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ABSTRACT 
 

The objective of the economic dispatch problem of electrical power generation is to 

schedule the committed generating unit outputs to meet the required load demand 

while satisfying the system equality and inequality constraints. The thesis formulates 

single area and multi-area Combined Economic Emission Dispatch (CEED) problem 

as single criterion, bi-criterion and multi-criteria optimisation problems based on fuel 

cost and emission criterion functions, constraints over the operational limits of the 

generator and the tie-lines, and requirements for a balance between the produced 

power and the system demand and power loss. 

Various methods, algorithms and softwares are developed to find solution of the 

formulated problems in single area and multi-area power systems. The developed 

methods are based on the classical Lagrange's and on the meta-heuristic Particle 

Swarm Optimisation (PSO) techniques for a single criterion function. Transformation 

of the bi-criteria or multi-criteria dispatch problem to a single criterion one is done by 

some existing and two proposed in the thesis penalty factors. 

The solution of the CEED problems is obtained through implementation of the 

developed software in a sequential way using a single computer, or in a data-parallel 

way in a Matlab Cluster of Computers (CC). The capabilities of the developed 

Lagrange's and PSO algorithms are compared on the basis of the obtained results. 

The conclusion is that the Lagrange's method and algorithm allows to receive better 

solution for less computation time. Data-parallel implementation of the developed 

software allows a lot of results to be obtained for the same problem using different 

values of some of the problem parameters. 

According to the literature papers, there are many algorithms available to solve the 

CEED problem for the single area power systems using sequential methods of 

optimisation, but they consume more computation time to solve this problem. The 

thesis aim is to develop a decomposition-coordinating algorithm for solution of the 

Multi Area Economic Emission Dispatch (MAEED) problem of power systems. The 

MAEED problem deals with the optimal power dispatch inside and between the 

multiple areas and addresses the environmental issue during the economic dispatch. 

To ensure the system security, tie-line transfer limits between different areas are 

incorporated as a set of constraints in the optimisation problem. A decomposition 

coordinating method based on the Lagrange's algorithm is developed to derive a set 
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of optimal solutions to minimize the fuel cost and emissions of the multi-area power 

systems. 

An augmented function of Lagrange is applied and its decomposition in 

interconnected sub problems is done using a new coordinating-vector. Task-parallel 

computing in a Matlab Cluster is used to solve the multi-area dispatch problem. The 

calculations and tasks allocation to the Cluster workers are based on a shared 

memory architecture. Implementation of the calculation algorithm using a Cluster of 

Computers allows quick and simpler solutions to the multi-area CEED problem.  

The thesis applied the developed algorithms for the various problem formulation 

scenarios, i.e. fuel cost and emission function with and without valve point loading 

effect, quadratic and cubic fuel cost and emission functions. The various IEEE 

benchmark models are used to test the developed Lagrange's and PSO algorithms in 

the sequential, data-parallel, and task-parallel implementations. 

Developed methods, algorithms and software programmes can be applied for solution 

of various energy management problems in the regional and national control centres, 

smart grid applications, and in education and research institutions.  
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Partition A partition is a division of a system or its constituting 
elements into distinct independent parts. 

PCT Parallel Computing Toolbox 

Power System Demand The consumers total load connected to the power 
system . 

PS Pattern Search 

PSO 

Particle Swarm Optimization: It is a computational 
method that optimise a problem solution by iteratively 
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cost-effective study of power systems with complex High 
Voltage Alternating Current (HVAC) and High Voltage 
Direct Current (HVDC) networks. The RTDS Simulator is 
a fully digital electromagnetic transient power system 
simulator that operates in real time. 
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2CO ih  Price penalty factor of carbondioxide emission 
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CHAPTER ONE 

INTRODUCTION 

 
1.1     Introduction 

An electric power system consists of generation, transmission and distribution utilities 

to enchance electrical power to the consumers. Economic dispatch is the short term 

determination of the optimal output power of generators to meet the system load and 

operate the generators at the lowest fuel cost. Energy management system is used to 

monitor, control and optimize the performance of the generators used in the electric 

utility grid. Most of the reference papers address the economic dispatch problem for 

single area power system and few papers address the economic dispatch problem for 

multi-area power system but the optimisation problem is still solved in a sequential 

way. The thesis aim is to solve the multi-area economic dispatch problem using a 

developed Lagrange's decomposed method. In addition to that, it formulates the 

Combined Economic Emission Dispatch (CEED) problem by additionally considering 

the emissions of the thermal power plants in order to reduce the global warming. The 

CEED Problem is solved using the developed Lagrange's and Particle Swarm 

Optimization (PSO) algorithms. This chapter presents the awareness of the problem 

in part 1.2, problem statement is described in part 1.3, aim and objectives of the 

research are given in part 1.4, hypothesis, delimitations of the research and 

assumptions are given in parts 1.5 – 1.7 respectively, deliverables and thesis chapter 

break down are described in parts 1.8 – 1.9 respectively, and the conclusions is given 

in part 1.10. 

1.2  Awareness of the problem  

Large interconnected power systems are usually decomposed into areas or zones 

based on criteria, such as the size of the electric power system, network topology and 

geographical location. Multi Area Economic Emission Dispatch (MAEED) Problem is 

an optimisation task in power system operation for allocating amount of generation to 

the committed units within the areas. Its objective is to minimize the fuel cost subject 

to the power balance, generator limit, transmission line and tie-line constraints. The 

solution of the MAEED problem determines the amount of power that can be 

economically generated in the areas and transferred to other areas if it is needed 

without violating tie-line capacity constraints and the whole power network 

constraints. The benefits of the multi-area power systems are continuity of service, 
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economy on operation using the optimum generation schedule (economic dispatch), 

small frequency deviations due to the fact that all the generators participate during 

the load of the large interconnected power system changes, and transportation of 

energy from one sub area to another is possible. These benefits are achieved 

through the interconnection of tie-lines between the sub areas as shown in Figure 

1.1.  

Area 1

N1

Generators

Area m

Nm

Generators

Area 2

N2

Generators

Area M

NM

Generators

t2Mt1m

t12

tmM

t2m t1M

 

Figure 1.1: Model of a Multi-area power system with tie-line power transfer 

where  

Nm  Number of generators belonging to area m  

M  Number of the interconnected areas 

t1m         Number of tie-lines from area1 to area m  

tM         Number of tie-lines of the interconnected areas  

In addition to that, emissions of the thermal power plants which create pollution to the 

environment are considered. The cost minimum condition corresponds to minimum 

cost with considerable amount of emission. Similarly the emission minimum condition 

produces minimum emission with higher deviation from the minimum cost. These two 

conditions cannot be implemented simultaneously. Hence, the feasible optimum 

corresponds to a small deviation in cost with an allowable tolerance in emission 

taking into account of the emission constraints. This has been termed as Combined 

Economic Emission Dispatch (CEED) problem.  

The investigations in the thesis concentrate first on developing methods for solution 

of the CEED problem and second on development methods for parallel solution of the 

MAEED problem on the basis of data-decomposition and task-decomposition 

approaches. 
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Single area CEED problem is solved to minimize the fuel cost and emission of the 

system within the area, but it is important to decompose the large complex power 

system problem into a set of sub-problems corresponding to the power system areas 

and the solution of the sub-problems has benefits which allows to transport energy 

from one area to other area through tie-lines and simultaneously minimize the fuel 

cost and emission of the interconnected power systems. The solution of the MAEED 

problem is still implemented in a sequential way. This thesis describes the importance 

of the parallel solution of the MAEED problem developing a Lagrange's 

decomposition-coordinating method in a Cluster of Computers. Most of the literature 

papers used either classical or heuristic method for solution of the CEED problem. 

The thesis developed two methods classical (Lagrange's) and heuristic (PSO) for the 

CEED problem and comparison of the results of the two methods is done. The 

methods characteristics such as solution type (global or local), number of iterations, 

computation time used by the two methods are compared. 

The research investigations in this thesis are looking at the solution of the following 

research questions: 

 Effect of quadratic and cubic fuel and emission cost functions and their impact on 

the solution of the CEED problem. 

 Valve point loading effect of the thermal power system. 

 Effect of pollutants such as SO2, NOx and CO2 emissions of the thermal power 

plants and their impact on the solution of the dispatch problem. 

 Role of price penalty factor used in the combined economic emission dispatch 

problem and their impact on the solution of the CEED problem. 

 How to develop Lagrangian decomposition method to solve the multi-area 

economic dispatch problem in a parallel way using Cluster of Computers. 

 To develop a Lagrangian and PSO methods to solve the CEED problem in a 

sequential way. 

 How to implement data-parallel solutions of the sequential Lagrangian and PSO 

algorithms in a Matlab Cluster of Computers. 

 How to apply the decomposition principle to decompose the large complex power 

system dispatch problem into a set of sub-problems corresponding to the power 

system areas. 

 Investigate the use of Matlab parallel computing software in a Cluster of 

Computers. 

 How to compare the developed Lagrange's (classical) and PSO (meta-heuristic) 

optimisation methods and their impacts on the solutions. 
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 How to compare the MAEED solution with the single area one. 

The solutions of the MAEED problem in the conditions of deregulation are difficult, 

due to the model size, nonlinearity, and interconnections, and require intensive 

computations in real-time. Matlab parallel computing gives possibilities for reduction 

of the problem complexity and the time for calculation by the use of parallel 

processing for running advanced application programs efficiently, reliably and quickly. 

 A cluster of computers working in Matlab software environment is used to implement 

the optimisation algorithms. Parallelization of the solution is done through 

decomposition of the MAEED problem according to the power system interconnected 

areas and coordination of the obtained solutions for every area by a coordinator. A 

classical (Lagrange) decomposition-coordinating method for parallel computing is 

developed and implemented using IEEE benchmark power system models. In 

addition to that softwares for Lagrange's and Particle Swarm Optimization (PSO) 

methods are developed for CEED problem in a sequential and parallel ways. 

1.3  Statement of the Problem 

The main problem is: 

 To make the formulation of the dispatch optimization problem relevant to the new 

condition of deregulation when the power system is considered to consist of 

interconnected sub-systems. 

 To solve the problems by a method that will be relevant to the conditions of 

deregulation of power system and will reduce complexity, time of the calculation 

and also communication of data between the interconnected sub-systems. 

Two types of research sub-problems are solved in order to complete the 

investigations in the thesis. 

 Design based sub-problems, and 

 Implementation sub-problems 

1.3.1  Design based sub-problems  

Sub-problem 1: Analysis of existing methods used in single and multi-area economic 

dispatch problem. 

Sub-problem 2: Formulation of the single area CEED problems using quadratic and 

cubic fuel cost functions with and without valve point loading effect. 

http://searchdatacenter.techtarget.com/definition/parallel-processing
http://searchdatacenter.techtarget.com/definition/parallel-processing
http://searchsoftwarequality.techtarget.com/definition/application-program
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Sub-problem 3: Development of Lagrange's method for the formulated single area 

CEED problems solution using various price penalty factors. 

Sub-problem 4: Development of PSO method for the formulated CEED problems 

solution using various price penalty factors. 

Sub-problem 5: Analysis of the parallel processing hardware architecture and Matlab 

parallel computing toolbox.  

Sub-problem 6: Development of Lagrange's decomposition-coordinating method for 

MAEED problem parallel solution in a Cluster of Computers. 

1.3.2  Sub-problems on implementation 

Sub-problem 1: Development of software for implementation of the Lagrange's 

methods to solve the CEED problems using quadratic fuel cost and emission criterion 

functions. 

Sub-problem 2: Development of software for implementation of the Lagrange's 

methods to solve the CEED problems using cubic fuel cost and emission criterion 

functions. 

Sub-problem 3: Development of software for implementation of the Lagrange's 

methods to solve the CEED problems using quadratic fuel cost and emission criterion 

functions with valve point loading effect. 

Sub-problem 4: Development of software for implementation of the PSO method to 

solve the single area CEED problem with quadratic fuel cost and emission criterion 

functions. 

Sub-problem 5: Development of software for data-parallel implementation of the 

Lagrange's and PSO method to solve the single area CEED problem with quadratic 

fuel cost and emission criterion functions. 

Sub-problem 6: Development of software for task-parallel implementation of the 

Lagrange's decomposition-coordinating method to solve the MAEED problem in a 

Cluster of Computers. 
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1.4  Research Aim and Objectives 

Electric utility systems are interconnected to achieve the benefits of minimum 

production cost, maximum reliability and better operating conditions such as reserve 

sharing, improved stability, and operation under emergencies. The power system 

comprises of either single area or multi areas based on the complexity of the system. 

The literature review reported that economic dispatch problem has been solved for 

both single area and multi area electric power systems in a sequential way in a single 

computer so far. The present and future research directions focus on the multi area 

power system, where each area is located in the same or various geographical 

regions. The management of the Smart grid requires the information of MAED 

solution in real-time in order to take decisions for the behaviour of the power system 

and to improve the efficiency, reliability, economics, and sustainability of the 

production and distribution of electricity.  

On the basis of the above it can be concluded that new formulation of the multi-area 

dispatch problems is needed and new methods to solve these problems paying 

attention to the interconnected structure of the power system have to be developed. 

These necessities determine the aim and objectives of the thesis. 

 

1.4.1 Aim  

To investigate existing and develop improved methods and algorithms for solution of 

the single area optimization dispatch problems. To develop software for solution of 

the problems in a single computer. To formulate the multi-area economic emission 

dispatch problem in a way it corresponds to the requirements of the deregulated 

power system structure and the future challenges of the smart grid. To develop a 

decomposition-coordinating method for solution of the multi-area dispatch problem 

using Lagrange‘s algorithm. To develop software for both data-parallel and task-

parallel implementation of the single area and multi-area problem algorithms in a 

Cluster of Computers.  

 

1.4.2 Objectives 

i. To conduct literature review on the approaches, algorithms, and software 

programs on the exiting methods for solution of the single area and multi-area 

economic dispatch problem. 
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ii. To formulate the quadratic, cubic, and valve point loading effect criteria and 

investigate their impacts on the solution of the economic dispatch problem 

iii. To develop single area sequential Lagrange's and PSO methods for solution of 

the CEED problems with various criterion functions. 

iv. To formulate the MAEED problem based on quadratic fuel cost and emission 

criterion functions 

v. To develop Lagrange‘s decomposition- coordinating method for solution of the 

MAEED problem. 

vi. To develop software for sequential implementation of the developed Lagrange's 

and PSO methods for the considered types of CEED problem. 

vii. To develop software for data-parallel implementation of the developed Lagrange's 

and PSO methods for the considered types of CEED problem in a cluster of 

computers. 

viii. To apply the developed software to standard IEEE benchmark models of power 

systems. 

ix. To develop software for parallel calculation of the Lagrange‘s MAEED problem 

solutions in a Cluster of Computers based on the developed decomposition-

coordinating method. 

x. To investigate the performance of the developed methods using Cluster of 

Computers in MATLAB software environment. 

xi. To improve the existing parallel computing infrastructure with novel optimization 

techniques for better performance, and computing resource utilization. 

 

1.5  Hypothesis 

The hypothesis is based on the review investigation of methods and algorithms used 

in the referenced papers to solve the single and multi-area economic dispatch 

problem. 

The review investigations state that various methods are used to solve the single and 

multi-area economic dispatch problem, each method has its own merits and demerits 

according to their characteristics, solution, computational time, accuracy and 

reliability.  
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1. The optimisation algorithms used in economic dispatch problem solution are 

either based on the classical or meta-heuristic approaches so far. The hypothesis 

is that the classical algorithms produce better values of the criterion functions. 

This hypothesis is proved by development of two optimisation algorithms for 

solution of the economic dispatch problem namely, Lagrange's a classical 

approach and PSO, a meta-heuristic one. The solution and computational time of 

the two methods to solve the economic dispatch problem are compared. 

2. The fuel cost curves with quadratic and cubic cost function and with/ without valve 

point loading effect are considered. The hypothesis is that the impact of the 

different criterion functions on the solution of the economic dispatch problem can 

be analysed and evaluated by implementation of the developed Lagrange's and 

PSO algorithms. 

3. Most of the reference papers use Max-Max price penalty factor for CEED problem 

solution. Thesis hypothesis is that a new price penalty factor called 'Min-Max' in 

addition to that 'Max-Max' one can be developed. This newly developed price 

penalty factor provides less value of the fuel cost and less emission value in 

comparison with Max-Max one.  

4. The large interconnected power system is decomposed into one or more sub 

areas. The multi area economic dispatch problem is to schedule the generators 

within the area and to minimize the fuel cost of the generators that belong to that 

area. The MAED problem is still solved in a sequential way in a single computer 

so far. The thesis is based on the hypothesis that a decomposition-coordinating 

Lagrange's based method and algorithm for solution of the MAED problem in a 

task-parallel way using Matlab parallel computing toolbox in a Cluster of 

Computers is possible. 

The proof of the hypothesis is done by development of software implementing the 

method and providing various experiments with it. 

 

1.6  Delimitation of research 

The research project emphasizes on the characteristics of the various optimisation 

algorithms developed to solve the combined economic emission dispatch problems 

and multi-area economic emission dispatch problems. 

 Lagrange's method is developed and implemented first for a single area economic 

emission dispatch problem and second for the multi-area one.  
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 PSO method is developed and implemented for the single area economic 

emission dispatch problem.  

 Lagrange's decomposition method is implemented for the multi area economic 

emission dispatch problem using Matlab parallel computing toolbox in a Cluster of 

Computers.  

 Finally the comparison of the Lagrange's and PSO methods are done. The 

investigation will not include the other existing optimization methods but will 

simply discuss them using the explanatory methods.  

The following steps are carried out in order to implement the developed optimisation 

methods: 

Step 1: Lagrange‘s method is developed to solve the single area economic emission 

dispatch problem with quadratic or cubic cost functions. 

Step 2: The PSO method is developed to solve the single area economic emission 

dispatch problem with quadratic cost function. 

.Step 3: The Lagrange's method is developed on the bases of the structure of the 

multi-area power system through the process of decomposition and 

coordination. 

Step 4: Software is developed for sequential and parallel solution of the single and 

multi-area economic emission dispatch problems and is implemented in 

Matlab environment. 

Other optimisation problems are not considered. 

 

1.7  Assumptions 

The research is conducted on the basis of the assumptions used to solve the 

economic emission dispatch problem, they are: 

i. For simplicity the power demand of the power system is considered as constant 

for some period of time for which the economic dispatch problem is solved. But in 

reality the power demand is changing in real-time in respect to the load consumed 

by the consumers. 

ii. It is a common practice for including the effect of transmission losses in the 

economic dispatch problem to express the total transmission loss as a quadratic 

function of the generator power outputs given by Kron's formulae (Dhillon et al, 

1994) but in reality the active power transmission losses are calculated using the 

power flow equations of the power system. 
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iii. In the multi-area power system, the maximum number of tie-lines is given as, 

 
T

M 1 M
N

2


 . This formula can be calculated by induction if all tie-lines between 

all areas exist  

where 

 M   Total number of the area and  

NT    Number of tie-lines. 

iv. The tie-lines are not considered in the emission function of the interconnected 

power system because the transmission of power does not create chemical 

pollution. 

v. Lagrange's method follows the gradient procedure to obtain the global solution. 

vi. Lagrange's method needs the initial guess of the Lagrange‘s multiplier λ to start 

the search process 

vii. PSO method needs the initial guess of acceleration factors, inertia constant and 

random numbers to start the search process. 

viii. PSO does not require that the optimization problem be differentiable as like 

classic optimization methods such as Lagrange's, gradient descent and quasi-

newton methods.  

ix. Metaheuristic algorithm PSO do not guarantee an optimal solution is ever found 

since it does not use the gradient procedure of the problem being optimized. 

x. The time for communication between the computers in the Cluster is smaller than 

the time for calculation of the sub-problems solved in them. 

xi. At each iteration of the iterative optimization algorithms the computational cost 

and memory engagement is constant. 

xii. Implementation and parallelization of the Lagrange's and PSO methods are 

possible. 

 

1.8 The deliverables of the thesis 

 The main deliverables of the thesis can be grouped as follows: 

 Comparative analysis of the existing methods for solution of the single area and 

multi-area economic emission dispatch problem. 

http://en.wikipedia.org/wiki/Differentiable
http://en.wikipedia.org/wiki/Gradient_descent
http://en.wikipedia.org/wiki/Quasi-newton_methods
http://en.wikipedia.org/wiki/Quasi-newton_methods
http://en.wikipedia.org/wiki/Gradient
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 Mathematical formulation of the economic dispatch problems 

o Formulation of the CEED problem using quadratic fuel cost function. 

o Development of the 'Min-Max' and 'Max-Min' price penalty factors for CEED 

problem in addition to the other existing penalty factors. 

o Formulation of the CEED problem using quadratic fuel cost function with valve 

point loading effect. 

o Formulation of the CEED problem using cubic fuel cost function. 

 Optimisation methods developed to solve the economic emission dispatch 

problems 

o Development of the Lagrange's methods for solution of the CEED problems.  

o Development of the PSO method for solution of the CEED problem. 

o Development of the Lagrange's decomposition-coordinating method for 

solution of the MAEED problem. 

 Software developed and implemented for solution of the single and multi-area 

economic emission dispatch problems 

o Development of software based on Lagrange's and PSO methods and 

algorithms to solve the CEED problems in a sequential and a parallel ways. 

o Development of software based on the Lagrange's decomposition-

coordinating method to solve the MAEED problem for a sequential and a 

parallel ways. 

o Application of the developed algorithms and software for solution of various 

types of dispatch problems. 

Detail description of the thesis deliverables is given in chapter 8. 

 

1.9 Chapter breakdown 

This thesis has eight chapters as follows:  

Chapter 1 presents the problem statement and background of the thesis. The thesis 

statement includes the research aim and objectives, statement of the problem, 

hypothesis, research delimitation, and assumptions. 

Chapter 2 describes the literature review of single and multi-area economic dispatch 

problems. It analyses the specific characteristics of various classical, heuristic, 

metaheuristic and hybrid algorithms for solution of the economic emission dispatch 

problem. 
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Chapter 3 describes the developed Lagrange's algorithms for single area economic 

emission dispatch problem solution. The Lagrange's methods and algorithms are 

developed for the following cases: 

 CEED problem using quadratic cost function 

 CEED problem using quadratic cost function with valve point effect loading 

 CEED problem using cubic cost function 

Various IEEE benchmark models are used to test the algorithms in Matlab 

environment. 

Chapter 4 presents introduction to the Particle Swarm Optimisation (PSO) algorithm 

and describes the developed PSO algorithm for the CEED problem. The various 

IEEE benchmark models are used to test the algorithm in Matlab environment. 

Chapter 5 firstly elaborates on the reason why there is a need in applying parallel 

computing in Economic Dispatch problem solution. It also explains the concept of 

parallel computing and gives a brief description of the parallel Matlab environment. 

Matlab Parallel Computing Toolbox and Matlab Distributed Computing Server and 

their concepts are introduced. 

Chapter 6 describes the implementation of the solution of the single area CEED 

problem in a data-parallel way using the two developed Lagrange's and PSO 

methods and algorithms, which are described in Chapter 3 and Chapter 4 

respectively. 

Chapter 7 describes the introduction of the multi-area economic dispatch problem 

and its necessity. The Lagrange's decomposition-coordinating method and algorithm 

is developed for the large interconnected power system. The software is developed 

for the calculation of the multi-area dispatch problem in decomposition way and is 

tested with two IEEE models:  i) Four area forty generator power system and ii) four 

area three generator power systems. 

Chapter 8 presents the conclusion, and the deliverables of the thesis. The 

applications of the thesis results, the future work, and the list of author publications 

complete the chapter. 
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1.10 Conclusion 

This chapter presents the problem statement, gives the background of the project. 

The project statement includes the research aim, problem statement, objectives, and 

assumptions. Outline and deliverables of the thesis are stated.  

In order to understand the depth of the problem it is critical to review literature 

specifically looking at the papers that propose methods and algorithms for solution of 

single or multi-area economic dispatch problems using classical, heuristic or meta 

heuristic optimisation methods. 

Chapter 2 outlines the existing literature on methods used for economic emission 

dispatch problem solution. 

 



14 

 

CHAPTER TWO 

INVESTIGATION OF THE METHODS FOR SINGLE AREA AND MULTI AREA 

OPTIMISATION OF A POWER SYSTEM DISPATCH PROBLEM 

 

2.1      Introduction  

In operating the power system for any load condition the contribution from each 

generating plant and from each unit within a plant must be determined so that the 

cost of the delivered power is a minimum. Any plant may contain different units such 

as hydro, thermal, gas etc. These plants have different characteristic which gives 

different generating cost at any load. So there should be a proper scheduling of 

plants for the minimization of cost of the operation. The cost characteristic of each 

generating unit is also non-linear function of the produced active power. So the 

problem of achieving the minimum cost becomes a non-linear optimisation problem 

which is difficult to be solved. The optimum load dispatch problem involves the 

solution of two different problems. The first of   these is the unit commitment or pre-

dispatch problem wherein it is required to select the optimal power of the available 

generating sources in order to meet the expected load and provide a specified margin 

of operating reserve over a specified period of time .The second aspect of economic 

dispatch is the real-time economic dispatch whereas it is required to distribute load 

among the generating units actually in parallel with the system in such a manner as to 

minimize the total cost of supplying the minute   to minute demand of the system.  

The objective of this chapter is to review the single area and multi-area economic 

dispatch problems and the existing methods and algorithms for solution of these 

dispatch problems. The review divides the economic dispatch problem into single 

area and multi-area as shown in Figure 1, and is done for a time period of 55 years 

from 1958 to 2013. The total number of 182 publications is considered. The number 

of publications year wise and algorithm wise is shown in the Table 2.1 and its 

graphical representation is shown in Figure 2.1 and Figure 2.2 respectively. 
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Figure 2.1: Classification of Single area and Multi-area power system dispatch Problem 

 

Table 2.1: Number of publications year wise 

NUMBER OF PUBLICATIONS - YEAR WISE 

Reference  
Year of 

publication 
No. of 

publication 

(Gerald and Aaron, 1958) and (Leon, 1958) 1958 2 

(Amdahl, 1967) 1967 1 

(Billinton and Jain, 1972) 1972 1 

(Happ,1977) 1977 1 

(Quintana et al., 1981) 1981 1 

(Jamshidian et al., 1983) 1983 1 

(Billinton and Allan, 1984) 1984 1 

(Helmick and Shoults, 1985) 1985 1 

(Billiton and Chowdhury, 1988), and (Gustafson,1988)  1988 2 

(Gottlieb and Almasi, 1989) 1989 1 
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(Chowdhury and Rahman, 1990), and (Chawdhury and Billinton, 1990) 1990 2 

(Ouyang and Shahidehpour, 1991) and (Srikrishna and Palanichamy,1991) 1991 2 

(Lee and Feng, 1992), (Lin et al.,1992), (Message-passing interface report,1992) 
,and (Wang and Shahidehpour, 1992) 

1992 4 

(Dhillon et al., 1993), and (Wong et al, 1993) 1993 2 

(Dhillon et al, 1994) and (Nanda et al, 1994) 1994 2 

(Derose et al., 1995), (Eberhant and Kennedy,1995), (Kennedy and Eberhart, 
1995), (Moler, 1995), (Okada and Asano,1995),  (Rong-Mow and Nanming, 
1995), and (Steriffert, 1995), 

1995 7 

(Available Transfer Capability, NERC Report, 1996), (Hollingsworth, et al., 1996), 
(Storn and Price, 1996) ,  and (Wood and Wollenberg, 1996) 

1996 4 

(David and Singh, 1997)  and (Kennedy and Eberhart, 1997) 1997 2 

(Lagarias et al., 1988) and (Tseng et al., 1998) 1998 2 

(Ching-Tzong, et al., 1999 ), (David, et al., 1999), and (Hadi Saadat, 1999) 1999 3 

(John, 2000) , (Kulkarni,et al., 2000), and  (Poli et al., 2000)  2000 3 

(Chen and Chen, 2001), (El-Gallad et al., 2001),  (Ray and Liew, 2001), (Shi and 
Eberhart, 2001), (Yalcionoz et al.,2001), and (Zhu and Momoh, 2001) 

2001 6 

(Behrooz, 2002), (Changhun, 2002), (Hu and Eberhart, 2002), and (Parsopoulos 
and Vrahatis, 2002) 

2002 4 

(Gaing, 2003), (Nidul et al, 2003), and (Venkatesh et al, 2003) 2003 3 

(Gilat,2004), and (Guerrero,2004), (Gnanadass et al., 2004), (Kannan and 
Veilumuthu, 2004), and (Kumar et al., 2004)  

2004 5 

(Chiang,2005), (Danaraj and Gajendran, 2005) , (Gnanadass, 2005),   (Jong-Bae 
et al, 2005), (Lai et al., 2005), (Nithiyananthan and Ramachandran, 2005), (Park 
et al., 2005), and (Venayagamoorthy,2005) 

2005 8 

(Abhijit and Suntia, 2006), (Abido, 2006), (Adhinarayanan and Sydulu, 2006), 
(Chaturvedi et al., 2006), (Coelho and Mariani,2006), (Hong-Shan et al., 2006), 
(Jeyakumar et al., 2006), (Koh et al., 2006), (Mishra et al., 2006), (Panuganti et 
al.,2006), (Rani et al., 2006), (Thakur, 2006), (Wang and Singh, 2006), and  
(Zwe-Lee and Rung-Fang, 2006) 

2006 14 

(Adhinarayanan, 2007), (Balamurugan and Subramanian, 2007), (Chayakulkeree 
and Ongsakul, 2007),  (Deb et al., 2007), (Dos Santos and Mariani, 2007), 
(Immanuel and Thanushkodi, 2007), (Jeyakumar et al., 2007), (Kim et al.,2007), 
(Lee et al., 2007), (Panta, 2007), (Ramesh and Ramachandran, 2007), (Ruchir et 
al, 2007), (Saber et al., 2007),  (Yang et al., 2007), and (Zarei et al., 2007) 

2007 15 

(Al-Sumait et al., 2008), (Baskar and Mohan, 2008), (Duncan et al.,2008),  
(Hemamalini and Simon, 2008), (Jayabarathi et al., 2008), (Manikandan et al 
2008b), (Manikandan et al., 2008a), (Manoharan et al., 2008),  (Nasr Azadani et 
al., 2008), (Palanichamy and Babu,2008), (Senjyu et al., 2008), (Shubham et al., 
2008), (Sugsakaran and Damrongkulkamjorn, 2008), (Venkatesh and Lee, 
2008),  and (Yingvivatanapong et al., 2008) 

2008 15 

(Amita et al.,2009), (Anurag and Noel,2009),  (Chen and Wang, 2009), 
(Hemamalini and Simon, 2009), (Karthikeyan et al., 2009), (Mahor et al, 2009),  
(Muneender and Kumar, 2009), (Ozyon et al., 2009), (Prasanna and 
Somasundaram, 2009), (Ravikumar et al, 2009), (Roman and Peter, 2009), (Tao 
and Jin-ding, 2009 ), (Wang and Singh, 2009), and (YU, et al., 2009) 

2009 14 
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(Adhinarayanan and Sydulu, 2010), (Alsumait et al., 2010), (Christos and 
George, 2010), (Ganesan and Subramanian, 2010), (Hemamalini and Simon, 
2010), (Jong-Bae et al., 2010), (Khamsawang et al., 2010), (Kothari and Dhillon, 
2010), (Meng et al., 2010),  (Ming et al., 2010), (Pankaj, 2010), (Park et al., 
2010), (Ratniyomchai et al., 2010), (Sharma et al., 2010) , (Subramanian and 
Ganesan, 2010),(Tiacharoen et al., 2010), (Tsai and Yen, 2010), (Yee Ming and 
Wen-Shiang, 2010), and (Yu and Hang, 2010) 

2010 19 

(Ahmad and Mortazavi 2011), (Barzegari et al, 2011), (Demirovic and Tesnjak, 
2011), (Hosseinnezhad et al., 2011), (Krishnamurthy and Tzoneva, 2011a), 
(Krishnamurthy and Tzoneva, 2011b), (Ganesan and Subramanian, 2011), 
(MATLAB® Distributed Computing Server™ 5 Installation Guide, 2011), (Rani 
and Afshin, 2011),(Somasundaram and Jothi Swaroopan, 2011), and (Yu and 
Chung, 2011) 

2011 11 

(Ciornei and Kyriakides, 2012), (David and John, 2012), (Fragomeni, 2012), 
(Jabr, 2012), (Krishnamutrhy and Tzoneva, 2012a), (Krishnamutrhy and 
Tzoneva, 2012b), (Krishnamutrhy and Tzoneva, 2012c), (Krishnamutrhy and 
Tzoneva, 2012d), (Krishnamutrhy and Tzoneva, 2012e), and (Rashuraman etal., 
2012) 

2012 10 

(Abimbola et al., 2013), (Ali, 2013), (Arul et al., 2013),(Barisal, 2013),(Basu, 
2013), (Chuco,2013), (Hosseinnezhad and Ebrahim, 2013), (Krishnamurthy and 
Tzoneva, 2013a), (Krishnamurthy and Tzoneva, 2013b), (Mondal, etal., 2013), 
(Ozyon and Aydin, 2013), (Wang and Li, 2013), and (Xingwen et al., 2013). 

2013 13 

 

Table 2.2: Most used methods and algorithms for Economic Dispatch Problem 

Most used methods and algorithms  
Reference paper 

No. of 

publication Algorithm Abbreviation  

Artificial Neural 

Network 
ANN 

(Basu, 2013), (Chaturvedi etal., 2006), (Kulkarni etal., 

2000), (Mishra, et al., 2006) and (Ozyon and Aydin, 2013) 
5 

Bees Algorithm BA (Tiacharoen et al., 2010) 1 

Bi-criterion Global 

Optimization 
BGO (Wong et al., 1993) 1 

Component Model CM (Kannan and Veilumuthu, 2004) 1 

Classical Technique CT (Nanda et al., 1994) 1 

Commitment Utilization 

Factor 
CUF (Lee and Feng, 1992) 1 

Differential Evolution DE 

(Coelho and Mariani, 2006), (Guerrero, 2004), (Jayabarathi 

et al., 2008),  (Storn and Price, 1996),  and (Xingwen, et 

al., 2013) 

5 

Dynamic Programming DP 
(Balamurugan and Subramanian, 2008), and (Barisal, 

2013)  
2 

Direct Search DS 
(Chen an Chen, 2001),(Fragomeni,2012), (Ganesan and 

Subraminan, 2011), and (Zarei et al., 2007) 
4 

Dantzing Wolfe 

Decomposition 

Principle 

DWDP (Quintana et al., 1981) 1 

E-constraint Method EM (Dhillon et al., 19994) 1 

Evolutionary 

Programming 
EP 

 (Abido, 2006) , (Deb et al., 2007), (Gnanadass et al., 

2004), (Jeyakumar et al., 2007),  (Manoharan et al., 2008), 

(Nidul and Chattopadhyay, 2003), (Prasanna and 

Somasundaram, 2009), (Sharma et al., 2010), (Venkatesh 

and Lee, 2008) , and (Venkatesh, et al., 2003) 

10 

http://www.sciencedirect.com/science/article/pii/S0142061513000379
http://www.sciencedirect.com/science/article/pii/S0142061513000379
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Fragomeni,%20U..QT.&searchWithin=p_Author_Ids:38485034400&newsearch=true
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Expert System ES (Wang and Shahidehpour, 1992) 1 

Fuzzy Logic FL 
(Ali, 2013) , (Chayakulkeree and Ongsakul, 2007) and 

(Shubham, et al.,2008)  
3 

Genetic Algorithm GA 
(Chiang, 2005), (Ciornei and Kyriakides, 2012), (Ozyon et 

al., 2009), and (Yalcionoz et al., 2001) 
4 

General Algebraic 

Modeling System 
GAMS (Demirovic and Tesnjak, 2011) 1 

Gravitational Search 

Algorithm  
GSA (Mondal, 2013)  1 

Grid Service Model GSM (Ramesh and Ramachandran, 2007) 1 

Heuristic Approach HA (Ouyang and Shahidehpour, 1991) 1 

Harmony Search HS 
(Arul, etal., 2013), (Ravikumar Pandi et al., 2009), and 

(Wang and Li, 2013) 
3 

Jacobin Method JM (Jamshidian et al., 1983) 1 

Lagrange‘s Algorithm LA 

(Danaraj and Gajendran, 2005), (Hemamalini and Simon, 

2009), (Hemamalini and Simon, 2010),  (Krishnamurthy 

and Tzoneva, 2011a), (Krishnamurthy and Tzoneva, 

2011b), (Krishnamurthy and Tzoneva, 2012a), 

(Krishnamurthy and Tzoneva, 2013), (Okada and Asano, 

1995), (Yingvivatanapong et al., 2008), and (Yu and Hang, 

2010)  

10 

Lambda Iteration LI (Palanichamy and Babu, 2008), and (Panta et al., 2007) 2 

Network Flow Modeling NFM (Streiffert, 1995), and (Zhu and Momoh, 2001) 2 

Netwon Raphson NR (Lin, et al., 1992), and (Rong-Mow and Nanming, 1995) 2 

Pattern Search PS (Al-Sumait, et al., 2010),  and (Al-Sumait, et al., 2008)  2 

Particle Swarm 

Optimization 
PSO 

(Adhinarayanan and Sydulu, 2006), (Amita, etal., 2009), 

(Barzegari et al., 2011), (Baskar and Mohan, 2008), (Dos 

Santos and Mariani, 2007), (Eberhant, and Kennedy, 1995) 

, (El-Gallad et al, 2001),(Gaing, 2003),(Hemamalini and 

Sishaj , 2008), (Hosseinnezhad and Ebrahim, 

2013),(Hosseinnezhad et al., 2011), (Hu and Eberhart, 

2002), (Immanuel and Thanushkodi, 2007), (Jeyakumar et 

al., 2006), (Jong-Bae, et al., 2005), (Jong-Bae, et 

al.,2010),(Kennedy and Ebehart, 1997),(Khamsawang et 

al., 2010),  (Kim et al., 2007), (Koh et al., 2006),(Kothari, 

and Dhillon, 2010), (Krishnamurth and Tzoneva, 2012),  

(Lai et al., 2005),  (Lee et al., 2007),  (Mahor et al., 2009),  

(Meng et al., 2010), (Ming et al., 2010), (Muneender and 

Kumar, 2009), (Nasr Azadani, 2008), (Park et al., 2005), 

(Park et al., 2010), (Parsopoulos and Vrahatis, 2002),(Poli 

et al., 2000), (Rani al., 2006), (Rani and Afshin, 2011),  

(Ray and Liew, 2001),(Saber et al., 2007), (Senjyu et al., 

2008), (Shi and Eberhart, 2001),(Shubham, et al.,2008), 

(Somasundaram and Jothi , 2011),  (Sugsakarn and 

Damrongkulkamjorn, 2008), (Tao and Jin-ding, 2009), 

(Thakur et al., 2006), (Tsai and Yen, 2010),(Wang and 

Singh, 2006), (Wang and Singh, 2009), (Yang et al., 2007), 

(Yee and Wen-Shiang, 2010), and  (Yu and Chung, 2011) 

51 

Power Transfer 

Distribution Factor 
PTDF 

(Manikandan et al., 2008a), and (Manikandan et al., 

2008b) 
2 
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Quadratic 

Programming 
QP (Danaraj and Gajendran, 2005) 1 

Remote Method 

Invocation 
RMI (Nithiyananthan and Ramachandran, 2005) 1 

Sequential Approach 

with Matrix Framework 
SAMF (Subramanian and Ganesan, 2010) 1 

Semi Definite 

Programming 
SDP (Abimbola, et al., 2013) and (Jabr, 2012)    2 

Tabu Search TS (Prasanna and Somasundaram, 2009) 1 

Unit commitment 

Approach 
UCA (Karthikeyan et al., 2009) 1 
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Figure 2.2: Number of Publications Year Wise 
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Figure 2.3: Number of Publications Algorithm Wise 

 

2.2 Economic power dispatch problem formulation 

The objective of solving the economic dispatch problem in electric power system is to 

determine the generation levels for all on-line units which minimize the total fuel cost 

and minimize the emission level of the system, while satisfying a set of constraints. 

In this chapter the economic dispatch problem formulation is classified into two types 

as follows:  

1. Single area economic dispatch problem 

2. Multi-area dispatch problem 

Every type can be formulated using a single criterion or multi-criteria and various 

types of constraints. 
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2.2.1 Single area economic dispatch problem 

2.2.1.1 Single criterion dispatch problem 

The objective of economic dispatch is to simultaneously minimize the generation cost 

and to meet the load demand of a power system over some appropriate period of 

time while satisfying various operating constraints. The objective function of an 

economic dispatch problem can be formulated as,  (Happ, 1977) 

Minimize  

 2

1 1

( )
n n

C i i i i i i i

i i

F F P a P b P c
 

      [$/h]                     (2.1) 

Where  

FC   Total Fuel Cost 

Fi(Pi)   Fuel cost of the ith generator 

Pi   Real power generation of unit i 

ai , bi, ci   Cost coefficients of generating unit i 

n   Number of generating units 

 

Under the Constraints 

1) Power balance constraint 

 


n

i
LDGi PPPP

1

    [MW]                                               (2.2) 

Where 

PG           Total power generation of the system 

PD           Total demand of the system 

PL           Total transmission loss of the system 

 

The transmission loss can be expressed as, (Kothari and Dhillon, 2010) 

   
  

n

i

n

j

n

i
iijjiiL BPBPBPP

1 1 1
000               [MW]                                (2.3) 

where 

 Pj           Real power generation of the generation unit j 

Bij,B0i,Boo       Transmission loss coefficients 

 

2) Generator operational constraints 

,max,min iii PPP      [MW]                                         (2.4) 
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Where 

Pi,min           Minimum value of the real power allowed at generator i 

Pi,max           Maximum value of the real power allowed at generator i 

 

2.2.1.2 Multi-criteria dispatch problem 

The various pollutants like sulphur dioxide, nitrogen oxide and carbon dioxide are 

released as a result of operation of the thermal power plants. Reduction of these 

pollutants is compulsory for every generating unit. To achieve this goal new criteria 

are included in formulation of the economic dispatch problem as 

follows:(Chayakulkeree and Ongsakul, 2007) 
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[Kg/h]                                               (2.5) 
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NO NO i i NO i i NO i
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E a P b P c
          

[Kg/h]                                               (2.6) 
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2

1

n

CO CO i i CO i i CO i
i

E a P b P c
          

[Kg/h]                                               (2.7) 

2 2xT SO NO CO
E E E E  

                             
[Kg/h]                                               (2.8) 

For a single pollutant it can be written as 

 2

1

n

T i i i i i
i

E d P e P f


                               [Kg/h]                                               (2.9) 

Where 

ESO2, ENOx ,ECO2             SO2 , NOx , CO2 emissions respectively 

ET                                 Total emission 

di, ei, fi                           Emission coefficients of generating unit i 

aSO2i, bSO2i, cSO2i            SO2 Emission coefficients of generating unit i 

aNOxi, bNOxi, cNOxi             NOx Emission coefficients of generating unit i 

aCO2i, bCO2i, cCO2i            CO2 Emission coefficients of generating unit i 

A multi-objective optimization is converted into a single objective optimization one 

called Combined Economic Emission Dispatch (CEED) problem by introducing price 

penalty factor hi to the various pollutants (Chayakulkeree, 2011). Three bi-criterion 

problems can be formulated for every pollutant separately as follows 

 
2 2 2 22

2 2

1
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so i

n
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i

F a P b P c h a P b P c


      
               [$/h]        (2.10) 

 2 2

1
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NOxi
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F a P b P c h a P b P c


      
 

    

     [$/h]         (2.11) 
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2 2 2 2 2

2 2

1

( )
i

n

TCO i i i i i CO i Co i i cO i co i

i

F a P b P c h a P b P c


      
 

    

         [$/h]        (2.12)

  

 

Where  

FTSO2          CEED‘s fuel cost of SO2 emission 

FTNOx         CEED‘s fuel cost of NOx emission 

FTCO2         CEED‘s fuel cost of CO2 emission 

In the cases where the impact of all 3 pollutants is important, the multi-objective 

dispatch problem can be solved for all pollutants. Then the CEED fuel cost for the 

SO2, NOx, and CO2 emissions is given by the equation (2.9) 

 
   

2 2 2 2

2 2 2 2

2

2 2
1

( )

NOxi i

n
i i i i i SO i so i i so i i so i

T

i NOxi NOxi i i NOxi CO i Co i i cO i co i

a P b P c h a P b P c
F

h a P b P c h a P b P c

      
  

       
 [$/h]  (2.13) 

The role of price penalty factor is to transfer the physical meaning of emission 

criterion from weight of the emission to the fuel cost for the emission. The difference 

between these penalty factors is in the weight of the fuel cost for emission in the final 

optimal fuel cost for generation and emission. The price penalty factor for multi-

objective dispatch problem (Subramanian and Ganesan, 2010) is formulated taking 

the ratio between the maximum fuel cost and maximum emission of the 

corresponding generators as follows: 
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2
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2
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2

max max

( )

( )

i i i i i
CO i

Co i i CO i i Co i

a P b P c
h

a P b P c
  [$/kg]                        (2.16)  

Where 

iSOh
2

   Max-Max price penalty factor of SO2 emission 

NOxih   Max-Max price penalty factor of NOx emission 

iCOh
2

 Max-Max price penalty factor of CO2 emission 

(Balamurugan and Subramanian, 2008) used ―Min-Min‖ and ―Max-Max‖ to calculate 

the average and common price penalty factors to solve the multi-objective economic 

emission dispatch problem which is given by the Equations (2.17) to (2.20). 
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i avg
i

com

h
h

n
                            (2.20)  

The problem (2.1), (2.9), (2.13), subject to the constraints (2.2), (2.3), (2.4) and 

various penalty factors (2.17) to (2.20) are solved in the literature by different 

optimisation methods. 

 

2.2.2  Multi-area dispatch problem 

2.2.2.1 Introduction of Multi-area Economic Emission dispatch problem 

The multi-area dispatch problem dispatched the generator power within multiple 

areas. Every area has its own set of generators (Chen and Wang, 2010). The areas 

are interconnected by tie-lines as shown in Figure 2.4 

 Single criterion or multicriteria dispatch problems can be formulated for every area 

and for the whole system. They determine the optimal power to be produced by the 

generators in every area and the optimal values of the power transferred between the 

areas through the tie-lines. 

Area 1

N1

Generators

Area m

Nm

Generators

Area 2

N2

Generators

Area M

NM

Generators

t2Mt1m

t12

tmM

t2m t1M

 

Figure 2.4: Model of a Multi-area power system with tie-line power transfer 
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2.2.2.2 Optimal power generation and transmission cost criterion for every area 

The objective of multi-area dispatch is to determine the generation levels in every 

area and the interchange power between the areas that minimize both fuel and 

emission costs while satisfying a set of constraints as: (Chen and Wang, 2010) and 

(Wang and Singh, 2009) 

 

   

 



 

 
    

               

2

1 11 2

1 2

1 1

min ,

M n

mi mi mi mi miM m i

m m M n
m

m mi mi mi mi mi
m i

a P b P c

F F
h P P    

(2.21) 

Where 

1

m
F

    Expected fuel cost for the mth area 

2

m
F

  Expected NOx emission for the mth area 

n   Number of on-line generators for the area m in a M area system 

, ,
mi mi mi
a b c

 Fuel cost coefficients for the ith generator in the mth area 

  , ,
mi mi mi  Emission coefficients of the generator i in the mth area 

mi
P

  Power output of the generator i in the area m 

m
h

  Price penalty factor in the area m 

The constraints involved with the problem formulation are as follows: (Chen and 

Wang, 2010) 

a) Area demand balance 

In the area m, the total power generation must cover the local area demand 

Pdemand,m and the transmission loss Ploss,m with the consideration of imported and 

exported power. This relationship can be expressed as: (Chen and Wang, 2010) 

 
 



         
, ,

1 1

1 0
n M

mi mk km km demand m loss m
i m

m k

P t t P P

   

(2.22) 

b) Area generation capacity 

 min max

mi mi mi
P P P , 1,m M

      

(2.23) 
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c) Tie-line capacity limits  

 min max

km km km
t t t   , 1, , 1,m M k M k m

    

(2.24) 

Where 

km
t

   Economic tie-line transfer real power 


km   Tie-line transfer loss ratio from area k to area m 

,demand m
P

  Local demand in the area m 

,loss m
P

  Transmission loss for the area m 

min

km
t

and 
max

km
t

 Tie-line minimum and maximum capacity limits from the area k 

to the area m 

min

mi
P

 and 
max

mi
P

 Minimum and maximum power output of the generator i in the 

area m 

 

2.3 Investigation of the single area power system dispatch problem methods for 

solution 

2.3.1  Single criterion Problem 

This section investigates the single area power system dispatch problem according to 

various optimization techniques used, such as Lagrange‘s Algorithm (LA), Improved 

Harmony Search Algorithm (IHSA), Bees Algorithm (BA), General Algebraic Modeling 

Systems (GAMS), Artificial Neural Network (ANN), Evolutionary Algorithm (EA), and 

Particle Swarm Optimization (PSO). 

(Happ, 1977) represented a comprehensive survey of papers on optimal dispatch 

problem covering the period of 1920-1977. In that, the existing literature of the 

economic dispatch into the following main groups: classical single area, multi area 

economic dispatch, and optimal load flow.  

Classic economic dispatch of real power treats the network approximately and 

optimizes the generator powers when all voltages are considered constant with 

objective being the minimization of production costs. The classic economic dispatch 

was compared with the rigorous power allocation method, and it was concluded that 

there were no economic incentives in terms of dollars saved in order to switch to a 

more rigorous economic dispatch procedure. 
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Rigorous procedures compute the incremental losses directly from the Jacobian of 

the Newton Raphson load flow. The work on valve point loading and environmental 

dispatch is also considered in his review. 

According to survey done by (Chowdhury and Rahman, 1990) for the period 1977-

1988, the economic dispatch is divided into four areas. They are optimal power flow, 

economic dispatch in relation to Automatic Generation Control (AGC), dynamic 

dispatch, and economic dispatch with non-conventional generation sources.  

The optimal power flow procedure consists of methods utilizing load flow techniques 

for the purpose of economic dispatch. Some authors used AC load flow model and 

other used DC load flow model. The role of Automatic Generation Control (AGC) is to 

maintain desired megawatt output of a generator unit and control the system 

frequency. The AGC loop maintains control only during normal (small and slow) 

changes in load and frequency. Adequate control is not possible during emergency 

situations when large imbalance occurs. A dynamic economic dispatch is one that 

considers change related costs. With the use of steady-state operating costs in the 

static operation, poor transient behavior results when these solutions are 

incorporated in the feedback control of dynamic electric power networks. Non- 

conventional generation sources such as solar, photovoltaic, solar thermal, wind, 

geothermal, storage battery etc. are considered. The frequent weather changes may 

translate into extremely high variations in the power generations from the Non-

conventional plants. If the plant is constantly connected to the distribution system, this 

causes operational problems like load following, spinning reserve requirements, load 

frequency excursions, system stability etc., which the conventional AGC is unable to 

handle. 

Maclaurin series based Lagrangian method is used to solve the Dynamic Economic 

Dispatch (DED) problem with valve-point loading effect (Hemamalini and Simon, 

2009). The sine term is approximated in (Hemamalini and Simon, 2010) so there will 

be an approximation error and the solution may not converge to an optimal value. So 

initialization factor is used to compensate the Maclaurin sine series expansion 

approximation and to minimize the error. 

Harmony search (Wang and Li, 2013) and Improved Harmony Search (IHS) (Pandi et 

al., 2009) is a new meta-heuristic optimization algorithm which imitates the music 

improvisation process applied by musicians. The parameters of the IHS algorithm are 

the Harmony Memory Size (HMS), Harmony Memory Considering Rate (HMCR), 

Pitch Adjusting Rate (PAR), and the Number of Improvisations (NI). Some efficient 
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meta-heuristic search methods (Ratniyomchai et al., 2010) like Genetic Algorithm, 

Evolutionary Programming, Adaptive Tabu Search, Particle Swarm Optimization and 

Improved Harmony Search are briefed and summarized. The improved harmony 

search method proves that it can find a place among some efficient meta-heuristic 

search methods in order to find a near global solution of the economic load dispatch 

problems. 

In Bees algorithm, the colony of artificial bees contains two groups of bees: scout and 

employed bees. The scout bees have the responsibility to find a new food source. 

The responsibility of employed bees is to determine a food source within the 

neighborhood of the food source in their memory and share their information with 

other bees within the hive. Bees algorithm has been applied to solve the economic 

dispatch problem with prohibited, operating zones, ramp-rate limits, and non-smooth 

cost functions in (Tiacharoen, 2010).  

The problems of economic dispatching and multi-periodic power flows are formulated 

and modeled using General Algebraic Modeling Systems (GAMS). GAMS language 

(Demirovic and Tesnjak, 2011) offers a series of algorithms that optimize both linear 

and nonlinear or mixed integer problems. GAMS program is used in order to solve 

problems, both in the domain of power systems optimization and in other engineering 

fields.  

Artificial neural network are often used to find solution of the optimal power dispatch 

problem. The architecture of the feed-forward neural network trained by Levenberg-

Marquardt back propagation algorithm (Chaturvedi et al., 2006) and (Basu, 2013), is 

shown in Figure 2.5. A large number of loading patterns were generated in wide 

range.  

The total power demand in the power system is taken as the input variable for the 

proposed neural network. The output of the neural network provides the optimal value 

of the incremental cost of generation λ and the generation allocation at different 

generators so that the total cost of generation is minimum. 

Levenberg 

Marquardt 

Algorithm based 

Artificial Neural 

Network

Total Power 

Demand

Optimal 

P1

Pn

P2



:

 

Figure 2.5: ANN Architecture (Chaturvedi et al., 2006) 
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Various architectures of three-layered feed-forward Artificial Neural Network (ANN) 

models having different number of hidden nodes have been trained for the same error 

goal and the optimal structure has been selected on the basis of the least training 

time. The trained neural network has been tested for the testing patterns to evaluate 

its performance. According to (Panta et al., 2007) the ANN with three layers, i.e. input 

layer, hidden layer and output layer shown in Figure 2.6 can be used for successful 

solution of the dispatch problem. The input layer has only one neuron which is the 

total power demand. The output layer has ‗n‘ neurons representing the generated 

powers of each generator.  
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Figure 2.6: ANN structure for economic power dispatch (Panta et al., 2007) 

The output of the input layer's neuron is connected to all neurons in the hidden layer 

through a weight. Also a bias signal is coupled to all the neurons through a weight. All 

the layers of a Neural Network have a hyper tangent sigmoid transfer function. The 

optimal power generated by each generator is calculated by using lambda iteration 

method. The neural network was trained using a MATLAB program. 

Evolutionary algorithm is applied to find solution for a power network of combined 

cycle plants. In a Combined Cycle Co-generation Plant (CCCP), gas and steam 

turbines work in combination to generate electric power. In (Gnanadass et al., 2004), 

the economic dispatch problem is formulated using quadratic fuel cost function as in 

Equation (2.1) and CCCP fuel cost function is described below: 

 
1 1

( ) [$ / ]
n n

i i i i i Linear
i iCCCP

F P b P c hr
 

  
              

               (2.25) 
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Where  

bi and ci  Constants in [$/hr] 

The main stages of Evolutionary Algorithm (EA) are initialization, creation of offspring 

vectors by mutation and competition and selection of best vectors to evaluate best 

fitness solution. Suppose the plant has n generators, the minimum solution was 

obtained by assuming the quadratic fuel cost characteristics for (n-1) generators and 

any one of the generator with CCCP. The fuel cost obtained due to CCCP effect is 

less than the quadratic fuel cost function. The transmission losses were computed 

using Newton-Raphson method in (Gnanadass et al., 2004).  

Particle Swarm Optimization (PSO) was first introduced by Kennedy and Eberhart in 

1995 (Kennedy and Eberhart, 1995). In (Manoharan et al., 2008), Evolutionary 

Algorithm (EA) such as the Real-Coded Genetic Algorithm (RCGA), PSO and 

Differential Evolution (DE) are considered. A constraint-handling method is employed 

which does not require any penalty parameter. In penalty parameter-less constraint-

handling scheme, all feasible solutions have zero constraint violation and all 

infeasible solutions are evaluated according to their constraint violations alone. 

Hence, both the objective function value and constraint violation are not combined in 

any solution to the population. In general, there is no guarantee for the EA-based 

results, which are close to an optimal solution. This is a difficult question to answer for 

solving any arbitrary problem, not only using an evolutionary optimization technique, 

but also using any other optimization technique. A verification method based on 

Karush–Kuhn–Tucker (KKT) conditions to validate the solutions obtained by EAs is 

implemented in (Deb et al., 2007).  

In (Lagarias, 1998), the economic dispatch problem formulation considers both valve-

point and multiple fuel options. The optimal results obtained using various EAs are 

compared with Nelder–Mead simplex method. It reveals that PSO performs better in 

terms of solution quality and consistency in comparison to RCGA & DE. But DE 

performs better in terms of mean computation time in comparison to RCGA & PSO. 

Hybrid Differential Evolution approach is a simple population based stochastic 

function method and has been extended from the original algorithm of differential 

evolution (Storn and Price, 1996). 

The Hybrid Differential Evolution (HDE) technique (Jayabarathi et al., 2008) is applied 

to various kinds of Economic Dispatch (ED) problems such as those including 

prohibited zones, emission dispatch, multiple fuels, and multiple areas. This method 

is used to solve unconstrained nonlinear, non-smooth, and non-differentiable 
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optimization problems. The basic operations of HDE are: representation and 

initialization, mutation, crossover operation, selection and evaluation, accelerated 

operation, and migration operation. It can be observed that initially the PSO method 

appears to converge faster but after less than 20 iterations HDE performs better. The 

acceleration factor has reduced the convergence time while the introduction of the 

migration factor has improved the optimal result by avoiding the local optima. 

A survey of particle swarm optimization applications in electric power systems to 

solve electric power optimization problems such as optimal power flow, economic 

dispatch, reactive power dispatch, unit commitment, generation and transmission 

planning, maintenance scheduling, state estimation, model identification, load 

forecasting, and control system is done in (Yang et al., 2007). PSO is classified into 

three types, as shown in Figure 2.7. 

Continuous PSO

PSO

Discrete PSO

Methods based on 

preference of 

feasible solutions 

over infeasible 

ones

Constraints 

handling methods

Methods based on 

penalty functions

Methods based on 

Multiobjective 

optimization 

concepts

 

Figure 2.7: Classification of PSO methods  (Yang et al., 2007) 

Continuous particle swarm optimization is formulated as (Yang et al., 2007). 

1 2( ).( ) ( ).( )id id id id nd idv w v c rand p x c rand p x               (2.26) 

id id idx x v                                                                                                              (2.27) 

Where 

vid    New velocity  

pid   Particle location  

pnd   Best particles location among the neighbors 

xid   Particle position 

w      Inertia weight 

c1 and c2  Learning factors 

rand ( )   Random numbers 
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Discrete particle swarm optimization (Kennedy and Eberhart, 1997), can be used to 

solve combinatorial problems such as unit commitment and generation scheduling. It 

is formulated as 

1 2( ).( ) ( ).( )id id id id nd idv w v c rand p x c rand p x                      (2.28) 

 



id id

id

if random S v then x

else x

( ( ) ( ) 1

0
                                            (2.29) 

The values of  

 , , 0,1id nd idp p x   

 0.0,1.0idv   

rand ( )   Quasi random number in  0.0,1.0  

S(vid)    Sigmoid limiting transformation function 

The constraints handling methods are used for many optimization problems in electric 

power systems. The Modification on basic PSO can be used to solve the constrained 

optimization problems. Method based on preference of feasible solutions over 

infeasible ones can be dealt in two ways. When a particle is outside the feasible 

space (El-Gallad et al., 2001), it will reset to the last best value found. When updating 

the memories, all particles keep feasible solutions in their memory and during the 

initialization process also all particles start with the feasible solutions (Hu and 

Eberhart, 2002). The initial feasible solution set is hard to be found and it is also 

difficult to deal with equity constraints. 

The penalty function (Parsopoulos and Vrahatis, 2002) is used to convert the 

constrained optimization problem into unconstrained one. To find the optimal value of 

penalty function coefficients in optimization problems is difficult task. The 

inappropriate penalty coefficients can cause slow convergence or premature 

convergences of the algorithm.  

A concept in multi-objective optimization (Ray and Leiw, 2001) is to generate a Better 

Performer List (BPL) based on the constraint matrix. An individual that is not in the 

BPL improves its performance by deriving information from its closest neighbor in the 

BPL. 

A literature review of economic dispatch using PSO in (Mahor et al., 2009), pays an 

attention to local optimum solution, initial variables, premature and slow convergence, 

and dimensionality. It also reports that further improvements of PSO algorithms are 

required. The present versions of PSO have slower convergence at later stage and 

also are not able to provide optimal solution for real time scheduling problems. PSO 
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method for solving the economic dispatch (ED) problem with nonlinear characteristics 

of the generator, such as ramp rate limits, prohibited operating zone, and non-smooth 

cost functions are considered in (Gaing, 2003). The solution based on the PSO 

method is compared with an elitist GA search method (Yalcionoz et al., 2001). It 

shows that PSO method avoids the shortcoming of premature convergence of GA 

method. PSO to solve economic dispatch of units with non-smooth input-output 

characteristic functions is developed in (Lai et al., 2005). The results of PSO solution 

is compared with Evolutionary Programming (EP) and it is concluded that increasing 

of the population size  in an adaptive PSO algorithm can improve algorithm 

convergence characteristics.  

Cubic cost function model (Adhinarayanan and Sydulu, 2006) represents the actual 

response of thermal generators more accurately. PSO algorithm is used to solve a 

dispatch problem with cubic fuel cost function  

2 3( )i i i i i i i i iF P a bP c P d P                         (2.30)   

Where  

ai, bi, ci, di  Fuel cost coefficients of unit i 

The modified PSO (MPSO) algorithm is used to solve various types of economic 

dispatch problems in (Park et al., 2005), (Saber et al., 2007), (Baskar and Mohan, 

2008), (Park et al., 2010). MPSO is applied to smooth cost functions and non-smooth 

cost functions considering valve-point effects and multi-fuel problems in (Park et al., 

2005). The position of each individual (2.27) is modified by the Equation (2.31). The 

resulting position of an individual is not always guaranteed to satisfy the inequality 

constraints due to over/under velocity. If any element of an individual violates its 

inequality constraint due to over/under speed then the position of the individual is 

fixed to its maximum/minimum operating point. Therefore, this can be formulated as 

follows: (Park et al., 2005) 
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               (2.31)                                             

In MPSO the position adjustment strategy is incorporated in the PSO framework in 

order to provide the solutions satisfying the inequality constraints. The dynamic 

search-space reduction strategy is applied to accelerate the convergence speed. In 

(Saber et al., 2007), Modified PSO algorithm consists of problem dependent variable, 

number of promising values in velocity vector, unit vector, error-iteration and step 
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length. It reliably and accurately traces a continuously changing solution of the 

complex cost function and no extra concentration/effort is needed for more complex 

higher order cost polynomial in Economic Load Dispatch (ELD).  

In the Improved Particle Swarm Optimization (IPSO) method (Park et al., 2010), the 

performance of the conventional PSO is greatly improved by using a new velocity 

strategy equation, which is suitable for a large system. The Constriction Factor 

Approach (CFA) is incorporated into this velocity equation. Equation (2.32) is used 

and the new velocity strategy equation is formulated where the maximum and 

minimum velocity limits of each individual are calculated as follows: 

max min
max

max min
min

2
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d d
d

d d
d

P P
v

P P
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                                                               (2.32) 
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β=0.01 

This approach also considers the security constraints such as line flow constraints 

and bus voltage.  

 Chaotic PSO is used in Park et al., 2010), (Coelho and Mariani, 2007), (Tao and Jin-

ding, 2009) and (Mondal, 2013)  to optimize the economic dispatch problems, since 

the conventional PSO has drawbacks such as local optimal trapping due to 

premature convergence (i.e., exploration problem), insufficient capability to find 

nearby extreme points (i.e., exploitation problem), and lack of efficient mechanism to 

treat the constraints (i.e., constraint handling problem). To overcome these 

drawbacks an improved PSO framework employing chaotic sequences combined with 

the conventional linearly decreasing inertia weights and adopting a crossover 

operation scheme to increase both exploration and exploitation capability of the PSO 

is developed in (Park et al., 2010). Chaotic Inertial Weight Approach (CIWA), is 

defined as follows 

k kc k                                     (2.33) 

Where  

kc     Chaotic weight at kth iteration 
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k   Weight factor of IWA 

k
  

Chaotic parameter 

The chaotic PSO approach hybridized with an Implicit Filtering (IF) technique to 

optimize the performance of economic dispatch problems is proposed in (Coelho and 

Mariani, 2007). The chaotic PSO with chaos sequences is the global optimizer and 

the IF is used to fine-tune the chaotic PSO run in sequential manner. The IF explores 

the search space quickly with a gradient direction and guarantees a good local 

solution. A modified Tent-map-based Chaotic PSO (TCPSO) to solve the economic 

load dispatch problem is proposed in (Tao and Jin-ding, 2009). The new tent-map-

based chaotic PSO can be used to find the initial value for each particle in order to 

improve the global convergence, and reduce the influence caused by the particle's 

initial position. There after the PSO algorithm is used to find the optimal solution.  

 The Quantum-inspired Particle Swarm Optimization (QPSO) is described in (Meng et 

al., 2010), (Hosseinnezhad et al., 2011). The state of a particle is depicted by 

quantum bit and angle, instead of particle position and velocity in the classical PSO. 

The QPSO has stronger search ability and quicker convergence speed based on 

introducing quantum computing theory. It also has two special implementations such 

as self-adaptive probability selection and chaotic sequences mutation.  

A development of an educational simulator for particle swarm optimization is done in 

(Lee et al., 2007). It solves the mathematical test functions as well as ED problems 

with non-smooth cost functions. In the simulator, instructors and students can select 

the test functions for simulation and set the parameters that have an influence on the 

PSO performance. Through the visualization process of each particle and the 

variation of the value of objective function, the simulator is particularly effective in 

providing users with an intuitive feel for the PSO algorithm. This educational simulator 

was developed in MATLAB 6.5, which is run in an interpreter mode on a wide variety 

of operating systems. 

The hybrid PSO is used to solve the economic dispatch problems (Muneender and 

Kumar, 2009), (Shi and Eberhart, 2001), (Kumar et al., 2004). The optimal re-dispatch 

of transactions for congestion management is formulated as a Non-Linear 

Programming (NLP). The Adaptive Fuzzy Particle Swarm Optimization based Optimal 

Power Flow (AFPSO-OPF) is introduced in (Muneender and Kumar, 2009) for 

Congestion Management problem or multi congestion case to solve the NLP. In this 

method, the inertia weight is dynamically adjusted using adaptive fuzzy IF/THEN rules 

(Shi and Eberhart, 2001), (Kumar et al., 2004) to increase the balance between 
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global and local searching abilities. The selection of generators from the most 

sensitive cluster/zone uses two distribution factors that are Real and Reactive Power 

Transmission Congestion Distribution Factors (PTCDFs and QTCDFs) (Muneender 

and Kumar, 2009) and (Kumar et al., 2004)  to minimize the number of readjustments 

for the congestion management. A hybrid method that integrates particle swarm 

optimization (PSO) with sequential quadratic programming (SQP) is used to solve the 

non-smooth cost functions in (Sugsakarn and Damrongkulkamjorn, 2008). PSO is the 

main optimizer to find the optimal global region while SQP is used as a fine tuning to 

determine the optimal solution at the final stage. In (Khamsawang et al., 2010), four 

scenarios of mutation operators are used for improving diversity exploration of the 

standard PSO. The scenarios of mutation operators are expressed as the following 

equations: 

1) Scenario 1 (PSO-DE1) 

 ( 1) ( ) ( ) ( ) ( )( ) ( )k k k k k

i j i q iv SC x x x x      
                                 (2.34)               

2) Scenario 2 (PSO-DE2) 

 ( 1) ( ) ( ) ( ) ( )( ) ( )k k k k k

i j i q iv SC x x x x        
                               (2.35)          

3) Scenario 3 (PSO-DE3) 

 ( 1) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )k k k k k k k

i j i q i r iv SC x x x x x x        
                      (2.36) 

4) Scenario 4 (PSO-DE4) 

 ( 1) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )k k k k k k k

i j i q i r iv SC x x x x x x            
                 (2.37) 

where  

SC   Scaling factor between 0.1 and 2  

 β   Value from the previous iteration defined by the user 

 k, q and r  Random indexes of the particles and ( )k q r    

The Table 2.3 gives the review overview of the single area economic dispatch 

problem. The objective function, equality and inequality constraints, algorithms, 

software, power system considered, and real-life implementation are used as criteria 

for comparison of the reviewed papers. 

Most of the authors used simulation tools such as Fortan, C language and MATLAB 

to validate the economic dispatch solutions and there is no sufficient proof that the 

model is implementated in real-time for both single and multi-criteria economic 

dispatch problem. The reason might be the copy right issues to publish the data of 

the power plants in publications. 
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Table 2.3: Review of single area, single criterion economic dispatch problem methods of solution 

Reference 
Paper 

Objective Function 

Constraints 

Algorithm Software 
Power System 

considered 

Real 
life 

Imple
ment
ation 

Equality 
Constraints 

Inequality Constraints 

(Adhinaray
anan and 
Sydulu, 
2006) 

Cubic fuel cost function 
Real power 
balance constraint 
 

Nil 
Particle Swarm 
Optimization 

Not mentioned 

 
i. 3 generator system with 
   quadratic  cost function 
ii. 3 generator system with 
     cubic cost function 
iii. 5 generator system with 
      cubic cost function 
iv. 26 generator system 

with 
     cubic cost function 

No 

(Baskar 
and 

Mohan, 
2008) 

Fuel cost function  
 

i. Real power 
balance 
constraint 

ii. Network power 
flow equation 

 
i. Real power 

generation limit 
ii. Bus voltage limit 

constraint 
iii.  Power limit on 

transmission line 

Improved Particle 
Swarm Optimization 

MATLAB 
i. IEEE 14 bus system  
ii. 66 bus Indian utility 

system 
No 

(Chaturved
i et al., 
2006) 

Fuel cost function 
 

 
i. Real power 

balance 
constraint 

ii. Transmission 
Loss constraint 

Real power generation 
limit 
 

Levenberg-Marquardt 
Back Propagation 
Algorithm 

ANN tool box 
i. 3 generating unit system 
ii. 6 generating unit system 

No 

(Demirovic 
and 

Tesnjak, 
2011) 

i. Fuel cost function 

ii. Multi-periodic optimal 
power flow 

 

 

i. Real power 
balance 
constraint 

ii. Transmission 
Loss constraint 

i. Spinning reserve 

ii. Transmission 
capacity of lines 

Generalized algebraic 

Modeling system  
(GAMS) Algorithm 

GAMS 
software 

Four nodes and three 
generators system 

No 

 

(Dos 
santos 
Coelho 

and 

Fuel cost function with 
valve point effect 

Real power 
balance constraint 
 

Real power generation 
limit 

 
Chaotic PSO 
approach 
hybridized with an 

MATLAB 
13 generator system with 
     valve point effect 

No 
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Mariani, 
2007) 

Implicit Filtering (IF) 

(Gaing, 
2003) 

Fuel cost function 
Real power 
balance constraint 

i. Real power 
generation limit 

ii. Ramp Rate Limits 
iii. Prohibited Operating 
       Zone 
iv. Line flow constraints 

Particle Swarm 
Optimization 

MATLAB 

 
i. 6 thermal units, 26 

buses, and 46 
transmission lines. 

ii. 15 thermal units with 
prohibited operating 
zones and 
transmission loss 
coefficients 

iii. 40 units of the Tai 
power mixed 
generating system of 
coal, oil , gas and 
diesel 

No 

(Gnandass 
et al., 
2004) 

i. Fuel cost quadratic 
function 

ii. Fuel cost  function of 
iii.Combined Cycle 

Cogeneration Plant 
(CCCP) 

Real power 
balance constraint 
 

Real power generation 
limit 

Evolutionary 
programming  

MATLAB 

 
i. IEEE 14 bus systems 
ii. IEEE 30 bus systems 
(Fuel cost characteristic of 
slack bus generator is of 

CCCP nature and all 
other generators having 
quadratic fuel cost 
function) 

No 

(Hemamali
ni and 
Simon, 
2010) 

Fuel cost function with 
valve point effect 

i. Real power 
balance 
constraint 

ii. Transmission 
Loss constraint 

Real power generation 
limit 

Maclaurin series 
based Lagrangian 
method 

MATLAB 

 
i. 40 generator  system 

with Transmission loss 
neglected 

ii. 5 generator  system with 
transmission loss 
considered 

No 

(Hemamali
ni and 
Simon, 
2009) 

Fuel cost function with 
valve point effect 

i. Real power 
balance 
constraint 

ii. Transmission 
Loss constraint 

Real power generation 
limit 
 

Maclaurin series 
based Lagrangian 
method 

MATLAB 

 
i. 3  generator  system 

with Transmission loss 
neglected 

ii. IEEE 30 Bus of 6 
generator system with 
Transmission 
considered.  

iii. 3  generator  system  

No 
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          with Transmission 
loss neglected 

iv. 40  generator  system 
with Transmission loss 
neglected 

(Hosseinne
zhad et al., 

2011) 

Fuel cost function with 
valve point effect 

Real power 
balance constraint 

 

Real power generation 
limit 

Quantum  PSO 

 

Not Mentioned 

 

 

i. 13 generator system with 
valve point effect 

ii. 40 generator system with 
valve point effect 

No 

(Jayabarat
hi et al., 
2008) 

i. Fuel cost function 
with prohibited 
operating zones 

ii. Multiple fuel cost 
function 

iii. Fuel cost function for 
Multi Area Economic 
Dispatch 

iv. Fuel cost function for 
combined economic 
emission  dispatch 
problem 

Real power 
balance constraint 
 

i. Real power 
generation limit 

ii. Prohibited Operating 
Zone 

iii. Tie-line limit 
constraint 

Hybrid Differential 
Evolution technique 
(HDE) 

MATLAB 

 
i. 15 generating unit 

system with prohibited 
zones considered. 

ii. 10 generating unit 
systems with multiple 
fuel cost considered. 

iii. 6 generating unit 
systems with emission 
coefficient considered. 

iv. 4 area with 4 
generating units  
interconnected by six 
tie lines 

No 

(Khamsaw
ang, et al., 

2010) 

Fuel cost function  

 

 

i. Real power 
balance 
constraint 

ii. Network 
transmission  
loss   

 

i. Real power 
generation limit 

ii. Prohibited operating 
zones 

PSO with Differential 
Evolution 

(PSO-DE) 

MATLAB 6 generator system  No 

(Lai et al., 
2005) 

 
Fuel cost function with 
valve point effect 

Real and reactive 
power flow 
equations 

Power generation limit 
 

Particle Swarm 
Optimization 

MATLAB 
IEEE 30-bus system with 6 
generator system 

No 

(Lee et al., 
2007) 

1. Economic dispatch 

a) Fuel cost function  

b) Fuel cost function 

Real power 
balance constraint 

 

Real power generation 
limit 

PSO 
Educational 

simulator for 
PSO using 

i. 3 generator system with 
valve point effect 

ii. 40 generator system with 

No 
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with valve point 
effect 

2. Mathematical function 

a) Sphere function 

b) Rosenbrock 
function 

c) Ackley‘s function 

d) generalized 
Rastrigin function 

e) Generalized 
Griewank function 

JAVA valve point effect 

 

(Manohara
n et al., 
2008) 

i. Fuel cost function 
ii. Fuel cost function 

with valve point 
effect 

iii. Multiple fuel cost 
function 

Real power 
balance constraint 
 

Real power generation 
limit 

i. Real-coded 
genetic algorithm 

ii. Particle swarm 
optimization 

iii. Differential 
evolution 

 

 
 
 
MATLAB 

 
i. 10 generator system with 

non-smooth cost 
functions and multiple 
fuel options. 

ii. 10 generator system with 
Non-smooth cost 
functions considering 
both valve-point effects 
and multiple fuel options  

 
 
 
 
No 

(Meng et 
al., 2010) 

Fuel cost function with 
valve point effect 

Real power 
balance constraint 

 

Real power generation 
limit 

Quantum-Inspired 
PSO 

 

Not Mentioned 

 

 

i. 3 generator system  

ii. 13 generator system 
with valve point effect 

iii. 40 generator system 
with valve point effect 

No 

(Pandi et 
al., 2009) 

Fuel cost function  with 
cost of tie line flow 
 

i. Area Power 
Balance 
Constraints 

ii. Transmission 
Loss constraint 

iii.  Generator 
Constraints 

iv. Prohibited 
Operating Zone 

v. Tie Line 
constraints 

Improved Harmony 
Search 

MATLAB 

 
i. single area six unit 

system with loss 
coefficients 

ii. multi area economic 
load dispatch having 
four areas along with 
tie-line constraints  

iii. single area six unit 
system with loss 

No 
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coefficients and 
prohibited operating 
zones. 

(Panta et 
al., 2007) 

Fuel cost function but  
the fuel cost is not 
estimated 
 

Real power 
balance constraint 
 

Real power generation 
limit 
 

i. Lambda iteration 
ii. Artificial Neural 

Network (ANN) 
MATLAB 

 
i. 3 generating unit 

system 
ii. 10 generating unit 

system 
iii. 20 generating unit 

system 

No 

(Park et 
al., 2010) 

i. Fuel cost function with 
valve point effect 

ii. Multiple fuel cost 
function with valve 
point effect 

i. Real power 
balance 
constraint 

ii. Network 
transmission  
loss   

i.  Real power 
generation limit 

ii. Ramp rate limits 
iii. Prohibited operating  
      zones 

Improved PSO Not Mentioned 

 
i. 40-unit system with 

valve-point effects 
ii. 15-unit system with 

prohibited operating 
zones, ramp rate 
limits, and 
transmission network 
losses 

iii. 10 unit system 
considering multiple 
fuels with valve-point 
effect 

iv. 140-unit Korean power 
system with valve-
point effects, 
prohibited operating 
zones, and ramp rate 
limits. 

No 

(Park et 
al., 2005) 

i. Fuel cost function with 
valve point effect 

ii. Multiple fuel cost 
function  

Real power 
balance constraint 
 

Power generation limit 
 

Modified Particle 
Swarm Optimization 

Not Mentioned 

 
i. 3 generator system with 

valve point  effect 
ii. 40 generator system with  

valve point  effect 
iii. 10 generator system 

with    multiple fuel cost 
function 

No 

(Ratniyomc
hai et al., 

2010) 

Fuel cost function with 
valve point effect 

Real power 
balance constraint 
 

Real power generation 
limit 
 

i. Genetic Algorithm 
ii. Evolutionary 

Algorithm 
iii. Adaptive Tabu 

MATLAB 
IEEE 30 bus system with 
six thermal power 
generating plant  

No 
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 Search 
iv.  Particle Swarm  
       Optimization 
v. Improved Harmony  
     Search 

(Saber et 
al., 2007) 

i. Fuel cost function  
ii. Multiple fuel cost 

function 
iii. Emission function 
iv. Maintenance cost 

function 

Real power 
balance constraint 
 

 
i. Power generation 

limit 
ii. Spinning reserve 
iii. Ramp rate 
iv. Prohibited 

operating zones 
v. Transmission  loss 

constraints 
vi. Network losses 

Modified Particle 
Swarm Optimization 

Turbo C/C++ 6 generator system  No 

(Sugsakar
an and 

Damrongk
ulkamjorn, 

2008) 

i. Fuel cost function  

ii. Fuel cost function 
with valve point 
effect 

iii. Multiple fuel cost 
function 

iv. Multiple fuel cost 
function with valve 
point effect 

Real power 
balance constraint 

 

Real power generation 
limit 

PSO with Sequential 
Quadratic 
Programming  

(PSO-SQP) 

MATLAB 

i. 10 generator system with 
multiple fuel cost 

ii. 10 generator system 
considers multiple fuel 
cost with valve point 
effect 

 

No 

(Tao and 
Jin-ding, 

2009) 

Fuel cost function with 
valve point effect 

Real power 
balance constraint 

 

Real power generation 
limit 

Tent-map based 
chaotic PSO 
(TCPSO) 

MATLAB 

i. 10 generator system  

ii. 3 generator system 
with valve point effect 

iii. 13 generator system 
with valve point effect 

No 

(Tiacharoe
n et al., 
2010) 

i. Fuel cost function 
ii. Fuel cost function 

with valve point 
effect 

iii. Multiple fuel cost 
function 

i. Real power 
balance 
constraint 

ii. Transmission 
Loss constraint 

i. Ramp Rate Limits 
ii. Prohibited Operating 

Zone 
Bees algorithm MATLAB 

 
i. 15 thermal unit system 

with transmission loss  
considered 

ii. 40-unit system with 
valve-point effects 
considered. 

iii. 10-unit system with 
multiple-fuel effects 
considered. 

No 
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2.4 Investigation of a single area multi-criteria power system dispatch problem 

Energy management has to perform complicated and timely restricted system control 

function to operate a large power system reliably and effectively. In electric power 

system operation, the objective is to achieve the most economical generation policy 

that could supply the local demands without violating constraints. Thermal power 

plants play a major role in power production and they burn fossil fuels that generate 

toxic gases. This creates pollution for the environment. There are two objectives  i) 

minimum cost and ii) minimum emission, converted into a single objective function 

determining the so called emission constrained economic dispatch (Nanda et al., 

1994).  It is compulsory for the electric utilities to reduce the pollution level by 

reducing sulphur dioxide, nitrogen oxide and carbon dioxide gases. The multi-criteria 

power system dispatch problem is solved using two methods in the existing literature. 

