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ABSTRACT

This thesis focuses on the design, development and real-time simulation of a robust
nonlinear networked control for the dissolved oxygen concentration as part of the
wastewater distributed systems. This concept differs from previous methods of
wastewater control in the sense that the controller and the wastewater treatment plants
are separated by a wide geographical distance and exchange data through a
communication medium. The communication network introduced between the controller
and the DO process creates imperfections during its operation, as time delays which are
an object of investigation in the thesis. Due to the communication network imperfections,
new control strategies that take cognisance of the network imperfections in the process of
the controller design are needed to provide adequate robustness for the DO process
control system.

This thesis first investigates the effects of constant and random network induced time
delays and the effects of controller parameters on the DO process behaviour with a view
to using the obtained information to design an appropriate controller for the networked
closed loop system. On the basis of the above information, a Smith predictor delay
compensation controller is developed in the thesis to eliminate the deadtime, provide
robustness and improve the performance of the DO process.

Two approaches are adopted in the design of the Smith predictor compensation scheme.
The first is the transfer function approach that allows a linearized model of the DO
process to be described in the frequency domain. The second one is the nonlinear
linearising approach in the time domain. Simulation results reveal that the developed
Smith predictor controllers out-performed the nonlinear linearising controller designed for
the DO process without time delays by compensating for the network imperfections and
maintaining the DO concentration within a desired acceptable level. The transfer function
approach of designing the Smith predictor is found to perform better under small time
delays but the performance deteriorates under large time delays and disturbances. It is
also found to respond faster than the nonlinear approach. The nonlinear feedback
linearisig approach is slower in response time but out-performs the transfer function
approach in providing robustness and performance for the DO process under large time
delays and disturbances. The developed Smith predictor compensation schemes were
later simulated in a real-time platform using LabVIEW.

The Smith predictor controllers developed in this thesis can be applied to other process
control plants apart from the wastewater plants, where distributed control is required. It
can also be applied in the nuclear reactor plants where remote control is required in
hazardous conditions. The developed LabVIEW real-time simulation environment would

be a valuable tool for researchers and students in the field of control system engineering.



Lastly, this thesis would form the basis for further research in the field of distributed

wastewater control.
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