

AN APPROACH TO SIX SIGMA IMPLEMENTATION IN SOUTH AFRICAN ENTERPRISES

By

Lionel Bell Nguenang Student number: 204179181

Dissertation submitted in fulfilment of the requirements for the degree

Magister Technologiae: Quality

in the Faculty of Engineering

at the Cape Peninsula University of Technology

Supervisor: Prof. Dr. J A Watkins D. Phil., D. Com., Ph. D. Co-supervisor: Mr PA McLaren

Bellville

November 2010

DECLARATION

"I hereby declare that this research report submitted for the degree (Magister Technologiae: Quality) at the Cape Peninsula University of Technology, is my own original, unaided work and has not previously been submitted to any other institution of higher education. I further declare that all sources cited or quoted, are indicated or acknowledged by means of a comprehensive list of references".

Name: Nguenang Lionel Bell

Signature:

Date: 04/04/2011

Copyright© Cape Peninsula University of Technology 2010

DEDICATION:

This study is dedicated to the following people:

My mother, my brothers and sisters, and to my friends, who never stopped believing in me; my father who continues to inspire me with positive reflections; the Head of Department of Industrial and Systems Engineering for giving me this opportunity to broaden my knowledge, and finally to all unprivileged people around the world, because wherever we are, we can make a difference.

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude and appreciation to the following people for their unprecedented input in this dissertation:

- > Mr Andre Bester for laying the grounds of my passion for research.
- > Mr. Patrick McLaren for his constructive criticism and advice.
- > The Industrial and Systems Engineering Staff for their unwavering support.
- > My parents and siblings for their valuable support during my difficult time.
- > My friends who see me as a role-model.
- Prof. Dr J A Watkins, whose stiff professional advices, guidance and persistence led to a breakthrough.
- The Industrial and Systems Engineering Department for their financial support and for making available their facility to enable me to conduct the research.
- All the Six Sigma organisations within the Western Cape that responded to the survey.
- Mr. Dongmo Celestin and Rejoice Ramphadi for their outstanding contribution regarding the data collection.
- Ms R. Van Der Merwe for her outstanding contribution regarding the statistical analysis.

ABSTRACT

To succeed in the global market, South African enterprises need an overall operational excellence which is a key requirement for any business to sustain competiveness and growth. To effectively respond to the constant flexibility of customer demands, many quality initiatives have been developed to assist business organisations in the quest for excellence. Quality management has evolved over the years from a simple product inspection, to a modern management system that requires the involvement of the entire workforce and other stakeholders to work closely, toward customer satisfaction. Currently, the most used quality concepts by organisations throughout the world are ISO 9001(2008); Total Quality Management; Just in Time; and Six Sigma. Among these quality initiatives, Six Sigma has emerged as the most powerful quality improvement strategy.

In South Africa (SA), business organisations have adopted several quality initiatives to cope with the challenges of globalisation. Six Sigma is one of the latest quality initiatives that many businesses in SA are using or considering as a mechanism to strengthen their product or service quality. This study explores a Six Sigma model for implementation in the context of the South African business environment.

As less than ten percent of organisations worldwide have recognised the tremendous effects of Six Sigma in boosting their productivity and financial profit, it becomes extremely important to understand the complexity and critical aspects behind Six Sigma implementation, that organisations in SA must recognise when implementing Six Sigma.

This study can assist many industries in SA, as well as those in other developing nations, who have not yet experienced Six Sigma implementation, to become aware of the complexity and critical elements of this quality approach.

TABLE OF CONTENTS

DECLARATION	i
DEDICATION	ii
ACKNOWLEDGEMENTS	iii
ABSTRACT	iv
TABLE OF CONTENTS	v
LIST OF TABLES	x
LIST OF FIGURES	xi
GLOSSARY OF TERMS	xii
ACRONYMS	xv

CHAPTER 1

THE SCOPE OF THE RESEARCH		

1.1	INTRODUCTION AND MOTIVATION	1
1.2	BACKGROUND OF THE RESEARCH PROBLEM	3
1.3	RESEARCH PROBLEM STATEMENT	4
1.4	RESEARCH QUESTION	4
1.4.1	INVESTIGATIVE (SUB-) QUESTIONS	4
1.5	PRIMARY RRESEARCH OBJECTIVES	4
1.6	RESEARCH PROCESS	5
1.7	RESEARCH DESIGN AND METHODOLOGY	5
1.8	DATA COLLECTION DESIGN AND METHODOLOGY	7
1.9	DATA VALIDITY AND RELIABILITY	7
1.10	ETHICS	8
1.11	RESEARCH ASSUMPTIONS	9
1.12	RESEARCH CONSTRAINTS	9
1.13	SIGNIFICANCE OF THE PROPOSED RESEARCH	9
1.14	CHAPTER AND CONTENT ANALYSIS	10
1.15	CONCLUSION	11

CHA	PTER 2	
OVE	CRVIEW OF THE RESEARCH ENVIRONMENT	12
2.1	INTRODUCTION AND BACKGROUND	12
	2.1.1 Brief overview of sub-Saharan Africa drawbacks	12
2.2	OVERVIEW OF SOUTH AFRICA	14
	2.2.1 South Africa in the context of Global Competition	15
2.3	GLOBAL PERCEPTION OF EXPORTING-GOODS QUALITY	16
2.4	BRIEF OVERVIEW OF THE DEVELOPMENT OF	
	QUALITY INITIATIVES	19
	2.4.1 Example of quality evolution in America	19
2.5	THIRD WORD IN THE CONTEXT OF	
	GLOBAL COMPETIVENESS	20
2.6	GENERAL VIEW OF SOUTH AFRICA ORGANIZATIONS	21
2.7	OVERVIEW OF ORGANIZATION PROMOTING	
	QUALITY EXCELLENCE IN SOUTH AFRICA	24
	2.7.1 Brief Overview of South African Quality Institute	24
	2.7.2 Brief Overview of the South Africa Excellence	
	Foundation (SAEF)	25
	2.7.3 Proudly South Africa	26
2.8	CONCLUSION	26
CHA	PTER 3	
SIX	SIGMA LITERATURE REVIEW	27
3.1	INTRODUCTION	27
3.2	BACKGROUND TO SIX SIGMA	27
3.3	HISTORY OF SIX SIGMA	28
3.4	STATISTICAL BASIS OF SIX SIGMA	29
3.5	SIX SIGMA DEFINED	31
	3.5.1 Six Sigma business definitions	31
	3.5.2 Statistical definition of Six Sigma	32

3.6THE RATIONALE OF SIX SIGMA USAGE33

3.7	DIFFERENCE BETWEEN SIX SIGMA AND OTHERS QUALITY	
	IMPROVEMENT INITIATIVES	36
3.8	SIX SIGMA BENEFITS	38
3.9	TOOLS AND TECHNIQUES FOR SIX SIGMA PROCESS	
	IMPROVEMENT	40
3.10	SIX SIGMA METHODOLOGY FOR PROCESS IMPROVEMENT	41
	3.10.1 Define phase	42
	3.10.2 The measure phase	43
	3.10.3 Analysis phase	44
	3.10.4 Improvement phase	45
	3.10.5 Control phase	45
3.11	ORGANIZATIONAL INFRASTRUCTURE FOR SIX SIGMA	46
	3.11.1 Champions	47
	3.11.2 Black belts	48
	3.11.3 Master Black belts	48
	3.11.4 Yellow belts	48
	3.11.5 Green belts	49
3.12	KEY ELEMENTS FOR SIX SIGMA IMPLEMENTATION	49
	3.12.1 Management involvement and commitment	50
	3.12.2 Culture change	50
	3.12.3 Communication	51
	3.12.4 Organizational infrastructure	51
	3.12.5 Training	52
	3.12.6 Project management skills	52
	3.12.7 Project prioritisation and selection, reviews and tracking	52
	3.12.8 Understanding the Six Sigma methodology, tools and	
	techniques	53
	3.12.9 Linking Six Sigma to business Strategy	54
	3.12.10 Linking Six Sigma to the customer	54
	3.12.11 Linking Six Sigma to Human Resource	54
	3.12.12 Linking Six Sigma to suppliers	55
3.13	CONCLUSION	56

CHAPTER 4			
RESI	RESEARCH DESIGN AND METHODOLOGY 57		
4.1	INTRODUCTION	57	
4.2	THE SURVEY ENVIRONMENT	57	
4.3	AIM OF THIS CHAPTER	58	
4.4	THE TARGET POPULATION	58	
4.5	THE CHOICE OF SAMPLING METHOD	59	
4.6	DATA COLLECTION	59	
4.7	MEASUREMENT SCALES	60	
4.8	SURVEY DESIGN	60	
4.9	THE VALIDATION SURVEY QUESTIONS	61	
4.10	RESPONDENT BRIEFING	61	
4.11	SURVEY QUESTIONS	62	
4.12	CONCLUSION	64	

CHAPTER 5

DATA ANALYSIS AND INTERPRETATION OF RESULTS		65	
5.1	INTR	ODUCTION	65
5.2	MET	HOD OF ANALYSIS	65
	5.2.1	Validation of survey results	65
	5.2.2	Data format	66
	5.2.3	Preliminary analysis	67
	5.2.4	Interferential statistics	67
	5.2.5	Assistance to researcher	68
	5.2.6	Sample	68
5.3	ANA	LYSIS	69
	5.3.1	Reliability testing	69
	5.3.2	Descriptive statistics	70
	5.3.3	Uni-Variate graphs	70
	5.3.4	Inferential statistics	79
5.4	DISC	USSIONS AND CONCLUSIONS	82

CHA	PTER 6	i i i i i i i i i i i i i i i i i i i	
CON	CLUSI	ON AND RECOMMENDATIONS	85
6.1	INTR	ODUCTION	85
6.2	THE F	RESEARCH THUS FAR	85
6.3	FIND	INGS OR ANALOGIES DRAWN FROM THE DATA	
	ANAI	LYSIS	86
6.4	ANAI	OGIES DRAWN FROM THE LITERATURE	
	REVI	EW	87
6.5	RESE	ARCH PROBLEM REVISITED	90
6.6	THE F	RESEARCH QUESTION REVISITED	93
6.7	KEY I	RESEARCH OBJECTIVES REVISITED	94
6.8	FINA	L CONCLUSION	95
LIST	OF RE	FERENCES	97
APPE	ENDIXI	2S	
Apper	ndix A:	Cronbach Alpha Coefficients	104
Apper	ndix B:	Descriptive statistics: Frequency tables	106
Apper	ndix C:	Comparisons of proportions	119
Apper	ndix D:	Descriptive statistics: Uni-variate with means & standard	
		deviations where appropriate	129
Apper	ndix E:	Cronbach's Alpha Coefficient for all the items forming the	
		measuring instrument	140
Appe	endix F:	Descriptive statistics for all the variables	143
Apper	ndix G:	Descriptive statistics – Mean, Median, Standard Deviation	
		and Range	154
Apper	ndix H:	Statistically Significant Chi-square tests	157

LIST OF TABLES

Table 2.1 :	The 10 most important SA exports destination 15	
Table 2.2 :	Top exporting countries of the year 2008	
Table 2.3 :	.3 : Top 10 countries with ISO 9001(2008) certificates	
Table 3.1:	1: Defects per million opportunities with a centered distribution	
Table 3.2 :	Table 3.2 :Defects per million opportunities with 1.5 Standard	
	Deviation Shift	30
Table 3.3 :	Six Sigma industrial applications	34
Table 3.4:	Rating of process improvement techniques	34
Table 3.5 :	Contrasting Six Sigma and TQM	35
Table 3.6 :	Comparison between Six Sigma and other quality programs	36
Table 3.7 :	Benefits of Six Sigma in manufacturing Sector	39
Table 3.8 :	Key benefits of Six Sigma in service organizations	40
Table 3.9 :	Usually used tools and techniques	41
Table 3.10:	Frequently used tools at each phase of DMAIC	45
Table 3.11 :	Role, profile and training in the Six Sigma belt system	47
Table 4.1:	Research questionnaire	62

LIST OF FIGURES

Figure 2.1:	Average Score: Perceived rating manufacturer "Excellent"	
	or "Very Good"	17
Figure 2.2:	The South African Excellence Model	25
Figure 3.1:	e 3.1: Normal Distribution with Sigma Impact	
Figure 3.2:	Normal Distribution with 1.5 Standard Deviation Shift	30
Figure 3.3:	DMAIC improvement Methodology	42
Figure 5.1:	Main function of organisation	70
Figure 5.2:	Number of employees employed	71
Figure 5.3:	Number of years organisation pursue Six Sigma philosophy	71
Figure 5.4:	Reasons of implementing Six Sigma	72
Figure 5.5:	Key personnel driving Six Sigma	72
Figure 5.6:	Six Sigma methodologies	73
Figure 5.7:	Mechanism in place to ensure Six Sigma successes	73
Figure 5.8:	Top management commitment to Six Sigma	74
Figure 5.9:	Key ingredients for Six Sigma implementation	75
Figure 5.10:	The Six Sigma tools and Techniques for	
	process improvement	76
Figure 5.11:	The most used tools and techniques of Six Sigma	77
Figure 5.12:	The most used tools and techniques of Six Sigma	78
Figure 6.1:	Framework of Six Sigma implementation for SA organisation	93

GLOSSARY OF TERMS

Black belt:	Trained individual with extensive experience in applying statistics in business process improvement and works full time on cost saving projects.
Breakthrough:	Significant improvement in quality performance or business results.
Champion:	Individual occupying strategic position in an organisation and who has a full understanding of Six Sigma deployment and is fully committed to its success.
Continuous improvement:	Never ending quest of enhancing business activities by involving everyone who can influence product or service quality.
Customer:	Any person or entity that uses or experiences the services of another one.
Defect:	An imperfection that contributes to process inefficiency, which eventually leads to customer complaints.
Improvement:	Moving from a lower quality level to quality excellence.
Key elements:	Factors which are critical to the success of Six Sigma implementation in an organisation in the sense that, if objectives associated with these factors are not achieved, the organisation will fail.

Master Black Belt:	Experienced Black Belt who provides technical support to Black Belts, Green Belts, and Yellow Belts, including other project team members.
Processes:	A set of steps to follow in order to transform raw materials (inputs) into output (goods or services).
Process variation:	a statistical description of process outputs that exhibit unavoidable fluctuations.
Quality tools:	A single devise having a clear function and used on its own, and by which a particular problem can be solved.
Quality techniques:	A set of quality tools which require more thought, complexity, skills and training for effective use.
Sigma (σ):	A symbol that comes from the Greek Alphabet and it is known as a standard deviation in statistic.
Six (6):	Refers to the number of standard deviations from the target value to the specification limits, at each side of the normal distribution curve of a process, producing almost no products out of specification limits.
Six Sigma:	A quality improvement philosophy that incorporates management strategies and statistical techniques in a well structured and disciplined fashion to optimise business activities.
Sigma level:	A term used in Six Sigma language to identify the level of performance of a process or that of an organisation.

xiii

- Six Sigma Methodology: A continuous improvement closed loop used to reduce process variability.
- Yellow belt: An individual with a technical background who receives two to three weeks training on Six Sigma methodology and there after works on Six Sigma projects on a temporary basis.

ACRONYMS

BB:	Black Belt	
DFSS:	Design For Six Sigma	
DMAIC:	Define Measure Analyse Improve Control	
DPMO:	Defect Per Million Opportunities	
EMPEA:	Emerging Markets Private Equity Association	
FDI:	Foreign Direct Investment	
GB:	Green belts	
MBB:	Master Black Belt	
MBC:	Management By Commitment	
MBO:	Management By Objectives	
MBQA:	Malcolm Baldrige Quality Award	
PDCA:	Plan Do Control Act	
SA:	South Africa	
SABC:	South African Broadcasting Corporation	
SABS:	South African Bureau of Standard	
SAQI:	South African Quality Institute	
SAEF:	South African Excellence Foundation	
SAEM:	South African Excellence Model	
SS:	Six Sigma	
SSA:	Sub-Sahara Africa	
TQM:	Total Quality Management	
UK:	United Kingdom	
UNCTAD:	United Nation Conference on Trade and Development	
USA:	United States of America	
UNIDO:	United Nations and Industrial Development Organisation	
WEFEROUM:	World Economic Forum	
YB:	Yellow Belt	
ZBB:	Zero Based Budgets	

CHAPTER 1: THE SCOPE OF THE RESEARCH

1.1 INTRODUCTION AND MOTIVATION

This study explores a Six Sigma model for implementation in the context of the South African business environment. Six Sigma is a quality improvement philosophy that incorporates management strategies and statistical techniques in a well structured and disciplined fashion to optimise business activities. It focuses on variation reduction in all processes by involving top management and the operating force to achieve customer satisfaction and financial return. To effectively respond to the constant flexibility of customer demands, many quality initiatives have been developed to assist business organisations in the quest for excellence. Currently, the most used quality concepts by organisations throughout the world are ISO 9001(2008), Total Quality Management, Just in Time, and Six Sigma. Among these quality initiatives, Six Sigma has emerged as the most powerful quality improvement strategy that can be applied in every segment of business activities in the likes of manufacturing, service, large, medium or small organisations, and all the divisions of the value chain (Antony, 2009:274).

Six Sigma is strategically a business improvement mechanism used to optimise profitability, remove waste from processes and to meet or go beyond customer requirements and expectations (Antony & Banuelas, 2002:21). Eckes (2001:11) and Antony (2008:107), view Six Sigma as a concept that provides a statistical measurement of a product or service performance by identifying problems, establishing root causes, and solving them in a closed loop continuous improvement way, that results in a process generating only 3.4 Defects Per Million Opportunities (DPMO).

Six Sigma was pioneered at Motorola in the late 1980s as a mechanism to streamline organisation performance with emphasis on minimising quality cost by means of defect reduction. Breyfolgle (2003:5) and Senapati (2004:683), assert that during the same period, Motorola was awarded the Malcolm Baldrige National Quality Award (MBQA) in recognition of its achievement. There after

many other organisations in America (General Electric, Raytheon, Allied Signal, Honeywell, Sony, Ford, and Caterpillar), adopted Six Sigma and consequently registered incredible results. The research of Antony (2009:274), suggests that companies across the world ranging from small business, private and public to large organisations have adopted this philosophy to substantially improve:

- > Quality levels,
- Customer satisfaction,
- Market share,
- Employees moral,
- Organizational culture,
- People development, and
- Financial profit.

In South Africa (SA), the 1994 mass democratic election systematically changed the political, social, cultural, international, and economic outlook of the country. The business perception of SA improved significantly. The transition to democracy has allowed SA to return to the international arena, which consequently exposed its market to international challengers. This situation has forced local organisations to change business practices in order to cope with international demand, as well as to achieve an edge in the local market (Denton & Vloeberghts, 2002:85). To achieve operational and service excellence, SA organisations embarked on numerous quality improvement programmes such as: Total Quality Management, ISO 9001(2008), Quality Circle, Just in Time, and the SA excellence model. The Six Sigma philosophy was initiated in SA since the beginning of the 21st century by several multinational companies, with the support of their overseas headquarters.

The adoption of Six Sigma has recently surged in developing countries. Six Sigma plays a major part in the sustainability, profitability, and competitiveness of many organisations in developed countries. The study of Antony and Desai (2009:413), suggests that Six Sigma has been a subject of debate by many scholars, but few published papers underpin the utulisation of Six Sigma in developing countries. Many quality initiatives have not adequately succeeded in bringing about the desired quality improvement, sustainability, and profitability in many enterprises.

This was mainly caused by the lack of emphasis placed on the critical factors associated with the Six Sigma philosophy, as well as with the various quality methodologies used in SA enterprises. Given the complexity of Six Sigma, it becomes critical to examine the elements (resources, top management, employees' involvement, long term focus and culture change), indispensable to support the implementation of this quality paradigm in the context of SA enterprises.

1.2 BACKGROUND OF THE RESEARCH PROBLEM

Quality management has evolved over the years from a simple product inspection, to a modern management system that requires the involvement of the entire workforforce and other stakeholders to work closely toward customer satisfaction. While developed countries have monopolised the world market with higher quality products, developing countries have adopted export promotion as a development strategy, but their performances in the global market remain meager (Mersha, 2000:119). Many factors including the inability to meet defined quality standards as required by international customers have contributed to the inadequate performance of the enterprises from developing countries (Mersha, 2000:121, cited in Austing, 1990).

In SA, business organisations have adopted several quality initiatives to cope with the challenges of globalisation. Six Sigma is one of the quality initiatives that many businesses in SA are using or consider as a mechanism to strengthen their product or service quality. However, Coronado and Antony (2002:92), state that less than 10% of organisations worldwide have recognised the tremendous effects of Six Sigma in boosting their productivity and financial profit. These contrasting results explain the complexity and some critical aspects behind Six Sigma implementation that organisations in SA must recognise when implementing Six Sigma.

1.3 RESEARCH PROBLEM STATEMENT

Against the above background, the research problem statement for this dissertation reads as follows: "South African enterprises that implement Six Sigma, do not consider critical implementation issues associated with the concept, resulting in either inefficient implementation or a product that does not deliver on expectations".

1.4 RESEARCH QUESTION

The research question forming the crux of this study reads as follows: "Can a structured single alternate process be developed for the implementation of Six Sigma to ensure successful implementation thereof in South African enterprises?"

1.4.1 INVESTIGATIVE (SUB-) QUESTIONS

The investigative questions to be researched in support of the research question read as follows:

- > What are the potential benefits of implementing Six Sigma in SA enterprises?
- What are the key driving factors for the sustainability of Six Sigma in SA enterprises?
- > What are the tools and techniques of Six Sigma prevailing in SA enterprises?
- > To what extent are SA enterprises using the Six Sigma Methodology?

1.5 PRIMARY RRESEARCH OBJECTIVES

The following will serve as the main objectives of the study:

- To formulate a structured single process to aid the successful implementation of Six Sigma in SA industries.
- To explore the benefits of the implementation of the Six Sigma quality management system in SA enterprises.
- To identify the tools and techniques for the suitability of Six Sigma in SA industries.

To determine factors that can influence the Six Sigma implementation in the context of SA business environment.

1.6 RESEARCH PROCESS

The research process provides insight into how the study will be conducted from formulating the research proposal to the final submission of the dissertation. Remenyi, Williams, Money and Swartz (2002:64-65), put propose that a research process consists of eight specific phases, common to all scientific based investigations. These phases are:

- Reviewing the literature;
- Formulating the research question;
- Establishing the methodology;
- Collecting evidence;
- Developing conclusion;
- Understanding the limitation of the research; and
- > Producing management guidelines or recommendations.

This dissertation follows a process proposed by Collis and Hussey (2003:16), who define a research process as consisting of six fundamental stages:

- The research topic identification;
- Definition of the problem;
- > Determining how the research is going to be conducted;
- Collecting the research data;
- > Analyzing and interpreting the research data; and
- Writing up of the dissertation or thesis.

1.7 RESEARCH DESIGN AND METHODOLOGY

There are several types of research methodologies that can be used, which depend on the study and the goal to be achieved (Stuart and Wayne, 1996:3; Collis and Hussey, 2003:10). These various types of research can be categorised with regard to:

- The 'purpose' of the research (exploratory, descriptive, and analytical, research).
- > The 'logic' of the research (deductive or inductive research).
- > The 'outcome' of the research (applied or basic research).
- > The 'process' of the research (qualitative or quantitative).

This research study is theoretical in nature, using a positivist (quantitative) research paradigm as its basis. Babbie (2005:25) states that, "...recognizing the distinction between qualitative and quantitative research doesn't mean that you must identify your research activities with one to the exclusion of the other. A complete understanding of a topic often requires both techniques". This study is quantitative using a structured tool to generate numerical data as well as statistics to interpret, organise, and represent the collected data. Frequency tables and graphs will be used to analyse and interpret the findings.

A case study research method will serve as the research method. According to Yin (1994:1), this type of research can be used in various instances which include:

- > Policy, political science, and public administration research;
- Community psychology and sociology research;
- Organization and management studies;
- City and regional planning research; and
- > Research into social sciences and, the academic disciplines.

Collis and Hussey (2003:68-70), assert that case study research can be defined as exploratory research used in a field where there are no or very few existing theories to understand a phenomenon. The following are types of case studies that can be identified:

- Descriptive case studies;
- Experimental case studies;
- Exploratory case studies; and
- Illustrative case studies.

1.8 DATA COLLECTION DESIGN AND METHODOLOGY

Data collection is a means by which a researcher collects reliable information in order to meet the research objectives. For this research study, a questionnaire will serve as a data collection methodology. A questionnaire is a technique designed to obtain reliable responses by providing to respondents, a list of carefully structured questions chosen after considerable testing. Questionnaires form part of the wider definition of 'survey research'. A 'survey' is defined by Remenyi *et al.* (2002:290), as: "...the collection of a large quantity of evidence usually numeric, or evidences that will be converted to numbers, normally by means of a questionnaire".

Two approaches can be referred to in order to structure questions as follow:

- Closed ended questions and
- Opened ended questions.

Closed ended questions will be used in the questionnaire in this research study as this technique implies a quantitative research approach which allows respondents to quickly rate a list of well structured questions with predetermined answers. Furthermore, data will be collected from a random sample of 30 Six Sigma organisations across the Western Cape Province.

1.9 DATA VALIDITY AND RELIABILITY

Collis and Hussey (2003:186), argue that 'validity' is concerned with the extent to which the research findings accurately represent what is happening. Data must be a true reflection of what is being investigating. Three major types of validity can be identified, namely 'content validity', 'criterion-related validity' and 'construct validity' (Cooper and Schindler, 2006:318-320). Content validity refers to the content of the measuring instrument that offers sufficient coverage of the investigative (sub-) questions guiding the study. Criterion-related validity reflects the success of measures used for prediction or estimation. Construct validity refers to the theory and measuring instrument that should be taken into account in order to evaluate construct validity.

Reliability mainly focuses on the findings of the research (Collis and Hussey, 2003:186). If anyone repeats the research and gets the same outcomes, then the findings are said to be reliable. There are three common ways of determining the reliability of responses to questions in questionnaires, namely: 'test re-test method', 'split-halves method' (which will be applied in this study) and 'internal consistency method'.

1.10 ETHICS

In the context of research, according to Saunders, Lewis and Thornhile (2000:130), "...ethics refer to the appropriateness of your behavior in relation to the rights of those who become the subject of your work, or are affected by it". According to Leedy and Ormrod (2001:107-108), the majority of problems regarding ethics in research fall into one of the four categories:

- Protection from harm: in cases involving creating a small amount of psychological discomfort, participants should know about it ahead of time and any necessary debriefing or counselling should follow immediately after their contribution;
- Informed consent: All the participants should be told everything in advance about the nature of the study and be given the choice to participate or not. According to Leedy and Ormrod (2001:108), informed consent should be in a form covering the nature of the research as well as the instructions concerning participants' contribution in a research study and should include the following:
 - ➤ A brief description of the nature of the study;
 - A description of what participants will be involved in terms of activities and duration;
 - A statement indicating that participation is voluntary and can be terminated at any time without penalty;
 - A list of potential risks and possible discomfort that participants may encounter;
 - > The guarantee that all responses will remain confidential and anonymous;
 - The researcher's name and information about how the researcher can be contacted;

- An individual or office that participants can contact in case of any concern regarding the research study;
- An offer to provide detailed information about the research study up to its completion.
- Right to privacy: The researcher should keep the nature and performance of any participant strictly confidential;
- Honesty with professional colleagues: Researchers must report the findings in a complete and honest fashion without misrepresenting what has been done or intentionally misleading others. Data should not be fabricated to support any conclusion.

1.11 RESEARCH ASSUMPTIONS

The following assumptions will be applied to this research study:

- Organisations in SA who implement Six Sigma are considering some critical elements of this approach to ensure success.
- All the relevant personnel in charge of Six Sigma in SA enterprises have received adequate Six Sigma training.

1.12 RESEARCH CONSTRAINTS

The research constraints pertaining to this study include the following:

- the study will be limited to industries using Six Sigma within the Western Cape Province; and
- the questionnaires will only be directed to personnel who have knowledge of Six Sigma.

1.13 SIGNIFICANCE OF THE PROPOSED RESEARCH

This research study will determine an alternative approach to Six Sigma implementation in the context of SA business environment. Given the complexity of Six Sigma, this research will provide some useful information to organisations in SA that are using or may consider the implementation of this approach. Furthermore, it is expected that this study will add to the existing published body

of knowledge on the specific requirements of Six Sigma implementation in the context of the SA business environment.

1.14 CHAPTER AND CONTENT ANALYSIS

The following chapter and content analysis are applicable to this study:

- Chapter One Scope of the research: In this chapter, a holistic perspective of the proposed research taking place in SA organisation using Six Sigma will be provided. The research problem will be explained, followed by the formulation of the research problem, the research question and investigative (sub) questions. The research process will be elaborated upon, followed by a description of the research design and data collection methodology. The research constraints will be listed and a high level overview provided of the chapter and content analysis of the dissertation. This chapter will conclude with a list of the primary research objectives.
- Chapter Two Holistic overview of the research environment: In this chapter, a holistic perspective will be provided of organisations that have implemented Six Sigma in South Africa.
- Chapter Three Six Sigma A literature review: This chapter will focus on the following:
 - Brief history of Six Sigma.
 - ➤ The definition of Six Sigma.
 - The difference between Six Sigma and other quality management concepts.
 - > The Six Sigma methodology for process improvement.
 - > The Six Sigma key personnel structure.
 - > The key elements required for Six Sigma implementation.
- Chapter Four -Data collection design and methodology: This chapter will examine the tools and methods used for data gathering. Challenges faced during the data collection exercise will be elaborated upon. The survey environment will be explained and the target population, as well as the sample size will be defined. This chapter will conclude with a list of questions for the target population.

- Chapter Five Data analysis and interpretation of results: In this chapter, the data gleaned from the survey will be analysed and interpreted.
- Chapter Six Conclusion and recommendations: In this chapter, the study will be concluded. The research problem, research questions, investigative questions and main research objectives will be revisited. Recommendations will be made in order to mitigate the research problem.

1.15 CONCLUSION

In this chapter, an introduction and background of the proposed research was provided. The research process was explained and the research problem, research question and investigative questions, and research objectives formulated. The research design and methodology, which include the data collection design and methodology, was depicted. This chapter concluded with an overview of the dissertation structure, chapter and content analysis.

In the next chapter, a holistic perspective will be provided of organisations who have implemented Six Sigma in South Africa.

CHAPTER 2: OVERVIEW OF THE RESEARCH ENVIRONMENT

2.1 INTRODUCTION AND BACKGROUND

2.1.1 Brief overview of sub-Saharan Africa drawbacks

After Asia, Africa represents the second largest continent in the world. It occupies a total surface area of thirty million square kilometres (30 million km²), with an estimate population of 888 million people (Bamikole, Rovani & Blottmitz, 2008:55). The Sahara desert occupies a quarter of the surface of Africa and its extreme climate contributes to low population density in certain regions. Bamikole, Rovani and Blottmitz (2008:55) estimated the Sub-Saharan Africa (SSA) population to be at 642 million in 1999 which represents 80% of the African population. Although having many natural resources, Africa is the poorest continent in the world due to factors such as:

- ➢ Corruption;
- Misappropriation of international aid;
- Degradation of environment;
- ➤ Lack of democracy;
- Poor economy management;
- ➤ Wars;
- Epidemic diseases such as Aids and Malaria;
- Low foreign investment; and
- ➢ Famine (Mersha, 2000:119).

Since the pre-colonial era, Africa's role in the world trade has been limited to sale of raw materials on the one hand and end-user of imported goods from developed countries on the other hand (Stock, 1995:325). Colonial policies and neo-colonial effects greatly jeopardise the development of manufacturing industries in Africa, particularly in SSA, where the production of finished goods was discouraged by Europeans while only raw materials production was encouraged. This situation had an adverse impact on Africa Industrialisation which is a factor that contributes to growth, world trade, development, wealth, competition and employment. According to Bamikole, Rovani and Blottmitz (2008:55), Africa was the only major developing region with negative growth during the period 1980 to 2000. Stock (1995:327), points out that the position of SSA countries in the world economy has declined between the period 1980 to 1989 and subsequently the value of exports followed the same pattern at an average rate of 4.5 per cent per annum. While firms in developed countries have adopted different kinds of quality management systems to achieve higher productivity, customer satisfaction, employee satisfaction, and higher income, SSA countries have adopted export promotion as a development strategy, but their performances still remains meager in the world market (Mersha, 2000:119).

Africa accounts for only 0.4% of the total world export of manufactured goods (Stock, 1995:330). This relatively low contribution is due to the lack of ability in meeting the quality and delivery requirement specified by international customers (Mersha, 2000:121 cited in Austin, 1990; Nalled et al, 1994). The inability of SSA countries to meet international standards of quality simply endangers their exports trade and therefore their chances of succeeding in the international market as customer satisfaction is a fundamental principle of success.

Compared to the rest of the world, the presence of transnational corporations in Africa is extremely small and the foreign direct investment (FDI) into the continent has declined (Stock, 1995:335), Emerging Markets Private Equity Association (Empea, 2009: Online). Empea (2009: Online), advocates that foreign investors are still cautious of SSA Countries because of certain prevailing obstacles (lack of basic infrastructure and electricity, shortage of skill, political and economical reforms) inherent in this region. The FDI usually comes along with a transfer of technology, first class knowledge, skill development, and quality culture which are key ingredients for global competition. It is then obvious that the low presence of foreign investors in Africa adversely impacts on its ability to deliver highly quality products that can be sold at competitive prices.

South Africa (SA) has emerged as a country that benefits the most from the little FDI in Africa. Empea (2009:Online), proposed that SA has benefitted 70% of the

\$2 billion invested SSA countries in 2008 due to its transparent rule law, economic growth rate, and deep capital market. This exception makes SA a model for fellow SSA countries to follow in terms of a world class quality management strategy, as the flux of FDI is coupled with the transfer of the latest business improvement methods, such as Six Sigma (SS).

2.2 OVERVIEW OF SOUTH AFRICA

SA is located at the southernmost tip of the African continent. It is bordered by Namibia, Botswana, Zimbabwe, and Mozambique and totally surrounds Lesotho. There are currently eleven official languages in SA but for business purposes, English is the most used. Statistics SA (2009: Online) estimated, in July 2009 the total population of SA to be at 49.32 million people.

During recent years, the SA economy has shown consistent growth with 2009 being characterised by a relative slowdown during the global recession. The manufacturing sector was one of the areas where the financial crunch seriously hit. According to Statistics SA (2009: online), the year 2009 reproduced a decrease of 12.5% in manufacturing outputs compared to 2008, with nine of the ten manufacturing divisions reporting lower production. The annual decrease of 12,5% was mainly due to lower production in the basic iron and steel, non-ferrous metal products, metal products and machinery division (-18,7% and contributing -4,1 percentage points), the motor vehicles, parts and accessories and other transport equipment division (-24,4% and contributing -2,5 percentage points), the petroleum, chemical products, rubber and plastic products division (-8,9% and contributing -2,1 percentage points), the wood and wood products, paper, publishing and printing division (-15,0% and contributing -1,5 percentage points), the furniture and other manufacturing division (-20,0% and contributing -1,1 percentage points) and the textiles, clothing, leather and footwear division (-14,6% and contributing -0,7 of a percentage point).

SABC news (2010:online) suggests that although the Africa's biggest economy shrank by 1.8% in 2009, there are some signs of recovery in manufacturing

output, taking into account the rise in factory activities, higher vehicles sales, as well as the foreign investment for the FIFA Soccer World Cup, which are positives indicators for better productivity in 2010.

2.2.1 South Africa in the context of Global Competition

After years of isolation from the rest of the world, SA has successfully reintegrated into the international arena. This return has allowed SA to compete in the world market by exporting goods produced locally. Between 1997 to 2002, the exports from SA increased by 131% from R122.8 billion in 1997 to R284.1 billion in 2002 (Ligthelm, 2004:online). The increases for that period represent an average of 26.26% per annum.

SA exports goods all over the world and the main destinations of its goods are described in Table2.1. It must be highlighted that UK and the USA were the main destinations of SA exports, with 18.3% of the total export occurring during 2002. Germany and Japan followed with 7% and 5.5% respectively.

Country	%
United Kingdom (UK)	9.3
United States of America (USA)	9
Germany	7
Japan	5.5
Netherlands	4.4
Belgium	3.2
Italy	2.7
Zimbabwe	2.6
Spain	2.4
France	2.3

Table 2.1: The 10 most important SA export destinations. Source :(Ligthelm, 2004: online).

It is also important to note that the top ten SA export destinations represents 48.4% of the total export.

The advantageous location of SA, combined with first class infrastructure and political stability, make this country the main attraction of FDI in Africa. A report of the United Nations Conference on Trade and Development (UNCTAD) suggests that in 2008 the total FDI in SA was estimated at \$9 billion but with the

global economic crunch, this part of the world did not escape the consequences of the down turn of foreign investment in 2009 (UNCTAD, 2010: online). UNCTAD (2010: online), highlights that the FDI in SA shrank by 24.6% in 2009. This global crisis had an adverse impact on many local industries as production dropped, consumer spending was restricted, a high retrenchment rate followed (close to a million of people lost their jobs in SA), and factories shut down. On the rating of the 2009/2010 most competitive countries, SA was rated by the world economic forum (Weforum) as the 45th most competitive country out of 134 global economies; a decline of 10 places since 2006 when SA was ranked 35th (Weforum, 2010: online). The position occupied by SA was the highest for an African country. When compared to other developing economies like Brazil, India or China, which appear on top of the list of industrial manufacturers, SA still has to dig harder in order to step up to the best in the world. The United Nations and Industrial Development Organisation UNIDO (2010:Online), declares that China has overtook Japan in becoming the world's second largest industrial manufacturer behind the USA, as its shares in the global total manufacturing value (MVA) were 15.6% slightly higher than Japan, which stands at 15.4%.

2.3 GLOBAL PERCEPTION OF EXPORTING-GOODS QUALITY

Quality is a degree of satisfaction of someone's needs. It is a whole set of features and characteristics that has satisfied a specific requirement. Many definitions can be applied to quality. However Gavin (1991) cited by Madu and Madu (2002:249), provides a comprehensive definition of quality in terms of eight dimensions or attributes that a product or service must have in order to be considered of high quality. These dimensions in terms of product quality are listed below:

- Performance: product's operating characteristics or how well a product achieves its objectives;
- > Features: a supplement to a product basic function;
- Reliability: a probability that a product does not fail for at least a specific period of time under normal operating conditions;
- Durability: measures the useful life of a product or service;
- Serviceability: ease of servicing a product;

- Conformance: refers to how a product or service satisfies customers expectation;
- > Perceived quality: deals with the reputation of a producer; and
- Aesthetic: personnel judgment of how a product looks sounds, smells, or tastes.

Quality is widely used as a measure of excellence. To gain a deep understanding of how consumers around the world perceived product quality coming from different countries in the world, the Gallup organisation used the responses of more than 20000 consumers from 17 countries to rank exporting countries, according to the quality of exported products (Brown, 1995:52).

Figure 2.1 below indicates the ranking of countries according to the quality of exported goods, as perceived by consumers worldwide.

It is evident that the countries that are leading this ranking are the most industrialised and are pioneers of quality initiatives. Five developing countries (China, Taiwan, South Korea, Mexico and Brazil) are emerging as countries with relative low rates in terms of excellent or very good quality products.

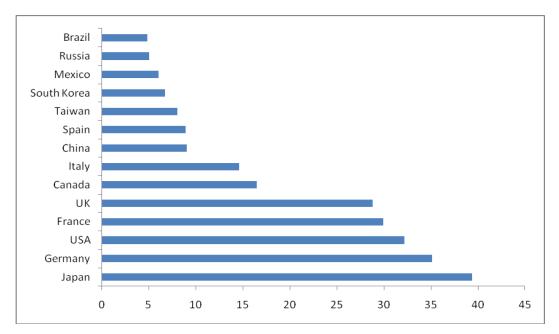


Figure 2.1: Average Score: Perceived rating manufacturer "Excellent" or "Very Good". (Source: Brown, 1995:22)

The countries that consumers have assessed manufactured goods as excellent or good in terms of quality, are the ones leading the exports in the international market as indicated in Table 2.2. It can be seen in Table 2.2 that SA was ranked 39th in the world as far as export revenue was concerned. Given the position of SA in the global market, and the relationship between the export revenue and the perception of global consumers on exported goods quality, it can be concluded that SA is facing quality problems and still has a long way to go in order to close the gap with the top exporting countries as far as the quality of goods or services is concerned. The competitive position occupied by the leading exporting countries is a result of a long journey for quality excellence.

Position	Country	Export value
1	Germany	\$1354 000 000 000.00
2	China	\$1220 000 000 000.00
3	United States	\$1148 000 000 000.00
4	Japan	\$ 678 100 000 000.00
5	France	\$ 546 000 000 000.00
6	Italy	\$ 502 400 000 000.00
7	Netherlands	\$ 456 800 000 000.00
8	UK	\$ 442 200 000 000.00
9	Canada	\$ 431 100 000 000.00
10	South Korea	\$ 379 000 000 000.00
39	South Africa	\$ 76 190 000 000.00

Table 2.2: Top exporting countries of the year 2008 (source: nationmaster 2008: online)

In actual fact, the majority of reputable quality initiatives that have been used across the world were pioneered by industrialised countries. Even today, these countries still strive to continuously improve by putting customers' satisfaction in the front line of business activities.

2.4 BRIEF OVERVIEW OF THE DEVELOPMENT OF QUALITY INITIATIVES

As time continues to move around the clock, the management of product and or service quality has taken on many faces, from simple inspection to total quality management (TQM), ISO 9001(2008), and to nowadays Six Sigma (SS). Many positive improvements have been achieved as a result of the use of these quality management concepts. However, the mutation from one concept to another simply highlights the strength that the latest methodology has. Manjelsdorf (1999:419), is of the opinion that: "quality has a long tradition in the industry. In and after the Second World War, we all focused on quality control. In the 1980s, quality managements systems as given in the ISO standards 9000 series, paved the way for quality related business management. Advanced companies today are in a post ISO era in search of business excellence to meet the challenges of globalization in all market segments." In developed countries, the development of quality initiatives had different facets depending on the continent and the country.

2.4.1 Example of quality evolution in America

The real starting point of efforts toward improving product/service quality in the USA started when Deming and Juran (prominent quality Guru) returned to the USA after assisting in the rebuilding of Japanese industries after the Second World War (Goldman, 2005:217). The work of Juran and Deming greatly helped the Japanese to manufacture goods of higher quality, which eventually impacted positively on European and American markets. In response, the USA developed many quality initiatives as listed below:

- Management by objectives (MBO) to motivate managers to accomplish something;
- Management by commitment (MBC) this commitment was shown by written contracts;
- Zero-base budget (ZBB) used as management tool to evaluate expenses; and
- TQM adopted all over the USA when companies began to apply the Deming and Juran ideas of quality management (Goldman, 2005:218).

Furthermore many other quality concepts (business process re-engineering, continuous process improvement, ISO 9000, Six Sigma, the Malcolm Baldrige award, etc.) were developed with the aim of strengthening products and service quality. All these quality improvement concepts have value as they contributed to improving companies' products or service quality. On the other hand, the birth of a new quality management system simply highlights the weakness of the previous one, as all these concepts differ in some way in terms of use and implementation.

Informal quality frameworks like the Malcolm Baldrige award, have also played a role in boosting organisations' efforts toward quality improvement in America. The Malcolm Baldrige quality award is a comprehensive quality framework that portrays quality excellence practice that an organisation needs to follow in order to win the prize.

Given the existence of numerous quality management systems nowadays, and the context of globalisation, quality is now a marketing tool for global competition and organisations are using reputable quality management concepts to enhance their image. When Motorola won the Malcolm Baldrige quality award in the late 1980s, it puts the company in the spotlight of excellence given the reputation of the award. That achievement was a result of dedication from the entire organisation to improve the quality of their product. The quality concept that was developed at Motorola is known as SS (a registered Motorola trademark) and it helped them to save billions in US dollars by reducing the defect rate to 3.4 per million opportunities. This quality management approach is now widely used both by service and manufacturing industries.

2.5 THIRD WORLD IN THE CONTEXT OF GLOBAL COMPETION

Many developing countries have adopted exports as a development strategy (Mersha, 2000:119). Achieving this will depend on many factors including meeting the requirements quality excellence. Achieving quality excellence will enhance competiveness both in the internal and international market. In order to close the gap with developed countries, third world countries are following the footsteps of industrialised countries in terms of quality management in order to

boost the quality of their products and therefore enhance their reputation in the global market. Even though the FDI in this region plays a significant part with regards to the adoption of quality initiatives, the move toward best practice here is now a reality. As pictured in Figure 2.3, five developing countries are among the 14 countries where manufactured goods were rated as excellent or good by consumers around the globe.

Antony and Desai (2009:413), are of the opinion that the latest quality management philosophies like SS are relatively new in developing countries and that very little is being done in of terms assessing its usage in third world countries. The popularity of SS picked up when Motorola won the Malcolm Baldrige quality award, thereafter many organisations adopted SS as their weapon for business improvement. Many success stories have been written about the positive effect associated with the used of SS. It is notable that this success stories belong to American or European organisation. Nevertheless, the study of Miguel and Andrietta (2009:124), reveals that the proportions of companies using SS in developing countries are doing so according to best practices stated in the literature but more still has to be done in terms of financial benefits associated with the usage of this practice and the key elements associated with Six Sigma implementation. Given this evidence, the third world is trying slowly but surely to match up with industrialised nations in terms of quality excellence which is a fundamental principle for success in a competitive environment.

2.6 GENERAL VIEW OF SOUTH AFRICA ORGANISATIONS

The post 1994 presidential election period has systematically changed the political, social, cultural, international and economic perception of SA. The transition to democracy has allowed SA to return to the international arena. Denton and Vloeberghts (2002:84), state that: "during the sanction years, SA was isolated and depended heavily on itself to provide its needs. Economic growth stemmed largely from government intervention and subsidies. As a result of international boycotts, huge organisations were created, financed and subsidies were freely granted to ensure the economic survival of the minority government and its supporters. Examples are Eskom, Krygkor, Iscor, Sasol, Telekom,

Spoornet and SABC to name a few". The isolation of SA from the rest of the world has drastically influenced the ability of local industries to deliver world class outputs given the fact that organisations were relying mostly on government support rather than using quality management methodologies to optimise their operations in order to be more profitable. Nonetheless, the exposure of SA market (after the 1994 presidential election) to global competition has forced local organisations to change business practice, in order to cope with the international demand, as well as to protect local markets against international challengers (Denton and Vloeberghts, 2002:85).

The return of SA to the international scene implies exporting goods/services that meet international standards and satisfying global consumers. This was a challenge that business organisation in SA faced. The shift toward best practice was a must to ensure success. Munro (1997:37-5) cited in Denton and Vloeberghts (2002:85), suggests that industries in SA have opportunities for growth but the challenge is to drive the signal of change. The transformation of businesses in SA could not be done without the impact of challenges that local organisations will reveal, given the diversity of SA society. Roodt (1997:16), indentified the following as fears to come in a SA business environment:

- > Top management positions for the most part white;
- ▶ A general labour force principally black and unqualified;
- ➤ Gap between poor and wealthy;
- Illiteracy prevailing among a greater portion of the labour force;
- ➤ A greater demand of skill and technology;
- A labour relation that tends towards conflict and violence;
- > Affirmative action as new criterion for jobs and promotion; and
- Employment Equity Acts No. 55 of 1998 that organizations need to follow, otherwise they face the prospect of heavy fines for non compliance.

Nevertheless, the strong FDI in SA has contributed to downsize some of these challenges. For example, some of the multinational firms often force local counterparts to adopt quality management practices which require a culture change and bring people to work together to achieved common goals. The strong FDI in SA is one contributor that puts local industries in a very competitive

position and therefore provides an opportunity to catch up with developed countries that have been striving for excellence for a century.

To deliver world class products or services, SA business organisations have adopted numerous management practices prevailing in industrialised countries such as: ISO 9001(2008), Just in Time, continuous improvement, reengineering, lean system, Total Quality Management, Six Sigma and others. Muir (2005:Online), points out that 3119 organizations was certified as ISO 9001(2008) quality management users across SA in 2005, which was 36th position in the world. As indicated in Table 2.3, the developed countries have the greatest number of ISO 9001(2008) certificates, China is taking the top position with 143 823 companies having ISO 9001(2008) certificates and only two developing countries (China and India) are part of the top ten position. SA was languishing in the 36th spot which was encouraging given the history of this country.

Country	2004 certificates	2005 certificates	% Growth
1. China	132 926	143 823	+8.2%
2. Italy	84 485	98 028	+16.0%
3. Japan	48 989	53 771	+9.8%
4. Spain	40 972	47 445	+15.8%
5. UK	50 884	45 612	-10.4
6. USA	37 285	44 270	+18.7%
7. Germany	26 654	39 816	+49.4%
8. India	12 558	24 660	+96.4%
9. France	21 769	24 441	+12.3%
10. Australia	17 365	16 922	-2.6%
36. South Africa	2 486	3 119	+25.5%

Table 2.3: Top 10 countries with ISO 9001(2008)certificates. Source: (Muir 2005: online)

Between 2004 and 2005, there was an increase of 25% in ISO 9001(2008) certification in SA which highlights a growing change of SA organisations toward best practice pertaining to world class organisation. According to the South African Bureau of Standards SABS (2010: online), the months of January and February 2010 have witnessed the issue of 67 new ISO 9001(2008) certificates in SA.

It is unavoidable that the move toward world class practices is completed without some misinterpretation or a total deviation of the requirement regarding quality management practice. With regard to this, the usage of quality concepts in SA could raise some questions as to whether local organisations are using them effectively or just because they seek certification, after which back to old practices. During the first two months of the year 2010, one hundred and fifty organisations in SA lost their ISO 9001(2008) certificates due to non compliance with the requirement (SABS, 2010:online). This simply means that adopting a quality improvement is one issue; maintaining it is another. As quality becomes a useful tool for competition, expressions like globalisation, standardisation, and customer satisfaction become more and more recurrent on organisation agendas across the globe. Meanwhile SA is striving to level with industrialized nation in terms of quality culture. It is from this perspective that some informal organisations like the South African Quality Institute (SAQI) are promoting quality culture throughout the country.

2.7 OVERVIEW OF ORGANISATIONS PROMOTING QUALITY EXCELLENCE IN SOUTH AFRICA

2.7.1 Brief Overview of South African Quality Institute

The South African Quality Institute (SAQI) is a national organization that promotes and organises quality efforts in SA by developing quality awareness and assisting in putting in place quality principles based on ISO 9001(2008) (Merwe, 2007: Online). Thomaz (2009: Online), is of the opinion that SAQI sees quality primarily as a catalyst for economy expansion and this view is reinforced during the quality week in SA, when individual and organisations are encouraged to create quality awareness and emphasis the importance of quality as a tool for customer satisfaction, global competition, generator of revenue and jobs creation. Improving quality reduces cost and therefore improves productivity which is what a country needs in order to be more competitive.

Fourie (2008: online), advocates that an industry standard should be established for the regulation of quality given the international low rating of SA products or services quality, and also government should be playing an important role in spreading quality standards. The development of Japan after the Second World War was a result of a significant investment by their government in quality improvement. The SA government has an imperative role to play in the journey toward excellence because it is the richest entity of the nation. By promoting, creating, sponsoring and sustaining quality events that lead to the adoption of quality culture by the entire nation, the government will allow institutions, industries and individuals to follow its footsteps for a more comprehensive move to quality excellence.

2.7.2 Brief Overview of the South Africa Excellence Foundation (SAEF)

The SAEF provides a useful framework and path to create a culture of organisational excellence throughout South Africa. This organisation developed the South Africa Excellence Model (SAEM) which is a framework for an assessment that allows organisations to do a regular self judgment of their performance against best practices.

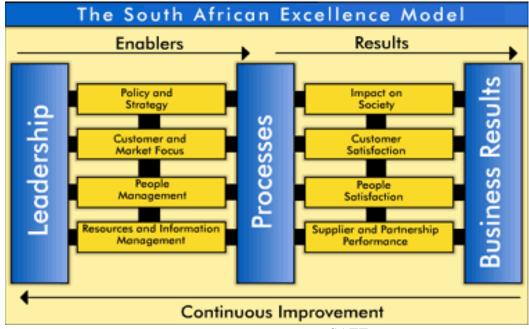


Figure 2.2: The South African Excellence Model. Source :(SAEF, 1997:6)

As specified in Figure 2.2, the SAEM has two main criteria, namely: Enablers and Results. The two groups have various sub-criteria to ensure total organisational effectiveness in improving performance.

The SAEF also deals with the South African Excellence Award, which is the most prominent prize for organisational achievement for excellence that a South African organisation can win.

2.7.3 Proudly South Africa

It is a campaign aiming to enhance the SA image by promoting the trade of locally produced products and services, in order to upon preserve and improve the existing employment rate, economic growth, and to facilitate the creation of more employment opportunities in SA. To be fully certified as proudly SA, organisations have to meet certain criteria that will enable them to compete both locally and internationally. Proudly SA (2010: online), maintains that the membership for this campaign is not exclusive to any particular type of business or organisation but all members have to meet the following criteria:

- Local content: a minimum of 50% of the total production cost must belong to SA;
- Higher quality product: the product or service must be of a higher quality to compete locally and internationally;
- Good labour practice: comply with labour practice and adhere to fair labour practices; and
- Environmental standards: production processes must not be harmful to the environment.

2.8 CONCLUSION

Many organisations in SA have embarked on the journey of quality excellence to challenge industrialised nations' competitive positions in the local and global market. However, adopting a specific quality management system is not indicative of achieving excellence. The leadership of SA business organisations has to optimally be knowledgeable of features surrounding an innovative approach, aiming to improve the efficiency of business processes. For SA organisations seeking or using the Six Sigma quality management system, a conceptual model will be developed in order to alleviate the research problem. Chapter 3 will look at relevant literature under discussion in this area.

CHAPTER 3: SIX SIGMA LITERATURE REVIEW

3.1 INTRODUCTION

A literature review is a critical examination and analysis of a published body of knowledge that has been theorised and conceptualised by many scholars (Mouton, 2001:87). Watkins (2008:130), describes a literature review as a focus on a very specific problem that needs to be mitigated.

In this chapter, a literature review will be conducted with regard to available publications that will help to lessen the research problem. To this end, the following areas will be underpinned:

- Back ground to Six Sigma including its history and definitions.
- The rationale behind Six Sigma usage and its benefits.
- > The difference between Six Sigma and others quality initiatives.
- > The Six Sigma methodology tools and techniques for process improvement.
- > The key personnel in charge of Six Sigma implementation.
- > The key elements for a successful introduction.

3.2 BACKGROUND TO SIX SIGMA

The enthusiasm on quality improvement in America businesses started in the late 1950 when prominent quality gurus (Edwards Deming, Joseph Juran and other) returned from Japan. Their assistance there had helped in the rebuilding of the industry by teaching quality techniques and methodologies, with the aim of enhancing industrial output (Goldman, 2005:217). A few years later, Japanese manufacturing output began to pick up both in quality and quantity. This eventually attracted the attention of global consumers mainly because of its already mentioned characteristics and low prices (Raisinghani, Ette, Pierce, Cannon, & Airplay, 2005:492).

In response to the threat of the Japanese reputation for excellence in manufacturing output, American manufacturers started to develop and implement

many quality initiatives such as: Quality circle, Zero defects, Management by objectives, Management by Commitment, Zero Based Budget, Total Quality Management, Malcolm Baldrige Award, and Six Sigma to improve product and service quality which are fundamental for customer satisfaction (Goldman, 2005:208; Raisinghani *et al.*, 2005:492).

3.3 HISTORY OF SIX SIGMA

Antony and Banuelas (2002:26), point out that the Six Sigma quality management was first pioneered at Motorola Corporation (US Electronic manufacturer) in the late 1980s as a mechanism to streamline organisational performance with emphasis on minimising quality cost by means of defects reduction. This view is supported by Schroeder, linderman, Liedtke and Choo (2008:537), as well as Kumar, Nowicki, Marquez, and Verma (2008:456), who are of the opinion that Six Sigma was initiated at Motorola to down scale variations in order to create a process that is less likely to produce defects. Coronado and Antony (2002:92), point out that a defect can be classified as an imperfection that causes a shortfall or failure of a process that triggers customer complaints. Breyfolgle (2003:5), asserts that the father of Six Sigma was the late Bill Smith, a senior engineer and scientist at Motorola. It was Bill Smith who crafted the original statistics and formulas that were the beginning of the Six Sigma culture. Jack Germaine a Senior Vice President at Motorola was named quality director and charged with the implementing of Six Sigma throughout the corporation. The result was a culture of quality within Motorola, and led to a period of unprecedented growth and sales. In 1988, Motorola was awarded the Malcolm Baldrige National Quality Award.

As Motorola's success became popular, Six Sigma was registered as its trademark and many companies in the USA (General Electric, Raytheon, Allied Signal, Honeywell, Sony, Caterpillar, American express, Ford, and Johnson) adopted this concept, and consequently returned incredible results (Breyfolgle, 2003:5; Senapati, 2004: 683; & Schroeder *et al.*, 2007:536-537).

Antony (2009:274), found that currently companies across the world ranging from

small businesses, private and public to large organizations have adopted this philosophy to substantially improve:

- ➢ Quality level,
- Customer satisfaction,
- ➢ Market share,
- Employees moral,
- Organizational culture,
- People development,
- Return on investment, and
- Much more.

3.4 STATISTICAL BASIS OF SIX SIGMA

The expression Six Sigma consists of two words, Six (6) and Sigma (σ). The σ comes from the Greek Alphabet and it is known as a standard deviation in statistics and indicates how values from a process output are dispersed around the target value of a product specification in a normal distribution curve, which was first introduced by Carl Frederick Gauss (Raisinghani *et a*l., 2005:491). Figure 3.1 shows the six (6) that refers to the number of standard deviations from the target to the specification limits at each side of the normal distribution curve of a process producing almost no products out of specification limits (Foster, 2007:437). As indicated on Figure 3.1, the concept of ±3Sigma was introduced by Walter Shewhart in 1922 as a measurement of process output variation at each side of the target value under the normal distribution curve (Raisinghani et al., 2005:491-492).

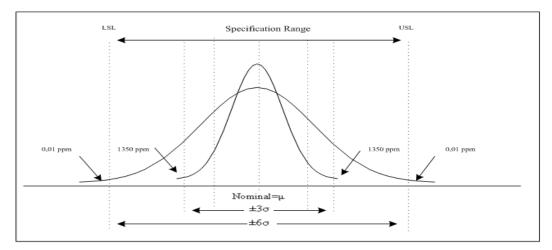


Figure 3.1: Normal Distribution with Sigma Impact. Source: (Dogu and Firuza, 2008:1096)

When the distribution is centered as indicated in Table 3.1, a ± 3 Sigma corresponds to a sigma level of 3 which indicates in this case 2700 defects per million opportunities (DPMO). Under the same condition a ± 6 Sigma as a depicted in Table 3.1, will map to a sigma level of 6 which indicates in this case a 0.002 DPMO.

2003.14)			
Specification limit	Sigma Level	Percentage	Defects per million opportunities
±1Sigma	1	68.27%	317300
±2Sigma	2	95.45%	45500
±3Sigma	3	99.73%	2700
±4Sigma	4	99.9937%	63
±5Sigma	5	99.999943%	.57
±6Sigma	6	99.9999998%	.002

 Table 3.1: Defects per million opportunities with a centred distribution.
 Source: (Breyfolgle, 2003:14)

The Six Sigma objective is to reduce a process variation, which will result in no more than 3.4 DPMO as indicated in Table 3.2 in the long term (Antony, 2008:274).

