric algorithms for

scientific computing, Timisoara, Romania, 26-29 September 2008.

Dabas, P. & Chaudhary, R. 2013. Survey of network intrusion detection using k-Means
algorithm. International Journal of Advanced Research in Computer Science and Software
Engineering, 3(3): 507- 511, March.

Dellaert, F. 2002. The expectation maximization algorithm. Georgia Institute of Technology,
1-7.

Deotale, N., Vaikole, S. L. & Sawarkar, S. D. 2010. Face recognition using Artificial neural
neworks. Proceedings of the 2" International Conference on Computer and Automation
Engineering (ICCAE), Singapore, 26-28 February 2010.

Deselaers, T. 2003. Features of Image Retrieval. Diplomarbeit im Fach Informatik,

Rheinisch-Westfalische Technische Hochschule Aachen, Germany.

136

http://www.clydespace.com/cubesat_shop/eps%5b12

Devi, V. S. & Murty, M. N. 2002. An incremental prototype set building technique. Pattern
Recognition, 35 (2): 505 - 513.

Dhasal, P., Shrivastava, S. S., Gupta, H. & Kumar, P. 2012. An optimized feature selection
for image classification based on SVM-ACO. International Journal of Advanced Computer
Research , 2 (3):123-128, September.

Dogdas, T. & Akyokus, S. 2013. Documents clustering using GIS visualizing and EM
clustering method. Procedings of the IEEE International Symposium on Innovations in

Intelligent Systems and Applications, Albena, Bulgaria, 19 -21 June 2013.

Dong-Cheng, S., Lan, X. & Ling-Yan, H. 2007. Image retrieval using color and texture
features. The Journal of China Universities of Posts and Telecommunications, 14:1-6,
October.

Edvardsen, S. 2006. Classification of images using CBIR distance measures and genetic
programming: An evolutionary experiment. MSc. Thesis, Norwegian University of Science
and Technology, Norway.

ElAlami, M. E. 2014. A new matching strategy for content based image retrieval system.
Applied Soft Computing, 14:407-418.

Elomaa, T. & Rausu, J. 1999. General and efficient multisplitting of numerical attributes.
Machine Learning, 36: 201-244, May.

Esposito, F., Malerba, D. & Semeraro, G. 1997. A comparative analysis of methods for
pruning Decision Tree. IEEE Transactions of Pattern analysis and Machine Intelligence, 19
(5): 476- 491.

Eva, H., Carboni, S., Achard, F., Stach, N., Durieux, L. & Faure, J.F. 2010. Monitoring forest
areas from continental to territorial levels using a sample of medium spatial resolution

satellite imagery. ISPRS Journal of photogrammetry and remote sensing, 65(2):191-197.

Fang, F.M. 1997. An analytical study on image databases. MSc. Thesis, Massachusetts

Institute of Technology, United States.

Fang, Z. & Yulei, M. 2012. Medical image processing based on mathematical morphology.
Proceedings of the 2™ International Conference on computer applications and system
modelling, Shanxi, Taiyuan, 22-24 October 2010.

Feng, D. D. 2008. Biomedical information technology. London: Academic Press.

Feng, D., Siu, W.C. & Zhang, H.J. 2003. (Eds). Multimedia information retrieval and

management: Technological fundamentals and applications. Berlin: Springer.
137

http://en.wikipedia.org/wiki/Norway

Figueiredo, M., Botelho, S., Drews, P. & Haffele, C. 2012. Self organizing mapping of robotic
environments based on neural networks. Proceedings of the Brazilian Symposimum on

neural networks, Curitiba, Parana, Brazil, 20- 25 October 2012.

Flusser, J. 2005. Moment Invariants in image analysis. World Academy, Engineering and
Technology, 11:376-381.

Frank, E. 2000. Pruning Decision Trees and lists. PhD Thesis, University of Waikato, New

Zealand.

Freitas, A. A. 2002. Data mining and knowledge discovery with evolutionary algorithms.

Berlin: Springer.

French South Africa Institute of Technology (FSATI). 2012. CubeSat projects at CPUT
.http://active.cput.ac.za/fsati [11 July2012].

Fuentealba, C. & Charpentier, P. 2004. The K-nearest neighbor method for automatic
identification of wood products. Proceedings of the 14th International Conference on
Electronics, Communications and Computer (CONIELECOMP’04), Veracruz, Mexico, 16-18
February 2004..

Fuertes, J., Lucena, M., Perez, N. & Martinez, J. 2001. A scheme of color image retrieval
from databases. Pattern recognition letters, 22:323-337.

Futrell, R. T., Shafer, D. F. & Shafer, L. . 2002. Quality software project management. New
Jersey: Prentice Hall PTR.

Gejun, Z., Changsheng, M. & Feng, X. 2010. The K-nearest neighbor fast searching
algorithm of scattered data. Proceedings of the International Conference on Future
Information Technology and Management Engineering(FITME), Changzhou, China, 9-10
October 2010.

Geng, X., Liu, T. Y. & Qin, T. 2008. Query dependent ranking using K-nearest neighbor.
Proceedings of the 31% Annual Internationala ACM SIGIR Conference on Research and

development in Informational retrieval, Singapore, 20-24 July 2008.

Ghorpade, J. & Agarwal, S. 2011. SOM and PCA approach for face recognition: A survey.
International Journal of Computer Trends and Technology (IJCT): 1-6,March-April.

Gloe, T. 2012. Forensic analysis of ordered data structures on the example of JPEG files.
IEEE International Workshop on Information Forensics and Security (WIFS), Costa Adeje,

Tenerife, Spain, 2-5 December 2002.

Gonzalez, R. C. & Woods, R. E. 2002. Digital image processing. New Jersey: Prentice Hall.
138

Gopi, E. S. 2007. Algorithms collections for digital signal processing applications using

Matlab. Dordrecht: Springer.

Gotlieb, C. C. & Kreyszig, H. E. 1990. Texture descriptors based on co-occurrence matrix.

Computer vision, graphics and image processing, 51(1): 70-86.

Gu, H., Su, G.D. & DU, S. 2004. Fuzzy and isodata classification of face contours.
Proceedings of the third International Conference on Machine Learning and Cybernetics,
Shanghai, China, 26-29 August.

Gualtieri, J. A. & Cromp, R. F. 1998. Support Vector Machine for hyperspectral remote
sensing classification. Proceedings of the 27" Advances in Computer Assisted Recognition
(AIPR) Workshop, Washington, DC, 14 -16 October 1998.

Guan, H., Antani, S., Long, L. R. & Thoma, G. R. 2009. Bridging the semantic gap using
ranking svm for image retrieval. Proceedings of the 6" IEEE International Symposium on

Biomedical Imaging: From Nano to Macro, Boston, Massachusetts, 28 June — 1 July 2009.

Gupta, G.K. 2011. Introduction to data mining with case studies. Second edition. New Delhi:
PHI Learning Private Limited.

Hajek, M., Dezortova, M., Materka, A.. & Lerski, R. 2006. Texture analysis for magnetic
resonance imaging. Prague: Med4publishing.

Han, J. & Kamber, M. 2001. Data mining: concepts and techniques. London: Academic
Press & Morgan Kaufman.

Han, J., Kamber, M. & Pei, J. 2012. Data mining: concepts and techniques. Waltham:

Elsevier.

Hang, C. C. 2004. Using biased support vector machine in image retrieval with self

organizing map. MSc. Thesis, Chinese University of Hong Kong, China.

Haralick, R. M., Shanmugam, K., & Dinstein, |. 1973. Textural Features for image
classification. IEEE Transactions on systems, man and cybernetics, SMC-3(6): 610-621,

November.

Hardikar, S., Shrivastava, A., & Choudhary, V. (2012). Comparison between ID3 and C 4.5 in
contrast to IDs. VSRD International Journal of Computer Science and Information
Technology , 2 (7): 659-667.

He, D. 2010. Three new methods for color and textures based image matching in content

based image retrieval. PhD Thesis, Dalhousie University, Canada.

139

He, G. & Zhu, Y. 2011. A self-adaptive EM-HMRF image fusion algorithm based on non-
homogeneous class and direction. Proceedings of the APSIPA Annual Summit and
Conference, Xi'an, China, 19-21 October 2011.

He, Z. & Zhan, Z. 2011. Digital halftoning based on k-Means clustering. Proceedings of the
7" IEEE Conference on Industrial Electronics and Applications (ICIEA), Singapore, 18-20
July 2012.

Hong, P., Tian, Q. & Huang, T. S. 2000. Incorporate support vector machines to content
based image retrieval with relevant feedback. Proceedings of the IEEE International

Conference on Image processing(ICIP). Vancouver,Canada,10-13 September 2000.

Hongli, X., De, X. & Yong, G. 2004. Region based image retrieval using color coherence
region vectors. Proceedings of the 7" International Conference on Signal Processing
(ICSP’04), Beijing, China, 31 August- 4 September 2004.

Hongping, H. & Yanping, B. 2011. A kind of license plate location based on mathematical
morphology and edge detection. Proceedings of the International conference on Electronic

and Mechanical Engineering and Information Technology, Harbin, China, 14 August 2011.

Horais, B. & Twiggs, R. 2001. Re-injecting innovation into the space test process.

Proceedings of the 15" Conference on small satellites, Logan, Utah, 13-16 August 2001.

Hu, M. K. 1962. Visual pattern recognition by moment invariants. IRE Transaction
information theory, 8 :179-187.

Huang, J., Kumar, R. S., Mitra, M. & Zhu, W. I. 2002. Image sub region query using color
correlograms. Cornell Research Foundation. http://www.google.com/patents/US6430312.

Huang, Z., & Leng, J. 2010. Analysis of Hu's moment Invariants on Image scaling and
rotation. Proceedings of the 2" International Conference om Computer Engineering and
Technology (ICCET), Chengdu, China, 16-18 April 2010.

Hui, D. 2009. An improved method of CBR retrieval based on self organizing map.
Proceedings of the IEEE International Conference on Inelligent Computing and Intelligent
Systems, Shanghai, China, 20-22 November 2009.

Hussain, C.A., Rao, D.V. & Praveen, T. 2013. Color histogram based retrieval. International

Journal of Advanced Engineering Technology, 4(3):63-66,September.

Imandoust, S. B. & Bolandraftar, M. 2013. Application of K-nearest (KNN) approach for
predicting economic events: Theoretical Background. Journal of Engineering Research and
Application, 3(5): 605-610.

140

Indian Institute of Technology Kanpur (IITK). 2013. Jugnu Subystems.
http://iitk.ac.in/me/jugnu/subsystem.html [13 November 2013].

Ismailoglu, N., Benderli, O., Korkmaz, I., Kolcak, T. & Tekmen, Y. C. 2002. A real time image
processing subsystem: Gezgin. Proceedings of the 16™ Annual AIAA/USU Conference on
small satellites, Logan Utah, 12-15 August 2002.

Ismailoglu, N., Benderli, O., Yesil, S., Sever, R., Okcan, R. & Oktem, R. 2005. Gezgin 2: An
advanced image processing subsystem for earth observing small satellites. Proceedings of
the 2" International Conference on Recent Advances in Space Technologies, Instanbul, 9-11
June 2005.

Jahangeer, N.B. & Baichoo, S. 2013. Face recognition using chain codes. Journal of Signal
and Information Processing (JSFP), 4:154-157.

Jain, S. 2013. Brain cancer classification using glcm based feature extraction in artificial
neural network. International Journal of Computer Science & Engineering
Technology(IJCSET), 4(7):966-970, July.

Jalote, P. 2008. A concise introduction to software engineering. London: Springer.

Jamil, N., Igbal, S. & Igbal, N. 2001. Face recognition using neural networks. Proceedings of
the IEEE International Multi Topic Conference (IEEEINMIC), Lahore University of

Management Sciences, Pakistan, 28 — 30 December 2001.

Jamwal, D. 2010. Analysis of software development models. International Journal of
Computer Science and Technology (IJCST), 1(2):61-64, December.

Jiang, C., Zhao, W., Xu, W. & Meng, X. 2009. Research of Fingerprint recognition.
Proceedings of the 8" IEEE International Conference on Dependable, Autonomic and Secure
Computing (DASC’09), Changdu, China, 14 December.

Jin, A. H., Chekima, A., Dargham, J. A. & Fan, L. C. 2002. Fingerprint identification and
recognition using backpropagation neural network. Proceedings of Student Conference on

Research and Development, Sah Alam, Malaysia,17- 17 July 2002.

Jin, Y.A. & Xiao, F. 2013. Eliminating error accumulation in hierarchical clustering algorithms.
Proceedings of the 4™ International Conference on Emerging Intelligent Data and web
Technologies, Xi'an, China, 9-11 September 2013.

Jivani, A. G. 2013. The novel k-nearest neighbor algorithm. Proceedings of the International
Conference on Computer Communication (ICCCI-2013), Coimbatore, India, 4-6 January
2013.

141

Junfeng, Z. & Leping, X. 2010. The fault diagnosis of marine engine cooling system based
on artiificial neural network. Proceedings of the 2™ International Conference on Computer

and Automation Engineering, Singapore, 26- 28 February 2010.

Kadir, A., Nugroho, L. E., Susanto, A. & Santosa, P. I. 2011. Neural network application on

foliage plant identification. International Journal of Computer Applications, 29 (9):15-22.

Kaghyan, S. & Sarukhanyan, H. 2012. Activity recogntion using k-nearest neighbor
algorithm on smartphone with tri-axial accelerometer. International Journal Information

models and analyses , 1: 146-156.

Kakar, P., & Sudha, N. 2012. Verifying temporal data in geotagged images via sun azimuth

estimation. IEEE Transaction on Information Forensics and Security, 7(3):1029-1039.

Kale, K. V., Mehrotra, S. C. & Manza, R. R. 2007. Advances in computer vision and
information technology. New Delhi: I.K International Publishing House.

Kalman, A. & Reif, A. 2008. MISC™: A novel approach to low cost imaging satellites.
Proceedings of 22 second annual AIAA/USU Conference on small satellite, Logan, Utah,
USA, August 10.

Kan, S. H. 2003. Metrics and models in software quality engineering. Boston, MA: Pearson

Education.

Kan, S. K. 2008. Metrics and models in software quality engineering. Second Edition,

Boston: Pearson Education.

Kang, K. H., Yoon, Y. I, Choi, J. S., Koo, H. & Choi, J. H. 2007. Additive texture information
extraction using color coherence vector. Proceedings of the 7" World Scientific Engineering
Academy and Society (WSEAS) International Conference on Multimedia systems and signal
processing. HangZhau, China, 17 April 2007.

Kantardzic, M. 2011. Data Mining: Concepts, models, methods and algorithms. New Jersey:
Wiley and IEEE Press.

Kaplan, C. 2006. Leo Satellites: attitude determination and control components: some linear

attitude control techniques. MSc.Thesis, Middle East Technical University, Turkey.

Karthikeyan, T., Manikandaprabhu, P. & Nithya, S. 2014. A survey on text and content based
image retrieval system for image mining. International Journal of Engineering Research &
Technology (IJERT), 3(3):509-512, March.

Karvonen, M. 2008. Using mathematical morphology for geometric music retrieval. MSc.

Thesis, University of Helsinki, Finland.
142

http://en.wikipedia.org/wiki/Turkey
http://en.wikipedia.org/wiki/Finland

Kascheck, R., Kop, C., Steinberger, C. & Fliedl, G. 2008. Information systems and e-

business technologies. Berlin: Springer.

Kashef, R. & Kamel, M. S. 2007. Cooperative partitional-divisive clustering and its
application in Gene expression analysis. Proceedings of the 7" IEEE International
Conference on Bioinformatics and Bioengeering, Boston, Massachusetts, USA, 14-17
October 2007.

Kee, E., Johnson, M. K. & Farid, H. 2011. Digital image authentication from JPEG headers.

IEEE Transactions on Information Forensics and Security, 6(3):1066-1075, September.

Kehtarnavaz, N. & Gamadia, M. 2005. Real time image and video processing: From research
to reality. Dallas: Morgan & Claypool.

Khursid, K., Mahmood, R. & Islam, Q. U. 2013. A survey of camera modules for CubeSats:
Design of imaging payload of ICUBE-1. Proceedings of the 6" International Conference on
Recent Advances in Space Technologies (RAST), Istanbul, Turkey, 12-13 June 2013.

Kim, W., Lee, H. K. & Yoon, K. 2008. Hierarchial adult image rating system. LNCIS, 345:
894-899.

Klofas, B. & Leveque, K. 2013. A survey of CubeSat communication systems: 2009-2012.
Proceedings of the 10" Annual CubeSat Developers Workshop, CalPoly, San Luis Obispo,
24-26 April 2013.

Kotsiantis, S. B. 2007. Supervised Learning: A review of classification technigues.
Informatica 31: 249 - 268, July.

Krishnamachari, S. & Abdel-Mottaleb, M. 1998. A scalable algorithm for image retrieval by
color. Proceedings of International Conference on image processing (ICIP), Chicago, lllinois,
USA, 4-7 October 1998.

Krishnamurty, N. 2008. Dynamic modelling of CubeSat project move. M.Tech. Thesis, Lulea

University of Technology, Sweden.

Kumar, D. A., & Esther, J. 2011. Comparative study on CBIR based by color histogram,
Gabor and wavelet Transform. International Journal of Computer Appplications, 17(3): 37-44,
March.

Kurhe, A. B., Satonka, S. S. & Khanale, P. B. 2011. Color matching of images by using
Minkowski form distance. Global Journal of Computer Science and Technology, 11(5): 86-89,

April.

143

http://en.wikipedia.org/wiki/Sweden

Lalhmingliana, Bhattacharyya, D. K. & Sing, K. R. 2013. Fingerprint indexing and verification.
International Journal of Computer Science Engineering and Information Technology, 3(2):
167-176, June.

Laplante, P. & Neill, C. 2003. A class of kalman filters for real time image processing. The
International Society for Optics Engineering (SPIE), Realtime imaging VIl (5012), Santa
Clara, CA, April 2003.

Larranaga, P. & Lozano, J. A. 2011. Estimation of distribution algorithms: a new tool for
evolutionary computation. Norwell, Massachusetts : Kluwer Academic Publishers.

Larson, J. W. & Wertz, J. R. 1999. Space mission analysis and design. London: Kluwer

Academic Publishers.

Latha, Y. M., Jinaga, B. C. & Reddy, V. K. 2007. Content based color image retrieval via
wavelet transforms. International Journal of Computer Science and Network Security, 7
(12):38-45, December.

Lavoie, T. & Merlo, E. 2012. An accurate estimation of the levenshtein distance using metric
trees and manhattan distance. The 6" International workshop on Software Clones (IWSC),
Zurich, Switzerland, 4 June 2012.

Lee, C. H. & Fu, Y. H. 2008. Web usage mining based on clustering of browsing features.
Proceedings of 8" International Conference on Intelligent Systems Design and Applications
(ISDA), Kaohsiung, Taiwan, 26-28 November 2008.

Lehman, T. J. & Sharma, A. 2011. Software development as a service: agile experiences.
Proceedings of the Annual SRII Conference, San Jose, California, USA, 29 March - 2 April
2011.

Li, C., Li, J., Fu, B. & Yang, X. 2012a. Fingerprint verification based on DFB and Hu Invariant

moments. Journal of computational information systems, 8(4):1407-1414.

Li, J., Shao, B., Li, T. & Ogihara, M. 2012b. Hierarchical co-clustering: A new way to
organize the music data. IEEE Transactions on Multimedia, 14(2): 471 - 481, April.

Liang, J. Z. 2003. Chinese web page classification based on self organizing mapping neural
networks. Proceedings of the 5" International Conference on Computational Intelligence and
Multimedia Applications (ICCIMA'03).

Lin, C. H,, Chen, R. T., & Chan, Y. K. 2009. A smart content based image retrieval sysem

based on color and texture feature. Image and vision computing, 27: 658-665.

144

Lin, H. C., Chiu, C. Y. & Yang, S. N. 2002. Texture analysis and description in linguistic
terms. Proceedings of the 5™ Asian Conference on Computer Vision (ACCV2002).

Melbourne, Australia, 25 January 2002.

Lin, H. C., Chiu, C. Y., & Yang, S. N. 2003. Finding textures by textual descriptions, visual
examples and relevance feedbacks. Pattern recognition letters 24 :2255 - 2267.

Liping, Z., & Wensheng, G. 2009. Self organizing maps neural networks on parallel cluster.
Proceedings of the 1* International Conference on Information Science and Engineering
(ICISE), Nanjing, China, 26 - 28 December 2009.

Liu, B. & Liew, S. 2007. Texture retrieval using grey level co-occurrence matrix for Ikonos
panchromatic images of earthquake in Java 2006. Proceedings of the IEEE International

Geoscience and remote sensing symposium (IGARSS), Barcelona, 23-28 July 2007.

Liu, F., Lin, C.X., Cui, P.Y. & Dong, T. 2007. Palmprint recognition based isodata clustering
algorithm. Proceedings of the International Conference on Wavelet Analysis and Pattern
Recognition, Beijing, China, 2-4 November 2007.

Long, F., Zhang, H. & Feng, D. 2002. Fundamentals of content based image retrieval. In
Feng, D., Siu, W.C. & Zhang, H. (Eds). Multimedia Information Retrieval and Management

Technology Fundamentals and Applications, Berlin: Springer.

Luckey, T. & Phillips, J. 2006. Software project management for dummies. Hoboken: Wiley.

Madsker, L. R. & Jain, L. C. 2000. Recurrent neural networks: Design and applications. New
York: CRC Press.

Mahanti, R., Neogi, M. S. & Bhattacherjee, V. 2012. Factors affecting the choice of software
life cycle models in the software industry: An empirical study. Journal of Computer Science ,
8 (8): 1253-1262.

