

AN APPROACH TO THE IMPROVEMENT OF THE SELENIUM ANALYSIS PROCESS OF THE WESTERN CAPE PROVINCIAL VETERINARY LABORATORY

VOLUME II

A Research Dissertation submitted

by

BRONWYN CLAUDIA CLOETE 209214511

To be submitted in fulfilment of the requirements for the degree

MAGISTER TECHNOLOGIAE: QUALITY

in the

Faculty of Industrial and Systems Engineering

CAPE PENINSULA UNIVERSITY OF TECHNOLOGY

Supervisor:

Prof. Dr. J. André Watkins

Co-supervisor: Mr. André Bester

Cape Town November 2011

TABLE OF CONTENTS

LIST OF ANNEXURES	Page
Annexure 1: Council for Scientific and Industrial Research (CSIR)	
Laboratory Results. May 2010.	151
Reference: Volume I Chapter 2 Page 30	
Annexure 2: Research Standard Operating Procedure. Current State	152
Selenium Analysis Process.	
Reference: Volume I Chapter 4 Page 88	
Annexure 3: WC PVL Selenium Analysis Standard Operating	158
Procedure.	
Reference: Volume I Chapter 4 Page 88	
Annexure 4: Research Standard Operating Procedure. Modified	164
Selenium Analysis Process.	
Reference: Volume I Chapter 4 Page 88	
Annexure 5: BSi International Standard Operating Procedure for	170
Selenium Analysis.	
Reference: Volume I Chapter 4 Page 88	
Annexure 6: Eurachem. The uncertainty estimation process	189
Reference: Volume I Chapter 4 Page 94	

Annexure 7: UKAS. Expression of uncertainty and confidence in	190
measurement.	
Reference: Volume I Chapter 4 Page 94	
Annexure 8: UKAS Uncertainties for test results.	194
Reference: Volume I Chapter 4 Page 94	
Annexure 9A: Six Sigma. Learn about the Process	198
Reference: Volume I Chapter 5 Page 103	
Annexure 9B: Six Sigma. Learn about the Process	199
Reference: Volume I Chapter 5 Page 103	
Annexure 10: Future State Value Stream Map	200
Reference: Volume I Chapter 5 Page 108	
Annexure 11A: Results: Current State Process 8 June 2011	201
Reference: Volume I Chapter 5 Page 109	
Annexure 11B: Results: Current State Process 14 June 2011	202
Reference: Volume I Chapter 5 Page 109	
Annexure 11C: Results: Current State Process 21 June 2011	203
Reference: Volume I Chapter 5 Page 109	

Annexure 11D: Results: Current State Process 29 June 2011	204
Reference: Volume I Chapter 5 Page 109	
Annexure 11E: Results: Current State Process 5 July 2011	205
Reference: Volume I Chapter 5 Page 109	
Annexure 11F. Results: Current State Process 12 July 2011	206
$\mathbf{P} = \begin{bmatrix} \mathbf{P} & \mathbf{P} \end{bmatrix} = \begin{bmatrix} \mathbf{P} & \mathbf{P} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mathbf{P} & \mathbf{P} \end{bmatrix} \begin{bmatrix} \mathbf{P} & \mathbf{P} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mathbf{P} & \mathbf{P} \end{bmatrix} \begin{bmatrix} \mathbf{P} & \mathbf{P} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mathbf{P} & \mathbf{P} \end{bmatrix} \begin{bmatrix} \mathbf{P} & \mathbf{P} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mathbf{P} & \mathbf{P} \end{bmatrix} \begin{bmatrix} \mathbf{P} & \mathbf{P} \end{bmatrix} \begin{bmatrix} \mathbf{P} & \mathbf{P} \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mathbf{P} & \mathbf{P} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mathbf$	200
Reference: Volume I Chapter 5 Page 109	
Annexure 11G: Results: Current State Process 21 July 2011	207
Reference: Volume I Chapter 5 Page 109	
Annexure 11H: Results: Current State Process 29 July 2011	208
Reference: Volume I Chapter 5 Page 109	
Annexure 111: Results: Current State Process 3 August 2011	209
Reference: Volume I Chapter 5 Page 109	
Annexure 11J: Results: Current State Process 11 August 2011	210
Reference: Volume I Chapter 5 Page 109	
Annexure 11K: Results: Current State Process 16 August 2011	211
Reference: Volume I Chapter 5 Page 109	

Annexure 11L: Results: Current State Process 24 August 2011	212
Reference: Volume I Chapter 5 Page 109	
Annexure 11M: Results: Current State Process 29 August 2011	213
Reference: Volume I Chapter 5 Page 109	
Annexure 12: Data Analysis Calculations	214
Reference: Volume I Chapter 5 Page 109	
Annexure 13: Quantitative Method Characteristics	220
Reference: Volume I Chapter 5 Page 110	
Annexure 14: Overall Process Precision	230
Reference: Volume I Chapter 5 Page 114	
Annexure 15: Individual Calibration Curves Data	231
Reference: Volume I Chapter 5 Page 115	
Annexure 16: Moving Range Charts	243
Reference: Volume I Chapter 5 Page118	
	•
Annexure 17: Failure Mode Effect Analysis.	247
Reterence: Volume I Chapter 5 Page 124	
	• 46

LIST OF REFERENCES

249

	Se	%
Id	in ppb	Recovery
* blk a	<30	
* blk b	<30	
* 1ppb a	<30	
* 1ppb b	<30	
* 10ppb a	<30	
* 10ppb b	<30	
* 50ppb a	40	79.8
* 50ppb b	41	82.3
* 100ppb	88	87.5
* 100ppb b	78	77.7
* 250ppb a	184	73.6
* 250ppb b	188	75.0
* 500ppb a	390	78.1
* 500ppb b	339	67.9
Average		77.7
blk a	<30	
blk b	<30	
1ppb a	<30	
1ppb b	<30	
10ppb a	<30	
10ppb b	<30	
100ppb a	72	71.7
100ppb b	79	78.8
100ppb a	70	70.0
100ppb b	69	68.6
250ppb a	228	91.3
250ppb b	182	72.6
500ppb a	369	73.8
500ppb b	433	86.7
Average		76.7
LC1	1241	
LC2	1286	
LC3	1296	
LC4	1374	

ANNEXURE 1: Council for Scientific and Industrial Research (CSIR) Laboratory Results. May 2010

Prep Conc

No.	Faculty of Engineering: Department Quality
Cape Peninsula University of Technology	Fluorometric method for Selenium analysis

1. <u>Introduction</u>

This method is used for the analysis of Selenium in biological liver samples, which have been overnight digested on an open heat block and thereafter prepared for fluorometric analysis. The basis for this method is the reaction of 2,3 diaminonapthalene (DAN) with Se(IV) to form a fluorescent Se-DAN complex. A filter fluorimeter is used to measure the fluorescence of this complex in order to calculate the concentration of Selenium in the given sample.

2. <u>Personnel</u>

The person performing the procedure should be fully trained to be able to conduct this analytical laboratory process.

3. <u>Limitation and precision of method</u>

- 3.1 The method is applied to biological liver samples.
- 3.2 Selenium concentration range that can be tested is 1 500 ppb.

4. <u>Equipment and Materials</u>

- 4.1 Digestion tubes (20ml x 150mm. Borosilicate glass or equivalent)
- 4.2 Digestion block (custom made), 135 bored holes with depth of \pm 70mm.
- 4.3 Programmable temperature controller connected to digestion block
- 4.4 Separating funnels (250, 500 and 1000ml)
- 4.5 Volumetric flasks (A grade approved for use)
- 4.6 $100 1000 \mu$ l Eppendorf pipette (BIO-040)
- 4.7 100µl Eppendorf pipette (BIO-058)
- 4.8 1000µl Eppendorf pipette (BIO-061)
- 4.9 100 and 1000µl new Eppendorf pipette tips
- 4.10 Glass beakers (250ml for general use)
- 4.11 Plastic Beaker or container for storage of tube lids
- 4.12 Spatula
- 4.13 Plastic weighing vessels and beakers for reagent preparation
- 4.14 Glass graduated and bulb pipettes for reagent preparation (approved for use)
- 4.15 1000ml volumetric flask (A grade, approved for use)
- 4.16 2000ml Measuring cylinder (approved for use)
- 4.17 Water-bath (BIO-030)
- 4.18 Thermometer (BIO-104)
- 4.19 Thermometer (BIO-091)
- 4.20 Multipurpose shaker (BIO-015)
- 4.21 Analytical balance (4 decimal place accuracy) (BIO-003 or BIO-004)
- 4.22 Repeat pipette (1-5ml) (BIO-080)
- 4.23 Pipette tips for repeat pipette (1-5ml)
- 4.24 Spectrofluorimeter, Perkin Elmer LS55

5 <u>Reagents</u> (All analytical reagent grade quality)

Jul 1	Faculty of Engineering: Department Quality
Cape Peninsula University of Technology	Fluorometric method for Selenium analysis

- 5.1 <u>Acid Mixture</u>: 1 (Perchloric Acid 60%): 5 (Nitric Acid 65%). Carefully pour 1600ml of Nitric Acid into a 2000ml measuring cylinder, fill up to the 2000ml mark with Perchloric Acid. Pour Acid mixture into brown glass storage bottle. Mixture is stable indefinitely.
- 5.2 <u>1:1 Dilution of HCl</u>: Measure equal volumes of Hydrochloric Acid (32%) and deionised water. Pour deionised water into storage vessel followed by Hydrochloric acid. Solution is stable for 12 months.
- 5.3 <u>EDTA solution</u>: Weigh out 0.81g NaH₂EDTA into a glass beaker. Transfer into 1000ml volumetric flask. Make up to the mark with deionised water. Solution is stable for 2 months.
- 5.4 <u>0.1M HCl</u>: Pour approximately 200ml deionised water into a 1000ml volumetric flask. Pipette 9.8ml Hydrochloric Acid (32%) into flask. Make up to the mark with deionised water.
- 5.5 <u>1M HNO₃</u>: Pour approximately 200ml deionised water into a 1000ml volumetric flask. Pipette 68.7ml Nitric Acid (65%) into the flask and make up to the mark with deionised water.
- 5.6 <u>Cyclohexane</u>
- 5.7 <u>2,3 Diaminonapthalene (DAN) solution</u>: (to be made up just before use): See point 7.5.2 for preparation details

NOTE: DAN is light sensitive and the activity of the reagent will decrease in the presence of light. Handle the reagent as far as practically possible in a dark room.

- 5.8 Standards:
- 5.8.1 <u>Selenium stock standard</u>: 1000ppm bought from Merck
- 5.8.2 <u>Selenium standard solution</u>: 10ppm pipette 1ml of the 1000ppm stock standard into a 100ml volumetric flask. Make up to volume with 1M HNO₃ (stable for 6 months)
- 5.8.3 <u>Working standards</u>: dilute the 10ppm standard as follows with 1M HNO3. (stable for 6 months):

Blank: pour 1M HNO₃ into a 100ml volumetric flask up to mark.

100µl standard solution (5.8.2) in 100ml volumetric flask = 10ppb (ng/ml)

500µl standard solution (5.8.2) in 100ml volumetric flask = 50ppb (ng/ml)

1000µl standard solution (5.8.2) in 100ml volumetric flask = 100ppb (ng/ml)

 2500μ l standard solution (5.8.2) in 100ml volumetric flask = 250ppb (ng/ml)

5000µl standard solution (5.8.2) in 100ml volumetric flask = 500ppb (ng/ml)

6 <u>Safety/ precautionary measures</u>

6.1 A laboratory coat must be worn during the testing procedure.

Cape Peninsula University of Technology	Faculty of Engineering: Department Quality	
	Fluorometric method for Selenium analysis	

- 6.2 Gloves should be worn when handling DAN solution, cyclohexane and acids.
- 6.3 Observe the safety instructing for the safe handling and disposal of chemicals as specified in Material Safety Data Sheets for chemicals used in Biochemistry.

7 <u>Procedure</u>

- 7.1 Weigh out ± 0.1000 g to one decimal point, of dried liver. Include an in-house liver control sample, LC2009 with each sample batch. Three blank tubes consisting of 1ml of 0.1M HNO₃ and three tubes for each standard containing 1ml of standard are also prepared with the samples.
- 7.2 Add 4ml of acid mixture. Place in digestion block in perchloric acid fume cupboard (BIO-035). Switch temperature controller ON to 'PTN1' programme.

(Please refer to P - BIO - E - 016 for details programming the temperature controller). The set programme should be as follows:

Step 1:	Heat to $120^{\circ}C (\pm 10^{\circ}C)$	
Step 2:	1 hour @ $120^{\circ}C (\pm 10^{\circ}C)$	
Step 3:	Heat to $160^{\circ}C (\pm 10^{\circ}C)$	
Step 4:	6 hours @ 160°C (± 10°C)	
Step 5:	Maintain @ $120^{\circ}C$ (± $10^{\circ}C$) for 30 hours. (programme is stored)	(This

Digest overnight.

The block should be @ $120^{\circ}C (\pm 10^{\circ}C)$ the next morning. Record the temperature on form P – BIO – F – 072 with thermometer BIO-091.

- 7.3 Set the water bath at $60^{\circ}C (\pm 5^{\circ}C)$ and switch ON.
- 7.4 Remove the tubes from the digestion block and place into a rack inside the fume cabinet. Allow the tubes to cool for a few minutes. Add 1ml 1:1 HCl to the tubes. Place the tubes into the digestion block again and leave for 30 minutes at $120^{\circ}C (\pm 10^{\circ}C)$.
- 7.5 Remove tubes from digestion block after the 30 minutes is over and allow them to cool for a few minutes before adding the following reagents:
- 7.5.1 10 ml EDTA solution (Add this reagent in the general use fume cabinet (BIO-033)
- 7.5.2 1ml DAN solution

Jul 1	Faculty of Engineering: Department Quality
Cape Peninsula University of Technology	Fluorometric method for Selenium analysis

NOTE: The tubes can stand in the fume cabinet (BIO-033) covered with a paper towel until the DAN solution has been prepared. Once the DAN solution is ready for use, carry the tubes to the dark room (room 55) and add the DAN solution in the dark room. All procedures must take place in the dark room once the DAN has been added to the tubes!

2,3 Diaminonapthalene (DAN) solution preparation

- Every precaution should be taken that dark conditions be maintained throughout the preparation of DAN for analysis. This includes weighing out in a dark room, closing water bath with cover when DAN solution is in it, and purification of DAN steps performed in a dark room.
- Calculate the quantity of DAN required. 1ml of the DAN solution is used for each standard, blank and sample. 0.1000g DAN / 100ml 0.1M HCL.
- Weigh out the DAN in a darkened room into a plastic weighing vessel and transfer to a separating funnel. Ensure that the tap is closed tightly.
- Add the correct volume of 0.1M HCL to the separating funnel, i.e. 40ml 0.1M HCL with 0.0400g DAN.
- ➤ Carry the separating funnel to the water bath, which has heated to $60^{\circ}C$ (± 5°C). Place into the water bath and secure by placing the string at the tap around the neck of the funnel, close the lid of the water bath and set the timer for 10 minutes. Record the temperature of the water bath on form P BIO F 074.
- Remove the funnel from the water bath and carry the separating funnel to the dark room. Shake the content of the funnel manually until the DAN has dissolved completely. Be careful to hold the funnel lid firmly while shaking. Release the pressure build-up periodically. Place funnel into the stand.
- Pipette 40ml of cyclohexane into the funnel using the repeat pipette (BIO-080). Shake for 1 minute manually again. Place funnel into the stand and let the funnel stand in dark room for 60 minutes.
- Pour out the bottom DAN layer into the next separating funnel. Add 25ml cyclohexane and shake for 1 minute. Let funnel stand for 45 minutes. Pour the bottom layer into the next separating funnel. Add 25ml cyclohexane, shake for 1 minute and allow to stand for 45 minutes. The DAN is now ready for use.

7.5.3 5ml Cyclohexane

Note: These reagents must be added in this order.

Ju -	Faculty of Engineering: Department Quality
Cape Peninsula University of Technology	Fluorometric method for Selenium analysis

- 7.6 After the addition of the cyclohexane. Put the lids on the tubes immediately and place in the sample rack. Shake the tubes in the rack on the multipurpose shaker for 1 minute.
- 7.7 Place the tubes into the 60°C water-bath and cover with lid for 40 minutes. Switch the water bath off and scoop out most of the hot water out and replace with tap water. Allow the tubes to stand for 5 minutes.
- 7.8 Return the tubes to the dark room shake again on the multipurpose shaker for 1 minute. Allow the tubes to stand for 30 minutes before reading.

8 <u>Filter Fluorimeter Operation</u>

- 8.1 Refer to the Perkin-Elmer model LS55 operation manual for detailed operation.
- 8.2 The fluorescence from the cyclohexane layer is read using the Spectrofluorimeter in a darkened room.
- 8.3 Switch on the instrument 60 minutes prior to reading samples to warm-up the lamp.
- 8.4 Instrument settings:
- 8.4.1 Emission wavelength: 520nm
- 8.4.2 Excitation wavelength: 375nm
- 8.5 Sipper unit accessory is used to aspirate the top layer of cyclohexane.
- 8.6 The instrument *concentration application* is used to calculate the concentration of selenium in each sample derived after known standards are each read in triplicate and calibration data is obtained.
- 8.7 Each known standard concentration is entered manually as parts per billion (ppb / ng/ml). The concentration reported for each sample is thus given in ppb.
- 8.8 To calculate the final concentration for the samples for reporting:
 ➢ Selenium results are reported as mg/kg (ppm)
 ppb / ng/ml result x 1000 = mg/kg (ppm), but 0.1000g samples were

weighed out initially therefore, mg/kg (ppm), but 0.1000g samples were weighed out initially therefore, mg/kg (ppm) x 10 = actual Selenium concentration in mg/kg (ppm).

9 <u>Quality control</u>

9.1 An internal liver control is run with every batch of samples. An International Certified Reference Material sample is run on six research trial runs.

10 <u>Disposal</u>

- 10.1 Once the samples have been read, the entire content of every tube is poured over into a separating funnel. The cyclohexane layer will settle on top.
- 10.2 Dispense each layer separately into glass bottles and mark each clearly. Waste is to be removed be waste removal company according to chemical waste regulations.

L'	Faculty of Engineering: Department Quality
Cape Peninsula University of Technology	Fluorometric method for Selenium analysis

11 <u>References</u>

- 11.1 WC PVL Standard Operating Procedure. 1999. *P-BIO-M-001: Fluorometric Method for Selenium Analysis*. In-house Quality document.
- 11.2 Koh, T. & Benson, T. H. 1983. Critical Re-appraisal of Fluorometric Method for Determination of Selenium in Biological Materials. *Journal for the Association of Official Analytical Chemistry*, 66(4):918-926.
- 11.3 Perkin-Elmer. Model LS55 Spectrofluorimeter *Operator's Manual*.

DEPARTMENT OF AGRICULTURE Directorate: Veterinary Services Western Cape Provincial Veterinary Laboratory Quality System

Fluorometric method for Selenium analysis

1 <u>Introduction</u>

This method is used for the analysis of Selenium in various sample types, e.g. liver, whole blood and feed. The basis for this method is the reaction of 2,3 diaminonapthalene (DAN) with Se(IV) to form a fluorescent Se-DAN complex. A filter fluorimeter is used to measure the fluorescence of this complex in order to calculate the concentration of Selenium in the given sample.

2 <u>Personnel</u>

The person performing the procedure should be fully trained or should perform the test under the supervision of a competent person. Competent/ trained personnel:

2.1 Veterinary Technologist: Biochemistry and relief officer.

3 Limitation and precision of method

- 3.1 The method can be applied to a wide range of biological samples including organs such as liver and kidney, feed, leaves and other plant material as well as blood, urine and milk.
- 3.2 Selenium concentration range that can be tested is 1 500 ppb.
- 3.3 The precision and accuracy of the method has been monitored over a period of 15 months using an in-house laboratory liver control sample (BIO_LC2005) and a certified reference material from the National Institute of Standards (Bovine Liver 1577b). Refer to table below for details.
- 3.4 Precision of method over 15 months

	No. of detections	Se (ppm)	CV (%)
BIO_LC2005	56	1.35	8.81
Bovine Liver 1577b	44	0.72	10.69

Accuracy of method over 15 months

	Se detected (ppm)	Certified Se value (ppm)
	(n = 44)	(NIST insert)
Bovine Liver 1577b	$0.72\pm0.08^{\rm a}$	0.73 ± 0.06^{a}

^a Mean \pm standard deviation

4 <u>Equipment and Materials</u>

- 4.2 Digestion tubes (20ml x 150mm. Borosilicate glass or equivalent)
- 4.3 Digestion block (custom made), 135 bored holes with depth of \pm 70mm.
- 4.4 Programmable temperature controller connected to digestion block
- 4.5 Separating funnels (250, 500 and 1000ml)

DEPARTMENT OF AGRICULTURE Directorate: Veterinary Services Western Cape Provincial Veterinary Laboratory Quality System

Fluorometric method for Selenium analysis

- 4.6 Volumetric flasks (A grade approved for use)
- 4.7 100 1000µl Eppendorf pipette (BIO-040)
- 4.8 100µl Eppendorf pipette (BIO-058)
- 4.9 1000µl Eppendorf pipette (BIO-061)
- 4.10 100 and 1000µl new Eppendorf pipette tips
- 4.11 Glass beakers (250ml for general use)
- 4.12 Plastic Beaker or container for storage of tube lids
- 4.13 Spatula
- 4.14 Plastic weighing vessels and beakers for reagent preparation
- 4.15 Glass graduated and bulb pipettes for reagent preparation (approved for use)
- 4.16 1000ml volumetric flask (A grade, approved for use)
- 4.17 2000ml Measuring cylinder (approved for use)
- 4.18 Water-bath (BIO-030)
- 4.19 Thermometer (BIO-104)
- 4.20 Thermometer (BIO-091)
- 4.21 Multipurpose shaker (BIO-015)
- 4.22 Analytical balance (4 decimal place accuracy) (BIO-003 or BIO-004)
- 4.23 Repeat pipette (1-5ml) (BIO-080)
- 4.24 Pipette tips for repeat pipette (1-5ml)
- 4.25 Spectrofluorimeter, Perkin Elmer LS55

5 <u>Reagents (All analytical reagent grade quality)</u>

- 5.2 <u>Acid Mixture</u>: 1 (Perchloric Acid 60%): 5 (Nitric Acid 65%). Carefully pour 1600ml of Nitric Acid into a 2000ml measuring cylinder, fill up to the 2000ml mark with Perchloric Acid. Pour Acid mixture into brown glass storage bottle. Mixture is stable indefinitely.
- 5.3 <u>1:1 Dilution of HCl</u>: Measure equal volumes of Hydrochloric Acid (32%) and deionised water. Pour deionised water into storage vessel followed by Hydrochloric acid. Solution is stable for 12 months.
- 5.4 <u>EDTA solution</u>: Weigh out 0.81g NaH₂EDTA into a glass beaker. Transfer into 1000ml volumetric flask. Make up to the mark with deionised water. Solution is stable for 2 months.
- 5.5 <u>0.1M HCl</u>: Pour approximately 200ml deionised water into a 1000ml volumetric flask. Pipette 9.8ml Hydrochloric Acid (32%) into flask. Make up to the mark with deionised water.
- 5.6 $1M HNO_3$: Pour approximately 200ml deionised water into a 1000ml volumetric flask. Pipette 68.7ml Nitric Acid (65%) into the flask and make up to the mark with deionised water.
- 5.7 Cyclohexane

NOTE: DAN is light sensitive and the activity of the reagent will decrease in the presence of light. Handle the reagent as far as practically possible in a dark room.

