

KNOWLEDGE TRANSFER FROM UNIVERSITY TO INDUSTRY

A Dissertation

by

ELVINA RAQUEL JANINE MOOSA

Student number: 187027730

To be submitted in fulfillment of the requirements for the degree

MASTER OF TECHNOLOGIAE: QUALITY

In the

Faculty of Engineering

CAPE PENINSULA UNIVERSITY OF TECHNOLOGY

Supervisor: Russel Arderne

External Supervisor: Prof. J. André Watkins

Cape Town

November 2011

DECLARATION OF COPYRIGHT

"I hereby declare that this dissertation submitted for the degree Magister Technologiae at the Cape Peninsula University of Technology represents my own original unaided work and that this dissertation has not previously been submitted to any other institution of higher education. I further declare that all sources cited or quoted are indicated and acknowledge by a comprehensive list of references."

Elvina Raquel Janine Moosa

Signature: My Josa.

Date: November 2011

DEDICATION

This study is dedicated to my children, Shane, Kelly and Hayley for their unconditional love, support and encouragement.

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude and appreciation to the following people for their contribution:

- > Prof. Andre Watkins for his support, motivation, encouragement and guidance.
- My children, Shane, Kelly and Hayley for their unconditional love. Thank you for your patience and for always being there for me.
- My parents, Veronica Magardie and Sydney and Maggie Jonathan, for their love, encouragement and support.
- Andre Bester for his invaluable support and motivation.
- > Dave Joubert whose encouragement and motivation kept me focussed.
- > Dave Evans for his assistance and advice.
- Walter Kohlhofer for being a good friend and motivator.
- > Prof. Ed Snyders for his invaluable support and encouragement.
- My friends and colleagues at the Cape Peninsula University of Technology for their support.

TABLE OF CONTENTS

CHAPTER 1:	SCOPE OF THE RESEARCH	1
1.1 INTRO	DUCTION AND BACKGROUND	1
1.2 RESEA	ARCH PROCESS	2
1.3 BACKO	GROUND TO THE RESEARCH PROBLEM	3
1.4 RESEA	ARCH PROBLEM STATEMENT	4
1.5 RESEA	ARCH QUESTION	4
1.5.1 Inves	stigative Questions	4
1.6 RESEA	RCH DESIGN AND METHODOLOGY	5
1.6.1 The s	survey design and methodology	7
1.7 RESEA	RCH ASSUMPTIONS	7
1.8 RESEA	ARCH CONSTRAINTS	8
1.8.1 Limit	tations	8
1.8.2 Delin	nitations	9
1.9 CHAPT	ΓER AND CONTENT ANALYSIS	9
1.10 KEY R	ESEARCH OBJECTIVES	10
1.11 SIGNIF	FICANCE OF THE PROPOSED RESEARCH	10
1.12 ETHIC	AL CONSIDERATIONS	10
CHAPTER 2: A	A HOLISTIC PERSPECTIVE OF THE RESEARCH	
ENVIRONMEN	NT	
2.1 INTRO	DUCTION	13
2.2 FACTC	ORS THAT INFLUENCE THE TRANSFER OF KNOWLE	DGE 13
2.2.1 Inabi	lity to determine the needs of industry	14
2.2.2 Lack	of involvement in industry	16
2.2.3 Lack	of social responsibility	17
2.2.4 Lack	of sharing of knowledge and expertise	18
2.2.5 Misco	onception of knowledge transfer	19
2.3 UNIVE	RSITY – INDUSTRY COLLABORATION	20
2.4 WORK	INTEGRATED LEARNING / PLACEMENT OF STUDEN	NTS22
2.5 CONCI	LUSION	22
CHAPTER 3: 1 INDUSTRY: A	KNOWLEDGE TRANSFER FROM UNIVERSITY TO LITERATURE REVIEW	I
		22

3.1	INTRODUCTION	23
3.2	KNOWLEDGE TRANSFER CHANNELS	25
3.3	TRANSFERRING EXPLICIT AND TACIT KNOWLEDGE	

3.4	KNOWLEDGE AT UNIVERSITY AND THE TRANSFER TO	
	INDUSTRY	
3.5	KNOWLEDGE REQUIRED BY INDUSTRY	
3.6	KNOWLEDGE TRANSFER – BENEFITS OF QUALITY TOOL	S AND
	TECHNIQUES	
3.7	KNOWLEDGE MANAGEMENT ENABLERS	35
3.8	KNOWLEDGE MANAGEMENT BARRIERS	
3.9	KNOWLEDGE CREATION AND SHARING	
CHAPT	Image: Ter 4: RESEARCH DESIGN AND METHODOLOGY	42
4.1	AIM OF THIS CHAPTER	
4.2	THE SURVEY ENVIRONMENT	
4.3	THE TARGET POPULATION	
4.4	MEASUREMENT SCALES	43
4.5	SURVEY DESIGN	43
4.6	DATA VALIDITY AND RELIABILITY	45
4.7	CONCLUSION	46
CHAPT	FER 5: DATA ANALYSIS AND INTERPRETATION	47
5.1	INTRODUCTION	47
5.2	METHOD OF ANALYSIS	48
5.2	.1 Validation of Survey results	48
5.2	.2 Data format	48
5.2	.3 Preliminary analysis	49
5.2	.4 Inferential statistics	49
5.2	.5 Assistance to Researcher	50
5.2	.6 Sample	51
5.3	ANALYSIS	51
5.3	.1 Reliability testing	53
5.3	.2 Descriptive Statistics	57
5.3	.3 Uni-Variate Graphs	
5.3	.3.2 Industry survey	61
5.3	.4 Inferential Statistics	63
CHAPT	FER 6: CONCLUSION AND RECOMMENDATIONS	71
6.1	THE RESEARCH THUS FAR	71
6.2	ANALOGIES DRAWN FROM THE DATA ANALYSIS	71
6.3	ANALOGIES DRAWN FROM THE LITERATURE REVIEW	73
6.3	.1 Transfer from University to Industry	73
6.3	.2 Knowledge required by industry	74
6.3	.3 Channels of transfer	75

6.4 T	HE RESEARCH PROBLEM REVISITED	15
6.5 T	HE RESEARCH QUESTION REVISITED	76
6.5.1	Advisory Board	76
6.5.2	Sharing of knowledge and expertise	17
6.5.3	Misconception of knowledge transfer	78
6.6 K	EY RESEARCH OBJECTIVES REVISITED	78
6.6.1	To determine the demands from industry in respect of knowledge .transf	er
	from graduate students	79
6.6.2	To determine the shortcomings at tertiary institutions in respect of	
	knowledge transfer to students, and thereafter to industry	79
6.6.3	To determine which elements are critical for successful knowledge	
	transfer	79
6.6.4	To formulate an approach for industry to close the gap created by the	
	demands of the knowledge gap	30
6.6.5	To ascertain whether a structured mechanism can be implemented by	
	tertiary institutions to narrow the gap between University knowledge and	l
	industry requirements?	30
6.7 F	INAL CONCLUSION	31
BIBLIOG	RAPHY	32

LIST OF TABLES

Table 3.1:	Definition of operational variables	36
Table 4.1:	Sample questionnaire for industry	44
Table 4.2:	Sample questionnaire for staff	45
Table 5.1:	Adaption of staff questionnaire numbering	45
Table 5.4:	Cronbach's Alpha Coefficient for each scale forming the measurement of knowledge gap between tertiary institutions and industry	54
Table 5.6:	Cronbach's Alpha Coefficient for each scale forming the measurement industry demands	55
Table 5.7:	Cronbach's Alpha Coefficient for each scale forming the measurement of the key elements	56
Table 5.8:	Cronbach's Alpha Coefficient for each scale forming the measurement of the knowledge gap	56
Table 5.13:	Statistically significant Chi-square test for equal proportions for industry survey	64
Table 5.14:	Statistically significant Chi-square test for equal proportions between the staff and the industry	66
Table 5.15:	Contingency table for Q8n versus the survey groups	68
Table 5.16:	Contingency table for Q17n versus the survey groups	68
Table 5.17:	Contingency table for Q20n versus the survey groups	68
Table 5.18:	Wilcoxon Scores (Rank Sums) for the SLA	69

LIST OF FIGURES

Relation between Core business and Quality	15
Linkages between University and industry	17
Sharing knowledge and expertise	19
Resource activities at University and industry	21
Process of generating information/knowledge in the market	26
Modes of the Knowledge Creation	28
Knowledge created through a spiral	40
Survey distribution	58
Critical shortcomings	59
Key elements	59
Knowledge gap	60
Industry demands	61
Critical shortcomings	61
Key elements	62
Critical shortcomings	63
The University has regular contact sessions with students in the industry	67
Industry is involved in curriculum reviews	68
Employees create an opportunity for students to apply their knowledge	69
Critical shortcomings	70
	Relation between Core business and Quality Linkages between University and industry Sharing knowledge and expertise Resource activities at University and industry Process of generating information/knowledge in the market Modes of the Knowledge Creation Knowledge created through a spiral Survey distribution Critical shortcomings Key elements Knowledge gap Industry demands Critical shortcomings Key elements Critical shortcomings The University has regular contact sessions with students in the industry Industry is involved in curriculum reviews Employees create an opportunity for students to apply their knowledge Critical shortcomings

LIST OF ANNEXURES

Annexure A:	Questionnaire: Industry	86
Annexure B:	Questionnaire: Staff	88
Annexure C:	Table 5.2: Cronbach's Alpha Coefficient for all the itemsforming the measuring instrument in the staff sample	89
Annexure D:	Table 5.3: Cronbach's Alpha Coefficient for all the itemsforming the measuring instrument in the staff sample deletingQ1 from the sample	91
Annexure E:	Table 5.5: Cronbach's Alpha Coefficient for each scale forming the measurement of the industry sample	93
Annexure F:	Table 5.9: Descriptive statistics for all the variables of the staff questionnaire	95
Annexure G:	Table 5.10: Descriptive statistics for all the variables of the industry questionnaire.	98
Annexure H:	Table 5.11: Descriptive statistics for staff questionnaire – Mean, Median, Standard Deviation and Range	102
Annexure I:	Table 5.12: Descriptive statistics for industry questionnaire –Mean, Median, Standard Deviation and Range	104
Annexure J:	Cronbach Alpha Coefficients for the items in the staff questionnaire	107
Annexure K:	Cronbach Alpha Coefficients for the items in the industry questionnaire	110
Annexure L:	Descriptive statistics: Frequency tables for staff questionnaire	114
Annexure M:	Descriptive statistics: Frequency tables for staff questionnaire	118
Annexure N:	Descriptive statistics for staff questionnaire: Uni-variate with means & standard deviations where appropriate	123
Annexure O:	Descriptive statistics for industryquestionnaire: Uni-variate with means & standard deviations where appropriate	129
Annexure P:	Comparison of proportions for staff questionnaire	138
Annexure Q:	Comparison of proportions for industry questionnaire	141
Annexure R:	Chi-square for comparisons	144
Annexure S:	ANOVA & Man Whitney test	153

ABSTRACT

Author: Elvina Moosa

Degree: Magister Technologiae: Quality
Title: Knowledge transfer from University to Industry
University: Cape Peninsula University of Technology
Faculty: Faculty of Engineering
Supervisor: Prof. J. André Watkins

Date: October 2011

Key words: knowledge transfer, tacit knowledge, explicit knowledge, quality tools and techniques, partnership, social responsibility.

Knowledge transfer is considered to distribute knowledge and to ensure that it is used in future. At University level, the transfer of knowledge to students is the core function, and the effectiveness is therefore critical. To identify ways to manage and transfer knowledge is a challenge for the University and industry. The demands from industry are not necessarily communicated to the University, and therefore a gap could occur.

It is difficult to determine the need for quality practices in industry and the gap could, in some instances, be blamed on improper knowledge transfer at University level. The lack of knowledge transferred between students and their employers is also possible. Students could, for various reasons, find it difficult to apply their knowledge.

Knowledge transfer is diverse and the knowledge transferred between University and industry could be done through different channels. Understanding how the knowledge transfer processes impacts on the University's ability to focus on requirements by industry is sometimes ambiguous. As knowledge expands, the application thereof could also be difficult to achieve in industry. The competencies and resources at the University should be put to optimal use in order to assist with the transition from University to industry, and to assist with the application of knowledge in industry. There must be synergy between the two entities. The gap could be narrowed when there is active involvement from industry and full cooperation from the University.

CHAPTER 1: SCOPE OF THE RESEARCH

1.1 INTRODUCTION AND BACKGROUND

The transfer of knowledge at university level is experienced in diverse ways, by individuals. The challenges increase every year when new students enroll at the university. What students have learned is not necessarily transferred to the workplace. It is to the advantage of any organisation to continuously improve its processes, and to embark on quality improvement and assurance processes. It is therefore imperative that students apply their knowledge in industry. It is important, in order to support the organisation, to operate at the highest potential. The needs or knowledge required by industry are not comprehensible, or are not properly communicated to the University.

The corporate world is becoming more competitive. Organisations compete globally, and the need for delivering quality service is increasing. Quality features in everything we do, hence the great demand from students to study Quality. Organisations also "invest" in quality and pay for their employees to study Quality. Every year a number of students complete their BTech degrees in Quality. Students do research projects, but it is not clear if graduates apply their knowledge, or how they apply it, after completing their studies. It is therefore important that the transfer of knowledge, or the lack thereof, is highlighted in an attempt to bridge the gap between the University and industry.

The challenges that hamper students from transferring and applying their knowledge in organizations, could include internal organizational challenges, as well as students' own lack of understanding, initiative or interest. Learning, for instance, about quality tools and techniques is very different to applying the tools and techniques and understanding how and when to use the tools. The transition may not be clear, which could also be the cause of the lack of implementation by students. It is also possible that the transfer of knowledge at university level is not satisfactory and does not address the practical issues experienced in industry. Commitment from top management is absolutely crucial for the successful implementation of sharing information and transferring knowledge. Training of staff is imperative. Staff needs to be aware of the advantages of sharing information and how it could be used to improve productivity and enhance overall performance. More and more businesses realize that, in order to stay competitive, they have to improve on quality, but sometimes mass production takes precedence and the implementation and monitoring of quality can easily take a backseat. Although organisations are also expected to attain some form of quality certification, it still does not mean that continuous quality improvement takes place after certification. To determine where the problem lies in the organisations, research has to be done in order to focus on the application of knowledge in industry and whether the knowledge transferred at University level is adequate.

The aim of this study is to determine, and narrow, the gap between knowledge at University and knowledge required by industry. This should encourage continuous liaisons and relationships with industry. A good relationship between the University and industry could ensure successful knowledge transfer, which could benefit both entities.

1.2 RESEARCH PROCESS

Remenyi, Williams, Money and Swartz as cited by Watkins (2010:39), explain the research process as consisting of eight specific phases, namely:

- Reviewing the literature.
- Formalising a research question.
- Establishing the methodology.
- Collecting evidence.
- Analysing the evidence.
- Developing conclusions.
- Understanding the limitations of the research.
- Producing management guidelines or recommendations.

According to Collis and Hussey as cited by Watkins (2010:40) there are six fundamental stages in the research process, namely:

- Identification of the research topic.
- > Definition of the research problem.
- > Determining how the research is going to be conducted.
- Collection of the research data.
- Analysis and interpretation of the research data.
- Writing up of the dissertation or thesis.

The following process will be followed in this research study:

- Identification of the research topic.
- Reviewing the literature.
- Formalising a research question.
- Establishing the methodology.
- > Determining how the research is going to be conducted.
- Collecting the evidence.
- Analysing the evidence.
- Developing conclusions.

1.3 BACKGROUND TO THE RESEARCH PROBLEM

The effectiveness of a programme, and the way students transfer their knowledge in industry, is difficult to assess and quantify. It is important that knowledge transfer and the application thereof is determined to evaluate effectiveness of programmes and the impact they have on industry. A study, where these problems are examined, could assist the University and industry to improve performances by extensively using and channeling information.

The challenges hampering students from transferring and applying their knowledge in organisations could be internal, in the organization, or it could be the students' lack of understanding, initiative or interest. It is also possible that the transfer of knowledge

at university level is not adequate, and does not address practical issues experienced in industry. It is therefore critical that the factors that cause the gap between knowledge at University and knowledge required by industry are determined.

1.4 RESEARCH PROBLEM STATEMENT

Against the above background to the research problem, the research problem statement reads as follows: "Academic knowledge gleaned at University does not meet the requirements of industry"

1.5 RESEARCH QUESTION

Forming the crux of this dissertation, the following question will be researched: "What mechanism can be implemented by Universities to narrow the gap between University knowledge and industry requirements?"

1.5.1 Investigative Questions

The investigative questions to be researched in support of the research question are the following:

- What are the particular demands from industry with respect to knowledge transfer from graduate students?
- What are the critical shortcomings at University with respect to knowledge transfer to students, and thereafter to industry?
- What are the key elements which are critical for successful knowledge transfer?
- What remedial actions should industry implement to meet the demands created by the knowledge gap between Universities and industry?

1.6 RESEARCH DESIGN AND METHODOLOGY

Case study research will form the primary research method for this study. Primarily falling within the phenomenological (qualitative) paradigm, case study research can equally be applied within the context of the positivistic (quantitative) paradigm. According to Yin, cited by Watkins (2010:42), a research design can be defined as, "...the logical sequence that connects the empirical data to a study's initial research question, and ultimately, to its conclusions. Colloquially, a research design *is an action plan from getting from here to there*, where *here* may be defined as the initial set of questions to be answered, and *there* is some set of conclusions (answers) about these questions". Some of the more salient aspects of case study research, described by Yin, are listed below for ease of reference:

- A case study is an empirical enquiry that investigates a contemporary phenomenon within its real-life context, especially when the boundaries between phenomenon and context are not clearly evident.
- Case study research aims not only to explore certain phenomena, but also to understand them in particular context.
- 'How' and 'why' questions are explanatory, and likely to be used in case study research.
- A case study illuminates a decision or set of decisions why they were taken, how they were implemented, and with what results.
- The case study as a research strategy comprises an all-encompassing method with the logic of design incorporating specific approaches to data collection and data analysis. In this sense, the case study is neither a data collection tactic nor merely a design feature alone, but á comprehensive research strategy'.
- Case study research uses multiple methods for collecting data, which may be both qualitative and quantitative.
- A case study is typically used when contextual conditions are the subject of research.

According to Collis and Hussey as cited by Watkins (2010:47), case studies are often described as exploratory research used in areas where there are few theories, or a deficient body of knowledge. In addition, the following types of case studies can be identified:

- Descriptive case studies: Where the objective is restricted to describing current practice.
- Illustrative case studies: Where the research attempts to illustrate new and possibly innovative practices adopted by particular companies.
- Experimental case studies: Where the research examines the difficulties in implementing new procedures and techniques in an organization and evaluates the benefits.
- Explanatory case studies: Where existing theory is used to understand and explain what is happening.

Yin as cited by Watkins (2010:47), emphasizes the following five components of a research design, which are especially important for case studies:

- Study questions: The case study is most likely to be appropriate for 'how' and 'why' questions, which call for the initial task being to clarify precisely the nature of the study questions.
- Study propositions: A study proposition directs the attention to something that should be examined within the scope of the study. For greater clarity, the proposition points to 'the reason for the study'.
- Unit of analysis: Should the case study involve a specific person being studied, say a person representing a specific diversity case, the individual being studied is the primary unit of analysis. The tentative definition of the unit of analysis is related to the way in which the initial research questions were formulated.
- Linking data to propositions: A number of ways are open to students to link data to propositions. An approach suggested by Yin is that of 'pattern matching', whereby several pieces of information from the same case may be related to some theoretical proposition.

Criteria for interpreting findings: If the different 'patterns' are sufficiently contrasting, the findings can be interpreted in terms of comparing at least two rival propositions.

1.6.1 The survey design and methodology

The survey design and methodology is elaborated upon, within the ambit of Chapter 4. Primary data will be collected via two sources, namely: (Only one source appears to be quoted below.)

A survey using questionnaires: The concept 'survey' is defined by Remenyi et al as cited by Watkins (2010:67), as "...the collection of a large quantity of evidence, usually numeric, or evidence that will be converted to numbers, normally by means of a questionnaire". A questionnaire is a list of carefully structured questions, chosen after considerable testing, with a view to eliciting reliable responses from a chosen sample. The aim is to establish what a selected group of participants do, think or feel. A positivistic approach suggests structured 'closed' questions, while a phenomenological approach suggests unstructured 'open-ended' questions.

1.7 RESEARCH ASSUMPTIONS

Leedy and Ormrod as cited by Watkins (2010:72), provide the following explanation of assumptions which could not be improved upon, and are thus cited verbatim: "Assumptions are what the researcher takes for granted. But taking things for granted may cause much misunderstanding. What we may tacitly assume, others may have never considered. If we act on our assumptions, and if in the final result which actions make a big difference in the outcome, we may face a situation we are totally unprepared to accept. In research we try to leave nothing to chance in the hope of preventing any misunderstanding. All assumptions that have a material bearing on the problem should be openly and unreservedly set forth. If others know the assumptions a researcher makes, they are better prepared to evaluate the conclusions that result from such assumptions."

- Knowledge transfer is used to form links between the University and industry.
- Organisations that are involved in the research will be actively involved in monitoring knowledge transfer.
- Organisations are honest when information regarding their activities is disseminated.
- Information gathered during the investigation will assist in improving performance in both the University and industry.

1.8 RESEARCH CONSTRAINTS

According to Collis and Hussey as cited by Watkins (2010:73), 'limitations' identify weaknesses in the research, while 'de-limitations' explain how the scope of the study was focused on only one particular area or entity, as opposed to, say, a wider or (more) holistic approach. The authors provide the following examples of the two concepts:

- Limitations: Upon completion of an investigation, one may consider that it is appropriate to generalize from the research findings, because of the way in which one has structured the sample.
- De-limitations: One may elect to confine interviews to employees in only one company, or restrict the postal questionnaire to one specific geographical area.

1.8.1 Limitations

The following limitations may occur:

- Availability of Managers and staff.
- > Organisations may not want to take part in the study.
- Some companies in industry may not want to give information because it can reflect on negative functions and practices in the organisation.
- Staff may be reluctant to be interviewed.

1.8.2 Delimitations

The scope of the research will be limited to a survey done in the Department of Industrial and Systems Engineering (DISE) at the Cape Peninsula University of Technology (CPUT), and companies in the Industrial Engineering industry.

1.9 CHAPTER AND CONTENT ANALYSIS

Chapter 1 – Scope of the research: In this chapter a holistic perspective will be provided in the ambit of this dissertation.

Chapter 2 – Background to the research problem: A holistic perspective: In this chapter a holistic view will be provided on the transfer of knowledge from University to industry.

Chapter 3 – Literature Review: In this chapter, a literature review will be conducted on the following aspects:

- Introduction
- Knowledge transfer channels
- Transferring explicit and tacit knowledge
- Knowledge at University and the transfer to industry
- Knowledge required by industry
- Knowledge transfer: benefits of quality tools and techniques
- Knowledge management enablers
- Knowledge management barriers
- Knowledge creation and sharing

Chapter 4 – **Survey Design and Methodology:** In this chapter, the survey design and methodology within the ambit of this dissertation will be elaborated upon in detail.

Chapter 5 - Data Analysis and interpretation of survey results: In this chapter, data gleaned from the research survey conducted within the ambit of Chapter 4 will be analysed and interpreted.

Chapter 6 - Conclusion and Recommendations: In this chapter, the research will be concluded. Key elements raised in chapter 1 will be revisited and recommendations made to, not only mitigate the research problem, but also to provide an answer to the research questions and associated investigative questions.

1.10 KEY RESEARCH OBJECTIVES

The key research objectives in this research study are:

- To determine the demands from industry with respect to knowledge transfer from graduate students.
- To determine the shortcomings at University in respect of knowledge transfer to students and thereafter to industry.
- To determine which elements are critical for successful knowledge transfer.
- To formulate an approach for industry to close the gap created by the demands of the knowledge gap
- To ascertain whether a structured mechanism can be implemented by the University to narrow the gap between University knowledge and industry requirements?

1.11 SIGNIFICANCE OF THE PROPOSED RESEARCH

The significance of this research lies in determining the gap between knowledge at University and knowledge required by industry. Determining the gap will provide the University with the necessary information to focus on specific knowledge required by industry and to narrow the gap. It could also improve relationships and liaisons with industry.

1.12 ETHICAL CONSIDERATIONS

In the context of research, according to Saunders, Lewis and Thornhill as cited by Watkins (2010:69), "...ethics refers to the appropriateness of your behaviour in

relation to the rights of those who become the subject of your work, or are affected by it". Most ethical issues in research fall into one of four categories namely, protection from harm, informed consent, right to privacy, and honesty with professional colleagues (Leedy & Ormrod, by Watkins 2010:69):

- Protection from harm: In cases where the nature of a study involves creating a small amount of psychological discomfort, participants should know about it ahead of time, and any necessary debriefing or counseling should follow immediately after their participation.
- Informed consent: Participants should be told in advance about the nature of the study to be conducted, and be given the choice of either participating or not participating. Furthermore, they should be given the right to withdraw from the study at any time, as participation in a study should be strictly voluntary. An informed consent form that describes the nature of research as well as the nature of the required participation will be presented to participants of this research study. Such a form should, according to Leedy and Ormrod as cited by Watkins (2010:69), contain the following information:
 - A brief description of the nature of the study.
 - A description of what participation will involve in terms of activities and duration.
 - A statement indicating that participation is voluntary and can be terminated at any time, without penalty.
 - A list of potential risks and/or discomfort that participants may encounter.
 - > The guarantee that all responses will remain confidential and anonymous.
 - The researcher's name, plus information about how the researcher can be contacted.
 - An individual, or office, that participants can contact, should they have questions or concerns about the study.
 - An offer to provide detailed information about the study (e.g., a summary of findings) upon its completion.
 - A place for participants to sign and date the consent form, indicating agreement to participate.

- Right to privacy: Any research study should respect participants' right to privacy. In general, a researcher must keep the nature and quality of participants' performance strictly confidential.
- Honesty with professional colleagues: Researchers must report their findings in a complete and honest fashion, without misrepresenting what they have done, or intentionally misleading others as to the nature of their findings. Under no circumstances should a researcher fabricate data to support a particular conclusion, no matter how seemingly 'noble' (desirable?) that conclusion may be.

CHAPTER 2: A HOLISTIC PERSPECTIVE OF THE RESEARCH ENVIRONMENT

2.1 INTRODUCTION

Knowledge transfer is intended to distribute knowledge and to ensure that it is used in future. At University level, the transfer of knowledge to students is the core function, and the effectiveness is therefore critical. Measuring the effectiveness of knowledge transfer at University is not an easy task. Furthermore, the knowledge required by industry also needs to be determined. Defining and understanding the scope of knowledge required in industry is imperative because of the varied needs and demands in industry.

To identify ways to manage and transfer knowledge is a challenge for both the University and industry. The demands from industry are not necessarily communicated to the University and therefore a gap could occur. Quality Management is used in industry, but the application and the extent of the application should be analysed. What some organizations in industry deem important for improving quality management, others may consider insignificant, and may not use as part of their quality management strategies. The challenge, therefore, increases because the University needs to ensure that, whatever is expected from industry, the knowledge shared is functional.

2.2 FACTORS THAT INFLUENCE THE TRANSFER OF KNOWLEDGE

Some factors that could influence the transfer of knowledge between University and industry include:

- > The inability to determine the needs of industry
- The lack of involvement in industry
- The lack of social responsibility
- The lack of sharing of knowledge and expertise

The misconception of knowledge transfer

The above factors are elaborated upon below, to provide the context of the research environment.

2.2.1 Inability to determine the needs of industry

A number of constraints could hamper the process of determining what is needed or required by industry. The current intake of students in the Quality department is on a full-time and part-time basis. The full-time students are generally the students who do not have permanent jobs and continue with their BTech degrees directly after completion of their National Diploma. Part-time students, generally, are students who are working, and a small percentage of them are working in a quality management environment. However, some students do not get any exposure to quality in industry. It could therefore be possible that students enroll for a degree in quality, for the following reasons:

- They have an interest in quality.
- > They would like to pursue a career in quality.
- They would like to obtain a BTech degree.
- > They could not find a job after completion of their National Diploma.
- They need hostel accommodation while searching for a job.
- They are sent by their employers to study quality.

Quality is very diverse, and there are different approaches to quality in different fields. With the intake of students from various industries, it is a rather daunting task to address each specific requirement. However, the basic principles are taught, that relate to quality management and the application thereof. It is important that the Department of Industrial and Systems Engineering investigates the specific needs in industry, in order to ensure that the knowledge which is transferred could be used in industry.

Students in other industries e.g. engineering, food technology, biomedical science etc. can apply their knowledge to their respective fields. They gain more knowledge, and become experts in their fields. Students who study Quality would, in many cases, start their working careers and never apply the knowledge gained at University. It becomes a qualification which is not used by the student, because of the student's undergraduate qualification in which he/she specializes. As discussed earlier, there could be various reasons why students study Quality.

As illustrated in figure 2.1 below, quality could be seen as an "extra" task in the workplace, and could therefore be neglected because it is not the core function of the organization.

Figure 2.1: Relation between Core business and Quality (Source: Own)

The lack of knowledge transferred between students and their employers is also possible. Students could, for various reasons, find it difficult to apply their knowledge. These reasons could be:

- Lack of interest or initiative of students.
- Lack of ability. Students do not know how to apply their knowledge.
- Employers do not allow, or create an environment, for the student to apply his/her knowledge.

Lack of management commitment.

It is therefore difficult to determine the need for quality practices in industry, and the gap could, in some instances, be blamed on improper knowledge transfer at University level.

2.2.2 Lack of involvement in industry

A requirement of the University is that each programme or department must have an Advisory Board. The Advisory Board consists of members from industry which, as a committee, meet every term or semester, depending on the need of the programme or department. The Advisory Board could assist in developing partnerships between the University and employers/industry. Their role is also to provide a platform for communication between the department and industry.

Although the guidelines and roles and responsibilities of the Advisory Board are clear, the extent to which they play an active part in assisting the department is (still) to be determined. Although meetings are held, other forms of interaction should also be investigated. The Quality programme does not place students in industry for work-integrated learning. Work-integrated learning is done at National Diploma level and is not a requirement for the BTech degree in Quality. Recruitment and placement of students require direct contact with industry. Lecturing staff, currently, do not have the time to form links with industry and to physically visit industry. Time constraints are a major concern and can, at this stage, not be addressed because of the workload of the lecturing staff. With this is mind, the Advisory Board's role is becoming more important in assisting the department in the planning and implementation processes of various activities.

Important linkages between industry and the University consist of the following activities outlined in figure 2.2 below:

- Project development
- Placement of students

- Sharing of expertise
- Curriculum reviews
- Developing partnerships

Figure 2.2: Linkages between University and industry (Source: Own)

Currently, the Advisory Board in the Department of Industrial and Systems Engineering is a combined Advisory Board for industrial engineering, as well as quality. The quality programme does not have its own Advisory Board which could raise some concerns. However, the current Advisory Board has members on the board who represent quality, and the advantage is that different industries could assist each other in forming collaborations and exchanging knowledge with the department as a whole.

An active Advisory Board is crucial to form links with industry. It is also important that regular reviews are held to discuss any changes in requirements from industry. Any changes in the curriculum at the University should be discussed with the Advisory Board in order to get input and guidance from industry.

2.2.3 Lack of social responsibility

In recent years, universities have become more involved in community engagement projects. Community engagement forms part of the University's strategic direction. The aim is to focus on the social development needs of staff and students. According to the Cape Peninsula University of Technology's strategic plan (2010), the aim is to enter mutually beneficial partnerships for development, the appropriation of knowledge and life-long learning.

Currently, there is no community engagement plan in the department. As previously discussed, the heavy workload of staff members makes it impossible to engage in social responsibility activities. Although social responsibility is important, it cannot be implemented because of the lack of time and other resources. The University and industry should combine forces to engage in projects in the community. Partnerships with industry would create more opportunities for social engagement and social responsibility, for staff and students.

2.2.4 Lack of sharing of knowledge and expertise

There could be a number of reasons why there is a lack of knowledge sharing at University, or between University and industry. Experts may not want to share their knowledge for fear of losing their positions, or fear that intellectual property may be compromised. Tacit knowledge is also very difficult to share, which could be a further cause for the lack of sharing of knowledge. New or junior staff could be seen as a threat to experienced staff which could also hamper the interaction process and the sharing of practices.

Sharing of expertise forms an integral part of the teaching process. Sharing could be between academics, academics and industry/stakeholders, as well as academics and students. Expertise shared could be shared by arranging guest speakers from industry or guest lecturers, or researchers from other universities. However, there are financial constraints that restrict the regular visits of guests. Videoconferencing is another aspect of sharing of expertise, which should be explored by the department/University. This could not only lower costs but could enhance the sharing of expertise through communication.

In any organization, people possess knowledge and expertise. At University and industry level, different expertise is required, but it is extremely important that expertise is shared, for further development at the University and in industry. An exchange programme between industry and the University would be ideal for sharing expertise. In some Faculties the exchange between University and industry has worked very well. In the Department of Industrial and Systems Engineering this practice has not been followed. It is a possibility that should be explored. This would give academics direct access to industry, which would give them first hand information of the needs and demands in industry. In return, industry would learn about the gaps in knowledge transferred at University, and could guide the department in determining the needs of industry to equip and prepare students for the workplace. Figure 2.3 illustrates the knowledge sharing process.

Figure 2.3: Sharing knowledge and expertise (Source: Own)

2.2.5 Misconception of knowledge transfer

Knowledge transfer could be perceived as knowledge transferred only from lecturer to student. In the academic arena, knowledge could be transferred in a number of ways. Besides the transfer of knowledge in the classroom, the publication of journals and attendance at workshops and conferences are important transfer channels that contribute to the knowledge transferred at University. Communication, in any form, is critical in academic departments, because sharing information and practices is part of the knowledge transfer process. Communication is also important to eliminate the misconception of knowledge transfer by individuals. Academic staff also needs to be informed of industry requirements, and to keep them involved in the development of linkages and collaborations.

Knowledge transfer is diverse, and the knowledge transferred between University and industry could be done through various channels. Understanding how the knowledge transfer processes impact on the University's ability to focus on requirements by industry is sometimes ambiguous. Finding the gap between knowledge at University and knowledge required by industry is therefore important, to continuously improve and to update the relevant content of courses.

Industry could also perceive knowledge transfer as being knowledge transferred at University level only. This misconception could prevent them from collaborating with the University or serving on the Advisory Board. The University needs to be actively involved in partnering with industry, and to inform them of the importance of the role they play in the knowledge transfer process. In turn, the department needs to identify the organisations in industry, which could be approached for possible collaboration.

A distinction between tacit and explicit knowledge also need to be made in order to understand what type of knowledge is referred to when communication between University and industry takes place. Explicit knowledge, which is knowledge that is easily communicable, is commonly used when people share practices and knowledge. Students would therefore generally use explicit knowledge when employed in industry after graduation. Tacit knowledge is difficult to communicate, as it acquires expertise and skill which is acquired over time.

2.3 UNIVERSITY – INDUSTRY COLLABORATION

University – industry collaboration has definitely become the focal point at the University. The importance of this collaboration is becoming more evident, and the intensity cannot be ignored. There should be a link between certain activities at

University level and industry level. In order to determine the gap between knowledge at University and knowledge required by industry, the link must be active and monitored by both parties. The link could be in the form of advisory boards, industryacademic exchange programmes, research projects, work integrated learning etc. The department should determine which linkages they want to focus on, which could benefit the department, students and industry.

University - industry collaboration could also secure funding for research from which both entities could benefit. Research areas could focus on specific projects determined by industry, which could also form part of social responsibility and development. Work-integrated learning, or placement of graduates, could also be explored through collaboration.

Figure 2.4: Resource activities at University and industry (Source: Own)

As knowledge expands, the application thereof could also be difficult to achieve in industry. The competencies and resources at the University should be put to optimal use in order to assist with the transition from University to industry, and to assist with the application of knowledge in industry. There must be synergy between the two

entities. The gap could be narrowed when there is active involvement from industry and full co-operation from the University.

2.4 WORK INTEGRATED LEARNING / PLACEMENT OF STUDENTS

As previously mentioned, the Quality programme does require work integrated learning because it is BTech degree programme. Although Work Integrated Learning is not a requirement, placing students in industry should be explored. It could provide job opportunities for students, and monitoring students that are in industry could benefit the programme and department in order to determine what skills students apply in industry and what knowledge is required by industry.

Time constraint is a major problem in the department because lecturing staff has a big workload and they cannot focus on monitoring students. Besides the advantages that placing and monitoring students in industry have, it could also provide the department with academic standing in industry, which could generate funding and research opportunities.

2.5 CONCLUSION

In this chapter a holistic perspective of the issues of the research environment has been provided. An overview of the key focus areas was given, and the problems that are currently hampering the knowledge transfer process. The department as well as the University needs to focus and address the factors that prevent the transfer of knowledge and to narrow the gap between knowledge at University and knowledge required by industry.

CHAPTER 3: KNOWLEDGE TRANSFER FROM UNIVERSITY TO INDUSTRY: A LITERATURE REVIEW

3.1 INTRODUCTION

Knowledge plays a key role in the information revolution. Major challenges are to select the "right" information from numerous sources and transform it into useful knowledge, (Smith, 2001:311). Gordon (2000:72), are of the opinion that knowledge is a subject for debate, and precise definitions are still elusive. The meaning of knowledge is largely relative. The author believes that knowledge is a complex concept and is itself invisible, which leads to difficulties for those attempting to manage knowledge.

It is important to determine what, and who, is involved in the knowledge transfer process. Rossi (2010:155), observed that researchers in certain fields are particularly active in knowledge transfer, and that the determinants of the intensity of knowledge transfer activities are generally specific to particular research areas.

Cohen and Levinthal (1990:128), state that outside sources of knowledge are often critical to the innovation process, whatever the organizational level at which the innovating unit is defined. The ability to exploit external knowledge is thus a critical component of innovative capabilities. They argue further that the ability to evaluate and utilize outside knowledge is largely a function of the level of prior related knowledge.

Research has been done regarding the use of Quality tools and techniques and the link to the way knowledge is transferred. There is an inclination to improve quality management in organisations. According to Bunney and Dale (1997:184), it is remarkable that many of the simple, yet powerful, tools are not fully integrated within the day to day process improvement aspects of business and industry. Quality cannot be separated from any activity in any organization, but the significance of the

successful implementation of it is becoming more apparent. The challenges that organisations are facing can be both complex and unpredictable.

The aim of superior organisations is to bring to the market attractive, high valueadded products in the shortest possible time, and this is the means by which they maintain their competitive edge – the application of quality tools and techniques is a key issue in this connection (Spring, McQuater, Swift, Dale & Booker, 1998:45).

Top Management commitment is a crucial part of the quality process and the transfer of knowledge in any organization. Dalgleish (2002:56), strongly agrees with Deming, that getting top management support is critical to any quality improvement campaign. The issue is not how to get management support, but how to regain the support that justifiably has been lost. Dalgleish (2002:56), also states that support can be regained, but not without significant effort. He also states that, in most cases, blaming top management is nothing more than a self-victimizing excuse to do nothing to change what frustrates most quality professionals. According to Smith (2001:311), valuable human and knowledge resources will be wasted, unless management openly accepts and supports efforts to gather, sort, transform, record and share knowledge.