Maheswary, P. & Srivastava, N. 2009. Retrieval of remote sensing images using colour &
texture attribute. International journal of Computer Science and Infomation Security (IJCSIS),
4(1-2):1-5.

Maheshwari, S. & Jain, D. C. 2012. A comparative analysis of different types of models in
software development lifecycle. International Journal of Advanced Research in Computer
Science and Software Engineering, 2(5): 285-289, May.

Mahmood, A. M.& Kuppa, M. R. 2012. A novel pruning approach using expert knowledge for

data-specific pruning. Engineering with computers, 28:21-30.

145

Makarov, A. 2012. Fingerprint quality estimation using self organizing maps. MSc.Thesis,

Technical University of Denmark, Denmark.

Marciniak, J. J. 2001. Encyclopedia of software engineering. Second Edition. New York:
John Wiley & Sons.

Marques, O. 2011. Practical image and video processing using Matlab. New Jersey: Wiley.

Masat-1. 2012. Masat-1 first photographs taken during filght.
http://cubesat.bme.hu/data/sajtokozlemeny/2012_03_14 Masat-1urfelvetelek.zip[14
November 2013].

Mathur, S. 2012. Artificial intelligence based feature extraction in content based image

retrieval. M.Tech. Thesis, Jagan Nath University, Bangladesh.

M-Cubed. 2013. Michigan multipurpose minisat(M3).http://umcubed.org/ [13 November
2013].

Melgani, F. & Bruzzone, L. 2004. Classification of hyperspectral remote sensing images with
support vector machines. IEEE Transactions on Geoscience and Remote Sensing, 42(8):
1778 - 1790, August.

Mikhrag, A. K. 2013. Content based image retrieval(CBIR) system based on the clustering

and genetic algorithm. MSc. Thesis, Islamic University of Gaza, Palestine.

Ming, H., Wenying, N. & Xu, L. 2009. An improved Decision Tree classification algorithm
based on ID3 and the application in score analysis. Proceedings of the Control and Decision
Conference (CCDC),Guilin, 17 -19 June 2009.

Mishra, A., & Dubey, D. 2013. A comparative study of different software development life
cycle models in different scenerios. International Journal of Advance Research in Computer

Science and Management Studies, 1 (5): 64-69,0ctober.
Mitsa, T. 2010. Temporal data mining. Boca Raton: Chapman & Hall/CRC Press.

Mladenovic, V., Lutovac, M. & Lutovac, M. 2012. Automated proving properties of

expectation maximization algorithm using symbolic tools. Telfor Journal , 4 (1). 54-59.

Mohamed, W. N., Salleh, M. M. & Omar, A. H. 2012. A comparative study using expert
knowledge for data specific pruning. Proceedings of the IEEE International Conference on

Control system, Computing and Engineering, Penang, Malaysia, 23-25 November.

146

http://en.wikipedia.org/wiki/Bangladesh

Mohammed, A. S., Benyettau, M., Sweeting, M. N., & Cooksley, J. R. 2005. Initial attitude
acquisation result of the ALSAT-1 first algerian microsaellite in orbit. Proceedings of the IEEE

Conference on Network, Sensing and Control, 19-22 March 2005.

Mohapatra, P. K. 2010. Software Engineering: a life cycle approach. New Delhi: New Age

International.

Mohmood, A. M., & Kuppa, M. R. 2011. A novel pruning approach using expert knowledge
for Intelligent in-exact classification. Proceedings of the 2" International Conference on
Emerging Applications of Information Technology, Los Alamitos, California, 19-20 February
2011.

Monteiro, |. Q., Queiroz, S. D., Carneiro, A. T., Souza, L. G. & Barreto, G. A. 2006. Face
recognition independent of facial expression through som based classifiers. Proceedings of
the 7" International Telecommunications Symposium (ITS2006), Fortaleza-CE, Brazil, 3-6
September 2006.

Moral, H. 2004. Modeling of activated sudge process by using artificial neural networks. MSc.
Thesis, Middle East Technical University.

Mujumdar, A., Masawal, G. & Chawan, P. M. 2012. Analysis of various software process
models. International Journal of Engineering Research and Applications (IJERA), 2(3): 2015-
2021.

Munassar, N. M.A. & Govardhan, A. 2010. A comparison between five models of software
engineering. International Journal of Computer Science, 7(5): 94-101, September.

Munshi, A. 2010. Skin texture analysis using neural networks for medical diagnosis. M.Tech

Thesis, Jadavpur University, Kolkata, India.

Murali , N.V., Raja, K. & Bhanu, K.S. 2013. Content based image search and retrieval using
indexing by k-means clustering technique. International Journal of advanced research in

computer and communication engineering, 2(5):2181-2189, May.

Narayana, M. & Kulkarni, S. 2012. Comparison between euclidean distance metroic and
SVM for cbir using level set features. International Journal of Engineering Science and

Technology, 4 (1): 56-66, January.

Nayak, D. R., Mahapatra, A. & Mishra, P. 2013. A survey on rainfall prediction using artificial

neural network. International Journal of Computer Applications, 72(16):32-40, June.

Ng, H. P.,, Ong, S. H., Foong, K. W., Goh, P. S. & Nowinski, W. L. 2006. Medical image

segmentation using k-Means clustering and improved watershed algorithm. Proceedings of

147

the 7" IEEE Southwest Symposium on Image Analysis and Interpretation, Grand Hyatt

Denver Downtown, Denver, Colorado, 26-28 March 2006.

Niuniu, X. & Yuxun, L. 2010. Review of Decision Trees. Proceedings of the 3" |[EEE
International Conference on Computer Science and Information Technology (ICCSIT),
Chengdu, China, 9- 11 July 2010.

Ojala, T. & Pietikainen, M. 1999. Unsupervised texture segmentation using feature
distributions. Pattern recognition, 32:477-486.

Olaofe, Z. O. & Folly, K. A. 2012. Wind power estimation using recurrent neural network
technique. Proceedings of the IEEE Power Engineering Society Conference and Exposition
in Africa (PowerAfrica), Witwatersrand, Johanneburg, 9-13 July 2012.

Omran, M.G.H. 2004. Particle Swarm optimization methods for pattern recognition and
image processing. PhD Thesis, University of Pretoria, South Africa.

Pachghare, V. K., Kulkarni, P. & Nikam, D. M. 2009. Intrusion detection system using self
organizing maps. International Conference on Intelligent Agent & Multi-Agent Systems,
Chennai, India, 22-24 July 2009.

Pal, M. 2002. Factor influencing the accuracy of remote sensing classifications: A

comparative study. PhD Thesis, University of Nottingham, England.

Pan, J.S. 1996. Improved algorithms for VQ Codeword search, codebook design and

codebook index assignment. PhD Thesis, University of Edinburgh, United Kingdom.

Partio, M., Cramariuc, B., Gabbouj, M. & Visa, A. 2002. Rock texture retrieval using gray
level co-occurrence matrix. Proceedings of the 5" Nordic Signal Processing Symposium
board Hurtigruten M/S Trollfjord, Norway, 4-7 October 2002.

Pass, G. & Zabih, E. 1996. Histogram refinement for content based image retrieval.
Proceedings of the third IEEE workshop on Applications of Computer Vision (WACV’96),

Sarasota, Florida, 2-4 December.

Pass, G., Zabih, R. & Miller, J. 1996. Comparing images using color coherence vectors.
http://www.ossipovorchestra.ru/images/Comparing%20lmages%20Using%20Color%20Cohe
rence%20Vectors.pdf. [12 August 2012].

Pathak, B. & Barooah, D. 2013. Texture analysis based on the gray level co-occurrence
matrix considering possible orientations. International Journal of advanced research in

Electrical electronics and Instrumentation Engineering, 2(9):4206-4212.

148

Patil, P. G. & Hegadi, R. S. 2014. Classification of offline handwritten signatures using
wavelets and a pattern recognition neural network. Proceedings of IJCA on National

Conference on Recent advances in Information Technology NCRAIT (4):5-9, February 2014.

Polaschegg, M. 2005. Study of a CubeSat mission. MSc. Thesis, Karl Franzens University of

Craz, Austria.

Prasad, S. S., Savitri, T. S. & Krishna, I. M. 2011. Classification of multispectral satellite
images using clustering with svm classifier. International Journal of Computer Applications ,
35 (5): 32-44, December.

Pressman, R. S. 2005. Software Engineering: A practitioner's approach. 6" Edition. New

York: McGrawHilll International Edition.

Purandare, A. 2004. Unsupervised word sense discrimination by clustering similar contexts.
MSc. Thesis, University of Minnesota, United States.

Puzicha, J., Held, M., Ketterer, J., Buhmann, J. M. & Fellner, D. W. 2000. On spatial
quantization on color images. IEEE Transactions on image processing, 9(4): 666-682.

Qian, G., Sural, S. & Pramanik, S. 2002. A comparative analysis of two distance measures in
color image databases. Proceedings of the International Conference on Image Processing
(ICIP), Rochester, New York, 22-25 September 2002.

Raghupathi, G., Anand, R. S. & Dewal, M. L. 2010. Color and textures features for content
based image retrieval. Proceedings of he 2" International Conference on multimedia and

content based image retreval, 21-23 July 2010.

Rahimi, E., Shokouchi, S. B. & Sadr, A. 2007. A parallelized and Pipedlined Datapath to
implement isodata algorithm for rosette scan images on a reconfigurable hardware. The
IEEE International Conference on Granular Computing, Silicon Valley, California, 2-4
November 2007.

Rai, P. & Singh, S. 2010. A survey of clustering techniques. International Journal of
Computer Applications, 7(12):1-5, October.

Ramasundaram, S. & Victor, S. P. 2013. Algorithms for text categorization: A comparative
study. World Apllied Sciences Journal , 22(9):1232-1240.

Ramdas, B. P., Keshav, S. B. & Pradeep, M. P. 2012. Wavelet transform techniques for
image resolution enhancement. International Journal of Emerging Technology and Advanced
Engeering, 2: 62-65, April.

149

Rao, C. S., Kumar, S. S. & Mohan, B. C. 2010. Content based image retrieval using exact
legendre moments and support vector machine. The International Journal of Multimedia &
ITS Applications , 2(2):69-79, May.

Rehman, M. Z. & Nawi, N. H. 2011. Improving the accuracy of gradient descent back
propagation algorithm (GDAM) on classification problems. International Journal on New
Computer Architecture and their Applications (IINCAA), 1(4): 838-847.

Rejeshwari, S. & Sharmila, T. S. 2013. Efficient quality analysis of MRI image using
preprocessing techniques. The IEEE Conference on Information and Communication
Technology (ICT 2013), JeJu Island, 11-12 April 2013.

Rongjie, L., Jie, Z., Pingjian, S., Fengjing, S. & Guanfeng, L. 2008. An agglomerative
hierarchical clustering based high resolution remote sensing image segmentation algorithm.
Proceedings of the International Conference on Computer Science and Software
Engineering (CSSE), Wuhan, Hubei, China, 12-14 December 2008.

Sabale, R. G. & Dani, A. R. 2012. Comparative study of prototype model for software

engineering with system development life cycle. Journal of Engineering, 2(7):21-24, July.

Salmon, B.P. 2012. Improved hyper-temporal feature extraction methods for land cover

change detection in satellite time series. PhD Thesis, University of Pretoria.

Sandau, R. 2003. Potential for high resolution imaging with small satellites. Proceedings of
the IEEE International Conference on Recent Advances in Space Technologies, Istanbul,
Turkey, 20-22 November 2003.

Sandnes, F. E. 2009. Geo-spatial tagging of image collections using temporal camera usage
dynamics. Proceedings of the 10" International symposium on pervasive systems,algorithms

and networks, Kaohsiung, Taiwan, 14-16 December 2009.

Sangita, O. & Dhanamma, J. 2011. An improved k-Means clustering approach for teaching
evaluation. In Unnikrishnan, S., Surve, S. & Bhoir, D. (Eds). Advances in computing,
communication and control. London: Springer: 108-115.

Sayers, C. 1991. Self organizing feature maps and their applications. Technical Report,

University of Pennsylvania.

Scholz, A. 2003. Compass-1: Hands on experience for the space engineers of tommorrow.
Proceedings of the IEEE international Conference on Recent Advances in Space

Technologies, Istanbul, Turkey, 20-22 November 2003.

150

Schor, D., Scowcroft, J. & Kinsner, W. 2009. A command and data handling unit for pico
satellite missions. Proceedings of the Canadian Conference on Electrical and Computer
Engineering (CCEC), Canada, 3-6 May 2009.

Serra, J. 1982. Image analysis and mathematical morphology. San Diego: Academic Press.

Seul, M., O’Gorman, L. & Sammon, M. J. 2000. Practical algorithms for image analysis:

Description,examples and codes, New York: Cambridge University Press.

Sha, L., Ragunathan, R. & Sathaye, S. S. 1994. Generalized rate-monotonic scheduling
theory: A framework for devolping real time systems. Proceedings of the Institute for
Electrical and Electronics Engineers (IEEE), 82 (1):68-82, January.

Shan, C., Gong, S. & McOwan, P. W. 2009. Facial expression recognition based on local

binary patterns: A comprehensive study. Image and Vision Computing, 27: 803-816.

Sharma, A. K., Sharma, S. S., & Mehta, I. C. 2012. A comparative analysis of software
process models. Proceedings of the National Conference on Recent Trends in Computing
NCRTC (5), Foundations of Computer Science, New York, 16-20 May 2012.

Sharma, S. & Choudhary, S. 2013. Clinical anatomy image retrieval system using local tera
pattern. International Journal of Advances in Computer Science and Technology, 2(5):58-64.

Shekar, B. H. & Pilar, B. 2014. Shape representation and classification through pattern
spectrum and local binary pattern: A decision level fusion approach. The 5" International
Conference on Signal and Image processing (ICSIP), Bangalore, Karnataka, 8-10 January
2014.

Shen, W., Wu, G., Sun, Z., Xiong, W., Fu, Z. & Xiao, E. 2011. Study of classification methods
of remote sensing image based on Decision Tree technology. The 2011 International
Conference on Computer Science and Service System (CSSS), Nanjing, China, 27-29 June
2011.

Shi, Z. H., Li, L., Yin, W,, Fang, N. F. & Song, Y.T. 2010. Use of multi-temporal landsat
images for analyzng forest transition in relation to socioeconomic factors and the
environment. International Journal of Applied Earth Observation and Geoinformation, 13: 468
- 476.

Shih, T., Huang, J., Wang, C., Hung, J. & Kao, C. 2001. An Intelligent Content-based Image
Retrieval System Based on Color, Shape and Spatial Relations. Proceedings of the National
Science council, Republic of China (ROC), 25(4):232-243.

151

Simpson, J. J., Mclintire, T.J. & Sienko, M. 2000. An improved hybrid clustering algorithm for

natural scenes. IEEE Transactions on Geoscience Remote Sensing, 38:1016-1032.

Singh, S. M. & Hemachandran, K. 2012. Content based image retrieval based on the
integration of color histogram and gabor texture. International Journal of Computer
Applications, 59 (17):13-22, December.

Singha, M. & Hemachandran, K. 2012. Content based image retrieval using color and
texture. Signal and Image Processing: An International Journal (SIPI1J) ,3(1): 39-57,
February.

Siraj, F., Salahuddin, M. A. & Yusof, S. A. 2010. Digital image classification for Malaysian
blooming flower. Proceedings of the Second International Conference on Computational
Inelligence, Modelling and Simulation, Bali , Indonesia, 28-30 September 2010.

Sirisha, E., Kumar, S.P., Vishnu, P.H. & Srinivas, Y. 2013. Image retrieval using wavelet
decomposition,color correlogram and color mean. International Journal of Advanced

Research in Computer Science and Software Engineering, 3(9):1176-1180, September.

Sivakumar, M. V., Roy, P. S., Harmsen, K. & Saha, S. K. 2003. Satellite remote sensing and
GIS application in agricultural meteorology. Proceedings a training workshop of the World

Meteorological Organization, Dehra Dun, Indian, 11 July 2003.

Sivaram, N. & Ramar, K. 2010. Applicability of clustering and classification algorithms for

recruitment data mining. International Journal of Computer Application, 4(5): 23-28, July.

Song, M. & Civco, D. 2004. Road extraction using SVM and image segmentation.
Photogrammetric Engineering & Remote Sensing, 70(12):1365-1371, December.

Sorensen, H. F. 2010. Prognostic classification of overian cancer by LBP texture analysis of
microscopy images. M.Tech. Thesis, University of Osloensis, Norway.

Soriano, G. C., & Urano, Y. 2011. Replication with state using the self organizing map neural
network. Proceedings of the 13" International Conference on Advanced Communication
Technology ICACT), Gangwon-Do, South Korea, 13-16 February 2011.

Sparenberg, H., Bruns, V. & Foessel, S. 2013. Uses case optimized data storage of scalable
media files. Proceedings of the 3™ International Conference on Innovative Computing
(INTECH), London, 29-31 August 2013.

Srinivasan, G, N. & Shobha,G. 2008. Statisical texture analysis. World Academy of Science,

Engineering and Technology, 36, December 2008.

152

http://en.wikipedia.org/wiki/Higher_education_in_Norway

Stricker, M. & Orengo, M. 1995. Similarity of color images. Proceedings of SPIE 2420:

Storage and Retrieval for image and Video Database Ill, San Jose, 23 March 1995.

Sugana, N. & Thanushkodi, K. 2010. A novel rough set reduct algorithm for medical domain
based on bee colony optimization. Journal of Computing, 2 (6): 49-54, June.

Sundby, D. 2012. Summarizing image collections. M.Tech. Thesis, University of Tromso,

Norway.

Syahrul, E. 2011. Lossless and nearly lossless image compression based on combinatorial

transforms. PhD Thesis, University of Bourgogne, France.

Takeda, K., Kise, K. & lwamura, M. 2011. Real time document image retrieval for a 10
million pages database with a memory efficient and stability improved LLAH. Proceedings of
the International Conference on Document Analysis and Recognition (ICDAR), Beijing, 18-21
September 2011.

Talib, A., Mahmuddin, M. & Husni, H. 2013. Efficient, compact and dominant color
correlograms descriptors for content based image retrieval. Proceedings of the 5"
International conference on Advances in Multimedia (MMEDIA), Venice, ltaly, 21-26 April
2013.

Tani, J., Nishimoto, J. & Ito, M. 2008. Code development learning between human and
humanoid robot using a dynamic neural network model. IEEE Transactions on system, Man
and Cybernetics, Part B: Cybernetics, 38: 43-59.

Tarabalka, Y., Benediktsson, J.A. & Chanussot, J. 2009. Spectral-spatial classification of
hyperspectral imagery based on partitional clustering techniques. IEEE Transactions on
Geoscience and Remote Sensing, 47(8): 2973 — 2987.

Taranto, C., Di-Mauro, N. & Ferillli, S. 2010. Approximate image color correlograms.

Proceedings of the 17" International Conference on Multimedia, Firenze, Italy, 25 October.

Teng, F. 2006. A content based image retrieval system for fish taxonomy. MSc. Thesis,

University of New Orleans, United States.

Thakur, D., Markandaiah, N. & Raj, S. D. 2010. Re-optimization of ID3 and C4.5 Decision
Tree. Proceedings of the International Conference on Computer and communication
Technology (ICCCT), Allahabad, Uttar Pradesh ,17-19 September 2010.

Thamburaj, F. & Ganapathy, G. 2010. Analysis of genome signature strength of sars

coronavirus using self organizing map neural network. Proceedings of the International

153

http://en.wikipedia.org/wiki/Norway
http://en.wikipedia.org/wiki/France
http://en.wikipedia.org/wiki/United_States

Conference on Communication and Computational Intelligence, Kong Engineering College,
Perundurai, Erode, India, 27-29 December 2010.

Traussnig, W. 2007. Design of a communication and navigation subsystem for CubeSat

mission. MSc.Thesis, Karl Franzens University, Graz, Austria.
Tsui, I. & Karam, O. 2011. Essentials of software engineering. London: Jones & Bartlett.

Tungkashthan, A. & Intarasema, S. 2009. Spatial color indexing using ACC algorithm.
Proceedings of the 7" International Conference on ICT and Knowledge Engineering,
Bangkok, Thailand, 2 December.

Turky, A. M. & Ahmad, M. S. 2010. The use of SOM for fingerprint classification.
Proceedings of the International Conference on Information Retrieval & Knowledge
Management (CAMP), Shah Alam Convention Centre, Selangor, Malaysia, 17-18 March
2010.

University of Toronto Institute of Aerospace Studies (UTIAS). 2013. The Canadian advanced
nanospace experinment-1 (CANX-1). http://www.utias-sfl.net/nanosatellites/canx-1 [13
November 2013].

Vacha, P. 2010. Query by pictorial example. PhD Thesis, Charles University, Prague.

Vailaya, A., Figueiredo, M.A.T., Jain, A. K. & Zhang, H. J. 2001. Image classification for
content based indexing. IEEE Transactions on image processing, 10(1):117-129.

Vailaya, A., Jain, A. & Zhang, H. J. 1998. On Image Classification: City images vs.
landscapes. Pattern Recognition, 31(12):1921-1935, December.

Velmurugan, T. 2012. Effeciency of k-Means and k-Medoids algorithms for clustering arbitary
data points. International Journal Computer Technology and applications, 3(5):1758-1764.

Verma, M., Srivastava, M.,Chack, N., Diswar, A.K. & Gupta, N. 2012. A comparative study of
various clustering algorithms in data mining. International Journal of Engineering Research
and Applications (IJERA), 2(3):1379-1384, May-June.

Vogel, J. & Schiele, B. 2007. Semantic modeling of natural scenes for content-based image

retrieval. International Journal of Computer Vision 72(2):133-157, April.