They are Weighted Sum Method (WSM) and price penalty factor method. According 

to (Rani et al., 2006), (Jeyakumar et al., 2006), (Jeyakumar et al., 2007), (Wong et al., 

1993), (Yu et al., 2011), and (Ozyon et al., 2009) the bi-criteria dispatch problem is 

solved using WSM method where the criterion function is expressed as (Wong et al., 

1993) 

2 2

1 1

( ) (1 ) ( )
n n

T i i i i i i i i i i

i i

F a P b P c d P e P f 
 

         [$/h]                  (2.38) 

Where 

FT   Combined Economic Emission Dispatch (CEED) fuel cost value, 

 ω   Weighing coefficient, 

n   Number of generators, 

ai, bi, ci  Cost coefficients, and 

di, ei, fi   Emission coefficients for the ith generator. 

When ω=1, only the fuel cost objective is considered, 

When ω=0, only the emission value objective is accounted for.   

In the papers (Dhillon et al., 1994), (Tsai and Yen, 2010), (Hemamalini and simon, 

2009), (Thakur et al., 2006), and (Ming et al., 2010) the multi-criteria dispatch problem 

is solved using Max-Max price penalty factor method. The price penalty factor hi is the 

ratio between maximum fuel cost and maximum emission of corresponding generator 

and the objective function is expressed as  

 2 2

1

( )
n

T i i i i i i i i i i i

i

F a P b P c h d P e P f


      
        [$/h]             (2.39) 

Where  
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hi is the Max-Max price penalty factor and is given in Equation (2.17). 

The solution of the bi-criterion global optimization is described in (Rani et al., 2006) 

and (Jeyakumar et al., 2006) using Particle Swarm Optimization (PSO) technique. 

According to (Jeyakumar et al., 2007) Multi-Objective Evolutionary Programming 

(MOEP) method is used to solve the Combined Economic Emission Dispatch (CEED) 

problem. A bi-criterion global optimization problem to determine the most appropriate 

generation dispatch solution of the fuel cost, the environmental cost and operation 

security of power networks is solved in (Wong et al., 1993). The approach is based 

on the simulated annealing technique.  

The Maclaurin series-based Lagrangian method is used in (Srikishna and 

Palanichamy, 1991) to solve complicated, non-convex and non-linear economic 

dispatch problems. In this method, the rectified sinusoid function is represented by 

Maclaurin sine series expansion. The problem is solved using the Lagrangian method 

iteratively for calculations of the dual variable. In (Subramanian and Ganesan, 2010) 

a sequential approach with matrix framework is used to solve the CEED problem 

using Max-Max price penalty factor. According to (Ming et al., 2010), PSO algorithm 

is applied to find the suboptimal solution using the Distance Index (DI) method to 

select the candidate members and exact global optimal solution is obtained by Direct 

Approach (DA) method. The weighting factors are used to get the best compromise 

solution for both emission and economic cost dispatch. The environmental economic 

power dispatch problem in hydrothermal power systems (Ozyon et al., 2009) is solved 

by using genetic algorithm. The CEED problem is solved using Max-Max penalty 

factor by PSO algorithm in (Thakur et al., 2006). Solutions of the multi-objective 

problems are grouped into two methods namely non-interactive and interactive 

methods (Dhillon et al., 1994). In the non-interactive type methods a global 

preference function of the objectives is identified and optimized with respect to the 

constraints. In the interactive methods, a local preference function or trade-off among 

objectives is identified by interacting with the decision maker, and the solution 

process proceeds gradually toward the globally satisfactory solution. It incorporates a 

sensitivity measure into multi-objective optimization, which generates a non-inferior 

optimal solution with respect to the objective function and the sensitivity index. The 

index provides useful information about the distribution of the optimal solution in the 

presence of variations in the model parameters defining the problem. The decision 

maker is able to analyze the sensitivity information conveniently. The sensitivity index 

is a scalar-valued quantity, regardless of the number of objectives. The most 
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important characteristic of the sensitivity index is that a sensitivity trade-off is 

calculated at each non inferior point. This allows the decision maker to know the 

trade-offs between objective levels and parameter sensitivity. 

The environmentally constrained economic dispatch problem is a multi-objective 

nonlinear optimization problem with constraints. In (Thakur et al., 2006) an efficient 

and reliable Particle Swarm Optimization (PSO) algorithm based technique for solving 

the emission and economic dispatch problem by using Max-Max Price penalty factor 

is considered. It mainly focuses on nitrogen oxides and sulfur dioxide emissions of 

thermal power plants. In (Tsai and Yen, 2010) an Improved Particle Swarm 

Optimization (IPSO) is presented to solve the economic dispatch problems 

considering fuel cost, environmental issue, and valve point effect loading. The IPSO 

is developed in such a way that PSO with Constriction Factor (PSO-CF) is applied as 

a basic level search, which can give a good direction to the optimal global region. The 

IPSO introduces two operators, "Random Particles" and "Fine-Tuning" into the PSO-

CF algorithm for increasing the search ability. The process of "Random Particles" will 

add a proper random particle into the group of particles when the solution is searched 

in each generation. The procedure of "Fine-Tuning" will regulate the best position of 

the group from the past generation of PSO-CF algorithm. Table 2.4 gives the review 

of single area, multi-criteria power dispatch problem. The objective function, multi-

objective criteria, equality and inequality constraints, algorithm, software, and sample 

system used in (Palanichamy and Basu, 2008), (Ming et al., 2010), (Krishnamurthy 

and Tzoneva, 2011) and few other papers are given. 

2.5 Investigation of a multi-area power system dispatch problem methods for 

solution 

This section reviews the earlier work on Multi Area Economic Emission Dispatch 

(MAEED) problem, MAEED with tie line constraints and transmission capacity 

constraints. Fuzzy and evolutionary programming techniques of MAEED problem, 

multi-area unit commitment problem, component model, Remote Method Invocation 

(RMI)  based distributed model and grid service model for Multi-area Economic 

Dispatch (MAED) without considering the emissions of the plant is termed as MAED 

problem, parallel and sequential PSO algorithm of MAEED problem are considered. 



46 

 

Table 2.4: Review of single area, multi-criteria power dispatch problem methods of solution 

Reference 
Paper 

Objective 
function 

 
Multi-objective 

Criteria  
formulation 

Constraints 

Algorithm Software 
Power System 
considered 

Real 
life 
Impl
eme
ntati
on 

Equality 
Constraints 

Inequality 
Constraints 

(Balamuru
gan and 

Subramani
an, 2008) 

i. Fuel cost 
function  

ii. Emission 
function 

i. Max – Max 
ii. Min – Min 
iii. Average 
       [(Max-

Max)+(Min-
Min)]/2 

iv. Common 
(Average/n
) 

Real power 
balance 
constraint 
 

Real power generation 
limit 

Dynamic 
programmin
g technique  

Not 
mentioned 

i. 11 generator systems 
ii. 6   generator system with 

various price penalty 
factors 

No 

(Danaraj 
and 

Gajendran
, 2005) 

i. Fuel cost 
function 

ii. Emission 
function 

 
Max – Max 
price penalty 
factor 

Real power 
balance 
constraint 
 

Real power generation 
limit 

Quadratic 
programmin
g 

Not 
mentioned 

6 generator system No 

(Dhillon et 
al., 1994) 

i. Fuel cost 
function  

ii. Emission 
function 

 
ε – constraint 
method 

i. Real power 
balance 
constraint 

ii. Network 
transmission  
loss   

 

i. Real power 
generation limit 

ii. Area power 
balance 

iii. Tie-line constraint 
iv. Prohibited 

operating zones 

ε – 
constraint 
method 

Not 
mentioned 

     3 generator system 
 

No 

Jeyakuma
r et al., 
2007) 

i. Fuel cost 
     function  
ii. Emission 

function 

 
Weighted sum 
method 

Real power 
balance 
constraint 

Real power generation 
limit 

Multi-
Objective 
Evolutionary 
Programmin
g (MOEP) 

MATLAB 
i. 3 generator system 
ii. 6 generator system 

No 

(Jeyakum
ar et al., 
2006) 

i. Fuel cost 
function  

ii. Emission 
function 

 

 
Weighted sum 
method 

i. Real power 
balance 
constraint 

i. Network 
transmission  
loss   

i. Real power 
generation limit 

ii. Area power 
balance 

iii. Tie-line constraint 
iv. Prohibited 

PSO MATLAB 

i. 4 area system 
interconnected by six 
tie Lines 

ii. 10  generating units 
each with three types 
of fuel 

No 
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operating zones 
 

iii. 6  generating units with 
fuel cost  coefficients, 
NOx 

         emission co-efficient,  
and  transmission loss 
coefficients 

iv. 15 unit power system 
with four of the units 
having up to three 
prohibited operating 
zones. 

(Karthikey
an et al., 

2009) 

i. Fuel cost 
function 

ii. Emission 
function 

 
 
 
Max – Max 
price penalty 
factor 

i. Real power 
balance 
constraint 

ii. Power flow 
equations 

 

i. Real power 
generation limit 

ii. System spinning 
reserve 

iii. Minimum up time 
iv. Minimum down 

time 
v. Ramp rate limits 
vi. Power flow 

inequality 
constraints 

Unit 
commitment 
approach 

MATLAB 

i. IEEE 14 bus system 
ii. IEEE 30 bus system 
iii. IEEE 57 bus system 
iv. IEEE 118  bus system 
v. Indian utility 75 bus 

system 
 

No 

(Krishnam
urthy and 
Tzoneva, 

2011) 

i. Fuel cost 
function 

ii.Emission 
function 

iii. CEED function 

i. Min – Max 
price 
penalty 
factor 

ii. Max – Max 
price 
penalty 
factor 

Real power 
balance 
constraint 
including 
Transmission 
loss 

Real power generation 
limit 

Lagrange‘s MATLAB 

IEEE 30 bus with 6 
generators including 
transmission loss and 
emission coefficients 

No 

(Krishnam
urthy and 
Tzoneva, 

2012) 

i. Fuel cost 
function 

ii. Emission 
function 

iii. CEED function 

i. Min – Max 
price 
penalty 
factor 

ii. Max – Max 
price 
penalty 
factor 

Real power 
balance 
constraint 

Real power generation 
limit 

PSO MATLAB 
IEEE 30 bus with 6 
generators including 
emission coefficients 

No 
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(Kulkarni 
et al., 
2000) 

i. Fuel cost 
function  

ii. Emission 
function 

 
Max – Max 
price penalty 
factor 

Real power 
balance 
constraint 
 

Real power generation 
limit 

Improved 
Back 
Propagation 
Neural 
Network 
(IBPNN) 

MATLAB 6 generator system No 

(Ming et 
al., 2010) 

i. Energy 
saving 
function 

ii. Fuel cost 
function 

iii. Emission 
function with 
valve point 
effect 

 
i. Max – Max 

price penalty 
factor 

ii. Weighted 
sum method 

Real power 
balance 
constraint 
 

Real power generation 
limit 
 

PSO MATLAB 
IEEE 30 bus with 6 
generators including NOx 
emission coefficients 

No 

(Ozyon et 
al., 2009) 

i. Fuel cost 
function 

ii. Emission 
function 

 
Weighted sum 
method 

i. Real power 
balance 
constraint 

ii. Transmission 
loss 

Real power generation 
limit 

Genetic 
Algorithm 

Not 
mentioned 

16 buses with 4 thermal 
generators and 4 hydro 
generators 

No 

(Palanicha
my and 
Babu, 
2008) 

i. Fuel cost 
function  

ii. Emission 
function 

 
Max – Max 
price penalty 
factor 

ii. Real power 
balance 
constraint 

iii. Networ
k 
transmission  
loss   

Real power generation 
limit 

Lambda 
approach  

Not 
mentioned 

6 generator system No 

(Rani et 
al., 2006) 

i. Fuel cost 
function  

ii. Emission 
function 

 
Weighted sum 
method 

Real power 
balance 
constraint 

Real power generation 
limit 

PSO MATLAB 6 generator system No 

(Subrama
nian and 
Ganesan, 

2010) 

i. Fuel cost 
function 

ii. Multiple fuel 
cost function 

iii. Emission 
function 

 
 
Max – Max 
price penalty 
factor 

i. Real power 
balance 
constraint 

ii. Transmission 
loss 

 

i. Real power 
generation limit 

ii. Ramp rate limits 
iii. Prohibited 

operating zones 
iv. Area power 

balance 

Sequential 
approach 
with matrix 
framework 

MATLAB 

i. 40 unit Taipower 
system mixed -
generating system  

ii. 15 generator system 
with cost and loss 
coefficients, ramp 
rates, prohibited 

No 
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v. Tie line limits operating zones 
iii. 6 generator system 

with cost, emission and 
loss coefficients 

iv. 2 area with 40 thermal 
units 

v. 10 generator system 
with multiple fuels 

(Thankur 
et al., 
2006) 

i. Fuel cost 
function 

ii. Emission 
function 

 
Max – Max 
price penalty 
factor 

i. Real power 
balance 
constraint 

ii. Transmission 
loss 

 

Real power generation 
limit 
 

PSO 
Not 
mentioned 

3 generator system with 
NOx and SO2 emission 
coefficients 

No 

(Tsai and 
Yen, 
2010) 

i. Fuel cost 
function with 
valve point 
effect 

ii. Emission  
function with 
valve point 
effect 

 
Separate 
solution for 
economic  
dispatch and 
emission 
dispatch 
problems 

Real power 
balance 
constraint 
 

i. Real power 
generation limit 

ii. Transmission line 
loss constraint 

 

Improved 
PSO 

MATLAB 
i. 40 generating system 
ii. 6 generating system 
iii. 10 generating system 

No 

(Wong et 
al., 1993) 

i. Fuel cost 
function  

ii. Emission 
function 

 
Separate 
solution for 
economic  and 
emission 
dispatch 
problems 

Real power 
balance 
constraint 
 

i. Real power 
generation limit 

ii. Tie–line constraint 
 

bi-criterion 
global 
optimization 
approach 

Not 
mentioned 

3 area with 6 generators, 3 
types of fuels (coal, oil and 
gas) and 3 types of 
emissions (NOx, SO2 and 
CO2) are considered 

No 

(Yu and 
Chung, 
2011) 

i. Fuel cost 
function 

ii. Emission 
function 

 
Separate 
solution for 
economic  
dispatch and 
emission 
dispatch 
problems 

i. Real power 
balance 
constraint 

ii. Transmission 
loss 

 

i. Real power 
generation limit 

ii. System spinning 
reserve constraints 

Multiple 
PSO 

Not 
mentioned 

6 generator system 

 
 
 
 
No 
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MAEED problem with linearization of the fuel cost curves, line active-power flows, 

spinning reserves and network balance equations are solved using Dantzig-Wolfe 

decomposition principle with the revised simplex method which is iterated together 

with a fast decoupled load flow algorithm in (Quintana et al., 1981). 

A decomposition approach to multi-area generation scheduling problem is considered 

in (Wang and Shahidehpour, 1992). It uses a two-level decomposition to solve the 

problem as shown in Figure 2.8. In the first decomposition, the problem is divided into 

several sub problems during the study period. The information that the master 

problem sends to each sub problem is the load demands of all areas at the 

corresponding hour and the output of the sub problem is the system operation cost at 

that time. The coordination factor of this layer of decomposition is the minimum 

operation cost of the system in the given period. The second layer of decomposition 

divides the previous sub problems further according to the control areas in the power 

pool. The sub problem for each area receives system λ and returns the area λ, where 

λ is the tie-line coordinator variables vector. 

………………..

Master Problem

hour 1

Area 1 Area NA

hour Nt

Area 1 Area NA

hour 2

co
st cost

load

λa
re

a

lo
ad

λs
ys

λarea

λsys

..

 

Figure 2.8: Two level decomposition problem (Wang and Shahidehpour, 1992) 

In (Jamshidian et al., 1983) a Jacobian based algorithm is used to calculate penalty 

factors for a multi-area power system. It includes calculation of the penalty factor at 

the interchange boundary of an area. It appears to be superior to the classical B-

coefficient technique in comparison to its speed and accuracy. B-coefficient method is 

not suitable for multi-area dispatch problems. In (Helmick and Shoults, 1985) an Area 

Control Error (ACE) signal is calculated for three operating companies in the Texas 

Utilities (T.U.) System.  The difference between the desired generation and the actual 

generation for each area is called ACE. This feature is in sorted-table approach to 

economic dispatch and calculates the ACE for every five seconds. 

Two types of margin time are important; (i) time to satisfy system frequency and 

dynamic stability and (ii) time to satisfy loss of generation or other facilities. These 

margin times are normally of the order of one minute and five minutes for hydro plants 

and are considered in (Chawdhury and Billinton, 1990). The committed units in the 
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system should be dispatched in a way that the response risk at the single system 

level, designated as the Single System Response Risk (SSRR), should be less than 

or equal to a specified level. Once the response risk criteria at the single system level 

are satisfied in each system, all response assistances are considered at the 

interconnected level. All response assistances to a given system in the 

interconnected configuration are added to form an equivalent response model and 

the response risk, designated as the Interconnected System Response Risk (ISM), 

must satisfy a specified risk level presented in (Chawdhury and Billinton, 1990). 

Spinning reserve location in multi-interconnected power systems can be considered 

using the multi-area techniques given in (Billinton and Jain, 1972). The allocation of 

spinning reserve amongst the committed units can be done by selecting a suitable 

risk level. The response risk evaluation technique for a single system is discussed in 

detail in (Billinton and Allan, 1984). An interconnected system is required to satisfy a 

Single System Risk (SSR) in which possible assistance from its neighbors is not 

taken into account. In addition, the interconnected system is required to satisfy its 

Interconnected System Risk (ISR) in which assisting from its neighbors is considered 

in (Billinton and Chowdhury, 1988).  

Multi-area economic load dispatching control with a combination of spot pricing as 

demand side option and economic power interchange as a supply side option to keep 

demand and supply balance is considered in (Okada and Asano, 1995). A region that 

has a generation capacity larger than its load demand, and can supply interchange 

power to the interconnected power network, is called an ―interchange power selling 

region‖. Wheeling is the transmission of electrical power from the selling region to the 

buying region through a transmission network owned by an intermediate region. As 

shown in Figure 2.9, a region that can sell wheeling power to the buying region 

through an intermediate region which directly connects to the buying region is called 

―wheeling power selling region‖. 

Buying Region

Interchange 

power selling 

region

Wheeling 

power selling 

regionWheeling 

power

[In
te
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e 

P
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 +
 W
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g 

P
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er
]

 
Figure 2.9: Concept of buying and selling power (Okada and Asano, 1995) 



52 

 

Multi-Area Economic Dispatch problem using an Incremental Network Flow 

Programming (INFP) algorithm is presented in (Streiffert, 1995). The INFP formulation 

offers significant advantages over both the lambda iteration and linear programming 

method in terms of computation time and convergence properties. In INFP each 

iteration is feasible with respect to all modeled constraints and convergence issues 

only relate to cost improvement.  

Novel Nonlinear Convex Network Flow Programming (NLCNFP) was developed in 

(Zhu and Momoh, 2001) in order to solve the secure economic dispatch problem. The 

line security constraints in each area and tie-line capacity constraints are considered, 

the buying and selling contract in a multi-area environment is also introduced. The 

solution is a new nonlinear convex network flow programming, which is a combined 

method of Quadratic Programming (QP) and Network Flow Programming (NFP). The 

concept of maximum basis in a network flow graph was introduced so that the 

constrained model was changed into an unconstrained QP model, and is solved by 

the reduced gradient method. In (Chen and Chen, 2001), Direct Search Method 

(DSM) is used to handle the constraints and minimize the total generation cost in the 

multi-area reserve constrained economic dispatch problem. Enhanced Direct Search 

Method (EDSM) for two area power system is used in (Zarei et al., 2007). The 

capacity limit acts as an important role in two area power systems to have minimum 

total generation cost; system tends to use the all capacity of cheap area. It is an idea 

to tie-line compensation on economic dispatch during the total demanded load 

variation. 

In (NERC report, 1996) Available Transfer Capability (ATC) is a measure of the 

transfer capability remaining in the physical transmission network for further 

commercial activity over the already committed uses. In (Manikandan et al., 2008), 

the evaluation of multi-area Available Transfer Capability (ATC) using AC Power 

Transfer Distribution Factors (ACPTDF) and Participation Factors (PF) is used in 

Combined Economic Emission Dispatch (CEED) problem.  

ATC = TTC - Existing Transmission Commitments. 

where, the Total Transfer Capability (TTC) is defined as the amount of electric power 

that can be transferred over the interconnected transmission network.  

Bilateral forward contracts give participants the obligation to sell (or buy) a specific 

amount of power, at a specified price, within a specified period of time.  

Reliability Must-Run (RMR) contracts enter between an Independent System 

Operator or Regional Transmission Organization (ISO/RTO) and generation owners. 
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The ―call‖ option gives the buyer the right to buy and the ―put‖ option gives the right to 

sell. In (Yingvivatanapong et al., 2008), an approach to incorporate power contracts, 

which include call and put options, forward contracts, and reliability must-run 

contracts, into multi-area unit commitment and economic dispatch solutions is 

developed.  

PSO and DE based evolutionary strategies for multi-area economic emission dispatch 

(MAEED) are used in (Sharma et al., 2010). Evolutionary methods do not suffer from 

convexity assumptions and achieve fast solutions even for complex non-linear, non-

convex, multi-modal optimization problems. Fuzzified Particle Swarm Optimization 

(FPSO) algorithm is used in (Somasundaram and Jothi Swaroopan, 2011), for solving 

the security-constrained multi-area economic dispatch of an interconnected power 

system. An adaptive inertia weight of PSO algorithm can be obtained from the fuzzy 

logic strategy, thereby leading to an improved PSO technique called the FPSO. 

Combined application of Fuzzy logic strategy incorporated in both Evolutionary 

Programming (EP) and Tabu-Search (TS) algorithms are used in (Prasanna and 

Somasundaram, 2009) to solve the MAEED problem. An adaptive scaling factor or 

the variance of the Evolutionary Programming (EP) can be obtained from the fuzzy 

logic strategy and is termed as Fuzzy Mutated Evolutionary Programming (FMEP). In 

Tabu search algorithm the fuzzy logic is applied to Mutation and Recombination 

process. Thus leading to the term called Fuzzy Guided Tabu Search (FGTS).  

The multi area unit commitment problem is solved using Lagrangian relaxation and 

dynamic programming methods in (Ouyang and Shahidehpour, 1991), (Lee and 

Feng, 1992), and (Tseng et al., 1998).  

The component model architecture for economic load dispatch of multi-area power 

system is developed in (Kannan and Veilumuthu, 2004) and is shown in Figure 2.10. 

A component which is based on a single-server serving multiple clients has been 

proposed which enables all neighboring power systems to have simultaneous access 

to the remote economic load dispatch server for obtaining continuous load dispatch 

solutions. An EJB (Enterprise Java Beans) based, distributed environment has been 

implemented in such a way that each power system client can access the remote 

economic load dispatch EJB server through JNDI (Java Naming and Directory 

Interface) naming service with its power system data.  
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Power System 
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…
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Figure 2.10: Component model for MAED problem (Kannan and Veilumuthu,2004)  

The server computes the economic load dispatch and it provides the continuous 

automated load dispatch solutions to all the registered power system clients.  

Remote Method Invocation (RMI) based distributed environment has been 

implemented in (Nithiyananthan and Ramachandran, 2005) in such a way that for 

every specific period of time, the remote server obtains the system data 

simultaneously from the neighboring power systems which are the clients registered 

with the remote ELD server and the optimized economic load dispatch solutions with 

power loss from the server are sent back to the respective clients. 

A distributed model using grid environment through which the economic load dispatch 

solutions of multi-area power systems can be obtained continuously is developed in 

(Ramesh and Ramachandran, 2007). Grid computing is a viable solution in order to 

exploit the enormous amount of computing power available across Internet to solve 

large interconnected power system problems. This model is designed in such a way 

that any node in the grid can provide the economic load dispatch (ELD) solution. The 

node which serves as a server node at a specific instance in the grid can obtain the 

power system data from other client grid nodes and responds with economic load 

dispatch solutions. 

An overview of PSO algorithm is done in (Poli et al., 2000). The existing parallel 

implementations are done by Parallel Synchronous Particle Swarm Optimization 

tasks, but they do not make efficient use of computational resources when a load 

imbalance exists. In (Koh and George et al., 2006), a Parallel Asynchronous PSO 

(PAPSO) algorithm is used to enhance computational efficiency. The performance of 

the PAPSO algorithm was compared to that of a PSPSO algorithm in homogeneous 

and heterogeneous computing environments for small- to medium-scale analytical 

test problems and a medium-scale biomechanical test problem. The results state that 

parallel performance of PAPSO was significantly better than that of PSPSO for 

heterogeneous computing environments or heterogeneous computational tasks. In 

(Kim et al., 2007), parallel PSO algorithm based on PC-cluster system is applied to 
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the Optimal Power Flow (OPF) problem. The parallel PSO algorithm can divide the 

population of the PSO into several sub populations to share the burden of calculating 

the load flow. The results show that computing time of the parallel PSO algorithm is 

improved in comparison to the sequential PSO. 

Multi-population binary clustered particle swarm optimization (BCPSO) algorithm is 

used to solve short term thermal generation scheduling problem in (Senjyu et al., 

2008). This algorithm provides a way to explore larger search space and reduces the 

probability of local trapping. In (Jeyakumar et al., 2006), (Wang and Singh, 2006), 

(Azadani et al., 2008), and (Wang and Singh, 2009) the sequential PSO algorithm is 

used to solve the MAED problem. The Multi-area Environmental/Economic Dispatch 

(MAEED) problem addresses the environmental issue during the ED in (Wang and 

Singh, 2006).    

The MAEED problem is first formulated and then an improved Multi-Objective Particle 

Swarm Optimization (MOPSO) algorithm is developed to derive a set of Pareto-

optimal solutions to the MAEED problem. 

Table 2.5 gives the review of the method for solution of the multi-area power dispatch 

problem. The objective function, multi-objective criteria, tie-line limits, equality 

constraints and inequality constraints, algorithm, software, and power system used 

are given. 
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     Table 2.5: Review of multi-area, single and multi-criteria power dispatch problem methods of solution 

Reference 
Paper 

Objective 
function 

 

Multi-area 
Constraints  

Constraints 

Algorithm Software 
Power System 
considered 

Real 
life 

Imple
ment
ation 

Equality 
Constraints 

Inequality 
Constraints 

(Chawdhu
ry and 

Billinton, 
1990) 

Incremental 
running cost 

 

Tie–line 
active 
power flow 

i. Single system 
risk 

ii. Interconnected 
system risk 

Spinning reserve 

Numeric
al 
calculatio
n  

Not 
mentioned 

10 unit system with 3 and 4 
state model 

No 

(Chen, 
2001) 

Fuel  cost 
function 

Tie–line 
active 
power flow 

Real power balance 
constraint 

i. Real power 
generation limit 

ii. Spinning 
reserve 

iii. Area spinning 
reserve 

iv. Transmission 
capacity 
constraints 

Direct 
search 
procedure 

Pentium III-
500 Mhz 

PC 
(Software 

not 
mentioned) 

3 area  Taiwan power 
system with 87 thermal 
units 

No 

(Helmick 
and 

Shoults, 
1985) 

Area control error 
signal 

 

 

Area 
control 
error 

Real power balance 
constraint 

Inequality 
constraints are not 
considered 

User 
defined 
Area control 
error 
algorithm 
using 
computatio
nal iterative 
process 

SCADA 
programme
d with 16-
Bit mini-
computer in 
PASCAL 
language 

3 area such as Texas 
Power and Light (TP&L), 
Texas Electric Service 
Company (TESCO) and 
Dallas Power and Light 
(DP&L), with a total 
aggregate system peak 
load of over 14,000 MW 
and a generation capability 
nearly 18,000 MW 

Yes, 
Texa

s 
Utiliti

es 
Syste

m 

(Jamshidia
n et al., 
1983) 

Optimum real 
power 
generation 
dispatch 

 
i. Load 
       
distribution  

iii. Real power 
balance 
constraint 

iv. Transmission 

Inequality 
constraints are not 
considered 

Jacobian 
method 

Not 
mentioned 

Modified IEEE 30 bus 
system  with 2 area and 
3 area 

No 
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        vector 
ii. Penalty 

factor 

loss 

(Jeyakum
ar et al., 
2006) 

System operation 
cost 

 

Tie-line 
limits 

Area power balance 
constraint 

Real power 
generation limit 
constraint 

PSO 
MATLAB 

6.5 

4 area interconnected by 6 
tie-lines 

No 

(Kannan 
and 

velimuthu, 
2004) 

Total generation 
cost 

 

Tie-line 
power 

Power generation in 
each bus 

Inequality 
constraints not 
considered 

Enterprise 
Java Beans 
(EJB) 

Component 
model 

architecture 
using JAVA 

6,9,10, and 13 bus sample 
system 

No 

(Kim et al., 
2007) 

Fuel cost of the 
generator 

 

 

Multi-area 
constraint 
not 
considered 

 

Real and reactive 
power flow 
equations 

i. Transmission 
line loadings  

ii. Load bus 
voltages, 

iii. Reactive power 
iv. generations of 

generator 
v. Active power 

generation of 
slack generator. 

vi. Active power 
output Voltage 
of generators 
Transformers 
tap ratio Shunt 
capacitors 

Parallel 
PSO 
algorithm 

PC cluster 
system with 

6 Intel 
Pentium IV 

2GHz 
processors 

using 
Matlab 

software 

IEEE 30-bus system No 

(Koh et al., 
2006) 

i. Analytical test 
problems 

ii. Biomechanical 
test 

       problem 

 

 

Multi-area 
constraint 
not 
considered 

 

Equality constraints 
not considered 

Inequality 
constraints not 
considered 

parallel 
Asynchrono
us Particle 
Swarm 
Optimizatio
n (PAPSO) 

i. Homogen
eo-us 
Linux 
cluster of 
20 
identical 
machines 
using 
Matlab 

i. Analytical test 
problems 

ii. Biomechanical test 
       problem 

 

No 
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software 
ii. 20 

heterogen
eo-us 
machines 
from 
several 
Linux 
clusters 
using 
Matlab 
software  

(Lee and 
Feng, 
1992) 

Fuel cost of the 
interconnected 
system 

 

Tie-line 
power flow 
limit 

Area power balance 
constraint  

i. Real power 
generation limit 
constraint 

ii. Spinning 
reserve in each 
area 

iii. Minimum up  
time and 
minimum down 
time 

iv. Must Run and 
Must Off 
constraints 

Commitmen
t utilization 
factor 

16 MHz 
INTEL 
80386 
based 

computer 
using C 
program 

Three operating areas of 
Midwestern utility system  

No 

(Manikand
an et al., 

2008) 

i. Fuel  cost 
function 

ii. Emission 
cost function 

 

 

Available 
Transfer 
Capability 
(ATC) 

Real power balance 
constraint 

i. Real power 
generation limit 

ii. Network power 
flow 

iii. Voltage 
constraint 

iv. Power limit on 
transmission 
line 

multi-area 
ATC using 
AC Power 
Transfer 
Distribution 
Factors 
(ACPTDF) 
and 
Participatio
n 
Factors(PF) 

Power 
world 

Simulator 

i. IEEE 30 bus system with       
2  area 

ii. IEEE 118 bus system 
with     3 area 

No 
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(Nithiyana
nthan and 
Ramachan

dran, 
2005) 

Total generation 
cost 

 

Tie-line 
power Power generation in 

each bus 

Inequality 
constraints not 
considered 

RMI used in 
built Java 
security 
mechanism 

Remote 
Method 

Invocation 
(RMI) 

architecture 
using JAVA 

software 

6,9,10, and 13 bus sample 
system 

No 

(Okada 
and 

Asano, 
1995) 

Fuel  cost 
function 

Tie-line 
active 
power flow 

Real power balance 
constraint 

Real power 
generation limit 

Lagrange‘s 
method 

Not 
mentioned 

3 area with 5 generators 
in each area with tie-line 
and electricity price on 
each area is considered. 

No 

(Ouyang 
and 

Shahidehp
our, 1991) 

Fuel cost of the 
interconnected 
system 

 

Tie-line 
power flow 
limit Area power balance 

constraint  

i. Real power 
generation limit 
constraint 

ii. Spinning 
reserve in each 
area 

iii. Minimum up  
time and 
minimum down 
time 

Heuristic 
approach 

C 
programmin
g language 

in  
IBM-PC 
machine 

4 area each having 26 
thermal units 

No 

(Prasanna 
and 

somasund
aram, 
2009) 

Fuel cost of the 
interconnected 
system 

Tie-line 
power flow 
limit 

Area power balance 
constraint  

Real power 
generation limit 
constraint 

i. Fuzzy 
Mutated 
Evolution
ary 
Program
ming 
(FMEP) 

ii. Fuzzy 
Guided 
Tabu-
Search(F
GTS) 

Intel 
Pentium IV 

2.5-GHz 
processor 
(Software 

not 
mentioned) 

3 area, 32 bus 
interconnected system. 

(Extended IEEE 30 bus 
system) 

 

No 

(Quintana 
et., al, 

Fuel cost 
function 

 

Tie –line 

i. Real power 
balance 
constraint 

i. Spinning 
reserves 

ii. Network power 

Dantzing-
Wolfe 
decompositi

UNIVAC-
1100 

computer, 

 
i. IEEE 14 node system, 

3 area with spinning 

No 
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1981) active 
power flow 

ii. Line active 
power flows 

 

 

balance 
equations 

 

on principle Fortran IV 
language. 

reserves and tie-line 
active power flows are 
considered 

ii. 23 nodes, 24  
generators ,   2 area 
with spinning reserves 
and line flows are 
considered . 

iii. Mexican power 
network of  82 nodes, 
32 generators , 3 area 
with spinning reserves 
and line flows are 
considered 

(Ramesh 
and 

Ramachan
dran,  
2007) 

Total generation 
cost 

Multi-area 
constraint 
not 
considered 

Power generation in 
each bus 

Inequality 
constraints not 
considered 

XML 
(eXtensible 
Mark-up 
Language) 
and web 
Services 

Grid service 
model using 

JAVA 
software 

3, 5 and 20 bus sample 
system 

No 

(Senjyu et 
al., 2008) 

Total production 
cost 

 

Multi-area 
constraint 
not 
considered 

 

System real power 
balance 
 

i.  System 
reserve 
requirements 

ii. Power 
generation limit 

iii.  Minimum 
up/down time 

iv. Ramp rate 
constraint 

v. Transmission 
line constraint 

Multi-
Population 
Binary 
Clustered 
Particle 
Swarm 
Optimizatio
n (BCPSO) 
algorithm 

C++ 
Pentium IV 
machine 
512 MB 

RAM 

10, 20, 40 unit system and  
Tai-power 38 unit system 

No 

(Somasun
daram and 

Jothi 
Swaroopa
n, 2011) 

Fuel cost of the 
interconnected 
system 

 

Tie-line 
power flow 
limit 

Area power balance 
constraint  

Real power 
generation limit 
constraint 

Fuzzified 
particle 
swarm 
optimization 
algorithm 

Intel 
Pentium IV 

2.5-GHz 
processor 
(Software 

not 

3 area, 32 bus 
interconnected system. 

(Extended IEEE 30 bus 
system) 

 

No 
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mentioned) 

(Streiffert, 
1995) 

Fuel  cost 
function 

Tie–line 
active 
power flow 

Real power balance 
constraint 

Real power 
generation limit 

Incremental 
network 
flow 
programmin
g algorithm 

Not 
mentioned 

4 area with 4 generators in 
each area 

No 

(Tseng et 
al., 1998) 

Total generation 
cost 

 

 

Transmissio
n 
constraints 

 

 

Multi-area demand 
constraints 

i. Multi-area 
spinning 
reserve 
constraints 

ii. Area 
interchange 
restriction 

iii. Local unit 
constraints 

iv. Minimum up  
time and 
minimum down 
time 

Lagrangian 
relaxation 
algorithm 

FORTRAN 
on 

 HP 700 
workstation. 

i. IEEE test system which 
has 24 buses, 34 
transmission lines and 
32 generating units. 

ii. Sample test system of  
2500 lines, 2200 buses 
and 79 

        Generating units. 

No 

(Wang 
and 

Shahidehp
our, 1992) 

Fuel  cost 
function 

 

Tie–line 
active 
power flow 

i. System power 
balance 

ii. Interchange 
transaction 
balance 

iii. Transmission 
loss 

i. Area spinning 
reserve 
requirements 

ii. Area generation 
limits 

Expert 
systems 

Not 
mentioned 

4 area system with 26 
units in each area 

No 

(Wang 
and Singh, 

2006) 

i. Fuel cost 
function 

ii. Emission 
function 

 

Tie-line 
limits Area power balance 

constraint 

Real power 
generation limit 
constraint 
Spinning reserve 
requirements 

Enhanced 
Multi-
objective 
Particle 
Swarm 
Optimizatio
n (MOPSO) 

MATLAB 
4 area test system with 4 
generators in each area 

No 

(wang and 
Singh, 

i. Fuel cost 
function 

  

Tie-line 

Area power balance 
constraint 

i. Real power 
generation limit 

Improved 
Multi-

MATLAB 
4 area with 4 generators in 
each area with different 

No 



62 

 

2009) ii. Emission 
function 

transfer limit constraint 
ii. Area Spinning 

reserve 
requirements 

iii. System security 
constraints 

objective 
Particle 
Swarm 
Optimizatio
n (MOPSO) 

fuel and emission 
characteristics 

(Yingvivat
anapong 

et al., 
20080) 

The total 
operating cost ( 
Fuel costs, 
operation , 
maintenance 
costs (OMC), 
and startup 
costs) 

 

 

Tie-line 
capacity 
constraints 

 

Power balance 
constraint 

i. Spinning 
reserve 
constraint 

ii. Area 
import/export 
constraints 

iii. Tie line 
capacity 
constraints 

iv. Initial condition 
of unit 

v. Generation 
output limits 

vi. Maximum 
ramp-up and 
ramp-down 

vii. Minimum up-
time and down-
time 

viii. Unit restrictions 
(must-run and 
must-off) 

ix. Crew 
constraints 

Adaptive 
Lagrangian 
relaxation 
algorithm 

C # 

IEEE modified system of             
3 area(2 sub area each) , 6 
sub area  , 3 tie-lines of  
bidirectional 

No 
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2.6.  Discussion on the findings of the review  

The review considered the time period between 1958 and 2013 with thirty four 

different algorithms used in both single area and multi-area economic dispatch 

problems.  

2.6.1 Review findings on the problem solution of single area, single criterion, multi-

criteria, and multi-area dispatch problems 

The review finds that various objective functions, and constraints are used in both 

single area and multi-area dispatch problems as follows: 

The most used objective functions are: 

1. Second order or cubic fuel cost function with or without valve point loading effect. 

2. Second order or cubic emission function with or without valve point loading effect. 

3. Second order or cubic combined fuel cost and emission functions with or without 

valve point loading effect. 

The most used constraints are: 

Real power balance constraint, transmission loss constraint, real power operation 

limits, real and reactive power flows, voltage limits, area power balance constraint, 

and tie-line power transfer limits constraint. 

It is discussed that the solution of the dispatch problem is more accurate by 

considering valve point effect for both fuel cost and emission functions. 

It is necessary to consider the transmission loss of the power system in order to 

achieve accurate real power balance constraint. 

 

2.6.2.  Review findings on the penalty factor of Multi-criteria, single area and multi-

area dispatch problems 

The bi-objective function (fuel cost and emission) is converted into single objective 

function by the following penalty factors: Weighted sum method in (Rani et al., 2006), 

(Jeyakumar et al., 2006), (Jeyakumar et al., 2007), (Wong et al., 19993), and (Ozyon 

et al., 2009);  Max-Max price penalty factor in (Dhillon et al., 1994), (Tsai and Yen 

2010), (Hemamalini and Simon, 2009),  (Thankur et al., 2006), and (Ming et al., 

2010);  Min-Max price penalty factor (Krishnamurthy and Tzoneva, 2011); Average 

price penalty factor, and Common price penalty factor in (Balamurugan and 

Subramanian, 2008). 

Weighted sum method is the simplest multi-criteria decision analysis for evluating a 

number of alternatives in terms of a number of decision criteria. But it is applicable 

only when all the data are expressed in same unit.  It is easy to prove that the cost of 
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the CEED problem solution is minimum and it depends on the user choosen 

appropriate weights. This method gives an idea of the shape of the fuel cost pareto 

surface and provides the user with more information about the trade-off among the 

various objectives. 

The Max-Max penalty factor is commonly used in a multi-criteria dispatch problem to 

combine both cost and emission functions. The Min-Max penalty factor 

(Krishnamurthy and Tzoneva, 2011), yields better solution for the multi-criteria 

dispatch problem in comparison to other penalty factors. The average and common 

penalty factor (Balamurugan and Subramanian, 2008) are also used in the multi-

criteria dispatch problem.  

The penalty factor approach for conversion of the multi-criteria dispatch problem in a 

single criterion one yields a better objective function value and calculation time for 

combined economic emission dispatch problem in comparison with the weighted sum 

approach. Therefore the global solution of the multi-criteria economic dispatch 

problem depends on the penalty factors used. 

 

2.6.3.  Review findings on the Algorithms used in a single area and a multi-area 

dispatch problems 

The findings on the algorithms used in the single area and multi-area dispatch 

problems are as follows: 

Almost 51 references using PSO algorithm have been reviewed from the total of 180 

references. The other most used algorithms are Evolutionary programming and 

Lagrange‘s method. 

Nowadays the researchers are moving towards the  heuristic algorithms such as 

(PSO-DE) Particle Swarm Optimization – Differential Evolution (Khamsawang et al., 

2010), (HA) Heuristic Approach (Ouyang and Shahidehpour, 1991), (HDE) Hybrid 

Differential Evolution (Jayabharathi et al., 2008), (PSO-SQP) PSO with Sequential 

Quadratic Programming (Sugsakarn and Damrongkulkamjorn, 2008), (TCPSO) Tent-

map based Chaotic PSO (Tao and Jin-ding, 2009)],(FPSO) Fuzzified Particle Swarm 

Optimization (Somasundaram and Swaroopan, 2011) and (Basu, 2013), (FMEP) 

Fuzzy Mutated Evolutionary Programming and (FGTS) Fuzzy Guided Tabu Search 

(Prasanna and Somasundaram, 2009) to obtain the global optimum solution and to 

reduce the computation time required to solve the dispatch problems. 
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2.7  Conclusion 

This chapter reviews the existing methods and algorithms for solution of the single 

area and the multi-area dispatch problem using single criteria and multi-criteria 

formulations of the problems. The review investigates that different objective 

functions used in the single area and multi-area economic emission dispatch 

problems to evaluate the fuel cost, emission production and their combination. 

Constraints such as real power balance, transmission loss, voltage limits, real power 

operation limits, area power balance, tie-line power transfer limits, real and reactive 

power flows are mostly used. The multi-area economic dispatch problem is 

formulated with tie-line real power coordinator. Its objective function is described 

either as single criteria or multi-criteria. 

The review also analyzed the computation time and convergence properties obtained 

in the single area and multi-area power system economic dispatch problem solutions   

through the various optimization algorithms. 

The future direction of research in the field of economic and combined economic 

dispatch problems can be identified as : 

i. Multi-area problem formulation and solution by decomposition methods and 

algorithms. 

ii. Innovative ways of application of the heuristics algorithms. 

iii. Using of parallel computation to solve the non-linear high dimension dispatch 

problems in real-time. 

In chapter 3, methods and algorithms for solution of the Combined Economic 

Emission Dispatch (CEED) problem using Lagrange‘s approach are proposed for 

various types of fuel cost and emission functions. The impact of seven different 

penalty factors over the optimisation solution and convergence of the calculation 

procedure for the CEED problem is evaluated. 
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CHAPTER THREE 

COMBINED ECONOMIC EMISSION DISPATCH PROBLEM USING LAGRANGE’S 

ALGORITHM 

3.1 Introduction 

The objective of the economic dispatch problems of electrical power generation is to 

schedule the committed generating units output to meet the required load demand while 

satisfying the system equality and inequality constraints. Thermal power plants play a 

major role in power production. The resulting from the power production, pollutants such 

as sulphur dioxide (SO2), Nitrogen oxide (NOx) and carbon dioxide (CO2) affect the 

environmental conditions. Three types of fuel cost and emission criterion functions are 

considered in this chapter. They are: i) quadratic model of the fuel cost and emission 

criterion functions without considering a valve point loading effect ii) quadratic model of 

the fuel cost and emission criterion functions with a valve point loading effect, and iii) 

cubic functions for both the fuel cost and emission criterion functions. The constraints 

such as generator limits, load balance and transmission loss are considered for all the 

three types of criterion functions described above. Lagrange's methods, algorithms, and 

softwares for the solution of the considered three types of Combined Economic Emission 

Dispatch (CEED) problems are developed in this Chapter. 

The chapter breaks down into three sections: Section 3.2 formulates the CEED problem 

with the quadratic fuel cost and emission function, Section 3.3 formulates the CEED 

Problem with the valve point loading effect, Section 3.4 formulates the CEED problem 

with the cubic fuel cost and emission criterion functions. 

3.2 Formulation and solution of the CEED problem for the case of quadratic functions 

of the fuel cost and emission 

3.2.1  Economic dispatch problem with a quadratic fuel cost objective function 

The formulation of an economic dispatch optimization problem can be written in the 

following way: 

Minimize  

  2

1 1

( )
n n

C i i i i i i i

i i

F F P a P b P c
 

         [$/h]            (3.1) 

Where  

FC    Total Fuel Cost 

Fi(Pi)    Fuel cost of the ith generator 
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Pi    Real power generation of a generator unit i 

ai , bi, ci   Cost coefficients of generating for the unit i in [$/MW2h], [$/MWh] and 

[$/h] respectively  

n    Number of generating units 

 

Under the constraints 

i. Power balance constraint 

1

n

i G D L

i

P P P P


         [MW]                   (3.2) 

Where 

PG    Total power generation of the system 

PD    Total demand of the system 

PL    Total transmission loss of the system 

The transmission loss can be expressed as, (Dhillon et al, 1994) 

0 00

1 1 1

n n n

L i i j j i i

i j i

P P B P B P B
  

             [MW]       (3.3) 

Where 

Pi        Active power generation of unit i 

Pj         Active power generation of unit j 

Bij, B0i, Boo     Transmission loss coefficients 

ii. Generator operational constraints 

,min ,max, 1,i i iP P P i n         [MW]                   (3.4) 

Where 

Pi,min   Minimum value of real power allowed at a generator i 

Pi,max  Maximum value of real power allowed at a generator i 

 

3.2.2  Bi-Criteria Dispatch Problem with quadratic fuel cost and emission functions 

The various pollutants like sulphur dioxide, nitrogen oxide and carbon dioxide are the 

major waste emissions from the thermal  power plants. The problem for minimization of 

the quantity of the emissions is formulated by including the reduction of waste emissions 

as an additional objective function by the following equation 
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 2

1

n

T i i i i i

i

E d P e P f


        [kg/h]                              (3.5) 

Where 

ET   Total emission 

di ,ei, fi   Emission coefficients of generating unit i in [kg/MW
2
h], [kg/MWh] and 

[kg/h] respectively  

Then the CEED problem is determined by the objective functions (3.1) and (3.5). 

A bi-objective optimization is converted into a single objective optimization (CEED) 

problem by introducing a price penalty factor hi as follows: 

 2 2

1

( )
n

T i i i i i i i i i i i

i

F a P b P c h d P e P f


      
        [$/h]               (3.6) 

Where  

FT     CEED‘s fuel cost 

The CEED problem is formulated by the criterion (3.6) and constraints (3.2) to (3.4). 

3.2.3  Formulation of various price penalty factors for CEED problem 

The authors (Su etal,1986) proposed a price penalty factor method for combined fuel 

cost and transmission line loss as follows: 

 
  

 
     

 
  2 2

1 1 1

( )
n n M

C i i i i i i i i m m

i i m

F F P a P b P c h R T   

where  

Rm   Resistance of the line 

Tm   Transmitted power of the line 

M   Total number of transmission lines 

Subject to the constraints (i) Power balance and (ii) Generator operational limits given in 

Equation (3.2) and (3.4) respectively. 

The procedure to calculate hi is described by (Su et al,1986) as follows: 

hi is determined by evaluating the average cost of each generator at its maximum output 

(Pi,max) 

 
   

 

2
,max ,max ,max

,max ,max

( )C i i i i i i
i

i i

F P a P b P c
h

P P
 1,i n   [$/MWh] 
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hi is then arranged in ascending order. The maximum capacity of each unit Pi,max is 

added, one at a time, starting from the smallest hi unit, until 


 
1

n

i G D

i

P P P . At this 

stage, the hi associated with the last unit in the process is h. 

The economic dispatch and emission dispatch are two different problems. Emission 

dispatch can be included in economic dispatch problem by the addition of emission cost 

to the normal dispatch. The bi-objective Combined Economic Emission Dispatch (CEED) 

problem can be converted into single objective optimization problem by introducing a 

price penalty factor h as follows: 

 1 2     
i i iT C i TF w F w h E  

 1 21 1,if w and w then  

 T C i TF F h  E
i i i

 

where  w1 and w2 are the weight factors, described as 

(i)  w1=1 and w2=0 for the pure economic dispatch problem  

(ii) w1=0 and w2=1 for the pure emission dispatch problem  

(iii) w1=1 and w2=1 for the Combined Economic Emission Dispatch (CEED) problem 

The  authors (Palanichamy and Srikrishna, 1991) and (Kulkarni et al, 2000) followed the 

procedure proposed by (Su et al,1986) to find the price penalty factor for the CEED 

problem, the procedure of the method is given below: 

step 1: Evaluate the average cost of each generator at its maximum output as follows: 

 
   



2
,max ,max ,max

,max ,max

iC i i i i i i

i i

F P a P b P c

P P
   [$/MWh] 

step 2: Evaluate the average emission cost of each generator at its maximum output as 

follows: 

   


2
,max ,max ,max

,max ,max

iT i i i i i i

i i

E P d P e P f

P P
   [kg/MWh] 

step 3: Divide the average cost of each generator by its average emission as follows: 

 


 

2
,max ,max

2
,max ,max

i i i i i
i

i i i i i

a P b P c
h

d P e P f
    [$/kg] 

step 4: Arrange hi (i=1,2,….n) in ascending order. 
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step 5: Add the maximum capacity of each unit (Pi,max). one at a time, starting from 

smallest hi unit, until 


 ,max

1

n

i D

i

P P . 

step 6: At this stage hi , associated with the last unit in the process is the price penalty 

factor h [$/kg] for the given load. 

The procedure given by (Palanichamy and Srikrishna, 1991) gives the approximate 

value of the price penalty factor for the particular load demand. Hence a modified price 

penalty factor is introduced by (Venkatesh et al, 2003) to give value of  hi for the 

particular load demand. The procedure for calculating the modified price penalty factor 

as follows: 

Steps 1 to 4: The first four steps of hi calculation remain the same as in the procedure 

proposed by (Palanichamy and Srikrishna, 1991), to calculate the modified price penalty 

factor. 

step 5: The ascending order values of hi  calculated in step 4, are used to calculate the 

generator real power Pi  for the particular load demand. 

The modified price penalty factor procedure proposed by (Venkatesh et al, 2003) gives 

minimum fuel cost and CEED cost values in comparison with the procedure proposed by  

(Palanichamy and Srikrishna, 1991) but the transmission line loss is bigger. 

The described procedure above, calculate the price penalty factor hi using non-optimized 

generator real power in which the calculation is taken place outside the iterative process 

loop. While this Chapter proposed a new procedure to calculate the price penalty factor 

hi for every iteration using the optimized generator real power in order to minimize the 

fuel cost, CEED fuel cost and transmission line losses.   

The procedure to calculate the new price penalty factor is as follows: 

Steps 1 to 3: The first three steps of hi calculation remain the same as in the procedure 

proposed by (Palanichamy and Srikrishna, 1991), to calculate the new price penalty 

factor for CEED problem. 

step 4: The hi values calculated in step 3 are used to find the unknown values of the 

generator real power Pi  for the particular load demand. 

This method of calculating new price penalty factor gives minimum transmission loss, 

fuel cost and CEED fuel cost values in comparison with the modified price penalty factor 

proposed by (Venkatesh et al, 2003).  
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The price penalty factor is used to convert bi-objective function into a single objective 

function in CEED problem. The comparative study of various price penalty factors such 

as Max-Max, Min-Min, Average and Common is proposed by (Balamurugan and 

Subramanian, 2008). In addition to that ,this chapter proposes Min-Max and Max-Min 

price penalty factors. 

The impact of four types of price penalty factors such as Min-Max, Max-Max, Min-Min 

and Max-Min are considered in this chapter to solve the CEED problem.  

The ratio between the minimum fuel cost and maximum emission is called ―Min-Max‖ 

penalty factor is described as: 

 

2
,min ,min

2
,max ,max

( )i i i i i
i

i i i i i

a P b P c
h

d P e P f

 


 
     [$/kg]                             (3.7)  

The second price penalty factor called ―Max-Max‖ is described as the ratio between the 

maximum fuel cost and maximum emission of the corresponding generator units as: 

 

2
,max ,max

2
,max ,max

( )i i i i i
i

i i i i i

a P b P c
h

d P e P f

 


 
     [$/kg]                               (3.8) 

The third price penalty factor called ―Min-Min‖ is described as the ratio between the 

minimum fuel cost and minimum emission of the corresponding generator units as: 

 

2
,min ,min

2
,min ,min

( )i i i i i
i

i i i i i

a P b P c
h

d P e P f

 


 
     [$/kg]                   (3.9)  

The last price penalty factor called ―Max-Min‖ is described as the ratio between the 

maximum fuel cost and minimum emission of the corresponding generator units as: 

 

2
,max ,max

2
,min ,min

( )i i i i i
i

i i i i i

a P b P c
h

d P e P f

 


 
     [$/kg]                         (3.10)  

The role of all penalty factors is to transfer the physical meaning of the emission criterion 

from weight of the emission to the fuel cost for the emission. The difference between 

these penalty factors is in the weight of the fuel cost for emission in the final optimal fuel 

cost for generation and emission, criterion 3.6. 

Comparison between the influences of the separate price factors over the optimization 

problem solution is done through application of the Lagrange‘s method for calculation of 

this solution. 
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3.2.4 Lagrange’s method for solution of the combined economic emission dispatch 

problem 

In mathematical optimization, the method of Lagrange's multipliers (named after Joseph 

Louis Lagrange) provides a strategy for finding the local maxima or minima of a function 

subject to the equality or inequality constraints. 

Method of Lagrange‘s is used to obtain the solution for the CEED problem with criterion 

given by the equation (3.6), subject to the constraints (3.2), (3.3) and (3.4). The problem 

is solved by introduction of a function of Lagrange based on a Lagrange‘s multiplier λ, as 

follows: 

1

n

T D L i

i

L F P P P


 
    

 
                         (3.11)    

 2 2
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L a P b P c h d P e P f P P B P B P B P
    

 
            
   

 
                  

                        (3.12)    

The physical meaning of the Lagrange's multiplier λ  is of a cost for fuel production. Then 

the physical meaning of the function of Lagrange is a cost for fuel production.        

The optimization problem (3.6), subject to the constraints (3.2), (3.3) and (3.4) is 

transferred to the problem for minimization of L according to , 1, ,iP i n and maximization 

of L according λ, under the constraints (3.4). 

Necessary conditions for optimality for solution of the problem (3.4), (3.11) are, i.e: 

According to , 0, 1,i

i

L
P i n

P


 


                                (3.13) 

According to , 0
L








                                 (3.14) 

Derivation of the condition (3.13) is as follows: 

  0
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The last equation can be written as 
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                              (3.18) 

Equation (3.18) can be written in a matrix –vector form as follows  

1 1 1
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    (3.19)   

Its short form is 

EP=D                                                     (3.20) 

If the value of the Lagrange‘s multiplier λ is known the equation (3.19), or (3.20) can be 

solved according to the unknown vector P, using the Matlab command  

P=E\D                                                               (3.21) 

The value of λ is unknown and has to be found from the necessary condition for 

optimality 0
L







.  

This condition is: 

0 00

1 1 1 1

0
n n n n

D i i j j i i i

i j i i

L
P P B P B P B P 

    

 
        
   

         (3.22) 

Equation (3.22) is not a function of λ, but represents the gradient of L according to λ. At 

the optimal solution this gradient has to be equal to zero. As analytical solution for λ is 

not possible a gradient procedure for calculation of λ has to be developed as follows: 

   1
, 0

k kk    


                         (3.23) 

Where 
 k

 is determined by the Equation (3.22) and   is the step of the gradient 

procedure. This procedure will start with some given initial value of the Lagrange‘s 

variable
 0

.  When during the iterations 0  , the optimal solution for the Lagrange‘s 
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variable is obtained. It will determine the optimal solution for the energy that has to be 

produced by the generators as a solution of (3.21). 

The obtained solutions for , 1,iP i n  have to belong to the constraint domain (3.4). That 

is why for every step of the gradient procedure, the obtained solution is fit to the 

constraint domain following the procedure 
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                     (3.24) 

The condition for end of the iterations is  

 k
   , or    Maxk Iter                                                       (3.25) 

Where 0   is a small number, and IterMax is the given maximum number of iterations. 

The algorithm of the method is: 

1) Initial value of the Lagrange‘s multiplier is guessed:  0
 , and the value of the 

condition for optimality   is given. 

2) In Equation (3.19) matrix  0
E  and  0

D  are formed 

3) Equation (21) is solved and      0 0 0
\P E D is determined. 

4) The obtained vector  0
P is fit to the constraint domain (3.24). 

5) 
 0

 is calculated using Equation (3.22) where  0
P is substituted.  

6) The condition (3.25) is checked. If it is fulfilled the calculations stop, if not, improved 

value of 
 1  is calculated using Equation (3.23) 

7) Calculations of the improved values of  1
i iP P is done as in Equation (3.21) and so 

on. Iterations continue until condition (3.25) is satisfied or the maximum number of 

iterations is reached. 

8) The optimal solution is used to calculate the total cost, using Equation (3.6). 

The flowchart of the algorithm is shown in Figure 3.1. 
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Read the system data  λ0, ε, a, b, c, d, e, f, 
Pmin, Pmax n, PD, α, IterMax, B00,Bo1,B

No

Δλ ≤ ε

Stop
k ≤ IterMax

Yes

Yes

No

λ
(k+1)

=λ
(k)

+ α Δ λ
(k)

Using equation (3.23)

Calculate Δλ using equation 

(3.22)

Check constraints Pmin, Pmax for every 

element using equation  (3.24)

Calculate

P
(0)

= E(λ
0
)\ D(λ

0
) using equation (3.21)

Calculate E(λ
0
) and D(λ

0
) using equation (3.19)

Calculate the cost function 

using equation (3.6)

 

Figure 3.1: Flow diagram of the bi-criteria dispatch problem algorithm solution based on 

quadratic optimization functions and using the Lagrange’s method 

The software developed for CEED problem is given in Appendix A. It can be seen that 

the price penalty factor values influence the values of the matrices E and D in Equation 

3.19 and in this way the components of the optimal vector P of the active power received 

by each generator are different for each type of price penalty factors. The dispatch 

problem can be solved for different expressions of the penalty factors in a process of 

search of the best solution.  
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3.2.5  Simulation Results 

The proposed dispatch problem is solved for IEEE 30 bus system (Gnanadass,2005), an 

Indian utility system (Dhillon et al, 1993), IEEE 118 bus system (Guerrero,2004) and 11 

generator system (Balamurugan and Subramanian,2007).  

3.2.5.1 Test System 1  

Table 3.1 represents the IEEE 30 bus system data (Gnanadass, 2005). The system has 

six generating units. The CEED problem is solved for the cases of various price penalty 

factors. The different power demand values are introduced. Various levels of disturbance 

in order to evaluate the solution for the considered power demands are:  PD= [125; 150; 

175; 200; 225; 250] MW.  

The CEED problem is solved in MATLAB R2011a version. The software is given in 

Appendix A1 and the MATLAB script file is named as CEED_Casestudy1.m . The four 

types of price penalty factors introduced in part 3.2.3 are considered. The IEEE 30 bus 

system data such as fuel cost coefficients, emission coefficients, generator limits, initial 

transmission loss coefficients B00, transmission loss coefficients B01 and Bij are given in 

Table 3.1.  

The Solution of the bi-criteria economic dispatch problem is shown in Table 3.2, it 

consists of the real power outputs of the generators in MW, fuel cost in [$/hr] and 

emission values in [kg/hr] for the IEEE 30 bus system. The initial lambda (λ0) value is 

assumed as 8. The maximum number of Iterations, IterMax=2000.The optimal solution is 

computed for the selected load demand. The software developed is given in Appendix 

A1. 

Figure 3.2 shows the one line diagram of IEEE 30 bus system (Gnanadass, 2005) .  
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Figure 3.2: IEEE 30 bus system (Gnanadass, 2005) 

Table 3.1:  IEEE 30 Bus System Data  

Bus 
Number 

 

Generator 
limits[MW] 

Fuel cost coefficients Emission coefficients 

Pmax Pmin ai [$/MW
2
h] 

bi 

[$/MWh] 
ci 

[$/h] 
di 

[$/kg
2
h] 

ei 

[$/kgh] 
fi 

[$/h] 

1 200 50 0.00375 2.00 0.00 0.0126 -0.90 22.983 

2 80 20 0.01750 1.70 0.00 0.0200 -0.10 25.313 

5 50 15 0.06250 1.00 0.00 0.0270 -0.01 25.505 

8 35 10 0.00834 3.25 0.00 0.0291 -0.005 24.900 

11 30 10 0.02500 3.00 0.00 0.0290 -0.004 24.700 

13 40 12 0.02500 3.00 0.00 0.0271 -0.0055 25.300 

Transmission loss coefficients 

B01 B 

0.000003 0.000021 -0.00056 
0.000218 0.000103 0.000009 -0.000010 0.000002 0.000027 

0.000103 0.000181 0.000004 -0.000015 0.000002 0.000030 

0.000034 0.000015 0.000078 
0.000009 0.000004 0.000417 -0.000131 -0.000153 -0.000107 

0.000010 -0.000015 -0.000131 0.000221 0.000094 0.000050 

B00=0.000014 
0.000002 0.000002 -0.000153 0.000094 0.000243 -0.000001 

0.000027 0.000030 -0.000107 0.000050 -0.000001 0.0003458 
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In Table 3.2 the CEED fuel cost is calculated by the formulae  


 
1

i i

n

T c i T

i

F F h E in [$/h], where hi is the price penalty factor 

calculated as  
( min)

, 1,
( max)

i

i

C i

i

T i

F P
h i n

E P
[$/kg], Equation (3.7) and CT is the Calculating Time for the solution of the problem 

Table 3.2: The Bi-criteria dispatch problem solution using Min-Max price penalty factor 

PD 
[MW] 

λ 
P1 

[MW] 
P2 

[MW] 
P3 

[MW] 
P4 

[MW] 
P5 

[MW] 
P6 

[MW] 
PL 

[MW] 
FC 

[$/h] 
ET 

[Kg/h] 
FT [$/h] 

Number 
of  

Iterations  

CT 
[s] 

125 2.6643 59.2499 20.0000 15.0000 10.0000 10.0000 12.0000 1.2499 308.1608 144.5304 
 

377.1857 
 

195 2.1216 

150 3.0287 78.8314 26.2653 15.0000 10.0000 10.0000 12.0000 2.0967 373.5001 162.2299 448.5151 153 1.5965 

175 3.3682 96.7116 32.8891 16.5112 10.0000 10.0000 12.0000 3.1119 443.9670 190.4187 528.5570 139 1.3095 

200 3.7044 114.0699 39.3656 18.8704 10.0000 10.0000 12.0000 4.3059 519.5033 228.1548 616.9529 129 1.2071 

225 3.9709 127.5965 44.4446 20.7448 14.3840 11.2166 12.0000 5.3865 601.1024 268.0758 713.0526 75 0.6671 

250 4.1980 138.9680 48.7367 22.3456 18.8093 13.7143 13.8597 6.4337 687.0737 310.2842 815.1852 85 0.8626 

 

In Table 3.3 the CEED fuel cost is calculated by the formulae  


 
1

i i

n

T c i T

i

F F h E in [$/h], where hi is the price penalty factor 

calculated as  
( max)

, 1,
( max)

i

i

C i

i

T i

F P
h i n

E P
 [$/kg], Equation (3.8).  

Table 3.3: The Bi-criteria dispatch problem solution using Max-Max price penalty factor 

PD 
[MW] 

λ 
P1 

[MW] 
P2 

[MW] 
P3 

[MW] 
P4 

[MW] 
P5 

[MW] 
P6 

[MW] 
PL 

[MW] 
FC 

[$/h] 
ET 

[Kg/h] 
FT [$/h] 

Number 
of  

Iterations  

CT 
[s] 

125 3.2434 59.2499 20.0000 15.0000 10.0000 10.0000 12.0000 1.2499 308.1608 144.5304 619.2590 612 1.2622 

150 4.3942 79.5289 25.5782 15.0000 10.0000 10.0000 12.0000 2.1071 373.4835 162.2107 716.1636 413 0.4531 

175 5.0946 91.6419 31.7901 17.0781 13.4045 11.9357 12.0000 2.8502 447.4342 186.5649 835.6432 272 0.3182 

200 5.6417 100.9851 36.5995 19.2509 17.3134 14.8896 14.5196 3.5581 527.9257 214.4270 969.9120 247 0.2791 

225 6.1847 110.1595 41.3375 21.4101 21.1780 17.8129 17.4465 4.3444 612.0186 247.2931 1117.7000 243 0.332 

250 6.7333 119.3263 46.0870 23.5931 25.0658 20.7567 20.3863 5.2153 699.5472 285.3648 1279.1000 238 0.343 
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In Table 3.4 the CEED fuel cost is calculated by the formulae  


 
1

i i

n

T c i T

i

F F h E in [$/h], where hi is the price penalty factor 

calculated as  
( min)

, 1,
( min)

i

i

C i

i

T i

F P
h i n

E P
[$/kg], Equation (3.9). 

Table 3.4: The Bi-criteria dispatch problem solution using Min-Min price penalty factor 

PD 
[MW] 

λ 
P1 

[MW] 
P2 

[MW] 
P3 

[MW] 
P4 

[MW] 
P5 

[MW] 
P6 

[MW] 
PL 

[MW] 
FC 

[$/h] 
ET 

[Kg/h] 
FT [$/h] 

Number 
of  

Iterations  

CT 
[s] 

125 4.1304 50.0000 25.9840 18.0185 10.1153 10.0000 12.0000 1.1177 310.8005 149.3334 606.337 382 0.3509 

150 4.7914 50.0000 32.7289 21.7591 17.5298 15.2409 14.0981 1.3569 395.0747 171.2493 718.3321 277 0.4787 

175 5.3818 50.0000 38.7247 25.1093 24.1084 20.0523 18.6623 1.6571 486.0034 199.8198 845.5137 275 0.4875 

200 5.9764 50.0000 44.7350 28.4911 30.6914 24.8733 23.2261 2.0169 582.7623 235.5157 987.5126 277 0.5305 

225 6.6608 50.0000 51.6180 32.3929 35.0000 30.0000 28.4384 2.4492 686.3078 277.5522 1144.8000 449 0.534 

250 7.7624 50.0000 62.6194 38.6929 35.0000 30.0000 36.7388 3.0511 800.2705 327.6648 1325.3000 378 0.545 

In Table 3.5 the CEED fuel cost is calculated by the formulae  


 
1

i i

n

T c i T

i

F F h E in [$/h], where hi is the price penalty factor 

calculated as  
( max)

, 1,
( min)

i

i

C i

i

T i

F P
h i n

E P
[$/kg], Equation (3.10).  

Table 3.5: The Bi-criteria dispatch problem solution using Max-Min price penalty factor 

PD 
[MW] 

λ 
P1 

[MW] 
P2 

[MW] 
P3 

[MW] 
P4 

[MW] 
P5 

[MW] 
P6 

[MW] 
PL 

[MW] 
FC 

[$/h] 
ET 

[Kg/h] 
FT [$/h] 

Number 
of  

Iterations  

CT 
[s] 

125 7.1899 50.0000 20.0000 15.0000 14.1427 14.8777 12.0000 1.0204 317.8361 148.1861 1749.2000 1140 2.423 

150 9.3366 50.0000 21.2648 18.2209 21.7146 22.1223 17.9171 1.2397 408.3563 171.7818 1957.7000 703 1.734 

175 11.1257 50.0000 25.7111 21.8670 27.9762 28.1204 22.8706 1.5482 500.9697 202.0717 2213.5000 763 0.834 

200 13.3933 50.0000 31.3237 26.5019 35.0000 30.0000 29.0965 1.9221 596.6819 238.1609 2517.6000 1359 2.632 

225 16.9178 50.0000 39.9969 33.7344 35.0000 30.0000 38.6594 2.3907 702.0336 278.2113 2897.2000 1540 4.367 

250 22.2824 50.0000 53.0827 44.8046 35.0000 30.0000 40.0000 2.8874 818.3178 326.4815 3387.6000 1850 3.532 
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Table 3.6 presents the comparison of simulation results of the bi-criteria dispatch 

problem using various price penalty factor approaches. The comparison is done for the 

maximum power demand PD = 250 [MW] because the biggest differences in the values 

of the criteria appeared for the maximum power demand. The values of the criteria of 

Min-Max penalty factor are taken for a basis and the differences for the other penalty 

factors are given in percentage.  

Table 3.6: Comparison of the simulation results for the various price penalty factors 

Criterion 
Min-Max price 
penalty factor 

approach 

Max-Max price 
penalty factor 

approach 

Min-Min price 
penalty factor 

approach 

Max-Min price 
penalty factor 

approach 

CEED fuel cost   
FT  [$/h] 

100 % 156.90 % 162.57 % 415.56 % 

Fuel cost   
     FC  [$/h] 

100 % 101.81 % 116.47 % 119.10 % 

Emission value  
ET   [kg/h] 

100 % 91.96 % 105.60 % 105.22 % 

Power loss      
PL   [MW] 

100 % 81.06 % 47.42 % 44.87 % 

 

Figure 3.3 shows the CEED problem fuel cost values for the various price penalty factors 

using Lagrange‘s method for optimization. In Figure 3.3, x-axis represents power 

demand ranges from 125 to 250 [MW]. The  y-axis represents the fuel cost values of the 

CEED problem. Figure 3.4 shows that the CEED fuel cost values are less when using 

Min-Max price penalty factor in comparison with the other price penalty factors for the 

solution of bi-criteria dispatch problem. Figure 3.5 shows the calculated emission values 

of the environmental dispatch problem for the used various price penalty factors. Figure 

3.5 shows that the emission values are less when using Max-Max price penalty factor in 

comparison with the other price penalty factors for the bi-criteria dispatch problem.  

In Figure 3.6, the power loss values of the bi-criteria dispatch problem for the various 

price penalty factors using Lagrange‘s method are shown. It can be seen that the power 

loss values are less when using Max-Min price penalty factor for the bi-criteria dispatch 

problem in comparison with the power loss result obtained by using the other price 

penalty factors. 
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Figure 3.3: CEED fuel cost values of the bi-criteria dispatch problem using various price 

penalty factors 
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Figure 3.4: Fuel cost values of the economic dispatch problem using various price penalty 

factors 
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Figure 3.5: Emission values of the environmental dispatch problem using various price 

penalty factors 
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Figure 3.6: Power loss values of the bi-criteria dispatch problem using various price 

penalty factors 
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Figure 3.7 shows the Calculating time of the bi-criteria dispatch problem. Figure 3.8 and 3.9 

shows the Lagrange's optimization values of lambda and deltalambda for bi-criteria dispatch 

problem for initial lambda of 4 and 20 respectively. 
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Figure 3.7: Calculating Time values of the bi-criteria dispatch problem using various price 

penalty factors 

 

Figure 3.8: Lagrange's optimization values of lambda and deltalambda for bi-criteria 

dispatch problem using initial value of lambda equal to 4 
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Price penalty factor: Min-Max

Power demand: 250 MW

Intial lambda: 4

Final lambda:4.198

Intial deltalambda: 22

Final deltalambda:0.00097638

Calculating Time: 0.86262s

Total number of Iteration: 85

lambda

deltalambda
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Price penalty factor: Min-Max

Power demand: 250 MW

Intial lambda: 20

Final lambda:4.1981

Intial deltalambda: -170

Final deltalambda:-0.00094312

Calculating Time: 1.4412s

Total number of Iteration: 188
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Figure 3.9: Lagrange's optimization values of lambda and deltalambda for bi-criteria 

dispatch problem using initial value of lambda equal to 20 

 

3.2.5.2 Test System 2: 

The CEED problem for an Indian utility system with six generators is solved in (Dhillon,  

Parti and Kothari, 1993) using fuzzy logic theory. The data such as fuel cost coefficients, 

emission coefficients, real power limits and transmission loss coefficients are given in 

Table 3.7. Table 3.8 shows the optimum generator scheduling of the Indian utility system 

calculated on the basis of the developed in section 3.2.4 Lagrange‘s method. Table 3.9 

shows the comparison of the economic emission dispatch solutions using Lagrange‘s 

and Fuzzy logic algorithms. The best solutions such for the power loss, fuel cost, 

emission, combined economic emission dispatch fuel cost and computation time are 

highlighted in bold for various power demand of 500, 700 and 900 MW respectively. The 

software developed CEED_Casestudy2.m is given in Appendix A2. 
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Table 3.7: Economic dispatch data for a six generators Indian utility system 

Fuel cost coefficients Emission coefficients 
Generator real 

power limits 

ai [$/MW
2
h] 

bi 

[$/MWh] 

ci 

[$/h] 

di 

[$/kg
2
h] 

ei 

[$/kgh] 

fi 

[$/h] 

Pmin 

[MW] 

Pmax 

[MW] 

0.15247 38.53973 756.79886 0.00419 0.32767 13.85932 10 125 

0.10587 46.15916 451.32513 0.00419 0.32767 13.85932 10 150 

0.02803 40.39655 1049.99770 0.00683 -0.54551 40.26690 35 225 

0.03546 38.30553 1243.53110 0.00683 -0.54551 40.26690 35 210 

0.02111 36.32782 1685.56960 0.00461 -0.51116 42.89553 130 325 

0.01799 38.27041 1356.65920 0.00461 -0.51116 42.89553 125 315 

Transmission loss coefficients B 

0.002022 -0.000286 -0.000534 -0.000565 -0.000454 -0.000103 

-0.000286 0.003243 0.000016 -0.000307 -0.000422 -0.000147 

-0.000533 0.000016 0.002085 0.000831 0.000023 -0.000270 

-0.000565 -0.000307 0.000831 0.001129 0.000113 -0.000295 

-0.000454 -0.000422 0.000023 0.000113 0.000460 -0.000153 

0.000108 -0.000147 -0.000270 -0.000295 -0.000153 0.000898 
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Table 3.8: Indian utility system power generation scheduling and lambda values using various price penalty factors - Lagrange's 

method 

hi Min-Max Penalty factor method Max-Max Penalty factor method Min-Min Penalty factor method Max-Min Penalty factor method 

PD [MW] 500 700 900 500 700 900 500 700 900 500 700 900 

Lambda 325.1127 487.2371 666.6109 87.2602 114.9876 144.9562 60.4543 73.0457 87.5158 110.5526 169.094 245.8591 

P1 [MW] 46.8783 88.0155 125.0000 47.7648 83.4961 120.7504 62.4352 97.2627 125.0000 65.9707 122.2162 125.0000 

P2 [MW] 25.4463 53.4651 80.938 32.6458 60.0234 86.5274 41.9516 68.9096 96.7687 51.8101 92.1086 132.3806 

P3 [MW] 72.8025 89.0485 104.6206 67.7896 86.1267 102.6653 55.4074 74.8731 92.8588 68.6969 91.7727 115.1214 

P4 [MW] 83.5137 108.5951 135.5438 82.1638 109.9663 138.6262 85.0241 118.9153 155.2812 80.7520 116.7905 160.8612 

P5 [MW] 154.5583 213.6081 279.1968 155.5861 216.882 282.6253 149.3897 208.4449 275.5615 130.0000 171.9969 245.6828 

P6 [MW] 143.3666 187.7282 232.8189 137.7595 183.2229 228.5141 125.0000 167.4083 214.1671 125.0000 149.6032 200.9753 
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Table 3.9: Comparison of the dispatch solution for the Indian utility system using Lagrange’s and fuzzy logic theory 

 

Criterion function 
PD 

Fuzzy logic  

theory Case 1 

(Dhillon, Parti, and 

Kothari, 1993) 

Fuzzy logic theory  

Case 2 

(Dhillon, Parti, and 

Kothari, 1993) 

Lagrange's method 

Penalty factors 

Min-Max Max-Max Min-Min Max-Min 

Power loss 

PL 

[MW] 

500 17.162 20.799 19.2142 25.0995 22.3205 28.0221 

700 34.927 39.669 35.8143 40.6562 44.5003 41.3703 

900 54.498 65.032 59.6461 61.1746 80.3786 61.1068 

Fuel cost 

FC 

[INR/h] 

500 28550.15 28476.63 28440.81 28355.94 28774.79 28413.15 

700 39070.74 39010.74 39030.09 38765.85 40555.89 38799.72 

900 50807.24 50854.86 50605.8 50252.83 52401.4 50196.31 

Emission 

ET 

[kg/h] 

500 312.513 287.483 280.3481 279.2457 276.9582 280.8189 

700 528.447 493.977 474.5622 478.7498 474.4816 479.3919 

900 864.060 800.629 770.8086 773.729 770.1269 771.1824 

CEED fuel cost 

FT 

[INR/h] 

500 ------------------- ------------------- 32180.57 42170.55 54276.45 130151.0 

700 -------------------- -------------------- 45542.65 62459.32 82743.99 211694.3 

900 --------------------- --------------------- 61525.97 88426.75 124597.7 325503.9 

Time for 

calculation 

CT 

[s] 

500 ------------------- ------------------- 7.69 8.708 35.276 36.065 

700 -------------------- -------------------- 8.192 8.671 31.753 50.317 

900 --------------------- --------------------- 10.048 10.826 33.115 65.702 
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3.2.5.3 Discussion of the results for the Indian utility system: 

The solution of CEED problem using Lagrange's method is compared with (Dhillon, Parti 

and Kothari,2009), Table 3.9. But the authors (Dhillon, Parti and Kothari,2009) solved 

the Economic Emission Dispatch (EED) problem for separate fuel cost and emission 

function. The solution of Lagrange's method gives less fuel cost and emission values in 

comparison with the fuzzy logic method (Dhillon, Parti and Kothari,2009),Table 3.9. In 

addition to that, CEED problem using various price penalty factors considered in 

Lagrange's method, the solution is given in Table 3.9. 

 

3.2.5.4 Test System 3: 

The CEED problem for an IEEE 118 bus system with fourteen generators is solved using 

Min-Max and Max-Max price penalty factors using Lagrange‘s algorithm. The data such 

as fuel cost coefficients, emission coefficients, generator real power limits and 

transmission loss coefficients (Guerrero, 2004) are given in Table 3.10 and 3.11 

respectively. The optimum generator scheduling of the IEEE118 bus system is 

calculated on the basis of the Lagrange‘s method and given in Table 3.12. The 

Lagrange‘s solution of the CEED Problem is compared with Evolutionary Programming 

based Modified Combined Economic Emission Dispatch (EPMCEED) algorithm 

(Venkatesh, et al., 2003), Table 3.13. The Lagrange‘s solution using Max-Max price 

penalty factor for fuel cost, emission and CEED fuel cost is less in comparison with the 

EPMCEED solution . The transmission loss value is less in EPMCEED in comparison 

with the Lagrange‘s solution. The load level of 3668 [MW] is considered. The software 

developed CEED_Casestudy3.m is given in Appendix A3. 

Table 3.10: Fuel cost and emission coefficients of IEEE 118 bus system 

Fuel cost coefficients Emission coefficients 
Generator real 

power limits 

ai 

[$/MW
2
h] 

bi 

[$/MWh] 

ci 

[$/h] 

di 

[$/lbs
2
h] 

ei 

[$/lbsh] 

fi 

[$/h] 

Pmin 

[MW] 

Pmax 

[MW] 

0.0050 1.89 150.000 0.016 -1.500 23.333 50 1000 

0.0055 2.00 115.000 0.031 -1.820 21.022 50 1000 

0.0060 3.50 40.000 0.013 -1.249 22.050 50 1000 

0.0050 3.15 122.000 0.012 -1.355 22.983 50 1000 

0.0050 3.05 125.000 0.020 -1.900 21.313 50 1000 

0.0070 2.75 120.000 0.007 0.805 21.900 50 1000 



89 

 

0.0070 3.45 70.000 0.015 -1.401 23.001 50 1000 

0.0070 3.45 70.000 0.018 -1.800 24.003 50 1000 

0.0050 2.45 130.000 0.019 -2.000 25.121 50 1000 

0.0050 2.45 130.000 0.012 -1.360 22.990 50 1000 

0.0055 2.35 135.000 0.033 -2.100 27.010 50 1000 

0.0045 1.60 200.000 0.018 -1.800 25.101 50 1000 

0.0070 3.45 70.000 0.018 -1.810 24.313 50 1000 

0.0060 3.89 45.000 0.030 -1.921 27.119 50 1000 

PD = 3668 [MW] 

Where  

The international System of Unit (SI) for mass is the kilogram. 