Fluorometric method for Selenium analysis

- 5.8 <u>2,3 Diaminonapthalene (DAN) solution</u>: (to be made up just before use): See point 7.5.2 for preparation details
- 5.9 Standards:
- 5.9.1 Selenium stock standard 1000ppm (available from Merck or other ISO9002 accredited company)
- 5.9.2 10ppm pipette 1ml of the 1000ppm stock standard into a volumetric flask. Make up to volume with 1M HNO₃ (stable for 6 months)
- 5.9.3 Working standards: dilute the 10ppm standard as follows with 1M HNO3. (stable for 6 months): Blank: pour 1M HNO3 into a 100ml volumetric flask up to mark. 100µl standard in 100ml volumetric flask = 10ppb (ng/ml)
 500µl standard in 100ml volumetric flask = 50ppb (ng/ml)
 1000µl standard in 100ml volumetric flask = 100ppb (ng/ml)
 2500µl standard in 100ml volumetric flask = 250ppb (ng/ml)
 5000µl standard in 100ml volumetric flask = 500ppb (ng/ml)

6 <u>Safety/ precautionary measures</u>

- 6.2 A laboratory coat must be worn during the testing procedure.
- 6.3 Gloves should be worn when handling DAN solution, cyclohexane and Acids.
- 6.4 Observe the safety instructing for the safe handling and disposal of chemicals as specified in Material Safety Data Sheets for chemicals used in Biochemistry.

7 <u>Procedure</u>

- 7.2 Weigh out 0.100g of dried liver or feed sample or 1ml of whole blood and place in digestion tubes. Four blank tubes consisting of 1ml of 0.1M HNO₃ and four tubes for each standard containing 1ml of standard are also prepared with the samples.
- 7.3 Add 4ml of acid mixture. Place in digestion block in perchloric acid fume cupboard (BIO-035). Switch temperature controller ON to 'PTN1' programme. (Please refer to P - BIO - E - 016 for details programming the temperature controller). The set programme should be as follows: Step 1 Heat to $120^{\circ}C (\pm 10^{\circ}C)$ 1 hour @ $120^{\circ}C (\pm 10^{\circ}C)$ Step 2 Step 3 Heat to $160^{\circ}C (\pm 10^{\circ}C)$ 6 hours @ $160^{\circ}C (\pm 10^{\circ}C)$ Step 4 Step 5 Maintain @ $120^{\circ}C (\pm 10^{\circ}C)$ for 30 hours. (This programme is stored)

Digest overnight.

Directorate: Veterinary Services Western Cape Provincial Veterinary Laboratory Quality System

Fluorometric method for Selenium analysis

The block should be @ $120^{\circ}C (\pm 10^{\circ}C)$ the next morning. Record the temperature on form P - BIO - F - 072 with thermometer BIO-091. Set the water bath at $60^{\circ}C (\pm 5^{\circ}C)$ and switch ON.

- 7.5 Remove the tubes from the digestion block and place into a rack inside the fume cabinet. Allow the tubes to cool for a few minutes. Add 1ml 1:1 HCl to the tubes. Place the tubes into the digestion block again and leave for 30 minutes at $120^{\circ}C (\pm 10^{\circ}C)$.
- 7.6 Remove tubes from digestion block after the 30 minutes is over and allow them to cool for a few minutes before adding the following reagents:
- 15 ml EDTA solution (Add this reagent in the general use fume 7.6.1 cabinet (BIO-033)
- 1ml DAN solution 7.6.2

7.4

NOTE: The tubes can stand in the fume cabinet (BIO-033) covered with a paper towel until the DAN solution has been prepared. Once the DAN solution is ready for use, carry the tubes to the dark room (room 55) and add the DAN solution in the dark room. All procedures must take place in the dark room once the DAN has been added to the tubes!

2,3 Diaminonapthalene (DAN) solution preparation

• Calculate the quantity of DAN required. 1ml of the DAN solution is used for each standard, blank and sample. 0.100g DAN / 100ml 0.1M HCL.

• Weigh out the DAN in a darkened room into a plastic weighing vessel and transfer to a separating funnel. Ensure that the tap is closed tightly.

• Add the correct volume of 0.1M HNO₃ to the separating funnel.

• Carry the separating funnel to the water bath, which has heated to $60^{\circ}C (\pm 5^{\circ}C)$. Place into the water bath and secure by placing the string at the tap around the neck of the funnel, close the lid of the water bath and set the timer for 10 minutes. Record the temperature of the water bath on form P - BIO - F - 074.

• Remove the funnel from the water bath and carry the separating funnel to the dark room. Place funnel into the stand. Shake the content of the funnel manually until the DAN has dissolved completely. Be careful to hold the funnel lid firmly while shaking. Release the pressure build-up periodically.

• Pipette 40ml of cyclohexane into the funnel using the repeat pipette (BIO-080). Shake for 1 minute manually. Let the funnel stand for 60 minutes.

• Pour out the bottom DAN layer into the next separating funnel. Add 25ml cyclohexane and shake for 1 minute. Let funnel stand for 45 minutes. Pour the bottom layer into the next separating funnel. Add 25ml cyclohexane, shake for 1 minute and allow to stand for 45 minutes. The DAN is now ready for use.

7.6.3 5ml Cyclohexane

Note: These reagents must be added in this order.

- 7.7 After the addition of the cyclohexane. Put the lids on the tubes immediately and place in the rack. Shake the tubes in the rack on the multipurpose shaker for 1 minute.
- 7.8 Place the tubes into the 60°C water-bath for 40 minutes. Switch the water bath off and scoop out most of the hot water out and replace with tap water. Allow the tubes to stand for 5 minutes.
- 7.9 Return the tubes to the dark room shake again on the multipurpose shaker for 1 minute. Allow the tubes to stand for 30 minutes before reading.

8 <u>Filter Fluorimeter Operation</u>

- 8.2 Refer to the Perkin-Elmer model LS55 operation manual for detailed operation.
- 8.3 The fluorescence from the cyclohexane layer is read using the Spectrofluorimeter in a darkened room.
- 8.4 Switch on the instrument 30 minutes prior to reading samples to warm-up the lamp.
- 8.5 Instrument settings:
- 8.5.1 Emission wavelength: 520nm
- 8.5.2 Excitation wavelength: 375nm
- 8.6 Sipper unit accessory is used to aspirate the top layer of cyclohexane.
- 8.7 The instrument *concentration application* is used to calculate the concentration of selenium in each sample derived after known standards are each read in triplicate and calibration data is obtained.
- 8.8 Each known standard concentration is entered manually as parts per billion (ppb / ng/ml). The concentration reported for each sample is thus given in ppb.
- 8.9 To calculate the final concentration for the samples for reporting:
 - Whole Blood Selenium results are reported as ng/ml (ppb)
 - Liver or Feed Selenium results are reported as mg/kg (ppm)

ppb / ng/ml result x 1000 = mg/kg (ppm), but 0.1000g samples were weighed out initially therefore, mg/kg (ppm) x 10 = actual Selenium concentration in mg/kg (ppm).

DEPARTMENT OF AGRICULTURE Directorate: Veterinary Services Western Cape Provincial Veterinary Laboratory Quality System

Fluorometric method for Selenium analysis

8 <u>Quality control</u>

8.1 An internal liver control is run with every batch of samples. If a feed sample is analysed an internal feed control is also run with that batch of samples. The control values are checked against a standard reference material.

9 <u>Disposal</u>

- 9.1 Once the samples have been read, the entire content of every tube is poured over into a separating funnel. The cyclohexane layer will settle on top.
- 9.2 Dispense each layer separately into glass bottles and mark each clearly. Waste is to be removed be waste removal company according to chemical waste regulations.

10 <u>References</u>

- 10.1 Koh, T. and Benson, T. H. 1983. Critical Re-appraisal of Fluorometric Method for Determination of Selenium in Biological Materials. *Journal for the Association of Official Analytical Chemistry*, 66(4):918-926.
- 10.2 Perkin-Elmer. Model LS55 Spectrofluorimeter *Operator's Manual*.

Cape Peninsula University of Technology	Faculty of Engineering: Department Quality	
	Method for determination of selenium by	
	hydride generation atomic absorption	
	spectrometry (HGAAS)	

1. <u>Introduction</u>

This method is used for the analysis of selenium in biological liver samples, which have been microwave digested and thereafter prepared for hydride generation atomic absorption spectrometry. The principle for this method is the hydride vapour generation of selenium increases the sensitivity of the general atomic absorption technique for the detection of this analyte element.

2. <u>Personnel</u>

The person performing the procedure should be fully trained to be able to conduct this analytical laboratory process.

3. Limitation and precision of method

- 3.1 The method is applied to biological liver samples.
- 3.2 Selenium concentration range that can be tested is 1 500 ppb.

4. <u>Equipment and Materials</u>

- 4.1 Microwave pressure sample vessels (Polyfluoralkan (PFA) or equivalent)
- 4.2 Microwave-heated pressure digestion apparatus
- 4.3 Programmable temperature controller connected to digestion block
- 4.4 Volumetric flasks (A grade approved for use), 25ml, 50ml, 500ml and 1000ml
- 4.5 $100 1000\mu$ l Eppendorf pipette (BIO-040)
- 4.6 100μl Eppendorf pipette (BIO-058)
- 4.7 1000µl Eppendorf pipette (BIO-061)
- 4.8 100 and 1000µl new Eppendorf pipette tips
- 4.9 Spatula
- 4.10 Plastic weighing vessels and beakers for reagent preparation
- 4.11 Glass graduated and bulb pipettes for reagent preparation (approved for use)
- 4.12 1000ml volumetric flask (A grade, approved for use)
- 4.13 2000ml Measuring cylinder (approved for use)
- 4.14 Water-bath (BIO-030)
- 4.15 Thermometer (BIO-104)
- 4.16 Thermometer (BIO-091)
- 4.17 Analytical balance (4 decimal place accuracy) (BIO-003 or BIO-004)
- 4.18 Repeat pipette (1-5ml) (BIO-080)
- 4.19 Pipette tips for repeat pipette (1-5ml)
- 4.20 Flow injection hydride system, with sample loop, GBC HG 3000
- 4.21 Atomic absorption spectrophotometer (AAS), with measurement recording system, background correction and heated quartz cell, GBC Avanta

	Faculty of Engineering: Department
University of Technology	Quality
	Method for determination of selenium by
	hydride generation atomic absorption
	spectrometry (HGAAS)

4.22 Element-specific lamp for selenium

5 <u>Reagents</u> (All analytical reagent grade quality)

- 5.1 <u>General</u>: The concentration of the trace elements in the reagents and water used shall be low enough not to affect the results of the determination. A blank should be measured simultaneously with the test samples with every analysis run to control contamination and carry over with selenium in the reagents and apparatus used.
- 5.2 <u>Nitric Acid</u>: Not less than 65% (mass fraction), of approximately ρ (HNO₃) = 1,4 g/ml.
- 5.3 <u>Diluted nitric acid</u>: Mix 100ml nitric acid (4.2) with water to 1000ml.
- 5.4 <u>Hydrogen peroxide</u>: not less than 30% (mass fraction).
- 5.5 <u>Hydrochloric acid 30%</u>: Mass concentration of approximately ρ (HCL) = 1,15 g/ml
- 5.6 <u>Standard solution hydrochloric acid</u>: 2ml hydrochloric acid (5.5) made up to 100ml volumetric flask
- 5.7 <u>Diluted hydrochloric acid</u>: 3% (mass fraction) as carrier solution for the use of the flow-injection procedure. Dilute 90ml of hydrochloric acid (5.5) made up to the mark of 1000ml deionised water.
- 5.8 <u>Sodium borohydride solution:</u> 2g/l i.e. Dissolve 2g of sodium hydroxide pellets in deionised water, add 2g of sodium borohydride and make up to 1000ml with deionised water in a 1000ml volumetric flask. Prepare a fresh solution daily and, when necessary, filter before use. When analysis procedure is of longer time, it is recommended to cool the sodium borohydride solution, i.e. with ice around the flask, during its use in the HGAAS measurement.

WARNING: It is essential to observe the safety instructions for working with sodium borohydride. Sodium borohydride forms hydrogen with acids and this can result in an explosive air/hydrogen mixture. A permanent extraction system shall be provided at the point where measurements are carried out.

- 5.9 Standards:
- 5.9.1 <u>Selenium stock solution</u>: c(Se) = 1000ppm (1000mg/l). The stock solution is commercially available. It is advisable to use certified stock solutions such as bought from the supplier Merck
- 5.9.2 <u>Selenium standard solution</u>: 10ppm (10mg/l) pipette 1000µl of the 1000ppm stock standard into a 100ml volumetric flask. Make up to volume with standard solution hydrochloric acid (5.6) (The solution is stable for at least 3 months)
- 5.9.3 <u>Selenium calibration solutions</u>: For the preparation of the five calibration solutions, take aliquots of 100µl, 500µl, 1000µl, 2500µl and 5000µl of the selenium standard solution (5.9.2) into 100ml flasks

Cape Peninsula	Faculty of Engineering: Department Quality	
University of rectinology	Method for determination of selenium by	
	hydride generation atomic absorption	
	spectrometry (HGAAS)	

and make up to mark with standard solution hydrochloric acid (stable for 3 months):

Blank: pour Standard Soln HCL (5.9.2) into a 100ml volumetric flask up to mark.

100µl standard in 100ml volumetric flask = 10ppb (ng/ml) 500µl standard in 100ml volumetric flask = 50ppb (ng/ml) 1000µl standard in 100ml volumetric flask = 100ppb (ng/ml) 2500µl standard in 100ml volumetric flask = 250ppb (ng/ml) 5000µl standard in 100ml volumetric flask = 500ppb (ng/ml)

6 <u>Safety/ precautionary measures</u>

- 6.1 A laboratory coat must be worn during the testing procedure.
- 6.2 Gloves should be worn when handling acids.
- 6.3 Observe the safety instructing for the safe handling and disposal of chemicals as specified in Material Safety Data Sheets for chemicals used in Biochemistry.

7 <u>Digestion Procedure</u>

- 7.1 Weigh out ± 0.5000 g to one decimal point, of dried homogenised liver into microwave pressure sample vessels. Include an in-house liver control sample, LC2009 with each sample batch. Three blank tubes consisting of 1ml of standard solution HCL (5.6), and three tubes for each standard containing 1ml of standard are also prepared with the samples.
- 7.2 Set the water bath at $80^{\circ}C (\pm 5^{\circ}C)$ and switch ON.
- 7.3 Add 5ml of nitric acid (5.2) and 2.5ml hydrogen peroxide (5.4) using reaction vessels of 100ml size. The reaction vessels are locked and fixed in the microwave digestion system.

7.4 Microwave Digestion procedure: Ramp to temp 15 minutes Hold at 200°C 20 minutes

- 7.5 Remove the reaction vessels from the microwave system in an extractor hood and let them de-aerate carefully before opening.
- 7.6 Place open vessels into water bath with a temperature of 80°C for 20 minutes to degas the extraction solution by allowing the brown (nitrose) gases to pass off.
- 7.7 Remove from water bath after 20 minutes is over and allow them to cool for a few minutes to room temperature, it is quantitatively transferred to a 25ml volumetric flask and filled up to the mark with deionised water.
- 7.8 If measuring is not done immediately after extraction the test solution must be stored in adequate vessels to prevent loss or carryover of selenium.

Cape Peninsula University of Technology	Faculty of Engineering: Department Quality
	Method for determination of selenium by
	hydride generation atomic absorption
	spectrometry (HGAAS)

8 <u>Selenium reduction procedure</u>

- 8.1 Dilute 10ml of the test solution (7.7) into a 50ml flask, add 5ml hydrochloric acid (5.5) and heat for 20 minutes in a water bath at 80°C with opened flask.
- 8.2 After cooling down to room temperature the flask is filled up with water.

9 <u>Spectrometer settings of the flow-injection hydride generation</u> atomic absorption spectrometer (HGAAS)

9.1 Recommended instrument settings as specified in operating manual of the manufacturer:

9.1.1	Wavelength:	196.0 nm
9.1.2	Bandpass:	1.0 nm
9.1.3	Lamp Current	10.0 mA
9.1.4	Flame Conditions	lean flame
9.1.5	Read time	9 seconds
9.1.6	Replicates	3
9.1.7	Calibration	Conc least squares

9.2 The HG3000 automatic hydride generator is a continuous flow vapour generation system. It incorporates a peristaltic pump which continuously pumps sample (or rinse solution) and reagents into a mixing manifold.

The mixed solution flows through a reaction coil where the metal hydride is formed and then into a gas-liquid separator where the hydride is removed from the bulk liquid using an inert carrier gas. The hydride is then fed into a fused quartz absorption cell which is mounted over the burner of the atomic absorption spectrophotometer (AAS).

- 9.3 Switch the AAS on at least an hour before use to allow the instrument to warm up and stabilise.
- 9.4 Select the selenium application method and optimise the lamp.
- 9.5 Switch the HG3000 unit on and allow water to be pumped through the system in order to check that the peristaltic pump mechanism is operating properly.
- 9.6 Zero the instrument with a blank sample. At this stage it is important to make a note of whether the running concentration of the apparatus is not fluctuating erratically, as this is an indication of instrument stability and will effect results. Only once the running concentration stabilises should calibration samples and test samples be measured on HGAAS.
- 9.7 Ensure that inert gas flow is enabled.
- 9.8 Insert appropriate feeder pipes into their respective reagent bottles

	Faculty of Engineering: Department
Cape Peninsula University of Technology	Quality
	Method for determination of selenium by
	hydride generation atomic absorption
	spectrometry (HGAAS)

- 9.9 All measurements are pre-programmed to be taken in triplicate. Calibration samples are then read and the concentration of each is used to obtain calibration data in order to set up a calibration curve.
- 9.10 The calibration curve derived from five known calibration samples, (which were processed simultaneously with samples), is used calculate the concentration of selenium in each sample..
- 9.11 Each sample is then read and the concentration reported for each sample.

10 <u>Calculation</u>

10.1 To calculate the final concentration for the samples for reporting: The selenium mass fraction of the weighted test sample (W_s) is calculated according to the following formula

 $W_s = (c_t - c_b) x V_1 x V_3 x D/(V_2 x m x 1000) mg/kg (ppm)$

Where:

- c_t is the concentration of selenium in the test solution, $\mu g/l$;
- c_b is the concentration of selenium in the blank solution, $\mu g/l$;
- m is the mass of the test portion, g;
- V₁ is the volume of the test solution after microwave digestion procedure (i.e. 25ml);
- V₂ is the volume (aliquot) of the test solution after microwave digestion procedure (i.e. 10ml);
- V₃ is the volume for pre-reduction step (i.e. 50ml);
- D is the dilution factor (i.e. 1 when no further dilution is done);
- 1000 is the constant factor to calculate from selenium concentration expressed in ug/ml to ug/l.

8 <u>Quality control</u>

8.1 An internal liver control is run with every batch of samples. An International Certified Reference Material sample is run on five research trial runs.

9 <u>Disposal</u>

9.1 Dispense waste into glass bottles and mark each clearly. Waste is to be removed be waste removal company according to chemical waste regulations.

Cape Peninsula	Faculty of Engineering: Department Quality	
onnerský or reenhology	Method for determination of selenium by	
	hydride generation atomic absorption	
	spectrometry (HGAAS)	

10 <u>References</u>

10.1 BSi Group Headquarters. 2010. Draft BS EN 16159 Animal feeding stuffs – Determination of selenium by hydride generation atomic absorption spectrometry (HGAAS) after microwave digestion (extraction with 65% nitric acid and 30% hydrogen peroxide. BSI Group Headquarters:London
10.2 Koh, T. & Benson, T. H. 1983. Critical Re-appraisal of Fluorometric Method for Determination of Selenium in Biological Materials. *Journal for the Association of Official Analytical Chemistry*, 66(4):918-926.
10.3 GBC Scientific Equipment Pty Ltd. 1995. AA Hydride System HG3000, EHG3000 & MC3000 Operation & Service Manual. Published in-house: Australia

ANNEXURE 5 Draft for Public Comment

Annexure 5: International Standard Operating Procedure for Selenium Analysis Method. Page 1 of 19

BSi

BSI Group Headquarters

389 Chiswick High Road London W4 4AL

Tel: +44 (0)20 8996 9000 Fax: +44 (0)20 8996 7400 www.bsigroup.com

Latest date for receipt of comments: 31 January 2011

Responsible committee: AW/10 Animal feeding stuffs

Interested committees:

Title: Draft BS EN 16159 Animal feeding stuffs - Determination of selenium by hydride generation atomic absorption spectrometry (HGAAS) after microwave digestion (extraction with 65% nitric acid and 30% hydrogen peroxide)

Supersession information: If you are aware of a current national standard which may be affected, please notify the secretary (contact details below).

WARNING: THIS IS A DRAFT AND MUST NOT BE REGARDED OR USED AS A BRITISH STANDARD. THIS DRAFT IS NOT CURRENT BEYOND 31 January 2011

This draft is issued to allow comments from interested parties; all comments will be given consideration prior to publication. No acknowledgement will normally be sent. See overleaf for information on the submission of comments.

No copying is allowed, in any form, without prior written permission from BSI except as permitted under the Copyright, Designs and Patent Act 1988 or for circulation within a nominating organization for briefing purposes. Electronic circulation is limited to dissemination by e-mail within such an organization by committee members.

Further copies of this draft may be purchased from BSI Customer Services, Tel: +44(0) 20 8996 9001 or e-mail cservices@bsigroup.com. British, International and foreign standards are also available from BSI Customer Services.

Information on the co-operating organizations represented on the committees referenced above may be obtained from the responsible committee secretary.

Cross-references

The British Standards which implement International or European publications referred to in this draft may be found via the British Standards Online Service on the BSI web site http://www.bsigroup.com.

Responsible Committee Secretary: Committee Service Centre (BSI) Direct tel: 020 8996 7009 E-mail: csc@bsigroup.com DPC: 10 / 30199731 DC

Date: 07 October 2010 Origin: European

Project No. 2009/01057

Annexure 5: International Standard Operating Procedure for Selenium Analysis Method. Proge 2 of 19

This draft standard is based on European discussions in which the UK has taken an active part. Your comments on this draft are welcome and will assist in the preparation of the consequent British Standard. Comment is particularly welcome on national, legislative or similar deviations that may be necessary.

Even if this draft standard is not approved by the UK, if it receives the necessary support in Europe, the UK will be obliged to publish the official English Language text unchanged as a British Standard and to withdraw any conflicting standard.

UK Vote

Please indicate whether you consider the UK should submit a negative (with reasons) or positive vote on this draft.