Wan, C., Wang, C., & Song, X. 2012. A MapReduce based isodata algorithm. Proceedings of
the 3" International Conference on Intelligent Control and Information Processing, Dalian,
China, 15-17 July 2012.

154

http://en.wikipedia.org/wiki/Graz
http://en.wikipedia.org/wiki/Austria

Wang, J. 2013. Spatially enhanced local binary patterns for face detection and recognition in

mobile device applications. MSc. Thesis, University of Toronto.
Wang, Z. J. 2001. Integrated region-based retrieval. Massachusetts: Kluwer academic.

Wang, Z., Liu, G. Q. & Guo, J. C. 2009. An improved k-Means algorithm based on multiple
feature points. Proceedings of the International Workshop on Intelligent Systems and
Applications, Wuhan, China, 23-24 May 2009.

Webb, A. & Copsey, K. 2011. Statistical pattern recognition. Third Edition, London: Wiley.

Wei, J. M., Wang, S. Q., Yu, G, Gu, L., Wang, G. Y. & Yuan, X. J. 2009. A novel method for
pruning Decision Trees. Proceedings of the 8" International Conference on Machine
Learning and Cybernetics, Baoding, China,12-15 July 2009.

Wells, N. 2007. An investigation into texture features for image retrieval. BSc. Thesis,

University of Bath, United Kingdom.

Westfall, L. 2010. The certified software quality engineers handbook. Milwaukee: Quality
Press.

Wilson, H. G., Boots, B. & Millward, A. A. 2002. A comparison of hierarchical and
partitioning clustering technique for multispectral image classification. IEEE International

Geoscience and Remote Sensing Symposium, Toronto, Canada, 24-28 June 2002.

Witten, I. H. & Frank, E. 2005. Data Mining: practical machine learning tools and technique.

London: Elsevier.

Wu, L. & Wen, Y. 2009. Weed/corn seedling recognition by support vector machine using
texture features. Africa Journal of Agricultural Research, 4(9): 840-846,September.

Wu, X. & Kumar. 2009. The top ten algorithms in data mining, Boca Raton: Chapman Hall.

Xianchuan, X. & Qi, Z. 2009. Medical image retrieval using local binary patterns with image
Euclidean distance. The 2009 International Conference on Information Engineering and
Computer Science (ICIECS 2009), Wuhan, China, 19-20 December 2009.

Xiao-Shuai, X., Qing-Quan, Z., Pei-Lin, Y. & Zhao-Yang, L. C. 2010. Research on BP
algorithm based on conjugate gradient. Proceedings of the 2" International Conference on

Information Science and Engineering (ICISE), Hangzhou, China, 4-6 December 2010.

Xinwu, L. 2010. Research on text clustering algorithm based on improved k-Means.
Proceedings of the 2010 International conference on computer design and applications,

Northeastern University, Qinhuangdao, China, 25-27 June 2010.

155

Xu, B., Yin, Q., & Lv, G. 2009. Using SVM to organize the image database. Proceedings of
the IEEE International Conference on Computational Intelligence and Security, Beijing,
China, 11-14 December 2009.

Xu, R. & Wunsch, D.C. 2009. Clustering. New Jersey: Wiley.

Xue, C., Xiaowen, L. & Jianwen, M. A. 2004. Urban change detection based on self
organizing feature map neural network. Proceedings of the IEEE International Geoscience
and Remote Sensing Symposium (IGARSS), Anchorage Alaska, 20-24 September 2004.

Yan, M. 2005. Methods of determining the number of clusters in a data set and new
clustering creterian. PhD Thesis,Virginia Polytechnic Institute and State University,
Blacksburg, Virginia.

Yang, C. C., Prasher, S. O., Landry, J. A., Perret, J. & Ramaswamy, H. S. 2000.
Recognition of weeds with image processing and heir use with fuzzy logic for procision
farming. Canadian Agriculural Engineering , 42 (4):195-200.

Yang, J. & Blum, R. S. 2005. A statistical signal processing approach of image fusion using
hidden Markov models . In Blum, R.S. & Liu, Z. 2005. (Eds). Multi-Sensor Image Fusion
and Its Applications. Boca Raton: CRC Press.

Yi, F. & Moon, |. 2013. Extended k-Means algorithm. Proceedings of the 2013 fifty
International Conference on Intelligent Human Machine Systems and Cybernetics,
Hangzhou, China, 26-27 August 2013.

Yong, Y., Chixi, W., Bencheng, Y. & Zhi-Hao, Y. 2013. Research on the method of image
preprocessing in licence plate location. Proceedings of the International Conference of

Computational and Information Sciences, Shiyan, Hubain, China, 21-23 July 2013.

Yu, G., Vladimirova, T. & Sweeting, M. N. 2009. Image compression systems on board
satellites. Acta Astronautica, 64: 988-1005, February.

Yu, Z., Zhao, Y., & Wang, X. F. 2008. Research advances and prospects of mathematical
morphology in image processing. Proceedings of the IEEE Conference on Cybernetics and
Intelligent Systems, Chengdu, China, 21-24 September 2008.

Nzeugaing, G. N. 2013. Image compression system for a 3U CubeSat. MTech Thesis, Cape

Peninsula University of Technology, Cape Town.

Zare, M. R., Seng, W. C. & Mueen, A. 2013. Automatic classification of medical X-ray

images. Malaysian Journal of Computer Sciences, 26 (1): 9-22.

156

Zhang, D. 2002. Image retrieval based on shape. PhD Thesis, Monash University,

Melbourne, Australia.

Zhang, D., & Lu, G. 2004. Review of shape representation and description techniques.
Pattern recognition, 37: 1-19.

Zhang, S. C., Fang, B., Liang, Y. Z., Wen, J. & Wu, L. 2011. A face clustering method based
on facial shape information. Proceedings of the International Conference on Wavelet

Analysis and Pattern Recognition, Guilin, 10-13 July 2011.

Zhang, X. Q., Yang, K. & Hao, B. Q. 2010. Cell-edge detection method based on Canny
algorithm and mathematical morphology. Proceeding of the 3™ International Congress on
Image and Signal Processing (CISP2010), Yantai, China, 16-18 October 2010.

Zhao, H., Wang, H. & Khan, M.K. 2011. Steganalysis for palette based images using

generalized difference image and color correlogram. Signal processing, 91(11): 2595-2605.

Zheng, N. & Xue, J. 2009. Statistical learning and pattern analysis for image and video
processing. London: Springer .

Zhong, M., Georgiopoulos, M. & Anagnostopoulos, G. 2008. K-Norm pruning algorithm for
Decision Tree classifiers based on error rate estimation. Machine Learning, 71(1): 55-88.

Zhou, C. Y. & Chen, Y. Q. 2006. Improving nearest neighbor classification with cam weighted
distance. Pattern Recognition , 39:635-645.

Zhou, S., Zhang, S. & Karypis, G. 2012. (eds). Advanced data mining and applications.
Proceedings of the 8" International Conference,Advanced Data Mining Applications (ADMA)
2012, Nanjing, China ,December, 2012.

157

http://en.wikipedia.org/wiki/Melbourne

Appendix A

Listing A.1: ColorFeatureGUlL.m code
function varargout = ColorFeatureGUI (varargin)
% COLORFEATUREGUI M-file for ColorFeatureGUI.fig

% COLORFEATUREGUI, by itself, creates a new COLORFEATUREGUI or raises
the existing

% singleton*.

% H = COLORFEATUREGUI returns the handle to a new COLORFEATUREGUI or
the handle to

% the existing singleton*.

% COLORFEATUREGUT ('CALLBACK',hObject,eventData, handles, ...) calls the
local

% function named CALLBACK in COLORFEATUREGUI.M with the given input
arguments

% COLORFEATUREGUI ('Property', 'Value',...) creates a new
COLORFEATUREGUI or raises the

% existing singleton*. Starting from the left, property value pairs
are

% applied to the GUI before ColorFeatureGUI OpeningFcn gets called.

n

% unrecognized property name or invalid value makes property
application

% stop. All inputs are passed to ColorFeatureGUI OpeningFcn via
varargin.

o\

o°

*See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
instance to run (singleton)".

o o

o\

See also: GUIDE, GUIDATA, GUIHANDLES

o

Edit the above text to modify the response to help ColorFeatureGUI

o°

Last Modified by GUIDE v2.5 13-Apr-2014 12:06:52

% Begin initialization code - DO NOT EDIT
gui Singleton = 1;

gui State = struct('gui Name', mfilename,
'gui Singleton', gui Singleton,
'"gui OpeningFcn', @ColorFeatureGUI OpeningFcn,
'"gui OutputFecn', @ColorFeatureGUI OutputFcn,

'gui LayoutFecn', 1,
'gui Callback', [1;:
if nargin && ischar (varargin{1l})
gui State.gui Callback = str2func(varargin{l});
end

if nargout
[varargout{l:nargout}] = gui mainfcn(gui_State, varargin{:});
else
gui mainfcn(gui State, varargin{:});
end
% End initialization code - DO NOT EDIT

% —-—-— Executes Jjust before ColorFeatureGUI is made visible.

function ColorFeatureGUI OpeningFcn (hObject, eventdata, handles, varargin)
This function has no output args, see OutputFcn.

hObject handle to figure

eventdata reserved - to be defined in a future version of MATLAB

o oP

o\°

158

oe

handles structure with handles and user data (see GUIDATA)
varargin command line arguments to ColorFeatureGUI (see VARARGIN)

oo

\o

Choose default command line output for ColorFeatureGUI
handles.output = hObject;

% Update handles structure
guidata (hObject, handles);

% UIWAIT makes ColorFeatureGUI wait for user response (see UIRESUME)
% uiwait (handles.figurel);

% ——— Outputs from this function are returned to the command line.
function varargout = ColorFeatureGUI OutputFcn (hObject, eventdata, handles)
varargout cell array for returning output args (see VARARGOUT) ;

o°

% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{l} = handles.output;

function editl Callback (hObject, eventdata, handles)

% hObject handle to editl (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get (hObject, 'String') returns contents of editl as text

% str2double (get (hObject, 'String')) returns contents of editl as a
double

% ——-—- Executes during object creation, after setting all properties.
function editl CreateFcn (hObject, eventdata, handles)

hObject handle to editl (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns called

o° o

o

o

Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.

if ispc && isequal (get (hObject, 'BackgroundColor'"),

get (0, 'defaultUicontrolBackgroundColor'))

set (hObject, 'BackgroundColor', 'white'");

o

end

% —-—-—- Executes on slider movement.

function sliderl Callback (hObject, eventdata, handles)

% hObject handle to sliderl (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get (hObject, 'Value') returns position of slider

% get (hObject, 'Min') and get (hObject, 'Max') to determine range of
slider

% ——-—- Executes during object creation, after setting all properties.
function sliderl CreateFcn (hObject, eventdata, handles)

% hObject handle to sliderl (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all Createfcns called

o

Hint: slider controls usually have a light gray background.
if isequal (get (hObject, 'BackgroundColor'),
get (0, 'defaultUicontrolBackgroundColor'))
set (hObject, 'BackgroundColor',[.9 .9 .91);
end

159

% —--- Executes on button press in pushbuttonl.
function MeasureWBtn Callback (hObject, eventdata, handles)

% hObject handle to pushbuttonl (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

o°

--— Executes on button press in pushbutton2.
function searchBtn Callback (hObject, eventdata, handles)

% hObject handle to pushbutton2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

o°

--— Executes on button press in pushbutton3.
function QueryDatabaseBtn Callback (hObject, eventdata, handles)

% hObject handle to pushbutton3 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

o°

function axes2 CreateFcn (hObject, eventdata, handles)

% hObject handle to axes?2 (see GCBO)
$ eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns

o\

Hint: place code in OpeningFcn to populate axes?2

o°

function axes3 CreateFcn (hObject, eventdata, handles)

% hObject handle to axes3 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns

o°

Hint: place code in OpeningFcn to populate axes3

% —--- Executes during object creation, after setting all properties.

function axes4 CreateFcn (hObject, eventdata, handles)

hObject handle to axes4 (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns

o° o

o

o

Hint: place code in OpeningFcn to populate axes4

o

function axes5 CreateFcn (hObject, eventdata, handles)

% hObject handle to axes5 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns

o°

Hint: place code in OpeningFcn to populate axesb

oe

functlon axes6 CreateFcn (hObject, eventdata, handles)

% hObject handle to axes6 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns

o\

Hint: place code in OpeningFcn to populate axesé6

oe

functlon axes7 CreateFcn (hObject, eventdata, handles)

% hObject handle to axes7 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns

o\°

Hint: place code in OpeningFcn to populate axes?

--—- Executes during object creation, after setting all properties.

--—- Executes during object creation, after setting all properties.

--- Executes during object creation, after setting all properties.

--—- Executes during object creation, after setting all properties.

--—- Executes during object creation, after setting all properties.

called

called

called

called

called

called

160

% ——-—- Executes during object creation, after setting all properties.

function axes8 CreateFcn (hObject, eventdata, handles)

% hObject handle to axes8 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns

o°

Hint: place code in OpeningFcn to populate axes8

o°

function axes9 CreateFcn (hObject, eventdata, handles)

% hObject handle to axes9 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns

o°

Hint: place code in OpeningFcn to populate axes9

o°

function axesl0 CreateFcn (hObject, eventdata, handles)

% hObject handle to axesl0 (see GCBO)
$ eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns

o°

Hint: place code in OpeningFcn to populate axeslO

% ——-—- Executes during object creation, after setting all properties.

function axesll CreateFcn (hObject, eventdata, handles)

hObject handle to axesll (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns
Hint: place code in OpeningFcn to populate axesll

o° o° oP

o°

--—- Executes during object creation, after setting all properties.

--—- Executes during object creation, after setting all properties.

called

called

called

called

161

Listing A.2: ShapeFeatureGUl.m code

function varargout = ShapeFeatureGUI (varargin)

% SHAPEFEATUREGUI M-file for ShapeFeatureGUI.fig

SHAPEFEATUREGUI, by itself, creates a new SHAPEFEATUREGUI or raises
the existing

o°

% singleton*.

% H = SHAPEFEATUREGUI returns the handle to a new SHAPEFEATUREGUI or
the handle to

% the existing singleton*.

% SHAPEFEATUREGUI ('CALLBACK', hObject,eventData, handles,...) calls the
local

% function named CALLBACK in SHAPEFEATUREGUI.M with the given input
arguments.

% SHAPEFEATUREGUI ('Property', 'Value',...) creates a new
SHAPEFEATUREGUI or raises the

% existing singleton*. Starting from the left, property value pairs
are

% applied to the GUI before ShapeFeatureGUI OpeningFcn gets called.
An

% unrecognized property name or invalid value makes property
application

% stop. All inputs are passed to ShapeFeatureGUI OpeningFcn via
varargin.

o°

o\

*See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
instance to run (singleton)".

o oo

o°

See also: GUIDE, GUIDATA, GUIHANDLES

Edit the above text to modify the response to help ShapeFeatureGUI
Last Modified by GUIDE v2.5 13-Apr-2014 12:10:23

3 Begin initialization code - DO NOT EDIT

gui Singleton = 1;

o° o°

oe

gui State = struct('gui Name', mfilename,
'gui Singleton', gui Singleton,
'"gui OpeningFcn', @ShapeFeatureGUI OpeningFcn,
'gui OutputFcn', @ShapeFeatureGUI OutputFcn,

'gui LayoutFcn', 1,
'gui Callback', (1
if nargin && ischar (varargin{l})
gui State.gui Callback = str2func(varargin{l});
end

if nargout
[varargout{l:nargout}] = gui mainfcn(gui State, varargin{:});
else
gui mainfcn(gui_ State, varargin{:});
end
End initialization code - DO NOT EDIT
--—- Executes just before ShapeFeatureGUI is made visible.
functlon ShapeFeatureGUI OpeningFcn (hObject, eventdata, handles, varargin)
This function has no output args, see OutputFcn.

o

oe

o\

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% varargin command line arguments to ShapeFeatureGUI (see VARARGIN)

oo

Choose default command line output for ShapeFeatureGUI
handles output = hObject;

% Update handles structure
guidata (hObject, handles);

162

% UIWAIT makes ShapeFeatureGUI wait for user response (see UIRESUME)

% uiwait (handles.figurel);

% ——— Outputs from this function are returned to the command line.

function varargout = ShapeFeatureGUI OutputFcn (hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT) ;

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure

varargout{l} = handles.output;

function editl Callback (hObject, eventdata, handles)

% hObject handle to editl (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get (hObject, 'String') returns contents of editl as text

% str2double (get (hObject, 'String')) returns contents of editl as a
double

% ——-—- Executes during object creation, after setting all properties.
function editl CreateFcn (hObject, eventdata, handles)

% hObject handle to editl (see GCBO)

$ eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

o°

Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.

if ispc && isequal (get (hObject, 'BackgroundColor'"),

get (0, '"defaultUicontrolBackgroundColor'))

set (hObject, 'BackgroundColor', 'white'");

o°

end

% —--- Executes on slider movement.

function sliderl Callback (hObject, eventdata, handles)

% hObject handle to sliderl (see GCBO)

$ eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get (hObject, 'Value') returns position of slider

% get (hObject, 'Min') and get (hObject, 'Max') to determine range of
slider

% —-—-—- Executes during object creation, after setting all properties.
function sliderl CreateFcn (hObject, eventdata, handles)

% hObject handle to sliderl (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

o°

Hint: slider controls usually have a light gray background.
if isequal (get (hObject, 'BackgroundColor'"),
get (0, '"defaultUicontrolBackgroundColor'))

set (hObject, 'BackgroundColor',[.9 .9 .91);
end
% —-—-—- Executes on button press in pushbuttonl.
function MeasureWBtn Callback (hObject, eventdata, handles)
hObject handle to pushbuttonl (see GCBO)
eventdata reserved - to be defined in a future version of MATLAB
handles structure with handles and user data (see GUIDATA)
--— Executes on button press in pushbutton2.
function searchBtn Callback (hObject, eventdata, handles)

o o°

o° oP

% hObject handle to pushbutton2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
handles structure with handles and user data (see GUIDATA)

o° oP

--— Executes on button press in pushbutton3.

function QueryDatabaseBtn Callback (hObject, eventdata, handles)
hObject handle to pushbutton3 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

o©

163

oe

handles structure with handles and user data (see GUIDATA)

oo

function axes2 CreateFcn (hObject, eventdata, handles)

% hObject handle to axes?2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns

o°

Hint: place code in OpeningFcn to populate axes?2

o°

function axes3 CreateFcn (hObject, eventdata, handles)

% hObject handle to axes3 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns

o°

Hint: place code in OpeningFcn to populate axes3

o°

function axes4 CreateFcn (hObject, eventdata, handles)

% hObject handle to axes4 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns

o\

Hint: place code in OpeningFcn to populate axes4

% ——-—- Executes during object creation, after setting all properties.

function axes5 CreateFcn (hObject, eventdata, handles)

hObject handle to axes5 (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns

o oo

o°

o°

Hint: place code in OpeningFcn to populate axesb

% ——-—- Executes during object creation, after setting all properties.

function axes6 CreateFcn (hObject, eventdata, handles)

hObject handle to axes6 (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all Createfcns

o° oo

o°

o°

Hint: place code in OpeningFcn to populate axesé6

% —--- Executes during object creation, after setting all properties.

function axes7 CreateFcn (hObject, eventdata, handles)

hObject handle to axes’7 (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns

o° o

o°

o°

Hint: place code in OpeningFcn to populate axes?

function axes8 CreateFcn (hObject, eventdata, handles)

hObject handle to axes8 (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all Createfcns

o° o

oe

o\

Hint: place code in OpeningFcn to populate axes8

o©

--- Executes during object creation, after setting all properties.

--—- Executes during object creation, after setting all properties.

--- Executes during object creation, after setting all properties.

% ——-—- Executes during object creation, after setting all properties.

--—- Executes during object creation, after setting all properties.

called

called

called

called

called

called

called

164

function axes9 CreateFcn (hObject, eventdata, handles)

% hObject handle to axes9 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns

o°

Hint: place code in OpeningFcn to populate axes9

% —--- Executes during object creation, after setting all properties.

function axesl0 CreateFcn (hObject, eventdata, handles)

hObject handle to axesl0 (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns

o° oo

o°

o°

Hint: place code in OpeningFcn to populate axeslO

Q

function axesll CreateFcn (hObject, eventdata, handles)

% ——-—- Executes during object creation, after setting all properties.

called

called

165

Listing A.3: TextureFeatureGUI.m code

function varargout = TextureFeatureGUI (varargin)

% TEXTUREFEATUREGUI M-file for TextureFeatureGUI.fig

TEXTUREFEATUREGUI, by itself, creates a new TEXTUREFEATUREGUI or
raises the existing

singleton*.

o°

o° oo

o°

H = TEXTUREFEATUREGUI returns the handle to a new TEXTUREFEATUREGUI
or the handle to
the existing singleton*.

o° oo

oo

TEXTUREFEATUREGUI ('CALLBACK', hObject,eventData, handles,...) calls
the local
% function named CALLBACK in TEXTUREFEATUREGUI.M with the given input
arguments.

oo

% TEXTUREFEATUREGUI ('Property', 'Value',...) creates a new
TEXTUREFEATUREGUI or raises the

% existing singleton*. Starting from the left, property value pairs
are

% applied to the GUI before TextureFeatureGUI OpeningFcn gets called.
An

% unrecognized property name or invalid value makes property
application

% stop. All inputs are passed to TextureFeatureGUI OpeningFcn via
varargin.

o°

o\

*See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
instance to run (singleton)".

o oo

o°

See also: GUIDE, GUIDATA, GUIHANDLES

o°

Edit the above text to modify the response to help TextureFeatureGUI

o

Last Modified by GUIDE v2.5 13-Apr-2014 12:15:09

% Begin initialization code - DO NOT EDIT
gui Singleton = 1;

gui State = struct('gui Name', mfilename,
'gui Singleton', gui Singleton,
'gui OpeningFcn', @TextureFeatureGUI OpeningFcn,
'"gui OutputFcn', Q@TextureFeatureGUI OutputFcn,

'gui LayoutFecn', 1,
'gui Callback', (1
if nargin && ischar (varargin{l})
gui State.gui Callback = str2func(varargin{l});
end

if nargout
[varargout{l:nargout}] = gui mainfcn(gui State, wvarargin{:});
else
gui mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT

o)

% ——-— Executes Jjust before TextureFeatureGUI is made visible.
function TextureFeatureGUI OpeningFcn (hObject, eventdata, handles,
varargin)

% This function has no output args, see OutputFcn.