1 kilogram is equal to 2.20462262185 lbs.
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Table 3.11: Transmission loss coefficients of IEEE 118 bus system 

The initial transmission loss coefficient B00 is 0.028378 

 

B Coefficients (Matrix) 

-0.283225 -0.192940 -0.264240 0.017755 0.021917 0.040508 0.012216 0.014007 0.004407 0.032732 0.217820 0.032560 0.155630 -0.283225 

0.030108 0.019242 0.021506 -0.002880 -0.004000 -0.004470 -0.002720 -0.003230 -0.006940 -0.007450 -0.019520 -0.012170 -0.017180 0.030108 

0.037946 0.020710 0.020912 -0.003630 -0.005250 -0.004480 -0.003660 -0.003590 -0.006950 -0.010180 -0.020040 -0.018440 -0.020570 0.037946 

0.020710 0.026780 0.024696 -0.002470 -0.003780 -0.002980 -0.002390 -0.002310 -0.004670 -0.007860 -0.015830 -0.015290 -0.016680 0.020710 

0.020912 0.024696 0.024393 -0.002320 -0.003520 -0.003090 -0.002230 -0.002300 -0.004750 -0.007150 -0.016000 -0.134600 -0.015880 0.020912 

-0.003630 -0.002470 -0.002320 0.009543 0.003659 0.002951 0.003740 0.003341 0.002486 0.001192 -0.002790 -0.002880 -0.003310 -0.003630 

-0.005250 -0.003780 -0.003520 0.003659 0.010678 0.005763 0.003740 0.003341 0.002486 0.001192 -0.002790 -0.002880 -0.003310 -0.005250 

-0.004480 -0.002980 -0.003090 0.002951 0.005763 0.008092 0.003370 0.003566 0.003054 0.001252 -0.002520 -0.001920 -0.002720 -0.004480 

-0.003660 -0.002390 -0.002230 0.003116 0.003740 0.003370 0.003876 0.003746 0.002934 0.002063 -0.001520 -0.001420 -0.001880 -0.003660 

-0.003590 -0.002310 -0.002300 0.004207 0.003341 0.003566 0.003746 0.005404 0.002869 0.001477 -0.002250 -0.001890 -0.002540 -0.003590 

-0.006950 -0.004670 -0.004750 0.002066 0.002486 0.003054 0.002934 0.002869 0.006738 0.003054 0.001212 0.001331 0.000955 -0.006950 

-0.010180 -0.007860 -0.007150 0.000366 0.001192 0.001293 0.002063 0.001477 0.003054 0.008576 0.006171 0.008179 0.007260 -0.010180 

-0.020040 -0.015830 -0.016000 -0.003650 -0.002790 -0.002520 -0.001520 -0.002250 0.001212 0.006171 0.036153 0.018390 0.020017 -0.020040 

-0.018440 -0.015290 -0.013460 -0.003810 -0.002880 -0.001920 -0.001420 -0.001890 0.001331 0.008179 0.018390 0.033117 0.029414 -0.018440 

B01 coefficients (vector) 

-0.538520 0.042741 0.030108 0.019242 0.021506 -0.002880 -0.004000 -0.004470 -0.002720 -0.003230 -0.006940 -0.007450 -0.019520 -0.012170 



91 

 

Table 3.12: Generators real power optimal values of the IEEE 118 bus system 

Power 
[MW]             

 
 Price 

Penalty 
factors 

P1     

[MW] 

P2      

[MW] 

P3 

[MW] 

P4 

[MW] 

P5  

[MW] 

P6 

[MW] 

P7 

[MW] 

Max-Max 
283.0817 279.1622 258.46 285.1584 294.2349 310.3541 226.725 

Min-Max 
215.0298 208.4636 310.5390 330.4441 322.1951 219.9083 262.9498 

    Power     
    [MW] 

 
Price 

Penalty 
factors 

P8 

[MW] 

P9 

[MW] 

P10 

[MW] 

P11 

[MW] 

P12 

[MW] 

P13 

[MW] 

P14 

[MW] 

Max-Max 
223.3824 285.8279 278.7118 280.551 302.8963 223.1066 279.14 

Min-Max 
262.7275 273.8372 266.5802 236.9018 204.8774 262.7091 341.3145 

 

Table 3.13: Comparison of Combined Economic Emission Dispatch problem EPMCEED and 
Lagrange's solutions for the IEEE 118 bus system 

 

3.2.5.5 Discussion of the results for the IEEE 118 bus system 

Lagrange's method using Max-Max penalty factor gives less fuel cost, emission and 

CEED fuel cost values in comparison with the EPMCEED method (Venkatesh, et al., 

2003) for power demand of 3668 [MW], Table 3.13. In addition to that, CEED problem is 

Reference Algorithm Penalty 

factor 

Fuel cost FC 

[$/h] 

Emission ET 

[lbs/h] 

CEED  

FT [$/h] 
Transmission 

loss PL [MW] 

Computation 

Time [s] 

(Venkatesh, 

et al., 2003) 

EPMCEED Max-

Max 
18479.155 15815.079 141566.899 130.743 224.1 

Proposed 

 

Lagrange‘s 

 

Max-

Max 
17916.1113 14219.3073 25015.1159 142.7925 56.6 

Min-

Max 
18046.1791 13577.1113 18251.3046 50.447 46.23 
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solved using Min-Max (proposed) penalty factor by Lagrange's method. Min-Max penalty 

factor using Lagrange's method gives less fuel cost, emission and CEED fuel cost 

values in comparison with the Max-Max penalty factor. 

3.2.5.6 Test System 4: 

The CEED problem for eleven generator system is solved using Max-Max penalty factor 

for the various power demands 1000 to 2500 [MW]. The transmission loss is not 

considered in this case and is assumed as small value. The data such as fuel cost 

coefficients, emission coefficients, and generator real power limits are given in Table 

3.14 (Balamurugan and Subramanian, 2007). The optimum generator real powers of the 

eleven generator system is calculated on the bases of the Lagrange‘s method and is 

given in Table 3.15. The Lagrange‘s solution of the CEED Problem for the objective 

function, calculating time send the used number of iterations are given in Table 3.16. 

The Lagrange‘s solution of fuel cost and emission is less in comparison with various 

algorithms such as Lambda Iteration, Recursive, Simple Dynamic Programming (SDP), 

Differential Evolution (DE), and PSO algorithms and is given in Table 3.17 and 3.18 

respectively. The software developed CEED_Casestudy4.m is given in Appendix A4. 

   

Table 3.14: Fuel cost and emission coefficients of eleven generator system 

Fuel cost coefficients Emission coefficients 
Generator real 

power limits 

ai 

[$/MW
2
h] 

bi 

[$/MWh] 
ci 

[$/h] 
di 

[$/kg
2
h] 

ei 

[$/kgh] 
fi 

[$/h] 
Pmin 
[MW] 

Pmax 
[MW] 

0.00762 1.92699 387.85 0.00419 -0.67767 33.93 20 250 

0.00838 2.11969 441.62 0.00461 -0.69044 24.62 20 210 

0.00523 2.19169 422.57 0.00419 -0.67767 33.93 20 250 

0.00140 2.01983 552.50 0.00683 -0.54551 27.14 60 300 

0.00154 2.22181 557.75 0.00751 -0.40060 24.15 20 210 

0.00177 1.91528 562.18 0.00683 -0.54551 27.14 60 300 

0.00195 2.10681 568.39 0.00751 -0.40006 24.15 20 215 

0.00106 1.99138 682.93 0.00355 -0.51116 30.45 100 455 

0.00117 1.99802 741.22 0.00417 -0.56228 25.59 100 455 

0.00089 2.12352 617.83 0.00355 -0.41116 30.45 110 460 

0.00098 2.10487 674.61 0.00417 -0.56228 25.59 110 465 
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Table 3.15: The optimum generator active power of the eleven generator system 

PD [MW] 1000 1250 1500 1750 2000 2250 2500 

P1 85.606 94.617 103.628 112.639 121.650 130.661 139.672 

P2 76.673 82.691 88.709 94.727 100.745 106.763 112.781 

P3 87.258 97.016 106.773 116.530 126.288 136.045 145.802 

P4 78.495 102.333 126.172 150.011 173.850 197.688 221.527 

P5 47.916 62.725 77.535 92.345 107.154 121.964 136.774 

P6 79.325 102.534 125.742 148.951 172.160 195.369 218.578 

P7 49.765 64.848 79.931 95.013 110.096 125.178 140.261 

P8 129.604 165.511 201.418 237.325 273.232 309.139 345.046 

P9 122.370 156.889 191.408 225.927 260.446 294.965 329.484 

P10 119.600 160.274 200.948 241.622 282.296 322.971 363.645 

P11 123.389 160.562 197.736 234.909 272.083 309.256 346.430 

 

Table 3.16: The CEED problem solution using Lagrange’s algorithm for the eleven generator 

system 

PD [MW] 1000 1250 1500 1750 2000 2250 2500 

FC  [$/h] 8502.2936 9108.3741 9733.5344 10377.7710 11041.0833 11723.4716 12424.9352 

ET  [Kg/h] 205.2039 339.8696 540.5428 807.2229 1139.9096 1538.6032 2003.3032 

FT   [$/h] 9235.2456 10266.5305 11533.1802 13035.1896 14772.5569 16745.2836 18953.3670 

Iteration 39 40 43 45 46 47 47 

CT [S] 0.0476 0.0308 0.0332 0.0338 0.0357 0.0350 0.0347 

 

Table 3.17: Comparison of Lagrange’s and various algorithms fuel cost values for  the 

eleven generator system   

PD [MW] 

Fuel cost FC in [$/h] 

(Balamurugan and Subramanian, 2007) Proposed 

λ  - iteration Recursive PSO DE SDP Lagrange‘s 

1000 8502.30 8502.29 8508.24 8505.81 8502.29 8502.2936 

1250 9108.38 9108.38 9114.42 9117.63 9108.38 9108.3741 

1500 9733.54 9733.54 9737.33 9736.22 9733.54 9733.5344 

1750 10377.78 10377.77 10380.82 10377.77 10377.86 10377.7710 

2000 11041.08 11041.08 11041.09 11041.08 11041.08 11041.0833 
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2250 11723.47 11723.47 11725.68 11723.47 11723.47 11723.4716 

2500 12424.94 12424.94 12428.63 12425.06 12424.94 12424.9352 

 

Table 3.18: Comparison of Lagrange’s and various algorithms emission values    for  the 

eleven generator system   

PD [MW] 

Total Emission ET in [kg/h] 

(Balamurugan and Subramanian, 2007) Proposed 

λ  - 
iteration 

Recursive PSO DE SDP Lagrange‘s 

1000 205.205 205.204 208.012 205.206 205.204 205.2039 

1250 339.870 339.870 345.669 339.935 339.870 339.8696 

1500 540.544 540.544 545.307 544.298 540.544 540.5428 

1750 807.220 807.220 812.863 807.236 807.220 807.2229 

2000 1139.911 1139.911 1142.182 1139.911 1139.911 1139.9096 

2250 1538.600 1538.600 1540.465 1538.659 1538.600 1538.6032 

2500 2003.300 2003.300 2009.720 2003.350 2003.300 2003.3032 

 

3.2.5.7 Discussion of the results for the elven generator system 

Lagrange's solution for CEED problem using Max-Max price penalty factor method is 

given in Table 3.16. Lagrange's solution is compared with various algorithms 

(Balamurugan and subramanian,2007), Table 3.18. The fuel cost, emission values are 

less in Lagrange's method in comparison with λ-iteration, Recursive, PSO, DE, and SDP 

algorithms ((Balamurugan and subramanian,2007), Table 3.17 and 3.18 respectively. 

 

3.2.6 Discussion and conclusion 

New type Min-Max, and Max-Min price penalty factors are proposed for solution of the 

bi-criteria power system dispatch optimization problem. Lagrange‘s algorithm is 

developed to solve the bi-criteria dispatch problem. The Lagrangian optimal solutions of 

the dispatch problem for the IEEE 118 bus, IEEE 30 bus and 11 generator system are 

used to test the developed algorithm. The solutions of the IEEE 118, 30 and 11 bus 

system are compared with, the solutions obtained (Venkatesh et al., 2003), (Gnanadass, 

2005), and (Balamurugan and Subramanian, 2007) by using Evolutionary Programming  

(EP) and Dynamic Programming (DP), λ-iteration, Recursive, PSO, DE, and SDP  
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algorithms respectively. The obtained results show that the Min-Max (proposed) price 

penalty factor provides better optimization solution for the CEED problem in comparison 

to the other types of price penalty factors. The optimization results also show that the 

order of price penalty factors depends on the Input-Output (IO) unit curves used. It can 

be concluded that:  

i. The optimal overall cost for the bi-criteria dispatch problem and the fuel cost of the 

economic dispatch problem are less when using the Min-Max Price penalty factor in 

comparison with other price penalty factors.  

ii. The Max-Max price penalty factor is good to yield a minimum emission values in 

comparison with other price penalty factors.   

iii. The Max-Min price penalty factor is good to yield a minimum power loss values in 

comparison with other price penalty factors. 
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3.3.1  Bi-criteria dispatch problem with valve point loading effect in the fuel cost and 

emission criterion functions 

3.3.2  Economic dispatch problem formulation with valve point loading effect  

Large steam turbine generators usually have a number of steam admission valves that 

are opened in sequence to do gradually loading of the generators. Loading output levels 

at which a new steam admission valve is opened is called valve point loading effect. At 

these levels discontinuities in the cost curves and in the incremental rate curves occur 

as a result of the sharp increases in throttle losses. As the unit loading increases , the 

input to the unit increases and the incremental cost heat rate decreases between the 

opening points for any two valves. This gives rise to the discontinuous type of 

incremental heat rate characteristic. It increases the non-linearity of the search space as 

well as number of local minima of the CEED problem solution. The output power of the 

fossil plant is increased sequentially by opening set of valves at the inlet of the turbine as 

shown in Figure 3.10. As a result the operating cost is usually approximated by one or 

more quadratic segments as shown in Figure 3.12. (Gernald and Aaron, 1958) 

B G

Turbine GeneratorValveBoiler
Fuel Input

 

Figure 3.10: Fossil power plant 

 

 

Figure 3.11: Operating characteristics 

curve for the fossil power 

plant 

 

 

Figure 3.12: Valve point loading effect for 

the fossil power plant 
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Most of the literature papers concentrate on combined economic emission dispatch 

problem without considering valve point effect loading. The input-output characteristics 

or cost functions of a generator are approximated using quadratic or piecewise quadratic 

functions, under the assumption that the incremental cost curves of the units are 

monotonically increasing piece-wise linear functions. However, real input-output 

characteristics of generators have higher order non-linarites and discontinuities in the 

fuel cost curve due to the valve point effect loading of the fossil fuel burning plants. 

(Kothari and Dhillon, 2011). The valve point loading effect has been modeled as a 

recurring rectified sinusoidal function given in Equation (3.28), shown in Figure 3.3. The 

authors (Gernald and Aaron, 1958) describe that the turbine operating between the 

curves of the valve points operates less efficiency because of the throttling of steam 

passing through the throttled valve. The control valve arrangement maintains a higher 

average efficiency over a wide range of loads by successively admitting steam to groups 

of nozzles to meet the increasing loads. It is described in the literature that more valves 

a turbine has, the less the spread in efficiency between the valve points. The valves are 

operated in sequence by a camshaft or other device under the control of the governor. 

Actually the power plant has multiple steam valves, so it is necessary to consider the 

valve point  loading effect. Therefore, solution of the dispatch problem is also more 

accurate when the dispatch problem with valve point loading effect is solved. 

  
A. Fuel cost function with valve point loading effect  

Thermal power plants have multiple steam valves. To accurately evaluate the fuel cost 

function, the valve point effect loading is considered as follows: (Kothari and 

Dhillon,2011) 

   2
,min

1 1

( ) sin( ( ))
n n

CVP i i i i i i i i i i i

i i

F F P a b P c P P P 
 

      
    [$/h]    (3.26) 

Where  

FCVP  Total Fuel Cost with valve point effect 

, ,i i ia b c  Fuel cost coefficients of the generating unit i in [$/h], [$/MWh] and 

[$/MW2h] respectively.  

,i i        Valve point effect cost coefficients of the generating unit i 
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B. Emission function with valve point loading effect  

The emission of the thermal power plant with inserting the valve point loading effect is 

given as follows: 

   


    2

1

exp( )
n

TVP i i i i i i i i

i

E d e P f P P                    [kg/h]                               (3.27) 

Where 

ETVP  Total emission with valve point loading effect 

, ,i i id e f  Emission coefficients of the generating unit i in [ton/h], [ton/MWh] and 

[ton/MW2h] respectively.  

,i i    Valve point loading effect emission coefficients of the generating unit i 

C. Bi-criteria objective function with valve point loading effect using penalty 

factors 

The combined economic emission dispatch problem is formulated as follows: 

 

 

 

      
  
     
   


2

,min

2
1

( ) sin( ( ))

exp( )

n i i i i i i i i i

TVP

i i i i i i i i i i

a b P c P P P
F

h d e P f P P
          [$/h]         (3.28) 

Where  

 hi   Price penalty factor 

FTVP  CEED fuel cost value with valve point loading effect 

D. Formulation of price penalty factors of bi-criteria dispatch problem with valve 

point loading effect 

The economic dispatch and emission dispatch are two different problems. Emission 

dispatch can be included in economic dispatch problem by the addition of emission cost 

to the normal dispatch. The bi-objective Combined Economic Emission Dispatch (CEED) 

problem can be converted into single objective optimization problem by introducing a 

price penalty factor h. The fuel cost and emission functions with valve point loading 

effect are correlated with any one of the considered below price penalty factors. The 

thesis uses six types of penalty factors for formulation of the bi-criteria dispatch problem. 

Two of which are proposed for the first time in the thesis in Chapter 3, point 3.2.3 

i. The ratio of the minimum fuel cost and the maximum emission with valve point 

loading effects for the ith generator is called Min-Max Penalty factor. It is proposed in 

the thesis and can be formulated as  
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2
,min ,min ,min ,min

2
,max ,max ,max

( ) sin( ( ))
, 1,

exp( )

i i i i i i i i i

i

i i i i i i i i

a b P c P P P
h i n

d e P f P P
         [$/kg]     (3.29) 

ii. The ratio of the maximum fuel cost and the maximum emission with valve point 

loading effects for the ith generator is called Max- Max Penalty factor. It can be 

formulated as (Balamurugan and Subramanian,2007) 

 
 

 

   
 

  

2
,max ,max ,min ,max

2
,max ,max ,max

( ) sin( ( ))
, 1,

exp( )

i i i i i i i i i

i

i i i i i i i i

a b P c P P P
h i n

d e P f P P
     [$/kg]     (3.30) 

iii. The ratio of the minimum fuel cost and the minimum emission with valve point 

loading effects for the ith generator is called Min- Min Penalty factor. It is proposed in 

the thesis and can be formulated as  

 
 

 

   
 

  

2
,min ,min ,min ,min

2
,min ,min ,min

( ) sin( ( ))
, 1,

exp( )

i i i i i i i i i

i

i i i i i i i i

a b P c P P P
h i n

d e P f P P
     [$/kg]     (3.31) 

iv. The ratio of the maximum fuel cost and the minimum emission with valve point 

loading effects for the ith generator is called Max- Min Penalty factor. It can be 

formulated as  

 
 

 

   
 

  

2
,max ,max ,min ,max

2
,min ,min ,min

( ) sin( ( ))
, 1,

exp( )

i i i i i i i i i

i

i i i i i i i i

a b P c P P P
h i n

d e P f P P
            [$/kg]     (3.32) 

v. The average of the Min-Max, Max-Max, Min-Min, and Max-Min with valve point 

loading effects for the ith generator is called the average penalty factor. It can be 

formulated as   
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2
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2
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( ) sin( ( ))

exp( )
, 1,

4

i i i i

i i i i i i i i

i i i i i i i i i

i i i i i i i i

P P

d e P f P P

a b P c P P P

d e P f P P
i n   [$/kg]     (3.33) 

vi. Apart from the penalty factors discussed above, a common penalty factor exist for 

the bi-criteria dispatch problem. It can be formulated as a modification to the one 

presented (Balamurugan and Subramanian, 2011) 
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As was mentioned before the role of all penalty factors is to transfer the physical 

meaning of emission criterion from weight of the emission to the fuel cost for the 

emission. The difference between these penalty factors is in the weight of the fuel cost 

for emission in the final optimal fuel cost for generation and emission, criterion 3.6. 

Comparison between the influences of the separate price factors over the optimization 

problem solution is done through application of the Lagrange‘s method for calculation of 

this solution. 

E. Constraints of the dispatch problem 

The constraints such as (i) Power balance and (ii) Generator operational limits are given 

in Equation (3.2), (3.3) and (3.4) respectively. The combined economic dispatch problem 

with criterion functions (3.28) are solved for every type of the price penalty factors (3.29) 

to (3.34) under the above constraints. 

3.3.3    Development of the Lagrange’s algorithm for the bi-criteria dispatch problem with 

valve point loading effect  

The objective function in this case, is described by equation (3.28). The optimization 

problem is to find the optimal active power , 1,iP i n  produced by the generators in such 

a way that the criterion (3.28) is minimized and the constraints (3.2), (3.3) and (3.4) are 

satisfied. The problem has to be solved for every one of the price penalty factors (3.29) 

to (3.34). 

The problem is solved using Lagrange‘s method by introduction of the Lagrange‘s 

variable λ and formulation of a Lagrange‘s function: 

1

n

TVP D L i

i

L F P P P


 
    

 
                                   (3.37)  
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The solution for the bi-criteria dispatch problem from equation (3.28), subject to the 

constraints (3.2), (3.3) and (3.4) with penalty factors (3.29) - (3.34) is transferred to the 

problem for minimization of L according to , 1, ,iP i n under the constraints (3.4). 

Necessary conditions for optimality for solution of the problem (3.38), are: 

According to , 0, 1,i

i

L
P i n

P


 


                               (3.39) 

According to , 0
L








                                               (3.40) 

Condition (3.39) is: 
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Equation (3.41) is a nonlinear one and it cannot be presented in a linear vector-matrix 

form. It is a sum of first order nonlinear differential equations in which the derivative has 

to be equal to zero. This fact allows to transfer these equations to algebraic ones. Their 

solution can be done with some of the methods for solution of a set on nonlinear 

equations. The Matlab function fsolve solves systems of nonlinear equations of several 

variables using three different algorithms such as trust region dogleg, trust region 

reflective, and Levenberg-Marquardt. The MATLAB function fsolve is used to solve the 

equation (3.41) and hence the real power Pi, 1,i n  of the CEED problem with valve 

point effect is found. This solution depends on the Lagrange's variable λ. 

The value of λ is unknown and has to be found from the necessary condition for 

optimality (3.40)  

This condition is found from (3.38) to be: 

0 00

1 1 1 1

0
n n n n

D i i j j i i i

i j i i

L
P P B P B P B P 

    

 
        
   

                               (3.42)  
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Equation (3.42) is not a function of λ, but represents the gradient of L according to λ. At 

the optimal solution this gradient has to be equal to zero. As analytical solution is not 

possible and a gradient procedure for calculation of λ has to be developed as follows 

( 1) ( ) , 0k k k                                         (3.43) 

Where  

k  is the iteration number and , 0 :k m , 

m  is the given maximum number of iterations. 

( ) k is determined by the equation (3.42) and   is the step of the gradient procedure. 

The calculations start from some given initial value of the Lagrange‘s variable (0) .  

When during the iterations 0  , the optimal solution for the Lagrange‘s variable is 

obtained. It will determine the optimal solution for the power that has to be produced by 

the generators. 

The obtained solutions for , 1,iP i n  have to belong to the constraint domain (3.4). That 

is why for every step of the gradient procedure, the obtained solution is fit to the 

constraint domain following the procedure 
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P P if P P P

P if P P

 
 
   
 
 
 

                (3.44) 

The condition for end of the iterations is  

  ( )k                                     (3.45) 

Where 0   is a small positive number. 

The algorithm of the method is: 

1) Initial value of the Lagrange‘s multiplier is guessed:
(0) , and the value of the 

condition for optimality   is given. 

2) Initial value of the active power 
0 , 1,iP i n  is guessed for the case of the dispatch 

problem with the valve point effect 

3) Equation (3.41) is solved by Matlab function fsolve and (1)P is determined. 

4) The obtained vector 1
iP  is fit to the constraints (3.44). 

5) (0) is calculated using equation (3.42) where 
(1)P is substituted.  
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6) The condition (3.45) is checked. If it is fulfilled the calculations stop, if not, improved 

value of (1)   is calculated using equation (3.43) 

7) Calculations of the improved values of 
(2)i iP P is done as using equation (3.41). 

Iterations continue until condition (3.45) is satisfied or until the maximum number of 

iterations m is reached. 

8) The optimal solution is used to calculate the fuel cost, emission, and CEED fuel cost 

using equations (3.26), (3.27) and (3.28). 

Flowchart of the algorithm is given in Figure 3.13 

No
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Yes
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No

λ
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+ α Δ λ
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Initial values 
   0 0
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Figure 3.13: Flow diagram of the solution of the bi-Criteria CEED problem with valve point loading 

effect using Lagrange’s method 

The software developed CEED_VP_Casestudy1.m and CEED_VP_Casestudy1_funct.m 

for solution of the CEED problem with valve point loading effect is given in Appendix B. 

The simulation is done for two different case studies and the developed software for the 

two case studies are given in Appendix B1 to B4. 
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3.3.4   Lagrange’s algorithm for economic dispatch problem with valve point loading 

effect neglecting emission and transmission line losses  

This section formulate and proposes solution of the economic dispatch problem with 

valve point loading effect  by neglecting emission function and transmission losses. 

The economic dispatch problem is formulated as follows: 

Find the values of the active power produced by the generators , 1,iP i n  such that 

the criterion 

2
,min

1

( ) sin( ( ))
n

TVP i i i i i i i i i

i

F a b P c P P P 


               [$/h]       (3.46) 

Where  

FTVP   CEED fuel cost value with valve point  loading effect 

Under the constraints: 

 Power balance constraint 

1

n

i G D

i

P P P


        [MW]               (3.47) 

Where 

PG    Total power generation of the system 

PD    Total demand of the system 

 Generator operational constraints described by the equation (3.4) 

The optimization problem is to find the optimal active power , 1,iP i n  produced by the 

generators in such a way that the criterion (3.46) is minimized and the constraints 

(3.4) and (3.47) are satisfied. The problem is solved using Lagrange‘s method by 

introduction of the Lagrange‘s variable λ and formulation of a Lagrange‘s function: 

1

n

TVP D i

i

L F P P


 
   

 
                                (3.48)  
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i i

L a b P c P P P P P  
 

 
       

 
     (3.49)     

The solution for the bi-criteria dispatch problem is based on optimisation of the 

Equation (3.49), subject to the constraints (3.4) and (3.47) is transferred to the 

problem for minimization of L according to 
, 1,iP i n  and maximization of L according 

to λ 

The necessary conditions for optimality for solution of the problem (3.39), (3.40) are: 

Which results in the following equations: 
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                                (3.51)  

Equations (3.50), (3.51) are solved under the constraints (3.4) and following algorithm 

is given in Figure 3.13. 

 

3.3.5.1 Results from the solution of the bi-criteria dispatch problem with valve point  

loading effect for IEEE 30 bus system 

The IEEE 30 bus system with six generators is represented by a fuel cost, emission 

and transmission loss coefficients with valve point loading effect and real power limits 

as given in Table 3.19. The problem is formulated as a bi-objective function using the 

various penalty factors from point 3.3.2. The dispatch problem is solved in Matlab 

environment. The Lagrange‘s method is used to obtain the solution of the dispatch 

problem. The solution of the multi-criteria dispatch problem with valve point loading 

effect is shown in Table 3.20 for the considered various penalty factors. The software 

developed CEED_VP_Casestudy1.m and CEED_VP_Casestudy1_funct.m is given in 

Appendix B1 and B2. 

Table 3.19: Data of the IEEE 30 bus system for the bi-criteria dispatch Problem   with  valve 

point  loading effect  

Generator Number 1 2 3 4 5 6 

Fuel cost 
coefficients 
and valve point 
loading effect 
coefficients 

ai 

[$/h] 
10 10 20 10 20 10 

bi 

[$/MWh] 
200 150 180                100 180 150 

ci 

[$/MW
2
h] 

100 120 40 60 40 100 

αi  15 10 10 5 5 5 

βi  6.283 8.976 14.784 20.944 25.133 18.48 

Emission 
coefficients 
and valve point 
loading effect 
coefficients 

di   [$/h] 4.091 2.543 4.258 5.326 4.258 6.131 

ei [$/t.h] -5.554 -6.047 -5.094 -3.55 4.586 5.151 

fi [$/t
2
h] 6.49 5.638 4.586 3.38 4.586 5.151 

γi 0.0002 0.0005 0.000001 0.002 0.000001 0.00001 

δi 2.857 3.333 8 2 8 6.667 

Generator real 
power 
operational 
limits 

Pi,min 
(p.u) 

0.05 0.05 0.05 0.05 0.05 0.05 

Pi,max 
(p.u) 

0.50 0.60 1.00 1.20 1.00 0.60 

Transmission loss coefficients  
B00=0.0014 

B coefficients B01 

0.0218 0.0107 -0.00036 -0.0011 0.00055 0.0033 0.000010731 

0.0107 0.01704 -0.0001 -0.00179 0.00026 0.0028 0.0017704 

-0.0004 -0.0002 0.02459 -0.01328 -0.0118 -0.0079 -0.0040645 
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-0.0011 -0.00179 -0.01328 0.0265 0.0098 0.0045 0.0038453 

0.00055 0.00026 -0.0118 0.0098 0.0262 -0.0001 0.0013832 

0.0033 0.0028 -0.00792 0.0045 -0.0001 0.0297 0.0055503 

 

Table 3.20: Bi-criteria dispatch Problem with valve point loading effect solution using various 

price penalty factors  

Power demand (PD) = 2.86 (p.u) 
Maximum number of iteration (m) = 2000 

Initial lambda 
 0

 = 20 

(Hemam-
-alini and 
Simon, 
2008) 

(Abido, 
2003) 

(Abido, 
2003) 

Algorithm Lagrange‘s (Proposed) PSO 
Evolution-

ary 
SPEA 

Type of price 
penalty factor 

Min - 
Max 

Max - 
Max 

Min - Min 
Max - 
Min 

Average Common Max-Max -------- -------- 

Optimal    214.879 197.0550 216.9261 206.7494 208.7931 217.5211 -------- -------- -------- 

P1 (p.u) 0.2096 0.3164 0.2024 0.3083 0.2801 0.1928 0.14089 0.2699 0.2996 

P2 (p.u) 0.3699 0.4892 0.3217 0.4518 0.4502 0.3390 0.34415 0.3885 0.4474 

P3 (p.u) 0.5414 0.5269 0.5488 0.5384 0.5356 0.5508 0.67558 0.5645 0.7327 

P4 (p.u) 0.9220 0.6211 0.9325 0.6368 0.6997 0.9206 0.83971 0.6570 0.7284 

P5 (p.u) 0.4966 0.5174 0.5316 0.5321 0.5237 0.5355 0.49043 0.5441 0.1197 

P6 (p.u) 0.3508 0.4138 0.3535 0.4173 0.3961 0.3515 0.39797 0.4398 0.5364 

PL (p.u) 0.0397 0.0348 0.0404 0.0346 0.0353 0.04 -------- -------- -------- 

FC [$/h] 649.347 667.2978 648.7502 660.5127 658.2729 647.933 639.65 618.689 629.394 

ET [t/h] 0.1975 0.1876 0.1988 0.1880 0.1895 0.1984 0.21105 0.19940 0.21043 

FT [$/h] 650.537 677.0402 649.7328 668.7905 663.3373 648.8344 -------- -------- -------- 

Iter.No 

when
 0

 =20 
185 538 193 517 402 187 -------- -------- -------- 

Iter.No  

when
 0

 =19

5 

95 116 108 258 225 203 -------- -------- -------- 

CT [s] 
when 

 0
 =20 

4.3994 10.2016 4.4761 9.6737 34.0414 31.4099 -------- -------- -------- 

CT [s] 

when
 0

 =195 
3.2318 3.3570 3.9164 6.0567 16.1770 13.8698 -------- -------- -------- 

 

Where 

 SPEA   Strength Pareto Evolutionary Algorithm 

The notation "--------"  means that data is not available in the considered literature papers. 

3.3.5.2 Discussion on results for IEEE 30 bus system 

The results calculated according to the Lagrange's method for the CEED problem 

solution are compared with the results from the reference papers (Hemamalini and 

Simon, 2008),(Abido, 2003), and (Abido, 2003) using various methods of solution, 

Table 3.20. The following conclusions are made:  

i) The fuel cost values and CEED fuel cost values are less when using common 

penalty factor in comparison with the other types of penalty factors.  

ii) The emission function value is less using Max-Max penalty factor in comparison 

with the other types of penalty factors.  
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iii) The computation time and number of iterations required to obtain the global 

solution depend on the initial selection of the Lagrangian variable 0  and is 

independent on the type of the penalty factors as shown in Table 3.20 

iv) The fuel cost values are bigger in Lagrange's method in comparison with 

(Hemamalini and Simon, 2008), (Abido, 2003), and (Abido, 2003) as shown in 

Table 3.20. It is because the authors (Hemamalini and Simon, 2008), (Abido, 

2003), and (Abido, 2003) neglected the transmission loss constraints, and 

optimised the fuel cost and emission functions separately.  

3.3.5.3 Results of the solution of the economic dispatch problem with valve point  

loading effect for 40 generator system 

The 40 generator system data such as fuel cost and emission coefficients with valve 

point loading effect and real power limits are given in Table 3.21. The transmission 

loss is neglected in this case. The software developed CEED_VP_Casestudy2.m and 

CEED_VP_Casestudy2_funct.m is given in Appendix B3 and B4. 

Table 3.21: 40 generator system data and results from the solution of the economic dispatch 

Problem with valve point loading effect  

Generator 

Number 

Fuel cost coefficients and valve point loading 

effect coefficients 

Generator real 

power 

operational limits 

Optimized 

real power 

values using 

Lagrange‘s 

algorithm 

ai 

[$/MW
2
h

] 

bi 

[$/MWh] 

ci 

[$/h] 

i  i  
Pi,min 

[MW] 

Pi,max 

[MW] 

Pi 

[MW] 

1  0.0069 6.73 94.705 100 0.084 36 114 73.4195 

2  0.0069 6.73 94.705 100 0.084 36 114 73.4195 

3  0.02028 7.07 309.54 100 0.084 60 120 97.4574 

4  0.00942 8.18 369.03 150 0.063 80 190 129.8982 

5  0.0114 5.35 148.89 120 0.077 47 97 87.8319 

6  0.01142 8.05 222.33 100 0.084 68 140 105.4323 

7  0.00357 8.03 287.71 200 0.042 110 300 296.4329 

8  0.00492 6.99 391.98 200 0.042 135 300 300.0000 

9  0.00573 6.6 455.76 200 0.042 135 300 209.8323 

10  0.00605 12.9 722.82 200 0.042 130 300 204.8341 

11  0.00515 12.9 635.2 200 0.042 94 375 168.8290 
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12  0.00569 12.8 654.69 200 0.042 94 375 168.8321 

13  0.00421 12.5 913.4 300 0.035 125 500 394.3023 

14  0.00752 8.84 1760.4 300 0.035 125 500 394.3203 

15  0.00708 9.15 1728.3 300 0.035 125 500 214.7983 

16  0.00708 9.15 1728.3 300 0.035 125 500 500.0000 

17  0.00313 7.97 647.85 300 0.035 220 500 489.2964 

18  0.00313 7.95 649.69 300 0.035 220 500 489.2964 

19  0.00313 7.97 647.83 300 0.035 242 550 511.2964 

20  0.00313 7.97 647.81 300 0.035 242 550 511.2964 

21  0.00298 6.63 785.96 300 0.035 254 550 523.2956 

22  0.00298 6.63 785.96 300 0.035 254 550 523.2956 

23  0.00284 6.66 794.53 300 0.035 254 550 523.2948 

24  0.00284 6.66 794.53 300 0.035 254 550 523.2948 

25  0.00277 7.1 801.32 300 0.035 254 550 523.2944 

26  0.00277 7.1 801.32 300 0.035 254 550 343.7749 

27  0.52124 3.33 1055.1 120 0.077 10 150 52.2683 

28  0.52124 3.33 1055.1 120 0.077 10 150 52.2683 

29  0.52124 3.33 1055.1 120 0.077 10 150 52.2683 

30  0.0114 5.35 148.89 120 0.077 47 97 87.8319 

31  0.0016 6.43 222.92 150 0.063 60 190 184.4935 

32  0.0016 6.43 222.92 150 0.063 60 190 184.4935 

33  0.0016 6.43 222.92 150 0.063 60 190 184.4935 

34  0.0001 8.95 107.87 200 0.042 90 200 164.8004 

35  0.0001 8.62 116.58 200 0.042 90 200 164.8004 

36  0.0001 8.62 116.58 200 0.042 90 200 164.8004 

37  0.00161 5.88 307.45 80 0.098 25 110 105.0367 

38  0.00161 5.88 307.45 80 0.098 25 110 105.0367 

39  0.00161 5.88 307.45 80 0.098 25 110 105.0367 

40  0.00313 7.97 647.83 300 0.035 242 550 511.2964 

 

Comparison of the results from the solution of the economic dispatch problem with 
valve point loading effect with the results published in some papers, is given in Table 
3.22 
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Table 3.22: Comparison of the economic dispatch problem solutions for the 40 generator 
system with valve point loading effect with some results from application of other 
methods published 

Reference  Algorithm FT [$/h] CT [s] 

Developed Lagrange‘s  126586.34 4.27 

Park, et-al., 2010 Improved Particle Swarm optimization (IPSO) with both 

Chaotic sequences and Crossover operation (CCPSO) 

121445.32 19.3 

Selvakumar and 

Thanushkodi, 2007 

New PSO –Local Random search (NPSO-LRS) 121664.43 3.93 

Coelho,  and 

Mariani, 2006 

Differential Evolutionary Computation with 

Sequential 

Quadratic Programming  

(DEC-SQP) 

121741.97 ------------------ 

Sinha, et-al., 2003 Improved Fast Evolutionary Programming (IFEP) 123382.00 1167.35 

 

3.3.5.4 Discussion on results for 40 generator system 

The Lagrange‘s method is used to obtain the solution of the dispatch problem. The 

selection of initial lambda is 
0 500,   the maximum number of iterations is taken as 

1000 and the global solution is attained at 28th iteration. The dispatch problem is 

solved in Matlab environment. The results from the considered economic dispatch 

problem solution are compared with some results obtained by other methods such as 

PSO (Park, et-al.,2010) and Evolutionary Programming (Nidul Sinha, et-al,2003) as 

shown in Table 3.22. The following conclusions are made:  

i) The fuel cost value of the economic dispatch problem with valve point  loading 

effect using Lagrange‘s algorithm is bigger in comparison with the PSO (Park, et-

al.,2010) and Evolutionary Programming (Nidul Sinha, et-al,2003) solutions as 

shown in Table 3.22. It concludes that Lagrange‘s algorithm provide near global 

solution for the 40 generator large scale optimization dispatch problem.  

ii) The computation time of the Lagrange‘s algorithm is small in comparison with the 

random search algorithms PSO and Evolutionary Programming as shown in Table 

3.22. It is observed that IFEP takes more computation time since the old 

computers have lower characteristics referring to the operation speed. 
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3.4 Impact of price penalty factors on the solution of the combined economic 

emission dispatch problem using cubic criterion functions 

3.4.1  Introduction 

The CEED problem using cubic fuel cost and emission objective functions is  

formulated and solved. Representation of generator fuel cost curves by polynomials 

in real-time economic dispatch is standard practice in the industry because it has a 

great influence on the accuracy of the economic dispatch problem solution. The 

second order polynomial function of the economic dispatch problem is formulated in 

(Rani et al., 2006), (Balamurugan and Subramanian, 2007), (Hemamalini and Simon, 

2009), (Chen and Wang, 2009), and (Ming et al., 2010). The rough approximation of 

the generator cost function makes the Economic Dispatch (ED) solution to deviate 

from the optimal one. ED solution can be improved by introducing higher order 

generator fuel cost functions. Cubic cost functions are more accurately models of the 

actual thermal generators fuel cost. These cost functions are considered in (Mishra et 

al., 2006), (Al-Sumait et al., 2008),(Chayakulkeree and Ongsakul, 2007), (Venkatesh 

and Lee, 2008), (Adhinarayanan and Sydulu, 2010), (Adhinarayanan and Sydulu, 

2010), and (Chen and Wang, 2009). In addition to that , various thermal pollutants 

such as SO2, NOx and CO2  are considered in the cubic function model of the CEED 

problem. 

 

3.4.2  Cubic objective functions 

The objective of CEED problem is to minimize four conflicting objective functions: fuel 

cost and NOx, SO2 and CO2 emissions, while satisfying equality and inequality 

constraints.  The objective functions are: 

The fuel cost function is described as  

 
 

     
n n

3 2
C i i i i i i i i i

i 1 i 1

F F P (aP bP c P d )       [$/h]      (3.52) 

Where  

FC         Total Fuel Cost 

Fi(Pi)       Fuel cost of the ith generator 

Pi        Real power generation of the unit i 

ai , bi, ci , di   Cost coefficients of the generation of the unit i 

n         Number of generating units 

The problem for minimization of the quantity of the emissions consider the following 

objective functions:  
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The criterion for minimization of the SO2 emission is formulated as 

  


    2 2 22

3 2
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   [kg/h]          (3.53) 

Where 

ETso2                        Total sulphur dioxide emission 

isoisoiso dcba
iso 2222

,,,
 

Sulphur-dioxide Emission coefficients of the generating unit i 

The criterion for minimization of the NOx emission is formulated as 
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Where 

ETNOx                Total nitrogen oxide emission 

xiNOxiNOxiNO dcba
xiNO

,,,
  

Nitrogen oxide Emission coefficients of the generating unit i 

The criterion for minimization of the CO2 emission is formulated as 
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(3.55) 

Where 

ETCO2                      Total carbon dioxide emission 

iCoiCoCOiCo dcba
i 2222

,,,
    

Carbon-dioxide Emission coefficients of the generating unit i 

The following problems are formulated and solved: 

1) The criteria (3.53), (3.54), and (3.55) are used in combination with the fuel cost 

criterion separately in order to formulate and solve bi-criteria  economic emission 

dispatch problem.  

2) All three criteria (3.53), (3.54) and (3.55) are used together with the criterion for 

the fuel cost in one multi-criteria dispatch problem. 

3.4.3 Formulation of the bi-objective and the multi-objective economic dispatch 

problems 

A bi-objective optimization is converted into a single objective optimization problem 

by introducing price penalty factor hi to the various pollutants objective functions. 

Single objective functions are formulated for every pollutant separately as follows: 
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(3.56)  
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[$/h]  (3.58)        

Where  

FTSO2       CEED‘s fuel cost of SO2 emission 

FTNOx       CEED‘s fuel cost of NOx emission 

FTCO2       CEED‘s fuel cost of CO2 emission 

In the cases where the impact of all 3 pollutants is important, the multi-objective 

dispatch problem is solved for all pollutants at the same moment. Then the CEED fuel 

cost for all SO2, NOx, and CO2 emissions is given by the equation (3.59) 

 
 
 



    
 
     

      
 
    
 


2 2 2 22

3

2 2 2 2 2

3 2

3 2

3 2

1

3 2

( )

so i

NOxi

i

i i i i i i i

n
SO i so i i i so i i so i

T
NOxi NOxi i i NOxi i NOxii

CO i Co i i cO i co i i co i

a P b P c P d

h a P b P c P d
F

h a P b P c P d

h a P b P c P d               

[$/h]

 

(3.59) 

The bi-objective dispatch problem is solved for all pollutants individually using the 

average price penalty factor, Equation (3.60) to (3.62). Then the CEED fuel cost for 

the SO2, NOx, and CO2 emissions using average penalty factor is given in the 

equations (3.60), (3.61) and (3.62). 
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[$/h] (3.62)        

The bi-objective dispatch problem is solved for all pollutants individually using the 

common price penalty factor, Equation (3.63) to (3.65). Then the CEED fuel cost for 

the SO2, NOx, and CO2 emissions using common penalty factor is given in the 

equation (3.63), (3.64) and (3.65) 
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[$/h] (3.65)        

The objective function (3.56) to (3.65) are solved under the power balance constraint, 

given by Equation (3.2) and generator operational limit constraint given by Equation 

(3.4). It is assumed that the line losses are minimal and they are not considered. 

Equation (3.2) can be written as Equation (3.66) by neglecting the transmission 

losses as: 

1

n

i D

i

P P




 

[MW]

        

(3.66) 

The problem for bi-criteria optimization of the real power are formulated for every 

pollutant separately in the following way: Find the optimal value of the real power 

produced by the generators in such a way that the criteria (3.56) to (3.58) and (3.60) 

to (3.65) are minimized under the constraints Equations (3.2) and (3.66) 

The problem for multi-criteria optimization of the real power is formulated for all three 

pollutants together in the following way: Find the optimal value of the real power 

produced by the generators in such a way that the criterion (3.59) is minimized under 

the constraints (3.2) and (3.66). 

 

3.4.4  Formulation of the price penalty factors 

As described in most of the existing literature the price penalty factor hi is the ratio 

between maximum fuel cost and maximum emission of corresponding generator 

(Krishnamurthy and Tzoneva, 2011), (Balamurugan and Subramanian, 2007), and 

(Ming et al., 2010). The Max-Max price penalty factor is formulated for all the three 

pollutants individually as follows:  
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Where 

iSOh
2

    - Price penalty factor of SO2 emission 

NOxih   - Price penalty factor of NOx emission 

iCOh
2

  - Price penalty factor of CO2 emission 

This research work proposes a new price penalty factor ―Min-Max” and "Max-Min" in 

addition to the described ones in literature to solve the bi-objective economic dispatch 

problem. The Min-Max price penalty factor is formulated as follows:  
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The Min-Min price penalty factor is formulated as follows:  
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[$/kg]    (3.75) 

The proposed Max-Min price penalty factor is formulated as follows:  

  
 

  2

2 2 22

3 2
max max max

3 2
min min min

( )
, 1,

( )
so i

i i i i i i i
SO i

so i i i so i i so i

a P b P c P d
h i n

a P b P c P d
 

[$/kg]    (3.76) 

  
 

  

3 2
max max max

3 2
min min min

( )
, 1,

( )

i i i i i i i
NOxi

NOxi i NOxi i NOxi i NOxi

a P b P c P d
h i n

a P b P c P d
 

[$/kg]    (3.77) 

  
 

  2

2 2 2 2

3 2
max max max

3 2
min min min

( )
, 1,

( )

i i i i i i i
CO i

Co i i CO i i Co i i Co i

a P b P c P d
h i n

a P b P c P d
 

[$/kg]    (3.78) 

The average and common price penalty factors are proposed by (Balamurugan and 

Subramanian, 2007) to solve the bi-objective economic emission dispatch problem 
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are also considered. The thesis proposes variants of these penalty factors when four 

different specific penalty factors Min-Max, Max-Max, Min-Min, Max-Min are 

considered. 
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Where 

iAvgSOh
2

    - Average price penalty factor of SO2 emission 

AVgNOxih  - Average price penalty factor of NOx emission 

iAvgCOh
2

 - Average price penalty factor of CO2 emission 

The common price penalty factor for various pollutants is expressed as follows: 
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   [$/kg]          (3.84) 

Where 

iComSOh
2

   - Common price penalty factor of SO2 emission 

ComNOxih  - Common price penalty factor of NOx emission 

iComCOh
2  

- Common price penalty factor of CO2 emission 

 

3.4.5  Formulation of Lagrange’s algorithm for multi-objective economic emission 

dispatch (MEED) problem 

Lagrange‘s variables are introduced to the objective functions (3.56), or (3.57), or 

(3.58). When consider the equation (3.56) alone, the dispatch problem is formulated 

using the Lagrange‘s variable as follows: (for the case of SO2): 
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(3.86)

 

Similar Lagrange‘s functions can be built for other pollutants NOx and CO2 

The optimization problem (3.56), subject to the constraints (3.2), and (3.66) is 

transferred to a problem for minimization of LSO2 according to , 1, ,iP i n  and 

maximization of LSO2 according to λ. 

The function of Lagrange for the case of impact of all 3 pollutants is given by equation 

(3.87) 
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Necessary conditions for optimality for solution of the problem (3.86) and (3.87) are: 
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                                   (3.88) 
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                                    (3.89) 

Derivation of the condition (3.88) by considered the single pollutant SO2 alone is 

given in Equation (3.90): 
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Equation (3.91) has the structure of a quadratic equation as: 
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where 

 
 

  

  

  

   

2 2

2 2

2 2

3 , 1,

2 , 1,

, 1,

i i SO i SO i

i i SO i SO i

i i SO i SO i

x a h a i n

y b h b i n

z c h c i n

 



117 

 

The necessary conditions for optimality of the Lagrange‘s function (3.87) by 

considered all the three pollutants according to the real power are derived as follows: 
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From here the equation (3.93) can be written as 
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The Equation (3.94) can be presented as a quadratic equation with the coefficients 

given as follows: 
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   (3.95) 

The optimal real power of each generator is found by using Equations (3.91) or (3.92) 

for single pollutant SO2 and for all three pollutants given in Equation (3.94). The 

solution is based on the formula for solution of a quadratic equation: 

For a single pollutant: 
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Substitute the values of xi, yi, zi in Equation (3.96) and the real power of the generator 

is given in Equation (3.97) 
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For all 3 pollutants, derivation of the condition (3.88) is given in Equation (3.98) as: 
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Equation (3.98) has the structure of a quadratic equation as given in (3.96), the 

solution of the generator real power Pi is found by solving the Equation (3.98) as: 
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If the value of the Lagrange‘s multiplier λ is known the equations (3.97) can be solved 

according to the unknown vector Pi.  

The value of λ is unknown and has to be found from the necessary condition for 

optimality (3.89). This condition is: 
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The gradient procedure for calculation of λ has to be developed as follows: 

       


   
1

, 0
k kk

       

(3.101) 

The obtained solutions for , 1,iP i n  have to belong to the constraint domain (3.66) 

and the obtained solution is fit to the constraint domain given in (3.101). 
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The condition for end of the iteration is 

   
k

or k m

        

(3.103) 

The algorithm of the Lagrange‘s method is: 

1) Initial value of the Lagrange‘s multiplier is guessed:
 0 , 

2) Equation (3.97) for single pollutant or Equation (3.99) for all three pollutants is 

solved and the unknown vector iP is determined. 

3) The obtained vector iP  is fit to the constraints (3.102). 
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4) The optimal solution is used to calculate the CEED problem fuel cost using 

Equation (3.56) for single pollutants and Equation (3.59) for all three pollutants. 

The flowchart of the algorithm is given in Figure 3.14. 

Read the system data  λ0, ε, ai, bi, ci, di, 
aSO2i,bSO2i,cSO2i,dSO2i,
aNOxi, bNOxi, cNOxi, dNOxi,

 aCO2i,bCO2i,cCO2i,dCO2i,

 Pimin, Pimax  n, PD, α, m

No

Δλ ≤ ε

Stop
k < m

Yes

Yes

No

λ(k+1)=λ(k)+ α Δ λ(k) 

Using equation 

(3.101)

Check constraints Pimin, Pimax for every 

element using equation  (3.102)

 

Calculate

 Pi using equation (3.97), or (3.99)

Calculate the cost function using 

equation (3.56), or (3.69)

 

k=1

Calculate Δλ using equation 

(3.100)

 

Figure 3.14: Flow diagram of the cubic function bi-criteria and multi-criteria dispatch 
problem using Lagrange’s method 

The software developed CEEDCubic.m for the CEED problem based on cubic 

objective function is given in Appendix C. 

 

3.4.6  Results of the multi-objective dispatch problem based on cubic objective 

functions for various pollutants and penalty factors 

This section applies the Lagrangian algorithm to solve the environmental economic 

dispatch problem for various penalty factors and pollutants. The fuel cost coefficients, 

SO2, NOx, and CO2 emission coefficients, and the real power limits of the generators 

are provided in (Chayakulkheere and Ongsakul, 2007) and in Table 3.23. The 

constant power demand of 286 [MW] is used to solve the CEED problem. The 

simulation is carried out in the software Matlab 2011 and the maximum number of 

iterations is selected to be  m= 50000 iterations. The initial lambda value is set as 40. 

The simulation results of the CEED-SO2 emission solution for the considered six 
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penalty factors such as i) Min-Max, ii) Max-Max, iii) Min-Min iv)Max-Min v) Average, 

and vi) Common is given in Table 3.24, where the optimum real power of the 

generators, fuel cost, SO2 emission values, combined economic SO2 emission 

dispatch cost values and Computation Time (CT) are provided for the various penalty 

factors. 

The above solutions are repeated for the dispatch problems considering NOx and 

CO2 pollutants. The obtained solutions are given in Table 3.25 and Table 3.26 

respectively. The results of the solution of the dispatch problem by considering all 

three pollutants is given in Table 3.27. 

The obtained optimal values of the fuel cost, SO2, NOx, and CO2 pollutant quantities, 

CEED-SO2, CEED-NOx, CEED-CO2, CEED-SO2-NOx-CO2 and Computation Time 

are given in Table 3.24 to Table 3.27 for each type of penalty factors. Table 3.28 

compares the solution of CEED problem using the Lagrange‘s developed algorithm 

with the Fuzzy Multi-objective Optimal real Power Flow (FMOPF) algorithm given by 

(Chayakulkeree and Ongsakul, 2007). 

 

Table 3.23: IEEE 30 bus system coefficients for the cubic objective functions of  the fuel cost 

and the emissions 

Bus Number 
1 2 5 8 11 13 

G
e
n
. 

lim
it
s
 Pmin [MW] 50.0000 20.0000 15.0000 10.0000 10.0000 12.0000 

Pmax  

[MW] 
200.0000 80.0000 50.0000 50.0000 50.0000 40.0000 

F
u

e
l 
c
o
s
t 

c
o
e
ff
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ts
 

ai [$/MW
3
h] 0.0010 0.0004 0.0006 0.0002 0.0013 0.0000 

bi 

[$/MW
2
h] 

0.0920 0.0250 0.0750 0.1000 0.1200 0.0840 

ci 

[$/MWh] 
14.5000 22.0000 23.0000 13.5000 11.5000 12.5000 

di 

[$/h] 
-136.0000 -3.5000 -81.0000 -14.5000 -9.7500 75.6000 
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 e
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n
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ts
 

aSO2i 

[$/t
3
h] 

0.0005 0.0014 0.0010 0.0020 0.0013 0.0021 

bSO2i 

[$/t
2
h] 

0.1500 0.0550 0.0350 0.0700 0.1200 0.0800 

cSO2i 

[$/t.h] 
17.0000 12.0000 10.0000 23.5000 21.5000 22.5000 

dSO2i 

[$/h] 
-90.0000 -30.5000 -80.0000 -34.5000 -19.7500 25.6000 
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aNOxi 

[$/t
3
h] 

0.0012 0.0004 0.0016 0.0012 0.0003 0.0014 

bNOxi 

[$/t
2
h] 

0.0520 0.0450 0.0500 0.0700 0.0400 0.0240 

cNOxi 

[$/t.h] 
18.5000 12.0000 13.0000 17.5000 8.5000 15.5000 

dNOxi 

[$/h] 
-26.0000 -35.0000 -15.0000 -74.0000 -89.0000 -75.0000 

C
O

2
 e

m
is

s
io

n
 

c
o
e
ff
ic

ie
n

ts
 

aCO2i 

[$/t
3
h] 

0.0015 0.0014 0.0016 0.0012 0.0023 0.0014 

bCO2i 

[$/t
2
h] 

0.0920 0.0250 0.0550 0.0100 0.0400 0.0800 

cCO2i 

[$/t.h] 
14.0000 12.5000 13.5000 13.5000 21.0000 22.0000 

dCO2i 

[$/h] 
-16.0000 -93.5000 -85.0000 -24.5000 -59.0000 -70.0000 
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Table 3.24: CEED-SO2 emission dispatch problem solution 

hi [$/t] 

    Real 

power   

Lambda 

P1 

[MW] 

P2 

[MW] 

P3 

[MW] 

P4 

[MW] 

P5 

[MW] 

P6 

[MW] 
FC     [$/hr] ETSO2 [t/h] FTSO2   [$/h] Iter CT [s] 

Min-Max 36.52 55.24 58.84 32.09 50.00 49.85 40.00 5997.95 7116.75 6980.77 93 0.02 

Max-Max 65.19 50.00 60.09 35.90 50.00 50.00 40.00 5984.48 7032.01 12005.88 344 0.13 

Min-Min 77.80 69.97 48.61 27.40 50.00 50.00 40.00 6136.46 7361.12 12867.67 322 0.09 

Max-Min 311.36 50.00 57.68 38.31 50.00 50.00 40.00 5989.14 6992.77 54088.52 2263 0.39 

Average 126.01 50.00 58.27 37.72 50.00 50.00 40.00 5987.76 7001.82 21566.60 832 0.31 

Common 127.69 50.52 64.33 50.00 40.90 40.24 40.00 6076.71 6683.44 23951.66 474 0.40 

 

      Table 3.25: CEED-NOx emission dispatch problem solution 

hi [$/t] 

Real 

power 

Lambda 

P1 

[MW] 

P2 

[MW] 

P3 

[MW] 

P4 

[MW] 

P5 

[MW] 

P6 

[MW] 
FC     [$/hr] ETNOx [t/h] FTNOx    [$/h] Iter CT [s] 

Min-Max 36.06 55.38 59.45 32.51 50.00 48.68 40.00 5994.58 5051.73 7004.59 85 0.03 

Max-Max 62.67 50.76 61.55 36.32 50.00 47.36 40.00 5978.69 5005.30 11983.10 189 0.04 

Min-Min 77.08 70.22 66.70 49.07 50.00 10.00 40.00 6441.56 5760.84 14331.19 276 0.06 

Max-Min 470.45 55.99 80.00 50.00 50.00 10.00 40.00 6359.20 5560.56 57881.32 692 1.50 

Average 159.32 55.99 80.00 50.00 50.00 10.00 40.00 6359.20 5560.56 23172.72 2055 0.38 

Common 4109.24 50.00 73.93 41.09 30.97 50.00 40.00 6143.36 4870.60 793718.43 17847 3.73 

 

           Table 3.26: CEED-CO2 emission dispatch problem solution 

hi [$/t] 

Real 

power 

Lambda 

P1 

[MW] 

P2 

[MW] 

P3 

[MW] 

P4 

[MW] 

P5 

[MW] 

P6 

[MW] 
FC     [$/hr] ETCO2 [t/h] FTCO2    [$/h] Iter CT [s] 

Min-Max 36.41 56.42 58.08 32.19 50.00 49.32 40.00 6001.91 5990.13 6945.01 92 0.03 
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Max-Max 63.45 55.22 57.25 34.61 50.00 48.91 40.00 5996.28 5957.41 11535.91 217 0.05 

Min-Min 81.21 67.82 41.40 36.77 50.00 50.00 40.00 6132.82 6187.72 13482.75 361 0.07 

Max-Min 324.17 50.00 48.65 47.34 50.00 50.00 40.00 6031.42 5915.22 56967.74 2341 0.47 

Average 130.35 50.00 50.69 45.30 50.00 50.00 40.00 6018.40 5907.95 22347.09 877 0.22 

Common 119.96 50.00 61.62 48.07 50.00 36.34 39.96 6025.49 5788.55 22608.28 436 0.08 

 

Table 3.27: CEED-SO2-NOx-CO2 emission multi-criteria dispatch problem solution 

hi [$/t] 

Real 

power 

Lambda 

P1 

[MW] 

P2 

[MW] 

P3 

[MW] 

P4 

[MW] 

P5 

[MW] 

P6 

[MW] 
FC     [$/hr] 

ETSO2 

[t/h] 
ETNOx [t/h] ETCO2 [t/h] 

FTSO2- NOx-CO2 

[$/h] 
Iter 

CT 

[s] 

Min-Max 47.32 65.53 51.88 28.58 50.00 50.00 40.00 6079.05 7273.37 5219.00 6151.03 8883.22 152 0.09 

Max-Max 130.93 51.68 58.31 36.01 50.00 50.00 40.00 5988.74 7035.15 4996.54 5936.70 23573.46 600 0.15 

Min-Min 195.64 87.28 54.53 44.18 50.00 10.00 40.00 6730.47 7361.65 6194.84 6560.65 31080.22 903 0.16 

Max-Min 1438.48 55.99 80.00 50.00 50.00 10.00 40.00 6359.20 7012.67 5560.56 6040.75 172702.82 18640 3.52 

Average 47.32 65.53 51.88 28.58 50.00 50.00 40.00 6079.05 7273.37 5219.00 6151.03 8883.22 152 0.09 

Common 130.93 51.68 58.31 36.01 50.00 50.00 40.00 5988.74 7035.15 4996.54 5936.70 23573.46 600 0.15 

Table 3.28: Comparison of the CEED problem with a cubic fuel cost and emission objective functions solutions using the 

developed Lagrange's method with FMOPF solutions (Chayakulkeree and Ongsakul, 2007) 

Solution CEED-SO2 CEED-NOx CEED-CO2 CEED-SO2
- 
NOx- CO2 

Algorithm Lagrange‘s FMOPF Lagrange‘s FMOPF Lagrange‘s FMOPF Lagrange‘s FMOPF 

FC [$/h] 5997.95 6151.39 7116.75 6709.76 5041.89 5009.04 5987.39 5976.29 

ETSO2 [t/h] 5994.58 6161.39 7098.74 6874.94 5051.73 4897.48 5971.57 6104.2 

ETNOx [t/h] 6001.91 6142.73 7116.1 6766.27 5062.1 5187.67 5990.13 5805.99 

ETCO2 [t/h] 6079.05 6068.14 7273.37 6822.92 5219 5018.07 6151.03 5889.96 

   FMOPF : Fuzzy Multi-objective Optimal real Power Flow (Chayakulkeree and Ongsakul, 2007)  
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  3.4.7 Discussion on results of the CEED problem solution with a cubic fuel cost and 

emission functions 

The following results are found for the cubic cost model of the CEED problem: 

i. The Min-Max penalty factor is good to yield the minimum CEED fuel cost for the 

individual pollutants (FT-SO2, FT-NOx, FT-CO2 ) and for all three pollutants 

together (FT3-SO2-NOx-CO2). The solution is calculated for the minimum 

computation time in comparison  with other price penalty factors. 

ii. The Max-Max penalty factor is good to yield the minimum fuel cost for the 

individual pollutants (FC-SO2, FC-NOx , FC-CO2) in comparison with the other 

price penalty factors. 

iii. The Common penalty factor is good to yield minimum emission for the 

individual pollutants (ET-SO2, ET-NOx, and ET-CO2). 

 

3.5  Conclusion 

This chapter solves the combined economic emission dispatch problem more 

accurately, by considered both fuel cost and emission criterion for the  three types 

of the criterion functions, i.e., i) quadratic criterion functions without valve point 

loading effect, ii) quadratic criterion functions with valve point loading effect, and iii) 

cubic criterion functions. Various pollutants of thermal power plants such as SO2, 

NOx and CO2 emissions are also considered in the cubic model of the CEED 

problem. . In addition to that, various types of price penalty factors are used in the 

bi-criteria dispatch problem. The role of all penalty factors is to transfer the physical 

meaning of the emission criterion from weight of the emission to the fuel cost for the 

emission. A conclusion can be made that the developed Min-Max price penalty 

factor provides minimum fuel cost and emission values in comparison with other 

types of penalty factors for all the three types of the criterion functions considered. 

Chapter four developed PSO algorithm to solve the CEED problem using various 

price penalty factors. 
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CHAPTER FOUR 

COMBINED ECONOMIC EMISSION DISPATCH PROBLEM SOLUTION BASED 

ON THE PARTICLE SWARM OPTIMIZATION ALGORITHM 

 

4.I  Introduction 

The Combined Economic Emission Dispatch (CEED) problem is solved using Particle 

Swarm Optimization (PSO) algorithm in this chapter. The literatures (Palanichamy 

and Babu, 2008), (Srikrishna and Palanichamy, 1991), (Kulkari et al., 2000), 

(Balamurugan and Subramanian, 2008) solve the CEED problem by minimizing both 

fuel cost and emission by using price penalty factors, where the combined solution is 

given by the criterion FT = FC + h ET and h is the penalty factor. Different types of h 

are reported in literature as Max-Max, Min-Min, Average and Common (described in 

Chapter 3) and they are used so far for the combined economic emission dispatch 

(CEED) problem solution. The literatures proposing PSO and hybrid PSO algorithms 

for economic emission dispatch problem are only based on Max-Max price penalty 

factor so far. This chapter proposes Min-Max penalty factor to be used in addition to 

Max-Max one for formulation and solution of the CEED problem by the PSO 

algorithm. Comparison of the impact of the Min-Max and Max-Max penalty factors 

over the solution of the CEED problem is done on the basis of case study of IEEE 30 

bus system and 11 generators system. 

This Chapter describes the PSO algorithm in part 4.2, development of the PSO 

method for solution of the CEED problem in part 4.3, Application of the PSO method 

for the IEEE power systems models in part 4.4, comparison of Lagrange's and PSO 

solution of the CEED problem in part 4.5, and a discussion and conclusions are given 

in part 4.6 and 4.7 respectively. 

 

4.2  Basic PSO algorithm 

Particle Swarm Optimization (PSO) is a population based stochastic optimization 

technique developed by (Eberhart and Kennedy, 1995), inspired by the social 

behavior of bird flocking or fish schooling. PSO is initialized with a group of random 

particles and then it searches for an optima by updating the generation. In every 

iteration, each particle is updated by following two best values. The first one is the 

best solution it has achieved so far between all particles. This value is called Pbest. 

Another best value that is tracked by the PSO algorithm is the best value, obtained so 
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far by any particle in the population. This best value is a global best one and is called 

Gbest. After finding the two best values, the particle updates its velocity and positions 

with following equations (4.1) and (4.2). 

 
 

   
 
   

[ ] ( ) * [ ] [ ]
[]

( ) [ ] [ ]

best

best

V c rand P Ppresent
V

c rand G Ppresent

1 1

2 2
     (4.1) 

[] [] []Ppresent Ppresent V                              (4.2) 

Where 

V [ ]    Particles velocity 

ω    Inertia weight and is calculated as, 

 
   

 

max min
max

max
Iter

Iter

 
   

min 0.4 and  max 0.9  

Ppresent[]   Position of the current particle 

P
best

[]    Best solution of the particle at each iteration 

G
best

[]    Best solution out of all the best particle solutions 

rand1( ) and rand2( )  Random number between (0,1) 

c1 and c2   Learning factors (usually c1=c2=2) 

Iter    Total number of iterations 

Iter
max   Maximum number of iterations 

The thermal and hydro power plants dispatch optimization using various 

computational algorithms with case studies is described in (Kothari and Dhillon, 

2006). The earlier work on economic emission load dispatch is proposed in (Dhillon et 

al., 1993) using stochastic algorithm. The PSO algorithm was introduced by Eberhart 

and Kennedy in 1995. Review of PSO algorithm for economic dispatch problem is 

presented in (Amita Mahor et al., 2009). In reference (Chen and Wnag,2010) the 

environmental/economic dispatch and multi-area environmental/economic dispatch 

problem are solved to minimize the fuel cost and emission simultaneously. The 

security constrained economic dispatch is solved in (Gaing and Chang, 2006) to 

minimize the total generation cost with valve point effect loading under the constraints 

such as transmission loss, bus voltage profile under pre-contingent and post-
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contingent states, and generator ramp rate limits. Emission constrained economic 

dispatch is solved using various PSO algorithms such as Self Adaptive PSO, 

Dispersed PSO, Chaotic PSO and New PSO in (Rani and Yazdani, 2011). The non-

smooth economic dispatch problem is solved using PSO by proposing the position 

adjustment strategy to satisfy the inequality constraints and a dynamic search space 

reduction strategy is applied to accelerate the convergence speed. Economic 

dispatch problem is solved using Improved PSO in (Park et al., 2005 and 2010) 

overcoming the drawbacks in existing PSO such as local trapping to premature 

convergence (exploration problem), insufficient capability to find nearby extreme 

points (exploitation problem) and lack of efficient mechanism to treat the constraints 

(constraint handling problem). The combined economic emission dispatch problem 

(Venkatesh et al., 2003) is solved using novel modified price penalty factor by various 

evolutionary computation algorithms such as GA, Micro GA and EP. The Evolutionary 

programming technique is carried out in two parts in (Sinha et al., 2003), part 1 

proposed the modification in existing EP by changing the adaptation based on the 

scaled cost, and part 2 developed the adaptation based on an empirical learning rate. 

Multi-objective evolutionary algorithm such as Non dominated Sorting GA(NSGA), 

Pareto GA (PGA) and Strength Pareto EA (SPEA) are applied to economic emission 

dispatch problem in (Abido, 2006), additionally the Pareto-optimal solution set is 

developed using fuzzy hierarchical clustering algorithm. The Fuzzy Clustering based 

PSO (FCPSO) is used in (Shubham Agrawal et al., 2008) to solve the dispatch 

problem. The fuzzy clustering manages the size of the repository within limits without 

destroying the characteristics of the Pareto. Front and niching mechanism is used to 

direct the particles towards the lesser explored regions of the Pareto front. Self-

adaptive mutation operator is used to avoid the local optima and enhance the 

exploratory capability of the particles. In (Khamsawang et al., 2010) the mutation 

operator of the Differential Evolution (DE) is used for improving diversity exploration 

of the PSO called hybrid PSO-DE. Four scenario of mutation operators are proposed 

to be activated if the velocity values of PSO are nearly to zero or violated from the 

boundaries. The review paper (Amita et al., 2009), concludes that Particle Swarm 

Optimization (PSO) has a lot of applications for solution of the combined economic 

emission dispatch problems, as this solution will not suffer from stuck into local 

optimal solution, dependability on initial variables, premature, slow convergence and 

curse of dimensionality. In comparison to conventional optimization techniques, PSO 

has given an improved result within less computational time. 
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4.3  Development of a PSO algorithm for solution of the CEED problem 

The CEED problem is formulated and solved in Chapter 3. The fuel cost equation is 

given in (3.1) and is solved subject to the constraints (3.2), (3.3.), and (3.4). The 

emission function is given in (3.5) and the price penalty factors (3.7) and (3.8) are 

used to formulate the single objective function (3.6) of the CEED problem. The above 

problem is solved by the basic PSO algorithm, which is adopted to incorporate the 

specifics of the CEED problem. It is necessary to map the structure of the CEED 

problem to the structure of the velocity and position Equations (4.1) and (4.2). This is 

done in the following way:  

 It is accepted that the number of generators is equal to the number of the 

members in a separate particle in the swarm. For the dispatch problem the 

positions of the members of the particles represent the active power produced by 

the generators. 

 The velocities are variables that have the meaning of the active power but are 

used to do search in the constraints domain.  

 It is assumed that the number of the particles in the swarm is Np. The developed 

PSO algorithm for solution of the combined economic dispatch problem is given in  

Equations (3.1) to (3.6) as follows: 

First step of the iteration procedure start at l=1 

Step1: Initialize the PSO parameters such as inertia weight min and max , 

acceleration constants c1 and c2, uniform random values rand1, rand2, and 

maximum number of iterations Itermax  

Step2: Calculate the minimum and maximum initial velocities using the generator limit 

constraints in Equation (3.4) and are given in Equation (4.3) as follows: 

     min max0.5 0.5 , 1, , 1, 1pi pi pi pP V P p N i n                      (4.3) 

Where 

Np  Number of particles in the swarm  

n  Number of the members in one particle and it is equal to the total number of 

generators.  

As one of the generators is accepted to be a slack one, the calculations for the 

velocity and position in the particles is done for (n-1) generators.  
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Step 3: Calculate the initial velocity of all members of the particles except slack bus 

generator using Equation (4.4) 

      min max min() , 1, , 1, 1pi pi pi pi pV V rand V V p N i n               (4.4) 

Where   

pi piV Vmin max
,  Previously calculated minimum and maximum velocities respectively. 

Step 4: Calculate the initial Position of the particle members using Equation (4.5) 

      min max min() , 1, , 1, 1pi pi pi pi pP P rand P P p N i n              (4.5) 

Check the calculated positions if they are within the limits given by Equation (3.4), as 

described 

 
 

     
  
 

min min

max max

min max

,

, , 1, , 1, 1

,

pi pi pi

pi pi pi pi p

pi pi pi pi

P P P

P P P P p N i n

P P P P

          (4.6) 

The buses in the power system is classified as (i) Slack bus, (ii) Generator (PV) bus 

and (iii) Load (PQ) bus. In power system, any one of the buses which is connected 

with generator having highest power generation capacity is considered as the slack 

bus. Slack bus provides reference for the voltage and angle in the system. The slack 

bus real and reactive powers are uncontrolled: the bus supplies whatever real or 

reactive power is necessary to make the power flows in the system balance. The 

generation scheduling is carried to solve the economic dispatch problem without 

considering the generator real power of the slack bus. The purpose of the slack bus 

in PSO algorithm is to satisfy the power balance constraint given in Equation (3.2). 

The procedure for the calculation of slack bus generator real power in PSO algorithm 

is given in Step 5.   

Step 5: The slack bus generator is considered as an dependent generator having 

highest power generating capacity in which voltage magnitude and phase angle of 

that bus is specified as reference in which the initial active power Ppd can be 

calculated on the basis of the power balance constraint as follows (Kothari and 

Dhillon, 2011).  
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Where  

pd
P is the power produced by the slack bus generator  

DP is the total power demand of the system 

 


1,

n

pi

i i d

P is the total active power of the power system excluding the slack bus power. 

The Equation (4.7) can be transferred to the following quadratic form one, where the 

Ppd is the unknown variable: 

2 0pd pdXP YP Z                 (4.8) 

Where  

ddX B                             (4.9) 

 
1

1
n
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j
j d

Y B B P B



                 (4.10) 

   
   

      
1 1 1 1

n n n n

D oo pi ij pj io pi pi

i j i i
i d j d i d i d

Z P B P B P B P P           (4.11) 

The positive root of the Equation (4.8) is obtained as: 

  
  pd

Y Y XZ
P whereY XZ

X

2
24

, 4 0
2

           (4.12) 

Now the real power vector is formed as [ , , 1, , ]p pd piP P P i n i d    where 1, pp N  

Step 6: Calculate the following objective functions for the initial positions of the 

particles 

i) Fuel cost function, 

 2

1

( ), 1,
n

Cp i pi i pi i p

i

F a P b P c p N


   
      

(4.13) 

ii) Emission function, 
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(4.14) 

iii) Combined economic emission function,  

 2 2

1

( ) , 1,
n

Tp i pi i pi i pi i pi i pi i p

i
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(4.15) 

Where the Min-Max price penalty factor is calculated as 

 

2
,min ,min

2
,max ,max
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, 1, , 1,

i pi i pi i

pi p
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a P b P c
h i n p N

d P e P f

 
  

 
    

(4.16) 

The fuel cost values FTP of all the particles are sorted in ascending order. The first 

position value in the ascending order is selected as the 
best

TF  

Step 7: Select the best initial position and the global best initial position as follows: 

i) Initial positions of particles in the swarm are considered as best positions of 

particles 1 1  best best
p pi pP min P , i ,n ; p ,N  

ii) The best position out of all the best particles 1best
p pmin P , p ,N is taken as 

1 best best
p pG min P , p ,N

 

lth step of the iteration procedure begins, where l=l+1 

 

Step 8: Calculate new velocity using Equation (4.17a) and (4.17b) 

   
       
1 11 1 1. 1. 1 2. 2

l l lnew l best l best l
pi pi p pi piV V c rand P P c rand G P ,   1, , 1, 1pp N i n           

          (4.17) 

Check the constraints for the minimum and maximum values of the velocities 

If 
 

 
1 1max max,

l l l lnew new
pi pi pi piV V V V  and      (4.18) 

If 
 

 
1 1min min,

l l l lnew new
pi pi pi piV V V V

, 
  1, , 1, 1pp N i n  

Step 9: Calculate the new position of the generators in the particles using Equation 

(4.18) 

   1 , 1, , 1,
l lnew l new

pi pi pi pP P V p N i n             (4.19) 

Step 10: Check the new position of the generators in the particles using the 

constraint Equation (4.6) as follows: 
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Step 11: Calculate the slack bus generator new real power. Form the new real power 

vector 
l
pdP

following the equation from step 5. Check the new position of the slack bus 

generator in the particles using the constraint Equation (4.22) as follows: 

 
  

  
 

   

min min
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l l
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(4.21)
 

Step 12: The full active power vector for the lth iteration is: 

   
 

, , 1, ,
l l l

p

new new new
pd piP P P i n i d , 1, pp N      (4.22) 

Step 13: Calculate the new objective functions new
TF using Step 6 

Step 14: Check the new objective function new
TF as described below 



  
1l l l l l lnew best best new best new

T T T T pi piIf F F thenF F and P P

 
 

 
1 1l l l lbest best best best

T T pi pielse F F and P P      (4.23) 

 

, 1,
l lbest best

p pG P p N      
 

where l is the number of iterations 

The best solution Gbest is only one for the whole system.  

The best solution per particle is only one  1best
p piP minP , i ,n

 

The best solution for the whole system is  
 1 2 p

best best best best
p NP P , P , ....,P . Then 

 1best best
p pG min P for p ,N  

Step 15: Repeat the steps 5, 8 to 13 until the maximum number of iterations is 

reached. 

Flowchart of the PSO algorithm is shown in Figure 4.1. 
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Read Economic dispatch  

data ai,bi,ci,di,ei,fi,PD, Iter
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Figure 4.1: Flowchart of the application of PSO algorithm for CEED problem solution 

The developed PSO software PSO_Casestudy1.m, and PSO_Casestudy2.m, for the 

CEED problem is given in the Appendix D. 

4.4  Application of the developed PSO algorithm for solution of the CEED problem 

PSO algorithm is used to solve the CEED problem for the IEEE 30 bus system and 

the 11 generator systems, given in sections 4.4.1 and 4.4.2 respectively. 

4.4.1  Test system 1: IEEE 30 bus system with 6 generators 

PSO algorithm described in section 4.3 is applied for the solution of the CEED 

problem for IEEE 30 bus system and the data of fuel cost, emission coefficients and 
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generator limits are given in Table 3.1, Chapter 3 (Gnanadass, 2005). The various 

power demands (PD) of 125 to 250 [MW] are considered. The calculations are carried 

out in the Matlab software environment. Most of the reference papers used Max-Max 

penalty factor to solve the CEED problem, but in addition to that Min-Max penalty 

factor as proposed in Chapter 3 of this thesis is considered. The problem solution 

results in Chapter 3 conclude that the CEED problem based on quadratic criterion 

functions are less using Min-Max penalty factor in comparison to the Max-Max one. 

The optimal solution of the CEED problem using PSO algorithm is given in Tables 4.1 

and 4.2 using Min-Max and Max-Max Penalty factors respectively. The initial 

parameters of the PSO algorithm are given below: 

min 0.4   Minimum weight 

max 0.9   Maximum weight 

0.65   Weight  

c1 = c2=2.0 Acceleration factors 

m=25  Total number of iterations 

10pN  Total number of particles in the swarm  

( 1)pN n  Total number of velocities 

CT   Overall computation time 

CTB   Best solution for the computation time 

n=G   Total number of generators in every particles 
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Table 4.1: Application of the developed PSO algorithm for the CEED problem solution using Min-Max Penalty factor results 

PD 

[MW] 

P1 

[MW] 

P2 

[MW] 

P3 

[MW] 

P4 

[MW] 

P5 

[MW] 

P6 

[MW] 

PL 

[MW] 

FC 

[$/h] 

ET 

[kg/h] 
FT [$/h] 

Number of 

Iterations 

CTB 

[s] 

CT 

[s] 

 125 20.108 39.096 18.742 14.928 20.129 12.755 0.758 340.820 184.642 424.808 7 0.089 0.099 

150 58.119 26.012 25.828 11.972 10.569 19.031 1.530 394.535 167.327 472.744 17 0.086 0.116 

175 81.214 31.346 18.909 16.841 10.122 19.061 2.492 456.759 184.227 541.573 13 0.062 0.211 

200 98.774 44.495 15.464 10.040 16.298 18.679 3.750 530.823 219.323 627.296 3 0.071 0.124 

225 115.291 42.865 20.665 18.945 15.058 16.835 4.659 607.947 252.196 716.926 24 0.088 0.118 

250 141.069 52.575 19.686 16.559 12.650 14.197 6.736 686.735 317.206 816.306 17 0.115 0.123 

 

  Table 4.2: Application of the developed PSO algorithm for the CEED problem solution using Max-Max Penalty factor results 

PD 

[MW] 

P1 

[MW] 

P2 

[MW] 

P3 

[MW] 

P4 

[MW] 

P5 

[MW] 

P6 

[MW] 

PL 

[MW] 

FC 

[$/h] 

ET 

[kg/h] 
FT [$/h] 

Number 

of 

Iterations 

CTB 

[s] 

CT 

[s] 

 

125 34.548 28.323 17.597 19.562 10.888 14.930 0.848 326.883 162.548 674.768 18 0.092 0.094 

150 53.370 27.863 16.857 16.262 22.094 14.932 1.377 398.294 168.457 760.436 25 0.106 0.141 

175 79.420 25.624 20.761 16.571 14.631 20.298 2.305 463.109 182.529 851.694 12 0.088 0.091 

200 98.044 34.517 21.340 16.868 14.053 18.586 3.408 531.877 212.130 972.500 12 0.081 0.109 

225 107.548 44.062 18.907 26.812 19.044 12.895 4.268 612.981 250.298 1123.217 18 0.078 0.127 

250 124.637 47.712 24.081 25.065 16.516 17.529 5.539 694.519 291.976 1282.514 24 0.108 0.113 
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The CEED problem solution using the developed Lagrange‘s method (Table 3.2 and 

3.3) and the developed PSO algorithm (Table 4.1 and 4.2) are compared with the 

solution of the same problem described in (Gnanadass, 2005). Gnanadass used 

Evolutionary Programming Combined Economic Emission Dispatch (EPCEED) 

method, on the bases of 283.4 [MW] power demand. The comparison of the CEED 

problem solution of the developed Lagrange's and PSO methods, based on Min-Max 

and Max-Max penalty factors are given in Table 4.3 on the bases of 250 [MW] power 

demand. 