 Table 3.2: Defects per million opportunities with 1.5 Standard Deviation Shift. Source:

 (Breyfolgle, 2003:14)

Specification limit	Sigma Level	Percentage	Defects per million opportunities
±1Sigma	1	30.23%	697700
±2Sigma	2	69.13%	308700
±3Sigma	3	93.32%	66810
±4Sigma	4	99.93790%	6210
±5Sigma	5	99.9760%	233
±6Sigma	6	99.999660%	3.4

The 3.4 DPMO are calculated on the basis that every process is likely or tends to increase its variability over time, due to unavoidable assignable causes such as loss of calibration of measuring equipment, wear and tear of machine, operator fatigue, supplier quality variation, and variation in temperature (Biehl, 2005: online).

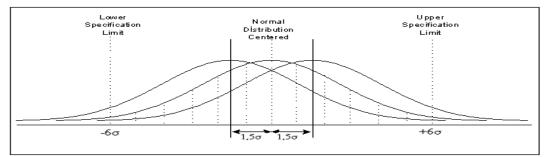


Figure 3.2: Normal Distribution with 1.5 Standard Deviation Shift: Source: (Dogu and Firuza, 2008:1096)

In such a case, Figure 3.2 portrays an example of process variation of $\pm 1.5\sigma$ from the target which is common and the resulting defects rate under one of the shifted curves beyond the Six Sigma is 3.4 DPMO in a long run as illustrated in Table 3.2. Therefore, for Six Sigma only a shift of at most 1.5σ is permitted on one of the sides of the target value of the normal distribution curve.

3.5 SIX SIGMA DEFINED

Six Sigma has various perspectives and is defined in literature and by people in different ways. According to Raisinghani *et al.*, (2005:491), defining Six Sigma in simple terms is not possible because it consists of problem solving methodology and focuses on optimisations of financial returns, including culture change within an organization. Furthermore, the researches of Kwak and Anbari (2006:708-709), and Antony and Banuelas (2002:21), returned that Six Sigma definitions can be categorised in two segments which cover business and statistical explanation.

3.5.1 Six Sigma business definitions

According to Antony and Banuelas (2002:21), Six Sigma is a strategic business improvement mechanism used to optimise profitability, remove waste, reduce cost of quality and enhance the effectiveness and efficiency of all operations to meet or go beyond customers' requirements and expectations. Kwak and Anbari (2006:708), portray Six Sigma as a business tactic that emphasis the need to improve the understanding of customer requirements, business system, productivity, and financial performance. Chou and Su (2008:2694), are of the opinion that Six Sigma is a top down initiative led by top management and the hierarchy of trained personnel, who work on projects that are aimed to scale down waste and mistake proof processes that create value and yield to the improvement of products and services quality and tremendous customers' satisfaction. Antony (2004:1006), describes Six Sigma as an inexorable and rigorous quest of the elimination of non-value added activities and variations in core business processes achieve continuous and breakthrough improvement in organisational to performance that impact on the bottom line result. The study of Black and Revere (2006:260), refer to Six Sigma as a breakthrough strategy that combines improvement metrics and new management philosophy to significantly reduce defects by the mean of designing, improving, and monitoring business activities that result in strengthening a market place position, customer satisfaction and improved financial profit. Six Sigma is a systematic, highly disciplined and profit driven approach that brings together management, financial and methodological elements to improve process and product concurrently, resulting in customer satisfaction and financial results (Antony & Desai, 2009:413 cited in Tang et al., 2007). Ditahardiyani, Ractnayani and Angwar (2008:178), note that Six Sigma is a business management process for continuous process and product quality improvement that provides tangible business results to the bottom line and operational excellence. Miguel and Andrietta (2009:125), see Six Sigma as a management practice that seeks to maximise company financial earnings in any sector of activity of any size for the aim of raising market share, optimising customer satisfaction, downscaling defects and reducing cost of manufacturing or service activities.

Six Sigma is a business strategy known as an imperative for operations and business excellence (Antony, 2006:234).

3.5.2 Statistical definition of Six Sigma

Black and Revere (2006:259), describes Six Sigma as a methodology used to assess a process capability in terms its abilities to deliver outputs that meet or exceed customer requirements. Six Sigma is a quality oriented philosophy that seeks a process of \pm 6 sigma variation even if a process mean shifts by \pm 1.5 sigma that results tin a maximum of 3.4 DPMO (Motwani, Kumar, and Antony, 2004:273). Antony (2008:107), is of the opinion that Six Sigma is a concept that relies on statistical techniques to identify, analyse, and solve problems that results in a noticeable down turn of nonconformities in all aspect of business organisation. Eckes (2001:11), advocates that Six Sigma is a concept that provides a statistical measurement of a product or service performance by identifying problems, establishing root causes, formulating hypotheses, testing them and maintaining progressions that hunt or improve customer satisfaction. The Study of Chou and Su (2008:2694), proposes that Six Sigma uses numerous statistical applications to improve the sigma level of a process performance to reflect or exceed customer needs. Antony and Banuelas (2002:21), define the Six Sigma statistical viewpoint as a rigorous quality control concept that monitors and improves a process of an organisation that operate at 3 Sigma level to a 6 sigma level and therefore achieves a reduction of process variation so that it will result in no more than 3.4 DPMO in a long term.

Six Sigma is a quality improvement methodology that incorporates management philosophies and statistical techniques in a well structured fashion to optimise business activities, thereby focusing on variation reduction in all processes, involving top management and operating force to work closely in the hunt of customer satisfaction and financial return.

3.6 THE RATIONALE OF SIX SIGMA USAGE

Six Sigma is a powerful business management strategy that has been exploited by many world class organisations such as Motorola, General Electric (GE), Honey Well, Bombardier, ABB, Sony, American Express, Fords, Boing, Raytheon, and Caterpillar (Antony, 2006:234; Kumar, Antony, and Douglas, 2009:625). It was first implemented in the manufacturing environment and eventually extended to other functional areas such as marketing, engineering, purchasing, servicing, and administrative support due to the fact that organisation were able to substantiate the benefits of this approach in financial terms by linking process improvement with cost savings (Kwak & Anbari, 2006:709; Kumar *et al.*, 2008:456; Antony & Banuelas, 2002:20).

Kumar *et al.*, (2008:456-457), propose that the Six Sigma approach was developed as a tool to strengthen the reliability and the quality of products by focusing on process defects reduction. Ditahardiyani, Ractnayani, and Angwar (2008:178), propose that on a long term basis it will result in a process producing output with no more than 3.4 DPMO so as to meet customer expectations. The study of Kumar *et al.*, (2008:457), citing Harry (1998), proposed that traditional organisations that adhere to conventional framework have started to adopt Six

Sigma as a method to streamline operations with the aim of enhancing reputation, customer trust, market share and profitability.

References	Industrial application of Six Sigma
Hendricks and Kelbaugh (1998)	Successfully implement many Six Sigma projects that improved the net profit
Lanyon (20030	Improved HR processes by using Six Sigma
Motwani et al., (2004)	Down chemicals achieved a target of \$1.5 billion in earning before tax in 2000 as a result of SS implementation
Knowles et al. ,(2005)	Successful application of Six Sigma within a UK confectionery plant of a major food producer
Banuelas e al., (2005)	Use of Six Sigma to reduce waste in a coating process
Snee (2005)	Six Sigma benefited Motorola, Allied signal, general electric etc
Edgeman et al., (2005)	Saving of between \$2 to \$3 million at an office of the chief of technology officer at Washington DC using Six Sigma
Ehie and Sheu (2005)	Demonstrates the value of Six Sigma and Theory of Constraint
Liu (2006)	Presented an application of Six Sigma to reduce cycle time and defects in clinical report entry
Mukhopadhyay and Ray (2006)	Used Six Sigma to reduce the yarn packing defects

 Table 3.3: Six Sigma industrial applications. Source: (Kumar et al. 2008:458)

Table 3.3 illustrates some areas where Six Sigma has been used successfully to improve manufacturing and service processes.

Kwak and Anbari (2006:709) citing (Anbari, 2002), note that Six Sigma is more widespread than other quality concepts like TQM and continuous quality improvement (CQI) because it measures and reports financial results, uses additional and more advanced data analysis tools, focuses on customer demands and makes use of project management tools and methodology.

 Table 3.4: Rating of process improvement techniques. Source: (Kumar et al., 2008:457)

Process improvement tool	Impact (%)
Six Sigma	53.6
Process mapping	35.3
Root cause analysis	33.5
Cause and effect analysis	31.3
ISO 9001	21
Statistical process control	20.1
TQM	10.3
Malcolm Baldrige criteria	9.8
Knowledge Management	5.8

As illustrated in Table 3.4, Kumar *et al.*, (2008:457), advocate that Six Sigma is a quality management concept that yields the highest result due to the fact that it incorporates many other quality techniques which do not have much application outside the manufacturing industry.

Six Sigma	TQM
Executive ownership	Self directed
Business strategy execution system	Quality initiative
Truly cross functional	Largely within a single function
Emphasises on training	No mass training in statistics and quality
Business results oriented	Quality oriented

Table 3.5: Contrasting Six Sigma and TQM. Source: (Barney, 2002:13)

Comparing the views of Kwak and Anbari with that of Kumar *et al.*, it is clear that Six Sigma is significantly different from other quality management approaches like TQM, as illustrated in Table 3.5.

Six Sigma is considered as a highly structured and one of the most effective improvement frameworks that uses statistical and non statistical tools/techniques to eliminate process variation; therefore improving process efficiency and effectiveness including capability, which impact upon on financial return that most companies claimed to be upward. Six Sigma provides business executives and leaders with a strategy, methodology, infrastructure, tool and techniques to change the way business are run (Kumar *et al.*, 2009:625). The study of Eckes (2001:11), stipulates that there are three keys elements for quality: customer, process and employee, and if an organisation wants to be or remain a world class quality company, it must focuses on these three essential elements. Consumer drives the level of accomplishment that a process must deliver at a world class level of quality by involving employees in produce (Servicebazaar, 2005: online)

The fundamental idea behind the Six Sigma philosophy is to continuously reduce variation in process with the aim of eliminating defects or failure in every product or service (Antony & Banuelas, 2002:20-21 cited by Hoerl, 1998).

3.7 DIFFERENCE BETWEEN SIX SIGMA AND OTHER QUALITY IMPROVEMENT INITIATIVES

Six Sigma was initially created as a continuous quality improvement technique but nowadays, it has evolved into a complete strategical approach for business improvement that differs completely from other quality initiatives like TQM (Barney, 2002:14). According to the Servicebazaar (2005: Online; Kumar *et al.*, 2008:458), Six Sigma is regarded as an expansion on other quality concepts like ISO 9001, TQM, Statistical process control, Deming statistical quality control and Statistical Engineering (SE). Table 3.6 illustrates some major differences between Six Sigma and other quality concepts.

,				
Attribute	Six Sigma	Deming Cycle	TQM	SE
Process centric approach	High emphasis	Implicit	Implicit	High emphasis
Customer focus	Implicit	Invisible	Explicit	Implicit
Statistical approach	Has a statistical base	No confinement to statistical approach	Tools have statistical base	Usage of simple statistical tools
Behavioral content	Exists	Does not emphasis the behavioral side of problem solving	Emphasizes the behavioral approach to problem solving	Talks less about behavioral attributes
Easiness	Tough to implement in terms of goals	Simplest guide to solve problems	Easier to implement	Moderately difficult
Cost	High to medium investment	Usually low investment projects	Usually moderate	No publicized estimates available
Duration	High	Depends on project sizes	Project sizes are moderate	No figure are made available
Executive role	Top down	Not emphasized	Top Down	Bottom up

Table 3.6: Comparison between Six Sigma and other quality programs.**Source**: (Senapati,2004:689)

Kumar *et al.*, (2008:458) citing Anbari (2002), and Kwak and Anbari (2006:709), proposed that Six Sigma is a methodology consisting of the followings:

- ► TQM.
- ➢ Key personnel,
- Strong customer focus,
- Project management,

- Additional data analysis tools, and
- ➢ Financial results.

Kumar *et al.*, (2008:458) and Antony (2006:239), put forward that Six Sigma utilises five phases for process improvement which are known as DMAIC (Define, Measure, Analyse, Improve, and Control). These five phases show a similarity with the Deming Plan-Do-Check-Act (PDCA) cycle (Senapati 2004:684). However, the focus target of 3.4 DPMO along with a good integration of powerful problem solving tools and techniques into DMAIC framework have triggered a noticeable success rate of Six Sigma compared to TQM (Kumar *et al.*, 2008:458; Antony, 2009:278).

The study of Antony (2009:244-245), suggests that Six Sigma and other quality management concepts present some similarities as illustrated on Table 3.6 but these philosophies contrast in many critical areas because Six Sigma accentuates more in the areas listed below:

- Six Sigma emphasises the achievement of financial returns.
- Six Sigma starts from the leadership and a clear curriculum of top management role is provided within the Six Sigma framework.
- Six Sigma methodology of problem solving integrates the human, process and statistical elements in a disciplined manner.
- Six Sigma provides an organisational infrastructure consisting of key trained personnel for an effective implementation of this approach.
- Six Sigma emphasises the data driven decision making approach instead of hypothesis.
- Six Sigma uses the concept of statistical thinking that encourages the use of powerful statistical tools and techniques for process variability reduction.

Six Sigma focuses on driving business results directly in comparison to many other quality initiatives. Projects and key personnel are carefully selected to accelerate business performance. Six Sigma differs from other quality initiatives because it is a business philosophy; leadership is completely involved and committed; powerful statistical tools and techniques are used to validate data; the focus is on a specific project; the best people are 100% dedicated to defects reduction which generate astonishing benefits.

3.8 SIX SIGMA BENEFITS

Antony (2008:107), advocates that the Six Sigma usage has been gaining ground with impressive results over the last 20 years and the benefits generated from its implementation worldwide can be classified as follow:

- Defects reduction.
- Operational cost reduction.
- Increased customer satisfaction and other shareholders.

The research of the Servicebazaar (2005: online), suggests that Six Sigma focuses on the reduction of process variation as well as enhancing its capability, which leads to the following:

- Productivity improvement.
- ➢ Higher throughput.
- ➤ Higher level of quality.
- Cycle time reduction.
- Defects reduction.
- Greater customer satisfaction.
- > Standardized improvement methodology in the organisation.
- Drastic improvement in the bottom line.

Chou and Su (2008:2693 citing Maleyeft and Kaminsky, 2002), present a different perspective on Six Sigma benefits by saying: "The main benefit of a Six Sigma program is the elimination of subjectivity in decision making by creating a system where everyone in the organization collects, analyses, and displays data in a consistent way". As a result, Six Sigma is a concept that provides an opportunity to everyone in the value chain to actively participate in the journey to quality excellence.

The significant impact of Six Sigma implementation on organizational performance really boosts exuberant financial returns on a balance sheet which

could not be obtained by other means (Antony & Banuelas, 2002:21). In the manufacturing sector, Six Sigma was first implemented successfully at Motorola and thereafter many other manufacturing organisations fruitfully followed its footsteps (Kwak & Anbari, 2006:710). Table 3.7 portrays the benefits generated from the implementation of Six Sigma by some manufacturing organisation.

Company/Projects	Metric/measures	Benefits/ Savings
Motorola (1992)	In process defect levels	150 times reduction
Raytheon /aircraft integration	Depot maintenance inspection	Reduced 88%
system	time	
GE/Railcar leasing business	Turnaround time at repair	62 % reduction
	shops	
Allied signal Honeywell/	Concept to shipment cycle time	Reduced from 18 months
bendix IQ brake pads		to 8 months
Hughes aircrafts missile	Quality / productivity	Improves 1000%
systems group / wave soldering		/improved 500%
operation		
Borg Warner Turbo systems	Financial	\$ 1.5 million annually
		since 2002
General electric	Financial	\$ 2 billion in 1999
Motorola (1999)	Financial	\$ 15 billion over 11 years

Table 3.7: Benefits of Six Sigma in manufacturing sector. Source: (Kumar et al., 2006:459)

Antony (2006:236 citing Yilmaz and Chatterjee, 2000), found that most of the service processes operate at a sigma quality level below 3.5 which generates 23000 DPMO and by improving the above sigma quality level to just four sigma, the defects rate will go down significantly to 6210 DPMO. This will in turn generate impressive financial results due to an improved service delivery and customer satisfaction.

Kwak and Anbari (2006:710-711), highlight that most service organisations remain skeptical about the effectiveness of Six Sigma in this particular sector. Antony (2006:236), however presents a different view in that the best way to convince a service orientated company to initiate, develop, implement and maintain Six Sigma strategy, is through the three rudimentary principles of statistical thinking. These principles include:

- All work occurs in a system of interconnected processes.
- All processes exhibit variability.
- > All processes create data that explains variability. By knowing the sources of

variability and devising effective strategies to reduce or eliminate them, incredible results can be achieved.

Although the skepticism shown by some service organizations about the relevance of Six Sigma in this particular sector of activity, many organisations in this sector have benefited in many ways as a result of Six Sigma implementation (Antony, 2006:237; Kwak & Anbari, 2006:710-711).

Company	Benefits
City bank Group	Reduced internal call backs by 80%, external call Backs by 85%
	Reduce credit processing time by 50%
	Reduced cycle time by 67%
JP Morgan Chase	Increased customer satisfaction, efficiency and cycle times by over 30%
Healthcare industry	Increased radiology throughput by 33%
	Decreased cost per radiology procedure by 21.5 % which
	generates a cost saving of \$1.2 million
	Reduced medication and laboratory errors and therefore
	patients safety
British telecom whole sale	Increased level of customer satisfaction
	Established more robust and effective processes
	Creates common language for business process improvement
	Cost saving of over \$100 million
Financial service	Administrative cost reduction in excess of \$ 74000 per annum
	Improved customer satisfaction
	Saving generated unnecessary processing cost (about \$700 000
	/ year
Utility company	Annual saving of \$ 1.7 million from improving service delivery
	Increased customer satisfaction and retention

 Table 3.8: Key benefits of Six Sigma in service organizations. Source (Antony, 2006:237-238)

The benefits listed in Table 3.8 derived from the successful implementation of Six Sigma in some service oriented organisations.

3.9 TOOLS AND TECHNIQUES FOR SIX SIGMA PROCESS IMPROVEMENT

McQuater, Scurr, Dale, and Hallmal (1995:38), propose a comprehensible definition regarding quality tools and techniques as follows:

- Tools and techniques are ways or mechanisms by which a particular problem can be solved.
- ➤ A tool is a devise having a clear function and is used on its own.

A technique (set of tools) requires more thought, complexity, skill and training for effective use.

The 7 basic quality control tools	The seven management tools	Other tools	Techniques
Cause and effect diagram	Affinity diagram	Brainstorming	Benchmarking
Check sheet	Arrow diagram	Control plan	Design of experiments
Control chart	Matrix diagram	Flow chart	Failure mode and effects analysis (FMAEA)
Graphs	Matrix and data analysis method	Force field analysis	Fault tree analysis
Histogram	Process decision	Hypothesis testing	Process capability analysis
Pareto diagram	Programme chart	Process Mapping	Poka joke
Scatter diagram	Relations diagram	Questionnaire	Problem solving methodology
	Systematic diagram	Sampling	Quality costing
		Gant chart	Quality function deployment (QFD)
		SERVQUAL	Quality improvement teams
		Regression and correlation analysis	Statistical process control (SPC)
		SIPOC	
		Project team Charter]
		Kano Model]

Table 3.9: Frequently used tools and techniques. (Source: Antony, 2006:242)

The most commonly used tools and techniques for a Six Sigma project for process improvement are listed in Table 3.9. It is important to point out that these tools and techniques are not new but were brought together in a very disciplined and systematic manner to gain significant benefits when tackling process quality related problems (Antony, 2006:241).

3.10 SIX SIGMA METHODOLOGY FOR PROCESS IMPROVEMENT

Dogu and Firuzan (2008:1102), advocate that process improvement methodology is a tactic used to identify process problems, measure, analyse, and find solutions in order to implement and sustain the most efficient way of operating that will lead to a breakthrough. As a problem solving methodology, Six Sigma makes use of a generally accepted and well defined continuous improvement framework known as DMAIC (Antony, 2006:239, Eckes, 2003:29).

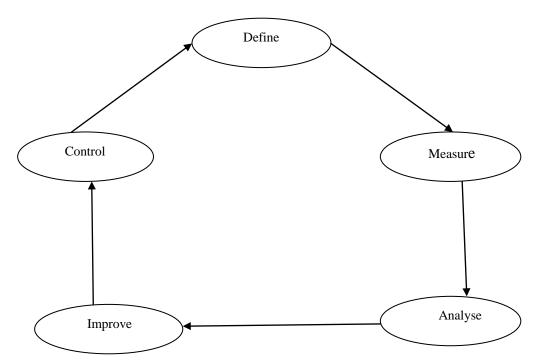


Figure 3.3: DMAIC improvement Methodology. Source: (Eckes, 2003:29)

As indicated in Figure 3.3, the DMAIC model is a closed loop process that eliminates unproductive stages which allows the improvement process to be more efficient (Kwak and Anbari, 2006:706). The letter (D) represents the definition of the problem, (M) measures the problem, (A) analysis of data, (I) improvement of the process by removing root causes of defects and (C) controlling or monitoring process to prevent problems.

3.10.1 Define phase

This is the first phase of any Six Sigma project and consists of three tollgates: a charter, customer needs and requirements, and process map (Eckes, 2003:30).

The charter: A charter is a set of documents that illustrates the objectives and motivation for a Six Sigma team to perform its workload effectively and it includes the following:

- \succ The business case.
- > The problem statement.
- Project scope.
- ➢ Goals and objectives.
- Milestones.
- Roles and responsibilities of Six Sigma project team member.
- Customer needs and requirements: A customer can be seen as someone who receives a product or service (need), from a process that transforms its requirements into characteristics or needs, that will play a critical role in its satisfaction (Eckes, 2003:32).
- Process map: A process is a series of activities that transforms inputs (raw materials) into outputs (product, service or information) for a customer (Anjard, 1996:223). A higher level of process map must be created to reflect the mirror picture of current activities and should indicate the following:
 - \succ Name of the process.
 - Start and end points of the process.
 - Output of the process.
 - Customer of the process.
 - Supplier of the process.
 - \succ Input of the process.

3.10.2 The measure phase

The creations of the data collection plan and implementation plan are the two major steps in this phase.

- Creation of the data collection plan: A data collection plan portrays the necessary key areas that will lead to the final calculation of the Sigma level. According to Eckes (2003:36-40), it consists of the following:
 - > What to measure: Requirements obtained during the define phase.
 - > The type of measure: Input, process or output measurement.
 - > The type of data: Discrete or continuous data.

- Operational definition: Have an agreement with all relevant people involved in the process in order to avoid contrasting ideas over what is being described.
- Target specification: Measure the performance of the product or service to meet customer needs.
- > Data collection forms: Tools used to collect data.
- Sampling: Taking a portion of the total population when measuring the entire population in order to minimise cost and time.

> Implementation of the data collection plan

This step consists of taking the data collection plan and implementing it in order to generate the current sigma level of the process (Eckes, 2003:41).

3.10.3 Analysis phase

Many authors consider this phase as the most crucial because more often, people seem to omit it and jump straight to improvement phase (Eckes, 2003:42-43). This phase consists of three scrutinising steps: data, process, and root cause analysis of the current performance.

- Data analysis: In order to improve the effectiveness and efficiency of a process in such a way that it can create a product or service that meets customer requirements, the data obtained at the measure phase must be analysed (Eckes, 2003:43). The type of tools or techniques used to analysed data are listed in Table 3.10, which also illustrates the most widely used tools and techniques for the Six Sigma process improvement at each stage of the DMAIC.
- Process analysis: A process analysis consists of an in-depth process mapping and a detailed analysis of the spot where the greatest inefficiency occurs.
- Root cause analysis: This is the most important step of the analysis phase. Eckes (2003:54), advocates that it covers the stages listed below:

- The open step: brainstorming session with all project team members aiming to unearth all causes of inefficiency
- > The narrow steps: downscaling the reasons of inefficiency
- > The closed steps: validation of all narrowed reasons of inefficiency.

Project phase	Commonly used Tools		
	 Project charter 	Process map	
	Benchmarking survey	Brain storming	
Define	Flow chart	> SIPOC	
	> QFD	GANTT chart	
	> QFD	Pareto analysis	
	> FMEA	Quality costing	
Measure	➢ Gage R&R	SERVQUAL	
	Run chart	Histograms	
	Pareto analysis	KANO model	
	Cause and effect	 Histogram 	
	diagram	Pareto chart	
	Tree diagram	Run chart	
Analyze	Brainstorming	Hypothesis testing	
	> SPC	Regression and	
	Process map	correlation analysis	
	> FMEA	Affinity diagram	
	Capability analysis		
	Force field diagrams	> QFD	
Improve	New seven tools	> SIPOC	
	Quality costing	GANTT chart	
	> SPC	Benchmarking	
Control	> FMEA		
	➢ Gage R&R		

 Table 3.10: commonly used tools at each phase of DMAIC. Source: (Antony, 2002:242, Dogu and Firuzan, 2008:1104)

3.10.4 Improvement phase

This phase involves generating and selecting solutions for implementation of doing things better, cheaper or faster and thereafter calculating the new sigma level (Eckes, 2003:61).

3.10.5 Control phase

A tracking mechanism of measurements has to be put in place in order to sustain the newly implemented solution to ensure that growth is not lost over time (Anbari & Kwak, 2004:6). Moreover, many authors argue that Six Sigma is an approach which when used effectively, minimises variability from any process or product by using the DMAIC methodology or a design/redesign for Six Sigma (DFSS). Banuelas and Antony (2003:334), propose that the DFSS is a methodology used when a process has to be designed or redesigned. During a Six Sigma project, DFSS follows a sequence known as DMADV which means Define, Measure, Analyse, Design and Verify.

The DFSS mainly focuses on bringing new processes by eliminating existing one so as to enable new processes to operate at a sigma level of 6, therefore generating only 3.4 DPMO.

3.11 ORGANISATIONAL INFRASTRUCTURE FOR SIX SIGMA

Coronado and Antony (2002:94), are of the opinion that some features like communication skill, long term focus, team work, resources availably pertaining to the organisation, have to be visible prior to embarking on Six Sigma implementation programme. Moreover, the researches of Pyzdek (2000: Online) and Antony and Banuelas (2002:21), suggest that Six Sigma provides and organizational infrastructure that assures and supports the effective implementation of this methodology in an organisation. The main reason why 80% of TQM implementation failed was due to the lack of tangible infrastructure to support its introduction.

Henderson and Evans (2000:270), point out that reaching the long term target of 3.4 DPMO requires a complete commitment of each component of the value chain, and an active participation by everyone with specific roles and responsibilities within an organisation. The employees in an organization practicing Six Sigma are seen as catalysts who institutionalise change and are highly trained on statistics, problems solving, and lead the group in selecting and completing Six Sigma projects (Henderson and Evans, 2000:270; Antony and Banuelas, 2002:22). According to Anbari and Kwak (2004:5), a Six Sigma project is selected, performed, accomplished, and reviewed by individuals who are ranked

according to a belt system in a powerful matrix organizational structure as follows:

- ➢ Champion.
- ➢ Master black belt (MBB).
- ➢ Black belt (BB).
- ➢ Yellow belt (YB).
- Green belts (GB).

	Green belts	Black Belts	Champions
Profile	Technical Background	Technical degree	Senior manager
	Respected by peers	Respected by peers and	Respected leader and
		management	mentor of business
			issues
	skill in basic and advanced tools	Master of basic and	Strong proponent of
		advanced tools	Six Sigma
Role	Lead important process	Lead strategic, high	Provide resources and
	improvement team	impact process	strong leadership for
	Lead, train, and coach on tools	improvement project	projects
	and analysis	Change agent	Inspire a shared
	Assist Black belts	Teach and mentor cross	vision
	Typically part time on projects	functional team	Establish plan and
		members	create infrastructure
		Full time project leader	Develop metrics
		Convert gain into \$	Convert gain into \$
Training	Two to three days sessions with	Four weeks sessions	One week champion
	one month in between to apply	with three weeks in	training
	project review in second session	between to apply	Six Sigma
		project review in	development and
		sessions two, three and	implementation plan
		four	
Number	One per 20 employees	One per 50 to 100	One per business unit
		employees	

Table 3.11: role, profile and training in the Six Sigma belt system. Source: (Coronado and Antony, 2002: 96)

Table 3.11 illustrates the role, profile and training required for people in the Six Sigma belt system.

3.11.1 Champions

Champions are individuals who occupy strategic position in an organisation, have a full understanding of Six Sigma deployment, and are fully committed to its success (Pyzdek, 2000: online). Anbari and Kwak (2004:6), maintain the following: "Champions create the vision, approve Six Sigma project charters, review project progress, and ensure the success of Six Sigma projects in their business unit".

3.11.2 Black Belts

The term Black Belt was first introduced by the Motorola Corporation to describe trained employees with extensive experience in applying statistics in business process improvement (Ingle & Roe, 2001: 275 citing Chase, 1999).

A BB candidate selection focused on the technical aspect of individuals who are highly rated in their area of expertise as well as by others colleagues (Pyzdek, 2000: online; Coronado & Antony, 2002: 96). Their training lasts four to six weeks and focuses mainly on statistical methods and Six Sigma methodology to enable them to complete four to six projects per year on a full time basis (Anbari & Kwak, 2004:5). The number of active BB in an organisation will typically be one to every fifty to hundred employees (Pyzdek, 2000: online, Coronado & Antony, 2002: 96).

3.11.3 Master Black Belts

A Master Black Belt is an experienced BB who provides technical support to BB, GB, and YB including other project team members (Anbari & Kwak, 2004:5). Ingle and Roe (2001:278), define an example of a MBB at Motorola as a person having BB experience for at least five years, as well as having successfully mentored a minimum of five BB candidates. MBB are fully skilled quality leaders having the responsibility of Six Sigma strategic deployment, training, mentoring and results (Henderson & Evens, 2000:270). According to Pyzdek (2000: online) a company of a thousand employees should have a MBB. However, Colorado and Antony (2002: 96), propose that a business group or a big manufacturing site should have one MBB.

3.11.4 Yellow Belts

Yellow Belts in Six Sigma terms represent individuals with a technical background who receive two to three weeks training on Six Sigma methodology;

after which they work on Six Sigma projects on a temporary basis (Anbari & Kwak, 2004:5). Pyzdek (2000: online) and Coronado & Antony (2002: 96), assert that a proportion of twenty employees should have one YB.

3.11.5 Green Belts

A Green Belt is a specialised person leading a Six Sigma team member, capable of forming and facilitating a Six Sigma team and managing Six Sigma projects from start to finish (Pyzdek. 2000: online).

3.12 KEY ELEMENTS FOR SIX SIGMA IMPLEMENTATION

Companies embarking on Six Sigma implementation programmes have shown contrasting results due to the complexity of this methodology and therefore, attention must be drawn to the key elements of Six Sigma to make it possible (Coronado & Antony, 2002:92-93). Coronado and Antony(2002:93 citing Rockart, 1979) state that: "Critical success factors are those factors which are critical to the success of any organization in the sense that, if objectives associated with the factors are not achieved, the organization will fail – perhaps catastrophically". Therefore, the importance given to key input variables for the success factors for an effective completion of a Six Sigma programme (Antony & Banuelas, 2002:21). The research of Antony and Banuelas (2002:21-23), Coronado and Antony (2002:93-98), Pyzdek (2000: online), Antony (2006:242-243), and Henderson and Evans (2000:269-277), identified the following key elements for the successful introduction and implementation of Six Sigma programme in an organisation:

- Management involvement and commitment.
- Culture change.
- Communication.
- Organization infrastructure.
- ➤ Training.
- Project management skill.
- Project prioritisation and selection, reviews and tracking.

- Understanding the Six Sigma methodology, tools and techniques.
- Linking Six Sigma to business strategy.
- Linking Six Sigma to human resource.
- Linking Six Sigma to customer.
- Linking Six Sigma to supplier.

3.12.1 Management involvement and commitment

Henderson and Evans (2000:269), noted that those who implemented Six Sigma have all agreed that a top management involvement is the most critical factor for a Six Sigma programme. Kwak and Anbari (2006: 712), propose that a Six Sigma implementation requires top management involvement, dedication, project selection and review, resource provision and training. Furthermore, the research of Antony and Banuelas (2002:21) and Pyzdek (2000: online), suggests that senior management should be taught Six Sigma principles needed for the preparation of their organisation on the brink of adopting this concept.

At GE, the Six Sigma initiatives were endorsed by Jack Welch (a former CEO) who restructured the business setting to that of Six Sigma entity, by personally spending time in every Six Sigma training, completing a weekly and monthly Six Sigma review, making factory visits, and monitoring Six Sigma project progress (Henderson & Evans, 2000:269-270). Moreover, Antony and Banuelas (2002:21), found that a lack of top management support and commitment toward the Six Sigma implementation will simply jeopardise the time, energy, resources and enthusiasm behind this concept.

3.12.2 Culture change

Coronado and Antony (2002:93), contend that as a breakthrough management strategy, Six Sigma involves changing an organisations' traditional culture to enable its welcoming. A successful introduction of Six Sigma implementation requires a total organisation culture shift, where a transfer of the responsibility regarding product process quality is given to employees (Antony and Banuelas, 2002:21).

The research of Kwak and Anbari (2006:713), assert that factors such as: communication channel, overcoming resistance to chance, and education of senior management, employees, and customers on Six Sigma benefits are required for the cultural change of individuals reluctant to the Six Sigma implementation programme. "Six Sigma initiatives require the right mind set and attitude of people working within the organisation at all levels. The people within the organisation must be made known and be aware of the need to change. Companies that have been successful in managing change have identified that the best way to tackle resistance to change is through increased sustained communication, motivation and education" (Antony & Banuelas, 2002:22).

3.12.3 Communication

Henderson and Evens (2000:277), propose that the cultural change that requires Six Sigma introduction and its implementation brings two fundamentals fears: fear of change and fear of not keeping up with the new standard. A good communication plan addressing Six Sigma methodology, the benefits of it and how it is related to people's work is an important way to reduce or drive out reluctance to change (Banuelas & Antony, 2002: 94).

Banuelas and Antony (2002: 94) citing Air Academy Associates (1998), state the following: "When Six Sigma was launched in Sony Electronics, as a part of the communication plan, slogans such as 'show me the data' were frequently seen on internal magazines and pins worn by employees. The idea was to communicate a new management style based on facts and data as Six Sigma claims". Communicating or publishing the success and Six Sigma setbacks project implementation will help a business project team to identify best practices and avoid mistakes during future projects (Antony & Banuelas, 2002:22; Coronado & Antony, 2002 94; Kwak & Anbari, 2006:712-713).

3.12.4 Organizational infrastructure

The main reason why only 10% of TQM implementation succeeded, was the lack of tangible infrastructure to support its introduction. On the other hand, Six Sigma

provides an adequate organisational structure with a clear role and responsibility to ensure success when implementing this approach. Refer to 3.9 for a detailed analysis regarding the Six Sigma organizational infrastructure.

3.12.5 Training

According to Coronado and Antony (2002:94), one can become more knowledgeable by learning that is one of the critical factors to ensure the success of Six Sigma Implementation. Pyzdek (2000: online), proposes that basis skills should be provided to all employees to ensure that relevant literacy and numeracy skills are processed by everyone. Literacy and numeracy skills will allow employees to grasp the fundamental principle behind the tools and techniques of Six Sigma during training sessions (Kwak & Anbari, 2006:713).

There is usually a hierarchy of experts denoted by the belt systems (refer to 3.9) who receive special training on Six Sigma principles and thereafter spread this within an organisation to ensure that everyone speaks the same language during projects selection, execution, completion and implementation (Antony & Banuelas, 2002:22).

3.12.6 Project management skills

Due to the fact that most of the Six Sigma projects failed as a result of a poor project management knowledge and a lack of meeting roles and responsibilities, it would be wise for a project team to possess project management skills that will allow them to meet the milestones of different project phases (Antony & Banuelas, 2002:22).

3.12.7 Project prioritisation and selection, reviews and tracking

The selection of the Six Sigma project has to be a well thought of and careful process because a wrong selecting approach will delay results and increase time, money and frustration (Antony, 2006:243; Antony & Banuelas, 2002:22). For an effective completion of a Six Sigma project, champions, BB, GB, and project

managers have to look at some critical elements of project management such as: Time, Cost, and Quality because these elements will help them to identify the project scope, objectives, and resources needed to accomplish a project at a very competitive cost, in order to meet specific business objectives (Banuelas & Antony, 2002:98). The research of Antony (2006:243), provides some useful criteria that should be looked at when selecting a Six Sigma project. These criteria are listed below:

- > Top management must support, select and approve projects.
- Linking projects to strategic business goals.
- Select projects that can be achieved within a six months time frame.
- > The project objectives must be clear, achievable, and measurable.
- Project selection should be linked to business benefits, feasibility criteria, and organisational impact.
- Select projects based on realistic and good metrics (DPMO, sigma level).
- Select a project that will impact on a process, customer or business.

A project review system is another means to assess the status of the Six Sigma project in order to ensure its completion and closure (Kwak and Anbari, 2006:712). The project review phase enables the Six Sigma catalysts to ensure the following:

- > The Six Sigma methodology is followed effectively by BB and GB and YB.
- Champions identified BB and GB setbacks for project progress (Antony & Banuelas, 2002:23).

Moreover, a tracking mechanism of projects and documentation should be put in place to ensure that all completed, accepted and implemented projects can be tracked for further references in terms of projects constrains and best practices (Antony & Banuelas, 2002:23; Kwak & Anbari, 2006:712).

3.12.8 Understanding the Six Sigma methodology, tools and techniques

According to Antony and Banuelas (2002:23), most of the Six Sigma training involves the rationale behind the DMAIC methodology, the tools and techniques

for process improvement. Refer to 3.7 and 3.8 for a detailed analysis regarding these critical success factors of Six Sigma implementation.

3.12.9 Linking Six Sigma to business strategy

The overall goal of every business organisation is to make profit and this can be achieved by substantial cost saving generated from the reduction of process variation which implies 3.4 DPMO. This means fewer customer complaints, lower quality and production costs, and finally higher income (Coronado & Antony, 2002: 95-96). This is what Six Sigma is striving to achieve (Ingle & Roe, 2002:274).

Six Sigma cannot be treated as another isolated activity; therefore the link between Six Sigma project and business has to be obvious so that the result illustrates a fully integrated philosophy into a business culture rather than just a limited usage of few tools and techniques (Antony & Banuelas, 2002:23 cited by Dale, 2002). This has to be demonstrated in monetary terms and how it can be used to strengthen the business strategy (Coronado & Antony 2002:96).

3.12.10 Linking Six Sigma to the customer

Customer satisfaction is an ultimate goal for business survival, and Six Sigma is revolves around the concept of critical to quality characteristics (most important attributes to customer) (Servicebazaar, 2005: online). Critical to Customer characteristics can be quantified by the means of a tool called QDF, which translates the needs and customer requirements into engineering language that lead to customer satisfaction (Antony & Banuelas, 2002:43). Antony and Banuelas 2002:23), put forward that one of the key elements for Six Sigma project success is the ability to link this to customer needs. Therefore, all projects should begin with the determination of customer requirements which everyone in the value chain should strive to achieve (Antony & Banuelas, 2002:23 citing Harry and Schroeder, 2000).

3.12.11 Linking Six Sigma to Human Resources

A human resource based action is needed to be put in place in order to promote desired actions and results, thereby ensuring the long term requirement of 3.4 DPMO of Six Sigma goal (Henderson & Evens, 2000:275). The study of Antony and Banuelas (2002:23) citing Harry and Schroeder (2000), states that 61% of top Six Sigma companies have linked reward schemes to business strategy while underperforming organisation did not emphasise this linkage too much.

Henderson and Evens (2000:276), state the following: "Any employee at GE Appliances who wants to be considered for promotion must be Six Sigma green belt – trained. This also includes senior executives (Hendricks and Kelbaugh, 1998). In fact, across all GE businesses, no one will be promoted without the full Six Sigma training and a completed project. This in itself is an impressive behaviour driver".

Adding a specific Six Sigma section to the annual performance evaluation form and awarding executive compensation based on Six Sigma goals attainment are two other reasons for linking Six Sigma to human resources (Henderson & Evans, 2002:276-277).

3.12.12 Linking Six Sigma to suppliers

Most business organisations using Six Sigma cannot operate without outsourcing some raw materials or services that will be used in the processing of products or services. With regard to this, extending Six Sigma to suppliers becomes a necessity to ensure that variability will be reduced, in order to fulfil the needs of customer requirements (Coronado & Antony, 2002:97). To achieve this, Six Sigma companies must ensure the following:

- Supplier must actively participate in the dynamic of culture change that comes with Six Sigma, by getting upfront support from their leadership (Antony & Banuelas, 2002:23).
- ➤ A criteria selection of suppliers based on an acceptable Six Sigma performance capability level will make certain that only those with a Six

Sigma culture can be part of the value chain, and for that reason deliver raw materials (Coronado & Antony, 2002:97 cited by Pande *et al*, 2000); (Antony & Banuelas, 2002:23).

Given the interdependence between an organisation and its suppliers, a solid mutually beneficial relationship will enhance the ability of both to create value that will lead to a bottom line of customer satisfaction.

3.13 CONCLUSION

This chapter discloses a theory gathered from various literatures sources in connection to the research problem. The Six Sigma origin, definition, benefits and differences with other quality initiative were uncovered. Top management involvement and commitment, culture change, communication, organisation infrastructure, training, project management skill, project prioritisation and selection, reviews and tracking, understanding the Six Sigma methodology, tools and techniques, linking Six Sigma to business strategy, linking Six Sigma to human resource and linking Six Sigma to supplier were identified as the critical success factors for implementing a Six Sigma programme within an organisation.

Having an appropriate theory on Six Sigma definition and implementation requirements simply allows the student researcher to look forward to the next chapter, which will tackle the research survey, design and methodology.

CHAPTER 4: RESEARCH DESIGN AND METHODOLOGY

4.1 INTRODUCTION

The previous chapter reviewed the literature pertaining to the key elements for the successful implementation of the Six Sigma approach. The current chapter focuses on the limitation of the survey, and the research design and methodology which outlines the process used to obtained the data. This chapter also looks at the research design, the population, the sampling type, the data collection instrument, and finally, ethical considerations pertaining to this study.

4.2 THE SURVEY ENVIRONMENT

To achieve operational and service excellence, SA organisations embarked on numerous quality improvement programmes such as: Total Quality Management, ISO 9001:2008, Quality Circle, Just in Time, the SA excellence model and the Six Sigma. The main areas of activities prevailing in SA can be classified into manufacturing or service organisations. However the specific industry sectors in which SA organisations perform are:

- ➢ Aerospace.
- ➢ Consultation.
- ➤ Finance.
- Petroleum.
- > Automotive.
- ➤ Education.
- ➢ Food services.
- ➤ Utilities.
- ➤ Chemical.
- \succ Electronics.
- Government.
- > Transportation.
- Computer / Software.
- Consumer goods.

- ➤ Hospitality.
- Telecommunications.

The research was limited to the Western Cape organisations using Six Sigma quality management. Furthermore, the questionnaires were directed to personnel with knowledge of Six Sigma.

4.3 AIM OF THIS CHAPTER

The aim of this chapter and the survey contained therein is to determine the key factors associated with the implementation of Six Sigma in SA business organisations; the critical objective being to solve the research problem as defined in Chapter 1, Paragraph 1.3, which reads as follows:

"South African enterprises who implement Six Sigma, do not consider critical implementation issues associated with the concept, resulting in either an inefficient implementation or a product that does not deliver on expectations".

4.4 THE TARGET POPULATION

According to Watkins (2008:54), a population can be defined as the total number of people that represent the main subject of research interest. The target population for this research was selected from organisations that implemented Six Sigma within the Western Cape Province. These organisations were identified from various sources:

- ➤ The Six Sigma South Africa website (<u>www.sixsigmasouthafrica.co.za</u>).
- > A personal investigation across the Cape Town organisations.
- Previous reports with regard to Six Sigma available at the Cape Peninsula University of Technology.

The questionnaires were distributed physically and by means of email by the student researcher.

4.5 THE CHOICE OF SAMPLING METHOD

A sample is a portion of a population under consideration for the purpose of the research (Collis and Hussey, 2003:155-160). According to Burns and Grove (1997:365), the selected sample should have similar characteristics to the population under study, to make possible the derivation of the results that will represent the population. For the purpose of this study, random sampling was used. This is when all members of a population have equal chance of being selected (Watkins, 2008:54). In this study, 30 respondents were selected by unsystematic or random distribution of questionnaires.

4.6 DATA COLLECTION

Data collection is a means by which a researcher collects reliable information in order to meet the research objectives. For this research study, a questionnaire served as a data collection method. A questionnaire is a technique designed to obtain reliable responses by providing to respondents a list of carefully structured questions chosen after considerable testing. Questionnaires form part of the wider definition of 'survey research'. A 'survey' is defined by Remenyi *et al.* (2002:290), as: "...the collection of a large quantity of evidence usually numeric, or evidence that will be converted to numbers, normally by means of a questionnaire."

Two approaches can be referred to in order to structure questions:

- 'closed ended questions'
- ➢ 'opened ended' questions.

'Closed ended questions' were used in the questionnaire because this technique implies a quantitative research approach and allows respondents to quickly rate a list of well structured questions with predetermined answers.

The data was collected over a period of two months. The questionnaires were sent to Six Sigma organisations and personnel (having knowledge of Six Sigma) across the Western Cape Province. A total of 22 respondents confidently replied.

4.7 MEASUREMENT SCALES

The survey used in the research was based on the well-known Likert scale, where respondents were asked to respond to a question or statement. When using the Likert scale, respondents are asked to respond to each of the statements by choosing one of the five agreement choices listed below:

- Strongly Agree.
- ➤ Agree.
- ➢ Undecided.
- ➢ Disagree.
- Strongly Disagree.

The advantages of using the popular Lickert scale according to Emory and Cooper (1995:180-181) are:

- Easy and quick to construct.
- Each item meets an empirical test for discriminating ability.
- The Lickert scale is probably more reliable than the Thurston scale, and it provides a greater volume of data than the Thurston differential scale.
- The Lickert scale is also treated as an interval scale.

According to Remenyi, Money & Twite (1995:224), interval scales facilitate meaningful statistics when calculating means, standard deviation and Pearson correlation coefficients.

4.8 SURVEY DESIGN

Watkins (2008:140), is of the opinion that the prevailing survey design used in the world of business and management belongs to 'descriptive survey'. Leedy & Ormrod (2001:196), state that: "a survey is simple in design; poses a series of questions to willing participants; summarises their responses with percentages, frequency count, or more sophisticated statistical indexes; and then draws interferences about a particular population from the responses of the sample". The questionnaire of the survey was designed after a critical evaluation of the research title, the research question, the investigative (sub-) questions, and the key research objectives. Moreover, the questionnaire was designed in such away so as to enable the student researcher to mitigate the research problem, to answer to the research question and associated investigative (sub-) questions, and to accomplish the primary research objectives of the research study.

The statements or questions within the survey were designed with the following principles in mind:

- > Avoidance of double-barreled questions or statements.
- Avoidance of double-negative questions or statements.
- Avoidance of prestige bias.
- Avoidance of leading questions or statements.
- Avoidance of the assumption of prior knowledge.

4.9 THE VALIDATION SURVEY QUESTIONS

The author has developed a survey questionnaire reflecting the research problem to be uncovered. Polit and Hungler (1999:445), suggest that validity of an instrument refers to the point that a tool measures what it is projected to quantify. In order to achieve content validity during the survey, the questions or statement questions were derived from a literature review which underpinned the area under investigation. The questionnaire was also reviewed and approved by the promoter.

4.10 RESPONDENT BRIEFING

Prior to the collection of data, the author clearly explained the purpose of the study to each respondent. Each participant was given the choice to participate or not. The nature and quality of the participants' performance was guaranteed to be kept confidential. Finally, participants were toll that data could not be fabricated to support a particular conclusion; therefore their honest contribution was critical to ensure that their assistance became useful data.

4.11 SURVEY QUESTIONS

The questionnaire was directed to personnel in the Western Cape who had knowledge of Six Sigma. The questionnaire consisted of two sections. The first section looked at the respondent and organisational demographics and included the following:

- > The sector of activities.
- > The total number of employees.
- ➤ When they started using Six sigma.
- > The job title and employment interval of the respondent.

The second section consisted of a list of questions and statements with regard to Six Sigma practices within the respondent's organisation as listed below:

The reasons for	To what extent do you agree with each of the
implementing Siv	statements below?
implementing Six	
Sigma.	To reduce cost.
	 To improve customer satisfaction. To improve product /Service quality.
	 To improve product / scivice quarky. To improve company reputation and much more.
The Key personnel	To what extent do you agree with each of the
driving Six Sigma.	statements below?
	 Our organization has appointed a Six Sigma Champion. Our organization uses a Black belt on full time basis. We also involve a process leader and employees during Six Sigma projects.
The Six Sigma	To what extent do you agree with each of the
methodology	statements below?
	We always use the DMAIC methodology during process improvement project.
	We consider the DFSS methodology when redesigning a project.
Mechanism in place to	To what extent do you agree with each of the
ensure Six Sigma	statements below?
Success.	> A communication channel has been put in place to ensure
	a general awareness of Six Sigma principles.
	All the people involved in Six Sigma project have received adequate training.
	 Six Sigma has been linked to all the Stakeholders.
	 A reward scheme has been linked to everyone involved to
	Six Sigma project.

Table 4.1: Research Questionnaire. (Source: Own source).

Top management	To what extent do you agree with each of the
	statements below?
commitment to Six	
Sigma.	 Employees are encouraged to participate when implementing Six Sigma. The leadership is committed and dedicated on project selection and review as well as on provision of resources. Leadership does not support activities and investment that have long-term benefits. Senior executives accommodate and encourage change.
Key elements for Six	To what extent do you agree with each of the
Sigma	statements below?
implementation.	 Top management involvement and commitment. Culture Change. Communication. Organization infrastructure. Training.
	 Project management skill. Project selection and prioritization, review and tracking. Linking Six Sigma to suppliers. Linking Six Sigma to business strategy. Linking Six Sigma to customer. Linking Six Sigma to Human resource. Understanding of Six Sigma methodology, Tools and Techniques.
The Six Sigma tools	To what extent do you agree with each of the
C	statements below?
and techniques.	
	 We are using Six Sigma tools and techniques in a well disciplined manner at each stage of the DMAIC We are using the basic quality control tools of Six Sigma. We often rely on quality techniques to solve problems
The most used tools	To what extent do you agree with each of the
	statements below?
and techniques of Six	
Sigma in your	 Cause and effect diagram
organisations.	 Check sheet Control chart Graphs Histogram Pareto diagram Scatter diagram Brainstorming Flow chart Hypothesis testing Process mapping Questionnaires Sampling Gant chart SERVQUAL Regression and correlation analysis Project team charter Benchmarking

 Design of experiment Failure mode and effects analysis (FMAEA)
 Fault ended and effects analysis (FMAEA) Fault tree analysis Process capability analysis Poka joke Problem solving methodology Kano model Quality function deployment (QFD)
 Statistical process control Quality improvement team SIPOC Quality costing

4.12 CONCLUSION

In this chapter, the limitation of the survey was elaborated on. The target population was defined, and the type of sampling was discussed. An overview of the survey design was provided as well as the reasons for using the Lickert scale. This chapter was completed with an in-depth illustration of the respondent briefing and a list of questions posed in the survey.

In Chapter 5, results from the survey will be analysed in detail and interpreted.

CHAPTER 5: DATA ANALYSIS AND INTERPRETATION OF RESULTS

5.1 INTRODUCTION

Data analysis is "the process of bringing order, structure and meaning to the mass of collected data" (De Vos, 2002:339). This chapter discusses the statistical analysis of the questionnaire compiled by L. Nguenang for the purpose of obtaining the qualification Magister Technologiae: Quality in the Faculty of Engineering at the Cape Peninsula University of Technology. The aim of this study is to determine whether a single alternate process can be developed for the implementation of Six Sigma to ensure successful implementation thereof in South African enterprises. In this chapter the data obtained from the completed questionnaires will be presented and analysed.

In most social research the analysis entails three major steps done in the following order:

- Cleaning and organising the information that was collected which is called the data preparation step;
- > Describing the information that was collected (Descriptive Statistics); and
- Testing the assumptions made through hypothesis and modeling (Inferential Statistics).

The responses to the questionnaire developed by the researcher for the purpose of obtaining information regarding the benefits of the implementation of the Six Sigma quality management system in SA enterprises; the tools and techniques necessary for the sustainability of Six Sigma in SA industries; and the factors that can influence Six Sigma implementation in the context of the SA business environment have been analysed using SAS software.

5.2 METHOD OF ANALYSIS

5.2.1 Validation of the survey results

A descriptive analysis of the survey results returned by the research questionnaire

respondents, are reflected below. The responses to the questions obtained through the questionnaires are indicated in table format for easy reference. Data validation is the process of ensuring that a programme operates on clean, correct and useful data. The construct validation however can only be taken to the point where the questionnaire measures what it is suppose to measure. Construct validation should be addressed in the planning phases of the survey and when the questionnaire is developed. These questionnaires are supposed to measure the potential benefits of implementing Six Sigma in SA enterprises, the key driving factors for the sustainability of Six Sigma in SA enterprises, the tools and techniques of Six Sigma prevailing in SA enterprises and the extent to which Six Sigma methodology is used in SA enterprises.

5.2.2 Data format

The data, which was received in questionnaires format, was coded and captured on a database that was developed on Microsoft Access for this purpose. These questionnaires are captured twice and then the two datasets are compared to make sure that the information captured was done correctly. When the database was developed, rules are used with respect to the questionnaire that set boundaries for the different variables (questions). For instance the Likert scale is used as follows:

- Strongly disagree is coded as 1
- Disagree is coded as 2
- Undecided is coded as 3
- Agree is coded as 4
- Strongly agree is coded as 5.

A boundary is set on Microsoft Access as less than 6. This means if the number 6 or a number more than 6 is captured, an error will show until a number less than 6 is captured. It was then imported into SAS-format through the SAS ACCESS module. This information which was double checked for correctness is then analysed by the custodian of this document.

5.2.3 Preliminary analysis

The reliability of the statements in the questionnaire, posed to small businesses enterprises in Western Cape, South Africa, is measured using the Cronbach Alpha tests (see Paragraph 5.3.1). An uni-variate descriptive analysis was performed on all the original variables, displaying frequencies, percentages, cumulative frequencies, cumulative percentages, means, standard deviations, range, median, mode, etc. These descriptive statistics are discussed in Paragraphs 5.3.2 and 5.3.3. (See also computer printouts in Appendix B & C).

5.2.4 Interferential statistics

Inferential statistics used are:

- Cronbach Alpha test. Cronbach's Alpha is an index of reliability associated with the variation accounted for by the true score of the "underlying construct". Construct is the hypothetical variables that are being measured (Cooper & Schindler, 2001:216-217). Another way to put it would be that Cronbach's Alpha measures how well a set of items (or variables) measures a single uni-dimensional latent construct. When data has a multidimensional structure, Cronbach's Alpha will usually be low.
- Chi-square tests for nominal data. The Chi-square (two-sample) tests are probably the most widely used nonparametric test of significance that is useful for tests involving nominal data, but it can be used for higher scales as well like cases where persons, events or objects are grouped in two or more nominal categories such as 'yes-no' or cases A, B, C or D. The technique is used to test for significant differences between the observed distribution of data among categories and the expected distribution based on the null hypothesis. It has to be calculated with actual counts rather than percentages (Cooper & Schindler, 2001:499).
- The SAS software computes a P-value (probability value) that measures statistical significance when comparing variables with each other, determining relationship between variables or determining association between variables. Results will be regarded as significant if the p-values are smaller than 0.05, because this value presents an acceptable level on a

95% confidence interval ($p \le 0.05$). The p-value is the probability of observing a sample value as extreme as, or more extreme than, the value actually observed, given that the null hypothesis is true. This area represents the probability of a Type 1 error that must be assumed if the null hypothesis is rejected (Cooper & Schindler, 2001:509).

- ➤ The p-value is compared to the significance level (α) and on this basis, the null hypothesis is either rejected or not rejected. If the p value is less than the significance level, the null hypothesis is rejected (if p value <α, reject null). If the p value is greater than or equal to the significance level, the null hypothesis is not rejected (if p value ≥α, do not reject null). Thus with α=0.05, if the p value is less than 0.05, the null hypothesis will be rejected. The p value is determined by using the standard normal distribution. The small p value represents the risk of rejecting the null hypothesis.</p>
- A difference has statistical significance if there is good reason to believe the difference does not represent random sampling fluctuations only. Results will be regarded as significant if the p-values are smaller than 0.05, because this value is used as a cut-off point in most behavioural science research.

5.2.5 Assistance to researcher

The conclusions made by the researcher were validated by the statistical report. Help was given to interpret the outcome of the data. The final report written by the researcher was validated and checked by the statistician to exclude any misleading interpretations. All inferential statistics are discussed in Paragraph 5.3.4.

5.2.6 Sample

The target population is employees of industries which uses Six Sigma quality management system in the Western Cape, South Africa. A sample was drawn from the target population and the sample realisation was randomly selected. Twenty two employees from various Six Sigma organisations in the Western Cape effectively responded.

5.3 ANALYSIS

In total, 22 respondents from various Six Sigma organisations in the Western Cape completed the questionnaire. Descriptive statistics will be given for each variable and only the respondents who completed the entire questionnaire, will be used in the inferential statistics.

5.3.1 Reliability testing

Reliability tests (Cronbach's Alpha Coefficient) are done on the questions/statements (which is the measuring instrument in this case) posed to industries. The Cronbach's Alpha Coefficients for each item are more than 0.70 (the acceptable level according to Nunnally, 1978: 245), and thus these items (statements) in the questionnaire, prove to be reliable and consistent for all the items in the scale.

The results of the Cronbach Alpha tests for the raw variables are shown in Annexure E (Table 5.1), and Annexure A. It shows the correlation between the respective item and the total sum score (without the respective item) and the internal consistency of the scale (coefficient alpha) if the respective item would be deleted. By deleting the items (statements) one by one each time with the statement with the highest Cronbach Alpha value, the Alpha value will increase. In the right-most column of Table 5.1 (Annexure E), it can be seen that the reliability of the scale would be higher if any of these statements is deleted.

For instance, if statement B34 is deleted from this measuring scale then the Cronbach Alpha Coefficient will increase to 0.9563. This however is not needed as the alpha for each item is greater than 0.70.

Due to the voluminous nature of Table 5.1, for ease of reference, it will be contained within the ambit of Annexure E.

5.3.2 Descriptive statistics

Due to the voluminous nature of Tables 5.2 and 5.3, for ease of reference, they will be contained within the ambit of Annexure F.

Table 5.2 (Annexure F) shows the descriptive statistics for all the categorical demographic variables as well as the variables measuring the quality of small businesses with the frequencies in each category and the percentage out of total number of questionnaires. Take note that the descriptive statistics are based on the total sample and are shown in Annexure B & C.

Table 5.3 (Annexure G) shows the descriptive statistics for all the categorical demographic variables in terms of the mean, median, standard deviation and range. Take note that the descriptive statistics are based on the total sample. These descriptive statistics are also shown in Annexure D.

5.3.3 Uni-variate graphs

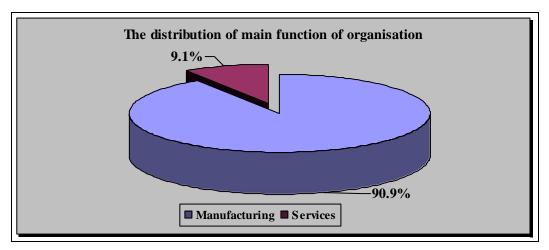


Figure 5. 1: Main function of organisation

The main function of the organisations that took part in this survey, is mostly manufacturing (90.9%).