% hObject handle to figure

166

oe

eventdata reserved - to be defined in a future version of MATLAB
handles structure with handles and user data (see GUIDATA)
varargin command line arguments to TextureFeatureGUI (see VARARGIN)

oo

oo

% Choose default command line output for TextureFeatureGUI
handles.output = hObject;

Q

% Update handles structure
guidata (hObject, handles);

o°

UIWAIT makes TextureFeatureGUI wait for user response (see UIRESUME)
uiwait (handles.figurel) ;

o°

Q

% ——-—- Outputs from this function are returned to the command line.
function varargout = TextureFeatureGUI OutputFcn (hObject, eventdata,
handles)

% varargout cell array for returning output args (see VARARGOUT) ;

% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

[}

% Get default command line output from handles structure

varargout{l} = handles.output;

function editl Callback (hObject, eventdata, handles)

% hObject handle to editl (see GCBO)

$ eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

o\

Hints: get (hObject, 'String') returns contents of editl as text
str2double (get (hObject, 'String')) returns contents of editl as a

o°

double

% ——-—- Executes during object creation, after setting all properties.
function editl CreateFcn (hObject, eventdata, handles)

hObject handle to editl (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns called

o oe

o

o

Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.

if ispc && isequal (get (hObject, 'BackgroundColor'"),

get (0, 'defaultUicontrolBackgroundColor'))

set (hObject, 'BackgroundColor', 'white'");

o

end

% —-—-—- Executes on slider movement.

function sliderl Callback (hObject, eventdata, handles)

% hObject handle to sliderl (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get (hObject, 'Value') returns position of slider

% get (hObject, 'Min') and get (hObject, 'Max') to determine range of
slider

% ——-—- Executes during object creation, after setting all properties.
function sliderl CreateFcn (hObject, eventdata, handles)

% hObject handle to sliderl (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

167

% Hint: slider controls usually have a light gray background.
if isequal (get (hObject, 'BackgroundColor'),
get (0, 'defaultUicontrolBackgroundColor'))

set (hObject, 'BackgroundColor',[.9 .9 .91);
end
% —-—- Executes on button press in pushbuttonl.
function MeasureWBtn Callback (hObject, eventdata, handles)
% hObject handle to pushbuttonl (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% —--- Executes on button press in pushbutton2.
function searchBtn Callback (hObject, eventdata, handles)
% hObject handle to pushbutton2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% —-—-—- Executes on button press in pushbutton3.
function QueryDatabaseBtn Callback (hObject, eventdata, handles)
% hObject handle to pushbutton3 (see GCBO)
$ eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% ——-—- Executes during object creation, after setting all properties.
function axes2 CreateFcn (hObject, eventdata, handles)
% hObject handle to axes?2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns

o°

Hint: place code in OpeningFcn to populate axes2

function axes3 CreateFcn (hObject, eventdata, handles)

hObject handle to axes3 (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all Createfcns

o° o

o°

o°

Hint: place code in OpeningFcn to populate axes3

)

function axes4 CreateFcn (hObject, eventdata, handles)

hObject handle to axes4 (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all Createfcns

o° oo

o

o\

Hint: place code in OpeningFcn to populate axesid

Q

function axes5 CreateFcn (hObject, eventdata, handles)

hObject handle to axes5 (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all Createfcns

o° o©

o©

% —--- Executes during object creation, after setting all properties.

% —--- Executes during object creation, after setting all properties.

% ——-—- Executes during object creation, after setting all properties.

called

called

called

called

168

% Hint: place code in OpeningFcn to populate axesb5

% ——-—- Executes during object creation, after setting all properties.

function axes6 CreateFcn (hObject, eventdata, handles)

hObject handle to axes6 (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns
Hint: place code in OpeningFcn to populate axes6

o° o o°

o°

% —--- Executes during object creation, after setting all properties.

function axes7 CreateFcn (hObject, eventdata, handles)

hObject handle to axes’/ (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns
Hint: place code in OpeningFcn to populate axes?

o° o° o°

o°

% ——-—- Executes during object creation, after setting all properties.

function axes8 CreateFcn (hObject, eventdata, handles)

hObject handle to axes8 (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns
Hint: place code in OpeningFcn to populate axes8

o° o° oo

o°

% ——-—- Executes during object creation, after setting all properties.

function axes9 CreateFcn (hObject, eventdata, handles)

hObject handle to axes9 (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns
Hint: place code in OpeningFcn to populate axes9

o° o o°

o°

% —--- Executes during object creation, after setting all properties.

function axesl0 CreateFcn (hObject, eventdata, handles)

hObject handle to axesl0 (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns
Hint: place code in OpeningFcn to populate axeslO

o® o° oo

o

% —--- Executes during object creation, after setting all properties.

function axesll CreateFcn (hObject, eventdata, handles)

hObject handle to axesll (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns
Hint: place code in OpeningFcn to populate axesll

o° o oo

o

called

called

called

called

called

called

169

Listing A.4: DataCLassifyGUI.m code

function varargout = DateClassifyGUI (varargin)

% DATECLASSIFYGUI M-file for DateClassifyGUI.fig

DATECLASSIFYGUI, by itself, creates a new DATECLASSIFYGUI or raises
the existing

o°

% singleton*.

% H = DATECLASSIFYGUI returns the handle to a new DATECLASSIFYGUI or
the handle to

% the existing singleton*.

% DATECLASSIFYGUI ('CALLBACK', hObject,eventData, handles,...) calls the
local

% function named CALLBACK in DATECLASSIFYGUI.M with the given input
arguments.

% DATECLASSIFYGUI ('Property', 'Value',...) creates a new
DATECLASSIFYGUI or raises the

% existing singleton*. Starting from the left, property value pairs
are

% applied to the GUI before DateClassifyGUI OpeningFcn gets called.
An

% unrecognized property name or invalid value makes property
application

% stop. All inputs are passed to DateClassifyGUI OpeningFcn via
varargin.

o°

o\

*See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
instance to run (singleton)"
See also: GUIDE, GUIDATA, GUIHANDLES
Edit the above text to modify the response to help DateClassifyGUI
Last Modified by GUIDE v2.5 13-Apr-2014 12:24:48
Begin initialization code - DO NOT EDIT
gui Singleton = 1;
gui State = struct('gui Name', mfilename,
'gui Singleton', gui Singleton,
"gui OpeningFcn', @DateClassifyGUI OpeningFcn,
'gui OutputFcn', @DateClassifyGUI OutputFcn,
'gui LayoutFecn', [1 .,
'gui Callback', (1
if nargin && ischar (varargin{l})
gui State.gui Callback = str2func(varargin{l});
end

o® o0 o oe

o\

if nargout

[varargout{l:nargout}] = gui mainfcn(gui_ State, varargin{:});
else

gui mainfcn(gui State, varargin{:});
end

o)

% End initialization code - DO NOT EDIT

function edit2 Callback (hObject, eventdata, handles)

hObject handle to edit2 (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles structure with handles and user data (see GUIDATA)

Hints: get (hObject, 'String') returns contents of edit2 as text

S str2double (get (hObject, 'String')) returns contents of edit2 as a
double

o o°

o° oP

\O

o)

% —-—-—- Executes during object creation, after setting all properties.
function edit2 CreateFcn (hObject, eventdata, handles)
% hObject handle to edit2 (see GCBO)

170

oe

eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all Createfcns called

oo

o°

Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor'),
get (0, '"defaultUicontrolBackgroundColor'))
set (hObject, 'BackgroundColor', 'white'");
end

o°

function edit3 Callback (hObject, eventdata, handles)

% hObject handle to edit3 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

o°

Hints: get (hObject, 'String') returns contents of edit3 as text
str2double (get (hObject, 'String')) returns contents of edit3 as a

oe

double

o

% —--- Executes during object creation, after setting all properties.
function edit3 CreateFcn (hObject, eventdata, handles)

hObject handle to edit3 (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns called

o° oo

o°

o°

Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor'),
get (0, 'defaultUicontrolBackgroundColor'))
set (hObject, 'BackgroundColor', 'white');
end

o°

% ——-— Executes just before DateClassifyGUI is made visible.
function DateClassifyGUI OpeningFcn (hObject, eventdata, handles, varargin)
This function has no output args, see OutputFcn.

o°

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% varargin command line arguments to DateClassifyGUI (see VARARGIN)

o)

% Choose default command line output for DateClassifyGUI
handles.output = hObject;

% Update handles structure
uidata (hObject, handles);

UIWAIT makes DateClassifyGUI wait for user response (see UIRESUME)
uiwait (handles.figurel);

o0 o \Q

o

-—-—- Outputs from this function are returned to the command line.
function varargout = DateClassifyGUI OutputFcn (hObject, eventdata, handles)
varargout cell array for returning output args (see VARARGOUT) ;

o° oP

hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

o)

% Get default command line output from handles structure
varargout{l} = handles.output;

% ——-—- Executes on button press in pushbuttonl.

function MeasureWBtn Callback (hObject, eventdata, handles)
% hObject handle to pushbuttonl (see GCBO)

171

eventdata reserved - to be defined in a future version of MATLAB

oe

% handles structure with handles and user data (see GUIDATA)

% —--- Executes on button press in pushbutton2.

function searchBtn Callback (hObject, eventdata, handles)

% hObject handle to pushbutton2 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% —--- Executes on button press in pushbutton3.

function QueryDatabaseBtn Callback (hObject, eventdata, handles)

% hObject handle to pushbutton3 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% ——-—- Executes during object creation, after setting all properties.
function axes2 CreateFcn (hObject, eventdata, handles)

% hObject handle to axes?2 (see GCBO)

$ eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns

o\

Hint: place code in OpeningFcn to populate axes?2

o

function axes3 CreateFcn (hObject, eventdata, handles)

hObject handle to axes3 (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns

o o

o\

o°

Hint: place code in OpeningFcn to populate axes3

% —--- Executes during object creation, after setting all properties.

function axes4 CreateFcn (hObject, eventdata, handles)

hObject handle to axes4 (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns

o° o

o

o

Hint: place code in OpeningFcn to populate axes4

% —--- Executes during object creation, after setting all properties.

function axes5 CreateFcn (hObject, eventdata, handles)

hObject handle to axesb5 (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all Createfcns

o o

o

oe

Hint: place code in OpeningFcn to populate axesb

% ——-—- Executes during object creation, after setting all properties.

function axes6 CreateFcn (hObject, eventdata, handles)

hObject handle to axes6 (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all Createfcns

o o°

o©

o©

Hint: place code in OpeningFcn to populate axes6

% —--- Executes during object creation, after setting all properties.

called

called

called

called

called

172

% ——-—- Executes during object creation, after setting all properties.

function axes7 CreateFcn (hObject, eventdata, handles)

% hObject handle to axes7 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns

o°

Hint: place code in OpeningFcn to populate axes?

% ——-—- Executes during object creation, after setting all properties.

function axes8 CreateFcn (hObject, eventdata, handles)

hObject handle to axes8 (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns

o0 o

o°

o°

Hint: place code in OpeningFcn to populate axes8

o

function axes9 CreateFcn (hObject, eventdata, handles)

hObject handle to axes9 (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns

o° oo

o°

o°

Hint: place code in OpeningFcn to populate axes9

% —--- Executes during object creation, after setting all properties.

function axesl0 CreateFcn (hObject, eventdata, handles)

hObject handle to axeslO (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns

o° o

o°

o°

Hint: place code in OpeningFcn to populate axeslO

function axesll CreateFcn (hObject, eventdata, handles)

hObject handle to axesll (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns

o° o

o

% —--- Executes during object creation, after setting all properties.

% —--- Executes during object creation, after setting all properties.

called

called

called

called

called

173

Listing A.5: IntegratedGUIs.m Code

function varargout = IntegratedGUIs (varargin)

% INTEGRATEDGUIS M-file for IntegratedGUIs.fig

INTEGRATEDGUIS, by itself, creates a new INTEGRATEDGUIS or raises
the existing

singleton*.

o°

o° oo

o°

H = INTEGRATEDGUIS returns the handle to a new INTEGRATEDGUIS or the
handle to
the existing singleton*.

o° oo

oo

INTEGRATEDGUIS ('CALLBACK',hObject,eventData, handles,...) calls the
local

oe

function named CALLBACK in INTEGRATEDGUIS.M with the given input
arguments.

oo

% INTEGRATEDGUIS ('Property', 'Value',...) creates a new INTEGRATEDGUIS
or raises the

% existing singleton*. Starting from the left, property value pairs
are

% applied to the GUI before IntegratedGUIs OpeningFcn gets called. An
% unrecognized property name or invalid value makes property
application

% stop. All inputs are passed to IntegratedGUIs OpeningFcn via
varargin.

o°

o°

*See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
instance to run (singleton)".

o oP

o°

See also: GUIDE, GUIDATA, GUIHANDLES

o\

Edit the above text to modify the response to help IntegratedGUIs

o

Last Modified by GUIDE v2.5 13-Apr-2014 12:47:22

% Begin initialization code - DO NOT EDIT

gui Singleton = 1;

gui State = struct('gui Name', mfilename,
'gui Singleton', gui Singleton,
'gui OpeningFcn', @IntegratedGUIs OpeningFcn,
'"gui OutputFcn', @IntegratedGUIs_ OutputFcn,
'gui LayoutFecn', [1 .,
'gui Callback', (1

if nargin && ischar (varargin{l})

gui State.gui Callback = str2func(varargin{l});
end

if nargout
[varargout{l:nargout}] = gui mainfcn(gui State, varargin{:});
else
gui mainfcn(gui State, varargin{:});
end
% End initialization code - DO NOT EDIT

function edit2 Callback (hObject, eventdata, handles)

% hObject handle to edit2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

174

oe

Hints: get (hObject, 'String') returns contents of edit2 as text
str2double (get (hObject, 'String')) returns contents of edit2 as a

oo

double

% —--- Executes during object creation, after setting all properties.
function edit2 CreateFcn (hObject, eventdata, handles)

hObject handle to edit2 (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns calle

o° oo

o°

o°

Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor'),
get (0, 'defaultUicontrolBackgroundColor'))
set (hObject, 'BackgroundColor', 'white');
end

o°

function edit3 Callback (hObject, eventdata, handles)

% hObject handle to edit3 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

o°

Hints: get (hObject, 'String') returns contents of edit3 as text
str2double (get (hObject, 'String')) returns contents of edit3 as a

o°

double

% —--- Executes during object creation, after setting all properties.
function edit3 CreateFcn (hObject, eventdata, handles)

hObject handle to edit3 (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns calle

o o

o

o

Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor'),
get (0, 'defaultUicontrolBackgroundColor'))
set (hObject, 'BackgroundColor', 'white');
end

o

% ——— Executes just before IntegratedGUIs is made visible.
function IntegratedGUIs OpeningFcn (hObject, eventdata, handles, varargin)
This function has no output args, see OutputFcn.

o

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% varargin command line arguments to IntegratedGUIs (see VARARGIN)

% Choose default command line output for IntegratedGUIs
handles.output = hObject;

% Update handles structure
guidata (hObject, handles);

% UIWAIT makes IntegratedGUIs wait for user response (see UIRESUME)
% uiwait (handles.figurel);

d

d

175

% ——-- Outputs from this function are returned to the command line.
function varargout = IntegratedGUIs OutputFcn (hObject, eventdata, handles)
varargout cell array for returning output args (see VARARGOUT) ;

o°

% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure

varargout{l} = handles.output;

% —--- Executes on button press in pushbuttonl.

function MeasureWBtn Callback (hObject, eventdata, handles)

% hObject handle to pushbuttonl (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% —--- Executes on button press in pushbutton?.

function searchBtn Callback (hObject, eventdata, handles)

% hObject handle to pushbutton2 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% —-—-—- Executes on button press in pushbutton3.

function QueryDatabaseBtn Callback (hObject, eventdata, handles)

% hObject handle to pushbutton3 (see GCBO)

$ eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% ——-— Executes during object creation, after setting all properties.
function axes2 CreateFcn (hObject, eventdata, handles)

% hObject handle to axes2?2 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

o°

Hint: place code in OpeningFcn to populate axes?2

)

% —--- Executes during object creation, after setting all properties.
function axes3 CreateFcn (hObject, eventdata, handles)

hObject handle to axes3 (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns called

o oo

o°

o\

Hint: place code in OpeningFcn to populate axes3

% —-—-—- Executes during object creation, after setting all properties.
function axes4 CreateFcn (hObject, eventdata, handles)

hObject handle to axes4 (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns called

o° oo

o\

o\

Hint: place code in OpeningFcn to populate axesid

o©

--—- Executes during object creation, after setting all properties.

176

function axes5 CreateFcn (hObject, eventdata, handles)

% hObject handle to axes5 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns

o°

Hint: place code in OpeningFcn to populate axesb

% —--- Executes during object creation, after setting all properties.

function axes6 CreateFcn (hObject, eventdata, handles)

hObject handle to axes6 (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns

o° oo

o°

o°

Hint: place code in OpeningFcn to populate axesé6

% ——-—- Executes during object creation, after setting all properties.

function axes7 CreateFcn (hObject, eventdata, handles)

hObject handle to axes’7 (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns

o° oo

o\

o\

Hint: place code in OpeningFcn to populate axes?

% ——-—- Executes during object creation, after setting all properties.

function axes8 CreateFcn (hObject, eventdata, handles)

hObject handle to axes8 (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns

o oo

o\

o

Hint: place code in OpeningFcn to populate axes8

% ——-—- Executes during object creation, after setting all properties.

function axes9 CreateFcn (hObject, eventdata, handles)

hObject handle to axes9 (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns

o oe

o°

o

Hint: place code in OpeningFcn to populate axes9

o)

function axesl0 CreateFcn (hObject, eventdata, handles)

hObject handle to axesl0 (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns

o° oP

o\

o\

Hint: place code in OpeningFcn to populate axeslO

Q

function axesll CreateFcn (hObject, eventdata, handles)

hObject handle to axesll (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns

o° oP

o\°

o\°

Hint: place code in OpeningFcn to populate axesll

% ——-—- Executes during object creation, after setting all properties.

% —-—-—- Executes during object creation, after setting all properties.

called

called

called

called

called

called

called

177

function edit2 Callback (hObject, eventdata, handles)

% hObject handle to edit2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

o°

Hints: get (hObject, 'String') returns contents of edit2 as text
str2double (get (hObject, 'String')) returns contents of edit2 as a

o°

double

% ——-—- Executes during object creation, after setting all properties.
function edit2 CreateFcn (hObject, eventdata, handles)

hObject handle to edit2 (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns called

o oo

o°

o\

Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor'"),
get (0, 'defaultUicontrolBackgroundColor'))
set (hObject, 'BackgroundColor', 'white'") ;
end

o°

function edit3 Callback (hObject, eventdata, handles)

% hObject handle to edit3 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

o°

Hints: get (hObject, 'String') returns contents of edit3 as text
str2double (get (hObject, 'String')) returns contents of edit3 as a

o

double

% ——-—- Executes during object creation, after setting all properties.
function edit3 CreateFcn (hObject, eventdata, handles)

hObject handle to edit3 (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFfcns called

o oe

o°

o

Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor'"),
get (0, 'defaultUicontrolBackgroundColor'))
set (hObject, 'BackgroundColor', 'white'");
end

o°

function edit4 Callback (hObject, eventdata, handles)

% hObject handle to edit4 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

o©

Hints: get (hObject, 'String') returns contents of edit4 as text

178

% str2double (get (hObject, 'String')) returns contents of editd4d as a
double

% —--- Executes during object creation, after setting all properties.
function edit4 CreateFcn (hObject, eventdata, handles)

hObject handle to edit4 (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all Createfcns called

o° oo

o°

o°

Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.

if ispc && isequal (get (hObject, 'BackgroundColor'),

get (0, '"defaultUicontrolBackgroundColor'))

set (hObject, 'BackgroundColor', 'white');

o°

end

$ —--—- Executes on slider movement.

function slider2 Callback (hObject, eventdata, handles)

% hObject handle to slider2 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get (hObject, 'Value') returns position of slider

% get (hObject, '"Min') and get (hObject, 'Max') to determine range of
slider

% ——-—- Executes during object creation, after setting all properties.
function slider2 CreateFcn (hObject, eventdata, handles)

% hObject handle to slider2 (see GCBO)

$ eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

o

Hint: slider controls usually have a light gray background.
if isequal (get (hObject, 'BackgroundColor'),
get (0, 'defaultUicontrolBackgroundColor'))

set (hObject, 'BackgroundColor', [.9 .9 .91);
end
% —-—-—- Executes on button press in pushbuttoni4.
function pushbuttond4 Callback (hObject, eventdata, handles)
% hObject handle to pushbutton4 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

function edit5 Callback (hObject, eventdata, handles)

% hObject handle to edit5 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

o©

Hints: get (hObject, 'String') returns contents of editb as text
str2double (get (hObject, 'String')) returns contents of editb as a

o

double

179

% —--- Executes during object creation, after setting all properties.
function edit5 CreateFcn (hObject, eventdata, handles)

% hObject handle to edit5 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

o°

Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.

if ispc && isequal (get (hObject, 'BackgroundColor'"),

get (0, 'defaultUicontrolBackgroundColor'))

set (hObject, 'BackgroundColor', 'white');

oe

end

% —--- Executes on slider movement.

function slider3 Callback (hObject, eventdata, handles)

% hObject handle to slider3 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get (hObject, 'Value') returns position of slider

% get (hObject, '"Min') and get (hObject, 'Max') to determine range of
slider

% —--- Executes during object creation, after setting all properties.
function slider3 CreateFcn (hObject, eventdata, handles)

% hObject handle to slider3 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

o°

Hint: slider controls usually have a light gray background.
if isequal (get (hObject, 'BackgroundColor'"),
get (0, '"defaultUicontrolBackgroundColor'))
set (hObject, 'BackgroundColor', [.9 .9 .91);
end

function edit7 Callback (hObject, eventdata, handles)

% hObject handle to edit7 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

o

Hints: get (hObject, 'String') returns contents of edit7 as text
str2double (get (hObject, 'String')) returns contents of edit7 as a

o

double

% ——-—- Executes during object creation, after setting all properties.
function edit7 CreateFcn (hObject, eventdata, handles)

hObject handle to edit7 (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns called

o° oP

o\

o\

Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor'),
get (0, 'defaultUicontrolBackgroundColor'))
set (hObject, 'BackgroundColor', 'white'") ;
end

o\

180

% —-—-- Executes on slider movement.

function slider5 Callback (hObject, eventdata, handles)

% hObject handle to slider5 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get (hObject, 'Value') returns position of slider

% get (hObject, 'Min') and get (hObject, 'Max') to determine range of
slider

% —--—- Executes during object creation, after setting all properties.

function slider5 CreateFcn (hObject, eventdata, handles)

o°

hObject handle to sliderb5 (see GCBO)
eventdata reserved - to be defined in a future

o°

o\

o°

if isequal (get (hObject, 'BackgroundColor'),
get (0, '"defaultUicontrolBackgroundColor'))

set (hObject, 'BackgroundColor',[.9 .9 .91);
end

Listing A.6: DateClassify.m Code

version of MATLAB

Hint: slider controls usually have a light gray background.