Table 4.3: Comparison of Lagrange’s and PSO algorithm solutions with the  Evolutionary 

Programming algorithm (Gnanadoss, 2005) one 

 

4.4.2  Discussion on the results for Test system 1 using PSO method 

Lagrange's algorithm using Min-Max price penalty factor produces minimum fuel cost 

(FC, FT) and computation time (CT) values in comparison with PSO, Evolutionary 

Programming (EP) and when using the Max-Max penalty factor, as given in Table 4.3. 

The transmission power loss (PL) value is less in Evolutionary Programming method 

(Gnanadoss, 2005) in comparison with the developed Lagrange's and PSO 

algorithms. But the obtained solutions are not same in Lagrange‘s and PSO methods, 

since meta-heuristic (PSO) generate random solution for each execution. 

PD    

[MW] 
250 283.4 

Penalty 

factor hi 

 

Min-Max Max-Max Max-Max 

Algorithm Lagrange‘s PSO Lagrange‘s PSO 

EPCEED 

(Gnanadass, 

2005) 

Lagrange‘s PSO 

PL    [MW] 6.4337 6.736 5.2153 5.539 5.183 6.511 6.431 

FC    [$/h] 687.0737 686.735 699.5472 694.519 866.653 821.928 823.425 

ET    

[kg/h] 
310.2842 317.206 285.3648 291.976 353.331 344.427 344.632 

FT    [$/h] 815.1852 816.306 1279.1 1282.514 3288.689 1516.348 1518.549 

Iteration 

Number 
117 17 238 24 ---------- 222 11 

CTB   [s] ----------- 0.115 ---------- 0.108 --------- ------ 0.085 

CT   [s] 

 

0.1971 0.123 0.332 0.113 52.01 0.328 0.093 
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 4.4.3  Test system 2: Eleven generator system using PSO method 

PSO algorithm described in section 4.3 is applied for the solution of the CEED 

problem for the eleven generator system. The data of fuel cost, emission coefficients 

and generator limits are given in Table 3.14 (Balamurugan and Subramanian, 2007). 

The various power demands (PD) of 1000 to 2500 [MW] are considered. Max-Max 

penalty factor is used. The calculations are carried out in the Matlab software 

environment and is given in the m-file PSO_Casestudy2.m (Appendix D2). The 

optimal solution of the eleven generator CEED problem using PSO algorithm is given 

in Table 4.4 and 4.5 respectively. The PSO and Lagrange‘s fuel cost and emission 

values of eleven generator system are compared with Dynamic Programming 

algorithm (Balamurugan and Subramanian, 2007) as given in Table 4.6 

 

Table 4.4: The PSO solution of the generator scheduling for the eleven generators system for 

various power demands 

PD [MW] 1000 1250 1500 1750 2000 2250 2500 

P1 34.234 68.231 46.493 104.763 134.801 115.274 167.992 

P2 64.568 43.707 99.706 66.394 98.348 140.762 113.784 

P3 62.855 128.528 160.565 66.310 73.924 113.257 102.949 

P4 61.676 124.121 103.196 123.713 140.405 179.777 174.001 

P5 30.842 82.206 66.902 140.161 135.267 117.849 179.351 

P6 70.533 116.715 272.948 132.167 180.032 191.523 214.970 

P7 87.797 98.651 46.449 94.274 179.669 135.837 203.323 

P8 111.163 108.732 200.998 313.085 184.445 167.015 321.945 

P9 105.738 126.921 183.050 180.492 228.336 354.663 332.749 

P10 178.633 138.743 203.171 303.631 271.409 406.501 416.014 

P11 192.002 213.450 116.521 225.010 373.365 327.543 272.921 
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Table 4.5: Application of the developed PSO algorithm for solution of the CEED problem for the 

eleven generator system under various power demands 

PD [MW] 1000 1250 1500 1750 2000 2250 2500 

FC 

[$/h] 

8554.249 9245.657 9807.317 10330.121 11056.361 11780.894 12453.618 

ET 

[kg/h] 

235.475 398.440 773.290 944.120 1313.194 1687.337 2054.878 

FT 

[$/h] 

9345.304 10850.956 12425.797 13464.088 15362.523 17282.223 19417.842 

Number of 

Iterations 

4 6 20 5 2 7 11 

CTB 

[s] 

0.114 0.109 0.228 0.181 0.115 0.106 0.131 

CT 

[s] 

2.905 0.177 0.265 0.222 0.136 0.199 0.192 

 

Table 4.6: Comparison of the results from the solution of the CEED problem using PSO and 

Lagrange’s algorithms for the eleven generator system with the results using the 

Dynamic Programming algorithm (Balamurugan and Subramanian, 2007) 

PD 

[MW] 

Fuel cost FC in [$/h] Total Emission ET in [kg/h] 

(Balamurugan and 

Subramanian, 

2007) 

Developed 

(Balamurugan and 

Subramanian, 

2007) 

Developed 

Dynamic 

Programming  
Lagrange‘s PSO 

Dynamic 

Programming  
Lagrange‘s PSO 

1000 8502.29 8502.2936 8554.249 205.204 205.2039 235.475 

1250 9108.38 9108.3741 9245.657 339.870 339.8696 398.440 

1500 9733.54 9733.5344 9807.317 540.544 540.5428 773.290 

1750 10377.86 10377.7710 10330.121 807.220 807.2229 944.120 

2000 11041.08 11041.0833 11056.361 1139.911 1139.9096 1313.194 

2250 11723.47 11723.4716 11780.894 1538.600 1538.6032 1687.337 

2500 12424.94 12424.9352 12453.618 2003.300 2003.3032 2054.878 

 

4.4.4 Discussion on the results for eleven generator system using PSO method 

The developed PSO algorithm is tested for eleven generator system. The solution is 

compared with the Lagrange's one calculated in Chapter 3, Dynamic programming 

one (Balamurugan and Subramanian, 2007), and the developed PSO methods for 

various power demand values. The fuel cost and emission values of the Lagrange's, 

PSO and Evolutionary Programming solutions are given in Table 4.6. It concludes 
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that fuel cost and emission values are less in Lagrange's method in comparison with 

the other methods. Nevertheless, the obtained solutions are not same as Lagrange‘s, 

since the meta-heuristic (PSO) generate random solution for each execution. 

4.5  Comparison of Lagrange’s and PSO solution to CEED problem 

This section of the thesis compares the two used optimization approaches: the 

classical one-the (Lagrange‘s) and heuristic one-the random variable selection 

approach (PSO) on the basis of solution of the CEED problem with respect to the 

obtained solution and the computation time. The application of the Lagrange‘s and 

PSO methods to the CEED problem is described and the algorithms for calculations 

are given in 3.2.4 and 4.3 respectively. The computational time of the Lagrange‘s and 

PSO algorithms depends on the selection of the initial values of the Lagrange‘s 

variable (λ), and on the initial particle positions and velocity selections in the PSO 

algorithm. The results are given in Tables 4.7 to 4.9. The IEEE 30 bus system is 

considered to validate the solution results in MATLAB software environment. It 

concludes that Lagrange‘s algorithm provides better results for the CEED problem in 

comparison to the PSO algorithm. Graphical presentation of the results is given in 

Figures 4.2 to 4.6. The best solution of the CEED problem using PSO algorithm is 

given in Tables 4.8 and Table 4.9 respectively. 

4.6 Discussion on the solution of the PSO methods 

The PSO algorithm results show that the computational time depends on the 

selection of number of swarms of the particles. The selection of the smaller number of 

swarms will narrow the solution search space and will require smaller computational 

time to find the near optimal solution. In vice-versa when the solution search space is 

enhanced and computational time required to find near to the optimal solution is 

bigger. In section 4.5 Lagrange‘s algorithm is used with various initial selections of 

the Lagrange‘s variable. If the initial value of the Lagrangian variable is close to its 

optimal value, then the computational time required to find the optimal solution is 

small. In vice-versa when the solution space is enhanced and computational time 

required to find the optimal solution is bigger. The obtained optimal solution and 

computational time depend on the stopping criteria of Lagrange‘s and PSO 

algorithms, which are tolerance error value and maximum number of iterations 

respectively. 
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Table 4.7: Different selections of the initial Lagrangian variables (lambda) for the CEED problem solution using the Lagrange's method 

PD 
[MW] 

Optimal  
λ 

P1 

[MW] 
P2 

[MW] 
P3 

[MW] 
P4 

[MW] 
P5 

[MW] 
P6 

[MW] 
PL 

[MW] 
FC 

[$/h] 
ET 

[kg/h] 
FT 

[$/h] 

λ
0
=4 λ

0
=10 

CT [s] Iter CT [s] Iter 

150 3.0287 78.8314 26.2653 15.0000 10.0000 10.0000 12.0000 2.0967 373.5001 162.2299 448.5151 0.2174 153 0.2741 180 

200 3.7044 114.0699 39.3656 18.8704 10.0000 10.0000 12.0000 4.3059 519.5033 228.1548 616.9529 0.1171 129 0.1929 166 

250 4.1980 138.9676 48.7366 22.3455 18.8091 13.7142 13.8596 6.4336 687.0699 310.2823 815.1807 0.0751 85 0.1301 129 

The Maximum number of iteration is set to 25, initial selection of the velocity and particles in the swarm are 5 and 10 respectively for 

the solution of the PSO problem, Table 4.8 

Table 4.8: Application of PSO algorithm for the CEED problem solution using the Min-Max penalty factor for 10 particles in the swarm 

PD 
[MW] 

P1 

[MW] 
P2 

[MW] 
P3 

[MW] 
P4 

[MW] 
P5 

[MW] 
P6 

[MW] 
PL 

[MW] 
FC 

[$/h] 
ET 

[kg/h] 
FT [$/h] 

Number 
of 

Iterations  
CTB [s] CT  [s] 

150 53.3617 33.3541 26.2260 15.6713 10.4352 12.4333 1.4815 392.6255 171.6735 471.1946 20 2.0074 2.5356 

200 116.1479 29.2151 17.9788 11.2252 11.6081 17.9721 4.1471 524.8455 224.7032 623.3757 22 2.2682 2.8656 

250 143.1200 47.6339 19.0569 18.7279 15.9568 12.1417 6.6372 686.0111 315.6620 816.5148 20 2.8225 2.9588 

 

In Table 4.1 and 4.8 reports different results for the application of the same algorithm to the same system, since the Meta-heuristic 

PSO algorithm generates random solution for every simulation run.  
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The Maximum number of iteration is 25, initial velocity is 5, and 30 particles are considered in the swarm for the solution of the PSO 

problem, Table 4.9 

 

Table 4.9: Application of PSO algorithm for the CEED problem solution using the Min-Max penalty factor for 30 particles in the swarm  

Figures 4.2 – 4.5, show the comparison of  Lagrange's and PSO solutions: Computation Time (CT), CEED fuel cost (FT),  

Transmission power loss (PL) and Emission (ET) values for the power demands (PD) of [150, 200, 250] MW's respectively are 

compared.

PD 
[MW] 

P1 

[MW] 
P2 

[MW] 
P3 

[MW] 
P4 

[MW] 
P5 

[MW] 
P6 

[MW] 
PL 

[MW] 
FC 

[$/h] 
ET 

[kg/h] 
FT [$/h] 

Number 
of 

Iterations  
CTB [s] CT  [s] 

150 63.9408 23.6347 27.7912 11.5311 10.3260 14.4160 1.6399 391.0849 165.8066 467.7885 4 2.0069 12.4357 

200 102.4183 29.8400 24.4926 18.6308 14.0595 14.0026 3.4438 531.4352 214.1952 627.0118 7 2.8157 11.0558 

250 143.0733 48.4094 20.2477 16.1364 11.1358 17.7469 6.7494 686.7437 316.3996 816.8095 2 0.8674 11.7269 
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Figure 4.2: Computation time of Lagrange’s and PSO algorithm implementation for different 

cases of power demand 
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Figure 4.3: CEED fuel cost of Lagrange’s and PSO algorithm implementation for different cases 

of power demand 
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Figure 4.4: Transmission loss obtained by using the Lagrange’s and PSO algorithms for 

different cases of the power demand 
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Figure 4.5: Emission values obtained by using the Lagrange’s and PSO   algorithms for 

different cases of the power demand 
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The results of IEEE 30 bus system show that Lagrange‘s algorithm obtained optimal 

solution is with less computational time and less CEED fuel cost value in comparison 

with the PSO algorithm one. The transmission power loss and emission values are 

less in PSO algorithm. Finally, it can be concluded that optimization approach 

(Lagrange‘s algorithm) provides better solution of the CEED problem in comparison to 

the random approach (PSO algorithm) as shown in Figures 4.2 - 4.4. 

 

4.7 Conclusion 

This chapter developed the PSO algorithm to solve the CEED problem. IEEE 30 bus 

and eleven bus systems are used to test the developed PSO algorithm in Matlab 

software. Min-Max price penalty factor is proposed to the CEED problem in addition 

to the Max-Max one. The developed PSO solution is compared with the Lagrange's 

method developed in Chapter 3, Evolutionary Programming  (Gnanadass, 2005) and 

Dynamic Programming (Balamurugan and Subramanian, 2007). Lagrange's algorithm 

provides less CEED fuel cost and emission values in comparison with the other 

methods and the results are given in Table 4.3 and 4.6 respectively. The Lagrange's 

and PSO solutions depend on the initial selection of the Lagrangian variable (lambda) 

and on the number of particles in the swarm as given in Table 4.7 - 4.8. It can be 

concluded that Lagrange's algorithm provides global solution irrespective of the 

selection of initial lambda, and the PSO algorithm provides near global solution 

irrespective of the selection of the number of particles in the swarm.  

On the basis of the results described in Chapters 3 and 4, it can be seen that a lot of 

calculations and simulations are necessary to be done in order fully investigate the 

proposed algorithms and their implementation. One of the ways of reduction of this 

calculation burden is to introduce parallel computation.  

Short analysis of the capabilities of the parallel computing for multi-core processors 

and Cluster of Computers is described in Chapter 5. 
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CHAPTER FIVE 

PARALLEL COMPUTING AND ITS IMPLEMENTATION 

 

5.1 Introduction 

The simultaneous use of more than one processor or computer to solve a problem is 

called parallel computing. The principle of the parallel computing is to divide the large 

problems into a smaller ones and the calculations are carried out simultaneously, in 

parallel. Bit-Level, instruction level, data, and task parallelism are the different forms 

of parallel computing described by (Gottlieb and Almasi, 1989). Parallel computers 

are classified according to the hardware support for parallelism. The multi-

core and multi-processor computers have multiple processing elements within a 

single machine, while Clusters, Massively Parallel Processing(MPPs),and grids use 

multiple computers to work on the same task. The authors (Patterson and Hennessy, 

2012) described that serial computing is too slow and need for large amounts of 

memory not accessible by a single processor. Computations on very large data sets 

involved: load balancing, routing, data partitioning, locality, and prefetching which 

drastically improve the system's response time. (Roman and Zinterhof, 2009) used 

parallel computing technique in various applications such as Monte Carlo simulations, 

lattice Boltzmann simulations, time dependent Schrodinger equations, molecular 

dynamic simulations, heat transfer bological tissue problems, quantum Fourier 

transform, parallel multi-objective evolutionary algorithms and optimization problems. 

This chapter describes the parallel computing principles and their implementation is 

carried out in chapter 6 to solve the CEED problem in data-parallel way and Multi 

Area Economic Dispatch (MAED) problem. MAED in Chapter 7. To schedule the 

generating units within each area and for the whole interconnected power system by 

satisfying required constraints including tie-lines. Decomposition is the process by 

which a complex problem or system is broken down into parts that are easier to 

understand and program. To decompose a large interconnected power system 

dispatch optimisation problem into smaller sub- problems is required that the set of 

the optimal solutions of the sub-problems is the same as the one obtained from the 

solution of the overall problem. Such decomposition methods are necessary for 

power system problems where it is often not possible to formulate and solve a single 

optimisation problem for the entire system. Lagrange‘s algorithm is developed for the 

multi-area economic emission dispatch problem in Chapter 7 using Parallel 

Computing Toolbox (PCT) and MATLAB Distributed Computing Server (MDCS) 

http://en.wikipedia.org/wiki/Bit-level_parallelism
http://en.wikipedia.org/wiki/Instruction_level_parallelism
http://en.wikipedia.org/wiki/Data_parallelism
http://en.wikipedia.org/wiki/Task_parallelism
http://en.wikipedia.org/wiki/Multi-core
http://en.wikipedia.org/wiki/Multi-core
http://en.wikipedia.org/wiki/Symmetric_multiprocessing
http://en.wikipedia.org/wiki/Computer_cluster
http://en.wikipedia.org/wiki/Massively_parallel_(computing)
http://en.wikipedia.org/wiki/Grid_computing
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software to solve computationally and data-intensive multi-area dispatch problem in 

multi-core and multiprocessor computers (Matlab distributed computing server 

installation guide, 2011).  

This chapter describes the Amdahl's and Gustafson's law in part 5.2, types of 

parallelism in part 5.3, hardware and memory architecture of a parallel computer in 

part 5.4 and 5.5 respectively, Matlab parallel computing in part 5.6, load balancing 

algorithm in part 5.7, and program development in part 5.8. The conclusion is given in 

part 5.9. 

5.2  Parallel computation using Amdahl’s and Gustafson’s law 

A program solving a large mathematical or engineering problem will typically consist 

of several parallelizable parts and several non-parallelizable (sequential) parts. The 

potential speed-up of an algorithm on a parallel computing platform is given by 

Amdahl‘s law, formulated in (Amdahl,1960). It states that a small portion of the 

program which cannot be parallelized will limit the overall speed-up available from 

parallelization.   

If   is the fraction of running time a program spends on non-parallelizable parts, 

then, the maximum speed-up (s) with parallelization of the program is given as: 

1 1
lim

1  


 



P

s

p

       (5.1) 

where   

p  Number of processors  

Gustafson's law is another law in computing, closely related to Amdahl's law. It states 

that the speedup with p processors given in (Gustafson, 1988) as: 

   ( ) 1 1       s p p p p       (5.2) 

Both Amdahl's law and Gustafson's law assume that the running time of the 

sequential portion of the program is independent of the number of processors.  

Amdahl's law assumes that the entire problem is of fixed size so that the total amount 

of work to be done in parallel is also independent of the number of processors, 

whereas Gustafson's law assumes that the total amount of work to be done in 

parallel varies linearly with the number of the processors. 

 

http://en.wikipedia.org/wiki/Gustafson%27s_law
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5.2.1 History of Parallel MATLAB 

Cleve Moler, the original Matlab author and the co-founder of Mathworks worked on a 

version of Matlab for both an Intel hypercube and Ardent Titan in the late 1980s( 

Moler, 1995). Moler‘s 1995 article "Why there isn‘t a parallel Matlab"( Moler, 1995) 

described the three major obstacles in developing a parallel Matlab language: 

memory model, granularity of computations, and business situation. The conflict 

between Matlab‘s global memory model and the distributed model of most parallel 

systems meant that the large data matrices had to be sent back and forth between 

the host and the parallel computer. Also at the time Matlab spent only a fraction of its 

time in parallelizable routines compared to parser and graphics routines which made 

a parallelization effort not very attractive. The last obstacle was simply a dose of 

reality for an organization with finite resources—there were simply not enough Matlab 

users that wanted to use Matlab on parallel computers, and the focus instead was on 

improving the uniprocessor Matlab. 

Several factors have made the parallel Matlab project a very important one inside 

Mathworks: Matlab has matured into a preeminent technical computing environment 

supporting large scale projects, easy access to multiprocessor machines, and 

demand for a full-fledged solution from the user community. There have been three 

approaches to creating a system for parallel computing with Matlab. The first 

approach aims at translating Matlab or similar programs into a lower-level language 

such as C or Fortran, and uses annotations and other mechanisms to generate 

parallel code from a compiler. Examples of such projects include Conlab( Jacobson et 

al, 1992), and Falcon(DeRose et al, 1995). Translating regular Matlab code to C or 

Fortran is a difficult problem. In fact, the Matlab Compiler software from the 

Mathworks switched from producing C code to producing wrappers around Matlab 

code and libraries to be able to support all the language features. The second 

approach is to use Matlab as a ―browser‖ for parallel computations on a parallel 

computer while Matlab itself remains unmodified and the Matlab environment does 

not run natively on the parallel computer. This approach does not really classify as a 

―parallel Matlab‖ solution any more than a Web browser used to access a portal for 

launching parallel applications is itself a parallel application.  

The third approach is to extend Matlab through libraries or by modifying the language 

itself. Recently, the MatlabMPI and pMatlab projects at MIT Lincoln Laboratory  and 

the Multi Matlab project at Cornell University (with which The Math-works was also 
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involved) are among the more successful and widely used libraries for parallel 

computing with Matlab. Other projects include ParaM and GAMMA projects( 

Panuganti et al, 2006), Parallel Toolbox for Matlab( Hollingsworth et al, 1996) (which 

uses PVM for message passing), and various MPI toolbox implementations for 

Matlab, including the most recent bcMPI (Blue Collar MPI) from Ohio Supercomputer 

center. The MathWorks introduced Parallel Computing Toolbox software and Matlab 

Distributed Computing Server in November 2004, (originally named Distributed 

Computing Toolbox™ and Matlab Distributed Computing Engine™, respectively). 

These fall into the last category of solutions. When started to expand the capabilities 

of Matlab into parallel computing, they decided to target embarrassingly parallel 

problems, given that their initial survey showed a large number of the users wanted to 

simplify the process of running Monte Carlo or parameter sweep simulations on their 

groups computers. 

Implicit and explicit multithreading of computations are other methods to parallelize 

Matlab computations on a single multicore or multiprocessor machine and will be 

discussed later in the chapter. 

5.3 Types of parallelism 

There are different types of parallelism and they are as follows: 

5.3.1  Bit-level parallelism 

The amount of information the processor can manipulate per cycle is called Bit-level 

parallelism. An 8-bit processor requires two instructions to complete a single 

operation, where a 16-bit processor would be able to complete the operation with a 

single instruction. Historically, 4-bit microprocessors were replaced with 8-bit, then 

16-bit, then 32-bit, and then recently with 64-bit microprocessors. 

5.3.2 Instruction-level parallelism 

A stream of instructions executed by a processor (Patterson and Hennessy, 2012). 

These instructions can be re-ordered and combined into groups which are then 

executed in parallel without changing the result of the program. This is known as 

instruction-level parallelism.  A processor with an N-stage pipeline can have up to N 

different instructions at different stages of completion. 

5.3.4  Data parallelism 

Data parallelism is parallelism inherent in program loops, which focuses on 

distributing the data across different computing nodes to be processed in parallel. 

http://en.wikipedia.org/wiki/4-bit
http://en.wikipedia.org/wiki/Out-of-order_execution
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Many scientific and engineering applications exhibit data parallelism and is given in 

(Patterson and Hennessy, 2012). 

5.3.5 Task parallelism 

Task parallelism is the characteristic of a parallel program that entirely different 

calculations can be performed on either the same or different sets of data (Culler and 

Singh, 1997). This contrasts with data parallelism, where the same calculation is 

performed on the same or different sets of data. Task parallelism does not usually 

scale with the size of a problem.  

5.4 Hardware Architecture of a Parallel Computer  

The core element of parallel processing are the CPUs. The essential computing 

process is the execution of sequence of instruction on an asset of data. The term 

stream is used here to denote a sequence of items as executed by a single processor 

or a multiprocessor. According to (John, 2000), (Behrooz, 2002), and (Changhun, 

2002) the number of instruction and data streams can be processed simultaneously 

and hence the parallel computer system can be classified as:  

5.4.1 Single Instruction Single Data (SISD )  

The single processing element executes instructions sequentially on a single data 

stream. The operations are thus ordered in time and may be easily traced from start 

to finish. Figure 5.1 shows the SISD processor, where IS is the Instruction Stream, 

DS is the Data Stream, CU is the Control Unit, PU is the Processing Unit and MM is 

the Memory Module 

CU PU MMIS DS

IS

 

Figure 5.1: SISD processor (John, 2000) 

 
5.4.2 Single Instruction Multiple Data (SIMD )  

Machines apply a single instruction to a group of data items simultaneously. A master 

instruction is thus acting over a vector of related operands. Figure 5.2 shows the 

SIMD processor 
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CU
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Figure 5.2: SIMD processor (Behrooz, 2002) 

 

5.4.3 Multiple Instruction Single Data (MISD )  

In this system, there are n processor units, each receiving distinct instructions for 

operating over the same data stream. The result of one processor becomes the input 

of the next processor and is shown in Figure 5.3 

CU PU1

MM1

IS1

IS1

PU2

PUn

MM2 MMnIS2

ISn

….
CU

CU

DS

IS2

ISn

  

Figure 5.3: MISD processor (Changhun, 2002) 

 
5.4.4 Multiple Instruction Multiple Data (MIMD ) 

MIMD systems provide a separate set of instructions for each processor and is shown 

in Figure 5.4. This allows the processors to work on different parts of a problem 

asynchronously and independently. 
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CU
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Figure 5.4: MIMD processor (Changhun, 2002)  

 

5.5 Memory Architecture of a Parallel Computer  

The primary memory architectures are: (Culler et al.,1999) 

 Shared memory  

 Distributed memory  

 Hybrid Distributed-Shared memory  

5.5.1 Shared memory  

In shared memory architecture, multiple processors operate independently but share 

the same memory resources shown in Figure 5.5, where PU is the Processing Unit. 

Only one processor can access the shared memory location at a time. Shared 

memory machines can be divided into two main classes based upon memory access 

times: Uniform Memory Access (UMA) and Non-Uniform Memory Access (NUMA). 

PU Memory PU

PU

PU

 

Figure 5.5: Shared memory architecture (Culler et al.,1999) 
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5.5.2 Distributed memory  

Processors have their own local memory. Memory addresses in one processor do not 

map to another processor, so there is no concept of global address space across all 

processors. Because each processor has its own local memory, it operates 

independently as shown in Figure 5.6 

Memory

PUPU

PU

Memory Memory

PU Memory

SWITCH

 

Figure 5.6: Distributed memory architecture (Culler et al.,1999) 

 

5.5.3 Hybrid Distributed-shared memory  

The largest and fastest computers in the world today employ both shared and 

distributed memory architectures. The shared memory component is usually a cache 

coherent Simple Management Protocol (SMP) machine. Processors on a given SMP 

can address that machine's memory as global. The distributed memory component is 

the networking of multiple SMPs. SMPs know only about their own memory - not the 

memory on another SMP. Therefore, network communications are required to move 

data from one SMP to another. Figure 5.7 shows the Hybrid distributed-shared 

memory (Culler et al., 1999).  

SWITCH

PU PU

PU PU

Memory

PU PU

PU PU

Memory

PU PU

CPU PU

Memory

PU PU

PU PU

Memory

. 

Figure 5.7: Hybrid distributed-shared memory architecture (Culler et al.,1999) 
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5.6 Parallel Computing with Matlab 

Parallel Computing Toolbox (PCT) and Matlab Distributed Computing Server (MDCS) 

solve computationally and data intensive problems using Matlab and Simulink on 

multicore and multiprocessor computers. Parallel processing constructs such as 

parallel for-loops, distributed arrays, parallel numerical algorithms and message 

passing functions. Matlab PCT allows task-parallel and data-parallel algorithms at a 

high level without programming for specific hardware and network architectures. The 

basic parallel computing setup is shown in Figure 5.8 (Matlab distributed computing 

server installation guide, 2011). 

MATLAB Client

Parallel Computing 
Toolbox

Scheduler

MATLAB WORKER

MATLAB Distributed Computing 
Server

MATLAB WORKER

MATLAB Distributed Computing 
Server

MATLAB WORKER

MATLAB Distributed Computing 
Server

 

Figure 5.8: Parallel Computing setup 

 

5.6.2 Terms used in Matlab parallel computing toolbox 

The following definitions are used in Matlab parallel computing toolbox (Matlab 

distributed computing server installation guide, 2011). 

Job: It is a large operation that needs to perform in the user MATLAB session.  

Task: A job is broken down into segments called tasks. The user can decide how 

best to divide his job into tasks. The user can divide the job into identical tasks, but 

tasks do not have to be identical. 

Client session: The MATLAB session in which the job and its tasks are defined is 

called the client session. Often, this is on the machine where the program in MATLAB 

is done. 

http://www.mathworks.com/help/distcomp/how-parallel-computing-products-run-a-job.html


153 

 

Parallel computing Toolbox: The client uses Parallel Computing Toolbox software 

to perform the definition of jobs and tasks and to run them on a cluster local to the 

users machine.  

MATLAB Distributed Computing server: It is the Matlab product software that 

performs the execution of a job on a cluster of machines. A MATLAB Distributed 

Computing Server software setup usually includes many workers that can all execute 

tasks simultaneously, speeding up execution of large MATLAB jobs. It is generally not 

important which worker executes a specific task. In an independent job, the workers 

evaluate tasks one at a time as available, perhaps simultaneously, perhaps not, 

returning the results to the Matlab Job Scheduler (MJS). In a communicating job, the 

workers evaluate tasks simultaneously. The MJS then returns the results of all the 

tasks in the job to the client session. 

MATLAB Job Scheduler (MJS): It is the process that coordinates the execution of 

jobs and the evaluation of their tasks. The MJS can be run on any machine on the 

network. The MJS runs jobs in the order in which they are submitted, unless any jobs 

in its queue are promoted, demoted, canceled, or deleted.  

Workers: The MJS distributes the tasks for evaluation to the server's individual 

MATLAB sessions called workers. Use of the MJS to access a cluster is optional. The 

distribution of tasks to cluster workers can also be performed by a third-party 

scheduler, such as Microsoft Windows High Performance Computing (HPC) Server or 

Platform Load Sharing Facility (LSF). Each worker is given a task from the running 

job by the MJS, executes the task, returns the result to the MJS, and then is given 

another task. When all tasks for a running job have been assigned to workers, the 

MJS starts running the next job on the next available worker.  

The interaction of parallel computing sessions with single and multiple MJS is shown 

in Figures 5.9 and 5.10 respectively. 

Client

Client

Scheduler

Worker

Worker

Worker

Job Task

Task

Task

Job

All Results

All Results

Results

Results

Results
 

Figure 5.9: Configuration of MJS and client (Matlab distributed computing server 

installation guide, 2011) 

http://www.mathworks.com/help/distcomp/how-parallel-computing-products-run-a-job.html
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A large network might include several MJSs as well as several client sessions. Any 

client session can create, run, and access jobs on any MJS, but a worker session 

is registered with and dedicated to only one MJS at a time as shown in Figure 5.10. 

Client

Client

Client

Client

Scheduler 1

Scheduler 2

Worker

Worker

Worker

Worker

Worker

Worker
 

Figure 5.10: Configuration of multiple MJS and client (Matlab distributed computing 

server installation guide, 2011) 

Local Cluster: A feature of Parallel Computing Toolbox software is the ability to run a 

local scheduler and a cluster of up to twelve workers on the client machine, so that 

one can run jobs without requiring a remote cluster or MATLAB Distributed 

Computing Server software. In this case, all the processing required for the client, 

scheduling, and task evaluation is performed on the same computer. This gives the 

opportunity to develop, test, and debug the parallel applications before running them 

on the cluster. 

Third-Party Schedulers: As an alternative to using the MJS, one can use a third-

party scheduler. This could be a Microsoft Windows HPC Server , Platform LSF 

scheduler, PBS Pro scheduler, TORQUE scheduler, or a generic scheduler. 

MDCE (Matlab Distributed Computing Engine) Service: In MJS every machine 

that hosts a worker or MJS session must also run the MDCE service. The MDCE 

service controls the worker and MJS sessions and recovers them when their host 

machines crash. If a worker or MJS machine crashes, when the MDCE service starts 

up again, it automatically restarts the MJS and worker sessions to resume their 

sessions from before the system crash.  

Life Cycle of a Job: Creation and running a job, progresses through a number of 

stages. Each stage of a job is reflected in the value of the job object's state property, 

which can be pending, queued, running, or finished and is shown in Figure 5.11. 

Each of these states is briefly described in Table 5.1 

http://www.mathworks.com/help/distcomp/how-parallel-computing-products-run-a-job.html
http://www.mathworks.com/help/distcomp/how-parallel-computing-products-run-a-job.html
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Create a Job
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Cluster

Job

Job
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Job

Job

Job

Job

Job
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Worker

Worker

Worker

Worker

Worker

 
Figure 5.11: States of a Job (Matlab distributed computing server installation guide, 2011) 

 

Table 5.1: States in the life cycle of a job 

Job 

State 
Description of each stage of the Job 

Pending 

A job is created on the scheduler with the createJob function in the client session 

of the Parallel Computing Toolbox (PCT) software. The job's first state is pending. 

This is when the user defines the job by adding tasks to it. 

Queued 

To execute the submit function on a job, the MJS or scheduler places the job in 

the queue, and the job's state is queued. The scheduler executes the jobs in the 

queue in the sequence in which they are submitted, all jobs moving up the queue 

as the jobs before them are finished. 

Running 

When a job reaches the top of the queue, the scheduler distributes the job's tasks 

to worker sessions for evaluation. The job's state is now running. If more workers 

are available than are required for a job's tasks, the scheduler begins executing 

the next job. In this way, there can be more than one job running at a time. 

Finished 

When all of a job's tasks have been evaluated, the job is moved to the 

finished state. At this time, one can retrieve the results from all the tasks in the job 

with the function fetchOutputs. 

Failed 

When using a third-party scheduler, a job might fail if the scheduler encounters an 

error when attempting to execute its commands or access necessary files. 

Deleted 

When a job's data has been removed from its data location or from the MJS with 

the delete function, the state of the job in the client is deleted. This state is 

available only as long as the job object remains in the client. 

 

http://www.mathworks.com/help/distcomp/createjob.html
http://www.mathworks.com/help/distcomp/submit.html
http://www.mathworks.com/help/distcomp/fetchoutputs.html
http://www.mathworks.com/help/distcomp/delete.html
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5.7  Load-balancing algorithm 

Load balancing is a computer networking method to distribute workload across 

multiple computers or a computer cluster, network links, central processing units, disk 

drives, or other resources, to achieve optimal resource utilization, maximize 

throughput, minimize response time, and avoid overload. Using multiple components 

with load balancing, instead of a single component, may increase reliability 

through redundancy. 

Load balancing is very important on designing parallel programs for performance 

reasons (Shah et al., 2007). In general any load balancing algorithm consists of two 

basic policies namely a transfer policy and a location policy. Location policy 

determines the under loaded processor. In other words it locates complementary 

nodes to/from which a node can send/receive workload to improve the cluster 

performance. Further, while balancing the load, types of information such number of 

jobs waiting in queue, job arrival rate, CPU processing rate, at each processor may 

be exchanged among the processors to improve system performance. Load can be 

classified as either static, dynamic and adaptive but the thesis uses static scheduling. 

The principle of load balancing can be presented in the following flowchart, Figure 

5.12 (Shah et al, 2007) 

Calculate status information which is estimated arrival rate 
and load

Exchange this information with the buddy processor

Start

End
 

Figure 5.12: Flowchart of the load-balancing algorithm (Shah et al, 2007) 

 

5.8 Program Development 

The algorithms described in chapter 3 and chapters 4 are used to develop software 

for calculation of the optimal dispatch problem in two ways: sequential and parallel. 

 

http://en.wikipedia.org/wiki/Computer_network
http://en.wikipedia.org/wiki/Computer_cluster
http://en.wikipedia.org/wiki/Redundancy_(engineering)
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5.8.1  Sequential in one computer 

This algorithm is used for calculation of the optimal generation of the economic 

dispatch problem. Execution of a program leads to a sequence of calls to functions 

defined in different m-files in a sequential way, called sequential composition. In 

sequential programming the program is run on a single computer meaning having 

single Central processing unit (CPU). The program is discretized into series of 

instruction. Block diagram for sequential implementation of the program is given in 

Figure 5.13 (Patterson and Hennessy, 2012) 

Problem Sequence of 
instructions

CPU

 

Figure 5.13: Sequential execution of a program (Patterson and Hennessy, 2012) 

In a parallel program constructed using only sequential composition, each processor 

inevitably executes the same program, which in turn performs a series of calls to 

different program components. These program components may themselves 

communicate and synchronize, but they cannot create new tasks. Hence, the entire 

computation moves sequentially from one parallel operation to the next. The software 

written to solve the optimization problems based on the Lagrange's method is based 

on the sequential way of programming. The load balancing of the processor is given 

in Figure 5.14 (Shah et al, 2007).  

5.8.2 Parallel computing using the Cluster of Computers 

A parallel composition specifies which program components are to execute in which 

part of the computer and how these components are to exchange data. In principle 

any program expressed as a parallel composition can be converted to a sequential 

composition that interleaves the execution of the various program components 

appropriately. And hence the use of parallel composition can enhance scalability and 

locality. Parallel programming can be performed on one computer with multi-cores or 

in a cluster of computers connected on a single network. An example of parallel 

configuration of a cluster of computers is given on Figure 5.15 (Shah et al., 2007). 

The algorithm for optimal generation of economic dispatch problem is programmed in 

both sequential and parallel way. The goal of parallelization is to obtain high 

performance and increased speed over the sequential program that solves the same 

problem. This is to ensure efficient load balancing among processors, reduction in 

communication overhead and synchronization. The parallel implementation and the 
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results from the calculations are described in chapters 6 and 7. 

Start

End

Arrival of new job for processor i

Processor i is idle

Number of times j 

migrated

For every buddy processor k calculate communication 

time

For at least one buddy processor k then migrate job j 

to buddy k else Put job j on queue of processor i

+

Start processing job j

Put job j on waiting 

queue for processor i

yes

yes No

No

 

Figure 5.14: Flowchart for load-balancing processing by the processor pi on arrival of 

job j (adapted from Shah et al, 2007) 

 

Chapter 6 solves the same sequential problem in parallel using variables set of data 

for the set of Matlab workers. Then many solutions of the same problem are 

calculated for the various sets of data in a short time. 

Chapter 7 solves the complex interconnected problem using parallel solution of their 

sub-problems.   
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Sub problem

Sequence of 
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Sequence of 
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CPU

CPU

 

Figure 5.15: Parallel programming block diagram (adapted from Shah et al., 2007) 

 

5.9 Conclusion 

A review of the evolution of sequential computers has revealed many ways the 

parallelism has been introduced into sequential computers over time. While the 

application of parallelism in sequential machines has been hidden from user program, 

it has been the key mechanism of delivering speed in computer from the architecture 

and system design perspective as opposed advance in solid-state electronic 

technology. Parallel applications are thus the next natural step in computational 

speed that can accompany and further the process in technology.  

Although Mathworks hesitated with the introducing parallelism into Matlab, they finally 

completed a very good work. The Matlab engineers did their best to design the 

parallelization of Application Programming Interface (API) in a Matlab. As far as it is in 

parallel processing possible, black box solutions are provided for inexperienced 

users, whereas experts can e.g. make use of message passing almost in the same 

way as in the native Message Passing Interface (MPI). Thus, Parallel Matlab 

(PCT/MDCS) is an ideal environment for a smooth transition to the world of parallel 

scientific computing, especially for current Matlab users. The programs that are 

developed using PCT/MDCS in parallel way for multiarea economic dispatch problem 

are given in Appendices I to J.  

Chapter 6 solves the single area CEED problem using Lagrange's and PSO 

algorithms in a data-parallel way. 
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CHAPTER SIX 

INVESTIGATION OF THE SINGLE AREA COMBINED ECONOMIC EMISSION 

DISPATCH PROBLEM CAPABILITIES OF THE DEVELOPED ALGORITHM'S 

USING PARALLEL COMPUTING 

 

6.1 Introduction 

This chapter aim is to develop algorithms and software leading to fast investigation of 

the capabilities of the developed method, algorithms and Matlab programmes in 

Chapters 3 and 4 to solve the combined Economic Emission Dispatch problem for 

various sets of input data and parameters. Normally this investigation requires 

running of the developed software many times, changing the data and parameters for 

every run. This process requires a lot of time and efforts if it is done sequentially. The 

data-parallel capabilities of the parallel Matlab in a Cluster of computers allow the 

speed of the investigations to be increased many times. The chapter describes the 

parallel computing toolbox configuration setting and programmes for data-parallel 

calculation of the Combined Economic Emission Dispatch (CEED) problem. The 

knowledge from the Chapters three and four is used to implement the sequential 

Lagrange's and PSO methods, algorithm and programs in a data-parallel ways. The 

capabilities of Matlab data parallelism software is used to solve the CEED problem in 

a Cluster of Computers (CC) by Matlab Distributed Computing Engine (MDCE). 

Parallel computing toolbox configuration setting is described in part 6.2, data parallel 

implementation of a Lagrange's and PSO methods is described in part 6.3 and 6.4 

respectively. Two case studies of data-parallel solution of the CEED problem for  i) 

IEEE 30 bus, and ii) IEEE 118 bus system are implemented using the developed 

Lagrange's algorithm and one case study for IEEE 30 bus system is implemented in a 

data-parallel way using the developed PSO method. Comparison of the data-

sequential and data-parallel computing results from the solution of the CEED problem 

are presented in part 6.5. 

 

6.2 Parallel computing toolbox configuration setting to solve the CEED problem in 

a data-parallel way 

This section describes the parallel computing set-up procedure to implement the 

sequential code in data-parallel way. Parallel computing has local configuration with 8 

workers default or user can specify their own configurtion name and assign any 

number of workers to that configuration using Matlab Cluster of Computers. The 
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configuration defining the certain parameters and properties, and then these settings 

are applied when creating objects in the MATLAB client. The functions that support 

the use of configurations are batch ,createJob, createMatlabPoolJob, 

createParallelJob, createTask, dfeval, dfevalasync, findResource, matlabpool, pmode 

and set 

One can create and modify configurations through the Configurations Manager. To 

access the Configurations Manager using the Parallel pull-down menu on the 

MATLAB desktop. select Parallel > Manage Configurations to open the 

Configurations Manger as shown in Figure 6.1.  

 

Figure 6. 1: Manage configuration setting of parallel computing toolbox 

When the first time it opens, the Configurations Manager lists only one configuration 

called local, which is the default configuration as shown in Figure 6.2 

 

Figure 6. 2: Local configuration setting of parallel computing toolbox 

To create own configuration setting in the remote Cluster of Computers (CC) using 

Matlab Distributed Computing Engine (MDCE) the following Procedure should be 

followed: 

1. Start the workers from the Matalab desktop.  

The following steps have to be followed: 

 Execute the m-file startcluster.m which is given in Appendix H 

 The waitbar shows the status of starting the workers as shown in Figure 6.3. 

The DOS window of the MDCE service on the host is given in Figure 6.4. 

 The nodestatus commmand in the Matlab desktop is used to view the status 

of the MDCE service on the host, jobmanager and workers as shown in 

Figure 6.5 

jar:file:///C:/Program%20Files/MATLAB/R2011a/help/toolbox/distcomp/help.jar%21/batch.html
jar:file:///C:/Program%20Files/MATLAB/R2011a/help/toolbox/distcomp/help.jar%21/createjob.html
jar:file:///C:/Program%20Files/MATLAB/R2011a/help/toolbox/distcomp/help.jar%21/creatematlabpooljob.html
jar:file:///C:/Program%20Files/MATLAB/R2011a/help/toolbox/distcomp/help.jar%21/createparalleljob.html
jar:file:///C:/Program%20Files/MATLAB/R2011a/help/toolbox/distcomp/help.jar%21/createtask.html
jar:file:///C:/Program%20Files/MATLAB/R2011a/help/toolbox/distcomp/help.jar%21/dfeval.html
jar:file:///C:/Program%20Files/MATLAB/R2011a/help/toolbox/distcomp/help.jar%21/dfevalasync.html
jar:file:///C:/Program%20Files/MATLAB/R2011a/help/toolbox/distcomp/help.jar%21/findresource.html
jar:file:///C:/Program%20Files/MATLAB/R2011a/help/toolbox/distcomp/help.jar%21/matlabpool.html
jar:file:///C:/Program%20Files/MATLAB/R2011a/help/toolbox/distcomp/help.jar%21/pmode.html
jar:file:///C:/Program%20Files/MATLAB/R2011a/help/toolbox/distcomp/help.jar%21/set.html
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Figure 6. 3: Waitbar status of starting workers 

 

Figure 6. 4: DOS window of the MDCE 

service on the host 

 

Figure 6. 5: Node status of the DOS window 

2. Create and modify configurations using the Configurations Manager and its menus 

and dialog boxes.  

Figure 6.6 shows how to create the own configuration (jobmanagerconfig1). 

 Right click the jobmanagerconfig1 and select the properties menu as shown in 

Figure 6.7. 

 Set the jobmanagername as myjobmanager in the scheduler tab. 

 Set the minimum and maximum number of workers that can run the job  in the 

Job tab. The maximum number of workers depends on the available number of 

workers in used Cluster Computer Laboratory. Cape Peninsula University of 

Technology (CPUT) - research center "Real Time Distributed System" (RTDS) 

have 32 workers in the Cluster Computer laboratory, that are used for the thesis 

investigations. 

 Select the True option in return command window output of the Task tab. 

The Figures 6.9 – 6.11 show the settings of Scheduler, Jobs and Tasks 

respectively. 

 

Figure 6. 6: Creating the own configuration (jobmanagerconfig1) 

3. Validating Configuration 

The Configurations Manager includes a tool for validating configurations.  
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To validate a configuration, following steps are to be followed: 

i. Open the Configurations Manager by selecting on the desktop Parallel > 

Manage Configurations. 

ii. In the Configurations Manager, click the name of the configuration you 

necessary to be tested in the list of those available. Note that the configuration 

can be highlighted this way without changing the selected default configuration. 

So a configuration selected for validation does not need to be the default 

configuration. 

iii. Click Start Validation. 

The Configuration Validation tool attempts four operations to validate the chosen 

configuration: 

 Uses findResource to locate the scheduler 

 Runs a distributed job using the configuration 

 Runs a parallel job using the configuration 

 Runs a MATLAB pool job using the configuration 

While the tests are running, the Configurations Manager displays their progress as 

shown in Figure 6.7. 

 

Figure 6.7: Progress display of the Configurations Manager 

The photograph of the Cluster Computer Laboratory shown in Appendix L. 
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Figure 6. 8: Properties menu of the 

jobmanagerconfig1 

 

 

Figure 6. 9: Scheduler setting   

 

Figure 6. 10:  Jobs setting   

 

 

Figure 6. 11: Tasks setting   
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6.3 Matlab data-parallel program for CEED problem solution using Lagrange's 

algorithm 

Data parallelism is a form of parallelization of computing across multiple workers in 

parallel computing environments. Data-parallelism focuses on distributing the data 

across different parallel computing nodes. It contrasts to task parallelism as another 

form of parallelism. In a Cluster of computer system executing a single set of 

instructions over the multiple set of data, parallelism is achieved when each workers 

performs the same task on different pieces of distributed data. For instance, consider 

6 workers namely (mat32-wrk1 to mat32-wrk6) in a parallel environment, and the 

aims to assign a task of different data or power demands. It is possible to tell mat32-

wrk1 to do the task on power demand of 125 [MW] and mat32-wrk2 to work on power 

demand of 150 [MW] simultaneously and so on., thereby reducing the duration of the 

sequentially execution of the same task for different data. The data can be assigned 

using conditional statements as described below.  

This part of the chapter considers a specific example to solve the data-parallel CEED 

problem: data-parallel implementation of the CEED problem on the six workers for 

IEEE 30 bus system as follows:  

 mat32-wrk1 solve the CEED problem for power demand of 125 [MW],  

 mat32-wrk2 solve the CEED problem for power demand of 150 [MW], 

 mat32-wrk3 solve the CEED problem for power demand of 175 [MW], 

 mat32-wrk4 solve the CEED problem for power demand of 200 [MW], 

 mat32-wrk5 solve the CEED problem for power demand of 225 [MW], 

 mat32-wrk6 solve the CEED problem for power demand of 250 [MW], 

Since the six workers, distribute the data in parallel way, the job manager would take 

only one-sixth the time to solve the data parallel CEED problem of performing the 

same operation sequentially using one CPU only. 

The algorithm for calculation of the optimal generation is programmed in a sequential 

way and is implemented in a data-parallel way. The goal of data parallelization is to 

obtain high performance and increased speed over the sequential program that 

solves the same problem. This is to ensure efficient load balancing among 

processors, reduction in communication overhead and synchronization. The data 

parallel implementation and the results from the calculations are described using 

http://en.wikipedia.org/wiki/Parallel_computing
http://en.wikipedia.org/wiki/Task_parallelism
http://en.wikipedia.org/wiki/Conditional_(programming)
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Lagrange's and PSO methods in parts 6.3 and 6.4 respectively. Figure 6.12 shows 

the Implementation of Lagrange's data parallel method for CEED problem solution for 

six different power demands in a Cluster of Computers. 

Head Node

CEED problem data (Power demands PD in MW)

PD 125 [MW]

                                                          Software  in the  Cluster  of   Computers

Mat32-wrk1

(CEED_Sequential.m)

CEED problem solutions in the Cluster of Computers

Solutions of the 1st 

CEED problem

Mat32-wrk2

(CEED_Sequential.m)

Mat32-wrk3

(CEED_Sequential.m)

Mat32-wrk4

(CEED_Sequential.m)

Mat32-wrk6

(CEED_Sequential.m)

Mat32-wrk5

(CEED_Sequential.m)

PD 200 [MW]PD 175 [MW]PD 150 [MW] PD 225 [MW] PD 250 [MW]

Head Node

6 Solutions of the CEED problems

Solutions of the 2nd 

CEED problem

Solutions of the 3rd 

CEED problem

Solutions of the 4th 

CEED problem

Solutions of the 5th 

CEED problem

Solutions of the 6th 

CEED problem

 

Figure 6.12: Data parallel implementation of Lagrange's method in a Cluster of Computers 

The program CEED_Casestudy1_DataParallel.m transforms the developed 

Lagrange's sequential program for CEED problem solution using special functions 

and commands from the Parallel Computing Toolbox. The inputs and outputs are the 

same as for the sequential program. The program 

CEED_Casestudy1_DataParallel_funct.m is the program that is used to send various 

power demand to the workers for data parallel calculation of the CEED problem with 

the Filedependencies function from Parallel Computing Toolbox (PCT). The definition 

of variables in a Matlab script-file CEED_Casestudy1_DataParallel.m is as follows: 

n ,m, lambda, epsilon, alfa, a, b, c, d, e, f, Pmin, Pmax, B, B01, B00  

This variables are defined as local ones since they have to be accessible at a shared 

memory which in this case is used as jobmanager. They are defined as local 

variables in the script file CEED_Casestudy1_DataParallel.m  

 

 



167 

 

6.3.1 Starting parallel computation for CEED problem in a data-parallel way 

The parallel computing configuration setting procedure described in part 6.2 is used 

for data parallelization of the CEED problem. The following commands are used: 

jm = findResource('scheduler','configuration','jobmanagerconfig1') 

pjob1=createParallelJob(jm,'Configuration','jobmanagerconfig1'); 

set(pjob1,'Configuration','jobmanagerconfig1') 

set(pjob1,'MinimumNumberOfWorkers',6); 

set(pjob1,'MaximumNumberOfWorkers',6);    

The function file CEED_Casestudy1_DataParallel_funct.m is given in Appendix E2 on 

the client path, but it has to be accessible to the workers. The FileDependencies 

property of the pjob1 is used to transfer this function to all the workers that are 

available on the computer cluster. 

set(pjob1,'FileDependencies',{'CEED_Casestudy1_DataParallel_funct.m'}) 

Starting parallel computing is done by creating a task which is the same for every 

worker. The task has 14 outputs arguments and 12 input arguments to the function 

script file CEED_Casestudy1_DataParallel_funct.m 

task1=createTask(pjob1,@CEED_Casestudy1_DataParallel_funct,13,{Pmax,Pmin,f,e

,d,c,b,a,lambda,B,B00,B01}) 

submit(pjob1) 

The part of the program implemented in a data-parallel way is described by the 

function file CEED_Casestudy1_DataParallel_funct.m 

 

6.3.2  Function for parallel calculation for  CEED problem 

The function CEED_Casestudy1_DataParallel_funct.m is used to calculate the CEED 

problem in data-parallel way. The labindex command is used to send various power 

demands to different workers. The syntax is given as follows: 

if labindex ==1 
PD=125; 

end 
if labindex==2 

PD=150; 
end 
if labindex==3 

PD=175; 
end 
if labindex==4 
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PD=200; 
end 
if labindex==5 

PD=225; 
end 
if labindex==6 

PD=250; 
end 

The power demand of 125 [MW] is sent to worker 1, 150 [MW] is sent to Worker 2 

and so on. When the calculation completes, the output results are transformed to the 

variables PD, lambda, P1, P2, P3, P4, P5, P6, PL, FC, ET, FT, iter time by the worker 

with labindex command 

waitForState(pjob1,'finished') 

results=getAllOutputArguments(pjob1) 

The parallel version of the programs CEED_Casestudy1_DataParallel.m and 

CEED_Casestudy1_DataParallel_funct.m  for solution of the CEED problem using 

Lagrange's algorithm is given in Appendix E. Algorithm given in Figure 3.1 is used. 

 

6.3.3 Results from the calculation of the CEED problem solution using Lagrange's 

algorithm in the Matlab data-parallel environment 

The CEED problem is formulated and solved using Lagrange's algorithm in data-

parallel way for two case studies (i) IEEE 30 bus and (ii) IEEE 118 bus system. The 

data are given in (Gnanadass, 2010) and (Guerrero, 2004) and are described in 

Table 3.1, 3.10 and 3.11 respectively. 

 

6.3.3.1 Case Study 1: IEEE 30 bus system 

The data of the power system are given in (Gnanadass, 2005). It consists of six 

generators and the constraint of the transmission loss is considered in this case. 

Software for implementation of the Lagrange‘s algorithm is developed for sequential 

solution in one computer, Chapter 3 (Krishnamurthy and Tzoneva, 2013). This 

software has to be used for investigation of the problem solution for various data sets 

of the power demand, Lagrange‘s multiplier and the penalty factors.  

Requirements towards the solution of the CEED problem are: 

1) It is necessary to find solutions of the CEED problem for 6 different values of the 

power demand PD 
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2) Every solution from point 1 above to be calculated for 2 different initial values of 

the Lagrange‘s multiplier λ=4 and λ=10. 

3) Every solution from points 1 and 2 above to be calculated for 2 types of penalty 

factors Min-Max and Max-Max. 

The vector of the power demand to be used in the investigation of the IEEE 30 bus 

system is distributed between 6 workers from 125 to 250 [MW] with an incremental of 

25 [MW] to each workers. i.e., power demand of 125 [MW] is send to worker 1, 150 

[MW] is send to Worker 2 and so on as shown in Figure 6.12 and in Table 1. In this 

way the sequential problem is solved 6 times in parallel. These solutions are for λ=4 

and Min-Max penalty factor. Then the next 6 are for λ=4 and Max-Max penalty factor. 

Further the solutions are repeated for λ=10 and Min-Max and Max-Max penalty 

factors respectively. The total run of the software is 4 times and the calculated 

solutions are 24.  The Lagrange's parallel solutions of the CEED problem using Min-

Max and Max-Max price penalty factors for IEEE 30 bus system are given in Tables 

6.1 and 6.2 respectively. 
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Table 6.1: Lagrange's data-parallel solution of the CEED problem for six sets of input data and based on Min-Max price penalty factor for IEEE 30 

bus system  

Name 
of the 
worker 

PD 

[MW] 
Lambda Generator active power in [MW] 

PL 

[MW] 
FC 

[$/h] 
ET 

[kg/h] 
FT 

[$/h] 

Initial lambda  4 Initial lambda 10 

Number 
of 

iterations  

CT 

[S] 

Number 
of 

iterations  

CT 

[s] 

mat32-
wrk1 

125 2.6643 59.2509 20.0000 15.0000 10.0000 10.0000 12.0000 1.2499 308.1632 144.5308 377.1885 195 
0.0929 

219 0.2305 

mat32-
wrk2 

150 3.0287 78.8322 26.2655 15.0000 10.0000 10.0000 12.0000 2.0967 373.5027 162.2308 448.5180 153 
0.0785 

180 0.2376 

mat32-
wrk3 

175 3.3683 96.7123 32.8893 16.5113 10.0000 10.0000 12.0000 3.1120 443.9698 190.4200 528.5602 139 
0.0777 

170 0.1137 

mat32-
wrk4 

200 3.7044 114.0706 39.3658 18.8705 10.0000 10.0000 12.0000 4.3059 519.5062 228.1564 616.9564 129 
0.0985 

166 0.1103 

mat32-
wrk5 

225 3.9709 127.5970 44.4448 20.7449 14.3841 11.2167 12.0000 5.3865 601.1057 268.0774 713.0565 75 
0.0417 

134 0.0566 

mat32-
wrk6 

250 4.1411 138.9676 48.7365 22.3455 18.8091 13.7142 13.8596 6.4336 687.0703 310.2824 815.1811 80 
0.0443 

129 0.0552 

Head node total operating time in [S] 17.5630 17.8280 

 
 
Table 6.2: Lagrange's data-parallel solution of the CEED problem for six sets of input data and based on Max-Max price penalty factor for IEEE 30 

bus system  

Name 
of the 
worker 

PD 

[MW] 
Lambda Generator active power in [MW] 

PL 

[MW] 
FC 

[$/h] 
ET 

[kg/h] 
FT 

[$/h] 

Initial lambda  4 Initial lambda  10 

Number 
of 

iterations  

CT 

[S] 

Number 
of 

iterations  

CT 

[s] 

mat32-
wrk1 

125 3.2435 59.2509 20.0000 15.0000 10.0000 10.0000 12.0000 1.2499 308.1633 144.5308 619.2622 544 0.2880 621 0.4548 

mat32-
wrk2 

150 4.3942 79.5282 25.5778 15.0000 10.0000 10.0000 12.0000 2.1070 373.4808 162.2098 716.1593 360 0.2275 424 0.3035 

mat32-
wrk3 

175 5.0946 91.6415 31.7899 17.0780 13.4044 11.9356 12.0000 2.8502 447.4312 186.5639 835.6383 259 0.0915 283 0.1625 

mat32-
wrk4 

200 5.6416 100.9848 36.5993 19.2509 17.3132 14.8895 14.5195 3.5581 527.9225 214.4258 969.9064 241 0.0813 261 0.1515 

mat32-
wrk5 

225 6.1847 110.1592 41.3373 21.4100 21.1778 17.8128 17.4464 4.3444 612.0153 247.2918 1117.6971 248 0.0837 261 0.1571 

mat32-
wrk6 

250 6.7333 119.3260 46.0868 23.5930 25.0656 20.7566 20.3862 5.2152 699.5437 285.3632 1279.1301 254 0.0860 260 0.1475 

Head node total operating time in [S] 17.0650 17.2350 
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Figure 6.13 to 6.16 show the comparison of computation time and number of 

iterations needed to reach the optimum solution of Lagrange's method using Min-Max 

and Max-Max penalty factors for two different initial selection of Lagrange's multipliers 

(lambda) of 4 and 10 respectively. 
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Figure 6.13: Comparison of Computation 

time of the Lagrange's 

method using Min-Max 

penalty factor for different 

values of λ 
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Figure 6.15: Comparison of Computation 

time of the Lagrange's 

method using Max-Max 

penalty factor for different 

values of λ 
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Figure 6.14: Comparison of the number of 

iterations of the Lagrange's 

method using Min-Max 

penalty factor for different 

values of λ 
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Figure 6.16: Comparison of the number of 

iterations of the Lagrange's 

method using Max-Max 

penalty factor for different 

values of λ 
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Figures 6.17 and 6.18 show the lambda and deltalambda values over the iteration number as 

given in Equation (3.23) and (3.22) respectively. 
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Figure 6.17: Lambda and deltalambda 

values of the Lagrange's 

method based on Min-Max 

penalty factor for initial 

lambda of 4 
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Price penalty factor: Min-Max

Power demand: 250 MW

Intial lambda: 10

Final lambda:4.1411

Intial deltalambda: -170

Final deltalambda:-0.00092207

Calculating Time: 0.0552 s

Total number of Iteration: 129
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Figure 6.18: Lambda and deltalambda 

values of the Lagrange's 

method based on Min-Max 

penalty factor for initial 

lambda of 10 

 

6.3.3.2 Discussion on Lagrange's parallel computing solution of the CEED problem for 

the IEEE 30 bus system: 

The results from the parallel implementation of the Lagrange's method using Min-Max 

and Max-Max price penalty factors are given in Tables 6.1 and 6.2 respectively. 

These solutions of the problem are done by 6 workers. Every worker solves the 

problem for different power demand and for 2 initial values of λ. This means 6 parallel 

solutions are calculated for every value of λ. The parallel solution of the Lagrange's 

algorithm is the same as the sequential one but the data-parallel calculation produces 

6 different solutions for the 6 different values of the power demand. Number of 

iterations used to obtain the optimal solution are different for every worker because 

the convergence to the optimal solution depends on the initial values of λ and on the 

required power demand. 

The Matlab parallel computing software has capability to implement the sequential 

code of the CEED problem in data-parallel way using Lagrange's method. The 

parallel solution of the CEED problem given in Table 6.1 and 6.2 is the same as the 

sequentially obtained one. The Lagrange's method solution depends on the optimal 

lambda value of the Lagrange's multiplier. It can be seen from the Tables 6.1 and 6.2, 



173 

 

that the computation time of the Lagrange's method depends on the initial selection of 

the Lagrange's variable lambda. It is proved that if the initial Lagrangian variable 

value is close to the optimal one, then the problem optimal solution requires less 

computation time, otherwise it requires more computational time.  

When initial lambda is 4, computational time and number of iterations needed to 

obtain the Lagrange's solution using Min-Max penalty factor is less in comparison 

with the solution using the initial lambda value of 10 as shown in Figure 6.13 and 

6.14. It seen that the solution of the Lagrange's method is influenced by the initial 

selection of the Lagrange's multiplier (lambda). Figures 6.15 and 6.16 show the 

comparison of computation time and the number of iterations obtained using Max-

Max penalty factor for two different initial selections of the Lagrange's multiplier 

(lambda).  

It shows that the initial lambda value of 4 uses less computational time and number of 

itertaions in comparison with the initial value of lambda of 10. Lagrange's tolerance 

value   given by Equation (3.23) and  value given by Equation (3.22) changes 

over the iteration numbers as shown in Figure 6.17 and 6.18 respectively. In Table 

6.1 for 250 [MW] power demand, the initial value of lambda of 4 reaches the optimal 

point for the final value of lambda of 4.1411 and takes 0.0443 seconds but the initial 

value of lambda of 10 reaches the optimal point for the same final value of lambda of 

4.1411 but it takes 0.0552 seconds. It is proven that Lagrange's calculation time is 

less for the initial lambda value of 4 in comparison with the other initial value of 

lambda of 10.  

6.3.3.3 Case Study 2: IEEE 118 bus system 

The CEED problem using Lagrange's algorithm is solved in data-parallel way for an 

IEEE 118 bus system. The data of the power system are given in (Guerrero, 2004). 

The system consists of fourteen generators and the transmission loss constraint is 

considered in this case. The power demand of the 14 generators IEEE 118 bus 

system is distributed between 14 workers from 3668 to 3920 [MW] as follows: 

 mat32-wrk1 solve the CEED problem for power demand of 3668 [MW]  

 mat32-wrk2 solve the CEED problem for power demand of 3680 [MW] 

 mat32-wrk3 solve the CEED problem for power demand of 3700 [MW] 

 mat32-wrk4 solve the CEED problem for power demand of 3720 [MW] 
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 mat32-wrk5 solve the CEED problem for power demand of 3740 [MW] 

 mat32-wrk6 solve the CEED problem for power demand of 3760 [MW] 

 mat32-wrk7 solve the CEED problem for power demand of 3780 [MW] 

 mat32-wrk8 solve the CEED problem for power demand of 3800 [MW] 

 mat32-wrk9 solve the CEED problem for power demand of 3820 [MW] 

 mat32-wrk10 solve the CEED problem for power demand of 3840 [MW] 

 mat32-wrk11 solve the CEED problem for power demand of 3860 [MW] 

 mat32-wrk12 solve the CEED problem for power demand of 3880 [MW] 

 mat32-wrk13 solve the CEED problem for power demand of 3900 [MW] 

 mat32-wrk14 solve the CEED problem for power demand of 3920 [MW] 

Different initial lambda values of 4 and 10 are used in Lagrange's data-parallel 

program of the CEED problem. The Lagrange's data-parallel solutions of the CEED 

problem using Min-Max and Max-Max price penalty factors for IEEE 118 bus system 

are given in Table 6.3 and 6.4 respectively. 
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Table 6.3: Lagrange's data-parallel solutions of the CEED problem for 14 sets of input data and based on Min-Max price penalty factor for IEEE 

118 bus system  

Name of 
the 

worker 
PD lambda P1 P2 P3 P4 P5 P6 P7 P8 P9 

mat32-
wrk1 

3668 8.4132 53.5381 460.3228 287.2570 179.6683 360.9079 288.8098 169.9043 147.6425 329.8012 

mat32-
wrk2 

3680 8.4887 52.5567 464.9113 290.6906 180.5749 364.5699 291.6788 171.5777 149.2418 332.4505 

mat32-
wrk3 

3700 8.6098 50.9908 472.1960 296.1481 181.9767 370.3777 296.2358 174.2215 151.7704 336.6501 

mat32-
wrk4 

3720 8.7227 50.0000 478.8937 301.1730 183.2248 375.7112 300.4281 176.6388 154.0839 340.5050 

mat32-
wrk5 

3740 8.8253 50.0000 484.9076 305.6911 184.3122 380.4953 304.1946 178.7984 156.1521 343.9613 

mat32-
wrk6 

3760 8.9248 50.0000 490.6719 310.0274 185.3250 385.0766 307.8070 180.8588 158.1263 347.2702 

mat32-
wrk7 

3780 9.0215 50.0000 496.2157 314.2033 186.2718 389.4789 311.2834 182.8318 160.0175 350.4489 

mat32-
wrk8 

3800 9.1159 50.0000 501.5627 318.2364 187.1597 393.7215 314.6384 184.7269 161.8345 353.5117 

mat32-
wrk9 

3820 9.2082 50.0000 506.7326 322.1411 187.9945 397.8206 317.8845 186.5520 163.5847 356.4705 

mat32-
wrk10 

3840 9.2985 50.0000 511.7421 325.9296 188.7811 401.7898 321.0319 188.3138 165.2746 359.3352 

mat32-
wrk11 

3860 9.3871 50.0000 516.6053 329.6125 189.5238 405.6405 324.0895 190.0179 166.9092 362.1142 

mat32-
wrk12 

3880 9.4742 50.0000 521.3344 333.1985 190.2262 409.3827 327.0648 191.6692 168.4932 364.8148 

mat32-
wrk13 

3900 9.5599 50.0000 525.9400 336.6956 190.8915 413.0250 329.9644 193.2721 170.0306 367.4434 

mat32-
wrk14 

3920 9.6443 50.0000 530.4312 340.1104 191.5222 416.5750 332.7939 194.8300 171.5248 370.0053 
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Continuation of Table 6.3 

Name 
of the 
worker 

P10 P11 P12 P13 P14 PL [MW] FC ET FT 

Initial lambda  4 initial lambda 10 

Number 
of 

iterations  

CT 
[S] 

Number 
of 

iterations  

CT 
[s] 

mat32-
wrk1 

317.6919 65.8266 162.1047 1000.0000 50.0000 50.447 18046.1791 13577.1113 18251.3046 76 0.1846 72 0.1379 

mat32-
wrk2 

320.0804 65.1526 163.9344 1000.0000 50.0000 217.4207 24535.7394 28752.3313 24976.7155 74 0.1723 70 0.1089 

mat32-
wrk3 

323.8701 64.0773 166.8673 1000.0000 50.0000 235.3826 24780.8642 29184.3579 25227.9988 72 0.1327 66 0.1039 

mat32-
wrk4 

327.3527 63.0841 169.5948 1000.0000 50.0000 250.6910 25008.9760 29588.1862 25461.8649 65 0.1072 59 0.1024 

mat32-
wrk5 

330.4787 62.1896 172.0691 1000.0000 50.0000 263.2510 25217.2834 29956.2061 25675.4150 63 0.1064 57 0.1016 

mat32-
wrk6 

333.4748 61.3310 174.4636 1000.0000 50.0000 274.4335 25418.1626 30313.6911 25881.3850 61 0.1040 55 0.0999 

mat32-
wrk7 

336.3563 60.5047 176.7877 1000.0000 50.0000 284.4009 25612.4911 30661.8872 26080.6708 60 0.0978 53 0.0837 

mat32-
wrk8 

339.1359 59.7081 179.0491 1000.0000 50.0000 293.2858 25800.9817 31001.8032 26273.9994 58 0.0890 51 0.0836 

mat32-
wrk9 

341.8243 58.9388 181.2544 1000.0000 50.0000 301.1990 25984.2336 31334.2902 26461.9825 57 0.0871 50 0.0795 

mat32-
wrk10 

344.4303 58.1949 183.4089 1000.0000 50.0000 308.2331 26162.7457 31660.0548 26645.1293 56 0.0864 48 0.0726 

mat32-
wrk11 

346.9614 57.4748 185.5173 1000.0000 50.0000 314.4673 26336.9447 31979.7011 26823.8749 55 0.0860 47 0.0710 

mat32-
wrk12 

349.4241 56.7770 187.5836 1000.0000 50.0000 319.9696 26507.1967 32293.7480 26998.5931 54 0.0792 46 0.0700 

mat32-
wrk13 

351.8241 56.1002 189.6112 1000.0000 50.0000 324.7988 26673.8214 32602.6489 27169.6102 54 0.0692 44 0.0621 

mat32-
wrk14 

354.1663 55.4433 191.6031 1000.0000 50.0000 329.0064 26837.0922 32906.7892 27337.2051 53 0.0614 43 0.0582 

Head node total operating time in [S]] 17.8410 17.5160 
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Table 6.4: Lagrange's data-parallel solutions of the CEED problem for 14 sets of input data and based on Max-Max price penalty factor for IEEE 

118 bus system  

Name of 
the 

worker 
PD lambda P1 P2 P3 P4 P5 P6 P7 P8 P9 

mat32-
wrk1 

3668 17.9645 55.7542 542.9174 355.1844 234.5058 432.9026 335.0527 238.1653 223.4820 374.8714 

mat32-
wrk2 

3680 18.0835 54.9197 546.0604 357.3359 235.0007 435.2273 337.0768 239.1245 224.4482 376.5263 

mat32-
wrk3 

3700 18.2795 53.5515 551.1956 360.8553 235.7921 439.0242 340.3842 240.6852 226.0225 379.2275 

mat32-
wrk4 

3720 18.4725 52.2098 556.2095 364.2968 236.5440 442.7300 343.6139 242.2013 227.5546 381.8621 

mat32-
wrk5 

3740 18.6629 50.8932 561.1103 367.6658 237.2592 446.3510 346.7712 243.6757 229.0472 384.4345 

mat32-
wrk6 

3760 18.8444 50.0000 565.7388 370.8523 237.9166 449.7698 349.7537 245.0616 230.4524 386.8617 

mat32-
wrk7 

3780 19.0093 50.0000 569.9109 373.7288 238.4942 452.8506 352.4426 246.3053 231.7155 389.0479 

mat32-
wrk8 

3800 19.1725 50.0000 574.0059 376.5558 239.0472 455.8737 355.0824 247.5211 232.9519 391.1920 

mat32-
wrk9 

3820 19.3340 50.0000 578.0279 379.3363 239.5769 458.8423 357.6757 248.7103 234.1630 393.2965 

mat32-
wrk10 

3840 19.4940 50.0000 581.9807 382.0726 240.0844 461.7591 360.2250 249.8746 235.3501 395.3635 

mat32-
wrk11 

3860 19.6525 50.0000 585.8676 384.7670 240.5710 464.6269 362.7324 251.0150 236.5144 397.3950 

mat32-
wrk12 

3880 19.8097 50.0000 589.6919 387.4216 241.0374 467.4479 365.2002 252.1328 237.6570 399.3926 

mat32-
wrk13 

3900 19.9657 50.0000 593.4565 390.0384 241.4847 470.2245 367.6301 253.2291 238.7790 401.3580 

mat32-
wrk14 

3920 20.1205 50.0000 597.1639 392.6190 241.9136 472.9585 370.0238 254.3048 239.8811 403.2928 
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Continuation of Table 6.4 

Name 
of the 
worker 

P10 P11 P12 P13 P14 PL [MW] FC ET FT 

Initial lambda 4 Initial lambda 10 

Number 
of 

iterations  

CT 
[S] 

Number 
of 

iterations  

CT 
[s] 

mat32-
wrk1 

359.9949 73.9307 182.9901 1000.0000 50.0000 142.9925 17916.1113 14219.3073 25015.1159 136 0.3966 133 0.3057 

mat32-
wrk2 

361.4657 73.2510 184.1926 1000.0000 50.0000 794.6301 28234.0395 34646.8013 47463.0474 134 0.3806 132 0.2929 

mat32-
wrk3 

363.8674 72.1345 186.1720 1000.0000 50.0000 798.9130 28412.1605 34997.8124 47803.4485 133 0.3408 130 0.2877 

mat32-
wrk4 

366.2112 71.0376 188.1224 1000.0000 50.0000 802.5941 28586.8785 35343.8505 48138.0594 131 0.3384 128 0.2853 

mat32-
wrk5 

368.5011 69.9596 190.0460 1000.0000 50.0000 805.7156 28758.4298 35685.2593 48467.2816 130 0.3140 127 0.2836 

mat32-
wrk6 

370.6631 68.9365 191.8782 1000.0000 50.0000 807.8858 28922.0091 36010.6303 48781.0517 119 0.2925 116 0.2660 

mat32-
wrk7 

372.6116 68.0105 193.5430 1000.0000 50.0000 808.6616 29071.9798 36306.3865 49067.4830 117 0.2904 114 0.2605 

mat32-
wrk8 

374.5239 67.0984 195.1891 1000.0000 50.0000 809.0422 29219.7299 36598.8735 49350.1290 115 0.2621 112 0.2579 

mat32-
wrk9 

376.4021 66.1999 196.8177 1000.0000 50.0000 809.0494 29365.3832 36888.2742 49629.2010 114 0.2545 111 0.2508 

mat32-
wrk10 

378.2480 65.3144 198.4297 1000.0000 50.0000 808.7030 29509.0497 37174.7491 49904.8861 112 0.2515 110 0.2472 

mat32-
wrk11 

380.0635 64.4415 200.0260 1000.0000 50.0000 808.0213 29650.8333 37458.4519 50177.3621 111 0.2490 109 0.2340 

mat32-
wrk12 

381.8500 63.5810 201.6075 1000.0000 50.0000 807.0210 29790.8270 37739.5184 50446.7872 110 0.2481 108 0.2339 

mat32-
wrk13 

383.6091 62.7325 203.1749 1000.0000 50.0000 805.7175 29929.1180 38018.0772 50713.3103 110 0.2397 107 0.2292 

mat32-
wrk14 

385.3421 61.8957 204.7289 1000.0000 50.0000 804.1250 30065.7843 38294.2414 50977.0639 109 0.2196 106 0.2079 

Head node total operating time in [S] 18.7190 18.1563 
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Figure 6.19 and 6.20 show the Lagrange's data-parallel solution of the CEED problem for 6 and 14 sets of input data for IEEE 30 and 118 bus 

system respectively as obtained in the Matlab environment. 

 

Figure 6. 19: Lagrange's data-parallel solution of the CEED problem 

for 6 sets of input data for IEEE 30 bus system 

 

 

 

 

Figure 6. 20: Lagrange's data-parallel solution of the CEED problem 

for 14 sets of input data for IEEE 118 bus system 
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Figure 6.21 to 6.24 show the comparison of computation time and number of 

iterations needed to reach the optimum solution of Lagrange's method based on Min-

Max and Max-Max penalty factors for two different initial selections of lambda of 4 

and 10 for the IEEE 118 bus system. 
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Figure 6.21: Comparison of the 

computation time of the 

Lagrange's method based on 

Min-Max penalty factor for 

different values of λ for the 

IEEE 118 bus system 
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Figure 6.23: Comparison of the 

computation time of the 

Lagrange's method based on 

Max-Max penalty factor for 

different values of λ for the 

IEEE 118 bus system 
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Figure 6.22: Comparison of the number of 

iterations used for the 

Lagrange's method based 

on Min-Max penalty factor 

for different values of λ for 

the IEEE 118 bus system 
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Figure 6.24: Comparison of number of 

iterations used for the 

Lagrange's method based 

on Max-Max penalty factor 

for different values of λ for 

the IEEE 118 bus system 
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6.3.3.4 Discussion on Lagrange's data-parallel computing solutions of the CEED 

problem for the IEEE 118 bus system: 

The results from the data-parallel implementation of the Lagrange's method using 

Min-Max and Max-Max price penalty factors for the IEEE 118 bus system are given in 

Tables 6.3 and 6.4 respectively for the different load levels of 3668 to 3920 MW. The 

solutions of the problem are done by 14 workers. Every worker solves the problem for 

different power demand and for 2 initial values of λ. This means 14 parallel solutions 

are calculated for every value of λ. The parallel calculation of the Lagrange's 

algorithm for one worker is the same as the sequential one but the data-parallel 

calculation produces 14 different solutions for the 14 different values of the power 

demand. The sequential one produces only one solution and has to be repeated 14 

times to obtain all the solutions for the required power demand. Number of iterations  

used to obtain the optimal solution are different for every worker because the 

conversion to the optimal solution depends on the initial values of λ and on the 

required power demand. 

The Matlab parallel computing software have capability to implement the sequential 

code of the CEED problem in data-parallel way using Lagrange's method. The 

parallel solution of the CEED problem given in Table 6.3 and 6.4 for the load level 

3668 MW is the same as for the sequential solution given in Table 3.13. The 

Lagrange's method solution depends on the optimal lambda value of the Lagrange's 

multiplier. It can be seen from the Tables 6.3 and 6.4, that the computation time of the 

Lagrange's method depends on the initial selection of the Lagrange's variable 

lambda. As in the previous case the initial Lagrangian variable value is close to the 

optimal one, then it requires less computation time to obtain the global solution 

otherwise it requires more computational time.  

When initial value of lambda is 10, the computational time and number of iterations 

needed to obtain Lagrange's solution using Min-Max penalty factor is less in 

comparison with the solution using the initial lambda value of 4 as shown in Figure 

6.21 and 6.22. It shows that solution of the Lagrange's method is influenced by the 

initial selection of the Lagrange's multiplier (lambda). Figures 6.23 and 6.24 show the 

comparison of computation time and the number of iterations obtained using Max-

Max penalty factor for two different initial selection of Lagrange's multiplier (lambda).  

It shows that the initial lambda value of 10 uses less computational time and the 

number of iterations in comparison with the case when the initial value of lambda is 4. 
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In Table 6.3 for 6920 [MW] power demand, the initial value of lambda of 10 reaches 

the optimal point for the final value of lambda of 9.6443 and takes 0.0582 seconds 

but the initial value of lambda of 4 reaches the optimal point for the same final value 

of lambda of 9.6443 but it takes 0.0614 seconds. It is proven that Lagrange's 

calculation time is less for the initial lambda value of 10 in comparison with the other 

initial value of lambda of 4.  

The Matlab parallel computing software has capability to solve the CEED problem in 

a data-parallel way for both small scale and large scale power system networks. The 

data-parallel solution of the CEED problem for IEEE 30 bus and 118 bus systems are 

the same as the sequential ones given in Table 3.13 for the load level 3668 MW. The 

comparison of the sequential and the data-parallel computational times for the used 

Lagrange's method is given in Table 6.5. 

Table 6.5: Comparison of computation time of sequential and data-parallel solution of the 

CEED problem based on Lagrange's method 

Type of 
price 

penalty 
factor 

Computation 
method 

IEEE 30 bus system IEEE 118 bus system 

initial 
lambda 

Computation 
Time of one 

problem 

Computation 
Time of 6 
problems 

initial 
lambda 

Computation 
Time of one 

problem 

Computation 
Time of 14 
problems 

Min-Max 

Sequential 
(Krishnamurthy 

and 
Tzoneva,2013) 

4 3.2542 19.5252 4 
46.2312 

(Refer Table 
3.13) 

647.2368 

Data-parallel 4 2.9271 17.5626 4 1.2743 17.8402 

Data-parallel 10 2.9713 17.8278 10 1.2511 17.5154 

Max-
Max 

Sequential 
(Krishnamurthy 

and 
Tzoneva,2013) 

4 3.5987 21.5922 4 
56.6230 

(Refer Table 
3.13) 

792.7220 

Data-parallel 4 2.8441 17.0646 4 1.3369 18.7166 

Data-parallel 10 2.8725 17.2350 10 1.2968 18.1552 

 

In parallel computation the total operating time includes time spend on job creation, 

task creation, job submission, wait for state, and fetch results time. Hence, it is 

necessary to use parallel computing for large complex power system problems where 

the calculation time is more in comparison with the communication time. It is proved 

that implementation of data-parallel computation reduces the computation time of the 

CEED problem of IEEE 30 and 118 bus system in comparison with the sequential 

one. 