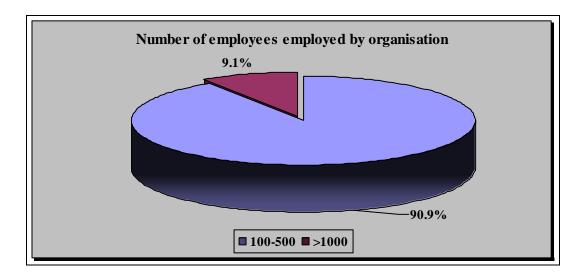


Figure 5. 2: Number of employees employed

Most of the organisations have 100-500 (90.9%) employees.

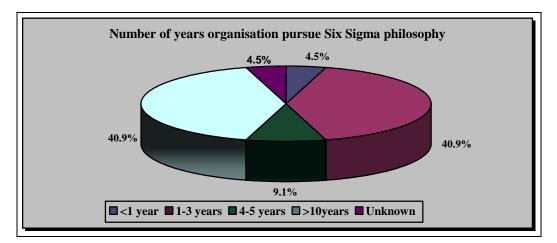


Figure 5. 3: Number of years organisation pursue Six Sigma philosophy

Just over 40 % of the respondents pursue Six Sigma Philosophy for more than 10 years and just 40% pursue Six Sigma Philosophy for one to three years. Nearly 10 % pursue the Six Sigma philosophy for four to five years.

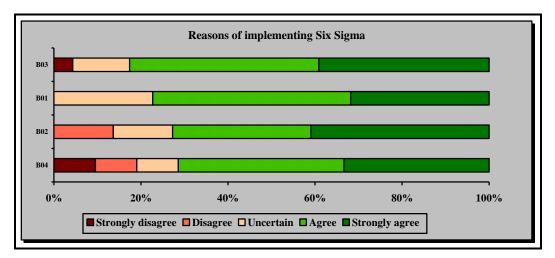
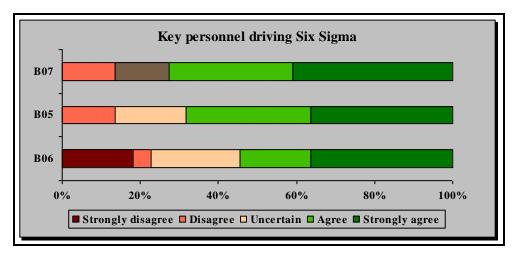



Figure 5.4: Reasons of implementing Six Sigma

The respondents' statements are sorted according to mostly agree to least agree with statement. The respondents agreed mostly with all the statements regarding the reasons for implementing Six Sigma in the organisation, but the following two statements they agreed with the most:

To improve product/service quality (86.4% agree to strongly agree)

To reduce cost (77.3% agree to strongly agree)

Figure 5.5: Key personnel driving Six Sigma

Most of the organisations (72.7% agree to strongly agree) involve a process leader and employees during Six Sigma projects.

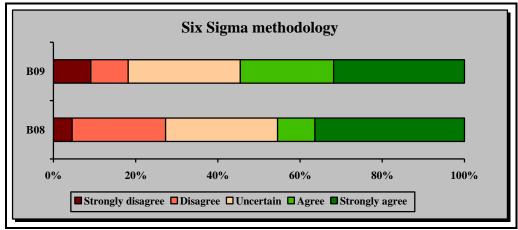


Figure 5.6: Six Sigma methodologies

The DFSS methodology, when redesigning a project is used in nearly 55% of the organisations and the DMAIC methodology is always used during process improvement of a project in 45% of the organisations. When a cross reference was made with regards to the two methodology statements (B08 and B09), it seems that 31.8% of the industries uses both methodologies, 13.6% uses none of these methodologies, 13,6% was undecided and the rest use either one or the other when redesigning a project. This cross reference table can also be found in Annexure B.

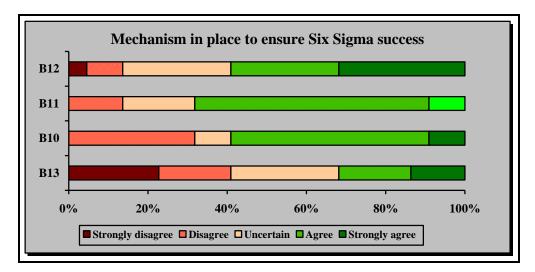


Figure 5.7: Mechanism in place to ensure Six Sigma successes

More of the respondents indicated that all the people involved in the Six Sigma project have received adequate training (68.2% agree to strongly agree) than respondents indicating that Six Sigma has been linked to all stakeholders (59.1%

agree to strongly agree). The total score however for the statement "Six Sigma has been linked to all stakeholders" is higher than the total score for the statement "All the people involved on Six Sigma project have received adequate training." The reason is that more respondents strongly agree with the first statement (31.8% strongly agree) than with the second statement (9.1% strongly agree).

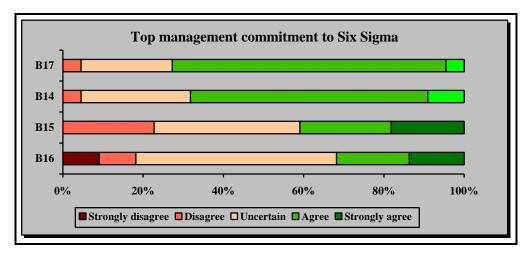


Figure 5.8: Top management commitment to Six Sigma

More respondents agreed with the following statements:

- Senior executives accommodate and encourage change (72.7% agree to strongly agree).
- Employees are encouraged to participate when implementing Six Sigma (68.2% agree to strongly agree).

Take note that a large percentage of the respondents (22% to 50%) were undecided with regard to the top management's commitment to Six Sigma.

The respondents agreed the least with the statement "Leadership does not support activities and investment that have long-term benefits."

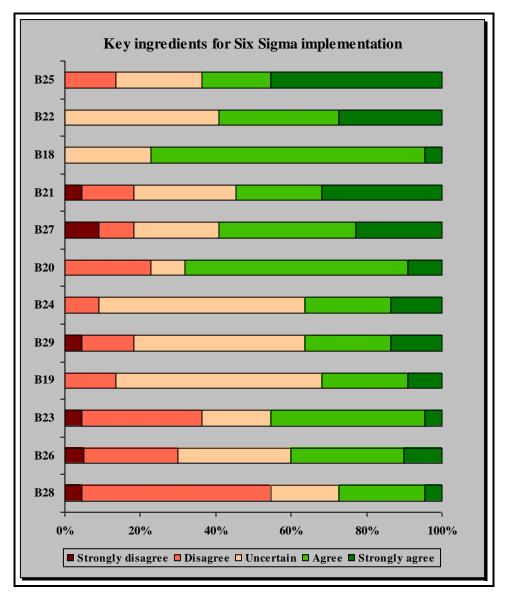


Figure 5.9: Key ingredients for Six Sigma implementation

The statements that the respondents scored the highest or agreed more with, regarding the key ingredients for Six Sigma implementation are:

- Understanding of Six Sigma methodology, tools and techniques (63.6% agree to strongly agree).
- Training (59.1% agree to strongly agree).
- Top management involvement and commitment (77.3% agree to strongly agree).
- > Organisation infrastructure (54.6% agree to strongly agree).
- Linking Six Sigma to customer (59.1% agree to strongly agree).
- Communication (68.2% agree to strongly agree).

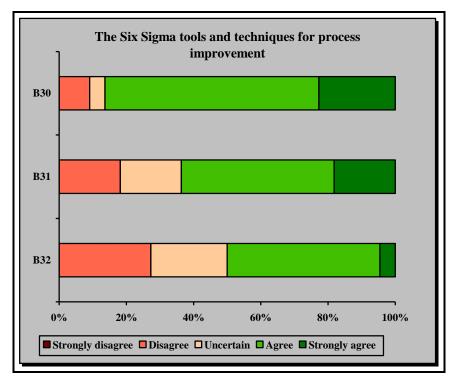


Figure 5.10: The Six Sigma tools and techniques for process improvement

The statement regarding tools and techniques for process improvement that was mostly agreed to by the respondents are "We are using the basic quality control tools of Six Sigma" (86.4% agreed to strongly agree).

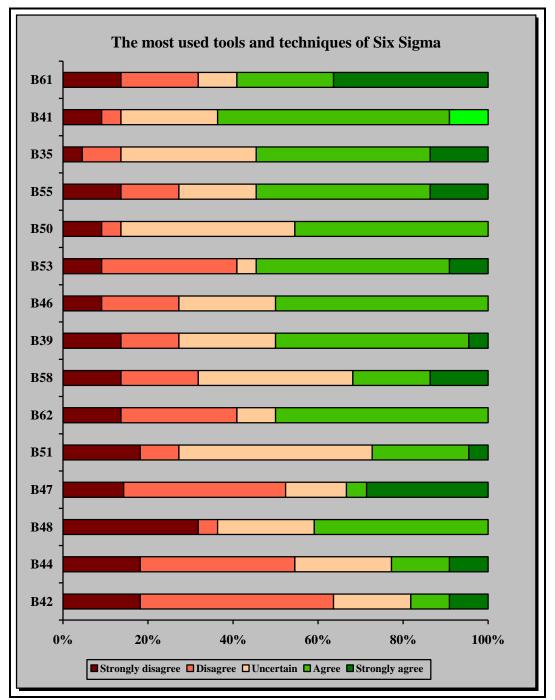


Figure 5.11: The most used tools and techniques of Six Sigma

Figure 5.11 shows the statements with regard to the most used tools or techniques of Six Sigma that the respondents least agreed with and Figure 5.12 shows the statement with which the respondents most agreed with.

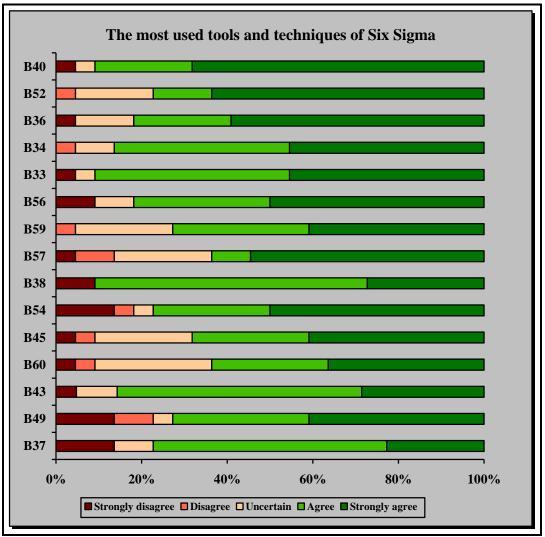


Figure 5.12: The most used tools and techniques of Six Sigma

The statements with regard to the most used tools or techniques that the respondents most agreed with are as follows:

- Brainstorming (90.9% agreed to strongly agree)
- ➤ Failure mode and effects analysis (77.3% agree to strongly agree).
- ➤ Graphs (71.8% agree to strongly agree).
- Check sheet (86.4% agree to strongly agree).
- Cause and effect diagram (90.9% agree to strongly agree).
- Problem solving methodology (81.8% agree to strongly agree).
- Statistical process control (72.7% agree to strongly agree).
- Quality costing (63.6% agree to strongly agree).
- Pareto diagram (90.9% agree to strongly agree).
- Process capability analysis (77.3% agree to strongly agree).
- Sampling (68.2% agree to strongly agree).

- Quality improvement team (63.6% agree to strongly agree).
- Process mapping (81.8% agree to strongly agree).
- Project team charter (82.7% agree to strongly agree)
- ➤ Histogram (76.3% agree to strongly agree).

5.3.4 Inferential statistics

The Pearson chi-square test was used to determine whether there were statistically significant differences in the proportion of respondents that agree with the proportion of respondents that disagreed with the statements. Due to the voluminous nature of Table 5.4, for ease of reference, will be contained within the ambit of Annexure H. Table 5.4 shows where statistically significant differences of proportions occurred.

Annexure B will show all the chi-square tests. Due to the fact that and expected frequency of 5 is necessary to use the Chi-square test, the groups that are more or less the same are aggregated. For instance "Strongly disagree" and "Disagree" are grouped together to form the category "Disagree". Thus with only 3 categories "Disagree", "Undecided" and "Agree" the expected frequency will be 22/3=7.14 which is more than 5.

The hypothesis being tested is as follows:

- > H_0 = There is no difference between the proportions of responses with regard to the measuring instrument.
- > H_1 = There is a difference between the proportions of responses with regard to the measuring instrument.

For all the mentioned statements in Table 5.4 (Annexure H), the H_0 hypothesis was rejected and it could be concluded that there is a difference between the proportions. Thus for the following statements, there were statistically significant more respondents who agree to strongly agree with the statement than respondents who were either undecided or disagree to strongly disagree:

- Implement Six Sigma to reduce cost (77.3% agree to strongly agree and 22.7% is undecided).
- Implement Six Sigma to improve customer satisfaction (72.7% agree to strongly agree, 13.6% is undecided and 13.6% disagree to strongly disagree).
- Our organisation has appointed a Six Sigma Champion (68.2% agree to strongly agree, 18.2% is undecided and 13.6% disagree to strongly disagree).
- The organisation also involves a process leader and employees during Six Sigma projects (72.7% agree to strongly agree, 13.6% is undecided and 13.6% disagree to strongly disagree).
- A communication channel has been put in place to ensure a general awareness of Six Sigma principles (59.1% agree to strongly agree, 9.1% is undecided).
- All the people involved in the Six Sigma project have received adequate training (68.2% agree to strongly agree, 13.6% disagree to strongly disagree).
- Six Sigma has been linked to all the stakeholders (59.1% agree to strongly agree, 13.6% disagree to strongly disagree).
- Employees are encouraged to participate when implementing Six Sigma (68.2% agree to strongly agree, 4.6% disagree to strongly disagree).
- Senior executives accommodate and encourage change (72.7% agree to strongly agree, 4.6% disagree to strongly disagree).
- Top management involvement and commitment (77.3% agree to strongly agree, 22.7% is undecided).
- Communication (68.2% agree to strongly agree, 9.1% is undecided).
- Understanding of Six Sigma methodology, tools and techniques (63.6% agree to strongly agree, 13.6% disagree to strongly disagree).
- Linking Six Sigma to customer (59.1% agree to strongly agree, 18.2% disagree to strongly disagree).
- We are using the basic quality control tools of Six Sigma (86.4% agree to strongly agree, 4.6% is undecided and 9.1% disagree to strongly disagree).

- We often rely on quality techniques to solve problems (63.6% agree to strongly agree, 18.2% is undecided and 18.2% disagree to strongly disagree).
- Cause and effect diagram as most used tool/technique (90.9% agree to strongly agree, 4.6% is undecided and 4.6% disagree to strongly disagree).
- Check sheet as most used tool/technique (86.4% agree to strongly agree, 9.1% is undecided and 4.6% disagree to strongly disagree).
- Graphs as most used tool/technique (81.8% agree to strongly agree, 13.6% is undecided and 4.6% disagree to strongly disagree).
- Histogram as most used tool/technique (77.3% agree to strongly agree,
 9.1% is undecided and 13.6% disagree to strongly disagree).
- Pareto diagram as most used tool/technique (90.9% agree to strongly agree, 9.1% disagree to strongly disagree).
- Brainstorming as most used tool/technique (90.9% agree to strongly agree,
 4.6% is undecided and 4.6% disagree to strongly disagree).
- Flow chart as most used tool/technique (63.6% agree to strongly agree and 13.6% disagree to strongly disagree).
- Process mapping as most used tool/technique (81.8% agree to strongly agree, 9.1% is undecided and 9.1% disagree to strongly disagree).
- Sampling as most used tool/technique (68.2% agree to strongly agree and 9.1% disagree to strongly disagree).
- Project team charter as most used tool/technique (72.7% agree to strongly agree and 4.6% is undecided).
- Failure mode and effects analysis (FMAEA) as most used tool/technique (77.3% agree to strongly agree and 4.6% disagree to strongly disagree).
- Process capability analysis as most used tool/technique (77.3% agree to strongly agree and 4.6% undecided).
- Problem solving methodology as most used tool/technique (81.8% agree to strongly agree 9.1 undecided and 9.1% disagree to strongly disagree).
- Quality costing as most used tool/technique (63.6% agree to strongly agree and 13.6% disagree to strongly disagree).
- Statistical process control as most used tool/technique (72.7% agree to strongly agree and 4.6% disagree to strongly disagree).

Quality improvement team as most used tool/technique (63.6% agree to strongly agree and 9.1% disagree to strongly disagree).

Statistically significant more respondents were undecided on project selection and prioritisation, review and tracking as a key ingredient for Sigma Six implementation (25.4% agree to strongly agree 54.6% undecided and 9.1% disagree to strongly disagree).

Statistically significant more respondents disagree to strongly disagree that "Hypothesis testing" is one of the most used tools or techniques of Six Sigma in their organisation (18.2% agree to strongly agree, 18.2% undecided and 63.6% disagree to strongly disagree).

For the following statements, there were statistically significant fewer respondents who were undecided than disagree or agree (the proportion of respondents who disagree was not different (statistically significant) from the proportion of respondents who agree):

- SERVQUAL is the most used tool/technique (31.8% agree to strongly agree 13.6% undecided and 50.0% disagree to strongly disagree).
- Fault tree analysis is the most used tool/technique (54.6% agree to strongly agree 4.6% undecided and 40.9% disagree to strongly disagree).
- SIPOC is the most used tool/technique (59.1% agree to strongly agree 9.1% undecided and 31.8% disagree to strongly disagree).
- Kano model is the most used tool/technique (50.0% agree to strongly agree 9.1% undecided and 40.9% disagree to strongly disagree).

5.4 DISCUSSIONS AND CONCLUSIONS

As for the results obtained through this survey, the following analogies can be drawn from this research:

- The main reasons for implementing Six Sigma is to improve product/service quality and to reduce cost.
- The key personnel driving Six Sigma should involve process leaders and employees during Six Sigma projects.

- The organisations use the DFSS methodology when redesigning a project and the DMAIC methodology during process improvement of a project simultaneously or either the one or the other. There are only a few organisations that do not use any of the two methodologies.
- The mechanisms in place to ensure Six Sigma success is that all the people involved in the Six Sigma project should have received adequate training and Six Sigma should be linked to all stake holders.
- Under the top management commitment to Six Sigma, heading the statements that contribute the most are "Senior executives accommodate and encourage change" and "Employees are encouraged to participate when implementing Six Sigma".
- The key ingredients for Six Sigma implementation are the understanding of Six Sigma methodology; tools and techniques; training; top management involvement and commitment; Organisation infrastructure; linking Six Sigma to customer and communication.
- > The organisations mainly use the basic quality control tools of Six Sigma.

The most used tools and techniques used by the organisations are:

- > Brainstorming.
- ➢ Failure mode and effects analysis.
- ➤ Graphs.
- Check sheet.
- Cause and effect diagram.
- Problem solving methodology.
- Statistical process control.
- > Quality costing.
- > Pareto diagram.
- Process capability analysis.
- > Sampling.
- Quality improvement team.
- ➢ Process mapping.
- Project team charter.
- ➢ Histogram.

To determine the sustainability of small businesses from the questionnaire was problematic due to the plethora of external and internal factors having an impact. As a result, it could not be determined whether the sustainability was influenced by the lack of having a quality strategy in operation.

CHAPTER 6: CONCLUSION AND RECOMMENDATIONS

6.1 INTRODUCTION

This chapter will conclude the study and provide guidelines on how Six Sigma can be effectively implemented within SA organisations. Attention will be redirected to the research problem, and subsequent investigative questions and objectives. A brief overview of the research will be exemplified. This chapter will conclude with a set of recommendations to mitigate the research problem.

6.2 THE RESEARCH THUS FAR

In Chapter One, an introduction and background of the proposed research was provided. The research process was explained, the research problem stated, and the research question, and investigative questions and research objectives formulated. The research design and methodology, which include the data collection design and methodology, was depicted. This chapter concluded with an overview of the chapters and content analysis. In Chapter Two, a holistic perspective of organisations that have implemented Six Sigma in South Africa was provided, as well as a glimpse of quality management in SA. Chapter Three disclosed a theory gathered from various literatures source in connection with the research problem. The Six Sigma origin, definition, benefits and differences with other quality initiatives, were uncovered. Top management involvement and commitment, culture change, communication, organisation infrastructure, training, project management skill, project prioritisation and selection, reviews and tracking, understanding the Six Sigma methodology, tools and techniques, linking Six Sigma to business strategy, linking Six Sigma to human resource and linking Six Sigma to supplier, were identified as the critical success factors for implementing a Six Sigma programme within an organisation. In Chapter Four, the limitation of the survey was elaborated on. The target population was defined, and the type of sampling was discussed. An overview of the survey design was provided as well as the reasons of using the Lickert scale. This chapter was completed with an in depth illustration of the respondent briefing and a list of questions posed in the survey. In Chapter Five, the data gleaned from the survey was analysed and interpreted.

6.3 FINDINGS OR ANALOGIES DRAWN FROM THE DATA ANALYSIS

As for the results obtained through this survey, the following analogies can be drawn from this research:

- The main reasons for implementing Six Sigma is to improve product/service quality and to reduce cost.
- The key personnel driving Six Sigma should involve a process leader and employees during Six Sigma projects.
- The organisations use the DFSS methodology when redesigning a process and the DMAIC methodology during process improvement of a project simultaneously or either the one or the other. There are only a few organisations that do not use any of the two methodologies.
- The mechanisms in place to ensure Six Sigma success is that all the people involved in the Six Sigma project should have received adequate training and Six Sigma should be linked to all stake holders.
- Under the top management commitment to Six Sigma, heading the statements that contribute the most are "Senior executives accommodate and encourage change" and "Employees are encouraged to participate when implementing Six Sigma".
- The key ingredients for Six Sigma implementation are the understanding of Six Sigma methodology, tools and techniques; training; top management involvement and commitment; organisation infrastructure; and linking Six Sigma to customer and communication.
- > The organisations mainly use the basic quality control tools of Six Sigma.

The most used tools and techniques used by the organisations are:

- > Brainstorming.
- Failure mode and effects analysis.
- ➤ Graphs.

- ➤ Check sheet.
- Cause and effect diagram.
- Problem solving methodology.
- Statistical process control.
- > Quality costing.
- Pareto diagram.
- Process capability analysis.
- Sampling.
- Quality improvement team.
- Process mapping.
- Project team charter.
- Histogram.

To determine the sustainability of small businesses from the questionnaire was problematic due to the plethora of external and internal factors having an impact. As a result, it could not be determined whether the sustainability was influenced by the lack of having a quality strategy in operation.

6.4 ANALOGIES DRAWN FROM THE LITERATURE REVIEW

Six Sigma is a quality improvement methodology that incorporates management philosophies and statistical techniques in a well structured fashion to optimize business activities, thereby focusing on variation reduction in all processes, involving top management and operating force to work closely in the hunt of customer satisfaction and financial return. Antony (2008:274), found that currently, companies across the world ranging from small businesses, private and public to large organisations have adopted this philosophy to substantially improve:

- > Quality level.
- Customer satisfaction.
- ➤ Market share.
- Employees' morale.
- Organizational culture.

- People development.
- Return on investment, and
- \succ Much more.

To ensure a successful introduction and implementation of Six Sigma programme in an organisation, the following steps are required:

➢ SIX SIGMA METHODOLOGY FOR PROCESS IMPROVEMENT

As a problem solving methodology, Six Sigma makes use of a general accepted and well defined continuous improvement framework known as DMAIC (Antony, 2006:239; Anbari and Kwak, 2004:6; Eckes, 2003:29). As indicated in Figure 3.3, the DMAIC model is a closed loop process that eliminates unproductive stages which allows the improvement process to be more efficient (Kwak and Anbari, 2006:706). The letter (D) represents the definition of the problem, (M) measures the problem, (A) analysis of data, (I) improvement of the process by removing root causes of defects and (C) the controlling or monitoring process to prevent problems (Antony, 2006:706).

ORGANISATIONAL INFRASTRUCTURE FOR SIX SIGMA

Pyzdek (2000: Online) and Antony & Banuelas (2002:21), suggest that Six Sigma provides and organisational infrastructure that assures and supports the effective implementation of this methodology in an organisation. The main reason why 80% of TQM implementation failed was the lack of a tangible infrastructure to support its introduction. Henderson and Evans (2000:270), point out that to reach the long term target of 3.4 DPMO requires a complete commitment from each component of the value chain, and the active participation of everyone with specific roles and responsibilities within an organisation. The employees in an organisation practising Six Sigma are seen as catalysts who institutionalise change and are highly trained in statistics and problems solving, and lead groups in selecting and completing Six Sigma projects (Henderson and Evans, 2000:270; Antony and Banuelas, 2002:22). According to Anbari and Kwak (2004:5), a Six Sigma project is selected, performed, accomplished, and reviewed by individuals

who are ranked according to a belt system in a powerful matrix organisational structure as follows:

- > Champion.
- ➢ Master black belt.
- Black belt.
- > Yellow belt.
- \succ Green belts.

KEY ELEMENTS FOR SIX SIGMA IMPLEMENTATION

Companies embarking on the Six Sigma implementation programme have shown contrasting results due to the complexity of this methodology and therefore, attention must be drawn to the key elements of Six Sigma, to make it possible (Coronado and Antony, 2002:92-93). Coronado and Antony(2002:93 citing Rockart, 1979) state that: "critical success factors are those factors which are critical to the success of any organisation in the sense that, if objectives associated with the factors are not achieved, the organisation will fail – perhaps catastrophically". Therefore, the importance given to key input variables for the success factors for the effective completion of a Six Sigma programme (Antony and Banuelas, 2002:21). The research of Antony and Banuelas (2002:21-23), Coronado and Antony (2002:93-98), Pyzdek (2000: online), Antony (2006:242-243), and Henderson and Evans (2000:269-277), identified the key elements for the successful introduction and implementation of Six Sigma programme in an organisation:

- Management involvement and commitment (refer to paragraph 3.121).
- Culture change (refer to paragraph 3.12.2).
- Communication (refer to paragraph 3.12.3).
- Organisation infrastructure (refer to paragraph 3.11).
- ➤ Training (refer to paragraph 3.12.5).
- Project management skill (refer to paragraph 3.12.6).
- Project prioritisation and selection, reviews and tracking (refer to paragraph 3.12.7).

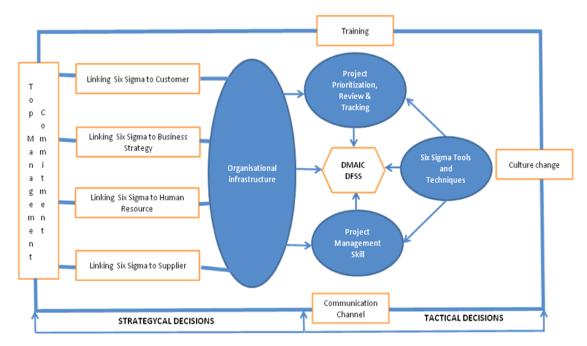
- Understanding the Six Sigma methodology, tools and techniques (refer to paragraph 3.9 & 3.10).
- Linking Six Sigma to business strategy (refer to paragraph 3.12.9).
- Linking Six Sigma to human resource (refer to paragraph 3.12.11).
- Linking Six Sigma to customer (refer to paragraph 3.12.10).
- Linking Six Sigma to supplier (refer to paragraph 3.12.12).

6.5 RESEARCH PROBLEM REVISITED

The research problem which was formulated in Chapter 1, paragraph 1.3 reads as follows: "South African enterprises who implement Six Sigma, do not consider critical implementation issues associated with the concept, resulting in either an inefficient implementation or a product that does not deliver on expectations".

Recommendations to mitigate the research problem cumulate as the result of the literature review and data analysis. The following recommendations are made as a result of this research study:

- The leadership of SA business organisations should be educated on the Six Sigma principles needed for the preparation of their organisation on the brink of adopting this concept.
- The leadership of SA business organisations should be aware that the Six Sigma implementation requires a substantial investment and positive results after a long period.
- The top management of SA organisations should be involved, dedicated on project selection and review, and on resource provision and training.
- The top management of SA organisations should restructure their business setting to that of Six Sigma entity by personally spending time in every Six Sigma training, completing a weekly and monthly Six Sigma review, making factory visits, and monitoring Six Sigma project progress.
- The people within the SA organisations must be made aware of the need to change via a communication channel in order to overcome any resistance to chance. The communication channel should also address the Six Sigma methodology, its benefits and how it is related to people's work.


- The communication of Six Sigma success and setbacks during project implementation will also help SA businesses project team to identify best practices and avoid mistakes during future projects.
- To reach the long term target of 3.4 DPMO, SA enterprises should ensure a complete commitment of each component of the value chain, and an active participation of everyone with specific roles and responsibilities within their organisation.
- To ensure that SA enterprises meet the requirements of the Six sigma organisational infrastructure, the leadership should appoint key personnel according to the following criteria:
 - A Six Sigma Champion per business unit (generally occupying a strategic position).
 - A black belt selected based on technical aspects and who are highly rated in their area of expertise as well as by others colleagues. The number of active black belts in an organisation will typically be one for every fifty to hundred employees.
 - A master black belt who is a fully skilled, qualified leader having the responsibility of Six Sigma strategic deployment, training, mentoring and results. Master black belts should be individuals with at least five years of black belt experience. Business groups or big manufacturing site should have one.
 - Yellow belts are individuals with a technical background who receive two to three weeks training on Six Sigma methodology and there after work on Six Sigma projects on a temporary basis. For every 20 employees within an organisation there should be one yellow belt.
 - Green belts are specialised persons leading a Six Sigma team member, capable of forming and facilitating a Six Sigma team and managing Six Sigma projects from start to finish.
- Basis skills should be provided to all employees within SA organisations to ensure that relevant literacy and numeracy skills are processed by everyone so as to allow them to grasp the fundamental principle behind the tools and techniques of Six Sigma during training sessions.

- To ensure effective project completion, SA organisations should ensure that the project team possesses project management skills that will allow them to meet the milestones of different project phases.
- To ensure an effective selection of a Six Sigma project, champions, BB, GB, and the project manager have to look at some critical elements of project management such as: Time, Cost, and Quality because these elements will help them identify the project scope, objectives, and resources needed to accomplish a project at a very competitive cost in order to meet a specific business objectives.
- SA organisations should expand the use of the tools and techniques of Six Sigma in a highly disciplined manner at each phase of the DMAIC methodology.
- SA organisations should not treat Six Sigma as an isolated activity; therefore the link between Six Sigma project and business strategy has to be obvious so that the result illustrates a fully integrated philosophy into a business culture rather than just a limited usage of few tools and techniques.
- The link between Six Sigma and customer focus should be obvious in every aspect of the value chain to ensure that all the Six Sigma activities are directed toward customer satisfaction.
- SA organisations should develop and put in place a human resource based action in order to promote desired actions and results and therefore ensure the long term requirement of 3.4 DPMO of Six Sigma goal. Adding specific Six Sigma section to the annual performance evaluation form and awarding executive compensation based on Six Sigma goals attainment is an example.
- SA organisations should bring their suppliers in line with the dynamics of culture change that comes along with Six Sigma and a criteria selection of suppliers, based on an acceptable Six Sigma performance capability level, will make certain that only those with a Six Sigma culture can be part of the value chain and therefore deliver raw materials.

6.6 THE RESEARCH QUESTION REVISITED

The research problem which was formulated in Chapter 1, paragraph 1.4 reads as follows: "Can a structured single alternate process be developed for the implementation of Six Sigma to ensure successful implementation thereof in South African enterprises?"

Based on the literature review and best practices, as well as the analysis of the survey findings, a framework for an alternative and effective implementation of Six Sigma in SA enterprises was developed by the researcher and illustrated in Figure 6.1.

Figure 6.1: Framework of Six Sigma implementation for SA organisation. (**Source**: Adapted from Six Sigma literature review contained within the ambit of Chapter 3)

The above framework consists of some critical and soft elements which play a critical role in the successful implementation of Six Sigma within SA enterprises.

Figure 6.1 shows two main sections, mainly a strategical and a tactical section. The strategical section relies on leadership who has the responsibility to fully understand Six Sigma, show commitment to it, and communicate its benefits to the entire organisation to ensure a smooth culture change to that of Six Sigma entity. The top management also has the responsibility to establish an organisational infrastructure with adequate training that will effectively implement Six Sigma by linking it to:

- Business strategy,
- ➤ Supplier,
- Customer, and
- Human resource.

The tactical section looks at the DMAIC methodology (the centre of Six Sigma implementation) which provides a five step continuous improvement approach and suggests the use of tools and techniques in a very specific and disciplined manner during a process improvement project.

6.7 KEY RESEARCH OBJECTIVES REVISITED

The five main objectives that were stated in Chapter 1, paragraph 1.5 of this study and associated findings are listed below:

To formulate a structured single process to aid the successful implementation of Six Sigma in SA industries.

Paragraph 6.6 and Figure 6.1 provides some guidelines for SA industries to follow in order to have a standardised process when implementing Six Sigma.

To explore the benefits of the implementation of the Six Sigma quality management system in SA enterprises.

After the analysis of data, it was found that the main reasons for implementing Six Sigma is to improve product/service quality and to reduce costs. (refer to Figure 5.13, Chapter 5)

To identify the tools and techniques for the suitability of Six Sigma in SA industries.

After the analysis of data, it was found that the most used tools and techniques for the suitability of Six Sigma in SA industries were: Brainstorming, Failure mode and effects analysis, Graphs, Check sheet, Cause and effect diagram, Problem solving methodology, Statistical process control, Quality costing, Pareto diagram, Process capability analysis, Sampling, Quality improvement team, Process mapping, Project team charter and Histogram (refer to Figure 5.11 & 12, Chapter 5)

To determine factors that can influence the Six Sigma implementation in the context of SA business environment.

After the analysis of data, it was found that the key elements for Six Sigma implementation in the context of a SA business environment are: the understanding of Six Sigma methodology, tools and techniques; training; top management involvement and commitment; organisation infrastructure; linking Six Sigma to customer and communication. However, factors such as Culture change, Project management skill, Linking Six Sigma to supplier, Linking Six Sigma to business strategy, Linking Six Sigma to human resource, Project prioritisation, selection, reviews and tracking received less consideration (refer to Figure 5.9, Chapter 5.)

6.8 FINAL CONCLUSION

This research has led to many interesting and important findings. First, the majority of SA organisations that have implemented Six Sigma, are from manufacturing and did so just before and after the year 2000. Secondly, the main reasons for implementing Six Sigma in SA enterprises are to improve product/service quality and to reduce costs. Thirdly, the key personnel driving Six Sigma do not involve process leaders and employees during Six Sigma projects. The SA organisations use the DFSS methodology when redesigning a process and the DMAIC methodology during process improvement or both simultaneously. Furthermore, it was found that there are only few organisations that do not use any of the two methodologies. The mechanisms in place to ensure Six Sigma success

were not efficient because the individual involved in the Six Sigma project did not receive adequate training and Six Sigma was not linked to all stakeholders. Under the role of the top management commitment to Six Sigma, heading this has been mainly to accommodate and encourage change and employees are encouraged to participate when implementing Six Sigma. Also, it was found that the key ingredients for Six Sigma implementation in SA enterprises are: the understanding of Six Sigma methodology, tools and techniques; training; top management involvement and commitment; organisation infrastructure; and linking Six Sigma to customer and communication. The organisations mainly use the basic quality control tools of Six Sigma. Finally the most used tools and techniques used by the SA organisations are: Brainstorming, Failure mode and effects analysis, Graphs, Check sheet, Cause and effect diagram, Problem solving methodology, Statistical process control, Quality costing, Pareto diagram, Process capability analysis, Sampling, Quality improvement team, Process mapping Project team charter, and Histogram.

This research project was conducted with a number of boundaries such as the number of companies involved, budget, data collection, time among others. For further research, more people, companies, adequate budget and at least two data collection methodologies should be taken into account. The open ended questions had a disadvantage in that respondents simply ticked an answer; the reasons for their choice were not clear. It would therefore be advantageous to use other data collection methodologies to gain a deeper understanding of the research question and sub-questions. Moreover, this research was conducted in a single province of SA; however it is important to know how Six Sigma implementations are tackled in the rest of the country. Finally, it would be important to perform a comparative analysis of Six Sigma implementation between the manufacturing and service sector as well as with other sectors of industries in SA. A comparative analysis of Six Sigma implementation among developing countries could also be put into perspective.

LIST OF REFERENCES

Anbari, F, T. & Kwak, Y, H. 2004. *Success Factor in Managing Six Sigma Projects*. (Paper read at the Project Management Institute Research Conference). July 2004. London, UK. (Unpublished).

Anjard, R., P. 1996. "Process mapping: one of three, new, special quality tools for management, quality and all other professionals". *Microelectron. Reliab.* 36: 223-225.

Antony, J. & Banuelas, R. 2002. Key ingredients for the effective implementation of Six Sigma program. *Measuring Business Excellence*. 6(4):20-27.

Antony, J. 2004. Six Sigma in the UK service organizations: results from a pilot survey. *Managerial Auditing Journal*. 19(8):1006:1013.

Antony, J. 2006. Six Sigma for service processes. *Business process Management Journal*. 12(2):234-248.

Antony, J. 2008. Reflective practice, What is the role of academic institutions for the future development of Six Sigma? *International Journal of Productivity and Performance Management*. 57(1):107-110.

Antony, J. 2009. Reflective practice, Six Sigma vs TQM: some perspectives of leading practitioners and academics. *International Journal of Productivity and Performance Management*. 58(3):274-279.

Antony, J., & Desai, D. A. 2009. Assessing the six sigma implementation in the Indian Industry. *Journal of Management Research News*. 32(5):413-423.

Babbie, E. 2005. The basics of social research. Belmont: Thomson Wadsworth

Bamikole, A. Rovani, S & Blottmitz, H.V. 2008. Commercialization of biofuel industry in Africa: A review. *Trade and Industry Monitor*. 39(8):53-68.

Banuelas, R. & Antony, J. 2003. Going from six sigma to design for six sigma: An exploratory study using analytic hierarchy process. *The TQM magazine*, 15(5):334-344.

Barney, M. 2002. Motorola's Second Generation. Six Sigma Forum magazine. May: 13-17.

Biehl, R. E. 2005. *Six Sigma Maths: A Primer*. [**Online].** Available from: <u>http://www.discoveret.org/</u> [accessed 05/03/2010]

Black, K. & Revere, L. 2006. Six Sigma arises from the ashes of TQM With a twist. *International Journal of Health Care Quality Assurance*. 19(3):259-266.

Breyfolgle, F. W. 2003. Implementing Six Sigma. Second edition, New Jersey: John Wiley & Sons.

Brown, J. A. 1995. Perceptions of quality in the global market. *The TQM magazine*. 7(6):52-56.

Burns, N. & Grove, S, K. 1997. *The Practice of Nursing Research: Conduct, Critique & Utilization 3rd edition.* Philadelphia: WB Saunders Company.

Burns, N. & Grove, S. K. (2001). *The practice of nursing research: Conduct, critique, & utilization 4th edition.* Philadelphia: W. B. Saunders.

Chou, C. J. & Su, C, T. 2008. A systematic methodology for the creation of Six Sigma projects: A case study of semiconductor foundry. *Expert Systems with Applications*. 34:2693-2703.

Collis, J. & Hussey, R. 2003. Business research: A practical guide for undergraduate and post graduate students. Houndmills: Macmillan Palgrave

Conorado, R, B. & Antony, J. 2002. Critical success factors for implementation of six sigma projects in organizations. *The TQM Magazine*. 14(2):92-99.

Cooper, D.R. & Schindler, P.S. 2006. Business research methods. Boston: McGraw-Hill

Denton, M. & Vloeberghts, D. 2002. Leadership challenges for organization in new South Africa. *Leadership & Organization Development Journal*. 20(2):84-95.

De Vos, A.S. (2002). Scientific theory and professional research. in de Vos, A.S.

Ditahardiyani, P. Ractnayani & Angwar, M. 2008. The Quality Improvement of Primer Packaging process Using Six Sigma Methodology. *Jurnal Teknik Industri*. 10(2), December:177-184.

Dogu, E. & Firuzan, A. A. 2008. Statistical approach to quality improvement and Six Sigma Improvement model (DMAIC). *Journal of Yasar University*. 3(9): 1093-1110.

Eckes, G. 2001. The Six Sigma revolution. Business Digest. 106 March: 11-18.

Eckes, G. 2003. Six sigma for Everyone. New Jersey: John Wiley & Sons.

Empea. 2009. An overview of trends in select sectors and markets. [Online]. Available from: <u>http://www.empea.net/</u> [Accessed 5/03/2010]

Emory, C. W. & Cooper, D. R.1995. Business Research Methods. Boston: Irwin.

Foster, S. T. 2007. *Managing quality: Integrating the supply chain*. Third edition, New Jersey: Pearson Education.

Fourie, J. 2008. Association moves to improve world perception of South African quality standards. [Online]. Available from: http://www.engineeringnews.co.za/ [Aceeseed 11/3/2010]

Goldman, H. H. 2005. The origins and development of quality initiatives in American business. *The TQM magazines*. 17(3):217-225.

Henderson, K, M. & Evans, J, R. 2000. Successful implementation of Six Sigma: benchmarking General Electric Company. Benchmarking: *An International Journal*. 7(4):260-281.

Ingle, S. & Roe, W. 2001. Six sigma black belt implementation. *The TQM magazine*. 13 (4):273-280.

Kumar, D. U. Nowicki, D. Marques, J. E.R. & Verma, D. 2008. On the optimal selection of process alternatives in a Six Sigma implementation. *International journal of Production Economics*. 111, February:456-467.

Kumar, M. Antony, J. & Douglas, A. 2009. Does size matter for Six Sigma implementation? Findings from the survey in UK SMEs. *The TQM Journal*. 21(6):623-635.

Kwak, Y, H. & Anbari, F, T. 2006. Benefits, obstacles, and future, of Six Sigma approach. *Technovation*. 26:708-715.

Leedy, P.D. & Ormrod, J.E. 2001. *Practical research*. New Jersey: Merrill Prentice Hall.

Ligthelm, A. A. 2004. [Online] Linking South Africa Foreign Trade with Manufacturing Development: The Spatial Implication. [Online]. Available from: <u>http://www.unisa.ac.za/</u> [Accessed 12/03/2010]

Madu, A. A. & Madu, C. N. 2002. Dimensions of e-quality. *International Journal of Quality & Reliability management*. 19(3): 246-258.

Mangelsdorf, D. 1999. Evolution from quality management to an integrative management system based on TQM and its impact on the profession of quality managers in industry. *The TQM magazine*. 11(6):419-424.

McQuater, R.E. Scurr, C.H. Dale, B.G. & Hillman, P.G. 1995. Using quality tools and techniques successfully. *The TQM magazine*. 7(6):37-42.

Mersha, T. 2000. Quality, competiveness and development in Sub-Sahara Africa. *Journal of Industrial and Data Systems*. 100(3):119-124.

Merwe, C. V. D. 2007. Local institute builds quality awareness. [Online]. Available from: <u>http://www.engineeringnews.co.za/</u> [Accessed 11/03/2010]

Miguel, P. A. & Andrietta, J.M. 2009. Benchmarking the Six Sigma application in Brazil. *Benchmarking: An International Journal*. 19(1):124-134.

Motwani, J. Kumar, A. & Antony, J. 2004. A business process change framework for examining the implementation of Six Sigma: a case study of Dow Chemicals. *The TQM Magazine*. 16(4):273-283.

Mouton, J. 2001. *How to succeed in your master's & doctorate studies*. Pretoria: Van Schaik Publishers.

Muir, D. L. 2005. System Certification and Beyond. [Online]. Available from: https://www.sabs.co.za/ [Accessed 15/03/2010] Nationmaster. <u>Economy Statistics</u>-Exports (most recent by country). 2008. [Online]. Available from: <u>http://nationmaster.com/ [accessed 8/03/2010]</u>

Nunnally, J.C. (1978). *Psychometric theory* (2nd ed.). New York: McGraw-Hill.

Polit, D.F. & Hungler, B.P. 1999. Nursing Research Principle and methods.5th Edition Philadelphia: Lippincoft.

Proudly South African. 2010. [Online]. Available from: http://www.proudlysa.co.za. [Accessed 13/03/2010]

Pyzdek, T. 2000. *The Six Sigma Revolution*. [**Online**]. Available from: <u>http://www.Pyzdek.com/</u> [accessed 16/03/2010].

Raisinghani, M. S. Ette, H. Pierce, R. Cannon, G. & Daripaly, P. 2005. Six Sigma: concepts, tools, and applications. *Industrial Management & Data Systems*. 105(4):491-505.

Remenyi, D. Williams, B. Money, A. & Twite, A. 1995. *Effective measurement & management of IT Costs & Benefits*. Butterworth-Heinemann Ltd. Linacre House, Jordan Hill, Oxford. OX28DP.

Remenyi, D. Williams, B. Money, A. & Swartz, E. 2002. Doing research in business and management. London: Sage.

Roodt, A. 1997. In search of a South African corporate culture. *Management Today*. March:14-16.

SABCnews. 2010. [Online]. Available from: <u>http://sabcnewsr.co.za/ [accessed</u> 8/03/2010]

Saunders, M. N. K. Lewis, P. & Thornhill, A. 2000. *Research methods for business students*. Edinburgh Gate: Pearson Education.

Schindler, D.R. & Cooper, P.S. 2001/2003. *Business Research Methods*. Seventh/Eight Edition. New York, NY: McGraw-Hill.

Schroeder, R. G. Linderman, K. Liedtke, C. & Choo, A, S. 2008. Six Sigma: Definition and Underlying theory. *Journal of Operations Management*. 26: 536-554.

Senapati, N. R. 2004. QUALITY AND RELIABILITY CORNER, Six Sigma: myths and realities. *International Journal of Quality & Reliability Management*. 21(6), February: 683-690.

ServiceBazaar. 2005. *Six Sigma for World Class Performance*. [Online]. Available from: <u>http://www.ServiceBazaar.com/</u> [accessed 12/03/2010]

South Africa Bureau of Standards (SABS). 2010. [Online]. Available from: http://www.sabs.co.za/ [Accessed 08/03/2010]

South Africa Society for Quality 2010. [Online] Available from: http://www.quality.org.za/[Accessed 13/03/2010]

South African Excellence Foundation. 1997. *The South African Excellence Model*. Unpublished training manual.

Statistics South Africa. 2009. [Online]. Available from: <u>http://www.statssa.co.za/</u> [Accessed 2/03/2010]

Stock, R. 1995. *Africa South of Sahara: A geographical interpretation*. New York: the Guilford press.

Strydom, H. Fouché, C.S.L. & Delport, C.S.L. (eds) Reseasech at grass roots: for the social sciences and human service professions. 2nd edition. Pretoria: Van Schaik.

Stuart, M. & Wayne, G. 1996. An introduction for science & engineering student. Kenwyn. South Africa: Juta & Co. Ltd.

Thomaz, C. 2009. Quality the catalyst for economic expansion. [Online]. Available from: <u>http://www.engineeringnews.co.za/</u> [Accessed 11/03/2010]

UNCTAD. Lower FDI declines in Africa in 2009 as new investors provided a buffer. 2010. [Online]. Available from: http://www.unctad.org/ [Accessed 23/07/2010]

UNIDO .2010. Releases latest International Yearbook of Industrial Statistics. [Online]. Available from: <u>http://www.unido.org/</u> [Accessed 25/03/2010]

Weforum. 2010. [Online]. Available from: http://www.Weforum.org/ [Accessed 15/03/2010]

Watkins, J. A. 2008. *Theses/Dissertations/Research reports: A practical guide for students to the preparation of written presentations of academic research.* Published privately by the author.

Yin, R.K.1994. Case Study research: design and Methods. Sage: Thousand Oakes.

Annexure A: Cronbach Alpha Coefficients

			Simple Sta	tistics			
Variable	Ν	Mean	Std Dev	Sum	Minimum	Maximum	Label
B01	22	4.09091	0.75018	90.00000	3.00000	5.00000	B01
B02	22	4.00000	1.06904	88.00000	2.00000	5.00000	B02
B03	22	4.18182	0.95799	92.00000	1.00000	5.00000	BØ3
B04	21	3.76190	1.30018	79.00000	1.00000	5.00000	B04
B05	22	3.90909	1.06499	86.00000	2.00000	5.00000	B05
B06	22	3.50000	1.50396	77.00000	1.00000	5.00000	B06
B07	22	4.00000	1.06904	88.00000	2.00000	5.00000	B07
B08	22	3.50000	1.33631	77.00000	1.00000	5.00000	B08
B09	22	3.59091	1.29685	79.00000	1.00000	5.00000	B09
B10	22	3.36364	1.04860	74.00000	2.00000	5.00000	B10
B11	22	3.63636	0.84771	80.00000	2.00000	5.00000	B11
B12	22	3.72727	1.16217	82.00000	1.00000	5.00000	B12
B13	22	2.81818	1.36753	62.00000	1.00000	5.00000	B13
B14	22	3.72727	0.70250	82.00000	2.00000	5.00000	B14
B15	22	3.36364	1.04860	74.00000	2.00000	5.00000	B15
B16	22	3.18182	1.09702	70.00000	1.00000	5.00000	B16
B17	22	3.72727	0.63109	82.00000	2.00000	5.00000	B17
B18	22	3.81818	0.50108	84.00000	3.00000	5.00000	B18
B19	22	3.27273	0.82703	72.00000	2.00000	5.00000	B19
B20	22	3.54545	0.96250	78.00000	2.00000	5.00000	B20
B21	22	3.63636	1.21677	80.00000	1.00000	5.00000	B21
B22	22	3.86364	0.83355	85.00000	3.00000	5.00000	B22
B23	22	3.09091	1.06499	68.00000	1.00000	5.00000	B23
B24	22	3.40909	0.85407	75.00000	2.00000	5.00000	B24
B25	22	3.95455	1.13294	87.00000	2.00000	5.00000	B25
B26	20	3.15000	1.08942	63.00000	1.00000	5.00000	B26
B27	22	3.54545	1.22386	78.00000	1.00000	5.00000	B27
B28	22	2.72727	1.03196	60.00000	1.00000	5.00000	B28
B29	22	3.27273	1.03196	72.00000	1.00000	5.00000	B29
B30	22	4.00000	0.81650	88.00000	2.00000	5.00000	B30
B31	22	3.63636	1.00216	80.00000	2.00000	5.00000	B31
B32	22	3.27273	0.93513	72.00000	2.00000	5.00000	B32
B33	22	4.27273	0.93513	94.00000	1.00000	5.00000	B33
B34	22	4.27273	0.82703	94.00000	2.00000	5.00000	B34
B35	22	3.50000	1.01183	77.00000	1.00000	5.00000	B35
B36	22	4.31818	1.04135	95.00000	1.00000	5.00000	B36
B37	22	3.72727	1.24142	82.00000	1.00000	5.00000	B37
B38	22	4.00000	1.06904	88.00000	1.00000	5.00000	B38
B39	22	3.13636	1.16682	69.00000	1.00000	5.00000	B39
B40	22	4.50000	0.96362	99.00000	1.00000	5.00000	B40
B41	22	3.50000	1.05785	77.00000	1.00000	5.00000	B41
B42	22	2.45455	1.18431	54.00000	1.00000	5.00000	B42
B43	22	3.90909	1.10880	86.00000	1.00000	5.00000	B43
B44	22	2.59091	1.22121	57.00000	1.00000	5.00000	B44
B45	22	3.95455	1.13294	87.00000	1.00000	5.00000	B45
B46	22	3.13636	1.03719	69.00000	1.00000	4.00000	B46
B47	21	2.95238	1.49921	62.00000	1.00000	5.00000	B47
B48	22	2.72727	1.31590	60.00000	1.00000	4.00000	B48
B49	22	3.77273	1.44525	83.00000	1.00000	5.00000	B49
B50	22	3.22727	0.92231	71.00000	1.00000	4.00000	B50
B51	22	2.86364	1.12527	63.00000	1.00000	5.00000	B51
B52	22	4.36364	0.95346	96.00000	2.00000	5.00000	B52
B53	22	3.13636	1.24577	69.00000	1.00000	5.00000	B53
B54 B55	22 22	3.95455	1.43019	87.00000	1.00000	5.00000	B54
B55 B56	22	3.27273	1.27920	72.00000	1.00000	5.00000 5.00000	B55 B56
		4.13636	1.20694	91.00000	1.00000		
B57	22 22	4.00000	1.27242	88.00000	1.00000	5.00000	B57
B58 B59	22	3.00000 4.09091	1.23443 0.92113	66.00000 90.00000	1.00000 2.00000	5.00000 5.00000	B58 B59
B59 B60	22						B59 B60
B61	22	3.86364 3.50000	1.12527 1.50396	85.00000 77.00000	1.00000	5.00000	B60 B61
B62	22	2.95455	1.17422	65.00000	1.00000 1.00000	5.00000 4.00000	B61 B62
002	22	2.33433	1.1/422	00.00000	1.00000	4.00000	DUZ

Cronbach Coeffic	ient Alpha
Variables	Alpha
fffffffffffffffff	ffffffffff
Raw	0.954875
Standardized	0.951721