[FileName, folder] = uigetfile({'*.Jjpg'}, 'Select File');

if FileName ~= 0
fullName = fullfile(folder,FileName) ;
end
img imread (fullName) ;
img = reshape (img, []1,1);
A = FileName;
B = folder;
[m,n]=size (A);
for i=1:n
Valuel = imfinfo (A);
S(i) = struct('Ti',Valuel);
S(i);
end
for i=1:n
Fn{i}=getfield(S(1,i).Ti,{1,1}, " 'Filename’');

Dn{i}=getfield(S(1,1i).Ti,{1,1}, 'FileModDbate’);

tf = isfield(S(1,1).Ti, 'Filename');
if tf==

Fn{i}=getfield(s(1,i).Ti,{1,1}, 'Filename');

else Fn{i}=char('data not available');

end
main = struct('File',Fn{i}, 'DatabaseOfImages’,
var = struct2cell (main);

end

Dtime = datenum(Valuel.FileModDate) ;
datestr (Dtime) ;

[y, m, d, h, mn, s] = datevec(Dtime);
sprintf ('Date: %d/%d%d',y,m,d);

if (y == 2012 && m == 1)

Dn{i});

handles empty - handles not created until after all CreateFcns called

181

conn = database('satelliteimageDBs', 'root', '');
a = isconnection (conn) ;
if a==
disp ('MySQL Database is connected...... ")
sprintf ('This image was taken: %d/%d/%d %d:%d:%d\n',y, m,
d,h,mn, s)

end
ping (conn) ;
if a == 0;
disp ('connection not established');
end
% Mysgl Database storing images
exdatal = {FileName, img,datestr (Dtime) };

fastinsert (conn, 'January2012',
{'"filename'; 'filedata';'imagedate'},exdatal)

%$Retrieve

curs = exec (conn, 'select imagedate from January2012');
setdbprefs ('DataReturnFormat', 'cellarray"')

curs = fetch(curs);

AA = curs.data

elseif (y == 2013 && m == 1)
conn = database('satelliteimageDBs', 'root', ''");
a = isconnection (conn);
if a==1
disp ('MySQL Database is connected...... ")
sprintf ('This image was taken: %d/%d/%d %d:%d:%d\n',y, m,
d,h,mn, s)

end
ping (conn) ;
if a == 0;
disp ('connection not established');
end
% Mysqgl Database storing images
exdatal = {FileName, img,datestr (Dtime) };

fastinsert (conn, 'January2013',
{'filename'; 'filedata';'imagedate'},exdatal)

%$Retrieve

curs = exec (conn, 'select imagedate from January2013'");
setdbprefs ('DataReturnFormat', 'cellarray"')

curs = fetch(curs);

AA = curs.data

elseif (y == 2014 && m == 1)
conn = database('satelliteimageDBs', 'root', ''");
a = isconnection (conn);
if a==
disp ('MySQL Database is connected...... ")
sprintf ('This image was taken: %d/%d/%d %d:%d:%d\n',y, m,
d,h,mn, s)

end
ping (conn) ;
if a == 0;
disp ('connection not established');
end
% Mysqgl Database storing images
exdatal = {FileName, img,datestr (Dtime) };

fastinsert (conn, 'January2014"',
{'filename';'filedata';'imagedate'},exdatal)
%Retrieve

182

curs = exec (conn, 'select imagedate from January2014"');
setdbprefs ('DataReturnFormat', 'cellarray"')

curs = fetch(curs);

AA = curs.data

if (y == 2012 && m == 2)
conn = database('satelliteimageDBs', 'root', '');
a = isconnection (conn);
if a==

disp ('MySQL Database is connected...... ")
sprintf ('This image was taken: %d/%d/%d %$d:%d:%d\n',y, m,
d,h,mn, s)

end

ping(conn) ;

if a == 0;

disp ('connection not established');

end

% Mysgl Database storing images

exdatal = {FileName, img,datestr (Dtime) };

fastinsert (conn, 'February2012',
{'filename'; 'filedata'; 'imagedate'},exdatal)

%Retrieve

curs = exec (conn, 'select imagedate from February2012");

setdbprefs ('DataReturnFormat', 'cellarray"')
curs = fetch(curs);
AA = curs.data

elseif (y == 2013 && m == 2)
conn = database('satelliteimageDBs', 'root', ''"');
a = isconnection (conn);
if a==

disp ('MySQL Database is connected......)
sprintf ('This image was taken: %d/%d/%d %d:%d:%d\n',y, m,
d,h,mn, s)

end

ping (conn) ;

if a == 0;

disp ('connection not established');

end

% Mysqgl Database storing images

exdatal = {FileName, img,datestr (Dtime) };

fastinsert (conn, 'February2013',
{'filename';'filedata';'imagedate'},exdatal)

%Retrieve

curs = exec (conn, 'select imagedate from February2013");

setdbprefs ('DataReturnFormat', 'cellarray"')

curs = fetch(curs);

AA = curs.data

elseif (y == 2014 && m == 2)
conn = database('satelliteimageDBs', 'root', ''");
a = lisconnection (conn);
if a==

183

disp ('MySQL Database is connected......)

sprintf ('This image was taken: %d/%d/%d %d:%d:%d\n',y

d,h,mn, s)
end
ping (conn) ;
if a == 0;
disp ('connection not established');
end
% Mysgl Database storing images
exdatal = {FileName, img,datestr (Dtime) };
fastinsert (conn, 'February2014',
{'"filename'; 'filedata';'imagedate'},exdatal)
%Retrieve
curs = exec (conn, 'select imagedate from February2014");
setdbprefs ('DataReturnFormat', 'cellarray"')
curs = fetch(curs);
AA = curs.data

5 statements3

if (y == 2012 && m == 3)

conn = database('satelliteimageDBs', 'root', ''");
a = isconnection (conn);
if a==1
disp ('MySQL Database is connected...... ")
sprintf ('This image was taken: %d/%d/%d %d:%d:%d\n',y
d,h,mn, s)
end
ping (conn) ;
if a == 0;
disp ('connection not established');
end
% Mysqgl Database storing images
exdatal = {FileName, img,datestr (Dtime) };

fastinsert (conn, 'March2012',
{'"filename';'filedata';'imagedate'},exdatal)

%$Retrieve

curs = exec (conn, 'select imagedate from March2012');

setdbprefs ('DataReturnFormat', 'cellarray"')

curs = fetch(curs);

AA = curs.data

elseif (y == 2013 && m == 3)
conn = database('satelliteimageDBs', 'root', '');
a = isconnection (conn);
if a==
disp ('MySQL Database is connected...... ")

sprintf ('This image was taken: %d/%d/%d %d:%d:%d\n',y

d,h,mn, s)
end
ping (conn) ;
if a == 0;
disp ('connection not established');
end

m,

184

[}

% Mysqgl Database storing images

exdatal = {FileName, img,datestr (Dtime) };
fastinsert (conn, 'March2013',
{'filename'; 'filedata';''imagedate'},exdatal)
%$Retrieve
curs = exec (conn, 'select imagedate from March2013');
setdbprefs ('DataReturnFormat', 'cellarray"')
curs = fetch(curs);

AA = curs.data

elseif (y == 2014 && m == 3)
conn = database('satelliteimageDBs', 'root', '');
a = isconnection (conn);
if a==

disp ('MySQL Database is connected...... ")

sprintf ('This image was taken: %d/%d/%d %d:%d:%d\n',y, m,

d,h,mn, s)
end
ping (conn) ;
if a == 0;

disp ('connection not established');

end
% Mysgl Database storing images
exdatal = {FileName, img,datestr (Dtime) };
fastinsert (conn, 'March2014',

{'"filename'; 'filedata';'imagedate'},exdatal)
%$Retrieve
curs = exec (conn, 'select imagedate from March2014');
setdbprefs ('DataReturnFormat', 'cellarray"')
curs = fetch(curs);

AA = curs.data

% statements3

if (y == 2012 && m == 4)
conn = database('satelliteimageDBs', 'root', ''");
a = isconnection (conn) ;
if a==

disp ('MySQL Database is connected...... ")

sprintf ('This image was taken: %d/%d/%d %d:%d:%d\n',y, m,

d,h,mn, s)
end
ping (conn) ;
if a == 0;
disp ('connection not established');
end
% Mysgl Database storing images
exdatal = {FileName, img,datestr (Dtime) };
fastinsert (conn, 'April2012',
{'filename';'filedata';'imagedate'},exdatal)
%$Retrieve
curs = exec (conn, 'select imagedate from April2012");
setdbprefs ('DataReturnFormat', 'cellarray"')
curs = fetch(curs);

185

AA = curs.data

elseif (y == 2013 && m == 4)
conn = database('satelliteimageDBs', 'root', '');
a = isconnection (conn) ;
if g==

disp ('MySQL Database is connected...... ")
sprintf ('This image was taken: %d/%d/%d %d:%d:%d\n',y, m,
d,h,mn, s)

end
ping (conn) ;
if a == 0;
disp ('connection not established');

end
% Mysgl Database storing images
exdatal = {FileName, img,datestr (Dtime) };
fastinsert (conn, 'April2013",

{'"filename'; 'filedata';'imagedate'},exdatal)
%$Retrieve
curs = exec (conn, 'select imagedate from April2013");
setdbprefs ('DataReturnFormat', 'cellarray"')
curs = fetch(curs);

AA = curs.data

elseif (y == 2014 && m == 4)
conn = database('satelliteimageDBs', 'root', '');
a = isconnection (conn);
if a==1
disp ('MySQL Database is connected...... ")
sprintf ('This image was taken: %d/%d/%d %d:%d:%d\n',y, m,
d,h,mn, s)

end

ping (conn) ;

if a == 0;

disp ('connection not established');

end

% Mysqgl Database storing images

exdatal = {FileName, img,datestr (Dtime) };

fastinsert (conn, 'April2014"',
{'"filename';'filedata';'imagedate'},exdatal)

%Retrieve

curs = exec(conn, 'select imagedate from April2014'");

setdbprefs ('DataReturnFormat', 'cellarray"')

curs = fetch(curs);

AA = curs.data

% statements3

if (y == 2012 && m == 5)
conn = database('satelliteimageDBs', 'root', ''");
a = isconnection (conn);
if a==

disp ('MySQL Database is connected...... ")

186

sprintf ('This image was taken: %d/%d/%d %$d:%d:%d\n',y, m,
d,h,mn, s)

end
ping (conn) ;
if a == 0;
disp ('connection not established');
end
% Mysqgl Database storing images
exdatal = {FileName, img,datestr (Dtime) };

fastinsert (conn, 'May2012"',
{'"filename'; 'filedata';'imagedate'},exdatal)

%$Retrieve

curs = exec (conn, 'select imagedate from May2012');
setdbprefs ('DataReturnFormat', 'cellarray"')

curs = fetch(curs);

AA = curs.data

elseif (y == 2013 && m == 5)
conn = database('satelliteimageDBs', 'root', '');
a = isconnection (conn);
if a==
disp ('MySQL Database is connected...... ")
sprintf ('This image was taken: %d/%d/%d %d:%d:%d\n',y, m,
d,h,mn, s)

end
ping (conn) ;
if a == 0;
disp ('connection not established');
end
% Mysgl Database storing images
exdatal = {FileName, img,datestr (Dtime) };

fastinsert (conn, 'May2013',
{'"filename'; 'filedata';'imagedate'},exdatal)

%Retrieve

curs = exec (conn, 'select imagedate from May2013');
setdbprefs ('DataReturnFormat', 'cellarray"')

curs = fetch(curs);

AA = curs.data

elseif (y == 2014 && m == 5)
conn = database('satelliteimageDBs', 'root', ''"');
a = isconnection (conn);
if a==
disp ('MySQL Database is connected...... ")
sprintf ('This image was taken: %d/%d/%d %d:%d:%d\n',y, m,
d,h,mn, s)

end
ping (conn) ;
if a == 0;
disp ('connection not established');
end
% Mysqgl Database storing images
exdatal = {FileName, img,datestr (Dtime) };

fastinsert (conn, 'May2014"',
{'filename';'filedata';'imagedate'},exdatal)

%Retrieve

curs = exec(conn, 'select imagedate from May2014'");
setdbprefs ('DataReturnFormat', 'cellarray"')

curs = fetch(curs);

AA = curs.data

187

% statements3

if (y == 2012 && m == 6)
conn = database('satelliteimageDBs', 'root', '');
a = isconnection (conn);
if a==
disp ('MySQL Database is connected...... ")
sprintf ('This image was taken: %d/%d/%d %d:%d:%d\n',y, m,
d,h,mn, s)

end
ping (conn) ;
if a == 0;
disp ('connection not established');
end
% Mysgl Database storing images
exdatal = {FileName, img,datestr (Dtime) };

fastinsert (conn, 'June2012',
{'"filename';'filedata';'imagedate'},exdatal)

%$Retrieve

curs = exec (conn, 'select imagedate from June2012');
setdbprefs ('DataReturnFormat', 'cellarray"')

curs = fetch(curs);

AA = curs.data

elseif (y == 2013 && m == 06)
conn = database('satelliteimageDBs', 'root', ''");
a = isconnection (conn);
if a==
disp ('MySQL Database is connected...... ")
sprintf ('This image was taken: %d/%d/%d %$d:%d:%d\n',y, m,
d,h,mn, s)

end
ping (conn) ;
if a == 0;
disp ('connection not established');
end
% Mysgl Database storing images
exdatal = {FileName, img,datestr (Dtime) };

fastinsert (conn, 'June2013',
{'filename'; 'filedata';'imagedate'},exdatal)

%$Retrieve

curs = exec (conn, 'select imagedate from June2013');
setdbprefs ('DataReturnFormat', 'cellarray')

curs = fetch(curs);

AA = curs.data

elseif (y == 2014 && m == 6)
conn = database('satelliteimageDBs', 'root', '');
a = 1isconnection (conn);
if a==
disp ('MySQL Database is connected...... ")
sprintf ('This image was taken: %d/%d/%d %d:%d:%d\n',y, m,
d,h,mn, s)

end
ping (conn) ;
if a == 0;

188

disp ('connection not established');

end
% Mysqgl Database storing images
exdatal = {FileName, img,datestr (Dtime) };
fastinsert (conn, 'June2014',
{'"filename'; 'filedata';'imagedate'},exdatal)
%Retrieve
curs = exec (conn, 'select imagedate from June2014');
setdbprefs ('DataReturnFormat', 'cellarray"')
curs = fetch(curs);

AA = curs.data

% statements3

if (y == 2012 && m == T7)
conn = database('satelliteimageDBs', 'root', '');
a = isconnection (conn);
if a==

disp ('MySQL Database is connected...... ")
sprintf ('This image was taken: %d/%d/%d %d:%d:%d\n',y, m,
d,h,mn, s)

end
ping (conn) ;
if a == 0;
disp ('connection not established');
end
% Mysqgl Database storing images
exdatal = {FileName, img,datestr (Dtime) };

fastinsert (conn, 'July2012',
{'filename';'filedata';'imagedate'},exdatal)

%Retrieve

curs = exec (conn, 'select imagedate from July2012");
setdbprefs ('DataReturnFormat', 'cellarray"')

curs = fetch(curs);

AA = curs.data

elseif (y == 2013 && m == 7)
conn = database('satelliteimageDBs', 'root', ''");
a = isconnection (conn);
if a==

disp ('MySQL Database is connected...... ")
sprintf ('This image was taken: %d/%d/%d %d:%d:%d\n',y, m,
d,h,mn, s)

end

ping (conn) ;

if a == 0;

disp ('connection not established');

end

% Mysqgl Database storing images

exdatal = {FileName, img,datestr (Dtime) };

fastinsert (conn, 'July2013',
{'filename';'filedata';'imagedate'},exdatal)

%$Retrieve

189

curs = exec (conn, 'select imagedate from July2013');
setdbprefs ('DataReturnFormat', 'cellarray')

curs = fetch(curs);

AA = curs.data

elseif (y == 2014 && m == 7)
conn = database('satelliteimageDBs', 'root', '');
a = isconnection (conn) ;
if a==1

disp ('MySQL Database is connected...... ")

sprintf ('This image was taken: %d/%d/%d %d:%d:%d\n',y, m,

d,h,mn, s)
end
ping (conn) ;
if a == 0;

disp ('connection not established');

end
% Mysgl Database storing images
exdatal = {FileName, img,datestr (Dtime) };
fastinsert (conn, 'July2014"',

{'"filename'; 'filedata';'imagedate'},exdatal)
%$Retrieve
curs = exec (conn, 'select imagedate from July2014');
setdbprefs ('DataReturnFormat', 'cellarray"')
curs = fetch(curs);

AA = curs.data

% statements3

if (y == 2012 && m == 8)
conn = database('satelliteimageDBs', 'root', ''");
a = isconnection (conn) ;
if a==

disp ('MySQL Database is connected...... ")

sprintf ('This image was taken: %d/%d/%d %d:%d:%d\n',y, m,

d,h,mn, s)
end
ping (conn) ;
if a == 0;
disp ('connection not established');
end
% Mysgl Database storing images
exdatal = {FileName, img,datestr (Dtime) };
fastinsert (conn, 'August2012',
{'filename';'filedata';'imagedate'},exdatal)
%$Retrieve
curs = exec (conn, 'select imagedate from August2012');
setdbprefs ('DataReturnFormat', 'cellarray"')
curs = fetch(curs);

AA = curs.data

elseif (y == 2013 && m == 8)
conn = database('satelliteimageDBs', 'root', ''");

190

a = 1isconnection (conn);
if a==

disp ('MySQL Database is connected......

sprintf ('This image was taken: %d/%d/%d
d,h,mn, s)
end
ping (conn) ;
if a == 0;
disp ('connection not established');
end
% Mysqgl Database storing images
exdatal = {FileName, img,datestr (Dtime) };
fastinsert (conn, 'August2013',
{'filename'; 'filedata';''imagedate'},exdatal)
%$Retrieve

')

$d:%d:%d\n',y, m,

curs = exec(conn, 'select imagedate from August2013'");

setdbprefs ('DataReturnFormat', 'cellarray"')
curs = fetch(curs);
AA = curs.data

elseif (y == 2014 && m == 8)
conn = database('satelliteimageDBs', 'root',
a = isconnection (conn);
if a==

disp ('MySQL Database is connected......

sprintf ('This image was taken: %d/%d/%d
d,h,mn, s)
end
ping (conn) ;
if a == 0;
disp ('connection not established');
end
% Mysgl Database storing images
exdatal = {FileName, img,datestr (Dtime) };
fastinsert (conn, 'August2014',
{'"filename';'filedata';'imagedate'},exdatal)
%Retrieve

")

")

$d:%d:%d\n',y, m,

curs = exec(conn, 'select imagedate from August2014');

setdbprefs ('DataReturnFormat', 'cellarray"')
curs = fetch(curs);
AA = curs.data

% statements3

if (y == 2012 && m == 9)
conn = database('satelliteimageDBs', 'root',
a = isconnection (conn);
if a==

disp ('MySQL Database is connected......
sprintf ('This image was taken: %d/%d/%d
d,h,mn, s)

end

ping (conn) ;

if a == 0;
disp ('connection not established');

end

")