6.4 Data-parallel results for the CEED problem solution using the PSO method 

PSO is a random search heuristic method and it generates random solutions for each 

execution. So it is necessary to apply Chebyshev‘s theorem to PSO method results in 
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order, to find near optimum solution range around the mean value of all obtained 

solutions. 

Chebyshev's theorem states that for any set of numbers, the fraction of these 

numbers that will lie within K standard deviations of the mean can be calculated as 

follows:  

This formula can be used also for calculation of the fraction of data between the 

minimum K1 and maximum |
1K values of the elements of a given data set or between 

, |
2K  and  K2 for the maximum values of the elements as follows 

Fraction of data = 
 


2

1
1

K
       (6.1) 

Where  

K Number of the standard deviations from both sides of the mean value of the 

considered set of data. 

K1 (mean – minimum value of the given data set) / Standard deviation 

K2 (maximum value of the given data set – mean) / Standard deviation 

The condition for the application of the Chebyshev's theorem is 1K , which means 

to consider more than one standard deviation from the mean. This theorem applies to 

all type distributions of data. 

The mean and standard deviation of any data is given by Equation (6.2) and (6.3) 

respectively.  

1


N

i

i

x

x
N

         (6.2) 

 
2

1

1



 
N

i

x x
N

         (6.3) 

Where  

x    Mean of any given data 

   Standard deviation 

N   Number of data's 

The mean, standard deviation, and the fraction of data are calculated for data-parallel 

PSO solutions of the CEED problem and are given in Table 6.7, 6.9, 6.11 and 6.13 

respectively. The developed PSO algorithm in Chapter 4 is run in a data-parallel way 
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for IEEE 30 bus system. Two subcases are considered: the same power demand for 

all workers and different power demands to the different workers. 

Subcase 1: The same power demands are sent to six different workers as given 

below: (Table 6.6 to 6.13) 

Worker 1: 250 [MW] Worker 2: 250 [MW] Worker 3: 250 [MW] 

Worker 4: 250 [MW] Worker 5: 250 [MW] Worker 6: 250 [MW] 

Hence, the capability of the PSO algorithm using data-parallel calculations is 

investigated for the considered below four scenarios, as follows: 

i. The constant power demand of 250 [MW] is sent to six Matlab workers using Min-

Max price penalty factor for a number of particles in the swarm equal to 10. 

ii. The constant power demand of 250 [MW] is sent to six Matlab workers using Min-

Max price penalty factor for a number of particles in the swarm equal to 30. 

iii. The constant power demand of 250 [MW] is sent to six Matlab workers using 

Max-Max price penalty factor for a number of particles in the swarm equal to 10. 

iv. The constant power demand of 250 [MW] is sent to six Matlab workers using 

Max-Max price penalty factor for a number of particles in the swarm equal to 30. 

Subcase 2: Various power demands are sent to different workers as given below: 

(Table 6.14 to 6.17) 

Worker 1: 125 [MW] Worker 2: 150 [MW] Worker 3: 175 [MW] 

Worker 4: 200 [MW] Worker 5: 225 [MW] Worker 6: 250 [MW] 

v. Six different power demands are sent to six different workers using Min-Max 

price penalty factor for a number of particles in the swarm equal to 10. 

vi. Six different power demands are sent to six different workers using Min-Max 

price penalty factor for a number of particles in the swarm equal to 30. 

vii. Six different power demands are sent to six different workers using Max-Max 

price penalty factor for a number of particles in the swarm equal to 10. 

viii. Six different power demands are sent to six different workers using Max-Max 

price penalty factor for a number of particles in the swarm equal to 30. 

The data-parallel solutions of the CEED problem using the PSO method for the 

considered first four scenarios are given in Table 6.6 to 6.13. 
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Table 6.6: Data-parallel PSO solutions of the CEED problem using the Min-Max penalty factor for 10 particles in the swarm 

Name 
of the 
worker 

P1  
[MW] 

P2  
[MW] 

P3  
[MW] 

P4  
[MW] 

P5  
[MW] 

P6  
[MW] 

PL 
[MW] 

FC 
[$/h] 

ET 
[kg/h] 

FT 
[$/h] 

 Number 
of 

iterations 
per 

worker 

Computation 
Time per 
worker 

 [s] 

mat32-
wrk1 

135.0281 42.3529 24.1501 24.1364 16.4158 13.8466 5.9299 690.1578 300.9827 817.5432 25 4.2288 

mat32-
wrk2 

135.8212 50.1971 25.6961 13.2141 13.5214 17.9177 6.3675 691.0407 307.7463 817.6888 9 3.5710 

mat32-
wrk3 

128.0193 47.1493 24.6530 24.5294 14.8065 16.5533 5.7108 692.6998 295.5579 817.8253 18 3.5822 

mat32-
wrk4 

141.6731 47.0501 21.7265 20.4280 14.9374 10.6903 6.5055 686.1100 313.8531 815.8826 18 3.9623 

mat32-
wrk5 

146.6257 45.0698 23.1155 18.5360 10.6700 12.7818 6.7988 685.1972 320.6730 816.5491 7 1.9336 

mat32-
wrk6 

132.4733 49.4452 22.9099 23.3317 10.0836 17.8566 6.1003 690.4857 303.7451 817.3051 21 1.8457 

Head node total operating time in [s] 21.1720 

 

Table 6.7: Standard deviation and fraction of data calculation for the data-parallel PSO solutions of the CEED problem using the Min-Max penalty 

factor for 10 particles in the swarm 

Probability 

analysis 
P1  

[MW] 
P2  

[MW] 
P3  

[MW] 
P4  

[MW] 
P5  

[MW] 
P6  

[MW] 
PL [MW] 

FC 

[$/h] 

ET 

[kg/h] 

FT 

[$/h] 

Mean 136.6068 46.8774 23.7085 20.6959 13.4058 14.9411 6.2355 689.2819 307.0930 817.1324 

SD 6.6330 2.8795 1.4111 4.3404 2.5260 2.9627 0.3987 2.9576 9.0790 0.7603 

K1 1.2947 1.5713 1.4046 1.7238 1.3152 1.4348 1.3160 1.3811 1.2705 1.6438 

K2 1.5105 1.1529 1.4085 0.8832 1.1916 1.0047 1.4128 1.1556 1.4958 0.9114 

Fraction of 

data  % 

40.3396 ~ 

56.1691 

59.4965 ~ 

24.7621 

49.3116 ~ 

49.5969 

66.3452 ~         

-28.1943 

42.1884 ~ 

29.5739 

51.4226  ~ 

0.9318 

42.2609 ~ 

49.9029 

47.5726 ~ 

25.1210 

38.0511 ~ 

55.3032 

62.9926 ~             

-20.4007 
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Table 6.8: Data-parallel PSO solutions of the CEED problem using the Min-Max penalty factor for 30 particles in the swarm 

Name 
of the 
worker 

P1  
[MW] 

P2  
[MW] 

P3  
[MW] 

P4  
[MW] 

P5  
[MW] 

P6  
[MW] 

PL 
[MW] 

FC 
[$/h] 

ET 
[kg/h] 

FT 
[$/h] 

 Number 
of 

iterations 
per 

worker 

Computation 
Time per 
worker 

 [s] 

mat32-
wrk1 

133.8061 44.4590 22.1976 24.5246 16.2150 14.7381 5.9405 689.7240 300.4373 816.9681 11 9.1196 

mat32-
wrk2 

141.1899 52.6787 21.5448 14.6853 10.1424 16.5567 6.7978 687.4895 318.2968 817.0252 37 8.6061 

mat32-
wrk3 

134.3973 48.1086 21.3595 21.1707 16.5182 14.5583 6.1126 688.9882 302.9655 815.9464 16 9.2774 

mat32-
wrk4 

134.0400 46.0172 21.6080 24.4891 14.1541 15.7190 6.0274 689.2289 302.0160 816.5401 16 9.0428 

mat32-
wrk5 

130.9404 49.1524 26.3131 22.5934 11.5300 15.4409 5.9704 691.9420 301.6774 817.5288 32 8.2211 

mat32-
wrk6 

130.5231 51.5905 21.3481 25.1292 12.0923 15.3395 6.0227 690.3952 303.3248 817.2139 4 8.3061 

Head node total operating time in [s] 21.8440 

 

Table 6.9: Standard deviation and fraction of data calculation for the data-parallel PSO solutions of the CEED problem using the Min-Max penalty 

factor for 30 particles in the swarm 

Probability 

analysis 
P1  

[MW] 
P2  

[MW] 
P3  

[MW] 
P4  

[MW] 
P5  

[MW] 
P6  

[MW] 
PL [MW] 

FC 

[$/h] 

ET 

[kg/h] 

FT 

[$/h] 

Mean 134.1495 48.6677 22.3952 22.0987 13.4420 15.3921 6.1452 689.6280 304.7863 816.8704 

SD 3.8264 3.1596 1.9443 3.9204 2.6086 0.7199 0.3251 1.4896 6.6968 0.5564 

K1 0.9477 1.3320 0.5385 1.8910 1.2649 1.1582 0.6297 1.4356 0.6494 1.6607 

K2 1.8400 1.2695 2.0151 0.7730 1.1793 1.6177 2.0074 1.5534 2.0175 1.1833 

Fraction of 

data  % 

-11.3344 ~ 

70.4617  

43.6404 ~ 

37.9476 

-244.7865 ~ 

75.3725  

72.0343 ~             

-67.3525  

37.4982 ~ 

28.0906 

25.4546 ~ 

61.7888 

-152.2309 ~    

75.1835 

51.4800 ~ 

58.5607  

-137.1133 ~ 

75.4308 

63.7398 ~ 

28.5842  
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Table 6.10: Data-parallel PSO solutions of the CEED problem using the Max-Max penalty factor for 10 particles in the swarm 

Name 
of the 
worker 

P1  
[MW] 

P2  
[MW] 

P3  
[MW] 

P4  
[MW] 

P5  
[MW] 

P6  
[MW] 

PL 
[MW] 

FC 
[$/h] 

ET 
[kg/h] 

FT 
[$/h] 

 Number 
of 

iterations 
per 

worker 

Computation 
Time per 
worker 

 [s] 

mat32-
wrk1 

113.2991 42.6046 25.5110 27.9540 23.1848 22.2469 4.8004 706.7198 280.4285 1282.6440 18 23.5242 

mat32-
wrk2 

121.6029 45.6087 24.8056 24.7609 22.1232 16.3728 5.2740 698.1503 287.6332 1281.1256 7 23.2108 

mat32-
wrk3 

121.5281 45.5910 24.7866 24.8191 22.1700 16.3744 5.2693 698.2076 287.5759 1281.1184 7 23.4145 

mat32-
wrk4 

122.1090 46.6081 22.6695 24.6816 24.0484 15.2166 5.3333 697.8389 289.2533 1282.9118 18 23.4815 

mat32-
wrk5 

117.0564 44.8636 21.3375 22.7258 22.8967 26.2662 5.1462 705.0327 283.2695 1283.9704 11 23.0988 

mat32-
wrk6 

113.5366 42.8675 27.2924 31.5086 22.7597 16.7967 4.7616 705.7920 283.4777 1286.6840 7 23.0676 

Head node total operating time in [s] 39.6100 

 

 

Table 6.11: Standard deviation and fraction of data calculation for the data-parallel PSO solution of the CEED problem using the Max-Max penalty 

factor for 10 particles in the swarm 

Probability 

analysis 
P1 

[MW] 
P2 

[MW] 
P3 

[MW] 
P4 

[MW] 
P5 

[MW] 
P6 

[MW] 
PL [MW] 

FC 

[$/h] 

ET 

[kg/h] 

FT 

[$/h] 

Mean 118.1887 44.6906 24.4004 26.0750 22.8638 18.8789 5.0975 701.9569 285.2730 1283.0757 

SD 4.1233 1.6146 2.1113 3.1470 0.7139 4.3867 0.2529 4.2979 3.3889 2.0817 

K1 1.1858 1.2920 1.4507 1.0643 1.0374 0.8349 1.3282 0.9581 1.4295 0.9402 

K2 0.9508 1.1876 1.3698 1.7266 1.6593 1.6840 0.9324 1.1082 1.1745 1.7333 

Fraction of 

data  % 

28.8879 ~    

-10.6245 

40.0897 ~ 

29.0979 

52.4846 ~ 

46.7029 

11.7100 ~ 

66.4557 

7.0804 ~ 

63.6812 

-43.4723 ~ 

64.7382 

43.3138 ~ 

15.0297 

-8.9281 ~ 

18.5728 

51.0650 ~ 

27.5087 

-13.1153 ~ 

66.7163 
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Table 6.12: Data-parallel PSO solutions of the CEED problem using the Max-Max penalty factor for 30 particles in the swarm 

Name 
of the 
worker 

P1  
[MW] 

P2  
[MW] 

P3  
[MW] 

P4  
[MW] 

P5  
[MW] 

P6  
[MW] 

PL 
[MW] 

FC 
[$/h] 

ET 
[kg/h] 

FT 
[$/h] 

 Number 
of 

iterations 
per 

worker 

Computation 
Time per 
worker 

 [s] 

mat32-
wrk1 

117.9292 45.1501 25.7970 23.1097 20.2772 22.8691 5.1323 702.4412 283.4405 1280.7217 35 101.5935 

mat32-
wrk2 

119.6353 45.8059 24.8352 26.6139 18.6795 19.6412 5.2109 698.9373 286.1902 1279.9195 34 101.5935 

mat32-
wrk3 

114.9600 48.9911 21.7455 28.1325 19.8861 21.3864 5.1017 701.6854 285.3008 1281.2860 20 101.5735 

mat32-
wrk4 

119.9959 45.0122 23.7258 27.7159 21.4137 17.3176 5.1810 698.7622 286.6683 1280.5410 32 101.3493 

mat32-
wrk5 

113.0798 51.6118 21.6592 25.6241 23.2214 19.8718 5.0680 703.4137 285.3244 1282.8801 37 101.2399 

mat32-
wrk6 

126.6020 43.7145 24.9202 25.3957 16.7838 18.1017 5.5180 694.7909 291.4346 1283.0721 25 101.2669 

Head node total operating time in [s] 132.0940 

 

Table 6.13: Standard deviation and fraction of data calculation for the data-parallel PSO solution of the CEED problem using the Max-Max penalty 

factor for 30 particles in the swarm 

Probability 

analysis 
P1  

[MW] 
P2  

[MW] 
P3  

[MW] 
P4  

[MW] 
P5  

[MW] 
P6  

[MW] 
PL [MW] 

FC 

[$/h] 

ET 

[kg/h] 

FT 

[$/h] 

Mean 118.7004 46.7143 23.7805 26.0986 20.0436 19.8646 5.2020 700.0051 286.3931 1281.4034 

SD 4.7152 2.9778 1.7391 1.8260 2.2155 2.0488 0.1632 3.1702 2.7051 1.2953 

K1 1.1920 1.0074 1.2198 1.6369 1.4714 1.2432 0.8211 1.6448 1.0915 1.1456 

K2 1.6758 1.6447 1.1595 1.1139 1.4343 1.4665 1.9363 1.0752 1.8637 1.2883 

Fraction of 

data  % 

29.6223 ~ 

64.3901  
1.4614 ~ 

63.0306  
32.7883 ~ 

25.6206  

62.6768 ~ 

19.3986  

53.8085 ~ 

51.3939  

35.2945 ~ 

53.49981  

-48.3306 ~  

73.3273 

63.0344 ~ 

13.4989  

16.0622 ~ 

71.2096 

23.8041 ~ 

39.7462 

 



189 

 

Figures 6.25 and 6.26 show the comparison of active power of P1 and CEED fuel 

cost with 6 workers. Figures 6.27 and 6.28 show the comparison of computation time 

needed to obtain the near optimum solution of PSO method using Min-Max and Max-

Max penalty factors for two different selections of the number of particles in the 

swarm of 10 and 30 and with the same power demand assigned to each individual 

worker.
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Figure 6.25: Comparison of the active 

power P1 with worker for the PSO solution 

using the Min-Max penalty factor  
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Figure 6.26: Comparison of the CEED fuel 

cost FT with worker for the PSO solution 

using the Min-Max penalty factor  
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Figure 6.27: Comparison of the 

computation time for the PSO solution 

using the Min-Max penalty factor for two 

different numbers of particles of 10 and 30 

and the same power demand assigned to 

every workers 
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Figure 6.28: Comparison of the 

computation time for the PSO solution 

using the Max-Max penalty factor for two 

different numbers of particles of 10 and 30 

and the same power demand assigned to 

every workers 
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6.4.1 Discussion on the data-parallel computing solutions of the CEED problem 

using PSO algorithm with the same power demand of 250 MW in all the workers 

In Table 6.6 to 6.13, workers 1 to 6 were assigned to have constant power demand of 

250 [MW] to each workers and two different numbers of particles of 10 and 30 were 

used to compare the obtained solutions. The data-parallel solutions of the CEED 

problem using the PSO algorithm are not the same as the sequential ones, since 

metaheuristic PSO algorithm generates random values for each iteration. The 

computational time for the CEED problem solution using the metaheuristic method 

(PSO) depends on the initial selection of the number of particles in the swarm as 

given in Tables 6.6 to 6.13. It is proven that if the initial selection of the number of the 

particles in the swarm is less, it requires less computation time to obtain the near 

global solution, otherwise the bigger number of particles in the swarm needs more 

computational time as shown in Figure 6.27 and 6.28. When initial number of 

particles in the swarm is 10, computational time needed to obtain PSO solution using 

the Min-Max penalty factor is less in comparison with the solution for 30 particles in 

the swarm. It shows that the solution obtained with the PSO algorithm is influenced 

by the initial selection of the number of particles in the swarm.  

PSO algorithm generates random solutions in all the 6 workers. The Matlab cluster of 

computers is used to generate different PSO solution in 6 workers for the same power 

demand PD 250 [MW] which is given in Table 6.7. The mean and standard deviation 

are used to find the fraction of the data set based on the Chebyshev's theorem. In 

Table 6.7, PSO solution for the IEEE 30 bus system using Min-Max penalty factor is 

given. It has a mean and standard deviation of 136.60 and 6.63 respectively. The 

value of K lies between 1.2946 and 1.5104 refer Table 6.7.  

 For K1=1.2946, then 40.33% of the active power of generator 1 lies between 

128.01 to 145.19 [MW]  

 For K2=1.51, then 56.16% of the active power of generator 1 lies between 126.58 

to 146.62 [MW]. 

It is proven that the fraction of data of the active power of generator 1 which is 

calculated using Chebyshev's theorem for the PSO solution based on Min-Max 

penalty factor is close to the mean value of the active power of generator 1.  

The PSO algorithm implemented for solution of the CEED problem for various values 

of the power demand is applied in a data-parallel way using the Min-Max and Max-

Max penalty factors and 10 or 30 particles in the swarm (scenarios 5 to 8). The 

results are given in Tables 6.14 to 6.17. 
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Table 6.14: Data-parallel PSO solutions of the CEED problem using a Min-Max penalty factor for 10 particles in the swarm and with different 

power demands assigned to every workers 

Name of the 

worker 

PD 

[MW] 
P1  

[MW] 
P2  

[MW] 
P3  

[MW] 
P4  

[MW] 
P5  

[MW] 
P6  

[MW] 

PL 

[MW] 

FC 

[$/h] 

ET 

[kg/h] 

FT 

[$/h] 

 Number 
of 

iterations 
per 

worker 

Computation 

Time per 

worker 

[s] 

mat32-wrk1 125 50.0000 26.1487 17.5301 12.8406 13.0927 12.5408 1.1390 332.0623 153.1798 404.8368 21 23.3116 

mat32-wrk2 150 64.9339 25.8405 18.8241 13.4284 10.9185 17.7294 1.6747 385.4845 162.4775 462.1604 18 23.4507 

mat32-wrk3 175 92.7815 22.0565 24.2576 10.9404 13.0204 14.6567 2.7131 455.1861 186.6582 539.9975 2 23.5443 

mat32-wrk4 200 111.0379 29.0612 18.3209 18.2135 15.1143 12.0597 3.8074 526.0763 219.5829 623.6578 2 23.6474 

mat32-wrk5 225 116.3730 47.3908 21.5058 13.9112 14.9641 15.7271 4.8720 606.8608 256.9177 715.8499 17 23.1760 

mat32-wrk6 250 143.4226 46.8939 20.0528 12.3018 18.2169 15.7907 6.6788 687.5114 315.1698 818.0181 20 23.1545 

Head node total operating time in [S] 41.0630 

 

Table 6.15: Data-parallel PSO solutions of the CEED problem using a Min-Max penalty factor for 30 particles in the swarm and with different 

power demands assigned to every workers 

Name of the 

worker 

PD 

[MW] 
P1 

[MW] 
P2 

[MW] 
P3 

[MW] 
P4 

[MW] 
P5 

[MW] 
P6 

[MW] 

PL 

[MW] 

FC 

[$/h] 

ET 

[kg/h] 

FT 

[$/h] 

Number 
of 

iterations 
per 

worker 

Computation 

Time per 

worker 

[s] 

mat32-wrk1 125 50.0000 18.8701 20.2577 9.8370 12.8358 21.0525 1.1164 344.1766 155.4164 419.3112 1 108.1828 

mat32-wrk2 150 64.5041 27.7569 18.5799 14.7255 12.0642 14.0306 1.6612 383.3349 162.5006 459.6290 15 108.7903 

mat32-wrk3 175 88.0883 27.3660 21.0198 13.9297 15.0685 12.1257 2.5979 452.7297 184.1196 536.9326 7 108.6674 

mat32-wrk4 200 104.1440 38.8926 19.5248 12.5571 13.7804 14.8899 3.7888 525.2711 217.9137 620.6234 15 108.3768 

mat32-wrk5 225 127.5704 45.1852 19.3856 13.1075 11.6371 13.5386 5.4244 601.3734 268.2408 713.4549 4 101.7679 

mat32-wrk6 250 138.5568 50.2854 23.1532 13.3596 16.5351 14.5967 6.4870 688.4791 310.9740 816.4723 20 101.9997 

Head node total operating time in [S] 126.7660 
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Table 6.16: Data-parallel PSO solutions of the CEED problem using a Max-Max penalty factor for 10 particles in the swarm and with different 

power demands assigned to every workers 

Name of the 

worker 

PD 

[MW] 
P1  

[MW] 
P2  

[MW] 
P3  

[MW] 
P4  

[MW] 
P5  

[MW] 
P6  

[MW] 

PL 

[MW] 

FC 

[$/h] 

ET 

[kg/h] 

FT 

[$/h] 

 Number 
of 

iterations 
per 

worker 

Computation 

Time per 

worker 

[s] 

mat32-wrk1 125 50.0000 22.2047 21.7644 13.9499 12.0790 25.9915 1.2901 389.9397 167.9605 755.4505 2 23.5839 

mat32-wrk2 150 55.5870 33.9910 21.7091 12.1905 12.0151 16.0599 1.5525 388.7696 168.6214 748.6597 10 23.3688 

mat32-wrk3 175 75.7889 26.2902 19.0348 17.8501 19.9147 18.2945 2.1731 466.4808 182.6376 855.9366 9 23.5126 

mat32-wrk4 200 108.0520 35.6919 21.1763 12.9948 10.4145 15.5774 3.9068 524.2388 219.9189 975.1413 13 23.5691 

mat32-wrk5 225 117.3134 37.3643 16.9988 25.5600 17.8374 14.5107 4.5847 609.8953 253.3740 1124.5010 25 23.1462 

mat32-wrk6 250 125.9431 44.7433 22.8955 21.3733 17.5806 23.0478 5.5835 696.5256 290.1646 1283.0978 12 22.9976 

Head node total operating time in [S] 39.5160 

 

Table 6.17: Data-parallel PSO solutions of the CEED problem using a Max-Max penalty factor for 30 particles in the swarm and with different 

power demands assigned to every workers 

Name of the 

worker 

PD 

[MW] 
P1  

[MW] 
P2  

[MW] 
P3  

[MW] 
P4  

[MW] 
P5  

[MW] 
P6  

[MW] 

PL 

[MW] 

FC 

[$/h] 

ET 

[kg/h] 

FT 

[$/h] 

 Number 
of 

iterations 
per 

worker  

Computation 

Time per 

worker 

[s] 

mat32-wrk1 125 50.0000 25.3480 15.2514 21.0602 14.9676 12.5719 1.1775 359.0826 160.1855 702.6658 39 101.8074 

mat32-wrk2 150 66.1286 21.7591 18.9441 13.7986 16.1641 14.8096 1.6040 387.7633 161.4122 734.7592 30 103.1258 

mat32-wrk3 175 83.4624 33.4963 20.6183 10.5264 16.3644 13.1054 2.5731 453.0214 185.0358 841.7756 32 102.8696 

mat32-wrk4 200 103.3159 34.0308 20.2883 17.2386 11.7279 17.0248 3.6262 527.9411 215.2338 972.0374 12 102.2761 

mat32-wrk5 225 113.0392 42.7653 22.8081 15.3697 17.4873 18.0817 4.5513 610.6085 250.1517 1120.7817 5 101.0463 

mat32-wrk6 250 116.4857 44.2894 24.1416 27.2434 19.5923 23.2882 5.0407 702.7840 283.0386 1280.7349 7 100.7420 

Head node total operating time in [S] 121.1720 
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Figures 6.29 and 6.30 show the comparison of the computation time needed to obtain 

the near optimum solution of the CEED problem using the PSO method based on 

Min-Max and Max-Max penalty factors for two different selections of the number of 

particles in the swarm of 10 and 30 and with different power demands assigned to 

every workers. 

120 140 160 180 200 220 240 260
20

30

40

50

60

70

80

90

100

110

IEEE 30 bus system

-o  PSO Algorithm using Min-Max for 10 particles in the swarm

--* PSO Algorithm using Min-Max for 30 particles in the swarm 

 Computation Time Versus Power demand 

Power demand P
D

 [MW] 

 C
o

m
p

u
ta

ti
o

n
 T

im
e

 [
s
]

 

Figure 6.29: Comparison of the 

Computation time for the PSO solution of 

the CEED problem using the Min-Max 

penalty factor and different power demands 

assigned to every workers 
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Figure 6.30: Comparison of the 

computation time for the PSO solution of 

the CEED problem using the Max-Max 

penalty factor and different power demands 

assigned to every workers 

 

6.4.2  Discussion on the data-parallelly computed solutions for the CEED problem 

using the PSO algorithm with different power demands assigned to each 

individual worker 

In Tables 6.14 to 6.17, workers 1 to 6 were assigned with different power demands of 

125 to 250 [MW], with an incremental of 25 [MW]. Two different numbers of particles 

in the swarm of 10 and 30 are used to compare the parallel PSO solution using Min-

Max and Max-Max penalty factors. The computational time of the metaheuristic 

(PSO) solution depends on the initial selection of the number of particles in the 

swarm. It can be seen from the Figures 6.29 and 6.30 that the computation time of 

the PSO algorithm is dependent on the initial selection of the number of particles in 

the swarm. It is proven that if the initial number of particles in the swarm is less, it 

requires less computation time to obtain the near global solution, otherwise bigger 

number of particles in the swarm needs more computational time. When initial 

number of particle is 10, computational time needed to obtain the PSO solution using 

Min-Max penalty factor is less in comparison with the solution for 30 particles. It 
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shows that the solution of the PSO algorithm is influenced by the selection of the 

number of particles in the swarm. 

6.5 Comparison of the results from the sequential and data-parallel solutions 

The results of sequential program are compared with the results of data-parallel one. 

Calculation of the CEED problem using the two developed Lagrange's (classical) and 

PSO (heuristic) methods are applied in a data-parallel way. The solutions of the 

sequential and data-parallel methods are the same for the Lagrange's but different for 

the PSO method. The comparison of computation time of sequential and data-parallel 

solution of Lagrange's and PSO methods of the CEED problem is given in Table 6.5. 

The conclusion is that data-parallel solutions need less computational time in 

comparison with the sequential solutions. 

6.6 Conclusion 

This chapter describes the programs for CEED problem solutions in the Parallel 

Computing Toolbox. The input and output variables of the programs and the used 

functions and commands are described. The Results from calculations with the 

Matlab sequential program and the data-parallel calculations are described. The 

results of a sequential program (Krishnamurthy and Tzoneva, 2013) are compared 

with the results of a data-parallel program problem using the two developed 

Lagrange's (Classical) and PSO (Metaheuristic) algorithms. The solutions of the 

sequential and data-parallel methods are the same for the Lagrange's but different for 

the PSO method, hence metaheuristic PSO generates different solution for each 

simulation run. The comparison of the computation time of sequential and data-

parallel solution of the Lagrange's and the PSO method are based on Min-Max and 

Max-Max penalty factors. It is clear that, less computation time is needed for data-

parallel calculation of the CEED problem using Lagrange's method in comparison 

with the PSO data-parallel solutions. The fuel cost values are less for the Min-Max 

penalty factor in comparison with these for the Max-Max one. 

Multi-area economic dispatch problem formulation and solution using Lagrange's 

decomposition-coordinating method is described in Chapter 7. 
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CHAPTER SEVEN 

MULTI AREA ECONOMIC EMISSION DISPATCH PROBLEM FORMULATION AND 

SOLUTION BY A DECOMPOSITION-COORDINATING METHOD  

 

7.1 Introduction 

Large interconnected power systems are usually decomposed into areas or zones 

based on criteria, such as the size of the electric power system, network topology and 

geographical location. Multi Area Economic Emission Dispatch (MAEED) problem is 

an optimisation task in power system operation for allocating amount of generation to 

the committed units within these areas. Its objective is to minimize the fuel cost 

subject to the power balance, generator limit, transmission lines and tie-line 

constraints. The solution of the MAEED problem determines the amount of power that 

can be economically generated in the areas and transferred to other areas if it is 

needed without violating tie-line capacity constraints and the whole power network 

constraints. 

The solutions of the MAEED problem in the conditions of deregulation are difficult, 

due to the model size, nonlinearity, and interconnections, and require intensive 

computations in real-time. High-performance computing (HPC) gives possibilities for 

reduction of the problem complexity and the time for calculation by the use of parallel 

processing for running advanced application programs efficiently, reliably and quickly. 

 A cluster of computers working in Matlab software environment is used to implement 

the optimisation algorithms. Parallelization of the solution is done through 

decomposition of the MAEED problem according to the power system interconnected 

areas and coordination of the obtained solutions for every area by a coordinator. 

Classical (Lagrange) decomposition-coordinating method for HPC is developed and 

implemented using IEEE benchmark power system models.  

This chapter formulates the MAEED problem and develops Lagrange's 

decomposition coordination method and software to solve the MAEED problem. The 

Matlab parallel computing toolbox setup procedure is described, how to start the 

workers from the head node, and test the configuration validation to find resource, 

distributed job, parallel job and Matlab pool. IEEE 4 area 40 generators system 

without considering transmission line losses and 4 area 15 generator system by 

considering transmission line losses are used to test the developed algorithm in the 

Cape Peninsula University of Technology (CPUT's) research center Real Time 

Distributed Systems (RTDS) Cluster Computer laboratory. 

http://searchdatacenter.techtarget.com/definition/parallel-processing
http://searchdatacenter.techtarget.com/definition/parallel-processing
http://searchsoftwarequality.techtarget.com/definition/application-program
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This chapter formulate MAEED problem solution in part 7.2, Lagrange's 

decomposition-coordinating method and algorithm for solution of the MAEED problem 

is given in part 7.3 and 7.4 respectively, single area and multi-area CEED problem 

solutions for 4 area 40 generator system and 4 area 15 generator system are given in 

part 7.5 and 7.6 respectively. Profile viewer of the Matlab distributed computing 

engine is described in part 7.7, the discussion and conclusion on the simulation 

results are given in part 7.8 and 7.9 respectively.  

 

7.2 Formulation of the MAEED problem solution  

Implementation of the solution of the multi-area dispatch problem leads to dispatch of 

the generator's power within multiple areas. Every area has its own set of generators. 

The areas are interconnected by tie-lines as shown in Figure 7.1. Single criterion or 

bi-criteria dispatch problems can be formulated for every area. The solutions of these 

problems determine the optimal power to be produced by the generators in every 

area and the optimal values of the power transferred between the areas through the 

tie-lines. The dispatch problem for the whole power system is a multi-criteria one. 

Area 1

N1

Generators

Area m

Nm

Generators

Area 2

N2

Generators

Area M

NM

Generators

t2Mt1m

t12

tmM

t2m t1M

 

Figure 7.1: Model of a Multi-Area power system with tie-line power transfer 

The mathematical formulation of the MAEED problem is as follows: 

Find the vector of the real power P and the vector of the power transmitted through 

the tie-lines PT such that the operational cost for power production 

   
 

   
2

1 1

mNM

C mn mn mn mn mn
m n

F P a P b P c                                     (7.1) 

where 

M   Number of the interconnected areas 
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Nm  Number of generators belonging to area m and committed to the 

power production in this area 

amn,bmn,cmn  Cost coefficients of the nth generator in the mth area 

Pmn   Real power produced by the nth generator in the mth area 

 
 1 2 3

......
m

T

m m m m mN
P P P P P  Vector of the real power produced in the mth area, and 

 1,m M  

   1 2 3 ......
T

MP P P P P
 

Vector of the real power produced in the whole power 

system 

The operational cost for transmission of the power through the tie-lines is given as:   

   
1 1 



  
M M

T T mj Tmj jm Tjm
m j

j m

F P q P q P       
                      

(7.2) 

Where 

PTmj   Tie-line power flow from area m to area j 

qmj  Transmission coefficient for the cost of transmission of the power from 

area m to area j. 

  
    , 1 , 2 , 3 ,...... , 1, 1

T

Tm Tm m Tm m Tm m Tm MP P P P P m M   Vector of the power 

transmission between the mth area and all other area 


   1 2 3 , 1......

T

T T T T T MP P P P P
 
  Vector of the power transmission between all 

areas. 
  
Equation (7.1) and (7.2) are minimised under the following constraints: 

i. Minimum and maximum produced active power for every generator 

   ,min ,max , 1, , 1,mn mn mn mP P P m M n N                 (7.3) 

where 

,minmnP and
 ,maxmnP  Minimum and maximum power that can be produced by the nth 

generator in the mth area 
 

ii. Minimum and maximum active power sent through the tie-lines 

 ,min ,maxTmj Tmj TmjP P P                   (7.4)  

These limits are valid for the two directions of the power flow and can be written as 

    

    

min max

min max

1, , 1, ,

1, , 1, ,

T Tmj T

T Tjm T

P P P m M j M j m

P P P m M j M j m
                 (7.5) 
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iii. Power balance constraint 

Balance between the power production and the power demand for the mth area and 

for the whole system is given by Equation (6.6),  

 
1 1

1 , 1,
 



      
  

mN M

mn Dm Lm Tmj jm Tjm
n j

j m

P P P P P m M               (7.6) 

 

 

Where 

  0 00
1 1 1
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m m mN N N

Lm mn mnr mr n mn m
n r n

P P B P B P B m M               (7.7) 
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P m M
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(7.8) 

Where 

0 00, ,mnr m n mB B B
 

Transmission loss coefficients of the interconnected power 

system 

 jm    Fractional loss rate from area j to area m  

TmjP
   

Power flow from area m to area j  and  

TjmP
   

Power flow from area j to area m 

The total operational cost is the sum of the generation cost and of the cost for 

transmission of the power between the areas. An additional criterion expressing 

minimisation of the pollutant emission can be also considered. This criterion refers 

only to the power generation. The tie-lines are not considered in this case because 

the transmission of power does not create chemical pollution. The mathematical 

expression of the criterion for the interconnected power system is: 

 
 

   
2

1 1

mNM

e mn mn mn mn mn
m n

F d P e P f                           (7.8a) 

Where 

dmn,emn,fmn    Emission coefficients of the nth generator in the mth area 

The multi-area combined economic emission dispatch fuel cost is given by Equation 

6.8b 

   
 

      
  2 2

1 1

mNM

T mn mn mn mn mn mn mn mn mn mn mn

m n

F a P b P C h d P e P f           (7.8b) 
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Unknown variables are the values of the active power mnP .  

The formulated problem given by Equation (7.1 to 7.8) is characterised as: 

 A bi-criteria optimisation problem dispatch problem for every area 

 The area are interconnected by tie-lines 

 The optimisation dispatch problem for the interconnected power system is 

Multicriteria 

 Dimension of the interconnected problem depends on the number of areas, 

and tie-lines. 

Calculation of the solution of the multicriteria interconnected problem is difficult and 

time consuming. If the solution has to be done often and in real-time, then better 

computational approaches can be proposed. One of them is a parallel computing of 

the area's sub-problems and coordination of the obtained solution using a High 

Performance Parallel Computing (HPPC) environment (Cluster of computers). This 

approach requires: 

i. A decomposition-coordinating method to be developed in order to obtain an 

algorithm for parallel calculation. 

ii. Software development based on the above algorithm allowing allocation of the 

separate sub-problems to the structure of the HPPC environment – A Cluster of 

Computers. 

iii. Implementation of the developed software in the HPPC environment, 

investigations of the capabilities of the developed algorithm. 

iv. Evaluation and verification of the obtained solution by comparison of the 

sequential and parallel ones 

The method is based on classical Lagrange‘s optimisation (Okada and Asano, 1995), 

(Danaraj and Gajendran, 2005), and (Hemamalini and Simon, 2009). The literature 

review found that the classical Lagrange's method has been used till now only for 

sequential solution of the MAEED problem (Yingvivatanapong et al., 2008), and (Yu 

and Hang, 2010). The thesis introduces a parallel solution of the MAEED problem by 

considering two-level calculation structure, Figure 7.2, where the initial optimisation 

problem is  decomposed into sub-problems (for every area one), solved on the first 

level, and the obtained solutions are coordinated by a coordinating sub-problem at 

the second level - in order to obtain the global solution of the whole problem. 
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( )M
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P MP

2

...…

...……………... ...……………….

M1P
2P mP

MP

...…

where : λ1 – coordinating variable; (meas) - measured; (dem) - demand 

Figure 7. 2: Real-time implementation structure of the MAEED problem solution  

 

Implementation of the MAEED problem in real-time is done in the following way, 

Figure 7.2: All data from the separate areas are sent using the communication system 

to the main control center where the Cluster of computers is located. The problem is 

solved and the optimal solutions are sent to the areas to be used for control of the 

generators power production. This scenario can be repeated through some selected 

periods of time, for example every hour. 

The software for parallel calculation is developed for the following IEEE bench mark 

models:  

(i) 4 areas: 4 generators in each area and  

(ii) 4 areas: 3 generators in each area. 

 

Figure 7.3 shows the process block diagram of the MAEED problem solution which 

includes problem formulation, algorithm and software development and task-parallel 

implementation of the calculations. 
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Comparison of the results

 

Figure 7.3: The process block diagram for the MAEED problem solution 

 

7.3   Development of Lagrange’s decomposition-coordinating method for solution of 

the MAEED problem 

Development of a Lagrange's decomposition-coordinating algorithm for solution of the 

multi-area combined economic and emission dispatch problem is described in this 

section. Development of the method is based on construction of a function of 

Lagrange for the multi-area dispatch problem. 

The function of Lagrange‘s is formulated as: 
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Where: 

 1 2 .... ....m M       Vector of the Lagrange‘s multipliers. 

mnh      Price penalty factor for every area 

 

It is necessary to find the values of 
,,mn Tmj TjmP P P and   such that the function of 

Lagrange has an optimum (minimum) according to 
,,mn Tmj TjmP P P , and maximum 

according to λ, under the constraints. 

,min ,max , 1, , 1,mn mn mn mP P P m M n N                           (7.10) 

,min ,max, 1, , 1, ,Tm Tmj TmP P P m M j M j m                  (7.11) 

,min ,max, 1, , 1, ,Tm Tjm TmP P P m M j M j m                  (7.12) 

The optimal solution is found on the basis of the necessary conditions for optimality, 

as follows: 
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where   1, , 1, ,m M j M j m            
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Solution of the system of Equations (7.13) – (7.16) can be achieved in a parallel way 

using decomposition approach based on selection of coordinating variables. These 

are selected to be , 1,m m M   

It is supposed that the values of the coordinating variables are given by a coordinator 

in a two level hierarchical structure of calculations as follows: 

, 1,l
m m m M                    (7.17) 

Where  

l  Index of iterations 

Then the Equation (7.13) can be solved in a decentralized way on a first level of the 

calculation structure and the Equations (7.14) to (7.16) can be solved on the second 

level. 

Solution of equation (7.13) is as follows: 
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Equation (7.20) can be written in a vector matrix form as 
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In a short form it can be written as 

, 1,m m mE P D m M                   (7.22) 

If the value of , 1,m m M  is known, then the solution for the active power of the mth 

area is 

\m m mP E D                   (7.23) 

Solution of the equations (7.14) and (7.15) can be done by gradient procedures as 

follows: 

a) Initial values of m mq q
Tmj TjmP and P are guessed , , , m m mq l q l k  

 m mq q
Tmj Tmj Tjm TjmP P and P P  

Where  

mq   Index of the gradient procedure in the mth area. 

b) The improved values of the tie-lines power are 

1
 m m mq q q

Tmj Tmj Tmj PTmjP P e                (7.24) 

 

where  mq
PTmje is given by eq.(7.14), 1,m M   

 1
  mm m

PTjm

qq q
Tjm Tjm TjmP P e                (7.25) 

where  m

PTjm

q
e is given by eq.(7.14) , 1,m M     

The calculation of the values of the 
1 1 m mq q

Tmj TjmP and P stops when 

1 2 m m

PTmj PTjm

q q
e and e                              (7.26) 

Where  

1 2and     Very small positive numbers. 

Solutions (7.23), (7.24) and (7.25) depend on , 1,m m M  .  

When the optimal value of m is obtained, the optimal values of ,mn Tmj TjmP P and P will 

reach their optimum. 

A gradient procedure is used to calculate the optimal value of , 1,m m M  , as 

follows: 

1 , 1,l l
m m m me m M                                  (7.27) 

 Where  is the step of the gradient procedure and e is given by equation (7.16). 

 The gradient procedure on the second levels stops when 3 3, 0 e               (7.28) 
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Figure 7.4: Hierarchical structure for the MAEED problem solution using the developed 

Lagrange’s decomposition-coordinating algorithm 

 

7.4   Algorithm of the Lagrange’s decomposition-coordinating method for 

calculation of the MAEED problem 

1. Values of all coefficients are given and the number of iterations of the second (L) and 

first level ( , 1,mk m M ) are given. 

2. Initial values of the coordinating variables , 1,l
m m M  are guessed, l=1 

3. Initial values of the tie-lines active powers are guessed 

, , 1, , 1, ,m m

Tmj Tjm

k k
P P m M j M j m    

4. Calculation on the first level are done for every subsystem 1,m M  using Equation 

(7.23). 

5. The solutions of the first level  , 1, , 1,l
mn mP m M n N are checked according to the 

constraints (7.10) and are sent to the second level. 

6. On the second level 

i. Equations (7.14) and (7.24) are solved 

ii. Equations (7.15) and (7.25) are solved 

The gradient procedures (7.24) and (7.25) stop when the conditions 

1 2PTmj PTjme and e   are fulfilled respectively or the maximum number  of iterations 

, 1,mk m M is reached. 
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The solution of the second level l
TmjP  and l

TjmP   , 1, , 1, ,m M j M j m  are checked 

according to the constraints (7.11) and (7.12) 

7. Equations (7.16) and (7.27) are calculated. The gradient procedure (7.27) stops when 

the condition (7.28) is fulfilled. In this case the optimal solution for  , 1,m m M   is 

obtained and the corresponding to it optimal solutions of the problems on the first 

level are obtained. 

In the above algorithm for one-step of the gradient procedure for optimisation of 

m on the second level mk maximum number of iterations are performed to obtain the 

optimal solution of the MAEED sub-problem in the mth area. The value of mk can be 

different for each of the areas. 

The softwares SACEED_Casestudy1_Sequential.m  and 

SACEED_Casestudy2_Sequential.m  of the Lagrange’s algorithm for calculation 

of single area Combined Economic Emission Dispatch (CEED) problem is given 

in Appendix I. 

The softwares MAEED_Casestudy1_Parallel.m and 

MAEED_Casestudy2_Parallel.m of the Lagrange’s decomposition-coordinating 

algorithm for calculation of MAEED problem solution is given in Appendices H 

to J.  

7.5   Studies of the single area and multi-area CEED Problem solutions 

The proposed algorithm is tested on two benchmark models of single and multi-area 

power systems. They are:  

(i) Four area with forty generators in each area without considering of the 

transmission line losses 

(ii) Four area with three generators in each area with considering of the transmission 

line losses 

The two bench mark model are applied for two considered scenarios, they are: 

a) The whole power system is considered as a single area one prior to decompose 

the power system into multi-areas. 

b) The whole power system is decomposed into multi-areas with tie-line constraints. 

The flowchart of the Lagrange‘s decomposition-coordinating  algorithm for calculation 

of the MAEED problem  is given in Figure 7.5. 
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Figure 7. 5: Flowchart of the multi-area economic emission dispatch problem 
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7.5.1 Case study 1: 

In this case study, a four area system is used to investigate the effectiveness of the 

proposed Lagrange‘s algorithm. The fuel cost and emission data of the system are 

given in (Basu, 2011), (Basu, 2013) and in the Table 7.1. There are ten generators in 

each area with different fuel and emission characteristics and tie-line transfer limits, 

which are given in Table 7.1 and Table 7.2 respectively. The system has a total 

power demand of 10500 [MW]. The loads of the four area are subdivided into 15%, 

40%, 30% and 15% of the total power demand. The transmission cost is neglected in 

the process of problem solution since it is normally small as compared with the total 

fuel cost.  

Table 7.1: Multi-area combined economic emission dispatch problem data for the four-area 

forty-generator system 

Genmn Pmn,min Pmn,max amn bmn cmn dmn emn fmn 

1 36 114 0.0069 6.73 94.705 0.048 −2.22 60 

2 36 114 0.0069 6.73 94.705 0.048 −2.22 60 

3 60 120 0.02028 7.07 309.54 0.0762 −2.36 100 

4 80 190 0.00942 8.18 369.03 0.054 −3.14 120 

5 47 97 0.0114 5.35 148.89 0.085 −1.89 50 

6 68 140 0.01142 8.05 222.33 0.0854 −3.08 80 

7 110 300 0.00357 8.03 287.71 0.0242 −3.06 100 

8 135 300 0.00492 6.99 391.98 0.031 −2.32 130 

9 135 300 0.00573 6.6 455.76 0.0335 −2.11 150 

10 130 300 0.00605 12.9 722.82 0.425 −4.34 280 

11 94 375 0.00515 12.9 635.2 0.0322 −4.34 220 

12 94 375 0.00569 12.8 654.69 0.0338 −4.28 225 

13 125 500 0.00421 12.5 913.4 0.0296 −4.18 300 

14 125 500 0.00752 8.84 1760.4 0.0512 −3.34 520 

15 125 500 0.00752 8.84 1760.4 0.0496 −3.55 510 

16 125 500 0.00752 8.84 1760.4 0.0496 −3.55 510 

17 220 500 0.00313 7.97 647.85 0.0151 −2.68 220 

18 220 500 0.00313 7.95 649.69 0.0151 −2.66 222 

19 242 550 0.00313 7.97 647.83 0.0151 −2.68 220 

20 242 550 0.00313 7.97 647.81 0.0151 −2.68 220 

21 254 550 0.00298 6.63 785.96 0.0145 −2.22 290 

22 254 550 0.00298 6.63 785.96 0.0145 −2.22 285 

23 254 550 0.00284 6.66 794.53 0.0138 −2.26 295 

24 254 550 0.00284 6.66 794.53 0.0138 −2.26 295 
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25 254 550 0.00277 7.1 801.32 0.0132 −2.42 310 

26 254 550 0.00277 7.1 801.32 0.0132 −2.42 310 

27 10 150 0.52124 3.33 1055.1 1.842 -1.11 360 

28 10 150 0.52124 3.33 1055.1 1.842 −1.11 360 

29 10 150 0.52124 3.33 1055.1 1.842 −1.11 360 

30 47 97 0.0114 5.35 148.89 0.085 −1.89 50 

31 60 190 0.0016 6.43 222.92 0.0121 −2.08 80 

32 60 190 0.0016 6.43 222.92 0.0121 −2.08 80 

33 60 190 0.0016 6.43 222.92 0.0121 −2.08 80 

34 90 200 0.0001 8.95 107.87 0.0012 −3.48 65 

35 90 200 0.0001 8.62 116.58 0.0012 −3.24 70 

36 90 200 0.0001 8.62 116.58 0.0012 −3.24 70 

37 25 110 0.0161 5.88 307.45 0.095 −1.98 100 

38 25 110 0.0161 5.88 307.45 0.095 −1.98 100 

39 25 110 0.0161 5.88 307.45 0.095 −1.98 100 

40 242 550 0.00313 7.97 647.83 0.0151 −2.68 220 

 

 

Table 7.2: Four area- forty generator tie-line transfer limits adopted from (Basu, 2013) 

Tie-line PTmin PTmax 

PT1,2 100 200 

PT1,3 100 200 

PT1,4 50 100 

PT2,3 100 200 

PT2,4 50 100 

PT3,4 50 100 

  

7.5.2 Results of the solution of the single area 40 generator power system without 
considering transmission line losses 

The whole power system is considered as a single area prior to decompose the 

Power System (PS) into multi-area. The multi-area power system data are given in 

Table 7.1. The single area CEED problem with 40 generator and neglecting 

transmission line losses is considered. The initial lambda is assumed as 4 and 

maximum number of iteration is set for 10000. The single area economic dispatch 

problem is solved using Min-Max, Max-Max, Min-Min and Max-Min penalty factors for 

different power demands from 8000 to 10500 [MW] in a sequential way. The single 

area CEED problem solution of the generator active powers, fuel cost, emission, 

CEED fuel cost and computation time based on Min-Max penalty factor method is 

given in Table 7.3. 
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Table 7. 3: Results from the single area CEED problem solution using Min-Max penalty factor (prior to decompose the PS into multi-area system) 

PD Lambda P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20 P21 P22 

[MW] [MW] [MW] [MW] [MW] [MW] [MW] [MW] [MW] [MW] [MW] [MW] [MW] [MW] [MW] [MW] [MW] [MW] [MW] [MW] [MW] [MW] [MW] 

8000 17.02 114.00 114.00 68.74 113.43 97.00 84.35 232.82 232.33 233.26 130.00 136.80 133.86 182.02 219.01 219.44 219.44 329.42 330.54 359.19 359.19 427.55 427.14 

8500 17.81 114.00 114.00 73.23 121.43 97.00 90.44 248.43 248.19 249.02 130.00 152.72 149.70 204.33 238.06 238.33 238.33 351.70 352.92 384.22 384.22 455.32 454.89 

9000 18.62 114.00 114.00 77.88 129.70 97.00 96.75 264.59 264.60 265.34 130.00 169.20 166.09 227.41 257.78 257.88 257.88 374.75 376.07 410.11 410.12 484.06 483.60 

9500 19.44 114.00 114.00 82.55 138.04 97.00 103.09 280.86 281.12 281.77 130.00 185.79 182.60 250.65 277.63 277.56 277.56 397.95 399.38 436.19 436.19 513.00 512.50 

10000 20.28 114.00 114.00 87.35 146.57 97.00 109.60 297.53 298.05 298.60 130.00 202.79 199.51 274.47 297.97 297.73 297.73 421.73 423.27 462.91 462.91 542.65 542.12 

10500 21.49 114.00 114.00 94.25 158.86 97.00 118.95 300.00 300.00 300.00 130.00 227.25 223.85 308.74 327.24 326.75 326.75 455.94 457.64 501.35 501.35 550.00 550.00 

                        

Continuation of Table 7.3 

PD P23 P24 P25 P26 P27 P28 P29 P30 P31 P32 P33 P34 P35 P36 P37 P38 P39 P40 FC ET FT Number 
of 

iterations 

Computation 
Time 

[MW] [MW] [MW] [MW] [MW] [MW] [MW] [MW] [MW] [MW] [MW] [MW] [MW] [MW] [MW] [MW] [MW] [MW] [MW] [$/h] [t/h] [$/h] [s] 

8000 428.93 428.93 402.69 402.69 12.00 12.00 12.00 97.00 168.16 168.16 168.16 90.00 90.00 90.00 102.19 102.19 102.19 359.19 94020.87 41510.21 118657.88 17 0.0121 

8500 456.50 456.50 428.67 428.67 12.69 12.69 12.69 97.00 174.43 174.43 174.43 90.00 90.00 90.00 108.87 108.87 108.87 384.22 99211.84 46738.68 127364.86 17 0.0123 

9000 485.03 485.03 455.54 455.54 13.40 13.40 13.40 97.00 180.91 180.91 180.91 90.00 90.00 90.00 110.00 110.00 110.00 410.11 104507.57 52309.74 136470.61 18 0.0128 

9500 513.75 513.75 482.61 482.61 14.12 14.12 14.12 97.00 187.44 187.44 187.44 90.00 90.00 90.00 110.00 110.00 110.00 436.19 109894.93 58339.47 145985.64 18 0.0130 

10000 543.19 543.19 510.34 510.34 14.85 14.85 14.85 97.00 190.00 190.00 190.00 90.00 90.00 90.00 110.00 110.00 110.00 462.91 115419.60 64991.51 155913.27 19 0.0149 

10500 550.00 550.00 550.00 550.00 15.91 15.91 15.91 97.00 190.00 190.00 190.00 90.00 90.00 90.00 110.00 110.00 110.00 501.35 121365.32 72403.47 166336.67 35 0.0150 

The single area CEED problem solution of the 40 generator active powers, fuel cost, emission and CEED fuel cost values based on Max-Max 

penalty factor method is given in Table 7.4.  

Table 7. 4: Results from the single area CEED problem solution using Max-Max penalty factor (prior to decompose the PS into multi-area system) 

PD Lambda P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20 P21 P22 

[MW] [MW] [MW] [MW] [MW] [MW] [MW] [MW] [MW] [MW] [MW] [MW] [MW] [MW] [MW] [MW] [MW] [MW] [MW] [MW] [MW] [MW] [MW] 

8000 25.27 103.81 103.81 77.74 118.61 97.00 92.43 209.83 233.07 235.98 130.00 151.92 149.28 198.66 218.25 218.82 218.82 335.56 336.61 364.48 364.48 435.10 434.64 

8500 26.79 110.51 110.51 83.11 126.80 97.00 99.13 223.04 249.60 252.88 130.00 162.87 160.35 214.57 235.87 236.25 236.25 357.87 359.04 389.40 389.40 464.94 464.44 

9000 28.32 114.00 114.00 88.54 135.10 97.00 105.91 236.43 266.35 270.00 130.00 173.97 171.56 230.69 253.73 253.91 253.91 380.47 381.76 414.65 414.65 495.17 494.63 

9500 29.86 114.00 114.00 93.99 143.42 97.00 112.72 249.86 283.14 287.17 135.69 185.10 182.81 246.86 271.64 271.61 271.61 403.13 404.55 439.96 439.96 525.48 524.91 
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10000 31.55 114.00 114.00 99.97 152.56 97.00 120.19 264.61 300.00 300.00 148.75 197.32 195.17 264.62 291.31 291.07 291.07 428.03 429.58 467.78 467.78 550.00 550.00 

10500 34.09 114.00 114.00 108.98 166.32 97.00 131.45 286.81 300.00 300.00 168.41 215.73 213.77 291.36 320.92 320.35 320.35 465.51 467.27 509.65 509.65 550.00 550.00 

                        

Continuation of Table 7.4 

PD P23 P24 P25 P26 P27 P28 P29 P30 P31 P32 P33 P34 P35 P36 P37 P38 P39 P40 FC ET FT Number 
of 

iterations 

Computation 
Time 

[MW] [MW] [MW] [MW] [MW] [MW] [MW] [MW] [MW] [MW] [MW] [MW] [MW] [MW] [MW] [MW] [MW] [MW] [MW] [$/h] [t/h] [$/h] [s] 

8000 436.64 436.64 414.11 414.11 10.05 10.05 10.05 97.00 147.40 147.40 147.40 90.00 90.00 90.00 88.59 88.59 88.59 364.48 94434.07 41393.31 147768.77 41 0.0151 

8500 466.23 466.23 441.74 441.74 10.74 10.74 10.74 97.00 152.41 152.41 152.41 90.00 90.00 90.00 94.80 94.80 94.80 389.40 99532.04 46675.59 160784.36 41 0.0156 

9000 496.21 496.21 469.73 469.73 11.43 11.43 11.43 97.00 157.49 157.49 157.49 90.00 90.00 90.00 101.09 101.09 101.09 414.65 104726.81 52429.09 174559.20 42 0.0157 

9500 526.27 526.27 497.80 497.80 12.12 12.12 12.12 97.00 162.58 162.58 162.58 90.00 90.00 90.00 107.40 107.40 107.40 439.96 110043.89 59212.07 189106.79 42 0.0158 

10000 550.00 550.00 528.64 528.64 12.88 12.88 12.88 97.00 168.17 168.17 168.17 90.00 90.00 90.00 110.00 110.00 110.00 467.78 115532.36 67169.37 204428.11 60 0.0179 

10500 550.00 550.00 550.00 550.00 14.03 14.03 14.03 97.00 176.59 176.59 176.59 90.00 90.00 90.00 110.00 110.00 110.00 509.65 121425.58 76610.17 220809.06 75 0.0191 

The single area CEED problem solution of the 40 generator active powers, fuel cost, emission and CEED fuel cost values based on Min-Min 

penalty factor method is given in Table 7.5.  

Table 7.5: Results from the single area CEED problem solution using Min-Min penalty factor (prior to decompose the PS into multi-area system) 

PD Lambda P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20 P21 P22 

[MW] [MW] [MW] [MW] [MW] [MW] [MW] [MW] [MW] [MW] [MW] [MW] [MW] [MW] [MW] [MW] [MW] [MW] [MW] [MW] [MW] [MW] [MW] 

8000 61.54 91.32 91.32 110.13 122.59 97.00 114.18 113.64 261.96 284.35 156.73 105.05 108.01 146.86 180.32 178.00 178.00 330.08 333.92 369.04 369.04 520.52 517.33 

8500 66.49 97.52 97.52 118.84 131.36 97.00 123.15 118.35 282.49 300.00 172.19 108.95 112.62 154.65 194.33 191.51 191.51 352.63 356.88 395.23 395.23 550.00 550.00 

9000 74.61 107.67 107.67 120.00 145.73 97.00 137.84 126.05 300.00 300.00 197.50 115.32 120.17 167.42 217.28 213.63 213.63 389.56 394.48 438.12 438.12 550.00 550.00 

9500 85.20 114.00 114.00 120.00 164.48 97.00 140.00 136.12 300.00 300.00 230.56 123.64 130.02 184.09 247.25 242.50 242.50 437.78 443.58 494.12 494.13 550.00 550.00 

10000 97.15 114.00 114.00 120.00 185.64 97.00 140.00 147.47 300.00 300.00 267.86 133.03 141.15 202.90 281.05 275.09 275.09 492.18 498.97 550.00 550.00 550.00 550.00 

10500 133.21 114.00 114.00 120.00 190.00 97.00 140.00 181.74 300.00 300.00 300.00 161.35 174.71 259.66 383.07 373.41 373.41 500.00 500.00 550.00 550.00 550.00 550.00 

                        

Continuation of Table 7.5 

PD P23 P24 P25 P26 P27 P28 P29 P30 P31 P32 P33 P34 P35 P36 P37 P38 P39 P40 FC ET FT Number 
of 

iterations 

Computation 
Time 

[MW] [MW] [MW] [MW] [MW] [MW] [MW] [MW] [MW] [MW] [MW] [MW] [MW] [MW] [MW] [MW] [MW] [MW] [MW] [$/h] [t/h] [$/h] [s] 

8000 513.05 513.05 477.20 477.20 10.00 10.00 10.00 97.00 81.38 81.38 81.38 90.00 90.00 90.00 76.64 76.64 76.64 369.04 94337.69 47322.89 286458.85 142 0.0334 
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8500 550.00 550.00 512.61 512.61 10.00 10.00 10.00 97.00 80.96 80.96 80.96 90.00 90.00 90.00 82.57 82.57 82.57 395.23 99496.73 54923.78 318410.07 194 0.0353 

9000 550.00 550.00 550.00 550.00 10.00 10.00 10.00 97.00 80.29 80.29 80.29 90.00 90.00 90.00 92.28 92.28 92.28 438.12 104909.47 64177.35 353539.32 275 0.0442 

9500 550.00 550.00 550.00 550.00 10.00 10.00 10.00 97.00 79.40 79.40 79.40 90.00 90.00 90.00 104.96 104.96 104.96 494.12 110602.38 75891.80 393445.51 311 0.0509 

10000 550.00 550.00 550.00 550.00 10.78 10.78 10.78 97.00 78.41 78.41 78.41 90.00 90.00 90.00 110.00 110.00 110.00 550.00 116597.20 90298.30 438864.19 486 0.1018 

10500 550.00 550.00 550.00 550.00 14.82 14.82 14.82 97.00 75.40 75.40 75.40 90.00 90.00 90.00 110.00 110.00 110.00 550.00 123555.26 108481.51 495814.76 1070 0.1999 

The single area CEED problem solution of the 40 generator active powers, fuel cost, emission and CEED fuel cost values of the Max-Min 

penalty factor method is given in Table 7.6.  

Table 7.6: Results from the single area CEED problem solution using Max-Min penalty factor (prior to decompose the PS into multi-area system) 

PD Lambda P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20 P21 P22 

[MW] [MW] [MW] [MW] [MW] [MW] [MW] [MW] [MW] [MW] [MW] [MW] [MW] [MW] [MW] [MW] [MW] [MW] [MW] [MW] [MW] [MW] [MW] 

8000 119.63 74.91 74.91 120.00 124.77 97.00 125.43 110.00 268.45 295.25 170.45 94.00 94.00 125.00 151.27 149.97 149.97 330.80 334.79 364.85 364.85 545.95 542.49 

8500 135.16 82.05 82.05 120.00 138.17 97.00 140.00 111.85 300.00 300.00 194.53 96.73 98.11 130.59 167.98 166.06 166.06 364.64 369.27 403.45 403.45 550.00 550.00 

9000 158.84 92.94 92.94 120.00 158.60 97.00 140.00 120.93 300.00 300.00 231.23 102.45 104.88 142.23 193.45 190.58 190.58 416.22 421.83 462.28 462.28 550.00 550.00 

9500 182.51 103.83 103.83 120.00 179.02 97.00 140.00 130.02 300.00 300.00 267.92 108.16 111.65 153.86 218.91 215.10 215.10 467.80 474.39 521.11 521.12 550.00 550.00 

10000 239.92 114.00 114.00 120.00 190.00 97.00 140.00 152.06 300.00 300.00 300.00 122.02 128.07 182.07 280.67 274.56 274.56 500.00 500.00 550.00 550.00 550.00 550.00 

10500 352.35 114.00 114.00 120.00 190.00 97.00 140.00 195.21 300.00 300.00 300.00 149.15 160.23 237.32 401.61 391.00 391.00 500.00 500.00 550.00 550.00 550.00 550.00 

                        

Continuation of Table 7.6 

PD P23 P24 P25 P26 P27 P28 P29 P30 P31 P32 P33 P34 P35 P36 P37 P38 P39 P40 FC ET FT Number 
of 

iterations 

Computation 
Time 

[MW] [MW] [MW] [MW] [MW] [MW] [MW] [MW] [MW] [MW] [MW] [MW] [MW] [MW] [MW] [MW] [MW] [MW] [MW] [$/h] [t/h] [$/h] [s] 

8000 539.72 539.72 501.77 501.77 10.00 10.00 10.00 97.00 82.10 82.10 82.10 90.00 90.00 90.00 66.59 66.59 66.59 364.85 94218.02 49763.14 546714.48 316 0.0403 

8500 550.00 550.00 550.00 550.00 10.00 10.00 10.00 97.00 81.57 81.57 81.57 90.00 90.00 90.00 74.28 74.28 74.28 403.45 99443.08 58477.22 610074.94 620 0.0780 

9000 550.00 550.00 550.00 550.00 10.00 10.00 10.00 97.00 80.76 80.76 80.76 90.00 90.00 90.00 86.01 86.01 86.01 462.28 104932.26 69792.09 683574.27 678 0.1012 

9500 550.00 550.00 550.00 550.00 10.00 10.00 10.00 97.00 79.95 79.95 79.95 90.00 90.00 90.00 97.73 97.73 97.73 521.11 110591.53 83078.13 768910.56 694 0.1122 

10000 550.00 550.00 550.00 550.00 10.00 10.00 10.00 97.00 78.00 78.00 78.00 90.00 90.00 90.00 110.00 110.00 110.00 550.00 116614.87 97740.12 869466.81 2858 0.4939 

10500 550.00 550.00 550.00 550.00 10.00 10.00 10.00 97.00 74.16 74.16 74.16 90.00 90.00 90.00 110.00 110.00 110.00 550.00 123492.31 109405.10 1017533.79 3099 0.5359 

Figure 7.6 shows the comparison of the 40 generator single area CEED problem solution based on Min-Max, Max-Max, Min-Min and Max-Min 

penalty factors. 
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Figure 7.6: Criteria cost functions and computation time of the 40 generator single area economic emission dispatch problem solutions 
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7.5.3  Discussion on the results for Single area CEED problem solution 

The 40 generator single area economic emission problem is solved for the 

considered four types of penalty factors Min-Max, Max-Max, Min-Min, and Max-Min 

and for the various power demands from 8000 to 10500 [MW]. The results are given 

in Table 7.3, 7.4, 7.5 and 7.6 respectively. Single area CEED problem solutions: fuel 

cost, emission, CEED fuel cost and computation time is less for the Min-Max penalty 

factor in comparison with Max-Max, Min-Min, and Max-Min penalty factors and is 

given in Figure 7.6. 

(i) For 10500 MW power demand, The CEED fuel cost value for Min-Max penalty 

factor is 166336.67 $/hr (Table 7.3) with a computation time of 0.0150 seconds.  

(ii) For the same power demand (10500 MW), The CEED fuel cost value for Max-

Min penalty factor is  1017533.79 $/hr (Table 7.6) with a computation time of 

0.5359 seconds. 

By comparing the Single area CEED fuel cost and computation time of (i) and (ii) 

results to the deviation of 143.79 % and  189.10 % respectively. It is clear that Min-

Max penalty factor provides 43.79 % less CEED fuel cost and 89.10 % less 

computation time in comparsion with Max – Min penalty factor. 

7.5.4 Results of the solution of the four area 40  generator MAEED problem 

The initial lambda of each area is assumed as [4 4 4 4], maximum number of 

iterations is set to 10000. The whole power system is decomposed into a multi-area 

with considering the tie-line constraints. The multi-area economic emission dispatch 

problem is solved based on the different types of penalty factors: Min-Max, Max-Max, 

Min-Min and Max-Min in a task-parallel way. 10 generators are assigned to individual 

workers using Matlab Distributed Computing Engine (MDCE). Each area has 10 

generators. The generator active powers, fuel cost, emission, tie-line powers, and 

computation time of the MAEED problem solution based on Min-Max penalty factor is 

given in Table 7.7.  
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Table 7. 7: Results from the four area – forty generator MAEED problem solution using Min-Max price penalty factor 

Worker 
Name 

Area 
Number 

Area 
PD 

[MW] 
Lambda Generator real power values in [MW] FC [$/h] ET [ton/h] FT [$/h] 

Tie-
line 

power 
[MW] 

Number 
of 

Iterations 

Computation 
Time [s] 

Mat32-
wrk1 

1 1575 
16.53 

114.00 114.00 65.94 108.45 94.31 80.55 223.09 222.45 223.43 130.00 14999.37 12584.38 19409.15 
-89.20 

3010 102.25 

Mat32-
wrk2 

2 4200 
23.55 

269.09 265.49 367.36 377.32 376.40 376.40 500.00 500.00 550.00 550.00 56258.71 36514.40 74802.25 
-95.88 

Mat32-
wrk3 

3 3150 
19.37 

510.65 510.15 511.42 511.42 480.40 480.40 14.06 14.06 14.06 97.00 33871.94 18539.92 47533.92 
-13.70 

Mat32-
wrk4 

4 1575 
18.61 

180.84 180.84 180.84 90.00 90.00 90.00 110.00 110.00 110.00 409.82 14901.53 4389.24 20272.87 
59.86 

Total 10500  120031.55 72027.94 162018.18 
-38.60 

29.62 

 

The generator active powers, fuel cost, emission, tie-line powers, and computation time of the MAEED problem based on Max-Max penalty 

factor is given in Table 7.8 

 

Table 7. 8: Results from the four area – forty generator MAEED problem solution using Max-Max price penalty factor 

Worker 
Name 

Area 
Number 

Area 
PD 

[MW] 
Lambda Generator real power values in [MW] FC [$/h] ET [ton/h] FT [$/h] 

Tie-line 
power 
[MW] 

Number 
of 

Iterations 

Computation 
Time [s] 

Mat32-
wrk1 

1 1575 26.77 110.44 110.44 83.05 126.71 97.00 99.05 222.90 249.42 252.69 130.00 16032.35 13852.85 27217.69 56.97 

3765 132.13 

Mat32-
wrk2 

2 4200 43.12 281.09 279.83 386.32 426.08 424.35 424.35 500.00 500.00 550.00 550.00 59123.69 42533.18 109912.01 -45.83 

Mat32-
wrk3 

3 3150 29.31 514.74 514.18 515.62 515.62 487.85 487.85 11.88 11.88 11.88 97.00 34066.52 18591.71 62334.97 -104.44 

Mat32-
wrk4 

4 1575 30.27 163.93 163.93 163.93 90.00 90.00 90.00 109.08 109.08 109.08 446.71 14914.37 4609.26 26608.50 32.10 

Total 10500  
124136.94 79587.00 226073.18 

32.96 

32.22 
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The generator active powers, fuel cost, emission, tie-line powers, and computation time of the MAEED problem based on Max-Max penalty 

factor is given in Table 7.9 

Table 7. 9: Results from the four area – forty generator MAEED problem solution using Min-Min price penalty factor 

Worker 
Name 

Area 
Number 

Area 
PD 

[MW] 
Lambda Generator real power values in [MW] FC [$/h] ET [ton/h] FT [$/h] 

Tie-line 
power 
[MW] 

Number 
of 

Iterations 

Computation 
Time [s] 

Mat32-
wrk1 

1 1575 
74.31 107.29 107.29 120.00 145.19 97.00 137.30 125.77 300.00 300.00 196.57 

18045.24 25100.89 61115.63 
2.0305 

4132 161.13 

Mat32-
wrk2 

2 4200 
165.68 

186.85 204.92 310.75 474.91 461.92 461.92 500.00 500.00 550.00 550.00 57276.39 44497.2 278567.6 
83.534 

Mat32-
wrk3 

3 3150 
62.70 

529.98 526.72 522.24 522.24 485.49 485.49 10.00 10.00 10.00 97.00 34335.11 18840.1 113211.2 
-24.22 

Mat32-
wrk4 

4 1575 
85.56 99.37 105.37 79.37 120.23 132.35 106.23 115.39 105.39 135.39 496.03 

13620 4756.795 57285.41 
10.153 

Total 10500  
123276.7 93194.99 510179.9 

-10.91 

-44.54 

 

The generator active powers, fuel cost, emission, tie-line powers, and computation time of the MAEED problem based on Max-Max penalty 

factor is given in Table 7.10 

Table 7. 10: Results from the four area – forty generator MAEED problem solution using Max-Min price penalty factor 

Worker 
Name 

Area 
Number 

Area 
PD 

[MW] 
Lambda Generator real power values in [MW] FC [$/h] ET [ton/h] FT [$/h] 

Tie-line 
power 
[MW] 

Number 
of 

Iterations 

Computation 
Time [s] 

Mat32-
wrk1 

1 1575 96.48 64.26 64.26 105.16 104.79 97.00 103.07 110.00 220.82 241.06 134.57 14004.53 12811.98 62072.33 -96.00 

4557 193.08 

Mat32-
wrk2 

2 4200 408.44 162.69 176.27 264.88 461.96 449.10 449.10 500.00 500.00 550.00 550.00 55199.82 41848.56 574342.46 -94.00 

Mat32-
wrk3 

3 3150 107.96 497.28 494.18 492.23 492.23 459.05 459.05 10.00 10.00 10.00 97.00 32616.81 16779.97 204545.12 -140.00 

Mat32-
wrk4 

4 1575 188.15 79.76 79.76 79.76 90.00 90.00 90.00 100.53 100.53 100.53 535.14 13931.41 5003.97 119769.39 7.00 

Total 10500   115752.57 76444.47 960729.30 
-47.00 

-42.00 
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Figure 7.7 shows the fuel cost, emission and CEED fuel cost of the four area forty generator MAEED problem solution using various price 
penalty factors. 
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Where PD1, PD2, PD3, and PD4 are the power demands of the area 1 to 4 respectively. 

Figure 7. 7: Comparison of the criterion function values of the four area forty generator MAEED problem solution using various price 

penalty factors.



218 

 

The comparison of the single area CEED and multi-area CEED problem solutions 

obtained by the developed Lagrange‘s and by the Differential Evolution adopted from 

the reference paper (Basu,2011) is given in Table 7.11. 

 

Table 7.11: Comparison of the single area CEED and the multi-area CEED problem 

solutions obtained by the developed Lagrange’s algorithm with the 

Differential Evolution (DE) solution adopted from (Basu, 2011) 

Single area CEED problem solution for PD 10500 
[MW] using developed Lagrange's method 

Multi-area CEED problem solution using 
developed Lagrange's decomposition-

coordinating technique 

DE solution based on 
Max-Max penalty factor 

for PD 10500 [MW] 
adopted from 
(Basu,2011) 

Penalty 
factor/ 
Criteria 

FC in [$/hr] ET in [t/hr] FT in [$/hr] 
Penalty 
factor/ 
Criteria 

FC in [$/hr] ET in [t/hr] FT in [$/hr] 
FC in 
[$/hr]  
(x10

5
) 

ET in 
[t/hr] 

 (x10
4
) 

FT in 
[$/hr] 

Min-
Max 

121365.32 72403.47 166336.67 
Min-
Max 

120031.55 72027.94 162018.18 

1.2184 3.7479 ------ 

Max-
Max 

121425.58 76610.17 220809.06 
Max-
Max 

124136.94 79587 226073.18 

Min-
Min 

123555.26 108481.51 495814.76 
Min-
Min 

123276.7 93194.99 510179.9 

Max-
Min 

123492.31 109405.1 1017533.79 
Max-
Min 

115752.57 76444.47 960729.3 

 

7.5.5  Discussion on the results of the 40 generator MAEED problem solution 

The 40 generator multi-area economic emission problem is solved for the considered 

four types of penalty factors: Min-Max, Max-Max, Min-Min, and Max-Min. The results 

are given in Table 7.7, 7.8, 7.9 and 7.10 respectively. The forty-generator MAEED 

problem has four areas and each area has considered power demands of 1575, 

4200, 3150 and 1575 [MW] respectively. The MAEED problem solutions: fuel cost, 

emission, CEED fuel cost and computation time is less for the Min-Max penalty factor  

in comparison with the other types of penalty factors and is given in Figure 7.7. The 

comparison of the single area CEED and MAEED solutions are given in Table 7.11. It 

is proved that MAEED solution is better in comparison with the single area CEED 

solutions based on Min-Max penalty factor. It is proved that Lagrange's 

decomposition-coordinating method provide better solution in comparison with the 

differential evolution solutions adopted from the reference paper (Basu, 2011) and is 

given in Table 7.11 

 

7.6 Case study 2 

In this case study, a four area- three generator system is used to investigate the 

effectiveness of the proposed Lagrange‘s algorithm. The fuel cost and emission data 

of the system are given in (Chen and Wang, 2010). There are three generators in 
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each area with different fuel and emission characteristics and tie-line transfer limits, 

which are given in Table 7.12 and Table 7.13 respectively. The area power demands 

are 500, 410, 580 and 600 MW respectively. The transmission loss coefficient is 

given in Table 7.14.  

Table 7. 12: Multi-area economic emission dispatch data of a four-area three generator system 

Genmn amn bmn cmn dmn emn fmn Pmn,min Pmn,max 

G1,1 0.03546 38.30553 1243.5311 0.00683 -0.54551 40.2669 35 210 

G1,2 0.02111 36.32782 1658.5696 0.00461 -0.5116 42.89553 130 325 

G1,3 0.01799 38.27041 1356.6592 0.00461 -0.5116 42.89553 125 315 

G2,1 0.15247 38.53973 756.7989 0.00484 -0.32767 33.85932 10 150 

G2,2 0.02803 40.39655 449.9977 0.00754 -0.54551 50.63931 35 110 

G2,3 0.14834 38.34001 558.5696 0.00661 -0.63262 45.83267 125 215 

G3,1 0.10587 46.15916 451.3251 0.00914 -0.43211 48.2156 15 175 

G3,2 0.07505 43.83562 673.0267 0.00533 -0.61173 52.4521 30 215 

G3,3 0.11934 50.63211 530.7199 0.00674 -0.49731 41.1042 50 335 

G4,1 0.10587 46.15916 851.3251 0.00728 -0.6821 30.3632 15 175 

G4,2 0.13552 41.03782 1038.533 0.00479 -0.5066 25.1765 30 215 

G4,3 0.08963 33.56211 1285.907 0.00387 -0.4934 27.7549 50 335 

 
Table 7. 13: Four area- three generator systems tie-line transfer limits 

Tie-line PTmin PTmax 

PT1,2 5 60 

PT1,3 5 50 

PT1,4 5 60 

PT2,3 5 60 

PT2,4 5 50 

PT3,4 5 60 

 
Table 7.14: Transmission loss coefficients of the four areas – three-generator system 

Area 1 
Bmn 

0.000071 0.00003 0.000025 

Area 2 
Bmn 

0.000056 0.000045 0.000015 

0.00003 0.000069 0.000032 0.000023 0.000042 0.000047 

0.000025 0.000032 0.00008 0.000032 0.000023 0.000027 

Area 3 
Bmn 

0.00002 0.000028 0.000053 

Area 4 
Bmn 

0.000074 0.00003 0.000025 

0.000086 0.000034 0.000016 0.000049 0.000069 0.000037 

0.000053 0.000016 0.000028 0.000022 0.000032 0.000083 

 

7.6.1  Results from the solution of the four-area three-generator MAEED problem 

The initial lambda is taken as [50 50 50 50], Maximum Number of Iterations is set to 

50000 and the initial tie-line values are given in Table 7.15. 
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  Table 7.15: Initial tie-line values 

PT12 PT13 PT14 PT23 PT24 PT34 

15 10 08 11 13 09 

Case a) The whole power system is considered as a single area one.  

The single area CEED problem is solved using the two considered price penalty 

factors Min-Max and Max-Max and the solutions are given in Tables 7.16 and 7.17 

respectively. 

Table 7.16: Results from the solution of the single area CEED problem using Min-Max penalty 

factor 

PD 

[MW] 
Lambda 

P1 

[MW] 

P2 

[MW] 

P3 

[MW] 

P4 

[MW] 

P5 

[MW] 

P6 

[MW] 

P7 

[MW] 

P8 

[MW] 

1500 74.8297 144.6437 184.5802 174.6660 95.0039 110.0000 125.0000 103.5183 137.0107 

1600 78.2715 154.1122 195.6567 185.3639 103.1093 110.0000 125.0000 115.1357 149.2558 

1700 81.7491 163.3826 206.5893 195.8833 111.2989 110.0000 125.0000 126.8738 161.6282 

1800 85.2627 172.4497 217.3744 206.2198 119.5735 110.0000 125.0000 138.7337 174.1289 

1900 88.8127 181.3080 228.0079 216.3687 127.9336 110.0000 125.0000 150.7162 186.7590 

2000 92.3993 189.9519 238.4859 226.3253 136.3801 110.0000 125.0000 162.8225 199.5195 

2090 95.6588 197.5435 247.7799 235.1179 144.0563 110.0000 125.0000 173.8247 211.1162 

 

Continuation of Table 7.16 

P9 

[MW] 

P10 

[MW] 

P11 

[MW] 

P12 

[MW] 

PL 

[MW] 

FC 

[$/h] 

ET 

[kg/h] 

FT 

[$/h] 

Number 
of 

Iterations 

CT 

[S] 

86.4669 95.9171 97.3629 177.4651 31.6360 86784.6361 836.1476 99677.7605 466 0.1064 

97.5521 104.9239 105.2306 190.5813 35.9225 93203.6025 941.9621 107353.5833 474 0.1113 

108.7525 114.0243 113.1800 203.8339 40.4480 99833.4259 1060.7157 115377.2307 482 0.1130 

120.0690 123.2191 121.2119 217.2239 45.2049 106678.3314 1192.5218 123752.7137 489 0.1149 

131.5027 132.5090 129.3269 230.7525 50.1856 113742.6299 1337.4971 132484.1385 497 0.1151 

143.0544 141.8949 137.5256 244.4208 55.3819 121030.7035 1495.7616 141575.6908 504 0.1181 

153.5526 150.4247 144.9767 256.8424 60.2359 127784.9874 1649.6639 150069.5359 510 0.1214 
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Table 7. 17: Results from the solution of the single area CEED problem using Max-Max penalty 

factor 

PD 
[MW] 

Lambda 
P1 

[MW] 
P2 

[MW] 
P3 

[MW] 
P4 

[MW] 
P5 

[MW] 
P6 

[MW] 
P7 

[MW] 
P8 

[MW] 

1500 121.0343 128.7165 210.0978 200.5613 87.8812 110.0000 125.0000 89.3108 124.9901 

1600 130.7660 138.5650 226.8030 216.3931 95.1668 110.0000 125.0000 98.4578 134.5827 

1700 140.6301 148.2814 243.3431 232.0117 102.5514 110.0000 125.0000 107.7293 144.3058 

1800 150.5519 157.7877 259.5875 247.2931 109.9793 110.0000 125.7746 117.0551 154.0858 

1900 159.9389 166.5378 274.5996 261.3609 117.0068 110.0000 133.2372 125.8782 163.3386 

2000 169.4371 175.1532 289.4416 275.2152 124.1175 110.0000 140.7883 134.8058 172.7010 

2090 178.0816 182.7879 302.6497 287.4964 130.5891 110.0000 147.6606 142.9309 181.2219 

Continuation of Table 7.17 

P9 
[MW] 

P10 
[MW] 

P11 
[MW] 

P12 
[MW] 

PL 

[MW] 

FC 

[$/h] 

ET 

[kg/h] 

FT 

[$/h] 

Number 

of  

Iterations 

CT 

[S] 

105.4409 89.1698 100.0139 162.7174 33.9008 86329.9525 847.3549 137468.8623 1295 0.3184 

116.2710 95.5106 106.9993 175.3830 39.1332 92524.7627 959.3179 150024.4970 1330 0.3299 

127.2483 101.9376 114.0797 188.2208 44.7100 98909.6131 1084.4083 163556.2147 1359 0.3634 

138.2900 108.4022 121.2015 201.1339 50.5916 105496.4226 1222.3621 178079.7865 1318 0.3658 

148.7364 114.5184 127.9394 213.3508 56.5051 112342.4129 1370.2609 193585.6293 1324 0.3755 

159.3066 120.7070 134.7572 225.7125 62.7069 119380.9954 1530.2694 210038.2157 1342 0.3791 

168.9267 126.3394 140.9621 236.9631 68.5286 125883.5243 1684.6603 225665.1721 1360 0.3836 

 

7.6.2   Discussion on the results of the four-area three-generator system 

The considered different power demand values given in Table 7.16 and 7.17 are used 

to solve the single area CEED problem using Min-Max and Max-Max penalty factors. 