Baleted Standardized Variables Variable with Total Alpha with Total Alpha Label Variable with Total Alpha with Total Alpha Label Hffffffffffffffffffffffffffffffffffff		Cronbach Coe	fficient Alpha v	with Deleted Varia	able	
Variable With Total Alpha With Total Alpha Label Bffffffffffffffffffffffffffffffffffff						
ffffffffffffffffffffffffffffffffffff						
B01 0.267536 0.954864 0.251144 0.951213 B02 B03 0.144076 0.955354 0.128543 0.952214 B03 B04 0.27221 0.955354 0.128543 0.95212 B04 B05 0.485323 0.954199 0.463333 0.951024 B06 B07 0.517216 0.954078 0.481680 0.959057 B07 B08 0.573230 0.953822 0.55275 0.9596478 B09 B10 0.757644 0.959357 0.61776 0.9594578 B07 B11 0.757520 0.953439 0.752662 0.949917 B12 B13 0.498222 0.954198 0.422176 0.959178 B16 B14 0.175250 0.954620 0.447533 0.951269 B16 B14 0.437207 0.954620 0.447533 0.951269 B16 B15 0.17192 0.954620 0.447533 0.951265 B18 B14 0.41221						
B02 0.161139 0.955364 0.18053 0.952112 B03 B04 0.207211 0.955354 0.18053 0.951121 B04 B05 0.463333 0.951211 B04 B05 0.551211 B05 B06 0.61438 0.953210 0.558812 0.950216 B05 B07 0.517216 0.954078 0.43135 0.950642 B08 B07 0.577644 0.953857 0.640776 0.950479 B09 B10 0.737862 0.951319 0.725667 0.940917 B12 B13 0.498222 0.951358 0.725672 0.940917 B13 B14 0.415701 0.954498 0.41217 0.951678 B15 B14 0.415701 0.954692 0.407543 0.951177 B14 B15 0.725667 0.940917 B13 B14 B15 B15 B14 0.415701 0.954498 0.413250 D.95117 B14 B16 -						
B83 0.144076 0.955345 0.180543 0.952121 B84 B84 0.20721 0.955495 0.951121 B94 B85 0.485323 0.951291 0.463333 0.951034 B95 B86 0.61348 0.955291 0.55627 0.956642 B88 B97 0.517216 0.959327 0.756677 0.950450 B10 B11 0.7738466 0.952971 0.756677 0.940789 B99 B12 0.773846 0.953158 0.726672 0.940917 B12 B13 0.477312 0.954191 0.443827 0.951178 B14 B14 0.415701 0.954491 0.443827 0.951178 B15 B15 0.270555 0.954692 0.437543 0.951269 B17 B18 0.41294 0.954692 0.437543 0.951275 B18 B19 0.402225 0.954692 0.437647 0.951275 B19 B20 0.609618 0.952971 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>						
Bed 0.27221 0.955495 0.251155 0.95121 Bed Be5 0.463333 0.951314 0.463333 0.951214 Be6 Be6 0.61438 0.95321 0.463335 0.951216 Be7 Be8 0.575226 0.954078 0.48168 0.95957 Be7 Be9 0.758466 0.953857 0.601776 0.950479 Be9 B11 0.773520 0.953139 0.726672 0.949917 B12 B13 0.498222 0.954491 0.443827 0.951676 B15 B14 0.415771 0.954491 0.443827 0.951676 B15 B16 183401 0.95674 18324 0.951676 B15 B17 0.371192 0.954602 0.434670 0.951269 B17 B18 0.41294 0.954602 0.434670 0.951268 B22 B20 0.669618 0.952314 0.951268 B23 B21 0.442027 0.554494 0.949						
BBS 0.485323 0.954199 0.433353 0.951034 DBS BB6 0.613438 0.954271 0.658012 0.956042 BB6 BB7 0.517716 0.954071 0.658012 0.956042 BB7 BB8 0.575320 0.954751 0.75667 0.949788 B99 B10 0.577644 0.952375 0.960406 B11 B12 0.737892 0.953439 0.752662 0.949906 B11 B12 0.737892 0.955439 0.443277 0.951117 B14 B15 0.726672 0.949917 B12 B13 B14 0.4415701 0.955439 0.44327 0.951155 B15 B16 183801 0.955531 0.43234 0.951255 B19 B20 0.669618 0.955314 0.714847 0.949968 B20 B21 0.463267 0.954489 0.415281 B21 D.826666 0.92088 D.956728 D.956666 B22 0.49						
B66 0.61438 0.95321 0.558212 0.958212 0.958212 0.958275 B97 B88 0.575320 0.953422 0.555275 0.950642 B88 B99 0.758466 0.953827 0.756670 0.949798 B99 B11 0.75320 0.953459 0.75662 0.949307 B11 B12 0.777842 0.953158 0.726672 0.949317 B12 B13 0.498222 0.954491 0.443827 0.951676 B15 B16 -1.83301 0.956734 -1.83240 0.951676 B15 B16 -1.83301 0.956734 0.951275 B18 B19 0.44222 0.955314 0.434670 0.951275 B18 B19 0.44222 0.955321 0.714847 0.94968 B20 B20 0.668618 0.95207 0.951275 B18 B21 B21 0.42625 0.952021 B22 B23 B24 0.5171785 0.954494 0.95207	501					501
B87 0.51216 0.954878 0.441688 0.950957 B87 B88 0.575320 0.553827 0.556673 0.940789 B89 B10 0.575644 0.953837 0.61776 0.950430 B11 B11 0.755570 0.950439 B11 0.755764 0.953837 0.61776 0.950439 B11 B12 0.75672 0.949917 B12 B13 B14 0.449222 0.954191 0.443827 0.951117 B14 B15 0.72655 0.954991 0.131125 0.511676 B15 B16 183841 0.951269 B17 0.351269 B17 B18 0.412994 0.954620 0.434670 0.9512169 B17 B19 0.642422 0.955314 0.714847 0.943968 B22 B21 0.62257 0.955489 0.452658 0.952825 B23 B22 -0.639280 0.952492 -0.65255 0.953213 B22 B22						
Be9 0.75644 0.957871 0.756670 0.947789 Be9 B11 0.753520 0.953857 0.601776 0.959450 B10 B12 0.737892 0.953158 0.726672 0.949806 B11 B12 0.737892 0.953158 0.726672 0.959913 B13 B14 0.445761 0.956439 0.340125 0.951176 B15 B15 0.77655 0.954899 0.310125 0.951676 B15 B16 183801 0.955531 0.854380 0.952735 B18 B19 0.644222 0.954620 0.4434573 0.951269 B17 B18 0.412974 0.954620 0.4434578 0.951265 B20 B21 0.642422 0.955314 0.714447 0.949968 B20 B22 669302 0.955817 665255 0.953215 B21 B22 65337 0.956466 0.22088 0.950703 B22 B23 0.779966 <t< td=""><td>B07</td><td></td><td></td><td></td><td></td><td>B07</td></t<>	B07					B07
Bi0 0 6.777644 0.553439 0.752662 0.950450 Bi0 B11 0.737892 0.953138 0.752662 0.949806 B11 B12 0.737892 0.953138 0.726672 0.949917 B12 B13 0.498222 0.954191 0.4932776 0.950913 B13 B14 0.415701 0.954691 0.491276 0.950913 B13 B15 0.270555 0.954892 0.310125 0.951369 B16 B17 0.371192 0.954620 0.447743 0.951236 B17 B18 0.412974 0.955481 0.714847 0.949968 B20 B21 0.426257 0.954489 0.415281 0.51236 B21 B22 -093020 0.955066 0.922088 0.952265 B23 B24 0.517185 0.95311 0.744806 0.949625 B25 B25 0.759996 0.952992 0.65255 0.951317 B26 B27 0.7566	B08	0.575320	0.953822	0.556275	0.950642	B08
B11 0.753520 0.953158 0.752662 0.949806 B11 B12 0.737892 0.953158 0.726672 0.949917 B12 B13 0.498222 0.954198 0.492176 0.950913 B13 B14 0.415761 0.956734 183244 0.951676 B15 B16 183801 0.955531 0.87343 0.951156 B17 B18 0.412994 0.954620 0.434673 0.951260 B17 B18 0.412924 0.955531 0.653880 0.952735 B19 B20 0.669618 0.955321 0.653860 0.952366 B21 B21 0.42057 0.955086 0.42088 0.952365 B23 B22 -093020 0.955901 0.794806 0.954251 B213 B26 B23 -0.517185 0.955081 0.949252 B25 B25 B26 B33 B24 B24 0.517185 0.955081 0.391252 0.951337 B25 <td>B09</td> <td>0.758466</td> <td>0.952971</td> <td>0.756670</td> <td>0.949789</td> <td>B09</td>	B09	0.758466	0.952971	0.756670	0.949789	B09
B12 0.737892 0.954198 0.726672 0.949917 B12 B13 0.498222 0.954491 0.443827 0.956913 B13 B14 0.415701 0.954491 0.443827 0.951117 B14 B15 0.270555 0.954499 0.310125 0.951699 B15 B16 183801 0.955734 83240 0.955699 B17 B18 0.412994 0.954620 0.44676 0.951155 B18 B19 0.4042422 0.955514 0.71447 0.949968 820 B21 0.42025 0.955449 0.415281 0.951221 822 B23 019589 0.95606 0.022088 0.952865 823 B24 0.517185 0.954417 0.54265 0.951321 822 B26 0.739310 0.949860 827 825 825 B26 0.735418 0.955973 0.951820 827 825 B27 0.755290 0.739973 0.949860 827 B28 0.263517 0.954973 832						
B13 0.498222 0.954198 0.492176 0.95691117 B13 B14 0.415701 0.954491 0.443827 0.951117 B14 B15 0.270555 0.954499 0.310125 0.951676 B15 B16 183801 0.956620 0.407543 0.951269 B17 B18 0.412994 0.956602 0.434670 0.951255 B19 B20 0.669618 0.935314 0.714847 0.949968 B20 B21 0.420257 0.954499 0.415281 0.951225 B21 B22 693020 0.955927 665255 0.951221 B22 B23 019589 0.956066 0.022088 0.956703 B24 B25 0.779906 0.953921 0.51337 B26 B27 B26 0.35318 0.954919 0.275477 0.951820 B27 B26 0.263517 0.954919 0.275477 0.951820 B29 B30 0.483080 0						
B14 0.415701 0.954491 0.443827 0.951176 B15 B15 0.276555 0.954696 0.10125 0.951676 B15 B16 1833801 0.956734 183240 0.951676 B17 B18 0.412994 0.954620 0.444740 0.951155 B18 B19 0.402422 0.955531 0.953880 0.955221 B22 0.430207 0.9554489 0.415281 0.951221 B22 0.42022 0.955927 05525 0.953221 B22 D23 019589 0.956066 0.422088 0.952827 B26 D24 0.517185 0.954147 0.542088 B27 B22 B23 0.57906 0.953921 0.739973 0.949860 B27 B25 0.779966 0.952927 0.55177 0.951828 B27 B24 0.25337 0.955903 0.24226 0.951828 B27 B26 0.263517 0.95477 0.55178 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
B15 0.270555 0.954629 0.310125 0.951679 B15 B16 1833801 0.956734 183240 0.953699 B16 B17 0.371192 0.954620 0.4497543 0.951269 B17 B18 0.412994 0.956631 0.635880 0.951235 B19 B20 0.689618 0.955314 0.714847 0.949968 B20 B21 0.420257 0.954480 0.415281 0.951236 B21 B22 093020 0.955927 065255 0.951236 B23 B24 0.517185 0.954147 0.542088 0.951337 B26 B25 0.779906 0.953011 0.74806 0.949860 B27 B26 0.53337 0.95634 0.310122 0.951337 B26 B27 0.765290 0.729747 0.951820 B27 B30 B36 B27 B28 0.266317 0.954027 0.530178 0.956453 B31 B30 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
B16 183801 0.956734 183240 0.951269 B17 B17 0.371192 0.954620 0.44473 0.951269 B17 B18 0.412994 0.955531 0.653380 0.957335 B19 B20 0.689618 0.955314 0.714847 0.949968 B20 B21 0.420257 0.954489 0.415281 0.951236 B21 B22 093020 0.955927 065255 0.953216 B22 B23 019589 0.956066 0.022088 0.952865 B23 B24 0.517185 0.954147 0.542058 0.959038 B24 B25 0.779966 0.952920 0.739733 0.949660 B27 B26 0.35311 0.954703 0.31252 0.951742 B28 B27 0.765290 0.739973 0.949860 B27 B28 0.266917 0.953475 0.95073 B31 B32 0.426510 0.49258 0.590910 B						
B17 0.371192 0.954620 0.447543 0.951205 B18 B18 0.412994 0.954602 0.434670 0.951155 B18 B19 0.642422 0.955531 0.63380 0.952735 B19 B20 0.689618 0.953514 0.714847 0.94968 B21 B21 0.42257 0.954489 0.415281 0.951236 B21 B22 093020 0.955927 065255 0.953221 B22 B23 019589 0.956066 0.022088 0.952675 B23 B24 0.517185 0.95311 0.794806 0.94265 B23 B26 0.735371 0.955003 0.294226 0.951742 B28 B27 0.765290 0.95292 0.73973 0.949660 B27 B28 0.264217 0.530178 0.95073 B31 0.55773 B32 B31 0.535277 0.530178 0.95073 B32 0.596455 B33 B32						
B18 0.412994 0.954602 0.434670 0.95155 B18 B19 0.642422 0.955531 0.63880 0.952735 B19 B20 0.689618 0.955514 0.714847 0.949968 B20 B21 0.420257 0.9554499 0.415281 0.955221 B22 B23 019589 0.956666 0.022088 0.955265 B23 B24 0.517185 0.95417 0.542058 0.95137 B26 B25 0.779966 0.953911 0.794866 0.949866 B27 B26 0.353418 0.954703 0.311252 0.95137 B26 B27 0.765290 0.739973 0.949866 B27 B28 0.26617 0.954705 0.492958 0.595102 B31 B39 0.483880 0.954265 0.492958 0.595010 B30 B31 0.53527 0.954027 0.530178 0.950973 B31 B32 0.479818 0.575477 0.						B17
B20 0.639618 0.953514 0.714847 0.949068 B20 B21 0.420257 0.954489 0.415281 0.951236 B21 B22 093620 0.955927 065255 0.953226 B23 B24 0.517185 0.956066 0.022688 0.952865 B23 B25 0.779906 0.953011 0.744806 0.949625 B25 B26 0.353418 0.954703 0.31252 0.91337 B26 B27 0.765290 0.952920 0.73973 0.949860 B27 B28 0.26337 0.954019 0.27477 0.951820 B29 B30 0.483880 0.954259 0.478052 0.956973 B31 B32 0.472842 0.956274 23372 0.959073 B32 B33 0.597880 0.956731 B.409561 0.951298 B33 B34 219322 0.956274 23372 0.959038 B34 B35 0.956451 0.9	B18	0.412994		0.434670		B18
B21 0.420257 0.954499 0.415281 0.951236 B21 B22 093020 0.955927 065255 0.951236 B23 B24 0.517185 0.954147 0.542058 0.950703 B24 B25 0.779906 0.953011 0.794806 0.949625 B25 B26 0.353418 0.954703 0.391252 0.951337 B26 B27 0.765290 0.952992 0.739973 0.949860 B27 B28 0.263337 0.955003 0.294226 0.951742 B28 B29 0.266917 0.954027 0.530178 0.956910 B30 B31 0.535527 0.954027 0.530178 0.950973 B31 B32 0.472842 0.95425 0.470522 0.950973 B32 B33 0.557880 0.954531 0.470651 0.950845 B33 B33 0.555491 0.95453 0.46052 0.950238 B37 B38 0.555491 <td< td=""><td>B19</td><td>0.042422</td><td>0.955531</td><td>0.053880</td><td>0.952735</td><td>B19</td></td<>	B19	0.042422	0.955531	0.053880	0.952735	B19
B22 093020 0.955927 065255 0.953221 B22 B23 01589 0.956066 0.022088 0.952065 B23 B24 0.517185 0.954147 0.542058 0.950703 B24 B25 0.779906 0.953011 0.794806 0.949625 B25 B26 0.353418 0.954703 0.91252 0.95137 B26 B27 0.765290 0.294226 0.951742 B28 B29 0.268617 0.954919 0.275477 0.951820 B29 B30 0.438080 0.954259 0.470852 0.950910 B30 B31 0.535527 0.954259 0.470852 0.950973 B32 B33 0.597880 0.953845 0.579192 0.950545 B33 B34 219322 0.956574 233372 0.953991 B34 B35 0.393255 0.954511 0.400561 0.95128 B37 B36 0.279031 0.954974						
B23 019589 0.956066 0.022088 0.952865 B23 B24 0.517185 0.954147 0.542088 0.9590703 B24 B25 0.779906 0.9553011 0.794806 0.996255 B25 B26 0.353418 0.954703 0.391252 0.951337 B26 B27 0.765290 0.952992 0.739973 0.949860 B27 B28 0.263537 0.9556003 0.275477 0.951820 B28 B29 0.286917 0.954255 0.429258 0.550910 B30 B31 0.535527 0.954027 0.530178 0.950753 B31 B32 0.472842 0.954255 0.478852 0.959973 B32 B33 0.597880 0.953451 0.478852 0.953901 B34 -219322 0.956274 -233372 0.953901 B34 B35 0.393255 0.954953 0.264834 0.951148 B35 B36 0.255491 0.953821						
B24 0.517185 0.954147 0.542058 0.950703 B24 B25 0.779966 0.953011 0.794866 0.949625 B25 B26 0.353418 0.954703 0.391252 0.951337 B26 B27 0.765290 0.952992 0.739973 0.949860 B27 B28 0.266337 0.9554919 0.275477 0.951820 B29 B30 0.483080 0.954255 0.429258 0.950910 B30 B31 0.535527 0.954427 0.530178 0.950973 B31 B33 0.473842 0.954259 0.478052 0.950973 B32 B33 0.537800 0.953451 0.478052 0.950973 B32 B34 -219322 0.956345 0.950973 B33 B34 0.279031 0.954953 0.264834 0.951288 B37 B38 0.555491 0.953821 0.59673 0.951070 B42 B40 0.599796 0.951373 <						
B25 0.779906 0.953011 0.794806 0.949625 B25 B26 0.353418 0.954703 0.391252 0.951337 B26 B27 0.765290 0.952992 0.739973 0.949860 B27 B28 0.26337 0.955003 0.294226 0.951742 B28 B29 0.286917 0.954919 0.275477 0.951820 B29 B30 0.483080 0.954255 0.492958 0.956973 B31 B31 0.555527 0.954027 0.530178 0.9569738 B33 B33 0.597880 0.955431 0.40651 0.951845 B33 B34 219322 0.954953 0.264834 0.951864 B36 B36 0.255491 0.4959733 0.954654 B36 B37 0.668019 0.953321 0.561576 0.950238 B37 B40 0.555491 0.953421 0.598733 0.950462 B40 B41 0.684241 0.953423						
B26 0.353418 0.954703 0.391252 0.951337 B26 B27 0.765290 0.952992 0.739973 0.949860 B27 B28 0.263537 0.955603 0.294226 0.951742 B28 B29 0.286917 0.954919 0.275477 0.951820 B29 B30 0.483880 0.954265 0.492958 0.956973 B31 B32 0.472842 0.956274 -23377 0.9539910 B34 B34 219322 0.956274 -23377 0.9539911 B34 B35 0.393255 0.954953 0.264834 0.950738 B35 B36 0.279931 0.954953 0.264834 0.951298 B35 B36 0.279931 0.954953 0.264834 0.950734 B38 B37 0.668019 0.953452 0.664834 0.950238 B37 B38 0.555491 0.953933 0.534654 0.950238 B37 B38 0.55496 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>						
B27 0.765290 0.952992 0.739973 0.949860 B27 B28 0.263337 0.955003 0.294226 0.951742 B28 B30 0.483080 0.954265 0.492958 0.950910 B30 B31 0.535527 0.954027 0.530178 0.950733 B31 B32 0.472842 0.954259 0.478052 0.950973 B32 B33 0.597880 0.953845 0.579192 0.950945 B33 B34 219322 0.954274 233372 0.953901 B34 B35 0.393255 0.954313 0.400561 0.951288 B37 B36 0.279031 0.954933 0.53454 0.950734 B38 B37 0.668019 0.953821 0.598733 0.950462 B40 B40 0.59796 0.953821 0.95073 B31 B44 0.4684241 0.95422 0.4649975 0.951070 B42 B43 0.455245 0.954316 <t< td=""><td>DED</td><td></td><td></td><td></td><td></td><td>020</td></t<>	DED					020
B28 0.263537 0.955003 0.294226 0.951742 B28 B29 0.286917 0.954919 0.275477 0.951820 B29 B30 0.483080 0.954265 0.492958 0.950910 B30 B31 0.535527 0.954259 0.478652 0.950973 B31 B32 0.472842 0.954259 0.478652 0.950973 B32 B33 0.597880 0.953451 0.409561 0.951298 B33 B34 219322 0.954531 0.409561 0.951298 B35 B36 0.3279631 0.954531 0.409561 0.951264 B36 B37 0.668019 0.953432 0.661376 0.950238 B37 B38 0.555491 0.953933 0.534654 0.950249 B41 B40 0.599796 0.953821 0.598733 0.950462 B40 B41 0.684241 0.953452 0.648900 0.950249 B41 B42 0.465167						
B30 0.483080 0.954625 0.492958 0.950910 B30 B31 0.535527 0.954027 0.530178 0.950753 B31 B32 0.472842 0.954259 0.478652 0.950753 B33 B33 0.597880 0.958455 0.579192 0.950545 B33 B34 219322 0.956274 233372 0.953901 B34 B35 0.393255 0.95431 0.406561 0.951288 B35 B36 0.279031 0.953412 0.651576 0.950238 B37 B38 0.555491 0.953933 0.534654 0.950734 B38 B39 0.793062 0.952321 0.598733 0.950422 B40 B41 0.684241 0.953452 0.648900 0.950429 B41 B42 0.465160 0.954289 0.454975 0.951070 B42 B43 0.455245 0.954316 0.444651 0.951172 B44 B44 0.195489 <						
B31 0.535527 0.954027 0.530178 0.950753 B31 B32 0.472842 0.954259 0.478652 0.950973 B32 B33 0.597880 0.953845 0.579192 0.956545 B33 B34 219322 0.956274 233372 0.953901 B34 B35 0.393255 0.954531 0.409661 0.951864 B36 B37 0.668019 0.953412 0.651576 0.950238 B37 B38 0.555491 0.953933 0.534654 0.950734 B38 B40 0.599796 0.953821 0.598733 0.950462 B40 B41 0.648241 0.953452 0.648900 0.950249 B41 B42 0.465160 0.954284 0.4544975 0.951070 B42 B43 0.455245 0.954247 0.190610 0.95122 B44 0.195489 0.955447 0.190610 0.95122 B45 B44 0.195483 0.674733	B29	0.286917	0.954919	0.275477	0.951820	B29
B32 0.472842 0.954259 0.478052 0.950973 B32 B33 0.597880 0.953845 0.579192 0.950845 B33 B34 219322 0.956274 23372 0.950951 B34 B35 0.393255 0.954531 0.400561 0.951298 B35 B36 0.279031 0.954953 0.264834 0.950238 B37 B38 0.555491 0.953933 0.534654 0.950734 B38 B39 0.793062 0.952924 0.766102 0.949748 B39 B40 0.599796 0.953821 0.598733 0.950462 B40 B41 0.684241 0.953452 0.648900 0.952172 B44 B42 0.465160 0.954289 0.454975 0.951070 B42 B43 0.455245 0.953821 0.52245 B47 0.791508 B47 B44 0.195489 0.955477 0.951028 B45 B48 0.686967 0.95397 <	B30	0.483080	0.954265	0.492958	0.950910	B30
B33 0.597880 0.953845 0.579192 0.950545 B33 B34 219322 0.956274 233372 0.953901 B34 B35 0.393255 0.956274 233372 0.953901 B34 B36 0.279031 0.954953 0.264834 0.951288 B35 B37 0.668019 0.953412 0.651576 0.950238 B37 B38 0.555491 0.952924 0.766102 0.949748 B39 B40 0.599796 0.953821 0.598733 0.950426 B40 B41 0.668241 0.954289 0.454975 0.951070 B42 B43 0.455245 0.954284 0.454975 0.951113 B43 B44 0.195489 0.952497 0.190610 0.952172 B44 B45 0.484246 0.954204 0.464787 0.951028 B47 B46 0.565362 0.953297 0.552459 0.950128 B47 B47 0.701561						
B34 219322 0.956274 233372 0.953901 B34 B35 0.393255 0.954531 0.400561 0.951298 B35 B36 0.279031 0.954953 0.264834 0.951864 B36 B37 0.668019 0.953412 0.651576 0.950238 B37 B38 0.555491 0.953933 0.534654 0.950734 B38 B40 0.599796 0.953821 0.598733 0.950462 B40 B41 0.684241 0.953452 0.648900 0.950249 B41 B42 0.465160 0.954289 0.454975 0.951070 B42 B43 0.455245 0.95447 0.190610 0.952172 B44 B43 0.455245 0.953497 0.551028 B45 B44 0.195489 0.955447 0.190610 0.95122 B44 B45 0.444267 0.951028 B45 B45 B46 0.565362 0.953297 0.552459 0.950659						
B35 0.393255 0.954531 0.400561 0.951298 B35 B36 0.279031 0.954953 0.264834 0.951864 B36 B37 0.668019 0.953412 0.651576 0.950238 B37 B38 0.555491 0.953933 0.534654 0.950734 B38 B39 0.733062 0.952924 0.766102 0.949748 B39 B40 0.658214 0.953452 0.648900 0.950249 B41 B42 0.465160 0.954289 0.454975 0.951113 B43 B44 0.195439 0.952449 0.44651 0.951113 B43 B44 0.195439 0.95247 0.951028 B45 B44 0.1954204 0.4464787 0.951028 B45 B45 0.484246 0.953907 0.552459 0.950259 B46 B47 0.701561 0.953837 0.72226 0.949765 B49 B47 0.768725 0.952842 0.762226 <						
B36 0.279031 0.954953 0.264834 0.951864 B36 B37 0.668019 0.953412 0.651576 0.950238 B37 B38 0.555491 0.953933 0.534654 0.950734 B38 B39 0.793062 0.952924 0.766102 0.949748 B39 B40 0.599796 0.953821 0.598733 0.950462 B40 B41 0.684241 0.953452 0.648900 0.950249 B41 B42 0.465160 0.954316 0.444651 0.951113 B43 B44 0.195489 0.95447 0.190610 0.952172 B44 B45 0.484246 0.954204 0.464787 0.951028 B45 B46 0.565362 0.953297 0.552459 0.950659 B46 B47 0.701561 0.953227 0.663806 0.950128 B47 B48 0.680967 0.953297 0.652459 0.951420 B50 B50 0.361179 <						
B37 0.668019 0.953412 0.651576 0.950238 B37 B38 0.555491 0.953933 0.534654 0.950734 B38 B39 0.793062 0.952924 0.766102 0.949748 B39 B40 0.599796 0.953821 0.588733 0.950462 B40 B41 0.648241 0.953452 0.648900 0.950249 B41 B42 0.465160 0.954289 0.454975 0.951070 B42 B43 0.455245 0.954471 0.190610 0.951113 B43 B44 0.195489 0.955447 0.190610 0.951028 B45 B45 0.484246 0.954204 0.464787 0.951028 B45 B46 0.565362 0.953907 0.552459 0.950659 B46 B47 0.701561 0.953183 0.677473 0.950128 B47 B48 0.686967 0.953297 0.663866 0.950128 B43 B49 0.768725 0.954223 0.371359 0.950128 B44 B50 0.36117						
B39 0.793062 0.952924 0.766102 0.949748 B39 B40 0.599796 0.953821 0.598733 0.950462 B40 B41 0.684241 0.953821 0.598733 0.950462 B41 B42 0.465160 0.954289 0.454975 0.951070 B42 B43 0.455245 0.954316 0.444651 0.951113 B43 B44 0.195489 0.955447 0.190610 0.952172 B44 B45 0.484246 0.952097 0.552459 0.950659 B46 B46 0.565362 0.953297 0.552459 0.950128 B47 B48 0.686967 0.953297 0.663806 0.950128 B47 B49 0.768725						
B40 0.599796 0.953821 0.598733 0.950462 B40 B41 0.684241 0.953452 0.648900 0.950249 B41 B42 0.465160 0.954289 0.454975 0.951070 B42 B43 0.455245 0.954316 0.444651 0.951113 B43 B44 0.195489 0.955447 0.190610 0.952172 B44 B45 0.484246 0.954204 0.464787 0.951028 B45 B46 0.565362 0.953907 0.552459 0.950128 B47 B47 0.701561 0.953183 0.677473 0.950128 B47 B48 0.686967 0.953297 0.663806 0.950128 B47 B48 0.636967 0.953297 0.663806 0.950128 B47 B48 0.636967 0.953297 0.663806 0.950128 B47 B48 0.768725 0.952423 0.76226 0.949765 B49 B50 0.361179 <	B38	0.555491	0.953933	0.534654	0.950734	B38
B41 0.684241 0.953452 0.648900 0.950249 B41 B42 0.465160 0.954289 0.454975 0.951070 B42 B43 0.455245 0.954289 0.454975 0.951113 B43 B44 0.195489 0.955447 0.190610 0.952172 B44 B45 0.484246 0.954294 0.464787 0.950659 B46 B47 0.701561 0.953183 0.677473 0.950128 B47 B48 0.686967 0.952820 0.762226 0.949765 B49 B49 0.768725 0.952842 0.762226 0.949765 B49 B50 0.361179 0.954623 0.73739 0.951420 B50 B51 0.576335 0.953078 0.751379 0.950423 B52 B53 0.742307 0.953078 0.751379 0.949812 B53 B54 0.77368 0.952823 0.746847 0.949813 B54 B55 0.710949 <t< td=""><td>B39</td><td>0.793062</td><td>0.952924</td><td>0.766102</td><td>0.949748</td><td>B39</td></t<>	B39	0.793062	0.952924	0.766102	0.949748	B39
B42 0.465160 0.954289 0.454375 0.951070 B42 B43 0.455245 0.954316 0.444651 0.951113 B43 B44 0.195489 0.955447 0.190610 0.952172 B44 B45 0.484246 0.953907 0.552457 0.951028 B45 B46 0.565362 0.953907 0.552459 0.950659 B46 B47 0.701561 0.953183 0.677473 0.950128 B47 B48 0.686967 0.952297 0.663806 0.950128 B47 B48 0.686967 0.952821 0.762226 0.949765 B49 B50 0.361179 0.954623 0.371359 0.951420 B50 B51 0.576335 0.953837 0.572364 0.950972 B51 B52 0.502326 0.954126 0.4485185 0.950943 B52 B53 0.742307 0.953078 0.751379 0.949812 B53 B54 0.773638 0.952823 0.746847 0.949831 B54 B55 0.7109						
B43 0.455245 0.954316 0.444651 0.951113 B43 B44 0.195489 0.955447 0.190610 0.952172 B44 B45 0.484246 0.955447 0.190610 0.952172 B44 B45 0.484246 0.954204 0.464787 0.951028 B45 B46 0.565362 0.953907 0.552459 0.950659 B46 B47 0.701561 0.953183 0.677473 0.950128 B47 B48 0.686967 0.953297 0.663806 0.950128 B47 B48 0.686967 0.953297 0.663806 0.950128 B47 B48 0.686967 0.953297 0.663806 0.950120 B50 B50 0.361179 0.954623 0.371359 0.951420 B50 B51 0.576335 0.953878 0.751379 0.949812 B53 B54 0.773638 0.952823 0.746847 0.949812 B54 B55 0.71049 <						
B44 0.195489 0.955447 0.190610 0.952172 B44 B45 0.484246 0.954204 0.464787 0.951028 B45 B46 0.565362 0.953907 0.552459 0.950659 B46 B47 0.701561 0.953183 0.677473 0.950128 B47 B48 0.686967 0.953297 0.663806 0.950186 B48 B49 0.768725 0.952842 0.762226 0.949765 B49 B50 0.361179 0.954623 0.371359 0.951420 B50 B51 0.576335 0.953837 0.572864 0.950943 B52 B53 0.742307 0.953078 0.75179 0.949812 B53 B54 0.773638 0.952823 0.746847 0.949813 B54 B55 0.710949 0.953201 0.677686 0.950127 B55 B56 0.665422 0.953853 0.555849 0.950526 B56 B57 0.567988 0.953854 0.555849 0.950624 B57 B58 0.805372						
B45 0.484246 0.954204 0.464787 0.951028 B45 B46 0.555362 0.953907 0.552459 0.950659 B46 B47 0.701561 0.953183 0.677473 0.950128 B47 B48 0.686967 0.952297 0.663806 0.950128 B47 B49 0.768725 0.952842 0.762226 0.949765 B49 B50 0.361179 0.954623 0.371359 0.951420 B50 B51 0.576335 0.953837 0.752864 0.950972 B51 B52 0.502326 0.954126 0.4485185 0.950943 B52 B53 0.742307 0.953078 0.751379 0.949812 B53 B54 0.773638 0.952821 0.677686 0.9509127 B55 B56 0.605442 0.953656 0.583745 0.950526 B56 B57 0.567988 0.9553853 0.555849 0.950644 B57 B58 0.805372						
B46 0.565362 0.953907 0.552459 0.950659 B46 B47 0.701561 0.953183 0.677473 0.950128 B47 B48 0.686967 0.953183 0.677473 0.950128 B47 B49 0.768725 0.952842 0.762226 0.949765 B49 B50 0.361179 0.954623 0.371359 0.95052 B51 B51 0.576335 0.953837 0.7572664 0.95072 B51 B52 0.502326 0.954156 0.485185 0.950943 B52 B53 0.742307 0.953078 0.751379 0.949812 B53 B54 0.773638 0.952823 0.746847 0.949812 B54 B55 0.710949 0.953078 0.751379 0.949812 B55 B56 0.665442 0.953656 0.583745 0.950526 B56 B57 0.567988 0.955364 -038457 0.949610 B58 B58 0.805372 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
B47 0.701561 0.953183 0.677473 0.950128 B47 B48 0.688967 0.953297 0.663806 0.950128 B48 B49 0.768725 0.952842 0.762226 0.949765 B49 B50 0.361179 0.954623 0.762226 0.951420 B50 B51 0.576335 0.953837 0.572864 0.950972 B51 B52 0.502326 0.954156 0.485185 0.950943 B52 B53 0.742307 0.953078 0.757864 0.949812 B53 B54 0.773638 0.952823 0.746847 0.949813 B54 B55 0.710949 0.953201 0.677686 0.950127 B55 B56 0.605442 0.953853 0.555849 0.950526 B56 B57 0.567988 0.953853 0.555849 0.950644 B57 B58 0.805372 0.952806 0.798457 0.949610 B58 B59 053358						
B48 0.686967 0.953297 0.663806 0.950186 B48 B49 0.768725 0.952842 0.762226 0.949765 B49 B50 0.361179 0.952422 0.762226 0.951420 B50 B51 0.576335 0.953837 0.572864 0.950972 B51 B52 0.502326 0.954156 0.485185 0.950943 B52 B53 0.742307 0.953078 0.751379 0.949812 B53 B54 0.773638 0.952823 0.746847 0.949813 B54 B55 0.710949 0.953201 0.677686 0.950127 B55 B56 0.605442 0.953853 0.555849 0.950626 B56 B57 0.567988 0.953854 0.9550526 B56 B58 0.805372 0.952806 0.798457 0.949610 B58 B59 053358 0.955946 034475 0.953066 B59 B60 0.829681 0.952217						
B50 0.361179 0.954623 0.371359 0.951420 B50 B51 0.576335 0.953837 0.572864 0.950572 B51 B52 0.502326 0.954156 0.485185 0.950943 B52 B53 0.742307 0.953078 0.751379 0.949812 B53 B54 0.773638 0.952823 0.746847 0.949831 B54 B55 0.710949 0.953201 0.677686 0.950127 B55 B56 0.605442 0.953853 0.555849 0.950626 B56 B57 0.567988 0.952827 0.949457 0.949610 B58 B59 053358 0.955946 034475 0.953066 B59 B560 0.829681 0.952817 0.849541 B56 B57 B61 0.822162 0.95229 0.80650 0.949561 B61	B48	0.686967				B48
B51 0.576335 0.953837 0.572864 0.950572 B51 B52 0.502326 0.954156 0.485185 0.950933 B52 B53 0.742307 0.953078 0.751379 0.949812 B53 B54 0.773638 0.952823 0.746847 0.949831 B54 B55 0.710949 0.953201 0.677686 0.950127 B55 B56 0.605442 0.953696 0.583745 0.950526 B56 B57 0.567988 0.952853 0.555849 0.950644 B57 B58 0.805372 0.952806 0.798457 0.949610 B58 B59 0533358 0.955946 034475 0.953066 B59 B60 0.829681 0.952217 0.814346 0.949561 B60 B61 0.82262 0.955946 034475 0.949610 B58	B49	0.768725	0.952842	0.762226	0.949765	B49
B52 0.502326 0.954156 0.485185 0.950943 B52 B53 0.742307 0.953078 0.751379 0.949812 B53 B54 0.773638 0.952823 0.746847 0.949831 B54 B55 0.710949 0.953076 0.77666 0.950127 B55 B56 0.605442 0.953656 0.583745 0.950526 B56 B57 0.567988 0.953853 0.555849 0.950644 B57 B58 0.805372 0.952806 0.798457 0.949610 B58 B59 653358 0.955946 834475 0.953066 B59 B60 0.829681 0.952817 0.814346 0.949541 B60 B61 0.822162 0.952529 0.8045060 0.949561 B61						
B53 0.742307 0.953078 0.751379 0.949812 B53 B54 0.773638 0.952823 0.746847 0.949831 B54 B55 0.710949 0.953201 0.677686 0.950827 B55 B56 0.605442 0.953696 0.583745 0.950526 B56 B57 0.567988 0.953853 0.555849 0.950644 B57 B58 0.805372 0.952806 0.798457 0.949610 B58 B59 053358 0.955946 034475 0.953096 B59 B60 0.829681 0.952817 0.809650 0.949511 B60 B61 0.822162 0.95229 0.809650 0.949561 B61						
B54 0.773638 0.952823 0.746847 0.949831 B54 B55 0.710949 0.953201 0.677686 0.950127 B55 B56 0.605442 0.953696 0.583745 0.95026 B56 B57 0.567988 0.953853 0.555849 0.950644 B57 B58 0.805372 0.952806 0.798457 0.949610 B58 B59 0533358 0.955946 034475 0.953066 B59 B60 0.829681 0.952817 0.814346 0.949541 B60 B61 0.822162 0.952529 0.809650 0.949561 B61						
B55 0.710949 0.953201 0.677686 0.950127 B55 B56 0.605442 0.953656 0.583745 0.950526 B56 B57 0.567988 0.953853 0.555849 0.950624 B57 B58 0.805372 0.952806 0.798457 0.949610 B58 B59 053358 0.955946 034475 0.953066 B59 B60 0.829681 0.952817 0.814346 0.949541 B60 B61 0.822162 0.952529 0.804560 0.949561 B61						
B56 0.605442 0.953696 0.583745 0.950526 B56 B57 0.567988 0.953853 0.555849 0.950644 B57 B58 0.805372 0.952806 0.798457 0.949610 B58 B59 053358 0.955946 034475 0.953096 B59 B60 0.829681 0.952817 0.814346 0.949511 B60 B61 0.822162 0.952529 0.809650 0.949561 B61						
B57 0.567988 0.953853 0.555849 0.950644 B57 B58 0.805372 0.952806 0.798457 0.949610 B58 B59 053358 0.955946 034475 0.953096 B59 B60 0.829681 0.952817 0.814346 0.949511 B60 B61 0.822162 0.952529 0.809650 0.949561 B61						
B58 0.805372 0.952806 0.798457 0.949610 B58 B59 0533358 0.955946 0834475 0.953096 B59 B60 0.829681 0.952817 0.814346 0.949541 B60 B61 0.822162 0.952529 0.809650 0.949561 B61						
B60 0.829681 0.952817 0.814346 0.949541 B60 B61 0.822162 0.952529 0.809650 0.949561 B61	B58					B58
B61 0.822162 0.952529 0.809650 0.949561 B61	B59					
B62 0.789866 0.952930 0.795689 0.949621 B62						
	862	0./89866	0.952930	0./95689	0.949621	802

Annexure B: Descriptive statistics: Frequency tables

	A01 Fr ffffffffffffffff Manufacturing Service	equency Percent ffffffffffffffffffff 20 90.91 2 9.09	ffffffffffff	cy Percent ffffffffffff 0 90.91	
			rtions ffffff 4.7273 1 0.0001		
		Sample Size = Hency Percent Ffffffffffffffffffff 20 90.91 2 9.09	Cumulative Frequency	Percent	
		DF .	rtions ffffff 4.7273 1 0.0001		
	0 <1yr	ency Percent	Cumulative Frequency	Cumulative Percent ffffffffff 4.55 9.09 50.00 59.09	
	>10yrs	DF	rtions	100.00	
	th A04_1 Frequer	e table cells have an 5. Chi-Square may Sample Size = ncy Percent	expected cou y not be a v 22 Cumulative Frequency	alid test. Cumulative Percent	
	ffffffffffffffffff 0 1 2 3 4 5 6	fffffffffffffffffffffffff 2 9.09 3 13.64 1 4.55 2 9.09 2 9.09 2 9.09 1 4.55 1 4.55	fffffffffff 2 5 6 8 10 11 12	ffffffffff 9.09 22.73 27.27 36.36 45.45 50.00 54.55	
	8 10 17 18 19 20 25 28	2 9.09 1 4.55 1 4.55 1 4.55 1 4.55 1 4.55 1 4.55 2 9.09 1 4.55	14 15 16 17 18 19 21 22	63.64 68.18 72.73 77.27 81.82 86.36 95.45 100.00	
	A04_2 Freque		Cumulative Frequency	Cumulative Percent	
	3 4 5 6 8 11	2 9.09 1 4.55 2 9.09 2 9.09 3 13.64 1 4.55	13 14 16 18 21 22	59.09 63.64 72.73 81.82 95.45 100.00	
A05 fffffffffffffffffff Industrial Engine Junior Project Ma Manufacturing Dev Process Engineer Process Person Production Analys: Production Engine Production Foreman Production Foreman Production Plannee Production Plannee	er ering Trainee nager Trainee Consultant is er n r			Percent Fre	lative Cumulative quency Percent ffffffffffffff 2 9.09 3 13.64 4 18.18 5 22.73 6 27.27 7 31.82 8 36.36 9 40.91 10 45.45 11 50.00 12 54.55 13 59.09

Quality Engined Quality Foreman Quality Technid SQD Team Leader	1		5 1 1 1 1	22.73 4.55 4.55 4.55 4.55	18 19 20 21 22	81.82 86.36 90.91 95.45 100.00
	B01 Fr <i>fffffffffffffffffffffffff</i> Undecided Agree Strongly agree	requency ffffffffff 5 10 7	Percent	umulative Frequency fffffffffff 5 15 22	Cumulative Percent ffffffffff 22.73 68.18 100.00	
		for Equa ffffffff Chi-Squa DF Pr > Chi	2 Sq 0.4216 Size = 22			
	B02 Fr ffffffffffffffffffffffffff Disagree Undecided Agree Strongly agree	3 3 7 9	Percent ffffffffffffff 13.64 13.64 31.82 40.91	umulative Frequency ffffffffff 3 6 13 22	Cumulative Percent fffffffff 13.64 27.27 59.09 100.00	
		for Equa ffffffff Chi-Squa DF Pr > Chi	3			
	BØ3 Fr	requency		umulative Frequency	Cumulative Percent	
	ffffffffffffffffffffffffffffffffffffff					
	Undecided	2	9.09	3	13.64	
	Agree Strongly agree	10 9	45.45 40.91	13 22	59.09 100.00	
		for Equa ffffffff Chi-Squa DF Pr > Chi	3			
	B04 Fr ffffffffffffffffffffffffff 0	requency ffffffffff 1	Percent	umulative Frequency fffffffffff 1	Cumulative Percent fffffffff 4.55	
	Strongly disagree Disagree	2 2	9.09 9.09	3 5	13.64 22.73	
	Undecided	2	9.09	7	31.82	
	Agree Strongly agree	8 7	36.36 31.82	15 22	68.18 100.00	
		for Equa	quare Test 1 Proportions fffffffffffff re 12.3636 5			
		n 5. Chi-Sq	Sq 0.0301 s have expected uare may not be size = 22			
			C	umulative	Cumulative	
	B05 Fr <i>fffffffffffffffffffffffff</i>	requency fffffffffff		Frequency ffffffffffff	Percent fffffffff	
	Disagree Undecided	3 4	13.64 18.18	3 7	13.64 31.82	
	Agree	7	31.82	14 22	63.64 100.00	
	Strongly agree			22	100.00	
		for Equa	3			
			Size = 22			
		equency	Percent	umulative Frequency	Cumulative Percent	
	ffffffffffffffffffffffffffffffffffffff	4	18.18	4	18.18	
	Disagree Undecided	1 5	4.55 22.73	5 10	22.73 45.45	
	Agree Strongly agree	4 8	18.18 36.36	14 22	63.64 100.00	

Chi-Square Test

	ffffffff Chi-Squa			
		4 Sq 0.2205 s have expected uare may not be		
		Size = 22		
B07 Fr	equency		ulative equency	Cumulative Percent
<i>fffffffffffffffffffffffffffff</i>	fffffffffff	ffffffffffffffffff	f Í ff ff f f f f	fffffffffff
Disagree Undecided	3 3	13.64 13.64	3 6	13.64 27.27
Agree Strongly agree	7 9	31.82 40.91	13 22	59.09 100.00
Scholigzy ugree	-			100.00
	for Equa	<pre>quare Test 1 Proportions ffffffffff re 4.9091 3</pre>		
	Pr ≻ Chi			
		Cum	ulative	Cumulative
	equency	Percent Fr	equency	Percent
fffffffffffffffffffffffffffff	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4.55	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4.55
Disagree Undecided	5 6	22.73 27.27	6 12	27.27 54.55
Agree	2	9.09	14	63.64
Strongly agree	8	36.36	22	100.00
	for Equa			
WARNING: The	Pr ≻ Chi	4 Sq 0.1097 s have expected	counts les	s
	5. Chi-Sq	uare may not be Size = 22		
			ulative	Cumulative
B09 Fro	equency fffffffff		equency ffffffffff	Percent
Strongly disagree	2	9.09	2	9.09
Disagree Undecided	2 6	9.09 27.27	4 10	18.18 45.45
Agree	5 7	22.73 31.82	15 22	68.18 100.00
Strongly agree			22	100.00
	for Equa ffffffff Chi-Squa			
	DF Pr > Chi			
	5. Chi-Sq	s have expected uare may not be Size = 22		
D10 5-			ulative	Cumulative
B10 Fro ffffffffffffffffffffffffffff	equency ffffffffff		equency ffffffffff	Percent ffffffffff
Disagree Undecided	7 2	31.82 9.09	7 9	31.82 40.91
Agree	11	50.00	20	90.91
Strongly agree	2	9.09	22	100.00
	for Equa ffffffff Chi-Squa			
	DF Pr ≻ Chi	3 Sq 0.0157		
		Size = 22		
		Cum	ulative	Cumulative
B11 Fro ffffffffffffffffffffffffffffffffffff	equency fffffffff 3		equency fffffffff 3	Percent ffffffffff 13.64
Undecided	4	18.18	7	31.82
Agree Strongly agree	13 2	59.09 9.09	20 22	90.91 100.00
	Chi-S	quare Test		
	for Equa	l Proportions		
	ffffffff Chi-Squa	<i>ffffffffffff</i> re 14.0000		
	DF	3		
	Pr > Chi Sample	Sq 0.0029 Size = 22		
			ulative	Cumulative
B12 Fro	equency ffffffffff		equency ffffffffff	Percent

B12 Frequency Percent Frequency Percent

				4 55
Strongly disagree Disagree	1 2	4.55 9.09	1 3	4.55 13.64
Undecided	6	27.27	9	40.91
Agree Strongly agree	6 7	27.27 31.82	15 22	68.18 100.00
	a : c			
		quare Test l Proportions		
	fffffff	fffffffffffff		
	Chi-Squa DF	re 6.6364 4		
	Dr Pr > Chi			
WARNING: The				
than		uare may not Size = 22	be a valid te	est.
B13 Fre	equency	Percent	Cumulative Frequency	Cumulative Percent
<i>fffffffffffffffffffffffffff</i>	fffffffff	ffffffffffffff	ffffffffffff	fffffffffff
Strongly disagree Disagree	5 4	22.73 18.18	5 9	22.73 40.91
Undecided	6	27.27	15	68.18
Agree Strongly agree	4 3	18.18 13.64	19 22	86.36 100.00
Scholigty agree	5	13.04	22	100.00
		quare Test		
		l Proportions fffffffffffff		
	Chi-Squa	re 1.1818		
	DF Pr ≻ Chi	4 Sq 0.8811		
WARNING: The	table cell	s have expect	ed counts les	
than		uare may not Size = 22	be a valid te	est.
	Jampie	5126 - 22		
B14 Fre	equency	Percent	Cumulative Frequency	Cumulative Percent
<i>ffffffffffffffffffffffffffffff</i>				
Disagree	1	4.55 27.27	1 7	4.55 31.82
Undecided Agree	6 13	59.09	20	90.91
Strongly agree	2	9.09	22	100.00
	Chi-S	quare Test		
	for Equa	1 Proportions		
		<i>fffffffffffff</i> re 16.1818		
	DF	3		
	Pr ≻ Chi	3 Sq 0.0010		
	Pr ≻ Chi	3 Sq 0.0010 Size = 22		
815 Erv	Pr > Chi Sample	3 Sq 0.0010 Size = 22	Cumulative	Cumulative Percent
815 Frv	Pr > Chi Sample equency	3 Sq 0.0010 Size = 22 Percent	Cumulative Frequency	Percent
<i>fffffffffffffffffffffffffffffffffffff</i>	Pr > Chi Sample equency fffffffff 5	3 Sq 0.0010 Size = 22 Percent ffffffffffff 22.73	Cumulative Frequency ffffffffff 5	Percent ffffffffff 22.73
<i><i>fffffffffffffffffffffffffffff</i></i>	Pr > Chi Sample equency ffffffffff	3 Sq 0.0010 Size = 22 Percent fffffffffffffff	Cumulative Frequency ffffffffffffff	Percent ffffffffff
<i>fffffffffffffffffffffffffffffffffffff</i>	Pr > Chi Sample equency fffffffff 5 8	3 Sq 0.0010 Size = 22 Percent fffffffffffff 22.73 36.36	Cumulative Frequency ffffffffffff 5 13	Percent ffffffffff 22.73 59.09
fffffffffffffffffffffffffff Disagree Undecided Agree	Pr > Chi Sample equency fffffffff 5 8 5 5	3 Sq 0.0010 Size = 22 Percent ffffffffffff 22.73 36.36 22.73	Cumulative Frequency fffffffffff 13 18	Percent ffffffffff 22.73 59.09 81.82
fffffffffffffffffffffffffff Disagree Undecided Agree	Pr > Chi Sample equency fffffffff 5 8 5 4 Chi-S	3 Sq 0.0010 Size = 22 Percent fffffffffffff 22.73 36.36 22.73 18.18 quare Test	Cumulative Frequency fffffffffff 13 18	Percent ffffffffff 22.73 59.09 81.82
fffffffffffffffffffffffffff Disagree Undecided Agree	Pr > Chi Sample equency fffffffff 5 8 5 4 4 Chi-S for Equa	3 Sq 0.0010 Size = 22 Percent fffffffffffff 22.73 36.36 22.73 18.18	Cumulative Frequency fffffffffff 13 18	Percent ffffffffff 22.73 59.09 81.82
fffffffffffffffffffffffffff Disagree Undecided Agree	Pr > Chi Sample equency fffffffff 5 8 5 4 Chi-S for Equa ffffffff Chi-Squa	3 Sq 0.0010 Size = 22 Percent fffffffffffff 22.73 36.36 22.73 18.18 quare Test 1 Proportions ffffffffffff re 1.6364	Cumulative Frequency fffffffffff 13 18	Percent ffffffffff 22.73 59.09 81.82
fffffffffffffffffffffffffff Disagree Undecided Agree	Pr > Chi Sample equency fffffffff 5 8 5 4 Chi-S for Equa ffffffff Chi-Squa DF	3 Sq 0.0010 Size = 22 Percent ffffffffffff 22.73 36.36 22.73 18.18 quare Test 1 Proportions fffffffffffff re 1.6364 3	Cumulative Frequency fffffffffff 5 13 18 22	Percent ffffffffff 22.73 59.09 81.82
fffffffffffffffffffffffffff Disagree Undecided Agree	Pr > Chi Sample equency fffffffff 5 8 5 4 Chi-S 4 Chi-S qua ffffffff Chi-Squa DF Pr > Chi	3 Sq 0.0010 Size = 22 Percent ffffffffffff 22.73 36.36 22.73 18.18 quare Test 1 Proportions fffffffffffff re 1.6364 3	Cumulative Frequency fffffffffff 5 13 18 22	Percent ffffffffff 22.73 59.09 81.82
fffffffffffffffffffffffffff Disagree Undecided Agree	Pr > Chi Sample equency fffffffff 5 8 5 4 Chi-S 4 Chi-S qua ffffffff Chi-Squa DF Pr > Chi	3 Sq 0.0010 Size = 22 Percent fffffffffffff 22.73 36.36 22.73 18.18 quare Test 1 Proportions ffffffffffffffff re 1.6364 3 Sq 0.6512 Size = 22	Cumulative Frequency fffffffffff 5 13 18 22	Percent ffffffffff 22.73 59.09 81.82
fffffffffffffffffffffffffffff Disagree Undecided Agree Strongly agree B16 Fre	<pre>Pr > Chi Sample equency ffffffffff 5 8 5 4 Chi-S for Equa fffffff Chi-Squa DF Pr > Chi Sample equency</pre>	3 Sq 0.0010 Size = 22 Percent ffffffffffffff 22.73 36.36 22.73 18.18 quare Test 1 Proportions fffffffffffff re 1.6364 3 Sq 0.6512 Size = 22 Percent	Cumulative Frequency fffffffffff 13 18 22 Cumulative Frequency	Percent ffffffffff 22.73 50.09 81.82 100.00 Cumulative Percent
ffffffffffffffffffffffffff Disagree Undecided Agree Strongly agree B16 Frr ffffffffffffffffffffffffff	<pre>Pr > Chi Sample equency ffffffffff 5 8 5 4 Chi-S for Equa fffffff Chi-Squa DF Pr > Chi Sample equency</pre>	3 Sq 0.0010 Size = 22 Percent ffffffffffffff 22.73 36.36 22.73 18.18 quare Test 1 Proportions fffffffffffff re 1.6364 3 Sq 0.6512 Size = 22 Percent	Cumulative Frequency fffffffffff 13 18 22 Cumulative Frequency	Percent ffffffffff 22.73 50.09 81.82 100.00 Cumulative Percent
ffffffffffffffffffffffffffffffffffffff	Pr > Chi Sample equency 5 8 5 4 Chi-S for Equa DF Pr > Chi Sample equency fffffffff 2 2	3 Sq 0.0010 Size = 22 Percent fffffffffffff 22.73 36.36 22.73 18.18 quare Test 1 Proportions fffffffffffffff re 1.6364 3 Sq 0.6512 Size = 22 Percent ffffffffffffffff 9.09 9.09	Cumulative Frequency ffffffffff 5 13 18 22 22 Cumulative Frequency fffffffffff 2 4	Percent ffffffffff 22.73 59.09 81.82 100.00 Cumulative Percent fffffffffff 9.09 18.18
ffffffffffffffffffffffffffff Disagree Undecided Agree Strongly agree B16 Fre ffffffffffffffffffffffffffffffffffff	Pr > Chi Sample equency fffffffff 5 8 5 4 Chi-S for Equa ffffffff Chi-Squa DF Pr > Chi Sample equency fffffffffff 2	3 Sq 0.0010 Size = 22 Percent ffffffffffffff 22.73 36.36 22.73 18.18 quare Test 1 Proportions fffffffffffff re 1.6364 3 Sq 0.6512 Size = 22 Percent fffffffffffffff 9.09 9.09 50.00	Cumulative Frequency ffffffffff 5 13 18 22 22 Cumulative Frequency ffffffffffff 2 4 15	Percent fffffffffff 22.73 59.09 81.82 100.00 Cumulative Percent fffffffffff 9.09 18.18 66.18
ffffffffffffffffffffffffffffffffffffff	<pre>Pr > Chi Sample equency ffffffffff 5 8 5 4 Chi-S for Equa ffffffff Chi-Squa DF Pr > Chi Sample equency fffffffff 2 2 11</pre>	3 Sq 0.0010 Size = 22 Percent fffffffffffff 22.73 36.36 22.73 18.18 quare Test 1 Proportions fffffffffffffff re 1.6364 3 Sq 0.6512 Size = 22 Percent ffffffffffffffff 9.09 9.09	Cumulative Frequency ffffffffff 5 13 18 22 22 Cumulative Frequency fffffffffff 2 4	Percent ffffffffff 22.73 59.09 81.82 100.00 Cumulative Percent fffffffffff 9.09 18.18
fffffffffffffffffffffffffffffff Disagree Undecided Agree Strongly agree Strongly agree Strongly disagree Disagree Undecided Agree	Pr > Chi Sample equency fffffffff 5 8 5 4 Chi-S for Equa ffffffff Chi-Squa DF Pr > Chi Sample equency ffffffffff 2 2 11 4 3	3 Sq 0.0010 Size = 22 Percent ffffffffffffff 22.73 36.36 22.73 18.18 quare Test 1 Proportions fffffffffffff re 1.6364 3 Sq 0.6512 Size = 22 Percent ffffffffffffffff 9.09 9.09 50.00 18.18 13.64	Cumulative Frequency 5 13 18 22 Cumulative Frequency fffffffffffff 2 4 15 19	Percent ffffffffff 22.73 59.09 81.82 100.00 Cumulative Percent ffffffffff 9.09 18.18 68.18 86.36
fffffffffffffffffffffffffffffff Disagree Undecided Agree Strongly agree Strongly agree Strongly disagree Disagree Undecided Agree	<pre>Pr > Chi Sample equency fffffffff 5 8 5 4 Chi-S for Equa ffffffff Chi-Squa DF Pr > Chi Sample equency ffffffffff 2 2 11 4 3 Chi-S for Equa</pre>	3 Sq 0.0010 Size = 22 Percent fffffffffffff 22.73 36.36 22.73 18.18 quare Test 1 Proportions fffffffffffffff re 1.6364 3 Sq 0.6512 Size = 22 Percent ffffffffffffffff 9.09 9.09 50.00 18.18 13.64 quare Test 1 Proportions	Cumulative Frequency fffffffffff 5 13 18 22 2 Cumulative Frequency fffffffffffff 19 22	Percent ffffffffff 22.73 59.09 81.82 100.00 Cumulative Percent ffffffffff 9.09 18.18 68.18 86.36
fffffffffffffffffffffffffffffff Disagree Undecided Agree Strongly agree Strongly agree Strongly disagree Disagree Undecided Agree	Pr > Chi Sample equency fffffffff 5 8 5 4 Chi-S 6 7 For Equa ffffffff Chi-Squa DF Pr > Chi Sample equency ffffffffff 2 2 11 4 3 Chi-S for Equa ffffffffff 2 2 11 4 3	3 Sq 0.0010 Size = 22 Percent ffffffffffffff 22.73 36.36 22.73 18.18 quare Test 1 Proportions ffffffffffffffff 9.09 9.09 50.00 18.18 13.64 quare Test 1 Proportions ffffffffffffffffffffffffffffffffffff	Cumulative Frequency fffffffffff 13 18 22 22 Cumulative Frequency ffffffffffff 2 4 15 19 22	Percent ffffffffff 22.73 59.09 81.82 100.00 Cumulative Percent fffffffffff 9.09 18.18 68.18 86.36
fffffffffffffffffffffffffffffff Disagree Undecided Agree Strongly agree Strongly agree Strongly disagree Disagree Undecided Agree	Pr > Chi Sample equency fffffffff 5 8 5 4 Chi-S for Equa fffffffff Chi-Squa DF Pr > Chi Sample equency ffffffffff 2 2 11 4 3 Chi-S for Equa fffffffff Chi-Squa DF	3 Sq 0.0010 Size = 22 Percent ffffffffffff 22.73 36.36 22.73 18.18 quare Test 1 Proportions ffffffffffffff re 1.6364 3 Sq 0.6512 Size = 22 Percent ffffffffffffff 9.09 9.09 50.00 18.18 13.64 quare Test 1 Proportions ffffffffffffff re 13.000 4	Cumulative Frequency fffffffffff 13 18 22 22 Cumulative Frequency ffffffffffff 2 4 15 19 22	Percent ffffffffff 22.73 59.09 81.82 100.00 Cumulative Percent fffffffffff 9.09 18.18 68.18 86.36
ffffffffffffffffffffffffff Disagree Undecided Agree Strongly agree Strongly disagree Disagree Undecided Agree Strongly agree	Pr > Chi Sample equency fffffffff 5 8 5 4 Chi-S 7 For Equa ffffffff Chi-Squa DF Pr > Chi 3 Chi-S for Equa fffffffff Chi-Squa DF Pr > Chi	3 Sq 0.0010 Size = 22 Percent ffffffffffffff 22.73 36.36 22.73 18.18 quare Test 1 Proportions fffffffffffffff 9.09 9.09 50.00 18.18 13.64 quare Test 1 Proportions fffffffffffffff re 13.0000 4 Sq 0.0113	Cumulative Frequency ffffffffff 13 18 22 22 Cumulative Frequency fffffffffff 2 4 15 19 22	Percent fffffffffff 22.73 59.09 81.82 100.00 Cumulative Percent ffffffffff 9.09 18.18 68.18 86.36 100.00
fffffffffffffffffffffffffffffff Disagree Undecided Agree Strongly agree Strongly agree Disagree Undecided Agree Strongly agree Strongly agree	Pr > Chi Sample equency ffffffffff 5 8 5 4 Chi-S for Equa fffffffff Chi-Squa DF Pr > Chi Sample equency ffffffffff 2 1 4 3 Chi-S for Equa fffffffff Chi-Squa DF Pr > Chi Sample equency fffffffffff Chi-Squa DF Pr > Chi Sample chi-S for Equa fffffffff Chi-Squa DF Pr > Chi Sample chi-S for Equa for Equa	3 Sq 0.0010 Size = 22 Percent ffffffffffff 22.73 36.36 22.73 18.18 quare Test 1 Proportions fffffffffffffff re 1.6364 3 Sq 0.6512 Size = 22 Percent ffffffffffffffff 9.09 9.09 50.00 18.18 13.64 quare Test 1 Proportions ffffffffffffff re 13.0000 4 Sq 0.0113 s have expect uare may not	Cumulative Frequency 13 18 22 Cumulative Frequency ffffffffffff 19 22 ed counts let	Percent fffffffffff 22.73 59.09 81.82 100.00 Cumulative Percent fffffffffff 9.09 18.18 68.18 68.18 86.36 100.00
fffffffffffffffffffffffffffffff Disagree Undecided Agree Strongly agree Strongly agree Disagree Undecided Agree Strongly agree Strongly agree	Pr > Chi Sample equency ffffffffff 5 8 5 4 Chi-S for Equa fffffffff Chi-Squa DF Pr > Chi Sample equency ffffffffff 2 1 4 3 Chi-S for Equa fffffffff Chi-Squa DF Pr > Chi Sample equency fffffffffff Chi-Squa DF Pr > Chi Sample chi-S for Equa fffffffff Chi-Squa DF Pr > Chi Sample chi-S for Equa for Equa	3 Sq 0.0010 Size = 22 Percent ffffffffffff 22.73 36.36 22.73 18.18 quare Test 1 Proportions ffffffffffffff re 1.6364 3 Sq 0.6512 Size = 22 Percent fffffffffffffffff 9.09 9.09 50.00 18.18 13.64 quare Test 1 Proportions fffffffffffffff re 1.30000 4 Sq 0.0113 s have expect	Cumulative Frequency 13 18 22 Cumulative Frequency ffffffffffff 19 22 ed counts let	Percent fffffffffff 22.73 59.09 81.82 100.00 Cumulative Percent fffffffffff 9.09 18.18 68.18 68.18 86.36 100.00
ffffffffffffffffffffffffffffffffffffff	Pr > Chi Sample equency fffffffff 5 8 5 4 Chi-S for Equa fffffffff Chi-Squa DF Pr > Chi Sample equency fffffffffff Chi-Squa 11 4 3 Chi-S for Equa fffffffffff Chi-Squa DF Pr > Chi Sample chi-Squa DF Pr > Chi Sample Sample	3 Sq 0.0010 Size = 22 Percent ffffffffffff 22.73 36.36 22.73 18.18 quare Test 1 Proportions ffffffffffffff re 1.6364 3 Sq 0.6512 Size = 22 Percent fffffffffffffff 9.09 9.09 50.00 18.18 13.64 quare Test 1 Proportions ffffffffffffff re 13.0000 4 Sq 0.0113 s have expect uare may not Size = 22	Cumulative Frequency ffffffffffff 13 18 22 Cumulative Frequency fffffffffffff 2 4 15 19 22 ed counts les be a valid te Cumulative	Percent ffffffffff 22.73 59.09 81.82 100.00 Cumulative Percent fffffffffff 9.09 18.18 68.18 86.36 100.00 55 55 55 55 55
ffffffffffffffffffffffffffff Disagree Undecided Agree Strongly agree B16 Fro fffffffffffffffffffffffff Strongly disagree Undecided Agree Strongly agree WARNING: The f than	Pr > Chi Sample equency ffffffffff 5 8 5 4 Chi-S for Equa ffffffff Chi-Squa DF Pr > Chi Sample equency fffffffffff Chi-Squa DF Pr > Chi table cell 5. Chi-Sq Sample equency	3 Sq 0.0010 Size = 22 Percent ffffffffffffff 22.73 36.36 22.73 18.18 quare Test 1 Proportions fffffffffffffff re 1.6364 3 Sq 0.6512 Size = 22 Percent fffffffffffffffff 9.09 50.00 18.18 13.64 quare Test 1 Proportions fffffffffffffff re 13.0000 4 Sq 0.0113 s have expect uare may not Size = 22 Percent	Cumulative Frequency ffffffffff 13 18 22 Cumulative Frequency fffffffffff 2 4 15 19 22 ed counts lee be a valid to Cumulative Frequency	Percent fffffffffff 22.73 59.09 81.82 100.00 Cumulative Percent ffffffffff 9.09 18.18 68.18 86.36 100.00 55 est. Cumulative Percent
ffffffffffffffffffffffffffffffffffffff	Pr > Chi Sample equency ffffffffff 5 8 5 4 Chi-S for Equa fffffffff Chi-Squa DF Pr > Chi Sample equency ffffffffff Chi-Squa 2 11 4 3 Chi-S for Equa fffffffff Chi-Squa Equency Fr > Chi table cell 5. Chi-Sq Sample equency	3 Sq 0.0010 Size = 22 Percent ffffffffffff 22.73 36.36 22.73 18.18 quare Test 1 Proportions ffffffffffffff re 1.6364 3 Sq 0.6512 Size = 22 Percent fffffffffffffff re 13.0000 4 Sq 0.0113 s have expect uare may not 1 Size = 22 Percent ffffffffffffffffffffffffffffffffffff	Cumulative Frequency ffffffffffff 13 18 22 Cumulative Frequency fffffffffffff 2 4 15 19 22 ed counts les be a valid te Frequency ffffffffffffffffffffffffffffffffffff	Percent fffffffffff 22.73 59.09 81.82 100.00 Cumulative Percent fffffffffff 9.09 18.18 68.18 86.36 100.00 55 55 55 55 Cumulative Percent ffffffffffff 4.55
ffffffffffffffffffffffffffffffffffffff	Pr > Chi Sample equency ffffffffff 5 8 5 4 Chi-S for Equa fffffffff Chi-Squa DF Pr > Chi Sample equency fffffffffff Chi-Squa DF Pr > Chi table cell 5. Chi-Sq Sample equency fffffffffff 5. Chi-Squa DF Pr > Chi	3 Sq 0.0010 Size = 22 Percent fffffffffffff 22.73 36.36 22.73 18.18 quare Test 1 Proportions ffffffffffffffff re 1.6364 3Sq 0.6512 Size = 22 Percent ffffffffffffffff re 13.0000 18.18 13.64 quare Test 1 Proportions ffffffffffffff re 13.0000 4 Sq 0.0113 s have expect uare may not 1 Size = 22 Percent ffffffffffffffffffffffffffffffffffff	Cumulative Frequency ffffffffffff 13 18 22 Cumulative Frequency ffffffffffff 2 4 15 19 22 ed counts les be a valid to Cumulative Frequency ffffffffffff 1 6	Percent fffffffffff 22.73 59.09 81.82 100.00 Cumulative Percent fffffffffff 9.09 18.18 68.18 86.36 100.00 55 55 55 55 55 55 27.27
ffffffffffffffffffffffffffffffffffffff	Pr > Chi Sample equency ffffffffff 5 8 5 4 Chi-S for Equa fffffffff Chi-Squa DF Pr > Chi Sample equency ffffffffff Chi-Squa 2 11 4 3 Chi-S for Equa fffffffff Chi-Squa Equency Fr > Chi table cell 5. Chi-Sq Sample equency	3 Sq 0.0010 Size = 22 Percent ffffffffffff 22.73 36.36 22.73 18.18 quare Test 1 Proportions ffffffffffffff re 1.6364 3 Sq 0.6512 Size = 22 Percent fffffffffffffff re 13.0000 4 Sq 0.0113 s have expect uare may not 1 Size = 22 Percent ffffffffffffffffffffffffffffffffffff	Cumulative Frequency ffffffffffff 13 18 22 Cumulative Frequency fffffffffffff 2 4 15 19 22 ed counts les be a valid te Frequency ffffffffffffffffffffffffffffffffffff	Percent fffffffffff 22.73 59.09 81.82 100.00 Cumulative Percent fffffffffff 9.09 18.18 68.18 86.36 100.00 55 55 55 55 Cumulative Percent ffffffffffff 4.55
ffffffffffffffffffffffffffffffffffff	<pre>Pr > Chi Sample equency ffffffffff 5 8 5 4 Chi-S for Equa fffffffff Chi-Squa DF Pr > Chi Sample equency ffffffffff Chi-Squa DF Pr > Chi table cell 5. Chi-Sq Pr > Chi table cell 5. Chi-Sq Sample equency ffffffffff 1 5. Chi-Sq Sample equency ffffffffff 1 5. Chi-Sq Sample Pr > Chi table cell 5. Chi-Sq Sample equency fffffffffff 1 5. Chi-Sq Sample equency fffffffffffff 1 5. Chi-Sq Sample equency fffffffffffffffffff 1 5. Chi-Sq Sample equency fffffffffffffffffffffffffff 1 5. Chi-Sq Sample equency ffffffffffffffffffffffffffffffffffff</pre>	3 Sq 0.0010 Size = 22 Percent fffffffffffff 22.73 36.36 22.73 18.18 quare Test 1 Proportions ffffffffffffffff re 1.6364 3 Sq 0.6512 Size = 22 Percent ffffffffffffffff re 13.0000 18.18 13.64 quare Test 1 Proportions ffffffffffffff re 13.0000 4 Sq 0.0113 s have expect Size = 22 Percent ffffffffffffff re 13.0000 4 Sq 0.0113 s have expect Size = 22 Percent fffffffffffffff 4.55 22.73 68.18 4.55	Cumulative Frequency fffffffffff 13 18 22 Cumulative Frequency ffffffffffff 19 22 ed counts less be a valid to Cumulative Frequency fffffffffffff 1 Cumulative Frequency ffffffffffffff 1 6 21	Percent fffffffffff 22.73 59.09 81.82 100.00 Cumulative Percent ffffffffffff 9.09 18.18 68.18 86.36 100.00 55 55 55 55 55 27.27 9.45
ffffffffffffffffffffffffffffffffffff	Pr > Chi Sample equency fffffffff 5 8 5 4 Chi-S for Equa ffffffff Chi-Squa DF Pr > Chi Sample equency ffffffffff Chi-Squa ffr Equa fffffffff Chi-Squa DF Pr > Chi table cell 5. Chi-Sq Sample equency fffffffffff 1 5 15 1 Chi-S	3 Sq 0.0010 Size = 22 Percent fffffffffffff 22.73 36.36 22.73 18.18 quare Test 1 Proportions fffffffffffffff re 1.6364 3 Sq 0.6512 Size = 22 Percent fffffffffffffffffff re 1.6364 9.09 9.09 9.09 50.00 18.18 13.64 quare Test 1 Proportions fffffffffffffffff re 13.0000 4 Sq 0.0113 s have expect uare may not Size = 22 Percent ffffffffffffffffffffffffffffffffffff	Cumulative Frequency fffffffffff 13 18 22 Cumulative Frequency ffffffffffff 19 22 ed counts less be a valid to Cumulative Frequency fffffffffffff 1 Cumulative Frequency ffffffffffffff 1 6 21	Percent fffffffffff 22.73 59.09 81.82 100.00 Cumulative Percent ffffffffffff 9.09 18.18 68.18 86.36 100.00 55 55 55 55 55 27.27 9.45
ffffffffffffffffffffffffffffffffffff	<pre>Pr > Chi Sample equency fffffffff 5 8 5 4 Chi-S for Equa fffffffff Chi-Squa DF Pr > Chi Sample equency ffffffffff Chi-Squa DF Pr > Chi table cell 5. Chi-Sq Sample equency fffffffffff Chi-Squa DF Pr > Chi table cell 5. Chi-Sq Sample equency fffffffffffff 1 5 15 1 Chi-S for Equa</pre>	3 Sq 0.0010 Size = 22 Percent fffffffffffff 22.73 36.36 22.73 18.18 quare Test 1 Proportions ffffffffffffffff re 1.6364 3 Sq 0.6512 Size = 22 Percent fffffffffffffff re 13.0000 18.18 13.64 quare Test 1 Proportions ffffffffffffff re 13.0000 4 Sq 0.0113 s have expect uare may not Size = 22 Percent ffffffffffffffff 4.55 22.73 68.18 4.55 quare Test 1 Proportions ffffffffffffffffffffffffffffffffffff	Cumulative Frequency ffffffffffff 13 18 22 Cumulative Frequency fffffffffffffffff 2 4 15 19 22 ed counts les be a valid to Frequency ffffffffffffffffffffffffffffffffffff	Percent fffffffffff 22.73 59.09 81.82 100.00 Cumulative Percent ffffffffffff 9.09 18.18 68.18 86.36 100.00 55 55 55 55 55 27.27 9.45