Submission of Comments

Template for comments and secretariat observations

- The guidance given below is intended to ensure that all comments receive efficient and appropriate attention by the responsible BSI committee. Annotated drafts are not acceptable and will be rejected.
- All comments must be submitted, preferably electronically, to the Responsible Committee Secretary at the address given on the front cover. Comments should be compatible with version 6.0 or version 97 of Microsoft Word for Windows, if possible; otherwise comments in ASCII text format are acceptable. Any comments not submitted electronically should still adhere to these format requirements.
- All comments submitted should be presented as given in the example below. Further information on submitting comments and how to obtain a blank electronic version of a comment form are available from the BSI website at: http://www.bsigroup.com/en/Standards-and-Publications/Current-work/DPCs/

Date: xx/xx/20xx

Document: ISO/DIS xxxx

1	2	(3)	4	5	(6)	(7)
мв	Clause No./ Subclause No./Annex (e.g. 3.1)	Paragrapk/ Figure/ Table/Note	Type of con- ment	Connext (justification for change) by the MB	Proposed change by the MB	Secretariat observations on each
		Definition 1	ed	Definition is imbiguous and needs clarifying.	Amend to read 'so that the mains connector to which no connection'	
	6.4	Paragraph 2	te	The use of the UV photometer as an alternative cannot be supported as setions problems have been encountered in its use in the UT.	Delete reference to UV photometer.	

Annexure 5: International Standard Operating Procedure for Selenium Analysis Method.

Page 3 0 UROPEAN STANDARD

DRAFT prEN 16159

NORME EUROPÉENNE EUROPÄISCHE NORM

September 2010

ICS 65.120

English Version

Animal feeding stuffs - Determination of selenium by hydride generation atomic absorption spectrometry (HGAAS) after microwave digestion (extraction with 65% nitric acid and 30% hydrogen peroxide)

Aliments des animaux - Dosage du sélénium par spectrométrie d'absorption atomique par génération d'hydrures (SAAGH) après digestion par micro-ondes (extraction avec de l'acide nitrique à 65 % et du peroxyde d'hydrogène à 30 %) Futtermittel - Bestimmung von Selen mit Atomabsorptionsspektrometrie-Hydridtechnik (HGAAS) nach Mikrowellen-Druckaufschluss (Extraktion mit 65% Salpetersäure und 30% Wasserstoffperoxid)

This draft European Standard is submitted to CEN members for enquiry. It has been drawn up by the Technical Committee CEN/TC 327.

If this draft becomes a European Standard, CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration.

This draft European Standard was established by CEN in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CEN member into its own language and notified to the CEN Management Centre has the same status as the official versions.

CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland and United Kingdom.

Warning : This document is not a European Standard. It is distributed for review and comments. It is subject to change without notice and shall not be referred to as a European Standard.

EUROPEAN COMMITTEE FOR STANDARDIZATION COMITÉ EUROPÉEN DE NORMALISATION EUROPÄISCHES KOMITEE FÜR NORMUNG

Management Centre: Avenue Marnix 17, B-1000 Brussels

© 2010 CEN All rights of exploitation in any form and by any means reserved worldwide for CEN national Members. Ref. No. prEN 16159:2010: E

Annexure 5: International Standard Operating Procedure for Selenium Analysis Method.

Contents

Page

Forewo	ord	3
1	Scope	4
2	Normative references	4
3	Principle	4
4	Reagents	4
5	Apparatus and equipment	6
6	Procedure	7
7	Calculation	. 10
8	Precision	. 10
9	Test report	. 11
Annex	A (informative) Results of the interlaboratory tests	. 12
Annex	B (informative) Flowchart	13
Annex	C (informative) Adjustment of a microwave oven	. 14
Annex	D (informative) Alternative digestion procedure with the same extraction efficiency: Acid digestion with a mixture of 65% nitric acid and 70% perchloric acid (7:3 by volume) at atmospheric pressure	15
Bibliog	jraphy	. 17

Annexure 5: International Standard Operating Procedure for Selenium Analysis Method. Page 5 of 19 prEN 16159:2010 (E)

Foreword

This document (prEN 16159:2010) has been prepared by Technical Committee CEN/TC 327 "Animal feeding stuffs", the secretariat of which is held by NEN.

This document is currently submitted to the CEN Enquiry.

Annexure 5: International Standard Operating Procedure for Selenium Analysis Method.

1 Scope

This European Standard specifies a method for the determination of selenium in animal feeding stuffs by hydride generation atomic absorption spectrometry (HGAAS) after microwave pressure digestion.

The limit of quantification is $0.5 \mu g/l$ of the test solution. Using a test portion of 0.5 g and a volume of the test solution of 25 ml after pressure digestion the limit of quantification is calculated as 0.125 mg/kg in the sample.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies).

EN 13804:2002, Foodstuffs – Determination of trace elements - Performance criteria, general considerations and sample preparation

3 Principle

Selenium is determined in the test solution by hydride generation atomic absorption spectrometry (HGAAS) after microwave pressure digestion and a pre-reduction step.

The dried and homogenised feeding stuff test sample is digested by nitric acid and hydrogen peroxide under pressure and high temperatures in a microwave-heated pressure digestion system.

Selenium ions of the test solution are reduced with hydrochloric acid to selenium (IV) and converted to selenium hydride (SeH₂) by sodium borohydride. This selenium hydride is transferred by a gas stream into a heated measurement cell and decomposed. The absorption at the selenium line at 196,0 nm corresponds to the amount of selenium.

NOTE Selenium (VI) is not determined by the hydridisation as described here. It is therefore necessary to adjust the digestion conditions and to exercise a pre-reduction step with hydrochloric acid to yield only selenium (IV).

Other digestion procedures with the same extraction efficiency or other measurement systems like FI-HGAAS or HG-ICP-AES are possible (see Annex D).

WARNING — The use of this standard can involve hazardous materials, operations and equipment. This standard does not purport to address all the safety problems associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

4 Reagents

4.1 General

The concentration of the trace elements in the reagents and water used shall be low enough not to affect the results of the determination. A blank should be measured simultaneously with the test samples at every day of analysis to control contamination and carry over with selenium in the reagents and apparatus used.

Annexure 5: International Standard Operating Procedure for Selenium Analysis Method. Page 7 of 19 prEN 16159:2010 (E)

4.2 Nitric acid, not less than 65% (mass fraction), of approximately ρ (HNO₃) = 1,4 g/ml

NOTE high purity is essential to avoid potential contamination. Therefore only use nitric acid available with high purity or perform an extraction by a sub-boiling distillation.

4.3 Diluted nitric acid, mix 100 ml nitric acid (4.2) with water to 1 l

4.4 Hydrogen peroxide, not less than 30% (mass fraction)

NOTE that high purity is essential to avoid potential contamination. Commercially available hydrogen peroxide for analysis should be tested for contamination of trace elements.

4.5 Hydrochloric acid, 30%, mass concentration of approximately ρ (HCl) = 1,15 g/ml

4.6 Diluted hydrochloric acid, e.g. about 3% (mass fraction), as carrier solution for the use in the flowinjection-procedure

EXAMPLE Dilute approximately 90 ml of hydrochloric acid (4.5) to 1 I with water.

4.7 Sodium borohydride solution, e.g. c = 2 g/l

Dissolve 2 g of sodium hydroxide pellets in water, add 2 g of sodium borohydride and dilute to 1 000 ml with water into 1000-ml-flask (5.4). Prepare a fresh solution daily and, when necessary, filter before use. When the analysis procedure is of longer time it is recommended to cool the sodium borohydride solution, i.e. with ice around the flask, during its use in the HGAAS measurement.

Sodium borohydride, stable aq. solution, 4,4 M in 14 M NaOH (e.g. from Alfa Aesar, Karlsruhe) is also commercially available.

NOTE The concentration by mass of the sodium borohydride solution may vary with the system and the instructions of the relevant shall therefore be observed.

WARNING – It is essential to observe the safety instructions for working with sodium borohydride. Sodium borohydride forms hydrogen with acids and this can result in an explosive air/hydrogen mixture. A permanent extraction system shall be provided at the point where measurements are carried out.

4.8 Selenium stock solution, c (Se) = 1 000 mg/l

The stock solution is commercially available. It is advisable to use certified stock solutions.

Otherwise dissolve 1,4053 g of selenium dioxide (SeO₂) and 2 g sodium hydroxide in approximately 50 ml water, and dilute to 1 000 ml with water.

4.9 Selenium standard solution, c (Se) = 1 mg/l

Dilute i.e. 100 μ l the stock solution (4.8) in a 100-ml-flask (5.4) to a concentration of 1 mg/l. The selenium standard solution shall contain an adequate amount of hydrochloric acid, e.g. 2 ml of hydrochloric acid (4.5) per 100 ml.

NOTE The standard solution is stable for at least three months.

4.10 Selenium calibration solutions

For the preparation of five calibration solutions following procedure is recommended: Take aliquots of 0 μ l, 250 μ l, 500 μ l, 1 000 μ l and 1 500 μ l of the selenium standard solution (4.9) into 100-ml-flasks (5.4). After

Annexure 5: International Standard Operating Procedure for Selenium Analysis Method.

addition of 20 ml of nitric acid (4.3) and 10 ml of hydrochloric acid (4.5) the calibration solutions are heated for 20 min in a water bath at 80°C (see pre-reduction step 6.2.2). After cooling down to room temperature the flasks (5.4) are filled up with water and the calibration solutions are measured.

The selenium concentrations of the calibration solutions are: 0 μ g/l; 2,5 μ g/l; 5 μ g/l; 10 μ g/l and 15 μ g/l (see Table 1).

Selenium (Se)	Concentration of calibration solution (4.10) after pre- reduction procedure	Aliquot of selenium standard solution (4.9) transferred in 100-ml-flasks (5.4) (pre-reduction step)
Calibration standard 1	0 µg/l	0 µl
Calibration standard 2	2,5 µg/l	250 μl
Calibration standard 3	5 µg/l	500 μl
Calibration standard 4	10 µg/l	1 000 µl
Calibration standard 5	15 μg/l	1 500 µl

Table 1 — Recommended calibration solutions (4.10) for the determination of selenium

Choose the concentrations of the calibration solutions so as not to exceed the linear range of the calibration function. It is recommended to use a minimum of 5 calibration solutions with different concentrations. The calibration solutions are measured from the lowest to the highest concentration. In general the calibration curve should be linear. Using a non-linear calibration function is possible if it is well-described.

NOTE Prepare fresh calibration solutions (inclusive pre-reduction step) at the day of analysis.

5 Apparatus and equipment

5.1 General

To minimise the contamination, all apparatus which come into direct contact with the sample and the solutions should be carefully pre-treated according to EN 13804.

5.2 Microwave-heated pressure digestion apparatus with inert reaction vessels, i.e. made of Polytetrafluorethen (PTFE), Polyfluoralkan (PFA), FEP or quartz, suitable for digestion temperatures of more than 200°C

NOTE 1 The microwave oven should be generally persistent against corrosion and especially his whole electronics should be protected against corrosion to ensure safe operation. The ventilation should transfer the acid vapours to an extractor hood.

NOTE 2 The reaction vessels should have a safety valve designed for a pressure of 1 000 kPa.

Annexure 5: International Standard Operating Procedure for Selenium Analysis Method. Page 9 of 19 prEN 16159:2010 (E)

- 5.3 Pipettes, volumetric and/or graduated, 2 ml, 2,5 ml, and 10 ml
- 5.4 Flasks, 25 ml, 50 ml, 100 ml, 500 ml and 1 000 ml
- 5.5 Flow-injection hydride system, with sample loop, i.e. 500 µl

5.6 Atomic absorption spectrometer (AAS), with measurement recording system, background correction, heated quartz cell and accessories for the hydride procedure

5.7 Element-specific lamp for selenium

- NOTE an electrodeless discharge lamp (EDL) is to prefer instead of a hollow-cathode lamp.
- 5.8 Ultrasonic bath and/or water bath
- 5.9 Analytical balance, accurate to 0,1 mg

6 Procedure

Sampling and preparation of a test sample is not part of the method. A recommended sampling method and method for sample preparation is given in ISO 6497 [1] and ISO 6498 [2].

NOTE The use of a stationary or especially for mineral feeds of a rotary riffler for mass reduction and the use of a sieve size of 0,5 mm or lower for particle size reduction is recommended because of low weights of $\leq 0,5$ g of the test portions to ensure homogeneity.

6.1 Preparation of the test solution

NOTE The following extraction procedure leads in most cases to results for selenium and for other minerals and trace elements which correspond to the total contents of these elements. For some specific problems check whether modifications of the digestion program or other acid mixtures are necessary.

The weight of a test sample depends on the organic percentage of the sample material and from the size of the reaction vessels of the microwave digestion system.

Using reaction vessels of 20 to 100 ml sizes respectively a test portion of 0,2 to 0,5 g of the homogenised and to a particle size of \leq 0,5 mm or lower grinded test sample are weighed to 1 mg exactly for digestion.

Add i.e. 5 ml nitric acid (4.2) and 2,5 ml hydrogen peroxide (4.4) using reaction vessels of 100 ml size, the reaction vessels are locked and fixed in the microwave digestion system (5.2).

NOTE For the pre-reaction let the reaction vessels bleed before the pressure digestion is started.

WARNING — For some samples heavy reactions may result after addition of nitric acid and hydrogen peroxide. Therefore let the reactions fade off at room temperature, i.e. over night.

To avoid potential contamination and/or carry over parallel to the test samples a blank is to digest for control. A steam stripping of the reaction vessels with nitric acid is therefore recommended.

The digestion with the microwave system is performed with a temperature program adapted to the matrices considering the operating manual of the manufacturer.

WARNING — For samples with unknown composition firstly a digestion procedure with low test portions are to perform. In particular cases heavy reactions with hydrogen peroxide could appear.

Annexure 5: International Standard Operating Procedure for Selenium Analysis Method.

Also formation of highly explosive compounds is possible when organic matrices are digested. Too high weights could result in uncontrollable reactions.

In principle the pressure digestion is started with low power then continuously increased to the maximum permitted power supply for a distinct time to achieve a temperature of more than 200°C. The digestion requires about 15 minutes to 30 minutes. Afterwards the system is cooled down.

NOTE With a digestion temperature of 200°C a sufficient extraction of selenium (and other elements) is obtained. In general, it applies that the quality of the digestion will become better with increasing digestion temperature. Digestion temperatures greater than 280°C can lead to increased formation of volatile selenium (VI).

Remove the reaction vessels from the microwave system in an extractor hood and let them de-aerate carefully before opening. Let the vessels stand opened for about 20 minutes to pass off brown (nitrose) gases. The use of an ultrasonic bath or a water bath with a water temperature of about 80°C (5.8) is recommended to degas the extraction solution.

When loosing reaction gases within the microwave digestion the whole extraction procedure is to repeat with reduced test portion; this is very obvious when the volume of the extraction solution is reduced after the pressure digestion procedure.

Finally when the extraction solution has achieved room temperature it is quantitatively transferred to a 25- or 50-ml-flask (5.4) and filled up to the mark with water. For graduated reaction vessels the extraction solution could directly be filled up to the mark with water.

The extraction solution should be clear. When there are suspended particles in the extraction solution let them drop to the ground of the flask or either filtrate or centrifuge the solution before transferring it to a vessel of PP, PFA or FEP. If the measuring is not done immediately after the extraction the test solution must be stored in adequate vessels to prevent a loss or a carryover of selenium.

6.2 Measurement of the test solution

6.2.1 Pre-dilution of the test solution

It is very important that the acid concentration of the (diluted) test solution corresponds to that of the calibration solutions because the signal height for measuring selenium by HGAAS depends on the acid matrix.

Therefore when the measured selenium concentration of a sample exceeds the linear range of the calibration function, a dilution of the test solution (6.1) with nitric acid (4.3) instead with water is necessary.

EXAMPLE With a (linear) calibration function of calibration solutions of 2,5 µg/l to 15 µg/l feeding stuff samples with selenium concentrations of 0,625 mg/kg to 3,75 mg/kg are to measure without further dilution using 0,5 g test portion, a 25-ml-flask (5.4) after microwave pressure digestion, an aliquot of 10 ml of the digestion solution for pre-reduction using a 50-ml-flask (5.4). Thus samples with higher selenium concentrations are to dilute in that way that the selenium concentration of the pre-reduced test solution falls within the calibration function.

6.2.2 Pre-reduction of the (pre-diluted) test solution

Dilute 10 ml of the test solution (6.1) or the pre-diluted test solution (6.2.1) into a 50-ml-flask(5.4), add 5 ml hydrochloric acid (4.5) and heat for 20 min in a water bath at 80°C with opened flask. After cooling down to room temperature the flask is filled up with water.

6.2.3 Spectrometer settings of the flow-injection hydride generation atomic absorption spectrometer (HGAAS)

To devise a test schedule, first adjust the apparatus as specified in the operating manual of the manufacturer, then optimise the settings, paying particular attention to gas flow times and the amounts of sodium borohydride introduced. Typical settings are listed in Table 2.

Annexure 5: International Standard Operating Procedure for Selenium Analysis Method. Page 11 of 19 prEN 16159:2010 (E)

Temperature of the cell	900°C			
Wave length	196,0 nm 2,0 nm Peak height with background correction 0,5 s			
Slit width				
Signal processing ^a)				
Smoothing				
Integration time	15 s			
^a) Nearest to the limit of quantification a signal processing	j by peak area is recommended.			

Table 2 —	Typical	settings	of HGAAS	for r	neasuring	selenium
-----------	---------	----------	----------	-------	-----------	----------

6.2.4 HGAAS determination

The pre-reduced test solutions (6.2.2), if necessary pre-diluted previously (6.2.1), and the selenium calibration solutions (4.10) are measured directly with an atomic absorption spectrometer with electrically heated quartz cell coupled to a flow-injection-hydride-system. Use of a 500 µl sample loop is recommended.

The apparatus should be programmed in such a way that first the sample loop is filled with the pre-reduced test or pre-reduced calibration solution. Then the test- or calibration solution is transferred to a mixing unit with diluted hydrochloric acid (4.6) and mixed with sodium borohydride solution (4.7). The resulting gas/liquid mixture is separated by an argon-flowed separator. The argon steam sorts out the metal hydrides to the quartz cell for atomisation reaction and measuring the atomic absorption of selenium.

Firstly the selenium calibration solutions (4.10) are measured, then the (pre-diluted) test solutions (6.2.2).

Check the linear range of the calibration function. If the concentration of the test sample is outside the linear range dilute with nitric acid (4.3) and not with pure water. When carrying out prolonged series of measurements, it is advisable to check the zero and the calibration at intervals.

Significant background signal appears in the case of the hydride generation technique, either by matrix effects or by using higher concentrations of nitric acid or hydrochloric acid. Add amido sulphuric acid after the prereduction step when disturbances from nitric acid appear.

Copper concentrations in the test solution of more than 750 µg/l could lead to a signal depression. Measuring copper and selenium concentrations simultaneously by ICP-AES could be useful: If the selenium concentration of the test solution by ICP-AES is higher to that of HGAAS and if the copper concentration is high a depression effect by copper seems to be possible. Then dilute the test solution with diluted nitric acid (4.3) or take 1 ml of a 0,5% solution of 1,10 - phenanthroline into 10 ml of the test solution (= 0,05% of 1,10 - phenanthroline within the test solution) for complexation of copper to measure selenium by HGAAS without a signal depression (see 6.2.2).

For unknown matrix effects use the standard addition procedure.

As an analytical control, reference samples having reliable known selenium contents shall be analysed parallel with all the series of samples analysed, the reference samples being subjected to all the steps in the method starting from digestion. Blank solutions prepared by subjecting them to all the steps in the method shall also be determined.

Annexure 5: International Standard Operating Procedure for Selenium Analysis Method. HALEN 16159:2010 (E)

7 Calculation

In general the calibration curve and the element concentration of the test solution is calculated by the AAS system itself.

The selenium mass fraction of the weighed test sample (Ws) is calculated due to following formula:

$$W_{s} = (c_{t} - c_{b}) \times V_{1} \times V_{3} \times D / (V_{2} \times m \times 1 \ 000) \ mg / kg$$
(1)

where

- ct is the concentration of selenium in the test solution, μg/l;
- cb is the concentration of selenium in the blank solution, μg/l;
- m is the mass of test portion, g;
- V1 is the volume of test solution after microwave digestion procedure (i.e. 25 or 50), ml;
- V2 is the volume (aliquot) of test solution after microwave digestion procedure (i.e. 10), ml;
- V₃ is the volume for pre-reduction step (i.e. 50), ml;
- D is the dilution factor (i.e. 1 when no further dilution is done);
- 1 000 is the constant factor to calculate from selenium concentration expressed in µg/ml to µg/l.

EXAMPLE:

Using m = 0,5 g as test portion, a 25-ml-flask (5.4) for microwave digestion (= V_1), an aliquot of 10 ml after digestion (= V_2) and a 50-ml-flask (5.4) for the pre-reduction step (= V_3) - when no further dilution (D = 1) is done the selenium mass of the sample (= W_s) is calculated as:

$$W_{\rm S} = (c_t - c_b) \times (25 \times 50 \times 1) / (0.5 \times 10 \times 1\ 000) = (c_t - c_b) \times 1\ 250 / 5\ 000 = (c_t - c_b) / 4 \quad mg / kg$$

8 Precision

8.1 General

Details of an interlaboratory test done in 2009 on the precision of the method are summarised in annex A. The values derived from this interlaboratory test may not be applicable to concentration ranges and matrices other than those given.

8.2 Repeatability

The absolute difference between two independent single test results, obtained with the same method on identical test material in the same laboratory by the same operator using the same equipment within a short interval of time, will in not more than 5% of the cases exceed the values of r given in Table 3.
Annexure 5: International Standard Operating Procedure for Selenium Analysis Method. Page 13 of 19 prEN 16159:2010 (E)

8.3 Reproducibility

The absolute difference between two single test results, obtained with the same method on identical test material in different laboratories by different operators using different equipment, will in not more than 5% of the cases exceed the values of R given in Table 3.

Matrix	mean, mg/kg	r, mg/kg	R, mg/kg			
Cow feed	0,305	0,072	0,192			
Turkey feed	0,313	0,054	0,134			
Mineral piglet feed	6,87	1,94	4,23			
Mineral cow feed	73,6	6,9	34,5			

Tabla	3	Dracieion	data
rable	J —	Precision	uata

9 Test report

The test report shall specify:

- a) information necessary for complete identification of the sample;
- b) the test method used, with reference to this European Standard;
- c) the test results obtained and the units in which they are specified;
- d) data of sampling and sampling procedure (if known);
- e) date when the analysis was finished;
- operating details not specified in this European Standard, or regarded as optional, together with details of any incidents occurred when performing the method may have influenced the test result(s).

Annexure 5: International Standard Operating Procedure for Selenium Analysis Method.

Annex A

(informative)

Results of the interlaboratory tests

Mineral piglet feed Cow Turkey Mineral piglet Mineral cow Turkey Matrix tested feed feed feed feed feed Subsamples fully prepared for direct yes yes yes yes no no weighing No. of labs 19 19 19 19 18 18 No. of outlier labs 1 4 0 4 4 1 No. of non-compliant 0 0 3 2 0 2 labs 15 15 No. of valid labs 18 16 13 14 0,305 Mean value, mg/kg 0,313 6,87 73,6 0,246 6,76 0,026 0,019 0,69 2,5 0,016 0,58 s_r, mg/kg 0,072 0,054 6,9 0,045 1,62 r, mg/kg 1,94 6,1 10,1 6,5 RSD(r), %] 8,5 3,4 8,6 0,069 0,048 1,51 12,3 0,037 1,57 S_{R,} mg/kg 0,192 R, mg/kg 0,134 4,23 34,5 0,103 4,39 RSD(R), % 22,5 15,3 22,0 16,7 14,9 23,2 HORRAT(R) 1,2 8,0 1,8 2,0 0,8 1,9

Table A.1 — Precision data

Annexure 5: International Standard Operating Procedure for Selenium Analysis Method. Page 15 of 19 prEN 16159:2010 (E)

Annex B (informative)

Flowchart

Annexure 5: International Standard Operating Procedure for Selenium Analysis Method.