The fuel cost and computation time are less in Min-Max penalty factor in comparison 

with the Max-Max one.  

Case b) The whole power system is decomposed into multi-area with tie-lines – 4 

areas with 3 generators in every area 

The multi-area economic dispatch problem is solved using different penalty factors 

Min-Max, Max-Max, Min-Min and Max-Min in a task-parallel way. The group of 
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generators in every area is assigned to individual workers using MDCE in order to 

optimise the generator real power values which are given in Table 7.18. The fuel cost 

and emission values of the MAEED problem are given in Table 7.19. The tie-line 

power flows and transmission loss values of the developed Lagrange‘s 

decomposition-coordinating algorithm are given in Table 7.20 and Table 7.21 

respectively. The comparison of the single area CEED and the MAEED solutions with 

that of the sequential way Particle Swarm Optimisation (PSO) adopted from (Chen 

and Wang, 2010) is given in Table 7.22 

Table 7. 18: Optimised real power generator values of four area three generator MAEED 

problem 

Name of the 
worker 

Pmn [MW] 
Type of Penalty factor 

Min-Max Max-Max Min-Min Max-Min 

mat32-wrk1 
 

P1,1 160.1381 131.45 158.03 119.91 

P1,2 194.7165 209.49 187.44 207.49 

P1,3 188.1241 202.25 185.21 203.07 

mat32-wrk2 
 

P2,1 150.00 150.00 150.00 150.000 

P2,2 110.00 110.00 110.00 110.000 

P2,3 208.48 191.63 180.82 180.80 

mat32-wrk3 

P3,1 175.00 175.00 175.00 175.000 

P3,2 215.00 215.00 215.00 215.000 

P3,3 244.77 236.38 222.42 222.27 

mat32-wrk4 

P4,1 175.00 164.09 175.00 175.00 

P4,2 173.62 180.20 215.00 215.00 

P4,3 302.44 306.18 242.23 242.07 

 

Table 7.19: Tie line power values of the four areas - three generator power system 

solution 

PTmn in [MW] PT12 PT13 PT14 PT23 PT24 PT34 

Min-Max 9.9964 9.9964 9.9964 9.9910 9.9910 9.9934 

Max-Max 9.9944 9.9944 9.9944 9.9881 9.9881 9.9876 

Min-Min 9.9994 9.9994 9.9944 9.9991 9.9991 9.9989 

Max-Min 9.9863 9.9863 9.9863 9.9853 9.9853 9.9243 

 

Table 7.20: Transmission power loss values of the four areas three generator power 

system solution 

Area 
PL [MW] 

Min-Max Max-Max Min-Min Max-Min 

1 12.98 13.22 11.20 13.40 

2 28.51 11.66 10.55 12.60 

3 24.76 16.41 17.45 20.32 

4 21.08 20.51 19.10 17.45 

Total 87.35 61.82 58.30 63.77 
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Table 7.21: Fuel cost and emission values for the four-area three-generator MAEED problem solution 

Area 

 

PD in 
[MW] 

 

Lambda FC in [$/hr] ET in [ton/hr] FT in [$/hr] 

Penalty factor's Penalty factor's Penalty factor's Penalty factor's 

Min-
Max 

Max-
Max 

Min-
Min 

Max-
Min 

Min-Max Max-Max Min-Min Max-Min 
Min-
Max 

Max-
Max 

Min-Min 
Max-
Min 

Min-Max Max-Max Min-Min Max-Min 

1 500 71.82 112.04 197.43 455.87 27012.55 26920.22 26454.31 26322.43 352.62 355.92 339.88 337.40 32762.54 42755.42 64451.78 130740.04 

2 410 184.72 240.95 287.79 490.61 30200.67 28554.97 27542.57 27540.73 342.82 376.72 323.04 323.00 40422.52 55923.87 50998.70 101065.72 

3 580 130.74 249.14 370.93 2526.10 45409.29 44506.54 43035.10 43019.71 719.99 742.93 683.75 683.75 50353.61 84539.67 85416.68 415271.82 

4 600 115.66 248.56 437.84 2614.02 44055.88 44076.47 42972.47 42960.55 443.39 448.09 406.93 406.72 49539.13 83181.94 109469.05 512381.87 

Total 2090  146678.40 144058.20 140004.64 139843.44 1858.84 1923.70 1753.60 1750.50 173077.81 266400.92 310336.25 1159459.46 

 

 

Table 7. 22: Comparison of the single area CEED and the MAEED solutions with the PSO algorithm adopted from (Chen and Wang, 2010) 

Method Lagrange's method (Developed) 
PSO adopted from (Chen 

and Wang, 2010) 

Criteria 

Single area CEED problem solution 

for PD 2090 [MW] 

MAEED problem solution for 

the area PD of [500 410 580 

600] [MW] 

PSO MAEED problem  

solution in a sequential 

way for area PD of  [500 

410 580 600] [MW] 

Max-Max Min-Max Max-Max Min-Max Max-Max 

PL in [MW] 68.5286 60.2359 61.82 87.35 49.54 

FC in [$/hr] 125883.5243 127784.9874 144058.20 146678.40 132416.90 

ET in [kg/hr] 1684.6603 1649.6639 1923.70 1858.84 1645.20 

FT in [$/hr] 225665.1721 150069.5359 266400.92 173077.81 269747.40 
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Figure 7.8: Criteria functions fuel cost, CEED fuel cost and transmission losses of the four-area three-generator MAEED problem solution
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7.7  Profile viewer of the Matlab distributed computing engine 

The profile viewer is a specific software in Matlab parallel toolbox that shows the 

amounts of time spent on the particular line. Figure 7.9 and Figure 7.10 show the 

profile view of the m-file (multi_area_casestudy1.m and multi_area_casestudy2.m) 

which are given in Appendix J. It is noted that the Matlab parallel toolbox function 

waitForState consumes 93.7% and 90.20% of the total computational time used 

respectively for the both considered cases of the total computational time used. This 

is due to the time spent by the Job Manager in order to perform communication 

between the head node and workers. Hence it is advisable to use the Matlab PCT 

and MDCE, if only the task is big and the computation time used to solve the task is 

more than the communication time. 

 

Figure 7.9: Profile view of the m-file (multi_area_casestudy1.m) 



226 

 

 

Figure 7.10: Profile view of the m-file (multi_area_casestudy2.m) 

 

7.8  Discussion on the results for the multi-area economic emission dispatch 

problem solution 

Comparison of single and multi-area dispatch problem solutions is given in Table 7.11 

and 7.22 for the two considered power systems of four-area forty-generator and four-

area three-generator power systems. It is proved that fuel cost of a MAEED problem 

solution is bigger in comparison with the single area CEED problem solution. The fuel 

cost of both single and multi-area are not same. It is accepted that amount of tie-line 

power flows in multi-area system tends to increase the initial cost and operation cost 

in comparison with the single area one.The decomposition-coordinating method of 

solution allows the multi-criteria dispatch optimisation problem to be solved as a 

group of bi-criteria optimisation sub-problem. This solution is in parallel and is 

coordinated to obtain the solution of the multi-criteria problem. 

7.9 Conclusion 

The Multi Area Economic Emission Dispatch (MAEED) problem is solved using the 

Lagrange‘s decomposition method in this chapter. Large interconnected power 

systems (Multi Area) are usually decomposed into areas or zones based on criteria, 

such as the size of the electric power system, network topology and geographical 
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location. MAEED problem is an optimisation task in power system operation for 

allocating amount of generation to the committed units within these areas. Its 

objective is to minimize the fuel cost subject to the power balance, generator limit, 

and transmission line and tie-line constraints. The solution of the MAEED problem 

determines the amount of power that can be economically generated in the areas and 

transferred to other areas if it is needed without violating tie-line capacity constraints 

and the whole power network constraints. 

A cluster of computers working in Matlab software environment is used to implement 

the optimisation algorithms. Parallelization of the solution is done through 

decomposition of the MAEED problem according to the power system interconnected 

areas and coordination of the obtained solutions for every area by a coordinator. 

Classical (Lagrange's) decomposition-coordinating method is developed and 

implemented for two case studies using four-area forty-generator and four-area three-

generator systems respectively. The developed Lagrange‘s algorithm 

implementations for both case studies using various price penalty factors are shown 

in Figure 7.7 and 7.8 respectively. The comparison of the developed Lagrange‘s 

single and multi-area solutions and multi-area PSO (Chen and Wang, 2010) solutions 

is given in Table 7.11 and 7.22 . It concludes that Lagrange‘s algorithm using Min-

Max Price penalty factor method provides best solution for both single and multi-area 

dispatch problem in comparison with the PSO solution and other types of price 

penalty factors.  

It is proved that the demonstration of the benefits of using Cluster of Computers for 

the power system optimisation problems is to obtain the reduced computation time for 

the calculation of the MAEED problem solution. The problem formulation allows every 

area to determine its own cost for the power production. The impact of the cost can 

be seen immediately through solution of the MAEED problem. The approach to the 

solution of the MAEED problem and the experience with it support the process of 

deregulation of the power system. The developed new methods, algorithms and 

software are the part of the set of energy management optimisation problems and are 

necessary for development and building of the Smart grid in South Africa.  

Chapter 8 presents the aim, objectives, deliverables of the thesis, future work and 

publications in connection with the thesis.
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CHAPTER EIGHT 

CONCLUSION AND FUTURE RECOMMENDATIONS 

 

8.1  Introduction 

The purpose of this thesis is to develop methods, algorithms and software for single 

area and multi-area economic dispatch problem solution in order to reduce the fuel 

cost and emission of the coal based power plants. 

The review paper (Krishnamurthy and Tzoneva, 2012) investigates the various 

methods and algorithms for the both single and multi-area economic dispatch 

problems. Many ongoing researches are focusing on development of new algorithms 

for the economic dispatch problem. Most of the existing papers compared their 

solutions with any one of the following types of algorithms (i) classical or (ii) heuristic 

or (iii) hybrid types. This thesis developed both classical (Lagrange‘s based) and 

heuristic (PSO based) algorithms for the combined economic emission dispatch 

problem solution. In Chapter four, the solution of the economic dispatch problem 

using Lagrange‘s and PSO algorithms are compared and it is concluded that the 

classical method provides better solution for the CEED problem in comparison with 

the heuristic method. 

In Chapter three, various types of problem formulation such as Combined Economic 

Emission Dispatch (CEED) Problem with and without valve point effect and cubic 

function model are solved using various types of price penalty factors. 

The electrical grid is an interconnected network for delivering electricity from the 

power plants to the loads. In real world scenario these power plants are 

geographically separated and the network is very complex. The corresponding 

economic dispatch problem is also very complex because it is characterized with 

large number of interconnections, constraints, tie-lines and loads. The conditions of 

deregulations requires the complex network to be considered as a set of separated 

but interconnected areas. This fact leads to new structure of the problem for the 

economic dispatch which in this case looks for two type of solutions for the areas and 

for the whole system as a set of the area's solutions. The recent publications focus on 

the Multi Area Economic Emission Dispatch (MAEED) problem but the proposed 

algorithms for solution are based on a sequential implementation, where the 

economic dispatch problem is solved as a whole. This means that the proposed 

algorithms do not take advantage of the changed structure of the considered 
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problem. To be capable to develop the smarter electrical grid, it is necessary to solve 

the MAEED problem using decomposition technique. This thesis formulated the 

mathematical problem and developed Lagrange‘s decomposition-coordinating 

method and algorithm to solve the MAEED problem in a parallel way using a Cluster 

of Computers.   

This chapter describes the aim and objectives of the thesis in part 8.2, thesis 

delivarables in 8.3, application of the results in 8.4, future research direction and 

author's publications in part 8.5 and 8.6 respectively. 

8.2 Aim and objectives of the thesis 

The aim of the thesis is to develop methods, algorithms, and software for solution of 

the CEED problem as follows: Lagrange‘s and Particle Swarm Optimization methods 

for solution of a single area CEED problems in a sequential way. Lagrange‘s 

decomposition-coordinating method to find a solution of the multi-area economic 

dispatch problem in a parallel way. To develop a software for sequential and parallel 

implementation of the algorithms of the methods in a single and in a Cluster of 

Computers.  

8.2.1 Objectives 

i. To formulate the economic dispatch problem for the various scenarios: 

a) Single area dispatch problem with the following criteria: 

 Quadratic fuel cost and emission functions 

 Quadratic fuel cost and emission functions with valve point effect 

loading 

 Cubic fuel cost and emission functions 

b) Multi-area dispatch problem with the following criterion: 

 Quadratic fuel cost and emission functions 

 To apply various types of price penalty factors for both single and 

multi-area dispatch problems, as Min-Max, Max-Max, Min-Min, and 

Max-Min penalty factors. 

ii. To develop a Lagrange‘s method and algorithm for solution of the single area 

economic dispatch problem 

iii. To develop a PSO method and algorithm for solution of the single area 

economic dispatch problem 
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iv. To develop software for sequential (centralized) solution of the economic 

dispatch problem using Lagrange‘s algorithm based on different criteria for the 

cost functions. 

v. To develop software for sequential (centralized) solution of the economic 

dispatch problem using PSO method. 

vi. To develop a Lagrange‘s decomposition-coordinating method and algorithm 

for hierarchical, two level solution of the multi-area economic emission 

dispatch problem. 

vii. To apply the developed methods and algorithms to standard IEEE benchmark 

single area and multi-area models. 

viii. To develop software for parallel calculation of the multi-area economic 

dispatch problem on the basis of the Lagrange's decomposition-coordinating 

algorithm in a Cluster of Computers. 

ix. To implement the developed decomposition-coordinating software in a Cluster 

of Computers in MATLAB software environment. 

The aim and objectives of the thesis are achieved and described in the thesis 

chapters. 

 

8.3 Thesis delivarables 

8.3.1 Investigation and a literature review on the methods for solution of the single 

and multi-area economic emission dispatch problems 

The literature review papers are grouped according to single and multi-area economic 

emission dispatch problems, price penalty factors  used in the CEED problem, 

various types of fuel cost functions used in the CEED problem such as quadratic, 

cubic and with/without valve point loading effects, and various optimisation methods 

and algorithms used in the CEED problems such as classical, heuristic, meta-

heuristic and hybrid ones. The review is described in Chapter 2 and is published in 

(Krishnamurthy and Tzoneva, 2012b). 

8.3.2 Development of new penalty factors: Min-Max and Max-Min for the bi-criteria 

CEED problem 

The price penalty factor is used to convert the bi-objective problem into a single 

objective function one. The thesis developed new price penalty factors Min-Max and 

Max-Min (Krishnamurthy and Tzoneva, 2013) in addition to the existing penalty 

factors such as Max-Max, Min-Min, average and common (Balamurugan and 

Subramanian, 2008). The role of all penalty factors is to transfer the physical meaning 
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of emission criterion from weight of the emission to the fuel cost for the emission. The 

difference between these penalty factors is in the weight of the fuel cost for emission 

in the final optimal fuel cost for the generation and emission criterion. The new 

penalty factors are used in Chapters 3, 4,6,7 and in publications (Krishnamurthy and 

Tzoneva,2013), (Krishnamurthy and Tzoneva, 2012d). 

8.3.3 Development of Lagrange’s based methods and algorithms for solution of 

different types of economic dispatch problems 

The Lagrange‘s methods and algorithms are developed to solve various types of 

Combined Economic Emission Dispatch (CEED) problems in Chapter 3. They are: 

formulated with i) quadratic fuel cost and emission functions with and without valve 

point loading effect,  and ii) cubic fuel cost and emission functions.  

In addition to that, the CEED problem is formulated using various types of price 

penalty factors such as Min-Max, Max-Max, Min-Min, Max-Min, Average and 

Common.  

The developed Lagrange‘s Matlab code is tested and validated for various IEEE 

benchmark models. 

8.3.4 Development of a PSO method and algorithm for solution of the single area 

economic emission dispatch problem with transmission loss constraint 

The bi-criteria combined economic emission dispatch problem is formulated using 

PSO algorithm in Chapter 4. In PSO, it is accepted that the number of generators is 

equal to the number of the particles in the swarm. For the dispatch problem the 

positions of the particles represent the active power produced by the generators. The 

velocities are variables that have the meaning of the active power but are used to 

search in the constraints domain. The slack bus generator is considered as the 

dependent generator and its active power is calculated using Equation (4.7) and 

(4.12). 

The developed PSO Matlab code is tested and validated for various IEEE bench 

mark models. The comparison of the obtained economic emission dispatch problem 

solutions using the developed Lagrange‘s and PSO algorithms is done.   

8.3.5 Development of a Lagrange's and PSO softwares in Matlab environment for 

data-parallel calculation of the single area CEED problems 

The algorithms developed for sequential calculation of the various types of economic 

dispatch problems in chapter 3 and 4 are applied in data-parallel in chapter 6. The 

data-parallel software programs on the basis of the developed Lagrange's and PSO 
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methods and algorithms are implemented in Matlab. The programs are given in 

Appendix E – F and are presented in Table 8.2 

8.3.6 Development of a Lagrange’s method and algorithm for parallel solution of the 

multi-area CEED problem in a Cluster of Computers 

 Multi-area economic dispatch problem with tie-line constraints is formulated in 

Chapter 7. The Lagrange‘s decomposition-coordinating method and algorithm are 

developed for multi-area economic dispatch problem solution in Parallel Matlab 

environment using Cluster of Computers. 

The function of Lagrange is decomposed in a number of sub-functions of Lagrange 

according to the number of areas by using the values of the Lagrange variables as 

coordinating ones. Then the initial problems is decomposed in areas sub-problem 

and a coordinating sub-problem. The optimal solution of the coordinating sub-problem 

determines the optimal solutions of the area sub-problems and the optimal solution 

for the initial multi-area problem. 

A four area three generator and a four area four generator IEEE bench mark models 

are used to test and validate the results obtained by the developed software in the 

Matlab Cluster of Computers. 

 

Table 8.1: Programs for Sequential calculation of the single area economic emission 

dispatch problem solution 

Type of the 

criterion function 

used in the CEED 

problem  

Algorithm Type of network/ 

System used 

Appendix/Matlab script file name 

Quadratic fuel cost 

and emission 

function  

 

Lagrange‘s  

i. IEEE 30 bus 

ii. Six Generator 

Indian Network 

iii. IEEE 118 bus 

iv. Eleven 

Generator 

system 

i. Appendix A1: 

CEED_Casestudy1.m 

ii. Appendix A2: 

CEED_Casestudy2.m 

iii. Appendix A3: 

CEED_Casestudy3.m 

iv. Appendix A4: 

CEED_Casestudy4.m 

Appendix A5: 

CEED_Casestudy4_funct.m 

Quadratic fuel cost 

and emission 

criterion functions 

with valve point 

loading effect 

Lagrange‘s  i. 6 generator 

System 

ii. 40 generator 

system 

i. Appendix B1: 

CEEDVP_Casestudy1.m 

ii. Appendix B2: 

CEEDVP_Casestudy1_funct.m 

iii. Appendix B3: 

CEEDVP_Casestudy2.m 

iv. Appendix B4: 
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CEEDVP_Casestudy2_funct.m 

Cubic fuel cost and 

emission criterion 

functions 

 

Lagrange‘s  

 

IEEE 30 bus 

 

 

Appendix C: CEEDCubic.m 

Quadratic fuel cost 

and emission 

criterion functions  

 

PSO  

i. IEEE 30 bus 

ii. IEEE 11 

Generator 

system 

i. Appendix D1: 

PSO_Casestudy1.m 

ii. Appendix D2: 

PSO_Casestudy2.m 

Consider the whole 

multi-area power 

system as a single 

area system 

Lagrange‘s 

sequential 

 

i. Four area four 

generator 

system 

ii. Four area three 

generator 

system 

i. Appendix H1: 

SACEEDP_Casestudy1.m 

ii. Appendix H2: 

SACEEDP_Casestudy2.m 

Literature review 

graphs 

It shows the 

number of 

publications and 

algorithms used in 

different literatures 

---------------- ------------------ 

i. Appendix K1: 

Number_of_Publications_Yearwise

.m 

ii. Appendix K2: 

Number_of_Algorithms_used.m 

 

8.3.7 Development of algorithms and programs in Matlab for distributed-parallel 

calculation of the multi-area economic emission dispatch problems 

The multi-area combined economic emission dispatch problem is formulated by 

explicitly including the power system network areas and their inter-connections with 

other areas by tie-lines. Two softwares are developed. Sequential one in order to 

solve the whole problem as a single area problem and a decomposition-coordinating 

one to solve the sub-problems for the separate areas in a parallel way and to 

coordinate these solutions towards the whole system solution.  

The developed ddecomposition method allows naturally application of the parallel 

computing in Cluster of Computers by which the corresponding to the areas sub-

problems that are functions of the coordinating variable lambda values are solved in 

parallel on the first level and the coordinating problem is solved on the second level of 

the two level calculating structures. The algorithm and software developed for parallel 

calculation of multi-area combined economic and emission dispatch problem are 

implemented in Matlab Cluster of Computers. The programs are given in Appendix I-J 

and are presented in Table 8.2. 
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Table 8.2: Programs for data-parallel calculation of single and for task-parallel solution of the 

multi-area economic emission dispatch problem solution 

Description  Algorithm Type of 

network 

Number 

of Tie – 

lines 

Appendix/Matlab 

script file name 

Program for 

data-parallel 

solution of the 

single area 

CEED problem 

Lagrange's 

i. IEEE 30 

bus 

system 

ii. IEEE 118 

bus 

system 

------------- 

i. Appendix E1: 

CEED_Casestudy1

_DataParallel.m 

ii. Appendix E2: 

CEED_Casestudy1

_DataParallel_funct

.m 

iii. Appendix E3: 

CEED_Casestudy2

_DataParallel.m 

iv. Appendix E4: 

CEED_Casestudy2

_DataParallel_funct

.m 

Program for 

data-parallel 

solution of the 

single area 

CEED problem 

PSO 

i. 10 particle 

swarms 

ii. 30 particle 

swarms 

 

IEEE 30 bus 

system 
------------- 

i. Appendix F1: 

PSO_10swarms_C

EED_DataParallel.

m 

ii. Appendix F2: 

PSO_10swarms_C

EED_DataParallel

_funct.m 

iii. Appendix F3: 

PSO_30swarms_C

EED_DataParallel.

m 

iv. Appendix F4: 

PSO_30swarms_C

EED_DataParallel

_funct.m 

Matlab code 

used to start 

Matlab workers 

from the head 

node 

---------------- 
----------------------

------ 
-------------- 

Appendix G 

Start_Cluster.m 

Sequential 

Program for 

MAEED 

problem 

Lagrange‘s 

sequential 

i. Four area 

forty  

generator 

system 

ii. Four area 

three 

generator 

system 

12 Tie 

lines 

i.  Appendix I1: 

MACEEDP_Seque

ntial_Casestudy1.

m 

ii. Appendix I2: 

MACEEDP_Seque

ntial_Casestudy2.

m 

Program for Lagrange‘s i. Four area 12 Tie i. Appendix J1: 
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task-parallel 

calculation of 

the MAEED 

problem 

decomposition-

coordinating 

four 

generator 

system 

 

ii. Four area 

three 

generator 

system 

lines MACEEDP_Parall

el_Casestudy1.m 

ii. Appendix J2: 

MACEEDP_Parall

el_Casestudy1_fu

nct.m 

iii. Appendix J3: 

MACEEDP_Parall

el_Casestudy2.m 

iv. Appendix J4: 

MACEEDP_Parall

el_Casestudy2_fu

nct.m 

 

8.4 Application of the thesis results 

The developed methods, algorithms and software programs can be applied with small 

modifications to some industrial plants with similar characteristics, as: 

 Single and multi-area Economic dispatch problem 

 Optimisation of Coal-based power systems 

 Power grid energy management system solutions in regional or national 

control centers. 

 Algorithm for parallel and distributed optimisation of the power system network 

 Solving optimisation problems in educational courses and post graduate 

research 

 Smart grid applications 

 

8.5 Future research 

The future developments can be listed in the following way: 

 Testing the developed algorithms in a closed loop optimisation of the disptch 

problem using a Cluster of Computers (CC) and a Real Time Digital Simulator 

(RTDS) using internet communication connection in a real-time laboratory 

environment. 

 Testing of the developed application on the bigger scale IEEE power system 

models. 
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 Application of the developed methods, algorithms, and programs for hydro and 

wind power systems. 

 Application of the developed methods, algorithms, and programs for integration of 

a hydro-thermal systems into the power grid. 

 Development of PSO based methods, algorithms and software programs for 

multi-area dispatch problem solution in a Cluster of Computers 

 The metaheuristic methods such as Ant Colony Optimisation (ACO), Artifical Bee 

Colony (ABC) optimization, Bacterial Foraging Optimisation (BFO) can also be 

incorporated. 

 

8.6 Publication 

Krishnamurthy, S., Tzoneva, R.,  Deivakkannu, G., and Kriger, C. 2014. Development of a 

Lab-Scale Data Acquisition System in LabVIEW and MATLAB Environment to Solve the 

Economic Dispatch Problem in Real-Time. Submitted to the 19th World Congress of the 

International Federation of Automatic Control, Cape Town, South Africa, 24-29 August 

2014, pp 1-8. 

Krishnamurthy, S., and Tzoneva, R.  2013a. Economic dispatch solution using different 

algorithms and softwares. The International conference on Green Computing, 

Communication and Conservation of Energy, ICGCE-2013, RMD Engineering College, 

12-14th DEC, pp 1-6. 

Krishnamurthy, S., Apostolov, A., and Tzoneva, R.  2013b. Method for a Parallel Solution 

of a Combined Economic Emission Dispatch Problem. PAC World Africa Conference 

2013, Cape Peninsula University of Technology, Cape Town, South Africa, pp 1-28. 

Krishnamurthy, S., and Tzoneva, R.  2013c. Investigation on the impact of the penalty 

factors over solution of the dispatch optimization problem. IEEE International Conference 

on  Industrial Technology (ICIT),Cape Town, South Africa, pp. 851 – 860. 

Krishnamurthy, S., and Tzoneva, R. 2012a. Investigation of the Methods for Single area 

and Multi area Optimization of a Power System Dispatch Problem. International Review of 

Electrical Engineering (IREE), Praise Worthy Prize, Vol.7, No.1, pp 3600 – 3627. 

Krishnamurthy, S., and Tzoneva, R. 2012b. Multiobjective Dispatch Problem with Valve 

Point Effect Loading of Fuel Cost and Emission Criterion. International Journal of 

Computer and Electrical Engineering (IJCEE). Vol. 4, No. 5, pp 775-784. 

Krishnamurthy, S., and Tzoneva, R. 2012c. Comparison of the Lagrange‘s and Particle 

Swarm Optimisation Solutions of an Economic Emission Dispatch Problem with 

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6495638
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6495638
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transmission constraints. IEEE International Conferences on Power Electronics, Drives 

and Energy Systems (PEDES). Central Power Research Institute (CPRI), Bengaluru, 

India, pp 1-8 

Krishnamurthy, S., and Tzoneva, R. 2012d. Impact of Price Penalty Factors on the 

Solution of the Combined Economic Emission Dispatch Problem using Cubic Criterion 

Functions. IEEE Power and Energy Society General Meeting, Energy Horizons - 

Opportunities and Challenges, San Diego, California, USA, pp 1-9. 

Krishnamurthy, S., and Tzoneva, R. 2012e. Application of the Particle Swarm 

Optimization Algorithm to a Combined Economic Emission Dispatch Problem using a new 

penalty factor. IEEE PES Power Africa 2012 – Conference and Exhibition, Johannesburg, 

South Africa, pp 1-7. 

Krishnamurthy, S., and Tzoneva, R. 2011a. Comparative Analyses of Min-Max and Max-

Max Price Penalty Factor Approaches for Multi Criteria Power System Dispatch Problem 

Using Lagrange‘s Method. International conference on recent advancements in Electrical, 

Electronics and Control Engineering, Sivakasi, India, pp 36-43. 

Krishnamurthy, S., and Tzoneva, R. 2011b. Comparative Analyses of Min-Max and Max-

Max Price Penalty Factor Approaches for Multi Criteria Power System Dispatch Problem 

with Valve Point Effect Loading Using Lagrange‘s Method. International conference on 

International Conference on Power and Energy Systems, Chennai, India, pp 1-7.  

8.7 Conclusion 

 This chapter describes the aim and objectives of the thesis and addresses the thesis 

delivarables for development of methods, algorithms, and software programs for 

sequential and parallel calculation of the single and multi-area economic dispatch 

problems. It describes the possible way of applying with small modifications to the 

developed methods, algorithms and software programs to some industrial systems . 

The future research direction and the list of the author's publications are given.   
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APPENDICES 

APPENDIX A: MATLAB PROGRAM FOR SEQUENTIAL CALCULATION OF THE 
CEED PROBLEM BASED ON VARIOUS PRICE PENALTY 
FACTORS USING LAGRANGE’S ALGORITHM 

APPENDIX A1: MATLAB script file – CEED_Casestudy1.m 

% M-File : CEED_Casestudy1.m 
%IEEE 30 BUS SIX GENERATOR SYSTEM 
% ==================M-File Description=============================== 
% The M-File is used to solve CEED problem with various price penalty 

factors using Lagrange’s Algorithm 
clear all 
clc; 
tic; 
% ==Economic dispatch problem including losses and generator limits== 
% ============Initial Lagrange’s variable============================ 
lambda=10            % Initial lambda 
epsilon=0.001;          % Tolerance value 
alfa=0.001;             % Incremental deltalambda 
n=6;                        % No of generators 
m=2000;                 % Total number of iterations 
PD=250                  % Power demand 
% ===========Fuel cost coefficients================================= 
a=[0.00375 0.01750 0.06250 0.00834 0.02500 0.02500]; 
b=[2.00 1.75 1.00 3.25 3.00 3.00]; 
c=[0 0 0 0 0 0]; 
% ======================== Emission Coefficients===================== 
d=[0.0126 0.0200 0.0270 0.0291 0.0290 0.0271]; 
e=[-1.1000 -0.1000 -0.1000 -0.0050 -0.0400 -0.0055]; 
f=[22.983 22.313 25.505 24.900 24.700 25.300]; 
% ==================Generator Limits ================================ 
Pmin=[50 20 15 10 10 12]; 
Pmax=[200 80 50 35 30 40]; 
% ==============Transmission loss coefficients======================= 
B00=[0.000014]; 
B01=[-0.000003 0.000021 -0.000056 0.000034 0.000015 0.000078]; 
B=[0.000218 0.000103 0.000009 -0.000010 0.000002 0.000027; 
    0.000103 0.000181 0.000004 -0.000015 0.000002 0.000030; 
    0.000009 0.000004 0.000417 -0.000131 -0.000153 -0.000107; 
    0.000010 -0.000015 -0.000131 0.000221 0.000094 0.000050; 
    0.000002 0.000002 -0.000153 0.000094 0.000243 -0.000000; 
    0.000027 0.000030 -0.000107 0.000050 -0.000000 0.000358]; 
%================Lagrange’s algorithm starts here =================== 
for iter=1:m 
    iter        % To Print the each iteration number 
    % ===========Calculation of Price penalty factor================= 
    h=[(a.*Pmin.^2+b.*Pmin+c)]./[(d.*Pmax.^2+e.*Pmax+f)];   % 

Equation (3.7 or 3.8 or 3.9 or 3.10) 
    % =================Calculation of generator real power ========== 
    E=[(diag(a+(h.*d))./lambda)+B];         % Equation (3.19) 
    D=0.5*((1-(b+h.*e)./lambda-B01))';      % Equation (3.19) 
    P=E\D;                      % Equation (3.21) 
    %======================Generator limit checking ================= 
    for i=1:n 
        if P(i)<=Pmin(i) 
            P(i)=Pmin(i) 
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        elseif P(i)>=Pmax(i) 
            P(i)=Pmax(i) 
        else P(i)=P(i) 
        end 
    end 
    %========== Calculation of Transmission loss===================== 
    PL1=B00; 
    PL2=zeros(1,n); 
    for i=1:n 
        PL2(i)=(B01(i)*P(i));       % Equation (3.3) 
    end 
    PL2=sum(PL2(:,:)); 
    PL3=zeros(n,n); 
    for i=1:n 
        for j=1:n 
            PL3(i,j)=P(i)*B(i,j)*P(j);  % Equation (3.3) 
        end 
    end 
    PL3=sum(PL3(:,:)); 
    PL3=sum(PL3(:,:)); 
    PL=PL1+PL2+PL3; 
    % ======================Calculation of deltalambda ============== 
    deltalambda=0.0; 
    deltalambda=PD+PL; 
    for i=1:n 
        deltalambda=deltalambda-P(i);       % Equation (3.22) 
    end 
    if abs(deltalambda)<=epsilon | iter>=m 
        break 
    else lambda=lambda+deltalambda*alfa  % Equation (3.23) 
    end 
end 
%====== Calculation of fuel cost, emission and CEED values ========== 
fuelcost=0; 
emissioncost=0; 
CEED=0; 
for i=1:n 
    fuelcost=fuelcost+a(i)*P(i)^2+b(i)*P(i)+c(i); % Equation (3.1) 
    emissioncost=emissioncost+d(i)*P(i)^2+e(i)*P(i)+f(i); % Equation 

(3.5) 
    CEED= 

CEED+a(i)*P(i)^2+b(i)*P(i)+c(i)+h(i)*(d(i)*P(i)^2+e(i)*P(i)+f(i)); % 

Equation (3.6) 
end 
%==== Printing of Real power, Transmission loss, Fuel cost, Emission 

and CEED=== 
lambda 
P 
PL 
totalfuelcost=sum(fuelcost(:,:)) 
totalemissioncost=sum(emissioncost(:,:)) 
CEED=sum(CEED(:,:)) 
toc 
%==================================================================== 
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Appendix A2: MATLAB script file – CEED_Casestudy2.m 

% M-File CEED_Casestudy2.m 
% Six Generator Indian Network 
% ==================M-File Description=============================== 
% The M-File is used to solve CEED problem with various price penalty 

factors using Lagrange’s Algorithm 
clear all 
clc; 
tic; 
% Economic dispatch problem including losses and generator limits 
% ============Initial Lagrange’s variable============================ 
lambda=100;         % Initial lambda 
epsilon=0.001;      % Tolerance value 
alfa=0.01;          % Incremental deltalambda 
n=6;                % No of generators 
m=200;              % Total number of iterations 
PD=500;             % Power demand 
data=[0.1525  38.5397  756.7989  0.0042  0.3277   13.8593   10  125 

0.1059  46.1592  451.3251  0.0042 0.3277  13.8593 10  150 

0.0280  40.3966  1049.9977 0.0068  -0.5455  40.2669   35  225 

0.0355  38.3055  1243.5311 0.0068 -0.5455 40.2669 35  210 

0.0211  36.3278  1685.5696 0.0046 -0.5112 42.8955 130 325 

0.0180  38.2704 1356.6592  0.0046 -0.5112 42.8955 125 315]; 

% ===========Fuel cost coefficients================================== 
a=data(:,1); 
b=data(:,2); 
c=data(:,3); 
% ======================== Emission Coefficients===================== 
d=data(:,4); 
e=data(:,5); 
f=data(:,6); 
% ==================Generator Limits ================================ 
Pmin=data(:,7); 
Pmax=data(:,8); 
% ==============Transmission loss coefficients======================= 
B00=0; 
B01=[0 0 0 0 0 0]'; 
B=[ 0.002022    -0.000286   -0.000534   -0.000565   -0.000454   -0.000103 

    -0.000286   0.003243    0.000016    -0.000307   -0.000422   -0.000147 

    -0.000533   0.000016    0.002085    0.000831    0.000023    -0.000270 

    -0.000565   -0.000307   0.000831    0.001129    0.000113    -0.000295 

    -0.000454   -0.000422   0.000023    0.000113    0.000460    -0.000153 

    0.000108    -0.000147   -0.000270   -0.000295   -0.000153   0.000898]; 

for iter=1:m 
    iter  % Print the itertaion number 
    % ===========Calculation of Price penalty factor================= 
    h=[(a.*Pmin.^2+b.*Pmin+c)]./[(d.*Pmax.^2+e.*Pmax+f)]; 
    % =================Calculation of generator real power ========== 
    E=[(diag(a+(h.*d))./lambda)+B]; 
    D=0.5*((1-(b+h.*e)./lambda-B01)); 
    %D=0.5*((1-(b+h.*e)./lambda)); 
    P=E\D 
    TotalP=sum(P(:,:)) 
    %======================Generator limit checking ================= 
    for i=1:n 
        if P(i)<=Pmin(i) 
            P(i)=Pmin(i); 
        elseif P(i)>=Pmax(i); 
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            P(i)=Pmax(i); 
        else P(i)=P(i); 
        end 
    end 
    %========== Calculation of Transmission loss===================== 
    PL1=B00; 
    PL2=zeros(1,n); 
    for i=1:n 
        PL2(i)=(B01(i)*P(i)); 
    end 
    PL2=sum(PL2(:,:)); 
    PL3=zeros(n,n); 
    for i=1:n 
        for j=1:n 
            PL3(i,j)=P(i)*B(i,j)*P(j); 
        end 
    end 
    PL3=sum(PL3(:,:)); 
    PL3=sum(PL3(:,:)); 
    PL=PL1+PL2+PL3 
    % ======================Calculation of deltalambda ============== 
    deltalambda=0.0; 
    deltalambda=PD+PL; 
    for i=1:n 
        deltalambda=deltalambda-P(i); 
    end 
    deltalambda 
    if abs(deltalambda)<=epsilon | iter>=m 
        break 
    else lambda=lambda+deltalambda*alfa 
    end 
    plot (iter,lambda,'rd',iter,deltalambda,'ks') 
    hold on 
    legend('lambda','deltalambda') 
end 
% Calculation of fuel cost, emission and CEED values ================ 
fuelcost=0; 
emissioncost=0; 
ceed=0; 
for i=1:n 
    fuelcost=fuelcost+a(i)*P(i)^2+b(i)*P(i)+c(i); 
    emissioncost=emissioncost+d(i)*P(i)^2+e(i)*P(i)+f(i); 
    ceed= 

ceed+a(i)*P(i)^2+b(i)*P(i)+c(i)+h(i)*(d(i)*P(i)^2+e(i)*P(i)+f(i)); 
end 
%==Printing of Real power, Transmission loss, Fuel cost, Emission and 

CEED= 
lambda 
P 
PL 
totalfuelcost=sum(fuelcost(:,:)) 
totalemissioncost=sum(emissioncost(:,:)) 
ceed=sum(ceed(:,:)) 
toc 
%==================================================================== 
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Appendix A3: MATLAB script file - CEED_Casestudy3.m 

% M-File : CEED_ CEED_Casestudy3.m 
% IEEE 118 bus system 
%==================M-FileDescription================================ 
% The M-File is used to solve CEED problem with various price penalty 

factors using Lagrange’s Algorithm 
clear all 
clc; 
tic; 
% ==Economic dispatch problem including losses and generator limits 
% ========Initial Lagrange’s variable================================ 
lambda=4                % Initial lambda 
epsilon=0.01;           % Tolerance value 
alfa=0.001;             % Incremental deltalambda 
n=14;                   % No of generators 
m=10;                   % Total number of iterations 
PD=3668;             % Power demand 
%===========Fuel cost and emission coefficients===================== 
Data=[0.0050   1.89    150.000   0.016 -1.500    23.333    50    1000 
    0.0055   2.00    115.000   0.031   -1.820    21.022    50    1000 
    0.0060   3.50    40.000    0.013   -1.249    22.050    50    1000 
    0.0050   3.15    122.000   0.012   -1.355    22.983    50    1000 
    0.0050   3.05    125.000   0.020   -1.900    21.313    50    1000 
    0.0070   2.75    120.000   0.007   0.805     21.900    50    1000 
    0.0070   3.45    70.000    0.015   -1.401    23.001    50    1000 
    0.0070   3.45    70.000    0.018   -1.800    24.003    50    1000 
    0.0050   2.45    130.000   0.019   -2.000    25.121    50    1000 
    0.0050   2.45    130.000   0.012   -1.360    22.990    50    1000 
    0.0055   2.35    135.000   0.033   -2.100    27.010    50    1000 
    0.0045   1.60    200.000   0.018   -1.800    25.101    50    1000 
    0.0070   3.45    70.000    0.018   -1.810    24.313    50    1000 
    0.0060   3.89    45.000    0.030   -1.921    27.119    50    1000 

]; 
% ===========Fuel cost coefficients================================= 
a=Data(:,1); 
b=Data(:,2); 
c=Data(:,3); 
% ======================== Emission Coefficients==================== 
d=Data(:,4); 
e=Data(:,5); 
f=Data(:,6); 
% ==================Generator Limits =============================== 
Pmin=Data(:,7); 
Pmax=Data(:,8); 
% ==============Transmission loss coefficients======================= 
B00=[0.028738]; 
B01=[-0.5385 -0.2832 -0.1929 -0.2642 0.0178....

 0.0219 0.0405 0.0122 0.0140 0.0044....

 0.0327 0.2178 0.0326 0.1556]; 

B1_half=[ 

0.004274 0.003011 0.0019242 0.002151 -0.00029 -0.0004 -0.000447 

0.003011 0.003795 0.002071 0.002091 -0.00036 -0.00053 -0.000448 

0.001924 0.002071 0.002678 0.00247 -0.00025 -0.00038 -0.000298 

0.002151 0.002091 0.0024696 0.002439 -0.00023 -0.00035 -0.000309 

-0.00029 -0.00036 -0.000247 -0.00023 0.000954 0.000366 0.0002951 

-0.0004 -0.00053 -0.000378 -0.00035 0.000366 0.001068 0.0005763 
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-0.00045 -0.00045 -0.000298 -0.00031 0.000295 0.000576 0.0008092 

-0.00027 -0.00037 -0.000239 -0.00022 0.000312 0.000374 0.000337 

-0.00032 -0.00036 -0.000231 -0.00023 0.000421 0.000334 0.0003566 

-0.00069 -0.0007 -0.000467 -0.00048 0.000207 0.000249 0.0003054 

-0.00075 -0.00102 -0.000786 -0.00072 3.66E-05 0.000119 0.0001293 

-0.00195 -0.002 -0.001583 -0.0016 -0.00037 -0.00028 -0.000252 

-0.00122 -0.00184 -0.001529 -0.00135 -0.00038 -0.00029 -0.000192 

-0.00172 -0.00206 -0.001668 -0.00159 -0.00042 -0.00033 -0.000272]; 

 

B2_half=[ 

-0.000272 -0.0003 -0.000694 -0.000745 -0.00195 -0.001217 -0.001718 

-0.000366 -0.0004 -0.000695 -0.001018 -0.002 -0.001844 -0.002057 

-0.000239 -0.0002 -0.000467 -0.000786 -0.00158 -0.001529 -0.001668 

-0.000223 -0.0002 -0.000475 -0.000715 -0.0016 -0.01346 -0.001588 

0.000374 0.00033 0.0002486 0.0001192 -0.00028 -0.000288 -0.000331 

0.000374 0.00033 0.0002486 0.0001192 -0.00028 -0.000288 -0.000331 

0.000337 0.00036 0.0003054 0.0001252 -0.00025 -0.000192 -0.000272 

0.0003876 0.00037 0.0002934 0.0002063 -0.00015 -0.000142 -0.000188 

0.0003746 0.00054 0.0002869 0.0001477 -0.00023 -0.000189 -0.000254 

0.0002934 0.00029 0.0006738 0.0003054 0.000121 0.0001331 9.55E-05 

0.0002063 0.00015 0.0003054 0.0008576 0.000617 0.0008179 0.000726 

-0.000152 -0.0002 0.0001212 0.0006171 0.003615 0.001839 0.0020017 

-0.000142 -0.0002 0.0001331 0.0008179 0.001839 0.0033117 0.0029414 

-0.000188 -0.0003 9.55E-05 0.000726 0.002002 0.0029414 0.0041297]; 

B=10^-1*[B1_half B2_half]; 

for iter=1:m 
    iter  % Print the iteration number 
    % ===========Calculation of Price penalty factor================= 
    h=(a.*Pmax.^2+b.*Pmax+c)./(d.*Pmax.^2+e.*Pmax+f); 
    % =================Calculation of generator real power ========== 
    E=(diag(a+(h.*d))./lambda)+B; 
    D=0.5*((1-(b+h.*e)./lambda-B01)); 
    P=E\D; 
    %======================Generator limit checking ================= 
    for i=1:n 
        if P(i)<=Pmin(i) 
            P(i)=Pmin(i); 
        elseif P(i)>=Pmax(i) 
            P(i)=Pmax(i); 
        else P(i)=P(i); 
        end 
    end 
    TotalP=sum(P(:,:)) 
    %========== Calculation of Transmission loss===================== 
    PL1=B00; 
    PL2=zeros(1,n); 
    for i=1:n 
        PL2(i)=(B01(i)*P(i)); 
    end 
    PL2=sum(PL2(:,:)); 
    PL3=zeros(n,n); 
    for i=1:n 
        for j=1:n 
            PL3(i,j)=P(i)*B(i,j)*P(j); 
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        end 
    end 
    PL3=sum(PL3(:,:)); 
    PL3=sum(PL3(:,:)); 
    PL=PL1+PL2+PL3; 
    % ======================Calculation of deltalambda ============== 
    deltalambda=PD+PL; 
    for i=1:n 
        deltalambda=deltalambda-P(i); 
    end 
    if abs(deltalambda)<=epsilon | iter>=m 
        break 
    else lambda=lambda+deltalambda*alfa 
    end 
end 
% ========Calculation of fuel cost, emission and CEED values ======== 
fuelcost=0; 
emissioncost=0; 
CEED=0; 
for i=1:n 
    fuelcost=fuelcost+a(i)*P(i)^2+b(i)*P(i)+c(i); 
    emissioncost=emissioncost+d(i)*P(i)^2+e(i)*P(i)+f(i); 
    CEED= 

CEED+a(i)*P(i)^2+b(i)*P(i)+c(i)+h(i)*(d(i)*P(i)^2+e(i)*P(i)+f(i)); 
end 
%==Printing of Real power, Transmission loss, Fuel cost, Emission and 

CEED= 
TotalP=sum(P(:,:)) 
lambda 
P 
PL 
totalfuelcost=sum(fuelcost(:,:)) 
totalemissioncost=sum(emissioncost(:,:)) 
CEED=sum(CEED(:,:)) 
toc 
%==================================================================== 

   

Appendix A4: MATLAB script file – CEED_Casestudy4.m 

% M-File: CEED_Casestudy4.m 
% Eleven bus system 
%==================M-FileDescription================================ 
% The M-File is used to solve CEED problem with various price penalty 

factors using Lagrange’s Algorithm 
clear all 
clc; 
tic; 
%optimal dispatch including losses and generator limits 
lambda=4 % Intial Lagrange's variable 
% ==========Fuel cost coefficients================================== 
a=[0.00762 0.00838 0.00523 0.00140 0.00154 0.00177 0.00195 0.00106 

0.00117 0.00089 0.00098]; 
b=[1.92699 2.11969 2.19196 2.01983 2.22181 1.91528 2.10681 1.99138 

1.99802 2.12352 2.10487]; 
c=[387.85 441.62 422.57 552.5 557.75 562.18 568.39 682.93 741.22 

617.83 674.61]; 
d=[0.00419 0.00461 0.00419 0.00683 0.00751 0.00683 0.00751 0.00355 

0.00417 0.00355 0.00417]; 
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e=[-0.67767 -0.69044 -0.67767 -0.54551 -0.4006 -0.54551 -0.40006 -

0.51116 -0.56228 -0.41116 -0.56228]; 
f=[33.93 24.62 33.93 27.14 24.15 27.14 24.15 30.45 25.59 30.45 

25.59]; 
Pmin=[20 20 20 60 20 60 20 100 100 110 110]; 
Pmax=[250 210 250 300 210 300 215 455 455 460 465]; 
PD=2500; 
[PD totalP lambda P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 FC ET FT iter] 

=CEEDwithoutloss_Sequential_funct_11bus(Pmax,Pmin,f,e,d,c,b,a,lambda,

PD) 
output=[PD totalP lambda P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 FC ET FT 

iter toc ] 
answ=mat2cell(output) 
 

 

Appendix A5: MATLAB Function file – CEED_Casestudy4_funct.m 

% M-File: CEED_Casestudy4_funct.m 
% Eleven bus system 
%==================M-FileDescription================================ 
% The M-File is used to solve CEED problem with various price penalty 

factors using Lagrange’s Algorithm 
function [ PD totalP lambda P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 FC ET 

FT iter] = 

CEEDwithoutloss_Sequential_funct_11bus(Pmax,Pmin,f,e,d,c,b,a,lambda,P

D) 
epsilon=0.001; % tolerance value 
alfa=0.001; %increment value in order to increase the updated lambda 

value 
n=11;% No of generators 
m=500;% No of iterations 
for iter=1:m % Lagrange's algorithm starts here 
    iter 
    h=(a.*Pmax.^2+b.*Pmax+c)./(d.*Pmax.^2+e.*Pmax+f); % Price penalty 

factor 
    %Calculation of real power value using Lagrange's algorithm for 

economic dispatch problem 
    E=(diag(a+(h.*d))./lambda) 
    D=0.5*((1-(b+h.*e)./lambda))' 
    P=E\D 
    % Check the limits of real power of the generator 
    for i=1:n 
        if P(i)<=Pmin(i) 
            P(i)=Pmin(i); 
        elseif P(i)>=Pmax(i) 
            P(i)=Pmax(i); 
        else P(i)=P(i); 
        end 
    end 
    % The real power output of individual generators are assigned to 

the output of the function file 
    P=P'; 
    P1=P(1); 
    P2=P(2); 
    P3=P(3); 
    P4=P(4); 
    P5=P(5); 
    P6=P(6); 
    P7=P(7); 
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    P8=P(8); 
    P9=P(9); 
    P10=P(10); 
    P11=P(11); 
    totalP=(P1+P2+P3+P4+P5+P6+P7+P8+P9+P10+P11); 
    deltalambda=PD-totalP;% Calculate the change in lambda value 

i.e.,deltalambda 
    if abs(deltalambda)<=epsilon | iter>=m % Check the deltalambda is 

less than the tolerance value or maximum Number of iteration reached 
        break 
    else lambda=lambda+deltalambda*alfa % Update the new lambda 
    end 
end % Lagrange's algorithm ends here 
FC=0; 
ET=0; 
FT=0; 
for i=1:n 
    FC=FC+a(i)*P(i)^2+b(i)*P(i)+c(i);% Calculate the Fuel Cost value 

(excluding emission) 
    ET=ET+d(i)*P(i)^2+e(i)*P(i)+f(i);% Calculate the Emission vaue of 

thermal power plant 
    FT= 

FT+a(i)*P(i)^2+b(i)*P(i)+c(i)+h(i)*(d(i)*P(i)^2+e(i)*P(i)+f(i));% 

Calculate the Total Fuel Cost (including emission) 
end 
end  % function ends here 
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APPENDIX B: MATLAB PROGRAM FOR SEQUENTIAL CALCULATION OF THE 

CEED PROBLEM WITH VALVE POINT  LOADING EFFECT 

Appendix B1: MATLAB script file – CEEDVP_Casestudy1.m 

% M-File : CEEDVP_Casestudy1.m 
% IEEE 30 bus SIX GENERATOR SYSTEM 
% ==================M-File Description=============================== 
% The M-File is used to solve CEED problem with valve point effect 

loading using Lagrange’s Algorithm 
clear all 
clc 
tic; 
global lambda Pmin Pmax n a b c alpha beta d e f gamma delta B B01 

B00 h; 
PD=2.86;        % Power Demand 
%============Fuel cost with valve point effect coefficients========== 
a=[10 10 20 10 20 10]; 
b=[200 150 180 100 180 150]; 
c=[100 120 40 60 40 100]; 
alpha=[15 10 10 5 5 5]; 
beta=[6.283 8.976 14.784 20.944 25.133 18.48]; 
%% Emission with valve point effect coefficients 
d=[4.091 2.543 4.258 5.326 4.258 6.131]; 
e=[-5.554 -6.047 -5.094 -3.55 -5.094 -5.555]; 
f=[6.49 5.638 4.586 3.38 4.586 5.151]; 
gamma=[0.0002 0.0005 0.000001 0.002 0.000001 0.00001]; 
delta=[2.857 3.333 8.0 2.0 8.0 6.667]; 
%================= Transmission loss coefficients=================== 
B00=[0.0014]; 
B01=[0.010731 1.7704 -4.0645 3.8453 1.3832 5.5503]*10.^(-3); 
B=[ 0.0218  0.0107  -0.00036 -0.0011   0.00055   0.0033 
    0.0107  0.01704 -0.0001  -0.00179  0.00026   0.0028 
    -0.0004 -0.0002   0.02459 -0.01328 -0.0118   -0.0079 
    -0.0011 -0.00179 -0.01328  0.0265   0.0098    0.0045 
    0.00055 0.00026 -0.0118   0.0098   0.02616  -0.0001 
    0.0033  0.0028  -0.00792  0.0045  -0.00012   0.0297]; 
%=============== Generator limits=================================== 
Pmin=[0.05 0.05 0.05 0.05 0.05 0.05]; 
Pmax=[0.5 0.6 1.0 1.2 1.0 0.6]; 
%% Initial values of  Lagrange's algorithm 
n=6; % Number of generators 
lambda=20; % Initial Lambda 
P=[0.05 0.05 0.05 0.05 0.05 0.05];% Initial Real Powers 
m=2000; % Total number of iterations 
epsilon=0.01; % Tolerance Value 
varepsilon=0.1; % Tolerance value of deltalambda 
%=================Lagrange's algorithm starts here================== 
for iter=1:m 
    iter 
    % ===========To solve the CEED Problem with valve point effect 

using Lagrange's algorithm=========================================== 
    fsolve(@CEEDVP_Casestudy1_funct,P)      % Equation (3.41) 
    P=ans; 
    %==============Checking of generator limits====================== 
    for i=1:n 
        if P(i)<=Pmin(i); 
            P(i)=Pmin(i); 
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        elseif P(i)>=Pmax(i); 
            P(i)=Pmax(i); 
        else P(i)=P(i); 
        end 
    end 
    %================== Calculation of Transmission loss============= 
    PL1=B00; 
    PL2=zeros(1,n); 
    for i=1:n 
        PL2(i)=(B01(i)*P(i));       % Equation (3.3) 
    end 
    PL2=sum(PL2(:,:)); 
    PL3=zeros(n,n); 
    for i=1:n 
        for j=1:n 
            PL3(i,j)=P(i)*B(i,j)*P(j);      % Equation (3.3) 
        end 
    end 
    PL3=sum(PL3(:,:)); 
    PL3=sum(PL3(:,:)); 
    PL=PL1+PL2+PL3; 
    %=============== Calculation of deltalambda====================== 
    deltalambda=PD+PL-sum(P(:,:))   % Equation (3.42) 
    if abs(deltalambda)<=epsilon | iter>=m 
        break 
    else lambda=lambda+(deltalambda) 
    end 
end 
% ============Lagrange's algorithm ends here========================= 
%============ Pre-allocation of fuel cost, emission and CEED========= 
fuelcost=zeros(1,n); 
emissioncost=zeros(1,n); 
CEED=zeros(1,n); 
%=============== Calculation of fuel cost, emission and CEED========= 
for i=1:n 
    

fuelcost(i)=c(i)*P(i)^2+b(i)*P(i)+a(i)+abs(alpha(i)*sin(beta(i)*(Pmin

(i)-P(i)))); 
    % Equation (3.26) 
    emissioncost(i)=(10.^(-

2))*(f(i)*P(i)^2+e(i)*P(i)+d(i)+(gamma(i)*(exp(delta(i)*P(i))))); 
    % Equation (3.27) 
    

CEED(i)=(c(i)*P(i)^2+b(i)*P(i)+a(i)+abs(alpha(i)*sin(beta(i)*(Pmin(i)

-P(i)))))+(h(i)*(10.^(-

2))*(f(i)*P(i)^2+e(i)*P(i)+d(i))+gamma(i)*(exp(delta(i)*P(i)))); 
    % Equation (3.28) 
end 
%=========== Printing of Real power, Transmission loss, Fuel cost, 

Emission and CEED=================================================== 
P 
PL 
totalfuelcost=sum(fuelcost(:,:)) 
totalemissioncost=sum(emissioncost(:,:)) 
CEED=sum(CEED(:,:)) 
toc 
%==================================================================== 
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Appendix B2: MATLAB script file - CEEDVP_Casestudy1_funct.m 

% M-File: CEEDVP_Casestudy1_funct.m 
% IEEE 30 bus system 
% ==================M-File Description=============================== 
% The function is used to calculate the real power of the generators 

of CEED problem with valve point loading effect using Lagrange’s 

Algorithm 
function F = CEEDVP_Casestudy1_funct(P) 
global lambda Pmin Pmax n a b c alpha beta d e f gamma delta B B01 h 

; 
%================ Calculation of price penalty factors (h)=========== 
h=zeros(1,n); % Pre-allocation of price penalty factor (h) 
for i=1:n 
h(i)=(c(i)*Pmin(i)^2+b(i)*Pmin(i)+a(i)+abs(alpha(i)*sin(beta(i)*(Pmin

(i)-

Pmin(i)))))/((f(i)*Pmax(i)^2+e(i)*Pmax(i)+d(i))+gamma(i)*(exp(delta(i

)*Pmax(i))));    % Equation (3.29) 
    

%h(i)=(c(i)*Pmax(i)^2+b(i)*Pmax(i)+a(i)+abs(alpha(i)*sin(beta(i)*(Pmi

n(i)-

Pmax(i)))))/((f(i)*Pmax(i)^2+e(i)*Pmax(i)+d(i))+gamma(i)*(exp(delta(i

)*Pmax(i))));    % Equation (3.30) 
    

%h(i)=(c(i)*Pmin(i)^2+b(i)*Pmin(i)+a(i)+abs(alpha(i)*sin(beta(i)*(Pmi

n(i)-

Pmin(i)))))/((f(i)*Pmin(i)^2+e(i)*Pmin(i)+d(i))+gamma(i)*(exp(delta(i

)*Pmin(i))));    % Equation (3.31) 
    

%h(i)=(c(i)*Pmax(i)^2+b(i)*Pmax(i)+a(i)+abs(alpha(i)*sin(beta(i)*(Pmi

n(i)-

Pmax(i)))))/((f(i)*Pmin(i)^2+e(i)*Pmin(i)+d(i))+gamma(i)*(exp(delta(i

)*Pmin(i))));    % Equation (3.32) 
    %h=(h1+h2+h3+h4)/(4) % Average price penalty factor , Equation 

(3.33) 
    %h=(h1+h2+h3+h4)/(4*n) %Common price penalty factor, % Equation 

(3.34) 
end 
%============ Calculation of real power of the generators============ 
for i=1:n 
    for j=1:n 
        F(i)=((2*c(i)*P(i)+b(i))-(alpha(i)*cos(beta(i)*(Pmin(i)-

(i))))+(2*h(i)*f(i)*P(i))+(h(i)*e(i))+(h(i)*gamma(i)*delta(i))*(exp(d

elta(i))))+lambda*(2*P(j)*B(i,j)+B01(i))-lambda;   % Equation (3.46) 

         
    end 
end 
end 
%==================================================================== 
 

Appendix B3: MATLAB script file – CEEDVP_Casestudy2.m 

% M-File: CEEDVP_Casestudy2.m 
% ==================M-File Description=============================== 
% The m-file is used to solve the economic dispatch problem of 40 

generator system with valve point loading effect using Lagrange’s 

Algorithm by neglecting transmission loss and emission function 
clear all 
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clc 
tic; 
global lambda Pmin n a b  alpha beta; 
PD=10500        % Power Demand 
%======= Fuel cost with valve point loading effect coefficients====== 
a=[0.0069   0.0069  0.02028 0.00942 0.0114  0.01142 0.00357 0.00492 

0.00573 0.00605 0.00515 0.00569 0.00421 0.00752 0.00708 0.00708 

0.00313 0.00313 0.00313 0.00313 0.00298 0.00298 0.00284 0.00284 

0.00277 0.00277 0.52124 0.52124 0.52124 0.0114  0.0016  0.0016  

0.0016  0.0001  0.0001  0.0001  0.00161 0.00161 0.00161 0.00313]; 

 
b=[6.73 6.73    7.07    8.18    5.35    8.05    8.03    6.99    6.6 

12.9    12.9    12.8    12.5    8.84    9.15    9.15    7.97    7.95    

7.97    7.97    6.63    6.63    6.66    6.66    7.1 7.1 3.33    3.33    

3.33    5.35    6.43    6.43    6.43    8.95    8.62    8.62    5.88    

5.88    5.88    7.97]; 

 
c=[94.705   94.705  309.54  369.03  148.89  222.33  287.71  391.98  

455.76  722.82  635.2   654.69  913.4   1760.4  1728.3  1728.3  

647.85  649.69  647.83  647.81  785.96  785.96  794.53  794.53  

801.32  801.32  1055.1  1055.1  1055.1  148.89  222.92  222.92  

222.92  107.87  116.58  116.58  307.45  307.45  307.45  647.83]; 

 
alpha=[100  100 100 150 120 100 200 200 200 200 200 200 300 300 300 

300 300 300 300 300 300 300 300 300 300 300 120 120 120 120 150 150 

150 200 200 200 80  80  80  300]; 

 
beta=[0.084 0.084   0.084   0.063   0.077   0.084   0.042   0.042   

0.042   0.042   0.042   0.042   0.035   0.035   0.035   0.035   0.035   

0.035   0.035   0.035   0.035   0.035   0.035   0.035   0.035   0.035   

0.077   0.077   0.077   0.077   0.063   0.063   0.063   0.042   0.042   

0.042   0.098   0.098   0.098   0.035]; 

 
%======================== Generator limits========================== 
Pmin=[36    36  60  80  47  68  110 135 135 130 94  94  125 125 125 

125 220 220 242 242 254 254 254 254 254 254 10  10  10  47  60  60  

60  90  90  90  25  25  25  242]; 

 
Pmax=[114   114 120 190 97  140 300 300 300 300 375 375 500 500 500 

500 500 500 550 550 550 550 550 550 550 550 150 150 150 97  190 190 

190 200 200 200 110 110 110 550]; 

 
%==========Initial values of  Lagrange's algorithm=================== 
n=40;           % Number of generators 
lambda=500      % Initial Lambda 
% ================ Initial Real Powers=============================== 
P=[110  110 97  179 70  140 260 285 130 168 94  215 380 309 304 489 

470 511 480 523 500 500 500 500 500 10  10  10  90  190 190 190 165 

170 170 170 110 110 110 500]; 

 
m=500;      % Total number of iterations 
epsilon=0.001;  % Tolerance Value 
varepsilon=0.1;     % Tolerance value of delta lambda 
%================= Lagrange's algorithm starts here================== 
for iter=1:m 
    iter 
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    % To solve the CEED Problem with valve point effect using 

Lagrange's algorithm 
    fsolve(@CEED_VP_funct_40,P)  % To call the function file 

“CEED_VP_funt_40.m”    % Equation (3.52) 
    P=ans; 
    % ========== Checking of generator limits======================== 
    for i=1:n 
        if P(i)<=Pmin(i); 
            P(i)=Pmin(i); 
        elseif P(i)>=Pmax(i); 
            P(i)=Pmax(i); 
        else P(i)=P(i); 
        end 
    end 
    P 
    % =====================Calculation of deltalambda================ 
    deltalambda=PD-sum(P(:,:))      % Equation (3.53) 
    if abs(deltalambda)<=epsilon | iter>=m 
        break 
    else lambda=lambda+(deltalambda) 
    end 
end 
% ==========Lagrange's algorithm ends here=========================== 
% ==========Pre-allocation of fuelcost, emission and CEED============ 
fuelcost=zeros(1,n); 
CEED=zeros(1,n); 
%======== Calculation of fuelcost, emission and CEED================= 
for i=1:n 
fuelcost(i)=a(i)*P(i)^2+b(i)*P(i)+c(i)+abs(alpha(i)*sin(beta(i)*(Pmin

(i)-P(i))));    % Equation (3.46) 
end 
%===Printing of Real power, Transmission loss, Fuel cost, Emission 

and CEED== 
P 
totalfuelcost=sum(fuelcost(:,:)) 
toc; 
ans=[lambda P totalfuelcost iter toc] 
%==================================================================== 

 

Appendix B4: MATLAB script file - CEEDVP_Casestudy2_funct.m 

% M-File : CEEDVP_Casestudy2_funct.m 
% Forty Generator System 
% ==================M-File Description=============================== 
% The function is used to calculate the real power of the 40 

generator economic dispatch problem with valve point loading effect 

using Lagrange’s Algorithm by neglecting transmission loss and 

emission 

 
function F= CEEDVP_Casestudy2_funct (P) 
global lambda Pmin n a b alpha beta; 
%% Calculation of real power of the generators 
for i=1:n 
    F(i)=(2*a(i)*P(i)+b(i))-(alpha(i)*cos(beta(i)*(Pmin(i)-P(i))))-

lambda;  % Equation (3.52) 
end 
end 
%%=================================================================== 
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APPENDIX C: MATLAB PROGRAM FOR SEQUENTIAL CALCULATION OF THE 

CEED PROBLEM WITH A CUBIC CRITERION FUNCTION  

Appendix C1: MATLAB script file - CEEDCubic.m 

% M File: CEEDCubic.m 
% IEEE 30 bus system 
% For all three pollutant case 
% This script file solves CEED problem with cubic fuel cost and 

emission function and all three emissions NOx, SO2 and CO2 are 

considered. 
clear all 
clc; 
%======TIC and TOC functions work together to measure elapsed time=== 
tic; % Start a stopwatch timer 
%======================Fuel cost coefficients======================== 
a=[0.0010;0.0004;0.0006;0.0002;0.0013;0.00004]; 
b=[0.092;0.025;0.075;0.1;0.12;0.084]; 
c=[14.5;22;23;13.5;11.5;12.5]; 
d=[-136;-3.5;-81;-14.5;-9.75;75.6]; 
%======================SO2 Emission coefficients===================== 
a1=[0.0005;0.0014;0.0010;0.0020;0.0013;0.0021]; 
b1=[0.150;0.055;0.035;0.070;0.120;0.080]; 
c1=[17.0;12.0;10.0;23.5;21.5;22.5]; 
d1=[-90.0;-30.5;-80.0;-34.5;-19.75;25.6]; 
%======================NOx Emission coefficients===================== 
a2=[0.0012;0.0004;0.0016;0.0012;0.0003;0.0014]; 
b2=[0.052;0.045;0.050;0.070;0.040;0.024]; 
c2=[18.5;12.0;13.0;17.5;8.5;15.5]; 
d2=[-26.0;-35.0;-15.0;-74.0;-89.0;-75.0]; 
%======================CO2 Emission coefficients===================== 
a3=[0.0015;0.0014;0.0016;0.0012;0.0023;0.0014]; 
b3=[0.092;0.025;0.055;0.010;0.040;0.080]; 
c3=[14.0;12.5;13.5;13.5;21.0;22.0]; 
d3=[-16.0;-93.5;-85.0;-24.5;-59.0;-70.0]; 
%======================Generator Limits============================== 
Pmin=[50;20; 15 ;10 ;10 ;12]; 
Pmax=[200; 80; 50; 50; 50; 40]; 
% ============Initial Lagrange’s variable============================ 
PD=286.74;           % Power demad 
n=6;                 % Number of generators 
lambda=40;       % Initial Lagrange's variable lambda 
epsilon=0.01;        % Tolerance value for deltalambda 
alfa=0.01;           % Tolerance value 
m=50000;            % Total Number of iterations 
%===============Calculation of Min-Max Price penalty factor========== 
% 

h1=(a.*Pmin.^3+b.*Pmin.^2+c.*Pmin+d)./(a1.*Pmax.^3+b1.*Pmax.^2+c1.*Pm

ax+d1); % Min-Max Price penalty factor of SO2 Emission 
% 

h2=(a.*Pmin.^3+b.*Pmin.^2+c.*Pmin+d)./(a2.*Pmax.^3+b2.*Pmax.^2+c2.*Pm

ax+d2); % Min-Max Price penalty factor of NOx Emission 
% 

h3=(a.*Pmin.^3+b.*Pmin.^2+c.*Pmin+d)./(a3.*Pmax.^3+b3.*Pmax.^2+c3.*Pm

ax+d3); % Min-Max Price penalty factor of CO2 Emission 

 

 
%=============Calculation of Max-Max Price penalty factor============ 
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%h1=(a.*Pmax.^3+b.*Pmax.^2+c.*Pmax+d)./(a1.*Pmax.^3+b1.*Pmax.^2+c1.*P

max+d1); % Max-Max Price penalty factor of SO2 Emission 
%h2=(a.*Pmax.^3+b.*Pmax.^2+c.*Pmax+d)./(a2.*Pmax.^3+b2.*Pmax.^2+c2.*P

max+d2);   % Max-Max Price penalty factor of NOx Emission 
%h3=(a.*Pmax.^3+b.*Pmax.^2+c.*Pmax+d)./(a3.*Pmax.^3+b3.*Pmax.^2+c3.*P

max+d3);   % Max-Max Price penalty factor of CO2 Emission 

 
%================Calculation of Min-Min Price penalty factor========= 
%h1=(a.*Pmin.^3+b.*Pmin.^2+c.*Pmin+d)./(a1.*Pmin.^3+b1.*Pmin.^2+c1.*P

min+d1);          % Min-Min Price penalty factor of SO2 Emission 
%h2=(a.*Pmin.^3+b.*Pmin.^2+c.*Pmin+d)./(a2.*Pmin.^3+b2.*Pmin.^2+c2.*P

min+d2);         % Min-Min Price penalty factor of NOx Emission 
%h3=(a.*Pmin.^3+b.*Pmin.^2+c.*Pmin+d)./(a3.*Pmin.^3+b3.*Pmin.^2+c3.*P

min+d3);         % Min-Min Price penalty factor of CO2 Emission 

 
%==============Calculation of Max-Min Price penalty factor=========== 
h1=(a.*Pmax.^3+b.*Pmax.^2+c.*Pmax+d)./(a1.*Pmin.^3+b1.*Pmin.^2+c1.*Pm

in+d1);          % Max-Min Price penalty factor of SO2 Emission 
h2=(a.*Pmax.^3+b.*Pmax.^2+c.*Pmax+d)./(a2.*Pmin.^3+b2.*Pmin.^2+c2.*Pm

in+d2);          % Max-Min Price penalty factor of NOx Emission 
h3=(a.*Pmax.^3+b.*Pmax.^2+c.*Pmax+d)./(a3.*Pmin.^3+b3.*Pmin.^2+c3.*Pm

in+d3);           % Max-Min Price penalty factor of CO2 Emission 

 
%============Calculation of Average Price penalty factor============= 
% h=(h1+h2+h3+h4+h5+h6)./6; 

 
%======================Calculation of Common Price penalty factor==== 
% h7=(sum (h8))/6; 

 
%======================Calculation of generator real power=========== 
for iter=1:m 
    iter 
    %% ===== Calculation of real power of generators for all three 

Pollutants case===== 
    x=3*(a+a1.*h1+a2.*h2+a3.*h3); % Calculation of x, equation(3.99) 
    y=3*(b+b1.*h1+b2.*h2+b3.*h3); % Calculation of y, equation (3.99) 
    z=(c+h1.*c1+h2.*c2+h3.*c3)-lambda;% Calculation of z, 

equation(3.99) 
    P =real(-y+sqrt(y.^2-4.*x.*z))./(2.*x); % Generator real power, 

equation( ) 
    %% ===== Calculation of real power of generators for single 

Pollutant case=== 
    %   x=3*(a+a3.*h3);          % Calculation of x, equation (3.97) 
    %   y=3*(b+b3.*h3);          % Calculation of y, equation (3.97) 
    %   z=(c+h3.*c3)-lambda;     % Calculation of z, equation (3.97) 
    %   P =real(-y+sqrt(y.^2-4.*x.*z))./(2.*x); % Generator real 

power, equation( ) 
    %======================Generator limit checking ================= 
    for i=1:n 
        if P(i)<=Pmin(i) 
            P(i)=Pmin(i); 
        elseif P(i)>=Pmax(i) 
            P(i)=Pmax(i); 
        else P(i)=P(i); 
        end 
    end 
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    %===========Calculation of deltalambda and new 

lambda============= 
    deltalambda=PD-sum(P)% Calculation of deltalambda using equation 

() 
    if abs(deltalambda)<epsilon | iter>=m       % Tolerance checking 
        break 
    else lambda=lambda+deltalambda*alfa % new lambda using 

equation(3.102) 
    end 
end 
TotalP=sum(P)   % Total sum of real power of all the generators 

 
%=============Calculation of Fuel cost values======================= 
FC =(sum(a.*P.^3+b.*P.^2+c.*P+d)); % Fuel cost 
FT1= 

(sum(a.*P.^3+b.*P.^2+c.*P+d+(h1.*(a1.*P.^3+b1.*P.^2+c1.*P+d1)))); 
%Combined  fuel cost and SO2 emission 
FT2= 

(sum(a.*P.^3+b.*P.^2+c.*P+d+(h2.*(a2.*P.^3+b2.*P.^2+c2.*P+d2)))); 
%Combined  fuel cost and NOx emission 
FT3= 

(sum(a.*P.^3+b.*P.^2+c.*P+d+(h3.*(a3.*P.^3+b3.*P.^2+c3.*P+d3)))); 
%Combined  fuel cost and CO2 emission 
FT=(sum((a.*P.^3+b.*P.^2+c.*P+d)+(h1.*(a1.*P.^3+b1.*P.^2+c1.*P+d1))+(

h2.*(a2.*P.^3+b2.*P.^2+c2.*P+d2))+(h3.*(a3.*P.^3+b3.*P.^2+c3.*P+d3)))

); 

 
%%Combined  fuel cost and emission (CEED) of all the three pollutants 

(SO2, NOx and CO2) 
%=============Calculation of Emission values========================= 
ET1 =(sum(a1.*P.^3+b1.*P.^2+c1.*P+d1));         % SO2 Emission 
ET2 =(sum(a2.*P.^3+b2.*P.^2+c2.*P+d2));         % NOx Emission 
ET3=(sum(a3.*P.^3+b3.*P.^2+c3.*P+d3));          % CO2 Emission 
ET=((sum(a1.*P.^3+b1.*P.^2+c1.*P+d1))+(sum(a2.*P.^3+b2.*P.^2+c2.*P+d2

))+(sum(a3.*P.^3+b3.*P.^2+c3.*P+d3))); 
% Combined emission of all the three pollutants (SO2,NOx,CO2) 
%To Print [lambda, generator Real power, Fuel cost, Emission, CEED] 

values 
ans=[lambda P' FC ET1 ET2 ET3 ET FT1 FT2 FT3 FT iter toc] 
toc;    %Read the stopwatch timer 
%%=================================================================== 
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APPENDIX D:  MATLAB PROGRAM FOR SEQUENTIAL CALCULATION OF THE 

CEED PROBLEM USING PSO ALGORITHM  

 

Appendix D1: MATLAB script file – PSO_Casestudy1.m 

% M File: PSO_Casestudy1.m 
% IEEE 30 bus system 

% The M-File is used to solve CEED problem with various price penalty 

factors using Particle Swarm Optimisation (PSO) Algorithm 
clear all               %Removes all variables, global, functions 
clc                     % Clear the command window 
tic                     % Start  overall stopwatch timer 
%% ======================Economic Dispatch Parameters================ 
%==========Load Demand and Generator limits========================== 
PD=250;                    % Load demand 
Pmin1=[50 20 15 10 10 12]; % Minimum generator limits including slack 

bus 
Pmax1=[200 80 50 35 30 40]; % Maximum generator limits including 

slack bus 
Pdmin=[50];                 % Minimum  generator limit of Slack bus 
Pdmax=[200];                % Maximum  generator limit of Slack bus 
Pmin=[20 15 10 10 12];      % Minimum generator limits excluding 

slack bus 
Pmax=[80 50 35 30 40];      % Maximum generator limits excluding 

slack bus 

 
% ===================Cost and Emission coefficients================= 
a=[0.00375 0.01750 0.06250 0.00834 0.02500 0.02500]; 
b=[2.00 1.75 1.00 3.25 3.00 3.00]; 
c=[0 0 0 0 0 0]; 
d=[0.0126 0.0200 0.0270 0.0291 0.0290 0.0271]; 
e=[-1.1000 -0.1000 -0.1000 -0.0050 -0.0400 -0.0055]; 
ff=[22.983 22.313 25.505 24.900 24.700 25.300]; 
n=6;                    % Number of generators 

 
%====================Transmission loss B - coefficients============== 
B=[0.000218 0.000103 0.000009 -0.000010 0.000002 0.000027; 
    0.000103 0.000181 0.000004 -0.000015 0.000002 0.000030; 
    0.000009 0.000004 0.000417 -0.000131 -0.000153 -0.000107; 
    0.000010 -0.000015 -0.000131 0.000221 0.000094 0.000050; 
    0.000002 0.000002 -0.000153 0.000094 0.000243 -0.000000; 
    0.000027 0.000030 -0.000107 0.000050 -0.000000 0.000358]; 

 
%% ===============PSO Parameters================================= 
wmin=0.4;               % Minimum weight 
wmax=0.9;               % Maximum weight 
w=0.65;                  % weight 
c1=2.0;                 % Acceleration factor1 
c2=2.0;                 % Acceleration factor2 
Min=0;                  % Minimum Value 
Max=1;                  % Maximum value 
r1 = Min + (Max-Min).*rand(1,1);    %random number1 between ( 0 to 1) 
r2= Min + (Max-Min).*rand(1,1);     %random number2 between ( 0 to 1) 
m=25;                   % Total number of iterations 
 

%% ================= PSO Algorithm for Economic Dispatch Problem===== 
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for iter=1:m                % Number of iterations 
    tic;                    % Start a stopwatch timer of PSO 
    %% ===========PSO Velocity Calculation - 1st Level of solution=== 
    for i=1:5       % Number of velocities depends on(No of 

generators of the plant) 
        vmin(i)=[-0.5*Pmin(i)]      % Calculation of minimum velocity 
        vmax(i)=[0.5*Pmax(i)]       % Calculation of maximum velocity 
        for j=1:10  % Number of particles position (varying quantity) 
            v(j,i)=[vmin(i)+rand()*(vmax(i)-vmin(i))]  

% calculation of velocity 
        end 
    end 

 
    %% ================= Calculation of PSO Position ================ 
    for j=1:10              % Number of swarm particle Positions 
        for i=1:5               % Number of velocities 
            P(i)=Pmin(i)+rand()*(Pmax(i)-Pmin(i)); 

%GEN Real power- except slack bus 
        end 

 
        %% =================Generator MIN & MAX limits=============== 
        for i=1:5 
            if P(i)<=Pmin(i) 
                P(i)=Pmin(i); 
            elseif P(i)>=Pmax(i) 
                P(i)=Pmax(i); 
            else P(i) = P(i); 
            end 
        end 
        %% ===============Dependent Generator ======================= 
        P=[zeros P];                % Pre-allocation of P 
        x=B(1,1);                   % Calculation x 
        y=zeros(5,1);               % Pre-allocation of y 
        for k=2:6 
            for r=1:1 
                y(k,r)=((B(k,r)+B(r,k))*P(k));    % Calculation of y 
            end 
        end 
        y=sum(y)-1; 
        PL=zeros(5,5);              % Pre-allocation of PL 
        for k=2:6 
            for l=2:6 
                PL(k,l)= P(k)*B(k,l)*P(l);    % Calculation of PL 
            end 
        end 
        PL1=sum(PL); 
        PL2=sum(PL1); 
        PL=PL2; 
        p=sum(P(2:6)); 
        z=PD+PL-p;              % Calculation of z 
        Pd=-(y+(y.^2- 4.*x.*z).^(1/2))/(2.*x); 