	DF Pr > Chi!	3 Sq <.0001		
		Size = 22		
		Cu	mulative	Cumulative
B18 Fre	equency		requency	Percent
Undecided	5	22.73	5	22.73
Agree Strongly agree	16 1	72.73 4.55	21 22	95.45 100.00
	Chi C	auana Tast		
	for Equa	quare Test l Proportions		
		<i>ffffffffffff</i> re 16.4545		
	DF	2		
	Pr > Chi Sample	Sq 0.0003 Size = 22		
		Cu	mulative	Cumulative
	equency	Percent F	requency	Percent
fffffffffffffffffffffffffff	3	13.64	3 JJJJJJJJJJJJJJJ 3	13.64
Undecided Agree	12 5	54.55 22.73	15 20	68.18 90.91
Strongly agree	2	9.09	22	100.00
	Chi-S	quare Test		
	for Equa	I Proportions fffffffffffff		
	Chi-Squa	re 11.0909		
	DF Pr > Chi	3 Sq 0.0112		
		Size = 22		
			mulative	Cumulative
B20 Fre fffffffffffffffffffffffff	equency ffffffffff		requency fffffffffff	Percent ffffffffff
Disagree Undecided	5	22.73 9.09	5	22.73
Agree	13	59.09	20	31.82 90.91
Strongly agree	2	9.09	22	100.00
		quare Test		
		l Proportions ffffffffffff		
	Chi-Squa DF	re 14.7273 3		
	Pr ≻ Chi	Sq 0.0021		
	Sample	Size = 22		
B21 Fre	equency		mulative requency	Cumulative Percent
<i>ffffffffffffffffffffff</i>	fffffffff	fffffffffffffffff	fffffffffff	fffffffffff
Strongly disagree Disagree	1 3	4.55 13.64	1 4	4.55 18.18
Undecided Agree	6 5	27.27 22.73	10 15	45.45 68.18
Strongly agree	7	31.82	22	100.00
		quare Test		
		l Proportions ffffffffffff		
	Chi-Squa	re 5.2727		
	DF Pr > Chi			
		s have expected uare may not be		
		Size = 22		
			mulative	Cumulative
B22 Fre	equency ffffffffff		requency fffffffffff	Percent ffffffffff
Undecided	9 7	40.91 31.82	9 16	40.91 72.73
Agree Strongly agree	6	27.27	22	100.00
	Chi-S	quare Test		
	for Equa	l Proportions		
	Chi-Squa	ffffffffffff re 0.6364		
	DF Pr > Chi	2 Sq 0.7275		
		Size = 22		
			mulative	Cumulative
B23 Fre	equency ffffffffff		requency fffffffffff	Percent ffffffffff
Strongly disagree	1	4.55	1	4.55
Disagree Undecided	7 4	31.82 18.18	8 12	36.36 54.55
Agree Strongly agree	9 1	40.91 4.55	21 22	95.45 100.00
				_30.00
	for Equa	quare Test l Proportions		
	ffffffff Chi-Squa	<i>fffffffffffff</i> re 11.6364		
	DF	4		

	an 5. Chi-So	Ls have expe	03 cted counts le t be a valid t	
B24 F fffffffffffffffffffffffff Disagree	requency fffffffffff 2	Percent fffffffffff 9.09	Cumulative Frequency ffffffffffff 2	Cumulative Percent ffffffffff 9.09
Undecided	12	54.55	14	63.64
Agree Strongly agree	5 3	22.73 13.64	19 22	86.36 100.00
	Chi-9	Square Test		
	for Equa ffffffff Chi-Squa DF	al Proportio ffffffffffff are 11.09	ff 09 3	
	Pr ≻ Chi Sample	iSq 0.01 e Size = 22		
B25 F	requency	Percent	Cumulative Frequency	Cumulative Percent
fffffffffffffffffffffff	ŧfffffffffff	, ,	fffffffffffffffff	fffffffffff
Disagree Undecided	3 5	13.64 22.73	3 8	13.64 36.36
Agree Strongly agree	4 10	18.18 45.45	12 22	54.55 100.00
Strongry agree			22	100.00
	for Equa	Square Test al Proportio fffffffffff are 5.27	ff	
	Pr ≻ Chi			
	Sample	e Size = 22		
<i>ffffffffffffffffffffffff</i> 0	2	9.09	2	9.09
Strongly disagree Disagree	1 5	4.55 22.73	3 8	13.64 36.36
Undecided	6	27.27	14	63.64
Agree Strongly agree	6 2	27.27 9.09	20 22	90.91 100.00
	for Equa	Square Test al Proportio fffffffffff are 6.90	ff	
	an 5. Chi-So	Ls have expe	75 cted counts le t be a valid t	
			Cumulative	Cumulative
B27 F Fffffffffffffffffffffff	requency	Percent fffffffffff	Frequency	Percent fffffffffff
Strongly disagree	2	9.09	2	9.09
Disagree Undecided	2 5	9.09 22.73	4 9	18.18 40.91
Agree	8 5	36.36 22.73	17 22	77.27 100.00
Strongly agree	,	22.75	22	100.00
	for Equa	Square Test al Proportio fffffffffff are 5.72	ff	
	Pr > Chi e table cell an 5. Chi-So	Ls have expe	05 cted counts le t be a valid t	
			Cumulative	Cumulative
	requency	Percent	Frequency	Percent
ffffffffffffffffffffffffffffffffffffff	<i>fffffffffff</i> 1	<i>ffffffffffff</i> 4 . 55	<i>fffffffffffffff</i> 1	<i>ffffffffffff</i> 4.55
Disagree	11	50.00	12	54.55
Undecided Agree	4 5	18.18 22.73	16 21	72.73 95.45
Strongly agree	1	4.55	22	100.00
	for Equa	Square Test al Proportio ffffffffffff are 15.27	ff	
	Pr > Chi e table cell an 5. Chi-So	Ls have expe		
			Cumulative	Cumulative
B29 F ffffffffffffffffffffffff Strongly disagree	Frequency fffffffffff 1	Percent ffffffffff 4.55	Frequency	Percent

Disagree Undecided Agree Strongly agree	3 10 5 3	13.64 45.45 22.73 13.64	4 14 19 22	18.18 63.64 86.36 100.00
	for Equa	quare Test l Proportions ffffffffff re 10.7273 4		
	5. Chi-Squ	Sq 0.0298 s have expected o uare may not be a Size = 22		
B30 Fre	equency		ulative	Cumulative Percent
ffffffffffffffffffffffffffff				
Undecided Agree	1 14	4.55 63.64	3 17	13.64 77.27
Strongly agree	5	22.73	22	100.00
	for Equal ffffffff Chi-Squar DF Pr > Chis	quare Test 1 Proportions fffffffffff re 19.0909 3 Sq 0.0003 Size = 22		
224			ulative	Cumulative
ffffffffffffffffffffffff		fffffffffffffffffff		
Disagree Undecided	4	18.18 18.18	4	18.18 36.36
Agree Strongly agree	10 4	45.45 18.18	18 22	81.82 100.00
	for Equa ffffffff Chi-Squa DF	3		
	Pr > Chis Sample	Sq 0.1786 Size = 22		
		Cumu	ulative	Cumulative
B32 Fre	equency ffffffffff		equency ffffffffff	Percent fffffffff
Disagree Undecided	6 5	27.27 22.73	6 11	27.27 50.00
Agree Strongly agree	10 1	45.45 4.55	21 22	95.45 100.00
		quare Test		
	for Equa	l Proportions ffffffffffff		
	Pr > Chis Sample	Sq 0.0587 Size = 22		
	·		ulative	Cumulative
B33 Fre	equency ffffffffff		equency ffffffffff	Percent ffffffffff
Strongly disagree Undecided	1 1	4.55 4.55	1 2	4.55 9.09
Agree Strongly agree	10 10	45.45	12 22	54.55 100.00
Serongry ugree		quare Test		200100
	for Equa	l Proportions ffffffffffff		
	Pr > Chi			
			ulative	Cumulative
B34 Fre fffffffffffffffffffffffff	equency ffffffffff		equency ffffffffff	Percent ffffffffff
Disagree Undecided	1 2	4.55 9.09	1 3	4.55 13.64
Agree Strongly agree	9 10	40.91 45.45	12 22	54.55 100.00
Scioligiy agree		quare Test	22	100.00
	for Equa	l Proportions ffffffffffff		
	Pr ≻ Chist	-		
	p20		ulative	Cumulative
B35 Fro fffffffffffffffffffffff Strongly disagree	equency fffffffff 1	Percent Fre	equency	Percent

Disagree Undecided Agree Strongly agree	2 7 9 3	9.09 31.82 40.91 13.64	3 10 19 22	13.64 45.45 86.36 100.00
	for Equa		f	
	Pr > Chi table cell 5. Chi-Sq	s have expec	98 ted counts le be a valid t	
B36 Fr	equency	Percent	Cumulative Frequency	Cumulative Percent
ffffffffffffffffffffffffffffffffffffff				
Undecided Agree	3	13.64 22.73	4	18.18 40.91
Strongly agree	13	59.09	22	100.00
	for Equa ffffffff Chi-Squa DF Pr > Chi	<pre>quare Test l Proportion fffffffffffff re 15.090 Sq 0.001 Size = 22</pre>	f 99 3	
			Cumulative	Cumulative
ffffffffffffffffffffffff				
Strongly disagree Undecided	3 2	13.64 9.09	3 5	13.64 22.73
Agree Strongly agree	12 5	54.55 22.73	17 22	77.27 100.00
	for Equa	quare Test l Proportion ffffffffffff re 11.090	f	
	Pr ≻ Chi	Sq 0.011 Size = 22		
	Sampre	5126 - 22	Cumulative	Cumulative
B38 Fr <i>fffffffffffffffffffffffffffff</i>	equency	Percent fffffffffff	Frequency	Percent
Strongly disagree Agree	2 14	9.09 63.64	2 16	9.09 72.73
Strongly agree	6	27.27	22	100.00
	for Equa	quare Test l Proportion fffffffffff re 10.181	f	
	Pr ≻ Chi Sample	Sq 0.006 Size = 22	52	
			Cumulative	Cumulative
B39 Fr <i>fffffffffffffffffffffffffffff</i>	equency ffffffffff	Percent fffffffffff	Frequency	Percent ffffffffff
Strongly disagree Disagree	3 3	13.64 13.64	3 6	13.64 27.27
Undecided Agree	5 10	22.73 45.45	11 21	50.00 95.45
Strongly agree	1	4.55	22	100.00
	for Equa		f	
	5. Chi-Sq	s have expec	98 ted counts le be a valid t	
B40 Fr	equency	Percent	Cumulative Frequency	Cumulative Percent
ffffffffffffffffffffffffffffffffffffff				
Undecided Agree	1	4.55	2	9.09 31.82
Strongly agree	15	68.18	22	100.00
	for Equa		5f 32 3	
		Size = 22		
B41 Fr	equency	Percent	Cumulative Frequency	Cumulative Percent

fffffffffffffffffffffffff	ffffffffff: 2	fffffffffffffffffffffffffffffffffffff	ffffffffffff 2	ffffffffff 9.09
Strongly disagree Disagree	1	4.55	3	13.64
Undecided	5	22.73	8	36.36
Agree	12	54.55	20	90.91
Strongly agree	2	9.09	22	100.00
		Square Test		
		al Proportions		
	Chi-Squ	ffffffffffffff are 18.4545		
	DF	4		
	Pr > Ch			
		ls have expecte quare may not b		
		e Size = 22		
		6		Cumulatius
B42 F	requency		umulative Frequency	Cumulative Percent
<i>fffffffffffffffffffffffffff</i>				
Strongly disagree	4	18.18	4	18.18
Disagree Undecided	10 4	45.45 18.18	14 18	63.64 81.82
Agree	2	9.09	20	90.91
Strongly agree	2	9.09	22	100.00
	Chi	Squana Tost		
		Square Test al Proportions		
	fffffff	ffffffffffffff		
	Chi-Squ			
	DF Pr > Ch:	4 iSq 0.0436		
	table cel	ls have expecte		
tha		quare may not b	e a valid te	est.
	Sample	e Size = 22		
		С	umulative	Cumulative
	requency		Frequency	Percent
ffffffffffffffffffffffffffffffffffffff	2 2 2 2	;††††††††††††††† 9 . 09	2 2	9.09
Undecided	2	9.09	4	18.18
Agree	12	54.55	16	72.73
Strongly agree	6	27.27	22	100.00
	Chi-	Square Test		
		al Proportions		
		fffffffffffff		
	Chi-Squ DF	are 12.1818 3		
	Pr > Ch			
	Sampl	e Size = 22		
		с	umulative	Cumulative
	requency		Frequency	Percent
fffffffffffffffffffffffff	ffffffffff 4	<i>ffffffffffffffffff</i> 18.18	ffffffffffff 4	fffffffffff 18.18
Strongly disagree Disagree	8	36.36	12	54.55
Undecided	5	22.73	17	77.27
Agree	3	13.64	20	90.91
Strongly agree	2 Chi-	9.09 Square Test	22	100.00
		al Proportions		
		fffffffffffff		
	DF	are 4.8182 4		
	Pr > Ch			
		ls have expecte		
tha		quare may not b e Size = 22	e a valid te	est.
	Sampi			
D.4.5 5			umulative	Cumulative
B45 F <i>fffffffffffffffffffffffff</i>	requency ffffffffff		Frequency ffffffffffff	Percent ffffffffff
Strongly disagree	1	4.55	1	4.55
Disagree	1	4.55	2	9.09
Undecided Agree	5 6	22.73 27.27	7 13	31.82 59.09
Strongly agree	9	40.91	22	100.00
- / -				
		Square Test al Proportions		
		ffffffffffffff		
	Chi-Squ	are 10.7273		
	DF Pr > Ch	4 iSq 0.0298		
WARNING: The		ls have expected	d counts les	s
	n 5. Chi-S	quare may not b		
	Sample	e Size = 22		
		с	umulative	Cumulative
	requency		Frequency	Percent
ffffffffffffffffffffffffff	ffffffffff 2	9 . 09	ffffffffffff 2	
Strongly disagree Disagree	2 4	18.18	6	9.09 27.27
Undecided	5	22.73	11	50.00
Agree	11	50.00	22	100.00
	Ch i	Causes Test		
	Cn1-	Square Test		

Chi-Square Test for Equal Proportions

DF 5 Pr > ChiSq 0.0424 Sample Size = 22

B47 F fffffffffffffffffffffffff 0 Strongly disagree	requency fffffffffff 1 3	Percent ffffffffff 4.55 13.64	Cumulative Frequency ffffffffffffff 1 4	Cumulative Percent ffffffffff 4.55 18.18
Disagree	8	36.36	12	54.55
Undecided	3	13.64	15	68.18
Agree	1	4.55	16	72.73
Strongly agree	6	27.27	22	100.00

Chi-Square Test for Equal Proportions ffffffffffffffffffff Chi-Square 10.7273 DF 5 Pr > ChiSq 0.0571 WARNING: The table cells have expected counts less than 5. Chi-Square may not be a valid test. Sample Size = 22

B48 Fi	requency	Percent	Cumulative Frequency	Cumulative Percent
fffffffffffffffffffffff				
Strongly disagree	7	31.82	7	31.82
Disagree	1	4.55	8	36.36
Undecided	5	22.73	13	59.09
Agree	9	40.91	22	100.00

DF 3 Pr > ChiSq 0.0952 Sample Size = 22

			Cumulative	Cumulative
B49	Frequency	Percent	Frequency	Percent
ffffffffffffffffffff	ffffffffffffff	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,	fffffffffff
Strongly disagree	3	13.64	3	13.64
Disagree	2	9.09	5	22.73
Undecided	1	4.55	6	27.27
Agree	7	31.82	13	59.09
Strongly agree	9	40.91	22	100.00

Chi-Square Test

Chi-Square Test for Equal Proportions fffffffffffffffffff Chi-Square 10.7273 DF 4 Pr > ChiSq 0.0298 WARNING: The table cells have expected counts less than 5. Chi-Square may not be a valid test. Sample Size = 22

B50	Frequency	Percent	Cumulative Frequency	Cumulative Percent
ffffffffffffffffffffff			ffffffffffffffff	
Strongly disagree	2	9.09	2	9.09
Disagree	1	4.55	3	13.64
Undecided	9	40.91	12	54.55
Agree	10	45.45	22	100.00
-				
	Chi-So	quare Test		
	for Equa	I Proportio	ns	
	fffffff	fffffffffff	ff	
	Chi-Squa	re 11.81	82	
	DF		3	
	Pr > Chi	Sq 0.00	80	
	Sample	Size = 22		

				Cumulative	Cumulative
B	51 Frequ	ency	Percent	Frequency	Percent
ffffffffffffffff	fffffffffff	ffffff	ffffffffffffff	fffffffffffffff	ffffffffff
Strongly disagro	ee	4	18.18	4	18.18
Disagree		2	9.09	6	27.27
Undecided		10	45.45	16	72.73
Agree		5	22.73	21	95.45
Strongly agree		1	4.55	22	100.00

DF 4 Pr > ChiSq 0.0246 WARNING: The table cells have expected counts less than 5. Chi-Square may not be a valid test. Sample Size = 22

Cumulative Cumulative B52 Frequency Percent Frequency Percent

Dianana		4 55		4 55
Disagree Undecided	1 4	4.55 18.18	1 5	4.55 22.73
Agree Strongly agree	3 14	13.64 63.64	8 22	36.36 100.00
Strongry agree			22	100.00
		quare Test l Proportions		
	fffffff	ffffffffffffff		
	Chi-Squa DF	re 18.3636 3		
	Pr > Chi			
	Sample	Size = 22		
B53 Fre	equency	(Percent	Cumulative Frequency	Cumulative Percent
<i>ffffffffffffffffffffffffffff</i>		ffffffffffffff		
Strongly disagree Disagree	2 7	9.09 31.82	2 9	9.09 40.91
Undecided	1	4.55	10	45.45
Agree Strongly agree	10 2	45.45 9.09	20 22	90.91 100.00
		T +		
		quare Test 1 Proportions		
	ffffffff Chi-Squa	ffffffffffff re 13.9091		
	DF	4		
WARNING: The	Pr > Chi		ed counts less	<.
	5. Chi-Sq	uare may not l		
	Sample	Size = 22		
DE 4			Cumulative	Cumulative
B54 Fre ffffffffffffffffffffffff	equency ffffffffff	Percent ffffffffffff	Frequency	Percent fffffffff
Strongly disagree Disagree	3 1	13.64 4.55	3 4	13.64 18.18
Undecided	1	4.55	5	22.73
Agree Strongly agree	6 11	27.27 50.00	11 22	50.00 100.00
Scholigity ugree				100.00
		quare Test l Proportions		
	ffffffff	ffffffffffff		
	Chi-Squa DF	re 16.1818 4		
	Pr > Chi		ad counts los	-
WARNING: The than	5. Chi-Sq	uare may not l		
	Sample	Size = 22		
255 5			Cumulative	Cumulative
	equency ffffffffff	Percent	Frequency	Percent
ffffffffffffffffffffffffffff	ffffffffff 3	Percent ffffffffffff 13.64	Frequency ffffffffffff 3	Percent fffffffff 13.64
ffffffffffffffffffffffff	fffffffff	Percent ffffffffffff	Frequency	Percent ffffffffff
fffffffffffffffffffffffffff Strongly disagree Disagree Undecided Agree	ffffffffff 3 3 4 9	Percent ffffffffffff 13.64 13.64 18.18 40.91	Frequency ffffffffffffff 3 6 10 19	Percent fffffffff 13.64 27.27 45.45 86.36
ffffffffffffffffffffffff Strongly disagree Disagree Undecided	fffffffff 3 3 4 9 3	Percent ffffffffffffff 13.64 13.64 18.18 40.91 13.64	Frequency fffffffffff 3 6 10	Percent ffffffffff 13.64 27.27 45.45
fffffffffffffffffffffffffff Strongly disagree Disagree Undecided Agree	fffffffff 3 3 4 9 3 Chi-S	Percent fffffffffffffff 13.64 13.64 18.18 40.91 13.64 quare Test	Frequency ffffffffffffff 3 6 10 19	Percent fffffffff 13.64 27.27 45.45 86.36
fffffffffffffffffffffffffff Strongly disagree Disagree Undecided Agree	ffffffffff 3 4 9 3 Chi-S for Equa ffffffff	Percent ffffffffffffff 13.64 13.64 18.18 40.91 13.64 quare Test 1 Proportions ffffffffffffffffffffffffffffffffffff	Frequency ffffffffffffff 3 6 10 19	Percent fffffffff 13.64 27.27 45.45 86.36
fffffffffffffffffffffffffff Strongly disagree Disagree Undecided Agree	fffffffff 3 4 9 3 Chi-S for Equa	Percent ffffffffffffff 13.64 13.64 18.18 40.91 13.64 quare Test 1 Proportions ffffffffffffffffffffffffffffffffffff	Frequency ffffffffffffff 3 6 10 19	Percent fffffffff 13.64 27.27 45.45 86.36
ffffffffffffffffffffffffffffffffffff Strongly disagree Disagree Undecided Agree Strongly agree	ffffffffff 3 4 9 3 Chi-S for Equa ffffffff Chi-Squa DF Pr > Chi	Percent fffffffffffff 13.64 13.64 18.18 40.91 13.64 quare Test 1 Proportions fffffffffffff re 6.1818 4 Sq 0.1860	Frequency <i>ffffffffffff</i> 6 10 19 22	Percent ffffffffff 13.64 27.27 45.45 86.36 100.00
ffffffffffffffffffffffffffffffffff Strongly disagree Disagree Undecided Agree Strongly agree WARNING: The 1	ffffffffff 3 4 9 3 Chi-S for Equa ffffffff Chi-Squa DF Pr > Chi cable cell 5. Chi-Sq	Percent fffffffffffff 13.64 13.64 18.18 40.91 13.64 quare Test 1 Proportions fffffffffff re 6.1818 4 Sq 0.1860 s have expected uare may not b	Frequency ffffffffffff 6 10 19 22 ed counts less	Percent fffffffff 13.64 27.27 45.45 86.36 100.00
fffffffffffffffffffffffffffffffffff Strongly disagree Disagree Undecided Agree Strongly agree	ffffffffff 3 4 9 3 Chi-S for Equa ffffffff Chi-Squa DF Pr > Chi cable cell 5. Chi-Sq	Percent ffffffffffffff 13.64 18.18 40.91 13.64 quare Test 1 Proportions fffffffffffff re 6.1818 4 Sq 0.1860 s have expected	Frequency ffffffffffff 6 10 19 22 ed counts less	Percent fffffffff 13.64 27.27 45.45 86.36 100.00
fffffffffffffffffffffffffffffff Strongly disagree Disagree Undecided Agree Strongly agree WARNING: The f than	fffffffff 3 4 9 3 Chi-S for Equa for Equa ffffffff ffffffff Chi-Squa DF Pr > Chi cable cell 5. Chi-Squ Sample	Percent fffffffffffff 13.64 13.64 13.64 18.18 40.91 13.64 quare Test 1 Proportions ffffffffffff re 6.1818 4 Sq 0.1860 s have expected uare may not b Size = 22	Frequency fffffffffffff 3 6 10 19 22 ed counts les: be a valid te: Cumulative	Percent fffffffffff 13.64 27.27 45.45 86.36 100.00 ss. cumulative
fffffffffffffffffffffffffffffff Strongly disagree Disagree Undecided Agree Strongly agree WARNING: The f than	ffffffffff 3 4 9 3 Chi-S for Equa ffffffff Chi-Squa DF Pr > Chi cable cell 5. Chi-Sq Sample Sample	Percent fffffffffffff 13.64 13.64 18.18 40.91 13.64 quare Test 1 Proportions ffffffffffff re 6.1818 4 Sq 0.1860 s have expect uare may not Size = 22 Percent	Frequency fffffffffffff 3 6 10 19 22 ed counts less be a valid test Cumulative Frequency	Percent ffffffffff 13.64 27.27 45.45 86.36 100.00 s st. Cumulative Percent
ffffffffffffffffffffffffffffffff Strongly disagree Disagree Undecided Agree Strongly agree WARNING: The f than B56 Fre ffffffffffffffffffffffffffffffffffff	fffffffff 3 4 9 3 Chi-S for Equa ffffffff DF Pr > Chi Sample Sample equency fffffffffff 2	Percent ffffffffffffffff 13.64 13.64 13.64 14.18 40.91 13.64 quare Test 1 Proportions fffffffffffffre 6.1818 4 Sq 0.1860 9.1860 0 Percent 9.09	Frequency fffffffffffff 3 6 10 19 22 ed counts less be a valid test Cumulative Frequency ffffffffffffffffffffffffffffffffffff	Percent ffffffffff 13.64 27.27 45.45 86.36 100.00 s st. Cumulative Percent ffffffffff 9.09
ffffffffffffffffffffffffffffffffffffff	fffffffff 3 3 4 9 3 Chi-S for Equa fffffffff Chi-Squa DF Pr > Chi cable cell 5. Chi-Sq Sample equency fffffffff 2 2 7	Percent fffffffffffff 13.64 13.64 18.18 40.91 13.64 quare Test 1 Proportions fffffffffffff re 6.1818 4 Sq 0.1860 s have expects uare may not Size = 22 Percent fffffffffffffffff 9.09 31.82	Frequency ffffffffffff 3 6 10 19 22 ed counts les: be a valid te: Cumulative Frequency ffffffffffffffffffffffffffffffffffff	Percent ffffffffff 13.64 27.27 45.45 86.36 100.00 s s s s s cumulative Percent fffffffff 9.09 18.18 50.00
ffffffffffffffffffffffffffffffffffffff	fffffffff 3 4 9 3 Chi-S for Equa fffffffff Pr > Chi cable cell 5. Chi-Squ DF Pr > Chi cable cell 5. Chi-Squ cample ca	Percent ffffffffffffff 13.64 13.64 18.18 40.91 13.64 quare Test 1 Proportions ffffffffffff re 6.1818 4 Sq 0.1860 s have expected Size = 22 Percent ffffffffffffffff 9.09 9.09	Frequency fffffffffffff 3 6 10 19 22 ed counts less be a valid test Cumulative Frequency ffffffffffffffffffffffffffffffffffff	Percent ffffffffff 13.64 27.27 45.45 86.36 100.00 s st. Cumulative Percent fffffffff 9.09 18.18
ffffffffffffffffffffffffffffffffffffff	ffffffffff 3 3 4 9 3 Chi-S for Equa ffffffff Chi-Squa DF Pr > Chi cable cell 5. Chi-Sq Sample equency fffffffff 2 2 7 11 Chi-S	Percent ffffffffffffff 13.64 13.64 18.18 40.91 13.64 quare Test 1 Proportions ffffffffffff re 6.1818 4 Sq 0.1860 s have expects uare may not Size = 22 (Percent ffffffffffffffff 9.09 31.82 50.00 quare Test	Frequency ffffffffffff 3 6 10 19 22 ed counts les: be a valid te: Cumulative Frequency ffffffffffffffffffffffffffffffffffff	Percent ffffffffff 13.64 27.27 45.45 86.36 100.00 s s s s s cumulative Percent fffffffff 9.09 18.18 50.00
ffffffffffffffffffffffffffffffffffffff	fffffffff 3 4 9 3 Chi-S for Equa ffffffff Chi-Squa DF Pr > Chi cable cell 5. Chi-Sq Sample equency fffffffff 2 2 7 11 Chi-Sq 5 for Equa ffffffffff 2 2 7 11 Chi-Squa 5 for Equa ffffffffffffffffffffffffffffffffffff	Percent fffffffffffff 13.64 13.64 18.18 40.91 13.64 quare Test 1 Proportions ffffffffffff re 6.1818 43.50 s have expected s have expected Size = 22 Percent ffffffffffffffffff 9.09 9.09 31.82 50.00	Frequency ffffffffffff 3 6 10 19 22 ed counts les: be a valid te: Cumulative Frequency ffffffffffffffffffffffffffffffffffff	Percent ffffffffff 13.64 27.27 45.45 86.36 100.00 s s s s s cumulative Percent fffffffff 9.09 18.18 50.00
ffffffffffffffffffffffffffffffffffffff	fffffffff 3 3 4 9 3 Chi-S for Equa fffffffff Chi-Squa DF Pr > Chi-Sq Chi-Sq Sample Squency fffffffff 2 2 7 11 Chi-Sq Sample Squency fffffffff 2 2 7 11 Chi-Squa Sample Squency fffffffff Chi-Squa Chi-Squa Sample Chi-Squa Chi-Squa Sample Chi-Squa Chi-Squa Sample Chi-Squa Chi-Squa Sample Chi-Squa Chi-Squa Sample Chi-Squa Chi-Squa Sample Chi-Squa Chi-Squa Chi-Squa Sample Chi-Squa Chi-	Percent fffffffffffff 13.64 13.64 18.18 40.91 13.64 quare Test 1 Proportions fffffffffffff re 6.1818 4 Sq 0.1860 s have expect uare may not b Size = 22 Percent fffffffffffffffff 9.09 9.09 31.82 50.00 quare Test 1 Proportions fffffffffffffff re 10.3636	Frequency ffffffffffff 3 6 10 19 22 ed counts les: be a valid te: Cumulative Frequency ffffffffffffffffffffffffffffffffffff	Percent ffffffffff 13.64 27.27 45.45 86.36 100.00 s s s s s cumulative Percent fffffffff 9.09 18.18 50.00
ffffffffffffffffffffffffffffffffffffff	ffffffffff 3 3 4 9 3 Chi-S for Equa fffffffff Chi-Squa DF Pr > Chi Chi-St Sample equency ffffffffff 2 2 7 11 Chi-St for Equa ffffffffff Chi-Squa ffffffffff Chi-Squa DF Pr > Chi - Sr Pr > Chi Pr → Chi	Percent ffffffffffffff 13.64 13.64 18.18 40.91 13.64 quare Test 1 Proportions ffffffffffff e 6.1818 43.00 s have expected uare may not b Size = 22 Percent ffffffffffffffff 9.09 9.09 31.82 50.00 quare Test 1 Proportions fffffffffffffff re 10.3636 3 Sq 0.0157	Frequency ffffffffffff 3 6 10 19 22 ed counts les: be a valid te: Cumulative Frequency ffffffffffffffffffffffffffffffffffff	Percent ffffffffff 13.64 27.27 45.45 86.36 100.00 s s s s s cumulative Percent fffffffff 9.09 18.18 50.00
ffffffffffffffffffffffffffffffffffffff	ffffffffff 3 3 4 9 3 Chi-S for Equa fffffffff Chi-Squa DF Pr > Chi Chi-St Sample equency ffffffffff 2 2 7 11 Chi-St for Equa ffffffffff Chi-Squa ffffffffff Chi-Squa DF Pr > Chi For Equa for Equa for Equa for Equa pr Pr > Chi Chi-St Pr > Chi Pr > Chi	Percent ffffffffffffff 13.64 13.64 13.64 13.64 13.64 13.64 quare Test 1 Proportions fffffffffff re 6.1818 4 4 5 have expected uare may not b Size = 22 C Percent fffffffffffffff 9.09 9.09 31.82 50.00 quare Test 1 Proportions ffffffffffff re 10.3636 3	Frequency ffffffffffff 3 6 10 19 22 ed counts les: be a valid te: Cumulative Frequency ffffffffffffffffffffffffffffffffffff	Percent ffffffffff 13.64 27.27 45.45 86.36 100.00 s s s s s cumulative Percent fffffffff 9.09 18.18 50.00
ffffffffffffffffffffffffffffffffffffff	ffffffffff 3 3 4 9 3 Chi-S for Equa fffffffff Chi-Squa DF Pr > Chi Chi-S Sample equency ffffffffff 2 2 7 11 Chi-Squa DF Pr > Chi Sample Pr > Chi Sample	Percent fffffffffffff 13.64 13.64 13.64 18.18 40.91 13.64 quare Test 1 Proportions ffffffffffff re 6.1818 43.9 s have expected uare may not b Size = 22 Percent ffffffffffffffff 9.09 9.09 31.82 50.00 quare Test 1 Proportions fffffffffffffff re 10.3636 3 Sq 0.0157 Size = 22	Frequency fffffffffffff 3 6 10 19 22 22 24 24 25 24 11 22 24 21 25 24 21 22 25 25 25 25 25 25 25 25 25	Percent ffffffffff 13.64 27.27 45.45 86.36 100.00 s st. Cumulative Percent ffffffffff 9.09 18.18 50.00 100.00 Cumulative
ffffffffffffffffffffffffffffffffffffff	fffffffff 3 3 4 9 3 Chi-S for Equa fffffffff Chi-Squa DF Pr > Chi cable cell 5. Chi-Squa Sample capactor fffffffff 2 2 7 11 Chi-Sq capactor for Equa fffffffff Pr > Chi Chi-Sq capactor fffffffff Pr > Chi Sample Pr > Chi Sample Sample Sample	Percent ffffffffffffff 13.64 13.64 13.64 13.64 quare Test 1 Proportions ffffffffffff re 6.1818 A Sq 0.1860 s have expect Size = 22 Percent ffffffffffffffff 9.09 9.09 31.82 50.00 quare Test 1 Proportions fffffffffffffff re 10.3636 3 Sq 0.8157 Size = 22 Percent	Frequency fffffffffffff 3 6 10 19 22 ed counts less be a valid test Cumulative Frequency ffffffffffffffffffffffffffffffffffff	Percent ffffffffff 13.64 27.27 45.45 86.36 100.00 S s s s cumulative Percent fffffffff 9.09 18.18 50.00 100.00 Cumulative Percent
ffffffffffffffffffffffffffffffffffffff	ffffffffff 3 3 4 9 3 Chi-S for Equa fffffffff Chi-Squa DF Pr > Chi Chi-S Sample equency fffffffffff 2 2 7 11 Chi-Squa DF Pr > Chi Sample equency ffffffffffffff Chi-Squa DF Pr > Chi Sample equency ffffffffffffffffffffffffffffffffffff	Percent fffffffffffffff 13.64 13.64 13.64 14.18 40.91 13.64 quare Test 1 Proportions fffffffffff e 6.1818 43.9 s have expected uare may not b Size = 22 Percent ffffffffffffffff 9.09 9.09 31.82 50.00 quare Test 1 Proportions fffffffffffffff re 10.3636 a 0.0157 Size = 22 Percent ffffffffffffffffffffffffffffffffffff	Frequency ffffffffffffff 3 6 10 19 22 ed counts less be a valid test Cumulative Frequency ffffffffffffff 2 4 11 22 Cumulative Frequency fffffffffffffff 1	Percent ffffffffff 13.64 27.27 45.45 86.36 100.00 ss sst. Cumulative Percent fffffffffff 9.09 18.18 50.00 100.00 Cumulative Percent ffffffffffff 4.55
ffffffffffffffffffffffffffffffffffffff	ffffffffff 3 3 4 9 3 Chi-S for Equa ffffffff Chi-Squa DF Pr > Chi cable cell 5. Chi-Sq Sample 2 2 7 11 Chi-Sq 2 7 2 2 7 2 2 7 11 Chi-Sq 2 7 2 2 7 11 Chi-Sq 2 7 2 2 7 2 2 7 2 2 7 2 2 7 2 2 7 2 2 7 2 2 7 2 2 7 2 2 7 2 2 7 2 2 7 2 2 7 2 2 2 7 2 2 2 7 2 2 2 7 2 2 2 7 2 2 2 7 2 2 2 7 2 2 2 2 2 2 2 2 2 2 2 2 2	Percent fffffffffffffff 13.64 13.64 13.64 13.64 13.64 13.64 quare Test 1 Proportions ffffffffffff re 6.1818 4 Sq 0.1860 8 have expects uare may not b Size = 22 (Percent 9.09 9.09 31.82 50.00 quare Test 1 Proportions fffffffffffff re 10.3636 3 Sq 0.0157 Size = 22 (Percent Percent Percent	Frequency ffffffffffffff 3 6 10 19 22 22 ed counts les: be a valid tes Frequency ffffffffffffffffffffffffffffffffffff	Percent fffffffffff 13.64 27.27 45.45 86.36 100.00 100.00 s st. Cumulative Percent ffffffffffffff 9.09 18.18 50.00 100.00 Cumulative Percent ffffffffffffffffffffffffffffffffffff
ffffffffffffffffffffffffffffffffffffff	ffffffffff 3 3 4 9 3 Chi-S for Equa ffffffff Chi-Squa DF Pr > Chi chi-Squa DF Pr > Chi Sample equency ffffffffff Chi-Squa ffffffffff Chi-Squa DF Pr > Chi Sample equency fffffffffff Chi-Squa DF Pr > Chi Sample equency fffffffffff Chi-Squa DF Pr > Chi Sample equency ffffffffffff Chi-Squa DF Pr > Chi Sample equency ffffffffffffffffffffffffff Chi-Squa DF Pr > Chi Sample equency ffffffffffffffffffffffffffffffffffff	Percent fffffffffffffff 13.64 13.64 13.64 14.18 40.91 13.64 quare Test 1 Proportions fffffffffffff e 6.1818 43.0 s have expected uare may not b Size = 22 0 Percent fffffffffffffff 9.09 9.09 31.82 50.00 quare Test 1 Proportions ffffffffffffff re 10.3636 3 Sq 0.0157 Size = 22 0 Percent fffffffffffffffff 4.55 9.09 22.73 9.09	Frequency ffffffffffffff 3 6 10 19 22 ed counts less be a valid test cumulative Frequency ffffffffffffff 2 4 11 22 Cumulative Frequency ffffffffffffff 1 3 8 10	Percent ffffffffff 13.64 27.27 45.45 86.36 100.00 s st. Cumulative Percent fffffffffff 9.09 18.18 50.00 100.00 Cumulative Percent ffffffffffff 4.55 13.64 36.36 45.45
ffffffffffffffffffffffffffffffffffffff	ffffffffff 3 3 4 9 3 Chi-S for Equa fffffffff Chi-Squa DF Pr > Chi cable cell 5. Chi-Sq Sample cauency ffffffffff 2 2 7 11 Chi-Sq 2 7 11 Chi-Sq 2 7 11 Chi-Sq 2 7 11 Chi-Sq 2 7 11 Chi-Sq 2 7 11 Chi-Sq 2 2 7 11 Chi-Sq 2 2 7 11 Chi-Squa DF Pr > Chi Sample call ffffffffff 2 2 7 11 Chi-Squa 2 7 11 Chi-Squa 2 7 11 Chi-Squa 2 7 11 Chi-Squa 2 7 11 Chi-Squa 2 7 11 Chi-Squa 2 7 11 Chi-Squa 2 7 11 Chi-Squa 2 7 11 Chi-Squa 2 7 11 Chi-Squa 2 7 11 Chi-Squa 2 7 11 Chi-Squa DF Pr > Chi Sample call Sample call 2 2 7 11 Chi-Squa 2 2 2 2 2 2 12 2 2 2 2 2 2 12 2 2 2 2 2 2 2 2 2 2 2 2 2	Percent ffffffffffffff 13.64 13.64 13.64 13.64 13.64 13.64 quare Test 1 Proportions ffffffffffff re 6.1818 4 Sq 0.1860 8 have expects uare may not b Size = 22 (Percent 9.09 9.09 31.82 50.00 quare Test 1 Proportions fffffffffffff re 10.3636 3 Sq 0.0157 Size = 22 (Percent fre 10.3636 3 Sq 0.0157 Size = 22 (Percent ffffffffffffffff 4.55 9.09 22.73 9.09 54.55	Frequency ffffffffffffff 3 6 10 19 22 ed counts les: be a valid tes: Cumulative Frequency fffffffffffffffffff 2 4 11 22 Cumulative Frequency ffffffffffffffffffffffffffffffffffff	Percent ffffffffff 13.64 27.27 45.45 86.36 100.00 s s st. Cumulative Percent fffffffffff 4.55 13.64 36.36
ffffffffffffffffffffffffffffffffffffff	ffffffffff 3 3 4 9 3 Chi-S for Equa fffffffff Chi-Squa DF Pr > Chi chi-S Chi-SG Sample equency ffffffffff 2 2 7 11 Chi-Squa DF Pr > Chi Sample equency fffffffffff Chi-Squa DF Pr > Chi Sample equency ffffffffffffffffffffffffffffffffffff	Percent fffffffffffffff 13.64 13.64 13.64 14.18 40.91 13.64 quare Test 1 Proportions ffffffffffffff re 6.1818 4 Sq 0.1860 s have expected uare may not b Size = 22 0 Percent ffffffffffffffff 9.09 9.09 31.82 50.00 quare Test 1 Proportions fffffffffffffff re 10.3636 3 Sq 0.0157 Size = 22 0 Percent fffffffffffffffffff re 10.3636 3 Sq 0.0157 Size = 22 0 Percent ffffffffffffffffffff 4.55 9.09 22.73 9.09 54.55 quare Test	Frequency ffffffffffffff 3 6 10 19 22 ed counts less be a valid test cumulative Frequency ffffffffffffff 2 4 11 22 Cumulative Frequency ffffffffffffff 1 3 8 10	Percent ffffffffff 13.64 27.27 45.45 86.36 100.00 s st. Cumulative Percent fffffffffff 9.09 18.18 50.00 100.00 Cumulative Percent ffffffffffff 4.55 13.64 36.36 45.45
ffffffffffffffffffffffffffffffffffffff	fffffffff 3 3 4 9 3 Chi-S for Equa fffffffff Chi-Squa DF Pr > Chi cable cell 5. Chi-Sq Cample capace ffffffffff Chi-Squa Chi-S for Equa pf Pr > Chi cable cell 5. Chi-Sq cample capace for Equa pf Pr > Chi cable cell 5. Chi-Sq cample capace for Equa pf Pr > Chi cable cell 5. Chi-Sq cample capace fffffffff Chi-Squa pf Pr > Chi capace capace fffffffff chi-Squa pf Pr > Chi capace capace fffffffff chi-Squa pf Pr > Chi capace capace fffffffff chi-Squa pf Pr > Chi capace capace fffffffffff 1 2 2 1 Chi-Squa pf Pr > Chi capace fffffffff chi-Squa pf pr > Chi capace pr	Percent fffffffffffffff 13.64 13.64 13.64 13.64 13.64 13.64 quare Test 1 Proportions fffffffffffff re 6.1818 4 Sq 0.1860 8 have expects uare may not 1 Size = 22 (Percent fffffffffffffffff 9.09 9.09 31.82 50.00 quare Test 1 Proportions fffffffffffffff re 10.3636 3 Sq 0.0157 Size = 22 (Percent ffffffffffffffffffffffffffffffffffff	Frequency ffffffffffffff 3 6 10 19 22 ed counts less be a valid test cumulative Frequency ffffffffffffff 2 4 11 22 Cumulative Frequency ffffffffffffff 1 3 8 10	Percent ffffffffff 13.64 27.27 45.45 86.36 100.00 s st. Cumulative Percent fffffffffff 9.09 18.18 50.00 100.00 Cumulative Percent ffffffffffff 4.55 13.64 36.36 45.45

DF 4 Pr > ChiSq 0.0010 WARNING: The table cells have expected counts less than 5 Chi-Square may not be a valid test. Sample Size = 22

chuit	Sampl	.e Size = 22	00 u 1011u	
			Cumulative	Cumulative
B58 Fre	quency	Percent ffffffffffffff	Frequency ffffffffffff	Percent fffffffffff
Strongly disagree	3	13.64	3	13.64
Disagree Undecided	4 8	18.18 36.36	7 15	31.82 68.18
Agree	4 3	18.18	19	86.36
Strongly agree	3	13.64	22	100.00
		Square Test al Proportion	c .	
	ffffff	ffffffffffffff	f	
	Chi-Squ DF		1 4	
LADNING, The H		iSq 0.418		
WARNING: The t than		is nave expec quare may not		
	Sampl	e Size = 22		
			Cumulative	Cumulative
B59 Fre	quency	Percent ffffffffffffff	Frequency ffffffffffff	Percent ffffffffffff
Disagree	1	4.55	1	4.55
Undecided Agree	5 7	22.73 31.82	6 13	27.27 59.09
Strongly agree	9	40.91	22	100.00
		Square Test		
		al Proportion		
	Chi-Squ	iare 6.363	6	
	DF Pr > Ch		3 2	
	Sampl	e Size = 22		
			Cumulative	Cumulative
B60 Fre ffffffffffffffffffffffffff	quency	Percent fffffffffffff	Frequency ffffffffffff	Percent fffffffffff
Strongly disagree	1	4.55	1	4.55
Disagree Undecided	1 6	4.55 27.27	2 8	9.09 36.36
Agree Strongly agree	6 8	27.27 36.36	14 22	63.64 100.00
Strongry agree			22	100.00
		Square Test al Proportion	s	
	ffffff	ffffffffffffff are 9.363	f	
	DF		4	
WARNING: The t	Pr > Ch able cel			ess
	5. Chi-S	quare may not		
	Sampi	.e Size = 22		
B61 Fre	quency	Percent	Cumulative Frequency	Cumulative Percent
fffffffffffffffffffffffff	fffffff	fffffffffffff	fffffffffff	fffffffffffff
Strongly disagree Disagree	3 4	13.64 18.18	3 7	13.64 31.82
Undecided	2 5	9.09	9 14	40.91
Agree Strongly agree	8	22.73 36.36	22	63.64 100.00
	Chi-	Square Test		
	for Equ	al Proportion		
	Chi-Squ	ffffffffffffff are 4.818		
	DF Pr > Ch		4	
WARNING: The t	able cel	ls have expec	ted counts l	
than		iquare may not .e Size = 22	be a valid	test.
			Cumulatius	Cumulatius.
	quency	Percent	Cumulative Frequency	Cumulative Percent
ffffffffffffffffffffffffffffffffffffff	ffffffff 3	fffffffffffff 13.64	ffffffffffff 3	ffffffffffff 13.64
Disagree	6	27.27	9	40.91
Undecided Agree	2 11	9.09 50.00	11 22	50.00 100.00
-		Square Test		
	for Equ	al Proportion		
	fffffff Chi-Squ	fffffffffffffff are 8.909		
	DF		3	
	Pr > Ch Sampl	iSq 0.030 .e Size = 22	S	
			umulative	Cumulative
time_work Frequ	iency		Frequency	Percent

0.4166666667	1	4.55	2	9.09
1	1	4.55	3	13.64
1.0833333333	1	4.55	4	18.18
1.4166666667	1	4.55	5	22.73
2	1	4.55	6	27.27
3	1	4.55	7	31.82
3.0833333333	1	4.55	8	36.36
4	2	9.09	10	45.45
5.25	1	4.55	11	50.00
6.5	1	4.55	12	54.55
8.6666666667	2	9.09	14	63.64
10.25	1	4.55	15	68.18
17.916666667	1	4.55	16	72.73
18	1	4.55	17	77.27
19.5	1	4.55	18	81.82
20.333333333	1	4.55	19	86.36
25.166666667	1	4.55	20	90.91
25.666666667	1	4.55	21	95.45
28	1	4.55	22	100.00

	Table of	B08 by B09		
Frequency	,			
Percent	,			
Row Pct	,			
Col Pct	,Disagree	,Undecide,A	gree-St,	Total
	,-Strongl	,d,r	ongly a,	
	y disagr		ree ,	
	,ee			
fffffffffffffffff		÷ ffffffffff	fffffff	
Disagree-Strongl	, 3	, 2,	1,	6
y disagree	, 13.64		4.55	27.27
,	, 50.00			
	, 75.00		8.33 .	
fffffffffffffffff			ffffff	
Undecided	, 1	. 1.	4.	6
	, 4.55	, 4.55 ,	18.18	27.27
	. 16.67			
	, 25.00	,,		
fffffffffffffffff				
Agree-Strongly a	i. 0	, 3,	7,	10
gree	, 0.00	, 13.64 ,	31.82	45.45
0	, 0.00		70.00	
	. 0.00		58.33	
fffffffffffffffff		,,		
Total	4	6	12	22
	18.18	27.27	54.55	100.00
	10.10	27.27	555	100.00

Sample Size = 22

Annexure C: Comparisons of proportions

B01 fffffffffffffffffffffffffffffffffff Undecided Agree-Strongly agree		Percent fffffffff 22.73 77.27	Cumulative Frequency ffffffffffffff 5 22	Cumulative Percent fffffffffff 22.73 100.00
	DF	rtions fffff 5.5455 1 0.0105		
B02 ffffffffffffffffffffffffffffffffff Disagree-Strongly disagree Undecided Agree-Strongly agree		Percent fffffffff 13.64 13.64 72.73	Cumulative Frequency ffffffffffffff 3 6 22	Cumulative Percent ffffffffff 13.64 27.27 100.00
	DF .	rtions fffff 5.3636 2 0.0005		
B03 ffffffffffffffffffffffffffffffffffff	<i>ffffffffffffffffffff</i> 1 2	4.55 9.09	1 3	4.55 13.64
Agree-Strongly agree	DF	rtions fffff 7.9091 2 2	22	100.00
B04 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;		Percent fffffffff 4.55	Cumulative Frequency ffffffffffffff 1	Cumulative Percent fffffffff 4.55
Disagree-Strongly disagree Undecided Agree-Strongly agree	4 2 15	18.18 9.09 68.18	5 7 22	22.73 31.82 100.00
	DF .	rtions fffff 2.7273 3 2.0001		
B05 ffffffffffffffffffffffffffffff Disagree-Strongly disagree Undecided Agree-Strongly agree		Percent fffffffff 13.64 18.18 68.18	Cumulative Frequency ffffffffffffff 3 7 22	Cumulative Percent ffffffffff 13.64 31.82 100.00
	DF .	rtions fffff 2.0909 2 0.0024		
B06 ffffffffffffffffffffffffffffffff Disagree-Strongly disagree Undecided	Frequency F fffffffffffffff 5 5	Percent fffffffff 22.73 22.73	5 10	22.73 45.45
Agree-Strongly agree	DF .	rtions fffff 4.4545 2 0.1078	22	100.00
B07 fffffffffffffffffffffffffffffff Disagree-Strongly disagree Undecided		Percent ffffffff 13.64 13.64	Cumulative Frequency ffffffffffff 3 6	Cumulative Percent ffffffffff 13.64 27.27

Agree-Strongly agree	16	72.73	22	100.00
	Chi-Square for Equal Pro ffffffffffffff	portions fffffff		
	Chi-Square DF Pr > ChiSq Sample Size	2 0.0005		
200			Cumulative	Cumulative
B08 fffffffffffffffffffffffffffffffff Disagree-Strongly disagree	Frequency fffffffffffff 6	Percent fffffffffff 27.27	Frequency fffffffffffff 6	Percent fffffffff 27.27
Undecided Agree-Strongly agree	6 10	27.27 45.45	12 22	54.55 100.00
	Chi-Square for Equal Pro fffffffffffff Chi-Square DF	portions		
	Pr > ChiSq Sample Size	0.4832		
B09	Frequency	Percent	Cumulative Frequency	Cumulative Percent
ffffffffffffffffffffffffffffffffffffff				
Undecided Agree-Strongly agree	6 12	27.27 54.55	10 22	45.45 100.00
	Chi-Square for Equal Pro			
	<i>ffffffffffffff</i> Chi-Square DF	fffffff 4.7273 2		
	Pr > ChiSq Sample Size	0.0941		
B10	Englionav	Poncont	Cumulative	Cumulative Percent
ffffffffffffffffffffffffffffffffffffff	Frequency fffffffffffff 7	Percent fffffffffff 31.82	Frequency ffffffffffff 7	
Undecided Agree-Strongly agree	2 13	9.09 59.09	9 22	40.91 100.00
	Chi-Square for Equal Pro			
	fffffffffffff Chi-Square	fffffff 8.2727		
	DF Pr > ChiSq Sample Size	2 0.0160 = 22		
511	F	Deveent	Cumulative	Cumulative
B11 fffffffffffffffffffffffffffffffffff	Frequency fffffffffffff 3	Percent ffffffffffff 13.64	Frequency ffffffffffff 3	Percent fffffffff 13.64
Undecided Agree-Strongly agree	4 15	18.18 68.18	7 22	31.82 100.00
	Chi-Square for Equal Pro			
	fffffffffffff Chi-Square	12.0909		
	DF Pr > ChiSq Sample Size	2 0.0024 = 22		
B12	Frequency	Percent	Cumulative Frequency	Cumulative Percent
ffffffffffffffffffffffffffffffffffffff				
Undecided Agree-Strongly agree	6 13	27.27 59.09	9 22	40.91 100.00
	Chi-Square for Equal Pro			
	ffffffffffffff Chi-Square			
	DF Pr > ChiSq	2 0.0276		
	Sample Size	= 22	Cumulative	Cumulative
B13 ffffffffffffffffffffffffffffffffff	Frequency fffffffffffff 9			
Disagree-Strongly disagree Undecided Agree-Strongly agree	9 6 7	40.91 27.27 31.82	9 15 22	40.91 68.18 100.00
	Chi-Square for Equal Pro	Test		
	ffffffffffffff Chi-Square			
	DF Pr ≻ ChiSq	2 0.7275		
	Sample Size	= 22		