Annex C

(informative)

Adjustment of a microwave oven

The adjustment of the microwave oven is an essential step for its proper use. By this procedure it should be established how a certain adjustment of the oven corresponds with the actual supplied (effective) power.

The microwave oven should be adjusted periodically. The way of adjusting a microwave oven depends on the electronic system that has been applied by the manufacturer. If for the oven a linear relationship holds between supplied power and the adjustment scale, it is calibrated at two positions (for example at 40% and 100% power). It is recommended, however, to calibrate at more positions in order to verify linearity.

If there is no linearity between adjustment scale and the supplied power, an adjustment at more positions is required. The instructions of the manufacturer should be observed.

Annexure 5: International Standard Operating Procedure for Selenium Analysis Method. Page 17 of 19 prEN 16159:2010 (E)

Annex D

(informative)

Alternative digestion procedure with the same extraction efficiency: Acid digestion with a mixture of 65% nitric acid and 70% perchloric acid (7:3 by volume) at atmospheric pressure

NOTE Work with perchloric acid should only be undertaken if safety precautions are followed and care, caution, chemical knowledge and common sense are used. It should be pointed out that the safety depends not only on rules (see D.5), time- and temperature-controlled automated decomposition, special hood, exhaust system and sprinkler-washing system, but also on conscientious co-workers with a sense of responsibility.

D.1 Selenium calibration solutions

Add 0 ml, 0,2 ml, 0,5 ml, 1,0 ml, 1,5 ml and 2,0 ml of a 1 000 µg/l selenium standard solution into 100-mlflasks. Add 3,6 M hydrochloric acid (not to mark).

Pre-reduction of Se (VI) to Se (IV) of standards

The calibration solutions are then heated for 30 min at 100°C and after cooling dilute the solutions to the mark of the flask. The final concentrations of the calibration solutions are:

0 µg/l, 2 µg/l, 5 µg/l, 10 µg/l, 15 µg/l and 20 µg/l.

D.2 Preparation of the test solution

Weigh 1 g dry or 5 g wet test portion in a sample tube (80 ml), i.e. a Kjeldahl tube. Add 15 ml of 65% nitric acid, 4 ml of 70% perchloric acid and 2 ml of concentrated sulphuric acid, the reagents should be of ultra pure quality. Immediately after addition of the acid mixture the digest is initiated. Automatic digestion of the test solution is performed using an electrically heated block of aluminium connected to a microprocessor for control of temperature and time according to a standard digestion program [11][12][13][14].

D.2.1 Digestion program

Step	Temperature, °C	Time, h
1	70	1
2	120	2
3	170	2
4	220	1

Annexure 5: International Standard Operating Procedure for Selenium Analysis Method.

D.3 Measurement of the test solution

D.3.1 Pre-reduction of Se (VI) to Se (IV) of samples.

Add some deionised water and 15 ml concentrated hydrochloric acid to the sample test tube and transfer the test solution to a 50-ml-flask. Then heat the solution (40 ml of solution) for 30 min at 100°C [12]. After cooling dilute the solution using 3,6 M hydrochloric acid.

D.3.2 Atomic absorption spectrometer (HGAAS-procedure)

The test solution is measured using HGAAS as described in section 6.2.3.

The test solution can also be determined by using FI-HGAAS or HG-ICP-AES according to user's equipment and recommendations from the manufacturer.

D.4 Ten rules for automated wet ashing with perchloric acid

- Elaborate always a new temperature program and a suitable mixture of the oxidizing acids for material with unknown chemical properties. The development has to be tested stepwise and by visual control.
- Max 5 g material wet wt (1 g DM) and containing no more than 500 mg fat are allowed when using 15 ml oxidizing acid mixture (HNO₃/HCIO₄ : 7/3 (v/v)).
- 3. Add oxidizing acids to the samples to digest always in form of a mixture. Never separately!
- 4. Mark the meniscus on the tube for control of decreasing acid mixture during the ashing procedure.
- 5. Digest samples at ambient temperature for 3-5 hours before starting the ashing program.
- 6. Prevent bumping of acid solution at boiling. It is disastrous for the analysis!
- 7. Solubilise fat and fatty acids at 132°C until homogeneity of phases.
- Dark colour during digestion indicates danger. Remove the tubes from the block and repeat the digestion after addition of HNO₃. Selenium can be lost by charring.
- Stop digestion temperature at 180°C in the morning. Rise temperature to 225°C and digest according to the program, only tubes with light coloured solutions.
- Hoods are made from polypropylene, exhaust tubes and fan of PVC. Wash regularly the whole system from hood to the fan with water.

Annexure 5: International Standard Operating Procedure for Selenium Analysis Method. Page 19 of 19 prEN 16159:2010 (E)

Bibliography

- [1] ISO 6497:2002, Animal feeding stuffs Sampling
- [2] ISO 6498:1998, Animal feeding stuffs Preparation of test samples
- [3] EN 13805:2002, Foodstuffs Determination of trace elements Pressure digestion
- EN 14627:2005, Foodstuffs Determination of trace elements Determination of total arsenic and selenium by hydride generation atomic absorption spectrometry (HGAAS) after pressure digestion
- EN 15550:2007, Animal feeding stuffs Determination of cadmium and lead by graphite furnace atomic absorption spectrometry (GF-AAS) after pressure digestion
- CEN/TS 15621:2007, Animal feeding stuffs Determination of minerals and trace elements by ICP-OES after microwave digestion
- [7] VDLUFA, chapter VII, 2.1.3 (2007) Microwave heated pressure digestion procedure
- [8] VDLUFA, chapter VII, 2.2.2.4 (2003) Determination of selenium in feeding stuffs after pressure digestion
- [9] VDLUFA, chapter III, 11.6.1 (1993) Determination of selenium
- ISO 17379-2:2006, Water quality Determination of selenium Part 2: Method using hydride generation atomic absorption spectrometry (HGAAS)
- [11] Frank, A. 1976. Automated wet ashing and multi-metal determination in biological materials by atomic absorption spectrometry. Z. Anal. Chem., 279:101-102.
- [12] Frank, A. 1988. Semi-micro accessory to an automated digestion system for ashing small sample amounts, in Brätter, P. and Schramel, P. (Eds.) *Trace Element Analysis in Medicine and Biology*, Vol. 5, Walter de Gruyter & Co, Berlin. pp. 78-83.
- [13] Galgan, V., Frank, A. 1988. Automated system for determination of selenium in biological materials. In: Brätter, P., Schramel, P. (eds.), *Trace elements Analytical Chemistry in Medicine and Biology*, Vol.5. Walter de Gruyter & Co., Berlin, New York. pp. 84-89.
- [14] Galgan, V., Frank, A. 1993. Notes and comments on the determination of selenium in biological materials. Norwegian Journal of Agricultural Sciences. Supplement No. 11: 57-74.

Quantifying Uncertainty

Annexure 6: Eurachem Quantifying Uncertainties. Page 1 of 2

4. The Process of Measurement Uncertainty Estimation

4.1. Uncertainty estimation is simple in principle. The following paragraphs summarise the tasks that need to be performed in order to obtain an estimate of the uncertainty associated with a measurement result. Subsequent chapters provide additional guidance applicable in different circumstances, particularly relating to the use of data from method validation studies and the use of formal uncertainty propagation principles. The steps involved are:

Step 1. Specify measurand

Write down a clear statement of what is being measured, including the relationship between the measurand and the input quantities (*e.g.* measured quantities, constants, calibration standard values *etc.*) upon which it depends. Where possible, include corrections for known systematic effects. The specification information should be given in the relevant Standard Operating Procedure (SOP) or other method description.

Step 2. Identify uncertainty sources

List the possible sources of uncertainty. This will include sources that contribute to the uncertainty on the parameters in the relationship specified in Step 1, but may include other sources and must include sources arising from chemical assumptions. A general procedure for forming a structured list is suggested at Appendix D.

Step 3. Quantify uncertainty components

Measure or estimate the size of the uncertainty component associated with each potential source of uncertainty identified. It is often possible to estimate or determine a single contribution to uncertainty associated with a number of separate sources. It is also important to consider whether available data accounts sufficiently for all sources of uncertainty, and plan additional experiments and studies carefully to ensure that all sources of uncertainty are adequately accounted for.

Step 4. Calculate combined uncertainty

The information obtained in step 3 will consist of a number of quantified contributions to overall uncertainty, whether associated with individual sources or with the combined effects of several sources. The contributions have to be expressed as standard deviations, and combined according to the appropriate rules, to give a combined standard uncertainty. The appropriate coverage factor should be applied to give an expanded uncertainty.

Figure 1 shows the process schematically.

4.2. The following chapters provide guidance on the execution of all the steps listed above and shows how the procedure may be simplified depending on the information that is available about the combined effect of a number of sources.

ANNEXURE 7

THE EXPRESSION OF UNCERTAINTY AND CONFIDENCE IN MEASUREMENT

M3003 | EDITION 2 | JANUARY 2007

Annexure 7: UKAS Expression of Uncertainty. Page 1 of 4

7

STEP BY STEP PROCEDURE FOR EVALUATION OF MEASUREMENT UNCERTAINTY

The following is a guide to the use of this code of practice for the treatment of uncertainties. The left hand column gives the general case while the right hand column indicates how this relates to example <u>K4</u> in Appendix K. Although this example relates to a calibration activity, the process for testing activities is unchanged.

	General case	Example K4: Calibration of a weight of nominal value 10 kg of OIML Class M1
7.1	If possible determine the mathematical relationship between values of the input quantities and that of the measurand: $y = f (x_t, x_2 \dots x_N)$ See <u>Appendix D</u> for details.	It will be assumed that the unknown weight, W_X , can be obtained from the following relationship: $W_X = W_S + D_S + \delta l_d + \delta C + Ab$
7.2	Identify all corrections that have to be applied to the results of measurements of a quantity (measurand) for the stated conditions of measurement.	It is not normal practice to apply corrections for this class of weight and the comparator has no measurable linearity error, however, uncertainties for these contributions have been determined, therefore:Drift of standard mass since last calibration:0 Correction for air buoyancy: Uinearity correction:0 0 Correction for air buoyancy: 0 Effect of least significant digit resolution:

United Kingdom Accreditation Service, 21-47 High Street, Feltham, Middlesex, TW13 4UN Website: www.ukas.com Publication requests Tel: +44 (0) 20 8917 8421 Fax: +44 (0) 20 8917 8500 © United Kingdom Accreditation Service. UKAS Copyright exists in all UKAS publications

PAGE 22 OF 82

Annexure 7: UK	AS Expressi	on of Uncertainty.	Page 2 of 4
----------------	-------------	--------------------	-------------

	General case	Example K4: Calibration of a weight of nominal value 10 kg of OIML Class M		
7.3	List systematic components of uncertainty associated with corrections and uncorrected systematic errors treated as uncertainties.	Source of uncertainty	Limit (mg)	Distribution
	Seek prior experimental work or theory as a basis for assigning uncertainties and probability distributions to the sustainable of the sector	<i>W_s</i> Calibration of std. mass	30	Normal (k = 2)
	uncertainty.	<i>D_S</i> Drift of standard mass	30	Rectangular
	Calculate the standard uncertainty for each component of uncertainty, obtained from Type B evaluations, as in <u>Table 1</u> .	δC Comparator linearity	3	Rectangular
	For assumed rectangular distributions:	δ <i>Ab</i> Air buoyancy	10	Rectangular
	$u(x_i) = \frac{a_i}{\sqrt{3}}$	δ <i>l</i> _d Resolution effects	10	Triangular
	For assumed triangular distributions:	Then:		
	$u(x_i) = \frac{a_i}{\sqrt{6}}$	$u(x_1) = u(W_s) = \frac{30}{2} = 15 \text{ m}$	ng	
	For assumed normal distributions:	$u(x_2) = u(D_s) = \frac{30}{\sqrt{3}} = 17.32 \text{ mg}$		
	$u(x_i) = \frac{O}{k}$	$u(x_3) = u(\delta C) = \frac{3}{\sqrt{3}} = 1.7$	3 mg	
	or consult other documents if the assumed probability distribution is not covered in this publication	$u(x_4) = u(Ab) = \frac{10}{\sqrt{3}} = 5.7$	7 mg	
	F	$u(x_5) = u(\delta I_d) = \frac{10}{\sqrt{6}} = 4.0$	8 mg	
7.4	Use prior knowledge or make trial measurements and calculations to determine if there is going to be a random component of uncertainty that is significant compared with the effect of the listed systematic components of uncertainty. Random components of uncertainty also have to be considered as input quantities.	From previous knowledge system it is known that th random component of un	e of the ere is a certaint	measurement a significant ty.
7.5	If a random component of uncertainty is significant make repeated measurements to obtain the mean from Equation (3): $\overline{q} = \frac{1}{n} \sum_{j=1}^{n} q_j$	Three measurements we difference between the u standard weight, from wh difference was calculated $\overline{W}_{s} = \frac{0.015 + 0.025 + 0.0}{3}$	re madenknown nich the l: 020 = 0	e of the weight and the mean .020 g

United Kingdom Accreditation Service, 21-47 High Street, Feltham, Middlesex, TW13 4UN Website: www.ukas.com Publication requests Tel: +44 (0) 20 8917 8421 Fax: +44 (0) 20 8917 8500 © United Kingdom Accreditation Service. UKAS Copyright exists in all UKAS publications

PAGE 23 OF 82

Annexure 7: UKAS Expression of Uncertainty. Page 3 of 4

	General case	Example K4: Calibration of a weight of nominal value 10 kg of OIML Class M1
7.6	Either calculate the standard deviation of the mean value from Equations (5) and (6): $s(q_{j}) = \sqrt{\frac{1}{n-1}\sum_{j=1}^{n} (q_{j} - \overline{q})^{2}}$ $s(\overline{q}) = \frac{s(q_{j})}{\sqrt{n}}$ or refer to the results of previous repeatability evaluations for an estimate of $s(q_{j})$ based on a larger number of readings, using Equation (7): $s(q_{j}) = \sqrt{\frac{1}{m-1}\sum_{j=1}^{m} (q_{j} - \overline{q})^{2}}$ $s(\overline{q}) = \frac{s(q_{j})}{\sqrt{n}}$ where <i>m</i> is the number of readings used in the prior evaluation and <i>n</i> is the number of readings that contribute to the mean value.	A previous Type A evaluation had been made to determine the repeatability of the comparison using the same type of 10 kg weights. The standard deviation was determined from 10 measurements using the conventional bracketing technique and was calculated, using Equation (5), to be 8.7 mg. Since the number of determinations taken when calibrating the unknown weight was 3 this is the value of <i>n</i> that is used to calculate the standard deviation of the mean using Equation (6): $s(\overline{W}_{\chi}) = \frac{s(W)}{\sqrt{n}} = \frac{8.7}{\sqrt{3}} = 5.0 \text{ mg}$
7.7	Even when a random component of uncertainty is not significant, where possible check the instrument indication at least once to minimise the possibility of unexpected errors.	
7.8	Derive the standard uncertainty for the above Type A evaluation from Equation (8): $u(x_i) = s(\overline{q})$	This is then the standard uncertainty for the Type A evaluation: $u(x_6) = u(\overline{W_R}) = s(\overline{W_R}) = 5.0 \text{ mg}$

United Kingdom Accreditation Service, 21-47 High Street, Feltham, Middlesex, TW13 4UN Website: www.ukas.com Publication requests Tel: +44 (0) 20 8917 8421 Fax: +44 (0) 20 8917 8500

© United Kingdom Accreditation Service. UKAS Copyright exists in all UKAS publications

Annexure 7: UKAS Expression of Uncertainty. Page 4 of 4

	General case	Example K4: Calibration of a weight of nominal value 10 kg of OIML Class M1
7.9	Calculate the combined standard uncertainty for uncorrelated input quantities using Equation (1) if absolute values are used: $u_{c}(y) = \sqrt{\sum_{i=1}^{N} c_{i}^{2} u^{2}(x_{i})} \equiv \sqrt{\sum_{i=1}^{N} u_{i}^{2}(y)}, \text{ where } c_{i} \text{ is the partial derivative } \partial f / \partial x_{i}, \text{ or a known sensitivity coefficient.}$ Alternatively use Equation (11) if the standard uncertainties are relative values: $\frac{u_{c}(y)}{ y } = \sqrt{\sum_{i=1}^{N} \left[\frac{p_{i}u(x_{i})}{ x_{i} }\right]^{2}}, \text{ where } p_{i} \text{ are known positive or negative exponents in the functional relationship.}$	The units of all standard uncertainties are in terms of those of the measurand, i.e. milligrams, and the functional relationship between the input quantities and the measurand is a linear summation; therefore all the sensitivity coefficients are unity (c_i =1).
7.10	If correlation is suspected use the guidance in paragraph <u>D3</u> or consult other referenced documents.	None of the input quantities is considered to be correlated to any significant extent; therefore Equation (1) can be used to calculate the combined standard uncertainty: $u(W_x) = \sqrt{15^2 + 17.32^2 + 4.08^2 + 1.73^2 + 5.77^2 + 5.0^2}$ $= 24.55 \text{ mg.}$
7.11	Either calculate an expanded uncertainty from Equation (2): $U = k \cdot u_c(y)$ or, if there is a significant random contribution evaluated from a small number of readings, use <u>Appendix B</u> to calculate a value for k_p and use this value to calculate the expanded uncertainty.	$U = 2 \times 24.55 \text{ mg} = 49.10 \text{ mg}$ It was not necessary to use <u>Appendix B</u> to determine a value for k_p . In fact the effective degrees of freedom of $u(W_X)$ are greater than 5000 which gives a value for $k_{95} = 2.00$.
7.12	Report the result and the expanded uncertainty in accordance with <u>Section 6</u> .	The measured value of the 10 kg weight is 10 000.025 g \pm 0.049 g. The reported expanded uncertainty is based on a standard uncertainty multiplied by a coverage factor $k = 2$, providing a coverage probability of approximately 95%. The uncertainty evaluation has been carried out in accordance with UKAS requirements.

United Kingdom Accreditation Service, 21-47 High Street, Feltham, Middlesex, TW13 4UN Website: www.ukas.com_ Publication requests Tel: +44 (0) 20 8917 8421 Fax: +44 (0) 20 8917 8500

© United Kingdom Accreditation Service. UKAS Copyright exists in all UKAS publications PAGE 25 OF 82

ANNEXURE 8

THE EXPRESSION OF UNCERTAINTY AND CONFIDENCE IN MEASUREMENT

M3003 | EDITION 2 | JANUARY 2007

Annexure 8: UKAS Uncertainties for Test Results. Page 1 of 4

APPENDIX N UNCERTAINTIES FOR TEST RESULTS

N1 Introduction

- N1.1 ISO/IEC 17025:2005 requires that "testing laboratories shall have and apply procedures for estimating uncertainty of measurement".
- N1.2 It is recognised that the present state of development and application of uncertainties in testing activities is not as comprehensive as in the calibration fields, to which much of this document is addressed. It is therefore accepted that the implementation of ISO/IEC 17025:2005 criteria on this subject will take place at an appropriate pace, which may differ from one field to another. However laboratories should be able to satisfy requests from clients, or requirements of specifications, to provide statements of uncertainty.
- N1.3 Testing laboratories should therefore have a defined policy covering the evaluation and reporting of the uncertainties associated with the tests performed. The laboratory should use documented procedures for the evaluation, treatment and reporting of the uncertainty.
- N1.4 Some tests are qualitative in nature, i.e., they do not yield a numeric result. Therefore there can be no meaning in reporting uncertainties directly associated with the test result. Nevertheless, there will be uncertainties associated with the underlying test conditions and these should be subject to the same type of evaluation as is required for quantitative test results.
- N1.5 The methodology for estimation of uncertainty in testing is no different from that in calibration and therefore the procedures described in this document apply equally to testing results.

N2 Objectives

N2.1 The objective of a measurement is to determine the value of the measurand, ie the specific quantity subject to measurement. When applied to testing, the general term measurand may cover many different quantities, for example:

the electrical breakdown characteristics of an insulating material;

the strength of a material;

the concentration of an analyte;

the level of emissions of electromagnetic radiation from an appliance;

the quantity of micro-organisms in a food sample;

the susceptibility of an appliance to electric or magnetic fields;

the quantity of asbestos particles in a sample of air.

N2.2 A measurement begins with an appropriate specification of the measurand, the generic method of measurement and the specific detailed measurement procedure. Knowledge of the influence quantities involved for a given procedure is important so that the sources of uncertainty can be identified.

> United Kingdom Accreditation Service, 21-47 High Street, Feltham, Middlesex, TW13 4UN Website: <u>www.ukas.com</u> Publication requests Tel: +44 (0) 20 8917 8421 Fax: +44 (0) 20 8917 8500

> > United Kingdom Accreditation Service. UKAS Copyright exists in all UKAS publications
> > PAGE 74 OF 82

Annexure 8: UKAS Uncertainties for Test Results. Page 2 of 4

N3 Sources of uncertainty

- N3.1 There are many possible sources of uncertainty. As these will depend on the nature of the tests involved, it is not possible to give detailed guidance here. However the following general points will apply to many areas of testing:
 - (a) Incomplete definition of the test the requirement may not be clearly described, e.g. the temperature of a test may be given as 'room temperature'.
 - (b) Imperfect realisation of the test procedure; even when the test conditions are clearly defined it may not be possible to produce the theoretical conditions in practice due to unavoidable imperfections in the materials or systems used.
 - (c) Sampling the sample may not be fully representative. In some disciplines, such as microbiological testing, it can be very difficult to obtain a representative sample.
 - (d) Inadequate knowledge of the effects of environmental conditions on the measurement process, or imperfect measurement of environmental conditions.
 - (e) Personal bias and human factors; for example:
 - Reading of scales on analogue indicating instruments.
 - Judgement of colour.
 - Reaction time, e.g. when using a stopwatch.
 - Instrument resolution or discrimination threshold, or errors in graduation of a scale.
 - (f) Values assigned to measuring equipment and reference materials.
 - (g) Changes in the characteristics or performance of measuring equipment or reference materials since the last calibration.
 - (h) Values of constants and other parameters used in data evaluation.
 - (i) Approximations and assumptions incorporated in the measurement method and procedure.
 - (j) Variations in repeated observations made under similar but not identical conditions such random effects may be caused by, for example, electrical noise in measuring instruments, short-term fluctuations in the local environment, e.g. temperature, humidity and air pressure, variability in the performance of the person carrying out the test and variability in the homogeneity of the sample itself.
- N3.2 These sources are not necessarily independent and, in addition, unrecognised systematic effects may exist that cannot be taken into account but contribute to error. This is one reason that participation in inter-laboratory comparisons, participation in proficiency testing schemes and internal cross-checking of results by different means are encouraged.
- N3.3 Information on some of the sources of these errors can be obtained from:
 - (a) Data in calibration certificates this enables corrections to be made and uncertainties to be assigned.
 - (b) Previous measurement data for example, history graphs can be constructed and can yield useful information about changes with time.