  % Calculation of dependent GEN 
        demo1=-(y-(y.^2- 4.*x.*z).^(1/2))/(2.*x);   

  % Calculation of dependent GEN 
        P=P(2:6); 

 
        %% =====================Dependent Generator Limit =========== 
        if Pd<=Pdmin         % checking the slack bus generator limit 
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            Pd=Pdmin; 
        elseif Pd>=Pdmax 
            Pd=Pdmax; 
        else Pd=Pd; 
        end 
        p=[Pd P];            % generator power including slack bus 

 
        %% ================= Transmission loss ====================== 
        for k=1:6 
            for l=1:6 
                PL(k,l)=p(k)*B(k,l)*p(l); 
            end 
        end 
        Pl=sum(PL); 
        PL=sum(Pl); 
        eval(['PL' num2str(j) ' = (PL)']) 
        eval(['p' num2str(j) ' = (p)']) 

 
        %% ============Price Penalty Factor (PPF)==================== 
        h=[(a.*Pmax1.^2+b.*Pmax1+c)]./[(d.*Pmax1.^2+e.*Pmax1+ff)]; 

 
        %% ========== CEED Fuel cost, Fuel cost and Emission ======== 
        for i=1:6 
f(i)=a(i)*p(i)^2+b(i)*p(i)+c(i)+(h(i)*(d(i)*p(i)^2+e(i)*p(i)+ff(i))); 
                % CEED Fuel cost of individual GEN 
            fuel(i)=a(i)*p(i)^2+b(i)*p(i)+c(i);  

% Fuel cost (FC)of individual GEN 
            Emission(i)=d(i)*p(i)^2+e(i)*p(i)+ff(i); 

% Emission value of individual GEN 
        end 

 
        F=sum(f);                           % CEED Fuel cost 
        fuel=sum(fuel);                     % Fuel cost 
        Emission=sum(Emission);             % Emission 
        q=[F p PL fuel Emission ]; 

  %Economic dispatch(PSO)1st level of Solution 
        eval(['q' num2str(j) ' = (q)']); 
        eval(['z' num2str(j) '=(q(:,1))']); 
    end 
    %% ========Sort the Fuel cost in ascending order================= 
    p=[p1; p2; p3; p4 ;p5; p6;p7;p8;p9;p10]; %Print the real power P 
    p=p(:,(2:6))              % Print the real power generator values 
    z=[z1 z2 z3 z4 z5 z6 z7 z8 z9 z10];    %Total fuel cost value 
    q=[q1; q2; q3 ;q4; q5; q6; q7; q8; q9; q10]  

     % Print the q=[FT, P1....Pn, FC,ET] 
    [aa bb]=min(z)     % To find the minimum of FT 
    gbest1=q(bb,:)     % To select the Gbest as best of all positions 
    gbest=q(bb,(3:7))  % To select the global best positions 

 
    %% % Economic dispatch (PSO) 2nd level of Solution 
    %% ===================New Velocity=============================== 
    for j=1:10 
        for i=1:5 
            w(i)= wmax-((i*(wmax-wmin))/5); 

 % Calculate the inertia weight 
            vnew=w(i)*v(j,i)+(c1*r1*(p(:,i)-

p(:,i)))+(c2*r2*(gbest(:,i)-p(:,i)));   %New velocity 
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            eval(['vnew' num2str(i) ' = (vnew)']); 
        end 
    end 
    vnew=[vnew1 vnew2 vnew3 vnew4 vnew5]; 

 
    %% =============check the limits of new velocities=============== 
    for i=1:10 
        for j=1:5 
            if vnew(i,j)<=vmin(j) 
                vnew(i,j)=vmin(j) 
            elseif vnew(i,j)>=vmax(j) 
                vnew(i,j)=vmax(j) 
            end 
        end 
    end 
    %% =============== New position================================== 
    pneww=zeros(10,5)           % Pre-allocation of new position 

(i.e.,pneww) 
    for i=1:10 
        for j=1:5 
            pneww(i,j)=p(i,j)+vnew(i,j); % New position 
        end 
        eval(['pneww' num2str(i) ' = (pneww)']) 
    end 

 
    %% ============Check the limits of new position================== 
    for i=1:10 
        for j=1:5 
            if pneww(i,j)<=Pmin(j) 
                pneww(i,j)=Pmin(j); 
            elseif pneww(i,j)>=Pmax(j) 
                pneww(i,j)=Pmax(j); 
            end 
        end 
    end 
    pnew=[pneww10]; 

 
    %% ===============New dependent Generator ====================== 
    for i=1:10 
        pneww=pnew(i,:) 
        pneww=[zeros pneww]; 
        x=B(1,1);  % calculation of x 
        y=zeros(5,1);  % Pre-allocation of y 
        for k=2:6 
            for r=1:1 
                y(k,r)=((B(k,r)+B(r,k))*pneww(k)); % Calculation of y 
            end 
        end 
        y=sum(y)-1; 
        PL=zeros(5,5); % Pre - allocation of PL 
        for k=2:6 
            for l=2:6 
                PL(k,l)=pneww(k)*B(k,l)*pneww(l); % Calculation of PL 
            end 
        end 
        PL11=sum(PL); 
        PL22=sum(PL11); 
        PL=PL22; 
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        p=sum(pneww(2:6)); 
        z=PD+PL-p; 
        pdnew=-(y+(y.^2- 4.*x.*z).^(1/2))/(2*x); 

    % New dependent Generator1 
        demo1=-(y-(y.^2- 4.*x.*z).^(1/2))/(2*x);   

    % New dependent Generator2 

 
        %% =====================New Dependent Generator Limit ======= 
        if pdnew<=Pdmin % checking the slack bus generator limit 
            pdnew=Pdmin; 
        elseif pdnew>=Pdmax 
            pdnew=Pdmax; 
        else pdnew=pdnew; 
        end 

 
        %% =================== New Transmission loss ================ 
        pneww=pneww(2:6)     % New GEN real power excluding slack bus 
        pneww=[pdnew pneww]  % New GEN real power including slack bus 
        for k=1:6 
            for l=1:6 
                PL(k,l)=pneww(k)*B(k,l)*pneww(l); 

% New Transmission loss 
            end 
        end 
        Pl=sum(PL); 
        PL=sum(Pl); 
        eval(['PL' num2str(i) ' = (PL)']); 
        eval(['pneww' num2str(i) ' = (pneww)']); 
        eval(['pdnew' num2str(i) ' = (pdnew)']); 
    end 
    pnew=[pneww1; pneww2; pneww3; pneww4; pneww5; pneww6; pneww7; 

pneww8; pneww9 ;pneww10]; 
    PL=[PL1 PL2 PL3 PL4 PL5 PL6 PL7 PL8 PL9 PL10]'; 
     

%%Calculate the New CEED Fuel cost,New Fuel cost and New Emission 
    for j=1:10 
        for i=1:6 
Fnew(i)=a(i)*pnew(j,i)^2+b(i)*pnew(j,i)+c(i)+(h(i)*(d(i)*pnew(j,i)^2+

e(i)*pnew(j,i)+ff(i)));              % New CEED Fuel cost FTnew 
fuelnew(i)=a(i)*pnew(j,i)^2+b(i)*pnew(j,i)+c(i); 

% New Fuel cost (FCnew) 
Emissionnew(i)=d(i)*pnew(j,i)^2+e(i)*pnew(j,i)+ff(i); 

% NewEmission ETnew 
        end 

 

        Fnew=sum(Fnew(:,:)); 
        fuelnew=sum(fuelnew(:,:)); 
        Emissionnew=sum(Emissionnew(:,:)); 
        eval(['Fnew' num2str(j) ' = (Fnew)']); 
        eval(['fuelnew' num2str(j) ' = (fuelnew)']); 
        eval(['Emissionnew' num2str(j) ' = (Emissionnew)']); 
    end 
    

%% PSO 2nd level solution; qnew=[FTnew, P1new..Pnnew, FCnew,ETnew] 
Fnew=[Fnew1;Fnew2;Fnew3;Fnew4;Fnew5;Fnew6;Fnew7;Fnew8;Fnew9;Fnew10]; 
fuelnew=[fuelnew1;fuelnew2;fuelnew3;fuelnew4;fuelnew5;fuelnew6;fuelne

w7;fuelnew8;fuelnew9;fuelnew10;]; 
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Emissionnew=[Emissionnew1;Emissionnew2;Emissionnew3;Emissionnew4;Emis

sionnew5;Emissionnew6;Emissionnew7;Emissionnew8;Emissionnew9;Emission

new10]; 
    qnew=[Fnew pnew PL fuelnew Emissionnew] 

 
%%Compare the PSO solution of 1st level with 2nd level (q and qnew 
    x=q(:,1);                   % Assign q to x 
    y=qnew(:,1);                % Assign qnew to y 
    for i=1:10 
        if x(i)<y(i);           % compare q and  qnew 
            z(i)=y(i); 
            qrow=i; 
            x1=(q(qrow,:)); 
            mat(i,:)=x1               % Store best solution in mat 
        end 
        if x(i)>y(i);                 % compare q and  qnew 
            z(i)=x(i); 
            qnewrow=i; 
            y1=qnew(qnewrow,:); 
            mat(i,:)=y1               % Store best solution in mat 
        end 
    end 

 
    %% ==================Store the best PSO solution ================ 
    eval(['mat' num2str(iter) ' = (mat)']); 
    eval(['matz' num2str(iter) '=(mat(:,1))']); 
    t(iter)=toc 
end % PSO Iteration Ends 

  
%% ==================PSO solution ================================= 
final=[mat1; mat2 ;mat3 ;mat4; mat5; mat6; mat7; mat8 ;mat9; mat10 

;mat11 ;mat12; mat13; mat14 ;mat15 ;mat16; mat17; mat18; mat19; 

mat20;mat21;mat22;mat23;mat24;mat25];    

 % PSO Solution of all the iterations 
[row col]=min(final(:,1))   

% Find the best solution of PSO from the solution of each iteration 
finalans=final(col,:)               % Print the best solution of PSO 
iteration=fix(col/10)+1  

% Print the iteration Number of the best solution 

 
%% ========Graph: PSO solution to Economic Dispatch Problem========== 
y_axis=final(:,1); 
graph=plot(y_axis, '*'); 
hold on 
plot(finalans(1,1),'o') 
set(graph,'Color','red','LineWidth',2) 
toc; 
ANSWER=[finalans(:,:) iteration toc] 
TOTALP= sum(finalans(2:7)) 
%% The PSO Program for CEED Problem is end here 
%==================================================================== 

 

Appendix D2: MATLAB script file – PSO_Casestudy2.m 

% M File: PSO_Casestudy2.m 
% IEEE 11 Generator Systems 

% The M-File is used to solve CEED problem with various price penalty 

factors using Particle Swarm Optimisation (PSO) Algorithm 
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%====================== PSO Algorithm - 10 Positions================= 
clear all 
clc 
tic % Start a stopwatch timer. 
%for iteration=1:40 % Number of iterations 

 
%================== Economic dispatch Parameters===================== 
PD=2500; % Load demand 
Pdmin=[20];% Minimum  generator limit of Slack bus 
Pdmax=[250];% Maximum  generator limit of Slack bus 
Pmin=[20 20 60 20 60 20 100 100 110 110];% Minimum generator limits 

excluding slack bus 

 

 
% ===================Cost coefficients=============================== 
a=[0.00762 0.00838 0.00523 0.00140 0.00154 0.00177 0.00195 0.00106 

0.00117 0.00089 0.00098]; 
b=[1.92699 2.11969 2.19196 2.01983 2.22181 1.91528 2.10681 1.99138 

1.99802 2.12352 2.10487]; 
c=[387.85 441.62 422.57 552.5 557.75 562.18 568.39 682.93 741.22 

617.83 674.61]; 
d=[0.00419 0.00461 0.00419 0.00683 0.00751 0.00683 0.00751 0.00355 

0.00417 0.00355 0.00417]; 
e=[-0.67767 -0.69044 -0.67767 -0.54551 -0.4006 -0.54551 -0.40006 -

0.51116 -0.56228 -0.41116 -0.56228]; 
ff=[33.93 24.62 33.93 27.14 24.15 27.14 24.15 30.45 25.59 30.45 

25.59]; 
%==================================================================== 
Pmin1=[20 20 20 60 20 60 20 100 100 110 110]; 

% Minimum generator limits including slack bus 
Pmax=[210 250 300 210 300 215 455 455 460 465];  

% Maximum generator limits excluding slack bus 
Pmax1=[250 210 250 300 210 300 215 455 455 460 465]; 

% Maximum generator limits including slack bus 
n=11;   % Number of generators 
m=20;    % Number of iterations 
%===================================PSO Parameters=================== 
wmin=0.4;  % Minimum weight 
wmax=0.9;  % Maximum weight 
w=0.65;    % weight 
c1=2.0;  % acceleration factor 
c2=2.0;  % acceleration factor 
Min=0; 
Max=1; 
r1 = Min + (Max-Min).*rand(1,1);%random number between ( 0 to 1) 
r2= Min + (Max-Min).*rand(1,1); %random number between ( 0 to 1) 

 
%========================PSO initial velocity======================== 
for iter=1:m 
    tic; 
    for i=1:10 % Number of velocities 
        vmin(i)=[-0.5*Pmin(i)] % calculation of minimum velocity 
        vmax(i)=[0.5*Pmax(i)] % calculation of maximum velocity 
        for j=1:10 % Number of particles position 
            v(j,i)=[vmin(i)+rand()*(vmax(i)-vmin(i))]  

% calculation of velocity 
        end 
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    end 
    % J loop starts here(where J= Number of particles position 
    for j=1:10 
        for i=1:10  % Number of velocities 
            P(i)=Pmin(i)+rand()*(Pmax(i)-Pmin(i)); 

% calculation of real power except slack bus 
        end 
        Q=sum(P); 
        Pd=[PD-Q]; % calculation of real power of slack bus 

 
        % =====================Generator Limits checking============= 

        for i=1:10 %Generators expect slack bus 
            if P(i)<=Pmin(i) 
                P(i)=Pmin(i); 
            elseif P(i)>=Pmax(i) 
                P(i)=Pmax(i); 

    % checking the slack bus generator limits 
                 elseif Pd(1)<=Pdmin(1)  

                 Pd(1)=Pdmin(1); 

                 elseif Pd(1)>=Pdmax(1) 

                 Pd(1)=Pdmax(1); 

            end 
        end 
        

%=============================================================== 
        p=[Pd P]; % generator power including slack bus 
        eval(['p' num2str(j) ' = (p)']) 

% print the generator power p inside the execution of for loop 
h=[(a.*Pmax1.^2+b.*Pmax1+c)]./[(d.*Pmax1.^2+e.*Pmax1+ff)]; 

%Price penalty factor 
         

%Calculate the Fuel cost equation with valve point effect 
        for i=1:11 
f(i)=a(i)*p(i)^2+b(i)*p(i)+c(i)+(h(i)*(d(i)*p(i)^2+e(i)*p(i)+ff(i))); 

%Fuel cost (FT) including emission 
fuel(i)=a(i)*p(i)^2+b(i)*p(i)+c(i);  

% Fuel cost (FC) excluding emission 
            Emission(i)=d(i)*p(i)^2+e(i)*p(i)+ff(i);% Emission value 
        end 
        F=sum(f); 
        fuel=sum(fuel); 
        Emission=sum(Emission); 
        q=[F p fuel Emission]; 
        eval(['q' num2str(j) ' = (q)']);% print the q(i)=[FT(i), 

P1(i)....Pn(i), FC(i),ET(i)] 
        eval(['z' num2str(j) '=(q(:,1))']);%Select the FT(i) value 

alone from q(i) 
    end 
    %==========================% J loop ends here %================== 

 
    % Sort the Fuel cost in ascending order 
    p=[p1; p2; p3; p4 ;p5; p6;p7;p8;p9;p10];%Print the real power P 
    p=p(:,(2:11))% print the real power generator values 
    z=[z1 z2 z3 z4 z5 z6 z7 z8 z9 z10]; %Total fuel cost value 
    q=[q1; q2; q3 ;q4; q5; q6; q7; q8; q9; q10] 

% print the q=[FT, P1....Pn, FC,ET] 
    [aa bb]=min(z) % To find the minimum of FT 
    gbest1=q(bb,:) % To select the Gbest as best of all positions 
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    gbest=q(bb,(3:12)) % To select the global best positions 

 
    for j=1:10 
        for i=1:10 
            w(i)= wmax-((i*(wmax-wmin))/10);  

% Calculate the inertia weight 
            vnew=w(i)*v(j,i)+(c1*r1*(p(:,i)-

p(:,i)))+(c2*r2*(gbest(:,i)-p(:,i))); % calculate the new velocity 
            eval(['vnew' num2str(i) ' = (vnew)']); 
        end 
    end 

 

 vnew=[vnew1 vnew2 vnew3 vnew4 vnew5 vnew6 vnew7 vnew8 vnew9 vnew10]; 
    for i=1:10 
        %============== check the limits of new velocities=========== 
        for j=1:10   % Number of velocities 
            if vnew(i,j)<=vmin(j) 
                vnew(i,j)=vmin(j) 
            elseif vnew(i,j)>=vmax(j) 
                vnew(i,j)=vmax(j) 
            end 
        end 
    end 
    %===============claculate the new postion======================== 
    for i=1:10 
        for j=1:10 
            pneww(i,j)=p(i,j)+vnew(i,j); 
        end 
        eval(['pneww' num2str(i) ' = (pneww)']) 
    end 
    %===============check the limits of new position================= 
    for i=1:10 
        for j=1:10 %Generators expect slack bus 
            if pneww(i,j)<=Pmin(j) 
                pneww(i,j)=Pmin(j); 
            elseif pneww(i,j)>=Pmax(j) 
                pneww(i,j)=Pmax(j); 
            end 
        end 
    end 
    %==========calculate the new power of dependent generator======== 
    for i=1:10 
        pdnew(i)=[PD-sum(pneww(i,:))]; 
        eval(['pdnew' num2str(i) ' = (pdnew)']) 
    end 
    pnew=[pdnew' pneww] 
    %===================Calculate the FTnew,FCnew, ETnew============= 
    for j=1:10 
        for i=1:11 
Fnew(i)=a(i)*pnew(j,i)^2+b(i)*pnew(j,i)+c(i)+(h(i)*(d(i)*pnew(j,i)^2+

e(i)*pnew(j,i)+ff(i))); 
fuelnew(i)=a(i)*pnew(j,i)^2+b(i)*pnew(j,i)+c(i);  

% Fuel cost new (FC) excluding emission 
Emissionnew(i)=d(i)*pnew(j,i)^2+e(i)*pnew(j,i)+ff(i); 

% Emission value new 
        end 

 
        Fnew=sum(Fnew(:,:)); 
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        fuelnew=sum(fuelnew(:,:)); 
        Emissionnew=sum(Emissionnew(:,:)); 
        eval(['Fnew' num2str(j) ' = (Fnew)']); 
        eval(['fuelnew' num2str(j) ' = (fuelnew)']); 
        eval(['Emissionnew' num2str(j) ' = (Emissionnew)']); 

%Fuel cost (FT) including emission 
    end 
    %=========qnew=[FTnew, P1new....Pnnew, FCnew,ETnew]============== 
Fnew=[Fnew1;Fnew2;Fnew3;Fnew4;Fnew5;Fnew6;Fnew7;Fnew8;Fnew9;Fnew10]; 
    

fuelnew=[fuelnew1;fuelnew2;fuelnew3;fuelnew4;fuelnew5;fuelnew6;fuelne

w7;fuelnew8;fuelnew9;fuelnew10;]; 
    

Emissionnew=[Emissionnew1;Emissionnew2;Emissionnew3;Emissionnew4;Emis

sionnew5;Emissionnew6;Emissionnew7;Emissionnew8;Emissionnew9;Emission

new10]; 
    qnew=[Fnew pnew fuelnew Emissionnew] 
    x=q(:,1)'; 
    y=qnew(:,1)'; 

    %================= Select the qbest solution from q and qnew===== 
    for i=1:10 
        if x(i)<y(i); 
            z(i)=y(i); 
            qrow=i; 
            x1=(q(qrow,:)); 
            mat(i,:)=x1; 
        end 
        if x(i)>y(i); 
            z(i)=x(i); 
            qnewrow=i; 
            y1=qnew(qnewrow,:); 
            mat(i,:)=y1; 
        end 
    end 

%Print the solution, when… 

….iteration(i),i.e.,mat(i)=[FTbest,P1best....Pnbest,FCbest,ETbest] 
    eval(['mat' num2str(iter) ' = (mat)']); 
    eval(['matz' num2str(iter) '=(mat(:,1))']); 
    t(iter)=toc 
end 

 
%================Print the solution, when iteration i to n 

i.e.,mat=[FTbest,P1best....Pnbest,FCbest,ETbest] 

 
final=[mat1; mat2 ;mat3 ;mat4; mat5; mat6; mat7; mat8 ;mat9; mat10 

;mat11 ;mat12; mat13; mat14 ;mat15 ;mat16; mat17; mat18; mat19; 

mat20]; 

[row col]=min(final(:,1)) 
finalans=final(col,:) 
iteration=fix(col/10)+1  

% print the iteration Number of the best solution 
y_axis=final(:,1); 
graph=plot(y_axis, '*') 
hold on 
plot(finalans(1,1),'o') 
set(graph,'Color','red','LineWidth',2) 
toc 

%====================================================================  
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APPENDIX E: MATLAB  PROGRAM FOR DATA PARALLELSOLUTION OF THE CEED 

PROBLEM USING LAGRANGE'S ALGORITHM IN A CLUSTER OF 

COMPUTERS 

Appendix E1: MATLAB script file – CEED_Casestudy1_DataParallel.m 

 

% M-File : CEED_Casestudy1_DataParallel.m 
%IEEE 30 BUS SIX GENERATOR SYSTEM 

% Six different power demands are assigned to 6 workers using a MATLAB 

parallel computing toolbox 
% ==================M-File Description=============================== 
% The M-File is used to solve CEED problem with various price penalty 

factors using Lagrange’s Algorithm in a parallel way 
clear all 
clc; 
tic; 
% ==Economic dispatch problem including losses and generator limits== 
% ============Initial Lagrange’s variable============================ 
lambda=4; 
% ===========Fuel cost coefficients================================= 
a=[0.00375 0.01750 0.06250 0.00834 0.02500 0.02500]; 
b=[2.00 1.75 1.00 3.25 3.00 3.00]; 
c=[0 0 0 0 0 0]; 
% ======================== Emission Coefficients===================== 
d=[0.0126 0.0200 0.0270 0.0291 0.0290 0.0271]; 
e=[-1.1000 -0.1000 -0.1000 -0.0050 -0.0400 -0.0055]; 
f=[22.983 22.313 25.505 24.900 24.700 25.300]; 
% ==================Generator Limits ================================ 
Pmin=[50 20 15 10 10 12]; 
Pmax=[200 80 50 35 30 40]; 
% ==============Transmission loss coefficients======================= 
B00=[0.000014]; 
B01=[-0.000003 0.000021 -0.000056 0.000034 0.000015 0.000078]; 
B=[0.000218 0.000103 0.000009 -0.000010 0.000002 0.000027; 
    0.000103 0.000181 0.000004 -0.000015 0.000002 0.000030; 
    0.000009 0.000004 0.000417 -0.000131 -0.000153 -0.000107; 
    0.000010 -0.000015 -0.000131 0.000221 0.000094 0.000050; 
    0.000002 0.000002 -0.000153 0.000094 0.000243 -0.000000; 
    0.000027 0.000030 -0.000107 0.000050 -0.000000 0.000358]; 
%Matlabpool open jobmanagerconfig1 %Opening 6 Matlab workers from the 

cluster 
t0 = clock; % start of the clock on second level calculation 
jm = findResource('scheduler','configuration','jobmanagerconfig1') 
disp(get(jm))%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% check the status of the 

jobmanager 
timingStart = tic; 
start = tic;  
pjob1=createParallelJob(jm,'Configuration','jobmanagerconfig1'); %create 

parallel job from the jobmanager 
get(pjob1) % Monitor the status of pjob1 
%==========How long it takes to create a job============================  
times.jobCreateTime = toc(start) 
description.jobCreateTime = 'Job creation time' 
%=======================================================================  
Tasks = findTask(pjob1) 
[pending running finished] = findTask(pjob1) 
set(pjob1,'Configuration','jobmanagerconfig1') 
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set(pjob1,'MinimumNumberOfWorkers',6); 
set(pjob1,'MaximumNumberOfWorkers',6);    
set(pjob1,'FileDependencies',{'CEED_Casestudy1_DataParallel_funct.m'}) 
get(jm)%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Notice how jobmanager is 

changing  
disp(get(pjob1)) 
disp('busy workers') 
disp(get(jm, 'NumberOfbusyWorkers')) 
%====================STARTING PARALLEL COMPUTING======================== 
%Create task- only one with 13 output arguments  and 12 input arguments, 
%measure how long that takes and measure how long it takes to submit the 
%job to the cluster 
task1=createTask(pjob1, 

@CEED_Casestudy1_DataParallel_funct,14,{Pmax,Pmin,f,e,d,c,b,a,lambda,B,B0

0,B01}) 
get(pjob1,'task') 
%==========How long it takes to create a task===========================  
times.taskCreateTime = toc(start) 
description.taskCreateTime = 'Task creation time' 
%======================================================================= 
submit(pjob1)  
%===========How long it takes to submit a job===========================  
times.submitTime = toc(start) 
description.submitTime = 'Job submission time' 
%======================================================================= 
%Once the job has been submitted, we hope all its tasks execute in 
%parallel. Measure how long it takes for all the tasks to start and to 

run 
%to completion. 
waitForState(pjob1,'finished') 
times.jobWaitTime = toc(start) 
description.pjobWaitTime = 'Job wait time' 
get(jm) 
%Tasks have now completed, so we are again executing a code in the Matlab 
%client. Measure how long it takes to retrieve all the job results  
disp('PD lambda P1 P2 P3 P4 P5 P6 PL FC ET FT iter time') % display the 

output values 
results=getAllOutputArguments(pjob1) 
times.resultsTime = toc(start) 
description.resultsTime = 'Results retrieval time' 
%======================================================================= 
%============Verify that the job ran without errors===================== 
errmsgs = get(pjob1.task, {'ErrorMessage'}) 
nonempty = ~cellfun(@isempty, errmsgs) 
celldisp(errmsgs(nonempty)) 
%====================================================================== 

  
%Measure the total time elapsed from creating the job up to the results 
times.totalTime = toc(start) 
operationtime = etime(clock,t0) %operation time for completion of 

parallel computing 
destroy(pjob1) 
%matlabpool close% close matlapool of workers 

 

Appendix E2: MATLAB script file – CEED_Casestudy1_DataParallel_funct.m 

% M-File : CEED_Casestudy1_DataParallel_funct.m 
%IEEE 30 BUS SIX GENERATOR SYSTEM 
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% ==================M-File Description=============================== 
% The M-File is used to solve CEED problem with various price penalty 
% factors using Lagrange’s Algorithm in a Parallel way 
function [ PD lambda P1 P2 P3 P4 P5 P6 PL FC ET FT iter time] = 

CEED_Casestudy1_DataParallel_funct(Pmax,Pmin,f,e,d,c,b,a,lambda,B,B00,B01

) 
tic; 

% The Power demand varies according to lab index 
if labindex ==1 
PD=125; 
end 
if  labindex==2 
    PD=150; 
end 
if  labindex==3 
    PD=175; 
end 
if  labindex==4 
    PD=200; 
end 
if  labindex==5 
    PD=225; 
end 
if labindex==6 
    PD=250; 
end 
epsilon=0.001;          % Tolerance value 
alfa=0.001;             % Incremental deltalambda 
n=6;                        % No of generators 
m=2000;                 % Total number of iterations 
for iter=1:m 
    %================Lagrange’s algorithm starts here =================== 
    iter        % To Print the each iteration number 
    % ===========Calculation of Price penalty factor================= 
    h=[(a.*Pmin.^2+b.*Pmin+c)]./[(d.*Pmax.^2+e.*Pmax+f)];   % Equation 

(3.7 or 3.8 or 3.9 or 3.10) 
    % =================Calculation of generator real power ========== 
    E=[(diag(a+(h.*d))./lambda)+B];         % Equation (3.19) 
    D=0.5*((1-(b+h.*e)./lambda-B01))';      % Equation (3.19) 
    P=E\D;                      % Equation (3.21) 
    %======================Generator limit checking ================= 
    for i=1:n 
        if P(i)<=Pmin(i) 
            P(i)=Pmin(i) 
        elseif P(i)>=Pmax(i) 
            P(i)=Pmax(i) 
        else P(i)=P(i) 
        end 
    end 
    % The real power output of individual generators are assigned to the 

output of the function file 
    P1=P(1); P2=P(2); P3=P(3); P4=P(4); P5=P(5); P6=P(6); 
    %========== Calculation of Transmission loss===================== 
    PL1=B00; 
    PL2=zeros(1,n); 
    for i=1:n 
        PL2(i)=(B01(i)*P(i));       % Equation (3.3) 
    end 
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    PL2=sum(PL2(:,:)); 
    PL3=zeros(n,n); 
    for i=1:n 
        for j=1:n 
            PL3(i,j)=P(i)*B(i,j)*P(j);  % Equation (3.3) 
        end 
    end 
    PL3=sum(PL3(:,:)); 
    PL3=sum(PL3(:,:)); 
    PL=PL1+PL2+PL3; 
    % ======================Calculation of deltalambda ============== 
    deltalambda=0.0; 
    deltalambda=PD+PL; 
    for i=1:n 
        deltalambda=deltalambda-P(i);       % Equation (3.22) 
    end 
    if abs(deltalambda)<=epsilon | iter>=m 
        break 
    else lambda=lambda+deltalambda*alfa  % Equation (3.23) 
    end 
end 
%====== Calculation of fuel cost, emission and CEED values ========== 
fuelcost=0; 
emissioncost=0; 
CEED=0; 
for i=1:n 
    fuelcost=fuelcost+a(i)*P(i)^2+b(i)*P(i)+c(i); % Equation (3.1) 
    emissioncost=emissioncost+d(i)*P(i)^2+e(i)*P(i)+f(i); % Equation 

(3.5) 
    CEED= 

CEED+a(i)*P(i)^2+b(i)*P(i)+c(i)+h(i)*(d(i)*P(i)^2+e(i)*P(i)+f(i)); % 

Equation (3.6) 
end 
%==== Printing of Real power, Transmission loss, Fuel cost, Emission and 

CEED=== 
lambda 
P 
PL 
FC=sum(fuelcost(:,:)) 
ET=sum(emissioncost(:,:)) 
FT=sum(CEED(:,:)) 

time=toc; 
end 
%==================================================================== 

 

Appendix E3: MATLAB script file – CEED_Casestudy2_DataParallel.m 

% M-File : CEED_Casestudy2_DataParallel.m 
% IEEE 118 bus system 
%==================M-FileDescription================================ 
% The M-File is used to solve CEED problem with various price penalty 

factors using Lagrange’s Algorithm 
clear all 
clc; 
tic; 
% ==Economic dispatch problem including losses and generator limits 
% ========Initial Lagrange’s variable================================ 
lambda=40               % Initial lambda 
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%===========Fuel cost coefficients=================================== 
a=[0.005    0.0055  0.006   0.005   0.005   0.007   0.007   0.007   0.005   

0.005   0.0055  0.0045  0.007   0.006]; 
b=[1.89 2   3.5 3.15    3.05    2.75    3.45    3.45    2.45    2.45    

2.35    1.6 3.45    3.89]; 
c=[150  115 40  122 125 120 70  70  130 130 135 200 70  45]; 
% ======================== Emission Coefficients==================== 
d=[0.016    0.031   0.013   0.012   0.02    0.007   0.015   0.018   0.019   

0.012   0.033   0.018   0.018   0.03]; 
e=[-1.5 -1.82   -1.249  -1.355  -1.9    0.805   -1.401  -1.8    -2  -1.36   

-2.1    -1.8    -1.81   -1.921]; 
f=[23.333   21.022  22.05   22.983  21.313  21.9    23.001  24.003  

25.121  22.99   27.01   25.101  24.313  27.119]; 
% ==================Generator Limits =============================== 
Pmin=[50    50  50  50  50  50  50  50  50  50  50  50  50  50]; 
Pmax=[1000  1000    1000    1000    1000    1000    1000    1000    1000    

1000    1000    1000    1000    1000]; 
% ==============Transmission loss coefficients======================= 
B00=0.028738; 
B01=[-0.5385    -0.28323    -0.19294    -0.26424    0.01776 0.02192     

0.04051     0.01222     0.01401     0.00441     0.03273     0.21782     

0.03256     0.15563]; 
B=10^-1* 

[0.04274    0.03011     0.01924     0.02151     -0.00288    -0.004       

-0.00447    -0.00272    -0.00323    -0.00694    -0.00745    -0.01952     

-0.01217    -0.01718 
0.0301      0.03795     0.02071     0.02091     -0.00363    -0.00525     

-0.00448    -0.00366    -0.00359    -0.00695    -0.01018    -0.02004     

-0.01844    -0.02057 
0.01924     0.02071     0.02678     0.0247      -0.00247    -0.00378     

-0.00298    -0.00239    -0.00231    -0.00467    -0.00786    -0.01583     

-0.01529    -0.01668 
0.02151     0.02091     0.0247      0.02439     -0.00232    -0.00352     

-0.00309    -0.00223    -0.0023     -0.00475    -0.00715    -0.016       

-0.01346    -0.01588 
-0.00288    -0.00363    -0.00247    -0.00232    0.00954     0.00366     

0.00295     0.00312     0.00421     0.00207     0.00037     -0.00365     

-0.00381    -0.00424 
-0.004      -0.00525    -0.00378    -0.00352    0.00366     0.01068     

0.00576     0.00374     0.00334     0.00249     0.00119     -0.00279     

-0.00288    -0.00331 
-0.00447    -0.00448    -0.00298    -0.00309    0.00295     0.00576     

0.00809     0.00337     0.00357     0.00305     0.00129     -0.00252     

-0.00192    -0.00272 
-0.00272    -0.00366    -0.00239    -0.00223    0.00374     0.00374     

0.00337     0.00388     0.00375     0.00293     0.00206     -0.00152     

-0.00142    -0.00188 
-0.00323    -0.00359    -0.00231    -0.0023     0.00334     0.00334     

0.00357     0.00375     0.0054      0.00287     0.00148     -0.00225     

-0.00189    -0.00254 
-0.00694    -0.00695    -0.00467    -0.00475    0.00249     0.00249     

0.00305     0.00293     0.00287     0.00674     0.00305     0.00121     

0.00133     0.00096 
-0.00745    -0.01018    -0.00786    -0.00715    0.00119     0.00119     

0.00125     0.00206     0.00148     0.00305     0.00858     0.00617     

0.00818     0.00726 
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-0.00195    -0.02004    -0.01583    -0.016      -0.00279    -0.00279     

-0.00252    -0.00152    -0.00225    0.00121     0.00617     0.03615     

0.01839     0.02002 
-0.01217    -0.01844    -0.01529    -0.1346     -0.00288    -0.00288     

-0.00192    -0.00142    -0.00189    0.00133     0.00818     0.01839     

0.03312     0.02941 
-0.01718    -0.02057    -0.01668    -0.01588    -0.00331    -0.00331     

-0.00272    -0.00188    -0.00254    0.00096     0.00726     0.02002     

0.02941     0.0413]; 
%matlabpool open jobmanagerconfig1 %Opening 6 matlab workers from the 

cluster 
t0 = clock; % start of the clock on second level calculation 
jm = findResource('scheduler','configuration','jobmanagerconfig1') 
disp(get(jm))%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% check the status of the 

jobmanager 
timingStart = tic; 
start = tic;  
pjob1=createParallelJob(jm,'Configuration','jobmanagerconfig1'); %create 

parallel job from the jobmanager 
get(pjob1) % Monitor the status of pjob1 
%==========How long it takes to create a job============================  
times.jobCreateTime = toc(start) 
description.jobCreateTime = 'Job creation time' 
%=======================================================================  
Tasks = findTask(pjob1) 
[pending running finished] = findTask(pjob1) 
set(pjob1,'Configuration','jobmanagerconfig1') 
set(pjob1,'MinimumNumberOfWorkers',14); 
set(pjob1,'MaximumNumberOfWorkers',14);    
set(pjob1,'FileDependencies',{'CEED_Casestudy2_DataParallel_funct.m'}) 
get(jm)%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Notice how jobmanager is 

changing  
disp(get(pjob1)) 
disp('busy workers') 
disp(get(jm, 'NumberOfbusyWorkers')) 
%====================STARTING PARALLEL COMPUTING======================== 
%Create task- only one with 21 output arguments  and 12 input arguments, 
%measure how long that takes and measure how long it takes to submit the 
%job to the cluster 
task1=createTask(pjob1, 

@CEED_Casestudy2_DataParallel_funct,22,{Pmax,Pmin,f,e,d,c,b,a,lambda,B00,

B01,B}) 
get(pjob1,'task') 
%==========How long it takes to create a task===========================  
times.taskCreateTime = toc(start) 
description.taskCreateTime = 'Task creation time' 
%======================================================================= 
submit(pjob1)  
%===========How long it takes to submit a job===========================  
times.submitTime = toc(start) 
description.submitTime = 'Job submission time' 
%======================================================================= 
%Once the job has been submitted, we hope all its tasks execute in 
%parallel. Measure how long it takes for all the tasks to start and to 

run 
%to completion. 
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waitForState(pjob1,'finished') 
times.jobWaitTime = toc(start) 
description.pjobWaitTime = 'Job wait time' 
get(jm) 
%Tasks have now completed, so we are again executing a code in the matlab 
%client. Measure how long it takes to retrieve all the job results  
disp('PD lambda P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 PL FC ET 

FT iter') % display the output values 
results=getAllOutputArguments(pjob1) 
times.resultsTime = toc(start) 
description.resultsTime = 'Results retrieval time' 
%======================================================================= 
%============Verify that the job ran without errors===================== 
errmsgs = get(pjob1.task, {'ErrorMessage'}) 
nonempty = ~cellfun(@isempty, errmsgs) 
celldisp(errmsgs(nonempty)) 
%====================================================================== 

  

%Measure the total time elapsed from creating the job up to the results 
times.totalTime = toc(start) 
operationtime = etime(clock,t0) %operation time for completion of 

parallel computing 
destroy(pjob1) 
%matlabpool close% close Matlabpool of workers 

 

Appendix E4: MATLAB script file – CEED_Casestudy2_DataParallel_funct.m 

% ================CEED_Casestudy2_DataParallel_function file============= 
function [ PD lambda P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 PL FC 

ET FT iter time] = 

CEED_Casestudy2_Parallel_funct(Pmax,Pmin,f,e,d,c,b,a,lambda,B00,B01,B) 
tic; 

% The Power demand varies according to lab index 
if labindex ==1 
PD=3668; 
end 
if  labindex==2 
    PD=3680; 
end 
if  labindex==3 
    PD=3700; 
end 
if  labindex==4 
    PD=3720; 
end 
if  labindex==5 
    PD=3740; 
end 
if labindex==6 
    PD=3760; 
end 
if labindex==7 
    PD=3780; 
end 
if labindex==8 
    PD=3800; 
end 
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if labindex==9 
    PD=3820; 
end 
if labindex==10 
    PD=3840; 
end 
if labindex==11 
    PD=3860; 
end 
if labindex==12 
    PD=3880; 
end 
if labindex==13 
    PD=3900; 
end 
if labindex==14 
    PD=3920; 
end 
epsilon=0.001;          % Tolerance value 
alfa=0.001;             % Inceremental deltalambda 
n=14;                    % No of generators 
m=5000;                 % Total number of iterations 
for iter=1:m 
    %================Lagrange’s algorithm starts here =================== 
    iter        % To Print the each iteration number 
    % ===========Calculation of Price penalty factor================= 
    %h=[(a.*Pmin.^2+b.*Pmin+c)]./[(d.*Pmax.^2+e.*Pmax+f)];   % Equation 

(3.7 or 3.8 or 3.9 or 3.10) 
    h=[(a.*Pmax.^2+b.*Pmax+c)]./[(d.*Pmax.^2+e.*Pmax+f)];   % Equation 

(3.7 or 3.8 or 3.9 or 3.10) 
    % =================Calculation of generator real power ========== 
    E=[(diag(a+(h.*d))./lambda)+B];         % Equation (3.19) 
    D=0.5*((1-(b+h.*e)./lambda-B01))';      % Equation (3.19) 
    P=E\D;                      % Equation (3.21) 
    %======================Generator limit checking ================= 
    for i=1:n 
        if P(i)<=Pmin(i) 
            P(i)=Pmin(i) 
        elseif P(i)>=Pmax(i) 
            P(i)=Pmax(i) 
        else P(i)=P(i) 
        end 
    end 
% The real power output of individual generators are assigned to the 

output of the function file 
P1=P(1); P2=P(2); P3=P(3); P4=P(4); P5=P(5); P6=P(6); P7=P(7); 
P8=P(8); P9=P(9); P10=P(10); P11=P(11); P12=P(12); P13=P(13); P14=P(14); 
 %========== Calculation of Transmission loss===================== 
  PL1=B00; 
    PL2=zeros(1,n); 
    for i=1:n 
        PL2(i)=(B01(i)*P(i));       % Equation (3.3) 
    end 
    PL2=sum(PL2(:,:)); 
    PL3=zeros(n,n); 
    for i=1:n 
        for j=1:n 
            PL3(i,j)=P(i)*B(i,j)*P(j);  % Equation (3.3) 
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        end 
    end 
    PL3=sum(PL3(:,:)); 
    PL3=sum(PL3(:,:)); 
    PL=-(PL1+PL2+PL3); 
    % ======================Calculation of deltalambda ============== 
    deltalambda=0.0; 
    deltalambda=PD+PL; 
    for i=1:n 
        deltalambda=deltalambda-P(i);       % Equation (3.22) 
    end 
    if abs(deltalambda)<=epsilon | iter>=m 
        break 
    else lambda=lambda+deltalambda*alfa  % Equation (3.23) 
    end 
end 
%====== Calculation of fuel cost, emission and CEED values ========== 
fuelcost=0; 
emissioncost=0; 
CEED=0; 
for i=1:n 
    fuelcost=fuelcost+a(i)*P(i)^2+b(i)*P(i)+c(i); % Equation (3.1) 
    emissioncost=emissioncost+d(i)*P(i)^2+e(i)*P(i)+f(i); % Equation 

(3.5) 
    CEED= 

CEED+a(i)*P(i)^2+b(i)*P(i)+c(i)+h(i)*(d(i)*P(i)^2+e(i)*P(i)+f(i)); % 

Equation (3.6) 
end 
%==== Printing of Real power, Transmission loss, Fuel cost, Emission and 

CEED=== 
lambda 
P 
PL 
FC=sum(fuelcost(:,:)) 
ET=sum(emissioncost(:,:)) 
FT=sum(CEED(:,:)) 

time=toc; 
end 
%==================================================================== 
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APPENDIX F: MATLAB  PROGRAM FOR DATA PARALLEL CALCULATION OF THE 

CEED PROBLEM SOLUTION USING PSO ALGORITHM 

Appendix F1: MATLAB script file – PSO_10swarms_CEED_DataParallel.m 

 

% M-File : PSO_10swarms_CEED_DataParallel.m 
%IEEE 30 BUS SIX GENERATOR SYSTEM 
% ==================M-File Description=============================== 
% The M-File is used to solve CEED problem with various price penalty 
% factors using PSO Algorithm in a Parallel way 
%================PSO algorithm starts here ========================== 
clear all %Removes all variables, global, functions and MEX links 
clc % Clear the command window 
tic % Start a stopwatch timer. 
%% ======================Economic Dispatch Parameters====================== 
%==========Load Demand and Generator limits================================ 
%PD=250; % Load demand 
Pmin1=[50 20 15 10 10 12];% Minimum generator limits including slack bus 
Pmax1=[200 80 50 35 30 40];% Maximum generator limits including slack bus 
Pdmin=[50];% Minimum  generator limit of Slack bus 
Pdmax=[200];% Maximum  generator limit of Slack bus 
Pmin=[20 15 10 10 12];% Minimum generator limits excluding slack bus 
Pmax=[80 50 35 30 40]; % Maximum generator limits excluding slack bus 
% ===================Cost and Emission coefficients======================== 
a=[0.00375 0.01750 0.06250 0.00834 0.02500 0.02500];  
b=[2.00 1.75 1.00 3.25 3.00 3.00];  
c=[0 0 0 0 0 0];  
d=[0.0126 0.0200 0.0270 0.0291 0.0290 0.0271]; 
e=[-1.1000 -0.1000 -0.1000 -0.0050 -0.0400 -0.0055]; 
ff=[22.983 22.313 25.505 24.900 24.700 25.300]; 
n=6;   % Number of generators 
%====================Transmission loss B - coefficients==================== 
B=[0.000218 0.000103 0.000009 -0.000010 0.000002 0.000027; 
   0.000103 0.000181 0.000004 -0.000015 0.000002 0.000030;  
   0.000009 0.000004 0.000417 -0.000131 -0.000153 -0.000107; 
   0.000010 -0.000015 -0.000131 0.000221 0.000094 0.000050; 
   0.000002 0.000002 -0.000153 0.000094 0.000243 -0.000000; 
   0.000027 0.000030 -0.000107 0.000050 -0.000000 0.000358]; 
%% PSO Parameters 
wmin=0.4; % Minimum weight 
wmax=0.9; % Maximum weight 
w=0.65;   % weight 
c1=2.0;   % acceleration factor1 
c2=2.0;   % acceleration factor2 
Min=0;    % Minimum Value 
Max=1;    % Maximum value 
m=25;     % Number of iterations 
% ==============Matlab Parallel PSO ED code================================ 
%Matlabpool open jobmanagerconfig1 %Opening 6 Matlab workers from the 

cluster 
t0 = clock; % start of the clock on second level calculation 
jm = findResource('scheduler','configuration','jobmanagerconfig1') 
disp(get(jm))%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% check the status of the 

jobmanager 
timingStart = tic; 
start = tic;  
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pjob1=createParallelJob(jm,'Configuration','jobmanagerconfig1'); %create 

parallel job from the jobmanager 
get(pjob1) % Monitor the status of pjob1 

  
%==========How long it takes to create a job============================  
times.jobCreateTime = toc(start) 
description.jobCreateTime = 'Job creation time' 
%=======================================================================  
Tasks = findTask(pjob1) 
[pending running finished] = findTask(pjob1) 
set(pjob1,'Configuration','jobmanagerconfig1') 
set(pjob1,'MinimumNumberOfWorkers',6); 
set(pjob1,'MaximumNumberOfWorkers',6);    
set(pjob1,'FileDependencies',{'PSO_10swarms_CEED_DataParallel_funct.m'}) 
get(jm)%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Notice how jobmanager is 

changing  
disp(get(pjob1)) 
disp('busy workers') 
disp(get(jm, 'NumberOfbusyWorkers')) 
%====================STARTING PARALLEL COMPUTING======================== 
%Create task- only one with 4 output arguments  and not input arguments, 
%measure how long that takes and measure how long it takes to submit the 
%job to the cluster 
task1=createTask(pjob1, 

@PSO_10swarms_CEED_DataParallel_funct,12,{Pdmin,Pdmax,Pmin,B,a,b,c,d,e,ff,P

min1,Pmax,Pmax1,wmin,wmax,w,c1,c2,Min,Max}) 
get(pjob1,'task') 
%==========How long it takes to create a task===========================  
times.taskCreateTime = toc(start) 
description.taskCreateTime = 'Task creation time' 
%======================================================================= 
submit(pjob1)  
%===========How long it takes to submit a job===========================  
times.submitTime = toc(start) 
description.submitTime = 'Job submission time' 
%======================================================================= 

  
%Once the job has been submitted, we hope all its tasks execute in 
%parallel. Measure how long it takes for all the tasks to start and to run 
%to completion. 
waitForState(pjob1,'finished') 
times.jobWaitTime = toc(start) 
description.pjobWaitTime = 'Job wait time' 
get(jm) 
%Tasks have now completed, so we are again executing a code in the matlab 
%client. Measure how long it takes to retrieve all the job results  
disp('P1  P2  P3  P4  P5  P6  PL  FC  ET FT iter time') % display the 

output values 
results=getAllOutputArguments(pjob1) 
times.resultsTime = toc(start) 
description.resultsTime = 'Results retrieval time' 
%======================================================================= 
%============Verify that the job ran without errors===================== 
errmsgs = get(pjob1.task, {'ErrorMessage'}) 
nonempty = ~cellfun(@isempty, errmsgs) 
celldisp(errmsgs(nonempty)) 
%====================================================================== 
%Measure the total time elapsed from creating the job up to the results 
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times.totalTime = toc(start) 
operationtime = etime(clock,t0) %operation time for completion of parallel 

computing 
destroy(pjob1) 
%Matlabpool close% close Matlabpool of workers 

  
 

 

Appendix F2: MATLAB script file – PSO_10swarms_CEED_DataParallel_funct.m 

 

% M-File : PSO_10swarms_CEED_DataParallel_funct.m 
%IEEE 30 BUS SIX GENERATOR SYSTEM 
% ==================M-File Description=============================== 
% The M-File is used to solve CEED problem with various price penalty 
% factors using PSO Algorithm in a Parallel way 
%================PSO algorithm starts here ========================== 
function [P1 P2 P3 P4 P5 P6 PL FC  ET FT iter time] = 

PSO_10swarms_CEED_DataParallel_funct(Pdmin,Pdmax,Pmin,B,a,b,c,d,e,ff,Pmin1,

Pmax,Pmax1,wmin,wmax,w,c1,c2,Min,Max) 
tic 
if labindex ==1 
 PD=125; 
end 
if  labindex==2 
    PD=150; 
end 
if  labindex==3 
    PD=175; 
end 
if  labindex==4 
    PD=200; 
end 
if  labindex==5 
    PD=225; 
end 
if labindex==6 
    PD=250; 
end 
rng('shuffle')%RNG('shuffle') seeds the random number generator based on 

the current time so that RAND, RANDI, and RANDN produce a different 

sequence of numbers after each time you call RNG. 
r1 = Min + (Max-Min).*rand(1,1); %random number1 between ( 0 to 1) 
r2= Min + (Max-Min).*rand(1,1);  %random number2 between ( 0 to 1) 
m=25;     % Number of iterations 
%% ================= PSO Algorithm for Economic Dispatch Problem=========== 
for iter=1:m% Number of iterations 
%% =============PSO Velocity Calculation - 1st Level of solution===========     
for i=1:5   % Number of velocities depends on(No of generators of the 

plant)  
vmin(i)=[-0.5*Pmin(i)] % calculation of minimum velocity 
vmax(i)=[0.5*Pmax(i)]  % calculation of maximum velocity 
    for j=1:11         % Number of particles position (varying quantity) 
    v(j,i)=[vmin(i)+rand()*(vmax(i)-vmin(i))] % calculation of velocity 
    end 
end 
%% ================= PSO Position Calculation ============================= 
for j=1:11 % Number of Positions  



292 

 

    for i=1:5  % Number of velocities 
     rng('shuffle') 
    P(i)=Pmin(i)+rand()*(Pmax(i)-Pmin(i));%GEN Real power- except slack bus 
    end 
%% =================Genertor MIN & MAX limits============================== 
    for i=1:5  
        if P(i)<=Pmin(i) 
        P(i)=Pmin(i); 
        elseif P(i)>=Pmax(i) 
        P(i)=Pmax(i); 
        else P(i) = P(i); 
        end 
    end 
%% ===============Dependent Generator ===================================== 
    P=[zeros P]; % Pre-allocation of P 
    x=B(1,1);    % calculation x   
    y=zeros(5,1);% Pre-allocation of y 
    for k=2:6 
      for r=1:1 
          y(k,r)=((B(k,r)+B(r,k))*P(k)); % calculation of y 
      end 
    end 
    y=sum(y)-1; 
    PL=zeros(5,5); % Pre-allocation of PL 
    for k=2:6  
        for l=2:6 
        PL(k,l)= P(k)*B(k,l)*P(l); % calculation of PL 
        end 
    end 
    PL1=sum(PL); 
    PL2=sum(PL1); 
    PL=PL2; 
    p=sum(P(2:6)); 
    z=PD+PL-p; % calculation of z 
    Pd=-(y+(y.^2- 4.*x.*z).^(1/2))/(2.*x);% calculation of dependent GEN 
    demo1=-(y-(y.^2- 4.*x.*z).^(1/2))/(2.*x);% calculation of dependent GEN 
    P=P(2:6); 
%% =====================Dependent Generator Limit ========================= 
    if Pd<=Pdmin % checking the slack bus generator limit 
       Pd=Pdmin; 
    elseif Pd>=Pdmax 
           Pd=Pdmax; 
    else Pd=Pd; 
    end 
    p=[Pd P]; % generator power including slack bus 
%% ================= Transmission loss ==================================== 
    for k=1:6 
        for l=1:6 
            PL(k,l)=p(k)*B(k,l)*p(l); 
        end 
    end 
    Pl=sum(PL); 
    PL=sum(Pl); 
    eval(['PL' num2str(j) ' = (PL)']) 
    eval(['p' num2str(j) ' = (p)']) 
%% ============Price Penalty Factor (PPF)================================== 
%     h=[(a.*Pmax1.^2+b.*Pmax1+c)]./[(d.*Pmax1.^2+e.*Pmax1+ff)];%PPF 
      h=[(a.*Pmin1.^2+b.*Pmin1+c)]./[(d.*Pmax1.^2+e.*Pmax1+ff)];%PPF 
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%% ========== CEED Fuel cost, Fuel cost and  Emission ===================== 
    for i=1:6 
    f(i)=a(i)*p(i)^2+b(i)*p(i)+c(i)+(h(i)*(d(i)*p(i)^2+e(i)*p(i)+ff(i))); % 

CEED Fuel cost of individual GEN 
    fuel(i)=a(i)*p(i)^2+b(i)*p(i)+c(i);% Fuel cost (FC)of individual GEN  
    Emission(i)=d(i)*p(i)^2+e(i)*p(i)+ff(i);% Emission value of individual 

GEN 
    end 
    F=sum(f);               % CEED Fuel cost 
    fuel=sum(fuel);         % Fuel cost 
    Emission=sum(Emission); % Emission 
    q=[F p PL fuel Emission ]; %Economic dispatch(PSO)1st level of Solution  
    eval(['q' num2str(j) ' = (q)']); 
    eval(['z' num2str(j) '=(q(:,1))']); 
end   
%% Sort the Fuel cost in ascending order 
p=[p1; p2; p3; p4 ;p5; p6;p7;p8;p9;p10;p11];%Print the real power P 
p=p(:,(2:6)) % print the real power generator values 
z=[z1 z2 z3 z4 z5 z6 z7 z8 z9 z10 z11]; %Total fuel cost value 
q=[q1; q2; q3 ;q4; q5; q6; q7; q8; q9; q10;q11;]%print the q=[FT, P1....Pn, 

FC,ET] 
[aa bb]=min(z) % To find the minimum of FT 
gbest1=q(bb,:) % To select the Gbest as best of all positions 
gbest=q(bb,(3:7)) % To select the global best positions 
%% % Economic dispatch (PSO) 2nd level of Solution  
%% ===================New Velocity========================================= 
for j=1:11 
    for i=1:5 
    w(i)= wmax-((i*(wmax-wmin))/5); % Calculate the inertia weight 
    vnew=w(i)*v(j,i)+(c1*r1*(p(:,i)-p(:,i)))+(c2*r2*(gbest(:,i)-

p(:,i)));%New velocity 
    eval(['vnew' num2str(i) ' = (vnew)']); 
    end 
end 
vnew=[vnew1 vnew2 vnew3 vnew4 vnew5]; 
 %% =============check the limits of new velocities======================== 
for i=1:11  
    for j=1:5 
        if vnew(i,j)<=vmin(j) 
        vnew(i,j)=vmin(j) 
        elseif vnew(i,j)>=vmax(j) 
        vnew(i,j)=vmax(j) 
        end 
    end 
end 
%% =============== New position============================================ 
pneww=zeros(11,5) % Pre-allocation of new position (i.e.,pneww)  
for i=1:11  
    for j=1:5 
    pneww(i,j)=p(i,j)+vnew(i,j); % New position 
    end 
eval(['pneww' num2str(i) ' = (pneww)']) 
end 
%% ============Check the limits of new position============================ 
for i=1:11 
    for j=1:5  
        if pneww(i,j)<=Pmin(j) 
           pneww(i,j)=Pmin(j); 
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        elseif pneww(i,j)>=Pmax(j) 
               pneww(i,j)=Pmax(j); 
        end 
    end 
end 
pnew=[pneww11]; 
%% ===============New dependent Generator ================================= 
for i=1:11 
    pneww=pnew(i,:) 
    pneww=[zeros pneww];  
    x=B(1,1); % calculaition of x 
    y=zeros(5,1); %Pre-allocation of y 
    for k=2:6 
        for r=1:1 
        y(k,r)=((B(k,r)+B(r,k))*pneww(k)); % Calculation of y 
        end 
    end 
    y=sum(y)-1; 
    PL=zeros(5,5); % Pre - allocation of PL 
    for k=2:6  
        for l=2:6 
        PL(k,l)=pneww(k)*B(k,l)*pneww(l); % Calculation of PL 
        end 
    end 
    PL11=sum(PL); 
    PL22=sum(PL11); 
    PL=PL22; 
    p=sum(pneww(2:6)); 
    z=PD+PL-p; 
    pdnew=-(y+(y.^2- 4.*x.*z).^(1/2))/(2*x); %New dependent Generator1 
    demo1=-(y-(y.^2- 4.*x.*z).^(1/2))/(2*x); %New dependent Generator2 
%% =====================New Dependent Generator Limit ===================== 
    if pdnew<=Pdmin % checking the slack bus generator limit 
        pdnew=Pdmin; 
    elseif pdnew>=Pdmax 
        pdnew=Pdmax; 
    else pdnew=pdnew; 
    end 
%% =================== New Transmission loss ============================== 
    pneww=pneww(2:6) % New GEN real power excluding slack bus 
    pneww=[pdnew pneww] % New GEN real power including slack bus 
    for k=1:6 
        for l=1:6 
        PL(k,l)=pneww(k)*B(k,l)*pneww(l); % New Transmission loss 
        end 
    end 
    Pl=sum(PL); 
    PL=sum(Pl); 
    eval(['PL' num2str(i) ' = (PL)']); 
    eval(['pneww' num2str(i) ' = (pneww)']); 
    eval(['pdnew' num2str(i) ' = (pdnew)']); 
end 
pnew=[pneww1; pneww2; pneww3; pneww4; pneww5; pneww6; pneww7; pneww8; 

pneww9 ;pneww10;pneww11]; 
PL=[PL1 PL2 PL3 PL4 PL5 PL6 PL7 PL8 PL9 PL10 PL11]'; 
%% ====Calculate the New CEED Fuel cost,New Fuel cost and New Emission===== 
for j=1:11 
    for i=1:6 
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Fnew(i)=a(i)*pnew(j,i)^2+b(i)*pnew(j,i)+c(i)+(h(i)*(d(i)*pnew(j,i)^2+e(i)*p

new(j,i)+ff(i))); % New CEED Fuel cost FTnew 
    fuelnew(i)=a(i)*pnew(j,i)^2+b(i)*pnew(j,i)+c(i);% New Fuel cost (FCnew)  
    Emissionnew(i)=d(i)*pnew(j,i)^2+e(i)*pnew(j,i)+ff(i);%NewEmission ETnew  
    end 
    Fnew=sum(Fnew(:,:)); 
    fuelnew=sum(fuelnew(:,:)); 
    Emissionnew=sum(Emissionnew(:,:)); 
    eval(['Fnew' num2str(j) ' = (Fnew)']); 
    eval(['fuelnew' num2str(j) ' = (fuelnew)']); 
    eval(['Emissionnew' num2str(j) ' = (Emissionnew)']); 
end 
%% =====PSO 2nd level solution; qnew=[FTnew, P1new....Pnnew, FCnew,ETnew]== 
Fnew=[Fnew1;Fnew2;Fnew3;Fnew4;Fnew5;Fnew6;Fnew7;Fnew8;Fnew9;Fnew10;Fnew11]; 
fuelnew=[fuelnew1;fuelnew2;fuelnew3;fuelnew4;fuelnew5;fuelnew6;fuelnew7;fue

lnew8;fuelnew9;fuelnew10;fuelnew11]; 
Emissionnew=[Emissionnew1;Emissionnew2;Emissionnew3;Emissionnew4;Emissionne

w5;Emissionnew6;Emissionnew7;Emissionnew8;Emissionnew9;Emissionnew10;Emissi

onnew11]; 
qnew=[Fnew pnew PL fuelnew Emissionnew] 
%% ====Compare the PSO solution of 1st level with 2nd level (q and qnew)=== 
x=q(:,1); % Assisgn q to x 
y=qnew(:,1); % Assisgn qnew to y 
for i=1:11 
    if x(i)<y(i); % compare q and  qnew  
    z(i)=y(i); 
    qrow=i; 
    x1=(q(qrow,:)); 
    mat(i,:)=x1  % Store best solution in mat 
    end 
    if x(i)>y(i);% compare q and  qnew  
    z(i)=x(i); 
    qnewrow=i; 
    y1=qnew(qnewrow,:); 
    mat(i,:)=y1  % Store best solution in mat 
    end 
end 
%% ==================Store the best PSO solution ========================== 
eval(['mat' num2str(iter) ' = (mat)']); 
eval(['matz' num2str(iter) '=(mat(:,1))']); 
end % PSO Iteration Ends  
%% ==================PSO solution ========================================= 
final=[mat1; mat2 ;mat3 ;mat4; mat5; mat6; mat7; mat8 ;mat9; mat10 ;mat11 

;mat12; mat13; mat14 ;mat15 ;mat16; mat17; mat18; mat19; 

mat20;mat21;mat22;mat23;mat24;mat25]% PSO Solution of all the iterations 
[row col]=min(final(:,1))% Find the best solution of PSO from the solution 

of each iteration   
finalans=final(col,:) % print the best solution of PSO  
iteration=fix(col/11)+1 % print the iteration Number of the best solution 
%% Graph: PSO solution to Economic Dispatch Problem 
y_axis=final(:,1); 
graph=plot(y_axis, '*'); 
hold on 
plot(finalans(1,1),'o') 
set(graph,'Color','red','LineWidth',2) 
ANS=[finalans(:,:) iteration toc] 
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P1=ANS(2);P2=ANS(3);P3=ANS(4);P4=ANS(5);P5=ANS(6);P6=ANS(7);PL=ANS(8);FC=AN

S(9);ET=ANS(10);FT=ANS(1);iter=ANS(11);time=ANS(12); 
end 
%% The PSO Program for Economic Dispatch ----------Ends  
 

 

Appendix F3: MATLAB script file – PSO_30swarms_CEED_DataParallel.m 

% M-File : PSO_30swarms_CEED_DataParallel.m 
%IEEE 30 BUS SIX GENERATOR SYSTEM 
% ==================M-File Description=============================== 
% The M-File is used to solve CEED problem with various price penalty 
% factors using PSO Algorithm in a Parallel way 
%================PSO algorithm starts here ========================== 

  
clear all %Removes all variables, global, functions and MEX links 
clc % Clear the command window 
tic % Start a stopwatch timer. 
%% ======================Economic Dispatch Parameters====================== 
%==========Load Demand and Generator limits================================ 
%PD=250; % Load demand 
Pmin1=[50 20 15 10 10 12];% Minimum generator limits including slack bus 
Pmax1=[200 80 50 35 30 40];% Maximum generator limits including slack bus 
Pdmin=[50];% Minimum  generator limit of Slack bus 
Pdmax=[200];% Maximum  generator limit of Slack bus 
Pmin=[20 15 10 10 12];% Minimum generator limits excluding slack bus 
Pmax=[80 50 35 30 40]; % Maximum generator limits excluding slack bus 
% ===================Cost and Emission coefficients======================== 
a=[0.00375 0.01750 0.06250 0.00834 0.02500 0.02500];  
b=[2.00 1.75 1.00 3.25 3.00 3.00];  
c=[0 0 0 0 0 0];  
d=[0.0126 0.0200 0.0270 0.0291 0.0290 0.0271]; 
e=[-1.1000 -0.1000 -0.1000 -0.0050 -0.0400 -0.0055]; 
ff=[22.983 22.313 25.505 24.900 24.700 25.300]; 
n=6;   % Number of generators 
%====================Transmission loss B - coefficients==================== 
B=[0.000218 0.000103 0.000009 -0.000010 0.000002 0.000027; 
   0.000103 0.000181 0.000004 -0.000015 0.000002 0.000030;  
   0.000009 0.000004 0.000417 -0.000131 -0.000153 -0.000107; 
   0.000010 -0.000015 -0.000131 0.000221 0.000094 0.000050; 
   0.000002 0.000002 -0.000153 0.000094 0.000243 -0.000000; 
   0.000027 0.000030 -0.000107 0.000050 -0.000000 0.000358]; 
%% PSO Parameters 
wmin=0.4; % Minimum weight 
wmax=0.9; % Maximum weight 
w=0.65;   % weight 
c1=2.0;   % acceleration factor1 
c2=2.0;   % acceleration factor2 
Min=0;    % Minimum Value 
Max=1;    % Maximum value 
m=40;     % Number of iterations 
% ==============Matlab Parallel PSO ED code================================ 
%Matlabpool open jobmanagerconfig1 %Opening 6 Matlab workers from the 

cluster 
t0 = clock; % start of the clock on second level calculation 
jm = findResource('scheduler','configuration','jobmanagerconfig1') 
disp(get(jm))%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% check the status of the 

jobmanager 
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timingStart = tic; 
start = tic;  
pjob1=createParallelJob(jm,'Configuration','jobmanagerconfig1'); %create 

parallel job from the jobmanager 
get(pjob1) % Monitor the status of pjob1 

  
%==========How long it takes to create a job============================  
times.jobCreateTime = toc(start) 
description.jobCreateTime = 'Job creation time' 
%=======================================================================  
Tasks = findTask(pjob1) 
[pending running finished] = findTask(pjob1) 
set(pjob1,'Configuration','jobmanagerconfig1') 
set(pjob1,'MinimumNumberOfWorkers',6); 
set(pjob1,'MaximumNumberOfWorkers',6);    
set(pjob1,'FileDependencies',{'PSO_30swarms_CEED_DataParallel_funct.m'}) 
get(jm)%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Notice how jobmanager is 

changing  
disp(get(pjob1)) 
disp('busy workers') 
disp(get(jm, 'NumberOfbusyWorkers')) 
%====================STARTING PARALLEL COMPUTING======================== 
%Create task- only one with 4 output arguments  and not input arguments, 
%measure how long that takes and measure how long it takes to submit the 
%job to the cluster 
task1=createTask(pjob1, 

@PSO_30swarms_CEED_DataParallel_funct,12,{Pdmin,Pdmax,Pmin,B,a,b,c,d,e,ff,P

min1,Pmax,Pmax1,n,m,wmin,wmax,w,c1,c2,Min,Max}) 
get(pjob1,'task') 
%==========How long it takes to create a task===========================  
times.taskCreateTime = toc(start) 
description.taskCreateTime = 'Task creation time' 
%======================================================================= 
submit(pjob1)  
%===========How long it takes to submit a job===========================  
times.submitTime = toc(start) 
description.submitTime = 'Job submission time' 
%======================================================================= 

  
%Once the job has been submitted, we hope all its tasks execute in 
%parallel. Measure how long it takes for all the tasks to start and to run 
%to completion. 
waitForState(pjob1,'finished') 
times.jobWaitTime = toc(start) 
description.pjobWaitTime = 'Job wait time' 
get(jm) 
%Tasks have now completed, so we are again executing a code in the matlab 
%client. Measure how long it takes to retrieve all the job results  
disp('FT P1  P2  P3  P4  P5  P6  PL  FC  ET') % display the output values 
results=getAllOutputArguments(pjob1) 
times.resultsTime = toc(start) 
description.resultsTime = 'Results retrieval time' 
%======================================================================= 
%============Verify that the job ran without errors===================== 
errmsgs = get(pjob1.task, {'ErrorMessage'}) 
nonempty = ~cellfun(@isempty, errmsgs) 
celldisp(errmsgs(nonempty)) 
%====================================================================== 
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%Measure the total time elapsed from creating the job up to the results 
times.totalTime = toc(start) 
operationtime = etime(clock,t0) %operation time for completion of parallel 

computing 
destroy(pjob1) 
%Matlabpool close% close Matlabpool of workers 
toc; % Stop a Stop watch timer 
 

=========================================================================== 

 

Appendix F4: MATLAB script file – PSO_30swarms_CEED_DataParallel_funct.m 

% M-File : PSO_30swarms_CEED_Parallel_funct.m 
%IEEE 30 BUS SIX GENERATOR SYSTEM 
% ==================M-File Description=============================== 
% The M-File is used to solve CEED problem with various price penalty 
% factors using PSO Algorithm in a Parallel way 
%================PSO algorithm starts here ========================== 
function [P1 P2 P3 P4 P5 P6 PL FC  ET FT iter time] = 

PSO_30swarms_CEED_DataParallel_funct(Pdmin,Pdmax,Pmin,B,a,b,c,d,e,ff,Pmin1,

Pmax,Pmax1,n,m,wmin,wmax,w,c1,c2,Min,Max) 
tic 
if labindex ==1 
PD=125; 
end 
if  labindex==2 
    PD=150; 
end 
if  labindex==3 
    PD=175; 
end 
if  labindex==4 
    PD=200; 
end 
if  labindex==5 
    PD=225; 
end 
if labindex==6 
    PD=250; 
end 
rng('shuffle') 
r1 = Min + (Max-Min).*rand(1,1); %random number1 between ( 0 to 1) 
r2= Min + (Max-Min).*rand(1,1);  %random number2 between ( 0 to 1) 
%% ================= PSO Algorithm for Economic Dispatch Problem=========== 
for iter=1:m% Number of iterations 
%% =============PSO Velocity Calculation - 1st Level of solution===========     
for i=1:5   % Number of velocities depends on(No of generators of the 

system)  
vmin(i)=[-0.5*Pmin(i)] % calculation of minimum velocity 
vmax(i)=[0.5*Pmax(i)]  % calculation of maximum velocity 
    for j=1:30         % Number of particles position (varying quantity) 
    v(j,i)=[vmin(i)+rand()*(vmax(i)-vmin(i))] % calculation of velocity 
    end 
end 
%% ================= PSO Position Calculation ============================= 
for j=1:30 % Number of Positions  
    for i=1:5  % Number of velcoities 
     rng('shuffle') 
    P(i)=Pmin(i)+rand()*(Pmax(i)-Pmin(i));%GEN Real power- except slack bus 
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    end 
%% =================Generator MIN & MAX limits============================ 
    for i=1:5  
        if P(i)<=Pmin(i) 
        P(i)=Pmin(i); 
        elseif P(i)>=Pmax(i) 
        P(i)=Pmax(i); 
        else P(i) = P(i); 
        end 
    end 
%% ===============Dependent Generator ===================================== 
    P=[zeros P]; % Pre-allocation of P 
    x=B(1,1);    % calculation x   
    y=zeros(5,1);% Pre-allocation of y 
    for k=2:6 
      for r=1:1 
          y(k,r)=((B(k,r)+B(r,k))*P(k)); % calculation of y 
      end 
    end 
    y=sum(y)-1; 
    PL=zeros(5,5); % Pre-allocation of PL 
    for k=2:6  
        for l=2:6 
        PL(k,l)= P(k)*B(k,l)*P(l); % calculation of PL 
        end 
    end 
    PL1=sum(PL); 
    PL2=sum(PL1); 
    PL=PL2; 
    p=sum(P(2:6)); 
    z=PD+PL-p; % calculation of z 
    Pd=-(y+(y.^2- 4.*x.*z).^(1/2))/(2.*x);% calculation of dependent GEN 
    demo1=-(y-(y.^2- 4.*x.*z).^(1/2))/(2.*x);% calculation of dependent GEN 
    P=P(2:6); 
%% =====================Dependent Generator Limit ========================= 
    if Pd<=Pdmin % checking the slack bus generator limit 
       Pd=Pdmin; 
    elseif Pd>=Pdmax 
           Pd=Pdmax; 
    else Pd=Pd; 
    end 
    p=[Pd P]; % generator power including slack bus 
%% ================= Transmission loss =================================== 
    for k=1:6 
        for l=1:6 
            PL(k,l)=p(k)*B(k,l)*p(l); 
        end 
    end 
    Pl=sum(PL); 
    PL=sum(Pl); 
    eval(['PL' num2str(j) ' = (PL)']) 
    eval(['p' num2str(j) ' = (p)']) 
%% ============Price Penalty Factor (PPF)================================== 
%     h=[(a.*Pmax1.^2+b.*Pmax1+c)]./[(d.*Pmax1.^2+e.*Pmax1+ff)];%PPF 
   h=[(a.*Pmin1.^2+b.*Pmin1+c)]./[(d.*Pmax1.^2+e.*Pmax1+ff)];%PPF 
%% ========== CEED Fuel cost, Fuel cost and  Emission ===================== 
    for i=1:6 
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    f(i)=a(i)*p(i)^2+b(i)*p(i)+c(i)+(h(i)*(d(i)*p(i)^2+e(i)*p(i)+ff(i))); % 

CEED Fuel cost of individual GEN 
    fuel(i)=a(i)*p(i)^2+b(i)*p(i)+c(i);% Fuel cost (FC)of individual GEN  
    Emission(i)=d(i)*p(i)^2+e(i)*p(i)+ff(i);% Emission value of individual 

GEN 
    end 
    F=sum(f);               % CEED Fuel cost 
    fuel=sum(fuel);         % Fuel cost 
    Emission=sum(Emission); % Emission 
    q=[F p PL fuel Emission ]; %Economic dispatch(PSO)1st level of Solution  
    eval(['q' num2str(j) ' = (q)']); 
    eval(['z' num2str(j) '=(q(:,1))']); 
end   
%% Sort the Fuel cost in ascending order 
p=[p1; p2; p3; p4 ;p5; 

p6;p7;p8;p9;p10;p11;p12;p13;p14;p15;p16;p17;p18;p19;p20;p21;p22;p23;p24;p25

;p26;p27;p28;p29;p30];%Print the real power P 
p=p(:,(2:6)) % print the real power generator values 
z=[z1 z2 z3 z4 z5 z6 z7 z8 z9 z10 z11 z12 z13 z14 z15 z16 z17 z18 z19 z20 

z21 z22 z23 z24 z25 z26 z27 z28 z29 z30]; %Total fuel cost value 
q=[q1; q2; q3 ;q4; q5; q6; q7; q8; q9; q10 ; q11; q12; q13 ;q14; q15; q16; 

q17; q18; q19; q20 ;q21; q22; q23 ;q24; q25; q26; q27; q28; q29; q30 

]%print the q=[FT, P1....Pn, FC,ET] 
[aa bb]=min(z) % To find the minimum of FT 
gbest1=q(bb,:) % To select the Gbest as best of all positions 
gbest=q(bb,(3:7)) % To select the global best positions 
%% % Economic dispatch (PSO) 2nd level of Solution  
%% ===================New Velocity========================================= 
for j=1:30 
    for i=1:5 
    w(i)= wmax-((i*(wmax-wmin))/5); % Calculate the inertia weight 
    vnew=w(i)*v(j,i)+(c1*r1*(p(:,i)-p(:,i)))+(c2*r2*(gbest(:,i)-

p(:,i)));%New velocity 
    eval(['vnew' num2str(i) ' = (vnew)']); 
    end 
end 
vnew=[vnew1 vnew2 vnew3 vnew4 vnew5]; 
 %% =============check the limits of new velocities======================== 
for i=1:30  
    for j=1:5 
        if vnew(i,j)<=vmin(j) 
        vnew(i,j)=vmin(j) 
        elseif vnew(i,j)>=vmax(j) 
        vnew(i,j)=vmax(j) 
        end 
    end 
end 
%% =============== New position============================================ 
pneww=zeros(30,5) % Pre-allocation of new position (i.e.,pneww)  
for i=1:30  
    for j=1:5 
    pneww(i,j)=p(i,j)+vnew(i,j); % New position 
    end 
eval(['pneww' num2str(i) ' = (pneww)']) 
end 
%% ============Check the limits of new position============================ 
for i=1:30 
    for j=1:5  



301 

 

        if pneww(i,j)<=Pmin(j) 
           pneww(i,j)=Pmin(j); 
        elseif pneww(i,j)>=Pmax(j) 
               pneww(i,j)=Pmax(j); 
        end 
    end 
end 
pnew=[pneww30] 
%% ===============New dependent Generator ================================= 
for i=1:30 
    pneww=pnew(i,:) 
    pneww=[zeros pneww];  
    x=B(1,1); % calculation of x 
    y=zeros(5,1); %Pre-allocation of y 
    for k=2:6 
        for r=1:1 
        y(k,r)=((B(k,r)+B(r,k))*pneww(k)); % Calculation of y 
        end 
    end 
    y=sum(y)-1; 
    PL=zeros(5,5); % Pre - allocation of PL 
    for k=2:6  
        for l=2:6 
        PL(k,l)=pneww(k)*B(k,l)*pneww(l); % Calculation of PL 
        end 
    end 
    PLr=sum(PL); 
    PLs=sum(PLr); 
    PL=PLs; 
    p=sum(pneww(2:6)); 
    z=PD+PL-p; 
    pdnew=-(y+(y.^2- 4.*x.*z).^(1/2))/(2*x); %New dependent Generator1 
    demo1=-(y-(y.^2- 4.*x.*z).^(1/2))/(2*x); %New dependent Generator2 
%% =====================New Dependent Generator Limit ===================== 
    if pdnew<=Pdmin % checking the slack bus generator limit 
        pdnew=Pdmin; 
    elseif pdnew>=Pdmax 
        pdnew=Pdmax; 
    else pdnew=pdnew; 
    end 
%% =================== New Transmission loss ============================== 
    pneww=pneww(2:6) % New GEN real power excluding slack bus 
    pneww=[pdnew pneww] % New GEN real power including slack bus 
    for k=1:6 
        for l=1:6 
        PL(k,l)=pneww(k)*B(k,l)*pneww(l); % New Transmission loss 
        end 
    end 
    Pl=sum(PL); 
    PL=sum(Pl); 
    eval(['PL' num2str(i) ' = (PL)']); 
    eval(['pneww' num2str(i) ' = (pneww)']); 
    eval(['pdnew' num2str(i) ' = (pdnew)']); 
end 
pnew=[pneww1; pneww2; pneww3; pneww4; pneww5; pneww6; pneww7; pneww8; 

pneww9 ;pneww10; pneww11; pneww12; pneww13; pneww14; pneww15; pneww16; 

pneww17; pneww18; pneww19 ;pneww20;pneww21; pneww22; pneww23; pneww24; 

pneww25; pneww26; pneww27; pneww28; pneww29 ;pneww30;]; 
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PL=[PL1; PL2; PL3; PL4 ;PL5; PL6; PL7; PL8 ;PL9; PL10 ; PL11;  PL12; PL13; 

PL14; PL15; PL16; PL17; PL18; PL19; PL20; PL21; PL22; PL23; PL24; PL25; 

PL26; PL27; PL28; PL29; PL30; ]; 
%% ====Calculate the New CEED Fuel cost,New Fuel cost and New Emission===== 
for j=1:30 
    for i=1:6 
    

Fnew(i)=a(i)*pnew(j,i)^2+b(i)*pnew(j,i)+c(i)+(h(i)*(d(i)*pnew(j,i)^2+e(i)*p

new(j,i)+ff(i))); % New CEED Fuel cost FTnew 
    fuelnew(i)=a(i)*pnew(j,i)^2+b(i)*pnew(j,i)+c(i);% New Fuel cost (FCnew)  
    Emissionnew(i)=d(i)*pnew(j,i)^2+e(i)*pnew(j,i)+ff(i);%NewEmission ETnew  
    end 
    Fnew=sum(Fnew(:,:)); 
    fuelnew=sum(fuelnew(:,:)); 
    Emissionnew=sum(Emissionnew(:,:)); 
    eval(['Fnew' num2str(j) ' = (Fnew)']); 
    eval(['fuelnew' num2str(j) ' = (fuelnew)']); 
    eval(['Emissionnew' num2str(j) ' = (Emissionnew)']); 
end 
%% =====PSO 2nd level solution; qnew=[FTnew, P1new....Pnnew, FCnew,ETnew]== 
Fnew=[Fnew1;Fnew2;Fnew3;Fnew4;Fnew5;Fnew6;Fnew7;Fnew8;Fnew9;Fnew10;Fnew11;F

new12;Fnew13;Fnew14;Fnew15;Fnew16;Fnew17;Fnew18;Fnew19;Fnew20;Fnew21;Fnew22

;Fnew23;Fnew24;Fnew25;Fnew26;Fnew27;Fnew28;Fnew29;Fnew30;]; 
fuelnew=[fuelnew1;fuelnew2;fuelnew3;fuelnew4;fuelnew5;fuelnew6;fuelnew7;fue

lnew8;fuelnew9;fuelnew10;fuelnew11;fuelnew12;fuelnew13;fuelnew14;fuelnew15;

fuelnew16;fuelnew17;fuelnew18;fuelnew19;fuelnew20;fuelnew21;fuelnew22;fueln

ew23;fuelnew24;fuelnew25;fuelnew26;fuelnew27;fuelnew28;fuelnew29;fuelnew30;

]; 
Emissionnew=[Emissionnew1;Emissionnew2;Emissionnew3;Emissionnew4;Emissionne

w5;Emissionnew6;Emissionnew7;Emissionnew8;Emissionnew9;Emissionnew10;Emissi

onnew11;Emissionnew12;Emissionnew13;Emissionnew14;Emissionnew15;Emissionnew

16;Emissionnew17;Emissionnew18;Emissionnew19;Emissionnew20;Emissionnew21;Em

issionnew22;Emissionnew23;Emissionnew24;Emissionnew25;Emissionnew26;Emissio

nnew27;Emissionnew28;Emissionnew29;Emissionnew30;]; 
qnew=[Fnew pnew PL fuelnew Emissionnew] 
%% ====Compare the PSO solution of 1st level with 2nd level (q and qnew)=== 
x=q(:,1); % Assisgn q to x 
y=qnew(:,1); % Assisgn qnew to y 
for i=1:30 
    if x(i)<y(i); % compare q and  qnew  
    z(i)=y(i); 
    qrow=i; 
    x1=(q(qrow,:)); 
    mat(i,:)=x1  % Store best solution in mat 
    end 
    if x(i)>y(i);% compare q and  qnew  
    z(i)=x(i); 
    qnewrow=i; 
    y1=qnew(qnewrow,:); 
    mat(i,:)=y1  % Store best solution in mat 
    end 
end 
%% ==================Store the best PSO solution ========================== 
eval(['mat' num2str(iter) ' = (mat)']); 
eval(['matz' num2str(iter) '=(mat(:,1))']); 
end % PSO Iteration Ends  
%% ==================PSO solution ========================================= 
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final=[mat1; mat2 ;mat3 ;mat4; mat5; mat6; mat7; mat8 ;mat9; mat10 ;mat11 

;mat12; mat13; mat14 ;mat15 ;mat16; mat17; mat18; mat19; 

mat20;mat21;mat22;mat23;mat24;mat25;mat26;mat27;mat28;mat29;mat30;mat31;mat

32;mat33;mat34;mat35;mat36;mat37;mat38;mat39;mat40]% PSO Solution of all 

the iterations 
[row col]=min(final(:,1))% Find the best solution of PSO from the solution 

of each iteration   
finalans=final(col,:) % print the best solution of PSO  
iteration=fix(col/30)+1 % print the iteration Number of the best solution 
%% Graph: PSO solution to Economic Dispatch Problem 
y_axis=final(:,1); 
graph=plot(y_axis, '*'); 
hold on 
plot(finalans(1,1),'o') 
set(graph,'Color','red','LineWidth',2) 
ANS=[finalans(:,:) iteration toc] 
P1=ANS(2);P2=ANS(3);P3=ANS(4);P4=ANS(5);P5=ANS(6);P6=ANS(7);PL=ANS(8);FC=AN

S(9);ET=ANS(10);FT=ANS(1);iter=ANS(11);time=ANS(12); 
end 
%% The PSO Program for Economic Dispatch ----------Ends  

%==================================================================== 

 

APPENDIX G: MATLAB PROGRAM TO START THE CLUSTER  

Appendix G1: MATLAB script file – Start_Cluster.m 

% M-File: startcluster.m 

% Description: This code used to start Matlab workers from head node 

%This code is developed to Start workers of the Cluster Computers from head 

node using Matlab Distributed Computing Engine (MDCE) 
% Set the name of the jobmanager, head node and workers in the MDCE 

configuration as given below 
% Name of the jobmanager : myjobmanager 
% Name of the head node  : mat32-head 
% Name of the workers    : mat32-wrk1, mat32-wrk2,....,mat32-wrk32 
%====================================================================  
directory = pwd; % Set default directory as present work directory (pwd) 
cd(fullfile(matlabroot, 'toolbox', 'distcomp', 'bin')); % Set the Matlab 

path 
h = waitbar(0, 'Starting the jobmanager ...'); % Open Wait bar 
system('startjobmanager -clean -name myjobmanager -remotehost mat32-head'); 

% Start jobmanager 
set(get(get(h,'currentAxes'),'title'),'string', 'Starting the workers ...') 