Perceptions and implications of knowledge management and knowledge transfer differ from organization to organization, yet the basics, which involve information and people, should be focused on in every organisation. It is important that the implications of knowledge management are understood, in order to successfully transfer knowledge. Alavi and Leidner (2001:111), list the implications for knowledge management as follows:

- Focuses on exposing individuals to potentially useful information and facilitating assimilation of information.
- Involves enhancing individual's learning and understanding through provision of information.
- A key issue is building and managing knowledge stocks.
- Focuses on knowledge flows and the process of creation, sharing and distributing knowledge.
- Focuses on organized access to, and retrieval of content.
- > Is about building core competencies and understanding strategic know-how.

In order for knowledge to be transferred effectively, there needs to be a fit between individual readiness to transfer knowledge and organisational receptivity to knowledge (Lazarova & Tarique, 2005:369).

3.2 KNOWLEDGE TRANSFER CHANNELS

Knowledge transfer is becoming increasingly important in organisations. Firms of today are more organized on a global basis. In order to take advantage of differences in expertise, labour costs and access to markets should be taken into account (Argote, Ingram, Levine & Moreland, 2000:2). The authors also mention that realizing the benefits from new relationships hinges on the success of knowledge transfer between organizations.

There are three components in successful knowledge exchange: find, engage and understand (McNamee, Schoch, Oelschlaeger and Huskey, 2010:**Online**). They state that people must find one another, or somehow recognize the potential for collaboration; both potential participants must be motivated to some minimal engagement level necessary to transfer knowledge; and the participants must share enough of the same knowledge frameworks and language to be able to communicate with, and learn from one another.

Osterloh and Frey (2000:538), state that knowledge generation and transfer is an essential source of firms' sustainable competitive advantage. Knowledge transfer is important in any business, yet there are a number of challenges and uncertainties as to what it entails. As technological knowledge cumulates and expands, firms become

increasingly dependent on a wider range of scientific and technological knowledge fields, in order to develop their innovations (Antonelli & Calderini, 2008:25).

The knowledge transfer process is considered to be a process of activities, and should be communicated, in an organization, by top management. Generating information or knowledge is important to maintain a free flow of communication and to improve processes. (Nonaka, 1994:27) conceptualizes the organizational knowledge creation process in Figure 3.1 below:

Figure 3.1: Process of generating information/knowledge in the market (**Source**: Nonaka, 1994: 14-37)

Nonaka (1994:14), states that any organization that dynamically deals with a changing environment ought not only to process information efficiently, but also to create information and knowledge. He further states that knowledge is a multifaceted concept with multilayered meanings.

3.3 TRANSFERRING EXPLICIT AND TACIT KNOWLEDGE

In any organization, it is important that a common goal and vision is shared amongst employees in the organization. This could improve the transfer of knowledge. Lang (2004:90), believes that knowledge consists of both explicit and tacit elements, and distinguishes between the two as follows:

- Explicit knowledge is that which can be articulated and codified and which, therefore, transmits easily.
- Tacit knowledge is widely dispersed, residing in patterns of heedful interactions between individuals within a shared area of competence.

Members in an organization, however, cannot be forced to share their tacit knowledge. It is therefore difficult for any organization to gather tacit knowledge. Tacit knowledge, in particular, is lost through outsourcing, downsizing, mergers and terminations (Smith, 2001:311). Osterloh and Frey (2000:546), argue that the transfer of tacit knowledge within and between teams cannot be directly observed, and the output cannot be attributed to a particular employee. At best, managers can observe the result of knowledge generation and transfer in terms of output. They further argue that explicit knowledge, on the other hand, is tradable, and managers are more capable of observing how well workers with individual knowledge have performed in this respect, and can reward them accordingly. The critical distinction between the two lies in transferability and the mechanisms for transfer across individuals, across space, and across time (Grant, 1996:111).

Brennenraedts, Bekkers and Verspagen (2006:2), make a clear distinction between explicit and tacit knowledge. According to the authors, the nature of explicit knowledge is that it can be transferred without the presence of people. Explicit knowledge flowing between university and industry can exist, of patents, scientific articles, books etc. Tacit knowledge however, is embodied in people and cannot be transferred without them. It is the knowledge that people acquire by actually doing their job and conducting research and it cannot (yet) be transferred by writings or drawings. Balconi *et al.* (2003:128), states the exchange of tacit knowledge between university and corporate researchers requires the two social groups to share some acquaintances and/or a few codes of behaviour in terms of reciprocity and fairness.

Trust plays an important role in the successful transfer of tacit knowledge. Tacit knowledge transfer is likely to be more successful when there is higher trust amongst

internal and external project team members (Foos, Schum & Rothenberg, 2006:8). Irick (2007:4), believe that managers should encourage and support the creation and exchange of tacit knowledge and that they should act as "knowledge brokers", contributing to the diffusion of knowledge across and between communities. He further argues that one of the most important ways to manage tacit knowledge is to offer personnel training and exercises to allow the individual to access the knowledge realm of the group, and the entire organization. One of the ways that can support explicit knowledge management is to make the knowledge visible in some real way, Gordon (2000:78).

According to Nonaka (1994:24), the sharing of experience is important, and in order for the self-organizing team to start the process of concept creation, it first needs to build mutual trust among members. The concept of creation involves a difficult process of externalization, i.e., converting tacit knowledge (which by nature is hard to articulate) into an explicit concept. This challenging task involves repeated, timeconsuming dialogue between members. Opportunities to use tacit knowledge are prime factors in attracting and maintaining a talented, loyal, and productive workforce (Smith, 2000:240).

The assumption that knowledge is created through conversion between tacit and explicit knowledge allows us to postulate four different "modes" of knowledge conversion (Nonaka, 1994:19). The four modes of knowledge conversion are shown in Figure 3.2 below:

Figure 3.2: Modes of the Knowledge Creation (Source: Nonaka, 1994:14-37)

- Socialisation is the process that transfers tacit knowledge from one person to tacit knowledge in another person.
- Externalisation is the process for making tacit knowledge explicit among individuals within a group.
- Combination refers to the knowledge transfer once knowledge is explicit.
- Internalisation is the process of understanding and absorbing explicit knowledge into tacit knowledge held by the individual.

Alavi and Leidner (1999:6), state two major points that stem from the conceptualization of knowledge:

- Because knowledge is personalised, in order for one person's knowledge to be useful to another, it must be communicated in such a manner as to be interpretable and accessible to the other person.
- Hoards of information are of little value: only that information which is actively processed in the mind of an individual through a process of reflection, enlightenment and learning can be useful. Knowledge management, then, refers to a systemic and organizationally specified process for acquiring, organising and communicating both tacit and explicit knowledge of employees so that other employees may make use of it to be more effective and productive in their work.

Organisations that recognize and use their employees' steadily growing wealth of tacit and explicit knowledge to solve problems and achieve goals have a major competitive advantage. However, many organizations need to improve how they acquire and share tacit and explicit knowledge (Smith, 2001:319). The author is also of the opinion that despite globalisation, cultural diversity, and keeping pace with the "trend of the day", people acquire and apply tacit and explicit knowledge in their own way.

3.4 KNOWLEDGE AT UNIVERSITY AND THE TRANSFER TO INDUSTRY

Despite the many studies that have already been made of aspects of the transition from university to the world of work, and despite the best efforts of higher education institutions to establish links with industry and to ensure that there are employment opportunities for their graduates, there is one particular aspect of the interface between university and the world of work which, although significant, has received little attention; namely, what happens to new graduate employees in terms of their learning processes (Candy & Crebert, 1991:570).

University-industry knowledge transfer is nowadays a key research subject, both in economics and management studies, as well as a top entry in the science and technology policy agenda of a number of developed and developing countries (Balconi, Breschi & Lissoni, 2003:127).

Agrawal (2001:297), explored the characteristics of the various channels through which knowledge is transferred from the university to industry. The author states that the channels of transfer between university and industry include publications, patents, consulting, informal meetings, recruiting, licensing, joint ventures, research contracts, and personal exchange.

The transfer of knowledge can be perceived in different ways. Who is responsible for knowledge transfer? Harrington and Kearney (2010:121), state that the lack of knowledge transfer relates to the self-referential nature of different social systems inhabited by researchers and management practitioners. They further argue that researchers and management practitioners fail to imagine scenarios other than those of the traditional classroom and the existing systems of academics published in referred journals. D'Este and Patel (2007:1298) are of the opinion that the practices established by university departments might strongly influence the disposition of researchers to set up networks with users of their research. The scale of research

resources and the quality of research are among the department characteristics most frequently associated with more intensive interaction with industry.

Given the diversity of knowledge, and the way it interacts with economic processes, it is not surprising that there is also a variety of potential channels through which knowledge is transferred (Brennenraedts *et al*, 2006:5). According to Gordon (2000:78), by investigating the knowledge needed in a particular area of study (in a finer way) and then mapping out this knowledge, using learning dependency, prior knowledge assumptions will be clear to both student and teacher. Students would see the "bigger picture", and by learning dependency they would know how and where to apply knowledge.

Rossi (2010:155), believes that university-industry knowledge transfer activities take place through a wide spectrum of governance forms, ranging from the simple use of openly disseminated academic knowledge on the part of firms, to long-term university-industry partnerships whose features are regulated by complex arrangements.

Universities play a prominent role in discussions of the production, diffusion, and deployment of knowledge and innovation that supports economic growth. While universities have long served as a source of technological advances for industry, university-industry collaboration has intensified in recent years (Bercovitz & Feldmann, 2006:175). Recent academic explorations of the nature of knowledge have included discussion of the relationship between the kind of knowledge in play and its transfer and transferability (Ozga & Jones, 2006:1).

Universities are involved in industry in a number of ways. Service learning is a form of involvement where universities assist industry in various areas. Universities also benefit from industry, and in some cases funding from industry forms a big part of the universities' development funds. However, it is only beneficial if it is formally managed through contracts by both the university and industry. Bodas-Freitas, Geuna and Rossi (2010:7), state that more and more universities are organising and supporting interactions between academics and firms. In most cases, the creation of an institutional infrastructure for the exchange of knowledge between universities and firms is a direct or indirect result of policy actions, oriented towards structured knowledge transfer activities within universities.

Geuna and Muscio (2009:93), are of the opinion that universities have long been involved in knowledge transfer activities. Yet the last 30 years have seen major changes in the governance of university–industry interactions. The authors further state that knowledge transfer has become a strategic issue: as a source of funding for university research, and (rightly or wrongly) as a policy tool for economic development. Universities vary enormously in the extent to which they promote and succeed in commercializing academic research. The identification of clear-cut models of governance for university–industry interactions and knowledge transfer processes is not straightforward.

Etzkowitz (1998:833), is of the opinion that the entrepreneurial university integrates economic development into the university as an academic function along with teaching and research. The author elaborates upon the above and says it is this "capitalization of knowledge" that is at the heart of a new mission for the university, linking universities to users of knowledge more tightly, and establishing the university as an economic actor in its own right.

3.5 KNOWLEDGE REQUIRED BY INDUSTRY

In general, there is a specific focus at universities and industry on knowledge transfer, and how it impacts on certain processes and the application of knowledge in different fields. The importance of different channels of university-industry knowledge transfer can be assessed differently by firms in different industries. After all, firms active in different industries make use of different technological and market knowledge (Bekkers & Freitas, 2008:1837).

According to Bekkers and Freitas (2008:1839), it is expected that large firms, given their higher financial and skills resources, favour collaborative and contract research as forms of absorbing university produced or co-produced knowledge. Small firms are expected to benefit more from the influx of students, who bring along new knowledge from the university. Interaction between University and industry does not mean just transferring knowledge from the University to industry; knowledge transfer works in both directions (Geuna & Muscio, 2009:103).

Argote *et al.* (2000:1), are of the opinion that organisations that are able to effectively transfer knowledge from one unit to another are more productive and more likely to survive than those that are less adept at knowledge transfer. Although organisations are able to realise remarkable increases in performance through knowledge transfer, successful knowledge transfer is difficult to achieve. Grant (1996:111), argues that, at both individual and organisational level, knowledge absorption depends on the recipients' ability to add new knowledge to existing knowledge.

To explain the knowledge requirement of production in industry, Grant (1996:112), makes the following statement: "Production involves the transformation of inputs into outputs. Fundamental to a knowledge-based theory of the firm is the assumption that the critical input in production, and primary source of value is knowledge. Indeed, if we were to resurrect a single-factor theory of value in the tradition of the classical economists' labour theory of value or the French Physiocrats land-based theory of value, then the only defensible approach would be a knowledge-based theory of value, on the grounds that all human productivity is knowledge dependent, and machines are simply embodiments of knowledge".

It's all about the transfer of tangible and intellectual property, expertise, learning and skills between academia and the non-academic community. When students graduate and join the workforce, they bring with them new knowledge, and are effectively helping to 'regenerate the gene pool' of industry. The temporary placement of

students and graduates in companies or in the public or voluntary sectors can be a more directed way of exchanging knowledge on a shorter term basis (Research Councils UK, 2009: **Online**).

3.6 KNOWLEDGE TRANSFER – BENEFITS OF QUALITY TOOLS AND TECHNIQUES

The use and application of quality tools and techniques within an effective problem solving methodology are essential to understand and facilitate improvement in any process (Spring *et al.*, 1998:46). What are tools and techniques? According to McQuater *et al.* (1995:38), they are practical methods, skills, means or mechanisms that can be applied to particular tasks. They are used to facilitate positive change and improvements. Dale and McQuater (1998:43), report that the use of tools and techniques is not as widespread and effective as might be expected, and suggested that part of the problem is due to insufficient training in the use and application of these approaches.

The question also arises whether quality tools and techniques could be used for effective knowledge transfer. Quality management theory has been influenced by the contributions made by quality leaders, such as Crosby, 1979; Deming, 1982; Ishikawa, 1985; Juran, 1988 and Feigenbaum, 1991. The research by all these authors shows both strengths and weaknesses, for none of them offers all the solutions to the problems encountered by firms, although some common issues can be observed, such as management leadership, training, employees' participation, process management, planning and quality measures for continuous improvement (Tari & Sabater, 2003:268).

Tools cannot provide results by themselves. They must be developed to reflect the companies' culture and management visions (Govers, 2000:158). Management should be aware of the challenges and weaknesses in an organization in order to understand where and how tools and techniques could be of use in the organization.

Top management also plays an important role in the implementation of quality tools and techniques. It is important that top management supports quality improvement plans and the use of quality tools and techniques could be used to monitor the quality process.

3.7 KNOWLEDGE MANAGEMENT ENABLERS

There are different opinions on knowledge management enablers. Yeh, Lai and Ho (2006:801), suggest the following enablers are crucial for organization effectiveness:

- Corporate Culture
- > People
- Information Technology
- Strategy and Leadership

Enablers form a mechanism that stimulates members to develop knowledge, break the obstacles of knowledge development and encourage members to share their knowledge and experiences (Ho, 2009:101). This author divides knowledge management enablers into four categories, namely; strategy and leadership, organizational culture, organizational incentive system and information technology. These four categories are elaborated upon below.

Table 3.1: Definition of operational	variables (Source: Ho, 2009: 98-117)
--------------------------------------	--

Dimension	Research variable	Definition of operational variable
Knowledge	Strategy and	The knowledge management strategy must work
management	leadership	with organisational strategies and goals. Aside
enabler		from this, organisational leaders should give their
		support to knowledge management and clearly
		plan and promote knowledge management.
	1	

Organ	nisational	In the process of implementing knowledge
cultur	re	management, organisational culture should be a
		culture that encourages employees to create and
		share knowledge. An environment that is
		favourable to interaction, open-mindedness and
		trust should be established, as well as a culture
		with values, norms and habits that encourage
		knowledge sharing.
Organ	nisational	An organisational structure must be able to
incen	tive system	support knowledge management operation. Aside
		from this, the most important factor of knowledge
		management is human resources. Therefore, a
		performance incentive mechanism is important. It
		encourages employees to embrace knowledge
		management in order to get rewards from it, and
		this further generates company competitive
		advantages.
Infor	mation	Information technology can support information
techn	ology	acquisition, process improvement, and knowledge
		storage. Employees can therefore work
		conveniently with knowledge management. It
		also encourages employees to utilize the IT search
		function, and to acquire and systematically store
		knowledge for their own use.

From information drawn from literature, it is clear that there is an overlap in most of the enablers listed by researchers. Ho (2008:101), believes that knowledge management enablers are critical factors that put knowledge management concepts into practice, in order to achieve knowledge management effectiveness. He also believes that information technology in an organisation is the fundamental driving force that puts knowledge management into practice, making it a vital knowledge management enabler.

3.8 KNOWLEDGE MANAGEMENT BARRIERS

The emphasis on knowledge in today's organizations is based on the assumption that barriers to the transfer and replication of knowledge endow it with strategic importance Alavi & Leidner (1999:2). Thus, many organizations are developing information systems designed specifically to facilitate the sharing and integration of knowledge.

There could be a number of knowledge management barriers present in an organisation. Although it could vary, the most common barrier in any organisation could directly be linked to people. Riege (2007:52), is of the opinion that people barriers can be overcome. He listed people barriers as follows:

- Lack of time.
- > Apprehension towards sharing their knowledge.
- Low awareness of the benefits of knowledge transfer.
- Perceiving knowledge sharing as intrusive and extra work.
- Existing information overload.
- > Displaying dominance in sharing explicit, over tacit, knowledge.
- Resistance to sharing knowledge.
- Poor communication and interpersonal skills.
- Fear of loss of intellectual property.
- Lack of trust in the accuracy and credibility of transferred knowledge.
- Differences in cultures.

Riege (2007:58), also believes that organisational barriers can influence the knowledge transfer process. He listed organisational barriers as follows:

- Overlooking the alignment and integration of knowledge management strategies and transfer initiatives with its goals and strategic approach.
- Lack of leadership and managerial direction in terms of clearly communicating the benefits and values of knowledge sharing practices.

- The practice of a strong hierarchy, with managers thriving on position-based status and formal power.
- Insufficient formal and informal spaces to collaborate, reflect and generate (new) knowledge.
- > Introducing a reward and recognition system that does not work.
- > The organisation needs a cultural change on one or more dimensions.
- The organisation shows a low knowledge retention rate of highly skilled and experienced staff.
- Insufficient resources and infrastructure to successfully support transfer practices and opportunities.
- The organisation displays a high level of external competitiveness within and across business units.
- The organisation displays a high level of internal competitiveness in business units.
- The organisation suffers from communication flows that are restricted into certain directions.
- The organisation displays a physical work environment and layout of work areas that restrict knowledge transfer.
- > The hierarchical structure inhibits knowledge flows.
- > The business units are too large and unmanageable to enhance contact.

Individual knowledge and the culture of sharing knowledge in an organisation are very important, and sometimes underestimated. The sharing of knowledge is too often compromised, if not completely sacrificed, at the altar of norms and practices that advocate and reinforce the supremacy of individual knowledge (De Long & Fahey 2000:118). They further also state that when people are asked to put what they know into an organisational system, they tend to feel they have lost ownership of the knowledge they alone had previously controlled. De Long and Fahey (2000:118), continue by saying that culture mediates the relationship between levels of knowledge. Culture embodies all the unspoken norms, or rules, about how knowledge is to be distributed between the organisation and the individuals in it.

3.9 KNOWLEDGE CREATION AND SHARING

Knowledge sharing creates opportunities to maximize a company's ability to meet those needs and generates solutions and efficiencies that will give a business its competitive advantage (Reid, 2003:43). Since knowledge sharing, especially tacit knowledge is a common problem in organizations. Reid (2003:43), argues that by encouraging knowledge sharing, it offers the organisation the potential for increased productivity as well as retention of intellectual capital, even after individuals leave the organisation. Lin (2007:315), says knowledge sharing can be defined as a social interaction culture, involving the exchange of employee knowledge, experiences and skills through the whole department or organisation.

Socialisation, as part of an organisation's culture, can become one of the important tools in creating and sharing knowledge. Employees could share experiences and learn from each other. Malhotra (2002:**Online**), defines socialisation as the process of sharing experiences, and thereby creating tacit knowledge, such as shared mental models and technical skills. The key to acquiring tacit knowledge is experience. Without some shared experience, it is extremely difficult for one person to project her/himself into another individual's thinking process. Adenfelt and Lagerstrom (2005:192) are of the opinion that knowledge creation rests upon the individuals performing activities in which their existing tacit and explicit knowledge is shared and combined, for refinement of activities and for development of new knowledge.

The creation of knowledge should be encouraged through relations between individuals and teams in the organisation, in order to provide a competitive advantage. The creation of knowledge, therefore, requires cooperation among individuals and units, acknowledging the value of particular knowledge – often emanating from collaboration with external counterparts – is important, especially knowledge of individuals from different units (Adenfelt & Lagerström, 2005:192). Having a number of direct exchange partners provides an individual with the opportunity to obtain resources, while the strength of the relationships provides the

opportunity to develop the jointly held resources (McFadyen & Cannella, 2004:735). McFadyen and Cannella (2004:735), elaborate by saying knowledge is recognized as one of the most important resources of the 21st century and has received considerable attention in management literature. They define new knowledge as discoveries about phenomena that were not known previously.

Nonaka, Toyama and Konno (2000:13), believe that knowledge needs a context to be created. In knowledge creation, one transcends the boundaries between self and other, inside and outside, past and present. They are of the opinion that, in order to create knowledge dynamically and continuously, an organization needs a vision that synchronises the entire organization. Figure 3.3 illustrates the knowledge creation process.

Figure 3.3: Knowledge created through a spiral (Source: Nonaka et al., 2000: 5-34)

A study of companies where sharing knowledge is built into the culture, found that they did not change their culture to match their knowledge management initiatives, but adapted their approach to knowledge management, to fit their culture (McDermott & O'Dell, 2001:76). According to the authors, these companies changed their approach by doing the following:

- Linking sharing knowledge to solving practical business problems.
- > Tying sharing knowledge to a pre-existing core value.

- Introducing knowledge management in a way that matches the organisation's style.
- Building on the existing networks people use in their daily work.
- > Encouraging peers and supervisors to exert pressure to share.

According to Liebowitz and Megbolugbe (2003:193), the knowledge management cycle includes the following steps:

- Knowledge identification and capture.
- Knowledge sharing.
- ➢ Knowledge application.
- ► Knowledge creation.

The authors state that, once the critical knowledge is identified and captured, it is typically shared with others, and those individuals then apply this knowledge and internalize it to their situation, which in turn creates new knowledge. This "new" knowledge is then captured, shared, applied, and the cycle continues.

3.10 CONCLUSION

From the literature discussed in this chapter, it is evident that established knowledge transfer links between university and industry is to the advantage of graduates when they make the transition from university to industry. Knowledge transfer can be perceived in different ways and it is therefore important to determine the specific needs of the university as well as industry in order to transfer knowledge effectively. In the next chapter the questionnaire design and research design and methodology will be elaborated upon.

CHAPTER 4: RESEARCH DESIGN AND METHODOLOGY

4.1 AIM OF THIS CHAPTER

The aim of this chapter is to determine the key elements which are critical for successful knowledge transfer between University and industry. The objective is to determine the shortcomings and to improve on them. The research problem statement reads as follows: "Academic knowledge gleaned at University does not meet the requirements of industry"

4.2 THE SURVEY ENVIRONMENT

The research study focused on the successful knowledge transfer from University to industry, and the narrowing of the gap between knowledge at University and knowledge required by industry. In this study, Advisory Board members and employers involved with the monitoring and evaluation of students in the industrial engineering industry will form the survey sample.

4.3 THE TARGET POPULATION

The industry target population which formed the sample was made up from Advisory Board members, and placement and monitoring contacts in the Industrial Engineering department. A total of 132 companies are on the database, and questionnaires were distributed to all these companies. The Department of Systems Engineering has 9 permanent academic staff members.

Leedy and Ormrod as cited by Watkins (2010:56), are of the opinion that, when sampling, the larger the sample, the better. They give the following guidelines for determining sample sizes:

- Small populations (less than 100): The entire population
- > Around 500: 50% of the population

- > Around 1500: 20% of the population
- Around 5000 or more: Sample size of at least 400

4.4 MEASUREMENT SCALES

The survey used check boxes, and is based on the Likert scale. According to Emery and Cooper as cited by Watkins (2010:162), the advantages of using the Likert scale are that they are:

- Easy and quick to construct.
- Each item meets and empirical test for discriminating ability.
- > The Likert scale is also treated as an interval scale.

4.5 SURVEY DESIGN

According to Leedy & Ormrod as cited by Watkins (2010:140) a survey is simple in design. The researcher poses a series of questions to willing participants; summarizes their responses with percentages, frequency counts, or more sophisticated statistical indexes; and then draws inferences about a particular population from the responses of the sample. The following process depicts the execution of a questionnaire bases survey:

- Evaluate the research question (or hypothesis statement), the investigative (sub) questions, and the key research objectives. Thereafter, map the proposed questionnaire based survey questions to these entities.
- In addition, consider any other information, which is relevant to the research and formulate the questionnaire based questionnaire based questionnaire accordingly.
- Identify the sample frame from the target population, and select a representative sample.
- Choose an interviewing method.
- Conduct a pilot survey to ensure that the questions are easily understood and clear to the respondents.

- Conduct the survey.
- Data processing follows coding and input of data using statistical software.
- Data analysis descriptive analysis and statistical inferences.
- Report formulation drawing conclusions and interpret findings.

All questions in the survey have been designed with the following in mind:

- > Avoiding double-barreled statements.
- > Avoiding double-negative statements.
- Avoiding prestige bias.
- Avoiding leading statements.
- > Avoiding the assumption of prior knowledge.

The questionnaire that was sent to Industry consisted of 20 questions. A sample of the questions compiled for industry is shown in Table 4.1 below. A full questionnaire is included as Appendix 1.

Table 4.1 · Sam	nle questior	naire for i	ndustry (S	Source: Own	source)
Table 4.1. Sam	pic question	mane for f	nuusu y (c	Source. Own	source)

IND	USTRY DEMANDS WITH RESPECT TO KNOWLEDGE TRANSF	ER F	ROM	GR	ADUA	\TE
STU	DENTS					
		Completely agree	Mostly agree	Undecided	Mostly disagree	Completely disagree
1	Your organisation informs the University of what is expected in industry	1	2	3	4	5
2	Students are given the opportunity to apply their knowledge in industry	1	2	3	4	5
3	The organisation communicates shortcomings in students' knowledge and knowledge transfer abilities to the University	1	2	3	4	5
4	Regular discussions with the University, with regard to student projects, are held	1	2	3	4	5
5	Student projects are practical and can be applied in industry	1	2	3	4	5
6	Students' knowledge can be used to improve processes and performance in the organisation	1	2	3	4	5

The questionnaire that was completed by staff members consisted of 14 questions, and targeted statements that involve the University and industry. A sample of the questions compiled for staff members is shown in Table 4.2 below. A full questionnaire is included as Appendix 2.

Table 4.2: Sample questionnaire for staff (Source: Own source)

CRI	TICAL SHORTCOMINGS AT UNIVERSITY					
		Completely agree	Mostly agree	Undecided	Mostly disagree	Completely disagree
1	There is a lack of sharing of knowledge and expertise between University	1	2	3	4	5
	and industry					
2	The University has regular contact sessions with students in industry	1	2	3	4	5
	(could be in the form of surveys or interviews)					
3	The Department has a staff member, known to industry, who deals with	1	2	3	4	5
	industry related matters i.e. student placements and progress					
4	Industry linkages are encouraged at University level, and industry is	1	2	3	4	5
	informed of possible collaborations					

4.6 DATA VALIDITY AND RELIABILITY

According to Collis and Hussey as cited by Watkins (2010:67), 'validity' is concerned with the extent to which the research findings accurately represents what is happening. More specific, whether the data is a true picture of what is being studied. According to Cooper and Schindler as cited by Watkins (2010:67), three major forms of validity can be identified, namely 'content validity', 'criterion-related validity' and 'construct validity'. Reliability (also referred to as 'trustworthiness'), is concerned with the findings of the research (Collis & Hussey cited by Watkins 2010:68). The findings can be said to be reliable if you or anyone else repeated the research and obtained the same results.

4.7 CONCLUSION

In this chapter the survey environment and design was elaborated upon, and the target population and the size of the sample was defined. Details were given with regard to the questionnaires. The results of the survey will be analyzed in detail in Chapter 5.

CHAPTER 5: DATA ANALYSIS AND INTERPRETATION

5.1 INTRODUCTION

Data analysis is "the process of bringing order, structure and meaning to the mass of collected data" (de Vos 2002, 339). This chapter discusses the statistical analysis of the questionnaires distributed to industry and staff in the Department of Industrial and Systems Engineering. The aim of this study is to determine the mechanism that can be implemented by the University to narrow the gap between University knowledge and industry requirements. In this chapter the data obtained from the completed questionnaires will be presented and analysed.

In most social research the analysis entails three major steps in the following order:

- Cleaning and organising the information that was collected, which is called the data preparation step,
- > Describing the information that was collected (Descriptive Statistics); and
- Testing the assumptions made through hypothesis and modelling (Inferential Statistics).

The responses to the questionnaire developed by the researcher have been analysed with the use of SAS software. These included:

- Obtaining information about the particular demands from industry in respect of knowledge transfer from graduate students.
- Critical shortcomings at University in respect of knowledge transfer to students, and thereafter to industry.
- > The key elements which are critical for successful knowledge transfer.
- Remedial actions that industry should implement to meet the demands created by the knowledge gap between University and industry,

5.2 METHOD OF ANALYSIS

5.2.1 Validation of Survey results

A descriptive analysis of the survey results returned by the research questionnaire respondents is reflected below. The responses to the questions obtained through the questionnaires are indicated in table format for ease of reference. Data validation is the process of ensuring that a programme operates on clean, correct and useful data. The construct validation, however, can only be taken to the point where the questionnaire measures what it is supposed to measure. Construct validation should be addressed in the planning phases of the survey, and when the questionnaire is developed. This questionnaire is supposed to measure mechanisms that can be implemented by the University to narrow the gap between University knowledge and industry requirements. The Department of Industrial and Systems engineering at the Cape Peninsula University of Technology and the Industrial Engineering industry form part of this survey.

5.2.2 Data format

The data was received in 2 questionnaires, one for the industry and one for the staff at the University. These were coded and captured on a database developed on Microsoft Access for this purpose. These questionnaires were captured twice and then the two datasets were compared to minimise capturing mistakes. When the database had been developed, use was made of rules in respect of the questionnaire that set boundaries for the different variables (questions). For instance, if the Lickert scale is used, as follows:

- Completely agree is coded as 1
- Mostly agree is coded as 2
- Undecided is coded as 3
- Mostly disagree is coded as 4
- Completely disagree is coded as 5.

A boundary is set on Microsoft Access as less than 6. This means if the number 6 or more than 6 is captured an error will show until a number less than 6 is captured. It was then imported into SAS-format through the SAS ACCESS module. This information, which had been double checked for correctness, was then analysed by the custodian of this document.

5.2.3 Preliminary analysis

The reliability of the statements in the questionnaire, posed to the respondents from the University and from the industry, is measured by using the Cronbach Alpha test. (See paragraph 5.3.1). A Uni-variate descriptive analysis is performed on all the original variables; displaying frequencies, percentages, cumulative frequencies, cumulative percentages, means, standard deviations, range, median, mode etc. These descriptive statistics are discussed in paragraphs 5.3.2 and 5.3.3. (See also computer printouts in Annexure B & C).

5.2.4 Inferential statistics

Inferential statistics that will be used are:

- Cronbach Alpha test. Cronbach's Alpha is an index of reliability associated with the variation accounted for by the true score of the "underlying construct". Construct is the hypothetical variables that are being measured (Cooper & Schindler, 2001:216-217). Another way to put it would be that Cronbach's Alpha measures how well a set of items (or variables) measures a single uni-dimensional latent construct. When data has a multidimensional structure, Cronbach's Alpha will usually be low.
- Chi-square tests for nominal data. The Chi-square (two-sample) tests are probably the most widely used nonparametric tests of significance that are useful for tests involving nominal data, but can be used for higher scales as well, like cases where persons, events or objects are grouped in two or more nominal categories, such as 'yes-no' or cases A, B, C or D. The technique is used to test for significant differences between the observed distribution of data among categories and the expected distribution based on the null hypothesis. It has to be calculated with actual counts rather than percentages (Cooper & Schindler, 2001:499).
- Mann-Whitney U test or Wilcoxon rank-sum test for ordinal data with two independent samples. The Mann-Whitney U test (also called the Mann-Whitney-Wilcoxon (MWW), Wilcoxon rank-sum test, or Wilcoxon-Mann-Whitney test) is a non-parametric test for assessing whether two samples of observations come from the same distribution. The null hypothesis is that the two samples are drawn from a single population, and therefore that their probability distributions are equal. It requires the two samples to be independent, and the observations to be ordinal or continuous measurements, i.e. one can at least say, of any two observations, which is the greater.

In a less general formulation, the Wilcoxon-Mann-Whitney two-sample test may be thought of as testing the null hypothesis that the probability of an observation from one population exceeding an observation from the second population is 0.05.

- One-way ANOVA is used to test for differences among two or more independent groups (means).
- The SAS software computes a P-value (Probability value) that measures statistical significance when comparing variables with each other, determining relationship between variables, or determining association between variables. Results will be regarded as significant if the P-values are smaller than 0.05, because this value presents an acceptable level on a 95% confidence interval ($p \le 0.05$). The P-value is the probability of observing a sample value as extreme as, or more extreme than, the value actually observed, given that the null hypothesis is true. This area represents the probability of a Type 1 error that must be assumed if the null hypothesis is rejected (Cooper & Schindler, 2001:509).
- The p-value is compared to the significance level (α) and on this basis the null hypothesis is either rejected, or not rejected. If the P-value is less than the significance level, the null hypothesis is rejected (if P-value < α , reject null). If the P-value is greater than or equal to the significance level, the null hypothesis is not rejected (if P-value $\geq \alpha$, do not reject null). Thus, with α =0.05, if the P-value is less than 0.05, the null hypothesis will be rejected. The p value is determined by using the standard normal distribution. The small P-value represents the risk of rejecting the null hypothesis.
- A difference has statistical significance if there is good reason to believe the difference does not represent random sampling fluctuations only. Results will be regarded as significant if the P-values are smaller than 0.05, because this value is used as cut-off point in most behavioural science research.

5.2.5 Assistance to Researcher

The conclusions made by the researcher, were validated by the statistical report. Help was given to interpret the outcome of the data. The final report written by the researcher was validated and checked by the statistician to exclude any misleading interpretations.

All inferential statistics are discussed in paragraphs 5.3.4.

The target population is staff of the department of Industrial and Systems Engineering at CPUT, and employees from the Industrial Engineering industry. A convenient sample of 33 employees from the Industrial Engineering industry and 6 staff members from the department of Industrial and Systems Engineering at CPUT was drawn.

5.3 ANALYSIS

In total 33 respondents from the Industrial Engineering industry and 6 staff members from the department of Industrial and Systems Engineering at CPUT completed the questionnaires. Descriptive statistics will be given for each variable, and only the respondents who completed the entire questionnaire will be utilized in the inferential statistics.

The numbering of the questions on the two questionnaires (one for staff and one for industry) differed. In order to compare the responses of the same questions/statements between two types of respondents (Staff and industry) the following adaptions in respect of the numbering of the questions/statements for staff were applied:

Qu	estion / Statement	Original	New	Original
		numbering	numbering	numbering
		for staff	for staff	for industry
1.	Your organisation informs the			Q1n
	University of what is expected in			
	industry.			
2.	Students are given the opportunity to			Q2n
	apply their knowledge in industry.			
3.	The organisation communicates			Q3n
	shortcomings in students' knowledge			
	and knowledge transfer abilities to the			
	University.			
4.	Regular discussions with the University			Q4n
	regarding student projects, are held.			
5.	Student projects are practical and can be			Q5n

Table 5.1: Adaption of staff questionnaire numbering

applied in industry.				
6. Students' knowledge can be	used to			Q6n
improve processes and perfor	rmance in			
the organisation.				
7. There is a lack of sharing of	knowledge Q	1	Q7n	Q7n
and expertise between Unive	rsity and			
industry.				
8. The University has regular co	ontact Q2	2	Q8n	Q8n
sessions with students in the	industry.			
9. The department has a staff m	ember who Q	3	Q9n	Q9n
is known to industry, who de	als with			
industry related matters.				
10. Industry linkages are encoura	aged at Q ²	4	Q10n	Q10n
University level and industry	is informed			
of possible collaborations.				
11. There is a link between succe	essful Q	5	Q11n	Q11n
knowledge transfer and conti	inuous			
improvement.				
12. The application of quality to	ols and Qe	5	Q12n	Q12n
techniques contribute to know	wledge			
transfer processes.				
13. Creating an enabling environ	iment is Q	7	Q13n	Q13n
important for successful know	wledge			
transfer.				
14. A lack of knowledge transfer	processes Q8	8	Q14n	Q14n
impacts negatively on the org	ganisation's			
performance.				
15. Industry is informed of Advi	sory Board Q	15	Q15n	Q15n
meetings, and their input is e	ncouraged.			
16. The outcome of the Advisory	Board Q	16	Q16n	Q16n
meeting is communicated to	the relevant			
industries.				
17. Industry is involved in curric	culum Q	17	Q17n	Q17n
reviews.				
18. Mechanisms are in place to t	rack a Q	18	Q18n	Q18n
student's transition from Uni	versity to			
industry.				

19. Students know how to apply their	Q19	Q19n	Q19n
knowledge in industry.			
20. Employees create an opportunity for	Q20	Q20n	Q20n
students to apply their knowledge.			

5.3.1 Reliability testing

Reliability tests (Cronbach's Alpha Coefficient) will be conducted on the questions/statements (which is the measuring instrument in this case) posed to the respondents of the Industrial Engineering industry and respondents from the department of Industrial and Systems Engineering at CPUT. As Q3 in the staff questionnaire has no variation (all the respondents selected the same choice), it will be left out of the reliability testing.

The results of the Cronbach Alpha tests for all the raw variables, except for Q3 which has no variation, are shown in table 5.2 for the staff of the university questionnaire and in table 5.5 for the industry questionnaire, and both computer printouts will be shown in Annexure A. The tables show the correlation between the respective item and the total sum score (without the respective item) as well as the internal consistency of the scale (coefficient alpha) if the respective item were to be deleted. By deleting the items (statements) one by one each time with the statement with the highest Cronbach Alpha value, the Alpha value will increase. In the right-most column of table 5.2, it shows that the reliability of the scale could be higher if some of these statements were to be deleted. Due to the extensive nature of Table 5.2, the table is contained within the ambit of Annexure C.

If statement Q1 is deleted from this measuring scale, the Cronbach Alpha Coefficient will increase to 0.7941. Table 5.3 will show this deletion. Due to the extensive nature of Table 5.3, the table is contained within the ambit of Annexure D.

The result is that the Cronbach's Alpha Coefficients for each item are more than 0.70 (the acceptable level according to Nunnally, 1978: 245), and thus these items (statements) in the questionnaire, prove to be reliable and consistent for all the items in the scale.

In the original questionnaires the questions/statements are grouped into 3 scales where each of the scales indicates a different measurement in respect of whether academic knowledge at the University meets the requirements of industry. These subscales will also be tested for consistency and the results of consistency scale will be shown in table 5.4 and all the tests will be shown in Annexures J and K.