United Kingdom Accreditation Service, 21-47 High Street, Feltham, Middlesex, TW13 4UN Website: <u>www.ukas.com</u> Publication requests Tel: +44 (0) 20 8917 8421 Fax: +44 (0) 20 8917 8500

© United Kingdom Accreditation Service. UKAS Copyright exists in all UKAS publications

PAGE 75 OF 82

Annexure 8: UKAS Uncertainties for Test Results. Page 3 of 4

- (c) Experience with or general knowledge about the behaviour and properties of similar materials and equipment.
- (d) Accepted values of constants associated with materials and quantities.
- (e) Manufacturers' specifications.
- (f) All other relevant information.

These are all referred to as Type B evaluations because the values were not obtained by statistical means. However the influence of random effects is often evaluated by the use of statistics; if this is the case then the evaluation is designated Type A.

- N3.4 Definitions are given in paragraph <u>3.10</u> for Type A evaluations and in paragraph <u>3.11</u> for Type B evaluations. Further detail on the means of evaluation is given in Sections <u>4</u> and <u>5</u>.
- N3.5 It is recognised that in certain areas of testing it may be known that a significant contribution to uncertainty exists but that the nature of the test precludes a rigorous evaluation of this contribution. In such cases, ISO/IEC 17025:2005 requires that a reasonable estimation be made and that the form of the reporting does not give an incorrect impression of the uncertainty.
- N3.6 In some fields of testing it may be the case that the contribution of measuring instruments to the overall uncertainty can be demonstrated to be insignificant when compared with the repeatability of the process. Nevertheless, such instruments have to be shown to comply with the relevant specifications, normally by calibration.
- N3.7 Some analysis processes appear at first sight to be quite complex, for example there may be various stages of weighing, dilutions and processing before results are obtained. However it will sometimes be the case that the procedure requires standard reference materials to be subject to the same process, the result being the difference between the readings for the analyte and the reference material. In such cases, much of the process can be considered to be negatively correlated and the uncertainty of measurement can be evaluated from the resolution and repeatability of the process; matrix effects may also have to be considered.

N4 Process

- N4.1 The process of assigning a value of uncertainty to a measurement result is summarised below:
 - (a) Identify all sources of error that are likely to have a significant effect, and their relationship with the measurand.
 - (b) Assign values to these using information such as described in <u>N3.3</u>, or in the case of Type A evaluations, calculate the standard deviation using Equations (<u>5</u>) and (<u>6</u>).
 - (c) Consider each uncertainty component and decide whether any are interrelated and whether a dominant component exists (see <u>D3</u> and <u>Appendix C</u> respectively).
 - (d) Add any interdependent components algebraically (i.e., account for whether they act together or cancel each other) and derive a net value.
 - (e) Express each uncertainty value as the equivalent of a standard deviation (see paragraph 3.24), taking into account any sensitivity coefficients (see paragraphs <u>3.28</u> to 3.35).
 - (f) Take the independent components and the values of any derived net components and, in the absence of a dominant component, combine them by taking the square root of the sum of the squares. This gives the combined standard uncertainty (Equation (1)).

United Kingdom Accreditation Service, 21-47 High Street, Feltham, Middlesex, TW13 4UN Website: www.ukas.com Publication requests Tel: +44 (0) 20 8917 8421 Fax: +44 (0) 20 8917 8500 © United Kingdom Accreditation Service. UKAS Copyright exists in all UKAS publications

PAGE 76 OF 82

Annexure 8: UKAS Uncertainties for Test Results. Page 4 of 4

- (g) Multiply the combined standard uncertainty by a coverage factor k, selected on the basis of the coverage probability required, to provide the expanded uncertainty U (see paragraphs <u>3.42 to 3.44</u>).
- (h) Report the result and, if required, the expanded uncertainty, coverage factor and coverage probability in accordance with <u>Section 6</u>.
- N4.2 If one uncertainty contribution is significantly larger than the others then modifications may be required to this procedure. In the case of a dominant component derived from Type B evaluation, see <u>Appendix</u> <u>C</u>. If the non-repeatability of the system is significant, and its effects are evaluated by using a Type A analysis, it may be necessary to use the procedure in <u>Appendix B</u>.
- N4.3 Further information regarding uncertainty evaluation for testing activities can be obtained from specialist publications that address particular fields of testing, such as are described in References [7] and [8].

United Kingdom Accreditation Service, 21-47 High Street, Feltham, Middlesex, TW13 4UN Website: www.ukas.com Publication requests Tel: +44 (0) 20 8917 8421 Fax: +44 (0) 20 8917 8500

United Kingdom Accreditation Service. UKAS Copyright exists in all UKAS publications
 PAGE 77 OF 82

ANNEXURE 9A:Six Sigma: Learn about the Process (**Source**: Process Management International, 2009)

ANNEXURE 9B:Six Sigma: Learn about the Process (Source: Process Management International, 2009)

ANNEXURE 10: Value Stream Map of Future State Selenium Analysis Process (Source: Own Source)

time

ANNEXURE 11A: Current State Selenium Process Run, 8 June 2011

-----FI Concentration results Generated on 06-08-2011 at time 15:39:14 Measurement conditions Method: C:\FLWINLAB\METHODS\ExistingProcess11.06.08.mth Analyst: Comments: Default concentration method Ex. wavelength (nm): 375 Em. wavelength (nm): 520 Ex. slit (nm): 10.0 Em. slit (nm): 10.0 Integration time (s): 1.00 Em. filter: open Sipper parameters: Pump time(s): 8.0 Delay time(s): 1.0 Purge time(s): 0.0 Purge direction forwards ***** Reference sample results Std# Conc*Fact ΒG Factor Intens. (ppb) _____ ----10ppb 10.000 1.368 19.064 1.00 10.000 1.872 19.064 1.00 10ppb 10.000 19.064 10ppb -1.191 1.00 50ppb 50.000 5.089 19.064 1.00 50ppb 50ppb 50.000 19.064 5.805 1.00 1.00 50.000 19.064 5.990 100ppb 100.000 14.410 19.064 1.00 100ppb 100ppb 100.000 14.075 19.064 1.00 100.000 14.297 19.064 1.00 250ppb 250.000 43.163 19.064 1.00 250ppb 250.000 40.814 19.064 1.00 250ppb 500ppb 250.000 38.765 19.064 1.00 500.000 88.765 19.064 1.00 500ppb 500.000 83.676 19.064 1.00

Fit equation:

500ppb

Y = 0.175 x + -2.454

Correlation 0.9985

500.000

83.391

19.064

1.00

Std#	Conc*Fac (ppb)	t	Intens.	BG	Factor	Info
LC2009	145.632	22.997	16.479	1.00	liver	
1	55.417	7.231	16.479	1.00	liver	
2	124.775	19.352	16.479	1.00	liver	
3	136.133	21.337	16.479	1.00	liver	
4	151.309	23.989	16.479	1.00	liver	
5	1434.881	248.305	16.479	1.00	liver	
6	149.197	23.620	16.479	1.00	liver	
7	667.768	114.245	16.801	1.00	liver	
8	90.122	13.296	16.479	1.00	liver	
9	169.705	27.204	16.801	1.00	liver	
10	139.286	21.888	16.801	1.00	liver	
х	1417.445	245.258	16.801	1.00	liver	
XX	637.137	108.892	16.801	1.00	liver	
blank	32.448	3.217	16.801	1.00	standards	3
10ppm	21.330	1.274	16.801	1.00	standards	3
50ppm	62.169	8.411	16.801	1.00	standards	3
100ppm	110.996	16.944	16.801	1.00	standards	3
250ppm	248.551	40.983	16.801	1.00	standards	3
5000ppm	555.018	94.541	16.801	1.00	standards	6

ANNEXURE 11B: Current State Selenium Process Run, 14 June 2011

-----FI Concentration results Generated on 06-14-2011 at time 16:28:54 Measurement conditions Method: C:\FLWINLAB\METHODS\ExistingProcess11.06.14.mth Analyst: Comments: Default concentration method Ex. wavelength (nm): 375 Em. wavelength (nm): 520 Ex. slit (nm): 10.0 Em. slit (nm): 10.0 Integration time (s): 1.00 Em. filter: open Sipper parameters: Pump time(s): 8.0 Delay time(s): 1.0 Purge time(s): 0.0 Purge direction forwards ***** Reference sample results Std# Conc*Fact ΒG Factor Intens. (ppb) _____ _____ 10ppb 10.000 0.434 16.722 1.00 10.000 0.529 16.722 1.00 10ppb 10.000 16.722 10ppb 0.387 1.00 50ppb 50.000 2.402 16.722 1.00 50ppb 50ppb 50.000 2.735 16.722 1.00 50.000 16.722 2.527 1.00 100ppb 100.000 6.111 16.722 1.00 100ppb 100ppb 100.000 6.159 16.722 1.00 100.000 6.778 16.722 1.00 16.722 250ppb 250.000 14.912 1.00 250ppb 250.000 15.661 16.722 1.00 250ppb 500ppb 250.000 14.874 16.722 1.00 500.000 29.609 16.722 1.00 16.722 500ppb 500.000 29.991 1.00 500ppb 500.000 30.184 16.722 1.00 Fit equation: Y = 0.06 x + -0.083Correlation 0.9994 ••• -

Std#	Conc*Fac (ppb)	t	Intens.	BG	Factor	Info
I C2009	149 062	8 901	16 852	1 00	liver	
1 trial	45.844	2.680	16.852	1.00	liver	
2 trial	131.226	7.826	16.852	1.00	liver	
3 trial	147.021	8.778	16.852	1.00	liver	
4 trial	135.954	8.111	16.852	1.00	liver	
5 trial	1805.339	108.726	16.852	1.00	liver	
6 trial	161.356	9.642	16.852	1.00	liver	
7 trial	785.308	47.248	16.852	1.00	liver	
8 trial	49.412	2.895	16.852	1.00	liver	
9 trial	188.733	11.292	16.852	1.00	liver	
10 trial	293.693	17.618	16.852	1.00	liver	
BL	22.649	1.282	16.852	1.00	blood	
10	37.532	2.179	16.852	1.00	blood	
50	77.352	4.579	16.852	1.00	blood	
100	139.837	8.345	16.852	1.00	blood	
250	328.967	19.744	16.852	1.00	blood	
500	630.141	37.896	16.852	1.00	blood	

ANNEXURE 11C: Current State Selenium Process Run, 21 June 2011

-----FI Concentration results Generated on 06-21-2011 at time 15:50:52 -----***** Measurement conditions Method: C:\FLWINLAB\METHODS\ExistingProcess11.06.21.mth Analyst: Comments: Default concentration method Ex. wavelength (nm): 375 Em. wavelength (nm): 520 Ex. slit (nm): . 10.0 Em. slit (nm): 10.0 Integration time (s): 1.00 Em. filter: open open Sipper parameters: Pump time(s): Delay time(s): 8.0 1.0 Purge time(s): 0.0 Purge direction forwards Reference sample results Std# Conc*Fact Intens. BG Factor

	(ppb)			-
10ppb	10.000	2.006	16.121	1.00
10ppb	10.000	2.045	16.121	1.00
10ppb	10.000	1.884	16.121	1.00
50ppb	50.000	8.899	16.121	1.00
50ppb	50.000	8.937	16.121	1.00
50ppb	50.000	8.704	16.121	1.00
100ppb	100.000	17.563	16.121	1.00
100ppb	100.000	17.472	16.121	1.00
100ppb	100.000	17.852	16.121	1.00
250ppb	250.000	43.611	16.121	1.00
250ppb	250.000	44.962	16.121	1.00
250ppb	250.000	45.031	16.121	1.00
500ppb	500.000	89.496	16.121	1.00
500ppb	500.000	88.963	16.121	1.00
500ppb	500.000	90.119	16.121	1.00

-----Fit equation:

Y = 0.179 x + -0.072

_____ ພາສແບກ 0.9999 Correlation

-**************

Conc*Fac (ppb)	t	Intens.	BG	Factor	Info
134.694	24.036	16.768	1.00	liver	
45.350	8.045	16.768	1.00	liver	
122.235	21.806	16.768	1.00	liver	
136.303	24.324	16.768	1.00	liver	
130.811	23.341	16.768	1.00	liver	
1458.633	260.997	16.768	1.00	liver	
135.007	24.092	16.768	1.00	liver	
629.917	112.672	16.768	1.00	liver	
58.289	10.361	16.768	1.00	liver	
170.753	30.490	16.768	1.00	liver	
264.562	47.280	16.768	1.00	liver	
134.320	23.969	16.768	1.00	liver	
132.448	23.634	16.768	1.00	liver	
	Conc*Fac (ppb) 134.694 45.350 122.235 136.303 130.811 1458.633 135.007 629.917 58.289 170.753 264.562 134.320 132.448	Conc*Fact (ppb) 134.694 24.036 45.350 8.045 122.235 21.806 136.303 24.324 130.811 23.341 1458.633 260.997 135.007 24.092 629.917 112.672 58.289 10.361 170.753 30.490 264.562 47.280 134.320 23.969 132.448 23.634	Conc*Fact (ppb) Intens. 134.694 24.036 16.768 45.350 8.045 16.768 122.235 21.806 16.768 136.303 24.324 16.768 130.811 23.341 16.768 135.007 24.092 16.768 135.007 24.092 16.768 58.289 10.361 16.768 58.289 10.361 16.768 170.753 30.490 16.768 134.320 23.969 16.768 134.320 23.969 16.768	Conc*Fact (ppb) Intens. BG 134.694 24.036 16.768 1.00 45.350 8.045 16.768 1.00 122.235 21.806 16.768 1.00 136.303 24.324 16.768 1.00 130.811 23.341 16.768 1.00 135.007 24.092 16.768 1.00 135.007 24.092 16.768 1.00 135.007 24.092 16.768 1.00 135.007 24.092 16.768 1.00 135.007 24.092 16.768 1.00 170.753 30.490 16.768 1.00 170.753 30.490 16.768 1.00 134.320 23.969 16.768 1.00 132.448 23.634 16.768 1.00	Conc*Fact (ppb) Intens. BG Factor 134.694 24.036 16.768 1.00 liver 45.350 8.045 16.768 1.00 liver 122.235 21.806 16.768 1.00 liver 136.303 24.324 16.768 1.00 liver 130.811 23.341 16.768 1.00 liver 135.007 24.092 16.768 1.00 liver 135.007 24.092 16.768 1.00 liver 58.289 10.361 16.768 1.00 liver 58.289 10.361 16.768 1.00 liver 170.753 30.490 16.768 1.00 liver 264.562 47.280 16.768 1.00 liver 134.320 23.969 16.768 1.00 liver 132.448 23.634 16.768 1.00 liver

ANNEXURE 11D: Current State Selenium Process Run, 29 June 2011

-----FI Concentration results Generated on 06-29-2011 at time 16:20:23 Measurement conditions Method: C:\FLWINLAB\METHODS\ExistingProcess11.06.29.mth Analvst: Comments: Default concentration method Ex. wavelength (nm): 375 Em. wavelength (nm): 520 Ex. slit (nm): 10.0 Em. slit (nm): 10.0 Integration time (s): 1.00 Em. filter: open Sipper parameters: Pump time(s): 8.0 Delay time(s): 1.0 Purge time(s): 0.0 Purge direction forwards ********** Reference sample results Std# Conc*Fact BG Factor Intens. (ppb) 10ppb 10.000 1.522 15.892 1.00 10.000 1.578 15.892 10ppb 1.00 10ppb 10.000 1.639 15.892 1.00 50ppb 50.000 9.038 15.892 1.00 50ppb 50.000 8.849 15.892 1.00 8.589 15.892 50ppb 50.000 1.00 100ppb 100.000 18.949 15.892 1.00 100ppb 100.000 19.437 15.892 1.00 100ppb 100.000 19.892 15.892 1.00 250ppb 250.000 45,971 15.892 1.00 250ppb 250.000 44.418 15.892 1.00 250ppb 250.000 15.892 46.724 1.00 500ppb 500.000 95.604 15.892 1.00 500ppb 500.000 94.773 15.892 1.00 500ppb 500.000 87.928 15.892 1.00 Fit equation: Y = 0.185 x + -0.095 0.9987 Correlation ***** Unknown sample results Std# Conc*Fact ΒG Factor Info Intens. (ppb) 21.890 15.592 LC 2009 118.535 1.00 liver 9.398 15.592 51.182 1.00 1 liver 2 126.887 23.439 15.592 1.00 liver 3 138.070 25.513 15.592 1.00 liver 128.219 4 23.686 15.592 1.00 liver 1471.848 272.888 15.592 1.00 5 liver 6 134.360 24.825 15.592 1.00 liver 613.744 113.736 15.592 1.00 blood 7 8 59.706 10.979 15.592 1.00 blood 9 169.671 31.374 15.592 1.00 blood 10 269.207 49.835 15.592 1.00 blood 15.592 120.697 22.291 1.00 liver х 15.592 119.436 22.057 1.00 liver хχ LC Renee 1.00 119.743 22.114 15.592 liver

ANNEXURE 11E: Current State Selenium Process Run, 5 July 2011

-----FI Concentration results Generated on 07-05-2011 at time 17:11:24 ***** Measurement conditions Method: C:\FLWINLAB\METHODS\ExistingProcess11.07.05.mth Analvst: Comments: Default concentration method Ex. wavelength (nm): 375 Em. wavelength (nm): 520 Ex. slit (nm): 10.0 Em. slit (nm): 10.0 Integration time (s): 1.00 Em. filter: open Sipper parameters: Pump time(s): 8.0 Delay time(s): 1.0 Purge time(s): 0.0 Purge direction forwards ********************************** Reference sample results Std# Conc*Fact BG Factor Intens. (ppb) 10ppb 10.000 1.796 22.987 1.00 10.000 1.507 22.987 10ppb 1.00 10ppb 10.000 0.601 22.987 1.00 50ppb 50.000 8.245 22.987 1.00 50ppb 50.000 8.088 22.987 1.00 50ppb 50.000 8.485 22.987 1.00 100ppb 100.000 17.139 22.987 1.00 100ppb 100.000 20.462 22.987 1.00 100ppb 100.000 17.338 22.987 1.00 250ppb 250.000 22.987 47.281 1.00 250ppb 250.000 49.328 22.987 1.00 250ppb 250.000 46.796 22.987 1.00 500ppb 500.000 94.143 22,987 1.00 500ppb 500.000 94.671 22.987 1.00 500ppb 500.000 95.465 22.987 1.00 Fit equation: Y = 0.192 x + -0.7930.9996 Correlation ***** Unknown sample results Std# Conc*Fact ΒG Factor Info Intens. (ppb) 22.298 21.815 LC 2009 120.477 1.00 liver 55.630 9.869 21.815 1.00 1 liver 22.468 2 121.364 21.815 1.00 liver 3 147.113 27.403 21.815 1.00 liver 132.003 24.507 21.815 4 1.00 liver 5 1419.938 271.358 21.815 1.00 liver 6 146.419 27.270 21.815 1.00 liver 643.825 122.605 21.815 1.00 7 liver 8 55.165 9.780 21.815 1.00 liver

166.522

256.424

-13.429

19.160

64.531

221.305

460.186

95.126

93.268

q

10

Std10

Std50

Std100

Std250

Std500

x xx 31.123

48.354

-3.367

2.879

11.575

41.623

87.408

17.439

17.083

21.815

21.815

21.815

21.815

21.815

21.815

21.815

21.815

21.815

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

liver

liver

blood

blood

blood

blood

blood

blood

blood

ANNEXURE 11F: Current State Selenium Process Run, 12 July 2011

-----FI Concentration results Generated on 07-12-2011 at time 15:34:36 Measurement conditions Method: C:\FLWINLAB\METHODS\ExistingProcess11.07.12.mth Analyst: Comments: Default concentration method Ex. wavelength (nm): 375 Em. wavelength (nm): 520 Ex. slit (nm): 10.0 Em. slit (nm): 10.0 Integration time (s): 1.00 Em. filter: open Sipper parameters: Pump time(s): 8.0 Delay time(s): 1.0 Purge time(s): 0.0 Purge direction forwards ***** Reference sample results Std# Conc*Fact ΒG Factor Intens. (ppb) _____ _____ _____ 10ppb 10.000 1.596 16.470 1.00 10.000 1.489 16.470 1.00 10ppb 10.000 1.919 10ppb 16.470 1.00 50ppb 50.000 8.634 16.470 1.00 50ppb 50ppb 50.000 9.238 16.470 1.00 1.00 8.630 50.000 16.470 100ppb 100.000 18.832 16.470 1.00 100ppb 100ppb 100.000 17.989 16.470 1.00 100.000 18.027 16.470 1.00 250ppb 250.000 43.326 16.470 1.00 250ppb 250.000 43.356 16.470 1.00 250ppb 500ppb 250.000 46.381 16.470 1.00 500.000 16.470 86.236 1.00 500ppb 500.000 87.869 16.470 1.00 500ppb 500.000 84.272 16.470 1.00

Fit equation:

Y = 0.172 x + 0.525

Correlation 0.9994

Std#	Conc*Fac (ppb)	t	Intens.	BG	Factor	Info
LC 2009	131.522	23.164	16.266	1.00	liver	
2	126.480	22.296	16.266	1.00	liver	
3	121.048	21.361	16.266	1.00	liver	
4	135.972	23.930	16.266	1.00	liver	
5	1405.282	242.421	16.266	1.00	liver	
6	141.555	24.891	16.266	1.00	liver	
7	601.012	103.979	16.266	1.00	liver	
8	66.305	11.938	16.266	1.00	liver	
9	184.214	32.234	16.266	1.00	liver	
10	236.818	41.289	16.266	1.00	liver	
х	129.541	22.823	16.266	1.00	blood	
хх	128.548	22.652	16.266	1.00	blood	

ANNEXURE 11G: Current State Selenium Process Run, 21 July 2011

FI Concentration results Generated on 07-21-2011 at time 16:56:40 -----****** Measurement conditions Method: C:\FLWINLAB\METHODS\ExistingProcess11.07.21.mth Analyst: Comments: Default concentration method Ex. wavelength (nm): 375 Em. wavelength (nm): Ex. slit (nm): 10 520 . 10.0 Em. slit (nm): 10.0 Integration time (s): 1.00 Em. filter: open open

 Sipper parameters:

 Pump time(s):
 8.0

 Delay time(s):
 1.0

 Purge time(s):
 0.0

 Purge direction forwards

Reference sample results

Std#	Conc*Fac (ppb)	t	Intens.	BG	Factor
10ppb 10ppb	10.000 10.000	0.822	18.669 18.669	1.00	
50ppb	50.000	0.930 8.805 8.904	18.669	1.00	
50ppb 50ppb	50.000 50.000	8.727 17 330	18.669	1.00	
100ppb 100ppb	100.000	17.782	18.669	1.00	
250ppb 250ppb	250.000 250.000	49.947 47.140	18.669 18.669	1.00	
250ppb 500ppb	250.000 500.000	46.827 96.126	18.669 18.669	1.00 1.00	
500ppb 500ppb	500.000 500.000	99.309 96.953	18.669 18.669	1.00 1.00	

Fit equation:

Y = 0.198 x + -1.403

Correlation 0.9996

.