% Set the wait bar string as: 'Starting the Workers' 
waitbar(1/17, h); % Intialize the waitbar 
%==================================================================== 

try 
    for i=1:16 
        system(['startworker -clean -name ' sprintf('mat32-wrk%d',i) ... 
             ' -jobmanager myjobmanager -jobmanagerhost mat32-head', ... 
             ' -remotehost ' sprintf('mat32-wrk%d', i) ' &']); % Start the 

matlab workers from the head node 
        waitbar((i+1)/17, h); % Wait bar status 
    end 
catch 
end 
close(h);% Close the wait bar 
cd(directory);% Set the directory 

%==================================================================== 
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APPENDIX H: MATLAB PROGRAM FOR SEQUENTIAL CALCULATION OF THE SINGLE 

AREA CEED PROBLEM USING LAGRANGE'S ALGORITHM 

Appendix H1: MATLAB script file: SACEEDP_Casestudy1.m 

% M-File : Multi-area_wholepowersystemCasestudy1.m 
%Four area forty generator system 
% ==================M-File Description===================================== 
% The M-File is used to solve CEED problem of Multi-

area_wholepowersystemCasestudy1 with various price penalty factors using 

Lagrange’s Algorithm 
clear all 
clc; 
tic; 
% ==Economic dispatch problem including losses and generator limits======== 
% ============Initial Lagrange’s variable================================== 
lambda=10;     % Initial lambda 
epsilon=0.001;          % Tolerance value 
alfa=0.001;             % Incremental deltalambda 
n=40;                   % No of generators 
m=50000;                % Total number of iterations 
PD=10500;               % Power demand 
%% ======Single area Generator fuel Cost coefficients ===================== 
%% ============Data are given in the reference paper (Basu, 2011)========== 
%The data are given in the format[GenNum Pmin Pmax a b c d e f]============  
Data=[..... 
1   36  114  0.0069     6.73    94.705  0.048   -2.22   60 
2   36  114  0.0069     6.73    94.705  0.048   -2.22   60 
3   60  120  0.02028    7.07    309.54  0.0762  -2.36   100 
4   80  190  0.00942    8.18    369.03  0.054   -3.14   120 
5   47  97   0.0114     5.35    148.89  0.085   -1.89   50 
6   68  140  0.01142    8.05    222.33  0.0854  -3.08   80 
7   110 300  0.00357    8.03    287.71  0.0242  -3.06   100 
8   135 300  0.00492    6.99    391.98  0.031   -2.32   130 
9   135 300  0.00573    6.6     455.76  0.0335  -2.11   150 
10  130 300  0.00605    12.9    722.82  0.425   -4.34   280 
11  94  375  0.00515    12.9    635.2   0.0322  -4.34   220 
12  94  375  0.00569    12.8    654.69  0.0338  -4.28   225 
13  125 500  0.00421    12.5    913.4   0.0296  -4.18   300 
14  125 500  0.00752    8.84    1760.4  0.0512  -3.34   520 
15  125 500  0.00752    8.84    1760.4  0.0496  -3.55   510 
16  125 500  0.00752    8.84    1760.4  0.0496  -3.55   510 
17  220 500  0.00313    7.97    647.85  0.0151  -2.68   220 
18  220 500  0.00313    7.95    649.69  0.0151  -2.66   222 
19  242 550  0.00313    7.97    647.83  0.0151  -2.68   220 
20  242 550  0.00313    7.97    647.81  0.0151  -2.68   220 
21  254 550  0.00298    6.63    785.96  0.0145  -2.22   290 
22  254 550  0.00298    6.63    785.96  0.0145  -2.22   285 
23  254 550  0.00284    6.66    794.53  0.0138  -2.26   295 
24  254 550  0.00284    6.66    794.53  0.0138  -2.26   295 
25  254 550  0.00277    7.1     801.32  0.0132  -2.42   310 
26  254 550  0.00277    7.1     801.32  0.0132  -2.42   310 
27  10  150  0.52124    3.33    1055.1  1.842   -1.11   360 
28  10  150  0.52124    3.33    1055.1  1.842   -1.11   360 
29  10  150  0.52124    3.33    1055.1  1.842   -1.11   360 
30  47  97   0.0114     5.35    148.89  0.085   -1.89   50 
31  60  190  0.0016     6.43    222.92  0.0121  -2.08   80 
32  60  190  0.0016     6.43    222.92  0.0121  -2.08   80 
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33  60  190  0.0016     6.43    222.92  0.0121  -2.08   80 
34  90  200  0.0001     8.95    107.87  0.0012  -3.48   65 
35  90  200  0.0001     8.62    116.58  0.0012  -3.24   70 
36  90  200  0.0001     8.62    116.58  0.0012  -3.24   70 
37  25  110  0.0161     5.88    307.45  0.095   -1.98   100 
38  25  110  0.0161     5.88    307.45  0.095   -1.98   100 
39  25  110  0.0161     5.88    307.45  0.095   -1.98   100 
40  242 550  0.00313    7.97    647.83  0.0151  -2.68   220]; 
a=Data(:,4)'; 
b=Data(:,5)'; 
c=Data(:,6)'; 
%% Single area Emmis on coefficients 
d=Data(:,7)'; 
e=Data(:,8)'; 
f=Data(:,9)'; 
%%  Single area Generator real power limits 
Pmin=Data(:,2)'; 
Pmax=Data(:,3)'; 
 %================Lagrange’s algorithm starts here ======================== 
for iter=1:m 
    iter        % To Print the each iteration number 
% ===========Calculation of Price penalty factor=========================== 
  h=[(a.*Pmin.^2+b.*Pmin+c)]./[(d.*Pmax.^2+e.*Pmax+f)];  

% h=[(a.*Pmax.^2+b.*Pmax+c)]./[(d.*Pmax.^2+e.*Pmax+f)];  

% h=[(a.*Pmin.^2+b.*Pmin+c)]./[(d.*Pmin.^2+e.*Pmin+f)];  

% h=[(a.*Pmax.^2+b.*Pmax+c)]./[(d.*Pmin.^2+e.*Pmin+f)];  

% Equation (3.7 or 3.8 or 3.9 or 3.10)      

=================Calculation of generator real power ========== 
    E=[(diag(a+(h.*d))./lambda)];        % Equation (3.19) 
    D=0.5*((1-(b+h.*e)./lambda))';       % Equation (3.19) 
    P=E\D;                        % Equation (3.21) 
%======================Generator limit checking =========================== 
%======================Generator limit checking =========================== 
    for i=1:n 
        if P(i)<=Pmin(i); 
            P(i)=Pmin(i); 
        elseif P(i)>=Pmax(i); 
            P(i)=Pmax(i); 
        else P(i)=P(i); 
        end 
    end 
% ======================Calculation of deltalambda ======================== 
    deltalambda=PD; 
    for i=1:n 
        deltalambda=deltalambda-P(i);        % Equation (3.22) 
    end 
    if abs(deltalambda)<=epsilon | iter>=m 
        break 
    else lambda=lambda+(deltalambda*alfa)   % Equation (3.23) 
    end 
end 
%====== Calculation of fuel cost, emission and CEED values ========== 
fuelcost=0; 
emissioncost=0; 
CEED=0; 
for i=1:n 
    fuelcost=fuelcost+a(i)*P(i)^2+b(i)*P(i)+c(i);                             

% Equation (3.1) 
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emissioncost=emissioncost+d(i)*P(i)^2+e(i)*P(i)+f(i);                     

% Equation (3.5) 
    CEED= 

CEED+a(i)*P(i)^2+b(i)*P(i)+c(i)+h(i)*(d(i)*P(i)^2+e(i)*P(i)+f(i)); 

 % Equation (3.6) 
end 
%==== Printing of Real power, Transmission loss, Fuel cost, Emission and 

CEED=== 
lambda 
deltalambda 
P 
FC=sum(fuelcost(:,:)) 
ET=sum(emissioncost(:,:)) 
FT=sum(CEED(:,:)) 
toc 
ans=[lambda P' FC  ET FT iter toc] 
%========================================================================== 

 

Appendix H2: MATLAB script file: SACEEDP_Casestudy2.m 

% M-File : SACEEDP_Casestudy2.m 
%Twelve generator system with transmission line constraints 
% ==================M-File Description===================================== 
% The M-File is used to solve CEED problem of single area whole power 

system prior to decompose into multi-area - Casestudy2 with various price 

penalty factors using Lagrange’s Algorithm 
clear all 
clc; 
tic; 
% ==Economic dispatch problem including losses and generator limits======== 
% ============Initial Lagrange’s variable============================ 
lambda=40;              % Initial lambda 
epsilon=0.001;          % Tolerance value 
alfa=0.001;             % Incremental deltalambda 
n=12;                   % No of generators 
m=10000;                 % Total number of iterations 
PD=2090;                % Area power demand 
% PD=[500 410 580 600]; % Area power demand 
%% Multi area Generator fuel Cost coefficients  
a=[0.03546 0.02111 0.01799... 
   0.15247 0.02803 0.14834... 
   0.10587 0.07505 0.11934... 
   0.10587 0.13552 0.08963]; 
b=[38.30553 36.32782 38.27041... 
   38.53973 40.39655 38.34001... 
   46.15916 43.83562 50.63211... 
   46.15916 41.03782 33.56211]; 
c=[1243.5311 1658.5696 1356.6592... 
   0756.7989 0449.9977 0558.5696... 
   0451.3251 0673.0267 0530.7199... 
   0851.3251 1038.533  1285.907]; 
%% Multi area Emmison coefficients 
d=[0.00683 0.00461 0.00461... 
   0.00484 0.00754 0.00661... 
   0.00914 0.00533 0.00674... 
   0.00728 0.00479 0.00387]; 
e=[-0.54551 -0.51160  -0.51160... 
   -0.32767 -0.54551  -0.63262...  
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   -0.43211 -0.61173  -0.49731... 
   -0.6821  -0.50660  -0.49340]; 
f=[40.26690  42.89553  42.89553... 
   33.85932  50.639310 45.83267... 
   48.21560  52.45210  41.10420... 
   30.36320  25.17650  27.75490]; 
%%  Multi area Generator real power limits 
Pmin=[35 130 125.... 
      10 35 125.... 
      15 30 50.... 
      15 30 50]; 
Pmax=[210 325 315.... 
      150 110 215.... 
      175 215 335.... 
      175 215 335]; 
  %% Transmission loss coefficients 
B=[ 0.000071  0.00003   0.000025  
    0.00003   0.000069  0.000032 
    0.000025  0.000032  0.00008 
    0.000056  0.000045  0.000015 
    0.000023  0.000042  0.000047 
    0.000032  0.000023  0.000027 
    0.00002   0.000028  0.000053 
    0.000086  0.000034  0.000016 
    0.000053  0.000016  0.000028 
    0.000074  0.00003   0.000025 
    0.000049  0.000069  0.000037 
    0.000022  0.000032  0.000083]; 
B=[B';zeros(9,12)] 
B01=zeros(1,12); 
B00=0; 
     %================Lagrange’s algorithm starts here =================== 
for iter=1:m 
    iter        % To Print the each iteration number 
    % ===========Calculation of Price penalty factor================= 
%     h=[(a.*Pmin.^2+b.*Pmin+c)]./[(d.*Pmax.^2+e.*Pmax+f)];   % Equation 

(3.7 or 3.8 or 3.9 or 3.10) 
     h=[( a.*Pmax.^2+b.*Pmax+c)]./[(d.*Pmax.^2+e.*Pmax+f)];   % Equation 

(3.7 or 3.8 or 3.9 or 3.10) 
    % =================Calculation of generator real power ========== 
    E=[(diag(a+(h.*d))./lambda)+B];        % Equation (3.19) 
    D=0.5*((1-(b+h.*e)./lambda-B01))';      % Equation (3.19) 
    P=E\D;                      % Equation (3.21) 

  
%======================Generator limit checking ================= 
  %======================Generator limit checking ================= 
    for i=1:n 
        if P(i)<=Pmin(i); 
            P(i)=Pmin(i); 
        elseif P(i)>=Pmax(i); 
            P(i)=Pmax(i); 
        else P(i)=P(i); 
        end 
    end 
    %========== Calculation of Transmission loss===================== 
    PL1=B00; 
    PL2=zeros(1,n); 
    for i=1:n 
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        PL2(i)=(B01(i)*P(i));       % Equation (3.3) 
    end 
    PL2=sum(PL2(:,:)); 
    PL3=zeros(n,n); 
    for i=1:n 
        for j=1:n 
            PL3(i,j)=P(i)*B(i,j)*P(j);  % Equation (3.3) 
        end 
    end 
    PL3=sum(PL3(:,:)); 
    PL3=sum(PL3(:,:)); 
    PL=PL1+PL2+PL3; 
    % ======================Calculation of deltalambda ============== 
%     PL=0.0; 
    deltalambda=0.0; 
    deltalambda=PD+PL; 
    for i=1:n 
        deltalambda=deltalambda-P(i);       % Equation (3.22) 
    end 
    if abs(deltalambda)<=epsilon | iter>=m 
        break 
    else lambda=lambda+deltalambda*alfa  % Equation (3.23) 
    end 
end 
%====== Calculation of fuel cost, emission and CEED values ========== 
fuelcost=0; 
emissioncost=0; 
CEED=0; 
for i=1:n 
    fuelcost=fuelcost+a(i)*P(i)^2+b(i)*P(i)+c(i); % Equation (3.1) 
    emissioncost=emissioncost+d(i)*P(i)^2+e(i)*P(i)+f(i); % Equation (3.5) 
    CEED= 

CEED+a(i)*P(i)^2+b(i)*P(i)+c(i)+h(i)*(d(i)*P(i)^2+e(i)*P(i)+f(i)); % 

Equation (3.6) 
end 
%==== Printing of Real power, Transmission loss, Fuel cost, Emission and 

CEED=== 
lambda 
P 
PL 
FC=sum(fuelcost(:,:)) 
ET=sum(emissioncost(:,:)) 
FT=sum(CEED(:,:)) 
toc 
ans=[lambda P' PL FC  ET FT iter toc] 
%========================================================================== 
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APPENDIX I: MATLAB PROGRAM FOR SEQUENTIAL CALCULATION OF THE 

MULTI-AREA CEED PROBLEM USING LAGRANGE'S ALGORITHM 

Appendix I1: MATLAB script file: MACEEDP_Sequnetial_Casestudy1.m 

% M-File : MACEEDP_Sequnetial_Casestudy1.m 

% Four-area and  10 generator in each area 

% Transmission loss is omitted in this case 

% 6 tie-lines are used to interconnect the four-area power system 
% ==================M-File Description=============================== 
% The M-File is used to solve Multiarea economic emission dispatch problem 

using various price penalty factors by Lagrange’s Algorithm 
% The software is developed for MAEED problem in a sequential way 
clear all 
clc 
%% Multi area economic dispatch data taken from the reference paper 

(Basu,2011) 
tic 
m=4;                    % No of area 
n=40;                   % Total No of Generators in all the area 
TL=6;                   % NO of Tie lines 
N_iter=25000;           % No of iteration 
lambda=[50 50 50 50];   % Initial Lagrangian variable 
lambda1=lambda(1);lambda2=lambda(2);lambda3=lambda(3);lambda4=lambda(4); 
lambda={lambda(1),lambda(2),lambda(3),lambda(4)} 
% Total power demand of the system, PD=10500[MW] 
% Area 1 has 15% of total power demand, ie PD=(15/100)*10500=1575[MW] 
% Area 2 has 40% of total power demand, ie PD=(40/100)*10500=4200[MW] 
% Area 3 has 30% of total power demand, ie PD=(30/100)*10500=3150[MW] 
% Area 4 has 15% of total power demand, ie PD=(15/100)*10500=1575[MW] 
PD=[1575    4200    3150    1400]; % Area power demand 
alfa=[0.01 0.01 0.01 0.01];     %Incremental deltalambda Tolerance value of 

each area 
epsilon=[0.01 0.01 0.01 0.01];  % Tolerance value of each area 
%% Multi area Generator fuel Cost coefficients  
%% Single area Generator fuel Cost coefficients  
%% ============Data are given in the reference paper (Basu, 2011)========== 
%The data are given in the format[GenNum Pmin Pmax a b c d e f]============  
Data=[..... 
1   36  114     0.0069      6.73    94.705  0.048   -2.22   60 
2   36  114     0.0069      6.73    94.705  0.048   -2.22   60 
3   60  120     0.02028     7.07    309.54  0.0762  -2.36   100 
4   80  190     0.00942     8.18    369.03  0.054   -3.14   120 
5   47  97      0.0114      5.35    148.89  0.085   -1.89   50 
6   68  140     0.01142     8.05    222.33  0.0854  -3.08   80 
7   110 300     0.00357     8.03    287.71  0.0242  -3.06   100 
8   135 300     0.00492     6.99    391.98  0.031   -2.32   130 
9   135 300     0.00573     6.6     455.76  0.0335  -2.11   150 
10  130 300     0.00605     12.9    722.82  0.425   -4.34   280 
11  94  375     0.00515     12.9    635.2   0.0322  -4.34   220 
12  94  375     0.00569     12.8    654.69  0.0338  -4.28   225 
13  125 500     0.00421     12.5    913.4   0.0296  -4.18   300 
14  125 500     0.00752     8.84    1760.4  0.0512  -3.34   520 
15  125 500     0.00752     8.84    1760.4  0.0496  -3.55   510 
16  125 500     0.00752     8.84    1760.4  0.0496  -3.55   510 
17  220 500     0.00313     7.97    647.85  0.0151  -2.68   220 
18  220 500     0.00313     7.95    649.69  0.0151  -2.66   222 
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19  242 550     0.00313     7.97    647.83  0.0151  -2.68   220 
20  242 550     0.00313     7.97    647.81  0.0151  -2.68   220 
21  254 550     0.00298     6.63    785.96  0.0145  -2.22   290 
22  254 550     0.00298     6.63    785.96  0.0145  -2.22   285 
23  254 550     0.00284     6.66    794.53  0.0138  -2.26   295 
24  254 550     0.00284     6.66    794.53  0.0138  -2.26   295 
25  254 550     0.00277     7.1     801.32  0.0132  -2.42   310 
26  254 550     0.00277     7.1     801.32  0.0132  -2.42   310 
27  10  150     0.52124     3.33    1055.1  1.842   -1.11   360 
28  10  150     0.52124     3.33    1055.1  1.842   -1.11   360 
29  10  150     0.52124     3.33    1055.1  1.842   -1.11   360 
30  47  97      0.0114      5.35    148.89  0.085   -1.89   50 
31  60  190     0.0016      6.43    222.92  0.0121  -2.08   80 
32  60  190     0.0016      6.43    222.92  0.0121  -2.08   80 
33  60  190     0.0016      6.43    222.92  0.0121  -2.08   80 
34  90  200     0.0001      8.95    107.87  0.0012  -3.48   65 
35  90  200     0.0001      8.62    116.58  0.0012  -3.24   70 
36  90  200     0.0001      8.62    116.58  0.0012  -3.24   70 
37  25  110     0.0161      5.88    307.45  0.095   -1.98   100 
38  25  110     0.0161      5.88    307.45  0.095   -1.98   100 
39  25  110     0.0161      5.88    307.45  0.095   -1.98   100 
40  242 550     0.00313     7.97    647.83  0.0151  -2.68   220]; 
%% Multi area fuel cost coefficients 
a=Data(:,4)'; 
a={a(1:10),a(11:20),a(21:30),a(31:40)} 

b=Data(:,5)'; 
b={b(1:10),b(11:20),b(21:30),b(31:40)} 
c=Data(:,6)'; 
c={c(1:10),c(11:20),c(21:30),c(31:40)} 
%% Multi area Emmis on coefficients 
d=Data(:,7)'; 
d={d(1:10),d(11:20),d(21:30),d(31:40)} 
e=Data(:,8)'; 
e={e(1:10),e(11:20),e(21:30),e(31:40)} 
f=Data(:,9)'; 
f={f(1:10),f(11:20),f(21:30),f(31:40)} 
%%  Multi area Generator real power limits 
Pmin=Data(:,2)'; 
Pmin1={Pmin(1:10),Pmin(11:20),Pmin(21:30),Pmin(31:40)} 
Pmax=Data(:,3)'; 
Pmax1={Pmax(1:10),Pmax(11:20),Pmax(21:30),Pmax(31:40)} 
%% Intial Tie line values between 100 to 200 [MW] (Assumed) 
PT_mj=randi([100 200],1,6) 
PT_jm=randi([100 200],1,6) 
%% Tie line limits (Assumed) 
PTmin_mj=[100 100 50.... 
         100 50 50]; 
PTmin_jm=[100 100 100.... 
          50 50 50]; 
PTmax_mj=[200 200 100.... 
          200 100 100]; 
PTmax_jm=[200 200 200.... 
          100 100 100]; 
%% Tie line coefficients (Assumed) 
q_mj=rand(1,6); 
q_jm=rand(1,6); 
%% Tie line Fractional loss rate values (Assumed) 
flr_jm=rand(1,6); 
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%% Tie line incremental value (Assumed) 
alpha_mj=[0.01 0.01 0.01.... 
          0.01 0.01 0.01]; 
alpha_jm=[0.01 0.01 0.01.... 
          0.01 0.01 0.01]; 
% Generator real power calculation 
for iter=1:N_iter 
    iter 
for i=1:m 
h=(a{i}.*Pmin1{i}.^2+b{i}.*Pmin1{i}+c{i})./(d{i}.*Pmax1{i}.^2+e{i}.*Pmax1{i

}+f{i}); 
%    

h=(a{i}.*Pmax1{i}.^2+b{i}.*Pmax1{i}+c{i})./(d{i}.*Pmax1{i}.^2+e{i}.*Pmax1{i

}+f{i}); 
%    

h=(a{i}.*Pmin1{i}.^2+b{i}.*Pmin1{i}+c{i})./(d{i}.*Pmin1{i}.^2+e{i}.*Pmin1{i

}+f{i}); 
%    

h=(a{i}.*Pmax1{i}.^2+b{i}.*Pmax1{i}+c{i})./(d{i}.*Pmin1{i}.^2+e{i}.*Pmin1{i

}+f{i}); 
     E=diag((a{i}+h.*d{i})./lambda{i}); 
     D=0.5*(1-(b{i}+h.*e{i})./lambda{i})'; 
     Power=E\D; 
     Power1(i,:)=Power 
     h1(i,:)=h 
end 
   P=reshape(Power1',1,40) 
   h=reshape(h1',1,40) 
   h={h(1:10),h(11:20),h(21:30),h(31:40)} 
%% Generator Real powers 
P=[P(1:10),P(11:20),P(21:30),P(31:40)] 
%% Generator real power limits 
for i=1:n         % Total Number of generators in all the four area is n=12 
    if P(i)<=Pmin(i) 
    P(i)=Pmin(i) 
    elseif P(i)>=Pmax(i) 
    P(i)=Pmax(i) 
    else P(i)=P(i) 
    end 
end 
%% Tie line power flow 
 ePT_mj=q_mj+lambda1; 
 PT_mj=(PT_mj-alpha_mj.*ePT_mj); 
 ePT_jm=q_jm-(1-flr_jm).*lambda1  ;  
 PT_jm=PT_jm-alpha_jm.*ePT_jm; 
%% Tie Line limits 
TL=6; 
for i=1:TL 
        if PT_mj(i)<=PTmin_mj(i) 
           PT_mj(i)=PTmin_mj(i); 
        elseif PT_mj(i)>=PTmax_mj(i); 
            PT_mj(i)=PTmax_mj(i); 
        else PT_mj(i)=PT_mj(i); 
        end 
end 
for i=1:TL 
        if PT_jm(i)<=PTmin_jm(i); 
            PT_jm(i)=PTmin_jm(i); 



312 

 

        elseif PT_jm(i)>=PTmax_jm(i); 
            PT_jm(i)=PTmax_jm(i); 
        else PT_jm(i)=PT_jm(i); 
        end 
end 
Tielinepower=PT_mj-(1-flr_jm).*PT_jm; 
% Tie-line power in the order PT=[PT12 PT13 PT14 PT23 PT24 PT34] 
Tielinepower1=Tielinepower(1)+Tielinepower(2)+Tielinepower(3); 
Tielinepower2=Tielinepower(1)+Tielinepower(4)+Tielinepower(5); 
Tielinepower3=Tielinepower(2)+Tielinepower(4)+Tielinepower(6); 
Tielinepower4=Tielinepower(3)+Tielinepower(5)+Tielinepower(6); 
%% Incremental lambda 
P1=P(1:10);P2=P(11:20);P3=P(21:30);P4=P(31:40); 
deltalambda1=(PD(1)+Tielinepower1)-sum(P1); 
deltalambda2=(PD(2)+Tielinepower2)-sum(P2); 
deltalambda3=(PD(3)+Tielinepower3)-sum(P3); 
deltalambda4=(PD(4)+Tielinepower4)-sum(P4); 
deltalambda=[deltalambda1 deltalambda2 deltalambda3 deltalambda4] 
if abs(deltalambda1)<=epsilon(1) & iter>=N_iter 
    break 
else  lambda1=lambda1+(deltalambda1*alfa(1)) 
end 
if abs(deltalambda2)<=epsilon(2) & iter>=N_iter 
    break 
else  lambda2=lambda2+(deltalambda2*alfa(2)) 
end 
if abs(deltalambda3)<=epsilon(3) & iter>=N_iter 
    break 
else  lambda3=lambda3+(deltalambda3*alfa(3)) 
end 
if abs(deltalambda4)<=epsilon(4) & iter>=N_iter 
    break 
else  lambda4=lambda4+(deltalambda4*alfa(4)) 
end 
lambda={lambda1,lambda2,lambda3,lambda4} 
end 
deltalambda=[deltalambda1 deltalambda2 deltalambda3 deltalambda4] 
P 
Tielinepower 
PT_mj 
PT_jm 
P={P(1:10),P(11:20),P(21:30),P(31:40)} 
%=== Calculation of fuel cost, emission and CEED values of MAEED problem 

solution=== 
for i=1:m 
fuelcost_area=sum(a{i}.*P{i}.^2+b{i}.*P{i}+c{i}); 
fuelcost(i,:)=fuelcost_area; 
emissioncost_area=sum(d{i}.*P{i}.^2+e{i}.*P{i}+f{i}); 
emissioncost(i,:)=emissioncost_area; 
ceed_area=sum(a{i}.*P{i}.^2+b{i}.*P{i}+c{i}+h{i}.*(d{i}.*P{i}.^2+e{i}.*P{i}

+f{i})); 
ceed(i,:)=ceed_area; 
end 
fuelcost=sum(fuelcost) 
emissioncost=sum(emissioncost) 
ceed=sum(ceed) 
ans=[fuelcost emissioncost ceed iter toc] 
toc 
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Appendix I2: MATLAB script file: MACEEDP_Sequnetial_Casestudy2.m 

 

% M-File : MACEEDP_Sequnetial_Casestudy2.m 
% ==================M-File Description=================================== 
% The M-File is used to solve Multi-area CEED problem using various price 

penalty factors by Lagrange’s Algorithm 
% The software is developed for MAED problem in a sequential way 
clear all 
clc 
%% Multi area economic dispatch data 
m=4;  % No of area 
n=12;  % Total No of Generators in all the area 
NG=3;  % No of Generators in each area 
TL=6; % NO of Tie lines 
N_iter=10000; % No of iteration 
lambda=[100 100 100 100]; 
lambda1=lambda(1);lambda2=lambda(2);lambda3=lambda(3);lambda4=lambda(4); 
lambda={lambda(1),lambda(2),lambda(3),lambda(4)} 
PD=[500 410 580 600]; % Area power demand 
%PD=[525 435 605 625]; % Area power demand 
alfa=[0.01 0.01 0.01 0.01]; %Incremental deltalambda Tolerance value of 

each area 
epsilon=[0.01 0.01 0.01 0.01]; % Tolerance value of each area 
%% Multi area Generator fuel Cost coefficients  
a=[0.03546 0.02111 0.01799... 
   0.15247 0.02803 0.14834... 
   0.10587 0.07505 0.11934... 
   0.10587 0.13552 0.08963]; 
a={a(1:3),a(4:6),a(7:9),a(10:12)} 
b=[38.30553 36.32782 38.27041... 
   38.53973 40.39655 38.34001... 
   46.15916 43.83562 50.63211... 
   46.15916 41.03782 33.56211]; 
b={b(1:3),b(4:6),b(7:9),b(10:12)} 
c=[1243.5311 1658.5696 1356.6592... 
   0756.7989 0449.9977 0558.5696... 
   0451.3251 0673.0267 0530.7199... 
   0851.3251 1038.533  1285.907]; 
c={c(1:3),c(4:6),c(7:9),c(10:12)} 
%% Multi area Emission coefficients 
d=[0.00683 0.00461 0.00461... 
   0.00484 0.00754 0.00661... 
   0.00914 0.00533 0.00674... 
   0.00728 0.00479 0.00387]; 
d={d(1:3),d(4:6),d(7:9),d(10:12)} 
e=[-0.54551 -0.51160  -0.51160... 
   -0.32767 -0.54551  -0.63262...  
   -0.43211 -0.61173  -0.49731... 
   -0.6821  -0.50660  -0.49340]; 
e={e(1:3),e(4:6),e(7:9),e(10:12)} 
f=[40.26690  42.89553  42.89553... 
   33.85932  50.639310 45.83267... 
   48.21560  52.45210  41.10420... 
   30.36320  25.17650  27.75490]; 
f={f(1:3),f(4:6),f(7:9),f(10:12)} 
%%  Multi area Generator real power limits 
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Pmin=[35 130 125.... 
      10 35 125.... 
      15 30 50.... 
      15 30 50]; 
Pmin1={Pmin(1:3),Pmin(4:6),Pmin(7:9),Pmin(10:12)} 
Pmax=[210 325 315.... 
      150 110 215.... 
      175 215 335.... 
      175 215 335]; 
Pmax1={Pmax(1:3),Pmax(4:6),Pmax(7:9),Pmax(10:12)} 
%% Intial Tie line values (Assumed) 
PT_mj=[10 15 12.... 
       20 18 29]; 
PT_jm=[15 18 20.... 
       14 22 19]; 
%% Tie line limits 
PTmin_mj=[5 5 5.... 
          5 5 5]; 
PTmin_jm=[5 5 5.... 
          5 5 5]; 
PTmax_mj=[60 50 60.... 
          60 60 50]; 
PTmax_jm=[50 60 60.... 
          60 50 60]; 
%% Tie line coefficients 
q_mj=rand(1,6); 
q_jm=rand(1,6); 
%% Tie line Fractional loss rate values 
flr_jm=[0.11 0.21 0.14.... 
        0.16 0.22 0.11];   
%% Tie line incremental value 
alpha_mj=[0.000001 0.000001 0.000001.... 
          0.000001 0.000001 0.000001]; 
alpha_jm=[0.00001 0.00001 0.00001.... 
          0.00001 0.00001 0.00001]; 
%% Transmission loss coefficients 
B_area=[ 0.000071  0.00003   0.000025  
         0.00003   0.000069  0.000032 
         0.000025  0.000032  0.00008 
         0.000056  0.000045  0.000015 
         0.000023  0.000042  0.000047 
         0.000032  0.000023  0.000027 
         0.00002   0.000028  0.000053 
         0.000086  0.000034  0.000016 
         0.000053  0.000016  0.000028 
         0.000074  0.00003   0.000025 
         0.000049  0.000069  0.000037 
         0.000022  0.000032  0.000083]; 
     

B_area1={B_area((1:3),:),B_area((4:6),:),B_area((7:9),:),B_area((10:12),:

)} 
% Generator real power calculation 
for iter=1:N_iter 
    iter 
for i=1:m 
     

%h=(a{i}.*Pmin1{i}.^2+b{i}.*Pmin1{i}+c{i})./(d{i}.*Pmax1{i}.^2+e{i}.*Pmax

1{i}+f{i}); 
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h=(a{i}.*Pmax1{i}.^2+b{i}.*Pmax1{i}+c{i})./(d{i}.*Pmax1{i}.^2+e{i}.*Pmax1

{i}+f{i}); 
     

%h=(a{i}.*Pmin1{i}.^2+b{i}.*Pmin1{i}+c{i})./(d{i}.*Pmin1{i}.^2+e{i}.*Pmin

1{i}+f{i}); 
     

%h=(a{i}.*Pmax1{i}.^2+b{i}.*Pmax1{i}+c{i})./(d{i}.*Pmin1{i}.^2+e{i}.*Pmin

1{i}+f{i}); 
     E=diag((a{i}+h.*d{i})./lambda{i})+B_area1{i}; 
     D=0.5*(1-(b{i}+h.*e{i})./lambda{i})'; 
     Power=E\D; 
     Power1(i,:)=Power 
     h1(i,:)=h 
end 
   P=reshape(Power1',1,12) 
   h=reshape(h1',1,12) 
   h={h(1:3),h(4:6),h(7:9),h(10:12)} 
%% Generator Real powers 
P=[P(1:3),P(4:6),P(7:9),P(10:12)] 
%% Generator real power limits 
for i=1:n         % Total Number of generators in all the four area is 

n=12 
    if P(i)<=Pmin(i) 
    P(i)=Pmin(i) 
    elseif P(i)>=Pmax(i) 
    P(i)=Pmax(i) 
    else P(i)=P(i) 
    end 
end 
%% Tie line power flow 
 ePT_mj=q_mj+lambda1; 
 PT_mj=(PT_mj-alpha_mj.*ePT_mj); 
 ePT_jm=q_jm-(1-flr_jm).*lambda1  ;  
 PT_jm=PT_jm-alpha_jm.*ePT_jm; 
%% Tie Line limits 
TL=6; 
for i=1:TL 
        if PT_mj(i)<=PTmin_mj(i) 
           PT_mj(i)=PTmin_mj(i); 
        elseif PT_mj(i)>=PTmax_mj(i); 
            PT_mj(i)=PTmax_mj(i); 
        else PT_mj(i)=PT_mj(i); 
        end 
end 
for i=1:TL 
        if PT_jm(i)<=PTmin_jm(i); 
            PT_jm(i)=PTmin_jm(i); 
        elseif PT_jm(i)>=PTmax_jm(i); 
            PT_jm(i)=PTmax_jm(i); 
        else PT_jm(i)=PT_jm(i); 
        end 
end 
Tielinepower=PT_mj-(1-flr_jm).*PT_jm; 
%% Transmission line loss 
 B_area11=permute(reshape(B_area,3,4,[]),[1 3 2]) 
 P=reshape(P,3,1,[]) 
 PL_area=bsxfun(@times,P,reshape(P,1,3,[])).*B_area11 
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 PL=sum(reshape(PL_area,[],4)) 
%% Incremental lambda 
P1=P(1:3);P2=P(4:6);P3=P(7:9);P4=P(10:12); 
deltalambda1=(PD(1)+PL(1)+Tielinepower(1))-sum(P1); 
deltalambda2=(PD(2)+PL(2)+Tielinepower(2))-sum(P2); 
deltalambda3=(PD(3)+PL(3)+Tielinepower(3))-sum(P3); 
deltalambda4=(PD(4)+PL(4)+Tielinepower(4))-sum(P4); 
deltalambda=[deltalambda1 deltalambda2 deltalambda3 deltalambda4] 
if abs(deltalambda1)<=epsilon(1) & iter>=N_iter 
    break 
else  lambda1=lambda1+(deltalambda1*alfa(1)) 
end 
if abs(deltalambda2)<=epsilon(2) & iter>=N_iter 
    break 
else  lambda2=lambda2+(deltalambda2*alfa(2)) 
end 
if abs(deltalambda3)<=epsilon(3) & iter>=N_iter 
    break 
else  lambda3=lambda3+(deltalambda3*alfa(3)) 
end 
if abs(deltalambda4)<=epsilon(4) & iter>=N_iter 
    break 
else  lambda4=lambda4+(deltalambda4*alfa(4)) 
end 
lambda={lambda1,lambda2,lambda3,lambda4} 
end 
deltalambda=[deltalambda1 deltalambda2 deltalambda3 deltalambda4] 
P 
Tielinepower 
PT_mj 
PT_jm 
P={P(1:3),P(4:6),P(7:9),P(10:12)} 
for i=1:m 
fuelcost_area=sum(a{i}.*P{i}.^2+b{i}.*P{i}+c{i}); 
fuelcost(i,:)=fuelcost_area; 
emissioncost_area=sum(d{i}.*P{i}.^2+e{i}.*P{i}+f{i}); 
emissioncost(i,:)=emissioncost_area; 
ceed_area=sum(a{i}.*P{i}.^2+b{i}.*P{i}+c{i}+h{i}.*(d{i}.*P{i}.^2+e{i}.*P{

i}+f{i})); 
ceed(i,:)=ceed_area; 
end 
fuelcost=sum(fuelcost) 
emissioncost=sum(emissioncost) 
ceed=sum(ceed) 
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APPENDIX J: MATLAB PROGRAM FOR PARALLEL CALCULATION OF THE MULTI-

AREA CEED PROBLEM USING LAGRANGE'S ALGORITHM 

Appendix J1: MATLAB script file: MACEEDP_Parallel_Casestudy1.m 

% M-File : MACEEDP_Parallel_Casestudy1.m 
% ==================M-File Description=============================== 
% The M-File is used to solve Multiarea economic emission problem using 

various price penalty factors by Lagrange’s Algorithm 

% Four area and 10 generator in each area 
% The software is developed for MACEED problem in a sequential way 
clear all 
clc 
%% Multi area economic dispatch data 
tic 
m=4;   % No of area 
n=40;   % Total No of Generators in all the area 
TL=6;  % NO of Tie lines 
iter=20000; % No of iteration 
lambda=[50 50 50 50];  
% Final Lagrangian variable of each area 
lambda1=lambda(1);lambda2=lambda(2);lambda3=lambda(3);lambda4=lambda(4); 
lambda={lambda(1),lambda(2),lambda(3),lambda(4)} 
PD=[1575 4200 3150 1575]; % Area power demand 
alfa=[0.01 0.01 0.01 0.01]; %Incremental deltalambda Tolerance value of 

each area 
epsilon=[0.01 0.01 0.01 0.01]; % Tolerance value of each area 
%% Multi area Generator fuel Cost coefficients  
%% ============Data are given in the reference paper (Basu, 2011)======== 
%The data are given in the format[GenNum Pmin Pmax a b c d e f]========== 
Data=[..... 
1   36  114     0.0069      6.73    94.705  0.048   -2.22   60 
2   36  114     0.0069      6.73    94.705  0.048   -2.22   60 
3   60  120     0.02028     7.07    309.54  0.0762  -2.36   100 
4   80  190     0.00942     8.18    369.03  0.054   -3.14   120 
5   47  97      0.0114      5.35    148.89  0.085   -1.89   50 
6   68  140     0.01142     8.05    222.33  0.0854  -3.08   80 
7   110 300     0.00357     8.03    287.71  0.0242  -3.06   100 
8   135 300     0.00492     6.99    391.98  0.031   -2.32   130 
9   135 300     0.00573     6.6     455.76  0.0335  -2.11   150 
10  130 300     0.00605     12.9    722.82  0.425   -4.34   280 
11  94  375     0.00515     12.9    635.2   0.0322  -4.34   220 
12  94  375     0.00569     12.8    654.69  0.0338  -4.28   225 
13  125 500     0.00421     12.5    913.4   0.0296  -4.18   300 
14  125 500     0.00752     8.84    1760.4  0.0512  -3.34   520 
15  125 500     0.00752     8.84    1760.4  0.0496  -3.55   510 
16  125 500     0.00752     8.84    1760.4  0.0496  -3.55   510 
17  220 500     0.00313     7.97    647.85  0.0151  -2.68   220 
18  220 500     0.00313     7.95    649.69  0.0151  -2.66   222 
19  242 550     0.00313     7.97    647.83  0.0151  -2.68   220 
20  242 550     0.00313     7.97    647.81  0.0151  -2.68   220 
21  254 550     0.00298     6.63    785.96  0.0145  -2.22   290 
22  254 550     0.00298     6.63    785.96  0.0145  -2.22   285 
23  254 550     0.00284     6.66    794.53  0.0138  -2.26   295 
24  254 550     0.00284     6.66    794.53  0.0138  -2.26   295 
25  254 550     0.00277     7.1     801.32  0.0132  -2.42   310 
26  254 550     0.00277     7.1     801.32  0.0132  -2.42   310 
27  10  150     0.52124     3.33    1055.1  1.842   -1.11   360 
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28  10  150     0.52124     3.33    1055.1  1.842   -1.11   360 
29  10  150     0.52124     3.33    1055.1  1.842   -1.11   360 
30  47  97      0.0114      5.35    148.89  0.085   -1.89   50 
31  60  190     0.0016      6.43    222.92  0.0121  -2.08   80 
32  60  190     0.0016      6.43    222.92  0.0121  -2.08   80 
33  60  190     0.0016      6.43    222.92  0.0121  -2.08   80 
34  90  200     0.0001      8.95    107.87  0.0012  -3.48   65 
35  90  200     0.0001      8.62    116.58  0.0012  -3.24   70 
36  90  200     0.0001      8.62    116.58  0.0012  -3.24   70 
37  25  110     0.0161      5.88    307.45  0.095   -1.98   100 
38  25  110     0.0161      5.88    307.45  0.095   -1.98   100 
39  25  110     0.0161      5.88    307.45  0.095   -1.98   100 
40  242 550     0.00313     7.97    647.83  0.0151  -2.68   220]; 
%% Multi area fuel cost coefficients 
a=Data(:,4)'; 
a={a(1:10),a(11:20),a(21:30),a(31:40)} 

b=Data(:,5)'; 
b={b(1:10),b(11:20),b(21:30),b(31:40)} 
c=Data(:,6)'; 
c={c(1:10),c(11:20),c(21:30),c(31:40)} 
%% Multi area Emmis on coefficients 
d=Data(:,7)'; 
d={d(1:10),d(11:20),d(21:30),d(31:40)} 
e=Data(:,8)'; 
e={e(1:10),e(11:20),e(21:30),e(31:40)} 
f=Data(:,9)'; 
f={f(1:10),f(11:20),f(21:30),f(31:40)} 
%%  Multi area Generator real power limits 
Pmin=Data(:,2)'; 
Pmin1={Pmin(1:10),Pmin(11:20),Pmin(21:30),Pmin(31:40)} 
Pmax=Data(:,3)'; 
Pmax1={Pmax(1:10),Pmax(11:20),Pmax(21:30),Pmax(31:40)} 
%% Intial Tie line values between 100 to 200 [MW] (Assumed) 
PT_mj=randi([100 200],1,6) 
PT_jm=randi([100 200],1,6) 
%% Tie line limits (Assumed) 
PTmin_mj=[100 100 50.... 
         100 50 50]; 
PTmin_jm=[100 100 100.... 
          50 50 50]; 
PTmax_mj=[200 200 100.... 
          200 100 100]; 
PTmax_jm=[200 200 200.... 
          100 100 100]; 
%% Intial Tie line values (Assumed) 
PT_mj=rand(1,6); 
PT_jm=rand(1,6); 
%% Tie line limits 
PTmin_mj=[0.001  0.001   0.001.... 
          0.001   0.001  0.001]; 
PTmin_jm=[0.001  0.001   0.001.... 
          0.001   0.001  0.001]; 
PTmax_mj=[0.060  0.040  0.200... 
          0.035  0.055  0.009]; 
PTmax_jm=[0.060  0.040  0.035... 
          0.200  0.055  0.009]; 
%% Tie line coefficients 
q_mj=rand(1,6); 



319 

 

q_jm=rand(1,6); 
%% Tie line Fractional loss rate values 
flr_jm=rand(1,6); 
%% Tie line incremental value 
alpha_mj=[0.01 0.01 0.01.... 
          0.01 0.01 0.01]; 
alpha_jm=[0.01 0.01 0.01.... 
          0.01 0.01 0.01]; 
% Generator real power calculation 
for i=1:m 

h=(a{i}.*Pmax1{i}.^2+b{i}.*Pmax1{i}+c{i})./(d{i}.*Pmax1{i}.^2+e{i}.*Pmax1

{i}+f{i}); 
     % 

h=(a{i}.*Pmin1{i}.^2+b{i}.*Pmin1{i}+c{i})./(d{i}.*Pmax1{i}.^2+e{i}.*Pmax1

{i}+f{i}); 
     

%h=(a{i}.*Pmin1{i}.^2+b{i}.*Pmin1{i}+c{i})./(d{i}.*Pmin1{i}.^2+e{i}.*Pmin

1{i}+f{i}); 
     

%h=(a{i}.*Pmax1{i}.^2+b{i}.*Pmax1{i}+c{i})./(d{i}.*Pmin1{i}.^2+e{i}.*Pmin

1{i}+f{i}); 
     h1(i,:)=h 
end 
    h={h1(1:10),h1(11:20),h1(21:30),h1(31:40)} 
     % ==============Matlab Parallel multiarea Economic Dispatch 

code================================ 
%Matlabpool open jobmanagerconfig1 %Opening 6 Matlab workers from the 

cluster 
k=1; 
while k<=20000 
t0 = clock; % start of the clock on second level calculation 
jm = findResource('scheduler','configuration','jobmanagerconfig1') 
disp(get(jm))%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% check the status of the 

jobmanager 
timingStart = tic; 
start = tic;  
pjob1=createParallelJob(jm,'Configuration','jobmanagerconfig1'); %create 

parallel job from the jobmanager 
get(pjob1) % Monitor the status of pjob1 
%==========How long it takes to create a job============================  
time.jobCreateTime = toc(start) 
description.jobCreateTime = 'Job creation time' 
%=======================================================================  
Tasks = findTask(pjob1) 
[pending running finished] = findTask(pjob1) 
set(pjob1,'Configuration','jobmanagerconfig1') 
set(pjob1,'MinimumNumberOfWorkers',10); 
set(pjob1,'MaximumNumberOfWorkers',10);    
set(pjob1,'FileDependencies',{'MACEEDP_Prallel_Casestudy1_funct.m'}) 
%get(jm)%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Notice how jobmanager 

is changing  
%disp(get(pjob1)) 
%disp('busy workers') 
%disp(get(jm, 'NumberOfbusyWorkers')) 
%====================STARTING PARALLEL COMPUTING======================== 
%Create task- with 1 output arguments  and 7t input arguments, 
%measure how long that takes and measure how long it takes to submit the 
%job to the cluster 



320 

 

task1=createTask(pjob1, 

@MACEEDP_Prallel_Casestudy1_funct,1,{m,a,h,d,lambda,b,e}) 
get(pjob1,'task') 
%==========How long it takes to create a task===========================  
time.taskCreateTime = toc(start) 
description.taskCreateTime = 'Task creation time' 
%======================================================================= 
submit(pjob1)  
%===========How long it takes to submit a job===========================  
time.submitTime = toc(start) 
description.submitTime = 'Job submission time' 
%======================================================================= 
%Once the job has been submitted, we hope all its tasks execute in 
%parallel. Measure how long it takes for all the tasks to start and to 

run 
%to completion. 
waitForState(pjob1,'finished') 
time.jobWaitTime = toc(start) 
description.pjobWaitTime = 'Job wait time' 
get(jm) 
%Tasks have now completed, so we are again executing a code in the matlab 
%client. Measure how long it takes to retrieve all the job results  
results=getAllOutputArguments(pjob1) 
time.resultsTime = toc(start) 
description.resultsTime = 'Results retrieval time' 
%======================================================================= 
%============Verify that the job ran without errors===================== 
errmsgs = get(pjob1.task, {'ErrorMessage'}) 
nonempty = ~cellfun(@isempty, errmsgs) 
celldisp(errmsgs(nonempty)) 
%====================================================================== 
%Measure the total time elapsed from creating the job up to the results 
time.totalTime = toc(start) 
operationtime = etime(clock,t0) %operation time for completion of 

parallel computing 
%destroy(pjob1) 
P=cell2mat(results); 
%% Generator real power limits 
for i=1:n         % Total Number of generators in all the four area is 

n=40 
    if P(i)<=Pmin(i) 
    P(i)=Pmin(i) 
    elseif P(i)>=Pmax(i) 
    P(i)=Pmax(i) 
    else P(i)=P(i) 
    end 
end 
%% Tie line power flow 
 ePT_mj=q_mj+lambda1; 
 PT_mj=(PT_mj-alpha_mj.*ePT_mj); 
 ePT_jm=q_jm-(1-flr_jm).*lambda1  ;  
 PT_jm=PT_jm-alpha_jm.*ePT_jm; 
%% Tie Line limits 
TL=6; 
for i=1:TL 
        if PT_mj(i)<=PTmin_mj(i) 
           PT_mj(i)=PTmin_mj(i); 
        elseif PT_mj(i)>=PTmax_mj(i); 
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            PT_mj(i)=PTmax_mj(i); 
        else PT_mj(i)=PT_mj(i); 
        end 
end 
for i=1:TL 
        if PT_jm(i)<=PTmin_jm(i); 
            PT_jm(i)=PTmin_jm(i); 
        elseif PT_jm(i)>=PTmax_jm(i); 
            PT_jm(i)=PTmax_jm(i); 
        else PT_jm(i)=PT_jm(i); 
        end 
end 
Tielinepower=PT_mj-(1-flr_jm).*PT_jm; 
%% Incremental lambda 
P1=P(1:10);P2=P(11:20);P3=P(21:30);P4=P(31:40); 
deltalambda1=(PD(1)+Tielinepower(1))-sum(P1); 
deltalambda2=(PD(2)+Tielinepower(2))-sum(P2); 
deltalambda3=(PD(3)+Tielinepower(3))-sum(P3); 
deltalambda4=(PD(4)+Tielinepower(4))-sum(P4); 
deltalambda=[deltalambda1 deltalambda2 deltalambda3 deltalambda4] 
if abs(deltalambda1)<=epsilon(1) & iter>=N_iter 
    break 
else  lambda1=lambda1+(deltalambda1*alfa(1)) 
end 
if abs(deltalambda2)<=epsilon(2) & iter>=N_iter 
    break 
else  lambda2=lambda2+(deltalambda2*alfa(2)) 
end 
if abs(deltalambda3)<=epsilon(3) & iter>=N_iter 
    break 
else  lambda3=lambda3+(deltalambda3*alfa(3)) 
end 
if abs(deltalambda4)<=epsilon(4) & iter>=N_iter 
    break 
else  lambda4=lambda4+(deltalambda4*alfa(4)) 
end 
lambda={lambda1,lambda2,lambda3,lambda4} 
k=k+1 
end 
deltalambda=[deltalambda1 deltalambda2 deltalambda3 deltalambda4] 
P=P' 
Tielinepower 
PT_mj 
PT_jm 
P={P(1:10),P(11:20),P(21:30),P(31:40)} 
for i=1:m 
fuelcost_area=sum(a{i}.*P{i}.^2+b{i}.*P{i}+c{i}); 
fuelcost(i,:)=fuelcost_area; 
emissioncost_area=sum(d{i}.*P{i}.^2+e{i}.*P{i}+f{i}); 
emissioncost(i,:)=emissioncost_area; 
ceed_area=sum(a{i}.*P{i}.^2+b{i}.*P{i}+c{i}+h{i}.*(d{i}.*P{i}.^2+e{i}.*P{

i}+f{i})); 
ceed(i,:)=ceed_area; 
end 
fuelcost=sum(fuelcost) 
emissioncost=sum(emissioncost) 
ceed=sum(ceed) 
toc 
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Appendix J2: MATLAB script file: MACEEDP_Parallel_Casestudy1_funct.m 

% M-File : MACEEDP_Prallel_Casestudy1_funct.m 
% The software is developed for MACEED problem in a Parallel way 
% ==================M-File Description=============================== 
% The M-File is used to solve Multiarea CEED problem using various price 

penalty factors by Lagrange’s Algorithm 
%% The generator active power calculation in the Cluster of computers 
%% The group of generators in each area is assigned to the individual 

workers 
%% case study1 : 4 area power systems , each area having 10 generators, 

(4areax10generators=40 generators) 
%% Therefore 10generators in each area is assigned to 4 workers in this 

case 
%% 4 areas each have 10 generators and its real power calculated using 

4workers by varying the lab index 1 to 4 
function [ P ] = MACEEDP_Prallel_Casestudy1_funct(m,a,h,d,lambda,b,e) 
%%  
% Generator active power calculation 
for i=1:m 
  if labindex==i 
     E=diag((a{i}+h{i}.*d{i})./lambda{i}); 
     D=0.5*(1-(b{i}+h{i}.*e{i})./lambda{i})'; 
     P=E\D; 
  end 
end 

%======================================================================= 

Appendix J3: MATLAB script file: MACEEDP_Parallel_Casestudy2.m 

% M-File :MACEEDP_Prallel_Casestudy2.m 
% The software is developed for MACEED problem in a Parallel way 
% ==================M-File Description=============================== 
% The M-File is used to solve Multiarea CEED problem using various price 

penalty factors by Lagrange’s Algorithm 
clear all 
clc 
%% Multi area economic dispatch data 

iter=20000; % No of iteration 
m=4; % No of area 
n=12; % Total No of Generators in all the area 
TL=6;% NO of Tie lines 
lambda=[ 100 100 100 100] 
lambda1=lambda(1);lambda2=lambda(2);lambda3=lambda(3);lambda4=lambda(4); 
lambda={lambda(1),lambda(2),lambda(3),lambda(4)} 
PD=[500 410 580 600]; % Area power demand 
%PD=[600 450 680 700]; % Area power demand 
%PD=[525 435 605 625]; % Area power demand 
alfa=[0.01 0.01 0.01 0.01]; %Incremental deltalambda Tolerance value of 

each area 
epsilon=[0.01 0.01 0.01 0.01]; % Tolerance value of each area 
%% Multi area Generator fuel Cost coefficients  
a=[0.03546 0.02111 0.01799... 
   0.15247 0.02803 0.14834... 
   0.10587 0.07505 0.11934... 
   0.10587 0.13552 0.08963]; 
a={a(1:3),a(4:6),a(7:9),a(10:12)} 
b=[38.30553 36.32782 38.27041... 
   38.53973 40.39655 38.34001... 
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   46.15916 43.83562 50.63211... 
   46.15916 41.03782 33.56211]; 
b={b(1:3),b(4:6),b(7:9),b(10:12)} 
c=[1243.5311 1658.5696 1356.6592... 
   0756.7989 0449.9977 0558.5696... 
   0451.3251 0673.0267 0530.7199... 
   0851.3251 1038.533  1285.907]; 
c={c(1:3),c(4:6),c(7:9),c(10:12)} 
%% Multi area Emmis on coefficients 
d=[0.00683 0.00461 0.00461... 
   0.00484 0.00754 0.00661... 
   0.00914 0.00533 0.00674... 
   0.00728 0.00479 0.00387]; 
d={d(1:3),d(4:6),d(7:9),d(10:12)} 
e=[-0.54551 -0.51160  -0.51160... 
   -0.32767 -0.54551  -0.63262...  
   -0.43211 -0.61173  -0.49731... 
   -0.6821  -0.50660  -0.49340]; 
e={e(1:3),e(4:6),e(7:9),e(10:12)} 
f=[40.26690  42.89553  42.89553... 
   33.85932  50.639310 45.83267... 
   48.21560  52.45210  41.10420... 
   30.36320  25.17650  27.75490]; 
f={f(1:3),f(4:6),f(7:9),f(10:12)} 
%%  Multi area Generator real power limits 
Pmin=[35 130 125.... 
      10 35 125.... 
      15 30 50.... 
      15 30 50]; 
Pmin1={Pmin(1:3),Pmin(4:6),Pmin(7:9),Pmin(10:12)} 
Pmax=[210 325 315.... 
      150 110 215.... 
      175 215 335.... 
      175 215 335]; 
Pmax1={Pmax(1:3),Pmax(4:6),Pmax(7:9),Pmax(10:12)} 
%% Intial Tie line values (Assumed) 
PT_mj=[10 15 12.... 
       20 18 29]; 
PT_jm=[15 18 20.... 
       14 22 19]; 
%% Tie line limits 
PTmin_mj=[5 5 5.... 
          5 5 5]; 
PTmin_jm=[5 5 5.... 
          5 5 5]; 
PTmax_mj=[60 50 60.... 
          60 60 50]; 
PTmax_jm=[50 60 60.... 
          60 50 60]; 
%% Tie line coefficients 
q_mj==[0.01  0.021  0.012.... 
        0.012  0.131  0.011];   
q_jm==[0.211  0.012  0.214.... 
       0.106  0.201  0.101];   
%% Tie line Fractional loss rate values 
flr_jm=[0.11 0.21 0.14.... 
        0.16 0.22 0.11];   
%% Tie line incremental value 
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alpha_mj=[0.000001 0.000001 0.000001.... 
          0.000001 0.000001 0.000001]; 
alpha_jm=[0.00001 0.00001 0.00001.... 
          0.00001 0.00001 0.00001]; 
%% Transmission loss coefficients 
B_area=[ 0.000071  0.00003   0.000025  
         0.00003   0.000069  0.000032 
         0.000025  0.000032  0.00008 
         0.000056  0.000045  0.000015 
         0.000023  0.000042  0.000047 
         0.000032  0.000023  0.000027 
         0.00002   0.000028  0.000053 
         0.000086  0.000034  0.000016 
         0.000053  0.000016  0.000028 
         0.000074  0.00003   0.000025 
         0.000049  0.000069  0.000037 
         0.000022  0.000032  0.000083]; 
     

B_area1={B_area((1:3),:),B_area((4:6),:),B_area((7:9),:),B_area((10:12),:

)} 
     for i=1:m 
     

h=(a{i}.*Pmax1{i}.^2+b{i}.*Pmax1{i}+c{i})./(d{i}.*Pmax1{i}.^2+e{i}.*Pmax1

{i}+f{i}); 
     % 

h=(a{i}.*Pmin1{i}.^2+b{i}.*Pmin1{i}+c{i})./(d{i}.*Pmax1{i}.^2+e{i}.*Pmax1

{i}+f{i}); 
     

%h=(a{i}.*Pmin1{i}.^2+b{i}.*Pmin1{i}+c{i})./(d{i}.*Pmin1{i}.^2+e{i}.*Pmin

1{i}+f{i}); 
     

%h=(a{i}.*Pmax1{i}.^2+b{i}.*Pmax1{i}+c{i})./(d{i}.*Pmin1{i}.^2+e{i}.*Pmin

1{i}+f{i}); 
     h1(i,:)=h 
     end 
    h={h1(1:3),h1(4:6),h1(7:9),h1(10:12)} 
     % ==============Matlab Parallel multiarea Economic Dispatch 

code================================ 
%Matlabpool open jobmanagerconfig1 %Opening 6 Matlab workers from the 

cluster 
k=1; 
while k<=20000 
t0 = clock; % start of the clock on second level calculation 
jm = findResource('scheduler','configuration','jobmanagerconfig1') 
disp(get(jm))%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% check the status of the 

jobmanager 
timingStart = tic; 
start = tic;  
pjob1=createParallelJob(jm,'Configuration','jobmanagerconfig1'); %create 

parallel job from the jobmanager 
get(pjob1) % Monitor the status of pjob1 
%==========How long it takes to create a job============================  
time.jobCreateTime = toc(start) 
description.jobCreateTime = 'Job creation time' 
%=======================================================================  
Tasks = findTask(pjob1) 
[pending running finished] = findTask(pjob1) 
set(pjob1,'Configuration','jobmanagerconfig1') 
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set(pjob1,'MinimumNumberOfWorkers',4); 
set(pjob1,'MaximumNumberOfWorkers',4);    
set(pjob1,'FileDependencies',{'MACEEDP_Prallel_Casestudy2_funct.m'}) 
%get(jm)%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Notice how jobmanager 

is changing  
%disp(get(pjob1)) 
%disp('busy workers') 
%disp(get(jm, 'NumberOfbusyWorkers')) 
%====================STARTING PARALLEL COMPUTING======================== 
%Create task- only one with 4 output arguments  and not input arguments, 
%measure how long that takes and measure how long it takes to submit the 
%job to the cluster 
task1=createTask(pjob1, 

@MACEEDP_Prallel_Casestudy2_funct,1,{m,a,h,d,lambda,B_area1,b,e}) 
get(pjob1,'task') 
%==========How long it takes to create a task===========================  
time.taskCreateTime = toc(start) 
description.taskCreateTime = 'Task creation time' 
%======================================================================= 
submit(pjob1)  
%===========How long it takes to submit a job===========================  
time.submitTime = toc(start) 
description.submitTime = 'Job submission time' 
%======================================================================= 
%Once the job has been submitted, we hope all its tasks execute in 
%parallel. Measure how long it takes for all the tasks to start and to 

run 
%to completion. 
waitForState(pjob1,'finished') 
time.jobWaitTime = toc(start) 
description.pjobWaitTime = 'Job wait time' 
get(jm) 
%Tasks have now completed, so we are again executing a code in the matlab 
%client. Measure how long it takes to retrieve all the job results  
results=getAllOutputArguments(pjob1) 
time.resultsTime = toc(start) 
description.resultsTime = 'Results retrieval time' 
%======================================================================= 
%============Verify that the job ran without errors===================== 
errmsgs = get(pjob1.task, {'ErrorMessage'}) 
nonempty = ~cellfun(@isempty, errmsgs) 
celldisp(errmsgs(nonempty)) 
%====================================================================== 
%Measure the total time elapsed from creating the job up to the results 
time.totalTime = toc(start) 
operationtime = etime(clock,t0) %operation time for completion of 

parallel computing 
%destroy(pjob1) 
P=cell2mat(results); 
%% Generator real power limits 
for i=1:n         % Total Number of generators in all the four area is 

n=12 
    if P(i)<=Pmin(i) 
    P(i)=Pmin(i) 
    elseif P(i)>=Pmax(i) 
    P(i)=Pmax(i) 
    else P(i)=P(i) 
    end 
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end 
%% Tie line power flow 
 ePT_mj=q_mj+lambda1; 
 PT_mj=(PT_mj-alpha_mj.*ePT_mj); 
 ePT_jm=q_jm-(1-flr_jm).*lambda1  ;  
 PT_jm=PT_jm-alpha_jm.*ePT_jm; 
%% Tie Line limits 
for i=1:TL 
        if PT_mj(i)<=PTmin_mj(i) 
           PT_mj(i)=PTmin_mj(i); 
        elseif PT_mj(i)>=PTmax_mj(i); 
            PT_mj(i)=PTmax_mj(i); 
        else PT_mj(i)=PT_mj(i); 
        end 
end 
for i=1:TL 
        if PT_jm(i)<=PTmin_jm(i); 
            PT_jm(i)=PTmin_jm(i); 
        elseif PT_jm(i)>=PTmax_jm(i); 
            PT_jm(i)=PTmax_jm(i); 
        else PT_jm(i)=PT_jm(i); 
        end 
end 
Tielinepower=PT_mj-(1-flr_jm).*PT_jm; 
%% Transmission line loss 
 B_area11=permute(reshape(B_area,3,4,[]),[1 3 2]) 
 P=reshape(P,3,1,[]) 
 PL_area=bsxfun(@times,P,reshape(P,1,3,[])).*B_area11 
 PL=sum(reshape(PL_area,[],4)) 
 PL_area1=PL(1);PL_area2=PL(2);PL_area3=PL(3);PL_area4=PL(4); 
%% Incremental lambda 
P1=P(1:3);P2=P(4:6);P3=P(7:9);P4=P(10:12); 
deltalambda1=(PD(1)+PL(1)+Tielinepower(1))-sum(P1); 
deltalambda2=(PD(2)+PL(2)+Tielinepower(2))-sum(P2); 
deltalambda3=(PD(3)+PL(3)+Tielinepower(3))-sum(P3); 
deltalambda4=(PD(4)+PL(4)+Tielinepower(4))-sum(P4); 
deltalambda=[deltalambda1 deltalambda2 deltalambda3 deltalambda4] 
if abs(deltalambda1)<=epsilon(1) & iter>=k 
    break 
else  lambda1=lambda1+(deltalambda1*alfa(1)) 
end 
if abs(deltalambda2)<=epsilon(2) & iter>=k 
    break 
else  lambda2=lambda2+(deltalambda2*alfa(2)) 
end 
if abs(deltalambda3)<=epsilon(3) & iter>=k 
    break 
else  lambda3=lambda3+(deltalambda3*alfa(3)) 
end 
if abs(deltalambda4)<=epsilon(4) & iter>=k 
    break 
else  lambda4=lambda4+(deltalambda4*alfa(4)) 
end 
lambda={lambda1,lambda2,lambda3,lambda4} 
k=k+1 
end 
deltalambda=[deltalambda1 deltalambda2 deltalambda3 deltalambda4] 
P 
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Tielinepower 
PT_mj 
PT_jm 
P={P(1:3),P(4:6),P(7:9),P(10:12)} 
for i=1:m 
fuelcost_area=sum(a{i}.*P{i}.^2+b{i}.*P{i}+c{i}); 
fuelcost(i,:)=fuelcost_area; 
emissioncost_area=sum(d{i}.*P{i}.^2+e{i}.*P{i}+f{i}); 
emissioncost(i,:)=emissioncost_area; 
ceed_area=sum(a{i}.*P{i}.^2+b{i}.*P{i}+c{i}+h{i}.*(d{i}.*P{i}.^2+e{i}.*P{

i}+f{i})); 
ceed(i,:)=ceed_area; 
end 
fuelcost 
emissioncost 
ceed 
%=======================================================================

Appendix J4: MATLAB script file: MACEEDP_Parallel_Casestudy2_funct.m 

% M-File : MACEEDP_Prallel_Casestudy2_funct.m 
% The software is developed for MACEED problem in a Parallel way 
% ==================M-File Description=============================== 
% The M-File is used to solve Multi-area CEED problem using various price 

penalty factors by Lagrange’s Algorithm 
%% The generator active power calculation in the Cluster of computers 
%% The group of generators in each area is assigned to the individual 

workers 
%% case study2 : 4 area power systems , each area having 3 generators, 

(4areax3generators=12 generators) 
%% Therefore 3generators in each area is assigned to 4 workers in this 

case 
%% 4 areas each have 3 generators and its real power calculated using 

4workers by varying the lab index 1 to 4 
function [ P ] = 

MAEDP_Prallel_Casestudy2_funct(m,a,h,d,lambda,B_area1,b,e) 
%%  
% Generator active power calculation 
for i=1:m 
  if labindex==i 
     E=diag((a{i}+h{i}.*d{i})./lambda{i})+B_area1{i}; 
     D=0.5*(1-(b{i}+h{i}.*e{i})./lambda{i})'; 
     P=E\D; 
  end 
end 

%======================================================================= 
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APPENDIX K: MATLAB SCRIPT FILE TO GENERATE BAR GRAPH FOR 

NUMBER OF PUBLICATIONS AND MOST USED ALGORITHMS 

Appendix K1: MATLAB script file: Number_of_Publications_Yearwise.m 

% The M-File is used to generate the bar graph to represent the 

number of publications used in thesis versus year (Figure 2.2) 
function Number_of_Publications_Yearwise(Number_of_Publications) 
Number_of_Publications=[2  1   1   1   1   1   1   1   2   1   2  2   

4   2   2   7    4   2   2   3   3   6   4   3   5   8  14  14  16  

14   19    11   10   13]; 
%CREATEFIGURE1(YVECTOR1) 
%  YVECTOR1:  bar y vector 

  
%  Auto-generated by MATLAB on 31-May-2013 22:45:31 

  
% Create figure 
figure1 = figure; 

  
% Create axes 
axes1 = axes('Parent',figure1,'XTickLabel',{},'XTick',[1 2 3 4 5]); 
% Uncomment the following line to preserve the X-limits of the axes 
xlim(axes1,[0 36]); 
% Uncomment the following line to preserve the Y-limits of the axes 
ylim(axes1,[0 22]); 
box(axes1,'on'); 
hold(axes1,'all'); 

  
% Create bar 
bar(Number_of_Publications); 

  
% Create title 
title('Number of Publications versus Year','FontSize',14); 

  
% Create xlabel 
xlabel('Year','FontSize',12); 

  
% Create ylabel 
ylabel(' Number of Publications','FontSize',12); 

  
% Create text 
text('Parent',axes1,'String','1958','Rotation',90,'Position',[1 2.1 

0]); 

  
% Create text 
text('Parent',axes1,'String','1967','Rotation',90,'Position',[2 1.1 

0]); 

  
% Create text 
text('Parent',axes1,'String','1972','Rotation',90,'Position',[3 1.1 

0]); 

  
% Create text 
text('Parent',axes1,'String','1977','Rotation',90,'Position',[4 1.1 

0]); 

  



329 

 

% Create text 
text('Parent',axes1,'String','1981','Rotation',90,'Position',[5 1.1 

0]); 

  
% Create text 
text('Parent',axes1,'String','1983','Rotation',90,'Position',[6 1.1 

0]); 

  
% Create text 
text('Parent',axes1,'String','1984','Rotation',90,'Position',[7 1.1 

0]); 

  
% Create text 
text('Parent',axes1,'String','1985','Rotation',90,'Position',[8 1.1 

0]); 

  
% Create text 
text('Parent',axes1,'String','1988','Rotation',90,'Position',[9 2.1 

0]); 

  
% Create text 
text('Parent',axes1,'String','1989','Rotation',90,'Position',[10 1.1 

0]); 

  
% Create text 
text('Parent',axes1,'String','1990','Rotation',90,'Position',[11 2.1 

0]); 

  
% Create text 
text('Parent',axes1,'String','1991','Rotation',90,'Position',[12 2.1 

0]); 

  
% Create text 
text('Parent',axes1,'String','1992','Rotation',90,'Position',[13 4.1 

0]); 

  
% Create text 
text('Parent',axes1,'String','1993','Rotation',90,'Position',[14 2.1 

0]); 

  
% Create text 
text('Parent',axes1,'String','1994','Rotation',90,'Position',[15 2.1 

0]); 

  
% Create text 
text('Parent',axes1,'String','1995','Rotation',90,'Position',[16 7.1 

0]); 

  
% Create text 
text('Parent',axes1,'String','1996','Rotation',90,'Position',[17 4.1 

0]); 

  
% Create text 
text('Parent',axes1,'String','1997','Rotation',90,'Position',[18 2.1 

0]); 
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% Create text 
text('Parent',axes1,'String','1998','Rotation',90,'Position',[19 2.1 

0]); 

  
% Create text 
text('Parent',axes1,'String','1999','Rotation',90,'Position',[20 3.1 

0]); 

  
% Create text 
text('Parent',axes1,'String','2000','Rotation',90,'Position',[21 3.1 

0]); 

  
% Create text 
text('Parent',axes1,'String','2001','Rotation',90,'Position',[22 6.1 

0]); 

  
% Create text 
text('Parent',axes1,'String','2002','Rotation',90,'Position',[23 4.1 

0]); 

  
% Create text 
text('Parent',axes1,'String','2003','Rotation',90,'Position',[24 3.1 

0]); 

  
% Create text 
text('Parent',axes1,'String','2004','Rotation',90,'Position',[25 5.1 

0]); 

  
% Create text 
text('Parent',axes1,'String','2005','Rotation',90,'Position',[26 8.1 

0]); 

  
% Create text 
text('Parent',axes1,'String','2006','Rotation',90,'Position',[27 14.1 

0]); 

  
% Create text 
text('Parent',axes1,'String','2007','Rotation',90,'Position',[28 14.1 

0]); 

  
% Create text 
text('Parent',axes1,'String','2008','Rotation',90,'Position',[29 16.1 

0]); 

  
% Create text 
text('Parent',axes1,'String','2009','Rotation',90,'Position',[30 14.1 

0]); 

  
% Create text 
text('Parent',axes1,'String','2010','Rotation',90,'Position',[31 19.1 

0]); 

  
% Create text 
text('Parent',axes1,'String','2011','Rotation',90,'Position',[32 11.1 

0]); 
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% Create text 
text('Parent',axes1,'String','2012','Rotation',90,'Position',[33 10.1 

0]); 

  
% Create text 
text('Parent',axes1,'String','2013','Rotation',90,'Position',[34 13.1 

0]); 

 
 

===================================================================== 

  

Appendix K2: MATLAB script file: Number_of_Algorithms_used.m 

% The M-File is used to generate the bar graph to represent the 

number of algorithms used in thesis versus year (Figure 2.3) 

function Number_of_Algorithm(Algorithms) 
Algorithms=[5 1 1 1 1 1 5 2 4 1 1 10 1 3 4 1 1 1 1 3 1 10 2 2 2 2 51 

2 1 1 1 2 1 1 53]; 

  
%CREATEFIGURE1(YVECTOR1) 
%  YVECTOR1:  bar y vector 

  
%  Auto-generated by MATLAB on 01-Jun-2013 01:37:24 

  
% Create figure 
figure1 = figure; 

  
% Create axes 
axes1 = axes('Parent',figure1); 
% Uncomment the following line to preserve the X-limits of the axes 
 xlim(axes1,[0 37]); 
% Uncomment the following line to preserve the Y-limits of the axes 
ylim(axes1,[0 60]); 
box(axes1,'on'); 
hold(axes1,'all'); 

  
% Create bar 
bar(Algorithms); 

  
% Create title 
title('Number of Publications Vs Algorithm','FontSize',14); 

  
% Create xlabel 
xlabel('Algorithm','FontSize',12); 

  
% Create ylabel 
ylabel(' Number of Publications','FontSize',12); 

  
% Create text 
text('Parent',axes1,'String','ANN','Rotation',90,'Position',[1 5.5 

0]); 

  
% Create text 
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text('Parent',axes1,'String','BA','Rotation',90,'Position',[2 1.5 

0]); 

  
% Create text 
text('Parent',axes1,'String','BGO','Rotation',90,'Position',[3 1.5 

0]); 

  
% Create text 
text('Parent',axes1,'String','CM','Rotation',90,'Position',[4 1.5 

0]); 

  
% Create text 
text('Parent',axes1,'String','CT','Rotation',90,'Position',[5 1.5 

0]); 

  
% Create text 
text('Parent',axes1,'String','CUF','Rotation',90,'Position',[6 1.5 

0]); 

  
% Create text 
text('Parent',axes1,'String','DE','Rotation',90,'Position',[7 5.5 

0]); 

  
% Create text 
text('Parent',axes1,'String','DP','Rotation',90,'Position',[8 2.5 

0]); 

  
% Create text 
text('Parent',axes1,'String','DS','Rotation',90,'Position',[9 4.5 

0]); 

  
% Create text 
text('Parent',axes1,'String','DWDP','Rotation',90,'Position',[10 1.5 

0]); 

  
% Create text 
text('Parent',axes1,'String','EM','Rotation',90,'Position',[11 1.5 

0]); 

  
% Create text 
text('Parent',axes1,'String','EP','Rotation',90,'Position',[12 10.5 

0]); 

  
% Create text 
text('Parent',axes1,'String','ES','Rotation',90,'Position',[13 1.5 

0]); 

  
% Create text 
text('Parent',axes1,'String','FL','Rotation',90,'Position',[14 3.5 

0]); 

  
% Create text 
text('Parent',axes1,'String','GA','Rotation',90,'Position',[15 4.5 

0]); 

  
% Create text 
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text('Parent',axes1,'String','GAMS','Rotation',90,'Position',[16 1.5 

0]); 

  
% Create text 
text('Parent',axes1,'String','GSA','Rotation',90,'Position',[17 1.5 

0]); 

  
% Create text 
text('Parent',axes1,'String','GSM','Rotation',90,'Position',[18 1.5 

0]); 

  
% Create text 
text('Parent',axes1,'String','HA','Rotation',90,'Position',[19 1.5 

0]); 

  
% Create text 
text('Parent',axes1,'String','HS','Rotation',90,'Position',[20 3.5 

0]); 

  
% Create text 
text('Parent',axes1,'String','JM','Rotation',90,'Position',[21 1.5 

0]); 

  
% Create text 
text('Parent',axes1,'String','LA','Rotation',90,'Position',[22 10.5 

0]); 

  
% Create text 
text('Parent',axes1,'String','LI','Rotation',90,'Position',[23 2.5 

0]); 

  
% Create text 
text('Parent',axes1,'String','NFM','Rotation',90,'Position',[24 2.5 

0]); 

  
% Create text 
text('Parent',axes1,'String','NR','Rotation',90,'Position',[25 2.5 

0]); 

  
% Create text 
text('Parent',axes1,'String','PS','Rotation',90,'Position',[26 2.5 

0]); 

  
% Create text 
text('Parent',axes1,'String','PSO','Rotation',90,'Position',[27 51.5 

0]); 

  
% Create text 
text('Parent',axes1,'String','PTDF','Rotation',90,'Position',[28 2.5 

0]); 

  
% Create text 
text('Parent',axes1,'String','QP','Rotation',90,'Position',[29 1.5 

0]); 

  
% Create text 
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text('Parent',axes1,'String','RMI','Rotation',90,'Position',[30 1.5 

0]); 

  
% Create text 
text('Parent',axes1,'String','SAMF','Rotation',90,'Position',[31 1.5 

0]); 

  
% Create text 
text('Parent',axes1,'String','SDP','Rotation',90,'Position',[32 2.5 

0]); 

  
% Create text 
text('Parent',axes1,'String','TS','Rotation',90,'Position',[33 1.5 

0]); 

  
% Create text 
text('Parent',axes1,'String','UCA','Rotation',90,'Position',[34 1.5 

0]); 

  
% Create text 
text('Parent',axes1,'String','others','Rotation',90,'Position',[35 

53.5 0]); 
 

%==================================================================== 

 

APPENDIX L: PHOTOGRAPH OF THE CLUSTER COMPUTER LABORATORY 
 

The Photograph shows the Cape Peninsula University of Technology 

Research Center "Real Time Distributed Systems" (RTDS) Cluster 

Computer Laboratory, which has 32 workers installed with Matlab 

Distributed Computing Engine (MDCE). The workers are connected in a 

network using Ethernet communication. 

 