Statements (Test all statements without current	Variable	Correlation	Cronbach's
one's input)	nr.	with total	Alpha
			Coefficient
KNOWLEDGE GAP BETWEEN UNIVERSITY A	·		
15. Industry is informed of Advisory Board	Q15	0.7326	0.8220
meetings and their input is encouraged.			
16. The outcome of the Advisory Board meeting is	Q16	0.9100	0.7671
communicated to the relevant industries.			
17. Industry is involved in curriculum reviews.	Q17	0.3450	0.8738
18. Mechanisms are in place to track a student's	Q18	0.6732	0.8236
transition from University to industry.			
19. Students know how to apply their knowledge in	Q19	0.7050	0.8252
industry.			
20. Employees create an opportunity for students to	Q20	0.6645	0.8306
apply their knowledge.			
Cronbach's Coefficient Alpha for standardized var	0.8640		
Cronbach's Coefficient Alpha for raw variables			0.8528

 Table 5.4:
 Cronbach's Alpha Coefficient for each scale forming the measurement of knowledge gap between University and industry

Table 5.4 shows that the scale for the knowledge gaps between University and industry measurement is inconsistent.

Due to the extensive nature of Table 5.5, the table is contained within the ambit of Annexure E.

The result is that the Cronbach's Alpha Coefficients for each item are more than 0.70 (the acceptable level according to Nunnally, 1978: 245), and thus these items (statements) in the questionnaire, prove to be reliable and consistent for all the items in the scale.

In the original questionnaires the questions/statements are grouped into 3 scales where each of the scales indicates a different measurement in respect of whether academic knowledge at the University meets the requirements of industry. These subscales will also be tested for consistency and the results of the consistent scale will be shown in tables 5.6 to 5.8, and all the tests will be shown in Annexures J and K.

Stat	tements (Test all statements without current	Variable	Correlation	Cronbach's	
one	's input)	nr.	with total	Alpha	
				Coefficient	
INI	ROM				
GR	ADUATE STUDENTS				
1.	Your organisation informs the University of	Q1	0.4753	0.7286	
	what is expected in industry.				
2.	Students are given the opportunity to apply their	Q2	0.5159	0.7230	
	knowledge in industry.				
3.	The organisation communicates shortcomings	Q3	0.5300	0.7110	
	in students' knowledge and knowledge transfer				
	abilities, to the University.				
4.	Regular discussions with the University in	Q4	0.5921	0.6923	
	regard of student projects are held.				
5.	Student projects are practical and can be applied	Q5	0.6556	0.6742	
	in industry.				
6.	Students' knowledge can be used to improve	Q6	0.2445	0.7779	
	processes and performance in the organisation.				
Cronbach's Coefficient Alpha for standardized variables				0.7559	
Cro	Cronbach's Coefficient Alpha for raw variables				

 Table 5.6:
 Cronbach's Alpha Coefficient for each scale forming the measurement industry demands

If statement 6 in above mentioned scale is deleted the overall Cronbach Alpha Coefficient will increase to 0.7779.

Statements (Test all statements without current	Variable	Correlation	Cronbach's		
one's input)	nr.	with total	Alpha		
			Coefficient		
KEY ELEMENTS WHICH ARE CRITICAL FOR SUCCESSFUL KNOWLEDGE					
TRANSFER					
11. There is a link between successful knowledge	Q11	0.3878	0.7301		
transfer and continuous improvement.					
12. The application of quality tools and techniques	Q12	0.6131	0.6300		
contributes to knowledge transfer processes.					
13. Creating an enabling environment is important	Q13	0.5220	0.6500		
for successful knowledge transfer.					
14. A lack of knowledge transfer processes impacts	Q14	0.5956	0.6062		
negatively on the organisation's performance.					
Cronbach's Coefficient Alpha for standardized var	0.7389				
Cronbach's Coefficient Alpha for raw variables			0.7185		

 Table 5.7:
 Cronbach's Alpha Coefficient for each scale forming the measurement of the key elements

The overall Cronbach Alpha Coefficient is greater than 0.70 thus this scale proves to be consistent. Note should be taken that some of the items in the scale have a Cronbach Alpha Coefficient of less than 0.70.

1	e		001	
Statements (Test all statements without current	Variable	Correlation	Cronbach's	
one's input)	nr.	with total	Alpha	
			Coefficient	
KNOWLEDGE GAP BETWEEN UNIVERSITY AND INDUSTRY				
15. Industry is informed of Advisory Board	Q15	0.6109	0.6091	
meetings and their input is encouraged.				
16. The outcome of the Advisory Board meeting is	Q16	0.6797	0.5783	
communicated to the relevant industries.				
17. Industry is involved in curriculum reviews.	Q17	0.8186	0.5500	
18. Mechanisms are in place to track a student's	Q18	0.4244	0.6765	
transition from University to industry.				
19. Students know how to apply their knowledge in	Q19	0.0864	0.7653	
industry.				
20. Employees create an opportunity for students to	Q20	0.0840	0.7541	

 Table 5.8:
 Cronbach's Alpha Coefficient for each scale forming the measurement of the knowledge gap

Statements (Test all statements without current	Variable	Correlation	Cronbach's
one's input)	nr.	with total	Alpha
			Coefficient
apply their knowledge.			
Cronbach's Coefficient Alpha for standardized vari	0.6865		
Cronbach's Coefficient Alpha for raw variables	0.7099		

The result is that the Cronbach's Alpha Coefficients for each of the scales are more than 0.70 (the acceptable level according to Nunnally, 1978: 245), and thus these scales prove to be reliable and consistent. However, for some of the items the Cronbach Alpha Coefficients are less than 0.70. In most of these cases, if the items with the highest Cronbach Alpha Coefficient are deleted, the overall Cronbach Alpha Coefficient will increase, as well as the rest of the items in the scale. If the statement Q19 is deleted from this scale the overall Cronbach Alpha Coefficient will increase to 0.7653.

5.3.2 Descriptive Statistics

Table 5.9 shows the descriptive statistics for all the categorical variables with the frequencies in each category, and the percentage out of the total number of questionnaires for the staff questionnaire, and table 5.10 shows it for the industry questionnaire. Due to the fact that only 6 staff members completed the questionnaire, the response categories are aggregated, based on three response categories i.e.:

- ➤ Mostly completely agree
- Undecided
- Mostly completely disagree.

Take note that the descriptive statistics are based on the total sample. These descriptive statistics are also shown in Annexure B. Due to the extensive nature of Table 5.9, the table is contained within the ambit of Annexure F.

Due to the extensive nature of Table 5.10, the table is contained within the ambit of Annexure G.

Due to the extensive nature of Table 5.11, the table is contained within the ambit of Annexure H.

Due to the extensive nature of Table 5.12, the table is contained within the ambit of Annexure I.

5.3.3 Uni-Variate Graphs

This section will illustrate the distribution of the responses for each statement in the survey.

Figure 5.1: Survey distribution

As shown in Figure 5.1, of the 39 respondents who took part in the survey there were 15.4% respondents from the University and 84.6% respondents from the industry.

5.3.3.1 Staff survey

Figure 5.2: Critical shortcomings

Figure 5.2 illustrates how the statements were sorted from the statement where the respondents mostly, to completely agree with the statement to where the respondents least agree with the statement. The respondents mostly, to completely agree with the following statements:

- The department has a staff member who is known to industry who deals with industry related matters. (100.0% completely agree)
- The University has regular contact sessions with students in the industry. (83.3% mostly, to completely agree)
- Industry linkages are encouraged at University level and industry is informed of possible collaborations. (66.7% mostly, to completely agree)
- There is a lack of knowledge and expertise between University and industry. (66.7% mostly, to completely agree)

Figure 5.3: Key elements

Figure 5.3 illustrates how the statements were sorted from the statement where the respondents mostly, to completely agree with the statement to where they least agree with the statement. The respondents mostly, to completely agree with the following statements:

- Creating an enabling environment is important for successful knowledge transfer. (100.0% mostly, to completely agree)
- A lack of knowledge transfer processes impacts negatively on the organisation's performance. (100.0% mostly, to completely agree)
- There is a link between successful knowledge transfer and continuous improvement. (83.3% mostly, to completely agree)

The application of quality tools and techniques contribute to knowledge transfer processes. (66.7% mostly, to completely agree)

Figure 5.4: Knowledge gap

Figure 5.4 illustrates how the statements were sorted from the statement where the respondents mostly, to completely agree with the statement to where least agree with the statement. The respondents mostly, to completely agree with the following statements:

- Industry is informed of Advisory Board meetings and their input is encouraged. (83.3% mostly, to completely agree)
- The outcome of the Advisory Board meeting is communicated to the relevant industries. (83.3% mostly, to completely agree)
- > Industry is involved in curriculum reviews. (100.0% mostly, to completely agree)
5.3.3.2 Industry survey

Figure 5.5: Industry demands

Figure 5.5 illustrates how the statements were sorted from the statement where the respondents mostly, to completely agree with the statement to where the respondents least agree with the statement. The respondents mostly, to completely agree with the following statements:

- Students are given the opportunity to apply their knowledge in industry. (81.8% completely agree)
- Students' knowledge can be used to improve processes and performance in the organisation. (78.8% mostly, to completely agree)

Figure 5.6: Critical shortcomings

Figure 5.6 illustrates how the statements were sorted from the statement where the respondents mostly, to completely agree with the statement to where the respondents least agree with the statement. The respondents mostly, to completely agree with the following statements:

The department has a staff member that is known to industry that deals with industry related matters. (75.8% completely agree)

Figure 5.7: Key elements

Figure 5.7 illustrates how the statements were sorted from the statement where the respondents mostly, to completely agree with the statement to where they least agree with the statement. The respondents mostly, to completely agree with the following statements:

- The application of quality tools and techniques contribute to knowledge transfer processes. (97.0% mostly, to completely agree)
- Creating an enabling environment is important for successful knowledge transfer. (93.9% mostly, to completely agree)
- There is a link between successful knowledge transfer and continuous improvement. (90.9% mostly, to completely agree)
- A lack of knowledge transfer processes impacts negatively on the organisation's performance. (78.8% mostly, to completely agree)

Figure 5.8: Critical shortcomings

Figure 5.8 illustrates how the statements were sorted from the statement where the respondents mostly, to completely agree with the statement to where the respondents least agree with the statement. The respondents mostly, to completely agree with the following statements:

- Employees create an opportunity for students to apply their knowledge. (90.9% mostly, to completely agree)
- Industry is informed of Advisory Board meetings and their input is encouraged. (65.6% mostly, to completely agree)

5.3.4 Inferential Statistics

The following inferential statistics will be performed on the survey data:

- For all the statements in the survey a comparison will be made between the proportions of respondents who mostly, to completely agree and the proportions of respondents who mostly, to completely disagree with the statements. This is done to serve as statistical evidence when the results are discussed.
- A comparison will be made between the responses of the staff of the university and the responses of the industry for the statements that were presented to them both.

Comparative statistics for abovementioned comparisons that were used are discussed in paragraph 5.3.4.1 and 5.3.4.2; and the computer printouts are shown in Annexure P, Q and R. The hypotheses being tested for the comparisons under point 1 will be as follows:

- > H_0 = The proportion of respondents who mostly, to completely agree is not different from the proportion of respondents who mostly, to completely disagree.
- > H_1 = The proportion of respondents who mostly, to completely agree is different from the proportion of respondents who mostly, to completely disagree.

The hypotheses being tested for the comparisons under point 2 will be as follows:

- > H_0 = The two independent groups (Staff and industry) do not differ with respect to their perceptions in this survey.
- > H_1 = The two independent groups (Staff and industry) differ with respect to their perceptions in this survey.

5.3.4.1 Comparisons with regard to the difference in proportions of who agreed and who disagreed

Chi-square tests were performed to determine whether the proportion of respondents who agreed is equal to the proportion of respondents who disagreed for each question (statement). Due to the small number of staff respondents this test was not performed on the staff survey, but was performed on the industry survey. The results for only the statistically significant differences are shown in table 5.13; but all the results will be shown in Annexure P.

Que	estion / Statement	Sample	Chi-Square	DF	P-Value
		Size			
INI	DUSTRY DEMANDS WITH RESPECT TO	KNOWLE	DGE TRANSF	ER FR	ОМ
GR	ADUATE STUDENTS				
2.	Students are given the opportunity to apply	33	35.6364	2	<0.0001***
	their knowledge in industry.				
5.	Student projects are practical and can be	33	8.9091	2	0.0116*
	applied in industry.				
6.	Students' knowledge can be used to	33	30.7273	2	<0.0001***
	improve processes and performance in the				
	organisation.				

 Table 5.13:
 Statistically significant Chi-square test for equal proportions for industry survey

Que	estion / Statement	Sample	Chi-Square	DF	P-Value
		Size			
CR	ITICAL SHORTCOMINGS AT TERTIAR	Y INSTITU	JTIONS		
9.	The department has a staff member who is	33	26.9091	2	<0.0001***
	known to industry who deals with industry				
	related matters.				
KE	Y ELEMENTS WHICH ARE CRITICAL I	FOR SUCC	ESSFUL KNOV	WLED	GE
	TRANSFER				
11.	There is a link between successful	33	49.2727	2	<0.0001***
	knowledge transfer and continuous				
	improvement.				
12.	The application of quality tools and	33	29.1212	2	< 0.0001***
	techniques contributes to knowledge				
	transfer processes.				
13.	Creating an enabling environment is	33	54.5455	2	< 0.0001***
	important for successful knowledge				
	transfer.				
14.	A lack of knowledge transfer processes	33	31.0909	2	<0.0001***
	impacts negatively on the organisation's				
	performance.				
KN	OWLEDGE GAP BETWEEN UNIVERSIT	Y AND INI	DUSTRY	1	
15.	Industry is informed of Advisory Board	32	16.1875	2	0.0003***
	meetings and their input is encouraged.				
17.	Industry is involved in curriculum reviews.	32	11.3125	2	0.0035**
18.	Mechanisms are in place to track a	33	6.5455	2	0.0379*
	student's transition from University to				
	industry.				
19.	Students know how to apply their	33	6.7273	2	0.0346*
	knowledge in industry.				
20.	Employees create an opportunity for	33	49.2727	2	<0.0001***
	students to apply their knowledge.				
*	Statistically significant at level 0.05	1		I	I
**	Statistically significant at level 0.01				

*** Statistically significant at level 0.001

Table 5.13 shows the statistically significant differences between the proportions of respondents who mostly, to completely agree, the proportions of the respondents who were

undecided, and the proportions of the respondents who mostly, to completely disagree. In all of the above statements there were statistically significantly more respondents who mostly, to completely agreed than respondents in the other 2 groups, except for statement Q18 where there were statistically significantly more respondents that were undecided than respondents in the other groups, and for statement Q19 where there were statistically significantly more respondents in the other 2 groups. These differences can also be seen in figures 5.5-5.8.

5.3.4.2 Comparisons regarding whether the two independent groups differed in respect of their perceptions

A comparison is made between the two groups of respondents (Staff and industry) to see whether there is a difference in their perceptions in respect of the statements that were made. Firstly the two groups are compared in respect of each statement by using Chi-square tests, and then the 3 latent questions are compared by using the Mann-Whitney test for two samples, which compares the two means of the summarised variables CRIT, KEYE and KNOW, as doubt existed as to whether the data was normally distributed. The 3 latent variables consist of the following:

CRIT = Q7n+Q8n+Q9n+Q10n;KEYE=Q11n+Q12n+Q13n+Q14n5; and KNOW=+Q15n+Q16n+Q17n+Q18n+Q19n+Q20n.

All the statistically significant results will be discussed in this paragraph, but all the results, whether significant or not, can be found in Annexure R.

Question / Statement		Sample	Chi-Square	DF	P-value
		Size			
8.	The University has regular contact sessions	38	8.0902	2	0.0175*
	with students in the industry.				
17.	Industry is involved in curriculum reviews.	38	26.7188	2	<0.0001***
20.	Employees create an opportunity for	38	7.5250	2	0.0232*
	students to apply their knowledge.				
*	students to apply their knowledge.				

 Table 5.14:
 Statistically significant Chi-square test for equal proportions between the staff and the industry

Statistically significant at level 0.05

*** Statistically significant at level 0.001

As shown in Table 5.14, the staff of the University and the respondents from the industry differed statistically significantly in respect of:

- > The University has regular contact sessions with students in the industry
- Industry is involved in curriculum reviews.
- Employees create an opportunity for students to apply their knowledge.

Frequency /	Mostly –	Undecided	Mostly –	TOTAL
Row	Completely agree		Completely	
percentage			disagree	
Staff	5	0	1	6
	83.3%	0.0%	16.7%	15.8%
Industry	8	15	9	32
	25.0%	46.9%	28.1%	84.2%
TOTAL	13	15	10	38
	34.2%	39.5%	26.3%	100%

 Table 5.15:
 Contingency table for Q8n versus the survey groups

As shown in Table 5.15, there were statistically significantly more respondents from the staff who mostly to completely agree with the statement "The University has regular contact sessions with students in the industry" than respondents from the industry. Note should be taken that nearly half of the respondents from the industry were undecided as shown in Figure 5.9 below.

Figure 5.9: The University has regular contact sessions with students in the industry

Frequency /	Mostly –	Undecided	Mostly –	TOTAL
Row	Completely agree		Completely	
percentage			disagree	
Staff	6	0	0	6
	100.0%	0.0%	0.0%	15.8%
Industry	2	17	13	32
	6.2%	53.1%	40.6%	84.2%
TOTAL	8	17	13	38
	21.0%	44.7%	34.2%	100%

 Table 5.16:
 Contingency table for Q17n versus the survey groups

As shown in Table 5.16 and illustrated in figure 5.10, statistically significantly more respondents from the staff mostly to completely agree with the statement "Industry is involved in curriculum reviews" than respondents from the industry.

Figure 5.10: Industry is involved in curriculum reviews

Table 5.17:	Contingency	table for	Q20n versus	s the survey	groups
-------------	-------------	-----------	-------------	--------------	--------

Frequency /	Mostly –	Undecided	Mostly –	TOTAL
Row	Completely agree		Completely	
percentage			disagree	
Staff	3	2	1	6
	50.0%	33.3%	16.7%	15.8%
Industry	29	1	2	32
	90.6%	3.1%	6.3%	84.2%
TOTAL	32	3	3	38
	84.2%	7.9%	7.9%	100%

As shown in Table 5.17 and illustrated in figure 5.11, statistically significantly more respondents from the industry, mostly to completely agree with the statement "Employees create an opportunity for students to apply their knowledge", than respondents from the University.

Figure 5.11: Employees create an opportunity for students to apply their knowledge

When the staff and industry were compared regarding their the latent variables, which are a combination of the statements, there were differences for the latent variable CRIT and represent the statements with respect to the critical shortcomings at University scale.

There is a statistically significant difference between the staff and industry survey groups in respect of "CRIT". (Kruskal-Wallis statistic =.3741; DF=1; P-value=0.0038).

Survey groups	Ν	Sum of scores	Expected sum	Standard	Mean
			under \mathbf{H}_{0}	Deviation	Score
				under H ₀	
Staff	6	45.5	117.0	24.7079	7.58
Industry	32	695.5	624.0	24.7079	21.73

Table 5.18:Wilcoxon Scores (Rank Sums) for the SLA.

As shown in Table 5.18, the H_0 hypothesis assumes that the 2 survey groups scored the "CRIT" factor the same way. The small P-value indicates a statistically significant difference in respect of the "CRIT" factor between the 2 survey groups because the H_0 is rejected. The staff has the lower mean score (7.58) which is an indication that the staff agreed

more to the statements in the "CRIT" factor than the industry did. The higher the score the more the respondents disagreed, as 1 indicated 'completely agree' and 5 indicated 'completely disagree'. Illustrated in Figure 5.12 below, note should be taken that respondents from the industry were more undecided than the staff of the University.

Figure 5.12: Critical shortcomings

CHAPTER 6: CONCLUSION AND RECOMMENDATIONS

6.1 THE RESEARCH THUS FAR

In chapter one, the scope of the research was given and elaborated upon. In Chapter two, a holistic perspective of the background to the research problem was provided. In Chapter three the literature review was conducted on the different aspects of knowledge transfer and the importance of proper knowledge transfer from University to industry. In chapter four the survey environment and target population were given, and the analysis of date obtained from the survey was presented. In this chapter the final conclusion and recommendations will be made to mitigate the research problem.

6.2 ANALOGIES DRAWN FROM THE DATA ANALYSIS

As for the results obtained through the survey on mechanisms that can be implemented by Universities to narrow the gap between University knowledge and industry requirements, the following analogies can be drawn:

- Both the staff of the University, as well as the industry, have the perception, when it comes to critical shortcomings, that the department has a staff member who is known to the industry, and deals with industry related matters. However, the staff of the University seems to be more positive than the industry, of the fact that the University has regular contact sessions with students in the industry.
- The staff of the University, as well as the industry, have the perception, regarding key elements that are critical for the success of knowledge transfer, that:
 - Creating an enabling environment is important for successful knowledge transfer.
 - A lack of knowledge transfer processes impacts negatively on the organisation's performance.

71

- There is a link between successful knowledge transfer and continuous improvement. The application of quality tools and techniques contribute to knowledge transfer processes.
- However, note should be taken that the industry respondents felt more positive toward the statement 'The application of quality tools and techniques contribute to knowledge transfer processes', than the staff of the University.
- The perception of the staff of the University as well as of the industry, with regard to the knowledge gap between University and the industry, are both positive, for the statement "Industry is informed of Advisory Board meetings, and their input is encouraged". However, the industry was not as positive as the staff of the University.
- The staff of the university also felt that the industry is involved in curriculum reviews, but the industry was more undecided on this statement.
- The industry felt positive that the employees create an opportunity for students to apply their knowledge, whilst the staff of the University did not feel as positive about this statement.
- > The industry also felt, concerning industry demands, that:
 - Students are given the opportunity to apply their knowledge in industry.
 - Student projects are practical and can be applied in the industry.
 - Students' knowledge can be used to improve processes and performance in the organisation.
- Overall the staff of the University was more positive concerning the critical outcome statements, below, than the Industry:
 - The outcome of the Advisory Board meetings is communicated to the relevant industries
 - Industry is involved in curriculum reviews

6.3 ANALOGIES DRAWN FROM THE LITERATURE REVIEW

Gordon (2000:71-79) states that there is little doubt that knowledge is a complex concept that has occupied the thoughts of philosophers and others for hundreds (thousands) of years. The author further states that it is not surprising that the current thoughts on knowledge management, and efforts to establish such ideas in business and industry, can be difficult or inappropriate.

It is clear that knowledge plays a key role in the information revolution, and that major challenges are to select the "right" information from numerous sources and transform it into useful knowledge, (Smith, 2001:311-321). Rossi (2010:155-171), observed that researchers in certain fields are particularly active in knowledge transfer, and that the determinants of the intensity of knowledge transfer activities are generally specific to particular research areas.

Top management commitment is a very crucial aspect of the quality process and the transfer of knowledge in the organisation. Although Dalgleish (2002:56), strongly agrees with Deming that top management support is critical to any quality improvement campaign, he also states that in most cases, blaming top management is nothing more than a self victimizing excuse to do nothing to change what frustrates most quality professionals. It is therefore possible that blame can be passed from one entity to another. Misunderstanding can also lead to greater confusion amongst workers and management, as well as between industry and the university.

6.3.1 Transfer from University to Industry

Agrawal (2001:297), explored the characteristics of the various channels through which knowledge is transferred from the university to industry. The author states that the channels of transfer between university and industry include publications, patents, consulting, informal meetings, recruiting, licensing, joint ventures, research contracts, and personal exchange.

The transfer of knowledge can be perceived in different ways. Who is responsible for knowledge transfer? Harrington and Kearney (2010:121), state that the lack of knowledge transfer relates to the self-referential nature of different social systems inhabited by researchers and management practitioners. They further argue that researchers and management practitioners fail to imagine scenarios other than those of the traditional classroom, and the existing systems of academics publishing in refereed journals.

Geuna and Muscio (2009:93), are of the opinion that universities have long been involved in knowledge transfer activities. Yet the last 30 years have seen major changes in the governance of university–industry interactions.

6.3.2 Knowledge required by industry

In general, there is a specific focus at universities and in industry, on knowledge transfer and how it impacts on certain processes, and the application of knowledge in different fields. The importance of different channels of university-industry knowledge transfer can be differently assessed by firms active in different industries. After all, firms active in different industries make use of different technological and market knowledge (Bekkers & Freitas, 2008:1837).

To explain the knowledge requirement of production in industry, Grant (1996:112), makes the following statement: "Production involves the transformation of inputs into outputs. Fundamental to a knowledge-based theory of the firm is the assumption that the critical input in production and primary source of value is knowledge. Indeed, if we were to resurrect a single-factor theory of value in the tradition of the classical economists' labour theory of value, or the French Physiocrats land-based theory of value, then the only defensible approach would be a knowledge-based theory of value, on the grounds that all human productivity is knowledge dependent, and machines are simply embodiments of knowledge".

6.3.3 Channels of transfer

McNamee, Schoch, Oelschlaeger and Huskey (2000:**Online**), mention three components in successful knowledge exchange: find, engage and understand. They argue that people must find one another, or somehow recognize the potential for collaboration; both potential participants must be motivated to some minimal engagement level. The interaction between industry and university should therefore become the focus point. Advisory Board meetings could be used as a platform to encourage interaction.

In order for knowledge to be transferred effectively, there needs to be a fit between individual readiness to transfer knowledge and organizational receptivity to knowledge (Lazarova & Tarique, 2005:369).

6.4 THE RESEARCH PROBLEM REVISITED

The research problem, which was formulated in Chapter 1, reads as follows: "Academic knowledge gleaned at University does not meet the requirements of industry"

From the results of the survey it is clear that industry and university have different perceptions of knowledge transfer. Staff members in the Department of Industrial and Systems Engineering believe that there are regular contact sessions with students in industry. Although industry agrees that there is a staff member who deals with industry related matters, they are not very positive that there are regular contact sessions with students in industry. Staff in the Department of Industrial and Systems Engineering, as well as industry, agree that creating an enabling environment is important for successful knowledge transfer, and that there is a link between successful knowledge transfer and continuous improvement.

The different perceptions of staff and industry could be because of different experiences i.e. students' ability to apply knowledge in industry, or students' academic performance. Although staff felt that industry is involved in curriculum reviews, the industry was undecided on their involvement in curriculum reviews. Industry was very positive about the opportunities that they create for students to apply their knowledge. Industry also mostly agreed that students' projects are practical and can be applied in industry, and that students' knowledge can be used to improve processes and performance in the organization. With these positive responses, the interaction should be encouraged and exchange of information between the department and industry should definitely be taken to the curriculum review stage. Students' projects could be developed and used as social development / community engagement projects.

Industry was very positive that quality tools and techniques contribute to knowledge transfer processes. Staff was not as positive, which again proves that communication channels between university and industry need to improve and should be embarked upon as soon as possible.

6.5 THE RESEARCH QUESTION REVISITED

The research question, which was formulated in Chapter 1, reads as follows: "What mechanism can be implemented by tertiary institutions to narrow the gap between University knowledge and industry requirements?"

6.5.1 Advisory Board

The importance of a functional Advisory Board could not be stressed more. It is absolutely imperative that the Advisory Board should meet on a regular basis, and that it should include more members from industry. Industry was not very positive about being informed of Advisory Board meetings, and their input being encouraged. Industry should be encouraged to actively participate as members of the Board and they should be part of the curriculum review process. Sub-committees in the Advisory Board should be formed where people with specific skills could focus on areas such as curriculum reviews, developing partnerships and improving industry linkages. Expectations from both entities need to be discussed in Advisory Board meetings. Feedback to those members who are not on the Board is crucial in order to determine and monitor progress, as well as developing other needs that may arise.

Input and guidance are the key words for both University and industry, in order to create a successful knowledge transfer modem, which benefits both entities. The knowledge transfer "modem" would ultimately be the student, and University and industry should start realizing the importance of the student.

6.5.2 Sharing of knowledge and expertise

Staff, as well as industry agreed that creating an enabling environment is important for successful knowledge transfer. In order to create an enabling environment, there must be interaction between University and industry. Through regular communication and structured plans of interaction, opportunities for students can be created which will create an enabling environment on which both entities can thrive, and it could, at the same time, improve their social responsibility.

The student is the most important link between the transfer process and industry, as "receiving" entity, and should be clear on what their needs are. Sharing these needs could bridge the gap. Some needs could be assumed to be trivial and therefore would not receive the necessary attention. In Chapter 2, figure 2.3, it shows the student as an output and input "modem". Sharing knowledge and expertise from industry is crucial, in order for universities to know what should be taught as "output", in order to feed the right "input".

Exchange between staff from University and staff in industry is an important factor, and should be explored and acted upon. Other means of knowledge sharing, like

exchange programmes between lecturers and employees in industry, should also be looked at. The important factor should be equipping the student with the correct tools and knowledge to ensure faultless quality processes and continuous improvement in industry.

6.5.3 Misconception of knowledge transfer

From the research results it is evident that the perceptions of staff and industry are diverse. Linkages and collaborations between University and industry would keep communication channels open, and any misconception of the knowledge transfer process should be addressed. Expectations from both entities needs attention

Communication is a two-way operation, and staff and industry members should be actively involved in addressing pressing issues that are hampering proper knowledge transfer to and from the students. Based on the results, the gap between University and industry stems from the misconception of knowledge transfer and the inability to take responsibility for committing to collaboration.

The Department of Industrial and Systems Engineering should make a concerted effort in identifying industry partners and assigning staff members to interact with industry. In Chapter 2, figure 2.4 illustrates the link between university and industry. University and industry have different resources which should be shared to narrow the gap. Industry has to be involved in curriculum reviews and development.

6.6 KEY RESEARCH OBJECTIVES REVISITED

The research objectives, which were formulated in chapter 1, read as follows:

- To determine the demands from industry in respect of knowledge transfer from graduate students.
- To determine the shortcomings at tertiary institutions in respect of knowledge transfer to students and thereafter to industry.

- To determine which elements are critical for successful knowledge transfer.
- To formulate an approach for industry to close the gap created by the demands of the knowledge gap
- To ascertain whether a structured mechanism can be implemented by the University to narrow the gap between University knowledge and industry requirements?

6.6.1 To determine the demands from industry in respect of knowledge transfer from graduate students.

Based on the results of the questionnaire, industry mostly disagreed with, or was undecided about the statement that they should inform the university what is expected in industry. If they do not inform the University, it could be that Advisory Board meetings are not held regularly and/or other means of communication are not clear to industry.

6.6.2 To determine the shortcomings at tertiary institutions in respect of knowledge transfer to students, and thereafter to industry.

From the data obtained in the survey, the diverse perceptions of staff and industry make it clear that the lack of communication and collaboration are the biggest shortcomings of knowledge transfer, and how it addresses what is required by industry.

6.6.3 To determine which elements are critical for successful knowledge transfer.

Based on the results of the survey, University staff mostly agreed that industry linkages are encouraged, and that industry is informed of possible collaboration. However, industry is undecided about this statement. The disparity between University and industry is of concern and points to a lack of communication and commitment on both sides.

6.6.4 To formulate an approach for industry to close the gap created by the demands of the knowledge gap

Based on the results of the survey, industry has lucid concerns with regard to commitment from University. Industry mostly disagreed, or was undecided when it came to the lack of sharing of knowledge and expertise between University and industry. Industry has to realize that they have to play an active role in the knowledge transfer process. The importance of their role and how collaborations should be done, need to be communicated and acted upon. An approach for industry would be to propose practical projects and to assist with the mentoring, assessment and/or moderation of these projects. Active involvement in the curriculum development and review process should come from a task team in industry. The Department of Industrial and Systems Engineering should, however, communicate the role industry plays, to industry, and clear communication channels and contacts should be communicated.

6.6.5 To ascertain whether a structured mechanism can be implemented by the University to narrow the gap between University knowledge and industry requirements?

In Chapter 2, Figure 2.2 shows the important activities that link university and industry. Each activity should be addressed in the Advisory Board meetings in order to narrow the gap between University knowledge and industry requirements. Where Figure 2.2 shows these activities as links between University and industry, the following model shows the activities as core functions of the Advisory Board:

Figure 6.1: Core functions of the Advisory Board (Source: Own)

The value of the Advisory Board is underestimated. Board meetings should be optimally used and the above mentioned core functions should be driven, developed and used, to boost interaction between University and industry and to narrow the knowledge transfer gap. The most important "commodity" is the student, therefore implementation processes should start as soon as possible.

6.7 FINAL CONCLUSION

The research was conducted in the Department of Industrial and Systems Engineering and the Industrial Engineering industry. It is hoped that the questionnaires were completed accurately and honestly.

It is also hoped that, from this study, university – industry collaboration will become an integral part of the Department of Industrial and Systems Engineering's strategic plan and that the Advisory Board will be used to full capacity, in order to narrow the gap between University knowledge and industry requirements.

BIBLIOGRAPHY

Agrawal, A. 2001. University-to-industry knowledge transfer: literature review and unanswered questions, 3(4):285-302.

Adenfelt, M. & Lagerström, K. 2005. *Enabling knowledge creation and sharing in transnational projects*, 24:191-198.

Alavi, M. & Leidner, D. 2001. *Knowledge Management and Knowledge Management Systems: Conceptual Foundations and Research Issues*, 25(1):101-136.

Alavi, M. & Leidner, D. 1999. *Knowledge Management Systems: Issues, Challenges and Benefits*, 1(7):1-37.

Antonelli, C. & Calderini, M. 2008. *The governance of knowledge compositeness and technological performance: the case of the automotive industry in Europe*, 17(1):23-41.

Argote, L., Ingram, P., Levine, J.M. & Moreland, R.L. 2000. *Knowledge Transfer in Organisations: Learning from the experience of others*, 82(1):1-8.

Balconi, M., Breschi, S. & Lissoni, F. 2003. Networks of inventors and the role of academia: an exploration of Italian patent data, 33:127-145.

Bekkers, R. & Freitas I.M.B. 2008. *Analysing knowledge transfer channels between universities and industry: to what degree do sectors also matter*, 1837-1853.

Bercovitz, J. & Feldmann, M. 2006. Entrepreneurial Universities and Technology Transfer: A Conceptual Framework for Understanding Knowledge-Based Economic Development, 31:175-188.

Bodas-Freitas, I.M., Geuna, A. & Rossi, F. 2010. *The Governance of University-Industry Knowledge Transfer: Why small firms do (not) develop institutional collaborations*?, 13:1-34.

Brennenraedts, R.M.F., Bekkers, R. & Verspagen, B. 2006. *The different channels of university-industry knowledge transfer: Empirical evidence from Biomedical Engineering*, 2:1-19.

Bunney, H.S. & Dale, B.G. 1997. *The implementation of quality management tools and techniques: a study*, 9(3):183-189.

Candy, P.C. & Crebert, R.G. 1991. *Ivory Tower to Concrete Jungle: The Difficult Transition from the Academy to the Workplace as Learning Environments*, 62(5):570-592.

Cape Peninsula University of Technology. 2010. *Strategic Plan*. Cape Town: Srategic Plan document.

Cohen, W.M. & Levinthal, D.A. 1990. *Absorptive Capacity: A New Perspective on Learning and Innovation*, 35(1):128-152.

Dale, B.G. & McQuater, R.E. 1998. *Managing Business improvement and Quality: Implementing key tools and techniques*. Blackwell: Oxford

Dalgleish, S. 2002. Is Top Management the Quality Scapegoat, 41(13):56.

D'Este, P. & Patel, P. 2007. University-industry linkages in the UK: *What are the factors underlying the variety of interactions with industry*?, 36:1295-1313

De Long, W. & Fahey, L. 2000. *Diagnosing cultural barriers to knowledge management*, 14(4):113-127.

De Vos, A.S. 2002. Scientific theory and professional research. in de Vos, A.S. Strydom, H. Fouché, C.S.L. & Delport, C.S.L. (eds) *Research at grass roots: for the social sciences and human service professions*. 2nd edition. Pretoria: Van Schaik.

Denzin, N.K. 1998. The art and politics of interpretation. USA: Sage Publications Inc.

Etzkowitz, H. 1998. The norms of entrepreneurial science: cognitive effects of the new university-industry linkages, 27:823-833.

Foos, T., Schum, G. & Rothenberg, S. 2006. *Tacit knowledge transfer and the knowledge disconnect*, 10(1):6-18.

Geuna, A. & Muscio, A. 2009. *The Governance of University knowledge transfer: A critical Review of the Literature*, 47:93-114.

Gordon, J.L. 2000. *Creating knowledge maps by exploiting dependent relationships*, 13:71-79.

Govers, P.M. 2000. *QFD not just a tool but a way of quality management*, 69:151-159.

Grant, R.M. 1996. Toward a knowledge-based theory of the firm, 17:109-122.

Harrington, D. & Kearney, A. 2010. *The business school in transition. New opportunities in management development, knowledge transfer and knowledge creation*, 35(2):116-134.

Ho, C. 2009. *The relationship between knowledge management enablers and performance*, 109(1):98-117.

Irick, M.L. 2007. Managing Tacit Knowledge in Organizations, 8(3):1-6.

Lang, J.C. 2004: Social context and social capital as enablers of knowledge integration, 8(3):89-105.

Lazarova, M. & Tarique, I. 2005. Knowledge transfer upon repatriation, 40:361-373.

Liebowitz, J. & Megbolugbe, I. 2003. A set of frameworks to aid the project manager in conceptualizing and implementing knowledge management initiatives, 21:189-198.

Lin, H. 2007. *Knowledge sharing and firm innovation capability: an empirical study*, 28(3/4):315-332.

Malhotra, Y. 2002. Knowledge Transfer. [**Online**]. Availability from: http://www.yogeshmalhotra.com/ [Accessed 31/08/2011]

Malterud, K. 1998. *Making changes with key questions in medical practices; studying what makes a difference. Doing qualitative research.* USA: Sage Publications Inc.

McFadyen, M.A. & Cannella, A.A. 2004. Social Capital and Knowledge creation: Diminishing returns of the number and strength of exchange relationships, 47(5):735-746.

McDermott, R. & O'Dell, C. 2001. *Overcoming cultural barriers to sharing knowledge*, 5(1):76-85.

McNamee, R.C., Schoch, N., Oelschlaeger, P. & Huskey, L. 2010. *Collaboration continuum: cultural and technological enablers of knowledge exchange*. **[Online]**. Available from: <u>http://findarticles.com/</u> [Accessed 17/06/2011]

McQuater, R.E., Scurr, C.H., Dale, B.G. & Hillman, P.G. 1995. Using quality tools and techniques successfully, 7(6):37-42.

Nonaka, I. 1994. A Dynamic Theory of Organisational Knowledge Creation, 5(1): 14-37.

Nonaka, I., Toyama, R. & Konno, N. 2000. SECI, Ba and Leadership: a Unified model of dynamic knowledge creation, 33:5-34.

Nunnally, J.C. (1978). Psychometric theory (2nd ed.). New York. McGraw-Hill.

Osterloh, M. & Frey, B.S. 2000. *Motivation, Knowledge Transfer, and Organizational Forms*, 11(5):538-550.

Ozga, J. & Jones, R. 2006. *Travelling and embedded policy: the case of knowledge transfer*, 21(1):1-17.

Reid, F. 2003. Creating a Knowledge-Sharing Culture among Diverse Business Units, 30(3):43-49.

Research Councils UK. 2009. *What is Knowledge Transfer*. [Online]. Available from: <u>http://www.research-horizons.cam.ac.uk/</u> [Accessed 06/05/2011]

Riege, A. 2007. Actions to overcome knowledge transfer barriers in MNCs, 11(1):48-67.

Rossi, F. 2010. *The governance of university-industry knowledge transfer*, 13(2): 155-171.

Smith, E.A 2000. *Applying knowledge-enabling methods in the classroom and in the workplace*, 12(6):236-244.

Smith, E.A. 2001. *The role of tacit and explicit knowledge in the workplace*, 5(4):311-321.

Spring, M., McQuater, R., Swift, K., Dale, B. & Booker, J. 1998. *The use of quality tools and techniques in product introduction: an assessment methodology*, 10(1):45-50.