			Cumulative	Cumulative
B14	Frequency		Cumulative Frequency	Cumulative Percent
ffffffffffffffffffffffffffffffffffffff	ffffffffffffffff 1	4.55	<i>ffffffffffffffff</i> 1	fffffffffff 4.55
Undecided	6	27.27	7	31.82
Agree-Strongly agree	15	68.18	22	100.00
	Chi-Square			
	for Equal Pro	•		
	Chi-Square	13.7273		
	DF Pr ≻ ChiSq	2 0.0010		
	Sample Size			
			Cumulative	Cumulative
B15 <i>ffffffffffffffffffffffffffffffffffff</i>	Frequency	Percent	Frequency	Percent
Disagree-Strongly disagree	5	22.73	5	22.73
Undecided Agree-Strongly agree	8 9	36.36 40.91	13 22	59.09 100.00
Agree Serongry agree				100100
	Chi-Square for Equal Pro			
	fffffffffff	ffffffff		
	Chi-Square DF	1.1818 2		
	Pr > ChiSq Sample Size	0.5538		
	Sample Size	2 = 22		
B16	Frequency	Percent	Cumulative Frequency	Cumulative Percent
<i>fffffffffffffffffffffffffffffffff</i>	ffffffffffffffff	,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	fffffffffff
Disagree-Strongly disagree Undecided	4 11	18.18 50.00	4 15	18.18 68.18
Agree-Strongly agree	7	31.82	22	100.00
	Chi-Square for Equal Pro			
	fffffffffff	fffffffff 3.3636		
	Chi-Square DF	2		
	Pr > ChiSq Sample Size	0.1860 = = 22		
			6 J.:	A 1 1
B17	Frequency	Percent	Cumulative Frequency	Cumulative Percent
	ffffffffffffff			
Disagree-Strongly disagree Undecided	1 5	4.55 22.73	1 6	4.55 27.27
Agree-Strongly agree	16	72.73	22	100.00
	Chi-Square			
	for Equal Pro			
	Chi-Square	16.4545		
	DF Pr ≻ ChiSq	2 0.0003		
	Sample Size	e = 22		
			Cumulative	Cumulative
B18 ffffffffffffffffffffffffffffffff	Frequency ffffffffffffff	Percent fffffffffff	Frequency	Percent fffffffffff
Undecided	5	22.73	5	22.73
Agree-Strongly agree	17	77.27	22	100.00
	Chi-Square for Equal Pro			
	ffffffffffff			
	Chi-Square DF	6.5455 1		
	Pr ≻ ChiSq	0.0105		
	Sample Size	2 = 22		
010	Englisher	Doncont	Cumulative	Cumulative
B19 fffffffffffffffffffffffffffffff	Frequency ffffffffffffff	Percent ffffffffff	Frequency	Percent ffffffffff
Disagree-Strongly disagree Undecided	3 12	13.64 54.55	3 15	13.64 68.18
Agree-Strongly agree	7	31.82	22	100.00
	Chi-Square	e Test		
	for Equal Pro	oportions		
	fffffffffffff Chi-Square	5.5455		
	DF Pr ≻ ChiSq	2 0.0625		
	Sample Size			
			Cumulative	Cumulative
B20	Frequency	Percent	Frequency	Percent
ffffffffffffffffffffffffffffffffffffff	5 titititititititi	22.73	5	22.73
Undecided	2 15	9.09 68.18	7 22	31.82
Agree-Strongly agree	12	00.18	22	100.00
	Chi-Square for Equal Pro			
	fffffffffff			

	Chi-Square DF Pr > ChiSq	12.6364 2 0.0018		
	Sample Size			
B21 fffffffffffffffffffffffffffffff Disagree-Strongly disagree Undecided	4 6	18.18 27.27	4 10	18.18 45.45
Agree-Strongly agree	12 Chi Sauana	54.55	22	100.00
	Chi-Square for Equal Pro fffffffffffff Chi-Square DF Pr > ChiSq Sample Size	0.0941		
B22 fffffffffffffffffffffffffffffffffff	Frequency fffffffffff 9 13	Percent ffffffffff 40.91 59.09	Cumulative Frequency fffffffffff 9 22	Cumulative Percent ffffffffff 40.91 100.00
	Chi-Square for Equal Pro ffffffffffffff Chi-Square DF	oportions		
	Pr ≻ ChiSq Sample Size	0.3938 e = 22		
B23 fffffffffffffffffffffffffffffffffff Disagree-Strongly disagree	Frequency ffffffffffffff 8	Percent ffffffffff 36.36	Cumulative Frequency ffffffffffff 8	Cumulative Percent ffffffffff 36.36
Undecided Agree-Strongly agree	4 10	18.18 45.45	12 22	54.55 100.00
	Chi-Square for Equal Pro ffffffffffffff Chi-Square DF	portions ffffffff		
	Pr > ChiSq Sample Size	0.2801		
			Cumulative	Cumulative
B24 ffffffffffffffffffffffffffffffff	Frequency ffffffffffffffff	Percent fffffffffff	Frequency ffffffffffffff	Percent ffffffffff
Disagree-Strongly disagree Undecided	2 12	9.09 54.55	2 14	9.09 63.64
Agree-Strongly agree		36.36	22	100.00
	8 Chi-Square for Equal Pro ffffffffffff Chi-Square DF	e Test oportions		
	Chi-Square for Equal Pro fffffffffffff Chi-Square	e Test oportions ffffffff 6.9091 2 0.0316		
	Chi-Square for Equal Pro ffffffffffffffffff Chi-Square DF Pr > ChiSq Sample Size	e Test portions fffffff 6.9091 2 0.0316 e = 22	Cumulative	Cumulative
B25	Chi-Square for Equal Pro fifffffffffff Chi-Square DF Pr > ChiSq Sample Size Frequency	e Test portions ffffffff 6.9091 2 0.0316 e = 22 Percent ffffffffffffffffffffffffffffffffffff	Cumulative Frequency	Percent fffffffffff
B25 ffffffffffffffffffffffffffffffffffff	Chi-Square for Equal Pro fffffffffffff Chi-Square DF Pr > ChiSq Sample Size Frequency	e Test portions ffffffff 6.9091 2 0.0316 e = 22 Percent	Cumulative Frequency	Percent
B25 <i>ffffffffffffffffffffffffffffffffffff</i>	Chi-Square for Equal Pro fiffffffffffff Chi-Square DF Pr > ChiSq Sample Size Frequency fffffffffffffffff 3 5	e Test pportions fffffff 6.9091 2.0.0316 2 = 22 Percent ffffffffffffff 13.64 22.73 63.64 2 Test pportions fffffffff 9.3636 2 0.0093	Cumulative Frequency fffffffffff 3 8	Percent ffffffffff 13.64 36.36
B25 fffffffffffffffffffffffffff Disagree-Strongly disagree Undecided Agree-Strongly agree B26 ffffffffffffffffffffffffffffffffffff	Chi-Square for Equal Pro fiffffffffffff Chi-Square DF Pr > ChiSq Sample Size Frequency ffffffffffffffffff 3 5 14 Chi-Square for Equal Pro fifffffffffffffffffffffffffffffffffff	<pre>2 Test portions fffffff</pre>	Cumulative Frequency fffffffffffff 3 8 22 Cumulative Frequency	Percent fffffffffff 13.64 36.36 100.00 Cumulative Percent ffffffffffffff
B25 ffffffffffffffffffffffffffffffffffff	Chi-Square for Equal Pro fifffffffffff Chi-Square DF Pr > ChiSq Sample Size Frequency fiffffffffffffff Chi-Square DF Pr > ChiSq Sample Size Frequency	<pre>2 Test pportions ffffffff 6.9091 2 0.0316 2 = 22 Percent fffffffffff 13.64 22.73 63.64 2 Test 9.3636 2 0.0093 2 = 22 Percent</pre>	Cumulative Frequency ffffffffffffff 3 8 22 22 Cumulative Frequency	Percent fffffffffff 13.64 36.36 100.00 Cumulative Percent
B25 ffffffffffffffffffffffffffffff Disagree-Strongly disagree Undecided Agree-Strongly agree B26 ffffffffffffffffffffffffffffffffffff	Chi-Square for Equal Pro fiffffffffffffffff Chi-Square DF Pr > ChiSq Sample Size Frequency ffffffffffffffffffffffffffffffffffff	<pre>2 Test portions fffffff 6.9091 2 0.0316 2 = 22 Percent ffffffffffff 13.64 22.73 63.64 2 Test portions fffffffff 9.3636 2 0.0093 2 = 22 Percent ffffffffff 9.09 27.27 27.27 36.36 2 Test portions ffffffffff 9.09 27.27 27.27 36.36 2 Test portions ffffffffff 3.4545 3</pre>	Cumulative Frequency ffffffffffff 3 8 22 Cumulative Frequency fffffffffff 2 8 14	Percent fffffffffff 13.64 36.36 100.00 Cumulative Percent fffffffffff 9.09 36.36 63.64
B25 ffffffffffffffffffffffffffffff Disagree-Strongly disagree Undecided Agree-Strongly agree B26 ffffffffffffffffffffffffffffffffffff	Chi-Square for Equal Pro fiffffffffffff Chi-Square DF Pr > ChiSq Sample Size Frequency fifffffffffffffff Chi-Square DF Pr > ChiSq Sample Size Frequency fifffffffffffffff chi-Square 6 6 8 Chi-Square for Equal Pro 6 6 8	e Test portions fffffff 6.9091 2 0.0316 2 = 22 Percent ffffffffff 13.64 22.73 63.64 2 Test poportions ffffffff 9.3636 2 0.0093 2 = 22 Percent ffffffffff 9.3636 2 0.0093 2 = 22 Percent ffffffffffff 9.3636 2 0.0093 2 = 22 Percent ffffffffffff 9.3636 2 0.0093 2 = 22 Percent fffffffffffff 9.3636 2 0.0093 2 = 22 Percent ffffffffffffff 9.3636 2 0.0093 2 = 22 Percent ffffffffffffff 9.3636 2 0.0093 2 = 22 Percent fffffffffffffff 9.3636 2 0.0093 2 = 22 Percent fffffffffffffff 9.3636 2 0.0093 2 = 22 Percent 3 0.3267	Cumulative Frequency ffffffffffff 3 8 22 Cumulative Frequency fffffffffff 2 8 14	Percent fffffffffff 13.64 36.36 100.00 Cumulative Percent fffffffffff 9.09 36.36 63.64

Undecided Agree-Strongly agree	5 13	22.73 59.09	9 22	40.91 100.00
	Chi-Square for Equal Pro	e Test		100000
	ffffffffffff Chi-Square DF			
	Pr > ChiSq Sample Size	0.0362		
B28	Frequency	Percent fffffffffff	Cumulative Frequency fffffffffffffff	Cumulative Percent fffffffffff
Disagree-Strongly disagree Undecided Agree-Strongly agree	12 4 6	54.55 18.18 27.27	12 16 22	54.55 72.73 100.00
	Chi-Square			
	for Equal Pro fffffffffffff Chi-Square	oportions		
	DF Pr > ChiSq Sample Size	2 0.0941 e = 22		
В29	Frequency	Percent	Cumulative Frequency	Cumulative Percent
ffffffffffffffffffffffffffffffffffffff				
Undecided	10	45.45	14	63.64
Agree-Strongly agree	8	36.36	22	100.00
	Chi-Square for Equal Pro	oportions		
	fffffffffffff Chi-Square	ffffffff 2.5455		
	DF Pr > ChiSq Sample Size	2 0.2801 e = 22		
			Cumulative	Cumulative
B30 ffffffffffffffffffffffffffffffffff Disagree-Strongly disagree	2	9.09	Frequency fffffffffffff 2	9.09
Undecided Agree-Strongly agree	1 19	4.55 86.36	3 22	13.64 100.00
	Chi-Square for Equal Pro fffffffffffff Chi-Square	oportions ffffffff		
	DF Pr > ChiSq Sample Size	2 <.0001 e = 22		
B31	Frequency	Percent	Cumulative Frequency	Cumulative Percent
ffffffffffffffffffffffffffffffffffffff				
Undecided Agree-Strongly agree	4 4 14	18.18 63.64	8 22	36.36 100.00
	Chi-Square for Equal Pro fffffffffffff	oportions ffffffff		
	Chi-Square DF Pr ≻ ChiSq	9.0909 2 0.0106		
	Sample Size	e = 22	6 J. I.	Cumulative
B32 ffffffffffffffffffffffffffffffffff Disagree-Strongly disagree	Frequency fffffffffffff 6	Percent fffffffffff 27.27	Cumulative Frequency ffffffffffffff 6	Percent
Undecided Agree-Strongly agree	5 11	22.73 50.00	11 22	50.00 100.00
	for Equal Pro	ffffffff		
	Chi-Square DF Pr > ChiSq Sample Size	2.8182 2 0.2444 e = 22		
B33 ffffffffffffffffffffffffffffffffff	Frequency	Percent	Cumulative Frequency	Cumulative Percent
Disagree-Strongly disagree Undecided	1 1	4.55 4.55 4.55	1 2	4.55 9.09
Agree-Strongly agree	20	4.55 90.91	22	100.00
	Chi-Squard for Equal Pro ffffffffffff	oportions		
	Chi-Square DF	32.8182 2		
	Pr > ChiSq Sample Size	<.0001 e = 22		

			Cumulative	Cumulative
B34	Frequency	Percent	Frequency	Percent
ffffffffffffffffffffffffffffffffffffff	fffffffffffffff 1	ffffffffffff 4.55	<i>fffffffffffffff</i> 1	fffffffffff 4.55
Undecided	2	9.09	3	13.64
Agree-Strongly agree	19	86.36	22	100.00
	Chi-Square			
	for Equal Pro	•		
	fffffffffffff Chi-Square			
	DF	2		
	Pr > ChiSq Sample Siz€	<.0001 e = 22		
			C	Curry lation
B35	Frequency	Percent	Cumulative Frequency	Cumulative Percent
Disagree-Strongly disagree Undecided	3 7	13.64 31.82	3 10	13.64 45.45
Agree-Strongly agree	12	54.55	22	100.00
	Chi-Square	e Test		
	for Equal Pro			
	fffffffffffff Chi-Square	5.5455		
	DF	2		
	Pr > ChiSq Sample Size	0.0625 e = 22		
B36	Frequency	Percent	Cumulative Frequency	Cumulative Percent
*****	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
Disagree-Strongly disagree Undecided	1 3	4.55 13.64	1 4	4.55 18.18
Agree-Strongly agree	18	81.82	22	100.00
	Chi-Square	e Test		
	for Equal Pro			
	fffffffffffff Chi-Square	23.5455		
	DF	2		
	Pr > ChiSq Sample Size	<.0001 e = 22		
			Cumulatius.	Curry lation
B37	Frequency	Percent	Cumulative Frequency	Cumulative Percent
		ffffffffffff 13.64	fffffffffffffff 3	
Disagree-Strongly disagree Undecided	3 2	9.09	5	13.64 22.73
Agree-Strongly agree	17	77.27	22	100.00
	Chi-Square	e Test		
	for Equal Pro			
	fffffffffffff Chi-Square			
	DF Pr > ChiSq	2 <.0001		
	Sample Size			
			Cumulative	Cumulative
B38	Frequency	Percent	Frequency	Cumulative Percent
ffffffffffffffffffffffffffff				
Disagree-Strongly disagree Agree-Strongly agree	2 20	9.09 90.91	2 22	9.09 100.00
	Chi-Square	Tort		
	for Equal Pro			
	fffffffffffff Chi-Square	ffffffff 14.7273		
	DF	14.7275		
	Pr > ChiSq Sample Size	0.0001		
	Sumpic Size			
B39	Frequency	Percent	Cumulative Frequency	Cumulative Percent
<i>ffffffffffffffffffffffffffffffffff</i>	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, ,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	fffffffffff
Disagree-Strongly disagree Undecided	6 5	27.27 22.73	6 11	27.27 50.00
Agree-Strongly agree	11	50.00	22	100.00
	Chi-Square	e Test		
	for Equal Pro	oportions		
	fffffffffffff Chi-Square	ffffffff 2.8182		
	DF	2		
	Pr > ChiSq Sample Size	0.2444 e = 22		
B40	Frequency	Percent	Cumulative Frequency	Cumulative Percent
<i>ffffffffffffffffffffffffffffffffff</i>	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ŧffffffffff	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	fffffffffff
Disagree-Strongly disagree Undecided	1	4.55 4.55	1 2	4.55 9.09
Agree-Strongly agree	20	90.91	22	100.00
	Chi-Square	e Test		
	for Equal Pro			

for Equal Proportions

	fffffffffffff Chi-Square	32.8182		
	DF Pr > ChiSq Sample Size	2 <.0001 = 22		
	·		Cumulative	Cumulative
B41 fffffffffffffffffffffffffffffff				
Disagree-Strongly disagree Undecided	3 5	13.64 22.73	3 8	13.64 36.36
Agree-Strongly agree	14	63.64	22	100.00
	Chi-Square for Equal Pro	portions		
	ffffffffffffff Chi-Square DF	9.3636 2		
	Pr > ChiSq Sample Size	0.0093		
	Sample Size	- 22	Cumulative	Cumulative
B42 ffffffffffffffffffffffffffffffffffff	Frequency fffffffffffffff	Percent fffffffffff	Frequency	Percent
Disagree-Strongly disagree Undecided	14 4	63.64 18.18	14 18	63.64 81.82
Agree-Strongly agree	4	18.18	22	100.00
	Chi-Square for Equal Pro			
	fffffffffffff Chi-Square			
	DF Pr > ChiSq	2 0.0106		
	Sample Size			
B43	Frequency	Percent	Cumulative Frequency	Cumulative Percent
ffffffffffffffffffffffffffffffffffffff				
Undecided	2 2 18	9.09 81.82	4 22	18.18 100.00
Agree-Strongly agree	Lo Chi-Square		22	100.00
	for Equal Pro	portions		
	Chi-Square	23.2727		
	Pr > ChiSq Sample Size	<.0001		
	Sumpre Sire		Cumulative	Cumulative
			CUMULALIVE	
B44 fffffffffffffffffffffffffffffff Disagree-Strongly disagree	Frequency ffffffffffffff 12		Frequency	Percent
	ŧŦŦŦŦŦŦŦŦŦŦŦŦŦŦŦ		Frequency	Percent ffffffffff
fffffffffffffffffffffffffffffffff Disagree-Strongly disagree Undecided	ffffffffffff 12 5 5 Chi-Square	ffffffffff 54.55 22.73 22.73 Test	Frequency ffffffffffffff 12 17	Percent ffffffffff 54.55 77.27
fffffffffffffffffffffffffffffffff Disagree-Strongly disagree Undecided	fffffffffff 12 5 5	fffffffffff 54.55 22.73 22.73 Test portions	Frequency ffffffffffffff 12 17	Percent ffffffffff 54.55 77.27
fffffffffffffffffffffffffffffffff Disagree-Strongly disagree Undecided	ffffffffffffff 12 5 5 Chi-Square for Equal Pro	fffffffffff 54.55 22.73 22.73 Test portions	Frequency ffffffffffffff 12 17	Percent ffffffffff 54.55 77.27
fffffffffffffffffffffffffffffffff Disagree-Strongly disagree Undecided	ffffffffffffff 12 5 Chi-Square for Equal Pro fffffffffffff Chi-Square	ffffffffff 54.55 22.73 22.73 Test portions ffffffff 4.4545 2 0.1078	Frequency ffffffffffffff 12 17	Percent ffffffffff 54.55 77.27
ffffffffffffffffffffffffffffffffff Disagree-Strongly disagree Undecided Agree-Strongly agree	fffffffffffff 12 5 Chi-Square for Equal Pro fffffffffffffffff Chi-Square DF Pr > ChiSq Sample Size	ffffffffff 54.55 22.73 22.73 Test portions ffffffff 4.4545 2 0.1078	Frequency ffffffffffffff 12 17	Percent fffffffff 54.55 77.27 100.00 Cumulative
ffffffffffffffffffffffffffffffffff Disagree-Strongly disagree Undecided Agree-Strongly agree B45	ffffffffffffff 12 5 Chi-Square for Equal Pro ffffffffffffffff Chi-Square DF Pr > ChiSq Sample Size Frequency	<pre>ffffffffffff 54.55 22.73 22.73 Test portions ffffffff 4.4545 2 0.1078 = 22 Percent ffffffffffffffffffffffffffffffffffff</pre>	Frequency Ffffffffffffffffff 12 17 22 Cumulative Frequency	Percent ffffffffff 54.55 77.27 100.00 Cumulative Percent fffffffffffff
ffffffffffffffffffffffffffffffffffffff	ffffffffffffff 12 5 Chi-Square for Equal Pro ffffffffffffffffffffffffffffffffffff	fffffffffff 54.55 22.73 22.73 Test portions ffffffff 4.4545 2 0.1078 = 22 Percent fffffffffff 9.09 22.73	Frequency FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF	Percent ffffffffff 54.55 77.27 100.00 Cumulative Percent ffffffffff 9.09 31.82
ffffffffffffffffffffffffffffffffffffff	ffffffffffffff 12 5 5 Chi-Square for Equal Pro ffffffffffffffff Chi-Square DF Pr > ChiSq Sample Size Frequency ffffffffffffffffffffffffffffffffffff	<pre>ffffffffffff 54.55 22.73 22.73 Test portions ffffffff 4.4545 2 0.1078 = 22 Percent ffffffffff 9.09</pre>	Frequency fffffffffffffffff 12 17 22 Cumulative Frequency ffffffffffffffffffffffffffffffffffff	Percent fffffffff 54.55 77.27 100.00 Cumulative Percent fffffffffff 9.09
ffffffffffffffffffffffffffffffffffffff	ffffffffffffff 12 5 Chi-Square for Equal Pro ffffffffffffffffffffffffffffffffffff	<pre>fffffffffff 54.55 22.73 22.73 Test portions ffffffff 4.4545 2 0.1078 = 22 Percent ffffffffffff 9.09 22.73 68.18 Test</pre>	Frequency FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF	Percent ffffffffff 54.55 77.27 100.00 Cumulative Percent ffffffffff 9.09 31.82
ffffffffffffffffffffffffffffffffffffff	ffffffffffffff 12 5 5 Chi-Square for Equal Pro fffffffffffffffffff Chi-Square DF Pr > ChiSq Sample Size Frequency fffffffffffffffffffff 2 5 15 Chi-Square	<pre>ffffffffffff 54.55 22.73 22.73 Test portions ffffffff 4.4545 2 0.1078 = 22 Percent ffffffffff 9.09 22.73 68.18 Test portions</pre>	Frequency FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF	Percent ffffffffff 54.55 77.27 100.00 Cumulative Percent ffffffffff 9.09 31.82
ffffffffffffffffffffffffffffffffffffff	ffffffffffffffffff 12 5 5 Chi-Square for Equal Pro fffffffffffffff Chi-Square DF Pr > ChiSq Sample Size Frequency fffffffffffffffff 2 5 15 Chi-Square DF Pr > ChiSquare for Equal Pro ffffffffffffffffffffffff Chi-Square DF Pr > ChiSq	<pre>ffffffffffff 54.55 22.73 22.73 Test portions ffffffff 4.4545 2 0.1078 = 22 Percent fffffffffff 9.09 22.73 68.18 Test portions ffffffff 12.6364 2 0.0018</pre>	Frequency FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF	Percent ffffffffff 54.55 77.27 100.00 Cumulative Percent ffffffffff 9.09 31.82
ffffffffffffffffffffffffffffffffffffff	ffffffffffffffffffffffffffffffffffffff	<pre>ffffffffffff 54.55 22.73 22.73 Test portions ffffffff 4.4545 2 0.1078 = 22 Percent fffffffffff 9.09 22.73 68.18 Test portions ffffffff 12.6364 2 0.0018</pre>	Frequency FFF 12 17 22 Cumulative Frequency FFF 7 22 7 22	Percent ffffffffff 54.55 77.27 100.00 Cumulative Percent ffffffffff 9.09 31.82 100.00
ffffffffffffffffffffffffffffffffffffff	fffffffffffffffff 12 5 5 Chi-Square for Equal Pro ffffffffffffffffff Chi-Square DF Pr > ChiSq Sample Size Frequency ffffffffffffff Chi-Square DF Pr > ChiSq Sample Size Frequency	<pre>ffffffffffff 54.55 22.73 22.73 22.73 Test portions ffffffff 4.4545 2 0.1078 = 22 Percent ffffffffff 12.6364 2 0.0018 = 22 0.0018 = 22 Percent</pre>	Frequency ffffffffffffffff 12 17 22 Cumulative Frequency ffffffffffffffff 2 7 22 Cumulative Frequency	Percent ffffffffff 54.55 77.27 100.00 Cumulative Percent fffffffffff 9.09 31.82 100.00 Cumulative Percent
ffffffffffffffffffffffffffffffffffffff	ffffffffffffffffff 12 5 5 Chi-Square for Equal Pro ffffffffffffffff Chi-Square DF Pr > ChiSq Sample Size Frequency ffffffffffffffff Chi-Square DF Chi-Square DF Pr > ChiSq Sample Size Frequency ffffffffffffffffff Chi-Square DF Pr > ChiSq Sample Size Frequency ffffffffffffffffffffffffffffffffffff	<pre>fffffffffffff 54.55 22.73 22.73 22.73 Test portions ffffffff 4.4545 2 0.1078 = 22 Percent fffffffffff 9.09 22.73 68.18 Test portions fffffffff 12.6364 2 0.0018 = 22 Percent fffffffffff 27.27</pre>	Frequency ffffffffffffffff 12 17 22 Cumulative Frequency ffffffffffffffff 2 7 22 Cumulative Frequency	Percent ffffffffff 54.55 77.27 100.00 Cumulative Percent ffffffffff 9.09 31.82 100.00 Cumulative Percent fffffffffff 27.27
ffffffffffffffffffffffffffffffffffffff	ffffffffffffff 12 5 5 Chi-Square for Equal Pro- fffffffffffffffff Chi-Square DF Pr > ChiSq Sample Size Frequency fffffffffffffff Chi-Square for Equal Pro- ffffffffffffffff Chi-Square DF Pr > ChiSq Sample Size Frequency ffffffffffffffffffffffffffffffffffff	<pre>ffffffffffff 54.55 22.73 22.73 22.73 Test portions ffffffff 4.4545 2 0.1078 = 22 Percent ffffffffff 9.09 22.73 68.18 Test portions fffffffff 12.6364 2 0.0018 = 22 Percent ffffffffffffffffffffffffffffffffffff</pre>	Frequency FFF 12 17 22 Cumulative Frequency FFF 2 7 22 Cumulative Frequency FFF Cumulative Frequency	Percent fffffffffff 54.55 77.27 100.00 Cumulative Percent ffffffffff 9.09 31.82 100.00 Cumulative Percent ffffffffffffffff
ffffffffffffffffffffffffffffffffffff	fffffffffffffffffffff 12 5 5 Chi-Square for Equal Pro ffffffffffffffffff Chi-Square DF Pr > ChiSq Sample Size Frequency ffffffffffffffffffff Chi-Square DF Pr > ChiSq Sample Size Frequency fffffffffffffffffff Chi-Square DF Pr > ChiSq Sample Size Frequency ffffffffffffffffffffffffffffffffffff	<pre>ffffffffffff 54.55 22.73 22.73 22.73 Test portions ffffffff 4.4545 2 0.1078 = 22 Percent ffffffffff 12.6364 9.09 22.73 68.18 Test portions fffffffff 12.6364 = 22 Percent fffffffffff 27.27 22.73 50.00 Test</pre>	Frequency ffffffffffffffffffffffffffffffffffff	Percent ffffffffff 54.55 77.27 100.00 Cumulative Percent fffffffffff 9.09 31.82 100.00 Cumulative Percent fffffffffff 27.27 50.00
ffffffffffffffffffffffffffffffffffffff	ffffffffffffffffff 12 5 5 Chi-Square for Equal Pro fffffffffffffff Chi-Square DF Pr > ChiSq Sample Size Frequency fffffffffffffffff Chi-Square for Equal Pro fffffffffffffffff Chi-Square DF Pr > ChiSq Sample Size Frequency Frequency ffffffffffffffffffffffffffffffffffff	<pre>ffffffffffff 54.55 22.73 22.73 22.73 Test portions fffffffff 4.4545 2 0.1078 = 22 Percent ffffffffff 9.09 22.73 68.18 Test portions fffffffff 12.6364 2 0.0018 = 22 Percent fffffffffff 27.27 22.73 50.00 Test portions</pre>	Frequency ffffffffffffffffffffffffffffffffffff	Percent ffffffffff 54.55 77.27 100.00 Cumulative Percent fffffffffff 9.09 31.82 100.00 Cumulative Percent fffffffffff 27.27 50.00
ffffffffffffffffffffffffffffffffffff	fffffffffffffff 12 5 5 Chi-Square for Equal Pro fffffffffffffffff Chi-Square DF Pr > ChiSq Sample Size Frequency fffffffffffffffff Chi-Square DF Pr > ChiSq Sample Size Frequency fffffffffffffffff Chi-Square DF Pr > ChiSq Sample Size Frequency fffffffffffffffffffff 6 5 11 Chi-Square for Equal Pro	<pre>ffffffffffff 54.55 22.73 22.73 22.73 Test portions fffffffff 4.4545 2 0.1078 = 22 Percent ffffffffff 9.09 22.73 68.18 Test portions fffffffff 12.6364 2 0.0018 = 22 Percent fffffffffff 27.27 22.73 50.00 Test portions</pre>	Frequency ffffffffffffffffffffffffffffffffffff	Percent ffffffffff 54.55 77.27 100.00 Cumulative Percent fffffffffff 9.09 31.82 100.00 Cumulative Percent fffffffffff 27.27 50.00
ffffffffffffffffffffffffffffffffffff	ffffffffffffffffffffffffffffffffffffff	<pre>ffffffffffff 54.55 22.73 22.73 22.73 Test portions ffffffff 4.4545 2 0.1078 = 22 Percent ffffffffff 9.09 22.73 68.18 Test portions fffffffff 27.27 22.73 50.00 Test portions fffffffff 2.8182 2 0.2444</pre>	Frequency ffffffffffffffffffffffffffffffffffff	Percent ffffffffff 54.55 77.27 100.00 Cumulative Percent fffffffffff 9.09 31.82 100.00 Cumulative Percent fffffffffff 27.27 50.00
ffffffffffffffffffffffffffffffffffff	ffffffffffffffffffffffffffffffffffffff	<pre>ffffffffffff 54.55 22.73 22.73 22.73 Test portions ffffffff 4.4545 2 0.1078 = 22 Percent ffffffffff 9.09 22.73 68.18 Test portions fffffffff 27.27 22.73 50.00 Test portions fffffffff 2.8182 2 0.2444</pre>	Frequency ffffffffffffffffffffffffffffffffffff	Percent ffffffffff 54.55 77.27 100.00 Cumulative Percent fffffffffff 9.09 31.82 100.00 Cumulative Percent fffffffffff 27.27 50.00

B47 Frequency Percent Frequency Percent

0 Disagree-Strongly disagree Undecided Agree-Strongly agree	1 11 3 7	4.55 50.00 13.64 31.82	1 12 15 22	4.55 54.55 68.18 100.00
	Chi-Square for Equal Pro <i>fffffffffffffff</i> Chi-Square DF Pr > ChiSq	00000000000000000000000000000000000000		
	Sample Size	2 = 22		
B48 fffffffffffffffffffffffffffffffffff Disagree-Strongly disagree Undecided	Frequency ffffffffffffff 8 5	Percent fffffffffff 36.36 22.73	Cumulative Frequency ffffffffffffff 8 13	Cumulative Percent fffffffff 36.36 59.09
Agree-Strongly agree	9	40.91	22	100.00
	Chi-Square for Equal Pro fffffffffffffff Chi-Square DF	oportions		
	Pr > ChiSq Sample Size	0.5538 e = 22		
			Cumulative	Cumulative
B49 ffffffffffffffffffffffffffffffffffff	Frequency fffffffffffffff	Percent	Frequency	Percent
Disagree-Strongly disagree Undecided	5 1	22.73 4.55	5 6	22.73 27.27
Agree-Strongly agree	16	72.73	22	100.00
	Chi-Square for Equal Pro ffffffffffffff Chi-Square DF	portions ffffffff		
	Pr ≻ ChiSq Sample Size	0.0003 e = 22		
			Cumulative	Cumulative
B50 ffffffffffffffffffffffffffffffff	Frequency fffffffffffffff	Percent fffffffffff	Frequency	Percent ffffffffff
Disagree-Strongly disagree Undecided	3 9	13.64 40.91	3 12	13.64 54.55
Agree-Strongly agree	10	45.45	22	100.00
	Chi-Square for Equal Pro ffffffffffffff Chi-Square DF Pr > ChiSq Sample Size	oportions ffffffff 3.9091 2 0.1416		
			Cumulative	Cumulative
B51 ffffffffffffffffffffffffffffffffffff	Frequency fffffffffffff 6 10	Percent ffffffffff 27.27 45.45	Frequency fffffffffffff 6 16	Percent fffffffff 27.27 72.73
Agree-Strongly agree	6	27.27	22	100.00
	Chi-Square for Equal Pro fffffffffffff Chi-Square DF	portions		
	Pr ≻ ChiSq Sample Size	0.4832 e = 22		
B52 ffffffffffffffffffffffffffffffffffff	Frequency	Percent	Cumulative Frequency ffffffffffffffff 1	Cumulative Percent fffffffff 4.55
Undecided Agree-Strongly agree	4 17	18.18	5 22	22.73
	Chi-Square for Equal Pro ffffffffffffff Chi-Square	portions ffffffff 19.7273		
	DF Pr > ChiSq	2 <.0001		
B53	Sample Size Frequency	Percent	Cumulative Frequency	Cumulative Percent
ffffffffffffffffffffffffffffffffffffff	9	40.91	9	40.91
Undecided Agree-Strongly agree	1 12	4.55 54.55	10 22	45.45 100.00
	Chi-Square for Equal Pro fffffffffffffff Chi-Square	portions		

	DF	2		
	Pr ≻ ChiSq	0.0122		
	Sample Size	= 22		
B54	Frequency	Percent	Cumulative Frequency	Cumulative Percent
ffffffffffffffffffffffffffffffffffffff	ffffffffffffffff 4	fffffffffff 18.18	ffffffffffffffff 4	ffffffffff 18.18
Undecided	1	4.55	5	22.73
Agree-Strongly agree	17	77.27	22	100.00
	Chi-Square for Equal Prop			
	ffffffffffffff	fffffff		
	Chi-Square DF	19.7273 2		
	Pr > ChiSq Sample Size	<.0001 = 22		
	·		Cumulative	Cumulative
B55	Frequency	Percent	Frequency	Percent
ffffffffffffffffffffffffffffffffffffff		27.27	,11111111111111111 6	11111111111111 27.27
Undecided Agree-Strongly agree	4 12	18.18 54.55	10 22	45.45 100.00
	Chi-Square for Equal Prop	portions		
	ffffffffffffff Chi-Square	ffffffff 4.7273		
	DF Pr ≻ ChiSq	2 0.0941		
	Sample Size			
			Cumulative	Cumulative
B56 fffffffffffffffffffffffffffffff	Frequency	Percent ffffffffff	Frequency	Percent fffffffffff
Disagree-Strongly disagree Undecided	2 2	9.09 9.09	2 4	9.09 18.18
Agree-Strongly agree	18	81.82	22	100.00
	Chi-Square	Test		
	for Equal Prop ffffffffffffff			
	Chi-Square	23.2727		
	DF Pr ≻ ChiSq	2 <.0001		
	Sample Size	= 22		
B57	Frequency	Percent	Cumulative Frequency	Cumulative Percent
<i>fffffffffffffffffffffffffffffffff</i>	, ffffffffffffffffff	ffffffffff	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	fffffffffff
Disagree-Strongly disagree Undecided	3 5	13.64 22.73	3 8	13.64 36.36
Agree-Strongly agree	14	63.64	22	100.00
	Chi-Square for Equal Prop			
	fffffffffffff	fffffff		
	Chi-Square DF	9.3636 2		
	Pr > ChiSq Sample Size	0.0093 = 22		
	Sumpre Sire		Cumulative	Cumulative
B58	Frequency	Percent	Cumulative Frequency	Cumulative Percent
ffffffffffffffffffffffffffffffffffffff	fffffffffffffffff 7	fffffffffff 31.82	ffffffffffffffff 7	fffffffffff 31.82
Undecided Agree-Strongly agree	8 7	36.36 31.82	15 22	68.18 100.00
har ee berongry ugree				100100
	Chi-Square for Equal Prop	portions		
	ffffffffffffff Chi-Square	ffffffff 0.0909		
	DF Pr > ChiSq	2 0.9556		
	Sample Size			
			Cumulative	Cumulative
B59 ffffffffffffffffffffffffffffff	Frequency	Percent ffffffffff	Frequency fffffffffffffff	Percent ffffffffff
Disagree-Strongly disagree Undecided	1 5	4.55 22.73	1 6	4.55 27.27
Agree-Strongly agree	16	72.73	22	100.00
	Chi-Square			
	for Equal Prop ffffffffffffff			
	Chi-Square DF	16.4545 2		
	Pr ≻ ChiSq	0.0003		
	Sample Size	= 22		
B60	Frequency	Percent	Cumulative Frequency	Cumulative Percent
<i><i>ffffffffffffffffffffffffffff</i></i>	ŧfffffffffffffff	ffffffffff	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	fffffffffff
Disagree-Strongly disagree Undecided	2 6	9.09 27.27	2 8	9.09 36.36

Agree-Strongly agree	14 Chi-Square for Equal Pro ffffffffffff Chi-Square DF Pr > ChiSq Sample Size	00000000000000000000000000000000000000	22	100.00		
			Cumulative	Cumulative		
B61	Frequency	Percent	Frequency	Percent		
ffffffffffffffffffffffffffffffff						
Disagree-Strongly disagree	7	31.82	7	31.82		
Undecided	2	9.09	9	40.91		
Agree-Strongly agree	13	59.09	22	100.00		
	Chi-Square	e Test				
	for Equal Pro					
	fffffffffff	ffffffff				
	Chi-Square	8.2727				
	DF	2				
	Pr ≻ ChiSq	0.0160				
	Sample Size	e = 22				
			Cumulative	Cumulative		
B62	Frequency	Percent	Frequency	Percent		
<i>fffffffffffffffffffffffffffffffffffff</i>	, fffffffffffffffff	,,,,,,,,,,,,,,,,,,	, ffffffffffffffff	fffffffffff		
Disagree-Strongly disagree	9	40.91	9	40.91		
Undecided	2	9.09	11	50.00		
Agree-Strongly agree	11	50.00	22	100.00		
	Chi-Square					
	for Equal Pro					
	fffffffffff					
	Chi-Square	6.0909				
	DF	2				
	Pr > ChiSq	0.0476				
Sample Size = 22						

Annexure D: Descriptive statistics: Uni-variate with means & standard deviations where appropriate

N Mean Std Deviation Skewness Uncorrected SS Coeff Variation	Variable: 22 4.09090909 0.75018035 -0.1538092 380 18.337742	B01 (B01) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean	22 90 0.56277056 -1.1064404 11.8181818 0.15993899
Location Mean 4.09 Median 4.00 Mode 4.00	0000 Varia 0000 Range	Variability eviation	0.75018 0.56277 2.00000 1.00000
N Mean Std Deviation Skewness Uncorrected SS Coeff Variation	Variable: 22 4 1.06904497 -0.7717168 376 26.7261242	B02 (B02) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean	22 88 1.14285714 -0.56875 24 0.22792115
Location Mean 4.00 Median 4.00 Mode 5.00	0000 Varia 0000 Range	Variability eviation	1.06904 1.14286 3.00000 2.00000
N Mean Std Deviation Skewness Uncorrected SS Coeff Variation	Variable: 22 4.18181818 0.95799213 -1.8257526 404 22.9085074	B03 (B03) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean	22 92 0.91774892 4.83275234 19.2727273 0.20424461
Location Mean 4.18 Median 4.00 Mode 4.00	0000 Varia 0000 Range	Variability eviation	0.95799 0.91775 4.00000 1.00000
N Mean Std Deviation Skewness Uncorrected SS Coeff Variation	Variable: 21 3.76190476 1.30018314 -1.0199852 331 34.5618302	B04 (B04) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean	21 79 1.69047619 0.10269892 33.8095238 0.28372322
Location Mean 3.76 Median 4.00 Mode 4.00	0000 Varia 0000 Range	Variability eviation	1.30018 1.69048 4.00000 2.00000
N	Variable:	B05 (B05)	
Mean Std Deviation Skewness Uncorrected SS Coeff Variation	22 3.90909091 1.06498786 -0.58489 360 27.2438754 Basic Statist:	Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean	22 86 1.13419913 -0.8241524 23.8181818 0.22705617
Std Deviation Skewness Uncorrected SS	3.90909091 1.06498786 -0.58489 360 27.2438754 Basic Statist: 9091 Std Du 9000 Kange	Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation	86 1.13419913 -0.8241524 23.8181818
Std Deviation Skewness Uncorrected SS Coeff Variation Location Mean 3.90 Median 4.00	3.90909091 1.06498786 -0.58489 360 27.2438754 Basic Statist: 9091 Std Du 9000 Kange	Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation nce quartile Range	86 1.13419913 -0.8241524 23.8181818 0.22705617 1.06499 1.13420 3.00000

	5.000000	Range Inter	quartile Range	4.00000 2.00000
			()	
Ν	vari	iable: 22	B07 (B07) Sum Weights	22
Mean Std Deviatio	on 1.0696	4	Sum Observations Variance	88 1.14285714
Skewness	-0.771	L7168	Kurtosis	-0.56875
Uncorrected Coeff Varia		376 51242	Corrected SS Std Error Mean	24 0.22792115
Loca	ation Basic S	statist	ical Measures Variability	
Mean Median	4.000000 4.000000	Std D Varia	eviation	1.06904 1.14286
Mode	5.000000	Range		3.00000
		Inter	quartile Range	2.00000
Ν	vari	iable: 22	B08 (B08) Sum Weights	22
Mean Std Deviatio	on 1.3363	3.5	Sum Observations Variance	77 1.78571429
Skewness	-0.131		Kurtosis	-1.3862063
Uncorrected Coeff Varia		307	Corrected SS Std Error Mean	37.5 0.28490144
COETT Valitat				0.20490144
Loca	Basic S ation	Statist	ical Measures Variability	
Mean	3.500000		eviation	1.33631
Median Mode	3.000000 5.000000	Varia Range		1.78571 4.00000
lioue	51000000		quartile Range	3.00000
N	Vari	iable:	B09 (B09)	22
N Mean	3.5909	22 90909	Sum Weights Sum Observations	22 79
Std Deviatio			Variance	1.68181818
Skewness Uncorrected	-0.579 SS	319	Kurtosis Corrected SS	-0.5358239 35.3181818
Coeff Varia	tion 36.114	17914	Std Error Mean	0.27648921
		Statist	ical Measures	
Loca Mean	ation 3.590909	Std D	Variability eviation	1.29685
Median	4.000000	Varia	nce	1.68182
Mode	5.000000	Range Inter	quartile Range	4.00000 2.00000
	Vari	iable:	B10 (B10)	
N Mean		22	Sum Weights	22 74
Mean Std Deviatio	3.3636 on 1.0486	22 53636 50245	Sum Weights Sum Observations Variance	74 1.0995671
Mean	3.3636 on 1.0486 -0.283	22 53636 50245	Sum Weights Sum Observations	74
Mean Std Deviatio Skewness	3.3636 on 1.0486 -0.283 SS	22 53636 50245 38424 272	Sum Weights Sum Observations Variance Kurtosis	74 1.0995671 -1.3636833
Mean Std Deviatio Skewness Uncorrected Coeff Varia	3.3636 on 1.0486 -0.283 SS tion 31.174 Basic S	22 53636 50245 58424 272 16675	Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures	74 1.0995671 -1.3636833 23.0909091
Mean Std Deviatio Skewness Uncorrected Coeff Variat	3.3636 on 1.0486 -0.283 SS tion 31.174 Basic S ation	22 53636 50245 38424 272 46675 5tatist	Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability	74 1.0995671 -1.3636833 23.0909091 0.22356279
Mean Std Deviatio Skewness Uncorrected Coeff Variat Loca Mean Median	3.3636 on 1.0486 -0.283 SS tion 31.174 Basic S ation 3.363636 4.000000	22 53636 50245 38424 272 46675 5tatist	Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation	74 1.0995671 -1.3636833 23.090091 0.22356279 1.04860 1.09957
Mean Std Deviatic Skewness Uncorrected Coeff Variat Loca Mean	3.3636 on 1.0486 -0.283 SS tion 31.174 Basic S ation 3.363636	22 53636 50245 58424 272 16675 5tatist Std D Varia Range	Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation nce	74 1.095671 -1.3636833 23.0909091 0.22356279 1.04860 1.09957 3.00000
Mean Std Deviatio Skewness Uncorrected Coeff Variat Loca Mean Median	3.3636 on 1.0486 -0.283 SS tion 31.174 Basic S ation 3.363636 4.000000	22 53636 50245 58424 272 16675 5tatist Std D Varia Range	Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation nce	74 1.0995671 -1.3636833 23.090091 0.22356279 1.04860 1.09957
Mean Std Deviatio Skewness Uncorrected Coeff Variat Loca Mean Median	3.3636 on 1.0486 -0.285 SS tion 31.174 Basic S ation 3.363636 4.000000 4.000000	22 53636 50245 58424 272 16675 5tatist Std D Varia Range	Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation nce	74 1.095671 -1.3636833 23.0909091 0.22356279 1.04860 1.09957 3.00000
Mean Std Deviatic Skewness Uncorrected Coeff Variat Loca Mean Median Mode	3.3636 on 1.0486 -0.283 SS tion 31.174 Basic S ation 3.363636 4.000000 4.000000	22 53636 50245 38424 272 16675 5tatist Std D Varia Range Inter iable: 22	Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures variability eviation nce quartile Range B11 (B11) Sum Weights	74 1.095673 -1.3636833 23.0909091 0.22356279 1.04860 1.09957 3.00000 2.00000 2.00000
Mean Std Deviatic Skewness Uncorrected Coeff Variat Loca Mean Median Mode	3.3636 on 1.0486 -0.283 SS tion 31.174 Basic S ation 3.363636 4.000000 4.000000 Var: 3.6363	22 53636 50245 38424 272 16675 5tatist Std D Varia Range Inter iable: 22 36364	Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation nce quartile Range B11 (B11)	74 1.095633 23.0909091 0.22356279 1.04860 1.09957 3.00000 2.00000
Mean Std Deviatic Skewness Uncorrected Coeff Variat Loca Mean Median Mode N Mean Std Deviatic Skewness	3.3636 on 1.0486 -0.283 SS tion 31.174 Basic 5 ation 3.363636 4.000000 4.000000 Var: 3.6363 on 0.8477 -0.725	22 53636 50245 272 16675 Statist Std D Varia Range Inter 1able: 22 23 47146 21146	Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation nce quartile Range B11 (B11) Sum Weights Sum Observations Variance Kurtosis	74 1.09557 -1.3636833 23.0909091 0.22356279 1.04860 1.09957 3.00000 2.00000 2.00000 2.00000 2.00000
Mean Std Deviatic Skewness Uncorrected Coeff Variat Loca Mean Median Mode N Mean Std Deviatic	3.3636 on 1.0486 -0.283 SS bion 31.174 Basic S ation 3.363636 4.000000 4.000000 Vari 3.6363 on 0.8477 -0.725 SS	22 53636 50245 272 16675 5tatist Std D Varia Range Inter 100 22 36364 71146 91306 306	Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation nce quartile Range B11 (B11) Sum Weights Sum Observations Variance	74 1.095633 23.0909091 0.22356279 1.04860 1.09957 3.00000 2.00000 2.00000
Mean Std Deviatic Skewness Uncorrected Coeff Variat Loca Mean Median Mode N Mean Std Deviatic Skewness Uncorrected	3.3636 on 1.0486 -0.283 SS tion 31.174 Basic S ation 3.363636 4.000000 4.000000 Vari 3.6363 on 0.8477 -0.725 SS tion 23.312	22 33636 50245 38424 272 16675 Statist Std D Varia Range Inter 1able: 22 36364 21146 20651	Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation nce quartile Range B11 (B11) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean	74 1.0955673 23.0909091 0.22356279 1.04860 1.09957 3.00000 2.00000 2.00000 2.00000 2.00000 2.00000 2.00000
Mean Std Deviatic Skewness Uncorrected Coeff Variat Loca Mean Median Mode N Mean Std Deviatic Skewness Uncorrected Coeff Variat	3.3636 on 1.0486 -0.283 SS Basic S ation 31.174 Basic S ation 4.000000 4.000000 Var: 3.6365 on 0.8477 -0.725 SS tion 23.312 Basic S	22 33636 50245 50245 50245 50245 5025 505	Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation nce quartile Range B11 (B11) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability	74 1.0956833 23.0909091 0.22356279 1.04860 1.09957 3.00000 2.000000 2.000000 2.000000 2.000000 2.000000 2.0000000 2.0000000 2.0000000 2.0000000 2.0000000 2.00000000
Nean Std Deviatic Skewness Uncorrected Coeff Variat Loca Mean Median Mode N Mean Std Deviatic Skewness Uncorrected Coeff Variat	3.3636 on 1.0486 -0.283 SS bion 31.174 Basic 2 ation 3.363636 4.000000 4.000000 Vari 3.6365 on 0.8477 -0.729 SS tion 23.312 Basic 2	22 33636 50245 50245 50245 50245 5025 505	Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation nce quartile Range B11 (B11) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation	74 1.0955673 23.0909091 0.22356279 1.04860 1.09957 3.00000 2.00000 2.00000 2.00000 2.00000 2.00000 2.00000
Mean Std Deviatic Skewness Uncorrected Coeff Variat Loca Mean Median Mode N Mean Std Deviatic Skewness Uncorrected Coeff Variat	3.3636 on 1.0486 -0.283 SS bion 31.174 Basic 2 a.363636 4.000000 4.000000 Vari 3.6363 on 0.8477 -0.725 SS bion 23.312 Basic 2 ation 3.636364	22 536366 50245 38424 2722 166675 5tatist Std D Varia Range 11nter 1105 1069 20651 5tatist Std D Varia Range	Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation nce quartile Range B11 (B11) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation nce	74 1.0995671 -1.363833 23.0909091 0.22356279 1.04860 1.09957 3.00000 2.00000 2.00000 222 80 0.71861472 0.11718453 15.0909091 0.18073269 0.84771 0.71861 3.00000
Nean Std Deviatic Skewness Uncorrected Coeff Variat Mean Median Mode N Mean Std Deviatic Skewness Uncorrected Coeff Variat	3.3636 on 1.0486 -0.283 SS tion 31.174 Basic 2 ation 3.363636 4.000000 4.000000 Var: 3.6365 on 0.8477 -0.725 SS tion 23.312 Basic 2 ation 3.636364 4.000000	22 536366 50245 38424 2722 166675 5tatist Std D Varia Range 11nter 1105 1069 20651 5tatist Std D Varia Range	Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation nce guartile Range B11 (B11) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation nce	74 1.0956833 23.0909091 0.22356279 1.04860 1.09957 3.00000 2.00000 2.00000 2.00000 2.00000 2.00000 0.11718453 15.0909091 0.18073269 0.84771 0.71861
Nean Std Deviatic Skewness Uncorrected Coeff Variat Mean Median Mode N Mean Std Deviatic Skewness Uncorrected Coeff Variat	3.3636 on 1.0486 -0.283 SS tion 31.174 Basic S ation 3.363636 4.000000 4.000000 Var: 3.6365 on 0.8477 -0.725 SS tion 23.312 Basic S ation 3.636364 4.000000 4.000000	22 536366 50245 38424 2722 166675 5tatist Std D Varia Range 11nter 1105 1069 20651 5tatist Std D Varia Range	Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation nce quartile Range B11 (B11) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation nce quartile Range	74 1.0995671 -1.363833 23.0909091 0.22356279 1.04860 1.09957 3.00000 2.00000 2.00000 222 80 0.71861472 0.11718453 15.0909091 0.18073269 0.84771 0.71861 3.00000
Mean Std Deviatic Skewness Uncorrected Coeff Variat Mean Median Mode N N Mean Std Deviatic Skewness Uncorrected Coeff Variat Loca Mean Median Mode	3.3636 on 1.0486 -0.283 SS tion 31.174 Basic 2 ation 3.363636 4.000000 4.000000 Var: SS tion 23.312 Basic 2 ation 3.6363 on 0.847 -0.725 SS tion 23.312 Basic 2 ation 3.636364 4.000000 4.000000	22 53636 9245 38424 272 16675 5tatist Std D Varia Range Inter 1069 306 20051 5tatist Std D Varia Range Inter Std D Varia 206361 5tatist Std D Varia 20636 1069 20651 2075 2075 2075 2075 2075 2075 2075 2075	Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation nce quartile Range B11 (B11) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation nce quartile Range B12 (B12) Sum Weights	74 1.095671 -1.3636833 23.0909091 0.22356279 1.04860 1.09957 3.00000 2.00000 2.00000 2.00000 2.00000 2.00000 2.00000 0.71861472 0.11718453 15.0909091 0.18073269 0.84771 0.71861 3.00000 1.00000
Mean Std Deviatic Skewness Uncorrected Coeff Variat Median Mode N Mean Std Deviatic Skewness Uncorrected Coeff Variat Loca Mean Median Mode	3.3636 on 1.0486 -0.285 SS tion 31.174 Basic 9 ation 3.363636 4.000000 4.000000 Var: 3.6363 on 0.8477 -0.729 SS tion 23.312 Basic 9 ation 3.636364 4.000000 4.000000 Var: 3.7272	22 53636 50245 5025 502	Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation nce quartile Range B11 (B11) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation nce quartile Range B12 (B12)	74 1.0995671 -1.3636833 23.0909091 0.22356279 1.04860 1.09957 3.00000 2.00000 222 80 0.71861472 0.11718453 15.0909091 0.18073269 0.84771 0.71861 3.00000 1.00000
Nean Std Deviatic Skewness Uncorrected Coeff Variat Median Median Mode N N Mean Std Deviatic Skewness Uncorrected Coeff Variat Loca Mean Median Mode N N Std Deviatic Skewness	3.3636 on 1.0486 -0.283 SS tion 31.174 Basic 2 ation 3.363636 4.000000 4.000000 4.000000 Var: 5 SS tion 23.312 Basic 2 ation 3.636364 4.000000 4.000000 Var: 5 SC tion 23.312 Dation 3.636364 4.000000 Var: 5 SC tion 23.312 Dation 3.636364 4.000000	22 53636 9245 38424 272 16675 5tatist \$td D Varia Range Inter 30651 5tatist \$td D Varia 206364 20651 5tatist \$td D Varia 20651 1 statist \$td D Varia 206364 20651 1 statist 22 27273 306	Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation nce quartile Range B11 (B11) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation nce quartile Range B12 (B12) Sum Weights Sum Observations Variance Kurtosis	74 1.099567 1.3636833 23.0909091 0.22356279 1.04860 1.09957 3.00000 2.00000 2.00000 2.00000 2.00000 2.22 80 0.71861472 0.11718453 15.0909091 0.18073269 0.84771 0.71861 3.00000 1.00000 2.22 82 0.504935 -0.2418989
N Mean Std Deviatic Skewness Uncorrected Coeff Variat Mean Median Mode N N Mean Std Deviatic Skewness Uncorrected Coeff Variat Loca Mean Median Mode	3.3636 on 1.0486 -0.285 SS tion 31.174 Basic S ation 3.363636 4.000000 Vari 3.6363 0.8477 -0.725 SS tion 23.312 Basic S ation 3.636364 4.000000 Vari 3.363634 4.000000 Vari 3.7272 on 1.1622 -0.612 SS	22 53636 50245 5025 502	Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation nce quartile Range B11 (B11) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation nce quartile Range B12 (B12) Sum Weights Sum Observations Variance	74 1.0995671 -1.3636833 23.0909091 0.22356279 1.04860 1.09957 3.00000 2.00000 2.00000 2.00000 2.22 80 0.71861472 0.11718453 15.0909091 0.18073269 0.84771 0.71861 3.00000 1.000000 222 82 1.35064935
Nean Std Deviatic Skewness Uncorrected Coeff Variat Loca Mean Median Mode N Mean Std Deviatic Skewness Uncorrected Coeff Variat Loca Mean Median Mode N N Mean Std Deviatic Skewness Uncorrected Coeff Variat	3.3636 on 1.0486 -0.283 SS tion 31.174 Basic 2 ation 3.363636 4.000000 4.000000 Vari 3.63636 tion 23.312 Basic 2 ation 3.636364 4.000000 4.000000 Vari 3.7277 on 1.621 on 0.612 SS tion 31.186	22 536366 9245 38424 272 16675 5tatist \$td D Varia Range Inter 30651 30651 5tatist \$td D Varia 20651 3tatist \$td D Varia 20651 3tatist \$td D Varia 20651 3tatist \$td D Varia 2027273 3tatist 227273 3tatist 227273 227273 3tatist	Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation nce quartile Range B11 (B11) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation nce quartile Range B12 (B12) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean	74 1.099567 1.365683 23.0909091 0.22356279 1.04860 1.09957 3.00000 2.00000 2.00000 2.00000 2.00000 2.00000 0.71861472 0.11718453 15.0909091 0.18073269 0.84771 0.71861 3.00000 1.00000 22 82 1.35064935 -0.2418989 28.3656364
Mean Std Deviatic Skewness Uncorrected Coeff Variat Mean Median Mode N Mean Std Deviatic Skewness Uncorrected Coeff Variat Median Mode N Mean Std Deviatic Skewness Uncorrected Coeff Variat	3.3636 on 1.0486 -0.283 SS tion 31.174 Basic 2 3.63636 4.000000 4.000000 Vari 3.6363 on 0.8477 -0.729 SS tion 23.312 Basic 2 ation 3.636364 4.000000 Vari 3.636364 4.000000 Vari 5S tion 3.636364 4.000000 Vari 5S tion 3.7277 on 1.1627 -0.612 SS tion 31.186 Basic 2 ation	22 53636 50245 58424 2722 16675 5tatist Std D Varia Range 20636 20646 206366 20636 20636 20636 20636 2	Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation nce quartile Range B11 (B11) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation nce guartile Range B12 (B12) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability	74 1.0995671 -1.3636833 23.0909091 0.22356279 1.04860 1.09957 3.00000 2.00000 2.00000 222 80 0.71861472 0.11718453 15.0909091 0.18073269 0.84771 0.71861 3.00000 1.00000 222 82 1.35064935 -0.2418989 28.3636344 0.24777642
Nean Std Deviatic Skewness Uncorrected Coeff Variat Mean Median Mode N Mean Std Deviatic Skewness Uncorrected Coeff Variat Mean Median Mode N N Mean Std Deviatic Skewness Uncorrected Coeff Variat	3.3636 on 1.0486 -0.283 SS tion 31.174 Basic 2 ation 3.363636 4.000000 Vari 3.63636 tion 23.312 Basic 2 ation 3.636364 4.000000 Vari 3.636364 4.000000 Vari 3.7277 on 1.621 SS tion 31.186 Basic 2 ation 3.727273	22 53636 50245 58424 2722 16675 5tatist Std D Varia Range 20636 20646 206366 20636 20636 20636 20636 2	Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation nce quartile Range B11 (B11) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation nce B12 (B12) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variance Kurtosis Corrected SS Std Error Mean ical Measures Variance	74 1.0995671 .1.3636833 23.0909091 0.22356279 1.04860 1.09957 3.00000 2.00000 2.00000 2.00000 2.00000 2.00000 0.18073269 0.84771 0.71861 3.00000 1.00000 2.22 80 0.84771 0.71861 3.00000 1.00000 2.22 82 1.35064935 -0.2418989 28.363364 0.24777642 1.16217
Mean Std Deviatic Skewness Uncorrected Coeff Variat Median Median Mode N N Mean Std Deviatic Skewness Uncorrected Coeff Variat Loca Mean Mode N N Mean Std Deviatic Skewness Uncorrected Coeff Variat	3.3636 on 1.0486 -0.283 SS tion 31.174 Basic 2 3.63636 4.000000 4.000000 Vari 3.6363 on 0.8477 -0.729 SS tion 23.312 Basic 2 ation 3.636364 4.000000 Vari 3.636364 4.000000 Vari 5S tion 3.636364 4.000000 Vari 5S tion 3.7277 on 1.1627 -0.612 SS tion 31.186 Basic 2 ation	22 53636 50245 58424 2722 16675 5tatist Std D Varia Range 36364 71146 712651 5tatist Std D Varia Range Inter 2273 17441 22476 5tatist Std D Varia Range Statist Varia Range Statist	Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation nce quartile Range B11 (B11) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation nce B12 (B12) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation nce	74 1.0995671 -1.3636833 23.0909091 0.22356279 1.04860 1.09957 3.00000 2.00000 222 80 0.71861472 0.11718453 15.0909091 0.18073269 0.84771 0.71861 3.00000 222 82 1.35064935 -0.2418989 28.36364 0.24777642 1.16217 1.35065 4.00000
Nean Std Deviatic Skewness Uncorrected Coeff Variat Mean Median Mode N N Mean Std Deviatic Skewness Uncorrected Coeff Variat Locc Mean Median Mode N N Mean Std Deviatic Skewness Uncorrected Coeff Variat	3.3636 on 1.0486 -0.285 SS tion 31.174 Basic S ation 3.363636 4.000000 Vari 3.636364 4.000000 Vari 3.636364 4.000000 Vari 3.7272 on 1.1621 -0.612 SS tion 31.186 Basic S ation 3.727273 4.000000	22 53636 50245 58424 2722 16675 5tatist Std D Varia Range 36364 71146 712651 5tatist Std D Varia Range Inter 2273 17441 22476 5tatist Std D Varia Range Statist Varia Range Statist	Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation nce quartile Range B11 (B11) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation nce B12 (B12) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Range	74 1.09957 1.04860 1.09957 3.00000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.0000000 2.0000000 2.0000000 2.0000000 2.0000000000

N Mean Std Deviation Skewness	Variable: 22 2.81818182 1.36752692 0.11374954	B13 (B13) Sum Weights Sum Observations Variance Kurtosis	22 62 1.87012987 -1.0842978
Uncorrected SS Coeff Variation	214 48.5251487	Corrected SS Std Error Mean	39.2727273 0.29155772
		tical Measures	
Locatio		Variability	
	318182 Std 000000 Vari	Deviation ance	1.36753 1.87013
	000000 Rang		4.00000
	Inte	rquartile Range	2.00000
N	Variable: 22	B14 (B14) Sum Weights	22
Mean	3.72727273	Sum Observations	82
Std Deviation Skewness	0.70250017 -0.4645063	Variance Kurtosis	0.49350649 0.657851
Uncorrected SS	316	Corrected SS	10.3636364
Coeff Variation	18.8475656	Std Error Mean	0.14977354
Locatio		tical Measures Variability	
Mean 3.	727273 Std	Deviation	0.70250
	000000 Vari 000000 Rang		0.49351 3.00000
		rquartile Range	1.00000
N	Variable:	B15 (B15)	
N Mean	22 3.36363636	Sum Weights Sum Observations	22
Std Deviation	1.04860245	Variance	1.0995671
Skewness Uncorrected SS	0.26131519 272	Kurtosis Corrected SS	-1.0204069 23.0909091
Coeff Variation	31.1746675	Std Error Mean	0.22356279
		tical Measures	
Location Mean 3.3		Variability Deviation	1.04860
Median 3.0	000000 Vari	ance	1.09957
Mode 3.0	000000 Rang Inte	e rquartile Range	3.00000 1.00000
		č	
	Variable:	B16 (B16)	
N Mean	22 3.18181818	Sum Weights Sum Observations	22 76
Std Deviation	1.09702471	Variance	1.2034632
Skewness Uncorrected SS	-0.1554237 248	Kurtosis Corrected SS	0.1877706 25.2727273
Coeff Variation	34.4779193	Std Error Mean	0.23388645
	Basic Statis	tical Measures	
Location Mean 3.1		Variability Deviation	1.09702
	000000 Vari		1.20346
Mode 3.0	000000 Rang	e rquartile Range	4.00000 1.00000
	Ince	qual circ hange	1.00000
	Variable:		
N Mean	22 3.72727273	Sum Weights Sum Observations	22
Std Deviation	0.6310851	Variance	0.3982684
Skewness Uncorrected SS	-0.9817459 314	Kurtosis Corrected SS	1.71796339
Coeff Variation	16.9315514	Std Error Mean	0.13454779
	Basic Statis	tical Measures	
Location	ı	Variability Deviation	0 62100
	727273 Std 1 000000 Vari		0.63109 0.39827
Mode 4.0	000000 Rang		3.00000
	Inte	I YUAI LITE KAURE	1.00000
	Variable:	B18 (B18)	
N	22	Sum Weights	22 84
Mean Std Deviation	3.81818182 0.50108108	Sum Observations Variance	82 0.25108225
Skewness	-0.4129003	Kurtosis	0.75173665
Uncorrected SS Coeff Variation	326 13.1235522	Corrected SS Std Error Mean	5.27272727 0.10683085
		tical Measures	
Locatio	ı	Variability	
	318182 Std 000000 Vari	Deviation ance	0.50108 0.25108
	000000 Rang	e	2.00000
	Inte	rquartile Range	0
	.,	240 (245)	
N	Variable: 22	B19 (B19) Sum Weights	22
	22		2.