')
$d:%d:%d\n"', vy,

m,

191

[}

% Mysqgl Database storing images
exdatal = {FileName, img,datestr (Dtime) };
fastinsert (conn, 'September2012',
{'filename'; 'filedata';''imagedate'},exdatal)
%$Retrieve
curs = exec (conn, 'select imagedate from September2012'");
setdbprefs ('DataReturnFormat', 'cellarray"')
curs = fetch(curs);
AA = curs.data

elseif (y == 2013 && m == 9)
conn = database('satelliteimageDBs', 'root', '');
a = isconnection (conn);
if a==
disp ('MySQL Database is connected...... ")
sprintf ('This image was taken: %d/%d/%d %d:%d:%d\n',y, m,
d,h,mn, s)

end
ping (conn) ;
if a == 0;
disp ('connection not established');
end
% Mysgl Database storing images
exdatal = {FileName, img,datestr (Dtime) };

fastinsert (conn, 'September2013',
{'"filename'; 'filedata';'imagedate'},exdatal)
%Retrieve
curs = exec (conn, 'select imagedate from September2013'");
setdbprefs ('DataReturnFormat', 'cellarray"')
curs = fetch(curs);
AA = curs.data

elseif (y == 2014 && m == 9)
conn = database('satelliteimageDBs', 'root', ''");
a = isconnection (conn);
if a==
disp ('MySQL Database is connected...... ")
sprintf ('This image was taken: %d/%d/%d %$d:%d:%d\n',y, m,
d,h,mn, s)

end
ping (conn) ;
if a == 0;
disp ('connection not established');
end
% Mysqgl Database storing images
exdatal = {FileName, img,datestr (Dtime) };

fastinsert (conn, 'September2014',
{'filename'; 'filedata';'imagedate'},exdatal)
%$Retrieve
curs = exec (conn, 'select imagedate from September2014'");
setdbprefs ('DataReturnFormat', 'cellarray')
curs = fetch(curs);
AA = curs.data

5 statements3

% Store Images of: 2012,2013,2014 (October)

192

if (y == 2012 && m == 10)
conn = database('satelliteimageDBs', 'root', '');
a = isconnection (conn);
if a==
disp ('MySQL Database is connected...... ")
sprintf ('This image was taken: %d/%d/%d %$d:%d:%d\n',y, m,
d,h,mn, s)

end
ping (conn) ;
if a == 0;
disp ('connection not established');
end
% Mysqgl Database storing images
exdatal = {FileName, img,datestr (Dtime) };

fastinsert (conn, 'October2012',
{'filename'; 'filedata';''imagedate'},exdatal)
%$Retrieve
curs = exec (conn, 'select imagedate from October2012');
setdbprefs ('DataReturnFormat', 'cellarray"')
curs = fetch(curs);
AA = curs.data

elseif (y == 2013 && m == 10)
conn = database('satelliteimageDBs', 'root', '');
a = isconnection (conn);
if a==
disp ('MySQL Database is connected...... ")
sprintf ('This image was taken: %d/%d/%d %d:%d:%d\n',y, m,
d,h,mn, s)

end
ping (conn) ;
if a == 0;
disp ('connection not established');
end
% Mysqgl Database storing images
exdatal = {FileName, img,datestr (Dtime) };

fastinsert (conn, 'October2013"',
{'"filename';'filedata';'imagedate'},exdatal)

%Retrieve

curs = exec (conn, 'select imagedate from October2013'");

setdbprefs ('DataReturnFormat', 'cellarray"')

curs = fetch(curs);

AA = curs.data

elseif (y == 2014 && m == 10)
conn = database('satelliteimageDBs', 'root', ''");
a = isconnection (conn);
if a==
disp ('MySQL Database is connected...... ")
sprintf ('This image was taken: %d/%d/%d %$d:%d:%d\n',y, m,
d,h,mn, s)

end
ping (conn) ;
if a == 0;
disp ('connection not established');
end
% Mysgl Database storing images
exdatal = {FileName, img,datestr (Dtime) };

fastinsert (conn, 'October2014',
{'filename'; 'filedata';'imagedate'},exdatal)

193

$Retrieve

curs = exec (conn, 'select imagedate from October2014');
setdbprefs ('DataReturnFormat', 'cellarray"')
curs = fetch(curs);

AA = curs.data

% statements3

if (y == 2012 && m == 11)
conn = database('satelliteimageDBs', 'root', ''");
a = isconnection (conn);
if a==

disp ('MySQL Database is connected...... ")
sprintf ('This image was taken: %d/%d/%d %d:%d:%d\n',y, m,

d,h,mn, s)
end
ping (conn) ;
if a == 0;
disp ('connection not established');
end
% Mysgl Database storing images
exdatal = {FileName, img,datestr (Dtime) };
fastinsert (conn, 'Novermber2012',
{'"filename';'filedata';''imagedate'},exdatal)
%$Retrieve
curs = exec (conn, 'select imagedate from Novermber2012'");
setdbprefs ('DataReturnFormat', 'cellarray"')
curs = fetch(curs);

AA = curs.data

elseif (y == 2013 && m == 11)
conn = database('satelliteimageDBs', 'root', ''");
a = isconnection (conn) ;
if a==

disp ('MySQL Database is connected...... ")
sprintf ('This image was taken: %d/%d/%d %$d:%d:%d\n',y, m,
d,h,mn, s)

end

ping (conn) ;

if a == 0;

disp ('connection not established');

end

% Mysgl Database storing images

exdatal = {FileName, img,datestr (Dtime) };

fastinsert (conn, 'Novermber2013',
{'filename'; 'filedata';'imagedate'},exdatal)

%$Retrieve

curs = exec (conn, 'select imagedate from Novermber2013'");

setdbprefs ('DataReturnFormat', 'cellarray"')

curs = fetch(curs);

AA = curs.data

elseif (y == 2014 && m == 11)
194

conn = database('satelliteimageDBs', 'root', '');
a = isconnection (conn);
if a ==1
disp ('MySQL Database is connected...... ")
sprintf ('This image was taken: %d/%d/%d %$d:%d:%d\n',y, m,
d,h,mn, s)

end
ping (conn) ;
if a == 0;
disp ('connection not established');
end
% Mysqgl Database storing images
exdatal = {FileName, img,datestr (Dtime) };

fastinsert (conn, 'Novermber2014"',
{'filename'; 'filedata';''imagedate'},exdatal)

%$Retrieve

curs = exec (conn, 'select imagedate from Novermber2014'");
setdbprefs ('DataReturnFormat', 'cellarray"')

curs = fetch(curs);

AA = curs.data

% statements3

if (y == 2012 && m == 12)
conn = database('satelliteimageDBs', 'root', '');
a = isconnection (conn);
if a==
disp ('MySQL Database is connected...... ")
sprintf ('This image was taken: %d/%d/%d %d:%d:%d\n',y, m,
d,h,mn, s)

end
% ping (conn) ;
if a == 0;
disp ('connection not established');
end
% Mysqgl Database storing images
exdatal = {FileName, img,datestr (Dtime) };

fastinsert (conn, 'december2012',
{'"filename';'filedata';''imagedate'},exdatal)

%Retrieve

curs = exec (conn, 'select imagedate from december2012');
setdbprefs ('DataReturnFormat', 'cellarray')

curs = fetch(curs);

AA = curs.data

elseif (y == 2013 && m == 12)
conn = database('satelliteimageDBs', 'root', '');
a = isconnection (conn);
if a==
disp ('MySQL Database is connected...... ")
sprintf ('This image was taken: %d/%d/%d %d:%d:%d\n',y, m,
d,h,mn, s)
end

195

ping (conn) ;
if a == 0

disp ('connection not established');
end
% Mysgl Database storing images
exdatal = {FileName, img,datestr (Dtime) };

fastinsert (conn, 'december2013',
{'filename'; 'imageContent'; 'imageDate'},exdatal)
%$Retrieve
curs = exec (conn, 'select imagedate from december2013'");
setdbprefs ('DataReturnFormat', 'cellarray"')
curs = fetch(curs);
AA = curs.data

elseif (y == 2014 && m == 12)
conn = database('satelliteimageDBs', 'root', '');
a = isconnection (conn);
if a==
disp ('MySQL Database is connected...... ")
sprintf ('This image was taken: %d/%d/%d %d:%d:%d\n',y, m,
d,h,mn, s)

end
ping (conn) ;
if a == 0;
disp ('connection not established');
end
% Mysgl Database storing images
exdatal = {FileName, img,datestr (Dtime) };

fastinsert (conn, 'December2014',
{'"filename';'filedata';''imagedate'},exdatal)

%Retrieve

curs = exec (conn, 'select imagedate from December2014');

setdbprefs ('DataReturnFormat', 'cellarray"')

curs = fetch(curs);

AA = curs.data

else
Qo

% statements3
End

196

Listing A.7: Image pre-processing software tool

% Program to enhance and remove noise in an image using
% Image pre processing Software function

function varargout = Image pre processing Software (varargin)
% IMAGE PRE PROCESSING SOFTWARE M-file for
Image pre processing Software.fig

% IMAGE PRE PROCESSING SOFTWARE, by itself, creates a new
IMAGE PRE PROCESSING SOFTWARE or raises the existing
% singleton*.

oo

o°

H = IMAGE PRE PROCESSING SOFTWARE returns the handle to a new
IMAGE PRE PROCESSING SOFTWARE or the handle to
the existing singleton*.

o° oo

oo

IMAGE PRE PROCESSING SOFTWARE ('CALLBACK',hObject,eventData, handles,...)
calls the local

% function named CALLBACK in IMAGE PRE PROCESSING SOFTWARE.M with the
given input arguments.

o°

% IMAGE PRE PROCESSING SOFTWARE ('Property', 'Value',...) creates a new
IMAGE PRE PROCESSING SOFTWARE or raises the

% ex1st1ng 31ngleton* Starting from the left, property value pairs
are

% applied to the GUI before Image pre processing Software OpeningFcn
gets called. An

% unrecognized property name or invalid value makes property
application

% stop. All inputs are passed to

Image pre processing Software OpeningFcn via varargin.

o\

o

*See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
instance to run (singleton)".

o° o

o°

See also: GUIDE, GUIDATA, GUIHANDLES

o°

Edit the above text to modify the response to help
Image pre processing Software

% Last Modified by GUIDE v2.5 29-Apr-2014 17:24:41

°

% Begin initialization code - DO NOT EDIT

gui Singleton = 1;

gui State = struct('gui Name', mfilename,
'gui Singleton', gui Singleton,
'gui OpeningFcn', @Image pre processing Software OpeningFcn,
'gui OutputFcn', @Image pre processing Software OutputFcn,
'gui LayoutFcn', 1,
'gui Callback', (1)

if nargin && ischar (varargin{l})
gui State.gui Callback = str2func(varargin{l});

end

if nargout
[varargout{l:nargout}] = gui mainfcn(gui_State, varargin{:});
else
gui mainfcn(gui State, varargin{:});
end
% End initialization code - DO NOT EDIT

197

Q

% —--— Executes just before Image pre processing Software is made visible.
function Image pre processing Software OpeningFcn (hObject, eventdata,
handles, varargin)

% This function has no output args, see OutputFcn.

o\

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% varargin command line arguments to Image pre processing Software (see
VARARGIN)

[}

% Choose default command line output for Image pre processing Software
handles.output = hObject;

[}

% Update handles structure
guidata (hObject, handles);

% UIWAIT makes Image pre processing Software wait for user response (see
UIRESUME)
% uiwait (handles.figurel);

o

% ——-- Outputs from this function are returned to the command line.
function varargout = Image pre processing Software OutputFcn (hObject,
eventdata, handles)

varargout cell array for returning output args (see VARARGOUT) ;

o°

% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{l} = handles.output;

function pushbuttonl Callback (hObject, eventdata, handles)

global J;
[FileName, folder] = uigetfile({'*.jpg'}, 'Select file');
if FileName ~= 0
fullName = fullfile(folder,FileName);
end

J = imread (fullName) ;

$J = rgb2gray (J) ;

imshow (J, 'Parent',handles.axesl) ;

set (handles.pushbuttonl, 'userdata', fullName)
set (handles.pushbuttonl, 'userdata', FileName)
guidata (hObject, handles) ;

o\

h = msgbox (' Please do select a filter to use!!!"');

o\

o©

function EnhancedButton Callback (hObject, eventdata, handles)
global J;

J = rgb2gray(J);

gray = medfilt2(J, [3,31);

imshow (gray, 'Parent', handles.axes3);

o©

o° oP

o\

function radiobutton4 Callback (hObject, eventdata, handles)
global J;
J = rgb2gray (J);

198

gray = medfilt2(J, [3,3]);
imshow (gray, 'Parent',handles.axes3);

function radiobutton5 Callback (hObject, eventdata, handles)

global J;

J = rgb2gray (J);

medianFilter = medfilt2 (J, [3,3]);

imshow (medianFilter, 'Parent',handles.axes3);

function radiobutton6 Callback (hObject, eventdata, handles)

global J;

J = rgb2gray (J);

WienerFilter = wiener2(J, [5 51);

imshow (WienerFilter, 'Parent',handles.axes3);

function radiobutton7 Callback (hObject, eventdata, handles)
global J;

J = rgb2gray(J);

histequ = histeq(J); % Histogram Equalization

imshow (histequ, 'Parent',handles.axes3);

clear all;

o\

global J;
J = rgb2gray (J) ;
A = get (hObject, 'String');
switch A
case 'MedianFilter'

o o° oo

o\

% % gray = medfilt2(J, [3,31);

$ % imshow (gray, 'Parent', handles.axes3);
3 % %$set (handles.textl, 'FontSize',10);

% %$J = histeqg(J); % Histogram Equalization
3 % J = imnoise (J, 'gaussian',0,0.025);

% K = wiener2(J, [5 51);

% imshow (K, 'Parent', handles.axes3);

% case 'AverageFilter'

% % imshow (K, 'Parent',handles.axes3);

% case 'WienerFilter'

% K = wiener2(J, [5 571);

% imshow (K, 'Parent', handles.axes3);

% case 'HistogramEqualization'

% J = histeqg(J); % Histogram Equalization
% imshow (J, 'Parent',handles.axes3);

% end

199

Listing A.8: Testing color histogram extractor

function varargout = TestExtractImageHistogram(varargin)

% TESTEXTRACTIMAGEHISTOGRAM M-file for TestExtractImageHistogram.fig
TESTEXTRACTIMAGEHISTOGRAM, by itself, creates a new
TESTEXTRACTIMAGEHISTOGRAM or raises the existing

singleton*.

o°

o° oo

o°

H = TESTEXTRACTIMAGEHISTOGRAM returns the handle to a new
TESTEXTRACTIMAGEHISTOGRAM or the handle to
the existing singleton*.

o° oo

oo

TESTEXTRACTIMAGEHISTOGRAM ('CALLBACK', hObject,eventData, handles, ...)
calls the local

% function named CALLBACK in TESTEXTRACTIMAGEHISTOGRAM.M with the
given input arguments.

oo

% TESTEXTRACTIMAGEHISTOGRAM ('Property', 'Value',...) creates a new
TESTEXTRACTIMAGEHISTOGRAM or raises the

% existing singleton*. Starting from the left, property value pairs
are

% applied to the GUI before TestExtractImageHistogram OpeningFcn gets
called. An

% unrecognized property name or invalid value makes property
application

% stop. All inputs are passed to TestExtractImageHistogram OpeningFcn

via varargin.

o°

o\

*See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
instance to run (singleton)".

o oo

o°

See also: GUIDE, GUIDATA, GUIHANDLES

\o

3 Edit the above text to modify the response to help
TestExtractImageHistogram

% Last Modified by GUIDE v2.5 30-Apr-2014 14:24:09

% Begin initialization code - DO NOT EDIT
gui Singleton = 1;
gui State = struct('gui Name', mfilename,

'gui Singleton', gui Singleton,

'gui OpeningFcn', @TestExtractImageHistogram OpeningFcn,

'gui OutputFcn', @TestExtractImageHistogram OutputFcn,

'gui LayoutFecn', [1 .,
'gui Callback', (1
if nargin && ischar (varargin{l})
gui State.gui Callback = str2func(varargin{l});
end

if nargout
[varargout{l:nargout}] = gui mainfcn(gui_State, varargin{:});
else
gui mainfcn(gui State, varargin{:});
end
% End initialization code - DO NOT EDIT

% ———- Executes just before TestExtractImageHistogram is made visible.

200

function TestExtractImageHistogram OpeningFcn (hObject, eventdata, handles,
varargin)

% This function has no output args, see OutputFfcn.

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% varargin command line arguments to TestExtractImageHistogram (see
VARARGIN)

% Choose default

handles.output = hObject;

% Update handles
guidata (hObject,

% UIWAIT makes TestExtractImageHistogram wait for user response

UIRESUME)

structure
handles) ;

uiwait (handles.figurel) ;

command line output for TestExtractImageHistogram

(see

% ——-— Outputs from this function are returned to the command line.
function varargout = TestExtractImageHistogram OutputFcn (hObject,
eventdata, handles)

% varargout cell array for returning output args (see VARARGOUT) ;
% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

[}

function pushbuttonl Callback (hObject,
[FileName, folder] = uigetfile({'*

if FileName

fullName

end
J:

= handles.output;

eventdata,

~= 0
= fullfile(folder, FileName) ;

imread (fullName) ;

J = rgb2gray (J);

X axis =
y axis =

0:16:255;
J(l:end);
hist(y_axis,

X _axis);

freqg = histc(y axis,x_axis);

imshow (J,
%imshow (

'Parent'’
freqg, 'Parent'
set (handles.pushbuttonl,
set (handles.pushbuttonl,

,handles.axesl);
,handles.axes?);
'userdata', fullName)
'userdata',FileName)

guidata (hObject,handles) ;

handles
handles
handles
handles
set (handles
set (handles

set (
(
(
(
(
(

set (handles
(
(
(
(
(
(

set
set
set

set (handles
set (handles
set (handles
set (handles
set (handles
set (handles

.editl, 'String', freq(l));
.edit2, 'String', freq(2));
.edit3, 'String', freq(3));
.edit4, 'String', freq(4));
.editb, 'String', freq(5));
.edit6, 'String', freq(6)) ;
.edit7, 'String', freq(7));
.edit8, 'String', freq(8));
.edit9, 'String', freq(9));
.editl0, 'String', freq(10)) ;
.editll, 'String', freq(1ll));
.editl2, 'String’', freq(12));
.editl3, 'String', freq(13));

% Get default command line output from handles structure
varargout{1l}

handles)
.Jjpg'}, 'Select file');

201

set (handles.editl4, 'String', freq(l4));
set (handles.editlb, 'String', freqg(1l5));
set (handles.editl6, 'String', freqg(l16));

function editl Callback (hObject, eventdata, handles)

function editl CreateFcn (hObject, eventdata, handles)

% Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor'),
get (0, 'defaultUicontrolBackgroundColor'))
set (hObject, 'BackgroundColor', 'white');
end

o\°

function edit2 Callback (hObject, eventdata, handles)
function edit2 CreateFcn (hObject, eventdata, handles)

% Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor'"),
get (0, '"defaultUicontrolBackgroundColor'))
set (hObject, 'BackgroundColor', 'white'") ;
end

o°

function edit3 Callback (hObject, eventdata, handles)
function edit3 CreateFcn (hObject, eventdata, handles)

% Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor'),
get (0, 'defaultUicontrolBackgroundColor'))
set (hObject, 'BackgroundColor', 'white');
end

o°

function edit4 Callback (hObject, eventdata, handles)
function edit4 CreateFcn (hObject, eventdata, handles)

% Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor'"),
get (0, 'defaultUicontrolBackgroundColor'))
set (hObject, 'BackgroundColor', 'white'") ;
end

o

function edit5 Callback (hObject, eventdata, handles)
function edit5 CreateFcn (hObject, eventdata, handles)

% Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor'),
get (0, 'defaultUicontrolBackgroundColor'))
set (hObject, 'BackgroundColor', 'white') ;
end

o

202

function edit6_Callback (hObject, eventdata, handles)
function edit6 CreateFcn (hObject, eventdata, handles)

% Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor'),
get (0, '"defaultUicontrolBackgroundColor'))
set (hObject, 'BackgroundColor', 'white');
end

o\

function edit7 Callback (hObject, eventdata, handles)
function edit7 CreateFcn (hObject, eventdata, handles)

% Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor'),
get (0, 'defaultUicontrolBackgroundColor'))
set (hObject, 'BackgroundColor', 'white'");
end

o°

function edit8 Callback (hObject, eventdata, handles)
function edit8 CreateFcn (hObject, eventdata, handles)

% Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor'),
get (0, '"defaultUicontrolBackgroundColor'))
set (hObject, 'BackgroundColor', 'white');
end

o\

function edit9 Callback (hObject, eventdata, handles)
function edit9 CreateFcn (hObject, eventdata, handles)

% Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor'),
get (0, 'defaultUicontrolBackgroundColor'))
set (hObject, 'BackgroundColor', 'white'");
end

o°

function editl0 Callback (hObject, eventdata, handles)

function editl0_CreateFcn (hObject, eventdata, handles)

% Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor'),
get (0, 'defaultUicontrolBackgroundColor'))
set (hObject, 'BackgroundColor', 'white'") ;
end

o\

function editll Callback (hObject, eventdata, handles)

203

function editll CreateFcn (hObject, eventdata, handles)

% Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor'),
get (0, 'defaultUicontrolBackgroundColor'))
set (hObject, 'BackgroundColor', 'white'");
end

o°

function editl2 Callback (hObject, eventdata, handles)
function editl2 CreateFcn (hObject, eventdata, handles)

% Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor'),
get (0, '"defaultUicontrolBackgroundColor'))
set (hObject, 'BackgroundColor', 'white');
end

o\

function editl3 Callback (hObject, eventdata, handles)
function editl3 CreateFcn (hObject, eventdata, handles)

% Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor'),
get (0, 'defaultUicontrolBackgroundColor'))
set (hObject, 'BackgroundColor', 'white'") ;
end

o°

function editl4 Callback (hObject, eventdata, handles)

function editl4 CreateFcn (hObject, eventdata, handles)

% Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor'"),
get (0, 'defaultUicontrolBackgroundColor'))
set (hObject, 'BackgroundColor', 'white'");
end

o

function editl5_Callback(hObject, eventdata, handles)

function editl5 CreateFcn (hObject, eventdata, handles)

% Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor'),
get (0, 'defaultUicontrolBackgroundColor'))
set (hObject, 'BackgroundColor', 'white') ;
end

o\

function editl6é Callback (hObject, eventdata, handles)

204

function editlé CreateFcn (hObject, eventdata, handles)

% Hint: edit controls usually have a white background on Windows.