Tari, J.J. & Sabater, V. 2003. Quality Tools and Techniques: are they necessary for quality management?, 92:267-280.

Watkins, J.A. (2010) Theses/Dissertations/Research Reports: A Practical Guide for students to the preparation of written presentations of Academic Research. (V1.7).

Yeh, Y., Lai, S. & Ho, S. 2006. *Knowledge management enablers: a case study*, 106(6):793-810.

Annexure A:

QUESTIONNAIRE: Industry

INDUSTRY DEMANDS WITH RESPECT TO KNOWLEDGE TRANSFER FROM GRADUATE STUDENTS

		Completely agree	Mostly agree	Undecided	Mostly disagree	Completely disagree
1	Your organisation informs the University of what is expected in industry	1	2	3	4	5
2	Students are given the opportunity to apply their knowledge in industry	1	2	3	4	5
3	The organisation communicate shortcomings in students' knowledge and knowledge transfer abilities to the University	1	2	3	4	5
4	Regular discussions with the University with regard to student projects are held	1	2	3	4	5
5	Student projects are practical and can be applied in industry	1	2	3	4	5
6	Students' knowledge can be used to improve processes and performance in the organisation	1	2	3	4	5
CR	ITICAL SHORTCOMINGS AT TERTIARY INSTITUTIONS	•		•	•	•
7	There is a lack of sharing of knowledge and expertise between University and industry	1	2	3	4	5
8	The University has regular contact sessions with students in industry (could be in the form of surveys or interviews)	1	2	3	4	5
9	The Department has a staff member, that is known to industry, that deals with industry related matters i.e. student placements and progress	1	2	3	4	5
10	Industry linkages are encouraged at University level and industry is informed of possible collaborations	1	2	3	4	5
KE	Y ELEMENTS WHICH ARE CRITICAL FOR SUCCESSFUL KNOWLEDGE	TRA	ANSF	ER		
11	There is a link between successful knowledge transfer and continuous improvement	1	2	3	4	5
12	The application of quality tools and techniques contribute to knowledge transfer processes	1	2	3	4	5

13	Creating an enabling environment is important for successful knowledge transfer	1	2	3	4	5
14	A lack of knowledge transfer processes impacts negatively on the organisation's performance	1	2	3	4	5
KN	OWLEDGE GAP BETWEEN TERTIARY INSTITUTIONS AND INDUSTRY					
		Comple	Mostly	Undeci	Mostly	Comple
15	Industry is informed of Advisory Board meetings and their input is encouraged	1	2	3	4	5
16	The outcome of the Advisory Board meeting is communicated to the relevant industries	1	2	3	4	5
17	Industry is involved in curriculum reviews	1	2	3	4	5
18	Mechanisms are in place to track a student's transition from University to industry	1	2	3	4	5
19	Students know how to apply their knowledge in industry	1	2	3	4	5
20	Employers create an opportunity for students to apply their knowledge	1	2	3	4	5

Annexure B:

QUESTIONNAIRE: Staff

CR	ITICAL SHORTCOMINGS AT TERTIARY INSTITUTIONS					
		Completely agree	Mostly agree	Undecided	Mostly disagree	Completely disagree
1	There is a lack of sharing of knowledge and expertise between University and industry	1	2	3	4	5
2	The University has regular contact sessions with students in industry (could be in the form of surveys or interviews)	1	2	3	4	5
3	The Department has a staff member, that is known to industry, that deals with industry related matters i.e. student placements and progress	1	2	3	4	5
4	Industry linkages are encouraged at University level and industry is informed of possible collaborations	1	2	3	4	5
KE	Y ELEMENTS WHICH ARE CRITICAL FOR SUCCESSFUL KNOWLEDGE		NSF	ER		<u></u>
5	There is a link between successful knowledge transfer and continuous improvement	1	2	3	4	5
6	The application of quality tools and techniques contribute to knowledge transfer processes	1	2	3	4	5
7	Creating an enabling environment is important for successful knowledge transfer	1	2	3	4	5
8	A lack of knowledge transfer processes impacts negatively on the organisation's performance	1	2	3	4	5
KN	OWLEDGE GAP BETWEEN TERTIARY INSTITUTIONS AND INDUSTRY				1	
9	Industry is informed of Advisory Board meetings and their input is encouraged	1	2	3	4	5
10	The outcome of the Advisory Board meeting is communicated to the relevant industries	1	2	3	4	5
11	Industry is involved in curriculum reviews	1	2	3	4	5
12	Mechanisms are in place to track a student's transition from University to industry	1	2	3	4	5
13	Students know how to apply their knowledge in industry	1	2	3	4	5
14	Employers create an opportunity for students to apply their knowledge	1	2	3	4	5

Annexure C:

 Table 5.2:
 Cronbach's Alpha Coefficient for all the items forming the measuring instrument in the staff sample

Statements (Test all statements without current		Variable	Correlation	Cronbach's
one	's input)	nr.	with total	Alpha
				Coefficient
CR	TICAL SHORTCOMINGS AT TERTIARY	INSTITUTIO	ONS	
1.	There is a lack of knowledge and expertise	Q1	-0.4392	0.7941
	between University and industry.			
2.	The University has regular contact sessions	Q2	-0.0127	0.7418
	with students in the industry.			
3.	The department has a staff member that is	Q3		
	known to industry that deals with industry			
	related matters.			
4.	Industry linkages are encouraged at	Q4	0.6704	0.6542
	University level and industry is informed of			
	possible collaborations.			
KE	Y ELEMENTS WHICH ARE CRITICAL FO	R SUCCESS	FUL KNOWL	EDGE
TRA	ANSFER			
5.	There is a link between successful knowledge	Q5	0.1824	0.7220
	transfer and continuous improvement.			
6.	The application of quality tools and	Q6	0.5123	0.6687
	techniques contribute to knowledge transfer			
	processes.			
7.	Creating an enabling environment is	Q7	-0.1132	0.7288
	important for successful knowledge transfer.			
8.	A lack of knowledge transfer processes	Q8	0.0574	0.7193
	impacts negatively on the organisation's			
	performance.			
KN	OWLEDGE GAP BETWEEN TERTIARY IN	STITUTION	IS AND INDUS	STRY
15.	Industry is informed of Advisory Board	Q15	0.9035	0.5808
	meetings and their input is encouraged.			
16.	The outcome of the Advisory Board meeting	Q16	0.9704	0.5857
	is communicated to the relevant industries.			

Statements (Test all statements without current	Variable	Correlation	Cronbach's
one's input)	nr.	with total	Alpha
			Coefficient
17. Industry is involved in curriculum reviews.	Q17	0.1089	0.7161
18. Mechanisms are in place to track a student's transition from University to industry.	Q18	0.4570	0.6783
19. Students know how to apply their knowledge in industry.	Q19	0.5839	0.6740
20. Employees create an opportunity for students to apply their knowledge.	Q20	0.5561	0.6768
Cronbach's Coefficient Alpha for standardized va	0.6801		
Cronbach's Coefficient Alpha for raw variables	0.7134		

Annexure D:

Table 5.3:Cronbach's Alpha Coefficient for all the items forming the measuring instrument in the
staff sample deleting Q1 from the sample

Stat	ements (Test all statements without current	Variable	Correlation	Cronbach's	
one's input)		nr.	with total	Alpha	
				Coefficient	
CRI	TICAL SHORTCOMINGS AT UNIVERSITY	Ϋ́			
2.	The University has regular contact sessions	Q2	-0.0000	0.8221	
	with students in the industry.				
4.	Industry linkages are encouraged at University	Q4	0.6194	0.7623	
	level and industry is informed of possible				
	collaborations.				
KE	Y ELEMENTS WHICH ARE CRITICAL FO	R SUCCESSI	FUL KNOWLI	EDGE	
TRA	ANSFER				
5.	There is a link between successful knowledge	Q5	0.2366	0.8046	
	transfer and continuous improvement.				
6.	The application of quality tools and techniques	Q6	0.4975	0.7736	
	contribute to knowledge transfer processes.				
7.	Creating an enabling environment is important	Q7	-0.0000	0.8048	
	for successful knowledge transfer.				
8.	A lack of knowledge transfer processes	Q8	0.1079	0.8003	
	impacts negatively on the organisation's				
	performance.				
KN	OWLEDGE GAP BETWEEN UNIVERSITY A	AND INDUS	TRY		
15.	Industry is informed of Advisory Board	Q15	0.8830	0.7159	
	meetings and their input is encouraged.				
16.	The outcome of the Advisory Board meeting	Q16	0.9583	0.7127	
	is communicated to the relevant industries.				
17.	Industry is involved in curriculum reviews.	Q17	0.0679	0.8010	
18.	Mechanisms are in place to track a student's	Q18	0.5889	0.7621	
	transition from University to industry.				
19.	Students know how to apply their knowledge	Q19	0.5810	0.7704	
	in industry.				

Statements (Test all statements without current	Variable	Correlation	Cronbach's
one's input)	nr.	with total	Alpha
			Coefficient
20. Employees create an opportunity for students	Q20	0.5167	0.7752
to apply their knowledge.			
Cronbach's Coefficient Alpha for standardized va	0.7607		
Cronbach's Coefficient Alpha for raw variables	0.7941		

Annexure E:

 Table 5.5:
 Cronbach's Alpha Coefficient for each scale forming the measurement of the industry sample

Sta	tements (Test all statements without current	Variable	Correlation	Cronbach's		
one	's input)	nr.	with total	Alpha		
				Coefficient		
INI	DUSTRY DEMANDS WITH RESPECT TO KN	OWLEDGE	TRANSFER F	ROM		
GR	ADUATE STUDENTS					
1.	Your organisation informs the University of	Q1	0.3777	0.7420		
	what is expected in industry.					
2.	Students are given the opportunity to apply their	Q2	0.3230	0.7476		
	knowledge in industry.					
3.	The organisation communicates shortcomings	Q3	0.6264	0.7217		
	in students' knowledge and knowledge transfer					
	abilities to the University.					
4.	Regular discussions with the University with	Q4	0.3919	0.7410		
	regard to student projects are held.					
5.	Student projects are practical and can be applied	Q5	0.4813	0.7343		
	in industry.					
6.	Students' knowledge can be used to improve	Q6	0.2023	0.7543		
	processes and performance in the organisation.					
CR	ITICAL SHORTCOMINGS AT UNIVERSITY	1	1			
7.	There is a lack of sharing of knowledge and	Q7	0.0506	0.7655		
	expertise between University and industry.					
8.	The University has regular contact sessions	Q8	0.3885	0.7416		
	with students in the industry.					
9.	The department has a staff member that is	Q9	0.3536	0.7440		
	known to industry that deals with industry					
	related matters.					
10.	Industry linkages are encouraged at University	Q10	0.4849	0.7356		
	level and industry is informed of possible					
	collaborations.					
KEY ELEMENTS WHICH ARE CRITICAL FOR SUCCESSFUL KNOWLEDGE						
TR	TRANSFER					

Statements (Test all statements without current	Variable	Correlation	Cronbach's
one's input)	nr.	with total	Alpha
			Coefficient
11. There is a link between successful knowledge	Q11	0.4046	0.7414
transfer and continuous improvement.			
12. The application of quality tools and techniques	Q12	0.4100	0.7450
contribute to knowledge transfer processes.			
13. Creating an enabling environment is important	Q13	0.1413	0.7572
for successful knowledge transfer.			
14. A lack of knowledge transfer processes impacts	Q14	0.3127	0.7472
negatively on the organisation's performance.			
KNOWLEDGE GAP BETWEEN UNIVERSITY A	ND INDUST	RY	
15. Industry is informed of Advisory Board	Q15	0.1978	0.7591
meetings and their input is encouraged.			
16. The outcome of the Advisory Board meeting is	Q16	0.2071	0.7595
communicated to the relevant industries.			
17. Industry is involved in curriculum reviews.	Q17	0.3781	0.7421
18. Mechanisms are in place to track a student's	Q18	0.3816	0.7421
transition from University to industry.			
19. Students know how to apply their knowledge in	Q19	0.2752	0.7501
industry.			
20. Employees create an opportunity for students to	Q20	0.1094	0.7600
apply their knowledge.			
Cronbach's Coefficient Alpha for standardized var	0.7657		
Cronbach's Coefficient Alpha for raw variables	0.7565		

Annexure F:

Vai	riables	Categories	Frequency	Percentage
				out of total
CR	ITICAL SHORTCOMINGS AT UNIVE	RSITY	1	1
1.	There is a lack of knowledge and	Mostly - Completely	4	66.7%
	expertise between University and	agree		
	industry.	Undecided	0	0.0%
		Mostly - Completely	2	33.3%
		disagree		
2.	The University has regular contact	Mostly - Completely	5	83.3%
	sessions with students in the industry.	agree		
		Undecided	0	0.0%
		Mostly - Completely	1	16.7%
		disagree		
3.	The department has a staff member that	Mostly - Completely	6	100.0%
	is known to industry that deals with	agree		
	industry related matters.	Undecided	0	0.0%
		Mostly - Completely	0	0.0%
		disagree		
4.	Industry linkages are encouraged at	Mostly - Completely	4	66.7%
	University level and industry is	agree		
	informed of possible collaborations.	Undecided	1	16.7%
		Mostly - Completely	1	16.7%
		disagree		
KF	CY ELEMENTS WHICH ARE CRITICA	AL FOR SUCCESSFUL K	NOWLEDG	E
	TRANSFER			
5.	There is a link between successful	Mostly - Completely	4	66.7%
	knowledge transfer and continuous	agree		
	improvement.	Undecided	0	0.0%
		Mostly - Completely	2	33.3%
		disagree		
6.	The application of quality tools and	Mostly - Completely	5	83.3%
	techniques contribute to knowledge	agree		

Table 5.9: Descriptive statistics for all the variables of the staff questionnaire

Var	iables	Categories	Frequency	Percentage
				out of total
	transfer processes.	Undecided	0	0.0%
		Mostly - Completely	1	16.7%
		disagree		
7.	Creating an enabling environment is	Mostly - Completely	6	100.0%
	important for successful knowledge	agree		
	transfer.	Undecided	0	0.0%
		Mostly - Completely	0	0.0%
		disagree		
8.	A lack of knowledge transfer processes	Mostly - Completely	6	100.0%
	impacts negatively on the organisation's	agree		
	performance.	Undecided	0	0.0%
		Mostly - Completely	0	0.0%
		disagree		
KN	OWLEDGE GAP BETWEEN TERTIA	RY INSTITUTIONS ANI) INDUSTRY	7
15.	Industry is informed of Advisory Board	Mostly - Completely	5	83.3%
	meetings and their input is encouraged.	agree		
		Undecided	0	0.0%
		Mostly - Completely	1	16.7%
		disagree		
16.	The outcome of the Advisory Board	Mostly - Completely	4	66.7%
	meeting is communicated to the relevant	agree		
	industries.	Undecided	0	0.0%
		Mostly - Completely	2	33.3%
		disagree		
17.	Industry is involved in curriculum	Mostly - Completely	6	100.0%
	reviews.	agree		
		Undecided	0	0.0%
		Mostly - Completely	0	0.0%
		disagree		
18.	Mechanisms are in place to track a	Mostly - Completely	1	16.7%
	student's transition from University to	agree		
	industry.	Undecided	2	33.3%
Variables	Categories	Frequency	Percentage	
---	---------------------	-----------	--------------	
			out of total	
	Mostly - Completely	3	50.0%	
	disagree			
19. Students know how to apply their	Mostly - Completely	1	16.7%	
knowledge in industry.	agree			
	Undecided	2	33.3%	
	Mostly - Completely	3	50.0%	
	disagree			
20. Employees create an opportunity for	Mostly - Completely	3	50.0%	
students to apply their knowledge.	agree			
	Undecided	2	33.3%	
	Mostly - Completely	1	16.7%	
	disagree			

Annexure G:

Variables		Categories	Frequency	Percentage
				out of total
INI	DUSTRY DEMANDS WITH RESPECT	TO KNOWLEDGE TRAI	NSFER FRO	М
GR	ADUATE STUDENTS			
1.	Your organisation informs the	Completely agree	2	%
	University of what is expected in	Mostly agree	3	%
	industry.	Undecided	11	%
		Mostly disagree	12	%
		Completely disagree	4	%
		Unknown	1	3.0%
2.	Students are given the opportunity to	Completely agree	5	15.2%
	apply their knowledge in industry.	Mostly agree	22	66.7%
		Undecided	5	15.2%
		Mostly disagree	1	3.0%
		Completely disagree	0	0.0%
3.	The organisation communicates	Completely agree	2	6.1%
	shortcomings in students' knowledge	Mostly agree	6	18.2%
	and knowledge transfer abilities to the	Undecided	10	30.3%
	University.	Mostly disagree	13	39.4%
		Completely disagree	1	3.0%
		Unknown	1	3.0%
4.	Regular discussions with the University	Completely agree	3	19.1%
	with regard to student projects are held.	Mostly agree	5	15.2%
		Undecided	10	30.3%
		Mostly disagree	14	42.4%
		Completely disagree	0	0.0%
		Unknown	1	3.0%
5.	Student projects are practical and can be	Completely agree	4	12.1%
	applied in industry.	Mostly agree	15	45.4%
		Undecided	8	24.2%

 Table 5.10:
 Descriptive statistics for all the variables of the industry questionnaire

Variables		Categories	Frequency	Percentage	
				out of total	
		Mostly disagree	6	18.2%	
		Completely disagree	0	0.0%	
6.	Students' knowledge can be used to	Completely agree	5	15.2%	
	improve processes and performance in	Mostly agree	21	63.6%	
	the organisation.	Undecided	4	12.1%	
		Mostly disagree	3	9.1%	
		Completely disagree	0	0.0%	
CR	ITICAL SHORTCOMINGS AT UNIVE	RSITY			
7.	There is a lack of sharing of knowledge	Completely agree	2	6.1%	
	and expertise between University and	Mostly agree	14	42.4%	
	industry.	Undecided	11	33.3%	
		Mostly disagree	4	12.1%	
		Completely disagree	1	3.0%	
		Unknown	1	3.0%	
8.	The University has regular contact	Completely agree	2	6.1%	
	sessions with students in the industry.	Mostly agree	6	18.2%	
		Undecided	15	45.4%	
		Mostly disagree	8	24.2%	
		Completely disagree	1	3.0%	
		Unknown	1	3.0%	
9.	The department has a staff member that	Completely agree	12	36.4%	
	is known to industry that deals with	Mostly agree	13	39.4%	
	industry related matters.	Undecided	5	15.2%	
		Mostly disagree	2	6.1%	
		Completely disagree	1	3.0%	
10.	Industry linkages are encouraged at	Completely agree	1	3.0%	
	University level and industry is	Mostly agree	9	27.3%	
	informed of possible collaborations.	Undecided	14	42.4%	
		Mostly disagree	9	27.3%	
		Completely disagree	0	0.0%	

KL	TRANSFER	IL FOR SUCCESSFUL R		
11.	There is a link between successful	Completely agree	14	42.4%
	knowledge transfer and continuous	Mostly agree	16	48.5%
improvement.		Undecided	1	3.0%
		Mostly disagree	2	6.1%
		Completely disagree	0	0.0%
12.	The application of quality tools and	Completely agree	12	36.4%
	techniques contribute to knowledge	Mostly agree	20	60.6%
	transfer processes.	Undecided	1	3.0%
		Mostly disagree	0	0.0%
		Completely disagree	0	0.0%
13.	Creating an enabling environment is	Completely agree	14	42.4%
	important for successful knowledge	Mostly agree	17	51.5%
	transfer.	Undecided	1	3.0%
		Mostly disagree	1	3.0%
		Completely disagree	0	0.0%
14.	A lack of knowledge transfer processes	Completely agree	17	51.5%
	impacts negatively on the	Mostly agree	9	27.3%
	organisation's performance.	Undecided	5	15.2%
		Mostly disagree	2	6.1%
		Completely disagree	0	0.0%
KN	OWLEDGE GAP BETWEEN TERTIAI	RY INSTITUTIONS AND	INDUSTRY	
15.	Industry is informed of Advisory Board	Completely agree	1	3.0%
	meetings and their input is encouraged.	Mostly agree	20	60.6%
		Undecided	3	9.1%
		Mostly disagree	3	9.1%
		Completely disagree	5	15.2%
		Unknown	1	3.0%
16.	The outcome of the Advisory Board	Completely agree	1	3.0%
	meeting is communicated to the relevant	Mostly agree	14	42.4%
	industries.	Undecided	6	18.2%
		Mostly disagree	4	12.1%

		Completely disagree	7	21.2%
		Unknown	1	3.0%
17.	Industry is involved in curriculum	Completely agree	1	3.0%
	reviews.	Mostly agree	1	3.0%
		Undecided	17	51.5%
		Mostly disagree	6	18.2%
		Completely disagree	7	21.2%
		Unknown	1	3.0%
18.	Mechanisms are in place to track a	Completely agree	1	3.0%
	student's transition from University to	Mostly agree	4	12.1%
	industry.	Undecided	17	51.5%
		Mostly disagree	7	21.2%
		Completely disagree	4	12.1%
19.	Students know how to apply their	Completely agree	1	3.0%
	knowledge in industry.	Mostly agree	7	21.2%
		Undecided	7	21.2%
		Mostly disagree	17	51.5%
		Completely disagree	1	3.0%
20.	Employees create an opportunity for	Completely agree	6	18.2%
	students to apply their knowledge.	Mostly agree	24	72.7%
		Undecided	1	3.0%
		Mostly disagree	1	3.0%
		Completely disagree	1	3.0%

Annexure H:

Table 5.11:	Descriptive statistics for staff questionnaire - Mean, Median, Standard Deviation and
	Range

Variable		N	Mean	Standard	Median	Range
				Deviation		
CR	ITICAL SHORTCOMINGS AT UNI	VFRSU	TV			
CR.	THCAL SHOKTCOMINGS AT UN	VERSI.				
1.	There is a lack of knowledge and	6	2.5	1.2247	2.0	3.0
	expertise between University and					
	industry.					
2.	The University has regular contact	6	1.8	1.1690	1.5	3.0
	sessions with students in the					
	industry.					
3.	The department has a staff member	6	1.0	0.0000	1.0	0.0
	that is known to industry that deals					
	with industry related matters.					
4.	Industry linkages are encouraged at	6	2.3	1.0328	2.0	3.0
	University level and industry is					
	informed of possible collaborations.					
KE	Y ELEMENTS WHICH ARE CRITI	CAL F	OR SUCC	ESSFUL KNC	WLEDGI	E
TR	ANSFER	I .				
5.	There is a link between successful	6	2.3	1.3663	2.0	3.0
	knowledge transfer and continuous					
	improvement.					
6.	The application of quality tools and	6	2.3	1.3663	2.0	4.0
	techniques contribute to knowledge					
	transfer processes.					
7.	Creating an enabling environment is	6	1.3	0.5164	1.0	1.0
	important for successful knowledge					
	transfer.					
8.	A lack of knowledge transfer	6	1.3	0.5164	1.0	1.0
	processes impacts negatively on the					
	organisation's performance.					

KNOWLEDGE GAP BETWEEN UNIV	KNOWLEDGE GAP BETWEEN UNIVERSITY AND INDUSTRY					
15. Industry is informed of Advisory	6	1.8	1.6021	1.0	4.0	
Board meetings and their input is						
encouraged.						
16. The outcome of the Advisory Board	6	2.8	1.3292	2.0	3.0	
meeting is communicated to the						
relevant industries.						
17. Industry is involved in curriculum	6	1.8	0.4082	2.0	1.0	
reviews.						
18. Mechanisms are in place to track a	6	3.8	1.3292	4.0	3.0	
student's transition from University						
to industry.						
19. Students know how to apply their	6	3.3	0.8165	3.5	2.0	
knowledge in industry.						
20. Employees create an opportunity for	6	2.7	0.8165	2.5	2.0	
students to apply their knowledge.						

Annexure I:

 Table 5.12:
 Descriptive statistics for industry questionnaire – Mean, Median, Standard Deviation and Range

Variable		N	Mean	Standard	Median	Range
				Deviation		
INI	DUSTRY DEMANDS WITH RESPEC	Т ТО К	NOWLE	DGE TRANSF	FER FROM	1
GR	ADUATE STUDENTS	T		r	1	
1.	Your organisation informs the	32	3.4	1.0429	3.5	4.0
	University of what is expected in					
	industry.					
2.	Students are given the opportunity to	33	2.1	0.6586	2.0	3.0
	apply their knowledge in industry.					
3.	The organisation communicates	32	3.2	0.9873	3.0	4.0
	shortcomings in students' knowledge					
	and knowledge transfer abilities to					
	the University.					
4.	Regular discussions with the	32	3.1	0.9954	3.0	3.0
	University with regard to student					
	projects are held.					
5.	Student projects are practical and can	33	2.5	0.9395	2.0	3.0
	be applied in industry.					
6.	Students' knowledge can be used to	33	2.2	0.7953	2.0	3.0
	improve processes and performance					
	in the organisation.					
CR	ATTICAL SHORTCOMINGS AT UNI	VERSIT	ſY	<u> </u>		I
7.	There is a lack of sharing of	32	2.6	0.9070	2.5	4.0
	knowledge and expertise between					
	University and industry.					
8.	The University has regular contact	32	3.0	0.9158	3.0	4.0
	sessions with students in the industry.					
9.	The department has a staff member	33	2.0	1.0308	2.0	4.0
	that is known to industry that deals					
	with industry related matters.					

Variable		Mean	Standard	Median	Range
			Deviation		
10. Industry linkages are encouraged at	33	2.9	0.8269	3.0	3.0
University level and industry is					
informed of possible collaborations.					
KEY ELEMENTS WHICH ARE CRITI	CAL FO	OR SUCC	ESSFUL KNO	WLEDGE	2
TRANSFER					
11. There is a link between successful	33	1.7	0.8013	2.0	3.0
knowledge transfer and continuous					
improvement.					
12. The application of quality tools and	33	1.7	0.5401	2.0	2.0
techniques contribute to knowledge					
transfer processes.					
13. Creating an enabling environment is	33	1.7	0.6922	2.0	3.0
important for successful knowledge					
transfer.					
14. A lack of knowledge transfer	33	1.8	0.9364	1.0	3.0
processes impacts negatively on the					
organisation's performance.					
KNOWLEDGE GAP BETWEEN UNIVE	ERSITY	AND INI	DUSTRY		
15. Industry is informed of Advisory	32	2.7	1.1977	2.0	4.0
Board meetings and their input is					
encouraged.					
16. The outcome of the Advisory Board	32	3.1	1.2684	3.0	4.0
meeting is communicated to the					
relevant industries.					
17. Industry is involved in curriculum	32	3.5	0.9832	3.0	4.0
reviews.					
18. Mechanisms are in place to track a	33	3.3	0.9445	3.0	4.0
student's transition from University					
to industry.					
19. Students know how to apply their	33	3.3	0.9515	4.0	4.0
knowledge in industry.					
	1				

20. Employees create an opportunity for	33	2.0	0.7906	2.0	4.0
students to apply their knowledge.					

Annexure J: Cronbach Alpha Coefficients for the items in the staff questionnaire

			Simple Sta	tistics			
Variable	Ν	Mean	Std Dev	Sum	Minimum	Maximum	Label
Q1	6	2.50000	1.22474	15.00000	1.00000	4.00000	Q1
Q2	6	1.83333	1.16905	11.00000	1.00000	4.00000	Q2
Q4	6	2.33333	1.03280	14.00000	1.00000	4.00000	Q4
Q5	6	2.33333	1.36626	14.00000	1.00000	4.00000	Q5
Q6	6	2.33333	1.36626	14.00000	1.00000	5.00000	Q6
Q7	6	1.33333	0.51640	8.00000	1.00000	2.00000	Q7
Q8	6	1.33333	0.51640	8.00000	1.00000	2.00000	Q8
Q15	6	1.83333	1.60208	11.00000	1.00000	5.00000	Q15
Q16 017	6	2.83333	1.32916	11.00000	2.00000	5.00000	Q16
018	0	1.03333	1 32016	23 00000	2 00000	5 00000	018
010	0	2 22222	0 81650	20.00000	2.00000	1 00000	010
020	6	2 66667	0.81650	16 00000	2.00000	4.00000	020
Q20	0	2.00007	0.01050	10.00000	2.00000	4.00000	4 <u>7</u> 0
			Cronbach Coeff	icient Alpha			
			Variables	Alpha			
			fffffffffffffff	ffffffffffff			
			Raw	0.713377			
			Standardized	0.680131			
		Cronbach C	oefficient Alpha	with Deleted V	ariable		
		Raw Va	riables	Standardiz	ed Variables		
	Deleted	Correlation		Correlation			
	Variable	with Total	Alpha	with Total	Alph	a Label	
	ffffffffff	fffffffffffffffff	fffffffffffffffffff	fffffffffffffffff	fffffffffffffff	fffffffff	
	Q1	439201	0.794143	453788	0.76069	0 Q1	
	Q2	012737	0.741786	0.157620	0.68361	9 Q2	
	Q4	0.670365	0.654150	0.465815	0.63823	0 Q4	
	Q5	0.182448	0.721977	0.001647	0.70485	5 Q5	
	Q6	0.512348	0.668687	0.323327	0.65979	5 Q6	
	Q7	113228	0.728827	01/835	0.70742	9 Q7	
	Q8	0.057354	0.719298	0.05/004	0.69744	-7 Q8	
	Q15	0.903468	0.580/90	0.796342	0.58416	9 Q15	
	Q16	0.970420	0.585659	0.968277	0.553/1	2 Q16	
	Q17	0.108941	0./16084	0.085140	0.69362	8 Q17	
	010	0.457022	0.0/0200	0.5//9//	0.02052	9 Q18	
	020	0.565674	0.074013	0.044100	0.00977	7 Q19 4 020	
	Q20	0.550055	0.070801	0.700404	0.55544	4 Q20	
			Cronbach Coeff	icient Alpha			
			Variables	Alpha			
			ffffffffffffffff	fffffffffff			
			Raw	0.794143			
			Standardized	0.760690			
		Cronbach C	oefficient Alpha	with Deleted V	ariable		
		Raw Va	riables	Standardiz	ed Variables		
	Deleted	Correlation		Correlation			
	Variable	with Total	Alpha	with Total	Alph	a Label	
	tffffffff	+++ffffffffffff	ttfffffffffffffff	tttfffffffff	ttfffffffffff	ttffffff	
	Q2	000000	0.822135	0.159001	0.77044	5 Q2	
	Q4	0.619436	0.762258	0.431936	0.74023	5 Q4	
	Q5	0.236646	0.804608	0.059797	0.78079	5 Q5	
	Q6	0.497522	0.773588	0.322097	0.75270	4 Q6	
	Q7	000000	0.804844	0.086163	0.77807	6 Q/	
	<u>Ų</u> 8 01 Г	0.10/937	0.800259	0.105541	0.77606	3 Q8	
	Q15 016	0.002998	0./158/3	0./85001	0.69/18	T Q12	
	017	0.950322	0./12/34	0.953408	0.0/49/	0 Q10	
	ντ <i>γ</i> 018	0.00/93/ 0 E00000	0.001020 0 762002	0.040/98	0./8212	0 Q1/	
	010	0.200929 0 E01010	0./02092	0.09104/	0.70901	0 QTQ	
	020	0.301010	0.770403 0 775160	0.054060	0./1015	Z 030	
	220	0.010/24	0.//5102	0.031104	0.71404	J Q20	
			Cronbach Coeff	icient Alnha			
			Variables	Alpha			
			fffffffffffffffff	fffffffffffff			
			Raw	201923			
			Standardized	204900			

Cronbach Coefficient Alpha with Deleted Variable Raw Variables Standardized Variables

	Delet	ced Cor	relation		C	orrelati	on			
	Varia	able wi	th Total	A	lpha	with Tot	al	Alpha	Label	
	ffff	fffffffffffff	ffffffffff	fffffffff;	fffffffff	fffffff	ffffffff	fffffffffff	ffffff	
	Q1		055470	24	5154	0523	62	248281	Q1	
	Q2		124584	0.00	9000	1274	73	0.00000	Q2	
	Q4		079057	150	9000	0809	65	150175	Q4	
				Cnonhach	Coofficia	nt Alaba				
				Vaniables	COETTICIE	nt Aipna Alab	2			
					<i></i>	4444444	a f			
				Raw		0 21052	5			
				Standardi	zed	32742	1			
			Cronbach Co	pefficient	Alpha wit	h Delete	d Variable	e		
			Raw Va	riables		Standar	dized Var:	iables		
	Delet	ed Cor	relation		C	orrelati	on			
	Varia	able wi	th Total	A	lpha	with Tot	al	Alpha	Label	
	<i>fffff</i>	******	*****		++++++++++	*****	*******	+++++++++++++++++++++++++++++++++++++++	·;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	
	Q5		0.008153	-1.50	2000	0.2368	98	-1.294/2	QS QS	
	Q6 Q7		0.310530	30	2000	160/	82	139899	QБ QZ	
	Q7		4/4342	0.50	0000 5154	3001	89	0.250421	Q7	
	Ųδ		109042	0.54	5154	0014	00	525641	Ųδ	
				Cronbach	Coefficie	nt Alpha				
				Variables		Alph	а			
				ffffffff	fffffffff	fffffff	f			
				Raw		0.85279	2			
				Standardi	zed	0.86399	3			
			Cronbach Co	officient	Alpha wit	h Doloto	d Variabl	a		
		·	Raw Va	riables	Aipha wit	Standar	dized Var	iables		
	Delet	ed Cor	relation	100105	C	orrelati	on	lubics		
	Varia	able wi	th Total	A	loha	with Tot	al	Alpha	Label	
	ffff		fffffffffff	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	 fffffffffff	ffffffff		fffffffffff	fffffff	
	015		0.732604	0.82	1995	0.6794	01	0.837209	015	
	016		0.909980	0.76	7108	0.8481	94	0.805663	016	
	017		0.345005	0.87	3819	0.3512	88	0.892650	017	
	Q18		0.673172	0.82	3587	0.6726	20	0.838433	Q18	
	Q19		0.705024	0.82	5163	0.7081	52	0.831986	Q19	
	Q20		0.664540	0.83	ð645	0.7193	93	0.829927	Q20	
			Pearso	1 Correlat	ion Coeffi	cients,	N = 6			
		01	02	Prob > r	under He	: Rho=0	06		07	00
01	1 000		QZ ACORA	Q4	0.25	Q5	Q6	0.67	Q7	Q8
01	1.000	-0.0	00904 00E1	1 0000	-0.55	057	-0.11932	-0.03	770	-0.51025
02	-0.060	1 1 N	.0554 00000	-0 11043	_0.33	201	-0 58/35	0.1	173	0.3413
02	0.002	954 I.	00000	0.11045	-0.55	177	0.00400	0.44	805	0.77502
04	0.02	100 -0	11043	1 00000	0.75	593	0.2252	-0.62	500	0.0714
Q4 04	1.00	100 01. 100 0	.8350	1.00000	0.0	821	0.0821	0.1	846	0.8135
05	-0.358	357 -0.	33391	0.75593	1.00	000	0.67857	-0.47	246	0.09449
05	0.48	352 0	.5177	0.0821			0.1384	0.3	3440	0.8587
Q6	-0.119	-0.	58435	0.75593	0.67	857	1.00000	-0.47	246	-0.47246
Q6	0.82	216 0	.2232	0.0821	0.1	384		0.3	3440	0.3440
Q7	-0.632	246 0.4	44173	-0.62500	-0.47	246	-0.47246	1.00	000	0.25000
Q7	0.17	778 0	.3805	0.1846	0.3	440	0.3440			0.6328
Q8	-0.316	523 0.	77302	0.12500	0.09	449	-0.47246	0.25	000	1.00000
Q8	0.54	415 0	.0714	0.8135	0.8	587	0.3440	0.6	328	
Q15	-0.254	-0.	12458	0.76553	0.48	732	0.85280	-0.16	5116	-0.16116
Q15	0.62	260 0	.8141	0.0760	0.3	269	0.0309	0.7	603	0.7603
Q16	-0.307	<i>0.</i>	23597	0.63134	0.25	698	0.58738	0.09	713	0.09713
Q16	0.55	538 0	.6526	0.1788	0.6	230	0.2203	0.8	548	0.8548
Q17	0.200	-0.0	06984	-0.31623	-0.59	761	0.11952	0.31	.623	-0.63246
Q17	0.70	040 0	.8954	0.5415	0.2	103	0.8216	0.5	415	0.1778
Q18	-0./98	50 0.	10/20	0.04856	0.03	0/1 4F0	0.25698	0.67	שצצ	0.09/13
010 010	_0.05		.037/ 06081	0.92/2 0 31677	0.9	450 952	0.0230	0.1	.3/3 .911	0.8548 0 15011
010	-0.200	AA A	8954	0.51025	o م ۲۱.۵-	216	0.23905 0 6107	כו.ש	648	0.13011
020	0.70		55871	0.15911	-0.41	833 710	-0.05976	0.7	623	0.7048
020	1.00	оо о. Э00 а	.2491	0.7648	-0.41	091	0.9105	0.5	415	0.5415
	1.00			0.,040	0.4		5.5105	0.5		2.2413
		Q15	Q	16	Q17	Q	18	Q19	Q	20
	Q1	-0.25482	-0.307	15 0	.20000	-0.798	58 -6	0.20000	0.000	00
	Q1	0.6260	0.55	38 (0.7040	0.05	68	0.7040	1.00	00
	Q2	-0.12458	0.2359	97 -0	.06984	0.107	26 0	0.06984	0.558	74
	Q2	0.8141	0.65	26 (0.8954	0.83	9/	0.8954	0.24	91
	Q4	0./6553	0.631	54 -0	.31623	0.048	56 (0.31623	0.158	11
	Q4	0.0/60	0.1/2	oo (0.5415	0.92	12	0.5415	0.76	40

Q5	0.48732	0.25698	-0.59761	0.03671	-0.11952	-0.41833
Q5	0.3269	0.6230	0.2103	0.9450	0.8216	0.4091
Q6	0.85280	0.58738	0.11952	0.25698	0.23905	-0.05976
Q6	0.0309	0.2203	0.8216	0.6230	0.6483	0.9105
Q7	-0.16116	0.09713	0.31623	0.67990	0.15811	0.31623
Q7	0.7603	0.8548	0.5415	0.1373	0.7648	0.5415
Q8	-0.16116	0.09713	-0.63246	0.09713	0.15811	0.31623
Q8	0.7603	0.8548	0.1778	0.8548	0.7648	0.5415
Q15	1.00000	0.92357	0.25482	0.54788	0.50965	0.40772
Q15		0.0085	0.6260	0.2604	0.3017	0.4223
Q16	0.92357	1.00000	0.30715	0.66038	0.61430	0.67572
Q16	0.0085		0.5538	0.1534	0.1945	0.1407
Q17	0.25482	0.30715	1.00000	0.30715	0.20000	0.40000
Q17	0.6260	0.5538		0.5538	0.7040	0.4320
Q18	0.54788	0.66038	0.30715	1.00000	0.61430	0.49144
Q18	0.2604	0.1534	0.5538		0.1945	0.3222
Q19	0.50965	0.61430	0.20000	0.61430	1.00000	0.80000
Q19	0.3017	0.1945	0.7040	0.1945		0.0560
Q20	0.40772	0.67572	0.40000	0.49144	0.80000	1.00000
Q20	0.4223	0.1407	0.4320	0.3222	0.0560	

Annexure K: Cronbach Alpha Coefficients for the items in the industry questionnaire