Mean Std Deviation	3.27272727 0.82703246	Sum Observations Variance	72 0.68398268
Skewness	0.53722656	Kurtosis	0.19675491
Uncorrected SS Coeff Variation	250 25.2704362	Corrected SS Std Error Mean	14.3636364 0.17632391
		ical Measures	
Location Mean 3.2		Variability Deviation	0.82703
Median 3.0	00000 Varia		0.68398
Mode 3.0	00000 Range		3.00000
	Inter	quartile Range	1.00000
	Variable:	B20 (B20)	22
N Mean	22 3.54545455	Sum Weights Sum Observations	22 78
Std Deviation	0.96250035	Variance	0.92640693
Skewness Uncorrected SS	-0.669984 296	Kurtosis Corrected SS	-0.6587075 19.4545455
Coeff Variation		Std Error Mean	0.20520576
Location		ical Measures Variability	
Mean 3.5	45455 Std D	Deviation	0.96250
	00000 Varia		0.92641
Mode 4.0	00000 Range Inter	e quartile Range	3.00000 1.00000
N	Variable: 22	B21 (B21) Sum Weights	22
Mean	3.63636364	Sum Observations	80
Std Deviation Skewness	1.21676599 -0.4368785	Variance Kurtosis	1.48051948 -0.7306961
Uncorrected SS	322	Corrected SS	31.0909091
Coeff Variation	33.4610648	Std Error Mean	0.25941538
Location		ical Measures Variability	
		Deviation	1.21677
	00000 Varia 00000 Range		1.48052 4.00000
		quartile Range	2.00000
	Variable:	B22 (B22)	
Ν	22	Sum Weights	22
Mean Std Deviation	3.86363636 0.83354976	Sum Observations Variance	85 0.69480519
Skewness	0.27357381	Kurtosis	-1.5094805
Uncorrected SS Coeff Variation	343 21.574229	Corrected SS Std Error Mean	14.5909091 0.1777134
COEFF Variation		ical Measures	0.1///134
Location		Variability Deviation	0 02255
	63636 Std D 00000 Varia		0.83355 0.69481
Mode 3.0	00000 Range		2.00000
	Inter	rquartile Range	2.00000
Ν	Variable:	B23 (B23)	
N Mean	22 3.09090909	Sum Weights Sum Observations	22 68
Std Deviation	1.06498786	Variance	1.13419913
Skewness Uncorrected SS	-0.1956801 234	Kurtosis Corrected SS	-1.0930132 23.8181818
Coeff Variation	34.4554895	Std Error Mean	0.22705617
Location		ical Measures Variabilitv	
Mean 3.0	90909 Std D	Deviation	1.06499
	00000 Varia 00000 Range		1.13420 4.00000
1002 4.0	0	quartile Range	2.00000
	Variable:	B24 (B24)	
N	22	Sum Weights	22
Mean	3.40909091	Sum Observations	75
Std Deviation Skewness	0.85407097 0.56284803	Variance Kurtosis	0.72943723 -0.1390404
Uncorrected SS	271	Corrected SS	15.3181818
Coeff Variation		Std Error Mean	0.18208854
Location		ical Measures: Variability	
		Deviation	0.85407
	00000 Varia 00000 Range		0.72944 3.00000
	0	quartile Range	1.00000
	Variable:	B25 (B25)	
N	22	Sum Weights	22
Mean Std Deviation	3.95454545 1.13293856	Sum Observations Variance	87 1.28354978
Skewness	-0.5519232	Kurtosis	-1.1769387

Uncorrected SS Coeff Variation	371 28.6490211	Corrected SS Std Error Mean	26.9545455 0.24154331
	Basic Statist	tical Measures	
Location Mean 3.99	54545 Std F	Variability Deviation	1.13294
	00000 Varia		1.28355
	00000 Range	2	3.00000
	Inter	rquartile Range	2.00000
	Variable:		
N Mean	20 3.15	Sum Weights Sum Observations	20
Std Deviation	1.08942283		63 1.18684211
Skewness	-0.0549529	Kurtosis	-0.6326708
Uncorrected SS Coeff Variation	221 34.5848518	Corrected SS Std Error Mean	22.55 0.24360235
	Basic Statist	tical Measures	
Location Mean 3.15		Variability Deviation	1.08942
	00000 Varia		1.18684
Mode 3.00	00000 Range		4.00000
OTE: The mode displa		rquartile Range allest of 2 modes wi	2.00000 th a count of
	-		
N	Variable: 22	B27 (B27) Sum Weights	22
Mean	3.54545455	Sum Observations	78
Std Deviation	1.2238609		1.4978355
Skewness Uncorrected SS	-0.7155409 308	Kurtosis Corrected SS	-0.1313324 31.4545455
Coeff Variation			0.26092802
	Basic Statist	tical Measures	
Location Mean 3.54	15455 Std [Variability Deviation	1.22386
	00000 Varia		1.49784
Mode 4.00	00000 Range		4.00000
	Inter	rquartile Range	1.00000
	Variable:	B28 (B28)	
N	22	Sum Weights	22
Mean Std Deviation	2.72727273 1.03195691	Sum Observations Variance	60 1.06493506
Skewness	0.60741806	Kurtosis	-0.5853533
Uncorrected SS Coeff Variation	186 37.83842		22.3636364 0.22001395
		tical Measures	
Location Mean 2.72		Variability Deviation	1.03196
	00000 Varia		1.06494
	00000 Range		4.00000
	Inter	rquartile Range	2.00000
	Variable:	B29 (B29)	
Ν	22	Sum Weights	22
Mean Std Dovistion	3.27272727	Sum Observations	72
Std Deviation Skewness	1.03195691 -0.0354524	Variance Kurtosis	1.06493506 0.02459063
Uncorrected SS	258	Corrected SS	22.3636364
Coeff Variation	31.5320167	Std Error Mean	0.22001395
Location	Basic Statist	tical Measures Variability	
Mean 3.27		Deviation	1.03196
	00000 Varia 00000 Range		1.06494 4.00000
Houe 3.00	0	- rquartile Range	1.00000
N	Variable: 22	B30 (B30) Sum Weights	22
Mean	4	Sum Weights Sum Observations	88
Std Deviation	0.81649658	Variance	0.66666667
Skewness	-1.1547595	Kurtosis	1.93984962
Uncorrected SS Coeff Variation	366 20.4124145	Corrected SS Std Error Mean	14 0.17407766
	Basic Statist	tical Measures	
Location Mean 4.00		Variability Deviation	0.81650
	00000 Stul		0.66667
	00000 Range	2	3.00000
	Inter	rquartile Range	0
	Variable:	B31 (B31)	
Ν	22	Sum Weights	22
Mean Std Deviation	3.63636364	Sum Observations	80 1 004329
Std Deviation	1.00216216	Variance	1.004329

	variable:	B31 (B31)	
N	22	Sum Weights	22
Mean	3.63636364	Sum Observations	80
Std Deviation	1.00216216	Variance	1.004329
Skewness	-0.4129003	Kurtosis	-0.7569771
Uncorrected SS	312	Corrected SS	21.0909091
Coeff Variation	27.5594595	Std Error Mean	0.21366169

Basic Statistical Measures

Loca	ation	Variability	
Mean	3.636364	Std Deviation	1.00216
Median	4.000000	Variance	1.00433
Mode	4.000000	Range	3.00000
		Interquartile Range	1.00000

	Variable:	B32 (B32)	
Ν	22	Sum Weights	22
Mean	3.27272727	Sum Observations	72
Std Deviation	0.93512506	Variance	0.87445887
Skewness	-0.2223454	Kurtosis	-1.203752
Uncorrected SS	254	Corrected SS	18.3636364
Coeff Variation	28.5732657	Std Error Mean	0.19936933

Basic Statistical Measures

Loca	ation	Variability	
Mean	3.272727	Std Deviation	0.93513
Median	3.500000	Variance	0.87446
Mode	4.000000	Range	3.00000
		Interquartile Range	2.00000

	Variable:	B33 (B33)	
N	22	Sum Weights	22
Mean	4.27272727	Sum Observations	94
Std Deviation	0.93512506	Variance	0.87445887
Skewness	-2.1440453	Kurtosis	6.48536263
Uncorrected SS	420	Corrected SS	18.3636364
Coeff Variation	21.8859056	Std Error Mean	0.19936933

Basic Statistical Measures Location Variability

	Location		Variabilit	У		
	Mean	4.272727	Std Deviation	0.93513		
	Median	4.000000	Variance	0.87446		
	Mode	4.000000	Range	4.00000		
			Interquartile Range	1.00000		
NOTE .	The mede	dicplayed ic	the smallest of 2 mode	c with a count of	C 10	

NOTE: The mode displayed is the smallest of 2 modes with a count of 10.

	Variable:	B34 (B34)	
N	22	Sum Weights	22
Mean	4.27272727	Sum Observations	94
Std Deviation	0.82703246	Variance	0.68398268
Skewness	-1.1295533	Kurtosis	1.23176363
Uncorrected SS	416	Corrected SS	14.3636364
Coeff Variation	19.3560788	Std Error Mean	0.17632391

Basic Statistical Measures

LOCALION		Variability	
Mean	4.272727	Std Deviation	0.82703
Median	4.000000	Variance	0.68398
Mode	5.000000	Range	3.00000
		Interquartile Range	1.00000

	Variable:	B35 (B35)	
N	22	Sum Weights	22
Mean	3.5	Sum Observations	77
Std Deviation	1.01183473	Variance	1.02380952
Skewness	-0.6067725	Kurtosis	0.47318892
Uncorrected SS	291	Corrected SS	21.5
Coeff Variation	28.9095638	Std Error Mean	0.21572389

Basic Statistical Measures

Location		Variability		
Mean	3.500000	Std Deviation	1.01183	
Median	4.000000	Variance	1.02381	
Mode	4.000000	Range	4.00000	
		Interquartile Range	1.00000	

	Variable:	B36 (B36)	
N	22	Sum Weights	22
Mean	4.31818182	Sum Observations	95
Std Deviation	1.04135277	Variance	1.08441558
Skewness	-1.829725	Kurtosis	3.6977484
Uncorrected SS	433	Corrected SS	22.7727273
Coeff Variation	24.1155378	Std Error Mean	0.22201716

Basic Statistical Measures Location Variability Mean 4.318182 Std Deviation 1.04135

Median	5.000000	Variance	1.08442
Mode	5.000000	Range	4.00000
		Interquartile Range	1.00000

	Variable:	B37 (B37)	
N	22	Sum Weights	22
Mean	3.72727273	Sum Observations	82
Std Deviation	1.24142078	Variance	1.54112554
Skewness	-1.3983615	Kurtosis	1.31644014
Uncorrected SS	338	Corrected SS	32.3636364
Coeff Variation	33.306411	Std Error Mean	0.2646718

Basic Statistical Measures

Location Mean 3.727273	Variability Std Deviation	1.24142
Median 4.000000 Mode 4.000000	Variance	1.54113 4.00000
Houe 4.000000	Range Interquartile Range	4.00000
	riable: B38 (B38)	
N Mean	22 Sum Weights 4 Sum Observations	22 88
	904497 Variance	1.14285714
Skewness -2.05 Uncorrected SS	579116 Kurtosis 376 Corrected SS	4.67434211 24
Coeff Variation 26.72	261242 Std Error Mean	0.22792115
Basic	Statistical Measures	
Location Mean 4.000000	Variability Std Deviation	1.06904
Median 4.000000	Variance	1.14286
Mode 4.000000	Range Interquartile Range	4.00000 1.00000
		1100000
Var	riable: B39 (B39)	
N	22 Sum Weights	22
	536364 Sum Observations 582126 Variance	69 1.36147186
Skewness -0.68	342609 Kurtosis	-0.5697147
Uncorrected SS Coeff Variation 37.20	245 Corrected SS 029968 Std Error Mean	28.5909091 0.24876713
Pacia	Statistical Maasumas	
Location	Statistical Measures Variability	
Mean 3.136364 Median 3.500000	Std Deviation Variance	1.16682 1.36147
Mode 4.000000	Range	4.00000
	Interquartile Range	2.00000
Ve		
N Var	riable: B40 (B40) 22 Sum Weights	22
Mean	4.5 Sum Observations	99
	362411 Variance 534286 Kurtosis	0.92857143 8.01806291
Uncorrected SS	465 Corrected SS	19.5
Coeff Variation 21.41	138691 Std Error Mean	0.20544535
Basic Location	Statistical Measures Variability	
Mean 4.500000	Std Deviation	0.96362
Median 5.000000	Variance	0.92857
		4 00000
Mode 5.000000	Range Interquartile Range	4.00000 1.00000
	Range	
Mode 5.000000 Var	Range Interquartile Range riable: B41 (B41)	1.00000
Mode 5.000000	Range Interquartile Range	
Mode 5.000000 Var N Mean Std Deviation 1.057	Range Interquartile Range riable: B41 (B41) 22 Sum Weights 3.5 Sum Observations 785047 Variance	1.00000 22 77 1.11904762
Mode 5.000000 Var N Mean Std Deviation 1.057	Range Interquartile Range riable: B41 (B41) 22 Sum Weights 3.5 Sum Observations	1.00000 22 77
Mode 5.000000 Var N Mean Std Deviation 1.057 Skewness -1.1 Uncorrected SS	Range Interquartile Range riable: B41 (B41) 22 Sum Weights 3.5 Sum Observations R85047 Variance 194715 Kurtosis	22 77 1.11904762 1.29709561
Mode 5.000000 Var N Mean Std Deviation 1.057 Skewness -1.1 Uncorrected SS Coeff Variation 30.22	Range Interquartile Range riable: B41 (B41) 22 Sum Weights 3.5 Sum Observations 785047 Variance 194715 Kurtosis 293 Corrected SS	22 77 1.11904762 1.29709561 23.5
Mode 5.000000 Var N Mean Std Deviation 1.057 Skewness -1.1 Uncorrected SS Coeff Variation 30.22 Basic Location	Range Interquartile Range riable: B41 (B41) 22 Sum Weights 3.5 Sum Observations 785047 Variance 194715 Kurtosis 293 Corrected SS 242992 Std Error Mean Statistical Measures Variability	22 77 1.11904762 1.29709561 23.5 0.22553448
Mode 5.000000 Var N Mean Std Deviation 1.057 Skewness -1.1 Uncorrected SS Coeff Variation 30.22 Basic Location Mean 3.500000 Median 4.000000	Range Interquartile Range riable: B41 (B41) 22 Sum Weights 3.5 Sum Observations 785047 Variance 194715 Kurtosis 293 Corrected SS 242992 Std Error Mean Statistical Measures Variability Std Deviation Variance	1.00000 22 77 1.11904762 1.29709561 23.5 0.22553448 1.05785 1.11905
Mode 5.000000 Var Mean Std Deviation 1.057 Skewness -1.1 Uncorrected SS Coeff Variation 30.22 Basic Location Mean 3.500000	Range Interquartile Range riable: B41 (B41) 22 Sum Weights 3.5 Sum Observations 785047 Variance 194715 Kurtosis 293 Corrected SS 242992 Std Error Mean Statistical Measures Variability Std Deviation Variance Range	22 77 1.11904762 1.29709561 23.5 0.22553448
Mode 5.000000 Var N Mean Std Deviation 1.057 Skewness -1.1 Uncorrected SS Coeff Variation 30.22 Basic Location Mean 3.500000 Median 4.000000	Range Interquartile Range riable: B41 (B41) 22 Sum Weights 3.5 Sum Observations 785047 Variance 194715 Kurtosis 293 Corrected SS 242992 Std Error Mean Statistical Measures Variability Std Deviation Variance	22 77 1.11904762 1.29709561 23.5 0.22553448 1.05785 1.11905 4.00000
Mode 5.000000 Var N Mean Std Deviation 1.057 Skewness -1.1 Uncorrected SS Coeff Variation 30.22 Basic Location Mean 3.500000 Median 4.000000 Mode 4.000000	Range Interquartile Range riable: B41 (B41) 22 Sum Weights 3.5 Sum Observations 785047 Variance 194715 Kurtosis 293 Corrected SS 242992 Std Error Mean Statistical Measures Variability Std Deviation Variance Range Interquartile Range riable: B42 (B42)	22 77 1.11904762 1.29709561 23.5 0.22553448 1.05785 1.11905 4.00000
Mode 5.000000 Var N Mean Std Deviation 1.057 Skewness -1.1 Uncorrected SS Coeff Variation 30.22 Basic Location Mean 3.500000 Median 4.000000 Mode 4.000000 Var N	Range Interquartile Range riable: B41 (B41) 22 Sum Weights 3.5 Sum Observations 785047 Variance 194715 Kurtosis 293 Corrected SS 242992 Std Error Mean Statistical Measures Variability Std Deviation Variance Range Interquartile Range riable: B42 (B42) 22 Sum Weights	1.00000 22 77 1.11904762 1.29709561 23.5 0.22553448 1.05785 1.11905 4.00000 1.00000
Mode 5.000000 Var N Mean Std Deviation 1.057 Skewness -1.13 Uncorrected SS Coeff Variation 30.22 Basic Location Mean 3.500000 Mode 4.000000 Node 4.000000 Var N Mean 2.454 Std Deviation 1.184	Range Interquartile Range riable: B41 (B41) 22 Sum Weights 3.5 Sum Observations 785047 Variance 194715 Kurtosis 293 Corrected SS 242992 Std Error Mean Statistical Measures Variability Std Deviation Variance Range Interquartile Range riable: B42 (B42) 22 Sum Weights 154545 Sum Observations 131305 Variance	1.00000 22 77 1.11904762 1.29709561 23.5 0.22553448 1.05785 1.11905 4.00000 1.00000 22 54 1.4025974
Mode 5.000000 Var N Mean Std Deviation 1.057 Skewness -1.1 Uncorrected SS Coeff Variation 30.22 Basic Location Mean 3.500000 Median 4.000000 Mode 4.000000 Var N Mean 2.454 Std Deviation 1.184 Skewness 0.875	Range Interquartile Range riable: B41 (B41) 22 Sum Weights 3.5 Sum Observations 785047 Variance 194715 Kurtosis 293 Corrected SS 242992 Std Error Mean Statistical Measures Variability Std Deviation Variability Std Deviation Variance Range Interquartile Range riable: B42 (B42) 22 Sum Weights 154545 Sum Observations 131305 Variance 564435 Kurtosis	1.00000 22 77 1.11904762 1.29709561 23.5 0.22553448 1.05785 1.11905 4.00000 1.00000 22 54 1.4025974 0.19470977
Mode 5.000000 Var N Mean Std Deviation 1.057 Skewness -1.1 Uncorrected SS Coeff Variation 30.22 Basic Location Mean 3.500000 Median 4.00000 Mode 4.00000 Node 4.00000 Node 4.00000 Node 4.00000	Range Interquartile Range riable: B41 (B41) 22 Sum Weights 3.5 Sum Observations 785047 Variance 194715 Kurtosis 293 Corrected SS 242992 Std Error Mean Statistical Measures Variability Std Deviation Variance Range Interquartile Range riable: B42 (B42) 22 Sum Weights 154545 Sum Observations 131305 Variance	1.00000 22 77 1.11904762 1.29709561 23.5 0.22553448 1.05785 1.11905 4.00000 1.00000 22 54 1.4025974
Mode 5.000000 Var N Mean Std Deviation 1.057 Skewness -1.1 Uncorrected SS Coeff Variation 30.22 Basic Location Mean 3.500000 Median 4.000000 Mode 4.000000 Mode 4.000000 Var N Mean 2.454 Std Deviation 1.154 Skewness 0.875 Uncorrected SS Coeff Variation 48.2	Range Interquartile Range riable: B41 (B41) 22 Sum Weights 3.5 Sum Observations 785047 Variance 194715 Kurtosis 293 Corrected SS 242992 Std Error Mean Statistical Measures Variability Std Deviation Variability Std Deviation Variance Range Interquartile Range riable: B42 (B42) 22 Sum Weights 454545 Sum Observations 131305 Variance 564435 Kurtosis 162 Corrected SS	1.00000 22 77 1.11904762 1.29709561 23.5 0.22553448 1.05785 4.00000 1.00000 22 54 1.4025974 0.19470977 29.4545455
Mode 5.000000 Var N Mean Std Deviation 1.057 Skewness -1.1 Uncorrected SS Coeff Variation 30.22 Basic Location Mean 3.500000 Mode 4.000000 Mode 4.000000 Var N Mean 2.454 Std Deviation 1.184 Skewness 0.875 Coeff Variation 48.2 Discontered SS	Range Interquartile Range riable: B41 (B41) 22 Sum Weights 3.5 Sum Observations 785047 Variance 194715 Kurtosis 293 Corrected SS 242992 Std Error Mean Statistical Measures Variability Std Deviation Variance Range Interquartile Range riable: B42 (B42) 22 Sum Weights 134545 Sum Observations 13105 Variance 564435 Kurtosis 162 Corrected SS 249791 Std Error Mean Statistical Measures Variability	1.00000 22 77 1.11904762 1.29709561 23.5 0.22553448 1.05785 1.11905 4.00000 1.00000 22 54 1.4025974 0.19470977 29.4354555 0.25249639
Mode 5.000000 Var N Mean Std Deviation 1.057 Skewness -1.1 Uncorrected SS Coeff Variation 30.22 Basic Location Mean 3.500000 Media 4.000000 Mode 4.000000 Var N Mean 2.454 Std Deviation 1.184 Skewness 0.875 Uncorrected SS Coeff Variation 48.2	Range Interquartile Range riable: B41 (B41) 22 Sum Weights 3.5 Sum Observations 785047 Variance 194715 Kurtosis 293 Corrected SS 242992 Std Error Mean Statistical Measures Variability Std Deviation Variance Range Interquartile Range riable: B42 (B42) 22 Sum Weights 154545 Sum Observations 131305 Variance 564435 Kurtosis 162 Corrected SS 249791 Std Error Mean Statistical Measures	1.00000 22 77 1.11904762 1.29709561 23.5 0.22553448 1.05785 1.11905 4.00000 1.00000 22 54 1.4025974 0.19470977 29.4545455 0.25249639 1.18431
Mode 5.000000 Var N Mean Std Deviation 1.057 Skewness -1.1 Uncorrected SS Coeff Variation 30.22 Basic Location Mean 3.500000 Median 4.000000 Mode 4.000000 Mode 4.000000 Var N Mean 2.455 Std Deviation 1.184 Skewness 0.875 Uncorrected SS Coeff Variation 48.2 Basic Location Mean 2.454545	Range Interquartile Range riable: B41 (B41) 22 Sum Weights 3.5 Sum Observations 785047 Variance 194715 Kurtosis 293 Corrected SS 242992 Std Error Mean Statistical Measures Variability Std Deviation Variance Range Interquartile Range riable: B42 (B42) 22 Sum Weights 154545 Sum Observations 162 Corrected SS 249791 Std Error Mean Statistical Measures Variability Std Deviation Variance Range	1.00000 22 77 1.11904762 1.29709561 23.5 0.22553448 1.05785 1.11905 4.00000 1.00000 22 54 1.4025974 0.19470977 29.4545455 0.25249639 1.18431 1.40260 4.00000
Mode 5.000000 Var N Mean Std Deviation 1.057 Skewness -1.1 Uncorrected SS Coeff Variation 30.22 Basic Location Mean 3.500000 Median 4.000000 Mode 4.000000 Var N Mean 2.454 Std Deviation 1.184 Skewness 0.875 Uncorrected SS Coeff Variation 48.2 Basic Location Mean 2.454545 Median 2.400000	Range Interquartile Range riable: B41 (B41) 22 Sum Weights 3.5 Sum Observations 785047 Variance 194715 Kurtosis 293 Corrected SS 242992 Std Error Mean Statistical Measures Variability Std Deviation Variance Range Interquartile Range riable: B42 (B42) 22 Sum Weights 154545 Sum Observations 131305 Variance 564435 Kurtosis 162 Corrected SS 249791 Std Error Mean Statistical Measures Variability Std Deviation Variability Std Deviation	1.00000 22 77 1.11904762 1.29709561 23.5 0.22553448 1.05785 4.00000 1.00000 22 54 1.4025974 0.19470977 29.4545455 0.25249639 1.18431 1.40260
Mode 5.000000 Var N Mean Std Deviation 1.057 Skewness -1.1 Uncorrected SS Coeff Variation 30.22 Basic Location Mean 3.500000 Mode 4.000000 Mode 4.000000 Var N Mean 2.454 Std Deviation 1.184 Skewness 0.875 Coeff Variation 48.2 Basic Location Mean 2.454545 Median 2.000000 Mode 2.000000	Range Interquartile Range riable: B41 (B41) 22 Sum Weights 3.5 Sum Observations 785047 Variance 194715 Kurtosis 293 Corrected SS 242992 Std Error Mean Statistical Measures Variability Std Deviation Variance Range Interquartile Range riable: B42 (B42) 22 Sum Weights 454545 Sum Observations 162 Corrected SS 249791 Std Error Mean Statistical Measures Variability Std Deviation Statistical Measures Variability Std Deviation Variance Range Interquartile Range Interquartile Range	1.00000 22 77 1.11904762 1.29709561 23.5 0.22553448 1.05785 1.11905 4.00000 1.00000 22 54 1.4025974 0.19470977 29.4545455 0.25249639 1.18431 1.40260 4.00000
Mode 5.000000 Var N Mean Std Deviation 1.057 Skewness -1.1 Uncorrected SS Coeff Variation 30.22 Basic Location Mean 3.500000 Mode 4.000000 Mode 4.000000 Node 4.000000 Var N Mean 2.454545 Std Deviation 48.2 Coeff Variation 48.2 Basic Location Mean 2.454545 Median 2.000000 Mode 2.000000	Range Interquartile Range riable: B41 (B41) 22 Sum Weights 3.5 Sum Observations 785047 Variance 194715 Kurtosis 293 Corrected SS 242992 Std Error Mean Statistical Measures Variability Std Deviation Variance Range Interquartile Range riable: B42 (B42) 22 Sum Weights 162 Corrected SS 243791 Std Error Mean Statistical Measures Variability Std Deviation Statistical Measures Variability Std Deviation Statistical Measures Variability Std Deviation Variability Std Deviation Variability Std Deviation Variance Range Interquartile Range Statistical Measures Variability Std Deviation Variability Std Deviation Variability Std Deviation Variance Range Interquartile Range	1.00000 22 77 1.11904762 1.29709561 2.3.5 0.22553448 1.05785 4.00000 1.00000 22 54 1.4025974 0.19470977 29.455455 0.25249639 1.18431 1.40260 4.00000 1.00000
Mode 5.000000 Var N Mean Std Deviation 1.057 Skewness -1.1 Uncorrected SS Coeff Variation 30.22 Basic Location Mean 3.500000 Mode 4.000000 Mode 4.000000 Var N Mean 2.454545 Coeff Variation 48.2 Basic Location Meain 2.000000 Mode 2.000000 Var N Mean 2.454545	Range Interquartile Range riable: B41 (B41) 22 Sum Weights 3.5 Sum Observations 785047 Variance 194715 Kurtosis 293 Corrected SS 242992 Std Error Mean Statistical Measures Variability Std Deviation Variance Range Interquartile Range riable: B42 (B42) 22 Sum Weights 162 Corrected SS 162 Corrected SS 163 Corrected SS 163 Corrected SS 249791 Std Error Mean Statistical Measures Variability Std Deviation Variance Range Interquartile Range Statistical Measures Variability Std Deviation Variance Range Interquartile Range riable: B43 (B43) 22 Sum Weights 24 Sum Weights 24 Sum Weights 24 Sum Weights 24 Sum Weights 24 Std Deviation	1.00000 22 77 1.11904762 1.29709561 23.5 0.22553448 1.05785 1.11905 4.00000 1.00000 22 54 1.4025974 0.19470977 29.4545455 0.25249639 1.18431 1.40260 4.00000 1.00000
Mode 5.000000 Var N Mean Std Deviation 1.057 Skewness -1.1 Uncorrected SS Coeff Variation 30.22 Basic Location Mean 3.500000 Mode 4.000000 Mode 4.000000 Node 4.000000 Var N Mean 2.454545 Coeff Variation 48.2 Basic Location Mean 2.000000 Mode 2.000000 Var N Mean 3.000 Std Deviation 1.100 Skewness -1.6	Range Interquartile Range riable: B41 (B41) 22 Sum Weights 3.5 Sum Observations 785047 Variance 194715 Kurtosis 293 Corrected SS 242992 Std Error Mean Statistical Measures Variability Std Deviation Variance Range Interquartile Range riable: B42 (B42) 22 Sum Weights 154545 Sum Observations 162 Corrected SS 249791 Std Error Mean Statistical Measures Variability Std Deviation Variance Range Interquartile Range Statistical Measures Variability Std Deviation Variance Range Interquartile Range Statistical Measures Variability Std Deviation Variance Range Interquartile Range riable: B43 (B43) 22 Sum Weights 309991 Sum Observations 379991 Variance 550052 Kurtosis	1.00000 22 77 1.11904762 1.29709561 23.5 0.22553448 1.05785 4.00000 1.00000 22 54 1.4025974 0.19470977 29.455455 0.25249639 1.18431 1.40260 4.00000 1.00000 22 8 6 1.22943723 2.94113245
Mode 5.000000 Var N Mean Std Deviation 1.057 Skewness -1.1 Uncorrected SS Coeff Variation 30.22 Basic Location Mean 3.500000 Median 4.000000 Mode 4.000000 Mode 4.000000 Mode 4.000000 Mode 4.000000 Mode 2.000000 Node 2.000000 Var N Mean 2.454545 Median 2.000000 Mode 2.000000 Var N Mean 3.900 Std Deviation 1.108 Skewness -1.6	Range Interquartile Range riable: B41 (B41) 22 Sum Weights 3.5 Sum Observations 785047 Variance 194715 Kurtosis 293 Corrected SS 242992 Std Error Mean Statistical Measures Variability Std Deviation Variance Range Interquartile Range riable: B42 (B42) 22 Sum Weights 162 Corrected SS 162 Corrected SS 162 Corrected SS 249791 Std Error Mean Statistical Measures Variability Std Deviation Variance Range Interquartile Range Statistical Measures Variability Std Deviation Variance Range Interquartile Range riable: B43 (B43) 22 Sum Weights 290901 Sum Observations 379901 Variance 550052 Kurtosis 362 Corrected SS 362 Corrected SS	1.00000 22 77 1.11904762 1.29709561 23.5 0.22553448 1.05785 1.1905 4.00000 1.00000 22 54 1.4025974 0.19470977 29.4545455 0.25249639 1.18431 1.40260 4.00000 1.00000 22 86 1.22943723 2.94113245 25.8181818
Mode 5.000000 Var N Mean Std Deviation 1.057 Skewness -1.1 Uncorrected SS Coeff Variation 30.22 Basic Location Mean 3.500000 Median 4.000000 Mode 4.000000 Mode 4.000000 Var N Mean 2.454545 Std Deviation 1.184 Skewness 0.875 Uncorrected SS Coeff Variation 48.2 Basic Location Mean 2.454545 Median 2.000000 Var N Mean 3.000 Std Deviation 1.106 Skewness -1.6 Uncorrected SS Coeff Variation 28.36	Range Interquartile Range riable: B41 (B41) 22 Sum Weights 3.5 Sum Observations 785047 Variance 194715 Kurtosis 293 Corrected SS 242992 Std Error Mean Statistical Measures Variability Std Deviation Variance Range Interquartile Range riable: B42 (B42) 22 Sum Weights 154545 Sum Observations 162 Corrected SS 249791 Std Error Mean Statistical Measures Variability Std Deviation Variance Range Interquartile Range Statistical Measures Variability Std Deviation Variance Range Interquartile Range riable: B43 (B43) 22 Sum Weights 362 Corrected SS 362 Corrected SS 362 Corrected SS 362 Corrected SS 362 Corrected SS 362 Corrected SS 364487 Std Error Mean	1.00000 22 77 1.11904762 1.29709561 23.5 0.22553448 1.05785 4.00000 1.00000 22 54 1.4025974 0.19470977 29.455455 0.25249639 1.18431 1.40260 4.00000 1.00000 22 8 6 1.22943723 2.94113245
Mode 5.000000 Var N Mean Std Deviation 1.057 Skewness -1.1 Uncorrected SS Coeff Variation 30.22 Basic Location Mean 3.500000 Mode 4.000000 Mode 2.05 Coeff Variation 48.2 Basic Location Mean 3.906 Std Deviation 1.106 Skewness -1.6 Uncorrected SS Coeff Variation 28.36	Range Interquartile Range riable: B41 (B41) 22 Sum Weights 3.5 Sum Observations 785047 Variance 194715 Kurtosis 293 Corrected SS 242992 Std Error Mean Statistical Measures Variability Std Deviation Variance Range Interquartile Range riable: B42 (B42) 22 Sum Weights 162 Corrected SS 162 Corrected SS 162 Corrected SS 249791 Std Error Mean Statistical Measures Variability Std Deviation Variance Range Interquartile Range Statistical Measures Variability Std Deviation Variance Range Interquartile Range riable: B43 (B43) 22 Sum Weights 290901 Sum Observations 379901 Variance 550052 Kurtosis 362 Corrected SS 362 Corrected SS	1.00000 22 77 1.11904762 1.29709561 23.5 0.22553448 1.05785 1.1905 4.00000 1.00000 22 54 1.4025974 0.19470977 29.4545455 0.25249639 1.18431 1.40260 4.00000 1.00000 22 86 1.22943723 2.94113245 25.8181818
Mode 5.000000 Var N Mean Std Deviation 1.057 Skewness -1.1 Uncorrected SS Coeff Variation 30.22 Basic Location Mean 3.500000 Median 4.000000 Mode 4.000000 Mode 4.000000 Mode 4.000000 Mode 4.000000 Mode 4.000000 Mode 4.000000 Mode 4.000000 Mode 2.000000 Node 2.00000 Node 2.000000 Node 2.0000000 Node 2.00000000 Node 2.000000000000000000	Range Interquartile Range riable: B41 (B41) 22 Sum Weights 3.5 Sum Observations 785047 Variance 194715 Kurtosis 293 Corrected SS 242992 Std Error Mean Statistical Measures Variability Std Deviation Variability Std Deviation Variance Range Interquartile Range riable: B42 (B42) 22 Sum Weights 162 Corrected SS 162 Corrected SS 249791 Std Error Mean Statistical Measures Variability Std Deviation Variance Statistical Measures Variability Std Deviation Variability Std Deviation Variance Range Interquartile Range Statistical Measures Variability Std Deviation Variance Range Interquartile Range riable: B43 (B43) 22 Sum Weights 309091 Sum Observations 379901 Variance 550452 Kurtosis 362 Corrected SS 364487 Std Error Mean Statistical Measures	1.00000 22 77 1.11904762 1.29709561 23.5 0.22553448 1.05785 1.1905 4.00000 1.00000 22 54 1.4025974 0.19470977 29.4545455 0.25249639 1.18431 1.40260 4.00000 1.00000 22 86 1.22943723 2.94113245 25.8181818

	4.000000	Range Inter	quartile Range	4.00000 1.00000
N Mean Std Deviatic Skewness Uncorrected	2.5909 0n 1.2212 0.5442	20514	B44 (B44) Sum Weights Sum Observations Variance Kurtosis Corrected SS	22 57 1.49134199 -0.4614725 31.3181818
Coeff Variat			Std Error Mean	0.26036181
Loca	Basic S	Statist	ical Measures Variability	
Mean Median	2.590909 2.000000	Varia	eviation nce	1.22121 1.49134
Mode	2.000000	Range Inter	quartile Range	4.00000 1.00000
	Var	iable:	B45 (B45)	
N Mean	3.954	22 54545	Sum Weights Sum Observations	22 87
Std Deviatio	on 1.1329	93856	Variance	1.28354978
Skewness Uncorrected	-0.984 SS	41738 371	Kurtosis Corrected SS	0.58649865 26.9545455
Coeff Variat	ion 28.649	90211	Std Error Mean	0.24154331
Loca	Basic S	Statist	ical Measures Variability	
Mean Median	3.954545 4.000000	Std D Varia	eviation	1.13294 1.28355
Mode	5.000000	Range	nce	4.00000
		Inter	quartile Range	2.00000
	Var:	iable:	B46 (B46)	
N Mean	2 126	22	Sum Weights	22 69
Std Deviatio	3.1363 on 1.0373		Sum Observations Variance	1.07575758
Skewness Uncorrected	-0.859	90017 239	Kurtosis Corrected SS	-0.4980125 22.5909091
Coeff Variat			Std Error Mean	0.22112908
Loca	Basic S	Statist	ical Measures Variability	
Mean	3.136364	Std D	eviation	1.03719
Median Mode	3.500000 4.000000	Varia	nce	1.07576 3.00000
Houe	4.000000	Range Inter	quartile Range	2.00000
	Van	ishlo:	RA7 (RA7)	
N	Var	iable: 21	B47 (B47) Sum Weights	21
Mean	2.952	21 38095	Sum Weights Sum Observations	62
Mean Std Deviatic Skewness	2.9523 on 1.4992 0.3843	21 38095 20614 16109	Sum Weights Sum Observations Variance Kurtosis	62 2.24761905 -1.4116435
Mean Std Deviatic Skewness Uncorrected	2.952 on 1.499 0.384 SS	21 38095 20614 16109 228	Sum Weights Sum Observations Variance Kurtosis Corrected SS	62 2.24761905 -1.4116435 44.952381
Mean Std Deviatic Skewness	2.952 on 1.499 0.384 SS tion 50.77	21 38095 20614 16109 228 95628	Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean	62 2.24761905 -1.4116435
Mean Std Deviatic Skewness Uncorrected Coeff Variat	2.952: on 1.499 0.384: SS Cion 50.779 Basic S	21 38095 20614 16109 228 95628 5tatist	Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability	62 2.24761905 -1.4116435 44.952381 0.3271536
Mean Std Deviatic Skewness Uncorrected Coeff Variat	2.952 on 1.499 0.384 SS ion 50.779 Basic 9	21 38095 20614 16109 228 95628 5tatist	Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation	62 2.24761905 -1.4116435 44.952381
Mean Std Deviatio Skewness Uncorrected Coeff Variat Loca Mean	2.952 n 1.499 0.384 SS tion 50.779 Basic S ntion 2.952381	21 38095 20614 16109 228 95628 Statist Std D Varia Range	Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation nce	62 2.24761905 -1.4116435 44.952381 0.3271536 1.49921 2.24762 4.00000
Mean Std Deviation Skewness Uncorrected Coeff Variat Loca Mean Median	2.952 on 1.499 0.384 SS tion 50.779 Basic S ttion 2.952381 2.000000	21 38095 20614 16109 228 95628 Statist Std D Varia Range	Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation nce	62 2.24761905 -1.4116435 0.3271536 1.49921 2.24762
Mean Std Deviation Skewness Uncorrected Coeff Variat Loca Mean Median	2.952: on 1.499; 0.384: SS Basic 9 tion 50.779 Basic 9 2.952381 2.000000 2.000000	21 38095 20614 16109 228 95628 Statist Std D Varia Range	Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation nce quartile Range B48 (B48)	62 2.24761905 -1.4116435 44.952381 0.3271536 1.49921 2.24762 4.00000
Mean Std Deviatic Skewness Uncorrected Coeff Variat Loca Mean Median Mode	2.9522 on 1.499 0.384 SS Eion 50.779 Basic 9 cition 2.952381 2.000000 2.000000 2.000000	21 38095 20614 16109 228 95628 Statist Std D Varia Range Inter iable: 22	Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation nce quartile Range B48 (B48) Sum Weights	62 2.24761905 -1.4116435 44.952381 0.3271536 1.49921 2.24762 4.00000 3.00000
Mean Std Deviatic Skewness Uncorrected Coeff Variat Loca Mean Median Mode N Mean Std Deviatic	2.952: on 1.499; 0.384: SS Basic 9 Basic 9 100 2.952381 2.000000 2.000000 Var: 2.727; on 1.3155	21 38095 20614 16109 228 95628 5tatist Std D Varia Range Inter iable: 22 27273 90339	Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation nce quartile Range B48 (B48) Sum Weights Sum Observations Variance	62 2.24761905 -1.4116435 44.952381 0.3271536 2.24762 4.00000 3.00000 222 60 1.73160173
Mean Std Deviatic Skewness Uncorrected Coeff Variat Loca Mean Median Mode N Mean Std Deviatic Skewness	2.9522 on 1.499 0.384 SS Basic 9 1.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000	21 38095 20614 16109 228 95628 5tatist Std D Varia Range Inter iable: 22 27273 0339 92246	Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation nce quartile Range B48 (B48) Sum Weights Sum Observations Variance Kurtosis	62 2.2476190 -1.4116435 44.952381 0.3271536 1.49921 2.24762 4.00000 3.00000 22 60 1.73160173 -1.6580633
Mean Std Deviatic Skewness Uncorrected Coeff Variat Loca Mean Median Mode N Mean Std Deviatic	2.952: on 1.499; 0.384: SS Basic 9 ition 50.77? 2.952381 2.900000 2.000000 Var: 2.727? on 1.315? -0.409 SS	21 38095 20614 16109 228 95628 5tatist Std D Varia Range Inter iable: 22 27273 90339	Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation nce quartile Range B48 (B48) Sum Weights Sum Observations Variance	62 2.24761905 -1.4116435 44.952381 0.3271536 2.24762 4.00000 3.00000 222 60 1.73160173
Mean Std Deviatic Skewness Uncornected Coeff Variat Loca Mean Median Mode N Mean Std Deviatic Skewness Uncornected Coeff Variat	2.9522 on 1.499 0.384 SS ion 50.779 Basic 9 2.952381 2.000000 2.000000 2.000000 2.000000 Var: 2.727 on 1.3159 55 ion 48.24 Basic 9	21 38095 20614 16109 228 95628 Statist Std D Varia Range Inter iable: 22 27273 0339 92246 200 49791	Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation nce quartile Range B48 (B48) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures	62 2.24761905 -1.4116435 44.952381 0.3271536 1.49921 2.24762 4.00000 3.00000 22 60 1.73160173 -1.6580633 36.36364
Mean Std Deviatic Skewness Uncornected Coeff Variat Loca Mean Median Mode N Mean Std Deviatic Skewness Uncornected Coeff Variat	2.952: on 1.499; 0.384: SS Basic 9 con 50.779 Basic 9 2.952381 2.000000 2.000000 Var: 2.7277 on 1.3155 SS cion 48.24	21 38095 20614 16109 228 55628 5tatist Std D Varia Range Inter iable: 22 27273 90339 92246 200 49791 5tatist	Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation nce quartile Range B48 (B48) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean	62 2.24761905 -1.4116435 44.952381 0.3271536 1.49921 2.24762 4.00000 3.00000 22 60 1.73160173 -1.6580633 36.36364
Mean Std Deviatic Skewness Uncorrected Coeff Variat Loca Mean Median Mode N Mean Std Deviatic Skewness Uncorrected Coeff Variat	2.9522 on 1.499 0.384 SS ion 50.779 2.952381 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 Var: 2.7272 on 1.3159 SS ion 48.24 Basic 5 ition 2.727273 3.000000	21 38095 20614 16109 228 95628 Statist Statist Varia Range Inter iable: 22 27273 90339 20246 200 19791 Statist Std D Varia	Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation nce quartile Range B48 (B48) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation	62 2.2476190 -1.4116435 44.952381 0.3271536 1.49921 2.24762 4.00000 3.00000 22 60 1.73160173 -1.6580633 36.3636364 0.28055155 1.31590 1.73160
Mean Std Deviatic Skewness Uncorrected Coeff Variat Loca Mean Mode N Mean Std Deviatic Skewness Uncorrected Coeff Variat	2.952: on 1.499; 0.384: SS Basic 9 Basic 9 2.952381 2.000000 2.000000 Var: 2.7272 on 1.315; con 48.22 Basic 9 SS cion 48.22 Basic 9 Con 1.25 Con 1.2	21 38095 226514 16109 228 95628 Statist Std D Varia Range Inter 22 27273 90339 92246 200 19791 Statist Std D Varia Range	Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation nce quartile Range B48 (B48) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation	62 2.2476190 -1.4116435 44.952381 0.3271536 1.49921 2.24762 4.00000 3.00000 22 60 1.73160173 -1.6580633 36.363364 0.28055155 1.31590
Mean Std Deviatic Skewness Uncorrected Coeff Variat Loca Mean Median Mode N Mean Std Deviatic Skewness Uncorrected Coeff Variat	2.952: on 1.499; 0.384: SS Basic 2 tion 50.77? Left 2.952381 2.000000 Var: 2.727; on 1.3159 -0.409 SS tion 48.24 Basic 2 tion 2.727273 3.000000 4.000000	21 38095 226514 16109 228 95628 Statist Std D Varia Range Inter 22 27273 90339 92246 200 19791 Statist Std D Varia Range Inter	Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation ncc quartile Range B48 (B48) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation ncc quartile Range	62 2.24761905 -1.4116435 44.952381 0.3271536 1.49921 2.24762 4.00000 3.00000 22 60 1.73160173 -1.6580633 36.36364 0.28055155 1.31590 1.73160 3.00000
Mean Std Deviatic Skewness Uncorrected Coeff Variat Loca Mean Median Mode N Mean Std Deviatic Skewness Uncorrected Coeff Variat	2.952: on 1.499; 0.384: SS Basic 2 tion 50.77? Left 2.952381 2.000000 Var: 2.727; on 1.3159 -0.409 SS tion 48.24 Basic 2 tion 2.727273 3.000000 4.000000	21 38095 226514 16109 228 95628 Statist Std D Varia Range Inter 22 27273 90339 92246 200 19791 Statist Std D Varia Range	Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation ncc quartile Range B48 (B48) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation ncc	62 2.24761905 -1.4116435 44.952381 0.3271536 1.49921 2.24762 4.00000 3.00000 22 60 1.73160173 -1.6580633 36.36364 0.28055155 1.31590 1.73160 3.00000
Mean Std Deviatic Skewness Uncorrected Coeff Variat Loca Mean Mode N Mean Std Deviatic Skewness Uncorrected Coeff Variat Loca Mean Mode N N Mode	2.952: on 1.499; 0.384: SS ion 50.77? Basic 2 ition 2.952381 2.000000 Var: 2.7273 0.4822 Basic 2 ion 48.22 Basic 2 ion 48.24 Basic 2 Var: 2.7273 3.000000 4.000000 Var: 3.7722	21 38095 226514 16109 228 95628 Statist Std D Varia Range Inter iable: 22 27273 90339 92246 200 49791 Statist Std D Varia Range Inter Statist Std D Varia Range 22 27273	Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation ncc quartile Range B48 (B48) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation ncc quartile Range B49 (B49) Sum Weights Sum Observations	62 2.24761905 -1.4116435 44.952381 0.3271536 1.49921 2.24762 4.00000 3.00000 22 60 1.73160173 -1.6580633 36.36364 0.28055155 1.31590 1.73160 3.00000 3.00000 3.00000
Mean Std Deviatic Skewness Uncorrected Coeff Variat Mean Median Mode N N Mean Std Deviatic Skewness Uncorrected Coeff Variat Loca Mean Median Mode	2.952: on 1.499; 0.384: SS ion 50.77? Basic 2 ition 2.952381 2.000000 Var: 2.7273 0.4822 Basic 2 ion 48.22 Basic 2 ion 48.24 Basic 2 Var: 2.7273 3.000000 4.000000 Var: 3.7722	21 38095 226514 16109 228 95628 Statist Std D Varia Range Inter 22 27273 90339 92246 200 19791 Statist Std D Varia Range Inter iable: 22 27273 24897	Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation nce quartile Range B48 (B48) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation nce quartile Range B49 (B49) Sum Weights	62 2.24761905 -1.4116435 44.952381 0.3271536 1.49921 2.24762 4.00000 3.00000 22 60 1.73160173 -1.6580633 36.3636364 0.28055155 1.31590 1.73160 3.00000 3.00000
Mean Std Deviatic Skewness Uncorrected Coeff Variat Loca Mean Median Mode N Mean Std Deviatic Skewness Uncorrected Coeff Variat Loca Mean Median Mode N N Mean Std Deviatic Skewness Uncorrected Coeff Variat	2.952: on 1.499; 0.384: SS basic 2 tion 50.77? 2.952381 2.000000 Var: 2.727273 SS tion 48.24 Basic 2 tion 48.24 Basic 3 .000000 Var: 3.000000 Var: 3.772273 3.000000 Var: 3.7722 on 1.4452 SS	21 38095 226514 16109 228 95628 Statist Std D Varia Range Inter iable: 22 27273 90339 92246 200 49791 Statist Std D Varia Range Inter iable: 22 27273 20339 92246 200 49791 Statist Std D Varia Range Inter iable: 22 27273 20339 22246 200 49791 Statist	Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation ncc quartile Range B48 (B48) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation ncc quartile Range B49 (B49) Sum Weights Sum Weservations Variance Kurtosis Corrected SS	62 2.24761905 -1.4116435 44.952381 0.3271536 1.49921 2.24762 4.00000 3.00000 22 60 1.73160173 36.3636364 0.28055155 1.31590 1.73160 3.00000 3.00000 22 83 2.08874459 -0.3152455 43.8636364
Mean Std Deviatic Skewness Uncorrected Coeff Variat Median Median Mode N Std Deviatic Skewness Uncorrected Coeff Variat Loca Mean Median Mode N N Mean Std Deviatic Std Deviatic Std Deviatic Skewness	2.952: on 1.499; 0.384: SS: basic 9 2.952381 2.000000 2.900000 2.000000 Var: 2.7277 on 1.315; SS: ion 48.24 Basic 9 ition 2.72773 3.000000 4.000000 Var: 3.7722 on 1.445; SS: ion 38.307	21 38095 226514 16109 228 55628 5tatist Std D Varia Range Inter iable: 22 27273 902246 200 49791 5tatist Std D Varia Range Inter iable: 22 27273 357 78041	Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation nce quartile Range B48 (B48) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation nce quartile Range B49 (B49) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean	62 2.24751995 -1.4116435 44.952381 0.3271536 1.49921 2.24762 4.00000 3.00000 222 60 1.73160173 -1.6580633 36.3636364 0.28055155 1.31590 1.73160 3.00000 3.00000 3.00000 22 83 2.08874459 -0.3152455
Mean Std Deviatic Skewness Uncorrected Coeff Variat Mean Median Mode N N Mean Std Deviatic Skewness Uncorrected Coeff Variat Nean Median Mode N N Mean Std Deviatic Skewness Uncorrected Coeff Variat	2.952: on 1.499; 0.384: SS: basic 9 2.952381 2.000000 2.900000 2.000000 Var: 2.7277 on 1.315; SS: ion 48.24 Basic 9 ition 2.72773 3.000000 4.000000 Var: 3.7722 on 1.445; SS: ion 38.307	21 38095 226514 16109 228 55628 5tatist Std D Varia Range Inter iable: 22 27273 902246 200 49791 5tatist Std D Varia Range Inter iable: 22 27273 357 78041	Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation ncc quartile Range B48 (B48) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation ncc quartile Range B49 (B49) Sum Weights Sum Weservations Variance Kurtosis Corrected SS	62 2.24761905 -1.4116435 44.952381 0.3271536 1.49921 2.24762 4.00000 3.00000 22 60 1.73160173 36.3636364 0.28055155 1.31590 1.73160 3.00000 3.00000 22 83 2.08874459 -0.3152455 43.8636364
Mean Std Deviatic Skewness Uncorrected Coeff Variat Mean Median Mode N Mean Std Deviatic Skewness Uncorrected Coeff Variat Loca Mean Median Mode N N Mean Std Deviatic Skewness Uncorrected Coeff Variat	2.952: on 1.499; 0.384: SS: Basic 9 Basic 9 2.952381 2.000000 2.900000 2.900000 Var: 2.7277 on 1.315; SS: 0.409 SS: 1.000 4.000000 4.000000 Var: 3.7727 on 1.445; SS: ion 38.30; Basic 9 ition 3.772727	21 38095 226514 16109 228 95628 Statist Std D Varia Range Inter 22 27273 96339 92246 200 49791 Statist Std D Varia Range Inter iable: 22 72727 19 54 54 10 54 10 57 778041 Statist Std D	Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation nce quartile Range B48 (B48) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation nce B49 (B49) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variance Kurtosis Corrected SS Std Error Mean ical Measures Variance	62 2.24761905 -1.4116435 44.952381 0.3271536 1.49921 2.24762 4.00000 3.00000 22 60 1.73160173 -1.6580633 36.3636364 0.28055155 1.31590 1.73160 3.00000 3.00000 3.00000 3.00000 3.00000 3.00000 3.00000 1.73160 3.000000 3.000000 3.000000 3.000000 3.000000 3.000000 3.00000 3.000000 3.00000 3.00000 3.00000 3.000000 3.00000 3.00000000
Mean Std Deviatic Skewness Uncorrected Coeff Variat Loca Mean Mode N Mean Std Deviatic Skewness Uncorrected Coeff Variat Loca Median Mode N Mean Std Deviatic Skewness Uncorrected Coeff Variat	2.952: on 1.499; 0.384: SS ion 50.77! Basic 2 .000000 2.952381 2.000000 2.000000 Var: 2.72727 on 1.315! SS ion 48.22 Basic 3 .000000 Var: .0.727273 3.000000 Var: 	21 38095 226514 16109 228 95628 Statist Std D Varia Range Inter 1000 19791 Statist Std D Varia Range 19791 Statist Std D Varia 200 19791 Statist Std D Varia 200 19791 Statist Std D Varia 200 19791 Statist Std D Varia 200 19791 Statist Statist	Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation nce quartile Range B48 (B48) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation nce B49 (B49) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Range	62 2.2476190 -1.4116435 44.952381 0.3271536 1.49921 2.24762 4.00000 3.00000 22 60 1.73160173 -1.6580633 36.363364 0.28055155 1.31590 1.73160 3.00000 3.00000 222 83 2.08874459 -0.3152455 43.8636364 0.30812812
Mean Std Deviatic Skewness Uncorrected Coeff Variat Mean Median Mode N N Mean Std Deviatic Skewness Uncorrected Coeff Variat Loca Mean Mode N N Mean Std Deviatic Skewness Uncorrected Coeff Variat	2.952: on 1.499; 0.384: SS Basic 2 tion 50.77? 2.952381 2.000000 Var: 2.727; on 1.315; 55 tion 48.24 Basic 2 tion 48.24 Basic 2 tion 48.24 Composed Var: 3.0000000 Var: 3.0000000 Var: 3.0000000 Var: 3.0000000 Var: 3.0000000 Var: 3.0000000 Var: 3.0000000 Var: 3.0000000 Var: 3.0000000 Var: 3.0000000 Var: 3.0000000 Var: 3.0000000 Var: 3.0000000 Var: 3.0000000000 Var: 3.0000000 Var: 3.00000000 Var: 3.00000000 Var: 3.000000000 Var: 3.000000000000000000000000000000000000	21 38095 226514 16109 228 35628 Statist Std D Varia Range Inter 100 19791 Statist Std D Varia Range Inter 100 19791 Statist Std D Varia Range Inter 100 19791 Statist Std D Varia Range Statist Std D Varia Range Statist Std D Varia Range Statist Std D Varia Range	Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation nce quartile Range B48 (B48) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation nce B49 (B49) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Range	62 2.24761905 -1.4116435 44.952381 0.3271536 1.49921 2.24762 4.00000 3.00000 222 60 1.73160 3.6363634 0.28055155 1.31590 1.73160 3.00000 3.00000 3.00000 3.00000 222 83 2.08874459 -0.3152455 43.863634 0.30812812

Std Deviation 0 Skewness - Uncorrected SS	Variable: 22 22727273 9.92230654 1.2977752 247 8.5785125	B50 (B50) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean	22 71 0.85064935 1.34465848 17.8636364 0.19663641
Ba Location Mean 3.22727 Median 3.00000 Mode 4.00000	00 Variano 00 Range	Variability viation	0.92231 0.85065 3.00000 1.00000
Std Deviation1Skewness-Uncorrected SSCoeff Variation3	22 .86363636 .12527053 0.3700535 207 9.2951614	851 (851) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean	22 63 1.26623377 -0.3757091 26.5909091 0.23990848
Ba Location Mean 2.86363 Median 3.00000 Mode 3.00000	00 Varian 00 Range	Variability viation	1.12527 1.26623 4.00000 2.00000
Std DeviationØSkewness-Uncorrected SSCoeff Variation2	Variable: 1 22 .36363636 .95346259 1.2016353 438 1.8501843 sic Statistic	B52 (B52) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean cal Measures	22 96 0.9090901 0.15449624 19.0909091 0.20327891
Location Mean 4.36363 Median 5.00000 Mode 5.00000	6 Std Dev 00 Variano 00 Range	Variability viation	0.95346 0.90909 3.00000 1.00000
Std Deviation1Skewness-Uncorrected SSCoeff Variation3	22 .13636364 24577207 0.2814541 249 9.7202689	B53 (B53) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean	22 69 1.5519480 -1.2958829 32.5909091 0.2655995
Location Location Mean 3.13636 Median 4.00000 Mode 4.00000	00 Variano 00 Range	Variability viation	1.24577 1.55195 4.00000 2.00000
Std Deviation 1 Skewness - Uncorrected SS	Variable: 1 22 .95454545 .43019388 1.3096237 387 26.1658224	B54 (B54) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean	22 87 2.04545455 0.41592723 42.9545455 0.30491836
Ba Location Mean 3.95454 Median 4.50000 Mode 5.00000	00 Variano 00 Range	Variability viation	1.43019 2.04545 4.00000 1.00000
Std Deviation	Variable: 1 22 2.27272727 1.2792043 0.5645871 270 39.086798	855 (855) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean	22 72 1.63636364 -0.707296 34.3636364 0.27272727
Ba Location Mean 3.27272 Median 4.00000 Mode 4.00000	00 Variano 00 Range	Variability viation	1.27920 1.63636 4.00000 2.00000
Ν	Variable: 1 22	B56 (B56) Sum Weights	22

Mean Std Deviation Skewness Uncorrected SS Coeff Variation	4.13636364 1.2069424 -1.7151885 407 29.1788273	Sum Observations Variance Kurtosis Corrected SS Std Error Mean	91 1.45670996 2.58379388 30.5909091 0.25732098
Location Mean 4.13 Median 4.50 Mode 5.00	5364 Std D 0000 Varia 0000 Range		1.20694 1.45671 4.00000 1.00000
N Mean Std Deviation Skewness Uncorrected SS Coeff Variation Location Mean 4.00		B57 (B57) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean cical Measures Variability Variability	22 88 1.61904762 -0.3369332 34 0.27128043
Median 5.00 Mode 5.00	0000 Varia 0000 Range	ince	1.61905 4.00000 2.00000
N Mean Std Deviation Skewness Uncorrected SS Coeff Variation	Variable: 22 3 1.2344268 0 230 41.14756	B58 (B58) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean	22 66 1.52380952 -0.6415707 32 0.26318068
Location Mean 3.00 Median 3.00 Mode 3.00	0000 Std D 0000 Varia 0000 Range		1.23443 1.52381 4.00000 2.00000
N Mean Std Deviation Skewness Uncorrected SS Coeff Variation	Variable: 22 4.09090909 0.92113237 -0.5948756 386 22.5165691	B59 (B59) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean	22 90 0.84848485 -0.63296 17.8181818 0.19638608
Location Mean 4.09 Median 4.00 Mode 5.00	0909 Std D 0000 Varia 0000 Range		0.92113 0.84848 3.00000 2.00000
N Mean Std Deviation Skewness Uncorrected SS Coeff Variation	22 3.86363636 1.12527053 -0.8112009 355 29.124649	B60 (B60) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean :ical Measures	22 85 1.26623377 0.31457587 26.5909091 0.23990848
Location Mean 3.86 Median 4.00 Mode 5.00	3636 Std D 3000 Varia 3000 Range	Variability veviation nce	1.12527 1.26623 4.00000 2.00000
N Mean Std Deviation Skewness Uncorrected SS Coeff Variation	Variable: 22 3.5 1.50396302 -0.5081312 317 42.970372	B61 (B61) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean	22 77 2.26190476 -1.2708628 47.5 0.32064599
Location Mean 3.50 Median 4.00 Mode 5.00	0000 Varia 0000 Range	Variability veviation nce	1.50396 2.26190 4.00000 3.00000
N Mean Std Deviation Skewness	Variable: 22 2.95454545 1.17421799 -0.4869135	B62 (B62) Sum Weights Sum Observations Variance Kurtosis	22 65 1.37878788 -1.4167876

Uncorrected SS Coeff Variation	221 39.7427626	Corrected SS Std Error Mean	28.9545455 0.25034412		
	Basic Statistical Measures				
Location		Variability			
Mean 2.95	4545 Std D	eviation	1.17422		
Median 3.50	0000 Varia	nce	1.37879		
Mode 4.00	0000 Range		3.00000		
	Inter	quartile Range	2.00000		
N	Variable: 22	time_work Sum Weights	22		
Mean	9.73106061	Sum Observations	214.083333		
Std Deviation	9.29815265	Variance	86.4556427		
Skewness	0.77712117	Kurtosis	-0.8867149		
Uncorrected SS	3898.82639	Corrected SS	1815.5685		
Coeff Variation	95.5512768	Std Error Mean	1.98237281		
Basic Statistical Measures Location Variability					
Mean 9.73	1061 Std D	eviation	9.29815		

Mean	9.731061	Std Deviation	9.29815
Median	5.875000	Variance	86.45564
Mode	4.000000	Range	27.83333
		Interguartile Range	16.00000

NOTE: The mode displayed is the smallest of 2 modes with a count of 2.