See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor'),
get (0, 'defaultUicontrolBackgroundColor'))
set (hObject, 'BackgroundColor', 'white');
end
function pushbutton2 Callback (hObject, eventdata, handles)

o\©

205

Listing A.9: Testing image metadata extractor (Date and Time)

function varargout = ImageMetadataExtractor (varargin)

% IMAGEMETADATAEXTRACTOR M-file for ImageMetadataExtractor.fig
IMAGEMETADATAEXTRACTOR, by itself, creates a new
IMAGEMETADATAEXTRACTOR or raises the existing

singleton*.

H = IMAGEMETADATAEXTRACTOR returns the handle to a new
IMAGEMETADATAEXTRACTOR or the handle to

% the existing singleton*.
IMAGEMETADATAEXTRACTOR ('CALLBACK', hObject, eventData, handles, ...)
calls the local

oo

o°

oo

o°

% function named CALLBACK in IMAGEMETADATAEXTRACTOR.M with the given
input arguments.

% IMAGEMETADATAEXTRACTOR ('Property', 'Value',...) creates a new
IMAGEMETADATAEXTRACTOR or raises the

% existing singleton*. Starting from the left, property value pairs
are

% applied to the GUI before ImageMetadataExtractor OpeningFcn gets
called. An

% unrecognized property name or invalid value makes property
application

% stop. All inputs are passed to ImageMetadataExtractor OpeningFcn

via varargin.$%
*See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
instance to run (singleton)".$%
See also: GUIDE, GUIDATA, GUIHANDLES

Edit the above text to modify the response to help ImageMetadataExtractor

o o o

o°

o\

Last Modified by GUIDE v2.5 06-May-2014 11:18:35

% Begin initialization code - DO NOT EDIT

gui Singleton = 1;

gui State = struct('gui Name', mfilename,

'gui Singleton', gui Singleton,

"gui OpeningFcn', @ImageMetadataExtractor OpeningFcn,

"gui OutputFecn', @ImageMetadataExtractor OutputFcn,
'gui LayoutFcn', 1,
'gui Callback', (1
if nargin && ischar (varargin{l})
gui State.gui Callback = str2func(varargin{l});

end
if nargout
[varargout{l:nargout}] = gui mainfcn(gui_ State, varargin{:});
else
gui mainfcn(gui State, varargin{:});
end
% End initialization code - DO NOT EDIT

o

--- Executes just before ImageMetadataExtractor is made visible.
function ImageMetadataExtractor OpeningFcn (hObject, eventdata, handles,

varargin)

% This function has no output args, see OutputFcn.

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% varargin command line arguments to ImageMetadataExtractor (see
VARARGIN)

o)

% Choose default command line output for ImageMetadataExtractor
handles.output = hObject;

Q

% Update handles structure

206

guidata (hObject, handles);
% UIWAIT makes ImageMetadataExtractor wait for user response (see UIRESUME)
% uiwait (handles.figurel);
% ——-—- Outputs from this function are returned to the command line.
function varargout = ImageMetadataExtractor OutputFcn (hObject, eventdata,
handles)
% varargout cell array for returning output args (see VARARGOUT) ;
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Get default command line output from handles structure
varargout{l} = handles.output;
function pushbuttonl Callback (hObject, eventdata, handles)
[FileName, folder] = uigetfile({'*.Jpg'}, 'Select file');
if FileName ~= 0

fullName = fullfile(folder,FileName) ;
end
J = imread (fullName) ;
A = FileName;
B = folder;
[m,n]=size(A);
for i=1:n

Valuel = imfinfo (A);
S(i) = struct('Ti',Valuel);
S(i);

end

for i=1:n
Fn{i}=getfield(S(1,1i).Ti, {1,1}, 'Filename');
Dn{i}=getfield(S(1,i).Ti, {1,1}, 'FileModDbate');
tf = isfield(S(1l,1i).Ti, 'Filename');
if tf==1

Fn{i}=getfield(S(1,1i).Ti, {1,1}, 'Filename');

else Fn{i}=char('data not available');

end
main = struct('File',Fn{i}, 'DatabaseOfImages',Dn{i});
var = struct2cell (main);

end

Dtime = datenum (Valuel.FileModDate) ;
datestr (Dtime) ;

[y, m, d, h, mn, s] = datevec(Dtime);
sprintf ('Date: %d/%d%d',y,m,d);

imshow (J, 'Parent',handles.axesl);

%$imshow (freq, 'Parent',handles.axes?2);

set (handles.pushbuttonl, "userdata', fullName)
set (handles.pushbuttonl, 'userdata', FileName)
guidata (hObject,handles) ;

set (handles.editl, 'String',FileName) ;
set (handles.edit2, 'String',vy);
set (handles.edit3, 'String',m) ;
set (handles.edit4, 'String',d);
set (handles.editb5, 'String',h);
set (handles.edit6, 'String',mn) ;
set (handles.edit7, 'String',s);
function pushbutton2 Callback (hObject, eventdata, handles)
function editl Callback (hObject, eventdata, handles)
function editl CreateFcn (hObject, eventdata, handles)
% Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor'),
get (0, 'defaultUicontrolBackgroundColor'))
set (hObject, 'BackgroundColor', 'white') ;

oe

207

end
function edit5 Callback (hObject, eventdata, handles)
function edit5 CreateFcn (hObject, eventdata, handles)

% Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor'),
get (0, '"defaultUicontrolBackgroundColor'))
set (hObject, 'BackgroundColor', 'white');
end
function edit6 Callback (hObject, eventdata, handles)
function edit6 CreateFcn (hObject, eventdata, handles)

o°

% Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor'),
get (0, 'defaultUicontrolBackgroundColor'))
set (hObject, 'BackgroundColor', 'white');
end
function edit7 Callback (hObject, eventdata, handles)
function edit7 CreateFcn (hObject, eventdata, handles)

o\

% Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor'),
get (0, 'defaultUicontrolBackgroundColor'))
set (hObject, 'BackgroundColor', 'white'") ;
end
function edit2 Callback (hObject, eventdata, handles)
function edit2 CreateFcn (hObject, eventdata, handles)

o\

% Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor'"),
get (0, 'defaultUicontrolBackgroundColor'))
set (hObject, 'BackgroundColor', 'white'");
end
function edit3 Callback (hObject, eventdata, handles)
function edit3 CreateFcn (hObject, eventdata, handles)
% Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor'),
get (0, 'defaultUicontrolBackgroundColor'))
set (hObject, 'BackgroundColor', 'white');
end
function edit4 Callback (hObject, eventdata, handles)
function edit4 CreateFcn (hObject, eventdata, handles)
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor'),
get (0, 'defaultUicontrolBackgroundColor'))
set (hObject, 'BackgroundColor', 'white'") ;
end

o°

o

208

Listing A.10: Extract shape Feature algorithm

function varargout = TestExtractShapeMorphologyFeatures (varargin)
% TESTEXTRACTSHAPEMORPHOLOGYFEATURES M-file for
TestExtractShapeMorphologyFeatures.fig

% TESTEXTRACTSHAPEMORPHOLOGYFEATURES, by itself, creates a new
TESTEXTRACTSHAPEMORPHOLOGYFEATURES or raises the existing
% singleton*.

o°

o°

H = TESTEXTRACTSHAPEMORPHOLOGYFEATURES returns the handle to a new
TESTEXTRACTSHAPEMORPHOLOGYFEATURES or the handle to
the existing singleton*.

o° oo

o°

TESTEXTRACTSHAPEMORPHOLOGYFEATURES ('CALLBACK',hObject, eventData, handles, ...
) calls the local

% function named CALLBACK in TESTEXTRACTSHAPEMORPHOLOGYFEATURES.M with
the given input arguments.

o\

% TESTEXTRACTSHAPEMORPHOLOGYFEATURES ('Property', 'Value',...) creates a
new TESTEXTRACTSHAPEMORPHOLOGYFEATURES or raises the

% existing singleton*. Starting from the left, property value pairs
are

% applied to the GUI before
TestExtractShapeMorphologyFeatures OpeningFcn gets called. An

% unrecognized property name or invalid value makes property
application

% stop. All inputs are passed to

TestExtractShapeMorphologyFeatures OpeningFcn via varargin.

o\

o°

*See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
instance to run (singleton)".

o° o

o\

See also: GUIDE, GUIDATA, GUIHANDLES
Edit the above text to modify the response to help
TestExtractShapeMorphologyFeatures

o

% Last Modified by GUIDE v2.5 30-Apr-2014 14:30:51

o

% Begin initialization code - DO NOT EDIT

gui Singleton = 1;

gui State = struct('gui Name', mfilename,
'gui Singleton', gui Singleton,
'gui OpeningFcn',

@TestExtractShapeMorphologyFeatures OpeningFcn,
'gui OutputFecn',

@TestExtractShapeMorphologyFeatures OutputFcn,
'gui LayoutFcn', 1,
'gui Callback', [1;:

if nargin && ischar (varargin{l})

gui State.gui Callback = str2func(varargin{l});
end
if nargout
[varargout{l:nargout}] = gui mainfcn(gui State, varargin{:});
else
gui mainfcn(gui State, varargin{:});
end
% End initialization code - DO NOT EDIT
% —-—-—- Executes just before TestExtractShapeMorphologyFeatures is made
visible.

function TestExtractShapeMorphologyFeatures OpeningFcn (hObject, eventdata,
handles, varargin)
% This function has no output args, see OutputFcn.

209

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% varargin command line arguments to TestExtractShapeMorphologyFeatures
(see VARARGIN)

[}

% Choose default command line output for TestExtractShapeMorphologyFeatures
handles.output = hObject;

% Update handles structure
guidata (hObject, handles);

% UIWAIT makes TestExtractShapeMorphologyFeatures wait for user response
(see UIRESUME)
% uiwait (handles.figurel);

Q

% —--—- Outputs from this function are returned to the command line.
function varargout = TestExtractShapeMorphologyFeatures OutputFcn (hObject,
eventdata, handles)

varargout cell array for returning output args (see VARARGOUT) ;

o\

% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

[}

% Get default command line output from handles structure
varargout{l} = handles.output;

function pushbuttonl Callback (hObject, eventdata, handles)

[FileName, folder] = uigetfile({'*.Jpg'}, 'Select file');
if FileName ~= 0

fullName = fullfile(folder,FileName) ;
end

J = imread (fullName) ;
J rgb2gray (J) ;
binary image = im2bw(J,0.76);
se = strel('disk',3);
openedBW = imopen (binary image, se);
bw = bwareaopen (openedBW, 1000) ;
bw = imfill (bw, '"holes');
[B,L] = bwboundaries (bw, 'noholes'");
stats = regionprops (L, 'Area', 'Centroid');
threshold = 0.76;
for k = 1l:1length (B)
boundary = B{k};
delta sqg = diff (boundary) .”"2;

perimeter = sum(sqrt(sum(delta sq,2)));
area = stats (k) .Area;
Roundness = 4*pi*area/perimeter”2;

end

imshow (J, 'Parent', handles.axesl);

%imshow (freq, 'Parent',handles.axes?2);

set (handles.pushbuttonl, "userdata', fullName)
set (handles.pushbuttonl, 'userdata', FileName)
guidata (hObject,handles) ;

set (handles.editl, 'String',perimeter);
set (handles.edit2, 'String',area);
set (handles.edit3, 'String’',Roundness) ;

function editl Callback (hObject, eventdata, handles)

function editl CreateFcn (hObject, eventdata, handles)

210

% Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor'"),
get (0, '"defaultUicontrolBackgroundColor'))
set (hObject, 'BackgroundColor', 'white'") ;
end

o©

function edit2 Callback (hObject, eventdata, handles)
function edit2 CreateFcn (hObject, eventdata, handles)

% Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor'),
get (0, 'defaultUicontrolBackgroundColor'))
set (hObject, 'BackgroundColor', 'white');
end

o\

function edit3 Callback (hObject, eventdata, handles)
function edit3 CreateFcn (hObject, eventdata, handles)

% Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor'"),
get (0, 'defaultUicontrolBackgroundColor'))
set (hObject, 'BackgroundColor', 'white'");
end
function pushbutton2 Callback (hObject, eventdata, handles)

o°

211

Listing A.11: Extract Texture Feature algorithm

function varargout = TestExtractGLCMFeatures (varargin)

% TESTEXTRACTGLCMFEATURES M-file for TestExtractGLCMFeatures.fig
TESTEXTRACTGLCMFEATURES, by itself, creates a new
TESTEXTRACTGLCMFEATURES or raises the existing

singleton*.

o°

o° oo

o°

H = TESTEXTRACTGLCMFEATURES returns the handle to a new
TESTEXTRACTGLCMFEATURES or the handle to
the existing singleton*.

o° oo

oo

TESTEXTRACTGLCMFEATURES ('CALLBACK',hObject,eventData, handles, .. .)
calls the local

% function named CALLBACK in TESTEXTRACTGLCMFEATURES.M with the given
input arguments.

oo

% TESTEXTRACTGLCMFEATURES ('Property', 'Value',...) creates a new
TESTEXTRACTGLCMFEATURES or raises the

% existing singleton*. Starting from the left, property value pairs
are

% applied to the GUI before TestExtractGLCMFeatures OpeningFcn gets
called. An

% unrecognized property name or invalid value makes property
application

% stop. All inputs are passed to TestExtractGLCMFeatures OpeningFcn

via varargin.

o°

o\

*See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
instance to run (singleton)".

o oo

o°

See also: GUIDE, GUIDATA, GUIHANDLES

\o

3 Edit the above text to modify the response to help
TestExtractGLCMFeatures

% Last Modified by GUIDE v2.5 30-Apr-2014 14:01:03

% Begin initialization code - DO NOT EDIT
gui Singleton = 1;
gui State = struct('gui Name', mfilename,

'gui Singleton', gui Singleton,

'gui OpeningFcn', @TestExtractGLCMFeatures OpeningFcn,

"gui OutputFcn', @TestExtractGLCMFeatures OutputFcn,
'gui LayoutFecn', [1 .,

'gui Callback', (1
if nargin && ischar (varargin{l})

gui State.gui Callback = str2func(varargin{l});
end
if nargout
[varargout{l:nargout}] = gui mainfcn(gui State, varargin{:});
else
gui mainfcn(gui_ State, varargin{:});
end

% End initialization code - DO NOT EDIT
--—- Executes just before TestExtractGLCMFeatures is made visible.
function TestExtractGLCMFeatures OpeningFcn (hObject, eventdata, handles,

oe

varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB
212

% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to TestExtractGLCMFeatures (see
VARARGIN)

% Choose default command line output for TestExtractGLCMFeatures
handles.output = hObject;

% Update handles structure
guidata (hObject, handles);

% UIWAIT makes TestExtractGLCMFeatures wait for user response (see
UIRESUME)
% uiwait (handles.figurel);

% —--—- Outputs from this function are returned to the command line.
function varargout = TestExtractGLCMFeatures OutputFcn (hObject, eventdata,
handles)

% varargout cell array for returning output args (see VARARGOUT) ;

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{l} = handles.output;

function pushbuttonl Callback (hObject, eventdata, handles)
[FileName, folder] = uigetfile({'*.jpg'}, 'Select file');

if FileName ~= 0
fullName = fullfile(folder,FileName) ;

end

J = imread (fullName) ;

J = rgb2gray (J);

GLCMS = graycomatrix(J, 'Offset', [0 1; 0 2; 0 3; 0 4;,-1 1; -2 2; -3 3;...
-4 4;,-1 0, -2 0; -3 0; -4 0;-1 -1; -2 =-2; -3 =3; -4 -41);

contrast = graycoprops (GLCMS, 'contrast');

correlation = graycoprops (GLCMS, 'correlation');

energy = graycoprops (GLCMS, 'energy') ;

homogeneity = graycoprops (GLCMS, 'homogeneity');

% Calculating mean of all the contrast of 16 GLCMS

sum_contrast = 0;

for 1 = 1:16
sum_contrast = sum contrast + contrast.Contrast(i);
mean contrast = sum_contrast/16;

end

mean contrast;
% Calculating mean of all the correlation of 16 GLCMS

°

sum_correlation = 0;

for 1 = 1:16
sum_correlation = sum correlation + correlation.Correlation(i);
mean correlation = sum correlation/16;

end

mean_correlation;

Q

% Calculating mean of all the energy of 16 GLCMS

sum_energy = 0;

for i = 1:16
sum_energy = sum_energy + energy.Energy(i);
mean energy = sum energy/16;

end

mean_energy;

Q

% Calculating mean of all the homogeneity of 16 GLCMS

sum_homogeneity = 0;

for i = 1:16
sum_homogeneity = sum_homogeneity + homogeneity.Homogeneity(i);
mean homogeneity = sum homogeneity/16;

213

end
mean_ homogeneity;

imshow (J, 'Parent',handles.axesl);

%$imshow (freq, 'Parent',handles.axes?2);

set (handles.pushbuttonl, 'userdata', fullName)
set (handles.pushbuttonl, 'userdata', FileName)
guidata (hObject, handles) ;

set (handles.editl, 'String',mean contrast);
set (handles.edit2, 'String',mean correlation);
set (handles.edit3, 'String',mean_energy) ;

set (handles.edit4, 'String',mean_homogeneity);

function editl Callback (hObject, eventdata, handles)
function editl CreateFcn (hObject, eventdata, handles)

% Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor'),
get (0, '"defaultUicontrolBackgroundColor'))
set (hObject, 'BackgroundColor', 'white'") ;
end

o°

function edit2 Callback (hObject, eventdata, handles)
function edit2 CreateFcn (hObject, eventdata, handles)

% Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor'),
get (0, 'defaultUicontrolBackgroundColor'))
set (hObject, 'BackgroundColor', 'white');
end

o\

function edit3 Callback (hObject, eventdata, handles)
function edit3 CreateFcn (hObject, eventdata, handles)

% Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor'),
get (0, 'defaultUicontrolBackgroundColor'))
set (hObject, 'BackgroundColor', 'white');
end

o°

function edit4 Callback (hObject, eventdata, handles)
function edit4 CreateFcn (hObject, eventdata, handles)

% Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor'),
get (0, 'defaultUicontrolBackgroundColor'))
set (hObject, 'BackgroundColor', 'white'") ;
end
function pushbutton2 Callback (hObject, eventdata, handles)

oe

214

Appendix B : Excerpt of images used for testing and evaluation

1. Google High Resolution Images

>

g

14

-
&

F
=2

1-&-K
]
'EEE EEE

30

46

TOEE
3

\ 4
BE EEERE
ve

39
= =
2 - L=
55 62 63
70 73 78 79
86 87 89 o4 95
- S
of ..J =
100 101 102 103 105 110 111 12
B2 = 22
116 17 121 122

images () images (8) images (9) images (10)

images (21) images (22)

images (1) images (2) images 3) images (4) images (5) images (12)

images (1)
pr—

images (19)

images (13) images (14) images (15) images (16) images (17) images (24)

images (30) images (32) images (33) images (34) images (35) images (36)

images (25) images (26) images (27) images (28)

images (40) images (41) images (42) i images (44)

images (37)

images (38) images (39) images (45) images
k burj ik 2y fuk lkar\ns fuk |konos-harr ikonos-helli
ottabad Cha. TAnisenas gvaim keshx Iake -j # I-arab-h: jallaj ushima-daii # iko-greece
kistan-sm m apan-sm res-sm m (1] m tel-sm hawaii-sm sm chi-after-s chl4before~ ado>sm -thumb n-dem-eritr
m sm ea-th
ik 1 ik ik i ik
P P Y
g-kong-thu -qom-satell g pring: iti-poly janei I ing- Il Igi Il Igi
mb ite-image-2 ter-sm w-york-9-1 cho-sm mine mali- -sm california-w ia-thumb port-brasil- sm th (1) th
000-sm 1-2001-th... ind-farm-... thumb
ik ik ik ik 3 ik ik et
lite-image- llite-image- llite-photo- llite-picture c dg couver-can oria-island-
bora-bora-t irag-th gorda-key-t -denver-th lia-sm i hungary d ada-thumb lagos-nigeri
h h sm ge-sm a-sm

3. Masat-1 Satellite i images

1 el 9 L=k

thumbs_2012 0 thumbs_2012_0 thumbs_2012 0 thumbs_ 2012 0 thumbs_2012 0 thumbs_2012 (0 thumbs_2012 0 thumbs_2012 0 thumbs_2012 0 thumbs_2012_0 thumbs_2012 0
3.08_07_23_ph 3.08_12 37 _ph 3.08_12 37 ph 3.08_12 37 ph 3.08_12 37 ph 3.08_12 37 _ph 3.08_12 37 ph 3.08_12 37 ph 3.09_10_46_ph 3.10_08_55_ph 3110559 _ph
oto_02 oto_02 oto_07 oto_08 oto_09 oto_10 oto_11 (1) oto_11 oto_10 oto_09 oto_23

b] SR

A

‘

s Bl . :

thumbs 2012 0 thumbs_2012 0 thumbs_2012 0 thumbs_2012 0 thumbs_2012 0 thumbs_2012 0 thumbs_2012 0 thumbs_2012 0 thumbs_2012 0 thumbs_ 2012 0 thumbs_2012 0

312_0411_ph 312_0413ph 312 0551ph 312 0553.ph 316_0517_ut 318_0001_ut 3.18_0151_ut 3.28_0248 ut 328 _0249_ut 329_0748_ut 3.29_07.49_ut
oto_08 oto_10 oto_17 oto_19 c__photo_28 c_photo_38 c_photo_50 c_ photo_38 c__photo_40 c_photo_56 hoto_58

7 §

E - . wk L
thumbs_2012 0 thumbs_2012 0 thumbs_2012_0 thumbs_2012 0 thumbs_2012 0 thumbs_2012 0 thumbs_2012 0 thumbs_2012 0 thumbs_ 2012 0 thumbs_masat- thumbs_masat-
329_0750_ut 402 0442 ut 419 1323 ut 419 1325 ut 419 1336_ut 419 1337 ut 419 1338 ut 428 1156_ut 502 1113 ut 1_afrikamozaik_ |1_anaglif 1_web

c_photo_60 c_photo_42 <_photo_04 c_photo_17 c_photo_49 <_photo_51 <_photo_57 c_photo_57 c_photo_10 web re

215

31

.. .

y ~ m o wn
ﬁ‘gﬁ = ﬁg
:

[

m B% -&lm -M

= @

14

13

¥
12
92

91

90

87 88 89

86

84

83
99

82

85

African Group

4.