Std#	Conc*Fac (ppb)	t	Intens.	BG	Factor	Info
LC 2009 LC2009 2	124.864 155.710	23.261 29.354	18.156 18.156	1.00 1.00	liver liver	
CRM	67.449	11.920	18.156	1.00	liver	
1	48.651	8.207	18.156	1.00	liver	
2	130.483	24.371	18.156	1.00	liver	
3	127.972	23.875	18.156	1.00	liver	
4	128.731	24.025	18.156	1.00	liver	
5	1388.027	272.769	18.156	1.00	liver	
6	134.427	25.150	18.156	1.00	liver	
7	591.596	115.453	18.156	1.00	liver	
8	56.584	9.774	18.156	1.00	liver	
9	164.403	31.071	18.156	1.00	liver	
10	252.082	48.390	18.156	1.00	liver	
х	123.887	23.068	18.156	1.00	blood	
XX	68.000	12.029	18.156	1.00	blood	

ANNEXURE 11H: Current State Selenium Process Run, 29 July 2011

-----FI Concentration results Generated on 07-29-2011 at time 14:51:08 Measurement conditions Method: C:\FLWINLAB\METHODS\ExistingProcess11.07.29.mth Analyst: Comments: Default concentration method Ex. wavelength (nm): 375 Em. wavelength (nm): 520 Ex. slit (nm): 10.0 Em. slit (nm): 10.0 Integration time (s): 1.00 Em. filter: open Sipper parameters: Pump time(s): 8.0 Delay time(s): 1.0 Purge time(s): 0.0 Purge direction forwards ***** Reference sample results Std# Conc*Fact ΒG Factor Intens. (ppb) _____ ----10ppb 10.000 1.913 17.621 1.00 10.000 1.918 17.621 1.00 10ppb 10.000 1.00 10ppb 1.483 17.621 50ppb 50.000 10.478 17.621 1.00 50ppb 50ppb 50.000 9.583 17.621 1.00 50.000 10.371 1.00 17.621 100ppb 100.000 21.315 17.621 1.00 100ppb 100ppb 100.000 18.764 17.621 1.00 100.000 21.139 17.621 1.00 250ppb 250.000 51.916 17.621 1.00 250ppb 250.000 50.878 17.621 1.00 250ppb 250.000 47.563 17.621 1.00 500ppb 500.000 96.018 17.621 1.00

Fit equation:

500ppb

500ppb

Y = 0.19 x + 0.872

Correlation 0.9991

94.267

95.390

17.621

17.621

1.00

1.00

Unknown sample results

500.000

500.000

Std#	Conc*Fac (ppb)	t	Intens.	BG	Factor	Info
LC 2009 CRM 1 2 3 4 5 5 6 7 8 9 10 x	113.010 53.287 43.579 121.500 113.419 128.179 1390.454 141.710 657.011 47.559 131.104 257.753 106.567 74.900	22.394 11.020 9.171 24.011 22.472 25.283 265.681 27.860 125.998 9.929 25.840 49.960 21.167	17.682 17.682 17.682 17.682 17.682 17.682 17.682 17.682 17.682 17.682 17.682 17.682 17.682 17.682	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	liver liver liver liver liver liver liver liver liver liver liver liver liver	
~~	14.000	10.117	17.000	1.00	51000	

ANNEXURE 11I: Current State Selenium Process Run, 3 August 2011

FI Concentration results Generated on 08-03-2011 at time 14:41:33 -----****** Measurement conditions Method: C:\FLWINLAB\METHODS\ExistingProcess11.08.03.mth Analyst: Comments: Default concentration method Ex. wavelength (nm): 375 Em. wavelength (nm): Ex. slit (nm): 10 520 . 10.0 Em. slit (nm): 10.0 Integration time (s): 1.00 Em. filter: open open Sipper parameters: Pump time(s): Delay time(s): 8.0 1.0

Purge time(s): 0.0 Purge direction forwards

Reference sample results

Std#	Conc*Fac (ppb)	t	Intens.	BG	Factor
10ppb 10ppb 10ppb 50ppb 50ppb 50ppb 100ppb	10.000 10.000 10.000 50.000 50.000 50.000	1.901 1.638 2.064 9.134 10.648 8.962 17 525	16.575 16.575 16.575 16.575 16.575 16.575 16.575 16.575	1.00 1.00 1.00 1.00 1.00 1.00 1.00	
100ppb 100ppb 250ppb 250ppb 250ppb 500ppb 500ppb 500ppb	100.000 100.000 250.000 250.000 250.000 500.000 500.000	17.897 17.897 18.837 46.513 44.945 46.681 92.688 96.532 84.928	16.575 16.575 16.575 16.575 16.575 16.575 16.575 16.575 16.575	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	

Fit equation:

Y = 0.183 x + 0.159

Correlation 0.9976

.

Std#	Conc*Fac (ppb)	t	Intens.	BG	Factor	Info
LC 2009 CRM 1 2 3 4 5 6 7 8 9 9 10	133.749 53.499 50.120 143.562 136.482 135.551 1382.858 136.920 604.422 84.583 174.164 250.827 129.466	24.582 9.928 9.311 26.374 25.081 24.911 252.675 25.161 110.529 15.604 31.962 45.961 23.800	16.436 16.436 16.436 16.436 16.436 16.436 16.436 16.436 16.436 16.436 16.436 16.436 16.436	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	liver liver liver liver liver liver liver liver liver liver	
xx	48.926	9.093	16.897	1.00	liver	

ANNEXURE 11J: Current State Selenium Process Run, 11 August 2011

-----FI Concentration results Generated on 08-11-2011 at time 16:54:17 Measurement conditions Method: C:\FLWINLAB\METHODS\ExistingProcess11.08.11.mth Analvst: Comments: Default concentration method Ex. wavelength (nm): 375 Em. wavelength (nm): 520 Ex. slit (nm): 10.0 Em. slit (nm): 10.0 Integration time (s): 1.00 Em. filter: open Sipper parameters: Pump time(s): 8.0 Delay time(s): 1.0 Purge time(s): 0.0 Purge direction forwards Reference sample results Std# Conc*Fact BG Factor Intens. (ppb) 10ppb 10.000 2.183 16.726 1.00 10.000 1.969 16.726 10ppb 1.00 10ppb 10.000 2.142 16.726 1.00 50ppb 50.000 9.762 16.348 1.00 50.000 50ppb 10.757 16.348 1.00 50.000 50ppb 16.726 1.00 9.434 100ppb 100.000 18.737 16.348 1.00 100ppb 100.000 19.033 16.348 1.00 100ppb 100.000 16.348 1.00 22.128 250ppb 250.000 16.348 46.657 1.00 250ppb 250.000 48.551 16.348 1.00 250ppb 250.000 16.348 47.821 1.00 500ppb 500.000 92.113 16.348 1.00 500ppb 500.000 89.510 16.348 1.00 500ppb 500.000 96.767 16.348 1.00 Fit equation: Y = 0.185 x + 0.9120.9987 Correlation ***** Unknown sample results Std# Conc*Fact ΒG Factor Info Intens. (ppb) LC 2009 140.134 26.777 16.828 1.00 liver LC2009 2 126.974 24.348 17.267 1.00 liver Feed Contro 40.725 8.429 16.828 1.00 feed Feed CRM 25.625 5.642 16.828 1.00 feed CRM 50.515 10.236 16.828 1.00 liver 43.054 8.859 16.828 1.00 liver 1

2

3 4

5

6

7

8

9

10

х

xx

124.812

130.452

132.944

1383.993

123.425

636.594

60.495

162.813

260.538

128.133

110.210

23.949

24.990

25.450

256.357

23.693

118.409

12.078

30.963

49.000

24.562

21.254

16.828

16.828

16.828

16.828

16.666

16.666

16.666

16.666

16.666

17.267

17.267

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

liver

210

ANNEXURE 11K: Current State Selenium Process Run, 16 August 2011

-----FI Concentration results Generated on 08-16-2011 at time 17:40:55 Measurement conditions Method: C:\FLWINLAB\METHODS\ExistingProcess11.08.16.mth Analyst: Comments: Default concentration method Ex. wavelength (nm): 375 Em. wavelength (nm): 520 Ex. slit (nm): 10.0 Em. slit (nm): 10.0 Integration time (s): 1.00 Em. filter: open Sipper parameters: Pump time(s): 8.0 Delay time(s): 1.0 Purge time(s): 0.0 Purge direction forwards ***** Reference sample results Std# Conc*Fact ВG Factor Intens. (ppb) _____ ----10ppb 10.000 2.099 16.821 1.00 10.000 1.929 16.821 1.00 10ppb 10.000 10ppb 1.536 16.821 1.00 50ppb 50.000 9.680 16.821 1.00 50ppb 50ppb 50.000 16.821 1.00 10.441 50.000 8.556 16.821 1.00 100ppb 100.000 18.168 16.821 1.00 100ppb 100ppb 100.000 18.382 16.821 1.00 100.000 22.166 16.821 1.00 250ppb 250.000 49.791 16.821 1.00 250ppb 250.000 48.137 16.821 1.00 250ppb 500ppb 250.000 48.497 16.821 1.00 500.000 98.889 16.821 1.00 500ppb 500.000 96.730 16.821 1.00 500ppb 500.000 98.313 16.821 1.00 Fit equation: Y = 0.196 x + -0.154Correlation 0.9996 -********************************

Conc*Fac (ppb)	t	Intens.	BG	Factor	Info
145.480	28.389	16.368	1.00	liver	
74.761	14.514	16.368	1.00	liver	
139.206	27.158	16.368	1.00	liver	
145.439	28.381	16.368	1.00	liver	
159.109	31.063	16.368	1.00	liver	
1230.140	241.200	16.368	1.00	liver	
153.319	29.927	16.368	1.00	liver	
572.645	112.199	16.368	1.00	liver	
70.108	13.601	16.368	1.00	liver	
114.017	22.216	16.368	1.00	liver	
73.829	14.331	16.368	1.00	liver	
154.104	30.081	16.368	1.00	liver	
152.728	29.811	16.368	1.00	liver	
	Conc*Fac (ppb) 145.480 74.761 139.206 145.439 159.109 1230.140 153.319 572.645 70.108 114.017 73.829 154.104 152.728	Conc*Fact (ppb) 145.480 28.389 74.761 14.514 139.206 27.158 145.439 28.381 159.109 31.063 1230.140 241.200 153.319 29.927 572.645 112.199 70.108 13.601 114.017 22.216 73.829 14.331 154.104 30.081 152.728 29.811	Conc*Fact (ppb) Intens. 145.480 28.389 16.368 74.761 14.514 16.368 139.206 27.158 16.368 145.439 28.381 16.368 145.439 28.381 16.368 145.439 28.381 16.368 159.109 31.063 16.368 153.319 29.927 16.368 572.645 112.199 16.368 70.108 13.601 16.368 73.829 14.331 16.368 154.104 30.081 16.368 152.728 29.811 16.368	Conc*Fact (ppb) Intens. BG 145.480 28.389 16.368 1.00 74.761 14.514 16.368 1.00 139.206 27.158 16.368 1.00 145.439 28.381 16.368 1.00 145.439 28.381 16.368 1.00 145.439 28.381 16.368 1.00 159.109 31.063 16.368 1.00 1230.140 241.200 16.368 1.00 153.319 29.927 16.368 1.00 572.645 112.199 16.368 1.00 70.108 13.601 16.368 1.00 73.829 14.331 16.368 1.00 154.104 30.081 16.368 1.00 152.728 29.811 16.368 1.00	Conc*Fact (ppb) Intens. BG Factor 145.480 28.389 16.368 1.00 liver 74.761 14.514 16.368 1.00 liver 139.206 27.158 16.368 1.00 liver 145.439 28.381 16.368 1.00 liver 145.439 28.381 16.368 1.00 liver 159.109 31.063 16.368 1.00 liver 153.319 29.927 16.368 1.00 liver 572.645 112.199 16.368 1.00 liver 70.108 13.601 16.368 1.00 liver 73.829 14.331 16.368 1.00 liver 73.829 14.331 16.368 1.00 liver 154.104 30.081 16.368 1.00 liver 152.728 29.811 16.368 1.00 liver

ANNEXURE 11L: Current State Selenium Process Run, 24 August 2011

-----FI Concentration results Generated on 08-24-2011 at time 16:11:21 Measurement conditions Method: C:\FLWINLAB\METHODS\ExistingProcess11.08.23.mth Analvst: Comments: Default concentration method Ex. wavelength (nm): 375 Em. wavelength (nm): 520 Ex. slit (nm): 10.0 Em. slit (nm): 10.0 Integration time (s): 1.00 Em. filter: open Sipper parameters: Pump time(s): 8.0 Delay time(s): 1.0 Purge time(s): 0.0 Purge direction forwards Reference sample results Std# Conc*Fact BG Factor Intens. (ppb) 10ppb 10.000 2.137 17.565 1.00 17.565 10.000 3.481 10ppb 1.00 10ppb 10.000 2.311 17.565 1.00 50ppb 50.000 11.332 17.565 1.00 50.000 17.565 50ppb 10.607 1.00 50ppb 50.000 10.621 17.565 1.00 100ppb 100.000 22.001 17.565 1.00 100ppb 100.000 21.225 17.565 1.00 100ppb 100.000 22.510 17.565 1.00 250ppb 250.000 55.261 17.565 1.00 250ppb 250.000 53.803 17.565 1.00 250ppb 250.000 17.565 54.323 1.00 500ppb 500.000 17.565 96.966 1.00 500ppb 500.000 97.600 17.565 1.00 500ppb 500.000 95.438 17.565 1.00 Fit equation: Y = 0.193 x + 2.2040.9979 Correlation له حل ***** Unknown sample results Std# Conc*Fact ΒG Factor Info Intens. (ppb) LC 2009 123.850 26.092 16.271 1.00 liver CRM 44.234 10.736 16.271 1.00 liver 27.300 1.00 Sample 1 130.113 17.441 liver Sample 2 125.996 26.506 16.271 1.00 liver Sample 3 124.716 16.271 26.259 1.00 liver Sample 4 130.460 27.367 16.271 1.00 liver Sample 5 1456.350 283.099 16.271 1.00 liver Sample 6 198.774 40.543 16.271 1.00 liver Sample 7 684.309 134.191 16.271 1.00 liver Sample 8 62.199 14.201 16.271 1.00 liver Sample 9 125.359 26.383 16.271 1.00 liver 248.106 50.058 16.271 Sample 10 1.00 liver 129.035 27.092 1.00 16.271 х 49.636 xx 11.778 16.271 1.00

ANNEXURE 11M: Current State Selenium Process Run, 29 August 2011

-----FI Concentration results Generated on 08-29-2011 at time 15:18:11 Measurement conditions Method: C:\FLWINLAB\METHODS\ExistingProcess11.08.29.mth Analvst: Comments: Default concentration method Ex. wavelength (nm): 375 Em. wavelength (nm): 520 Ex. slit (nm): 10.0 Em. slit (nm): 10.0 Integration time (s): 1.00 Em. filter: open Sipper parameters: Pump time(s): 8.0 Delay time(s): 1.0 Purge time(s): 0.0 Purge direction forwards ********************************** Reference sample results Std# Conc*Fact BG Factor Intens. (ppb) 10ppb 10.000 2.043 16.005 1.00 10.000 1.896 16.005 1.00 10ppb 10ppb 10.000 1.678 16.005 1.00 50ppb 50.000 10.056 16.005 1.00 50.000 50ppb 9.605 16.005 1.00 50ppb 16.005 50.000 8.987 1.00 100ppb 100.000 17.333 16.005 1.00 100ppb 100.000 18.163 16.005 1.00 100ppb 100.000 18.339 16.005 1.00 250ppb 250.000 44.008 16.005 1.00 250ppb 250.000 42.683 16.005 1.00 250ppb 250.000 16.005 42.434 1.00 500ppb 500.000 94,393 16.005 1.00 500ppb 500.000 93.685 16.005 1.00 500ppb 500.000 89.212 16.005 1.00 Fit equation: Y = 0.184 x + -0.430.9987 Correlation ***** Unknown sample results Std# Conc*Fact ΒG Factor Info Intens. (ppb) LC 2009 114.887 20.652 15.634 1.00 liver CRM 7.850 15.634 45.123 1.00 liver Sample 1 47.200 8.231 15.634 1.00 liver Sample 2 129.251 23.288 15.634 1.00 liver Sample 3 133.856 24.133 15.634 1.00 liver Sample 4 135.840 15.634 1.00 24.497 liver Sample 5 1.00 1331.610 243.928 15.634 liver Sample 6 125.709 22.638 15.634 1.00 liver Sample 7 619.824 113.311 15.634 1.00 liver Sample 8 51.734 15.634 1.00 9.063 liver Sample 9 173.681 31.441 15.634 1.00 liver 233.875 42.487 Sample 10 15.634 1.00 liver 115.563 20.776 15.801 1.00 х xx 44.399 7.717 15.801 1.00

ANNEXURE 12: Data Analysis Calculations

Chapter 5.5.1 Total Regression Analysis Summary: Average of all standard calibration curves

SUMMARY OUTPUT

ANOVA					
	df	SS	MS	F	Significance F
Regression	1	159473	159473	67891.59	1.25E-07
Residual	3	7.046805	2.348935		
Total	4	159480			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	0.362516	0.97762	0.370815	0.735412	-2.74871	3.473739	-2.74871	3.473739
X Variable 1	5.6741	0.021777	260.5602	1.25E-07	5.604797	5.743402	5.604797	5.743402

Table 5.4 Linearity

 r^2 0.9999 and r 0.9999 indicates good positive linearity F-ANOVA = 67891.59. Large number implies significant linearity.

Regression Equation: y = bx + aa = 0.362516 b = 5.6741 Thus: y = 5.6741x + 0.362516

Total Regression Analysis: Average Calibration Curve Readings

Table 5.4Calibration uncertainties:

 $S_{y/x}$ = random calibration uncertainties $S_{y/x}$ = 1.532624

 S_b = uncertainties in slope S_b = 0.021777

 S_a = uncertainties in intercept S_a = 0.97762

Both S_b and $S_a < S_{y/x}$. This indicates good general precision. $S_a/S_b = 44.89$. This provides an indication that the range of standards requires more standards on the lower end of the calibration curve. $S_a < S_b$ provides an indication the extent of the range of standards is sufficient.

Table 5.4. Calibration uncertainties

Determination of the significance of standard error $(S_{y/x})$ of regression

f-test for variance in standard curve and variance of CRM

$$f_{calc} = \frac{(S_{y/x})^{-}}{\sigma_{CRM}^{2}} \\ = \frac{8.53^{2}}{1.53^{2}} = 29.99 \sim 30 \rightarrow \\ f_{crit} = 7.146$$

 $f_{calc} > f_{crit}$ thus there is significant evidence to reject the null hypothesis which states residuals are dispersed by random error.

Residuals are more widely dispersed than can be accounted for by random error. This could be evidence of non-linearity. Thus systematic error is present in the analytical process.

Uncertainty in slope: 0.021777 (Given by ANOVA)

Uncertainty in intercept: 0.97762 (Given by ANOVA)

Confidence limits in x intercept (b) at 95% confidence

CL of b: $b \pm t_{crit}S_b$ CL of b: 5.6741 ± (3.18 x 0.021777) CL of b: 5.6741 ± 0.0693

Confidence limits in y intercept (a) at 95% confidence

 $\begin{array}{l} CL \ of \ a: \ a \pm t_{crit}S_a \\ CL \ of \ a: \ 0.3625 \pm (3.18 \ x \ 0.97762) \\ CL \ of \ a: \ 0.3625 \pm 3.1089 \end{array}$

Table 5.4Limit of detection: Instrument Response (LOD Y intercept: Minimum
Limit of detection according to ISO 11843 Method)

$$\begin{array}{l} Y_{lod} = a + 3S_{y/x} \\ Y_{lod} = 0.3625 + (3 \ x \ 1.532624) \\ Y_{lod} = 0.3625 + (4.497872) \\ Y_{lod} = 4.960388 \sim 4.96 \rightarrow \end{array}$$

Table 5.4Limit of detection: Analyte Concentration (LOD X intercept:
Minimum Limit of detection according to ISO 11843 Method)

$$\begin{split} X_{lod} &= \frac{Ylod-a}{b} \\ X_{lod} &= \frac{(a+3Sy/x)-a}{b} \\ X_{lod} &= \frac{4.9603-0.3625}{5.6741} \\ X_{lod} &= \frac{4.5978}{5.6741} \\ X_{lod} &= 0.810313529 \sim 0.81 \rightarrow \end{split}$$

Therefore this method could only detect selenium concentrations larger than 0.81ppb. All selenium concentrations detected were far above this value.

Table 5.4Limit of Quantitation (LOQ Y intercept: Minimum Limit considered
satisfactory for quantitative analysis)

$$\begin{split} &Y_{loq} = a + 10S_{y/x} \\ &Y_{lod} = 0.3625 + (10 \text{ x } 1.532624) \\ &Y_{lod} = 0.3625 + (15.32624) \\ &Y_{lod} = 15.68874 \sim 15.69 \rightarrow \end{split}$$

Table 5.4Limit of Quantitation (LOQ X intercept: Minimum Limit considered
satisfactory for quantitative analysis)

$$\begin{split} X_{loq} &= \frac{Yloq-a}{b} \\ X_{loq} &= \frac{(a+10Sy/x)-a}{b} \\ X_{loq} &= \frac{15.68874-0.3625}{5.6741} \\ X_{loq} &= \frac{15.32624}{5.6741} \\ X_{lod} &= 2.701087397 \sim 2.70 \rightarrow \end{split}$$

Therefore this method could only quantify selenium concentrations larger than 2.70ppb. All selenium concentrations observed were far above this value

Table 5.4Calibration sensitivity

 $b = 5.6741 \neq 0$

The method can thus be said to be calibration sensitive to selenium

Table 5.4Calibration Sensitivity

Ana	lytical sensitivity
C –	instrument response
$c_s -$	concentration of analyte
C -	5.6741 response units
C_{s} –	1ppb
$C_s =$	5.6741 abs units/ppb

Inverse analytical sensitivity $S_{c} = \frac{concentration of analyte}{instrument response}$ $S_{c} = \frac{1ppb}{5.6741 response units}$ $S_{c} = 0.176239401 \sim 0.18 \text{ ppb/abs units} \rightarrow$ Current state selenium analysis method is thus said is responsive in the region 0.18ppb of analyte concentration, for each change in instrument response units given by the apparatus.

Chapter 5.5.2 CRM Calculations

Table 5.5Accuracy and Uncertainty of CRM

95% CL and CI

For unknown population o:

$$\bar{x} \pm \frac{ts}{\sqrt{n}}$$

Where t is obtained from t-table, df: n-1 at 95% confidence level.

$$T_{crit} = 2.57$$

$$0.5235 \pm \frac{2.57 \times 0.083861}{\sqrt{6}}$$

$$0.5235 \pm \frac{0.21552277}{\sqrt{6}}$$

$$0.5235 \pm 0.087986802 \sim 0.0880$$

$$0.5235 \pm 0.09 \rightarrow$$

The current state selenium analysis process is therefore said to provide average measurements for known CRM of 0.52 ± 0.09 . The true value of the CRM is 0.56 ± 0.07 .
Chapter 5.5.3 Precision, Bias and Horrat Analysis

Precision of CRM

%RSD (Relative Standard Deviation) =
$$\left[\frac{SD}{\bar{x}}\right] \cdot 100$$

$$\% \text{RSD} = \left[\frac{0.083861}{0.5235}\right] \bullet 100$$

%RSD = [0.160192932] • 100

$$%RSD = 16.01929322 \sim 16.02\% \rightarrow$$

The current state selenium analysis process is 16.02% imprecise

Analytical Bias

% Bias =
$$\left[\frac{\bar{x} - \mu}{\mu}\right] \cdot 100$$

% Bias =
$$\left[\frac{0.5235 - 0.56}{0.56}\right] \cdot 100$$

The current state selenium analysis process has a consistent -6.5% deviation from the true value.