			Simple St	atistics			
Variable	N	Mean	Std Dev	Sum	Minimum	Maximum	Label
Q1	32	3.40625	1.04293	109.00000	1.00000	5.00000	Q1
Q2	32	2.06250	0.66901	66.00000	1.00000	4.00000	Q2
Q3	32	3.15625	0.98732	101.00000	1.00000	5.00000	Q3
Q4	32	3.09375	0.99545	99.00000	1.00000	4.00000	Q4
Q5	32	2.50000	0.95038	80.00000	1.00000	4.00000	Q5
Q6	32	2.15625	0.80760	69.00000	1.00000	4.00000	Q6
Q7	32	2.62500	0.90696	84.00000	1.00000	5.00000	Q7
Q8	32	3.00000	0.91581	96.00000	1.00000	5.00000	Q8
Q9	32	2.00000	1.04727	64.00000	1.00000	5.00000	Q9
Q10	32	2.93750	0.84003	94.00000	1.00000	4.00000	Q10
Q11	32	1.71875	0.81258	55.00000	1.00000	4.00000	Q11
Q12	32	1.65625	0.54532	53.00000	1.00000	3.00000	Q12
Q13	32	1.65625	0.70066	53.00000	1.00000	4.00000	Q13
Q14	32	1.71875	0.92403	55.00000	1.00000	4.00000	Q14
Q15	32	2.71875	1.19770	87.00000	1.00000	5.00000	Q15
Q16	32	3.06250	1.26841	98.00000	1.00000	5.00000	Q16
Q17	32	3.53125	0.98323	113.00000	1.00000	5.00000	Q17
Q18	32	3.31250	0.93109	106.00000	1.00000	5.00000	Q18
Q19	32	3.31250	0.96512	106.00000	1.00000	5.00000	Q19
Q20	32	2.00000	0.80322	64.00000	1.00000	5.00000	Q20

Cronbach Coefficient Alpha with Deleted Variable Raw Variables Standardized Variables

Deleted Correlation Correlation Variable with Total Alpha Alpha Label with Total Q1 0.377733 0.742011 0.425155 0.749328 Q1 Q2 0.323013 0.747553 0.351016 0.754613 Q2 Q3 0.626431 0.721745 0.622930 0.734782 Q3 Q4 0.391934 0.740974 0.430820 0.748920 Q4 Q5 0.734260 0.741563 0.481306 0.531841 Q5 Q6 Q7 0.762350 0.202296 0.754347 0.240164 06 0.765470 0.773101 0.050563 0.081230 Q7 Q8 0.388495 0.741653 0.369171 0.753327 08 Q9 0.353605 0.744036 0.336071 0.755668 09 0.484940 0.735635 0.444133 0.747960 Q10 Q10 Q11 0.404619 0.741403 0.440995 0.748187 Q11 Q12 0.410027 0.744994 0.419969 0.749700 Q12 Q13 0.141330 0.757206 0.170935 0.767082 Q13 Q14 0.312684 0.747200 0.351033 0.754612 Q14 Q15 0.197791 0.759123 0.140339 0.769149 Q15 Q16 0.207128 0.759535 0.152376 0.768338 Q16 Q17 0.378080 0.742126 0.758919 0.289675 017 0.742078 0.753822 018 0.381605 0.362205 018 Q19 0.275186 0.750087 0.298603 0.758296 Q19 Q20 0.109425 0.760033 0.107786 0.771333 020

	Cronbach Coe	fficient Alpha w	with Deleted Vari	able	
	Raw Vari	ables	Standardized	Variables	
Deleted	Correlation		Correlation		
Variable	with Total	Alpha	with Total	Alpha	Label
fffffffffff;	fffffffffffffffffff	£££££££££££££££££££££	fffffffffffffffffff	fffffffffffffff	ffffff
Q1	0.475348	0.728626	0.481282	0.724475	Q1
Q2	0.515894	0.722980	0.509146	0.716973	Q2
Q3	0.529951	0.711053	0.525962	0.712397	Q3
Q4	0.592117	0.692278	0.578805	0.697779	Q4
Q5	0.655629	0.674195	0.656041	0.675749	Q5
Q6	0.244548	0.777859	0.247000	0.783714	Q6

Cronbach Coefficient Alpha Variables Alpha

fffffffffffffffffffffffffffffff Raw 0.158632 Standardized 0.176912

	Cronbach C	Coefficient Alpha w	with Deleted Vari	iable				
	Raw Va	ariables	Standardized	Variables				
Deleted	Correlation		Correlation					
Variable	with Total	Alpha	with Total	Alpha	Label			
fffffffffff	fffffffffffffff		, fffffffffffffffffff	fffffffffffffff	ffffff			
Q7	244647	0.508577	231272	0.522685	Q7			
Q8	0.250990	152284	0.258540	134077	Q8			
Q9	0.056860	0.155725	0.064892	0.166095	Q9			
Q10	0.360320	293706	0.354719	305776	Q10			
		Cronbach Coeffic	ient Alpha					
		Variables	Alpha					
		fffffffffffffffff	ffffffffff					
		Raw	0.718535					
		Standardized	0.738937					
	Cuaulaala (
	Cronbach C	verticient Alpha v	Standardized	Vaniahlas				
Deleted	KdW Va	ILIADIES	Stanuaruizeu	variables				
Verieble	Correlation	Alaha	Correlation	A]	1.44.41			
variable	with lotal	Атрпа	WITH IOTAL	Атрпа	Label			
					<i></i>			
Q11 012	0.38/849	0.730088	0.446551	0.726592	Q11 012			
Q12	0.613109	0.630016	0.6111/2	0.632684	Q12			
Q13	0.521959	0.649970	0.4/304/	0.712132	Q13			
Q14	0.595641	0.606230	0.600494	0.639074	Q14			
		Cronbach Coeffic	cient Alpha					
		Variables	Alpha					
		ffffffffffffffffffffffffffffffffffff	fffffffff					
		Raw	0.709926					
		Standardized	0.686499					
Cronbach Coefficient Alpha with Deleted Variable								

	Raw Vari	ables	Standardized Variables				
Deleted	Correlation		Correlation				
Variable	with Total	Alpha	with Total	Alpha	Label		
ffffffffff		fffffffffffffffff	fffffffffffffffff	fffffffffffffff	ffffff		
Q15	0.610918	0.609103	0.547845	0.600483	Q15		
Q16	0.679693	0.578321	0.619505	0.574511	Q16		
Q17	0.818552	0.549954	0.763462	0.519453	Q17		
Q18	0.424427	0.676531	0.455194	0.632692	Q18		
Q19	0.086353	0.765324	0.115983	0.738158	Q19		
020	0.083967	0.754097	0.099941	0.742687	020		

Pearson Correlation Coefficients, N = 32 Prob > |r| under H0: Rho=0

				unuer no. kno-	-0		
	Q1	Q2	Q3	Q4	Q5	Q6	Q7
Q1	1.00000	0.42476	0.40628	0.33499	0.34172	0.15200	0.30267
Q1		0.0154	0.0210	0.0609	0.0556	0.4063	0.0922
Q2	0.42476	1.00000	0.47310	0.32998	0.35514	0.16046	0.19936
Q2	0.0154		0.0062	0.0651	0.0461	0.3803	0.2740
Q3	0.40628	0.47310	1.00000	0.50976	0.39535	0.00885	-0.00450
Q3	0.0210	0.0062		0.0029	0.0251	0.9617	0.9805
Q4	0.33499	0.32998	0.50976	1.00000	0.63080	0.14169	-0.06699
Q4	0.0609	0.0651	0.0029		0.0001	0.4392	0.7156
Q5	0.34172	0.35514	0.39535	0.63080	1.00000	0.44130	0.18712
Q5	0.0556	0.0461	0.0251	0.0001		0.0115	0.3051
Q6	0.15200	0.16046	0.00885	0.14169	0.44130	1.00000	-0.09359
Q6	0.4063	0.3803	0.9617	0.4392	0.0115		0.6104
Q7	0.30267	0.19936	-0.00450	-0.06699	0.18712	-0.09359	1.00000
Q7	0.0922	0.2740	0.9805	0.7156	0.3051	0.6104	
Q8	0.27019	0.05265	0.53514	0.10615	0.29650	0.08723	-0.11651
Q8	0.1348	0.7747	0.0016	0.5631	0.0994	0.6350	0.5254
Q9	0.20674	0.18416	0.53036	0.40226	0.09723	-0.07628	-0.30566
Q9	0.2563	0.3130	0.0018	0.0225	0.5965	0.6782	0.0889
Q10	0.02992	0.06457	0.51778	0.31585	0.08081	-0.12779	-0.07410
Q10	0.8709	0.7255	0.0024	0.0782	0.6602	0.4858	0.6869
Q11	0.17724	0.03338	0.25758	0.39257	0.48037	0.41322	0.15867
Q11	0.3318	0.8561	0.1547	0.0263	0.0054	0.0187	0.3857
Q12	0.31018	-0.02763	0.16289	0.35840	0.40457	0.41888	0.25274
Q12	0.0840	0.8807	0.3731	0.0440	0.0216	0.0170	0.1628
Q13	0.28556	0.25376	-0.01311	0.09394	0.12111	0.15499	0.19670
Q13	0.1131	0.1611	0.9432	0.6091	0.5091	0.3970	0.2806
Q14	0.32323	0.23808	0.22652	0.31015	0.27550	0.06079	0.13953
Q14	0.0712	0.1895	0.2125	0.0841	0.1270	0.7410	0.4463
Q15	-0.26713	-0.25916	0.06564	-0.13951	-0.18421	-0.01980	-0.18931

Q15	0.1	L394	0.1521	0.7211	0.4	463	0.3129	0.9143	0.2994
016	-0.19	9051 -0	.30886	0.06923	-0.23	472 -	0.26760	-0.13580	-0.03505
016	0 3	063	0 0851	0 7066	0 1	960	0 1397	0 1586	0 8/00
017	0.2	2903	0.0004	0.7000	0.1	100	0.1387	0.4000	0.0490
Q17	-0.05	9142 -0	.15018	0.21080	-0.18	436 -	0.051/8	-0.18916	0.12209
Q17	0.6	5187	0.4120	0.2468	0.3	124	0.7784	0.2998	0.5056
Q18	0.33	3012 0	.12299	0.26098	-0.06	743	0.18227	0.19036	0.21965
018	0.0	9650	0.5025	0.1491	0.7	138	0.3181	0.2967	0.2271
019	0 00	A1A 0	11866	0 15022	0 16	998	0 12203	0 3/920	-0 11977
010	0.02	0414 0	0.5170	0.13022	0.10	550	0.42203	0.04920	-0.11977
Q19	0.6	5083	0.51/8	0.4118	0.3	523	0.0161	0.0501	0.5138
Q20	0.00	0000 0	.60030	0.16271	0.08	069	0.04226	0.04973	-0.08856
020	1.6	0000	0.0003	0.3736	0.6	607	0.8184	0.7869	0.6298
		00	00	010		011	012	012	014
01	0.07	0y 7010	2007	Q10	0.17	724	0 24040	0 20555	419 419
QI	0.27	/019 0	.20674	0.02992	0.17	/24	0.31018	0.28556	0.32323
Q1	0.1	L348	0.2563	0.8709	0.3	318	0.0840	0.1131	0.0712
Q2	0.05	5265 0	.18416	0.06457	0.03	338 -	0.02763	0.25376	0.23808
02	0.7	7747	0.3130	0.7255	0.8	561	0.8807	0.1611	0.1895
02	0 53	DE1/ 0	E2026	0 51770	0.25	750	0 16200	0 01211	0 22653
29	0.5	0016	0.0010	0.01778	0.25	7.50	0.10289	-0.01311	0.22052
Q3	0.6	0010	0.0018	0.0024	0.1	547	0.3/31	0.9432	0.2125
Q4	0.10	0615 0	.40226	0.31585	0.39	257	0.35840	0.09394	0.31015
04	0.5	5631	0.0225	0.0782	0.0	263	0.0440	0.6091	0.0841
05	0 20	9650 Q	09723	0 08081	0 48	0 37	0 40457	0 12111	0 27550
Q.5	0.22	0004	0 5065	0.00001	0.40	057	0.40457	0.12111	0.27550
Q5	0.0) <u> </u>	0.5905	0.0002	0.0	034	0.0210	0.3091	0.1270
Q6	0.08	3/23 -0	.0/628 -0	0.12//9	0.41	322	0.41888	0.15499	0.060/9
Q6	0.6	5350	0.6782	0.4858	0.0	187	0.0170	0.3970	0.7410
07	-0.11	L651 -0	.30566 -0	0.07410	0.15	867	0.25274	0.19670	0.13953
07	0 5	5254	0 0889	0 6869	03	857	0 1628	0 2806	0 1163
χ, 00	1	2000 0	16017	0.00000	0.5	671	0.1020	0.2000	0.4400
Q8	1.00	0000 0	.1681/	0.3//38	0.21	674	0.06459	-0.25136	-0.15248
Q8			0.3576	0.0332	0.2	335	0.7254	0.1652	0.4048
Q9	0.16	5817 1	.00000	0.25668	0.26	535	0.11297	0.17585	0.33334
09	0.3	3576		0.1562	0.1	422	0.5382	0.3357	0.0623
010	0 37	7738 A	25668	1 00000	0.20	071	0 00242	-0 03768	0 10130
010	0.57	0		1.00000	0.20	371 402	0.09242	-0.03708	0.10130
QT0	0.6	0332	0.1562		0.2	493	0.6149	0.8378	0.5812
Q11	0.21	L674 0	.26535	0.20971	1.00	000	0.72115	0.10801	0.23495
011	0.2	2335	0.1422	0.2493			<.0001	0.5563	0.1955
012	0 06	5459 A	11297	a a9242	Q 72	115	1 00000	0 27175	0 37810
010	0.00	7754	0 5202	0.6140	0.72	001	1.00000	0.2/1/3	0.07010
QIZ	0.7	254	0.5562	0.6149	<.0	001		0.1524	0.0529
Q13	-0.25	o136 0	.1/585 -0	0.03/68	0.10	801	0.2/1/5	1.00000	0.74270
Q13	0.1	L652	0.3357	0.8378	0.5	563	0.1324		<.0001
014	-0.15	5248 0	.33334	0.10130	0.23	495	0.37810	0.74270	1.00000
014	9/	10/18	0 0623	0 5812	0 1	955	0 0329	6 0001	
015	0	0000	200625	0.3012	0.1	701	0.0525	0.15726	0 04462
Q12	0.00	0000 0	.30861	0.33465	-0.01	/61	0.04476	-0.15/36	-0.04463
Q15	1.0	9000	0.0857	0.0612	0.9	238	0.8078	0.3897	0.8083
Q16	0.05	5554 0	.21856	0.36708	-0.07	629	0.03206	-0.12023	0.01548
016	0.7	7627	0.2295	0.0388	0.6	782	0.8617	0.5122	0.9330
017	0.25	627 A	15664	0 13206	_0_01	021 _	0 06956	-0 10/62	-0 0/327
017	0.2		0.2010	0.45200	0.04	001	0.000000	0.10402	0.04327
Q17	0.1	1662	0.3919	0.0135	0.7	891	0.7052	0.2858	0.8141
Q18	0.49	9179 -0	.16541 (0.19075	0.07	728	0.09133	-0.22560	-0.19450
Q18	0.0	0043	0.3656	0.2957	0.6	742	0.6191	0.2144	0.2861
019	0.51	L095 -0	.15958	0.26360	0.15	682	0.14940	0.02087	-0.07913
010	0.0	2028	0 3830	0 1//0	0.3	01/	0 1111	0 0007	0 6669
020	0.0	1205 0	0.000	0.1449	0.5	770	0.4144	0.9097	0.0009
Q20	0.04	4385 0	.03835	0.19124	-0.19	//0 -	0.36823	0.00000	0.00000
Q20	0.8	3116	0.8349	0.2944	0.2	781	0.0381	1.0000	1.0000
		015	016		017	018	3	019	020
	01	-0 26713	-0 19051	-0	091/12	0 33012		a aq111	a aaaaa
	LQ Q1	-0.20713	-0.19031	-0	.09142	0.55012		0.03414	0.00000
	QI	0.1394	0.2963		0.618/	0.0656	,	0.6083	1.0000
	Q2	-0.25916	-0.30886	-0	.15018	0.12299)	0.11866	0.60030
	Q2	0.1521	0.0854		0.4120	0.5025	5	0.5178	0.0003
	03	0.06564	0.06923	0	.21080	0.26098	3	0.15022	0.16271
	03	0 7211	0 7066	-	0 2468	0 1/01		0 1118	0 3736
	Q5 04	0.7211	0.7000	0	19476	0.04743	-	0.410	0.3750
	Q4	-0.13951	-0.234/2	-0	.18436	-0.06/43		0.16998	0.08069
	Q4	0.4463	0.1960		0.3124	0.7138	3	0.3523	0.6607
	Q5	-0.18421	-0.26760	-0	.05178	0.18227	,	0.42203	0.04226
	05	0.3129	0.1387		0.7784	0.3181		0.0161	0.8184
	06	_0 01080	_0 13580	-0	18016	0 10036		0 3/020	0 0/073
	QO	-0.01980	-0.13380	-0	. 18910	0.19050		0.04920	0.04975
	QБ	0.9143	0.4586		0.2998	0.296/		0.0501	0.7869
	Q7	-0.18931	-0.03505	0	.12209	0.21965		0.11977 -	0.08856
	Q7	0.2994	0.8490		0.5056	0.2271	-	0.5138	0.6298
	08	0.00000	0.05554	A	.25077	0.49179)	0.51095	0.04385
	08	1 0000	0 7677	Ŭ	0 1662	0 0013	1	0 0028	0 8116
	20 00	1.0000	0.7027	-	15664	0.0043	,	0.0020	0.0110
	бà	0.30861	0.21856	0	.15064	-0.16541	-	826621.0	0.03835
	Q9	0.0857	0.2295		0.3919	0.3656	b	0.3830	0.8349
	Q10	0.33465	0.36708	0	.43206	0.19075	5	0.26360	0.19124
	010	0.0612	0.0388		0.0135	0.2957	,	0.1449	0.2944
	011	-0 01761	-0 07620	-0	04921	0 07779	2	0 15682 -	0 19770
	011	0.01/01	0.0/029	-0	0 7001	0.0//20		0.1J002 -	0.10,701
	QTT	0.9238	0.6/82		0./891	0.6/42	-	0.3914	0.2/81
	Q12	0.04476	0.03206	-0	.06956	0.09133	5	0.14940 -	0.36823
	012	0.8078	0.8617		0.7052	0.6191	_	0.4144	0.0381

Q13	-0.15736	-0.12023	-0.19462	-0.22560	0.02087	0.00000
Q13	0.3897	0.5122	0.2858	0.2144	0.9097	1.0000
Q14	-0.04463	0.01548	-0.04327	-0.19450	-0.07913	0.00000
Q14	0.8083	0.9330	0.8141	0.2861	0.6669	1.0000
Q15	1.00000	0.88254	0.76101	0.13921	-0.11686	0.03353
Q15		<.0001	<.0001	0.4473	0.5242	0.8554
Q16	0.88254	1.00000	0.85195	0.25607	-0.04282	-0.06332
Q16	<.0001		<.0001	0.1572	0.8160	0.7306
Q17	0.76101	0.85195	1.00000	0.44706	0.09136	0.08169
Q17	<.0001	<.0001		0.0103	0.6190	0.6567
Q18	0.13921	0.25607	0.44706	1.00000	0.39039	0.21567
Q18	0.4473	0.1572	0.0103		0.0272	0.2358
Q19	-0.11686	-0.04282	0.09136	0.39039	1.00000	0.08323
Q19	0.5242	0.8160	0.6190	0.0272		0.6507
Q20	0.03353	-0.06332	0.08169	0.21567	0.08323	1.00000
Q20	0.8554	0.7306	0.6567	0.2358	0.6507	

Annexure L: Descriptive statistics: Frequency tables for staff questionnaire

			Cumulative	Cumulative
Q1 F	requency	Percent	Frequency	Percent
ffffffffffffffffffffffffffffffffffff	ffffffffffff	fffffffffff	fffffffffffff	fffffffffff
Completely agree	1	16.67	1	16.67
Mostly agree	3	50.00	4	66.67
Mostly disagree	2	33.33	6	100.00
		- ,		
	Chi-Squa	re Test		
	for Equal P	roportions		
	Chi-Square	1.0000		
WARNING, The t	Pr > Chisq	0.6065	d counts loss	
WARNING. THE C	5 Chi-Squar	ave expected	a a valid tes	+
chan	Sample S	ize = 6		
	Jampie J	126 = 0		
			Cumulative	Cumulative
02 F	requency	Percent	Frequency	Percent
ffffffffffffffffffffffff	ffffffffffff	fffffffffff	fffffffffffff	ffffffffffff
Completelv agree	3	50.00	3	50.00
Mostly agree	2	33.33	5	83.33
Mostly disagree	1	16.67	6	100.00
, C				
	Chi-Squa	re Test		
	for Equal P	roportions		
	ffffffffff	fffffffff		
	Chi-Square	1.0000		
	DF	2		
	Pr > ChiSq	0.6065		
WARNING: The t	able cells h	ave expecte	d counts less	
than	5. Chi-Squar	e may not b	e a valid tes	t.
	Sample S	ize = 6		
			C	C
03 6	noquoney	Doncont	Cumulative	Cumulative
	requency	Percent	rrequency	Percent
Completely agree	1111111111	100 00	11111111111	100 00
compretery ugree	0	100.00	Ū	100.00
	Chi-Squa	re Test		
	for Equal P	roportions		
	ffffffffff	fffffffff		
	Chi-Square	0.0000		
	DF	0		
	Pr ≻ ChiSq			
	Sample S	ize = 6		
		_ .	Cumulative	Cumulative
Q4 F	requency	Percent	Frequency	Percent
	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	16 67	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	16 67
Completely agree	1	10.07	1	16.67
Undecided	1	16 67	4 5	82 22
Mostly disagnee	1	16.67	5	100 00
hostiy uisagi ee	-	10.07	0	100.00
	Chi-Saua	re Test		
	for Equal P	roportions		
	fffffffffff	fffffffff		
	Chi-Square	2.0000		
	DF	3		
	Pr ≻ ChiSq	0.5724		
WARNING: The t	able cells h	ave expecte	d counts less	
		are expected	a counco ress	
than	5. Chi-Squar	e may not b	be a valid tes	t.

Sample Size = 6

			Cumulative	Cumulative
Q5 Fr	equency	Percent	Frequency	Percent
ffffffffffffffffffffffffffffffffffff	ffffffffff	ffffffffff	fffffffffffff	fffffffffff
Completely agree	2	33.33	2	33.33
Mostly agree	2	33.33	4	66.67
Mostly disagree	2	33.33	6	100.00
	Chi-Squa	re Test		
	for Equal P	roportions		
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
	Chi-Square	0.0000		
		2		
	Pr > ChiSq	1.0000	4	
WARNING: THE TA	Chi Sauan	ave expecte	a counts less	+
	Sample S	izo - 6	e a vallu les	ι.
	Sampre S	126 = 0		
			Cumulative	Cumulative
06 Er	equency	Percent	Frequency	Percent
+++++++++++++++++++++++++++++++++++++++	ffffffffffff	<i>ffffffffffff</i>	fffffffffffff	fffffffffffff
Completely agree	1	16 67	ננננננננננ. 1	16 67
Mostly agree	4	66.67	5	83.33
Completely disagree	1	16.67	6	100.00
compretery arough ce	-	10.07	0	100.00
	Chi-Squa	re Test		
	for Equal P	roportions		
	fffffffffff	ffffffffff		
	Chi-Square	3.0000		
	DF .	2		
	Pr ≻ ChiSq	0.2231		
WARNING: The ta	ble cells h	ave expecte	d counts less	
than 5	. Chi-Squar	e mav not b	e a valid tes	t.
chun 5		,		
	Sample S	ize = 6		
	Sample S	ize = 6		
	Sample S	ize = 6	Cumulative	Cumulative
Q7 Fr	Sample S equency	ize = 6 Percent	Cumulative Frequency	Cumulative Percent
Q7 Fr ffffffffffffffffffffffffffffff	Sample S equency ffffffffffff	<pre>ize = 6 Percent ffffffffffff</pre>	Cumulative Frequency ffffffffffffffff	Cumulative Percent fffffffff
Q7 Fr fffffffffffffffffffffffffffffffffff Completely agree	Sample S equency ffffffffffff 4	<pre>ize = 6 Percent fffffffffff 66.67 22.22</pre>	Cumulative Frequency ffffffffffff 4	Cumulative Percent ffffffffff 66.67
Q7 Fr fffffffffffffffffffffffffffff Completely agree Mostly agree	Sample S equency fffffffff 4 2	ize = 6 Percent fffffffff 66.67 33.33	Cumulative Frequency fffffffffff 4 6	Cumulative Percent ffffffffff 66.67 100.00
Q7 Fr fffffffffffffffffffffffffffff Completely agree Mostly agree	Sample S equency fffffffff 4 2 Chi Squa	ize = 6 Percent fffffffff 66.67 33.33	Cumulative Frequency fffffffffff 4 6	Cumulative Percent fffffffffff 66.67 100.00
Q7 Fr fffffffffffffffffffffffffffff Completely agree Mostly agree	Sample S equency ffffffffff 4 2 Chi-Squa fon Equal P	<pre>ize = 6 Percent fffffffff 66.67 33.33 re Test popontions</pre>	Cumulative Frequency ffffffffff 4 6	Cumulative Percent fffffffffff 66.67 100.00
Q7 Fr ffffffffffffffffffffffffffff Completely agree Mostly agree	Sample S equency ffffffffff 4 2 Chi-Squa for Equal P ffffffffff	<pre>ize = 6 Percent fffffffff 66.67 33.33 re Test roportions fffffffffff</pre>	Cumulative Frequency ffffffffff 4 6	Cumulative Percent fffffffffff 66.67 100.00
Q7 Fr fffffffffffffffffffffffffffff Completely agree Mostly agree	Sample S equency ffffffffff 4 2 Chi-Squa for Equal P fffffffffff	<pre>ize = 6 Percent ffffffff 66.67 33.33 re Test roportions fffffffff</pre>	Cumulative Frequency fffffffffff 4 6	Cumulative Percent ffffffffff 66.67 100.00
Q7 Fr ffffffffffffffffffffffffffffff Completely agree Mostly agree	Sample S equency ffffffffff 4 2 Chi-Squa for Equal P fffffffff Chi-Square DF	<pre>ize = 6 Percent ffffffff</pre>	Cumulative Frequency ffffffffff 4 6	Cumulative Percent ffffffffff 66.67 100.00
Q7 Fr ffffffffffffffffffffffffffff Completely agree Mostly agree	Sample S equency ffffffffff 4 2 Chi-Squa for Equal P ffffffffff Chi-Square DF Pr > ChiSq	<pre>ize = 6 Percent ffffffff 66.67 33.33 re Test roportions fffffffff 0.6667 1 0.6667 1 0.4142</pre>	Cumulative Frequency ffffffffff 4 6	Cumulative Percent fffffffffff 66.67 100.00
Q7 Fr ffffffffffffffffffffffffffff Completely agree Mostly agree WARNING: The ta	Sample S equency ffffffffff 4 2 Chi-Squa for Equal P ffffffffff Chi-Square DF Pr > ChiSq ble cells h	<pre>ize = 6 Percent ffffffff</pre>	Cumulative Frequency fffffffffff 4 6 d counts less	Cumulative Percent ffffffffff 66.67 100.00
Q7 Fr fffffffffffffffffffffffffffff Completely agree Mostly agree WARNING: The ta than 5	Sample S equency ffffffffff 4 2 Chi-Squa for Equal P ffffffffff Chi-Square DF Pr > ChiSq ble cells h . Chi-Squar	<pre>ize = 6 Percent ffffffff 66.67 33.33 re Test roportions fffffffff 0.6667 1 0.4142 ave expecte e may not b</pre>	Cumulative Frequency fffffffffff 4 6 d counts less e a valid tes	Cumulative Percent fffffffffff 66.67 100.00
Q7 Fr fffffffffffffffffffffffffffff Completely agree Mostly agree WARNING: The ta than 5	Sample S equency ffffffffff 4 2 Chi-Squa for Equal P fffffffffff Chi-Square DF Pr > ChiSq ble cells h . Chi-Squar Sample S	<pre>ize = 6 Percent ffffffff 66.67 33.33 re Test roportions fffffffff 0.6667 1 0.4142 ave expecte e may not b ize = 6</pre>	Cumulative Frequency fffffffffff 4 6 d counts less e a valid tes	Cumulative Percent fffffffffff 66.67 100.00
Q7 Fr ffffffffffffffffffffffffffff Completely agree Mostly agree WARNING: The ta than 5	Sample S equency ffffffffff 4 2 Chi-Squa for Equal P fffffffffff Chi-Square DF Pr > ChiSq ble cells h . Chi-Squar Sample S	<pre>ize = 6 Percent ffffffff 66.67 33.33 re Test roportions fffffffff 0.6667 1 0.4142 ave expecte e may not b ize = 6</pre>	Cumulative Frequency fffffffffff 4 6 d counts less e a valid tes	Cumulative Percent ffffffffff 66.67 100.00
Q7 Fr ffffffffffffffffffffffffff Completely agree Mostly agree WARNING: The ta than 5	Sample S equency ffffffffff 4 2 Chi-Squa for Equal P fffffffffff Chi-Square DF Pr > ChiSq ble cells h . Chi-Squar Sample S	<pre>ize = 6 Percent ffffffff 66.67 33.33 re Test roportions fffffffff 0.6667 1 0.4142 ave expecte e may not b ize = 6</pre>	Cumulative Frequency fffffffffff 4 6 d counts less e a valid tes Cumulative	Cumulative Percent ffffffffff 66.67 100.00 t.
Q7 Fr fffffffffffffffffffffffffffff Completely agree Mostly agree WARNING: The ta than 5 Q8 Fr	Sample S equency ffffffffff 4 2 Chi-Squa for Equal P fffffffffff Chi-Square DF Pr > ChiSq ble cells h . Chi-Squar Sample S equency	<pre>ize = 6 Percent ffffffff 66.67 33.33 re Test roportions fffffffff 0.6667 1 0.4142 ave expecte e may not b ize = 6 Percent</pre>	Cumulative Frequency fffffffffff 4 6 d counts less e a valid tes Cumulative Frequency	Cumulative Percent ffffffffff 66.67 100.00 t. cumulative Percent
Q7 Fr ffffffffffffffffffffffffff Completely agree Mostly agree WARNING: The ta than 5 Q8 Fr ffffffffffffffffffffffffffffffff	Sample S equency fffffffffff 4 2 Chi-Squa for Equal P fffffffffff Chi-Square DF Pr > ChiSq ble cells h . Chi-Squar Sample S equency fffffffffff	<pre>ize = 6 Percent ffffffffff 66.67 33.33 re Test roportions fffffffff 0.6667 1 0.4142 ave expecte e may not b ize = 6 Percent ffffffffffffffffffffffffffffffffffff</pre>	Cumulative Frequency ffffffffffff 4 6 d counts less e a valid tes Cumulative Frequency fffffffffffffff	Cumulative Percent fffffffff 66.67 100.00 t. Cumulative Percent ffffffffffff
Q7 Fr ffffffffffffffffffffffff Completely agree Mostly agree WARNING: The ta than 5 Q8 Fr ffffffffffffffffffffffffffffffffffff	Sample S equency ffffffffff 4 2 Chi-Squa for Equal P fffffffffff Chi-Square DF Pr > ChiSq ble cells h . Chi-Squar Sample S equency fffffffffff 4	<pre>ize = 6 Percent ffffffffff</pre>	Cumulative Frequency fffffffffff 4 6 d counts less e a valid tes Cumulative Frequency fffffffffff 4	Cumulative Percent fffffffff 66.67 100.00 t. Cumulative Percent ffffffffff 66.67
Q7 Fr fffffffffffffffffffffff Completely agree Mostly agree WARNING: The ta than 5 Q8 Fr ffffffffffffffffffffffffffffffffffff	Sample S equency ffffffffff 4 2 Chi-Squa for Equal P fffffffffff Chi-Square DF Pr > ChiSq ble cells h . Chi-Squar Sample S equency ffffffffffff 4 2	<pre>ize = 6 Percent fffffffff 66.67 33.33 re Test roportions fffffffff 0.6667 1 0.4142 ave expecte e may not b ize = 6 Percent fffffffffff 66.67 33.33</pre>	Cumulative Frequency ffffffffffff 4 6 d counts less e a valid tes Cumulative Frequency fffffffffffffff 4 6	Cumulative Percent ffffffff 66.67 100.00 t. Cumulative Percent ffffffffff 66.67 100.00
Q7 Fr fffffffffffffffffffffff Completely agree Mostly agree WARNING: The ta than 5 Q8 Fr ffffffffffffffffffffffffffffffffffff	Sample S equency ffffffffff 4 2 Chi-Squa for Equal P fffffffffff Chi-Square DF Pr > ChiSq ble cells h . Chi-Squar Sample S equency fffffffffff 4 2	<pre>ize = 6 Percent fffffffff 66.67 33.33 re Test roportions fffffffff 0.6667 1 0.4142 ave expecte e may not b ize = 6 Percent ffffffffffff 66.67 33.33 </pre>	Cumulative Frequency fffffffffff 4 6 d counts less e a valid tes Cumulative Frequency fffffffffffffff 4 6	Cumulative Percent ffffffff 66.67 100.00 t. Cumulative Percent ffffffffff 66.67 100.00
Q7 Fr ffffffffffffffffffffffff Completely agree Mostly agree WARNING: The ta than 5 Q8 Fr ffffffffffffffffffffffffffffffffff Completely agree Mostly agree	Sample S equency fffffffffff 4 2 Chi-Squa for Equal P ffffffffffff Chi-Square DF Pr > ChiSq ble cells h . Chi-Squar Sample S equency ffffffffffff 4 2 Chi-Squa	<pre>ize = 6 Percent fffffffff 66.67 33.33 re Test roportions fffffffff 0.6667 1 0.4142 ave expecte e may not b ize = 6 Percent fffffffffff 66.67 33.33 re Test</pre>	Cumulative Frequency fffffffffff 4 6 d counts less e a valid tes Cumulative Frequency ffffffffffffff 4 6	Cumulative Percent fffffffff 66.67 100.00 t. Cumulative Percent fffffffffff 66.67 100.00
Q7 Fr ffffffffffffffffffffffff Completely agree Mostly agree WARNING: The ta than 5 Q8 Fr fffffffffffffffffffffffffffffff Completely agree Mostly agree	Sample S equency fffffffffff 4 2 Chi-Squa for Equal P fffffffffffff Chi-Square DF Pr > ChiSq ble cells h . Chi-Squar Sample S equency fffffffffffff 4 2 Chi-Squa for Equal P	<pre>ize = 6 Percent fffffffff 66.67 33.33 re Test roportions fffffffff 0.6667 1 0.4142 ave expecte e may not b ize = 6 Percent ffffffffffff 66.67 33.33 re Test roportions</pre>	Cumulative Frequency fffffffffff 4 6 d counts less e a valid tes Cumulative Frequency fffffffffffffffff 4 6	Cumulative Percent fffffffff 66.67 100.00 t. Cumulative Percent fffffffffff 66.67 100.00
Q7 Fr fffffffffffffffffffffffff Completely agree Mostly agree WARNING: The ta than 5 Q8 Fr ffffffffffffffffffffffffffffffffffff	Sample S equency fffffffffff 4 2 Chi-Squa for Equal P ffffffffffff Chi-Square DF Pr > ChiSq ble cells h . Chi-Squar Sample S equency ffffffffffff 4 2 Chi-Squa for Equal P ffffffffffffffffffffffffffffffffffff	<pre>ize = 6 Percent fffffffff 66.67 33.33 re Test roportions fffffffff 0.6667 1 0.4142 ave expecte e may not b ize = 6 Percent fffffffffff 66.67 33.33 re Test roportions fffffffffff</pre>	Cumulative Frequency fffffffffff 4 6 d counts less e a valid tes Cumulative Frequency ffffffffffffffff 4 6	Cumulative Percent fffffffff 66.67 100.00 t. Cumulative Percent fffffffffff 66.67 100.00
Q7 Fr fffffffffffffffffffffffff Completely agree Mostly agree WARNING: The ta than 5 Q8 Fr ffffffffffffffffffffffffffffffff Completely agree Mostly agree	Sample S equency fffffffffff 4 2 Chi-Squa for Equal P ffffffffffff Chi-Square DF Pr > ChiSq ble cells h . Chi-Squar Sample S equency ffffffffffff 4 2 Chi-Squa for Equal P fffffffffff Chi-Square	<pre>ize = 6 Percent fffffffff 66.67 33.33 re Test roportions fffffffff 0.6667 1 0.4142 ave expecte e may not b ize = 6 Percent ffffffffff 66.67 33.33 re Test roportions fffffffff 0.6667 0.6667</pre>	Cumulative Frequency fffffffffff 4 6 d counts less e a valid tes Cumulative Frequency fffffffffffff 4 6	Cumulative Percent fffffffff 66.67 100.00 t. Cumulative Percent fffffffffff 66.67 100.00
Q7 Fr fffffffffffffffffffffffffffff Completely agree WARNING: The ta than 5 Q8 Fr fffffffffffffffffffffffffffffffff Completely agree Mostly agree	Sample S equency ffffffffff 4 2 Chi-Squa for Equal P fffffffffff Chi-Square DF Pr > ChiSq ble cells h . Chi-Squar Sample S equency fffffffffff 4 2 Chi-Squa for Equal P ffffffffff Chi-Square DF	<pre>ize = 6 Percent fffffffff 66.67 33.33 re Test roportions fffffffff 0.6667 1 0.4142 ave expecte e may not b ize = 6 Percent fffffffffff 66.67 33.33 re Test roportions fffffffff 0.6667 1 0.4142</pre>	Cumulative Frequency fffffffffff 4 6 d counts less e a valid tes Cumulative Frequency ffffffffffff 4 6	Cumulative Percent fffffffff 66.67 100.00 t. Cumulative Percent fffffffffffff 66.67 100.00
Q7 Fr fffffffffffffffffffffffffff Completely agree WARNING: The ta than 5 Q8 Fr ffffffffffffffffffffffffffffff Completely agree Mostly agree	Sample S equency ffffffffff 4 2 Chi-Squa for Equal P fffffffffff Chi-Square DF Pr > ChiSq ble cells h . Chi-Squar Sample S equency fffffffffff 4 2 Chi-Squa for Equal P ffffffffff Chi-Square DF Pr > ChiSq	<pre>ize = 6 Percent fffffffff</pre>	Cumulative Frequency fffffffffff 4 6 d counts less e a valid tes Cumulative Frequency fffffffffffff 4 6	Cumulative Percent fffffffff 66.67 100.00 t. Cumulative Percent fffffffffffff 66.67 100.00
Q7 Fr ffffffffffffffffffffffffffffffffffff	Sample S equency ffffffffff 4 2 Chi-Squa for Equal P fffffffffff Chi-Square DF Pr > ChiSq ble cells h . Chi-Squar Sample S equency fffffffffff 4 2 Chi-Squa for Equal P ffffffffff Chi-Square DF Pr > ChiSq ble cells h	<pre>ize = 6 Percent fffffffff 66.67 33.33 re Test roportions fffffffff 0.6667 1 0.4142 ave expecte e may not b ize = 6 Percent fffffffffff 66.67 33.33 re Test roportions fffffffff 0.6667 1 0.4142 ave expecte a</pre>	Cumulative Frequency fffffffffff 4 6 d counts less e a valid tes Cumulative Frequency ffffffffffff 4 6 d counts less	Cumulative Percent fffffffff 66.67 100.00 t. Cumulative Percent fffffffffff 66.67 100.00
Q7 Fr fffffffffffffffffffffffffffff Completely agree WARNING: The ta than 5 Q8 Fr ffffffffffffffffffffffffffffffffffff	Sample S equency fffffffffff 4 2 Chi-Squa for Equal P fffffffffff Chi-Square DF Pr > ChiSq ble cells h . Chi-Squar Sample S equency fffffffffff 4 2 Chi-Squa for Equal P ffffffffff Chi-Square DF Pr > ChiSq ble cells h . Chi-Square	<pre>ize = 6 Percent ffffffff 66.67 33.33 re Test roportions ffffffff 0.6667 1 0.4142 ave expecte e may not b ize = 6 Percent ffffffffff 66.67 33.33 re Test roportions ffffffffff 0.6667 1 0.4142 ave expecte e may not b ize = 6</pre>	Cumulative Frequency fffffffffff 4 6 d counts less e a valid tes Cumulative Frequency ffffffffffff 4 6 d counts less e a valid tes	Cumulative Percent fffffffff 66.67 100.00 t. Cumulative Percent fffffffffff 66.67 100.00 t.
Q7 Fr ffffffffffffffffffffffffffffffffffff	Sample S equency ffffffffff 4 2 Chi-Squa for Equal P fffffffffff Chi-Square DF Pr > ChiSq ble cells h . Chi-Squar Sample S equency fffffffffff 4 2 Chi-Square DF Pr > ChiSq ble cells h . Chi-Square DF Pr > ChiSq ble cells h . Chi-Squar Sample S	<pre>ize = 6 Percent ffffffff 66.67 33.33 re Test roportions fffffffff 0.6667 1 0.4142 ave expecte e may not b ize = 6 Percent fffffffffff 66.67 33.33 re Test roportions fffffffff 0.6667 1 0.4142 ave expecte e may not b ize = 6</pre>	Cumulative Frequency fffffffffff 4 6 d counts less e a valid tes Cumulative Frequency ffffffffffff 4 6 d counts less e a valid tes	Cumulative Percent fffffffff 66.67 100.00 t. Cumulative Percent fffffffffff 66.67 100.00 t.