Beach group

5.

115
131
147
163

161

159

158

154 155 156

153

157

199

o
-5
-

197

!m

100
116
132
148

21

207

206

203 204

E B m m m
205

g
201 202

m =
200

6. Building group

R
231

=+

A

29

M

f m B
240

&

247

246

245

244

243

242

241

239

238

237

236

235

234

233

232

N~

|
331
&=
ol
=]
363
379
B
395

394

393

390 391 392

389

385 386 387 388

384

383

381

= S B
382

380

396

397

216

8. Dinosaur group

495

k2 He €32 &5 F

494

L3 M3 RE EE pE R

477
.l
493

Hixs ks R

476
. dl
492

M3 EERT K E

475
ol
491

CEER R

474

¢ ESRY K3 b e
R ELUER RN B

ﬂnnﬂﬂd. =] =] ~ o
3 ¥z f37 48§z B
2 RS £3 43 K5 8

£5 €Y K3 ¥S ES €38
B BN EEGEY E

LERCENCLR BN R

EN T ER R NG ER RN
e f2 ¥z s He We 2o
UERTERCER - ERSENCE

ERSEN EN R YER R L

515
547

B & A BH W

579

= B SR

592

595

563

B B = &

514
546
562
578
594

E WM o
512 513
545
560 561
576 5717
593

544

=

511
543
559
575
591

510
W O o E W
542
E
558
&
&

o

&

574

B &
590

509
557

573
589

B B0 -

541

508

540
=

572

f—
]

556

588

539

® wm 4

553

507
555
=
5711
587

S = o W = W

506
538
554
B .
570

586

505
537
569
585

504
536

g o
503
535

552

=

568

584

551
583
599

534

550

502
5 2
566
[i B - * e
582
598

501
533
549
581
597

i

9. Elephant Group
500
532
548
=
564
580
596

%
10. Flower

bt

NN P @
g (M E 3 8
: Bz Bl Bz g
c T Rl 8
e Blo B 5
< RO B &
sHoBeH: E ©
yEAVHEIC RS B 8
oElell Bl EM®H
CEIOH H BN B
= o Ele B g
=l RO ERY B 5
o P P 5
3 L@ 3
< - Pl ™.
5 o Pl
cEHvE B¢ B
;
- ol B
o M
. - -
o o P 5
2 @G Bl G Ll T 8

5@
673
|l E EH E & B O B = M

672

670

m @ m

669

668
e m=m B

68

Qo

u o 0 = =3
cH:M:N:l: B
o

N-3:3:@- B
o:N:Q:@: @

715

-!

731

vk

695

217

694
714
730

B & H =

713
746

-

728

693
729
745

692
= B E R

744
792

691
11
=3
721
743
791

690
i nad
726
79

710

709
&=
725

773

i = = B mn

788

789

689

708
moE B m o=
724
772

688

707
723
7
787

687

B BB B

686
706
722
786

770

685
705
769
E m
785

721

684
704
720
768
784

683
703
719
767
799

682
B OE B B m =
702
OB B G
718
766
782 783
= B

798

681
701
7
765
781
797

0

700
716

764
E AR
m m

7%

11. Horse Group

879

e = N R =
893

895

ﬂ_) ulﬂ\7< g a
[} - = o o~
=] = 8 \
mm: s s e s
=) @ [= @3 @

878

894

892

[Nk
B: R 1)
s Jsmm: f: X
LN ENVER" KN

B ECH HGE E

844
N

860
i

876

891

843
===
o
859
75

874

890

873
889

f: Noouzwmspm: s
iz e ke N B
R:=3: §
E:mm:ra: [
¥
Brm: -z §: §:mm:
e Joowmmzan: f= @

853

==
805

- P E
3 [1ds

852

v ER B

851

kel
803

i
819

=
835

Y= oW mme

12. Mountain Group

13. Food Group

®
911

<
927

925 926

923

908‘
= 5
924

904 906
_ 75
918 919 920 921 922

917

900 901
916

4
947
963
=
979
3§
995

46
962
978

994

993

=2 '
945
&
961
®
97

992

944
960
976

975

991

973

989

972

988

971
7

)

958
e g
974
EE Em e m ¥ B
990

969
>
98

C
938
B
954
s n 2 &
968 970
~
g 986

E - B E
Bxma: B: Bl
By B ES RISk

7
983
999

218

Appendix C: Interfacing Matlab with MYSQL

In order to interface Matlab with MYSQL, the Microsoft Open Database Connectivity (ODBC)
needs to be configured (Figure C.1).

E. QDBC Data Source Administrator | £ |

User DSN | System DSM | File DSM | Drivers | Tracing | Connection Pooling | About |

User Data Sounces:

MName Driver - | Add...
Accounts MySQL ODBC 3.5 Diiver _ Remave
accountss MySQL ODBC 3.517 Diiver =

Courtry MyS@QL ODBC 3.51 Driver
Diatabase(flmages MySQL ODBC 3.51 Diriver .

dBASE Files Microsoft Access dBASE Driver [.dbf,

Excel Files Microsoft BExcel Driver ("xds, ~xdsx, ~d:

ImageDB MySQL ODBC 3517 Diriver I

P e e o - - -

& An QDBC User data source stores information about how to connect ta
D' the indicated data provider. A User data source iz only visible to you,
and can only be used on the cumernt machine.

[ok || cance | Apply Help

Figure C. 1: ODBC
MYSQL ODBC Driver 3.51 (Figure C.2)

Create Mew Data Source | E3 |

Select a driver for which you want to set up a data source.

. MName A~
I Microsoft Text-Treiber ("t ; ~.cav) £
j Microsoft Visual FoxPro Driver 1
Microsoft Visual FoxPro-Treiber 1
MySQL ODBC 3.51 Driver z
Oracle in Oalb11g_home1 1

SQL Server €=

SQL Server Mative Client 10.0 =

4| 1} 3
ack [Finish] [Cancel

Figure C. 2: MYSQL ODBC Driver

Once a desired driver is selected, fields such as data sourcename, descripition, TCP/IP
server, port number, username and password (similar to the one used to download MySQL

database) and selection of database to be used to populate are required.

219

o=
s M
2

Py

Connector/ODBC

Connection Parameters

MySQL Connector/ODBC Data Source Configuration

Details >> |

Data Source Mame: test
Description:
@ TCP/IP Server: localhost Port: 3306
Mamed Pipe:
User: root
Password: [TTTTITIY)]
Database: test - |E|
| Ok | | Cancel | | Help |

Figure C. 3: Test Window
Once details are filled and testing concluded (Figure C.3) a valid connection is in place

(Figure C.4).
[
MySQL Connector,/ODBC Data Source Configuration
T,
e ™,
My -
Connector/ODBC
Connection Parameters
Data Source Mame: test
Descripton:
@ TCP/IP Server: localhost Port: 3306
Mamed Pipe: Test Result
User: root
Password: BEEEEREEE
Database: test - | Test |
Details == | Ok | | Cancel

Connection successful

Once a successful connection is established, the ODBC data source administrator database

Figure C. 4: Connection status

and the corresponding driver are added (Figure C.5).

(]

User DSN |Systern DSKH | File DSM | Drivers | Tracing | Connection Pooling | About |

3. QDBC Data Source Administrator

|User Data Sources:

MName Diriver o Add...
Excel Files Microsoft Excel Driver (s, *xdsx, *xd:

L ' Remove
ImageDB MySGQL ODBC 3.51 Driver _
M5 Access Database Microsoft Access Driver (" mdb, ~acco
sampleDB MySGQL ODBC 3.51 Driver

m

satelliteimage DB MySGQL QODBC 3.51 Driver
= MySQL ODBC 3.51 Driver
Visio Database Samples Microsoft Access Driver (".mdb)

4 WL k

An QODBC User data source stores information about how to connect to
the indicated data provider. A User data source is only wisible to you,
and can only be used on the cument machine.

B!

| ok || cancel || ooy Help

Figure C. 5: ODBC Data Source Administrator

To check whether the MYSQL connection is synchronized with MATLAB, the logintimeout()

function is used (Figure C.6).

4\ Command Window EI@
File Edit Debug Desktop Window Help Ny
N
»» logintimeout (5)
ans =
k5 -
OVR

Figure C. 6: MATLAB connection
Figure C.7 and Figure C.8 shows an active connection using the ping command.

4\ Command Window

File Edit Debug Desktop Window Help

= connf = database('testc', "root', 'estherl23")

connf =

&

Instance:
UsexrlName :
Driver:

TRL:
Constructor:
Message:
Handle:
TimeOut:
AntoCommit :
Tvpe:

"test”

'root'

[1

[1

[1x]1 com.mathworks.toolbox.database.databaseConnect]
[1

[1x1 sun.Jjdbc.odbc.JdbcCdbcConnection]

5

tont

'Database Cbhbiject"

===
~

-

m

Figure C. 7: Active connection

221

A4\ Command Window

JDECDriverName:
JDBECDriverVersion:

'JDBEC-ODBEC Bridge (myodbc3.dll)'
'2.0001 (03.51.30)°

File Edit Debug Desktop Window Help
-
> ping (connd)
ans =
DatabaseProductName: 'MySQL'
DatabaseProductVersion: '5.5.24"

MaxDatabaseConnections: 0
CurrentUserName: 'root'
DatabaseURL: 'jdbc:odbc:test' E
AuntoCommitTransactions: 'True'

Figure C. 8: Ping
In Figure C.9 a cursor is created to store an SQL command. The fetched keyword is used to

limit the rows and always close the connection after use (see listing 1: code).

4\ Command Window El@

File Edit Debug Desktop Window Help o
»» curs2 = exec(connf, 'select * from test'): it
curs2 = fetchicursz): =

LR = curs2.Data

AL =

OVR

Figure C. 9: Cursor

cursorA = exec(connA,’SQL syntax’);
cursorA = fetch(cursorA,nRows);

AA = cursorA.data

Example for our project:

curs2 = exec(connA, 'select * from test");
curs2 = fetch(curs2,10);

AA = curs2.Data

Close your connection after use:
close(cursorA)
close(connA)

Listing C.1: Code
222

Appendix D: Install and Setup of MySQL 5.5 server

Installing MYSQL commence from downloading the application files to a GUI-guided
installation wizard. For completeness sake and to guide further projects these steps are
highlighted within the next number of figures. The installation is MYSQL 5.5.24 for WIN32.

& MbySQL Server 5.5 Setup

End-liser License Agreement
Plraze resd the Falosing lrerse sgresment carcfuly

CHU CEMEDAL PUBLIC LICEMSE A
‘Wazwron 2. Juna 1951

Ceyy:aght | LP939, 1991 Tras Sorevars FoumdaTaion, [me.,

51 Toanklin Joreen, Tifeh Tlooc, Dosvon, MA 02110-130L W34
Dyvexypone is periwivted co copy and discribune verbacln copiss
of this Jicense docanent, buc changing it 15 not aljoosd.

Przanble
Ths licenrar Zox nosy roftwaxe axe deragned v¢ taks away yoax

‘Zresdon ko rhare and chanze 1T, Py contrast, vhe WMV Canzxal lablac

Licenwa 1¢ irtendad to susrimsaes peur fresdow to whove nd change
trae

eatToare=-=o nzka Furse The wofrwire I® fras for all ik uware Thie ¥

pt the berms it the Licenss Acreemert o9
l Frirk l ’ Aack ‘ |I Next I , [Canc=l]

Figure D. 1: License Agreement

& MySQL Server 5.5 Sctup

Choose Setup Type
Choose the sedlp type that best suts your neecds

05C common crogram festures . Aecommanced far mast uzers,

T

Allaws sers to chonse which pregram featrss wil e irstaled and where
they vl be bstalled. Recommend=d for sdvanced ussrs.

All pragram featuees wil be instaled | Requres the mast dsk space,

Figure D. 2: Typical Installation

223

MySQlL Enterprise

i A MySOL Enterprise subscription is the most
compre hensive offering of MySQL database
softweare, services, and support To ensure your

M H S Q L business achieves the highest levels of reliability,
security, and uptime.

Enterprise 7 An Enterprise Subscription includes:

1. The MySQL Enterprise Server - The maost reliable, secure, and up-to-dats
vearsion of the world's most popular open source database.

2. MySQL Enterprise Monitor Service - An automated virt I
assistant. ¥

3. MySQL Production Support-Te
you need it, along with service packs, he

ESTRO TS O 1011 [[VEOr e

Figure D. 3: Subscription Services

MySGl Enterprise rXI

‘i:\{
MysaL
[Sl roras] The MySQL Enterprise Monitor Service

- Quickly identifies your
most expensive SCL code
across all your servers.

» MySOL Advisors and 125+
Best Practice Rules ensure
security and performance,

« Alerts and Expert Advice
on howto fix problems and
tune for peak performance.

OO =N Srmi=T0)

Completed the MyZCL Server 5.5 Setp
\Wizard

Chek the Fnsh button to et the Seoup whzard.

M U SQL: C o Lourch the Myl Trstence Cmfi;ualiu@

Figure D. 5: Launch configuration

224

MySQL Server Instance Configuration Wizard

welcome to the MySOL Server Instance
Configuration YWizard 1.0.17.0

The Corficuradon Wizard wil alow you to corfigure the
MysCL Server 5.5 server nstznoa, To Contnua, dik
ke,

MySOL Server Instance Configuration Wizard

MySQL Server Instance Configus ation -
Corfigure the My=CL Server 5.5 server insiance. : 3

Please sshect o oonf

i+ Detailed Configuration

m 15_’ Chrosa ths corficurstion type to osate e cptimal s3rvar setup for
ths machne,

" Standard Configuration

Usethis ooy onmachings that do not aready have 2 MySOL sarar
o ¥ nsteliaton, The wil use a 9znzra pupose conbgusation for the
server fhat con be tured menualy,

MySQL Server Instance Configuration
Cormmgure the My SdX. Server 5.5 server nstonce,

TE TP, Ths wil iflosrce menory,

'c_l.evel:pmenl madhine, avd many cther spplcabors wil b=
run an b MSOL Serv=r shoud only use = wirimd amouri of
Memncey.

7 Server Machine

Several zeresr appicshicns @il Be ronnnp on this machne, Choose
J this opticn for web Jacpicstion servers, MySQL @l have mediom
meEnoy usags .

7 Dedicated MySOL Server Machine

This machins is dedcaiad toron the MYy SOC Database Server ho
~ ofer scevers, such as a web or mal szever, val be run, PRsCL wil
wlze wp to Jl svalabie memory,

Figure D. 8: Instance Configuration

225

My5Ql Server Instance Configuration Wizard

MySQL Server Instance Configuration /
Confgure ths MySQL Server 5.5 server nstonce, 3

eSE UsaDe.

Censtal pupose databasss. Tris wil aptmios the server for the use
- of the Fast transactionsl InooDB orage engn= =nd the Hich
MYISA Soorace engne.,

" Transactional Database Dnky

1 Opzmizad for spolcation servers and transactional wed apalcaticns,
0 This miimake [oncDE She mein soarage engne . Mote that the
WS MATSAM engine can stil b ns=d.

" Non-Transactional Database Only

Suibed for smple webs spolcalions, moritoring o kgging applications
o @ well as anakds prograns . Onoly the ror-trarsadiond MyISoM
stovags ergne wilbe athivatad.

< Bah <] et I> Cancel

,

Figure D. 9: Server Instance

MySOL Scrver Instance Configuration Wizard

MySQL Server Instance Configuration 7
Confgure the MySOL Server 5.5 server Irstance, i

* Decision Supporl (DSS) /OLAP:

S Select this opton far database sprlcatans thet wilnos requre o
hth rumter of conounrert connesticns. A numner of 21 conng

¢ Onlme Transaction Processing (OLTP)

Chocse this option for Richily concurrent sprlcatiors that may have
at any one tme up £ SO0 acove cornsthicns sich 25 heawly lcaded
weh ssrvers .

" ™anual Setting
26 Please enter the approximste number of concur=nt conredions.
hl

Concurrent cornections: [l_'S _v_l

Figure D. 10: Server Instance Configuration

(3306) or change it to the desired one.

MySQL Server Instance Confipuration Wizard
MySQL Server Instance Configuration '
Corfigure the MyaCL Server 5.5 sorver nsance,) ,

Flease et the nebworking cplions,

Enable TCP/ 1P Metworking

alow TCAJIP panremoons. When dsabied, any ool
canretHons throuch nemed pipes sre alowed.

Fort fmber: tm B2 | &ddFArewsll =comption For this port

Hease zet the zerver S0L mode,

Gt e b
%= opaon Farces the ssreer ko behove more tee o badbicnsl

database server. [t is recormmended bo =nsble this option.

<Bck | [mest> | Carcel

Figure D. 11: TCP/IP and Port

Enable TCP/IP networking and strict mode for SQL mode. Select either default port number

226

In the following window below select

MySQL Server Instance Configuration Wizard

MySQL Server Instance Configuration

Configure the MySOL Server 5.5 sarver irstance,

o okl

Poaze sclett

TTSCTe—

Calo) MMakss Laonl the cefauk charsat. This character sctis suted
Erglsh and other West Cuopoan langoaces.

¢ Best Support For Multiingualism
Maks UTFS the dafault character set, This is the recommended
characzr set for 2oring text in many differert larguaces,

7 Manual Selected Default Character Set J Collation

2) Plase scecky th characar set to use.
Character Zat: Ilatnl. vl

In MySQL server instance configuration wizard window, choose a standard character set.

Cancel

Figure D. 12: Standard Character Set

automatically and Include bin directory in Windows PATH.

MySQl Server Instance Configuration Wizard
MySQL Server Instance Configuration

CorAgure the My SO Server 5.5 server nstance,

Plesse s=t the Wirdows opbors.

CE install As Windows EED

,‘(2 This 5 the vecommenced way ta ron the My SO server
) =

on Windows

Servce Name: (s A:I

(W Launch the My3cL Server a.ucmati:aly]

—, hathths opdon to chuds the drectory cortanng the
setver [clent exeostatles Inthe Yindows PATH varatbls
sothey can be colied from Bhe command Ine,

< Boach | ek |

Cancel

Figure D. 13: Windows Service

MySQL Server Instance Configuration Wizard

MySOL Server Instance Conliguration

Confiaurs the MySOL Sarvar 5.5 sarver inctance.

I Crezte An Ancopious Account
1 This cption wil crecke an ananemoLs actount on this ssrver, Pleass

mate that this can lead to =n irsecur= systen.

= Back]q et > }

Mewy root pessword: ’ 9 Enter the vock passwors,

Lt Ceobi: g Retupe= the passward.

~ Enchle rack access hom reate mochines

cancel

Figure D. 14: Authentication

Install as Window Service, Launch MYSQL server

227

Appendix E: The MATLAB GUIDE Library Components

Table E.1: Guide Library component

Component Icon Description

Push button They cause an action when clicked. Hence, when it's clicked it
shows depressed and released appears as raised.

Slider HCIE Allows input of numeric in a specified range and permit the user
to shift a slider bar. The positions of the slider specify the relative
position within the given range.

Radio button W They are usually, mutually exclusive within a group of related
radio buttons and are similar to check boxes. When one radio
buttons is selected, other radio buttons in group are deselected.

Check box = Causes an action when checked and indicates their state as
checked or not checked. Typically, used when an independent
choices are needed.

Edit text ot These are fields which lets users to enter or modify text strings.
Used when input is needed i.e. numerical input but must be
converted to their numeric equivalents.

Static text T Manages display lines of text. Used to label other controls, gives
directions to the users or specify values related within a slider and
are fixed once set.

Pop-up menu = Provides a list of choices when clicked on.

List box = Display a list of items and allows users to select one or more
items.

Toggle button Causes an action and indicate whether they are turned on or off.

Usually a button group is used to manage mutually exclusive
toggle buttons.

Table

The table button is used to create a table component. A syntax
called uitable is used to create a table in matlab.

Axes

Allows user interfaces to display graphics i.e. images and graphs.
Contains properties which can be set to manage numerous
aspects of its behaviors and appearance.

Panel

It organizes graphical user interface components into groups. It
improves look and feel of user interface and make easier to
understand. Panel can have panel children which can be axes,
group button and other panels.

Button group

5|
o

This are similar to panels but are used to control exclusive choice
behaviors for radio buttons and toggle buttons.

Toolbar

ES

Help to create toolbars containing push buttons, toggle buttons,
save and print icons.

active component

These are available only for Microsoft windows platform, they
permits displaying activeX controls in the graphical user interface.
They can be child of a figure only, but not a child of panel or
button group.

228