Horwitz function based on CRM RSD

 $HORRAT = RSD_{obs} / RSD_{calc}$

Conversion of CRM mean to percentage: 52.35pmm x 0.0001 = 0.005235%

Conversion of critic mean to percentage (22) coppliant of 00001 - 000001 Conversion to relative amount required by Horwitz function: $\frac{0.005235\%}{100}$ RSD_{calc} = $\pm 2^{(1-0.5\log 0.00005235)}$ RSD_{calc} = $\pm 2^{3.14}$ RSD_{calc} = $\pm 2^{3.14}$ RSD_{calc} = $\pm 8.818551213 \sim 8.82 \rightarrow$ HORRAT = RSD_{obs} / RSD_{calc} = $\frac{16.02}{8.82}$ = 1.820454545 ~ 1.82 \rightarrow The horrat ratio based purely on CRM measurements obtained for the selenium analysis process is calculated at 1.82%

Horwitz function based on overall process RSD

 $HORRAT = RSD_{obs} / RSD_{calc}$

Analysis of data obtained from all samples processed provided an overall process RDS at 18,43472 ~ 18.43% (Annexure 14)

CRM used as relative amount required by Horwitz function as calculated above:

$$RSD_{calc} = \pm 8.818551213 \sim 8.82 \rightarrow$$

HORRAT = RSD_{obs} / RSD_{calc}
= $\frac{18.43}{8.82}$ = 2.089569161 ~ 2.09 \rightarrow

The horrat ratio based on overall process performance from sample measurements for the selenium analysis process is calculated at 2.09%

Chapter 5.5.6 Total Analytical Uncertainty

<u>Uncertainty ΔTE </u>

$$s_{x_0} = \frac{s_{y/x}}{b} \sqrt{\frac{1}{m} + \frac{1}{n} + \frac{(y_0 - \bar{y})^2}{b^2 \sum (x_i - \bar{x})^2}}$$

$$s_{x_0} = \frac{1.532624}{5.671} \sqrt{\frac{1}{13} + \frac{1}{5} + \frac{(52.35 - 32.0116831)^2}{5.671^2 (159480)}}$$

$$s_{x_0} = 0.270108739 \sqrt{0.277004586}$$

$$s_{x_0} = 0.142161538 \sim 0.14 \rightarrow$$

Where:

b is the slope 5.6741 as given by regression statistics $s_{y/x}$ is 1.532624 as given by regression statistics

 y_0 is the response in the unknown

 \bar{y} is mean response obtained from standard calibration curve samples $\sum (x_i - \bar{x})^2$ is 159480 obtained from:

Standard	Difference	\bar{x}^2
10	-172	29584
50	-132	17424
100	-82	6724
250	68	4624
500	318	101124
Ave:182	Total	159480

ANNEXURE 13: Quar	ANNEXURE 13: Quantitative Method Characteristics							
NAME OF METHOD		DESCRIPTION	DERIVED FROM					
CHARACTERISTIC								
Calibration standard	Number of standards	Number of standards in calibration curve	n					
	Number of replicates of	Number of replicate measurements of each	m					
	standards	standard in the curve						
	Standard spread	Range of standards	List the lowest and highest concentrations of standards					
			used in the standard calibration curve.					
	Matrix of blank	Name of reagent						
Linearity	Linearity Correlation:	The "goodness of fit" of the line	$\mathbf{r} = \frac{\Sigma(x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\Sigma}(x_i - \bar{x})^2 \Sigma(y_i - \bar{y})^2}$					
	Correlation coefficient		$\sqrt{2}(x_l - x_l) = 2(y_l - y_l)$					
	Linearity Correlation:	Often the correlation coefficient r is						
Coefficient of determination		expressed as r^2 : the coefficient of	$r^2 = \frac{regression \ sum \ of \ squares}{total \ sum \ of \ squares} = \frac{SSR}{SST}$					
		determination or coefficient of variance	totu sun of squares 551					
	Linearity Correlation: The	The residual equals the difference between						
	residual	the observed value Y and the predicted value	$e_i = Y_i - \widehat{\widehat{Y}}_i$					
		of Y.						
	Significant Linearity: t _{stat} or t _{calc}	t _{stat} or t _{statistic} in linear regression is used to	$t_{stat} = \frac{b_1 - \beta_1}{s_1}$, where $s_{b_1} = \frac{s_{\gamma \chi}}{\sqrt{SSY}}$, and $SSX = \sum_{i=1}^n (x_i - x)^2$					
	of slope	determine the existence of significant	<i>Sb</i> ₁ <i>VSSA</i>					
		correlation. Also known as $t_{calc.}$ If $t_{calc} > t_{crit}$,	Or $T_{calc} = r \sqrt{\frac{n-2}{n-2}}$					
		there is significant linearity. This t statistic is	$\sqrt{1-r^2}$					
		provided in the column titled <i>t Stat</i> by	The t _{crit} follows a t distribution with n -2 degrees of					
		Microsoft Excel. The value for t_{crit} is	Irecaom.					

	obtained from a t table.	
Significant Linearity: f_{calc}	f-test provides an alternate approach to	$F = \frac{MSR}{MSE}$, where MSR = $\frac{SSR}{k}$, and MSE = $\frac{SSE}{n-k-1}$
ANOVA	testing whether the slope in simple linear	f follows f distribution with k and $n-k-1$ degrees of
	regression is statistically significant. F test is	freedom
	calculated by the ratio of the variance due to	
	regression divided by the error variance. It is	
	given by the ANOVA table in Microsoft	
	Excel.	
Significant Linearity: f _{crit}	Obtained from the f-table, if $f_{calc} > f_{crit}$,	Calculated from f-table or given by Microsoft Excel as
	significant linearity is deemed to exist.	Significance F
Significant Linearity:	Regression SS also known as Regression sum	
Regression SS > Residual SS	of squares (SSR), is equal to the sum of the	Relation between x and y
	squared differences between predicted value	$SSR = SST - SSE > SSE = \sum_{i=1}^{n} (Yi - \widehat{Y_i})^2.$
	of Y and the mean of Y.	
	Residual SS also known as The error sum of	
	squares (SSE), is equal to the sum of the	
	squared differences between the observed	
	value of Y and predicted value of Y.	
	Significant linearity exists where SSR>SSE.	
Significant Linearity:	Significant linearity exists where Regression	Regression MS = Regression mean square MSR = $\frac{SSR}{k}$
Regression MS > Residual MS	MS or regression mean square (MSR) >	Residual MS = Error mean square MSE = $\frac{SSE}{SE}$ where
	Residual MS or Error mean square (MSE)	n-k-1, where $n-k-1$, $n-k-1$
		K = number of independent or explanatory variables in the

			regression model.				
	Significant Linearity: Comment	If $F_{calc} > F_{crit}$, significant linearity is deemed to					
	on significance of linearity	exist.					
	Significant Linearity: %	When the coefficient of determination	Variation % in absorbance due to variation to the variation in concentration in standards.				
	Variation in detection of sample	(coefficient of variance) is multiplied by 100,					
		it indicates the percentage of variation in y					
		associated with variation in x.					
Regression parameters	Slope	b also known as b_1 = slope of population or	Also indicated by 'x variable' coefficient on ANOVA				
		gradient, represents the expected change in Y	table in Microsoft Excel				
		per unit change in X. It represents the					
		average amount the Y changes (either					
		positively or negatively) for a particular unit					
		change in X.					
	Intercept	a also known as b_0 = the Y intercept for the	Also indicated by 'intercept' coefficient on ANOVA table				
		population, represents the average value of Y	in Microsoft Excel				
		when X equals 0.					
	Regression line equation	For Least-Squares method, the sample					
		regression equation representing the straight	$\hat{y}_i = b_I x_i + b_0$, where \hat{y}_i is the predicted value of Y for				
		line regression model can be represented as	observation <i>i</i> , and x_i is the value of x for observation <i>i</i> .				
		follows: $\hat{y}_i = b_i x_i + b_0$ or $y = bx + a$					
Calibration uncertainties	Standard error of the	Standard error of regression, also known as					
	regression: Significance of	Standard error of the estimate, or Residual	$S_{i} = \sqrt{\frac{SSE}{2}} = \sqrt{\frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}} \text{ or } S_{i} = [\frac{\sum (y_i - \hat{y}_i)^2}{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}]^{\frac{1}{2}}$				
	standard error of regression	standard deviation or Random calibration	$S_{y/x} - \sqrt{n-2} - \sqrt{n-2}$ or $S_{y/x} - [-n-2]^2$				

	uncertainty, is a measure of the amount of	
	error accrued in predicting a y value for each	where y residuals = $y_i - \hat{y}_i$
	given x value. This statistic measures the	
	variability of the actual y values from the	
	predicted y values. It is a measure of	
	variation around the fitted line of regression	
	and is measured in units of the dependent	
	variable y.	
Significance of standard error	To determine calibration uncertainty in	If $F_{calc} > F_{crit}$ the null hypothesis is rejected. Significant
of the regression: Comment on	relation to standard error of regression, a f-	evidence to say that the residuals are more widely
F test result	test is conducted uses the variance of standard	dispersed than can be accounted for by random error.
	error of regression as the numerator and the	Therefore alternate hypothesis is accepted. It may be
	variance obtained from replicate	necessary to investigate further if Null hypothesis is
	measurements of the CRM as denominator, to	rejected in order to ascertain the reason why residuals are
	calculate F_{calc} . As this has direct bearing on	significantly widespread, as this could be evidence of non-
	sample analysis, a CRM sample is used in	linearity.
	this calculation. However the F _{crit} for this f-	If $F_{calc} < F_{crit}$, the Null hypothesis is accepted and it is stated
	test derived from standard calibration curve	that there is significant evidence to conclude that residuals
	sample group with n-2 df.	are dispersed due to random error.
Uncertainty of slope	Standard error of slope or s_{b_1} is given by	
	Microsoft Excel as Standard Error of x	$s_{h} = \frac{S_{y/x}}{2}$
	variable. The statistic determines the	$\sqrt{\sum(x_i-\bar{x})^2}$
	sensitivity of the calibration function or the	

	rate at which the signal changes with	
	concentration	
The could inter of intercould		
Uncertainty of intercept	Standard error of the intercept s_{a_1} is the error	
	associated to the actual intercept point of the	$\sum x_i^2$
	line. The intercept of the regression line has	$s_{a_1} = s_{y/x} \sqrt{n \sum (x_i - \bar{x})^2}$
	implications for the smallest detectable signal	·
	(measured response) and the corresponding	
	lowest concentration.	
Ratios of slope and interce	ept To test for precision of an analytical method	
uncertainties: S_a and $S_b < s_b$	$S_{y/x} \qquad \text{determine if : } S_a \text{ and } S_b < S_{y/x}. \text{ If : } S_a \text{ and } S_b <$	
	$S_{\ensuremath{y/x}\xspace}$ then it points to good general precision	
	of analytical method	
Ratios of slope and interce	ept This ratio or test statistic tells the analyst if	
uncertainties: S _a /S _b	more standards are required above or below	
	centroid. Ideal value is 6, which means	
	standards are adequate and regression line is	
	balanced. Ratio <6 means more standards	
	required on higher end, Ratio >6 means more	
	standards required on the lower end of	
	regression line.	
Ratios of slope and interce	ept To determine if the working range of	
uncertainties: S _b <s<sub>a</s<sub>	standards is wide enough or sufficient, S_b	
	should be less than S _{a.}	

	Confidence limits at 95%: 95%	The corresponding confidence level for b	It is reported as two values (upper and lower) either mean			
	CL of b: $b \pm tS_b$	associated to S_b (interval of the slope), is	with a \pm sign or as two separate values			
		calculated using the t-statistic for (n-2)				
		degrees of freedom.				
	Confidence limits at 95%: 95%	The corresponding confidence level for a,	It is reported as two values (upper and lower) either mean			
	CL of a: $a \pm tS_a$	associated to S_a (y intercept), is calculated in	with a \pm sign or as two separate values			
		the same way as that of the slope.				
Limit of detection (LOD)	Response representing the LOD	The LOD represents the level below which				
		we cannot be confident whether or not the	$Y_{lod} = Y_{blank} + 3s_{blank}$			
		analyte is actually present, formally defined				
		as "the concentration of analyte required to				
		give signal equal to background (blank) plus				
		three times standard deviation of the blank for				
		10 measurements"				
Concentration representing LOD		Also known as the X_{lod} , refers to the	$X_{lod} = \frac{(Y_{blank} + 3sd_{blank}) - a}{b}$			
		associated concentration of the Y_{lod}				
	LOD from regression statistics	When a situation is presented where no blank	$X_{lod} = \frac{Y_{lod} - a}{r}$ or $X_{lod} = \frac{(a + 3s_{y/x})}{r}$ or $X_{lod} = \frac{3s_{y/x}}{r}$			
		was measured, regression statistics may be				
		used to determine the LOD				
	LOD from propagation of errors	Alternative method to determine LOD	$\mathbf{V} = 3\left\{s_{blank}^{2} + s_{a}^{2} + \left[\frac{a}{b} \cdot s_{b}^{2}\right]\right\}^{1/2} = \mathbf{V} = 3\left\{s_{blank}^{2} + s_{a}^{2}\right\}^{1/2}$			
	method		$\mathbf{A}_{\mathrm{lod}} = \frac{b}{b} \text{or } \mathbf{A}_{\mathrm{lod}} = \frac{b}{b}$			
Limit of quantitation	Signal representing the LOQ	LOQ refers to the smallest concentration or				
(LOQ)		mass which can be quantitatively analysed	$Y_{loq} = Y_{blank} + 10s_{blank}$			

		with reasonable reliability by a given	
		procedure	
	Concentration representing the	Also known as the X_{loq} , refers to the	$X_{log} = \frac{(y_{blank} + 10sd_{blank}) - a}{b}$
	LOQ	associated concentration of the Y_{loq}	. D
	LOQ from regression statistics		$X_{\text{loq}} = \frac{10s_{y/x}}{b}$
Sensitivity	Calibration sensitivity	This parameter is only a reflection of whether	A method is said to be calibration sensitive if $b\neq 0$, where b
		the instrument is sensitive or not, and does	is the slope of a regression line.
		not reflect the degree of sensitivity of an	
		instrument.	
	Analytical sensitivity	The analytical calibration sensitivity of the	
		calibration curve, C _s , is the rate of change of	$C_s = \frac{instrument\ response}{instrument\ response}$
		the signal intensity with changes in the	per concentration unit of analyte
		concentration of the analyte or the slope	
	Inverse analytical sensitivity	To determine how responsive a method is to	
		small changes in concentration, S_c is used. S_c	
		is the inverse of the rate of change of the	$\mathbf{S}_{c} = \frac{concentration unit of analyte}{concentration}$
		signal intensity (or instrument reading) with	instrument response
		changes in the concentration of analyte	
Specificity	Evidence from reputable CRM	A statement made from information extracted	
	that method is selective / specific	from the Certificate provided with the CRM	
	for selenium.	is adequate for this purpose.	
Accuracy and Precision of			
CRM			

Analysis of CRM Mean measurement A		Average measurement of CRM					
Components of CRM	T test to determine significant	To test the accuracy of a method, replicate					
measurement	difference between the mean and	measurements of CRM are taken and a t-test	$ \bar{x}-\mu_0 $				
	true value	conducted to determine if there is significant	$t_{calc} - \frac{s}{\sqrt{n}}$				
		difference between the mean observed from	where:				
		replicate tests and the true mean	= mean of test results of a sample				
		measurement. A one-sample t test is then	μ_0 = "true" or reference value				
		conducted. If $t_{calc} > t_{crit}$ at a defined	s = standard deviation of test results				
		confidence level (e.g. 95%), then it may be	n = number of replicate tests				
		said that there is a statistical difference	and t_{crit} is obtained from the student's t-table (df = n-1)				
		between the mean values.					
	95% CL and CI	When precision of a method is untested, the	For unknown population o:				
		true population σ is unknown. The	$\bar{x} \pm \frac{ts}{r}$				
		population standard deviation is estimated by	\sqrt{n}				
		computing s and a t-table statistic is used to	Where t is obtained from t-table, df: n-1 at 95% confidence				
		compute CI	level.				
		Should the population o be known, a z-table	For known population o:				
		statistic is used to compute CI.	$\bar{x} \pm \frac{z\sigma}{\sqrt{n}}$				
			Where z is obtained from the z table, df: n-1, at 95%				
			confidence level.				
	Precision	Precision is the closeness with which results					
		of replicate analysis of a sample agree. It is a	$%$ RSD = $\left[\frac{SD}{S}\right] \cdot 100$				
		measure of the dispersion or scattering					

		around the mean value and usually expressed	Where:
		in terms of standard deviation. The larger the	
		standard deviation, the worse the precision.	SD = standard deviation
		% Relative standard deviation (RSD) is a	$\bar{x} = mean$
		measure of precision.	
	Bias	Bias is the consistent deviation of analytical	
		results from the "true" value, and is caused by	% Bias = $\left[\frac{x-\mu}{x}\right]$ 100
		systematic error in a procedure. Bias has a	Where.
		definite value, an assignable cause and is	r - mean of a series of CRM measurements
		about the same magnitude for replicate	x = mean of a series of CRW measurements
		measurements. Bias is determined using	μ – the accepted extent value
		measurements obtained from the CRM.	
Analysis of Samples	Analysis of samples	Measurements of samples (instrument	
	(measurements)	readings)	
	Components of sample	As for CRM Precision	As calculated for CRM Precision, given the mean value
	measurements: Precision		and standard deviation.
	Components of sample	Sx_0 is the standard error for the sample	$s_{y/r}$ 1 1 $(y_0 - \bar{y})^2$
	measurements: Uncertainty of	(uncertainty in unknown) for x_0 , and x_0 is the	$s_{x_0} = \frac{y_{x_0}}{b} \sqrt{m} + \frac{1}{n} + \frac{y_{x_0}}{b^2 \sum (x_i - \bar{x})^2}$
	inferred value	predicted value or unknown sample	, , , , , , , , , , , , , , , , , , ,
		concentration.	
	Components of sample	Precision is the closeness with which results	$%$ RSD = $\left(\frac{s_{\chi_0}}{s_{\chi_0}}\right)$: 100
	measurements: % RSD of	of replicate analysis of a sample agree. It is a	$x_0 / x_0 / x_0$
	sample analysis	measure of the dispersion or scattering	Where:

		around the mean value and usually expressed	$s_{y/x} = \frac{1}{1} \frac{1}{(y_0 - \bar{y})^2}$
		in terms of standard deviation. The larger the	$s_{x_0} = \frac{y_m}{b} \sqrt{m} + \frac{1}{n} + \frac{1}{b^2 \sum (x_i - \bar{x})^2}$
		standard deviation, the worse the precision.	and the unknown sample concentration may be calculated
		% Relative standard deviation (RSD) is a	using the regression equation:
		measure of precision. Using regression	y = br + a
		uncertainty, Sx_0 is the standard error for the	$y_0 = bx_0 + u$ $y_0 = a$
		sample (uncertainty), and x_0 is the predicted	thus: $x_0 = \frac{b}{b}$
		value or unknown sample concentration.	
	Components of sample	Error in concentration is minimal, if the	Uncertainty at centroid: $s = \frac{s_{y/x}}{1+\frac{1}{2}}$
	measurements: CL of sample	signal from the unknown lies in the middle of	Succertainty at control $3x_0 = b \sqrt{m} n$
	analysis	the signals of all the standards, otherwise	
		known as the centroid.	$x_0 \pm tSx_0$
		The confidence limits of unknown	where:
		concentration x_0 is calculated as CRM with	t-statistic obtained from t table and df n-2
		unknown population σ , with student t-table	
		value, and given as an interval.	
	Components of sample	The Horwitz Function is a useful index of	$HORRAT = RSD_{obs} / RSD_{calc}$
	measurements: Horwitz ratio	method performance with respect to	Where:
		precision. When the value of RSD and the	$RSD_{obs} = \% RSD$ (precision)
		mean value of analyte concentration have	$RSD_{calc} = \pm 2^{(1-0.5\log C)}$
		been determined, the Horwitz ratio,	Where $\mathbf{C} = (\text{mean of analyte in percentage}) / \text{Horwitz}$
		HORRAT, can be calculated.	function conversion factor (100)
IJ	1		

SAMPLE	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample		
MEASUREMENTS	1	2	3	4	5	6	7	8	9	10	LC 2009	CRM
Process Run 1	55.417	124.775	136.133	151.309	1434.881	149.197	667.768	90.122	169.705	139.286	145.632	
Process Run 2	45.844	131.226	147.021	135.954	1805.339	161.356	785.308	49.412	188.733	293.693	149.062	
Process Run 3	45.35	122.235	136.303	130.881	1458.633	135.007	629.917	58.289	170.753	264.562	134.694	
Process Run 4	51.182	126.887	138.07	128.219	1471.848	134.36	613.744	59.706	169.671	269.436	118.535	
Process Run 5	55.63	121.364	147.113	132.003	1419.938	146.419	643.825	55.165	166.522	256.424	120.477	
Process Run 6	45.496	126.48	121.048	135.972	1405.282	141.555	601.012	66.305	184.214	236.818	131.522	
Process Run 7	48.651	130.483	127.972	128.731	1388.027	134.427	591.596	56.584	164.403	252.082	124.864	
Process Run 8	43.579	121.5	113.419	128.179	1390.454	141.71	657.011	47.96	131.104	257.753	113.01	0.67449
Process Run 9	50.12	143.562	136.482	135.551	1382.858	136.92	604.422	84.583	174.164	250.827	133.749	0.5328
Process Run 10	43.054	124.812	130.452	132.944	1383.993	123.425	636.594	60.495	162.813	260.538	140.134	0.53499
Process Run 11	130.113	125.996	124.716	130.46	1456.35	198.774	248.106	62.199	125.359	684.309	123.85	0.50515
Process Run 12	74.761	139.206	145.439	159.109	1230.14	153.319	572.645	70.108	114.017	73.829	145.48	0.45123
Process Run 13	47.2	129.251	133.856	135.84	1331.61	125.709	619.824	51.734	233.875	173.681	114.887	0.44234
Average	56.6459	128.291	133.694	135.781	1427.643	144.783	605.521	62.5125	165.795	262.557	130.454	0.5235
Std dev	23.5899	6.66109	10.1250	9.24103	129.7748	19.3603	119.440	12.7150	30.4906	141.003	12.2106	0.08386
RSD%	41.6444	5.19219	7.57324	6.80584	9.090143	13.3719	19.7252	20.3400	18.3905	53.7039	9.36009	16.0192
Process Average RSD%		18.43472										

ANNEXURE 14: Overall Process Precision (%RSD)

8 June 2011 Process Run Date 100 Blank 19.064 10ppb 1.368 80 1.872 10ppb 10ppb -1.191 Process Run: 6 60 Absorbance **Calibration Std 10** June 2011 0.68 Average 40 5.089 50ppb 5.805 Linear (Process 50ppb 20 5.99 Run: 6 June 50ppb **Calibration Std 50** 2011) 0 Average 5.63 400 600 200 Std 100 14.41 -20 Std 100 14.075 Standard Concentration (ppb) Std 100 14.297 **Calibration Std 100** 14.26 Average 100 85.28 Std 250 43.163 Std 250 38.765 80 Std 250 40.814 60 40.91 **Calibration Std 250** 40 40.91 Average 14.26 Std 500 83.391 20 5.63 0.68 Std 500 88.765 0 Std 500 83.676 2 3 4 5 1 **Calibration Std 500** Average Selenium Absorbance Values 85.28