Cumulative Cumulative

Q15 Frequency Percent Frequency Percent Completely agree 4 66.67 4 66.67 1 16.67 5 83.33 Mostly agree Completely disagree 1 16.67 6 100.00 Chi-Square Test for Equal Proportions fffffffffffffffffffff 3.0000 Chi-Square DF 2 0.2231 Pr ≻ ChiSq WARNING: The table cells have expected counts less than 5. Chi-Square may not be a valid test. Sample Size = 6 Cumulative Cumulative Q16 Frequency Percent Frequency Percent 4 66.67 Mostly agree 4 66.67 Mostly disagree 5 83.33 1 16.67 Completely disagree 100.00 1 16.67 6 Chi-Square Test for Equal Proportions fffffffffffffffffffffff Chi-Square 3.0000 DF 2 Pr > ChiSq 0.2231 WARNING: The table cells have expected counts less than 5. Chi-Square may not be a valid test. Sample Size = 6Cumulative Cumulative Q17 Frequency Percent Frequency Percent Completely agree 16.67 16.67 1 1 Mostly agree 5 83.33 6 100.00 Chi-Square Test for Equal Proportions ffffffffffffffffffffff Chi-Square 2.6667 DF 1 Pr > ChiSq 0.1025 WARNING: The table cells have expected counts less than 5. Chi-Square may not be a valid test. Sample Size = 6Cumulative Cumulative Q18 Frequency Percent Frequency Percent 16.67 16.67 Mostly agree 1 1 33.33 50.00 Undecided 3 2 Completely disagree 50.00 100.00 3 6 Chi-Square Test for Equal Proportions ffffffffffffffffffffff Chi-Square 1.0000 DF 2 Pr > ChiSq 0.6065 WARNING: The table cells have expected counts less than 5. Chi-Square may not be a valid test. Sample Size = 6Cumulative Cumulative Frequency Percent 019 Frequency Percent

Mastly asses	1	16 67	1	16 67				
Mostly agree	1	10.0/	1	10.07				
Mostly disagnee	2	55.55	5	100.00				
Hostiy disagree	C	50.00	0	100.00				
	Chi-Squar	e Test						
	for Equal Pr	roportions						
	fffffffffff	ffffffff						
	Chi-Square	1.0000						
	DF	2						
	Pr ≻ ChiSq	0.6065						
WARNING: The table cells have expected counts less								
tł	nan 5. Chi-Square	may not b	e a valid test					
	Sample Si	.ze = 6						
	•							
			Cumulative	Cumulative				
Q20	Frequency	Percent	Frequency	Percent				
ffffffffffffffffffffffffffffffffffff	fffffffffffffffff	ffffffffff	ffffffffffffff	ffffffffff				
Mostly agree	3	50.00	3	50.00				
Undecided	2	33.33	5	83.33				
Mostly disagree	1	16.67	6	100.00				
	Chi-Squar	re Test						
	for Equal Pr	roportions						
	fffffffffff	ffffffff						
	Chi-Square	1.0000						
	DF	2						
	Pr ≻ ChiSq	0.6065						
WARNING: Th	ne table cells ha	ve expected	d counts less					
th	nan 5. Chi-Square	e may not b	e a valid test	•				
	Sample Si	ze = 6						

Annexure M: Descriptive statistics: Frequency tables for staff questionnaire

			Cumulative	Cumulative
Q1 F	requency	Percent	Frequency	Percent
	- <u>111111111111</u>	ללללללללללללללללללללללללללי כמ כ	11111111111111111111111111111111111111	2 02
Completely agree	1	5.05	3	9.03
Mostly agree	3	9,09	6	18,18
Undecided	11	33.33	17	51.52
Mostly disagree	12	36.36	29	87.88
Completely disagree	4	12.12	33	100.00
	Chi-Squ	are Test		
	for Equal	Proportions		
	DF	5 20.0304		
	Pr > ChiSc	1 0.0009		
	Sample	Size = 33		
			Cumulative	Cumulative
Q2 F	requency	Percent	Frequency	Percent
	•+++++++++++++++++		*****	****
Mostly agree	5	15.15	כ דר	15.15
	5	15 15	27	96 97
Mostly disagree	1	3.03	33	100.00
	_			
	Chi-Squ	uare Test		
	for Equal	Proportions		
	fffffffff	ffffffffff		
	Chi-Square	e 31.8485		
	DF Dr \ Chica	3 2 2 0001		
	Sample	5i70 - 33		
	Sumpre	5120 - 55		
			Cumulative	Cumulative
Q3 F	requency	Percent	Frequency	Percent
<i>ffffffffffffffffffffffffffffffff</i>	fffffffffff	ffffffffffffff	fffffffffffffff	ffffffffff
0	1	3.03	1	3.03
Completely agree	2	6.06	3	9.09
Mostly agree	6 10	18.18	9 19	27.27
Mostly disagree	13	39.39	32	96.97
Completely disagree	1	3.03	33	100.00
	Chi-Squ	are Test		
	for Equal	Proportions		
	fffffffff	<i>fffffffffff</i>		
	Cn1-Square	23.5455		
	Dr Dr \ Chisc	1 0 0003		
	Sample	Size = 33		
			Cumulative	Cumulative
Q4 F	requency	Percent	Frequency	Percent
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	•++++++++++++++++++++++++++++++++++++++		***********	
Completely agree	1	5.05	1	2.05
Mostly agree	5	15.15	9	27.27
Undecided	10	30.30	19	57.58
Mostly disagree	14	42.42	33	100.00
	Chi-Squ	are Test		
	for Equal	Proportions		
	DF	۲/۰۲۵۲۵ - ۲		
	Pr > ChiSe	4 0.0018		
	Sample	Size = 33		
		_	Cumulative	Cumulative
Q5 F	requency	Percent	Frequency	Percent
tttttttttttttttttttfffff	·;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	12 12	***********	12 12
Mostly agree	4	12.12	4 10	12.12 57 58
hostry usice	10	-J.+J	19	57.50

Undecided Mostly disagree	8 6	24.24 18.18	27 33	81.82 100.00
	Chi-Squa for Equal F fffffffffff Chi-Square DF Pr > ChiSq Sample S	re Test Proportions ####################################		
Q6 F1 ffffffffffffffffffffffff	requency ffffffffffff	Percent fffffffffff	Cumulative Frequency fffffffffffffff	Cumulative Percent fffffffffff
Completely agree	5	15.15	5	15.15
Undecided	4	12.12	30	90.91
Mostly disagree	3	9.09	33	100.00
	Chi-Squa for Equal F ffffffffff Chi-Square DF	are Test Proportions Sfffffffff 26.5152 3		
	Pr > ChiSq Sample S	<.0001 Size = 33		
			Cumulative	Cumulative
Q7 Fi ++++++++++++++++++++++++++++++++++++	requency	Percent fffffffffff	Frequency	Percent
0	1	3.03	1	3.03
Completely agree	2	6.06	3	9.09
Mostly agree Undecided	14 11	42.42	17	51.52 84 85
Mostly disagree	4	12.12	32	96.97
Completely disagree	1	3.03	33	100.00
	Chi-Squa for Equal F ffffffffff Chi-Square DF Pr > ChiSq Sample S	are Test Proportions 5fffffffff 28.6364 5 <.0001 Size = 33		
			Cumulative	Cumulative
Q8 Fi ffffffffffffffffffffffffffff	requency ffffffffffff 1	Percent fffffffffff 3 03	Frequency fffffffffffff 1	Percent ffffffffff 3 03
Completely agree	2	6.06	3	9.09
Mostly agree	6	18.18	9	27.27
Undecided Mostly disagree	15	45.45	24	/2./3
Completely disagree	1	3.03	33	100.00
	Chi-Squa for Equal F	are Test Proportions		
	ffffffffff Chi-Square DF	<i>ffffffffff</i> 27.1818 5		
	Pr > ChiSq Sample S	<.0001 Size = 33		
			Cumulative	Cumulative
U9 ۲۹ - U9	requency fffffffffff	Percent ffffffffff	Frequency fffffffffffffff	Percent
Completely agree	12	36.36	12	36.36
Mostly agree	13	39.39	25	75.76
unaecided Mostly disagree	5 2	15.15	30 32	90.91 96 97
Completely disagree	1	3.03	33	100.00
		_		
	Chi-Squa	re Test		
	fffffffff	ffffffffff		
	Chi-Square	18.9697		
	DF	4		
	Sample S	0.0008 Size = 33		

			Cumulative	Cumulative
Q10 F	requency	Percent	Frequency	Percent
Completely agree	נדרדדדדדדדדדדדדדדדדדדדדדדדדדדדדדדדדדד 1	3 03	<i>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</i>	ترترترترتر د ۵ د
Mostly agree	9	27.27	10	30.30
Undecided	14	42.42	24	72.73
Mostly disagree	9	27.27	33	100.00
	for Equal I	are lest		
	ffffffffff	ffffffffff		
	Chi-Square	10.5152		
	DF	3		
	Pr > ChiSq	0.0147		
	Sampie	512e = 55		
		-	Cumulative	Cumulative
Q11 F	requency	Percent ////////////////////////////////////	Frequency	Percent
Completely agree	14	42.42	. 14	42.42
Mostly agree	16	48.48	30	90.91
Undecided	1	3.03	31	93.94
Mostly disagree	2	6.06	33	100.00
	Chi-Sau	ang Tast		
	for Equal I	Proportions		
	fffffffff	ffffffffff		
	Chi-Square	22.3939		
	DF Dr \ Chisa	3		
	Sample S	Size = 33		
			Cumulative	Cumulative
Q12 F	requency	Percent	Frequency	Percent
Completely agree	12 12	36 36	17777777777777777777777777777777777777	36 36
Mostly agree	20	60.61	32	96.97
Undecided	1	3.03	33	100.00
	Chi Cau			
	for Equal 1	Proportions		
	ffffffffff	ffffffffff		
	Chi-Square	16.5455		
	DF	2		
	Pr > Chisq Sample 9	0.0003		
	Sumpre .	5120 - 55		
			Cumulative	Cumulative
Q13 F	requency	Percent	Frequency	Percent
Completely agree	14	42.42		42.42
Mostly agree	17	51.52	31	93.94
Undecided	1	3.03	32	96.97
Mostly disagree	1	3.03	33	100.00
	Chi-Sau	are Test		
	for Equal I	Proportions		
	fffffffff	ffffffffff		
	Chi-Square	26.0303		
	DF Pr > ChiSa	د ۵۹۹۱ ۲		
	Sample S	Size = 33		
01 <i>1</i> F	nequency	Pencont	Cumulative	Cumulative
£4111111111111111111111111111111111111	i equeilcy fffffffffffff	ffffffffffff	fffffffffffffffffffffff	ffffffffffff
Completely agree	17	51.52	17	51.52
Mostly agree	9	27.27	26	78.79
Undecided	5	15.15	31	93.94
mostly alsagree	2 Chi-Sau	b.06 are Test	33	100.00
	for Equal I	Proportions		
	fffffffff	fffffffffff		
	Chi-Square	15.3636		
	DF Dn x Chica	3		
	Sample S	Size = 33		

		- ·	Cumulative	Cumulative
Q15 F	requency	Percent	Frequency	Percent
	,1111111111111111111111111111111111111	tttttttttt	<i>1111111111111111111111111111111111111</i>	2 02
Completely agree	1	3.03	2	5.05
Mostly agree	20	60.61	22	66.67
Undecided	3	9.09	25	75.76
Mostly disagree	3	9.09	28	84.85
Completely disagree	5	15.15	33	100.00
	Chi-Squar	e Test		
	for Equal Pr	roportions		
	DF	47.9091		
	Pr > ChiSa	<.0001		
	Sample Si	ze = 33		
	•			
			Cumulative	Cumulative
Q16 F	requency	Percent	Frequency	Percent
ffffffffffffffffffffffff	fffffffffffff	ffffffffff	fffffffffffff	ffffffffffff
0	1	3.03	1	3.03
Completely agree	1	3.03	2	6.06
Mostly agree	14	42.42	10	48.48
Mostly disagree	0	10.10	22	78 79
Completely disagree	7	21 21	20	100 00
compretery draughee	,	21.21	55	100.00
	Chi-Squar	e Test		
	for Equal Pr	oportions		
	fffffffffff	ffffffffff		
	Chi-Square	21.3636		
	DF	5		
	Pr > ChiSq	0.0007		
	Sample Si	.ze = 33		
			Cumulativo	Cumulativo
017 F	requency	Percent	Frequency	Percent
fffffffffffffffffffffff	fffffffffffff	ffffffffff	ffffffffffffff	ffffffffffff
0	1	3 03		2 02
-	±	5.05	1	3.03
Completely agree	1	3.03	1 2	6.06
Completely agree Mostly agree	1 1	3.03	1 2 3	3.03 6.06 9.09
Completely agree Mostly agree Undecided	1 1 17	3.03 3.03 51.52	1 2 3 20	6.06 9.09 60.61
Completely agree Mostly agree Undecided Mostly disagree	1 1 17 6	3.03 3.03 51.52 18.18	1 2 3 20 26	6.06 9.09 60.61 78.79
Completely agree Mostly agree Undecided Mostly disagree Completely disagree	1 1 17 6 7	3.03 3.03 51.52 18.18 21.21	1 2 3 20 26 33	6.06 9.09 60.61 78.79 100.00
Completely agree Mostly agree Undecided Mostly disagree Completely disagree	1 1 17 6 7	3.03 3.03 51.52 18.18 21.21	1 2 3 20 26 33	6.06 9.09 60.61 78.79 100.00
Completely agree Mostly agree Undecided Mostly disagree Completely disagree	1 1 17 6 7 Chi-Squar	3.03 3.03 51.52 18.18 21.21	1 2 3 20 26 33	5.03 6.06 9.09 60.61 78.79 100.00
Completely agree Mostly agree Undecided Mostly disagree Completely disagree	1 1 17 6 7 Chi-Squar for Equal Pr	3.03 3.03 51.52 18.18 21.21 Ye Test roportions	1 2 3 20 26 33	3.03 6.06 9.09 60.61 78.79 100.00
Completely agree Mostly agree Undecided Mostly disagree Completely disagree	1 1 17 6 7 Chi-Squar for Equal Pr ffffffffffffffffffffffffffffffffffff	3.03 3.03 51.52 18.18 21.21 Te Test coportions fffffffff 35.5455	1 2 3 20 26 33	3.03 6.06 9.09 60.61 78.79 100.00
Completely agree Mostly agree Undecided Mostly disagree Completely disagree	1 1 17 6 7 Chi-Squar for Equal Pr ffffffffffff Chi-Square DF	3.03 3.03 51.52 18.18 21.21 re Test roportions ffffffffff 35.5455 5	1 2 3 20 26 33	6.06 9.09 60.61 78.79 100.00
Completely agree Mostly agree Undecided Mostly disagree Completely disagree	1 1 17 6 7 Chi-Squar for Equal Pr fffffffffff Chi-Square DF Pr > ChiSq	3.03 3.03 51.52 18.18 21.21 re Test roportions fffffffff 35.5455 5 <.0001	1 2 3 20 26 33	3.03 6.06 9.09 60.61 78.79 100.00
Completely agree Mostly agree Undecided Mostly disagree Completely disagree	1 1 17 6 7 Chi-Squar for Equal Pr <i>ffffffffffff</i> Chi-Square DF Pr > ChiSq Sample Si	3.03 3.03 51.52 18.18 21.21 re Test roportions fffffffff 35.5455 5 <.0001 .ze = 33	1 2 3 20 26 33	3.03 6.06 9.09 60.61 78.79 100.00
Completely agree Mostly agree Undecided Mostly disagree Completely disagree	1 1 17 6 7 Chi-Squar for Equal Pr <i>fffffffffffff</i> Chi-Square DF Pr > ChiSq Sample Si	3.03 3.03 51.52 18.18 21.21 re Test roportions fffffffff 35.5455 5.0001 .ze = 33	1 2 3 20 26 33	3.03 6.06 9.09 60.61 78.79 100.00
Completely agree Mostly agree Undecided Mostly disagree Completely disagree	1 1 17 6 7 Chi-Squar for Equal Pr <i>fffffffffffff</i> Chi-Square DF Pr > ChiSq Sample Si	3.03 3.03 51.52 18.18 21.21 re Test roportions fffffffff 35.5455 5 <.0001 .ze = 33	1 2 3 20 26 33	3.03 6.06 9.09 60.61 78.79 100.00
Completely agree Mostly agree Undecided Mostly disagree Completely disagree	1 1 17 6 7 Chi-Squar for Equal Pr ffffffffffff Chi-Square DF Pr > ChiSq Sample Si	3.03 3.03 3.03 51.52 18.18 21.21 re Test roportions fffffffff 35.5455 5 <.0001 .ze = 33	1 2 3 20 26 33 33	6.06 9.09 60.61 78.79 100.00 Cumulative Percent
Completely agree Mostly agree Undecided Mostly disagree Completely disagree Q18 F ffffffffffffffffffffffffffffffffffff	1 1 17 6 7 Chi-Squar for Equal Pr ffffffffffffff Chi-Square DF Pr > ChiSq Sample Si Frequency	3.03 3.03 3.03 51.52 18.18 21.21 re Test roportions fffffffff 35.5455 5 <.0001 .ze = 33 Percent ffffffffffffffffffffffffffffffffffff	1 2 3 20 26 33 33 Cumulative Frequency	3.03 6.06 9.09 60.61 78.79 100.00 100.00 Cumulative Percent ffffffffffff
Completely agree Mostly agree Undecided Mostly disagree Completely disagree Q18 F ffffffffffffffffffffffffffffffffffff	1 1 17 6 7 Chi-Squar for Equal Pr fffffffffffff Chi-Square DF Pr > ChiSq Sample Si frequency fffffffffffffff 1 4	3.03 3.03 3.03 51.52 18.18 21.21 re Test reportions ffffffffff 35.5455 5 <.0001 .ze = 33 Percent ffffffffffff 3.03 12.12	1 2 3 20 26 33 33 Cumulative Frequency ffffffffffff 5	Cumulative Percent 5.03 5.15
Completely agree Mostly agree Undecided Mostly disagree Completely disagree Q18 F ffffffffffffffffffffffffffffffffffff	1 1 17 6 7 Chi-Squar Pr ffffffffffff Chi-Square DF Pr > ChiSq Sample Si frequency ffffffffffffff 1 4	3.03 3.03 51.52 18.18 21.21 The Test coportions ffffffffff 35.5455 5 <.0001 ze = 33 Percent fffffffffff 3.03 12.12 51.52	1 2 3 20 26 33 33 Cumulative Frequency fffffffffff 1 5 22	6.06 9.09 60.61 78.79 100.00 Cumulative Percent ffffffffff 3.03 15.15 66.67
Completely agree Mostly agree Undecided Mostly disagree Completely disagree Q18 F ffffffffffffffffffffffffffffffffffff	1 1 17 6 7 Chi-Squar for Equal Pr fffffffffffff Chi-Square DF Pr > ChiSq Sample Si frequency ffffffffffffff 1 4 17 7	3.03 3.03 3.03 51.52 18.18 21.21 The Test coportions ffffffffff 3.5.5455 5 <.0001 .ze = 33 Percent ffffffffff 3.03 12.12 51.52 21.21	1 2 3 20 26 33 33 Cumulative Frequency fffffffffff 1 5 22 29	Cumulative Percent ffffffffff 3.03 15.15 66.67 87.88
Completely agree Mostly agree Undecided Mostly disagree Completely disagree Q18 F ffffffffffffffffffffffffffffffffffff	1 1 17 6 7 Chi-Squar for Equal Pr ffffffffffff Chi-Square DF Pr > ChiSq Sample Si Frequency ffffffffffffff 1 4 7 4	3.03 3.03 3.03 51.52 18.18 21.21 The Test coportions fffffffff 3.55455 5 <.0001 .ze = 33 Percent ffffffffff 3.03 12.12 51.52 21.21 12.12	1 2 3 20 26 33 33 Cumulative Frequency ffffffffffffffffffffffffffffffffffff	Cumulative Percent ffffffffff 3.03 15.15 66.67 87.88 100.00
Completely agree Mostly agree Undecided Mostly disagree Completely disagree Q18 F ffffffffffffffffffffffffffffffffffff	1 1 17 6 7 Chi-Squar for Equal Pr ffffffffffff Chi-Square DF Pr > ChiSq Sample Si Sample Si ffffffffffffff 1 4 17 7 4	3.03 3.03 3.03 51.52 18.18 21.21 The Test roportions ifffffffff 35.5455 <.0001 .ze = 33 Percent iffffffffff 3.03 12.12 51.52 21.21 12.12	1 2 3 20 26 33 33 Frequency ffffffffffffffffffffffffffffffffffff	Cumulative Percent ffffffffff 3.03 15.15 66.67 87.88 100.00
Completely agree Mostly agree Undecided Mostly disagree Completely disagree 018 F ffffffffffffffffffffffffffffffffffff	1 1 1 1 7 Chi-Squar for Equal Pr ffffffffffff Chi-Square DF Pr > ChiSq Sample Si Frequency fffffffffffffff 1 4 17 7 4 Chi-Squar	3.03 3.03 3.03 51.52 18.18 21.21 re Test roportions fffffffff 35.5455 <.0001 .ze = 33 Percent fffffffffff 3.03 12.12 51.52 21.21 12.12 re Test	1 2 3 20 26 33 33 5 5 22 29 33	Cumulative Percent ffffffffff 3.03 15.15 66.67 87.88 100.00
Completely agree Mostly agree Undecided Mostly disagree Completely disagree ffffffffffffffffffffffffffffffffff	1 1 1 1 1 7 Chi-Squar for Equal Pr ffffffffffff Chi-Square DF Pr > ChiSq Sample Si ffffffffffffff 1 4 17 7 4 Chi-Squar for Equal Pr	3.03 3.03 3.03 51.52 18.18 21.21 re Test roportions ffffffffff 35.5455 c.0001 .ze = 33 Percent ffffffffffff 3.03 12.12 51.52 21.21 12.12 re Test roportions	1 2 3 20 26 33 33 5 5 22 29 33	Cumulative Percent ffffffffff 3.03 15.15 66.67 87.88 100.00
Completely agree Mostly agree Undecided Mostly disagree Completely disagree Q18 F ffffffffffffffffffffffffffffffffffff	1 1 1 1 7 Chi-Squar for Equal Pr fffffffffffff Chi-Square DF Pr > ChiSq Sample Si requency ffffffffffffff 4 17 7 4 Chi-Squar for Equal Pr ffffffffffffffffffffffffffffffffffff	3.03 3.03 3.03 51.52 18.18 21.21 re Test roportions ffffffffff 35.5455 5 <.0001 .ze = 33 Percent fffffffffff 3.03 12.12 51.52 21.21 12.12 re Test roportions iffffffffffffffffffffffffffffffffffff	1 2 3 20 26 33 33 5 5 5 22 29 33	Cumulative Percent fffffffffff 3.03 15.15 66.67 87.88 100.00
Completely agree Mostly agree Undecided Mostly disagree Completely disagree <i>Q18 F</i> <i>ffffffffffffffffffffffffffffffffffff</i>	1 1 1 1 7 Chi-Squar for Equal Pr ffffffffffff Chi-Square DF Pr > ChiSq Sample Si requency ffffffffffffff 4 17 7 4 Chi-Squar for Equal Pr fffffffffffff Chi-Squar DF	3.03 3.03 3.03 51.52 18.18 21.21 The Test coportions fffffffffff 3.5455 5 <.0001 12.22 = 33 Percent ffffffffffff 3.03 12.12 51.52 21.21 12.12 te Test coportions fffffffffff 23.2121	1 2 3 20 26 33 33 5 5 22 29 33	Cumulative Percent ffffffffff 3.03 15.15 66.67 87.88 100.00
Completely agree Mostly agree Undecided Mostly disagree Completely disagree ffffffffffffffffffffffffffffffffff	1 1 1 1 7 Chi-Squar for Equal Pr ffffffffffff Chi-Square DF Pr > ChiSq Sample Si Frequency ffffffffffffff 4 17 7 4 Chi-Square DF Chi-Square DF Pr > ChiSq Pr > ChiSq Pr > ChiSquare DF Pr > ChiSquare DF Pr > ChiSquare DF	3.03 3.03 3.03 51.52 18.18 21.21 The Test coportions ffffffffff 3.5455 5 <.0001 12.22 = 33 Percent fffffffffff 3.03 12.12 51.52 21.21 12.12 The Test coportions ffffffffff 23.2121 4 0.0001	1 2 3 20 26 33 33 5 5 5 22 29 33	Cumulative Percent ffffffffff 3.03 15.15 66.67 87.88 100.00
Completely agree Mostly agree Undecided Mostly disagree Completely disagree Q18 F ffffffffffffffffffffffffffffffffffff	1 1 1 1 7 Chi-Squar for Equal Pr ffffffffffff Chi-Square DF Pr > ChiSq Sample Si frequency ffffffffffffff 4 17 7 4 Chi-Square DF Pr > ChiSquare DF Pr > ChiSquare DF Pr > ChiSquare DF	3.03 3.03 3.03 51.52 18.18 21.21 The Test re Test re Test 55.5455 5 <.0001 12.22 3.03 12.12 51.52 21.21 12.12 Te Test reoportions 51.52 21.21 12.12 Te Test reoportions 51.52 21.21 21.22 21.21 21.22 21.21 21.22 21.21 21.22 21.21 21.22 21.21 21.22 21.21 21.22 21.21 21.22 21.21 21.22 21.21 21.22 21.21 21.22 21.21 21.22 21.22 21.21 21.22	1 2 3 20 26 33 33 Frequency fffffffffff 1 5 22 29 33	Cumulative Percent ffffffffff 3.03 15.15 66.67 87.88 100.00
Completely agree Mostly agree Undecided Mostly disagree Completely disagree Q18 F ffffffffffffffffffffffffffffffffffff	1 1 1 1 7 Chi-Squar for Equal Pr fffffffffffff Chi-Square DF Pr > ChiSq Sample Si frequency ffffffffffffff 1 4 17 7 4 Chi-Square DF Chi-Square DF Pr > ChiSq Sample Si Sample Si	3.03 3.03 3.03 51.52 18.18 21.21 The Test coportions ffffffffff 3.03 12.12 51.52 21.21 12.12 The Test coportions ffffffffff 3.03 12.12 51.52 21.21 12.12 The Test coportions fffffffffff 23.2121 4 0.0001 .ze = 33	1 2 3 20 26 33 33 Frequency fffffffffffff 1 5 22 29 33	3.03 6.06 9.09 60.61 78.79 100.00 Uno.00 Evercent ffffffffffff 3.03 15.15 66.67 87.88 100.00
Completely agree Mostly agree Undecided Mostly disagree Completely disagree Q18 F ffffffffffffffffffffffffffffffffffff	1 1 1 1 7 Chi-Squar for Equal Pr ffffffffffff Chi-Square DF Pr > ChiSq Sample Si Frequency fffffffffffff 1 4 17 7 4 Chi-Square DF Chi-Square DF Pr > ChiSq Sample Si Chi-Square DF	3.03 3.03 3.03 51.52 18.18 21.21 The Test roportions 55.5455 <.0001 .ze = 33 Percent 55.52 21.21 12.12 The Test roportions 55.52 21.21 12.12 The Test 75.52 21.21 12.12 The Test 75.52 21.21 21.22 21.21 21.21 23.2121 23.2121 24.21 25.222 21.21 23.2121 24.21 25.2222 25.2221 25.2221 25.2222 25.2221 25.2	1 2 3 20 26 33 33 Frequency ffffffffffffffffffffffffffffffffffff	3.03 6.06 9.09 60.61 78.79 100.00 Cumulative Percent fffffffffff 3.03 15.15 66.67 87.88 100.00
Completely agree Mostly agree Undecided Mostly disagree Completely disagree Q18 F ffffffffffffffffffffffffffffffffffff	1 1 1 1 7 Chi-Squar for Equal Pr ffffffffffff Chi-Square DF Pr > ChiSq Sample Si Frequency fffffffffffffff Chi-Square DF Chi-Square DF Pr > ChiSq Sample Si Chi-Square DF Pr > ChiSq Sample Si Chi-Square DF	3.03 3.03 3.03 51.52 18.18 21.21 The Test roportions fffffffff 35.5455 <.0001 .ze = 33 Percent fffffffffff 3.03 12.12 21.21 12.12 rest roportions fffffffffff 23.2121 4 0.0001 .ze = 33 Percent	1 2 3 20 26 33 33 Frequency ffffffffffffffffffffffffffffffffffff	6.06 9.09 60.61 78.79 100.00 Cumulative Percent ffffffffff 3.03 15.15 66.67 87.88 100.00 Cumulative Percent
Completely agree Mostly agree Undecided Mostly disagree Completely disagree Mostly agree Undecided Mostly disagree Completely disagree Completely disagree Completely disagree	1 1 1 1 1 1 1 1 7 6 7 7 4 Chi-Square DF Pr > ChiSq Sample Si Frequency fffffffffffffffff Chi-Square DF Pr > ChiSq 3 Chi-Square DF Pr > ChiSq 3 7 4 Chi-Square DF Pr > ChiSq Sample Si 5 5 5 5 5 5 5 5 5 5 5 5 5	3.03 3.03 3.03 51.52 18.18 21.21 The Test roportions ffffffffff 35.5455 <.0001 .ze = 33 Percent fffffffffff 3.03 12.12 51.52 21.21 12.12 The Test roportions fffffffffff 23.2121 4 0.0001 .ze = 33 Percent ffffffffffffffffffffffffffffffffffff	1 2 3 20 26 33 33 Frequency ffffffffffffffffffffffffffffffffffff	Cumulative Percent ffffffffff 3.03 15.15 66.67 87.88 100.00 Cumulative Percent
Completely agree Mostly agree Undecided Mostly disagree Completely disagree Completely agree Undecided Mostly disagree Completely disagree Completely disagree Q19 F ffffffffffffffffffffffffffffffffffff	1 1 1 1 7 Chi-Squar for Equal Pr fffffffffffff Chi-Square DF Pr > ChiSq Sample Si requency ffffffffffffff A 17 7 4 Chi-Square DF Pr > ChiSquare DF Pr > ChiSquare DF	3.03 3.03 3.03 51.52 18.18 21.21 The Test reoportions ffffffffff 35.5455 5 <.0001 .ze = 33 Percent fffffffffff 3.03 12.12 51.52 21.21 12.12 reoportions fffffffffff 23.2121 4 0.0001 .ze = 33 Percent fffffffffff 3.03 21.21 21.	1 2 3 20 26 33 33 Frequency ffffffffffffffffffffffffffffffffffff	Cumulative Percent fffffffffff 3.03 15.15 66.67 87.88 100.00 Cumulative Percent fffffffffff 3.03
Completely agree Mostly agree Undecided Mostly disagree Completely disagree Completely disagree Mostly agree Undecided Mostly disagree Completely disagree Completely disagree Completely disagree Mostly disagree Completely agree Mostly agree Mostly agree Mostly agree	1 1 1 1 1 7 Chi-Squar for Equal Pr ffffffffffff Chi-Square DF Pr > ChiSq Sample Si requency fffffffffffffff Chi-Square DF Pr > ChiSquare DF Pr > ChiSquare Sample Si Sample Si requency ffffffffffffffffffffffffffffffffffff	3.03 3.03 3.03 3.03 51.52 18.18 21.21 The Test re Test 55.5455 5 <.0001 12.12 51.52 21.21 12.12 Te Test re Test	1 2 3 20 26 33 33 ffffffffffffffffffffffffffffff	Cumulative Percent ffffffffff 3.03 100.00 Cumulative Percent fffffffffff 3.03 24.24
Completely agree Mostly agree Undecided Mostly disagree Completely disagree Mostly agree Undecided Mostly disagree Completely agree Completely disagree Completely disagree Completely disagree Mostly disagree Mostly agree Mostly agree Mostly agree Mostly agree Mostly agree Mostly agree Mostly agree Mostly disagree	1 1 1 1 1 1 1 1 7 Chi-Squar DF Pr > ChiSq Sample Si Frequency ffffffffffffff Chi-Square DF Pr > ChiSq Chi-Square Sample Si Frequency ffffffffffffffff Chi-Square DF Pr > ChiSq Sample Si Sample Si Frequency Sample Si Frequency Fffffffffffffffffffffffffffffffffffff	3.03 3.03 3.03 3.03 51.52 18.18 21.21 The Test reoportions 5ffffffffff 3.03 12.12 51.52 21.21 12.12 The Test reoportions 5ffffffffff 23.2121 4 0.0001 .ze = 33 Percent 5ffffffffff 3.03 21.21 23.2121 4 0.0001 .ze = 33 Percent 5fffffffffff 3.03 21.21 51.52 52.2121 51.52 52.2121 51.52 52.2121 51.52 52.2121 51.52 52.2121 51.52 52.2121 51.52 52.2121 51.52 52.2121 51.52 52.2121 51.52 52.2121 51.52 52.2121 51.52 52.2121 51.52 52.2121 51.52 52.2121 51.52 52.2121 51.52 52.2121 51.52 52.2121 51.52 52.2121 51.52 52.2121 52.2121 52.2121 52.2121 52.2121 53.52 53.6455 52.2121 53.52 53.6455 52.2121 53.52 53.5455 52.2121 53.52 53.2121 53.52 53.5455 53.5455 52.2121 53.52 53.2121 53.52 53.2121 53.52 53.2121 53.52 53.2121 53.52 53.2121 53.52 53.2121 53.52 53.2121 53.52 53.2121 53.52 53.52 55.55 55	1 2 3 20 26 33 3 ffffffffffffffffffffffffffffff	6.06 9.09 60.61 78.79 100.00 Cumulative Percent fffffffffff 3.03 15.15 66.67 87.88 100.00 Cumulative Percent ffffffffffff 3.03 24.24 45.45 96 97

Completely	disagree	1	3.03	33	100.00
	•				

Chi-Square Test for Equal Proportions fffffffffffffffffffffff Chi-Square 25.9394 DF 4 Pr > ChiSq <.0001 Sample Size = 33

			Cumulative	Cumulative
Q20	Frequency	Percent	Frequency	Percent
ffffffffffffffffffffffffffffffffffff	fffffffffffff	fffffffffff	, ffffffffffffffff	fffffffffff
Completely agree	6	18.18	6	18.18
Mostly agree	24	72.73	30	90.91
Undecided	1	3.03	31	93.94
Mostly disagree	1	3.03	32	96.97
Completely disagree	1	3.03	33	100.00

Annexure N: Descriptive statistics for staff questionnaire: Uni-variate with means & standard deviations where appropriate

	Variable:	01 (01)	
Ν	6	Sum Weights	6
Mean	2.5	Sum Observations	15
Std Deviation	1.22474487	Variance	1.5
Skewness	0.48989795	Kurtosis	-1.4666667
Uncorrected SS	45	Corrected SS	7.5
Coeff Variation	48.9897949	Std Error Mean	0.5
	Basic Statis	tical Measures	
Location		Variability	
Mean 2.50	0000 Std I	Deviation	1.22474
Median 2.00	0000 Varia	ance	1.50000
Mode 2.00	0000 Range	9	3.00000
	Inter	rquartile Range	2.00000
	Quantilas (Definition E)	
	Quantiles (1	Ectimate	
	100% Max		
	100% Max	4	
	95%	4	
	90%	4	
	75% 03	4	
	50% Median	2	
	25% 01	2	
	10%	1	
	5%	1	
	1%	1	
	0% Min	1	
	Variable:	Q2 (Q2)	
N	6	Sum Weights	6
Mean	1.83333333	Sum Observations	11
Std Deviation	1.16904519	Variance	1.36666667
Skewness	1.58561/52	Kurtosis	2.55205235
Uncorrected SS	2/	Corrected SS	6.83333333
Coeff Variation	63./661015	Sta Error Mean	0.4//260/
	Basic Statist	tical Measures	
Location	busic statis	Variability	
Mean 1.83	3333 Std I	Deviation	1.16905
Median 1.50	0000 Varia	ance	1.36667
Mode 1.00	0000 Range	2	3.00000
	Inter	rquartile Range	1.00000
	Quantiles (I	Definition 5)	
	Quantile	Estimate	
	100% Max	4.0	
	99%	4.0	
	95%	4.0	
	90%	4.0	
	75% Q3	2.0	
	50% Median	1.5	
	25% Q1	1.0	
	10%	1.0	
	5%	1.0	
	1%	1.0	
	0% Min	T.0	
N	variabie:	US (US) Sum Woights	~
Moon	0	Sum Obcomunitions	6
Std Deviation	D T	Vaniance	6
Sta Deviation	U	Kurtosis	0
Uncorrected SS	•	Corrected SS	•
Coeff Variation	0 Q	Std Error Mean	0 A
	0		0