C .	forming the measuring instrument)						
	ements (Test all statements without current	Variable	Correlation	Cronbach's			
inpu	input)		with total	Alpha			
				Coefficient			
Section B: Reasons for implementing Six Sigma in the organisation.							
1.	To reduce costs.	B01	0.2675	0.9549			
2.	To improve customer satisfaction.	B02	0.1611	0.9554			
3.	To improve product/service quality.	B03	0.1441	0.9554			
4.	To improve company reputation and much more.	B04	0.2072	0.9555			
Sect	tion B: Key personnel driving Six Sigma in the org	anisation.					
5.	Our organisation has appointed a Six Sigma	B05	0.4853	0.9542			
	Champion.						
6.	Our organisation uses a Black Belt on full time	B06	0.6814	0.9533			
	basis.						
7.	We also involve process leader and employees	B07	0.5172	0.9541			
	during Six Sigma projects.						
Sect	tion B: Six Sigma methodology						
8.	We always use the DMAIC methodology during	B08	0.5753	0.9538			
	process improvement project.						
9.	We consider the DFSS methodology when	B09	0.7585	0.9530			
	redesigning a project.						
Sect	tion B: Mechanism in place to ensure Six Sigma in	your organi	sation.				
10.	A communication channel has been put in place to	B10	0.5776	0.9539			
	ensure a general awareness of Six Sigma						
	principles.						
11.	All the people involved in Six Sigma project have	B11	0.7535	0.9534			
	received adequate training.						
12.	Six Sigma has been linked to all the stakeholders.	B12	0.7379	0.9532			
13.	A reward scheme has been linked to everyone	B13	0.4982	0.9542			
	involved in Six Sigma project.						
Sect	tion B: Top management commitment to Six Sigm	a in your org	anisation.				
14.	Employees are encouraged to participate when	B14	0.4157	0.9550			
	implementing Six Sigma.						
15.	The leadership is committed and dedicated to	B15	0.2706	0.9550			
	project selection and review as well as to						
	provision of resources.						

Annexure E: (Table 5.1: Cronbach's Alpha Coefficient for all the items forming the measuring instrument)

16.	Leadership does not support activities and	B16	-0.1838	0.9567
1.5	investments that have long-term benefits.	D 1 5	0.0710	0.0546
Γ7.	Senior executives accommodate and encourage	B17	0.3712	0.9546
~	change.			
	ion B: Key ingredients for Six Sigma implementation	tion in your o	-	
18.	Top management's involvement and commitment.	B18	0.4130	0.9546
19.	Culture change.	B19	0.0424	0.9555
20.	Communication.	B20	0.6896	0.9535
21.	Organisation infrastructure.	B21	0.4206	0.9545
22.	Training.	B22	-0.0930	0.9559
23.	Project management skill.	B23	-0.0196	0.9561
24.	Project selection and prioritisation, review and	B24	0.5172	0.9541
	tracking.			
25.	Understanding of Six Sigma methodology, tools	B25	0.7799	0.9530
	and techniques.			
26.	Linking Six Sigma to business strategy.	B26	0.3534	0.9547
27.	Linking Six Sigma to the customer.	B27	0.7653	0.9530
28.	Linking Six Sigma to human resources.	B28	0.2635	0.9550
29.	Linking Six Sigma to the supplier.	B29	0.2869	0.9549
Sect	ion B: The Six Sigma tools and techniques for pro	ocess improve	ement.	
30.	We use the basic quality control tools of Six	B30	0.4831	0.9543
	Sigma.			
31.	We often rely on quality techniques to solve	B31	0.5355	0.9540
	problems.			
32.	We use Six Sigma tools and techniques in a well	B32	0.4728	0.9543
	disciplined manner at each stage of the DMAIC.			
Sect	ion B: The most used tools and techniques of Six S	Sigma in my	organisation.	
33.	Cause and effect diagram.	B33	0.5979	0.9538
34.	Check sheet.	B34	-0.2193	0.9563
35.	Control chart.	B35	0.3933	0.9545
36.	Graphs.	B36	0.2790	0.9550
37.	Histogram.	B37	0.6680	0.9534
38.	Pareto diagram.	B38	0.5555	0.9539
39.	Scatter Diagram.	B39	0.7931	0.9529
40.	Brainstorming.	B40	0.5998	0.9538

Cronbach's Coefficient Alpha for raw variables			
Cronbach's Coefficient Alpha for standardized variables			
62. Kano model.	B62	0.7899	0.9529
61. SIPOC.	B61	0.8222	0.9525
60. Quality improvement team.	B60	0.8297	0.9528
59. Statistical process control.	B59	-0.0534	0.9559
58. Quality function deployment (QFD).	B58	0.8054	0.9528
57. Quality costing.	B57	0.5680	0.9538
56. Problem solving methodology.	B56	0.6054	0.9537
55. Poka joke.	B55	0.7109	0.9532
54. Process capability analysis.	B54	0.7736	0.9528
53. Fault tree analysis.	B53	0.7423	0.9531
52. Failure mode and effects analysis (FMAEA).	B52	0.5023	0.9542
51. Design of experiment.	B51	0.5763	0.9538
50. Benchmarking.	B50	0.3612	0.9546
49. Project team charter.	B49	0.7687	0.9528
48. Regression and correlation analysis.	B48	0.6870	0.9533
47. SERVQUAL.	B47	0.7016	0.9532
46. Gant chart.	B46	0.5654	0.9539
45. Sampling.	B45	0.4842	0.9542
44. Questionnaires.	B44	0.1955	0.9554
43. Process mapping.	B43	0.4552	0.9543
42. Hypothesis testing.	B42	0.4652	0.9543
41. Flow chart.	B41	0.6842	0.9534

Var	iables	Categories	Frequency	Percentage out of total
Sec	tion A: Organisation and respondent (demographics.		
1.	Classify your organisation's main	Manufacturing	20	90.9%
	function.	Service	2	9.1%
2.	Number of people employed by your	100-500	20	90.9%
	organisation.	>500-1000	0	0.0%
		>1000	2	9.1%
3.	How long has your organisation been	< 1 year	1	4.6%
	pursuing the Six Sigma philosophy?	1-3 years	9	40.9%
		4-5 years	2	9.1%
		6-10 years	0	0.0%
		> 10 years	9	40.9%
		Unknown	1	4.6%
Sec	tion B: Reasons for implementing Six	Sigma in the organisation	on.	
1.	To reduce costs.	Strongly disagree	0	0.0%
		Disagree	0	0.0%
		Undecided	5	22.7%
		Agree	10	45.4%
		Strongly agree	7	31.8%
2.	To improve customer satisfaction.	Strongly disagree	0	0.0%
		Disagree	3	13.6%
		Undecided	3	13.6%
		Agree	7	31.8%
		Strongly agree	9	40.9%
3.	To improve product/service quality.	Strongly disagree	1	4.6%
		Disagree	0	0.0%
		Undecided	2	9.1%
		Agree	10	45.4%
		Strongly agree	9	40.9%

Annexure F: (Table 5. 2: Descriptive statistics for all the variables)

4.	To improve company reputation and	Strongly disagree	2	9.19
	much more.	Disagree	2	9.19
		Undecided	2	9.19
		Agree	8	36.49
		Strongly agree	7	31.89
		Unknown	1	4.6
Sect	tion B: Key personnel driving Six Sigr	na in the organisation.		
5.	Our organisation has appointed a Six	Strongly disagree	0	0.09
	Sigma Champion.	Disagree	3	13.6
		Undecided	4	18.2
		Agree	7	31.8
		Strongly agree	8	36.4
6.	Our organisation uses a Black belt on	Strongly disagree	4	18.2
	a full time basis.	Disagree	1	4.6
		Undecided	5	22.7
		Agree	4	18.2
		Strongly agree	8	36.4
7.	We also involve process leader and	Strongly disagree	0	0.0
	employees during Six Sigma	Disagree	3	13.6
	projects.	Undecided	3	13.6
		Agree	7	31.8
		Strongly agree	9	40.9
Sect	tion B: Six Sigma methodology.			
8.	We always use the DMAIC	Strongly disagree	1	4.6
	methodology during process	Disagree	5	22.7
	improvement project.	Undecided	6	27.3
			2	9.1
		Agree		36.4
0	We can the de DEGG at the	Strongly agree	8	
9.	We consider the DFSS methodology	Strongly disagree	2	9.1
	when redesigning a project.	Disagree	2	9.1
		Undecided	6	27.3
		Agree	5	22.7
		Strongly agree	7	31.8

Section B: Mechanism in place to ensure		isation.	
10. A communication channel has been	Strongly disagree	0	0.0%
put in place to ensure a general	Disagree	7	31.8%
awareness of Six Sigma principles.	Undecided	2	9.1%
	Agree	11	50.0%
	Strongly agree	2	9.1%
11. All the people involved on Six	Strongly disagree	0	0.0%
Sigma project have received	Disagree	3	13.6%
adequate training.	Undecided	4	18.2%
	Agree	13	59.1%
	Strongly agree	2	9.1%
12. Six Sigma has been linked to all the	Strongly disagree	1	4.6%
stakeholders.	Disagree	2	9.1%
	Undecided	6	27.3%
	Agree	6	27.3%
	Strongly agree	7	31.8%
13. A reward scheme has been linked to	Strongly disagree	5	22.7%
everyone involved in Six Sigma	Disagree	4	18.2%
project.	Undecided	6	27.3%
	Agree	4	18.2%
	Strongly agree	3	13.6%
Section B: Top management's commitme		organisation.	
14. Employees are encouraged to	Strongly disagree	0	0.0%
participate when implementing Six	Disagree	1	4.6%
Sigma.	Undecided	6	27.3%
	Agree	13	59.1%
	Strongly agree	2	9.1%
15. The leadership is committed and	Strongly disagree	0	0.0%
dedicated to project selection and	Disagree	5	22.7%
review as well as to provision of	Undecided	8	36.4%
resources.	Agree	5	22.7%
	8		

16. Leadership does not support	Strongly disagree	2	9.1%
activities and investments that have	Disagree	2	9.1%
long-term benefits.	Undecided	11	50.0%
	Agree	4	18.2%
	Strongly agree	3	13.6%
17. Senior executives accommodate and	Strongly disagree	0	0.0%
encourage change.	Disagree	1	4.6%
	Undecided	5	22.7%
	Agree	15	68.2%
	Strongly agree	1	4.6%
Section B: Key ingredients for Six Sigma	implementation in your o	organisation.	
18. Top management involvement and	Strongly disagree	0	0.0%
commitment.	Disagree	0	0.0%
	Undecided	5	22.7%
	Agree	16	72.7%
	Strongly agree	1	4.6%
19. Culture change.	Strongly disagree	0	0.0%
	Disagree	3	13.6%
	Undecided	12	54.6%
	Agree	5	22.7%
	Strongly agree	2	9.1%
20. Communication.	Strongly disagree	0	0.0%
	Disagree	5	22.7%
	Undecided	2	9.1%
	Agree	13	59.1%
	Strongly agree	2	9.1%
21. Organisation infrastructure.	Strongly disagree	1	4.6%
	Disagree	3	13.6%
	Undecided	6	27.3%
	Agree	5	22.7%
	Strongly agree	7	31.8%

22.	Training.	Strongly disagree	0	%
		Disagree	0	%
		Undecided	9	40.9%
		Agree	7	31.8%
		Strongly agree	6	27.3%
23.	23. Project management skill.	Strongly disagree	1	4.6%
		Disagree	7	31.8%
		Undecided	4	18.2%
		Agree	9	40.9%
		Strongly agree	1	4.6%
24.	Project selection and prioritisation,	Strongly disagree	0	0.0%
	review and tracking.	Disagree	2	9.1%
		Undecided	12	54.6%
		Agree	5	22.7%
		Strongly agree	3	13.6%
25.	Understanding of Six Sigma	Strongly disagree	0	0.0%
	methodology, tools and techniques.	Disagree	3	13.6%
		Undecided	5	22.7%
		Agree	4	18.2%
		Strongly agree	10	45.4%
26.	Linking Six Sigma to business	Strongly disagree	1	4.6%
	strategy.	Disagree	5	22.7%
		Undecided	6	27.3%
		Agree	6	27.3%
		Strongly agree	2	9.1%
		Unknown	2	9.1%
27.	Linking Six Sigma to the customer.	Strongly disagree	2	9.1%
		Disagree	2	9.1%
		Undecided	5	22.7%
		Agree	8	36.4%
		Strongly agree	5	22.7%

resources. Product region legistric product of the supplier. Product of the supplier. 29. Linking Six Sigma to the supplier. 20. We use the basic quality control tools of Six Sigma. 30. We use the basic quality control tools of Six Sigma. 31. We often rely on quality techniques to solve problems. 31. We often rely on quality techniques to solve problems. 32. We use Six Sigma tools and techniques in a well disciplined manner at each stage of the DMAIC. 32. We use Six Sigma tools and techniques in a well disciplined manner at each stage of the DMAIC. 33. Cause and effect diagram. 34. Constant used tools and techniques of Six Sigma in a well disciplined manner at each stage of the DMAIC. 35. Cause and effect diagram. 36. Cection B: The most used tools and techniques of Six Sigma in a well disciplined manner at each stage of the DMAIC. 37. Cause and effect diagram. 38. Cause and effect diagram. 39. Cause and effect diagram. 30. We use and effect diagram. 30. We use and effect diagram. 30. We use and effect diagram. 31. Cause and effect diagram. 32. Cause and effect diagram. 33. Cause and effect diagram. 34. Cause and effect diagram. 35. Cause and effect diagram. 35. Cause and effect diagram. 35. Cause and effect diagram. 36. Cause and effect diagram. 37. Cause and effect diagram. 37. Cause and effect diagram. 37. Cause and effect diagram. 38. Cause and effect diagram. 39. Cause and effect diagram. 30. Cause and effect diagram. 30. Cause and effect diagram. 30. Cause and effect diagram. 31. Cause and effect diagram. 32. Cause and effect diagram. 33. Cause and effect diagram. 34. Cause and effect diagram. 35. Cause and effect diagram. 36. Cause and effect diagram. 37. Cause and effect diagram. 37. Cause and effect diagram. 37. Cause and effect diagram. 38. Cause and effect diagram. 39. Cause and effect diagram. 30. Cause and effect diagram. 3	28. Linking Six Sigma to human	Strongly disagree	1	4.6%
			-	
	resources.		11	
IndexIndexIndexStrongly agree14.6%Strongly disagree14.6%Disagree313.6%Undecided1045.4%Agree522.7%Strongly agree313.6%Section B: The Six Sigma tools and techniques for process improvement.30. We use the basic quality control tools of Six Sigma.Strongly disagree00.0%Disagree29.1%Undecided14.6%Agree29.1%Undecided14.6%Agree1463.6%Strongly agree522.7%31. We often rely on quality techniques to solve problems.Strongly disagree00.0%Disagree418.2%Undecided418.2%32. We use Six Sigma tools and techniques in a well disciplined manner at each stage of the DMAIC.Strongly disagree00.0%Disagree627.3%14.6%22.7%33. Cause and effect diagram.Strongly disagree14.6%Strongly agree14.6%22.7%Agree1045.4%3trongly disagree133. Cause and effect diagram.Strongly disagree14.6%Disagree00.0%14.6%Agree1045.4%3trongly disagree133. Cause and effect diagram.Strongly disagree14.6%Disagree00.0%14.6%Strongly disagree14.6%<		Undecided	4	18.2%
29. Linking Six Sigma to the supplier. 29. Linking Six Sigma to the supplier. 29. Linking Six Sigma to the supplier. 29. Linking Six Sigma to the supplier. 20. We use the basic quality control tools of Six Sigma. 30. We use the basic quality control tools of Six Sigma. 31. We often rely on quality techniques to solve problems. 31. We often rely on quality techniques to solve problems. 32. We use Six Sigma tools and techniques in a well disciplined manner at each stage of the DMAIC. 32. We use Six Sigma tools and techniques in a well disciplined manner at each stage of the DMAIC. 33. Cause and effect diagram. 34. Cause and effect diagram. 35. Cause and effect diagram. 36. Cause and effect diagram. 36. Cause and effect diagram. 37. Cause and effect diagram. 38. Cause and effect diagram. 39. Cause and effect diagram. 30. Cause and effect diagram. 30. We use Six Sigma tools and techniques in a well dools and techniques of Six Sigma in my organisation. 30. Cause and effect diagram. 31. Cause and effect diagram. 32. Cause and effect diagram. 33. Cause and effect diagram. 34. Cause and effect diagram. 35. Cause and effect diagram. 36. Cause and effect diagram. 37. Cause and effect diagram. 38. Cause and effect diagram. 39. Cause and effect diagram. 30. Cause and effect diagram. 30. Cause and effect diagram. 30. Cause and effect diagram. 31. Cause and effect diagram. 32. Cause and effect diagram. 33. Cause and effect diagram. 34. Cause and effect diagram. 35. Cause and effect diagram. 36. Cause and effect diagram. 37. Cause and effect diagram. 38. Cause and effect diagram. 39. Cause and effect diagram. 30. Cause and effect diagram. 30. Cause and effect diagram. 30. Cause and effect diagram. 31. Cause and effect diagram. 32. Cause and effect diagram. 33. Cause and effect diagram. 34. Cause and effect diagram. 35. Cause and effect diagram. 36. Cause and effect diagram. 37. Cause and effect diagram. 38. Cause and effect diagram. 39. Cause and effect diagram.		Agree	5	22.7%
		Strongly agree	1	4.6%
$ \begin{array}{ c c c } \hline l \\ lingth \\ l$	29. Linking Six Sigma to the supplier.	Strongly disagree	1	4.6%
$ \begin{array}{ c c c c } \hline A \mbox{gree} & 1 & 1 \\ \hline A \mbox{gree} & 5 & 22.7\% \\ \hline Strongly agree & 3 & 13.6\% \\ \hline \mbox{Strongly agree} & 3 & 13.6\% \\ \hline \mbox{Strongly agree} & 3 & 13.6\% \\ \hline \mbox{Strongly agree} & 0 & 0.0\% \\ \hline \mbox{Disagree} & 2 & 9.1\% \\ \hline \mbox{Undecided} & 1 & 4.6\% \\ \hline \mbox{Agree} & 14 & 63.6\% \\ \hline \mbox{Strongly agree} & 5 & 22.7\% \\ \hline \mbox{Strongly agree} & 4 & 18.2\% \\ \hline \mbox{Disagree} & 10 & 45.4\% \\ \hline \mbox{Strongly agree} & 4 & 18.2\% \\ \hline \mbox{Disagree} & 10 & 45.4\% \\ \hline \mbox{Strongly agree} & 4 & 18.2\% \\ \hline \mbox{Strongly agree} & 6 & 27.3\% \\ \hline \mbox{Disagree} & 10 & 45.4\% \\ \hline \mbox{Strongly agree} & 6 & 27.3\% \\ \hline \mbox{Disagree} & 10 & 45.4\% \\ \hline \mbox{Strongly agree} & 1 & 4.6\% \\ \hline \mbox{Strongly agree} & 0 & 0.0\% \\ \hline \mbox{Strongly agree} & 1 & 4.6\% \\ \hline \mbox{Strongly agree} & 1 & 4.6\% \\ \hline \mbox{Strongly agree} & 0 & 0.0\% \\ \hline \mbox{Strongly agree} & 0 & 0.0\% \\ \hline \mbox{Strongly agree} & 1 & 4.6\% \\ \hline \mbox{Strongly agree} & 0 & 0.0\% \\ \hline \mbox{Strongly agree} & 0 & 0.0\% \\ \hline \mbox{Strongly agree} & 0 & 0.0\% \\ \hline \mbox{Strongly agree} & 1 & 4.6\% \\ \hline \mbox{Strongly agree} & 0 & 0.0\% \\ \hline \$		Disagree	3	13.6%
Strongly agree313.6%Section B: The Six Sigma tools and techniques for process improvement.30. We use the basic quality control tools of Six Sigma.Strongly disagree00.0%Disagree29.1%Undecided14.6%Agree1463.6%Strongly agree522.7%31. We often rely on quality techniques to solve problems.Strongly disagree00.0%Disagree418.2%Undecided418.2%Agree1045.4%Strongly agree627.3%32. We use Six Sigma tools and techniques in a well disciplined manner at each stage of the DMAIC.Strongly disagree00.0%Disagree627.3%Undecided522.7%33. Cause and effect diagram.Strongly disagree14.6%Agree1045.4%3trongly agree14.6%Agree1045.4%3trongly agree14.6%Agree1045.4%3trongly agree14.6%Agree1045.4%3trongly agree14.6%Agree1045.4%3trongly agree14.6%Agree1045.4%3trongly agree14.6%Agree1045.4%3trongly agree14.6%Agree1045.4%3trongly agree14.6%Agree1045.4%3trongly agree <t< td=""><td></td><td>Undecided</td><td>10</td><td>45.4%</td></t<>		Undecided	10	45.4%
Section B: The Six Sigma tools and techniques for process improvement.30. We use the basic quality control tools of Six Sigma.Strongly disagree00.0%Disagree29.1%Undecided14.6%Agree1463.6%Strongly agree522.7%31. We often rely on quality techniques to solve problems.Strongly disagree00.0%Disagree418.2%Undecided418.2%Agree1045.4%Strongly agree627.3%32. We use Six Sigma tools and techniques in a well disciplined manner at each stage of the DMAIC.Strongly disagree033. Cause and effect diagram.Strongly agree14.6%Strongly agree14.6%Magree1045.4%Strongly agree14.6%Agree1045.4%Strongly agree14.6%Magree1045.4%Agree1045.4%Agree104.6%Magree14.6%Magree14.6%Magree14.6%Magree14.6%Magree14.6%Magree14.6%Magree14.6%Magree14.6%Magree14.6%Magree14.6%Magree14.6%Magree14.6%Magree14.6%Magree<		Agree	5	22.7%
30. We use the basic quality control tools of Six Sigma.Strongly disagree00.0% $30.$ We use the basic quality control tools of Six Sigma.Disagree29.1% $31.$ We often rely on quality techniques to solve problems.Strongly agree522.7% $31.$ We often rely on quality techniques to solve problems.Strongly disagree00.0% $31.$ We often rely on quality techniques to solve problems.Strongly disagree00.0% $32.$ We use Six Sigma tools and techniques in a well disciplined manner at each stage of the DMAIC.Strongly disagree00.0% $33.$ Cause and effect diagram.Strongly agree14.6% $33.$ Cause and effect diagram.Strongly disagree14.6% $33.$ Cause and effect diagram.Strongly disagree14.6% 4 Disagree00.0% 4 4 6 6 $33.$ Cause and effect diagram.Strongly disagree14.6% 4 4 6 6 6 $33.$ Cause and effect diagram.Strongly disagree14.6% 4 6 6 6 6 6 $33.$ Cause and effect diagram.Strongly disagree1 4.6% 4 6 6 6 6 6 4 6 6 6 6 6 4 6 6 6 6 7 4 6 6 6 6 6 4 6 6		Strongly agree	3	13.6%
tools of Six Sigma. tools of Six Sigma. $ \begin{array}{c c c c c } \hline Disagree & 2 & 9.1\% \\ \hline Undecided & 1 & 4.6\% \\ \hline Agree & 14 & 63.6\% \\ \hline Strongly agree & 5 & 22.7\% \\ \hline 31. We often rely on quality techniques to solve problems. Strongly disagree & 0 & 0.0\% \\ \hline Disagree & 4 & 18.2\% \\ \hline Undecided & 4 & 18.2\% \\ \hline Undecided & 4 & 18.2\% \\ \hline Agree & 10 & 45.4\% \\ \hline Strongly agree & 4 & 18.2\% \\ \hline Agree & 10 & 45.4\% \\ \hline Strongly agree & 6 & 27.3\% \\ \hline Undecided & 5 & 22.7\% \\ \hline Agree & 10 & 45.4\% \\ \hline Undecided & 5 & 22.7\% \\ \hline Agree & 10 & 45.4\% \\ \hline Strongly agree & 1 & 4.6\% \\ \hline Strongly agree & 1 & 4.6\% \\ \hline Strongly agree & 1 & 4.6\% \\ \hline Match add add techniques of Six Sigma in my organisation. \\ \hline 33. Cause and effect diagram. & Strongly disagree & 0 & 0.0\% \\ \hline Undecided & 1 & 4.6\% \\ \hline Disagree & 0 & 0.0\% \\ \hline Match add add add techniques of Six Sigma in my organisation. \\ \hline 33. Cause and effect diagram. & Strongly disagree & 0 & 0.0\% \\ \hline Match add add add add add add add add add ad$	Section B: The Six Sigma tools and tech	hniques for process impro	vement.	
$\frac{1}{31. \text{ We often rely on quality techniques}}{31. \text{ We often rely on quality techniques}} to solve problems. 31. We often rely on quality techniques to solve problems. \frac{31. \text{ We often rely on quality techniques}}{13. \text{ We often rely on quality techniques}} to solve problems. 31. We often rely on quality techniques to solve problems. \frac{32. \text{ We use Six Sigma tools and}}{13. \text{ Cause and effect diagram.}} to solve problems are techniques in a well disciplined manner at each stage of the DMAIC. 32. We use Six Sigma tools and techniques of Six Sigma in my organisation. 33. Cause and effect diagram. 33. Cause and effect diagram. 34. Cause and effect diagram. 35. Cause and effect diagram. 36. Cause and effect diagram. 37. Cause and effect diagram. 38. Cause and effect diagram. 39. Cause and effect diagram. 30. Cause and effect diagram. 30. Cause and effect diagram. 30. Cause and effect diagram. 31. Cause and effect diagram. 32. Cause and effect diagram. 33. Cause and effect diagram. 34. Cause and effect diagram. 35. Cause and effect diagram. 36. Cause and effect diagram. 37. Cause and effect diagram. 38. Cause and effect diagram. 39. Cause and effect diagram. 30. Cause and effect diagram. 30. Cause and effect diagram. 30. Cause and effect diagram. 31. Cause and effect diagram. 32. Cause and effect diagram. 33. Cause and effect diagram. 34. Cause and effect diagram. 35. Cause and effect diagram. 36. Cause and effect diagram. 37. Cause and effect diagram. 38. Cause and effect diagram. 39. Cause and effect diagram. 30. Cause and effect diagram. 30. Cause and effect diagram. 31. Cause and effect diagram. 32. Cause and effect diagram. 33. Cause and effect diagram. 34. Cause and effect diagram. 35. Cause and effect diagram. 36. Cause and effect diagram. 37. Cause and effect diagram. 38. Cause and effect diagram. 39. Cause and effect diagram. 30. Cause and effect diagram. 30. Cause and effect diagram. 30. Cause$	30. We use the basic quality control	Strongly disagree	0	0.0%
	tools of Six Sigma.	Disagree	2	9.1%
		Undecided	1	4.6%
31. We often rely on quality techniques to solve problems.Strongly disagree00.0%Disagree418.2%Undecided418.2%Agree1045.4%Strongly agree418.2%32. We use Six Sigma tools and techniques in a well disciplined manner at each stage of the DMAIC.Strongly disagree00.0%Disagree627.3%Marce1045.4%Strongly agree14.6%Strongly agree14.6%Section B: The most used tools and techniques of Six Sigma in my organisation.33. Cause and effect diagram.Strongly disagree133. Cause and effect diagram.Strongly disagree14.6%Disagree00.0%Undecided14.6%Agree1045.4%Strongly disagree14.6%Disagree00.0%Undecided14.6%Agree1045.4%Strongly disagree14.6%Agree1045.4%Agree1045.4%		Agree	14	63.6%
It is a problem of the problems.Disagree11Disagree418.2%Undecided418.2%Agree1045.4%Strongly agree418.2%32. We use Six Sigma tools and techniques in a well disciplined manner at each stage of the DMAIC.Strongly disagree00.0%Undecided522.7%Agree1045.4%Strongly agree14.6%Strongly agree14.6%Section B: The most used tools and techniques of Six Sigma in my organisation.33. Cause and effect diagram.Strongly disagree133. Cause and effect diagram.Strongly disagree14.6%Disagree00.0%Undecided14.6%Agree1045.4%Strongly disagree14.6%Disagree00.0%Undecided14.6%Agree1045.4%		Strongly agree	5	22.7%
DragetIUndecided418.2%Agree1045.4%Strongly agree418.2%32. We use Six Sigma tools and techniques in a well disciplined manner at each stage of the DMAIC.Strongly disagree00.0%Undecided522.7%Agree1045.4%Strongly agree14.6%Section B: The most used tools and techniques of Six Sigma in my organisation.33. Cause and effect diagram.Strongly disagree14.6%Disagree00.0%0.0%0.0%0.0%0.0%Marce14.6%4.6%14.6%Marce1045.4%14.6%Marce1045.4%14.6%Marce1045.4%14.6%Marce1045.4%14.6%Marce1045.4%14.6%Marce1045.4%14.6%Marce1045.4%14.6%Marce1045.4%14.6%Marce1045.4%14.6%Marce1045.4%14.6%	31. We often rely on quality techniques	Strongly disagree	0	0.0%
Agree1045.4%Agree1045.4%Strongly agree418.2%32. We use Six Sigma tools and techniques in a well disciplined manner at each stage of the DMAIC.Strongly disagree00.0%Undecided522.7%Agree1045.4%Strongly agree14.6%Section B: The most used tools and techniques of Six Sigma in my organisation.33. Cause and effect diagram.Strongly disagree14.6%Disagree00.0%Undecided14.6%Agree1045.4%4.6%4.6%Strongly disagree14.6%4.6%Disagree00.0%14.6%Agree1045.4%4.6%Agree1045.4%	to solve problems.	Disagree	4	18.2%
Strongly agree418.2%32. We use Six Sigma tools and techniques in a well disciplined manner at each stage of the DMAIC.Strongly disagree00.0%Undecided522.7%Agree1045.4%Strongly agree14.6%Section B: The most used tools and techniques of Six Sigma in my organisation.33. Cause and effect diagram.Strongly disagree14.6%Disagree00.0%0.0%0.0%0.0%Marce14.6%0.0%0.0%Marce14.6%0.0%0.0%Marce1045.4%0.0%0.0%Marce1045.4%0.0%Marce1045.4%Marce1045.4%Marce1045.4%Marce1045.4%		Undecided	4	18.2%
32. We use Six Sigma tools and techniques in a well disciplined manner at each stage of the DMAIC.Strongly disagree00.0%Undecided522.7%Agree1045.4%Strongly agree14.6%Section B: The most used tools and techniques of Six Sigma in my organisation.33. Cause and effect diagram.Strongly disagree133. Cause and effect diagram.Strongly disagree00.0%Undecided14.6%Agree1045.4%Strongly disagree14.6%Disagree00.0%Undecided14.6%Agree1045.4%		Agree	10	45.4%
techniques in a well disciplined manner at each stage of the DMAIC.Disagree627.3%Undecided522.7%Agree1045.4%Strongly agree14.6%Section B: The most used tools and techniques of Six Sigma in my organisation.33. Cause and effect diagram.Strongly disagree133. Cause and effect diagram.Strongly disagree00.0%Undecided14.6%Agree1045.4%		Strongly agree	4	18.2%
manner at each stage of the DMAIC.Undecided522.7%Undecided522.7%Agree1045.4%Strongly agree14.6%Section B: The most used tools and techniques of Six Sigma in my organisation.33. Cause and effect diagram.Strongly disagree1Disagree00.0%Undecided14.6%Agree1045.4%	32. We use Six Sigma tools and	Strongly disagree	0	0.0%
Section B: The most used tools and techniques of Six Sigma in my organisation.33. Cause and effect diagram.33. Cause and effect diagram.Strongly disagree14.6%Disagree00.0%Undecided14.6%Agree104.6%104.6%104.6%104.6%104.6%104.6%104.6%104.6% <t< td=""><td>techniques in a well disciplined</td><td>Disagree</td><td>6</td><td>27.3%</td></t<>	techniques in a well disciplined	Disagree	6	27.3%
Strongly agree14.6%Section B: The most used tools and techniques of Six Sigma in my organisation.33. Cause and effect diagram.Strongly disagree14.6%Disagree00.0%Undecided14.6%Agree1045.4%	manner at each stage of the DMAIC.	Undecided	5	22.7%
Section B: The most used tools and techniques of Six Sigma in my organisation.33. Cause and effect diagram.Strongly disagree14.6%Disagree00.0%Undecided14.6%Agree1045.4%		Agree	10	45.4%
33. Cause and effect diagram.Strongly disagree14.6%Disagree00.0%Undecided14.6%Agree1045.4%		Strongly agree	1	4.6%
33. Cause and effect diagram.Strongly disagree14.6%Disagree00.0%Undecided14.6%Agree1045.4%	Section B: The most used tools and tech	niques of Six Sigma in my	y organisation.	
Undecided 1 4.6% Agree 10 45.4%				4.6%
Agree 10 45.4%		Disagree	0	0.0%
		Undecided	1	4.6%
Strongly agree 10 45.4%		Agree	10	45.4%
		Strongly agree	10	45.4%

34. Check sheet.	Strongly disagree	0	0.0%
	Disagree	1	4.6%
	Undecided	2	9.1%
	Agree	9	40.9%
	Strongly agree	10	45.4%
35. Control chart.	Strongly disagree	1	4.6%
	Disagree	2	9.1%
	Undecided	7	31.8%
	Agree	9	40.9%
	Strongly agree	3	13.6%
36. Graphs.	Strongly disagree	1	4.6%
	Disagree	0	0.0%
	Undecided	3	13.6%
	Agree	5	22.79
	Strongly agree	13	59.19
37. Histogram.	Strongly disagree	3	13.6%
	Disagree	0	0.0%
	Undecided	2	9.1%
	Agree	12	54.6%
	Strongly agree	5	22.7%
38. Pareto diagram.	Strongly disagree	2	9.1%
	Disagree	0	0.0%
	Undecided	0	0.0%
	Agree	14	63.69
	Strongly agree	6	27.3%
39. Scatter Diagram.	Strongly disagree	3	13.69
	Disagree	3	13.69
	Undecided	5	22.79
	Agree	10	45.49
	Strongly agree	1	4.6%

40. Brainstorming.	Strongly disagree	1	4.6%
	Disagree	0	0.0%
	Undecided	1	4.6%
	Agree	5	22.7%
	Strongly agree	15	68.2%
41. Flow chart.	Strongly disagree	2	9.1%
	Disagree	1	4.6%
	Undecided	5	22.7%
	Agree	12	54.6%
	Strongly agree	2	9.1%
42. Hypothesis testing.	Strongly disagree	4	18.2%
	Disagree	10	45.4%
	Undecided	4	18.2%
	Agree	2	9.1%
	Strongly agree	2	9.1%
43. Process mapping.	Strongly disagree	2	9.1%
	Disagree	0	0.0%
	Undecided	2	9.1%
	Agree	12	54.6%
	Strongly agree	6	27.3%
44. Questionnaires.	Strongly disagree	4	18.2%
	Disagree	8	36.4%
	Undecided	5	22.7%
	Agree	3	13.6%
	Strongly agree	2	9.1%
45. Sampling.	Strongly disagree	1	4.6%
	Disagree	1	4.6%
	Undecided	5	22.7%
	Agree	6	27.3%
	Strongly agree	9	40.9%

46. Gant chart.	Strongly disagree	2	9.1%
	Disagree	4	18.2%
	Undecided	5	22.7%
	Agree	11	50.0%
	Strongly agree	0	0.0%
47. SERVQUAL.	Strongly disagree	3	13.6%
	Disagree	8	36.4%
	Undecided	3	13.6%
	Agree	1	4.6%
	Strongly agree	6	27.3%
	Unknown	1	4.6%
48. Regression and correlation analysis.	Strongly disagree	7	31.8%
	Disagree	1	4.6%
	Undecided	5	22.7%
	Agree	9	40.9%
	Strongly agree	0	0.0%
49. Project team charter.	Strongly disagree	3	13.6%
	Disagree	2	9.1%
	Undecided	1	4.6%
	Agree	7	31.8%
	Strongly agree	9	40.9%
50. Benchmarking.	Strongly disagree	2	9.1%
	Disagree	1	4.6%
	Undecided	9	40.9%
	Agree	10	45.4%
	Strongly agree	0	0.0%
51. Design of experiment.	Strongly disagree	4	18.2%
	Disagree	2	9.1%
	Undecided	10	45.4%
	Agree	5	22.7%
	Strongly agree	1	4.6%

52. Failure mode and effects analysis	Strongly disagree	0	0.0%
(FMAEA).	Disagree	1	4.6%
	Undecided	4	18.2%
	Agree	3	13.6%
	Strongly agree	14	63.6%
53. Fault tree analysis.	Strongly disagree	2	9.1%
	Disagree	7	31.8%
	Undecided	1	4.6%
	Agree	10	45.4%
	Strongly agree	2	9.1%
54. Process capability analysis.	Strongly disagree	3	13.6%
	Disagree	1	4.6%
	Undecided	1	4.6%
	Agree	6	27.3%
	Strongly agree	11	50.0%
55. Poka joke.	Strongly disagree	3	13.6%
	Disagree	3	13.6%
	Undecided	4	18.2%
	Agree	9	40.9%
	Strongly agree	3	13.6%
56. Problem solving methodology.	Strongly disagree	2	9.1%
	Disagree	0	0.0%
	Undecided	2	9.1%
	Agree	7	31.8%
	Strongly agree	11	50.0%
57. Quality costing.	Strongly disagree	1	4.6%
	Disagree	2	9.1%
	Undecided	5	22.7%
	Agree	2	9.1%
	Strongly agree	12	54.6%

58. Quality function deployment (QFD).	Strongly disagree	3	13.6%
	Disagree	4	18.2%
	Undecided	8	36.4%
	Agree	4	18.2%
	Strongly agree	3	13.6%
59. Statistical process control.	Strongly disagree	0	0.0%
	Disagree	1	4.6%
	Undecided	5	22.7%
	Agree	7	31.8%
	Strongly agree	9	40.9%
60. Quality improvement team.	Strongly disagree	1	4.6%
	Disagree	1	4.6%
	Undecided	6	27.3%
	Agree	6	27.3%
	Strongly agree	8	36.4%
61. SIPOC.	Strongly disagree	3	13.6%
	Disagree	4	18.2%
	Undecided	2	9.1%
	Agree	5	22.7%
	Strongly agree	8	36.4%
62. Kano model.	Strongly disagree	3	13.6%
	Disagree	6	27.3%
	Undecided	2	9.1%
	Agree	11	50.0%
	Strongly agree	0	0.0%

**	Deviation and R		3.6	0.7		D		
Var	iable	Ν	Mean	Std	Median	Range		
				Dev				
A4.	Time worked for the organisations.	22	9.73	9.2982	5.875	27.83		
Section B: Reasons of implementing Six Sigma in the organisation.								
1.	To reduce costs.	22	4.09	0.75012	4.00	2.0		
2.	To improve customer satisfaction.	22	4.00	1.0690	4.00	3.0		
3.	To improve product/service quality.	22	4.18	0.9580	4.00	4.0		
4.	To improve company reputation and	21	3.76	1.3002	4.00	4.0		
	much more.							
Sect	tion B: Key personnel driving Six Sigma	a in the	organisati	on.				
5.	Our organisation has appointed a Six	22	3.91	1.0650	4.00	3.0		
	Sigma Champion.							
6.	Our organisation uses a Black Belt on	22	3.50	1.5040	4.00	4.0		
	a full time basis.			l				
7.	We also involve the process leader and	22	4.00	1.0690	4.00	3.0		
	employees during Six Sigma projects.			l				
Sect	tion B: Six Sigma methodology.							
8.	We always use the DMAIC	22	3.50	1.3363	3.00	4.0		
	methodology during process							
	improvement project.							
9.	We consider the DFSS methodology	22	3.59	1.2968	4.00	4.0		
	when redesigning a project.			l				
	tion B: Mechanism in place to ensure Si	x Sigma						
10.	A communication channel has been	22	3.36	1.0486	4.00	3.0		
	put in place to ensure a general							
	awareness of Six Sigma principles.							
11.	All the people involved on Six Sigma	22	3.64	0.8477	4.00	3.0		
	project have received adequate							
	training.							
12.	Six Sigma has been linked to all the	22	3.73	1.1622	4.00	4.0		
	stakeholders.							
13.	A reward scheme has been linked to	22	2.82	1.3675	3.00	4.0		
	everyone involved to Six Sigma							
	project.							
L		<u>I</u>			L	J		

Annexure G (Table 5. 3): Descriptive statistics – Mean, Median, Standard Deviation and Range

Sec	Section B: Top management commitment to Six Sigma in your organisation.								
14.	Employees are encouraged to	22	3.73	0.7025	4.00	3.0			
	participate when implementing Six								
	Sigma.								
15.	The leadership is committed and	22	3.36	1.0486	3.00	3.0			
	dedicated to project selection and								
	review as well as to provision of								
	resources.								
16.	Leadership does not support activities	22	3.18	1.0970	3.00	4.0			
	and investment that have long-term								
	benefits.								
17.	Senior executives accommodate and	22	3.72	0.6311	4.00	3.0			
	encourage change.								
	ion B: Key ingredients for Six Sigma in	nplemer	1						
18.	Top management involvement and commitment.	22	3.82	0.5011	4.00	2.0			
19.	Culture change.	22	3.27	0.8270	3.00	3.0			
20.	Communication.	22	3.54	0.9625	4.00	3.0			
21.	Organisation infrastructure.	22	3.64	1.2168	4.00	4.0			
22.	Training.	22	3.86	0.8335	4.00	2.0			
23.	Project management skill.	22	3.09	1.0650	3.00	4.0			
24.	Project selection and prioritisation,	22	3.41	0.8541	3.00	3.0			
	review and tracking.								
25.	Understanding of Six Sigma	22	3.95	1.1329	4.00	3.0			
	methodology, tools and techniques.								
26.	Linking Six Sigma to business	20	3.15	1.0894	3.00	4.0			
	strategy.								
27.	Linking Six Sigma to the customer.	22	3.54	1.2239	4.00	4.0			
28.	Linking Six Sigma to human	22	2.72	1.0320	2.00	4.0			
	resources.								
29.	Linking Six Sigma to the supplier.	22	3.27	1.0320	3.00	4.0			
	ion B: The Six Sigma tools and techniq	ues for			- - -				
30.	We a use the basic quality control tools	22	4.00	0.8165	4.00	3.0			
	of Six Sigma.								
31.	We often rely on quality techniques to	22	3.64	1.0022	4.00	3.0			
	solve problems.								

32. We use Six Sigma tools and techniques in a well disciplined	22	3.27	0.9351	3.50	3.0				
manner at each stage of the DMAIC.									
Section B: The most used tools and techniq	ues of Six Sigma in my organisation.								
33. Cause and effect diagram.	22	4.27	0.9351	4.00	4.0				
34. Check sheet.	22	4.27	0.8270	4.00	3.0				
35. Control chart.	22	3.50	1.0118	4.00	4.0				
36. Graphs.	22	4.32	1.0414	5.00	4.0				
37. Histogram.	22	3.73	1.2414	4.00	4.0				
38. Pareto diagram.	22	4.00	1.0690	4.00	4.0				
39. Scatter Diagram.	22	3.14	1.1668	3.50	4.0				
40. Brainstorming.	22	4.50	0.9636	5.00	4.0				
41. Flow chart.	22	3.50	1.0578	4.00	4.0				
42. Hypothesis testing.	22	2.45	1.1843	2.00	4.0				
43. Process mapping.	22	3.91	1.1088	4.00	4.0				
44. Questionnaires.	22	2.59	1.2212	2.00	4.0				
45. Sampling.	22	3.95	1.1329	4.00	4.0				
46. Gant chart.	22	3.14	1.0372	3.50	3.0				
47. SERVQUAL.	21	2.95	1.4992	2.00	4.0				
48. Regression and correlation analysis.	22	2.73	1.3159	3.00	3.0				
49. Project team charter.	22	3.77	1.4452	4.00	4.0				
50. Benchmarking.	22	3.23	0.9223	3.00	3.0				
51. Design of experiment.	22	2.86	1.1253	3.00	4.0				
52. Failure mode and effects analysis	22	4.36	0.9535	5.00	3.0				
(FMAEA).									
53. Fault tree analysis.	22	3.14	1.2458	4.00	4.0				
54. Process capability analysis.	22	3.95	1.4302	4.50	4.0				
55. Poka joke.	22	3.27	1.2792	4.00	4.0				
56. Problem solving methodology.	22	4.14	1.2069	4.50	4.0				
57. Quality costing.	22	4.00	1.2724	5.00	4.0				
58. Quality function deployment (QFD).	22	3.00	1.2344	3.00	4.0				
59. Statistical process control.	22	4.09	0.9211	4.00	3.0				
60. Quality improvement team.	22	3.86	1.1253	4.00	4.0				
61. SIPOC.	22	3.50	1.5040	4.00	4.0				
62. Kano model.	22	2.95	1.1742	3.50	3.0				

Stat	tement	Category	N	Percentage	Chi-	P-Value			
					square				
Section B: Reasons for implementing Six Sigma in the organisation.									
1.	To reduce costs.	Undecided	5	22.7%	6.5455	0.0105*			
		Agree	17	77.3%					
2.	To improve customer	Disagree	3	13.6%	15.3636	0.0005***			
	satisfaction.	Undecided	3	13.6%					
		Agree	16	72.7%					
3.	To improve	Disagree	1	4.6%	27.9091	<0.0001***			
	product/service	Undecided	2	9.1%					
	quality.	Agree	19	86.4%					
4.	To improve company	Disagree	4	18.2%	22.7273	<0.0001***			
	reputation and much	Undecided	2	9.1%					
	more.	Agree	15	68.2%					
Sect	tion B: Key personnel dr	iving Six Sigm	a in th	e organisation.					
5.	Our organisation has	Disagree	3	13.6%	12.0909	0.0024**			
	appointed a Six Sigma	Undecided	4	18.2%					
	Champion.	Agree	15	68.2%					
7.	We also involve the	Disagree	3	13.6%	15.3636	0.0005***			
	process leader and	Undecided	3	13.6%					
	employees during Six	Agree	16	72.7%					
	Sigma projects								
Sect	tion B: Mechanism in pla	ace to ensure S	ix Sign	na in your orga	nisation.				
10.	A communication	Disagree	7	31.8%	8.27.2	0.0160*			
	channel has been put in	Undecided	2	9.1%					
	place to ensure a	Agree	13	59.1%					
	general awareness of								
	Six Sigma principles.								
11.	All the people	Disagree	3	13.6%	12.0909	0.0024**			
	involved on Six Sigma	Undecided	4	18.2%					
	project have received	Agree	15	68.2%	1				
	adequate training.								
12.	Six Sigma has been	Disagree	3	13.6%	7.1818	0.0276*			
	linked to all the	Undecided	6	27.3%	1				
	stakeholders.	Agree	13	59.1%	•				

Annexure H: (Table 5.4: Statistically Significant Chi-square tests)

Sec	tion B: Top managemen	t's commitmen	t to Siz	x Sigma in your	[.] organisati	on.
14.	Employees are	Disagree	1	4.6%	13.7273	0.0010**
	encouraged to	Undecided	6	27.3%		
	participate when	Agree	15	68.2%		
	implementing Six					
	Sigma.					
17.	Senior executives	Disagree	1	4.6%	16.4545	0.0003***
	accommodate and	Undecided	5	22.7%		
	encourage change.	Agree	16	72.7%		
Sect	ion B: Key ingredients f	or Six Sigma ir	npleme	entation in you	r organisati	ion.
	Top management	Undecided	5	22.7%	6.5455	0.0105*
	involvement and	Agree	17	77.3%		
	commitment.					
20.	Communication.	Disagree	5	22.7%	12.6364	0.0018**
		Undecided	2	9.1%		
		Agree	15	68.2%		
24.	Project selection and	Disagree	2	9.1%	6.9091	0.0316*
	prioritisation, review	Undecided	12	54.6%		
	and tracking.	Agree	8	25.4%		
25.	Understanding of Six	Disagree	3	13.6%	9.3636	0.0093**
	Sigma methodology,	Undecided	5	22.7%		
	tools and techniques.	Agree	14	63.6%		
27.	Linking Six Sigma to	Disagree	4	18.2%	6.6364	0.0362*
	the customer.	Undecided	5	22.7%		
		Agree	13	59.1%		
Sect	ion B: The Six Sigma to	ols and techniq	ues for	· process impro	vement.	
30.	We use the basic	Disagree	2	9.1%	27.9091	<0.0001***
	quality control tools of	Undecided	1	4.6%		
	Six Sigma.	Agree	19	86.4%		
31.	We often rely on	Disagree	4	18.2%	9.0909	0.0106*
	quality techniques to	Undecided	4	18.2%		
	solve problems.	Agree	14	63.6%		
Sect	ion B: The most used to	ols and techniq	ues of	Six Sigma in m	y organisat	ion.
33.	Cause and effect	Disagree	1	4.6%	32.8182	<0.0001***
	diagram.	Undecided	1	4.6%		
		Agree	20	90.9%		

34. Check sheet.	Disagree	1	4.6%	27.9091	< 0.0001***
	Undecided	2	9.1%		
	Agree	19	86.4%		
36. Graphs.	Disagree	1	4.6%	23.5455	<0.0001***
-	Undecided	3	13.6%		
	Agree	18	81.8%		
37. Histogram.	Disagree	3	13.6%	19.1818	<0.0001***
	Undecided	2	9.1%		
	Agree	17	77.3%		
38. Pareto diagram.	Disagree	2	9.1%	14.7273	0.0001***
	Agree	20	90.9%		
40. Brainstorming.	Disagree	1	4.6%	32.8182	<0.0001***
	Undecided	1	4.6%		
	Agree	20	90.9%		
41. Flow chart.	Disagree	3	13.6%	9.3636	0.0093**
	Undecided	5	22.7%		
	Agree	14	63.6%		
42. Hypothesis testing.	Disagree	14	63.6%	9.0909	0.0106*
	Undecided	4	18.2%		
	Agree	4	18.2%		
43. Process mapping.	Disagree	2	9.1%	23.2727	<0.0001***
	Undecided	2	9.1%		
	Agree	18	81.8%		
45. Sampling.	Disagree	2	9.1%	12.6364	0.0018**
	Undecided	5	22.7%		
	Agree	15	68.2%		
47. SERVQUAL.	Disagree	11	50.0%	10.7273	0.0133*
	Undecided	3	13.6%		
	Agree	7	31.8%		
49. Project team charter.	Disagree	5	22.7%	16.4545	0.0003***
	Undecided	1	4.6%		
	Agree	16	72.7%		
52. Failure mode and	Disagree	1	4.6%	19.7273	<0.0001***
effects analysis	Undecided	4	18.2%		
(FMAEA).	Agree	17	77.3%		
53. Fault tree analysis.	Disagree	9	40.9%	8.8182	0.0122*
	Undecided	1	4.6%		
	Agree	12	54.6%		

54. Process capability	Disagree	4	18.2%	19.7273	<0.0001***
analysis.	Undecided	1	4.6%		
	Agree	17	77.3%		
56. Problem solving	Disagree	2	9.1%	23.2727	<0.0001***
methodology.	Undecided	2	9.1%		
	Agree	18	81.8%		
57. Quality costing.	Disagree	3	13.6%	9.3636	0.0093**
	Undecided	5	22.7%		
	Agree	14	63.6%		
59. Statistical process	Disagree	1	4.6%	16.4545	0.0003***
control.	Undecided	5	22.7%		
	Agree	16	72.7%		
60. Quality improvement	Disagree	2	9.1%	10.1818	0.0062**
team.	Undecided	6	27.3%		
	Agree	14	63.6%		
61. SIPOC.	Disagree	7	31.8%	8.2727	0.0160*
	Undecided	2	9.1%		
	Agree	13	59.1%		
62. Kano model.	Disagree	9	40.9%	6.0909	0.0476*
	Undecided	2	9.1%		
	Agree	11	50.0%		