Single Factor ANOVA: 10 ppb Calibration Curve Standard

										Process	Process	Process	Process
	Process 1	Process 2	Process 3	Process 4	Process 5	Process 6	Process 7	Process 8	Process 9	10	11	12	13
	1.368	0.434	2.006	1.522	1.796	1.596	0.822	1.913	1.901	2.183	2.099	2.137	2.043
	1.872	0.529	2.045	1.578	1.507	1.489	0.729	1.918	1.638	1.969	1.929	3.481	1.896
	-1.191	0.387	1.884	1.639	0.601	1.919	0.93	1.483	2.064	2.142	1.536	2.311	1.678
Average	0.683	0.45	1.978333	1.579667	1.301333	1.668	0.827	1.771333	1.867667	2.098	1.854667	2.643	1.872333
Std dev	1.64238	0.072339	0.08399	0.058518	0.623482	0.223859	0.100593	0.249717	0.214947	0.113583	0.288767	0.730925	0.183647

10 ppb Calibration Standard

Anova: Single Factor

SUMMARY

Groups	Count	Sum	Average	Variance
Process 1	3	2.049	0.683	2.697411
Process 2	3	1.35	0.45	0.005233
Process 3	3	5.935	1.978333	0.007054
Process 4	3	4.739	1.579667	0.003424
Process 5	3	3.904	1.301333	0.38873
Process 6	3	5.004	1.668	0.050113
Process 7	3	2.481	0.827	0.010119
Process 8	3	5.314	1.771333	0.062358
Process 9	3	5.603	1.867667	0.046202
Process 10	3	6.294	2.098	0.012901
Process 11	3	5.564	1.854667	0.083386
Process 12	3	7.929	2.643	0.534252
Process 13	3	5.617	1.872333	0.033726

ANOVA

Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	13.71274	12	1.142728	3.7753	0.002216	2.147926
Within Groups	7.869823	26	0.302685			
Total	21.58256	38				
c = 13						
n = 39						
DF between groups		c-1	12			
DF within groups n-c			26			
MSA	1.142728					
MSW	0.302685					
F calculated= MSA/MS	W		3.7753			
Null hypothesis	H ₀ : μ ₁	$=\mu_2=\mu$	$\mu_3 = \mu_4 = \mu_5 = \mu_6$	$= \mu_7 = \mu_8 = \mu_9$	$=\mu_{10}=\mu_{11}=\mu_{11}$	$_{12} = \mu_{13}$
Alternate hypothesis	H_1 : μ_1	$\neq \mu_2 \neq \mu$	$\mu_3 \neq \mu_4 \neq \mu_5 \neq \mu_6$	$\neq \mu_7 \neq \mu_8 \neq \mu_9$	$\neq \mu_{10} \neq \mu_{11} \neq \mu_{11}$	$\mu_{12} \neq \mu_{13}$
Since the calculated f-tes	st statistic is g	greater tl	hat the f crit tes	t statistic obt	ained from the	table, the null
therefore rejected. There	e is not enoug	gh evide	nce to accept th	e null hypoth	nesis stating that	at the mean co

therefore rejected. There is not enough evidence to accept the null hypothesis stating that the mean concentration of selenium in the 10ppb calibration curve standard among the thirteen different process runs does not vary. The alternate hypothesis is therefore accepted stating that there is significant evidence to conclude that the mean selenium concentration among the thirteen different process runs varies.

Single Factor ANOVA: 50 ppb Calibration Curve Standard

	Process 1	Process 2	Process 3	Process 4	Process 5	Process 6	Process 7	Process 8	Process 9	Process 10	Process 11	Process 12	Process 13
	5.089	2.402	8.899	9.038	8.245	8.634	8.805	10.478	9.134	9.762	9.68	11.332	10.056
	5.805	2.735	8.937	8.849	8.088	9.238	8.904	9.583	10.648	10.757	10.441	10.607	9.605
	5.99	2.527	8.704	8.589	8.485	8.63	8.727	10.371	8.962	9.434	8.556	10.621	8.987
Average	5.628	2.554667	8.846667	8.825333	8.272667	8.834	8.812	10.144	9.581333	9.984333	9.559	10.85333	9.549333
Std dev	0.475864	0.168215	0.125005	0.225434	0.199941	0.34988	0.088707	0.488777	0.927755	0.688953	0.948307	0.414597	0.53667

50ppb Calibration Standard

Groups	Count	Sum	Average	Variance
Process 1	3	16.884	5.628	0.226447
Process 2	3	7.664	2.554667	0.028296
Process 3	3	26.54	8.846667	0.015626
Process 4	3	26.476	8.825333	0.05082
Process 5	3	24.818	8.272667	0.039976
Process 6	3	26.502	8.834	0.122416
Process 7	3	26.436	8.812	0.007869
Process 8	3	30.432	10.144	0.238903
Process 9	3	28.744	9.581333	0.860729
Process 10	3	29.953	9.984333	0.474656
Process 11	3	28.677	9.559	0.899287
Process 12	3	32.56	10.85333	0.17189
Process 13	3	28.648	9.549333	0.288014

ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	173.548	12	14.46234	54.89464	2.44E-15	2.147926
Within Groups	6.849863	26	0.263456			
Total	180.3979	38				
c = 13						
n = 39						
DF between groups		c-1	12			
DF within groups n-c			26			
MSA	14.46234					
MSW	0.263456					
F calculated= MSA/MSW			54.89			
Null hypothesis	$H_0: \mu_1 = \mu_2$	$= \mu_3 = \mu_4 = \mu_4$	$\mu_5 = \mu_6 = \mu_7 = \mu_8$	$=\mu_9=\mu_{10}=\mu_1$	$\mu_1 = \mu_{12} = \mu_{13}$	
Alternate hypothesis	$H_1 {:}\; \mu_1 \neq \mu_2$	$ eq \mu_3 eq \mu_4 eq \mu_4 eq$	$\mu_5 \neq \mu_6 \neq \mu_7 \neq \mu_8$	$\neq \mu_9 \neq \mu_{10} \neq \mu_{11}$	$\neq \mu_{12} \neq \mu_{13}$	
Since the calculated f-test st	atistic is greate	er that the f	crit test statistic	obtained from	the table the	null hypothesi

Since the calculated f-test statistic is greater that the f crit test statistic obtained from the table, the null hypothesis is therefore rejected. There is not enough evidence to accept the null hypothesis stating that the mean concentration of selenium in the 50ppb calibration curve standard among the thirteen different process runs does not vary. The alternate hypothesis is therefore accepted stating that there is significant evidence to conclude that the mean selenium concentration among the thirteen different process runs varies.

Single Factor ANOVA: 100 ppb Calibration Curve Standard

	Process 1	Process 2	Process 3	Process 4	Process 5	Process 6	Process 7	Process 8	Process 9	Process 10	Process 11	Process 12	Process 13
	14.41	6.111	17.563	18.949	17.139	18.832	17.33	21.315	17.525	18.737	18.168	22.001	17.333
	14.075	6.159	17.472	19.437	20.462	17.989	17.782	18.764	17.897	19.033	18.382	21.225	18.163
	14.297	6.778	17.852	19.892	17.338	18.027	17.873	21.139	18.837	22.128	22.166	22.51	18.339
Average	14.26067	6.349333	17.629	19.426	18.313	18.28267	17.66167	20.406	18.08633	19.966	19.572	21.912	17.945
Std dev	0.17043	0.372011	0.198411	0.471596	1.863746	0.476116	0.290813	1.424734	0.676181	1.878187	2.249017	0.647107	0.537263

100ppb Calibration Standard

SUMMARY				
Groups	Count	Sum	Average	Variance
Process 1	3	42.782	14.26067	0.029046
Process 2	3	19.048	6.349333	0.138392
Process 3	3	52.887	17.629	0.039367
Process 4	3	58.278	19.426	0.222403
Process 5	3	54.939	18.313	3.473551
Process 6	3	54.848	18.28267	0.226686
Process 7	3	52.985	17.66167	0.084572
Process 8	3	61.218	20.406	2.029867
Process 9	3	54.259	18.08633	0.457221
Process 10	3	59.898	19.966	3.527587
Process 11	3	58.716	19.572	5.058076
Process 12	3	65.736	21.912	0.418747

Process 13	3	53.835	17.945	0.288652

ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	534.8185	12	44.5682	36.22487	3.86E-13	2.147926
Within Groups	31.98834	26	1.230321			
Total	566.8068	38				
c = 13						
n = 39						
DF between groups		c-1	12			
DF within groups n-c			26			
MSA	44.57					
MSW	1.23					
F calculated= MSA/MSW			36.22			
Null hypothesis	$H_0: \mu_1 =$	$\mu_2 = \mu_3 = \mu_4$	$=\mu_5=\mu_6=\mu_7$	$=\mu_8=\mu_9=\mu_{10}$	$= \mu_{11} = \mu_{12} = \mu_1$	3
Alternate hypothesis	$H_{1}{:}\;\mu_{1}\neq$	$\mu_2 \neq \mu_3 \neq \mu_4$	$\neq \mu_5 \neq \mu_6 \neq \mu_7$	$\neq \mu_8 \neq \mu_9 \neq \mu_{10}$	$\neq \mu_{11} \neq \mu_{12} \neq \mu_{12}$	3
o. 4 1 1 1 1 0 4 4			c		c (1 (1 1	.1 11.1

Since the calculated f-test statistic is greater that the f crit test statistic obtained from the table, the null hypothesis is therefore rejected. There is not enough evidence to accept the null hypothesis stating that the mean concentration of selenium in the 100ppb calibration curve standard among the thirteen different process runs does not vary. The alternate hypothesis is therefore accepted stating that there is significant evidence to conclude that the mean selenium concentration among the thirteen different process runs varies.

Single Factor ANOVA: 250 ppb Calibration Curve Standard

	Process 1	Process 2	Process 3	Process 4	Process 5	Process 6	Process 7	Process 8	Process 9	Process 10	Process 11	Process 12	Process 13
	43.163	14.912	43.611	45.971	47.281	43.326	49.947	51.916	46.513	46.657	49.791	55.261	44.008
	38.765	15.661	44.962	44.418	49.328	43.356	47.14	50.878	44.945	48.551	48.137	53.803	42.683
	40.814	14.874	45.031	46.724	46.796	46.381	46.827	47.563	46.681	47.821	48.497	54.323	42.434
Average	40.914	15.149	44.53467	45.70433	47.80167	44.35433	47.97133	50.119	46.04633	47.67633	48.80833	54.46233	43.04167
Std dev	2.200705	0.443812	0.800662	1.175901	1.343903	1.755209	1.71812	2.27359	0.957474	0.955251	0.869842	0.738919	0.846079

250ppb Calibration Standard

Groups	Count	Sum	Average	Variance
Process 1	3	122.742	40.914	4.843101
Process 2	3	45.447	15.149	0.196969
Process 3	3	133.604	44.53467	0.64106
Process 4	3	137.113	45.70433	1.382742
Process 5	3	143.405	47.80167	1.806076
Process 6	3	133.063	44.35433	3.080758
Process 7	3	143.914	47.97133	2.951936
Process 8	3	150.357	50.119	5.169213
Process 9	3	138.139	46.04633	0.916757
Process 10	3	143.029	47.67633	0.912505
Process 11	3	146.425	48.80833	0.75662

Process 12 Process 13	3 3	163.387 129.125	54.46233 43.04167	0.546001 0.71585		
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	3187.416	12	265.618	144.36	1.29E-20	2.147926
Within Groups	47.83919	26	1.839969			
Total	3235.255	38				
c = 13						
n = 39						
DF between groups		c-1	12			
DF within groups n-c			26			
MSA	265.62					
MSW	1.84					
F calculated= MSA/MS	W		144.36			
Null hypothesis	H ₀ : μ ₁	$= \mu_2 = \mu_3 =$	$\mu_4 = \mu_5 = \mu_6 = \mu_7$	$_7 = \mu_8 = \mu_9 = \mu_9$	$\mu_{10} = \mu_{11} = \mu_{12} =$	μ ₁₃

Null hypothesis $H_0: \mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5 = \mu_6 = \mu_7 = \mu_8 = \mu_9 = \mu_{10} = \mu_{11} = \mu_{12} = \mu_{13}$ Alternate hypothesis $H_1: \mu_1 \neq \mu_2 \neq \mu_3 \neq \mu_4 \neq \mu_5 \neq \mu_6 \neq \mu_7 \neq \mu_8 \neq \mu_9 \neq \mu_{10} \neq \mu_{11} \neq \mu_{12} \neq \mu_{13}$ Since the calculated f-test statistic is greater that the f crit test statistic obtained from the table, the null hypothesis is

therefore rejected. There is not enough evidence to accept the null hypothesis stating that the mean concentration of selenium in the 250ppb calibration curve standard among the thirteen different process runs does not vary. The alternate hypothesis is therefore accepted stating that there is significant evidence to conclude that the mean selenium concentration among the thirteen different process runs varies.

Single Factor ANOVA: 500 ppb Calibration Curve Standard

	Process 1	Process 2	Process 3	Process 4	Process 5	Process 6	Process 7	Process 8	Process 9	Process 10	Process 11	Process 12	Process 13
	83.391	29.609	89.496	95.604	94.143	86.236	96.126	96.018	92.688	92.113	98.313	96.966	94.393
	88.765	30.184	88.963	87.928	94.671	87.869	99.309	94.267	96.532	89.51	98.889	97.6	93.685
	83.676	29.991	90.119	94.773	95.465	84.272	96.953	95.39	84.928	96.767	96.73	95.438	89.212
Average	85.27733	29.928	89.526	92.76833	94.75967	86.12567	97.46267	95.225	91.38267	92.79667	97.97733	96.668	92.43
Std dev	3.023768	0.292631	0.578584	4.212394	0.665445	1.801036	1.651573	0.887085	5.911102	3.676488	1.117955	1.111379	2.809263

500ppb Calibration Standard

Groups	Count	Sum	Average	Variance
Process 1	3	255.832	85.27733	9.14317
Process 2	3	89.784	29.928	0.085633
Process 3	3	268.578	89.526	0.334759
Process 4	3	278.305	92.76833	17.74426
Process 5	3	284.279	94.75967	0.44281
Process 6	3	258.377	86.12567	3.24373
Process 7	3	292.388	97.46267	2.72769
Process 8	3	285.675	95.225	0.78691
Process 9	3	274.148	91.38267	34.9411
Process 10	3	278.39	92.79667	13.5165
Process 11	3	293.932	97.97733	1.24982

Process 12 Process 13	3 3	290.004 277.29	96.668 92.43	1.235164 7.891959		
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	11472.98	12	956.0816	133.1538	3.61E-20	2.147926
Within Groups	186.6872	26	7.180278			
Total	11659.67	38				
c = 13						
n = 39						
DF between groups		c-1	12			
DF within groups n-c			26			
MSA	956.0816					
MSW	7.1803					
F calculated= MSA/MS	W		133.15			
Null hypothesis	H ₀ : μ ₁	$=\mu_2=\mu_3=$	$\mu_4=\mu_5=\mu_6=\mu$	$\mu_7 = \mu_8 = \mu_9 = \mu$	$\mu_{10} = \mu_{11} = \mu_{12} =$	μ ₁₃
Alternate hypothesis	H_1 : μ_1	$\neq \mu_2 \neq \mu_3 \neq$	$\mu_4 \neq \mu_5 \neq \mu_6 \neq \mu$	$\mu_7 \neq \mu_8 \neq \mu_9 \neq \mu_9$	$\mathfrak{l}_{10} \neq \mathfrak{\mu}_{11} \neq \mathfrak{\mu}_{12} \neq \mathfrak{l}_{10}$	μ_{13}
Since the calculated f-ter	st statistic is o	reater that	the f crit test s	statistic obtain	ed from the tak	le the null h

Since the calculated f-test statistic is greater that the f crit test statistic obtained from the table, the null hypothesis is therefore rejected. There is not enough evidence to accept the null hypothesis stating that the mean concentration of selenium in the 500ppb calibration curve standard among the thirteen different process runs does not vary. The alternate hypothesis is therefore accepted stating that there is significant evidence to conclude that the mean selenium concentration among the thirteen different process runs varies.

ANNEXURE 16: Individual Sample Moving Range Charts

Item and Function	Potential failure mode	Potential effects of failure	Δ	SEV	Potential Causes of failure	OCC	Detection method & quality controls	DET	RPN	Recommende d actions
Sample Registration	Mistaken switching of samples	Erroneous results		4	Carelessness/ Inadequate procedure	4	Internal Lab worksheet: Selenium analysis	5	80	Initiate use of internal control worksheet: Selenium analysis
Digestion failure	Microwave Apparatus failure	Process halted	Δ	8	Maintenance schedule not upheld	2	Uphold strict maintenanc e schedule	8	128	Ensure maintenance schedule upheld
					Unforeseen equipment failure	2	Unavoidabl e	10	160	None. Previous selenium method as backup.
	Microwave vessel failure	Select samples: Rework		8	'Wear and tear' of microwave vessels	3	Visual inspection of microwave vessels before use	8	192	Incorporate a 'Visual Inspection' step in Selenium Analysis SOP
Reduction phase failure	Water bath failure	Delay in process results		5	Unforeseen equipment failure	2	Unavoidabl e	10	100	Have back-up water bath on standby
	Thermomete r failure	Delay in process results		5	Unforeseen equipment failure	3	Unavoidabl e	10	150	Calibrate thermometers before analysis
Incorrect measurement parameters (detection instrument)	Technician error	Delay in process results		8	Incompetence / carelessness	3	Adequate training / Human error	3	72	Ensure process operator competent to perform analysis
AA failure	AA apparatus failure	Process halted	Δ	8	Maintenance schedule not upheld	2	Uphold strict maintenanc e schedule	8	128	Ensure maintenance schedule upheld
					Unforeseen equipment failure	4	Unavoidabl e	10	320	None. Previous selenium method as backup.
	Lamp failure	Delay in process results		6	Routine 'wear and tear'	4	AA error message: Lamp fused	5	120	Ensure spare lamp in stock
HG failure	HG apparatus failure	Process halted	Δ	8	Maintenance schedule not upheld	2	Uphold strict maintenanc e schedule	8	128	Ensure maintenance schedule upheld.
					Unforeseen equipment failure	2	Unavoidabl e	10	160	None. Previous selenium method as backup.
	Breakage in HG piping system	Delay in process results		6	Routine 'wear and tear'	3	Visual check: No reagent being aspirated	5	90	Ensure spare piping in stock
Reporting: Electronic system	LIMS offline	Delay in result reporting		7	Unforeseen or unavoidable	3	None: General WCPVL failure mode	8	168	None: wait until system online again

ANNEXURE 17: Modified Selenium Analysis Process FMEA Assessment

 Δ Delta = critical characteristic which may require special controls or affect safety, or compliance with government regulations

SEV = Severity rating (1 to 10)

OCC = Occurrence frequency (1 to 10)

FMEA Evaluation Criteria: Severity, Occurrence and Detection

Severity Evaluation Criteria						
Effect	Criteria: Severity of Effect	Rank				
Hazardous – without warning	Very high severity ranking when a potential failure mode	10				
	affects safety of personnel and/or involves noncompliance					
	with government regulation without warning					
Hazardous – with warning	Very high severity ranking when potential failure mode	9				
	affects safety of personnel and/or involves noncompliance					
	with government regulation with warning					
Very High	Process halted	8				
High	Uncertainty in results – needs rework	7				
Moderate	Results obtainable from process, but reduced level of	6				
	performance. Controls out of spec					
Low	Results obtainable from process, but reduced level of	5				
	performance. Controls in spec					
Very Low	Delayed process results. Controls in spec	4				
Minor	Minor delay in process results. Controls in spec	3				
Very Minor	Process results not available electronically	2				
None	No effect	1*				

*Note: Zero (0) rankings for severity, occurrence and detection are not allowed

Occur	Occurrence Evaluation Criteria							
Rank	СРК	Failure Rates	Probability of failure					
10	≥ 0.33	> 1 in 2	Very High: Failure almost inevitable					
9	≥ 0.33	1 in 3						
8	≥ 0.51	1 in 8	High: Repeated failures					
7	≥ 0.67	1 in 20						
6	≥ 0.83	1 in 80	Moderate: Occasional failures					
5	≥ 1.00	1 in 400						
4	≥ 1.17	1 in 2000	Low: Relatively few failures					
3	≥ 1. 33	1 in 15 000						
2	≥ 1.50	1 in 150 000	Remote: Failure is unlikely					
1*	≥ 1.67	$\leq 1 \text{ in } 500 \ 000$						

*Note: Zero (0) rankings for severity, occurrence and detection are not allowed

Detection Evaluation Criteria							
Detection	Criteria	Rank					
Absolute uncertainty	Potential cause and subsequent failure mode cannot be detected	10					
Very Remote	Very remote probability potential cause and failure mode will be detected by built-in control	9					
Remote	Remote probability potential cause and failure mode will be detected by built-in control	8					
Very Low	Very low probability potential cause and failure mode will be detected by built-in control	7					
Low	Low probability potential cause and failure mode will be detected by built-in control	6					
Moderate	Moderate probability potential cause and failure mode will be detected by built-in control	5					
Moderately high	Moderately high probability potential cause and failure mode will be detected by built-in control	4					
High	High probability potential cause and failure mode will be detected by built-in control	3					
Very high	Very high probability potential cause and failure mode will be detected by built-in control	2					
Almost certain	Certain probability potential cause and failure mode will be detected by built-in control	1*					

*Note: Zero (0) rankings for severity, occurrence and detection are not allowed

LIST OF REFERENCES

BSi Group Headquarters. 2010. Draft BS EN 16159 Animal feeding stuffs – Determination of selenium by hydride generation atomic absorption spectrometry (HGAAS) after microwave digestion (extraction with 65% nitric acid and 30% hydrogen peroxide. London:BSi Group Headquarters

Eurachem. 2000. *Quantifying Uncertainty in Analytical Measurement*. **[Online]**. Available from: http://www.eurachem.org/guides/pdf/QUAM2000-1.pdf [Accessed 26 August 2011]

Fraser, A. 2011. *Statistical Method Validation in Analytical Chemistry*. Johannesburg: Grande Airport Hotel Conference Centre. (Course Notes 5-6 September 2011)

Levine, Ramsey & Smidt. 2000. *Applied Statistics for Engineers and Scientists: Using Microsoft Excel & Minitab.* New Jersey: Prentice Hall.

Stone, D. & Ellis, J. 2006. *Stats Tutorial – Instrumental Analysis and Calibration*. [**Online**] Available from: <u>http://www.chem.utoronto.ca/coursenotes/analsci/stats/index.html</u> [Accessed 16 June 2011]

UKAS. 2011. *Measurement Uncertainty*. [**Online**] Available from: <u>http://www.ukas.com/Technical-Information/Publications-and-Tech-</u> <u>Articles/Technical/technical-uncertain.asp</u> [Accessed 27 August 2011]

UKAS M3003. 2007. *The Expression of Uncertainty and Confidence in Measurement*. Middlesex: United Kingdom Accreditation Service

WC PVL Standard Operating Procedure. 1999. *P-BIO-M-001: Fluorometric Method for Selenium Analysis*. In-house Quality document.