			Basic	Statist	ıcal №	leasures	
	Loca	tion			V	′ariability	
l	Mean	1.000	9000	Std D	eviati	.on	0
l	Median	1.000	9000	Varia	nce		0
l	Mode	1.000	9000	Range			0
				Inter	quarti	le Range	0
			<u> </u>	• • • • •	<i></i>	• - •	
			Quant	iles (D	etinit	:10n 5)	
			Quan	tile	EST	imate	
			100%	Max		1	
			99%			1	
			95%			1	
			75%	03		1	
			50%	yy Median		1	
			25%	01		1	
			10%	~ -		1	
			5%			1	
			1%			1	
			0% M	in		1	
			Var	iable:	Q4 (Q4)	
Ν				6	Sum W	leights	6
Mean			2.3333	3333	Sum C	bservations	14
Std D	eviation		1.0327	9556	Varia	ince	1.06666667
Skewn	ess		0.6656	6901	Kurto	sis	0.5859375
Uncor	rected S	5		38	Corre	cted SS	5.33333333
Coeff	Variati	on	44.262	6668	Std E	rror Mean	0.42163702
			Basic	Statist	ical M	leasures	
	Loca	tion			V	/ariability	
	Mean	2.33	3333	Std D	eviati	.on	1.03280
	Median	2.00	9000	Varia	nce		1.06667
	Mode	2.00	9000	Range			3 00000
							5.00000
				Inter	quarti	le Range	1.00000
				Inter	quarti	le Range	1.00000
			Quant	Inter iles (D	quarti efinit	le Range	1.00000
			Quant Quan	Inter iles (D tile	quarti efinit Est	le Range ion 5) imate	1.00000
			Quant Quan 100%	Inter iles (D tile Max	quarti efinit Est	le Range tion 5) timate 4	1.00000
			Quant Quan 100% 99%	Inter iles (D tile Max	quarti efinit Est	le Range ion 5) imate 4 4	1.00000
			Quant Quan 100% 99% 95% 90%	Inter iles (D tile Max	quarti efinit Est	le Range tion 5) timate 4 4 4	1.00000
			Quant Quan 100% 99% 95% 90% 75%	Inter iles (D tile Max	quarti efinit Est	le Range tion 5) timate 4 4 4 4 3	1.00000
			Quant Quan 100% 99% 95% 90% 75% 50%	Inter iles (D tile Max Q3 Median	quarti efinit Est	le Range tion 5) timate 4 4 4 4 3 2	1.00000
			Quant Quan 100% 99% 95% 90% 75% 50% 25%	Inter iles (D tile Max Q3 Median 01	quarti efinit Est	le Range tion 5) timate 4 4 4 4 3 2 2	1.00000
			Quant Quan 100% 99% 95% 90% 75% 50% 25% 10%	Inter iles (D tile Max Q3 Median Q1	quarti efinit Est	le Range tion 5) timate 4 4 4 3 2 2 1	1.00000
			Quant Quan 100% 99% 95% 90% 75% 50% 25% 10% 5%	Inter iles (D tile Max Q3 Median Q1	quarti efinit Est	le Range tion 5) timate 4 4 4 3 2 2 1 1	1.00000
			Quant Quan 100% 99% 90% 75% 50% 25% 10% 5% 1%	Inter iles (D tile Max Q3 Median Q1	quarti efinit Est	le Range tion 5) timate 4 4 4 3 2 2 2 1 1 1	1.00000
			Quant Quan 100% 99% 90% 75% 50% 25% 10% 5% 1% 0% M	Inter iles (D tile Max Q3 Median Q1 in	quarti efinit Est	le Range ion 5) imate 4 4 4 3 2 2 1 1 1 1 1	1.00000
			Quant Quan 100% 99% 90% 75% 50% 25% 10% 5% 1% 0% M Var	Inter Inter iles (D tile Max Q3 Median Q1 in iable:	quarti efinit Est Q5 (le Range ion 5) imate 4 4 4 4 2 2 1 1 1 2 2 1 1 2 5 Verter (Second Second S	1.00000
Ν			Quant Quan 100% 99% 90% 75% 50% 25% 10% 5% 1% 0% M Var	Inter Inter Max Q3 Median Q1 in iable: 6	quarti efinit Est Q5 (Sum W	le Range ion 5) imate 4 4 4 3 2 2 1 1 1 1 2 5) leights	1.00000
N Mean			Quant Quan 100% 99% 90% 75% 50% 25% 10% 5% 1% 0% M Var 2.3333	Inter Inter Max Q3 Median Q1 in iable: 6 3333	quarti efinit Est Q5 (Sum W Sum C	le Range ion 5) imate 4 4 4 3 2 2 1 1 1 Q5) Weights Observations	1.00000 6 14
N Mean Std D	eviation		Quant Quan 100% 99% 90% 75% 50% 25% 10% 5% 1% 0% M Var 2.3333 1.366	Inter Inter iles (D tile Max Q3 Median Q1 in iable: 6 3333 2601	quarti efinit Est Q5 (Sum W Sum C Varia	le Range ion 5) imate 4 4 4 3 2 1 1 1 Q5) Weights Observations ince	6 1.86666667
N Mean Std D Skewn	eviation ess		Quant Quan 100% 99% 90% 75% 50% 25% 10% 5% 1% 0% M Var 2.3333 1.366 0.5228	Inter Inter iles (D tile Max Q3 Median Q1 in iable: 6 3333 2601 0361	quarti efinit Est Q5 (Sum W Sum C Varia Kurto	le Range ion 5) imate 4 4 4 3 2 2 1 1 1 (Q5) leights observations ince osis	6 1.00000 14 1.86666667 -1.875
N Mean Std D Skewn Uncor	eviation ess rected S:	5	Quant Quan 100% 99% 90% 75% 50% 25% 10% 5% 10% 5% 10% 5% 2.3333 1.366 0.5228	Inter Inter iles (D tile Max Q3 Median Q1 in iable: 6 3333 2601 0361 42	quarti efinit Est Q5 (Sum k Sum C Varia Kurto Corre	le Range ion 5) imate 4 4 4 3 2 2 1 1 1 2 (Q5) leights observations ince osis ected SS	6 1.00000 1.00000 14 1.86666667 -1.875 9.3333333
N Mean Std D Skewn Uncor Coeff	eviation ess rected S Variatio	5	Quant Quan 100% 99% 90% 75% 50% 25% 10% 5% 1% 0% M Var 2.3333 1.366 0.5228 58.554	Inter Inter iles (D tile Max Q3 Median Q1 in iable: 6 3333 2601 0361 42 0044	quarti efinit Est Q5 (Sum k Sum C Varia Kurto Corre Std E	le Range ion 5) imate 4 4 4 2 2 1 1 1 25) Weights Observations ince osis cted SS incom Mean	6 1.00000 1.00000 14 1.86666667 -1.875 9.3333333 0.55777335
N Mean Std D Skewn Uncor Coeff	eviation ess rected S Variatio	5 50	Quant Quan 100% 99% 90% 75% 50% 25% 10% 5% 1% 0% M Var 2.3333 1.366 0.5228 58.554 Basic	Inter Inter iles (D tile Max Q3 Median Q1 in iable: 6 3333 2601 0361 42 0044 Statist	QJarti efinit Est Q5 (Sum k Sum C Varia Kurto Corre Std E ical M	le Range ion 5) imate 4 4 4 2 2 1 1 1 25) leights bbservations ince sis cted SS irror Mean	6 1.00000 1.00000 14 1.8666667 -1.875 9.3333333 0.55777335
N Mean Std D Skewn Uncor Coeff	eviation ess rected S: Variation	5 on tion	Quant Quan 100% 99% 90% 75% 50% 25% 10% 5% 1% 0% M Var 2.3333 1.366 0.5228 58.554 Basic	Inter Inter iles (D tile Max Q3 Median Q1 in iable: 6 3333 2601 0361 42 0044 Statist	QJarti efinit Est Q5 (Sum k Sum C Varia Kurto Corre Std E ical M	le Range ion 5) imate 4 4 4 2 2 1 1 1 Q5) Weights Observations ince sis coted SS irror Mean Weasures ariability	6 1.00000 1.00000 14 1.8666667 -1.875 9.3333333 0.55777335
N Mean Std D Skewn Uncor Coeff	eviation ess rected S: Variatio Loca Mean	5 on 2.33	Quant Quan 100% 99% 90% 75% 50% 25% 10% 5% 1% 0% M Var 2.3333 1.366 0.5228 58.554 Basic	Inter Inter iles (D tile Max Q3 Median Q1 in iable: 6 3333 2601 0361 42 0044 Statist Std D	Quarti efinit Est Q5 (Sum k Sum C Varia Kurto Corre Std E ical M V veviati	le Range ion 5) imate 4 4 4 2 2 1 1 1 Q5) leights bbservations ince sis cted SS irror Mean leasures /ariability .on	6 1.00000 1.00000 14 1.86666667 -1.875 9.3333333 0.55777335
N Mean Std D Skewn Uncor Coeff	eviation ess rected S: Variatio Loca Mean Median	5 on 2.33 2.000	Quant Quan 100% 99% 90% 75% 50% 25% 10% 5% 1% 0% M Var 2.3333 1.366 0.5228 58.554 Basic	Inter Inter Inter Max Q3 Median Q1 in iable: 6 3333 2601 0361 42 0044 Statist Std D Varia	Quarti efinit Est Q5 (Sum W Sum C Varia Kurto Corre Std E ical M V veviati nce	le Range ion 5) imate 4 4 4 2 2 1 1 1 Q5) Weights Observations ince vsis cted SS irror Mean Measures /ariability .on	6 1.00000 1.00000 14 1.86666667 -1.875 9.3333333 0.55777335 1.36626 1.86667
N Mean Std D Skewn Uncor Coeff	eviation ess rected S: Variatio Loca Mean Median Mode	5 5 5 1 2.33 2.000 1.000	Quant Quan 100% 99% 90% 75% 50% 25% 10% 5% 1% 0% M Var 2.3333 1.366 0.5228 58.554 Basic	Inter Inter Inter Max Q3 Median Q1 in iable: 6 3333 2601 0361 42 0044 Statist Stat D Varia Range	Quarti efinit Est Q5 (Sum W Sum C Varia Kurto Corre Std E ical M V eviati nce	le Range ion 5) imate 4 4 4 2 2 1 1 1 Q5) Weights Observations ince vsis cted SS irror Mean Measures /ariability .on	6 1.00000 1.00000 14 1.86666667 -1.875 9.3333333 0.55777335 1.36626 1.86667 3.00000
N Mean Std D Skewn Uncor Coeff	eviation ess rected St Variatio Loca Mean Median Mode	5 on 2.33 2.000 1.000	Quant Quan 100% 99% 90% 75% 50% 25% 10% 5% 1% 0% M Var 2.3333 1.366 0.5228 58.554 Basic 3333 2000	Inter Inter Inter Max Q3 Median Q1 in iable: 6 3333 2601 0361 42 0044 Statist Stat D Varia Range Inter	Quarti efinit Est Q5 (Sum k Sum C Varia Kurto Corre Std E ical M v eviati nce quarti	le Range ion 5) imate 4 4 4 2 2 1 1 1 25) leights bbservations ince sis cted SS irror Mean leasures /ariability on	6 1.00000 1.00000 14 1.86666667 -1.875 9.3333333 0.55777335 1.36626 1.86667 3.00000 3.00000
N Mean Std D Skewn Uncor Coeff	eviation ess rected S: Variatio Loca Mean Median Mode	5 5 2.33 2.000 1.000	Quant Quan 100% 99% 90% 75% 25% 10% 5% 1% 0% M Var 2.3333 1.366 0.5228 58.554 Basic 3333 2000	Inter Inter Inter Max Q3 Median Q1 in iable: 6 3333 2601 0361 42 0044 Statist Statist Std D Varia Range Inter	quarti efinit Est Q5 (Sum k Sum C Varia Kurto Corre Std E ical M v eviati nce quarti	le Range ion 5) imate 4 4 4 2 2 1 1 1 2 2 1 1 2 2 1 1 2 2 3 2 2 1 1 1 2 2 5 bbservations ince bsis ccted SS crror Mean deasures Variability on le Range	6 1.00000 1.00000 14 1.86666667 -1.875 9.3333333 0.55777335 1.36626 1.86667 3.00000 3.00000
N Mean Std D Skewn Uncor Coeff	eviation ess rected S: Variatio Loca Mean Median Mode	5 5 2.33 2.000 1.000	Quant Quan 100% 99% 90% 75% 25% 10% 5% 1% 0% M Var 2.3333 1.366 0.5228 58.554 Basic 3333 2000 2000 Quant	Inter Inter Inter Max Q3 Median Q1 in iable: 6 3333 2601 42 0044 Statist Std D Varia Range Inter iles (D	quarti efinit Est Q5 (Sum k Sum C Varia Kurto Corre Std E ical M v eviati nce quarti efinit	<pre>le Range ion 5) imate 4 4 4 3 2 1 1 1 Q5) leights observations nce csis ccted SS irror Mean leasures (ariability on le Range ion 5) imate</pre>	6 1.00000 1.00000 14 1.86666667 -1.875 9.3333333 0.55777335 1.36626 1.86667 3.00000 3.00000
N Mean Std D Skewn Uncor Coeff	eviation ess rected S: Variatio Loca Mean Median Mode	5 5 2.33 2.000 1.000	Quant Quan 100% 99% 90% 75% 25% 10% 5% 1% 0% M Var 2.3333 1.366 0.5228 58.554 Basic 3333 2000 2000 Quant Quant Quan	Inter Inter Inter Max Q3 Median Q1 in iable: 6 3333 2601 42 0044 Statist Std D Varia Range Inter iles (D tile Max	quarti efinit Est Q5 (Sum k Sum C Varia Kurto Corre Std E ical M v eviati nce quarti Est	le Range ion 5) imate 4 4 4 2 2 1 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2	6 14 1.86666667 -1.875 9.3333333 0.55777335 1.36626 1.86667 3.00000 3.00000

	95% 90% 75% Q 50% M 25% Q 10% 5% 1% 0% Mi	3 edian 1 n	4 4 2 1 1 1 1 1	
N Mean Std Deviation Skewness Uncorrected SS Coeff Variation	Vari 2.33333 1.3662 1.93437 58.5540	able: 6 333 601 336 42 044	Q6 (Q6) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean	6 14 1.86666667 4.55357143 9.3333333 0.55777335
Locatio Mean 2. Median 2. Mode 2.	Basic S n 333333 000000 000000	tatist Std [Varia Range Inter	tical Measures Variability Deviation ance e rquartile Range	1.36626 1.86667 4.00000 0
N Mean Std Deviation Skewness Uncorrected SS Coeff Variation	Quanti Quant 100% 99% 95% 90% 75% Q 50% M 25% Q 10% 5% 1% 0% Mi Vari 1.33333 0.51639 0.96824 38.7298	les ([ile Max Bedian 1 n able: 6 333 778 584 12 335	Definition 5) Estimate 5 5 2 2 2 1 1 1 1 2 2 1 1 1 2 2 1 1 1 2 5 5 5 5	6 8 0.26666667 -1.875 1.3333333 0.21081851
Locatio Mean 1. Median 1. Mode 1.	Basic S n 333333 000000 000000	tatist Std [Varia Range Inter	tical Measures Variability Deviation ance P rquartile Range	0.51640 0.26667 1.00000 1.00000
	Quanti Quant 100% 99% 95% 90% 75% Q 25% Q 10% 5% 1% 0% Mi	les ([ile Max 3 edian 1 n	Definition 5) Estimate 2 2 2 2 1 1 1 1 1 1 1 1	
Ν	Vari	able: 6	Q8 (Q8) Sum Weights	6

Mean Std Deviation Skewness Uncorrected SS	1.33333 0.51639 0.96824 5	333 Sum 778 Var: 584 Kur 12 Cori	Observations iance tosis rected SS	8 0.266666667 -1.875 1.33333333
Coett Variatio	on 38./298	335 Sta	Error Mean	0.21081851
Locat	Basic S [.] tion	tatistical	Measures Variability	
Mean	1.333333	Std Devia	tion	0.51640
Median	1.000000	Variance		0.26667
Mode	1.000000	Thterquart	tile Range	1.00000
		Incer quar	ciic Kange	1.00000
	Quanti	les (Defin:	ition 5)	
	Quant	ile E:	stimate	
	100%	Мах	2	
	99%		2	
	90%		2	
	75% 0	3	2	
	50% M	edian	1	
	25% Q	1	1	
	10%		1	
	5%		1	
	1%		1	
	0% Mi	n La care	1	
N	Varia	ble: Q15	(Q15)	c
N Mean	1 92222	222 Sum	Observations	0 11
Std Deviation	1 60208	198 Var	iance	2 56666667
Skewness	2.14817	874 Kur	tosis	4.63990555
Uncorrected SS	5	33 Cori	rected SS	12.8333333
Coeff Variatio	on 87.3862	898 Std	Error Mean	0.65404723
Locat	Basic S	tatistical	Measures Variability	
Mean	1.833333	Std Devia	tion	1.60208
Median	1.000000	Variance		2.56667
Mode	1.000000	Range		4.00000
		Interquar	tile Range	1.00000
	Quanti	loc (Dofin	ition E)	
	Quanti	ilo E	stimate	
	100%	Max	5	
	99%		5	
	95%		5	
	90%		5	
	75% Q	3	2	
	50% M	edian	1	
	25% Q	1	1	
	10%		1	
	5% 1%		1	
	0% Mi	n	1	
	Varia	ble: Q16	(Q16)	
N		6 Sum	Weights	6
Mean	2.83333	333 Sum 214 Van	Observations	1 7666667
Stu Deviation	1.32910	614 Var. 674 Kur	tosis	-0 /592382
Uncorrected SS	5	57 Cori	rected SS	8 83333333
Coeff Variatio	on 46.9115	342 Std	Error Mean	0.54262735
1	Basic S	tatistical	Measures	
Locat	2 833333	Std Douis	variability	1 22016
Median	2.000000	Variance		1.76667
Mode	2.000000	Range		3.00000
-		Interguar	tile Range	2.00000

N Mean Std Deviation Skewness Uncorrected SS Coeff Variation	Quantiles (Quantile 100% Max 99% 95% 90% 75% Q3 50% Median 25% Q1 10% 5% 1% 0% Min Variable: 6 1.83333333 0.40824829 -2.4494897 21 22.2680886	Definition 5) Estimate 5 5 5 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	6 11 0.16666667 6 0.8333333 0.16666667
	Basic Statis	tical Measures	
Location Mean 1.83 Median 2.00 Mode 2.00	3333 Std 0000 Vari 0000 Rang Inte	Variability Deviation ance ge erquartile Range	0.40825 0.16667 1.00000 0
	Quantiles (Quantile 100% Max 99% 95% 90% 75% Q3 50% Median 25% Q1 10% 5% 1% 0% Min	Definition 5) Estimate 2 2 2 2 2 2 2 2 1 2 1 1 1 1 1	
N Mean Std Deviation Skewness Uncorrected SS Coeff Variation	Variable: 6 3.83333333 1.32916014 -0.3264936 97 34.6737427	Q18 (Q18) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean	6 23 1.76666667 -2.253471 8.8333333 0.54262735
Location Mean 3.83 Median 4.00 Mode 5.00	Basic Statis 3333 Std 0000 Vari 0000 Rang Inte	tical Measures Variability Deviation ance ge erquartile Range	1.32916 1.76667 3.00000 2.00000
	Quantiles (Quantile 100% Max 99% 95% 90% 75% Q3 50% Median 25% Q1 10% 5%	Definition 5) Estimate 5 5 5 5 5 5 4 3 2 2	

N Mean Std Deviation Skewness Uncorrected SS Coeff Variatic	1% 0% M Vari 3.3333 0.8164 -0.857 5 50 24.494	in able: 3333 9658 3214 70 8974	2 2 Q19 (Q19) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean	6 20 0.66666667 -0.3 3.3333333 0.33333333
Locat Mean Median Mode	Basic tion 3.333333 3.500000 4.000000	Statis Std Vari Rang Inte	tical Measures Variability Deviation ance e rquartile Range	0.81650 0.66667 2.00000 1.00000
	Quant Quan 100% 99% 95% 90% 75% 50% 25% 10% 5% 10%	iles (tile Max Q3 Median Q1 in	Definition 5) Estimate 4.0 4.0 4.0 4.0 4.0 3.5 3.0 2.0 2.0 2.0 2.0 2.0	
N Mean Std Deviation Skewness Uncorrected SS Coeff Variatio	Vari 2.6666 0.8164 0.8573 5 5 5 30.618	able: 6 6667 9658 2141 46 6218	Q20 (Q20) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean	6 16 0.66666666 -0.3 3.3333333 0.33333333
Locat Mean Median Mode	Basic tion 2.666667 2.50000 2.000000	Statis Std Vari Rang Inte	tical Measures Variability Deviation ance ge rquartile Range	0.81650 0.66667 2.00000 1.00000
	Quant Quan 100% 99% 95% 90% 75% 50% 25% 10% 5% 1% 0% M	iles (tile Max Q3 Median Q1 in	Definition 5) Estimate 4.0 4.0 4.0 3.0 2.5 2.0 2.0 2.0 2.0 2.0 2.0 2.0	

Annexure O: Descriptive statistics for industry questionnaire: Uni-variate with means & standard deviations where appropriate

N Mean Std Deviation Skewness Uncorrected SS Coeff Variation	Variable: 32 3.40625 1.04292934 -0.5532645 405 30.6181091	Q1 (Q1) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean	32 109 1.08770161 0.20683837 33.71875 0.1843656
Location Mean 3.40 Median 3.50 Mode 4.00	6250 Std I 0000 Varia 0000 Range Inter	Variability Deviation ance e rquartile Range	1.04293 1.08770 4.00000 1.00000
	Quantiles (D Quantile 100% Max 99% 95% 90% 75% Q3 50% Median 25% Q1 10% 5% 1% 0% Min	Definition 5) Estimate 5.0 5.0 5.0 4.0 3.5 3.0 2.0 1.0 1.0 1.0	
N Mean Std Deviation Skewness Uncorrected SS Coeff Variation	Variable: 33 2.06060606 0.65856824 0.63698138 154 31.9599291	Q2 (Q2) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean	33 68 0.43371212 1.58074789 13.8787879 0.11464201
Location Mean 2.06 Median 2.00 Mode 2.00	Basic Statist 0606 Std E 0000 Varia 0000 Range Inter	cical Measures Variability Deviation ance P rquartile Range	0.65857 0.43371 3.00000 0
N Mean	Quantiles (I Quantile 100% Max 99% 95% 90% 75% Q3 50% Median 25% Q1 10% 5% 1% 0% Min Variable: 32 3.15625	Definition 5) Estimate 4 3 3 2 2 2 2 1 1 1 1 1 2 3 (Q3) Sum Weights Sum Observations	32 101
Std Deviation Skewness Uncorrected SS Coeff Variation	0.98731879 -0.5465378 349 31.2813873	Variance Kurtosis Corrected SS Std Error Mean	0.97479839 -0.3425266 30.21875 0.17453495

			Basic	Statist	ical Measures	
	Loca	tion			Variabilit	у
	Mean	3.156	5250	Std D	Deviation	0.98732
Median 3.0			0000	Varia	ance	0.97480
	mode	4.000	0000	Range	e guantilo Dango	4.00000
				Incer	quartile Range	1.50000
			Ouant	iles (F	Definition 5)	
			Ouan	tile (1	Estimate	
			100%	Max	5.0	
			99%		5.0	
			95%		4.0	
			90%		4.0	
			75%	Q3	4.0	
			50%	Median	3.0	
			25%	Q1	2.5	
			10%		2.0	
			5%		1.0	
			1%	• •	1.0	
			0% M	11	1.0	
			Var	iable:	Q4 (Q4)	
N				32	Sum Weights	32
Mean			3.0	9375	Sum Observatio	ons 99
Std D	Deviation		0.9954	5337	Variance	0.99092742
Skewn	ness	~	-0.825	5234	Kurtosis	-0.3529903
Uncor	rected S	5	22 176	33/	Corrected SS	30./18/5
COETT	Variati	.011	52.170	2707	Stu Error Mean	0.1/59/290
			Basic	Statist	ical Measures	
	Loca	tion			Variabilit	зу
	Mean	3.093	3750	Std [Deviation	0.99545
	Median	3.000	0000	Varia	ance	0.99093
	Mode	4.006	9999	Range		3.00000
				Inter	rquartile Range	1.50000
			Quant	iles (D	Definition 5)	
			Quan	tile	Estimate	
			100%	Max	4.0	
			99%		4.0	
			95%		4.0	
			90%	0 2	4.0	
			/5%	Q3 Madian	4.0	
			50% 25%	Median	3.0	
			25% 10%	ŲΙ	2.5	
			5%		2.0	
			1%		1.0	
			0% M	in	1.0	
			Var	iable:	Q5 (Q5)	
Ν				33	Sum Weights	33
Mean			2.4848	4848	Sum Observatio	ons 82
Std D	Deviation	1	0.9394	5503	Variance	0.88257576
Skewn	ness		0.2872	2235	Kurtosis	-0.7642225
Uncor	rected S	S		232	Corrected SS	28.2424242
Coeff	- Variati	.on	37.807	3367	Std Error Mean	0.16353813
			Basic	Statist	cical Measures	
	Loca	tion			Variabilit	:v
	Mean	2.484	4848	Std [Deviation	0.93946
	Median	2.000	0000	Varia	ance	0.88258
	Mode	2.000	9000	Range	2	3.00000
				Inter	rquartile Range	1.00000
			Quant	ilec /r	Definition 5)	
			Ouan	tile	Estimate	
			100%	Max	4	
			99%		4	

	95% 90% 75% (50% 25% (10% 5% 1% 0% M:	Q3 Median Q1 in	4 4 2 2 1 1 1 1 1	
N Mean Std Deviation Skewness Uncorrected SS Coeff Variation	Var: 2.1515: 0.79534 0.90479 36.9668	iable: 33 1515 4631 9487 173 8005	Q6 (Q6) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean	33 71 0.63257576 1.02148355 20.2424242 0.13845202
Location Mean 2.1 Median 2.0 Mode 2.0	Basic 9 51515 00000 00000	Statis Std Vari Rang Inte	tical Measures Variability Deviation ance e rquartile Range	0.79535 0.63258 3.00000 0
N Mean Std Deviation Skewness Uncorrected SS Coeff Variation	Quant: Quan 100% 99% 95% 90% 75% (25% (10% 5% 1% 0% M Var 0.9069 0.5707 34.550	iles (tile Max 23 Wedian 21 in iable: 32 .625 5232 4814 246 9454	Definition 5) Estimate 4 4 2 2 2 1 1 1 1 07 (Q7) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean	32 84 0.82258065 0.29788013 25.5 0.1603298
Location Mean 2.6 Median 2.5 Mode 2.0	Basic 9 25000 00000 00000	Statis Std Vari Rang Inte	tical Measures Variability Deviation ance e rquartile Range	0.90696 0.82258 4.00000 1.00000
	Quant: Quan 100% 99% 95% 90% 75% (25% (10% 5% 1% 0% M	iles (tile Max Q3 Median Q1 in	Definition 5) Estimate 5.0 5.0 4.0 4.0 3.0 2.5 2.0 2.0 1.0 1.0 1.0	
Ν	Var	iable: 32	Q8 (Q8) Sum Weights	32

Mean	0.04504	3	Sum Observations	96	
Std Deviation	0.91581	.094	Variance	0.838/0968	
Skewness	-0.268/	31/	Corrected SS	0.13/25//	
Coeff Variatio	on 30.5270	313	Std Error Mean	0.16189403	
		525		0120205105	
	Basic S	tatisti	cal Measures		
Locat	tion		Variability		
Mean	3.000000	Std De	viation	0.91581	
Median	3.000000	Varian	ce	0.838/1	
Mode	3.000000	Thtong	wantila Panga	4.00000	
		Incerq	ual CITE Nalige	1.30000	
	Quanti	les (De	finition 5)		
	Quant	ile	Estimate		
	100%	Max	5.0		
	99%		5.0		
	95%		4.0		
	90%	_	4.0		
	75% Q	3	4.0		
	50% M	ledian	3.0		
	25% (ĮΤ	2.5		
	5%		2.0		
	1%		1.0		
	0% Mi	n	1.0		
	Vari	able:	Q9 (Q9)		
Ν		33	Sum Weights	33	
Mean		2	Sum Observations	66	
Std Deviation	1.03077	641	Variance	1.0625	
Skewness	1.0934	813	Kurtosis	1.03833017	
Uncorrected SS	5	166	Corrected SS	34	
Coeff Variatio	on 51.5388	203	Sta Error Mean	0.1/943514	
	Basic S	tatisti	cal Measures		
Locat	tion		Variability		
Mean	2.000000	Std De	viation	1.03078	
Median	2.000000	Varian	ce	1.06250	
Mode	2.000000	Range		4.00000	
		Interq	uartile Range	1.00000	
	Quanti	les (De	finition 5)		
	Ouant	ile (De	Estimate		
	100%	Max	5		
	99%		5		
	95%		4		
	90%		3		
	75% (<u>j</u> 3	2		
	50% M	ledian	2		
	25% (10%	ĮΤ	1		
	10%		1		
	1%		1		
	0% Mi	.n	1		
	Varia	ıble: Q	10 (Q10)		
Ν		33	Sum Weights	33	
Mean	2.93939	394	Sum Observations	97	
Std Deviation	0.82686	887	Variance	0.68371212	
Skewness	-0.2362	2352	Kurtosis	-0.6784882	
Coeff Vaniatio	on 291305	307	Corrected SS Std Ennon Mean	21.8/8/8/9	
COEFF Variatio	20,1503	205	Stu Error Medi	0.14595959	
	Basic S	tatisti	cal Measures		
Locat	tion		Variability		
Mean	2.939394	Std De	viation	0.82687	
Median	3.000000	Varian	ce	0.68371	
Mode	3.000000	Range		3.00000	
		interq	uartiie Kange	2.00000	
N Mean Std Deviation Skewness Uncorrected SS Coeff Variation	Quantiles (Quantile 100% Max 99% 95% 90% 75% Q3 50% Median 25% Q1 10% 5% 1% 0% Min Variable: 33 1.72727273 0.80127739 1.32424864 119 46.3897436	(Definition 5) Estimate 4 4 4 4 4 1 2 2 2 1 1 011 (Q11) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean	33 57 0.64204545 2.18337657 20.5454545 0.13948449		
---	---	---	--		
	Basic Statis	stical Measures			
Location Mean 1.72 Median 2.00 Mode 2.00	7273 Std 0000 Vari 0000 Rang Inte	Variability Deviation iance ge erquartile Range	0.80128 0.64205 3.00000 1.00000		
	Quantiles (Quantile 100% Max 99% 95% 90% 75% Q3 50% Mediar 25% Q1 10% 5% 1% 0% Min	(Definition 5) Estimate 4 4 2 2 n 2 n 2 1 1 1 1 1 1			
N Mean Std Deviation Skewness Uncorrected SS Coeff Variation	Variable: 33 1.66666667 0.54006172 -0.0938619 101 32.4037035	Q12 (Q12) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean	33 55 0.29166667 -0.7425938 9.3333333 0.09401268		
Location Mean 1.66 Median 2.00 Mode 2.00	Basic Statis 6667 Std 0000 Vari 0000 Rang Inte	stical Measures Variability Deviation iance ge erquartile Range	0.54006 0.29167 2.00000 1.00000		
	Quantiles (Quantile 100% Max 99% 95% 90% 75% Q3 50% Mediar 25% Q1 10% 5%	(Definition 5) Estimate 3 2 2 2 n 2 1 1 1 1			

	1%	_	1	
	0% M	in 	1	
N	vari	abie:	QI3 (QI3) Sum Weights	33
Mean	1.6666	5667	Sum Observations	55
Std Deviation	0.6922	1866	Variance	0.47916667
Skewness	1.15	8946	Kurtosis	2.571669
Uncorrected SS		107	Corrected SS	15.3333333
Coeff Variatio	n 41.533	1193	Std Error Mean	0.1204998
	Basic	Statio	tical Measures	
Locat	ion		Variability	
Mean	1.666667	Std	Deviation	0.69222
Median	2.000000	Vari	ance	0.47917
Mode	2.000000	Rang	ge	3.00000
		Inte	erquartile Range	1.00000
	Quant	iles (Definition 5)	
	Quan	tile	Estimate	
	100%	Max	4	
	99%		4	
	95%		3	
	90%	าว	2	
	50%	ys Mediar	2 1 2	
	25%	Q1		
	10%	c .	1	
	5%		1	
	1%		1	
	0% M	ın	1	
	Vari	able:	Q14 (Q14)	
Ν		33	Sum Weights	33
Mean	1.7575	7576	Sum Observations	58
Std Deviation	0.9364	2615	Variance	0.87689394
Skewness	1.00/8	4/5/	Kurtosis	0.036500/
Coeff Variatio	n 53.27	9419	Std Error Mean	0.16301087
	. Basic	Statis	tical Measures	
Locat	10N 1 757576	S+4	Variability	0 93613
Median	1 000000	Vari		0.93643
Mode	1.000000	Rang	ge	3.00000
		Inte	erquartile Range	1.00000
	Quant	iles (Definition 5)	
	Quan 100%	Max		
	99%	TIUX	4	
	95%		4	
	90%		3	
	75%	Q3	2	
	50%	Mediar	1 1	
	25%	ĮΤ	1	
	5%		⊥ 1	
	1%		1	
	0% M	in	1	
	Vari	able:	Q15 (Q15)	
N		32	Sum Weights	32
Mean Std Deviation	2.7	18/2	Sum Ubservations	87 1 1 12117501
Skewness	1 0661	1343	Kurtosis	-0.3153192
Uncorrected SS	1.0001	281	Corrected SS	44.46875
Coeff Variatio	n 44.053	1877	Std Error Mean	0.21172475

Basic Statistical Measures Location Variability

Mean 2. Median 2.	718750 000000	Std Vari	Deviatio ance	on	1.19770 1.43448
Mode 2.	000000	Rang	e nguantil	e Pange	4.00000
		Ince	rquarti	Le Kallge	1.50000
	Quanti	les (Definiti	Lon 5)	
	Quant 100%	11e May	ESTI	Lmate 50	
	99%	na x		5.0	
	95%			5.0	
	90%			5.0	
	75% Q	3		3.5	
	50% M	edian 1		2.0	
	25% Q 10%	T		2.0	
	5%			2.0	
	1%			1.0	
	0% Mi	n		1.0	
	Varia	ble:	016 (0)16)	
Ν		32	Sum We	eights	32
Mean	3.0	625	Sum Ob	oservations	98
Std Deviation	1.26841	277	Variar	ice	1.60887097
Skewness	0.48291	167 350	Kurtos	515 -tod 55	-1.2313116
Coeff Variation	41.41	756	Std Er	rror Mean	0.22422582
Lacatio	Basic S	tatis	tical Me	easures	
Mean 3.	062500	Std	va Deviatio	on	1,26841
Median 3.	000000	Vari	ance		1.60887
Mode 2.	000000	Rang	e		4.00000
		Inte	rquartil	le Range	2.00000
	Quanti	les (Definiti	ion 5)	
	Quant	ile Ò	Esti	imate	
	100%	Max		5	
	99% 05%			5	
	90%			5	
	75% Q	3		4	
	50% M	edian		3	
	25% Q	1		2	
	10%			2	
	1%			2	
	0% Mi	n		1	
	Varia	ble:	Q17 ((217)	
N		32	Sum We	eights .	32
Mean Std Deviation	3.53	125 626	Sum Ot Vaniar	oservations	113 0 06673387
Skewness	0.01590	813	Kurtos	sis	0.07009639
Uncorrected SS		429	Correc	ted SS	29.96875
Coeff Variation	27.8435	754	Std Er	rror Mean	0.17381149
	Basic S	tatic	tical Me	acurec	
Locatio	n	cucis	Va	ariability	
Mean 3.	531250	Std	Deviatio	on	0.98323
Median 3.	000000	Vari	ance		0.96673
Mode 3.	000000	Kang Tnte	e rquartil	le Range	4.00000
					2.00000
	Quanti	les (Definiti	ion 5)	
	Quant	ıle Max	Esti	Lmate	
	99% 100%	nax		5	
	95%			5	
	90%			5	
	75% Q	3		4	

	50% Median 25% Q1	ı 3 3	
	10%	3	
	5%	2	
	0% Min	1	
N	Variable: 33	Q18 (Q18) Sum Weights	33
Mean	3.27272727	Sum Observations	108
Std Deviation	0.94448158	Variance	0.89204545
Skewness	0.11/4/323	Kurtosis	0.24226174
Coeff Variation	28.8591594	Std Error Mean	0.16441314
Location	Basic Statis	tical Measures Variability	
Mean 3.2	72727 Std	Deviation	0.94448
Median 3.0	00000 Vari	ance	0.89205
Mode 3.0	00000 Rang Inte	e rquartile Range	4.00000 1.00000
	Ouantiles (Definition 5)	
	Quantile	Estimate	
	100% Max	5	
	99%	5	
	90%	5	
	75% Q3	4	
	50% Median	3	
	25% Q1	3	
	10%	2	
	1%	1	
	0% Min	1	
	Variable:	Q19 (Q19)	
N	33	Sum Weights	33
Std Deviation	0.95147414	Variance	0.90530303
Skewness	-0.666362	Kurtosis	-0.5120919
Uncorrected SS	389	Corrected SS	28.969697
Coeff Variation	28.8060977	Std Error Mean	0.16563039
Location	Basic Statis	tical Measures Variability	
Mean 3.3	03030 Std	Deviation	0.95147
Median 4.0	00000 Vari	ance	0.90530
Mode 4.0	Inte	e rquartile Range	4.00000 1.00000
	Quantiles (Definition 5)	
	100% Max	5	
	99%	5	
	95%	4	
	90%	4	
	75% Q5 50% Median	4	
	25% Q1	3	
	10%	2	
	5%	2	
	1% 0% Min	1 1	
	Variable:	Q20 (Q20)	
N	33	Sum Weights	33
Mean Std Deviation	2 0 70056042	Sum Observations	66
Skewness	2.01977734	Kurtosis	6.73445161

Uncorrected S	S	152	Corrected SS	20
Coeff Variati	on 39.528	4708	Std Error Mean	0.13762047
	Basic	Statis	tical Measures	
Loca	tion		Variability	
Mean	2.000000	Std	Deviation	0.79057
Median	2.000000	Vari	ance	0.62500
Mode	2.000000	Rang	e	4.00000
		Inte	rquartile Range	0
	Quant	iles (Definition 5)	
	Quant	+110	Estimate	
	200%	' May	LSCIMACE	
	100%	ridx	5	
	99%		5	
	95%		4	
	90%		2	
	75%	Q3	2	
	50%	Mediar	ı 2	
	25%	01	2	
	10%	u -	1	
	5%		-	
	1%		1	
	9% M	lin	1	
	0/6 1		1	

Annexure P: Comparison of proportions for staff questionnaire

Cumulative Cumulative Q1 Frequency Percent Frequency Percent Mostly agree - Completely agree 4 66.67 66.67 4 Mostly disagree - Completely disagree 2 33.33 6 100.00 Chi-Square Test for Equal Proportions *fffffffffffffffffffffff* Chi-Square 0.6667 DF 1 Pr ≻ ChiSq 0.4142 WARNING: The table cells have expected counts less than 5. Chi-Square may not be a valid test. Sample Size = 6 Cumulative Cumulative Q2 Frequency Percent Frequency Percent Mostly agree - Completely agree 5 83.33 5 83.33 Mostly disagree - Completely disagree 1 16.67 6 100.00 Chi-Square Test for Equal Proportions *<i><i>fffffffffffffffffffffff* Chi-Square 2.6667 DF 1 Pr > ChiSq 0.1025 WARNING: The table cells have expected counts less than 5. Chi-Square may not be a valid test. Sample Size = 6 Cumulative Cumulative Frequency Percent 03 Frequency Percent Mostly agree - Completely agree 6 100.00 6 100.00 Chi-Square Test for Equal Proportions ffffffffffffffffffffff Chi-Square 0.0000 DF 0 Pr > ChiSq Sample Size = 6 Cumulative Cumulative Q4 Frequency Percent Frequency Percent Mostly agree - Completely agree 66.67 4 4 66.67 Undecided 1 16.67 5 83.33 Mostly disagree - Completely disagree 16.67 6 100.00 1 Chi-Square Test for Equal Proportions fffffffffffffffffffff Chi-Square 3.0000 DF 2 Pr ≻ ChiSq 0.2231 WARNING: The table cells have expected counts less than 5. Chi-Square may not be a valid test. Sample Size = 6 Cumulative Cumulative 05 Frequency Percent Frequency Percent Mostly agree - Completely agree 4 66.67 4 66.67 Mostly disagree - Completely disagree 2 33.33 6 100.00 Chi-Square Test for Equal Proportions ffffffffffffffffffffffff Chi-Square 0.6667 DF 1 Pr > ChiSq 0.4142

WARNING: The table cells have expected counts less than 5. Chi-Square may not be a valid test. Sample Size = 6 Cumulative Cumulative Q6 Frequency Percent Frequency Percent Mostly agree - Completely agree 5 83.33 83.33 5 Mostly disagree - Completely disagree 16.67 6 100.00 1 Chi-Square Test for Equal Proportions fffffffffffffffffffffffff Chi-Square 2.6667 DF 1 Pr > ChiSq 0.1025 WARNING: The table cells have expected counts less than 5. Chi-Square may not be a valid test. Sample Size = 6 Cumulative Cumulative Q7 Frequency Percent Frequency Percent Mostly agree - Completely agree 6 100.00 6 100.00 Chi-Square Test for Equal Proportions fffffffffffffffffffffffff Chi-Square 0.0000 DF Ø Pr > ChiSq Sample Size = 6 Cumulative Cumulative Q8 Frequency Percent Frequency Percent Mostly agree - Completely agree 6 100.00 6 100.00 Chi-Square Test for Equal Proportions ffffffffffffffffffffffffff Chi-Square 0.0000 DF 0 Pr ≻ ChiSq Sample Size = 6 Cumulative Cumulative 015 Frequency Percent Frequency Percent Mostly agree - Completely agree 5 83.33 5 83 33 Mostly disagree - Completely disagree 1 16.67 6 100.00 Chi-Square Test for Equal Proportions fffffffffffffffffffffff Chi-Square 2.6667 DF 1 Pr > ChiSq 0.1025 WARNING: The table cells have expected counts less than 5. Chi-Square may not be a valid test. Sample Size = 6 Cumulative Cumulative Q16 Frequency Percent Frequency Percent ffffffffff Mostly agree - Completely agree 4 66.67 4 66.67 Mostly disagree - Completely disagree 2 33.33 6 100.00 Chi-Square Test for Equal Proportions *ffffffffffffffffffffffff* Chi-Square 0.6667 DF 1 0.4142 Pr ≻ ChiSq WARNING: The table cells have expected counts less than 5. Chi-Square may not be a valid test. Sample Size = 6

Cumulative Cumulative

ffffffffffffffffffffffffffffffffffffff	Q17 fffffffffff ee	Frequency ffffffffffffff 6	Percent ffffffffff 100.00	Frequency ffffffffffffff 6	Percent fffffffff 100.00
	Chi- for Equ ffffffff Chi-Squ DF Pr > Ch Samp	Square Test Jal Proportion Stfffffffffffffff Jare 0.000 DiSq Dle Size = 6	s f 0		
	Q18 ffffffffffff	Frequency	Percent ffffffffff	Cumulative Frequency ffffffffffffffff	Cumulative Percent ffffffffff
Undecided	ee	1 2	33.33	1 3	50.00
Mostly disagree - Completely	disagree	3	50.00	6	100.00
WARNING: T	Chi- for Equ fffffff Chi-Squ DF Pr > Ch he table cel han 5. Chi-S Samp	Square Test Jal Proportion fffffffffffffff Jare 1.000 hiSq 0.606 Lls have expect Square may not ble Size = 6	s f 0 2 5 ted counts be a vali	less d test.	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Q19 fffffffffff	Frequency ffffffffffffff	Percent fffffffff	Cumulative Frequency fffffffffffffffff	Cumulative Percent
Mostly agree - Completely agr Undecided	ee	1 2	16.67 33.33	1	16.67 50.00
Mostly disagree - Completely	disagree	3	50.00	6	100.00
WARNING: T t	Chi- for Equ fffffff Chi-Squ DF Pr > Ch he table ce han 5. Chi-5 Samp	Square Test Jal Proportion Stare 1.000 hiSq 0.606 lls have expect Square may not ble Size = 6	s f 0 2 5 ted counts be a vali	less d test.	
				Cumulative	Cumulative
ffffffffffffffffffffffffffffffffffffff	Q20 fffffffffff ee	Frequency ffffffffffffff 3 2	Percent fffffffff 50.00 33.33	Frequency fffffffffffff 3 5	Percent fffffffff 50.00 83.33
Mostly disagree - Completely	disagree	1	16.67	6	100.00
WARNING: T t	Chi- for Equ fffffff Chi-Squ DF Pr > Ch he table ce han 5. Chi-	Square Test al Proportion ffffffffffffff uare 1.000 hiSq 0.606 Lls have expect Square may not	s f 0 2 5 ted counts be a vali	less d test.	
	Samp	ore 2176 = 0			

Annexure Q: Comparison of proportions for industry questionnaire

Cumulative Cumulative Q1 Frequency Percent Frequency Percent Mostly agree - Completely agree 5 15.63 5 15.63 Undecided 11 34.38 16 50 00 Mostly disagree - Completely disagree 16 50.00 32 100.00 Chi-Square Test for Equal Proportions fffffffffffffffffffffff Chi-Square 5.6875 DF 2 Pr > ChiSq0.0582 Effective Sample Size = 32 Frequency Missing = 1 Cumulative Cumulative Q2 Frequency Percent Frequency Percent Mostly agree - Completely agree 27 81.82 27 81.82 Undecided 5 15.15 32 96.97 Mostly disagree - Completely disagree 1 3.03 33 100.00 Chi-Square Test for Equal Proportions Chi-Square 35.6364 DF 2 <.0001 Pr > ChiSq Sample Size = 33 Cumulative Cumulative 03 Freauency Percent Frequency Percent ffffffffff Mostly agree - Completely agree 8 25.00 8 25.00 Undecided 10 31.25 18 56.25 Mostly disagree - Completely disagree 14 43.75 32 100.00 Chi-Square Test for Equal Proportions *<i><i><i>ffffffffffffffffffffff* Chi-Square 1,7500 DF 2 Pr > ChiSq 0 4169 Effective Sample Size = 32 Frequency Missing = 1 Cumulative Cumulative Q4 Frequency Percent Frequency Percent Mostly agree - Completely agree 8 8 25.00 25.00 Undecided 31.25 18 56.25 10 Mostly disagree - Completely disagree 14 43.75 32 100.00 Chi-Square Test for Equal Proportions ffffffffffffffffffffff Chi-Square 1.7500 DF 2 Pr ≻ ChiSq 0.4169 Effective Sample Size = 32 Frequency Missing = 1 Cumulative Cumulative 05 Frequency Percent Frequency Percent Mostly agree - Completely agree 19 57.58 19 57.58 Undecided 24.24 27 81.82 8 Mostly disagree - Completely disagree 6 18.18 33 100.00 Chi-Square Test for Equal Proportions *fffffffffffffffffffffff* Chi-Square 8.9091 DF 2

Pr > ChiSq 0.0116 Sample Size = 33

				Cumulative	Cumulative
	Q6 Freq	uency	Percent	Frequency	Percent
Mostly agree - Completely agree	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	לללללללל 26	73 79 78 79	לללללללללללללל אכ	78 79
Undecided		4	12.12	30	90.91
Mostly disagree - Completely disa	gree	3	9.09	33	100.00
	Chi-Squa	re Test	_		
	ffffffffffff	roportions	F F		
	Chi-Square	30.7273	3		
	DF	2	2		
	Pr > ChiSq	<.000	1		
	Sample S	1ze = 33			
				Cumulative	Cumulative
	Q7 Freq	uency	Percent	Frequency	Percent
+++++++++++++++++++++++++++++++++++++++	ffffffffffff	ffffffff	fffffffff	ffffffffffffffffff	fffffffff
Mostly agree - Completely agree		16	50.00	16 27	50.00
Mostly disagree - Completely disa	gree	5	15.63	32	100.00
	8. 00	5	15105	52	100100
	Chi-Squa	re Test			
	for Equal P	roportion	5		
	Chi-Square	נדדדדדד 5 687י	5		
	DF	5.007	2		
	Pr > ChiSq	0.0582	2		
E	ffective Sam	ple Size =	= 32		
	Frequency M	1551ng = .	L		
				Cumulative	Cumulative
	Q8 Freq	uency	Percent	Frequency	Percent
ffffffffffffffffffffffffffffffffff	ffffffffffff	ffffffff	fffffffffff	fffffffffffffffff	ffffffffff
Mostly agree - Completely agree		8 15	25.00 46.88	8 23	25.00
Mostly disagree - Completely disag	gree	9	28.13	32	100.00
	Chi-Squa	re Test	_		
	ffffffffffff	roportions	F F		
	Chi-Square	2.6875	5		
	DF	2	2		
-	Pr > ChiSq	0.2609	9		
E	Frequency M	pie Size = issing = 1	= 32 1		
	in equency in	1991118	-		
				Cumulative	Cumulative
	Q9 Freq	rencà neucà	Percent	Frequency	Percent
Mostly agree - Completely agree	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	25	75.76	25	75.76
Undecided		5	15.15	30	90.91
Mostly disagree - Completely disa	gree	3	9.09	33	100.00
	Chi-Squa	no Tost			
	for Equal P	roportions	5		
	ffffffffff	fffffffff	f		
	Chi-Square	26.9093	L		
	DF Dr > Chisa	< 000	2		
	Sample S	ize = 33	L		
	010 5		Denser	Cumulative	Cumulative
+++++++++++++++++++++++++++++++++++++++	£££££££££ ¢TØ ⊦red	uency fffffffff.	rercent	⊦requency	rercent
Mostly agree - Completely agree		10	30.30	10	30.30
Undecided		14	42.42	24	72.73
Mostly disagree - Completely disa	gree	9	27.27	33	100.00
	Chi-Saus	re Tect			
	for Equal P	roportions	5		
	fffffffff	ffffffff	f		
	Chi-Square	1.272	7		
	ντ Pr > ChiSa	0 529	2		
	Sample S	ize = 33	-		

				Cumulative	Cumulative
	Q11 Freq	uency	Percent	Frequency	Percent
Mostly agree - Completely agree	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	לללללללל סב	90 91	:לללללללללללללללללללללללללללללללללללל	<i>زززززززززززززززززززززززززززززززززززز</i>
Undecided		1	3.03	31	93.94
Mostly disagree - Completely disa	igree	2	6.06	33	100.00
	-				
	Chi-Squa	re Test			
	for Equal P	roportion	S		
		11111111111111111111111111111111111111	1		
	Cni-Square	49.272	2		
	Pr > ChiSa	< 999	2		
	Sample S	ize = 33	-		
				Cumulative	Cumulative
	Q12 Freq	uency	Percent	Frequency	Percent
JJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJ	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	נננננננ זייייייי		دد 1111111111111111	06 07
Undecided		1	3.03	33	100.00
		-			
	Chi-Squa	re Test			
	for Equal P	roportion	S		
	ffffffffff	ffffffff	f		
	Cni-Square	29.121	1		
	DF Dn \ Chisa	/ 000	1		
	Sample S	ize = 33	-		
				Cumulative	Cumulative
	Q13 Freq	uency	Percent	Frequency	Percent
****	fffffffffff	ffffffff	fffffffff	fffffffffffff	ffffffffff
Mostly agree - Completely agree		31	93.94	31	93.94
Mostly disagree - Completely disa	gree	1	3.03	32	100 00
	igi cc	-	5.05	55	100.00
	Chi-Squa	re Test			
	for Equal P	roportion	S		
	ffffffffff	ffffffff	f		
	Chi-Square	54.545	5		
			2		
	Sample S	<.000 ize = 33	1		
	Sumpre S	120 - 55			
				Cumulative	Cumulative
	Q14 Freq	uency	Percent	Frequency	Percent
*****	****	******		******	
Mostly agree - Completely agree		26	/8./9	26	/8./9
Mostly disagree - Completely disa	gree	2	6.06	33	100.00
·····, ····a· ····, ·····, ····	8	_			
	Chi-Squa	re Test			
	for Equal P	roportion	S		
	ffffffffff	ffffffff	f		
	Chi-Square	31.090	9		
	Pr > ChiSa	< . 000	2		
	Sample S	ize = 33	-		
			_	Cumulative	Cumulative
	Q15 Freq	uency	Percent	Frequency	Percent
Mostly agree - Completely agree	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ללללדד 21	11111111111111 65 62	77777777777777777777777777777777777777	77777777777777777777777777777777777777
Undecided		3	9.38	24	75.00
Mostly disagree - Completely disa	igree	8	25.00	32	100.00
	Chi-Squa	re Test			
	tor Equal P	roportion	S L		
	Chi-Squane	ללללנננינו רפו או	5		
	DF	10.10/	2		
	 Pr > ChiSa	0.000	3		
E	ffective Sam	ple Size	= 32		
	Frequency M	issing =	1		
				C	Cum 3-11
	016 5000		Pencon+	Cumulative	Cumulative
	ATO LIJEd	uency	rercent	riequency	rertent

*****	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	fffffffff	fffffffff	****	ffffffffff
Mostly agree - Completely agree		15	46.88 18 75	15 21	46.88
Mostly disagree - Completely disa	igree	11	34.38	32	100.00
	Chi-Squar for Equal Pr	e Test onortions			
	fffffffffffff	fffffffff			
	Chi-Square	3.8125			
	DF	2			
F	Pr > ChiSq	0.1486 le Size =	32		
-	Frequency Mi	ssing = 1			
	017 Enequ	ency	Percent	Cumulative	Cumulative
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ffffffffffffff	ffffffff	fffffffff	ffffffffffffff	fffffffffff
Mostly agree - Completely agree		2	6.25	2	6.25
Undecided		17	53.13	19	59.38
Mostly disagree - completely disa	igree	15	40.05	52	100.00
	Chi-Squar	e Test			
	for Equal Pr	oportions			
	<i>ffffffffffffff</i> Chi-Square	<i>11,3125</i>			
	DF	2			
_	Pr > ChiSq	0.0035			
E	Frequency Mi	le Size = ssing = 1	32		
	i equency iii				
	010 5		D	Cumulative	Cumulative
+++++++++++++++++++++++++++++++++++++++	QI8 Frequ	ency fffffffff	Percent	Frequency	fffffffffff
Mostly agree - Completely agree		5	15.15	5	15.15
Undecided		17	51.52	22	66.67
Mostly disagree - Completely disa	igree	11	33.33	33	100.00
	Chi-Squar	e Test			
	for Equal Pr	oportions			
	ffffffffffffff	<i>1111111111111111111111111111111111111</i>			
	DF	2			
	Pr > ChiSq	0.0379	1		
	Sample Si	ze = 33			
				Cumulative	Cumulative
	Q19 Frequ	ency	Percent	Frequency	Percent
Mostly agree - Completely agree	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	tttttttt 8	ללללללללללללללללללללללללללללללללללללל	נללללללללללי 8	ללללללללללללללללללללללללללללללללללללל
Undecided		7	21.21	15	45.45
Mostly disagree - Completely disa	igree	18	54.55	33	100.00
	Chi-Sauan	e Tect			
	for Equal Pr	oportions			
	fffffffffff	ffffffff			
	Chi-Square	6.7273			
	Pr > ChiSq	0.0346			
	Sample Si	ze = 33			
				Cumulative	Cumulative
	Q20 Frequ	ency	Percent	Frequency	Percent
*****	fffffffffffffff	ffffffff	fffffffff	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	fffffffff
Mostly agree - Completely agree		30 1	3 03	30 31	90.91
Mostly disagree - Completely disa	igree	2	6.06	33	100.00
		- Test			
	Cni-Squar for Equal Pr	e lest oportions			
	ffffffffffff	fffffffff			
	Chi-Square	49.2727			
	DF Pr > Chisa	2 2 0001			
	Sample Si	ze = 33			

Annexure R: Chi-square test for comparisons

Table of GROUP by Q7n Frequency, Percent Row Pct Col Pct ,Mostly a,Undecide,Mostly d, Total ,gree - C,d ,isagree , ,ompletel, ,- Comple, ,tely dis, ,y agree , 2, Staff 4, 0, 6 , 10.53 , 0.00 , 5.26 , 15.79 , Industry, 16, 11, 5, 32 42.11, 28.95, 13.16, 50.00, 34.38, 15.63, 80.00, 100.00, 71.43, 84.21 , , ffffffff^fffffffffffffffffffffffffff Total 20 11 7 38 52.63 28.95 18.42 100.00 Statistics for Table of GROUP by Q7n Statistic DF Value Prob Chi-Square 2 3.1893 0.2030 Likelihood Ratio Chi-Square 4.7565 0.0927 2 Mantel-Haenszel Chi-Square 1 0.0782 0.7797 0.2897 Phi Coefficient Contingency Coefficient 0.2783 Cramer's V 0.2897 WARNING: 50% of the cells have expected counts less than 5. Chi-Square may not be a valid test. Sample Size = 38 Table of GROUP by Q8n Frequency, Percent Row Pct Col Pct ,Mostly a,Undecide,Mostly d, Total ,gree - C,d ,isagree , ,- Comple, ,ompletel, ,tely dis, ,y agree , ,agree *ffffffff^{*}ffffff^{*}ffffff^{*}ffffff^{*}ffffff^{*}* Staff 5, 0, 1, 6 , 0.00 , 13.16 , 2.63, 15.79 , , 83.33 , 0.00 , 16.67 , , 38.46 , 0.00 , 10.00 , 9, Industry , 8, 15, 32 21.05 , 39.47 , 23.68 , 84.21 , , 25.00 , 46.88 , , 61.54 , 100.00 , 28.13 , 90.00 , 15 Total 13 10 38 34.21 39.47 26.32 100.00 Statistics for Table of GROUP by Ogn

01	GROUP Dy Qoll	
DF	Value	Prob
ffff	ffffffffffffff	fffffff
2	8.0902	0.0175
2	9.3234	0.0095
1	5.5533	0.0184
	DF ffff 2 2 1	DF Value fffffffffffffffff 2 8.0902 2 9.3234 1 5.5533

0.4614 Phi Coefficient Contingency Coefficient 0.4190 Cramer's V 0.4614 WARNING: 50% of the cells have expected counts less than 5. Chi-Square may not be a valid test. Sample Size = 38 Table of GROUP by Q9n Frequency, Percent , Row Pct Col Pct ,Mostly a,Undecide,Mostly d, Total ,gree - C,d ,isagree , ,- Comple, ,ompletel, ,tely dis, ,y agree , Staff , 6, 0, 0, 6 15.79 , 0.00 , 0.00 , 15.79 , , 100.00 , 0.00 , 0.00 , , 20.00 , 0.00 , 0.00 , ffffffff^fffffffffffffffffffffffff Industry, 24, 5, 3, , 63.16, 13.16, 7.89, , 75.00, 15.63, 9.38, , 80.00, 100.00, 100.00, 32 84.21 ffffffff^fffffffffffffffffffffffffff 30 5 3 Total 38 78.95 13.16 7.89 100.00 Statistics for Table of GROUP by Q9n DF Value Statistic Prob Chi-Square 2 1.9000 0.3867 Likelihood Ratio Chi-Square 2 3.1242 0.2097 Mantel-Haenszel Chi-Square 1 1.7575 0.1849 Phi Coefficient 0.2236 Contingency Coefficient 0.2182 Cramer's V 0.2236 WARNING: 83% of the cells have expected counts less than 5. Chi-Square may not be a valid test. Sample Size = 38 Table of GROUP by Q10n Frequency, Percent , Row Pct , Col Pct ,Mostly a,Undecide,Mostly d, Total ,gree - C,d ,isagree , ,- Comple, ,ompletel, ,tely dis, ,y agree , ,agree Staff , 4, 1, 1, 6 15.79 Industry, 10, 13, 9, , 26.32, 34.21, 23.68, , 31.25, 40.63, 28.13, , 71.43, 92.86, 90.00, 32 84.21 14 14 10 38 Total 26.32 100.00 36.84 36.84

 Chi-Square 2 2.7595 0.2516 Likelihood Ratio Chi-Square 2.6902 2 0.2605 2.2027 Mantel-Haenszel Chi-Square 1 0.1378 Phi Coefficient 0.2695 Contingency Coefficient 0.2602 Cramer's V 0.2695 WARNING: 50% of the cells have expected counts less than 5. Chi-Square may not be a valid test. Sample Size = 38 Table of GROUP by Q11n Frequency, Percent , Row Pct Col Pct ,Mostly a,Undecide,Mostly d, Total ,gree - C,d ,isagree , ,ompletel, ,- Comple, ,tely dis, ,y agree , ,agree ffffffffffffffffffffffffff Staff 0, 4, 2, 6 , 10.53 , 0.00 , 5.26 , 15.79 , 66.67, 0.00, 33.33, , 29, 2, Industry , 1, 32 76.32 , 2.63 , 5.26 , 84.21 90.63 , 3.13 , 87.88 , 100.00 , 6.25 , , Total 33 4 38 1 86.84 2.63 10.53 100.00 Statistics for Table of GROUP by Q11n Statistic DF Value Prob 4.0423 Chi-Square 0.1325 2 Likelihood Ratio Chi-Square 2 3.2272 0.1992 Mantel-Haenszel Chi-Square 0.0823 3.0181 1 Phi Coefficient 0.3262 Contingency Coefficient 0.3101 Cramer's V 0.3262 WARNING: 67% of the cells have expected counts less than 5. Chi-Square may not be a valid test. Sample Size = 38 Table of GROUP by Q12n Frequency, Percent , Row Pct Col Pct ,Mostly a,Undecide,Mostly d, Total ,gree - C,d ,isagree ,

,ompletel, ,- Comple, ,tely dis, ,y agree , ,agree 5, Staff 0, 1, 6 , 13.16 , 13.16 , 0.00 , 2.63 , 83.33 , 0.00 , 16.67 , 2.63 , 15.79 , , 1, , 0 Industry , 31 , 32 81.58 , 0.00 , 2.63 , 84.21 , 96.88 , 3.13 , 86.11 , 100.00 , 3.13 , 0.00 , , 0.00, Total 36 1 1 38 94.74 100.00 2.63 2.63

Statistics for Table of GROUP by Q12n Statistic DF Value Prob Chi-Square 5.6186 0.0602 2 Likelihood Ratio Chi-Square 2 4.1366 0.1264 Mantel-Haenszel Chi-Square 1 3.5816 0.0584 Phi Coefficient 0.3845 Contingency Coefficient 0.3589 Cramer's V 0.3845 WARNING: 67% of the cells have expected counts less than 5. Chi-Square may not be a valid test. Sample Size = 38 Table of GROUP by Q13n Frequency, Percent Row Pct Col Pct ,Mostly a,Undecide,Mostly d, Total ,isagree , ,gree - C,d ,ompletel, ,- Comple, ,tely dis, ,y agree , ,agree *ffffffff*^*ffffff*^*fffffff*^*ffffff* 6, , 0, 0, Staff 6 , 0.00 , , 15.79 , 0.00 , 15.79 0.00 , , 100.00 , 0.00 , 0.00 , 0.00 , 16.67 , ffffffff^ffffffffffffffffffffffffffff 30, 1, Industry , 1, 32 78.95 , 2.63 , 2.63 , 84.21 , 93.75 , 3.13 , 3.13 , , 83.33 , 100.00 , 100.00 , Total 36 1 1 38 94.74 2.63 2.63 100.00 Statistics for Table of GROUP by Q13n Statistic DF Value Prob Chi-Square 2 0.3958 0.8204 Likelihood Ratio Chi-Square 0.7079 0.7019 2 Mantel-Haenszel Chi-Square 1 0.3698 0.5431 Phi Coefficient 0.1021 Contingency Coefficient 0.1015 Cramer's V 0.1021 WARNING: 67% of the cells have expected counts less than 5. Chi-Square may not be a valid test. Sample Size = 38 Table of GROUP by Q14n Frequency, Percent Row Pct Col Pct ,Mostly a,Undecide,Mostly d, Total ,gree - C,d ,isagree , ,- Comple, ,ompletel, ,tely dis, ,y agree , ,agree ffffffff^ffffffffffffffffffffffffff `0, 6, 0, Staff 6 , 0.00 , 15.79 , 0.00 , 15.79 , 0.00 , ,100.00 , 0.00 , 0.00 , 18.75 , 0.00 , ffffffff*fffffff*fffffff*fffff Industry , 4, 2, 26, 32 68.42 , 10.53 , 5.26 , 84.21 , , 81.25 , 12.50 , 6.25 , 81.25 , 100.00 , 100.00 ,

Total	32	4	2	38
	84.21	10.53	5.26	100.00

Statistics for Table of GROUP by Q14n
STATISTIC DF VALUE Prod
Chi-Square 2 1.3359 0.5127
Likelihood Ratio Chi-Square 2 2.2634 0.3225
Mantel-Haenszel Chi-Square 1 1.2406 0.2653
Phi Coefficient 0.1875
Contingency Coefficient 0.1843
WARNING: 67% of the cells have expected counts less
than 5. Chi-Square may not be a valid test.
Sample Size = 38
Table of GROUP by Q15n
Percent
Row Pct ,
Col Pct ,Mostly a,Undecide,Mostly d, Total
,gree - C,d ,isagree ,
,ompletel, ,- Comple,
,y agree , ,tely dis,
, , , agree ,
Staff , 5, 0, 1, 6
, 13.16 , 0.00 , 2.63 , 15.79
, 83.33 , 0.00 , 16.67 ,
, 19.23 , 0.00 , 11.11 ,
Triductory 21 2 9 22
$55 26 \cdot 7 89 \cdot 21 05 \cdot 84 21$
, 65.63 , 9.38 , 25.00 ,
, 80.77 , 100.00 , 88.89 ,
ffffffff^ffffffffffffffffffffff
Total 26 3 9 38
68.42 7.89 23.68 100.00
Statistics for Table of GROUP by 015n
Statistic DF Value Prob
<i>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</i>
Chi-Square 2 0.9422 0.6243
Likelinood Ratio Uni-Square 2 1.412/ 0.4935
Phi Coefficient 0.1575
Contingency Coefficient 0.1555
Cramer's V 0.1575
WARNING: 67% of the cells have expected counts less
than 5. Chi-Square may not be a valid test.
Sample Size = 56
Table of GROUP by Q16n
Frequency,
Percent ,
Row Pct ,
cor Pet , mostry a, undeclde, mostry d, lotal gree - C d isagree
,ompletel, Comple.
, y agree , , tely dis,
, , , , agree ,
fffffffffffffffffffffffffffffffff
Statt, 4, 0, 2, 6

, 46.88 , 18.75 , 34.38 , 78.95, 100.00, 84.62, Total 19 13 38 6 50.00 15.79 34.21 100.00 Statistics for Table of GROUP by Q16n Statistic DF Value Proh Chi-Square 2 1.5224 0.4671 Likelihood Ratio Chi-Square 2 2.4291 0.2968 Mantel-Haenszel Chi-Square 1 0.4253 0.5143 Phi Coefficient 0.2002 Contingency Coefficient 0.1963 Cramer's V 0.2002 WARNING: 50% of the cells have expected counts less than 5. Chi-Square may not be a valid test. Sample Size = 38 Table of GROUP by Q17n Frequency, Percent , Row Pct Col Pct ,Mostly a,Undecide,Mostly d, Total ,gree - C,d ,isagree , ,- Comple, ,ompletel, ,tely dis, ,y agree , ,agree 0, Staff 6, 0, 6 , 15.79 , 0.00 , 0.00 , 15.79 , , 100.00 , 0.00 , 0.00 , 75.00 , 0.00 , 0.00 , ffffffff^fffffffffffffffffffffffffff Industry , 17, 13, 32 2, 5.26 , 44.74 , 34.21 , 84.21 Total 8 17 13 38 21.05 44.74 34.21 100.00 Statistics for Table of GROUP by Q17n DF Statistic Value Prob <.0001 Chi-Square 2 26.7188 Likelihood Ratio Chi-Square 2 24.1510 <.0001 21.7342 Mantel-Haenszel Chi-Square <.0001 1 Phi Coefficient 0.8385 Contingency Coefficient 0.6425 Cramer's V 0.8385 WARNING: 50% of the cells have expected counts less than 5. Chi-Square may not be a valid test. Sample Size = 38 Table of GROUP by Q18n Frequency, Percent , Row Pct Col Pct ,Mostly a, Undecide, Mostly d, Total ,gree - C,d ,isagree , ,ompletel, ,- Comple, ,tely dis, ,y agree , ,agree ffffffff^fffffffffffffffffffffffffff 3, Staff 1, 2, 6 , 2.63 , 5.26 , 7.89, 15.79 , 16.67 , 33.33 , 50.00 , 20.00 , 10.53 , 21.43 , , .

ffffffffff	fffffff^f	fffffffff	ffffff^	
Industry ,	4,	17,	11 ,	32
ر	10.53 ,	44.74 ,	28.95 ,	84.21
ر	12.50 ,	53.13 ,	34.38 ,	
ر	80.00 ,	89.47 ,	78.57 ,	
ffffffffff	fffffffff	fffffff^f:	ffffffî	
Total	5	19	14	38
	13.16	50.00	36.84	100.00

Statistics for Table of GROUP by Q18n Statistic DF Value Prob Chi-Square 0.7973 0.6712 2 0.8092 Likelihood Ratio Chi-Square 2 0.6672 Mantel-Haenszel Chi-Square 1 0.0296 0.8634 Phi Coefficient 0.1449 Contingency Coefficient 0.1434 Cramer's V 0.1449 WARNING: 67% of the cells have expected counts less than 5. Chi-Square may not be a valid test. Sample Size = 38

Table of GROUP by Q19n Frequency, Percent Row Pct Col Pct ,Mostly a,Undecide,Mostly d, Total ,isagree , ,gree - C,d ,ompletel, ,- Comple, ,tely dis, ,y agree , ,agree ffffffff^fffffffffffffffffffffffffff 1, 2, з, Staff 6 , 2.63 , 5.26 , 7.89, 15.79 ر 16.67 , 33.33 , 50.00 , , 11.11 , 25.00 , 14.29 , 8, 6, 18, Industry , 32 21.05 , 15.79 , 47.37 , 84.21 , 25.00 , 18.75 , 56.25 , , 85.71 , 88.89, 75.00 , Total 9 8 21 38 21.05 55.26 23.68 100.00

Statistics for Table of GROUP by Q19n Statistic DF Value Prob Chi-Square 2 0.6943 0.7067 Likelihood Ratio Chi-Square 2 0.6471 0.7236 Mantel-Haenszel Chi-Square 0.0357 0.8501 1 Phi Coefficient 0.1352 Contingency Coefficient 0.1340 Cramer's V 0.1352 WARNING: 50% of the cells have expected counts less than 5. Chi-Square may not be a valid test. Sample Size = 38 Table of GROUP by Q20n Frequency, Percent Row Pct Col Pct ,Mostly a,Undecide,Mostly d, Total ,gree - C,d ,isagree , ,- Comple, ,ompletel, ,tely dis, ,y agree , ,agree ffffffff^fffffff^ffffffffffffffffff

Staff , 3 , 2 , 1 ,

6

ر	7.89 ,	5.26 ,	2.63 ,	15.79
,	50.00 ,	33.33 ,	16.67 ,	
ر	9.38 ,	66.67 ,	33.33 ,	
fffffffff	fffffff^f	ffffffff	ffffff	
Industry ,	29,	1,	2,	32
ر	76.32 ,	2.63 ,	5.26,	84.21
ر	90.63 ,	3.13 ,	6.25 ,	
ر	90.63 ,	33.33 ,	66.67 ,	
fffffffff	fffffff^f	ffffffff	ffffff	
Total	32	3	3	38
	84.21	7.89	7.89	100.00

Statistics for T	able of	GROUP by	Q20n	
Statistic	DF	= v	alue	Prob
ffffffffffffffffffffffffffff	fffffff	fffffff	fffffff	ffffff
Chi-Square	2	27.	5250	0.0232
Likelihood Ratio Chi-Squ	are 2	2 5.	5979	0.0609
Mantel-Haenszel Chi-Squa	ire 1	L 4.	7489	0.0293
Phi Coefficient		0.	4450	
Contingency Coefficient		0.	4066	
Cramer's V		0.	4450	
WARNING: 67% of the cel	ls have	expected	counts	less
than 5. Chi-Sq	uare may	/ not be	a valid	test.
Sampl	e Size =	= 38		

Annexure S: ANOVA & Man Whitney test

Analysis of Variance for Variable CRIT Classified by Variable GROUP GROUP Ν Mean Staff 6 7.666667 Industry 32 10.562500 Sum of Squares DF F Value Source Mean Square Pr > FAmong 1 42.370614 42.370614 10.9573 0.0021 Within 36 139.208333 3.866898 Wilcoxon Scores (Rank Sums) for Variable CRIT Classified by Variable GROUP Sum of Expected Std Dev Mean GROUP Scores Under H0 Under HØ Ν Score 117.0 24.707910 Staff 6 45.50 7.583333 Industry 32 695.50 624.0 24.707910 21.734375 Average scores were used for ties. Wilcoxon Two-Sample Test Statistic 45.5000 Normal Approximation Ζ -2.8736 One-Sided Pr < Z 0.0020 Two-Sided Pr > |Z|0.0041 t Approximation One-Sided Pr < Z 0.0033 Two-Sided Pr > |Z|0.0067 Z includes a continuity correction of 0.5. Kruskal-Wallis Test Chi-Square 8.3741 DF 1 Pr > Chi-Square 0.0038 Analysis of Variance for Variable KEYE Classified by Variable GROUP GROUP Ν Mean Staff 6 7.333333 Industry 32 6.750000 Sum of Squares DF F Value Mean Square Pr > FSource Among 1 1.719298 1.719298 0.3451 0.5605 4.981481 Within 36 179.333333 Wilcoxon Scores (Rank Sums) for Variable KEYE Classified by Variable GROUP Sum of Expected Std Dev Mean GROUP Ν Scores Under H0 Under HØ Score 24.595736 Staff 6 130.50 117.0 21.750000 Industry 32 610.50 624.0 24.595736 19.078125 Average scores were used for ties. Wilcoxon Two-Sample Test Statistic 130.5000 Normal Approximation

One-Sided Pr > Z 0.2986 Two-Sided Pr > |Z|0.5971 t Approximation 0.3001 One-Sided Pr > Z Two-Sided Pr > |Z| 0.6003 Z includes a continuity correction of 0.5. Kruskal-Wallis Test 0.3013 Chi-Square DF 1 Pr > Chi-Square 0.5831 Analysis of Variance for Variable KNOW Classified by Variable GROUP GROUP Ν Mean Staff 6 16.333333 Industry 17.937500 32 Sum of Squares Source DF Mean Square F Value Pr > FAmong 13.002193 13.002193 0.7535 1 0.3911 Within 36 621.208333 17.255787 Wilcoxon Scores (Rank Sums) for Variable KNOW Classified by Variable GROUP Sum of Expected Std Dev Mean Under H0 Under H0 GROUP Ν Scores Score Staff 6 87.0 117.0 24.767252 14.50000 Industry 32 654.0 624.0 24.767252 20.43750 Average scores were used for ties. Wilcoxon Two-Sample Test Statistic 87.0000 Normal Approximation 7 -1.1911One-Sided Pr < Z 0.1168 Two-Sided Pr > |Z| 0.2336 t Approximation One-Sided Pr < Z 0.1206 Two-Sided Pr > |Z| 0.2412 Z includes a continuity correction of 0.5. Kruskal-Wallis Test 1.4672 Chi-Square DF 1 Pr > Chi-Square 0.2258 Analysis of Variance for Variable CRITM Classified by Variable GROUP GROUP Ν Mean Staff 6 1.916667 Industry 2.640625 32 Sum of Squares Mean Square DF F Value Pr > F Source 2.648163 10.9573 Among 1 2.648163 0.0021 Within 8.700521 0.241681 36 Wilcoxon Scores (Rank Sums) for Variable CRITM Classified by Variable GROUP Sum of Expected Std Dev Mean GROUP Ν Scores Under HØ Under HØ Score

ff	f	f	f	fj	f	f	f	f	f	f	f	f	f	f	J	fj	f	f	f	f	f	f	5	f	f	f	f	f	f	F	f	f	f	f	f	F	f	f	f	f	f	f	5	F	f	f	f	f	f	f	f	J	f	f	F	f	f	f	f	f	f	f	f	f	f	J	F	f	f	f	f	f	f	FJ	Fj	f	f	f	

Staff Industry	6 45.50 32 695.50	117.0 624.0	24.707910 24.707910	7.583333 21.734375
	Wilcoxon Statistic Normal App	Two-Sample Tes 45. roximation	t 5000	
	Z One-Sided Two-Sided	-2. Pr < Z 0. Pr > Z 0.	8736 0020 0041	
	t Approxim One-Sided Two-Sided Z includes a con	ation Pr < Z 0. Pr > Z 0. tinuity correct	0033 0067 ion of 0.5.	
	Krusk Chi-Square DF Pr > Chi-S	al-Wallis Test 8. quare 0.	3741 1 0038	
	Analysis of Var Classifie GROUP	iance for Varia d by Variable G N	ble KEYEM ROUP Mean	
	fffffffffffffffff Staff Industry	ffffffffffffffff 6 32	fffffffff 1.833333 1.687500	
Source DF fffffffffff Among 1 Within 36	Sum of Square fffffffffffff 0.10745 11.20833	s Mean Squar fffffffffffff 6 0.10745 3 0.31134	re F Value ffffffffffffff 6 0.3451 3	Pr > F fffffff 0.5605
W GROUP <i>fffffffffffffffff</i> Staff Industry	ilcoxon Scores (R Classifie Sum of N Scores ffffffffffffffff 6 130.50 32 610.50 Average scor	ank Sums) for V d by Variable G Expected Under H0 ffffffffffffffff 117.0 624.0 es were used fo	ariable KEYEM ROUP Std Dev Under HØ fffffffffffffffff 24.595736 24.595736 ar ties.	Mean Score ffffffffff 21.750000 19.078125
	Wilcoxo Statistic Normal App Z One-Sided Two-Sided	n Two-Sample Te 130 roximation 0 Pr > Z 0 Pr > Z 0	st .5000 .5285 .2986 .5971	
	t Approxim One-Sided Two-Sided Z includes a con	ation Pr > Z 0 Pr > Z 0 tinuity correct	.3001 .6003 ion of 0.5.	
	Krusk Chi-Square DF Pr > Chi-S	al-Wallis Test 0 quare 0	.3013 1 .5831	
	Analysis of Var Classifie GROUP fffffffffffffff Staff Industry	iance for Varia d by Variable G N ffffffffffffff 6 32	ble KNOWM ROUP Mean fffffffff 2.722222 2.989583	

Source DF Sum of Squares Mean Square F Value Pr > FAmong 1 0.361172 0.361172 0.7535 0.3911 Within 36 17.255787 0.479327 Wilcoxon Scores (Rank Sums) for Variable KNOWM Classified by Variable GROUP Sum of Expected Std Dev Mean GROUP Ν Scores Under HØ Under H0 Score Staff 6 87.0 117.0 24.767252 14.50000 624.0 24.767252 Industry 32 654.0 20.43750 Average scores were used for ties. Wilcoxon Two-Sample Test 87.0000 Statistic Normal Approximation Ζ -1.1911 One-Sided Pr < Z 0.1168 Two-Sided Pr > |Z|0.2336 t Approximation One-Sided Pr < Z 0.1206 Two-Sided Pr > |Z|0.2412 Z includes a continuity correction of 0.5.

> Kruskal-Wallis Test Chi-Square 1.4672 DF 1 Pr > Chi-Square 0.2258